From f8383b25110077709afe935513b543e054a5d833 Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Mon, 6 Feb 2017 16:14:33 -0800 Subject: [PATCH 01/31] Adding small data caching for test automation --- .../Timeseries/DataSets/Stock/stock_SPY.pkl | Bin 0 -> 240560 bytes .../CNTK_103B_MNIST_FeedForwardNetwork.ipynb | 4 ++-- 2 files changed, 2 insertions(+), 2 deletions(-) create mode 100644 Examples/Timeseries/DataSets/Stock/stock_SPY.pkl diff --git a/Examples/Timeseries/DataSets/Stock/stock_SPY.pkl b/Examples/Timeseries/DataSets/Stock/stock_SPY.pkl new file mode 100644 index 0000000000000000000000000000000000000000..1e10dcd6dfd98607ceb5e5b4a2091d43f8bebb46 GIT binary patch literal 240560 zcmZ75dpK25_b+hwh(sgN=A3KHImX_5u0Qr6mh^BbW(FKdyn9{z-CXu5?hXiY zSM&&S@pDg0;xKRtb}{_V`RO#dsI*gQQE9SCEY88BA#hq>=lbamNB6VG?{cMo+o zK^u+sTA0N8zvus1fIn7ek;L-fN&Q3o_J;q@!u>*ggS}mXf?UFBQs*G|-2wjlf`dYK z2UD0N*8dDlOPWWC{%6SPG&6>{G<`gZG+8r7Gq$+@JB-zh@^r_IOqT0tq#5J? zjABk=j7+nzurU2c$A8|;bb`}dk0Biv%f0UYX-O=`-kx4*NzCQ}p%hQwHvmbo*#`KA z{HLtCZa(7w)96k&h8(5IllcEzh~RzhLEcn|{}d!GY0-ZwL7#(ru(zN4|5m|EHEF^B z--gOC1xKV=cnKu2pp%y25#%074T4_6UZP0VYuSGj-CV&#S5iq#oB!X;SdtjE{=du^ zD6Bq{|GqRT4!wfYj;0}3y}~$rYu*RXj7TnEU|7wTyiSUY&X9VSsTJgW ze|8>e(*9qz6D&+sE`dKKnr5M4xr3<;88dS&R+fBrOt%w?i*!rKkpb6y_Cm*9vW_ds z;)%OO@OO;WFKEI)Y$Q)+UWzya$ z`FHTmG&Bzh+@wUFV`EE$pEI%s;7haZ?W;-YzOSOnWQhOaJ@DZ_fojNivWR^RY1#cp zPlY`1dGaJ2omtTjwGyipRY^JRuqA8Bu%}$!@X@Y|l~C~eS~fM({YZ-qv{p~ps7_vN z7EOWU_BZ>W&X-LJ>&O$4JrVH0>P!y}vgN))1r*+TpLsp$^h6&9ki%>KD4Z5)ex*Zh zDshzANTz8|guub4aS!1dmnD33+@GWj z$c)^`eQa0wOkKzGRU%OnvFOZ5#Q{>rXyZ z{GIw8Mjc_h0S6w(U$iHccZiO| zLtjg^9muCqo08$Og+0BHvmxWr4)W?yy_+LBvwvGTG-ChExRX@9du0?J*{r4IL_UAp zkq9OBy1#~d8Gp+-lRGOa`F4@l49#8P?92XAXzCsE51#$aVc|j^z5YnUmF&`SOn_3) z#=GG@*SHnC$p@3d!SKeFm(FhF+&bUuaB~a8Uzoik-OQc*@>MPizPj)+&V!U$6Zrz} zZ{U&iBpYom1w#H|je5wK^|RQE+#;X!8|K~>H}NLNHdkc84ev~b;mXtVp8JsDQrY5r z$mWXG0dTQVV=eS}WzXeHZcSP|1M`+%GxQ@Tu5V0-8#i_h!jxy;Yy8Pp!MnZz)5_~aDSzqso?Jhf&@DTsXEaO@y#4>j`HM=s@fQw4pq z_Rb3?YvfsN;r!aO1@PxyyVMZUkm>7Nn11@us{P~#DS=3+a{Fov6!-DG9ZCkw&a#A& z_mWb#!UfA#tbj4OOBcz_IYjAx1@?~jUD zL7wQ+Th;22WtwOIo^?$ghEgzT9O-Ua27Ic`8f-A7rmr2F$7 zBk)LpCWJ&zS^6g)a2KrmL!QIi!H*<50--?db0Fq}3sjGI)Wvlp&Y=mS1H+j$I%l!sTDV$Mfr@FOovpHX+b+)kp)(57L~=Bfm3unCFwa>2Bv>s`RfB z7}ayTtAKp6$4u%HDf0JS5cD|_d>`HsG;@>a6m{{ zt&n{Bq+8-Dxy)(LUg-Dj-#vKuP}+hbl5>%qBb;d*HYz5K><*lPXFe?)fZLhjvi{4T6}FUEPDy3`X>26ub91zRZ^7 z3bHX@jqNtczqZu|?rw6s8v&E*0v^NOEi6KJ$dv<` z9&qs)TkC4lL*~l`SWy-I4YHW>YuAuldkd4`#uSgRyJU*^Y!iHYGew}5T%|AN1|wfo zl|k=>{patIRl=O3a9(k)W*up(rJ4vYwKczj?-z;i-6vNU+;D->YYj?ad(*2qSQByP z^8<1|m%K&;X`fRU4+|A-y5Y~dPf`!b5Bo0jG?FT;n$9rh%+nJ1OvddG6u&cL+C(n! zyRG(!beuDdgT*QDI^l2e;N{JvNf~<}RP$(Zd`!mubSQ=|62AR{l1pNZTgaedp$zEk z+#S}>{GX8L3S?_x!uH|9HuB|2#7`)FV4-0<8NyYN1|R0E8-zElrrV#A z41{!aBXnOMH>2z+h8{v0;V zG}eA01ri;&zLIVt-yC51wIf#{leW+d{5H`wI7(_C@mVuQCiDM01m9db{S?Zp%P#vy z3Vj*k7$-d=Beuia3l?61thxD9&}Q{Ig9%di!<5o@GBqUeAbiIr)&>sDf062?Wyo|w?O1HIpA5;0+oMh3;!gaig?|Icb~4v zn;|(}s>h+jcMF|gpxL64Kmt1+xfwZt{*5{2Xg> z0cr>ij=_X0p&LZWkR5B~mXZ&@J`RO^2c4Rr>%vL?W#oCAO_pNh=+NsNs1@q}6&`12 z))Xgu&So5gk2Y@$kst-%jWj^_y$2U9CvP$Gxj^RAS8l*@L-%u%q|U2fBk+XxiFHzB z-|yw|P$8+Z3kq)xxxa$+dd9&cO;);|cYzRGI92 z7PAK~-@UjRE?nGoX$|RA==}qhXw2!UkbhcEorGqNGW~EJ&rqu>8GkW+$y%~|4YxO3 z@i4Cv25(bmQzKnCrY2x%*0GK1jtR0~G{EvljpQXm21^J-AP1%y<4RSpM zcQOBLhnp*JRc|4)jZHYL$S<$^?BM!6L6_mNKWtNQf9b=1YqC+-UTG`I-#Houce}+r zfn`&IA~t01)fa5r$g%a_+u(*LfAe9|&QsrE@0hf%E!mv+LBWn(tQvj*dNeL*ffcrS zLfc7}PimfU;@l5wdvfEdV;5n{y`|&ut!0_E1G(zGVKQ8j&Jw!nE+!{zjwoDjYn7PChvtC@Vb!;IA1$M$85jr zuy_^IU-mcUiBq!eiNF342Me${YcA2 zdg<_de)k|eZkP7dpX~W0yDWf|i>UR5VVu@A@KN?K$6oT*mVznBJh09nki5v^`W}v_ zPb&qHeI~a=_K^y`#y+s+Z{WOOQaFXp7P9F-)D0oGz1W@#3*1NF!pZ5wtM-$634)PO zN$Z7YD0#5W>o#n2`pXhVijJS$3ilkA&VyH)!rp|F({>BwBgjo77sFv%gjzE^toWn+ z0NGKOz!XV}SuM4K{sT92VeLM{F<2zS(i27gs>+l-NE(~23WXWH_Z#7`uPuKx*(uJ? zaEM%9R%ihO^*7|e`WMf>z=a+j>kpG=#Z|#EWR}+E1~}68p7#j3&UybXxPnjBJeCYD zXwHHSYj=*oMUN)b<4Bk7M~^}aE`y+>WKPbjdiYh*Z(%&CSELyj-~emeBvj6D(Mu!!-jqkClXv}$ zTOsGaH^OH~htxnXcvXU}5}xU5$jcyyJho3j)tRq4ndFgUhfl!gO9cC1U3+KqS(1B~ z*WxU4=fod(crE7SEjY_3&3umh^k{Gls@sQc$R>||=1PKH2QKzNsRe3sIVA7>N&fTX zF6)Hd@W!BM8Jr8g$&gEKW;3*e$ILR1T_9h*QFsMq{O?O&B=`T@76Nyd^SR`aWd?;e zAY-@I9Ngmh%sijWopC=0ldeg|7m&Rhs=DCHr{+?Z$nah7gJAPS$bDFGNu}g6$)eso z3%52qnqDFE>?bne#OJt=@a=j1&O&n4>Q@q1$;kV@dts|JV;x-bA$>s+IWKeTFK8?G z$*7pTR2_K+{xIVmf~!yN7Aqm6m(TdY_VT2=aOoxq&g-OacZEH)Pu#cZ23aV=o(6wj z%N~G++RDnMWct&_Xc%+k$ex?zGk&3JD1P}Gdl?y^u4@PHHFsTt#gV5^mXp61$o4~% z+`Edm$jsGNQSjsap;q`JB)_tPl$^JY?KT;d`NRg^mvhO7JT+4j@UMS)UnObIV60F@ zo;&#_0)Ac|_!w&3VimeWN_#ahSCb*X?5yF##IF}1pXlLl(6vNByN0xM>6E)mp8xI{ z21k$lX@Xh;Ck1NBtskhIsPI3A=KF~ z%6FeUG4G}e?91F#3R}#XvmcPcZ!80fi`+s$mK&9jEf1s$2zR%!}AqMd$WYPX~f0(gyt3w+(T=TII zuH78@6UM&fF>EJ011_b(ddb~~o{|eIezrp=!=$AhWXVf$U--wXq8g5f?z{YqTz7rm z6pYu&)_+cRcdR}ISGYFz!$pEeo^+BfR~C!BAWPR>^M?N(Z>)kAJG$7qNX><(zr(}} zGP>R5YvsEsP_|*qTNr9Hr0|k-W6u|QMV6mc_k>LHPb%Pr%~RH|$z;ZI?H=;YDWha4 zFZHGuMpW!w*-Jh)WDSS6e?M@0L$W5>l|!4QUm5$z{OgCd!0$Q&x$xcO^TfBLVw~q| z7$x{e<{kOuO6qEu2jZW8pf@h?*sSlG!UM-URNIv(z5(p(`HS6Kt zqz>*+WZhEtop9E*GGl}^{b4o?&&KtuekMN&h8%%iEo%b4kW!A1YT>@o9b8|@2M5O; zATLkcRXEq6mp)2v-u7}3W)JUKGe&+1WjGAibEH3oGPTw<-^l$IA34U!#&-v{L;gUX zD{wc{r74(e^i%0OIri%KLAb$3ybUJJ-V&K4!*2x5`$0BuoM#IcKR;IhJ$A32gcUy? z>Q0e)g)yt9$q9|ck#J*caSKdw+$j8$d^`HW6SiJFwRMJEq9T(Ay&u+$!>VmtbbgWZ zK7L4sKeF<|f0OzO>do*}ZL8oc`QBoeJ6zrWqZ}?xE6e>u`mQhUxjrSgh z_ODrbpkeZZ#yK*5nH~Q>^23cUu24ny&`lWgoS%MVwErG`{srD!?75ziTyS+Z0XnWv zeF-z82Y8vuk36Bfpjsa14H&0#;V*pgP}Q7;ydU;mot5O7AAb}&pA+eV*A+@7*~q`O z20`$1Ad}NPQiD0;8cax&pM@`1)SIxA(v>!ukZ;eTSPs(l&*kUvX0oQle3C(|BLG^K zy4{0XZp(`}$>USEXJF4!Gb1iiPN+W}hFuN*0Nr=4=~zJC8f#j{O)?+a;RmgG$7|rl zyx92*$rHAE)3EPjw*e2S5WeR$JTRYO0JfYtb?xO34Opihq~~*J#F^ z5F!sh5$uBVrFei!&p=()KhX;I{H4(4dij=--^Qr1b4nod&jPmM`8`vHypVnLBmA~XL`{~|uDcNnleZXj!Uz_oIyv%j z`k4hQNg)||N9b8qR|IdH*!+U|e|d-G$?qpFt0<7V;+ioq_2$zK_)gDFY!&%rT7pxN z6iK*k4}FBq3gMlichitvD|nLhnHdNp}^(T;XFkpE3onN(gIy9X{C(Y0Gc`bBhK zf_FLh{D7P}|MXNy2gS6L&}hIaN|ijbZ@3i>u^d>kmQ+2n&>J3+DX4^ddtLI?$U5KY z3CKN{xKW+lnIe_~uZiF4gJ)j^K3+$Da%U6LAk}|ndBCFyN)@n6_#yLp@#Eu$Z3&ZnobIAAlGk~c7w-8s>|T32unt7Qikh;CFHNasHsEl zwo*%kWdkj*AY-tz%tmqx>yHq);m%DLT{6kkuoU+8_RPVRegT{H$nZJlZ0J#TKVF}# z(6{Y|EM1?a49Kk>(feTDPre5*rTAINCi1P8#~-+={kN$h8R?vI7PgK{eu7m6?>mji zd20KY8M_?r5mhk$+bQ4(|{-LEycLF-+Ix9lV@P6*_}@tC4f zsKc+LV>pu zxRNK?oD*Pw#$-1X?c2obM(*+Nafa3Z{I5fflgxkNw88yP?&PNKZR#Fmn&;;@I5>0g z1zeNJC+SIwX+PukBK@Db?}W9xeiuWo?(Uf-*|gpukSy(PKL!7J?tTxyib%8tk(wnHBKychZBrlk`sv#$ zDC@FsUN9*jpgalPE;s6ikmc$QsgUXM*js4jaAehfQkz>>IFwAz?ec_gR{PwB@(<=% z!pMlNr?*1Sc~&~%>|-vVc!7 zYv;ga>pH(cho}|OG2~V5>R>pNYtaCWlm~f_kg7u${=y^s*P6$Y&*!ydL5Z_YBXIA^ zN%c5#=i5@rqvW-KO+j#$p{E|2p7LK9Po9-zc7jJ=)|(`dU0&NVq15k@VYu)3!L`T8 z2cmqj@J2^RKq5Kk;(iZqp8UmioXn0ru>*b)kSu~SJ3>Ark^8@Ls3en(QRfds{)H+X zkg;LB<^;LLCT@NTnL8wG56AXjzXCU~>rca#cNqp!$?(nTt51^6Z{?!l;=T9UpaTEPJ$}$@_L~7>0M1ZWPsEZ|9SFW#j)LRfzh%u z==iFPA(zZt%Bp#R{CNHBF{rjt@fD1F_CWd~85DPDQ670;P{0N96kfdnoi()Q;Psa0 z=K18ggQ@EZ$j=K`#6yjXce-H08VjjQXyg`^hKrcQYL^lOQ$WRH~pUMP2)sSXPI)E5hu7(FWuCtesZCQGDu-bw_zntXgPdf>>2g>!sD@^wk zZ;{idt)t+e5s!BTx#o32B|Pk-!FHSMm~FFxV#%)gkV{uQrIOt7{8k?<+HImxMH(Ls zdJNaDUtMvBjBS0$TupX5+FQfrW1|;fV06qk=%li-w}vcv_(JY3`DdGV7&QC%w+Uv2 zof4=e;}y0r-XptfKUl&Qmf`1NaQ}i)*btbfSx1(x*d{=5An1X>s$dkAx0FXg*W ze)TDHfwHA6*$>E2-Ls!z)ALmt4WxkEgLr6lmH)v*^1}M7JdNbH)(y^3d*|~KD9@XE zwuy|$lllZ7tK3n0L<%)-j)R`I1D!DcoGSNY^1H%gN2q&mXE98*{Qe6@F_#XtkWbPK zR9i_A>DMvPr_%2kykpEH{)D{zr;f9YoJzKFfCgeCh46G~)K55|yU4Jed^+`1`6;<9 z-t7?d6Z+K-?_Nz_+Cg$^F875qWAE&qkw%AtFT*pu98+*8FGv45sj9l>6xlBK2Z{UL-IR4 zbc4IUZ7+vqhejFuNXA7mTi{ruj@DapgWZcnnDoi(HS7)lEAx(A$$4r&TwG`A+E03H z`A`Zg-iQ5zEc+H%yeGG^ zdy#22MB2Kq%7T}s?|*`)ilSc(lkYY8B|nm@+X@3=w9|%q*#7Mq_b0L@Kjk-^zgEg* zgtTv}%7BG-n}^}gPw!PflOM8k#lMg$imCxHrmndbKHIXB>nkZfFyR0foVj5*N;=9I zq{HH>SA+1kiQk$r(xjL1FjPya^ZiD~iQCk`7dJm~jFXc3QQKkA3*Ia6y0F{(3G#2z zjM8_~Tr2q?Jl7`C1``gytC}QVE()IagOn~{w}l~Va|+N^I4<5MI7{l3xwu0G4>7AhWJ`ka7!+R8r}dZgDh@mjw>c|?&XEP<4UKT}@OJ)x zq#oa>D?C|n_$EBKT_=ZuhxXf%&M#2(fY*9Pau3(v1X!JO@+G`tW!b<)P7e(7GLxHv z!*;TG%^!H0R3Tx*?yC7HUO-VNLmwv#)d8Ba{vlGnl z$h-!Je=5wvwa4z8u#?L-M6cx_1KasxVZC$VbGUFqOJY9h6!R}FXJX%1|9uiY4Ai1{CY=!dLgN4_R4^V zOnl>e8ou^p9Dq#{b#1()K>1eDMWma-Cm&ee6?q3TdGfOJk>8d)orK!gcI)wz$s1-; z;hXlPcTj$pgrWc`#Q#oMko3H?&kNpGW3Pm)&DpGrNgI1*8>qYBn~o5fdj7}>_)bZv z4=UcjCNE4zS?fkXAGUw)OUOGJr*A=aIay{A(ysch6})U_bpf9K$DJff4y5MyK;`A@ z6N<0IN!23_(h}qm z{_P>~`K7N7P(uCiqU9v_7wtK?GqTfMlDxLS>l~at|7Qf6u0FX=id6q#A+>@$8ZsCJ zyV%0+L#a$I9%*u)+(jq2tIx?)hP>fFnF;6q#eam^%WuZYlE=FJ_sWs4JeljD%&&|E zE6M$d3XZT*dwTGUJjv+7Hw3qQzoMc*<{r_Cfn)s7I$&?}iMy-Fl@5}eie&hg zN_*HGX~zKf^8 zpX&P_uOkf~&lA!h(;c!s;D;}(E8w%-u?y=-apfc5V8DaL+M49Ot=E#^f}xGQ@OS21 zlNM>R^0dGPGP6d;4SqDgTL#tMZei3WB~NjW!XU|fO&#+7E%ijmWBBA1bbh%@W+Q2S zd>NlEc}}$41%56uDuo(4Z{}b^$KK6)WaaS;f5^5}p%!ktUeCFi)N?)f z6P}!0WN1P5$6iT;N`hL0@ZgmWWlM6;juT6_kkwz8`$CR`mDO$=c9Bhcx41&4+j-e8q?M8S7kJ@StA;E2&3jh@e6w^}@NQE6 zM%e=xvC)XvjePv9*BJ`!-g_OgE>_HPCv6HJe1iEJcIqDF_m(elP}lL$3#iDWUGGUo zU3|{%MLt>Mxf6;!oGpev+fsi+I}VFsZ}M{1fT|BUB_DbO8q{(=ho>zri0>f}F*$Mh zl21>6cYuDkMP}e#qf$dZ^6ISL8h>&oiRmyjT9)w?p1C2vEPx!^Snms;|A^YYmy|fV z=nCAs_{tQlE7UXyB)QjjoPx8X$p?c-)9B@G@GMWI$UgGZMKd3$uF_uxr9S2q1e5#1 z)=a_&9FKHENZxZhQsFLz@waeue@V-JGCNRDIF$Ut^wJZqPup`F9$Ue{8b$#8e_fj5vIGV&2*?(;Um1LW9lS9iE!YPuXI9X-wzN%k%lw}Q>BeOgiE z;+;Xqp~o0o53GnjCwq`&;awdHH`>PBj3!e)3Njob--Z=iz*X}%=D;QQ{w5qIy)93@ zgjN00(lO+`pqgN4%e
    Q^qfafCc&oc9;Lf30R7ORnD2ngyf(IFCTz(xqK-WQ}f_ zhl2T*ywQ&7TeBp9VdT(OxXcHp4)7cM5?VCNQZIv_J4pcEICz@Ny+!Qhape;PQMeR zv-I~Gc)jxI{1o!9v4}l1@40aWYMk&pok}K%F%7_%rDs;3B&GG_qhUyAT^n?bkGgY; zyeYJZ{WQr?blDbKYHD7B=bt>CgvSphze^)~c$X`tlXCgDBVm}TSu1?h_)ho?c`H1J zHG^d4Tw?>RvzzkZ_`PpBnPgv3iTqhofkiI@9!T$QhAq;27H5&dRsY-}n{TbvIda=y zs|&E;#PArL6g#jXo7B6xFbOKTw}s}A2d7<{U|ak&|9MhW`1o$Pr%0>}Zg=X-$tACR z3;YVF53y-pAU7>KcMPWGE4_k;?M53el422pE_tLsXYmbKo2@eki?;k7$tR8XNyitE z87wtja5&vk>Jr&$vVi9@xxDwH6AbiKD}nWYTV~b(q058bwY%e9hRZWQAB(+VC?t#g@ zORC`;-y7^@q)-{7emUu>f952-{bFT5Wc8?1yhVN&j#^Sd>K5~Q!&I%ymGE8LdbZo7 zqVrQ5D8iS#v6A#DkVt`d*52-e?2k+psz|%-?;@Z9SB}RW@^p@J1sqUpVy-5Y>m97& zA**i}pdV{VQVn_cjBYRFl?m?v~Y(Ln&5__efQVVM}PvdXqpn6Q;<_F|aKDKPwRgm==N~tMn zG?2WXze+tMcO5vq58mJsd;sTiig+5y%}P4XaQ)yP(RT)3Pszy7?uTIOf#2UNXqGxt(p%(ch^FUe;ccw3k8H z_6k^hDe2;C^0%7AI5cUl(C#5K?M;*6$Iowj;fwRxk9tYT)yjfz$e{a;Zt%XfLpl7L zac#7ZG?&xWdP|myL|m*$Z{)J_^^Da6!L9~_y=9Pxh>w4 zmWfX^2FUXwE(vh-+Eh2x(oS44NFIN>EEt9zdE@+ne8eAk9SUA%{R`dIv&@FbTg{4D z@M7fGxM6a9!QmHBCs#o7BY9$VQ6TKQuU!vYLjDwgB8BIj{0+S_SD1{Dm2%Y?kgdjI z7*6_gJ^xJVFfb!x16}XlA>OsGjPwZQo~WQI&o7v z*lO-GNe+MLuYzm$hs^sy#?G5>3p+E<7r=UR$J8lu;oI@I&?z8p)ihbcup|=xIeEPW zj%@P1{gYhxl7V%GjQ2|43cG*F<-rxl?~TJnI+1UFkuDuP^1sPamrLRB-*=5>Xc5~k zI7@1-OJe#%CO#Iog0CGaa-r;3lQ9??^;YXI>86}5J4cp3SRD$PY#JM()sQ{^Kk~x< zF;|$p@|pz$FYUuM8*`xi=B_U=;;r|3M)GmMTmrl;c{iAeWUbiJ0BsD1c$vxkm*KnM zcQ5W6@SW(BEEZDn`mPZer8A|@NU@XTfl zBQEj?BbUko^7*L?hoOYj+77t4;_)(Wvd+-S4_^B%V!x1_JzjbRnl9Zm4bNVGZNNi* z((ykHyC&tMc}c0b`Zl;vaGU5Nl2_y49XR(@^AaDq`C!K+%wFiO$4{>*x|KZ~Oh?v_8#x|rPZZpQ@7-8-%$M2<1Woq!uo3-`e!sq6B>WV1Je z#}ab!Y}zg8ktD|~LRKujX9e?~9oQgBPPpYOO4FFwXJpf|cZp(N&J{{>3jw@+6PS zp)=6=A^#A(zU``t0{M4%Lk#?!HS4#E)KEyh3lnOkI2Fm47I*BSbpPf;$d|^MrbN1~ zxG(^3-d0s!O)?lij)s=6ceX>VWRYrR^7yh+_BCYB4FfwUr~CR6bU!NJuR`8hT(77~ zGGDccg4XLtTH(dks3mL36VaM%YGfZzhYeK7bIXSZRDMmsmWRn3)yc{*Glg{|+x-3r zxb0lq#Z%@eA-^TI@I2wnA82lN7BiNrD`E_JnDX+yDG) zf>)B$1U8V<%jDePrqbFnxW?_kd2RCW)WT8NakM~FhZGaiNQC}Z+g`zldN z7ii3DQVKKj`sQG)?YYl-WamdE4SjNX_``S@IN!b-)}I@dG9XJVi+MJYfBJQtp;^$2 z5}3v8{RfVu{WUctyNzqqjK~!|mT@q6&xcOf@F#4!F}di(fvwCHp$hB6CQkHHZg|R8PUw zp5}h|ZqH7ot>hCi5fK|wvW>7yua<8Y$(yjy!iC%=T#yZK6s`LL=QP_iT*)ur5?Aad*B=%OhQ}7&dH`SL z8}qu6GHd&sA^%90nLD{VLMaQDaX$P68FRL)dyrccN8{jzfucZ9GHIVqJ?v$9!RAK%%||jqE*WR$oEa3IrfsPw?}V>(Ib3U zV0%R26kN)+!61;FU;kSvh_ts#IS2~}B-`N6eN`g+NJG}mK2YV(eA{3$#x%D8KI>JP zgyMe9x*=r1oMS3A4!{GB5=;i#z)!y!`Z%{2=sm+G_rFc~KCF9AL(JN*(0 z8puk=kk-c{b{!!vE?Ia3ju+?ug*qG7na7d`ViJ$Wku7{;T~PQ^x#UsOOU*b4Rz7-D z4+{=tU5h6txs+z1-uVWT1oEWP_DtAc|8*FOvgt@9l6x{b17NkR*FDHl{fFx~Iqg?H z12_G%FiIlRQU}xFphVaQxTc&-C7BfSY*}`K^q+C^gSE#dYao|M!u%9+$2C!VXuPY( zAeGFR@IMWQW0(ivTK>${C&}1L3em9s^T9i($c2%7?59bm1% zGP$`u6uzOb z4N%ei$f7(ls&BCieByuY2E4P}=UhI?ers+7+HE?$u7JGUEfWu?JnweF0g;INmq_Ij zZl25JA?RhR9M2d-Y-R z-@DN`Xb~9m0_HF+mi$P5JzX3KUmJPv{6xyW{#y(~eNO#`0?9QQBP5e<_>s?~)$;|< z;f39K;$O&bKhy%C_R-c_D8K&L)vshk>(Uwc*s;uTloT2>OoyJ)y@Sw3J91EAEI)l2f-g`#=NZ zfhu_V_5OK3$N?WtTljR@W8EooS?SJH=%@SrExh~u=&EUw(@i82&MbcI`I9ud>USHS zSX*LG;F?00%B_E{a$j*_x(rZHDuF9rHc*A%H|35POj}Sd_((W(tmF}MPjAY}KtTYqJA72{`cMDlJz_P2uyv!t{=7C*s!=bh;7BY#~bp-b2 zO{=q#D^-slg^NEK2eFYJ;eGY6Vt&xVc_d3Vn-ko+>fANB@%{Epb}}VsbQr#6j#%kg@+8M;ZNRP10M22W9DjJQpIjnG>rLl zzYRVMw-sGPigSMPfeY#iZTU#YEgLSu;`h%c;qM?1J$}-JWi}P6RaHd_kZ~rPTj7hI z_rijtr0;$&=zOy|Z!vjYZ|4O3+c}{lM4G!FJps>6FX@8`MX#EL$(Ndbiur_LgC~4Wmn*`6>UG9OSpVrGQC3~`G_?MA#ipjfSSe--} ze6-~@gBU3|U}_1O&#-HXlh!gh$Kb^(GYevMu61Ja~9ri8R@^sBIRC7Py$okbBln zXTs{H#E!^`D>3`<%8CWYL zI0U)w6sahX#&duCR*@MgC-1^xacNFPa&1|)JzVY)wn>Q${K=ID>k}>xz=ccHlvk5Z z#Vyg$%sF9?GMP0lS`9}I-(+7yuH!SbgYgADmtgSr%#$i)!-zsZTy)^RqAKaaWg7)c zb3V7i9IL|0wdB_UEjBe$Gx(VeOl0-Qhp*54o`6lJRekEDz#DUgb)=i$`v_P*7xEY~ zrOp@9AiwE1Gp{GLyBw`yvd6>)_~vKaHziMA#wwBePU7U|jU8wPJXGd_Z>6X^mQ zNSm0IZctb4lchG9`Y7@|e7Bu<6e@ncq^Uzj9ax_T@6;zf+(@!pOYrHEc7qiz@N%$e zDLgI9o~=g?+{yk7mCckj^vOeS8sp(pKZkC3S3>B40m)f@jb{_-V4&*^uXc5nz!{JK zL)Ke{$FVbAyACrmJIo9YILU-LabjkB%n)XFnAu@wW@d+(nVFe6Ijc%*o_W80@?+nZ zy46yts#H>Is=cFs3!mgJ@w_ouWzC*yO~4_w+YS?6Jp1I5uwYQ1LQTQ+S*xdS2Kp~O z?I&DQEqJx?*Rd}@gw4H2H*F3&rE6NH1vq@(?ZLt;k@%LF_@j{dGxqv-37mXDjX}D{b zaMSmm%i4m8MyLHEbjh=@K|65%nyQn9Z)=~tFTC|(#A#Qs)R4S++`!&hH%1AMFKx6# zn8WF2a(6K4tLYzwuKmi?^8gp6J1{}`VV?V4p{2shGM-@B$IEkif&IEWM+i?Pzpzyp zRq|&$Z_wk;_BuY`(he=h2|xe4e@ob4Quk86;N(K7dkY6%Jr?Q*o{jL^EX?=geIkD_ zcJwe8;qE-S=L=VyyEZxi{1y~@L)iGELy16e>X4~Dgpae9IwHJq{Mm*e(9x&gKOufh zY8?#j>$h}{FkSkZuY}E9#}*9%XFPW7CVbX?>p@|)6wNb*f?Zn9X%Pk91nZW1ovIT!es`Rg@J`EY%Y|j`uKXg*H96uzXE3tx@A6&1 z?OP@e5GHS2^o-E`+Ri*(!AW`3dUONtuU)W2SiWx6Pr?D`Pt@xU#ta=%wgB}qp*brnDcj69)S} z%QOVs@Val1@L&Io>xHc|Ed3*#yP!tPq2Oq@Z%)I&8&Adz7nbPhctzMV<<`Q(!J{*q zbrEiEl_FpSnE2l8HNv)?D*O^INOYvxNbucc?-|0|jdKhg1(v?P`l7H;l%?Qk@Wju{ z9fdi^M(q6+qz{Etdd{pc2|TywRrF*qf9trN z!uI#Frkn!q>9o>AxUxt@{dn;E)?X8aO`1%+C!BV@NV%!tlc=5jgctMmjGP7*T%TsU zu#;s$vgzRd3su~N=|fH|68_3QV*CuS`HDPugfnYwC_NK=ezIX7p_AW@pZYW;_VLe z!6Q>zv=L@4dVj7kWLvk_!c9$5)mi|~|8=z3Lh$Wa-|oWN`QINBj$J=A^CIw;C0DTU z_~)xF7lS#5$IKRn=Wuu_+`1yZ`Vuf{&5|R8AKpCevJ|uo?0Y~sA!Ejj%fPz}mjnpQ zR<5yDnETn+8Oy<_USpmKccgNxwgOBsd&^LvN10}qgbnT|-@g)^+#4CDn|J1aAVI+U^S0hONGOp zb^I*6+$(8=&0yiwGbaf%?(^us1q^KS>XdNZ{eii+f`2+^jS{v@vU0ny#`f^V+rW`c ze|->MyD`DC9V`}8WP-5!?;Ur9)(t&Q>;N~`OOtaa=x}L%xUfxVm94^gUydi)1&&!c z{GIS-%{+B>gC$R|A1mzT-|&|3*xTzR_kdd#P0O|yOj4zEsIc9U{hNdfJ=_xQ1K&S; z-bQ$5_Oe?0!7^oQjTZLZcka6IWSh|931F@V-@6N!Y`^#S0QjkCw^j$i`ZrU~5tbi+ zbi^TWKmp&Y!ZRD*6*&y%tv|G@Fy>OugF>$nSJxf^m*bvpWboPc6S!m{9C+nloUA9bP`d-!a)6p9Nd|SrspwHNNg6;fn&7 zE1mvxZdh96-Ue#-vuysJS$rr)bae?J8fweM! z?k^m@c;snePtV3XE`!pTTR+8j8Mjj6p=5ZeGatDk)lY72!XTbV5!j$hDINt?52VEa6Y*=+#k9**hqos}rAA0W3 zav!Yt!qqB_>+^hruzk5@a~^dDz!J?~fSIy9t@08KTGD5TaDCMb7lnV1E_Qqcw(_dpQCKtWSD)A5 zsJWw83a^(d@LgCuVRPd*V2`#1_?l#fFMXMj}5Pop(mEtpa z_kGn*!m@);*82kX%Mv(IcxuU~yTaVnMwa~wrg+&X*Ei6k@68C|(zG472|v$GlI%O! zp!^J1VTDKTb$@^ZyS*GIJezFbZDGFYSxWx|V@s^)E%d$}7WNBV(f;RV;kUoz6aNMq zPb}P4IJMx8`NF|hx{vt-UI-@cn5%+jH2h7_RnUy1->o6Sd>r3B|S z^qC=ibLH(*p>xELs;R&+-*XHV_F8kLV`}hN?dW~N?C1WbO#_AnP4N|O`A~e7aN*J? zQ`3U)tMz#-tb06t<#gbkmrmz}C+B_HogU0pVRY&YVB~@P-ooweHZK<@f86A&@YD2U z4>N-GOU|m037oX6+(6;|7KhFV%irQIl>ns(fYINz7(CcbM z{j6Z4(M8K;1LO1T>L+}(ru8Xdr8lrERFr=zm4sdVQlZ%9Dmj!$f`Z|58 zn-g4he8hO+^nQ){aMLWMU8i*DKOPyh`6k*by>xMB3X zQNn+DDqk12UVE%qL9kZvu*`+P(I0aK3vUcrw_aExTZ6yCp3APaEDVPFOs!r7-2AHK z2w~#>`>qJvrgtq;6kIU>Sr_3r*QEi)z}t^&tQD5-arT$6Pl}M{#laIZzReJBYq@o3 z2{75+W|xF+9q$$_2`+Z%+DZ6vQi}b;dyS5)Dg~Ci=KVw1Kk{vp(%|VIgQp4ejLGpt zn6mDb^JPHK^HBxLg3E&cwikZ+IC+n-;n3n~%7GQDKlv(*JJGvQdGMT1`gmdf*NYws z+xK^>SON5@_$6;eaOJ^KF~aYz`F9DMJlT}85;(0#6HnogQpp-r1~2ZOIZ0TsRk{1Z zPInKMs{-!t=-FSmrf{~Xs^G6JE4K@qH?EVs8aVUXMK|H|$cV+lD|w4fZ~}|0+j&RW zwQlP&)xm@3ANCPuvi3Y7{F|-n)*4`|~ZwBs8dDc&udX{yy(7W`vAHu1fnpJ55K2CIZu(0x!E*FG@i==RD33j}GI87^X zUzE3xFx{^=D};Vy2Y(Z;&X=QcYjDPe%N5&z&#X~#!fK!YoD~imHaVXQcsYCVSmA+_ zk3HLh8U1=M69&FX_eHpFz@i52z&{zBCJSr0k2>uNj(nOgj~jTc=cXuOu~bcV2(#=> zy2Kr{wx0P>xba@udLE!d=Ytc3Z4!Il6*_OrdeRdd(`02%FYxB|+7ZH%(HFN0d;JPe z>J5giFY;cv#j>-G518a)t8v11ArEf}7k=(h$`>5JqDpo@@J@{rp~5n!{5K2x`h85~ z51xE8+(o#3VMFHtFnQ%0qlNB=+usl_aZg+#5d8FXS`XpinOU@-6fWpjk7;zLJTL9e1et_qiL8&@<0{Mw{YH({e2+YSmVjqA296daU4)gR&c z^>bTB>So7SwKAe?^cYWhfU=)m}&!b=%THj4ra zE!sO>*tv4Mr^1B8Ppd?OYkMtmi~)bAs?kx{V)mK6!dYdkX=A|`d%yY!uXf(jxII`j zNwcZKZt-^>2@e(RQmF%&d3*9f!hg|+V>^Pae|zl~&K>tARVVOu{=r_tS{t%27xw%T z`Jgj+boih0UBGNPCl3&Yt}J#&*w+8?j;`Q>x4lwy1K$ly=OL_ENBf$Cz$(uZ zjS>#&J?)yXQ(3n|gTej#o@W{Yrg!NdB=mofX}xewmt}v1GmC}37z#e${@rO9=+tc7 zaN+Qq1+NIN#B3`(96VT{TZR!}rj02BghBP^t`V-kRPmSaZ|KoxBf(cWhgKa0)?Afy zsBl!RwHJlgPuD9r8Y~`gwWBa==6K&RV94SUtAv}X?ENlGbhK@gv7n3R)2YJRX_gEc z2acUn{k-s2*)#dagQfNdw-@$y`MO)Ub!yYE6Tqa!?=+kUy6)&aMYyP0@`u6+e-53Q z1l}F*m3J~&*6~fWu;0c(JB6p}XHPi=-0}6&Ct-?_k@e$2k6eEy3YV^$bWixXR-~P3s)%O;r(I!-&#R@kw)#{!|>tt?~bfU9Fy+!X%&<6Lqs z*lfaup28W9;YWqTE*IW354;?bQ7l3~Pju%@9 zwtVl`T{wHtheN`bnTKay1YSGZ;IFWl*Y%c*!R{|&XA2MaN%T^fCGE88OF)MN*CI>7 zHf^7G5zc$q?||@4*Gw6gfzHX61qe&-3~9a`?A84H4B@d`W1k7Lw=Y<21sL{s>ri34 zOye&bl-)r3a3gonB%IkpGPoP0*My-ETK|^U+7FJN=sa3@qu_<>!V;UqiYI{CA_`|Y0ET|w9xU8Es^tb@ z;ye%j3fr#f-s&JY?!&PWhrru|{jLg2XZ=v*FxY45u&%-g?*@TKz-=$DtraHg7yDc2 zmM&3?qu}CsQ)db%wsReJ47~T~*(G7Q?)?fK2m2?_)LD3X`qKTvoh?FEp8!+d`SwHT z*zz*S!h;=>EfKCS zbZEj=@b6~NyTVqDUYEHB&bb=bSNJL-+ezW|JeRg!2aB(bNO}Y8QRjC%;gNF_7Yefm z7kw{Gl2o1n|Go~3Sq^PST67QQ{c;Fz$sPu1+V!BXizCAtIlo3e9i+fcVXvO!l*6h zYdi#ZGzuFjT>7I>w@2XT(c2FS8{}=7=`lEY?fpREgF4;U3D174H0ueNZ|Je-!q{wn zPEWzz%ia$YrmjBhvhdrh`U%g##{I9Qe-2JfAL}oCJl|oBuyVzzKZTA@+C6;%cI@%2 z%1dxxihe_c>1JlUDD*3})bSPA?5;KKYj8%#Z$83j4r5met4((NF6?rxOQpBqfyfkt zgc*O%J|_$uQz8F5a9!RbvBKHs2YbB-Uk2w`F0Aos^%vpDp_Yapz-!sAOcowKF?qm8 zFpF>TGeYa@-FZHN8~eLN3mq~%*&%#$aM6;_ptGCPC*hbUr|NwHZ}te9C@h)s%Uxmi zJ)2H`1;bi3$@LA~a`#q*FiEFQ+l1{BB}?`lth@E#d*S%To^^kKcdoq}CoB^ccU#!^ zXV%g`!N_$Nv;P9O*Nq4hCcp4&v(Vi-G4XG3$)_T1g_D*)bp8Y0uikTvu>8q1H-!Uy z7nJx5o_SrRr*PMTkJf)+s!Ag^3cU{Hfzx6??6#q`@avO?bA^>kPrsH39JHr&vBco{ zRtepN1@5^W5~iJ!d3_Slx5)B8!c|*qwM+{BXncN_u<7;C7s9Gz3tdSD4$Zf{aB}d{ zx)xo8g)H|Igq<&R%a8&L7*^?*aBcQu%~FEDm;25Twy5#`sc_cGp;c3XBL>tjm>RsA z;aW#w(S(ly*L#)>65i-! zZJ!=2k@(wgVb3XJQfB~<7IE|zX4|%9xiE2bmnj*+w!e};6fPJ$yFw=LUA_tfg>}{+ zJ|iq0GI(cZu+Qi0DYJklhOPDx=FDMPDvVfh`IFGiZ}PpY;NmyM%4GvT4%ppKSTCc? zDdEJ0k8@=Q`@1hnmIFNfw3?eRPp?ypgwd&jJ_vWt`dl|BxUBW2(z(Dd_Zs&RHtc-s zxbWeWq~W>2b4?Dm%>(AY;juv2KKj*L;htXuYv%>ijLSM!_}y}`XFjmW#qguTX(7L| z<_DjAo)99eGQ7wpVZoXY=N14vo$B#gxZf{LEk`i@+xeq}{sXIA7dEf_@lZi<=HcO) z3xUtw^8^c>o~>Um>{=%A%fjHnz0;}}0W-BJJwh0CfBzNXoT8aC76V^xTNWU!*|gSL z;iwzuehIHfhc+(`9?4&*S_v@ghHXQIA@y2Z5^lP9uV6_qQE0bL!rCj3t||qNt?Bzi zc+1XC0n6C?E4USOASY11t!D}fKjC2vp} ztWaR~B;mjf}eVX3X|+l)S@xi&Slz6;lc-{o(tc1 z*q^J2wUUHe0q|c=Be=^v%FrvFH4Rk$*x~3*9#soZcK?hus@2obt~I75BCT&(u1arWKg?jE|2nCg9x);jVW>z6qBvuJ@=l__fN_ zifzC~N2B9}@t*(A3Lib6lFtP^Kc{V~wqSvBPd$Yl_V-yP-0PCzi!klO#SPklO^bi+ z?+Q-eG5WOdX|n=(+`y{0Hb)5yP3Y|I4t91-zC@U?an?s+h6d&9d4K_z4^0rZ7&)k~ zCpart_LIUFt5)Uo0;@aMjS!AFb7`xv+n`Acy}?77i@g_SUb3r>4;Wmv%{bwPqmOP0 z=k{56%olu}rdoDCu-4p@p~BJS0yhh9?EjR=AIz4lv2y?zI_>6Y;pXBUZwM3bOj05c zd>4BlOAuJ+ue((^Zo6h82wX7B*72ZRF3Z!eqH86b%90 zRu}FjtQYtoFch5lzWX}iy+Nt}2+L)e-y#g`zohakVYJtWVd3D;7sDH{Vvi;MA=cc(n74B)C>0&gP=Jry@7|^GE z&5pvAf6wj}exDGMHWqx+px}35l`C5tw+DxWH=ioJ`0ef^VZl*dD|GfKeB0=*;QE9o zJA{AR_DRtVZ1pI;hj31}#Y=>vN(4{r4qo5+<*u-Ji_v9!fIV*K?McBew$5>3j-X4~ z`+`ZcPDj0EZFi+#>(Ts*&UV+62AObgYWI zJRGrgxiHI*W?zNY(RUk81UKgCIz>3|T!n#?z&Alh&Ip}9dgq-Cjv4YcT6i<-ke$Np zK36_X0mEKJ)sF|a^!qzem?Zs_d+}N0yTx0(507sbALbulA~IKG-WCqS;v@5qz?Bj$ z617OyYHP;f@sUNwCJwJ2-@>6qB6A~2WW(02TQ~oQfBK&mI1ROqs^4@@VyqkZH_~b; z@_xkpfA51WS{^`lBS(`>t>%7B*3V3)Ctb)=tOshl0W4Qwxr)`&+2PN=ffL#8f?!i` z7t0;UpFyU-UcA48*XNK=$&0-ImxMeH@^6d1U6ljv==Df)EIFR^BcHP0&t&%hTwlZM ziFv&W=|S4so5gaRO)i#8ki$u|ukzXC%FFAJU*(0qm44J8^r+=cEH7a>Z-}{GhJ4QJ zA6f4(%UeiW`8&(~$m1lQbC7?w`w3Qy6dg{py$)836df*8PMh8)vz*atk=qU*S>8Zq z}=t3{e~ zfFBAR;6F;6f7$G3;q_^x4+(o}ecN+iS)TVFy|`ITJsUf*4E{g!A~&yN9y-Xsp;n8) zVKnQtwpyg7pp~z4mSTNW3`MrH#cZtU8_Yd|8IObtrjWbZ`vD{vl_M} z^OGJV{6OV{eU&TN?tb1s%kn*zFSFh{mKTsaNZWXNv7Sx-IxO4lahLLaCV!K+$>ywY zlM{N>II@J-ZTf}2Rc>2hdow{;D2_u*{6urB9|SYCv7La)gs0J%{%B(iVkV57Qz4K z8{(tZFURLnk{PWQspbH^>iyT$uT9^pczrOhBfe=pTilu#WXffDzcm@p>$zEONn$YcFd(T-R|Vwi?>zWe~3;ew*>LY-RiHST03=XFR{n z`X^c5!g6}nd(7*n$%*7LvL9({r#hcQS>-ImvQ2M|S+>Rf->kQU9L)a5vz(QT3pDLH z^1ctR_abMJ2W|Dq)Z|@0w~l4!AQLx&S+=!nWqBGI$LDUcYjsUI*0< zHvPR1vh=9-c>c^(!IrF3oDxn$AFpGN*R5RGUe^0JSnoxU<<#I&byHts8P~P`>LAPL z6M2Hddyw0LOndOdRWq8`ePGi=P>`jHHGF;(j4wLdpM^7j1X`xOOdJqCEzsf-u{9xo zqd?PMS8_A;yMg5-EH4N!&!@6KukGz*c^Nr8(BfWk>VSh&S^tK=X}^KLk#CN_#o@`j zyKS5LTk7p>e{b=7Khth+)N8vV|FAKBmXh@bE^Ly>&)C_;&ph`UUHvTk8&7uh8_0I!*zRq#_w#k!tBsTs&#&I> z6EtD6zva^B8;P#Dk_`fkJQ)Lxyfw%d0Y=`10Y>jW0jB@AEY}R=xIvMpVW4I8+2}#F zZ$hu4hmrPn_6IMjmwJ1k#YUYsE`df*=V=G{zv>4%3{?=|FTxpaP~wUpl}(8w{G z?WN(kYtk>Gpide9i~vj7G{ydwXc=IcmMqJ_tm6ZWo$jHY*yRH2*T8-8+i=<;F2Ia` zvz==9zX3+ihXZIoTYI!?X0|gNeklL$`BX^ZfUH zNoi|`_q+NVzldVFvi-XDUjgG3`_v{|p*_*}K0GISo@Aews^@K-XWo9M-yWPVvAkZA z^K_6e=ckXwjMLkUKbwzvF1e49E0;I>@ihIu^)mGMi1<++dN#m^3~{#LfPlI>lh{F&Kr zDt{x-G1hxQIh!-?$8tVbf}hL$EbVXfhIK;yJRRGywGVkUUQY2d@w5}=vXD|%|G<5j zUy&$_-I}of-u8K*_h-kyP0n#-Hn|0-Oc*o=3(TWkM>1BJ3#s8XuIxiyvAWsG0r_%4p`HTBij z)3kfR!|3&uhmmU?`WO8cryK<+e<#Y<82XWUavWu~AMLck!_2=j9^6N<9>%Y7B)A*7 z26DVLslOL)=D9i0uju2N8^=q%TF5vzBj;?^FXK)*a9!SqHoKXAlaQZW>CdjF{eG_0 zuN(c#&B(Lgo%?Ir!-;x-!Ey@dN7`>dJ5;1TFkZ86u>J}9S0n1PvMc9l`9wQz zrM~mi4vA=&h16FNpD*QM?46Yy%KqcnZz?`Ni0utvf5kkFJp(+A-hAmN4Ozb+uB+a- zzq(61y72x7wpR|<#V#Y*|6%F@{h9YhT$latY0BG&^}0b$wI|E*l*@zlTT%~Uc4|AZ z)N5_DCvo*7{pKI%V>R}(i~f0zdZ1okR%TYTYjttdxM#3zZ1wQyhTu!r*}5zDXLI8Py$!~+*z{|*1wxXXUFvmAl?^4_$} zjsAoCGTxk=e`7d*(%R+Mea8umU*x>t&V2*pW@YL#5$&~}dU-^B&4gVgj?ANdJ*Y3p zsd{}#y0^&`}8YR0F#kW=HP-9OduZO`?jUm~ulzdnOM$v7Uc z{Y#8%a~RK3!hd96{FD9<>U;kq_J{eVa@Y4X^TWqJ-*i8P_^o~yWSj4ZUo)RGp+~GUdB#Kc^&Uty6@WP zW&Cn3>z%Z}cbRp;+uZ--W#ZCMZ!_L@Sl4wQOy=Y|e%s5~cRczLy)Gm>v)v8$`>Gcg zum8zm-nS^<3)Xk!zM>}N5WRiD`Y!!mhdko{Ex8Zz;y$D@-wRK$-21~ZliscvfX2B$A|sq<#@2))AnQ^DCcb% za9!V9Xy=#qel&iax1SfNpI7I88~tiLEz5mvWxn6{L|NJ^&HZ!$_qBOJ-A8d>o5;ub z(GIr1)xK|4`TlZz6}cbo!hNzg&jC82KRqub1F45_w!4DYJ93}h$j6MkHSSAXj$?Z> z(Z1-rChNDc%ct`L=Nd*&JTEB2b~^ZQJ!XBJZ>V2wgM1PXuCx6Ytap;{701}#dfxv* zeQu=QR#R_yAJO%`Ip1?$`Eb9*_lm-#E8mAI@x3E}=NG|zUuw_ypy4QM+~fPoS-zjX z<9WtwzTc$gdmG-rOnl&bX;r?T7q-7os~#)x{V&vhzG31H-{VHIz2j^zf#n%2;~Yfo zz0c2#FU0;nYW62Qx9Dhp-!yvRd4mtRitn$J`2LCWFdN^0oe(?UT>pSeG^>LnL^vm((r#@y;PYZY*=L#Apdr>dt zSP%YZ;v&bH(LR3L?+$8L_^+-fejK+y&j~~M9^Q%X?KlV2eyY>o1KI8Z-pBLW9^TiD z-`dV&I3HeeeifqJkW>94AMI6-`mD_Rb?6_y90$$?Reu<_?o)97r*`N@Kft+<&NJJ& z3eItLoNal%6DaYdDfJ)0{%~HVaSM9Y`U@!!&T+K;p?rQK>orGN*H=FOiRUVyj^E~o z4}4AB`AI#Vx5o)>_c8Ui!LBd8{+Z_?p13dl;QYj#uhS3Zd`#YdLa0ypu|5~idSmJL zyJ@dptT!3$$@p=8qvOOmkM93){;Tr@anVLI&lvxYbDgNb`BjkP?MgWzpUQ)CCG`)S z=cxZqwa+8<)b=)*DXR{HrtC6}=)3>%O%a{ih=3 zNXvdL^ygR9BhK+uUprV%WNU}^+C+OoZ|c{WhuY6b@;dzn{ivRBeyjFG{LpblQ;q}V zM(PW{PwF~RhjF`+?RP((FSp?N=K!8}F5vm}bd<#(K{LN?zf1CWA)HsM|Mc}Y{)OLJ z%zWj!>L#`qhqCMwM%&^!`@h8BYtEoQ*^k^~c^uDcN3x$?Z1+9;OT*uf%J6rmasei; z++lyHXY7r#*eNG}cXHx$_&rYTP$IziZ6p5v<;~x}T>1N02;0ra-`Upl93H>(>b%GA zOS&(ZN_kiCTz;m#Y~mx&kB3nHTfECEWf}Ul+=f?h8Qa^#ze?N|MqWyO{ z^#lAqr+$Oq?UWh$J8fz*cYtaCCEIz;_Mu0e&z1RmU@iXs)|%taK>hrn{JSa7Ioch+ z>zR1~{pvmy`jvIB0{e?*`$Je>MR`D@AG=+29MHd6FIf-2J8Rs4ye59pKabI0)?&Q$ zQ?2LB>;Ci~AL<*w%c~z(BN#XEdxZ9LopEjx_Z6t8{eI)R_=n}~jC&Ut2M?1;=@+2tyCmg`rd==(b$xAR zACJz@T6_-vq;}3?vp?6j-1NU;wC4equdqGLPhF30b6#Dg9zN0@NjQ&^@ps+_j5q0N zcl^$*cKJ=cVLqx{dFWs7*beGxKd7hm^U`0Mb3Qgec{9$htoC`Uejdd3V(5QvnD1iO z@Ai4B`no|s$w9w^eA*AjrR|)z%cuRo&g!3k88_W2??8@o66eW2%C(8Vn=Eae+Q`BqTBkX!YF@o2q%cwW{`{GPA<2iW9fJr~wPd^P(j*5Af@ znD1(r=PbWuKNz2}H}ghPBF{qBgLl;56Uujq^513s(`ZNhp$p5-v`-uMKZp#bfAnQL zA&^7#xt#jm%XVz`!#Fe!e6YUe%c&`3DigusL@gU#AtjDZBjQX2OJ6z>BKT;3k zkD`ZbeD0NPo-q%nSs?cp%)gmPzuU($@^(~?mCS!ZK8)IZ5V?{5xrTW*$fwc!xUTbR zy!|;dUzk@jE717cY3BcYK|gw4%l_9f52vTS9gV|NSP$)Mdwc0e9a*mf<*3Z|Te2PG zCFwX$FdxYQ`9hLUk}k;Nc&^;NK52uDeUN{o_Cx;B_IGUu*3QiQwB$j?K2HKI1z*;2 zD48_KQni1NgfA)C&N%w@3g#CbwChjTmzR_;J=;Y-pLs8!yh+$T@|TR?u)P_0PUd3| z>TMVEk!JHc^44@5b9wz0>!E$k!z&nMxnJReet9yRKM}F=O=0$b>VoCm#KM+-po(yXdl1o zJCyw(PgCtQi1(3~s`ebmae}HhTvt0nPugxSUaxMqkNU|~_>IhW@pl>TB>KfEGRE#l z+O7k~^Ow&pr{7%%0W5 z{W#E{oY`(R&Z9!CXW_g^%X*mCYNv-B*DaPW@;>5<&LbQ5P)>}`76;T0ev}*Qk;bhD zTrb`*ULx<$#C<-8c&Y8?WtgYpk?NBzAN{iqV{*qF~ZvdJ@$+FrhbWer2f{H&voPcAHeIQ=(oMu&k)Y1k$ip%{i{3YZ%^Kb->ZD< z$?cpkJK5ew_BV&mEoVD-7|)O|t>d{xK4M_YXGlWEAC^z&!35ERUevBUy$#norx&-j2p|+xIxA zr{moiY~u88KA#Y5*1;vgCSI-O^V@<={5?iJpuWnF?~F8VU7&nuPy0DeJ%Czo3;UaC z?@!~*8D2kN%U5SV%Y#iEz;_QiA7-)MN?xB#Zeo7=Vb;TUN5(HG{}a1>+79lk-$O3d z&pnRk7oWe#@g8M6r>GB%Q|DDutI!<)#$gNmG2?c$9L)} zm(}RED(~Za5Vc1|tMRkSR%7paR{EjU=%c39*azQ*s9wj?f1}y%Ao@#f+5z8nXqqG4rXf<|srQX`oE+c4{F|-@Xx{sL7_SRdC zeim8jr?ksBtFiYSwzJ=AL3GBq!qoq5_K)wA%sgPb*Q^$)Cf^fj{Jcd!xk|Zi@cGwP zQHU8&5w?r(7Ihz!iE>sVA6iYEgIvb0lb1 zaUS&MJgGqaqaTe|S=gV2{uoVvYQy_|*4BhaU}a`Mf<}abiCy#XCbyfo8!WKQF}k7zCPRH zGuy9ie_rE5UG`s+^1;u|I%c2O>PKg(&w=y{*jxK4Mmv?J{g*S2wPU}{=vO5;j~u9P ztWUOeO8qJw+uzQ03I3<^0dY>_>O%Gld+Yphr$6@R{EMfbyGL7%7k;Pm<)eSU&ii{Q&z4+ z-MOw{f1}SWwa*`wuQZ>p!TruP`+JP;!;kQNV4B<%Mi_sjTxTLWxgW30dNVL?IqzQ*NPlAc zhdEBX2WT8v$>*@oR=>t~ggVcTvR(A6ei+4ioB2HU*IFO?Q-3YYeL*doA9LT8h3ozs zwg-Eu9hOn=o7nyZ%I(1C1GxWa!ZP;PI_~-%IM*28{G^Ee{o-PP(RU)u8~t6J{e2JM`3BEtGNXU_T_uuw zZOL=+=REhu@0&Vb*6^GK=OEf%HQV_!f49Q#FdC1y^7-RD{|@>;zk6wZFnYcMSKUL_UOsHQ{VvUhjkPNxhVA9G9z^XMOlx!6oJ~XJNe(%+JU79vTntGGF@!zdIPh z_VHbV`XBO?Re#g%dGM+?EAxv(IR1K+?>qCD@qK`q5BB_IwJ-9}HC{bn9`_vP$DgxP z=LzJ~`uHBfoNu%J63j1-^fd9(f%(j%nICtGzR-i0#n{3!JfeH*`LUb++W&G%AYlX(9&`yI{a z9=RENrv}A8Kk_?}FRsQf%JKW1Nv`zYb|wxqbv1Hyb2V`$uATAAg6+(BpS3m5pKWXA z-|)7^KHhDOoWETd*V-DrTG|=A7f1W@JCp z*@k)et)WNxH<9BULgG6Yoga@}jbAKu<^19IE%#`LEB5ELKAzXOT^XK$ zW-@*a=6s2>e_y5ZyF0%tS;Oyb@EwiW7u%oL{`>QOYv$=cr5-RYGp{)>ZQoS|a6V#Q zs-2?w9R{{I-;3)6iK93y`-ha!*G;ltc9~i23+C z?fL3@y)E(*W&einJ$2uMd~}^>?^#BExbY`jJ{`AMe6uQF;BfE`=3I+q-5SXz6(`3f;ir2$~BRB`oEc9>B@Y`DZXaBaV+Dy@n7a4 zBJWV!L!PJ-d9|t^7v@c_V>!W|x2SUFvgfO-ebA1MbSB0Gy87lL*x5uwetYxRrX`v)O@y!d~lT;dA&ORNz8-n!}_N=o^hb$;kZ+e z_%1->4#s2i50yI=#|QnJ_&`0^q5a^G8qe|lf!;@+tokXwhgLbZ^ZtJNyA$&~C)xAN zwcc{OopfGoN58VaN1ms)--gd^q@Q9O`W*D8_X}`*c{zSh>J$0OW*uaC0qdG`!>jt;_c=C%)eyzft36VSC<>mOnA?26;dle|j)KrX=%SkRPen zljFTc;$3y}I^RG3*DlK$`F>Kut}l(x$j4K^$xMATrQFA;=drMhw7-M?jqeh)?8W)m zhwm@Qt5*9r;de3l>6b0(56G)ldGYrUblpvcc`o0{t>kmXZT`VH97_K?NB{fAc$Sv_ zw2*NE{;2l2$#N#nH^d9oKk|w-Zs5N9WhCV)L;rloIG>2^4&plTlkxn7eVx+hpJUw- zeH^!~L-zTj<9o{Z+sqy(RWHah*LmBB^TjsL@ST)x-s=5q_Iac2E#vs`J%ri|e_uh@ zl?V3uuYUE9^Bdn;X#7B)x%w;ezV$x7?@>L~xelV_B89!Td zT#r~kG40lm>xMI*o5S_Zw!SW#ITD9bv&opDyaOA)&w58lK<*58lo5+A1X`ex39M2rWH zi~~s+Z_3%`JM!HmPaOHII-e0gOk8LFTu07toI99(BhM3Nvi=m#SDYuPAK>pGne~MC zG5>AtnR(2(bQAK(`vda(^nP1=-kkau^5?Yv7UtE3F`hKw^(yxKJk{q##zW+>tG=#L z&L5N;aZdelqdnhG$Bq1A)$;<|-}&PGw6^mWo@0$<+(MqF>H+yP>L2@^%l%?Dg2!* zZP%99f^#pG^ELAcaXzK@ZP#xHnseUdLFRYJtUSL(S#eg>&#O=I+#2WmYS&&IAM(O9zI3EqI49L}RGd?5Juk{Pmd~%|x%h032l+Ev ze>Cd{QH}~6e_fs@LchAMCS^UGM`}FF&GD4xc`VKcRnN$0)B4bh{=OGMy>y`*z8wD~ zK0k$a!S4t9JgD+RA8MaHv=^?cz4zMh+s=Vi?>HY;dwJOPt8(IeSbqu=a!GM=mBeA@Oqg1!%a;kXXc-pB*e{moIzi}UUO)>FMa=IhrPjePtv{vS#LbsYfrz4v)fho$=5kf{LZ6t4xk<2x2lKwc7IlVNzeWp z)Bi&4^F!ys4)(X6dWZhhuDfXO8Po&vB6U2lx9WEo>m#pA>sxt0n*P0rdcf~$Di`#l zddBZbI==0!Kbd-PWqa^r?FaMO>YV!bl&Wt1P|)O9Ka zxt#l*gIC7qWAGdd_tYan9z?x-Q{60F6Ii_&q>du3xR$j+Z^} zRr^P~s<%p9r@C|f8q0dkxsD-^T*v>Fdc=1U8Yi$`tN!sjhw&?nU-n5kna}@_`b@%c zlFhi&~;e{f`ccV_;o6XjY=dmo^k$1|^g2=zIJ{6#%u z-B)|r=ErExj|JQhwE55PTJP<7v?@me;{?`goe$8z<~fvM9L&M_T#47QzN>x_*VH~G zxej5yv8_8A=Q?q|dow;pG9E1XPdyjL2gFrfA4aj?>69md<^7C1N9?~xt6$jG3tZQA z^(CLX&voZBuU}+8$OF*z8^6b^oGI<=i&;ncdo6xv)^)8I>s9CPxh46#F#i6s&MW+` zt$am&U>#Gvq92WSsISED`6^#?)*r&(!$FPbV<^XP)*nPUCi3@U{4T7|BhOF$G@idp zBQHezUrf2W@%P`kETf*uTjB4?Bl!C=eh1h1Z{awR_n`WRyt-Z&Vf{AzeY~cfy3XP6 zLTf!Y{tk_C>GPSGuaS>(;=cCp$9j`FUW{Ao_olqaZ&g1Y&2hU>@6e;l2|MXHk>{&+ zLjHutZLC-7hbO3a_>1lb_SyGcx~|4>eQCt{@H6#y_@#~`o_;og^_H?8_Decmtbgin zWjPPhq96Ia^(%iD#=cGWMOa5|^;JIjr5Pvp4->h*VgIN7Vtv&4w26Gk=fAQa_^;N( zyiq?I#PuBVX#3;r^G5ykDaVn4eh#X?DROkDC*1JIY*RY@U>=*5-yvX;^ewR|-4Xi)M-jCXIA^jD3 z9~wt?kjUdw|3jXZ%J+%wA}>(=Fb(sv{8%r5`CZ8K({{a?FJ)n#mK*b{@b~6buXUJr zm6-Q`Qx23(++n^~KHkquR$=~?Kjo^-ekw3uEE&uAd-U25{;s>~?HR|F)83B8p_OZbWU!C}gMgZVM*CzuJ?wd>X8mQ}YyS}QTrcKPj$+f+?Fw{KPD%3m| z$@_t!roV9B?;dL6(7aHy{_o)ZeJo!OHS6ZXP-Cx`p~im0LXEvAgqra^V0&vr8D~N{ zfBAf$P!q4mvmGn@DaQJJL(RIhGSsZUQEYz%`>RTM;@ICPmM8N0&7o$0S1Z)a=g+j` zTIMaEqyB% z<4P6Ab%WQ-hM95J2s8Qvb$w4^r`dmn8GRNGGy2OPX6#%y%-E}Gn3?bG!i>IKuwJn+ zBQNTi_p~r$=k)geOTi4?dJXS^n=s15Zs0gaQ$KCOxIVGH zD%2C&({^)HKkwLYQtCMk?U5_Y%=7Q`Yv@PgE9|V}+sX02pnvA0T+qA5ITzZ|lXi&- zGybwW%*?;D9M2v4$Bi&EUs2ZQ-&5}29DmkuqlYr#MvkQ6#-AL*jbCIBH+sW$wX0*e zk-tK?@rzrOqcH2|4>x*99B%xtZMgB%&f&)2#)KQciDtX8;l@7$!;L)$Ql2HeKAru{ z4mbX|itR6Ae*@TVNVu67?ZeG@r}FvrY z-dT?80_Awg{*y!)ef(lSi6hK-{;~gO;bwll<8u$$-rI0vKRmDT`Y-$c!hTNJ+c)n~ z5k`-;`q?8)yBXO3E7spky$5r=4XO7^q))i<2iQ~NLtV;qm-GKR{r)5Us2T6~pq__O zf5$l<=vDpyCiRvq!nFUL{`8#Br;p(KV1)6Df)Qr?g(Hk#WR76miZK3|m1S>^vuA{f zH^a$!5k~%j5nKl%jGr`*F!J=FzVfhKiO+dN82fgQF#g<>*L$#@5B1rC{RgvNPP@G7 zC+@7*mGVu9F#fYN!uaD>+O-b#k&^OM=6J0UW_}%}-tN$U;8$vw@)2f!I&*xj=~odP zC&s7i{}}24*ENnnUX70(`CJFyA3?p3V!xprR~+SSZ`XtF$Dj{wZzlC{fZR#_P35>c zu^-gecot7R4rV>*!@Os){|6B!&b;S1e)9R`k!Bv`k2Lm47isj6A=2oxY@`{lZ={(A zF_Fg3(UGQKzewW;9+AclwIhvwog+rG=kw$+Bk;Y%o za~wB${~+)0;JA;l|1Ea;_5C~(^_Pe37v}v()IaoY-XG~Nb$P$CT_3v74x`)?IR2TG z1LIbI#5gn_JS1Pz4oRbo{!>TMzEP&$N9r?ul(Bb#D6UJqpF7IfGZ~pL%J@S%w)2Me zea>+u;r%C+{}S)#j578t9cBEXLX`2NG;HS#$9aH!K)I&b?XBkn+w9kMKh=o-)Scs9 zML&w9K1$PGqv@a7spqqd7vnhpirVG}*8yDD_qL&&M_*X4729>CKcF9-?>*^%vuKwK z>~|C8sZRaXjxzO&M{%8wGV`P*?}t(Uu~8;Y52Bu8sMldE4%ab1iu^Y=8L-x+1*74GYM4(h94{i5C8vpk0K?4`W@*qjz7*mE}b{y zC^z(`aq@Gdv2PWQ>pJHx?BF2(;GcTlHjsLNUUYs=<2(tp_ixT2qD=hBO#LNdJ3*}1 zpZ-6adcMGZXK*}wc>fah_?zt&iZ=3=i8k}DDp@w#_)+<2WB-6?%YFH~F(JI)o%-w) zZTTX9XC^Y*QceCok5{zir2PNqI24&)FXAtp2x|TunW}A9a0%f9n41 zdz4wfig7&XN6&NeL|eMc|DUfO$8Vv&^3%@>Qa*R;3HQ}M8rt=!?^~mzEotQM?|8EP z7SR?*`MXEXcKc`?h+scKY`-Gg|AX;JeZOeSHu*bBUC@sF9iqy#M;o?}=T)EMSsp--U8xy{yq@9myAM=3hIGH;VFgp#J*vxuG0qPuc~3s`59B zHg-%DZQ>T}u6l(3>A6v2%DsdBc9-+%4E^!}X^UqC*pCzCw%MyM`y0ja&xp1(&xpUf zG>-JA-7sI&Um%z24gF~x{6V=e-!z^yqFvi_ysfD>_`B*8W!w0)KH{7DX$i(P$Z5_S z*lrH$GactecKTye>KF4x_i^W0--+=F`%H7L#q}mJ*V_g5{fhR3eSyv+>^qcLzqGxP zT(_|=F@C~z4EqN2y8`26EZ5z6T-T?t9`-?cj^#l6^k6&V`5g9t+J6Ja*QDH!xN%+l z&i&{}?x#<2e{LJc4(^N5p836s?cAn3ciB%Fd;Hh=o0aQKGOk03Ngu{#7p|Yaj3-^G zSHyLlAMitsFYqgUKRn9o_xW5Jd;Cy8O-;Y6OaG3cUm@;k+<-r-{3U5etfRVaVO~i*!Mb2upH=P(^rNzDw>te8^>uwfoY(k}oBoHm zs`ITl_1d4th1^Qtb^L`DXyn!IZwT~FTgsi?@^v?&$e!Ex37aX zf40p79S_z4U4JsLUD#FE_mlMRX!=(;{nwFxSd;$Hn)|Pf^eZp=&py8YIt24=o56OT z@O`xy-y={~{np|a!2m7p!->pTK&h{($vf?FT)o z+*p^j41KCxPdHA*54C41?mw^}P&v@A&f{*hTP4Pq@+{Bd_@COYGoE2Trhf1fek1!> z?B8@94(525QU3ERzh%E^W6ZubXN=j`{>q(4>lkYfA)KmMSJ-y#D#_aDJ#uz;`i!uA|rfe5w-9P!om^klBIV>^8 zznlO6pHsa@#uz<#v!60C#tyY9Upad}_jErQWAs;={Xs5cfA-_U`{-Za0}8Mn_KE5j zH@Rzq+1domczkv&R$NKVe_4{yT=_FBxOnO-z4-o^)SWkoK-f`__vw?*&%cH;i_j zNWU9MzgbK@ETx`tU-$W2SZ_L??@oV-r(Kq_{s#7wIo8NuHkSSyYwQ-p>+Q)#vBr-r zv1Z)|EG?85eNBaV|8A~ z@9g^jTdz-Mwpyf`gY7>4Zj%%pknbUI2x2|the*)@c>?-8@-C$4urJvB|KT_C|Kom? z{SM}JBsx2$#SG4 znVt1)#C??~hzw;t$gBOVB9X75W#pe}edOUNkyoPE(Z3So*6X&ikJXgpIId`xcd&eu z#NUf@kbn5STidA~V)R;o%s~FJTBMpoYSw>lwMfyyk!7?eMF-?32psVDl}4SL8#J&m z?|){0kIA9d|BtLQkK20K|NliI*$R;)WtULLmLwM?$=0exTCVQTw!l?%#C-F%$*WJF*6{8yuH=c?yIF@=vGi3yigRRH)2Asu#$SRi`AuKcwG2}=XJ4z zKT5^$xS;p$uRLuol~?fG!k;sTZBDtd6zl&j6+`oopD+}KuS>;H6z0)?QmGiK|HE$- z&y#*gPYu6VDu!l-B*%uOVyG65D-}ags82iDoAF5fTJXGXsTi6CeF#ON8qe#1=Z>Xf zcwCU*a`_l#C+y>2l!szhC-7eJY;M09;|`)OKWn@vP@hS8UWViM{i!Ps(QtmHl%Mx| z#RvNNddA(d6zc`bO`#)=r}3?KyVLIi>WbGbgx_V9$!~8>eRImCz2mq#m*e(3fyed< zAD&O4oJ~1{vJLIp0#EULrX%r1^c!w>+6|;$gHmy_Zm;uPE)yR0dPll+zQ*+R<-Ou? zUDtUO!xbLxH;?ivo);KT@vv_9EM;p-#k>2t+8dtYfDPw)ozOahZLvm z_lkq|x<}9b-E-?G5mk)BzqSPy%5BY|34r}xI2ggV6!?}mEIA_>I?ZZ#! z5DZ88w7qZh4(Bnh;eEQdqAur6bS^WVU*&vEH_qb>VR7M)zuX{jKvY>D-9Vn=XQny63>-=sc$TT?gMn ze)xd@66$j~KROY9egU8Fr+<&cXU>1@lh1W{U*HJjeF^22#Gm&;Z;JU`oApWO(TwkF zoIg>XGs{2V;d=uae_zIt9;JRhU$l<*uTVaf&zZX24$!OnGEDzHoRghKet{P_C!==8 z<15-NrJc?rS&ld5bGO!)g3iN)^J6=L@8*mndANNq^luN~?3c#n{8mrS5#P$W9o;Kq zJGzW^%D0xz_Zn|Kx127bozA8Cz0Re@b3~jcIz5->-{Z8Otp4G*5W015i0SCf`;$4B zrF(a*M>9EBwifumQtm{5DHpt8AL}`Xue=~`_YLFeUcJZ%>U)y6KzU$nr@EKV^y=P3 z`=Lj{cRqO`s#9)A`5eg4pnMIfpXpS71N*(7fvG#F6Q3sE#z6dOuYCT{c+Y3N z4H-|%Gv)7?4c*&t4zntH+&GVy=rMog?`>ySpr6CYE1+|i-tW^nN%LhV>Y6W%zwQS$ z{!9Mh|8Ihix>wNry%aokpP$Da%k%3wN1F1Aq>-}(gdg{l7vr3qAHr~z zzsLBjAV1Cz=#%bWG=Fsur|oe&@|@@%Nz?H#`lP%h(GQW=LV1F$kDJ2(Bf!6LrqA&H zg8p65ixc5@Z|d?FmYYiB*)Ge&{Mj|nyFS<37da>|g!O1|`u~>imyP)s@FThx(RMM5 z`cL2|eYSjOpbs~IXE)Ii?598ab}aHZ3BHuzdrR6Y?}o=)hu`Rg{tW=`neg>A;Ot5s zj?Xe5%_qsrcq(s{%NodQKk+~Ol%L4!l1q5s7&-ri-?$Y&&;`HP8b475KcPHTwtwXf zF&yQGvfkVW{DsJO^532Ze|Q4)sh{~Z27PEleih||F}`2mZ{`1N56bW2_R6be`&Zs9 zKi7TJt}Abh{m*XXN7;k^Q}NHrTNdR_9<*BIpE*{3Hu$Ao@waohkNYU{vNa-)T2uV{ zb>wmTT>0O^PxrG&|CRE8l80?A`TUmg{Cl3?rh1s?HzP0H>Eyw?i2QlGbcy;>`ycn* z&n4gA@|?%ha(+j74$W8PAM`y=j^?y+A%`x@}I7j(CT zFI{;*OXG##SnxfA{GtzKdh9=yFVJ?}xeI<1`Y%?V#jwu32zuTEUVZp7mHe6~lP6Gl zTaB;sntJ`vBfe(WvlaO+52D}UjH5h{ zQLh-MBl!$Z0PhLpjU0|##zE(c(5d`}_NOUdZ7=d8UJl$_;NP<;f1>glS}!SEk#BKZ z>R*yCu`m3;RQQB@u#}h5a*=$D?{e_ilDv=7AKPag@|v74)SW`p|~whjfW>t4q!yKjWuaU*mcT{5~hI>wWO!XP*BEo_CQSax#1zAvjfc z7`CI@+Yb+=e3bqjcwY}b>-6*f7`Cmr6 zqo8vK=$y_t=QB=M#y^1P(qHTAUD*Gdvg3fyH1d_+fL^Pe(5@~T~(e`>v2!~ukuZs?mN-HQNWX*wB4SMzP^tBy@_9chj#B{mrK#d z@xVP6xJ`jGlJT#=|E>j(ddz!=G7lclym$}w3z-i;z}~-2c2EA%x#U4z$h=XT`S?iY z_r~NM9mxEBJ@fV`@|+H$o#tz=SCsGD>(ST9+q$%CT))huuDsj!Ta&;``BvliQqJdU zd(-%S-T{2NQQs7N>hkBByzZlaVJ98Y{vO2)93yH?$nT1n&TccW&9q2 zPd@`!`P*$j`;f=|W!}Fly$XJQ0sSx1^N`1Nc)kO9 z_iFQ9e`+2#>Idu0Gje{u4`&YVIc*U80sT`xLe{0qU+Z<()~tK~fUjSH&sHhlVTNmZ zt^ludSie6?p2%_FrT2!bJb`Yne1O)k3)!FO%=7!e=RwAw0p4w>_fS2|-$lkdjs9s} zeJ<;A<@2>a)_CUcB=G$Xyndpe@=_X~Rjk9;Fy0E<|4#nGnecUUz8{pA(tK2YMC)t) zTt@z?9@fYDj`8>d=%>8CaURHdRjtR1_zp>>@;yd5@V%$}j)r>>`Iq$FX1Lw?URC~C z4#P_VM`c z9mV(SV)hxd?`3~`Fzs9Y?R!1oITZZ0?~>$VKcM|9^LHk4{W#|t_B<*%+7G4g{d1A8 z4^Lq?z4N|Iq!;@cn)eB#|HbY$0#A5YKefMM{F;j1kmvIV@aPF$C&RCD zAlCjD9g?Gzm)lDe3X~W^ZID`_Y88s zi+TsfsmnNfQ7YeQ{0@d*?NeFrHeviAk1&61Am8gs_QhUC4}XK-L2tu%=$*VjTYL@s z4`;A1axMJU{)pxO0{vg){fEGrgS@7w41OcQ`x8I;8UD5o{!RI9&Bs6RpC8~~wI5`; zwFmFfDIYIzAEW*>@>V`^(=GpK{gFL+{1xo)y)XVa4DR2kUdNrqc=sSj>4)Va zzZ$=*fG>OYIMVaD&VerZ54Zmvds5zC_mkZ1FJy<-+h>JO_|8^7VcVtl$xN5zZoU7S zvNinai@wO8#CaMx@)OqQ57Fm__-WX5SEc16J@q)USIbHN7n?5GcU(VZ zeTsgM`dR#MuK%y?FDtO$0(v8Q3}-vq%a0`ewcaYfe;PlP9{&&I(FwTM2>&pzDnGX6 z^+5g~-+p3tes6tx9Y3@RJNt$>faTElhw$-tIrOckRNhRFqtb9U<^TVEh(9=(e4L6W zuzhY!bi&uK;B$S&3k3L^q__+{_j()rmr+mg3CizjzB~)w3&8tP>Q82SH$N4BVEE@| z`?vl~g3t5e$28urpoH{&B${0 zcx$OkAL97L;fSA6@6i|Ku{Hcl^1X@CFGvr)Kf-gx{aF8W-(R!``s=%H^;lmAumL#AU>;&}?n8yVhznEM-lY@MijVR<`zG|QgipF}(d~C3uB|3{LgWC% z$LIVsj-Pj-z4EL2d{_nJ4a{+7rbBf5oYh{ymE8S&f9UH89wq3w6nUdKDk%_lkqFzU)a| zagC;5`fmGr1ASRRyx%nJbycs3r}WKmq(2__3+!LOKgs50n?z@Rx(vC$!gnsK#ISui8#4@h>&#r}#UMUxnvmso#SCIT^opE6*2$zs9wH zl3z>qY=5NtTNB?bf7y%Wne1Qujq^YHq4yqt2jn7oc%AYVexxdTBYAk7=G0F@Ur*2W zVtL9=?9WdHZcE_Go^033bMNt0I^MPq`X#&a^YiE@y|-PL(@%D3dIZ<-HLmqd@tTeY zz7aUrg6EiA+CHxO|MlGZrhNXU|8B~u=>03eQ|a+$g5PxLe<|?`Jb$47a`^o%c&$RO z_1^qb{J7~*oU-N8fVgJWZPy2ow^eb^rmG(9jwFAq;-Jl!Q;3sJap_%Y-$T3on66snv8_j*WtHZ0eeSnEfV{YS zl3!NmLE<@K^2gStYz~|jfrD{MdiSe9?JZ}_A0 z6_)djyqCV%e~F)#r_Pncc?o(e;pZ^qs&g8KHyXZ3kL* zI4_bH_=Q}0K7I;#GwG*uNrtza=Q=NBd_D!AI^?VUf;_@{Zae#y@z#UtjiTJC525Z;mB=+#f)zbW}* zb*|9zQ@&!`ccZ>>J)zQipz~Dbdlm3nUyAyt^I6t2o#V3pz6;$yz(3I)=S|v+4*QFm z71o7<%i z1?#^XSVzuf9jkSr*8#O@x0?0hwv5+4ml0paS6=_fFUl3Hqd#KZ`a0jED(%O%#I76A zUh6>1>l@aib%9$muM^Gh-}$~dl=V>0ygszQYmw$z#(9zUlUZjk0iQ=%M-PP$`rh~W zchGJcc<3CS@zr;!`J(S)`vILNG{4_toqaFueq){e6W;;CyVz`lt1|^+fAv z>+NOq8%29PH=Z{$-b6~BW4HXZzO?E(T6x*13D4XVvH@ zJ+r;*Jgfb<_-Q=V&d+5R=9~1@_&$hSuSE{}?z4VK?`;2P=lz2yAM|ZI^hf(iaUY$1 zgZJ5|&_09pMf-_yoyvE+?vJ#5d#8O4_OtiO-|NO}Jm2TqN3;E`;X7LUJjP=i@YZ=m z?-Ps^T>qa=dwqXfo@t*@`=I`RVwCU*`@8ynH$T%p(YD#1Y%hcHANnpfKeXRwz0-HM z@z-~G^qal^w{PHff3W`|c&T41ACk|zM!EC9{Zjr1(|I_{=Y8V86n|&B_a*-DGUCfmCmyd4abxFqjr-G2cZuUY zOx$9K9}RIAkLjF2*k4{pJZoLzSuY_DxHoaVH}SkJ@sE2DH~A3pp#y=VI8N*Lf#9Y1 zSkpV4_}FE{+g4+|=ES3~BEGjum#BAp692oPGyCSmLr>_0e29a7h38*%j{0))=}})t z5eKgGA=al}ompoQr(Gq*;nQB{ORVR@EAF@JdH5-g-|}un9P^39#cx7f@UHMBoc{>> z`-+RVoi!vL{r8N&?QJo5ybm5Np>rnj%RRcp{ksA1=N|DZ{100L`Mm}{?-3WR^D4%B zy~YVY#j(3=2i?Pnb8ks~JL1VVrJmx*yAUsbB5~P&@cwh2cS~{f#GUU9UFv83??7C* z=!*V{c=7)vehY4}n_rNd@UWh|+$qZKkB(8UTXu?idRxb+x8rm!B*Y6`)-m#RJmt!c z_=gVh`6V4j^9KOsD z+`zXB;Bz>i5cENEww~#Hf&J2a%5UNK9LXp6?Ka5ew%p!+U3zFZvvNGY^?qmc`&iD$ zY=d6TK%ZaYe2C)gJ?@Fbv!9CHY(aedTKvaw?BZJNN%iRW(EE+psm`z1KEip9@Kd|E zPfdMw?q_`%h~2#*yY>Hu*stRF&6i2ZF7bl*R98ahXDj^M7Yk#Bbp=dSmrW3A?g@IU8g zY8Ujk0p|l1zi$1Ie>b0wWu6&9-1w=y*L-BT^`+jA^9mKjpU=qW3oP#)a)0wv_t{&% zitmnoFU396ZWZu$Vm^GB`1E&}Z*;!E_%#9VtBI4>IY!f0l{oMtm>)Y52Y)8duO3h9HQdey>6H*I)i@fn8%I( zI}<0a@l5|h@KHRt{pAn5@1El&O|Rk=&A(B^+YKWg@fPAKD~b10+^gy82;NJ;OY!ZN z?+ehUIC{RlK_Sqj*jKuXR1~g|FxM zQNve%+ppqP-M<>}UQ)k-^Nu-0d^A47-}a$6U-N4V;&S&<{9!o%r}#^ct9VHJ$8_%h z5aJfQ0=JU(!-$)_jdh;laXtP#;-z$M+IFw_XY(yQ5AjPW4qJ8Or8rH~IS#mrx3v7m zgRjmZTmK~o(>oTr&WEq9kkiA&XR3Xq1Aa)}?k~GAU0bI3Ovyj|YEaiXgt#uw<43$1 z=S%ST3VtT}&H}F~DuaDVK87o~n6HXUH{W%R-trJX%?I(#bU#2l#ort6MZ{TuM!${3 ziGE4@2E-{U-Z0t^@m?MBdfa-YIIh-=6~CbneH`_hfw8tMx?uF+TFM_FwXc))$>Wu>Gs< z_rJg|#m~E6^DH0xu@h+D3_DSrzxC}T>_~R!ev|R1$AaI{z}*+Q-U+@c&5vG;r#O4# zu~%xxyr%iYbUzGVbe_q0PiJ1bf_X{s6Fir%!2b#Oo9FTG-+|9JqC0#yh|Xv~_|sGH zv!d5>K9T45X1{7W{`{Y@n9R&lM?*W2+olc*12pWq(i=oANSJ$-YZaNcP7qiRb&A_`fHJ7p#pRs+HsYJl=osW7`sU zsQ5syk3WN6#dBNEihni#|DF64{!sCzao%TtYDtdoGv5?18ts|58s+V>J|9KAOEdO$ zcFX%c_FIa-v7TPQe%86{L37L3i_rCnUfaURAj=M2D@gw@F z9G~NT@h5pc4E(PKpNkmxdiXpX`Bj3a_Kl-mvTv-o9@D*ye%hb5p6Gv+NH_b`d-Fen z@);VRb;$cO`0)$y^uK}k$*a)*SL)v}?n>&5!RvAOwh(;3fS&jB|0W(!|7+N;#4qoU zOJB@i;cvcunoGaeez~8g{qd8K<8i>*hjH}(Ox%YDuJ&*351RgC|9Kyyl2z@RrvZhz8OF1t?lnl_#*mKJ?WY2{eg22 z`t}fXe@wp*q4OQ=TX9~=K25ju$M)Zz_dSu1_Pf1qP@JCq(!Th&t5_#)LEN~`Nm-w2 z;(w>($93+*ay*#%pb_(d)~A+};=;ZDS%KV8(@*E0?7u(C^HE$+v;MprKmG-N z{v+@@g8lNg%x9WE;<|cvktwU`STFXOJV<_C*>84a}@KB;^E``0RH;Eit`%t z{4V+2mFd18`otgm|D~)GFJt|vbEO{dN#HbOUTsG|o$siffd)4XiH z^w0RYo#Mp3PI?{u7BYWduXceSiko%+7U**s^R><~7~i+@y2bjab&bcV2Hc&Q_qzf2 zZs4T2{0G2Cajuq!=(W9R9?e>3Zc{Ep{AmA3b)`Tr@~_W}3?`5W731MIqOo`>zP z6;EovbOm-higGaWyc@Wh2MlLKo=-il{F3K6`3=i`0{!H#J>SVsM|}X_Zy5h)>hddo zznXFd{%r&PxGM1iJMw?2{--w{`aj-$*qQ%v_u+qJ{f}zC9Kn2|cu)Ix<-s+*&2oF= z{{!>upYW$4^ViY*58IUSm3Q8Jx{-12Wc-_`D~`|e*e%3G+zOuhzuW#z|MRB*sco0j z!DkZq36AMfoSx@-{f}+A&)|P={g3VOuc3YkWn2F5Zo;@dfZLtt$1<+s13hkuc8X(l zUG1!A`d`_l{{OeV_6Lr}P4OMZOXIuUb2&aS@x}Nn{=)PMAInwo8>V{){@>n}|F2d0 z`5NZKkI*lz+mar6zB`|~)+Ls=<}u@OBYHF*{~9OgbM?2}W@l5NESv=Q!b}?e%}X@zpxU@YaLp^WZlU_+!BH3Fg)Np-=to zKcwfzPkL;A9tj@>&-yF7iT2NUvNP9T#}5C<_G7ygJeP-}*T*A2tgcpUy$P?JU=TA!t~sl;~k8L;vNidJmV`)*#7hp@Ollp z=VQl;Gje;y{hA+&>oC2FCrWnYayIRzGoI|maPI?8JvUuX0$2T`oM^u_@lA^Nv;W+R zIMABJXZ0a2YGjVzGrtt~XL`$Nm+GB~vpR!&<4*qOG{8wrxIJT>HjN1gf*J7{YYg}K#mwB0==F=?n z@(cL44tYyn(SM^~@(cD4ihDO*gMi;H`xV>iDfqqZ;J@_L`Xav+*Wt+RJf2HWq8-v+ z^%!piUJL2>Hsz=2>q}X$++K7VFU7B0ejfo>a00*G1@=;3vH_J&N0o_60qykmpJ0MMp}>*Zeyg`ATkvUqbF>JXhWNtTeiR< zfcppdsWcxIry2b|@w~b>#dK^>T z-RacNB#yKfajO>)cReD)ZS+y5#~+4IL0#9iunoR5gV9K|@-691~w z@9!qw^j_kgAA#Np;CD6cD&dRz+0RabzE9})D|js-J;FTXJUI^g^OoqsT1^Rmc?Vp+7yPGwO(1Ir>`hLlA)pIa97`r@)k|Kq%0 zP!{F*W?8h;Wo1#{ex~1VWs&YZ%A>x&To&h}$z}Lu+Pzp7<^3+>%r9g9XS|7J_=~cr z_gxtOKJXSi+xh5k~;!}d1`IMd+QnzFc#`IB~Amq$KsRUYAPS03T*M}6P&NcR!tk-yDo ze-!n^-@VJDoEnrz{;I$ARqf(DRv!7#t32|zCvdxzM|=*XJf40n>9>D*)Q{%nQ6G+^ z-4Dp~J>)ePxu}fu3H*^f&4-Vve+xfmA&;Ao-vjiM+}!?|3@3hf!S~N8*CCI(;MWLz zn?T<|(AN)s^@Xofpl>St8%_UC@U0zuKc+nDo%j*wf%2$lHOr%ZH7<{O+ps*&H}x|A z?N_!fkN!;Zc3pgl>(cUQ7i}58#Q0^{$<@4{R36(eWV|Kt{ZH^&3jFVQU#N)k-L4|) z%f1z{f8&aXf87fFbw!k?>Y61Ah1!&<-JumxU-qwva@2GC>jNsHo}9ux^JiB?`bN@! zEcHuicX>tBmk||Fp5y8FFnB%+o+^#UH2OUOzGEt)J={dQq2MtQIL}dkyaK;W{S59c z?F=0kQy0FT-(IMQ@^~J&uQ1+w@aqfiIo$|8Rk`o9&@ak)r+!g>oA!(2u3?;?Dx!Y; z2E7|9qQBd$UzE!h+;^Pdt*=0DxJR`X_o!~mc(oa4`+iYg-$RG!_Iy1U{+>nIKGSP| zsOO#sPpXJ|x&i(C3H?4e%ggiAmEf}g{6B_IU&Gg}xF>cy@J#o>*64?RfoCi3i~Se; zIV9Z&%lk6=AH;pI!=Up@?w!4bdui|E{k7C@2VNz3s9*ekf?r+X4Rkfi^m*M<4!j@Wv+mQiU#kvY z;*-~bXF^wB`j4TX=&;{W-Tj28*R@0XMLiqQFWSvm@E=cm;c5KGf%jG5o%r=Y?jQFb z81HS`&!GJsxxewahjzDRKG>dKK~C?0=g;tY1N3aoy~ew6zwhqcgI$;B`%~Aw+Wu}h zo983AZ~Fr7{nkCfrmGwG0Jr7dX=x7=T*{S@v8U&Q-Q zs4vU?ydItny$kxYp2~E1UTF$GCj#dX_$NM_zP;ej0rc+--&-+WAI1}3;&(mcJqi87 z&v<`DyY<{>{cHc|U$#&8>r$$2KUIzUa(6x}@~3{jXWM$Mdv>kY`*6RmO3S$>_jPa1 z{pZ!Wx4R1Pbq}=pQiuD}597Y)qqu*&Iro%r&3(ixGQNf{{#vi!qMQN$BxmC-IeOhB zz8F8SY(9Pu+}{{a_bz+>`JLyBXulHqY{tFoy2sl4xw^mF?W=Hq?qc*t z_sE<7bCLTcXT^0%JK&rQT-`hGdwlQbK3t7sxIY4C3+~y~efO5*u8g}o<8GDiUFII> zrQol7?G2|(E^Pn)7)6!ksfgYFae{Mzgv{V(MGJlfC6_j1SYSNJCRSYJ;> z4#z{k;F^xR(eugqo^s3Y8|3mVbSy_dRv}-}ZT)D*ea3AEME;$?J=CYb#{t|kT*1A- zBe+NSTAmM~-Fe(Et@pnFI<-5EdN=sng8R95q5Vhr1>F~J|F3(xUF!aE%Y7&C*#>>- z51xW+JMAs`h5MuXa-Z_a$XEA)n~!fo_e}0}-yz-43|z_2^VsLK)BWl8r?n|-42byb z4Zn^X5brJ4eag0j!?}055BE*?qTF{t^mn?)-1wcrxGGK870@w^_BYX9_nP~j<+Esi z5_EQ@91h#^Y)3 zi`IS8=F|P~;bz9afx6(Du4~}yZ5bc?l@5#}eY4)`zIWTv+4R2>_~&r1`azj~-^VOH zw7yP4pU%yAc-$KqSNCcc!cTgV#&xN2ZHMv;{yr_hPx&AF?O(93s>po__Vpe5@mHEx z7+>->zch~Z{W{8V@a19b z$Nho%cLVE-FPS&H_K$X<_NMPYtcQ-GO!McDc^zfBjAvajfqCz9=EH69V?FQ-@3T&P zj&V)}AFXHnoqZ7Ns^0YflkbHWSf6TL8u!y#KdGJTAF{sFxYifZW&E2Yx#O>!vVM^t zwtv|bzj6}(`YfJTGB0Vq@_c(S{pIJ3=SJE|zpSrcz;F3w%YQ%QAUp8A>>aU}3$vfF zJ<8wMKH3h5bV%;DFZns!MLqoNGW7d4{Ho?}D@NJf8H+{=F9E56Jf_=C3~RQ}dzqcWe4@NBc9G@3g)% zotHAd&St&x27G=D`m`RgpZ*$nGq8WHLyf24*q%0lFHf?byA=I75Ity*{+@xJ?niki z--&Zr*A3=-_inxqm+&3*YQN}r7WRwd{lvO&F5g+r(Yp@V#b2~v58T@5`C8z&{Kt3f zXucz>FkUCdd69K!L+n#{oBvg@m!A21%6_pi^qxz*+pvpkvA4PT`^5I~8~i!|IqZR+ z{fWQOd)v33o6p^li{$L_w2t$8*@^Y!QJ&w4JnqZSZI`35zjE|M^0)m+-nPe2c&~Zg z`tv35|C`raw)c1PddqtBQr08GOY5?<9+f@W?`eK8-m*{o=hi$wGy7-j`Tp3e^xXC= zziawsH}sln3^w^-#jc{LuQ>{imU?Z?TS)J$Rg&*uB=d-lr4&_V1eKEFZyh zIUl}{1HSCb?WVIH+yXp>S6bJY4{h)xr(=hwF>i=o`xiYoewyD5Z#4C>*uU0^Y5ikA zrg_i&-&uYptlP9sv;4Pb-j|*F`62LiH~1?4x&PnRQRdSj=tn>J_$hR1zO%m)zSf&P zvfr}ZYyD>Y@56u1=KZ(Gbrs{+s*LigUx{C>jC#67WyI%z%IN3zt&Hn{{VSuK8&pPp z*}D>dUK#nYXJuShHK~mL=g`WCU!BUR$JHw1d|#V!PN07~@aRgvlPe?sJu8cE-g{T? zX{XbFaAmP=jVFiC?hG9DGrc`{ul`=Ibc3GrE7^wvUTf&;3;u!=*9-J-3SLLh?u^_% zt}`=UUbl#E*85$+<4gGa0s6EKIXusLbt!uEF6*8GbTqDv>+ZUY{|$P$7Ws*P){k8& z6Q4JMj;i$E4F2o6`LJbWwBwyBqrM0q&!=yI$1~t3d>e%Il-A3pXFm1!z;hvbCOvZh zmC*M&dh|B>yBNG*2JR#1>HW;x`i`;Qo{;BP>#5q=&X%P0GkiTUw_NkM?bEH4|kzgchc@@`1=%ce6ljqGo9ympa-Ln=VbWy0(`DDF!J;8fvj5xM*ZwL z5dSbR+RwEEBOfmw81?_SfswxAz&Kt9;G8;;b;rPHXGhS#3-Hv=a;XcPIs>B}{n01h zyRNtu`?38f74PNxmE6N#zZC1MdA^kAD=1s=ejm!zUhxBk@KaoX?{ioF5!aP3#C5@U zy%lxEzq$Se_rAB|{TNE+7xDX7DHX@!`Y+J&78Aa%tdKEP>6IRtoJsees7(POxq@q94t6t8SJdhYj|QVM_9 z4}x#COR-*q@^+p-MENVvH&9nzFT;J7=Vg@2vs4H_^*^`p=geV>A94MHQYE~I>e zat!cVQLd+7;@1bzaS`+>4y6!&Z&8k=R9sPbTqu@`p(rSh#^oNsZB~l)&8Q2W-``28 zI40AjI40viiswx!%P60voJH9Xcxn9afs^#AKJ668Lv<$5)({+X;W` z(>bMB@4-0DsTV1aqf{JHA^hr=ilHd%SSp61P(i=$rDCWSQvWukVyG5+BQL=Z)k6JJ zF%$*auS>x*Khks2>-uW&PwkR@D$dJvY+j1}HID0pDU-fPPYU7pNGZ~(JXxVy_<(kk zO2tquj4BmFQ5at;hN3W}R18I-1MRwkPojS(>Qlf!@$*aSvS;^y4}Lc)#rnyV!m|*5 z1A(9Tq1ZOYcq3m)P~4_%EH0@bjJ0xV&%0^KI#OGG$N7-jtisPw}IM zvm^CZyw`kSJQW9NychCZ^!d5$&HWUQ=JICB{dh0Cb-xL~Pj;RBgY4M-kyV7vDT?Bk(OyCVq5aoQo)ny^E`! zoZ8^8t9!+=Pp=5K4)EGAet+sWQ`dPikMkw{{+Ab<=Q_vZ_sR=xebV^_*ArZw!!rJY zYq~|B%Ufxu^F(ehx?Da(`&TIyx9-xMShv{h=YWA5Q#wXX1%eG4Hc%DM%Uc+w!=km|zo+h1NHr^e9Q=jL$@5^v> zF5KTMZ*V@m8t0Avi&YvHf@?vo=M)!NfbIp{>r{(h|tvT<}9Qt+c#otp~lkdGD z=QDLK)c6kP{K&SPcUj7L`Wwl6rhM$?Q_Fn*({$?`jrSLHZq(x*E_mTQiq2J;u9{ii z9)B<5#ih?4cR%z(?F{cX&Y`>rUPa{E4!9?9{zUd?IV?iX%2Q@|v$Finm+s_2)4eH% zzd!AyM-hMc){OHoO*8-e{yN_4oUh^c79T^NlD%?2pU=_#M*fZ&t9F5Y-M?XZ&!OFb zROkGU&HGTbw1 zuk+L9!v@ZS?EoG+7iRqWLbvWoF}=E1B%N3KU%!xN;cm`N4+Y=O$!>rOS{U^?k@1D-n(S9s&_D<)XIZv+p^n9+a4d=>r-<#?FBiW@2d2K54bK~0_Kd?CG(@D=GT<{h=^KUr$a^BW+=W!t)#I~IOe~SD!1E6~; zaQmiwcigW!5WJLM!s97Vg5^Af`~$j&&*Ll4gU`Dy#ZL_7@s z`2p%eb>nq9{&6|u9fjR|&wJhfXnZfm zUx$1R!Cr!%_{aMr88_sU2|wXuxlaV|G4y|w_PTG??R0;s{qY9Qaoz|%^5-7szrc}R zTYpq~ze9OdoS)-;-Y;gH$?)&;jJNsRh`RXb@fyO9O>${}qkBC)?s2qJUJBEpdBuF# zMe+)MM|mC$r#ks5dXTrH0r^6zAlCwVxC8kxF39;k%>NI_!=b!1mirUrkx$~`GesyHrp6J_PoFJawYaSCg&kBUzHchc+W>3d!jGT(QY*S>4u#j1iW{#|HsJx zrPB0FC69{kNj9BtVgJhG<#CQw{*Yi7&yZK-tL&Hj{5Hc=|#O!T37sP!&*k|V^$&1QC$C;#^6KrM@^|Ju zhUQm+Jb|sd03SNbC|@P7-gSB(e!X*Py<9`S!l{h&5#^RCuPJmWPif4{l=J=BpH5Uh z#DMQy^8Ot|`x@k7+>QEb@L<+_273}QC`3}vw`zGc_uG`|Gx^q;748}|L2#; zse$MZ&%dMH=Hxe2-cjR!IP@w%W%Nh9-x|Itf2-~2Me;&Er+lckd-6)&h@AV-Uix6Y zQGQGNjivBIdK%XU@c(x5EB@_y^vmRjY){z)J^2PYln2&!d~VK%X*zZy&*LXqzNY62 z^4|8$%cnUk{47`0PTcc+k;hXHmdUlxV!QPjMufD%d`B}qv z;OpcQ-GlZM$TRsywhPOD4E_=p^oC)oJbq1=%8id?RvuKd2%y8?B|*Yovg_+MXT zz)yKf&A%q(G2Ml7%dAhvM}8#w;gs)GdKc)LiC+I3{e6x+vRC78l(*G-D}A-Us*N2f z@2cU-emw7gO24mwdn52(Bk$`Ql-1$qsywdwsywj9=RWzdpxSV zx29{<59LucABxQX%ExMce@uA^a7U1zwGVKQCVy)=`CEIY@4B3)+j75{@4jz=SDier zo3O4>K5*N|67W+#Rpa>w_$|=7BCHcfGw!`(~9s&$p4hyUN!a*UR0bUlM%NtNjDZS^4VY{uS+h5ne$*)1l^jyxq#U$V^fq$Q|U$PANYj|Iq z?~=Xwo@}D;kT7p3Z>Hg&L0x%wBfU8fV&pq{T$M*N`n&WU!*}I+_K~y?Yq`{9Utnjx z6Ib(nrtfp>h4LIlJ>vWI0=_E;@%~}HJCzs7?e65ePx}kzPjmJY()Zu-Y8UvWeGI?v z!T0{Z)Gx?Sc-cNq=K0OwHJ1H=(Tw{Q-=R~W<0rn4KVZB$;CpNCXZXs`YdPw<`4jd_ z0)MriW4+LRi0yp={gmg?d|C#6i}+sF^XRuSeb&>t$WQwTah-}B^xfU-M$ zaW>Ce^L^Qc`r*7kkNu0O8LsU`-|5C%`Hnr0w1n^4CyMI>y|-Q>U+oVV-*ce5a?>)35y&+pF@EMt=<7 zXR-fsIegeTf1i7O5%zO}oTT>=FZwGltMycQVa@Lo;oEWIqw|4bH_C(U@hkHFOoW^1 zPV{-c-VHu&23-fD58bmq8NTem^3*<|`yYY6YJbIgJP>{DOgrr_nvOQWk)7G^3vOJm z(5@2xrSVjnKJ6zZyEHx8XE8kOYntz}UymE|D|@}kbMe>hzg9iS@palMuWQs7_CJ(A z+;GP7Ui)h1xBQUXH9}6?z~2_=xBQj+4QHHd&|B@>SA zJvW|n*+6feqQ^0*5}=k?@7qDcOKX6weM@bT?}5&^L`HW-IMXP-YfsL z;l2aB0(!6`cD@7lpnXfrp(=7KVt4Xe)`tUBhVSS@c;1M9HL;sL@S~rB#|-f!$ZH<@ z{4jh|9&hti^0R&{O#BD_`M@h>y|EqZe*@FMlkf}sH2ZwgiyKPcz*GoAW>$N0Bq ze^mLVEuR}H2eA)&Reo+d+wlLV{y#Kc`rp%X7)f~x?R#pxz!&BB^ElTq{w)6YQGQ+X zLHTs!I+pjt^Z4%fJpDfaPvyC@U(x?h?x*~J)_>)-jq5x9xB3)(Lc6f8Zpi;r%A0Gr z`{e&M4d=N0f0p(6x10|++8y}meLq_3+(xG|zWI zPSsTp>y(=OUs;v+qSN{*`i$3gnZK?dDg45(G5@2qr0mG^8px*!bm;#_>xKRgw_P2K z{tQ6Rl=m{OW9TovG#@VHc`H2+{zUd*|DD!H*W`KH?VrPs^kp8=`pxaf;h$Dv&-3%T z!gf7|_gCcgk>`i+lb_3Y$Nd5HU3A;-YNIE=;wSz9kEzUiD=DkPN6{Dk6L6nO|9|jY z|1(E=;NLflw+4B9M7yPot2~vK*DBgAXPg3hwi5WMz4G;&4#6{DWvA{hJ+xlx|LN%G za=y~I-sFGuR{8(!jAAKhKdj{A%n>_o$g)7lO|i;HCfZPvrga*y}0TUnDt2eFIPB zvvs`L26?b4g z6~4B!W1&lVb<=b6^BkVvgS^_pw=eMnqtU~8=&$Cr>{pgEc-9!8H(Yq6< zcSNr=FS!4B^iFzc{AFKpotyo;`CBdf<5ag^EAGVeuHr5{pZ)E=Jo{Ji=YQ>je^)+W z_g{j(N>8FcMPBpZPc8DgEB|X;Hxrkmd-`k#Q;CDQl6K;bZ*%dr`=XfLY zMfqu?zH0oiPdJ(O({lVz%o|BOS~c=dDz9do7l}{XJm;&mJe7Ao`Y+<20v`h1iXTgO zMLQ!7X$s>ng%0J%wqAZtf91C~ed4$AO>jo%{JNHVg~kc%L-EJ-^q{;f%gu1#>BTuK z@@HeC=S-LyQ{xy9 zJ&*aRpi_MCIV{m>KeHuyObf&r(Kz9z3oi59(#$(=O+4PxzXS`n{w7dm6pIHrtE+g6zV2*%p0ljNFv3+4II1 zwAVeQaXpgbe+CpFKyo$z!2hMB%N4`n#^=gO;{_-Fs~0(IHF?dFk0H}*3h|Mpq7C-PeNZ6Z*2J~4%&EJ$oLoJcuvb%dAKddvuWQOJo?aH zd4{cbkKw0O+Rr_O9Vw34blnPm>Aa8PkNsTn+@|wA==m7<^LhV0{$vyKt!_iP7CMy& z+2d_N9@OgOZQYvuvHRvc$8M+m-1ZBHk{?xZ;^u?m+Z_+BJm0q8t;p-T20H4|uE=}k zl{Ws(>8Cv4w#Vb>*OL6UgULU84tNeFFYFcMmAwwQV{_i^=(iY0a4g3Xbm$y`@$3b> zYkB?{aHi02BIDmle%(p%Ro!-v{AkFxb^-%{jb zee%{GKz`f3$)Bs|h453qP!xK@hl?qX1;5V7UFRt*Z|Rru9|(VSj>B}SjO(tPhuv^% z15fAhZ1>V5_b-Ew(m%^-JpDf6z0R@NPt8VO-pcxAKPA1eJjNj(<+o1!cli}^Ujsay zGqZmXAMFo+0{%+cZ3VxZk=M5qb)9Rn{+yKaVw(@ccs~HR!{PHp*U6*&5qXGTB~S93z|}b=kEiy=`$h5=&&_#@jo)(M{Khyn$ZNYbd5O0o zpYDg~$yemhUIo4@8Fx?e0XHV!@4@s}9%AFao^c+a--E#UfIP@gXMAH`8S=;~Z?WZ4 zE8}B3`V4&M!M~TFdjfhoit$Fk$LEmGL$q5${^!5o$1l+LC-m$TdR3kL zzbE(Qdj&i@lSg=e=T?_G&$lKe8RkpLzWH*vDk-=UeL1ciUw{^!E_>*#`aVf_|>T4mV;? z!rT42!)Kkl^Ekc1r!V=iMTgr}hwrU`+Y9=n_x8s_d4B=rRgAk6dQb(uTnC=tLFYTk z-=XiDqmPoa@sWPp{*Odo>ysz@U+8@&#NjB|G=LG6R17fgUvZNB(Z(9CPl|7)pF8tK_ zKjS4mF+E+;=Nh!vJYl~my|O>h{N;I4`RTnb`vCu_dDHd#vYvRI))ILp{W}Z0JCWy? zFwV{3xd?fElHbSmAMe%QaQo73SLl|W8P9syspcc|rG)+{k9#5f#%BNO`JxB-91Fj7 z&eikArpV=9^45<8{;AM;IQF9ZKnz#&oZ*e3)Vj(1)VVaTKksEd*SB|UKb(Dy=U8X| zoAS=W`vTsl_=@|y z>VZc&c<%roe&W05Dt(vueqQiCHh)LkA3O?QgtzIK_>b>dt>>dY&~FO-_>1pkoujw^ ztHQc!XXLyQen}3NuS)Z00`!by-7os$JOCY9zq?%<^yet_qAq%~Cw{d7d_0=s=^^;*W1+U8QxA$C--!wEnbQCuDtg zU3%^DrEiwMN#g+Mts|0VDHZo9P`vT#ALhT<|A5-}; z-~B5DKkPr~yW9I(kFn2iX5K$Bzgy(*chmVG?e(1=`Hy~UKhfi?)cf#T-7C%q`-?9D z4?XvI+P5(Nx+m-Z*)Lc_zbWifJe>Jx{n-;eufaaeGWh!vcxzw9;|^!vqz?V3=6#yD zzsSDuTKKU3%-F9;SxEcc{9pe*`#L)(e(`_jdF*p*f86>sf&W)#Dt;jF^#T4LzbwTU z5qF@t63cr(;`S6@>3!Bih{qdC+_vJ1?FTMXoNM@h@dV;1&sIEYh+ls&#pe>geKm2f z3y5=F);YpGpLpB?=K#JZZny#Q!JBhl;m9s=ANoGUwT6AZz2x6Dsl5Iz_$o~AHs)|iEF=^cQ9Q$3s zZwcR@0*^O{S0C3g%6|mqPssV<4pF}*cZmF2(IMK)vJU90o_qhleYBJQ?c;vyRqdnR zRBs>s#@u!h&sFVW`!4O{`eLo#hd8c{?c@6=fxCurm#XAkiuX4sgKvY5ar|34MtiOg zf97z0rBmjY_2Y8Rz39FD_H7*_J#FB_B=~u=&JpM=~;^)7?ZgjpO z{!fBEz27O?ozCSL|IN_16`lAW34Jc9Ul^}3`g#j-_|uX9lk}^NeqV_GJxZMZIO6n| z;%8=OJ+^;$G5Es>vQsJM+^G8ZX%II?8^;cRx)0_YBS>-cS89;;bhro;=KJ=kflp z99JLL@0@?wQ}N~@4(m?h!KZRQasl!0HHibCPh5Iq;-?1@hy4(7>USvaI?PK0h!cE7 z&%=B(jQHw3i6g8^eEDHHUflHUOT2fYXBhGIkHEJB8Lt)ahvad+K3GKjqRz8>-Sjbd z>RfA#6QNYy_Hh7liCdl#_4fkq}}yPe|L zZD%6|*YXpb;71j&>3ToLZJbN%>#fu$5GSa(KAb(0Qs;&(pZjw>Z;Xdvou#-;>*J%0ueeCtx#A$*ZV~Z|SF=8A4?a`i?-LI^wLPee^8xX*SHY*D z@KJp7d*wHX>ptp_z~9f|XC2~N_9BjL8SmdAUQKai=9|s~c%H1Ub-(qG^?akh#nA=& z6sH*RB97(~*8evXC!@F+zpvoCVJgoRA7(mdFtoQL;P-X_ReL2D~+oSsoYVbNJ@tC7k1VDa||7k3#Q{K<}$3KZTv%h+SO(-xRl= z?AiWa{Y|(0pZWZH;?qCqk$;Z<96tZbd-*BDQ@nZdr}o#1OHcf9c>?{u2Jfx#hi`(H z{DXn%xwY4hb<;*!-b&PU*( z@okTaTQ`0S!C!tSuA3O=&Flx`e3AX6=Yy>^e&9IHNj!9G~Zccu6p+skq6Hz{t&<6O-CR3G-A zIQ}(|$VgIoT``U_QGJPA^M^jv&`LqT5 zTPaRU?fraT_8%2@V*Y%Q_t(5{uQ(Ueqj(knpP;xH_d9|8PQ{zJu6=s%qn*!w@>#&U zi2eV2=&$`{>y7sRqrS60{vYr-hy79Qe|rD-aQ3SQ0%r{S*gc?IaWejYQP1sPHNN*v z6(44NmG3M)_k5xF9KRR6t~X#Gb^`Kg&%WVYosVgqX;|m|t)ss?j zY39fE&~YPt9H05&_KLgle*HxD+iwG}>wtSz{{O-I#)5A-wV}QE@BR74d0hX0cNcUE zuJISY?XR^z9qo&{_OC5J{eR$g`k%o4m+|~{#?$`;D(S`2v1S2j9uy|1|Qv zANocDU-X*pnegXv^x!<+4}m|DxA*C#Kc-v#;yeSr>3L81dK}~I3f(G=Z&mtl3mpsD zx1G}~>PH>55B}+K*;m-NxmEff{Fma!%rET|n@;UFdwl)hlk7FM^Zc&;ZOcXWWxG*4 znDIV6(_uXkf2RmH@>#yw0{@?~m=}-FKE8@@iNq(pB zzK9$)qW9YGwp^9Z(Qp-4?(c&t_)*Ot_K#Ypxg5v5n$B-&-gm$D_;0OC-TxNmrzcte zb!8r_&-_@2`F3ySzYVM()-kURVLlwm{G@ro_S}(mX%ps`Gc<1S`#LWY*O7VtFkXu^ z&xU=Tk%Ak(JGTWd&71bm;XFo=|Bl2f27JSOq4O7(cU{I^%y)?R;CVpjQaz6y2E3Vh zUN^i};IH+D_3RVYVPB>1rnG+#{W?!$eVf8OT#I=|>vfN(b-LmFp4a1+|AA?KO8idp zL!M6)A9@4wlzy8Z`d`F&b|UVx5AmbV@PE+P%$o(~pRJjH&X&G}^@HN#tq=d9-+9o)(79f7sm=YA11io2Sl&*f0*rC|I0*qfd966zPElW-q&&wo#uzu z18(1&|BpU_Ur$h1ys+ofcY*V9{@>X8rvIPpe`{i&tKfTG{M;VQuidcsGx5{C@OvHc z%kmTUGx8%|Hm#4ulD@!t#~5S^u9%uU;pJBRA=Kp8W<@JL8hqwMF{_X;tcKpAtctYcU zG4zOj!x5d9_aL6@e|Gy1@!ik2rJnfu4s!ezeOjK^5r+2=^3{67@|9kC+$PNDEzp+% z$mtmLR_m5Dzk7VeOIV+@{xjd&GLGi&`2CE%D~`f?adhtQaWxMbUVr)tp82HpV6^YN z9&)?KcrQJ&-ARAV_t8ARh4yElXRUxURQkpoafMc ztpnU&jcP56Rc%KFDA2Q+v~)dENFQdaOSySch$v<1O4@aXyCM2>tpQ zd}^UD=b}Hd3(uF*8@InI*Ue|?x%nzRx17gO-i7|Z1b&L^HQi5wx9rCHdL!`@*V1kh z_4|Q4k#^T)d$OJh50|%MztgBI&dKzx0?(hoThFaee_>Z$iO*AQCy+vJcxdW16Of_=BM6Ue*Z-dD=FVaUQ388 zsYN{JfxuUsqWQfHInAS=;$Qq+{P*|H&G;w9Z`n>1&u0Ce0$jy?`}w`#`zn0v!}Fto z*91CSAcq5x&l>dRtE|`N<2K-P9QgId4x}&UhvaE_Nbcsp-dm3z2QS6pnJ>}@Kfjw& zdKTBQDLxGO3U9;v9Q+m68SNOlWFO1hr%DLF9@UcJAJYYO7rN8XM zeq?9lCwaKtVgHCL-<`Nb>687%F~s+Eq@DE5cF{UNw_cR-{%r6Y#{0X8C!K))K2BZt zDtP?o==U=5gi{&+EuKGtKF>$r-v;hW;P*|ABlWzxhUe>upInXJ{Y3w&#FMT-&u0?H zs(4h(Rd||DcYxsfu_ zXO3^RT`F$X{~b#@GJ34RO*b{#E#yZ-QreUJab5=|6{YUf})P#04+T?+te$alGqkcVHR% zSr+HDwq;QtPb-V_M7uKRquqsN(a!EIi+1>6S)}iUvbc_1To&7}6uvwGzgM6)^`P(f6weGkHGscG9@p!G661|xyj#nnKNUZ$uU}GM3xEF$ zKI_V&o^D%Hqf>|4SrR4uKxCW+m*-pq&fYMEsuOUiShuR z*97ivkkdWjH;wv?GVBz7^(l+^ zNgmega_AodpRR&0(l6W5O}t;gxYeLztBkkl7XDs`h+fb8rnIDzXy09%($JvZvb+i zLOBchybYc+dA_hb^6e|+^J|h@MU>mxa`0lDZ^|Pd|0<7m{WE;3SrPSY3Hcr-js4CjLR^ z&lS<`{)E1FDx!V7$9whneEk`CErqU+!0QY6H;HyL!Q)r@Z^+}u^&8`BJmWo`cHQCQ zo|G-Yqb}n}F191d&3Ry~x$MS9Ys@_^*CZUh9!dSMIAF#J#i^^^1HyoBk#Gb>sfo=KZ2x*W#Yq zZMhG(F=e}cQ4bI97x{2BaEsuvL%*o6`|*A^;Qj$V^?5IN)~nwAqMls^9wWF9SNG)F zuWUrF(hq+JGywlkssFno`spW;&lLE$BlqYw0Zwb~>n&rPvw(9ZcppW(dYLa?pO?e$ zp_zYPk9Oof>Mrm_^v8LLvODw*hu&%ZqWtdy-f8er{k;ww%zeL-hv^g_ybjcT#9og- zgB(BO{W8W`30{SK|FHR5jeCPt+HQ8@-fZ3T9p?ecGr1@DH10{>lY4~s=N{$5xHtI7 z{?Xn~=KaOM9l|(+GaQfKhWo`^^^fxH!T4$yzazPq_&(l0o9`9(y73~$y^gXE{q@}6 z3%c*w{J9=Fp5Wf&v$+>s_a0k*H}sGG^(F2*o&(+sxVL!{?{5Llz0iF%`0UO-$Umbu zn}E-^@c+L&UzFt&zw^Pf9(1;VKfUOGBJXd{^jLppgZHQTeslX--P7*%Wi{?s-U#2m z2S43=Zhrg@-dk{=@>=Nmp?|cu0?!5Cdbb4nmxI?Lg>n@96#wmSM}VLB?C;2wyp!$M>yJM8nV0jtVEa5D zd%6;P`w@HEf&0IupI*mE@6A`;Cm+9;!1pfneKPda=HBW3^S$Gy`=GO;ejm#H#~r!n zyo`IFFQC2dm$zP2a1Zp*{NDO}BlkUD$9>3G!(ZJaZGP!~Wb;w?LK|P*JD;B0o+k5L z_f319zMT8&KcL@Fz4ia`^`Phz0h+N^xVdHx|iGQ z*U#x!JKg)sy~GWMa{qR}0ny*;zH9TTBhR~VU-5C=XWW4I zM^Q@d#yiPdc-nuAK_4Cg&zs@9?oapl!q;}Q82Q%+&w~d-Q({2+FR&(sp9?8uMMg|F`~*S*Z{*B-u!|Awo3%1!SY=+(XOey;ZBhvedMmT-@|^w;-dOFq_v zcJ$wYd!LWs-gw=w?r|@rel_<+-wq#jzq;kD()N3AzK=f1zy8V=h5aw!KI-n=KP~xt zT;1#Ld13(Ynu71{*xS~O_bYm!`|QoXiUHB?4&(m$-_TRhX?@py?jBeAX8d*EyYFXC zc$|m+Nl%T3#x?$XgU=-R_!#!Kh%))BDd>gtr4W9j;H&J(e)PU%x5)8O8GXC4Sg`4+Q_?8E?k{(QbBupOUBb=@<0;ldLC( zyB>NTXPg51BEM(8R2>lMIvlnBe)}a;nvzM8#CNMvJ$b7dA z>x!QEt2I0?XI?#td0X?G=ZkiEePp}2f_eCD-ml2;{9famUo~mBTUsBm{``$~`vrL& z9oJ>dyVF@$Ph_1m8hjERPxX)MTKRG7^Y-}T-H_KN=)-5MbAEvzng=}JwW6K;v-zm` z*K$9K=kv23dj5J5e=(PGbNrd+t2l3DdA)Jvb;nef{JrkpV?gvX+wxxiE%__Uc`ftN zc%Glid~iH?$}ieKX&$$pYh2sguGmox^yLTiNPaK9kNl^;CwjRBdM>+hJI%v}EB|RZ zPs{VG=ii5b+n9D6S?`?zpENI;PT_AkXdUVLro3;G=L_@c3Fy26|M3p+HLm^XrNEP1 zJr7BamdjM&{tJ0)JsrQh(W5WpXqmSr6`^y}oDtUf)~h zo7RPvkG|jBZU)~`8~6@;n(xfM*xO9j?-i^swXYEQn)U3^J$_?}w_ zoCS=d?ggw;3{`FmCzBgnYeJXbH7hx3qQ@4P;;A2=QRIvKe>gFeXLd!E!f&3ZP2QvNMHw;q+UURWNN zqla2=`u)e~hy1ne_hyEdKI@?7hDk0<^b&fW0we%ikZoZlH& z^R?HBT3=Z|G>;mt)-P#2V>t2?UKeP+;dyf~^ZO9WG_Pwuvz>_#rteem(YnQamfYN5 zcIt9H?^Swy@zeUDb&&Duf;`^CU+f9qcl^VzYCg4|XuV;(TLwQgpQiPa*B|!{D7LNf zJgUmRH(<+^Vr>rUPuQyJm*sEq567L}1- z^{KbcaBR=bDx*HDz1LF*fVbfOA6Hi$9!2uBgF|ovL4&)yOXC`{o0S+6LJSgI4|jJ7 z?#|)v?yiTsyF<|X-l=})H{WynPd_u;U0vQX)z!lPV+zKr9zKZf(&XXGE~621Gz zd1%%c&LdgYh|%i|$Vd1eNUi?=Njoj zT!qm2|KhmhxiaGlD)awFEYq<>yoHDH%N?fgV{a9vj7N{EVag~xLc^3%{4d{I8rB=b zc8C*@{}FE?+jh`hPe3 z$C;6TD6SZ2AwpU3|uSsXvKu=d#?w z_lor(AAwhs|3hD--9P`)>*TBlKPdH0yUWe`pZWd=`D^O$S3W~O1g_~92k|}P8wFlE zJ|iww>Xqel1D4nM9`T;?e|xs;$8r+OuB`9L(wpz2t$M=eyL^Uy%d<)Eb-s^hd$XLv z_a@$^A4NQ-;1kaJX8*+r*Q|#)QmOZvejf4LLibIU9&Epj_15wID3*xxmiibUqy*mt zZ^W<4Gvd9a+{gA#;;UFMF`v({UMrSy#0Td}1iwkGb&2z5@@&>ae62j2{hN43@_jaz z_d~UR-^k~JEE}-Ds(c3h0uS^_If(zyCO#(pkh{=%fd3=TR_Of0cBx30$v=$iG7t1( zJY*Hd7v}y?oa7D0JtKZy)=`j)tREpK*_XgMADPGWA-umCrwe>#-7=W}gCDXEZALh$ zfR~&LW?t@YJV#Ii{50M_^E2+f66N2W@#=_!7di@C=ec9({9k9` zC+mx>q53_}kqDhh3HJccIgS8-jB``H39lUag*<1%U)+-+e6^Y9dwBi^_hSfOa2{66 zfqd-9b2PYTL+~-r`HW`0*RUG+sqGuJT_V%m@gtX`?c|$ z-rwvmE6*#!&uMw^{9s8duZX~bf0A?8IKMCbZ#T~&lK;5xO6nQ+No_XrP4JxHE0#Z5 z-r{*e+|Ovjk#;z@D9-_Ge~I!A;yHSkb$(9Ui=_|3Z`_}y&vOEfVNba4QQ%IcU&gsb z!RsU2t)l+y;s5JM&ovW{>1SzIfFu1pu+BpYzERZEvee@|w2Q}Po(0-9`Vl!!VE-qn z*X7M~k$m5ne8^0^kncw88|i6FJbMuzoKqD%zEQ5ovmpMs2<6$6`7@eOKX9L4)M?I{AN5`qdU}hkP|6Z|IRZK8v4=qP{|3wEggT zk@YP6K;B6ixBuV0q4K^s^|%`UM?MX)3-}|GFM9u-c4^-8*bM*6{dUxYoTR@p=|4ce zBk!e#M?S*t1rOX~tk0ve{KkAEO)a^Io;)%A1^pB5ahCB-(f;4_f8_Jhdc)@l=-05@ zuFRK$JT;<6J1N&#OMiq9)j6NRy`!2hd`?QexD5El?*QQ&d6kTLU1pSqeHJDiQS_5{ znCI*&^OwD&pYG4RTgZPV_Kf?z^?U>V+JKjg@N3dPFJe1i<}<@RWuTZpO`v2W&)_E3`{1M= zvVBtI;WOYH?F{)|LS8+CZ^&0Dc8dI-Qlo>gL+JO zBk(Nx3^)e;o`5UQCO(w=63Pek3;u;k&lu)IL_SB6(>Ugn%>19{C_EeEJn}>e|3la= z56j6Gzf3(8x{&8l?0*CJZJbkYXXTaD{)qV1Wxm&StapRY^NG(4>P_YVtzXEOD}FAR z`6gR2?=9q}$78-90KGBzG0L(Np)&{d=oafIF!hggui^WRqz|R|R~PYn!F-b2h<`Wg zPZQePK(-sqdT#PPkbJt%e4)umXBzVN2&(+xj`m%b`dyoOGF`MA zQ~}S6BRa59;ZB=GV>6e8fZfeggF@kosPc?Q<|+ z=}qQMg&z@pxn=4r%Q)ttO+h%(tk;zNBfqM&!?X5Vv=8LJmGSvJ{S4}fUR7aUPUK+~ zI*mN5hTpjjyD@%d-qkD2zlwaY!k;{}Gb0bKk#FG}?JPOq{y-k+jm*n>iGK4p`$OJT z;bVLH#Wl1qE0QmY#{9=|g=Cq}{=u zv|ppWAdPk8wcw{gUNP_FJ9ffE)QrjbG3Rdg{2%?Sb1cn z-ZjeYCi%D({~Pm#S6p8ou;z857n9ikT+aW7v)vQaH{^Dmd0`83UHp>$En)wANJm36 ze=XttBL3B^XYmVwFLsOmG@ng5kgjx`w|a0LkM+JDcbT8C3g?-2=HIKu^>#4l*=VoF zUCwVS@frDIWnBK}KlD9k-rhRqe4hOT{U`4q^6Cn|Iy0|s57wJy&7-xy=KIFnr}rR(UM0OViPv`SUt_;Q{NzEdZvjWfm%IG`HTEHleXD;74|!o_ zyxEIqaJHURA@Zk&T+Dkf9So8}O#yAS1z{Tsb6K|Cw7T|E6q z8vc*{DbeG%)SnOB@4)_<^!tE%wwZiiOTJ9xKFo8<0eN=?@7}CegL1+Cn8u%c#r}xM z9s59nKk_`w^AWZiPdSdGyt1+#{HE4(?w4et-$Nc;!G9n3ozHNb@Z$f-Gb{QtnD9HW z{(P$+k#`*XIcAl@SMW#LV;@S!bJ(rmd&RO}v6p0)ewcPGc;%$t)}`MHq5o))XJh}P z9OVK%((^6q2ilo-CiNZ>-#w(`4*9!*_`#nGKVe5QF1{!K+EG8DCj$R3%kP?cBlUB$ zU+AyUn}>S)kaAv0xEDB%yrLegxAy7uypHb&l3%^(&j3gC19~Wa3HmSnL%*eej3YuP z_H(s7`HcKzOR|T58nxm`4spla$U}SaqwCD zck(fW?f+kXbQ#Z@pq-&-$ipalxz5U$C~}?7|7-F)rJvQG^b35XOisBRN597U;TrX1 zv86X+pH;|LMfo?P9y-Wpd`~guBy{$-_$u^AQ;)|HF6h;ENw|=|_z8Uf7yDa-_L2vY z{QN*aF`DBI<}D(po3zJnv{w)6iTPb86XBg<`xmtDafE~K8$w@J;)U;=;?JQ!LPtyD zRiALXTlEBgeD@H1f6;%uB|hb7j}eyLiGAUFtk?ngE&k&J`@2uQyGgo{?^N(eNBKg( z7;%_HW@9|w<+adAXN;`?O z@_cH)L_AIXe@J*|*zPL%^O1DqXS~Ea(v7^F+720)fc%+4_gnIF2kWh3z3ZeCaD^|3 zJCJ$WVe47+2Kh~e&T+&CrNEtUmD+z1eq-W`co5+OW(qGnPzsqRPxHnJy?PT`z z+LSx>=05p_I2`dW-i#-CiGGaz(zERMq*Y(^;VAnXN_bU?my7tcARfR|kBf|7Y0vtr z$?rq#A8{6@pAtXt+_Xpfn`f3k(CaYE{!G6t{%$qv!)}D{utU>+2)6y@I*L(5@a?pN_ zHZi$gLo;i1LSoVeONL&Rr^o?d48iSTYS{%Qu}ijYrN;PfC~h#xZh6*@Q2K3cIK8 z-h0MTA)ZP5SJDGIcBf>QX0JgCC2rhE_l<@_1?mGfJOTN6FRdubobc*Yi_Gluj{;`3O-LmpJ2 zZ?e_DK95HIDQ)Si_!HQn_V?7EW7PLi|GAHJ4D|}}Z~EK~(a1zaqrP@c%~KU=sGLh`$f*I0xa?qMqaa zR?+j)w3CapLzLQ&!rl%0Jn|oZ0=qH!Bld&*(o!FJss)}0;XSbYsMc?D+@l|=K!1X` zQj^aD4{?#A2V03h@>+}EgndZAUr`$V{~YMpjQ#b5w4>CNE9_P5|2ydfe$sv)?fx41 zbAWt@97Jx=ThY&omOV&6&{z4t9`y)zB=%dGdRU%%1G^FXg#8I#{?um|_0wtPB^G*n z5RQ%Y%zVR*_zXDGe^2WDNZKPxv8w@uJBlK307mnEvG;zs#7T?aL8;G?vR)RxPjBUkmH%-+wDv2EtFF&HtqobvpLtljG5&fG z@fgQEt>YQ*j<|jCZ`1f5`E5n-kv~@C>C5(^%r`udc%hxphrG0c_bTR>-NXNP{3rkH zTH>{f?Y0v?vG5;~njS2kY#P0~}Z6@9`32zhg3twQ~UF4$`c&I0(nU@xM zas|)H%v-zM%C9W%Hxl2YRSMIa@MYhAaAh92u#}NN}gLwZTJ}3A;@Rt7% zvOVgFKZ&QDy_n}XEA!B1597IF-fLfw`DAl5Z!F-8J-;QsnV6Th9P`aqVIJ8^%wJoZ z&$XBbw;JmeVIJH9VH%&#)Fa4W>;du>`ManO#n^98>T4JBX$IvDdC0hfeAGf;BfiJE z4?Vu|*+w`c_#X9z|Hwlue&z|~{hIZjl25nDcT<1%v!4T&+{CYZCB8q2Pcrfi=heh+ zz;BVK2lMKJe>x8$^9#F~rx@qcq+T@n7e)R}rMw37c_{y1&pg#z!t}Vlf&3p$K2PWK zM#}j#-`_FwWQS?KT_;{on7mna{Nj^W-AWuE-Vti=X?!ewUCQz!UvO|1y68{o+r45%27T zo3}0Xn)!eW^Z7CP_b=gGB;C6#{t4VO%r}lw^aS~sMQ^@SUO1m6?~{<8T*N;g`2ao( z9q32!YsUXWNH6jgdl*0D6Bd2-Bi>IR zP5ZO6em(NDE9);NpZ_9VIF~2-SBLN6Z-lQn|ER}j>hC}WInfoeA#HxDfQY>e_$_y zAM{)B!+0t4C(J)Ye=x3_^CH0q^BD0H=KN$B$Dx%R-!N~IesgjBS<87R&XA<-)qR{d8Bg%`v)IHuK-Wv@5g65^{6KKR*CSN(BEP{ zE%bF~e_@<2VZI~$UBc%L{C~DJ|C4b7^DNQN2+o&Vkd6t&1M_RChxwHFqYJEmm2e)A ze$2DA-(`P*D|{)>`k1$AyWu=(5b=jSh}_VxjOTUOpJIRLSM(_b=>h-6u5jK{%6(i< zo}>J6u2uM#jC}e?eK|q>JWKg^WxI}q6KSpQbbCJIJ~eY)EPPG{c^PqDI43Ck3RAfb zug!J;d9Ihsa=q@r`r6np_`-c$?6V8}T3nC+=KeGG|D>M*);eFF?{a;P{VS0}DC@Q2 ze%f>FLmT^_*nboGq@&$qT`%i=?3?KRT5J7HN&WL7Jgm>Pf1rI~9WLvwVzieG*8Y>s zzp*bSas?j*?tbngJo$h78Ad!T*6Xsrj(u6#_rw0B@Gm3zjr}o^YgWSf7yAar{&PI{ zM-p(qB^&WaKO*mQnEVj_V&7Kp%W&U(1o$lRmfY{g_eR;zNk+Nh-Z`Oj3BR}O z=65E1zm@$DoFCNtgZ%D|_#csXBJP7Djzs#Kj<^D2pTvwSL)@mui}99-?-qZR+lO%^9;gYoWBvfu(4cd*^3ER_XB-1_E+;#KLRX$6gvSt zv5Rm^?xJru`5cdS66Z*JUCQ$xIFBUs!M~lP#$(!NamM%m;{WD( zHk`8&`$DPxKK+Zwf6lewoQBAI1pU$q^26)R&IK8AIzhS~lm17fzdhsEhw_|3 z9OB{)JMYbS_jZhnU(I?LALP4X4#s)oT(^w(@bA(tp5sq5#C;obuf@3jw~U)Fhjs>k zao#}qR+i@yrsABS!Jnf%FZdhd1lw!9Vchgy_IHZs15k=x+_2)=MW5yozf|n+GwCV9 z{)Srd?V@*YO?()CUWW17h(nkDJ2KAt%KwYQHuM>B)-sQr%l~oTyq>3-=R)~E&bJHQ z(}J~q4zl9EP5Ol11?D*nwhv|eVK>H^ui*O&?B^BZ&hPL(dxsU5DDtSxcsZOq6~6c~ zUNH^h4P7jgFurjY&jHLPo!J=gzKZZ4k)Ij)z6k4AWn8)uS1I~Ndc!$iK|H6(X*A;t zYa@Qo@Y{$h7rf50-c`o`A^uSK)t&KyA$;D#dC`8fH~P8G_vlCTvLEA1FXMmXhxkIN zHpdVoV~IE7OJ)88ytN)NuJRY3 z5qBx_Ey;Nt;@qV_#6t?chzFJS#(8~%o@mBtcHsYrcM?7qI$BGWCu9o!~Rh6-d9`EP3mB4%;I>RQnn7ITho!yhv|h@X`1o zPF(1mOn%Oz9QKhPxB31K;%p5+bB}z@#(8!F&dcjC9_0_?UJEeZE12G@-JWo-^!_;P+Q#Y%p!>{+=d& zPve^0%5NWa#Q`uT=_<1_sV&b#P&A?-1M{^Nmp{)X+=n)*BuIAK_?dJGql|rWv*TH5UhaHq( zv_-$3A5w02&2=;Nu?Wve)F&N?s~3Nei~2C0dN9DsizDiS_;#^#oM$opjP_IH+kEn8 z6yx~er=?wI#=#@chRjD3FfKQq@AF#zMC1X#A#nRxaji1nh-Lf9jO#23dp7i{7wvi! z?KlqhYwU|4E?4w%9si%nerD0nEFio^tcSQ&Y4?l%3h|w~J@=6o(EmhP`yQen(cD)` z#r+}NgD(1t_-tuE!HV+}eaOJL5!Bc7DE5nI(JS~PX@APXQ}c!X3UM>iFXBD5pJ1Hh zR`!39?-A!GcAJy?F!{L8QcaPtjL$)SFg-33ULWok zb;Q1s@k5-Q&~ey`QxSZhTl-V;Y{n1nLw#dB$Gz{GKitp8{+aA!BHm8hDfbtXb6+u` zRZsfM$9=~FEGux|w-)!o5YHt0?ugrx{Zs7kOXu<|4tUA_;5gD(lW{D;&^G`L>$v=WzdX0_p0+XY3D)f9OJd2J_j@vK{#g zz6)RRy+r88_XhJji1^1Z>?aYw>mW`?_=tUK@pIqEzniSLnfuenh!4I~$Uf~)@)i5t zqL+vdl70^I{c`HrGQv4c`CPT&3O%4h;x^3qCdfCiyzw1J&x;r*_lx`4 z_|9W~7c=cc_`R3%*~$O+lm1u4?+o9=o}}Mc>J98c^ci*_eiCtE^4-Tl`e(5IH0slN z%Ha~rT`ZwjLLb@*UJdyk^oyQkG4+@J3j6e;|LN#Alh9wLzKP^7-lUg5yJVjx#+u z4j_M(Ietiqd9>Ky502ACS+5iE#5`Hx;#`i5*KIg{;5?JG^W?sJVd8;vnF2SA^MSPN zFO1{$3C{{ES~|@*U?y^m>ouRT}I3 zfXtg3aXf8L{`}#1+}hMr0e8-Xg2C*IDPvv>i|NFkPv%|e5c-HeY ze$P2YyfX3`ah!Ud$?*^0LBziyK2`Sr%=r5O#20!Y@;_tcnUi^8CX+8*_aq`-wK$H} zB)m#|o4w(K@ z{6RPCz4%kaI}6-?99Q5+#9znoxjp@WIbKeu|GY@J@aN`uA@=sv@>kLy{J50xU*`YP zFWQTLOu+A~=D3oU-%ri&&WIBgzvjbw1sFG1hTmIra~#6=Wr16S-)Xb3yv}~Vntq?( zSIhFdGDX9&l^_TY!$hwtyw zE~~{Kkpu7+dmB!8h-VeK0}q+UfPR^;jUgWqe<=D2Jj71&vH$d}k9mOT9pol__(ZuM zre0!P5j)O4fKL_>LeP%nxO}nZ)sEDD`a{^}aXTVZNjN2J0oF-sZL7iX1U- z5WF$pk@}eTiJa!Kz8P1sp7Wq1)_5y;L4QP!@2F1`Xh-WTJCXk}E^GNy-)5P3QQqmu z_Y#&|gx`QG{C;WmFL)lc<~73qc#iXL$VbGr=I%@z6<{lFD3O6 zZz}yAr9B-ZUv>~K>_X_C&i5P0r;W6SHP(Bxf2j|96Mb38_K3d~JmP5|o{Tqp&;Ngu zzEq4m^Jn}W;!_1~0OQacjQ4UgZVILFyBg#2$}=u65#z^Rn0#Yg;J@Tw$}lDJOUM4q zIIen(Pcuuv6MiLSoa%G(_Z8vZCOrwQxHYMdcrKAkRWt67biScKT1$R_Kf-@Ji(LP< zO0mzI^b_E>{J)!eahHCj7v)i#@aq#U;&#N(R3ZG|v{%@T@C$k><4ic^4*w%~ceMH! zJ6%Nj;CDnH*HP~fpDF(E2;1Sk@N*?g=!w`L^h@;NEb%?h{@zk=Ab-K*3i}0IQ%|%V zk*_Hz=X`v=!TP7!AM{nm4e&|yZjjZlysyo;#!7^P_&>4BT8zs>yrI}(4aWb4QGO_; zUTf=F_|hg!(>utDKNUKb68_(eCtS;VC)oZF-(R(!h40&_=g&wV;sm9i2ds~{Y2p7} zzW>hnSHx>-KhJo~#Eg?p!Fbd}Z8e^VOBVlwdm)5Q#2Je}`9=H|63zkk_uGmC7JmXb z($0tQ5vS^5{A`T>M0~M~V;%WCh;hq3h*v+xtIlA2Y9Gd{wkDnqw(rU3ri^#()>i9f zEB-&iDg~eEjGGN(N^;h?FH|dq~|K(JtdqQZMA*0WxKV6gJJ|+5zqdLg=@X79Iox$5w7LcK3v;J zi*SyU;o7ddgljxjgll{cv;OLEEr+||+OOOR*LXhR^WJdH&voJ2URH%`Jv$k$^&IfT z@9bi|j>Kmy>!V-Mx5Df{fbC~lrTD3~;hN8&NAz|C`;Q=g6T-D$-){Az*H4t=L&g~| z;`1f)KQZykOS)2r>+uf!lYR=4kHAmx3?=*l@VxlH*SU_I!W*hzo#bvXIaJzUc{ zj`eqt&-X>9sn459C+Z8FMugvrc%vT~zlRX7 z6_odx2(2e5g zks6<(y!SIF@BM7XcF~bqUk0;%he*x8&`8Z!zevhAQtQ(!wx1TM`8J*Ri!O=O`i=Wd z^?aYty(6`L_KMVUXvK1Vq~^yO)|<)x0tmleq_&5;d>_U7PTp&}EmG_8dg8T_{azqm zci8@Cr1py_MJ_+szc=q2Mm_P*w^{!*@qI`ByyyR)StgFsbfACn<6p?1Oy<4DQ5qiV ziyV^hKGqbxPZjsFN`EaPwf-pL6-GRZv47Aj?d!9jqtv6<^e0cKC#6`g2jLB3`~8G_ zi0|){9*-!^w`9C;7VpLHCL-RyNRJQii_OM+X0!9Y+p46aag>&8F5U;*HA>6BH}6v( z&UeG1gE0FyGuIL5$BjdsV!rf`z11#_sk-k{!AK=M) zXa=9V5Z+SKyNUFlre3_~|F3xuc1qsYn~C@S=HUIvS);W*6twRD75ZX%FK}1h=iQC> zU$>0bd@93xf9vtNG3y8OzVK1JFMJ~5Pax6r6xSv`4ZE3V^rji# zPh!2%gjbk+nMQrc%>OUa{&6q2_?@1#J73yIBl?|*w5OBwk9EjTZ`up=UF>x{@1Y-V z-CHkm!Ts2R-)p|Fze-ilt{n6_| zmKk_&@gMNXxHs8^Q=0wy60T~m{YJL-+TNjWvMyOk{%vPJ$$9TM?nM`VZ=*h(V}C!W zN6=@%?_bIn_mfu$i(JsKHt$K!%lpc4kGb5#3_RpM?xyWET;MD6t!CZBEcbIeiFX9= zbq5~>&p_TA-I4b$`&;)l%l*p%eBYk!fRE@a?tK?K#eM10e>ck0VaZY8gFnK*5$tCI z@xuMm<~`Jc-(2!@1Le7(y}l3J%`%Q~&|dCY4kun+*>4Q*v+i%{lk^Wg6Mm*8f6@?M zD@&i`er(_=`jL-#G$Oyj55W`nV2d6GvHyOQ%V5^G5fAWP?mw?ed|=NakKNP*=%K)Q zLHoN#eenRi{yh(Tfj-LkVBU8RKVs4$@`k?4J=@@OkBW~M%)&k7Lf=HQH{LBhh2%o3sO;#J)4J^r60)&m}B= z3cj#&8E-uy*CC^8c@8w~kK_CXj$4>_%RHtz$HV8GKcJNUw(@92!0&i3W_IfLWsAkL4@v3?TT;Wy4RI`aPs^#3&or<^sv6gg)%;c*^1l=IThEEAKy zP|kPG6EDoO^g5gU6g1^S`Ik2R2*-;T=6r$wN7E0-(9g9s{Q$=;_#+t)p?~7{?(=_) zdm_i2yw4qeOva(#@Z;x8-s{th`VdOJgP#%ogugcZlIT%F+6V4+mvQ5pHBN}W*@@p~ z>iv517vrFe8)zqXQG|K{KPUVw#%JiM{9lHC#G85zdl0)xNBaeQ@k_XWUfP>_dYAaD z=Kruq8Ky-nC}SxI`jPjj&EBzpIJ_Lulas2`|Hd4xhbDw z9N%wJUu#pJe@E$l6PfcXt{Y}^K8OE>4}V$fE|EuhuJhfrn+sgmb?1EW81-)$;VMSjUQfpcKDUnDB0KAH>P^-wyVNb(hSqu^teQ`%!*Bl3=?ou;N-F@G06V7*|@PX*ow+G8N)W}_VI zvmNH8=6prUar}Qe{q$tYHIj0KU5S22@p*}*2f~jHY>)Yl;CsTFM+*PU@qYmSpTzcq z*be$4?Vx{RuP8OW?6(l@uR8S`^C$72xvWz3*30t4rX7i$zolO}MLWbiL;TKB`UmL0 zz{C7VO3YtmK8Sgzw8!`<_+21>F0$QBYaT59!EOZZJhn6E_pp2M=dcs8)1PctnBxQN zJZ1H7IoDzSCVGQ$RQQVVSm3qfc#LQ1Cx(8Y2gkdy^kYM;@yf(o^a1l0!5{N+=^y?< z;Da842Yk$Vx;!Vc#(h)n^8OR`7J4CgU8O(6yiDX=gZQRqS%GrI{899D8p}1DkKARu zJES8~j2@qVm~dh=UP)s#U-HIiypzXheie$*a5Khe`m*rG|3 z#pronMb<0Ac4#khQZY*Ahs9&`c!W~VcL^^vM#=omECFBUYb&Wgo-ulUw1WIzO8t3G zKL1Vrt|k9b%6tZVmw8hG^7mir<#GQ1k@G z-=#hJm3i{E_L`oB#1HdiX+O^TU+6o*_j@@1+fRIMla8arcRQb#vERwW6Q$-G>s6wD zX0gU&(NpkC=9`DvU#b|b-##p%FM9ukbT^`WAXl+t$XVnFxd^;r)axmfdmQz11LZW4 zdN_}A9~YzL(UpAaL3j(GVXP1(8s>JHO}+AUfF)gN}N;Ny8N%>MQ|U_o#bQ3R8AVKg0D`Q&=uzbh@{_0#tTt6w>Cl{n`NR`Yh`Sg#rctNF-lTpoamdK&3uP!4^*QY^h#H)ZIEjGHF<@)OM+DBq|fa#tqM}9 zpVZs!nJQR?ee*fo_I;2_;a{X@`KLjuJpeO-X0pHdVB8lKMy!(iX zgPqs48F4L81v-K<_6!JAr{^cG_)G<=@})m+DtI_h-TqK;e|?W2Rmd;M_gcvyWy>zh|KsPRMz`XAj)wB@+LJ#tjQ zd7GZTjbd7dsAuB}ze#;9MExlG{d&s;E!4Ds?qwK+^G2TOl9XGHdpHKfPRaFQYKS^r zV(o|{IKR`c|JtVGV?$K3dZUU(O%GA!o7Z(dz_~0F?#EfL7p&+Kq7wB^nZGdZ*%*;{ zT**$jho$zS`85-E#QW~8&&93{R*$AO&p#9Ah3wxFH0p3RP(AxSaBgYPz2w!QwC4hY zRiXRW8fCzF)_JAdlrM(!s&ljcj;@URm^OZUIQDDe5EZekagpaZzxpkA;>S%F2CFAS z%EkZ0Jy20MrXF~DF<3R8H>lvDM#2As>)w|3uhX|Fw-UkXcavv_H~$DyM+2&j>2@?o zHC+Af*W%Jas>Y!D1AZS4QhmDZaQ96atR8IJ_I}TRU^RSm$mwvLlPod zA;GF_SMRS|Cg41m_qF(DuY*;pbvu{*+bLLOzTP(PvZXkOZ5T#|5Ov10{;mbM_jb_b z-MwpNf}UJDx_o*aocE2(`@Kn<5Y@5M_Wa3~hp6-kKNfJ}yqkY?(6@=upEP#^p47p4 zG@slvmmD7zqC)d@i?ID0tVZ29z3uX~VAY{k)<=hN-f&&B_+r93m6kkh7Oc7s@3nJON9ce2z8%ha!794Y&?S!#2CKshn=Lts z^KN^l?F!FP68gAhZREU9!Rkidc9niWZw8;O(!1ctU^Vu4#J9&de|WnAG`Sx1txAez zrHX~9-3#|cG{-sTtjQCGKW`DDI<>2i|1I=8!>>*Ss^Pwq`{CJlB!ayhJr(`<(@Klp z52>>KD6}s`9UmNUdLGV07aB8Z*F40Z-|L)fXN4P}Kh4*IBkqT&Vv7s@=(hsr2<;0V zr@{G26W;NC;g1f6q1~`FyM_gZsO>|R7jPE{QA_{s-fLc^5Vd6E*IwI#LsaV$y&{Kz z&Ix@+HRv@YSQY*AZj>kV_EWdIj-KP;hnp?>l&xT}@{HOZcM|@g)ZX7aqanv4-9C+f zo+Vhl-BKZMmg=bgr&jZsQ=pF*&b9OQ4_0ZLb<7ylB3LEx9hTb9Cs+may`D0OD_D)o z@HumzSmT>rPg9~Y9W3{vlxhx8nU`{q19kFMT0Nst=;rcm2{5rJx@y;0e} zD+H+mHG2*D?H{CKlTSFkV`HGI*rn_Ky12ja+QEZ&kHEj@9@x&l0DgOJ%*;g};D_H7 zsZ!|cG}uw^my?s?9=>_IJ_gN4zJMiDswVIqVbwc?=99_>tFu18OI^zztjcBHQT-p# z>(Q-5@SvhNx40<0YkS-$_oKkWwVwil)rHx)2DUpCqy~C7o!k$8{d?LM+t;TEQm-nm z{QVF7_v?d8g$;x~@3R+ccCUDlDm=4Hk{Hh*b)x04BB#~`su!R4WKVfM zP_-GIY?^PSKsBgjwz4_51*$jms~5lWCQ!91<(vNgK=|ij1xFX?j`|m!eot!zss@Fc zuKiXuP<>lHJ;nY`fvR`-nu`Bc4^q7{K3louYM?6WajabQfI!uK#*v`(7+1Cz9sPP} z6!IzTydAo-X^{Hl;r;!~$3T^I*guD7;6BHMUoWmIhP*zB`aC!{9Q^K|^vWDN?q|;4 zZq**23Mh+}Io|~NXflo8x_@)}K(!#}t+MwWf$FOIRHfJ8KvkpRX!OEIrp`{Okv}P-^RzuxasOkLR)e26 z#{G|DlK-1G8u>ET4PKj}IPU9|c>?ljRKD5e@H^l;<#qb@BN~9tZf*M<8WO0E=HAdX zIzB)(%sHy~CFC0kNYcJcZ`}Lqn0h~TyW9b4&5`QG+Qqxooa~pq;(7$A1#7abOM^Tr z_iyCf`vCVf-`^G1p!YMkvimmv=fMuQ+L+n%dYZS$7qYnKNuLq{s$}5ml)VE2ROWBF zW~G5#((HbhCFfeVntJqi!{u9CYVx(AjX$JytJbM)+1evN%--_#2VGv|Qej@Rb{;6} zQpK;`iY$uff#u4y9F+?Bdq#}u@&|c&E~j(Fm+R|P+2{DI+J`(srxtG*yBPVHTBVyj zyXQHVs`qc=%*D#P)SoY&Dc?47sXmpwGbY77uqK?!WheeR80b_`$Ihfeje@bve?d|c{Lz?uhn2jRZipyqX640Wk79xHl%c;-^A=e1Q|aSv_V zl(o||L4GE$xj)p$n{L(QO3IpNkw0o;`|IyUKK0uYKxHe-#+|NDfPLd{`8Ieb2 zS5e#8-pK0`St7~OdI4(X1Xq*uxQE#6FJY6q20cmmw>dg~5m zB$WeHgNuoB4LuT|yoR{Gd^{VVynmj4d-4U~HM-sQ1@w2|(628aRSQ&K-%k9t`ci;; zlX_q2S;)__Hh#pRsJQ{EblC*^8^i{vWf{BoZJZ@Qb*a7}!58Fz8q>AiuR|dge&2d+ zYuIUTfEt#zK=4Q04{qOc>gICXM|Q*Dx-Z<5Cky}lPJ9R5P^4%Or ziV50QxAI;QoN_bne{OoZ(cTrk+$wrw#*+cv-73SVYhO}MgIAm-Z zTP59dW`q5`TUDxXq2IawfD>9NHY9;toqdwDu1{{jHzqWe>z;i+?C~hma>hN^Zl{%B$s*LB53=4+eRru2Zg_CqU)=Ri z!Hjv+xYf=>yIUMd=~nk1KB$ol^c*h~{;b1Wm-d^}kgsQY!DS1Pk1Jh^Cn<*EKIpBP zFZOH(JL|hIa%b##muhTG!2flrgTFGB4Y=!4w)^w?^%>_w78u%UcSC;!WDHM6GD%8HxKhU9G_G%NeEzY6*+r;KM@zSA|4gE4O z%{zyxu`9iIrY8<{rEvaPR}VW>ncAuE9a`y7yGmagdlPu6m;t|*MLSj3k-p(iZBEt5 zclXT5hEA2>cJWrl@%}5^N3!n@RX743`mF`OknhmNfB8Apt%~D@+%NA`EpK)X%vQ*$ z9{Eq-wqvMM8Plihy__nfW%CrHfXA7)ClA*_eyu4N;<^=Cb*fT5Uh)Y`E zsp{mOQTgL2r*h-~V~xR5yCw%$6Sa)pu*6 znjKOubt!Y5b3g05RQ?44)xY?;RAz%=mEixrt%=#v$E70g)bd{3%%!5P?aeg0F#O<{ z9C?^1^IyY)wz5mD3;QtVPzjgHek-Q-yK;EHap~>; zr=SP@UYE4}2EE_Y40s4XJ2WfyIseN^! z-z%!`O5Yj$!E!!H0@#yL0raQ6yl>}zjsS59&b#Y=wm-^VJbdj0`T*UX}mn&$+M2=V$*K*L5G{SGxGXeI+u0zbzM3c@>ZMCC9h!-3{Z* z>yK;GIv`i5|ElUvWh|pq4yXF@)*bhJfKzpBULcX$kMZrs^tj3EoNCNOzZ2(>cP(4{ zj8lwz)(4E+8IuBe?#@+CZ699Csr?)7c|TR@*6o=^oa#YxEc}t5?ZW1uFFOIpE6v`c zhqpkVx0b9>2m13wrQO~zZwHNU0wjXmX3Mo`UiaK*C22CA!nT`Ab-J?50*OBmu98P#3A3@hutsY ze2|aOv&5@E8~=rURa>&QiI+<~Np;kx(@xxbZ}^wRPIWhXU60NkoC>=!Ih%KOst@U~ zfK267&;E5aobbt^##BjOH8`JBH6GSrLzgh8+SKI5tX9pPs&90zV)2=r>iwd6O>=H^ zC}>xF#{~{Gz0u+s_F(A8(!+JL2h74?Nsd^e;Ts_a%}Omdr&jXe`H*3>QwcOiL%?N_WgXcw>|Rxg?(w5B`MxdJmq`k zQc0(Bx}tN(C3mV3#>UV*WI)0Qx@BeIfs8a`H6Q;5| z)TI4eR{Aw{sE=3jrS6FQhP}^urwdNuP=B3K5x)vL)T;fh+8q4iuj;()`E~kRfAzL@ z@)I*UJCs*=VrS)94mGp$^Ab7pJJgOTKG_F9@mGsRbZT>FmcLpz@LJTlP5$cP^P+cJ zHbi^1Zp@Y@e5HPhnG=XRj-?>!M8=$NR6RKtH>%aL#B~H!FvgsJYmtMpRwX z`E(td%9Nn_yN7N4)QNs-VYwo#3mH+L=&x^9z)tuvPN)P;D zQw5Z7iIBf-N|p7gTBD&|#kIMedNJ}vE*-bSqkJ#BDrOsd@bEpmiWyv^p#OTi3a@t0 zZ~S|^8Z@xU^uj*=s@RZ!*M{%3t4$H#ccr>vSH^Zolcjc5vv%0-zP0UY?ux39BkS7L z+a!_0^OnVP`x0mBjIpVy4 zzhpqatv7uLJ!Dfey}vYmd&Z{DoUOFD?=_oh^fOoJ+U_>hBWI?6do{5s-_iN|WZmnh z?%LbdIRid6`rde}Uw=PUy3~Q1Rev`B-}~t23+{*IwW)Xa3#D0Dz)xkX(7Hgblg(AG z??VSa%VSedzMd{rteMrWn&Gh9HCIPhcw{+$!dKNwkTG9V)m%0EJ5QI15x(k%=j^z^ zpyuku%unO`uk}-lvILbqe$!9Q@BgHBpN%#(oU>dT6dqO|SR0cHBCf z+I=PY?`H8fbr$OV^SVvd>f-Tx-*=nx!8UD{Mb`7F(LFQy-?6E>IbJ=iXvoW$M_jQf zuhwr0pId2DlV_!Dk@L4rO?W=P$M}MFb#AHe)f$cMs{21Ha!eg!SEJv&O|T34GBeYd z?zQgOu=QKCQ$yf!`^%+_3HI64jhc^31c1Luj15FDyDDi+OpzzFu(9EQ{Gbyb=IGHq zfnBw|_O)lzFuQt{;M1fcTcLjm>%4j}&8{5lLlPgGVOJ;f`tC^td-%tGHL-mk^v#%v zL2q`BPx{__JM?44>9DXqb~V25r|bn`FPlnsT#^9x(j`g8moMygHD&7PkR;$ky4qKt zUri7B&&EnClU?=sdtKcMD2v^n|IF`#P36trDD#|JcIAEeYJzlG?P}YNz|ns_wdr-$ zahqz=I(e0MiP6q6*|Tj@yYk2!e){7Rn@Z84%8ZB4Y^r#@kq0J^u&IeT_iul(%BJ>* zrOv!_J^1nVNzE!%?CQ;&pMM{3U{|9qH{P}j^mWOdKjqBPc9pvPf^ORz*;TrrrK5X| zx2yN*%M_S0%dQUktaRj@X;-r^UuA=|Sd3)Ypb`^QO@T*Euc2z!Y=;YP~>}qh_ zy3p(oZ0c>&i@_Jy*z~?M?BLMiyv+-_ZEF3LiFcCt*i@g@bvurz2D^_-cxoJ=p*5-kt(BWo&zUrLw6U7cOOr{oto|71Xo6WC7{gW;2`=VwdcScdt@_c!;U=IXYs%(;8ro2!oZ(_AUCs=4Z0uKm6y zJN(qH`k`w&UGh_jrj5upyq!(Wi+bI(;t-qiUYd36^2M;H?$d_efE^UOd!qVB$hUdQ zR-ZHVgnWND+uLzI^k8wn+9^ldRPVPnT67%;zjCMh=`_7;%J>}8G_y@@3BZO7_}%&S zjc&7c+teJm*ODu2s%LEChdmD1l;=Vi@D7{$r}CT$9{X*o=F>z8=Rsd&ojK2fEB!yR zDR`LIm_9y z2HDk_Ex(Hu%WGHD8>jBz(b29xO>MtmLVwt=z2Whz-Jn#KQWuDO(>ltG`{s-%|H#7X)pZv9dJLs=|%uJiS`!Ro2qE_eWh2s3x zxUaqQ_@Mv%{e$Zdoa?W)B)|ZR@q2jPP9NT*UPz5Xdpjj^s3c`BY%O&W8_DJJci8Utu&D z;Ez1dAv-hA%(T|(FGbc9n@^wdR|m69F1#fkaw_RD{?a{vwF_xY{(z1q2BUxZtI1)5 z>Um*4RXJ^;((@`iR377l5#~*sYZuH~rM%;R{AqWzQpTE)Pog(ziX_eGPzj6;$xIHl zsoDN|d&)Uf>n+DqzHmB}e3qEuP(K6Qv!`L*iP?UZBwHQo!r4D+=S-}RKVt%X$f52x zfrVi`Dtg?}p?oI4^M8r?;EuH=s+St!P;(dhrdiP4p>mdeQrCw0sjL?_W4%4~b{j9O zYr78$osjdYLuH7nf2H1hhx+$f>DH|<&)x92sQ3N=hwA*-nygt%fi7eJF(>Fc^QP6? z=GOC#mtC8vkq*^h+SjD5F<)HN7D9qf+1D-4#tDms6i zeAltAN{wZ~$NWz9DbLDmdmCUr?buWFe0&sp6!yp~h7?(?(TMa=7uj(h(#H}(b0 z_Te>iUzp|NR4>igVSeAackOyDf#1a6#p9-99a(RF z{+8HJD3)dVl@x=l_X+OID0d6%mzuT4rOS!+#h=TmGxm;gstuSf{AiDLM9IoS_hY@Z zIPR%CIrdpicvUy#$dd@`#e>H~kFGlCRBtz*YSs?x`QSy3zIA(xJnO@ghTXurN#VzKC_%hDkfiu59U2#;~vy`?T04+%XaR3A0ii|CAN$yk{fRA6kNS z`S6J99E*Ct+owr)2J6tV zS$bxfihZg|4_eLI{@JAxdmNu%}~Bwx?T7@+vqk68$Wmce(h5^H%wKU)$cVpIPvKo-5Vl0@lN&I#e#6`k+fa zA3X8k80?eDIsyBL$>uH#uj1uaySL{pQycq)buL_79aq(@){MOs?UBc=A{U_p?E9_k zoOo5nYHoG%`Jnu-3%J#Z6kZKBXLPGQe_^7L6!n&G`4jgG`SEXiwy9ve56qHxMP}^7 zCn$L$F1uTG=|27KI)_`WZQr8rB8R`heJ7Cn4c7un@fK99zX zU9ubd^jGSfd>rFai*EGjRKFnB$6=|~Jj#K6jj(Out~@Sn*U{MbGd}cVKk4Q4O{uzU z$3Fhh;Zw_luLY|wy0!pv>e%%0ka8cfKd@}bnAJJlYTEo41&)CaqtXn{H@Jvf4g8%h zdvUzK-#FzA7rqNr?cV3^c<|@%;7j&2|F{&sMlJgQIS;($m4Dkw?9=4>822~iZI*L8 zuRjwK=Tf=fzI25H?}@Ss=)~xxPNiJ2x_z+gX zr8c%(mhJ@Xpm>_70Tqh5)TZszJ{|RSsh&?ZS5J$5xUoMcHXB(5`yNMgB=$*Z@vq41 z#m@)BUSz*2KlU}e_dG9F68lO;A;EgsuR8Gj<5TRXlzW))LgD4Ory$j_QT2|x)a`I* z)?-Ip%F)90wdG!y>XC4E^6Zx&pBWW49+>Y^^^1K=xEcI@@ow4sh0uG~Lhqp?3%Qm5 zC)dY~;5)w3?g#`QCMK+Ra2)u#18SNY_Rtp7$#lOhKKdL_JG}w)`eZId$h`pm8^7Ry_lH9=wmd`fZE} z=pC2JJE2FH>^HGblej{^l&f57OQLnfB6qs_E99B*a=SZ8ySY^N{4@TY)X}B7R4ZS+K>+No;hLi>;5QO&jD0$(BKWmB)uWEs zCz3pQ@IwbHK0MhmHT=l51kD-f_He1w-^SI89t1pB z4WDw-<tgYc#Fy;CJzI41k{ ztxokTJ7%&6oT_=@dI$1+b1GkBBR&)OvfuOl9qhwiDABz@!Wu3WQu}g-V(@>m--Ld0 z+86EG*}|o=j;VI{@nEYgYz$0O@qMdmj+VC_)GZ?dc%6ZtYp^XjgGn0nO^U`l09;%m>nl-wEW^yU(;-_dl-5An;lp`IY0Ek z3*j?=p280wZykIE`tZ0pJmziK_vWX^TciGnpy+4i*JIx}!;NG?uoL66_pa5@yM~?f zMT~T*I<3+cJPP?aY9@9qfnE+yaLOqVRvRuLZqn_q#-b_$F?Z zE$icwhoCQ0>IB9AfL%8;K6IkLr4Od<{C*Gni={9zUFT9)waZ_M59m zrA)qdEB14J+&i9(aH*fQMt=W@eamT>t{-0jeSMbo=ae@1o?&d5!_S#;cBi>IE&K!a zvxgPPX@fsBKFizTx0@OpI2a!uTnMSYCxctz>%pfdLGJ%!>b&D>e&0V%LKG=mM#&D9 zSy@-Mly;}HPo2&xX^@0UvZGQ~l7=D)71@z3du3I2NyrK%@_XIqe0}`<^M0J1bHDHR z{l4dQJ+IeAY*@EO-kBZi+`93v!*8_KR#JK1gVLis#{i+BkerdPxwI-tG6Ch z_q3bVGWbuYmhZ4@HGo5DfeZbT8a=4p`ct`UdvmB#GN$<|{C!R2qr1CaBcB46sjcvT zb-FokSYjLa?cmN|kKeyYhM}_~{B5hoG&8FApsP7LW4r&tcshNmStI;sF6b`xQ#dp% zyn6Z1NgTrJC2K@pmJ`Y=i#D}_|9ib%jrQPwfB*Y^HP;u)p-hi$rys88P?YW6J?CBqN= z^}NoDQyiLnOJ4d0`6+JC`e-CRfqK1h5xB#zzHIv2yJzA#R3mV<(?K4Ht4^I=-@-3x zv0}%MKjUy;wts>jFfqn5FV>Mm^CQ0<3qbp*{k+I?p_sL7JFhMLn%>@DgYZ0m>ver; z>q$ZIvkFnHhc<_5`){~o^BnmqI+A6; z?b-qTIh4!^@z9-(-*1n9&`rppaj|`dY;fREz>(vY6VM**&jxiLyAtmuRZB7+?KOQ{ zhMUfzV+-F>` zD~o+gz%Tr$8f%ZdAfHpVee(u?p!PGOeXT#2#=b;(10O}EB)9d{*fZLB5-7BY_1`)4 z^zxma+yeMf@w#5&cYp7<=6n9~XLuj2m?L8ihf<;ylM~%JG^yEMhaFxVf|dW;1GM`l zi+kS>qP^Ag>TeHPv^A!F4)Tb|&CBNS(Jy^Cyy-RYE9(x)iO8x!Kg>Sg_9*(>?rqU& zyGEdWbf>(oL%$tx{`1mSeery5>%WdgKQ#+1Xjks?zdS+nIke&ak|BFWahSEYy*ciu zp6@uw3)1J*LKVt?_goU-eZhnNnBGgj7wkcI`fLviUg1H9a~m&DF7TkKzE3WW^1{BL z6&!)LJ*a$8!2>7cTlp2#Sec0TFD~T{%R~N=oV1J@4)VL$ZBsSk6;uANh9eS;+piN$ z4SHbQsX3BbjPHlO`b&(^&dDIEx+9O#j2`6=Fn(ZdwcBcj_sn<`e9u2-gpm*Ot7Hd1 zaSevwK7H=h&QH(6KWnm&KLO*jd=4hyJ{&r=zwXIg0mkQtd!M&~mvFo2_Op#YhZ-mL z>^C(Q?czLpzS%MkwM;)1w`&PUv;R!SIIO*v^dXBwzvjL^F*uS#vt!3)MdN*zZp}*B zj`tasu;9k)G>&E-!uN05ylQ-z3P1bK8#%W&amXO&{`;tW4qa@eJ5Ysj+WdmBXdUv+ zlz;uD+6BLVyMS!xmCFT>WGU88lve=V;xi9-T2Al$Br+0gOJSmX@q%NMced(ba8+gbI z!}z@*PrA?&8@X-ZaA5wqIM0*jcz5u$Mt&KyXCn>M<2-4+Y_!lZ&69Ri@CKas_oPe8 zUhWRyAPzhkZL%MH6HZlSorIp$b(;QCJ(R0H#{`34y2FW=+yDD)rI@M;F!3Z|)0Ced zj6La#&b-XIxOO^R@*;8gziV(HEYW?zAL-ZLeDV%?fo@aqZ)jz!{rlr-bb~)(;C4)h4GU_RB4<3G zS%(RO6VdL~_HfLA!|Ig3#%neBq8zi-%CI)b-_t6>?ffwg#mw2l`rBw&m85@ z@0GnR7q38n4vB6482w*&QIgj#dk!%(Q|DR8bJTHaMQijY(9ySrJ2_-hlKb=p#uLMJ zCB@)s)(qY_74z4;F&^GK!J`NphTe+Cya^iXt6LF=wsq>08o!T2+sPoNn;(aEU2m1- zbCyF5vtxetyNh*ZRHVHhxR&Sg&)!~WPlwZwt1eCSq{WVvhxd%}Boj|}^E2S4{$9Uc zn&tHr{nGbA_h(&0z;Q80=Q^}s{0{r_Rh~478QKFqsq+3!i^8RNziF5lj-vlI?-2U! z7I;8l3ZFjW>T;+xPnWCV$-v=yv5o~!5T|YN_10YK3O7m~c#-T-5Ab|`N*dv z3mE(+W;>URW_ub*!973b*3D^IfV@dr!w!7D#HCTkyR~?i%cT~A_+i&}b7|E^(fwNR zk7~|fF_+3uwhDg>9&!H&S6(D|xPldhmJ7j;yDr|nwVMr>MtBD06e6FKKB_%Wih8jQ zf_z1P@2g{6xHi$3OBrSc*-cxyH2IiT+i&0rKh2Y^y=lg!EW1rbS>O;aX8U~zZ^0!; zc$MRC0u&Z zPUZGI2fq(kvi!n&uEsvHoU7rN;{UblP1jz*BQv-(XCN$R2e>qq0fk?=RMU55!KV&9 zn%fsdXm1|vTC};)p&z)=oMS;T-FejL*15-;k6eNm=tpyKu&>TV#Sd-EqjxaB+3WKN zbZGzhmOOer>+a~paxR^%>N&n+D;}w^owWPOrA_|mA&uZs|5Wl0f9Ddc10^;lJo4Ol zr}-=^9_3XvJKNI|{B7B+srB#i91VKeV}F46Z};X1`491KG2Y%1oAYdYox~bK-1#f6*3WQ*g2?KHobw){aLa-xU$NSMmtn z=%@3;!GQy(zqpP^?6_}^yeEI}pI@ffoK(Rj`xmx{-qmnvb5Yg~^A}u7bh-VZKl<5; zwY=^8$%tP-cd82jSL-*>ZZi7G&=mb!hV8hNZG;mWp?wxUvmB52#)kFUd^|U+2>RQ& z{czZ<0AI^M?DJgGih^hG4*EYkp9XSi`RkM^-MtWJ^317zF2-rn<2RO9hoIm6cwRWW z3;5%fb>~vRsSZ>%ZF_+ECy^OcFyFLcfhp*}&wl1T&2A6A_S=vVHs$ypb3}bcJVtbf zcykl*yjz{lzR>1U>zm!3pP=98Oh4FakTI9qSG?EXRP9MC8Bo-btKqaa<2n0$DsHxg zOA+h14#&d50pnxS>Xp2E=+9vomY=8aXu7A{g}0Nzq1(KSZ-+RCqIm}0 z-i2aZBAmqGg44e&LOjuq)R$J9z@_h*7=H@a z%O_2xg@{uq_-U%w;sB4fx6qznw}VH9L7$F7Hv@64}e{E#N(Kf3hX>&e)b0-AJnjV>YI z8Z#esy2q#J#^(BZcll&w2tq%dPcfaYo_m!e$o|CLhHUUqpF~je>OXF&RafBJw7Vp#ZSaHT)THX1NnzS!>e)~k&mZqn*Zo` z907ST;FT+&Ppeb^^cD#;+=)y;0pXqj_vZ^JZb7T*A`bygWaq0ddihD;FVjskj{HruLhm4JRM{&9K9Zh^+%k9-B{`D2-Y*ff}nyg&V9 zF_{$^0(Jb|aO4l0=NSK}7J1kV%^lyYs}#^y!Nr$jt57f2Kkf+VH(R%#3FyP!Rp;-P z2}tdSDi#pKMiUbSq>#b$by`58hvtvkeH4(5&4K9)@%_Kw8(MItl6QO^4*5RzgY|exW9=jgUBl z?*88KNkE@7S6&xk zbcv8$WZgoegM{>E!p%`$D8J!;zTMkCLRyb-q#MX5ar{N-yj&h$ynrCh+Dh-0$_{N`APALKwJREFy*_ z)*cX1RqF#^wDU!@=-#k#7pg=w??-TI&xiQD?fZ@2Mq-+aFtz|H>3e?2)0twzDWYx#iD^6oz?5Q&Xace@;nTDF}e3ye_m1taT;Y8ThY#FEMqrg#{p4Ob;$SYGZx~_4@X8ci#g1-k`h3=lx=8>=*iID)Ljj zPFs<51o@-X@sV@IbR_M^r4Go;QI`z|d;{``uz;gBXg7qBOvL+@E*Vx`bXZ6@J#Rd0 zCZZGVe9si#7ZM8#eb*qQr4ijs#v?DFSdeqKOQ4VvmYg^ttrgNS0Rm&`-*e|HZpnPl z3n@3(f8AyD%j-e_e#mQ{$n0Cwg%okI$M9gxbAvDY1pVpq?|X=@aqPJR`O8u-yqU94 zNGzNnxTT1`IR@ruG+{h^4Sp0Z6wz50chFfxVZab7{e*-lf{FuwFwU60@tu%{Ms0dj zh`i}1mn^Hjwn9VuSuq#eeIOI`70$s-}D0{Q$!7zc~}aiEuMKfKrcoep9;_AYC%R=Ai1=k+!W^cK?!JHh2+r;vASgv-ah`C?i;X5U0k zx|l)`KKB#v&z}YSw3blZxr>j}kdH$0*V4O|`b$WlVxFHw{<_~Ix|tdl3#piK#r=eo-Zpa8*etwf=8(tw zqbMxy-O*J@-=0N396kkkah~qUxsCT$H7WDi=|mC97?>;(k?9GAa90lzjl1&hY-Td% z3l_(qE2dY^6auTZc>dHeIrsiwy(e!nSDG9bQS&Drhi+zzsLhktpJt(4GsVaCM;>54 zT|L)W*j)7ARUN;Ae&c$_vvFLyh;)w_I4&#`QRBh+_vG&}e;A&a{c??nre*FH+T*!N zIbmtiIP@b$+mwetgd`htrJre?keGR9td)>j+CP6#VJRdQE;sbJfO0Q~?+a-qB!;&R z8Y`se6@$dLu}+McKhrmTjF7lpkKSpPAfS+!!Kbubv9Foja&_0O*nge*WS4+^ln;9% z(6u%8lNB5DpCBJ*?-S%QasWjCj&weC^G5K9w2+2y1u4?lZ^_c`yBhzAFYJ9zA8i$fs7=FK3@ieStXU zAiul*YjF<6Ed6Ca_OJFZSA~ATc{uUKqKU{;c`fU+?!hKL4H^)zED7}w%Fk$Z5AC|K z5Wqaz9aKQ&J6Ap}?lWV)58~I8D>0I!0*Y|PZ zM;L8JMc&D=aGT1H^67Spx+I{|(q1wCR|PbCOQO@yz1ZL47&RSvCs&uHds$+i`KH&N>Y2zhxgjz& z=mqjrIkspuD;4|Ip!q|(H$%Q)5p$qmTy48}q3V@FNKX%HEj>B~`-=B7zoo3e{zJFr z+}7A9PP_NG{!j9`A^UjpiAs4|MgxNc#>E!N&HpupBOn`Ycb`Pp+lUB3uO`jx8Sa{R3-+Iq1=V$29&H|6Wn3-ck+8^g&gl|rP-Nkjl=)=uj5l_D- zac&6Wtp~=A@4&r)zh8Usv+o$5CeC9N^5Y(>G#z}GOB>r|#yE(1v^=Ks=xq<7Q_v-4 zXyH=Cud{W}lSeHWxB*=Rhw>q7qHgl&*|W5wpNPj#UC{Te+bYESGjI_42)2gbKlHQ5 zI6SdpNXqZVPB-ThtSG&DB0u@T(%#=E!~UbzU%)x} zru)~P8}o3k-?li&c{@&*^dtb2sImP*R4}1W-<^S44b*8Xmf5erm z`HfCoiqiV{`X1~ib9R(}bb_DZRPFwm_OQRiwtxWvc8Av9kFT37fgOzjQ&pZM-TqcI zu@e&AzlC~zk-)xE)l?G%|4q)aB|9e#<4}0N z{uA`TbyTz}eD*}kopeGrPUa$xHXRcYj7hr z-EFOQq5P~Ft`oo$T229Jx5c(9dIpIl1qi@4n3yOU}WAEJ)4n(RtC{P*9v zGhN7jFD%O$&YHMv@PT?5&ZZk&=|f%giJ3Ntqsf7T1Mw>(ej9#%AakR>JrBK~1%89u zeZx`_I68RuI-dvUc)0gz`%Z{YInWjXli(6N@btw4%3KIm_M$VbT<9h{--Dw}U-m(A z!P148x%|UdaNvnula|@J5TbsI=l6Cd{$>FG;HRCe2gEcUaw6s?o?7lq_Pg6o@89H1 z4=b>f$a5iBCzO0}npEJ#eFUq?(?}H0DGeH#mzmkf&kIr|YgLi_{R?l;x5PsjTJM3M_TK+h( zxTh=a#IoQ4ewLZR4(7TLo0jGUfG_=NE6hZEBy&HX;esEvgC}``3+*h014!XQutplx zKX9S(r;Ge<8-ZVBx-bV_Y1t{xe*3*>Zyt!EtFFXw*goJyyWQ3e9X`XAjE>K<3#-8W zyebxjst~_($Eemc*oEp{VF{{mCKfI{4)G=>DS?#}_T4o5RaZasn=SyWgIxYAA6}z(72vLajppv^jrfHZ z(!7^$tDH4{0C4;2@p1|rzs~w^?P3v65`+Vnj}tw6eYDyq#gV4@cwRJ8I#KWi-qN-+ zoHY3tTR2gcC2xkiqazgp|8}TyAgH>uf0*k){g!?VxGkAO9OK0<156#ruHT(&gDf1V z#rs{ZoJaPwLE3N0iugJ7e$-u;u=8^$d@C$t4UVKZVpew+-2MjUNbc~jKDu8HZG89M ziP$noM-flZnipjva3X^qXD@wQ<4p8(fJ3x}GpWBPLL3v^tQ(Fy)3iFjcY6@G@J0LF zoctT$=~+ko=0pb`)}^J*a;8<4w~n?%eAKxv0Nv~V7aw&We0kmD<_}fQ8h!xpr=bW3 zZhP>{Ke~5qKgWd@zqE!C&Y7@kt&k2!Jl5-o)fssIzs@7jC&A^va=+Ztd)cC&3pp~7 zvb77%e-wWC(VfXdAF`32~*hN2E0e zD|74T7`XFsWudmG*a;8$>$57oOGr4s?}!(jB%qjYyrW1v?kfLq#5FVAGk;H z^uYa=#yNa31y8&YxcH+^;BxubZ?!XbqxiL(`4^06l{&C&&NX)lBJnVE{ zf}gkW3E2nE{OYTF*GCQ6A3G?)j149}QG$H=b z(LFutvm5>C2LY79;J|A7OdVnAPQH#M*7@t8&wy~5ABf)_y-2)ScP-+^u^o<>>rTVn zRWW|x*M8jiUHU2;{O|Tjy9>d`9Sa%j7_!ry3?TP#3h|_BJAMjyVzv?Q3@$AMCk%2Y zYcHrP1pfQ|_Q*Pi?VUZSS9SW4cDSl_2N2&6)r`5DaV^|?V#b(Z9+YV{qgSt?;NX5a z-%o0Arw!pHm!iYnDU~_i!Lz1681>N#{GmEtAN*W6J8**URqO6d0zW$5=j!S(56Zjt zDRtf=59++pt8>66aIGD3bGGJs(5Ja^PXoaxsrxTDF!j3e$Ah}E0zY{WqG@LxHRRBU z-dTn_UwF{t$??&K>8S5KhZDn=duYzp;L5^lwHpsU^q?Oh&vzJrJAwCk$QldiNbJ60 z)vk*NT`>LpWr42;Em)-UY7cm{EAL@&0IzmLi4$dm2ZfB6r;Px2<**VFCE#xcPn>8n z4*b;nVrx@7a49UTfS(BtZPCEg-k}^ym(T2cF`Gk%#W!AFgg?GVmt6-6!SM)M0dS7v zkUraY*>R}wX~5xEZNRyV?HXAIPG5NxX7QjN@g+md2+8bu<;Ly^~)0Uh{f!+$X2kED9U$}`M zVjqJjdGZ1GQX=T?X7mGG()`l#GnzPLzvg(R?@w?uHi%pWw=$-+PE|Fym;z?-dcmP0 zEQ9qm9J;qIV9?TLp8wrvGur@yn^D4SWC;Fc%z{IcoWMb-IcjhPofxS39=uy)?2G)D z;FFkc4!8tZM<$09f@f$rBH8;8{1|_K$E}|^G-?DCbHGbGmI|2+8f+K4~v;U!Ff#Hia=R#F9WP4oJ5f)9jWis>=pE6bm9JN zA%#v)cL-5nKgVQ)UV~d;;m^mwd8`-?VsWP@J>Fz?>RJZ;Y%NU9{ffX}v<0Yj7aRy= zOhjd#nmD#JPwGCg@9wG4-C5qOyUjxEC*L?4mA=LA-wuHC8vJw@YR9d*oa;&QddIO& z;6iG8KNgJM3tn#-BABm$uW<7pd-ec$uhPC5+pcjmd?)xg^?6__c#HWF>t2CVGT_{N z+8yov_j_mOe|(Xk&(YW`jlgddgZPIY#~{d7l|r|~_dBL6b8tg2v(Eu9b+PKz6DK8y z7RJpzu>BJHfqvia!LK;P!hR#c$+U6DFTkhV-ukpj&>8;1gab)SuY#isf)Wn68qlGu z&CwrN_?ZFT!{PbcTRxcpeq#(GGr_5_u-UC{o+L@Q+G)N5e#rrdJSg_0KHn!dFFOlA zDAPl`?n&u}4=oSCFUrEN9N;f)7X*?YR~D|j61q>mLqS4YK_BnCXz3mJD>Lq{NebuV zyoA@A4o*Rz2?Yqj8$7yWb$=aK6MyB$CB4>@3zmVG5IO8D*e>7_Go##D$)#kiq?Bp+ z9uMx*Ciqp$SwJ$*VIfy;1h&9ALe2M7f}b!eTYUt1 zcmx_UXS)H;Ra@bi67q;0!)v^uF9`RDKm78NS3g6;JMd`Za75_a^QcrX&*DD(llR33 z^Pb~8H~Rwr&9g}OIaglaY%7O<^2NkpKX4noZ^xgks|QDL$avEa_|<3;Ma&=q-6;rh#vOTwN(Ri(WT> z`L>6@^(LnM)8n|Bad8QJ6OMO%uX+;ybGwzd=6e#niD!G7ow-_3P#pEdXcMYQWfaPT+f1bvqc=4SWv5&pM!=&JEvqdy5Z;&U(O8j`9Ct z#=0wc=r_69XGiIQW85~ftn<$=m`4*Uu2)-vpB&+CF$D9nnSaoRTNt-lvdpKhffnGiQd_`qfb(4b4n^kufRm~h|2gV1|> zxh%zex;leWQ9r1xB}u?PsrhYicTL-Ig2#OM5X;px@O&wCr#}~Betc|;hxVsx1W|6gE-vsc1BLitR2b^zA5QJksV7zU>4f}$dyS(k>7I0-+$1iMbjce-u z=;$JAPwHHGw|*t&H|8c&fCp2@yJlg&`aaQpVNR2rSWTUpG||^GtjhS-JU-^Ug z!Qw^!Uwgfr(0YrhFNY#6`2|A^@V-}|M-1W+!*;!zflFioBzz88LSC^<``^{8v7}oc z%-a|85$KHP?aB@um=~mnV{-B5oqCYpx zc$Nw7f_ys;{88vh3>$JihIWBFw+lF}oW%_(1N6YnJj+PTdXM?a`s1Hh__4zmk*0X7e|;F0^B zC3ZKpp|`nWiR@_`=p|yh>y7!w(C_o$X137No7wSWGXamdkjeX20s9E>)Y2b34L4r{ zJxAsbJIHHI1!z5TF!97g<_Mq6KE1y^x17`&E9hr^~bO#H204xym3D)=_ zYhiy2oMAO=(KJ3WS+@p%KC$qLh!8%#WV$P`%QfQ^NKFrclVI^7C48FX@3yDK89wC< z3yFVtmQPtti&wV1&Zm%@jzK-|KsWK*$Dh|P@=0&p`dN{eVJEIP@1PAoFsQ<;_U#1p z?kAoA_UuxxmHdhQ1a#_(_OBjY{{4UMYiVfI00BMhvUBS?*v}abpTmcJmkBS#3+UVk z>}+7q?tpOB7j6RD^LodlDYO55&x~y#SK#;E7EG>&pTF0JDZhtj35dxg%s48b9nH>v zc{4_!;eY(W2{65s7Xm7C-mxq89_+YG5A2nI*f4)lFQ5gVk4~^1C?pXxz|Mld#E!el z3Vw!}CHv;T;MX8Jqcu*_#qgM+~K z{Pr{OA#jt~P84YDuATzwvisv`?GgcvpI2Y8;2_!;vS*7f2#AIIRJ9cnqALfcng|K> zkV&w60Za z$9v$HKOA&{w@FB?*v1Whc)v1>w#%hLy6W=o_jEHMv9A@vKE13%NxT&H@V-{VU+tca z_TJFOa_bKP?QV~aNM9jYFd?1Q;20(gtd|@R()XcEP#-hK7Ud$N%{>MEb?LL%v*0~;j*opfyCKU;(QX41b_3*p-e%VwSBc!rRso8UH zfiHkuVA6|!}1E-tah^DcIBS_l8_FUB#7@f=K7X*s@E{m8a|D(v!bmv)0cn8}{} zLHmwl4j~(~7vt=~w=6pF@w{!ifCj`Ho;-qaux0y%+ifER^d8Ii;X?2g7d9UXg&n>G z-J?JF42ByFhJ9Z-$z|%Q;Q|`gdU3Wt-g_?=z=QD?`!#Uc2%25up|K!0B z#t!_+=s!$AV!D9b*nGJPezRsq9ZaeOv@S>dc4>bhF}ainbJ0!+kLgzq4h3OZ6{Ya2 z&2Fyx^HfL+!Vp~qP6AX%_B#0M{(ir``I?yyXpe=X!>;4q644IKuk;IkZ3`$}z>l~*=gz+74}}C;J23Qwkiy@cU%U&P zNOmOv35<_`r5}>|KM>GjcX&LH2xyJZmHcnuqQV76LoS(sSK7!=oCmvll}O?-=n{{% zota#96&&-q(V=x`z=6JmxiktoqYcb&HW>46a?|@69^lM?c{jcWH^&0qbKr;Q@o30d z@M`LFHu$?vn=&>p=>@)*1@QJodEI~g_WlkIm$eJ_rA#J`K7d=UPHB70fk*S_PMBh) zk8#Ic7E(+X_x*TKKW z4zSq2hKz%9C)T$;o1w%;;7JGBMy97g$D28n;U6g743G7AKDjkpuekjk^{>?Feg*3Y za}VT#3%o7eq!7)<`uq8=gLg3O{w|W{_U)kmJQ5029Pq41Tn9d{Cu^chCZlH`!K9S%rDWOPj4AV4xQhOJH0O4yaN5}`q2s6 z#^C7s$SyGc?tHZTVNn@)wb2D;!|n@+$yzPAE6|*u@x93%jHg`YfWwPaEUCkKrX@ce zor?8?x$A@a2q@9rVBQFO0bRXZtJNR=KeqjLhkulXb-gO*Q-fvIf&TD^%nMnk zJSNY9KXd~ure_7jWcy~`fL|GpTk~8%ui`Rpmg93L28e-EVea`S7|&3bEO~7TUS!PS60HG zDR~)}aau?x%wefMDWo7KD4Y)df!Td`Vm)Gdi_e7`ZuLF4+I0LS73d7eFT z5v5G~=vEBQO6^Zu4Zfuq9(wRRe?R~Ie}>mexFVX&K!=0iw>poVXL&(H)(H2>zAU0l zrhf-ME7CF7weq%zn9Tjymm&@S|4~G}FJ+$D+Dc3PQvXM+(S0}| z*68EqfD0LYuqM}0Op}>FBY3S2o2OrYuOp`OY~vS*ze5H@7d+b4mrbVkz>%oq{-VI~ z_*^QplcT&*Cu{eQ5NqtR;Lz%s-tsT-az_ugc+&%aXL_2e#gsepwE6I2F>!SE<*&FQ zCOH#8IVh&|Xc&@Sh&4JgCE#!hPtR1wi2tjH+V9z3Og&8>o8GS#(N?m1|Ktq#Gh;-i z;C&s)?EK8>n20u*K6vTsB_bAfpF2uKx7kG56}%MlD`TI~eY|~R74|Lh&H%pA4;daD z_XYbAX4v{JBy#Ivd8j46&%jmmJ6p(bt)C^Lg^CYHbRP@p<;F!}HdnCknHxWAI@YPn zgKZM7X$uLIsfFHzf90NLeuuY0x;MA?>aznx^n4CLfeRQX7ytBf?)krd{7y&*?n1a} zJnBuS4v1q!)c(o7xYg)4?Otq?If4(oekj3X>0|J6`+Y7?9|Zn}*`cK((o({rQ3Wn% zL#^?`b|MY`>mt(V7NR`ITPO3=ev2sYUDx-kI*Vy6n&US(z{49RIX~_%Cgt0(*mjY)T)p8{-Sny<4o`iZpsa4=}Ej`x36`iHW&ev%wE7VR2dl zF$G3Kkh`Op1~k4=6`vE)*s72VCXpCtSe{-i6KVYH&BdC$37h_1a}0haE#`y!VtF9k zz$r350-WD`a|^RhC&g5rj7%X{!B>5O5YkuhW#Lvc*Zc;Db!fukDOwVZ9Y{w)P5OBr zA6iN1%}WHZfFEP);!r&az5XU~Svo{Q3qI&px3rMZWXJMe!2@MAR+a7^WH8Ko#n{Y2`t4UkSOimv?+_j`GS+BoFK-QO7Hoq1~Zgp?7cCziZzv2sGnL z)Vg>-N1`2Mmib}hCFB4Db~B-bW~O@F>GKO5>S901z9h_V&7MCxlm-s*hey8wd&C;u z6U-AiZICFWx0qt~r>PjHr&Af;^Tt@rSImL+Sgg^Ps6fA6*WA$Iz4*U+)ZB{5)WQ2- zfA;+0kNOfiR+2qJ&r+g^f1WC#ih?P>rc9I22(2MK&!YbARc_B;qd(nUuyBOc2nnh6 z4M;)*SAlG{m(bT(*9Dn#B-DAY#gPtv64IY}?sPAI^v|XIJU3SfZ4Gj5abt>v5S2FY z)B*|J>kI?QE(t+({A7K!ggUgfyJNQl(KO+?%~#=8W>O zd`&{TRu10xb}`z!7sB8y9!My8vK`JluN!WNOZ>|^RXRoH#KVhZ9v=h8E%(ys zGYs{jwa2VC>&-^F?=3gp#ow9Ue0|uza=JI~9GjNrrSYGZcxm{OTV8a2c3@5PLoa%( z3uUYtFHPLoFE2{zU{h`Q#fyH#t*nl(_o8~IjQ;ut-ZY2tQEj~`)})!$!p~?o;Idb% zyy&|a9F-e9;keFAKY9}j zuTC_Pk}S4T_-&k&u0a0jK|d*-KzfELZc_ER`G>2NnESgEUrMG3hj1MuC8$~nx(|}l z9?#J_UrnVNf4!|#t1N6z8MzVjo-V_z_ z>`d50Z-RPg|I$v<|E_m08TbXg^d^q2-U9y<-lWsB%_z?nQi{*g7v6sDO*w{$1Z^v& z;qhtp`4<1~Qy$Uab8&$;4PXM;(Rgnx|H({mf;H5lZHPC4UJALp%bVI71nQKY@g~Jm zv0w=5@vsv-s#nmy2!uU+9__xeNcs!@)*M zD@|u+d4@|hd`hI0{PdTkFH4Y;IO%B3349KXO3;c~FQxS2aSe5Qq*U0;HMBBMO059I zfpAxUzZpJz40}6hHF6F>jdsuJy;5T7ZHx{|=~=~9!<5v2SGC<`mz44#M?JejN;n0c z{8%ZaPisSRmOhmdlW*UAR!Z3Y6MsInV6kGRc(^n6~bHLnUjecRi%X8jaACwQQ zCBQ{Ws~v4NKG%|x)4Z}DgYX`i-cGfVl-Axq9HY{cYVt7jmC}}L)8G8ElhP9w7vL-< zzVvpRbo8%(r1=b-+2rbXEmckz3e52N2oiEZ1X z`}t7d%{6zQ8u?JtFmC4;KcvKq{^4%@TuQ&|Qb$j^FV*N4UX;?)*2aZx9!u$g>%M~r z&`!tl=AAmZTdI!NiM=VMnT{K$Tqu!hIEZ8^T|eH5(;45BL6%9lS*q5d`^l41<)>K# z6GT$-WeFqjeeJk_k3DLnn!F=TQetTcJa8Xl$XhrV`_Og-=%1SGL%kchLodpF==YhL zD+Y2OYUFEua$MmHN{WI3MbMt#0;I{6Ecod*}WEAFAIwWK;+I|KIPc<19mb)H*raPx;Vk z)zA0KihO9uAD-xVfsZ;5)WixOVlpkSfB29vuvO$FeHpd+sXM{@mk%w|7o9x($%m{Q zQhR-R=A+gJY_BUL&vmcOnh%f>)VM-YjAi8gASS(MUl}o3@LA?E>ia7uE#FK=2euhJ z-Pub<*~}i@N=8u4S(ejMMxe`|YSsE^^nC`)h{?3?8!MxE>n=|l-A_hLmu>DFA3Bi| zUU|0EhcaLOi5-Nid&c`=vhO}r`WCOS(uXE7p%s!5!)JsxGBr=$z?ISd;`q{Gp(q#o zEURc4U2=^ZWtA!;hC9C7DI*p((*oCB5K13?Os3(nmdn)seQjL(2E}FR2g`_sg{ET`5fgB2Ku)RECq6}gmHk)ljP*PD$|f1Tw(oeP&l?%N6b^rRvbmhbHnyl7 z^BC{vZTKs{8#1yx7C++?>c{dvRCSSS_IKmu^liE0{9s2p<(a^cK0{7=p~KfNKz$-- z!()khs5#LJ8I?!bR62K;6T^p=WXLEE8?-HfGGcOM_mgFsbH!P-qdgRve#s~#VgK-f zD2J~LWwEYua)~TDx7<=rh)&8K)lW{={R*85%;m(=+nJ!gQ2-1&MrK!A{4R5(#TT^i$?Z@$LAfarPF)9^$!QKdkB*en zQQHqkzx&GReCmrEJp$!qSLk^8m7AQVi*2{(_mxvvH8QTDJhlGiY&pHu-hIzzpqys3 zoO7f(M^0ZogsW?OpC1<&2MHg2&N zc4?&`(2@K2<#JN7JaV<@A8$r4Z1WY*A8vg}*g`>>4N_k6aD~Q>I$A-p9EqEYt%AM* zmyDdGAW*4ZSw;$SE?#KiJw`$Ob)YFSLP3l4;(q5&P^fhRcG)1WGTUc+E9lDR#a&h) zKe>7xTB)F61JmnT1}R9#qx4#Uor3u7kf21S(CAw`C1yr5V99+c!#UsjG)*PHFEmYxnl8+M{;u9{IPo*w1cVgdcPX9^ZSP>wWqGh z=>g(zOmpSr)4z&4>!X~E2ikXYXr`cX`&xeQRxhWDJb&k^J_rQ&0}m-wnN|pqsI7&lo3N?4v8}Dfn z*HVx&6!k^C;A-T-?ti1ty(jY&^u-p!W(tKyXG0hL=ycl36~PLPzI~&d4sAw24ElTX zU#>Y9JmvHQ7|>2HP5*ylBc~(nb{W@?M*G9eZX6~j1=5H8%9GP6Arhwb!~LLR_PIe$ zgZnJcah{0!GA<77@5c<%QUx(AdOg}jtrMN9pf*UDG6?Oh&by$iqyXQvhMxLLYO{;` z_;iDUpwes}ZLFl02&WrwtyJqzw3(!&2|CRi5?qwDIpW;o{m9cD2$_-Z&d5&=xBD-A zZrbX1XE{$vs}4*}TP#viZVax@heit)xSFdwMlxB2WD)|CoX! zD7WCaZ|?#nF*zgqb4n`TX`Eki7}wH$SE|=2H9DmEO10nfLkaSBXWIK#<9msFmpjk8 zf!{AT8eEovdLoQ;^G+ol4>axLd&b=ws-zeFt-dwK|66p>zT(71 z-uJxj&$ZBQi9ZVtyCy2>$=DwpeLVk@o&c%mAYVJ&R~`Q#Kl`G0zsiuu-3xMomB`y( zd17#7;b^=cCLj~1r1n^NWTANOg8)xa9+ROk$x_lpU@@=J?(4=}K7QkxlBNb-PF{LT zsm`yrQBOrlgC^H}AAtPcF-UA^siI-YSaERulIP^tW0;C`Cx`X9?5ZM`rm4(DMewS= zohDP!jaL@i&WKgSu)2<($g92QPi}*)N}Y$~I`XYIl=d|4=A=@u2bV^v2w7Fl9*k4b zf*oZm8u30h=mmH6YE)9Rs@ud2JhvqlhN=}xIu~<#`QiIYwT|ua{Yt`i;F5`!O2bio zRQ^{^noIwyqTVW+VAp@V2}eaW{V$COw^I?5F)_mP1g|yKzi=7-Fb)Yzjwy+yy%>Pc zOg4N?Cl%%IE*LboTuHh~X3;elmDF%Neeg+qeueZ{TUx6q;?l|%>ED&~sjS1R(P$^N zzSSTVA?oT!0WO-QA?ii%!!>NQJOMdfB+Jt~lg z{{83)g9c4Ry8shYQh@R5X0N zd1oWko5|p$#j411tDFDP%_<6Eg0(p+y10LNx9UAAI(i5*I`Z8|Vp@>0l@ z2lwlrP%WFHqNml;iD`JAoKK2HhkB?8yU2-`6)JkZ90{OM@5({c={nwHZQJlXJ#!UR zjhBi?px=d$udCRP_F!R+BapwoJ;K2|Mym+as?*v`m0JIJ_+FJd?@d^kidY(Zx;oN)wNP6{+iOaG?Ha104z~<_ zRun5~C>GYA7&mpm8{VScYEBC8$)V$sRJ}-y7p7~CdjFXm*KI<+idspb{D5|=t=ik( z`h<$sfA;#$>dWv~|4k}FmPNz302Q6<3L$3PhuJ&VVE!4C7;wZI{U-HL%M}lz&_Cu* z>Mq6eO+y|Z_B>MAs4rns)DwP=OCBmJg*ke_Toui9hd|mG)MH}H;zdL7zEdx{WG+F! zD=Hs&nN;M2z~_}SRn+stu@|BEY-4J-qy@(7EEpyyqu#9g0+ot(#rt@C9IYZ`LHj)f z^BUAmb-sL3&|t6KAD&^KrH*UbE2lGF8Mf=zD5%H^0+hX!v=+yZr?|c@JK5^@I|X63 z+&B{ZE~pw@s?Wmy#ni{xF-Jj3GMp^uVBJPS)eWx|#N-{%CnzW}yX(^JhcLf|Vui-O z;OKo@QQR>F=?ccC`sFX*}yWBz~25&@cFydumi59=L!{r#&HOnn$&BK8T_7h871 z`pxn!%)owW3uJYUg(%eigQll)jsNu}_NN>;UL6&*3i9OkV(dFScKGhc{Xi4XE$XMF zfx|DG#p^3IeC=c0BJj;3|fwr)lg85)u+NuDr;TTUy z3;NzfMNLDBLyi1YYWsu;<6_{sReLxXw@ha9>sIu4q^q)Y zkX>|EyA2q>NBIdYFz>o9T{`)@NJUSqZ)o{r{t*TPG=GP6wEWn`rMs{`Al-qY1?Cgo zcb85!Dd{BAN!ntZu=x7j_?;eGkQZV+9&@#MG*3kV3UOF`DCP;c%hK_8mX@POgo@O8 z;m|LcyjmmrIYi8Rw8rldbzIpMKKhMP zqBnv2zvq3ydt(mCBK;9nTUN~ zD;S=Y*mv`o;rXbXy61Qg3CDh%rM+C_g!LNssY%~)&SUxCr(+y!l;k9}R8S0aTw&k0 z-vG+vhZVHASJ0JJxDU1mw=JjPdwxfS)k*~oxcby(4)&QWjpg@0a&`Wv!`L?p=kf+? z=i~eXPO>@n_n`f~qa<=_QT^k0@&lY7?;MzHXRRPfwZSgMcAQ@dQaWWHAgG95Alcc_A|uWdC!?;8P!Pp3x4Nx$7DBn~>WsJgCrcH0bYZkaG-U0iTxs?pTMZBCrRI+KaZf`q^0QLs}#nO+&w~T#8KR4%n|r!#ESLAIs3$TlRRDiXN&mvx4PVKh5Q{ zJ(McS47fWg8|x;^3pNGo4AZd*AA$KobZoxYC>8zA(Ei=Bw~9u8ZvQEBI`$1_`giY5 zz&h^c=e1=ce#g?37NK3fotXCgjEcg9XC!0Gu`VzW@|KEzz$`Ji0_{6E*UjlO+5`Ak z7(TP`3$s7iH-=qwjcemeE)Y1 zKIB#(tc%Rfhw`#n{>3VkD|mS&x(@Y+fAH7^JlF7^I=F$~$_gb;=ha)dC1A%qY@2tx>A2w?~vh7jf$Lild) z%jfm=$9bRY=Y8GR{ri5Np7lxHjYM)a@|D%u3>O1RcFjZ9e`u+W=G?975esKCpfNohmB)jNF`ZX`-}(PxQ!(r-=%_dfDQy0*tHlY*n~InyBDc_>C8R zNEJ;l_%qWN-=vBP|J?Pp$El*W6%_V81@@Zm!`CL{7v!h#hgE@8k*d!3qn``#fBy3e zzW4crorZhs_yYXv`m|~jm}#QIpY1*wk&5@wPMl2@J&c@vBTh;coiBWmb6BbSwB`X2EA8nik|c z{IF&31zS@^JqrF1#I1rnkG$6S{-d|4qE>~!kKCUsDp9uJjf#I$MP&;AaE|x?`2~Od zb@It;|IaV{VdUq6_Pw^~>e+P#?N<1i($fXy7ChDczH>#Y$W-urV3a0RG^^kT+0B6#U?G(eN};g9?eQT24q4oqpw- z!km~U3V$EAzS@!kEchT4b6lF}LgJ&dho`2A*uSFxzBf8ebiIAwTjhJEiNGc$C*xj0+@;fw$1MJq)iWx*e4{p*i?UO~T8XN+E3cL@Xk6jc?my%~!# z6g8J*49MX1F4DV5pQEhB849kU=mcR#Z$|GTBq*jx=-an%uipj#@Som{0yj&$SQjxE z*=y3_%cGhN4Ba|G&Wn!(x+@W1mpKHqblwzT-1rH=%%gpQ`Libj9Yw|f6Tc(@Em|4S z)sy@s%+r9*J-Qy~bC7-Z-d&)rca8$%`&$TSX@S{?Mi3n}3z*ZOH;~tID9}5A=;*+F z;#V05^z>c_G}m1K%q+bJC<`wp`H87O`|6cI>#Xm*vF>`_1CYwpVb2036 zu1wIe7ta8N$8G}6rAR;J?jg|m!2>{jXR4QLcQR<@XUap?T_fnk+RK5wJM)452aQmU z_WL~0Oz9|~{q=C5{^4q%XyQ`BS=263%TIzfJ1@Xq^F;|{y|RLz!bkx!x>Me5r`(|P zn%oDb@0kYVeticFPAKS%1^@WB{|3fyruML%bb*%q9tPBgX8)6}0cKT9F^g{Yp| zz-Z9nC1mgJP2(`36_t~b)DQA#O(&pw1I3wpCmA%aEsam-+e$=#Xb5!uqHU*s$ zZUhwkI{>J0Q#^qa^p71*VO+LXN33~E9J|U(1iR1DUbFx zl%HTniYu_5{0awhp_dz?`n&eh_*7J8{KenN*L2Ktxoau3tfAb*$_}WfLJOb1Vr95V6X*_21*ad#V_UCTp0ocj!r^NL*rvSTP8jAB%8wVL$#%c=Z;o-jOw@~Xd1 z?HxWc8}=zKYOjoS)ZZd?=7TTaI06`{uoK96N%L}Oz&Oyh$E2T8gW5lGd=B`UUNqn8 z(z<{)sL0NLoZ@5JX}+>{Sr55tl?>?B(KyNFYe9==lb%#C8Z;x9>?P^cPerE^kPnZy zB~YqA2)&#p2gttdGoUu`6qtDYEYRqt{;Xd{{XpGz6!@|fYRBvs)J~RGcftQ(KhTeD zhH@hDTfn#a(~A}Uk8JA((CH0d0-cfC&@*3l0GXYsAB9g+edCuAEv>T~`i2rtpsF^t zYp~un&}RPyV0Mk?B%dILKhJxj;~y>s-*u7&emdtoXu)&xlUJX{Z|31Y`P%jYdLid+ z@;g!u%=w}P#&)B6Sf5Zkx=a*@q0UUm<9bWm11*o!5YNc3le;&!u|hOmu+uf1`dK%BOaNlYYvQMV`$ zoabMl@BCT@?G%3V3AFI2VXyNU@^sD)@Dm!x z0u#^I0P@r;3Ay`$UN6PvZx#(YlSOd_kBkOwzRw5RddYxc1H~h{yd1P=9QDuK8f34j z(hz+0aW+sGyoq?YL%sqv#s7@+x#K_!Cf@?)ys8I%8!rxMSpE%s+Ziv=-Z2Q2m!tgx zXRQ``mW~yG;idGuT#&^L$t^O9(N$$I<@e0Pg` zKu+oq!Va5(3CmUjqjqfrDl0w(MmAEOV}yC2GY62rgrAo|JC>d!y{SKeihUP=Dn8Yp ze}u+oWC_(joW?}F;uBO~^POU#rAag%)YnhL-Ycg0ID01fV`WfW$&p>q4_nKlA4{&% zy2joA5q6%?WXSD72ITg)=Rljz()b8As1MqEwk9z54CRYoj^;&cRqF4O&M}bdK2yK3 zw>kqlr}ipfie@b^dR%EB^M@2@7~ufwXQcu~uZ+N)>sx@1J;Q*>a>`@g7m6ppI*k|W zi1(<6=uC0wF)Nk;rc9vuhk30l(U)j^xFqF4>*|p{E9D>1;+fR1yv0dRl1%=i+fjeX zT|#_Qr?SwG#C$-xI^7bomyQRf#L&J?DxvWieUA1CZWYC)OQHG0!^wrcPf7O`y7@0a zbL-K(ATm+E*2bB^mrkL)%U%>kIkrh0U}*Rse|wsM&YMc{$+9qeo#E=i<`oaa^0W#L{IG!yOidg+;<}&myDSN^oyuJ z+M=3+_Oc%Xv#NCl+W12dZ*uoCprs{x0p$n9Kus|{>Aimh3F*dGs3m_&&5wg!gQPJg=PgroV-?>8oxN!f zF#X0?@N<7w0x~Ok!8aax1X{Q(1GH?@zd&<|c|fj&@~><21$16(CG-vDj)QizY66VD zP=s*NEz~>3E(b0A&=Y9a6b1U?m_T;Z>cF670MNa0B``GnChX0dji{&c_+Kc`*QhAy z@W4LM6J06+G<}@`4BXoVJ8r)Xpu?M{0`1rLQ#>>7fwq3?0)O1rxuBDuo(Bg1xdwEu z=b{|fc|G)0Q(FL)>W4tDd^qG8@*+TfXcYLGjDA4%cQ*LuwT(fCmz@S}FXaY$V%7k& zL$84HUuh`URy_zh>Z=QO(zBI7rx*1>9((Q-&{%CU&~vRD^z@~B0J)<#g3p~i6c{XS z06(T?I%o}hHZXrv72>}Rfo2^Q0+q!B;B($p0EWjjXW1@CM`o$4l^Y zCkz7LxZnh6&$@gd>vl8n^@5(zkE)dizE(}`pV@j5$^-A<-#NY(XiqJg7u-%7_quzu zpRqpMRXCg&oSUVg&%8T;;_iM0s2N@o_Ss!`1NHmgg6|kf?ZVnb{ZnJ;3%P||5$Ntq z^;G83JmUG!NB)LVeiJV5gI;6~#U~3<{VW|QPtJrv$OFGy74(a|j#EKrv$J6*UfUA1 zVIAcsszM@Y?Xe`t!&hlsc;vmo|6jir?_3Re?8c)&PiYzlqA_(rvx}&qpIdu5P@Xvq ze9`8oh(F~rt?#DT?U09u-2tB`8Vy>sj_RFPGa9t25A{=d{tEa}pCLbd##Ydl_cV`5 z7G8nA^bX~f|MM~ArgA61=S@mP9-Mb>g3hec1@oY?WJ%DHzMrAb=u`}P>K7ddgD)V@ z9lHa__;dn#9z!G0vL+u9e{`k=v}$H^U_e&{$p7>T`uVjR0>wvo@SF9O@|+OcAA0s8 zb0K&1$pNyPQ2z}spm{VPtPDN>iFT0tE4@a!#+Tiv~GbLn0>q| z^gd%~Io58nQ z`U6#uW&wqYJ}8%WDGxNSTQ6XGbvj3Is%;{AAI%rM+teQNrM0QP8-7D>Io<;p-|Qn$ z8$1Veg-y^?zoveZ*pbFv&a)1X8_V&5iA7%mGkZ4zMlGlD5-d^^v~QUS$a^;v7_X#t zI(ZG9=dAOoT^zT6A@7`q?NP4&G0i9TTIE3dUb0}H?7s`W^q)_FafvxV^{6J0a}8gC z%Accv(ya@CoUKcN&a7l${Jo`hz_g<|4zD@ld7 zo_p1f@>SitgXU#Wd$6^=K-)QcfXuWA?8Lj)0oAH)unSK5Q?GPd_g&i?KprYj`O7(X z7W1H|L=yCwo!dk1&PxCto_rCsvO+bKqi8%1eDSV>;3wK?Uux!T2cK8+7*JmEKge1A z_5;P`4uKzcmgdF42O59ICzT;*s5|?$A8MszUw8cexG5bKvJ&l25S0PyVSO(7i1Velp7c z13KAzAGAAZ3}|~Sol{(fH1O?hdxNi2(tc0DqV+L$2qCW+?OO~F*F#@7w>b1u`qO$Z z=|KB6Yafc=I;Ilj`XSW+GQ(2PqAE*aAGeCeiCInaDyuvLa%FqUv#V?_#kFb?P%l~w zWOUjGR86=DOsV=Fb{TDG{&0Sy{gkuTWyrIa(Y(kgdKI*}BCY=c<)8A0hrtg?&FDwr zd9)t7CRT@EPcMo)^FV#jk~_ztFWp7;OlbROy%M*C+$BB&41bLR#-x(JaOgAaB#}`- zL+)8%^id7;ERvlhUo;aKeoOap_DghMonK)H_=)O9z~KG>F!UjT%GzXO;vk=EmPtEWtX?YbZp0jg?fum~Td)Ei8 z|HlQn=xq(~y0yI9r%IK z)DGdcFF>2G&j;r1YfEtjY2C84qHz;lp8PxBPl7zoO!l5{v8W&a3-zn`W>j8II>qVi zPvcWwnd)WfN$VGP6Rp>bI1|cs4yODSd^HFDIXnNRIO@uQ;qD$_cH?0v&-S`M+JpH! zAN)vZ+SjEYDGPb#_Yg2nNAc;>sh`I`pna0ar-Gg6_e3DaSpxdJ?rQkWzEAnm>!jdI z4mTjbO@Bb&(0ev8-g^RQE=zuLcG3P{yNvcH`8FHm*}HPtv@^o=)ow^B1i{IfKNo zXFpa#U-+d6=$wbGfq`+9566HIX!+k}V8~7DqkjR-hmI3eZ`}gg*TwfYK~K5$4C3Tu z(>fK^n${W5ghh~ROAH0d7See+v@Z^EBy#3}A8teQe9SF6pUU=l;4jjP{HM34cHpiY zPyE05K-MeTud6%Jc}G*L1Nb82c(h}FkB*>&A85b9>@PrhlEXC5c>1q{UTj7p^vnk@ z0yR!1^c)lSP<)3D1370q1ATQR&{J-t@ezA1|Bs&iFCkpl2(-4)*ECsa;ZvP=1q}&^|H#%4X=O9YR`<(y`d*@U4Wj=H5(W;xIEdPRDd>Gs2u6_Euj5t>6|3ch2htd$pJsq{55Ek zgvPV^y#sV~4O&Ne^Lj&%clH$co-=fw&3*bF_06nHd3Uy^xC1YzL!a9+2l|YmHxXC3 zTm_)9MP*=o7iuSmtqy3{?px4zGkvi4_T2@HV^RMM1n8W>dToJT-s>dTiDRBY&#_Al zWKE_0L`s$uv~13F=;=S71T8AR9%xud{w2(XSijiogwT^tjDb9BE$vT2x9EKDsCXEB z>yQUP=Is5jV|7e`UG#^mh%0!5#$!|svd@jV4t>Q9I+t)})PbG2&wKF0`%Z#(Oxsto zZ~$mizkrTA_XKkJ+cezAMqOzNesF(pp!+JF_ax1vC_mm+41E80S`R$8TELF;Vle#J zx^N)(-Sj~}d;cZSiv3K`DH)p(e`LWF(AJ65A@>IN0)-VS0dwxXho19ay5~rc?S#H% z{sEK|+vEb|{&%$B$#}~IKQQ$k`1(>AKwaM%=s$vIYe9#b)Q2C({Up%AOSIn*m7smR z5+G(3~Y7fr(pazLFeiOmf{N@SWZ1{xK>@`wfkb)+OKe^N?!; z4(R*N%mIemJ|(*ZHPCmM=5O=VW01#wpmkQfhWtv3)B@jit^xAyDw_j3)Rgqn=g@pF zPa%J-GS?ta-!%lN-AeNTGkY;;eI2?lR{Ki8U%Imn_{qakfyOBY#Kn0@>uhAhL(tL% z$00YJQh<(nVFya8v;f+Fm4sY*{m(heNbTZ1cN22o%^_%qoTHS71YcL^tLO1Zezqs% zu^lN7!ktYakNY?ha@WO1kjrk+{j99?anO;2wMaht5cC=CXk3d;X^`7*)j>U@e@q4) zQ|CVPbJtFQzB_sj=vb~4Xjr)l$hi3x{Ya^&c~C!;_Fvqda`;L4cP@}ym*V7?FNJ;_ zn!Szs_k+?v%d@2@ho^1c_|ZL0mBY4Fu!X#=v(9(pls`Z@E6+k81sVd;5q22*doXi zPSbOY@cCPy)7Mda-evtjOV@7$+IHn5KEvP%pbNfi13#Qy)X!vp=DFmS3z5&f(BIIv zG&u%+VM#XliZaxX953pDFK!nNz4WHE-g*1byd&vK>xl8vXUO?KsK2Qg^!(nP(FuI^ zOuB#IY^3>#_w^-kH6K%OH#1#~2q07j2|hWOOuD33Yfd*B)zo@;9mpzP*SNs27ba_=($m*Di?8Bw0q&laW4)ur!hS*OYd(3 z-#38HugP(=p2cKL1>Z9LGV~qIXn$$-4F;WJF`}H9pEOUfYu$mqEJXVa{g#%9FEW_g zN9?C@n|zJ-X_|H=A$JX-=ac%BG|U5{Zh!im@6D^BAii%Iur zB0HTwWrJvZ_!4eVy|>RmIqGIbfsA?%_=)t}hIuS9qyzY-n+lZgnzaf2GbK11{3vUw z(uMP#viec@)73i%`}oo{A85wVz9r>V3gqH$R9>{dHtcz#%kZm+nF+tFac!at{qY*^ zf!rT;3>X+){;xv5=+4bXfAHvO9`#+J^+dC&E#i{&>4N+O z&(rgjls&Xw3L2PDzHDlH=&@eX`OtKS_9cm$2<&u=9-|)24zxc>-Zus``^sBj!n$hk z!yHcg0NI#(;0p)$N4)C4z5sLnvqR5ypbU_cxD@fHzqJE{=V_gaR#88(_Im+8(WhuW z(RO`~IHd#qz~FP*PY4H{hCO?{gZjl^X`uCN2khf7)dtEI`5-qfp8|W+WmIYy*BUisr}gyA+f!i)#W5ET;24_wi%+N&ovl==&1s{2;ux z8|B93{{Y`U$OD?U{R{NfD`*`s8~+1eS#1mS0#@1|=-$)$UETN+_=?mvC^vf5al++q z;YTQ=b%3$%0{G_1E8#D2h4LGfI~?}Tg>;_v-z*23J)Gv*yq`H(ClkxkJ}S51OYnu` z(|0=w{<3xz0Wy3G(eEXp_MlxGN1_}_2G!Teq4tgac?NuOgzotyw>E?JG^X<-fab7iy;oK}0)E09dhaFDjQl455JJy;fYueku3d;rGw{zj zWZ^3KmyPHKOu0h)w?IRh*BGKs@T+*92-F>*bzQUd7yM@QVNu+J$5LEl*8^Ffg}}t{ zK%g^wH1q@=XrAZ!^1!zbY5~6U`b@-S-1=wSex&g)Rh&RMzMtcu@1EKpsCdx|cB)gf zf3xPi248=Z`kUgw2hgIkbT1i|NBef?_!RJ2wY|WonPeZX(F^{Pv#I^vCFHEa_T~S~ zz`XCAe-QJv{eT_wGGp2*tQ(Fh%Yg2%AN_&#tOVL$nWO|A*XJty8pq2quLp13DpTk; z>t-(WyvmM1d!JLNzgR=_U;Gy~$_c-&47qs$?JtyFJn$Ri{RI7VK@I3dR`)|3ag{C5 zmt>zpxq1_gf6*MOuW=fk-xWtnq5gqSBZ16fL*Q5R<{9~~SpxoJW_*GlOWJhseWeq? zS3jb2jKen;<*~|bf}YHN8+v(zNk34z7sdH_3i#?a#en=^5yb16OZ%7H|9H@|Rys@N z%IH2&wD~&xN@rApoxV5^_0`Qj4_Y}w1!O;Rqn&a~-vG^MR1#<(`x^dCjVD0vnnU>w zrhP-)yva?`F2)vLQI2`>b71m%JLJ(PbKoa#2DN9P|1QX*Hya`6yuFNg^hpoVuJ#+V zQI2Xm8+I(lNAUHvbSOu9_XO(g9nchZncuo2KJ|3kZ}_&YfW19B9{o+ekoF0pEd`6MKa3d%KfG42z!z6*h;og`X#BCw7sA;!*sg7Fl8Ah$vxomVjcIm5cDd?79Tkyfb?IoC&2EX4HVe$>}meGKfR|4JY? zTjs?S%31gBBkq)uXHcF|(g$`KJJ)dv<@s54s}!O{+z5FwTja=-yx{=YakUMQzv$-& z5I=u&7V51$T@~dDmnTCmeK`sC=?%*Q1q>eadHF&3V|3dJTCg(;`3Mc04m~A*59HS3 zZ;-E;a?L>Jv`&D&cdh~D8Fo1le^!nGcB;CQ5uaQ$33jskG_FI9XM@&=*+5^9TCjJ= ze1gBoB_H^zx2M35-4z4A@lgiaJ%3Sg$XUB-J1^R=t?Hu@*2~&_aN%R@m zWt}^Kcz83$!_GVFGibvDC;E+`jS94665SiP-nvmQ+hQH+!wpP;Jmh)?zsY@j!mn%S zNz~ggq%P1H-;(NkHxBvHb^aIpc+Y6m&-~*p;$wYpgL=8o@IW(Xr$gWL#t3_Ml^x(q z;vbXBdBl`{xr9bWBpT}|BZP%VYw9k*)e&@r{vjWpuIfJ6Zxa2L7q|h0pd38 zFGA)1Hx+T{X8%Mzy(vZ6h4~D3eT(|WuWo>Nm@WE1-&#Hc`3?_1j&US6UxI%A-X9px zJpRI(h4%Ri=90ayJlZ8H?I+?_iYmaL$o&Q7avG$=-rH0PdF;VSh|@i*D&lcp`w!)E zXPp2YD%u+H^QUw`UPSSUD95=e2Yxx%@4%0IDUBHyhyFCjkOZ#C+}>J$xH79NUv8Jt#> zD_-&mwDauq*uwmzui&BI_QYsbvVxZukq~mI`yGrYgB(oXl^bO6SC*2r8{|R2U!k

    {?&bY!7pp%D(Fe3 zc87mUF){SGvyX!2Ei3`OC~bMPQ=WP+^u>D?LC?XqLC$P35_Hb&-sp$w=Ch%n{v-|Y z7_1E;mtVRKzj5&_$YU1RLFcXsKrZ-d25s#ZgL3$ty@;RJh{g-+G|l&>YM&ryDERPi zy!R9|ca8=2qVCj=f`!zs#_btW5^xt5>OuZY74}d@Jay` zR;qx07FUH?t+2m@llP-Pa-{L-hbbAKY83L>x9dZnrym8Bu6ToTOk2d%{^Jg#oIu?S z#G&)wLU|fnIm$z=_GkxDmvykqo6N;JoqtP@y!f2Ap`X`Rh&(VZ{sQe;IR|!elMaA( z>{|wV{fEb(&CQNNp4UkXe(r!C;3q%4f_BP0ngHacZ-if&Pet)QzW{!2?cd0&&d>?8 z@xyG;0atU-*%Kn5V_tTLeTt_v$_bBW0+~A!kUy)YGwRPBdIa_I8s;ER;cBzj`0Fw9ZfW)s^$}gyp*_suwaBmdj1hE> zt2F$@C#7JY#ObgSeADB*Ku_i+#G{(E81k%jW4VR?6W%xD6r%A{eB(m&njY0E#Pl0) zS{5Q>PXp*1QdV*bNxttH;&pB4)Tof=Rh|G^v$8(Q$-B}C<%p`fG2fdz_)s5>O3x|O zH*pW3KiZCP>lf0#rF&7HwD>X1d)|?YfcmK&(Voto`;b>=R883Nr_Drpvc5Lt(PNLG z-lj_*VHec1Dc-1DexZMUtyY{uRQGhzyn0HA@&x01)Gp);6iWn!829@Q>LV@E9CBk^ zdH8W=mqR(s4rMS8W$lOtEvOxVJUcytdIp!z#JFKQIEc@3Y7@#+-KYxvs3DsXzkbYl zcIe&!F4x)04;U{C=GUQ)0 zemm@J#hxRMn7Wg}7d|ngTuWO8;*F9mg*|_W75Z@#|AL;Tej4P8&QsB@iDlM8Pxc}Y za@F_tG#|dOz+cv~)`(YGybJvBSEYeAsB57Aa*NCZ-@iNos9Mtse!NHiK{>*>n((8x zl>{BL^dRaN`6Na8dFva1Zy47ae4n;I(0}(R{AJzOz@G0I4ZoSgzapQ!WmnL?Iqm)i z=IuR&{t#JP0dm93aiCeobkM#_ACYJ2)$j0cb?k;+{;>I!-{;v_|6I&os26)j67+I@ z*Mpq1w+k?~>}Be2Emu+g`%pjjpQ`}AwptD78C2<@^?S#GX4K1re(u&gppC`IPr}N( zh%d9;pSZ7T5ts6MQ}Bb$Q{cz>M2vYucBv%nRS&4%5!pw~-`o$CpeKB_2Po^%9(wW> zsqn{YJ_G)AkIy47mgOa&7aLpzzsgA;ArG|{f}hT%eV3rlF8Fb#r$R2S`xE1k8<4|K zPNo6q)%FMS_icecyX7HJ`=S`i=Z$Jh>q}ZD_`;dH;ZIZMC*o({E)Bo>6&Co(9xDND zSic+ktli^4>js~NpM*~y#3_ot0DIffA&{rf_zZnsk6WMOMs2C`BwpuWaIb1AOgw4RBVb^x7tdIjW}9p?l2Q6a>~ zZrKL$X%8I*T6}a5=h;H%_{igv@SnM$56bmDp?!bWl}6C#*vkNIc}w6o>fj8-t96=z znnMj?7km+o@}jqdfu=PLk^h`!v|cdAj)lJP^?Ug7yUW9lA2$d7#Ude2_=&Ae{nPC|iTKpZ1wi((`6$=)qa$e9gQ`Hs-6ZgZ z3xA^?IjMB6$*6o0v@v@i7Gf`ZnacS|XtK&JxUH`t1uK7o1xMJLbZL zK>ycg;OFwcfi|5Vjd5r_VFsW5rWWE+usc$DAKJoiUd_pnr#~1C|AAgjK!?|KfnG+x z_pl2@D}VwnwS!Vd&;PP)be|SKiQe~NccRl+$ z+~6%RvzHg;=DG9~ZzH;|P4AY4I0UVB0*xnMK;Pe#<`4O%-l#`T@+;)eTXzNKdF`Gp zz)Tev?a67n4st=iIOIi?bRY9}vQY=Lu5ST7|I1wHCGP1>?HAn@>y>^{8rIMJg)~1( zPt}3{=r@C?Uu6wM|6n)b!C&Mj%`g0sEcg+gUk3lVFT0VR`Z?;!YcK-kg%|jQ|B)75<9dt^pfXPL3#1B)`GUP=)R8A z$pyRMnKH0*|F;Hcn{y2M*$E2}pCb4ReDjP~K$DN=(d=^)$kk&K5Vw3G6aIYt>_FS& z4Ja@0-zK1-dOyS^mSzC?6BsB*yKNfe79HJ}$xf_>+*nLadHK8za^3DN@N01T(GI39 zbpH~VMDqZ9%{=(ycL~5gJG2V%vLgoAtaql1bPvgVUIqOivLF}wniaF4 zXFRnD9Qd>K zUIM%He>P(uDC_nJ{V0ZC3FWH<+aYK6&VhZ(+xLhwtJ-;rccl?}`FHxGysWqLQJ$o; z3wDW{FQUKrTMk5d%wyj`^UM^dc<=?ZlY8Y*VC{ACue-RQr-4ce&f6JZ2i% z3m&wBKXGX%`jN6#Eyz7Z>HdtfkIw6C?`gylw_qalJkv&kwteY|dKwd2BEIZRvp_o@ z^+tK(+H_uL8mJ#L9dw`L-%jUtbz>Sgf`vJVGbS<*@kI8VK{?jzC*eo%tt~LymW=p# zy+xoskG?{W|9l{5_p`q6Bd*jJe8|3;dvsxA- z@1o7Au#dH$Kt5!K5cK36I$zoaQ{g8!u_*lKKbr{@Egc9wMgrAa{%!;O*c&IKJX<3b z^t`PWQk)%bpAp_iNCZFZ4>H7~xw3@L#S5h1XV0VOYR2Z_%_(@1-!VhyI7xj&5 zB0;>`BJJQOdi_YWkD5^w=)XnJ0bLI+K_35=)&tjslJJ+ZLjitP)vC~sl%@A|GS(hJ zJP9B8K>PdYIKT5h^#*1yoCb8W>G`_v`QKRIC6^Q6&*BgOnSCPgn=_{mkoPhX@mr4c z25rird0+Kp66zzVbqM^#t;K+B^DXeTN6M1j-kHd2e%+Fw`3)~a?y=B)m*10ya`{t- z!alD2RWNQX$yK^f$v`oTK0D*$aAMYhkuT6G4i0D-UH}} zxsLeN-upn_ilu0W(C)U-=cbKDeEMtDZW>-X$-9(;Uw_wHRBn@J&`;)-1*$63xKrO} zz+N(e=D&h_KIn@!+yXx{D;II7{{0VrO_hIwPQG^nexzr%L(lv8KIDR0v>%LV(H8TM z(>W6P;>50oo}hCc`UR(z9QzgS&R6i4qo#9;L$(lpV!G?$-*O{_eM`o)SxmiVX_aFZtm|4S_ALG%7^iy1C#xzE{FNjn(J~`~~aK z^NHl8OOV&-JuOhKp~@QEr~1k)!F`w2FqYP*Gg&C#{r(vAWc|0mPv)I7Ks$Rh@}h1w z8gju>dTzprhI2UfE{!1HpI`YF9B^aE=9Sv2t5x;-dP#-&AsdfDs=*&dD#Wb zFR^n+V15a3Y5$jeG70vf%iG~E-hLM4F(yq%`?#Y#h{s-OALzio4M2NI+Gp5C7eU<8 zJ+#mD=5K*NMe}X2%ex&5ebMxypcR?z5RZbT!hSfR9NkAmciez-dA)qN*W|>|b1UPw zVbEu+qUSJqb)9I3_?fi-611p?{-R^thP{9}0P?KLbe@ZuO!q%2=gJ_T#-j9GKX2{> z#3eD&ekX1!oktBnN5GH1<_D~g0`Cgw#Wthog4xUIUf5p4fN|q~+ywfuohJhGUt7Uv zX7Ev-r2BB7;tJ){(eW|-Y3^r&Z;zt+K+@<5;@0%w!cR=yFYu$@ME4=;lWQP%zNks_ z(B8R-FKz<8&l@|5_5+O7a>z|54nwXq(K$BZSO)mAiGQ9mvhHA9<{W)b`vBHc%%lEq zJArIN73lLSIT43o*uS8)txsdTCzzLjcDC&RKh75p(A;;l&+(e>AzpQv;z0j%ns=Sq zm!Y5hcm(|DmePAG$y-mO+}x!!A6k0S@2@PsD$@Ls-WSOJv+mhgMG=>B(<|7?PdF}o&Ew(B(F${IlLE$d3r``pTwv@eJq*9-Q#od@AR-Fp=J%DRW0e#Dq z&OrM-+GoXgq@K5J(!px$v6cELupzKbVx2j6OF1HN>_D$u%^mB_bY`DXAf&yFL%>Qo-agXr5g z=y@yGLY%7dw13ZUOz%bcw+w@RLIt|-%ls6Lc`5X91M)Abdc;Al-*O2xxu3q$hP5wk`C-$LT zuw##*eW7>NHSGWW5_(ULTeKMB%`i4Ye`Gj|P<#ibAl|?$x_4FxPNF<-4KL<{==;=8 z2^r^L$CS`Gau{^5W1pe^>`juwU!>DvYPa!Hl&8B9i~c1@N`igned@=&79C+9{+Wxs z1=}c~?`&TW`JGQB18Dvh%lwebf9!-`52Gpk`CHD0 zKkv^YkQ?(pKrWne3VDkiyBBhc>IZ1f{i;CCL3;l*c6&SM3vy^5uFj+VHE*#E^>lA} z3jOTII&?0LDKdcJHfx^Z#?=t_q&*?r%-#t`+bz$F-e~O+LCHU!msVvoPweOC8rm@iZ(prNHJ@1VtsIQ$x?U{G!EBpu}dm-m?R=_@SOcCTg^tdkK zwN<0{!1M<;Krh2g>y@T>1H`Y5qV`D_t0Jrz@>*{LClN4>b6P>bdSuzMq@H=g#{A{e<}| zfZ4;T{Tcfdh>!P}=3jM(tB?l{4hCOyWI0eC=mdUj-S4QcWF-fAiOZ$u1iGT}kaK#` zxmwbV&PTcPGLmNE%W3f??edw{hG-n!_GU*mj7vsY`r)jIae&^KLrN%en4=iBIc+d!MH(|(Fqi}q1@Pk*9(lcNv(=eO2Dk8h#;Zmu(>KtUmFWR{0gK*~j~`|N9rsTJ z?P$I@8v3qzH-Oe7a@aXt^??ju0QpV0N&8I;vjxgy)L#xcZ&McNe|Gh(Ep%=G09vJnF-oy6u zS|bj{sk*SsNbiZf*|x!#!bpmUbj zK)r*{vr(_)MbxiEiwD4t*>M5nRw<1S_rp~1eP?9As3B^|6}CV7q=(huhxxEH;?2@f z+_Jx@KPDVJkACX2FM^#eS_nVps`MNzw0k>f-oDR>FPt?9DEd7J^|8d!?+?Q(IcWEU z7W8}~Hsvj~&j6Y~Z3}6B(&hhz9lP-c__2C|@E`1xf%sf~>71roOY^I-1>N`9J6wXE zOh&&mjOm?;{^%J%?==fc9l*M%^>l%M*2V)s@xlbuEAXA}qdfhOA+CU)_F*C|{eDh% z!a)2LJz-~8H>dbEW}sZ*eir3ndn=%~3*Cb|4c}lF6}1rYdj?jAJh-+7kaH&vDB3n0 zaqueEhhE-_-*FHzhjXUXg~ZBd|~E)@M|4J`-!{*wBBmJWm5f%G=(3n=?*Yvj|Y6usOPX_ z6sPgvyhXo{5-cAMzs6Av%twqqw2z4CNAJf7YE^?g(2af4n56CMwjoM!^`YFogm8aj= zM0QZzMv)kN_1j%2mwDy|$_w#S=)dwQm(i~RdK%Yp#a@G-|A5{DFc|3lR^@yF_G|X% zbpA~FOz-hP>yR}3DC+$T|ldvH6xs!0=~wK#*1iVN$>>+qksV({T|g-ntpGp zSJCgV!Z$dOOT0Ax1bt}#khAv#`k5!U2iBE9)?~yjd0Z9k=e@BDbW|;RuO)BJH^ifz zIvM^LOX>IdIjd`c)=WsF`pq7KI2nJw4-+F@48ErOVCb0?rGeqZr9=;<{^31J-Xm1_buiGc>L46f%M98n=3jMAm=-ff=@RIHUlE;2V{WJ_d_@dr)UQsQe z=O3ycbPm*iABj8$e|3aE)|HOX=Y6C5HgV$`bk43u&()$>?QjpKd2j(JGtxbBxYHp# zSID_n1NZB}H&-!VYi`o>O#L7lZ}u(GD38&FXj#FBwF{r0ur7Z@eYJaNUoP%65AjQS z(EcN5CEXt~+Wr~eeT>M1c*G3KNAzgKZSF?rO4EOzkbkj>ey6SEjD%j|w8}t#1?p$k zNrcR!dX%q!P3JwOn!ba?JTn_{1iDcBX2;O?jKUio@Ej0HahXb95HesE2 zG@{=f%Ik>X&$DVJ{Vpym6>&up&Qd(w(LhC(8+v?Y2cT?BEUhDBXP~_dJ2c?ylm48q zmrX@n3H>%955C*g{_atT0RPc?#vG6Nb{tbEP9*y6GyTd^9#k9{3RHuEsxEP%$ zc&asMM|)*j$9X?#9%F23jl8gz41<66Y+4U3b|ds-+ie6tqxk{kReLlR<%??2{yuKV z4vZ^xcN!O&$JZk-ak3tWC%^R$prtyUKU`br9$NF5_CKndE`G~xq2|elI_mJoNtAoyKK))}IKSIxcocw{{ z$F%)(-#NGj%Her-qaS7jPeN{(ME4DrY-+!R{+p2p_PK`8Pwv_ddKw{(``|-*kJqxG z3(9xQ>jiyx>xC4@i#n)hy3PW*;NEdy#?+ONyO+{BU>!x@_0M!sJ2~6YcO){CXr9(& z(>N^$D9 zU1`6gy;vT!=M$}uyd#yMuSuhOoAi&*;7|GAC6p`5YK?kmpR$1|^XNM!p3_%g=gnw^ zys6Js#Q5X4q4&qqpVRve?#)8T6%C`{kJnR<{-is53FTz}T!(m=!|D8Qnlk|UoU3$i znIBE#&GKkC_^LTnKks|`K80u3PQ(@YLi>4sxv^BAY$nPx?4x~QfSUw5p;KS@@iwP< zQF@Z@Gj-qTUQU}%_b_$_?Gq()=zhmLq6F-fcReUi^I#$9xN%*mKL1ibPS{TCw`}<_ z=w*KF29*5Q7kctm^q!b>krmHtqd&CAb8JK0Us%7ayM*9pRvUtK%yp9PL-J0aLcWZh zyI}s!U$`7}*v10#ZVW;GQzlTn>c=mU*UZ**58xU?{WN(9oewq3=zA6Bx%7NDs;(O4 z#h#(}xWb}7$dgn+`+xD%CCIDl-8_`%{g2KESs&;o}jEcy%%lSy#{fa zwRBJD-n|-rQ!Z0~5ByE@2kY!8@Fh#=dp7)}PAJdRf$jyuIlqu^-7p{Y()ZB#QkUG1 z{N{b5^PewIi9BZ&%S8Qoa@u$4&sv~oxJb_l;`>oQ;Z~$LC1bcKk3D2RFh7Czv5_=- zUXZwl&VgA`bPvcoNBe(Or@!D=TdO_dGmL9M?Np2215>vYg3tYjh1_>wI%x4IdR`pbM(+{JZ&LkLgJ~Y~NB^1M zFFc06qtl=F$iF{9ev;qNa~5ldGgvP&n)V0Z|M>^j_1JQh_ZZF=*t?c&26}hrBCho1 zv>(Y@y9jZ)>(hB&o>2#S@*KM7Q;ggMI;Tu|i|{gItZ_oixJJ@C05b^x=#(0a~$PTz&moX7)Tm^2gU z9C`)yl*R1@omJ`={EK7hy?564)8OZpr|*fmO6nlj?M$aQOkE+5o_iN`%*N`V^QXNb zyDjvcOudQ5WBAi1=y}FngPbdzL-}}3`(?hc6veZI?qjr9=zQo_Q(XB^CXs#ZEmU6F zr@-{@w670VqI(+eFp{TiegJ_Ueh%YN`-A5FoEfyA%Z|E- z@vQ4k>$O8e?~g_rpMW1vS-S5N#zzo`(n$T$JB0G@o)!l^M+Ft>mm7m}qbqBXkK9fj zfQHF4sQF5ku|{(f4@sOO=IxWvm()8aM!Q|0>!?MyiA{|CzrvhFm^v7Ub&X^qov$<9VP1 z6ReP%Z!`rm=h1iVl6%rULwsT% z?~7-TQHSe}`Q{*ZSaVE77@?*TRK(4duv>sbdw;)=o4} ztEU~h3xC%5rq=Tvd>RKm3E|!ePJ}aXG?e8M}=$?zy zgyy~Q{OPdgcB1OJ1mBuJ67kxe(Rb^mgI%|MNdO!etWFU|RdkIK`y$GbiK?9^gzUyHtOUx-v1sWGv3N$~X zriUY`G&83pGp~3`4{LEwW^(G3$y2;pyji^&LH^BX&WJ8e?O{o*0O{c?Ee4sv8K0Y4 Pl9-ZMk_dEWX_6iQK421z literal 0 HcmV?d00001 diff --git a/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb b/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb index 339a80f67..a33d07cd2 100644 --- a/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb +++ b/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb @@ -841,7 +841,7 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -855,7 +855,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.4.3" } }, "nbformat": 4, From 11e4e4a6ee3ec3062af0735365c63237d38491c8 Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Mon, 6 Feb 2017 16:17:19 -0800 Subject: [PATCH 02/31] Revert "Adding small data caching for test automation" This reverts commit f8383b25110077709afe935513b543e054a5d833. --- .../Timeseries/DataSets/Stock/stock_SPY.pkl | Bin 240560 -> 0 bytes .../CNTK_103B_MNIST_FeedForwardNetwork.ipynb | 4 ++-- 2 files changed, 2 insertions(+), 2 deletions(-) delete mode 100644 Examples/Timeseries/DataSets/Stock/stock_SPY.pkl diff --git a/Examples/Timeseries/DataSets/Stock/stock_SPY.pkl b/Examples/Timeseries/DataSets/Stock/stock_SPY.pkl deleted file mode 100644 index 1e10dcd6dfd98607ceb5e5b4a2091d43f8bebb46..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 240560 zcmZ75dpK25_b+hwh(sgN=A3KHImX_5u0Qr6mh^BbW(FKdyn9{z-CXu5?hXiY zSM&&S@pDg0;xKRtb}{_V`RO#dsI*gQQE9SCEY88BA#hq>=lbamNB6VG?{cMo+o zK^u+sTA0N8zvus1fIn7ek;L-fN&Q3o_J;q@!u>*ggS}mXf?UFBQs*G|-2wjlf`dYK z2UD0N*8dDlOPWWC{%6SPG&6>{G<`gZG+8r7Gq$+@JB-zh@^r_IOqT0tq#5J? zjABk=j7+nzurU2c$A8|;bb`}dk0Biv%f0UYX-O=`-kx4*NzCQ}p%hQwHvmbo*#`KA z{HLtCZa(7w)96k&h8(5IllcEzh~RzhLEcn|{}d!GY0-ZwL7#(ru(zN4|5m|EHEF^B z--gOC1xKV=cnKu2pp%y25#%074T4_6UZP0VYuSGj-CV&#S5iq#oB!X;SdtjE{=du^ zD6Bq{|GqRT4!wfYj;0}3y}~$rYu*RXj7TnEU|7wTyiSUY&X9VSsTJgW ze|8>e(*9qz6D&+sE`dKKnr5M4xr3<;88dS&R+fBrOt%w?i*!rKkpb6y_Cm*9vW_ds z;)%OO@OO;WFKEI)Y$Q)+UWzya$ z`FHTmG&Bzh+@wUFV`EE$pEI%s;7haZ?W;-YzOSOnWQhOaJ@DZ_fojNivWR^RY1#cp zPlY`1dGaJ2omtTjwGyipRY^JRuqA8Bu%}$!@X@Y|l~C~eS~fM({YZ-qv{p~ps7_vN z7EOWU_BZ>W&X-LJ>&O$4JrVH0>P!y}vgN))1r*+TpLsp$^h6&9ki%>KD4Z5)ex*Zh zDshzANTz8|guub4aS!1dmnD33+@GWj z$c)^`eQa0wOkKzGRU%OnvFOZ5#Q{>rXyZ z{GIw8Mjc_h0S6w(U$iHccZiO| zLtjg^9muCqo08$Og+0BHvmxWr4)W?yy_+LBvwvGTG-ChExRX@9du0?J*{r4IL_UAp zkq9OBy1#~d8Gp+-lRGOa`F4@l49#8P?92XAXzCsE51#$aVc|j^z5YnUmF&`SOn_3) z#=GG@*SHnC$p@3d!SKeFm(FhF+&bUuaB~a8Uzoik-OQc*@>MPizPj)+&V!U$6Zrz} zZ{U&iBpYom1w#H|je5wK^|RQE+#;X!8|K~>H}NLNHdkc84ev~b;mXtVp8JsDQrY5r z$mWXG0dTQVV=eS}WzXeHZcSP|1M`+%GxQ@Tu5V0-8#i_h!jxy;Yy8Pp!MnZz)5_~aDSzqso?Jhf&@DTsXEaO@y#4>j`HM=s@fQw4pq z_Rb3?YvfsN;r!aO1@PxyyVMZUkm>7Nn11@us{P~#DS=3+a{Fov6!-DG9ZCkw&a#A& z_mWb#!UfA#tbj4OOBcz_IYjAx1@?~jUD zL7wQ+Th;22WtwOIo^?$ghEgzT9O-Ua27Ic`8f-A7rmr2F$7 zBk)LpCWJ&zS^6g)a2KrmL!QIi!H*<50--?db0Fq}3sjGI)Wvlp&Y=mS1H+j$I%l!sTDV$Mfr@FOovpHX+b+)kp)(57L~=Bfm3unCFwa>2Bv>s`RfB z7}ayTtAKp6$4u%HDf0JS5cD|_d>`HsG;@>a6m{{ zt&n{Bq+8-Dxy)(LUg-Dj-#vKuP}+hbl5>%qBb;d*HYz5K><*lPXFe?)fZLhjvi{4T6}FUEPDy3`X>26ub91zRZ^7 z3bHX@jqNtczqZu|?rw6s8v&E*0v^NOEi6KJ$dv<` z9&qs)TkC4lL*~l`SWy-I4YHW>YuAuldkd4`#uSgRyJU*^Y!iHYGew}5T%|AN1|wfo zl|k=>{patIRl=O3a9(k)W*up(rJ4vYwKczj?-z;i-6vNU+;D->YYj?ad(*2qSQByP z^8<1|m%K&;X`fRU4+|A-y5Y~dPf`!b5Bo0jG?FT;n$9rh%+nJ1OvddG6u&cL+C(n! zyRG(!beuDdgT*QDI^l2e;N{JvNf~<}RP$(Zd`!mubSQ=|62AR{l1pNZTgaedp$zEk z+#S}>{GX8L3S?_x!uH|9HuB|2#7`)FV4-0<8NyYN1|R0E8-zElrrV#A z41{!aBXnOMH>2z+h8{v0;V zG}eA01ri;&zLIVt-yC51wIf#{leW+d{5H`wI7(_C@mVuQCiDM01m9db{S?Zp%P#vy z3Vj*k7$-d=Beuia3l?61thxD9&}Q{Ig9%di!<5o@GBqUeAbiIr)&>sDf062?Wyo|w?O1HIpA5;0+oMh3;!gaig?|Icb~4v zn;|(}s>h+jcMF|gpxL64Kmt1+xfwZt{*5{2Xg> z0cr>ij=_X0p&LZWkR5B~mXZ&@J`RO^2c4Rr>%vL?W#oCAO_pNh=+NsNs1@q}6&`12 z))Xgu&So5gk2Y@$kst-%jWj^_y$2U9CvP$Gxj^RAS8l*@L-%u%q|U2fBk+XxiFHzB z-|yw|P$8+Z3kq)xxxa$+dd9&cO;);|cYzRGI92 z7PAK~-@UjRE?nGoX$|RA==}qhXw2!UkbhcEorGqNGW~EJ&rqu>8GkW+$y%~|4YxO3 z@i4Cv25(bmQzKnCrY2x%*0GK1jtR0~G{EvljpQXm21^J-AP1%y<4RSpM zcQOBLhnp*JRc|4)jZHYL$S<$^?BM!6L6_mNKWtNQf9b=1YqC+-UTG`I-#Houce}+r zfn`&IA~t01)fa5r$g%a_+u(*LfAe9|&QsrE@0hf%E!mv+LBWn(tQvj*dNeL*ffcrS zLfc7}PimfU;@l5wdvfEdV;5n{y`|&ut!0_E1G(zGVKQ8j&Jw!nE+!{zjwoDjYn7PChvtC@Vb!;IA1$M$85jr zuy_^IU-mcUiBq!eiNF342Me${YcA2 zdg<_de)k|eZkP7dpX~W0yDWf|i>UR5VVu@A@KN?K$6oT*mVznBJh09nki5v^`W}v_ zPb&qHeI~a=_K^y`#y+s+Z{WOOQaFXp7P9F-)D0oGz1W@#3*1NF!pZ5wtM-$634)PO zN$Z7YD0#5W>o#n2`pXhVijJS$3ilkA&VyH)!rp|F({>BwBgjo77sFv%gjzE^toWn+ z0NGKOz!XV}SuM4K{sT92VeLM{F<2zS(i27gs>+l-NE(~23WXWH_Z#7`uPuKx*(uJ? zaEM%9R%ihO^*7|e`WMf>z=a+j>kpG=#Z|#EWR}+E1~}68p7#j3&UybXxPnjBJeCYD zXwHHSYj=*oMUN)b<4Bk7M~^}aE`y+>WKPbjdiYh*Z(%&CSELyj-~emeBvj6D(Mu!!-jqkClXv}$ zTOsGaH^OH~htxnXcvXU}5}xU5$jcyyJho3j)tRq4ndFgUhfl!gO9cC1U3+KqS(1B~ z*WxU4=fod(crE7SEjY_3&3umh^k{Gls@sQc$R>||=1PKH2QKzNsRe3sIVA7>N&fTX zF6)Hd@W!BM8Jr8g$&gEKW;3*e$ILR1T_9h*QFsMq{O?O&B=`T@76Nyd^SR`aWd?;e zAY-@I9Ngmh%sijWopC=0ldeg|7m&Rhs=DCHr{+?Z$nah7gJAPS$bDFGNu}g6$)eso z3%52qnqDFE>?bne#OJt=@a=j1&O&n4>Q@q1$;kV@dts|JV;x-bA$>s+IWKeTFK8?G z$*7pTR2_K+{xIVmf~!yN7Aqm6m(TdY_VT2=aOoxq&g-OacZEH)Pu#cZ23aV=o(6wj z%N~G++RDnMWct&_Xc%+k$ex?zGk&3JD1P}Gdl?y^u4@PHHFsTt#gV5^mXp61$o4~% z+`Edm$jsGNQSjsap;q`JB)_tPl$^JY?KT;d`NRg^mvhO7JT+4j@UMS)UnObIV60F@ zo;&#_0)Ac|_!w&3VimeWN_#ahSCb*X?5yF##IF}1pXlLl(6vNByN0xM>6E)mp8xI{ z21k$lX@Xh;Ck1NBtskhIsPI3A=KF~ z%6FeUG4G}e?91F#3R}#XvmcPcZ!80fi`+s$mK&9jEf1s$2zR%!}AqMd$WYPX~f0(gyt3w+(T=TII zuH78@6UM&fF>EJ011_b(ddb~~o{|eIezrp=!=$AhWXVf$U--wXq8g5f?z{YqTz7rm z6pYu&)_+cRcdR}ISGYFz!$pEeo^+BfR~C!BAWPR>^M?N(Z>)kAJG$7qNX><(zr(}} zGP>R5YvsEsP_|*qTNr9Hr0|k-W6u|QMV6mc_k>LHPb%Pr%~RH|$z;ZI?H=;YDWha4 zFZHGuMpW!w*-Jh)WDSS6e?M@0L$W5>l|!4QUm5$z{OgCd!0$Q&x$xcO^TfBLVw~q| z7$x{e<{kOuO6qEu2jZW8pf@h?*sSlG!UM-URNIv(z5(p(`HS6Kt zqz>*+WZhEtop9E*GGl}^{b4o?&&KtuekMN&h8%%iEo%b4kW!A1YT>@o9b8|@2M5O; zATLkcRXEq6mp)2v-u7}3W)JUKGe&+1WjGAibEH3oGPTw<-^l$IA34U!#&-v{L;gUX zD{wc{r74(e^i%0OIri%KLAb$3ybUJJ-V&K4!*2x5`$0BuoM#IcKR;IhJ$A32gcUy? z>Q0e)g)yt9$q9|ck#J*caSKdw+$j8$d^`HW6SiJFwRMJEq9T(Ay&u+$!>VmtbbgWZ zK7L4sKeF<|f0OzO>do*}ZL8oc`QBoeJ6zrWqZ}?xE6e>u`mQhUxjrSgh z_ODrbpkeZZ#yK*5nH~Q>^23cUu24ny&`lWgoS%MVwErG`{srD!?75ziTyS+Z0XnWv zeF-z82Y8vuk36Bfpjsa14H&0#;V*pgP}Q7;ydU;mot5O7AAb}&pA+eV*A+@7*~q`O z20`$1Ad}NPQiD0;8cax&pM@`1)SIxA(v>!ukZ;eTSPs(l&*kUvX0oQle3C(|BLG^K zy4{0XZp(`}$>USEXJF4!Gb1iiPN+W}hFuN*0Nr=4=~zJC8f#j{O)?+a;RmgG$7|rl zyx92*$rHAE)3EPjw*e2S5WeR$JTRYO0JfYtb?xO34Opihq~~*J#F^ z5F!sh5$uBVrFei!&p=()KhX;I{H4(4dij=--^Qr1b4nod&jPmM`8`vHypVnLBmA~XL`{~|uDcNnleZXj!Uz_oIyv%j z`k4hQNg)||N9b8qR|IdH*!+U|e|d-G$?qpFt0<7V;+ioq_2$zK_)gDFY!&%rT7pxN z6iK*k4}FBq3gMlichitvD|nLhnHdNp}^(T;XFkpE3onN(gIy9X{C(Y0Gc`bBhK zf_FLh{D7P}|MXNy2gS6L&}hIaN|ijbZ@3i>u^d>kmQ+2n&>J3+DX4^ddtLI?$U5KY z3CKN{xKW+lnIe_~uZiF4gJ)j^K3+$Da%U6LAk}|ndBCFyN)@n6_#yLp@#Eu$Z3&ZnobIAAlGk~c7w-8s>|T32unt7Qikh;CFHNasHsEl zwo*%kWdkj*AY-tz%tmqx>yHq);m%DLT{6kkuoU+8_RPVRegT{H$nZJlZ0J#TKVF}# z(6{Y|EM1?a49Kk>(feTDPre5*rTAINCi1P8#~-+={kN$h8R?vI7PgK{eu7m6?>mji zd20KY8M_?r5mhk$+bQ4(|{-LEycLF-+Ix9lV@P6*_}@tC4f zsKc+LV>pu zxRNK?oD*Pw#$-1X?c2obM(*+Nafa3Z{I5fflgxkNw88yP?&PNKZR#Fmn&;;@I5>0g z1zeNJC+SIwX+PukBK@Db?}W9xeiuWo?(Uf-*|gpukSy(PKL!7J?tTxyib%8tk(wnHBKychZBrlk`sv#$ zDC@FsUN9*jpgalPE;s6ikmc$QsgUXM*js4jaAehfQkz>>IFwAz?ec_gR{PwB@(<=% z!pMlNr?*1Sc~&~%>|-vVc!7 zYv;ga>pH(cho}|OG2~V5>R>pNYtaCWlm~f_kg7u${=y^s*P6$Y&*!ydL5Z_YBXIA^ zN%c5#=i5@rqvW-KO+j#$p{E|2p7LK9Po9-zc7jJ=)|(`dU0&NVq15k@VYu)3!L`T8 z2cmqj@J2^RKq5Kk;(iZqp8UmioXn0ru>*b)kSu~SJ3>Ark^8@Ls3en(QRfds{)H+X zkg;LB<^;LLCT@NTnL8wG56AXjzXCU~>rca#cNqp!$?(nTt51^6Z{?!l;=T9UpaTEPJ$}$@_L~7>0M1ZWPsEZ|9SFW#j)LRfzh%u z==iFPA(zZt%Bp#R{CNHBF{rjt@fD1F_CWd~85DPDQ670;P{0N96kfdnoi()Q;Psa0 z=K18ggQ@EZ$j=K`#6yjXce-H08VjjQXyg`^hKrcQYL^lOQ$WRH~pUMP2)sSXPI)E5hu7(FWuCtesZCQGDu-bw_zntXgPdf>>2g>!sD@^wk zZ;{idt)t+e5s!BTx#o32B|Pk-!FHSMm~FFxV#%)gkV{uQrIOt7{8k?<+HImxMH(Ls zdJNaDUtMvBjBS0$TupX5+FQfrW1|;fV06qk=%li-w}vcv_(JY3`DdGV7&QC%w+Uv2 zof4=e;}y0r-XptfKUl&Qmf`1NaQ}i)*btbfSx1(x*d{=5An1X>s$dkAx0FXg*W ze)TDHfwHA6*$>E2-Ls!z)ALmt4WxkEgLr6lmH)v*^1}M7JdNbH)(y^3d*|~KD9@XE zwuy|$lllZ7tK3n0L<%)-j)R`I1D!DcoGSNY^1H%gN2q&mXE98*{Qe6@F_#XtkWbPK zR9i_A>DMvPr_%2kykpEH{)D{zr;f9YoJzKFfCgeCh46G~)K55|yU4Jed^+`1`6;<9 z-t7?d6Z+K-?_Nz_+Cg$^F875qWAE&qkw%AtFT*pu98+*8FGv45sj9l>6xlBK2Z{UL-IR4 zbc4IUZ7+vqhejFuNXA7mTi{ruj@DapgWZcnnDoi(HS7)lEAx(A$$4r&TwG`A+E03H z`A`Zg-iQ5zEc+H%yeGG^ zdy#22MB2Kq%7T}s?|*`)ilSc(lkYY8B|nm@+X@3=w9|%q*#7Mq_b0L@Kjk-^zgEg* zgtTv}%7BG-n}^}gPw!PflOM8k#lMg$imCxHrmndbKHIXB>nkZfFyR0foVj5*N;=9I zq{HH>SA+1kiQk$r(xjL1FjPya^ZiD~iQCk`7dJm~jFXc3QQKkA3*Ia6y0F{(3G#2z zjM8_~Tr2q?Jl7`C1``gytC}QVE()IagOn~{w}l~Va|+N^I4<5MI7{l3xwu0G4>7AhWJ`ka7!+R8r}dZgDh@mjw>c|?&XEP<4UKT}@OJ)x zq#oa>D?C|n_$EBKT_=ZuhxXf%&M#2(fY*9Pau3(v1X!JO@+G`tW!b<)P7e(7GLxHv z!*;TG%^!H0R3Tx*?yC7HUO-VNLmwv#)d8Ba{vlGnl z$h-!Je=5wvwa4z8u#?L-M6cx_1KasxVZC$VbGUFqOJY9h6!R}FXJX%1|9uiY4Ai1{CY=!dLgN4_R4^V zOnl>e8ou^p9Dq#{b#1()K>1eDMWma-Cm&ee6?q3TdGfOJk>8d)orK!gcI)wz$s1-; z;hXlPcTj$pgrWc`#Q#oMko3H?&kNpGW3Pm)&DpGrNgI1*8>qYBn~o5fdj7}>_)bZv z4=UcjCNE4zS?fkXAGUw)OUOGJr*A=aIay{A(ysch6})U_bpf9K$DJff4y5MyK;`A@ z6N<0IN!23_(h}qm z{_P>~`K7N7P(uCiqU9v_7wtK?GqTfMlDxLS>l~at|7Qf6u0FX=id6q#A+>@$8ZsCJ zyV%0+L#a$I9%*u)+(jq2tIx?)hP>fFnF;6q#eam^%WuZYlE=FJ_sWs4JeljD%&&|E zE6M$d3XZT*dwTGUJjv+7Hw3qQzoMc*<{r_Cfn)s7I$&?}iMy-Fl@5}eie&hg zN_*HGX~zKf^8 zpX&P_uOkf~&lA!h(;c!s;D;}(E8w%-u?y=-apfc5V8DaL+M49Ot=E#^f}xGQ@OS21 zlNM>R^0dGPGP6d;4SqDgTL#tMZei3WB~NjW!XU|fO&#+7E%ijmWBBA1bbh%@W+Q2S zd>NlEc}}$41%56uDuo(4Z{}b^$KK6)WaaS;f5^5}p%!ktUeCFi)N?)f z6P}!0WN1P5$6iT;N`hL0@ZgmWWlM6;juT6_kkwz8`$CR`mDO$=c9Bhcx41&4+j-e8q?M8S7kJ@StA;E2&3jh@e6w^}@NQE6 zM%e=xvC)XvjePv9*BJ`!-g_OgE>_HPCv6HJe1iEJcIqDF_m(elP}lL$3#iDWUGGUo zU3|{%MLt>Mxf6;!oGpev+fsi+I}VFsZ}M{1fT|BUB_DbO8q{(=ho>zri0>f}F*$Mh zl21>6cYuDkMP}e#qf$dZ^6ISL8h>&oiRmyjT9)w?p1C2vEPx!^Snms;|A^YYmy|fV z=nCAs_{tQlE7UXyB)QjjoPx8X$p?c-)9B@G@GMWI$UgGZMKd3$uF_uxr9S2q1e5#1 z)=a_&9FKHENZxZhQsFLz@waeue@V-JGCNRDIF$Ut^wJZqPup`F9$Ue{8b$#8e_fj5vIGV&2*?(;Um1LW9lS9iE!YPuXI9X-wzN%k%lw}Q>BeOgiE z;+;Xqp~o0o53GnjCwq`&;awdHH`>PBj3!e)3Njob--Z=iz*X}%=D;QQ{w5qIy)93@ zgjN00(lO+`pqgN4%e

      Q^qfafCc&oc9;Lf30R7ORnD2ngyf(IFCTz(xqK-WQ}f_ zhl2T*ywQ&7TeBp9VdT(OxXcHp4)7cM5?VCNQZIv_J4pcEICz@Ny+!Qhape;PQMeR zv-I~Gc)jxI{1o!9v4}l1@40aWYMk&pok}K%F%7_%rDs;3B&GG_qhUyAT^n?bkGgY; zyeYJZ{WQr?blDbKYHD7B=bt>CgvSphze^)~c$X`tlXCgDBVm}TSu1?h_)ho?c`H1J zHG^d4Tw?>RvzzkZ_`PpBnPgv3iTqhofkiI@9!T$QhAq;27H5&dRsY-}n{TbvIda=y zs|&E;#PArL6g#jXo7B6xFbOKTw}s}A2d7<{U|ak&|9MhW`1o$Pr%0>}Zg=X-$tACR z3;YVF53y-pAU7>KcMPWGE4_k;?M53el422pE_tLsXYmbKo2@eki?;k7$tR8XNyitE z87wtja5&vk>Jr&$vVi9@xxDwH6AbiKD}nWYTV~b(q058bwY%e9hRZWQAB(+VC?t#g@ zORC`;-y7^@q)-{7emUu>f952-{bFT5Wc8?1yhVN&j#^Sd>K5~Q!&I%ymGE8LdbZo7 zqVrQ5D8iS#v6A#DkVt`d*52-e?2k+psz|%-?;@Z9SB}RW@^p@J1sqUpVy-5Y>m97& zA**i}pdV{VQVn_cjBYRFl?m?v~Y(Ln&5__efQVVM}PvdXqpn6Q;<_F|aKDKPwRgm==N~tMn zG?2WXze+tMcO5vq58mJsd;sTiig+5y%}P4XaQ)yP(RT)3Pszy7?uTIOf#2UNXqGxt(p%(ch^FUe;ccw3k8H z_6k^hDe2;C^0%7AI5cUl(C#5K?M;*6$Iowj;fwRxk9tYT)yjfz$e{a;Zt%XfLpl7L zac#7ZG?&xWdP|myL|m*$Z{)J_^^Da6!L9~_y=9Pxh>w4 zmWfX^2FUXwE(vh-+Eh2x(oS44NFIN>EEt9zdE@+ne8eAk9SUA%{R`dIv&@FbTg{4D z@M7fGxM6a9!QmHBCs#o7BY9$VQ6TKQuU!vYLjDwgB8BIj{0+S_SD1{Dm2%Y?kgdjI z7*6_gJ^xJVFfb!x16}XlA>OsGjPwZQo~WQI&o7v z*lO-GNe+MLuYzm$hs^sy#?G5>3p+E<7r=UR$J8lu;oI@I&?z8p)ihbcup|=xIeEPW zj%@P1{gYhxl7V%GjQ2|43cG*F<-rxl?~TJnI+1UFkuDuP^1sPamrLRB-*=5>Xc5~k zI7@1-OJe#%CO#Iog0CGaa-r;3lQ9??^;YXI>86}5J4cp3SRD$PY#JM()sQ{^Kk~x< zF;|$p@|pz$FYUuM8*`xi=B_U=;;r|3M)GmMTmrl;c{iAeWUbiJ0BsD1c$vxkm*KnM zcQ5W6@SW(BEEZDn`mPZer8A|@NU@XTfl zBQEj?BbUko^7*L?hoOYj+77t4;_)(Wvd+-S4_^B%V!x1_JzjbRnl9Zm4bNVGZNNi* z((ykHyC&tMc}c0b`Zl;vaGU5Nl2_y49XR(@^AaDq`C!K+%wFiO$4{>*x|KZ~Oh?v_8#x|rPZZpQ@7-8-%$M2<1Woq!uo3-`e!sq6B>WV1Je z#}ab!Y}zg8ktD|~LRKujX9e?~9oQgBPPpYOO4FFwXJpf|cZp(N&J{{>3jw@+6PS zp)=6=A^#A(zU``t0{M4%Lk#?!HS4#E)KEyh3lnOkI2Fm47I*BSbpPf;$d|^MrbN1~ zxG(^3-d0s!O)?lij)s=6ceX>VWRYrR^7yh+_BCYB4FfwUr~CR6bU!NJuR`8hT(77~ zGGDccg4XLtTH(dks3mL36VaM%YGfZzhYeK7bIXSZRDMmsmWRn3)yc{*Glg{|+x-3r zxb0lq#Z%@eA-^TI@I2wnA82lN7BiNrD`E_JnDX+yDG) zf>)B$1U8V<%jDePrqbFnxW?_kd2RCW)WT8NakM~FhZGaiNQC}Z+g`zldN z7ii3DQVKKj`sQG)?YYl-WamdE4SjNX_``S@IN!b-)}I@dG9XJVi+MJYfBJQtp;^$2 z5}3v8{RfVu{WUctyNzqqjK~!|mT@q6&xcOf@F#4!F}di(fvwCHp$hB6CQkHHZg|R8PUw zp5}h|ZqH7ot>hCi5fK|wvW>7yua<8Y$(yjy!iC%=T#yZK6s`LL=QP_iT*)ur5?Aad*B=%OhQ}7&dH`SL z8}qu6GHd&sA^%90nLD{VLMaQDaX$P68FRL)dyrccN8{jzfucZ9GHIVqJ?v$9!RAK%%||jqE*WR$oEa3IrfsPw?}V>(Ib3U zV0%R26kN)+!61;FU;kSvh_ts#IS2~}B-`N6eN`g+NJG}mK2YV(eA{3$#x%D8KI>JP zgyMe9x*=r1oMS3A4!{GB5=;i#z)!y!`Z%{2=sm+G_rFc~KCF9AL(JN*(0 z8puk=kk-c{b{!!vE?Ia3ju+?ug*qG7na7d`ViJ$Wku7{;T~PQ^x#UsOOU*b4Rz7-D z4+{=tU5h6txs+z1-uVWT1oEWP_DtAc|8*FOvgt@9l6x{b17NkR*FDHl{fFx~Iqg?H z12_G%FiIlRQU}xFphVaQxTc&-C7BfSY*}`K^q+C^gSE#dYao|M!u%9+$2C!VXuPY( zAeGFR@IMWQW0(ivTK>${C&}1L3em9s^T9i($c2%7?59bm1% zGP$`u6uzOb z4N%ei$f7(ls&BCieByuY2E4P}=UhI?ers+7+HE?$u7JGUEfWu?JnweF0g;INmq_Ij zZl25JA?RhR9M2d-Y-R z-@DN`Xb~9m0_HF+mi$P5JzX3KUmJPv{6xyW{#y(~eNO#`0?9QQBP5e<_>s?~)$;|< z;f39K;$O&bKhy%C_R-c_D8K&L)vshk>(Uwc*s;uTloT2>OoyJ)y@Sw3J91EAEI)l2f-g`#=NZ zfhu_V_5OK3$N?WtTljR@W8EooS?SJH=%@SrExh~u=&EUw(@i82&MbcI`I9ud>USHS zSX*LG;F?00%B_E{a$j*_x(rZHDuF9rHc*A%H|35POj}Sd_((W(tmF}MPjAY}KtTYqJA72{`cMDlJz_P2uyv!t{=7C*s!=bh;7BY#~bp-b2 zO{=q#D^-slg^NEK2eFYJ;eGY6Vt&xVc_d3Vn-ko+>fANB@%{Epb}}VsbQr#6j#%kg@+8M;ZNRP10M22W9DjJQpIjnG>rLl zzYRVMw-sGPigSMPfeY#iZTU#YEgLSu;`h%c;qM?1J$}-JWi}P6RaHd_kZ~rPTj7hI z_rijtr0;$&=zOy|Z!vjYZ|4O3+c}{lM4G!FJps>6FX@8`MX#EL$(Ndbiur_LgC~4Wmn*`6>UG9OSpVrGQC3~`G_?MA#ipjfSSe--} ze6-~@gBU3|U}_1O&#-HXlh!gh$Kb^(GYevMu61Ja~9ri8R@^sBIRC7Py$okbBln zXTs{H#E!^`D>3`<%8CWYL zI0U)w6sahX#&duCR*@MgC-1^xacNFPa&1|)JzVY)wn>Q${K=ID>k}>xz=ccHlvk5Z z#Vyg$%sF9?GMP0lS`9}I-(+7yuH!SbgYgADmtgSr%#$i)!-zsZTy)^RqAKaaWg7)c zb3V7i9IL|0wdB_UEjBe$Gx(VeOl0-Qhp*54o`6lJRekEDz#DUgb)=i$`v_P*7xEY~ zrOp@9AiwE1Gp{GLyBw`yvd6>)_~vKaHziMA#wwBePU7U|jU8wPJXGd_Z>6X^mQ zNSm0IZctb4lchG9`Y7@|e7Bu<6e@ncq^Uzj9ax_T@6;zf+(@!pOYrHEc7qiz@N%$e zDLgI9o~=g?+{yk7mCckj^vOeS8sp(pKZkC3S3>B40m)f@jb{_-V4&*^uXc5nz!{JK zL)Ke{$FVbAyACrmJIo9YILU-LabjkB%n)XFnAu@wW@d+(nVFe6Ijc%*o_W80@?+nZ zy46yts#H>Is=cFs3!mgJ@w_ouWzC*yO~4_w+YS?6Jp1I5uwYQ1LQTQ+S*xdS2Kp~O z?I&DQEqJx?*Rd}@gw4H2H*F3&rE6NH1vq@(?ZLt;k@%LF_@j{dGxqv-37mXDjX}D{b zaMSmm%i4m8MyLHEbjh=@K|65%nyQn9Z)=~tFTC|(#A#Qs)R4S++`!&hH%1AMFKx6# zn8WF2a(6K4tLYzwuKmi?^8gp6J1{}`VV?V4p{2shGM-@B$IEkif&IEWM+i?Pzpzyp zRq|&$Z_wk;_BuY`(he=h2|xe4e@ob4Quk86;N(K7dkY6%Jr?Q*o{jL^EX?=geIkD_ zcJwe8;qE-S=L=VyyEZxi{1y~@L)iGELy16e>X4~Dgpae9IwHJq{Mm*e(9x&gKOufh zY8?#j>$h}{FkSkZuY}E9#}*9%XFPW7CVbX?>p@|)6wNb*f?Zn9X%Pk91nZW1ovIT!es`Rg@J`EY%Y|j`uKXg*H96uzXE3tx@A6&1 z?OP@e5GHS2^o-E`+Ri*(!AW`3dUONtuU)W2SiWx6Pr?D`Pt@xU#ta=%wgB}qp*brnDcj69)S} z%QOVs@Val1@L&Io>xHc|Ed3*#yP!tPq2Oq@Z%)I&8&Adz7nbPhctzMV<<`Q(!J{*q zbrEiEl_FpSnE2l8HNv)?D*O^INOYvxNbucc?-|0|jdKhg1(v?P`l7H;l%?Qk@Wju{ z9fdi^M(q6+qz{Etdd{pc2|TywRrF*qf9trN z!uI#Frkn!q>9o>AxUxt@{dn;E)?X8aO`1%+C!BV@NV%!tlc=5jgctMmjGP7*T%TsU zu#;s$vgzRd3su~N=|fH|68_3QV*CuS`HDPugfnYwC_NK=ezIX7p_AW@pZYW;_VLe z!6Q>zv=L@4dVj7kWLvk_!c9$5)mi|~|8=z3Lh$Wa-|oWN`QINBj$J=A^CIw;C0DTU z_~)xF7lS#5$IKRn=Wuu_+`1yZ`Vuf{&5|R8AKpCevJ|uo?0Y~sA!Ejj%fPz}mjnpQ zR<5yDnETn+8Oy<_USpmKccgNxwgOBsd&^LvN10}qgbnT|-@g)^+#4CDn|J1aAVI+U^S0hONGOp zb^I*6+$(8=&0yiwGbaf%?(^us1q^KS>XdNZ{eii+f`2+^jS{v@vU0ny#`f^V+rW`c ze|->MyD`DC9V`}8WP-5!?;Ur9)(t&Q>;N~`OOtaa=x}L%xUfxVm94^gUydi)1&&!c z{GIS-%{+B>gC$R|A1mzT-|&|3*xTzR_kdd#P0O|yOj4zEsIc9U{hNdfJ=_xQ1K&S; z-bQ$5_Oe?0!7^oQjTZLZcka6IWSh|931F@V-@6N!Y`^#S0QjkCw^j$i`ZrU~5tbi+ zbi^TWKmp&Y!ZRD*6*&y%tv|G@Fy>OugF>$nSJxf^m*bvpWboPc6S!m{9C+nloUA9bP`d-!a)6p9Nd|SrspwHNNg6;fn&7 zE1mvxZdh96-Ue#-vuysJS$rr)bae?J8fweM! z?k^m@c;snePtV3XE`!pTTR+8j8Mjj6p=5ZeGatDk)lY72!XTbV5!j$hDINt?52VEa6Y*=+#k9**hqos}rAA0W3 zav!Yt!qqB_>+^hruzk5@a~^dDz!J?~fSIy9t@08KTGD5TaDCMb7lnV1E_Qqcw(_dpQCKtWSD)A5 zsJWw83a^(d@LgCuVRPd*V2`#1_?l#fFMXMj}5Pop(mEtpa z_kGn*!m@);*82kX%Mv(IcxuU~yTaVnMwa~wrg+&X*Ei6k@68C|(zG472|v$GlI%O! zp!^J1VTDKTb$@^ZyS*GIJezFbZDGFYSxWx|V@s^)E%d$}7WNBV(f;RV;kUoz6aNMq zPb}P4IJMx8`NF|hx{vt-UI-@cn5%+jH2h7_RnUy1->o6Sd>r3B|S z^qC=ibLH(*p>xELs;R&+-*XHV_F8kLV`}hN?dW~N?C1WbO#_AnP4N|O`A~e7aN*J? zQ`3U)tMz#-tb06t<#gbkmrmz}C+B_HogU0pVRY&YVB~@P-ooweHZK<@f86A&@YD2U z4>N-GOU|m037oX6+(6;|7KhFV%irQIl>ns(fYINz7(CcbM z{j6Z4(M8K;1LO1T>L+}(ru8Xdr8lrERFr=zm4sdVQlZ%9Dmj!$f`Z|58 zn-g4he8hO+^nQ){aMLWMU8i*DKOPyh`6k*by>xMB3X zQNn+DDqk12UVE%qL9kZvu*`+P(I0aK3vUcrw_aExTZ6yCp3APaEDVPFOs!r7-2AHK z2w~#>`>qJvrgtq;6kIU>Sr_3r*QEi)z}t^&tQD5-arT$6Pl}M{#laIZzReJBYq@o3 z2{75+W|xF+9q$$_2`+Z%+DZ6vQi}b;dyS5)Dg~Ci=KVw1Kk{vp(%|VIgQp4ejLGpt zn6mDb^JPHK^HBxLg3E&cwikZ+IC+n-;n3n~%7GQDKlv(*JJGvQdGMT1`gmdf*NYws z+xK^>SON5@_$6;eaOJ^KF~aYz`F9DMJlT}85;(0#6HnogQpp-r1~2ZOIZ0TsRk{1Z zPInKMs{-!t=-FSmrf{~Xs^G6JE4K@qH?EVs8aVUXMK|H|$cV+lD|w4fZ~}|0+j&RW zwQlP&)xm@3ANCPuvi3Y7{F|-n)*4`|~ZwBs8dDc&udX{yy(7W`vAHu1fnpJ55K2CIZu(0x!E*FG@i==RD33j}GI87^X zUzE3xFx{^=D};Vy2Y(Z;&X=QcYjDPe%N5&z&#X~#!fK!YoD~imHaVXQcsYCVSmA+_ zk3HLh8U1=M69&FX_eHpFz@i52z&{zBCJSr0k2>uNj(nOgj~jTc=cXuOu~bcV2(#=> zy2Kr{wx0P>xba@udLE!d=Ytc3Z4!Il6*_OrdeRdd(`02%FYxB|+7ZH%(HFN0d;JPe z>J5giFY;cv#j>-G518a)t8v11ArEf}7k=(h$`>5JqDpo@@J@{rp~5n!{5K2x`h85~ z51xE8+(o#3VMFHtFnQ%0qlNB=+usl_aZg+#5d8FXS`XpinOU@-6fWpjk7;zLJTL9e1et_qiL8&@<0{Mw{YH({e2+YSmVjqA296daU4)gR&c z^>bTB>So7SwKAe?^cYWhfU=)m}&!b=%THj4ra zE!sO>*tv4Mr^1B8Ppd?OYkMtmi~)bAs?kx{V)mK6!dYdkX=A|`d%yY!uXf(jxII`j zNwcZKZt-^>2@e(RQmF%&d3*9f!hg|+V>^Pae|zl~&K>tARVVOu{=r_tS{t%27xw%T z`Jgj+boih0UBGNPCl3&Yt}J#&*w+8?j;`Q>x4lwy1K$ly=OL_ENBf$Cz$(uZ zjS>#&J?)yXQ(3n|gTej#o@W{Yrg!NdB=mofX}xewmt}v1GmC}37z#e${@rO9=+tc7 zaN+Qq1+NIN#B3`(96VT{TZR!}rj02BghBP^t`V-kRPmSaZ|KoxBf(cWhgKa0)?Afy zsBl!RwHJlgPuD9r8Y~`gwWBa==6K&RV94SUtAv}X?ENlGbhK@gv7n3R)2YJRX_gEc z2acUn{k-s2*)#dagQfNdw-@$y`MO)Ub!yYE6Tqa!?=+kUy6)&aMYyP0@`u6+e-53Q z1l}F*m3J~&*6~fWu;0c(JB6p}XHPi=-0}6&Ct-?_k@e$2k6eEy3YV^$bWixXR-~P3s)%O;r(I!-&#R@kw)#{!|>tt?~bfU9Fy+!X%&<6Lqs z*lfaup28W9;YWqTE*IW354;?bQ7l3~Pju%@9 zwtVl`T{wHtheN`bnTKay1YSGZ;IFWl*Y%c*!R{|&XA2MaN%T^fCGE88OF)MN*CI>7 zHf^7G5zc$q?||@4*Gw6gfzHX61qe&-3~9a`?A84H4B@d`W1k7Lw=Y<21sL{s>ri34 zOye&bl-)r3a3gonB%IkpGPoP0*My-ETK|^U+7FJN=sa3@qu_<>!V;UqiYI{CA_`|Y0ET|w9xU8Es^tb@ z;ye%j3fr#f-s&JY?!&PWhrru|{jLg2XZ=v*FxY45u&%-g?*@TKz-=$DtraHg7yDc2 zmM&3?qu}CsQ)db%wsReJ47~T~*(G7Q?)?fK2m2?_)LD3X`qKTvoh?FEp8!+d`SwHT z*zz*S!h;=>EfKCS zbZEj=@b6~NyTVqDUYEHB&bb=bSNJL-+ezW|JeRg!2aB(bNO}Y8QRjC%;gNF_7Yefm z7kw{Gl2o1n|Go~3Sq^PST67QQ{c;Fz$sPu1+V!BXizCAtIlo3e9i+fcVXvO!l*6h zYdi#ZGzuFjT>7I>w@2XT(c2FS8{}=7=`lEY?fpREgF4;U3D174H0ueNZ|Je-!q{wn zPEWzz%ia$YrmjBhvhdrh`U%g##{I9Qe-2JfAL}oCJl|oBuyVzzKZTA@+C6;%cI@%2 z%1dxxihe_c>1JlUDD*3})bSPA?5;KKYj8%#Z$83j4r5met4((NF6?rxOQpBqfyfkt zgc*O%J|_$uQz8F5a9!RbvBKHs2YbB-Uk2w`F0Aos^%vpDp_Yapz-!sAOcowKF?qm8 zFpF>TGeYa@-FZHN8~eLN3mq~%*&%#$aM6;_ptGCPC*hbUr|NwHZ}te9C@h)s%Uxmi zJ)2H`1;bi3$@LA~a`#q*FiEFQ+l1{BB}?`lth@E#d*S%To^^kKcdoq}CoB^ccU#!^ zXV%g`!N_$Nv;P9O*Nq4hCcp4&v(Vi-G4XG3$)_T1g_D*)bp8Y0uikTvu>8q1H-!Uy z7nJx5o_SrRr*PMTkJf)+s!Ag^3cU{Hfzx6??6#q`@avO?bA^>kPrsH39JHr&vBco{ zRtepN1@5^W5~iJ!d3_Slx5)B8!c|*qwM+{BXncN_u<7;C7s9Gz3tdSD4$Zf{aB}d{ zx)xo8g)H|Igq<&R%a8&L7*^?*aBcQu%~FEDm;25Twy5#`sc_cGp;c3XBL>tjm>RsA z;aW#w(S(ly*L#)>65i-! zZJ!=2k@(wgVb3XJQfB~<7IE|zX4|%9xiE2bmnj*+w!e};6fPJ$yFw=LUA_tfg>}{+ zJ|iq0GI(cZu+Qi0DYJklhOPDx=FDMPDvVfh`IFGiZ}PpY;NmyM%4GvT4%ppKSTCc? zDdEJ0k8@=Q`@1hnmIFNfw3?eRPp?ypgwd&jJ_vWt`dl|BxUBW2(z(Dd_Zs&RHtc-s zxbWeWq~W>2b4?Dm%>(AY;juv2KKj*L;htXuYv%>ijLSM!_}y}`XFjmW#qguTX(7L| z<_DjAo)99eGQ7wpVZoXY=N14vo$B#gxZf{LEk`i@+xeq}{sXIA7dEf_@lZi<=HcO) z3xUtw^8^c>o~>Um>{=%A%fjHnz0;}}0W-BJJwh0CfBzNXoT8aC76V^xTNWU!*|gSL z;iwzuehIHfhc+(`9?4&*S_v@ghHXQIA@y2Z5^lP9uV6_qQE0bL!rCj3t||qNt?Bzi zc+1XC0n6C?E4USOASY11t!D}fKjC2vp} ztWaR~B;mjf}eVX3X|+l)S@xi&Slz6;lc-{o(tc1 z*q^J2wUUHe0q|c=Be=^v%FrvFH4Rk$*x~3*9#soZcK?hus@2obt~I75BCT&(u1arWKg?jE|2nCg9x);jVW>z6qBvuJ@=l__fN_ zifzC~N2B9}@t*(A3Lib6lFtP^Kc{V~wqSvBPd$Yl_V-yP-0PCzi!klO#SPklO^bi+ z?+Q-eG5WOdX|n=(+`y{0Hb)5yP3Y|I4t91-zC@U?an?s+h6d&9d4K_z4^0rZ7&)k~ zCpart_LIUFt5)Uo0;@aMjS!AFb7`xv+n`Acy}?77i@g_SUb3r>4;Wmv%{bwPqmOP0 z=k{56%olu}rdoDCu-4p@p~BJS0yhh9?EjR=AIz4lv2y?zI_>6Y;pXBUZwM3bOj05c zd>4BlOAuJ+ue((^Zo6h82wX7B*72ZRF3Z!eqH86b%90 zRu}FjtQYtoFch5lzWX}iy+Nt}2+L)e-y#g`zohakVYJtWVd3D;7sDH{Vvi;MA=cc(n74B)C>0&gP=Jry@7|^GE z&5pvAf6wj}exDGMHWqx+px}35l`C5tw+DxWH=ioJ`0ef^VZl*dD|GfKeB0=*;QE9o zJA{AR_DRtVZ1pI;hj31}#Y=>vN(4{r4qo5+<*u-Ji_v9!fIV*K?McBew$5>3j-X4~ z`+`ZcPDj0EZFi+#>(Ts*&UV+62AObgYWI zJRGrgxiHI*W?zNY(RUk81UKgCIz>3|T!n#?z&Alh&Ip}9dgq-Cjv4YcT6i<-ke$Np zK36_X0mEKJ)sF|a^!qzem?Zs_d+}N0yTx0(507sbALbulA~IKG-WCqS;v@5qz?Bj$ z617OyYHP;f@sUNwCJwJ2-@>6qB6A~2WW(02TQ~oQfBK&mI1ROqs^4@@VyqkZH_~b; z@_xkpfA51WS{^`lBS(`>t>%7B*3V3)Ctb)=tOshl0W4Qwxr)`&+2PN=ffL#8f?!i` z7t0;UpFyU-UcA48*XNK=$&0-ImxMeH@^6d1U6ljv==Df)EIFR^BcHP0&t&%hTwlZM ziFv&W=|S4so5gaRO)i#8ki$u|ukzXC%FFAJU*(0qm44J8^r+=cEH7a>Z-}{GhJ4QJ zA6f4(%UeiW`8&(~$m1lQbC7?w`w3Qy6dg{py$)836df*8PMh8)vz*atk=qU*S>8Zq z}=t3{e~ zfFBAR;6F;6f7$G3;q_^x4+(o}ecN+iS)TVFy|`ITJsUf*4E{g!A~&yN9y-Xsp;n8) zVKnQtwpyg7pp~z4mSTNW3`MrH#cZtU8_Yd|8IObtrjWbZ`vD{vl_M} z^OGJV{6OV{eU&TN?tb1s%kn*zFSFh{mKTsaNZWXNv7Sx-IxO4lahLLaCV!K+$>ywY zlM{N>II@J-ZTf}2Rc>2hdow{;D2_u*{6urB9|SYCv7La)gs0J%{%B(iVkV57Qz4K z8{(tZFURLnk{PWQspbH^>iyT$uT9^pczrOhBfe=pTilu#WXffDzcm@p>$zEONn$YcFd(T-R|Vwi?>zWe~3;ew*>LY-RiHST03=XFR{n z`X^c5!g6}nd(7*n$%*7LvL9({r#hcQS>-ImvQ2M|S+>Rf->kQU9L)a5vz(QT3pDLH z^1ctR_abMJ2W|Dq)Z|@0w~l4!AQLx&S+=!nWqBGI$LDUcYjsUI*0< zHvPR1vh=9-c>c^(!IrF3oDxn$AFpGN*R5RGUe^0JSnoxU<<#I&byHts8P~P`>LAPL z6M2Hddyw0LOndOdRWq8`ePGi=P>`jHHGF;(j4wLdpM^7j1X`xOOdJqCEzsf-u{9xo zqd?PMS8_A;yMg5-EH4N!&!@6KukGz*c^Nr8(BfWk>VSh&S^tK=X}^KLk#CN_#o@`j zyKS5LTk7p>e{b=7Khth+)N8vV|FAKBmXh@bE^Ly>&)C_;&ph`UUHvTk8&7uh8_0I!*zRq#_w#k!tBsTs&#&I> z6EtD6zva^B8;P#Dk_`fkJQ)Lxyfw%d0Y=`10Y>jW0jB@AEY}R=xIvMpVW4I8+2}#F zZ$hu4hmrPn_6IMjmwJ1k#YUYsE`df*=V=G{zv>4%3{?=|FTxpaP~wUpl}(8w{G z?WN(kYtk>Gpide9i~vj7G{ydwXc=IcmMqJ_tm6ZWo$jHY*yRH2*T8-8+i=<;F2Ia` zvz==9zX3+ihXZIoTYI!?X0|gNeklL$`BX^ZfUH zNoi|`_q+NVzldVFvi-XDUjgG3`_v{|p*_*}K0GISo@Aews^@K-XWo9M-yWPVvAkZA z^K_6e=ckXwjMLkUKbwzvF1e49E0;I>@ihIu^)mGMi1<++dN#m^3~{#LfPlI>lh{F&Kr zDt{x-G1hxQIh!-?$8tVbf}hL$EbVXfhIK;yJRRGywGVkUUQY2d@w5}=vXD|%|G<5j zUy&$_-I}of-u8K*_h-kyP0n#-Hn|0-Oc*o=3(TWkM>1BJ3#s8XuIxiyvAWsG0r_%4p`HTBij z)3kfR!|3&uhmmU?`WO8cryK<+e<#Y<82XWUavWu~AMLck!_2=j9^6N<9>%Y7B)A*7 z26DVLslOL)=D9i0uju2N8^=q%TF5vzBj;?^FXK)*a9!SqHoKXAlaQZW>CdjF{eG_0 zuN(c#&B(Lgo%?Ir!-;x-!Ey@dN7`>dJ5;1TFkZ86u>J}9S0n1PvMc9l`9wQz zrM~mi4vA=&h16FNpD*QM?46Yy%KqcnZz?`Ni0utvf5kkFJp(+A-hAmN4Ozb+uB+a- zzq(61y72x7wpR|<#V#Y*|6%F@{h9YhT$latY0BG&^}0b$wI|E*l*@zlTT%~Uc4|AZ z)N5_DCvo*7{pKI%V>R}(i~f0zdZ1okR%TYTYjttdxM#3zZ1wQyhTu!r*}5zDXLI8Py$!~+*z{|*1wxXXUFvmAl?^4_$} zjsAoCGTxk=e`7d*(%R+Mea8umU*x>t&V2*pW@YL#5$&~}dU-^B&4gVgj?ANdJ*Y3p zsd{}#y0^&`}8YR0F#kW=HP-9OduZO`?jUm~ulzdnOM$v7Uc z{Y#8%a~RK3!hd96{FD9<>U;kq_J{eVa@Y4X^TWqJ-*i8P_^o~yWSj4ZUo)RGp+~GUdB#Kc^&Uty6@WP zW&Cn3>z%Z}cbRp;+uZ--W#ZCMZ!_L@Sl4wQOy=Y|e%s5~cRczLy)Gm>v)v8$`>Gcg zum8zm-nS^<3)Xk!zM>}N5WRiD`Y!!mhdko{Ex8Zz;y$D@-wRK$-21~ZliscvfX2B$A|sq<#@2))AnQ^DCcb% za9!V9Xy=#qel&iax1SfNpI7I88~tiLEz5mvWxn6{L|NJ^&HZ!$_qBOJ-A8d>o5;ub z(GIr1)xK|4`TlZz6}cbo!hNzg&jC82KRqub1F45_w!4DYJ93}h$j6MkHSSAXj$?Z> z(Z1-rChNDc%ct`L=Nd*&JTEB2b~^ZQJ!XBJZ>V2wgM1PXuCx6Ytap;{701}#dfxv* zeQu=QR#R_yAJO%`Ip1?$`Eb9*_lm-#E8mAI@x3E}=NG|zUuw_ypy4QM+~fPoS-zjX z<9WtwzTc$gdmG-rOnl&bX;r?T7q-7os~#)x{V&vhzG31H-{VHIz2j^zf#n%2;~Yfo zz0c2#FU0;nYW62Qx9Dhp-!yvRd4mtRitn$J`2LCWFdN^0oe(?UT>pSeG^>LnL^vm((r#@y;PYZY*=L#Apdr>dt zSP%YZ;v&bH(LR3L?+$8L_^+-fejK+y&j~~M9^Q%X?KlV2eyY>o1KI8Z-pBLW9^TiD z-`dV&I3HeeeifqJkW>94AMI6-`mD_Rb?6_y90$$?Reu<_?o)97r*`N@Kft+<&NJJ& z3eItLoNal%6DaYdDfJ)0{%~HVaSM9Y`U@!!&T+K;p?rQK>orGN*H=FOiRUVyj^E~o z4}4AB`AI#Vx5o)>_c8Ui!LBd8{+Z_?p13dl;QYj#uhS3Zd`#YdLa0ypu|5~idSmJL zyJ@dptT!3$$@p=8qvOOmkM93){;Tr@anVLI&lvxYbDgNb`BjkP?MgWzpUQ)CCG`)S z=cxZqwa+8<)b=)*DXR{HrtC6}=)3>%O%a{ih=3 zNXvdL^ygR9BhK+uUprV%WNU}^+C+OoZ|c{WhuY6b@;dzn{ivRBeyjFG{LpblQ;q}V zM(PW{PwF~RhjF`+?RP((FSp?N=K!8}F5vm}bd<#(K{LN?zf1CWA)HsM|Mc}Y{)OLJ z%zWj!>L#`qhqCMwM%&^!`@h8BYtEoQ*^k^~c^uDcN3x$?Z1+9;OT*uf%J6rmasei; z++lyHXY7r#*eNG}cXHx$_&rYTP$IziZ6p5v<;~x}T>1N02;0ra-`Upl93H>(>b%GA zOS&(ZN_kiCTz;m#Y~mx&kB3nHTfECEWf}Ul+=f?h8Qa^#ze?N|MqWyO{ z^#lAqr+$Oq?UWh$J8fz*cYtaCCEIz;_Mu0e&z1RmU@iXs)|%taK>hrn{JSa7Ioch+ z>zR1~{pvmy`jvIB0{e?*`$Je>MR`D@AG=+29MHd6FIf-2J8Rs4ye59pKabI0)?&Q$ zQ?2LB>;Ci~AL<*w%c~z(BN#XEdxZ9LopEjx_Z6t8{eI)R_=n}~jC&Ut2M?1;=@+2tyCmg`rd==(b$xAR zACJz@T6_-vq;}3?vp?6j-1NU;wC4equdqGLPhF30b6#Dg9zN0@NjQ&^@ps+_j5q0N zcl^$*cKJ=cVLqx{dFWs7*beGxKd7hm^U`0Mb3Qgec{9$htoC`Uejdd3V(5QvnD1iO z@Ai4B`no|s$w9w^eA*AjrR|)z%cuRo&g!3k88_W2??8@o66eW2%C(8Vn=Eae+Q`BqTBkX!YF@o2q%cwW{`{GPA<2iW9fJr~wPd^P(j*5Af@ znD1(r=PbWuKNz2}H}ghPBF{qBgLl;56Uujq^513s(`ZNhp$p5-v`-uMKZp#bfAnQL zA&^7#xt#jm%XVz`!#Fe!e6YUe%c&`3DigusL@gU#AtjDZBjQX2OJ6z>BKT;3k zkD`ZbeD0NPo-q%nSs?cp%)gmPzuU($@^(~?mCS!ZK8)IZ5V?{5xrTW*$fwc!xUTbR zy!|;dUzk@jE717cY3BcYK|gw4%l_9f52vTS9gV|NSP$)Mdwc0e9a*mf<*3Z|Te2PG zCFwX$FdxYQ`9hLUk}k;Nc&^;NK52uDeUN{o_Cx;B_IGUu*3QiQwB$j?K2HKI1z*;2 zD48_KQni1NgfA)C&N%w@3g#CbwChjTmzR_;J=;Y-pLs8!yh+$T@|TR?u)P_0PUd3| z>TMVEk!JHc^44@5b9wz0>!E$k!z&nMxnJReet9yRKM}F=O=0$b>VoCm#KM+-po(yXdl1o zJCyw(PgCtQi1(3~s`ebmae}HhTvt0nPugxSUaxMqkNU|~_>IhW@pl>TB>KfEGRE#l z+O7k~^Ow&pr{7%%0W5 z{W#E{oY`(R&Z9!CXW_g^%X*mCYNv-B*DaPW@;>5<&LbQ5P)>}`76;T0ev}*Qk;bhD zTrb`*ULx<$#C<-8c&Y8?WtgYpk?NBzAN{iqV{*qF~ZvdJ@$+FrhbWer2f{H&voPcAHeIQ=(oMu&k)Y1k$ip%{i{3YZ%^Kb->ZD< z$?cpkJK5ew_BV&mEoVD-7|)O|t>d{xK4M_YXGlWEAC^z&!35ERUevBUy$#norx&-j2p|+xIxA zr{moiY~u88KA#Y5*1;vgCSI-O^V@<={5?iJpuWnF?~F8VU7&nuPy0DeJ%Czo3;UaC z?@!~*8D2kN%U5SV%Y#iEz;_QiA7-)MN?xB#Zeo7=Vb;TUN5(HG{}a1>+79lk-$O3d z&pnRk7oWe#@g8M6r>GB%Q|DDutI!<)#$gNmG2?c$9L)} zm(}RED(~Za5Vc1|tMRkSR%7paR{EjU=%c39*azQ*s9wj?f1}y%Ao@#f+5z8nXqqG4rXf<|srQX`oE+c4{F|-@Xx{sL7_SRdC zeim8jr?ksBtFiYSwzJ=AL3GBq!qoq5_K)wA%sgPb*Q^$)Cf^fj{Jcd!xk|Zi@cGwP zQHU8&5w?r(7Ihz!iE>sVA6iYEgIvb0lb1 zaUS&MJgGqaqaTe|S=gV2{uoVvYQy_|*4BhaU}a`Mf<}abiCy#XCbyfo8!WKQF}k7zCPRH zGuy9ie_rE5UG`s+^1;u|I%c2O>PKg(&w=y{*jxK4Mmv?J{g*S2wPU}{=vO5;j~u9P ztWUOeO8qJw+uzQ03I3<^0dY>_>O%Gld+Yphr$6@R{EMfbyGL7%7k;Pm<)eSU&ii{Q&z4+ z-MOw{f1}SWwa*`wuQZ>p!TruP`+JP;!;kQNV4B<%Mi_sjTxTLWxgW30dNVL?IqzQ*NPlAc zhdEBX2WT8v$>*@oR=>t~ggVcTvR(A6ei+4ioB2HU*IFO?Q-3YYeL*doA9LT8h3ozs zwg-Eu9hOn=o7nyZ%I(1C1GxWa!ZP;PI_~-%IM*28{G^Ee{o-PP(RU)u8~t6J{e2JM`3BEtGNXU_T_uuw zZOL=+=REhu@0&Vb*6^GK=OEf%HQV_!f49Q#FdC1y^7-RD{|@>;zk6wZFnYcMSKUL_UOsHQ{VvUhjkPNxhVA9G9z^XMOlx!6oJ~XJNe(%+JU79vTntGGF@!zdIPh z_VHbV`XBO?Re#g%dGM+?EAxv(IR1K+?>qCD@qK`q5BB_IwJ-9}HC{bn9`_vP$DgxP z=LzJ~`uHBfoNu%J63j1-^fd9(f%(j%nICtGzR-i0#n{3!JfeH*`LUb++W&G%AYlX(9&`yI{a z9=RENrv}A8Kk_?}FRsQf%JKW1Nv`zYb|wxqbv1Hyb2V`$uATAAg6+(BpS3m5pKWXA z-|)7^KHhDOoWETd*V-DrTG|=A7f1W@JCp z*@k)et)WNxH<9BULgG6Yoga@}jbAKu<^19IE%#`LEB5ELKAzXOT^XK$ zW-@*a=6s2>e_y5ZyF0%tS;Oyb@EwiW7u%oL{`>QOYv$=cr5-RYGp{)>ZQoS|a6V#Q zs-2?w9R{{I-;3)6iK93y`-ha!*G;ltc9~i23+C z?fL3@y)E(*W&einJ$2uMd~}^>?^#BExbY`jJ{`AMe6uQF;BfE`=3I+q-5SXz6(`3f;ir2$~BRB`oEc9>B@Y`DZXaBaV+Dy@n7a4 zBJWV!L!PJ-d9|t^7v@c_V>!W|x2SUFvgfO-ebA1MbSB0Gy87lL*x5uwetYxRrX`v)O@y!d~lT;dA&ORNz8-n!}_N=o^hb$;kZ+e z_%1->4#s2i50yI=#|QnJ_&`0^q5a^G8qe|lf!;@+tokXwhgLbZ^ZtJNyA$&~C)xAN zwcc{OopfGoN58VaN1ms)--gd^q@Q9O`W*D8_X}`*c{zSh>J$0OW*uaC0qdG`!>jt;_c=C%)eyzft36VSC<>mOnA?26;dle|j)KrX=%SkRPen zljFTc;$3y}I^RG3*DlK$`F>Kut}l(x$j4K^$xMATrQFA;=drMhw7-M?jqeh)?8W)m zhwm@Qt5*9r;de3l>6b0(56G)ldGYrUblpvcc`o0{t>kmXZT`VH97_K?NB{fAc$Sv_ zw2*NE{;2l2$#N#nH^d9oKk|w-Zs5N9WhCV)L;rloIG>2^4&plTlkxn7eVx+hpJUw- zeH^!~L-zTj<9o{Z+sqy(RWHah*LmBB^TjsL@ST)x-s=5q_Iac2E#vs`J%ri|e_uh@ zl?V3uuYUE9^Bdn;X#7B)x%w;ezV$x7?@>L~xelV_B89!Td zT#r~kG40lm>xMI*o5S_Zw!SW#ITD9bv&opDyaOA)&w58lK<*58lo5+A1X`ex39M2rWH zi~~s+Z_3%`JM!HmPaOHII-e0gOk8LFTu07toI99(BhM3Nvi=m#SDYuPAK>pGne~MC zG5>AtnR(2(bQAK(`vda(^nP1=-kkau^5?Yv7UtE3F`hKw^(yxKJk{q##zW+>tG=#L z&L5N;aZdelqdnhG$Bq1A)$;<|-}&PGw6^mWo@0$<+(MqF>H+yP>L2@^%l%?Dg2!* zZP%99f^#pG^ELAcaXzK@ZP#xHnseUdLFRYJtUSL(S#eg>&#O=I+#2WmYS&&IAM(O9zI3EqI49L}RGd?5Juk{Pmd~%|x%h032l+Ev ze>Cd{QH}~6e_fs@LchAMCS^UGM`}FF&GD4xc`VKcRnN$0)B4bh{=OGMy>y`*z8wD~ zK0k$a!S4t9JgD+RA8MaHv=^?cz4zMh+s=Vi?>HY;dwJOPt8(IeSbqu=a!GM=mBeA@Oqg1!%a;kXXc-pB*e{moIzi}UUO)>FMa=IhrPjePtv{vS#LbsYfrz4v)fho$=5kf{LZ6t4xk<2x2lKwc7IlVNzeWp z)Bi&4^F!ys4)(X6dWZhhuDfXO8Po&vB6U2lx9WEo>m#pA>sxt0n*P0rdcf~$Di`#l zddBZbI==0!Kbd-PWqa^r?FaMO>YV!bl&Wt1P|)O9Ka zxt#l*gIC7qWAGdd_tYan9z?x-Q{60F6Ii_&q>du3xR$j+Z^} zRr^P~s<%p9r@C|f8q0dkxsD-^T*v>Fdc=1U8Yi$`tN!sjhw&?nU-n5kna}@_`b@%c zlFhi&~;e{f`ccV_;o6XjY=dmo^k$1|^g2=zIJ{6#%u z-B)|r=ErExj|JQhwE55PTJP<7v?@me;{?`goe$8z<~fvM9L&M_T#47QzN>x_*VH~G zxej5yv8_8A=Q?q|dow;pG9E1XPdyjL2gFrfA4aj?>69md<^7C1N9?~xt6$jG3tZQA z^(CLX&voZBuU}+8$OF*z8^6b^oGI<=i&;ncdo6xv)^)8I>s9CPxh46#F#i6s&MW+` zt$am&U>#Gvq92WSsISED`6^#?)*r&(!$FPbV<^XP)*nPUCi3@U{4T7|BhOF$G@idp zBQHezUrf2W@%P`kETf*uTjB4?Bl!C=eh1h1Z{awR_n`WRyt-Z&Vf{AzeY~cfy3XP6 zLTf!Y{tk_C>GPSGuaS>(;=cCp$9j`FUW{Ao_olqaZ&g1Y&2hU>@6e;l2|MXHk>{&+ zLjHutZLC-7hbO3a_>1lb_SyGcx~|4>eQCt{@H6#y_@#~`o_;og^_H?8_Decmtbgin zWjPPhq96Ia^(%iD#=cGWMOa5|^;JIjr5Pvp4->h*VgIN7Vtv&4w26Gk=fAQa_^;N( zyiq?I#PuBVX#3;r^G5ykDaVn4eh#X?DROkDC*1JIY*RY@U>=*5-yvX;^ewR|-4Xi)M-jCXIA^jD3 z9~wt?kjUdw|3jXZ%J+%wA}>(=Fb(sv{8%r5`CZ8K({{a?FJ)n#mK*b{@b~6buXUJr zm6-Q`Qx23(++n^~KHkquR$=~?Kjo^-ekw3uEE&uAd-U25{;s>~?HR|F)83B8p_OZbWU!C}gMgZVM*CzuJ?wd>X8mQ}YyS}QTrcKPj$+f+?Fw{KPD%3m| z$@_t!roV9B?;dL6(7aHy{_o)ZeJo!OHS6ZXP-Cx`p~im0LXEvAgqra^V0&vr8D~N{ zfBAf$P!q4mvmGn@DaQJJL(RIhGSsZUQEYz%`>RTM;@ICPmM8N0&7o$0S1Z)a=g+j` zTIMaEqyB% z<4P6Ab%WQ-hM95J2s8Qvb$w4^r`dmn8GRNGGy2OPX6#%y%-E}Gn3?bG!i>IKuwJn+ zBQNTi_p~r$=k)geOTi4?dJXS^n=s15Zs0gaQ$KCOxIVGH zD%2C&({^)HKkwLYQtCMk?U5_Y%=7Q`Yv@PgE9|V}+sX02pnvA0T+qA5ITzZ|lXi&- zGybwW%*?;D9M2v4$Bi&EUs2ZQ-&5}29DmkuqlYr#MvkQ6#-AL*jbCIBH+sW$wX0*e zk-tK?@rzrOqcH2|4>x*99B%xtZMgB%&f&)2#)KQciDtX8;l@7$!;L)$Ql2HeKAru{ z4mbX|itR6Ae*@TVNVu67?ZeG@r}FvrY z-dT?80_Awg{*y!)ef(lSi6hK-{;~gO;bwll<8u$$-rI0vKRmDT`Y-$c!hTNJ+c)n~ z5k`-;`q?8)yBXO3E7spky$5r=4XO7^q))i<2iQ~NLtV;qm-GKR{r)5Us2T6~pq__O zf5$l<=vDpyCiRvq!nFUL{`8#Br;p(KV1)6Df)Qr?g(Hk#WR76miZK3|m1S>^vuA{f zH^a$!5k~%j5nKl%jGr`*F!J=FzVfhKiO+dN82fgQF#g<>*L$#@5B1rC{RgvNPP@G7 zC+@7*mGVu9F#fYN!uaD>+O-b#k&^OM=6J0UW_}%}-tN$U;8$vw@)2f!I&*xj=~odP zC&s7i{}}24*ENnnUX70(`CJFyA3?p3V!xprR~+SSZ`XtF$Dj{wZzlC{fZR#_P35>c zu^-gecot7R4rV>*!@Os){|6B!&b;S1e)9R`k!Bv`k2Lm47isj6A=2oxY@`{lZ={(A zF_Fg3(UGQKzewW;9+AclwIhvwog+rG=kw$+Bk;Y%o za~wB${~+)0;JA;l|1Ea;_5C~(^_Pe37v}v()IaoY-XG~Nb$P$CT_3v74x`)?IR2TG z1LIbI#5gn_JS1Pz4oRbo{!>TMzEP&$N9r?ul(Bb#D6UJqpF7IfGZ~pL%J@S%w)2Me zea>+u;r%C+{}S)#j578t9cBEXLX`2NG;HS#$9aH!K)I&b?XBkn+w9kMKh=o-)Scs9 zML&w9K1$PGqv@a7spqqd7vnhpirVG}*8yDD_qL&&M_*X4729>CKcF9-?>*^%vuKwK z>~|C8sZRaXjxzO&M{%8wGV`P*?}t(Uu~8;Y52Bu8sMldE4%ab1iu^Y=8L-x+1*74GYM4(h94{i5C8vpk0K?4`W@*qjz7*mE}b{y zC^z(`aq@Gdv2PWQ>pJHx?BF2(;GcTlHjsLNUUYs=<2(tp_ixT2qD=hBO#LNdJ3*}1 zpZ-6adcMGZXK*}wc>fah_?zt&iZ=3=i8k}DDp@w#_)+<2WB-6?%YFH~F(JI)o%-w) zZTTX9XC^Y*QceCok5{zir2PNqI24&)FXAtp2x|TunW}A9a0%f9n41 zdz4wfig7&XN6&NeL|eMc|DUfO$8Vv&^3%@>Qa*R;3HQ}M8rt=!?^~mzEotQM?|8EP z7SR?*`MXEXcKc`?h+scKY`-Gg|AX;JeZOeSHu*bBUC@sF9iqy#M;o?}=T)EMSsp--U8xy{yq@9myAM=3hIGH;VFgp#J*vxuG0qPuc~3s`59B zHg-%DZQ>T}u6l(3>A6v2%DsdBc9-+%4E^!}X^UqC*pCzCw%MyM`y0ja&xp1(&xpUf zG>-JA-7sI&Um%z24gF~x{6V=e-!z^yqFvi_ysfD>_`B*8W!w0)KH{7DX$i(P$Z5_S z*lrH$GactecKTye>KF4x_i^W0--+=F`%H7L#q}mJ*V_g5{fhR3eSyv+>^qcLzqGxP zT(_|=F@C~z4EqN2y8`26EZ5z6T-T?t9`-?cj^#l6^k6&V`5g9t+J6Ja*QDH!xN%+l z&i&{}?x#<2e{LJc4(^N5p836s?cAn3ciB%Fd;Hh=o0aQKGOk03Ngu{#7p|Yaj3-^G zSHyLlAMitsFYqgUKRn9o_xW5Jd;Cy8O-;Y6OaG3cUm@;k+<-r-{3U5etfRVaVO~i*!Mb2upH=P(^rNzDw>te8^>uwfoY(k}oBoHm zs`ITl_1d4th1^Qtb^L`DXyn!IZwT~FTgsi?@^v?&$e!Ex37aX zf40p79S_z4U4JsLUD#FE_mlMRX!=(;{nwFxSd;$Hn)|Pf^eZp=&py8YIt24=o56OT z@O`xy-y={~{np|a!2m7p!->pTK&h{($vf?FT)o z+*p^j41KCxPdHA*54C41?mw^}P&v@A&f{*hTP4Pq@+{Bd_@COYGoE2Trhf1fek1!> z?B8@94(525QU3ERzh%E^W6ZubXN=j`{>q(4>lkYfA)KmMSJ-y#D#_aDJ#uz;`i!uA|rfe5w-9P!om^klBIV>^8 zznlO6pHsa@#uz<#v!60C#tyY9Upad}_jErQWAs;={Xs5cfA-_U`{-Za0}8Mn_KE5j zH@Rzq+1domczkv&R$NKVe_4{yT=_FBxOnO-z4-o^)SWkoK-f`__vw?*&%cH;i_j zNWU9MzgbK@ETx`tU-$W2SZ_L??@oV-r(Kq_{s#7wIo8NuHkSSyYwQ-p>+Q)#vBr-r zv1Z)|EG?85eNBaV|8A~ z@9g^jTdz-Mwpyf`gY7>4Zj%%pknbUI2x2|the*)@c>?-8@-C$4urJvB|KT_C|Kom? z{SM}JBsx2$#SG4 znVt1)#C??~hzw;t$gBOVB9X75W#pe}edOUNkyoPE(Z3So*6X&ikJXgpIId`xcd&eu z#NUf@kbn5STidA~V)R;o%s~FJTBMpoYSw>lwMfyyk!7?eMF-?32psVDl}4SL8#J&m z?|){0kIA9d|BtLQkK20K|NliI*$R;)WtULLmLwM?$=0exTCVQTw!l?%#C-F%$*WJF*6{8yuH=c?yIF@=vGi3yigRRH)2Asu#$SRi`AuKcwG2}=XJ4z zKT5^$xS;p$uRLuol~?fG!k;sTZBDtd6zl&j6+`oopD+}KuS>;H6z0)?QmGiK|HE$- z&y#*gPYu6VDu!l-B*%uOVyG65D-}ags82iDoAF5fTJXGXsTi6CeF#ON8qe#1=Z>Xf zcwCU*a`_l#C+y>2l!szhC-7eJY;M09;|`)OKWn@vP@hS8UWViM{i!Ps(QtmHl%Mx| z#RvNNddA(d6zc`bO`#)=r}3?KyVLIi>WbGbgx_V9$!~8>eRImCz2mq#m*e(3fyed< zAD&O4oJ~1{vJLIp0#EULrX%r1^c!w>+6|;$gHmy_Zm;uPE)yR0dPll+zQ*+R<-Ou? zUDtUO!xbLxH;?ivo);KT@vv_9EM;p-#k>2t+8dtYfDPw)ozOahZLvm z_lkq|x<}9b-E-?G5mk)BzqSPy%5BY|34r}xI2ggV6!?}mEIA_>I?ZZ#! z5DZ88w7qZh4(Bnh;eEQdqAur6bS^WVU*&vEH_qb>VR7M)zuX{jKvY>D-9Vn=XQny63>-=sc$TT?gMn ze)xd@66$j~KROY9egU8Fr+<&cXU>1@lh1W{U*HJjeF^22#Gm&;Z;JU`oApWO(TwkF zoIg>XGs{2V;d=uae_zIt9;JRhU$l<*uTVaf&zZX24$!OnGEDzHoRghKet{P_C!==8 z<15-NrJc?rS&ld5bGO!)g3iN)^J6=L@8*mndANNq^luN~?3c#n{8mrS5#P$W9o;Kq zJGzW^%D0xz_Zn|Kx127bozA8Cz0Re@b3~jcIz5->-{Z8Otp4G*5W015i0SCf`;$4B zrF(a*M>9EBwifumQtm{5DHpt8AL}`Xue=~`_YLFeUcJZ%>U)y6KzU$nr@EKV^y=P3 z`=Lj{cRqO`s#9)A`5eg4pnMIfpXpS71N*(7fvG#F6Q3sE#z6dOuYCT{c+Y3N z4H-|%Gv)7?4c*&t4zntH+&GVy=rMog?`>ySpr6CYE1+|i-tW^nN%LhV>Y6W%zwQS$ z{!9Mh|8Ihix>wNry%aokpP$Da%k%3wN1F1Aq>-}(gdg{l7vr3qAHr~z zzsLBjAV1Cz=#%bWG=Fsur|oe&@|@@%Nz?H#`lP%h(GQW=LV1F$kDJ2(Bf!6LrqA&H zg8p65ixc5@Z|d?FmYYiB*)Ge&{Mj|nyFS<37da>|g!O1|`u~>imyP)s@FThx(RMM5 z`cL2|eYSjOpbs~IXE)Ii?598ab}aHZ3BHuzdrR6Y?}o=)hu`Rg{tW=`neg>A;Ot5s zj?Xe5%_qsrcq(s{%NodQKk+~Ol%L4!l1q5s7&-ri-?$Y&&;`HP8b475KcPHTwtwXf zF&yQGvfkVW{DsJO^532Ze|Q4)sh{~Z27PEleih||F}`2mZ{`1N56bW2_R6be`&Zs9 zKi7TJt}Abh{m*XXN7;k^Q}NHrTNdR_9<*BIpE*{3Hu$Ao@waohkNYU{vNa-)T2uV{ zb>wmTT>0O^PxrG&|CRE8l80?A`TUmg{Cl3?rh1s?HzP0H>Eyw?i2QlGbcy;>`ycn* z&n4gA@|?%ha(+j74$W8PAM`y=j^?y+A%`x@}I7j(CT zFI{;*OXG##SnxfA{GtzKdh9=yFVJ?}xeI<1`Y%?V#jwu32zuTEUVZp7mHe6~lP6Gl zTaB;sntJ`vBfe(WvlaO+52D}UjH5h{ zQLh-MBl!$Z0PhLpjU0|##zE(c(5d`}_NOUdZ7=d8UJl$_;NP<;f1>glS}!SEk#BKZ z>R*yCu`m3;RQQB@u#}h5a*=$D?{e_ilDv=7AKPag@|v74)SW`p|~whjfW>t4q!yKjWuaU*mcT{5~hI>wWO!XP*BEo_CQSax#1zAvjfc z7`CI@+Yb+=e3bqjcwY}b>-6*f7`Cmr6 zqo8vK=$y_t=QB=M#y^1P(qHTAUD*Gdvg3fyH1d_+fL^Pe(5@~T~(e`>v2!~ukuZs?mN-HQNWX*wB4SMzP^tBy@_9chj#B{mrK#d z@xVP6xJ`jGlJT#=|E>j(ddz!=G7lclym$}w3z-i;z}~-2c2EA%x#U4z$h=XT`S?iY z_r~NM9mxEBJ@fV`@|+H$o#tz=SCsGD>(ST9+q$%CT))huuDsj!Ta&;``BvliQqJdU zd(-%S-T{2NQQs7N>hkBByzZlaVJ98Y{vO2)93yH?$nT1n&TccW&9q2 zPd@`!`P*$j`;f=|W!}Fly$XJQ0sSx1^N`1Nc)kO9 z_iFQ9e`+2#>Idu0Gje{u4`&YVIc*U80sT`xLe{0qU+Z<()~tK~fUjSH&sHhlVTNmZ zt^ludSie6?p2%_FrT2!bJb`Yne1O)k3)!FO%=7!e=RwAw0p4w>_fS2|-$lkdjs9s} zeJ<;A<@2>a)_CUcB=G$Xyndpe@=_X~Rjk9;Fy0E<|4#nGnecUUz8{pA(tK2YMC)t) zTt@z?9@fYDj`8>d=%>8CaURHdRjtR1_zp>>@;yd5@V%$}j)r>>`Iq$FX1Lw?URC~C z4#P_VM`c z9mV(SV)hxd?`3~`Fzs9Y?R!1oITZZ0?~>$VKcM|9^LHk4{W#|t_B<*%+7G4g{d1A8 z4^Lq?z4N|Iq!;@cn)eB#|HbY$0#A5YKefMM{F;j1kmvIV@aPF$C&RCD zAlCjD9g?Gzm)lDe3X~W^ZID`_Y88s zi+TsfsmnNfQ7YeQ{0@d*?NeFrHeviAk1&61Am8gs_QhUC4}XK-L2tu%=$*VjTYL@s z4`;A1axMJU{)pxO0{vg){fEGrgS@7w41OcQ`x8I;8UD5o{!RI9&Bs6RpC8~~wI5`; zwFmFfDIYIzAEW*>@>V`^(=GpK{gFL+{1xo)y)XVa4DR2kUdNrqc=sSj>4)Va zzZ$=*fG>OYIMVaD&VerZ54Zmvds5zC_mkZ1FJy<-+h>JO_|8^7VcVtl$xN5zZoU7S zvNinai@wO8#CaMx@)OqQ57Fm__-WX5SEc16J@q)USIbHN7n?5GcU(VZ zeTsgM`dR#MuK%y?FDtO$0(v8Q3}-vq%a0`ewcaYfe;PlP9{&&I(FwTM2>&pzDnGX6 z^+5g~-+p3tes6tx9Y3@RJNt$>faTElhw$-tIrOckRNhRFqtb9U<^TVEh(9=(e4L6W zuzhY!bi&uK;B$S&3k3L^q__+{_j()rmr+mg3CizjzB~)w3&8tP>Q82SH$N4BVEE@| z`?vl~g3t5e$28urpoH{&B${0 zcx$OkAL97L;fSA6@6i|Ku{Hcl^1X@CFGvr)Kf-gx{aF8W-(R!``s=%H^;lmAumL#AU>;&}?n8yVhznEM-lY@MijVR<`zG|QgipF}(d~C3uB|3{LgWC% z$LIVsj-Pj-z4EL2d{_nJ4a{+7rbBf5oYh{ymE8S&f9UH89wq3w6nUdKDk%_lkqFzU)a| zagC;5`fmGr1ASRRyx%nJbycs3r}WKmq(2__3+!LOKgs50n?z@Rx(vC$!gnsK#ISui8#4@h>&#r}#UMUxnvmso#SCIT^opE6*2$zs9wH zl3z>qY=5NtTNB?bf7y%Wne1Qujq^YHq4yqt2jn7oc%AYVexxdTBYAk7=G0F@Ur*2W zVtL9=?9WdHZcE_Go^033bMNt0I^MPq`X#&a^YiE@y|-PL(@%D3dIZ<-HLmqd@tTeY zz7aUrg6EiA+CHxO|MlGZrhNXU|8B~u=>03eQ|a+$g5PxLe<|?`Jb$47a`^o%c&$RO z_1^qb{J7~*oU-N8fVgJWZPy2ow^eb^rmG(9jwFAq;-Jl!Q;3sJap_%Y-$T3on66snv8_j*WtHZ0eeSnEfV{YS zl3!NmLE<@K^2gStYz~|jfrD{MdiSe9?JZ}_A0 z6_)djyqCV%e~F)#r_Pncc?o(e;pZ^qs&g8KHyXZ3kL* zI4_bH_=Q}0K7I;#GwG*uNrtza=Q=NBd_D!AI^?VUf;_@{Zae#y@z#UtjiTJC525Z;mB=+#f)zbW}* zb*|9zQ@&!`ccZ>>J)zQipz~Dbdlm3nUyAyt^I6t2o#V3pz6;$yz(3I)=S|v+4*QFm z71o7<%i z1?#^XSVzuf9jkSr*8#O@x0?0hwv5+4ml0paS6=_fFUl3Hqd#KZ`a0jED(%O%#I76A zUh6>1>l@aib%9$muM^Gh-}$~dl=V>0ygszQYmw$z#(9zUlUZjk0iQ=%M-PP$`rh~W zchGJcc<3CS@zr;!`J(S)`vILNG{4_toqaFueq){e6W;;CyVz`lt1|^+fAv z>+NOq8%29PH=Z{$-b6~BW4HXZzO?E(T6x*13D4XVvH@ zJ+r;*Jgfb<_-Q=V&d+5R=9~1@_&$hSuSE{}?z4VK?`;2P=lz2yAM|ZI^hf(iaUY$1 zgZJ5|&_09pMf-_yoyvE+?vJ#5d#8O4_OtiO-|NO}Jm2TqN3;E`;X7LUJjP=i@YZ=m z?-Ps^T>qa=dwqXfo@t*@`=I`RVwCU*`@8ynH$T%p(YD#1Y%hcHANnpfKeXRwz0-HM z@z-~G^qal^w{PHff3W`|c&T41ACk|zM!EC9{Zjr1(|I_{=Y8V86n|&B_a*-DGUCfmCmyd4abxFqjr-G2cZuUY zOx$9K9}RIAkLjF2*k4{pJZoLzSuY_DxHoaVH}SkJ@sE2DH~A3pp#y=VI8N*Lf#9Y1 zSkpV4_}FE{+g4+|=ES3~BEGjum#BAp692oPGyCSmLr>_0e29a7h38*%j{0))=}})t z5eKgGA=al}ompoQr(Gq*;nQB{ORVR@EAF@JdH5-g-|}un9P^39#cx7f@UHMBoc{>> z`-+RVoi!vL{r8N&?QJo5ybm5Np>rnj%RRcp{ksA1=N|DZ{100L`Mm}{?-3WR^D4%B zy~YVY#j(3=2i?Pnb8ks~JL1VVrJmx*yAUsbB5~P&@cwh2cS~{f#GUU9UFv83??7C* z=!*V{c=7)vehY4}n_rNd@UWh|+$qZKkB(8UTXu?idRxb+x8rm!B*Y6`)-m#RJmt!c z_=gVh`6V4j^9KOsD z+`zXB;Bz>i5cENEww~#Hf&J2a%5UNK9LXp6?Ka5ew%p!+U3zFZvvNGY^?qmc`&iD$ zY=d6TK%ZaYe2C)gJ?@Fbv!9CHY(aedTKvaw?BZJNN%iRW(EE+psm`z1KEip9@Kd|E zPfdMw?q_`%h~2#*yY>Hu*stRF&6i2ZF7bl*R98ahXDj^M7Yk#Bbp=dSmrW3A?g@IU8g zY8Ujk0p|l1zi$1Ie>b0wWu6&9-1w=y*L-BT^`+jA^9mKjpU=qW3oP#)a)0wv_t{&% zitmnoFU396ZWZu$Vm^GB`1E&}Z*;!E_%#9VtBI4>IY!f0l{oMtm>)Y52Y)8duO3h9HQdey>6H*I)i@fn8%I( zI}<0a@l5|h@KHRt{pAn5@1El&O|Rk=&A(B^+YKWg@fPAKD~b10+^gy82;NJ;OY!ZN z?+ehUIC{RlK_Sqj*jKuXR1~g|FxM zQNve%+ppqP-M<>}UQ)k-^Nu-0d^A47-}a$6U-N4V;&S&<{9!o%r}#^ct9VHJ$8_%h z5aJfQ0=JU(!-$)_jdh;laXtP#;-z$M+IFw_XY(yQ5AjPW4qJ8Or8rH~IS#mrx3v7m zgRjmZTmK~o(>oTr&WEq9kkiA&XR3Xq1Aa)}?k~GAU0bI3Ovyj|YEaiXgt#uw<43$1 z=S%ST3VtT}&H}F~DuaDVK87o~n6HXUH{W%R-trJX%?I(#bU#2l#ort6MZ{TuM!${3 ziGE4@2E-{U-Z0t^@m?MBdfa-YIIh-=6~CbneH`_hfw8tMx?uF+TFM_FwXc))$>Wu>Gs< z_rJg|#m~E6^DH0xu@h+D3_DSrzxC}T>_~R!ev|R1$AaI{z}*+Q-U+@c&5vG;r#O4# zu~%xxyr%iYbUzGVbe_q0PiJ1bf_X{s6Fir%!2b#Oo9FTG-+|9JqC0#yh|Xv~_|sGH zv!d5>K9T45X1{7W{`{Y@n9R&lM?*W2+olc*12pWq(i=oANSJ$-YZaNcP7qiRb&A_`fHJ7p#pRs+HsYJl=osW7`sU zsQ5syk3WN6#dBNEihni#|DF64{!sCzao%TtYDtdoGv5?18ts|58s+V>J|9KAOEdO$ zcFX%c_FIa-v7TPQe%86{L37L3i_rCnUfaURAj=M2D@gw@F z9G~NT@h5pc4E(PKpNkmxdiXpX`Bj3a_Kl-mvTv-o9@D*ye%hb5p6Gv+NH_b`d-Fen z@);VRb;$cO`0)$y^uK}k$*a)*SL)v}?n>&5!RvAOwh(;3fS&jB|0W(!|7+N;#4qoU zOJB@i;cvcunoGaeez~8g{qd8K<8i>*hjH}(Ox%YDuJ&*351RgC|9Kyyl2z@RrvZhz8OF1t?lnl_#*mKJ?WY2{eg22 z`t}fXe@wp*q4OQ=TX9~=K25ju$M)Zz_dSu1_Pf1qP@JCq(!Th&t5_#)LEN~`Nm-w2 z;(w>($93+*ay*#%pb_(d)~A+};=;ZDS%KV8(@*E0?7u(C^HE$+v;MprKmG-N z{v+@@g8lNg%x9WE;<|cvktwU`STFXOJV<_C*>84a}@KB;^E``0RH;Eit`%t z{4V+2mFd18`otgm|D~)GFJt|vbEO{dN#HbOUTsG|o$siffd)4XiH z^w0RYo#Mp3PI?{u7BYWduXceSiko%+7U**s^R><~7~i+@y2bjab&bcV2Hc&Q_qzf2 zZs4T2{0G2Cajuq!=(W9R9?e>3Zc{Ep{AmA3b)`Tr@~_W}3?`5W731MIqOo`>zP z6;EovbOm-higGaWyc@Wh2MlLKo=-il{F3K6`3=i`0{!H#J>SVsM|}X_Zy5h)>hddo zznXFd{%r&PxGM1iJMw?2{--w{`aj-$*qQ%v_u+qJ{f}zC9Kn2|cu)Ix<-s+*&2oF= z{{!>upYW$4^ViY*58IUSm3Q8Jx{-12Wc-_`D~`|e*e%3G+zOuhzuW#z|MRB*sco0j z!DkZq36AMfoSx@-{f}+A&)|P={g3VOuc3YkWn2F5Zo;@dfZLtt$1<+s13hkuc8X(l zUG1!A`d`_l{{OeV_6Lr}P4OMZOXIuUb2&aS@x}Nn{=)PMAInwo8>V{){@>n}|F2d0 z`5NZKkI*lz+mar6zB`|~)+Ls=<}u@OBYHF*{~9OgbM?2}W@l5NESv=Q!b}?e%}X@zpxU@YaLp^WZlU_+!BH3Fg)Np-=to zKcwfzPkL;A9tj@>&-yF7iT2NUvNP9T#}5C<_G7ygJeP-}*T*A2tgcpUy$P?JU=TA!t~sl;~k8L;vNidJmV`)*#7hp@Ollp z=VQl;Gje;y{hA+&>oC2FCrWnYayIRzGoI|maPI?8JvUuX0$2T`oM^u_@lA^Nv;W+R zIMABJXZ0a2YGjVzGrtt~XL`$Nm+GB~vpR!&<4*qOG{8wrxIJT>HjN1gf*J7{YYg}K#mwB0==F=?n z@(cL44tYyn(SM^~@(cD4ihDO*gMi;H`xV>iDfqqZ;J@_L`Xav+*Wt+RJf2HWq8-v+ z^%!piUJL2>Hsz=2>q}X$++K7VFU7B0ejfo>a00*G1@=;3vH_J&N0o_60qykmpJ0MMp}>*Zeyg`ATkvUqbF>JXhWNtTeiR< zfcppdsWcxIry2b|@w~b>#dK^>T z-RacNB#yKfajO>)cReD)ZS+y5#~+4IL0#9iunoR5gV9K|@-691~w z@9!qw^j_kgAA#Np;CD6cD&dRz+0RabzE9})D|js-J;FTXJUI^g^OoqsT1^Rmc?Vp+7yPGwO(1Ir>`hLlA)pIa97`r@)k|Kq%0 zP!{F*W?8h;Wo1#{ex~1VWs&YZ%A>x&To&h}$z}Lu+Pzp7<^3+>%r9g9XS|7J_=~cr z_gxtOKJXSi+xh5k~;!}d1`IMd+QnzFc#`IB~Amq$KsRUYAPS03T*M}6P&NcR!tk-yDo ze-!n^-@VJDoEnrz{;I$ARqf(DRv!7#t32|zCvdxzM|=*XJf40n>9>D*)Q{%nQ6G+^ z-4Dp~J>)ePxu}fu3H*^f&4-Vve+xfmA&;Ao-vjiM+}!?|3@3hf!S~N8*CCI(;MWLz zn?T<|(AN)s^@Xofpl>St8%_UC@U0zuKc+nDo%j*wf%2$lHOr%ZH7<{O+ps*&H}x|A z?N_!fkN!;Zc3pgl>(cUQ7i}58#Q0^{$<@4{R36(eWV|Kt{ZH^&3jFVQU#N)k-L4|) z%f1z{f8&aXf87fFbw!k?>Y61Ah1!&<-JumxU-qwva@2GC>jNsHo}9ux^JiB?`bN@! zEcHuicX>tBmk||Fp5y8FFnB%+o+^#UH2OUOzGEt)J={dQq2MtQIL}dkyaK;W{S59c z?F=0kQy0FT-(IMQ@^~J&uQ1+w@aqfiIo$|8Rk`o9&@ak)r+!g>oA!(2u3?;?Dx!Y; z2E7|9qQBd$UzE!h+;^Pdt*=0DxJR`X_o!~mc(oa4`+iYg-$RG!_Iy1U{+>nIKGSP| zsOO#sPpXJ|x&i(C3H?4e%ggiAmEf}g{6B_IU&Gg}xF>cy@J#o>*64?RfoCi3i~Se; zIV9Z&%lk6=AH;pI!=Up@?w!4bdui|E{k7C@2VNz3s9*ekf?r+X4Rkfi^m*M<4!j@Wv+mQiU#kvY z;*-~bXF^wB`j4TX=&;{W-Tj28*R@0XMLiqQFWSvm@E=cm;c5KGf%jG5o%r=Y?jQFb z81HS`&!GJsxxewahjzDRKG>dKK~C?0=g;tY1N3aoy~ew6zwhqcgI$;B`%~Aw+Wu}h zo983AZ~Fr7{nkCfrmGwG0Jr7dX=x7=T*{S@v8U&Q-Q zs4vU?ydItny$kxYp2~E1UTF$GCj#dX_$NM_zP;ej0rc+--&-+WAI1}3;&(mcJqi87 z&v<`DyY<{>{cHc|U$#&8>r$$2KUIzUa(6x}@~3{jXWM$Mdv>kY`*6RmO3S$>_jPa1 z{pZ!Wx4R1Pbq}=pQiuD}597Y)qqu*&Iro%r&3(ixGQNf{{#vi!qMQN$BxmC-IeOhB zz8F8SY(9Pu+}{{a_bz+>`JLyBXulHqY{tFoy2sl4xw^mF?W=Hq?qc*t z_sE<7bCLTcXT^0%JK&rQT-`hGdwlQbK3t7sxIY4C3+~y~efO5*u8g}o<8GDiUFII> zrQol7?G2|(E^Pn)7)6!ksfgYFae{Mzgv{V(MGJlfC6_j1SYSNJCRSYJ;> z4#z{k;F^xR(eugqo^s3Y8|3mVbSy_dRv}-}ZT)D*ea3AEME;$?J=CYb#{t|kT*1A- zBe+NSTAmM~-Fe(Et@pnFI<-5EdN=sng8R95q5Vhr1>F~J|F3(xUF!aE%Y7&C*#>>- z51xW+JMAs`h5MuXa-Z_a$XEA)n~!fo_e}0}-yz-43|z_2^VsLK)BWl8r?n|-42byb z4Zn^X5brJ4eag0j!?}055BE*?qTF{t^mn?)-1wcrxGGK870@w^_BYX9_nP~j<+Esi z5_EQ@91h#^Y)3 zi`IS8=F|P~;bz9afx6(Du4~}yZ5bc?l@5#}eY4)`zIWTv+4R2>_~&r1`azj~-^VOH zw7yP4pU%yAc-$KqSNCcc!cTgV#&xN2ZHMv;{yr_hPx&AF?O(93s>po__Vpe5@mHEx z7+>->zch~Z{W{8V@a19b z$Nho%cLVE-FPS&H_K$X<_NMPYtcQ-GO!McDc^zfBjAvajfqCz9=EH69V?FQ-@3T&P zj&V)}AFXHnoqZ7Ns^0YflkbHWSf6TL8u!y#KdGJTAF{sFxYifZW&E2Yx#O>!vVM^t zwtv|bzj6}(`YfJTGB0Vq@_c(S{pIJ3=SJE|zpSrcz;F3w%YQ%QAUp8A>>aU}3$vfF zJ<8wMKH3h5bV%;DFZns!MLqoNGW7d4{Ho?}D@NJf8H+{=F9E56Jf_=C3~RQ}dzqcWe4@NBc9G@3g)% zotHAd&St&x27G=D`m`RgpZ*$nGq8WHLyf24*q%0lFHf?byA=I75Ity*{+@xJ?niki z--&Zr*A3=-_inxqm+&3*YQN}r7WRwd{lvO&F5g+r(Yp@V#b2~v58T@5`C8z&{Kt3f zXucz>FkUCdd69K!L+n#{oBvg@m!A21%6_pi^qxz*+pvpkvA4PT`^5I~8~i!|IqZR+ z{fWQOd)v33o6p^li{$L_w2t$8*@^Y!QJ&w4JnqZSZI`35zjE|M^0)m+-nPe2c&~Zg z`tv35|C`raw)c1PddqtBQr08GOY5?<9+f@W?`eK8-m*{o=hi$wGy7-j`Tp3e^xXC= zziawsH}sln3^w^-#jc{LuQ>{imU?Z?TS)J$Rg&*uB=d-lr4&_V1eKEFZyh zIUl}{1HSCb?WVIH+yXp>S6bJY4{h)xr(=hwF>i=o`xiYoewyD5Z#4C>*uU0^Y5ikA zrg_i&-&uYptlP9sv;4Pb-j|*F`62LiH~1?4x&PnRQRdSj=tn>J_$hR1zO%m)zSf&P zvfr}ZYyD>Y@56u1=KZ(Gbrs{+s*LigUx{C>jC#67WyI%z%IN3zt&Hn{{VSuK8&pPp z*}D>dUK#nYXJuShHK~mL=g`WCU!BUR$JHw1d|#V!PN07~@aRgvlPe?sJu8cE-g{T? zX{XbFaAmP=jVFiC?hG9DGrc`{ul`=Ibc3GrE7^wvUTf&;3;u!=*9-J-3SLLh?u^_% zt}`=UUbl#E*85$+<4gGa0s6EKIXusLbt!uEF6*8GbTqDv>+ZUY{|$P$7Ws*P){k8& z6Q4JMj;i$E4F2o6`LJbWwBwyBqrM0q&!=yI$1~t3d>e%Il-A3pXFm1!z;hvbCOvZh zmC*M&dh|B>yBNG*2JR#1>HW;x`i`;Qo{;BP>#5q=&X%P0GkiTUw_NkM?bEH4|kzgchc@@`1=%ce6ljqGo9ympa-Ln=VbWy0(`DDF!J;8fvj5xM*ZwL z5dSbR+RwEEBOfmw81?_SfswxAz&Kt9;G8;;b;rPHXGhS#3-Hv=a;XcPIs>B}{n01h zyRNtu`?38f74PNxmE6N#zZC1MdA^kAD=1s=ejm!zUhxBk@KaoX?{ioF5!aP3#C5@U zy%lxEzq$Se_rAB|{TNE+7xDX7DHX@!`Y+J&78Aa%tdKEP>6IRtoJsees7(POxq@q94t6t8SJdhYj|QVM_9 z4}x#COR-*q@^+p-MENVvH&9nzFT;J7=Vg@2vs4H_^*^`p=geV>A94MHQYE~I>e zat!cVQLd+7;@1bzaS`+>4y6!&Z&8k=R9sPbTqu@`p(rSh#^oNsZB~l)&8Q2W-``28 zI40AjI40viiswx!%P60voJH9Xcxn9afs^#AKJ668Lv<$5)({+X;W` z(>bMB@4-0DsTV1aqf{JHA^hr=ilHd%SSp61P(i=$rDCWSQvWukVyG5+BQL=Z)k6JJ zF%$*auS>x*Khks2>-uW&PwkR@D$dJvY+j1}HID0pDU-fPPYU7pNGZ~(JXxVy_<(kk zO2tquj4BmFQ5at;hN3W}R18I-1MRwkPojS(>Qlf!@$*aSvS;^y4}Lc)#rnyV!m|*5 z1A(9Tq1ZOYcq3m)P~4_%EH0@bjJ0xV&%0^KI#OGG$N7-jtisPw}IM zvm^CZyw`kSJQW9NychCZ^!d5$&HWUQ=JICB{dh0Cb-xL~Pj;RBgY4M-kyV7vDT?Bk(OyCVq5aoQo)ny^E`! zoZ8^8t9!+=Pp=5K4)EGAet+sWQ`dPikMkw{{+Ab<=Q_vZ_sR=xebV^_*ArZw!!rJY zYq~|B%Ufxu^F(ehx?Da(`&TIyx9-xMShv{h=YWA5Q#wXX1%eG4Hc%DM%Uc+w!=km|zo+h1NHr^e9Q=jL$@5^v> zF5KTMZ*V@m8t0Avi&YvHf@?vo=M)!NfbIp{>r{(h|tvT<}9Qt+c#otp~lkdGD z=QDLK)c6kP{K&SPcUj7L`Wwl6rhM$?Q_Fn*({$?`jrSLHZq(x*E_mTQiq2J;u9{ii z9)B<5#ih?4cR%z(?F{cX&Y`>rUPa{E4!9?9{zUd?IV?iX%2Q@|v$Finm+s_2)4eH% zzd!AyM-hMc){OHoO*8-e{yN_4oUh^c79T^NlD%?2pU=_#M*fZ&t9F5Y-M?XZ&!OFb zROkGU&HGTbw1 zuk+L9!v@ZS?EoG+7iRqWLbvWoF}=E1B%N3KU%!xN;cm`N4+Y=O$!>rOS{U^?k@1D-n(S9s&_D<)XIZv+p^n9+a4d=>r-<#?FBiW@2d2K54bK~0_Kd?CG(@D=GT<{h=^KUr$a^BW+=W!t)#I~IOe~SD!1E6~; zaQmiwcigW!5WJLM!s97Vg5^Af`~$j&&*Ll4gU`Dy#ZL_7@s z`2p%eb>nq9{&6|u9fjR|&wJhfXnZfm zUx$1R!Cr!%_{aMr88_sU2|wXuxlaV|G4y|w_PTG??R0;s{qY9Qaoz|%^5-7szrc}R zTYpq~ze9OdoS)-;-Y;gH$?)&;jJNsRh`RXb@fyO9O>${}qkBC)?s2qJUJBEpdBuF# zMe+)MM|mC$r#ks5dXTrH0r^6zAlCwVxC8kxF39;k%>NI_!=b!1mirUrkx$~`GesyHrp6J_PoFJawYaSCg&kBUzHchc+W>3d!jGT(QY*S>4u#j1iW{#|HsJx zrPB0FC69{kNj9BtVgJhG<#CQw{*Yi7&yZK-tL&Hj{5Hc=|#O!T37sP!&*k|V^$&1QC$C;#^6KrM@^|Ju zhUQm+Jb|sd03SNbC|@P7-gSB(e!X*Py<9`S!l{h&5#^RCuPJmWPif4{l=J=BpH5Uh z#DMQy^8Ot|`x@k7+>QEb@L<+_273}QC`3}vw`zGc_uG`|Gx^q;748}|L2#; zse$MZ&%dMH=Hxe2-cjR!IP@w%W%Nh9-x|Itf2-~2Me;&Er+lckd-6)&h@AV-Uix6Y zQGQGNjivBIdK%XU@c(x5EB@_y^vmRjY){z)J^2PYln2&!d~VK%X*zZy&*LXqzNY62 z^4|8$%cnUk{47`0PTcc+k;hXHmdUlxV!QPjMufD%d`B}qv z;OpcQ-GlZM$TRsywhPOD4E_=p^oC)oJbq1=%8id?RvuKd2%y8?B|*Yovg_+MXT zz)yKf&A%q(G2Ml7%dAhvM}8#w;gs)GdKc)LiC+I3{e6x+vRC78l(*G-D}A-Us*N2f z@2cU-emw7gO24mwdn52(Bk$`Ql-1$qsywdwsywj9=RWzdpxSV zx29{<59LucABxQX%ExMce@uA^a7U1zwGVKQCVy)=`CEIY@4B3)+j75{@4jz=SDier zo3O4>K5*N|67W+#Rpa>w_$|=7BCHcfGw!`(~9s&$p4hyUN!a*UR0bUlM%NtNjDZS^4VY{uS+h5ne$*)1l^jyxq#U$V^fq$Q|U$PANYj|Iq z?~=Xwo@}D;kT7p3Z>Hg&L0x%wBfU8fV&pq{T$M*N`n&WU!*}I+_K~y?Yq`{9Utnjx z6Ib(nrtfp>h4LIlJ>vWI0=_E;@%~}HJCzs7?e65ePx}kzPjmJY()Zu-Y8UvWeGI?v z!T0{Z)Gx?Sc-cNq=K0OwHJ1H=(Tw{Q-=R~W<0rn4KVZB$;CpNCXZXs`YdPw<`4jd_ z0)MriW4+LRi0yp={gmg?d|C#6i}+sF^XRuSeb&>t$WQwTah-}B^xfU-M$ zaW>Ce^L^Qc`r*7kkNu0O8LsU`-|5C%`Hnr0w1n^4CyMI>y|-Q>U+oVV-*ce5a?>)35y&+pF@EMt=<7 zXR-fsIegeTf1i7O5%zO}oTT>=FZwGltMycQVa@Lo;oEWIqw|4bH_C(U@hkHFOoW^1 zPV{-c-VHu&23-fD58bmq8NTem^3*<|`yYY6YJbIgJP>{DOgrr_nvOQWk)7G^3vOJm z(5@2xrSVjnKJ6zZyEHx8XE8kOYntz}UymE|D|@}kbMe>hzg9iS@palMuWQs7_CJ(A z+;GP7Ui)h1xBQUXH9}6?z~2_=xBQj+4QHHd&|B@>SA zJvW|n*+6feqQ^0*5}=k?@7qDcOKX6weM@bT?}5&^L`HW-IMXP-YfsL z;l2aB0(!6`cD@7lpnXfrp(=7KVt4Xe)`tUBhVSS@c;1M9HL;sL@S~rB#|-f!$ZH<@ z{4jh|9&hti^0R&{O#BD_`M@h>y|EqZe*@FMlkf}sH2ZwgiyKPcz*GoAW>$N0Bq ze^mLVEuR}H2eA)&Reo+d+wlLV{y#Kc`rp%X7)f~x?R#pxz!&BB^ElTq{w)6YQGQ+X zLHTs!I+pjt^Z4%fJpDfaPvyC@U(x?h?x*~J)_>)-jq5x9xB3)(Lc6f8Zpi;r%A0Gr z`{e&M4d=N0f0p(6x10|++8y}meLq_3+(xG|zWI zPSsTp>y(=OUs;v+qSN{*`i$3gnZK?dDg45(G5@2qr0mG^8px*!bm;#_>xKRgw_P2K z{tQ6Rl=m{OW9TovG#@VHc`H2+{zUd*|DD!H*W`KH?VrPs^kp8=`pxaf;h$Dv&-3%T z!gf7|_gCcgk>`i+lb_3Y$Nd5HU3A;-YNIE=;wSz9kEzUiD=DkPN6{Dk6L6nO|9|jY z|1(E=;NLflw+4B9M7yPot2~vK*DBgAXPg3hwi5WMz4G;&4#6{DWvA{hJ+xlx|LN%G za=y~I-sFGuR{8(!jAAKhKdj{A%n>_o$g)7lO|i;HCfZPvrga*y}0TUnDt2eFIPB zvvs`L26?b4g z6~4B!W1&lVb<=b6^BkVvgS^_pw=eMnqtU~8=&$Cr>{pgEc-9!8H(Yq6< zcSNr=FS!4B^iFzc{AFKpotyo;`CBdf<5ag^EAGVeuHr5{pZ)E=Jo{Ji=YQ>je^)+W z_g{j(N>8FcMPBpZPc8DgEB|X;Hxrkmd-`k#Q;CDQl6K;bZ*%dr`=XfLY zMfqu?zH0oiPdJ(O({lVz%o|BOS~c=dDz9do7l}{XJm;&mJe7Ao`Y+<20v`h1iXTgO zMLQ!7X$s>ng%0J%wqAZtf91C~ed4$AO>jo%{JNHVg~kc%L-EJ-^q{;f%gu1#>BTuK z@@HeC=S-LyQ{xy9 zJ&*aRpi_MCIV{m>KeHuyObf&r(Kz9z3oi59(#$(=O+4PxzXS`n{w7dm6pIHrtE+g6zV2*%p0ljNFv3+4II1 zwAVeQaXpgbe+CpFKyo$z!2hMB%N4`n#^=gO;{_-Fs~0(IHF?dFk0H}*3h|Mpq7C-PeNZ6Z*2J~4%&EJ$oLoJcuvb%dAKddvuWQOJo?aH zd4{cbkKw0O+Rr_O9Vw34blnPm>Aa8PkNsTn+@|wA==m7<^LhV0{$vyKt!_iP7CMy& z+2d_N9@OgOZQYvuvHRvc$8M+m-1ZBHk{?xZ;^u?m+Z_+BJm0q8t;p-T20H4|uE=}k zl{Ws(>8Cv4w#Vb>*OL6UgULU84tNeFFYFcMmAwwQV{_i^=(iY0a4g3Xbm$y`@$3b> zYkB?{aHi02BIDmle%(p%Ro!-v{AkFxb^-%{jb zee%{GKz`f3$)Bs|h453qP!xK@hl?qX1;5V7UFRt*Z|Rru9|(VSj>B}SjO(tPhuv^% z15fAhZ1>V5_b-Ew(m%^-JpDf6z0R@NPt8VO-pcxAKPA1eJjNj(<+o1!cli}^Ujsay zGqZmXAMFo+0{%+cZ3VxZk=M5qb)9Rn{+yKaVw(@ccs~HR!{PHp*U6*&5qXGTB~S93z|}b=kEiy=`$h5=&&_#@jo)(M{Khyn$ZNYbd5O0o zpYDg~$yemhUIo4@8Fx?e0XHV!@4@s}9%AFao^c+a--E#UfIP@gXMAH`8S=;~Z?WZ4 zE8}B3`V4&M!M~TFdjfhoit$Fk$LEmGL$q5${^!5o$1l+LC-m$TdR3kL zzbE(Qdj&i@lSg=e=T?_G&$lKe8RkpLzWH*vDk-=UeL1ciUw{^!E_>*#`aVf_|>T4mV;? z!rT42!)Kkl^Ekc1r!V=iMTgr}hwrU`+Y9=n_x8s_d4B=rRgAk6dQb(uTnC=tLFYTk z-=XiDqmPoa@sWPp{*Odo>ysz@U+8@&#NjB|G=LG6R17fgUvZNB(Z(9CPl|7)pF8tK_ zKjS4mF+E+;=Nh!vJYl~my|O>h{N;I4`RTnb`vCu_dDHd#vYvRI))ILp{W}Z0JCWy? zFwV{3xd?fElHbSmAMe%QaQo73SLl|W8P9syspcc|rG)+{k9#5f#%BNO`JxB-91Fj7 z&eikArpV=9^45<8{;AM;IQF9ZKnz#&oZ*e3)Vj(1)VVaTKksEd*SB|UKb(Dy=U8X| zoAS=W`vTsl_=@|y z>VZc&c<%roe&W05Dt(vueqQiCHh)LkA3O?QgtzIK_>b>dt>>dY&~FO-_>1pkoujw^ ztHQc!XXLyQen}3NuS)Z00`!by-7os$JOCY9zq?%<^yet_qAq%~Cw{d7d_0=s=^^;*W1+U8QxA$C--!wEnbQCuDtg zU3%^DrEiwMN#g+Mts|0VDHZo9P`vT#ALhT<|A5-}; z-~B5DKkPr~yW9I(kFn2iX5K$Bzgy(*chmVG?e(1=`Hy~UKhfi?)cf#T-7C%q`-?9D z4?XvI+P5(Nx+m-Z*)Lc_zbWifJe>Jx{n-;eufaaeGWh!vcxzw9;|^!vqz?V3=6#yD zzsSDuTKKU3%-F9;SxEcc{9pe*`#L)(e(`_jdF*p*f86>sf&W)#Dt;jF^#T4LzbwTU z5qF@t63cr(;`S6@>3!Bih{qdC+_vJ1?FTMXoNM@h@dV;1&sIEYh+ls&#pe>geKm2f z3y5=F);YpGpLpB?=K#JZZny#Q!JBhl;m9s=ANoGUwT6AZz2x6Dsl5Iz_$o~AHs)|iEF=^cQ9Q$3s zZwcR@0*^O{S0C3g%6|mqPssV<4pF}*cZmF2(IMK)vJU90o_qhleYBJQ?c;vyRqdnR zRBs>s#@u!h&sFVW`!4O{`eLo#hd8c{?c@6=fxCurm#XAkiuX4sgKvY5ar|34MtiOg zf97z0rBmjY_2Y8Rz39FD_H7*_J#FB_B=~u=&JpM=~;^)7?ZgjpO z{!fBEz27O?ozCSL|IN_16`lAW34Jc9Ul^}3`g#j-_|uX9lk}^NeqV_GJxZMZIO6n| z;%8=OJ+^;$G5Es>vQsJM+^G8ZX%II?8^;cRx)0_YBS>-cS89;;bhro;=KJ=kflp z99JLL@0@?wQ}N~@4(m?h!KZRQasl!0HHibCPh5Iq;-?1@hy4(7>USvaI?PK0h!cE7 z&%=B(jQHw3i6g8^eEDHHUflHUOT2fYXBhGIkHEJB8Lt)ahvad+K3GKjqRz8>-Sjbd z>RfA#6QNYy_Hh7liCdl#_4fkq}}yPe|L zZD%6|*YXpb;71j&>3ToLZJbN%>#fu$5GSa(KAb(0Qs;&(pZjw>Z;Xdvou#-;>*J%0ueeCtx#A$*ZV~Z|SF=8A4?a`i?-LI^wLPee^8xX*SHY*D z@KJp7d*wHX>ptp_z~9f|XC2~N_9BjL8SmdAUQKai=9|s~c%H1Ub-(qG^?akh#nA=& z6sH*RB97(~*8evXC!@F+zpvoCVJgoRA7(mdFtoQL;P-X_ReL2D~+oSsoYVbNJ@tC7k1VDa||7k3#Q{K<}$3KZTv%h+SO(-xRl= z?AiWa{Y|(0pZWZH;?qCqk$;Z<96tZbd-*BDQ@nZdr}o#1OHcf9c>?{u2Jfx#hi`(H z{DXn%xwY4hb<;*!-b&PU*( z@okTaTQ`0S!C!tSuA3O=&Flx`e3AX6=Yy>^e&9IHNj!9G~Zccu6p+skq6Hz{t&<6O-CR3G-A zIQ}(|$VgIoT``U_QGJPA^M^jv&`LqT5 zTPaRU?fraT_8%2@V*Y%Q_t(5{uQ(Ueqj(knpP;xH_d9|8PQ{zJu6=s%qn*!w@>#&U zi2eV2=&$`{>y7sRqrS60{vYr-hy79Qe|rD-aQ3SQ0%r{S*gc?IaWejYQP1sPHNN*v z6(44NmG3M)_k5xF9KRR6t~X#Gb^`Kg&%WVYosVgqX;|m|t)ss?j zY39fE&~YPt9H05&_KLgle*HxD+iwG}>wtSz{{O-I#)5A-wV}QE@BR74d0hX0cNcUE zuJISY?XR^z9qo&{_OC5J{eR$g`k%o4m+|~{#?$`;D(S`2v1S2j9uy|1|Qv zANocDU-X*pnegXv^x!<+4}m|DxA*C#Kc-v#;yeSr>3L81dK}~I3f(G=Z&mtl3mpsD zx1G}~>PH>55B}+K*;m-NxmEff{Fma!%rET|n@;UFdwl)hlk7FM^Zc&;ZOcXWWxG*4 znDIV6(_uXkf2RmH@>#yw0{@?~m=}-FKE8@@iNq(pB zzK9$)qW9YGwp^9Z(Qp-4?(c&t_)*Ot_K#Ypxg5v5n$B-&-gm$D_;0OC-TxNmrzcte zb!8r_&-_@2`F3ySzYVM()-kURVLlwm{G@ro_S}(mX%ps`Gc<1S`#LWY*O7VtFkXu^ z&xU=Tk%Ak(JGTWd&71bm;XFo=|Bl2f27JSOq4O7(cU{I^%y)?R;CVpjQaz6y2E3Vh zUN^i};IH+D_3RVYVPB>1rnG+#{W?!$eVf8OT#I=|>vfN(b-LmFp4a1+|AA?KO8idp zL!M6)A9@4wlzy8Z`d`F&b|UVx5AmbV@PE+P%$o(~pRJjH&X&G}^@HN#tq=d9-+9o)(79f7sm=YA11io2Sl&*f0*rC|I0*qfd966zPElW-q&&wo#uzu z18(1&|BpU_Ur$h1ys+ofcY*V9{@>X8rvIPpe`{i&tKfTG{M;VQuidcsGx5{C@OvHc z%kmTUGx8%|Hm#4ulD@!t#~5S^u9%uU;pJBRA=Kp8W<@JL8hqwMF{_X;tcKpAtctYcU zG4zOj!x5d9_aL6@e|Gy1@!ik2rJnfu4s!ezeOjK^5r+2=^3{67@|9kC+$PNDEzp+% z$mtmLR_m5Dzk7VeOIV+@{xjd&GLGi&`2CE%D~`f?adhtQaWxMbUVr)tp82HpV6^YN z9&)?KcrQJ&-ARAV_t8ARh4yElXRUxURQkpoafMc ztpnU&jcP56Rc%KFDA2Q+v~)dENFQdaOSySch$v<1O4@aXyCM2>tpQ zd}^UD=b}Hd3(uF*8@InI*Ue|?x%nzRx17gO-i7|Z1b&L^HQi5wx9rCHdL!`@*V1kh z_4|Q4k#^T)d$OJh50|%MztgBI&dKzx0?(hoThFaee_>Z$iO*AQCy+vJcxdW16Of_=BM6Ue*Z-dD=FVaUQ388 zsYN{JfxuUsqWQfHInAS=;$Qq+{P*|H&G;w9Z`n>1&u0Ce0$jy?`}w`#`zn0v!}Fto z*91CSAcq5x&l>dRtE|`N<2K-P9QgId4x}&UhvaE_Nbcsp-dm3z2QS6pnJ>}@Kfjw& zdKTBQDLxGO3U9;v9Q+m68SNOlWFO1hr%DLF9@UcJAJYYO7rN8XM zeq?9lCwaKtVgHCL-<`Nb>687%F~s+Eq@DE5cF{UNw_cR-{%r6Y#{0X8C!K))K2BZt zDtP?o==U=5gi{&+EuKGtKF>$r-v;hW;P*|ABlWzxhUe>upInXJ{Y3w&#FMT-&u0?H zs(4h(Rd||DcYxsfu_ zXO3^RT`F$X{~b#@GJ34RO*b{#E#yZ-QreUJab5=|6{YUf})P#04+T?+te$alGqkcVHR% zSr+HDwq;QtPb-V_M7uKRquqsN(a!EIi+1>6S)}iUvbc_1To&7}6uvwGzgM6)^`P(f6weGkHGscG9@p!G661|xyj#nnKNUZ$uU}GM3xEF$ zKI_V&o^D%Hqf>|4SrR4uKxCW+m*-pq&fYMEsuOUiShuR z*97ivkkdWjH;wv?GVBz7^(l+^ zNgmega_AodpRR&0(l6W5O}t;gxYeLztBkkl7XDs`h+fb8rnIDzXy09%($JvZvb+i zLOBchybYc+dA_hb^6e|+^J|h@MU>mxa`0lDZ^|Pd|0<7m{WE;3SrPSY3Hcr-js4CjLR^ z&lS<`{)E1FDx!V7$9whneEk`CErqU+!0QY6H;HyL!Q)r@Z^+}u^&8`BJmWo`cHQCQ zo|G-Yqb}n}F191d&3Ry~x$MS9Ys@_^*CZUh9!dSMIAF#J#i^^^1HyoBk#Gb>sfo=KZ2x*W#Yq zZMhG(F=e}cQ4bI97x{2BaEsuvL%*o6`|*A^;Qj$V^?5IN)~nwAqMls^9wWF9SNG)F zuWUrF(hq+JGywlkssFno`spW;&lLE$BlqYw0Zwb~>n&rPvw(9ZcppW(dYLa?pO?e$ zp_zYPk9Oof>Mrm_^v8LLvODw*hu&%ZqWtdy-f8er{k;ww%zeL-hv^g_ybjcT#9og- zgB(BO{W8W`30{SK|FHR5jeCPt+HQ8@-fZ3T9p?ecGr1@DH10{>lY4~s=N{$5xHtI7 z{?Xn~=KaOM9l|(+GaQfKhWo`^^^fxH!T4$yzazPq_&(l0o9`9(y73~$y^gXE{q@}6 z3%c*w{J9=Fp5Wf&v$+>s_a0k*H}sGG^(F2*o&(+sxVL!{?{5Llz0iF%`0UO-$Umbu zn}E-^@c+L&UzFt&zw^Pf9(1;VKfUOGBJXd{^jLppgZHQTeslX--P7*%Wi{?s-U#2m z2S43=Zhrg@-dk{=@>=Nmp?|cu0?!5Cdbb4nmxI?Lg>n@96#wmSM}VLB?C;2wyp!$M>yJM8nV0jtVEa5D zd%6;P`w@HEf&0IupI*mE@6A`;Cm+9;!1pfneKPda=HBW3^S$Gy`=GO;ejm#H#~r!n zyo`IFFQC2dm$zP2a1Zp*{NDO}BlkUD$9>3G!(ZJaZGP!~Wb;w?LK|P*JD;B0o+k5L z_f319zMT8&KcL@Fz4ia`^`Phz0h+N^xVdHx|iGQ z*U#x!JKg)sy~GWMa{qR}0ny*;zH9TTBhR~VU-5C=XWW4I zM^Q@d#yiPdc-nuAK_4Cg&zs@9?oapl!q;}Q82Q%+&w~d-Q({2+FR&(sp9?8uMMg|F`~*S*Z{*B-u!|Awo3%1!SY=+(XOey;ZBhvedMmT-@|^w;-dOFq_v zcJ$wYd!LWs-gw=w?r|@rel_<+-wq#jzq;kD()N3AzK=f1zy8V=h5aw!KI-n=KP~xt zT;1#Ld13(Ynu71{*xS~O_bYm!`|QoXiUHB?4&(m$-_TRhX?@py?jBeAX8d*EyYFXC zc$|m+Nl%T3#x?$XgU=-R_!#!Kh%))BDd>gtr4W9j;H&J(e)PU%x5)8O8GXC4Sg`4+Q_?8E?k{(QbBupOUBb=@<0;ldLC( zyB>NTXPg51BEM(8R2>lMIvlnBe)}a;nvzM8#CNMvJ$b7dA z>x!QEt2I0?XI?#td0X?G=ZkiEePp}2f_eCD-ml2;{9famUo~mBTUsBm{``$~`vrL& z9oJ>dyVF@$Ph_1m8hjERPxX)MTKRG7^Y-}T-H_KN=)-5MbAEvzng=}JwW6K;v-zm` z*K$9K=kv23dj5J5e=(PGbNrd+t2l3DdA)Jvb;nef{JrkpV?gvX+wxxiE%__Uc`ftN zc%Glid~iH?$}ieKX&$$pYh2sguGmox^yLTiNPaK9kNl^;CwjRBdM>+hJI%v}EB|RZ zPs{VG=ii5b+n9D6S?`?zpENI;PT_AkXdUVLro3;G=L_@c3Fy26|M3p+HLm^XrNEP1 zJr7BamdjM&{tJ0)JsrQh(W5WpXqmSr6`^y}oDtUf)~h zo7RPvkG|jBZU)~`8~6@;n(xfM*xO9j?-i^swXYEQn)U3^J$_?}w_ zoCS=d?ggw;3{`FmCzBgnYeJXbH7hx3qQ@4P;;A2=QRIvKe>gFeXLd!E!f&3ZP2QvNMHw;q+UURWNN zqla2=`u)e~hy1ne_hyEdKI@?7hDk0<^b&fW0we%ikZoZlH& z^R?HBT3=Z|G>;mt)-P#2V>t2?UKeP+;dyf~^ZO9WG_Pwuvz>_#rteem(YnQamfYN5 zcIt9H?^Swy@zeUDb&&Duf;`^CU+f9qcl^VzYCg4|XuV;(TLwQgpQiPa*B|!{D7LNf zJgUmRH(<+^Vr>rUPuQyJm*sEq567L}1- z^{KbcaBR=bDx*HDz1LF*fVbfOA6Hi$9!2uBgF|ovL4&)yOXC`{o0S+6LJSgI4|jJ7 z?#|)v?yiTsyF<|X-l=})H{WynPd_u;U0vQX)z!lPV+zKr9zKZf(&XXGE~621Gz zd1%%c&LdgYh|%i|$Vd1eNUi?=Njoj zT!qm2|KhmhxiaGlD)awFEYq<>yoHDH%N?fgV{a9vj7N{EVag~xLc^3%{4d{I8rB=b zc8C*@{}FE?+jh`hPe3 z$C;6TD6SZ2AwpU3|uSsXvKu=d#?w z_lor(AAwhs|3hD--9P`)>*TBlKPdH0yUWe`pZWd=`D^O$S3W~O1g_~92k|}P8wFlE zJ|iww>Xqel1D4nM9`T;?e|xs;$8r+OuB`9L(wpz2t$M=eyL^Uy%d<)Eb-s^hd$XLv z_a@$^A4NQ-;1kaJX8*+r*Q|#)QmOZvejf4LLibIU9&Epj_15wID3*xxmiibUqy*mt zZ^W<4Gvd9a+{gA#;;UFMF`v({UMrSy#0Td}1iwkGb&2z5@@&>ae62j2{hN43@_jaz z_d~UR-^k~JEE}-Ds(c3h0uS^_If(zyCO#(pkh{=%fd3=TR_Of0cBx30$v=$iG7t1( zJY*Hd7v}y?oa7D0JtKZy)=`j)tREpK*_XgMADPGWA-umCrwe>#-7=W}gCDXEZALh$ zfR~&LW?t@YJV#Ii{50M_^E2+f66N2W@#=_!7di@C=ec9({9k9` zC+mx>q53_}kqDhh3HJccIgS8-jB``H39lUag*<1%U)+-+e6^Y9dwBi^_hSfOa2{66 zfqd-9b2PYTL+~-r`HW`0*RUG+sqGuJT_V%m@gtX`?c|$ z-rwvmE6*#!&uMw^{9s8duZX~bf0A?8IKMCbZ#T~&lK;5xO6nQ+No_XrP4JxHE0#Z5 z-r{*e+|Ovjk#;z@D9-_Ge~I!A;yHSkb$(9Ui=_|3Z`_}y&vOEfVNba4QQ%IcU&gsb z!RsU2t)l+y;s5JM&ovW{>1SzIfFu1pu+BpYzERZEvee@|w2Q}Po(0-9`Vl!!VE-qn z*X7M~k$m5ne8^0^kncw88|i6FJbMuzoKqD%zEQ5ovmpMs2<6$6`7@eOKX9L4)M?I{AN5`qdU}hkP|6Z|IRZK8v4=qP{|3wEggT zk@YP6K;B6ixBuV0q4K^s^|%`UM?MX)3-}|GFM9u-c4^-8*bM*6{dUxYoTR@p=|4ce zBk!e#M?S*t1rOX~tk0ve{KkAEO)a^Io;)%A1^pB5ahCB-(f;4_f8_Jhdc)@l=-05@ zuFRK$JT;<6J1N&#OMiq9)j6NRy`!2hd`?QexD5El?*QQ&d6kTLU1pSqeHJDiQS_5{ znCI*&^OwD&pYG4RTgZPV_Kf?z^?U>V+JKjg@N3dPFJe1i<}<@RWuTZpO`v2W&)_E3`{1M= zvVBtI;WOYH?F{)|LS8+CZ^&0Dc8dI-Qlo>gL+JO zBk(Nx3^)e;o`5UQCO(w=63Pek3;u;k&lu)IL_SB6(>Ugn%>19{C_EeEJn}>e|3la= z56j6Gzf3(8x{&8l?0*CJZJbkYXXTaD{)qV1Wxm&StapRY^NG(4>P_YVtzXEOD}FAR z`6gR2?=9q}$78-90KGBzG0L(Np)&{d=oafIF!hggui^WRqz|R|R~PYn!F-b2h<`Wg zPZQePK(-sqdT#PPkbJt%e4)umXBzVN2&(+xj`m%b`dyoOGF`MA zQ~}S6BRa59;ZB=GV>6e8fZfeggF@kosPc?Q<|+ z=}qQMg&z@pxn=4r%Q)ttO+h%(tk;zNBfqM&!?X5Vv=8LJmGSvJ{S4}fUR7aUPUK+~ zI*mN5hTpjjyD@%d-qkD2zlwaY!k;{}Gb0bKk#FG}?JPOq{y-k+jm*n>iGK4p`$OJT z;bVLH#Wl1qE0QmY#{9=|g=Cq}{=u zv|ppWAdPk8wcw{gUNP_FJ9ffE)QrjbG3Rdg{2%?Sb1cn z-ZjeYCi%D({~Pm#S6p8ou;z857n9ikT+aW7v)vQaH{^Dmd0`83UHp>$En)wANJm36 ze=XttBL3B^XYmVwFLsOmG@ng5kgjx`w|a0LkM+JDcbT8C3g?-2=HIKu^>#4l*=VoF zUCwVS@frDIWnBK}KlD9k-rhRqe4hOT{U`4q^6Cn|Iy0|s57wJy&7-xy=KIFnr}rR(UM0OViPv`SUt_;Q{NzEdZvjWfm%IG`HTEHleXD;74|!o_ zyxEIqaJHURA@Zk&T+Dkf9So8}O#yAS1z{Tsb6K|Cw7T|E6q z8vc*{DbeG%)SnOB@4)_<^!tE%wwZiiOTJ9xKFo8<0eN=?@7}CegL1+Cn8u%c#r}xM z9s59nKk_`w^AWZiPdSdGyt1+#{HE4(?w4et-$Nc;!G9n3ozHNb@Z$f-Gb{QtnD9HW z{(P$+k#`*XIcAl@SMW#LV;@S!bJ(rmd&RO}v6p0)ewcPGc;%$t)}`MHq5o))XJh}P z9OVK%((^6q2ilo-CiNZ>-#w(`4*9!*_`#nGKVe5QF1{!K+EG8DCj$R3%kP?cBlUB$ zU+AyUn}>S)kaAv0xEDB%yrLegxAy7uypHb&l3%^(&j3gC19~Wa3HmSnL%*eej3YuP z_H(s7`HcKzOR|T58nxm`4spla$U}SaqwCD zck(fW?f+kXbQ#Z@pq-&-$ipalxz5U$C~}?7|7-F)rJvQG^b35XOisBRN597U;TrX1 zv86X+pH;|LMfo?P9y-Wpd`~guBy{$-_$u^AQ;)|HF6h;ENw|=|_z8Uf7yDa-_L2vY z{QN*aF`DBI<}D(po3zJnv{w)6iTPb86XBg<`xmtDafE~K8$w@J;)U;=;?JQ!LPtyD zRiALXTlEBgeD@H1f6;%uB|hb7j}eyLiGAUFtk?ngE&k&J`@2uQyGgo{?^N(eNBKg( z7;%_HW@9|w<+adAXN;`?O z@_cH)L_AIXe@J*|*zPL%^O1DqXS~Ea(v7^F+720)fc%+4_gnIF2kWh3z3ZeCaD^|3 zJCJ$WVe47+2Kh~e&T+&CrNEtUmD+z1eq-W`co5+OW(qGnPzsqRPxHnJy?PT`z z+LSx>=05p_I2`dW-i#-CiGGaz(zERMq*Y(^;VAnXN_bU?my7tcARfR|kBf|7Y0vtr z$?rq#A8{6@pAtXt+_Xpfn`f3k(CaYE{!G6t{%$qv!)}D{utU>+2)6y@I*L(5@a?pN_ zHZi$gLo;i1LSoVeONL&Rr^o?d48iSTYS{%Qu}ijYrN;PfC~h#xZh6*@Q2K3cIK8 z-h0MTA)ZP5SJDGIcBf>QX0JgCC2rhE_l<@_1?mGfJOTN6FRdubobc*Yi_Gluj{;`3O-LmpJ2 zZ?e_DK95HIDQ)Si_!HQn_V?7EW7PLi|GAHJ4D|}}Z~EK~(a1zaqrP@c%~KU=sGLh`$f*I0xa?qMqaa zR?+j)w3CapLzLQ&!rl%0Jn|oZ0=qH!Bld&*(o!FJss)}0;XSbYsMc?D+@l|=K!1X` zQj^aD4{?#A2V03h@>+}EgndZAUr`$V{~YMpjQ#b5w4>CNE9_P5|2ydfe$sv)?fx41 zbAWt@97Jx=ThY&omOV&6&{z4t9`y)zB=%dGdRU%%1G^FXg#8I#{?um|_0wtPB^G*n z5RQ%Y%zVR*_zXDGe^2WDNZKPxv8w@uJBlK307mnEvG;zs#7T?aL8;G?vR)RxPjBUkmH%-+wDv2EtFF&HtqobvpLtljG5&fG z@fgQEt>YQ*j<|jCZ`1f5`E5n-kv~@C>C5(^%r`udc%hxphrG0c_bTR>-NXNP{3rkH zTH>{f?Y0v?vG5;~njS2kY#P0~}Z6@9`32zhg3twQ~UF4$`c&I0(nU@xM zas|)H%v-zM%C9W%Hxl2YRSMIa@MYhAaAh92u#}NN}gLwZTJ}3A;@Rt7% zvOVgFKZ&QDy_n}XEA!B1597IF-fLfw`DAl5Z!F-8J-;QsnV6Th9P`aqVIJ8^%wJoZ z&$XBbw;JmeVIJH9VH%&#)Fa4W>;du>`ManO#n^98>T4JBX$IvDdC0hfeAGf;BfiJE z4?Vu|*+w`c_#X9z|Hwlue&z|~{hIZjl25nDcT<1%v!4T&+{CYZCB8q2Pcrfi=heh+ zz;BVK2lMKJe>x8$^9#F~rx@qcq+T@n7e)R}rMw37c_{y1&pg#z!t}Vlf&3p$K2PWK zM#}j#-`_FwWQS?KT_;{on7mna{Nj^W-AWuE-Vti=X?!ewUCQz!UvO|1y68{o+r45%27T zo3}0Xn)!eW^Z7CP_b=gGB;C6#{t4VO%r}lw^aS~sMQ^@SUO1m6?~{<8T*N;g`2ao( z9q32!YsUXWNH6jgdl*0D6Bd2-Bi>IR zP5ZO6em(NDE9);NpZ_9VIF~2-SBLN6Z-lQn|ER}j>hC}WInfoeA#HxDfQY>e_$_y zAM{)B!+0t4C(J)Ye=x3_^CH0q^BD0H=KN$B$Dx%R-!N~IesgjBS<87R&XA<-)qR{d8Bg%`v)IHuK-Wv@5g65^{6KKR*CSN(BEP{ zE%bF~e_@<2VZI~$UBc%L{C~DJ|C4b7^DNQN2+o&Vkd6t&1M_RChxwHFqYJEmm2e)A ze$2DA-(`P*D|{)>`k1$AyWu=(5b=jSh}_VxjOTUOpJIRLSM(_b=>h-6u5jK{%6(i< zo}>J6u2uM#jC}e?eK|q>JWKg^WxI}q6KSpQbbCJIJ~eY)EPPG{c^PqDI43Ck3RAfb zug!J;d9Ihsa=q@r`r6np_`-c$?6V8}T3nC+=KeGG|D>M*);eFF?{a;P{VS0}DC@Q2 ze%f>FLmT^_*nboGq@&$qT`%i=?3?KRT5J7HN&WL7Jgm>Pf1rI~9WLvwVzieG*8Y>s zzp*bSas?j*?tbngJo$h78Ad!T*6Xsrj(u6#_rw0B@Gm3zjr}o^YgWSf7yAar{&PI{ zM-p(qB^&WaKO*mQnEVj_V&7Kp%W&U(1o$lRmfY{g_eR;zNk+Nh-Z`Oj3BR}O z=65E1zm@$DoFCNtgZ%D|_#csXBJP7Djzs#Kj<^D2pTvwSL)@mui}99-?-qZR+lO%^9;gYoWBvfu(4cd*^3ER_XB-1_E+;#KLRX$6gvSt zv5Rm^?xJru`5cdS66Z*JUCQ$xIFBUs!M~lP#$(!NamM%m;{WD( zHk`8&`$DPxKK+Zwf6lewoQBAI1pU$q^26)R&IK8AIzhS~lm17fzdhsEhw_|3 z9OB{)JMYbS_jZhnU(I?LALP4X4#s)oT(^w(@bA(tp5sq5#C;obuf@3jw~U)Fhjs>k zao#}qR+i@yrsABS!Jnf%FZdhd1lw!9Vchgy_IHZs15k=x+_2)=MW5yozf|n+GwCV9 z{)Srd?V@*YO?()CUWW17h(nkDJ2KAt%KwYQHuM>B)-sQr%l~oTyq>3-=R)~E&bJHQ z(}J~q4zl9EP5Ol11?D*nwhv|eVK>H^ui*O&?B^BZ&hPL(dxsU5DDtSxcsZOq6~6c~ zUNH^h4P7jgFurjY&jHLPo!J=gzKZZ4k)Ij)z6k4AWn8)uS1I~Ndc!$iK|H6(X*A;t zYa@Qo@Y{$h7rf50-c`o`A^uSK)t&KyA$;D#dC`8fH~P8G_vlCTvLEA1FXMmXhxkIN zHpdVoV~IE7OJ)88ytN)NuJRY3 z5qBx_Ey;Nt;@qV_#6t?chzFJS#(8~%o@mBtcHsYrcM?7qI$BGWCu9o!~Rh6-d9`EP3mB4%;I>RQnn7ITho!yhv|h@X`1o zPF(1mOn%Oz9QKhPxB31K;%p5+bB}z@#(8!F&dcjC9_0_?UJEeZE12G@-JWo-^!_;P+Q#Y%p!>{+=d& zPve^0%5NWa#Q`uT=_<1_sV&b#P&A?-1M{^Nmp{)X+=n)*BuIAK_?dJGql|rWv*TH5UhaHq( zv_-$3A5w02&2=;Nu?Wve)F&N?s~3Nei~2C0dN9DsizDiS_;#^#oM$opjP_IH+kEn8 z6yx~er=?wI#=#@chRjD3FfKQq@AF#zMC1X#A#nRxaji1nh-Lf9jO#23dp7i{7wvi! z?KlqhYwU|4E?4w%9si%nerD0nEFio^tcSQ&Y4?l%3h|w~J@=6o(EmhP`yQen(cD)` z#r+}NgD(1t_-tuE!HV+}eaOJL5!Bc7DE5nI(JS~PX@APXQ}c!X3UM>iFXBD5pJ1Hh zR`!39?-A!GcAJy?F!{L8QcaPtjL$)SFg-33ULWok zb;Q1s@k5-Q&~ey`QxSZhTl-V;Y{n1nLw#dB$Gz{GKitp8{+aA!BHm8hDfbtXb6+u` zRZsfM$9=~FEGux|w-)!o5YHt0?ugrx{Zs7kOXu<|4tUA_;5gD(lW{D;&^G`L>$v=WzdX0_p0+XY3D)f9OJd2J_j@vK{#g zz6)RRy+r88_XhJji1^1Z>?aYw>mW`?_=tUK@pIqEzniSLnfuenh!4I~$Uf~)@)i5t zqL+vdl70^I{c`HrGQv4c`CPT&3O%4h;x^3qCdfCiyzw1J&x;r*_lx`4 z_|9W~7c=cc_`R3%*~$O+lm1u4?+o9=o}}Mc>J98c^ci*_eiCtE^4-Tl`e(5IH0slN z%Ha~rT`ZwjLLb@*UJdyk^oyQkG4+@J3j6e;|LN#Alh9wLzKP^7-lUg5yJVjx#+u z4j_M(Ietiqd9>Ky502ACS+5iE#5`Hx;#`i5*KIg{;5?JG^W?sJVd8;vnF2SA^MSPN zFO1{$3C{{ES~|@*U?y^m>ouRT}I3 zfXtg3aXf8L{`}#1+}hMr0e8-Xg2C*IDPvv>i|NFkPv%|e5c-HeY ze$P2YyfX3`ah!Ud$?*^0LBziyK2`Sr%=r5O#20!Y@;_tcnUi^8CX+8*_aq`-wK$H} zB)m#|o4w(K@ z{6RPCz4%kaI}6-?99Q5+#9znoxjp@WIbKeu|GY@J@aN`uA@=sv@>kLy{J50xU*`YP zFWQTLOu+A~=D3oU-%ri&&WIBgzvjbw1sFG1hTmIra~#6=Wr16S-)Xb3yv}~Vntq?( zSIhFdGDX9&l^_TY!$hwtyw zE~~{Kkpu7+dmB!8h-VeK0}q+UfPR^;jUgWqe<=D2Jj71&vH$d}k9mOT9pol__(ZuM zre0!P5j)O4fKL_>LeP%nxO}nZ)sEDD`a{^}aXTVZNjN2J0oF-sZL7iX1U- z5WF$pk@}eTiJa!Kz8P1sp7Wq1)_5y;L4QP!@2F1`Xh-WTJCXk}E^GNy-)5P3QQqmu z_Y#&|gx`QG{C;WmFL)lc<~73qc#iXL$VbGr=I%@z6<{lFD3O6 zZz}yAr9B-ZUv>~K>_X_C&i5P0r;W6SHP(Bxf2j|96Mb38_K3d~JmP5|o{Tqp&;Ngu zzEq4m^Jn}W;!_1~0OQacjQ4UgZVILFyBg#2$}=u65#z^Rn0#Yg;J@Tw$}lDJOUM4q zIIen(Pcuuv6MiLSoa%G(_Z8vZCOrwQxHYMdcrKAkRWt67biScKT1$R_Kf-@Ji(LP< zO0mzI^b_E>{J)!eahHCj7v)i#@aq#U;&#N(R3ZG|v{%@T@C$k><4ic^4*w%~ceMH! zJ6%Nj;CDnH*HP~fpDF(E2;1Sk@N*?g=!w`L^h@;NEb%?h{@zk=Ab-K*3i}0IQ%|%V zk*_Hz=X`v=!TP7!AM{nm4e&|yZjjZlysyo;#!7^P_&>4BT8zs>yrI}(4aWb4QGO_; zUTf=F_|hg!(>utDKNUKb68_(eCtS;VC)oZF-(R(!h40&_=g&wV;sm9i2ds~{Y2p7} zzW>hnSHx>-KhJo~#Eg?p!Fbd}Z8e^VOBVlwdm)5Q#2Je}`9=H|63zkk_uGmC7JmXb z($0tQ5vS^5{A`T>M0~M~V;%WCh;hq3h*v+xtIlA2Y9Gd{wkDnqw(rU3ri^#()>i9f zEB-&iDg~eEjGGN(N^;h?FH|dq~|K(JtdqQZMA*0WxKV6gJJ|+5zqdLg=@X79Iox$5w7LcK3v;J zi*SyU;o7ddgljxjgll{cv;OLEEr+||+OOOR*LXhR^WJdH&voJ2URH%`Jv$k$^&IfT z@9bi|j>Kmy>!V-Mx5Df{fbC~lrTD3~;hN8&NAz|C`;Q=g6T-D$-){Az*H4t=L&g~| z;`1f)KQZykOS)2r>+uf!lYR=4kHAmx3?=*l@VxlH*SU_I!W*hzo#bvXIaJzUc{ zj`eqt&-X>9sn459C+Z8FMugvrc%vT~zlRX7 z6_odx2(2e5g zks6<(y!SIF@BM7XcF~bqUk0;%he*x8&`8Z!zevhAQtQ(!wx1TM`8J*Ri!O=O`i=Wd z^?aYty(6`L_KMVUXvK1Vq~^yO)|<)x0tmleq_&5;d>_U7PTp&}EmG_8dg8T_{azqm zci8@Cr1py_MJ_+szc=q2Mm_P*w^{!*@qI`ByyyR)StgFsbfACn<6p?1Oy<4DQ5qiV ziyV^hKGqbxPZjsFN`EaPwf-pL6-GRZv47Aj?d!9jqtv6<^e0cKC#6`g2jLB3`~8G_ zi0|){9*-!^w`9C;7VpLHCL-RyNRJQii_OM+X0!9Y+p46aag>&8F5U;*HA>6BH}6v( z&UeG1gE0FyGuIL5$BjdsV!rf`z11#_sk-k{!AK=M) zXa=9V5Z+SKyNUFlre3_~|F3xuc1qsYn~C@S=HUIvS);W*6twRD75ZX%FK}1h=iQC> zU$>0bd@93xf9vtNG3y8OzVK1JFMJ~5Pax6r6xSv`4ZE3V^rji# zPh!2%gjbk+nMQrc%>OUa{&6q2_?@1#J73yIBl?|*w5OBwk9EjTZ`up=UF>x{@1Y-V z-CHkm!Ts2R-)p|Fze-ilt{n6_| zmKk_&@gMNXxHs8^Q=0wy60T~m{YJL-+TNjWvMyOk{%vPJ$$9TM?nM`VZ=*h(V}C!W zN6=@%?_bIn_mfu$i(JsKHt$K!%lpc4kGb5#3_RpM?xyWET;MD6t!CZBEcbIeiFX9= zbq5~>&p_TA-I4b$`&;)l%l*p%eBYk!fRE@a?tK?K#eM10e>ck0VaZY8gFnK*5$tCI z@xuMm<~`Jc-(2!@1Le7(y}l3J%`%Q~&|dCY4kun+*>4Q*v+i%{lk^Wg6Mm*8f6@?M zD@&i`er(_=`jL-#G$Oyj55W`nV2d6GvHyOQ%V5^G5fAWP?mw?ed|=NakKNP*=%K)Q zLHoN#eenRi{yh(Tfj-LkVBU8RKVs4$@`k?4J=@@OkBW~M%)&k7Lf=HQH{LBhh2%o3sO;#J)4J^r60)&m}B= z3cj#&8E-uy*CC^8c@8w~kK_CXj$4>_%RHtz$HV8GKcJNUw(@92!0&i3W_IfLWsAkL4@v3?TT;Wy4RI`aPs^#3&or<^sv6gg)%;c*^1l=IThEEAKy zP|kPG6EDoO^g5gU6g1^S`Ik2R2*-;T=6r$wN7E0-(9g9s{Q$=;_#+t)p?~7{?(=_) zdm_i2yw4qeOva(#@Z;x8-s{th`VdOJgP#%ogugcZlIT%F+6V4+mvQ5pHBN}W*@@p~ z>iv517vrFe8)zqXQG|K{KPUVw#%JiM{9lHC#G85zdl0)xNBaeQ@k_XWUfP>_dYAaD z=Kruq8Ky-nC}SxI`jPjj&EBzpIJ_Lulas2`|Hd4xhbDw z9N%wJUu#pJe@E$l6PfcXt{Y}^K8OE>4}V$fE|EuhuJhfrn+sgmb?1EW81-)$;VMSjUQfpcKDUnDB0KAH>P^-wyVNb(hSqu^teQ`%!*Bl3=?ou;N-F@G06V7*|@PX*ow+G8N)W}_VI zvmNH8=6prUar}Qe{q$tYHIj0KU5S22@p*}*2f~jHY>)Yl;CsTFM+*PU@qYmSpTzcq z*be$4?Vx{RuP8OW?6(l@uR8S`^C$72xvWz3*30t4rX7i$zolO}MLWbiL;TKB`UmL0 zz{C7VO3YtmK8Sgzw8!`<_+21>F0$QBYaT59!EOZZJhn6E_pp2M=dcs8)1PctnBxQN zJZ1H7IoDzSCVGQ$RQQVVSm3qfc#LQ1Cx(8Y2gkdy^kYM;@yf(o^a1l0!5{N+=^y?< z;Da842Yk$Vx;!Vc#(h)n^8OR`7J4CgU8O(6yiDX=gZQRqS%GrI{899D8p}1DkKARu zJES8~j2@qVm~dh=UP)s#U-HIiypzXheie$*a5Khe`m*rG|3 z#pronMb<0Ac4#khQZY*Ahs9&`c!W~VcL^^vM#=omECFBUYb&Wgo-ulUw1WIzO8t3G zKL1Vrt|k9b%6tZVmw8hG^7mir<#GQ1k@G z-=#hJm3i{E_L`oB#1HdiX+O^TU+6o*_j@@1+fRIMla8arcRQb#vERwW6Q$-G>s6wD zX0gU&(NpkC=9`DvU#b|b-##p%FM9ukbT^`WAXl+t$XVnFxd^;r)axmfdmQz11LZW4 zdN_}A9~YzL(UpAaL3j(GVXP1(8s>JHO}+AUfF)gN}N;Ny8N%>MQ|U_o#bQ3R8AVKg0D`Q&=uzbh@{_0#tTt6w>Cl{n`NR`Yh`Sg#rctNF-lTpoamdK&3uP!4^*QY^h#H)ZIEjGHF<@)OM+DBq|fa#tqM}9 zpVZs!nJQR?ee*fo_I;2_;a{X@`KLjuJpeO-X0pHdVB8lKMy!(iX zgPqs48F4L81v-K<_6!JAr{^cG_)G<=@})m+DtI_h-TqK;e|?W2Rmd;M_gcvyWy>zh|KsPRMz`XAj)wB@+LJ#tjQ zd7GZTjbd7dsAuB}ze#;9MExlG{d&s;E!4Ds?qwK+^G2TOl9XGHdpHKfPRaFQYKS^r zV(o|{IKR`c|JtVGV?$K3dZUU(O%GA!o7Z(dz_~0F?#EfL7p&+Kq7wB^nZGdZ*%*;{ zT**$jho$zS`85-E#QW~8&&93{R*$AO&p#9Ah3wxFH0p3RP(AxSaBgYPz2w!QwC4hY zRiXRW8fCzF)_JAdlrM(!s&ljcj;@URm^OZUIQDDe5EZekagpaZzxpkA;>S%F2CFAS z%EkZ0Jy20MrXF~DF<3R8H>lvDM#2As>)w|3uhX|Fw-UkXcavv_H~$DyM+2&j>2@?o zHC+Af*W%Jas>Y!D1AZS4QhmDZaQ96atR8IJ_I}TRU^RSm$mwvLlPod zA;GF_SMRS|Cg41m_qF(DuY*;pbvu{*+bLLOzTP(PvZXkOZ5T#|5Ov10{;mbM_jb_b z-MwpNf}UJDx_o*aocE2(`@Kn<5Y@5M_Wa3~hp6-kKNfJ}yqkY?(6@=upEP#^p47p4 zG@slvmmD7zqC)d@i?ID0tVZ29z3uX~VAY{k)<=hN-f&&B_+r93m6kkh7Oc7s@3nJON9ce2z8%ha!794Y&?S!#2CKshn=Lts z^KN^l?F!FP68gAhZREU9!Rkidc9niWZw8;O(!1ctU^Vu4#J9&de|WnAG`Sx1txAez zrHX~9-3#|cG{-sTtjQCGKW`DDI<>2i|1I=8!>>*Ss^Pwq`{CJlB!ayhJr(`<(@Klp z52>>KD6}s`9UmNUdLGV07aB8Z*F40Z-|L)fXN4P}Kh4*IBkqT&Vv7s@=(hsr2<;0V zr@{G26W;NC;g1f6q1~`FyM_gZsO>|R7jPE{QA_{s-fLc^5Vd6E*IwI#LsaV$y&{Kz z&Ix@+HRv@YSQY*AZj>kV_EWdIj-KP;hnp?>l&xT}@{HOZcM|@g)ZX7aqanv4-9C+f zo+Vhl-BKZMmg=bgr&jZsQ=pF*&b9OQ4_0ZLb<7ylB3LEx9hTb9Cs+may`D0OD_D)o z@HumzSmT>rPg9~Y9W3{vlxhx8nU`{q19kFMT0Nst=;rcm2{5rJx@y;0e} zD+H+mHG2*D?H{CKlTSFkV`HGI*rn_Ky12ja+QEZ&kHEj@9@x&l0DgOJ%*;g};D_H7 zsZ!|cG}uw^my?s?9=>_IJ_gN4zJMiDswVIqVbwc?=99_>tFu18OI^zztjcBHQT-p# z>(Q-5@SvhNx40<0YkS-$_oKkWwVwil)rHx)2DUpCqy~C7o!k$8{d?LM+t;TEQm-nm z{QVF7_v?d8g$;x~@3R+ccCUDlDm=4Hk{Hh*b)x04BB#~`su!R4WKVfM zP_-GIY?^PSKsBgjwz4_51*$jms~5lWCQ!91<(vNgK=|ij1xFX?j`|m!eot!zss@Fc zuKiXuP<>lHJ;nY`fvR`-nu`Bc4^q7{K3louYM?6WajabQfI!uK#*v`(7+1Cz9sPP} z6!IzTydAo-X^{Hl;r;!~$3T^I*guD7;6BHMUoWmIhP*zB`aC!{9Q^K|^vWDN?q|;4 zZq**23Mh+}Io|~NXflo8x_@)}K(!#}t+MwWf$FOIRHfJ8KvkpRX!OEIrp`{Okv}P-^RzuxasOkLR)e26 z#{G|DlK-1G8u>ET4PKj}IPU9|c>?ljRKD5e@H^l;<#qb@BN~9tZf*M<8WO0E=HAdX zIzB)(%sHy~CFC0kNYcJcZ`}Lqn0h~TyW9b4&5`QG+Qqxooa~pq;(7$A1#7abOM^Tr z_iyCf`vCVf-`^G1p!YMkvimmv=fMuQ+L+n%dYZS$7qYnKNuLq{s$}5ml)VE2ROWBF zW~G5#((HbhCFfeVntJqi!{u9CYVx(AjX$JytJbM)+1evN%--_#2VGv|Qej@Rb{;6} zQpK;`iY$uff#u4y9F+?Bdq#}u@&|c&E~j(Fm+R|P+2{DI+J`(srxtG*yBPVHTBVyj zyXQHVs`qc=%*D#P)SoY&Dc?47sXmpwGbY77uqK?!WheeR80b_`$Ihfeje@bve?d|c{Lz?uhn2jRZipyqX640Wk79xHl%c;-^A=e1Q|aSv_V zl(o||L4GE$xj)p$n{L(QO3IpNkw0o;`|IyUKK0uYKxHe-#+|NDfPLd{`8Ieb2 zS5e#8-pK0`St7~OdI4(X1Xq*uxQE#6FJY6q20cmmw>dg~5m zB$WeHgNuoB4LuT|yoR{Gd^{VVynmj4d-4U~HM-sQ1@w2|(628aRSQ&K-%k9t`ci;; zlX_q2S;)__Hh#pRsJQ{EblC*^8^i{vWf{BoZJZ@Qb*a7}!58Fz8q>AiuR|dge&2d+ zYuIUTfEt#zK=4Q04{qOc>gICXM|Q*Dx-Z<5Cky}lPJ9R5P^4%Or ziV50QxAI;QoN_bne{OoZ(cTrk+$wrw#*+cv-73SVYhO}MgIAm-Z zTP59dW`q5`TUDxXq2IawfD>9NHY9;toqdwDu1{{jHzqWe>z;i+?C~hma>hN^Zl{%B$s*LB53=4+eRru2Zg_CqU)=Ri z!Hjv+xYf=>yIUMd=~nk1KB$ol^c*h~{;b1Wm-d^}kgsQY!DS1Pk1Jh^Cn<*EKIpBP zFZOH(JL|hIa%b##muhTG!2flrgTFGB4Y=!4w)^w?^%>_w78u%UcSC;!WDHM6GD%8HxKhU9G_G%NeEzY6*+r;KM@zSA|4gE4O z%{zyxu`9iIrY8<{rEvaPR}VW>ncAuE9a`y7yGmagdlPu6m;t|*MLSj3k-p(iZBEt5 zclXT5hEA2>cJWrl@%}5^N3!n@RX743`mF`OknhmNfB8Apt%~D@+%NA`EpK)X%vQ*$ z9{Eq-wqvMM8Plihy__nfW%CrHfXA7)ClA*_eyu4N;<^=Cb*fT5Uh)Y`E zsp{mOQTgL2r*h-~V~xR5yCw%$6Sa)pu*6 znjKOubt!Y5b3g05RQ?44)xY?;RAz%=mEixrt%=#v$E70g)bd{3%%!5P?aeg0F#O<{ z9C?^1^IyY)wz5mD3;QtVPzjgHek-Q-yK;EHap~>; zr=SP@UYE4}2EE_Y40s4XJ2WfyIseN^! z-z%!`O5Yj$!E!!H0@#yL0raQ6yl>}zjsS59&b#Y=wm-^VJbdj0`T*UX}mn&$+M2=V$*K*L5G{SGxGXeI+u0zbzM3c@>ZMCC9h!-3{Z* z>yK;GIv`i5|ElUvWh|pq4yXF@)*bhJfKzpBULcX$kMZrs^tj3EoNCNOzZ2(>cP(4{ zj8lwz)(4E+8IuBe?#@+CZ699Csr?)7c|TR@*6o=^oa#YxEc}t5?ZW1uFFOIpE6v`c zhqpkVx0b9>2m13wrQO~zZwHNU0wjXmX3Mo`UiaK*C22CA!nT`Ab-J?50*OBmu98P#3A3@hutsY ze2|aOv&5@E8~=rURa>&QiI+<~Np;kx(@xxbZ}^wRPIWhXU60NkoC>=!Ih%KOst@U~ zfK267&;E5aobbt^##BjOH8`JBH6GSrLzgh8+SKI5tX9pPs&90zV)2=r>iwd6O>=H^ zC}>xF#{~{Gz0u+s_F(A8(!+JL2h74?Nsd^e;Ts_a%}Omdr&jXe`H*3>QwcOiL%?N_WgXcw>|Rxg?(w5B`MxdJmq`k zQc0(Bx}tN(C3mV3#>UV*WI)0Qx@BeIfs8a`H6Q;5| z)TI4eR{Aw{sE=3jrS6FQhP}^urwdNuP=B3K5x)vL)T;fh+8q4iuj;()`E~kRfAzL@ z@)I*UJCs*=VrS)94mGp$^Ab7pJJgOTKG_F9@mGsRbZT>FmcLpz@LJTlP5$cP^P+cJ zHbi^1Zp@Y@e5HPhnG=XRj-?>!M8=$NR6RKtH>%aL#B~H!FvgsJYmtMpRwX z`E(td%9Nn_yN7N4)QNs-VYwo#3mH+L=&x^9z)tuvPN)P;D zQw5Z7iIBf-N|p7gTBD&|#kIMedNJ}vE*-bSqkJ#BDrOsd@bEpmiWyv^p#OTi3a@t0 zZ~S|^8Z@xU^uj*=s@RZ!*M{%3t4$H#ccr>vSH^Zolcjc5vv%0-zP0UY?ux39BkS7L z+a!_0^OnVP`x0mBjIpVy4 zzhpqatv7uLJ!Dfey}vYmd&Z{DoUOFD?=_oh^fOoJ+U_>hBWI?6do{5s-_iN|WZmnh z?%LbdIRid6`rde}Uw=PUy3~Q1Rev`B-}~t23+{*IwW)Xa3#D0Dz)xkX(7Hgblg(AG z??VSa%VSedzMd{rteMrWn&Gh9HCIPhcw{+$!dKNwkTG9V)m%0EJ5QI15x(k%=j^z^ zpyuku%unO`uk}-lvILbqe$!9Q@BgHBpN%#(oU>dT6dqO|SR0cHBCf z+I=PY?`H8fbr$OV^SVvd>f-Tx-*=nx!8UD{Mb`7F(LFQy-?6E>IbJ=iXvoW$M_jQf zuhwr0pId2DlV_!Dk@L4rO?W=P$M}MFb#AHe)f$cMs{21Ha!eg!SEJv&O|T34GBeYd z?zQgOu=QKCQ$yf!`^%+_3HI64jhc^31c1Luj15FDyDDi+OpzzFu(9EQ{Gbyb=IGHq zfnBw|_O)lzFuQt{;M1fcTcLjm>%4j}&8{5lLlPgGVOJ;f`tC^td-%tGHL-mk^v#%v zL2q`BPx{__JM?44>9DXqb~V25r|bn`FPlnsT#^9x(j`g8moMygHD&7PkR;$ky4qKt zUri7B&&EnClU?=sdtKcMD2v^n|IF`#P36trDD#|JcIAEeYJzlG?P}YNz|ns_wdr-$ zahqz=I(e0MiP6q6*|Tj@yYk2!e){7Rn@Z84%8ZB4Y^r#@kq0J^u&IeT_iul(%BJ>* zrOv!_J^1nVNzE!%?CQ;&pMM{3U{|9qH{P}j^mWOdKjqBPc9pvPf^ORz*;TrrrK5X| zx2yN*%M_S0%dQUktaRj@X;-r^UuA=|Sd3)Ypb`^QO@T*Euc2z!Y=;YP~>}qh_ zy3p(oZ0c>&i@_Jy*z~?M?BLMiyv+-_ZEF3LiFcCt*i@g@bvurz2D^_-cxoJ=p*5-kt(BWo&zUrLw6U7cOOr{oto|71Xo6WC7{gW;2`=VwdcScdt@_c!;U=IXYs%(;8ro2!oZ(_AUCs=4Z0uKm6y zJN(qH`k`w&UGh_jrj5upyq!(Wi+bI(;t-qiUYd36^2M;H?$d_efE^UOd!qVB$hUdQ zR-ZHVgnWND+uLzI^k8wn+9^ldRPVPnT67%;zjCMh=`_7;%J>}8G_y@@3BZO7_}%&S zjc&7c+teJm*ODu2s%LEChdmD1l;=Vi@D7{$r}CT$9{X*o=F>z8=Rsd&ojK2fEB!yR zDR`LIm_9y z2HDk_Ex(Hu%WGHD8>jBz(b29xO>MtmLVwt=z2Whz-Jn#KQWuDO(>ltG`{s-%|H#7X)pZv9dJLs=|%uJiS`!Ro2qE_eWh2s3x zxUaqQ_@Mv%{e$Zdoa?W)B)|ZR@q2jPP9NT*UPz5Xdpjj^s3c`BY%O&W8_DJJci8Utu&D z;Ez1dAv-hA%(T|(FGbc9n@^wdR|m69F1#fkaw_RD{?a{vwF_xY{(z1q2BUxZtI1)5 z>Um*4RXJ^;((@`iR377l5#~*sYZuH~rM%;R{AqWzQpTE)Pog(ziX_eGPzj6;$xIHl zsoDN|d&)Uf>n+DqzHmB}e3qEuP(K6Qv!`L*iP?UZBwHQo!r4D+=S-}RKVt%X$f52x zfrVi`Dtg?}p?oI4^M8r?;EuH=s+St!P;(dhrdiP4p>mdeQrCw0sjL?_W4%4~b{j9O zYr78$osjdYLuH7nf2H1hhx+$f>DH|<&)x92sQ3N=hwA*-nygt%fi7eJF(>Fc^QP6? z=GOC#mtC8vkq*^h+SjD5F<)HN7D9qf+1D-4#tDms6i zeAltAN{wZ~$NWz9DbLDmdmCUr?buWFe0&sp6!yp~h7?(?(TMa=7uj(h(#H}(b0 z_Te>iUzp|NR4>igVSeAackOyDf#1a6#p9-99a(RF z{+8HJD3)dVl@x=l_X+OID0d6%mzuT4rOS!+#h=TmGxm;gstuSf{AiDLM9IoS_hY@Z zIPR%CIrdpicvUy#$dd@`#e>H~kFGlCRBtz*YSs?x`QSy3zIA(xJnO@ghTXurN#VzKC_%hDkfiu59U2#;~vy`?T04+%XaR3A0ii|CAN$yk{fRA6kNS z`S6J99E*Ct+owr)2J6tV zS$bxfihZg|4_eLI{@JAxdmNu%}~Bwx?T7@+vqk68$Wmce(h5^H%wKU)$cVpIPvKo-5Vl0@lN&I#e#6`k+fa zA3X8k80?eDIsyBL$>uH#uj1uaySL{pQycq)buL_79aq(@){MOs?UBc=A{U_p?E9_k zoOo5nYHoG%`Jnu-3%J#Z6kZKBXLPGQe_^7L6!n&G`4jgG`SEXiwy9ve56qHxMP}^7 zCn$L$F1uTG=|27KI)_`WZQr8rB8R`heJ7Cn4c7un@fK99zX zU9ubd^jGSfd>rFai*EGjRKFnB$6=|~Jj#K6jj(Out~@Sn*U{MbGd}cVKk4Q4O{uzU z$3Fhh;Zw_luLY|wy0!pv>e%%0ka8cfKd@}bnAJJlYTEo41&)CaqtXn{H@Jvf4g8%h zdvUzK-#FzA7rqNr?cV3^c<|@%;7j&2|F{&sMlJgQIS;($m4Dkw?9=4>822~iZI*L8 zuRjwK=Tf=fzI25H?}@Ss=)~xxPNiJ2x_z+gX zr8c%(mhJ@Xpm>_70Tqh5)TZszJ{|RSsh&?ZS5J$5xUoMcHXB(5`yNMgB=$*Z@vq41 z#m@)BUSz*2KlU}e_dG9F68lO;A;EgsuR8Gj<5TRXlzW))LgD4Ory$j_QT2|x)a`I* z)?-Ip%F)90wdG!y>XC4E^6Zx&pBWW49+>Y^^^1K=xEcI@@ow4sh0uG~Lhqp?3%Qm5 zC)dY~;5)w3?g#`QCMK+Ra2)u#18SNY_Rtp7$#lOhKKdL_JG}w)`eZId$h`pm8^7Ry_lH9=wmd`fZE} z=pC2JJE2FH>^HGblej{^l&f57OQLnfB6qs_E99B*a=SZ8ySY^N{4@TY)X}B7R4ZS+K>+No;hLi>;5QO&jD0$(BKWmB)uWEs zCz3pQ@IwbHK0MhmHT=l51kD-f_He1w-^SI89t1pB z4WDw-<tgYc#Fy;CJzI41k{ ztxokTJ7%&6oT_=@dI$1+b1GkBBR&)OvfuOl9qhwiDABz@!Wu3WQu}g-V(@>m--Ld0 z+86EG*}|o=j;VI{@nEYgYz$0O@qMdmj+VC_)GZ?dc%6ZtYp^XjgGn0nO^U`l09;%m>nl-wEW^yU(;-_dl-5An;lp`IY0Ek z3*j?=p280wZykIE`tZ0pJmziK_vWX^TciGnpy+4i*JIx}!;NG?uoL66_pa5@yM~?f zMT~T*I<3+cJPP?aY9@9qfnE+yaLOqVRvRuLZqn_q#-b_$F?Z zE$icwhoCQ0>IB9AfL%8;K6IkLr4Od<{C*Gni={9zUFT9)waZ_M59m zrA)qdEB14J+&i9(aH*fQMt=W@eamT>t{-0jeSMbo=ae@1o?&d5!_S#;cBi>IE&K!a zvxgPPX@fsBKFizTx0@OpI2a!uTnMSYCxctz>%pfdLGJ%!>b&D>e&0V%LKG=mM#&D9 zSy@-Mly;}HPo2&xX^@0UvZGQ~l7=D)71@z3du3I2NyrK%@_XIqe0}`<^M0J1bHDHR z{l4dQJ+IeAY*@EO-kBZi+`93v!*8_KR#JK1gVLis#{i+BkerdPxwI-tG6Ch z_q3bVGWbuYmhZ4@HGo5DfeZbT8a=4p`ct`UdvmB#GN$<|{C!R2qr1CaBcB46sjcvT zb-FokSYjLa?cmN|kKeyYhM}_~{B5hoG&8FApsP7LW4r&tcshNmStI;sF6b`xQ#dp% zyn6Z1NgTrJC2K@pmJ`Y=i#D}_|9ib%jrQPwfB*Y^HP;u)p-hi$rys88P?YW6J?CBqN= z^}NoDQyiLnOJ4d0`6+JC`e-CRfqK1h5xB#zzHIv2yJzA#R3mV<(?K4Ht4^I=-@-3x zv0}%MKjUy;wts>jFfqn5FV>Mm^CQ0<3qbp*{k+I?p_sL7JFhMLn%>@DgYZ0m>ver; z>q$ZIvkFnHhc<_5`){~o^BnmqI+A6; z?b-qTIh4!^@z9-(-*1n9&`rppaj|`dY;fREz>(vY6VM**&jxiLyAtmuRZB7+?KOQ{ zhMUfzV+-F>` zD~o+gz%Tr$8f%ZdAfHpVee(u?p!PGOeXT#2#=b;(10O}EB)9d{*fZLB5-7BY_1`)4 z^zxma+yeMf@w#5&cYp7<=6n9~XLuj2m?L8ihf<;ylM~%JG^yEMhaFxVf|dW;1GM`l zi+kS>qP^Ag>TeHPv^A!F4)Tb|&CBNS(Jy^Cyy-RYE9(x)iO8x!Kg>Sg_9*(>?rqU& zyGEdWbf>(oL%$tx{`1mSeery5>%WdgKQ#+1Xjks?zdS+nIke&ak|BFWahSEYy*ciu zp6@uw3)1J*LKVt?_goU-eZhnNnBGgj7wkcI`fLviUg1H9a~m&DF7TkKzE3WW^1{BL z6&!)LJ*a$8!2>7cTlp2#Sec0TFD~T{%R~N=oV1J@4)VL$ZBsSk6;uANh9eS;+piN$ z4SHbQsX3BbjPHlO`b&(^&dDIEx+9O#j2`6=Fn(ZdwcBcj_sn<`e9u2-gpm*Ot7Hd1 zaSevwK7H=h&QH(6KWnm&KLO*jd=4hyJ{&r=zwXIg0mkQtd!M&~mvFo2_Op#YhZ-mL z>^C(Q?czLpzS%MkwM;)1w`&PUv;R!SIIO*v^dXBwzvjL^F*uS#vt!3)MdN*zZp}*B zj`tasu;9k)G>&E-!uN05ylQ-z3P1bK8#%W&amXO&{`;tW4qa@eJ5Ysj+WdmBXdUv+ zlz;uD+6BLVyMS!xmCFT>WGU88lve=V;xi9-T2Al$Br+0gOJSmX@q%NMced(ba8+gbI z!}z@*PrA?&8@X-ZaA5wqIM0*jcz5u$Mt&KyXCn>M<2-4+Y_!lZ&69Ri@CKas_oPe8 zUhWRyAPzhkZL%MH6HZlSorIp$b(;QCJ(R0H#{`34y2FW=+yDD)rI@M;F!3Z|)0Ced zj6La#&b-XIxOO^R@*;8gziV(HEYW?zAL-ZLeDV%?fo@aqZ)jz!{rlr-bb~)(;C4)h4GU_RB4<3G zS%(RO6VdL~_HfLA!|Ig3#%neBq8zi-%CI)b-_t6>?ffwg#mw2l`rBw&m85@ z@0GnR7q38n4vB6482w*&QIgj#dk!%(Q|DR8bJTHaMQijY(9ySrJ2_-hlKb=p#uLMJ zCB@)s)(qY_74z4;F&^GK!J`NphTe+Cya^iXt6LF=wsq>08o!T2+sPoNn;(aEU2m1- zbCyF5vtxetyNh*ZRHVHhxR&Sg&)!~WPlwZwt1eCSq{WVvhxd%}Boj|}^E2S4{$9Uc zn&tHr{nGbA_h(&0z;Q80=Q^}s{0{r_Rh~478QKFqsq+3!i^8RNziF5lj-vlI?-2U! z7I;8l3ZFjW>T;+xPnWCV$-v=yv5o~!5T|YN_10YK3O7m~c#-T-5Ab|`N*dv z3mE(+W;>URW_ub*!973b*3D^IfV@dr!w!7D#HCTkyR~?i%cT~A_+i&}b7|E^(fwNR zk7~|fF_+3uwhDg>9&!H&S6(D|xPldhmJ7j;yDr|nwVMr>MtBD06e6FKKB_%Wih8jQ zf_z1P@2g{6xHi$3OBrSc*-cxyH2IiT+i&0rKh2Y^y=lg!EW1rbS>O;aX8U~zZ^0!; zc$MRC0u&Z zPUZGI2fq(kvi!n&uEsvHoU7rN;{UblP1jz*BQv-(XCN$R2e>qq0fk?=RMU55!KV&9 zn%fsdXm1|vTC};)p&z)=oMS;T-FejL*15-;k6eNm=tpyKu&>TV#Sd-EqjxaB+3WKN zbZGzhmOOer>+a~paxR^%>N&n+D;}w^owWPOrA_|mA&uZs|5Wl0f9Ddc10^;lJo4Ol zr}-=^9_3XvJKNI|{B7B+srB#i91VKeV}F46Z};X1`491KG2Y%1oAYdYox~bK-1#f6*3WQ*g2?KHobw){aLa-xU$NSMmtn z=%@3;!GQy(zqpP^?6_}^yeEI}pI@ffoK(Rj`xmx{-qmnvb5Yg~^A}u7bh-VZKl<5; zwY=^8$%tP-cd82jSL-*>ZZi7G&=mb!hV8hNZG;mWp?wxUvmB52#)kFUd^|U+2>RQ& z{czZ<0AI^M?DJgGih^hG4*EYkp9XSi`RkM^-MtWJ^317zF2-rn<2RO9hoIm6cwRWW z3;5%fb>~vRsSZ>%ZF_+ECy^OcFyFLcfhp*}&wl1T&2A6A_S=vVHs$ypb3}bcJVtbf zcykl*yjz{lzR>1U>zm!3pP=98Oh4FakTI9qSG?EXRP9MC8Bo-btKqaa<2n0$DsHxg zOA+h14#&d50pnxS>Xp2E=+9vomY=8aXu7A{g}0Nzq1(KSZ-+RCqIm}0 z-i2aZBAmqGg44e&LOjuq)R$J9z@_h*7=H@a z%O_2xg@{uq_-U%w;sB4fx6qznw}VH9L7$F7Hv@64}e{E#N(Kf3hX>&e)b0-AJnjV>YI z8Z#esy2q#J#^(BZcll&w2tq%dPcfaYo_m!e$o|CLhHUUqpF~je>OXF&RafBJw7Vp#ZSaHT)THX1NnzS!>e)~k&mZqn*Zo` z907ST;FT+&Ppeb^^cD#;+=)y;0pXqj_vZ^JZb7T*A`bygWaq0ddihD;FVjskj{HruLhm4JRM{&9K9Zh^+%k9-B{`D2-Y*ff}nyg&V9 zF_{$^0(Jb|aO4l0=NSK}7J1kV%^lyYs}#^y!Nr$jt57f2Kkf+VH(R%#3FyP!Rp;-P z2}tdSDi#pKMiUbSq>#b$by`58hvtvkeH4(5&4K9)@%_Kw8(MItl6QO^4*5RzgY|exW9=jgUBl z?*88KNkE@7S6&xk zbcv8$WZgoegM{>E!p%`$D8J!;zTMkCLRyb-q#MX5ar{N-yj&h$ynrCh+Dh-0$_{N`APALKwJREFy*_ z)*cX1RqF#^wDU!@=-#k#7pg=w??-TI&xiQD?fZ@2Mq-+aFtz|H>3e?2)0twzDWYx#iD^6oz?5Q&Xace@;nTDF}e3ye_m1taT;Y8ThY#FEMqrg#{p4Ob;$SYGZx~_4@X8ci#g1-k`h3=lx=8>=*iID)Ljj zPFs<51o@-X@sV@IbR_M^r4Go;QI`z|d;{``uz;gBXg7qBOvL+@E*Vx`bXZ6@J#Rd0 zCZZGVe9si#7ZM8#eb*qQr4ijs#v?DFSdeqKOQ4VvmYg^ttrgNS0Rm&`-*e|HZpnPl z3n@3(f8AyD%j-e_e#mQ{$n0Cwg%okI$M9gxbAvDY1pVpq?|X=@aqPJR`O8u-yqU94 zNGzNnxTT1`IR@ruG+{h^4Sp0Z6wz50chFfxVZab7{e*-lf{FuwFwU60@tu%{Ms0dj zh`i}1mn^Hjwn9VuSuq#eeIOI`70$s-}D0{Q$!7zc~}aiEuMKfKrcoep9;_AYC%R=Ai1=k+!W^cK?!JHh2+r;vASgv-ah`C?i;X5U0k zx|l)`KKB#v&z}YSw3blZxr>j}kdH$0*V4O|`b$WlVxFHw{<_~Ix|tdl3#piK#r=eo-Zpa8*etwf=8(tw zqbMxy-O*J@-=0N396kkkah~qUxsCT$H7WDi=|mC97?>;(k?9GAa90lzjl1&hY-Td% z3l_(qE2dY^6auTZc>dHeIrsiwy(e!nSDG9bQS&Drhi+zzsLhktpJt(4GsVaCM;>54 zT|L)W*j)7ARUN;Ae&c$_vvFLyh;)w_I4&#`QRBh+_vG&}e;A&a{c??nre*FH+T*!N zIbmtiIP@b$+mwetgd`htrJre?keGR9td)>j+CP6#VJRdQE;sbJfO0Q~?+a-qB!;&R z8Y`se6@$dLu}+McKhrmTjF7lpkKSpPAfS+!!Kbubv9Foja&_0O*nge*WS4+^ln;9% z(6u%8lNB5DpCBJ*?-S%QasWjCj&weC^G5K9w2+2y1u4?lZ^_c`yBhzAFYJ9zA8i$fs7=FK3@ieStXU zAiul*YjF<6Ed6Ca_OJFZSA~ATc{uUKqKU{;c`fU+?!hKL4H^)zED7}w%Fk$Z5AC|K z5Wqaz9aKQ&J6Ap}?lWV)58~I8D>0I!0*Y|PZ zM;L8JMc&D=aGT1H^67Spx+I{|(q1wCR|PbCOQO@yz1ZL47&RSvCs&uHds$+i`KH&N>Y2zhxgjz& z=mqjrIkspuD;4|Ip!q|(H$%Q)5p$qmTy48}q3V@FNKX%HEj>B~`-=B7zoo3e{zJFr z+}7A9PP_NG{!j9`A^UjpiAs4|MgxNc#>E!N&HpupBOn`Ycb`Pp+lUB3uO`jx8Sa{R3-+Iq1=V$29&H|6Wn3-ck+8^g&gl|rP-Nkjl=)=uj5l_D- zac&6Wtp~=A@4&r)zh8Usv+o$5CeC9N^5Y(>G#z}GOB>r|#yE(1v^=Ks=xq<7Q_v-4 zXyH=Cud{W}lSeHWxB*=Rhw>q7qHgl&*|W5wpNPj#UC{Te+bYESGjI_42)2gbKlHQ5 zI6SdpNXqZVPB-ThtSG&DB0u@T(%#=E!~UbzU%)x} zru)~P8}o3k-?li&c{@&*^dtb2sImP*R4}1W-<^S44b*8Xmf5erm z`HfCoiqiV{`X1~ib9R(}bb_DZRPFwm_OQRiwtxWvc8Av9kFT37fgOzjQ&pZM-TqcI zu@e&AzlC~zk-)xE)l?G%|4q)aB|9e#<4}0N z{uA`TbyTz}eD*}kopeGrPUa$xHXRcYj7hr z-EFOQq5P~Ft`oo$T229Jx5c(9dIpIl1qi@4n3yOU}WAEJ)4n(RtC{P*9v zGhN7jFD%O$&YHMv@PT?5&ZZk&=|f%giJ3Ntqsf7T1Mw>(ej9#%AakR>JrBK~1%89u zeZx`_I68RuI-dvUc)0gz`%Z{YInWjXli(6N@btw4%3KIm_M$VbT<9h{--Dw}U-m(A z!P148x%|UdaNvnula|@J5TbsI=l6Cd{$>FG;HRCe2gEcUaw6s?o?7lq_Pg6o@89H1 z4=b>f$a5iBCzO0}npEJ#eFUq?(?}H0DGeH#mzmkf&kIr|YgLi_{R?l;x5PsjTJM3M_TK+h( zxTh=a#IoQ4ewLZR4(7TLo0jGUfG_=NE6hZEBy&HX;esEvgC}``3+*h014!XQutplx zKX9S(r;Ge<8-ZVBx-bV_Y1t{xe*3*>Zyt!EtFFXw*goJyyWQ3e9X`XAjE>K<3#-8W zyebxjst~_($Eemc*oEp{VF{{mCKfI{4)G=>DS?#}_T4o5RaZasn=SyWgIxYAA6}z(72vLajppv^jrfHZ z(!7^$tDH4{0C4;2@p1|rzs~w^?P3v65`+Vnj}tw6eYDyq#gV4@cwRJ8I#KWi-qN-+ zoHY3tTR2gcC2xkiqazgp|8}TyAgH>uf0*k){g!?VxGkAO9OK0<156#ruHT(&gDf1V z#rs{ZoJaPwLE3N0iugJ7e$-u;u=8^$d@C$t4UVKZVpew+-2MjUNbc~jKDu8HZG89M ziP$noM-flZnipjva3X^qXD@wQ<4p8(fJ3x}GpWBPLL3v^tQ(Fy)3iFjcY6@G@J0LF zoctT$=~+ko=0pb`)}^J*a;8<4w~n?%eAKxv0Nv~V7aw&We0kmD<_}fQ8h!xpr=bW3 zZhP>{Ke~5qKgWd@zqE!C&Y7@kt&k2!Jl5-o)fssIzs@7jC&A^va=+Ztd)cC&3pp~7 zvb77%e-wWC(VfXdAF`32~*hN2E0e zD|74T7`XFsWudmG*a;8$>$57oOGr4s?}!(jB%qjYyrW1v?kfLq#5FVAGk;H z^uYa=#yNa31y8&YxcH+^;BxubZ?!XbqxiL(`4^06l{&C&&NX)lBJnVE{ zf}gkW3E2nE{OYTF*GCQ6A3G?)j149}QG$H=b z(LFutvm5>C2LY79;J|A7OdVnAPQH#M*7@t8&wy~5ABf)_y-2)ScP-+^u^o<>>rTVn zRWW|x*M8jiUHU2;{O|Tjy9>d`9Sa%j7_!ry3?TP#3h|_BJAMjyVzv?Q3@$AMCk%2Y zYcHrP1pfQ|_Q*Pi?VUZSS9SW4cDSl_2N2&6)r`5DaV^|?V#b(Z9+YV{qgSt?;NX5a z-%o0Arw!pHm!iYnDU~_i!Lz1681>N#{GmEtAN*W6J8**URqO6d0zW$5=j!S(56Zjt zDRtf=59++pt8>66aIGD3bGGJs(5Ja^PXoaxsrxTDF!j3e$Ah}E0zY{WqG@LxHRRBU z-dTn_UwF{t$??&K>8S5KhZDn=duYzp;L5^lwHpsU^q?Oh&vzJrJAwCk$QldiNbJ60 z)vk*NT`>LpWr42;Em)-UY7cm{EAL@&0IzmLi4$dm2ZfB6r;Px2<**VFCE#xcPn>8n z4*b;nVrx@7a49UTfS(BtZPCEg-k}^ym(T2cF`Gk%#W!AFgg?GVmt6-6!SM)M0dS7v zkUraY*>R}wX~5xEZNRyV?HXAIPG5NxX7QjN@g+md2+8bu<;Ly^~)0Uh{f!+$X2kED9U$}`M zVjqJjdGZ1GQX=T?X7mGG()`l#GnzPLzvg(R?@w?uHi%pWw=$-+PE|Fym;z?-dcmP0 zEQ9qm9J;qIV9?TLp8wrvGur@yn^D4SWC;Fc%z{IcoWMb-IcjhPofxS39=uy)?2G)D z;FFkc4!8tZM<$09f@f$rBH8;8{1|_K$E}|^G-?DCbHGbGmI|2+8f+K4~v;U!Ff#Hia=R#F9WP4oJ5f)9jWis>=pE6bm9JN zA%#v)cL-5nKgVQ)UV~d;;m^mwd8`-?VsWP@J>Fz?>RJZ;Y%NU9{ffX}v<0Yj7aRy= zOhjd#nmD#JPwGCg@9wG4-C5qOyUjxEC*L?4mA=LA-wuHC8vJw@YR9d*oa;&QddIO& z;6iG8KNgJM3tn#-BABm$uW<7pd-ec$uhPC5+pcjmd?)xg^?6__c#HWF>t2CVGT_{N z+8yov_j_mOe|(Xk&(YW`jlgddgZPIY#~{d7l|r|~_dBL6b8tg2v(Eu9b+PKz6DK8y z7RJpzu>BJHfqvia!LK;P!hR#c$+U6DFTkhV-ukpj&>8;1gab)SuY#isf)Wn68qlGu z&CwrN_?ZFT!{PbcTRxcpeq#(GGr_5_u-UC{o+L@Q+G)N5e#rrdJSg_0KHn!dFFOlA zDAPl`?n&u}4=oSCFUrEN9N;f)7X*?YR~D|j61q>mLqS4YK_BnCXz3mJD>Lq{NebuV zyoA@A4o*Rz2?Yqj8$7yWb$=aK6MyB$CB4>@3zmVG5IO8D*e>7_Go##D$)#kiq?Bp+ z9uMx*Ciqp$SwJ$*VIfy;1h&9ALe2M7f}b!eTYUt1 zcmx_UXS)H;Ra@bi67q;0!)v^uF9`RDKm78NS3g6;JMd`Za75_a^QcrX&*DD(llR33 z^Pb~8H~Rwr&9g}OIaglaY%7O<^2NkpKX4noZ^xgks|QDL$avEa_|<3;Ma&=q-6;rh#vOTwN(Ri(WT> z`L>6@^(LnM)8n|Bad8QJ6OMO%uX+;ybGwzd=6e#niD!G7ow-_3P#pEdXcMYQWfaPT+f1bvqc=4SWv5&pM!=&JEvqdy5Z;&U(O8j`9Ct z#=0wc=r_69XGiIQW85~ftn<$=m`4*Uu2)-vpB&+CF$D9nnSaoRTNt-lvdpKhffnGiQd_`qfb(4b4n^kufRm~h|2gV1|> zxh%zex;leWQ9r1xB}u?PsrhYicTL-Ig2#OM5X;px@O&wCr#}~Betc|;hxVsx1W|6gE-vsc1BLitR2b^zA5QJksV7zU>4f}$dyS(k>7I0-+$1iMbjce-u z=;$JAPwHHGw|*t&H|8c&fCp2@yJlg&`aaQpVNR2rSWTUpG||^GtjhS-JU-^Ug z!Qw^!Uwgfr(0YrhFNY#6`2|A^@V-}|M-1W+!*;!zflFioBzz88LSC^<``^{8v7}oc z%-a|85$KHP?aB@um=~mnV{-B5oqCYpx zc$Nw7f_ys;{88vh3>$JihIWBFw+lF}oW%_(1N6YnJj+PTdXM?a`s1Hh__4zmk*0X7e|;F0^B zC3ZKpp|`nWiR@_`=p|yh>y7!w(C_o$X137No7wSWGXamdkjeX20s9E>)Y2b34L4r{ zJxAsbJIHHI1!z5TF!97g<_Mq6KE1y^x17`&E9hr^~bO#H204xym3D)=_ zYhiy2oMAO=(KJ3WS+@p%KC$qLh!8%#WV$P`%QfQ^NKFrclVI^7C48FX@3yDK89wC< z3yFVtmQPtti&wV1&Zm%@jzK-|KsWK*$Dh|P@=0&p`dN{eVJEIP@1PAoFsQ<;_U#1p z?kAoA_UuxxmHdhQ1a#_(_OBjY{{4UMYiVfI00BMhvUBS?*v}abpTmcJmkBS#3+UVk z>}+7q?tpOB7j6RD^LodlDYO55&x~y#SK#;E7EG>&pTF0JDZhtj35dxg%s48b9nH>v zc{4_!;eY(W2{65s7Xm7C-mxq89_+YG5A2nI*f4)lFQ5gVk4~^1C?pXxz|Mld#E!el z3Vw!}CHv;T;MX8Jqcu*_#qgM+~K z{Pr{OA#jt~P84YDuATzwvisv`?GgcvpI2Y8;2_!;vS*7f2#AIIRJ9cnqALfcng|K> zkV&w60Za z$9v$HKOA&{w@FB?*v1Whc)v1>w#%hLy6W=o_jEHMv9A@vKE13%NxT&H@V-{VU+tca z_TJFOa_bKP?QV~aNM9jYFd?1Q;20(gtd|@R()XcEP#-hK7Ud$N%{>MEb?LL%v*0~;j*opfyCKU;(QX41b_3*p-e%VwSBc!rRso8UH zfiHkuVA6|!}1E-tah^DcIBS_l8_FUB#7@f=K7X*s@E{m8a|D(v!bmv)0cn8}{} zLHmwl4j~(~7vt=~w=6pF@w{!ifCj`Ho;-qaux0y%+ifER^d8Ii;X?2g7d9UXg&n>G z-J?JF42ByFhJ9Z-$z|%Q;Q|`gdU3Wt-g_?=z=QD?`!#Uc2%25up|K!0B z#t!_+=s!$AV!D9b*nGJPezRsq9ZaeOv@S>dc4>bhF}ainbJ0!+kLgzq4h3OZ6{Ya2 z&2Fyx^HfL+!Vp~qP6AX%_B#0M{(ir``I?yyXpe=X!>;4q644IKuk;IkZ3`$}z>l~*=gz+74}}C;J23Qwkiy@cU%U&P zNOmOv35<_`r5}>|KM>GjcX&LH2xyJZmHcnuqQV76LoS(sSK7!=oCmvll}O?-=n{{% zota#96&&-q(V=x`z=6JmxiktoqYcb&HW>46a?|@69^lM?c{jcWH^&0qbKr;Q@o30d z@M`LFHu$?vn=&>p=>@)*1@QJodEI~g_WlkIm$eJ_rA#J`K7d=UPHB70fk*S_PMBh) zk8#Ic7E(+X_x*TKKW z4zSq2hKz%9C)T$;o1w%;;7JGBMy97g$D28n;U6g743G7AKDjkpuekjk^{>?Feg*3Y za}VT#3%o7eq!7)<`uq8=gLg3O{w|W{_U)kmJQ5029Pq41Tn9d{Cu^chCZlH`!K9S%rDWOPj4AV4xQhOJH0O4yaN5}`q2s6 z#^C7s$SyGc?tHZTVNn@)wb2D;!|n@+$yzPAE6|*u@x93%jHg`YfWwPaEUCkKrX@ce zor?8?x$A@a2q@9rVBQFO0bRXZtJNR=KeqjLhkulXb-gO*Q-fvIf&TD^%nMnk zJSNY9KXd~ure_7jWcy~`fL|GpTk~8%ui`Rpmg93L28e-EVea`S7|&3bEO~7TUS!PS60HG zDR~)}aau?x%wefMDWo7KD4Y)df!Td`Vm)Gdi_e7`ZuLF4+I0LS73d7eFT z5v5G~=vEBQO6^Zu4Zfuq9(wRRe?R~Ie}>mexFVX&K!=0iw>poVXL&(H)(H2>zAU0l zrhf-ME7CF7weq%zn9Tjymm&@S|4~G}FJ+$D+Dc3PQvXM+(S0}| z*68EqfD0LYuqM}0Op}>FBY3S2o2OrYuOp`OY~vS*ze5H@7d+b4mrbVkz>%oq{-VI~ z_*^QplcT&*Cu{eQ5NqtR;Lz%s-tsT-az_ugc+&%aXL_2e#gsepwE6I2F>!SE<*&FQ zCOH#8IVh&|Xc&@Sh&4JgCE#!hPtR1wi2tjH+V9z3Og&8>o8GS#(N?m1|Ktq#Gh;-i z;C&s)?EK8>n20u*K6vTsB_bAfpF2uKx7kG56}%MlD`TI~eY|~R74|Lh&H%pA4;daD z_XYbAX4v{JBy#Ivd8j46&%jmmJ6p(bt)C^Lg^CYHbRP@p<;F!}HdnCknHxWAI@YPn zgKZM7X$uLIsfFHzf90NLeuuY0x;MA?>aznx^n4CLfeRQX7ytBf?)krd{7y&*?n1a} zJnBuS4v1q!)c(o7xYg)4?Otq?If4(oekj3X>0|J6`+Y7?9|Zn}*`cK((o({rQ3Wn% zL#^?`b|MY`>mt(V7NR`ITPO3=ev2sYUDx-kI*Vy6n&US(z{49RIX~_%Cgt0(*mjY)T)p8{-Sny<4o`iZpsa4=}Ej`x36`iHW&ev%wE7VR2dl zF$G3Kkh`Op1~k4=6`vE)*s72VCXpCtSe{-i6KVYH&BdC$37h_1a}0haE#`y!VtF9k zz$r350-WD`a|^RhC&g5rj7%X{!B>5O5YkuhW#Lvc*Zc;Db!fukDOwVZ9Y{w)P5OBr zA6iN1%}WHZfFEP);!r&az5XU~Svo{Q3qI&px3rMZWXJMe!2@MAR+a7^WH8Ko#n{Y2`t4UkSOimv?+_j`GS+BoFK-QO7Hoq1~Zgp?7cCziZzv2sGnL z)Vg>-N1`2Mmib}hCFB4Db~B-bW~O@F>GKO5>S901z9h_V&7MCxlm-s*hey8wd&C;u z6U-AiZICFWx0qt~r>PjHr&Af;^Tt@rSImL+Sgg^Ps6fA6*WA$Iz4*U+)ZB{5)WQ2- zfA;+0kNOfiR+2qJ&r+g^f1WC#ih?P>rc9I22(2MK&!YbARc_B;qd(nUuyBOc2nnh6 z4M;)*SAlG{m(bT(*9Dn#B-DAY#gPtv64IY}?sPAI^v|XIJU3SfZ4Gj5abt>v5S2FY z)B*|J>kI?QE(t+({A7K!ggUgfyJNQl(KO+?%~#=8W>O zd`&{TRu10xb}`z!7sB8y9!My8vK`JluN!WNOZ>|^RXRoH#KVhZ9v=h8E%(ys zGYs{jwa2VC>&-^F?=3gp#ow9Ue0|uza=JI~9GjNrrSYGZcxm{OTV8a2c3@5PLoa%( z3uUYtFHPLoFE2{zU{h`Q#fyH#t*nl(_o8~IjQ;ut-ZY2tQEj~`)})!$!p~?o;Idb% zyy&|a9F-e9;keFAKY9}j zuTC_Pk}S4T_-&k&u0a0jK|d*-KzfELZc_ER`G>2NnESgEUrMG3hj1MuC8$~nx(|}l z9?#J_UrnVNf4!|#t1N6z8MzVjo-V_z_ z>`d50Z-RPg|I$v<|E_m08TbXg^d^q2-U9y<-lWsB%_z?nQi{*g7v6sDO*w{$1Z^v& z;qhtp`4<1~Qy$Uab8&$;4PXM;(Rgnx|H({mf;H5lZHPC4UJALp%bVI71nQKY@g~Jm zv0w=5@vsv-s#nmy2!uU+9__xeNcs!@)*M zD@|u+d4@|hd`hI0{PdTkFH4Y;IO%B3349KXO3;c~FQxS2aSe5Qq*U0;HMBBMO059I zfpAxUzZpJz40}6hHF6F>jdsuJy;5T7ZHx{|=~=~9!<5v2SGC<`mz44#M?JejN;n0c z{8%ZaPisSRmOhmdlW*UAR!Z3Y6MsInV6kGRc(^n6~bHLnUjecRi%X8jaACwQQ zCBQ{Ws~v4NKG%|x)4Z}DgYX`i-cGfVl-Axq9HY{cYVt7jmC}}L)8G8ElhP9w7vL-< zzVvpRbo8%(r1=b-+2rbXEmckz3e52N2oiEZ1X z`}t7d%{6zQ8u?JtFmC4;KcvKq{^4%@TuQ&|Qb$j^FV*N4UX;?)*2aZx9!u$g>%M~r z&`!tl=AAmZTdI!NiM=VMnT{K$Tqu!hIEZ8^T|eH5(;45BL6%9lS*q5d`^l41<)>K# z6GT$-WeFqjeeJk_k3DLnn!F=TQetTcJa8Xl$XhrV`_Og-=%1SGL%kchLodpF==YhL zD+Y2OYUFEua$MmHN{WI3MbMt#0;I{6Ecod*}WEAFAIwWK;+I|KIPc<19mb)H*raPx;Vk z)zA0KihO9uAD-xVfsZ;5)WixOVlpkSfB29vuvO$FeHpd+sXM{@mk%w|7o9x($%m{Q zQhR-R=A+gJY_BUL&vmcOnh%f>)VM-YjAi8gASS(MUl}o3@LA?E>ia7uE#FK=2euhJ z-Pub<*~}i@N=8u4S(ejMMxe`|YSsE^^nC`)h{?3?8!MxE>n=|l-A_hLmu>DFA3Bi| zUU|0EhcaLOi5-Nid&c`=vhO}r`WCOS(uXE7p%s!5!)JsxGBr=$z?ISd;`q{Gp(q#o zEURc4U2=^ZWtA!;hC9C7DI*p((*oCB5K13?Os3(nmdn)seQjL(2E}FR2g`_sg{ET`5fgB2Ku)RECq6}gmHk)ljP*PD$|f1Tw(oeP&l?%N6b^rRvbmhbHnyl7 z^BC{vZTKs{8#1yx7C++?>c{dvRCSSS_IKmu^liE0{9s2p<(a^cK0{7=p~KfNKz$-- z!()khs5#LJ8I?!bR62K;6T^p=WXLEE8?-HfGGcOM_mgFsbH!P-qdgRve#s~#VgK-f zD2J~LWwEYua)~TDx7<=rh)&8K)lW{={R*85%;m(=+nJ!gQ2-1&MrK!A{4R5(#TT^i$?Z@$LAfarPF)9^$!QKdkB*en zQQHqkzx&GReCmrEJp$!qSLk^8m7AQVi*2{(_mxvvH8QTDJhlGiY&pHu-hIzzpqys3 zoO7f(M^0ZogsW?OpC1<&2MHg2&N zc4?&`(2@K2<#JN7JaV<@A8$r4Z1WY*A8vg}*g`>>4N_k6aD~Q>I$A-p9EqEYt%AM* zmyDdGAW*4ZSw;$SE?#KiJw`$Ob)YFSLP3l4;(q5&P^fhRcG)1WGTUc+E9lDR#a&h) zKe>7xTB)F61JmnT1}R9#qx4#Uor3u7kf21S(CAw`C1yr5V99+c!#UsjG)*PHFEmYxnl8+M{;u9{IPo*w1cVgdcPX9^ZSP>wWqGh z=>g(zOmpSr)4z&4>!X~E2ikXYXr`cX`&xeQRxhWDJb&k^J_rQ&0}m-wnN|pqsI7&lo3N?4v8}Dfn z*HVx&6!k^C;A-T-?ti1ty(jY&^u-p!W(tKyXG0hL=ycl36~PLPzI~&d4sAw24ElTX zU#>Y9JmvHQ7|>2HP5*ylBc~(nb{W@?M*G9eZX6~j1=5H8%9GP6Arhwb!~LLR_PIe$ zgZnJcah{0!GA<77@5c<%QUx(AdOg}jtrMN9pf*UDG6?Oh&by$iqyXQvhMxLLYO{;` z_;iDUpwes}ZLFl02&WrwtyJqzw3(!&2|CRi5?qwDIpW;o{m9cD2$_-Z&d5&=xBD-A zZrbX1XE{$vs}4*}TP#viZVax@heit)xSFdwMlxB2WD)|CoX! zD7WCaZ|?#nF*zgqb4n`TX`Eki7}wH$SE|=2H9DmEO10nfLkaSBXWIK#<9msFmpjk8 zf!{AT8eEovdLoQ;^G+ol4>axLd&b=ws-zeFt-dwK|66p>zT(71 z-uJxj&$ZBQi9ZVtyCy2>$=DwpeLVk@o&c%mAYVJ&R~`Q#Kl`G0zsiuu-3xMomB`y( zd17#7;b^=cCLj~1r1n^NWTANOg8)xa9+ROk$x_lpU@@=J?(4=}K7QkxlBNb-PF{LT zsm`yrQBOrlgC^H}AAtPcF-UA^siI-YSaERulIP^tW0;C`Cx`X9?5ZM`rm4(DMewS= zohDP!jaL@i&WKgSu)2<($g92QPi}*)N}Y$~I`XYIl=d|4=A=@u2bV^v2w7Fl9*k4b zf*oZm8u30h=mmH6YE)9Rs@ud2JhvqlhN=}xIu~<#`QiIYwT|ua{Yt`i;F5`!O2bio zRQ^{^noIwyqTVW+VAp@V2}eaW{V$COw^I?5F)_mP1g|yKzi=7-Fb)Yzjwy+yy%>Pc zOg4N?Cl%%IE*LboTuHh~X3;elmDF%Neeg+qeueZ{TUx6q;?l|%>ED&~sjS1R(P$^N zzSSTVA?oT!0WO-QA?ii%!!>NQJOMdfB+Jt~lg z{{83)g9c4Ry8shYQh@R5X0N zd1oWko5|p$#j411tDFDP%_<6Eg0(p+y10LNx9UAAI(i5*I`Z8|Vp@>0l@ z2lwlrP%WFHqNml;iD`JAoKK2HhkB?8yU2-`6)JkZ90{OM@5({c={nwHZQJlXJ#!UR zjhBi?px=d$udCRP_F!R+BapwoJ;K2|Mym+as?*v`m0JIJ_+FJd?@d^kidY(Zx;oN)wNP6{+iOaG?Ha104z~<_ zRun5~C>GYA7&mpm8{VScYEBC8$)V$sRJ}-y7p7~CdjFXm*KI<+idspb{D5|=t=ik( z`h<$sfA;#$>dWv~|4k}FmPNz302Q6<3L$3PhuJ&VVE!4C7;wZI{U-HL%M}lz&_Cu* z>Mq6eO+y|Z_B>MAs4rns)DwP=OCBmJg*ke_Toui9hd|mG)MH}H;zdL7zEdx{WG+F! zD=Hs&nN;M2z~_}SRn+stu@|BEY-4J-qy@(7EEpyyqu#9g0+ot(#rt@C9IYZ`LHj)f z^BUAmb-sL3&|t6KAD&^KrH*UbE2lGF8Mf=zD5%H^0+hX!v=+yZr?|c@JK5^@I|X63 z+&B{ZE~pw@s?Wmy#ni{xF-Jj3GMp^uVBJPS)eWx|#N-{%CnzW}yX(^JhcLf|Vui-O z;OKo@QQR>F=?ccC`sFX*}yWBz~25&@cFydumi59=L!{r#&HOnn$&BK8T_7h871 z`pxn!%)owW3uJYUg(%eigQll)jsNu}_NN>;UL6&*3i9OkV(dFScKGhc{Xi4XE$XMF zfx|DG#p^3IeC=c0BJj;3|fwr)lg85)u+NuDr;TTUy z3;NzfMNLDBLyi1YYWsu;<6_{sReLxXw@ha9>sIu4q^q)Y zkX>|EyA2q>NBIdYFz>o9T{`)@NJUSqZ)o{r{t*TPG=GP6wEWn`rMs{`Al-qY1?Cgo zcb85!Dd{BAN!ntZu=x7j_?;eGkQZV+9&@#MG*3kV3UOF`DCP;c%hK_8mX@POgo@O8 z;m|LcyjmmrIYi8Rw8rldbzIpMKKhMP zqBnv2zvq3ydt(mCBK;9nTUN~ zD;S=Y*mv`o;rXbXy61Qg3CDh%rM+C_g!LNssY%~)&SUxCr(+y!l;k9}R8S0aTw&k0 z-vG+vhZVHASJ0JJxDU1mw=JjPdwxfS)k*~oxcby(4)&QWjpg@0a&`Wv!`L?p=kf+? z=i~eXPO>@n_n`f~qa<=_QT^k0@&lY7?;MzHXRRPfwZSgMcAQ@dQaWWHAgG95Alcc_A|uWdC!?;8P!Pp3x4Nx$7DBn~>WsJgCrcH0bYZkaG-U0iTxs?pTMZBCrRI+KaZf`q^0QLs}#nO+&w~T#8KR4%n|r!#ESLAIs3$TlRRDiXN&mvx4PVKh5Q{ zJ(McS47fWg8|x;^3pNGo4AZd*AA$KobZoxYC>8zA(Ei=Bw~9u8ZvQEBI`$1_`giY5 zz&h^c=e1=ce#g?37NK3fotXCgjEcg9XC!0Gu`VzW@|KEzz$`Ji0_{6E*UjlO+5`Ak z7(TP`3$s7iH-=qwjcemeE)Y1 zKIB#(tc%Rfhw`#n{>3VkD|mS&x(@Y+fAH7^JlF7^I=F$~$_gb;=ha)dC1A%qY@2tx>A2w?~vh7jf$Lild) z%jfm=$9bRY=Y8GR{ri5Np7lxHjYM)a@|D%u3>O1RcFjZ9e`u+W=G?975esKCpfNohmB)jNF`ZX`-}(PxQ!(r-=%_dfDQy0*tHlY*n~InyBDc_>C8R zNEJ;l_%qWN-=vBP|J?Pp$El*W6%_V81@@Zm!`CL{7v!h#hgE@8k*d!3qn``#fBy3e zzW4crorZhs_yYXv`m|~jm}#QIpY1*wk&5@wPMl2@J&c@vBTh;coiBWmb6BbSwB`X2EA8nik|c z{IF&31zS@^JqrF1#I1rnkG$6S{-d|4qE>~!kKCUsDp9uJjf#I$MP&;AaE|x?`2~Od zb@It;|IaV{VdUq6_Pw^~>e+P#?N<1i($fXy7ChDczH>#Y$W-urV3a0RG^^kT+0B6#U?G(eN};g9?eQT24q4oqpw- z!km~U3V$EAzS@!kEchT4b6lF}LgJ&dho`2A*uSFxzBf8ebiIAwTjhJEiNGc$C*xj0+@;fw$1MJq)iWx*e4{p*i?UO~T8XN+E3cL@Xk6jc?my%~!# z6g8J*49MX1F4DV5pQEhB849kU=mcR#Z$|GTBq*jx=-an%uipj#@Som{0yj&$SQjxE z*=y3_%cGhN4Ba|G&Wn!(x+@W1mpKHqblwzT-1rH=%%gpQ`Libj9Yw|f6Tc(@Em|4S z)sy@s%+r9*J-Qy~bC7-Z-d&)rca8$%`&$TSX@S{?Mi3n}3z*ZOH;~tID9}5A=;*+F z;#V05^z>c_G}m1K%q+bJC<`wp`H87O`|6cI>#Xm*vF>`_1CYwpVb2036 zu1wIe7ta8N$8G}6rAR;J?jg|m!2>{jXR4QLcQR<@XUap?T_fnk+RK5wJM)452aQmU z_WL~0Oz9|~{q=C5{^4q%XyQ`BS=263%TIzfJ1@Xq^F;|{y|RLz!bkx!x>Me5r`(|P zn%oDb@0kYVeticFPAKS%1^@WB{|3fyruML%bb*%q9tPBgX8)6}0cKT9F^g{Yp| zz-Z9nC1mgJP2(`36_t~b)DQA#O(&pw1I3wpCmA%aEsam-+e$=#Xb5!uqHU*s$ zZUhwkI{>J0Q#^qa^p71*VO+LXN33~E9J|U(1iR1DUbFx zl%HTniYu_5{0awhp_dz?`n&eh_*7J8{KenN*L2Ktxoau3tfAb*$_}WfLJOb1Vr95V6X*_21*ad#V_UCTp0ocj!r^NL*rvSTP8jAB%8wVL$#%c=Z;o-jOw@~Xd1 z?HxWc8}=zKYOjoS)ZZd?=7TTaI06`{uoK96N%L}Oz&Oyh$E2T8gW5lGd=B`UUNqn8 z(z<{)sL0NLoZ@5JX}+>{Sr55tl?>?B(KyNFYe9==lb%#C8Z;x9>?P^cPerE^kPnZy zB~YqA2)&#p2gttdGoUu`6qtDYEYRqt{;Xd{{XpGz6!@|fYRBvs)J~RGcftQ(KhTeD zhH@hDTfn#a(~A}Uk8JA((CH0d0-cfC&@*3l0GXYsAB9g+edCuAEv>T~`i2rtpsF^t zYp~un&}RPyV0Mk?B%dILKhJxj;~y>s-*u7&emdtoXu)&xlUJX{Z|31Y`P%jYdLid+ z@;g!u%=w}P#&)B6Sf5Zkx=a*@q0UUm<9bWm11*o!5YNc3le;&!u|hOmu+uf1`dK%BOaNlYYvQMV`$ zoabMl@BCT@?G%3V3AFI2VXyNU@^sD)@Dm!x z0u#^I0P@r;3Ay`$UN6PvZx#(YlSOd_kBkOwzRw5RddYxc1H~h{yd1P=9QDuK8f34j z(hz+0aW+sGyoq?YL%sqv#s7@+x#K_!Cf@?)ys8I%8!rxMSpE%s+Ziv=-Z2Q2m!tgx zXRQ``mW~yG;idGuT#&^L$t^O9(N$$I<@e0Pg` zKu+oq!Va5(3CmUjqjqfrDl0w(MmAEOV}yC2GY62rgrAo|JC>d!y{SKeihUP=Dn8Yp ze}u+oWC_(joW?}F;uBO~^POU#rAag%)YnhL-Ycg0ID01fV`WfW$&p>q4_nKlA4{&% zy2joA5q6%?WXSD72ITg)=Rljz()b8As1MqEwk9z54CRYoj^;&cRqF4O&M}bdK2yK3 zw>kqlr}ipfie@b^dR%EB^M@2@7~ufwXQcu~uZ+N)>sx@1J;Q*>a>`@g7m6ppI*k|W zi1(<6=uC0wF)Nk;rc9vuhk30l(U)j^xFqF4>*|p{E9D>1;+fR1yv0dRl1%=i+fjeX zT|#_Qr?SwG#C$-xI^7bomyQRf#L&J?DxvWieUA1CZWYC)OQHG0!^wrcPf7O`y7@0a zbL-K(ATm+E*2bB^mrkL)%U%>kIkrh0U}*Rse|wsM&YMc{$+9qeo#E=i<`oaa^0W#L{IG!yOidg+;<}&myDSN^oyuJ z+M=3+_Oc%Xv#NCl+W12dZ*uoCprs{x0p$n9Kus|{>Aimh3F*dGs3m_&&5wg!gQPJg=PgroV-?>8oxN!f zF#X0?@N<7w0x~Ok!8aax1X{Q(1GH?@zd&<|c|fj&@~><21$16(CG-vDj)QizY66VD zP=s*NEz~>3E(b0A&=Y9a6b1U?m_T;Z>cF670MNa0B``GnChX0dji{&c_+Kc`*QhAy z@W4LM6J06+G<}@`4BXoVJ8r)Xpu?M{0`1rLQ#>>7fwq3?0)O1rxuBDuo(Bg1xdwEu z=b{|fc|G)0Q(FL)>W4tDd^qG8@*+TfXcYLGjDA4%cQ*LuwT(fCmz@S}FXaY$V%7k& zL$84HUuh`URy_zh>Z=QO(zBI7rx*1>9((Q-&{%CU&~vRD^z@~B0J)<#g3p~i6c{XS z06(T?I%o}hHZXrv72>}Rfo2^Q0+q!B;B($p0EWjjXW1@CM`o$4l^Y zCkz7LxZnh6&$@gd>vl8n^@5(zkE)dizE(}`pV@j5$^-A<-#NY(XiqJg7u-%7_quzu zpRqpMRXCg&oSUVg&%8T;;_iM0s2N@o_Ss!`1NHmgg6|kf?ZVnb{ZnJ;3%P||5$Ntq z^;G83JmUG!NB)LVeiJV5gI;6~#U~3<{VW|QPtJrv$OFGy74(a|j#EKrv$J6*UfUA1 zVIAcsszM@Y?Xe`t!&hlsc;vmo|6jir?_3Re?8c)&PiYzlqA_(rvx}&qpIdu5P@Xvq ze9`8oh(F~rt?#DT?U09u-2tB`8Vy>sj_RFPGa9t25A{=d{tEa}pCLbd##Ydl_cV`5 z7G8nA^bX~f|MM~ArgA61=S@mP9-Mb>g3hec1@oY?WJ%DHzMrAb=u`}P>K7ddgD)V@ z9lHa__;dn#9z!G0vL+u9e{`k=v}$H^U_e&{$p7>T`uVjR0>wvo@SF9O@|+OcAA0s8 zb0K&1$pNyPQ2z}spm{VPtPDN>iFT0tE4@a!#+Tiv~GbLn0>q| z^gd%~Io58nQ z`U6#uW&wqYJ}8%WDGxNSTQ6XGbvj3Is%;{AAI%rM+teQNrM0QP8-7D>Io<;p-|Qn$ z8$1Veg-y^?zoveZ*pbFv&a)1X8_V&5iA7%mGkZ4zMlGlD5-d^^v~QUS$a^;v7_X#t zI(ZG9=dAOoT^zT6A@7`q?NP4&G0i9TTIE3dUb0}H?7s`W^q)_FafvxV^{6J0a}8gC z%Accv(ya@CoUKcN&a7l${Jo`hz_g<|4zD@ld7 zo_p1f@>SitgXU#Wd$6^=K-)QcfXuWA?8Lj)0oAH)unSK5Q?GPd_g&i?KprYj`O7(X z7W1H|L=yCwo!dk1&PxCto_rCsvO+bKqi8%1eDSV>;3wK?Uux!T2cK8+7*JmEKge1A z_5;P`4uKzcmgdF42O59ICzT;*s5|?$A8MszUw8cexG5bKvJ&l25S0PyVSO(7i1Velp7c z13KAzAGAAZ3}|~Sol{(fH1O?hdxNi2(tc0DqV+L$2qCW+?OO~F*F#@7w>b1u`qO$Z z=|KB6Yafc=I;Ilj`XSW+GQ(2PqAE*aAGeCeiCInaDyuvLa%FqUv#V?_#kFb?P%l~w zWOUjGR86=DOsV=Fb{TDG{&0Sy{gkuTWyrIa(Y(kgdKI*}BCY=c<)8A0hrtg?&FDwr zd9)t7CRT@EPcMo)^FV#jk~_ztFWp7;OlbROy%M*C+$BB&41bLR#-x(JaOgAaB#}`- zL+)8%^id7;ERvlhUo;aKeoOap_DghMonK)H_=)O9z~KG>F!UjT%GzXO;vk=EmPtEWtX?YbZp0jg?fum~Td)Ei8 z|HlQn=xq(~y0yI9r%IK z)DGdcFF>2G&j;r1YfEtjY2C84qHz;lp8PxBPl7zoO!l5{v8W&a3-zn`W>j8II>qVi zPvcWwnd)WfN$VGP6Rp>bI1|cs4yODSd^HFDIXnNRIO@uQ;qD$_cH?0v&-S`M+JpH! zAN)vZ+SjEYDGPb#_Yg2nNAc;>sh`I`pna0ar-Gg6_e3DaSpxdJ?rQkWzEAnm>!jdI z4mTjbO@Bb&(0ev8-g^RQE=zuLcG3P{yNvcH`8FHm*}HPtv@^o=)ow^B1i{IfKNo zXFpa#U-+d6=$wbGfq`+9566HIX!+k}V8~7DqkjR-hmI3eZ`}gg*TwfYK~K5$4C3Tu z(>fK^n${W5ghh~ROAH0d7See+v@Z^EBy#3}A8teQe9SF6pUU=l;4jjP{HM34cHpiY zPyE05K-MeTud6%Jc}G*L1Nb82c(h}FkB*>&A85b9>@PrhlEXC5c>1q{UTj7p^vnk@ z0yR!1^c)lSP<)3D1370q1ATQR&{J-t@ezA1|Bs&iFCkpl2(-4)*ECsa;ZvP=1q}&^|H#%4X=O9YR`<(y`d*@U4Wj=H5(W;xIEdPRDd>Gs2u6_Euj5t>6|3ch2htd$pJsq{55Ek zgvPV^y#sV~4O&Ne^Lj&%clH$co-=fw&3*bF_06nHd3Uy^xC1YzL!a9+2l|YmHxXC3 zTm_)9MP*=o7iuSmtqy3{?px4zGkvi4_T2@HV^RMM1n8W>dToJT-s>dTiDRBY&#_Al zWKE_0L`s$uv~13F=;=S71T8AR9%xud{w2(XSijiogwT^tjDb9BE$vT2x9EKDsCXEB z>yQUP=Is5jV|7e`UG#^mh%0!5#$!|svd@jV4t>Q9I+t)})PbG2&wKF0`%Z#(Oxsto zZ~$mizkrTA_XKkJ+cezAMqOzNesF(pp!+JF_ax1vC_mm+41E80S`R$8TELF;Vle#J zx^N)(-Sj~}d;cZSiv3K`DH)p(e`LWF(AJ65A@>IN0)-VS0dwxXho19ay5~rc?S#H% z{sEK|+vEb|{&%$B$#}~IKQQ$k`1(>AKwaM%=s$vIYe9#b)Q2C({Up%AOSIn*m7smR z5+G(3~Y7fr(pazLFeiOmf{N@SWZ1{xK>@`wfkb)+OKe^N?!; z4(R*N%mIemJ|(*ZHPCmM=5O=VW01#wpmkQfhWtv3)B@jit^xAyDw_j3)Rgqn=g@pF zPa%J-GS?ta-!%lN-AeNTGkY;;eI2?lR{Ki8U%Imn_{qakfyOBY#Kn0@>uhAhL(tL% z$00YJQh<(nVFya8v;f+Fm4sY*{m(heNbTZ1cN22o%^_%qoTHS71YcL^tLO1Zezqs% zu^lN7!ktYakNY?ha@WO1kjrk+{j99?anO;2wMaht5cC=CXk3d;X^`7*)j>U@e@q4) zQ|CVPbJtFQzB_sj=vb~4Xjr)l$hi3x{Ya^&c~C!;_Fvqda`;L4cP@}ym*V7?FNJ;_ zn!Szs_k+?v%d@2@ho^1c_|ZL0mBY4Fu!X#=v(9(pls`Z@E6+k81sVd;5q22*doXi zPSbOY@cCPy)7Mda-evtjOV@7$+IHn5KEvP%pbNfi13#Qy)X!vp=DFmS3z5&f(BIIv zG&u%+VM#XliZaxX953pDFK!nNz4WHE-g*1byd&vK>xl8vXUO?KsK2Qg^!(nP(FuI^ zOuB#IY^3>#_w^-kH6K%OH#1#~2q07j2|hWOOuD33Yfd*B)zo@;9mpzP*SNs27ba_=($m*Di?8Bw0q&laW4)ur!hS*OYd(3 z-#38HugP(=p2cKL1>Z9LGV~qIXn$$-4F;WJF`}H9pEOUfYu$mqEJXVa{g#%9FEW_g zN9?C@n|zJ-X_|H=A$JX-=ac%BG|U5{Zh!im@6D^BAii%Iur zB0HTwWrJvZ_!4eVy|>RmIqGIbfsA?%_=)t}hIuS9qyzY-n+lZgnzaf2GbK11{3vUw z(uMP#viec@)73i%`}oo{A85wVz9r>V3gqH$R9>{dHtcz#%kZm+nF+tFac!at{qY*^ zf!rT;3>X+){;xv5=+4bXfAHvO9`#+J^+dC&E#i{&>4N+O z&(rgjls&Xw3L2PDzHDlH=&@eX`OtKS_9cm$2<&u=9-|)24zxc>-Zus``^sBj!n$hk z!yHcg0NI#(;0p)$N4)C4z5sLnvqR5ypbU_cxD@fHzqJE{=V_gaR#88(_Im+8(WhuW z(RO`~IHd#qz~FP*PY4H{hCO?{gZjl^X`uCN2khf7)dtEI`5-qfp8|W+WmIYy*BUisr}gyA+f!i)#W5ET;24_wi%+N&ovl==&1s{2;ux z8|B93{{Y`U$OD?U{R{NfD`*`s8~+1eS#1mS0#@1|=-$)$UETN+_=?mvC^vf5al++q z;YTQ=b%3$%0{G_1E8#D2h4LGfI~?}Tg>;_v-z*23J)Gv*yq`H(ClkxkJ}S51OYnu` z(|0=w{<3xz0Wy3G(eEXp_MlxGN1_}_2G!Teq4tgac?NuOgzotyw>E?JG^X<-fab7iy;oK}0)E09dhaFDjQl455JJy;fYueku3d;rGw{zj zWZ^3KmyPHKOu0h)w?IRh*BGKs@T+*92-F>*bzQUd7yM@QVNu+J$5LEl*8^Ffg}}t{ zK%g^wH1q@=XrAZ!^1!zbY5~6U`b@-S-1=wSex&g)Rh&RMzMtcu@1EKpsCdx|cB)gf zf3xPi248=Z`kUgw2hgIkbT1i|NBef?_!RJ2wY|WonPeZX(F^{Pv#I^vCFHEa_T~S~ zz`XCAe-QJv{eT_wGGp2*tQ(Fh%Yg2%AN_&#tOVL$nWO|A*XJty8pq2quLp13DpTk; z>t-(WyvmM1d!JLNzgR=_U;Gy~$_c-&47qs$?JtyFJn$Ri{RI7VK@I3dR`)|3ag{C5 zmt>zpxq1_gf6*MOuW=fk-xWtnq5gqSBZ16fL*Q5R<{9~~SpxoJW_*GlOWJhseWeq? zS3jb2jKen;<*~|bf}YHN8+v(zNk34z7sdH_3i#?a#en=^5yb16OZ%7H|9H@|Rys@N z%IH2&wD~&xN@rApoxV5^_0`Qj4_Y}w1!O;Rqn&a~-vG^MR1#<(`x^dCjVD0vnnU>w zrhP-)yva?`F2)vLQI2`>b71m%JLJ(PbKoa#2DN9P|1QX*Hya`6yuFNg^hpoVuJ#+V zQI2Xm8+I(lNAUHvbSOu9_XO(g9nchZncuo2KJ|3kZ}_&YfW19B9{o+ekoF0pEd`6MKa3d%KfG42z!z6*h;og`X#BCw7sA;!*sg7Fl8Ah$vxomVjcIm5cDd?79Tkyfb?IoC&2EX4HVe$>}meGKfR|4JY? zTjs?S%31gBBkq)uXHcF|(g$`KJJ)dv<@s54s}!O{+z5FwTja=-yx{=YakUMQzv$-& z5I=u&7V51$T@~dDmnTCmeK`sC=?%*Q1q>eadHF&3V|3dJTCg(;`3Mc04m~A*59HS3 zZ;-E;a?L>Jv`&D&cdh~D8Fo1le^!nGcB;CQ5uaQ$33jskG_FI9XM@&=*+5^9TCjJ= ze1gBoB_H^zx2M35-4z4A@lgiaJ%3Sg$XUB-J1^R=t?Hu@*2~&_aN%R@m zWt}^Kcz83$!_GVFGibvDC;E+`jS94665SiP-nvmQ+hQH+!wpP;Jmh)?zsY@j!mn%S zNz~ggq%P1H-;(NkHxBvHb^aIpc+Y6m&-~*p;$wYpgL=8o@IW(Xr$gWL#t3_Ml^x(q z;vbXBdBl`{xr9bWBpT}|BZP%VYw9k*)e&@r{vjWpuIfJ6Zxa2L7q|h0pd38 zFGA)1Hx+T{X8%Mzy(vZ6h4~D3eT(|WuWo>Nm@WE1-&#Hc`3?_1j&US6UxI%A-X9px zJpRI(h4%Ri=90ayJlZ8H?I+?_iYmaL$o&Q7avG$=-rH0PdF;VSh|@i*D&lcp`w!)E zXPp2YD%u+H^QUw`UPSSUD95=e2Yxx%@4%0IDUBHyhyFCjkOZ#C+}>J$xH79NUv8Jt#> zD_-&mwDauq*uwmzui&BI_QYsbvVxZukq~mI`yGrYgB(oXl^bO6SC*2r8{|R2U!k

      {?&bY!7pp%D(Fe3 zc87mUF){SGvyX!2Ei3`OC~bMPQ=WP+^u>D?LC?XqLC$P35_Hb&-sp$w=Ch%n{v-|Y z7_1E;mtVRKzj5&_$YU1RLFcXsKrZ-d25s#ZgL3$ty@;RJh{g-+G|l&>YM&ryDERPi zy!R9|ca8=2qVCj=f`!zs#_btW5^xt5>OuZY74}d@Jay` zR;qx07FUH?t+2m@llP-Pa-{L-hbbAKY83L>x9dZnrym8Bu6ToTOk2d%{^Jg#oIu?S z#G&)wLU|fnIm$z=_GkxDmvykqo6N;JoqtP@y!f2Ap`X`Rh&(VZ{sQe;IR|!elMaA( z>{|wV{fEb(&CQNNp4UkXe(r!C;3q%4f_BP0ngHacZ-if&Pet)QzW{!2?cd0&&d>?8 z@xyG;0atU-*%Kn5V_tTLeTt_v$_bBW0+~A!kUy)YGwRPBdIa_I8s;ER;cBzj`0Fw9ZfW)s^$}gyp*_suwaBmdj1hE> zt2F$@C#7JY#ObgSeADB*Ku_i+#G{(E81k%jW4VR?6W%xD6r%A{eB(m&njY0E#Pl0) zS{5Q>PXp*1QdV*bNxttH;&pB4)Tof=Rh|G^v$8(Q$-B}C<%p`fG2fdz_)s5>O3x|O zH*pW3KiZCP>lf0#rF&7HwD>X1d)|?YfcmK&(Voto`;b>=R883Nr_Drpvc5Lt(PNLG z-lj_*VHec1Dc-1DexZMUtyY{uRQGhzyn0HA@&x01)Gp);6iWn!829@Q>LV@E9CBk^ zdH8W=mqR(s4rMS8W$lOtEvOxVJUcytdIp!z#JFKQIEc@3Y7@#+-KYxvs3DsXzkbYl zcIe&!F4x)04;U{C=GUQ)0 zemm@J#hxRMn7Wg}7d|ngTuWO8;*F9mg*|_W75Z@#|AL;Tej4P8&QsB@iDlM8Pxc}Y za@F_tG#|dOz+cv~)`(YGybJvBSEYeAsB57Aa*NCZ-@iNos9Mtse!NHiK{>*>n((8x zl>{BL^dRaN`6Na8dFva1Zy47ae4n;I(0}(R{AJzOz@G0I4ZoSgzapQ!WmnL?Iqm)i z=IuR&{t#JP0dm93aiCeobkM#_ACYJ2)$j0cb?k;+{;>I!-{;v_|6I&os26)j67+I@ z*Mpq1w+k?~>}Be2Emu+g`%pjjpQ`}AwptD78C2<@^?S#GX4K1re(u&gppC`IPr}N( zh%d9;pSZ7T5ts6MQ}Bb$Q{cz>M2vYucBv%nRS&4%5!pw~-`o$CpeKB_2Po^%9(wW> zsqn{YJ_G)AkIy47mgOa&7aLpzzsgA;ArG|{f}hT%eV3rlF8Fb#r$R2S`xE1k8<4|K zPNo6q)%FMS_icecyX7HJ`=S`i=Z$Jh>q}ZD_`;dH;ZIZMC*o({E)Bo>6&Co(9xDND zSic+ktli^4>js~NpM*~y#3_ot0DIffA&{rf_zZnsk6WMOMs2C`BwpuWaIb1AOgw4RBVb^x7tdIjW}9p?l2Q6a>~ zZrKL$X%8I*T6}a5=h;H%_{igv@SnM$56bmDp?!bWl}6C#*vkNIc}w6o>fj8-t96=z znnMj?7km+o@}jqdfu=PLk^h`!v|cdAj)lJP^?Ug7yUW9lA2$d7#Ude2_=&Ae{nPC|iTKpZ1wi((`6$=)qa$e9gQ`Hs-6ZgZ z3xA^?IjMB6$*6o0v@v@i7Gf`ZnacS|XtK&JxUH`t1uK7o1xMJLbZL zK>ycg;OFwcfi|5Vjd5r_VFsW5rWWE+usc$DAKJoiUd_pnr#~1C|AAgjK!?|KfnG+x z_pl2@D}VwnwS!Vd&;PP)be|SKiQe~NccRl+$ z+~6%RvzHg;=DG9~ZzH;|P4AY4I0UVB0*xnMK;Pe#<`4O%-l#`T@+;)eTXzNKdF`Gp zz)Tev?a67n4st=iIOIi?bRY9}vQY=Lu5ST7|I1wHCGP1>?HAn@>y>^{8rIMJg)~1( zPt}3{=r@C?Uu6wM|6n)b!C&Mj%`g0sEcg+gUk3lVFT0VR`Z?;!YcK-kg%|jQ|B)75<9dt^pfXPL3#1B)`GUP=)R8A z$pyRMnKH0*|F;Hcn{y2M*$E2}pCb4ReDjP~K$DN=(d=^)$kk&K5Vw3G6aIYt>_FS& z4Ja@0-zK1-dOyS^mSzC?6BsB*yKNfe79HJ}$xf_>+*nLadHK8za^3DN@N01T(GI39 zbpH~VMDqZ9%{=(ycL~5gJG2V%vLgoAtaql1bPvgVUIqOivLF}wniaF4 zXFRnD9Qd>K zUIM%He>P(uDC_nJ{V0ZC3FWH<+aYK6&VhZ(+xLhwtJ-;rccl?}`FHxGysWqLQJ$o; z3wDW{FQUKrTMk5d%wyj`^UM^dc<=?ZlY8Y*VC{ACue-RQr-4ce&f6JZ2i% z3m&wBKXGX%`jN6#Eyz7Z>HdtfkIw6C?`gylw_qalJkv&kwteY|dKwd2BEIZRvp_o@ z^+tK(+H_uL8mJ#L9dw`L-%jUtbz>Sgf`vJVGbS<*@kI8VK{?jzC*eo%tt~LymW=p# zy+xoskG?{W|9l{5_p`q6Bd*jJe8|3;dvsxA- z@1o7Au#dH$Kt5!K5cK36I$zoaQ{g8!u_*lKKbr{@Egc9wMgrAa{%!;O*c&IKJX<3b z^t`PWQk)%bpAp_iNCZFZ4>H7~xw3@L#S5h1XV0VOYR2Z_%_(@1-!VhyI7xj&5 zB0;>`BJJQOdi_YWkD5^w=)XnJ0bLI+K_35=)&tjslJJ+ZLjitP)vC~sl%@A|GS(hJ zJP9B8K>PdYIKT5h^#*1yoCb8W>G`_v`QKRIC6^Q6&*BgOnSCPgn=_{mkoPhX@mr4c z25rird0+Kp66zzVbqM^#t;K+B^DXeTN6M1j-kHd2e%+Fw`3)~a?y=B)m*10ya`{t- z!alD2RWNQX$yK^f$v`oTK0D*$aAMYhkuT6G4i0D-UH}} zxsLeN-upn_ilu0W(C)U-=cbKDeEMtDZW>-X$-9(;Uw_wHRBn@J&`;)-1*$63xKrO} zz+N(e=D&h_KIn@!+yXx{D;II7{{0VrO_hIwPQG^nexzr%L(lv8KIDR0v>%LV(H8TM z(>W6P;>50oo}hCc`UR(z9QzgS&R6i4qo#9;L$(lpV!G?$-*O{_eM`o)SxmiVX_aFZtm|4S_ALG%7^iy1C#xzE{FNjn(J~`~~aK z^NHl8OOV&-JuOhKp~@QEr~1k)!F`w2FqYP*Gg&C#{r(vAWc|0mPv)I7Ks$Rh@}h1w z8gju>dTzprhI2UfE{!1HpI`YF9B^aE=9Sv2t5x;-dP#-&AsdfDs=*&dD#Wb zFR^n+V15a3Y5$jeG70vf%iG~E-hLM4F(yq%`?#Y#h{s-OALzio4M2NI+Gp5C7eU<8 zJ+#mD=5K*NMe}X2%ex&5ebMxypcR?z5RZbT!hSfR9NkAmciez-dA)qN*W|>|b1UPw zVbEu+qUSJqb)9I3_?fi-611p?{-R^thP{9}0P?KLbe@ZuO!q%2=gJ_T#-j9GKX2{> z#3eD&ekX1!oktBnN5GH1<_D~g0`Cgw#Wthog4xUIUf5p4fN|q~+ywfuohJhGUt7Uv zX7Ev-r2BB7;tJ){(eW|-Y3^r&Z;zt+K+@<5;@0%w!cR=yFYu$@ME4=;lWQP%zNks_ z(B8R-FKz<8&l@|5_5+O7a>z|54nwXq(K$BZSO)mAiGQ9mvhHA9<{W)b`vBHc%%lEq zJArIN73lLSIT43o*uS8)txsdTCzzLjcDC&RKh75p(A;;l&+(e>AzpQv;z0j%ns=Sq zm!Y5hcm(|DmePAG$y-mO+}x!!A6k0S@2@PsD$@Ls-WSOJv+mhgMG=>B(<|7?PdF}o&Ew(B(F${IlLE$d3r``pTwv@eJq*9-Q#od@AR-Fp=J%DRW0e#Dq z&OrM-+GoXgq@K5J(!px$v6cELupzKbVx2j6OF1HN>_D$u%^mB_bY`DXAf&yFL%>Qo-agXr5g z=y@yGLY%7dw13ZUOz%bcw+w@RLIt|-%ls6Lc`5X91M)Abdc;Al-*O2xxu3q$hP5wk`C-$LT zuw##*eW7>NHSGWW5_(ULTeKMB%`i4Ye`Gj|P<#ibAl|?$x_4FxPNF<-4KL<{==;=8 z2^r^L$CS`Gau{^5W1pe^>`juwU!>DvYPa!Hl&8B9i~c1@N`igned@=&79C+9{+Wxs z1=}c~?`&TW`JGQB18Dvh%lwebf9!-`52Gpk`CHD0 zKkv^YkQ?(pKrWne3VDkiyBBhc>IZ1f{i;CCL3;l*c6&SM3vy^5uFj+VHE*#E^>lA} z3jOTII&?0LDKdcJHfx^Z#?=t_q&*?r%-#t`+bz$F-e~O+LCHU!msVvoPweOC8rm@iZ(prNHJ@1VtsIQ$x?U{G!EBpu}dm-m?R=_@SOcCTg^tdkK zwN<0{!1M<;Krh2g>y@T>1H`Y5qV`D_t0Jrz@>*{LClN4>b6P>bdSuzMq@H=g#{A{e<}| zfZ4;T{Tcfdh>!P}=3jM(tB?l{4hCOyWI0eC=mdUj-S4QcWF-fAiOZ$u1iGT}kaK#` zxmwbV&PTcPGLmNE%W3f??edw{hG-n!_GU*mj7vsY`r)jIae&^KLrN%en4=iBIc+d!MH(|(Fqi}q1@Pk*9(lcNv(=eO2Dk8h#;Zmu(>KtUmFWR{0gK*~j~`|N9rsTJ z?P$I@8v3qzH-Oe7a@aXt^??ju0QpV0N&8I;vjxgy)L#xcZ&McNe|Gh(Ep%=G09vJnF-oy6u zS|bj{sk*SsNbiZf*|x!#!bpmUbj zK)r*{vr(_)MbxiEiwD4t*>M5nRw<1S_rp~1eP?9As3B^|6}CV7q=(huhxxEH;?2@f z+_Jx@KPDVJkACX2FM^#eS_nVps`MNzw0k>f-oDR>FPt?9DEd7J^|8d!?+?Q(IcWEU z7W8}~Hsvj~&j6Y~Z3}6B(&hhz9lP-c__2C|@E`1xf%sf~>71roOY^I-1>N`9J6wXE zOh&&mjOm?;{^%J%?==fc9l*M%^>l%M*2V)s@xlbuEAXA}qdfhOA+CU)_F*C|{eDh% z!a)2LJz-~8H>dbEW}sZ*eir3ndn=%~3*Cb|4c}lF6}1rYdj?jAJh-+7kaH&vDB3n0 zaqueEhhE-_-*FHzhjXUXg~ZBd|~E)@M|4J`-!{*wBBmJWm5f%G=(3n=?*Yvj|Y6usOPX_ z6sPgvyhXo{5-cAMzs6Av%twqqw2z4CNAJf7YE^?g(2af4n56CMwjoM!^`YFogm8aj= zM0QZzMv)kN_1j%2mwDy|$_w#S=)dwQm(i~RdK%Yp#a@G-|A5{DFc|3lR^@yF_G|X% zbpA~FOz-hP>yR}3DC+$T|ldvH6xs!0=~wK#*1iVN$>>+qksV({T|g-ntpGp zSJCgV!Z$dOOT0Ax1bt}#khAv#`k5!U2iBE9)?~yjd0Z9k=e@BDbW|;RuO)BJH^ifz zIvM^LOX>IdIjd`c)=WsF`pq7KI2nJw4-+F@48ErOVCb0?rGeqZr9=;<{^31J-Xm1_buiGc>L46f%M98n=3jMAm=-ff=@RIHUlE;2V{WJ_d_@dr)UQsQe z=O3ycbPm*iABj8$e|3aE)|HOX=Y6C5HgV$`bk43u&()$>?QjpKd2j(JGtxbBxYHp# zSID_n1NZB}H&-!VYi`o>O#L7lZ}u(GD38&FXj#FBwF{r0ur7Z@eYJaNUoP%65AjQS z(EcN5CEXt~+Wr~eeT>M1c*G3KNAzgKZSF?rO4EOzkbkj>ey6SEjD%j|w8}t#1?p$k zNrcR!dX%q!P3JwOn!ba?JTn_{1iDcBX2;O?jKUio@Ej0HahXb95HesE2 zG@{=f%Ik>X&$DVJ{Vpym6>&up&Qd(w(LhC(8+v?Y2cT?BEUhDBXP~_dJ2c?ylm48q zmrX@n3H>%955C*g{_atT0RPc?#vG6Nb{tbEP9*y6GyTd^9#k9{3RHuEsxEP%$ zc&asMM|)*j$9X?#9%F23jl8gz41<66Y+4U3b|ds-+ie6tqxk{kReLlR<%??2{yuKV z4vZ^xcN!O&$JZk-ak3tWC%^R$prtyUKU`br9$NF5_CKndE`G~xq2|elI_mJoNtAoyKK))}IKSIxcocw{{ z$F%)(-#NGj%Her-qaS7jPeN{(ME4DrY-+!R{+p2p_PK`8Pwv_ddKw{(``|-*kJqxG z3(9xQ>jiyx>xC4@i#n)hy3PW*;NEdy#?+ONyO+{BU>!x@_0M!sJ2~6YcO){CXr9(& z(>N^$D9 zU1`6gy;vT!=M$}uyd#yMuSuhOoAi&*;7|GAC6p`5YK?kmpR$1|^XNM!p3_%g=gnw^ zys6Js#Q5X4q4&qqpVRve?#)8T6%C`{kJnR<{-is53FTz}T!(m=!|D8Qnlk|UoU3$i znIBE#&GKkC_^LTnKks|`K80u3PQ(@YLi>4sxv^BAY$nPx?4x~QfSUw5p;KS@@iwP< zQF@Z@Gj-qTUQU}%_b_$_?Gq()=zhmLq6F-fcReUi^I#$9xN%*mKL1ibPS{TCw`}<_ z=w*KF29*5Q7kctm^q!b>krmHtqd&CAb8JK0Us%7ayM*9pRvUtK%yp9PL-J0aLcWZh zyI}s!U$`7}*v10#ZVW;GQzlTn>c=mU*UZ**58xU?{WN(9oewq3=zA6Bx%7NDs;(O4 z#h#(}xWb}7$dgn+`+xD%CCIDl-8_`%{g2KESs&;o}jEcy%%lSy#{fa zwRBJD-n|-rQ!Z0~5ByE@2kY!8@Fh#=dp7)}PAJdRf$jyuIlqu^-7p{Y()ZB#QkUG1 z{N{b5^PewIi9BZ&%S8Qoa@u$4&sv~oxJb_l;`>oQ;Z~$LC1bcKk3D2RFh7Czv5_=- zUXZwl&VgA`bPvcoNBe(Or@!D=TdO_dGmL9M?Np2215>vYg3tYjh1_>wI%x4IdR`pbM(+{JZ&LkLgJ~Y~NB^1M zFFc06qtl=F$iF{9ev;qNa~5ldGgvP&n)V0Z|M>^j_1JQh_ZZF=*t?c&26}hrBCho1 zv>(Y@y9jZ)>(hB&o>2#S@*KM7Q;ggMI;Tu|i|{gItZ_oixJJ@C05b^x=#(0a~$PTz&moX7)Tm^2gU z9C`)yl*R1@omJ`={EK7hy?564)8OZpr|*fmO6nlj?M$aQOkE+5o_iN`%*N`V^QXNb zyDjvcOudQ5WBAi1=y}FngPbdzL-}}3`(?hc6veZI?qjr9=zQo_Q(XB^CXs#ZEmU6F zr@-{@w670VqI(+eFp{TiegJ_Ueh%YN`-A5FoEfyA%Z|E- z@vQ4k>$O8e?~g_rpMW1vS-S5N#zzo`(n$T$JB0G@o)!l^M+Ft>mm7m}qbqBXkK9fj zfQHF4sQF5ku|{(f4@sOO=IxWvm()8aM!Q|0>!?MyiA{|CzrvhFm^v7Ub&X^qov$<9VP1 z6ReP%Z!`rm=h1iVl6%rULwsT% z?~7-TQHSe}`Q{*ZSaVE77@?*TRK(4duv>sbdw;)=o4} ztEU~h3xC%5rq=Tvd>RKm3E|!ePJ}aXG?e8M}=$?zy zgyy~Q{OPdgcB1OJ1mBuJ67kxe(Rb^mgI%|MNdO!etWFU|RdkIK`y$GbiK?9^gzUyHtOUx-v1sWGv3N$~X zriUY`G&83pGp~3`4{LEwW^(G3$y2;pyji^&LH^BX&WJ8e?O{o*0O{c?Ee4sv8K0Y4 Pl9-ZMk_dEWX_6iQK421z diff --git a/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb b/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb index a33d07cd2..339a80f67 100644 --- a/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb +++ b/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb @@ -841,7 +841,7 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -855,7 +855,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.5.2" } }, "nbformat": 4, From 777c9cca075bfb4dfbc0dfa64f76a9557e8bc980 Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Mon, 6 Feb 2017 16:21:14 -0800 Subject: [PATCH 03/31] Adding small data caching for test automation --- Examples/Timeseries/Stock/stock_SPY.pkl | Bin 0 -> 240560 bytes ...e_Timeseries_Basic_with_Pandas_Numpy.ipynb | 130 +++++++++++------- 2 files changed, 81 insertions(+), 49 deletions(-) create mode 100644 Examples/Timeseries/Stock/stock_SPY.pkl diff --git a/Examples/Timeseries/Stock/stock_SPY.pkl b/Examples/Timeseries/Stock/stock_SPY.pkl new file mode 100644 index 0000000000000000000000000000000000000000..5808595bd1cc5f6b48f956ec65932d3764688236 GIT binary patch literal 240560 zcmZ75do)#1_cw6&h(spXo#yFpK)}DLrHRm{I?LW>Tmh^ZjW(FKdyn9{z-CXu5?hXiY zSM&&S@pDg0;xKRtb}{_V_;i|FRNASus5IFm7U$sby>!xzPX2G8v!8pg3ntQbrX{gD z|7VmW@c*Xt_78Rs@^|swmzKn(=Nqtl&t?~Y7f<(~wEt$7-ASqW{(FVDzngoQ`#wci zmwmL1`Og0Cq0T0lqi8SQB-Z~O|7SV=SgS=6%YSd`AL6$+{C~>u3-Jy1b_oh{38$Mn z2f6PK@ZT346tX**(j>9|ConB(9+mx{kke^q3~_1tjIL?%Y1V17W{hTRasM}r)s3ol z$AwIm>nPHU@qeP2lNck@EG#Tc|IzWEH#42!G}mJ&hsAQQyMI~|i?O$-S6ULYc|a)T z)AtQPQEavWz9IiE=oN|7}F@KKCGRYQ%pUl9sgSKb@XUzh0tSZFY{~1S$mk4-c-Ss`y9+L@ zHkDdI&i7~MktXf`Wjn#bROJ%*Q=(}W8kRel%8)TL*J5SKXUB9qp}0u5gd7=g&1Wxk z+$HO{k}RIMTLgc{Sp9+~{KH1_Wag!aGceA6U5oiM@wu%f|FzpBLpHI9C zuUi`zDw2N(-%LaEkibn!yMXzprIeBi)a**g$Lb zgpKOt#b(hIIBtKl59)l`q_B=W5!n*~53J7g&>&mxD^x(?t@oMNlU^UTS;NYZ&lg~U zTw#(XIa#gM3-!#O$!U=%``p7|zyI$h*tWc?Yy&BJ%bZc0+_UMuC9LiaIS)C!=8wW@ zk>*!AZ!ob$i!i6g(K0&9N3N<6L#N0FvW-+h_ z8j~X@v+LkGNo8&mGX7ShBkbPfPz)P>EzU3{7ahMg1YJaRRn5rKlCBu|Puu4i{Q6y{ z)|}Lgz00|oOcbzkfUhqP6++o{5kH~8SM@;)(k<$VvL#v0?Q#e*U6^WzR?3M>w~)#E z-`H7^Z{`JFhVo}wr(nd&EPZRz^R1oIR`Pbh*C@!!c=!plIVB)sL*`2sdBfC~p4+yO z@4WuxL&e{z-(l486}q#_j5E2jqLObHdCkz=70$lwFNLPwA^+gn-y9Y$v73A_DI5%MTzTp2M$WDCy$(0GF#LttJJQYE$uD2!vf!%=ALBeo znKh9w;Qj_4Nl&uT=29T!AJ(Xcj9EX6y~r){Nxxz4U2zj{a%^)&2Hfz@WEieIJ@2^> z87`GAzK3kCSRDWt8#UHKk5~3wzU0=V#WOH(=`}+?a^m{NbhvS2*C0%J=Do(BY!$rg z8$d28+)@L*HHJ9$l2t9?+u@~y>IQ-2kA+W8LH&!n-osOCrj&xn_YKDm!uC)jpMB&~ zjyF}%H*4>_V6sM@)fUdLJzD^O?zKw|Aq|%uh!y0CF3p9`Je$Vg^^32yqR4aGGGq^upNHi`p+;DJBTV4f#ve_-%o=fp4=t`( z93uJpHFKbAV8<7DlgWMkVUi*3R{|V0stk@HwO*Swz~essyhq5M+2CDJE}7#76x4l` z6-&B5-!TGj?H*T;BbldSk3#FC!d*~j{mc5J@K`JTc=6xFOxLVV8 zk}O)kMf4Q;tM!8qG~OA02gc^LPM#(^Rd(s6k;@x@q{2YkWAC8Te52NMvgBN^@EP)t z!d@?Ec8{eJW?7zP%^~K2KU55-EchcuN^_ z$!~cEmQY*ubqiu9C}~_Uwgz-~Qc$cMqj4C?Yu*$vMKA#$lsk(#Y<>8F=Q?!XY>m zUZ8S~ROQr&ff9AoekJ7IEywS|y7yw7*GcYux9s6g7L!6~TE&)jgFI_;ZUBDjQBp1? z)qNjE!=rzn85A=%J%ShfAI(BfE`-@93yGXjfocy9$qj-y4-)0#Fk2!s4 zg|EJaEvXMJ+YROgl zQf@HvMO7K}PS}6`9$6*KISS_$=W5oGwpyx*@KRgzEBJnq2;Y5jb-@i67`@h@6t*|L znu9eFXFfk5=X1$xG?4Z=b@8xJ(WV>ztotPOko>UkGEXC^!m8;EW6nG+fzM>z{y_0N zGp0@C0>9g8k4VQk(>Pe1@~#v977t$DOq!Ij2SPQECdbEQ+)syM_#)xkFDSVr*0_ZX zDi+Fs&d%L2t>pD_pJ&jVFU|i6d9FaV7A9;TE^H%Tjzs)~(gzkAwv!=T1!?eM&bmQ( z(`vf?DakOHxU_?`3>Nc+=UH!6!_hOw9M8xeQ?@B6_a;mKIT_}sbP7J2Yv_l9soRx0 zNoE5bVfR(-Eo3P{zcLGsDAj#}>+Ww=A133i zKgGddw#$JZ$%c&e^>C5gQ|?csOZD!Zu+(g(80P$|$QU8NrkV~z&E@Y@Ka+{&`;NfZ z2JFva(@bOS7g8Y6f$J;jCi2YzmR~z^6*6fH&A@LHU4x^f_7R^oV`MV_zeDiNrPEKL zyt?eNZ=}$dA&zmAXzYIa0l58~;D@sQG7C*wuINCX@=`qa?KN zG89_CUANrVGm>-NCtkwMUXs#GWcIJhV0f$~WEV3j({cVU-0z}d&O$bRf0PBwF2@~Z zB^lQ(>4IAxUzcPfa~<@9;MkX!^{_WL{n|WorSi&I82;d%2|L-mb!#SEJoIrGZe6)v zVm_Hy(;fgP%y-{|8{huq;v`p{s+fV1lBPynWb3WB>2QhRz7Np*W!&T? zQ3pTxqhzcG>gybtzmPoDvDh9)$95U;knI9Kr{U5obMK+=y3?z9$(qM9(eNjC#GOT? z;RSAXJ~CZ7-xhv&pneHH+dq}cPl~fAzJmd0mnjO6_g0oi!UcDYTH)^i)=ELrgfWYC zF`0Qv(FT5$Y{-LZ6?PL)(p#WUhz$CDRbH69e_T5P@+|FahR)YL7cU{rT~{!Rkmn}v zSi#S+78js~;NTccxDvWSlnmLiR&FWz@ayAH$am1G3A!$v&VgE? z{$Js7c4kd+vgd5ZG5Bcnwh#$Y@ZCrQbl-b$(Q@(@BcBUoK7Hi|95-}7CrRqO`ZWSi zc%N7&MfUw(9uF0gD!ZWY#*q6fNUvucJkn&P>v<>0_G3*6+!ps}7V2rleUu?jwg{`q zlKnfb$3mr1y-s-W;7bWPa?hId1uMzw202H_vF%>+!s80TqUzP$bYRmdyj)jrJIx>-oRY-$;efq2i zlwF}%0Yh&;U|vr)8QEFG@>zauO_C}3Y7(?srris_ZS)M&BH#Rwa@#=4AH7osBNkgQ zYLkx(2P~n``q1-`bxbu;hqQ@){0iptILT}zzhC?w0(Dj5A40{C2Bo@WRM_h|_=LlM zvmPmOjwu`ZC}ezwcKtTp`sC%n5h(+5is|4!Xppw(0X)6p3eP6;&}+9p@Tt!)Q$upu zpX9U9FM0VVcz0Q)nh|;RdGK;$a%MM2AT*lFse@;ZuHiNzhZa9_gwI=JjZI03ox&M# z?^wwYtc%uDH6yusU&g@MhiU%iq^Yf3Ej;_NmUA=tDa_gds?Yye2=`fP3|f#6`rDK( zN!}pWLvR=K&vv-E@>ca0GTYdM!;1X!y3Y=--xG8h9{a;K1^1Ue?6)Qxb?ue5lKh>c zQE<0g%oA8PB`9J;=3aflwv8NH@4XFfc=9(NCha`+9rlh%>)Mjdc^?$)$i=GR2cSpe zf)-d|nk~Fw4|D7#Z*3`1(b5ZPyPOJpCZ&}-}iTmA;l3nqnA*lZ!2{zKgma@&jTsj$F(^evp6KD=r_ zsh1!a36->7c!rV(+q`bWHmAQVVWjBz$*pkDVd*@0r77%9I5};%Kt6)pG;%Q8ene(R;rU4*S~j zN0Xi6{0xW4?(oLKa?{Jt;f1-~_Y%o(DKlKhNo|Sb9Wc2}q6ogxzdZvV z|J?T>i4;1|rWj$rbpnKzAA{s&yNr zk|Li^uRclo9FUEMcerZXAp3bM(NmUpL((g@q zWIB1*&$tzG{(B>QhIB{`^nzC<*ec!%*1XP{*s*_0`Id=F2e7;1m57xDJ zHlHQAcX=(&B6m*wafjDpPTqpEeA3M4$WM<3$Dq1>*oJKK=x44Z*mdAy50qMKJu6$}Pb%_k$^*#tTPlViu6_->> zE|V{dNj~Ejs)pj1ud$br0qVMT@LqG*C0HDJ`eZrz zdx2~}G|9cIc#F(jZ50JS-XCg(FGBJwD@e(C>)39SL77i%;C(rle8^KXH39$nm-khY z<_yLPRphyoZzAC5<$;f(#w}K%JEXK%19LSQ^2^Q|K1}?20rH6+{svu31hi{NOP5Z$ zyX5)ro?&qG$e$*tC2&%pmOOrWg&TbICG`9~QZR~Z6uNU?)T|?K<*rSH7q?D^)RW^M z;vYht{i1yL$rJN#y1>57O{K8KoH_deDf~9$GxQ2j&}bkl8SckJwo}`>;p8U12MPUWSBKLGusy!mBUCiSk$7Fve+#VaUyqVmzPKEn1 znfCaRBOG*aEQV{oj{ky(qvDKPNPlI0)mF0h!OIxPW#jt{?igYae?k`RPxprzE4Mnd zk;63~3*p+$kw0PVTOPx9vNPaP8myPxedsB2hVU$P2P`-8FCc@A1YeXtAS$uWUf4Wk{hCZ>EZ6QK z-<&c^hVoKxdSOJx-j%)NV?)+(c>DJQw>Knfl3h8pS^AZ+kIcV*Xbb$VBajQ-vYMc5ndF0h1$&ci7?<;{& zVpg*r?oI08{zTR-b>9hRT`Mz2NYfu?!|-fezv^f5lVHdZ*wwNo;0r0`_^1}{8{NV6 zm3(k;+yV0P#9f7R4SMOLPcAfpnO7LIYMPwTSR4sAwidU*6vvIiKgqYFFFaxE#Zy~n$R#Q=dC>b|%{Z*u zwngU`Iq&0#WcVX1FZ?&Dub|!xPt~>x&XVsfcDcjV{Xfd#(zLSNKcw#pqcK=>yI1Qk zIp28iacKXVr3V@&KWLmI)0f%t|06%#_~HsxbPwHxG0*wwM@IYa(dS>_y~UpE8Oa4# zXA_{~`qY;&GkSoRnf%BTx(ll1ao&J&Di{937Y|jYgUd)S~zmPm(t2Yh%K6V@MkP6{@PQwH983tg>xwO^1B-{I8pGD-hpaXYc0W%Lf zA32#;U<><=UG?}$rJm_jcyQ10cd+e`n4$p5p%>&ONN(?BtAtnF&ao~gr>B%`;HLP8 zd2o$p%n2d#@Dss4*s-%%UYHd7rV|1E54~uHJ5*2IT0#~zN;8X)ziex)pz$Zm3os-6 z!x-$mrzW?QT)w3>6b8O`Zi4keKlqoCCDLUKV&tDnLrZ98(whUbdIG+}kv%M$;$*kj z18E6z#ZB7~7_9fD0XB3-FIrA6a_4t}|Ad~KOOh5v9_L_==IjXk`XptY6shSX6%S<> z4Fs(qL-Y6FhfS)SJkq2+C%I|+>jtfExOGy8^H;SkG#C2L95GYh@p5t)KYxVP6O zUyZEuot}W)bBP<($(<=;De#*3tv-16Md0IgJhyU=KbV*08@&em24v4YI*#DtJ;5?8j_LDDQ98pxa22T zRq(#kh@7Xkf4MPf`)Gb3{4t`!Z9=}!nfL`)D;+g9C8O(?WWaW-8$)pEpuVaZIX{C@ z+?=$RJ>w4x@2sqaKTYd6HcXlu?M){OA`GT*hA4*rH1@cwr3vDMY|4muj zljlfWaAL8f_r zj)Q|U2VcN7iF}ftq?qjwOtY*m`;^^qgm<6HeaF97=|)DNtz}m5$)@sLc<0yN<5490an>GaCz>UDki1-?7z(Gf8yexj_d_?MN#$4phC}2b zfg%g|^s;siT(++B3v`HDAss_r<*p8fGr1NG&`5cZ_Xw#vbm1>NvVX04Ectw1OBR$k z>ofxQuAEelBX_xYEfY%p9vO!F zjvrimjC>%<7YlE6bOa=lb1v@p;O5C+T*t}m*b_V87Xis4D6=EvLlU|FD~C!l*%)>H zFyvpT(g7J8#%oTHTWsRyr;xcr!uD`%|Me?y1H1k-TzQvaAe9W?oWA-b+5A>68ZO>@ zuMK)IZWTR6Zmr;9KTYNtUb2M~FEuW~jo$5(Fy*(aUK$yBU0gApY}KiVgiD^8v_fy! zx58)0s>vWPcDy2d=H-(o)jPwg1f$t2%@jX43^FKmoBODy_hVnyWF#T@$hHUb~X6_`Y@-D9jil5%qltTtcP4S;6?^PVz z4Hp!{xMvTfFOorVhZg0L_XP!9AWz}d8_-!p zdk$W2d2XIho;#Sju7Lc!a78@SxOk@vCakfLxUIE$4|eOxJvd&`R|2tx0&jopig~K5$Qf_^9$Ze8Zjy+ znU@_r1Fdf?8iG2zJ36kBCw{nzm5_aLzx<%W;uCk_fx_jS*GVtO{%Ke_8ocQS$rjC# z2DkB?AAkiH*C>~gC%27@-X!~nWA{L%FyU%=kmEXg8QGSlX9ue-81&0Yj{dZhaC@L! zKfJ(V)k0?fTUfcgWb*hs@Pvr=z_!Ts}5>0R~3Le1lFZ8+&WWl7}zk?vj7Dd51x> zkAItBR@f7=;aid75=(>55%4_2j?XKSH2|@v(<6 z=k-#)`{Y-jG8ZUY%98zn4AnjR88$s%rO`kNxIKu6R#*8SJR~oyzsl1{erw&}47GPY zFM;yBsb`zWh&-uJ@UhArwMV2- zPnDmN%i`S*K|i5i?eOl^hp>=JLdbCq5dG=2Xszl%H@l=dBdVwThGCe_nxQ{Yi)>$h-U&%&0M zbQ*0c5al576L$04TPKL+g`+DIkp`ew$WaASh z!8ato(?d77``h+%SaxWXv5#b26te}6HR@=+B{$f;NQ6nByk5iJ@V_$e$d#O@_QS<> zmahGz$CeMJu;P8#KghCgfyH}rD@$HB+*swDFhHi5{OE>ndlFU*lB;}|21DHH>Y5M*rc&aG+#W49^lV9>9xw@?|5Jo#~sE6&}o^gL7Yw}Zm z!})8aOh!oirm75BXt#M7{`~Y_^)vY)J6HS*siLSF0AuQ!YvHpkJGs7+;sX;7aKV`y zhNGmTj6pgqu6i{Hf1CKN86!=484p9XlseyUWSqE74SaF)6UR6ysUNi+2EE|D0^5vr7c|S<$0(M&%vNopxK5SB+gf}C;y`3T% zxMEjLla@I`k?_1?NedjU(-rBbnN9D0s(8=NHNBw^05! zX+4)84lkyxYlh?EZGy9;PMM24RPYe9`a`xP7>_~WC4E|dNw4C-<8Yg^Qs^96Fy7Dz zCl7Du|3~Wajk>~<1&43KgWGj-7ycy;9NAtq1J`{vH{v4W54=x@!AiM@7myA0Djjfy#A>3`fwqU1no zeh*Y$zD{l_d8qtJD12(*(gg3$EGt_^awe8Dh>;E=#+LBvwKq9%W<%gtI5eU7N}N!e8a4;E4@ z$fF^HL9mN0>^_vrPg_sLy!g1h>hOl8O${*#$-?qB>zn7#aFtSot~+kdYd`O1^I z4$Az>Sg?}ZpQzvn8%6FH!Lp|Z&&ZREE__39%l9iP3S{mPtr$4Q|EvS{HlMh=id^X+ z$*D+&f2p*G&5`DXa54A$X~^>6{D2a}!apf>}fz6$xH`(vvrsqYoJWG#8>7mqiLE@`(>Bipri=fkBPKPRBCOVUPl zvgW&Z3jC?Q@9{d)@bNq$4Km#!+XH_1vbq93%N@J0o)lL;@(l(&Sgfr{-rIUD2`(7g z*b9GW&NXR~CM!=1Y#=jhWZd9K^SfnG?d=vuZBp_S_b3dK%-7T*@842Sggk~%UP0%V zyJR+!=Es-u>5}I}%U$5-5~EV6q4Q=ACUorGtVcc+Xo%M*`L5V?L)Ud*r3}cMj}PsG z=cBZpH<6>abPHMib-6F(I9OQ?w=Xp3up-lJ z&g)x~gF|ah!8M_e`r%=AN2RS~$Jy~HSiAYUw++elPOl2?*!z-g8(GBYyAA$2#ZUl; z4ezDcl51aCzlE{h9~JD#&ffonf>I*{=#K`VEV-8<%m!xf|F9>L&)s|6iNmo;OIJIT_9m@V+1&Ei~WF$|7+Ls<)%Mi~08hHn?yw0DauWV)S~?Lt}^segeNUbSktlHa^{CBQdJ zmj&-8LH?-rh81^PFXAP+OkW=!ZN1#D1=W}@4;)3`d z@(_~~moNGB^mhm7cUxoz-Zd&U^dqm%`mOONXOfr>L!)IGPvMyx^2-9qp^f#v@cECZ z?R!ayql>Pue8BNYH-zLpw<8tqQW$>=H}{vc>?gAW^@KyoFHA2z;rg^ax8boB46I?~ z{@1nRu+hg_C!FN}Gn@=}Cm(nN=^-N@LFPVh6FfkU?RIsC8>XhqVbam#Op#>oVsR_j z+}fuVMK0bMbR2q&vGu@;=yS3MNfzGKp>U&Z%*|*r<)a|OA@Xflu?1W;e`5|@a_?`# zVba_3)Js^^FD)HI&I_suhPKRG8lZmVf*VK3Q^t9J;rrKW=CS1JJ*`+SD?lTztgE?f*8{Pd|7&C^+{4%Pd*xkbk?;& z*Z8PAr^uT^i`Y+-3`Li1p{1tgC3ybH(@A*zQ1ZJpvWIuMVmc|8e>)O}shYLIM~&}< z&ycsmb67J-X3jM>&^o&*502marjtqb1(nF3B^6loBH)4a?q=8`y=QS2DO~l>9kTh> zTAd@e{k6IP3r-A=!AY?L8?s5gn+ubml6zZd4ta3er3tphPxGHAMTL*=hI@*{%HVdV zzMNe0%D2F;aQYCN<^^)oqI1V!TE5aNc-U^V;UXy(A?T7v`g0cFfVJ5=bFgU3-;sRM zc%O890hz&4(*=jqEu}7zohA!-E|bf9FFL_MU$qig|F>lpE=+MYy+Z!cTdGz_n!UIg z3$xq}JK@N5kHl4ST|&TK7~FQhsEBNEvi$`Yjej;OCS49kpMe%@H^f{cbDExYz^`^5 zVkM;J$ZtQG7?E-phAM6@yiPXNy`P2xR{J;IAl(M$r@``lxdZTm%+B^w@>|t}=uJ}F z^ynU#+`FV2zVW@mUPcO)G3u9-p897_!rL!a_Cr>WI>lS$cj2fd6{K!4uQyE9x?Bn0 zwXJ8nO)5G+wSgjh$r~$4p8|;#cxUbHKFI#aRH2Hr+x{*B8gS)!+#yfrC|AG%#U|!z zQn}v28XmIxb^-damL%1XchBhdLQdIkxx1vp9iK3GX6|lTEjg58#dwcYl^C{!N6I43 z!{_=7M`7L1C$H*A?qe=8_2kYa(;@I$apFTbt0l&FpZqlbW)7;y1a5vn9_3@phFt|& zpP`hRl12l``}wQXLvq)F!~5V3F2M(IE~kj6k=(4L;|$ji{xNMLj|HDR3tzEHe}Xa@ z)oPE({j!#EaQ7Roz-F?{?_wQf{I{0-F}WqR#S!L8I2XgDF42q@ve)D05L`L4Nwt*> zKh_fio0kMUgB9%xwNFTvUH3WL$gLCG9AI9|=R!Ea7yT2yeWW$mPOh?lru>wQ{Oo=R zwjTK14wo!QS=vF`TEDk@MqU~WxeR{<&!2+&Y`OZ+$<@`4N}Xi1*+djm-}w(A`1-|3*gVL^zYEnbER%KnLcwb1;$*9Jn)iywt=?=ia)(1^ok7F zwcZonn`p0q#g~#Uz9xUGNsL32<_hf|GSl8P8GiiywimuQpZ%zplw7SW_=XI+-{=PK zTRW7)zZus?`$%&+U9Gp|x$3S&_}R?oHPq;vlX*unkbhB{~E5{3j| zMY$&q!i=rvK9l6|hyE(Kc7MpcA7t#j`L?h#^LzoUH+M{(A{V|Le+!)g;#N(QB@9a< z;h&S&Tj0nh-`hXQbuSrMXUKT3^sTV_ms}oPas1vmT%;5E<`?PG!6W~hEOogQ4*z}E zXoeQC?SiwU=DH-NKV;%#aVz-Rp&}Q`el;0`p;2$O{*rFW*|KwF`GeJ=kjbX85n2t| z^Zz3+>>qQ5$t$l}F!0hoT(dC;%5U!a0wdmfuV*A52h1hF+md&KnMl@(Ee+7daEOa66Gj$=omi0iU0$S(M%o{hAlezhl`WEdNy?joLRY|2pZkJ zGXu|TwlLx%k1%qnEFhnsx^NguNUiOFdn+C<<0k72o&4an-y-%4$=TzjSD@+AP1Eq~ z_16YG8Ov3Di?t1*>`ZXus zL78E*RsnKE$?}T zFHAOjGk7c^7tf~Mf*wh7%pzpP(tB1g@7aM3qU3}tPZHetqo4<-#A(PaCEp6Rhr-sD zG`wBYB}JwiZIN0*et7jE2&(vm--j`?3wWf-fE%r| z@ZQExv5l@aAn*<<%sE@#AP{`FdwN)JhhqRwj=xD`j6p_S`VAgL1mBFG2UC^8G60 zt;O|is7mOK%y$)-m3@pRZgg*>->ctGXX1Z;VjyiuL33^P+$ zN3zZDkAU0G1wV!b3LHWjwKYl6%913=v1d=1 z7P#IlWBI4Q?u}ErV;^4xHB}4^J%|g&ju=G<8TZA&o@nf3@uuEE*Hz z(1`#@e3ytVec!RMOBVmxn)$hk^6$yJ7vgQ7Hqm#Il%Y6ZxlK z#~GRhy(ocM%-(3|K^U=Ww%w9^d@p6`7E)-7lrQvrUsVln2W{rCBJ-s=r{MR>TzzX& z*F^OcOzmmzhwt|6RN6{D5fc%yAw_Q9@P}qtcG55ZX$8Ei>c(PEayHFaLkGL$i_nPEEZKoPll`t2 z4y_7axr0=#V-JT%w&Xm5ds%jrJCb$j-xzn2+%mCS;La+cTzJi-WE7tL>+{-){B+`< zj5Db&p0*zzy(!xWyYy=Lc9FaZ3oTs8UBU&~@J7+PFK|w?O~aM^@-1=2ZgTx$v0!*? z(X9vYRlYH=8!5B4&l&QMWSO~>yCamcU>WDbPmnQZySfLtMR7C^ZWt&E^dyt^>D0qs zmKWS!{#-FquXFd!s9nO3Te=J(HEP#C9^qFHXxq5r_ zb{IXvcLlab6i&gVTpJ7m$@%ram4ZlntCWMVa6qyR{@hn3vX3-m-RuKZ?##ChCSy!< z3*fU}l}RY>*Q^^t2Fy98LdUWtk^9MF{TnUt_X~aDP}0QXl_$*n>3bW-6|c+-BVTCM zjYG-ytvcc4{qe{*@Or`e<_Pld+NXjCNb^U#-Ql_IGv)B}ND@;d`7+0J3`#4#(~2TP z>h~Ro53SgHAm3oN>_L(t!+}4Vw3Pkk3eVp;aubf43NaiawccE_fO4rm>kpG*68{q5 zqq5U4p`d}RbPQ>IEMnIY^5T+(H{f`2{$HrGVV!v_c_1e7XdKzXC)NdpFO^FkCB4*) zgJ9*OH}$aKK-RT*a*|7F7V4dEFi9X!Ds9h%{qpvg7bBbIT$;W=0bXrho3ro&xU4mKG zzf;r5k--!1;JOe=#dI>Bttt|BXPCFb2DABD0%ZFBaSU1=iQJG) zYOAl8%OR7S+e6_S``t}Y{>xAP^JGM1(r)Ov+SD?aynX*|4rJZB?<=(VFi-OWnJVWH za*=#jJ=Opf&5ta~Bcu8jyTB*@*KWW&%YDw}lkB(VMxfoM)9VVz%iS{ZaLV&;7aS0Y zxPOUMF5%|6OditCcY;r!s+YiJE>C75r$FMzE2P8aWom`wRrT^%IMZy@35^`yNL(dV zxw94&kw#Y)Jt=70R) zQHE;!>txqSi$W+RIXDgX-3r}wgM6@wD-GWG^*FkeoJ(|ShnqzwMQ@VXCGmUU7j4mM zC==`dqm0}yz^q?RHeSv+3HjG4^h3t4Bdxc{El~%TRFJvceBN*@_ev$)psdAqn_M~c zYXXMvKe4frY@R2X0vDgH?1LUF%@wN1t#3Jm?vQx_=RM#AgGvS5czHJKvmXbmG@ z3TxMptzOrY;F8~Zz0mvkOS!vbm8fqR{NZx1td`WDv}U|Vo{Ifw3EvAuo`>y^H4^K{ zr90YRLEo>gGWBFl)Xxw&e__%?`165D>3!1B=ItCz9}3$1fc&t3UN%%=&;AU>@7i}a zkO7;=q#ly@-p1^M3-&I4038{x@idYq72bbfrs14v6Z!Gwsk2bcTjmpt`(2~dufrV(d7kCfL1$NW?#JZy$yP^r?#eOa7V`7DWf@STrECZ$>@ZSoC0~B+je!p@ zob`V~@~u&VfafS96ftAt)0}8*B*q&?><+4O7?8_JOt(5&9*~# zDGQEgg?I`o(I zYm$TG#6`G0Yxy|5B44T9Lr&i{ONN7cIl_C%HB9Fp!NaH52)-dZq#n6JvD-V!A(xME zZXda0wqz6*CFyCsC4Vh_nFx(?v`tON5=lBhx?r2im;&TFqmWBU)Yd!&TNP* zwXjzoCjY$~je{0}F)v^a(_+bw1f$+7F_s&nG?CZb9Fx2PNZzzyllQBXv>4qQq zOjzS=kb*FqD+?yBm<`-F~vPk|n$=!H49PYH$Y=)-uf0fUYXU`=w z{UJXoEVqK{_ipFHqn2i4a33>A&tLLET8``-$t%4k6z-~QYJ@k8ckursv;PRu!bbptHBI?T&VGHM>!1veaO%VHsu zcwI+eZ{D;zE4fnj_))m{lW`Cm=@H&n4=d&eEu2TPWV1QJt*g#mgB#y(&txZ4f<}ko zTjrRx9OSBW!B`k6UHlw+_jui#Pgd>u%f(5~`+IT+v^^nR1TTrz%)nEfVIR22_ihVR z7Lco_FCK=`@oF8gU8r>#H(B!}Vg5pLzSB~BX#efz69=?Z zDc#2C0YjY5+=36ktz;GzP z4xfRwGJ->p>rRo10%<(=$8Qyxk#h1b92S@6R3z7yRolbm9$}l5$iSamX|O)w;s9K@ zL```$=~Ubj4b7Yr_9&BC&~pg}Z_hlbLN<&j^ut95?klR2 zE?l-zur%j$E6lMftXxZe9nfM^BQ=Ac*}z0rk9_$0%YY&%ED0`LXXy z-D;^+RVt}9)!tXGtQCF_kNz!ulDow7#$c5-d#W`7htzI6OnC9^lS{&aL467}1=DA( zp1v9Azx1@9a80$~)xuxLzWfk2_a5D}Ip~zGX_Xe>@Oiff3$K*#d_h>`Kr+XcVApoD zItYW3d-=2i*H3@FLio4Dpl`xfyRtQI4bEw?DqcA1UqoCR@cP8xXNAQJP0Hs2_SjrB zR(Pc0u3f@S-+L}=3nm(!_KVOZ&%y@n!1-&cP8Pncee%BW)`t1mTBy?stWj3NOoef@L2s&*=sB>+T#O zJeB;yR$)}hpY6Osk2~Az_<&10v>Ye={O|rPVS`ECOZkG63#INY9C-Cus2_MX!f&%M z-;ei+{K44K!(4>B^W>f{TygH&=m79rQ0xt1P<6ruGm%&RXh-@WSzD8-hSb zpML*@_%W$1)0cHgg?YGz6US*s+`NS@*36h1F6t&lC!FX*s7w7#)4yfzW4}lz8bYscx--?sqMk+6>mQh zh8^rwsROvhHQ69xk|#6I3E$7~+}#nZTk3VHPT=_6abChZEwe2bmbts~i!j&ZhzFg) z$ilzNcLBF=nK(e0ym8SpLicMs^K=C#Y|32b@1quR9nsbVS)6 z;I3?W`w3Gm-*8gsRlQNJp5XEmHzI`b{inP30w1L>vq)HJLBf0Cpo;EwdxPf>z8ELm z+hcj}K499E&c}tmGtX!53$7{^7AE|$`^RSC(~jHc_XDdYYWY?;bn<=Y{@|s;-Ny(E zZB2Dkm?7%ekpW=9Pv5Kq!L?)FTZO;#4%;Yfu`ZWG99Z3Y?UiuErk!B;ocayzm2yZveF?1AI`uggN!ah-! zf}_C`KQDI_<{TTfPngV7eAO7x?ZWQw!o^mXCS$>mpB_&Y)*IIQv9MeXr}N{${wGi6 z9}k}P4QemU^XBtzVf27esV9J*m707NE<1Fq;Y9F@Tc;_)hEJ0|6i(?mv%)0s+@4p_ zlfnG0<8}($-^-eE3b?1!N)O@6A`$iD!S7ptO%yh1GVz{p+Vvvkrh-qRcJ>oq%-1t= z8dz|Bn(e|)mIcYCgZnR3aTBHwIk8CiEBlD?Gr;C6^4t;5tg)f=Oz`>1hJA!iem9N_ zi)5U>Wfs_VVd*5Z!Go0&+6prrc3U6}a)0qw*eccXn{&W9vuc%`3)b8ldQ>>7^^dIc zz#fUWJIn`Erxx$cb-ChefHAz)#0XYBH(P9h1w_|;~3v1_pe@HlX{m{&d zz+0AF!NTL8ueMwa<`^C`TNs|h;iYiviumeFz@#-xju3u$^R&xS&@!;^0pWy<88a>e z?=D;tAS_$C##&+SXJ2P52cvq8c_!SE%CXuCFvaXGLxmn?nq3k$xSxFgN^o-L+38k+ z4-!}K6IO^nyh=E*sP_+H?2YVCR)f2vS65yGrv6=bu+V$l<@3T7`J)P~1*cvtmS!FJ zIApiCu=1BSD};lGKmIDbkfV2_^!&4tv(|v+#1SqzyKMg;UR*B+R(aqyH8#u+6Je!gcot=H3ea>6|r6*fPn=?ZO({ z!xwJ@M>hTSL3r)P1j}}?SWJ-#!tTF!+!0zg^f<8t+*mJ7&YhscrTO8)HlbCv3g>+} zo@5s|X65jA!kabo)Y%P|JiUIbu$O+ub12dZdo)f+g>n9mC~WYc1QMa5-#*` zOSBJs|Ll1i;hovbYV8Nhl&v*d*mvK#>%x<5LW?JWxgLD)E?lzx-rob@r>5On9R%y& zOgTqbe*Do9hrj^^e6I@6YGO>&k!4kAjVA z#m^MRpDyuSI4JJvrDNdvOnnO-2Ma9D&{??mNcHq5z*W7!{t*61J*MeNu<4uv(}mN^ zZh0bny02-KQ{bg8$sJFFg_6$hAnZJ~{9a)~vBPQ3fEjjp`3Qf)!}dzHi`s7xWx-eYCJ))oDHMfm4o_ zIwE}Nxj)N&u;L3>t1zz5^9{oG<(AEP0Pfje^OZ17+jBJ@f<6yJMhaJU{eD&WWJmK% zkHIRym z_HVZ3@4;IWR(%ncDp=3Zv9sD%ttWks9kwJfv&mRL<<+KezZgQ z!MRt8&*0tnRX+*K4nA4$3)nA9;6&l6C7 z{*F)l8*DtWa9iQjf;;952Vdzv<_~xwJoQbXDxRqiR=m;3k;;p(%)HvR*D z2Ij^l6#L!}>skwE3~n%2_$mgyrbk8#-0skZ{{UdDI zu4c=m;Os|dX9-_+3wa@|k^H+;GO*aLt%Z|=-CH#8B0PNiZh|mNhprh?fYyI00)%Zg zA8D2noY&B2hVadmw@-!65ksn`0>^yMF;v)V&6SR+!DF?f_X)F~`*_hol_Fjs}qsWX6)2l9Ihx3}B8T$ucE zldr;0(~~{S2-Yt-t3oDl(ynp?h4)(=IwLH9$1`tcFz=*nDYJkvg;se8cWth-RG6yK zrB6bys}c3Hf{jKOEtd_9&$Fwa@X?yqr-YU2Jj#_F9CWT{q_D$~s%|;Jy;)B#5~f`i z@ImP7^r>!6aMke<Sh~mAU&1~qLYfx`Pt5o> zL%6Nw)}bZ9WOtig61sJ~Td*X!*r97D;m1iS_6zSdIwGZ0X@%06(|cX3;x?)_~ql|J;H`Vi>E0ER;>Qyt1#|F??&apb3WG5+(5K>;ycNNf2S>#Szq{t&C2aC!Q_4!r`7g+oduYfu@yxO?U# zVZm1A?h8BJJy@;^xWA)kf8mbcf#Ts8r`Y| z_E>PEq%(M=VuxPBtcMaG6Nb1=&sH0BN$H-b4mf}2i#Ecyr3TCs*4~r(jc{zM<+bX9 zy%U8Mw}8hd|L88vQDppKVffZUS?YmX8*dL5F8bN6RekWom{fCw6V_F#(Ez+#_t*&G zsZT?@HUx7I%XLt=V|o3+Mqr8>*VYO@zmA{T7;G@0*qr3Lsn(cQtq%2T>r5DqSq!m%aT z@%rI3t-yUz-af)~zuv46`i&j@O}IK=j>fIQ85b^BYy&>CM#TxMeg1P+IBeMDd@kVS z?8Re+2TnfrYzt=e>%B}E_$J*K;kp5f8ngrdWN?}+tl>WDv@1CBX}&ye;I*EcqJ+g# zHQ6D|vN!1xchK5;=11Yidu8i+fDWAxP7t<9?0Hw{ye;cVPjF0=l{vk@o7Zbc2uns^ z+$!w#D?F(;7`DF1d*K$#&N@C|l8ddz3EPD{yd_-txko8qaQuoY+5NyfHBN*I%bfDx zEbQy|F_Axb^38A;;r4|Moddw+m2Zp|x*u+TL%75}afv|i)6;1^g!gB;S%bjxWnOF$ z4%plOpYTlU%&mjLy!V&Q5vGa{9ccxLa|` zc}wH=V9_MarV6{o-+3fFRJ2Q_4q)c($p;DlMIVms2)6$1wOcrM+?!OLz}NW)dkJf8 z$i7_I^GoD|&fwAEf68|Ov*nyTKp48R*coA4|HnJJf(zdEO3@8`H!z)tuui5$ON8SV zRr@6D;IeX{pCyYqF>7;Pm?8dozf{WWEP1Xzicz=eguwIw4i-Z%C z9DFal7w=KGH+Z^f*3x~zJU3VL7DmU^J}%t(`$G1 zYYqadJWn)AIHdQqYr;-t-3|=~_wRe2X$Y9!rGJpn|3Rkp!Zlr%{SnSA7W!f+_EGcf42L$zWN>H_^g=8wc$ao~oZcu8dzaauSns*%;~lZ&n{k=Y&w{)YBe`u>KC8t&H%mpj2tgqktW|A z;kP*(OV0!wmuuWdSovX+@LAyCt~0g>FC;CSWH#tH?Lb>$$KoCfgnqZOjGY6nj$Lt6 z`16l*$+=*&2^V?_XE=r*6%M;xc+))aa@Y=s`C#F1E!zmYjC?Rxcpz7g*TQvYDqmj! z{s}l_Hz6314O&o_P^??P!C)!eU<6TP_B>zlfbJJlrSIOJSC@)2c54 z9THrNECt)NecnYl?_s|K!Z%$rWn2b2CtDUEEV(nJ`EsyV^Y1f+$8L>%Cd}TxV6_!s z*x#)~h3z(V?X(hH*dXP8;rq*T(yao=e><{D*mw1iX{*7L&N-h5bDdpNc?}pDSZ}a! z`}-^Bg-e!9*|Qe>RJBB!bzuEtd%T5{yxOi1-hc7rtMJU+#ShnmdCOO?xB-kwI6Y9f zt8MUEVX8-8@@@pbPTQPv6WFLkQ%_<1&f80cm2M|%uo)~c@ld%fV26TU{e^osy*?%M zy^<|zE7)|@CAV$h^xTn)g-=)i{vfPcdy-{4IP`4M3Bt~UANAP*CS>V#LYQG`TKt~? zun(@bFkHCySk2e>Xzi#9x!wA8QJ!N!PCox z3OAHEuu1rDr+cD(;Oq8T-Uw^`TV88FIC`S$)jffcW&a6AphMa=0SJomlAUSa;xN79@D z)6^OAP3UtjN8_{L%Ahsz!tWm}kAzKzT&Z{ttl~5!-+6Gz@#3+%o<$uy)aR>N4IW*F3WnBx&_X6O50ob_V|Kh!rDGnv)=|wrT>)Z4%mDC2p8e; z3VG)Xa~$08Mi}ne$oVelnj%Swd*GrO(|ZU%lq_>ZXxW{RjXP+PJ^&Wf~oMXAL#;4U^gd>Mq8h!w;WxFz2 zc=*KR0UyCEzQxZ7t*>|I`2=q4?-DI^$na!`@Xf(ROFo0nZcd+sW1gI<_XWJ!BWR+q zWXdmhh1vIPI{6h0Yt|w+)`Rbb;~RU{{Q=&&_G+B4 zOjO)$Vc(xwOaBBT*Ims13*25eB21Y4!mrIjck9H&zriJ+inJ9@TK>@a4|uIysvOW&vs4Hg8x!Jn<{KQtM6ms+|n59jA z+(+23^R45;hf|V<=LXL;IoLK2nE!^y0%7~;S8s)TehsXh7fdrQ>saA;%f+7gz$O>N zj|!)S{K}dieDZlhh_K4=BAbK-Yd)M?0PJ+C$7|t!zcjTR!SrwEj}rP1ta4r0yz<9G z1;Lqzhi5JXK6lR(EOdIde!Z}3nZz#(g9rCct6l`m)TZEgYDCBa0Y-8uD#D0Sax5AcwxUbOCAcNl334H0C&WH&07&nQEW_%&|`anUBabJx1_8D zJ{Xt0L1nN)f!ULU12>evFFafCaJeer?k|IKR|Qj#$Q~v1&bfNKaK*~H$*Y0iYF>5| zK7KpN;sjQXD>gwmIMePs!V8Pql&KCnR(ae{2Z0F=61%1Dk4t>tZ|-)dBzfe%VIY za{Rz~!jYFQT(1jW3k@%B0gHY8*ye3Pk4jRxS&BOi)11WS4j?<(x|JoiE2vEJ)5HUhJ!X&5L>vOiIa#$Y>_X)}cj zAC!77eBWh%wI*QQq;A86NdE5J6ztn<*?!^4n>Eun19Qcm^Akq?30W<4-&k;Zb8t!h zZBK-sE;X;x0<0f)Z?JIE*RB_Y16Ebs+Y&re>u8!*VBRx6KEjxQcPoUu-VOOCT)w#8 zqt@WpDpxDE0UI5SjuXav{yQst^n6M_7x4U?wyD~J1RmD3BX?p!xQIO5Eut-@}DCN1;^4`nX)UYL2wt~x$oaMd>B zgd2`Nx+R?3XW=nl@O7GM+5Ny;b5Di}N0$rSEWEM*QzCybTe8N^0buB~o1=xBi+8*s zOuREmi9qmO?13ynV4c72R^hk_FEtHZv_=Or)FydR-Na41TKd%at z<(^P91awxB0PrT!xQ7=K55)r+KD}(O{a} zOC4iCpY}C73RnI;yI1&qLP*+J@JWM$--T7KY;D{g91`Aqs_^2syN`qgM|G{#0Zd=J zV*ZYx|Jft4!Zm?DyM@2rzfIK%Y(991mvH#8E0a5eSG=Mh2#dV@TfPg}weOSx!l3eP zqq~CZ6Q1l4{%zYQMK`e3qx2raIo%d75soSmJh3}?edm|E!s0DPm+b-exShYB@JRd3 zCxx2|cHY(#Otd*!vR%?_n_Oo!BT6omF@%fuDz*jxVvGN^}-e3&(9hPej63`LfAOZPp4tv)HUOW3m?}md_{QS!~KNe zpyQD48AgB|v!)IZ?pr!|FW)~M2{!9Dtm-ImM!MWXh1DuFC^#A{{MaGg z7_dwCslLJk$xE#gW}LC_yD+e%Ym>2H%R3n>j{|3SSUO1f@?VYf!Wxs#<{uA^EELjS z*!`-b_XO~8#Mb4)EI*ok6h-)aA=Xp+(;7HsCDbs&Hv$_{-*^_ zMXjUiH=UCh>j(agv|5V1A2I*m`(TTf2aw&!(PUGrxnGm@Gn45_7qS%Vf!b~W%N1Cz zVzqR3__J@|M7Fyi*wov_atHEfkm;`%@2}wXIpkCFBJcktA&-On+hT854VpY!@h);rAd7SdM!&T>EUIEm*R(uWhXM!qkJ9E}Hv3t4eH!UQ!k${+_S{#N=lw@7ZdOyz#!f7Q z|IfV0&Fh$l4)SlP)go{h&3dh^7AZOmw^{@aw)xb>YLTLY%|FUmEu+rO4H{V2YLUzT z8(&VVMT+>__J-xGhAqkbqz4H_FWHlALrXOq7U z%Qk!5rF@^s-{ftwIqTcxgdR1HEa7#VexYxb+t%MI%3E@wt>_Myo}tIY6&^|26e%)AuS~AI$5BZ(7e5x8?n$M%v;XldXC>nTO?!^K@5Af8$XVn;TYWM$d6&##EoENYgwxQ+>)7LUD;Ktx_5Kakdl6(g zHF#9r)Yn+Xb*;ZT$TIpwo}lm^c0!WW9k4n!{{Bjv>Nt2g@uO_=O&x%Bx)qHC^Xg8(B>#y}%)4e~{Rk#}K$(YsH8>HjUu zH3KSCXjy$WdQk0~(5vWSq`jT}!Hepp-X3VNQRj_IpwZKL+5!HrdPo222O-pV zRo;jHs{IR*HG|A}`p|#i2kKAd=`U4SP7!46wiNA(9egSGSi4`S{_a73(NAvr;UU(0 z4LMpao!@CK<#!4+a*SqsX*lkh^ouCyQ^r3dz*06%vA-o+23V#g%Q7(Q_yA+4d#ERN zxxo50a9{j3oOXx{Fyr5Br`r8*fYI~e0NT&i9_^Z$?F@$>%D?;mX53Y2$If_O=4Dzw zUl{GHUs8@{?5`{3Nbon~>_a~}}9*1Lz-TA(z;DI_2?T|C!LP_<0J- zv4(!R+24%+Ddx>Q|9xLl+S=j$uKva^qFAnMzpnjPz&OP|waHd!PxQSH&xxKV+2^I| zc^l`Mx1Z^^2j@#Hub1RJ9puaT>0>eD^fu$q=3|~q?qlT2<;{LPO}}rwO#KSprrtDf zQ+Dw-^JgFGYrNuh2ewzt$M|1nUsM0QkC}gye2hMq`xw9I>SN?`_BHJ^Lw)hL5{w63 zA-BxO!{lempTOrY`51lm_cij=;W%%z-G07i9*_1l@?YgRcT&z}KF0oe(XZHZ1nW)n zHS&JobtlH7jAVkZdCt$z_|-|qz3F~NuSa-&7q4IAa|`^8UIw#_xN3`+I&atGzQmnq z+HWQq#rFCjK8imgzH0n-r#~Uisy}>X{hf@ni|G%LQ`eDfjIVXkujqLN+ZjfA?&Ep! zvjeQZmF=x$dzUDGX7-!P-^g=}^#d+A?yeT`g>d>-wp|Bs@-HUMRued$NpeNCL~$nsOR_s7@R;|u$JOF1CF+UW|% zag_G<z<;c`(K!_8)}j zHSSPf<4LU7x*v#R`^EeiKe>)y=J;FiesbEWI@>?M`Si>dkDyPnqZjp9gZ|o*cFt*& z&)2LIi>bd>nAfttbzy(M7+(%xUW?p+IlmiI@5R{9b6y|L_;HBwpd{@e&&l)S5og4& zA|S8)3!=QSj3=wu-U`@P=A*<7c`iNu!-f7b!0s1jp0nS@?Dq!Zm+Zriu$;;k4;eqL zxGwhS>}~w$9OA6_e@e!^_AHO|Hu}lp&2^6T-!U%V_cnH$h&V2C=Er@Jd%2gHZ+K4E z)6<@2ybHY8AMT4kpF&ycJ7GN#y)5@Ma#i%=IzV>ddg0(@`g`wT{Mp^p*!j7KdH$G( znOFHdO}}eAO#Kb+T#ww1T#Mbzct^S#|IFlW=37a3BjXm-nH~ zZl>QPS{v<2T>VJD`N#QKjs5JRf1aZrYS6#aa-5&p&u_M4^`w7# zns!k(^OEyrKjq#2A3Il|d_}2`4)6<^*OByNANY^RxrzRqiheoLo%4YH+ll^^gZ>8p zSO2*~zqegK>Bf1_>(fz|xLeQ`U-(=r%8?WCN#bHH+!s6S;rvO&@@qHFQ^+Opz=hX; z!~ZqzvY+iNN1(pEH!X9c|KPriHz()c7|x%xcKLPRaRTEPIWM?#-@v$8nfgpbd#$Hl z9#LO2VONPG^JrfW>I-tJULR6#n3p=vJhaDD&ZjJlS2=k72=$wq@#!w))VOK)PxX7- zb3N&oh->Pv&)`oojt6Z2664w&#p`@avC~ps$NQGSz zkA6h23(3xGcZ2=D>cz$De{z`jEz0+T^&Ppds0lelZ(p#!OTX74kNAH}?nAt|52?)e z!V_%w0P8_6ecxWg@t)y6;~&Sp3jIm^%E9rZhWFq@p%j=&pezDt8?rW}bpYzMs4)vSao9htwQJrXqH`L30?w^uyys)RuUN*a^ z{ts{*N4?GX_ptqgXjkJk-@6yG-f-L(fA2&8z;!)08BgA2e>ZqP6Zf^-XrHBQ_ZZvp zVZV7f9_;tDJ=q7!d0Pft*Y_6M`K7%djbG>O=LPEL)w$nBzZy@=a$j4S@Ao}Xmi9_> zKOMk*ZC+6KQQX%i@-cq2gY9p%?^{*AzZ_ph?uWZ@pX|+ZfKKR7&kM;w>LHx%uHf~K z+-EoPG2?EH`x2Mq*xpREFZ!;@`fcp;>HNUChS3wx3(Bya4nACuSs&*c>Q~z!pTvXf zZ2tx8o#cDPF}Am!_kU2I8>zR|)EnMMbiHrR_ncQg+;8!{qA=;o_n}IB?+D=eMKIr& z+VeeVILaFL_`Y(M@2Bs0p7EORH>vsFhW9TMANXEcmG9?;?eEj7#|nJ^3$>qbn7G6D zxRGq{INM8Lc?Qck2T^U+{Rz)4I@;eijb3=(;6twB`|BjWf8u;h*Ezfo ztKWU*b)1uEyJ>k2n2qPrcUk`|`$s$K-*fpMzMTD^h91PfZ?XKF<2cXf-%_5N)Dzk_ z@rL);@qITJ$Bp-YT?aBzew;gL`)Md=8J-K}rhXUky>uea5yHq}v^UNx)c>B-KeE`* zeN+z(sprl1@##8=^B%LGVSkWcuP=qYWWHd0Ccd#A&Xu$uyua)E4!dc6oF^Ima(wxz zk6F~y0$#_tg2u^S)Jr+mga4Vh$Z=-0kKgvYgW47TtLup$$L-H^!ce}4cj9|H&H=Tb z>h$+Ow!47$@w~Q&_jTj9w(}UyhnJjRg(x@VRKLhad)1>pEAxIG`iC#afpbCCAI7cw z6rBI59lFsEaPFh?%yzDVb6g!~TVC%3N<3*w{YS7roR?|bf?l=$Ldt`49BqFnpP$Hj z%~96%mCt|TxeBP`xB1}%UlVtJQjh2DaYEaDO#N-J>r1bH=6Q%G?n^&7KQZU)^g}rx zllPwx>Jxsf&&9LeSo-~L+N&4qO-6e%ew^RvIC0LS`#+rj>O4VQw9(8n#{c77Cn|7$ z736rkQclRH^59%a{R8JY>c3O%^GN;pv^`#`zH$Cz<_Yz3j?ZPIec>lM{^GPl5!$C9 z_3p~~@_(puSL3{K<~%4x`&A$vF;8UQf^$TTeWp?puZY9CZ*4~ZsYp4}vR@1R`4#nub3E184we(y+M&HR(Vozo`ZeaE_A`>aPQO7v zswbS^syz`ubX?Jt;{dsl`oiy%x=z$#+-_w1-H+$XEqMMpfajeHcs@NHW${PQ%x~N8 zlKfo==hf;zef^Dp;dd4@UwN*&iS5OqEc=Afws_9|FY))9Gw4tDBllPy$Mf2e>}MC- zeb4^V@b{xK{N1TsfQc)2*dOW{d!sCN%E{lIocJ7mk5fC82rz!zh`)b%^Y<@T{yrAM zcJuLfw)H%R$M3v4@A3PR?hB?;-W5ETpJ^|f_{j6)A(a0X@Asmfy09JC#q6h`XW8$$ zvA>qoPayT*kK>$Z|6NY~0KdpAnfKmEst`o{0_>c(D9p~o=#tr-)q5WKEoZG~G1?p+P-?%RRVR<{_-UY_N!(>wW z1*rNiNx7nF7tBLlUt8J7qw}*CpMyWCowL~N&-E=g{cjlUd4T0BY!CBO*Q48Kz>S_JF^q1zGj}1`XjPon2 zecq~{2eG{v`kx!-yV&)+eV(emZqQG1(C;9h_JeV0JLm24X+N;D`sZK9O?S#WkmH=h zd9sgkZQ}3d$R|-dtOe!0VJY?Sh;r@VxNh2h=jLr@r^H9h?0y4vhmJZ1aTk>lNqse)`D_&JV;HZEpnU z*JjR_J@l&}K8N+q=2xoEIrOi$XiwthefD>n{mo{5>%1Cof6mMo=GDv!H2!v)`9ELKkDk}E|8>m6>1l6A}M{+>EkmQr33$i$#D|fF?+8|>esgj()v@`9%lq`qTC0CFM)cc9G9#-U}#i z61I>0CF3`2Zw8)|`PhSc+r@mO*}RUtH66!XUVp`UXkYX23I(zv}ednL#_Uvz>-Pmd}S$K4^=4 zzGfNM#T|5Kdu~CNd)W^ByV`>HE09ftENPv;; zI9}vsYTlwZ^V2%o$FKShWk1N%R67mgedML8J;!mJpz00R)sE1UwwsIBtK03PesUFl zBlBJSUB)|!esPM7vHOv>>%j5+<#WsFch^Dr2R~6g$=^@8;i{*>FkGP`q$i_XC z6XUbR0kwl4<;HrXaq9usi#Lpy$on&KpU)v)YP)$Erv@;7VcwekALYROx6OOqA6((M z5I<~XTbxmOe$Xz7>37NO@xZ*#vi;|v{6pMPe=kKpszf_B=JSp0^GE&o|CH5lkvFO1 z2X#KQ;XK4VQG0`04}PkC(uw{T!g*AW{bIhUUt%7qzqRFa-8laT@cJnFZEyB7g!5@6 zpPxei>dyJwllS5GD&Kl?JLk(zwzrY}&Ea#)+0GrtGvrI_cy5u8m{)p}_uo>_$%0M% z&lqg-OEUzUc~&r(>qD@4|3-eijx$rRiT@>n8Bc=Ed~gpo`fz2rYB1vx+ienT^of3S zKY-^oPUa6b`Ovn!atrGrA71UyFxbSSMrevVTQpw`>M{$|?y(>Qa6*ALk8)!EPTU=s)M-Gk1DS**8`*C&&kn4f-__3+)1 z@e9iT#4ewFP>I37{d6m>^^pL}9?3&$b+9_Z)dMs=; zD$f_{IV;DT+G^~dn|k=h`+4p9P&)=%jon?Tx3;v) z2-;-~?S``MBc`*x^;V;wMOOML?J~}4>^+C=?6+DFo$<{u^?#fFu@ z=ZYcpmk`r`o)F_#A1Lo8tBE&v`1}>CMZ|SDPyb64V#ZU1?c%#d-N$62oR!FjRuktS zm$575I?C}4CGkC%&Ku}U_k+-fu3O1M%=NVF2Q=?V97igS8~WDg(u5d4XvgsdhM0Ez zLySF}P;cRs-;ehjg>YVm7`t8PY z2NL7b?{Eg#+tGCia;d$VSdG6#(Jv=)e5kMUeiZdFi~W`jG4rHU2>1UX#{bgMzu?#6 zMh+=y$9y4XT<||LKKi38>(^kp0sTCPc8g{GuJnUJwBua%+kti*$$nbV{_qDKZ#l|Y zi0#kjxG-PT-cPBo&$jr?_G{ap*Z5GE{gmUw{u;B|LJ@{oYT0vkp05mI)B{hkNr9S;^}8^ z*xz%GBPs3hfO6UV9?xmqLi=jB26lhfb;O7L$M8A$hx#A-QU6*%x!_OwdH20 z=-)574(;T+a**qkmFrMIWz_p7wtsdv|pARPC$GV<}QLa$>2ln~;KG}!$upd+XSL5||yxy7p=CSRgX#aoo(@XT1C$taz zP30~`{axiefc;gEv&g}$kMkAXXZ7TB?d<1d`g`1WzGp8CH2TFkhW@RW7yS5pUsJwE zx5=aLOXj1&nFIW+>ZkJ{>gdmWIrb}zl%^`ILB4LxENscoe1+re-~$e z-vfBQ!Sk8S=wE(UiKJdz@*Mm*&%N>crp}i&JZHf0 z^YOih#>2bJ*S^8;4u-IOeAl4RjJ2y%)_?Q z4^p5X$s6yBHPq0Bo!O1(qh#_ySz z?!K=u!Snu`aj>}$oX|W&dV=oU-NM3M_cWFp!V8A{br_J%EG?#{2+dh5X1Qa`)V9r$az$l z{&?G7Hv1js_v1Sx)t80yAK%5OAH1gj;=3(<59r8z`*NILp0@eKc23#9|1j~2al+sJ zy@1Y(+q^!P`TRG@XvUYBj9-H}U*hcFSLyuj&hJXr@OvA4M`QNI_UE<#{=DCsdHPSO z2aLNgr)Yjhf$ws3{@^#gp)CKPf8!_oerPq?mv#9Y`V&9i%kL4M(LODahc5m1;`$NI z{B=KmXRwud{41I7{?(puul`Zd+qCb*{BURHUzcZodLicXKjONC@4of9VCJcBvwvTp zaw8vK^^y$VAxM1b#ytM(?B^Qu(kc+Kw@`Y|8=1La3vy;*=N1rHnU9=v=V9#Gv zf5Latx}U&()x%(W-m_V+n9q3({pfsQ9^@Ui^T{rU)*nkbH&D;Ed{zhMb0hCj<-_;L zIv(Ud8b9T}&X%{BgZEu{9eKApZtVZezMJ{b_`X{0Jb-zX{g^j3pY0+aT;)byua18b z^C0`M{%MY994L7>?$jf`3(&ZO@!0%BxO8ixczDn%nbW)K8rG zKF}5QT73z5F^1aK6?{~;=)VNvLp7*2WPt3bP z9+1YL9?Xv^$$S^&N9y(Dc(0LoSDn1h_mBUz%W_7(pOmocOXD;0@zifJQy)z!_c7{u zEbJof@1TFZKFPvW{h-Ke_MNI9y2c8ggo;8fc!qa-`1Wtr~ZZfIjz5id39loCk=SL ziakG1^?8x;5P9sXuWOX^2jxbbQ-9oO&-c@DBfnVnyukK%zIZ>a?YxEOSR)y?kf*77 zK>m#S$3Esq$~l;xI^RS{k z?=EXUPt!a*&ezQOCeNcA^1KoGGkTs}j^~su`5eyS)NVfPw}buM zQtJ=r`Da(2x8eL=^Ai^EJQ>t_>+IC?>Qg+o#`(V5wHL>SyfBR~9Vr*iN%b5R=hRxy zi}H=-^Q(C-KAYn~{*2Zi&H6!Y={fpH&|@X>U;HUml)UF*0^D0e}~EphiG z=DVE#q-1+L0*zhLv;W5Qzfk-9(0QNEfd6SYI@Lo#uLVmvK5H;;{U~dZy#4&2{l4pTl=y`dnJZ^L4iP&;8^h zo`Y9qUg2DxvrlH8H}=aK$FaVuTpK9oW3E>*lxH5-*#?k9-gEFhlE!K5dsVOPn9q*y zGIX3+ugrTH<;OU6ok~G2=YD4)*F$^{W7ZL_M{~H&<2}T-KUKdf&gZf2tN!s`pneBA z_5OCQ%f%>HV(Pz-{ksaYZgG8^!8}V}uE$4g`R`nps`K}S>|CFobDcw+v-z{GOZW~z zyE~`PMq)FjE|9w2TT4_&xP>;aaGrcQS5g*;8K-TBPx7ugT;0CfGv@9`>UO8fd^)=~ami{F`bT`R_V z)%kmFN&YU3zrU>W3cqVBUr`@e$5gNAN8=spEAe~2%GaFrhw%4sP~-U+$}ybv2T_iR z{Jj{z3+wa9^HV>K=kLy`T93F;mGqWgh;_I;PGt1(<(8nHh7O#K~xspE*J zpG{!BrL2ejl8zVapZZ%_&V#h*M}BYp%HM^tZ_|Ad)=^u1l@ESt#>xG|M6Pex|7pKi zA9X%$A|LYkuj~i@tMxE%)Q<*nJ%>En{y6)*QGb2Pab%#MgX%ANY0r0T?=|No{9NV5 z{>dhf`r~fu@h!*okNqTKdsXatE;{aWtdIU}?Wx^=a~$Yj=LPJlaRPp2_Koy+_>J1J zE#*YMh1z)-?cSIEGK$3fP=A=h@=CkE>v)%N{Kz-e`M#g^E>Qk8>}NguMY}35@;$WQ zrIdFA>(8M7xMhHU2o<~ zS(vBg#{4S$y?NDZ9p+sn=KbH417#C;nD3R3_w$lfn1AI@xhk`t3d|Qv#xnjMz4n8@ z>#llx#&PAex1({WCi4a>QohHW*So2|z0_X{vxW7L@2l5WbDke({MbtW z=)pKynd3yhi|VN&{T6vYDkuC?+l9X=o!O2*?Hk2-HI)6w^Zs0puNVCiexiPGm~!7> ze#|<`0Xfxp9KTkQIvcG2>&o}zxclMu}dAncfugE(!^U0pC ztbTjf=8u#wYlw-<+y5iaZ{{H)k6Gt0`qB7~d}{Ol!F*5;d)}#8f0_5%Kg2xOi+Plz zn77)O&o^h@bQJSdJF&hO>-n-A$NF7Zj%0Z-IhlE^Q<(3HJXnoS?I~X!wvXp@J)21R zmh%2p*1y903CwGSylQvQtdG3!!hBbZOXKrA=6mm=JSSNO)nC!B`pt7*e`)Ve{kKS{ ziTCA0jh{CRHP5vQHP1!zeqgBSFP!(ghnhGvFVw96J9vK|%hyBAy7@5F*z0AevEQ&z zWA6!}W_%CW-r7*cnNZGOKHn$Q#Ov{F$I5<+v3}oBvo5U+HS2E_+aJOHs#2af_BV>< ziF|%@sM+7u3N`cjGwryRdCTXh|6lZr!qijNP~%@EC@-$-{LR4r+pt~8r`PB6I;iXS zBlh>2*Z;A-lwn3s$->OIQiXBd;PtX$W}G#`jQ&7f-&5FW_FrK}pM}GW{_=+zJJ$^} z_G%ht=6ky^qwf~1S1ioPi+bigEzHHo{U6|XwouOtsh7o}Ccey}eJ=3+ z4eDVG#|=Nz{ZnU_VIS4o@=!CM#?fB8dH+29;4J&i8fNSVYJ4aaX8gGbk^saHvg?99$U1GwFzw8b(^Y1LjbBF$MBh1WKl=b=dl>0ZwpEca*p-i}uBWbwt zCx>w37umy&-f&&*>KJb1uMlqh;uhs7%=-DmjUEz*8~&3jaY(W9+?_6XB%2KN7o^*2-R!5nWx>b(-_6K?zg_SE=Lm-5`@ z{J&1W|42V-#``^}=V8>}agGOiRsX+9y(Nn_JbkFIJSeYRl#!K|0lF0cBDJL`3&d=ny!|16C#{Ua2d_H-knFskJjeXKZ z8a-r)H2N$XX~ydtY34ypq_J~!r0Lf$()fW#q_IQoNTXlpNYkGs()gJV+aDKc{4p-l z%%g!UcZxKA*eufcXV*xh&p^u8gB%`d^s|ulcSaij+eLYn@VV(6M+7;7?QUjyJIjYS zuGQoij&D(<(O*KO@z?Vl$4%Zp$oo4u?j!7fi(P(wKhH${|G#=>k{wh zjxzR4M&^q${*aFCyrF%cb6iPy{|V*4#QQm;j6F+78Gon{W&9`&+d0E=9v~l3u4#6A z>-oSo`*qzgwK4E_!$QMyu7o*JlJ5%Oc8D7Me=AP??3hjd37Ct zKGfgqvs{+rkF$?U=gm0E4ZUfc{2XcQTZQAg&Up(vILJTvr=GVBq#mFbouAVXlfTd76>T{w|Nps;Y_}z!bB#9oM7uifZyfJc zj^E~2D{T6*-`9Ehm2$s^e&p}m)S=y~vE5eDX1>>oHhRLiRG;%W{w4IAd$iwkwg)?_ z|7|8$Q%~?mT_53}xo@~EGw8c^W?vbHxCOhb9^rp_Zj_jE@1Vck<$O9rzkER2;#mRq<3zb_ z_Ug<2MsfTzqAkrc;_ohvBmHSN%op_+$fbHie;NmWP%g|jjVFz0*Y+H5Yw8XDuKGmT zHa@M7_@;hZf^iLUn)3#>n}hmH$9a*R{@9fI#eC6y+ri6ShjH13>!&Z{NmuF>ab4#J{7~Zy{7T;skMjC`K9|NGKh#fC)9>oizhmfEh5s6h#w)C=+FouFlfQ!nld zuny~clqcJ>t()8J>!8h_ZSz3KgLOdHpA2jlcGdO$B>g*@{uNIDb)+BGq(8Lg{%a%s z%8UN9kMF;ZEH`Eu{-xvGYu^v5em2>kQ~yq2{fyi{{^fq~4eMRyd+0s(Tb=K#I2X|Q z--_>LC&SIUm!I`!u$?D-UoFP>2$WU7wK$J0^z+MnzjWfbCv$#`X*+|tUiV^s?61@hE%te(c7|W* zd^%y@H`@GN^?j4=PNlyL=lTzSP`OvJ-4*n!5%&40a$ud%ejFHQzeoLV-r3eS_5TK3 zZ!)od%4nk}>;u$aGcf+9XZafCy2E`B=BfJUeD32mlGvxK9GfT~o>RMH-B&vxj_7^| z^UAjGQJ($J{vGY8KhC9IH?Vw!%x0g@x}IRZn>fulP?+mi4bFe8A3A;y`}(H(?8Eg1 z>z(c=uwJP@V7*uSL60go)@3b2pDNcAjuY`i?U{=E59|k24)m+@xEt+OiSea8%dBnyv#-q=WA?TGZ2K+NOCDp!mp{hX zBVCLck0YPU7-QDGVligDPR07^?bpqE5@X`zJB}0e)V^p>@3)LG`@4oQMi0$m%)YxR z+eKOTPku2b&bv|$ON{aF=KufaRPT{7Mi1WXr%a5oLv6}e&fd>G-A~3C{gq~akjvPg z{rK=c`q%e>0<4F9qWZ;6?ps#UFXnL{wVwOk!`%Oz;ktH={sDbzdpTmve&9ascfe*> zyS-FjpSl11$@cz`Z@5mq;yRjydQL`up`4poe;C_^Tq^$}yIdx2v%TGve-Gt_e7gU; z!g0dC)c-DWzlwdf-k)oy%8mW6uIE_i)&BYH@kIAe*q5vSj^X%A#+Y^!)8C*c-4_<5 zy(`kb^ftB_Rqg^M`?*`Iu7E=#Psb}2Ref}2Ko6hIE(_i9gm*uR#f&FBTHS(8@ zrT@kny9M!jd$Lii@ncJ@nKva^zah&_V~syojy3v1d#ZQT*Y})uv1Z<6Aan4!kyg`Q zVypT8sUu&+LH^lTo!9X@yZ-;y>yw$S7OCc7yN|!yBt-}0dk7qYSP%IjQglF`fIg4B z3n@D63pW3M_>KJkxF2P|gLxhK0a_1#w@-<@3gvUsf$d#q8S-fR>8+;TMP5fgdL8)@ z%4NJhj~q|>@qTKu9O+1AXFVHnU*!oRLs<{e{EFnuLOF}1-67qe`Yo2q)&+qzY9`pIkyyv~oeCB%3dz4@4x_9pFGrS@1 ze`dTdDX%IOL$kui;C&}_B>wMRDu&mEO}t;l`_%7F;D|1db1CIbrDEt-C@U31Q7G{I zP2i{=o)*3bUMiD3rMKq8YV=5PLar+wBy=mZDHTIeXa`)y2l@Szz@I>QJLL?@p_HFd z7D~kcrf@LuAEdm7@}g2Pye^C=6+=-_-Q!$And~C9yQfqP%?jd6C<)ld&b$RFr-ck})d%Cb^1ybgZC{aTcYp<392`Yx1> zOU3ZG(44yH3e`fQe*(`RVI1jCc>OdHIQZW>Tg{5LB0zDr8gHkb6 z3#+InyI4~yhR21Ud0rPg_`OsNj|+P5{>szlQh5c>E&MTS_?DELO0oW*QZY0S`3XZ& z__|aKMPWYuCzpz$`ak?e^E~N?^wjW+rDAASNOEjcDu!y|_);+xh5EFUy%~?xuO-jx zmWrWS(1%bIs`0!Ic-IX& zuTP{)=W9$~Ki(@2*L9soF;(3Ab6c6im&r-IbRJ^;NtG(eV4%l#> z=lLT%SA4kjOYyyKFTT0m2HNio9gQgWr<8tp-By>l=VNmGtoJcm62EvX@rs*>6Bhs7 zPw~E~^!MuHj4wI(dq{E0ey=!auY2^|-%V!`zgtG!vd*7*efc2gEK0rO`H*io=ddoH ze{g*CzMOkFi*tre)js@m4#9AgPuu%8?{FUD8s4XSE9!FIMCUT&`Bl!xbmu(IAkOdH ztMfMD{L>=NwdkI9pCg&f`PG{A`xob6bk5y)==_h*`7~BNob%{LyX%0X``nG+=jl8V z^>9u${DyG8Rrg95&P>kzOy@l8D#jV{w{svNPkK1#sXSdi7xFFVV|1^E*WWtdlFp6z zyy;^2sCy1Pj?QDc-*xaUb24gYJiemcGTP}plI3_)K6h(*I6t;C_-@HKl84*(M*sE# z&i-j!&TsYN9PzE3+tIx;wxi2vr+jPae6R7=bIa)>+UZ=H-|JjjJV(TNqSJF}{yk3n zDe517i=bQghM0~%yg!9=S-N+}dNhl3W$S?d3*|2KSH1?r)A=;ZVHo;pl=@kCv)BUtNnY!*risz&`PgWiKP<{o=vlI5C{3)jUcFw=+Uefr!N5rc> zd0EaU-_0xJ{b|=dz8^u}g1gAybF-d@bCSwG5amj~n{vSm_OXF;_{t07cHc0b?$wKY zpx%(Y1rdRhS+7CSnz6;0;QJr#Q%I83S2IXr={Y| zybqRVQTW*(kw@XRobSMRE6;mR8e?C(wdneMYP9=Z?I zd|r!u+a5Nn|aM{&+x=OVo?F$2G9gfK6MeV=JiCjIU_S%Ux8sn<$?&BF-&@gMc{e=X zdi+Lb^lu<=&xEi41kUc{;rJ}`(R`A;jHmKOxvYV__80%dPx*Eif z16}cpZSWIS@Ds{YW&2m&5W`V^DC^CAz+Z%Xr~Ku4@P{WtpZb|!W6_7UD*#GQ7ew4lFKMnt^yk$||Fd&z1iz{B%Ei^j|6eCwbV`kSv- z5_#pe<{tZ%w66hQdqa0C_|lE{vo&7$jRW5^$S?X(rpNwM`2uanUAp2oq5op#Sq$sk zi=gK%;MIpO)5x!R3V8yRx7GM6uc_A$O>-XCXwT$xoW}ce$p_gNIqXZG$r+u|Tk@rL zqW(R3Fkh_^tqtt;zc+{jq)4A#dc^ zu92VPCExI!G>&|VJ<*SUQJ;w(R6$?5qYrI)erVSSx4PsU@-u##^);@i!0&VNy50vr ze&YFm!SgQiLr#H@BL%1GPQ!Ord;8&Gl#kNCBk$|MhuxujiTDugVJYyX$Ht>8bjhym zXHJF=<)e-8u^Z*pH2=$JcQkbF1f4S&=X}QL#`p*FT>5K$y$kz)Q+6EinNGga8_;XD zv%H3o-}J#Q(Jq>iPxn~*DSxf|>v`lSd1fc0zuTgh=cBK^(Dxp|IfrqI)c3?b8t}Xc z`EXC;x$MXKPynz0U{}k@>-r~oabF;>>j?7awgIn=*-qm;j6HpTzpS3~f|@S*0sDh$ z*ijAi=NH~b0UI03lF0k;`&Mlt>s_}_KlQIC1=Fy_G%m>2J%ej)SW2iW_! z$?nNNI*&Z4iyKO`g-iw9|a;^@{R+dp-IZd0Urti|dzJ z)RlMJerqy#Dc@@RUds7gZEqUi&pU!ocj}viPhFm0%=+X^z6+K2)$-WT?SJbB`%|qe zjNixbM|c^}TEN{AdRmf4v<7sop27xYT&j_8-++f?$3k3tStG43Sjn!`9>W%}Gd zz?~NIO7nc*oUhjQqjiz(L3wGdf66=S`S)=6FFD!I?Fybn@b3lv)8W(itfN-sGV%w$ zeadsK=jTJx+qZHOZ6sC(m~x?_O=b>rcz$M*U!&c}C99_u;G&y`~RlKVU%0N65NV`D?xI z+Lm?i@9_02@YyEiJIruR&lTWx4(s$8 za29;slJ5uQr8FOvAJO_+KbMies)zNlzGFQ8K>8`KZ=45mURCSyV!lICseF%74t(z^ zzoX$EO#UT(w;65^zE_oh)_An1-D$kn_nY-+6y+^^@BNGKzp!uN^@GZQ?}vQf{RTYk z58JL6=kH}5zLp@p>qWNv>#x6YQygx zGau6aoB6&Ecy6!u;Wq^OM?t^xep+tR;KNhcO`p6k6Y0f%hUI<2=zp=hO~4Z#)=%wk z7{6wsH{|&|5;H}LTYB$tFUoQ= z{x4;I8Xx5)^SnL={yl@-@1ow3aq2S8-jvFB8oz^~SNl}fyUiFs$Ro@j8_D;&ihZ${ z(ZgTichKAL9eOA4&lX?9{=*sUi(Cu8wLfC{zd-*NdH*4B<|41DDudrh@czJ0eulrT zgMU+gTl4XE{O1SwSM3K`ZXLjTOv=X#+{dUtjl7jl+;q!7T7P6u9)BhKd+&=s&I5?u z>AA;k3?C0ePHmBYtE?}{j^lSF{2qiJbyYk2@mzPiW6=ZYm;1{Y6uh(&BG2T7MQTk!I$gjrlD&WhWJ&yD|u5+ME{=@Bm!=9A)*Zm}S`wQ8j_4Zle z6TY*RPuO;;eKOM}xm)kQrfdU$`k^oKCvlzzj{Jo6`9t)%5q?^EwLRWxd0*6iN&B2} z9G=h4`C~1wlqXRCr?~wz{I>E9rhc~jaqLGw%sBdA$Ik`N^0*23U(jzocva(nsFgg| z|2>f(`2A1W2VcSd>u%&TJcj>=PUL^EfAW9QCjJ-Nk^i;ok)Q7b{{K?`UGt|a&%5yd zW_SHR75HDq|5F3`-zwyB4C`F|zZT^J9t)szVaC&RJ_R3i|B(4DKG}|x@6h~8`Nu=P z#BdMMSoku6eqG>iFXq__-VcHQL0;h}ep}C8qu*EjpZi9dr^!dy0Q!`#(fIAj^Ua{^ zc=)0G=h5H5-!n6ROo#YrzpB!FQl3bcJM+J=_+|a*1pL0hyOi-S2HtatkCd~)LwPAp zm;NV=>lfsp{|P;R2_NfYb?Epnd=($f->0GbCHOZu|Bqt-tp9s#ciR6?d^cSEFK@o+ z|8eVu{$GrKlXl_%a{q6SoZrs*=HvP%+eO5mep)XX{>#jN%kgI`S-0qaA-AueOZ$(e z@O2C5`40cK9{*DZy*Pq?(hI|p{+JH^Z)Cl=n&*9>yE}SPuIIsDhILi=AMJ4P9hCLS zd{*9S&qqtKC*{*L+;#Mq{hGe*kel+Adj6DrTs9}Krt*&(PBZ@hRsKrj+n)FP09U2u zBR%yvvRBJV{}-Ds*>_w&Wqpc%kNR2sZ?6BZ?Jp~^-vW9gdJJa=+RKk5{k7gIzkeD( zl^*|h?+%-ZY}DL%9(+-zK{U zj`(N(il3%u81xT>e~Mo)T*Xtk98SAy=_h)VysSs>L&v|7kNlYJUV3f)sDdB*A=`!J zqj@peTU<9Ye=bh;kAIMU`F+r{AP@N~k6RV|q?iAjXM%h_#4e?O$*)>3j}jf>7v`m~ zo)Vv&0$$XrEe$C8s_IT^4OCRF+#NmjaQSZ?g<*_yVOY*&m(Jx33y+6Wp#r;_S zbl+dJ2m0&2K=VcMHgO(A&i|F%1AQ+L*YYgwpVoWl|0n;e;)hJf=EU<9ls7WG|1kGA z{>npcIVqmUett@ZW4`u~2a_jr zf8x>V5}&qRt{Wfa&$gVm*7LBg2y}+~H54D^dG<}{TLqtV-=f>^MqFD>@`wtq&kJus zsl1-1YZ~&IjQpyQ@AGTX75vkD=+M2EKEEXX`P@`>@?R>R%JSI~(eTh^O?;aHKyT_Y3S_@v1%# zE&2OAo8nfjcZ%<`o_~vdO~meAM(;1h&JIuG;*amZF8eXQ?uW3yJQRO0DBErHhq-RQ z*%ANKlzCF|hW1youXtV&`RYChuMd*C({seW=D?_pjPcEAcNi=%@HQk6(r7 zN1uSlzv(vx zcu&wz{f+N4;3YVoCxnmnXEk)GwEtL1zZJQ({{JWC_l2K-Fy4ENul&3TAM3Tw!I-XE z(<*_;L{yEAB!BHW1JVs3;aSZJs&>>yjk?qxg^6|!E>D#GCrSzPaX2renB2# zJ-3~G%XsU^8~ihQi8ldnC-SxKNB-7*IM39C{J{GHx4`on|3Uxh? zel7R2eF*Q!Z}jR%@ZX$#u{u|1`6*wq?YnWmxSmjHJK9m<>$LCS@0RM^Pc@~}K=Y2eHUy6L|3Ebm=E4?=V zKf_**A}{qJIls2)?GC>#V7xK8EQDWM^t3DRDj0WM@(0+(^_0?o%Tf5mbtd@APK?iu z)J3=L^FhYH6}Xa<`%AClx-sjCs|D($XEKUBtb5c#7^v~Po6+ywlkS>LS}>(TqIq2o~coyNF2 zr)#(a!1ExU%l@KYgRjzm&kJ9|FZmVw`Ez;S3He{g`zgrn9OUp%+G)Osc`C3M%|n($ zb^L|q3$GtEzgd2%|1k9TCFqkJ)A-iMN6T!i<(x2pSZO1q8{we&O{Hf`XUAUd}&gJ>g-J9|d^iK1$;lIwjq4k6Dzbntb))%cq z3`gq^%TMGp`fP@89^oIgIsCue?6AziXN1S;l#h z_ET7AF9n}RSw|0p5BlEs_;=85I(XjxxkgL}9)`O=rUbZ{6w>_tj@)Hyf=707kaN|J$51ZrSFRo$opRC(0bo^T}uD+>8JI* z@zMC6H!cQF6V|y6(X(pwlb+e$b)MCJT>LbiYUk&&3-e9-YJ49=uGb<5efL>Eq<6Oe zv-AEzln?s01Nx)=q_~gHzQOzKQ)r*T`l9{BxK8D}UH3;?zJ1a@2m9H3=kImnHG%JQ z?W5U#*76;#eIDbn9eC?JqW1|#39kQ7r@g+vEzh)1sC`iXKQUT(g#BH8znhfsvISM|W!#Rh4sQ*yT$$Kr@O}S9wu%v#E*u!i^p`%AnY%%C!Vz~@vN5+2i%9a-kW&dj`+vD zh?{(f_|QSXQ5>iB`ylXAe5~mmL453T;%%!jUJK&UR}{BqB(asO^0{JBT` z3jf2_Kz^@*&wIp0>%5Bb-k@>9PjT!n+e7zo;@n$N-+_4Y&8eq2@~*_opF~{t@4Ww< z=iO5rJ#pu|LYMkk|2q;FF1n(BB3}I8iQj@7?B-|WCOoVsFL#b|`@K_?>(-s4p5E3e z>g{-)3kmT8mvxGKoj|#&6aJxNe11vC*zWrdQ4U9TjCQ`dLwtUZo`>HE-tXEm)`w88 zp?%9vaX!DIQ`Cby!0V{av3-&F`Wc-f-8aLJJ2(e0rE~PFOQfg4A3mUd{@<}v)V~ut zM|^wGZ$J1{^Dm|EBZn_D1vl{R0{9%xCj@k|Z@u3Y{XUNKG25Y+GtuXlI3J=odyjh(@$9EzH(L=OzYhN~0=u{tds036 zJ@kGPcB=C$wvTY0BmC4Z?o(4=llxg824Qz^$Zq|=A@-{{e)DB=vP=BpJp9gl;`l#L z_~Hlk-2dZ^l>LRcmyXa;3pkCi$Htu73FoB(e|2ucepznYu7=LhoFlla zTjbjv#JTIe=~$=vA^gwznc4;YZNT|J#jjgGG;ZvCkD=e$A% z@#i!1`2x#(r`+HC)P44ruj0F--%D}Nv|A0lU6>CaCO-Wg<{OW zRV5DmNan{*#KE7*^J|I!);w!EbiUL7r@YZ4>g8;e);HqP!}(0lqxA0z+)2c9{~P%C z5{IbxcCQ=eiO!%OJLhrZ|IWmTYdq7x2z(R|Zh!d$?|bBUNz6!&VnI)V36@KSuc<@*BkDNf$_^njj2;rDHNAM}1Y@%A54AHX=563>_7`V@C; zd%v1ETE!unUrTBKNsgP0el5ofS`QSb7~DbO3*g>L{Nh;TqPSA`D-dtEjn+#6KgFL~ ze-*E8{wQA4|7%@OeBtXke$?>Q-}b9`Rrjw3yqDB((EMW$6(5a{@V9*^&e#0fin!c; z6@M7c|0({`<0>A~{xO~VKa{w|ZosXi{cz$YZ)2UOcwCP^pLi*qo3`C6{@HvB&qMrD zio;gjcqvZPbdCqE;w>$|3E-=9$ku3|=SxBJU3OxM;a zK2!1!zZ%qa4k50K^Y{^O#`zLFzJi}gzO%t=s>)zrl8@m^F6OJ^(#?0BqqjW7PxC>1 zGu;o+PVx7~dogj=pV4m>om0=Cm*$DIO=pMgIog zEs0AyjkuR~{GY6NAoEZ0KITss`hCavClcRN4iQ{LthnFZN1jHlqhHXgyOtCUKi{y zeHT54KdzbMw=DT4 z2Dtkn*E_*irTNjD@f2roJoZlQnAbF)nC^$+i_S9{?-|TXS1>OLeuC%n75G09fAc*4 z{X6jaMs$bo2GJSq2Y-4hepd8a&L{Ew-t1RRr~Ik;sdGwh_hR-hhBpU(%>e#Szg-72ot`g%M5W-|4m>=WEW9G&8zt)~yrZw=4o zckI6=GT!Tq7vk5$Pwi4^|F;?bM*AA3dj@`JN{*+qT*lDu0`@xWt9Wk9S@Eyt|G$!-!XGN$G|v0%Pc6;yede3u zMWa0vSEIaL*5{*%cWKVP&K`Nc$9_xkH`db&*v~qbeH@k1A5o5FT5;)$%^%D-m1e`I{cADKSw<9VNXSM~{aA%3F~`&Zf@^L}nq_PrFBWWS*OLCa73 z&)z>%>3uiFZF%3j4RIcdfARa;>@O;Q#qw2LOSC8U<5C=0ibv5txA$XJ8o!%>^H|Y##qo_3v_F0_ay%Y5`!bIHpNaeMz}5b( z{Xw(8?LTiK{w(but8O_Q0soGIzdM81Ho(St0)UiNo$k@p<>zY1Uf!Z+h5 zy|w+_3138iswX{jeE@LoLEj#N?vLsBA#}cjeJjo@*{A82{@DII@V*!F(SEnr4T{sV zU)m4XUM_jisU(5ww6V{>EGk+ecc`58)^rF0i zagJvGQ9OK{AHZMVS8-lrp5HB>yE5JPL!bC#|G$iN;$^HKb*|LoJqesf%&YC`r}JI* zM_SkWJ7{#K&v-n-{5eU_!%uwheDNB1hI1ETKG}-@U(RR#(f<~nPnt519fV%)jvniO z8tX;k>u!>N_$e;cbPVEun>+b`s6c(wssLvge2-x7T;W4_io2IKoy zUbk2uwXX3v)quMz^L}^W-VK}-m;V6xD9+XL5WTiH%_Fua{cmRdkl*n8KCj`wip&L|uNx@7GYS#J_FCA6F$_U}yd>)&KOyL;uH{54-X|?!Nqwtp8EX zmm`@^6z^&Ot~|J=w|Q=F{C{A6{R93qV*WaY|6!XkzVgnSPd75oos54Ib;a>{9=nCO zh+Dx^|99KJ>3`nzKeg?02KY<{Kfy6wiqrEvum7;Hp0e>ubKEb?tKlG`;{fG42_(_k=&!ga@;8}lVH_`qXPj=?|>)7G%*?w%7g6Hxu z^!fzkr}bI%E67`RXSs?0=C9&xJf8H$>%W1>?F{t3EARgS{0nk?gy(0)L71LfbG(D` zP~3yzO<;V*3EQ7O0$#5{_X6x#aYk;hxL@-_aUG^t@kGgvT+X50491h)818-GspqEa zN#Lq~loRc@CB8}Ve)gZ+5C>Y5_^iIfMUBewd*+wo{!DKVzWkQrba=0O1FX-Im-TaV__`Q96a1u?rbltx(Y~OkHS#*nAYaMN z@JqN+(aDWL#1LN{HB8MtEFP7hWiqX-y6gaeu5r;M!&a! zr#N8CS8>9&yZ;hjtGe~&JK+8fek#pJ#c4*rPdu;gO)(ui64$$bjx#lXG>-YH{_eLs zanSR?Q}?V`|MlE(RCm8UXm>jGGl?VZP2B1Q#9fcf@v4S1ig@C?@_Uc3_V&MuQ}+CE z1#y>p9_J(CFGn-ZwZy-w^!vMsH@%m*=SQG-BKTcRyGr{{~2#m8UCUy>U~$nzYn|x&vri^{Ku9>{U1la+sfj4@lpD}Lc5tfKL`yf0Kl`R-5=^<}?`*uP0d#J_F@{<dVNAD9;J>dl)<)1y7a6V>V7=&u=eOM0q?9+*cUyJ^1wn_ndA5pQ_wu{an~}=j}=ireudtR717^q(Lc&%EABf^@HSMSH{7FIi+fbJXS~{svt$1# zukWElbbG!Y0)Nk7_Y{)m1blI7+3=}Pcf2>u_#r?27bHrx}t z19+x;U~BY8zreFK_r?AL{v4X_gXMi0{SW3o*x}H5CHKzW!o9Tj@%~!sw*#*dJk&3K zKf$kV@bPlwbOm@_#`}qkQ{sIu@El0lhu=E1wPmJk8*qnIX(*h&-ah^)fT!M zXZpNuDF@yU@LBii+OJgyFY(Fiz%!w%AN|MDPjuMtsP2Bk)9c!y{iB|Z>>urB9QaS5 zz3?>tdj@;jP+(WzDG9PSDuOO#)!1E{gyb*e~bq8TS`oP5s#c(O*2peZ&i>zruKr0{36sM|}5yD33d-zr^@+ zxu1A`u3PRe(|#)VgD>X&C)AhceqImHf!>7!SWjg-Jg+nZpOb)dDEt$jP2b+|=Ro>* zf$yyuuP@_?FY&vc@t%Z!;b*+RqTL4Wv;Jj3^e;Q6`*kT*x1XxUeYv}y75P&?-?MGK z);+t{>wURjSEc1#ll!{24$UQ^U>VD-GY0{x8*+Kl^I{d z7k{nSZ&A*Kf0DEDmK?oq5?_p;?vJ-VO+)^}(3g98E`2lK4x{`MJD8E}*7Tl--A>1k zETn7$f6s*P*I+L zwC<%ge!Ay4eqU0*nfsGpMlQNH+TW$mb1$;)JvJY|2kx(or+b$@|NO@D#k60Ae74}; zb=_m_{aoE&?e0j}RC*y9D?p@{{=w;xqd+iOUYc6dE>0ax%;p;7o^Az=l@Im*9dwy;HxBeIM zem?Ez=6kv0_bYspe5|i0A%_#7UvN#w-RSw0d{4RM_YHD+7CKg-AFGkC=(c_|=RV_h z10(-VlX`df+midacccAB_yye; zZvU@)x?Sr2am#%d@YxQ1833MwYdh^D`GxzV`*EN0Dacp%ft!zSLia50b>Au7&kS72 z&-2*lwA20R_NTQeYYdF|>;u1!9~kc~)_uyhgCn?ix-a)l_om!$VDxvo$K3dx!MG|- z*A>t)oc1@-UiX^&p5?P>e=>A-qZ|R>2XnvkG3aY!#<`SxpfAgK+AjJd=P|Uq1%6H8 zx$dPt;_{)h*G&fxmB!;~?u*ua(&p3s@Zo00zk#~onyzc$>unhy`<0H2BYm^p>b`f| z(b@FB68PtEulm86e&5F|J+!_~MxV~jczE0!8CUme7s5|^lE!tZaczh43;sSWz)$%f z`|Y2xud2v>Dfaap`tfI)R~TRNHor8E_5C`^@$ltg?Bou{xrlKt;GS*C)pq?O`rjn$ zQPOMQe=a$Doc39t?6;*Ko)2WF=1X!hE_pE1u2W*wmQm&g5q`FA7hi!YfsyA6nTq4uWl->ip@rcCqafAc!Za+$!o zVj}b2=gf!O;m3O77v5)`_#ES$20mKP_&fVx)>VDz{|Da-FR(tqRaR)OyH)H)GKWzW9JAUP4{PkHpuVh}*eC7G}V*1O^8P83$lYUuWzkuKJ z%a;HC$U%1Cd)Yf-FBfJ%VSALnv3;}~80nDQZC~ZTMBq-^NSNt^ak= zlLm~}3VS>jJCgnQ{`e!&^P})HEf~KCc*!3dp7hRsNBxbb`guI*m;HM!${&#LRm@*~ z;iu+9>+iPo-+}gLGT&)^XF4xsex1X5!LdDU249|J zJ$EVka}ava0sTD#J>8%3PQDZ8vaTD#_wL<%A1>uP=+*ww?=0#c$NQ0W-#osvTA+6w zv5P-xzX7v&@HYReVlTb&_mur&6X-pccDG>{ z*J5w;^7o1D<5&1~Aad9XJ^KTHq4&0LJvX1bBNxfp<7pk|_p%e~$)h~K6M5X1pW80S zV1MQ4iR5qlk-Tk>pYUGuy7lKv;QuGDw`}k4$6^0kC#Lm}{g~!G^M6gR{T*FE5?_~-tASx1>q zhoT?-;p3;!srkML&M6ru4-Bt{m)^Q5x+W>QID%t#`(TBSua;@?QPDUg-`!=U1{11-v%U z)ermyC$1Oh-weEtq}>_0eOzZ|yu5A^->mn$fybBd_XG54J#u)S_3AS8=v~%51?Xr} z8Q0x)8UGvfa2@g!|EwRoQzkxd1|3!DzXkl)bMs;A%4o;CR7QOfKAunC0FP(DPxv+n z>nW|5P0s@A?}6tc^h|o>{;QzxbM)wK^mhq(zYN?*(9`>wxAh%ky*)9{uhvtwvz;wX z>u30SQpVr!_lI9?D5bKUX(aw&f ze^=nCo#j#&ICTa^JNmtEymwu3EB0giQ!3ue^((oDy?!ay*YJE9&sS2m}X{3EU_Ux@31?|N(Mihpzc3+{by&-<~I$}i&guTm}C&ODr{Xy!AhjRPdsVff2^?iZUh;k_Kx>5g{cB02{ zx8V5@+9_VyaP-{oH>VW-t{)8FYL{ZY2IcKMe~9uIo^PbCyk3U;EYHg*m1n6Ce(Ha2 z;g4Cv6+hzo1*KR{q+CS#2IW}bwWi!azr?Q(pyMLwQyfYm{NAD*N2$1?@VHPc6+=-_ z9F5DpfZMzj>swG4Jiot_QgKYCOL0ube>BgVQI=6YOF5ge5%ALZ-vcMDaOq`)eH6hfpSc zk)9O7?~ziZQ+cvNweSJ$CYOq#S{Pj_hN3W`R18I7XsH;ALPy$l1D{0yF4U)jf8ytt z)Md}^{~r8qT#EHmD1~Ps{00F(@k#MW;c-E6L7^zz%==3y$54tM(>sN74&`H|V(3;# z`mZ>kP%W(F{W8ioa^3F>{faI>=J{0Un?afQl=vw-^!Tznmsgcy|03-r7t2q4^83UW z@x%J2_%1*Hg)-UMtH^s<=A+@LzuV8}`E<%vl*!HpQJ3DEo-eWMJMmvSAK~Y_q;YxQ zn&;co?-a^jlzk|-pr7JL4QFTSt$DBcz<4SS(s(c8x#;tA*_-<*9?j*=l>75ucI$o< zfuHO;`3Kpt`^kU1e4|fnpZwTWJb#u_=WYy7b(fFvycuO5$|3OKElT-&FyEWFF^B`u#62HqUjA z$M2OF+WMsP3$7=)I)`Qa1=nwK5L=adJ_{i@JT z`MKixN6vkm&v}UYoO4L;7xP^A9k~B3>6|3zSbEcb2Ela=v=tJSKi=!cs0%&{lPh!=A1u2F6G7IT#WAbi07Iql~2p( zP15`bwk6+tBhF{)T&VFK!TFKxIq$NJ^Yk~8_e}ZN&8JrR{HN*GIU4UT z=-jBsJwoupc@&+iGF>&ZygmNj#EVOxJ?{SKh1wb3ube}95xk1XwLNf83&vICd zoRz1{@MdTEn=d`cgQj~^4F3SyNsl7_@U1!LVVY(B`Tcdg*EwIq?;}2jJSBVQem~5m@*;Sg zCY(za-sY?BCo+CI|7Eym(q8AM&4-Pg2iplebS}*J^@DERlVW;xuShzt^uK-~&%)iD zn;r(fU6S1ZcUr#x#CRxQg7GZyz9HpW^!-Q9kMEhz)6sq$aP~>(o;gph`}BOSt}W-v zb>Exm{yo{F>?-6r*`IUn-;;-Y|9^`7Hv^%28F2fhe0SWhItaX!U&7-lPlDw7s_htK0H&x6mqEyGWZ zAdi6Z9$2r=CJ(};_`UAPLHPmf{~l8r@^SUS501dEzDhoUt9h<_InB2sc^5{~Pj%yU zI{tA5;~kCNe9wE`|7d(K#$Shg4Z&W5p7_W6qZl{jlLuKN_tuUT0?3|IMR zocExf{Dtk1`R;f0Yo+89>_DaA{E9w=`(mA6jP`G-UEqi2aqGMIZ+>-R++OJ05ad0P zvJZSeSNsn5Dv6KAXM6Pz_$Z%}>kF|9-REd|S50upH*zKRI5y`YF<+Gz$#^e79u3i# z=V&(u{&dIA4+h@5*#BeX|59msrjbWQ_avLnx3GWZ@$xuFDSt??i)Y9y@>TXretsVQ zrpP!Qb3Pg4dri(WV*c)&^(V^dFM1L3i^%_2KJyv>V#a%(=heVl_jnt=@|Hz@kk3r_ zu*daazL!0&kH}xvCHZ6Wb`DkD`as^Zo5;6$4EJC^uDovH*Pc9`rF4HgdE)lg`_O+n z`QV!6{Gis)!Q`K8#Jtf@?Sg-sO@6t}Q@%O!1TI%Tx{&`YQ|-mEw0+US49PR6W6BviCv<-91NWH`x~tA7a3F9(n(crF{+ZFz!Kp4S6ER!_UUhTZR0m%0Fp1LzSm8 z*uj^dfm7 zpHn_m+dX+DZ$!?0X)k@S-YCDN{l+r*Aw7-j1NeVC`4#{2Jo;twLw2BSik^G}9m)f1 zJ3cq(!!#YckmvD}EML=e1$l3Krie?d_^wT zQCEIn>s^7mr*4E(RJGT^5?rRHB#@|f;Mxpmej<0C&3{cy^6D!mJI%|fsLh5kNA z9@(q$H_F>;y_LS&U)9Erly}u|Wj~(xKc(MSz`YT8uaWol4a(~9b9Elqd{rJ;<8z<< zSkUh?u!}aG!CUxP9@tY~-hV*9h2)KueY^kT*u(AAl~34urMlNs_kjO2^6o0%ulYSL z^U-o@&U5)6+l}(X+8(}vj!n@219Etp`q}8q3-p&gT7GpT=im=E%XS&RmzfWmp|9`Y zzg|Y4N1{i!peOQ^#!vcXyrqZ!KmBv+_3^Vs?5ZVsq-&DDbwBE|OV3l|(8o*Yr+Rws z?@Hx!wOxG0xYAqm`9Si+w#DDKPIgNk*w^@OT9NX>G9Mp79_%va(ecc$^QoW9{5w{8 zR>M7vPw2hZt?C!n56XvX{af2D>WA{Enh!ad+hll)mH>qFv70F9mi}!U{hcuxa!utz(KLLI`0N(d7 z{_DW~FL3pJZ2SY=;k$M>)?KUVzZgC~2j9MgUf~`64*6tT!MCT$Q#%!Scd-t8DXqt7 zuY9=Hy9-$dDo=ZycgPnwhIYzRYk9u`ypI@1d3K|JA#ZGJ`fm%oU*Pjk(76ac=)L{T z0KVs6qu*QbVFso06~=uR>Kmb}KKb{Q$IyDQKkL^6$j`Tlyt~TR8`sM{qF)kx)2sah z%USvAxJ?hMLpvC^#Z;t2lM`6zB`o{$?fjsyHEQI z=1&Xu6VmtJ32GPkrF{&)@5%T6Kh!VCPk7lrPT~2@;5Cl@fH92w72ly#q2ousk3V3% zx!`+i?q~SQ&ucmAx%m_JO9FqjpJTnyeu(XTA^nu+(R^ACevA2D*7NAMGJV$5dB{)u z32~i@9Q57m_sTTy?eQz}{!E0M=}z={zTN{qZ2?^ep$|Q>J{i93!1B~Sq5B_+zG{EPdOQey z?Ls^4FPe_Fz>%HV?+b2Ruh6a%{-yC$nm+9(CA%~|+GjC5?Q5FvvR{uI@+*72$#e17 z?Y~w%$nkaBDX(kP7xq7tKiqJ}@m~9C=C}Ni+cic`+ri(K=(qfp`;B0nYtUQm+gZ-q z@9{j6gRr0fbEK2+b{`tTwWxcT->wg2&zl-n-`!xH5 z$L|_1e8<0+$8lZznARKVL*zH(4q?0-u*+fa>vZtFNG19d<$<1RKRWsGIKSh6ZUWE8 zsq23czdtzV^)sFNf5-T@VSiNlrY)ZvDF?F;dR2aII@|L9r~W@QUi#nDau`K<3+;Pp zyucUb_wzW{F#c@*_fdXb^FjG^<2si2Bl7s}_dNYS08iz)vtQBwPwuDuf7XBHwT3=2b(P;3$jsKm7|1D2> zAKDM$|Ax!JOaIe(Jmo|8I0wMTU9+4bKJY<#jID3`(f{nsPxpTjIXy)CS+x6u=Uec9 z<09};8NbJAUr%(0?`h>LH~+*Z>x=RSCqCE?9|q4y^EmD&c_cZ+^#%P7fWOLX>G$XH z{4V{^9`;E>9`*3ub_~yVLr&FI59^eg{9jp>_oCDKDf*1pb(z1eA0_<4uL=L7w4&_9 z^BTyfDRk)nN9%?D54T+%g8mFd&y@Evu4Cvgy)+*#)gN7v+e+U=ji zkMv_6(fZBp$K#(?W6ulny25rnmiJfW^^xa??~|X)c*p$#^j&n@?rNhazu+f+2ajpY zd#fm`!$;8<{S$DXO8mpidf?wTjJFnfd_=otjH^7Ame*?9tzeu2dbSGqslD>` zn-0Mi_BJ=W@Q%xZdP{^w#*bg5WioK@Z}`>NneI_Dzb*uyvA|3J z{oflqu;@QFM;m0gKuBr2gaa>^U+_;Ysnv2 zPkQja8T!!=y}F0?=c9KgQtyObXe~P^3!=GB@byxn^xNascNB8vE4yF+Yb0zs| z6+aW_Gx}XYT+GD3>@ z)`#Mc>FG&%S(cmOzSEm?R^-pzG37NU|LxA?3l+Wb{5N&QRhb`K5NB0`e4#t#e#YY$ z@cJmrE$Ul}1M3~njs2y+={q{->-9LNke{;+d_Fjrmh<7n0Unu4#{(+=Z#;KK99UE0 z5|t;|=dBI_Z`IQ{mZ!!s9(o@0Q$eTr;B#1_(|%@a@|YHgTigS*LmpUdi;M!^$*`eKjW_^ zF`wLqA5uH>NpXLscLn}#HP8P5PKdkn|004Pel@`7NBsV`%!i`K@Lt9qm(Wgmr>#G) zWj_=BF#0Kbu|5n2eu4IyFFg+}z)xzPbvxnb{*5wyaURNW?9Y`~JMqu{=LPDrd)v(; ziEiv?0sif?Y)|e#6FEK#AI9SslxN&>oI!iVJ=zXr4@vL+UV3LcQC@z>-O7$khvJ0| zzj3x3pBp_4eN%h)>ww?rnC;bZx)nTE-tA;Z)`RBwGufTbrJjtwD&E-gQyjGMxRCKL z$nl((v+{6Tj%U-p4|w#Yz48oO?;gWXskEPa3OiC9v+24O{L*E4kJIR;>67d#kV^i zT6w;0zuS=4buDz%qg|2r$}4UBThLE=z-^Dm)2|izZHJJ5_8jmWMqbz}$SZptaL47m z+tF_^j^J31CFsyO0^`{mc-Qj$G2l$4-z3Jrll;1q;mbYbhkZKd-L-xy|FQWn9sG1Y z!2WACbg94f;I<6cc0J&^pi`;b3Z&kNzFexWGzfe#l`9tVD1kh{)PSl-ev z<39-g>KupZR2kP@IS;$x)&`!=;o0t`NA6z+AEkem(**i`#Cx4%v7efQzPy$7%YI6F zVR?*4KFV*M`0w&7m`HHWB?-!Pe=Et4n6@G!d*sqgE`6KcWze=9uH-W2jN*+(`jrWV>EuNS2 z78}16!1DEI-2oD!pG;3&qK6ZO8)0R;m6O= z_XqUsL_T1(v;1}5%X(Fv{J*F4<9h`>yO2lt0O;+;`#Sl#?OX8758>^3L+91vx)V7a zK-nPYDR;m9smp%NpGD}e?A3TlpW?a|{8x}~T=r@`kUz2=$)9=r`q;-5?B`qR(s$cs zBlP!B_}Lcy>xzD^#tt`OPr}>%dcbF$yYo1Gz^5PiutkU4Rfq4bf!iDUr1$p6!+3uI z5tpL3;mBk z=l%3kf9ub=_?5k&zb^dL`9I?&JuyAq(B~So*F0grD7~^j(ER0jQu*nJmoU!F;JFxieUjhD^&jum-*EfUZg=RGo*B=2*s10t^QDCT zD35y~{KjSf>iME4_#6knbwD0{&^xc?9;N`#=m=^PJ(0rPR8~{M5NL zuRrf)J=d>KY(Ij1jptZr|BLsxupZXB)bd}(^Chg)9$`J&1U_q>7v;hEwHsKU4x`^F z)|Z0k`TG^tqhIn|_k~#hbl->Nt8wg4rn63-!*ksWVtTZ$HN7>E`$5dZHPgC@?}2M6 z^?hkMjQQL8Ui$*xr}&Edyy}5RIe6~`AAaP!=PG@d_r zS*_=zKG1I}{P>gaWSyh8|Et2fYFFgE34Tcqmaj_lXCm~BXWcLQ;yeHyTEDwpTlD8> z^r9|$(-6Pf06reWdQIyepGaX?dR}?k}=0ybeBWI5YMuQWnyFH~-ha&%VyCiC_HRc^>=R+8?(* zP2~TTS&APBe0_lb$1h9qMZ_H_uEg@*pSV56S9+iIP~!2%5x1?lV*7#16z3ZLUp$dG z%Ci-Z8sgUq6pOmv@P9&nF(Yz&U{Li5qS}eDIc>S2(I`+=sqTajjt= z`S-5TJ`Mt}*~GPuIz93$#evTtK3C@@yl<=X6_&5!sjasUD1O{}NI9c()RX3%-%2zr!#kunZul@PpI0y+=hN=Lls6HFU6r``mf%|izYpQVDa5tkOuY0q z#Kns~`-Sb`tKb-q-o#HQevW{z6X9cp>S2F;y2`MBeI)VrL({pJ96ucAZ{p}fyuQy{ z!=DM@HWqC*R zRnNWu-yzz`fDUoL^{Nh0Z>o2Qeq&zyi0A6|v3=JLaec8)??W8drVjD_lfYfexXV;> zF2(zsQ^2=Dr#SvCouWP0hd*;UztTDL%ldIS=U(*Qe*3mgk)F2jVKV%@S?36R?vr{6 z{jAj`_S=WDD)IB*U^hD75dSB^p5E^q?M~-%jQ`#e%kVREvL4&N*2kVydVbQmCF8SqKG$S>pTK#Q8cFYIw=?7D zyp8>_&ZBsqe4O$O{LqcW<2O-!eTa+dM5%Mh*3;uTM>Dc(r2iEB(|Co+NoHJNXUFTqokIoatc>;XPXt$W>U*~%C6W}?7a{`TkSD@562=ikje&Pe< z`4xU`aHijUJPi6u&^4BG1QR%SFg^Kq-Zv(`y$kb5E8@>v5^w*A{CDt6ck+G-@#{Yl zzy1|*@j5pU*CE7T*W|q5r^L~JL0N;i@b48b@3vzsSG*rBKh{L**c<^bQk6cLndrjiN7Z8`;g!t*f z#9==~ocbM#yAJcxK;i@+(ep6h3@5(2A#sFNi7!7q$BUc3{fPHY^b9Ay{t@_g5aYE5 z{?I(G*9VJ% z0MC>4weGk6v7T@ImpHmWpW+lFUc}K{!utPa;$##T_c)7eEtxUo$KuEa0NPk7y-JOJ@K1N&F}y6seP+HoB8 z^cmEQ2*WkSk{_suklK(KB&6A(h^YGKWWq3N*6z2)#v}5Xrf7yw7r4#;RPvorg zP4*{>$B*B+$gdyyAI?XPk5ay%GT1}4Oqb=k3H%keZoX}U-ZsF#`((e8-dlfkF2Zz; z$^P2_%O>LRt|!j)GWn69&nKpM z5ABZ-FKxbjOI))0#rX(4G`{UoaqGr!5%|mR#B~$nyqW!AoG-GU^n9?b#t(dH%f5=@ zrVVeR_G7|#i{d&h7sZRn%vLpLu8|c4=ct^$MM7@B{BiRQ_`K}bd zV|zKC{U*f?d7O*cpX$s0Qy2E_6rX3j$Fk3KFZ*M&>31FN^xk@`xE6mGe9HdUX6!#! zVP9KuOr~!m`)G;_G@rI&e=EglslA`?$Nr<@PRyS#^8T9l?G@)@dK9nX{}U7!<9;Wy z->G;L*R@aYeYEr0Pd*EH7qS0;5B;^jY`xL`f7EyO$Nvo;=deGj{ZH@z9>IR~AmEH; zAG;@XD^AA$FY3AdtH$@fsp7+oukxLx=bkSVpX2wU*YyVM!%jp#9oRRVhaAKYj}tOK++J}v-mjm;e*10Ubscc8%Ktxj-&pW1 zr?#{g|GhuoB#-O=@9u(b!8QKkxBa#Dr=xvQ*Z#HTr~eP!PX80Q|8kzc&UpHtAmtx) zd;R}nIA6ez8Q?nw{GUdi_e0+(;EP_7TcAnq0ziqk5zHB#&2Q%KMXF9AW;*a%0a!LP-rRN^+Lf%(`?-1zdLcLptZ~c{> z*&p0MDg8CiGtW-IlBJIU26w%Kd#%1wX3!!~Rk0G?(L^FLeIG@~+Fc zOZW~EA3P7}T&m}>!+|#|&+CTQ8vM21u%3OwI_#_T-IVt4pk7;(aX_(P@5YJ>d3z`2Xk=`1J&J#S42reHS<%=l_kZZ~Fhq{ho0MC??F5L51;DhXZ;+9V7lI< z{in>2`ajn6>`mO-UX;i4zp>&v?H4cN|J@P%Z>)F-``-(QKe(L#&Gmn?@#?_;-ijwO zT@U8=o)1d28wtGY!CU`p`~5)19YDP~^$qYr@qeD@M4$0f>2Y?<@foJ;6#jn}U0yHf ze|YO};_q(2Y0v-biYGMw7ekNeHyqJvc@O5f{%5!U5a0cLd+Ld=?;yut(5Dr79btG6 zAz!UGEMMuR$8E}d-V%Koh@6f^Z?$eo^Sj4ayoB{h>p%0Y9ph;Jj^EGNyW%LU7surO z9#`|A;SHdl;F(Wa4@UdW>mj#$jQ7$b+nw~+d>_N}TWEga`ia@~BEo|~`IbIW-=!t zUeo;~c*}0AuQw7uaV_m8Q@FDVpEQk<)zoDgMRJ#eaYA+>C!x{Fd!R@od)b zslZj-x1Zk&zOTZ!zC1q$cuk?RC2}|r`K(26zRG%SK5hp-$Ae!V>_GZren_5{hvaVl z>%H~paqv%~cQu@n2>_>J*ev*gV9sakt@;!-5ls?&C97}v(C)!EhY!_|vbL&MJ z@6QIm;k>__c+!dJ@8i^UuY$*aj(#r_PdJV7-{Scb=<@>f{cYgB1b*M-I8x86Yk9t& z_{lZs-H-IIN<8UG^n4a^tcpjqT!p9kbO(4&r{52Ge9K92J?|by{OAe9o3^K}IAhy; zS-)uC6~wpp=l$ixx1QAxe&+aA+oj@G?O$8buPgPF`$fK;P5g2n%8Ph@A#thK_lx$_ z1GpvdYesv;&Bl2JJRj;8=fB0kd71J0Wqj?g+Y%?8;$MZI`6hUl=heV@n*MVc=LO!s zOJrtCdB4C@W)rDU0^4c9!Fz zWzo+a0Gu;{-@h!{{W#za0{-X3DL)1OhQXI7;P*=OrXKYDmg1Sgrv~u1%Hw){P-48% zjCX5U^rzy7_4P~Y>)`Kyz-N6~)YC1?BcHY|XT4V*>1t3O;Z!Y;eBH!2YrwAx&(+_4 zZ-??YpR}O=apjRuCsQ8C^P0fjqddxg*Yb$xw&hXY+m%PWb}5f?p9B3<(UUtF|8C@c z4RX2%{H9Z%S%#g$ufAmwKgq*-T@L+2;nP*{Mfznsx{3D-8MhjAY?JXe-NN7N5Yg*- z|FrU`-yOmK=3KXbX-vC)%cFkP&HT21PJEQyT>le$*@zy0To%`rl7sDZCH#1t=i|Wt z8~9P1@%IAnLm0O+_zgtvQz>U7pSQtt7S9)zN4|Z9e11uCtB7)2R}Nl`^G$i=EDg^SJD6BiYO=bH^1A1e>2*v^nBSfDC&{HY?^-5=2RPDQkj_js@Vp07UxuVv8n5qNz8|0dIJ7I^$Z z|BZRvxPD`Njc2@P(5?r3Y)IJ(JnAxz2bDdu6xjkN@f)<+TC1bmP9-!Q4xGQUA#2 zv*}-=Uw7`GZP7pKbuI3x-Jbh!n^3mzANBB%{*e#I0JjJpJN1wHxaCJ|v{mLffD*fe`Amh6J9Ce2Q{c4WzTPs% zISV*vg7?w1tC#uW^?5n`9+vs%^=K#VqwWe{M1P!@D0@KP2j6=|JsDr^;&&wX65q%B zXY;+{UN>IExYtqkrN5s0dqMX-n?Kh>#}nLpd^Y!j>)vC_?}h=< z=KU?exfi;x2A@5-2l*%TW;5{l7XJT-=Zmv^;&(oH)`QNL@TWKZPvZUUnI7xU9Ps`$ z-*0X|t9#nLzO2Um%A4TZ_u!{{&&`kDzKMaWWR^YkdTkn=a{|fM0jC|gr z{UXW@@UJ2F^lr`ly}Ezh`ZWu9Qz=KoPx0UWb|mbhZ5y^;J+X3)B7Fa z$2-}6z5eKnpLsdY3%1Ymv8OAsxBp^KJ8}QF^waAY>Am@?`{d*I68PSQzE6Rk+T1&R zK)!d}bRT?H)bGQ%|F{$PoR@L$^98im{qoj}3hsd(mfu^SZ{)t`>$ng3YWS;rq|Gng zk8D2bUTEX1d*{=0+tU=D>%M8P(^qg`{Ri~>5x6hY?{eyAg4a;`?G7C2h4o2xV?HlH zp6ci4)9AMlI=+Xl^=CyrtEPK_!@av(42}<=eskyBP0M;2#Me{=nYe2cGOK(QSTr$avUZ zbicXBxfgn_f}YzLPxo?r{rWlmYNvaDxtF*R_h|3OJ;Sewf?khf?`-~g#{%A_c-FPQ?3s3uxvFO7i;CVBA*Zt`pU-;T?mLUK7;CaZv zD9>WP|J!=}JncsT{~q+=GvK}n{o{Bqxx1gnx7~dM9=hM%`mg)L{k|Uev}=6Rt$W;k zUwcbEFIC)sqV8e${2={L?F~=-G@W(fqww|p<+_*I{W`!m@!xQDPr2z`3%$A*-p|$E z{E%Ec&Qk7im;U-*Y{|!Z(4PJ~aqshy+#9d^)jjT|)UW2g=-c6=?pL>*RoZ^<&G*qK z`PX07vT(o!+(+Gm`==#;kE?s#Jx>e-UNi9B6MNg1@qR%Mbf3NXS1~Z!-QnCn|0{Yb zI<4=z&)wrn-;BTRd-wg!36Jy8Kk2FQ(748bAMlwBA0NZs7E>mFH5I*(z7)c5G<=mk z*^l0r>=rp5hTM(=zQ*^x-xm*z_flU2euF4`W`0y0^{vG zFxt&-@Kf@%KK+cIf0FgYa5q5DPf7V#(+NXA|61-x^L#_rn!xkZm=8_>Px(drC(Yy5bB$|z+Z{Wqfxi5J9?9>e_mTh9 z8={w6q35z2x6?dqxbmNt^YlEwdj5R~xJ_uciS^zY@JaKc=@kB!gVvF*Z_fLsdA=~8 zo`B9P@E`90U*p=JUJ5+P)$@?#Xt_)S?mv*X*3|ftS=6fU7(WhZ2k73vPUWw~H zo+mq<2VB{&@kr~`HLO>gA-@J$j^KEtIaySn;_Q~rb`+?K3uTzlgGw6f-z2`}- z)2wGRDdpeNbL&wl>xJcUIeMt|rr&>ze#l?jj=yJq(EM&Y(|RE8A7(#oIDhaRqIHh# zU>p4RX4tFj)O?$WUwJ#vPuAlb(BGS|Q{inm^5-7!J@8lr{(5dcYaQkHvTM_MEzh;i z_juy3;oJ=$@2CB%!1;}FHD7z3sP&cgL-VNNYW#ogWA z-5oCO?hZxo_s+>XcfRNDpFEjOPL3y&IXTh%%Efwp3y#=xl^CthXfNxjqQo0;h5yO< zf3X-XH}n5AF`92~9KQnlS0#Rp*sm_(tRVkJkuIz&1-@C%;5u?L<*|T#SVR7<<9f=A z^!*}V50I~$`TyTsj~(Rt@D=M1xc=SGb=phTuMz$+)*&z93-Azq1|Fy9&J5iF{S`ey zUG#Ps=S9$^=M9dxnEgPH*xh-S7+3TP>u7<$h;U&a!uK(RQ)`CRN7>t&gz z(vdG?Iq#3=diNRm2f9S>zHuFzC5G!rmephQdj{kq{12rb^<=$Q4C$sk$FSe97;QJB zDA#bdi{}61sK?VNpEdkHd92p^qOlrorC5$@J(u-+wOEa3##qgtJh57j@m%a3{e|Xji0_d48J6yZ zzk>BmEd5z_YOU{?H{l>&Lhg}o$p2sRUirHmKRur#j!5pOU&ZH%`MdoMq$7ee9gE6MF#TK+ZXVXdSR$^+&G-SXl)Km;@j@bxb9|2Y z7Wuy}|2O4-ll4Mj`hS0plaKY+>}SerFzbrtNcOMtpXV1?2YffDbY^K@nOnn?$$p{8HHQlFl7{Oh=(x>w^SUb0o$AO zl?hYE-)>3y9DERX(P7GX?3N)+8HF3{Tb>VQ`G0uG|4aBBaVJuL&hmbkmV^0xGM`^z z*@OLpS#QU(8p~q*{}B0jpC#hV1fTT$-=w1{`weAj>T?ISGvyo0`U;l7-_7_<4O2$p zb}UR8h1<3;WfX1~!jw_ConZT$Valkwy$n-EVc3c2TRi#vo$XGsL|#8>hx~AYx5=MP z|ADuQbv&2$6A5~y)?AMp&M3!CH-kqfvpGRBmgwJy1Yk0F7o~eImx~R&iTkXrZ?fOW}GhY zmG_oG{2%;~_t2(vTz=RxFuf9t%5(4UWS?-eQkZj4t)9K6s`$U5&O`k09E z?MI29gYrlIH{t&}3qN_k$P%ib;~a_5nUru3@SNjt@W(he)r;`Tl3&PkCj7-c8Nyea zdA^6|Z*V_`@CD~#wH(OD4m?MLdo~0g^PJBpwp)htG{$(zIet>|FNXaNQ!idqo)aNY zIoHMf3AmTUl%u>q;M|kQqdW0b#A_&@yLjFQ_l5}n%zO$s$1Hez@tjmy;#YyCKhH_w z{IEVJZJlq{eu3wnaQ;m62IrRq&mGkFOFX}Hg?4q3=a?t(ycy0tiF`}_=e+f2p0C4w zVS--)_CIKyr;~lC{2b>Y^I14)AES7VESPyeVhL{}>`TsL@f`dRmgf2SL^yA6&O*qmI=N6?N!2Xvg?;xI|cUkA>w7ppRApFMtS^7LD z;28FV`yK`E6#8YHTNJ!LvfoPT&mR82j`UnJ;h27wb_F;x&I9W_q~IGxJuO2$&P}^` zZ01>@U1J=P<9LpLl6qavJQvC5jmU>g#0&Xuw7!v^HpH_h@xeJ&!Q&g{iaZPAj|)?t zJ(xeEG4%uYN$PX1R{jq;|9PABqx?Ue$p_9~J9wTG`HRFKEj8_n`9N^bq}UhW2%YCl zeP(%*dXD>0#V@?4oUXGDKOxVNPe$yaCQD!DV`)r2C!`;WH|ga6Md(+Xvmf%+h`gak z=KL&vE{ggJebM&A`a-KN{6OAGnYaJ%-cWg7jCx#^|0AD<*aiHN$rruJ-;wuH!y_MI_ksuRG1li%S$<=_ktUX0L{FZW{(}Aq_c+V^rfC1~ z`9Jb`X}w{6JjONbwhQy6AWx0x(N4-W*3uv0Lp82vaPO$*3+qX#7ncFw_#Gg8Bd?ON zuFHhdu+KuIBZ_|V4)dH{W&W~v^wa&AcMJK?#GY}#w_b0+UmNg}5q=H&=Y{O&!+d7A zXI%Q>-gog2ZFp~c2i}W*i+R`faz3cV|MxL3-F@c8L*6&hm!Ztp_B4Rwv#f~xp~iiw zUzry$qnS^S`7hTaPn~i8_7n3*7B}-$A|IjT3w3b*a%sLH->AStUQDsq&de*ghk5c& zF%MvA<{8|?b|0M7L-tRKJbVUxqn{z)OUSEd@D2G2#ZHmmQ%VoeVf;dw2eldV|J`8T zyczueJ@N=jz7z6c8ToVpdH0OGNTbOIZ5_yGlgCnik}N+zR8x%dkeYg`Iyi9LvIXzjI``T=*&(%y2bVhO#LI>YxsO4=|d_0 z)kXYXFrVZ$;@_3})0p-)fc*xsoj>^=NIqR>zR+Z((}Vmy!uEe-Jn`40qXhN&I`edv zrG3|-e%E52Oc(72c{BAqOS^zxi=HD-rtr<3@QV|l8Ppf#)fGS9oq9Tt`E|1~AMp@A zA5T3Cq`p^R|Ln|HdXsrm;YUPYZkhVZGLCs@QxHxx+cn|%$ge8>P}hEo_JRDjGC!ZE zpFum(tIEvFi9D=Ar;%sX@H@9*H^$G*yLyHBSCJ1^_>-Grqg8xrsd4cn?C+2&}6BwlD=SS?{4*5(azbNvh z8h$UF?_&x0K6aaVS7!xkJzB{5yEWl%HsN4A!~aC{f3y?5L;hCLy7+e zZ(!b+c4>k%e@iegYA)to{Xu#bSb1Kx|090jgSHoz^O;}PgLEU$tBiZY;+tOY5uOPb zrSLzim7iAlJ&<%wBAk_^-{7M$-ygE_){4GAWB(i+zasO|W+#73vjl&{{(k~*Lq5s) zUYy*_3rjgPxAMqJyK9u&P4aOo{x{YOulRm_z*^UdUQFcpbGZH+#(q!G-jLgM=7lZ5 z_u`ivZ!yQ;LpmCm`D+R97xAxZ)x|FWzSu3s(|k7NK)TX$-Rj2oc)aiHd6)SKD|4M` zXa2pKeBTb{Ivf4&IMEjUh9!ui7dza`Mm@V6f*pVa(6f^=eh(I3Fk{KLB2SWhAE zq44!8`Ebg5F8?EsrSR`D;jHIA$vWck6LcB-qsjUH0C;*G#rGBLTZmuo!1s~Ld_QW( z{a8E~yrQi46zPvVslt!b=x5M%k?rwbD(@@V`97W3dY==03*>uUX1=H4{afA}&`#_P z`49zOXTG1~eO~y1eO{sW7~x_cM8=Tkr*51@^;xz2-aH z&*OO8_}-fMKY0^Ra9_b4@6CoEeaU|3Fuq||JIwc0(mR8AZRh?q_AA6s9_0Hi;K=-P zm;b-UK7_Gv^$+18FRaWrdr>!j3#`0XLO=G;MNg0iOXxtpQL&ScENhbvGoKXlkcwYy z%eZcU;a?5%rM|^S(XSPx=OXtFb`ozq*LuzIx9~mPhkSuP z=yf3J>28(ckAHA~r3mSsXzh!cdLip4>>r68V82KB@P%~kC7mg({T89CH0z((t{?eV zp7eL3zR$7t4~3t|^DKH(-{POh(Qes^=yO-@H(>ur+9U6&p6AGqilhUj&|jSVYDm3F zLVW_ih0Zl>5B(85x=;>rlnd-g@EAls4Yc^E=V!vfK8du0eTkemSo$gJDDYp#Yfk;{ zO*v!#M(;}y&r0kUPygY;|FJ(Mdi<99^MU&v*gunTA5hOWlkaQEmkHd5c}_VX@2=q8 zi|wjYF4!N__>-^L9}&4@A4u>=o@c2aVZU*d<5PdeFIHDiW zL-9+{e;FV8E#qSz5jwG-tL4c$^1}%}$TKMXZ@~S|O88!4yr0zIbL5j1JKIFRjC_7t zANjpyDfdCwbAL3L?fP>*7;W9ZqxFIN>-c^o{<0U_pCi1h+@HnwN0HN6e!m%R;bA`4 z>jAVk<~`(>6FkfCyI3Xbdz9GgZPIm@<7Vdfx1!efC$Xp8eBOlLs{#lQd2nT%iu}Ij z$?u(;o=c&o3%f#m$`d7KYZ^S+;ldp>MZ%93Kkk9y@V#-PA>}T;+=#Qozk0o5ttL>6- zA%F1``2H{Uw+8(s4vt7r!r;Vthmj$~__V1o9NV{Gh((;CE-_qt^bPb_qKae%B+M zAj@8bAE=9d;k&uaE8+bA8{zH){>Hw+NtVDv;D4dqksn*=dq6qowCK?MB0rth_iXXE z6RG$3uCMKocy6Vg#94VhwO=Bhrv5)9yff@~mHhcgI`T1I;vMNmUQTU?j7vcNOriTN z`MHDbRv*da zeVJkDm&ofq`2#s!}6EDOMnd1tb z8)zRbIS%sN%KuGC7vh^_Jm4wxVLXw`b@ns!UuR~VQFg|k6=uFk#0klHoQ%wa>5g{B zzT#)%lY((=h+h)9&*C_Xt#~OtkG0b0_S3OF#udKYZ>8ho5Z5ODYbWy!Pa6Lb%FPuaa4$B(*Bk7fDSpwl!kdZ5kDpVA9-`7U2*2qEWtP{Tm7UI@K5Aj_3$1KJq{Jk&dQbA^uIDyMa87 zeYxSZ8|bC*F%!qhh0@SJ#7BzVZl;~~wCqm$`?KFa^v8=We=hw;Fz&A~@iF|r5jU8G z<0|6sO*_s`cr~f#xW85OycF%^BJB{R_M@ z75o2AI)R_`-$%Q@M*bWi-ysK)8}wH6vw~$0G7j`r{;x|tf*pzdR-zu3qu#)7#6Dqv zf|nol*+u>h7a6{GsN5=0#y&pk)L@9RFpKynA{J#hfdautbTlOOQ zH-UI{B72A!Fv(yW;OA>W94Jj=Yi>89@5U9v;8CTEjja}BA#6QP*&zwMgCUp z&zMg&i}k-gFUo$^m?yOf^SlPKKk~+kA3~h8_#Kq`94Xsn=JRw`o>=)G_d{#H!no>s z%+uO{?fjUBwJYPV2NI95%+orK@$QJ*7ymYu&yn9&^d9+RMV>zFAIf~g6Nnf334O>* zD|oMDe%U?zf5(6F&#on2yV!3#@k8EYk?SM!?G*DLbktbL1oW#7f%dGs$@_ZxlJxV@4BRrf_ka^`k`(I=~oC^~B!Fdev zzc+~YAL4U@{{wIN{~-ILo%oY@%Gr~7j5d* z#`v;+0sZ1nei83%gqx=g^_uyB3$gx~{QHM+E|TtD7XJk98Ri>DDSCo@%%V5nDKDJQ zlIKZCPfp^WmwW)9g$|4(_%-GKA*2`iirtJK@(GK+`V#LjJ}<@RHJOJP^om@-f64fJ8{vX$ z{C`S4I7ogbH1l1Pe-Y$EKDLKn6Z!|!Z*(U+VqGZkvYGQJ$J@a1 z=Cj`}(%+ivalAJOUT)UC8^U+IkBVRJM*fr~UD)psecM918WZkd^79(unD=`u?Jpz(%u+9?wjNp2?Iq4WrJg~l& zc34k|Kf1v7R|)3<>Bl--`(2I)xWbomY>#!Dwi~XK1`>bRgUAiz%6wj%<0+1ZaYdg} zkRI?~>2JN~ zOZ_h2&#`|catLL+mfTN!j(uoj{}cOfBA>Lhd%V}ndp`C}^mwhb{-&h}rd=R+%xsUMV|MoMCcv!rz%ln*TfHyCee>bqv&36+zZ>5h zWj`kw<%WCbgwDnM-m;tDnehEq_CIibQ11`&yEo#0MBa(G4~{qz8E+cm3XFXcGp-DA zn;I|1TOz(&{8cV9KAZ7zUm2f?xNRLr5y1Cb##yd6HWuhU1nuGVJbe~&UoCO0h-=IjORw2ul`QJIO|iOL-unS zKitxaKNk8z%{XX3P0s^|*2`KvpU{r|a1KMui{p-9e6$_(82eyX7>Dg(T=q|w=HCJG zG1Tlwe*9v*b4~vL9_>Ys(9Ve4+E0G@S#i!H$HT;HG|N>iPqEx(;VW<^Fh03D&wW(j z`4OB45Wj`EcP$svSC8@5IIkgcJPy1J{$*lZbr#0C*CE~coLX*)NH5~Zbw50pxKhNi z8+M)>@!7_AZ^ZSBobyr+Tb)|oOVQ7u`yK078Hb*a@$~yZm$7ep%*2av@=tlL1LsIY ze=)wcH_Gv#gMQDU=?%tn~Uy2D$a98<4Iou>SuF{ufpFb zo{QP!_*ZX5KM{8;V;hLh+WuNF0kyygsaDa zz8U+gd8i)&mOhG|0G`-IxFvVdx0|fTqo2e%(q5PF{0Gh>34O3{nMZ1%Zs^5%_#wkz z?PHvNQQ8I09f^O(ISpxlj`n_>=V%u2e;@j*T0B2+**c#fcX8)+}w7+>EO zrJ=_Q>8BQ3=c)AfA-0=|xO>ANY@uH}%IB5o51(`VN2CYmx`dAj3Eyt|ThcLt=ctmv z&&qsE`z*%z{$KpxJkN%6Hez2Wwcn?Iar@7?7M#-%c@L*wT26l1$o~fPtH!w?Lry11 z*JINEi1fE({Q3}{Gl)Z6ykY0P81LSeaq+9z4)cS2H_XmBZ=CCv`5yjV`o(kpX^OaS zL+&*h*Z-Dr^JUS`;4jV_2;a)^T*4Hb6Eyg9l;;J1W1e7ttv8ID-plb$@q7SEv5Om4 zJiF-AT;i9C<9#MQg*o03E52Ry?yZRr_3)e;a(cc*7I-g@4 z(aXM!FTITajUVC*rQHn18zQb*^lU5R2{FE`gAmWD{Q#dME>rMB+^X2w-)#4Q_>3Xm zh%c4(5AfD{#JI{|tRwDHS{f+bb20hV?(`?WG5$_~?Si(5Q zbymEm;I|xcOU69Cn{l7$uh$u@_hQ`CYvK#}>vdmb43QNoKsi6Um!1u=;=J*CHBMd5mzQ~Hj{oY_HRvk z%5nT^jMsx*iTvG7{K!``KLFlaL{6su^)=)5*#ABC;vxN71M24+`i;-@D>(0>*M+pl z0Q!#y=J^};TWjhI&%v~U{>gg-{pS$+t46fn80ujt;L4Bs@SFOToc4w|cA@ho;ls}e z|C;e!!cC6zjq?TY5`TvCJ!1Fg_+GYw^U+w$QwCn!c`j;%HJ?bo--MHZLco6(~iY;QyrmWcmY~QxHCvqMdlKMEth+Kb(^h zd1j`))TF;cUEsoxh&~nKc%Fop7V1VW`BH!kbKO-5(4?ivaIx!9&c{XG{nt*Y+@qC`g@+Tq>_zi*E+lp(I^+qiF zPhwnW3D~otS3POhBWcHRuwP?e1aY~dkL&pV430CCer7)5Eo3{ytxCUN^jC=Q)cv`S zG@t$_%G&o3{fOqiQY!8b;U09+SHx#a|M6CwpXft+#*Lu8UPp0U)J3o0kEH)83s21# z`YXiE$he62)P90-j$1kYMLtKIpV(~0MK`N8zONO--uU(^BnO2!Xyc0$KtD^5l5eQxbfN!^Se+=uqYe2#nHHGjCDjr}v( z$3(oHwo~peCg;9lLaUvOmzVpF`B|3dzHd$LgCU+t_T3S;CHtq?-9=;a{AFvOq_i>4DZ*yOf{aWxj;K{g4 ztmhIBgMCuLV?9g6y9oa6*$;Th{@_^BSA%gZ!Q@*l?yDlMP_NG^N5mTmKM@Zo^jGBm zAowhD1>Xc8#GmPXWbPZbBHevR2lnm7PJxGszwlv&wcoD&F8Q{K{bzIkb3Ezl$U63i z#Xoc=K7&}dvusQLg73mtd@m9D@x8(P4kG^X3&%;s?>dOn5k6v{TKwEM^6w_wZRY;; zG2(;o6tYkIlYGT~x9BC}gJhh8e7=l&wv=#AQ$ANMxIz!;khl#qz6tUY{eZp*zwjMK z_;;J*g1>@iPr~=%xVg!v9DJUd{fYq}IXBDrv)8S(-WIX;g~dKDTXreqp`GAWg79D$ zB5!=h(d#0{$^GJfHoo(i-^EP(5Pt8ae0K8x{iOdD@jJukuqPQemU;tw5PgOnh@V7U zn0)tfkpAgxKb87)o^rUvau-YJmC%QNf>#4R2mPWanN9trzrsGf=zm)J%_Q`fX*ut; zBkR}fTrUpee3OpzLVvD9aqdX$ z6Z!n~e8Ksl8t0iFoClD<%A7x>#5!8+?+54UB5c=@cw(I_aB(h2=Ihp+KX9H&`nhx8 zy%6!hxlDl@#`QoNju*!H`UKYt*q4{}StHa9zukxHos7g|mbsqby!VED1i!T20YBqc zihRd85&gc$`O3pOKOpO-hMZ5^kw1SpAGb2~ne!&*FY~*H=z}Ni4Bv5Nyn*b8_*1D* z{J-xzJKNt|jJjT@@q5lG;+27Q#Bu6%Cg(qV2NC~<_*B{dGvn|36JO|s$p4I$XHM3I z8BMyk@2H{m?eLVHm#CM$)XDW0ePF3(qZSh0=M@Q<_80ss|L74g@a{FoO z0l%x+IX}JQC-r4+qi|@`*c3yhwtv% z&k&A-{lO2x58vOVUlxl$A_w3t_BM?05YH-d2OhGH0sXRG8%;hU{!sK4c!-_k<@o8? z9_s+nJIGD=@QHFiOufXsB6!Z?^AOHM6|MP9@EuM#SRcxKGm-Pr5bE1D>U}Tv!+J;i z4Yo@}z0G666**$vAb4ZFBki&76FJRgdo!+LJ=Z};toc^(g8qmc-%+2&(~j0zb|U{{ zUe@xbzRfi8qP)|R@5L>-2)_YW`2ErvU+_F?t!sq;@to)1kdKIK(ci%>JCJ!Bb|mu> z)>&ddSXYSNBJM!&OG3Lse1rUtQvR>Ney|H!55oS0Z!sJPaT}&y2;R_dk@pn#L!5@_ zff@e*eHZ>AUP{^{-c-grN_#p+zU&}e*oDwNjn6lbPaA0uYpmzy_|hKsCi=2~{SkjF zc*N5_+!=57p8x+QeW@6C=EwLu#HR|}0LGy?81LoJxG9vv@2ZT;E62FJM2sJMVe*Y} zf&Y+yDZ`Y=FD=J2{J)!eahHCjC*@I#@aqvS;&#N(R3`l2v{%@T@C$k> z^GrD94*w%~cd*76J6%Zn;CDnH*HP~fpDF(E2>ao=@N)%A=!w`L^h@;NEb%?h@!nEz zAb-K*3daRpQ%|%Vk*_Hz=e(@nVEfY?5Be(e2KXd;H_#eap4VbrV@1M2{GZrmO~&OR z-canYI^+MsC_j|au9a06zO)Y0^bWM*Plb*pguj~cglpOE1p6Q2^Q%@}_`Z#L{*3e? zPEf{q!1jon7XIJm^Y4s*MZBi=^Nhz#%sA;3j7Lq>M&pUNWbr?^7eeSnoU!cTI?zlvTX&Q``BMtXNJK6Ve|b1yKy{J0rcO@4e~`xC??p5qk_*Lqti zT-&)LT+6FnxVDex;hZPKwOw}(*LW-s*Z3Z0`&Hpu4tK+~U%3;m@qEJi-f+#&b>Z4x zR)%XmI~lI^9Pq^N>|(nP#AgiKV_eaASh`40S(aSD)+z)$cDCH(&6;}VX)jOE*Kz3zJ- zuKii!2;C2LvCBW?Z?*`{$NUkRu2Kt9rR4> zq#yY@jQr>puIU`h_B+Vuebht16TkP_;*-d+80pFpq4lW<>1Y(8=fyD6w=hEUe@2AX zzW~x-Jwn?9_$>2S?g*{d705sES=Q@r2}q~@z{B;^~a^=T&iPmR=k zo5uS^7e{LS#{H&xz0Z2DNUfheBefh_vYZ#G`LTxWW^lX!!mk^t?V%2zN3p$=_nK~t z)Ox(0cx~jk7l_v#_Wv2F{US<{%MXt4#ruZQPW`Tu8@iK8?f7+?JO z7xE{gd9QJlhKKedha|j@H3jce#l5UDUh_z;KZ0i1#nj=c`;>?AUfGen#};*&|DvL_enhife*O>s$^6lnb=;pTcH*+&>h&@E73V#< zz(dwqCLZZYUrCN1%KpGZ{0;8gm2zs7*1x8t)17qYWj&1JKOz4%P;c&1|B@0;UGfcZ z#NXiFUXgEK-lN-rboI9QCgV4^=#q8jD7G6-x&~37#*trv91n0sFTfv}7y1+KPU{|E zfwz$K#ZvzOPu_>7v)-BTmXO{}r2jPa;ywR=&3mv@^1j}Ty!SUd??=uOt?i+Jb^ou> z7t4EryYN2muDt)cMYQHqY2N!=m-R+$AI$s0NAkY#351XPz6EYyj^l5^*Xu{#Pux3N z>qAf8J8a(9y`24U@38*95Uu$!g7?EN=KapN=UcxA6K~x6EP9Ln!tZ@7d$8Qbeyc3_ zB7fXFEAtsj(a-JV*G{&ZN4WFZKTou_pR~L$yc+RzBV7s2dz2~1f`o_rnZ@6hA{>){ zy(~TmJ*x@#4CQc#{o^NEMq+3Bif7H4)7lL50<>-|2@>Bjl4e^ zau>gbd*nrLn)3NXwi`uwg~*qw)Q3#`|03-l_i~Hh=|Q{mp?x%@-$a6UF zZ^r%3vaT6J{%_wKMj!2Q)?Kko=Xp3hMVowx^A{?EjFa&Zs0 z_+ii~bm6{t`M)Ch`Gfk?i2U3`xFcD2k}tK%hin}0KIK%7_e9rXJKPU0dUlxO;J$3p zmv!Vn?x7ZXVL#%3Yx4iMw8QG;C+@EozdeZZ0z6sAgAUP;sr>&2>B9Zk`n{U>4_D%S z!F6~Ka9!RPT$A?~M_Kn3%Q%0rT{o7oyieN2_5*l-avQ>F!2ZqJX*uIwZqZ-d*Dd}L zbc^^Wk{{3?{XWPtJ?}0413nq|CYx|daaN7OIDD7+c{2h-aC$a z(S_gJs1N5j-Vf>#^jYxxhw{b!Khuyu9)#D@(kHne8+eL-;)#G!FBl3e?ioO@I^g!?qw&)SPtIT`5i;=F{lppL!^ceak{lF)& z?~E+Hsc&YzxW!Mw7j`c5tvlp8cvMaI0jB+Np5MTE3+rxK$28-7_?+tplrr8{K94u& zKdv)6bG}W_`D`uybr9#-KAb{yG&*nGre46$2|tUn4n39sOVf{dQLkYSVmE1Nzkn}( z3HQ%Se^XEI5}#H4ANDBoR5jXLbNb%}EMX_&4`!S8$@vTG9pPUmK0m(eb_!1bA844hFM(C;eX-7U)Fn<$fF$J^ZjWz7x-S+ zjqAZ<)W4yGznJU6iqzk79PcRChcEbk^@;uQ-X`{j_gK*nl;W2P5#BBCgE;yAw}a#1 zy-U{DcpnhHxzTjORHyh`L@IiuJ{o9tb}+us_y2g6|1y z9Vz@X=l}lveNnziQNPte?bx=Cn%DTTjamn|362{+52_ z6zve}4DmZh=^vo~0uSpWDY1T$^&r-r(jW7u;CF%ixyXJqtaY%A2fGotbJ@>a-^1?3 zpTkbXPJgmrAp0LO0 zb(Aee$-1&tjOKUM7`@J`z;=b%5B)_>Dn`lruvmkJV!J z{23Ih<&Zm8>q{y2ZyKxZsuJ55i`8N9wIpc+-bXWFW5f>fig$;;PS z9Hc@ger}s_Wspk!r0#C_RKY6joA=>1?}JndzrsDrJq=PFZin^npn}!Kp4&Io-5jKn z>`z^~CGKZxfAr6$K2?HL=fJG-_Rt{J%YCQcdB8bSI6>(YxF5@X(c4553kIoDbN_B{ zn;WPeN9DcdGcHga?6j`+@N0o8&=HiOM?j!DJuh*EXDU#YEA??xfy067_J;!d>$wG~ zg1$jM*GdE_Tjr^4%i+9jum1MIe^v+m%g>1oZ^e7!JZ`S58}4~N4OFF*ugM;~AV}3~ z^X6SF?gNcZ`eBfFg&=jKWy;dAOpo)db4#@@R}|+}=VbXET?zLwZT$9d%-6&rDq?A)!q0Jj z^;@pQkDDwAR!;_(jsJ;zprUR}Iq>viuxd1SV1Yvoga3u=zb(yQr*Bhk#e>!F#?KCK z{t={(22>s0^=Oc4uO|fhlQ!Yrt)Q4fTQiLbQtLP8{^v}QAXTHqosHM01gRd2 zCww26*Lwb>VN~ejUl#m!fO7S7kroVVdfBG^gZqWe=FiwRb{LxL75g2Gd$~DfD&ET* zqV|rj6rLz$h>9#bVu=^dc}C|>u=w=6V6|R-UeYu?SY?^um%?{VHoK{ z)EW1ByXNEG+kuyN_o|r@dUEOLvT3z(-Zw7K_r|S5RELh+^CeprqS7V&nBR%>Zhp~0 z-zGqRJnjZOsg3h!-nnKhK0Y!;h34)WVf!aojl6Ms+vRJ)s(sBYj}GI!;ku^rOZ%@1 zRw=hsU6OeU@J?E6=jiW2s?{sMyr1(1tJEthE`HiHSaliJbLYqo(Es>-JDhWaRdm52 ziyt2hR)-ffU3?Pf-S$k~6`s8W^l{7D$hn__)r~xDEB=7q3_4r6SAmbgYRvD5Z;x^Q z@OFJ@a$V?KYzvp@AW4``~5y{qu*YC9AvjoLezOE#COG z=eFPw)v9>U$ibjdns@uzoe3{(|5ciCSD_ZMC}c<}BK`1f1`+S=#C zZ_kODvG4=@@SDPw3x1snJL>gvQc~Q*H+R>^pn1p_uy}Hn1U|#9c8Ab?Vwqrd*86wK zYuSQT*-SgC{SA8Ex)u)}SOn)57lwCfhx_DyLxRfQG5|Azm5eQ-&9eE%TTZ{4=A0kG$N_M%Pi6$?^@W|U46;~u0=v>00W z)Ve_R;`5$tDbEM0)}xY5^{E)B2A0TLCdalw^=4kRVprY-s+J{v(%l~b|2(w7sQlf~ z{-V?OY4t!=zhINK->L+vZ>y%I*xxZw^$K58;h$vK82mPLsv8jQlH$szJK``sFDu-`|xz!=a}&8#g#>o*C$c$2j_-? z-~EzanQh1Y%-Pzm+~ZvyWzo{-8zUc0#&KKsZ%!Ae=I6Lo=Ds6PT~(hd_Z$?csyBGN zd+JooTRGG8>**b+X2e`fxMgjC@*6az{rwAps(sHi7y6A2RGul8%?jEdpejtgIVSpT zfLh)v&)q6_1JswuD}ARm3RGUD28HzW4OCa=7M!=aPN2$HXZ+fzm_YUO)R4~^Mh2=! z8Ar~WdMr?RckkAG+#-~@6aCfWOrW||x_dy6KY{A~$~j-Bro+75{c*!6pF_nAerBkw}b`HvPmAt(Ryjoy_EQg_|T-a8l^q}EI+o1y3NK((=nvtw%HPm1U? zbx#%C|5&-@py!Qn|KsT7|Ky2AzKnH))}}9p`#NQvfP5O2ZgxKW4){)fovz*R`k=FG zo8E^82dbmFHgt)O4^Rzqj4XBu`9=bgv@6{U_x?Jj+)v#$SAbe`q*~Fo@&0Odw#%Mz z-2>G8HJR6WAdkxZ8#(qqzJ=ZkyFw+&sYcSWxZNpTOX38zw-3BL{oI#rT; z<@)vL;8f|$UwpP0?V}TINRaNKQ++Hn?fp=1mwFVi=0To;xNkP7S?w1?Txzu2@}3`_ zxm2sUZPZuXL)#{0Esw^?&*VAhhx&NaUp2mxvc_5DkDAc#`nyrM=XFlG)T5sw?@GdJ z8Ot7u_E$-cT1a~bZVz3_Ho*udxj)v(EvH_4$t-#VS_ zyd3u`7pfn3W}{nxsKEYP<4E3f6jDL3Q(=O(8c?p@x~Uqx@sa5A8qze+#y+Lx45p_ijx zWe!;BuTqBh@Y?&qUnSjhW`q5`zp7aNLf>=!04KC!Y)Arsb@oZpI^MYe-&oMxa;c?W zjSDP);8Ix+l|DT$(qH8qc%?wI8UA`*=IgHtHAt{16nKtr3B_&cui8JIc%}A4e^uIj z@bT^K{Z&-alHcbeFW2NZeQTCSo~fk90wR&WUauhkmroQXY^T2}c4K3@k+`oq<(07a zr8?k$FZ?svUlnnjsdWK(59*sDWA@R|8?OUX2jTwVj$h_{-iJJ1#V#GGdf>TB4N3Pi zvF*D{wfBby$Nj}!{uIcN$HQOkJhZ#{k(B=G-oppglYyS&1;d}Uf9ukIb1L%nOe?T- z0rGLBZT=+1P}~Q-HPgi&O<`w!_C@ZD9p_Swj0N~VE_Lu%#xenSUCMTUZr|QxU20B+ zN9F2cv70xh|MbODPuD` z)qqm(Z}$msDy(u|M>IhGtcaL?ld3w@o`e^tl)3JwmMlM!`(X_~ z#=TkRr;1%ovgZu)UVYqlDQ5F|Kb0(eea`{k(SAkQZxch2=c;_IEByi;>SfQ?G27xC z%CB{7?h`K^YUz+K13cb2RP|lyyfQve}9nqYA+fj?SK^Ll4}Oeaq*)5B%ZCZ`lLKBQM>bdKYFiN@l@X8kuHG!on`K z>(i00+mgG~m(n@YK5qm6H~#U*oF|}nSf16#z1tHielK1HemmbaywFy1sdZr=W*;i< zQrT|B)OuGI&o?f)-R~6ipzrGvw%?%lyGQ?r@Uuf=gZ7nhxzwSIwiV0!xYU%9?@JB_ z9YvQ$^&S<8yk6G}`=@U1QrA7|zxD(j!!FdC-f1@ezx{F2)EO?-qSTJ3;~Th?GhtZz z5}>1OrN%Ai9&o9)t|nDZJ#nccEenNKMV_}&7rUlxfqTUpmK&7EYp6@rIdXPo_#Br) zcEFKoFiwlnt55B#1N~lJZCAQZ;16EslO%vW84W;xn#=ok?nmA;XxGQdubisT?wJ=S zWN@jEy-O9Yk>8~*=I)g50`kwTSpO_04)ayHzyF;3ihO?duW?=WL4Ku*4cJ#aJ^0&V ze&tv3cwS;$t6p6(zr6mqHjM*vh5E0o=2XUOl*;Z@Ki>MsJ@4;S9h&7&r1oQeyD=?p z(mJOaJ;C?HIpkf-+AhOn)pTnAhI`&mRlIe3Mq#IVkQ^`m z$j^3RbI_NafaB@0_vqm*(C4is%GZYeJW*-3w%_Pfv!=bNbGI1eR{NCiD%iJ&&y5$! zAdmCKQrH~G+gH_|K7HE_E)}{u@tDK#7oUg!JhApN{K-zA9RU|ys*>RtX1P?3L-B2I zPez`$-oG35MZ4DbcYf;xJu#-Soo`&Kfm_8fnZW-tYkk`E8SYZP>!(JHgj_3}Pxrk9 z?z6uzbIZzI(1&fq{raQ}cd5_++Nw90aPQV<=*OI8=RJ1hbg6{>$K|Vq`|J+} zbbD3a-KCB`-#KhuMwg0@_0IkpdH<^S?|6AW=vp%Rq3dt(sc-!}lR1Y|U77#8VYW7iZ-7$`j7*#J`Yfkv`}ou7<&b0Zr`>{@V*MlYY7?ibXDpQcooe6DM|;~L z-(T352APxM`GiwGS1y%sDyJ(tS6p(Z8g6Xt{eWM*n!DoR#OPo1;L*{29V$=7!>Qv( zI`sa}c85B3Fg9T-yF*Rfzh#AQ6NmbEC2#5u$Zy!|oLAc56b|**85QxXfJ3d^-?H_= zFMg`_%N}2+z4cRXYb8H1y^}+Eh9`Dbn(0t8Iz2C*BcDUR}}e;yGz@0(2(ulI49a}M-qohcea)XO%|2f>f6VZ)4bC=G z39k=K-ua7<%GRdfp2YioRpjj}>eFAo>Rr~)OSh-6sm-(272I{vri|nL*Hd7eU3hWM zU{^OQg%z){$fkx@S<~rsZJWxNpxL{JZG6>$ z?Z(dwv)a|{w2-%h;<`68E$-QiZQr(G4bjX8Mu zo?XQZs$Rfvy48ec^BKE+cpL79@Ora zO_iyW`YcPo2X{0 z>FV5_Cq($D8}75>0)v{V7c)MM?YGufEzBHL=J-utHLu^3TD>>g)b!OkXFqOaQ#t?6 zw)M~)o0?YlYpu9-Hnsao^50G4ZR#x4`{#9=s@d7?_rC8o<&ACH%nPmhsZl*L`rWaq zI@w=6tYFB?SVvs3DbH4K3Y}YFQtx)QuXCiwA(eNsJ9dPrE8%EKHFn zw2-mkfc&5n9%k>}ErDINx%Rb3lQ6q_mEhCF!dsz#32VQ4Fx9Rc>q8PBn{HPp^Z4vZ z1bg_~el@XuAN0*wh(T|5j!XL9YdiE~`RTB*-gY&v&!=n!U@x0WbXc4K_R={?hL*(4@;eC=X&tt?UNdnE8EqZ**{kwuWwf)FE`q@3-oo)l`rLtQFfKO z-2ATF8`@Rcpe3VvjP3WXn`R!^@+`7)X`jJBZwA20hsS?%tmKHf3ykd#19f>=!O& zjQ!xNcH|0)TR+ZMVOKBL#bdr|M)btN%g6hw!H%2_@22)ub&ggV;90;|`4|g?E50gs zufBb*mA0usH%C&B>^3#0#F$ZMpZNY;--FlgKAU{inp+FLhJ5l>(~r-ZRI9JAib;9C z$iqE1Ri4W!vp*yu(-Rsu#MZ<0W5}XzK8+!`j-^+^E-0Dh#$MuO(T=EL#M7>Na)A z4cI}^yCkLT!D5K zc)#ebF9YqWN{+I&EJ1d4X3OuQMf2Fzv_`4hyLGUuPgB~>AKwr5Yj1G;YFFshx&ppI zC|8b%?v`w`U1j=vT+arpP#XIiSM4hAw{G2!@3yN)9n!ANINq*?)~h$C*%`YUR`c-e z@`?Ramaf;*fBb1zUrKGMQu(7@T{d38)A*?bezPm>OoVwXU(0#tV7H>j=x^4yuJG+L z;)q>U+uiro;j?!2SIrLl`@-KRI_I}(P7yzqH~p}fiKp)%)xUh;DhtRs5$IzI^bkKB$Aa=>qM-Kd%M$~g3X zOF@VF)_hrkgYFL1;d{fzy^s1Syj@H<@YPSXX+3hzzFmH5W&HlUMV|Vp(won>nfk&{ z{hYYH`R^lsYQ&+aSNF3x)C2cIS1u<5omH{3^}$cANEGC|7VDNXmzte@^4?E+XtSt^%v{L7!VM=NHi0r@0) z<54(i28T*uY)EEws7+1x*WFXrp;~P@p7Mp$q2#l~bcgyG;6H0B-aE0{&zxkdLtQxg zN9~+}_v6o403ULw`;B2?cpnu#?%+_~livBg#CmYY+Tztp4tJ_<5PrTQ58yGr1$5n?)A64&4-FXi6&$CjkT4J5M;c*eK{Q(Zu>8~|e zvXlf}#{Odt&~@fb%eT#}`i+-e8mkcwRe$Q&q^+=CT-f+*j_BhKb!h0tHL-Uc3feI* z(MN|`gXy{f-sAhbN;vTH6+m3w2|{Ag6JbBD3sE||8* zXjc*Ezx^A1I=-a>-uEwM5BeUF#;F=#Jhk`0Iq>I9(EKh(9qN6v8r8R5aHw+$!Pv_V zWwtLfe$wl7Ih`sxU+uit@m`f0uLU3TIn}4!E3)pbkM*=`&!oSqV%;~SOWF3b0DdRKEgLE#HDp%h^7x7-UVdBm*D_XdeF)b{?J}q_$cTB*3 z!pv01KV`vt-m?+u4lTxe`S)~~`4_oV<5wM19N6Mg!&QmSkCBf)*jNzZJ=5R#E_2wW z-qtwYU<}&*Zs(Eq4BkV>WbTo93ihcgK4>{}`)8L*>~?%!^-nJK%Dcme;W@Fd82Wqu z;k5p0+!p8E@qb(@;&HLpZIPe8O9k%)x842KM9%_aBQegRxtEJwIB%7&_qFNu`k4j) z=ed%NFW`N+Wcy0RQXh1w=Yu939F2W4c~8JTVzN0)!z+9GtKHl4l&*z+!rB)uu8OPT zuhxvY744SWUqvp&0ND3i(JArD3|0Nr$>#&}z0U8iPNeXxzd3`y+Vd9{8cES^*_J}+r1ukvO*<~11ml9>xQk}S^buX>gWo9~tocn!cxYcckH24`_>z&@T?m;K6CF7@

      WP--m41law+deqsJ`XjeYtnwNE~dajAtjx_7Ks0Pn|Psn$Hoj(v@=ZQ-um zE^XJ**!MF&^kYBi<+M$yI&a55{*Yl)%7L#1sx7=WA9Cu@+Zde{n3M!c62*)2>Tk3N)~@P3H!7Q?7Kc=U#N@c)^ghyLhn3N_N_P9rIw|_ zN)G!=#iurH_GY3>RX09_m3OI)ZI`A!0Xrz>5!JtZQJ31Zed?#9J}%Yc$>wTlun#xp z=Y*ysDr4W{X!gY3DJ}jLe!b}VAlQrSSLMULhS#3wMN42`sR$%k7yDHQo_~Cb{gko~ z6J98^4EGeIIySQIQJ1r&kl&Ptx`667mD2ne(r#priMMV!E!R~Z;OxK z$J0!!54}E_6A^MRfd9ttJ1T&0JJjHZ$1C`&*6qj6eV@-?l^mAr>^kswbj~(!gTI3A zW8aQ0P3^CG1oSv~A9?j#8w=1oE|q6|_s-dFVxJ~)`MxPvy403L>xxG1bm@IE(7EzU z|Hasc!kE|1+_JOLeYVu2}s5*jen6)K1vlrA~hvTQ_d5-Q!}ZoXRjy?D&urP|RC&Lq zSdjUrQ~3?Vm(ur6m2ko6Y}>aw)vs(=$sTa3W`*h=$ort{xNB!~m&!7_>fOhKtg?_XF-^hutt#1DERBFY8F4*> z!H2CGf1bvEo%^-LovNS4ep*Q0!JXkR-o|WS&lb6=2B;RzV}S_$faU-oT%R7 zi%Wg=*k0!_^7uDBuzpfL=z%A~XZ}2eA3okH_zLvlaWi<#+pzD=Pmi}k`{6;+&&sXG zzH#~+$%0@f#%J$ctDtucI^~TR;Zn6*rYUd~@^jQk>{<-H9F)qt>I%r$H=t*+ZSY&i zp%z8p|72eadeioI@dWXW{Z-a1k4qeazD%wi6#oNu-PHKdiSd>^n7Z@(J?t-*#KLr) zOI?kta^e;EQgZ+0@MG9-t`?Ot`P!}6&-M1-@npD5{j53S`$z0sPQ`Nl_mP{?Pa=Z-?J*Vr=02kEt_{i~0NhI0;dt?6Q>X zA=z4NC%csPrrD>a*&;0@p^^wiB3qIcMG`8qM|Rm|SJ_KKwopobuRHVg@$=97F`2pV z`@ZkHp7T7fgZ1I%9sc;!h8_g(!M6&o2eDz@8hK}S#<+Fk-+y5aPA%JM*J=QVQUeyvO>FR>cI!^(tnJOA3dz{! z(fIqCh{q+n-yoj?mZ@#G z7*A(TH*0|Z%mv-0ZVHEng;lNiHHkx5y<`o@%W_hAb@Ap_@PDtftJWU;@9%%Vujcwf zIF#YB{mi3v9E!9p+3UWML(!Z~;~%Z(kj{i8_Y@iYi|eZw8Y?*DW%X#plr0=GOFPx? z7V=c|dk_-toW;@1dr9yEf4iXb@-&Ag-aepG3Xhx(M9iS6@E;UCG&a z4pj@B?R1a_;+j)u*LUzsj##<#=bv%7FWW!C510^ZksIg8p#>4&kNcy2)P7#%xlqhn zzJu2meob%hZ-IE8zxBGYto5Wo_*sQ0)h6(fAKfW$YSC{8T==rARbM=x+q!R-=%;1@`R&SF{+B0c z0f*M#Upi#(Xb!XXwl~N9)bkw&c|rP|UZg_#?_Ws#y)SyuAJcnj_kuj=Zl4{YK`TAz zNKV6*$@v~M)%WS8(O%dWw1Ok>jt7+u%75sDd@GHC4HXG^|KbPSVY$dZlAW4f%|U(_ zyX~q5ykg30tUoHjxcxT4)Sw5(oth)5!T5gUtH0C;?VJRnsyp%+&FE3~5aS2dR=aIx zc+ZSC!T0=PM;iGcze-lnQ`aE)?bGI6>-_8-{Ie$e`4ccc%jRGL?!%$e2Wp?r6JUIP zy!T~0cnP;lZok_2aj0Qp&wf+m&@Rri7nm*QP|LK_8+I?{X!f5;7>7026F+8hsBzw# zlY=8TG&^owW)$A%gKe3~JMcb3H!ZyRCY7U^hw%MdHm@6ArNGa=>t^=t%^WhwzW*UI zk3*MQ=?+w3oHoBGEQ~?EnX+$txR?>*;Ghe>}XEJnXk`{(L7 zv~cLB?ADDOjoqR-xS0jV-e+cWXu{;1@k7Ev_lv!}z^GPrBF=8@cV^aA5wqG~bivcz5u$Mt&Ky=c5eMHh9u_ z*%+Z?sweF%=MA{v=Si29z1$tZK^%NK#^eC_CY-8DI|)6h>oomkdMHO#}}pd>-U&LeJ?dzJD{~E6~r{%xlzd>F$4ZadlJ_$bLS~xRw|4FWz2gPlq#4Dlbp;q$Q3O zNA`~OBoj|}^RwWl{$9Ubp5^rn{nGbg_vc-M!ErH1XAIgeey4p|v?onshV}qYsYKmSZ*Te|h(C|5{87Hu_vTg6$ozGnbgT zcLVM>`?AHR3AS9CIS(M*R4z3>+cT*_i%T_&KxTngYda&}F0a;;6u^*v-}R)7o;L;* z;rpQLPKhM=-B`}e1<0o)^B?>+b_bV?W_ub*!973W*3M~}kGx5l!w!DA%%#yMy0v(p z!=)C2_+i)ga4CAD=zb0OM>S`#giB?oT7|s>k9c6DD=z{(T>i=ei$&naU6<_H*3E`X zBRvDN3y{xAAJv{OMZH)DLB68D_th~jSexL>rF1ictfp;TntWWV?RW5mpXbZg-ZJA- zrrqYkOmK*ovgUpaYr!Q);}4zoPXOmU+$i}Q@<6H2$7sL5pX*|uY;p(p|GRvguYDYs zv|H%(u{+BphAsIW0I$akb>Q@0zbLVIdyz{6oXzV-pTcthBhkCT)$9XrajB`zaF6>N zP=4gWu;$1Y)r}csi@Ef&oyzS+Hh%BFbj8JWT#bEX1y{o_#s6#9Tduu=Mx}FU&Olhs z4svNK0}8)!sk-l~{LdYDG_Nm+(B3@Sy?9H3LqBk#*~bH8yYr~Qt#gkxpST1s(9h=J zU|*k)j33&TNAF>Nv)AVl=+OT0EqU~2R>_!zGA^B~>^Z(;D;}w^owWPKrOkfmAr0VB z|5Wgf{NNI-1I0EbJo4OlxA`n99_3axJJ-_!{B7y1sdXRl9QArxmOsJ!xBFF6dIoU- z%7hC8uY*5-xK1zVJox^U4I^Kn{mQpqZK)W!#}yqsPd`(Im!ma)cVvFlQ^$XQx3*2{IdL|=zj&*$DLC1c zU+x{ZwBwP;cV+mVRXl<>`q_doaNxk{FU9bP9rw+V_vG*W^GX$463e+{|I+sG`)V$2 zDa_ny{*p@xE_XimM?X8cmbZgH8Sx9~PPP8vYUd8Ln~Z)kG+F<)VLL8m8R5i6XrD#T zEym-$v0=S756{gig8nw{030?e!Phbn`vRA=BH47%FSWVU`c`-6r|9?D(+{;8WXz@ZN#p;Eb7S|u)7ckuxV58=mlKO{1bua&W~J} zw-fc`%Jv-bK)K&f<&OF2N#i)14OiUvBv`|bO}viykprhfv)_Z4z0>mhu&Ll*cZFJi z=*p!H0ld%Y)t=<2m9*fq2=iPQoTwIY=~Vc+`H#c7^hQ-5xqmU2bXdhtV*GV2XmCG_ zcos(!PW2|PhI>W73cb1CX8#?;iI~o=^hEqaKW1Pl_*cIdPuFgW2Uk7$)^rTu1IEYZ)vI{-(4RvwEWb?Q(R5F@ zi|;0bL$`Sq-wtsOh4T%%y$`{-L^z8z_;j_M1{}KG?OH?W2*fdXMPKe{$)nHvgVMe( zMm*8Zlvh@p!KLq=7=IeqE2m7Q1&C9~|7EJz;vkQ9w9sBqyOT$TWiy}j1uxIc9_>?+ z--j)@u{=uqdZ=Q{S;Uo`d0-P*hk1bUbIthlIy32_anrxQKe+yBbmB9_85{&@f%t?c zJaNAx6A;(1ZJo5=Y(DXmF8|;m{^71i|BYeO5f8(-2S+|dL>f~x@+gIyygB_Ricdoj zPSkZPUt_;ZMI6AW%=*Q?`&@M_#sWm ze{}hU*Hg=u0-AJfjV>YI8Z#esy2q!ehUWTuC44e61fieCr`S%{&Ob`#(@&v6qd)Qq zIqLLU*ybglZoWzKn~!{Gf?T(*pLGSasdeAj(Us82KbMs;=N+G>o){he@)zP8uHQS6 zj{HL*VU;1`4SND^rEZNFGR^%)?{9R>6*b+%P)w19pt`FUmO9)ZT+ zk9-B{`D3|&*ff}fyg&V9u^Hv*0(Jb|aO4l0?->8M26@;F%^lyyR0wFB;L zkGlf;&DQPb0{U1IeW9dOKx#i!k$@OBnvftMg$$mrGXfGlGJo9elYne&4o+W$@BjVY z$W7S!9~Mxb`_tOWE(j?3OIYB(H3H4~CtIKy*SLQJrup5cQ9s5Nl;QdJEE)NylaS8c za!3knC8WgR7pph45fW!m$?u(?1@t9j)%78N1e$Yhm4HsvmF_ZbLb(VBsxL#umkP;6)-5C|P)Khl+#2nL^6T&C*}dx{q;&{Kx`})eCtil! z8x}95+jhJ!?RFr40*jwOo}wOWWTRH^5z^#ApI$3>qnvgP6Y`RUWISP7dxPaddNbrZir1gfw!|`Pl&@(4M1*1myP?k|4HA zsvp|>jn69&TfB#d*}{$`Uj(Fc69XH0Dnut|>1o*sHT~HI<+L)JQ-F3gh~xg~hxU82 z9v*k(eex`e@Uh_wsXdnUlx0HFW{xD}YhqYM$G1W{_ONRkzXl;0mLEQN7x|_)#7B-l zr6rryWF6calRKR|w| zzUR;C^vDs><94N8WXLbl#owoQJ?>*Oxz*PXSCMao1Ix~J5&a2-hZWD&jU8Cck$;H+ z=L5wWE*JSGZjHHdXE8@iU0ZL9v#vlp1OK(}C8mzHumB{9>EY$aZOjj&Uf;j%>6?$= z8+7;hazIQC{X!m3MShAmsVftYB7c-RK60Lzj;8*++yQwxYO~;guSXsc7I4%C?S?Rt ziFm)#rNgQUj|d5;=Z#0qM0B#9@7aR;LSkW|@9TxMEWDe^c;p2X3$jbP1PE!<(vv5p zH9|TrKwvEWd+t2NZJF-{A?4)w#auzZydebOhrH$q%)T{UNa2@y3=hIQH~5NA;GZu4 zzK7@<$DTWpzbxhA+d2D%#KH-JT8ikqV?bVd6UM{0pvPfC5uIak2c1O}3JjrQu89Wz8BKa$jy%nkT?C*(&aVRSBi+?Qx>*(-$R$|)k3~?-&OCHw!=7asV%x9 zc`PJV0H41Y<6wy&4z$xmq~zbUd5wNPBDHIc0M~O`+eZdCqkUL`$oC;)0W>n?M|p0z zJYuMrST%Geiz$*F%tndnyP-5O9QnlB5AU^LmxGv&zt0@36(%OZ1-GEk`o|u-5-9M3&CZ=G7&;7#t^J4)&ttGS}=FhnFS7I7!=3sZOtAt+nIa*uQ zK|%p-%{sgN5>s=8&`3n8&^ zxuGWnlyfC)e{d@yF}!tKaIJd-aEzY5srN17){?#7ls*tZZ4=21_JP~;+uV;SIJ=Daf zK?D4kC!+p=dFie0pdxEZ5 z_ay?doYVGO?;rt8% zmj(8jZ+q>nnu$D<>myPEUm{PHV~bX^Qm|hQTri}2Gvo^vF$W69)%HslD_<*w^z4w< zvSU-QulO+Yd-6)`KXhBpYmI&4w0lpAUsMYyt&>prrbFpBv`+H_Q1YnB=ZwD3aF!@$|wTkx`he1NPCBX0$NvZ zo^c1|XU+3;{VE{s>jop^y9(*>=kEo>k;m)rebX{4(*R!`Km3G(0^gB8u0+kG2f1G_I2HNN4nmCWq$d7xx!gO#6mo~P` zh;ihm2luNU{ce(DL2=1M=T+}4gyRjbBzoo>!2SW$ZQ zM1Jx^4|@NY4Ev8-e*x#@TkhX_Zp_8Ge)~$@(2jh{|00PkNBPT=?{CZ80X+o9C6+;_ zqu-=goDnz=#$8SeuYlc%y%)6a{D$7&A00uxV8+sVi#)nG?v=ql_V+$t*!zP0&uN2S z_kf46TmG*-RA&o1_D5W~n&0TerAVz$Z|=cvGG}MmCnxwBPS+fmX%G8LTniWwV0UQk z{p5zpQrOWLFjeVE(jD(a0~`Jq2Q5aN`Npt#nKyJlVk(;tmBF8Qa;ISj_$}1yiv;$S z%BJc-_;0e8FWoh17>C08^`D>zuA{tF!SknD?xYjEaWWTiBtMItmk(;^O7DOpm4eq? z?|mZk!7O(gF}+{gVfAjrrn_xbE|ix!!*v39LW?ON?KZno!LRCU0uQ!o>eI_9eG!*C zd{1Hx;zQJNR+C*xhyURRccu&3?}KGI-B}Zt4L(p0!`XDbD}AhuIyut@aWvU*a3FqV zHV9W=}|d$61gq}>x7aIPIKGKN#z8-9nqHShQ0$|e_$0?$w6FV zzjr%|tDQ-(sl}o(i^03*UYTmw%avGIR~op_CyR40&Hv~^&P)&m|F5LN?ql*?=+NDu z)YbD{D45^3>rQ)DvX(zdDC+4-yRa;HfS+Y%utPa6#HOYB{@_c0*$OidAIaR$XSv`< z?chmX=t8?5zyYLiAy^{~>K?k#_%nrb?-+q!WV$eiTxt1f&H?*{krR1^qVdKs{>vB zD<58?_vPTO8^>^W_eT7}OKI*aw`gaL9{}9Gdc2$l$FH;Qd%HNqlLX?x<>N%p-yEy* zNp_@ZKAxA1lui_Mk+-bv3@1(g#THJKX~CP}?&wGbz`q?T9SEu}?H}bhP`_oL{O?HS z5XX3l%K%dcvg>#E`k)aG)Z)W#SI%R5S}*OlbY=V;`Y^i0CG^4^3fl(DSiK`Dj+)h; z1Gm4PIg&g4tB>y2!yDg!a3Z!0(lNvnwB|*c2%N~E$GOYj*EkdX8sHE$!kN_H6CsWX zZr1fDoM~F^-1mDCxA0Z_{G7a-;OSXM{O&{tAJwL&&T^*cirdFpB0lPT7l7_{|BH{h z55BziN%Kc4XAM7q_fubp1Ghc+<)7WVwx8odOI}&S2#wN^@pBOdEb`08}L|Hcal z^x5R{U%6jz>%D5x&xITrNZHzj7Ca8S@_Doi^?Hi~GPvi2^QW&QqP$=4J9jCY+N09ygK}`WY##+)`^AGG#ek0B(plWV`~PvPSbZkB&T9IwB; zcK1swH}VUr%jk&s;T4cyXb+w^X!lj#lvuzcRrO`VC>mo7Vy5;m(dE%ujB{89c5+k$Js zzLPV?4)dT4s~Np|4Fw0+=zKr1-ksKm6<>}DbEg#Mcn8m#_HgtkEAWTvczy75VeG&O zzE`cgGYS0Yc%N&lLp><>`sbASi#@3GMz7BPo58hq$jRQ8<3XS2ZFm*{K1tnw!GWpQ zjXxgLl@<8egAh$S>zE;jM)uA$-1X9fo=lF9GE75#=R2Gnw!%Ymt_D{YR-@f;=#dBg z41TfG0Ne?@&qLOXfR4nTn^x_*c+f@DFJBk>deFkfI{Un_rG7vVwun8O6m z8*yQ3R3~Tf&m1@kmx7~t?dUdky$4y}nc`=((}NyIE||`EHDx|5161wV0(~u8ux{p_!0Ioh>|BCa4*Gz?rugu!6hwtFn&f8hwRs!$ngCIZpH?Y ztKe3~w$`bv0vD6d3|=oeRETA;u9`#lV*Cd!Yv%dieYUU-Ah;PN%tnUbU&byxJjn?h zgqouUSI~)pnjgTsHN?Hldj&p;>E?h-fOTYYZ~=IR`lFJ4kHC-d4|Lr2g+rr9LNN!t zLFEw33hd{YY|tBU3oQKkI5>}$!$B#sMy7v>on0?^&mLr1sD)Ov5FYayoRR_O*0b(t@4w$Wx8T#uP5K;-z0wH$MiGdA=y42!Y}EtkmiYd_ zlw}TX2xj&<;H55AzJBVYrDfvpwEN?gy0Px-?h3Q!_~xJ&E=9_>&f}c!Apo7 zcIEF7aEX~w?yllel2&5!G<=T-_h}RSs%0!78RxLzt2YB$;2fdmdn&+Bn3b+R4L|1q zzwDZg`1?m@U(~{RZf^gD+w^z@8Zvu_0nSz1;F%Kgh#kYLy`e7%_lO_-@{-rTLc%)m zXyb51=-cz?fnffK`|wZR7az)ff%Dw#i~P6GBjD#;bz_UI9RA6d6NBc0+u(ga@ie9m z9Km7Z%|GE+|CwMh@y26t4c|sf;)nC-`s!5Q+IaX=uRoI2so)2O{N1aKp0s)R@7XTs z=U!vB=8l~Pz5#M|55QUUy4C309{$!_nD)<%<7&pmW$;Zn-u1oaN&GMER^49UNl+K6 z8UlW4kt?1M=bXvfJtuF$ys*8iq)+mE=-Jf8%r9IB&aBk{%NQr{J<;6`g?0mH5dIRC+pm3J#dWMN0oN|^%e7ILivp<3-FU8-A4?; zylmzdxc)ZAZKf>anQIw`qSD%%m4PF|?6Y$X&RHYhUviqmN4>6iC%J)xDrKMr_^gx` zFdX1Km-l32^|)`~>+atT9D{Lx;b&8;k4wNSvA9#rPw&L&fRUJA5f<)n1-dnC0^Q(2 z3z88Lya@U-TU$)H@8Ln{y}ewPVLn}*PARA#RMrwD;Gfj|Hn_W{9XP>bzI=q`Y8rUH z{8yg7Wn2#85>v6-r z;O4GuKeZKHnbwJm8(ZU=av&Uh^o%vV1qy02OdU8#*n zjKcE3$G!X9;c_-UkMmovgZJ;ht2#a@-;+i)jGrDF?@9d+-Lf!#1MahFuzNb%SIz6? zU|wK)bC_?`Tv9FmpYbby@IF|)$p34vR})%qHTC6Cgato;hymXBO7w_99Aen6S2J*l zEP#a1Aq&VWmTLdIdNmYx>w|gwVjcpW@w{Exfdlh`^hjLx0JPWN=XZsS3**9^7+8z> z`1Jyix4WTFnK-1|mK5~o`WeqNz+I4U$ALc!Jc(gLuE)_XaOZXbrL-_W+pp#vI+lL+huAHQ|0NDSdp>?QxUX5cN<>o>Td?4wC9l8$nTKk2vP z<~z(6^GtVrxQ+4Ety0?$T#FhUYl2Q>WN+V6a920$S{M1aq zBQ9j}zLzCD>Po9RGuZEr@^M{?_(O4#YaGyt?oH|u?JO$lOgtHj_wLzjeSo1=Z1p1K^Js-X4!~$1}&AKklz=<{zno4&KBK&bwOw`@O|otnO z9tJ1D;zNr0G|A6xZ;P{h${rRR|L7c_GMkpHYI%cC!M7X(d)|d^;`dL#Zd~G%-nezM zBCfzrTxZ@v8-8F=g_-T!3F!SVJOS+454=|KC-xK2>8sj}J-Yn+|C~3{kjMc7demjt zwiwvY84jP#hkcg`FT@Mz{7CF zgdqdPPG9dFoWS= zKIqQCuiz0tBdof;K}er1U^(6kzxMbuMZQ#rnuh?opb?`k3W zw0P%zF9Uvmrq_8{sEOZsEu`tKPQ;GrFQS(-#(emBPe^+XC!BMxgCBO{f%Hj*LaNZl zNqHUoZoXePKZq4l>E)EHdAGqAKrS%x<-c-`O0tTI?eV-zoSb6dzinh3qZrS@bd^@% zdsUBZ`=`Jz4|i!d_=B13$se@uIOY(tL3=UI9(>E<(QUvY8E;Skv2i_ty$gU?{N!C=_;m6KeiMh_Rzu+~em{P5m;u>c;7p8&JM zu|}Z++7iam{!@l>nEfXgelT|6PeT7;0us{&*r=vdSO8uQt26>d!MFEeu6;5jY7@9a%B(*Zuu|d-F9j9nc<&#)Mw; zl?f@h`kEpXevj5i7Pc%EpncX}iynh#eiUs$pmoJdv$011o_|79N&`#%)W5_fn!j|ymw&(*x|;G)6=Mnf)} zfLGecPnZw8dZkF>G3YXnwx69`c?}%%`7t52XTgEKg1IyjI-~W>Z#Ee7Zc@{S86M!w zfO$8(0XN42-Lv6`=<#^SIq+)gb2j+9PMg!WEbRrpmj&?lMS0yDe|!G`hs)Xp`%)&8 zMjyc~S0%SS?!co3^CnEO(#N=LO0->O0$pAA!p1qor~5Nr=ug7B;{Z9`XVZBkMtIs4 ztY?EUy!yc}*R&EF{22Jx*Z~&%*Whtb?!@}GcMFu*2t4T^+laJe=y)@SGW-J%w!mXO zo=aIpx?jaQ!rTKn-~#VRH!DQ5vHpH3aqtd;-QPvh+`b+3pGQG~iUXeY zsNBpP{4X|tLJCzE4+F{Z&)*oORxr?d!B)F1=D%NI+kt67rd^)K7aSM z5j8hZubod0-nobU`2OA_^gHl1`aW8Gx|acA#>ITff*ZyfenTHrr+p~aA?BCp&!=~c zBZtm!`rTd^Z(W7{b={av+Q#7M`p7Oa{_aAQ{83>kc(pP4X2b3ah{;+lED>nV&-mWt z4#rciaKPb3D3;b@J=2n(iAurx!QAzMeFT)?ZZLnOy@0M=snO~W{~z0ayTd=q!n$6U z@u}XT@?d}X!*UURJG(ddqXWAVp4r0h)^2QY@7wSTxACp(BI1*mu}*xN2cNq937NX; zF8m}%XFgqj6gt!;tA}Uxfj>mRxuMgMr{TM>e_-Lz6>rg=x07PrS_nw5ugksRT3EL# zt@}Q2;M0a^*UHLS|LW(liyjZg`WX2&g1M`~ z3o_lff$;xT9yr-P2=hYbX^+Ws;1697i|IK5G18{kbXu;C(U80J|(0;CMcW+{(;$jcVRtZdW$cF8gBIi z{HIKx+*72{odCz;19_gkauFp@`{Y&x&Pwf1TMfRY2p)RyJbyp`{eOnnO1L7L%s_`j z;I}$k&bPQIB5Q>EWL*(a2GhR-pB3Sl<63b?L`>%1@|8%#|9=uu@5>oyx3v;eOBT@d zRz!0iX029&2k|I@L8necsbeNJm4M^=Vz1of=_8`4OgLf(c(Qk`gEv-*2&b=nv({od zy%@qNxT@{fTgCKpNvDG|;>09|yu4nan4VumV8>N4O)r^WYf&X80}pANxp%~*h+MR~ z(*=BHaaLE|o;l93o+e%1T9UNN(E+*Pzpkh#onCh4v^`e*_gt|38uMpF- zUfuWK1V6)Ykh(u&jqbxiu|^*+8(hekL)AHsVw%hZ8o_II*fRab2OTk8U>m;x{2ekN zy5P~Sy=pSO2aZG?_ZJC{$LDgXogC$jK2>vIq*!B@1&3D0^p+dJ%N;w^;%yK7o#|<= z7E{isGv>pK#Kh6rpSSX+nB+_V<&c=tqF_jRDc0!76obPlI5SfjEB>z@YQJZDG4(Wk zVtT(uMBB*j!_%|i&x{e7g7hR-C+}DSMXBIuZ(>{ z_wn`(mDsn$I|KMeKV*3DhOgL@3}rrpc!GDq-%Hx6&|SoQ?G+yS2} z(+7dSVRmS#h_sZjXjFpBSzlwksGUf||GJ1Yx`imu@%E{_)ZZe?ec$y%bZ0SHqB(wp z13a>RlJk@PVp6_qd(_}5%3*vB+VAiEJI<;d8M6-KVsqM%Js4kz?%itrPNdNTdWdnQ z+`s9no|u@sH4FUEQWmEr5K}+|1i3qkX+XnURnd77Syl#LG>O1C!}9cUxk%$@Z!Xs4 zP1yYJnr-kaaS0#X7s~_T22PRj5#an5n2#{)bV^KRNyrp(4SdyC2qAp~UlwLHbIosX zScfMpnW81p*nxB;)TE#5@v)VJ-o8Qr3-~d%E)La`(3|fPmt{jFwD6;DRm%|)nhbeB zCtMd@G%>nrDj~K!tnM$NgK!5PZy}-HMSahP_e8l^A4I(*1ZuZoR`-8@|9gL@c`Y4g z8%pR**}xf*?Il#NX!WJJu7sFefKVi%YfYg&a_37ZTNJ*x*h4}^kTDGMmJpNQ_YaUz z+gbAOak;1m6W+Waq5F{YuQ?(i7FIt$PeQ!=15aEyETO@`f7|2lbM%Ufr{?4P(D^CZ zFQL5$mu*#qOVsh4`{fcEk8lW^I0=Ovv660IA|ceL_NaAp<-7q=aTgn6Fxm@|eHfJrec80a=3bVoakYGfhyE@^QuGUz7le2FYoxm9OadrOd8lvqK;QE zL%T!0Lhs(Nf7iZU5NO7gsCDsvjY2!fEb>CfOUMBR>}Em<%}nvQ+ous6>XNyV{fU_0 zn!R{@I29b?Pmg{B_KG#SCzvO)+aOU$Z!yIlNL4XTPp2ZR=S@q@SImL+M6A)5C`Z4I zX>RE7LHu7ms&9v9=-~aYJ9pv8Cw&PWFU}gNXCcwVKTnlVdH$5fDbpl0Qfo-hbEtoN zmD`Iq=uagJ7mc(UDIvAK0ZC|JG{|Oq34M!mU6?UPLY?=GIND*Zg!E^gKhw(({c{;V z*UeQz+X7u%+?*mIM5PTpy--5;I>SJ+TS8DBKUEhcp$={B?%M4{xsajF3zpEtP|vIa zya%-(jU%B6_hzq?Iiq|mUz5Dptz4ut8`{m!~OE&Ij6!^Pw zc+=7VeJ^5e`eEI@=*9GFU5ZC|(H6MJpILfQ%{E65J!>!O68pTHTKo##b)S!?bU%e{zA z%Lx%)YF+Bwa4(uTes;V;v==eF@9kPIO@5d-d`9@li8Wrd=T7K)VYU|qR&o|J3-Y4R zv9sNudU%n{<5R%66-C@ z)z+KhOqy9O`hs=?E_B>b!UnA+UeCQKO^F#t+nbJ?T%P;vGwKO9PfBO+ z|E|VJ#PGz_n{qeI5r(2%eSk3bgS^%8f@bwzsFvQEewML zEzDaTAF#>QTf?(Nc+(XF80ZdpQ^>5Hot;m4(~WIiB`Np3397(LusfKeeRhkFKV^wxnPu(-krWY{O$*DV&?Sl z)>2I#pwHekiv7#+rpWN;XG0%(6VyZdKjjP`6H zrT9#J;hi_$lx>Je(6&+<9-ms5H{#!Y%EIe?E-mz?0Zafp3h#~OKbh%Gu!fFk8|+P> zmx4=ndsAD30G$VCy-Bf5EEs}%Jn96G>Q%Ha0%4C_K)dhq+ZYkwLj(T>vlyC|>^{GNipVtOwFMB2>Cf~m0oRqNpE3n9uQjbePv-e++Qs)h^ zz6J&V%I$UiRCV(+XwOb?XlF>NAxM7eyiiI3wnvAG9i)WrNX5gX8olLdQf%F)O#F9 zS4vy2Pk-BJC#9z>F2GqzeCeGwY3N^z8oTOfMg421itR&d&K{F${NveD5>(k~XQTdl zriEGMCHOtehf(jO#J25G{d_3k)|!%MMn04{jNAF;Pbu-De!5$~kkaqklrfX;OEtQM zm!$NpwQ)h4CsKOoy8qBYwA1n2`KM3qk*ec$;%-T4rsKvb7mKAD4kAfPH%@fobjJ5& zkYy5Xk*am*e(|JK@p;z3O(H4zvV;-%zV-(HPd%!on!F=TQetTcJa8Xl$XhrV`_K*q z=%1eKL%kcgLodmE==a&`s|Io(YT#>qc3kO0or^hIgXj8?QD>_s(aU^jsC0_u(#<~f z(5=g=@|`|ZXr$Y=#R(sRO0VC(T|Q**bm3U;1|RBvy>|9g{6EcmclZ85AFA6oWON7o z|KIPc<1B-H)H*pkPW#Xq)vpiB3w>zFAD-w$zK=Q&)WmWhVlpjne)^CwpjE^qeHpd+ zr8~j9(TA4ni%uQ+>_b)#DZM^F_fhKuw%3)BXUrS3<^yB|HLl=fV;Olrj7{s=S4K=0 ze3rS4`ZmU<=9$Up;C6#&yL!nei`k=F$q1@B%d=a`2z2=~tr{PVzRzG8F`4%LmNJ?j zb7k6?ellXZZ1djw(8=VmigOQqDC59m- zrsm1(xiUIX6#rmY2+GAi%PLAnmt8lEwn~u^!yVu6k`W7=X@To*2&IoXF4OQ>D`aZ_ zzBaCX12<&q2g!(qgkWrk)%wugzNPiyOMR%>rK_8)Q+>!rJ5GB? zqL0Q-iuaRQYIs6oB2&lrJE8qq7~w9tjD|O_+v}#1QM^USu(VY&VzT*dGGw%U^z`>x z*)qbZ+NB16e~ff3fqP^c-GNjYiB@e+xqk-Fmw|#$%P6;Hp=GN=8BInaC!41-vS)%x zRWjP<{#fsGk&Lupa2TsEC+0?T>m(=JA(!H&o5;zPUu}HIR8CW_pNz;cmQ(9QpEo($ zavJ;Y=+xn@)8?>zfGGcOM_mgCr zbHzEdqdgRv8f6r`>A>)TD2J~LWwEYua)~HBzrsRJh)&8G-A_)|{R*7&&E>?>+nJ!g zkpNig4CTb!3^Rtw$;)wEpdZQD- z;R=l%b&P^!*%CJwTLpawE*UXNL7-B-GL01ET(oF}_gDq>*MX+UNChp{+wePQfy!vRY1`JC`rH`B+YlTRwGf zgLW`g-so42cK+}vx#skBIXy)DjcJaYeEL^%XMK{B@j&}-4$TxaZhy-k-Rk62p6lma z*+)SKcNUI%I__UPtl*~244H@g?8sMgK2|~SjtwhMQfT7d4=Cu+_?eCd849(&<+<|; zQu4fIN05j5MDvtB(=RG$qUYu4nj!^VVFBPJDChl}DPwOd$aQjV_Ot5>T6#LZz5WFS z>BVj0D4r=aoXRZ)so>7l&QhrJE8IGR_ML6i{yOqj!>X4)F&*{(v*^j8WQE!;ItAr0 z{oRmz3c3~N_PqX^Ld{_=s8P_Pv6o)=J*%MQ1BVGbb}Gnv2^385{k_^qyre?Cl1tA0 z+O8l#K5KrjSE#wW-gr-wxE6xsp{Ot71y>^vcK@4w?meBaps%(NHd81xIvcv^M`u!3 ztqf9V^z9quba)E_V$k24H@aqD^pw+2U_iUPH2wdnjhv3Q+ihGo2JH_syK$(T6i6S| zm@B8#LL^M`T3z2KQN!?K~0nWn3KEe=ajfOBKYh=yhlpwN7-3g4!Tq${@72 zI`4w6lKg#B>wD@esm*TglQZ=Sf=aV_l(CXpBAjl#wNkA=(Pom8Cg?P;-{hjCE#c>% z96+A#0LYB|a7KP|xZNA^xoO+nyDNA~iat0sb%{txyyou^ zl#&kT?(Nl-fjsrmezEySQEvVT-`@F3Vsb|I=ap2p%Q&z62(AzIU#(iB)aa1rDb;?@ zkHyH_onh}=h3_ToTj4zGCVs!dXmDvd>WMJYExVL-BEYy`Eb9HYUdvB(8Ai2uzYsDq zzNVmMNI)_(Q9(#2J^TcoyA`kn-7F<-y(2Vyi*gzEppSgw*7sI^+*_rjpjZ2QO?#)L zVZ7x>AN*F5k^a%geyvpGP~X9=-5ca1uSLW)o`?BegVL15WWF|;E6M6fs~Y-_ej|7( zJZOvd?6!5%^FvCSdw3VE#X)G5!VDIJ+=JF(Z};Y?Fo>24)V3bebw;~ z^0O~~-&l$~?p}}!tU%uOij#vY3dZ35FaenjN@|aVM;3zTJ_PU-iDgRjKok+(5qd`UgFY zyE&=U>%ryGDneFOvxnnUv~XwX$_BiT^?E^Fy&9AhrRp{@9nWong`sk#lFrATS#jjP zQmtcq;((H{9k^_wrP6RzpOpWVlj_p{ny9ymCfM~KZ^BVgb^psF!|YVVWK4|kJV9$s z^)FsQKiq(XCC8P-(q0U}XC@oIrjv^D_T&$mSEeN0M6;;sOG>Igkv8}gKEFnKtgWq8 z6n=SCi?km~`dr%K^%%61THk7riV$`D^!RL*#x6KqMePs{T4fQxT(I&XU zT}6ejJN25StD-WqZyx2yL;qpSgh7KQqFsOqy%Xa5^E+Pz+(g$Ep}hrRC>Pk8jW_a) zBM$o2BD5FhZMO~r6@6>L3Dq)EY0mc&6)~Ao^9BFvVuOfkH?3t>_mpC#U`Rx~OH$Sur`Rp0LG6(nTzo|+#MMcl5q!Ux|JlUTWix2lu5q6OiuP9XXVg(XF zq23jPsM8I+$C|cbxq9X*svIvBk3_!<8(&*~0PVrT8b>03eS3t1cZ^aIs8y%687j5@ z@$h{rb>5rMP!+K>LYe5NVg^3>sOZ7aUW*yT!Z;% zY=Zw$YxJ9x!!1`nj70yKH>tZ6&o>QueAx3yWuw1_N>NYvIWBvs=mE^p1Lmn{raJ`E z#-bh*TNW)Ig7=+r$t7bc`dwk!z$>I8Cj>sPnyI3mACJEb!Dky&yQM8KUT48DIT`h4 z)fcE#v^(C%oZmRS3vw{YD?fLi|`z&=_(>^(!^-8ymS)-srD+o~b zQqo!+L!ROKru0;+-|rQK*>dA3?7N_9aJeoM`xjFmW5;X-CCYHJoP%{6302p>Q4o`N zys$|@30Ym2?Kq72Ed(nx_65i8+ln?ESCH=DN&6OQWB!7!OA+S(XDkt*8OAHZymGPL zvDe?fQo+=R0VZOfaAS!@C#>Hr-@**+m$pJy=XkI}?LTOGCfE31UtxdBf#cOtLD7&W zw-;mI;jz>A0PY8xcwS*YB@G;Y#VlT5so`rUD=8x`Zok12tV?N|5>jjCW~iL zrzFr8c2h7PY)_5$_Zp7zgtVX^OjOh~q$tE_u1am65Mf*lJRiN6gK^7bHot8{e@EJy zuNbe9lP82}<8$_|8VEAb{rY zv5uAH zaNtMoSG+gokW9or1nH~vvEKK;K5I~zn^L30g8d@Hq}-NaUzt8ZG;@VQ6aSU3AU_rm zh4X`J+mnSE`2SGj{Fw>Z_qBrIS&4l&j~Ski$*Fs`_mD8`$64CT#ZFkSVV|1x1Lr)J z|9v{f!A41TVoL?ZGRGD6eFqGnJbpw$OL_%fjmCYjJ-A~r4d0u4OjxB<(12^tT;^b( z$6e>#GFqi`N?uy!8KKj0*rV}B3Y-#bzwrxsN|evF~Es&L1VUd(~oG6V_oS|Lcx*_$+iMw$8vjhqP)rSTEZ% zKneYFo8{`c1-(>s^mI_+NAz2De)=vdjqb)kl{!9<-wo?A<8$0pn*AQuNxiG0PffTA z#-Dy$6o+{?FwW-WX{#s>l)D`qm>AK^-U8`pCblS{FYH_XCEzCtuV5MigPa z>bbZ;uu`ST_lEw-@;IHw`mnSR3ETKsPgy^+#6F}&g3&be>xyN_bnbxtnlzL%0sFCZ zoqeTGcB|--DkC#Uj`h=AKHEd7q746%(OFnGSzfRySZA1yP1s1x7oy_}yhf|&ce?iP zmc3Op=1cp}8Pl+bYK@>bzDZ- z!+-UT>0y82^H%H!*u0K;ORd+LhW%vAOl8Fy6-A|3EpI}54Zv}A|0V2`n0*-QDVDFO zLmhn8@3SN3OE;#cgn57${$j}OK3Er-oe$+@vHXjbC|B_6YE&)i5C7oti+HZ#|3}pI z$EUcy{}9F*LKub+LI^_`!VrcKLSq=R#R(w{A>;^Q2tx=Vgb;=h!Vtm`It(GqF@*5l z-j~no>yPt3*U$U9ulx7?JUxqz>KU3qe^)s;LDVv>A?IDMR8f?=;FlAlQ$?u-`}vb= zQfc42Iu+j;KJQEwRV*_gFXLdU=-`|pr}NIG(sxTvri$idPB=gPeyS)?@Or?4)2X7& z!oP#$PZjO>Q1D^NE2;GR=Im5a!;dE_Dlevr{_a^eXVCRjk-ur&{Rue*`URh7I(|D< zG_mkIjk{7s>RZN-)&jr(D`#K9-*^7{EmhRK@SyfNRrEjl_^iIOo(5Azg|FY=k4h7n zS6q(v6-^Trd>!hAyKE2N1Eeudw7(T7yg^nyP#eeq4IsPNBSUwfP?YFj~J-&0_(={|gILViJh z3V&D?NENB-d_VfR0RQJdzu{tsSI};SpD8_EP;S9f-S0bB zq>4-h&j&_nQbn^0en1|Wohtfys^iqbDgQ4oKjq2q%jSZ3QhQ7;n^DlN%7PE(tWOnn z=M;QN&5yYZZd{ovTC?|Eea)Oy(O%w&u@fg0;6~1yGX*$!?9)o; zgsGy!&ngWo=--7uH}w{bufpr+xo--__q~EQ57SdcDQhD7k(*LQ3lm#RS@%3u^r1$p z`tE{u$$ajw@6RpB$N4jx6AId|@crhJoHWtAr3DAag7*D+zH!ejt<&(nbjb#3B1ypy zJ{Jv76E&!i*sA4(G|}l-t|`okX`=A=Ve6|cDZqjcLNUjsi7q5QI(v9(nuz@?`tN(A z(?r+X_q|oVXPRitR>nW864UT^OIJ=$6Afwq&s3iwO_V&nU(L#|(?oOkY;Cjldx8Ig z?>{`Krxc0Hb=|k7hEi1UmN;v3AEjtn!JnPIQC=w;?-;X4 zeHJK1g`XMDPE?9IpD6glNJ6EE^QI%CAzvvf{F#fh^&h_Yk6yG=6jB!af!4qN*yk1W zJ9WnBwUw4I@J~@)QL{H=QHFxEBx67ZuXmB&Mfx0NEzVHXHx!*9%;?SNU4#V16y5sv z?c3{j!9V<`H>1GK(k|9T3`X{vbolb9W&=aFPLT8BBZ2Np#MfmG0WF<31sFGe0xYKu)#-C=QdK$fNV1(>ERi3Tm~0eST91=-dwjftt6J z2j5*YXn)LHpti|olJ8s$JDn>NbnL}5K;f~QKyxY5Pq}*tbbjyvP~VyA<=UMLTKSps zkagDxIVIc3TS^l9H@V|8Yr5$lyDZcOVsj{pv}$;u-AN1 z0$H!D;HNNBfQ;^xciSm9=)5NPf$4ju0l8n_0fQ3?I%B~<{_Vek@tdhVY$siyCBKIO zwc!~+OSeA2#PfrIh6f$@!%3b9V*pVNiQ9>JmS|=mNfWI`vn@*qxwVu9?8t zD%4NZ11ZmTbx-i4ef@!PsdAv`j2>um5lTI&pxNABz-$)vOaDL`Klv4#f$yjz1coY7 zp4ef^yXrLc=giMi$bBKIr#3Jeba)BbyL;0(OlU>rWF+;2JX+HUsNO(v=H5vL&1*~J z)A_a%(H|NDT|X%w_P$L)r-T~;1^*5JYTOi0-~{>0UO;GTErQ$^)fs5NJ|D>L(hZo< ze=tz`jM_)JP7In`j>c8ktp*(_L-T@MCIPJw#si&;DBkqM?w~y)%9n5^)i3)_8}K#t z|HK&~zQ#)VvL!SjKS9c)y$$6j*pcE2tS7(1fn4b2hN%9oy)-@*)u|prR%6JOt;mmU zXlu~gc@$@Q9Od79NC3X~a~#n0iSiO#nJ|2y75IKO*(F}2d`Oa}fgift66hY%5g7M{ z>cLw={Uf38pLw-5jZ62l>Clr;$N*}Cl)sqW6G7)Cr2&)ERse&|DSoY)XzraP@YM&Y zo(`{x^sgiU)9aI*^@PS1vr`uMc_)tmHA5+n8Cn{T89jD^pKy5*Fl&Jd$Z}F#wzJg# zT@#mqA64-8Eeroi!xX(UuPVL|yKxo(UkPqiR1LVA77lG^;$_Jwu z)myD5eg1MPKcFWJ523v3uTy)6kIaUBii_GSV;%LkNS*oM%QubyMk?$Ca$eHB92zhV zwCyqJXVjqfj~t%^zNQz=x4N`0pbaXr^B<@9n0A`4tXJLIMr^x}bZ~F|W4Lk)V9zP2-x~V_wmr*}Zw;ct( zEQQ)J`vtX=rPW>V|JM)nW1FFzNcR0DIqXo0cas2yKwUO5vTp#9&dUx)Ik zU2TapE(8r|9+Rvi`(W=s>&zI+ho>#oBWB+^_^}nE@tl2Q5a_5XG=J%0DDRf`lqZEP z9dgBQirfBt1!!3+fZsv>5W(a;JctAt!;X9$KK4Hwzfu zd?QeOI1}i3MfJ}qwE%S1xE8>~7E)lS$YEegC#t{g&_d9%7q5YN^^OChT5Sd9>Zo4_ zzf)e++bKTjL&}T(&-k^oX#9IxQM?W{<->H7`llp$KK!XCQe5muM?t$<9s_2)u>$#j z(fr_>PI`&mDBsS5uOLsEbRX!LvlnO|OL671uYficBRggG4$ztkhk)UH8fWIue$dK+ zv~F3HG{3QjP+k%f$zRkh$^+;57w9{`mO(p(-+Tfs{CgVc(6JuCsByi3iEFgT8#x5zvCr573U`eL;tJ z{spw`qU zVAw$Mh%PS&?HNb?Gq(oWYpOH^Uwxbn6b5f19`2B@Kuz&K<9zNo(1OXgfH|+~LEpxU z0~(fp1K)PW3$%9(0_Ejszrb0mg`TBj1)%tBEg*l%9q6%hJAe+Iqka-Suny4;enTET z*9Y{?A^*H2T3@mrKLg+0;vSHbI)t#pW?;gymB6T7+knc7Pl1t*l;;>>9_Y*grn59Yf(`0}_MWW?%soT- z;+La&(OQ-IyQFgrR^$*)f1#X90W>LEH)9D2-(C4eatX#Qbd>q_(`8Xqo6dC zap_WM{_t>eVeeDYeT8oR3((wpG%tuu)UUO1X7Hs`DDSctMNy7z5(gL>{>R^*CZO}C zQhahQjX%||>ENr%QoONqDuEWQR*-&wnm=TbJ)i?$Dgxtr(Z0t0h5EJXNh$P?1lxJY zlXuyG(iK*qxH645<6@ex6c?y}g|84_-;UOklsnYl;*|fQUbY_;Px|7f@S|M!XFkzW zyTmS~c_;VX2*@R4CIS5->W{Xl=Agao$H1&=oq;y~5X76@y$on+iC#eYK`~HMOiz06 z9|5_I+CV>?9|6tKbpdUh_zbkZ>;a%Au@x|yRT^^Z*xR7fYf(RmI$0OA>KOHF-Rq*o z3Mvg_aLonOe0d zUWhEW8g`a=0sL6ScR^=w+5=3#@fG~spOt{jN?!1dM;?I|F3SKd+w?EcTw)%OE1~@B z+I#_>*IEgEL%HLi9j%%Gqc0R8TyzWdPO-~D3qSM(+BHRizBne3-LyI|Xc+)>Z(Ios z4ZjI{^JXLJsXYD{%JVfU3OYQn5A;NrN&rn?X8;5DcEOI@Zv*J?rl~;t_5BpjjC-K1 zpSr*ww{!GEp+o$I+M$8}y0J=N3}K&AR2&?_Gfd4{|QkRKWaz9yp|Q2m_^ zzIkn9(BWmLLEB5Yfu5K(!0gZ~p!`=F%C%Jwf{yy?f}QkiCD7?beUQhVI|VdWn+)_^ z>jpi2=^jAt=#AiWCl3V%iyOd?shJL1!=4Sy-&BS8uS1|&M}90ot=JAIQ4h41B$yC-kFg<$KuU;$?uz&2GWok}M#-&SBywH3$0BXq*OlgF%a4kzH8R0<^heYoPML zJNS2wuLasui{=Hllg7R79_?qW&vq3KCkE$cY3MWW4xqTZUjb@{mxO(G*WEz<{FD9}@y z#(`)|UC`_zYUt?YKIg9~UL4G1ek&wrvF>3PX`N19L+3f`d}`i(7u-}*eCn% zLNER26JT6o4p2R+3FKVESD^CeD4=xf0w8DWQlK*{85lpX2K+jXQr^8+D}ZlPe+Ncg z76LsbR6xUxH9+rmc}v zcG{PkIorYKl{^NNSNsohR=@o~ak)d_$DO5lG4O%LpYcg$$eHRapy6NIM`#0j(41D? zU>9yq>r`+ltw*fc*TMHb`U`q7yJ;QDJM#hjP%Byw6HnGf+=e?e53#CH|M6XJgYg{r z`Ih7ptnib6DhPCMi-Vtx^8bKN_TC5WP8tK+9!uvGmmv*&d)waN>y)(LQ?O`#j2%MA zD@OYk!^8E^*Uc>s{gnQ+-b*^re$Cp4;qH$tY)4a+m z&wyOnp7QJ}n@e%6S_IUK)&d!w_5oEBE&@}kzK2~#8=60y-)KMOtaTak>}51BGKyXW zZLUb`e?a-C{NZ8nLsB#PQFtD$hpvg$;n&lP;?6u!AGGAoap+5TQ9Tpd{#mcYEg^S_ zj{w78qku7~j`JD{ zQD0*v6)@(T5vU8$I^;jI1~jiWtph2GPJ{Nep!VR`s0i9s^c(#9Z?^-wYHkB&6`}qY z=uhVWXFEIij-sVu7qf}x5$--3H}3W{4{@txL(eEmMm^Jy426FBmt#Qp_kBP{`5Vwn zo_!E{9xw!EC=?R85Kwg};sGfrA#mK&R8QAN; z)4C8PpmRW8aoUIRZ0WEQ7X26cmM;^KSMK>V*vTJKo>a@oF8e6;YhA|#$fZ@g!A>&Q z2lN-83{2ikaqzx!L9?YaE;%bwP!E5vDd2}+QM>X7(>S#mKS6HFp?TiYg2t_AwE+4i zac{_Z(`a4NC((N2Oj!qhU^KNuxa|wj=Iir;dHdQ@TtQm5EUjqVM3*Q3j`x!wk290K z=UXi5$Nxh8D!v(&my=F$I{VZ3lvk#DS$fj?#oa{fH6zZ1a-D-Ie+6I7fq%}7|OG~?vM6h{>}$KQkwR4=|{>!p7}iljMGtkx^(L2@egR9B=V_XC;B}R z$Z?i{KCinPezWgWzVtdN_>#j7$Zyjh&^Pp+4UG4m0Gi8^pPXH^|JN>~{Yk#f26=X{ zC{Ved<|9QX8qev2s6Fx{G_Rz1Y28vM(zuErR1f9mR5!q09dir$vY(-Liv9itv|uBx z&(4!HFR`c7I>Y=$>rl=hG3?oomCzS{DFQm@VQXMu9Oc6?AOu?ew;336)B5ONK=YyF z1l3!&fcACq{Y}tQZasrIIoY&MMYX1N#xr3Nz1Z!r4{ zP@d#4%`=|<>!25#kqABW!HYnRlLp~FDV+0H;;T?zD*8)wH0^fiT)^pJ<+FyDb)44N#%s1%Sim!ux`f+NPlp>Vh zGxEFHack-LLht_Mh zbP3vr`f-c+9aXzY<}+m9bJRgQQo}X(Bqvw1-|DDoo92OzDIpC>r&pG zttsxn%jwYPw#dr<_pwn|nt~tP-y7(@O6NUEGbzfC zcNGKQ|DDzY&#e})e89|J3|e1@?u*sF67ZMqtOI`X zuvDONiUDzPUeY=n+3*mwbir}RO{Wx~qh8p7k}55L_Fp9-S6=^f&N5QFc+cI0+;?*b z+9BsC75eIVJd&U733+Ts%7bucQ^?~!j)dHGu@U658+1P_D}5Yvt^zV{enmf0>S-R-52gJV zx2GI_QvRI_LY0Btht24!a(t9n#WZ& zseda+ZUvv&ZUEvBZWtF;IF4o71@NQ4LiYhdCeg0FKT%%F#8<$uLk!ICS`PXaxdtfP z`XBs-c0IsstUny>tgYJzVsqC|NKf*2sb9L@LQjPdXjdh7<; z9@4xRSi26ivq^KHl~)&N=l_lJM6Kz37a6#j%8g0}pHXHaXweZ`KLk6!foAj=4iqpq z0kiUt!e3lRnqSn{X*_EmzJi?f54D5aPxTD3nE=AT782-r&x?AC*~*3 z6YN@dpf3y2enY>dCE|+=ruGs0Y1}4XqkWpDT}jAYL+JUWJ|zwFfT-J_erzILTttJ(|c)=TF%n8Xvxd8&vP@Gfy6e5b5_6#jJe&cQyuG|dN^F|=<_2p<{tRM!Tk}h`mZm*od4|5a~&uH1dK3q}oFp#dRMwz%CWlYYsf}%Dya!w~zsgEeyy;_C zBfk9Cw_zXMcn<8Di)VwM!RQ0pyZSxk@{wB5*%=DRJ>J*AbPlcW`qz&TSMVSk`nrGU zdAzRIZRqhk(L5wrP2(=mR}KCAU2^DaipHTG#dca(T{YW)AB>{;G5jtC<;&ul00WEZ ze9wLS7=F_K{tx=TL^?kRukA*;arr;Mw-54w=57B1ef0`j2h7I*z*kn=0=lU*XZ<(Jfo2b< zc{cB74%W%Uvb2xNE%*|A;rR63PJ+LzT}6Nl-$L|zNvJ(&*T#`3N0LGHb#kbEV}G6j zUmT%(KFO`kpgoQ0e95Rx{oUE3E%?F68`MM9G=R9wmo%U`Y+CP?RgZw5@P^)di8Ld> z$v=e9^B$meMX+lZ;?fNKa}HU!3jSpyx&c$J(EcsZkmfaps1y7uo+koz2WVZ_Z2bkl z8GTq3_u#P<*Vy$y)@LCwF+33H%pMIrK?j=WdA>aG?Soo?@4P+}aT&M%8Mhy4{7V%l zP>%2CIOw~l_6I6nw1S=L6z$)vIj_Oj-=zMgIPd|q=q%k!M&;4I-8nu5d{%8QFlr{* zhimkLzvOIce|HHvtFV3fKQl1zJLez7d~H8q$Gps#whHTpqslU%JM2e)U_C2=_E#n; zLC5vE3ctqja?I<&8@I|7`pvqT3q7y0BhcRG6zVV5(EJzwg^hB;uPZ}tUO@W`Wfu?p z#&|zLKV47*dXd%r5Jy~P3-l$~r%z z{%e+i|Ckw{;K!0S9eiKu1n||5=p5tljYWB^a+{zhv)_hZ-eA%XRPIG_KAr-;x=k@4 zKUf6udgjvpCHFrb^sJT6Qn@m^4-{>_4!_bFm0+hY&O?25v(JN8j!*&FkKAad+|oBd zGa8iy+Q+_zKU3ogkh|tkeuHV>5I1jfQ?!e*#aEPLUi=)GyxtCZ^vN9fiJL*~8R)+Y z^61S*$T@E>BOZOyL$s^?#%z?M+Rla@i}4YBeJvfzk={LldV2>ng^_a_P~+L4HDWf<*P|Bf-7%lwFLKETzUu8M@MCwyfNy-1fp*VdR2*{FZdy+>8*D=R zMk3{)A3gFd>TQ^$gk9#3jfj`|BLsAheuI1%g7@JkH1!zT&AM|l;#dBA3ULcRYtRnd z==#Wq`MnN&Yu6DdC%NuB_~*=PjPlIc51`NEo&j3>F9JWV_y*WXKXpfcNnACca$$RB zmsx@S;A}ew{$;`x-hjPbDZ&iV}6@W6?FBWR-nEty332Clbm)XTP5 zhx%{>6Ce+{p22T&-=6U68hR4-HVml?G{(22`reI0esrDx1wY<18uc^(c#HU0-`k*G z?lU~l%-QMCH@z{!o?T@J_>%ZXC{K}n9q|Y%9ECs4?c-Sgl;?kAo=#XUg@1NT9`Y%9 zHW_FyPxD0nsA-UARDOWCP5X;bx&KW?9J<**QBQA5QFdWI!(HE^zVWLYARcCmKG3(8 z&p^Jz!;fPe$<3FbpTGA9#xsw9F@U zl|mkSa1!El&#H=e+}Hj?x!hSNK!=L9M*RFK9gr7Md?LzmZpwjQ&h_pi=U?*JG33{6AQqXeo9?&s5I?qLHP2tbQVNtvH>VglFQv1G+GWuP^qZ7Q1-}?5_$TSOn(VI9dLzkf20DF1bLdGo2GD`^BIferGS@ z=QX17!a7a!y{XzK$QcSg{2T8*1_`?U@L!Q`&2fpdxS)lc4CFlpYPK4b4vLVK! zOxGB4N4o@+$GzGD@g=-c0ELw*pr6H6VOA^bFX80<=#Ly}Jo;fu#-|#EeD>}7(C6t# z0i`S6pd8Z{F}44=!zd?EHv@6#{I^h^##WB zSLRbuyw5LypIiGk@~Sg*0&V;-8+5?c9CY@C2{NDUEW%DmfLO*KAX2h=_a~}Dz_dgA}^FFOpw)ln6GquacILIhB2sGF874gg$f1K-hC1Q-9GmJ%e&M*G{1S zYCoMo`?)gd`4!!IL^FilSFAKRn{0aS& zd89x5<;>p)|Bea<)JG70fciUO?xuWw_v}&2sBI-d$1FXF`b9oTQGVX~2H+dUwFcj(?GNeSr@NyhzmN6Z)@6t!)S$g$5{97HnVV6H_ zKIQj$Hr78Evlr^c-jM{ooZs~z=j`nQj4gYa`diCYl>a`|kNxK=fUm7q19}EkI%xgg zaiAIX@}Qr)^$uubG4hkJ@-E`bEcYkwt6IdRyxtW2VDl9CaXt}a-jH1?347H8s&_>8 z5%V|qLnY`5U+n?PI<$wLd_^k!v6|0-Ki%W=$ctrp3FyTJ7s0P`(nrWct%cyHb7|it zsIv=xoaw2Mi|hWxIOGQ8@RO5i0D86kf&6`2;LmP(2-LnPhVpr%+S2-xmI=Oa=5F}Y zl=+GH*|$r>uYQFEezM0(KpWQYhCXZeIMBMmXW=K|lLv8%qA$SSc612j=`%hh+~0fR-R zz@H#W4tpJU7Rpmh)dRIhib79TmhL-r$Ld2rdiZtBXHjjF;a4@YEcpKMbUsXZ`2uz} zT_e;la&s{JF{;c3KP74uXmQIiurnPT2Y%G3yNDxp{|3;$_J@J2)C;JuanM|ft2eD@ z;-wuxC!Ssbd1lA?Kz>vR@v&RBL44XnM}Za}-NSjd&^bQx_$2&iF6e`DeNSlLpLL}X z^f~r2KwI7t_>DR^1MzB|W}xO!L)ZmhM5DauEn%Q(O+(~AXBn**jIm>(FMRzTe*Et8 zu;a(gfq!v{cc=%S6%DzmXes!KZAte*X1@Y)x~kGXH|FdV(B=*cU?07M&K0@E{zf^0 zq}Is0eRE%+wd_P-`qCK0Wjf{qt$%j|ek`LEm?z@uG=N;OG!uSeYg7Mpdru-h^>P7_ zeQZ9;HT~!aTK1qS&~Y~jeBr|1s7FpJoog~GUj%K;9tgR<)MV73v+p}mD*1?Xsa3RqD^%?lN{BNL5=SO24T2Gk4XTPb1cogi8RNjZS@S9h2 zGUVwGM#F!gR};|THC>>W(eFL%0?`VffJ^P5l+p9QEF0aY#ZRL5ec0XU`GizO_nH9) zy}yxIVm$6+WS{81H?n#c$}=~33(V~0MY(w{J;mFI?rYP#Wg!khtDQjO$rsS~H>LSQ zzNt6rk(2xi`SaFYfq7oLXA3Y>#YKB^ny!Of&@T>o5hdNnyq#>+0j=v>K+pd&7kY_% zdQR(Bss(i@d}R zZ4JHTIaN?z{H(R0?JT;l<8*StE_kL4?A-sY0ovvqgMN0x0>q~X{sP}T;}y{4qj@y@ zoCI?9m;}TvU&w?%Uq3t0_ILxz3;eeUD5%~KafziFK>h><%F%9{2DwE?_hqsZt06ZQ zQ&V0(Z-ZR7dkg#;oPM-}X$#%I1SZiuz+N*C{`g%2u+I*yLcHvV0e1P%Tfr_a^cL%# z=_1`jGM`sLKZq>Ig}!FREa(|eZNj*B2G-Uu+-I|r89>#WOzaaqjQ`NS@$A3Q?(FH` zkPpqY4d@RsV^d+z*fR(IY`vGjF8!a)*aynGJwiW<;a5WWD#3QhnZ0vhpYrxS;>@ac zp5k3;gkJug{wOc&?R=Cc>Fk1C;^vF!FaDMTQ6BTyH_$vY#VHxP_)*>I+#Nfw3FH!45yX+Qza8v(6)HntuIh$;Ttf5*$Qj|= zp!4{z5vOjE1oqC>9AJL)Rq*d$WI_8F+ucEXD|Ls#7u2SH7iv!Tdoe2?z;9GOt8~w+KGOoY*h<#Pf@x*zGg7R z?>TFud=&f%qQdc^|8t*aco~cSs=P$&L|*S#h%+wlAnIlHKSF%T#yjArj5i^UtOoTk zZoPf{pk3OvC^!2S?cc1H#mKv8b1Lj(?I(~AnIQx{Ifu@dcEMEm$xSQ@|M|~m0!2#) zLXVL^^_IWe06+G|$tcg(NCiD_tA!M2hg+x@+vtW|UWD>(-ck#G^wnBGPsB@uo%UrX z#OGRi5wwQ+2zjuy?FRd}5?5en89fwo#ZbDh(>D^q5Bq}*@o26rp>y#9Dfrp*=((El zJRda2J{Eow(wXqXoXACeqnbz%ueL}#_=#RW678dA6b1Tk(Q`o8gG-Rdf2H-nHK8Q@ zrR-3EpH;Og^dn{IeVvT8M-WfK2R_jLemc(Y{7=1s*$bxu-E4Zk?tA_>)_2L}1o*Q! z1VCn=2>j;E=>z1wOho*aBfUYJa%kRHJ(-01NNODdKXGd@AlrNkeC?64WVd%F@|s__ zBxrua%aD64bl>Ioq@i5?)S?C@=%$>;0uyU0OJoHfj`bE zdaqMHg`SJBvks#?f3H^1OWaS-l@x0@6z}Boz=So+U?13j7Ia>P7id3*mF_ioPZrU< z6`l+~a-|BGK9-)#n0|hsc6mzYhV+Yz(BHM6-=dv!CeZk@=hA*WX6R?sk9VBTEg5O_ zJVbME64nFxkPo;A@FnqR{%Dkicuc419K_q`M4WytjZY7U?xXE*yQ99z_y0kCjH|Pt zr`aEac%z5E1f6ee3_V?D5$I*truou4i1v}822Idj&Kb90=WHGiJMm)LAB1mPVJ|3| z3ADx3fxhnjO4K*66uqxzoj~Kz+Nv7-*hbQOlcKyV&^faf1LGU2;9uH;-dEuJ7lW4l z-3jvCsn6k`BV3F;Xs7o8I%2LPezo^Lkhfwf+99;NE%do*qY1%f zwHB4zMy~B0b83pD1_&e~G(SqMXF-{UGNyWYN6y<2mH4^7NjFr(#3cu}`mp z|ESsff%*1p(AS@(^P#XgmBXlA1O6-}>A4Vl;yd^g+W5$;yx|sDb_Ro;o!urJZCErorUHoszn!u3mj_)$Y(iz|%^ zk+*Ix_>S+Duuo$(Is$*eI`n)ZdFc}5HF{4AlxwK62KTAHGD~pZWi^bY_32C&%6Gp% z20dB-E%1|h=M2!!9*w-Hn~jECu#}!#@@@3|i}kD>#w+veFZgo}q4hgz#0Tid_TPj0 z_)E2eKSRfk(2Ji}3gxQW&H~z2dU8LQ|yOkQ0l+97@>?Y{&q>Y=~r7`I_BU=Dyht1_ME zVkXo5Ps+J6$fvO=J=f2h`v7rCOtjyLn@Z!ZNC0(!B{=(%9_a=I6` z*Dzq*xF0uxer)H7!2H)%@R=EWlqcyv9H_WL`E+!A41b#Ync&-_Xg-iMdV;t$J-F}_ zQ}+w}s5jAli2CFj$ek~0(mb?xF5-)uK=1R$PNMw)W3?P|(}}~7D@}BcO*obTzHH*3 z=Zvg77?(Lm-_t&T^%V1{|JzO=+fW7iyh={QAsF^AXl?7$81D(@C7_*cJHU_gg#$GA z9qn_xrhAB2U8XqD|D5JsXZB_2CqEtmKf0y#-b(V;(cV#oD@y>910 z_)qs9g}$J#r^lV>Skl){7#3?EM z=RKtb^n5iw9E*76S7$)qGNm)nK9BZU@f|5&ydurOH?L?2lt$MBIsy+-uDae`_>m-0 zo@}H40v$^03Dm03LC?x-4vZhV5%zpZN%X&{XY{^;{Co?tn@8uwjO{m}ADBevBzS&|QpmaW=>E)lpZr_*=7Z1LSqrFlT!me*5v}jy3EjcB8rpy_-LML@E@mb2 zZCJh;e9N=r$get;hw&i#_6>U8%C!)usyyxA^BdE9QT{E%pr25I?)x%7MPptHecXWj ziz;7&e^)BKmtwZjy_>c)<&A%f+9P?*e)u=8JOurO`gGr@-&g_uO->Kwf@9y|SFR`q zJ^i;eh|k@vCipSsa)6odx&pIb)B8Xfx~iac3Lom}=|%f)SzKTE*T>O&cE-vs$l1C- z@8>n7eT=IYy#kw9qia=s6Ts?r0^H%beP(0ycFf>Zp5O0 z36hdvpLw79F|S2O*oS}SB5%Pq3g|oA*F(96#dL3)Xc!7Q|MVze{PF*Q($9b1BW*_S z`zIcZM}0Ld_fwolCy-v{z2Ngp(|aJwIv)|A`Mw2usxR-L7g|>pdfNB&o^gJsmpCUS z=A45(`5B#KO!FJTJ~96{`1ybRjkqoMQ{Yc0Y5=}#1ifFH(7P?@@Hl!8K(U_sMa}@4 zzr`{?{%LUEw5G0nToKksw8Pttb})n8rMH{_q9 z=S2yAdS5C_bsKqzj~#^a6m?QjKC8qQ>UZtCqn~LkbiTCK;6l%P;|c0(XHk3RUHS?? z!pL68xttZSPaIPOc@I6Vi+F9-=shs~fep~hFw=UaDc%6_Yon-r(gnHj$0<$k2XXTc z!QPou8JN(J>M69)JefC{?oW8Le?cw_(sMS`^WBKwTCO$vojP|U%E{?U>l;7w3G@RE z{-JuV`;+hIX7IW5zCb@={t96BaB6?XJ_X|AJ*N3r-QgML2vL0;l=={bR}XguVcUUaUObffc;?g-5bE_Wj2?4C6LJMYZ}t^em1{E52JdoGej zRK8$XH^glmcMy4J9;W*w)A6xruXyhZ@CbUnm_6Q+f z&C|gY=g(cplcGJ{|74$~`*+Fhm54`hpfU7KmtIo+U(xwCdfqnBrt7qy;?<&kRNm8{ zDBtAh1ONH0bbDdA7mOxzekDU ze1<>KHhO>Q&@j)t2684b-6Ly@E0!@G}ELp|7q%_khL=Zp5Xza}(uyH`4D{vLe)52_l@)-4( zL(bcj1v1=#cc{N7BsZ5i5GvMvMlGu(|rUWB7)Kc@e*0<`|R5`G-If6(rH6}@K} zoiLX2>Zj-A{uXqPqrXAV$76?4zYag5^S6A!YS`!0cfl@8OZS_02kmq0HSVFD^z}Uv zkN;ae>_0@O=>0vbhVBoYp?$DtY$=62IW8PW{d~(;g0Ip%1}%+h51MssHuA&#K>I?e zoYsHukXY!&t&RsqeWUlV{k+zQLvgAu>@w1OB5yYCQXsQt6UZ}U0$}(Dt*6W+8fTLC zC&ACDxE1KBIT2`zcEKN`1si_+`_mCWgSQs)Oz9->(<{;M{bc3oxuWfIS@0bVt3Xc| zs{x&{t1|ql7*wt|<~-<}`GvW(p z4FZaO4?=w`arFDc@JbHaJ)s3XpNLI)OYJj&=1R|6_PHY0wU`S9;pBn8?Je*|Bc`5*jR2hn~a?*Og0+HaXu z{~}G{M{BwRjM?J>-!tkt>=?yqJUDOB@1q3Ehr_RN6a(`SqYv#PV*1hhF@jpvAP;n- z--YU*((eNE;^=pp)>UH=pT81)pTx4THsv$)0Oj*WsZg#*P4di>v@eZv((`$9HvO*0 z-1r0X%1xv8SB!p&a(U(H_cf6n6t__%24DSl7s_Rxd4cjmJQez{e9C3?tAL)ybzHI6 z;O9S}_W%qAdcRdUUx59Z{W+aKQ$EvsJe=j!@3lpm!jHY)Jd`IrQXJ(ld+Y=quKx=d znBoGaWYM|Bu<0M@`M6XMfuuC(*jd@ggLut%p!d+fWIvz!g>mms)IVbfy=Tie{8@(= z)9=IB)o7f`2j79cX!Z=`H}O2}10-{)pJhrrpr5MDd|-AC?bC&+Gzg;Lk#>oXQ!Y( zoU+GZCph;F^^K|54{~928089n(t8Q|=p@jdCf%SfV|54ewp4(BK^Yp4p8E7%D%Ob3 z@Rz**2T3cTj=QO`+hA)Gh)%F1}{O=<8vxlmHHkYG)gJd4f6EXMc`v=Jz znnIpeikS8zSjd=A_`+@IixDR|+OAC;7g?36HLQFGu=bi)q4m>vH@kLMf@G$+&f&wi2S=in^* zy&WU+XP%o*>zA<8pM3Ib!C&|;^B6g zad1$+z|#Q8Q0xbqYEMBP7#D{^pV6M4YYDsgAooVk1BMmbp%<9zhF+d&FWQgAnSk*k z8d(y2!NDkCfJeVab(N;yo9b2cJFM^x4&)LqjXyyj+CSv%{eXVv$?bu4C6F~4aZ4Uo zMf-Vg>;fHCi{5L=oAV9vXs1qwKgLq}eSXgB8lW{3(x`s3hagVIpYOxONEd^z={^{G zCPisrIB_Y_L#cmwkJ5K0yz}ULJI23e!A`j69gtP0KlJmmm7qBrXrB^{p?!zsD*ayF zbd~n6!p8KwU+oL(Pwd6N5x?Tfa`@p@eh1oHhxY6CNqbOVMH>S& zdw}GzpHV*zgAcx_H=S2h3+VZW>Ia0{ zC{{b%gJ~XI0LqMXj~woF2+tLA?$yBkdhpFv%-5Qm^gL5Ph{l_JOEk)3bRk++@L}!3 z=O?VoA5mZJ9@>|SJIzD zY@*+3D>);fmpH95&|iW2nROB&^Qa!>>tEA(PpPKwATiI(MjU}I)V|p<^gW~SMhE=I z4VnrxPNI8O*K-y8xN5}$HKVA%%Jb-ZD%Ow&ak^usQ@z_PK|WkVW&vdqdY%#7NzV_$ z12kCQr1CmIWz*q6=b=ql=N*mccZc#iV)*l{T1mf)%SuIDk%Y4p4|g!RSU)cdD z8xu?G$k-WZFT)NE`1+(j=j&xt5m!RLO~`}qHofnWep8En5&dQ{?CmAC!9H@~2JA!m z1A(0BDUdT76#<=_KO6aX4*v-{GT<-B!$)L5OAUJO!Re*ws4 zH{tFu(0noNvjf#>A1^LO=Lw!_4cgIOnbvXMPnyRVn_43;>?OnCpFNw_LyO%A{n&OJ z!Ov)Z0D09OjYavQ8nnNU8?poAO5L5tMdtDK$V;582jaY1*yKrXm<9GEe6CFJg3Ay7PzLct zSoGXP_q#9n*+*#K$gEPF`fXR*?`SWU2krSp>m%<-CFpC?=-wv%<1_eE{&xxGin3ax z9@?jDV9GrDj)~{=71((*S|M-ha}_cE_-*L@vGnKkzJq(S5OPJsDEQ;`l%qfC&R#+} z*+17I9_Da5|C{CvfIjCc-CO2I(|EHy8VFY7KL z_?gv)U>$Rvr2CM()2EOxW9KfIfAbeE2OYMtfV>++kpGkk6tDX6OXM}PHQfWahEP9E z9zy3s%`*C4g?TPL-;JuPMtQMk=sm8ms1Nca70~`){B#NOs(LpM<$3?3^Fh`JdQUHK zpVp6LHoYe(t4{AlTXwHOTxKoZ6S{Y=hToLS)ZYVt)BM3YI|_Ws68fGEKdBSSGj*VQ zfpE?*Y=ov23bAtGO)K9n- zDNe~4F3MvM*$>Q5pnYs4jh+`I?xAyFRutU>^3KuzU)AX^_|?{GkN6DZ8c;jcqW8em zErsB7{~@`wF3lrKEzQH)i%&2=aU8iQH=#jQ&{kzztfRK2Cs5zymUkid9heSUJc^zd zhqlps#PXX|f7M``$NbTM=JyMaq3`JQ=RNZ8PmrJFH}ssv+Tje=i;SlI!S{dufptB$ z9OXTRvjz69C7XfX-MNS>eL3w%veqs_T<-dGo|k9Tfu1~v?)elWH-XM6QyzJ7Uvi>9 zs8-N>A&zq`Q9g48y?4mG*c9uJx6?4h;R&6@`xvU`JD?{U$;NvSxt;fcRt<|n+-k{1 z1-V5aRpzn3DTC7GtU@HyO59`o+$94V-JI8Y&_%W6HLoYG&68QWX^n4|8%5Tup zRd*rxt)}0{uymVHUgE!vfU!fWLoVA^74_w9r1!Bx$|j%_Z1lX1*P71f%8U)*=Tm)VETq0$RJ^k;X+lCX>F?nHlN=hD5Y+E)*JZigMf z>@T#Q^PbapVKgW5z!xUX1UiRaK|N)0dqHQF`UU^uSbFcB_5C#Xx#j75Vy==p$aOo@ zDGpOt$fM`p1s$`oI_UgqZ^&*7eJ4|IqVX91v#ygDUDVra_U&f#BkEBTd1??(9>u*p= z=hUd~YY>mD{wny3*U|f^!JbQzUxnEKJ2AI0~7G_8BNA~p4^>hoc5JM)Pla?^Hbd0 zhliiTc+~!&c|T_c?dP(i?qNLZy3=~?(9rv%k;W(B$5WQ>`-Jfk#Gy1&fAkKa{JW>c zLC;Y^Mf&B&pxo%nTI3_QQwN}7@(k*KE$KXLD|ZHT;tIOY%pcMO^~hqV4MxO}yF>In-uzN!;a?f628IR>fZV@|_K}e)Va$K# zZ;c_BPn!j~dO3Y3Q`mSO=)eRkHHwcqV-jHr4_YP%kA*%8%g(m+}__|m(aC7_}WTz zZsoObAzni{@?+{)1+=vj&C}}Yv>)}XEsb_J4W<39x($8rFCmZi$!5k^*lBiCT!|@k zFJ`^47JUCOl4tT4A`V5*jlks7qtM?SAL)Kqq3w_O@{aIO9=CcQ)F-Y2jSuNy>c6_y zNsx;rURILHZ9FCxXE7|E4Yptp36kNW65I@__BRb2Sod zK8Ly{IDH=|C<4Xa<6pakw4AEL3CGM9Yks+NS=grVM zB}1WoO3)MyZ$@ucAV;$kq)azMFGD}WAj2pXsIjySD34z!BUERGVIoXJYVDLBHUm9F z6FtKzKr4G#5-U=Rr(_89uqEZ>CubK=0onr+=g3VjiU*1S<*+&^vC~-tG~@#U;IjjP zG}v!I8thjf4Gtq94f19WTUlaGDafkeQlR-6^*tO(rI|S;nR&%idRU8dGLuuMOrGM+ X;?3&K2=aJFTSjbYYH2aZ-AQ@?!kZHA literal 0 HcmV?d00001 diff --git a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb index 0dd7ef76a..2cebea20d 100644 --- a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb +++ b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb @@ -102,10 +102,42 @@ "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File already exists ..\\Examples\\TimeSeries\\DataSets\\Stock\\stock_SPY.pkl\n" + ] + } + ], "source": [ "# Please check if there is trade data for the chosen stock symbol during this period\n", - "data = get_stock_data(\"SPY\", 2000, 1,2,2017,1,1)" + "# Ensure the data is generated and available for this tutorial.\n", + "# We search in two locations in the toolkit for cached stock data set with symbol SPY.\n", + "data_found = False\n", + "\n", + "for data_dir in [os.path.join(\"..\", \"Examples\", \"TimeSeries\", \"DataSets\", \"Stock\"),\n", + " os.path.join(\"data\", \"Stock\")]:\n", + " train_file = os.path.join(data_dir, \"stock_SPY.pkl\")\n", + " if os.path.isfile(train_file):\n", + " data_found = True\n", + " print(\"File already exists\", train_file)\n", + " data = pd.read_pickle(train_file)\n", + " break\n", + "\n", + "if not data_found: \n", + " # Download the data and save the file to a local directory\n", + " data = get_stock_data(\"SPY\", 2000, 1,2,2017,1,1)\n", + " train_file = os.path.join(\"data\" , \"Stock\", \"stock_SPY.pkl\")\n", + " dir = os.path.dirname(train_file)\n", + "\n", + " if not os.path.exists(dir):\n", + " os.makedirs(dir)\n", + " \n", + " if not os.path.isfile(train_file):\n", + " print(\"Saving\", train_file )\n", + " data.to_pickle(train_file)" ] }, { @@ -632,26 +664,26 @@ "name": "stdout", "output_type": "stream", "text": [ - "Minibatch: 0, Loss: 0.6971, Error: 49.00%\n", - "Minibatch: 1, Loss: 0.6826, Error: 50.00%\n", - "Minibatch: 2, Loss: 0.7160, Error: 54.00%\n", - "Minibatch: 3, Loss: 0.7018, Error: 49.00%\n", - "Minibatch: 4, Loss: 0.7088, Error: 52.00%\n", - "Minibatch: 5, Loss: 0.6905, Error: 42.00%\n", - "Minibatch: 6, Loss: 0.7083, Error: 54.00%\n", - "Minibatch: 7, Loss: 0.7015, Error: 51.00%\n", - "Minibatch: 8, Loss: 0.7068, Error: 57.00%\n", - "Minibatch: 9, Loss: 0.7128, Error: 60.00%\n", - "Minibatch: 10, Loss: 0.6881, Error: 46.00%\n", - "Minibatch: 11, Loss: 0.6859, Error: 40.00%\n", - "Minibatch: 12, Loss: 0.7035, Error: 52.00%\n", - "Minibatch: 13, Loss: 0.6803, Error: 40.00%\n", - "Minibatch: 14, Loss: 0.6927, Error: 51.00%\n", - "Minibatch: 15, Loss: 0.7098, Error: 55.00%\n", - "Minibatch: 16, Loss: 0.6880, Error: 48.00%\n", - "Minibatch: 17, Loss: 0.6885, Error: 45.00%\n", - "Minibatch: 18, Loss: 0.6895, Error: 45.00%\n", - "Minibatch: 19, Loss: 0.7105, Error: 51.00%\n" + "Minibatch: 0, Loss: 0.8458, Error: 52.00%\n", + "Minibatch: 1, Loss: 0.7292, Error: 53.00%\n", + "Minibatch: 2, Loss: 0.7177, Error: 52.00%\n", + "Minibatch: 3, Loss: 0.7022, Error: 52.00%\n", + "Minibatch: 4, Loss: 0.7118, Error: 53.00%\n", + "Minibatch: 5, Loss: 0.7118, Error: 53.00%\n", + "Minibatch: 6, Loss: 0.6900, Error: 44.00%\n", + "Minibatch: 7, Loss: 0.7228, Error: 61.00%\n", + "Minibatch: 8, Loss: 0.7242, Error: 61.00%\n", + "Minibatch: 9, Loss: 0.7087, Error: 48.00%\n", + "Minibatch: 10, Loss: 0.7006, Error: 54.00%\n", + "Minibatch: 11, Loss: 0.7013, Error: 54.00%\n", + "Minibatch: 12, Loss: 0.6948, Error: 53.00%\n", + "Minibatch: 13, Loss: 0.7122, Error: 56.00%\n", + "Minibatch: 14, Loss: 0.6950, Error: 49.00%\n", + "Minibatch: 15, Loss: 0.7011, Error: 55.00%\n", + "Minibatch: 16, Loss: 0.7015, Error: 48.00%\n", + "Minibatch: 17, Loss: 0.6794, Error: 46.00%\n", + "Minibatch: 18, Loss: 0.6874, Error: 49.00%\n", + "Minibatch: 19, Loss: 0.7077, Error: 49.00%\n" ] } ], @@ -682,9 +714,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAACfCAYAAAA8qTSuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4FMXV/z9fQHFFcUMJStyNGFReFVxQXHBJBA0GI4ZE\n4hJj9Of2atQYA4J5I2pI1GgMcUPiEoLirqCCElBcQAQEIYobIIuIiKJs9/z+qB4ZLnfuna2nZ+ae\nz/PMw3R3ddXpZm6frqpzviUzw3Ecx3EKoUnSBjiO4ziVjzsTx3Ecp2DcmTiO4zgF487EcRzHKRh3\nJo7jOE7BuDNxHMdxCsadiZM1kv4m6epcy0o6QtLH8Vr3bbvvSzqqFG1VA9H/zdRil83Djv9I+nkc\ndTuloVnSBjjJI+kDYHugtZl9lrb/TWBf4Ltm9pGZnZdtnXWUzSuhSVJb4H2gmZnV5FNHtSDpMOAZ\nwr1sAmwCfAko2re3mc3JpU4zewn4frHLOo0P75k4EB5E7wO9Ujsk7QNsTJ5OoIikHpSKvSGpadxt\nFIKZjTOzzc2sBdCOcF+2SO2r7UgUkYixTqPDnYmTYihwRtr2GcCQ9AKS7pHUP/p+hKSPJV0qaYGk\nuZL61FV27S5dJWmRpNmSTk878ANJkyQtlfShpL5p570U/fu5pC8kdYzOOUfS9GjfNEn7pZ2zv6S3\nJC2R9KCkDeu6YElnSBonaZCkRUBfSX0lDU0r01ZSjaQm0fYYSf2j876Q9KykrTLUP13SD9K2m0pa\nKGk/Sc0lDZX0aWTnq5K2raueBljHWUTDRf0lvUzotewo6ay0e/VfSWellT9a0vtp2x9LukTSlMiu\n+yVtkGvZ6PhVkj6Jyp0d3cedGrygwO8lfSBpvqS7JW0eHds4aid13yak7n90ne9H1/mupFPzuJ9O\nnrgzcVJMADaXtGf04PwJ8E/q7xFsD2wOtAbOBm6TtEU9ZbeKyvYBBkvaPTr2JfAzM9sC+CHwK0nd\no2OHR/+2iN6+X5XUE/g90Dt6S+8OLE5rqydwLLAzYZiuTz3X0BF4F2gF/CHaV7s3Vnu7F8HZbgs0\nBy7LUPcDwOlp28cDi8xscnR+C+A7hPvyK+DreuzMhd6Ea24BzAXmAydE9+oc4Nao55mi9vX1BI4G\ndgEOAH6Wa1lJJwLnA0cAewBH1XFuJs4h3LfDgV0J9+cv0bFfEHrMraP9vwa+iZzNn4Cjo+s8FJiS\nZXtOEXBn4qST6p10BWYA8xoovxIYYGZrzOwZglPYM0NZA64xs1VmNhZ4CjgVwMzGmtnb0fdpwEOE\nh1A66U7tLOAGM5sUnTPbzNIn+G82swVm9jnwBJDea6nNXDO73cxqzGxFA9eb4h4zey8qP6ye+h8E\nukvaKNruFe0DWAVsDexhgTfN7Mss22+Iu81sVvT/ssbMnjKzDwHM7EXgBaBzPef/2cwWmdkS4Enq\nv3+ZyvYE7ors+Bq4Ngf7TwduiubpvgJ+y1qnvArYhrX3bZKZLY+O1QDfl9Q8+v9/J4c2nQJxZ+Kk\n80/CH20f4L4syi+uNSm+HNgsQ9klZvZN2vaHhLdLJHWUNDoaAvocOJfwwMjEjsB79RxfkKVNAPlE\nmc3Ppn4zew+YDnSTtDGhB/VAdHgoMBJ4SNIcSdereHM261yTpBOj4aDFkpYQXhbqu7+53L9MZVvX\nsuNjsp/3ak34faT4EGgeDQPeCzwPDIuGz/5PUhMzW0Zw1hcA8yU9ntbzdUqAOxPnW8zsI8JE/AnA\nI0WuvmX0QE2xE2t7PvcDjwLfMbMtgb+z9sFT19DIx4Thj2JQu/6vCFFSKXYosP6HCA76JOBtM5sN\nYGarzWyAmbUDDgG6AcUKjf32mqJe0b8JQ3jbmllL4DniD2j4BGiTtr0T2Q9zzQPapm23BVZEPaBV\nZtbfzPYGDgN6AD8FMLORZtaVMKT6HuF35JQIdyZObc4EjoqGJoqJgGslbSCpM2FuZFh0bDNCz2WV\npINYd55hEWH4It153AlcJqkDgKRdJe1YJDsnA4dL2jGa/7mywPoeIszfnMfaXgmSukjaJ5qf+pIw\nfJNr6HM2DqE5sAHwKWDRXMbRObaTD8OAsyTtIWkT4Hc5nPsgcGkU/LA5cB3RvZN0pKR2kkTafZO0\nfdQD2xhYTXgpWFPMC3Lqx52JA2lvjGb2fmouovaxXOqpg0+AJYS3zqHAuWb23+jYr4EBkpYSHjr/\nSrPna8Jb9XhJn0k6yMyGR/sekPQFMIIwGZurvetfgNnzUftTgNcJcy7rFMmxvvnAK0An0q6L8PY8\nHFgKvA2MIdyXVMLn7dlU39A+M1sKXELo+S0mvMnXvqaG6sy5rJk9CfwNGAvMBMZFhzLNS6XX9Q/C\nvfoPIThiKXBxdKw1ode8FJgKjCI4mqbA5YTf1yLgYEIAgFMiFPfiWJKOJ0RiNCFMyA2sdfwyQjfV\nCG9Q3yOM525GGLdvRXhj+4eZ3RKd05LwY2sLfACcGv3ROI5ThkTRYxPNrHnStjjxEKszibrwswjd\n6nmEN73TMkVZRF3wi83sGEnbA9ub2WRJmwETgZPM7B1JAwmTvzdIugJoaWaFDkc4jlNEJJ1MiNrb\nnPBi+JWZ/SRZq5y4iHuY6yDgv2b2oZmtIowfn1RP+W9DJ81sfhSPTxQyOYMQk09URyqhbghwcgy2\nO45TGOcT5mpmESK9LkjWHCdO4tbm+g7rhgfOITiY9Ygmzo6njnFOSd8lxK9PiHZtZ2YLIDgdSdsV\nz2THcYpBFFnlNBLKSeixGzAuSjT7lmiIazhwUZTAVBd1jtVJSlpXynEcpyIxs5zCx+Me5ppLiC9P\n0SbaVxensTY7GABJzQiOZKiZPZZ2aIGkVlGZ7YGFmQwwM/8U6dO3b9/EbaiWj99Lv5/l/MmHuJ3J\n68BuUbz4hgSH8XjtQlE8/xHAY7UO3Q1MN7Oba+1/nLV6S2fUcZ7jOI5TQmJ1Jma2hjDpNooQS/+Q\nmc2QdK6kX6YVPRkYaWmJcpIOJYQMHyXpTQVV2eOjwwOBrpJmEiLFro/zOhzHcZz6iX3OxMyepZb4\nn5n9vdb2EGrJnZvZeEIiUl11fgYcU1xLnYbo0qVL0iZUDX4vi4vfz+SJPWkxSSRZNV+f4zhOHEjC\nymwC3nEcx2kEuDNxHMdxCsadieM4jlMwsTsTScdLekfSrEhHq/bxy9KitaZKWi1py+jYXQrri0+p\ndU7faEGhSbWivBzHcZwEKFuhx2j7MMKaBfeZWfu0cn2BZWY2qIH2fQLecRwnR8pxAj5voUcAMxtH\nWAOjLuJeKa5gJk6EW29N2grHcZz4iduZ1CX0+J26CqYJPT6cZd0XSJos6c4og77sGD0a3n03aSsc\nx3Hip+yFHjNwO9DfzEzSdcAg4Ky6Cvbr1+/b7126dClpctOkSXDCCSVrznEcJy9efPFFXnzxxYLq\niHvOpBPQz8yOj7avBMxqrbYYHXsEGGZmD9Xa3xZ4In3OJNvjSc+Z7LEHPPII7LNPYiY4juPkTDnO\nmRQq9AhhbkS1ym+fttkDmFY0i4vEF1/A3Lmw115he8AAeOmlZG1yHMeJi7IVegSQ9ADwMrCHpI8k\n/SI6dIOkKZImE5zQJXFeRz5Mngzt20OzaCBxhx3gj39M1ibHcZy4cG2umFi0CD74AA48MGyvWAE7\n7wxPPw377ZeISY7jOFmRzzCXO5MScuON8Oab8MADSVviOI6TGXcmtSg3Z/LFF7DLLvD666GX4jiO\nU46U4wS8k0aLFnD++TB+fNKWOLny8svhJcBxnLpxZ1Jirr0WevdO2gonF558Ek4+GZZEWgwrVsD1\n10MZdXodJ3EqVeixpaRRkmZKGlmuGfBO5XPPPXDOOcGhHHts2LfhhnDbbfDf/yZrm+OUE7E6k0jo\n8a/AcUA7oJekvdLLmNlNZra/mXUArgJeTMuCvyc6tzZXAs+b2Z7A6Oi8suGii+Cpp5K2wikEs9D7\nuPZaePFFOOigtcckOOYYeP75xMxznLKjUoUeT2LtmvFDCHkqZcPo0SGvxKlcpkyBhx4K81t77rn+\n8a5d4bnnSm+X45QrlSr0uJ2ZLQAws/nAdgXaWTSWL4f33nMJlUpn333hjTfgO3X+WuHoo0OPZfXq\nkprlOGVLpQo91ibjVGiphR7fegu+970wrt4Q/fqFUOGf/zxWk5w8aVbPX0erVrDjjmGZgY4dS2eT\nsz7/+hcccQRsv33DZZ26abRCj5JmAF3MbEGk0zXGzL5XR50lzzO57bbgUAYPbrjsqFFwySUwdSo0\n8bi6imPsWNh9dx/STJJly2CnnWDGDHcmCxfCttuGOb1CKcc8k1iEHqM6+kTfz8hwXiK8+Sb8z/9k\nV7ZrV2je3Cfrk+b99/PL/Tn8cHckSTNsmPdKUnTtChMmJNd+pQo9DgS6SppJWBL4+jivIxduvz37\nYSsJfvMbGLheP624LF0K//hHvG00xMqV8OCD5Zeb8dZb0LkzvP120pY4+XD33XDmmUlbkTyzZ8P8\n+etGHZYal1NJmNWrw7onQ4fCoYfG08Y330Dr1iFCqU2beNpoiOnToV07uPhiGDSoOF3xQnnpJejZ\nE/76Vzj11KStcXJlxowQCPHRR/XPbzUGBg0K96NYL43lOMzlNECzZtC3bxhqiYuNNoJTTgk9g6TY\ne++QQf7SS/C73yVnR4pHHgmO5KGH3JFUKnffHUYBUo7k738PD9TGyKOPwo9+lKwN3jOpQv75z9AL\nueGGtfteegkuvDAM6yTJp59Cly5w2mnJOZV58+CQQ4JD6dCh8PrMyqOn1dj48MMQNZmat7r0UmjZ\nEq65Jlm7Ss3ChWF0Y/788OJYDLxn4vD443D55fCLX6y7v3Pn0DOYMqXu80rFNtuEzPFhw0I+ThK0\nbg3vvFM8R9K+ffhDdkpL27brBkB06xZ+/42N+fOD6kaxHEm+lLs2V53nSuoraU50ziRJx8d9Hdnw\n2WfJtj9mDJx9NjzxRMh1SadJE/jpT+H++5OxLZ3tt4dJk2DXXZOzoXhvcLDbbvDCC8Wpz8mfww4L\nLyjz5iVtSWlp3z7I/iRN3HkmTYBZhIireYRQ4dPM7J0M5U8ELjazY+o7V1JfYJmZDWqg/ZINc61Y\nEbrYixfDxhuXpMl1eP11+OEPwxt/przMefPg66+TfYhXI7fdFrLl77knaUucn/40hAr/8pcNl3Uy\nU47DXIVoczV0blmNUk+bFh7ShToSs/wkOgYMgLvuyuxIIAzvlNqR/OUvIbkvKUaNij+Pp2vXMHTX\nCKfnyo7GOtRVDpSzNldD514gabKkO8tBgn7ixOyTFeujf/+gVpsrjz4a/pDKidWrw7W0apVd+WIO\nE5rBTTdBnz5hUbI42X33MNw1c2a87Tjh/3XChMyO+4c/zO/vxymccorOzkWb63agv5mZpOuAQcBZ\ndRUslTbXpEnFmdDt2ROOOgr+939z6+WUoxzLqFFheeK6VHdrs3w57Lcf3HEH/OAHhbX79ddh7uid\nd8KDZ6edCquvISQ47rigfrDXXg2Xd/Jn3Dg499zMSaabb+4iq/lQDG0uzCy2D9AJeDZt+0rgigxl\nHyHMieR0LtAWmJKhTisVBxxgNm5ccerq3t3sttuKU1eSnHqq2d/+ln35V14x23Zbs+efz7/NDz80\n69DB7PTTzb76Kv96cmXNmtK11Zjp08fsxhuTtqI8GDvW7NZb46k7enbm9LwvZ22ujOdG4o4pegDT\nYrI/K1Jd7n33LU59V1wRhmgyzZ0sX16Y9LlZ/KsELlkCI0fmlhDYqRMMHx5yUMaNy6/defPg9NND\nrs0mm+RXRz6UY8+w2vjiCxgxAn72s6QtKQ8eeCD0wsuFstXmynRudPgGSVMkTSY4oUvivI6GkEI0\n1WabFae+Qw4J62gMH77+sRUrwnrkhcgmfPklHHhgSCCMi2eeCRPTW22V23mHHx7+SHr0CPc0Vzp1\nCkOEnkRYfQwbBkcemf0cXDVTUwOPPRaeBeWCZ8CXKaNHw6JF8JOfrN23enV4azcLazgUokfUq1d4\ncJ93XuG21oVZ6EFtuml+5z/5ZMhuTq277jgHHwxXXw0nnthwWbPQO871ZaZSmDAhzAtOi2lMJrbQ\nYEm7Smoefe8i6cJUYqETD0cdta4jMQsTj0uXhjf3QoXtevcOQ0FxIeXvSCA8MBpyJMuX519/Y2fq\nVLjuuqStyJ6amqDDdXyW6clvvBHyTaqVESPKq1cC2Q9zPQyskbQbMBjYEXggNqucdTALEinTp4cf\nUfPmhdd57LFh3mT27MLrSoLXXw+RU+Um7DdmTBhGLHfuvjsMmVYKTZqEXnS2L1EdOgTNqjgFVJPk\nsceSF3asTbbOpMbMVgM/Am41s8sBXxaoRKxcGVaUe+qp4s3LbLBB6PmUg7xKrtx3X8gnuOWW9WVj\nkqZ//yCqWc6sXBn+3884I2lL4qNp0/AbeeKJpC2Jh+efL04qQjHJ1pmsktSLsKrhk9G+DeIxqbJY\nsABefTXeNpo3D/LaxR7/PeecIJZXKTz7LJx/fsj2HzOm/Lr5sDYbvpx55pmQ+7PbbvDVV/GNuydN\nt27V60zatCm/IJNsnckvgIOBP5jZ+5J2BoZmc2JMQo8tJY2SNFPSyCQz4J99NkiGVCLt22e/KmS2\nPPxwGF6IgxkzQujvq6+GhbbKkWOOgeeeS9qK+rn33qAMADBrVoicq0ZSy9guXZq0JY2DnKO5JLUE\ndjSzBsXMYxR6HAgsNrMbIifT0syurKO+2KO5LrwwZFhfdlmszVQEX30V3pimT2+8a6OvWQPbbhsy\ntMvxHixbBt/9bphLaNEizMe1bh3yespRAHT58hDVl2/AycUXhx54ub58lCtxRnO9KKmFpK2AScA/\nJNWr2BsRl9DjScCQ6PsQQp5KIkyaVBxNrmpgxIgQvlmOD9FS0bRpyIUoV0n6zTeHDz5Yq1cmhQip\nZ55J1KyM3HxzSOLNl7/8xR1Jqch2mGsLM/uCkG1+n5l1BI7J4ry4hB5bmdkCADObD2yX5XUUlTVr\nwsqF+++fROvlx5AhxR82q0TOPTe87Zcrm2++7vYJJ5SnMzELUWfpIfKNnSlTwnOnHMm289hM0g7A\nqcDVMdmSi9BjbTKOZcUp9DhrVsjG3bIKMm4KXXr244+DcrLLf1deomXXriEB7ptvkl+tL53//CcE\nnxx4YNKWlAeffRYWAJs/v/hSQcUQeszWmfQHRgLjzex1SbsA2ag7zQXSNVvbRPvq4jTWDnE1dO58\nSa3MbEGk05VxyjfdmRSbmpoQXVTprFwZhupefnn9t9Zsuf9++PGPk1kYzCmMli2DBM3nn4dVMMuF\nu+6Cs84qv6ilpHjyyZDMHIfmXO0X7WvzWLox7pUWmwIzCZPonwCvAb3SNLZS5bYAZgNtUvpc9Z0b\nTcB/ZmYDk56Arxa6dQuijPmK6L33Xvij32WX4trlNE6++CKErc+aFQIanBB1d9JJpckPinMCvo2k\nEZIWRp+HJbVp6LwYhR4HAl0lpZyNL4dTIIXKq+y6qzuScmbixCAxUiksWBAisYrlSG66KX6l7DhZ\nvjwEdWSjS5YUWfVMJD1HkE9J5Zb0Bn5qZl1jtK1gvGeSPcuXB6XixhzWW8306BEeRGeembQlyXDe\neWGhtt/8JmlL8uPxx0Nk2ujRpWkvzjXgtzWze8xsdfS5F/DOZxWxySYho/yhh5K2pHq45pr8ZPSL\nzaJFQTGgZ8+kLUmO7t0rOxt+001DTls5k60zWSypt6Sm0ac3sDhOw5zS07t3+QknVjIrVsDTTydt\nBTz4YOiV5BtcUQ0ceWQIq41zDZ84Ofro8pQPSidbZ3ImISx4PmEy/MdAn5hsqgiGDQvj0NXE0UfD\n4MG5nfPee2tXmnTWpVykVdLlU+qjpiasc/PNN3FbVHo22ij8vsvBuVcrWTmTKAu9u5lta2bbmdnJ\nwCkx21YU4lrW8o47Kvctp1h8+mlQLq0EyfUk6NwZJk8OkUlJ8dZbsHhxeDNviCZN4KOPYOzY+O1K\ngm7dPA8qTgpZtvfSbAo1JPQYlekSiT1OkzQmbf9FkfjjVEkXpe3vK2lOJA45SVLGJXOGZiVHmRtm\nQUal3CSgS40Pn9TPxhtDx47JStLvvHNY/jnbNeqTllY5/fT4VLhPOQVuuCGeup3CnEmDM/2RWONf\ngeOAdkAvSXvVKrMFcBtwopntA/SM9rcDzgIOAPYDToySJVMMMrMO0efZTDb86U+h+15M3nsvaBs1\n9vj3IUOqe02MYpD0UFeLFrllkCcprTJnDowcCd//fjz1t2jh4etxUogzyWakPBuhx9OBh81sLoCZ\npQaPvge8amYropyTlwjaYCmyCltr0aL4URzeKwmquPPnh3FoJzPnnQd/+EPSVmRPhw5h7fQkVigc\nMiQkzsaR4V2p/PnPoWdZCdTrTCQtk/RFHZ9lQDZSdtkIPe4BbCVpjKTXJaVysKcBnaO1SzYBfkBY\nLjjFBZImS7qzvvVMLr8c7rwzC0tzYOLE6lYKrqkJ8hr1Let6330h+qtp09LZVYlsuWVlDQM2aQLH\nHVf63klNTRB1bKx5MJm4++7yFg1Np15tLjMrxZ9BM6ADcBSwKfCKpFfS1i15DvgSeBNI6WXeDvQ3\nM5N0HTCIMCS2HtOm9aN9e+jXr3hCjyedBFtvXXA1ZUuTJqH39fTTmdeZ3mOPIDrnVB833ghblHi5\nubFjQy7FAQeUtt1y5t13Q5BLp07xt1UMoce4tbk6Af3M7Pho+0rAzGxgWpkrgI3M7Npo+07gGTN7\nuFZdfwA+NrM7au1vCzxhZu3raN8z4PPkrruCM3n44YbLOuXH7NlhobINN0zakuy45ZbQyy2FcGpN\nTUjkbNUq/rYKISUB8/e/l77tODPg8+V1YDdJbSVtSFAGrh2c9xhwWJQMuQnQEZgBIGnb6N+dgB8R\nJF2IlIJT9CAMiTlF5JRTwlrmS5YkbYmTDz/+cZBwrxQuvLB0Ctxjx4Yw4XJnxIjMIwPlSJ6LYWaH\nma2RlBJrbALclRJ6DIdtcDScNRKYQhjGGmxm06MqHo5Wd1wF/DpaoAvgBkn7ATXAB8C5cV5HY2TL\nLcO6HMOHh2VPncJYtiyElKdWOIyTXHJLGiOHHhqGkObNK9/5iM8/h5kzK+v/MNZhrqTxYa7CeOyx\nEE1S4FCqQ1h9ce+94aKLGi5bKJdeGuYfBgyIv61KpVevsDZIOb8oLV+eXGRbOQ5zlRXjx4foCCc7\nTjhhfeFH9835Uap8k1WrwkJlxcj/+fTTZLP346R79/LPhq+0EOlG5UxatoTf/jZ/iRWz8IBdtqy4\ndpUrG2647sp7s2eHBDh3KLlz5JFhDmPVqnjbeeaZEGm3226F13XJJUHloBo5/vigTLB8edKWVA+N\nypnsvXcIPcxXYmXOHHjzTdhss+LaVSkMHQoHH+zLqObDNtuEB3xcUiEpWraE3/2uOHXFLa0yejRc\ndll89ddHy5ZhSeBPPkmm/WokdmdSRG2uC9P2t5Q0StJMSSPrS1qszeWX5y+xksp8b4wPU7OQqOjy\nKfnTtWv8Q12dO4ekw2Jw3HFhHZSVK4tTXzpmcOWVyeaV/PnPYYVQpzjE6kyKrM3VLU2b60rgeTPb\nExgNXJWtTYcfnr/ESrVnvtfHuHFBxruxXn8xOPFEaBZr/GRx2WYb2Guv8H9fbB55BFavDvIpzlpW\nrIBRo5K2Ij/i7pnEpc11EjAk+j6EsIZ8VkihdzJsWO4XM3Fi49TkMgs9kt69G2evrFgcdlhYfbGS\niEP4cfVquPpq+OMfs1czbiyMHg39+ydtRX7E/V8ZlzZXKzNbAGBm84HtcjHqlFPCkE2uTJrUON/M\npTBEk80CS051cdJJxc+Nufde2GGHkMfkrMujj1ZWomI65dDpzkebqzYZ44v69ev37feUNlc+4oRm\nIRpnxx0bLluNJCHp4GTPmjXxiG7uv3/4FJMlS+D6672XW5s1a0Ju1/jxpW+70WpzSZoBdDGzBZG0\nyhgz+14d7XvSolP1rFoV5jZefTXMczi58fvfh8iutm2Ts2HQIPjnP8Ow3xtvJGdHinJMWoxFmyuq\no0/0/YyoDsdplDzzTBg2ckeSHx9/HF8C48qVMH16EEwdMCDzqpuHHgq33VbZahOxOpNo4jylzfU2\n8FBKm0vSL6My7wApba4JrK/NNY3gLNK1uQYCXSXNBI4Gro/zOhynmIwaFUJui8W99/p8ViF07178\nBfTuuy/ktbVoASefHLaXL8+co9axY8jhquQctkavzTVyZBB9K5ViqeMMHhzeUO+/v/C6Fi2C3XeH\nDz8s/Rok1cKXXwbBxwkTQjLjDjusX+a554IU05Il63769Anrv9Tm/feDUsYee4SQ+kojn2GuRu9M\nZsyALl3ggw9g443rLrNmTZgs9DBGpxjMnRtkaXbYIUjF9+yZv/zJLbfAa6+F8fY4eeWVMFxzVp1L\n0DXMzJmw557FtamYnHFGGGI6++y6w7enT4fJk4OzSf9suWXlrBmTC+5MapHtBHy3biGh7NwMQvZP\nPw133FH+wnBO5bBmTVhXY/jwMJ4+fHh+K1dec01Qv41bqnzChKCwO3Vq7ufOmgWHHBK03Uohwe8U\njjuTWmTrTMaODW8k77xTd+9jwIDQFR44cP1jjlMoa6KA9zhCe4vFmjVhZcI338w9PP7UU0N48VVZ\n61Q4SVOO0VwVQefOobuaqeeR0uRynDho2rRuR7JwIey7L1x7bRhmSZKmTUOS4bPP5nbeG2+EvIlS\nrOPiJEu5Cz1eEu2bIun+KLwYSX0lzZE0KfocX5iNQb00kwhfY9bkcpJjm23g9tvDRO+xx0K7dtCv\nX5jnS4J8pFWuuioMxVXa2hxO7sSdtNgEmEUI351HyDs5LQoHTpXZAngZONbM5kraxsw+ldQaGAfs\nZWYrJf0LeMrM7pPUF1hmZoMaaD/rpEWzujNyFy0Kk6NLlvgEvJMcNTUhKfHf/w5RW337lt6GhQtD\ndNLChdlNOr/wAvzqV6FXtcEG8dvnFI98hrnillP5VugRQFJK6PGdtDKZhB4BmgKbSqoBNiE4pBRF\nFWPIJO38SjWAAAAIpklEQVTw7rshocgdiZMkTZqEPISDD07Ohu22C/kx2c7tdOoU5EHckTQOylbo\n0czmAX8CPgLmAp+b2fNp510gabKkO3NZzyRXDj4Ynnoqrtodp7LYf//sncmmm4bEPadxULZCj8Cn\nhF5MW2ApMFzS6Wb2AHA70N/MTNJ1wCDC2ifrUZfQY664IJ3jONVMVQs9EoaxjjOzc6L9PwM6mtkF\ntdpoCzxhZu3raN+FHh3HcXKkHEODCxF6/AjoJGkjSSJM4qcEILdPO78HYe2TojF8ONx0UzFrdBzH\nqW7KVujRzF4DhhPWMXmL0FMZHFV9QxQuPBk4ArikmHbvs0/Q2/n662LW6jjVw+ef173/nnvg5ZdL\na4tTHngGfAa6dw9rRFxxBWy9dZENc5wKZvHiIC65YMG6kVqffRb0t8aPDyHETuVSjsNcFctll4Xe\nyZNPJm2J45QXW28NO+8cxB/TGTgQevRwR9JYKYdorrKkc+cgnnf44Ulb4jjlRyobPvX3MWcO3Hkn\nTJmSrF1Ocvgwl+M4OTN+fFgDaPLksP3LX8JWW4W13Z3Kpxwz4B3HqUI6doSPPoJ588Kw17Rpntzb\n2KlUoceWkkZJmilpZJwZ8M5aCk1qctZS6feyWTM488zgUJo3DxFcLVsmZ0+l389qIFZnEgk9/hU4\nDmgH9JK0V60yWwC3ASea2T5Az2h/a+D/AR2ihMRmhDwVgCuB581sT2A04CsllAD/gy0e1XAvb7op\n6G+VA9VwPyuduHsm3wo9mtkqICX0mE42Qo/NCEKPc6P9JwFDou9DgJNjst9xHMfJgkoTenwhOmc7\nM1sQlZsPbBfjNTiO4zgNYWaxfYBTCBntqe3ewC21ytxKWM9kI2BrwvonuwFbAi8AWxF6KCOA06Nz\nPqtVx+IM7Zt//OMf//gn90+uz/u4o7nmAjulbbdh7VBVijnAp2b2DfCNpLHAvgT5lNlm9hmApEeA\nQ4AHgAWSWpnZgkina2Fdjeca2uY4juPkR0UKPUZ19Im+nxHV4TiO4yRErD0TM1sjKSX02AS4KyX0\nGA7bYDN7R1JK6HENkdAjgKSU0OOq6N+U0ONAYJikM4EPgVPjvA7HcRynfqo6A95xHMcpDVUp9JhN\noqSTPZI+kPRWlFj6WtL2VBqS7pK0QNKUtH2eeJsnGe5nX0lzJE2KPscnaWOlIKmNpNGS3pY0VdKF\n0f6cf59V50yySZR0cqYG6GJm+5vZQUkbU4HcQ/g9puOJt/lT1/0EGGRmHaLPs6U2qkJZDVxqZu2A\ng4Hzo+dlzr/PqnMmZJco6eSGqM7fSkkws3HAklq7PfE2TzLcTwi/UycHzGy+mU2Ovn9JCHJqQx6/\nz2p8QGSTKOnkhgHPRUml5yRtTJXgibfF5wJJkyXd6cOGuSPpu8B+hBVvW+X6+6xGZ+IUn0PNrAPw\nA0I3+LCkDapCPBKmMG4HdjGz/YD5wKCE7akoJG1GWCb9oqiHUvv32ODvsxqdSTaJkk4OmNkn0b+L\nCEoEPm9SOAsktQKoL/HWyQ4zW5S2eNE/gAOTtKeSiLQPhwNDzSyVs5fz77ManUk2iZJOlkjaJHpr\nQdKmwLHAtGStqkjEumP6nnhbGOvcz+iBl6IH/hvNhbuB6WZ2c9q+nH+fVZlnEoUF3szaRElf/y1P\nJO1M6I0YIcn1fr+fuSHpAaALQXtuAdAXeBT4N7AjUeKtmX2elI2VRIb7eSRhvL8G+AA4NzXm72RG\n0qHAWGAqa3W5fgu8Bgwjh99nVToTx3Ecp7RU4zCX4ziOU2LcmTiO4zgF487EcRzHKRh3Jo7jOE7B\nuDNxHMdxCsadieM4jlMw7kycqkBSjaT70rabSlok6fFou5uk3zRQxw6ShkXfz5B0a442NKisKuke\nST1yqbeYSBojqUNS7TvVizsTp1r4CthHUvNouytpgp9m9oSZ3VBfBWb2iZmlr9qZaxLWb3MsX1FI\napq0DU754s7EqSaeBn4Yfe8FPJg6kN7TiHoHN0saL+ndVE8hkuCZmlbfTtGb/ExJv0+ra0SkoDxV\n0tnRvj8CG0cLMw2N9v08bVGxIWn1HlG77XQiO6ZLGixpmqRnU04yvWchaWtJ76dd34hoQaPZks6X\ndElkz8uStkxr4ueRTVMkHRidv0m06NQESRMldUur9zFJLwDP5/5f4jQW3Jk41YIR1q7pFT142wOv\n1lEmxfZmdijQDRiYocyBwI+AfYGeacNDvzCzA6PjF0lqaWZXAcujhZl+JmlvQk+li5ntD1yURdvp\n7Abcamb7AEuBU+q57hTtCOtOHAT8AfgyUnueAPw8rdzGkU3nE3SZAK4GXjCzTsBRwE2SNo6O7Q/0\nMLMjM9jgOO5MnOrBzKYB3yX0Sp6i/sWSHo3OmUHmtRqeM7PPzewb4BEgJb1/saTJhId0G2D3aH96\ne0cB/zazJVE76bpG2bT9vpmlekkTo+tqiDFmttzMPgU+B56M9k+tdf6DUfv/ATaX1IIg4HmlpDeB\nF4ENWau+/ZyZLc2ifacR0yxpAxynyDwO3EgQAtymnnIr0r5ncjrrrekg6QiCo+hoZiskjQE2ytHG\nbNpOL7MmrY3VrH0JrN1u+jmWtl3Dun/rda1VIeAUM/tv+gFJnQjzUY5TL94zcaqF1EP5buBaM3s7\nj3Nr01XSltFwz8nAeGALYEnkSPYCOqWVX5k2ST2aMDS2FYCkljm2nWn/B8AB0feeGco0xE8imw4D\nlprZMmAkcOG3jUv75Vm300hxZ+JUCwZgZnPN7K/ZlK1nO8VrhOGtyYQhq0nAs8AGkt4G/g94Ja38\nYGCqpKFmNj06/lI0dPSnHNvOtP8m4DxJE4GtMpRpqN5vJE0irE54ZrR/AOG6pkiaBvSvp27HWQ+X\noHccx3EKxnsmjuM4TsG4M3Ecx3EKxp2J4ziOUzDuTBzHcZyCcWfiOI7jFIw7E8dxHKdg3Jk4juM4\nBfP/AYjIoLThXwd4AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecVOXZ//HPF0SIELGLGjUaexc0CcZeAqixRVE0scco\nGhViTEyiGPN7Hp9o1GDQ2MESUdNsiNgTFdEEBBtiVBQbCCpIVWCv3x/3GR2G2TY7uzO7+32/XvPa\nnXvuc841c3Z2rrnbUURgZmZmVi06VDoAMzMzs3xOTszMzKyqODkxMzOzquLkxMzMzKqKkxMzMzOr\nKk5OzMzMrKo4OTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk6sXZBUI+mCErd9S9JNefePy/bXs3wRlk7S\nhlk8gysdi9VO0jhJD5S47R2SJpc7pgYeu+S4zUrl5MRajbykoEbSLrXUeSd7/N6ChyK7laKmyLZl\nve6DpAGSzirnPq12kobn/S3Vdbup/r01WFP+BoP0d1gJvsaJtbgVKh2AWQkWAkcDY/MLJe0BrAcs\nKrLNV4AlJR5vc5r/g+FoYGtgaDMfx5JrgIfz7m8EXARcBzyZV/5GGY+5G6V/0P8AUBljMatqTk6s\nNXoAOELSmRGRnzQcDfwHWKNwg4j4vNSDRcTiUrdtrSStFBELKh1Hc4mIZ4Fnc/cl9QJ+CzwTEbc3\nZB+SukREsUS4tmOWmhwTEUtL3dasNXK3jrU2AYwEVgf2yxVK6gQcDtxOkW+YhWNOJF2YlX1D0ghJ\nn0iaLekmSV0Ktn2rlub9rpKulTRL0hxJN0tapWDbgyTdL+k9SYskvS7p15I65NV5HDgAyI0dqZH0\nZt7jnbN4p0haKOl9SX+TtFGR5/mj7BiLJD0naaf6XtC87rLdJV0taQbwTvbYCElTi2xzoaSagrIa\nSVdKOljSi1kML0nqU8/x15K0WNL5RR7bLNvvwOz+CpKGSHotey1mSXpS0j71Pc+mkDRd0l2SDpA0\nXtIi4NjssR9JekzSjCymFyWdWGQfy4zdkNQne24HZa/ne5IWSBojacOCbZcZcyJp89zrkt3eyI49\nVtL2RY59tKTJWZ2J2fMoeRyLpLWzv40Ps30+L2lAkXrHSpogaW72/pok6bS8x1eU9P8k/Tfbz0xJ\n/5S0eylxWdvhlhNrjd4CxgEDgDFZ2f7AysAdQEPGbuSa1+8C3gR+AfQETgZmAOcVqZtPwDDgE2AI\nqetnILABsFdeveOBucBlwDxgb1L3wVeBn2d1/h/QndQldXa273kAWRIzKtvnSOAP2bb7AdsA+YnD\nMUA3UpdFZPv/m6SNG/jN+2rgQ+A3wEp5z73Y86+tfDfgsGxfc4Ezgb9K2iAiPil20Ij4UNI/gf6k\n1ot8R5G64+7K7v+GdK6uA/5NOuc7kc7do/U/xZIFsB1wM+m5XQO8nD02MIvlH6Tuv0OAGyRFRAwv\n2EcxQ4DPgP8jJd3nAiNY9u+ottf7JKALcBXQkXTO/ypps4gIAEmHAbeRWhV/TmpZvBV4v46YaiWp\nK/AU6e/1SuBd4Ejgz5K6RcT1Wb3vZc9jNHAt6cvw1kBv4E/Z7i4mvV//BDxPeh98E9gB+FdjY7M2\nJCJ8861V3IDjgKWkD6KBwGygc/bYncAj2e9TgXsLtq0BLsi7PyQru66g3t+ADwvKpgI3FcRRQ+oW\n6JhXfk4W34F5ZZ2LPI8/kT64O+WV3Qe8WaTuCdmxzqzjddkwq/MhsHJe+feyePZvwOtaAzwBqOCx\n4bXENQRYWuQ1Xgh8Pa9s26x8YD0x/CiLdauC8peAh/PuP194bsv0t9Uri/PYWh7/IItv1yKPFTvH\njwEvFpQ9AzyQd79PdswJBX9HP8uOtXFe2Ujglbz7uXFQ7wFd88qPyLbdO69sCvDf/DhJyW1N/j7r\neG0K4/55doxD8spWICU/HwFd8v7Op9ez78nAXeU+n761/pu7day1uov07f5ASd2AA4E/N3IfQfpG\nl+9JYPVsn/W5LpZtkfgTWTLwxQEiPsv9LqmbpNVJ3zpXArZowDEOA2aSWmnqc0dEfJp3/0lSK8zG\nDdg2gOsjoqkzMx6OiLe+2GnEi8CnDYjh76TX7shcgaStga1IrWE5s4GtJW3SxDhLMTkiniosLDjH\n3SWtQfrWv6WkFRuw3xsK/o5yA3Ibct7+HBHzC7b94pxnXX+bAsPz44yIh0kJSyn6AW9HxN15+1sC\n/BFYBcjNpJsNdJe0dx37mg1sV6yL0to3JyfWKkXELOAR0iDYw0h/y38tYVfTCu7nuh5WrS8E4PWC\nmOaTvmF/PVcmaStJ/5A0m/QhPZPUpA6pCbs+3wCmxLIDf2vzTkE8s7Nf63suOW81sF6DY8h8Ul8M\nEfERqVumf17xUcBiUndJzgWkD8DXJL0g6RJJ2zYt5AZbbuwNpFlikh6XNJ/0XD/M4hSp26k+ha/Z\nJ9m2DTlvxbYlb9vc2JVis45eL1LWEBsCrxUpn0yKO3fMPwJvAw9LelvS9ZL2LdjmV8DawBvZWJiL\nJW1VYlzWhjg5sdbsdlIrxanA6IiYW8I+ahuL0eRpm5K6k75Bbwv8mtS6sy9fjjUp9/uvqc9lYZGy\n2lpSOjZDDHcAm0naLrt/BPBoRHz8RTART5ISthOAF0ljLiYUG4DaDJZ7fSRtATwEdCWNndifdI5z\nLV0NOcdNec2a7e+3qSLifdLf/qGkcVP7Ag9J+lNencdI5/MkUnLzY2CipGNaPmKrJk5OrDXLDUD8\nFilRaUkiNZd/WZAGCq7Dly0Qe5K+wR4XEcMi4oHsn/FslldbEvAGsLmk2pKB5vYJqaWi0Neb4Vh3\nk1pKjsxmnGxGGmuxjIiYHRE3R8QxwPrAC8CFzRBPQxxMGm+xf0TcEBEPZue4Wqafv539LNYNVmrX\n2Nukc1NoS9Lfce6YRMTiiLg3IgaSuppGAKdIWjevzscRMTwiBpAGlE8hjWmydszJibVaWTfKqaQP\npvsqEMIpkvJnvA0ktSjkposuJSUx+dOGV8zqFZpP8W6evwFrAmeUI+ASvEEaN7BNrkDSOqQZKWUV\nEXNIs6/6k7p0PgPuya8jabWCbRaQuic659VZOZtq25AulabKtVzkn+PVSYumNUSzrr4aEVNJY0uO\nV94UeaXp3ZvWumHdHiBNez84b38rkP5GZwNPZ2WF5ypIA5whO19F6swjzZ7rjLVrnkpsrc0yzdUR\ncWttFVvAisCjku4iDW49DXgyIu7PHh9Lanm4RdKVWdkPKP6BNB7oL+ky0rTUedl+biGtp3G5pG+R\nBjx2A/YBroqIciVltXUD3AH8Drg7ew5dSQnhFNKsqXK7kzTtdSAwpmCAL8Arkp4gvV4fAzuT1re5\nMq/OoaRZRseTXr/m9CDwv8BoSTeQWplOIc2iWW4xwCJaovvlV6TX9SlJtwBrkf5WX6a0L6hXkabc\n3y5pGGncy1Gkv4dT8wbe3iapM2kW2HuklpMzgGezpAnSWJPRpBlLn5CmGR8IXFJCXNaGODmx1qYh\n3zSLrQnR1OuaFNvfGaS1RX4DdCLNFvpijZWI+FjSAaQ1Tn5L+ud7K2ma6ZiC/V0NbE/6QD2b1DR+\nf0TUSOpH+oDJDf79iJSkvNiA59fQ5120TvYcDgEuJyUpU0nrjGzG8slJU2MAuJc0tqMry87SyRkK\nHESaCtuZ9Dr9Evh9kWM2Vl3bFH0OEfGSpCNI5/cy0ofwFaRWn6sbcIzajlnb69jQbb94LCL+KumH\nwPmkcziFlCQPBNYtuoc6jh0R8yXtRlqX5QTSujuTgWMiIv+cjSCNJRlISto+ICWLv8mrcwVpAcI+\npPM5lTSV+g8NjMvaKDV95qCZmbU22eqwr0XEwfVWNmthVTPmRNLpkqZmSxiPk7RzPfWPyaaezVda\nzvvG/P5Lfbkk91J9uSR4m71WiJlZMUpL/ncoKOtLWsjt8cpEZVa3qkhOJB1JahIdAuwITALGZIsZ\nFav/HdIy0teTFmk6nLTk8XUFVecAPfJuG2Jm1r58A3hZ0gVK1wH6A2mm29vAjZUNzay4ahlzMgi4\nNiJuAZB0Kqkf8kSKD4z6NjA1Iq7K7r8t6VrSNSnyRUTMbKaYzcxag5mk6dankAbpfkpakfe8EtcG\nMmt2FW85UbqabC/yLtqVTTl7hDRyu5hngPWzgYJIWpu0YNOognrdlK4oO03S3V550Mzam2wdkSMj\n4msR0SUi1oqIYyKicHVks6pR8eSElMl3JF0JNt8MUlfMciJiLGm0+Z2SPieNAv+EZdeCmEJqeTmI\nNKOiAzA2f/EfMzMzqz7V0q3TKFkLyFDS4lsPkVbl/D3pIm4nA0TEOGBc3jbP8OXyyEVXH8wWT+pD\nWuFzUXPFb2Zm1gZ1Ia0ePSa7XlbJqiE5mUVaZXHtgvK1gem1bPML4OmIuDy7/5KkgcCTkn4VEYWt\nMETEEknPU/eSzX1o/JVtzczM7EvH0MRLilQ8OYmIxZLGk1a8vBdAkrL7V9ay2UrA5wVlNaSFgoqu\nuJhNpduW5cel5HsL4LbbbmPLLbds4DOwajZo0CCuuOKKSodhZeLz2bb4fLYtkydP5gc/+AGU4Qrn\nFU9OMpcDI7Ik5TnS7J2VSCsMIuliYN2IOC6rfx9wXTarZwxplcMrSMsiT8+2OZ/UrfM6aXXCc0kX\nlbqhjjgWAWy55Zb07NkcK3NbS+vevbvPZRvi89m2+Hy2WU0eFlEVyUlE3JWtaXIRqTtnItAnbxpw\nD9LVR3P1b5bUDTidNNZkNmm2zy/ydrsqad2THqTBsuOB3hHxajM/HTMzM2uCqkhOACLiaopfi4KI\nOKFI2VWkC1DVtr/BwOCyBWhmZmYtohqmEled2bMrHYGZmVn75eSkiGefrXQEVi4DBgyodAhWRj6f\nbYvPp9XGyUkRY8dWOgIrF//za1t8PtsWn0+rjZOTIsaOhZqaSkdhZmbWPjk5KeLjj2HSpEpHYWZm\n1j45OSnioINgxRUrHYWZmVn75OSkiCFDYOutKx2FmZlZ++TkxMzMzKqKkxMzMzOrKk5OzMzMrKo4\nOTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk7qMH48DBtW6SjMzMzaFycndXjmGRg8GObOrXQkZmZm7YeT\nkzr07QuLF8Pjj1c6EjMzs/bDyUkdNtkk3UaPrnQkZmZm7YeTk3r07QsPPggRlY7EzMysfXByUo9+\n/eCtt+C11yodiZmZWfvg5KQee+wBnTu7a8fMzKylODmpR9eusPvuqWvHzMzMmt8KlQ6gNTj+eJgy\npdJRmJmZtQ9OThrg6KMrHYGZmVn74W4dMzMzqypVk5xIOl3SVEkLJY2TtHM99Y+RNFHSfEnvS7pR\n0moFdY6QNDnb5yRJ/Zr3WZiZmVlTVUVyIulI4DJgCLAjMAkYI2mNWup/B7gZuB7YCjgc+CZwXV6d\nXYDbszo7APcAd0vaqvmeiZmZmTVVVSQnwCDg2oi4JSJeBU4FFgAn1lL/28DUiLgqIt6OiLHAtaQE\nJedMYHREXB4RUyLiAmACcEbzPQ0zMzNrqoonJ5I6Ab2AR3NlERHAI0DvWjZ7Blg/100jaW3gCGBU\nXp3e2T7yjaljn2ZmZlYFKp6cAGsAHYEZBeUzgB7FNshaSn4A3Cnpc+AD4BOWbRXp0Zh9mpmZWXWo\nhuSk0bJxI0OBC4GeQB9gI1LXTrNZsgRuvhkmTWrOo5iZmbVv1bDOySxgKbB2QfnawPRatvkF8HRE\nXJ7df0nSQOBJSb+KiBnZto3Z5xcGDRpE9+7dlykbMGAARx01gPPOgwED4LLL6tuLmZlZ2zRy5EhG\njhy5TNmcOXPKtn9FFVxuV9I44NmIOCu7L2AacGVEXFqk/l+BzyPi6Lyy3sBTwHoRMV3SHcBXIuLg\nvDpPA5MiYmAtcfQExo8fP56ePXsWjfXEE+HZZ+Hll0t9tmZmZm3PhAkT6NWrF0CviJjQlH1VS7fO\n5cCPJB0raQvgGmAlYASApIsl3ZxX/z7g+5JOlbRRNrV4KCnBybWMDAX6ShosaXNJF5IG3g5rSqD9\n+sErr8C0aU3Zi5mZmdWmKpKTiLgLOAe4CHge2A7oExEzsyo9gPXz6t8MDAZOB14E7gQmA9/Pq/MM\ncDRwCjAROAw4OCJeaUqs++4LHTr4QoBmZmbNpSq6dapFQ7p1AHbdFdZaC/7+95aLzczMrJq1xW6d\nVqVvX3jkEVi8uNKRmJmZtT1OTkrQrx/MnQtjx1Y6EjMzs7bHyUkJdtwRDj8cOnasdCRmZmZtTzWs\nc9LqdOgAf/lLpaMwMzNrm9xyYmZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZ\nmVUVJydN9OabcNNNlY7CzMys7XBy0kRPPgknnQQffljpSMzMzNoGJydN1KdP+vnQQ5WNw8zMrK1w\nctJEPXqk5ewffLDSkZiZmbUNTk7KoF8/GDMGamoqHYmZmVnr5+SkDPr2hVmzYPz4SkdiZmbW+jk5\nKYPevaF7dxg9utKRmJmZtX5OTspghRVg33097sTMzKwcnJyUSf/+sPnmHndiZmbWVCUlJ5L6Sto1\n7/7pkiZKul3SquULr/Xo3x+GD4cOTvfMzMyapNSP0kuBlQEkbQtcBjwAbARcXp7QzMzMrD1aocTt\nNgJeyX7/PnB/RPxSUk9SkmJmZmZWklJbTj4HVsp+3xfIrY/6MVmLipmZmVkpSm05eQq4XNLTwDeB\nI7PyzYB3yxGYmZmZtU+ltpycASwBDgdOi4j3svJ+QEkTarNBtVMlLZQ0TtLOddQdLqlG0tLsZ+72\nYl6d44rUWVBKbGZmZtZySmo5iYhpwIFFygeVsj9JR5IG1Z4CPAcMAsZI2iwiZhXZ5Ezg53n3VwBe\nAO4qqDeH1JqjXIilxGdmZmYtp9SpxD2zWTq5+wdLulvS/0pasYRdDgKujYhbIuJV4FRgAXBiscoR\nMTciPszdSF1LqwAjlq8aM/PqziwhtkaJSFconjSpuY9kZmbWNpXarXMtqUUCSRsDd5CSiSOASxqz\nI0mdgF7Ao7myiAjgEaB3A3dzIvBIRLxTUN5N0luSpmXJ01aNia0UEpx1Fgwb1txHMjMza5tKTU42\nAyZmvx8B/CsijgaOJ00tbow1gI7AjILyGUCP+jaWtA5prMv1BQ9NISUtBwHHkJ7rWEnrNjK+Ruvb\nNy1lH+5EMjMza7RSkxPlbbsvX65t8g4p2WhJxwOfAPfkF0bEuIi4LSJeiIgngcOAmcCPmzugfv3g\n3XfhlVfqr2tmZmbLKnUq8X+AX0t6BNgDOC0r34jlW0DqMwtYCqxdUL42ML0B258A3BIRS+qqFBFL\nJD0PbFLfDgcNGkT37t2XKRswYAADBgxoQDiw++7wla+kqxRvvXWDNjEzM2s1Ro4cyciRI5cpmzNn\nTtn2ryih70HSdsCfgQ2AyyPiN1n5H4HVsy6exuxvHPBsRJyV3RcwDbgyIi6tY7s9SWNVtomIyfUc\nowPwMjAqIs6ppU5PYPz48ePp2bNnY57CcvbfHz7/HB55pEm7MTMzaxUmTJhAr169AHpFxISm7KvU\nqcQvANsWeehnpFaQxrocGCFpPF9OJV6JbPaNpIuBdSPiuILtTiIlNcslJpLOB8YBr5Nm8pxLSqZu\nKCG+RuvXD845B+bNg27dWuKIZmZmbUOTrqErqZekH2S3nhGxKCIWN3Y/EXEXcA5wEfA8sB3QJ2/q\nbw9g/YJjrwwcSu3JxqrAdaRrAI0CugG9s6nKza5v39Ry8vjjLXE0MzOztqOklhNJawF3ksabzM6K\nV5H0OHBUKeuJRMTVwNW1PHZCkbJPSQlHbfsbDAxubBzlsummcOCBsLSUdiQzM7N2rNSWkz+SEoOt\nI2K1iFgN2IZ00b8ryxVca3fffXDIIZWOwszMrHUpdbZOX2Df/LEeEfGKpNP58grFZmZmZo1WastJ\nB6DY2JLFTdinmZmZWcmJxGPA0PzVViWtB1yRPWZmZmZWklKTkzNI40vekvSGpDeAqcBXs8fMzMzM\nSlLqOifvZAuW7QtskRVPBl4FLgBOKU94ZmZm1t6UOiA2d+Xgh7MbAJK2Jy2M5uTEzMzMSuLBqy1g\n1iz4y18qHYWZmVnr4OSkBTz1FPTvD2++WelIzMzMqp+Tkxaw997QqRN8//swdCh88EGlIzIzM6te\njRpzIunv9VRZpQmxtFkrrwyjRsGwYfCzn8HgwbDnnjBgQEpYVl210hGamZlVj8a2nMyp5/Y2cEs5\nA2wr9tsP7rkHZsyA664DCX78Yy9vb2ZmVqhRLSfFLsBnjbPqqnDSSek2fXpKVsyaIiJdAXv+/PT7\n6qvXXf/SS+GII+DrX2+R8MzMGs1jTiqoRw/Yfvu66yxcCEuWtEw8Vv1++1vYcUfYbDNYbz1YZRVY\ncUXo0iUlJcceW/8+fvc72GSTVPfll5s/ZjOzxip5nRNrGVddlb7p9u+fxqj07p26hKx9Wn/99DfQ\ntSt065Z+5t/WX7/+fbz9NtxwA/z+93DrrXDQQXDeefDtbzd//GZmDaG0lpoBZKvejh8/fjw9e/as\ndDgAvPQSDB8Od94J770HG24IRx2Vbttv70SlLXntNXj88TQWqSV8/jncfntqSXn11TRI+1e/gn33\nbZnjm1nbMmHCBHr16gXQKyImNGVf7tapcttsA5ddBtOmwRNPQN++6VvvjjvCVlvBX/9a6QitHKZM\nScnB0KGpK68lrLgiHH986tr5299g3jy4+eaWObaZWV2cnLQSHTrAHnvANdekdVJGjYKddkofMNa6\nTZkCe+2VBks//jh85Sste/wOHeCww+C559Lfl5lZpXnMSSvUqRPsv3+6Wev26qspMVltNXjsMVh7\n7crFIqVxK2ZmleaWkzbOQ4qq1+TJqStn9dVTi0klE5OGevBB+OijSkdhZm2dk5M27LPPYOed04DH\nTz+tdDSW75VXUovJmmumxGSttSodUf0++wx++MM0KHvwYHj33UpHZGZtlZOTNmz+fOjZEy64ADbY\nIM3E+PDDSkeVWnPeeKP+emefna5LVNvtyivr3r6mJq3KW42tRy+9BOusk7py1lyz0tE0TOfOKaka\nNCjNINt4Yzj55DTLyFreZ5+l98DGG8PBB6cuQrO2wslJG7baammp/DffTB8iQ4emb70/+Ula66Il\nzZ0L//hHimO99dIspAUL6t5mtdXSB3htt+7d697+0UfT5QH69k2znapJ//7w73+3nsQkZ80100Jw\nb78N//u/8MADsMUWacXZCU2aOGgNtWRJSg432ywlit/+dppx9fHHlY7MrHy8zkmealznpJw+/jgt\n6jZ0KMyeDeeemz5gmstrr6VZRaNGwb/+BYsXpw+y/feHAw6A3XeHFZp5SPbo0XDKKTBnTlrM7pRT\nvDZMOS1aBLfcApdcklY8fuqpSkfUdkWkKd/nn59aSQ4/PCWKW2wBS5dCx46VjtDau3Kuc+LkJE9b\nT05y5s9Pa6WsuSYcfXTzHGP69NS60blzGluRS0g23rh5jleXOXPgnHPSc95nn/TT15Upr6VLU5fh\nOutUOpK269FH0wJ5ffrA//wPpM8As4b5/PM0Tqw5/we3yUXYJJ0uaaqkhZLGSdq5jrrDJdVIWpr9\nzN1eLKh3hKTJ2T4nSerX/M+k+nXtCmed1XyJCaRv0Y89lmZ2jB6dupIqkZhA6v65/noYMwb++9/U\npXTVVWlMipVHx471JyYTJ8KRR6bX/qWX/Po31t57p7VoHnyw8YnJggXwySfNE5dVvyeeSCuKH3xw\ndY7BK6YqkhNJRwKXAUOAHYFJwBhJa9SyyZlAD2Cd7OfXgI+Bu/L2uQtwO3A9sANwD3C3pK2a6Wm0\nC0uWwNNPp66h+uy1V3Wtm/Hd78KLL6YZJ7//ff1jXqy8Pv0U3nknDXTedts0Q+nQQ+EPf0jjVZYu\nrXSE1U1Ks+9K8cc/wkYbpRaXefPKG5dVrw8/TBf43GuvtGTB7be3om7tiKj4DRgHDM27L+Bd4NwG\nbn8IsARYP6/sDuDegnrPAFfXsZ+eQIwfPz7au5qaiKOOirjhhoj334+47baIAQMiVl01AiLWWCNi\nzpxKR1m6loh94sSI/faL+Oij5j9WazJvXsQjj0Scf37E7rtHdO6c/qa22abSkbVdH3wQ8ZOfRKy4\nYsSaa0ZccUXEwoWVjsqay9KlEddcE7HKKhGrrRZx442prLmNHz8+gAB6RhPzgoqvECupE9AL+GJo\nZkSEpEeA3g3czYnAIxHxTl5Zb1JrTL4xwMFNCLfdmDcvTVU8+eQvy3r2hNNPT2NHdt65dQ/AW3nl\n5t3/pElpfMuGGzbvcVqjrl3Ta7PPPun+okWpu6Kps02WLk3fCjvU0R78wQcwdWrqf1+8eNmfXbrA\nDjukafct7b330uDW3r3huOPKv/8ePdK043POgYsuSj8vuywtM3D88WnV6ZY2fXo6F0uWwC671P3/\nZNw4eP31dI6L3TbYIM3Ms9R9etpp6TU78cS0ztUatfVBVLGKJyfAGkBHYEZB+Qxg8/o2lrQO0A84\nquChHrXss0dpYbYvX/0q/P3vaRXT559PK5muu26lo2odJk5MH7wbbQQPP5yumWO169Ilzdyqz9y5\nKUH+7LPlE4vFi9MYlmeeSVNra3P77emDuTZf+1rqemops2bB//1fGofTtSt861vNe7wNNkgDws89\nFy68MM1e+93v0t/pRhs1zzGXLk0z9yZNSu+N3G1G3n/nOXPq/sJw/fVw003LlnXs+OXtu991cpLz\n8MPpvfLkk7DrrpWOpnQVn62TJRfvAb0j4tm88t8Bu0dEna0nks4DBgHrRsSSvPLPgGMj4s68stOA\nCyKi6NC93Gyd3Xffne4Fi2gMGDCAAQMGNPr5WesTkdbxKGVGz/PPpxkVG28MDz3kxKSc3nkHhg1L\nM8A6dUoXvcz9zP1+wAF1r7Y7a1bqh8/ftlOndJs7F95/H775zbrjGDUKNt0UNtmk7laausydC5df\nnlovAH7607RmSXO36BV64YW0FtLQoc3XEjp+fLpIKaTkaIcd0uDMHXZIr2OnTulnXcf/7LOUfK6w\nQqrX2NdzJJXNAAAP5ElEQVT9nXegW7f28X5cvDj9bO7WsJEjRzJy5MhlyubMmcO//vUvKMNsnWoY\nb9IJWAwcVFA+AvhHA7Z/Dfh9kfK3gTMLyi4Enq9jXx5zYnHrrWkcxCWXRCxZ0vDtJkxIY3J22ini\nk0+aLz6rnIULIzp2TGNkunWL2G23iLPPjrjlloiXX67/72XRoojLLktjtjp3jhg8OGLmzJaJvZxq\naiLefTdi1KiIf/6z7rqLFkU89lhlx14dcEDEuutG3H9/5WJoD8o55qTis3UiYjEwHtgnVyZJ2f2x\ndW0raU/gG8CNRR5+Jn+fmf2ycrNaHXZYGlvz85/Dd76TlmyvT26MySabpGbVVVZp/jit5XXpkroj\nHn4Yfv3rNH36/vvTjIitt04tH2Pr+K9VU5PGfhx6aBpDcdll1T8eYPHiNPX7ttvgZz+D/fZLrVNf\n+1pqqRo2rO7tc2sdrbZay8RbzLXXptaaAw9M4zBmz65cLNZATc1uynED+gMLgGOBLYBrgY+ANbPH\nLwZuLrLdrcDYWvbZG/gMGEwau3IhsAjYqo443HJiXxg7NmLzzdMMh4svjli8uPa6M2ZEHHusW0za\nq9mzIx5/PLWKzJpVd90FC1okpLI57bTUUgQRX/96xCGHRFx4YcTdd0e89VZqRWkNamrSrJWVV45Y\nb72I0aMrHVFpHn004rnnKh1FceVsOal4YvJFIDAQeAtYSGrd2CnvseHAYwX1VwbmASfWsc/vA69m\n+3wB6FNPDE5ObBkLFkSce25Ehw6pu+bFFysdkVnLeuGF1HXTVhLvadMivvvd9Ol30kkpsWwNpk+P\nOOaYFPfJJ1c6muLKmZxUfEBsNWkvy9db4z37bGoOXrQIpkxp/msCmVnziUizlgYPTqtXN+c1xppq\n6dI0aPm889L/nUsvTdPNSx2M3ZzKuXy9/8WaNcC3vpVWMX3jDScmZq2dBD/6UZqCvPrqlY6mds8/\nD6eemtYBOvnkNO28muMtpyrMvcyqU+fOsJUvfmDWZmy4YZpiXI1+8Ys0BXvhwnS17+uvbz+JCTg5\nMTMzqzprrAGXXJLWifnOdyodTctzA7WZmVkRixdXZml/qHsl4/bALSdmZmYFampg//3TgNn585u+\nv4UL4Ykn0rWN9tsvrb1itXNyYmZmVsT3vgc33gjbbQdpVfaGmzMHRo9Os2y+8x3o3j0tRnf55Wkx\nvx6+yludnJyYmZkV6NABzjwzrf68zjrp4qdnnw0LFjRs+x//OLW8DB8O662XkpKJE+Gjj+C+++Dg\ng5s1/FbPY07MzMxqsemm8M9/pssO/PKX6cKPI0bALrukKcm1GTIEfvvbdEmLuupZcW45MTMzq0PH\njumq0RMnplk0u+4Kjz1W9zZbbpkSGycmpXHLiZmZWQNsvnlac+SOO1JXjzUfJydmZmYN1LEjHHNM\npaNo+9ytY2ZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZmVUVJydmZmZWVZyc\nmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZmZlWlapITSadLmippoaRxknau\np/6Kkv5H0luSFkl6U9LxeY8fJ6lG0tLsZ42kBc3+RKyqjBw5stIhWBn5fLYtPp9Wm6pITiQdCVwG\nDAF2BCYBYyStUcdmfwH2Ak4ANgMGAFMK6swBeuTdNixv5Fbt/M+vbfH5bFt8Pq02K1Q6gMwg4NqI\nuAVA0qnAAcCJwCWFlSX1BXYDNo6I2VnxtCL7jYiY2Twhm5mZWXOoeMuJpE5AL+DRXFlEBPAI0LuW\nzb4H/Af4uaR3JU2RdKmkLgX1umXdPtMk3S1pq+Z4DmZmZlY+1dBysgbQEZhRUD4D2LyWbTYmtZws\nAg7J9vEnYDXgpKzOFFLLywtAd+BnwFhJW0XE++V8AmZmZlY+1ZCclKIDUAMcHRHzACQNBv4iaWBE\nfBYR44BxuQ0kPQNMBn5MGttSTBeAk08+ma9+9avLPNCnTx/69u1b9idizWvOnDlMmDCh0mFYmfh8\nti0+n63Xgw8+yJgxY5Ypmzt3bu7Xwl6MRlPqQamcrFtnAfD9iLg3r3wE0D0iDi2yzQhgl4jYLK9s\nC+BlYLOIeKOWY90FLI6IY2p5/Gjgz6U/GzMzs3bvmIi4vSk7qHjLSUQsljQe2Ae4F0CSsvtX1rLZ\n08DhklaKiNz04M1JrSnvFttAUgdgW2BUHeGMAY4B3iJ1GZmZmVnDdAG+TvosbZKKt5wASOoPjABO\nBZ4jzd45HNgiImZKuhhYNyKOy+p3BV4hddtcCKwJXA88HhGnZnXOzx5/HVgFOBc4COgVEa+22JMz\nMzOzRql4ywlARNyVrWlyEbA2MBHokzcNuAewfl79+ZL2A/4I/Bv4CLgTOD9vt6sC12XbfgKMB3o7\nMTEzM6tuVdFyYmZmZpZT8XVOzMzMzPI5Ock09to+Vp0kDcm7llLu9kql47KGk7SbpHslvZedv4OK\n1LlI0vuSFkh6WNImlYjV6lff+ZQ0vMh79oFKxWt1k3SepOckfSpphqR/SNqsSL0mvUednFDytX2s\ner1EGruUu6bSrpUNxxqpK2nc2UBguX5nST8HzgBOAb4JzCe9X1dsySCtweo8n5nRLPueHdAyoVkJ\ndiON9/wWsC/QCXhI0ldyFcrxHvWYE0DSOODZiDgruy/gHeDKiFju2j5WvSQNAQ6OiJ6VjsWaTlIN\ncEjBGkjvA5dGxBXZ/ZVJK0ofFxF3VSZSa4hazudw0ppWh1UuMitV9iX+Q2D3iHgqK2vye7Tdt5yU\neG0fq26bZk3Ib0i6TdL69W9irYGkjUjfrPPfr58Cz+L3a2u2Z9ZF8KqkqyWtVumArMFWIbWIfQzl\ne4+2++SEuq/t06Plw7EmGgccD/QhrZuzEfCvbG0ca/16kP4R+v3adowGjgX2Jq1HtQfwQNaCbVUs\nO0d/AJ6KiNzYvrK8R6tinROzcomI/JUJX5L0HPA20B8YXpmozKw2Bc38L0t6EXgD2BN4vCJBWUNd\nDWwFfKfcO3bLCcwClpIGY+VbG5je8uFYOUXEHOA1wLM52obpgPD7tc2KiKmk/8t+z1YxScOA/YE9\nI+KDvIfK8h5t98lJRCwmrR67T64s79o+YysVl5WHpG6kf3If1FfXql/2wTWdZd+vK5NmDvj92gZI\n+hqwOn7PVq0sMTkY2CsipuU/Vq73qLt1ksuBEdkFCHPX9lmJdL0fa0UkXQrcR+rKWQ/4DbAYGFnJ\nuKzhsvFBm5C+fQFsLGl74OOIeIfUx/1rSa+TLtL5W9IFP++pQLhWj7rOZ3YbAvyN9IG2CfA7Umtn\nky8eZ+Un6WrSVO+DgPmSci0kcyIid8HcJr9HPZU4I2kgaTBW7to+P4mI/1Q2KmssSSNJ8/BXB2YC\nTwG/yrJ5awUk7UEaa1D4z+nmiDgxq3MhaQ2FVYAngdMj4vWWjNMapq7zSVr75G5gB9K5fJ+UlFyQ\nd201qyLZdPBiicMJEXFLXr0LacJ71MmJmZmZVZV2P+bEzMzMqouTEzMzM6sqTk7MzMysqjg5MTMz\ns6ri5MTMzMyqipMTMzMzqypOTszMzKyqODkxMzOzquLkxMzMzKqKkxOzdkDS45Iub0T9DSXVSNou\nu79Hdn/l5ouy1liGS/p7Sx+3VJKGSHq+0nGYtWZOTsxaIUkjsmTh6iKPXZU9dlNe8aHA+Y04xDSg\nB/BSXlmTr3XR2CSpFfN1QcyawMmJWesUpATiKEmdc4XZ7wNIV2X+snLE7IiY3+CdJx9GRE25Aram\nkeSryFu74eTErPV6HngHOCyv7DBSYrJMt0Jhi4WkqZLOk3SjpE8lvS3pR3mPL9Otk2dXSZMkLZT0\njKSt87ZZTdLtkt6VNF/SC5KOynt8OLAHcFa276WSNsge21rSfZLmZPH8U9JGBc/hp5LelzRL0jBJ\nHWt7YXJdK5J+kD3X2ZJGSupa8BqcWbDd85IuyLtfI+mULLb5kl6R9G1J38he03mSni6MNdv2FEnT\nsu3ulPTVgsdPzva3MPt5WpHXv7+kJyQtAI6u7fmatTVOTsxarwBuAk7MKzsRGA6oAdsPBv5Nulz9\n1cCfJG1asP98Ai4BBgE7ATOBe/OShC7Af4B+wNbAtcAtknbKHj8LeAa4HlgbWAd4R9K6wD+BhcCe\nwI5ZnfyWgr2BjbPHjwWOz251+QZwMLA/cAApMfpFPdsU82tgBLA9MBm4HbgG+B+gF+l1GVawzabA\nEdlx+5Ce0xddcJKOAS4EzgO2AH4JXCTphwX7uRi4AtgSGFNC7GatkpsJzVq3PwP/J2l90peNXYAj\ngb0asO2oiLgm+/13kgZl2/03KyuW4FwYEY8BSDoOeJc0nuWvEfE+kD+e5CpJfYH+wH8i4lNJnwML\nImJmrpKkM4DZwICIWJoVv1Fw3I+BMyIigNckjQL2AW6s4/kJOC4iFmTHuTXbpjFjbwBuioi/Zfu4\nhJRg/SYiHsnKhpKSxHydgR9GxPSszk+AUZJ+GhEfkhKTn0bEPVn9t7NWqFOBW/P2c0VeHbN2w8mJ\nWSsWEbMk3Q+cQPowHhURH0sNaTjhxYL704G16jocMC7v2J9ImkL6Vo+kDsCvSC0G6wErZrf6xrps\nDzyZl5gU83KWmOR8AGxTz37fyiUmedvU9fxqk/86zch+vlRQ1kVSt4iYl5VNyyUmmWdIyePmkuaR\nWnVulHRDXp2OpCQt3/gS4jVr9ZycmLV+w0ndCgEMbMR2iwvuB03r6j0X+Amp++YlUlIylJSg1GVh\nA/ZdSqz1bVPD8q1DnerZT9RR1tDXrlv282TguYLHChO0Bg9iNmtLPObErPV7kJQArAA81IzHEfDt\nL+5IqwKbAa9kRbsA90TEyIh4EZiaPZ7vc1ILQb4XgN3qGuDaTGaSxr0AkK3hstzA1iIaMk14A0k9\n8u73JiUer2bdOu8D34iINwtu+bOsPB3Z2i0nJ2atXDbddwtg64Kuj+ZwgaS9JW1DGiQ6E8iNifgv\nsJ+k3pK2JA2IXbtg+7eAb2WzUVbPyoYBKwN3SuolaZNsls2mNK/HgB9K2lXSttnzWdKA7Yr1mRWW\nfQbcLGk7SbuRWpDuzBtrMwQ4T9JPJG0qaRtJx0s6u57jmLULTk7M2oCImJc33qFolXruN6ROkGa7\nDCXN8lkT+F5E5D7Q/x8wgdSS8xhpjMc/Cvbxe1ILwivAh5I2iIiPSbNxugJPkGb8nMzy3TLldjFp\nltB92e0fLD8QtyGvU7Gy/wJ/Bx4gvR4TgdO/qBxxI+k5nkBqOXoCOI7U2lTXcczaBTX/Fy0zMzOz\nhnPLiZmZmVUVJydmZmZWVZycmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZm\nZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVeX/A/kWwZ4Yxlp7AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -692,9 +724,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAACfCAYAAADqDO7LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcFNW1x78/RFAUxN0nuCuuSVzRqMhoFHHfFzRxTTTG\n3egTTZ6QqM/daPSpD0WfcYFgXFiMituIEVBcUFQElEVZZBMRAwLjnPfHrYaepqeneqa7q3vmfD+f\n+kxV9V1OV9fUqXvvWWRmOI7jOE5DtEpaAMdxHKcycIXhOI7jxMIVhuM4jhMLVxiO4zhOLFxhOI7j\nOLFwheE4juPEwhVGhSDpfkl/yLespO6SviqudCv6nSLpoFL0VWlIqpW0danrNpX0vvO5B7O0s0jS\nloWUzSk9rjASRtJUST9IWi/j/AfRP+vmAGZ2gZndGKfNLGUb5WwjaYtIBr9PaPL1aIrDU711JVVL\nWiLpO0lzJD0taeMm9FVv33HvQUmvSzqnTiNm7c1sagHlSvU1VdLi6Psviv7+tdD9OAF/ECSPAVOA\nXqkTknYB1qRpD5lCoEgGFb0jabVi91EgGvubNOUa5qprwO/MrAPQBegI/CVrI41TdEX/7ZuIAUeY\nWYdIKXUws0uyFcx2j+V731XQfVoUXGGUB48BZ6Ydnwk8ml5A0iOS/hztd5f0laQrJM2WNEPSWdnK\nrjylayTNlTRZ0mlpHxwu6X1JCyVNk9Qnrd4b0d9voze3vaM6v5H0aXTuY0m7ptXZTdKHkhZIGiCp\nTbYvLOlMSf+SdKekuUAfSX0kPZZWps4bffTm+ueo3neSXswcmaXV/VTS4WnHq0Vv4LtKaivpMUnz\nIjnflrRhtnbiImkvSSOj9mZIukdS64xiR0j6IpLj1oz650Qyz5f0QmpkGbd7ADP7Fnga2CVq8xFJ\n90l6XtIioEpSG0m3R7/1rOjztmlyXCVppqTpks4mTUFm3leSjolGwgslTZLUQ9INQDfg3vS3fdWd\n2uog6W/RdZiitGmu6L54U9Jtkr6JrlfPON9/lZN177F5hHss2zlJ+qPCaOVrSf8nqUPURuoePEfS\nNODVuD9Kc8QVRnkwGmgvafvo4XgK8Di53+42AdoDmwK/Bv5H0jo5yq4XlT0L6Cdpu+iz74Ffmdk6\nwBHAbyUdHX12QPS3Q/Tm9rakk4DrgF9Gb7VHA/PT+joJ6AFsBfws6q8+9gY+BzYGUlMdmW/wmce9\nCAp1Q6AtcGU9bT8JnJZ23BOYa2Zjo/odgE6E6/JbYEkOOePwI3BZ1N7PgYOA32WUORbYPdqOUTRt\nI+kYoHf0+YbAm8CAfAWQtAFwAvB+2ulewPVm1h54C7gF2Bb4afS3E+H3JHowXwH8AtgOODhHX10J\nLzW/j+6dA4CpZvbHSP6LMt7203/Hewn37pZAFXBGpJxSdAXGA+sDtwH987kOGaTusY1YeY9lnjsb\nOAPoDmwdyXZvRjsHADsAhzZBlorHFUb5kBplHEL4Z5nZQPllhAfBj2b2AuHBv309ZQ34LzNbbmYj\ngOeBkwHMbISZfRLtfwwMJPzjpJOuuM4FbjWz96M6k80sfVH9bjObHb3tDgXSRx+ZzDCz+8ys1syW\nNvB9UzxiZl9E5QflaH8AcLSkNaLjXqx8CC8nPIy6WOADM/s+Zv9ZMbP3zeydqL0vgX6seh1vNrOF\nZjYduIuV05DnAzeZ2UQzqwVuBnaVtFnM7u+R9A3wAeG++X3aZ4PNbHQk41LgN8DlkRz/jvpKyXES\n4fqON7MlQN8cfZ4D9Dez16K2Z5nZxBzlBSumxU4BepvZYjObBtwB/Cqt7DQze9hCoLtHgU0kbZSj\n7eei0ciC6O+5aZ9lu8cyz50G3Glm08xsMXANcKpWTuEZ0MfMluRxnzZLMofMTnI8DowgvJn/LUb5\n+dHDJcViYO16yi4wsx/SjqcRRhsoTDPdRJjGaBNtT+XodzPgixyfz86Q6T9ylG2M9dbXGe1n/c5m\n9oWkT4GjJA0jjISuiz5+DOgMDIxGZY8DfzCzHxshDwDRiO1OYE/C+lNr4L2MYtPT9lf8BsAWwN2S\n7kg1R3hIdSLeNbrYzB6u57MV9aNpt3bAe9KKd4BWrHwh2BR4N0PG+ka5mxFePPJlA8K1+TKjn05p\nxyt+YzNboiDs2sCceto8xsxer+ezbNcv89ymkQzp8rQmjHxTTMfxEUa5EL2VTgEOA54pcPPrSloz\n7XhzVo5gngCeAzqZWUfgf1n5kMi2wPsVsE2B5Mps/9+EB1qKXMomDgMJb4/HAJ+Y2WQAM6sxs+vN\nbGdgX+AowpREU7ifMDLcJrqOf2DVh236iGELVv4GXwHnm9l60bauma2dGhk0kfRrPI+gZHdO66tj\nNKUEMCuLjPUt8ue6D3IZBswjjPC2yOhnRo46DdGQUUBD52ZmkWc5dV9+kjZAKQtcYZQX5wAHRdMB\nhUTAnyStLqkbYa1iUPTZ2oQRyPJoXjp93n8uUEvdB8NDwJWSdgeQtE0eUycNMRY4QNJm0Zt/7ya2\nN5CwnnIBYU0DAElVknaJphy+JzwcarM3sQoC1ogWzlObCPPe35nZYkk7RH1mcpWkjtH1uiSSD+AB\n4FpJO0XyrSPpxPy/bm6iKZ4Hgbui0QaSOknqERUZBJwlaUdJ7Vg5IstGf+BsSQdGi8abSkpNic4m\nrAVkk6E26udGSWtL2gK4nDDqS4oBwOWStpS0NmFdY2DaCL7cLcVKhiuM5Em3c5+SWhvI/CyfdrIw\nC1hAeJN6jPA2Oyn67HfA9ZIWAn8E/p4mzxLCP89b0dxwVzP7R3TuSUnfAc8SFnrzlXfVL2D2StT/\nR8AYwhpInSJ5tvc1MArYh7TvRTAC+AewEPgEeJ3ogaXgnHZfrmaBRYQ39SXR3wMJ6wanR9fkf1mp\nDNLrDSZMU70ffbeHIzmfI6wlDJT0LeH798yom0uefD67mrDgOzrqazjBHBcze5GwtvIaMJEcFkFm\nNoawWHwX4TpWE0auAHcDJylYfN2VRZZLCNdtMmEa9nEzeyTP75HO0MgiK7U93UD5TB4m/P4jCNOt\niyMZ4/bfYlCxEyhFlhd3EZRTfzO7JUuZKoLt+OoES5YD49Z1HMdxSkNRFUY05J9IMNObSXhrPNXM\nPksrsw4wEuhhZjMkbWBm8+LUdRzHcUpHsaekugKTInO15YRh+jEZZU4DnjazGQBmNi+Puo7jOE6J\nyKkwFLxj6zNXi0OmWeB06prPQZg/XU/Bi3eMpF/lUddxHMcpETn9MMzsx8gtfh0zW1hEGXYneMau\nBYySNCqfBiT5opTjOE6emFleFmBxHPe+B8ZJeplgJ5/qKGuArwxmsNJyAoKzVKa99XRgXuRY9oOk\nEYSQEnHqrqDYi/cthb59+9K3b9+kxUiORYvguONg7bXhiSdgrbWa1FyLv54Fxq9n4Uhz3oxNHIXx\nDI13JBsDbBvZWs8CTiUtKmvEYEJog9UIsYH2JnjMTohR13EKx5w5cPjhsMcecN99sFqLDkzqOKvQ\noMIws0cVIo52iU5NiBahGySa0rqIYOudMo0dL+n88LH1M7PPJL1EsD3/EehnZp8CZKub7xd0nFiY\nwZFHwhFHQN++0Ii3L8dp7jRoVhv5SDwKTCV4PG4GnGkhiF1ZIMl8SqowVFdXU1VVlbQYyTBrFvxH\nU6OR1KVFX88i4NezcEjKew0jjsJ4DzjNzCZEx12AAWa2R6MlLTCuMBzHcfKjMQojjh/G6illARCF\nMF49X+EcpyKZPh3mzWu4nOO0AOIojHclPRQFbKuS9CB1QyA7TuUxPuZy2A03BGspx3FiKYwLgE8J\nwbguifazReJ0nPLHDK6/Ho4+GpbECArcrRv861/Fl8txKoCcaxiRqevfzOz00omUP76G4cTixx/h\n0kvhzTfhxRfjLXBPmwZ77x0WxN1yymlGFHwNI8pAtkVkVus4lcvSpXDaafDxxzBiRHxrqM03h9VX\nhy9yJRl0nJZBHMe9yYR8CEOo6+l9Z9GkcpxCc9ZZUFMTRhZrrNFg8RVIsP/+YVpq222LJp7jVAJx\nFMYX0daKkFXMcSqPG26ALbdsnPf2CSeEEYrjtHDirGHcYmZXlk6k/PE1DMdxnPwo1hrGfk2SynEc\nx2kWxJmSGhutXzxF3TWMxgYkdJziYuYWTY5TBOIojDWA+YR8FSmMxkewdZzictFFcMABcMopSUvi\nOM2Koub0LhW+huGsYPz4oCwmTID11ktaGscpWwq6hiFpUNr+LRmfDc9fPMcpAb17h60YyuLmm+H7\n7wvfruNUCLkWvbdL2z8k47MNiyCL4zSNESPgo4/ClFQxGDYMRo8uTtuOUwHkUhi55nh8/scpL2pr\n4cor4cYboW3b4vSRcuBznBZKrkXvdpJ2IyiVNaN9RduapRDOcWKzdCkceyycemrx+ujWDf7yl+K1\n7zhlTr2L3pJez1XRzA6M1YHUE7iLlWlWM9dDuhPyek+OTj1jZjdEn00FFgK1wHIz61pPH77o7RSf\nBQtCbKlvvgnxpRyngmnMone9I4y4CqEBgVoB9wK/AGYCYyQNNrPPMoqOMLOjszRRC1SZ2YKmyuI4\nTWbddUN4kbFjYa+9kpbGcUpOnHwYTaErMMnMppnZcmAgcEyWcvVpOVF8GR0nPnffDZ07Jy2F4yRC\nsR/GnYCv0o6nR+cy+bmksZKel7RT2nkDXpY0RtJviimo48TioIPih0Z3CsusWTBzZtJStGjieHoX\nm/eAzc1ssaTDgOeALtFn+5nZLEkbEhTHeDPLaqbSt2/fFftVVVVUVVUVV2oneb78MjxA9tknaUmc\nUvDAA0Fp9OuXtCQVSXV1NdXV1U1qI5ant6ROwBakKRgzGxGj3j5AXzPrGR33DlXrLnxn1JkC7GFm\n32Sc7wMsypaHwxe9Wyinnw7bbQdpLwtOM2bePOjSJSTB2nTTpKWpeBqz6N2gwoi8vE8h5PL+MTpt\n9SxSZ9ZdDZhAWPSeBbwD9DKz8WllNjaz2dF+V2CQmW0pqR3Qysy+l7QWMBz4k5mt4mXuCqMF8u67\nIS/3xImw9tpJS+OUiksvhTZt4Lbbkpak4imWwpgA/NTMGpVBJjKrvZuVZrU3SzqfoHT6SboQuABY\nDiwBLjeztyVtBTxLWMdoDTxhZjfX04crjJaEWVhL6NULzjsvaWmcYlFbC60yllm//BJ22w0+/zxY\nrTmNplgK4wXgJDMr2yA6rjBaGM8/D1ddFcKAtE5gGW7GDDjjDHj11dL33VKYPx8OPhiGDl3VKu3s\ns2HrreG//isZ2ZoJBfXDSGMxISfGq8CKUYaZXZKnfM2TpUuLF4rCyc6tt8IttySjLCBYSX3wAXz9\nNWyySTIyNGeWL4eTTw4KI5sJc58+sGRJ6eVyYpnVDgGuB0YSLJpSm/PVV7DTTuHB4dRl5swwCli+\nvPBtDxsGRx5Z+Hbj0qoV7Luvx5UqFpdfDmusEaIDZ2PLLWHHHUsqkhNo8BXNzB6V1IaVpq4TIie8\nls3ixSF20fnn+1tmiqVLw4KkBB07htwUxx4LgwbBWmsVrp/27QvXVmPp1i0ojBNPTFqS5sUDD8Br\nr8GoUbDaaklL42TQ4AhDUhUwCfgf4D5goqQDiixXeWMGZ50FO+8c3qLTzx95ZLDcaYn06ROmiwDa\ntYNnn4UNNwxTC/PnJytbofHItYVn/vwwqhgyBNZZJ2lpnCzEmZK6A+hhZt3N7ADgUKBlh+y8/vpg\nrdGvX93c0RIccgice26w8GhpDB8O++238nj11eGRR0IGvG7dwhRec2HPPcOLweLFSUvSfFh//TAq\n3XbbpCVx6iGOldRHZvbThs4lSUmtpGbPhgMPDBYy2UJE1NaGB+TJJ8MlLcguYM6c4FQ1d272SK53\n3BGmGC67rHHtm9VVzuXA99+7D0jSTJwICxd6MMhGUCyz2ocJUWMfj06dDqxmZuc0SsoiUHKz2pqa\n3BY6EyeGRdG334ZttimdXEnyxBPwj3+EaahCM358UL7Dh5ef0nCS5emnwzTo6NF+b+RJQXN6p3EB\nwcv7kmj7NDrXcmnInLNLl5BX+te/bjlTU8OHQ48exWm7d2/o2dMfCM6qHHdcGGG8njN9j1Mg4lhJ\nLQXujDYnLpdf3rLCYM+fXxyFkcrTPWhQ4dt2kmXAAFhzzWBJ11hatYKrr4abbgre/05RyZVxb5CZ\nnSxpHFlyeLfYNYxyZfHisAh/8cWVY444eTL8859w0UXZP6+tDZFoL7sMTjuttLI5xeXtt4NF4euv\nwy67NK2tZcvC1O+zzwZjBCcWhZ6SujT6eyRwVJatZXDPPWGetNyZMyeMat58M2lJ4tOmDdx/P1x5\nZfapu0GDwvli5uluKosXh1AhTnxmzIATToD+/ZuuLCDcR7//vQckLAH1KgwzmxXt/i7KmLdiA35X\nGvES5qWX4L//uzLeWrbcEm68EZ56KmlJ4tO5c1Bwo0YFv5ZMr/C2beGuu1YNQFdODBlS/wipHFi2\nLGkJ6rJkSZiCuvDCEG24UJx3XrhXnKISx0rqfTPbPeNc8zernTAh+A4880xw0qoEJk6E7t1h+vTK\nmZaC8JZ+8snBdLbQXuHFZvr0ED11zpzyXJTfbz+4/Xb4+c+TliRw7rnwww/w+OPleb1aEAWdkpJ0\nQbR+sYOkj9K2KcC4pgpb1ixYAEcdFRbSCqUsPvggJPwp5lpLly6w0UYwcmTx+igG6V7hgwcnLU1+\ndO4cFNyECUlLsioLFsC4cUGh9e8fzMGT5oor4KGHXFlUKLnG+k8S1ioGU3ftYg8zO70EsiXHeefB\n4YeHt6FCsfPOIVPYY481va0XXgiOcNk49dSgnErF88+HxeumkvIKr8TF7VRcqXLjtdfCCGONNeDe\ne8NCc9LsvHOwjHKaxjffNFymCORaw1hoZlMJyY++SVu/qJG0d6kETIRbbw3D+ELSpk14IF55ZchL\n3FgeeyzM9++7b/bPe/curYf51VeH1JmFoFLfOvffvzyNDdJ9Yw49NBw7lc/o0bD33on4eMVZTbwf\nSE+e9H10LhaSekr6TNJESVdn+by7pG8lvR9tf4xbt2hstVVxci3svnsYvVxwQeOmpu64A/74x2CK\nWN+cdCkfutOnB+W3xx6l67Mc6d4dOnRIWoq6mAWjjUMPDcc9eoTjlsAnn8CTTyYtRXEwCy+d11yT\njDGImeXcgLFZzn3UUL2oXCvgc2ALYHVgLLBDRpnuwJDG1E0raxXDDz+Y7byz2ZNPxq9TW2t21VVm\nO+5o9uWXxZMtXx5+2Ozkk5OWwsnG3Llm++0X7h2zcN+1b282f36ycpWCCRPMNtjAbNGipCUpPM88\nY/aTn5jV1DS5qei52eBzPH2Lo6ImS7pE0urRdikQd9K6KzDJwnTWcmAgcEyWctlei+PWrSzatg3T\nSjvsEL/O/PkwdWqY9thss6KJljcvvVS8cCBO09hgg7Cukhpxtm0b1lqSSCt7xx3hrb9UdOkSAoT2\n61e6PkvB8uVhCvjWWxOzgoyjMH4L7AvMAKYDewPnxWy/E5Ae03p6dC6Tn0saK+l5STvlWbfx1NbC\nmDHwf/9XXOulTHbbLWxx2WCDYG66/vrFkylffvwRXnnFFUYlcfXV+b2oFIKamuDLVOopu9694c47\nQ1Kv5sLs2cE7PjXNmABxYknNAYrpavsesLmZLZZ0GPAcK7P7xaZv374r9quqqqiqqspecMmS8JY1\nZEhI9bnOOiGpfHNj0iT48MPiZYSrqQn/kOU04nFyc0ACec9GjoTNNy/9fbL77sEi6/HHC2vtmCSd\nO4f/uUZSXV1NdXV1k0TIFUvqP83sVkn3kD2WVIOmOJL2AfqaWc/ouHeoarfkqDMF2IOgNGLVje24\nV1MTbtzttw9epkcdBdtt13C9SmTcuPD9pkypXOsjp/K56qpgRvvnP5e+7+rqsDg8alTp+64AGuO4\nl2uEMT76+27jRWIMsK2kLYBZhJFKr/QCkjY2s9nRfleCEvtGUoN168UsTDdlzvO1bg1ffBEcxcqV\n8eOD81rv3k1rZ5ddwrz1mDHQtWthZHNy8/zz4YXkp2UTBCF5hg2Dv/0tmb67dw/Tpk7ByOWHMTT6\n+2i2LU7jZvYjcBEwHPgEGGhm4yWdLym1DnKipI8lfQDcBZySq269nS1bFm6OSy4JZrH1eQyXo7K4\n7rog7+jRYbFu002b3qYEJ50Ukho5pWHUqPKI5fXII/DvfyctBXz+OXz7bXJm11JlhZmpAHJNSQ0l\ny1RUCjMrYOSwpiHJrGPHlVNNRx8d5i8rZSpmxIjwcK+thUcfDV7mhWDs2JBgZvLkyrkWlcyLL8It\ntySbzGfu3JATe9687KlyS8ny5eHe2377ZOWoZKZNC2mAi2DwUtAUrZK6R7vHA5uwMkVrL2C2mV3e\nWEELjSSzWbNgk02SFqXx3H9/sJzaZ5/CtWkWTAwHDKiMiLuVznffQadOwQy6TZtkZBgwAAYOzB2T\n67zzQlyz7t3rL+OUB4cdFl4gL7644E0XNPigmb1hZm8A+5nZKWY2NNpOA7o1VdiCU8nKAoL3dyGV\nBYRRxYAB4Y2zkHTrBl991XC5lkaHDuFav/9+cjKke3fXxyabhHhkTnnzyivB2vH885OWZAVx/DDW\nkrR16kDSVoBPDFYKe+4JHTsWrr3Jk8NN3KmwLjHNhv33Ty4QoVm83Oo9erS8uFKTJgU/lEqhtjZY\nmN10U3Kj1SzECZh0OVAtaTLBI3sLoHxUnlNaXn4ZDjmkvJMaJcm55yaXtOjjj4MJa0Mjyr33Dop/\nzpwQDr8l0KlTcNA980zYaacGiyfOE0+EKMPF8qNqJA0mUAKQ1BZIuYh+ZmZl5T7pOb1LyPHHh+2X\nv0xaEieT6dODs+YRRzRc9rjjwsPo9CJkKqipCes4G29c+Labwo03hrwlSZn5xqWmJviHPf54CE9f\nJAqd0zvVaDvgKuAiM/sQ2FzSkY2U0alkampCjoWDD05aEicbnTvHUxYQpqWK5dA2alRYrC03Lrww\nxGO76abShgLKl9atw/pFEZVFY4kzJfUIIXxHKp72DOApYFixhHKKwLJlITVmU2L6fPppmO6odAMD\nB3796+KE8AcYOjTEPCo3OnaEt96Cnj3h++/DiKNc2WabpCXISpyc3u+a2Z6SPjCz3aJzH5rZz0oi\nYQx8SioG11wT7PKbGqKhpqZ4DxqnebDjjmHaZ6+9kpYkO99+CxMntvgICEWZkgKWSVqTyIlP0jZA\nWa1hODE49tjghdxUxerKwslF0t7dcejYscUri8YSR2H0AV4ENpP0BPAq8J9FlcopPF27hnARn36a\ntCQtg6OPDovQLY2hQ8M6ilvRNUty/qqSBHxG8PY+CxgA7Glm1UWXzCksUrCKKYdYRy2BVq3CfHkp\nmDkz+H+UA61bw6nFzIZQRJYsSa7vt9+Ga69Nrv+Y5FQY0cLAP81svpk9b2bDzGxeiWRzCs2JJ3ow\nwlLRrVuwyCkFw4c3PmDl5MkhBH6huPjiyrSimzIlrL2MG1f6vlN5uisg1UKcceP7ksp09crJi332\nCfGq8o1kmvIgrq0tjlzNkVJ6fMfx7q6PJ5+Ev/61sPJUIlttBTffHJRdqT31Bw+GhQvhjDNK228j\niGMl9RmwHTAV+DfB29vMrGyC/ruVVJGZMCF4d0+b5lFv47JsGay3HsyYEbI6Fova2uAg9957IbNd\nvowZA2edVdqc2+XMyy8HZ8aHHgrrUMVm+fKQu+buu4O5bwkpdAKlFMklkHXKg5deCm+wrizi06ZN\nMCsdNaq4D4IPPgg53xujLCCkMp09OyzQd+5cWNkqkUMOCYmwjj46vPX/6lfF7e/BB8Nvl2Ce7nyo\nV2FIWgP4LbAtMA7ob2Y1pRLMKSOGDw8xeJz8ePppWHfd4vbxzjuNn46CkJXy4IPDb3zOOYWTq5LZ\nay94442gMIrN11/DrbdWzMtYrnwYfweWA28ChwHTzOzSvDuQehIy6bUiKJ2s+byjdZKRwClm9kx0\nbiqwEKgFlptZVuNpn5IqIkuXwoYbwtSpYYrFKT+a6kz58MNBYQwc2Pg2HnwwBPUrw3AWTnYKPSW1\nk5n9JGq4P/BOIwRqBdwL/AKYCYyRNNjMPstS7mbgpYwmaoEqM1uQb99OgRg5MliPuLIoX5rqTHno\noSFYYFO4887yD+rnNJlcVlLLUztNmIrqCkwys2lmthwYCByTpdzFwD+AORnn1YCMTmO54orgldsQ\na68dTP6c5kunTiH3QmOpBO/uQlHTsmflcz2Mfybpu2hbBPw0tS/pu5jtdwLSU7NNj86tQNKmwLFm\ndj9BQaRjwMuSxkj6Tcw+nTgsXRrPJ2OvvUK+ccepj2HDQrDB5u7d/dZbYcpt2rSgIFPb0noiJS1e\nXLdcQ+UrgHrHsma2WolkuAtIT4WVrjT2M7NZkjYkKI7xZpbVSLpv374r9quqqqiqqiqCqM2IE08M\nI4fevZOWpGXw0EPQrh2cdlrSkhSeoUPh0ryXNyuPffcN03e77lo3Jttf/gJnn71q+WuvDUmbMqmv\nfJGprq6murq6SW3ESqDU6MalfYC+ZtYzOu5N8OG4Ja3M5NQusAHB1+M8MxuS0VYfYJGZ3ZmlH1/0\nzpeamjAVMWoUbL11w+WdpjFyZAiZMWFCyIrXVObNgy+/DGaxSbJwIWy2GcyaBWt55uZKoljRapvC\nGGBbSVtIagOcCtRRBGa2dbRtRVjH+J2ZDZHUTtLaAJLWAnoAHxdZ3pZD69Yh65qHCikN++4bAkDe\nfXdh2nvmmfCmmjTt2wfnP1cWLYKiKgwz+xG4CBgOfAIMNLPxks6XdF62Kmn7GwP/kvQBMBoYamYt\nLHN9kTnxxBCWwCkNN90Et98Oc+c2va2mhAOpjzfegNtuy69Oq1aw/faFlcMpW4o6JVUqfEqqkdTU\nhIW5bFn4PvkkzLuXw1tsc+Lii4OTVlPiN9XUwEYbhVD1hcx++OGH4SVi0qTCtemULQWdkkpZQ6VZ\nRi1qhJWUU860bl1/ytYXXqhoa46y5brrQvDHprzgjBkTwkkUOlXuT34CixaFCLaOk4V6FYaZtTez\nDtHWPu07SSdBAAAKY0lEQVS4vZk1ITG0UxEUY8rDCV7z/fs3LRREKrZXoWnVKrT78suFb9tpFsRa\nw5C0v6Szo/0NJG1VXLGcRFm8OFhPHXRQ0pI42dh+ezjllOK03aNHUEhxaIkZBVs4ccKb9wH2BLY3\nsy6Ro91TZlY2QWN8DaPAvPQS3HBD6RIAOeXD7Nmwww5hYT5XyJHPP4cDDgjh2yskcJ5Tl2KZ1R4H\nHE3wj8DMZgLt8xfPKVuWL4fXXlt57NNRLZeNNw6L3w3Fp0rl7nZl0aKIozCWRa/vBit8IpzmhFmw\njpkxIxxff32w5nGKz8SJQWGXE3FyawwdCkcdVXxZnLIijsIYJOl/gY5RPKdXgAeLK5ZTUtq0CQlj\nnn46HLdrBx07JitTS+Gyy6Bfv6SlyI9vv4V334Vf/CJpSZwSE8sPQ9IhBE9rgOFmVlZmFL6GUQCG\nDYNbbvF1i1Lz4YchPtHEifWbOJcbf/97CGX+/PNJS+I0gWKGBhlHSKQ0Itp3mhuHHBKc9WbOTFqS\nlsXPfhZSuN6SNa9YXZ54ojxyTpiFPOBOi6NBhSHp14TkSccDJwKjJXkux+ZG27YhRPUzzyQtScvj\nhhvggQcaNlMdODD8TqWgtrZ+eU491UPet1DimNVOAPY1s/nR8frASDMrmwAyPiVVIN55J3ghH3hg\n0pK0PK69NpiyPljP8uCyZcHpb/JkWH/94svz2WfBUm7aNLeEaqYUOkVrivnAorTjRdE5p7nRNWvK\ndKcU9O4dwnLUx8iRwWGvFMoCVgYUnDAh+GU4DjkUhqQrot3PgbclDSaY1h4DfFQC2Ryn5dChQ+5F\n71L7xkihv+HDXWE4K8i1htE+2r4AnmNl6PHBwJQiy+U4TjpJOFMeemj8MCFOi8DDmztOJTBnDqy7\nLqy+eun6/OYb2HLLsLbStm0wp23Xzh32mglFMauVtKGk2yT9U9Jrqa3xYjqOkzcbbVRaZQGw3npw\n+ukhvhQEB8Pa2tLK4JQVcfwwngA+A7YC/gRMJaRedRynGPzwQ3hQL1mStCRw//0hVMjChSEPx8EH\nJy2RkyBxFMb6ZtYfWG5mb5jZOUDsuNeSekr6TNJESVfnKLeXpOWSjs+3rlM4qqurkxahWdGo67nG\nGiF5VaHyfxeCF1+Ebt0Sz93t92eyxFEYqchosyQdIWk3YL04jUtqBdwLHArsDPSStIrJRVTuZuCl\nfOs6hcX/IQtLo69nIfN/F4IyCTbo92eyxFEYN0haB/g9cCXwEHBZzPa7ApPMbJqZLQcGEsxyM7kY\n+AcwpxF1Haf5sd120KsXXHBBcNpLkpqaMMI48shk5XASp0GFYWbDzGyhmX1sZgea2R7ANjHb7wR8\nlXY8PTq3gigh07Fmdj+gfOo6TrPmuutCBOHnnktWjtVWCxkYO3dOVg4necws7w34Mma5E4B+ace/\nBP6aUWYQ0DXafwQ4Pm7dtM/MN9988823/LZ8n/1xQoNkI67t7gwgPRtL5+hcOnsCAyUJ2AA4TFJN\nzLoAedsSO47jOPnTWIVhMcuNAbaVtAUwCzgV6FWnIbOtU/uSHgGGmtkQSas1VNdxHMcpHbliSS0i\nu2IQsGacxs3sR0kXAcMJ6yX9zWy8pPPDx5aZaswaqhunX8dxHKfwNIvQII7jOE7xiZtxryxxx77C\nImmqpA8lfSDpnaTlqTQk9Zc0W9JHaefWlTRc0gRJL0Um6k4D1HMt+0iaLun9aOuZpIyVhKTOUVin\nTySNk3RJdD6v+7NiFYY79hWFWqDKzHYzM0+OkT+PEO7HdHoDr0QJx14Drim5VJVJtmsJcKeZ7R5t\nL5ZaqAqmBrjCzHYGfg5cGD0v87o/K1Zh4I59xUBU9j2RKGb2L2BBxuljgEej/UeBY0sqVIVSz7WE\n+BaaThpm9rWZjY32vwfGEyxP87o/K/nh4I59hceAlyWNkfSbpIVpJmxkZrMh/NMCGyUsT6VzkaSx\nkh7y6b3GIWlLYFdgNLBxPvdnJSsMp/DsZ2a7A4cThqz7Jy1QM8StTBrPfcDWZrYr8DVwZ8LyVByS\n1iaEYbo0Gmlk3o85789KVhixHfuceJjZrOjvXOBZwrSf0zRmS9oYQNIm1I2X5uSBmc1Ny5T2ILBX\nkvJUGpJaE5TFY2Y2ODqd1/1ZyQpjhVOgpDYEx74hCctUsUhqF719IGktoAfwcbJSVSSi7jz7EOCs\naP9MQopjJx51rmX0QEtxPH5/5svDwKdmlh43P6/7s6L9MCKzurtZ6dh3c8IiVSyStiKMKozg0PmE\nX8/8kPQkUAWsD8wG+gDPAU8BmwHTgJPN7NukZKwU6rmWBxLm3msJidzOT82/O7mRtB8wAhjHylhS\n1wLvEOL5xbo/K1phOI7jOKWjkqekHMdxnBLiCsNxHMeJhSsMx3EcJxauMBzHcZxYuMJwHMdxYuEK\nw3Ecx4mFKwynopBUK+lvacerSZoraUh0fJSk/2ygjf+QNCjaP1PSPXnK0GDEWUmPSDo+n3YLiaTX\nJe2eVP9O88QVhlNp/BvYRVLb6PgQ0oJQmtlQM7s1VwNmNsvMTk4/lacM1+ZZvqKI0iM7ziq4wnAq\nkX8CR0T7vYABqQ/SRwzRW/7dkt6S9HnqjT8KJzMurb3NozfyCZKuS2vr2Shy7zhJv47O3QSsGSXw\neSw6d0Za4qlH09rtntl3OpEcn0rqJ+ljSS+mFGH6CEHS+pKmpH2/Z6OkN5MlXSjp8kiekZI6pnVx\nRiTTR5L2iuq3i5ITjZb0nqSj0todLOlV4JX8fxKnJeAKw6k0jJD7pFf0cP0p8HaWMik2MbP9gKOA\nW+opsxdwHPAz4KS0qZyzzWyv6PNLJa1rZtcAi6MEPr+StBNhxFFlZrsBl8boO51tgXvMbBdgIXBC\nju+dYmdC3oKuwI3A91GU4dHAGWnl1oxkupAQRwjgD8CrZrYPcBBwu6Q1o892A443swPrkcFp4bjC\ncCoOM/sY2JIwunie3El1novqjKf+WP8vm9m3ZvYD8AyQCut+maSxhAdxZ2C76Hx6fwcBT5nZgqif\n9Dg8cfqeYmap0c570fdqiNfNbLGZzQO+BYZF58dl1B8Q9f8m0F5SB0JQyd6SPgCqgTasjPr8spkt\njNG/00JpnbQAjtNIhgC3EQLUbZCj3NK0/foUyyo5ASR1JyiDvc1sqaTXgTXylDFO3+llfkzro4aV\nL3SZ/abXsbTjWur+T2fLdSDgBDOblP6BpH0I60OOUy8+wnAqjdSD92HgT2b2SSPqZnKIpI7R1Myx\nwFvAOsCCSFnsAOyTVn5Z2sLwa4RprPUAJK2bZ9/1nZ8K7Bntn1RPmYY4JZJpf2ChmS0CXgIuWdG5\ntGsj23ZaIK4wnErDAMxshpndG6dsjuMU7xCmosYSppfeB14EVpf0CfDfwKi08v2AcZIeM7NPo8/f\niKZ57siz7/rO3w5cIOk9YL16yjTU7g+S3idkqjsnOn894Xt9JOlj4M852nacOnh4c8dxHCcWPsJw\nHMdxYuEKw3Ecx4mFKwzHcRwnFq4wHMdxnFi4wnAcx3Fi4QrDcRzHiYUrDMdxHCcW/w9Aaiblpksq\n0AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYlOXVx/HvD4Miolh4FU1s2EssoFE0isZYYmwYG1hQ\nE0vAhlETK0aTGBtGVEQTe8GY2AtCjAUsaATFGLAXrCgWpCqw5/3jPCMPw8zuzLOzO7O753Ndc+3O\nU+4508/cVWZGCCGEEEKtaFftAEIIIYQQ0iI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CRUnqU7SORnPfVfS9anr/ZLyulcu\nwuwkrZ7Ec3K1Y2nLJD0h6eUKl7nQa6+WFXif9Epel9tX8DYyv49DaKxITkJBqaSgTtI2RY55P9l/\nf94uSy5Z1BU4t6JrLEjqI+nESpYZGpa8VoZUqLimWHejpDJT74s6SfMlfShppKReTRBTMYViLfsx\nkfQzSYPquY1mX99E0qC8xzj/8V6xuWMKze971Q4g1LzZQF/gmfTG5IP4+8CcAucsCczLeHvr4QlK\nU+oLbARc3sS3E1qvUcDNgIA1gf7AY5J2N7ORzR2MmT0paUkz+7bMU3fHY/99gX2NeR83lgHHAjML\n7PuqmWMJVRDJSWjIw8D+kk4ws3TS0Bd4AeiSf0KGD8j0uXOznttSSepoZrOqHUcoy+tmdnvuiqR7\ngZeBk4CCyYkkAYub2TdNEVDG950qXF4l3WVmX5RzgqQlgG+twIq2lXifxXu1+USzTqiPAcOBFYCd\ncxsltQf2A26nwIdbflu1pHOTbWtJulHSl5K+knS9pA555xZr919K0jWSpkqaJukmScvmnbuXpAeT\navY5kt6UdJakdqljHgd+DuT6jtRJeju1f4kk3tckzZb0kaS7JK1Z4H4eldzGHEnPS9qioQc01Vy2\nvaShkqYA7yf7bpT0ToFzzpVUl7etTtIQSXtL+m8SwyuSdm3g9leUNFfS2QX2rZuU2z+5/r2kiv31\n5LGYKmmMpJ0aup9ZlfIc5h3fXdLTkmZJelvSMQWOWVzS7yW9kZQ5WdKFkhavVNxm9gowFa9Fyd1u\n7jnqK+kVvJZx12SfJJ2UPGezJX0iaVj+azo59ix5E+pMSf+WtGGBYwr2OZG0laSHJX0haYakCZKO\nT/bdgNeapJuq5ufFf05eeZtLGpG8B6dLelTSVnnH5F7j20gaLOnT5LbvlrRC2Q9uEan7fKCkP0j6\nAK9pWVrS4cXeZxnuR8EyQtOKmpPQkHeBsUAfFvwi3B1YBrgDKKXvRu5XzJ3A28DvgO7Ar4ApwOkF\njk0TcCXwJTAIb/rpD6wG7Jg67nBgOnApMAP4CXAesDTw2+SYPwCd8Sapk5KyZwAkX4APJWUOB/6S\nnLszsDGQThwOBjoBw5KYfwvcJambmc2nYUOBT/Hq9I6p+16sL0Gh7dsB+yZlTQdOAP4paTUz+7LQ\njZrZp5KeBA4Azs/bfRBejX9ncv33+HN1LfAf/DnfAn/u/t3wXczkcBp+DnOWx5+vO/FE+QDgaknf\nmNmN8F1txQPANsA1wKvAD4GBwDr449dokpYDlgPeyNu1UxLXlXjy8m6y/VrgMOB6vHlxTeB4YDNJ\n2+ZeQ5LOB84EHgRG4I/9KKB9gTAWeo1I2hm/7x/hr+VPgA2APYAr8MdjFeCn+Ou5aC1KUt6GwGhg\nGvBn/LVyDPCEpO3N7D95p1wBfAGcC6yBP+ZX4p8lpVghef7S5pnZtLxtZwPfABcDSwDfsuCxSL/P\nlkrux0Zl3o9FygjNwMziEpdFLkA/YD7+Ydgfb+ddItn3d+DR5P93gPvzzq0DzkldH5RsuzbvuLuA\nT/O2vQNcnxdHHfAcsFhq+ylJfHukti1R4H5cjX/ZtU9tewB4u8CxRyS3dUI9j8vqyTGfAsuktu+Z\nxLN7CY9rHfAEoLx9NxSJaxAwv8BjPBtYI7Xth8n2/g3EcFQS64Z5218B/pW6/mL+c9vI11QdMKSB\nY0p9Dh9P7sOJqW3tgfHAx7nXCnAIMBfomVfm0cn5Wxd77TVwP67FaxS7AD8CHi0QT11y2+vlnf/j\nZN+Bedt3TrYflFzvgte23Jd33B+S49Lvk17J7W+fXG+H/xB4C1i6nvtyRf5rKy/+9Pv4nuQ1t3pq\nW1f8S/7xAq/xR/LKuxRPHIrGk3q91xW5TMy7z3V4Qrh4Ge+zcu/HImXEpekv0awTSnEn/ut+D0md\n8F9et5VZhuG/1NLG4L+OOpVw/rW2cI3E1STJwHc3kGrLl9QpqUJ+Kol9/RJuY1/gM/zXXUPuMLOv\nU9fH4L88u5VwrgF/teQTsBH+ZWbvfleo2X+Br0uI4W78sTswtyH5NbkhXhuW8xWwkaS1Gxlnycp8\nDufhSULu3Ln4a2xFoEeyeT9gEvC6pBVyFzy5EQvXvJXjl/hr5VO8ZrEncKmZ5XeyfsLMXsvbth/+\n2P47L6YX8dqiXEw74wnXFXnn/6WE+DbHayv+YmbTS7tLxSW1ijsD95jZe7ntZvYJXmv147z3sZF6\nbhJjgMXwBL8hBvTGa3XSlyMKHHujFe4fs8j7LOP9qMR7NZQpmnVCg8xsqqRH8U6wS+G/yv6ZoajJ\neddzTQ/LkTStFAsBeDMvppmSPsY/gIHvqp3/iH+4L5N3fucS4lsLeM0W7vhbzEJtz2b2VVIDvVwJ\n58KC6v3GKNT+/WVDMZjZ55L+jTc35IaRHoT/yr8ndeg5wL34F/srwCPALUkS1CTKfA4/MrPZedte\nx5OONYDn8aab9fFEIp/hiUwW9+FJrOG1Ov8rEAsUfp7XAZbFE5v6Ylot+Zv/2p8qqWCzXcpaSVn/\na+C4Uv0fniC+XmDfJPwzYdXk/5z812f6/V6KMVZah9h3y9iX5X7UV35oIpGchFLdDvwVWBkYkfHX\nWLG+GPW2dZdCUme8Hfkr4Cy8SnsO/gv6z1S+83dj70uhL7Jiv84Wa4IY7gCul7SJmb0M7A/8O/1l\nYGZjJK0F7A3sgtcWDJR0jJlVfLKyJnoO2wH/xfs7FHpcsnZw/MDMHivhuELPczu8r1XfIjEVSqRa\noiZ7v+cp9BiXsq8S5YcmEslJKNU9eJX5VqSaA5qJ8F+bT363QVoKT5QeSjbtgP8i29vMnk4dt1aB\n8oolAW8BP5K0mJXWqbXSvsR/Uedbowlu6178+Tww6XS4Ll5jsRAz+wq4CbhJUke8av5cvCNnpe1A\n6c8hwCryuT3SXx7r4c9vrvPyW8AmZvZ4E8Sb1Vt4R9lnrP5hxblmh3VI/XqX1IWGax/ewt83GwP1\nJVGlNld8BszCH998G+B9M1rCSJbWcj9avehzEkpiZjPxSZHOxTuUNrejJaWT6f54jcLDyfX5+Idx\netjw4slx+WZSuJnnLrza97hKBJzBW0BnSRvnNkhaGdin0jdkPuJhJN60cxA+2uG+9DGSls87Zxbe\nxLBE6phlJK0nKd0Ek1U5zyH4j6tjU8e2x0ddfIZ3jAXvL/UDSUflnyypQ5JwNbc78dgXmRpe0mJJ\nDRJ4J9t5+CietIEl3MZ4PEE7KVVeITOT2633+UuaOkcBe0vKNTchaSV89M0YM6uvabYmtJb70RZE\nzUmoz0LVr2Z2S7UCARbHOxDeifch+DX+QfJgsv8ZvObhZi2YIv0QCv8yHAccIOlSfIjsjKScm/Hh\nnYOTOQ/G4MOFdwKuMrNKJWXFqrXvAC4E7k3uw1L4l+9r+KipSvs7cCv+5T8yr4MvwERJT+CP1xfA\nlnhnzvQU9L3xUUaH449fQ7aQdGaB7Y9T3nMIPirnNElr4H0IDgI2AY5K1XzdwoIhxjsCT+NJ7QZ4\nU9YuLEhkmoWZjZZ0DfA7SZvhX5Zz8dqr/fAh4XcnfUsuSY57EE/ENwd2o3DTz3evKzMzSb8G7gde\nks9p8jH+3tnQzH6WHDouOe8KSSPxkTt/LxL6WXin1KclDcWTyaPx9+ZpxWIpcXuh4/aXVChRGGVm\npTR9FbutStyP0MQiOQn1KaXKt9AcHI1Zk6NYecfhczH8Hh/BcBupOVbM7AtJP8eHK56Pf8ndgldp\n58/YORTYFP9CPQmvPn/QzOok/QyfV6IvPnrnczxJSXcCLXc+kkLHLbrR78M+wGA8SXkHn2dkXRZN\nThobA/gX12w8CbqjwP7Lgb3w0Q1L4I/TGcAlBW6zFIY3C25VYN/ZZvZMGc8h+HNzON4xNTdnzoB0\nf5jkS3pvvLbhMLwWahben+UyFu4YWc7z16jjzOzXkl7Aa3r+iNeQvIsneE+njjtT0mw8Sd0BHxm0\nC96cWeh9kr6NUUlCNgg4Ga+ReouFR9HcjSebB7FgrpNccrJQ/GY2UdJ2wAX467JdEk9fM3uhvlhK\n2F7ouKFF9u3IguSsvvKKPfaVuB+hiSlGSIUQQgihltRMnxNJAyS9I5/KeaykLRs4fnFJf5RPdz5H\nPnX14an9uamH52vB1MyxJkIIIYRQ42qiWUfSgXhV7tH43AQDgZGS1jWzqUVO+wfeefEIvKpyZRZN\ntqbhVeK5dsOoJgohhBBqXFnNOsloiTPwaZM/qFgQ0ljgOTM7MbkufDjXEDO7qMDxu+HzbnRLhjoW\nKrMfcJmZLV9ofwghhBBqU1nNOmY2DziVCta4JMP/epBaSCyZKvhRfEroQvYEXgB+K+kD+QqyFytv\nhVugU9LsM1nSvSqwmmcIIYQQakuWPieP4QsuVUoXfGjflLztU/DFmArphq/IuhHe+/5EfAjeValj\nXgOOxEcbHIzf12ckrVKxyEMIIYRQcVlqQEYAf5b0Q3yM/Mz0TjO7vxKBNaAdPpNf39yEOZJOBv4h\nqb+ZfWNmY/HhYST7n8XXSziGBeuJLCRZfGtXfEjfnCa9ByGEEELr0gGf0XqkmX3emIKyJCe5secn\nF9hnFF8HpJip+CQ4K+VtXwn4pMg5HwMf5s3kNwnv+PoDvIPswoGZzZP0IlDfCqu7Uv5quyGEEEJY\n4GC8X2hmZScnZlbR4cdmNlfSOHwWzvvhuw6xO7HwTJRpTwP7SeqYTKkNvlZCHVCwo26yVPYPWbAW\nSyHvAtx6661ssMEGZd6TUIsGDhzIZZddVu0wQoXE89m6xPPZukyaNIlDDjkEKrCSc00MJcZnxLwx\nSVJyQ4k7AjcCSLoAWMXM+iXH345PQXyDpHPxIcUXAdflFtKSdDberPMmvpjaafgS5H+rJ445ABts\nsAHduzfFbOGhuXXu3Dmey1Ykns/WJZ7PVqvR3SIyJSeSegGn4OtTAEwELjazMVnKM7M7k5U2z8Ob\nc14Cdk2tn9AVWDV1/ExJOwNX4GujfI5PuXx2qtjl8Gmau+LTYI8DeprZq1liDCGEEELzKDs5kXQI\nvtBXbk0GgG3xRdkON7NM7UxmNpQiaymY2REFtr2O9xEpVt7JFO4XE0IIIYQalqXm5EzgNDNLNxQO\nSUbLnE0jO8GEEEIIoW3L0rm1G1Bo6fj7gTUbF04IldWnT59qhxAqKJ7P1iWez1BMluTkfXwkTb6f\nJvtCqBnx4de6xPPZusTzGYrJ0qxzKd6MsxnwTLJtW+BwfKbWEEIIIYTMssxzcrWkT4DfAAckmycB\nB5rZfZUMLoQQQghtT1nJiaTF8FqSx83snqYJKYQQQghtWbmrEs8HRuFziIQQQgghVFyWDrGv4CN2\nQgghhBAqLktychZwiaQ9JK0saZn0pdIBhhBCCKFtyTJa5+Hk7/34KsQ5ItuqxCGEEEII38mSnOxY\n8ShCCCGEEBLljtb5HtALuN7MPmiakEIIIYTQlpU7WmcecCoZVzMOIYQQQmhIlg6xj+G1JyGEEEII\nFZelBmQE8GdJPwTGATPTO83s/koEFkIIIYS2KUtyMjT5e3KBfTFaJ4QQQgiNkmVtnSxNQSGEUr31\nFgwdCnV18OMfwy9+UfzY6dPhnHPqL2/AAFh77crGGEIITahmOrZKGgCcAnQFJgDHm9l/6jl+cWAQ\ncHByzkfAeWZ2Y+qY/YHzgDWA14HfmdmIJroLIVTGVVfB1VdDt26wwgr1H/vttzBqVP3H9O1budhC\nCKEZlJycSHoY6GNm05LrvwOGmdlXyfUVgDFmtmG5QUg6ELgUOBp4HhgIjJS0rplNLXLaP4D/A44A\n3gJWJtXBV9I2wO3Ab4GH8CTmXkmbm9nEcmMModmMHg377w8339zwsSusAP/7X9PHFEIIzaicJppd\ngSVS188Alk9d/x6wXsY4BgLXmNnNZvYqcCwwCziy0MGSdgO2A3Y3s8fNbLKZPWdmz6YOOwEYYWaD\nzew1MzsHGA8clzHGEJre11/Diy/C9ttXO5IQQqiacpITNXA9E0ntgR7Av3PbzMyAR4GeRU7bE3gB\n+K2kDyS9JuliSR1Sx/RMykgbWU+ZIVTfM894X5OmTk7q6jwRCiGEGlQLfU664CN8puRtn0Lxmphu\neM3JHGCfpIyr8ZqcXybHdC1SZtfGhxxCExk9Grp2hXXWadrb+clPvJPs3/7WtLcTQggZlFNzYiy8\n0B8FrjeXdkAd0NfMXjCzR/Chzf0kLVH/qSHUsIkTvdZEFamYLG7rreG++2DevKa9nRBCyKCcmhMB\nN0r6JrneARgmKTcJW9akYCowH1gpb/tKwCdFzvkY+NDMZqS2TUpi/AHeQfaTMsv8zsCBA+ncufNC\n2/r06UOfPn0aOjWExrnnHpg9u+lvp3dvuPBCePpp6BUTPocQyjN8+HCGDx++0LZp06ZVrHx5944S\nDpRuKOU4Mzui7CCkscBzZnZicl3AZGCImV1c4PijgMuAFc1sVrJtb+CfQCcz+0bSHcCSZrZ36ryn\ngQlm1r9IHN2BcePGjaN79+7l3o0QWo66OlhtNdhvP/jLX6odTQihFRg/fjw9evQA6GFm4xtTVsk1\nJ1mSjjIMxmtlxrFgKHFH4EYASRcAq5hZv+T424GzgBsknYsPKb4IuM7McjU7lwNPSDoZH0rcB+94\ne1QT3o8QWoZ27WCffbym5rLLmr4ZKYQQylATs72a2Z34BGznAS8CmwC7mtlnySFdgVVTx88EdgaW\nBf4D3ALcB5yYOuZZoC8+d8pLwL7A3jHHSQiJ3r1h8mQY36gfOCGEUHG1MFoHADMbyoJ1e/L3LVJr\nY2av43Ov1FfmXcBdFQkwhNZm++1h+eXh7rvBq2JDCKEm1ETNSQihCtq3hz33hOeeq3YkIYSwkJqp\nOQkhVMGQIbD00tWOIoQQFhI1JyHUgrlzq3O7yywTnWFDCDUnU82JpHWAHYEVyUtwzOy8CsQVQtsx\nfz6ssorPO3JkweWkQgihTSk7OUnmGLkanzztExaeJdbwETchhFJNmABTp8K661Y7khBCqAlZak7O\nAs40swsrHUwIbdLo0bDEErDlltWOJIQQakKWPifLAf+odCAhtFmjR/taN0vEslAhhADZkpN/ALtU\nOpAQ2iQzT062377akYQQQs3I0qzzJnC+pK2B/wILDTMwsyGVCCyENmHSJPj889pYfG/mTI9ltdWq\nHUkIoY3LkpwcDcwAeiWXNAMiOQmhVKNHw/e+58061bbnnj7nyX33VTuSEEIbV3ZyYmZrNkUgIbRJ\no0fDFlvAUktVOxLYfXc4+2yvQamFeEIIbVajJmFTolLBhNDmXHEFXHddtaNwvXvDnDnwyCPVjiSE\n0MZlSk4kHSbpv8BsYLaklyUdWtnQQmgDVlgBNtyw2lG4tdaCTTaBe+6pdiQhhDau7ORE0sn4JGwP\nAwckl0eAYZIGVja8EEKz6t0bHnwQvv222pGEENqwLDUnxwO/NrPfmtn9yeU0oD9wQmXDCyE0q969\nYdo0ePzxakcSQmjDsiQnKwPPFNj+TLIvhNBSbbIJrLlmNO2EEKoqS3LyJt6Uk+9A4I3GhRNCqCoJ\n9t0XPvqo2pGEUj35pNd2hdCKZElOBgHnSXpE0tnJ5ZFk+zlZA5E0QNI7kmZLGiup6EIjknpJqsu7\nzJe0YuqYfqntuWNmZY0vhDbjoovg/vurHUVoyPTpcOihsMMOcNRR1Y4mhIoqOzkxs7uArfBVifdJ\nLlOBH5lZprpgSQcCl+IJzubABGCkpC71hQKsA3RNLiub2ad5x0xL7e8KrJ4lvhDalHaNmmEgNIcX\nXoDNN4d774Ujj4QHHoDJk6sdVQgVk+lTyMzGmdkhZtYjuRxiZi82Io6BwDVmdrOZvQocC8wCjmzg\nvM/M7NPcpXColj7ms0bEGELl7LUX3HprtaMILU1dHVx6KWyzDSy/PLz0Evztb/D667HsQGhVSkpO\nJC2T/r++S7kBSGoP9AD+ndtmZgY8CvSs71TgJUkfSRolaZsCx3SS9K6kyZLulVQjE0qENu2zz/yX\nbtRQhHKdcAKccgoMHAhPPeVz00iw6qrVjiyEiip1+vovJeWaTb7Cm1TyKdm+WJkxdEnOmZK3fQqw\nXpFzPgaOAV4AlgCOAp6Q9CMzeyk55jW85uVloDNwKvCMpA3NLHr7heoZM8b/brdddeMILc9RR3mt\n2y6xMHxo3UpNTn4CfJH8v2MTxVIyM3sdeD21aayktfDmoX7JMWOBsbkDJD0LTMKTmkHNF20IeUaP\n9uG68Ws3lGvTTasdQQjNoqTkxMyeTF19B3g/aXr5TrLGTpZP26nAfGClvO0rAZ+UUc7zwLbFdprZ\nPEkvAms3VNDAgQPp3LnzQtv69OlDnz59yggnhCJGj4btt692FCFUz9y50L59taMIjTB8+HCGDx++\n0LZpFRzSrrwco+ETpPkUGBkjaQXgUzMrt1kHSWOB58zsxOS6gMnAEDO7uMQyRgFfm9l+Rfa3A/4H\nPGRmpxQ5pjswbty4cXTv3r3cuxFCw6ZNg+WW806MRzbU37sGvP8+TJ3qI0NCqJSDDoIVV4QhQ6od\nSaig8ePH06NHD4AeZja+MWWV2qyTlutbkq8TMCdjHIOBGyWNw2tABgIdgRsBJF0ArGJm/ZLrJ+I1\nOP8DOuB9TnYEdv4uSOlsvFnnTWBZ4DRgNeBvGWMMofGefhrMoFevakdSmgED4IsvvPNlaHrTp3uf\npN13r0xZSy/d+HIq7Y474O9/978hFFFyciJpcPKvAefnTWi2GD73yUuLnFgCM7szmdPkPLw55yVg\n19TQ364s3GS0OD4vyir4kOOXgZ3MbHTqmOWAa5NzvwTGAT2TocohVMfo0bDKKtCtW7UjKc2++3oN\nz5QpsFJ+y2uoqBde8BqFL7+Ed96BZcoe/LjADTfAmWfCpEmQ10RdVR9+CP37+/088MBqRxNqWMnN\nOpJyK4H1Ap4F0suWfgu8C1xiZi12Cvto1glNbvx4/+L5xS+qHUlpPv/ck5KhQ+Hoo6sdzQJz58Kn\nhaY2Sllxxfr7NXz9tdcu5HTqVJ0v8ro6GDwYTj8dNtsMhg+HtRvsGle/Dz+E9dbz52zw4IaPbw5m\n8LOfwcsvwyuv+DwtoVWpSrOOme0IIOkG4EQz+7oxNxxCm9S9u19aihVW8M67d99dW8nJ66/DxhvX\nf8wrr8BGGxXfP3gw/P73C2/beGO/v7nLyk28luknn0C/fjBqFJx6KvzhD7D44o0v9/vf95qTc86B\nX/0KNqyBKZ6uuQZGjoQRIwonJpMm+RxA0Vk8kK1DbGdgMTP7Im/78sC8lpy0RM1JCAVceSWcfLJ/\ncdRKE8H06Q33g/nxj+vvc/HGG/Dmmwuuf/qpl/nkk75vhx3g8ceLnt5oI0fCYYf5JGo331z5uUu+\n+caTrdVXh3/9y2+nWt54w2uFDjsMrr668DH77AMvvuhJSseOzRtfqIhK1pxkSU5GAPeZ2bC87ccC\ne5lZBXpyVUckJyEU8MEHPifLbbdB377VjqZ5fPyxdwSur+Yl99mZ5Ut/8mSf3XWnneCmm5quP89D\nD8Eee8A//1ndpsTdd/farpde8uazQt580x/v3/1u0Rqt0CJUMjnJMn/2VkChnxNPJPtCCK3JD34A\nW24J92Ra17NlWnnl+hMT8F/4XbvC/vvDFVfAhAkwf35p5a+2mo/Kefjhpu1o/POf++Xkk2FWFRdl\nv+YaT5CKJSbg/Wx+8xu48ELvlxXatCzJyRL4aJl87YElGxdOCKEm9e0LSyzR/Lc7dWrz32apOnXy\n6eSnTPH1bjbbzPvo7LEHXHQRjB3rnV2L2Xrr5llf6S9/8b4tF17Y9LdVzKqr+uPTkDPOgC5dPJkK\nbVqWeU6eB44Gjs/bfiw+XDekzZ8P//0vPPusv0H32KPaEdW+J5/0x6uYFVdseAKza67xCc8OPtg7\nB4bGOemk5r/Np57yfhiPPw5b1WCl7GqreQdWgDlz4Pnn/bU7erQ3Syy5ZMMjiprD2mvDX//qtV+1\nrlMnuPhiT4ZHjYo1hNqwLH1OtsVXDP4PC1YS3gnYEtjFzMZUNMJmVJE+J3Pnwrhx/gE1erR/wE6b\n5r+QevTwD7C2aPp0eOYZf0z6968/YfjjH+Gyy4rv33hjeOKJ+m/vRz/y9u0DDoBbb80UcqiiGTN8\nHZmuXf01s1jZE09X19y58O67sM461Y6k5THzzshTpviw40qMXgrNoqp9TszsaaAn8D5wALAnPgvr\nJi05MamI+++HZZeFnj39l9O333p175NPwsyZ8OijDZcxefKCjnYt2eefw333eRvyllv647Lbbj5t\n+1tv1X/umWd6dX6xS0OJCXgSePHFPgvl5MkVuUuNcsEF8OCD1Y6i5TjlFP9yuvnmlpeYgM+vEolJ\nNpJPa//22/7ZGdqksmtOWrNG15y8/TbcdZeP0+/evfyFrd57D9ZYw5t/0nMtrLdedYcBlsPMk7Pn\nnvPrq67qU7Xn7su66zbffZkxw6veDz+8uhNRzZvn8zqccYaPRAj1GzHCR3cMGwbHHFPtaEK1fPSR\nz6YcWoxmn4RN0jK5+Usk1Tunckue56Sgzz/3ppnRo30io1/+svix3br5REpZ/d//ee1Lrt36jju8\nz8qKKy74cv/lL2t7DgDJRy8MGODxrr569WLp1MmbkC6/HM4+2xfcq4YJE7xZKyaXatjnn/trfLfd\namvSt1BUnkmqAAAcQElEQVS6//2v4ZFOpYjEpE0rtVnnS0krJv9/ha9Vk3/JbW/5Ro3yL9cf/tB7\nju+zD/zjHz4JVVPq2BH23BMuucSbJb780idqyo0IOPfc6iwzbgavvgrXXuuzTdY3AgG8KefQQ6ub\nmOQcf7y3/w8b1vCxTWX0aOjQAbbYonoxtBQDBnjn0uuuazm1hWGBESO8T1g0x4RGKqlZR1Iv4Gkz\nm5f8X5SZtdhX5XfNOkD3dddduGmlFr5o582D7zVQ2fXzn3tHvGKOOw5+/evi+197zRd7S/vsM78s\ntph36n3gAa/NaSmOPtpjfvfd6gyH7d3bO0U/9ljz33ZLMmECbL65ry0Ti8K1PJ9/7j/oNt3U52+J\n5LLNafZmnXTC0ZKTj5KNHFmbQ9gaSkwAtt3W+3UUs9Za9Z+/9NKL3vdllvFye/aszSXYG3LaaT6V\neXPMKZGvrs5rTo7PH3nfgr30ktfk7bprZcvddFNvEthgg8qWGxY1Z453PN9vP39fV0LUeoUKKrXP\nySalFmhmL2cPp0Z06VLtCLI744zGnb/KKvUP422J1l678au8ZjVxok+D3pr6mwwZ4sPCX3218mVH\nYtI82rf3UW9PPumd1xs7IuqOO+Dvf/e/0VckVECpk7C9BBig5G99WuC4vxCayOjRXuO19dbVjqRy\n9t0XbrjBp2+PZKJlWmwxX9Bxm23g+uu9X1tWH37oHc8POqjpm+O++sqnJQitXqn13GsC3ZK/vwDe\nAfoDmyeX/sBbyb4QQk5uBFctj7Aq109/6iOh7r672pGExujZ01cJPuMM73yfhZmPrurQAa66qrLx\n5Xv6aV/n6eWWXzkfGlZScmJm7+UuwBnACWZ2jZm9nFyuAU4Czm7KYENocXbbDf70p2pHUVkdOsDP\nfta2FgJsrS68EL75Bs45J9v5r77qScP11/tcPk1pyy09OTn++NYxUWWoV5Yegj/Ea07yvQNsmDUQ\nSQMkvSNptqSxkoouBCGpl6S6vMv81HDn3HH7S5qUlDlB0s+yxhdCSOnd28e11cLsuyG7rl1h0CAY\nOjRbjcQGG/gouN12q3hoi1h8ce/vNHq0928JrVqW5GQScLqk7xY8SP4/PdlXNkkHApcCg/BmognA\nSEn19Uw1YB2ga3JZ2cy+W2VL0jbA7cBfgc2A+4B7JWVOoEIIid13906V996b7fyJE+H11ysbU8jm\n+ON9hN8JJ2SrkVhhhcrHVMwuu8Dee/vyBjNmNN/thmaXJTk5FtgV+EDSo5IeBT5Ith2bMY6BwDVm\ndrOZvZqUMwtoYOlZPjOzT3OXvH0nACPMbLCZvWZm5wDjgeMyxhhai7o6Xyk6ZNe5s/c9ydK08803\n3nmyX7+onq8Fiy/usyjPm+cdTmvd4MG+xtYFF1Q7ktCEsiz89zzeOfYs4OXkcibQLdlXFkntgR4s\nWOEY85nhHsUXGCx6KvCSpI8kjUpqStJ6JmWkjWygzNAWXH21t19PmVLtSFq2fv18NtByE4xBg7yv\nwjXXxHwYtWKXXWDMmOot8VCObt187qJLLoE336x2NKGJZJqVysxmmtm1ZnZycvmrmc3MGEMXfPhx\n/jfFFLy5ppCPgWPw0UH74iskPyFps9QxXcssM7QVffv68N4rr6x2JC3bgQfCFVeUl2A89RRcdBGc\nfz5sUvL0SaE5tKRE8Xe/8/4yAwdWO5LQRDIlJ5IOlfRUUmuxerJtoKS9KxteYWb2epIQvWhmY83s\nl8AzePNQCPVbbjmf1+Gqq6LdujnNmOG1LT17ep+BELLq2NFnoo1VvlutUidh+46kXwPnAX/Bm3Zy\nk659iQ8nvq/MIqcC84GV8ravBHxSRjnPA9umrn+StcyBAwfSuXPnhbb16dOHPn36lBFOqGknneS/\n+q+/3jsCVtpDD/kvO19nIoAnJFOm+MKajZ2RNDS/sWNh9mzYccdqR+J++tNqR9CmDR8+nOHDhy+0\nbdq0aRUrv6SF/xY6QZoInGFm90qaDmxqZm9L2hh4wszKnvtd0ljgOTM7MbkuYDIwxMwuLrGMUcDX\nZrZfcv0OYEkz2zt1zNPABDPrX6QMX/hv3Di6d+9e7t0ILc0hh/gcDW+8Udq6ReVYf33/EL/66sqW\n21KNGOEjfIYNg2OOqXY0oVwzZvjaR6us4kN5W1ITUGg2lVz4L0uzzprAiwW2fwMslTGOwcBRkg6T\ntD4wDOgI3Agg6QJJN+UOlnSipL0krSVpI0l/AXYE0p0ILgd2k3SypPUknYt3vI2OBsGdeqrP0fDP\nf1a23ClTfHXnXvUu4N22PP+8JydHH13tSEIWuVqvG2+MxCQ0iyw/F9/B5w15L2/7bmSc58TM7kzm\nNDkPb3p5CdjVzD5LDukKrJo6ZXF8XpRV8CHHLwM7mdnoVJnPSuoL/DG5vAHsbWYTs8QYWqFNN4Wd\nd/YOmgceWLkP3TFj/O9221WmvNZg0CAfqhpfbC3HrFk+0d6MGT6yatiwhlc1D6FCsiQng4GrJHXA\nh/P+SFIffBK2X2UNxMyGAkOL7Dsi7/rFQIPNPWZ2F3BX1phCG3Dmmb4669y5Pt9DJYwe7R/i3/9+\nZcprLSrddBaa1oUXwqWXwtJL+wywUesVmlGWeU7+BvwW+APe9HI78GvgRDO7o7LhhdDEevXyX/WV\nSkzAk5Ptt69ceS3BY495lX9oPU4+GZZayifNu+66qPWqBcceC126FL8cfHDDZfznP00fZwWU9VMm\n6ai6KnCXmd0mqSPQqcDsrCG0TV9+6WuUnHRStSNpXo884snJoYfGSJzWonNnGDnS/19llerGUqqL\nL/bp9I9saHLxGjRypNe4rr128WN+/nNYY43i++s7N6eFPJfl1rMKeBPYCHjDzGbhfT5CCOCTjJm1\nvZqT3r39i+GZZ6KvTWuy2WYNH1NLXn3Vl1TYay+vSWgJvv3Wm5cvucRrqy69tPixe+7pl8ZoIc3N\nZTXrmFkd3rG0GVd6CqEFmTPHE5M116x2JM1rq61g5ZWzrbUTQqVccIGvnXXWWdWOpDRvvAHbbONr\nG11yiSf4Acg2lPh3wMXJvCYhhLT994cnn2x77fPt2sE++3hyMnCgD9EOobmtuCL8/vdw7bXwYqEZ\nL2rILbdA9+4wbZrXOP7mN/4+CkC25ORm4EfABEmzJX2RvlQ4vhBCS9G7tyclQ4bAhx9WO5rQVvXv\nDxtuCMcd58PXa8306XDYYX7Zd18YPx622KLaUdWcLGP7BgKxznlovb78smWszlprdtjBm7MOOwy2\n3bbBw0NoEu3b+6KeP/kJrLeer79z+OG+vRZceqnXMN5yi89SHQoqe/r61iymrw8MGQJ//jO88w4s\nsUS1o2l55s6tnS+B0La99BL86U/+d+LE2plnZ/Zs+Phj6Nat2pFUXFWmr5fUTtJpkp6W9B9Jf5a0\nZGNuPISas9tu8MkncOut1Y6kZYrEJNSKzTaDO+/0vie1kpgALLlkq0xMKq2cPidnAn8CpgMfAicC\nVzVFUCFUzbrrwt57e6/5urpqRxNCaKylsi75FqqpnOTkMKC/me1mZvsAewIHS4ruxaF1Oe00X7jv\nwQerHUkIoam98gpMnVrtKEKechKL1YARuStm9ijeMbZlTDcXQql69vQOneXMOfDGG/BFDFYLocXp\n399nXT31VG/Sbaw33oATToD58xtfVhtWTnLyPWBO3ra5QDQyh9bn1FN9ttdnny3t+AEDfOr2EELL\ncvfdPjfPtdd6knL88TB5craycnOXjBjhnV5DZuUkJwJulHR37gJ0AIblbQuh5dtzTx+GWErtydy5\nPolSW5uyPoTWoEsXOP98eO89n1n29tt9jZqjjoK33iqtjOnT/cdJeu6SH/ygaeNu5cpJTm4CPgWm\npS63Ah/lbQuh5WvXDk4/3ec7aahj7IsvwsyZvsJxCKFlWnZZT07ee8+HID/wAGy5pS9JUZ8XXoDN\nN4d77/Wak5tugqWXbp6YW7GSx1eZ2RFNGUgINadfP780ZPRo6NjRq3NDCC1bp05wyineVDthAnTo\nUPi4ujoYPNh/xGy2ma/MXcqqwKEkMdImhMYaPdo70S6+eLUjCSFUypJLwtZbF98/cyYMG+b9VZ5+\nOhKTCquhmWlCaIHq6mDMGP+ACiG0HUsv7TUrMY9Kk6iZmhNJAyS9kywmOFbSliWet62kuZLG523v\nJ6lO0vzkb52kWU0TfWizXnkFvvoqOsOG0BZFYtJkaiI5kXQgcCkwCNgcmACMlNSlgfM64x11Hy1y\nyDSga+qyeqViDgHwNTs6doSttqp2JCGE0GrURHKCr3R8jZndbGavAscCs4AjGzhvGHAbMLbIfjOz\nz8zs0+TyWeVCDgE46CD4/HNvnw4hhFARJfU5kbRXqQWa2f3lBCCpPdADX7cnV4ZJehToWc95RwBr\nAgcDZxc5rJOkd/EkbDxwhplNLCe+EBZSV+fDjNOK9eYPIYSQSakdYu8t8TgDFiszhi7JOVPytk8B\n1it0gqR18GTmx2ZWJ6nQYa/hNS8vA52BU4FnJG1oZh+VGWMIMHQo3Habzxxb+DUXQgihAkpKTsys\nVpp/SBYavA0YZGa56fsW+aYws7GkmnskPQtMAo7B+7YUNXDgQDp37rzQtj59+tCnT5/GBR9atnXX\n9Zlg//1v+OlPqx1NCCFUzfDhwxk+fPhC26ZNq9w8rDKz7CdLHcysgenzGiyjPd6/5BfpJiFJNwKd\nzax33vGdgS+BeSxIStol/88DdjGzJ4rc1p3AXDM7uMj+7sC4cePG0T0m1Ar5zHyitRVXhJEjqx1N\nCCHUlPHjx9OjRw+AHmY2vqHj61N2jYikxSSdLelDYIakbsn28yX9stzyzGwuMA7YKXUbSq4/U+CU\nr4GNgc2ATZPLMODV5P/nisTdDvghEKsxhWwkXxBw1Cif3yCEEEKTyNJccyZwOHAa8G1q+yvArzLG\nMRg4StJhktbHk42OwI0Aki6QdBN4Z1kzm5i+4Gv+zDGzSWY2OznnbEk7S1pT0uZ4U9BqwN8yxhgC\n7L8/rL56aQsChhBCyCRLcnIYcLSZ3QbMT22fAKyfJQgzuxM4BTgPeBHYBNg1NfS3K7BqmcUuB1wL\nTAQeAjoBPZOhyiFk0769zwZ7222+QFgIIYSKK7vPiaTZwPpm9p6k6cCmZva2pA2B582sU1ME2hyi\nz0koyYwZC1YdbUSfrRBCaE0q2ecky9o6E4HtgPyfjfvhtR4htG6dOsE//wmLlTtqPoQQQimyJCfn\nATdJ+j7eLLSvpPXw5p49KhlcCDXrF7+odgQhhNBqld3nxMzuA/YEfgrMxJOVDYA9zexflQ0vhBBC\nCG1NlpoTzGwMsHOFYwkhhBBCyJacAEjaAq8xAZhoZuMqE1IIIYQQ2rKykxNJPwCGA9sCXyWbl5X0\nDHCQmX1QwfhCCCGE0MZkmefkb0B7YAMzW97MlsdrUNoRE5yFEEIIoZGyNOv0ArYxs9dyG8zsNUnH\nA2MqFlkIIYQQ2qQsNSfv4zUn+RYDPmpcOCGEEEJo67IkJ6cCVyQdYoHvOsdejk9BH0IIIYSQWUnN\nOpK+BNLzdC8FPCdpXqqcecD1wL0VjTCEEEIIbUqpfU5OatIoQgghhBASJSUnZnZTUwcSQgghhACN\nmIQNQFIHYPH0NjP7ulERhRBCCKFNK7tDrKSlJF0p6VN8bZ0v8y4hhBBCCJllGa1zEfAT4NfAN8Cv\ngEH4MOLDKhdaCCGEENqiLM06ewKHmdkTkm4AxpjZm5LeAw4GbqtohCGEEEJoU7LUnCwPvJ38/3Vy\nHeApYPusgUgaIOkdSbMljZW0ZYnnbStprqTxBfbtL2lSUuYEST/LGl9omYYPH17tEEIFxfPZusTz\nGYrJkpy8DayZ/P8qcEDy/54sWAiwLJIOBC7Fm4c2ByYAIyV1aeC8zsBNwKMF9m0D3A78FdgMuA+4\nV9KGWWIMLVN8+LUu8Xy2LvF8hmKyJCc3AJsm//8ZGCBpDnAZcHHGOAYC15jZzWb2KnAsMAs4soHz\nhuHNSGML7DsBGGFmg83sNTM7BxgPHJcxxhBCCCE0g7L7nJjZZan/H5W0PtADeNPMXi63PEntk/P/\nlCrXJD0K9KznvCPwGpyDgbMLHNITr41JGwnsXW6MIYQQQmg+WWpOFmJm75nZ3cAXkq7NUEQXfNHA\nKXnbpwBdC50gaR08mTnYzOqKlNu1nDJDCCGEUBsaNQlbnhWAXwJHV7DMRUhqhzflDDKzt3KbK1R8\nB4BJkyZVqLhQbdOmTWP8+EX6SocWKp7P1iWez9Yl9d3ZobFlVTI5yWoqMB9YKW/7SsAnBY5fGtgC\n2EzSVcm2doAkfQvsYmZPJOeWWmbOGgCHHHJIGeGHWtejR49qhxAqKJ7P1iWez1ZpDeCZxhRQ9eTE\nzOZKGgfsBNwPnmUk14cUOOVrYOO8bQOAHYFfAO8m254tUMbOyfZiRuJ9WN4F5pRxN0IIIYS2rgOe\nmIxsbEFVT04Sg4EbkyTleXz0TkfgRgBJFwCrmFk/MzNgYvrkZCr9OWaWbo+5HHhC0snAQ0AfvOPt\nUcWCMLPP8eHHIYQQQihfo2pMckpOTiTd3cAhy2YNwszuTOY0OQ9venkJ2NXMPksO6QqsWmaZz0rq\nC/wxubwB7G1mE+s/M4QQQgjVJK+IKOFAn6q+QWZ2RKMiCiGEEEKbVnJyEkIIIYTQHBo9z0lrkXVt\nn1BbJA2SVJd3iaa8FkTSdpLul/Rh8vztVeCY8yR9JGmWpH9JWrsasYaGNfR8SrqhwHv24WrFG+on\n6XRJz0v6WtIUSfdIWrfAcY16j0ZyQva1fULNegXvu9Q1ufy4uuGEMi2F9zvrDyxStSvpt/gyFEcD\nPwJm4u/XxZszyFCyep/PxAgWfs/2aZ7QQgbbAVcAWwE/BdoDoyQtmTugEu/RaNYBJI0FnjOzE5Pr\nAt4HhpjZRVUNLpRF0iC843P3ascSGk9SHbCPmd2f2vYRcHFuKQ1Jy+CzP/czszurE2koRZHn8wag\ns5ntW73IQlbJj/hPge3N7KlkW6Pfo22+5iS1ts+/c9uS4cr1ru0Tato6SRXyW5JulVTWSK9QuySt\nif+yTr9fvwaeI96vLdkOSRPBq5KGSlq+2gGFki2L14h9AZV7j7b55IQMa/uEmjYWOBzYFV/dek1g\ntKSlqhlUqJiu+AdhvF9bjxHAYcBPgNOAXsDDSQ12qGHJc/QX4KnUNB0VeY/WyiRsIVSEmaVnJnxF\n0vPAe8ABQEnD4UMIzSevmv9/kv4LvAXsADxelaBCqYYCGwLbVrrgqDkpf22f0IKY2TTgdSBGc7QO\nn+ALfcb7tZUys3fwz+V4z9YwSVcCuwM7mNnHqV0VeY+2+eTEzOYCubV9gIXW9qnINLyheiR1wj/k\nPm7o2FD7ki+uT1j4/boMPnIg3q+tgKQf4Kvcx3u2RiWJyd7AjmY2Ob2vUu/RaNZx9a7tE1oOSRcD\nD+BNOd8Hfg/MBYZXM65QuqR/0Nr4ry+AbpI2Bb4ws/fxNu6zJL2JL9J5PvABcF8Vwg0NqO/5TC6D\ngLvwL7S1gQvx2s5GLx4XKk/SUHyo917ATEm5GpJpZpZbMLfR79EYSpyQ1B/vjJVb2+d4M3uhulGF\nckkajo/DXwH4DHgKODPJ5kMLIKkX3tcg/8PpJjM7MjnmXHwOhWWBMcAAM3uzOeMMpanv+cTnPrkX\n2Ax/Lj/Ck5JzUmurhRqSDAcvlDgcYWY3p447l0a8RyM5CSGEEEJNafN9TkIIIYRQWyI5CSGEEEJN\nieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CaENkPS4pMFlHL+6pDpJmyTXeyXXl2m6KIvGcoOku5v7drOSNEjSi9WOI4SWLJKTEFogSTcm\nycLQAvuuSvZdn9rcGzi7jJuYDHQFXklta/RaF+UmSS1YrAsSQiNEchJCy2R4AnGQpCVyG5P/++Cr\nMi842OwrM5tZcuHuUzOrq1TAoXEkxSryoc2I5CSElutF4H1g39S2ffHEZKFmhfwaC0nvSDpd0nWS\nvpb0nqSjUvsXatZJ+bGkCZJmS3pW0kapc5aXdLukDyTNlPSypINS+28AegEnJmXPl7Rasm8jSQ9I\nmpbE86SkNfPuw28kfSRpqqQrJS1W7IHJNa1IOiS5r19JGi5pqbzH4IS8816UdE7qep2ko5PYZkqa\nKGlrSWslj+kMSU/nx5qce7Skycl5f5e0dN7+XyXlzU7+/rrA43+ApCckzQL6Fru/IbQ2kZyE0HIZ\ncD1wZGrbkcANgEo4/2TgP/hy9UOBqyWtk1d+moCLgIHAFsBnwP2pJKED8ALwM2Aj4BrgZklbJPtP\nBJ4F/gqsBKwMvC9pFeBJYDawA7B5cky6puAnQLdk/2HA4cmlPmsBewO7Az/HE6PfNXBOIWcBNwKb\nApOA24FhwB+BHvjjcmXeOesA+ye3uyt+n75rgpN0MHAucDqwPnAGcJ6kQ/PKuQC4DNgAGJkh9hBa\npKgmDKFluw34s6RV8R8b2wAHAjuWcO5DZjYs+f9CSQOT895IthVKcM41s8cAJPUDPsD7s/zTzD4C\n0v1JrpK0G3AA8IKZfS3pW2CWmX2WO0jSccBXQB8zm59sfivvdr8AjjMzA16X9BCwE3BdPfdPQD8z\nm5Xczi3JOeX0vQG43szuSsq4CE+wfm9mjybbLseTxLQlgEPN7JPkmOOBhyT9xsw+xROT35jZfcnx\n7yW1UMcCt6TKuSx1TAhtRiQnIbRgZjZV0oPAEfiX8UNm9oVUSsUJ/827/gmwYn03B4xN3faXkl7D\nf9UjqR1wJl5j8H1g8eTSUF+XTYExqcSkkP8liUnOx8DGDZT7bi4xSZ1T3/0rJv04TUn+vpK3rYOk\nTmY2I9k2OZeYJJ7Fk8f1JM3Aa3Wuk/S31DGL4Ula2rgM8YbQ4kVyEkLLdwPerGBA/zLOm5t33Whc\nU+9pwPF4880reFJyOZ6g1Gd2CWVnibWhc+pYtHaofQPlWD3bSn3sOiV/fwU8n7cvP0EruRNzCK1J\n9DkJoeV7BE8AvgeMasLbEbD1d1ek5YB1gYnJpm2A+8xsuJn9F3gn2Z/2LV5DkPYysF19HVybyGd4\nvxcAkjlcFunYWkApw4RXk9Q1db0nnni8mjTrfASsZWZv513So6xiOHJosyI5CaGFS4b7rg9slNf0\n0RTOkfQTSRvjnUQ/A3J9It4AdpbUU9IGeIfYlfLOfxfYKhmNskKy7UpgGeDvknpIWjsZZbMOTesx\n4FBJP5b0w+T+zCvhvEJtZvnbvgFukrSJpO3wGqS/p/raDAJOl3S8pHUkbSzpcEknNXA7IbQJkZyE\n0AqY2YxUf4eChzRwvZRjDB/tcjk+yuf/gD3NLPeF/gdgPF6T8xjex+OevDIuwWsQJgKfSlrNzL7A\nR+MsBTyBj/j5FYs2y1TaBfgooQeSyz0s2hG3lMep0LY3gLuBh/HH4yVgwHcHm12H38cj8JqjJ4B+\neG1TfbcTQpugpv+hFUIIIYRQuqg5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGE\nEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkII\nIYRQU/4fIXIuPgDsW8EAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -740,7 +772,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Average error: 47.48%\n" + "Average error: 49.00%\n" ] } ], @@ -847,9 +879,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucHGWZ9//PNxxMAoQhQYITYCYcdgg8SERg9eGQcBBB\nNLA8K2AUM8Aui2TRXXUhcdTA/pgNsKuyaljNLpIBiRB05eAiJAGGw4rESJBDwhgjaULGjJBIIIZD\nQq7fH1U9dIaZ6erprunqe6736zWvVFXfXX1d05O+uu676i6ZGc4551x/hlU7AOecc9nnxcI551xR\nXiycc84V5cXCOedcUV4snHPOFeXFwjnnXFFeLFzJJP2HpJYK7WtfSa9KUrz+oKQLKrHveH/3SDqv\nUvsr4XWvkvSSpM5BeK3nJZ04wOf2+fvu772RNFXSvf3s91hJKwYSk8smLxZuO5JWS9osaaOkDZIe\nlfR3+Q8MADP7nJm1JthX0Q8xM1tjZqOsAhf8SJol6aYe+/+Ymd1c7r5LjGNf4IvAwWZW38vjkyS9\nHX8Qb5S0QlLzYMaYRH/vjZnNN7NT8+uStknav+DxR81swmDF6tLnxcL1ZMDpZrY70ABcDVwO3FDp\nF5K0Q6X3mRENwMtmtr6fNmvjD+LdgRnAf0o6uGejGvod+dW9gfNi4XojADN7zcx+BpwDTJN0CICk\nGyX9c7w8RtLdkv4kab2kh+LtNwH7AXfH36C/LKkh/gZ6gaQccH/BtsK/xQMlPR5/6/6ppLp4n5Mk\nrdku0PjoRdJHga8A50h6TdKy+PHCrhNJ+mp89LRO0jxJo+LH8nF8VlJO0h8lfaXPX5A0StJNcbvn\n891ykk4CFgL1cd4/KPbLNrM7gT8Bh/T2O4r3O0XSM/HR3gO9FJajJT0bvwc3SNo5fl5d/P78MX7s\nbknjejy3r993b+9NPv9pkh6Jlx8i+pt5Ks75kz3fK0nvk/TjOI5Vki4teOwoSb+KX/8Pkv6t2O/M\nDT4vFq4oM/sV8CJwXC8PfwlYA4wB9iL6wMbMPgu8AHw8/gZd+AFwPHAw8NH8S/TY53lAM7A38Dbw\nncJw+ojxPuBfgNvMbDcz+0Avzc4HPgtMAvYHdgO+26PNMcBBwMnA1yU19fZ68fN2AxqBycBnJZ1v\nZvcDpwGdcd79jr/EBeyvgN2Bpwse6v4dSToImA98Hngv8HOiIrxjQfupwEeAA4Am4Kvx9mHAD4B9\niYr35l5yLvn3XfiYmU2K1w+Lc7698PG4C/NuYBnwPuAk4AuSPhK3+3fguvgo6wBgQT+v6arEi4VL\nqhMY3cv2LUQfAOPN7G0z+98ej6vHugGzzOx1M3uzj9e62cxWmNnrwNeATxaOmZRhKvBNM8uZ2WZg\nJnBuwTdnA64ws7fM7CngN8DhPXcStz8HmGFmm80sB3yD6EM3qXGSNgAvEeX4GTNbWRBH4e/oHOBn\nZvaAmb0N/BswAvi/Bfv7jpl1mtkrQCvwKQAz22BmPzWzN83sz8BsokJUqOfv++wB/r77es7RwJ5m\n1hr/jawG/gs4N358C9HRzZj497lkAK/tUubFwiU1DtjQy/Z/BVYBCyX9TtLlCfb1YpHHC7uacsBO\nwJ6Jouxffby/wn3vCIwt2NZVsLwZ2LWX/ewZP++FHvvq2b3Tn7VmNtrM9jSzIwq+jecV/o62izse\ncF7T4/UK2+fi5yBphKTvx11vrwAPAXU9ikFav++8/YiLY/zzJ6JCvVf8+AVER0PPxd1hp1fwtV2F\neLFwRUk6iujD55Gej5nZJjP7spkdAEwBvijphPzDfeyy2GDovgXLDUTfPF8G/gyMLIhrB6JumaT7\n7Yz313PfXb0379PL8fN67mttifvpT2EuPeOG6Hf0Yo/1wljyp+x+mahb7Sgzq+Odowr189y3iHKs\nlDXA7+PiONrM9jCz3c3sEwBmtsrMpprZe4FrgR9LGlHB13cV4MXC9UnSbpI+DvyIqKtieS9tTpd0\nQLz6GrCVqN8bog/h/Xs+pbeX6rH+GUkHSxoJXAncHn+b/i0wXNJpcX/9V4GdC57XBTT204XyI+Af\nJTVK2pWou+ZWM9vWT2zvErdfALRK2lVSA/CPQKVO0e0ZxwLgdEknSNpR0peBN4DHCtpMlzRO0mii\ncaNb4+27Aq8Dr8aPXdHL6/X1++4tlr6s493vdd4S4DVJl0kaLmkHSYdKOhJA0qcl5Y9kNhIVym19\n7MtViRcL15u7JW0k6maZSdRH3tdA7UHAYkmvAf8LzDGzh+PHZgNfi7sevhhv6+3bv/VYvhloI/p2\nvDPwBQAzexW4hOg03heJilPht+vbiT7c1kta2su+fxDv+2GirrPNRIPGvcXRV6x5n4+f//t4fz80\nsxv7aV+K7V7XzH4LfIZoYPol4HTgE2a2taD9fKKzsH4HrCQqhADXER2NvQz8Arinl9fq9ffdSyz9\n/T6uAG6K3+u/7hH/NuDjwETgeeCPwH8Co+ImpwLPSnoV+BZwTj/jWa5KlPbNjyR9AfibePU/zezb\nkvYAbiM65F0NnG1mG+P2M4k+mLYCXzCzhakG6JxzrqhUjywkHQpcCBxJ9K3i43GXxQxgsZk1AQ8Q\nfXtF0Xn8ZwMTiE4/vL5CZ8E455wrQ9rdUBOAx+PT9t4mOlw/i2ggtC1u0wacGS9PIepD3hqfXreS\n6LQ755xzVZR2sXgGOE7SHvHg2ceIzrwYa2ZdAGa2jndOoRvH9qfxraW00xGdc86lYMfiTQbOzJ6T\ndA2wCNhEdAXn2701TTMO55xz5Um1WADEZ4jcCCCplejIoUvSWDPrkrQ30dkREB1JFJ7zvQ+9nLsu\nyYuLc84NgJkNaBw49VNnJb03/nc/4K+ITvG7i2guGoBpwJ3x8l1E0y/sLGk8cCDROdrvYmbB/sya\nNavqMXh+nt9QzC/k3MzK+46d+pEF8JP4YqAtwCVm9mrcNbVA0WygOaIzoDCz5ZIWAMsL2g+5o4jV\nq1dXO4RUeX61LeT8Qs6tXIPRDdVz0jLMbAPRrJ69tZ9NdDGXc865jPAruDOoubm52iGkyvOrbSHn\nF3Ju5Ur9Cu40SBqKvVPOOVcWSVhWB7hd6drb26sdQqo8v9pWbn6NjY1I8p8UfxobGyvyXhcajAFu\n55zrlsvlyj4zx/UvjVmSvBvKOTeo4q6QaocRtL5+x94N5ZxzLlXeDZVB7e3tTJ48udphpGYw8ptz\nwxw613cWbxirH1PP9AunV+S1K5nfnDnz6ezclKhtff2uTJ8+tSKv25/Q/z5d77xYuCB1ru+k4aSe\ndyLtW+7+XPFGVdDZuYmGhosStc3l5qYcjRvKvFhkUOjf2jy/2pZGfqUcQQ3EYB11hcyLhXOu6ko5\nghoIP+oqnw9wZ5Cfp1/bPL/aNX78eK6++moOPfRQxowZw4UXXshbb73VZ/u2tjaOO+647bYNGzaM\n3//+9wCcf/75fO5zn+OUU05h1KhRnHDCCbzwwgup5pAWLxbOOVdg/vz5LFq0iFWrVtHR0cFVV13V\nb/ue1zT0XJ8/fz6zZs1i/fr1HH744Xz605+ueMyDwYtFBnmfd23z/GrbpZdeSn19PXV1dbS0tPCj\nH/2opOf3vL7h9NNP55hjjmGnnXaitbWVxx57jLVr33WbnszzYuGccwX22Wef7uWGhgY6O5Ofgt2b\nffd9535uu+yyC6NHjy57n9XgxSKDQu4TBs+v1oWe35o1a7qXc7kc9fX1fbbdZZdd2Lx5c/f6unXr\n+t3fpk2b2LBhQ7/7zCovFs45V2DOnDmsXbuWDRs28C//8i+ce+65fbY9/PDDefbZZ3nqqad48803\nufLKK981ZnHPPffwi1/8grfeeouvfe1rfPjDH2bcuHFpp1FxqZ86K+kfgQuBbcDTwPnALsBtQAOw\nGjjbzDbG7WcCFwBbgS+Y2cK0Y8ya0PuEPb/alkZ+9fW7pnp6a339ronbTp06lVNOOYU//OEPnHnm\nmbS0tPTZ9qCDDuLrX/86J510EiNHjmT27NnMnbt9HlOnTuWKK67gscce44Mf/CA//OEPB5xHNaVa\nLCTVA5cCB5vZW5JuAz4FHAIsNrNrJV0OzARmSDqE6BarE4B9gMWSDvJZA50LW5YumDvqqKO4/PLL\nE7efOXMmM2fO7F6fOnX7XPbcc0+uv/76isVXLYPRDbUDsIukHYERwFrgDKAtfrwNODNengLcamZb\nzWw1sBI4ehBizJTQ+4Q9v9oWen6ud6kWCzPrBL4BvEBUJDaa2WJgrJl1xW3WAXvFTxkHrCnYxdp4\nm3POpa63+0DMnj2b3XbbjVGjRm33c/rppw9of7Uq7W6oOqKjiAZgI3C7pE8DPbuVSu5mam5u7r4b\nVF1dHRMnTuzuS81/86nV9fy2rMRTi/nlVuW6JxLsWNoBQNORTX2ud63q2i62LOXX0RGtNzX1vz58\neGXiTzu/LMtfeV2oZzdTKX7wgx+UG1JZ2tvbmTdvHkDZd89L9eZHkv4a+KiZ/W28fh7wIeBEYLKZ\ndUnaG3jQzCZImgGYmV0Tt78XmGVmj/fYrw9juH61XNtS8qyzrZe1phjRwLS0zC1p1tnW1vTmV6oU\nv/lR+mrx5kcvAB+SNFzR8dhJwHLgLqA5bjMNuDNevgs4V9LOksYDBwJLUo4xc0LvE/b8alvo+bne\npdoNZWZLJP0YWAZsif+dC+wGLJB0AZAjOgMKM1suaQFRQdkCXOKHEM45V32pX2dhZlcCV/bYvAE4\nuY/2s4HZaceVZbXQt1sOz6+2hZ6f651fwe2cc64oLxYZFHqfsOdX20LPr1yF97MIid8pzzlXdXNu\nmEPn+vRmYq0fU8/0C6entv9CIV1bUciLRQaF3ifs+dW2NPLrXN9Z0qnOpcrdn0tt3z2Fek6Od0M5\n51ys1NuqAvzrv/4r9fX17LPPPtx4443bHVm8+uqrfPazn2WvvfZi/PjxtLa+cy1PY2Mjy5YtA+CW\nW25h2LBhrFixAogu5jvrrLMAuPLKKznnnHOYNm0ao0aN4rDDDuOJJ56odOpFebHIoND7hD2/2hZ6\nfqXcVvXee+/lm9/8Jvfffz8rV65k8eLF2z3+93//97z22musXr2a9vZ2brrpJm688UYAJk2a1P27\nfPjhhznggAN4+OGHAXjooYeYNGlS937uvvtupk6dysaNG/nEJz7B9OmD06VWyIuFc84VKOW2qrff\nfjvnn38+EyZMYMSIEVxxxRXd3VDbtm3jtttu4+qrr2bkyJE0NDTwpS99iZtvvhmIisVDDz0EwCOP\nPMLMmTO713sWi2OPPZaPfvSjSOK8887jqaeeSiv9PnmxyCDv865tnl9tK+W2qp2dndvdNrWh4Z1x\nl5dffpmtW7ey3377bfd4/v7bkyZN4pFHHmHdunVs27aNs88+m0cffZRcLserr77KxIkTu5+39957\ndy+PHDmSN954g23btpWXaIm8WDjnXIFSbqv6vve9713t82MWe+65JzvttBO5XG67x/N3yTvggAMY\nMWIE3/nOdzj++OPZdddd2XvvvZk7dy7HHntspdMqmxeLDAq9T9jzq22h51fKbVXPPvts5s2bx4oV\nK9i8eTP//M//3P3YsGHDOPvss2lpaWHTpk3kcjm+9a1vcd5553W3mTRpEt/97ne7u5wmT5683Xpf\nqnHGlZ8665yruvox9ame3lo/pu+jg55Kua3qqaeeyj/8wz9w4oknssMOO3DVVVcxf/787se//e1v\nc+mll7L//vszYsQILrroIs4///zuxydNmsStt97K8ccf373+jW98o3u9L9W4liPVKcrT4lOUu2J8\nivLsyvIU5ePHj+eGG27gxBNPrHYoZanFKcqdc84FwItFBoXeJ+z51baQ86v0bVVD4mMWzjkXq/Rt\nVUPiRxYZFPp57J5fbQs9P9e7VIuFpL+QtEzSE/G/GyV9XtIekhZK6pB0n6TdC54zU9JKSSsknZJm\nfM4555JJtViY2W/N7ANmdgTwQeDPwE+BGcBiM2sCHgBmAkg6hOgWqxOA04DrFep8v/0IuU8YPL9a\nF3p+rneDOWZxMrDKzNZIOgPIX3XSBrQTFZApwK1mthVYLWklcDTw+CDG6ZxLUUNDQ7D3fMiKwmlH\nKmUwi8U5QP5qlbFm1gVgZusk7RVvHwc8VvCctfG2ISX0PmHPr7aVm9/q1asrEocbXINSLCTtRHTU\ncHm8qefVIiVfodPc3ExjYyMAdXV1TJw4sfuPOH+Y7OtDdz23Ktd9UV7H0g4Amo5s6nO9a1UXeVmI\nv3C9oyNab2rqf3348GzG7+vVW29vb2fevHkA3Z+XAzUoV3BLmgJcYmanxusrgMlm1iVpb+BBM5sg\naQZgZnZN3O5eYJaZPd5jf0Ffwd3e3t79xodoMPKr5hXclcwvi1dwh/z3GXJuUBtXcH8KKJwU/i6g\nOV6eBtxZsP1cSTtLGg8cCCwZpBidc871IfVuKEkjiQa3C7/yXAMskHQBkCM6AwozWy5pAbAc2EJ0\nNBLuIUQfQv5mA55frQs5v5BzK1fqxcLMNgPv7bFtA1EB6a39bGB22nE555xLzq/gzqD8AFWoPL/a\nFnJ+IedWLi8WzjnnivJikUGh95t6frUt5PxCzq1cXiycc84V5cUig0LvN/X8alvI+YWcW7m8WDjn\nnCvKi0UGhd5v6vnVtpDzCzm3cnmxcM45V5QXiwwKvd/U86ttIecXcm7l8mLhnHOuKC8WGRR6v6nn\nV9tCzi/k3MrlxcI551xRXiwyKPR+U8+vtoWcX8i5lcuLhXPOuaK8WGRQ6P2mnl9tCzm/kHMrlxcL\n55xzRaVeLCTtLul2SSskPSvpLyXtIWmhpA5J90navaD9TEkr4/anpB1fFoXeb+r51baQ8ws5t3IN\nxpHFvwP3mNkE4HDgOWAGsNjMmoAHgJkAkg4husXqBOA04HpJA7q5uHPOucpJtVhIGgUcZ2Y3ApjZ\nVjPbCJwBtMXN2oAz4+UpwK1xu9XASuDoNGPMotD7TT2/2hZyfiHnVq60jyzGAy9LulHSE5LmShoJ\njDWzLgAzWwfsFbcfB6wpeP7aeJtzzrkq2nEQ9n8EMN3Mlkr6FlEXlPVo13O9qObmZhobGwGoq6tj\n4sSJ3d8K8v2Otbp+3XXXBZVPNfLLrcrRcFIDAB1LOwBoOrKpz/WuVV3kZS2/jo5ovamp//XhwysT\nfxbev2qtF45ZZCGeSuQzb948gO7Py4GSWcmf08l3Lo0FHjOz/eP1Y4mKxQHAZDPrkrQ38KCZTZA0\nAzAzuyZufy8wy8we77FfSzPuamtvb+9+40M0GPm1XNvSXSySyN2fo/Wy1oq8diXza2mZS0PDRYna\n5nJzaW1N1rYcIf99hpwbgCTMbEDjwKl2Q8VdTWsk/UW86STgWeAuoDneNg24M16+CzhX0s6SxgMH\nAkvSjDGLQv5jBc+v1oWcX8i5lSvtbiiAzwO3SNoJ+D1wPrADsEDSBUCO6AwozGy5pAXAcmALcEnQ\nhxDOOVcjUj911sx+Y2ZHmdlEMzvLzDaa2QYzO9nMmszsFDN7paD9bDM70MwmmNnCtOPLosJ+0xB5\nfrUt5PxCzq1cfgW3c865orxYZFDo/aaeX20LOb+QcyuXFwvnnHNFebHIoND7TT2/2hZyfiHnVi4v\nFs4554ryYpFBofeben61LeT8Qs6tXF4snHPOFeXFIoNC7zf1/GpbyPmFnFu5EhULSYelHYhzzrns\nSnpkcb2kJZIuKbyrnUtH6P2mnl9tCzm/kHMrV6JiYWbHAZ8G9gV+LWm+pI+kGplzzrnMSDxmYWYr\nga8ClwOTgG9Lek7SWWkFN1SF3m/q+dW2kPMLObdyJR2zeH9846IVwInAJ+J7ap8IfCvF+JxzzmVA\n0inKvwP8F/AVM3s9v9HMOiV9NZXIhrDQ+009v9oWcn4h51aupMXidOB1M3sbQNIwYLiZbTazm1OL\nzjnnXCYkHbNYDIwoWB8ZbytK0mpJv5G0TNKSeNsekhZK6pB0X+EZVpJmSlopaYWkU5ImEpLQ+009\nv9oWcn4h51aupMViuJltyq/EyyMTPncb0f22P2BmR8fbZgCLzawJeACYCSDpEKK75k0ATiM6ZXdA\n94t1zjlXOUmLxZ8lHZFfkfRB4PV+2hdSL69zBtAWL7cBZ8bLU4BbzWyrma0GVgJHM8SE3m/q+dW2\nkPMLObdyJR2z+AfgdkmdRB/+ewPnJHyuAYskvQ1838z+CxhrZl0AZrZO0l5x23HAYwXPXRtvc845\nV0VJL8r7FXAw8DngYmCCmf064WscY2ZHAB8Dpks6jqiAbPcSCfc1JITeb+r51baQ8ws5t3IlPbIA\nOApojJ9zhCTM7KZiTzKzP8T/viTpDqJupS5JY82sS9LewB/j5muJrhLP2yfe9i7Nzc00NjYCUFdX\nx8SJE7sPIfNveK2uP/nkk5mKpxbzy63K0XBSAwAdSzsAaDqyqc/1rlVd5GUtv46OaL2pqf/14cMr\nE38W3j9fr8x6e3s78+bNA+j+vBwomRX/Ui/pZuAA4Eng7XizmdnnizxvJDDMzDZJ2gVYCFwJnARs\nMLNrJF0O7GFmM+IB7luAvyTqfloEHGQ9gpTUc5Nz22m5tqW7WCSRuz9H62WtKUY0MC0tc2louChR\n21xuLq2tydq6oSn+kj+gk4aSHlkcCRwygE/oscBPJVn8WreY2UJJS4EFki4AckRnQGFmyyUtAJYD\nW4BLvCo451z1JT0b6hmiQe2SmNnzZjYxPm32MDO7Ot6+wcxONrMmMzvFzF4peM5sMzvQzCaY2cJS\nXzME+cPIUHl+tS3k/ELOrVxJjyz2BJbHF9W9md9oZlNSico551ymJC0WV6QZhNtefqAqVJ5fbQs5\nv5BzK1eiYmFmD0lqIBpsXhwPXO+QbmjOOeeyIukU5X8L/Bj4frxpHHBHWkENdaH3m3p+tS3k/ELO\nrVxJB7inA8cAr0L3jZD26vcZzjnngpG0WLxpZm/lVyTtiF91nZrQ+009v9oWcn4h51aupMXiIUlf\nAUbE996+Hbg7vbCcc85lSdJiMQN4CXga+DvgHqL7cbsUhN5v6vnVtpDzCzm3ciU9G2ob8J/xj3PO\nuSEmUbGQ9Dy9jFGY2f4Vj8gF32+axfyWLltKy7UtidvXj6ln+oXTe32sv/zmzJlPZ+emPh9/V1xL\nn6Eh+RRXgyKL71+lhJxbuUqZGypvOPBJYHTlw3GuOja9uankiQcHorNzU+KJAQHa2y8e0Os4V2lJ\n72exvuBnrZldB5yecmxDVuj9pp5fbQs5v5BzK1fSbqgjClaHER1plHIvDOecczUs6Qf+NwqWtwKr\niacVd5UXer+p51fbQs4v5NzKlfRsqBPSDsQ551x2JZ0b6ov9/aQd5FATer+p51fbQs4v5NzKlfSi\nvCOBzxFNIDgOuBg4Atgt/umXpGGSnpB0V7y+h6SFkjok3Sdp94K2MyWtlLRC0imlJuScc67yko5Z\n7AMcYWavAUi6AvgfM/tMwud/gehWqaPi9RnAYjO7Nr4H90wgfw/us4EJ8WsulvSue3CHLvR+U8+v\ntoWcX8i5lSvpkcVY4K2C9bfibUVJ2gf4GPBfBZvPANri5TbgzHh5CnCrmW01s9XASuDohDE655xL\nSdJicROwRNIV8VHF47zzYV/Mt4B/YvsrwMeaWReAma3jnenOxwFrCtqtjbcNKaH3m3p+tS3k/ELO\nrVxJz4ZqlfRz4Lh40/lmtqzY8ySdDnSZ2ZOSJvf3EknicM45Vx2lXFg3EnjVzG6U9F5J483s+SLP\nOQaYIuljwAhgN0k3A+skjTWzLkl7A3+M268F9i14/j7xtndpbm6msbERgLq6OiZOnNjd35j/dlCr\n6/ltWYmnFvPLrcp1T9/RsbQDgKYjm/pc3/jSxu7YkrTvWtW1XS6l5NfREa03NVV2ffjw3uOpxfev\nWuuTJ0/OVDzlrre3tzNv3jyA7s/LgVKSsWNJs4jOiGoys7+QVA/cbmbHJH4haRLwJTObIulaYL2Z\nXRMPcO9hZvkB7luAvyTqflpEdN9v67GvoTbm7UrUcm1LSXM9tbW2Ma1lWuL2uftztF7WWnpcLXNL\nmhuqre1ipk37XrKYcnNpbU2+bzf0SMLMNJDnJh2z+Cuiwec/A5hZJwlOme3H1cBHJHUAJ8XrmNly\nYAHRmVP3AJcMxaqQ/2YQKs+vtoWcX8i5lStpN9RbZmaSDEDSLqW+kJk9BDwUL28ATu6j3Wxgdqn7\nd845l56kRxYLJH0fqJP0t8Bi/EZIqSnsGw6R51fbQs4v5NzKlfRsqH+L7739KtAEfN3MFqUamXPO\nucwoemQhaQdJD5rZIjP7JzP7sheKdIXeb+r51baQ8ws5t3IVLRZm9jawrXD+Juecc0NL0gHuTcDT\nkhYRnxEFYGafTyWqIS70flPPr7aFnF/IuZUrabH47/jHOefcENRvN5Sk/QDMrK23n8EJcegJvd/U\n86ttIecXcm7lKjZmcUd+QdJPUo7FOedcRhUrFoWXhe+fZiDuHaH3m3p+tS3k/ELOrVzFioX1seyc\nc24IKVYsDpf0qqTXgPfHy69Kek3Sq4MR4FAUer+p51fbQs4v5NzK1e/ZUGa2w2AF4pxzLruSzg3l\nBlHo/aaeX20LOb+QcyuXFwvnnHNFebHIoND7TT2/2hZyfiHnVi4vFs4554pKtVhIeo+kxyUtk/R0\nfHtWJO0haaGkDkn3FU5SKGmmpJWSVkg6Jc34sir0flPPr7aFnF/IuZUr1WJhZm8CJ5jZB4CJwGmS\njgZmAIvNrAl4AJgJEN+D+2xgAnAacL2kAd0v1jnnXOWk3g1lZpvjxfcQnaprwBlAfm6pNuDMeHkK\ncKuZbTWz1cBK4Oi0Y8ya0PtNPb/aFnJ+IedWrtSLhaRhkpYB64BFZvYrYKyZdQGY2Tpgr7j5OGBN\nwdPXxtucc85VUdIpygfMzLYBH5A0CvippEN599QhJU8l0tzcTGNjIwB1dXVMnDixu78x/+2gVtfz\n27ISTy3ml1uVo+GkBgA6lnYA0HRkU5/rG1/a2B1bkvZdq7q2y6WU/Do6ovWmpsquDx/eezy1+P5V\na33y5MnbY+FDAAARq0lEQVSZiqfc9fb2dubNmwfQ/Xk5UDIbvCmfJH0N2Az8DTDZzLok7Q08aGYT\nJM0AzMyuidvfC8wys8d77McGM25Xe1qubekuFkm0tbYxrWVa4va5+3O0XtZaelwtc2louCh5XG0X\nM23a95LFlJtLa2vyfbuhRxJmNqBx4LTPhtozf6aTpBHAR4AVwF1Ac9xsGnBnvHwXcK6knSWNBw4E\nlqQZYxblvxmEyvOrbSHnF3Ju5Uq7G+p9QJukYUSF6TYzu0fSL4EFki4AckRnQGFmyyUtAJYDW4BL\n/BDCOeeqL9ViYWZPA0f0sn0DcHIfz5kNzE4zrqwr7BsOkedX20LOL+TcyuVXcDvnnCvKi0UGhd5v\n6vnVtpDzCzm3cnmxcM45V5QXiwwKvd/U86ttIecXcm7l8mLhnHOuKC8WGRR6v6nnV9tCzi/k3Mrl\nxcI551xRXiwyKPR+U8+vtoWcX8i5lcuLhXPOuaK8WGRQ6P2mnl9tCzm/kHMrlxcL55xzRXmxyKDQ\n+009v9oWcn4h51YuLxbOOeeK8mKRQaH3m3p+tS3k/ELOrVxeLJxzzhXlxSKDQu839fxqW8j5hZxb\nudK+reo+kh6Q9KykpyV9Pt6+h6SFkjok3Ze/9Wr82ExJKyWtkHRKmvE555xLJu0ji63AF83sUODD\nwHRJBwMzgMVm1gQ8AMwEkHQI0S1WJwCnAddLGtDNxWtZ6P2mnl9tCzm/kHMrV6rFwszWmdmT8fIm\nYAWwD3AG0BY3awPOjJenALea2VYzWw2sBI5OM0bnnHPFDdqYhaRGYCLwS2CsmXVBVFCAveJm44A1\nBU9bG28bUkLvN/X8alvI+YWcW7l2HIwXkbQr8GPgC2a2SZL1aNJzvajm5mYaGxsBqKurY+LEid1v\ndP5Q0teH7npuVY6GkxoA6FjaAUDTkU19rm98aSN5Sdp3rerqbl9qfB0d0XpTU2XXhw8fWDy+Hu56\ne3s78+bNA+j+vBwomZX8OV3aC0g7Aj8Dfm5m/x5vWwFMNrMuSXsDD5rZBEkzADOza+J29wKzzOzx\nHvu0tOOupvb29u43PkSDkV/LtS3dxSKJttY2prVMS9w+d3+O1stae32sv/xaWubS0HBR8rjaLmba\ntO8liyk3l9bW5PseqJD/PkPODUASZjagceDBOLL4AbA8XyhidwHNwDXANODOgu23SPoWUffTgcCS\nQYjRuZIsXbaUlmtbWPrrZ9n02lvbPbZx/Xp2HzOme33XnXfnyENPiJ639Bkaktcw5zIj1WIh6Rjg\n08DTkpYRdTd9hahILJB0AZAjOgMKM1suaQGwHNgCXBL0IUQfQv5mA2Hkt+nNTTSc1MCy13KMH3N8\nv203PJ7rPppob794MMJLVQjvX19Czq1cqRYLM/tfYIc+Hj65j+fMBmanFpRzzrmSDcoAtytN6P2m\nA81vzg1z6Fzfmajt0t8sLWnMotCD7UvY+Mob/bbJrV7HHXc8TC7Xyegx2z/W9bsOxh7Y9E7bNUu5\n48GWaPmVJd3Lfdl9RD0nfGh6yXEvXfokLS1zE7evr9+V6dOnlvw6If99hpxbubxYuJrRub4zcQFo\n/2X7gF9n4ytvMLpI19J7hj/P6DHH09Hxw6L7e2PbJkb/ZRT3e97etXu5LxsezyUPtsCmTdtKGjzP\n5ZIXFud8bqgMCv2bTej5FR5VhCjk9y/k3MrlxcI551xRXiwyKH9RTahCz6/rdx3VDiFVIb9/IedW\nLi8WzjnnivJikUGh95uGnp+PWdSukHMrlxcL55xzRXmxyKDQ+01Dz8/HLGpXyLmVy4uFc865orxY\nZFDo/aah5+djFrUr5NzK5cXCOedcUT7dRwaFPj/NYOdXylxPQK/zPZWi59xQpSplLqmBziNVjpD/\nPkPOrVxeLFzwSpnrCUg031OaSplLaqDzSDlXKu+GyqDQv9mEnp+PWdSukHMrlxcL55xzRaVaLCTd\nIKlL0lMF2/aQtFBSh6T7JO1e8NhMSSslrZB0SpqxZVno53qHnp9fZ1G7Qs6tXGkfWdwIfLTHthnA\nYjNrAh4AZgJIOoTo9qoTgNOA6yUN6MbizjnnKivVYmFmjwJ/6rH5DKAtXm4DzoyXpwC3mtlWM1sN\nrASOTjO+rAq93zT0/HzMonaFnFu5qjFmsZeZdQGY2Tpgr3j7OGBNQbu18TbnnHNVloVTZ20gT2pu\nbqaxsRGAuro6Jk6c2P2tIN/vWKvr1113XVD5VCq/vI6l0ZhA05FNfa5vfGljd/v1q7vY8qd3rn3I\njykUrr++8Z32r//xle2ulSjWvufjKx5azOhx+3avv75xY9H9Fa6X2r6jo8fvJ15vaprc7/rw4VF7\n//t8Z73wby0L8VQin3nz5gF0f14OlMwG9Fmd/AWkBuBuM3t/vL4CmGxmXZL2Bh40swmSZgBmZtfE\n7e4FZpnZ473s09KOu5pCvzBooPm1XNuS+B7cba1tTGuZBsAddzxc9DqLxxa08eGzo/aP/eKHfPj/\nfiZR+97a9rwob6D7TtJ+w+M5zjyhFYC2touZNu17/e67UC43l9bW5Pfszgv57zPk3AAkYWYDGgse\njG4oxT95dwHN8fI04M6C7edK2lnSeOBAYMkgxJc5If+xQvj5+ZhF7Qo5t3Kl2g0laT4wGRgj6QVg\nFnA1cLukC4Ac0RlQmNlySQuA5cAW4JKgDx+cc66GpH021FQzqzez95jZfmZ2o5n9ycxONrMmMzvF\nzF4paD/bzA40swlmtjDN2LIs9HO9Q8/Pr7OoXSHnVi6/gts551xRXiwyKPR+09Dz8zGL2hVybuXK\nwqmzzpVksKccz7JSpjOH6kxp7sLgxSKDQj99r9z8sj7leLn3syhFKdOZQ2WmNA/57zPk3Mrl3VDO\nOeeK8mKRQaF/swk9Px+zqF0h51YuLxbOOeeK8jGLDEqr33Tbtm08//zzJL3WcdiwYTQ2NjJsWGW/\nU4TeLzyYYxbVEPL7F3Ju5fJiMYS88MILfP+O77Nz3c6J2m95ZQvTPzmd/fbbL+XI3FA3Z858Ojs3\nJWpbX78r06dPTTki15MXiwxK65uNmfGeUe9h34n7Jmq/5tdrEh+FlCKf35wb5tC5vjPx85b+Zmni\niQSrqVaOKpYufZKWlrmJ2hZ+QKfx99nZuYmGhmSTGuZyyWIeCD+q6JsXC1c1nes7S/rwb/9le3rB\nDEGbNm3LxAe0qw0+wJ1Boc9PE3p+PjdU7Qo5t3J5sXDOOVeUd0NlUK32m5YyBrFoyaKaGYMoVa2M\nWZSi5/jGokW/7bd9rQ5C1+r/vcHgxcJVTDljEKXM9xTyXE9pG+hcUqWMb4CPcYQok8VC0qnAdUTd\nZDfkb7U6VIR+rnfH0o7u+2XnlTLf02DP9VSqLF9nUYm5pDo62rvv5x2a0P/vlSNzxULSMOC7wElA\nJ/ArSXea2XPVjWzwPPnkk5n5g71pwU28Yf1/488r7Fbq70jh+V+uYMWLXcHODLth7ZrMFotS5Y9E\nCo9Cnn9uCSs6F72rbeGMtqWclhu1f4aGDPRIZun/XtZkrlgARwMrzSwHIOlW4AxgyBSLV155pXij\nQdL1ShfvP+v9idoWdiv1d6Tw4g4bGT3m+KrODJumLa+/Xu0QKiZ/JFJ4FPLin57q9Yik8Cik1G6r\n9vaLyw+2ArL0fy9rslgsxgFrCtZfJCogrsqKjSuEeqTgkvF7a4Qti8Wiqn7xiyU8+uiTidvX1b2H\niy6aVtEYVq9eXdH95Q0bNowtr25hza+jWvyrpc/w2mtv9tneNm/jrU1v8vth0betXK6TDxxxbp/t\nkx4pbNrw8kDCrxlDNb9Sx0OW/fgnbHw9OnsuK8Ulrf97IVAa0zmUQ9KHgCvM7NR4fQZghYPckrIV\ntHPO1Qgz00Cel8VisQPQQTTA/QdgCfApM1tR1cCcc24Iy1w3lJm9LenvgYW8c+qsFwrnnKuizB1Z\nOOecy55Mzw0l6VRJz0n6raTLe3l8qqTfxD+PSjqsGnEOVIL8psS5LZO0RNIx1YhzoIrlV9DuKElb\nJJ01mPGVI8F7N0nSK5KeiH++Wo04ByrJeydpcvy3+YykBwc7xnIkeP++HOf2hKSnJW2VVFeNWAci\nQX6jJN0l6ck4v+aiOzWzTP4QFbLfAQ3ATsCTwME92nwI2D1ePhX4ZbXjrnB+IwuWDwNWVDvuSuZX\n0O5+4GfAWdWOu4Lv3STgrmrHmmJ+uwPPAuPi9T2rHXcl8+vR/uPA4mrHXeH3byYwO//eAeuBHfvb\nb5aPLLovzjOzLUD+4rxuZvZLM9sYr/6S6BqNWpEkv80Fq7sC2wYxvnIVzS92KfBj4I+DGVyZkuY2\noLNOMiBJflOBn5jZWgAzq6XzhZO+f3mfAn40KJFVRpL8DNgtXt4NWG9mW/vbaZaLRW8X5/VXDP4G\n+HmqEVVWovwknSlpBXA3cMEgxVYJRfOTVA+caWb/QW19sCb92/xwfJj/P5IOGZzQKiJJfn8BjJb0\noKRfSTpv0KIrX+LPFkkjiHotfjIIcVVKkvy+CxwiqRP4DfCFYjvN3NlQAyHpBOB84Nhqx1JpZnYH\ncIekY4GrgI9UOaRKug4o7E+tpYJRzK+B/cxss6TTgDuIPmBDsSNwBHAisAvwmKTHzOx31Q2r4j4B\nPGpmoc0D8lFgmZmdKOkAYJGk95tZnzdCz/KRxVpgv4L1feJt25H0fmAuMMXM/jRIsVVCovzyzOxR\nYH9Jo9MOrEKS5HckcKuk54G/BuZImjJI8ZWjaG5mtinfjWhmPwd2Cuy9exG4z8zeMLP1wMPA4YMU\nX7lK+b93LrXVBQXJ8jsf+G8AM1sFPA8c3O9eqz0Y088gzQ68M0izM9EgzYQebfYDVgIfqna8KeV3\nQMHyEcCaasddyfx6tL+R2hngTvLejS1YPhpYXe24K5zfwcCiuO1I4GngkGrHXqn84na7Ew38jqh2\nzCm8f3OAWfHyWKJuq9H97Tez3VDWx8V5kv4uetjmAl8DRgPXSxKwxcxqYtLBhPn9P0mfBd4CXgfO\nrl7EpUmY33ZPGfQgByhhbn8t6XPAFqL37pzqRVyaJPmZ2XOS7gOeAt4G5prZ8iqGnVgJf5tnEh09\n1dQ0wgnzuwqYJ+mp+GmXmdmG/vbrF+U555wrKstjFs455zLCi4VzzrmivFg455wryouFc865orxY\nOOecK8qLhXPOuaK8WLghR9LbBVNP3yZpeInPf63E9jf2Nv16PI353fHyJyRdFi+fIan/q2mdG2Re\nLNxQ9GczO8LMDiO6aO7ing3iizz7UsmLkwzAzO42s2vjbWcCh1bwNZwrmxcLN9Q9AhwoqSG+WUyb\npKeBfSR9StJT8c/VBc+RpG/GN/1ZJGlMvPFv4ptULZN0e48jlo/Es7M+J+n0nkFImibpO5I+DEwB\nro2PfvaX9OuCdgcWrjs3WLxYuKFIAJJ2BE4jmtcI4CDgu/ERx1bgamAyMBE4qmCSw12AJWb2f4gm\n0Lsi3v4TMzvazD4APAdcWPCaDWZ2FNGNdL4naede4jIzewy4C/in+Ojn98Ar8YSZEE0A94Oysndu\nALxYuKFohKQngCVADrgh3r7azH4VLx8FPGhmG8xsG3ALcHz82DZgQbz8QyB/u9v3S3o4nm9nKtt3\nJS0AsGgK71UUm+FzezcA50saRjTH1PwSnutcRWR2IkHnUrTZzI4o3BAPUfy5R7uk99fIj2HcSDRV\n/jOSphHdWrVnm/x+Sxn3+AkwC3gQWGq1NRW/C4QfWbihqK8iULh9CXC8pNGSdiC6tWZ7/Ngwovtv\nAHyaaNwDolvfrpO0U7y90CcVOQAYD3T0E99rwKj8ipm9CdwH/AdRQXJu0HmxcENRX9/qu7eb2Tpg\nBlGBWEb0jf5n8cObgKPjgfDJwP8Xb/8aUZF5BFjRY98vxI/9D/B3ZvZWP/HdCvyTpF9LGh9vu4Vo\nKvCFxZJzLg0+RblzNUDSl4BRZjar2rG4ocnHLJzLOEn/DexPdL9r56rCjyycc84V5WMWzjnnivJi\n4ZxzrigvFs4554ryYuGcc64oLxbOOeeK8mLhnHOuqP8fQllUv3enIC4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGHCAYAAAB1bcIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X98FNXV+PHPQUSIEZVEQVtTLVSQx1oLLci3oGJbUCyr\n1RbEh6KhGmuBamqR2moJ+rQKtQaEtNVHbKjVgEUaf7QCPlKUqIglolYBSQVTpSCJIKwhRML9/jEb\n3N0kkN0kM5s95/167Uv3zt3ZczIz5GTmzh1xzmGMMcYYk2o6BR2AMcYYY0xTrEgxxhhjTEqyIsUY\nY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgxxhhjTEqyIsUYY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgx\nJo6IFIjIAZ++a6WI/D3q/XkickBELvPp+4tFZLMf35UsETlaRB4Qkf9Efjb3BB0TgIhsEZEn2nB9\nLd72TW23yGd/EfX+6khbTgLffW5y0RvTPqxIMWlNRK6K/OPb8NorIu+LyFIRmSIimU18zAEJFSki\ncpKITBeRsxIMsanvatNnVRwmtoRzDcDPgQlAETAeeKi5jpHCIXp7bxeR50Xk0naIqz2eKdLSdbZk\nu7n49YnI9SJyVSu/2xjfdA46AGN84IDbgC3AkUAv4HxgNvBjEQk5596I6n8HcGeC33EyMB3YDLye\nwOe+2USbJPjdh3Oo2K4h9f9YGQ6sds79Twv6OuBV4G68n+PJwHXAEhH5gXPu/vYLs020dNu3ZLv9\nEShxztVFtf0Q2AEsiO7onHtORLrF9TUmcFakGC2WOufKo97PFJHzgb8Cj4vIGc65fQDOuQNAov9Y\nJ1RYRH4h7HXO7U/we5LRbGzOuXqg3ocYWuNE4M0E+r/vnCtpeCMiDwEVQD7QbJEiIl2dc7VJR+mj\nlmw35z09tsX7sRUoJhWl+l9QxrQb59xKvLMmn8O7jAA0PSZFRL4pIqtEZKeI7BGRDSLyy8iy84A1\neH/FF0cuM9SLyITI8pUi8rqIDIhcevgY+GXUshXxoQFHiMivIuMwwiLyuIh8Ni6mLSLyYHxe0ets\nQWxNjW3IEJHfiEiliNRGcr2pie85ICL3isglIvJGpO8/RWTkYX70DZ8/QUTmi8i2yGW4dQ1xNcQe\n2Q6nAt+Kiv2wYyyiOee2A+uB06LWvUVEnhCRESLyiojsBfIiy44QkdtEpCKS02YR+aWIdGkmj2+K\nyKuRHN4UkW/HLT9eRO6O7AN7ROQjEfnbIS6/tWTbH3YsUfyYlEj//wLOj7ocdnA/kSbGpIjI4Mil\n0V0i8nFk3/p/cX0yRWR25OdUG7nEtlxEzj5UfMa0hJ1JMdo9BPwKGAHMj7TFXMsXkf7Ak8A6vMtG\n+4A+QMM/1uuBXwC3A/cBqyLtL0atLxv4G7AQ7zT89qhl8QS4FW/MwV14ZxLygWdE5OyGMz7NfDa+\nvSWxxa/nSeA84AHgNWAk8GsROdk5F1+sDAMuA34L7AF+BCwWkRzn3M5m4kNEugLPAZ8H5uJdivsu\nXiF1rHNuLvAWXvE4G/g38JvIx3c0t95mvqszcApQHdXsgH7AI3g/l/uBjZFl8/HGwDyKd9loMHBL\npP/lcas/HW+b/h4oBnKBP4vISOfcs5E+nwdCwJ/xLrn1xLsEtVJE+jvntkWHS8u3/eHGkMT3uQGY\nh7ed/ifyXdvj+n8aiMgFePvsP4CCSEy5wAoRGeqc+0ek6314+8BcvP0tCxgKnIF3zBiTPOecveyV\nti/gKrzT4gMO0Wcn8I+o99OB+qj3N0TWcfwh1jEQ7x/xCU0s+3vk89c0s2xF1PvzIuupBDKi2r8T\naZ8c1bYZeLAF6zxUbH8A3ol6f0mk70/j+j0K7AdOi2o7AOwFTo1q+2Kk/YeH2S4NP9MrotqOAF4A\nPgKOjsvziRZu783A03i/KLOAs4CSyHcVxvWrB74R9/mzIvH/Pq59VqT/eU2s45KotmOA9+P2pyOb\niDMn8rP7eZLbPma7RW2PXzSx7+dEtb0RvW/EfXc9cG5U20bgr3H9jgL+hXf5NPr4ube1x6q97NXU\nyy73GANhvF8uzdkV+e+3RSTZQa378P7SbqkFzrmahjfOucXAf4BRSX5/S12EV4zMjWv/Dd7l4Yvi\n2p9xzm1peOO8Aci78c4eHO57tjnnFkZ9th64F8jE+6WZrJF4Z1t24P0lfzne2aufxvXb7Jz7v7i2\nUXhnFArj2n+Dd+bh4rj2rc65x6Ny2BP5ri+LyImRtk8alotIJxHpAdTgFQEDmog/qG1/UORSzReA\nEhHJanjhHSfPAtGXhXYBg0XkJL/iM3pYkWKM90txzyGWL8L7C/9/ge0iUiIi302wYHnfJTZItqKZ\ntlMTWEcyPof3i/fjuPb1Ucuj/buJdewEjm/B92xqon09XjEQ/z2JWA18PfIaAmQ753Ldp5dKGjQ1\npuNzeGckYn7+zhvXsquJuJraTm9H/nsqgHjyReRtvGK1CvgA76zTsU18PqhtH+0Lkf/+kU8Lvh14\ncV8DdBGRhthvBs4E/i0iL4t3u/tp8Ss0Jhk2JsWoJiKfwftF0dQvBgCcd8fHuSIyHO8v6QuBscCz\nIjLCOdeS+SX2tkW88aE1034E3tkQPzR3h0lb30adiCrn3N8P3+2Q26Qt5wz5Od6YoAfwxpt8iFcI\nzSF1/1BsiOsmvHFJTQkDOOf+LCLPA9/GG9v1E2CaiHzbObes3SM1ac2KFKPdBLxfSEsP1zHyi+/v\nwE9E5Ba8wYfDgRW0/URYX2iirQ+xvzB2Asc10e9zeOMGGiQS27vA10Xk6LizKWdELW8L7+KdSYjX\n1t+TqHfxfkF/gU8H0hK5dHNcE3H1aWIdfSP/3RL57+V440DyojuJyHE0PQi4Jds+WS3dFxr2nz3O\nufi7zxqv1DvT9Hvg9yKSjTdXzc8BK1JMq6RqFW9Mu4vcvXAr8A7eXR7N9Wvq0sVreGcLjoq8b/iF\n3lTRkIwJEjUbroh8FzgJ726LBv8CzoncvdLQ71t4d7JESyS2v+H98TI5rj0f76//p1sUfcu+p5eI\njG1oEJEjgCl4l96ea6PvSSYuAW6Ma78J7xf8X+PaT46+5VhEugPfA151zn0Qaa4n7sxSZHt+ppkY\nWrLtk/UxLdsP1uLtXz8RkaPjF0YKkYYxNt2jlznnqoCtfHpsGJM0O5NiNBBglIicgbfP9wQuwJvt\ndTMQcoeeyOoXkfkj/or3l3RP4Hq8uzDKIn3+hTdm4QciEsb7ZbDaOZfsGYEPgTIR+QPeDLk34I11\neCCqzwN4d34sE5FHgd54t+zGX7pKJLYn8c4W/TIyrqDhFuTReHfHtNVzfu7Huw23WES+wqe3IA8B\nbmhiTIwvnHOvi8gCIC9SnD6HdwvyBGCJcy6+eHobeEBEvop3O+/38W4bjp56/ingNvHmtHkR7wzS\nfxN7titaS7Z9stbi7Qc/x9tPPoi6NHawkHLOORG5Bq8wejMSy/t4hdVwvDuwLsEbSPueiCzG21fC\neMfVV4Aft0G8Rrugby+yl73a88Wnt2E2vPbi/WO7FJhE1K2uUZ+ZDuyPen8+sARvkOjeyH8fAnrH\nfe5beLd47ot814RI+9+B15qJ7+/As1HvG24FHYN3Oek/eP/wPw58tonP34hXLNXg/UL9cvw6DxPb\nH4B/xfXNwJsf5N9ALbAByG/iu+uBOU20vwPMb8G2ycb7xbs98nNdB3yvmfU93sLt3aK+h+qHd4b5\nVrxf4rV4BdQdxN1K3LAO4BuR2GvwZsb9dly/Lni3ML8X2ZbPAYPwLhMmte2b2W71wG1N7PvRtyCf\nCDyBV7TWE7kdmSZuQY60n4U3v8sHkfzewbul+/zI8iPx5nMpj6xzd+T/84I+9u2VHi9xrq0vpRtj\njDHGtF7gY1IiUykfaOI1N6rP7SKyVURqROQZEekTt46jRKRIRKrEm3Z6ccMcBcYYY4zpmAIvUvCu\nXfaKen0Tb4DaowAiMg1vEF8e3inSj/GuwUc/R2M23q2hl+NNMnQy8JhP8RtjjDGmHaTc5R4RmQ2M\ncs6dHnm/Ffi1c64w8r473jXsq5xzj0be78CbXvsvkT598SaFOsc5tyaIPIwxxhjTOqlwJuUgETkS\nb9T7/Mj70/DOrjQ8qAvn3G7gZby7AMA7E9M5rs9GvMGEDX2MMcYY08GkVJGCN2PhscCCyPteeJd+\ntsf12x5ZBt7toHWR4qW5PsYYY4zpYFJtnpSJwNMu9tHl7SLysKyReLcX1rb39xljjDFppCve86SW\nOeeq2+tLUqZIEZEcvPkGLo1q3oY3wVBPYs+m9MSbdrmhTxcR6R53NqVnZFlzRgIPtzZuY4wxRrH/\n5hAzdrdWyhQpeGdRthM19bNzbrOIbMN7munrcHDg7GCgKNJtLd7D1L4ORA+czQFeOsT3bQH405/+\nxBlnnHGIbh1ffn4+hYXxT55PP1ryBD25Wp7pxfJMH+vXr2f8+PHw6TOq2kVKFCmRR95fDRQ75w7E\nLZ4N3CoiFXw68+N7eLMw4pzbLSLzgXtEZCfecz/uBV44zJ09tQBnnHEGAwYMaMNsUs+xxx6b9jmC\nnjxBT66WZ3qxPNNSuw6XSIkiBe8yzyl4Uz3HcM7NEpEM4D68B2OtAi5ysc9ayceb0nkx3kOtGqY8\nN8C2be0+xCclaMkT9ORqeaYXy9MkKiWKFOfcM8ARh1heABQcYvk+vKenTmnr2NLB+++/H3QIvtCS\nJ+jJ1fJML5anSVSq3YJs2sHAgQODDsEXWvIEPblanunF8jSJsiJFgXHjxgUdgi+05Al6crU804vl\naRKVctPi+0VEBgBr165dq2mAkzHGJK2yspKqqqqgwzA+yc7OJicnp8ll5eXlDWeMBjrnytsrhpQY\nk2KMMSa1VVZWcsYZZ1BTUxN0KMYnGRkZrF+/vtlCxQ9WpCiQm5vLH/7Q6MaptKMlT9CTq+WZOqqq\nqqipqVExt5T5dB6UqqoqK1JM+xoxYkTQIfhCS56gJ1fLM/VomFvKpA4bOKuAlkFcWvIEPblansbo\nZkWKMcYYY1KSFSnGGGOMSUlWpChQVlYWdAi+0JIn6MnV8jRGNytSFJg1a1bQIfhCS56gJ1fL0xjd\n7O4eBRYuXBh0CL7QkifoydXy7DjC4TC1te36QNzD6tq1K5mZmYHGYNqWFSkKZGRkBB2CL7TkCXpy\ntTw7hnA4zP33P0p19f5A48jK6kxe3hgrVNKIFSnGGGNapba2lurq/XTrdgEZGccFEkNNzS6qq1dQ\nW1trRUoasTEpxhhj2kRGxnFkZmYH8mptcVRQUECnTp3YuHEjY8aM4dhjjyU7O5sbb7yRffv2tXg9\n559/PhdccEGj9quvvprTTjvt4Pt3332XTp06cc899zB79mxOPfVUMjIyOP/883nzzTdblUs6sSJF\ngalTpwYdgi+05Al6crU8jV9EBIAxY8ZQV1fHXXfdxcUXX8y9997Lddddl/B6mmpvatmCBQuYO3cu\nkydP5mc/+xlvvvkmX//619mxY0dyiaQZu9yjQJDPXfCTljxBT66Wp/Fb7969WbJkCQDXX389xxxz\nDL/73e/4yU9+wplnntnm3/evf/2LiooKevXqBcDIkSMZPHgwM2fO5O67727z7+to7EyKAlOmTAk6\nBF9oyRP05Gp5Gj+JCJMmTYppmzJlCs45/va3v7XLd377298+WKAAfPWrX2Xw4MHt9n0djRUpxhhj\nTESfPn1i3vfu3ZtOnTqxZcsWX74P4PTTT2+37+torEgxxhhjmtHcGJNE+9fX17dFOOpYkaLAhg0b\ngg7BF1ryBD25Wp7Gb5s2bYp5X1FRwYEDBzj11FNb9Pnjjz+eXbt2NWp/9913W/R9AG+//XaLvy/d\nWZGiwM033xx0CL7QkifoydXyNH5yzlFUVBTTdu+99yIiXHTRRS1aR+/evdmwYQPV1dUH21577TVe\neOGFJvuXlpaydevWg+/XrFnDyy+/zKhRo5LIIP3Y3T0KzJs3L+gQfNGR80x0SvHbb7+dqqqqg+/T\ndTrwjrxNm9PUto7fnoeSytu6pqbxGYSO9t2bN2/mkksu4cILL+TFF1/k4YcfZvz48Xzxi19s0ecn\nTpzIPffcw4gRI/j+97/P9u3bue+++zjzzDPZvXt3o/59+vRh6NChXH/99dTW1jJnzhxOOOEEuy09\nwooUBbTc3thR8wyHw9z/x/upDlcfvnMzsjKzyJuQl7K/vJLVUbdpcw49ffyaFq0jFad+79q1K1lZ\nnamuXsHevcHFkZXVma5duyb9eRFh0aJF3Hbbbdxyyy107tyZH/3oRwk9ALJfv3489NBD/OIXv+Cm\nm26if//+/OlPf+Lhhx/m+eefb9R/woQJdOrUidmzZ/PBBx8wePBg5s6dS8+ePZPOI51YkWJMwGpr\na6kOV9Pt9G5kHJP4M1xq9tRQ/Xa1TQfeAbR2+vhUnfo9MzOTvLwxafGAwRNOOIFHH320VesYN24c\n48aNi2n7xje+0Wz/G2+8kRtvvLFV35murEgxJkVkHJNB5nHJ/QO7lwD/fDUJa5g+PhlBnqk4lMzM\nzJQqnEx6sIGzCsycOTPoEHyhJU+ApcVLgw7BF1q26dKlOvLsyHbv3s327dsP+TJtz86kKFBTUxN0\nCL7QkidA3b66oEPwhZZtWlenI8+O7IYbbmDBggXNLheRhOdCae55PuZTVqQoMGPGjKBD8IWWPAFC\n14WCDsEXWrZpKKQjz1Q2ffp0pk+f3uzyadOm8b3vfa/Nvu9zn/ucTfDWAlakGGOMMYfRr18/+vXr\nF3QY6tiYFGOMMcakJCtSFGjpJFEdnZY8AcK7wkGH4Ast2zQc1pGnMYmyIkWBiRMnBh2CL7TkCbBg\nRvMD+NKJlm26YIGOPI1JVEoUKSJysog8JCJVIlIjIq+JyIC4PreLyNbI8mdEpE/c8qNEpCiyjj0i\nslhETvQ3k9RUUFAQdAi+0JInwOjrRgcdgi+0bNPRowuCDsGYlBR4kSIixwEvAPuAkcAZwE3Azqg+\n04DJQB4wCPgYWCYiXaJWNRu4GLgcOBc4GXjMhxRS3oABAw7fKQ1oyRMgp196TRffHC3bNCdHR57G\nJCoV7u75KVDpnLsmqi3+mdY3AHc4554CEJEJwHbgUuBREekOTASucM49F+mTC6wXkUHOuZY9FMMY\nY4wxKSPwMynAaOAfIvKoiGwXkXIROViwiMhpQC/g2YY259xu4GVgSKTpK3gFV3SfjUBlVB9jjDHG\ndCCpcCbl88D1wG+AX+JdzrlXRPY55x7CK1Ac3pmTaNsjywB6AnWR4qW5PmrNnz+f73//+0GH0e60\n5AlQVlrG0EuHBh1Gu9OyTcvK5jN0aMfOMxwOp8UDBtvL1VdfzXPPPcfmzZuDDqVDSYUipROwxjl3\nW+T9ayJyJvAD4KHgwkof5eXlKv6h15InQOXGyqBD8IWWbVpZWQ503DzD4TD3//F+qsPVgcaRlZlF\n3oS8lCxUbAr85KTC5Z7/AOvj2tYDDSMDtwGCd7YkWs/IsoY+XSJjU5rr06RRo0YRCoViXkOGDKG0\ntDSm3/LlywmFGk9FPmnSJObPnx/TVl5eTigUajTHw/Tp0xs9MK2yspJQKMSGDRti2ufOncvUqVNj\n2mpqagiFQpSVlcW0l5SUkJub2yi2sWPHUlpaSlFRUVrkEa2pPIqKijpkHuPHj2/U95GZj1BWGrve\nyg2VFOUXEd4V5sppVx5sX7pgKS+tfCnwPNpjv5o2bVpa5NGwPTZt2hTTvmLFXBYvnsqVV356jNbV\n1VBUFKKiIjaPNWtKWLhwSqB5NKe2tpbqcDXdTu9G1sCsQF7dTu9Gdbg68LM56aikpOTg78ZevXoR\nCoXIz8/35bvFOefLFzUbgMjDwGedc+dFtRUCX3XODY283wr82jlXGHnfHe9SzgTn3J8j73fgDZz9\nS6RPX7xi55ymBs5GbnFeu3btWjV3EJjUVFVVReGDhWQNzCLzuMT/AgzvClO9tpr8iflkZ2e3Q4Sm\nrVRVVVFYuISsrMvIzEx8W4XDVVRXLyE//zLft3V5eTkDBw6kqX8zW7sPt4VUPw5yc3N57rnneOed\nd4IOpUUOtb2jlwMDnXPl7RVHKpxJKQTOEZFbRKS3iFwJXAPMi+ozG7hVREaLyBeBPwLvAY/DwYG0\n84F7ROR8ERkIPAi8YHf2GGOMOZyCggI6derExo0bGTNmDMceeyzZ2dnceOON7Nu3L6F1lZaWcuaZ\nZ9KtWzfOOuusRme6GtTU1HDTTTeRk5ND165d6devH7/5zW9i+lx++eUNxcBBo0ePplOnTjz11FMH\n29asWUOnTp1YtmwZAMXFxXTq1IkXX3yRH//4x5x44olkZmZy2WWXUV0d7GW5RARepDjn/gF8GxgH\nvAH8HLjBObcwqs8sYC5wH95dPd2Ai5xz0c+rzweeAhYDK4GteHOmGGOMMYfUMF5kzJgx1NXVcddd\nd3HxxRdz7733ct1117V4PcuXL+c73/kOnTt35q677uLSSy8lNzeXf/zjH436jh49mjlz5jBq1CgK\nCwvp168fU6dO5aabbjrYZ9iwYbz++uuEw58+CuPFF1/kiCOOYNWqVQfbnn/+eY444gi+9rWvxeQz\nZcoU3njjDQoKCvjhD3/Ik08+yeTJkxP74QQoFQbO4pz7G/C3w/QpAAoOsXwfMCXyMlFCoRBPPPFE\n0GG0Oy15AhTlFzGpcFLQYbQ7Ldu0qCjEpEnpn2dH0Lt3b5YsWQLA9ddfzzHHHMPvfvc7fvKTn3Dm\nmWce9vPTpk2jV69elJWVHRzAe9555/HNb36TU0899WC/xx9/nL///e/86le/4qc//enB7xszZgxz\n5sxh8uTJnHbaaQwbNoz6+npeeOEFRo4cyT//+U927tzJmDFjYoqUsrIyvvSlLzUaNHzCCSewdOnS\ng+/r6+uZO3cue/bs4Zhjjkn65+SXwM+kmPbXkarm1tCSJ8DwscODDsEXWrbp8OE68kx1IsKkSbHF\n/5QpU3DO8be/HfLvaAC2bdvGa6+9xtVXXx1TLHz961+nf//+MX2ffvppOnfuzJQpsX9X33TTTRw4\ncICnn34agC9/+ctkZmby/PPPA7Bq1SpOOeUUJkyYwNq1aw8OFC4rK2PYsGGN8snLy4tpayh63n03\nfs7U1GRFigIjRowIOgRfaMkToP85/Q/fKQ1o2ab9++vIsyPo0yfmsXD07t2bTp06sWXLlsN+tuEX\nf/w6APr27duo78knn8zRRx8d037GGWfErKtTp04MGTLk4FmTVatWMWzYML72ta9RX1/P6tWreeut\nt/jwww8bFSkAp5xySsz7448/HoCdO3c26puKrEgxxhhjmpEKc5sMHTqUV155hX379rFq1SrOPfdc\njj32WM4880xWrVrFqlWrEJEmi5QjjjiiyXUGfWdvS1mRYowxxkTEz2VTUVHBgQMHYsaTNOdzn/tc\nk+sA2LhxY6O+W7du5eOPP45pX79+fcy6wLtEU1dXR0lJCVu3bj1YjJx77rk8//zzrFq1itNPP50T\nTjjh8Al2MFakKNDc7W/pRkueAOtWrgs6BF9o2abr1unIM9U552ImvwS49957EREuuuiiw36+V69e\nnH322SxYsIA9e/YcbH/mmWd46623YvqOGjWK/fv3M2/evJj2wsJCOnXqFPN9gwcPpnPnzsycOZMe\nPXocvCQ0bNgwVq9ezfPPP9/kWZR0kBJ395j2VVJSwqWXXhp0GO1OS54Aa5at4ezzzw46jHanZZuu\nWVPC2Wd3/Dxr9tR0+O/evHkzl1xyCRdeeCEvvvgiDz/8MOPHj+eLX/xiiz5/55138q1vfYuvfe1r\nTJw4kerqaubNm8eZZ54Zcxvx6NGjGT58OD//+c/ZvHkzX/rSl1i2bBlPPvkk+fn5nHbaaQf7duvW\njYEDB7J69eqYmYTPPfdcPv74Y2pqaposUpq7pNNRLvWAFSkqLFq0KOgQfKElT4C8O/MO3ykNaNmm\neXkdO8+uXbuSlZlF9dvV7GVvYHFkZWbRtWvXpD8vIixatIjbbruNW265hc6dO/OjH/2IWbNmtXgd\nI0eO5M9//jO33norP/vZz+jduzfFxcWUlpYevEOn4buefPJJfvGLX7Bo0SKKi4s59dRTufvuu5uc\ncn7YsGG8/PLLMcVIz5496dOnD++8806TRUpz42lSYZxNS1mRYowxplUyMzPJm5AX+HNz2uIpyCec\ncAKPPvpoq9Zx6aWXNjoDeMkllzTql5GRwd13383dd9992HXOnDmzyWcpvf322032v+qqq7jqqqsa\ntZ933nnU19cf9vtShRUpxhhjWi0zMzMlnz5sOjYrUowxxpjD2L17N3v3HvpSVs+ePX2KRg+7u0eB\nph5Tn4605AlQPKM46BB8oWWbFhfryLMju+GGGzjppJOafZ188slBh5iW7EyKAlpm7dSSJ0D/wTbj\nbDqxGWeDN336dKZPn97s8mnTpvG9733Px4gMWJGiwrhx44IOwRda8gQYdOGgoEPwhZZtOmiQjjw7\nsn79+tGvX7+gw1DHLvcYY4wxJiVZkWKMMcaYlGRFigJlZWVBh+ALLXkCVKyrCDoEX2jZphUVOvI0\nJlE2JkWBWbNmMXTo0KDDaHda8gRYtmAZfc5u/Dj4dKNlmy5bNos+fTpGng0PwDPpLVW2sxUpCixc\nuDDoEHyhJU+Aa++8NugQfKFlm157bernmZ2dTUZGBuPHjw86FOOTjIwMsrOzA43BihQFMjIygg7B\nF1ryBOjStUvQIfhCyzbt0iX188zJyWH9+vVUVVUFHYrxSXZ2Njk5OYHGYEWKMcaYFsnJyQn8l5bR\nxQbOGmOMMSYlWZGiwNSpU4MOwRda8gRYPGdx0CH4Qss2XbxYR55atqeWPP1gRYoCWk7PaskToEfP\nHkGH4Ast27RHDx15atmeWvL0gxUpCkyZMiXoEHyhJU+AC664IOgQfKFlm15wgY48tWxPLXn6wYoU\nY4wxxqQkK1KMMcYYk5KsSFFgw4YNQYfgCy15Amzbsi3oEHyhZZtu26YjTy3bU0uefrAiRYGbb745\n6BB8oSVzuTLTAAAgAElEQVRPgMfmPBZ0CL7Qsk0fe0xHnlq2p5Y8/WBFigLz5s0LOgRfaMkTYNy0\ncUGH4Ast23TcOB15atmeWvL0gxUpCmi5HU5LngA9etktyOnEbkFOL1ry9IMVKcYYY4xJSVakGGOM\nMSYlWZGiwMyZM4MOwRda8gRYWrw06BB8oWWbLl2qI08t21NLnn6wIkWBmpqaoEPwhZY8Aer21QUd\ngi+0bNO6Oh15atmeWvL0Q+BFiohMF5EDca+34vrcLiJbRaRGRJ4RkT5xy48SkSIRqRKRPSKyWERO\n9DeT1DVjxoygQ/CFljwBQteFgg7BF1q2aSikI08t21NLnn4IvEiJ+CfQE+gVeQ1tWCAi04DJQB4w\nCPgYWCYiXaI+Pxu4GLgcOBc4GdAxkYQxxhiTpjoHHUDEfufcjmaW3QDc4Zx7CkBEJgDbgUuBR0Wk\nOzARuMI591ykTy6wXkQGOefWtH/4xhhjjGlrqXIm5Qsi8r6I/EtE/iQipwCIyGl4Z1aebejonNsN\nvAwMiTR9Ba/Yiu6zEaiM6qNaVVVV0CH4QkueAOFd4aBD8IWWbRoO68hTy/bUkqcfUqFIWQ1cDYwE\nfgCcBjwvIkfjFSgO78xJtO2RZeBdJqqLFC/N9VFt4sSJQYfgCy15AiyYsSDoEHyhZZsuWKAjTy3b\nU0uefgi8SHHOLXPOPeac+6dz7hlgFHA8MMaP7x81ahShUCjmNWTIEEpLS2P6LV++nFCo8WDFSZMm\nMX/+/Ji28vJyQqFQo2p6+vTpjW5Nq6ysJBQKNXog1dy5c5k6dWpMW01NDaFQiLKyspj2kpIScnNz\nG8U2duxYSktLKSgoSIs8ojWVR0FBQYfMY/z48Y36PjLzEcpKY9dbuaGSovwiwrvCjL5u9MH2pQuW\n8tLKlwLPoz32q+uuuy4t8mjYHps2bYppX7FiLosXT2X06IKDbXV1NRQVhaioiM1jzZoSFi6ckhJ5\nJLs9CgoKUmp7tNd+dd5556VFHg3bo6Sk5ODvxl69ehEKhcjPz2/0mfYgzjlfvigRIrIGeAZ4APgX\ncLZz7vWo5SuBV51z+SIyHPg/4PjosykisgUodM7NaeY7BgBr165dy4ABA9otF2MOp6qqisIHC8ka\nmEXmcZkJfz68K0z12mryJ+aTnZ3dDhGatlJVVUVh4RKysi4jMzPxbRUOV1FdvYT8/MtsW5tAlZeX\nM3DgQICBzrny9vqewM+kxBORTKAPsNU5txnYBnw9anl3YDDwYqRpLbA/rk9fIAeI/fPSGGOMMR1G\n4Hf3iMivgSeBd4HPADOAT4CFkS6zgVtFpALYAtwBvAc8Dt5AWhGZD9wjIjuBPcC9wAt2Z48xxhjT\ncaXCmZTPAo8AG/AKkx3AOc65agDn3CxgLnAf3l093YCLnHPRU27mA08Bi4GVwFa8OVMMNLrmma60\n5Ak0Gq+SrrRs07IyHXlq2Z5a8vRD4EWKc26cc+6zzrluzrkc59yVkcs80X0KnHMnO+cynHMjnXMV\nccv3OeemOOeynXPHOOe+65z7wN9MUld5ebtdLkwpWvIEqNxYGXQIvtCyTSsrdeSpZXtqydMPgRcp\npv0VFRUFHYIvtOQJcOW0K4MOwRdatumVV+rIU8v21JKnH6xIMcYYY0xKsiLFGGOMMSnJihRjjDHG\npCQrUhRoaqbDdKQlT4CifB3XvLVs06IiHXlq2Z5a8vSDFSkKTJ48OegQfKElT4DhY4cHHYIvtGzT\n4cN15Klle2rJ0w9WpCgwYsSIoEPwhZY8Afqf0z/oEHyhZZv2768jTy3bU0uefgh8xlljjF7btm3j\no48+Suqzxx57LL162YPOjUlnVqQYYwKxbds28n50A9XhPUl9PivzGO6/d44VKsakMbvco0D848/T\nlZY8AdatXBd0CK320UcfUR3eQ9cv9CVr4DlNvuoyj22yvesX+lId3pP0WZhUs26djn1XyzGqJU8/\nWJGiQElJSdAh+EJLngBrlqXPszOP7n483bN6Nfn6YNOmJtuP7n580GG3qTVrdOy7Wo5RLXn6wYoU\nBRYtWhR0CL7QkidA3p15QYfgi2FX6cgzL0/HvqvlGNWSpx+sSDHGGGNMSrIixRhjjDEpyYoUY4wx\nxqQkK1IUyM3NDToEX2jJE6B4RnHQIfjipZLioEPwRXGxjn1XyzGqJU8/WJGigJbZD7XkCdB/sI4Z\nZ0/qqyNPm3E2vWjJ0w9WpCgwbty4oEPwhZY8AQZdOCjoEHxx6gAdeQ4apGPf1XKMasnTD1akGGOM\nMSYlWZFijDHGmJRkRYoCZWVlQYfgCy15AlSsqwg6BF988I6OPCsqdOy7Wo5RLXn6wYoUBWbNmhV0\nCL7QkifAsgXLgg7BF2+t0JHnsmU69l0tx6iWPP1gRYoCCxcuDDoEX2jJE+DaO68NOgRfDJ2gI89r\nr9Wx72o5RrXk6QcrUhTIyMgIOgRfaMkToEvXLkGH4IvOXXTk2aWLjn1XyzGqJU8/WJFijDHGmJRk\nRYoxxhhjUpIVKQpMnTo16BB8oSVPgMVzFgcdgi/Kn9CR5+LFOvZdLceoljz9kFSRIiLfE5GubR2M\naR85OTlBh+ALLXkC9OjZI+gQfHH0cTry7NFDx76r5RjVkqcfkj2TUghsE5H7RETHvNUd2JQpU4IO\nwRda8gS44IoLgg7BF33P1ZHnBRfo2He1HKNa8vRDskXKycC1wGeBF0TknyJyk4ic0HahGWOMMUaz\npIoU51ydc+7PzrmLgRzgIeD7wHsiskRELhYRactAjTHGGKNLqwfOOuf+A/wf8HfAAV8BSoBNIjKs\ntes3rbdhw4agQ/CFljwBtm3ZFnQIvvhou448t23Tse9qOUa15OmHpIsUEckWkRtF5DXgBeBE4FLg\nc8BngFLgj20SpWmVm2++OegQfKElT4DH5jwWdAi+ePVJHXk+9piOfVfLMaolTz8ke3fPX4D3gR/g\nXeo5xTn3XefcUufZA8zCK1gSXfdPReSAiNwT1367iGwVkRoReUZE+sQtP0pEikSkSkT2iMhiETkx\nmfzSzbx584IOwRda8gQYN21c0CH44quX68hz3Dgd+66WY1RLnn5I9kzKbuAbzrl+zrm7nXM7muiz\nA/hCIisVka8CecBrce3TgMmRZYOAj4FlIhI9Z/Zs4GLgcuBcvMG9Ov4MOwwtt8NpyROgRy8dt+Ye\nfbyOPO0W5PSiJU8/JDtw9irn3KrD9HHOuX+1dJ0ikgn8CbgG2BW3+AbgDufcU865fwIT8IqQSyOf\n7Q5MBPKdc885514FcoGv2S3SxhhjTMeU7OWeQhGZ1ET7JBH5TZKxFAFPOudWxK3zNKAX8GxDm3Nu\nN/AyMCTS9BWgc1yfjUBlVB9jjDHGdCDJXu75LvBiE+2rgbGJrkxErgDOBm5pYnEvvLuGtse1b48s\nA+gJ1EWKl+b6qDVz5sygQ/CFljwBlhYvDToEX7z5rI48ly7Vse9qOUa15OmHZIuUbLxxKfE+iixr\nMRH5LN54kv92zn2SZDxJGzVqFKFQKOY1ZMgQSktLY/otX76cUCjU6POTJk1i/vz5MW3l5eWEQiGq\nqqpi2qdPn95o562srCQUCjW6ZW3u3LmNnv9QU1NDKBSirKwspr2kpITc3NxGsY0dO5bS0lJqamrS\nIo9oTeVRU1PTIfMYP358o76PzHyEstLY9VZuqKQov4jwrjB1++oOti9dsJSXVr4UeB6J7lc7d+6M\naX/96ScaFSV7P/qIlQ8UNboVefMrq9kSl1tQeSSyX23atCmmfcWKuSxePJW6uk+P0bq6GoqKQlRU\nxOaxZk0JCxc2nsk0iDyS3a9qampSanu01/FRXl6eFnk0bI+SkpKDvxt79epFKBQiPz+/0Wfagzjn\nEv+QyJtAkXPut3Htk4DJzrkzEljXJcASoB5omADuCLyzJ/VAP6ACONs593rU51YCrzrn8kVkON5c\nLcdHn00RkS1AoXNuThPfOwBYu3btWgYMGNDScI1pc1VVVRQ+WEjWwCwyj8tM+PPhXWGq11aTPzGf\n7OyE/kYI1MaNG5mYn0/WwHPonpXYCc/d1duoXruaBwsL6du3bztF2PaqqqooLFxCVtZlZGYmvq3C\n4Sqqq5eQn39Zh9rWJv2Ul5czcOBAgIHOufLD9U9W5yQ/NxuYLSJZQMMYkq8DNwM/SXBd/wd8Ma6t\nGFgP3OWce0dEtkXW/zocHCg7GG8cC8BaYH+kz18iffrizYYb+yemMcYYYzqEpIoU59z/Rp6C/DNg\nRqT5PeBHzrkHE1zXx8Bb0W0i8jFQ7ZxbH2maDdwqIhXAFuCOyPc9HlnHbhGZD9wjIjuBPcC9wAvO\nuTVJpGiMMcaYgCU946xzbq5z7iS82WV7OOdyEi1QDrX6uO+aBcwF7sO7q6cbcJFzri6qWz7wFLAY\nWAlsxZszRb34a5vpSkue4F3i0aA2rCPPcFjHvqvlGNWSpx/a5Nk9zrn4eU1au84LnHM/jmsrcM6d\n7JzLcM6NdM5VxC3f55yb4pzLds4dE5kB94O2jKujmjhxYtAh+EJLngALZiwIOgRfrF6oI88FC3Ts\nu1qOUS15+iHZeVJOEJE/iEiliNSKSF30q62DNK1TUFAQdAi+0JInwOjrRgcdgi/OGqkjz9GjC4IO\nwRdajlEtefoh2YGzxUBv4NfAf4i7PGNSi5a7l7TkCZDTT8e02z1O0ZFnTo6OfVfLMaolTz8kW6Sc\nC5wbmX7eGGOMMabNJTsm5T3s7Ikxxhhj2lGyRUo+cGdktliT4uJnNExXWvIEGs1Gm64qVuvIs6xM\nx76r5RjVkqcfki1SHgKGA++KyE4R+SD61YbxmTYQP0VzutKSJ0DlxsqgQ/DFh+/pyLOyUse+q+UY\n1ZKnH5Idk/LTNo3CtKuioqLDd0oDWvIEuHLalUGH4ItB39GR55VX6th3tRyjWvL0Q7Izztq5LGOM\nMca0q6QncxORU0WkQEQeEpETI20jRKTFDxc0xhhjjGlOspO5DQPeBM4DxgANj24dCNzeNqEZY4wx\nRrNkz6TMBAqcc8OB6BlmnwXOaXVUpk2FQqGgQ/CFljwBivJ1XPNe+YCOPIuKdOy7Wo5RLXn6Idki\n5Sy8B/nF+wA4IflwTHuYPHly0CH4QkueAMPHDg86BF/0Haojz+HDdey7Wo5RLXn6Idki5SOgVxPt\nXwLeTz4c0x5GjBgRdAi+0JInQP9z+gcdgi9O6qcjz/79dey7Wo5RLXn6IdkiZRFwl4icQGTmWREZ\nDPwG+FMbxWaMMcYYxZItUm4B3gG24g2afQt4EXgFuKNtQjPGGGOMZkkVKc65fc65XOB04FJgIvBf\nzrlxzrn9bRmgab3S0tKgQ/CFljwB1q1cF3QIvvj3GzryXLdOx76r5RjVkqcfkp4nBcA5t9k594Rz\n7hHn3Ia2Csq0rZKSkqBD8IWWPAHWLFsTdAi+2FKuI881a3Tsu1qOUS15+iGpGWdF5P5DLXfO5SUX\njmkPixYtCjoEX2jJEyDvTh2H2LCrdOSZl6dj39VyjGrJ0w/JPrvnpLj3RwL/BRwDPN+qiIwxxhhj\nSP7ZPaPj20SkM/B7vEG0xhhjjDGt0qoxKdEiA2Z/DUxtq3UaY4wxRq82K1IiTsO79GNSSG5ubtAh\n+EJLngDFM4qDDsEXL5UUBx2CL4qLdey7Wo5RLXn6IdmBs7Pim/DGqYSwydxSjpbZD7XkCdB/sI6Z\nWE/qqyNPm3E2vWjJ0w/JDpwdEvf+ALAD+Cnwv62KyLS5cePGBR2CL7TkCTDowkFBh+CLUwfoyHPQ\nIB37rpZjVEuefkh24Oywtg7EGGOMMSZaW49JMcYYY4xpE0kVKSLyioisacmrrQM2iSsrKws6BF9o\nyROgYl1F0CH44oN3dORZUaFj39VyjGrJ0w/Jnkn5O9AXb8Ds6siLSNtKYFnUywRs1qz4cc7pSUue\nAMsW6Di03lqhI89ly3Tsu1qOUS15+iHZgbPHAUXOuZ9FN4rIL4GezrlrWh2ZaTMLFy4MOgRfaMkT\n4No7rw06BF8MnaAjz2uv1bHvajlGteTph2TPpIwB/tBEezHw3aSjMe0iIyMj6BB8oSVPgC5duwQd\ngi86d9GRZ5cuOvZdLceoljz9kGyRsg84p4n2cyLLjDHGGGNaJdnLPfcC94nIl4GGwbGDgWuBO9si\nMGOMMcboltSZFOfcL4FrgK8B90de/w/IiywzKWTqVB2PU9KSJ8DiOYuDDsEX5U/oyHPxYh37rpZj\nVEuefkh6nhTn3CPOucHOue6R12Dn3COJrkdEfiAir4nIR5HXiyJyYVyf20Vkq4jUiMgzItInbvlR\nIlIkIlUiskdEFovIicnmlm5ycnKCDsEXWvIE6NGzR9Ah+OLo43Tk2aOHjn1XyzGqJU8/JF2kiEh3\nEbk6UkAcH2n7koiclOCq/g1MAwYAA4EVwOMickZkndOAyUAeMAj4GFgmItEj6mYDFwOXA+cCJwOP\nJZtbupkyZUrQIfhCS54AF1xxQdAh+KLvuTryvOACHfuulmNUS55+SPYBg2cC/wfUAKfg3dWzExgL\nfAa4qqXrcs79Na7pVhG5Hm8Q7nrgBuAO59xTke+eAGwHLgUeFZHuwETgCufcc5E+ucB6ERnknLMJ\n5YwxxpgOKNkzKYXAI0BvoDaq/a94ZzKSIiKdROQKIAN4UUROA3oBzzb0cc7tBl7m04ccfgWv2Iru\nsxGopPGDEI0xxhjTQSRbpHwV+K1zzsW1vw8kerkHETlTRPbg3b78W+DbkUKjF+DwzpxE2x5ZBtAT\nqIsUL831UW3Dhg1Bh+ALLXkCbNuyLegQfPHRdh15btumY9/VcoxqydMPyRYpnwCZTbT3AaqSWN8G\n4Et4Y05+B/xRRPolGZuJc/PNNwcdgi+05Anw2BwdQ65efVJHno89pmPf1XKMasnTD8kWKU8Ct4lI\nw5gWJyKfAe4CliS6MufcfufcO865V51zPwdewxuLsg3v+UA94z7SM7KMyH+7RMamNNenWaNGjSIU\nCsW8hgwZQmlpaUy/5cuXEwqFGn1+0qRJzJ8/P6atvLycUChEVVVsvTZ9+nRmzpwZ01ZZWUkoFGpU\nec+dO7fRbWw1NTWEQqFGD68qKSkhNze3UWxjx46ltLSUefPmpUUe0ZrKY968eR0yj/Hjxzfq+8jM\nRygrjV1v5YZKivKLCO8KM27auIPtSxcs5aWVLwWeR6L71c6dO2PaX3/6Cd58dmlM23994yJWPlDU\n6IzK5ldWsyUut6DySGS/2rRpU0z7ihVzWbx4KuPGfXqM1tXVUFQUavTQwTVrSli4sPGAzCDySHa/\nmjdvXkptj/Y6PkaPHp0WeTRsj5KSkoO/G3v16kUoFCI/P7/RZ9qDNL5i04IPeXfzLAG+iPccn3/j\n3VHzCnChcy7cqqBEngXedc5NFJGtwK+dc4WRZd3xLuVMcM79OfJ+B97A2b9E+vTFG3R7TnMDZ0Vk\nALB27dq1DBgwoDXhGtMqVVVVFD5YSNbALDKPa+oE5aGFd4WpXltN/sR8srOz2yHC9rFx40Ym5ueT\nNfAcumcldmV2d/U2qteu5sHCQvr27dtOEba9qqoqCguXkJV1GZmZiW+rcLiK6uol5Odf1qG2tUk/\n5eXlDBw4EGCgc668vb4nqbt7nHM7geEich7eZZpMoBxY1sQ4lUMSkV8BT+MNdD0G+G/gPGBEpMts\nvDt+KoAtwB3Ae8DjkVh2i8h84B4R2QnswZsR9wW7s8cYY4zpuBIuUkTkSOApYHLklt/nWhnDicAC\nvAG3HwGvAyOccysAnHOzRCQDuA/vrM0q4CLnXF3UOvKBemAxcBSwFJjUyriMMcYYE6CEx6Q45z7B\nm3Qt8etETa/vGufc551z3ZxzvZxzBwuUqD4FzrmTnXMZzrmRzrmKuOX7nHNTnHPZzrljnHPfdc59\n0BbxpYP465jpSkueAEuLlx6+UxqIH6OSrpYu1bHvajlGteTph2QHzj4MNB5pY1JSTU1N0CH4Qkue\nAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfkn0KsgMmi8g3gH/gTVX/6ULn7P6rFDJjxoygQ/CFljwB\nQtc1vlMgHZ11kY48QyEd+66WY1RLnn5ItkgZiDd2BOCsuGVtchnIGGOMMbolVKSIyOeBzc65Ye0U\njzHGGGMMkPiYlE3ACQ1vRGSRiMRPtGZSTPykQOlKS57gzY2iQW1YR57hsI59V8sxqiVPPyRapEjc\n+1HA0W0Ui2knEydODDoEX2jJE2DBjAVBh+CL1Qt15LlggY59V8sxqiVPPyR7d4/pQAoKCoIOwRda\n8gQYfd3ow3dKA2eN1JHn6NEFQYfgCy3HqJY8/ZBokeJoPDDWBsqmOC3T/mvJEyCnX07QIfiixyk6\n8szJ0bHvajlGteTph0Tv7hGgWET2Rd53BX4vIvG3IF/WFsEZY4wxRq9Ei5T4C8R/aqtAjDHGGGOi\nJXS5xzmX25JXewVrkhP/KPB0pSVPgLLSssN3SgMVq3XkWVamY9/VcoxqydMPNnBWgfLydnuKdkrR\nkidA5cbKoEPwxYfv6cizslLHvqvlGNWSpx+sSFGgqKgo6BB8oSVPgCunXRl0CL4Y9B0deV55pY59\nV8sxqiVPP1iRYowxxpiUZEWKMcYYY1KSFSnGGGOMSUlWpCgQCml53L2OPAGK8nVc8175gI48i4p0\n7LtajlEtefrBihQFJk+eHHQIvtCSJ8DwscODDsEXfYfqyHP4cB37rpZjVEuefrAiRYERI0YEHYIv\ntOQJ0P+c/kGH4IuT+unIs39/HfuulmNUS55+sCLFGGOMMSnJihRjjDHGpCQrUhQoLS0NOgRfaMkT\nYN3KdUGH4It/v6Ejz3XrdOy7Wo5RLXn6wYoUBUpKSoIOwRda8gRYs2xN0CH4Yku5jjzXrNGx72o5\nRrXk6QcrUhRYtGhR0CH4QkueAHl35gUdgi+GXaUjz7w8HfuulmNUS55+sCLFGGOMMSnJihRjjDHG\npCQrUowxxhiTkqxIUSA3NzfoEHyhJU+A4hnFQYfgi5dKioMOwRfFxTr2XS3HqJY8/WBFigJaZj/U\nkidA/8E6ZmI9qa+OPG3G2fSiJU8/WJGiwLhx44IOwRda8gQYdOGgoEPwxakDdOQ5aJCOfVfLMaol\nTz9YkWKMMcaYlGRFijHGGGNSkhUpCpSVlQUdgi+05AlQsa4i6BB88cE7OvKsqNCx72o5RrXk6YfA\nixQRuUVE1ojIbhHZLiJ/EZHTm+h3u4hsFZEaEXlGRPrELT9KRIpEpEpE9ojIYhE50b9MUtesWbOC\nDsEXWvIEWLZgWdAh+OKtFTryXLZMx76r5RjVkqcfAi9SgGHAXGAw8A3gSGC5iHRr6CAi04DJQB4w\nCPgYWCYiXaLWMxu4GLgcOBc4GXjMjwRS3cKFC4MOwRda8gS49s5rgw7BF0Mn6Mjz2mt17LtajlEt\nefqhc9ABOOdGRb8XkauBD4CBQMM5sxuAO5xzT0X6TAC2A5cCj4pId2AicIVz7rlIn1xgvYgMcs7p\neEpZMzIyMoIOwRda8gTo0rXL4Tulgc5ddOTZpYuOfVfLMaolTz+kwpmUeMcBDvgQQEROA3oBzzZ0\ncM7tBl4GhkSavoJXcEX32QhURvUxxhhjTAeSUkWKiAjeZZsy59xbkeZeeEXL9rju2yPLAHoCdZHi\npbk+xhhjjOlAUqpIAX4L9AeuCDqQdDJ16tSgQ/CFljwBFs9ZHHQIvih/Qkeeixfr2He1HKNa8vRD\nyhQpIjIPGAWc75z7T9SibYDgnS2J1jOyrKFPl8jYlOb6NGnUqFGEQqGY15AhQygtLY3pt3z5ckKh\nUKPPT5o0ifnz58e0lZeXEwqFqKqqimmfPn06M2fOjGmrrKwkFAqxYcOGmPa5c+c22tFramoIhUKN\nbm8rKSlp8lkRY8eOpbS0lJycnLTII1pTeeTk5HTIPMaPH9+o7yMzH6GsNHa9lRsqKcovIrwrTI+e\nPQ62L12wlJdWvhR4HonuVzt37oxpf/3pJ3jz2aUxbZ27HMXKB4r4aHvsYbz5ldVsicstqDwS2a82\nbdoU075ixVwWL55Kjx6fHqN1dTUUFYUa3Za8Zk0JCxdOSYk8kt2vcnJyUmp7tNfxsWvXrrTIo2F7\nlJSUHPzd2KtXL0KhEPn5+Y0+0x7EOefLFx0yCK9AuQQ4zzn3ThPLtwK/ds4VRt53x7uUM8E59+fI\n+x14A2f/EunTF1gPnNPUwFkRGQCsXbt2LQMGDGiv1Iw5rKqqKgofLCRrYBaZx2Um/PnwrjDVa6vJ\nn5hPdnZ2O0TYPjZu3MjE/HyyBp5D96zErsrurt5G9drVPFhYSN++fdspwrZXVVVFYeESsrIuIzMz\n8W0VDldRXb2E/PzLOtS2NumnvLycgQMHAgx0zpW31/cEfnePiPwWGAeEgI9FpOGMyUfOudrI/88G\nbhWRCmALcAfwHvA4eANpRWQ+cI+I7AT2APcCL2i/s8cYY4zpqAIvUoAf4A2MXRnXngv8EcA5N0tE\nMoD78O7+WQVc5Jyri+qfD9QDi4GjgKXApHaN3BhjjDHtJvAxKc65Ts65I5p4/TGuX4Fz7mTnXIZz\nbqRzriJu+T7n3BTnXLZz7hjn3Hedcx/4m01qir9ema605Amwbcshh1qljfixKOlq2zYd+66WY1RL\nnn4IvEgx7e/mm28OOgRfaMkT4LE5OiZTfvVJHXk+9piOfVfLMaolTz9YkaLAvHnzgg7BF1ryBBg3\nbVzQIfjiq5fryHPcOB37rpZjVEuefrAiRYHoW5DTmZY8AXr06nH4Tmng6ON15Bl9C3I603KMasnT\nD1akGGOMMSYlWZFijDHGmJRkRYoC8bMUpisteQIsLV56+E5pIH4G2nS1dKmOfVfLMaolTz9YkaJA\nTU1N0CH4QkueAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfrEhRYMaMGUGH4AsteQKErmv8HJB0dNZF\nOssVS10AACAASURBVPIMhXTsu1qOUS15+sGKFGOMMcakJCtSjDHGGJOSrEhRIP6R3+lKS57gPflY\ng9qwjjzDYR37rpZjVEuefrAiRYGJEycGHYIvtOQJsGDGgqBD8MXqhTryXLBAx76r5RjVkqcfrEhR\noKCgIOgQfKElT4DR140OOgRfnDVSR56jRxcEHYIvtByjWvL0gxUpCgwYMCDoEHyhJU+AnH46pt3u\ncYqOPHNydOy7Wo5RLXn6wYoUY4wxxqQkK1KMMcYYk5KsSFFg/vz5QYfgCy15ApSVlgUdgi8qVuvI\ns6xMx76r5RjVkqcfrEhRoLy8POgQfKElT4DKjZVBh+CLD9/TkWdlpY59V8sxqiVPP1iRokBRUVHQ\nIfhCS54AV067MugQfDHoOzryvPJKHfuulmNUS55+sCLFGGOMMSnJihRjjDHGpKTOQQdgjOm4wuEw\ntbW1SX12586d1NfXJ/3d9fv3s3PnzqSnIO/atSuZmZlJf78xpv1ZkaJAKBTiiSeeCDqMdqclT4Ci\n/CImFU4KNIZwOMz99z9KdfX+pD5fXb2NbdurOH5/859f+UAR51/TOM/9dfvYvuPfFP+lmKysrKS+\nPyszi7wJeSlRqBQVhZg0Kf33XS3HqJY8/WBFigKTJ08OOgRfaMkTYPjY4UGHQG1tLdXV++nW7QIy\nMo5L+PPhcDn7PynlwCHOpvQd2nSe9fv384nUcVSfo8j6fOJFSs2eGqrfrqa2tjYlipThw3Xsu1qO\nUS15+sGKFAVGjBgRdAi+0JInQP9z+gcdwkEZGceRmZmd8Oe6du1+2D4n9Tt0nl2P7krmcckVGXvZ\nm9Tn2kP//jr2XS3HqJY8/WADZ40xxhiTkqxIMcYYY0xKsiJFgdLS0qBD8IWWPAHWrVwXdAi++Pcb\nOvJct07HvqvlGNWSpx+sSFGgpKQk6BB8oSVPgDXL1gQdgi+2lOvIc80aHfuulmNUS55+sIGzCixa\ntCjoEHyhJU+AvDvzgg7hoH37wkl9rqZmF84dep6UYVc1n6dzjr179xIOJ/794XCYuk/qEv5ce8nL\n07HvajlGteTpBytSjDFJq6ur5aVXH2L/EYlP6Lbzw/f4eF8V9fWfJPzZ+v11hD/+mFdeeZuKLR8m\n/Pm6mlrYUks4HCY7O/E7k4wx/rAixZgorZlBdf/+/XTunPghVV1dnVJ/1Sdi//791NR/yNFfyOLI\nbhkJfXbPuzuo/1c99fWJTwZXX7+fAweEzp0/z9FH90n48wfqdrBn72vs27cv4c8Gra6ulurq6qQ+\nm+w+2sBm6TV+syLFmIhwOMz9f7yf6nDivwDq9tWxcf1G+v5XX7oc2SWhz9Z8XMMbG97g+C8fTybJ\n/QKo21eX9C+utvjFc2S3DLomuI7ORx3Vqu8E6Ny5K0d1TTz2fV2Su0TVINlitrq6mrq65AvSffvC\nvPrqG/z+9/VkZByd0Gfr6mrZuPFN+vb9Il26JLaPNsjK6kxe3hgrVIxvrEhRIDc3lz/84Q9Bh9Hu\nWptnbW0t1eFqup3ejYxjEjsrsOP9HVS/Ws2Rpx5JVq/EZkA98P4B9r6xl/2ftPyMQvGMYq6efjUA\n+/bu49XXXuX39b8nIyOxuCG1poeP91JJMUPGXR10GDFa8ziAmpowb7xRwfHH1xL94y4uzuXqqw+/\n737yyT727j2Cbt2Gk5X12YS+e8eOd6iufosjjxya8GfBG0NUXb2iVbP02r9FJlEpUaSIyDBgKjAQ\nOAm41Dn3RFyf24FrgOOAF4DrnXMVUcuPAu4BxgJHAcuAHzrnPvAliRSmZfbDtsoz45iMhGcxDX/k\n/WXeNTPxGVAbPpuI/oM/nYn1k7pP2HtgL92+0C3hAinVpoePd1Lf1JlZt0FrHgdw4MA77N37Nvvj\nnleU6IyzXbsmPstvOHKGMJnPNtjbykl67d8ik6iUKFKAo4F1wHxgSfxCEZkGTAYmAFuA/wGWicgZ\nzrmGc6ezgYuAy4HdQBHwGDCsvYNPdePGjQs6BF9oyRNg0IWDGrUlUyBBak0PH+/UAY3zTBXJPA4g\n3MylxEGDdOy7Wo5RLXn6ISWKFOfcUmApgIhIE11uAO5wzj0V6TMB2A5cCjwqIt2BicAVzrnnIn1y\ngfUiMsg5p2OyBWOMMSaNpPxkbiJyGtALeLahzTm3G3gZGBJp+gpewRXdZyNQGdXHGGOMMR1Iyhcp\neAWKwztzEm17ZBlAT6AuUrw010etsrKyoEPwhZY8ASrWVRy+Uxr44B0deVZU6Nh3tRyjWvL0Q0co\nUtrVqFGjCIVCMa8hQ4Y0evbC8uXLCYVCjT4/adIk5s+fH9NWXl5OKBSiqqoqpn369OnMnDkzpq2y\nspJQKMSGDRti2ufOncvUqVNj2mpqagiFQo0OgJKSEnJzcxvFNnbsWEpLS5k1a1Za5BGtqTxmzZrV\n6jw+2vkR82+bz7Yt22LaVyxcweI5i2Pa6mrrKMovalQwrFm6huIZxY3yuP+W+xs9c+et1W/xyJ2P\nNOr7yMxHKPv/7d19mFTVfcDx7w9mYdmFCKwvxKpBQyTmRRCMjdGaSBKpJtJWE2OMT1VMjY2xDWk1\naZ8m0fSxiaYJTeImYjQS20JsjBrSGkjR0ESFIC8i4oIgLAvIwu6wuzA7O7Pz8usfd1ZmZ3dh7rze\nuff3eZ59dubOPXfOb8+8/Pbce855avDfp21rG80Lmol0R1jx0xWD6rb3tb2D9j3UfojmBc15xZHo\nT3D99dcX1R4Hdmxj1UPNQ/Zd+/gSdqwZfNxDe9pY9VAz/TlXYb7862VseWb54G3Lf8Wqh5rpOTA4\njr0vbyLeeWTQtmR/P6seah6S2LRuWMvqpYuH1G3bxo2sXLly0DY374+9ezfR3DyPSGTw62rZsq+z\nfPng19WhQ200N8+jo2PnoO3PPvsDHn/8DlasOPoe7e+P0tw8b0jisnbtUp588h+G1O3BBz81ZO2f\nV1/9Dc3NQ+PYufP3rF8/eDbUtrYNecfR03OI66+/vuD3+X333Vf0+xy8/3m1YMECX8Qx0B5Lly59\n87txypQpzJs3b0iM5SKqWpEnypeIpMka3ZM53fM6MFNVX87abxWwUVUXiMilwEpgUnZvioi0AgtV\n9XvDPM8sYP369euZNWtWOUOqumg0WtDQ1FpTbJydnZ0s/MlCmmY3ub4AtX13Oyv+YwVzb5jLlNPc\ndd4VUrY/1s+Y+jFFP3ekO0J4fZgF8xe4nnm1s7OTe+55lM1te5h43umu50nZt2Mz65b/nPM/fh1/\nNPWdw+6T7O8nNMycHvmUPZbD4XbC69fwk4ULmT59uquynZ2dLFz4BE1NV7m+cLa9fRsrVixk7tyv\nMGXK1De39/dHGTPm+K/dkcoX89z5ikQ6CYefYMGCqwqepdc+i/xjw4YNzJ49G2C2qm4o1/N44sLZ\nY1HVXSLSDnwYeBkgc6HsH+OM4AFYDyQz+zyZ2Wc6cAawutJ19hq/v1kGBCVO4M0EpRT6E4VNBFfs\nxGT5GC5BKZVUMklXV9eQ/1iPx4m7sFmJR5JPguIHQXmPBiXOSvBEkiIijcA0YGBkz1kiMgM4pKp7\ncIYX/5OI7MAZgvzPwF7gl+BcSCsiDwPfFZEu4AjwfeB5G9ljzMhi8RgbN7TwQOf/0NDgrifEmZhs\nG6Mme29+leNJ9sc50LGHxU8upqnJ5dwy0SibW/YyefK8gucbMcbkxxNJCs7onN/iXCCrwHcy238K\nzFfV+0SkAViEM5nb74HLs+ZIAVgApIDHcSZzWw7cVpnqG1ObkokkfX1p6usvpqnpLFdl0+mdxGKb\nqE+ly1S78kklkySkn7HTxtJ0lrskRduVvrW9JBK1t+6PMbXGExfOqur/qeooVR2d8zM/a5+7VPVU\nVW1Q1bnZs81mHo+r6u2qeqKqTlDVT9pss47cC6j8KihxAkMufi1GKpkknXafaKTTaRKJWEGrGOdr\nw7LSxZlLVdFR6vyr5uInJSlSqVRJ6/L448F47QblPRqUOCvBKz0ppozOOOOMalehIoISJ8DkUyYP\nup9Kpejt7SUScTfFfle4i/0HdrP61cWMb3PXoxCJhGmPtjCuYwInJ6dCgYsjHkvjxMnH36kAqWQ/\nkd5eXnzxNXa0HnJVNtJ9mDfeOEBXVzvjx7v7m/X2dpFI9BGP9w7aPnlyMF67QXmPBiXOSrAkJQBu\nv/32alehIoISJ8Cca+e8eTsej9PeHmb16hbGT9zn6jhd+zvo7jvM1DNCNLzV3Rdu6nCSUX2jSHTH\nSKXcL7aXj+mXzDn+TgVIpZKk00IodBaNjdNcle3t2k7P4Q2saXmUbe0uR1NFwrzRu5l1ryzllFO+\nQn1mBec5c4Lx2g3KezQocVaCJSnG1LhkMkkykaau7kwaG9/mquyRuq2k05sYVTfG9RDi/lSEUaEQ\nzmVktSkUqmdsvbu4RxEiXZckNHUsDacVkNilRtOX7iKZjFGO3idj/MSSFGN8opAv3NDosWWqjf+F\n6usLS+zqQlB71xobUxWeuHDWlFfubIR+FZQ4gSEzyfpV7kyzftXeHozXblDeo0GJsxIsSQmAO++8\ns9pVqIhajjP7wtd8fh777mNv3o5Go3ht5uhS2firX1S7CmWRSiaIRMJEIp1EIp089tgX37x9rJ/e\n3q6yjqYqt1p+j7oRlDgrwU73BMD9999f7SpURK3GWciFryfPPpuVK52ZqLv2dxDp7Sv5sFgveN/V\nn652FUounUyx/8AWfrfpgTdnmj357dNY+eLC45aNRMIc6Hl1yOigWlGr71G3ghJnJViSEgBBGQ5X\nq3EWcuFrY+PR2wMXv6ZqcFK142mcVJ4hyNWkqTSJUTHqzhxHw0TnwtsG8rsAN34wQmJnnGSyNieS\nq9X3qFtBibMSLEkxxiMKufAV7OLXWlU3zv2Ft6HD9WWqjTHeZNekGGOMMcaTLEkJgHvvvbfaVaiI\noMQJsOWZ5dWuQkVYnP4SlPdoUOKsBEtSAiAajVa7ChURlDgBUv39x9/JByxOfwnKezQocVaCJSkB\ncPfdd1e7ChURlDgBzr18XrWrUBEWp78E5T0alDgrwZIUY4wxxniSje4xvhKJRIjFYgWVDYfD9CeC\n0e1uTCH6+2OEw+GCytbX1zPe5WgmYyxJCYDOzk5OPPHEalej7FpbW3ni6ScIRwr7EI32Rtm8dTOT\nzpvEeI8v/BaLRFwPX61FFqd3xOMRNm7czAMPpGhoaDx+gRxNTSGuumoOU6dOLX3lPCYon7mVYElK\nAMyfP59ly5ZVuxpld+uttzJ7zmzGnT2OhgkNrsun96Xp29xHMpEsQ+1Ka83PfsqHPntbtatRdhan\ndyQScfr6RjNu3KU0NZ3mqmw02k04/Cy33nory5f7fyRTUD5zK8GSlAC46667ql2Firjjjjt4dv2z\nNExoYPxE9/+VRnoiZahVeZw798pqV6EiLE7vqa+fyPjx7nsJ+vqc92gQBOUztxLswtkAmDVrVrWr\nUBEzZsyodhUqZvLpwZh22+L0l6C8R4PymVsJlqQYY4wxxpMsSTHGGGOMJ9k1KQHw8MMPc/PNN1e7\nGnkrdBjxokWL6CcYQ4h3rHmOae+/uNrVKDuL0z/6+2MsWrSIz33uc67L1trw5Vr7zPUyS1ICYMOG\nDTXzholEIjz46IMFDSP+76f+m5POOqkmhhAX69DetmpXoSIsTn8YGL7c0dFCNHqS6/JNTSFuueWa\nmklUaukz1+ssSQmA5ubmalchb7FYjHAkXNAw4iumXMHvnvpdTQwhLtYFn7iu2lWoCIvTHwaGL3/s\nY/cXPHw5FovVTJJSS5+5XmdJivGkQoYR19IQYmOCqJjhyyaYLEkxpkRSqRS9vb1EIu6SpWg0iqqW\nqVbGb9LpFNFoF5FIp6tyvb1dpFKJMtXKmPKwJMWYEojH47S3h1m9uoXxE/e5Ktu1v4NIbx+pVKpM\ntTN+kezvpzcaZt32Jbze+ayrspFImAM9rxKP95apdsaUniUpATBv3ryKT9Fc6AidYhb5W/LNJTSd\n3lRQ2WIlk0mSiTR1dWfS2Pg2V2WP1G0lnd5EKpXOu8yqh5o9P416KVicg6WTSdJ1SUJTx9JwmrvX\nevxghMTOOMlkvNBqFm3Jks/ypS+tdF2umIUNofKjg6rxmetXlqQEwBe+8IWKPl8xI3SKWeTvgssv\n4PVXXnf9nKUUCtUztt5dvUOjx7p+nukXX+q6TC2yOIcXqq93vSBh6HC9q/3L4YIL/tJ1mWIXNoTK\njw6q9Geun1mSEgCXXXZZRZ+vmBE6xSzyN23mtKonKZXy1ne+q9pVqAiL01+mTbvEdZliFjaE6owO\nqvRnrp9ZkmKGVejpGjh6yqZpQpON0DHGlEShI4MAenoKP11UaxPJ+Y0lKWaIYk7XQHGnbIwxppSK\nPV1UaxPJ+Y0lKT420Bvy9NNPc8UVV+RdLhwOs79rPye8+wTXp2uguFM2xWj5Q0tFn6+a9mx+idPf\nO7Pa1Sg7i9NfWlp+w5Qpt1T0OYs5XRSNdrN//9Ps27ePpqb8L1Qe+My1Xpji+S5JEZHbgL8HpgCb\ngNtV9cVq1EVV6erqKrh8fX09DQ3ukwQY3Buy+P7FbGvflnfZgZ6QOefNcX26Bqp3yua5J5/jjPcE\nY8n7Lc8sD8SXmsXpL8899yMuvbSyScqAQk4XFdoLs3jxt9i2LWa9MCXgqyRFRD4FfAe4BVgLLABW\niMjZqupu5qMSWLduHctWLUMpbKKuSfWTuPaqaxk71v3oj+zekImnTaRpdv7/BVSrJ6RYjScUduV/\nLaofP6HaVagIi9NfGhurM0VAoQrthZk48QnGjZtTUC9MtmQySShU2Ne0X3pxfJWk4CQli1T1UQAR\nuRX4GDAfuK/SlTl8+DBdo7o4c8aZrsuG3wiz4lcraD/czpi6Ma7LZ/eGhEIhVz0idvGqMcYc5bYX\nJhQaw+jRoaKuhenvj7Ft2xamT38vY8a4/w7wSy+Ob5IUEakDZgP/MrBNVVVEVgIXVqteo0OjmTDJ\n/X9JPR099KX6qH9HPZOaJrkuX6u9IdWUTqVJp9Mkk0kSCXfTh6eSNlusMeaoYodOd3TsJBx+lbq6\niwOxKONIfJOkACcCo4EDOdsPANMrXx1HKpki0u2+ZyIWdYb/jhs/rqauC6lVyWSStS++xN69B/n9\n719iwqS3uCp/aH8HiaSti2K8rdB1f8DW/ilUoUOnI5nRlUFflNFPSYpb9QAtLeUbEbJv3z762vrY\n0rbFddlYX4xEb4Ldr+yms839B0rXwS4i3RFaN7ey85WdbH1xa0Flu/d3F/XcbssXU3bPa3sYO2Fs\nQWWTySQduw4Sj8QJt3XS2+lufZNI1xH6o3E6du2g71CPq7LdB/eSiicI795BKhLNq0xH6+u0vbKh\n4PLFPPeAWF8PsUOHkQi0b2+he/8bJX/u7DhLVe9iy5fjbzZSnKV87p7wfg537+eZtd9h/Bb3vbOx\n2BE6D7Syfftv6e52d4F6V9c+IpEO9uzZyNatzxRUtrV1Nd3d7idrLKZ8oWV37lzDrl1/qFq9Y7EI\n8XgbmzZtYtIk922dj6zvzrJOZSx+WX01c7onClytqsuyti8GTlDVv8jZ/zrgPytaSWOMMcZfPqOq\nS8p1cN/0pKhqQkTWAx8GlgGIiGTuf3+YIiuAzwCtQGFTqxpjjDHBVA9MxfkuLRvf9KQAiMg1wGLg\nVo4OQf4E8E5V7ahi1Ywxxhjjkm96UgBU9b9E5ETgG8ApwEvAXEtQjDHGmNrjq54UY4wxxvjHqGpX\nwBhjjDFmOJakGGOMMcaTfJOkiMhtIrJLRPpEZI2IvO8Y+14kIs+JSKeIREWkRUS+OMx+n8w81ici\nm0Tk8vJGkZ9SxyoiN4hIWkRSmd9pEXE/+USJuYkzp9xFIpIQkSETT3ixTUsdpx/aU0Q+mFX3dFY8\nJ+fsV9PtmU+cfmjPzP5jROQeEWkVkZiI7BSRG3P2qen2zOx/zDi92p7g+rX7yDBxpEVkc85+xbWp\nqtb8D/ApnGHEfwm8E1gEHAJOHGH/mZky5wBnANcBEeCzWft8AEgAX8KZsfYbQBx4lw9jvQHoAk4C\nTs78nFRLcWaVOwHYAfwa2JDzmOfatExx1nx7Ah8EUsDbs2I42W/tmWecNd+emTK/BF4ALs18Fv0x\ncKGf2jPPOD3XngW+didkv2aBU4FO4KulbNOq/lFK+MddA3wv674Ae4E7XRzjF8BPs+7/DFiWs89q\n4Ic+jPUG4FC127EUcQJLgbuBrzP0y9tzbVqmOGu+PTn65f2WYxyz5tszzzj90J5/mvnCm+jz9swn\nTs+1ZyGxDlP+z4EkcHop27TmT/fI0YUF35xrWZ2/RN4LC4rIeZl9V2VtvjBzjGwr8j1mOZQxVoDx\nme7JNhF5SkTeVZpau1donCJyE3Amzpf3cDzVpmWME3zQnjgfki+JyBsi8hsR+UDO475oT44fJ9R+\ne14JrAO+LCJ7RWSbiHxbRLKnVPdDe+YTJ3ioPaE03y3AfGClqu7J2lZ0m9Z8ksKxFxaccqyCIrJH\nRGI4E781q+ojWQ9PKeSYZVauWLfhvMDm4czCOwp4QUROLVXFXXIdp4i8A2cF7M+oanqE43qtTcsV\nZ823J7Af+BxwNXAVsAdYJSIzs/ap+fYkvzj90J5nAX8CvBvnP+6/xZloszlrHz+0Zz5xeq09oYjv\nFgAReStwOfDjnIeKblNfTeZWgIuB8cD7gXtFZIeqPlblOpXLiLGq6hqcrj4ARGQ10ILz4fn1KtTV\nFREZhbMO09dVdWAlLqlilcoi3zhrvT0BVPU14LWsTWtE5O04s0jfUJ1alV4+cfqhPXG+iNPAdaoa\nARCRLwE/F5HPq2q8qrUrnePG6ZP2zHUjznU2vyz1gf2QpHTinNM9JWf7KUD7sQqq6u7MzS0iMgW4\nCxhIUtoLOWaZlSvW3H2TIrIRmFZUbQvnNs4JwPnATBEZ+I9lFM7yTf3AZaq6Cu+1abniHKQG23Mk\na4GLsu7XenuOJDfOQWq0PfcD+wa+uDNacJLs04DX8Ud75hPnIB5oTyj+tXsT8KiqJnO2F92mNX+6\nR1UTwMDCgsCghQVfcHGo0cDYrPurs4+Z8dHM9qooY6yDZP5jfy/OG67iCojzMPAenJFMMzI/DwBb\nM7f/kNnPU21axjgHqcH2HMlMBsdQ6+05ktw4B6nR9nweOFVEGrK2Tcfpddibue+H9swnzkGq3Z5Q\n3GtXRD6EMzrt4WEeLr5Nq31FcSl+gGuAKIOHToXJDOsCvsng0SyfBz6Ok7lOA24GeoC7s/a5EGeo\n1MDQqbtwhmdVewhyOWL9auaFcyZwHs7IkV6chRlrIs5hyg836sVzbVqmOGu+PXHO5c/D+fB7N/Bv\nOEMZP+Sn9swzTj+0ZyOwG6f39hzgEpxrMx7wWXvmE6fn2rOQWLPK/TvwwgjHLLpNq/YHKcMf+PNA\nK9CHk6Wdn/XYI8CzWfe/AGwGjuCcR1sH3DLMMa/G+S+1D3gZZ7FC38UKfBfYlTneG8CvgHNrKc5h\nyg758vZqm5Y6Tj+0J3AHsD3z4d2BM+rgEr+1Zz5x+qE9M9vOxhnZEcH5Ir8PGOun9swnTq+2Z4Gx\nviUT5/xjHLOoNrUFBo0xxhjjSTV/TYoxxhhj/MmSFGOMMcZ4kiUpxhhjjPEkS1KMMcYY40mWpBhj\njDHGkyxJMcYYY4wnWZJijDHGGE+yJMUYY4wxnmRJijGmIkTkbSKSFpFzizzOIyLyxHH2+a2IfDfr\n/i4R+ZtintcYU3mWpBhjhsgkAmkRSYlIXES2i8hXM4uhFaNaU1yfDzw4cCcT27wq1cUYk6dQtStg\njPGsXwM3AvXA5cAPcRYLuy97p0zioprfGhtS4jrmRVXD1XheY0xxrCfFGDOSuKp2qOoeVX0QWAn8\nmYjcICJdInKliGzBWdX0dHF8TUT2iEhMRDaKyNxhjnuOiDwvIn0isllELhl4QERGichDIrJTRKIi\nsnWk0zSZ5zooIj0i8iMRGfGfruzTPSKyC6dH56lMj8rOzKmolIjMyin3RRFpdfuHM8aUhiUpxph8\nxYAxmdsNwJ3AzcC7gYPAF4EFOMuyvxdnJdhlIvL2nOPcB3wbmImz0uoyEZmUeWwUsAdn5dRzgLuB\ne0TkEznH+AjOcvIfBK4FrsJZETof78Pp0bkBmAK8T1V3A/8L3JSz743AT/I8rjGmxCxJMcYcl4h8\nBJgLPJPZFAL+WlXXqOp2VY0Bfwd8S1V/ntn2FeAlnOQl2w9U9SlV3Qb8NXAYJ9lBVZOqereqblTV\n3aq6FFgMXJNzjDhwk6q2qOqvga8BeV0Yq6qdmZs9qnow61TQw8CnRaQuE/Ms4D2Z5zfGVIElKcaY\nkVwpIkdEJAb8D7AUp2cDoF9VXxnYUUQmAKcCL+Qc43mcHpFsawZuqGoKWJe9j4jcJiLrMqdyjgC3\nAGfkHGOTqsaz7q8GxovI6W6DzPIUkAb+InP/RuC3qtpWxDGNMUWwJMUYM5JngXOBacA4VZ2vqn2Z\nx/pGLlY4EbkW51TQj4GPAjOARzh6mqlsVDUBPArclOlN+TRO74oxpkosSTHGjKRXVXep6l5VTR9r\nR1U9ArwBXJTz0EXAqznb3j9wQ0RGA7Oz9vkA8LyqLlLVTaq6E8i9pgVghoiMzbp/IRBR1T3HjcqR\nAEYPs/0hnOTo85nHn8zzeMaYMrAkxRhTKt8Gviwi14jI2SLyLZyekO/l7HebiPy5iEzHGdY8Eae3\nBGA7cL6IXCYi7xCRb+Bc6JprDPCwiJwjIlcAdwE/cFHXVuDDInKKiEwc2KiqW3FOR90LLMk5pWSM\nqTCbJ8UYUyrfB94C/CtwMk7vyJWq+nrWPgp8JfMzA9iR2edQ5vFFOKN+fpbZdynQjDNPS7ZncBKa\n3+EkLEs4er3MwPNwjPt/B3wH+CtgH3BW1mMP4/TM2KgeY6pM8pt/yRhjgkFEvgpcraozq10XRDhs\nLwAAAIJJREFUY4LOelKMMQYQkUbgTOA24B+rXB1jDHZNijHGDLgfeBFnVNMjx9nXGFMBdrrHGGOM\nMZ5kPSnGGGOM8SRLUowxxhjjSZakGGOMMcaTLEkxxhhjjCdZkmKMMcYYT7IkxRhjjDGeZEmKMcYY\nYzzJkhRjjDHGeJIlKcYYY4zxpP8H4qHiDWIZvp8AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -879,25 +911,25 @@ "output_type": "stream", "text": [ "TRADING STATS\n", - "AVG Monthly Return :: 0.40%\n", - "STD Monthly :: 3.09%\n", - "SHARPE :: 0.45\n", - "MAX DRAWDOWN :: 10.45%, 30.0 months\n", - "Correlation to SPY :: 0.01\n", - "NUMBER OF TRADES :: 563\n", - "TOTAL TRADING DAYS :: 4268\n", + "AVG Monthly Return :: 0.03%\n", + "STD Monthly :: 2.94%\n", + "SHARPE :: 0.03\n", + "MAX DRAWDOWN :: 35.16%, 75.0 months\n", + "Correlation to SPY :: 0.00\n", + "NUMBER OF TRADES :: 769\n", + "TOTAL TRADING DAYS :: 4277\n", "SPY MONTHLY RETURN :: 0.76%\n", "SPY STD RETURN :: 4.44%\n", "SPY SHARPE :: 0.59\n", "SPY DRAWDOWN :: 55.37%, 8.0 months\n", - "0.104531465492\n" + "0.351648144393\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Wd0VFUXgOH3UKV36R2kSO9SQ5MqCCIooiAKCvaKDUFR\nFBBEkA8FaSIoYENUUFpQeu8QSuhVegup+/txJiFlEiZkJjNJ9rPWLDLntj0Tcvc95Z5rRASllFIK\nIJ23A1BKKeU7NCkopZSKoklBKaVUFE0KSimlomhSUEopFUWTglJKqSiaFJRSSkXRpJDGGGOuGmOu\nOF7hxpgb0coeNcYMMcaEON5fMMasNMY0cLKfUo7tJzhZFhFtn/8ZYxYbY7rHWme5Maav4+dmjm2+\njLXOv8aYJ6K9L2SMmWSMOeHY9wFjzFRjzD0JfN53jDGBjvWPGmO+j7bM3xgT5Fh21hjzo+MYTxlj\ndhtjMkZbN58x5owx5v54jlPUGPOdMeac47OvNcZ0iLa8pOMzpou13TRjzDBjzNvRvrMgY0yY4+er\nxpgd8RwzkzHmE2PMEWPMdWNMgDHm9VjrRP+MkfuvH8/+njLG7DHGXDbGnDLG/G6MyRZrnaGOz1E3\nVnlvR/noWOWdHeVTY30Pkf8HA40xg6KtH2GMKeMktt7RvpPon6WQs8+i7pwmhTRGRHKISE4RyQkc\nATpEK4s8Yf7gWJ4f8AfmOdnVE8AFoEf0k2fkYYBqjn1UAGYAXxpjBicQ2nXgcWNMCWcLjTF5gdVA\nFqCRY9+1gBVA63i26Q08BrRwrF8HWBorzoGOZfcAeYAxIjIFOA4MibbuWOB3EfnbyXHyACuBm0Al\n7Pc2FphtjOka63jOiIh8Evl7AJ4FVjt+JzlEpGo82/0INAfaAjmAx4H+xpgvnH3GaL/ndU4+QzPg\nY6CHiORyfI45To75OHAe+/uP7SDQPVbiewIIiP15gVyOz9oTeD9ask3obtrI7yT6ZzmdwPrqDmhS\nSNuM4+WUiEQAs4Aixph8sRY/AbwHhAIPxLdfEbkgIt8BA4B3HCdQZy4B04Gh8Sx/FbgsIo+LyGHH\nvq+IyAwRiVNbcagD/BVt/bMi8o2TWBGRS8BPQBVHeT9ggDGmmjGmDfbk+2oCsV0VkadF5D8RCRaR\nH7An2THxbJMkxpiWQCugq4jsEZEIEVkP9AKei3W1He/vOJo62JPudrDfh4jMFJHr0Y7ZFCgEvAg8\naozJEGsfp4EdQBvH+nmAhsBvzj6C4zhrgV3c+t5diVV5kCYFFS9jTCagN/bK8GK08iZAUeAHbC2i\ntwu7mw9kAOrFs1ywJ9GHjDHlnSxvCfzicvDWWuAJY8zrxpjasZtuojPG5AceAjYDiMgR4H1gGvA/\nYICIXI5n81bYhBLbXKBEPJ8nqVoB60TkZPRCR2I4jv2+EmMd0MbRPNTQ8buP7QlgAbdqjrEvBgT4\nllv/Hx4BfgVCnOzLABhjGgGVcXzvyvs0KShnehhjLgA3gKeAbo5aQ6QngD8dJ8nZQFvHSTVeIhIG\nnAPyJrDOWeAr4EMni/Njr0QBMMY8YIy56GhXXhTP/mYBLwD3Y5vBzhhj3oy12njHZ90CnABei7b9\nBGxNaKuILEjg4+UHTjkpPxVtubvFd8zI40Y/5jhj+4cuGmM2OttARFYCXYGawO/AOWPMaGNM5Mk7\nC/AwMMvxu/wR501IvwLNjDE5Hcu/dbKOAf4zxpwHJgGDRMQ/wU9r3ef4HJGfZb8L26hE0qSgnJkj\nInmBu4Gd2KYFAIwxd2FPDrMhqvp/DNs2HC9HU0MBbK0jISOwV6zVYpWfBwpHvhGRBSKSB3gFcHZV\nG7ne9yJyP5Ab21Y/zBgTvQ/iBRHJKyLFReQJEYkd3x5s80ZCzkWPLZrC0ZaHOX6O3f+SEZt4Eiu+\nY0Ye91y09y86PmMeEakTzzaIyF8i0tnxu+8M9AGedizu6ohzoeP9bKB97GZFEbkJ/IFtWswrImuc\nHQrIJyL5ROTeBJr/Ylvj+ByRn8UTNbA0T5OCipeIXACeAYYaYwo6irsCOYH/OUaonAKKcPsmpAex\nJ5UNLhxzLDCMmJ2OSx37uCMiEi4iPwHbudV+7S5LsN9LbD2AoyKyH3v1HgqUirVOaWyH/50cs74x\npmj0QsfIomLE7FBPNBFZDizj1nfVG8gOHHX8zudimwOdXQzMxPazzEzgENp34KM0KagEicg+YBEQ\nOWywNzAFqApUd7waAzWMMffG3t4Yk8cY8xjwJfCpiFyMvY4Tn2M7KCtFKxsD5DHGzIzsRDXG5ABq\nxLcTxzDG9saY7MZqh22/XutCDInxOZDLGDPFGFPQGJPZGPMo8DbwOkR12v8EfGyMyWuMyeBYpxK3\nrr5dJiJLsSf+n4wxlY0x6YwdOjwT+J+IBCZmf8aYTsaYHsaY3I739YBmwBpjTBGgBdAB+31XB6oB\nI3FyMSAikSPCvoy9LPJwtwkns+M7jHxFnqc0kSQDTQppm6sP0/gM6OcYLtoc+NwxkifytRl7Yot+\ngthmjLkC7Af6Ai+JyAeuHFtErmJPOHmjlZ0HGmCHfa507Hsz9up1QDy7ugK8g70Svwh8CjwbrUnD\nlc9/23UctZvG2OGyu7FNNy8DvUTkx2irDsQO490OnHG8by8i/7kQhzMPAcuxSfsqtv1+soi8mJj4\nHS5iR1ztM8ZcduxrhGMU1ePAZhFZGv33DowDqhpjKsfemYgsd4zociahmATbZHkDCHL828exrIGT\n+xRqu/j5lItMcjxkxxgzBegInBGRao6yPNhx0CWBw0D3yNEdxpi3sSeSMOzJJM7YcKWUUu6XXDWF\naTjGLkfzFrBERCpg2y7fBnBcdXTHVqvbYduutdqolFLJIFmSgmO4W+y25M7YO11x/BvZidgJe0dt\nmOOmo/3EP7ZdKaWUG3mzT+FuETkD4LhV/W5HeVHsEMdIJxxlSimlPMyXOpo937mhlFIqQbHnLklO\nZ4wxBUXkjGOmw7OO8hNA8WjrFXOUxWGM0USilFJ3QESc9tUmZ00h9uRrv3FrqFlv7Nw4keWPGDst\ncGmgHLA+vp2KyG1fQ4YMccs6rq7XrFkzjcuH43I1dlficuf3oHFpXJ48XvT1EpIsNQVjzGzAD8hn\njDmKnZL4U2CesXPqH8GOOEJEdhtj5mLHe4dip/1NUo3Az8/PLeu4ul6pUqXcti+NK3H7cmfsrsTl\nzu9B40rcehpX4o7n6nouZRhffdnwfc+QIUO8HYJTGlfiaFyJo3Eljjfjcpw7nZ5XfamjOdVwOSMn\nM40rcTSuxNG4EsdX40qWO5o9xRgjKTl+pZTyBmMMEk9HszdHH3lMqVKlOHLkTiaeTF1KlizJ4cOH\nvR2GUioFSZU1BUcW9EJEvkW/B6WUMwnVFLRPQSmlVBRNCkoppaJoUlBKKRVFk4JSSqkomhS8oFSp\nUhQsWJCgoKCosilTptCiRQsA0qVLR/Xq1WNsM3jwYPr27ZuscSql0h5NCl5gjCEiIoKxY8fGu87J\nkyf54YcfkjEqpZTSpOA1b7zxBqNHj+bKlStOl7/55pu8//77REREJHNkSqm0TJOCl9SpUwc/Pz9G\njRrldHnXrl3JlSsX06dPT97AlFJpWppNCsa455UUH3zwAV9++SXnz593Ep/hww8/ZNiwYYSFhSXt\nQEop5aI0mxRE3PNKinvvvZeOHTvyySefOF3erl07ihUrxldffZW0AymllIvSbFLwFUOHDmXy5Mmc\nOOH04XJ89NFHDB8+nBs3biRzZEqptEiTgpeVLVuWHj16MG7cOKfLmzVrRpUqVZgxY0YyR6aUSos0\nKXiBidUZ8f7773Pjxo2o8tjLP/roIy5evBinXCml3E1nSU3F9HtQSjmjs6QqpZRyideTgjHmFWPM\nTmPMdmPMLGNMJmNMHmPM38aYAGPMX8aYXN6OUyml0gKvJgVjTBHgBaCWiFTDPgnuUeAtYImIVACW\nAW97L0qllEo7vF5TANID2YwxGYAswAmgMxA53GYG8KCXYlNKqVTl74N/J7jcq0lBRE4Co4Gj2GRw\nWUSWAAVF5IxjndPA3d6LUimlUofwiHDeWPxGgut4u/koN7ZWUBIogq0xPAbEHjKjQ2iUUiqJZu+Y\nTdaMWRNcJ0MyxRKfVkCgiFwAMMb8AjQEzhhjCorIGWNMIeBsfDsYOnRo1M9+fn74+fl5NGCllPIl\nIsLNsJtcDr7MleArXA+5zo3QGwSHB1O/aH2yZcqGv78/S5Yt4cv1X9K1UlfWsjbe/Xn1PgVjTD1g\nClAXCAamARuAEsAFERlhjBkE5BGRt5xsr/cpJEC/B6VSt0MXD1H/m/pcDr5Mrsy5yHVXLrJlzEbW\njFkJiwjjWsg1fur+E5UKVGL06tH8c/Qf5j8yP8H7FLxaUxCR9caYH4EtQKjj30lADmCuMaYvcATo\n7r0olVLK94gIA/8cyMsNXuadJu84XWfqlqk0nd6Uj1t8zIhVI/Dv43/b/Xp99JGIfCAilUSkmoj0\nFpFQEbkgIq1EpIKI3C8il7wdpzutXLmSRo0akTt3bvLnz0+TJk3YtGkTM2bMIEOGDOTMmZPcuXNT\nq1Yt/vjjD86ePUuBAgX4559/Yuynb9++9OzZ00ufQinlTXN3zeX4leO80TD+juO+Nfuy5PEljFo9\nis4VOlO5QOXb71hEUuzLhh9XfOW+4MqVK5I7d26ZM2eOREREyM2bN2Xx4sWyY8cOmT59ujRp0iRq\n3fHjx0vWrFnl0qVLMnPmTClfvrzcvHlTRESWLFkiBQsWlPPnz8d7LF/+HpRSd+7CjQtS+LPCsuro\nKpfWvxl6U0LCQqLeO84NTs+rXq8ppDX79u3DGEP37t0xxpA5c2ZatWpFlSpV4qzbt29fgoKCOHjw\nIL169aJixYq8//773Lx5k2effZbx48eTN29eL3wKpZQ3vbXkLTpX6EzD4g1dWj9zhsxkTJ/RpXW9\nPfoozbnnnntInz49ffr04ZFHHqFBgwbkzp07znphYWFMnjyZHDlyUL58eQAmTpxI9erVCQgIoGrV\nqjz88MPJHb5SygtuhN5gQcAC1p1Yx9rjazl25Rg7BuzwyLHSbFIwH7hnGmoZkrjRPTly5GDlypWM\nGDGC/v37c+rUKTp06MCkSZMAWLNmDXnz5iVDhgyUK1eOX3/9lRw5cgBQtGhRPvzwQwYNGsTBgwfd\nEr9SyrftPbeXbnO7UThHYVqWbsnHLT6mbtG6ZM+U3SPH06mzvWzfvn089thjlC9fnjZt2jBlypQ4\nHcrRrVixgscff5yjR4/edt8p6XtQSsU1Z+ccnl/4PJ+0/ISnaj7ltmeq+OyQVGWbk/r06cOkSZNo\n06aNt8NRSrmJiBAhEaRPl97lbc5eP8vfB/9m86nNbDy5kRNXT/BXr7+oVbiWByONSTuak1lAQABj\nxoyJeibzsWPH+P7772nQoIGXI1NKhYSHcOrqqTjlQaFBvL/8fa6HXE9w+8OXDvPKoldoMaMF+Ubm\no8TYEiw+uNjl43ef153ZO2Zzd7a7ebfJu2x7dluyJgTQpJDscuTIwbp166hfvz45cuSgYcOGVKtW\njdGjR3s7NKVStbCIsASbU//c/ydV/leFe768h3m75kWVB4UG0fmHzny2+jN+3P1jgscYuWokp6+f\nZlCjQex+bjfTO0/nyflP8tpfrxEcFpzgtsevHGf7me380uMX3mr8Fm3KtfFYv0FCtE8hFdPvQalb\nmkxrQraM2Zj8wGSK5yoeVb7jzA7eXvo2+87vY2zbsRTJUYSOszvy2n2vMaDuAB784UHyZMlDl4pd\nmLhxIst7L4/3GOXGlePnHj9TrWC1qLLzN87Tb0E/Tl07xaq+q0hnnF+Lf77mc3ac3cHUzlPd96Hj\noY/jVEqlaVtObeHo5aM0LtGYWpNqMXnTZBYdWETrma1p810bmpdqzs6BO2lfvj01CtVg9VOr+WbL\nN1SeUJlcd+ViZpeZPFjxQXae3UngxUCnxzh44SDXQ69T9e6qMcrzZc3HT91/IiwijAUBC+KN8Ydd\nP/BIlUfc+rnvhNYUUjH9HpSy+i/oT8lcJXm36bvsPLuTfgv6cTPsJq80eIVHqjxCpvSZ4mxzMegi\nM7fPZGDdgWRIZ8fkvLjwRfLclYcPmn8QZ/2vNn7FmuNrmPHgjDjLAObtmsfYdWNZ1XdVnGWBFwO5\nb8p9nHj1RNSxPCmhmoImhVRMvweVFhy6eIgP//mQrBmykidLHkrnLk3fmn2jhm9evnmZUl+UYs9z\neyiUvVCSjrXl1Ba6zOlC4EuBcZqBuszpQrdK3Xis2mNOtw2PCKfClxWY/uB0GpdoHGPZJ/9+wvEr\nx5nQYUKS4nOVNh8ppVKlK8FX6Ph9RwpkLUClApXInD4z49aPY9TqUVHrfLvtW9qUbZPkhABQs3BN\nct+VG//D/jHKQ8NDWX5oOa3Lto532/Tp0vN6w9cZuWpknGXf7/zeJ5qOQO9TUEqlUOER4Tz606M0\nLdGUEa1GRNUM+tToQ71v6lGnSB2al2rOxI0TmdhhotuO26dGH6ZvnU6L0i2iytafWE+ZPGW4O1vC\nTw7uXb03Q/2Hsvu/3VEzlu46u4sLQRdoVKKR22JMCq0pKKVSpEFLBnEz7Cbj2o2Lcadv8VzF+a7L\ndzz282PM2jELYwxNSzZ123Efq/oYvwX8xpXgK1Flfx/8m/vL3n/bbbNkzMLz9Z5n1OpRhEeEczPs\nJrN2zKLHvT3iHZWU3FJlTaFkyZJuux08JStZsqS3Q1DKI77e+DXzA+az7ul1Tmf/bFmmJS/Xf5nH\nf3mccW3HufV8UCBbAbrf251eP/fip+4/kTF9Rv46+BfDWw53afuBdQdSaUIlMg7LSKb0mciROQdL\nn1jqtviSKlV2NCulUofAi4HkypyLfFnzRZX9uPtHXlz4Iv8++S9l85aNd1sRYdy6cfSt2ZccmXO4\nNa6Q8BC6zulKjsw5GN9uPGW+KMN/b/xH5gyZXdo+QiIwGK9dvKa50UdKqZTvRugNKk2oRFBoEB82\n/5B+tfqx4sgKHvnxEf5+/G9qFKrh1fiCQoPo+H1Hzt04R7Gcxfij5x9ejScxdPSRUirFGbVqFPWL\n1mfx44uZtWMWdSfX5ZEfH2Hew/O8nhDA9g/Mf2Q+ue/KTZeKXbwdjtt4vaZgjMkFfANUASKAvsA+\nYA5QEjgMdBeRy0621ZqCUqnQ0ctHqfl1TTb330zJ3CUREb7f+T35s+Z3qUM3OUWeg1JSP6ZPNx8Z\nY6YDK0RkmjEmA5ANeAc4LyIjjTGDgDwi8paTbTUpKJXCnb1+lo/++YieVXvSoJidLbjHjz2olL8S\nQ/2Geje4VMpnk4IxJiewRUTKxirfCzQTkTPGmEKAv4hUdLK9JgWlUrDAi4G0+a4NDYs3ZGngUpqX\nbk6H8h14c/Gb7H1+L1kzZvV2iKmSL/cplAbOGWOmGWM2G2MmGWOyAgVF5AyAiJwGEr4jRCmV4mw7\nvY0m05rwSoNXmPHgDPY+v5eSuUrS59c+fHb/Z5oQvMTbNYXawFrgPhHZaIz5HLgKPC8ieaOtd15E\n8jnZXoYMGRL13s/PDz8/P88HrpRKkrXH19L5h85MaD+BbpW7xVh2PeQ62TJl81JkqZO/vz/+/v5R\n7z/44AOfbT4qCKwRkTKO942Bt4CygF+05qPlIlLJyfbafKRUCrPx5Ebaz2rP9Aen0758e2+Hkyb5\nbPORo4nomDHmHkdRS2AX8BvQx1HWG5if/NEppdxt6+mtdJjdgckPTNaE4KN8YfRRdeyQ1IxAIPAk\nkB6YCxQHjmCHpF5ysq3WFJRKAS4GXeSXvb/w7rJ3+bLdlzxU+SFvh5Sm+ezoo6TSpKCU7woKDeLn\nPT8za8csVh1bResyrRlQZwAty7T0dmhpniYFpVSy2X9+P2PWjGHu7rnUK1qPx6s9zgP3POD2+YfU\nnUsoKaTKWVKVUt4RIRF0nduV9uXas/WZrRTPVdzbIalE8vZ9CkqpFOjQxUPU+roWu//bHaP85z0/\nkyVDFj5t9akmhBRKk4JSKlEuBF2g3ax2FMhWgH4L+hEhEYCtJXyw4gOG+g1NUfMAqZg0KSilXBYc\nFkyXOV3oUL4DCx9bCMD/NvwPgJ92/0TWjFlpV66dN0NUSaQdzUopl4gIj/38GCHhIcx9eC7pTDr2\n/LeHJtOasLH/RjrO7sio1qNoV16Tgq/TjmalVJJ9tvozDlw4wIo+K6KeJ1ypQCVeqv8SzaY3o3D2\nwrQt19bLUaqk0uYjpdRt/XPkH0avGc2P3X8kS8YsMZYNajyIkrlK8nGLj7UvIRXQ5iOlVIJOXztN\n7Um1mdJpitYEkoEIrF4N48ZB1arw3nvuP4bPzn2klPJtYRFh9PypJ0/VfEoTgoeFhMCsWVCvHvTu\nDfXrwzffwI8/Jm8c2qeglIrXtC3TCIsIY0izIbdfWd2RM2fgq6/s6957YfBg6NgR0qWDZs2gbVuo\nVMkuSw6aFJRSToWGhzJ85XBmdZ1F+nTpvR1OqhQeDg0bQsuWsGRJ3BN/7drw2WfQpQusXw+5c3s+\nJm0+Uko59d327yibpywNizf0diip1uLFkDcvTJoUf02gd29o0wYaN4bRo+HYMc/GpDUFpVQcYRFh\nfPzvx0ztPNXboaRqkyZB//63X++LL2xNYs4cqFED7rkH2re3TUu1a9umJnfR0UdKqThmbpvJlC1T\n8O/jn6jtQkNtM0eFCpA/v2diSy1OnYLKleHoUciRiAlkQ0LA3x/++gsWLoQLF+DZZ+G556BAAdf2\noVNnK6VcFh4RTuX/VWZih4m0KN3CpW1+/hlmz7ZXs0WL2hPXkiVQsmS0/YbDxo2wdSts2waBgfZk\nmDu33eatt+Cuuzz0oXzQ8OFw5Ah8/XXS9rNnD4wdC3PnQo8eMGrU7ZOMDklVSsUxb9c8Ai8Gximf\nsW0GBbIWoHmp5rfdR2goPP88vP02PPAABATArl3wwgvQpIl9D/bKtnZtePJJWLfO1iReeAEefhjq\n1oUNG+yyiAg3f0gfFREBkye71nR0O5Uq2cQSEAA3bthO6eDgO9+f1hSUSoMuBF2gxOclKJu3LGuf\nWht1l/LBCwdpMKUBSx5fQvVC1RPcx3//QffukDWrHV8fe2TM1Kn2xqu6dWH7dhg5Erp1A2c3PQcF\nQatWdgjm8OGJ+yyhoXDwIFSsmLjtvOmvv+Cdd2DTJvfuNzzc/k4yZrQ1t/j6GrSmoJSKYdKmSTxU\n+SEq5a/ES4teAuwQ1J4/9+S9Ju8lmBCuXLHNFTVrwn33wW+/OR8q2bevvYJt1sw2cTz8sPOEAJAl\nC8yfD/Pm2SvonTvhk0+gaVPo2hWmTLFt8LEFBtpROTVrwvLld/JNeIerHcyJlT69TdCnTsFLL9m7\no2Pbvz/hffhETcEYkw7YCBwXkU7GmDzAHKAkcBjoLiKXnWynNQWlEikkPITSX5Tmz55/UjpPaepM\nqsP7zd5nz3972HJ6C3/0/CNqDqODB+Hjj+1JO3dumxBmz4bWreHVV+3dt+60fz80amSP98AD0KED\nnDsHv/8Of/8NZcvaG7s6doR9++yJ77337HQQjz5qE0Plyu6Nyd327LHJ7uBByJnTM8e4dAmaN7d9\nNR9/DNWr21rE2LE22Z4/7+MdzcaYV4DaQE5HUhgBnBeRkcaYQUAeEXnLyXaaFNzs4kXIk8fbUdgr\nwGnToHBhKFPGNg2UKuXtqFKHmdtmMmPbDJY8sQSAbae30eLbFmROn5ktz2yhYPaCgG2WadTIvsqU\ngcuX7ZX+449DiRKeiy80FDJkiFurCA2FVatsgvj9d9s08t13UKuWXf7ttzBkCKxZA4UKeS6+pOrY\nEVq0sEnVk4KDbU1t+HDw84NDh2xT3zffQLly8ScFRMSrL6AYsBjwA35zlO0FCjp+LgTsjWdbUe5z\n9KhIliwi69Z59jjffSfy11/Ol0VEiHz9tUi+fCIvvyzSv79I69b2/Wef2eWRrl4Vef55kTlzPBtv\nSnfwwkGJcHxxERERUn1idflz358x1vlt72+y8sjKGGWDB4u0bRvzO/d1Q4eK1KsnEh6e9H2Fhoos\nXmz/r/r7i2zbdvttLlwQ2b5dJCzM+fK//xYpW1bk5s2kx+eqq1dFRowQ+eabW9+L49zp/Jwc34Lk\negHzgBpAs2hJ4WKsdS7Es617v7007sknRYoVE3nmGc8dY8QIkdKlRUqWFHniCZFz52x5aKjIqlUi\n7dqJ1KolsmtXzO2OHBGpWlVkwAC77pYtIvfcI/LYY3Zf77/vnhNBajNm9RhJ90E6aTmjpWw8sVGW\nBi6VSl9WkvCIhL+s1atFChYUOXkymQJ1k4gIkZo1RRYtStp+1q2z+6lZU6RVK5EmTez3MXFi/Nv8\n84/9+ylTRiR3bpH27e36oaF2eViYSJUqIj//nLTY3MFnkwLQAfjS8bNfAknhfDzby5AhQ6Jey5cv\nd/uXl1bs2CFy9932ZJwnj8j16+7df0SEyJAhIhUqiBw/bq9eXnxRpFAhkQceEMmVS6R6dZFPPhEJ\nCXG+j8uXRe6/314J5s8vMnu2LT99WuS++0S6dXN/3CnZpI2TpOTnJeXghYMyccNEKfxZYbl71N0y\nedPkBLe7etVezf70UzIF6mZffSXSteudbXvunMjAgfb/5Xffxawl7dtn/0b++SfmNuHhIsOH26Tx\np6MCduaM/f5atrT/r9essTXgZs28U/Navnx5jHOlLyeF4cBRIBA4BVwDZgJ7YjUf7Ylne898gx7y\nxx8iJ05459jXr9s/9vh07Cjy+ef257Zt7R+EOw0ebK/0T5+OWb5+vT25xy6PT0iIyMiRIvv3xywP\nChLp0kVk0CD3xJvSzdo+S4qMLiL7z9/6oq4GX5Upm6dIUGiQ021u3rRXtiVK2Ga5lOryZXulnpha\nzuXLIh98YJspBw60zUDOLFpkE8aRI/bkvmyZSKNG9nXsWNz1IyLs/+/ChUWyZxfZtOnOPpO7+WxS\niBFIzOajkcAgx8+DgE/j2cb935aHHD4ski2bvQpv08aedI8e9fxVw5Yt9j95njy2meX48bjrrFgh\nUqrUrXZLSsg4AAAgAElEQVTOOXNEWrSIu97Vq7bq26ePyPjxrscQWQv57787+ggu27RJpFy5lNUG\n7gnfbv1WCo4qKDvO7Ih3nZMnbRJt0MDW1Hr3tk0f7drZq9qUrl8/kY8/dr7s6FGRjz4S6dVL5OGH\nRTp1sv8/e/USOXDg9vseNUqkWjWRpk1FypcX+fbbW01E8bl4MelNWu6UEpNCXmAJEAD8DeSOZxsP\nfF2eMXq0yNNP2yv22bPtlXmhQrbZpFEjkfnz3XMcf3+RV1+1f9ylSokUL247344eFfn0U9umGf0q\n6Pp12xwTvWZw86a9Yjp0yL4PC7NNPTly2PbVTz8VyZtX5Px512Jq107kiy/c8/kSEhFhP2/s/oi0\nIiIiQoatGCYlPy8pu87G/yUsXGj/7w0ZYvtxfv1VZPJkkQ0bki9WT9uwwf7/j97P9Ndf9oIsb16R\nZ58VmTFD5Icf7IXOnj2u7zuyKdSVZOCrUkRSuJNXSkoK993n/Erh7FmRBQtEihSxiSMpV7l79ti2\n9uHD7R96QEDMURARESKvvGKT0MWL9mq/cGF7hRS7k/b55+1//Js3RR56yLaNRk8CTz1lO3dvZ/Fi\ne/UeHHznnysxXngh/ivE1GbVKvt5Bw4U6fdsiNQd9rRUm1BTTl5x3m4SFmab14oXtxcPqV2tWvZv\nLiLC1gyKF7cXPzdueDsy79Ok4GVHj9or7/g6UEVsG2WVKrdG1yRWcLD9I0hodISIPfn36iVy1112\ndMTmzc7X27zZNje1bGmTQuwhdAcO2M906VLCx6pRQ2TevER9lCRZulSkbt3kO563XL9u2/6HDLHJ\nve3Id6XQmy0kb+Er8sEHNulHFxRkm0r8/G6N+ErtvvrK1sh79RKpXdt7/Xm+SJOCl40da4d73k7k\n6Jqnn078MQYNsm3DrtQ0QkJsO//t1Klj7xOIb8z1E0+IDBsW//YzZtgaUnK28YeE2OYBZ51+iREU\nFDfhnT5tE9y4cbavxptDYIcOFene3f4ccC5A8o3IJ8cvH5d9+2yfT548tslv/377Ofz87Ois5Bwf\n721XrtjOXR2VFleSkwLQEOgJPBH5cmU7T79SSlJo3NiOPHLF1au2uSUxwwGXLbPNT2fP3ll88Umo\nZiMisnevba66ciXudtOn2yF6K1c639aTHn9cZMKEO9s2IkJk1iz7fWbLdmuobPnydkRLhw42aZcv\nbz97t2622W/1aptIEiMk5M6S15EjtpZmR8BEyP0z75fPVn0WY51jx0TeftvGWLCgyHPPxZ/cU7Mj\nR/T+FWcSSgq3nebCGDMTKAtsBcIdxSIiLya4YTJICdNcnDwJVarYCaoyZ3Ztm3XroFMn2LzZzl2S\nkHPn7G3+kybZpzAlt5497fwtrVrZybiOHoXPP7fTIrz3nr2dP7n9/LN9CPrff8csF7ETq73+up1b\np2BB+ypb1k7lXKwYjB9v5/eZMAEaNLAPMDlyxM46ee+9MWedPHYMVqyw0yqsXWvnspkxAzp3vn2M\nIna6iHnz7Bw/b7wB9eu79vl69LDTJQ8dCj/t/okh/kPY8swWMqbPGGfdGzfsswsaNIh/MjqV9iTp\nITvGmD1AZV88+6aEpDBhgj3Jf/tt4rb78EP49187xW5809+K2BNKpUr2wRreEBhoT/4hIXbCrRw5\nYMAAO3umt1y/budMOnr01uydN27YJ1OtW2cfaZg3L5w9a5P1gQN2crWDB+33+cwzNsEl1qZNdl6b\n4cPtswES8uGH8Mcfdg6f77+HMWOgeHH73XXtGv/DZlasgCeesJOqRWS4RuUJlZnZZSbNSjVLfMAq\nzUpqUpgHvCgiTiau9a6UkBT8/OzEV506JW67sDA75XDTpnaSL2cniTFj7NOW/vkHMmVyS7ipRqdO\n9mHnlSvDjh22hlClip0gLHt2zx03IMAe9/nn4eWX7cRusc2ebefSX7v21sRtYWF26uhJk2wNsUcP\nWwMsW9bWFv/91/6uV6+2FxhVmwYy8I+BFMhWgJldZnruA6lUKalJYTl2bqL1QNTzfEQkkac59/Nm\nUggIgFy5Ep6N8cAB+4CRU6fu7DGDR4/aq9vNm+G11+wVbLZsdtn69faqdP16nT3Ume+/h4EDbZNP\n1ao2OXfvnjxNKMeP2yakbdtszSlfPttMVbSofYbuvHmwdKmNy5lDh2xtZu9e+3/oyBE7RXX37uB3\n/3W+3PIpEzdO5LX7XuPV+14lcwYX2yWVckhqUnBaLxWRFW6ILUm8mRR69LAn4xEjnC8PD7dX+t26\n2SvGpNi61TZJ/PabPcEUKGD7Kr76yjY1KN8UEWHntT93Ds6csb+zEyfsVNSu9h/E1va7tmTPlJ2x\nbcdSLGcx9was0ow7TgrGmPTAEhG5/cNavcCbSaFGDdvuHN/j9EaOhIUL7RVhfH0CiXXzpj3BnD1r\n30fOI6/Shq2nt9JhdgcOvXSITOm1vVDduYSSgpMWz1tEJNwYE2GMySVOnnyWVkVE2CdEGWNP0vnz\nx1y+fbvt+N240X0JAWwTVLFi9qXSnjFrxvBCvRc0ISiPSjApOFwDdhhjFgPXIwt9YUiqtxw/bodh\n1qkDy5bZtt5IISF2dMjIkVCypPdiVKnLiSsn+H3f73zR9gtvh6JSOVeSws+Ol3IICLDj2lu3hsWL\nYyaFadNsp2KfPl4LT6VC49ePp1e1XuTJ4gPPSlWp2m2TgojMSI5AUpLIpNCqlR0WKmKbkkTgf/+D\n0aP1RiHlPtdCrvHN5m9Y32+9t0NRacBtk4Ix5hAQpzdXRMp4JKIUIDIpVKpkHyZ+8CCUK2cfKh4c\nDC1bejtClRIEhQZx8upJyuYtm+B6U7dMxa+UH2XypNk/OZWMXGk+qhPt57uAh7HPO0izAgLslBLG\n2NrC4sU2KUyYYO9I1VqCup2wiDC6zevGskPLGN9uPE/XejrOOnvP7WXihol8u/1b/ur1lxeiVGnR\nbcfGiMj5aK8TIjIW+2zlNCuypgC3+hVOn4ZFi6B3b+/GpnyfiDDg9wFESAQb+m1gzJox9F/Qn+Cw\nYA5eOMj4deNpPqM5ftP9yJE5B9ue3Ua9ovW8HbZKI1y5eS36aPh02JrDABGp7snAXOGN+xRu3LDz\n5ly7ZqcwOH3aNiO9/LK9MWnSpGQNR6VAH674kPkB81nRZwXZM2XnavBVnpz/JEsCl3BXhrtoX749\nHe/pSIfyHfRuZeUR7pjmIlIYcAgYLSIB7gvxzngjKWzbBo8+Crt33yqrWtX2K6xebW9qUyo+UzZP\nYfjK4azqu4pC2W/NkSIiBF4MpHSe0qQzbry5RSkn7vjmNYenRCQw1g5LuyWyFCggACpWjFnWurW9\nb0ETQtogIpg76DhaELCA95a/x4o+K2IkBLB/pLfrcFYqObhySfKji2WJZowpZoxZZozZZYzZYYx5\n0VGexxjztzEmwBjzlzEmlzuO5w7R+xMivfMOfPedd+JRyWvG1hnkHpGbNt+1YeSqkez5b49L260+\ntpq+v/Vl/iPzuSffPR6OUqk7F29NwRhTEbgXyGWMiT7tWk7sKCR3CANeFZGtxpjswCZjzN/Ak9g5\nl0YaYwYBbwNvuemYSRIQYEccRZc/f9ypLlTqc/DCQV5f/Dp/9vyT/278x7JDy2g4tSFHXj5Czsw5\n491u19lddJnThZldZmqHsfJ5CTUfVQA6ArmBB6KVXwX6uePgInIaOO34+ZrjgT7FgM5A5OysMwB/\nfCgpPPect6NQyS0sIoxev/TivSbv0ahEIwAerPggx68cZ96ueTxV66k421wJvsKnKz/l601fM67t\nONqW88Kj8ZRKJFc6mu8TkTUeD8SYUtiTfxXgmIjkibbsgojEuTciuTuaRewzFA4ftiOQVNrx4YoP\nWXl0JYt6LYrRETx/73zGrB3Dij4xZ5KftX0Wr/39Gu3Kt2NY82E6zbXyKUntaD5vjFkKFBSRKsaY\nakAnEfnIjQFmx/ZTvOSoMcQ+08d75h86dGjUz35+fvj5+bkrLABWrrRz32fMaIefZs6sCSGt2XBi\nAxM2TGDLM1vijAxqV74d/Rb049DFQ5TOY8dfHLp4iBcXvciSx5dQs3BNb4SsVAz+/v74+/u7tK4r\nNYUVwBvA1yJS01G2U0SqJDHOyP1nAH4HForIF46yPYCfiJwxxhQClotIJSfberSmEB5un3TWpw9M\nnGifj/veezZRqLRBRGg6vSl9a/TlyZrOH7z84sIXyZclH0P8hgDQ86eeVMxfkfebvZ+coSrlsoRq\nCq6MPsoqIrFn4gpLelhRpgK7IxOCw29AH8fPvYH5bjyeyw4fhjx57JxG48Y5H3mkUreFBxZyIegC\nT1R/It51elfvzbfbv0VE2HhyI/6H/Xn1vleTMUql3MeV5qNzxpiyOJpwjDHdgFPuOLgxphHwGPZ5\nDVscx3gHGAHMNcb0BY4A3ePfi+fs3QvVqtmHvTdsaB9u062bNyJR3hAhEbyz9B0+av4R6dOlj3e9\nWoVrcVeGu1h5dCVD/IcwpNkQsmfKnoyRKuU+riSF54BJQEVjzAnsHc293HFwEVkFxPfX1iqe8mSz\nZ4+dwqJUKfjxR2jeHN5919tRqeQyZ+ccMmfIzIMVH0xwPWMMvav3ZuCfAwkND3U6EkmplMKV5ykE\nAq2MMdmAdCJy1fNh+Ya9e+3T1cDWFDZvhnv0vqM0ITQ8lMHLBzPpgUku3b3cq1ov3l76Nj93/5kM\n6Vy51lLKNyXYp2CMSW+MyQ8gIteBYGNMP0dHcKq3d2/MKS3uvdeOQlLJ79TVUyTn8OOpW6ZSOk9p\nWpRu4dL6RXIUYceAHXSq0MnDkSnlWfEmBWPMI8AFYLsxZoUx5n4gEGiP7QdI9WInBeUdf+7/k2Kf\nF6PxtMb8se8PjyeH4LBgPv73Yz5qnrhR15ULVL6jOZGU8iXxDkk1xuwEHhSRA47ps9cA3URkQXIG\nmBBPDkk9dw7Kl4cLF/ShOd508MJBGk5tyI8P/8jJqycZvnI4BsPEDhO5r/h9HjnmVxu/Yn7AfBY+\nttAj+1fK2+705rUQETkAICKbjTH7fSkheNqePbaWoAnBe26E3uChuQ8xuOlgmpRsAkD3e7szb/c8\nHpzzIM/UfobBTQeTMb372vRCwkP4ZOUnzOk2x237VColSSgp3G2MiT7YOnf09yIyxnNheZ82HXlH\neEQ4V0OuciX4Cu8sfYcqd1fhubq3JpsyxtD93u40KdGEJ+c/SaOpjfih2w9ue37x9K3TqZi/Ig2K\nNXDL/pRKaRLqaJ4M5Ij2iv0+VdOkkPymbZnGXR/fRcmxJWk8tTHng87HO/qncI7CLHxsIT2r9qTR\n1EasOroqyccPDQ9l+L/DGdJsSJL3pVRKFW9NQUQ+SM5AfM3evdC0qbejSDuOXT7Gm0veZOszW7n3\n7ntd2sYYw8sNXqZCvgp0mdOFsW3H0rNqzzuOYca2GZTPV56GxRve8T6USul0QHU89u61N64pzxMR\nnv3jWV6s96LLCSG6duXbsaz3MjrO7khIeAh9avRJ1PbHrxxn2Iph/LTnJ/587M9EH1+p1OS2E+L5\nMk+NPgoKsnMeXb2q9yUkh5nbZvLZms/Y2G9jkjqNN57cSJc5XTj44kEypc/kdJ3wiHAGLRlEUGgQ\nGdJl4ErIFX4L+I1+tfrxRsM3yJc13x0fX6mUIqkT4qVKly7Z4abO7N8PZcpoQkgOZ66d4fXFrzO1\n09QkjyKqU6QOlQtU5ttt38a7zq7/djF311wqF6hMmTxlqFmoJjsH7OTTVp9qQlCKRDQfGWMaAEOx\nj+IcKyK/eiooT9q3D774AmbPttNir1gBZWM9L107mZPHtZBrdJ3blX61+lG7SG237PPdJu/Sd35f\n+tTo43S6iXXH19G8dHOeq6ePz1PKmYTuaC4Uq+hVoAv2juZhngzKE27ehKefhsaN7UNydu2C99+3\nz1s+dizmupoUPO9G6A0e+P4BKuWvxIfNP3TbfpuWbErhHIWZt2ue0+XrT6ynXhF9TrJS8Umo+egr\nY8z7xpi7HO8vAd2wieGKxyNzoxMnoFkz20dw6BAMGwZFikD//vD88zYxnDlza33tZPas4LBguszp\nQpEcRfi649dxnmaWVO82eZfhK4cTIRFxlq0/uZ56RTUpKBWfeP8aReRBYAvwuzHmCeBlIDOQD0h4\nLmEf8s8/9nGanTvDDz/YJqPoXnsNevaE++6zTUrh4bfuZlae8drfr5E9U3ZmPDgjwecU3Kk2ZduQ\nOX1mFgTEvAH/esh19p/fT7WC1dx+TKVSC1cex5keGAh0BD4WkX+SIzBXxDf6KCQE5s2DL7+Ekyft\nvw88kPC+li6FwYPhyhU4eNDWHHLm9FDgadjNsJsUGW1nFC2as6jHjjNn5xy+2fINix9fHFX275F/\neX3x66x7ep3HjqtUSnBHo4+MMZ2MMcuBRcBOoAfQ2Rjzg+NJbD5p/Xr7zINp02DQIAgMvH1CAGjZ\n0j52c9QoGDhQE4KnLNy/kGoFq3k0IQA8UOEB1p9Yz7kb56LK1p9YT/2i9T16XKVSuoQacz8C2mEf\nhTlCRC6JyGvAYODj5AguMURg0iTo2NGOLlqyBB58ENInonXCGGjXDkaP9lycad33O7/n0SqPevw4\nWTNmpU3ZNvy699YgOe1PUOr2EkoKl4GuwEPA2chCEdkvIo94OrDECA+Hfv1sMli50vYfKN9zNfgq\nfx38i26Vk+dB1w9Xfph5u2+NQlp/QpOCUreTUFLogu1UzgDc+YQySWCMaWuM2WuM2WeMGRTfeoMH\n236Adev0cZm+bH7AfBqXaJxsN4m1L9+etcfXcv7Gec5eP8ulm5col7dcshxbqZQqoQnxzgHjkzGW\nGIwx6YAvgZbASWCDMWa+iOyNvt5PP9lRQxs2QPbs3ohUuSq5mo4iZcuUjdZlWjM/YD53Z7ubukXq\nun34q1KpjS//hdQD9ovIEREJBX4A4jQMPfusTQwFCiR7fCoRzt84z8qjK+lcIXnb9iKbkLTpSCnX\n+HJSKApEv9f4uKMshs8+g9rumSFBedCPu3+kTdk25MicvI/i6HBPB1YfW81fB//SpKCUC1L81NmH\nDg1l6FD7s5+fH35+ft4MRzmERYTx4sIXOXzpMDdCb7D7v91MfmBysseRPVN2WpVpxc97fqZukbrJ\nfnylfIG/vz/+/v4ureuzU2dHTsAnIm0d798CRERGRFvHI1Nnq6T7Yu0X/Lz3ZwY1GkTWjFnJfVdu\nqhes7vQpap72/Y7veXPJmxx75djtV1YqDUjo5jVfTgrpgQBsR/MpYD3wqIjsibaOy0nhRugNBi8b\nTLNSzehUoZMnQk4VRCTJJ+4z185QZWIV/unzD5UKeH8SqdDwUHae3UnNwjW9HYpSPiFFPk9BRMKB\n54G/gV3AD9ETQmJsOrmJWl/XYsmhJUzbOs2dYaYaIsLULVPJPyo/gRcDk7SvQUsG0ad6H59ICAAZ\n02fUhKCUi3y6T0FEFgEVkrKPrzd+zeDlg/mi7Re0KN2CihMqEh4R7pGJ2FKqi0EXefaPZ9n9325q\nF67NH/v+4IX6L9zRvlYfW82SwCXsee6O8rdSyst8tqbgDudvnOftpW+z+qnVPFr1UQpmL0ixnMXY\ndGqTt0PzGVeDr1JrUi0KZivI+qfX0792f/48cGfPKQ6PCOf5P59nVOtRyT7KSCnlHqk6KYxfP56u\nlbrGuIu1VelWLAlc4sWofMvcXXOpUagG49qNI0vGLLQu05qVR1dyI/RGove1/sR6gsODeaSKT82C\nopRKhBSfFFYeXem0/FrINSZsmMCbjd6MUd6qjCaF6KZunUrfGn2j3ue6Kxe1CtfC/7B/ove17NAy\n2pRt45URRkop90jxSeGhuQ+x8+zOOOWTNk2ieanm3JMv5mRITUs2ZcPJDXd0JZza7D23l8CLgbQr\n3y5Gefty7flzf+KbkJYeWkrL0i3dFZ5SygtSfFL4vM3ntJvVjiOXjkSVBYcFM2bNGN5u/Hac9XNk\nzkH1gtVZdXRVcobpk6Zvnc7j1R6P84D7duXbsfDAQhIzXDkoNIj1J9bTpGQTd4eplEpGPj36yBU9\nq/bkv+v/4TfDj741+tK6bGu2nd5GlburxDsMsWXpliwJXELrsq2TOVrfERYRxrfbvmXpE0vjLKt6\nd1WCw4LZd34fFfK7Nvhr1bFVVCtYjZyZ9elESqVkKb6mAPBSg5eY0mkKl25eov+C/gz4YwDvNHkn\n3vVblWnF0kNxT4ZpyaIDiyiZu6TTewmMMbQrZ2sLzhy+dJiNJzfGKFt2aJk2HSmVCqSKpADQonQL\nRrcZzfYB27ny9hWalmwa77r1i9Vn3/l9nL9xPs4yEeH0tdOeDDXZREgEERLhdNm0rdNidDDH1r58\n/P0Kw1YM4+F5DxMaHhpVtvTQUlqW0aSgVEqXapJCdNkzJfxghUzpM9G4RGOWH14eo/xq8FV6/dKL\nMl+UISg0yJMhetypq6do8E0DBvw+IM6yM9fOsDRwKT2q9Ih3+5ZlWrLm+BquhVyLUR4aHsqvAb+S\n5648TN86HYBLNy+x+7/dNCjWwK2fQSmV/FJlUnBF23JteX/5+4xdO5ZDFw+x9fRWak+qTdYMWalU\noBJrjq/xdoh3bMeZHTSY0oA2Zdvwx/4/+OfIP1HLRIQBfwygf+3+Cbb/58yckwbFGrAgYEGM8qWH\nllIhXwUmtJ/AR/9+REh4CCsOr6BBsQbcleEuj30mpVTySLNJYWDdgXza6lN2nNlB/W/q03xGc4b6\nDWVyp8m0KduG5YeW334nPmhJ4BJaftuST1t+yrAWwxjXbhz9F/QnOCwYgG82f0PgxUCGNR922309\nX/d5Pl/7eYxRSHN3zeXhyg9zX/H7qFygMlO3TNX+BKVSExFJsS8bftKFhYfJlZtXot7/deAvaTy1\nsVv2nZwiIiKk7BdlZeH+hTHKOn3fST7w/0D2/rdX8o3IJ7vO7nJpf+ER4VJ+XHn55/A/IiISHBYs\neUfklaOXjoqIyLrj66TYmGJSYXwFWXd8nfs/kFLKIxznTqfn1TRbU4gufbr0MebqaVS8EVtObUlx\nN7itOraKzBky06Zsm6gyYwxftvuScevG0XVuVz5s/iGVC1R2aX/pTDpeafAKn635DIClgUupmL8i\nxXMVB6Be0XpUL1id09dOU7uwPv5OqdRAk4IT2TJlo0ahGinuBrfpW6fTu3rvONNMFM9VnOEth1Ot\nYDUG1Inb8ZyQ3jV6s+bYGvad38fc3bbpKLoRrUbwXtP3dNZZpVIJn33Ijis8+eS1wcsGEy7hDG85\n3CP7d7cboTcoNqYYOwfupEiOIm7d9+Blgzl59SS/7P2F7QO2UyxnMbfuXymVvFLkQ3a8rXnp5nGG\nrPqyX/f+Sv1i9d2eEACeq/ccs3bMonKBypoQlErlNCnE475i97HjzA6uBl/1dihOrTm2JsaNaZFN\nR55QKHshXqj3Av1r9/fI/pVSvkOTQjyyZMxCnSJ14p2a25t+2fMLjaY2osucLly6eYnjV46z6dQm\nOlfo7LFjjrp/FE9Uf8Jj+1dK+QZNCgloXsr3mpCuBF/hxUUv8vfjf1MyV0nqTKrD4OWD6VapG1ky\nZvF2eEqpFM5rScEYM9IYs8cYs9UY85MxJme0ZW8bY/Y7lt/vrRj9Svn5XFJ4Z+k7tC3bllZlWjGu\n3TiGNR/Gj7t/pG/N+OcxUkopV3lt9JExphWwTEQijDGfYm+meNsYUxmYBdQFigFLgPLOhhl5cvQR\n2Ocy5BuZj5OvnfSJKaHXHFvDQ3MfYtfAXeTJkieqPCQ8hEzpM3kxMqVUSuKTo49EZIlIVE/pWmwC\nAOgE/CAiYSJyGNgP1PNCiGTOkJkK+Suw99xebxw+hpDwEPr/3p/P23weIyEAmhCUUm7jK30KfYHI\neZqLAseiLTvhKPOKivkr+kRSGLt2LMVyFqP7vd29HYpSKhXz6JPXjDGLgYLRiwAB3hWRBY513gVC\nReT7OznG0KFDo3728/PDz8/vTsN1qmI+7yeFY5ePMXLVSNY9vS7O3cpKKXU7/v7++Pv7u7SuV+9o\nNsb0AfoBLUQk2FH2FrZ/YYTj/SJgiIisc7K9R/sUAObtmsf3O7/n5x4/e/Q4Cek2txtV7q7CUL+h\nXotBKZV6+GSfgjGmLfAG0CkyITj8BjxijMlkjCkNlAPWeyNGgAr5KxBwPsBbh2fRgUVsOb2FQY0G\neS0GpVTa4dHmo9sYD2QCFjuaRNaKyEAR2W2MmQvsBkKBgR6vDiSgfN7yBF4MJCwijAzpkvfruhl2\nk+f/fJ7x7cbrPQhKqWThtaQgIuUTWPYJ8EkyhhOvLBmzUDh7YQ5dPET5fPGG7BGzts/innz30L58\n+2Q9rlIq7fKV0Uc+zVsjkH4N+JVe1Xol+3GVUmmXJgUXeCMpXA+5zorDK2hXrl2yHlcplbZpUnBB\nhXzJ39m8OHAxdYvWjXOjmlJKeZImBRd4o6bwW8BvHp31VCmlnNGk4ILkTgrhEeH8vu93OlXolGzH\nVEop0KTgkruz3U24hHPuxrlkOd6a42sonKMwpXKXSpbjKaVUJE0KLjDGUDF/RQLOJU+/gjYdKaW8\nRZOCiyrkS77ZUucHzNekoJTyCk0KLkqufoW95/ZyPeQ6tQrX8vixlFIqNm9Oc5GiVMxfkSlbpnhk\n399s/obZO2ZzLeQap6+d5qFKD+lsqEopr9Ck4CJP1RRCwkN4e+nbfN3xa4rmKEq2TNm4J989bj+O\nUkq5QpOCi8rkKcOxy8cIDgsmc4bMbtvvgoAFVLm7Cl0rdXXbPpVS6k5pn4KLMqXPRMncJTlw4YBb\n9ztt6zSerPGkW/eplFJ3SpNCIjQp0YQF+xa4bX+nrp5i9bHVPFTpIbftUymlkkKTQiIMqDOAiRsn\nEh4R7pb9zdw+k66VupItUza37E8ppZJKk0Ii1C5SmyI5ivD7vt+TvC8RYeqWqdp0pJTyKZoUEum5\nupK6RxcAAAwESURBVM8xYcOEJO9n7fG1REgEDYs3dENUSinlHpoUEunhyg+z7cy2GFNebDq5ifUn\nEvcY6Wlbp9GnRh+9H0Ep5VO8nhSMMa8ZYyKMMXmjlb1tjNlvjNljjLnfm/HFljlDZp6u+TT/2/A/\nAGZum0nT6U15Z+k7Lu9DRFiwbwE97u3hqTCVUuqOePU+BWNMMaA1cCRaWSWgO1AJKAYsMcaUFxHx\nTpRxPVPnGWp+XZMM6TLwa8CvLHtiGa1mtuJayDWyZ8p+2+0PXTqEwVAmT5lkiFYppVzn7ZrC58Ab\nsco6Az+ISJiIHAb2A/WSO7CElMhVgpalW7Lp1CbWPb2O+sXqU7dIXZYfWu7S9quOrqJh8YbadKSU\n8jleqykYYzoBx0RkR6yTY1FgTbT3JxxlPuW7rt+RIV0G0hmbV9uWa8uiA4t4oMIDt9129bHVNCre\nyNMhKqVUonk0KRhjFgMFoxcBArwHvINtOkqRMqXPFON9u3Lt6PxDZ0TktjWAVcdW8WRNHYqqlPI9\nHk0KIuL0pG+MqQKUArYZewYtBmw2xtTD1gxKRFu9mKPMqaFDh0b97Ofnh5+fX1LDviNV7q5CSHgI\n+y/sT3BCu0s3LxF4MZCahWomY3RKqbTM398ff39/l9Y1vtB/a4w5BNQSkYvGmMrALKA+ttloMeC0\no9kY40v9zzz929NUvbsqLzV4Kd51Fh1YxKcrP8W/j3/yBaaUUtEYYxARp00a3u5ojiTYpiVEZDcw\nF9gN/AkM9KkzfwLalWvHooOLElxn1dFV2p+glPJZPpEURKSMiFyI9v4TESknIpVE5G9vxpYYrcq0\nYtXRVQSFBsW7zqpjq2hUQpOCUso3+URSSC1y3ZWLGoVqsOLICqfLQ8ND2XByA/cVuy+ZI1NKKddo\nUnCzduXasXD/QqfLtp3ZRslcJcmTJU8yR6WUUq7RpOBmLcu0jLemoP0JSilfp0nBzaoXrM7+C/u5\nEXojzrLVx1drf4JSyqdpUnCzzBkyU7lAZbae3hqjXES0pqCU8nmaFDygbpG6cabSPnjxIILoJHhK\nKZ+mScED6hapy4aTG2KU+R/2x6+Un06Cp5TyaZoUPKBu0bpsOBEzKSw/vJzmpZp7KSKllHKNJgUP\nqJS/EqeuneLSzUuA7U9YfkiTglLK92lS8ID06dJTs1BNNp7cCMC+8/vIkC6D9icopXyeJgUPid7Z\nrP0JSqmUQpOCh9QtequzWfsTlFIphSYFD6lbxHY2iwj+h/1pXlqTglLK92lS8JAyecoQFBbE8sPL\nyZIxC6Vyl/J2SEopdVuaFDzEGEPdInUZtXoUfqX8vB2OUkq5RJOCB9UtUpdFBxZpf4JSKsXQpOBB\ndYvWBdCaglIqxdCk4EENizekx709KJGrhLdDUUopl5gU8vhjp4wxKeXxzUop5TOMMYiI0xunvFpT\nMMa8YIzZY4zZYYz5NFr528aY/Y5l93szRqWUSku8lhSMMX7AA0BVEakKfOYorwR0ByoB7YD/mRR2\nK7C/v7+3Q3BK40ocjStxNK7E8dW4vFlTGAB8KiJhACJyzlHeGfhBRMJE5DCwH6jnnRDvjK/+sjWu\nxNG4EkfjShxfjcubSeEeoKkxZq0xZrkxprajvChwLNp6Jxxld8yVL9/VX5Ar6/2/vXOPsaOq4/jn\nS7fVQi10tbSGlZc8GqJSqGARCNEgYjQoiSgQUoxaEhuVqAmoMdZoA9ZEaZGIGAXiA2PBCKuWRxVS\n1MQabOsWSgtGSgOhRTBabIw8+vOPc3YY1r30PubeGZrvJ5ns3DNnzn7u2bvzu3Nes23btsrKsldn\nZVXp3o5XlfVgr87y2auz39duvr4GBUlrJI2Vtk355znAEDArIhYClwE398tjX7/ItZvPXu3ngX3/\nYtJuPnt1lu+VHhRqG30kaTWwPCLW5tcPAwuBxQAR8fWcfgewNCLWTVKGhx4ZY0wXtBp9NDRokRK3\nAu8E1ko6BpgWEU9LGgV+IulbpGajo4A/TVZAqzdljDGmO+oMCjcA10vaBPwXWAQQEZslrQI2A88B\nSzwZwRhjBsMrevKaMcaYamnUMheSRiTdLemB3Cn96Zw+S9JdkrZKulPSgaVzJp3oJumC3Km9UdJq\nScMN8fqwpL/kcq7s1qkbL0nDOf8zkq6eUNaJub4ekrSiQV7LJG2XtKsXpyq9JE2X9KvSxMsrmuCV\nj90uaUMup6c5PlV6lcoclTTWrVPVXkojH7fkOlsv6XUN8Zoq6bp8zmZJ53br1TER0ZgNmAvMz/sz\ngK3APGA5cFlOv5w0vwHgOGADqRnscOCvgIApwE7S6Cby+V9ugNcw8CgwnPPdALxjgF77A28HLgGu\nnlDWOuCkvL8aeHdDvE4G5gC7avh8TeoFTAfOyPtDwL0Nqq8Zpf1bgA81wSsfPxf4MTDWhL9jPnYP\ncEKvn60+eH0F+Grp9XAVjm29j0H9oi4r+VbgTGALMKdU8Vvy/ueBy0v5bwfelv9RdwKHki7G1wIf\nb4DXW4E1pfSLgGsG5VXKdzEvvcjNBTaXXp8PXFu314RjPQeFfnjl4yuAjzXJC5gKjALnNcELOIAU\nPOfRY1Co2OseYEHVn60KvLYD0/vhtbetUc1HZSQdDswH/kiq0J0AEbEDODhnm3SiW6RZ0kuATcBj\npCUzflC3F+mO4VhJh0oaAj4AvGGAXq04hFRP4zxGjxMGK/LqG1V5STqItFzLb5vipTSMewewi3S3\n0ASvr5GWsvlPFT4VegHcmJuOvtQEL73YDL1M0p8l/UzS7Krc9kYjg4KkGaQP86UR8W9gYm/4y/aO\n5wvuJ4DjI+IQUnD4Yt1eEfHP7LUKWAs8ArxQt1e/2Ne9JE0BbgJWRFqSpRFeEXE28HrgVaRh37V6\nSToeeGNEjJLu3CsZSl5RfV0Yae2104HTJV3UAK8hYAT4fUQsIAWWb/bq1S6NCwr5gn4L8KOIuC0n\n75Q0Jx+fCzyZ0x/npd+0R3LafCBK/6irgFMa4EVE/DoiFkbEqcBDeRuUVyta+tbsVTkVe30P2BoR\n326YFxHxLKn56P0N8DoFWCDpb8DvgGMk3d0ALyLiifxzNynA97TOWhVeEfE0sDsifpGTbgZO6MWr\nExoXFIDrSe3bK0tpo8BH8v7FwG2l9PMlTZN0BC9OdHscOE7Sa3O+dwEPNsCL8dtASbNITVzfH6BX\nmeLbWr6l/Zekk/NolUUtzhmoV5vptXhJWgbMjIjPNMVL0gH5ojN+cXovqT27Vq+I+G5EjETEkcBp\npEDa6x1MFfU1ZfwaIWkq8D7g/rq9Mr+UNP4c3zNJ87YGQx0dGa024FRSc8pG0uid9cDZpFE7vyH1\n5t8FHFQ65wuktvoHgbNK6ZfkitxI+iPMaojXTcADpA9fT52AXXo9AjxFam/eDszL6QtIzWwPAysb\n5LWc1D/zfE7vZRRZJV6k/pY9+e84Xs5HG+B1MOnLx0ZgDFgJ7Fe314QyD6P30UdV1df+wH25nE3A\nVeS5W3XXF2mQzNpc1hpgpJc662Tz5DVjjDEFTWw+MsYYUxMOCsYYYwocFIwxxhQ4KBhjjClwUDDG\nGFPgoGCMMabAQcGYDpD0Ql4n5/683PJn84S/lzvnMEkXDMrRmF5wUDCmM3ZHxIkR8SbSTPn3AEv3\ncs4RwIV9NzOmAhwUjOmSiHiKNHP+k1DcEdwr6b68LcxZrwROy3cYl0raT9I3JK1TegjU4rregzET\n8YxmYzpA0q6ImDkh7R/AscAzwJ6IeFbSUcBPI+IkSWcAn4uIc3L+xcDsiLhC0jTgD8AHI+LRwb4b\nY/6foboFjNkHGO9TmAZcI2k+aQ2co1vkPwt4s6Tz8uuZOa+DgqkdBwVjekDSkcDzEfF3SUuBHRHx\nlvyshVYPlBHwqYhYMzBRY9rEfQrGdEZ56eXZpEe9jj9P4UDgiby/iPSscEjNSq8plXEnsCQvb42k\noyVN76e0Me3iOwVjOuPVktaTmoqeA34YEVflY98Bfi5pEXAHsDunjwF7JG0AboyIlflxjevzcNYn\nSY9mNaZ23NFsjDGmwM1HxhhjChwUjDHGFDgoGGOMKXBQMMYYU+CgYIwxpsBBwRhjTIGDgjHGmAIH\nBWOMMQX/A3uI0XlBM3TJAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4FNXXwPHvCaGF3hGkBFCqUkIRkKIoHUGaRukCKor8\nUF5AioJYANEggnQQKUFAUJrUIFVAEnqx0DsEEYRQUu77x2wwZZNsQjabTc7nefYJO3PnzpndYffs\nnTv3ijEGpZRSSiln8nB1AEoppZRK+zThUEoppZTTacKhlFJKKafThEMppZRSTqcJh1JKKaWcThMO\npZRSSjmdJhxKKaWUcjpNOJRSSinldJpwKKWUUsrpNOFQSimllNNpwqHciohEOPAIF5H6IlLCzvJr\nIrJaRJ5KYD9jbdv4x7E+Zt33ReSqiGwXkU9EpJidbRrYyraNsqyrbVmIiDxiZ5tfROSAneUiIl1E\nZJ1tv/dF5LKIrBWRXiKSyYHXMrKOnbbX5aaI/C4ic0Sklp24ox7rcVs5b1uZQbZ1z8exr9Uicl1E\nCjsQV2cR2Wwrf1tEDojIcBHxslP2lIgsj6MeH1tMXey8X/GdO8UTiM/LFs9+W3z/iMgWEekcR/m4\n9nXBgdeihIjMFpG/ROSOiFy0vTYj4tlmt63+1+NY3zVKDHXiKHPWtn55jOUxX6vztnOuQYxycb4v\nUcrMjue1CYlvW+WePF0dgFKJ1CnG867Ac7blEmX5USDyC2oBsBrIADwOvAUEiEgNY8zhOPbzMnAS\naCUi2Ywxt+MoF1m3B5AHqAH0A/qJyGvGmO9jlI9r8qLMwGDbtvGWF5EswI9AY2A78DlwGcgLNAAm\nATWBXnHsK9LXQB9bXfOAMKAs0Aw4DuyKUX48sAfICFQDXgeai8gTwBfAK8A3IlLJGHMvSrwdgKbA\nm8aYS3EFIyIegD/QAdgCfAiEAPVs/+4gIo2MMVejbOboZFBXiH3uDACKAv8j+rlzlTiISEEgAOt1\n8sd6DbMA7YA5ItIMeNXEnqRqHfBdjGV34gtYREpjvd63gVnAKeARrNd+IDDCzjZlgOpY5+6rwNR4\ndnEH6z3bEaOOBlivy904tos8FgG8sc6hABFpboxZayvj6PtyF3iN6K8/QLiD2yt3YozRhz7c9oH1\ngR8ex7oSQATwbozlTWzLJ8ax3TNYH3gNgHtAZ0frtq0rBhzD+kB/IsryBrZt2kZZ1tW2LBDry7Vw\njLo2AQdiLJtii+/tOOIvDbyRwOtW0FbH5DjW548vbtvyt211DLI9r4WVtHwcpUx24BywzYH38n3b\nfkbbWdfCVveqGMtPAsvjqM/HVl+XONavAE4k8nxbA4QCLeysG2vb3//FWB4BTEjCuT3Jdv49Gt/7\nE2P5SOAi0Mb23hS3UybynFuMlah6xFg/FdgNnIj52to7FqCSbfnPjrwvUcrMBm4m9nXRh/s+9JKK\nSo+22v6WjmP9q8ARY8xmYIPtucOMMWeBblitFgMd2QT4FKvFcXB8BUXkUaxfhD8bYybGsf/jxpgp\nCezTG+tX5Q57K40xwQkFjfVLP/JXLsaYXVjJ0AARKWcr8wlQAOgdX0W2VpsBWInaEDvxrALmAE1F\npKYDsSU722WmxsBsWzwxvQ/8CQwSkczJsMtSwDljzLmYK+J5f3yxEolVwA2sFgx7DFYLTT7gwWUw\nEckItMdquYvZ6mC/ImMOAcHYzgOl4qIJh0qPIj8Yr8dcYev70BbrAxesD+VnbU3pDjPG7MS6LGG3\nT4MdJ7GaqXsl0M+hGdb/2/mJiceO07a/HUQkaxLrKGP7ey3Ksvexvnymikg1rOb2z40xRxKo62ms\nS1ILjDERcZSJbMZvmcR4H1YrrC/qufZWGmPCsc6bPEDdGKuziEi+GI+E+tmcBoqJyDOOBGdLiMoA\n/saYUGAp8SfLp4CdWElKpOZATmChI/u07TcP1jFfS6hsHNvHfF3yiUiOpNSlUjdNOFR64GX7ECso\nIk9jNeUarF+CMbUCcgGRfS9+xGrKfzkJ+z0EFBCR7A6W/wSrf8SgeMpEthwcirpQRDLG+MDOG9+O\njNWX4jusSxXnROQHEXlXRMrGs1kOW92FRaQ58BVWU/oPUer9F3gHq9/FOqxEalR8sdhUwHpPYnWQ\njWK/7W95B+pzhgox4rBnP1ZSFDPG17D6hkQ+rpDwOTUBuA9sFJEgEfETkRfiSRA7AWeMMb/ani8E\nKojIk/HsYwHQJkqLzCvAZhNPXxv+S57y21qbFmN9lyxK4HjsyU701yXyEbPvk0oDNOFQ6cFIrA+x\nS1idEcti9b1YZqfsK8AeY8wJAGPMLazm6URdVrG5Zfvr0K81Y8xJrF/PvUWkUBzFcsaoO1Jzon9g\nn3Jgf92w+mGcwLrm/zlwVEQ2iEgRO5vMstV9Aav/Q1as/hFBMepditWRNg/wlonSgTQeka/Rv/GU\niVyXM54yzvQwMf6E1bk58vE8sJZ42FqFqmCdEyWwErkfgcsi0jNqWRHJAHQkestEANb7Fd+5uwir\nc3VLW2LckoRbzyKTpytYLSS1gS+MMV8lsJ09d4BGRH9tniOBS4vKPeldKio9mIb1KywL8CzWB3es\nc19EcmF9cX9tu0Mg0g6grYiUMcb8lYj9RrZsxPcFFdPHQGesD9z+dtZH1hWz1WQb1gc1WP1G7N7u\nGJMxZjIw2dYsXhd4A+s18MfqLBrVSNt+wrEumxyN5/LHb1iXfwIdiYP/jiu+5MyRL3x7HL1jIiFR\nY7wZR5m4YjxnjAlI7A5t51tXERGsFpaWWO/vVBE5EaXOJlh9ZX6Lcu4KVqdjX+JoNTPGBIvIBqxE\nOxvWj9AlCYT1EzAR63X9FzhsjIn3jpt4hBtjNiVxW+VmNOFQ6cGfUT6YV4tIBDBGRDbF+HXeEauj\n53tYHRijMli/FEcmYr+VgCu2VhKHGGNOisg8rFaOMXaKHMP6IqkEHIyy3TWsX7TENR5EAvu9DqwE\nVorIJqC+iBSzdYCNdCgpX5oOOop1XE8CcY3fEHlpIGp/kLtYLS32eEUpkxyOAq1tcWyLo0xlrHMl\noT4riWKMMcBh4LCI7MRKJF7F9p5jJQz2LhMasG51tXWCtmcBMB3rltufbZfF4pOk5EkpvaSi0qNP\nsH6ZfRxj+StYX+IdsHrqR31sJO4e/7GISG2su2DibTaPw8fE3ZfjZ6wWhqRc4nHUHtvfWAOROdE2\n4B/gFduveXu6Yn2Broyy7DTW2Cr2lLOVPx3H+sRaiZUUdbG30jaOyCtYnZG3J9M+7Yn2/og1IFpr\nrH4PMc/bDliXEuM7X5Zh9cWpxX+dpZVKdppwqHTHGHMDa6yBJpEd6my3m9YHvjfGLI35wOpoWkZE\naiRUv4iUAL7FGkNhXBLiO4E1ENfrQOEY685i9aVoJiJvxVFFgv+vRaSQiMTqfGm7LfI5rC+gxFw+\neii2JvlxWEnCp3biaoGVcKwxxuyOsmo18KiIvBCjfCagJ1Y/g2h9TB4ixl+xbpPubosnpk+x7hIZ\n42C/lXiJyNMiYq8VOnLfx2x/22K15kyM49xdCbSzvbexGGtQuzewBhJb8bBxKxUXvaSi0quvsEaY\nHIz1qzTyF2BcH7ir+a9l4bcoy31E5FWsL/ncWCONtsP6wu5kG6MgIfZ+0X+C1ZejLDHuSLHFXRKY\nICIv22K+AuTH6ofRCqv5Pz6PArtFJACr9eYS1mBgvliXDPyMMX87EHtyGo3VSXKgrYXoB6xOhfWw\nXvfDWOObRDUN6AEsFpHZwF6ssSVeAipiDdoWlowxdsFKOn4Ua9j7rViX4dpi9XlZSBKSzDgMwjq/\nlvLf3Ts+WOdFMNbIr2C9NteAX2PVYFmONepsC6xOpxDjnDPG2L3V9yGVEZGhdpbvNcastv3b0/b/\nx56lD9E3RKVCmnCotCC+ToHG3npjzEURWQC8KtZ8IK8Ap40xB2OWtZW/ISLbgJdE5N0odb9se4Rh\ndST8E/gSmGpvwKY4YrUX33ERmct/lxGirrsjIk2xvng6A/+HdVfEP1i3Zb5B7GG0Y/odaxj15sCb\nQCGsvg6HgJ7GmNkOxJ2sbB1QO4pIF6zWiY+ATFjjmXwIfBnzC8gYc1dE6gMfYN1p0w0rSQkEmhlj\n1ie020TGeMl2K+h7WJcr2mK99weArsaYeXHsIymv3ydY52UD218vrFFEF2CN5npGRApgdYReYOvn\nYc9GrOHRX+W/hMOReOzFnZhjKYv1HsY0EyuBBytZi+tc3QqccXBfyg1I3OeoUkoppVTySFV9OESk\nnogsF2sGwoiY12VtZT4SkQtiza653jZZUdT1mUVkkogEi8i/IrIksaNEKqWUUip5paqEA+s+8H1Y\nwyHbmyVzENZARb2xZsO8DayNMUTweKxrle2wOgEWIcpIiEoppZRKean2koptrIQ2xpjlUZZdwJqX\nwc/2PCfWbIddjTGLbM+vAi9HjiJpG6r5KPBUjN7tSimllEohqa2FI062jn2FsTpAAWCMuQnswhpa\nF6A6VkfYqGV+x+p4VBullFJKuYTbJBxYyYbBatGI6jL/jVVQCLhvS0TiKqOUUkqpFKa3xWJNj4w1\nF8Epkm8YZKWUUio9yII1NtBa2zQLdrlTwnEJa7CaQkRv5SiENdhPZJlMIpIzRitHIdu6uDQh4RkS\nlVJKKRW3V4lneHy3SThsk1pdwprK+AA86DRaC5hkKxaINQhPI6z5ASI7jRYn7lH4wDaV97x58yhf\nPtZoz3Hq378/fn5+iTqOlNoG4Pnnn2f9+oTGPXr4faXUNqn5eJK6XWo+ppQ6nqTuKzUfk553KbuN\nnndJ309ybHP06FE6deoEtu/SuKSqhENEsmHNRRA57G4pEakM/G2bQ2I8MExE/sI6sFHAOazpkjHG\n3BSRmcCXInIda4KuCcD2BO5QuQtQvnx5qlWr5nC8uXLlSlT5lNwGIGPGjKk2vqRsk5qPJ6nbpeZj\nSqnjSeq+UvMx6XmXstvoeZf0/STzNvF2SUhVCQfWXSab+G/43C9sy+cAPYwxY20zI07FmrdiK9bw\nxfej1NEfa86LJVjD5q4B4prk6qH4+vqm2m0AihYtmiL7SqltUvPxJHW71HxMKXU8Sd1Xaj4mPe9S\ndhs975K+n5Q8VzHGpPsHUA0wgYGBJi1p1aqVq0NIVmnteIxJe8eU1o7HGD0md5DWjscY9zqmwMDA\nyEaCaiae71p3ui1WKaWUUm5KE440LMnNXqlUWjseSHvHlNaOB/SY3EFaOx5Im8eUaoc2T0kiUg0I\nDAwMjLPzzJkzZwgODk7ZwNKp/PnzU7x4cVeHoZRSygFBQUH4+PgA+BhjguIql9o6jaZKZ86coXz5\n8oSEhLg6lHTBy8uLo0ePatKhlFJpiCYcDggODiYkJCTR43SoxIu8nzs4OFgTDqWUSkM04UiExI7T\noZRSSimLdhpVSimllNNpwqGUUkopp9OEQymllFJOpwmHUkoppZxOEw6llFJKOZ0mHIo5c+bg4eGB\nl5cXFy9ejLW+YcOGPPnkkw+elyxZEg8PD/r16xer7ObNm/Hw8GDp0qVOjVkppZR70YRDPXDv3j1G\njx4da7mIxHouIkyfPp1Lly4lWF4ppZTShEM9UKVKlTiTiJgqVqxIeHi43QRFh8tXSikVkyYcCrBa\nJYYMGUJYWJjdJCKmkiVL0qVLF4cTFKWUUumbJhzqAW9v70QlEUOHDiU0NNShBEUppVT6pgmHiiYy\niRgzZkyCZUuWLEnnzp2ZPn06ly9fToHolFJKuSudS8UJQkLg2DHn7qNcOfDySv56vb296dy5M9Om\nTWPw4MEUKlQo3vLDhg1j7ty5jB49Gj8/v+QPSCmlVJqgCYcTHDsGPj7O3UdgIDhrHrnEJBExExSl\nlFLKHk04nKBcOSshcPY+nMXb25tOnToxbdo0Bg0alGD5oUOHMnfuXMaMGUPr1q2dF5hSSim3pQmH\nE3h5Oa/1IaUMGzaMefPmOdSXo1SpUnTq1ImpU6dSs2bNFIhOKaWUu9FOo8quqEmEI3esDBs2jPv3\n7zN27Fgd+EsppVQsmnAowP5gXZF3rPz+++8Jbh+ZoOzbt88Z4SmllHJzmnAowP5w5KVLl6Zz584P\nhjKPWtZe+WHDhuHp6aktHEoppWLRPhyKrl270rVrV7vrZs2axaxZs6ItO3HihN2ypUuX5v79+8ke\nn1JKKfenLRxKKaWUcjpNOJRSSinldJpwKKWUUsrp3C7hEBEPERklIidEJERE/hKRYXbKfSQiF2xl\n1otIGVfEq5RSSik3TDiAwcDrQB+gHDAQGCgib0cWEJFBwNtAb6AmcBtYKyKZUj5cpZRSKu2yN6yC\nPe54l0pt4CdjzBrb8zMi8gpWYhGpHzDKGLMSQES6AJeBNsCilAxWKaWUSssGrh/oUDl3bOHYATQS\nkccARKQyUBdYbXvuDRQGNkZuYIy5CezCSlaUUkoplQw2n9pMwMkAh8q6YwvHaCAncExEwrGSpqHG\nmIW29YUBg9WiEdVl2zqllFJKPSRjDIM2DKJ8gfIc5WiC5d0x4XgJeAV4GTgCVAG+EpELxpi5D1Nx\n//79yZUrV7Rlvr6+lC1b9mGqVUoppdIEf39//P39Abj470X2XNjDE7mfcGhbd0w4xgKfGWMW254f\nFpGSwPvAXOASIEAhordyFAL2xlexn58f1exM8xoUFPTQQSullFLuxBjDvfB7ZMqQCQ+xemD4+vri\n6+tLaHgoFb+pSNO8Tfmk/Cf4+PgkWJ87JhxeQHiMZRHY+qMYY06KyCWgEXAAQERyArWASSkYp1JK\nKZVqnbx+klFbRnE15Co37t7gxr0b3Lh7g9uht7kTeoeQ0BAMhjJ5y/B9+++p9sh/P8hnBM3gr7//\nYknHJYSdD3Nof+6YcKwAhonIOeAwUA3oD8yIUma8rcxfwClgFHAO+CllQ1VKKaVSnwgTQZcfu/Dn\ntT+pWbQmJXKXIFfmXOTKnIvsmbKTNWNWvDJ6kcUzCxN2TaDOzDpMaDaBXtV6cTv0NiM3j6Rz5c48\nWehJgs47dhXAHROOt7ESiElAQeACMNm2DABjzFgR8QKmArmBrUAzY4zOLBaHgwcPMnLkSPbs2cPl\ny5fJly8fFSpU4IUXXuDtt60hTkqWLMmZM2cebFOgQAHKli3Lu+++S5s2bTh16hQVK1akTZs2zJ8/\nP9Y+vv/+e3x9fZk0aRJvvvlmih2bUkqp6GYGzWTbmW0EdAngGe9n4i3bsWJH+q/pz+srX2fbmW0U\nyVGE63ev81HDjxK1T7dLOIwxt4F3bY/4yo0ARqRASG5vx44dPPvss5QoUYLevXtTuHBhzp49y86d\nO5kwYcKDhENEqFq1KgMGDMAYw4ULF5g6dSpt27ZlypQp9O7dmw8//JD333+f7t2789xzzz3Yx7//\n/su7775L7dq1NdlQSikXunTrEgM3DKRblW4JJhsAWTyzMLnlZJ4u/jS9V/YmJDSE92q/R4ncJRK1\nX7dLOFTy++STT8idOzd79uwhR44c0dYFBwdHe160aFF8fX0fPO/cuTNlypTBz8+P3r1789577zF/\n/nz69OnDwYMHyZw5MwBDhgwhODiYdevWOf+AlFJKxendte/i6eHJuOfHJWq7V598laqPVGXS7kkM\nrTc00ft1x4G/VDI7ceIEFStWjJVsAOTPnz/ebQsVKkT58uU5efIkABkyZGDatGmcOHGCjz/+GIDA\nwEAmT57MgAEDqFixYvIfgFJKKYes+WsN/of8+aLxF+Tzypfo7SsUqMCkFpPIkzVPorfVhENRokQJ\nAgMDOXz4cKK3DQsL4+zZs+TL99+JW6tWLd58800+//xzDh06xOuvv06pUqX44IMPkjNspZRSiRAS\nGkKfVX1o5N2Izk92TvH9a8KhGDBgACEhIVSpUoW6desyePBg1q9fT1hY7FudQkNDuXbtGteuXePA\ngQN07tyZK1eu0LFjx2jlPv30U/Lnz0/Dhg3Zu3cv33zzzYPLK0oppVKGMYZT/5xi4aGF+P7gy4V/\nLzC5xWREJMVj0T4cThASGsKx4GNO3Ue5/OXwyuiVLHU999xz/Prrr3z22WesXbuWnTt3MnbsWAoU\nKMCMGTNo1arVg7Jr166lQIECD557enrSpUsXRo8eHa3OHDlyMH78eDp27Iivr2+0DqRKKaWc6+T1\nkwzcMJAtp7dw5fYVAErnKc3kFpN5LN9jLolJEw4nOBZ8DJ9pCY+69jACewdGG4TlYfn4+LBkyRLC\nwsLYv38/y5Ytw8/Pjw4dOrBv3z7KlSsHwFNPPcUnn3wCgJeXF+XLlydnzpx266xRo8aDupVSSqWM\nFb+voMuPXcidJTe9qvXiqUefolbRWhTIViDhjZ1IEw4nKJe/HIG9A52+D2fw9PTEx8cHHx8fHnvs\nMbp3787ixYsZPnw4YHUifeaZhG+jUkoplbLCIsIYHjCc0dtH07psa75t8y25s+R2dVgPaMLhBF4Z\nvZK19cFVqlevDsDFixddHIlSSqm43Am9w4HLBxi8cTBbT29l7HNjGVBngEv6acRHEw7FL7/8QsOG\nDWMtX7VqFcCDyylKKaWSzhjD2ZtnMcYketCsmJb/vpzFRxaz9+JejgUfI9yE80j2RwjoGkD9EvWT\nKeLkpQmHom/fvoSEhPDiiy9Srlw57t+/z/bt21m0aBGlSpWiW7durg5RKaWc6m7YXTJ6ZCSDRwa7\n60NCQxjxywhe93md0nlLO1xvwMkAlv++nP2X97P/0n6u371OBsnAsPrDGFZ/GJ4eif8aDg4Jpt2i\ndpTLX456xevxTq13qFq4Kk8UeoIsnlkSXV9K0YRD8cUXX7B48WJ+/vlnpk+fzv379ylevDhvv/02\nQ4cOfdApVEQS3USXlG2UUiqlhEeEM3PvTIYGDKVUnlKs8F1BwWwFo5UJCQ2hlX8rAk4G8Pedv5nx\nwow4aotdd/tF7fHK6EXtYrV5t/a7VClchT0X9vDxlo9Zd3wd89rOo1SeUomKeenRpUSYCDZ22Rgr\n1tRMEw5F48aNady4cYLlTpw4kah6S5QoQXh4eFLDUkqpJPnhyA+UzV+WSgUrxVtu6+mt9FvTj72X\n9uJbyZdNpzZRZ2Yd1nRaQ5m8ZQCrf0Trha3ZeW4nrcu25vvD3/NV06/IlilbgnHsubCH63evs8J3\nBXWL132wvOXjLWlSugmdlnWi8pTKfN3sa7pW7urwj7OFhxbSyLuRWyUboAN/KaWUSkOO/32c9ovb\nU21qNUZtHkVoeGisMoevHMb3B1/qf1sfTw9Pdr62kwXtFvDra7/i6eFJ7Zm12XVuF3fD7tLm+zZs\nP7OdVa+swq+JH7fu3+KHoz84FMu64+vImTkntR6tFWtd7WK12ff6PtpXaE/3n7rz/eHvHarz4r8X\n+eXUL/hW8k24cCqjCYdSSqk0Y8qeKeTJkof3ar/HyM0jqTmjJvsu7cMYw7rj62g6rymVJldiy+kt\nzG49m509dz5ICErmLsmO13ZQNl9ZnpnzDM/MeYYtp7ew8pWVNCzZEO883jQs2ZBv933rUCzrTqyj\nkXejOPtp5Micg9mtZ9O0TFM+2/YZxpgE61x0eBGeHp68WP5Fh1+T1EITDqWUUmnC3bC7zN43m25V\nuvHZc5+xq+cuwiPCqTG9BmUnlqXJvCZcuX2FeS/O42S/k3Sr0g0Pif41mDdrXtZ3Xk+Lx1uw79I+\nVviu4FnvZx+s716lO5tObeLk9ZPxxnLj7g1+PfsrjUsnfLl6YJ2BHLh8gHXHE55Ne+HhhTR7rFmq\nGl/DUZpwKKWUShMWH17MtTvXeKP6GwD4FPFhT+89fFD/A6oXqc6mrpsI7B3Iq0++SqYMmeKsJ2vG\nrCxqv4jLAy7zXKno0zK0K9+O7JmyM2f/nHhj2XRqE+EmnCalmyQYd8OSDalRpAZjto+Jt9zJ6yfZ\neW4nL1d8OcE6UyPtNKqUUipVCg4J5q3Vb3En9A55s+YlT5Y85M2alxfKvkDlwpVjlZ+8ZzLPlXqO\nx/M9/mBZpgyZGN5geKL3LSLkzBx72oZsmbLRsUJH5uyfwwcNPojVQhJp3fF1lMlbBu883g7ta2Dd\ngXRY3IHfzv9GjaI17JZbdHgRWT2z0qpsK7vrUztt4VBKKZXq3A+/T7tF7Qg4GYDB8Offf7L2+Fq+\n3PklDec05MT16HfN7bu0j1/P/cqb1d90emzdq3bn1D+n2Hxqc5xl1h1fR+NSCV9OifRiuRcpk7cM\nY3eMjbPMwsMLaVW2FdkzZU9UvKmFJhxKKaVSFWMMfVb1Yee5nfz08k+s8F3B9h7bOfLWEU72O0ne\nrHlpt6gdd0LvPNhm8m+TKZKjCC+UfcHp8dUtVpfH8j7G7H2z7a4//vdxjl8/TpMyCV9OiZTBIwMD\nag/ghyM/8Nfff8Vafyz4GPsu7XPbyymgCYdSSqlUZvzO8czcO5PpraZTp1idaOtyZ8nN0o5LORZ8\njD6r+2CM4ea9m8w/OJ/e1XonaeTOxBIRulXpxpIjS7h572as9euOr8PTw5OGJRsmqt4ulbtQIFsB\nvtjxRax1Cw8tJGfmnDR7rFlSw3Y57cORCEePHnV1CGmevsZKpW+r/1zNgPUDGFR3EF0qd7FbpnLh\nykxtOZWuP3al9qO1CQ0P5W7YXXpW65licXZ+sjPDAoax+PBiXqv2WrR1606so/ajte32AYlP1oxZ\neafmO4zaMooRDUdQKHshwGrxWXhoIS+WezFVD12eEE04HJA/f368vLzo1KmTq0NJF7y8vMifP7+r\nw1BKpbDDVw7z8pKXafl4Sz5t9Gm8ZbtU7sKuc7vo+3NfCmYrSOtyrSmas2gKRQrFchWjcenGjNk+\nhtblWpPfy/rMCg0PZeOJjQyqOyhJ9fap0YfPtn1GK/9WFM1ZlPvh97kTeoffr/3O+Kbjk/MQUpwm\nHA4oXrw4R48eJTg42NWhpAv58+enePHirg5DKZWCztw4Q9P5TfHO4828F+fFefdHVH5N/Qi6FMTO\nczuZ3dp+fwpnmtBsAvVm16PJvCYEdAkgV5Zc7Dq/i3/v/+vQ+Bv25Mmah3GNx7HkyBLuh98no0dG\nsnllo287wBgqAAAgAElEQVTNvjTybpTMR5CyNOFwUPHixfVLUCmlkijCRLDz3E5qFa0Va0bWq7ev\n0nhuYzJ6ZGTNq2vIkTmHQ3VmypCJZS8tY8Xv0QfnSimP53uc9Z3X0/DbhrRY0IK1nday7vg68mbN\nS7VHqiW53jeqv/FgLJG0RDuNKqWUcrrxO8dTd1Zdnpr5FL+d/+3B8n/v/UvzBc25fvc66zqv45Ec\njySq3sLZC9PLp5dDLSLO8GShJ1nTaQ37L++nzfdtWPXnKp4v9Xyc09ynZ5pwKKWUcqrLty4zcvNI\nWpdtTWh4KLVm1KL3it5c+PcCbRe15ffg31nz6n8ztLqbmkVrstJ3JdvObCPoYlCSL6ekdZpwKKWU\ncqqhAUPJIBmY+cJM9vTew4RmE1h0eBHF/Yqz9fRWlvsup+ojVV0d5kNpULIBy15aRvUi1WnxWAtX\nh5MquWXCISJFRGSuiASLSIiI7BeRajHKfCQiF2zr14uIe6bOSinlxgIvBDJr7yxGPTOKfF758PTw\n5O2ab/NH3z/oW7Mvy15alujxKlKrpmWa8luv3x7czqqic7uEQ0RyA9uBe0AToDzwHnA9SplBwNtA\nb6AmcBtYKyJxz9ajlFIqyQIvBBISGhJtmTGGfmv6UbFgRV6v/nq0dQWzFcSvqZ9bD2SlEsftEg5g\nMHDGGNPTGBNojDltjNlgjIk6V3A/YJQxZqUx5hDQBSgCtHFFwEoplVYZYxjxywiqT69OuYnlWHho\nIcYYAPwP+bP97Ha+avpViowAqlI3d0w4WgF7RGSRiFwWkSAReTC8nIh4A4WBjZHLjDE3gV1A7RSP\nViml0qjwiHDeWv0WIzePZMjTQ6hRtAa+P/hSb3Y9tpzewsD1A2lbvq1LbllVqY87ppylgDeBL4BP\nsC6ZTBCRe8aYuVjJhgEux9jusm2dUkqph3Q37C6dlnZi2bFlzGg148Hw3gEnA+i3ph8Nvm1A5gyZ\nGff8OBdHqlILd0w4PIDdxpjhtuf7RaQS8AYw13VhKaVU+nDz3k1aL2zNznM7WfbSsmgztD7r/Sx7\nX9/L7L2zyZk5J955vF0YqUpN3DHhuAjEnOHrKNDW9u9LgACFiN7KUQjYG1/F/fv3J1euXNGW+fr6\n4uvr+zDxKqVUmvHvvX9pOq8pR64eYV2nddQrUS9WGU8PT3r59HJBdMrZ/P398ff3j7bsxo0bDm0r\nkZ173IWIzAceNcY0iLLMD6hhjHna9vwC8Lkxxs/2PCdW8tHFGLPYTp3VgMDAwECqVUv6cLRKKZWW\n3b5/m2bzm7H/8n42dN5AjaI1XB2SSgWCgoLw8fEB8DHGBMVVzh1bOPyA7SLyPrAIqAX0BKKm0+OB\nYSLyF3AKGAWcA35K2VCVUiptuBN6hxcWvsDeS3tZ22mtJhsq0dwu4TDG7BGRF4HRwHDgJNDPGLMw\nSpmxIuIFTAVyA1uBZsaY+66IWSml3NndsLu0+b4NO8/t5OdXf6ZOsTquDkm5IbdLOACMMauB1QmU\nGQGMSIl4lFIqLQoOCWbZ0WVMD5rOwSsHWfXKKuqXqO/qsJSbcsuEQymllHPcuHuDJUeWsOjIIjae\n2IjB0LBkQ9a8uoYGJRskXIFScdCEQyml0rkIE8GW01uYtXcWS44s4V74PRqUaMDE5hNpW74tBbMV\ndHWIKg3QhEMppdKxNX+t4a3Vb3Hi+gnK5C3D8PrD6VK5C0VzFnV1aCqN0YRDKaXSqXth9+i1ohcl\ncpXg29bf8nTxpxERV4el0ih3nEtFKaWUA3ae20mv5b24G3bX7vpZe2dx/uZ5preaTr0S9TTZUE6l\nLRxKKZUG/R78Oy0WtODvO39TMFtBPmn0SbT198Lu8em2T/F9wpfyBcq7KEqVnmgLh1JKpTFXb1+l\n+YLmFMpWiPdqv8fYHWPZf2l/tDIz987kwr8XGF5/eBy1KJW8NOFQSqk0JHJE0Nv3b7P61dV82uhT\nyuUvR88VPQmLCANsrRtbP8W3ki/l8pdzccQqvdCEQyml0ojwiHA6LevEgcsHWPnKSkrmLkmmDJmY\n0WoGgRcCmbBrAmC1bly8dVFbN1SK0oRDKaXSiMEbBvPjsR9Z2G4h1YtUf7C81qO1eKfWOwwLGMbR\nq0f5dOunvPLEK5TNX9aF0ar0RhMOpZRKA5YcWcK4X8fxReMvaFW2Vaz1Hz/7MQWzFaTe7HpcvHWR\nYfWGuSBKlZ5pwqGUUm7uj2t/0OOnHnSs2JF+tfrZLZM9U3amtpzKtTvXtHVDuYTeFquUUm4sJDSE\ndovaUSRHEWa0mhHvWBpNyjRh1SureOrRp1IwQqUsmnAopZSbMsbw5qo3OXH9BLt77iZH5hwJbtP8\nseYpEJlSsWnCoZRSbmpG0Ay+2/8d37X5jooFK7o6HKXipX04lFLKDZ24foK+P/fldZ/X6Vy5s6vD\nUSpBmnAopZQb+mzrZ+TOkpsvm3zp6lCUcogmHEop5WZO/3Oab/d/y//V+T+8Mnq5OhylHKIJh1JK\nuZnR20aTO0tu3qj+hqtDUcphmnAopZQbOXvjLDP3zmRA7QFky5TN1eEo5TBNOJRSyo2M2T6GHJlz\n0KdGH1eHolSiaMKhlFJu4vzN80wPms67T73r0JgbSqUmmnAopZSb+HzH53hl9OLtmm+7OhSlEk0T\nDqWUcgOXbl1iauBU/lfrf+TKksvV4SiVaJpwKKWUi/157U9eWvISV25fibPM0I1DyZQhE+/UeicF\nI1Mq+ejQ5kop5WKjtoxi0eFF/HP3H35+9Wc8JPpvwSVHljBr3yymtZxGnqx5XBSlUg9HWziUUsqF\nzt88j/8hf9qWb8v64+v5dOun0dafvXGWXit60a58O3pW6+miKJV6eNrCoZRSLjRx90SyemZl1guz\neKLgE3z4y4fULVaXZ7yfITwinE7LOpE9U3amtZoW79TzSqV2bt3CISKDRSRCRL6MsfwjEbkgIiEi\nsl5EyrgqRqWUisut+7eYEjiFXtV6kStLLobXH84zJZ/B9wdfLt26xGfbPmPr6a3Me3EeebPmdXW4\nSj0Ut004RKQG0BvYH2P5IOBt27qawG1grYhkSvEglVIqHt/u+5ab924+6AiawSMD89vOR0RoOq8p\nI34ZwdB6Q2lQsoGLI1Xq4bllwiEi2YF5QE/gnxir+wGjjDErjTGHgC5AEaBNykaplFJxC48IZ/zO\n8bSv0J4SuUs8WF4oeyH82/lz8MpBahStwQcNPnBhlEolH7dMOIBJwApjTEDUhSLiDRQGNkYuM8bc\nBHYBtVM0QqWUAowxbDixget3rkdbvvz35Ry/fpz3ar8Xa5uGJRuyrfs2VviuIGOGjCkVqlJO5XYJ\nh4i8DFQB3rezujBggMsxll+2rVNKqRQ1cvNInp/7PKUnlGbcjnHcDbsLwJc7v6RusbrULFrT7na1\ni9Umv1f+lAxVKadyq7tURORRYDzwnDEm1NXxKKVUfL7Y8QUjN49kaL2hXAu5xuANg/l699d0q9yN\nbWe2sbTjUleHqFSKcauEA/ABCgBB8t/9YRmA+iLyNlAOEKAQ0Vs5CgF7E6q8f//+5MoVfchgX19f\nfH19kyF0pVR6MmXPFAasH8CQp4fw8bMfA/C/p/7HkIAhfLTlI0rlKcULZV9wcZRKJY6/vz/+/v7R\nlt24ccOhbcUY44yYnEJEsgElYiz+FjgKjDbGHBWRC8Dnxhg/2zY5sZKPLsaYxXHUWw0IDAwMpFq1\nak6LXymVPsw7MI8uy7rQt2ZfxjcdH2v8jMALgXhl9KJ8gfIuilCp5BMUFISPjw+AjzEmKK5ybtXC\nYYy5DRyJukxEbgPXjDFHbYvGA8NE5C/gFDAKOAf8lIKhKqXSKf+D/nT7sRvdq3THr6mf3cG6fIr4\nuCAypVzLrRKOOERrojHGjBURL2AqkBvYCjQzxtx3RXBKqfTBGMO4HeMYuGEgXSp3YVqrabHmRFEq\nPXP7hMMY86ydZSOAESkejFIqXQqPCOedn9/hmz3fMKzeMD565iMdhlypGNw+4VBKKVcKCQ3B9wdf\nVv2ximktp9HLp5erQ1IqVdKEQymlkijCRNByQUt2n9/Nct/lNH+suatDUirV0oRDKaWSaPbe2Ww6\ntYmNXTbyrHesq7tKqSiSlHCIiAdQBihIjNFKjTFbkiEupZRK1f6+8zeDNgyi85OdNdlQygGJTjhE\n5ClgAdZ4GDF7RRmsgbiUUipNG7JxCKERoYx9fqyrQ1HKLSSlhWMKsAdoAVwkxm2pSimV1v12/jem\nBU7jq6ZfUTi7TtOklCOSknA8BrQ3xvyV3MEopVRqFx4RTp/VfahcuDJv1njT1eEo5TaSknDswuq/\noQmHUirdmRE0gz0X9rC9x3Y8PbTfvVKOSsr/lq+BL0SkMHAQiDZrqzHmQHIEppRSqc3ei3t5f+P7\ndK/SnTrF6rg6HKXcSlISjh9sf2dFWWawOpBqp1GlVJpzLeQawwKGMTVwKhUKVGDMc2NcHZJSbicp\nCYd3skehlFKpUFhEGNMCpzEsYBjhJpwvm3zJWzXeImOGjK4OTSm3k6iEQ0QyAh8Co4wxJ50TklJK\npQ59V/dlSuAUelTpwWfPfUbBbAVdHZJSbitRUxkaY0KBdk6KRSmlUo2L/15k5t6ZfNboM2a2nqnJ\nhlIPKSlzJ/8ItEnuQJRSKjWZuHsimT0z80b1N1wdilJpQlL6cPwJfCAidYFA4HbUlcaYCckRmFJK\nucrt+7eZvGcyPav2JHeW3K4OR6k0ISkJx2vAP4CP7RGVATThUEq5tW/3fcuNezfo91Q/V4eiVJqR\n6ITDGKN3qSil0qzwiHD8dvrRvkJ7SuYu6epwlEozdJg8pZSKYvnvyzl+/TgL2i1wdShKpSlJmS12\nVnzrjTE9kh6OUkq51he/fsHTxZ+mZtGarg5FqTQlKS0ceWI8zwhUAnIDAQ8dkVJKuciuc7vYfnY7\ny15a5upQlEpzktKH48WYy0TEA5gMHE+OoJRS6mEEhwQzavMo+tToQ9n8ZR3aJsJEMHbHWMrkLUOr\nx1s5OUKl0p+kjMMRizEmAvgS6J8c9SmlVFKFhIbQckFLJuyeQM0ZNfnp2E/xlr9+5zp+v/pRbmI5\nlh5dyuC6g8ngoVNCKZXckiXhsCmNdkJVSrlQWEQYvj/4cvDKQQK6BPBcqedo830bhgcMJzwi/EG5\ne2H3WH98Pa/99BpFvyzKoA2DqF6kOlu7b6VHVe2GppQzJKXT6JcxFwGPAC2AOckRlFJKJZYxhr6r\n+7Lqj1Us913OM97P0LBkQ8ZsH8PQgKHsubiHNmXb8PNfP7PhxAZuh96mRK4SDKs/jNeqvkah7IVc\nfQhKpWlJaZGoGuN5BHAVeI/oU9YrpVSKGb1tNFMCpzCj1QyaP9YcABFh8NODqfZINXx/8GXd8XXU\nKVaHYfWH0fyx5jxR8AlExMWRK5U+JKXT6DPOCEQppZLqu/3fMSRgCB82+JDXqr0Wa33j0o051e8U\nYRFh5Mka80Y7pVRKSHQfDhEJEJFYkwuISE4R0dtilVIpas1fa3ht+Wu8VvU1PmzwYZzlcmTOocmG\nUi6UlE6jDYFMdpZnAeo9VDRKqTTt6u2rLP99OddCriVLfbvP76bdonY0K9OMKS2n6OURpVIxhy+p\niMiTUZ5WEJHCUZ5nAJoC55MrsHjieB94ESgH3AF2AIOMMX/EKPcR0BNrQLLtwJvGmL+cHZ9Syr7w\niHDaLWrH1jNbEYQqhavQyLsRTco0oZF3o0QnC39c+4MWC1pQuVBlFrZfiKeH3iSnVGqWmP+h+7Bm\ngzXYH1H0DtA3OYJKQD3ga2APVvyfAetEpLwx5g6AiAwC3ga6AKeAj4G1tjL3UyBGpVQM43aMY9uZ\nbSzusJhb92+x8eRG5h+cz7hfx7Gw3UJeqvSSw3Vd/PciTeY1oYBXAVa+shKvjF5OjFwplRwSk3B4\nY90CewKoiXVnSqT7wBVjTLi9DZOTMaZ51Oci0g24AvgA22yL+wGjjDErbWW6AJeBNsAiZ8eolIou\n6GIQwzcNZ1DdQbSv0B6AblW6YYyh/rf1mbl3psMJR8DJAPqs6kNoeChbum0hb9a8zgxdKZVMHO7D\nYYw5bYw5ZYzxMMbssT2PfFxMiWQjDrmxWl3+BhARb6AwsDGygDHmJrALqO2KAJVKz0JCQ3h16atU\nKliJkc+MjLZOROhauSsbTmzg3M1z8dZz5OoRWi5oSaPvGpE3a142dNlAsVzFnBm6UioZJWmkURHp\nLCLbReSCiJSwLesvIq2TN7wE4xBgPLDNGHPEtrgwVgJyOUbxy7Z1SqkUNGj9IE79c4p5beeRKUPs\n/uYdKnQgs2dm5h+Yb3f7W/dv8fqK13li8hMcDT7K4g6L2d5jO+Xyl3N26EqpZJSU22LfxJo3ZTVW\n60LkpAPXgf8lX2gO+QaoALycwvtVSjng5z9/ZuJvE/n8+c+pUKCC3TK5suSiTbk2zNk/B2NMrPUj\nfxnJ3ANz+aLxFxx96yjtK7TXu1GUckNJ6dbdF+hljPlRRAZHWb4HGJc8YSVMRCYCzYF6xpiLUVZd\nwuprUojorRyFgL3x1dm/f39y5coVbZmvry++vr7JErNS6cmd0Dv0WtGLJqWb8FaNt+It27VyV5od\nasaeC3uoUbTGg+Wn/znNhN0TGFpvKP97KqV/zyilYvL398ff3z/ashs3bji0bVISDm/sf3HfA7Il\nob5EsyUbrYEGxpgzUdcZY06KyCWgEXDAVj4nUAuYFF+9fn5+VKtWzTlBK5XOTNw9kcu3L7O5+eYE\nWySeL/U8j2R/hDn750RLOIZvGk7erHl5t/a7zg5XKeUAez/Cg4KC8PHxSXDbpPThOAlUsbO8KXA0\nCfUlioh8A7wKvALcFpFCtkeWKMXGA8NEpJWIPAF8B5wD4p+nWimVLG7cvcHo7aPpWbUnpfOWTrB8\nBo8MdHqyE/6H/Lkfbt25vvfiXuYdmMeIBiPInim7s0NWSjlZUhKOL4FJIvIS1qWLmiIyFGs8jLHJ\nGVwc3gByAr8AF6I8OkYWMMaMxRqrYyrW3SlZgWY6BodSKWPcjnHcCb3D8AbDHd6mS+Uu/H3nb1b9\nsQqAQRsG8Xi+x+3OjaKUcj9JmbxthojcwRpMywtYgPWF388YszCZ47O3f4eSJGPMCGCEU4NRSsVy\n+dZl/Hb68U6tdyiSo4jD21UqWIlqj1Rjzv45ZMuUjfUn1rPspWU6gqhSaUSS/icbY+YD80XEC8hu\njLmSvGEppdzVJ1s/IWOGjAyqOyjR23at3JX31r3HH9f+oG6xurQum6J32iulnChJ43BEMsaERCYb\nIpJFRAYkT1hKKXd08vpJpuyZwsA6A5M0M6tvJasz2tHgo3z+/Od6+6tSaUiiWjhEpADW3R73gY3G\nmHARyQj0Ad631Zdit8YqpVKXEZtHkM8rH+/UeidJ2xfIVoDOT3Ym3IRTu5gODKxUWpKY2WKfBlZi\nddg0wB4R6Q78CIRh9ZeY44QYlVI2J6+fJMJEOHTnR0o7cvUIc/fPZWLziWTLlPQ75Ge1npWMUSml\nUovEXFL5GGt00ScAP6AGsAwYYoypYIyZEjlbq1Iq+Z29cZZaM2rx2NeP8dKSl9h/ab+rQ4rmo80f\nUTxXcXpW6+nqUJRSqVBiEo4ngI+NMYeB4VitHAONMUucEplS6oF7Yfdov7g9WTyz8FXTr/jt/G9U\nmVqFlgta8uvZX10dHkeuHmHR4UUMqTfE7nwpSimVmIQjDxAMYGvJCAEOOSMopVR0/db0Y9+lffzQ\n8Qf61urLH33/YO6Lczn5z0nqzKrDOz+/w51Q1zUwfrzlYx7N+SjdqnRzWQxKqdQtsXepVBCRJ0Xk\nSaxBv8pGPo+yXCmVjGbvnc3UwKlMaj7pwbDfnh6edHqyEwffPMiEphOYHjQdn2k+BF0MSvH4jgUf\nY+Ghhbz/9PvauqGUilNiE46NwD7bwwurE+k+rLlVIv8qpZJJ4IVA3lz1Jq9Vfc1u3wgP8aBvrb4E\n9g4ks2dmnprxFKO3jSY8IjzFYvx4y8cUzVmUHlV7pNg+lVLuJzG3xXo7LQqlFKf/Oc2c/XP45+4/\n3Lh7g5v3b7LtzDaeKPQEE5tPjHfbCgUqsKvnLj7c9CFDNg5h65mtLGy3kByZczg15j+u/YH/IX8m\nNJ1AZs/MTt2XUsq9OZxwGGNOOzMQpdKz0PBQWi9szYnrJ3g056PkzJyTXFly8Xyp5/nk2U/I4pkl\nwToyZcjEZ899RsOSDem4pCNPz36alb4rKZarmNPi/njLxxTOXljnO1FKJUgnKVAqFRizfQyHrhzi\nt16/UfWRqg9VV5MyTdjRYwctFrSg5oyarPBdQfUi1ZMp0v/8ee1P5h+cz/gm4x1KiJRS6dtDDW2u\nlHp4R64eYdSWUQysO/Chk41IFQtWZFfPXZTMXZL6s+vz07GfkqVeAGMM646vo92idhTKVohePr2S\nrW6lVNqlCYdSLhQeEU6Pn3pQKk8pPmjwQbLWXSh7IQK6BNC4dGO6/tiVG3dvPHSd285so+GchjSZ\n14TsmbLz08s/aeuGUsoheklFKRf6atdX7D6/m209tjnliztrxqxMbjEZ76+8mfTbJIbUG+LQdrvP\n72bAOmsuRk8PTzw9PPn3/r/sPLeTyoUqs9J3Jc0fa66TqymlHPZQLRwikl9EWojICyLySHIFpVR6\n8NfffzEsYBh9a/alTrE6TtvPIzkeoUfVHvjt9OP2/dsObbPw0EIOXTlEydwlKZy9MLmz5ObRnI/y\nffvvCXo9iBaPt9BkQymVKElu4RCRdsBM4A8gI9YgYG8ZY2YnV3BKpVV3w+7S/afuFMpeiE8afeL0\n/Q2sO5BpgdOYHjSd/z31vwTL7z6/m8alG/Pdi985PTalVPrgcAuHiGSPsehDoKYxpqYxpirQAXD+\nJ6dSbu5++H06Lu7Ingt7mPviXLJnivlfK/mVzF2STk92YtyOcdwLuxdv2dDwUIIuBlGzaE2nx6WU\nSj8Sc0klUERaR3keBhSM8rwQcD9ZolIqjQqLCOPVpa+y9vhalr20jKeLP51i+x789GAu/HuB7/bH\n32px+Oph7oTd0YRDKZWsEpNwNAF6i8gyESkC9AO+F5FLIhIMjAb6OCNIpdKC8Ihwuv3YjR+P/cji\nDotpWqZpiu6/XP5ytKvQjtHbRxMWERZnud3nd5NBMlC1cPLcoquUUpCIhMMYc8oY0wJYBGwGqgBl\ngOeB54DixpjVTolSKTcXYSJ4feXr+B/yZ0HbBbxQ9gWXxDHk6SGcuH6C7w99H2eZ3ed3U6lgJbJl\nypaCkSnlmLAwiIhwdRQqKRJ9l4oxxh+oAVQGfgE8jDH7jDF3kzk2pdKMZUeXMXPvTL5t/S0dKnZw\nWRxVH6lK88ea8+m2T4kw9j+1d5/frZdTVKp04wbUqgWVKsH+/a6ORiVWohIOEWkuIu8B1Y0xPYGB\nwHwR+VxEsjolQqXSgHkH51G9SHU6V+7s6lB4/+n3OXL1CAEnA2Ktu3X/FoevHtaEQ6U6ISHQqhWc\nPAmenlCzJnz1FRiT+LoiIuD48eSPUcUvMXepfAHMxmrdmCoiw40xm4FqwF1gr4g0c06YSrmvf+7+\nw+o/V+NbydfVoQBQt1hdvHN7s/jw4ljrgi4GEWEiNOFQqUpoKLz0EgQGwqpVsHs39OkD//sftGgB\nly8nXIcxsG8f/N//QfHiUKYMzNZBHFJUYlo4ugHNjTEvYyUdnQGMMfeNMcOBtoBjwxgqlY4sO7qM\n0PBQXqr4kqtDAUBEaF+hPUuPLY3VeXT3+d1ky5iNigUquig6paKLiIAePWDtWli6FGrXhixZwM8P\nVq+2kpCyZaF9e5g0CY4csZKLsDA4eBC++w7694eKFaFqVfj2W2jdGl58Efr1g9M6D3qKSczAX7cB\nbyAQKIbVqvGAMeYIUC/5QlMqbfA/5E/9EvUpmrOoq0N5oEOFDny+43O2nN7Cs97PPli+6/wufIr4\nkMEjgwujU+nVoUOweLGVUGTLZj127ID588HfH5o0iV6+WTM4cAAmToRNm6wWj7AwyJcPbt2Ce7Yh\nZ0qVgjp1YNw4eP55yJjR6g/yxBPQvTts2AAeKTSz2NWrcOKE1RclvUlMwvE+8J2ITAC8gK7OCUmp\ntOPyrctsPLmRb5p/4+pQoqlepDolcpVg8eHF0RKO3ed307FCRxdGptKrjRutVocMGazH7dtw967V\nX+Obb6xLKvYUKgSjRln/vn3bSlC2bYM8eawWjSpVIFeu2NvlymW1djRqBF9/bbV2ONvu3dYxXr5s\ndXqtmEYaEsPivss+msTcFjsfq2WjNVDSGJN8810rlUYtPrIYD/GgfYX2rg4lmqiXVcIjwgG4dOsS\nZ26c0f4bKsUtXGi1VtStC2fPQnAw3LljfZHdugVvvOFYPdmyWS0YI0darR0NGthPNiI9+yz07QuD\nB8OxY8lzLHGZPRvq1YMSJcDbG955J2kdXlOb27fh7bcdK5uoRiRjzDVjzG/GmH+SElhKEpG3ROSk\niNwRkZ0iUsPVMan0x/+QP41LNyafVz5XhxJLhwoduHL7ClvPbAXgt/O/AWjCoVLU+PHg62s9li+H\n7FFG+s+QATJndu7+R4+2OpF26WJ1Tj1/Hn7+GcaMgREjrOTnYYSGWslFjx7WPjZtsu6uCQiAH35I\nlkN4KA8zpsmNG9ZlrkOHHCufJqenF5GXgC+A3sBuoD+wVkQeN8Y85OmjlGNO/3OaHWd3MPfFua4O\nxa6aRWtSLGcxFh9eTMOSDdl9fjcFsxWkeK7irg5NpUF37sCiRfD339av4tu3rb4MixbBwIHWF78r\nJiD28rI6ltapY12GuW2bUDlnTuvL+Kuv4KOP4M03rcs7iXHnjtVBddMm67LQG29Yx9i8ObRsCe+9\nZ/3byyv5j8sR8+ZZd/uMHm3Flph+LMHBVrJx8iRMmQJdHehkkULdZFJcf2CqMeY7Y8wx4A0gBOgR\n3wNNnH8AACAASURBVEahoY7v4MQJKxNWKi4LDy0ki2cWWpdtnXBhF4h5WWX3BWvAL512XiW3W7es\n21e7dYMPPrA6eS5aBEePWv8eM8Y1yUakWrWsL99Bg+Cnn6wv0X/+sT7nO3Sw+ndUrWq1Sjgq8lbe\nbdtg3TorYYl6jH5+cOmSdeyucOeOdSkpb1546y1o3Dj6HTvGQFCQdewvv2y9TwcOWEnYpUvQsCGc\nOwe//GINxOYQY0yaegAZgVDghRjLvwWWxbFNNcC0ahVoIiJMnK5cMWbiRGNq1TIGjMmSxZivvzYm\nPDzubVT6VXlyZdNhUQdXhxGvHWd2GEZgfjn5i8k9Orf56JePXB2SckPh4cZ8/70xp07FXnf9ujF1\n6hiTI4cxW7emfGzJYc8e6xjAmDFjEi4fHm5Mp07GZMxozM8/x11uyBBjMmc25sSJ5IvVUWPGGOPp\nacyffxqzbp0xxYoZkz27MZMmGTNunDGVKlnHW7iwdewZM1rP8+a1lhUtaszRo1ZdgYGBBjBANRPf\n93N8K93xATwCRAC1YiwfA/waxzbVrBcr0Hz6aew35tgxY9q0sd4cT09jWrUyZuFCY/r2tV7Bxo2N\nOff/7d13eFVV1sDh306j9x46BIiiICCIiHRpiqCOIspQVNTPio69omPFioNlsAAiojIiFqoiIEUE\nQlGK9N5rgNBCsr4/1g0kIQkhuTVZ7/PcR3POPmfvzb25Z2XXrefxTps8b8XuFcIgZNyKcYEuSpaS\nkpOk8luVpdOoTsIgZPKayYEukgkxJ0+K9Omj34WRkSL/939nvg/37BFp3FikVCmR+fMDW87cSk4W\nefJJrec332Sd7t57RZzTICwrR46IVKmizxd/2r9fpGRJfa9SxMeL3HGH1i8qSuSmm0QmTBBJTNTz\nR4+K/PqryKBBIn37pg2SshtwOJE8MEw2FedcJWAbcLmI/JHq+OtAKxG5PINrGgNx1aq1YvPmEjRp\nAtHRkJQEUVG9mDChF1Wr6uIxPXtCuXJnrp06VedxHzum/Vg32YzCfEdEGLdyHGv2r+Fo4lGOJh5l\n4faFLN65mF2P7KJgRMFAFzFLAycPZMgfQwDY99g+ShcqHeASmVBx9Kh+502dCsOG6XTPwYN1HMRd\nd+lU1z174OefoUGDQJc290Tg1lt1AbIZM6B587PTPPssvPSS/nsMGHDue379tXZZVK+uz5aU1003\naTeULzzxhE4FXrcOKlZMe27lSj1WqlTG144ZM4YxY8akORYfH89vv/0G0EREFmWacVbRSCi+yEWX\nysKFcdKrl3aVvP22SI0aGuk995xGd5nZt0+jQRAZPjzzdCZvGrdinDAIKf16aan6dlWp95960uij\nRjJ49uBAFy1bZm+aLQxC6rxXJ9BFMSFk3z6Ryy8XKVJEm+RTxMeLvPiiSIkSItHRZ5rd84pjx0Su\nuEKkXLm0f+X/9ptI27b6HBh8Hr/6yckio0Zp68kdd2hrR61aItWq+aa7futWfcY9/bT37plvu1RE\nA4h5wJBUPztgC/BoJukbAxIXF3f6wwQiV10lsnp19v7Bk5NFBgzQJsXp07N3jQl9CScTpPo71aXL\nF10kOasBQEEspVul97jegS6KCRHbtolceKFI2bKZd5XEx+v4jbxozx6R2rVFYmNFJk8W6dBBnxkN\nG4p8/33u7z9rlt5v5szc3yu9O+/UcRgHD3rvntkNOPLktFjgbWCEcy6OM9NiC6OtHFkqWFA3B1q8\nWBeNye7I6W9X/o+dbb/gik1fcP31RZk3D+rWzXkFTGh4bfZr7Diyg1/6/BKyszvCXBhTek+hVKFM\n2lCNSWXPHl2dMyFBZ2DUq5dxuuLF/VsufypbVp8Tl18OnTvrLI1vv4UePbyzRHqLFlCjhs6cadUq\n9/dLsWoVfPqpzozJakE0X8mT02JF5BvgEeBFYDHQAOgkInuyc32JEjrlJzvPj0MnDtF3fF9uHHsj\nP67+ngGv/krFitr3tm9fzutgckdE+Hzp5/Qd3/f0Spretm7/OgbPGcyjLR4lpnSMT/Lwl/rl6xNd\nLDrQxTBB7uBBXXvhwAEdn5FZsJEf1Kun62uMH6/LlF9/vff2YwkL07Ei33yjy7t7Q1KSrr4aHa3T\nYAMhTwYcACLygYjUEJFCInK5iCz0dh6zN8+m4UcN+W7ld4zsMZIaJWswb9cvTJigK7Bdd92ZzYOM\n/xw8fpBbxt1C3/F9+Xzp58TtiPNJPg9OfpAKRSvw1JW2SbLJ+xISdLGqjRt1EGidOoEuUeA1bKgL\ne/li47dbb9XnyMSJub+XiC7hPnWqTm4oGKBx7Hk24PC1Dxd8SOsRralcrDJL715Kn4Z96FCzA9M2\nTKNmTY1658/Xkcd33aVL5Vrw4XuzN8/mko8uYdKaSYy+fjQlC5Zk4hov/Mam89Pqn5iwZgLvdHqH\nwpEBWibQ5Ct//w2ffKIz4vztxAn9A2rJEv0uu/hi/5chv7ngAmjSRLtVcuuVV+DDD+G//9WVTQPF\nAo4ciD8ezxPTnqBPwz7M7DeTmqVqAtC+VntW7FnB9sPbadEC/vgDevfWrY+7dtV+v4ED88aGPcFo\n6PyhtB7RmirFq7D07qXccvEtdKzdkUlrJ3k1n+OnjvPg5AfpWLsj18Ve59V7G5ORxERd8XLAAKhd\nW6c0equp/VyOHtW8f/sNfvwxf26rHii9e+tYkQMHcn6Pzz6DZ57R5dnvuMN7ZcsJCzhy4MOFH3L8\n1HFebvcy4WHhp4+nbPM9bf00QJvb3nwT1q6Fv/7SHfWGDIHRowNS7Dwt4WQCT057kn4N+zGj3wyq\nl6wOQNeYrizYtoDdCbu9lteniz5lc/xm3uv8XsgOFDWh5Z13YMUKHZjYsaP+4RITA++/79sWj5Ql\nrKdNg+++g7ZtfZeXOdvNN+uOuf/7X86unzAB7rxTW9mfeca7ZcsJCzjO07HEY7wz7x36Nux71iC7\n8kXK07BCQ6ZtmJbmuHM6ivnVV/UDNHCgjvQ23vPtym85cvIIz7R6hoiwM5OvOsd0RhCmrJ3itbwm\nr5tMq+qtqFc2H4+YM36zcaPuWvrAAzowccQI7V5p106PVaumi03t3Jmz+8+cqU3ua9emPb58uS5s\ntXWrtm506ZLLipjzVrEiXHXV+XernDgBb7yhLVPdumlgGgx/G1nAkcqmg5vOmWb4kuHsPbqXx654\nLMPz7Wu255f1v6Ss73GWIUO0S2XgwFwV1aTz2eLPaFuj7enurRQVilagSaUmXutWOZV8ipkbZ9K+\nZnuv3M+YrKQM9itdWpvEU9Spozucrl4Nt9yiW7xXq6Y7dn7xBXz1FYwdqytizp+f+f1Xr4Zrr9W/\nfuvU0QBj6FC9rkULndr6xx86lsAERu/eGvBtOvfjCRHt9rroInjySe2C+/JLCA8/97V+kdUiHfnl\nhWfhr4oPV5Rth7ZlurhJYlKi1Hi3hvQc2zPTNBNXTxQGISv3ZL683siRuqjLTz9lmsSch7X71gqD\nkFFLR2V4/tlfn5XSr5eWU0mncp3X71t+FwYh87bMy/W9jDmXceP0u+Lbb7NOd+CAyBtv6OqU+thJ\n+3rrrbOvOXxYpH59kXr1RHbu1P2hrrlG94sCkc6ddfEuE1iHD4sULiwZ7vN1/LjIunW6QNjo0bqv\nF+hCZMuW+a+M+Xql0fN9pQQc5R8uLxd/cLEcOJbx8nhfLP1CGIQs3rE403/4wycOS+SLkTL0j6GZ\npklO1g9G1aoihw5lmsxk0zPTnpHirxaXhJMJGZ5P2RF17ua5uc7rpZkvSfFXi0tiUmKu72VMVg4d\n0h05r7lGstzFOrXkZN2G4fBhDUL27hV54gn9pn/ttbTpevbU3UFXrEh7jz17dKnyRPuIB41bbtHl\nzp9+WqRXL5HmzUXKlz87sKxTR2T8+Ox/Xrwlv680miNDuwzlrri7uHbMtUzpPYVCkYVOn0uWZF6b\n8xpdYrpwScVLMr1H0aiiNK/SnF82/MK9zTJeXcU5nZ5Uvz489ZSOODc5k5ScxIilI7i5/s2ZTk9t\nVrkZpQuVZuKaiVxe9ay9+87LtA3TaF29dZpxIsbk1urVuulZWJh2YxQrplNQ9+/X74fs9r87B4UK\npT32yisQFaUbdp08qeM93nlHNw0bO1anX6ZWtqyOGzDB48479b0aORJq1YLYWB1TU60aVKmir8qV\n9XMTzOxbM5XapWvz0y0/0eHzDlz95dXcfendtK/ZnjKFyzBh9QSW7V7GB10/OOd9OtTqwNu/v82p\n5FOZPphq1ICXX4aHH9YPk81rz5lpG6ax9dBW+jfqn2ma8LBwOsd0ZuLaify73b9znNexxGPM3TKX\n1zu8nuN7mPxp6VJ9SBQocPa55ct1qfCICKhUCQ4fhkOHdPbJ22/rd0VuOAcvvACRkRpsrFqlYzwe\nfRT+8Y/c3dv4R+vWOhA0GAZ+5oYNGk2nRdUWfNfzO3Yc2UHP//Wk3BvluHTYpTw05SGuqHoFV1a/\n8pz36FCrA/En4lm0I/NdegHuuUcH88ya5a3S5z+fLf6MC8pewGWVs14coEtMFxbtWMTOIzkcyg/M\n3TKXE0knTk9/NiY73nsPLrlEB16mH8C5ZIlOO61YUfdvWrBAZ6Bs365rL9x9t/fK8cwz8NprOi2/\ndWtt+TChI9SDDbCAI0OdYjqx8t6VbHloC591/4x6ZeshCP9um72/jptGN6VoVFF+Wf9LlumiorQ5\n888/vVHq/Gf/sf2M/3s8tzW67ZzrYXSq3QmHY/LayVmm23BgA00/bsrGgxvPOjdtwzTKFS7HReUv\nyk2xTT4ybBg8+KAuuFSwoG729eij2noxf76ua1GzJvz6K5Qr5/vyPP64ToP97jttUTHGnyzgyEKV\n4lXod0k/Rl8/mnUPrKNtzeytehMZHkmbGm3OGXAA1G943AKOHBrz1xhOJZ+id4Pe50xbrkg5mlZu\nes5lzkf9OYqF2xfy75lnB5e/bviVdjXb2WJf5jQRbZnYsOHsc6NGaQvFffdp4DFvnrYq/Oc/0KAB\ndOgAF16o+5KULu2/Mrdqlbd3cjXBywIOH+lQswNztszhaOLRDM8nJSfxwowX+CamKEv2zyI52c8F\nDGJr9q3hsk8uY/ji4VmmG75kOFfXvZqKRStm675dY7oydd1UTiWfyjTNN8u/oVTBUoxcOpK1+8+s\nhBR/PJ4F2xfY+hsG0GXFR4yASy+Fxo11IF/Llrox1r59OsCvXz+4/XZde8c5bVF4/HEdz1GlClxx\nBUyZEphtwo0JBAs4fKR9rfacTDrJb5t+O+vcjsM7uGrUVbz424tEhkVxrOpPbNzo/zIGo982/Ubz\nT5uzdOdSHpj8AFvit2SYbsraKcTtiOO2S27L9r271ulK/Il45m6Zm+H5FXtWsHzPcj68+kPKFynP\nS7+9dPrczE0zSZZk2teygCM/WbFCZ5R98IG2TLz7LjzyCFStCv37Q4UK8NNPurhSiRLamlGpEvTq\npa+PPjp7J9GUbc0nTYKiRQNTL2MCwXrxfKR+ufrUKlWLbmO60aZGG7rX6073et1ZuXclvcf1JiIs\ngml9pjFk9jDGb5nO0qX6V1J+9sWfX3Db97fRslpLPuv+GS0+bcH9k+5n/M3j06Tbk7CHft/3o2Pt\njnSr1y3b928S3YQqxaswfMlwWlVvddb5scvHUrxAcbrHdmd3wm4GThnIU1c+Rd0ydfl1w69UL1Gd\nmiVrZnBnk9ccPaore771FiQlaetEeLi+ihTRrcPvvTftFu29esGuXTrddPduXY48aFZ4NCYIWAuH\njzjnmHvbXIZ0HkKYC+OhKQ9R7d1qdPqiE40qNWLJ3UtoU6MNXS5oC5XimP/noUAXOWBEhEEzBvHP\n7/5J7wa9mdx7MjVK1uC9Lu/x/arv+W7ld2nSDvhxAIlJiYzoPoIwl/2PcJgL4/5m9zP6z9HsOLzj\nrPNjV4zl2nrXUjCiIAOaDKBS0Uq8OFPXk562YRrta7a38Rv5wNSpujT0u+/C889r98nJkzrQ88gR\nDSrefTdtsJGiQgXd3+Sll2xQpjHpWcDhQxWKVuCepvcwpfcU9j66lzE3jGFkj5FMunUS5YuUB6Bd\nzbYQlszMDfl3buw3y7/hhZkv8Eq7V/j02k+JCo8C4IYLbuCautdw/6T7OXRCA7KPF33M96u+59Nr\nP6VSsUrnndedTe6kQEQBhs4fmub48t3LWb5nOTddeBMABSMK8vSVTzNm2RhmbpzJst3LrDsljzt2\nDPr0gU6ddO2LP//UqaRRUYEumTF5gwUcflKiYAluvuhm+jTsk+av8tqlalM0uQorj00PYOkC69PF\nn3JltSt58son07QgOOd4v+v7HDx+kKenPc3fe/9m4OSB3NXkLrrHds9RXiULluSORnfw4cIPSTiZ\ncPr42BXandKxdsfTx25rdBuVi1Wm5/96AtC2hu3NnVcdOKDbvn/7LQwfrtux160b6FIZk7dYwBFg\nzjkaFGvLwZLTOXIk0KXxv62HtvLL+l/o27BvhuerlajGv9v+m/cXvE+3Md2oVqIab3V8K1d5Ptj8\nQeJPxDNiyYjTx8auGEv3et0pEHFmKcgCEQV4ptUz7ErYxYXlLsxRi4oJftu361TRFSs00OjXL28s\nsmRMsLGAIwhcFdMWKi3m9yUHAl0Uvxu1dBQFIwpyY/0bM01z/2X306hSIzYd3MSXN3xJkagiucqz\nRska/OPCf/DOvHdISk5i+e7lrNizgpvq33RW2n6X9KNO6TpcU+eaXOVp/CcpSWeV1Kmj3SMvvQQz\nZmiXSXqrVuk27PHxMHu2bs9ujPENG9YUBG5u3oYXlgrjF/3GVS1z1lUQikSEkUtHcv0F11O8QOYr\nEUWERfBjrx/ZdHATjSs19kre/7r8X1z2yWX8sOoHluxcQvECxbmq1tk7VkWFR7H4rsVpWj5M8Fqy\nBO66S1fx7NlT9yV5803dQyQyUqezliihC18VLw6//64rfE6ZoueMMb5jAUcQiK1Yk8iE6sw+Oh3I\nPwHHH9v+YNW+VQztOvScaaOLRRNdLNpreTer3IyW1Vry5u9vcuDYAXrE9sg0qMhti4rxvSNHdBrq\nu+/qJmmzZulCXADJybBsmbZgbN6sG6MdOqStGl266M6pZcoEtPjG5AsWcASJyoltWRc+I9DF8KuR\nS0ZSpXiVgA3G/Nfl/+K6r68D4I2r3ghIGUzuzZ4NffvCjh3affLww2lnloSF6VLiDRoErozGGBvD\nETQuLdOWhGJL2ZuwL9BF8Yvjp47z1fKv6NOgD+FhgVkdqVvdbtQpXYcSBUpwVe2zu1NMcDt+HB57\nTAd8Vqqk01ifeMKmsRoTrCzgCBJX19e/8r+NmxngknjXgWMHuO7r6/hh1Q9pjv+w6gcOHj9In4Z9\nAlQyCA8L5+NuH/Pfa/57eu0P41vffqstELndO2jxYt3HZMgQ3XJ95kyIifFOGY0xvmEBR5Bof2lV\n2F+bn5blrfU4nvjlCb7/+3u6f9WdJ3958vTGaSOXjqRZdHMSd9bj2291v4olS3L/IDpfrWu0pudF\nPf2baT714Ydw4406ZuLTT3N+n6VLdXxGRAQsXKitHLaEuDHBz8ZwBIkqVSBqW1vml847AcesTbMY\ntmgY73d9n4STCTwx7QlmrptPhSVvM7H8ZJj4ARffqWmd062+S5eG1q2hXTtdD8E2twp9IvDqq/D0\n07rs9+HD8OijcPXVEH2e44D37oUePXQDtNmzoXBh35TZGON9IdPC4Zyr7pz7xDm33jl31Dm3xjk3\nyDkXmS5dVefcBOdcgnNup3NusHPnseFGgDgHtcLaspvl7E7YHeji5NqJUye486c7ubzK5dx96d30\nrPooXXZP4/e1yxlf7lLCXST/uasns2bpRldHj+oOmvfdpw+Vhx6Ce+4JdC1MboloC8TTT8MLL+gs\nkrfegkKFdPMzkezf69Qpnep65Ah8950FG8aEmqB/EKcSCzhgAHAh8BBwN/BySgJPYDERbblpDvQF\n+gEv+rmsOdK8UhsAZmycEdByeMNrs19j7f61vHDpMO6/L4yYGPjj6zY8W34R7Wq15Z7L7uS+O0rS\nsqWug1CwILRpow+l336D996DL77Q5nMTeo4cgR9+gBtu0HUwhgyB557TwLpUKRg6FMaP1zEd2fXI\nIzpWY+xYqF7dd2U3xviIiITsC3gEWJvq5y5AIlA21bG7gANARBb3aQxIXFycBNKwYSLcV1cGjP+/\ngJYjt1bsXiGRL0ZJg4FPS0SESOnSIq+8InL4cPbvcfKkSN26Ip06+a6cxrt27xYZMkSkY0eRqCgR\nEKlTR+TLLzNOf911IhUqiOzbd+57jxih9/vPf7xbZmNM7sXFxQkgQGPJ4pkdSi0cGSkJ7E/1c3Pg\nLxHZm+rYFKAEUN+fBcuJhg2Bbc34Y1Po/lm/8u9kWr1xF4l7qrPn22cYPBg2bYInnzy/8RiRkfDK\nK7oC5LRpviuvyR0R+OMP+Oc/dRzSo4/q8cGDYfVqffXqlfG177+vU1v/9a/M75+UpANM77oLbrtN\nu2GMMaEpZAeNOudigPuAh1MdrgjsSpd0V6pzQf0kr18f2FeP9fGTAl2U85aYqE3nz43/lFNdZ/Fw\n1V95ZU1BCuRiRfDrr9e9LR57DBYs0AWcTHDYswfGjYOPP4a4OKhZE15+Gfr3z/6qnZUq6XiOO+7Q\nMTx9++qOrRGeb6Wff9ZulD//hFtv1f1RbFM1Y0JXwAMO59yrwONZJBHgAhFZneqaysAk4GsR+czH\nRfSbIkWgYkQsO5P3sffoXsoWLhvoImXL4sVw++2wZPVeCjzyBD3r9+Gtf+R+9VDn9C/lVq3g668z\n/0vZ+MeBAxpkfP01/Pqrtm506gQ//QSdO+dsauptt2mwMWyYzlqpUAFuuQVWroTJk+GKK2DePLjs\nMu/XxxjjX07OZ5i4LwrgXBngXH8TrReRU5700cB0YK6I9E93rxeAbiLSONWxGsB6oJGIZNjC4Zxr\nDMS1atWKEiVKpDnXq1cvevnxSdf30WV8XvRi3rl4FgOvb+m3fHPqrbfg8cfhwguh1sA7mLnnW1bd\nt4ryRcp7LY9rr9W9MFauhAIFdK2ORYt0QOn11+sgRONbCQlQu7bOKGrdWmeL3HCDDvj1BhFdh2Xk\nSPjyS91Y7fXX9f21Vg1jgseYMWMYM2ZMmmPx8fH89ttvAE1EZFGmF2c1wCPYXkBlYBXwBZ5gKd35\nzpw9aPROdNBoZBb3DYpBoyIih44eE54PkwItPpZFiwJblj17RLZuzfx8QoJIgQIiAwaIzFw3VxiE\nvD//fa+XY/lykbAwkdtuE+nVS6RsWR1ACCKVKon8+KPXszTpTJig/97++BVJShJJTvZ9PsYY78hz\ng0Y9LRszgE3AY0B551wF51yFVMmmAiuAUc65Bs65TsC/gaEikujvMudEsUIFqVmyBiVrr6JLF9iw\nIXBluecebebOzPTpcOIEPDDwFA/+fA9NKjXhriZ3eb0cF14IAwbAZ5/pIMQ779Spsxs2QKNG0K2b\nLhJ28KDXszYeU6fq9u2NGvk+r7Awa9UwJi8K+BiO83AVUMvz2uI55tCoKhxARJKdc9cAHwJzgQRg\nBPC8vwubGxeUjyWx3d9s+F37yOfM8V7TdXYlJ+vskP37Yd06bU5Pb9IkqFEDfj38IUt3LmXeHfN8\nthHb0KG6Z0bJkmmP//QTjBgBAwfqIMMvv9Qmf+NdP/+sAzotEDDG5FTItHCIyEgRCU/3ChOR8HTp\ntojINSJSVEQqiMjjIuLnHTpyJ7ZMLBsO/82UKRAfD9dcowPr/OnPPzXYAPj++7PPi2jA0frqnTw7\n/RkGNB5As8rNfFaeiIizgw3QB2D//jrGo04dbe1YtsxnxciXtm6FFSvgKttQ1xiTCyETcOQnsWVj\nWX9gPZWrnWDSJH2A9u3r343Npk/XAZodOuiKkOmtWQPr18Pmeo8TGRbJK+1f8V/hMlC1qrZ21Kql\nAdru0F8dPmj88osGdu3bB7okxphQZgFHEIotG0uyJLN2/1oaN4bRo3UJ6Oee818ZZsyAFi3g5pu1\nSyf9A3zSJIgseojZB8fwZMsnKVM4m4sv+FDRovDjjzqupEcPXVTK5N7PP0PjxlA2NGZpG2OClAUc\nQahe2XoArNq3CtCH5+uv68JKo0b5Pv+kJN2zom1b7aIQ0daD1CZNgthrJpOYnMgNF97g+0JlU9Wq\n2gWUsjZIgGd9h7zk5DPjN4wxJjcs4AhC5QqXo1TBUvy99+/Txx55RBdJuuMObXHwpSVLdOxImzZQ\nvrwuvpS6W+XoUW0BibzoBxpUaECNkjV8W6Dz1KzZmfUcXnop0KUJbX/+qauK2vgNY0xuWcARhJxz\nxJaNTRNwOAcffgiXX64tHuvXZ32PHTtynv/06bp9eDPPGNAePfSv3IQE/XnGDDiRmMhaN4Hu9brn\nPCMfuukmGDQInn9eBzyanJk6VbeBb9Ei0CUxxoQ6CziCVPqAAyAqSsdylCwJXbvCvn0ZXzt4MERH\na+CQEzNmaKtGyj4o3bvreIipU/XnSZOgQrNZHEo8GLQBB+iGcVWqWCtHbvz8s04zzs2eOMYYAxZw\nBK2UgEPSDUIoU0Yf+Pv2nQkEUvvkE11qvEABXSjrfJ06pYtqtU21FUpMjG4sl9KtMmkSlL/yByoX\nq0zjSo0zvlEQiIrSoOOrr+Dvv8+d3qR17BjMmmXdKcYY77CAI0jVK1OPwycPs/PIzrPOxcTobIy4\nOOjT58x02XHjdBvve+6BZ5/Vnw8fzvj+hw7pdMf0Fi3Sa9q0SXu8Rw/Nc+VKWLdO2FXqe66tdy0u\nyFeCuu02be15JbCzdkPSrFk648cGjBpjvMECjiAVWzYW4KxulRTNm+ugyP/9T7dvnzZNd1O96Sb4\nz3/gn//UwZ3jxmV8/0cf1b9cJ0xIe3z6dN21tmnTtMd79NDdQp96CiIqL2P3yY1B3Z2SokAB/RMd\nvwAAGjpJREFUeOIJnVq8dm2gSxNafv5Zg7ULLwx0SYwxeYEFHEGqVqlaRIRFZBpwAFx3HQwZoju2\ndu0K7drp7IywMKhWTbtFRo48+7qtW2H4cB0LMmDAmRVFQcdvtGwJkZFpr2nSBCpX1m6Vah2/p1hU\nMdrUaOOVuvraHXfotucvvxzokgSHQ4fg6afTvu8ZmTpVg9Igb8QyxoQICziCVGR4JDGlY7IMOADu\nv19nYnTsqK0dUVFnzvXtqy0WmzalvebNN3WRrN9/1376Bx7Q44mJ2oyevjsF9KHTo4cnXc3v6RzT\nmQIRoTGSsGBBbQUaNercs3vyg48/1i6mZ5/NPM3OnTol1sZvGGO8xQKOIBZbNpa/9517tOOgQTq+\nokiRtMevv16nNI4efebY7t0wbJgGGbGx8N57en7cOFi4UKe+ph4wmlrPnhBRehtbkheGRHdKanfe\nqQNuX3010CUJrKQk+OADXTX0o48y33cmpSuuQwf/lc0Yk7dZwBHE6pWpx6q9q3J8fbFiGnSMHHlm\nxc1334Xw8DOtGr17a8vF3XfDN9/oNU2aZHy/K6+E17/7kXAXTpc6XXJcrkAoXFjHrYwYoYFVZtau\n1Zk+J0/6tjzbtukD/7XX9D358EPt5oqL822+kydrK8+4cbrvzMMPn70a66pV2iLUt692RRljjFeI\nSL5/AY0BiYuLk2AyfPFwYRCScDIhx/eYOlUERObNE9m/X6RYMZFHH02bZudOkTJlNF3Xrlnfr8sX\nXaTtiLY5Lk8gHTkiUru21vPyy0U++0yPnTwpMnasSIcOeg5Ebr9dJDnZu/mvXy/yxhsizZtrHhER\nIqVLixQuLBIWdubYjBnezTe1zp1FLr1U6/b995rnjz+eOX/0qEiDBiKxsSKHD/uuHMaYvCMuLk4A\nARpLFs/aiIBGOyZLKTNVVu9bzSUVL8nRPdq108Gen38OFSvqOI2HH06bpkIF/Qv7ppvSjt84fuo4\na/atISExgSMnj3D4xGGmbZjG4A6Dc1ijwCpSRFcd/eEHHcdw++3w4IPa+rFrl66mOXKkjmu5+264\n+GI9f75EdN2P+fN1HETKa/dunTXTubO+H9266cDdFMePw9VXww036LW1anmv7qA7/E6erK08zmn+\nHTro56FjRx3/M3AgrF6t+Rct6t38jTH5mwUcQaxeGd3E7e+9f+c44AgP126TYcP0IXPHHRp4pHfj\njToDJXXA0f/7/ny17Ks06QpFFKJHbI8clSUYREXBP/6hr40btRvj8GHo318DjBSrV+uD+IIL0q5D\ncfIkvPMOTJyo66FceKGmqVlTN4z7+Wd9bdum6WvVggYNNIC55BJ9wBcrlnHZChaEsWPhsss0GPj9\ndyhe3Ht1/+ADHcfSs6f+7By8/baWa+hQnQI7bJgGY6n/LYwxxiuyav7ILy+CtEtFRKTCGxXk+enP\n5+oey5adaa7ftCl71+xN2CtR/46SJ35+Qv7a9ZdsOLBBdh/ZLccTj+eqLKHi1CntfihZUmTVKj02\nbZp2NYSHi3TrJtKkiXaHpHTDgMhFF4k89JDIxIki8fE5y3vlSpESJbR769Qp79Tn8GG95+OPn33u\n//5PpHhxkaJFRW65xftdScaYvM26VPKIemXrnd6mPqfq14dWreCii3R9juz48q8vSZZkHr78YcoV\nKZer/ENReDiMGaMLrF17LTRqpEukt2ypg2tTWgCSk2HzZli3Tls7KlXKfd6xsZpH16460PWtt3K/\nFsbo0dqSc/fdZ5978UVdRC46Wgey2robxhhfsIAjyMWWiWX+9vm5vs/5buQ2fMlwrql7Tb4MNlKU\nLKnTjZs1g19/1fEd//xn2gdyWBjUqKEvb+rYUbtuHnhA1w9p3PjMq1077RrJzKlTGjCllFNEu0y6\ndcu4nGXLwpw5ULp05t09xhiTWxZwBLnYsrGM+nMUyZJMmMv5LOaw87h06c6lLN65mEFtBuU4v7yi\nTh0daFqkiHfHU2THfffp+JA5c3SPmy++0Gm05crp1N1rr02bXkSPP/KI/tywob5KldL1Nt55J/O8\n6tf3XT2MMQYs4Ah6zas059ipY/yy/hc61vbPLlrDlwynfJHydIkJrbU2fMUb3SQ54ZwOMk29+NaW\nLRqIdO+uy9K//bbOJtm0SQcE//KLDoCtWxeWLtWfV6/WLqD27QNTD2OMAQs4gl7zKs1pUKEBQ+cP\n9UvAcTLpJKP/Gk3fhn2JDI889wXGr6pW1dlEn3wCDz2kXWV9+8LgwVCihE577dQp7TVHj+p/bWyG\nMSaQbKXRIOec496m9/LT6p/YeHCjz/P7afVP7D26l/6X9Pd5XiZnnNPWjSVLdCzHs8/qVNdly84O\nNkDXGSlc2P/lNMaY1CzgCAG3XnwrxQsU56OFH/k8r+FLhtM0uin1y1unfrCLiYHZs3VBr48/1hYO\nY4wJVhZwhIAiUUXof0l/Pln0CcdPHfdZPjuP7GTSmknWuhFCIiI08DDGmGBnAUeIuKfpPew7to+v\nl33tszxGLR1FRFgEN190s8/yMMYYkz9ZwBEi6pSpQ6fanXh/wftpjosIHyz4gNdmv5ar+4sIw5cM\n57oLrqNUoVK5upcxxhiTngUcIeTepveyYPsC5m/ThcBOnDrBbT/cxr0T7+X5Gc+TcDIhx/feeHAj\nK/eu5Ob61rphjDHG+0Iy4HDORTnnljjnkp1zDdKdq+qcm+CcS3DO7XTODXYuFytmBZGudbpSvUR1\n3l/wPruO7KLd5+0Y89cYXmjzAieTTjJj44wc33vOljkAtKzW0kulNcYYY84I1QfxYGArulnMaZ7A\nYiK6vkhzoC/QD3jRz+XzifCwcO5peg9fL/uaZp80Y93+dczoN4NnWz1LzZI1mbR2Uo7vPWfzHGLL\nxlKmcBZrZhtjjDE5FHIBh3OuC3AV8AiQfimjTkAscKuI/CUiU4BngXudc3likbPbG91OeFg4ZQqV\nYcGABTSv0hznHF1iujB57eQc33fOljlcUfUKL5bUGGOMOSOkAg7nXAVgGNAbOJZBkubAXyKyN9Wx\nKUAJIE8sLFGmcBlW3ruSubfPpWqJqqePd47pzLoD61izb8153zP+eDzLdi+zgMMYY4zPhFTAAQwH\nPhCRxZmcrwjsSndsV6pzeUK1EtUoGFEwzbG2NdsSFR6Vo26VeVvnIQgtqrbwVhGNMcaYNAIecDjn\nXvUM/szsleScq+ucewAoCryecmkAix10ikYV5cpqV+aoW2XOljmULVyWumXq+qBkxhhjTHBs3vYm\n2nKRlQ1AW+By4IRLuwvVQufcaBHpD+wEmqa7toLnvzvPVZCHHnqIEunWh+7Vqxe9evU616VBoUtM\nF56Z/gzHEo9RKLJQtq+bs2UOLaq2wNnuXsYYY7IwZswYxowZk+ZYfHx8tq51InLuVEHAOVcFKJ7q\nUDQ6PuMGYL6IbHfOdQZ+BCqljONwzt2JtoqUF5HETO7dGIiLi4ujcePGvqyGT63Ys4L6H9Rn0q2T\n6BzTOVvXnEo+RcnXSvJc6+d47IrHfFxCY4wxec2iRYto0qQJQBMRWZRZuoB3qWSXiGwVkRUpL2AN\n2q2yXkS2e5JNBVYAo5xzDZxznYB/A0MzCzbykgvKXkDV4lXPq1tl6c6lJCQm2IBRY4wxPhUyAUcm\n0jTPiEgycA2QBMwFPgdGAM/7vWQBkDI99nwGjs7ZMoeo8CiaRDfxYcmMMcbkdyEbcIjIJhEJF5E/\n0x3fIiLXiEhREakgIo97ApF8oXNMZ1bvW836A+uzlX7OljlcGn3pWbNejDHGGG8K2YDDZKx9rfZE\nhEVkq1tFRJiz2Rb8MsYY43sWcOQxxQsU54qqV2SrW2Vz/Ga2Hd5mAYcxxhifs4AjD+oS04VfN/zK\niVMnskyXsmGbLfhljDHG1yzgyIM6xXTiaOJR5m2dl2W6OZvnULdMXcoVKeenkhljjMmvLODIgy4q\nfxGFIwuzYPuCLNPZhm3GGGP8xQKOPCgiLILGlRpnGXAcOnGIv3b/ZQGHMcYYv7CAI49qGt2UBdsy\nDzjmbZ1HsiRzRTULOIwxxvieBRx5VNPopmw4uIE9CXsyPD9r0yzKFCpjG7YZY4zxCws48qimlXUP\nu4XbF2Z4fvrG6bSp0YYwZx8BY4wxvmdPmzyqdqnalCpYKsNxHAknE5i/bT5ta7QNQMmMMcbkRxZw\n5FHOOZpWbpphwDF3y1wSkxNpW9MCDmOMMf5hAUceljJwVCTNHndM3zid8kXKc0HZCwJUMmOMMfmN\nBRx5WNPopuxK2MXWQ1vTHE8Zv+GcC1DJjDHG5DcWcORhKQNHU3erHDl5hAXbFtj4DWOMMX5lAUce\nFl0smuhi0WnW45i9eTZJkkSbGm0CVzBjjDH5jgUceVzT6KbM3z7/9M/TN0ynYtGK1CtTL4ClMsYY\nk99YwJHHNavcjIXbF5IsyQDM2DSDtjXa2vgNY4wxfmUBRx7XNLoph04cYs2+NRw6cYi47XHWnWKM\nMcbvIgJdAONbl0ZfCujA0VIFS5EkSTZg1BhjjN9ZwJHHlSpUipjSMSzYtoDI8EgqF6tMTOmYQBfL\nGGNMPmMBRz7QNFpXHD2ZdNLW3zDGGBMQNoYjH2ga3ZRFOxaxeOdi604xxhgTENbCkQ80q9yME0kn\nAGz/FGOMMQFhAUc+0KhSI8JdONHFoqlZsmagi2OMMSYfsoAjHygcWZgm0U1oUL6Bjd8wxhgTEBZw\n5BMTb5lIwYiCgS6GMcaYfMoCjnyiTOEygS6CMcaYfMxmqRhjjDHG50Iu4HDOXe2cm+ecO+qc2++c\nG5fufFXn3ATnXIJzbqdzbrBzLuTq6Q1jxowJdBG8Kq/VB/JenfJafcDqFAryWn0gb9YppB7Ezrkb\ngM+BT4GLgRbAl6nOhwET0a6i5kBfoB/wor/LGgzy2gc2r9UH8l6d8lp9wOoUCvJafSBv1ilkxnA4\n58KBd4F/iciIVKf+TvX/nYBYoK2I7AX+cs49C7zmnBskIqf8VmBjjDHGnBZKLRyNgWgA59wi59x2\n59xE51z9VGmaA395go0UU4ASQOp0XpGTCNRf1wBs27bNL3n565pgrk9OrwvmOvmrPjnNK5jrZJ87\n/15jn7uc5+PPz2ooBRy1AAc8j3aRXA0cAGY450p60lQEdqW7bleqc14V7G9uXvvABnN9cnpdMNfJ\nvvhVML9HOb0umOtknzuV194jCIIuFefcq8DjWSQR4ALOBEcvich4z7X9ga3AjcDHuShGQYCVK1ee\n10Xx8fEsWrQoKK8BSExMDNry5eSaYK5PTq8L5jr5qz45zSuY62SfO/9eY5+7nOfjjWtSPTuzXOzJ\nich5ZeRtzrkywLkWiVgPtAR+BVqKyNxU188DfhaRZ51zLwDdRKRxqvM1PNc3EpGlmZThFmB0buph\njDHG5HO3isiXmZ0MeAuHiOwD9p0rnXMuDjgB1APmeo5FAjWATZ5kvwNPOefKphrH0RGIB1Zkcfsp\nwK3ARuD4eVfCGGOMyb8Kos/iKVklCngLx/lwzr0D3ADcjgYZj6FjOWJFJN4zLXYxsB3tpqmETqMd\nJiLPBqbUxhhjjAl4C8d5egRIRIOIQsAfQDsRiQcQkWTn3DXAh2grSAIwAh1oaowxxpgACakWDmOM\nMcaEplCaFmuMMcaYEGUBhzHGGGN8Lk8EHM65J51z851zh5xzu5xz3znn6maQ7kXPCqVHnXM/O+di\n0p0v4Jx73zm31zl32Dn3P+dc+XRp6jjnxjvn9jjn4p1zs5xzbUK8To2dc1Odcwc89fqvc65IkNZn\ngHNuuuffPtk5VzyDe5Ryzo32pDngnPvE2/UJQJ2ecs7N8WxKuN/bdfF3nZxz1T3vy3rPPdY45wZ5\nZp6FXH08ab53zm1yzh3z3Otz51wlb9bH33VKlTbKObfEk65BKNfJObfRcy7lleSceyxU6+NJl+Wm\npsEiTwQcwJXAf4DLgA5AJDDVOVcoJYFz7nHgPuBOoBk6oHSKcy4q1X3eRWe93AC0QpdS/zZdXhOA\ncKANutz6UuAnl+4hHip18nwh/gys9tyjM7oM/IggrU8hYBLwMrooXEa+RBeLa4/WvRXwX29WxsOf\ndYoEvkEHRPuSv+oUi64cPAC4EHgIuNuTPhTrA7pO0I1AXeB6oDYw1puV8fBnnVIMRhdZ9NWgP3/W\nSYBngAroCtSVPHl7k9/q486xqWlQEZE89wLKAsnoImEpx7YDD6X6uThwDLgp1c8ngOtSpannuU8z\nz89lPD9fkSpNUc+xdiFapwHAjnR5XeRJUyuY6pPu+tZAElA83fFYz30bpTrWCTgFVAy29yg7dUqX\npi+w35f18HedUqV9BFibh+rTzfO5Cw/lOgFdgOWpfrcahPLnDtgAPODrOvijPugfv1uAfv6sT05f\neaWFI72SaDS4H8A5VxONZKelJBCRQ+i02ss9hy5FpwmnTrMK2JySRnSRsr+BPs65ws65COD/0P1a\n4nxbJd/UCSgAnEyXV8riZy29WoO0clKf7LgcOCAii1Md+8WT12W5LPO5+KpOgeTPOpVMyceH/FIf\n51xpdDHBOSKSlJsCZ4PP6uScqwAMA3qjD0N/8fX79ITTbuZFzrlHnO5G7ku+qk92NjUNGnku4HDO\nObQbYbaIpKwuWhF9szPa2C1lU7cKwEnPm55ZGoCr0Df5MPoL+CDQWTxrgfiCj+v0K1DR80sX6Zwr\nBbzqubfX+58hV/XJjorA7tQHPF/4+8/zPufFx3UKCH/WydN3fR/wUU7vkY08fF4f59xrzrkjwF6g\nKtAj5yXOVn6+rtNw4IN0AbxP+aFOQ4Cb0W7xj4CngNdzWt5z8XF9srOpadDIcwEH8AHaJ3yzD++/\nC7gCaAqMR8dwVPBRfil5+qROnl+AvsDDwFG0mW89+tBO9nZ+Hr5+jwLB6pRDzrnKaD/11yLymQ+z\n8kd9BgOXoH+YJAGjfJgX+LBOzrkH0C7jlIex83YemfDp+yQi74rIbyKyTESGod999zsvD1hOxZf1\nSbOpqScw7I8GMzf6IL9cyVMBh3NuKNAVaCMiO1Kd2on+sqQPCip4zqWkicpgFPDpNM659p779xSR\neSKyRETuQ1s6+nq1Mh6+rhOAiHwlItFo01wZ4AWgHBp4eFUu65MdO4H0s3DCgdLneZ9s80Od/M5f\ndXLORaOtbLNF5K4cFjc7+filPiKyX0TWisg0oBfQ1Tnnk648P9SpLdq8f8I5lwis8Rxf6JwbnrNS\nZy1Av0vz0a7nGrm8z1n8UJ+Ue57erlVETqLf3dXOu8A+lmcCDs8b2x1oKyKbU58TkQ3om9g+Vfri\naJ9+ys6zcegAr9Rp6qFvWkqaQmjkmP4v/2R88G/p4zr9nj4/EdkjIkfRSPwYOnslmOqTHb8DJZ1z\njVIda4/+cv+Rw6Jnyk918it/1cnTsjEdWADclstiZ5VPoN6jlHEBBXJ5n7P4qU73Aw1Tvbqg3383\nAU/npvwZCeD71Aj9Dt99roTnw0/1Sb2pacp90m9qGjwCPWrVGy+0yeoAOhWpQqpXwVRpHkN3pe2G\nTh0aj0bsUenuswHt22sCzAFmpTpfBv1QjgUaAHWAN9BBlheHYp08ae5Ff+nqeP4/Abg3SOtTAf3y\nuwPPqG/Pz6VSpZkILES7vK4AVgGjgvhzl506VfUcew7d/TjlIVAkFOuEtqatAaZ6/v90XiFan2ae\n352GaEDfDpjt+exFhmKdMsi3Oj6apeLH96k5Ou6uAVATHdi7C/gsFOvjSfMOOhHgKnRK9idoy0cJ\nb79Puf53CXQBvPTmJqP9pelffdKlG4SOUTiKbqMbk+58AXTu9F50UOhYoHy6NI3R/uY9wEH0Ad4x\nxOs00lOfY+huu7cEcX2ez+RefVKlKQl8gT6YDwAfA4VDvE7DM8mrVSjWCe2CTH8uGUgK0fpchM44\n2OO5xzpgKFAplD936dJX95z3RcDhr/epEdoKuh/9w2oZ+uD3dlDoz++GcHTs0A70mTQFuMDb75E3\nXrZ5mzHGGGN8Ls+M4TDGGGNM8LKAwxhjjDE+ZwGHMcYYY3zOAg5jjDHG+JwFHMYYY4zxOQs4jDHG\nGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhifs4DDGOMXzrnhzrlk51ySc+6kc26nc26qc66/cy7b\nW5875/o65w74sqzGGO+zgMMY40+TgIrovhyd0a3phwA/Ouey+33k0F1LjTEhxAIOY4w/nRCRPSKy\nQ0SWiMhr6BbeXYF+AM65h5xzfzrnjjjnNjvn3nfOFfacaw18BpRI1VrynOdclHPuTefcVs+1v3vS\nG2OCgAUcxpiAEpHpwFLges+hJOB+4EKgD9AW3Q0TYC4wEDiEbt1dCXjTc+594DLgJnS777HAJOdc\nbd/XwhhzLrZbrDHGL5xzw4ESInJ9BufGABeLyEUZnLsB+FBEynt+7gu8IyKlU6WpCqwHqorIzlTH\nfwb+EJFnvF4hY8x5iQh0AYwxhlTjMpxzHYAngFigOPo9VcA5V1BEjmdy/cVAOLA63QDUKGCvz0pt\njMk2CziMMcHgAmCDc6468CPaPfIUsB+4EvgEDR4yCziKAqeAxkByunNHfFFgY8z5sYDDGBNQzrl2\naAvFW0ATtKv3kVTnb053yUm0NSO1xZ5jFURkjg+La4zJIQs4jDH+VMA5VwFPcAB0QbtPfgBGoYFH\npHPuAbSloyVwV7p7bASKegKVpcBREVnjnPsS+Nw59wgagJQH2gFLRWSSz2tmjMmSzVIxxvhTZ2A7\nsAFdk6M1cJ+I9BD1J/Aw8BjwF9ALDUhOE5HfgY+Ar4HdwKOeU/2Az9FZK38D44BLgc2+rZIxJjts\nlooxxhhjfM5aOIwxxhjjcxZwGGOMMcbnLOAwxhhjjM9ZwGGMMcYYn7OAwxhjjDE+ZwGHMcYYY3zO\nAg5jjDHG+JwFHMYYY4zxOQs4jDHGGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhif+3+2vp9NFAZg\nlgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -967,18 +999,18 @@ "output_type": "stream", "text": [ "TRADING STATS\n", - "AVG Monthly Return :: 1.10%\n", - "STD Monthly :: 7.11%\n", - "SHARPE :: 0.54\n", - "MAX DRAWDOWN :: 30.30%, 33.0 months\n", - "Correlation to SPY :: 0.04\n" + "AVG Monthly Return :: -1.01%\n", + "STD Monthly :: 7.03%\n", + "SHARPE :: -0.50\n", + "MAX DRAWDOWN :: 170.53%, 105.0 months\n", + "Correlation to SPY :: -0.05\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcTeUfwPHP19iXrNmLhFCyJluWaJUUCWUt6qfS8mtR\n/VoUJa2SKBIlFEokZN8JIfsSMfYtjIbBzHx/fzx3GLMvdxvzfb9e9+Xeszzne84d53vP8zznOaKq\nGGOMMUnJEugAjDHGBD9LFsYYY5JlycIYY0yyLFkYY4xJliULY4wxybJkYYwxJlmWLIwxxiTLkoW5\nQEROiUiY5xUlIqdjTesgIm+KyDnP539EZLGI1E2gnLKe9T9PYF50rDKPiMgsEXkwzjLzROQRz/vG\nnnUGx1lmkYh0jvW5uIgME5F9nrL/EpGvRaRiEvv7qojs9CwfKiLjYs2bLyJnPPMOi8hEzzYeFZFN\nIpIt1rKFReSQiNyeyHZKich3InLUs+/LRaRFrPllPPuYJc56I0Wkr4i8EuuYnRGRSM/7UyKyPpFt\nZheR/iKyW0TCRWSriLwQZ5nY+xhT/s2JlPeoiGwWkZMickBEpopInjjL9PHsx01xpnfxTP8ozvRW\nnulfxzkOMX+DO0Wkd6zlo0WkXAKxdYl1TGLvS/GE9sWkjSULc4Gq5lPVK1T1CmA30CLWtJgT6fee\n+UWA+cCEBIrqDPwDtIt9Uo3ZDHCjp4zrgG+AwSLyehKhhQOdROTqhGaKSCFgKZALaOApuyawALgt\nkXW6AA8Dt3qWrw3MiRPnE555FYGCwMeqOgLYC7wZa9mBwFRVnZnAdgoCi4EIoDLuuA0ExopI6zjb\nS4iqav+Y7wH4D7DU853kU9Wqiaw3EWgK3AnkAzoBj4nIpwntY6zv+fcE9qEx8A7QTlXze/bjhwS2\n2Qk4hvv+49oBPBgnIXYGtsbdXyC/Z18fAt6IlYSTuoM45pjE3peDSSxvUsmShUmMeF4JUtVoYAxQ\nUkQKx5ndGXgNOA+0TKxcVf1HVb8DegKvek6sCTkBjAL6JDL/v8BJVe2kqrs8ZYep6jeqGu/qxqM2\n8Fus5Q+r6lcJxIqqngB+BG7wTO8B9BSRG0XkDtxJ+b9JxHZKVbur6hFVPauq3+NOvh8nsk66iEgz\noDnQWlU3q2q0qq4AOgJPxvl1nuh3HEtt3Ml4HbjjoaqjVTU81jYbAcWBp4EOIpI1ThkHgfXAHZ7l\nCwL1gSkJ7YJnO8uBjVw87imJ1fiIJQuTJiKSHeiC+yV5PNb0W4BSwPe4q44uKShuMpAVqJPIfMWd\nXNuISIUE5jcDJqU4eGc50FlEXhCRWnGrgGITkSJAG2A1gKruBt4ARgJDgJ6qejKR1ZvjEk1c44Gr\nE9mf9GoO/K6q+2NP9CSMvbjjlRq/A3d4qpnqe777uDoDv3DxSjPujwQFvuXi30N74GfgXAJlCYCI\nNACq4DnuJrAsWZjUaici/wCngUeBBzxXGTE6A9M8J8+xwJ2ek22iVDUSOAoUSmKZw8AXwNsJzC6C\n++UKgIi0FJHjnnrrGYmUNwboBdyOq047JCIvxVnsM8++rgH2Ac/HWv9z3JXTWlX9JYndKwIcSGD6\ngVjzvS2xbcZsN/Y2B4lrfzouIqsSWkFVFwOtgRrAVOCoiHwkIjEn9VxAW2CM57ucSMJVUT8DjUXk\nCs/8bxNYRoAjInIMGAb0VtX5Se6tU8+zHzH7sj0F65hUsGRhUusHVS0EFAU24KooABCRnLiTxli4\nUI2wB1f3nChPlcWVuKuUpAzA/cK9Mc70Y0CJmA+q+ouqFgSeAxL6FRyz3DhVvR0ogGsL6Csisds4\neqlqIVW9SlU7q2rc+DbjqkmScjR2bLGUiDU/0vM+bvtONlxCSq3Ethmz3aOxPj/t2ceCqlo7kXVQ\n1d9UtZXnu28FdAW6e2a39sQ53fN5LHB33OpJVY0AfsVVURZS1WUJbQoorKqFVfX6JKoR41rm2Y+Y\nffHFFVumZsnCpImq/gM8DvQRkWKeya2BK4Ahnh4zB4CSJF8VdR/uZLMyBdscCPTl0sbOOZ4y0kRV\no1T1R2AdF+vHvWU27rjE1Q4IVdXtuF/754GycZa5BtfRIC3bvFlESsWe6OnpVJpLG/JTTVXnAXO5\neKy6AHmBUM93Ph5XrZjQj4TRuHac0UlswtomgpAlC5NmqroNmAHEdG/sAowAqgLVPK+GQHURuT7u\n+iJSUEQeBgYD76nq8bjLJOATXMNo5VjTPgYKisjomMZbEckHVE+sEE93y7tFJK84d+Hqx5enIIbU\n+ATILyIjRKSYiOQQkQ7AK8ALcKGzwI/AOyJSSESyepapzMVf6ymmqnNwCeFHEakiIlnEdXEeDQxR\n1Z2pKU9E7hWRdiJSwPO5DtAYWCYiJYFbgRa4410NuBF4nwR+JKhqTA+1wXHnxWwumXByeI5hzCvm\nHGYJxscsWZjEpPRBJx8CPTzdWpsCn3h6FsW8VuNOeLFPHH+KSBiwHXgEeEZV30rJtlX1FO5EVCjW\ntGNAXVz31MWeslfjfu32TKSoMOBV3C/348B7wH9iVY2kZP+TXcZzNdQQ1613E64K6Fmgo6pOjLXo\nE7juxuuAQ57Pd6vqkRTEkZA2wDxcMj+Fax8YrqpPpyZ+j+O4HmDbROSkp6wBnl5dnYDVqjon9vcO\nDAKqikiVuIWp6jxPD7OEJBWT4qo+TwNnPP929cyrm8B9FrVSuH8mBSTQDz8SkRHAPcAhVb3RM+1N\n3B/nYc9ir6rqDM+8V3AnmEjcSSZe33ZjjDHeFQzJoiHwL/BtnGRxSlU/jrNsZVzj2U24utfZQAUN\n9E4YY8xlLuDVUJ5ueQnVVSdUB9kKdwdxpOdmqu0k3jffGGOMlwQ8WSThKRFZKyJfiUh+z7RSuK6Y\nMfZ5phljjPGhYE0WQ4Byqlodd7PVR8ksb4wxxofijt8SFOL0ABmOG0YA3JXEVbHmlfZMi0dErB3D\nGGPSQFXjNQMEy5XFJYPWxRlauDWuuxy4Qcfaixt++RqgPLAisUJVNcnXm2++mewyKV0upWU1btz4\nso7Lm7GnJCaLy+LyZVwZ+f9iWuNKTMCvLERkLNAEKCwiobihn5uKSHUgGtiFu1MYVd0kIuNx/dXP\n44ZXTvMVRJMmTby2XErLKlu2rNfKCsa4vBl7SmJKaVkWV+rKsri8v72Mfo5IUXbKiC+3a8HnzTff\nDHQICQrGuIIxJlWLK7UsrtQJdFyec2e8c2qwVENlGinO4n4WjHEFY0xgcaWWxZU6wRpXwG/K8xUR\n0ct134wxxldEBE2ggTvgbRb+VrZsWXbvTstAnpePMmXKsGvXrkCHYYzJQDLdlYUnawYgouBhx8AY\nk5jEriyszcIYY0yyLFkYY4xJliULY4wxybJkYYwxJlmWLIJI2bJlKVasGGfOnLkwbcSIEdx6660A\nZMmShWrVql2yzuuvv84jjzzi1ziNMZmPJYsgIiJER0czcODARJfZv38/33//vR+jMsYYSxZB58UX\nX+Sjjz4iLCwswfkvvfQSb7zxBtHR0X6OzBiTkLAwOH060FH4niWLIFO7dm2aNGnCBx98kOD81q1b\nkz9/fkaNGuXfwIzJBHbtgk6dYOxYOHUq+eUPHYKbboJevXweWsBZsohDxDuv9HjrrbcYPHgwx44d\nSyA+4e2336Zv375ERkamb0PGmAtU4bHH3P/fMWOgdGlo0QJ69ID//hf69oW//rq4/D//wO23u2Um\nTYJ9CT5Z5/KR6Yb7SE4w3Nh8/fXXc88999C/f38qV64cb/5dd91F6dKl+eKLLwIQnTGXp2+/haNH\nYdo0yJoVjh+HuXPh2DF3lbF3L9StC61awbPPuiTSrBl89BFER8PAgZBIhcBlwZJFkOrTpw81a9bk\n+eefT3B+v3796NChAx06dPBzZMZkHD/9BFu3wrlzcP48dO4MFSvGX+7QIXjpJZg+3SUKgIIFoU2b\nS5d74w34+GOoXx8eesglChF35VGjBvzvf1CggO/3KxCsGipIXXvttbRr145BgwYlOL9x48bccMMN\nfPPNN36OzJiM4d134eWXXQN0dLS7OrjzTnf1ENczz0DXrlCzZtJlFizoqqOOH4cvv7xY5Xz11a46\nauhQr+9G0LAriyAicRo73njjDb777rsL0+PO79evH/Xq1Ys33ZjMrl8/+O47WLAASpS4OD13bmjd\nGmbPhuzZITIS3nsP/vgDRo5MeflZEzhzvvQS3HYbPPcc5MyZ/n0INjbqbCZkx8Bczvr2db2Z5s2D\n4sUvnRcd7aqWChZ07Q6PPOLeDx8OKXz6a5Luuce9/vOf9JcVKImNOmvJIhOyY2AuV9OmwRNPwO+/\nQ7FiCS/z77/QsCHs2eMapLt1S38Pxhh//AF33w2rVsFVV3mnTH+zZHFxeqY/UdoxMJej48ehalUY\nPRqaNk162X/+cVVQRYt6P47+/eG332DOHAgJcdMWLIDXXoMffoCSJb2/TW+y51kYYy5rzz4L99+f\nfKIAKFTIN4kCXNtFliyuLQRg4kRo2xauucbFF2votwzFriwyITsG5nIzZYrrvvrnn5AnT6CjcTfo\n1aoF7dvDhAkwdSpUrw4dOrjG8dGjvVf15W12ZWGMuSwdOQI9e7reTMGQKABKlYJhw2DhQli0yN2D\nIQJffw2bN2fMm/fsyiITsmNgLhfR0a5BuXr1i9U+wW7vXjee1MSJ0KCBd8s+eBDy54dcudK2/q5d\ncM01CV9Z2H0WxpgMq39/N+Jrv36BjiTlSpeGQYPcOFSrV0OOHClbLzwcli6F+fNh40bX1bdSJddg\nvmQJ/Pqrq/6KiHDtI9WquZsFCxRwrwYN4MYbEy//55+THhDRriwyITsG5nIwb54bcmPVKlftk5Go\nujGmatd2Q4iAu9O8fXtYs8Z1uy1dGrJlg/37XRI4dMjdYd6kiev1FRoKW7a4f+vWdVdYN93kenlt\n3uzabw4cgBMnXO+vX35xAx/26xe/W++yZXDvvW64k5tusq6zMdMz/YnSjoEJNtu2uXsj1q1zv5or\nVnTDZzRqlPAv75gT56hR7q7pjGjPHteWsXix6511110uebz2mksOe/e68axKlnTJsHTp9N0ZHhYG\n77/vhiTp2NEl2jp1YPt2d5y//tolnMQauFHVy/Lldi2+xKYHi0WLFmn9+vU1f/78WrhwYW3YsKGu\nWrVKR40apSEhIZovXz7Nnz+/1qhRQ6dOnaqHDh3SIkWK6IIFCy4pp1u3btqhQ4cEtxHsx8AbDhxQ\nnTkz0FGY5ERGqr7xhmrRoqrt26u++67qpEmqffuq1q2resUVqt9+G3+9hx5Sfekl/8frbYMGqdap\no1qhgjsO0dG+3+aePaqvv65aqZLq1Verli6tOnz4xfme80P8c2pCEy+HV0ZMFmFhYVqgQAH94Ycf\nNDo6WiMiInTWrFm6fv16HTVqlN5yyy0Xlv3ss880d+7ceuLECR09erRWqFBBIyIiVFV19uzZWqxY\nMT127FiC2wnmY5Aas2erVq2q+r//XTr9/HnVBg1Uc+dWHTEiMLGZ5O3bp9q4sWqzZi65J2TdOtXC\nhVW3b784bfZs1TJlVMPD/RGlb0VGqt5zj+pnn/l/29HR7vjOmHHpdEsWlx6IoLRq1SotWLBggvPi\nJovw8HAVEf3jjz9UVbVly5b60ksv6ZkzZ7R8+fI6fvz4RLcTzMcgJUJDVdu2VS1bVnX0aNVrr1Ud\nOfLi/JdfVr39dtXNm1VLlVL96quAhWriiI5WXbNG9cUX3dXE22+7E2ZSBg5UrVfP/QiIiFC97jrV\nyZP9E29mlFiysN5QQaRixYqEhITQtWtX2rdvT926dSmQwOD4kZGRDB8+nHz58lGhQgUAhg4dSrVq\n1di6dStVq1albdu2/g7fL06dcr06unaFb75xXQRr13Z1ruXKuR4jo0e7XiZFi7qH1zRr5tZ99NGA\nhp5pnTnj6uVnz3aNrGfOuPry+fMhgWd7xdOrl1vv/ffd54oVXWOs8S9r4I47/y3v3Fapb6btuG7d\nupUBAwYwe/ZsDhw4QIsWLRg2bBjTp0+ne/fu5MuXj6xZs1K+fHneeecdmsYa22DIkCH07t2bHTt2\nUDSJsQwycgP3Cy+45xHEfQT5rFnu2ckA48e75BFj82b3sJpjx9wwDMZ/vvrKDdldrRo0bw533OF6\n7qT27uU9e9wd0dHRrveTN0aINQmzgQQvTs8wJ8pt27bx8MMPU6FCBe644w5GjBjBwoULE11+wYIF\ndOrUidDQ0CTLzUjHILb1691VwoYNCY/rM3q063P/+OPx51WsCD/+6LocGv/YuNF181y8GK67Lv3l\nTZ3qEn6XLukvyyTOhvvIgCpWrEjXrl3ZuHFjoEMJuOhoN6TD228nPgBcp04JJwpwQ1IvXuy7+Myl\nIiLcOEgDBngnUYB7ToQlisCxNosgsnXrVn799VfatWtHqVKl2LNnD+PGjaNu3bqBDs0vVq1y1Uyn\nTrl67ZAQuPVW19/+77/dc5R79Ehb2Q0auPaLnj29G3Nm988/buyjxYvd3cQPPOCGm3j5ZXc1161b\noCM03mJXFkEkX758/P7779x8883ky5eP+vXrc+ONN/LRRx8FOjSfO3XK3b3atq17tvGECe4moaJF\noU8fePppdzNRzPMBUqthQzckgvGOf/5xQ4GXKQNDhkC+fG64iauvdlcAP/3kBtIL1pFVTeoFvM1C\nREYA9wCHVPVGz7SCwA9AGWAX8KCqnvTMewV4BIgEnlHVmYmUm+HbLHwlGI9B165uaIPhwxOef/68\nm59Wqi7xrF6dcZ9gFixOnXKN1Q0busH7Yn8vx465RF+rlht6wmQ8wdxmMRK4I860l4HZqnodMBd4\nBUBEqgAPApWBu4AhIvbbJaP7/ns3Ns3AgYkvk55EAe4XboMGdnWRXhERbkyjatXgww/jfy+FC7vn\nT1uiuPwEPFmo6mLgeJzJrYBvPO+/Ae7zvL8X+F5VI1V1F7AdqOOPOI1v7N7tqpjGjvX9swj8WRX1\nyy+wc6d/tuUvUVHw4IPu2dZDh1oVU2YT8GSRiKKqeghAVQ8CMf1fSgF7Yi23zzPNZFBvvOEanWvV\n8v22GjTwT4+oMWOge3d3P8Hkyb7fnr/07+8Go/v227S3HZmMK6P0hkpTBXufPn0uvG/SpAlNmjTx\nUjjGG3bvdr/Ad+zwz/Zq1nQjbIaFwRVX+GYbM2a4x3vOnQv//ut+iS9ZAu+8k/6qtEBauhQGD4Y/\n/sjY+2Himz9/PvPnz09+wYTGAPH3C9eQvS7W581AMc/74sBmz/uXgd6xlpsB3JxImUmNe5KpBcsx\nePppN0aQPzVqpPrbbwnPW71a9Z9/0l72smWqRYqoLllycdrRo6rNm6s+9VTay/W3efNUX33VDfSn\nqnr8uBuH6+efAxqW8RMSGRsqWKqhxPOKMQXo6nnfBZgca3p7EckuItcA5YEV/grSeM+RI+6O62ef\n9e92E6uKOnHCPRjmrbfSVu6ePXD//W68qvr1L04vXBh++ME9QvP339NWtj9Nn+66Lx8+DDfc4MZl\n6tbN3evSqlWgozMBlVAG8ecLGAvsB84CoUA3oCAwG9gKzAQKxFr+FeAv3NXH7UmUm2DWLFOmjOKq\ntTLtq0yZMun98ZFur7+u2qOH/7f766+qTZvGn/7ii26o6IIF3S/p1Dh7VvXmm1UHDEh8mTFjVG+8\nUfXcudSV7U+TJ6teeaXq0qXu88GD7rg0b656+nRgYzP+QyJXFgG/z8JXErvPwgTeqVNuhNhly6B8\nef9u+/hxd+PYn3+6GMD1WrrpJjfm1Isvum6hL76Y8jKfecY96H7SpMQHKlR1g+jdfru7Sz05e/Z4\n736Qc+cge/bE56vCiBHwv/+58Zes22vmZgMJmoB67TVYuRJy53Z3/xYv7qpnAmHoUNfg/NtvcP31\nrtqlWjUX4+rVrrpl586UNeSOH++GtvjjDyhYMOlld+yAm2+GmTPh7Fm3jXPnXBIpWdIts2mTK++X\nX2DcOHdXe3pMnerKmDrVDeoX19at7r6IsDBXhXbDDenbnsn47LGqfhIdrXr4cOrWee891S++8E08\nwWDmTNVrrlGdNk114kT3mMzUHiNvGz1atVgx1U8/Vb3qqkufutakierYscmX8eOP7iluq1alfLuf\nfOIawW+6yT1GtF07V/VVu7bqgw+6aqCPPnKN5FdeqbprV+r3Lcb06a6M999XLVFCde/ei/Oio1X7\n93exDBzoHixkjGri1VABP6n76hWoZLFkiWrFiqlb59Zb3bOGvX0C3b/fnZhHjnRPi5s717vlp0RE\nhDseU6b4f9vJmTxZNUcO1e++u3T6lCmqtWol/jzkiAjXu6lsWdXff09/HOfOue/m008v7Y31/vvu\n8bBpOZHPnHlp+0O/fqr167v2lX//VX3gAfeM69DQ9MdvLi+JJQurhvKy775zQ2X//XfKH9BSsiTU\nqQOlS7u+7N6g6h4AlDevGxMpJMT1AipfHj75xHvDRifnvffcfQa//OKf7aXWkSNQpMildyNHR7sn\nuH35ZfyqmwMHoGVLN4DeiBGQwIMMvSY62rVxNGrkbl5MqQ0b3CB/kya5u9ZjyrrvPihUCNauhRo1\nXHVczpy+id1kXFYN5Sf9+rnrtWHDUrb8iROqefK4q4oiRVQ3bUrZetu3J/7LV9X1vqlZ89LnG589\nq/rhh67q5MUX3Wdviopyz1f+91/3efdut62dO727HX8YP95VT8WO/cQJ1WrVVN98M+lj701797rq\nssWLU7Z8VJRqw4aqQ4bEn3f8uPub+Phj/8VvMh6sGso/HnvMdaNs2zZlyy9f7v4Dq7oT+T33JL/O\nsWOqISGqb72V8PxTp1RLlbr05rDYDh5UvfdeF2dKqyH++kt169aE50VHuyqdG29ULVNGNXdu1Tp1\nVKtXTzzGjOCzz1xby549ruqpSRPVJ5/0/4n2l19c4jp6NPllR4xwxz72jwRjUsOShZ/ceae7qihU\nKGX/YUeOVH34Yfc+IkK1XDnVWbOSXmfMGNVbblEtX1518OD483v3Vu3UKekyoqJcw3rx4slv7/x5\n1apVXbvKwIFu3Zgyfv7ZNdZWq+bq+qOjXZ/8BQtUv/xS9cyZpMsOdu+/r3rddar33efq+QN1En7h\nBdUWLS4e+4QcOaJatKi7E92YtLJk4SdVqqiuW6d6/fWqK1Ykv3zv3q7qKsaECe7Em9RJqX17l5B2\n7nRXELF77mzd6qp+9u9PWbxz56oWKOCuNhLz2WfuRrZt29zVyG23qX7+uTuJ1q7tYk7qJJbR9e2r\nevfdgU185865BukPPkh8mW7dVJ991n8xmcuTJQs/iI5WzZvX1W0/+6zqO+8kv86997rupLHLqF9f\nddSohJc/d851tYwZt2f9evdrsmRJ1fz5VbNmVR00KHVxd+qU+DoxbSnr17vP58+rvv226v33uzGE\nrO7bf3btct/1kCHubyzGvn2q//uf++EQFha4+MzlIbFkYb2hvOj4cdcD6uRJmDYN3n8fkhvMsWJF\n+PlnqFLl4rSlS6FdO3fDVO7cly4/f767A3jVqovTTpxwI5zmyeNeSd2tm5AZM9yjS5cvjz/vsccg\nVy749NPUlWl84/ffYcAAmDMH7r7bTZsxAzp0cKPd+vuOeHP5sTu4/eDPP6FjR1i/HsLD3V3KBw64\n7qsJOXvWPdw+LCz+Cb5tW9e98dVXL53+wgvuecdvvum9uCMjoVQpl6Suvfbi9FWrXDfRzZt920XU\npN6xY+4Jg9HRrqu2fT/GW4L5saqXjd273bhD4H7h164NCxdenH/27KXL//WX66+f0JVA//7w8cdu\n9M/YfvkF7rnHu3FnzeqeuzBu3MVpUVHwxBNuWAw7EQWfwoXhySfdqLD2/RhviIyO5ONlHyc635KF\nF4WGupN/jNtug1mz3BhA3bu7q4hNmy7O37zZ3fyVkPLl3VXKSy+5G+wAtm1zg/DVqOH92B96yD3h\nLWZbn37qroi6dfP+towxwee/v/2XGX/NSHS+JQsvCg29eGUBLlmMGOFG8SxZEjp3ds+ajpFUsgDX\njrBli0s0kZHw66/uqiKxkU3To25diIhwd/fu2AHvvgvDhtlzlo3JqCIiI9h5fCcbD29k5b6VLNq9\niDk75zB9+3TWHVp3ybKfr/ic2TtnM77t+ETLyyiPVc0QQkOhevWLn2vVgs8+c/X+hQq5kUkffBD6\n9nUn4S1b3HAOiSlQAGbPhjZt4IEH4OhRd6XhCyIXry5Wr4ZXXrHGUmMyqgOnDtD0m6ZEREaQJ3se\ncmXNRc6sOcmRNQfZQ7Kz4fAGbih6A683ep2ws2H0W9SPJY8soUDOJOo0E+oidTm8CEDX2Xr1VBct\nSnx+dLQbVC9m8LkaNVI2EN3Zs2500pw5Lw6l4QsbN7qutzfdZKOQGpNRHTx1UCsPrqz9FvRLdJmI\n8xH6xcovtMwnZTTvu3l18e6L48lgXWd9r3Rp16ModlVUXH36uK6uH3/sejUdOABXXJF82dHRrs2i\nUiWvhZugRx5xXTDtuQbGZDxHTx+l6TdNaVO5DX2a9El2+fNR5wk9Gcq1hS52g7Susz52/rzrAXX6\ntOtdlJitW91IpkuWwC23wL59fgvRGHOZORlxku/WfcfGIxvZcXwHaw+upXuN7vS7tR+SxgbHxJKF\ntVl4yd69UKJE0okC3NDgJUvCF18k3bhtjDGJOX7mOJ/+/imDVwzmtmtvo37p+rSs2JIKhStQvpBv\nGhstWXhJ3J5QSXnoIXj9dXj0Ud/GZIzxvYjICLJIFrKHJD10wunzpwk9GUroyVCOhB/hjvJ3UCR3\nkRRt43D4YT5c+iE7j+9k98nd/PXPX7Su1Jrl3Zf7LDnEZcnCS1KTLNq1gxdftCsLY4JBtEYTfi6c\nfDnyJTh/94ndfPvnt0zZNoXWlVrzXL3nyJnVPTVq2vZpPD71cZpd04xR941KdBt/H/+bGl/W4Mo8\nV3J1/qvJlz0fvab3osMNHXiu3nPJnvBfnfMqYWfDaFulLWUKlKFCoQoUzl04zfucFnafhZekJlmU\nLu26wtbnZUcWAAAgAElEQVSp49uYjDHJe3Pem1z5wZV0m9yN1QdWo6psObqFT5Z9QtNvmlJzWE0O\n/nuQt5u8zcr9K6k0uBLf/vktHX/qSK/pvfj87s+ZtXMWS/csTXQbn6/8nB41e7C913bmdJ7Dz+1/\nZtOTmyiYqyB1v6rLDxt+SHTdTUc2MWXrFIa1HEa7G9pRt3RdvycKsAZur3n8cXePRc+eftukMSad\n1h1aR7NvmzGn8xymbZ/GkJVDOBN5hhwhObir/F20qNiCu8rfRY6sOS6sM3/XfN6c/ya1StSib9O+\n5Mmeh+/Wfccnyz9hRfcVhGQJuWQb4efCKTOwDKseW0XZAmXjxbD6wGru+O4OVnRfwTUFr4k3/77v\n7+OWq2/h+frPe33/E2K9oXzsrrvgqaegRQu/bdIYk4TVB1bTaVInjoQfIU/2POTNnpfHaz3Okzc9\niYgQFR1FvRH1eKzWY3Sv2R1w4yOFngzlmgLXpKo3kapyy8hb6FytM4/VeuySeV+u+pLpf03n5/Y/\nJ7r+x8s+ZsKmCSzsupBsIdkuTF8SuoSHfnqIrU9tvVD15Wv2DG4fq1Ll4jMfjDGBEx0drcNWDdMi\n7xfRcevH6cFTB3XHPzt02Z5lWnVIVX108qMacT5CP176sTYZ1USjvfRQltX7V2vRD4rqsdPHLoml\nyudVdM7OOUmuGxUdpXeMvkP/N+d/l6zbYEQDHblmpFfiSynspjzfUXU31u3bl7Ib7IwxvvHvuX95\natpTrNq/iokPTqRSkUvvYj119hSdf+7MwX8Psv3YdpY9uowKhSt4bfs9p/Zk36l9jLpvFIVyFWLO\nzjk8M+MZ1vdcn+yVyqF/D1Hjyxrcfu3tiAgnIk6w/dh2/vzPn/GqtnzJqqF86J9/oFw5d2e2Mcb3\nQk+GMn37dO6rdB/F8hYDYNmeZXSa1InGZRoz6K5B5MmeJ8F1ozWadxe9S7E8xehRq4dX4zp9/jQv\nz36ZHzf/yLB7hjFs9TBaVGgRr2oqMRsOb2DZnmWEZAkha5asNLy6IeUKlvNqjMmxZOFDa9e6EWXX\nrUt+WWNM+hwOP0zDr91J9Pd9v9O4TGPKFijL9xu+Z2iLodxf+f5Ah8j8XfPpNrkbYWfDCH02NNHE\nFYzsDm4fSk23WWNMyh07fYysWbKSP2d+wFUjtRjbgnbXt6PvrX05dfYUEzZNYM2BNaz9z1qK5y0e\n4IidJmWbsO4/6/j7xN8ZKlEkxa4svGDwYNi4EYYO9cvmjLnsRURG8PGyj/lo2UdERUdxZ/k76Vyt\nMwOXD6RM/jIMazkszWMfmaTZY1V9KO4T8owxaTd5y2SqfF6FlftXsrLHSnY+s5PGZRrTd2FfiuYp\nytB7hlqiCAC7svCCDh3cE+weftgvmzPmsnQ4/DC9pvdizYE1DGkxhOblmgc6pEzJrix8yNosjEm7\nI+FHGLlmJDcOvZGy+cvy53/+tEQRhKyB2wv27LFkYUxKRGs0m49sZsHuBSwOXczyvcs5HnGcm0vd\nzJQOU6hTygZMC1ZWDZVOkZGQOzeEh0O2bMkvb0xmNffvubSf2J58OfLRuExjGpVpRN3SdalYuCJZ\nxCo5gkWG7DorIruAk0A0cF5V64hIQeAHoAywC3hQVU8GKsb9+6FoUUsUxgDsC9tH18lduabANXxx\nzxcXkkDoyVAe/ulhxrQew23X3hbgKE1aBHs6jwaaqGoNVY25Pn0ZmK2q1wFzgVcCFh2uCuqqqwIZ\ngTHB4ddtv1JrWC0aXtWQbce28eiUR4mKjiIiMoI249vwfL3nLVFkYEFdDSUifwO1VfVYrGlbgMaq\nekhEigPzVbVSAuv6pRpq3Dj4+Wf4IfHh6I25rEVFR/Hy7Jf5YeMPjGk9hlvK3EL4uXDuGXcPZfKX\nIVuWbJw4e4LxD4y3Lq8ZQIashgIUmCUiUcCXqvoVUExVDwGo6kERKRrIAK0nlMnMws6G0X5ie85F\nnWPN42suPJQnT/Y8TO0wlZbjWnLg3wOs6L7CEkUGF+zJooGqHhCRK4GZIrIVl0BiC+il0Z49ULFi\nICMwJjB2Ht9Jy3EtaVymMZ/e+eklz2EAlzBmdJxBRGREoo8sNRlHUCcLVT3g+feIiPwM1AEOiUix\nWNVQhxNbv0+fPhfeN2nShCZNmng9xtBQaG5dwk0ms//Ufm4ZeQuvNHyFp+o8lehy2UOykz0kux8j\nM6k1f/585s+fn+xyKWqzEJH6QFliJRdV/Tbt4SVPRHIDWVT1XxHJA8wE3gKaAf+o6gAR6Q0UVNWX\nE1jfL20WNWrAiBFQs6bPN2VMUDgfdZ5bv72V28rdxhuN3wh0OMbL0txmISKjgWuBtUCUZ7ICPk0W\nQDFgkogoLs4xqjpTRFYB40XkEWA38KCP40hSaKj1hjKZyytzXiFv9ry81ui1QIdi/CjZKwsR2QxU\n8dtAS17ijyuL8HAoUgROnwZruzOZwU+bf+K/v/2XPx7740Jjtrm8pGdsqA1AcAwSH2Ri7rGwRGEu\nJ7N2zKLXtF5EREZcMn3R7kU8PvVxxrcdb4kiE0pJsigCbBKR30RkSszL14FlBNZt1lxuDocfpsvP\nXdh4ZCPNv23OkfAjAEzcNJE249swtvVYG78pk0pJb6g+vg4io7IBBM3lRFXp8UsPOt3Yif7N+/P6\n3NepO6IuD93wECPXjmRmp5lUL1490GGaAEkyWYhICNBHVZv6KZ4MxRq3TUa27tA6coTk4Loi1wEw\nYs0IQk+GMv6B8WSRLLzT7B0qFq7I8NXDWfzIYsoWKBvYgE1AJZksVDVKRKJFJH8gB+sLVqGh0LBh\noKMwJnXOnD/Da3NfY+yGsQCUyFuC+yvdz6AVg5jfZT45sua4sGyX6l3oUr1LoEI1QSQl1VD/AutF\nZBYQHjNRVZ/2WVQZhFVDmYxm+d7ldP25K9WLV2d9z/UUzFmQBbsX8P2G7/ngtg+4vuj1gQ7RBKmU\ndJ1N8GeFqn7jk4i8xB9dZytWhClToFK8YQyNCS57w/by6pxXmbVzFoPuHETb69sGOiQTpBLrOhvU\no86mh6+Thap76NHRo5Anj882Y0y6RGs0fRf0ZdCKQfSs3ZPeDXrbOE0mSem5g/tvEhisT1XLeSm2\nDCkmSViiMMFKVek1rRfrDq9j7eNruSq/9cYwaZeSNovasd7nBNoChXwTTsZhPaFMsHt1zqus2L+C\nOZ3ncEWOKwIdjsngkr0pT1WPxXrtU9WBQAs/xBbUrHHbBLP+i/rzy7ZfmPHwDEsUxitSUg0VezzV\nLLgrjaAe2twf7MrCBJujp48ydv1YRq4dydnIs8zuPNuG5TBek5KT/kex3kcCfxPgkV6DgT172wST\niZsm0n1Kd1pe15IPb/uQptc0JYukZDQfY1ImJcniUVXdGXuCiFzjo3gyjL17obqNfGCCwJ6Te3ji\n1yeY3Xk2tUvWTn4FY9IgJT89JqZwWqaybx+UKhXoKExmF63RdJ3clWdufsYShfGpRK8sRKQScD2Q\nX0Rax5p1Ba5XVKZmycIEg4HLB3I28iwvN4z3sEhjvCqpaqjrgHuAAkDLWNNPAT18GVSwU4X9+y1Z\nGN84GXGSoauGclf5u6hWvFqCy4SfC2fGXzPov7g/K7qvICRLiJ+jNJlNSob7qKeqy/wUj9f48g7u\nY8egfHk4ftwnxZtMbNmeZTz000PULFGTpXuW0uCqBrzR+A1yZ8vNnwf/ZO3BtSwMXcgf+/+gVsla\nvFT/JVpUzPQ92Y0XpfkObuCYiMwBiqnqDSJyI3CvqvbzepQZxN69ULp0oKMwl5Oo6Cj6L+7P4BWD\n+fKeL2lVqRXh58IZumoot42+jRwhOahevDrVilWjd4PeNCrTiLzZ8wY6bJOJpOTKYgHwIvClqtbw\nTNugqjf4Ib408+WVxbRpMGgQzJjhk+JNBvX38b/Jkz0PRfMUTdV6u0/spuOkjmTLko3R94+m1BWX\n1m+qKmLP7jV+kp5ncOdW1RVxpkV6J6yMyRq3TVxfr/maWsNqUWlwJa784EqaftOUDYc3JLmOqjJ2\n/VhuGn4T91a8l9mdZ8dLFIAlChMUUlINdVRErsUzmKCIPAAc8GlUQc6ShYmhqgxYMoAv//iS5d2X\nU6FQBQ6FH+LrNV/T89eeLOy6MN7JfveJ3YxdP5Yx68egKL91/I0aJWoEaA+MSZmUXFk8CXwJVBKR\nfcCzQE+fRhXkLFkYcIni+ZnPM2b9GJY8soSKhSsiIhTPW5zeDXrz77l/Gb9x/CXrvL3gbWoNq8Xu\nk7sZ2mIo63uut0RhMoRkryw8d283F5E8QBZVPeX7sILbvn3QqlWgozCBNmDJABbuXsjCrgspmKvg\nJfNCsoTw6Z2f0mlSJ1pe15Lc2XLz7Z/fMmrtKDY9uSnV7RrGBFqSVxYiEiIiRQBUNRw4KyI9RGSz\nX6ILUnv32pVFZjd5y2QGrxjM5PaT4yWKGI3KNKJu6bp8sOQDFu5eyAszX2DqQ1MtUZgMKdHeUCLS\nHlf9FA5sB94BvgZWAn1VdbW/gkwLX/aGKlwYtmyBK6/0SfEmyK07tI5m3zbj14d+pU6pOkkuu/vE\nbmoOq3mhp9Nt197mpyiNSZtUP1ZVRDYA96nqX55hypcBD6jqL74N1Tt8lSzOnIGCBd2/1kkl8Pac\n3EOURlG2QFm/bO/o6aPcNPwm3rn1HR6q+lCK1vli1RfkzZ6Xjjd29HF0xqRfWpLFalWtGetz0N9b\nEZuvksWOHdC8Ofz9t9eLNqk0afMkHpv6GIJQIl8J7q14Lx2qdqDKlVV8sr2o6CjuGnMXNYrXYMBt\nA3yyDWMCLS13cBcVkf/G+lwg9mdV/dibAWYU1hMq8KI1mn4L+zF89XCmPTSNmiVqsnzvciZvnUyz\nb5tRrVg1nq/3PM3LNffqPQpvLXiLyOhI3mn2jtfKNCajSOrK4s2kVlTVt3wSkZf46spi3Dj4+Wf4\n4QevF20SEREZwdsL3mZv2F7ORJ4h9GQoWSQLPz34EyXylYi37Nj1Y/lo2UfkzJqTAc0H0Lxc83TH\n8Ou2X/nPr/9hVY9VFMtbLN3lGROsUl0NldH5Kll88AEcOAAfZ8rrKv87ff40931/H3mz56XVda3I\nlS0XebPnpdk1zciRNUei66kqEzdN5NW5r1KuYDk+uO0Dbix2Y6q3Hxkdydy/59JpUid+evAnGlzd\nID27Y0zQS89AgiaWffvscar+En4unJbjWlIyX0lG3TeKrFlS/ucqIrS9vi2tKrVi+B/DafZtMxZ0\nXZBke8bqA6tZumcpIRJCFsnCmoNr+GnzT1yd/2o+u+szSxQmU7NkkUr79kG9eoGO4vJ3OPwwbSe0\npVzBcnzV8qs0P68he0h2nqzzJLmy5aLthLas6L6CPNnzxFtOVXn4p4e5qeRN5MmWhyiNonyh8izv\nvpxyBculd3eMyfAsWaSSNXD7lqoyfuN4npnxDN2qd+OdZu+QRVIyKk3SulXvxvxd8+k1vRdft/o6\n3vxNRzYRfi6cb+77xgbuMyYBKf5fKCJ1RWSGiMwXkft8GVQws2ThO2Fnw3hgwgO8teAtJrefTP/m\n/b2SKMBVSw1pMYRle5fxzdpv4s2fsGkCD1R5wBKFMYlI9H+iiBSPM+m/wP3A3UBfXwYVrKKjXeN2\nyZKBjuTy9PaCtwmREFY/vpqbS9/s9fLzZs/LhLYTeH7m8+w/tf+SeRM3TeSBKg94fZvGXC6S+tn2\nhYi8ISI5PZ9PAA/gEkaYzyNLgojcKSJbRGSbiPT213YPH4b8+SFH4p1wTBrtPrGbkWtH8umdn5Iz\na87kV0ijG4reQJdqXXh30bsXpm0+spkTESeoW7quz7ZrTEaXaLJQ1fuANcBUEemMG5o8B1AYCFg1\nlIhkAQYDdwDXAx1EpFJK1j1/Hs6dS/u2rQrKd16f9zpP3vRkvPsmfOHlhi8zbsM4dp/YDbirijaV\n23itysuYy1GS/zs840DdAeQHJgHbVHWQqh7xR3CJqANsV9Xdqnoe+B5IcMDw06cvvo+MhBYtoE4d\nOHgw8cI3bID774c+fWDFClf1FMOShW/8efBPZu6YyYv1X/TL9q7McyU9a/ek70JXmzph0wTaXt/W\nL9s2JqNKqs3iXhGZB8wANgDtgFYi8r3nyXmBUgrYE+vzXs+0eHrHqqB64QU38F/r1tCgAfz1V/zl\nx4+Hpk2hYUMID4du3Vz7xKRJbv6+fVC6tNf2w3j0nt2b1xq9Rr4c+fy2zefrPc/krZOZum0qR08f\npf5V9f22bWMyoqS6zvbD/YrPBfymqnWA50WkAm648vZ+iC9dJk+Ge+5xz5+YNg1+/92NGFuiBDRq\nBJ995togAKZPh59+gpkzoYbnwWUffODWadsW1q511Vh2ZZF+c/+ey8wdMzkbeZbjEcf565+/eKzW\nY36NoWCugjx787N0+LEDXat1tSooY5KRVLI4CbQGcgOHYyaq6nYCmyj2AVfH+lzaMy2epk370KYN\nqMLQoU0oWLAJAD16QNGiMGiQWy4q6ymuuGoXq1ZVpXDhS8u4+WZYuRIeeMD9+/nnXt+fTGX2ztk8\n9ONDPH3z0xTNU5RrC13Li/VfJHtIdr/H8vTNTzN45WDa3dDO79s2JljMnz+f+fPnJ7tcUgMJFgE6\nAOeBsaoa0B5QMUQkBNgKNAMOACuADqq6Oc5yqqoMHAg33OCGFY9rb9heBv0+iBFrRhAVHUXoc6Fc\nkeOKBLd77hy8+y48/DBUqODtvQpuK/at4KNlH3HntXfSrUa3NJezfO9y7h13LxMfnEijMo28GGHa\nRURG+LT3lTEZzWU1kKCI3Al8imtzGaGq7yWwTJIDCY5ZN4Ze03vRuVpnnrn5GV6a/RJNyzbliZue\n8F3gGczSPUt5dc6r7Dqxi/Y3tGfs+rHseHoH2UKypbqs9YfW03x0c0a2GsndFe72QbTGGG+4rJJF\nSiSVLLYc3ULDrxsyr8s8qharCsC8v+fRa3ov1vdcb3fxAsdOH6PKkCq83/x9Hqr6ENlCstH0m6b0\nqNkjxU+Ii6GqVPvCPWOiS/UuPorYGOMNiSWLy7pVb9HuRfGmnTl/hnYT2/Fus3cvJAqAJmWbEKVR\nLA5d7M8Qg9Zrc1+jbZW2dKne5cKVxPP1nuejZR+R2h8YS/cs5WzUWTpX6+yLUI0xfnBZJ4sHJz7I\nq3Ne5UTEiQvTnp/5PJWKVKJHzR6XLCsi9KzdkyGrhvg7zKDzx/4/mLRlEn2bXjqqy90V7ib8XDgL\ndi9IVXlf/PEFj9d63K7YjMnALutqqIOnDvLU9KeYvn06BXMVpHyh8oSeDGX1Y6vJnzN/vHVORJzg\nmk+vYcuTWzLt09CiNZoGXzege43uPFrz0Xjzv1z1JVO3T+WXDr/Em6eqrNi34pJxnY6ePkr5QeXZ\n8fQOCucuHG8dY0xwyZTVUMXyFmNC2wmEvRLGgq4LeK7uc8zpPCfBRAFQIGcB2lZpy4g1I+LN+/fc\nvwxZOYS9YXt9HbbP7Qvbx0+bf0pw3jdrvyFaoxPt9dS5WmdW7FvBlqNb4s37dfuv1B1Rl1FrR11S\nXqtKrSxRGJPBZYrnWWSRLJQrWC5FD7HpWbsnd425C0GoWaIm5QuV57t13zF45WAK5izI9mPb+eTO\nT/wQtfeFnQ3j/SXvM3TVUPJky8OGwxt4o/EbF+Yv2LWA3rN7M+3haYnepJYrWy561u7JO4veYfT9\noy9Mj9Zo/jf3f/Rv1p8XZ71I1aJVqVGiBl/+8SXf3Bd/SHBjTMZyWV9ZpEWNEjUY3nI4x84c470l\n71H/6/qEngxlySNL+K3jb3y3/jsiIiMCHWaqrdi3goqfVWRP2B7WPL6GlT1WMm7DOPov6g/Aj5t+\npO2EtoxrM47aJWsnWdYL9V9g2Z5lTNo86cK0CRsnkDNrTno36M0XLb6gzfg2jN84nlzZctlorsZc\nDlT1sny5XfO+20ffrmPWjfFJ2b4SGRWp1b+ort+u/faS6fvD9muFQRW0zQ9ttORHJXX1/tUpLnNp\n6FIt9kEx3R+2X89HndcKgyrorB2zLsx/edbLmuWtLDpkxRCv7Ycxxvc8585451S7skilHjV7MHz1\n8ECHkSoj1owgb/a8dLyx4yXTS+Qrwbwu88gekp1F3RZRo0SNFJdZ76p6PF7rcbpN7saotaMofUVp\nml3T7ML8frf2o2/TvvG2aYzJmC7r3lC+2LdzUee46pOrWNRtERULV/R6+d52/MxxKn9emekPT09V\nMkiJ81HnaTiyIX8e/JN5XeZR76p6Xi3fGON/mbI3lC9kD8lO12pd+Wr1V4EOJZ7zUed57JfH6DGl\nBzuP7wTgrQVvce9193o9UQBkC8nGmNZjeKPxG5YojLnM2ZVFGmw/tp2GIxuy57k9ARktNSHno87T\n4ccOnI06S43iNRiycgi3X3s7s3bOYtMTm7gyz5WBDtEYkwHYlYUXVShcgSpXVmHylsmBDgWAyOhI\nHv7pYc5EnmFi24m83fRttvfaTqUilfjsrs8sURhj0s2uLNJo6MqhrNy/kq9bfe2zbaREVHQUHSd1\n5ETECSa1m2TDbRtj0sWuLLysUZlGLNy9MKAxqCqPT32cw+GHLVEYY3zKkkUaVb6yMiciTrAvLMGH\n9PmcqvLf3/7LpiObmNx+siUKY4xPWbJIoyyShVvK3MKi0PjDoPvD2wveZv7u+Ux7eBp5s+cNSAzG\nmMzDkkU6NLq6EQt2pW64bm/YcHgDQ1cN5beOv1EgZwG/b98Yk/lYskiHRmUasTDU/+0W/Rf359m6\nz1I0T1G/b9sYkzlZskiH6sWrsy9sH0fCj/htm3/98xe//fWbPSvcGONXlizSISRLCPWvqu/XR7EO\nWDyAJ256gityXOG3bRpjjCWLdPJnF9q9YXv5cfOPPHPzM37ZnjHGxLBkkU6NyjRK9TOp0+rDpR/y\nSI1H7Klzxhi/yxRPyvOl2iVrs+3YNk5GnEz0ca1ptf3Ydl6f9zrh58M5G3mWlftXsvGJjV7dhjHG\npIQli3TKHpKdOqXqsGTPEu6ucLfXylVV/vPrf6herDqNyzYmZ9aclMlfhpL5SnptG8YYk1KWLLyg\nUZlGzP17rleTxcRNEzkSfoQBtw0gaxb7mowxgWVtFl7Q8caOjFo76sIzJNIr/Fw4L8x6gc/u+swS\nhTEmKFiy8ILyhcrTu0Fvuk/pjjdGun1v8Xs0uKoBjcs29kJ0xhiTfpYsvOS5es/x77l/L3k+98mI\nk0zfPj1V5ez4ZwdDVw3lg9s+8HaIxhiTZvY8Cy/acHgDTb9pytJHljJl6xTeX/o+/577l+WPLqdq\nsaopKqPXtF4UyFmAvrf29XG0xhgTnz3Pwg9uKHoDT9d5msqfV2ZR6CLmdJ7DKw1fYeDygSla/3zU\neX7Y+APdanTzcaTGGJM6dmXhZZHRkfz1z19UKlIJgKOnj1LhswpseXILxfIWS3LdX7f9yruL32XJ\nI0v8EaoxxsRjVxZ+kjVL1guJAqBI7iI8WOVBhq4amuy6363/jo5VO/oyPGOMSRO7svCDzUc20+Sb\nJux+dneiT7QLOxvGVZ9cxc6nd9pwHsaYgLEriwCqfGVlapWoxZh1YxJdZtLmSTQp28QShTEmKFmy\n8JPn6j7HJ8s/SfQ+jNHrRlsVlDEmaFmy8JPm5ZoTGR3J7/t+jzdvX9g+/jjwB/dUvCcAkRljTPKC\nMlmIyJsisldEVnted8aa94qIbBeRzSJyeyDjTA0RoW2Vtvy46cd488ZtGEfrSq3JlS1XACIzxpjk\nBWWy8PhYVWt6XjMARKQy8CBQGbgLGCIi8RpiglWbKm34cfOPl1RFqSoj1oygS/UuAYzMGGOSFszJ\nIqEk0Ar4XlUjVXUXsB2o49eo0qFasWqICGsPrr0wbcmeJagqt1x9SwAjM8aYpAVzsnhKRNaKyFci\nEvNUoVLAnljL7PNMyxBEhDaV3dVFjOGrh9O9Zncy0AWSMSYTCtj41yIyC4h9S7MACvwPGAK8raoq\nIv2Aj4Duqd1Gnz59Lrxv0qQJTZo0SUfE3tGmchu6Tu5Kv1v7cSLiBJO3TObD2z4MdFjGmExq/vz5\nzJ8/P9nlgv6mPBEpA/yiqjeKyMuAquoAz7wZwJuqGq+LUTDdlBdbtEZTZmAZfuv4G/P+nseC3QsY\n33Z8oMMyxhggg92UJyLFY31sDWzwvJ8CtBeR7CJyDVAeWOHv+NIji2ShdaXW/LjpR4avHk6Pmj0C\nHZIxxiQrWB/D9r6IVAeigV3A4wCquklExgObgPPAE0F5+ZCMNlXa0PqH1lyR4wqalWsW6HCMMSZZ\nQZksVLVzEvP6A/39GI7XNbiqASFZQni0xqNkkaC8uDPGmEsEfZtFWgVrm0WMJaFLqFqsKlfkuCLQ\noRhjzAWJtVlYsjDGGHNBhmrgNsYYE1wsWRhjjEmWJQtjjDHJsmRhjDEmWZYsjDHGJMuShTHGmGRZ\nsjDGGJMsSxbGGGOSZcnCGGNMsixZGGOMSZYlC2OMMcmyZGGMMSZZliyMMcYky5KFMcaYZFmyMMYY\nkyxLFsYYY5JlycIYY0yyLFkYY4xJliULY4wxybJkYYwxJlmWLIwxxiTLkoUxxphkWbIwxhiTLEsW\nxhhjkmXJwhhjTLIsWRhjjEmWJQtjjDHJsmRhjDEmWZYsjDHGJMuShTHGmGRZsjDGGJMsSxbGGGOS\nZcnCGGNMsgKWLETkARHZICJRIlIzzrxXRGS7iGwWkdtjTa8pIutEZJuIDPR/1MYYkzkF8spiPXA/\nsCD2RBGpDDwIVAbuAoaIiHhmDwUeVdWKQEURucOP8XrF/PnzAx1CgoIxrmCMCSyu1LK4UidY4wpY\nslDVraq6HZA4s1oB36tqpKruArYDdUSkOJBPVVd6lvsWuM9vAXtJsP4hBGNcwRgTWFypZXGlTrDG\nFYxtFqWAPbE+7/NMKwXsjTV9r2damqX0S0nJcikta9euXV4rKxjj8mbsKYkppWVZXKkry+Ly/vYy\n+pXCogUAAAcfSURBVDnCp8lCRGZ52hhiXus9/7b05XZTyv4QLrJkkfLlLK7ULZeR48rI/xdTulxK\nyxJVTdGCviIi84DnVXW15/PLgKrqAM/nGcCbwG5gnqpW9kxvDzRW1Z6JlBvYHTPGmAxKVeM2D5A1\nEIEkIHZgU4AxIvIJrpqpPLBCVVVETopIHWAl0BkYlFiBCe2sMcaYtAlk19n7RGQPUBeYKiLTAVR1\nEzAe2ARMA57Qi5c/TwIjgG3AdlWd4f/IjTEm8wl4NZQxxpjgF4y9oRIkIqVFZK6IbPQ0lD/tmV5Q\nRGaKyFYR+U1E8sdaJ7Gb+zp4GtrXisg0ESkUJHG1E5E/PeX0T2tMaYlLRAp5lj8lIoPilOWVmyG9\nHFM/EQkVkbC0xuPtuEQkl4hM9Xyv60Xk3WCIyzNvuois8ZQT+96lgMYVq8wpIrIurTF5Oy4RmSci\nWzzHbLWIFAmSuLKJyJeedTaJyP1pjSvVVDVDvIDiQHXP+7zAVqASMAB4yTO9N/Ce530VYA2uXaYs\n8BeubSQEOAQU9Cw3AHgjCOIqhGvEL+RZbiTQ1I9x5QbqA48Bg+KU9Ttwk+f9NOCOIIipDlAMCAvA\n31aCcQG5cJ0u8Hy/C9N6rHxwvPLGej8ReDAY4vLMvx/4DlgXDN+jZ948oEZ6/7Z8EFcf4O1Ynwt5\nI8YU7Ye/NuT1wOFnoDmwBSgW60vZ4nn/MtA71vLTgZs9/4kPAVfjTtJDge5BEFdtYFas6R2Bwf6K\nK9ZyXbj0BFgc2BTrc3tgaCBjijMv3cnCF3F55g/EjTgQNHEB2XCdSNoGQ1xAHlxSrUQ6k4WX45oH\n1PL235YX4goFcvkiruReGaYaKjYRKQtUB5bjDvYhAFU9CBT1LJbgzX2qGgk8gRtuZC9uWJERgY4L\nd4VxnYhcLSJZcXenX+XHuBLj9ZshvRCTz3grLhEpALQE5gRLXOK6oR8EwnBXF8EQV1/gQ+CMN+Lx\nYlwAozxVUK8FQ1xysSq7n4j8ISI/iMiV3ootORkuWYhIXtwf+jOq+i8Qt4U+yRZ7z4m4J1BNVUvh\nksargY5LVU944hqPGy/rbyAq0HH5QjDGBN6LS0RCgLHAQHVD1gRFXKp6J1ACyAHcGui4RKQacK2q\nTsFd5Xulu7uXjtdDqloVuAW4RUQ6BkFcWYHSwGJVrYVLOB+lN66UylDJwnOinwiMVtXJnsmHRKSY\nZ35x4LBn+j4u/WVe2jOtOu6mv12e6eOBekEQF6r6q6rWVdUGuO7B2/wYV2ISjTeAMXmdl+MaBmxV\n1c+CLC5U9RyuGqpVEMRVD6glIjuBRbjBQecGQVyo6gHPv+G4xF8n0HGp6jEgXFUneSZNAGqkJ67U\nyFDJAvgaV3/+aaxpU4CunvddgMmxprcXkewicg2em/twJ7oqIlLYs9xtwOYgiIuYS0oRKYirKvvK\nj3HFduEXnufy+KSI1PH0oOmcyDp+iymF0wMSl4j0A65Q1eeCJS4RyeM5GcWctFrg6ssDGpeqfqGq\npVW1HNAQl2DTe8XjjeMVEnN+EJFswD3AhkDH5fGLiDT1vG+Oux/NPwLRUJKWF9AAVy2zFtebaDVw\nJ64X0WxcD4OZQIFY67yCawvYDNwea/pjnoO8FvcFFQySuMYCG3F/mOlqgExjXH8DR3F12qFAJc/0\nWrjquu3Ap0ES0wBc20+kZ3p6erR5JS5cW0605zuMKeeRIIirKO4HyVpgHfApkCXQccUpswzp7w3l\nreOVG1jlKWc98Amee9ICfbxwHXMWeMqaBf9v7/5Zo4iiMIw/r0jQwlilE0Qx2KiIIFgIdoKNlRZa\npEsjiqAfwE7BRgSxFhsre8VOsBAkQvALWCkqFkoa/+RYzI2ESHIj2WRRnh8M7M7eXe5s8zJ3Zs5h\nz0b+s7/ZfChPktT1ry1DSZLGwLCQJHUZFpKkLsNCktRlWEiSugwLSVKXYSGNQJKfrY7Qm1bW+lp7\niHGt7+xNcmGr5ihthGEhjcZCVR2rqkMMVQHOMPSOX8s+4OKmz0waAcNCGrGq+sRQJeAy/D6DeJ7k\nVdtOtKG3gJPtjORqkm1Jbid5maEx1+y4jkFaySe4pRFI8qWqJlfs+wwcBL4Ci1X1LckB4FFVHU9y\nCrheVWfb+FlgqqpuJpkAXgDnqurt1h6N9Kft456A9B9bumYxAdxLcpShRtD0KuNPA4eTnG/vJ9tY\nw0JjZ1hImyDJfuBHVX1McgN4X1VHWq+L1Rr9BLhSVc+2bKLSOnnNQhqN5SWupxja9S71s9gNvGuv\nZxj6wMOwPLVr2W88BS61MuIkmU6yczMnLa2XZxbSaOxIMsew5PQdeFhVd9pn94HHSWaAJ8BC2z8P\nLCZ5DTyoqrut7eZcu+32A0N7XWnsvMAtSepyGUqS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQ\nJHUZFpKkrl+CSWM1ab4okwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGHCAYAAABvUSKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8FMX7wPHPhIQSOgQSWgi9QyBU6UivUqRDQAGV8kWQ\nn0gRVEBBQRBQKdJLEAREOtI7SOi9F+mhBkJJmd8fe8GUS3I5LrmU5/167QuzOzP77OW8ezI7O6O0\n1gghhBBC2JuDvQMQQgghhABJSoQQQgiRQEhSIoQQQogEQZISIYQQQiQIkpQIIYQQIkGQpEQIIYQQ\nCYIkJUIIIYRIECQpEUIIIUSCIEmJEEIIIRIESUqEEEIIkSBIUiKSHKVUiAVbsFKqhlIqr5n9D5RS\n65RSlWM4z/emOj5RHI/Y9mul1H2l1B6l1BilVB4zdWqayrYKs8/btC9AKZXDTJ3tSqnjZvYrpVRX\npdQm03lfK6XuKqU2KqV6KqVSWvBahrax3/S6PFVKnVNKzVNKVTITd9hrvWQql89UZrDpWL0ozrVO\nKfVIKeVmQVxdlFI7TOWfK6WOK6W+VEo5myl7VSn1VxTteJli6mrm9xXde8c9hvicTfEcM8X3WCm1\nUynVJYryUZ3rlgWvRV6l1Byl1EWl1Aul1G3Ta/NVNHUOmtr/KIrj3mFieCeKMjdMx/+KsD/ia3XT\n9J6rGaFclL+XMGXmRPPaBERXVyROjvYOQIg40DnCz95AXdN+FWb/GSD0S2wxsA5IARQG+gBblVIV\ntNanojhPe+AK0EwplVZr/TyKcqFtOwCZgQpAf6C/UupDrfXvEcpHtSBVKuALU91oyyulUgN/AvWB\nPcAPwF0gC1AT+BmoCPSM4lyhpgC9TW0tBIKAIkAj4BJwIEL5ScAhwAkoB3wENFZKlQImAB2BX5RS\nJbXWr8LE+z7QEPhEa30nqmCUUg6AD/A+sBMYCQQA1U3//b5S6l2t9f0w1Sxd4Osekd87g4BcwKeE\nf+/cJwpKqezAVozXyQfjNUwNtAbmKaUaAZ105IXHNgHzI+x7EV3ASqkCGK/3c2A2cBXIgfHafw58\nZaZOQaA8xnu3EzA9mlO8wPid7Y3QRk2M1+VlFPVCr0UB+TDeQ1uVUo211htNZSz9vbwEPiT86w8Q\nbGF9kZhorWWTLUlvGF8KwVEcywuEAAMj7G9g2j81inq1MT4UawKvgC6Wtm06lgc4i/GhXyrM/pqm\nOq3C7PM27fPF+AJ2i9DWNuB4hH3TTPH1jSL+AsDHMbxu2U1t/BrFcZfo4jbt72tqY7Dp50oYic3o\nMGXSAf8Cuy34XQ4xnWesmWNNTG2vjbD/CvBXFO15mdrrGsXx1cDlWL7fNgCBQBMzx743ne//IuwP\nASZb8d7+2fT+yx3d7yfC/q+B28B7pt+Nu5kyoe+5ZRjJrEOE49OBg8DliK+tuWsBSpr2r7fk9xKm\nzBzgaWxfF9kS7ya3b4Qwb5fp3wJRHO8EnNZa7wA2m362mNb6BtANo/fjc0uqAN9i9G5+EV1BpVRu\njL8s12utp0Zx/kta62kxnDMfxl+ne80d1Fr7xRQ0Ro9B6F/LaK0PYCRMg5RSRU1lxgDZgF7RNWTq\n/RmEkcwNNRPPWmAe0FApVdGC2GzOdEurPjDHFE9EQ4ALwGClVCobnDI/8K/W+t+IB6L5/XTASDbW\nAk8wekLM0Rg9PVmBN7fclFJOQBuMHsCIvRfmG9L6JOCH6X0gRFQkKRHCvNAPz0cRD5jGYrTC+FAG\n44O7jqnb3mJa6/0Yt0DMjrEw4wpGl3jPGMZdNML4f3tRbOIx45rp3/eVUmmsbKOg6d8HYfYNwfiC\nmq6UKofRtf+D1vp0DG1Vw7j9tVhrHRJFmdBbBk2tjPdtNcP4Ml9g7qDWOhjjfZMZqBrhcGqlVNYI\nW0zjfq4BeZRStS0JzpQ0FQR8tNaBwAqiT6ivAvsxEplQjYEMwBJLzmk6b2aMa34QU9ko6kd8XbIq\npdJb05ZI2CQpEcLgbPqgy66UqobRbawx/qKMqBmQEQgdC/Inxm2D9lac9ySQTSmVzsLyYzDGawyO\npkxoD8TJsDuVUk4RPtSzRHcibYztmI9xW+RfpdRypdRApVSRaKqlN7XtppRqDPyE0W2/PEy7/sD/\nMMaBbMJItkZFF4tJcYzfSaRBvWEcM/1bzIL24kLxCHGYcwwjcYoY44cYY1VCt3vE/J6aDLwGtiil\nDiulJiqlmkeTRHYGrmut95l+XgIUV0qVjuYci4H3wvTsdAR26GjG/vBfguVi6rVahvF9szSG6zEn\nHeFfl9At4lgskQRIUiKE4WuMD7o7GAMoi2CMBVlppmxH4JDW+jKA1voZRld4rG7hmDwz/WvRX31a\n6ysYf4X3Ukq5RlEsQ4S2QzUm/If6VQvO1w1jXMhljDEIPwBnlFKblVI5zVSZbWr7FsZ4jDQY4zUO\nR2h3Bcbg38xAHx1m0Gs0Ql8j/2jKhB7LEE2ZuPQ2Ma7CGJAdutUDNhINU++SJ8Z7Ii9GsvcncFcp\n1SNsWaVUCqAt4Xs4tmL8vqJ77y7FGBDe1JQ8NyXmXrjQBOseRk9LFWCC1vqnGOqZ8wJ4l/CvTV1i\nuI0pEid5+kYIwwyMv+ZSA3UwPtwj/f+hlMqI8eU+xfTkQ6i9QCulVEGt9cVYnDe0hyS6L7GIRgNd\nMD6UB5g5HtpWxN6X3Rgf5mCMYzH7qGdEWutfgV9NXfBVgY8xXgMfjAGuYX1tOk8wxi2aM9HcavkH\n41aTryVx8N91RZfAWZIUmGPpkyAxCRvj0yjKRBXjv1rrrbE9oen95q2UUhg9NU0xfr/TlVKXw7TZ\nAGPszj9h3rsKY6B0B6LofdNa+ymlNmMk42kx/pj9I4awVgFTMV5Xf+CU1jraJ4miEay13mZlXZHI\nSFIihOFCmA/vdUqpEGCcUmpbhL/y22IMTv0MY9BlWBrjL86vY3HeksA9U2+LRbTWV5RSCzF6S8aZ\nKXIW48umJHAiTL0HGH8ZE9V8GTGc9xGwBlijlNoG1FBK5TEN2g110povVgudwbiu0kBU81uE3oYI\nOz7lJUaPjTnOYcrYwhmghSmO3VGUKYPxXolpDE2saK01cAo4pZTaj5FsdML0O8dIKszdktRgPOZr\nGrhtzmJgJsbjxutNt+CiY1WCJYTcvhHCvDEYf+GNjrC/I8YX/fsYTyCE3bYQ9ZMMkSilqmA83RNt\nF30URhP12JL1GD0V1txOstQh07+RJnOLQ7uBx0BHU6+AOd4YX7Jrwuy7hjH3jDlFTeWvRXE8ttZg\nJE5dzR00zbPSEWMA9R4bndOccL8fZUwq1wJjHEbE9+37GLcto3u/rMQYG1SJ/wZ4C2FzkpQIYYbW\n+gnGXAwNQgcBmh61rQH8rrVeEXHDGBxbUClVIab2lVJ5gbkYc0yMtyK+yxiTmX0EuEU4dgNjbEcj\npVSfKJqI8f99pZSrUirSgFHTI6F1Mb6kYnOr6q2Yuv/HYyQS35qJqwlGUrJBa30wzKF1QG6lVPMI\n5VMCPTDGPYQb8/IWMe7DeES8uymeiL7FePplnIXjaKKllKqmlDLX4x167rOmf1th9ApNjeK9uwZo\nbfrdRqKNiQE/xpiMbfXbxi1EVOT2jRBR+wljJs8vMP66Df1LMqoP5XX810PxT5j9XkqpThiJQCaM\nGV1bY3ypdzbN4RATcz0DYzDGlhQhwpM2prg9gMlKqfammO8BLhjjQpph3GqITm7goFJqK0Yv0B2M\nCdU6YNyemKi1fmhB7LY0FmNg5+emnqblGAMhq2O87qcw5n8JawbwAbBMKTUHOIIx90Y7oATGxHdB\nNoyxK0Zi8qcyliDYhXHLrxXGGJwlWJGIRmEwxvtrBf89leSF8b7ww5hhF4zX5gGwL1ILhr8wZvdt\ngjFQFiK857TWZh9zfksFlVLDzOw/orVeZ/pvR9P/P+aseIuxKiIBkqREJBfRDWTU5o5rrW8rpRYD\nnZSxfktH4JrW+kTEsqbyT5RSu4F2SqmBYdpub9qCMAY/XgB+BKabm/QqiljNxXdJKbWA/25ZhD32\nQinVEOPLqQvwfxhPezzGeCT1YyJPaR7ROYwp7RsDnwCuGGMvTgI9tNZzLIjbpkyDZtsqpbpi9HJ8\nA6TEmO9lJPBjxC8prfVLpVQNYATGE0TdMBIZX6CR1vrvmE4byxjvmB6D/Qzj1kgrjN/9ccBba70w\ninNY8/qNwXhf1jT964wxW+tijFlzryulsmEM3l5sGndizhaMqeo78V9SYkk85uKOzbUUwfgdRjQL\nI8kHI6GL6r26C7hu4blEIqCifo8KIYQQQsSfRDemRClVXSn1lzJWngyJeJ/YVOYbpdQtZayq+rdp\nAaqwx1MppX5WSvkppfyVUn/EdjZOIYQQQthWoktKMJ6TP4oxNbW51VEHY0z21AtjFdTnwMYI0zVP\nwrh32hpj4GJOwsw4KYQQQoj4l6hv35jmknhPa/1XmH23MNbRmGj6OQPGKpfeWuulpp/vA+1DZ+s0\nTZt9BqgcYdS+EEIIIeJJYuwpiZJpMKIbxqAtALTWT4EDGNMcA5THGOAbtsw5jMFSVRBCCCGEXSSp\npAQjIdEYPSNh3eW/uRxcgdemZCWqMpEopZyVUuVMkxAJIYQQwkKWfofKI8GW88SYgfGwUirilOAb\nsG5WTiGEECKpaQA0jLAvHVAOY56kvVFVTGpJyR2MCX9cCd9b4ooxYVJomZRKqQwRektcTcei4mH6\nt5yZYzUwM8OkEEIIIcLxILkkJaaFyu5gLHN9HN4MdK0E/Gwq5osxkdG7GOs5hA50dSfq2Q7BtMz7\nwoULKVYs0szbURowYAATJ06M1XXEV5169erx998xzRtlm3Ml5GuKr9isrZeQrykhX4+19RLyNcXn\nezWpXZO876w/jy3qnDlzhs6dO4PpuzQqiS4pUUqlxVg7InQK5PxKqTLAQ9OaH5OA4UqpixgXPwr4\nF2MpbbTWT5VSs4AflVKPMBZdmwzsieHJm5cAxYoVo1w5c50l5mXMmDFW5eOzjpOTU6zrWHuuhHxN\n8RWbtfUS8jUl5Ouxtl5Cvqb4fK8mtWuS953157FxnWhX5E50SQnG0zPb+G8q4wmm/fOAD7TW35sG\n0kzHWGdkF8ZU0q/DtDEAY42SPzCmMN4ARLVw2Vvp0KFDgq2TK1euWNex9lwJ+ZriKzZr6yXka0rI\n12NtvYR8TfH5Xk1q1yTvO+vPE5/vO7TWslmwYYwl0b6+vjqpaNasmb1DsDm5poQvqV2P1nJNiUFS\nux6tE9c1+fr6hnYklNPRfNcmtUeChRBCCJFISVKSjFndvZaAyTUlfEntekCuKTFIatcDSfOaEvU0\n8/FJKVUO8PX19Y1ywM/169fx8/OL38CSKRcXF9zd3e0dhhBCCAscPnwYLy8vAC+t9eGoyiXGga4J\n0vXr1ylWrBgBAQH2DiVZcHZ25syZM5KYCCFEEiJJiY34+fkREBAQ63lMROyFPu/u5+cnSYkQQiQh\nkpTYWGznMRFCCCGEQQa6CiGEECJBkKRECCGEEAmCJCVCCCGESBAkKRFCCCFEgiBJiRBCCCESBElK\nhEXmzZuHg4MDzs7O3L59O9LxWrVqUbp06Tc/e3h44ODgQP/+/SOV3bFjBw4ODqxYsSJOYxZCCJG4\nSFIiYuXVq1eMHTs20n6lVKSflVLMnDmTO3fuxFheCCFE0hWiQywqJ0mJiBVPT88oE42ISpQoQXBw\nsNkkRpY3EEKI5OHpq6f0Wt3LorKSlAiLKaUYOnQoQUFBZhONiDw8POjatavFSYwQQoik5cnLJ9Rf\nUJ8LDy5YVF6SEhEr+fLli1WiMWzYMAIDAy1KYoQQQiQ8L4Ne8ujFI2773+bKoyucuX+GY3eOcejW\nIfbd2MfOazu5+fRmpHqPXjyi3oJ6nH9wnmlNp1l0LplmXsTasGHDmD9/PuPGjWPixInRlvXw8KBL\nly7MnDmTIUOG4OrqGk9RCiGEeBsvg17Sa3UvFhxfEGNZB+VAs8LN+KT8J9QrUI/HLx9Tb0E9rj2+\nxlbvrYTcsmxMiSQldhIQAGfPxu05ihYFZ2fbt5svXz66dOnCjBkz+OKLL2JMNIYPH86CBQsYO3Zs\njEmMEEII+7v//D7v/f4eh28fZkL9CXhk8iC1Y2pSO6YmVYpUpEyREqcUTjg5OOHo4Mi2q9v49dCv\nNFzUkPyZ85MqRSruB9xnq/dWSruW5vCtwxadV5ISOzl7Fry84vYcvr4QV2sDxibRiJjECCGESLhO\n3z9N08VNCQgMYLv3dirlrhRjnSIuRfjI6yP2/7ufab7T8L3lyzbvbZTMXjJW55akxE6KFjWShrg+\nR1zJly8fnTt3ZsaMGQwePDjG8sOGDWPBggWMGzeOFi1axF1gQgghYi0gMIAbT27ge9uX3mt7kydj\nHrZ5byNvprwWt6GUokqeKlTJU8XqOCQpsRNn57jrxYgvw4cPZ+HChYwbNy7Gsvnz56dz585Mnz6d\nihUrxkN0QgghonLv+T1mH5nNH6f/4Orjqzx48eDNsUYFG7GkzRIypMoQ73FJUiKsFjbRyJs3L05O\nTtGWD73l8/3338vkaUIIEc+01uy6votph6bxx+k/cFAOtCzWkpZFW+Ke0f3N5pHJw26f0ZKUCIuZ\nm/As9LbMuXPnKFky+nuHoUnMvHnzJCkRQiRJz18/J23KtLGqo7Xm8cvH3PK/xe1nt7ntf5uMqTPS\nsGBDUqZIaVUcITqESfsnceTOEW4+vckt/1vc8r+F/2t/CmctzLi64/D29CZLmixWtR9XJCkRFjOX\nSBQoUIAuXbpESjRCp5mPaPjw4SxatIiQEMseDxNCCHu78OACq86tYuOljZTKXoqBVQaSO0PucGUu\nP7rMl9u+ZMnJJcx/bz6dSneyqO3nr59TYWYFzvidiXTMxdmFTqU60c2zG55unrGKeabvTD7b9BnV\n3KuRK30uPN08yZk+J145vKjlUSvB/mEoSYmwiLe3N97e3maPzZ49m9mzZ4fbd/nyZbNlCxQowOvX\nr20enxBCWOrSw0s0WNiAYtmK0alUJ5oXaY6z03/zJzx//Zz9/+5ny5UtrDq3itP3T5PaMTU18tZg\nztE5TD04lS6lu/B51c/JkiYLo3eO5tdDv+Li7ELVPFXpva43Vd2r4pHJI8ZYph6cysWHF1nQcgH5\nMuUjR/oc5EiXg0uPLjH36FwWHF/ATwd+wiuHF8veX0a+zPlibPPm05t8vvlzPiz7Ib81/+1tXqp4\nJ0mJEEKIZONF4AtaL21NsA7m/vP7dFjegbROaWlZrCWuaV3ZdX0Xh28fJigkiKxpstKkcBNG1x5N\n/QL1SZsyLf6v/JnuO50f9/3InKNzSOOUBkcHR76q9RX9K/UnKCSIMtPK0HlFZ7Z3246jQ9Rfs09e\nPmHcnnH0LNeTzqU7hztWMntJxtcfz3fvfseGixv4dOOnNF7cmL0f7CVzmsxRtqm15pO1n5DWKS3j\n64+32esWXyQpEUIIkWg9ffWUpaeWApDGMQ1pnNLg7ORM5dyVyZQ6U6Tyfdf15dyDc+z/cD9l3Mpw\n6eElfE764HPSh2evn1HNvRrdynSjet7qFM9WHAcVfjWW9KnSM+idQfSr2I8Fxxdwy/8WvSv0xsXZ\n5U2Zha0WUnNuTcbuHsvwGsOjjH3S/km8CHrBsBrDoizjlMKJZkWaUcSlCFVmVaHV0lZs6LSBVI6p\nzJZfemopq8+vZkXbFWavP6GTpEQIIUSitOb8Gj5Z+wk3n95EE34gvls6N35r9htNCjd5s2/W4VnM\nPjqbuS3mUsatDAAFshRgeI3h0SYP5qRyTEWPcj3MHqvmXo2h1Yby1favqF+gPhVzRZ4G4UHAA37c\n/yO9y/cmZ/qcMZ6vcNbC/NX+L96d/y49Vvdg/nvzI40LeRDwgH7r+9G6WGtaFmsZq+tJKGRBPiGE\nEInK3Wd3af9He5r5NKNU9lJc6X+F4BHBPB/6HL//8+N079N4unnS1KcpPf7qwdNXTzly+wh91vWh\nZ7meeHuaHx9nSyNqjsArpxedVnTi2etnkY6P3zue4JBgBleLefLJUFXdqzLvvXksPL6Qr7Z/Fen4\ngI0DCAwJZGrjqW8Tul1JT4kQQohEITgkmDlH5/D535+TwiEFi1otokPJDm96DJydnHF2ciarc1bW\ndVzHzMMzGbhxIFuubEFrTYnsJZjcaHK8xOqUwomFLRdSdnpZmixuws+Nf34z5frdZ3eZfHAyn1b6\nlOxps8eq3XYl23H18VW+2PIFe27swUE5EKyDCQwOZNf1XcxuPhu3dG5xcUnxQnpKhBBCJAh3nt1h\n/rH5XHt8LdKxPdf3UPG3ivRc3ZNmRZpxps8ZOpbqGOWjrUopenn14vgnx3HP6M6z18/44/0/SO2Y\nOq4v441CWQvxZ/s/ueV/izLTyvDR6o+4++wuY3ePxcnBiUHvDLKq3c+rfs7Yd8eSIVUGMqbOSDbn\nbLhndGd07dF08+xm24uIZ9JTIoQQwu4uPLhgLHX/xEhIvHJ40apYK2p51OLnf35m8YnFeOXwYu8H\ne2O1tkr+zPnZ7r2dl0EvSeOUJq7Cj1Ld/HU51fsUv/7zK1/v+JrFJxcTGBzI0OpDo32KJjpKqVjd\n9klMpKdECCGEXR2+fZiqs6uSxikNp3qfYknrJRTIUoBvd31L1dlV2Xx5M7Oaz+Jgz4NWLfamlLJL\nQhIqZYqU9K/cn4v/u0iPsj0o7VqaTyt/ard4EjLpKRFCCBGngkKC8Dnhw+KTiynrVpYWRVpQIVcF\nHJQD265so8WSFhR1Kcq6TutwcXaheLbitCvZjpdBLzl48yBlXMuQMXVGe1/GW8uSJgsTG060dxgJ\nmiQlQggh4sSroFfMPzafsXvGcvnRZarmqcoM3xl8t/s7cqTLwbv532XpqaXUyFuDFW1XkD5V+nD1\nQ2dRFcmHJCVCCCFsKjA4kFlHZjFm1xhuPr1Jm+JtWN52OZ5ungSFBLH3xl5WnV3Fuovr6FiqI9Oa\nTItyMjCRvEhSIoQQwia01qw6t4ovNn/B+Qfn6ViqI8OqD6NYtmJvyjg6OFIjbw1q5K3BhAYT7Bit\nSIhkoKuw2IkTJ2jTpg0eHh6kSZOG3LlzU79+faZO/W+iHg8PDxwcHN5srq6u1KhRgz///BOAq1ev\nkjZtWjp1Mr+C5u+//46DgwO//vprvFyTEOLtPX31lL8v/U31OdVp+XtL3DO6c/ijwyxstTBcQiJE\nTKSnRFhk79691KlTh7x589KrVy/c3Ny4ceMG+/fvZ/LkyfTt2xcwRrmXLVuWQYMGobXm1q1bTJ8+\nnVatWjFt2jR69erFyJEjGTJkCN27d6du3bpvzuHv78/AgQOpUqUKn3zyib0uVQgRBa01N/1vcujW\nIQ7fPszxu8c5fvc4Vx5fAaCMaxk2dt5I/QL17RypSKwkKREWGTNmDJkyZeLQoUOkTx9+MJqfn1+4\nn3PlykWHDh3e/NylSxcKFizIxIkT6dWrF5999hmLFi2id+/enDhxglSpjHvJQ4cOxc/Pj02bNsX9\nBQkhLLbizApmH5nNoVuHuPv8LgCuaV0p41aG1sVaU9q1NKVcS1HatXSkBeyEiA1JSoRFLl++TIkS\nJSIlJAAuLi5mavzH1dWVYsWKcfz4cQBSpEjBjBkzqFq1KqNHj2bUqFH4+vry66+/MnjwYEqUKBEn\n1yCEiGzntZ2cvHeSj8t/bDahWHJyCR2Xd6Sqe1V6lutJ+ZzlKZ+zPDnT54xyNlUhrJUkU1ql1Eil\nVEiE7XSEMt8opW4ppQKUUn8rpQraK97EIG/evPj6+nLq1KlY1w0KCuLGjRtkzZr1zb5KlSrxySef\n8MMPP3Dy5Ek++ugj8ufPz4gRI2wZthAiCvee38P7T29qzq1Jn3V9aPl7S/xf+Ycrs+b8Grqs7EKX\nMl3Y0W0Ho+qMokXRFuTKkEsSEhEnkmRSYnIScAXcTFu10ANKqcFAX6AXUBF4DmxUSqW0Q5yJwqBB\ngwgICMDT05OqVavyxRdf8PfffxMUFBSpbGBgIA8ePODBgwccP36cLl26cO/ePdq2bRuu3LfffouL\niwu1atXiyJEj/PLLL29u5Qgh4kZwSDDTDk2jyNQirDm/ht+a/cbqDqvZdmUbVWdX5erjqwBsu7KN\nNkvb0KxwM2Y1nyW3ZUS8SMq3b4K01vejONYfGKW1XgOglOoK3AXeA5bGR3ABgQGc9Tsbp+co6lIU\nZydnm7RVt25d9u3bx3fffcfGjRvZv38/33//PdmyZeO3336jWbNmb8pu3LiRbNmyvfnZ0dGRrl27\nMnbs2HBtpk+fnkmTJtG2bVs6dOgQbtCrEML2zj84j/ef3uz/dz8feH7AuHrjcHE2br/u+3AfzZc0\np8LMCnxd62sGbx5Mjbw18Gntg6NDUv6qEAlJUn6nFVJK3QReAvuAIVrrG0qpfBg9J1tCC2qtnyql\nDgBViKek5KzfWbxmeMXpOXx7+VIuRzmbtefl5cUff/xBUFAQx44dY+XKlUycOJH333+fo0ePUrRo\nUQAqV67MmDFjAHB2dqZYsWJkyJDBbJsVKlR407YQIm5orZnuO53PNn1GzvQ52dV9F9Xcq4UrUyJ7\nCQ70OECbpW3os64P7+R5h5XtVsqkZiJeJdWkZD/QDTgH5AC+AnYqpUpiJCQao2ckrLumY/GiqEtR\nfHv5xvk54oKjoyNeXl54eXlRqFAhunfvzrJly/jyyy8BY+Br7dq14+TcQojYue1/mw//+pD1F9fz\nsdfHjK8/nrQp05ot6+LswqYum1hycgnNizSPspwQcSVJJiVa641hfjyplDoIXAPaAm91z2TAgAFk\nzBh+YagOHTpQpEiRWLXj7ORs014MeylfvjwAt2/ftnMkQoiIDt48SONFjXFK4cTajmtpXKhxjHVS\npkhJ1zJd4yE6kVT5+Pjg4+MTbt+TJ08sqpskk5KItNZPlFLngYLAdkBhDIIN21viChyJqa2JEydS\nrlzkZOLw4cM2iTWh2r59O7Vq1Yq0f+3atQBvbt0IIRKG0/dP02hRI4q6FGVV+1Vvxo4IEdc6dOgQ\nbq4qML5Hp/onAAAgAElEQVQjLblNnyySEqVUOoyEZJ7W+opS6g7wLnDcdDwDUAn42X5RJmz9+vUj\nICCAli1bUrRoUV6/fs2ePXtYunQp+fPnp1u3bvYOUQhhcu3xNeovqE/uDLlZ23EtmVJnsndIQlgk\nSSYlSqkfgNUYt2xyAV8DgcASU5FJwHCl1EXgKjAK+BdYFe/BJhITJkxg2bJlrF+/npkzZ/L69Wvc\n3d3p27cvw4YNezOQVSkV6/kLrKkjhDDv3vN71FtQj1SOqdjQaYMkJCJRSZJJCZAbWAxkBe4Du4HK\nWusHAFrr75VSzsB0IBOwC2iktX5tp3gTvPr161O/fszrWVy+fDlW7ebNm5fg4GBrwxJChPHk5RMa\nLmyI/2t/9nywhxzpc9g7JCFiJUnOhqO17qC1zq21TqO1dtdad9RaX4lQ5iutdU6ttbPWuoHW+qK9\n4hVCiJjMOTKH8jPKs/fGXrPHLzy4QK15tbjy+AobO28kf+b88RyhEG8vSSYlQgiRlGy9spVea3px\n4+kNqs+pzohtIwgMDnxzfPGJxZSbUY6AwAC2e2+ntGtpO0YrhPUkKRFCiATs/IPztFnahjr56nDt\n02uMrDmSb3d9S/U51Tl+9zg9/upBpxWdaFGkBYd6HqKMWxl7hyyE1ZLqmBIhhEj0Hr14RDOfZrim\nc+X3Nr+T2jE1I2qOoH6B+nRe0Zky08rg7OTM7Oaz6ebZTQaMi0RPkhIhhLCj56+fM37veGYfnU0Z\n1zI0LtSYxoUakyNdDtosa4NfgB8HehwI9xRN5dyVOfrxUaYenErzIs0pnq24Ha9ACNuRpEQIIewg\nRIcw/9h8hm0dhl+AH11Kd+Hiw4v0XdeXYB2MWzo3/AL82NxlMwWzFIxUP13KdHxR7Qs7RC5E3JGk\nRAgh4pHWmo2XNjJ0y1CO3DlC2xJtGfvuWPJlzgfA45eP2Xx5MxsvbqRu/rrU9Khp54iFiD+SlAgh\nRDwICgnij9N/MHb3WI7dPUaV3FXY88Ee3snzTrhymVJnok3xNrQp3sZOkQphP5KU2NiZM2fsHUKS\nJ6+xSEy01sw5Oocxu8Zw+dFl6heoz9YGW6nlUUsGpgoRgSQlNuLi4oKzszOdO3e2dyjJgrOzMy4u\nssCYSNiCQoLot64f03yn8X7x91n2/rIksTq4EHFFkhIbcXd358yZM/j5+dk7lGTBxcUFd3d3e4ch\nRJQCAgNo/0d71l1Yx2/NfuPDch/aOyQhEjxJSmzI3d1dviiFENx/fp9mPs04ee8kqzusplGhRvYO\nSYhEQZISIYSwEf9X/my4uIGhW4fi/8qfHd124JXTy95hCZFoSFIihBBv4dGLRyw/s5w/z/7J5sub\neRX8ikq5KrGp86Y3j/kKISwjSYkQQljp/vP7VPqtEteeXKO6e3XG1h3Le0XfwyOTh71DEyJRkqRE\nCCGs8CroFS1/b8nzwOec73ueAlkK2DskIRI9SUqEECKWtNb0XN2TQ7cOsb3bdklIhLARSUqEECKW\nxu4ey4LjC1jcajGVc1e2dzhCJBkO9g5ACCHsQWvN3Wd3Y11v+enlDN06lJE1R9KhVIc4iEyI5Et6\nSoQQyc7Jeyfps64PO6/tpFKuSvSt2Jf3i79PKsdUkcre9r/Nvn/3se/GPvb9u48DNw/QvmR7RtYc\naYfIhUjaJCkRQiQb/q/8+XrH10zaP4kCWQowtdFUVp1bRZeVXRi4cSA9y/UkS5osnPU7y7kH5zjr\nd5b7AfcByJMhD1XyVOHHEj/S06unrFsjRByQpEQIkeRprVlycgmD/h7EoxePGFV7FAOrDCSVYyr6\nVOzDWb+z/PLPL0w5OIVgHUxRl6IUyVqEuvnrUiJbCSrnrkyuDLnsfRlCJHmSlAghEpT7z+9z1u8s\nBbIUIEe6HG/dI3H87nH6re/Hzms7aVWsFRMbTMQ9Y/jlIIq6FGVyo8n82OBHHJQDDkqG2wlhD5KU\nCCESjE2XNtFpRSf8AoyFLdM4pqFAlgKUcS3D5EaTyZImi8VtPXrxiBHbRvDLoV8onLUwmzpvol6B\netHWcXSQj0Qh7En+DxRC2F1wSDBf7/ia0TtHU79AfcbUGcMt/1tcfHiRS48usejEIgJDAlnSekm0\nPScPXzxk48WNrLmwhrXn1xKiQ/i+7vf0q9SPlClSxuMVCSGsIUmJEMKu7j67S8cVHdl+dTujao9i\nSPUhOCgHvPhvIbvq7tVpv7w9LYq0oGOpjpHa2HN9D0O3DmXP9T0E62DKupWlX8V+9K7Qmxzpc8Tn\n5Qgh3oIkJUIIuznnd4468+sQHBLM5i6bqZ2vttly7Uq2Y9W5VfRe25vq7tXJkzHPm2Nbr2ylmU8z\nSmQrwS9NfqFxocbkzpA7vi5BCGFDMppLCGEX5x+cp/a82mRKnYnDHx2OMiEJ9XPjn0mXMh3dVnUj\nRIcAxhiUJoubUN29Oju67aCXVy9JSIRIxKSnRAgR7y4+vPgmIdnadSuu6VxjrJM5TWbmvjeXegvq\nMeXAFApmKUirpa2oX6A+y95fRmrH1PEQuRAiLklSIoSIV5ceXqL2vNpkSJWBrd6WJSSh6uavS/9K\n/Rm8eTAhOoSmhZuypM0SGcQqRBIhSYkQScy1x9dwUA7hxl0kFFceXaH2vNo4OzmztetW3NK5xbqN\n7979jt3Xd1PUpShzWszBKYVTHEQqhLAHSUqESCICgwMZs2sMo3eOJlgHkz9zfup41KF2vtq8m+/d\nWPVIxIXb/repu6AuqRxTsc17m9VPxaRxSsM/Pf+Rad6FSIIkKREiCTh57yRdV3bl+N3jDKs+jDJu\nZdh2ZRvbrm7jtyO/4aAcqF+gPt3KdKNF0RbxPv7i0YtHNFjYgFdBr9j9wW5yps/5Vu1JQiJE0iRJ\niRCJyOvg11x6eImXQS/fbHtv7OWbnd9QMEtBDvQ4gFdOY36PVsVaAcY8IKvOrWLesXm0X96ejKky\n0r5ke/pU6EMp11JxHvPz189psrgJt/xvsbP7TjwyecT5OYUQiZMkJUIkEhceXKD5kuac9Tsbbr9C\n8VmVzxhVZ5TZHhDXdK708upFL69enH9wnvnH5jP36Fym+06nYcGGDKoyiDr56sRJ78OroFe0WtqK\nE/dOsLXrVopnK27zcwghkg5JSoRIBDZd2kS7P9rhmtaVTZ03kSVNFlI7pia1Y2oypc5EVuesFrVT\nOGthRtcZzciaI1l6aik/7P2BugvqUtatLN/X+566+eu+daxaa07eO8nGSxtZdnoZx+4cY32n9VTI\nVeGt2xZCJG2SlAiRgGmtmbR/EoP+HkTDgg1Z3GoxGVNnfOt2nVI40al0JzqW6siWK1v4Zsc3NFnc\nhE2dN1HTo6ZFbey5vofpvtNRShkr6+LAi6AX7Li2g1v+t0jjmIaaHjVZ03FNjBOjCSEESFIiRILl\nF+DHwI0DWXB8AYOrDmZMnTGkcEhh03Mopaibvy7V3avTZHETmi9pzq7uuyjtWjrGup9v/pwrj65Q\nIEsBQnQIIToEB+VAh5IdaFCgAdXzVpcJzYQQsSJJiRAJzIvAF0w+MJlvd38LwMKWC+lUulOcnjOV\nYypWtFtBrbm1aLSoEXs/2EveTHmjLH/q3in23tjL0jZLeb/E+3EamxAi+ZC1b4RIIEJ0CAuPL6TI\n1CIM3zYc7zLeXOx3Mc4TklAZUmVgXad1pEqRigYLG+AX4Bdl2d8O/0Y252y0KNoiXmITQiQPkpQI\nkUB8s+MbuqzsQoVcFTjd+zSTG00mW9ps8RqDWzo3NnXZxMMXD2nm04zXwa8jlXkZ9JL5x+fTzbOb\nTO8uhLCpZJ2UKKX6KKWuKKVeKKX2K6VifDxgyhT44ANo2hRGjIiPKEVycOzOMcbsGsOIGiNY3nY5\nhbIWslssBbMUZE3HNfxz8x8m7J0Q6fiKMyt4+OIhPcr1sEN0QoikLNkmJUqpdsAEYCRQFjgGbFRK\nuURXb9MmOH0a7t6Fb78Fv6h7uIWwSFBIEB/+9SFFXYoyrMYwe4cDQMVcFRlQeQDf7PyGy48uhzs2\nw3cGtTxqUThrYTtFJ4RIqpJtUgIMAKZrredrrc8CHwMBwAfRVVq9GvbvhzVrQGv488/4CFUkZRP2\nTuDInSPMbj47Qd0O+arWV2RPm50+6/qgtQbg/IPz7Li2g17letk5OiFEUpQskxKllBPgBWwJ3aeN\nT93NQBVL2nB1hZo1YenSuIlRJA/n/M4xcvtIBlYemOAmF0ubMi1TG01lw8UN/HH6D8AY4JolTRZa\nFmtp5+iEEElRskxKABcgBXA3wv67gMVrqbdtC1u3yi0cYZ0QHUKP1T3IkzEPX9f+2t7hmNWsSDPe\nK/oe/Tf0xy/Aj7lH59K1dFeZf0QIESdknpK30KoV9OkDK1dCz572jkYkZCE6hL8v/c2jl494Hfya\nwOBAjtw5wu7ru9nuvR1nJ2d7hxilyQ0nU/yX4tSZV4f7Affp6SVvdiFE3EiuSYkfEAy4RtjvCtyJ\nruKAAQPImPG/ab6zZIHJkzvQs2cHmwcpkoZXQa/ovqo7Pid9wu1PoVLwRdUvLJ7W3V7yZMzDN7W+\nYeCmgVTNU1UW1RNCRMvHxwcfn/Cfd0+ePLGorgodwJbcKKX2Awe01v1NPyvgOjBZa/2DmfLlAF9f\nX1/KlSv3Zv/06dC7N9y5A9mimFIiMDiQ9RfXM/foXG7632S793bSOKWJg6sSsXXq3imevX5GpdyV\n4qT9Jy+f0GppK/Zc38O89+bRpHATnByccErhhINKPHdPg0KC6PFXD7zLeMs6NkKIWDt8+DBeXl4A\nXlrrw1GVSzyfirb3I9BTKdVVKVUUmAY4A3Nj00hL03i/lSsjH7vw4AIDNw4k14+5aLGkBVceX8H3\nli8zfGe8ZejibTx5+YTph6ZT6bdKlPy1JDXn1uT6k+s2P88t/1vUmFsD31u+bOqyiXYl25EuZTpS\nOaZKVAkJgKODI3PfmysJiRAiTiWuT0Yb0lovBQYB3wBHgNJAA631/di0kz071K4d+SmcU/dOUfG3\niiw8vpDOpTtz9KOjHPnoCF3KdGHcnnG8DHppoysRltJaM2DDANwmuNF7XW+yOWdjSeslZEydkZHb\nR9r0XOcfnOedWe/w8MVDdn+wmxp5a9i0fSGESIqS65gSALTWvwC/vG07bdvCJ5/AvXtGknLz6U0a\nLmqIe0Z3dnbbGW6p+aHVhjL/2Hxm+s6kX6V+b3tqEQvTDk1j0oFJjKgxgo/Kf0TO9DkBYzXefuv7\nMbDyQEq5lrLJuXqt7oVTCid2dd1Fnox5bNKmEEIkdcm2p8RaI7eN5M6z8GNhW7YEpWDFCuPWQKNF\njVAo1nVcFy4hASiUtRCdSnVi7J6x0lsSj07fP83ATQPpXb43X9f++k1CAtDTqyf5M+dn6NahNjnX\nrmu72HFtBz/U+0ESEiGEiAVJSmJp1/VdFJ5SmAl7J7xZrCxbNuMWzu9/vKbV0lbceHqD9Z3WkytD\nLrNtDK8xnDvP7jDr8Kz4DD3ZehX0io7LO5I/c37G1x8f6XjKFCkZU2cMa86vYee1nW99vlE7R1Eq\neymaF2n+1m0JIURyIklJLK1stxLvMt58vvlz3Ma7UWVWFbqs7IJzo2/Y7tKe3dd282e7PymRvUSU\nbRTOWpgOJTswds9YXgW9isfok6chW4Zwxu8MPq19onzq6f0S7+OVw4vBmwdjyRNpUZU58O8B/r78\nN1/W+DLRDWYVQgh7k0/NWMqYOiNTGk/h2MfHGFhlIEWyFuHyo8vsDZoKhdbjtm8BZTLFPO/E8BrD\nufn0JrOPzI6xrCQu1tt0aRMT909kXN1xlHYtHWU5B+XAuLrj2P/vfladWxVtm0tOLiHHhBwc+PdA\npGOjdo6imEsxWhdv/daxCyFEciNJiZVKZi/J8BrDmfveXPZ8sIf7n9/jWLtn+O9vS4sW8DKG4SJF\nXYrSvmR7vtv9ndmkIyAwgHlH51F1dlUyjM3A8bvH4+hKEp+bT28y+O/BuI53ZczOMVH2Wlx7fA3v\nP71pUKAB/6v0vxjbfTf/u9QvUJ8hW4YQFBJktoxfgB991/XlyasnNFzUkGN3jr05dvj2YdZeWMuw\n6sOkl0QIIawgn5w2VLpkCtasgX/+gY4dITg4+vJf1viSm/43cfnBhUq/VaL7qu78sOcH+q3rR84J\nOem2qhvOTs5kT5ud73Z/Fz8XkYCdvHeSbn92I99P+ZjmO41q7tUYvm043n96R0rsVp9bTdnpZUnt\nmJq57821OEkY++5YzvmdY/jW4WaPD9o0iBAdwvGPj5M/c37qLajHOb9zgNFLUjBLQdqVbPd2FyqE\nEMmV1lo2CzagHKB9fX11TP76S+sUKbTu1UvrkJDoyx7494D+fvf32nult64wo4JOOyatdhvvpods\nHqIvPbyktdb654M/a4evHfSFBxdiPHdSNeXAFM1X6Nw/5tYT9k7QT14+0Vpr7XPCR6calUpXm11N\n339+X78KeqUHbhio+QrdwqeFfhjwMNbnmrB3guYr9Jwjc8Lt33J5i+Yr9EzfmVprre8/v6+L/1xc\n5/4xt/7r7F+ar9CzD89+62sVQoikxtfXVwMaKKej+a5NttPMx1ZU08xHZc4c+OADY6G+CRMgfXrL\nzhOiQ1AojFnvDS8CX5Dvp3w0L9KcGc2S32ywJ+6eoPzM8vQo24NJDSfhlMIp3PH9/+6nxZIWpEuZ\njmzO2fC97csP9X6gf6X+4V5HS2mt+WjNR8w9OpfNXTdTI28NXga9pPSvpXFL58b2btvf9Lzc9r9N\n9TnVufToEh6ZPDjf93yk+IQQIrmTaebtrHt3Y12cRYugeHH46y/L6jkoh0hfpGmc0jCwykBj7Zyn\nN+Mg2oTrVdArOq3oROGshZnQYILZL/zKuStzoMcBnJ2cufPsDru77+bTyp9alZAAKKX4ufHPVM9b\nnZa/t+Tiw4t8u+tbrj6+yvSm08PdCsqRPgdbum6hjGsZvnv3O0lIhBDiLUhPiYVi21MS6upVY8G+\n9euhdWuYMgVy5Ij9+Z++ekreSXnp7tmdHxv8GPsGEqn/2/R/TD44mYM9DlLGrUy0ZQODA9FoUqZI\naZNzP3rxiMqzKhMUEsSNJzf4otoXfFP7G5u0LYQQyYn0lCQQHh6wdi0sWQK7doGXF7x+Hft2MqTK\nQN8KfZnuO50HAQ9sHqc9PX75mF/++YXT90+H27/96nYm7JvA6NqjY0xIAJxSONksIQHInCYzazqs\n4dGLR3hk8mBoddvM+CqEEMI8SUrigVLQrh2sWwe3b8O+fda1879K/0NrzeQDk20boB1dfHiRKrOq\n0GddH0r8UoLa82qz7NQy7j+/T9eVXamRtwYDqwy0W3yFshbCt5cvW723ktoxtd3iEEKI5ECSknhU\ntiy4uMDff1tXP1vabPTy6sWUg1Pwf+Vv2+DsYMfVHVT6rRIhOoSTn5zEp7UPwSHBtP2jLbkn5ubJ\nqyfMe28eKRxS2DXOfJnzkTtDbrvGIIQQyYEkJfHIwQHq1oVNm6xv47Mqn/Hs9TNmHUnc6+bMOTKH\negvq4enmyf4P91Miewnal2zPzu47OfHJCXqX741Pax/yZspr71CFEELEE0lK4lm9enDoEDx8aF39\nPBnz0KhQI5afWW7bwOJJiA5hyOYhfPDXB3T37M6GThvInCZzuDIls5dkYsOJNC7U2E5RCiGEsAdJ\nSuJZvXqgNWzZYn0bTQo1Ye+NvTx68ch2gcWDV0Gv6LKyC2P3jGV8vfFMazpNHqEVQgjxhlVJiVLK\nQSlVWClVTSlVI+xm6wCTmjx5oGhR68eVADQu1JgQHcLGSxttF1gce/zyMY0WNWL56eUsbbOUz975\nzOp5RIQQQiRNjrGtoJSqDCwG8gIRv1U0YN9RiYlA/fqwapXRY2LN93LuDLkp7VqatRfW0r5ke9sH\naGM3ntyg0aJG3PK/xeaum6nmXs3eIQkhhEiArOkpmQYcAkoCWYDMYbYstgst6apXD65dg4sXrW+j\nSaEmbLi4geCQGFb9s7Onr55SbU41nr1+xt4P90pCIoQQIkrWJCWFgKFa6zNa68da6ydhN1sHmBTV\nrAmOjm9/C8cvwI9/bv1ju8DiwJidY7j//D7bu22nqEtRe4cjhBAiAbMmKTkAFLR1IMlJ+vTwzjtv\nl5RUzl2ZzKkzs+7COtsFZmMXH15k0oFJDK46GI9MHvYORwghRAJnTVIyBZiglOqmlPJSSpUOu9k6\nwKSqXj3YuhWCgqyr7+jgSIOCDVh7Ya1tA7OhQZsG4ZrWlf+r+n/2DkUIIUQiYE1SshwoBswG/gGO\nAkfC/CssUL8+PH0KBw9a30aTQk04fPswt/1v2y4wG9lyeQurzq3i+3rf4+zkbO9whBBCJALWJCX5\nzGz5w/wrLODlBZkzv90tnIYFG6JQrL+43naB2UBQSBCfbvyUqnmq0q5EO3uHI4QQIpGIVVKilHIC\nRgIOWutr5ra4CTPpSZEC6tR5uynnXZxdqJS7UoK7hTPDdwan7p3ip4Y/yVwkQgghLBareUq01oFK\nqdbAqDiKJ1mpXx9694YnTyBjRuvaaFKoCd/v+Z7Xwa9JmSKlbQO0wIOABxy/e5zXwa95Hfyal0Ev\nGbFtBN08u+GV0yve4xFCCJF4xXryNOBP4D1goo1jSXbq1YPgYBgxAsaMgXTpYt9G40KN+XLbl+y+\nvps6+erYPshoPHrxiLLTy3Lj6Y1w+3Oky8G3734br7EIIYRI/KxJSi4AI5RSVQFf4HnYg1rrybYI\nLDnIlw+++cZISJYtg1GjoFs349aOpcq6lSVHuhysu7AuXpMSrTUfrfkI/9f+HOp5CNd0rqRMkRIn\nByfSpUwna9oIIYSINWsGun4IPAa8gF7AgDDbp7YLLXn48ks4exZq1YIePaBsWdi92/L6SikaF2rM\nyrMreRX0Ks7ijGj+sfksO72M6U2n45XTi9wZcpM9bXYyp8ksCYkQQgirxDop0Vrni2aTp2+s4OEB\nixfDgQOQJg00bQq3Y/GUb58Kffj36b/039A/zmIM69LDS/Rd3xfvMt60LdE2Xs4phBAi6bNqlWAR\nNypWhHXrIFUq+N//LK9XNkdZfm78M9N9pzP7yOy4CxDjcd/OKzuTPW12JjeSO3VCCCFsx5pVgqP9\n1tNaf2B9OCJrVvjpJ+jQwVhJuEULy+r1KNeDA/8eoPfa3pR2LU35nOXDHX/++jlKqbeeyGz0ztH8\nc/MfdnXfRYZUGd6qLSGEECIsa3pKMkfYsgN1gFZAJtuFlny1aweNG0OfPsasr5aa0ngKpVxL0Xpp\na/wC/ADjVkv/9f1xm+BGw4UN0VpbHddZv7OM2jmKL2t8SZU8VaxuRwghhDAn1j0lWuuWEfcppRyA\nX4FLtggquVMKfv0ViheHIUPg558tq5faMTXL2y7Ha4YXrZe2JkuaLKw6u4osabLQulhr5h2bx+rz\nq2lepLlVcU0+MJlsztn4otoXVtUXQgghomOTMSVa6xDgR4wncIQNuLvDt98aycmePbGol9Gd39v8\nzp7rezjnd45pTadxfcB15rSYQ518dRi6ZSjBIcGxjufxy8fMOzaPj8t/TCrHVLGuL4QQQsTElgNd\nC2DdvCciCn36GINfe/aEwEDL69XJV4fbn93mZO+T9PLqhbOTM0opvnv3O07dP8WiE4tiHcusw7MI\nDA7k4/Ifx7quEEIIYQlrBrr+GHEXkANoAsyzRVDCkCIF/PgjVK1qrCZctarldbOlzRZpX8VcFWlV\nrBUjto2gXYl2Fvd4BIcEM/WfqbQr2Q63dG6WByGEEELEgjU9JWUjbKVN+z9DJk+zufLlwckJjh2z\nTXuja4/mxtMbTPedbnGd1edXc/XxVf5XMRbPKQshhBCxZM1A19pxEYgwL2VKY8Dr0aO2aa9YtmJ0\n9+zO6J2j6e7ZnfSp0sdYZ/KByVTJXYUKuSrYJgghhBDCjFj3lCiltiqlIj36q5TKoJTaapuwRFie\nnrZLSgBG1hzJ01dP+XFfxDtxkZ24e4JtV7fxv0rSSyKEECJuWXP7phaQ0sz+1ED1t4pGmOXpCSdO\nQFCQbdrLkzEPfSv2Zfy+8Tx68SjaspMPTCZn+py0LtbaNicXQgghomBxUqKUKq2UCh0/Ujz0Z9NW\nFmOhvptxEmUsKKWuKqVCwmzBSqnPI5TJo5Raq5R6rpS6o5T63jTXSoLk6QkvX8L587Zr87Mqn/Ei\n8AWLTyyOssyDgAcsPLGQ3uV7yyJ7Qggh4lxsxpQcBbRpM3eb5gXQzxZBvSUNDAdmYjwZBOAfetCU\nfKwDbgGVgZzAAuC1qV6CU6aM8e/Ro8b4ElvIkT4HTQs3ZdaRWfSp2MdsmRm+M9Ba08url21OKoQQ\nQkQjNr0D+TDmIlFARdPPoVsuIIPWOm5Xg7PcM631fa31PdP2IsyxBkBRoJPW+oTWeiPwJdBHKZUg\n51nJnBny5rXtuBIw1ss5cucIh28fjnTsReALJh2YhHcZb7OPFwshhBC2ZnFSorW+prW+qrV20Fof\nMv0cut3WWsd+mtC484VSyk8pdVgpNUgplSLMscrACa21X5h9G4GMQIl4jTIWPD1t91hwqIYFG5Ij\nXQ5mHZ4V6djsI7PxC/Dj86qfm6kphBBC2J5V4yiUUl2UUnuUUreUUnlN+wYopSxc0zZO/QS0xxiQ\nOw0YCowLc9wNuBuhzt0wxxIkT084cgTeYj29SBwdHOnu2Z1FJxYREBjwZn9gcCA/7P2BtiXaUiBL\nAdudUAghhIiGNY8Ef4Kxzs06jFWBQ3shHhFHk6cppb6LMHg14haslCoMoLWepLXeqbU+qbWeAQwE\n+imlEvVITU9PuH8f7tyxbbsflP2AJ6+esPz08jf7lpxcwrUn1xhSbYhtTyaEEEJEw5oxFP2Anlrr\nP5VSYZeLPQSMt01YkYwH5sRQ5nIU+w9iXKcHcAG4A0ScBczV9G+MX/kDBgwgY8aM4fZ16NCBDh06\nxN59bb8AACAASURBVFT1rYQd7Jojh+3aLZClAHXy1WHWkVl0KdOFEB3Cd7u/o0mhJpR2LR1zA0II\nIUQYPj4++Pj4hNv35MkTi+pak5TkA46Y2f8KSGtFezHSWj8AHlhZvSwQAtwz/bwPGKqUcgkzrqQ+\n8AQ4HVNjEydOpFy5claGYj0PD8iQwUhKGjWybdsflv2QTis6ceHBBU7dP8UZvzPMbDbTticRQgiR\nLJj7Q/3w4cN4eXnFWNeapOQK4Alci7C/IXDGivZsRilVGagEbMN4DPgdjFtNC7TWoWnaJozkY4FS\najDGYoKjgKla61isxRu/lLL9zK6hWhVrRebUmZl1ZBbbrm6jRt4aVHWPxep/QgghhA1Yk5T8CPys\nlEqN6fFgpVQHYAjQw5bBWeEVxiDXkUAqjARqAjAxtIDWOkQp1RT4FdgLPAfmmuokaJ6esGGD7dtN\n7ZiazqU789OBn3gZ9JL1ndbb/iRCCCFEDKxZkO83pdQLYDTgDCzGmIisv9Z6iY3ji21sR4AqFpS7\nATSN+4hsy9MTpkyBZ88gXTrbtt2jXA+mHJxCWbeyNCjQwLaNCyGEEBawarIwrfUiYJFSyhlIp7W+\nF1Md8fY8PY1Hgk+cgCoxpl6xU9q1NJ9V+YxmhZuhlIq5ghBCCGFjb7Xei9Y6IDQhUUqlVkoNsk1Y\nwpzixcHRMW7GlQCMrz+emh4146ZxIYQQIgaxSkqUUtmUUk2VUvVDZ0lVSjkppfoDV4Evom1AvJVU\nqYzEJK6SEiGEEMKeLL59o5SqBqwBMmAsendIKdUd+BMIAv6/vfsOk6o8/z/+vqUqCopGFCWIsYAN\nAXsLYkSxgF0RC0bjN7H3EkuIlcRuflhiFKMCFsSGGjSCbcUCKLGAJYpKEARBlCbs7v37456VYdhl\nd3an7+d1XXPBnPOcc55np5x7njoI+GcW8ihJsjUCR0REJN/SqSm5hpjFdVtiNMuOwBPAH919K3e/\nK2XhO8mC7beH//wHysvznRMREZHMSico2Ra4xt0/JFbVdeAidx+ZlZxJtbbfHpYsgU8/zXdORERE\nMiudoGQdYA5AokZkEfBBNjIlNUuebl5ERKSUpDskeCszq1pJ14AtzWyFqeXd/T8ZyZlUq21b6NAh\nmnCyvNyOiIhITqUblLxEBCNVRif+9cR2Z/mqwZIlm24KX3yR71yIiIhkVjpBSaes5ULSsskm8PHH\n+c6FiIhIZtU5KHH31AX4JE86doQXXsh3LkRERDKrQTO6Sn507AjffAM//ZTvnIiIiGSOgpIi1LFj\n/Pv11/nNh4iISCYpKClCVUHJl2pQExGREqKgpAh16BD/KigREZFSku6Q4BWY2XrAzsQw4Hfc/ZuM\n5EpWqUUL2HBDBSUiIlJa6h2UmNnhwL3AJ0AzYiK10919aKYyJzXr2BGmTct3LkRERDKnzs03ZrZm\nyqY/ATu5+07u3g04Erg2k5mTmnXsqJoSEREpLen0KZloZv2SnpcD6yc9bwcszUiupFYKSkREpNSk\n03yzHzDEzAYCpwNnA4+YWZPEeSqBgZnOoFRvk01g+nSoqIAmmthfRERKQDozuk4DDjSz/sArwO3A\nZolHE2Cquy/JRiZlZR07Qnk5zJixfDSOiIhIMUt7SLC7jwB2BLoCLwOruft7CkhyS3OViIhIqUkr\nKDGzA8zsfGAHdz8FuAgYZmY3mNnqWcmhVEtBiYiIlJp0Rt/cBAwlaknuNrMr3P0VoDuwBHjXzPpk\nJ5uSas01oW1bBSUiIlI60qkpGQgc4O7HEIHJ8QDuvtTdrwAOA/6Y8RxKjTQCR0RESkk6QclCoFPi\n/x2I2pGfuftH7r5npjImtVNQIiIipSSdoORS4AEzm0GMvrkiO1mSulJQIiIipSSdIcHDzOxfwKbA\np+7+ffayJXVRFZS4g1m+cyMiItIwaa194+7fAd9lKS+Spk02gcWLYfZsWH/9WpOLiIgUtLTnKZHC\noWHBIiJSShSUFDEFJSIiUkoUlBSxtm2hVSsFJSIiUhoUlBQxM43AERGR0qGgpMgpKBERkVKhoKTI\nKSgRkWLx00/5zoEUOgUlRU5BiYgUOne45RZYay24555850YKmYKSItexI3z/PfzwQ75zIiKysmXL\n4LTT4LzzYLvt4Pe/h1Gj8p0rKVQKSoqchgWLSKGaPx8OOgj+8Y94vPUWHHEE9O8P48blO3e5MWQI\njByZ3jHujbepS0FJkdtkk/hXQYmIFJIpU2C33eDtt2HMGDj5ZGjSBB54APbaC/r1g3ffXZ5+9mx4\n6KFo5qmszF++M+n22+GMM+C44+LvURcVFdC3b/yN3LObv0KkoKTIbbABNG8O06blOyci0ti5w+uv\nwyGHwNZbx6/98eOhV6/laVq0iOabzp1h//3hsstgxx2hXTs4/vho5vnLX/JXhkx55BE45xw466z4\n8XjCCdGUVZtBg2D06Ajmxo/Pdi4LT1pr30jhWW016NBBNSUikl/PPgtXXx1NNF26RHPNgAERhKRa\nay147jnYZx+44w7o3RtOPz2ClCFD4PLLYYcdYN99M5vH2bOhrCweEyZEPjbeOL5DN944gqovv4wf\neVWLnd533/Jm8roaOzaCkGOPjZqfCROi1uj66+HKK2s+7umn4Zpr4nHvvdEpeLfdGlTk4uPuRfMA\n/giUAQuBuTWk6QA8m0gzE/grsFpKmu2AV4HFwJfAhXW4dnfAJ06c6IWmVy/3I4/Mdy5ESt/Mme47\n7ODerZv73nu7H3qo+0knuT/7bL5zll/33+8O7nvtFX+Lioq6HVdZ6V5evuK28nL3/fZzX3dd92nT\nMpO/UaPct9wy8gjuG2/sfvjh7gce6N61a1yrat/667vvuGN8p3bsGMfNmVP3a02a5L7WWu69e7v/\n9NPy7Zdf7t60qfuECdUf9/HH7q1bx3uqstL9uuvcV1/dfd68BhW9YEycONEBB7r7Ku61xdZ80wx4\nFLizup1mthrwHFEDtAtwIjAQuCopzVrAGOALItC4EBhkZqdkM+PZpGHBIrkxaBB89hnssks0Nyxe\nHNXsffvCY4/lO3f5MWoU/Pa38LvfwcsvwwEHRA1uXZhFP5NkTZrAsGFRi3HEEbBkScPy9/DDcOSR\nsNlmMHx4fFd+/XV0Ph09Gt57D+bMgYUL4zFrVrymjz4KL74Ic+dGZ92FC2u/1ssvQ58+sOWW8Pjj\n0bRe5YorYNttowYltUwLFsBhh8GGG8L998ff5aSTorln2LCGlb/orCpiKdQHEWysVFMC9AGWAesl\nbfs/YB7QNPH8D8CcqueJbdcDH9VyzYKtKRk0KKJ7EcmeKVPcmzRxv/HGFbeXl7sPGBD7Ro7MT97y\n5YUX3Js3dz/66JVrPBpq4kT3Fi3cTzml/ud46CH31VZzP+GE+ufvnXfcW7WKWpWlS6tPs3Ch+1ln\nLa8tmjWr+nTvvx9/r5NPdh8+3H3IEPdrr43a7jXXdP/ooxXTH3qo+7bbRs1JsatrTUneA4z6PFYR\nlPwZmJSybROgEuiaeP5PYFRKmp5ABdBmFdcs2KBk+PB4JUulmk+kEB1ySFTnL1688r5ly9yPOSaq\n50eNynnW8uKNN9zXWMO9T58Vmyky6b774rvttNPcf/ghvWMfeCACkoEDGx4wjRkTr+1JJ60cIJSV\nuW++uXvLlu633lp709XNN/vPTUVNmrivt557587uTz+9ctrnn490b7654vYFC9wPOMD9ttsaVq5c\naqxByd3A8ynbVk8EJfslno8B7kxJ0yURlGy5imsWbFAyaVL1b1wRyYzXXovP2EMP1Zxm2TL3o46K\nm9f997s/84z73/7mfv757v37xw2mJt98E7+Yf/wx83nPtOnT48a69true+4ZtQTZdPvtEfxsvLH7\nU0+tOu2PP7q/9Vb8Lc2iRqKu/Vtq89BD8R5YfXX3tm3dN9zQvVOnCHx22SX6hNTV7NmR19pqQMrL\nIxD+7W+Xb1u61H3//SMvv/hF9gLCTKtrUJL30Tdmdj1w8SqSONDF3T/JUZZW6dxzz6VNmzYrbOvf\nvz/9+/fPU45giy3i36lTYeed85YNkZLkDhdeCN26xaRfNWnaNObZOPZYGDgwtjVrFn2+WrSIvhZX\nXw2XXrpin4vXXoOjjoKZM2Nm5sGD65fPefNieG1lZcyPkdyfoaHmzo2+GQ8/HEN+mzWLeUbuuQfW\nWCNz16nOmWfCwQfHrLD9+sHhh8dInVmz4Kuvon/ItGnw4YfwxRdxjFmkue22uvdvqc2AAdGP6IMP\nYqjzkiXxb8eOcMopK/eNWZX11qtbuiZN4tzXXw833xz9bH77W3jppXiNzzoLnngCjj66fmXKlhEj\nRjBixIgVts2fP79uB68qYsnFA1gX2KKWR9OUY9R8k6JjR/dLLsl3LkSK19Kl7vfcE/1Ckn99jhwZ\nv0r//e+6nae8PGovp09f/iu9osL9T3+K8xx6aDRFVFa633BDVOH37Ol+5pnR3+DTT9PP+8iR7hts\nEKM+mjePkR8LFqR/nup88ol7hw5RA7T//u5Dh+anqbiy0v3hh6P/XFXzR+vW7lttFfk6//zI2zvv\nZL/2JpemT4/3yB13uF9wQdQAPfxw7Ntrr3jvFIPG2nyzPyt3dD2V6OjaLPH890RH1yZJaa6jiDu6\nuscQun798p0LaczKy93/9a/iqU5O9uGH7j16xBd+VbX4+ee7T54c/QX23z8z13nqqQgcOnd279s3\nrnXxxdH0s3Bh3Pz79q3+2CefjBvQKadEs9Crr7pPnRpBDsRxX3/t/tJL0Wly553TG8panfffd2/X\nLvL75ZcNO1em/PBDvF7z5+c7J7nTr18EYBDNWVWq+hNOmZK/vNVVSQYlxBwkXYErgfmJ/3cFWiX2\nrwZMBp4n5iLZD5gFXJ10jtbAjESNyVbA0cAC4ORarl3QQcnZZ8d4epF8WLrU/dhj4xvl4IPdlyzJ\nd47qprw8aitatIgb79tvu3/wgfu55y6fu8IsgpNMmTo1rtWmzcp9JB55JK45ZsyK2//976gB2XFH\n9+23j/9X1Ra0a+f+2GMr9k94553oQLnVVvFLuz4mTIi/QdeuNY8mkdyo6vB62WUrbl+yJF7nc87J\n3rVnzIh+Og0dAVSqQcnQRDNL6mOvpDQdgNGJQGMW8BdWnjxtG+AVYBHwFXBBHa5d0EHJnXdG9WpN\nQ9ZEsmXJkvgl17Sp+6WXxg2+T5/qR6kUiu+/jxv57rtH0HHeee6LFq2YZskS90cfdR82LPPXX7zY\n/bvvVt5eWRmdR7t0Wf5ZnjAhaj722295LdTSpVGLMWqU+9y51V9j6tSoefnlL93ffbfmvLz4ovvp\np0dw9sQTcd6xY+OX+c4713x+ya0pU6oPDC66KDodp75/G+rTT91/97vlAfDWW7vffXf9m8ZKMijJ\n56PQg5Jx47xoqvGkdCxcGP0XWrRwHz06tr34YoxQ2Hff/Lbt//e/7q+8EjfYF1+MpqUbb4yZWJs2\njc/LdttFmkIyaVIESrfeGiM6fvGLCA7q00fkq69i9tmWLWOIbLJly6IfGkSftDXX9J9rX6rm20h3\nGK7k3mefxet1//0NP9ePP8ZIs2OOiVFF7dq5Dx4cNXf9+sX7sm3baHJM972hoKSRBSXffBOv5hNP\n5DsnUooqKqL9+vbb4+b21FMRCO+5Z0ws9dJLK6YfNy6277135jpcpmP8+PhSTb7JQtycDzggJq36\n4ovc56uuTj01mnc6doxak4b0DVm0KObqqJrv46efou/JHntEB8rBg+P1rayM75HXXnN//PHM//KW\n7OndO4YlV6msjCHMnTpFDVhNTS+zZkWT0EEHRdqqz8kmm8RnJPU98N//RtNmq1bRlDh7dt3zqKCk\nkQUllZVRhXfddfnOiZSa//0vaj1gxb4MEDfOsrLqj3vttfj1vdFG7ldfHevG5MLSpe7bbBMdV6dM\niWrozz+PjprFcqP99tv423boELUdDVVZ6X7XXe7NmsXaPeuuG/N+vP56w88t+TdqVHwe33031guq\nmsdkp53i39NPX3kCubKy+Gy2aRPNrRde6P7Pf0Zz4bJlq77epEkxCmrLLeveAfq++xSUNKqgxD0i\n5RNOyHcupJSMHLl8oqiqzpeLF0eAMXVq7b/gp0yJ0SKrrx43xAED4sswm9NmX3dd1ABMmpS9a+TC\nBx9EQJhJb74ZtS99+zZ8ZI4UjqVL3du3j4CzVasIOJ95JvbdfXd8Hvr2jebUysqYCbZp0+hTVd+O\n0J9+GrUrG20Uo6FW5dVX3Zs1U1DS6IKSgQMjMhZpqMWLY0ptcD/ssIbfwL77LvpzbLqp/1w9fPHF\nEThUrRQ7caL7LbfEENeLLqrfdT75JPq3XHhhw/JbykphHRVZ2Z//7D/XiqQOl3722QhWdtopZh2G\naIZp6MCIGTOiX1bbtjXXmH74YdTi9+ihoKTRBSWDB0ePeX3pSEPdeWf8urrvvsy+nyoqov/Jqacu\nH3LbqdPyORhatIghqBD9UtJRWRkLm3XqVFqTZ4nUxbJlq+4nNXHi8gn2Hnssc9edNy/6ljVp4n7N\nNSs2E02fHk2Q227r/vLLdQtKzOOGK7Uws+7AxIkTJ9K9e/d8Z6daTz0FhxwCM2bEEtgi9fWb38QU\n12PGZO8ay5bB2LHwzDOw0Uaw556w444xhfluu8HixTBxYkzfXhf33x/LvY8ZA717Zy/fIsVqzpyY\nGn+jjTJ73mXL4Kqr4Lrr4rP74IOwzjrxmf7+exg/HmbNmkSPHj0Aerj7pJrOlfe1byRzunSJf6dM\nUVAi9Td7Nrz8MtxxR3av06wZ7LdfPFLdfnus43TPPfCHP9R+rm+/hfPPh+OOU0AiUpO6rrmTrmbN\nYl2n3r3h+OOha1fYbLNYl6isLIKgWbPqdq4MLVUkhaBTp3hzTJ2a75xIMXvqqRhbc8gh+cvDTjvF\nonaXXx6Lwa2KO5x6aizCdvPNOcmeiFRjzz1h8uRYQHHKFHj6adhqq/TOoaCkhDRrFtGpghJpiJEj\n4de/hvXXz28+rr8+qoUHDVp1ujvvjEDq3nvhF7/ISdZEpAZt2sRq2fPmRZCSLgUlJaZzZwUlUn/z\n5sWy6Eccke+cwAYbwBVXRDPSBx9Un+b99+G88+CMM2JZexEpDC1a1O84BSUlRkGJNMTTT0NFBRx6\naL5zEs4+GzbdFM45J/KVbNEiOPpo2GILuOGG/ORPRDJLQUmJ6dw5OhctWJDvnEgxGjkSdt+9cDpK\nN28Ot90WtTedO0dTzaJFse/cc2HaNHj4YWjZMq/ZFJEMUVBSYqpG4Hz8cX7zIcVn/nx44YXCaLpJ\n1qcPvP02dO8ezTQdO0Yn2L//PQKWdDvSiUjhUlBSYrbcMv5VE46ka/RoWLoUDjss3zlZ2Y47wiOP\nwKefQv/+8NhjcNRRcMop+c6ZiGSSgpIS07o1tG+voETS9/jjMTdIhw75zknNNt005jCZPRuGD49h\nwCJSOhSUlCB1dpV0LVgAzz9feE03NVljjZhxVkRKi4KSEqSgRNL13HOwZAkcfni+cyIijZmCkhLU\npQt88gmUl+c7J1IMFiyAW26Bbt1iVmARkXxRUFKCOneODovTpuU7J1Lovv8+1qv48MPoqyEikk8K\nSkpQ1RDJO+6Aysr85qWx+uqrmG00HS+9BBddFM0oufDtt7D33jF8/KWXYI89cnNdEZGaKCgpQe3b\nxwyXt94KxxyzfLIpyb4ZM+C002INoh49YoRIbSoq4E9/gn33jdftiCOipiubpk+HvfaCb76BV16J\nIbciIvnWNN8ZkOy44AL41a9iKfeePWPBskKZpbMUzZ4Nf/kLDBkCq68ey3hPmQIDBsSN//zzqz9u\n5kw49tgIDK6+OgKZfv0imHzkkVhkMR1Ll0YNWXl5vO7bbw9NE5/yysqYhGz0aLj//hi98tprsPnm\nDSm5iEjmKCgpYYceGjedgw+OpeBHj4auXfOdq9IzfXoEE4sXw8UXx/TnbdqAe9RaXXBB1KDccAOs\nlqib/PZbGDs21nQxi+aTnj1j36hR8doddxwMG7Y8qKjNhx/C8cdHs1Hz5lFD1rp1rNTZti2MGRPX\nbdsWDjwQrrkGfvnLrPxJRETqRUFJievePX4dH3wwHHAAvPeelnfPpPLyqOlo3hwmT46VbauYwXXX\nRWBy1lkxG2nr1jB+PHz+eaTp3RseeADatVt+3IEHwqOPwpFHwoknwr33rnptl8rKGD1z2WVRO/bW\nW7DNNjBhArz8cjz+85+Ymv2gg2DXXese6IiI5JK5e77zUBTMrDswceLEiXTv3j3f2UnbjBlRS1JV\nY6KZMDPjiivg+uvjxr+qjqIjR0Zg0qFDBAW77gq77BI1FTW9Fo89Fs04zZrFTKt77RWP9u3j9fzf\n/+Lf55+HsrKoobn2Wi1OJyKFZ9KkSfTo0QOgh7tPqimdfi81Eu3bRz+Cgw6KDrDnnpvvHBW/f/87\ngoBrr6195MoRR6Q/W+qRR0aNxwsvwKuvwl13RZNLsvXWi9qRsWOXN/+IiBQrBSWNyIEHwnnnRb+H\nPfeEHXbId46K18yZ0efjN7+Jv2e2dOkSj7PPjj4qU6fCd9/BRhtFoNmiRfauLSKSaxoS3Mhcfz1s\nt100C/zwQ75zE77/Hm66Keb2KAYVFTGqxgwefHB559VsM4sAZY89YuZVBSQiUmoUlDQyzZvDww/H\nKIzf/z5+fefTrFkxgdcFF8TQ1HPOibwVqtdfh913h3HjYmRMcgdVERFpGAUljdBmm8VcFiNGRF+E\nfPnyy/jVP2tWjEi54goYOjSWp7/88rjxP/dcdBJ98EH417/yF0R98kkM091zzxhxM24c9OqVn7yI\niJQqjb6po2IffZPKPUbiNG8ev/5zPRrno49iOGyLFvDiixGIAMydC3/9a6zDsnjxyscddBDcfXf0\np8iFRYsiWLr99rjmdddB//65a7IRESkFdR19o6/WRsoMrroK3ngjRnfk0sSJMbS1bdsIiKoCEoht\ngwfHcNfPPot/582L9WCeegreeSdGpAwblv1akzffjJVzhwyJv9XUqdGXRAGJiEh26Ou1Edt//5gr\n48orc9csMmsW9O0bgcjLL9c89f0668RQ1/btYe21o0alb9+YtbRPnxj5cuihMRIl0376CS69NPqO\nrL12TDh36aUxfbyIiGSPgpJGzCzWW3n7bXj22exfr7w8mj4qKqLWo23b9M+x7rpRS/L441HL0rNn\nrC2TKT/+GBOV3XRTzAlSVgadO2fu/CIiUjMFJY3cPvtE581c1JZcfnlMAvboow1fHPCwwyIomTcv\nmoK+/DIzebzjjujv8tZbUTui6dhFRHJHQUkjV9W35N13o/YiW558MlbRHTw4gohM6Nw5FhysrIxR\nPB9/3LDzLV4MN98ca8R065aRLIqISBoUlAg9e8bw1iuvjBt8pn32WSwsd9hhcP75mT13p04RmFSt\nhjt5cv3Pde+9MGdOdmdoFRGRmikoESBqS95/P2o0MskdjjoqJhkbOjQ7Q4/bt4dXXonF7fbeO0b3\npGvp0hiKfMwx0cFWRERyT0GJADHSpHt3eOKJzJ73v/+NpqGbborajGxZb71YIG+LLaKfzNtvp3f8\nsGHw9dfRj0RERPJDQYn8bJ99YobXTHZ4LSuLf2tbRTcT1l475lzZemvYd9+YJbbK7NkxCVq7dtGM\nNH/+8n0VFdHXpV+/mANFRETyo6iCEjP7o5mVmdlCM5tbQ5rKlEeFmR2VkmY7M3vVzBab2ZdmdmFu\nSlDYevWCGTNiSvVMKSuLIGGddTJ3zlVp3Tqmo+/aNWaMHTkSzjoLOnaEW26JuU7GjoUdd4QPPohj\nHn88ynzZZbnJo4iIVK+oghKgGfAocGct6U4E2gEbABsCP/eUMLO1gDHAF0B34EJgkJmdko0MF5M9\n9oghsJlcD6esLJqGcmmtteD552GHHeDII6Np5uKLY9jwPffAhAnQsmVMHPfIIzF1/L77RqAiIiL5\nU1SzMLj7nwHM7MRaks5399k17DuOCG5OdvdyYIqZdQPOA/6RscwWoTXXjPVwxo2DP/yh4eebOzfm\n/MjHaJZWrWJCuOeei5lr11xz+b7NNoumnVNOiY6tEGUWEZH8KraakroaYmazzewtMzspZd8uwKuJ\ngKTKGGBLM2uTuywWpl694gadiaHBVX06dtut4eeqjzXWgCOOWDEgqdKqFQwfDn/7G5xxBvz617nP\nn4iIrKgUg5IrgKOA3wAjgTvM7Iyk/RsAs1KOmZW0r1Hr1Svm6qjqb9EQb7wB669fuENszSIg+dvf\ncr9KsoiIrCzvQYmZXV9N59TUjqpb1PV87n6tu49398nufgPwF6LfiNTBrrvG4neZ6FdS1Z9EN3wR\nEamLQuhTciMwtJY0nzfg/G8DV5hZM3dfBswkOsEmq3o+s7aTnXvuubRps2IrT//+/enfv38Dslg4\nWraMQGLsWDjnnPqfZ9mymCvk6qszlzcRESl8I0aMYMSIEStsm588D8Mq5D0ocffvgCwsQP+zbsC8\nREACMB64xsyauHtFYltv4GN3r/Wvdsstt9C9e/csZbUw9OoVs5uWl9d/Qbp33421ZHI98kZERPKr\nuh/qkyZNokePHrUem/fmm3SYWQcz6wp0BJqYWdfEo1Vi/0FmdrKZbW1mvzKzPwCXArcnnWY4sBS4\nz8y2MrOjgbOAm3JcnILVqxf88ANMmlT/c5SVRa1LicdvIiKSQXmvKUnTVcAJSc+rbpt7A68Cy4DT\ngZsBAz4DznH3n4f6uvsPZtYbGAJMAOYAg9z93uxnvzjssEOMWBk7NoYIr8pPP0GzZrBaSnhbVhbz\nfjRvnr18iohIaSmqoMTdTwJSh/gm7x9DDO+t7TwfABoEWoNmzWCvvSIoueSSVaft0ycCj+eeWx6Y\nuEdQMnBg1rMqIiIlpKiabyR3evWC11+PmpCafPRRzGkyZgwMGbJ8+xdfwMyZ+ZufREREipOCcyR8\n/wAADtBJREFUEqlWr17RUfWtt2pOM3QorLsunHpqzNpatWZO1SJ8CkpERCQdCkqkWl27xiJ6Nc1X\nsmwZPPggDBgAN98MG20EJ5wQI3bKyqBz5whYRERE6kpBiVRrtdWgZ0944YXq9//rXzBrVvQbadUK\nHngA3nknhhK/8YaGAouISPoUlEiNjjsu1q8ZPXrlfUOHRm1Kt27xfNdd4aKLYNCgmKJeQYmIiKRL\nQYnU6NBDoXdvOPNMWLRo+fbZs+GZZ+CklHFQgwZBly4x+kZBiYiIpEtBidTILEbVfPMNXHvt8u3D\nh8e+AQNWTN+iBTz8cHR63Xzz3OZVRESKn4ISWaXNNou5Sm64AaZOjW1Dh8LBB8N6662cvksXGDxY\ni/CJiEj6FJRIrS65BH75Szj99FjTZvJkTYwmIiKZp6BEatWyZTTjjB0bnV/btYuZXEVERDJJQYnU\nyX77wZFHxiyuxx9f/9WDRUREaqJbi9TZLbfELK+nnZbvnIiISClSUCJ1ttFGMRRYREQkG9R8IyIi\nIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAiIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIi\nIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAi\nIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQ\nIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBKJqgxMw6mtk/zOxzM1tkZp+a2SAza5aSroOZPWtm\nC81sppn91cxWS0mznZm9amaLzexLM7swt6UpDCNGjMh3FjJOZSp8pVYeUJmKQamVB0qzTEUTlACd\nAQN+B2wFnAv8Hri2KkEi+HgOaArsApwIDASuSkqzFjAG+ALoDlwIDDKzU3JRiEJSim9olanwlVp5\nQGUqBqVWHijNMjXNdwbqyt3HEMFElWlmdiMRmFyU2LYfEbzs7e5zgPfN7ApgsJkNcvdy4DigGXBy\n4vkUM+sGnAf8I0fFERERkRTFVFNSnbWBuUnPdwHeTwQkVcYAbYCtk9K8mghIktNsaWZtMp3B+kSy\nuTrmf//7X9rH1PdahVymXOWtvscVcpkKuTz1Pa6Qy5TL92qplUnvu/pfJ5fvu6INSsxsM+AM4K6k\nzRsAs1KSzkraV9c0GVPIbwAFJfW/joKS+h+jm0P9r6OgpP7H6H1X/+vk8n2X9+YbM7seuHgVSRzo\n4u6fJB2zEfA88Ii735flLFZpCTBlypS0Dpo/fz6TJk0qyGOWLVuW9jH1vVYhlylXeavvcYVcpkIu\nT32PK+Qy5fK9Wmpl0vuu/tfJxDFJ986WqzrO3D2tC2Wama0LrFtLss+rmlvMrD0wDnjD3U9KOdef\ngYPdvXvStk2Az4Fu7j7ZzP4JrOXuhyWl6Qm8BLR19/k15PNYYFh6pRMREZEkA9x9eE07815T4u7f\nAd/VJW2ihmQs8A7w22qSjAf+aGbrJfUr6Q3MBz5KSnONmTVx94qkNB/XFJAkjAEGANOAJXXJr4iI\niABRQ7IJKw5YWUnea0rqKlFD8goxlHcgUBVQ4O6zEmlWA94FZhBNQhsCDwB/d/crEmlaA1OBF4G/\nANsC9wJnu/u9OSqOiIiIpCimoOREILX/iAHu7k2S0nUA7gR6AguB+4FL3b0yKc02wBBgR2AOcLu7\n35jN/IuIiMiqFU1QIiIiIqWtaIcEi4iISGlRUCIiIiIFodEEJWZ2qZm9bWY/mNksM3vCzLaoJt1V\nZjYjsejfi4lJ2pL3tzCzIWY2x8x+NLORZrZ+SprNzexJM5ttZvPN7LXEsONiLlN3M3vBzOYlynW3\nmbUq0PL8zszGJf72lYnOzannWMfMhiXSzEss9pjR8uShTH80s7LEYpRzU/cXW5msjotwFkt5Emme\nslgEdHHiXA+Y2YaZLE+uy5SUtrmZvZdIt12xlsfMpiX2VT0qzOyi1HTFVKZEugPN7M3Eeeaa2ahM\nlykTGk1QAuwJ/A3YGfgNsf7NC2a2elUCM7uYmCX2VGAnoqPsGDNrnnSeW4EDgcOBvYD2wOMp13oW\naEJ0tu0OTAZGW8qNvljKlPjSfBH4JHGO/Ylp++8v0PKsTkyudy0x+V51hgNdgH2Isu8F3J3JwiTk\nskzNgEeJjt7ZlKsy1boIZ5GVB2JKgyOBLYDDgF8Bj2WyMAm5LFOVvwLT65CuPnJZHgcuB9oRs3xv\nmLh2puWsTGZ2ODES9V5ixOluxHdg4XH3RvkA1gMqgT2Sts0Azk163hpYDByV9Pwn4NCkNFsmzrNT\n4vm6iee7J6VZM7GtV5GW6XfANynX2iaRZtNCKk/K8b8mho63TtneOXHebknb9gPKgQ0K7TWqS5lS\n0pwIzM1mOXJdpqS0FwCflVB5Dk6875oUc5mAPsCHSZ+t7Yq1PMS0E2dlM/+5LBPxA/lrYGCuy1Sf\nR2OqKUm1NhFVzgUws05EVPxSVQJ3/wF4C9g1sWkHYsK55DQfA19VpfGYDG4qcIKZrWFmTYE/EOvr\nTMxukbJTJqAFsDTlWlUTyO2R0RKsqD7lqYtdgXnu/m7Stn8nrrVzA/Ncm2yVKZ9yWabURTizISfl\nMbO2xISMZb58IsdsyVqZzKwd8HdiBfbFGcpvbbL9Gl1i0Zw9ycwuMLMmtR/SYNkqU3ei9ptEeWaY\n2XNmtnUtx+VFowxKzMyIJovX3b1qptcNiDdEdYv1VS3U1w5Ymnhj1JQGYF/ijfAj8SE9G9jfVz1j\nbINkuUxjgQ0SH85mZrYOcH3i3BlvD4cGlacuNgC+Td6QuCnMTfM8aclymfIil2Wy6hfhzKhclMfM\nBpvZAmKOpA7AIfXPcZ2ul+0yDQXuSAnysyYH5bkNOIZofr8L+CMx0WbWZLlMmxLNoH8CriKaq+cB\nL5vZ2g3JdzY0yqAEuINooz4mi+efBexOTND2JNGnpF2Wrld1zayUKfEhORE4D1hEVCl+TtzYK1dx\naENk+zXKB5Wpnix3i3Dmojx/BbYnfrxUAA9m8VqQxTKZ2VlE83TVTdsyfY1qZPU1cvdb3f1Vd//A\n3f9OfO+daRnuYJ0im2Wqus9f4+5PJoLHk4iA58gsXK9BGl1QYmb/DzgA6Onu3yTtmkl8oFIDh3aJ\nfVVpmlfTu/nnNGa2T+L8R7v7m+7+nrufQdSYnJjRwiRku0wA7v6wu7cnqgHXBf4M/IIITjKqgeWp\ni5lA6uiiJkDbNM9TZzkoU87lqkwWS0yMJX5F/l89s1uX6+SkPO4+190/c/eXgP7AAWaWlWbDHJRp\nb6Ip4SczWwZ8mtg+wcyG1i/XNcvT5+htool7kwaep1o5KFPVOX9eptfdlxLf3b9MO8NZ1qiCksSL\n3w/Y292/St7n7l8QL/Q+SelbE30M3khsmkh0SktOsyXxwlalWZ2IQFNrECrJwt87y2Uan3o9d5/t\n7ouIiH4xMSqnkMpTF+OBtc2sW9K2fYgvgLfqmfUa5ahMOZWrMiVqSMZR8yKcGZHH16iqr0KLBp5n\nJTkq05lA16RHH+L77yjgsobkP1UeX6NuxPf3t7UlTFeOyjSRGMywZdJ5mhFB1pf1zXvW5Lunba4e\nRPXYPGIYVrukR8ukNBcRKxYfTAybepKI/JunnOcLor2xB1AGvJa0f13izfsYsB2wOXAD0TF022Is\nUyLN6cSHc/PE/xcCpxdoedoRX5CnkOjNnni+TlKa54AJRPPa7sDHwIMF/L6rS5k6JLZdSayMXXWj\naFWMZSJq5T4FXkj8/+drFWl5dkp8droSQX8v4PXEe69ZMZapmut2JAujb3L4Gu1C9AHcDuhEdESe\nBdxX5N8NtxCDF/YlhqP/g6hBaZPpcjX475LvDOSsoPFiVVTzOCEl3SCiz8QiYonlzVL2tyDGls8h\nOrI+BqyfkqY70f49G/ieuMn3LvIy/TNRnsXESszHFnB5/lTDuU5ISrM28BBx854H3AOsUeRlGlrD\ntfYqxjIRzZ2p+yqBiiItzzbESIrZiXP8F/h/wIbF/L5LSd8xsT/TQUmuXqNuRE3qXOKH1wdEYJDR\noDHXrxFRI/dXIhD5PnGeLpkuUyYeWpBPRERECkKj6lMiIiIihUtBiYiIiBQEBSUiIiJSEBSUiIiI\nSEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIFAwzG2pmlWZWYWZLzWym\nmb1gZieZmaVxnhPNbF428yoimaegREQKzfPABsQ6KvsDY4HbgGfMrK7fWUasVisiRURBiYgUmp/c\nfba7f+Pu77n7YGJ59wOAgQBmdq6Z/cfMFpjZV2Y2xMzWSOz7NXAf0Cap1uXKxL7mZnajmU1PHDs+\nkV5ECoCCEhEpeO4+DpgMHJbYVAGcCWwFnADsTayCCvAGcA7wA7Gs+4bAjYl9Q4CdgaOIpeAfA543\ns19lvxQiUhutEiwiBcPMhgJt3P2wavaNALZ1922q2Xc4cKe7r594fiJwi7u3TUrTAfgc6ODuM5O2\nvwi85e6XZ7xAIpKWpvnOgIhIHf3cT8TMfgNcAnQGWhPfZS3MrKW7L6nh+G2BJsAnKZ1mmwNzspZr\nEakzBSUiUiy6AF+YWUfgGaIp5o/AXGBP4B9EgFFTULImUA50BypT9i3IRoZFJD0KSkSk4JlZL6Km\n4yagB9H0fEHS/mNSDllK1IokezexrZ27l2UxuyJSTwpKRKTQtDCzdiQCCKAP0VTzNPAgEZw0M7Oz\niBqTPYD/SznHNGDNRDAzGVjk7p+a2XDgATO7gAhS1gd6AZPd/fmsl0xEVkmjb0Sk0OwPzAC+IOYs\n+TVwhrsf4uE/wHnARcD7QH8iaPmZu48H7gIeAb4FLkzsGgg8QIzGmQqMAnYAvspukUSkLjT6RkRE\nRAqCakpERESkICgoERERkYKgoEREREQKgoISERERKQgKSkRERKQgKCgRERGRgqCgRERERAqCghIR\nEREpCApKREREpCAoKBEREZGCoKBERERECoKCEhERESkI/x9NT+Qv7veq+gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1038,7 +1070,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.51\n" + "0.49\n" ] } ], @@ -1064,7 +1096,7 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1078,7 +1110,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.4.3" } }, "nbformat": 4, From d27353e2471e374c71d730c4fd48bbb1a86d09a5 Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Tue, 7 Feb 2017 15:02:59 -0800 Subject: [PATCH 04/31] Incorporated CR feedback with retry logic --- ...e_Timeseries_Basic_with_Pandas_Numpy.ipynb | 87 ++++++++++++------- 1 file changed, 58 insertions(+), 29 deletions(-) diff --git a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb index 2cebea20d..9d7932181 100644 --- a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb +++ b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb @@ -71,6 +71,7 @@ "source": [ "# A method which obtains stock data from Yahoo finance\n", "# Requires that you have an internet connection to retreive stock data from Yahoo finance\n", + "import time\n", "try:\n", " from pandas_datareader import data\n", "except ImportError:\n", @@ -92,8 +93,20 @@ " \"\"\"\n", " start = datetime.datetime(s_year, s_month, s_day)\n", " end = datetime.datetime(e_year, e_month, e_day)\n", - " bars = data.get_data_yahoo(contract, start, end)\n", - " return bars" + " \n", + " retry = True\n", + " retry_cnt, max_num_retry = 0, 3\n", + " \n", + " while(retry_cnt < max_num_retry):\n", + " try:\n", + " bars = data.get_data_yahoo(contract, start, end)\n", + " return bars\n", + " except:\n", + " retry_cnt += 1\n", + " time.sleep(np.random.randint(1,10)) \n", + " \n", + " print(\"Yahoo Finance is not reachable\")\n", + " return None" ] }, { @@ -107,37 +120,53 @@ "name": "stdout", "output_type": "stream", "text": [ - "File already exists ..\\Examples\\TimeSeries\\DataSets\\Stock\\stock_SPY.pkl\n" + "File already exists data\\Stock\\stock_SPY.pkl\n" ] } ], "source": [ - "# Please check if there is trade data for the chosen stock symbol during this period\n", - "# Ensure the data is generated and available for this tutorial.\n", - "# We search in two locations in the toolkit for cached stock data set with symbol SPY.\n", - "data_found = False\n", + "# We search in cached stock data set with symbol SPY. \n", + "# Check for an environment variable defined in CNTK's test infrastructure\n", + "envvar = 'CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'\n", + "def is_test(): return envvar in os.environ\n", "\n", - "for data_dir in [os.path.join(\"..\", \"Examples\", \"TimeSeries\", \"DataSets\", \"Stock\"),\n", - " os.path.join(\"data\", \"Stock\")]:\n", - " train_file = os.path.join(data_dir, \"stock_SPY.pkl\")\n", - " if os.path.isfile(train_file):\n", - " data_found = True\n", - " print(\"File already exists\", train_file)\n", - " data = pd.read_pickle(train_file)\n", - " break\n", - "\n", - "if not data_found: \n", - " # Download the data and save the file to a local directory\n", + "def download(data_file):\n", " data = get_stock_data(\"SPY\", 2000, 1,2,2017,1,1)\n", - " train_file = os.path.join(\"data\" , \"Stock\", \"stock_SPY.pkl\")\n", - " dir = os.path.dirname(train_file)\n", - "\n", + " dir = os.path.dirname(data_file)\n", + " \n", " if not os.path.exists(dir):\n", " os.makedirs(dir)\n", " \n", - " if not os.path.isfile(train_file):\n", - " print(\"Saving\", train_file )\n", - " data.to_pickle(train_file)" + " if not os.path.isfile(data_file):\n", + " print(\"Saving\", data_file )\n", + " data.to_pickle(data_file)\n", + " return data\n", + "\n", + "data_found = False\n", + "data_file = os.path.join(\"data\", \"Stock\", \"stock_SPY.pkl\")\n", + "\n", + "# Check for data in local cache\n", + "if os.path.exists(data_file):\n", + " data_found = True\n", + " print(\"File already exists\", data_file)\n", + " data = pd.read_pickle(data_file) \n", + "else: \n", + " # If not there we might be running in CNTK's test infrastructure\n", + " if is_test():\n", + " test_file = os.path.join(os.environ[envvar], 'Tutorials','data','stock','stock_SPY.pkl')\n", + " if os.path.isfile(test_file):\n", + " print(\"Reading data from test data directory\")\n", + " data = pd.read_pickle(test_file)\n", + " else:\n", + " print(\"Test data directory missing file\", test_file)\n", + " print(\"Downloading data from Yahoo Finance\")\n", + " data = download(data_file)\n", + " \n", + " else:\n", + " # Local cache is not present and not test env\n", + " # download the data from Yahoo finance and cache it in a local directory\n", + " # Please check if there is trade data for the chosen stock symbol during this period\n", + " data = data_file" ] }, { @@ -716,7 +745,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecVOXZ//HPF0SIELGLGjUaexc0CcZeAqixRVE0scco\nGhViTEyiGPN7Hp9o1GDQ2MESUdNsiNgTFdEEBBtiVBQbCCpIVWCv3x/3GR2G2TY7uzO7+32/XvPa\nnXvuc841c3Z2rrnbUURgZmZmVi06VDoAMzMzs3xOTszMzKyqODkxMzOzquLkxMzMzKqKkxMzMzOr\nKk5OzMzMrKo4OTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk6sXZBUI+mCErd9S9JNefePy/bXs3wRlk7S\nhlk8gysdi9VO0jhJD5S47R2SJpc7pgYeu+S4zUrl5MRajbykoEbSLrXUeSd7/N6ChyK7laKmyLZl\nve6DpAGSzirnPq12kobn/S3Vdbup/r01WFP+BoP0d1gJvsaJtbgVKh2AWQkWAkcDY/MLJe0BrAcs\nKrLNV4AlJR5vc5r/g+FoYGtgaDMfx5JrgIfz7m8EXARcBzyZV/5GGY+5G6V/0P8AUBljMatqTk6s\nNXoAOELSmRGRnzQcDfwHWKNwg4j4vNSDRcTiUrdtrSStFBELKh1Hc4mIZ4Fnc/cl9QJ+CzwTEbc3\nZB+SukREsUS4tmOWmhwTEUtL3dasNXK3jrU2AYwEVgf2yxVK6gQcDtxOkW+YhWNOJF2YlX1D0ghJ\nn0iaLekmSV0Ktn2rlub9rpKulTRL0hxJN0tapWDbgyTdL+k9SYskvS7p15I65NV5HDgAyI0dqZH0\nZt7jnbN4p0haKOl9SX+TtFGR5/mj7BiLJD0naaf6XtC87rLdJV0taQbwTvbYCElTi2xzoaSagrIa\nSVdKOljSi1kML0nqU8/x15K0WNL5RR7bLNvvwOz+CpKGSHotey1mSXpS0j71Pc+mkDRd0l2SDpA0\nXtIi4NjssR9JekzSjCymFyWdWGQfy4zdkNQne24HZa/ne5IWSBojacOCbZcZcyJp89zrkt3eyI49\nVtL2RY59tKTJWZ2J2fMoeRyLpLWzv40Ps30+L2lAkXrHSpogaW72/pok6bS8x1eU9P8k/Tfbz0xJ\n/5S0eylxWdvhlhNrjd4CxgEDgDFZ2f7AysAdQEPGbuSa1+8C3gR+AfQETgZmAOcVqZtPwDDgE2AI\nqetnILABsFdeveOBucBlwDxgb1L3wVeBn2d1/h/QndQldXa273kAWRIzKtvnSOAP2bb7AdsA+YnD\nMUA3UpdFZPv/m6SNG/jN+2rgQ+A3wEp5z73Y86+tfDfgsGxfc4Ezgb9K2iAiPil20Ij4UNI/gf6k\n1ot8R5G64+7K7v+GdK6uA/5NOuc7kc7do/U/xZIFsB1wM+m5XQO8nD02MIvlH6Tuv0OAGyRFRAwv\n2EcxQ4DPgP8jJd3nAiNY9u+ottf7JKALcBXQkXTO/ypps4gIAEmHAbeRWhV/TmpZvBV4v46YaiWp\nK/AU6e/1SuBd4Ejgz5K6RcT1Wb3vZc9jNHAt6cvw1kBv4E/Z7i4mvV//BDxPeh98E9gB+FdjY7M2\nJCJ8861V3IDjgKWkD6KBwGygc/bYncAj2e9TgXsLtq0BLsi7PyQru66g3t+ADwvKpgI3FcRRQ+oW\n6JhXfk4W34F5ZZ2LPI8/kT64O+WV3Qe8WaTuCdmxzqzjddkwq/MhsHJe+feyePZvwOtaAzwBqOCx\n4bXENQRYWuQ1Xgh8Pa9s26x8YD0x/CiLdauC8peAh/PuP194bsv0t9Uri/PYWh7/IItv1yKPFTvH\njwEvFpQ9AzyQd79PdswJBX9HP8uOtXFe2Ujglbz7uXFQ7wFd88qPyLbdO69sCvDf/DhJyW1N/j7r\neG0K4/55doxD8spWICU/HwFd8v7Op9ez78nAXeU+n761/pu7day1uov07f5ASd2AA4E/N3IfQfpG\nl+9JYPVsn/W5LpZtkfgTWTLwxQEiPsv9LqmbpNVJ3zpXArZowDEOA2aSWmnqc0dEfJp3/0lSK8zG\nDdg2gOsjoqkzMx6OiLe+2GnEi8CnDYjh76TX7shcgaStga1IrWE5s4GtJW3SxDhLMTkiniosLDjH\n3SWtQfrWv6WkFRuw3xsK/o5yA3Ibct7+HBHzC7b94pxnXX+bAsPz44yIh0kJSyn6AW9HxN15+1sC\n/BFYBcjNpJsNdJe0dx37mg1sV6yL0to3JyfWKkXELOAR0iDYw0h/y38tYVfTCu7nuh5WrS8E4PWC\nmOaTvmF/PVcmaStJ/5A0m/QhPZPUpA6pCbs+3wCmxLIDf2vzTkE8s7Nf63suOW81sF6DY8h8Ul8M\nEfERqVumf17xUcBiUndJzgWkD8DXJL0g6RJJ2zYt5AZbbuwNpFlikh6XNJ/0XD/M4hSp26k+ha/Z\nJ9m2DTlvxbYlb9vc2JVis45eL1LWEBsCrxUpn0yKO3fMPwJvAw9LelvS9ZL2LdjmV8DawBvZWJiL\nJW1VYlzWhjg5sdbsdlIrxanA6IiYW8I+ahuL0eRpm5K6k75Bbwv8mtS6sy9fjjUp9/uvqc9lYZGy\n2lpSOjZDDHcAm0naLrt/BPBoRHz8RTART5ISthOAF0ljLiYUG4DaDJZ7fSRtATwEdCWNndifdI5z\nLV0NOcdNec2a7e+3qSLifdLf/qGkcVP7Ag9J+lNencdI5/MkUnLzY2CipGNaPmKrJk5OrDXLDUD8\nFilRaUkiNZd/WZAGCq7Dly0Qe5K+wR4XEcMi4oHsn/FslldbEvAGsLmk2pKB5vYJqaWi0Neb4Vh3\nk1pKjsxmnGxGGmuxjIiYHRE3R8QxwPrAC8CFzRBPQxxMGm+xf0TcEBEPZue4Wqafv539LNYNVmrX\n2Nukc1NoS9Lfce6YRMTiiLg3IgaSuppGAKdIWjevzscRMTwiBpAGlE8hjWmydszJibVaWTfKqaQP\npvsqEMIpkvJnvA0ktSjkposuJSUx+dOGV8zqFZpP8W6evwFrAmeUI+ASvEEaN7BNrkDSOqQZKWUV\nEXNIs6/6k7p0PgPuya8jabWCbRaQuic659VZOZtq25AulabKtVzkn+PVSYumNUSzrr4aEVNJY0uO\nV94UeaXp3ZvWumHdHiBNez84b38rkP5GZwNPZ2WF5ypIA5whO19F6swjzZ7rjLVrnkpsrc0yzdUR\ncWttFVvAisCjku4iDW49DXgyIu7PHh9Lanm4RdKVWdkPKP6BNB7oL+ky0rTUedl+biGtp3G5pG+R\nBjx2A/YBroqIciVltXUD3AH8Drg7ew5dSQnhFNKsqXK7kzTtdSAwpmCAL8Arkp4gvV4fAzuT1re5\nMq/OoaRZRseTXr/m9CDwv8BoSTeQWplOIc2iWW4xwCJaovvlV6TX9SlJtwBrkf5WX6a0L6hXkabc\n3y5pGGncy1Gkv4dT8wbe3iapM2kW2HuklpMzgGezpAnSWJPRpBlLn5CmGR8IXFJCXNaGODmx1qYh\n3zSLrQnR1OuaFNvfGaS1RX4DdCLNFvpijZWI+FjSAaQ1Tn5L+ud7K2ma6ZiC/V0NbE/6QD2b1DR+\nf0TUSOpH+oDJDf79iJSkvNiA59fQ5120TvYcDgEuJyUpU0nrjGzG8slJU2MAuJc0tqMry87SyRkK\nHESaCtuZ9Dr9Evh9kWM2Vl3bFH0OEfGSpCNI5/cy0ofwFaRWn6sbcIzajlnb69jQbb94LCL+KumH\nwPmkcziFlCQPBNYtuoc6jh0R8yXtRlqX5QTSujuTgWMiIv+cjSCNJRlISto+ICWLv8mrcwVpAcI+\npPM5lTSV+g8NjMvaKDV95qCZmbU22eqwr0XEwfVWNmthVTPmRNLpkqZmSxiPk7RzPfWPyaaezVda\nzvvG/P5Lfbkk91J9uSR4m71WiJlZMUpL/ncoKOtLWsjt8cpEZVa3qkhOJB1JahIdAuwITALGZIsZ\nFav/HdIy0teTFmk6nLTk8XUFVecAPfJuG2Jm1r58A3hZ0gVK1wH6A2mm29vAjZUNzay4ahlzMgi4\nNiJuAZB0Kqkf8kSKD4z6NjA1Iq7K7r8t6VrSNSnyRUTMbKaYzcxag5mk6dankAbpfkpakfe8EtcG\nMmt2FW85UbqabC/yLtqVTTl7hDRyu5hngPWzgYJIWpu0YNOognrdlK4oO03S3V550Mzam2wdkSMj\n4msR0SUi1oqIYyKicHVks6pR8eSElMl3JF0JNt8MUlfMciJiLGm0+Z2SPieNAv+EZdeCmEJqeTmI\nNKOiAzA2f/EfMzMzqz7V0q3TKFkLyFDS4lsPkVbl/D3pIm4nA0TEOGBc3jbP8OXyyEVXH8wWT+pD\nWuFzUXPFb2Zm1gZ1Ia0ePSa7XlbJqiE5mUVaZXHtgvK1gem1bPML4OmIuDy7/5KkgcCTkn4VEYWt\nMETEEknPU/eSzX1o/JVtzczM7EvH0MRLilQ8OYmIxZLGk1a8vBdAkrL7V9ay2UrA5wVlNaSFgoqu\nuJhNpduW5cel5HsL4LbbbmPLLbds4DOwajZo0CCuuOKKSodhZeLz2bb4fLYtkydP5gc/+AGU4Qrn\nFU9OMpcDI7Ik5TnS7J2VSCsMIuliYN2IOC6rfx9wXTarZwxplcMrSMsiT8+2OZ/UrfM6aXXCc0kX\nlbqhjjgWAWy55Zb07NkcK3NbS+vevbvPZRvi89m2+Hy2WU0eFlEVyUlE3JWtaXIRqTtnItAnbxpw\nD9LVR3P1b5bUDTidNNZkNmm2zy/ydrsqad2THqTBsuOB3hHxajM/HTMzM2uCqkhOACLiaopfi4KI\nOKFI2VWkC1DVtr/BwOCyBWhmZmYtohqmEled2bMrHYGZmVn75eSkiGefrXQEVi4DBgyodAhWRj6f\nbYvPp9XGyUkRY8dWOgIrF//za1t8PtsWn0+rjZOTIsaOhZqaSkdhZmbWPjk5KeLjj2HSpEpHYWZm\n1j45OSnioINgxRUrHYWZmVn75OSkiCFDYOutKx2FmZlZ++TkxMzMzKqKkxMzMzOrKk5OzMzMrKo4\nOTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk7qMH48DBtW6SjMzMzaFycndXjmGRg8GObOrXQkZmZm7YeT\nkzr07QuLF8Pjj1c6EjMzs/bDyUkdNtkk3UaPrnQkZmZm7YeTk3r07QsPPggRlY7EzMysfXByUo9+\n/eCtt+C11yodiZmZWfvg5KQee+wBnTu7a8fMzKylODmpR9eusPvuqWvHzMzMmt8KlQ6gNTj+eJgy\npdJRmJmZtQ9OThrg6KMrHYGZmVn74W4dMzMzqypVk5xIOl3SVEkLJY2TtHM99Y+RNFHSfEnvS7pR\n0moFdY6QNDnb5yRJ/Zr3WZiZmVlTVUVyIulI4DJgCLAjMAkYI2mNWup/B7gZuB7YCjgc+CZwXV6d\nXYDbszo7APcAd0vaqvmeiZmZmTVVVSQnwCDg2oi4JSJeBU4FFgAn1lL/28DUiLgqIt6OiLHAtaQE\nJedMYHREXB4RUyLiAmACcEbzPQ0zMzNrqoonJ5I6Ab2AR3NlERHAI0DvWjZ7Blg/100jaW3gCGBU\nXp3e2T7yjaljn2ZmZlYFKp6cAGsAHYEZBeUzgB7FNshaSn4A3Cnpc+AD4BOWbRXp0Zh9mpmZWXWo\nhuSk0bJxI0OBC4GeQB9gI1LXTrNZsgRuvhkmTWrOo5iZmbVv1bDOySxgKbB2QfnawPRatvkF8HRE\nXJ7df0nSQOBJSb+KiBnZto3Z5xcGDRpE9+7dlykbMGAARx01gPPOgwED4LLL6tuLmZlZ2zRy5EhG\njhy5TNmcOXPKtn9FFVxuV9I44NmIOCu7L2AacGVEXFqk/l+BzyPi6Lyy3sBTwHoRMV3SHcBXIuLg\nvDpPA5MiYmAtcfQExo8fP56ePXsWjfXEE+HZZ+Hll0t9tmZmZm3PhAkT6NWrF0CviJjQlH1VS7fO\n5cCPJB0raQvgGmAlYASApIsl3ZxX/z7g+5JOlbRRNrV4KCnBybWMDAX6ShosaXNJF5IG3g5rSqD9\n+sErr8C0aU3Zi5mZmdWmKpKTiLgLOAe4CHge2A7oExEzsyo9gPXz6t8MDAZOB14E7gQmA9/Pq/MM\ncDRwCjAROAw4OCJeaUqs++4LHTr4QoBmZmbNpSq6dapFQ7p1AHbdFdZaC/7+95aLzczMrJq1xW6d\nVqVvX3jkEVi8uNKRmJmZtT1OTkrQrx/MnQtjx1Y6EjMzs7bHyUkJdtwRDj8cOnasdCRmZmZtTzWs\nc9LqdOgAf/lLpaMwMzNrm9xyYmZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZ\nmVUVJydN9OabcNNNlY7CzMys7XBy0kRPPgknnQQffljpSMzMzNoGJydN1KdP+vnQQ5WNw8zMrK1w\nctJEPXqk5ewffLDSkZiZmbUNTk7KoF8/GDMGamoqHYmZmVnr5+SkDPr2hVmzYPz4SkdiZmbW+jk5\nKYPevaF7dxg9utKRmJmZtX5OTspghRVg33097sTMzKwcnJyUSf/+sPnmHndiZmbWVCUlJ5L6Sto1\n7/7pkiZKul3SquULr/Xo3x+GD4cOTvfMzMyapNSP0kuBlQEkbQtcBjwAbARcXp7QzMzMrD1aocTt\nNgJeyX7/PnB/RPxSUk9SkmJmZmZWklJbTj4HVsp+3xfIrY/6MVmLipmZmVkpSm05eQq4XNLTwDeB\nI7PyzYB3yxGYmZmZtU+ltpycASwBDgdOi4j3svJ+QEkTarNBtVMlLZQ0TtLOddQdLqlG0tLsZ+72\nYl6d44rUWVBKbGZmZtZySmo5iYhpwIFFygeVsj9JR5IG1Z4CPAcMAsZI2iwiZhXZ5Ezg53n3VwBe\nAO4qqDeH1JqjXIilxGdmZmYtp9SpxD2zWTq5+wdLulvS/0pasYRdDgKujYhbIuJV4FRgAXBiscoR\nMTciPszdSF1LqwAjlq8aM/PqziwhtkaJSFconjSpuY9kZmbWNpXarXMtqUUCSRsDd5CSiSOASxqz\nI0mdgF7Ao7myiAjgEaB3A3dzIvBIRLxTUN5N0luSpmXJ01aNia0UEpx1Fgwb1txHMjMza5tKTU42\nAyZmvx8B/CsijgaOJ00tbow1gI7AjILyGUCP+jaWtA5prMv1BQ9NISUtBwHHkJ7rWEnrNjK+Ruvb\nNy1lH+5EMjMza7RSkxPlbbsvX65t8g4p2WhJxwOfAPfkF0bEuIi4LSJeiIgngcOAmcCPmzugfv3g\n3XfhlVfqr2tmZmbLKnUq8X+AX0t6BNgDOC0r34jlW0DqMwtYCqxdUL42ML0B258A3BIRS+qqFBFL\nJD0PbFLfDgcNGkT37t2XKRswYAADBgxoQDiw++7wla+kqxRvvXWDNjEzM2s1Ro4cyciRI5cpmzNn\nTtn2ryih70HSdsCfgQ2AyyPiN1n5H4HVsy6exuxvHPBsRJyV3RcwDbgyIi6tY7s9SWNVtomIyfUc\nowPwMjAqIs6ppU5PYPz48ePp2bNnY57CcvbfHz7/HB55pEm7MTMzaxUmTJhAr169AHpFxISm7KvU\nqcQvANsWeehnpFaQxrocGCFpPF9OJV6JbPaNpIuBdSPiuILtTiIlNcslJpLOB8YBr5Nm8pxLSqZu\nKCG+RuvXD845B+bNg27dWuKIZmZmbUOTrqErqZekH2S3nhGxKCIWN3Y/EXEXcA5wEfA8sB3QJ2/q\nbw9g/YJjrwwcSu3JxqrAdaRrAI0CugG9s6nKza5v39Ry8vjjLXE0MzOztqOklhNJawF3ksabzM6K\nV5H0OHBUKeuJRMTVwNW1PHZCkbJPSQlHbfsbDAxubBzlsummcOCBsLSUdiQzM7N2rNSWkz+SEoOt\nI2K1iFgN2IZ00b8ryxVca3fffXDIIZWOwszMrHUpdbZOX2Df/LEeEfGKpNP58grFZmZmZo1WastJ\nB6DY2JLFTdinmZmZWcmJxGPA0PzVViWtB1yRPWZmZmZWklKTkzNI40vekvSGpDeAqcBXs8fMzMzM\nSlLqOifvZAuW7QtskRVPBl4FLgBOKU94ZmZm1t6UOiA2d+Xgh7MbAJK2Jy2M5uTEzMzMSuLBqy1g\n1iz4y18qHYWZmVnr4OSkBTz1FPTvD2++WelIzMzMqp+Tkxaw997QqRN8//swdCh88EGlIzIzM6te\njRpzIunv9VRZpQmxtFkrrwyjRsGwYfCzn8HgwbDnnjBgQEpYVl210hGamZlVj8a2nMyp5/Y2cEs5\nA2wr9tsP7rkHZsyA664DCX78Yy9vb2ZmVqhRLSfFLsBnjbPqqnDSSek2fXpKVsyaIiJdAXv+/PT7\n6qvXXf/SS+GII+DrX2+R8MzMGs1jTiqoRw/Yfvu66yxcCEuWtEw8Vv1++1vYcUfYbDNYbz1YZRVY\ncUXo0iUlJcceW/8+fvc72GSTVPfll5s/ZjOzxip5nRNrGVddlb7p9u+fxqj07p26hKx9Wn/99DfQ\ntSt065Z+5t/WX7/+fbz9NtxwA/z+93DrrXDQQXDeefDtbzd//GZmDaG0lpoBZKvejh8/fjw9e/as\ndDgAvPQSDB8Od94J770HG24IRx2Vbttv70SlLXntNXj88TQWqSV8/jncfntqSXn11TRI+1e/gn33\nbZnjm1nbMmHCBHr16gXQKyImNGVf7tapcttsA5ddBtOmwRNPQN++6VvvjjvCVlvBX/9a6QitHKZM\nScnB0KGpK68lrLgiHH986tr5299g3jy4+eaWObaZWV2cnLQSHTrAHnvANdekdVJGjYKddkofMNa6\nTZkCe+2VBks//jh85Sste/wOHeCww+C559Lfl5lZpXnMSSvUqRPsv3+6Wev26qspMVltNXjsMVh7\n7crFIqVxK2ZmleaWkzbOQ4qq1+TJqStn9dVTi0klE5OGevBB+OijSkdhZm2dk5M27LPPYOed04DH\nTz+tdDSW75VXUovJmmumxGSttSodUf0++wx++MM0KHvwYHj33UpHZGZtlZOTNmz+fOjZEy64ADbY\nIM3E+PDDSkeVWnPeeKP+emefna5LVNvtyivr3r6mJq3KW42tRy+9BOusk7py1lyz0tE0TOfOKaka\nNCjNINt4Yzj55DTLyFreZ5+l98DGG8PBB6cuQrO2wslJG7baammp/DffTB8iQ4emb70/+Ula66Il\nzZ0L//hHimO99dIspAUL6t5mtdXSB3htt+7d697+0UfT5QH69k2znapJ//7w73+3nsQkZ80100Jw\nb78N//u/8MADsMUWacXZCU2aOGgNtWRJSg432ywlit/+dppx9fHHlY7MrHy8zkmealznpJw+/jgt\n6jZ0KMyeDeeemz5gmstrr6VZRaNGwb/+BYsXpw+y/feHAw6A3XeHFZp5SPbo0XDKKTBnTlrM7pRT\nvDZMOS1aBLfcApdcklY8fuqpSkfUdkWkKd/nn59aSQ4/PCWKW2wBS5dCx46VjtDau3Kuc+LkJE9b\nT05y5s9Pa6WsuSYcfXTzHGP69NS60blzGluRS0g23rh5jleXOXPgnHPSc95nn/TT15Upr6VLU5fh\nOutUOpK269FH0wJ5ffrA//wPpM8As4b5/PM0Tqw5/we3yUXYJJ0uaaqkhZLGSdq5jrrDJdVIWpr9\nzN1eLKh3hKTJ2T4nSerX/M+k+nXtCmed1XyJCaRv0Y89lmZ2jB6dupIqkZhA6v65/noYMwb++9/U\npXTVVWlMipVHx471JyYTJ8KRR6bX/qWX/Po31t57p7VoHnyw8YnJggXwySfNE5dVvyeeSCuKH3xw\ndY7BK6YqkhNJRwKXAUOAHYFJwBhJa9SyyZlAD2Cd7OfXgI+Bu/L2uQtwO3A9sANwD3C3pK2a6Wm0\nC0uWwNNPp66h+uy1V3Wtm/Hd78KLL6YZJ7//ff1jXqy8Pv0U3nknDXTedts0Q+nQQ+EPf0jjVZYu\nrXSE1U1Ks+9K8cc/wkYbpRaXefPKG5dVrw8/TBf43GuvtGTB7be3om7tiKj4DRgHDM27L+Bd4NwG\nbn8IsARYP6/sDuDegnrPAFfXsZ+eQIwfPz7au5qaiKOOirjhhoj334+47baIAQMiVl01AiLWWCNi\nzpxKR1m6loh94sSI/faL+Oij5j9WazJvXsQjj0Scf37E7rtHdO6c/qa22abSkbVdH3wQ8ZOfRKy4\nYsSaa0ZccUXEwoWVjsqay9KlEddcE7HKKhGrrRZx442prLmNHz8+gAB6RhPzgoqvECupE9AL+GJo\nZkSEpEeA3g3czYnAIxHxTl5Zb1JrTL4xwMFNCLfdmDcvTVU8+eQvy3r2hNNPT2NHdt65dQ/AW3nl\n5t3/pElpfMuGGzbvcVqjrl3Ta7PPPun+okWpu6Kps02WLk3fCjvU0R78wQcwdWrqf1+8eNmfXbrA\nDjukafct7b330uDW3r3huOPKv/8ePdK043POgYsuSj8vuywtM3D88WnV6ZY2fXo6F0uWwC671P3/\nZNw4eP31dI6L3TbYIM3Ms9R9etpp6TU78cS0ztUatfVBVLGKJyfAGkBHYEZB+Qxg8/o2lrQO0A84\nquChHrXss0dpYbYvX/0q/P3vaRXT559PK5muu26lo2odJk5MH7wbbQQPP5yumWO169Ilzdyqz9y5\nKUH+7LPlE4vFi9MYlmeeSVNra3P77emDuTZf+1rqemops2bB//1fGofTtSt861vNe7wNNkgDws89\nFy68MM1e+93v0t/pRhs1zzGXLk0z9yZNSu+N3G1G3n/nOXPq/sJw/fVw003LlnXs+OXtu991cpLz\n8MPpvfLkk7DrrpWOpnQVn62TJRfvAb0j4tm88t8Bu0dEna0nks4DBgHrRsSSvPLPgGMj4s68stOA\nCyKi6NC93Gyd3Xffne4Fi2gMGDCAAQMGNPr5WesTkdbxKGVGz/PPpxkVG28MDz3kxKSc3nkHhg1L\nM8A6dUoXvcz9zP1+wAF1r7Y7a1bqh8/ftlOndJs7F95/H775zbrjGDUKNt0UNtmk7laausydC5df\nnlovAH7607RmSXO36BV64YW0FtLQoc3XEjp+fLpIKaTkaIcd0uDMHXZIr2OnTulnXcf/7LOUfK6w\nQqrX2NdzJJXNAAAP5ElEQVT9nXegW7f28X5cvDj9bO7WsJEjRzJy5MhlyubMmcO//vUvKMNsnWoY\nb9IJWAwcVFA+AvhHA7Z/Dfh9kfK3gTMLyi4Enq9jXx5zYnHrrWkcxCWXRCxZ0vDtJkxIY3J22ini\nk0+aLz6rnIULIzp2TGNkunWL2G23iLPPjrjlloiXX67/72XRoojLLktjtjp3jhg8OGLmzJaJvZxq\naiLefTdi1KiIf/6z7rqLFkU89lhlx14dcEDEuutG3H9/5WJoD8o55qTis3UiYjEwHtgnVyZJ2f2x\ndW0raU/gG8CNRR5+Jn+fmf2ycrNaHXZYGlvz85/Dd76TlmyvT26MySabpGbVVVZp/jit5XXpkroj\nHn4Yfv3rNH36/vvTjIitt04tH2Pr+K9VU5PGfhx6aBpDcdll1T8eYPHiNPX7ttvgZz+D/fZLrVNf\n+1pqqRo2rO7tc2sdrbZay8RbzLXXptaaAw9M4zBmz65cLNZATc1uynED+gMLgGOBLYBrgY+ANbPH\nLwZuLrLdrcDYWvbZG/gMGEwau3IhsAjYqo443HJiXxg7NmLzzdMMh4svjli8uPa6M2ZEHHusW0za\nq9mzIx5/PLWKzJpVd90FC1okpLI57bTUUgQRX/96xCGHRFx4YcTdd0e89VZqRWkNamrSrJWVV45Y\nb72I0aMrHVFpHn004rnnKh1FceVsOal4YvJFIDAQeAtYSGrd2CnvseHAYwX1VwbmASfWsc/vA69m\n+3wB6FNPDE5ObBkLFkSce25Ehw6pu+bFFysdkVnLeuGF1HXTVhLvadMivvvd9Ol30kkpsWwNpk+P\nOOaYFPfJJ1c6muLKmZxUfEBsNWkvy9db4z37bGoOXrQIpkxp/msCmVnziUizlgYPTqtXN+c1xppq\n6dI0aPm889L/nUsvTdPNSx2M3ZzKuXy9/8WaNcC3vpVWMX3jDScmZq2dBD/6UZqCvPrqlY6mds8/\nD6eemtYBOvnkNO28muMtpyrMvcyqU+fOsJUvfmDWZmy4YZpiXI1+8Ys0BXvhwnS17+uvbz+JCTg5\nMTMzqzprrAGXXJLWifnOdyodTctzA7WZmVkRixdXZml/qHsl4/bALSdmZmYFampg//3TgNn585u+\nv4UL4Ykn0rWN9tsvrb1itXNyYmZmVsT3vgc33gjbbQdpVfaGmzMHRo9Os2y+8x3o3j0tRnf55Wkx\nvx6+yludnJyYmZkV6NABzjwzrf68zjrp4qdnnw0LFjRs+x//OLW8DB8O662XkpKJE+Gjj+C+++Dg\ng5s1/FbPY07MzMxqsemm8M9/pssO/PKX6cKPI0bALrukKcm1GTIEfvvbdEmLuupZcW45MTMzq0PH\njumq0RMnplk0u+4Kjz1W9zZbbpkSGycmpXHLiZmZWQNsvnlac+SOO1JXjzUfJydmZmYN1LEjHHNM\npaNo+9ytY2ZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZmVUVJydmZmZWVZyc\nmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZmZlWlapITSadLmippoaRxknau\np/6Kkv5H0luSFkl6U9LxeY8fJ6lG0tLsZ42kBc3+RKyqjBw5stIhWBn5fLYtPp9Wm6pITiQdCVwG\nDAF2BCYBYyStUcdmfwH2Ak4ANgMGAFMK6swBeuTdNixv5Fbt/M+vbfH5bFt8Pq02K1Q6gMwg4NqI\nuAVA0qnAAcCJwCWFlSX1BXYDNo6I2VnxtCL7jYiY2Twhm5mZWXOoeMuJpE5AL+DRXFlEBPAI0LuW\nzb4H/Af4uaR3JU2RdKmkLgX1umXdPtMk3S1pq+Z4DmZmZlY+1dBysgbQEZhRUD4D2LyWbTYmtZws\nAg7J9vEnYDXgpKzOFFLLywtAd+BnwFhJW0XE++V8AmZmZlY+1ZCclKIDUAMcHRHzACQNBv4iaWBE\nfBYR44BxuQ0kPQNMBn5MGttSTBeAk08+ma9+9avLPNCnTx/69u1b9idizWvOnDlMmDCh0mFYmfh8\nti0+n63Xgw8+yJgxY5Ypmzt3bu7Xwl6MRlPqQamcrFtnAfD9iLg3r3wE0D0iDi2yzQhgl4jYLK9s\nC+BlYLOIeKOWY90FLI6IY2p5/Gjgz6U/GzMzs3bvmIi4vSk7qHjLSUQsljQe2Ae4F0CSsvtX1rLZ\n08DhklaKiNz04M1JrSnvFttAUgdgW2BUHeGMAY4B3iJ1GZmZmVnDdAG+TvosbZKKt5wASOoPjABO\nBZ4jzd45HNgiImZKuhhYNyKOy+p3BV4hddtcCKwJXA88HhGnZnXOzx5/HVgFOBc4COgVEa+22JMz\nMzOzRql4ywlARNyVrWlyEbA2MBHokzcNuAewfl79+ZL2A/4I/Bv4CLgTOD9vt6sC12XbfgKMB3o7\nMTEzM6tuVdFyYmZmZpZT8XVOzMzMzPI5Ock09to+Vp0kDcm7llLu9kql47KGk7SbpHslvZedv4OK\n1LlI0vuSFkh6WNImlYjV6lff+ZQ0vMh79oFKxWt1k3SepOckfSpphqR/SNqsSL0mvUednFDytX2s\ner1EGruUu6bSrpUNxxqpK2nc2UBguX5nST8HzgBOAb4JzCe9X1dsySCtweo8n5nRLPueHdAyoVkJ\ndiON9/wWsC/QCXhI0ldyFcrxHvWYE0DSOODZiDgruy/gHeDKiFju2j5WvSQNAQ6OiJ6VjsWaTlIN\ncEjBGkjvA5dGxBXZ/ZVJK0ofFxF3VSZSa4hazudw0ppWh1UuMitV9iX+Q2D3iHgqK2vye7Tdt5yU\neG0fq26bZk3Ib0i6TdL69W9irYGkjUjfrPPfr58Cz+L3a2u2Z9ZF8KqkqyWtVumArMFWIbWIfQzl\ne4+2++SEuq/t06Plw7EmGgccD/QhrZuzEfCvbG0ca/16kP4R+v3adowGjgX2Jq1HtQfwQNaCbVUs\nO0d/AJ6KiNzYvrK8R6tinROzcomI/JUJX5L0HPA20B8YXpmozKw2Bc38L0t6EXgD2BN4vCJBWUNd\nDWwFfKfcO3bLCcwClpIGY+VbG5je8uFYOUXEHOA1wLM52obpgPD7tc2KiKmk/8t+z1YxScOA/YE9\nI+KDvIfK8h5t98lJRCwmrR67T64s79o+YysVl5WHpG6kf3If1FfXql/2wTWdZd+vK5NmDvj92gZI\n+hqwOn7PVq0sMTkY2CsipuU/Vq73qLt1ksuBEdkFCHPX9lmJdL0fa0UkXQrcR+rKWQ/4DbAYGFnJ\nuKzhsvFBm5C+fQFsLGl74OOIeIfUx/1rSa+TLtL5W9IFP++pQLhWj7rOZ3YbAvyN9IG2CfA7Umtn\nky8eZ+Un6WrSVO+DgPmSci0kcyIid8HcJr9HPZU4I2kgaTBW7to+P4mI/1Q2KmssSSNJ8/BXB2YC\nTwG/yrJ5awUk7UEaa1D4z+nmiDgxq3MhaQ2FVYAngdMj4vWWjNMapq7zSVr75G5gB9K5fJ+UlFyQ\nd201qyLZdPBiicMJEXFLXr0LacJ71MmJmZmZVZV2P+bEzMzMqouTEzMzM6sqTk7MzMysqjg5MTMz\ns6ri5MTMzMyqipMTMzMzqypOTszMzKyqODkxMzOzquLkxMzMzKqKkxOzdkDS45Iub0T9DSXVSNou\nu79Hdn/l5ouy1liGS/p7Sx+3VJKGSHq+0nGYtWZOTsxaIUkjsmTh6iKPXZU9dlNe8aHA+Y04xDSg\nB/BSXlmTr3XR2CSpFfN1QcyawMmJWesUpATiKEmdc4XZ7wNIV2X+snLE7IiY3+CdJx9GRE25Aram\nkeSryFu74eTErPV6HngHOCyv7DBSYrJMt0Jhi4WkqZLOk3SjpE8lvS3pR3mPL9Otk2dXSZMkLZT0\njKSt87ZZTdLtkt6VNF/SC5KOynt8OLAHcFa276WSNsge21rSfZLmZPH8U9JGBc/hp5LelzRL0jBJ\nHWt7YXJdK5J+kD3X2ZJGSupa8BqcWbDd85IuyLtfI+mULLb5kl6R9G1J38he03mSni6MNdv2FEnT\nsu3ulPTVgsdPzva3MPt5WpHXv7+kJyQtAI6u7fmatTVOTsxarwBuAk7MKzsRGA6oAdsPBv5Nulz9\n1cCfJG1asP98Ai4BBgE7ATOBe/OShC7Af4B+wNbAtcAtknbKHj8LeAa4HlgbWAd4R9K6wD+BhcCe\nwI5ZnfyWgr2BjbPHjwWOz251+QZwMLA/cAApMfpFPdsU82tgBLA9MBm4HbgG+B+gF+l1GVawzabA\nEdlx+5Ce0xddcJKOAS4EzgO2AH4JXCTphwX7uRi4AtgSGFNC7GatkpsJzVq3PwP/J2l90peNXYAj\ngb0asO2oiLgm+/13kgZl2/03KyuW4FwYEY8BSDoOeJc0nuWvEfE+kD+e5CpJfYH+wH8i4lNJnwML\nImJmrpKkM4DZwICIWJoVv1Fw3I+BMyIigNckjQL2AW6s4/kJOC4iFmTHuTXbpjFjbwBuioi/Zfu4\nhJRg/SYiHsnKhpKSxHydgR9GxPSszk+AUZJ+GhEfkhKTn0bEPVn9t7NWqFOBW/P2c0VeHbN2w8mJ\nWSsWEbMk3Q+cQPowHhURH0sNaTjhxYL704G16jocMC7v2J9ImkL6Vo+kDsCvSC0G6wErZrf6xrps\nDzyZl5gU83KWmOR8AGxTz37fyiUmedvU9fxqk/86zch+vlRQ1kVSt4iYl5VNyyUmmWdIyePmkuaR\nWnVulHRDXp2OpCQt3/gS4jVr9ZycmLV+w0ndCgEMbMR2iwvuB03r6j0X+Amp++YlUlIylJSg1GVh\nA/ZdSqz1bVPD8q1DnerZT9RR1tDXrlv282TguYLHChO0Bg9iNmtLPObErPV7kJQArAA81IzHEfDt\nL+5IqwKbAa9kRbsA90TEyIh4EZiaPZ7vc1ILQb4XgN3qGuDaTGaSxr0AkK3hstzA1iIaMk14A0k9\n8u73JiUer2bdOu8D34iINwtu+bOsPB3Z2i0nJ2atXDbddwtg64Kuj+ZwgaS9JW1DGiQ6E8iNifgv\nsJ+k3pK2JA2IXbtg+7eAb2WzUVbPyoYBKwN3SuolaZNsls2mNK/HgB9K2lXSttnzWdKA7Yr1mRWW\nfQbcLGk7SbuRWpDuzBtrMwQ4T9JPJG0qaRtJx0s6u57jmLULTk7M2oCImJc33qFolXruN6ROkGa7\nDCXN8lkT+F5E5D7Q/x8wgdSS8xhpjMc/Cvbxe1ILwivAh5I2iIiPSbNxugJPkGb8nMzy3TLldjFp\nltB92e0fLD8QtyGvU7Gy/wJ/Bx4gvR4TgdO/qBxxI+k5nkBqOXoCOI7U2lTXcczaBTX/Fy0zMzOz\nhnPLiZmZmVUVJydmZmZWVZycmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZm\nZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVeX/A/kWwZ4Yxlp7AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -726,7 +755,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYlOXVx/HvD4Miolh4FU1s2EssoFE0isZYYmwYG1hQ\nE0vAhlETK0aTGBtGVEQTe8GY2AtCjAUsaATFGLAXrCgWpCqw5/3jPCMPw8zuzLOzO7O753Ndc+3O\nU+4508/cVWZGCCGEEEKtaFftAEIIIYQQ0iI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CRUnqU7SORnPfVfS9anr/ZLyulcu\nwuwkrZ7Ec3K1Y2nLJD0h6eUKl7nQa6+WFXif9Epel9tX8DYyv49DaKxITkJBqaSgTtI2RY55P9l/\nf94uSy5Z1BU4t6JrLEjqI+nESpYZGpa8VoZUqLimWHejpDJT74s6SfMlfShppKReTRBTMYViLfsx\nkfQzSYPquY1mX99E0qC8xzj/8V6xuWMKze971Q4g1LzZQF/gmfTG5IP4+8CcAucsCczLeHvr4QlK\nU+oLbARc3sS3E1qvUcDNgIA1gf7AY5J2N7ORzR2MmT0paUkz+7bMU3fHY/99gX2NeR83lgHHAjML\n7PuqmWMJVRDJSWjIw8D+kk4ws3TS0Bd4AeiSf0KGD8j0uXOznttSSepoZrOqHUcoy+tmdnvuiqR7\ngZeBk4CCyYkkAYub2TdNEVDG950qXF4l3WVmX5RzgqQlgG+twIq2lXifxXu1+USzTqiPAcOBFYCd\ncxsltQf2A26nwIdbflu1pHOTbWtJulHSl5K+knS9pA555xZr919K0jWSpkqaJukmScvmnbuXpAeT\navY5kt6UdJakdqljHgd+DuT6jtRJeju1f4kk3tckzZb0kaS7JK1Z4H4eldzGHEnPS9qioQc01Vy2\nvaShkqYA7yf7bpT0ToFzzpVUl7etTtIQSXtL+m8SwyuSdm3g9leUNFfS2QX2rZuU2z+5/r2kiv31\n5LGYKmmMpJ0aup9ZlfIc5h3fXdLTkmZJelvSMQWOWVzS7yW9kZQ5WdKFkhavVNxm9gowFa9Fyd1u\n7jnqK+kVvJZx12SfJJ2UPGezJX0iaVj+azo59ix5E+pMSf+WtGGBYwr2OZG0laSHJX0haYakCZKO\nT/bdgNeapJuq5ufFf05eeZtLGpG8B6dLelTSVnnH5F7j20gaLOnT5LbvlrRC2Q9uEan7fKCkP0j6\nAK9pWVrS4cXeZxnuR8EyQtOKmpPQkHeBsUAfFvwi3B1YBrgDKKXvRu5XzJ3A28DvgO7Ar4ApwOkF\njk0TcCXwJTAIb/rpD6wG7Jg67nBgOnApMAP4CXAesDTw2+SYPwCd8Sapk5KyZwAkX4APJWUOB/6S\nnLszsDGQThwOBjoBw5KYfwvcJambmc2nYUOBT/Hq9I6p+16sL0Gh7dsB+yZlTQdOAP4paTUz+7LQ\njZrZp5KeBA4Azs/bfRBejX9ncv33+HN1LfAf/DnfAn/u/t3wXczkcBp+DnOWx5+vO/FE+QDgaknf\nmNmN8F1txQPANsA1wKvAD4GBwDr449dokpYDlgPeyNu1UxLXlXjy8m6y/VrgMOB6vHlxTeB4YDNJ\n2+ZeQ5LOB84EHgRG4I/9KKB9gTAWeo1I2hm/7x/hr+VPgA2APYAr8MdjFeCn+Ou5aC1KUt6GwGhg\nGvBn/LVyDPCEpO3N7D95p1wBfAGcC6yBP+ZX4p8lpVghef7S5pnZtLxtZwPfABcDSwDfsuCxSL/P\nlkrux0Zl3o9FygjNwMziEpdFLkA/YD7+Ydgfb+ddItn3d+DR5P93gPvzzq0DzkldH5RsuzbvuLuA\nT/O2vQNcnxdHHfAcsFhq+ylJfHukti1R4H5cjX/ZtU9tewB4u8CxRyS3dUI9j8vqyTGfAsuktu+Z\nxLN7CY9rHfAEoLx9NxSJaxAwv8BjPBtYI7Xth8n2/g3EcFQS64Z5218B/pW6/mL+c9vI11QdMKSB\nY0p9Dh9P7sOJqW3tgfHAx7nXCnAIMBfomVfm0cn5Wxd77TVwP67FaxS7AD8CHi0QT11y2+vlnf/j\nZN+Bedt3TrYflFzvgte23Jd33B+S49Lvk17J7W+fXG+H/xB4C1i6nvtyRf5rKy/+9Pv4nuQ1t3pq\nW1f8S/7xAq/xR/LKuxRPHIrGk3q91xW5TMy7z3V4Qrh4Ge+zcu/HImXEpekv0awTSnEn/ut+D0md\n8F9et5VZhuG/1NLG4L+OOpVw/rW2cI3E1STJwHc3kGrLl9QpqUJ+Kol9/RJuY1/gM/zXXUPuMLOv\nU9fH4L88u5VwrgF/teQTsBH+ZWbvfleo2X+Br0uI4W78sTswtyH5NbkhXhuW8xWwkaS1Gxlnycp8\nDufhSULu3Ln4a2xFoEeyeT9gEvC6pBVyFzy5EQvXvJXjl/hr5VO8ZrEncKmZ5XeyfsLMXsvbth/+\n2P47L6YX8dqiXEw74wnXFXnn/6WE+DbHayv+YmbTS7tLxSW1ijsD95jZe7ntZvYJXmv147z3sZF6\nbhJjgMXwBL8hBvTGa3XSlyMKHHujFe4fs8j7LOP9qMR7NZQpmnVCg8xsqqRH8U6wS+G/yv6ZoajJ\neddzTQ/LkTStFAsBeDMvppmSPsY/gIHvqp3/iH+4L5N3fucS4lsLeM0W7vhbzEJtz2b2VVIDvVwJ\n58KC6v3GKNT+/WVDMZjZ55L+jTc35IaRHoT/yr8ndeg5wL34F/srwCPALUkS1CTKfA4/MrPZedte\nx5OONYDn8aab9fFEIp/hiUwW9+FJrOG1Ov8rEAsUfp7XAZbFE5v6Ylot+Zv/2p8qqWCzXcpaSVn/\na+C4Uv0fniC+XmDfJPwzYdXk/5z812f6/V6KMVZah9h3y9iX5X7UV35oIpGchFLdDvwVWBkYkfHX\nWLG+GPW2dZdCUme8Hfkr4Cy8SnsO/gv6z1S+83dj70uhL7Jiv84Wa4IY7gCul7SJmb0M7A/8O/1l\nYGZjJK0F7A3sgtcWDJR0jJlVfLKyJnoO2wH/xfs7FHpcsnZw/MDMHivhuELPczu8r1XfIjEVSqRa\noiZ7v+cp9BiXsq8S5YcmEslJKNU9eJX5VqSaA5qJ8F+bT363QVoKT5QeSjbtgP8i29vMnk4dt1aB\n8oolAW8BP5K0mJXWqbXSvsR/Uedbowlu6178+Tww6XS4Ll5jsRAz+wq4CbhJUke8av5cvCNnpe1A\n6c8hwCryuT3SXx7r4c9vrvPyW8AmZvZ4E8Sb1Vt4R9lnrP5hxblmh3VI/XqX1IWGax/ewt83GwP1\nJVGlNld8BszCH998G+B9M1rCSJbWcj9avehzEkpiZjPxSZHOxTuUNrejJaWT6f54jcLDyfX5+Idx\netjw4slx+WZSuJnnLrza97hKBJzBW0BnSRvnNkhaGdin0jdkPuJhJN60cxA+2uG+9DGSls87Zxbe\nxLBE6phlJK0nKd0Ek1U5zyH4j6tjU8e2x0ddfIZ3jAXvL/UDSUflnyypQ5JwNbc78dgXmRpe0mJJ\nDRJ4J9t5+CietIEl3MZ4PEE7KVVeITOT2633+UuaOkcBe0vKNTchaSV89M0YM6uvabYmtJb70RZE\nzUmoz0LVr2Z2S7UCARbHOxDeifch+DX+QfJgsv8ZvObhZi2YIv0QCv8yHAccIOlSfIjsjKScm/Hh\nnYOTOQ/G4MOFdwKuMrNKJWXFqrXvAC4E7k3uw1L4l+9r+KipSvs7cCv+5T8yr4MvwERJT+CP1xfA\nlnhnzvQU9L3xUUaH449fQ7aQdGaB7Y9T3nMIPirnNElr4H0IDgI2AY5K1XzdwoIhxjsCT+NJ7QZ4\nU9YuLEhkmoWZjZZ0DfA7SZvhX5Zz8dqr/fAh4XcnfUsuSY57EE/ENwd2o3DTz3evKzMzSb8G7gde\nks9p8jH+3tnQzH6WHDouOe8KSSPxkTt/LxL6WXin1KclDcWTyaPx9+ZpxWIpcXuh4/aXVChRGGVm\npTR9FbutStyP0MQiOQn1KaXKt9AcHI1Zk6NYecfhczH8Hh/BcBupOVbM7AtJP8eHK56Pf8ndgldp\n58/YORTYFP9CPQmvPn/QzOok/QyfV6IvPnrnczxJSXcCLXc+kkLHLbrR78M+wGA8SXkHn2dkXRZN\nThobA/gX12w8CbqjwP7Lgb3w0Q1L4I/TGcAlBW6zFIY3C25VYN/ZZvZMGc8h+HNzON4xNTdnzoB0\nf5jkS3pvvLbhMLwWahben+UyFu4YWc7z16jjzOzXkl7Aa3r+iNeQvIsneE+njjtT0mw8Sd0BHxm0\nC96cWeh9kr6NUUlCNgg4Ga+ReouFR9HcjSebB7FgrpNccrJQ/GY2UdJ2wAX467JdEk9fM3uhvlhK\n2F7ouKFF9u3IguSsvvKKPfaVuB+hiSlGSIUQQgihltRMnxNJAyS9I5/KeaykLRs4fnFJf5RPdz5H\nPnX14an9uamH52vB1MyxJkIIIYRQ42qiWUfSgXhV7tH43AQDgZGS1jWzqUVO+wfeefEIvKpyZRZN\ntqbhVeK5dsOoJgohhBBqXFnNOsloiTPwaZM/qFgQ0ljgOTM7MbkufDjXEDO7qMDxu+HzbnRLhjoW\nKrMfcJmZLV9ofwghhBBqU1nNOmY2DziVCta4JMP/epBaSCyZKvhRfEroQvYEXgB+K+kD+QqyFytv\nhVugU9LsM1nSvSqwmmcIIYQQakuWPieP4QsuVUoXfGjflLztU/DFmArphq/IuhHe+/5EfAjeValj\nXgOOxEcbHIzf12ckrVKxyEMIIYRQcVlqQEYAf5b0Q3yM/Mz0TjO7vxKBNaAdPpNf39yEOZJOBv4h\nqb+ZfWNmY/HhYST7n8XXSziGBeuJLCRZfGtXfEjfnCa9ByGEEELr0gGf0XqkmX3emIKyJCe5secn\nF9hnFF8HpJip+CQ4K+VtXwn4pMg5HwMf5s3kNwnv+PoDvIPswoGZzZP0IlDfCqu7Uv5quyGEEEJY\n4GC8X2hmZScnZlbR4cdmNlfSOHwWzvvhuw6xO7HwTJRpTwP7SeqYTKkNvlZCHVCwo26yVPYPWbAW\nSyHvAtx6661ssMEGZd6TUIsGDhzIZZddVu0wQoXE89m6xPPZukyaNIlDDjkEKrCSc00MJcZnxLwx\nSVJyQ4k7AjcCSLoAWMXM+iXH345PQXyDpHPxIcUXAdflFtKSdDberPMmvpjaafgS5H+rJ445ABts\nsAHduzfFbOGhuXXu3Dmey1Ykns/WJZ7PVqvR3SIyJSeSegGn4OtTAEwELjazMVnKM7M7k5U2z8Ob\nc14Cdk2tn9AVWDV1/ExJOwNX4GujfI5PuXx2qtjl8Gmau+LTYI8DeprZq1liDCGEEELzKDs5kXQI\nvtBXbk0GgG3xRdkON7NM7UxmNpQiaymY2REFtr2O9xEpVt7JFO4XE0IIIYQalqXm5EzgNDNLNxQO\nSUbLnE0jO8GEEEIIoW3L0rm1G1Bo6fj7gTUbF04IldWnT59qhxAqKJ7P1iWez1BMluTkfXwkTb6f\nJvtCqBnx4de6xPPZusTzGYrJ0qxzKd6MsxnwTLJtW+BwfKbWEEIIIYTMssxzcrWkT4DfAAckmycB\nB5rZfZUMLoQQQghtT1nJiaTF8FqSx83snqYJKYQQQghtWbmrEs8HRuFziIQQQgghVFyWDrGv4CN2\nQgghhBAqLktychZwiaQ9JK0saZn0pdIBhhBCCKFtyTJa5+Hk7/34KsQ5ItuqxCGEEEII38mSnOxY\n8ShCCCGEEBLljtb5HtALuN7MPmiakEIIIYTQlpU7WmcecCoZVzMOIYQQQmhIlg6xj+G1JyGEEEII\nFZelBmQE8GdJPwTGATPTO83s/koEFkIIIYS2KUtyMjT5e3KBfTFaJ4QQQgiNkmVtnSxNQSGEUr31\nFgwdCnV18OMfwy9+UfzY6dPhnHPqL2/AAFh77crGGEIITahmOrZKGgCcAnQFJgDHm9l/6jl+cWAQ\ncHByzkfAeWZ2Y+qY/YHzgDWA14HfmdmIJroLIVTGVVfB1VdDt26wwgr1H/vttzBqVP3H9O1budhC\nCKEZlJycSHoY6GNm05LrvwOGmdlXyfUVgDFmtmG5QUg6ELgUOBp4HhgIjJS0rplNLXLaP4D/A44A\n3gJWJtXBV9I2wO3Ab4GH8CTmXkmbm9nEcmMModmMHg377w8339zwsSusAP/7X9PHFEIIzaicJppd\ngSVS188Alk9d/x6wXsY4BgLXmNnNZvYqcCwwCziy0MGSdgO2A3Y3s8fNbLKZPWdmz6YOOwEYYWaD\nzew1MzsHGA8clzHGEJre11/Diy/C9ttXO5IQQqiacpITNXA9E0ntgR7Av3PbzMyAR4GeRU7bE3gB\n+K2kDyS9JuliSR1Sx/RMykgbWU+ZIVTfM894X5OmTk7q6jwRCiGEGlQLfU664CN8puRtn0Lxmphu\neM3JHGCfpIyr8ZqcXybHdC1SZtfGhxxCExk9Grp2hXXWadrb+clPvJPs3/7WtLcTQggZlFNzYiy8\n0B8FrjeXdkAd0NfMXjCzR/Chzf0kLVH/qSHUsIkTvdZEFamYLG7rreG++2DevKa9nRBCyKCcmhMB\nN0r6JrneARgmKTcJW9akYCowH1gpb/tKwCdFzvkY+NDMZqS2TUpi/AHeQfaTMsv8zsCBA+ncufNC\n2/r06UOfPn0aOjWExrnnHpg9u+lvp3dvuPBCePpp6BUTPocQyjN8+HCGDx++0LZp06ZVrHx5944S\nDpRuKOU4Mzui7CCkscBzZnZicl3AZGCImV1c4PijgMuAFc1sVrJtb+CfQCcz+0bSHcCSZrZ36ryn\ngQlm1r9IHN2BcePGjaN79+7l3o0QWo66OlhtNdhvP/jLX6odTQihFRg/fjw9evQA6GFm4xtTVsk1\nJ1mSjjIMxmtlxrFgKHFH4EYASRcAq5hZv+T424GzgBsknYsPKb4IuM7McjU7lwNPSDoZH0rcB+94\ne1QT3o8QWoZ27WCffbym5rLLmr4ZKYQQylATs72a2Z34BGznAS8CmwC7mtlnySFdgVVTx88EdgaW\nBf4D3ALcB5yYOuZZoC8+d8pLwL7A3jHHSQiJ3r1h8mQY36gfOCGEUHG1MFoHADMbyoJ1e/L3LVJr\nY2av43Ov1FfmXcBdFQkwhNZm++1h+eXh7rvBq2JDCKEm1ETNSQihCtq3hz33hOeeq3YkIYSwkJqp\nOQkhVMGQIbD00tWOIoQQFhI1JyHUgrlzq3O7yywTnWFDCDUnU82JpHWAHYEVyUtwzOy8CsQVQtsx\nfz6ssorPO3JkweWkQgihTSk7OUnmGLkanzztExaeJdbwETchhFJNmABTp8K661Y7khBCqAlZak7O\nAs40swsrHUwIbdLo0bDEErDlltWOJIQQakKWPifLAf+odCAhtFmjR/taN0vEslAhhADZkpN/ALtU\nOpAQ2iQzT062377akYQQQs3I0qzzJnC+pK2B/wILDTMwsyGVCCyENmHSJPj889pYfG/mTI9ltdWq\nHUkIoY3LkpwcDcwAeiWXNAMiOQmhVKNHw/e+58061bbnnj7nyX33VTuSEEIbV3ZyYmZrNkUgIbRJ\no0fDFlvAUktVOxLYfXc4+2yvQamFeEIIbVajJmFTolLBhNDmXHEFXHddtaNwvXvDnDnwyCPVjiSE\n0MZlSk4kHSbpv8BsYLaklyUdWtnQQmgDVlgBNtyw2lG4tdaCTTaBe+6pdiQhhDau7ORE0sn4JGwP\nAwckl0eAYZIGVja8EEKz6t0bHnwQvv222pGEENqwLDUnxwO/NrPfmtn9yeU0oD9wQmXDCyE0q969\nYdo0ePzxakcSQmjDsiQnKwPPFNj+TLIvhNBSbbIJrLlmNO2EEKoqS3LyJt6Uk+9A4I3GhRNCqCoJ\n9t0XPvqo2pGEUj35pNd2hdCKZElOBgHnSXpE0tnJ5ZFk+zlZA5E0QNI7kmZLGiup6EIjknpJqsu7\nzJe0YuqYfqntuWNmZY0vhDbjoovg/vurHUVoyPTpcOihsMMOcNRR1Y4mhIoqOzkxs7uArfBVifdJ\nLlOBH5lZprpgSQcCl+IJzubABGCkpC71hQKsA3RNLiub2ad5x0xL7e8KrJ4lvhDalHaNmmEgNIcX\nXoDNN4d774Ujj4QHHoDJk6sdVQgVk+lTyMzGmdkhZtYjuRxiZi82Io6BwDVmdrOZvQocC8wCjmzg\nvM/M7NPcpXColj7ms0bEGELl7LUX3HprtaMILU1dHVx6KWyzDSy/PLz0Evztb/D667HsQGhVSkpO\nJC2T/r++S7kBSGoP9AD+ndtmZgY8CvSs71TgJUkfSRolaZsCx3SS9K6kyZLulVQjE0qENu2zz/yX\nbtRQhHKdcAKccgoMHAhPPeVz00iw6qrVjiyEiip1+vovJeWaTb7Cm1TyKdm+WJkxdEnOmZK3fQqw\nXpFzPgaOAV4AlgCOAp6Q9CMzeyk55jW85uVloDNwKvCMpA3NLHr7heoZM8b/brdddeMILc9RR3mt\n2y6xMHxo3UpNTn4CfJH8v2MTxVIyM3sdeD21aayktfDmoX7JMWOBsbkDJD0LTMKTmkHNF20IeUaP\n9uG68Ws3lGvTTasdQQjNoqTkxMyeTF19B3g/aXr5TrLGTpZP26nAfGClvO0rAZ+UUc7zwLbFdprZ\nPEkvAms3VNDAgQPp3LnzQtv69OlDnz59yggnhCJGj4btt692FCFUz9y50L59taMIjTB8+HCGDx++\n0LZpFRzSrrwco+ETpPkUGBkjaQXgUzMrt1kHSWOB58zsxOS6gMnAEDO7uMQyRgFfm9l+Rfa3A/4H\nPGRmpxQ5pjswbty4cXTv3r3cuxFCw6ZNg+WW806MRzbU37sGvP8+TJ3qI0NCqJSDDoIVV4QhQ6od\nSaig8ePH06NHD4AeZja+MWWV2qyTlutbkq8TMCdjHIOBGyWNw2tABgIdgRsBJF0ArGJm/ZLrJ+I1\nOP8DOuB9TnYEdv4uSOlsvFnnTWBZ4DRgNeBvGWMMofGefhrMoFevakdSmgED4IsvvPNlaHrTp3uf\npN13r0xZSy/d+HIq7Y474O9/978hFFFyciJpcPKvAefnTWi2GD73yUuLnFgCM7szmdPkPLw55yVg\n19TQ364s3GS0OD4vyir4kOOXgZ3MbHTqmOWAa5NzvwTGAT2TocohVMfo0bDKKtCtW7UjKc2++3oN\nz5QpsFJ+y2uoqBde8BqFL7+Ed96BZcoe/LjADTfAmWfCpEmQ10RdVR9+CP37+/088MBqRxNqWMnN\nOpJyK4H1Ap4F0suWfgu8C1xiZi12Cvto1glNbvx4/+L5xS+qHUlpPv/ck5KhQ+Hoo6sdzQJz58Kn\nhaY2Sllxxfr7NXz9tdcu5HTqVJ0v8ro6GDwYTj8dNtsMhg+HtRvsGle/Dz+E9dbz52zw4IaPbw5m\n8LOfwcsvwyuv+DwtoVWpSrOOme0IIOkG4EQz+7oxNxxCm9S9u19aihVW8M67d99dW8nJ66/DxhvX\nf8wrr8BGGxXfP3gw/P73C2/beGO/v7nLyk28luknn0C/fjBqFJx6KvzhD7D44o0v9/vf95qTc86B\nX/0KNqyBKZ6uuQZGjoQRIwonJpMm+RxA0Vk8kK1DbGdgMTP7Im/78sC8lpy0RM1JCAVceSWcfLJ/\ncdRKE8H06Q33g/nxj+vvc/HGG/Dmmwuuf/qpl/nkk75vhx3g8ceLnt5oI0fCYYf5JGo331z5uUu+\n+caTrdVXh3/9y2+nWt54w2uFDjsMrr668DH77AMvvuhJSseOzRtfqIhK1pxkSU5GAPeZ2bC87ccC\ne5lZBXpyVUckJyEU8MEHPifLbbdB377VjqZ5fPyxdwSur+Yl99mZ5Ut/8mSf3XWnneCmm5quP89D\nD8Eee8A//1ndpsTdd/farpde8uazQt580x/v3/1u0Rqt0CJUMjnJMn/2VkChnxNPJPtCCK3JD34A\nW24J92Ra17NlWnnl+hMT8F/4XbvC/vvDFVfAhAkwf35p5a+2mo/Kefjhpu1o/POf++Xkk2FWFRdl\nv+YaT5CKJSbg/Wx+8xu48ELvlxXatCzJyRL4aJl87YElGxdOCKEm9e0LSyzR/Lc7dWrz32apOnXy\n6eSnTPH1bjbbzPvo7LEHXHQRjB3rnV2L2Xrr5llf6S9/8b4tF17Y9LdVzKqr+uPTkDPOgC5dPJkK\nbVqWeU6eB44Gjs/bfiw+XDekzZ8P//0vPPusv0H32KPaEdW+J5/0x6uYFVdseAKza67xCc8OPtg7\nB4bGOemk5r/Np57yfhiPPw5b1WCl7GqreQdWgDlz4Pnn/bU7erQ3Syy5ZMMjiprD2mvDX//qtV+1\nrlMnuPhiT4ZHjYo1hNqwLH1OtsVXDP4PC1YS3gnYEtjFzMZUNMJmVJE+J3Pnwrhx/gE1erR/wE6b\n5r+QevTwD7C2aPp0eOYZf0z6968/YfjjH+Gyy4rv33hjeOKJ+m/vRz/y9u0DDoBbb80UcqiiGTN8\nHZmuXf01s1jZE09X19y58O67sM461Y6k5THzzshTpviw40qMXgrNoqp9TszsaaAn8D5wALAnPgvr\nJi05MamI+++HZZeFnj39l9O333p175NPwsyZ8OijDZcxefKCjnYt2eefw333eRvyllv647Lbbj5t\n+1tv1X/umWd6dX6xS0OJCXgSePHFPgvl5MkVuUuNcsEF8OCD1Y6i5TjlFP9yuvnmlpeYgM+vEolJ\nNpJPa//22/7ZGdqksmtOWrNG15y8/TbcdZeP0+/evfyFrd57D9ZYw5t/0nMtrLdedYcBlsPMk7Pn\nnvPrq67qU7Xn7su66zbffZkxw6veDz+8uhNRzZvn8zqccYaPRAj1GzHCR3cMGwbHHFPtaEK1fPSR\nz6YcWoxmn4RN0jK5+Usk1Tunckue56Sgzz/3ppnRo30io1/+svix3br5REpZ/d//ee1Lrt36jju8\nz8qKKy74cv/lL2t7DgDJRy8MGODxrr569WLp1MmbkC6/HM4+2xfcq4YJE7xZKyaXatjnn/trfLfd\namvSt1BUnkmqAAAcQElEQVS6//2v4ZFOpYjEpE0rtVnnS0krJv9/ha9Vk3/JbW/5Ro3yL9cf/tB7\nju+zD/zjHz4JVVPq2BH23BMuucSbJb780idqyo0IOPfc6iwzbgavvgrXXuuzTdY3AgG8KefQQ6ub\nmOQcf7y3/w8b1vCxTWX0aOjQAbbYonoxtBQDBnjn0uuuazm1hWGBESO8T1g0x4RGKqlZR1Iv4Gkz\nm5f8X5SZtdhX5XfNOkD3dddduGmlFr5o582D7zVQ2fXzn3tHvGKOOw5+/evi+197zRd7S/vsM78s\ntph36n3gAa/NaSmOPtpjfvfd6gyH7d3bO0U/9ljz33ZLMmECbL65ry0Ti8K1PJ9/7j/oNt3U52+J\n5LLNafZmnXTC0ZKTj5KNHFmbQ9gaSkwAtt3W+3UUs9Za9Z+/9NKL3vdllvFye/aszSXYG3LaaT6V\neXPMKZGvrs5rTo7PH3nfgr30ktfk7bprZcvddFNvEthgg8qWGxY1Z453PN9vP39fV0LUeoUKKrXP\nySalFmhmL2cPp0Z06VLtCLI744zGnb/KKvUP422J1l678au8ZjVxok+D3pr6mwwZ4sPCX3218mVH\nYtI82rf3UW9PPumd1xs7IuqOO+Dvf/e/0VckVECpk7C9BBig5G99WuC4vxCayOjRXuO19dbVjqRy\n9t0XbrjBp2+PZKJlWmwxX9Bxm23g+uu9X1tWH37oHc8POqjpm+O++sqnJQitXqn13GsC3ZK/vwDe\nAfoDmyeX/sBbyb4QQk5uBFctj7Aq109/6iOh7r672pGExujZ01cJPuMM73yfhZmPrurQAa66qrLx\n5Xv6aV/n6eWWXzkfGlZScmJm7+UuwBnACWZ2jZm9nFyuAU4Czm7KYENocXbbDf70p2pHUVkdOsDP\nfta2FgJsrS68EL75Bs45J9v5r77qScP11/tcPk1pyy09OTn++NYxUWWoV5Yegj/Ea07yvQNsmDUQ\nSQMkvSNptqSxkoouBCGpl6S6vMv81HDn3HH7S5qUlDlB0s+yxhdCSOnd28e11cLsuyG7rl1h0CAY\nOjRbjcQGG/gouN12q3hoi1h8ce/vNHq0928JrVqW5GQScLqk7xY8SP4/PdlXNkkHApcCg/BmognA\nSEn19Uw1YB2ga3JZ2cy+W2VL0jbA7cBfgc2A+4B7JWVOoEIIid13906V996b7fyJE+H11ysbU8jm\n+ON9hN8JJ2SrkVhhhcrHVMwuu8Dee/vyBjNmNN/thmaXJTk5FtgV+EDSo5IeBT5Ith2bMY6BwDVm\ndrOZvZqUMwtoYOlZPjOzT3OXvH0nACPMbLCZvWZm5wDjgeMyxhhai7o6Xyk6ZNe5s/c9ydK08803\n3nmyX7+onq8Fiy/usyjPm+cdTmvd4MG+xtYFF1Q7ktCEsiz89zzeOfYs4OXkcibQLdlXFkntgR4s\nWOEY85nhHsUXGCx6KvCSpI8kjUpqStJ6JmWkjWygzNAWXH21t19PmVLtSFq2fv18NtByE4xBg7yv\nwjXXxHwYtWKXXWDMmOot8VCObt187qJLLoE336x2NKGJZJqVysxmmtm1ZnZycvmrmc3MGEMXfPhx\n/jfFFLy5ppCPgWPw0UH74iskPyFps9QxXcssM7QVffv68N4rr6x2JC3bgQfCFVeUl2A89RRcdBGc\nfz5sUvL0SaE5tKRE8Xe/8/4yAwdWO5LQRDIlJ5IOlfRUUmuxerJtoKS9KxteYWb2epIQvWhmY83s\nl8AzePNQCPVbbjmf1+Gqq6LdujnNmOG1LT17ep+BELLq2NFnoo1VvlutUidh+46kXwPnAX/Bm3Zy\nk659iQ8nvq/MIqcC84GV8ravBHxSRjnPA9umrn+StcyBAwfSuXPnhbb16dOHPn36lBFOqGknneS/\n+q+/3jsCVtpDD/kvO19nIoAnJFOm+MKajZ2RNDS/sWNh9mzYccdqR+J++tNqR9CmDR8+nOHDhy+0\nbdq0aRUrv6SF/xY6QZoInGFm90qaDmxqZm9L2hh4wszKnvtd0ljgOTM7MbkuYDIwxMwuLrGMUcDX\nZrZfcv0OYEkz2zt1zNPABDPrX6QMX/hv3Di6d+9e7t0ILc0hh/gcDW+8Udq6ReVYf33/EL/66sqW\n21KNGOEjfIYNg2OOqXY0oVwzZvjaR6us4kN5W1ITUGg2lVz4L0uzzprAiwW2fwMslTGOwcBRkg6T\ntD4wDOgI3Agg6QJJN+UOlnSipL0krSVpI0l/AXYE0p0ILgd2k3SypPUknYt3vI2OBsGdeqrP0fDP\nf1a23ClTfHXnXvUu4N22PP+8JydHH13tSEIWuVqvG2+MxCQ0iyw/F9/B5w15L2/7bmSc58TM7kzm\nNDkPb3p5CdjVzD5LDukKrJo6ZXF8XpRV8CHHLwM7mdnoVJnPSuoL/DG5vAHsbWYTs8QYWqFNN4Wd\nd/YOmgceWLkP3TFj/O9221WmvNZg0CAfqhpfbC3HrFk+0d6MGT6yatiwhlc1D6FCsiQng4GrJHXA\nh/P+SFIffBK2X2UNxMyGAkOL7Dsi7/rFQIPNPWZ2F3BX1phCG3Dmmb4669y5Pt9DJYwe7R/i3/9+\nZcprLSrddBaa1oUXwqWXwtJL+wywUesVmlGWeU7+BvwW+APe9HI78GvgRDO7o7LhhdDEevXyX/WV\nSkzAk5Ptt69ceS3BY495lX9oPU4+GZZayifNu+66qPWqBcceC126FL8cfHDDZfznP00fZwWU9VMm\n6ai6KnCXmd0mqSPQqcDsrCG0TV9+6WuUnHRStSNpXo884snJoYfGSJzWonNnGDnS/19llerGUqqL\nL/bp9I9saHLxGjRypNe4rr128WN+/nNYY43i++s7N6eFPJfl1rMKeBPYCHjDzGbhfT5CCOCTjJm1\nvZqT3r39i+GZZ6KvTWuy2WYNH1NLXn3Vl1TYay+vSWgJvv3Wm5cvucRrqy69tPixe+7pl8ZoIc3N\nZTXrmFkd3rG0GVd6CqEFmTPHE5M116x2JM1rq61g5ZWzrbUTQqVccIGvnXXWWdWOpDRvvAHbbONr\nG11yiSf4Acg2lPh3wMXJvCYhhLT994cnn2x77fPt2sE++3hyMnCgD9EOobmtuCL8/vdw7bXwYqEZ\nL2rILbdA9+4wbZrXOP7mN/4+CkC25ORm4EfABEmzJX2RvlQ4vhBCS9G7tyclQ4bAhx9WO5rQVvXv\nDxtuCMcd58PXa8306XDYYX7Zd18YPx622KLaUdWcLGP7BgKxznlovb78smWszlprdtjBm7MOOwy2\n3bbBw0NoEu3b+6KeP/kJrLeer79z+OG+vRZceqnXMN5yi89SHQoqe/r61iymrw8MGQJ//jO88w4s\nsUS1o2l55s6tnS+B0La99BL86U/+d+LE2plnZ/Zs+Phj6Nat2pFUXFWmr5fUTtJpkp6W9B9Jf5a0\nZGNuPISas9tu8MkncOut1Y6kZYrEJNSKzTaDO+/0vie1kpgALLlkq0xMKq2cPidnAn8CpgMfAicC\nVzVFUCFUzbrrwt57e6/5urpqRxNCaKylsi75FqqpnOTkMKC/me1mZvsAewIHS4ruxaF1Oe00X7jv\nwQerHUkIoam98gpMnVrtKEKechKL1YARuStm9ijeMbZlTDcXQql69vQOneXMOfDGG/BFDFYLocXp\n399nXT31VG/Sbaw33oATToD58xtfVhtWTnLyPWBO3ra5QDQyh9bn1FN9ttdnny3t+AEDfOr2EELL\ncvfdPjfPtdd6knL88TB5craycnOXjBjhnV5DZuUkJwJulHR37gJ0AIblbQuh5dtzTx+GWErtydy5\nPolSW5uyPoTWoEsXOP98eO89n1n29tt9jZqjjoK33iqtjOnT/cdJeu6SH/ygaeNu5cpJTm4CPgWm\npS63Ah/lbQuh5WvXDk4/3ec7aahj7IsvwsyZvsJxCKFlWnZZT07ee8+HID/wAGy5pS9JUZ8XXoDN\nN4d77/Wak5tugqWXbp6YW7GSx1eZ2RFNGUgINadfP780ZPRo6NjRq3NDCC1bp05wyineVDthAnTo\nUPi4ujoYPNh/xGy2ma/MXcqqwKEkMdImhMYaPdo70S6+eLUjCSFUypJLwtZbF98/cyYMG+b9VZ5+\nOhKTCquhmWlCaIHq6mDMGP+ACiG0HUsv7TUrMY9Kk6iZmhNJAyS9kywmOFbSliWet62kuZLG523v\nJ6lO0vzkb52kWU0TfWizXnkFvvoqOsOG0BZFYtJkaiI5kXQgcCkwCNgcmACMlNSlgfM64x11Hy1y\nyDSga+qyeqViDgHwNTs6doSttqp2JCGE0GrURHKCr3R8jZndbGavAscCs4AjGzhvGHAbMLbIfjOz\nz8zs0+TyWeVCDgE46CD4/HNvnw4hhFARJfU5kbRXqQWa2f3lBCCpPdADX7cnV4ZJehToWc95RwBr\nAgcDZxc5rJOkd/EkbDxwhplNLCe+EBZSV+fDjNOK9eYPIYSQSakdYu8t8TgDFiszhi7JOVPytk8B\n1it0gqR18GTmx2ZWJ6nQYa/hNS8vA52BU4FnJG1oZh+VGWMIMHQo3Habzxxb+DUXQgihAkpKTsys\nVpp/SBYavA0YZGa56fsW+aYws7GkmnskPQtMAo7B+7YUNXDgQDp37rzQtj59+tCnT5/GBR9atnXX\n9Zlg//1v+OlPqx1NCCFUzfDhwxk+fPhC26ZNq9w8rDKz7CdLHcysgenzGiyjPd6/5BfpJiFJNwKd\nzax33vGdgS+BeSxIStol/88DdjGzJ4rc1p3AXDM7uMj+7sC4cePG0T0m1Ar5zHyitRVXhJEjqx1N\nCCHUlPHjx9OjRw+AHmY2vqHj61N2jYikxSSdLelDYIakbsn28yX9stzyzGwuMA7YKXUbSq4/U+CU\nr4GNgc2ATZPLMODV5P/nisTdDvghEKsxhWwkXxBw1Cif3yCEEEKTyNJccyZwOHAa8G1q+yvArzLG\nMRg4StJhktbHk42OwI0Aki6QdBN4Z1kzm5i+4Gv+zDGzSWY2OznnbEk7S1pT0uZ4U9BqwN8yxhgC\n7L8/rL56aQsChhBCyCRLcnIYcLSZ3QbMT22fAKyfJQgzuxM4BTgPeBHYBNg1NfS3K7BqmcUuB1wL\nTAQeAjoBPZOhyiFk0769zwZ7222+QFgIIYSKK7vPiaTZwPpm9p6k6cCmZva2pA2B582sU1ME2hyi\nz0koyYwZC1YdbUSfrRBCaE0q2ecky9o6E4HtgPyfjfvhtR4htG6dOsE//wmLlTtqPoQQQimyJCfn\nATdJ+j7eLLSvpPXw5p49KhlcCDXrF7+odgQhhNBqld3nxMzuA/YEfgrMxJOVDYA9zexflQ0vhBBC\nCG1NlpoTzGwMsHOFYwkhhBBCyJacAEjaAq8xAZhoZuMqE1IIIYQQ2rKykxNJPwCGA9sCXyWbl5X0\nDHCQmX1QwfhCCCGE0MZkmefkb0B7YAMzW97MlsdrUNoRE5yFEEIIoZGyNOv0ArYxs9dyG8zsNUnH\nA2MqFlkIIYQQ2qQsNSfv4zUn+RYDPmpcOCGEEEJo67IkJ6cCVyQdYoHvOsdejk9BH0IIIYSQWUnN\nOpK+BNLzdC8FPCdpXqqcecD1wL0VjTCEEEIIbUqpfU5OatIoQgghhBASJSUnZnZTUwcSQgghhACN\nmIQNQFIHYPH0NjP7ulERhRBCCKFNK7tDrKSlJF0p6VN8bZ0v8y4hhBBCCJllGa1zEfAT4NfAN8Cv\ngEH4MOLDKhdaCCGEENqiLM06ewKHmdkTkm4AxpjZm5LeAw4GbqtohCGEEEJoU7LUnCwPvJ38/3Vy\nHeApYPusgUgaIOkdSbMljZW0ZYnnbStprqTxBfbtL2lSUuYEST/LGl9omYYPH17tEEIFxfPZusTz\nGYrJkpy8DayZ/P8qcEDy/54sWAiwLJIOBC7Fm4c2ByYAIyV1aeC8zsBNwKMF9m0D3A78FdgMuA+4\nV9KGWWIMLVN8+LUu8Xy2LvF8hmKyJCc3AJsm//8ZGCBpDnAZcHHGOAYC15jZzWb2KnAsMAs4soHz\nhuHNSGML7DsBGGFmg83sNTM7BxgPHJcxxhBCCCE0g7L7nJjZZan/H5W0PtADeNPMXi63PEntk/P/\nlCrXJD0K9KznvCPwGpyDgbMLHNITr41JGwnsXW6MIYQQQmg+WWpOFmJm75nZ3cAXkq7NUEQXfNHA\nKXnbpwBdC50gaR08mTnYzOqKlNu1nDJDCCGEUBsaNQlbnhWAXwJHV7DMRUhqhzflDDKzt3KbK1R8\nB4BJkyZVqLhQbdOmTWP8+EX6SocWKp7P1iWez9Yl9d3ZobFlVTI5yWoqMB9YKW/7SsAnBY5fGtgC\n2EzSVcm2doAkfQvsYmZPJOeWWmbOGgCHHHJIGeGHWtejR49qhxAqKJ7P1iWez1ZpDeCZxhRQ9eTE\nzOZKGgfsBNwPnmUk14cUOOVrYOO8bQOAHYFfAO8m254tUMbOyfZiRuJ9WN4F5pRxN0IIIYS2rgOe\nmIxsbEFVT04Sg4EbkyTleXz0TkfgRgBJFwCrmFk/MzNgYvrkZCr9OWaWbo+5HHhC0snAQ0AfvOPt\nUcWCMLPP8eHHIYQQQihfo2pMckpOTiTd3cAhy2YNwszuTOY0OQ9venkJ2NXMPksO6QqsWmaZz0rq\nC/wxubwB7G1mE+s/M4QQQgjVJK+IKOFAn6q+QWZ2RKMiCiGEEEKbVnJyEkIIIYTQHBo9z0lrkXVt\nn1BbJA2SVJd3iaa8FkTSdpLul/Rh8vztVeCY8yR9JGmWpH9JWrsasYaGNfR8SrqhwHv24WrFG+on\n6XRJz0v6WtIUSfdIWrfAcY16j0ZyQva1fULNegXvu9Q1ufy4uuGEMi2F9zvrDyxStSvpt/gyFEcD\nPwJm4u/XxZszyFCyep/PxAgWfs/2aZ7QQgbbAVcAWwE/BdoDoyQtmTugEu/RaNYBJI0FnjOzE5Pr\nAt4HhpjZRVUNLpRF0iC843P3ascSGk9SHbCPmd2f2vYRcHFuKQ1Jy+CzP/czszurE2koRZHn8wag\ns5ntW73IQlbJj/hPge3N7KlkW6Pfo22+5iS1ts+/c9uS4cr1ru0Tato6SRXyW5JulVTWSK9QuySt\nif+yTr9fvwaeI96vLdkOSRPBq5KGSlq+2gGFki2L14h9AZV7j7b55IQMa/uEmjYWOBzYFV/dek1g\ntKSlqhlUqJiu+AdhvF9bjxHAYcBPgNOAXsDDSQ12qGHJc/QX4KnUNB0VeY/WyiRsIVSEmaVnJnxF\n0vPAe8ABQEnD4UMIzSevmv9/kv4LvAXsADxelaBCqYYCGwLbVrrgqDkpf22f0IKY2TTgdSBGc7QO\nn+ALfcb7tZUys3fwz+V4z9YwSVcCuwM7mNnHqV0VeY+2+eTEzOYCubV9gIXW9qnINLyheiR1wj/k\nPm7o2FD7ki+uT1j4/boMPnIg3q+tgKQf4Kvcx3u2RiWJyd7AjmY2Ob2vUu/RaNZx9a7tE1oOSRcD\nD+BNOd8Hfg/MBYZXM65QuqR/0Nr4ry+AbpI2Bb4ws/fxNu6zJL2JL9J5PvABcF8Vwg0NqO/5TC6D\ngLvwL7S1gQvx2s5GLx4XKk/SUHyo917ATEm5GpJpZpZbMLfR79EYSpyQ1B/vjJVb2+d4M3uhulGF\nckkajo/DXwH4DHgKODPJ5kMLIKkX3tcg/8PpJjM7MjnmXHwOhWWBMcAAM3uzOeMMpanv+cTnPrkX\n2Ax/Lj/Ck5JzUmurhRqSDAcvlDgcYWY3p447l0a8RyM5CSGEEEJNafN9TkIIIYRQWyI5CSGEEEJN\nieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CaENkPS4pMFlHL+6pDpJmyTXeyXXl2m6KIvGcoOku5v7drOSNEjSi9WOI4SWLJKTEFogSTcm\nycLQAvuuSvZdn9rcGzi7jJuYDHQFXklta/RaF+UmSS1YrAsSQiNEchJCy2R4AnGQpCVyG5P/++Cr\nMi842OwrM5tZcuHuUzOrq1TAoXEkxSryoc2I5CSElutF4H1g39S2ffHEZKFmhfwaC0nvSDpd0nWS\nvpb0nqSjUvsXatZJ+bGkCZJmS3pW0kapc5aXdLukDyTNlPSypINS+28AegEnJmXPl7Rasm8jSQ9I\nmpbE86SkNfPuw28kfSRpqqQrJS1W7IHJNa1IOiS5r19JGi5pqbzH4IS8816UdE7qep2ko5PYZkqa\nKGlrSWslj+kMSU/nx5qce7Skycl5f5e0dN7+XyXlzU7+/rrA43+ApCckzQL6Fru/IbQ2kZyE0HIZ\ncD1wZGrbkcANgEo4/2TgP/hy9UOBqyWtk1d+moCLgIHAFsBnwP2pJKED8ALwM2Aj4BrgZklbJPtP\nBJ4F/gqsBKwMvC9pFeBJYDawA7B5cky6puAnQLdk/2HA4cmlPmsBewO7Az/HE6PfNXBOIWcBNwKb\nApOA24FhwB+BHvjjcmXeOesA+ye3uyt+n75rgpN0MHAucDqwPnAGcJ6kQ/PKuQC4DNgAGJkh9hBa\npKgmDKFluw34s6RV8R8b2wAHAjuWcO5DZjYs+f9CSQOT895IthVKcM41s8cAJPUDPsD7s/zTzD4C\n0v1JrpK0G3AA8IKZfS3pW2CWmX2WO0jSccBXQB8zm59sfivvdr8AjjMzA16X9BCwE3BdPfdPQD8z\nm5Xczi3JOeX0vQG43szuSsq4CE+wfm9mjybbLseTxLQlgEPN7JPkmOOBhyT9xsw+xROT35jZfcnx\n7yW1UMcCt6TKuSx1TAhtRiQnIbRgZjZV0oPAEfiX8UNm9oVUSsUJ/827/gmwYn03B4xN3faXkl7D\nf9UjqR1wJl5j8H1g8eTSUF+XTYExqcSkkP8liUnOx8DGDZT7bi4xSZ1T3/0rJv04TUn+vpK3rYOk\nTmY2I9k2OZeYJJ7Fk8f1JM3Aa3Wuk/S31DGL4Ula2rgM8YbQ4kVyEkLLdwPerGBA/zLOm5t33Whc\nU+9pwPF4880reFJyOZ6g1Gd2CWVnibWhc+pYtHaofQPlWD3bSn3sOiV/fwU8n7cvP0EruRNzCK1J\n9DkJoeV7BE8AvgeMasLbEbD1d1ek5YB1gYnJpm2A+8xsuJn9F3gn2Z/2LV5DkPYysF19HVybyGd4\nvxcAkjlcFunYWkApw4RXk9Q1db0nnni8mjTrfASsZWZv513So6xiOHJosyI5CaGFS4b7rg9slNf0\n0RTOkfQTSRvjnUQ/A3J9It4AdpbUU9IGeIfYlfLOfxfYKhmNskKy7UpgGeDvknpIWjsZZbMOTesx\n4FBJP5b0w+T+zCvhvEJtZvnbvgFukrSJpO3wGqS/p/raDAJOl3S8pHUkbSzpcEknNXA7IbQJkZyE\n0AqY2YxUf4eChzRwvZRjDB/tcjk+yuf/gD3NLPeF/gdgPF6T8xjex+OevDIuwWsQJgKfSlrNzL7A\nR+MsBTyBj/j5FYs2y1TaBfgooQeSyz0s2hG3lMep0LY3gLuBh/HH4yVgwHcHm12H38cj8JqjJ4B+\neG1TfbcTQpugpv+hFUIIIYRQuqg5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGE\nEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkII\nIYRQU/4fIXIuPgDsW8EAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -881,7 +910,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGHCAYAAAB1bcIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X98FNXV+PHPQUSIEZVEQVtTLVSQx1oLLci3oGJbUCyr\n1RbEh6KhGmuBamqR2moJ+rQKtQaEtNVHbKjVgEUaf7QCPlKUqIglolYBSQVTpSCJIKwhRML9/jEb\n3N0kkN0kM5s95/167Uv3zt3ZczIz5GTmzh1xzmGMMcYYk2o6BR2AMcYYY0xTrEgxxhhjTEqyIsUY\nY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgxxhhjTEqyIsUYY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgx\nJo6IFIjIAZ++a6WI/D3q/XkickBELvPp+4tFZLMf35UsETlaRB4Qkf9Efjb3BB0TgIhsEZEn2nB9\nLd72TW23yGd/EfX+6khbTgLffW5y0RvTPqxIMWlNRK6K/OPb8NorIu+LyFIRmSIimU18zAEJFSki\ncpKITBeRsxIMsanvatNnVRwmtoRzDcDPgQlAETAeeKi5jpHCIXp7bxeR50Xk0naIqz2eKdLSdbZk\nu7n49YnI9SJyVSu/2xjfdA46AGN84IDbgC3AkUAv4HxgNvBjEQk5596I6n8HcGeC33EyMB3YDLye\nwOe+2USbJPjdh3Oo2K4h9f9YGQ6sds79Twv6OuBV4G68n+PJwHXAEhH5gXPu/vYLs020dNu3ZLv9\nEShxztVFtf0Q2AEsiO7onHtORLrF9TUmcFakGC2WOufKo97PFJHzgb8Cj4vIGc65fQDOuQNAov9Y\nJ1RYRH4h7HXO7U/we5LRbGzOuXqg3ocYWuNE4M0E+r/vnCtpeCMiDwEVQD7QbJEiIl2dc7VJR+mj\nlmw35z09tsX7sRUoJhWl+l9QxrQb59xKvLMmn8O7jAA0PSZFRL4pIqtEZKeI7BGRDSLyy8iy84A1\neH/FF0cuM9SLyITI8pUi8rqIDIhcevgY+GXUshXxoQFHiMivIuMwwiLyuIh8Ni6mLSLyYHxe0ets\nQWxNjW3IEJHfiEiliNRGcr2pie85ICL3isglIvJGpO8/RWTkYX70DZ8/QUTmi8i2yGW4dQ1xNcQe\n2Q6nAt+Kiv2wYyyiOee2A+uB06LWvUVEnhCRESLyiojsBfIiy44QkdtEpCKS02YR+aWIdGkmj2+K\nyKuRHN4UkW/HLT9eRO6O7AN7ROQjEfnbIS6/tWTbH3YsUfyYlEj//wLOj7ocdnA/kSbGpIjI4Mil\n0V0i8nFk3/p/cX0yRWR25OdUG7nEtlxEzj5UfMa0hJ1JMdo9BPwKGAHMj7TFXMsXkf7Ak8A6vMtG\n+4A+QMM/1uuBXwC3A/cBqyLtL0atLxv4G7AQ7zT89qhl8QS4FW/MwV14ZxLygWdE5OyGMz7NfDa+\nvSWxxa/nSeA84AHgNWAk8GsROdk5F1+sDAMuA34L7AF+BCwWkRzn3M5m4kNEugLPAZ8H5uJdivsu\nXiF1rHNuLvAWXvE4G/g38JvIx3c0t95mvqszcApQHdXsgH7AI3g/l/uBjZFl8/HGwDyKd9loMHBL\npP/lcas/HW+b/h4oBnKBP4vISOfcs5E+nwdCwJ/xLrn1xLsEtVJE+jvntkWHS8u3/eHGkMT3uQGY\nh7ed/ifyXdvj+n8aiMgFePvsP4CCSEy5wAoRGeqc+0ek6314+8BcvP0tCxgKnIF3zBiTPOecveyV\nti/gKrzT4gMO0Wcn8I+o99OB+qj3N0TWcfwh1jEQ7x/xCU0s+3vk89c0s2xF1PvzIuupBDKi2r8T\naZ8c1bYZeLAF6zxUbH8A3ol6f0mk70/j+j0K7AdOi2o7AOwFTo1q+2Kk/YeH2S4NP9MrotqOAF4A\nPgKOjsvziRZu783A03i/KLOAs4CSyHcVxvWrB74R9/mzIvH/Pq59VqT/eU2s45KotmOA9+P2pyOb\niDMn8rP7eZLbPma7RW2PXzSx7+dEtb0RvW/EfXc9cG5U20bgr3H9jgL+hXf5NPr4ube1x6q97NXU\nyy73GANhvF8uzdkV+e+3RSTZQa378P7SbqkFzrmahjfOucXAf4BRSX5/S12EV4zMjWv/Dd7l4Yvi\n2p9xzm1peOO8Aci78c4eHO57tjnnFkZ9th64F8jE+6WZrJF4Z1t24P0lfzne2aufxvXb7Jz7v7i2\nUXhnFArj2n+Dd+bh4rj2rc65x6Ny2BP5ri+LyImRtk8alotIJxHpAdTgFQEDmog/qG1/UORSzReA\nEhHJanjhHSfPAtGXhXYBg0XkJL/iM3pYkWKM90txzyGWL8L7C/9/ge0iUiIi302wYHnfJTZItqKZ\ntlMTWEcyPof3i/fjuPb1Ucuj/buJdewEjm/B92xqon09XjEQ/z2JWA18PfIaAmQ753Ldp5dKGjQ1\npuNzeGckYn7+zhvXsquJuJraTm9H/nsqgHjyReRtvGK1CvgA76zTsU18PqhtH+0Lkf/+kU8Lvh14\ncV8DdBGRhthvBs4E/i0iL4t3u/tp8Ss0Jhk2JsWoJiKfwftF0dQvBgCcd8fHuSIyHO8v6QuBscCz\nIjLCOdeS+SX2tkW88aE1034E3tkQPzR3h0lb30adiCrn3N8P3+2Q26Qt5wz5Od6YoAfwxpt8iFcI\nzSF1/1BsiOsmvHFJTQkDOOf+LCLPA9/GG9v1E2CaiHzbObes3SM1ac2KFKPdBLxfSEsP1zHyi+/v\nwE9E5Ba8wYfDgRW0/URYX2iirQ+xvzB2Asc10e9zeOMGGiQS27vA10Xk6LizKWdELW8L7+KdSYjX\n1t+TqHfxfkF/gU8H0hK5dHNcE3H1aWIdfSP/3RL57+V440DyojuJyHE0PQi4Jds+WS3dFxr2nz3O\nufi7zxqv1DvT9Hvg9yKSjTdXzc8BK1JMq6RqFW9Mu4vcvXAr8A7eXR7N9Wvq0sVreGcLjoq8b/iF\n3lTRkIwJEjUbroh8FzgJ726LBv8CzoncvdLQ71t4d7JESyS2v+H98TI5rj0f76//p1sUfcu+p5eI\njG1oEJEjgCl4l96ea6PvSSYuAW6Ma78J7xf8X+PaT46+5VhEugPfA151zn0Qaa4n7sxSZHt+ppkY\nWrLtk/UxLdsP1uLtXz8RkaPjF0YKkYYxNt2jlznnqoCtfHpsGJM0O5NiNBBglIicgbfP9wQuwJvt\ndTMQcoeeyOoXkfkj/or3l3RP4Hq8uzDKIn3+hTdm4QciEsb7ZbDaOZfsGYEPgTIR+QPeDLk34I11\neCCqzwN4d34sE5FHgd54t+zGX7pKJLYn8c4W/TIyrqDhFuTReHfHtNVzfu7Huw23WES+wqe3IA8B\nbmhiTIwvnHOvi8gCIC9SnD6HdwvyBGCJcy6+eHobeEBEvop3O+/38W4bjp56/ingNvHmtHkR7wzS\nfxN7titaS7Z9stbi7Qc/x9tPPoi6NHawkHLOORG5Bq8wejMSy/t4hdVwvDuwLsEbSPueiCzG21fC\neMfVV4Aft0G8Rrugby+yl73a88Wnt2E2vPbi/WO7FJhE1K2uUZ+ZDuyPen8+sARvkOjeyH8fAnrH\nfe5beLd47ot814RI+9+B15qJ7+/As1HvG24FHYN3Oek/eP/wPw58tonP34hXLNXg/UL9cvw6DxPb\nH4B/xfXNwJsf5N9ALbAByG/iu+uBOU20vwPMb8G2ycb7xbs98nNdB3yvmfU93sLt3aK+h+qHd4b5\nVrxf4rV4BdQdxN1K3LAO4BuR2GvwZsb9dly/Lni3ML8X2ZbPAYPwLhMmte2b2W71wG1N7PvRtyCf\nCDyBV7TWE7kdmSZuQY60n4U3v8sHkfzewbul+/zI8iPx5nMpj6xzd+T/84I+9u2VHi9xrq0vpRtj\njDHGtF7gY1IiUykfaOI1N6rP7SKyVURqROQZEekTt46jRKRIRKrEm3Z6ccMcBcYYY4zpmAIvUvCu\nXfaKen0Tb4DaowAiMg1vEF8e3inSj/GuwUc/R2M23q2hl+NNMnQy8JhP8RtjjDGmHaTc5R4RmQ2M\ncs6dHnm/Ffi1c64w8r473jXsq5xzj0be78CbXvsvkT598SaFOsc5tyaIPIwxxhjTOqlwJuUgETkS\nb9T7/Mj70/DOrjQ8qAvn3G7gZby7AMA7E9M5rs9GvMGEDX2MMcYY08GkVJGCN2PhscCCyPteeJd+\ntsf12x5ZBt7toHWR4qW5PsYYY4zpYFJtnpSJwNMu9tHl7SLysKyReLcX1rb39xljjDFppCve86SW\nOeeq2+tLUqZIEZEcvPkGLo1q3oY3wVBPYs+m9MSbdrmhTxcR6R53NqVnZFlzRgIPtzZuY4wxRrH/\n5hAzdrdWyhQpeGdRthM19bNzbrOIbMN7munrcHDg7GCgKNJtLd7D1L4ORA+czQFeOsT3bQH405/+\nxBlnnHGIbh1ffn4+hYXxT55PP1ryBD25Wp7pxfJMH+vXr2f8+PHw6TOq2kVKFCmRR95fDRQ75w7E\nLZ4N3CoiFXw68+N7eLMw4pzbLSLzgXtEZCfecz/uBV44zJ09tQBnnHEGAwYMaMNsUs+xxx6b9jmC\nnjxBT66WZ3qxPNNSuw6XSIkiBe8yzyl4Uz3HcM7NEpEM4D68B2OtAi5ysc9ayceb0nkx3kOtGqY8\nN8C2be0+xCclaMkT9ORqeaYXy9MkKiWKFOfcM8ARh1heABQcYvk+vKenTmnr2NLB+++/H3QIvtCS\nJ+jJ1fJML5anSVSq3YJs2sHAgQODDsEXWvIEPblanunF8jSJsiJFgXHjxgUdgi+05Al6crU804vl\naRKVctPi+0VEBgBr165dq2mAkzHGJK2yspKqqqqgwzA+yc7OJicnp8ll5eXlDWeMBjrnytsrhpQY\nk2KMMSa1VVZWcsYZZ1BTUxN0KMYnGRkZrF+/vtlCxQ9WpCiQm5vLH/7Q6MaptKMlT9CTq+WZOqqq\nqqipqVExt5T5dB6UqqoqK1JM+xoxYkTQIfhCS56gJ1fLM/VomFvKpA4bOKuAlkFcWvIEPblansbo\nZkWKMcYYY1KSFSnGGGOMSUlWpChQVlYWdAi+0JIn6MnV8jRGNytSFJg1a1bQIfhCS56gJ1fL0xjd\n7O4eBRYuXBh0CL7QkifoydXy7DjC4TC1te36QNzD6tq1K5mZmYHGYNqWFSkKZGRkBB2CL7TkCXpy\ntTw7hnA4zP33P0p19f5A48jK6kxe3hgrVNKIFSnGGGNapba2lurq/XTrdgEZGccFEkNNzS6qq1dQ\nW1trRUoasTEpxhhj2kRGxnFkZmYH8mptcVRQUECnTp3YuHEjY8aM4dhjjyU7O5sbb7yRffv2tXg9\n559/PhdccEGj9quvvprTTjvt4Pt3332XTp06cc899zB79mxOPfVUMjIyOP/883nzzTdblUs6sSJF\ngalTpwYdgi+05Al6crU8jV9EBIAxY8ZQV1fHXXfdxcUXX8y9997Lddddl/B6mmpvatmCBQuYO3cu\nkydP5mc/+xlvvvkmX//619mxY0dyiaQZu9yjQJDPXfCTljxBT66Wp/Fb7969WbJkCQDXX389xxxz\nDL/73e/4yU9+wplnntnm3/evf/2LiooKevXqBcDIkSMZPHgwM2fO5O67727z7+to7EyKAlOmTAk6\nBF9oyRP05Gp5Gj+JCJMmTYppmzJlCs45/va3v7XLd377298+WKAAfPWrX2Xw4MHt9n0djRUpxhhj\nTESfPn1i3vfu3ZtOnTqxZcsWX74P4PTTT2+37+torEgxxhhjmtHcGJNE+9fX17dFOOpYkaLAhg0b\ngg7BF1ryBD25Wp7Gb5s2bYp5X1FRwYEDBzj11FNb9Pnjjz+eXbt2NWp/9913W/R9AG+//XaLvy/d\nWZGiwM033xx0CL7QkifoydXyNH5yzlFUVBTTdu+99yIiXHTRRS1aR+/evdmwYQPV1dUH21577TVe\neOGFJvuXlpaydevWg+/XrFnDyy+/zKhRo5LIIP3Y3T0KzJs3L+gQfNGR80x0SvHbb7+dqqqqg+/T\ndTrwjrxNm9PUto7fnoeSytu6pqbxGYSO9t2bN2/mkksu4cILL+TFF1/k4YcfZvz48Xzxi19s0ecn\nTpzIPffcw4gRI/j+97/P9u3bue+++zjzzDPZvXt3o/59+vRh6NChXH/99dTW1jJnzhxOOOEEuy09\nwooUBbTc3thR8wyHw9z/x/upDlcfvnMzsjKzyJuQl7K/vJLVUbdpcw49ffyaFq0jFad+79q1K1lZ\nnamuXsHevcHFkZXVma5duyb9eRFh0aJF3Hbbbdxyyy107tyZH/3oRwk9ALJfv3489NBD/OIXv+Cm\nm26if//+/OlPf+Lhhx/m+eefb9R/woQJdOrUidmzZ/PBBx8wePBg5s6dS8+ePZPOI51YkWJMwGpr\na6kOV9Pt9G5kHJP4M1xq9tRQ/Xa1TQfeAbR2+vhUnfo9MzOTvLwxafGAwRNOOIFHH320VesYN24c\n48aNi2n7xje+0Wz/G2+8kRtvvLFV35murEgxJkVkHJNB5nHJ/QO7lwD/fDUJa5g+PhlBnqk4lMzM\nzJQqnEx6sIGzCsycOTPoEHyhJU+ApcVLgw7BF1q26dKlOvLsyHbv3s327dsP+TJtz86kKFBTUxN0\nCL7QkidA3b66oEPwhZZtWlenI8+O7IYbbmDBggXNLheRhOdCae55PuZTVqQoMGPGjKBD8IWWPAFC\n14WCDsEXWrZpKKQjz1Q2ffp0pk+f3uzyadOm8b3vfa/Nvu9zn/ucTfDWAlakGGOMMYfRr18/+vXr\nF3QY6tiYFGOMMcakJCtSFGjpJFEdnZY8AcK7wkGH4Ast2zQc1pGnMYmyIkWBiRMnBh2CL7TkCbBg\nRvMD+NKJlm26YIGOPI1JVEoUKSJysog8JCJVIlIjIq+JyIC4PreLyNbI8mdEpE/c8qNEpCiyjj0i\nslhETvQ3k9RUUFAQdAi+0JInwOjrRgcdgi+0bNPRowuCDsGYlBR4kSIixwEvAPuAkcAZwE3Azqg+\n04DJQB4wCPgYWCYiXaJWNRu4GLgcOBc4GXjMhxRS3oABAw7fKQ1oyRMgp196TRffHC3bNCdHR57G\nJCoV7u75KVDpnLsmqi3+mdY3AHc4554CEJEJwHbgUuBREekOTASucM49F+mTC6wXkUHOuZY9FMMY\nY4wxKSPwMynAaOAfIvKoiGwXkXIROViwiMhpQC/g2YY259xu4GVgSKTpK3gFV3SfjUBlVB9jjDHG\ndCCpcCbl88D1wG+AX+JdzrlXRPY55x7CK1Ac3pmTaNsjywB6AnWR4qW5PmrNnz+f73//+0GH0e60\n5AlQVlrG0EuHBh1Gu9OyTcvK5jN0aMfOMxwOp8UDBtvL1VdfzXPPPcfmzZuDDqVDSYUipROwxjl3\nW+T9ayJyJvAD4KHgwkof5eXlKv6h15InQOXGyqBD8IWWbVpZWQ503DzD4TD3//F+qsPVgcaRlZlF\n3oS8lCxUbAr85KTC5Z7/AOvj2tYDDSMDtwGCd7YkWs/IsoY+XSJjU5rr06RRo0YRCoViXkOGDKG0\ntDSm3/LlywmFGk9FPmnSJObPnx/TVl5eTigUajTHw/Tp0xs9MK2yspJQKMSGDRti2ufOncvUqVNj\n2mpqagiFQpSVlcW0l5SUkJub2yi2sWPHUlpaSlFRUVrkEa2pPIqKijpkHuPHj2/U95GZj1BWGrve\nyg2VFOUXEd4V5sppVx5sX7pgKS+tfCnwPNpjv5o2bVpa5NGwPTZt2hTTvmLFXBYvnsqVV356jNbV\n1VBUFKKiIjaPNWtKWLhwSqB5NKe2tpbqcDXdTu9G1sCsQF7dTu9Gdbg68LM56aikpOTg78ZevXoR\nCoXIz8/35bvFOefLFzUbgMjDwGedc+dFtRUCX3XODY283wr82jlXGHnfHe9SzgTn3J8j73fgDZz9\nS6RPX7xi55ymBs5GbnFeu3btWjV3EJjUVFVVReGDhWQNzCLzuMT/AgzvClO9tpr8iflkZ2e3Q4Sm\nrVRVVVFYuISsrMvIzEx8W4XDVVRXLyE//zLft3V5eTkDBw6kqX8zW7sPt4VUPw5yc3N57rnneOed\nd4IOpUUOtb2jlwMDnXPl7RVHKpxJKQTOEZFbRKS3iFwJXAPMi+ozG7hVREaLyBeBPwLvAY/DwYG0\n84F7ROR8ERkIPAi8YHf2GGOMOZyCggI6derExo0bGTNmDMceeyzZ2dnceOON7Nu3L6F1lZaWcuaZ\nZ9KtWzfOOuusRme6GtTU1HDTTTeRk5ND165d6devH7/5zW9i+lx++eUNxcBBo0ePplOnTjz11FMH\n29asWUOnTp1YtmwZAMXFxXTq1IkXX3yRH//4x5x44olkZmZy2WWXUV0d7GW5RARepDjn/gF8GxgH\nvAH8HLjBObcwqs8sYC5wH95dPd2Ai5xz0c+rzweeAhYDK4GteHOmGGOMMYfUMF5kzJgx1NXVcddd\nd3HxxRdz7733ct1117V4PcuXL+c73/kOnTt35q677uLSSy8lNzeXf/zjH436jh49mjlz5jBq1CgK\nCwvp168fU6dO5aabbjrYZ9iwYbz++uuEw58+CuPFF1/kiCOOYNWqVQfbnn/+eY444gi+9rWvxeQz\nZcoU3njjDQoKCvjhD3/Ik08+yeTJkxP74QQoFQbO4pz7G/C3w/QpAAoOsXwfMCXyMlFCoRBPPPFE\n0GG0Oy15AhTlFzGpcFLQYbQ7Ldu0qCjEpEnpn2dH0Lt3b5YsWQLA9ddfzzHHHMPvfvc7fvKTn3Dm\nmWce9vPTpk2jV69elJWVHRzAe9555/HNb36TU0899WC/xx9/nL///e/86le/4qc//enB7xszZgxz\n5sxh8uTJnHbaaQwbNoz6+npeeOEFRo4cyT//+U927tzJmDFjYoqUsrIyvvSlLzUaNHzCCSewdOnS\ng+/r6+uZO3cue/bs4Zhjjkn65+SXwM+kmPbXkarm1tCSJ8DwscODDsEXWrbp8OE68kx1IsKkSbHF\n/5QpU3DO8be/HfLvaAC2bdvGa6+9xtVXXx1TLHz961+nf//+MX2ffvppOnfuzJQpsX9X33TTTRw4\ncICnn34agC9/+ctkZmby/PPPA7Bq1SpOOeUUJkyYwNq1aw8OFC4rK2PYsGGN8snLy4tpayh63n03\nfs7U1GRFigIjRowIOgRfaMkToP85/Q/fKQ1o2ab9++vIsyPo0yfmsXD07t2bTp06sWXLlsN+tuEX\nf/w6APr27duo78knn8zRRx8d037GGWfErKtTp04MGTLk4FmTVatWMWzYML72ta9RX1/P6tWreeut\nt/jwww8bFSkAp5xySsz7448/HoCdO3c26puKrEgxxhhjmpEKc5sMHTqUV155hX379rFq1SrOPfdc\njj32WM4880xWrVrFqlWrEJEmi5QjjjiiyXUGfWdvS1mRYowxxkTEz2VTUVHBgQMHYsaTNOdzn/tc\nk+sA2LhxY6O+W7du5eOPP45pX79+fcy6wLtEU1dXR0lJCVu3bj1YjJx77rk8//zzrFq1itNPP50T\nTjjh8Al2MFakKNDc7W/pRkueAOtWrgs6BF9o2abr1unIM9U552ImvwS49957EREuuuiiw36+V69e\nnH322SxYsIA9e/YcbH/mmWd46623YvqOGjWK/fv3M2/evJj2wsJCOnXqFPN9gwcPpnPnzsycOZMe\nPXocvCQ0bNgwVq9ezfPPP9/kWZR0kBJ395j2VVJSwqWXXhp0GO1OS54Aa5at4ezzzw46jHanZZuu\nWVPC2Wd3/Dxr9tR0+O/evHkzl1xyCRdeeCEvvvgiDz/8MOPHj+eLX/xiiz5/55138q1vfYuvfe1r\nTJw4kerqaubNm8eZZ54Zcxvx6NGjGT58OD//+c/ZvHkzX/rSl1i2bBlPPvkk+fn5nHbaaQf7duvW\njYEDB7J69eqYmYTPPfdcPv74Y2pqaposUpq7pNNRLvWAFSkqLFq0KOgQfKElT4C8O/MO3ykNaNmm\neXkdO8+uXbuSlZlF9dvV7GVvYHFkZWbRtWvXpD8vIixatIjbbruNW265hc6dO/OjH/2IWbNmtXgd\nI0eO5M9//jO33norP/vZz+jduzfFxcWUlpYevEOn4buefPJJfvGLX7Bo0SKKi4s59dRTufvuu5uc\ncn7YsGG8/PLLMcVIz5496dOnD++8806TRUpz42lSYZxNS1mRYowxplUyMzPJm5AX+HNz2uIpyCec\ncAKPPvpoq9Zx6aWXNjoDeMkllzTql5GRwd13383dd9992HXOnDmzyWcpvf322032v+qqq7jqqqsa\ntZ933nnU19cf9vtShRUpxhhjWi0zMzMlnz5sOjYrUowxxpjD2L17N3v3HvpSVs+ePX2KRg+7u0eB\nph5Tn4605AlQPKM46BB8oWWbFhfryLMju+GGGzjppJOafZ188slBh5iW7EyKAlpm7dSSJ0D/wTbj\nbDqxGWeDN336dKZPn97s8mnTpvG9733Px4gMWJGiwrhx44IOwRda8gQYdOGgoEPwhZZtOmiQjjw7\nsn79+tGvX7+gw1DHLvcYY4wxJiVZkWKMMcaYlGRFigJlZWVBh+ALLXkCVKyrCDoEX2jZphUVOvI0\nJlE2JkWBWbNmMXTo0KDDaHda8gRYtmAZfc5u/Dj4dKNlmy5bNos+fTpGng0PwDPpLVW2sxUpCixc\nuDDoEHyhJU+Aa++8NugQfKFlm157bernmZ2dTUZGBuPHjw86FOOTjIwMsrOzA43BihQFMjIygg7B\nF1ryBOjStUvQIfhCyzbt0iX188zJyWH9+vVUVVUFHYrxSXZ2Njk5OYHGYEWKMcaYFsnJyQn8l5bR\nxQbOGmOMMSYlWZGiwNSpU4MOwRda8gRYPGdx0CH4Qss2XbxYR55atqeWPP1gRYoCWk7PaskToEfP\nHkGH4Ast27RHDx15atmeWvL0gxUpCkyZMiXoEHyhJU+AC664IOgQfKFlm15wgY48tWxPLXn6wYoU\nY4wxxqQkK1KMMcYYk5KsSFFgw4YNQYfgCy15Amzbsi3oEHyhZZtu26YjTy3bU0uefrAiRYGbb745\n6BB8oSVzuTLTAAAgAElEQVRPgMfmPBZ0CL7Qsk0fe0xHnlq2p5Y8/WBFigLz5s0LOgRfaMkTYNy0\ncUGH4Ast23TcOB15atmeWvL0gxUpCmi5HU5LngA9etktyOnEbkFOL1ry9IMVKcYYY4xJSVakGGOM\nMSYlWZGiwMyZM4MOwRda8gRYWrw06BB8oWWbLl2qI08t21NLnn6wIkWBmpqaoEPwhZY8Aer21QUd\ngi+0bNO6Oh15atmeWvL0Q+BFiohMF5EDca+34vrcLiJbRaRGRJ4RkT5xy48SkSIRqRKRPSKyWERO\n9DeT1DVjxoygQ/CFljwBQteFgg7BF1q2aSikI08t21NLnn4IvEiJ+CfQE+gVeQ1tWCAi04DJQB4w\nCPgYWCYiXaI+Pxu4GLgcOBc4GdAxkYQxxhiTpjoHHUDEfufcjmaW3QDc4Zx7CkBEJgDbgUuBR0Wk\nOzARuMI591ykTy6wXkQGOefWtH/4xhhjjGlrqXIm5Qsi8r6I/EtE/iQipwCIyGl4Z1aebejonNsN\nvAwMiTR9Ba/Yiu6zEaiM6qNaVVVV0CH4QkueAOFd4aBD8IWWbRoO68hTy/bUkqcfUqFIWQ1cDYwE\nfgCcBjwvIkfjFSgO78xJtO2RZeBdJqqLFC/N9VFt4sSJQYfgCy15AiyYsSDoEHyhZZsuWKAjTy3b\nU0uefgi8SHHOLXPOPeac+6dz7hlgFHA8MMaP7x81ahShUCjmNWTIEEpLS2P6LV++nFCo8WDFSZMm\nMX/+/Ji28vJyQqFQo2p6+vTpjW5Nq6ysJBQKNXog1dy5c5k6dWpMW01NDaFQiLKyspj2kpIScnNz\nG8U2duxYSktLKSgoSIs8ojWVR0FBQYfMY/z48Y36PjLzEcpKY9dbuaGSovwiwrvCjL5u9MH2pQuW\n8tLKlwLPoz32q+uuuy4t8mjYHps2bYppX7FiLosXT2X06IKDbXV1NRQVhaioiM1jzZoSFi6ckhJ5\nJLs9CgoKUmp7tNd+dd5556VFHg3bo6Sk5ODvxl69ehEKhcjPz2/0mfYgzjlfvigRIrIGeAZ4APgX\ncLZz7vWo5SuBV51z+SIyHPg/4PjosykisgUodM7NaeY7BgBr165dy4ABA9otF2MOp6qqisIHC8ka\nmEXmcZkJfz68K0z12mryJ+aTnZ3dDhGatlJVVUVh4RKysi4jMzPxbRUOV1FdvYT8/MtsW5tAlZeX\nM3DgQICBzrny9vqewM+kxBORTKAPsNU5txnYBnw9anl3YDDwYqRpLbA/rk9fIAeI/fPSGGOMMR1G\n4Hf3iMivgSeBd4HPADOAT4CFkS6zgVtFpALYAtwBvAc8Dt5AWhGZD9wjIjuBPcC9wAt2Z48xxhjT\ncaXCmZTPAo8AG/AKkx3AOc65agDn3CxgLnAf3l093YCLnHPRU27mA08Bi4GVwFa8OVMMNLrmma60\n5Ak0Gq+SrrRs07IyHXlq2Z5a8vRD4EWKc26cc+6zzrluzrkc59yVkcs80X0KnHMnO+cynHMjnXMV\nccv3OeemOOeynXPHOOe+65z7wN9MUld5ebtdLkwpWvIEqNxYGXQIvtCyTSsrdeSpZXtqydMPgRcp\npv0VFRUFHYIvtOQJcOW0K4MOwRdatumVV+rIU8v21JKnH6xIMcYYY0xKsiLFGGOMMSnJihRjjDHG\npCQrUhRoaqbDdKQlT4CifB3XvLVs06IiHXlq2Z5a8vSDFSkKTJ48OegQfKElT4DhY4cHHYIvtGzT\n4cN15Klle2rJ0w9WpCgwYsSIoEPwhZY8Afqf0z/oEHyhZZv2768jTy3bU0uefgh8xlljjF7btm3j\no48+Suqzxx57LL162YPOjUlnVqQYYwKxbds28n50A9XhPUl9PivzGO6/d44VKsakMbvco0D848/T\nlZY8AdatXBd0CK320UcfUR3eQ9cv9CVr4DlNvuoyj22yvesX+lId3pP0WZhUs26djn1XyzGqJU8/\nWJGiQElJSdAh+EJLngBrlqXPszOP7n483bN6Nfn6YNOmJtuP7n580GG3qTVrdOy7Wo5RLXn6wYoU\nBRYtWhR0CL7QkidA3p15QYfgi2FX6cgzL0/HvqvlGNWSpx+sSDHGGGNMSrIixRhjjDEpyYoUY4wx\nxqQkK1IUyM3NDToEX2jJE6B4RnHQIfjipZLioEPwRXGxjn1XyzGqJU8/WJGigJbZD7XkCdB/sI4Z\nZ0/qqyNPm3E2vWjJ0w9WpCgwbty4oEPwhZY8AQZdOCjoEHxx6gAdeQ4apGPf1XKMasnTD1akGGOM\nMSYlWZFijDHGmJRkRYoCZWVlQYfgCy15AlSsqwg6BF988I6OPCsqdOy7Wo5RLXn6wYoUBWbNmhV0\nCL7QkifAsgXLgg7BF2+t0JHnsmU69l0tx6iWPP1gRYoCCxcuDDoEX2jJE+DaO68NOgRfDJ2gI89r\nr9Wx72o5RrXk6QcrUhTIyMgIOgRfaMkToEvXLkGH4IvOXXTk2aWLjn1XyzGqJU8/WJFijDHGmJRk\nRYoxxhhjUpIVKQpMnTo16BB8oSVPgMVzFgcdgi/Kn9CR5+LFOvZdLceoljz9kFSRIiLfE5GubR2M\naR85OTlBh+ALLXkC9OjZI+gQfHH0cTry7NFDx76r5RjVkqcfkj2TUghsE5H7RETHvNUd2JQpU4IO\nwRda8gS44IoLgg7BF33P1ZHnBRfo2He1HKNa8vRDskXKycC1wGeBF0TknyJyk4ic0HahGWOMMUaz\npIoU51ydc+7PzrmLgRzgIeD7wHsiskRELhYRactAjTHGGKNLqwfOOuf+A/wf8HfAAV8BSoBNIjKs\ntes3rbdhw4agQ/CFljwBtm3ZFnQIvvhou448t23Tse9qOUa15OmHpIsUEckWkRtF5DXgBeBE4FLg\nc8BngFLgj20SpWmVm2++OegQfKElT4DH5jwWdAi+ePVJHXk+9piOfVfLMaolTz8ke3fPX4D3gR/g\nXeo5xTn3XefcUufZA8zCK1gSXfdPReSAiNwT1367iGwVkRoReUZE+sQtP0pEikSkSkT2iMhiETkx\nmfzSzbx584IOwRda8gQYN21c0CH44quX68hz3Dgd+66WY1RLnn5I9kzKbuAbzrl+zrm7nXM7muiz\nA/hCIisVka8CecBrce3TgMmRZYOAj4FlIhI9Z/Zs4GLgcuBcvMG9Ov4MOwwtt8NpyROgRy8dt+Ye\nfbyOPO0W5PSiJU8/JDtw9irn3KrD9HHOuX+1dJ0ikgn8CbgG2BW3+AbgDufcU865fwIT8IqQSyOf\n7Q5MBPKdc885514FcoGv2S3SxhhjTMeU7OWeQhGZ1ET7JBH5TZKxFAFPOudWxK3zNKAX8GxDm3Nu\nN/AyMCTS9BWgc1yfjUBlVB9jjDHGdCDJXu75LvBiE+2rgbGJrkxErgDOBm5pYnEvvLuGtse1b48s\nA+gJ1EWKl+b6qDVz5sygQ/CFljwBlhYvDToEX7z5rI48ly7Vse9qOUa15OmHZIuUbLxxKfE+iixr\nMRH5LN54kv92zn2SZDxJGzVqFKFQKOY1ZMgQSktLY/otX76cUCjU6POTJk1i/vz5MW3l5eWEQiGq\nqqpi2qdPn95o562srCQUCjW6ZW3u3LmNnv9QU1NDKBSirKwspr2kpITc3NxGsY0dO5bS0lJqamrS\nIo9oTeVRU1PTIfMYP358o76PzHyEstLY9VZuqKQov4jwrjB1++oOti9dsJSXVr4UeB6J7lc7d+6M\naX/96ScaFSV7P/qIlQ8UNboVefMrq9kSl1tQeSSyX23atCmmfcWKuSxePJW6uk+P0bq6GoqKQlRU\nxOaxZk0JCxc2nsk0iDyS3a9qampSanu01/FRXl6eFnk0bI+SkpKDvxt79epFKBQiPz+/0Wfagzjn\nEv+QyJtAkXPut3Htk4DJzrkzEljXJcASoB5omADuCLyzJ/VAP6ACONs593rU51YCrzrn8kVkON5c\nLcdHn00RkS1AoXNuThPfOwBYu3btWgYMGNDScI1pc1VVVRQ+WEjWwCwyj8tM+PPhXWGq11aTPzGf\n7OyE/kYI1MaNG5mYn0/WwHPonpXYCc/d1duoXruaBwsL6du3bztF2PaqqqooLFxCVtZlZGYmvq3C\n4Sqqq5eQn39Zh9rWJv2Ul5czcOBAgIHOufLD9U9W5yQ/NxuYLSJZQMMYkq8DNwM/SXBd/wd8Ma6t\nGFgP3OWce0dEtkXW/zocHCg7GG8cC8BaYH+kz18iffrizYYb+yemMcYYYzqEpIoU59z/Rp6C/DNg\nRqT5PeBHzrkHE1zXx8Bb0W0i8jFQ7ZxbH2maDdwqIhXAFuCOyPc9HlnHbhGZD9wjIjuBPcC9wAvO\nuTVJpGiMMcaYgCU946xzbq5z7iS82WV7OOdyEi1QDrX6uO+aBcwF7sO7q6cbcJFzri6qWz7wFLAY\nWAlsxZszRb34a5vpSkue4F3i0aA2rCPPcFjHvqvlGNWSpx/a5Nk9zrn4eU1au84LnHM/jmsrcM6d\n7JzLcM6NdM5VxC3f55yb4pzLds4dE5kB94O2jKujmjhxYtAh+EJLngALZiwIOgRfrF6oI88FC3Ts\nu1qOUS15+iHZeVJOEJE/iEiliNSKSF30q62DNK1TUFAQdAi+0JInwOjrRgcdgi/OGqkjz9GjC4IO\nwRdajlEtefoh2YGzxUBv4NfAf4i7PGNSi5a7l7TkCZDTT8e02z1O0ZFnTo6OfVfLMaolTz8kW6Sc\nC5wbmX7eGGOMMabNJTsm5T3s7Ikxxhhj2lGyRUo+cGdktliT4uJnNExXWvIEGs1Gm64qVuvIs6xM\nx76r5RjVkqcfki1SHgKGA++KyE4R+SD61YbxmTYQP0VzutKSJ0DlxsqgQ/DFh+/pyLOyUse+q+UY\n1ZKnH5Idk/LTNo3CtKuioqLDd0oDWvIEuHLalUGH4ItB39GR55VX6th3tRyjWvL0Q7Izztq5LGOM\nMca0q6QncxORU0WkQEQeEpETI20jRKTFDxc0xhhjjGlOspO5DQPeBM4DxgANj24dCNzeNqEZY4wx\nRrNkz6TMBAqcc8OB6BlmnwXOaXVUpk2FQqGgQ/CFljwBivJ1XPNe+YCOPIuKdOy7Wo5RLXn6Idki\n5Sy8B/nF+wA4IflwTHuYPHly0CH4QkueAMPHDg86BF/0Haojz+HDdey7Wo5RLXn6Idki5SOgVxPt\nXwLeTz4c0x5GjBgRdAi+0JInQP9z+gcdgi9O6qcjz/79dey7Wo5RLXn6IdkiZRFwl4icQGTmWREZ\nDPwG+FMbxWaMMcYYxZItUm4B3gG24g2afQt4EXgFuKNtQjPGGGOMZkkVKc65fc65XOB04FJgIvBf\nzrlxzrn9bRmgab3S0tKgQ/CFljwB1q1cF3QIvvj3GzryXLdOx76r5RjVkqcfkp4nBcA5t9k594Rz\n7hHn3Ia2Csq0rZKSkqBD8IWWPAHWLFsTdAi+2FKuI881a3Tsu1qOUS15+iGpGWdF5P5DLXfO5SUX\njmkPixYtCjoEX2jJEyDvTh2H2LCrdOSZl6dj39VyjGrJ0w/JPrvnpLj3RwL/BRwDPN+qiIwxxhhj\nSP7ZPaPj20SkM/B7vEG0xhhjjDGt0qoxKdEiA2Z/DUxtq3UaY4wxRq82K1IiTsO79GNSSG5ubtAh\n+EJLngDFM4qDDsEXL5UUBx2CL4qLdey7Wo5RLXn6IdmBs7Pim/DGqYSwydxSjpbZD7XkCdB/sI6Z\nWE/qqyNPm3E2vWjJ0w/JDpwdEvf+ALAD+Cnwv62KyLS5cePGBR2CL7TkCTDowkFBh+CLUwfoyHPQ\nIB37rpZjVEuefkh24Oywtg7EGGOMMSZaW49JMcYYY4xpE0kVKSLyioisacmrrQM2iSsrKws6BF9o\nyROgYl1F0CH44oN3dORZUaFj39VyjGrJ0w/Jnkn5O9AXb8Ds6siLSNtKYFnUywRs1qz4cc7pSUue\nAMsW6Di03lqhI89ly3Tsu1qOUS15+iHZgbPHAUXOuZ9FN4rIL4GezrlrWh2ZaTMLFy4MOgRfaMkT\n4No7rw06BF8MnaAjz2uv1bHvajlGteTph2TPpIwB/tBEezHw3aSjMe0iIyMj6BB8oSVPgC5duwQd\ngi86d9GRZ5cuOvZdLceoljz9kGyRsg84p4n2cyLLjDHGGGNaJdnLPfcC94nIl4GGwbGDgWuBO9si\nMGOMMcboltSZFOfcL4FrgK8B90de/w/IiywzKWTqVB2PU9KSJ8DiOYuDDsEX5U/oyHPxYh37rpZj\nVEuefkh6nhTn3CPOucHOue6R12Dn3COJrkdEfiAir4nIR5HXiyJyYVyf20Vkq4jUiMgzItInbvlR\nIlIkIlUiskdEFovIicnmlm5ycnKCDsEXWvIE6NGzR9Ah+OLo43Tk2aOHjn1XyzGqJU8/JF2kiEh3\nEbk6UkAcH2n7koiclOCq/g1MAwYAA4EVwOMickZkndOAyUAeMAj4GFgmItEj6mYDFwOXA+cCJwOP\nJZtbupkyZUrQIfhCS54AF1xxQdAh+KLvuTryvOACHfuulmNUS55+SPYBg2cC/wfUAKfg3dWzExgL\nfAa4qqXrcs79Na7pVhG5Hm8Q7nrgBuAO59xTke+eAGwHLgUeFZHuwETgCufcc5E+ucB6ERnknLMJ\n5YwxxpgOKNkzKYXAI0BvoDaq/a94ZzKSIiKdROQKIAN4UUROA3oBzzb0cc7tBl7m04ccfgWv2Iru\nsxGopPGDEI0xxhjTQSRbpHwV+K1zzsW1vw8kerkHETlTRPbg3b78W+DbkUKjF+DwzpxE2x5ZBtAT\nqIsUL831UW3Dhg1Bh+ALLXkCbNuyLegQfPHRdh15btumY9/VcoxqydMPyRYpnwCZTbT3AaqSWN8G\n4Et4Y05+B/xRRPolGZuJc/PNNwcdgi+05Anw2BwdQ65efVJHno89pmPf1XKMasnTD8kWKU8Ct4lI\nw5gWJyKfAe4CliS6MufcfufcO865V51zPwdewxuLsg3v+UA94z7SM7KMyH+7RMamNNenWaNGjSIU\nCsW8hgwZQmlpaUy/5cuXEwqFGn1+0qRJzJ8/P6atvLycUChEVVVsvTZ9+nRmzpwZ01ZZWUkoFGpU\nec+dO7fRbWw1NTWEQqFGD68qKSkhNze3UWxjx46ltLSUefPmpUUe0ZrKY968eR0yj/Hjxzfq+8jM\nRygrjV1v5YZKivKLCO8KM27auIPtSxcs5aWVLwWeR6L71c6dO2PaX3/6Cd58dmlM23994yJWPlDU\n6IzK5ldWsyUut6DySGS/2rRpU0z7ihVzWbx4KuPGfXqM1tXVUFQUavTQwTVrSli4sPGAzCDySHa/\nmjdvXkptj/Y6PkaPHp0WeTRsj5KSkoO/G3v16kUoFCI/P7/RZ9qDNL5i04IPeXfzLAG+iPccn3/j\n3VHzCnChcy7cqqBEngXedc5NFJGtwK+dc4WRZd3xLuVMcM79OfJ+B97A2b9E+vTFG3R7TnMDZ0Vk\nALB27dq1DBgwoDXhGtMqVVVVFD5YSNbALDKPa+oE5aGFd4WpXltN/sR8srOz2yHC9rFx40Ym5ueT\nNfAcumcldmV2d/U2qteu5sHCQvr27dtOEba9qqoqCguXkJV1GZmZiW+rcLiK6uol5Odf1qG2tUk/\n5eXlDBw4EGCgc668vb4nqbt7nHM7geEich7eZZpMoBxY1sQ4lUMSkV8BT+MNdD0G+G/gPGBEpMts\nvDt+KoAtwB3Ae8DjkVh2i8h84B4R2QnswZsR9wW7s8cYY4zpuBIuUkTkSOApYHLklt/nWhnDicAC\nvAG3HwGvAyOccysAnHOzRCQDuA/vrM0q4CLnXF3UOvKBemAxcBSwFJjUyriMMcYYE6CEx6Q45z7B\nm3Qt8etETa/vGufc551z3ZxzvZxzBwuUqD4FzrmTnXMZzrmRzrmKuOX7nHNTnHPZzrljnHPfdc59\n0BbxpYP465jpSkueAEuLlx6+UxqIH6OSrpYu1bHvajlGteTph2QHzj4MNB5pY1JSTU1N0CH4Qkue\nAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfkn0KsgMmi8g3gH/gTVX/6ULn7P6rFDJjxoygQ/CFljwB\nQtc1vlMgHZ11kY48QyEd+66WY1RLnn5ItkgZiDd2BOCsuGVtchnIGGOMMbolVKSIyOeBzc65Ye0U\njzHGGGMMkPiYlE3ACQ1vRGSRiMRPtGZSTPykQOlKS57gzY2iQW1YR57hsI59V8sxqiVPPyRapEjc\n+1HA0W0Ui2knEydODDoEX2jJE2DBjAVBh+CL1Qt15LlggY59V8sxqiVPPyR7d4/pQAoKCoIOwRda\n8gQYfd3ow3dKA2eN1JHn6NEFQYfgCy3HqJY8/ZBokeJoPDDWBsqmOC3T/mvJEyCnX07QIfiixyk6\n8szJ0bHvajlGteTph0Tv7hGgWET2Rd53BX4vIvG3IF/WFsEZY4wxRq9Ei5T4C8R/aqtAjDHGGGOi\nJXS5xzmX25JXewVrkhP/KPB0pSVPgLLSssN3SgMVq3XkWVamY9/VcoxqydMPNnBWgfLydnuKdkrR\nkidA5cbKoEPwxYfv6cizslLHvqvlGNWSpx+sSFGgqKgo6BB8oSVPgCunXRl0CL4Y9B0deV55pY59\nV8sxqiVPP1iRYowxxpiUZEWKMcYYY1KSFSnGGGOMSUlWpCgQCml53L2OPAGK8nVc8175gI48i4p0\n7LtajlEtefrBihQFJk+eHHQIvtCSJ8DwscODDsEXfYfqyHP4cB37rpZjVEuefrAiRYERI0YEHYIv\ntOQJ0P+c/kGH4IuT+unIs39/HfuulmNUS55+sCLFGGOMMSnJihRjjDHGpCQrUhQoLS0NOgRfaMkT\nYN3KdUGH4It/v6Ejz3XrdOy7Wo5RLXn6wYoUBUpKSoIOwRda8gRYs2xN0CH4Yku5jjzXrNGx72o5\nRrXk6QcrUhRYtGhR0CH4QkueAHl35gUdgi+GXaUjz7w8HfuulmNUS55+sCLFGGOMMSnJihRjjDHG\npCQrUowxxhiTkqxIUSA3NzfoEHyhJU+A4hnFQYfgi5dKioMOwRfFxTr2XS3HqJY8/WBFigJaZj/U\nkidA/8E6ZmI9qa+OPG3G2fSiJU8/WJGiwLhx44IOwRda8gQYdOGgoEPwxakDdOQ5aJCOfVfLMaol\nTz9YkWKMMcaYlGRFijHGGGNSkhUpCpSVlQUdgi+05AlQsa4i6BB88cE7OvKsqNCx72o5RrXk6YfA\nixQRuUVE1ojIbhHZLiJ/EZHTm+h3u4hsFZEaEXlGRPrELT9KRIpEpEpE9ojIYhE50b9MUtesWbOC\nDsEXWvIEWLZgWdAh+OKtFTryXLZMx76r5RjVkqcfAi9SgGHAXGAw8A3gSGC5iHRr6CAi04DJQB4w\nCPgYWCYiXaLWMxu4GLgcOBc4GXjMjwRS3cKFC4MOwRda8gS49s5rgw7BF0Mn6Mjz2mt17LtajlEt\nefqhc9ABOOdGRb8XkauBD4CBQMM5sxuAO5xzT0X6TAC2A5cCj4pId2AicIVz7rlIn1xgvYgMcs7p\neEpZMzIyMoIOwRda8gTo0rXL4Tulgc5ddOTZpYuOfVfLMaolTz+kwpmUeMcBDvgQQEROA3oBzzZ0\ncM7tBl4GhkSavoJXcEX32QhURvUxxhhjTAeSUkWKiAjeZZsy59xbkeZeeEXL9rju2yPLAHoCdZHi\npbk+xhhjjOlAUqpIAX4L9AeuCDqQdDJ16tSgQ/CFljwBFs9ZHHQIvih/Qkeeixfr2He1HKNa8vRD\nyhQpIjIPGAWc75z7T9SibYDgnS2J1jOyrKFPl8jYlOb6NGnUqFGEQqGY15AhQygtLY3pt3z5ckKh\nUKPPT5o0ifnz58e0lZeXEwqFqKqqimmfPn06M2fOjGmrrKwkFAqxYcOGmPa5c+c22tFramoIhUKN\nbm8rKSlp8lkRY8eOpbS0lJycnLTII1pTeeTk5HTIPMaPH9+o7yMzH6GsNHa9lRsqKcovIrwrTI+e\nPQ62L12wlJdWvhR4HonuVzt37oxpf/3pJ3jz2aUxbZ27HMXKB4r4aHvsYbz5ldVsicstqDwS2a82\nbdoU075ixVwWL55Kjx6fHqN1dTUUFYUa3Za8Zk0JCxdOSYk8kt2vcnJyUmp7tNfxsWvXrrTIo2F7\nlJSUHPzd2KtXL0KhEPn5+Y0+0x7EOefLFx0yCK9AuQQ4zzn3ThPLtwK/ds4VRt53x7uUM8E59+fI\n+x14A2f/EunTF1gPnNPUwFkRGQCsXbt2LQMGDGiv1Iw5rKqqKgofLCRrYBaZx2Um/PnwrjDVa6vJ\nn5hPdnZ2O0TYPjZu3MjE/HyyBp5D96zErsrurt5G9drVPFhYSN++fdspwrZXVVVFYeESsrIuIzMz\n8W0VDldRXb2E/PzLOtS2NumnvLycgQMHAgx0zpW31/cEfnePiPwWGAeEgI9FpOGMyUfOudrI/88G\nbhWRCmALcAfwHvA4eANpRWQ+cI+I7AT2APcCL2i/s8cYY4zpqAIvUoAf4A2MXRnXngv8EcA5N0tE\nMoD78O7+WQVc5Jyri+qfD9QDi4GjgKXApHaN3BhjjDHtJvAxKc65Ts65I5p4/TGuX4Fz7mTnXIZz\nbqRzriJu+T7n3BTnXLZz7hjn3Hedcx/4m01qir9ema605Amwbcshh1qljfixKOlq2zYd+66WY1RL\nnn4IvEgx7e/mm28OOgRfaMkT4LE5OiZTfvVJHXk+9piOfVfLMaolTz9YkaLAvHnzgg7BF1ryBBg3\nbVzQIfjiq5fryHPcOB37rpZjVEuefrAiRYHoW5DTmZY8AXr06nH4Tmng6ON15Bl9C3I603KMasnT\nD1akGGOMMSYlWZFijDHGmJRkRYoC8bMUpisteQIsLV56+E5pIH4G2nS1dKmOfVfLMaolTz9YkaJA\nTU1N0CH4QkueAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfrEhRYMaMGUGH4AsteQKErmv8HJB0dNZF\nOssVS10AACAASURBVPIMhXTsu1qOUS15+sGKFGOMMcakJCtSjDHGGJOSrEhRIP6R3+lKS57gPflY\ng9qwjjzDYR37rpZjVEuefrAiRYGJEycGHYIvtOQJsGDGgqBD8MXqhTryXLBAx76r5RjVkqcfrEhR\noKCgIOgQfKElT4DR140OOgRfnDVSR56jRxcEHYIvtByjWvL0gxUpCgwYMCDoEHyhJU+AnH46pt3u\ncYqOPHNydOy7Wo5RLXn6wYoUY4wxxqQkK1KMMcYYk5KsSFFg/vz5QYfgCy15ApSVlgUdgi8qVuvI\ns6xMx76r5RjVkqcfrEhRoLy8POgQfKElT4DKjZVBh+CLD9/TkWdlpY59V8sxqiVPP1iRokBRUVHQ\nIfhCS54AV067MugQfDHoOzryvPJKHfuulmNUS55+sCLFGGOMMSnJihRjjDHGpKTOQQdgjOm4wuEw\ntbW1SX12586d1NfXJ/3d9fv3s3PnzqSnIO/atSuZmZlJf78xpv1ZkaJAKBTiiSeeCDqMdqclT4Ci\n/CImFU4KNIZwOMz99z9KdfX+pD5fXb2NbdurOH5/859f+UAR51/TOM/9dfvYvuPfFP+lmKysrKS+\nPyszi7wJeSlRqBQVhZg0Kf33XS3HqJY8/WBFigKTJ08OOgRfaMkTYPjY4UGHQG1tLdXV++nW7QIy\nMo5L+PPhcDn7PynlwCHOpvQd2nSe9fv384nUcVSfo8j6fOJFSs2eGqrfrqa2tjYlipThw3Xsu1qO\nUS15+sGKFAVGjBgRdAi+0JInQP9z+gcdwkEZGceRmZmd8Oe6du1+2D4n9Tt0nl2P7krmcckVGXvZ\nm9Tn2kP//jr2XS3HqJY8/WADZ40xxhiTkqxIMcYYY0xKsiJFgdLS0qBD8IWWPAHWrVwXdAi++Pcb\nOvJct07HvqvlGNWSpx+sSFGgpKQk6BB8oSVPgDXL1gQdgi+2lOvIc80aHfuulmNUS55+sIGzCixa\ntCjoEHyhJU+AvDvzgg7hoH37wkl9rqZmF84dep6UYVc1n6dzjr179xIOJ/794XCYuk/qEv5ce8nL\n07HvajlGteTpBytSjDFJq6ur5aVXH2L/EYlP6Lbzw/f4eF8V9fWfJPzZ+v11hD/+mFdeeZuKLR8m\n/Pm6mlrYUks4HCY7O/E7k4wx/rAixZgorZlBdf/+/XTunPghVV1dnVJ/1Sdi//791NR/yNFfyOLI\nbhkJfXbPuzuo/1c99fWJTwZXX7+fAweEzp0/z9FH90n48wfqdrBn72vs27cv4c8Gra6ulurq6qQ+\nm+w+2sBm6TV+syLFmIhwOMz9f7yf6nDivwDq9tWxcf1G+v5XX7oc2SWhz9Z8XMMbG97g+C8fTybJ\n/QKo21eX9C+utvjFc2S3DLomuI7ORx3Vqu8E6Ny5K0d1TTz2fV2Su0TVINlitrq6mrq65AvSffvC\nvPrqG/z+9/VkZByd0Gfr6mrZuPFN+vb9Il26JLaPNsjK6kxe3hgrVIxvrEhRIDc3lz/84Q9Bh9Hu\nWptnbW0t1eFqup3ejYxjEjsrsOP9HVS/Ws2Rpx5JVq/EZkA98P4B9r6xl/2ftPyMQvGMYq6efjUA\n+/bu49XXXuX39b8nIyOxuCG1poeP91JJMUPGXR10GDFa8ziAmpowb7xRwfHH1xL94y4uzuXqqw+/\n737yyT727j2Cbt2Gk5X12YS+e8eOd6iufosjjxya8GfBG0NUXb2iVbP02r9FJlEpUaSIyDBgKjAQ\nOAm41Dn3RFyf24FrgOOAF4DrnXMVUcuPAu4BxgJHAcuAHzrnPvAliRSmZfbDtsoz45iMhGcxDX/k\n/WXeNTPxGVAbPpuI/oM/nYn1k7pP2HtgL92+0C3hAinVpoePd1Lf1JlZt0FrHgdw4MA77N37Nvvj\nnleU6IyzXbsmPstvOHKGMJnPNtjbykl67d8ik6iUKFKAo4F1wHxgSfxCEZkGTAYmAFuA/wGWicgZ\nzrmGc6ezgYuAy4HdQBHwGDCsvYNPdePGjQs6BF9oyRNg0IWDGrUlUyBBak0PH+/UAY3zTBXJPA4g\n3MylxEGDdOy7Wo5RLXn6ISWKFOfcUmApgIhIE11uAO5wzj0V6TMB2A5cCjwqIt2BicAVzrnnIn1y\ngfUiMsg5p2OyBWOMMSaNpPxkbiJyGtALeLahzTm3G3gZGBJp+gpewRXdZyNQGdXHGGOMMR1Iyhcp\neAWKwztzEm17ZBlAT6AuUrw010etsrKyoEPwhZY8ASrWVRy+Uxr44B0deVZU6Nh3tRyjWvL0Q0co\nUtrVqFGjCIVCMa8hQ4Y0evbC8uXLCYVCjT4/adIk5s+fH9NWXl5OKBSiqqoqpn369OnMnDkzpq2y\nspJQKMSGDRti2ufOncvUqVNj2mpqagiFQo0OgJKSEnJzcxvFNnbsWEpLS5k1a1Za5BGtqTxmzZrV\n6jw+2vkR82+bz7Yt22LaVyxcweI5i2Pa6mrrKMovalQwrFm6huIZxY3yuP+W+xs9c+et1W/xyJ2P\nNOr7yMxHKPv/7d19mFTVfcDx7w9mYdmFCKwvxKpBQyTmRRCMjdGaSBKpJtJWE2OMT1VMjY2xDWk1\naZ8m0fSxiaYJTeImYjQS20JsjBrSGkjR0ESFIC8i4oIgLAvIwu6wuzA7O7Pz8usfd1ZmZ3dh7rze\nuff3eZ59dubOPXfOb8+8/Pbce855avDfp21rG80Lmol0R1jx0xWD6rb3tb2D9j3UfojmBc15xZHo\nT3D99dcX1R4Hdmxj1UPNQ/Zd+/gSdqwZfNxDe9pY9VAz/TlXYb7862VseWb54G3Lf8Wqh5rpOTA4\njr0vbyLeeWTQtmR/P6seah6S2LRuWMvqpYuH1G3bxo2sXLly0DY374+9ezfR3DyPSGTw62rZsq+z\nfPng19WhQ200N8+jo2PnoO3PPvsDHn/8DlasOPoe7e+P0tw8b0jisnbtUp588h+G1O3BBz81ZO2f\nV1/9Dc3NQ+PYufP3rF8/eDbUtrYNecfR03OI66+/vuD3+X333Vf0+xy8/3m1YMECX8Qx0B5Lly59\n87txypQpzJs3b0iM5SKqWpEnypeIpMka3ZM53fM6MFNVX87abxWwUVUXiMilwEpgUnZvioi0AgtV\n9XvDPM8sYP369euZNWtWOUOqumg0WtDQ1FpTbJydnZ0s/MlCmmY3ub4AtX13Oyv+YwVzb5jLlNPc\ndd4VUrY/1s+Y+jFFP3ekO0J4fZgF8xe4nnm1s7OTe+55lM1te5h43umu50nZt2Mz65b/nPM/fh1/\nNPWdw+6T7O8nNMycHvmUPZbD4XbC69fwk4ULmT59uquynZ2dLFz4BE1NV7m+cLa9fRsrVixk7tyv\nMGXK1De39/dHGTPm+K/dkcoX89z5ikQ6CYefYMGCqwqepdc+i/xjw4YNzJ49G2C2qm4o1/N44sLZ\nY1HVXSLSDnwYeBkgc6HsH+OM4AFYDyQz+zyZ2Wc6cAawutJ19hq/v1kGBCVO4M0EpRT6E4VNBFfs\nxGT5GC5BKZVUMklXV9eQ/1iPx4m7sFmJR5JPguIHQXmPBiXOSvBEkiIijcA0YGBkz1kiMgM4pKp7\ncIYX/5OI7MAZgvzPwF7gl+BcSCsiDwPfFZEu4AjwfeB5G9ljzMhi8RgbN7TwQOf/0NDgrifEmZhs\nG6Mme29+leNJ9sc50LGHxU8upqnJ5dwy0SibW/YyefK8gucbMcbkxxNJCs7onN/iXCCrwHcy238K\nzFfV+0SkAViEM5nb74HLs+ZIAVgApIDHcSZzWw7cVpnqG1ObkokkfX1p6usvpqnpLFdl0+mdxGKb\nqE+ly1S78kklkySkn7HTxtJ0lrskRduVvrW9JBK1t+6PMbXGExfOqur/qeooVR2d8zM/a5+7VPVU\nVW1Q1bnZs81mHo+r6u2qeqKqTlDVT9pss47cC6j8KihxAkMufi1GKpkknXafaKTTaRKJWEGrGOdr\nw7LSxZlLVdFR6vyr5uInJSlSqVRJ6/L448F47QblPRqUOCvBKz0ppozOOOOMalehIoISJ8DkUyYP\nup9Kpejt7SUScTfFfle4i/0HdrP61cWMb3PXoxCJhGmPtjCuYwInJ6dCgYsjHkvjxMnH36kAqWQ/\nkd5eXnzxNXa0HnJVNtJ9mDfeOEBXVzvjx7v7m/X2dpFI9BGP9w7aPnlyMF67QXmPBiXOSrAkJQBu\nv/32alehIoISJ8Cca+e8eTsej9PeHmb16hbGT9zn6jhd+zvo7jvM1DNCNLzV3Rdu6nCSUX2jSHTH\nSKXcL7aXj+mXzDn+TgVIpZKk00IodBaNjdNcle3t2k7P4Q2saXmUbe0uR1NFwrzRu5l1ryzllFO+\nQn1mBec5c4Lx2g3KezQocVaCJSnG1LhkMkkykaau7kwaG9/mquyRuq2k05sYVTfG9RDi/lSEUaEQ\nzmVktSkUqmdsvbu4RxEiXZckNHUsDacVkNilRtOX7iKZjFGO3idj/MSSFGN8opAv3NDosWWqjf+F\n6usLS+zqQlB71xobUxWeuHDWlFfubIR+FZQ4gSEzyfpV7kyzftXeHozXblDeo0GJsxIsSQmAO++8\ns9pVqIhajjP7wtd8fh777mNv3o5Go3ht5uhS2firX1S7CmWRSiaIRMJEIp1EIp089tgX37x9rJ/e\n3q6yjqYqt1p+j7oRlDgrwU73BMD9999f7SpURK3GWciFryfPPpuVK52ZqLv2dxDp7Sv5sFgveN/V\nn652FUounUyx/8AWfrfpgTdnmj357dNY+eLC45aNRMIc6Hl1yOigWlGr71G3ghJnJViSEgBBGQ5X\nq3EWcuFrY+PR2wMXv6ZqcFK142mcVJ4hyNWkqTSJUTHqzhxHw0TnwtsG8rsAN34wQmJnnGSyNieS\nq9X3qFtBibMSLEkxxiMKufAV7OLXWlU3zv2Ft6HD9WWqjTHeZNekGGOMMcaTLEkJgHvvvbfaVaiI\noMQJsOWZ5dWuQkVYnP4SlPdoUOKsBEtSAiAajVa7ChURlDgBUv39x9/JByxOfwnKezQocVaCJSkB\ncPfdd1e7ChURlDgBzr18XrWrUBEWp78E5T0alDgrwZIUY4wxxniSje4xvhKJRIjFYgWVDYfD9CeC\n0e1uTCH6+2OEw+GCytbX1zPe5WgmYyxJCYDOzk5OPPHEalej7FpbW3ni6ScIRwr7EI32Rtm8dTOT\nzpvEeI8v/BaLRFwPX61FFqd3xOMRNm7czAMPpGhoaDx+gRxNTSGuumoOU6dOLX3lPCYon7mVYElK\nAMyfP59ly5ZVuxpld+uttzJ7zmzGnT2OhgkNrsun96Xp29xHMpEsQ+1Ka83PfsqHPntbtatRdhan\ndyQScfr6RjNu3KU0NZ3mqmw02k04/Cy33nory5f7fyRTUD5zK8GSlAC46667ql2Firjjjjt4dv2z\nNExoYPxE9/+VRnoiZahVeZw798pqV6EiLE7vqa+fyPjx7nsJ+vqc92gQBOUztxLswtkAmDVrVrWr\nUBEzZsyodhUqZvLpwZh22+L0l6C8R4PymVsJlqQYY4wxxpMsSTHGGGOMJ9k1KQHw8MMPc/PNN1e7\nGnkrdBjxokWL6CcYQ4h3rHmOae+/uNrVKDuL0z/6+2MsWrSIz33uc67L1trw5Vr7zPUyS1ICYMOG\nDTXzholEIjz46IMFDSP+76f+m5POOqkmhhAX69DetmpXoSIsTn8YGL7c0dFCNHqS6/JNTSFuueWa\nmklUaukz1+ssSQmA5ubmalchb7FYjHAkXNAw4iumXMHvnvpdTQwhLtYFn7iu2lWoCIvTHwaGL3/s\nY/cXPHw5FovVTJJSS5+5XmdJivGkQoYR19IQYmOCqJjhyyaYLEkxpkRSqRS9vb1EIu6SpWg0iqqW\nqVbGb9LpFNFoF5FIp6tyvb1dpFKJMtXKmPKwJMWYEojH47S3h1m9uoXxE/e5Ktu1v4NIbx+pVKpM\ntTN+kezvpzcaZt32Jbze+ayrspFImAM9rxKP95apdsaUniUpATBv3ryKT9Fc6AidYhb5W/LNJTSd\n3lRQ2WIlk0mSiTR1dWfS2Pg2V2WP1G0lnd5EKpXOu8yqh5o9P416KVicg6WTSdJ1SUJTx9JwmrvX\nevxghMTOOMlkvNBqFm3Jks/ypS+tdF2umIUNofKjg6rxmetXlqQEwBe+8IWKPl8xI3SKWeTvgssv\n4PVXXnf9nKUUCtUztt5dvUOjx7p+nukXX+q6TC2yOIcXqq93vSBh6HC9q/3L4YIL/tJ1mWIXNoTK\njw6q9Geun1mSEgCXXXZZRZ+vmBE6xSzyN23mtKonKZXy1ne+q9pVqAiL01+mTbvEdZliFjaE6owO\nqvRnrp9ZkmKGVejpGjh6yqZpQpON0DHGlEShI4MAenoKP11UaxPJ+Y0lKWaIYk7XQHGnbIwxppSK\nPV1UaxPJ+Y0lKT420Bvy9NNPc8UVV+RdLhwOs79rPye8+wTXp2uguFM2xWj5Q0tFn6+a9mx+idPf\nO7Pa1Sg7i9NfWlp+w5Qpt1T0OYs5XRSNdrN//9Ps27ePpqb8L1Qe+My1Xpji+S5JEZHbgL8HpgCb\ngNtV9cVq1EVV6erqKrh8fX09DQ3ukwQY3Buy+P7FbGvflnfZgZ6QOefNcX26Bqp3yua5J5/jjPcE\nY8n7Lc8sD8SXmsXpL8899yMuvbSyScqAQk4XFdoLs3jxt9i2LWa9MCXgqyRFRD4FfAe4BVgLLABW\niMjZqupu5qMSWLduHctWLUMpbKKuSfWTuPaqaxk71v3oj+zekImnTaRpdv7/BVSrJ6RYjScUduV/\nLaofP6HaVagIi9NfGhurM0VAoQrthZk48QnGjZtTUC9MtmQySShU2Ne0X3pxfJWk4CQli1T1UQAR\nuRX4GDAfuK/SlTl8+DBdo7o4c8aZrsuG3wiz4lcraD/czpi6Ma7LZ/eGhEIhVz0idvGqMcYc5bYX\nJhQaw+jRoaKuhenvj7Ft2xamT38vY8a4/w7wSy+Ob5IUEakDZgP/MrBNVVVEVgIXVqteo0OjmTDJ\n/X9JPR099KX6qH9HPZOaJrkuX6u9IdWUTqVJp9Mkk0kSCXfTh6eSNlusMeaoYodOd3TsJBx+lbq6\niwOxKONIfJOkACcCo4EDOdsPANMrXx1HKpki0u2+ZyIWdYb/jhs/rqauC6lVyWSStS++xN69B/n9\n719iwqS3uCp/aH8HiaSti2K8rdB1f8DW/ilUoUOnI5nRlUFflNFPSYpb9QAtLeUbEbJv3z762vrY\n0rbFddlYX4xEb4Ldr+yms839B0rXwS4i3RFaN7ey85WdbH1xa0Flu/d3F/XcbssXU3bPa3sYO2Fs\nQWWTySQduw4Sj8QJt3XS2+lufZNI1xH6o3E6du2g71CPq7LdB/eSiicI795BKhLNq0xH6+u0vbKh\n4PLFPPeAWF8PsUOHkQi0b2+he/8bJX/u7DhLVe9iy5fjbzZSnKV87p7wfg537+eZtd9h/Bb3vbOx\n2BE6D7Syfftv6e52d4F6V9c+IpEO9uzZyNatzxRUtrV1Nd3d7idrLKZ8oWV37lzDrl1/qFq9Y7EI\n8XgbmzZtYtIk922dj6zvzrJOZSx+WX01c7onClytqsuyti8GTlDVv8jZ/zrgPytaSWOMMcZfPqOq\nS8p1cN/0pKhqQkTWAx8GlgGIiGTuf3+YIiuAzwCtQGFTqxpjjDHBVA9MxfkuLRvf9KQAiMg1wGLg\nVo4OQf4E8E5V7ahi1Ywxxhjjkm96UgBU9b9E5ETgG8ApwEvAXEtQjDHGmNrjq54UY4wxxvjHqGpX\nwBhjjDFmOJakGGOMMcaTfJOkiMhtIrJLRPpEZI2IvO8Y+14kIs+JSKeIREWkRUS+OMx+n8w81ici\nm0Tk8vJGkZ9SxyoiN4hIWkRSmd9pEXE/+USJuYkzp9xFIpIQkSETT3ixTUsdpx/aU0Q+mFX3dFY8\nJ+fsV9PtmU+cfmjPzP5jROQeEWkVkZiI7BSRG3P2qen2zOx/zDi92p7g+rX7yDBxpEVkc85+xbWp\nqtb8D/ApnGHEfwm8E1gEHAJOHGH/mZky5wBnANcBEeCzWft8AEgAX8KZsfYbQBx4lw9jvQHoAk4C\nTs78nFRLcWaVOwHYAfwa2JDzmOfatExx1nx7Ah8EUsDbs2I42W/tmWecNd+emTK/BF4ALs18Fv0x\ncKGf2jPPOD3XngW+didkv2aBU4FO4KulbNOq/lFK+MddA3wv674Ae4E7XRzjF8BPs+7/DFiWs89q\n4Ic+jPUG4FC127EUcQJLgbuBrzP0y9tzbVqmOGu+PTn65f2WYxyz5tszzzj90J5/mvnCm+jz9swn\nTs+1ZyGxDlP+z4EkcHop27TmT/fI0YUF35xrWZ2/RN4LC4rIeZl9V2VtvjBzjGwr8j1mOZQxVoDx\nme7JNhF5SkTeVZpau1donCJyE3Amzpf3cDzVpmWME3zQnjgfki+JyBsi8hsR+UDO475oT44fJ9R+\ne14JrAO+LCJ7RWSbiHxbRLKnVPdDe+YTJ3ioPaE03y3AfGClqu7J2lZ0m9Z8ksKxFxaccqyCIrJH\nRGI4E781q+ojWQ9PKeSYZVauWLfhvMDm4czCOwp4QUROLVXFXXIdp4i8A2cF7M+oanqE43qtTcsV\nZ823J7Af+BxwNXAVsAdYJSIzs/ap+fYkvzj90J5nAX8CvBvnP+6/xZloszlrHz+0Zz5xeq09oYjv\nFgAReStwOfDjnIeKblNfTeZWgIuB8cD7gXtFZIeqPlblOpXLiLGq6hqcrj4ARGQ10ILz4fn1KtTV\nFREZhbMO09dVdWAlLqlilcoi3zhrvT0BVPU14LWsTWtE5O04s0jfUJ1alV4+cfqhPXG+iNPAdaoa\nARCRLwE/F5HPq2q8qrUrnePG6ZP2zHUjznU2vyz1gf2QpHTinNM9JWf7KUD7sQqq6u7MzS0iMgW4\nCxhIUtoLOWaZlSvW3H2TIrIRmFZUbQvnNs4JwPnATBEZ+I9lFM7yTf3AZaq6Cu+1abniHKQG23Mk\na4GLsu7XenuOJDfOQWq0PfcD+wa+uDNacJLs04DX8Ud75hPnIB5oTyj+tXsT8KiqJnO2F92mNX+6\nR1UTwMDCgsCghQVfcHGo0cDYrPurs4+Z8dHM9qooY6yDZP5jfy/OG67iCojzMPAenJFMMzI/DwBb\nM7f/kNnPU21axjgHqcH2HMlMBsdQ6+05ktw4B6nR9nweOFVEGrK2Tcfpddibue+H9swnzkGq3Z5Q\n3GtXRD6EMzrt4WEeLr5Nq31FcSl+gGuAKIOHToXJDOsCvsng0SyfBz6Ok7lOA24GeoC7s/a5EGeo\n1MDQqbtwhmdVewhyOWL9auaFcyZwHs7IkV6chRlrIs5hyg836sVzbVqmOGu+PXHO5c/D+fB7N/Bv\nOEMZP+Sn9swzTj+0ZyOwG6f39hzgEpxrMx7wWXvmE6fn2rOQWLPK/TvwwgjHLLpNq/YHKcMf+PNA\nK9CHk6Wdn/XYI8CzWfe/AGwGjuCcR1sH3DLMMa/G+S+1D3gZZ7FC38UKfBfYlTneG8CvgHNrKc5h\nyg758vZqm5Y6Tj+0J3AHsD3z4d2BM+rgEr+1Zz5x+qE9M9vOxhnZEcH5Ir8PGOun9swnTq+2Z4Gx\nviUT5/xjHLOoNrUFBo0xxhjjSTV/TYoxxhhj/MmSFGOMMcZ4kiUpxhhjjPEkS1KMMcYY40mWpBhj\njDHGkyxJMcYYY4wnWZJijDHGGE+yJMUYY4wxnmRJijGmIkTkbSKSFpFzizzOIyLyxHH2+a2IfDfr\n/i4R+ZtintcYU3mWpBhjhsgkAmkRSYlIXES2i8hXM4uhFaNaU1yfDzw4cCcT27wq1cUYk6dQtStg\njPGsXwM3AvXA5cAPcRYLuy97p0zioprfGhtS4jrmRVXD1XheY0xxrCfFGDOSuKp2qOoeVX0QWAn8\nmYjcICJdInKliGzBWdX0dHF8TUT2iEhMRDaKyNxhjnuOiDwvIn0isllELhl4QERGichDIrJTRKIi\nsnWk0zSZ5zooIj0i8iMRGfGfruzTPSKyC6dH56lMj8rOzKmolIjMyin3RRFpdfuHM8aUhiUpxph8\nxYAxmdsNwJ3AzcC7gYPAF4EFOMuyvxdnJdhlIvL2nOPcB3wbmImz0uoyEZmUeWwUsAdn5dRzgLuB\ne0TkEznH+AjOcvIfBK4FrsJZETof78Pp0bkBmAK8T1V3A/8L3JSz743AT/I8rjGmxCxJMcYcl4h8\nBJgLPJPZFAL+WlXXqOp2VY0Bfwd8S1V/ntn2FeAlnOQl2w9U9SlV3Qb8NXAYJ9lBVZOqereqblTV\n3aq6FFgMXJNzjDhwk6q2qOqvga8BeV0Yq6qdmZs9qnow61TQw8CnRaQuE/Ms4D2Z5zfGVIElKcaY\nkVwpIkdEJAb8D7AUp2cDoF9VXxnYUUQmAKcCL+Qc43mcHpFsawZuqGoKWJe9j4jcJiLrMqdyjgC3\nAGfkHGOTqsaz7q8GxovI6W6DzPIUkAb+InP/RuC3qtpWxDGNMUWwJMUYM5JngXOBacA4VZ2vqn2Z\nx/pGLlY4EbkW51TQj4GPAjOARzh6mqlsVDUBPArclOlN+TRO74oxpkosSTHGjKRXVXep6l5VTR9r\nR1U9ArwBXJTz0EXAqznb3j9wQ0RGA7Oz9vkA8LyqLlLVTaq6E8i9pgVghoiMzbp/IRBR1T3HjcqR\nAEYPs/0hnOTo85nHn8zzeMaYMrAkxRhTKt8Gviwi14jI2SLyLZyekO/l7HebiPy5iEzHGdY8Eae3\nBGA7cL6IXCYi7xCRb+Bc6JprDPCwiJwjIlcAdwE/cFHXVuDDInKKiEwc2KiqW3FOR90LLMk5pWSM\nqTCbJ8UYUyrfB94C/CtwMk7vyJWq+nrWPgp8JfMzA9iR2edQ5vFFOKN+fpbZdynQjDNPS7ZncBKa\n3+EkLEs4er3MwPNwjPt/B3wH+CtgH3BW1mMP4/TM2KgeY6pM8pt/yRhjgkFEvgpcraozq10XRDhs\nLwAAAIJJREFUY4LOelKMMQYQkUbgTOA24B+rXB1jDHZNijHGDLgfeBFnVNMjx9nXGFMBdrrHGGOM\nMZ5kPSnGGGOM8SRLUowxxhjjSZakGGOMMcaTLEkxxhhjjCdZkmKMMcYYT7IkxRhjjDGeZEmKMcYY\nYzzJkhRjjDHGeJIlKcYYY4zxpP8H4qHiDWIZvp8AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -929,7 +958,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4FNXXwPHvCaGF3hGkBFCqUkIRkKIoHUGaRukCKor8\nUF5AioJYANEggnQQKUFAUJrUIFVAEnqx0DsEEYRQUu77x2wwZZNsQjabTc7nefYJO3PnzpndYffs\nnTv3ijEGpZRSSiln8nB1AEoppZRK+zThUEoppZTTacKhlFJKKafThEMppZRSTqcJh1JKKaWcThMO\npZRSSjmdJhxKKaWUcjpNOJRSSinldJpwKKWUUsrpNOFQSimllNNpwqHciohEOPAIF5H6IlLCzvJr\nIrJaRJ5KYD9jbdv4x7E+Zt33ReSqiGwXkU9EpJidbRrYyraNsqyrbVmIiDxiZ5tfROSAneUiIl1E\nZJ1tv/dF5LKIrBWRXiKSyYHXMrKOnbbX5aaI/C4ic0Sklp24ox7rcVs5b1uZQbZ1z8exr9Uicl1E\nCjsQV2cR2Wwrf1tEDojIcBHxslP2lIgsj6MeH1tMXey8X/GdO8UTiM/LFs9+W3z/iMgWEekcR/m4\n9nXBgdeihIjMFpG/ROSOiFy0vTYj4tlmt63+1+NY3zVKDHXiKHPWtn55jOUxX6vztnOuQYxycb4v\nUcrMjue1CYlvW+WePF0dgFKJ1CnG867Ac7blEmX5USDyC2oBsBrIADwOvAUEiEgNY8zhOPbzMnAS\naCUi2Ywxt+MoF1m3B5AHqAH0A/qJyGvGmO9jlI9r8qLMwGDbtvGWF5EswI9AY2A78DlwGcgLNAAm\nATWBXnHsK9LXQB9bXfOAMKAs0Aw4DuyKUX48sAfICFQDXgeai8gTwBfAK8A3IlLJGHMvSrwdgKbA\nm8aYS3EFIyIegD/QAdgCfAiEAPVs/+4gIo2MMVejbOboZFBXiH3uDACKAv8j+rlzlTiISEEgAOt1\n8sd6DbMA7YA5ItIMeNXEnqRqHfBdjGV34gtYREpjvd63gVnAKeARrNd+IDDCzjZlgOpY5+6rwNR4\ndnEH6z3bEaOOBlivy904tos8FgG8sc6hABFpboxZayvj6PtyF3iN6K8/QLiD2yt3YozRhz7c9oH1\ngR8ex7oSQATwbozlTWzLJ8ax3TNYH3gNgHtAZ0frtq0rBhzD+kB/IsryBrZt2kZZ1tW2LBDry7Vw\njLo2AQdiLJtii+/tOOIvDbyRwOtW0FbH5DjW548vbtvyt211DLI9r4WVtHwcpUx24BywzYH38n3b\nfkbbWdfCVveqGMtPAsvjqM/HVl+XONavAE4k8nxbA4QCLeysG2vb3//FWB4BTEjCuT3Jdv49Gt/7\nE2P5SOAi0Mb23hS3UybynFuMlah6xFg/FdgNnIj52to7FqCSbfnPjrwvUcrMBm4m9nXRh/s+9JKK\nSo+22v6WjmP9q8ARY8xmYIPtucOMMWeBblitFgMd2QT4FKvFcXB8BUXkUaxfhD8bYybGsf/jxpgp\nCezTG+tX5Q57K40xwQkFjfVLP/JXLsaYXVjJ0AARKWcr8wlQAOgdX0W2VpsBWInaEDvxrALmAE1F\npKYDsSU722WmxsBsWzwxvQ/8CQwSkczJsMtSwDljzLmYK+J5f3yxEolVwA2sFgx7DFYLTT7gwWUw\nEckItMdquYvZ6mC/ImMOAcHYzgOl4qIJh0qPIj8Yr8dcYev70BbrAxesD+VnbU3pDjPG7MS6LGG3\nT4MdJ7GaqXsl0M+hGdb/2/mJiceO07a/HUQkaxLrKGP7ey3Ksvexvnymikg1rOb2z40xRxKo62ms\nS1ILjDERcZSJbMZvmcR4H1YrrC/qufZWGmPCsc6bPEDdGKuziEi+GI+E+tmcBoqJyDOOBGdLiMoA\n/saYUGAp8SfLp4CdWElKpOZATmChI/u07TcP1jFfS6hsHNvHfF3yiUiOpNSlUjdNOFR64GX7ECso\nIk9jNeUarF+CMbUCcgGRfS9+xGrKfzkJ+z0EFBCR7A6W/wSrf8SgeMpEthwcirpQRDLG+MDOG9+O\njNWX4jusSxXnROQHEXlXRMrGs1kOW92FRaQ58BVWU/oPUer9F3gHq9/FOqxEalR8sdhUwHpPYnWQ\njWK/7W95B+pzhgox4rBnP1ZSFDPG17D6hkQ+rpDwOTUBuA9sFJEgEfETkRfiSRA7AWeMMb/ani8E\nKojIk/HsYwHQJkqLzCvAZhNPXxv+S57y21qbFmN9lyxK4HjsyU701yXyEbPvk0oDNOFQ6cFIrA+x\nS1idEcti9b1YZqfsK8AeY8wJAGPMLazm6URdVrG5Zfvr0K81Y8xJrF/PvUWkUBzFcsaoO1Jzon9g\nn3Jgf92w+mGcwLrm/zlwVEQ2iEgRO5vMstV9Aav/Q1as/hFBMepditWRNg/wlonSgTQeka/Rv/GU\niVyXM54yzvQwMf6E1bk58vE8sJZ42FqFqmCdEyWwErkfgcsi0jNqWRHJAHQkestEANb7Fd+5uwir\nc3VLW2LckoRbzyKTpytYLSS1gS+MMV8lsJ09d4BGRH9tniOBS4vKPeldKio9mIb1KywL8CzWB3es\nc19EcmF9cX9tu0Mg0g6grYiUMcb8lYj9RrZsxPcFFdPHQGesD9z+dtZH1hWz1WQb1gc1WP1G7N7u\nGJMxZjIw2dYsXhd4A+s18MfqLBrVSNt+wrEumxyN5/LHb1iXfwIdiYP/jiu+5MyRL3x7HL1jIiFR\nY7wZR5m4YjxnjAlI7A5t51tXERGsFpaWWO/vVBE5EaXOJlh9ZX6Lcu4KVqdjX+JoNTPGBIvIBqxE\nOxvWj9AlCYT1EzAR63X9FzhsjIn3jpt4hBtjNiVxW+VmNOFQ6cGfUT6YV4tIBDBGRDbF+HXeEauj\n53tYHRijMli/FEcmYr+VgCu2VhKHGGNOisg8rFaOMXaKHMP6IqkEHIyy3TWsX7TENR5EAvu9DqwE\nVorIJqC+iBSzdYCNdCgpX5oOOop1XE8CcY3fEHlpIGp/kLtYLS32eEUpkxyOAq1tcWyLo0xlrHMl\noT4riWKMMcBh4LCI7MRKJF7F9p5jJQz2LhMasG51tXWCtmcBMB3rltufbZfF4pOk5EkpvaSi0qNP\nsH6ZfRxj+StYX+IdsHrqR31sJO4e/7GISG2su2DibTaPw8fE3ZfjZ6wWhqRc4nHUHtvfWAOROdE2\n4B/gFduveXu6Yn2Broyy7DTW2Cr2lLOVPx3H+sRaiZUUdbG30jaOyCtYnZG3J9M+7Yn2/og1IFpr\nrH4PMc/bDliXEuM7X5Zh9cWpxX+dpZVKdppwqHTHGHMDa6yBJpEd6my3m9YHvjfGLI35wOpoWkZE\naiRUv4iUAL7FGkNhXBLiO4E1ENfrQOEY685i9aVoJiJvxVFFgv+vRaSQiMTqfGm7LfI5rC+gxFw+\neii2JvlxWEnCp3biaoGVcKwxxuyOsmo18KiIvBCjfCagJ1Y/g2h9TB4ixl+xbpPubosnpk+x7hIZ\n42C/lXiJyNMiYq8VOnLfx2x/22K15kyM49xdCbSzvbexGGtQuzewBhJb8bBxKxUXvaSi0quvsEaY\nHIz1qzTyF2BcH7ir+a9l4bcoy31E5FWsL/ncWCONtsP6wu5kG6MgIfZ+0X+C1ZejLDHuSLHFXRKY\nICIv22K+AuTH6ofRCqv5Pz6PArtFJACr9eYS1mBgvliXDPyMMX87EHtyGo3VSXKgrYXoB6xOhfWw\nXvfDWOObRDUN6AEsFpHZwF6ssSVeAipiDdoWlowxdsFKOn4Ua9j7rViX4dpi9XlZSBKSzDgMwjq/\nlvLf3Ts+WOdFMNbIr2C9NteAX2PVYFmONepsC6xOpxDjnDPG2L3V9yGVEZGhdpbvNcastv3b0/b/\nx56lD9E3RKVCmnCotCC+ToHG3npjzEURWQC8KtZ8IK8Ap40xB2OWtZW/ISLbgJdE5N0odb9se4Rh\ndST8E/gSmGpvwKY4YrUX33ERmct/lxGirrsjIk2xvng6A/+HdVfEP1i3Zb5B7GG0Y/odaxj15sCb\nQCGsvg6HgJ7GmNkOxJ2sbB1QO4pIF6zWiY+ATFjjmXwIfBnzC8gYc1dE6gMfYN1p0w0rSQkEmhlj\n1ie020TGeMl2K+h7WJcr2mK99weArsaYeXHsIymv3ydY52UD218vrFFEF2CN5npGRApgdYReYOvn\nYc9GrOHRX+W/hMOReOzFnZhjKYv1HsY0EyuBBytZi+tc3QqccXBfyg1I3OeoUkoppVTySFV9OESk\nnogsF2sGwoiY12VtZT4SkQtiza653jZZUdT1mUVkkogEi8i/IrIksaNEKqWUUip5paqEA+s+8H1Y\nwyHbmyVzENZARb2xZsO8DayNMUTweKxrle2wOgEWIcpIiEoppZRKean2koptrIQ2xpjlUZZdwJqX\nwc/2PCfWbIddjTGLbM+vAi9HjiJpG6r5KPBUjN7tSimllEohqa2FI062jn2FsTpAAWCMuQnswhpa\nF6A6VkfYqGV+x+p4VBullFJKuYTbJBxYyYbBatGI6jL/jVVQCLhvS0TiKqOUUkqpFKa3xWJNj4w1\nF8Epkm8YZKWUUio9yII1NtBa2zQLdrlTwnEJa7CaQkRv5SiENdhPZJlMIpIzRitHIdu6uDQh4RkS\nlVJKKRW3V4lneHy3SThsk1pdwprK+AA86DRaC5hkKxaINQhPI6z5ASI7jRYn7lH4wDaV97x58yhf\nPtZoz3Hq378/fn5+iTqOlNoG4Pnnn2f9+oTGPXr4faXUNqn5eJK6XWo+ppQ6nqTuKzUfk553KbuN\nnndJ309ybHP06FE6deoEtu/SuKSqhENEsmHNRRA57G4pEakM/G2bQ2I8MExE/sI6sFHAOazpkjHG\n3BSRmcCXInIda4KuCcD2BO5QuQtQvnx5qlWr5nC8uXLlSlT5lNwGIGPGjKk2vqRsk5qPJ6nbpeZj\nSqnjSeq+UvMx6XmXstvoeZf0/STzNvF2SUhVCQfWXSab+G/43C9sy+cAPYwxY20zI07FmrdiK9bw\nxfej1NEfa86LJVjD5q4B4prk6qH4+vqm2m0AihYtmiL7SqltUvPxJHW71HxMKXU8Sd1Xaj4mPe9S\ndhs975K+n5Q8VzHGpPsHUA0wgYGBJi1p1aqVq0NIVmnteIxJe8eU1o7HGD0md5DWjscY9zqmwMDA\nyEaCaiae71p3ui1WKaWUUm5KE440LMnNXqlUWjseSHvHlNaOB/SY3EFaOx5Im8eUaoc2T0kiUg0I\nDAwMjLPzzJkzZwgODk7ZwNKp/PnzU7x4cVeHoZRSygFBQUH4+PgA+BhjguIql9o6jaZKZ86coXz5\n8oSEhLg6lHTBy8uLo0ePatKhlFJpiCYcDggODiYkJCTR43SoxIu8nzs4OFgTDqWUSkM04UiExI7T\noZRSSimLdhpVSimllNNpwqGUUkopp9OEQymllFJOpwmHUkoppZxOEw6llFJKOZ0mHIo5c+bg4eGB\nl5cXFy9ejLW+YcOGPPnkkw+elyxZEg8PD/r16xer7ObNm/Hw8GDp0qVOjVkppZR70YRDPXDv3j1G\njx4da7mIxHouIkyfPp1Lly4lWF4ppZTShEM9UKVKlTiTiJgqVqxIeHi43QRFh8tXSikVkyYcCrBa\nJYYMGUJYWJjdJCKmkiVL0qVLF4cTFKWUUumbJhzqAW9v70QlEUOHDiU0NNShBEUppVT6pgmHiiYy\niRgzZkyCZUuWLEnnzp2ZPn06ly9fToHolFJKuSudS8UJQkLg2DHn7qNcOfDySv56vb296dy5M9Om\nTWPw4MEUKlQo3vLDhg1j7ty5jB49Gj8/v+QPSCmlVJqgCYcTHDsGPj7O3UdgIDhrHrnEJBExExSl\nlFLKHk04nKBcOSshcPY+nMXb25tOnToxbdo0Bg0alGD5oUOHMnfuXMaMGUPr1q2dF5hSSim3pQmH\nE3h5Oa/1IaUMGzaMefPmOdSXo1SpUnTq1ImpU6dSs2bNFIhOKaWUu9FOo8quqEmEI3esDBs2jPv3\n7zN27Fgd+EsppVQsmnAowP5gXZF3rPz+++8Jbh+ZoOzbt88Z4SmllHJzmnAowP5w5KVLl6Zz584P\nhjKPWtZe+WHDhuHp6aktHEoppWLRPhyKrl270rVrV7vrZs2axaxZs6ItO3HihN2ypUuX5v79+8ke\nn1JKKfenLRxKKaWUcjpNOJRSSinldJpwKKWUUsrp3C7hEBEPERklIidEJERE/hKRYXbKfSQiF2xl\n1otIGVfEq5RSSik3TDiAwcDrQB+gHDAQGCgib0cWEJFBwNtAb6AmcBtYKyKZUj5cpZRSKu2yN6yC\nPe54l0pt4CdjzBrb8zMi8gpWYhGpHzDKGLMSQES6AJeBNsCilAxWKaWUSssGrh/oUDl3bOHYATQS\nkccARKQyUBdYbXvuDRQGNkZuYIy5CezCSlaUUkoplQw2n9pMwMkAh8q6YwvHaCAncExEwrGSpqHG\nmIW29YUBg9WiEdVl2zqllFJKPSRjDIM2DKJ8gfIc5WiC5d0x4XgJeAV4GTgCVAG+EpELxpi5D1Nx\n//79yZUrV7Rlvr6+lC1b9mGqVUoppdIEf39//P39Abj470X2XNjDE7mfcGhbd0w4xgKfGWMW254f\nFpGSwPvAXOASIEAhordyFAL2xlexn58f1exM8xoUFPTQQSullFLuxBjDvfB7ZMqQCQ+xemD4+vri\n6+tLaHgoFb+pSNO8Tfmk/Cf4+PgkWJ87JhxeQHiMZRHY+qMYY06KyCWgEXAAQERyArWASSkYp1JK\nKZVqnbx+klFbRnE15Co37t7gxr0b3Lh7g9uht7kTeoeQ0BAMhjJ5y/B9+++p9sh/P8hnBM3gr7//\nYknHJYSdD3Nof+6YcKwAhonIOeAwUA3oD8yIUma8rcxfwClgFHAO+CllQ1VKKaVSnwgTQZcfu/Dn\ntT+pWbQmJXKXIFfmXOTKnIvsmbKTNWNWvDJ6kcUzCxN2TaDOzDpMaDaBXtV6cTv0NiM3j6Rz5c48\nWehJgs47dhXAHROOt7ESiElAQeACMNm2DABjzFgR8QKmArmBrUAzY4zOLBaHgwcPMnLkSPbs2cPl\ny5fJly8fFSpU4IUXXuDtt60hTkqWLMmZM2cebFOgQAHKli3Lu+++S5s2bTh16hQVK1akTZs2zJ8/\nP9Y+vv/+e3x9fZk0aRJvvvlmih2bUkqp6GYGzWTbmW0EdAngGe9n4i3bsWJH+q/pz+srX2fbmW0U\nyVGE63ev81HDjxK1T7dLOIwxt4F3bY/4yo0ARqRASG5vx44dPPvss5QoUYLevXtTuHBhzp49y86d\nO5kwYcKDhENEqFq1KgMGDMAYw4ULF5g6dSpt27ZlypQp9O7dmw8//JD333+f7t2789xzzz3Yx7//\n/su7775L7dq1NdlQSikXunTrEgM3DKRblW4JJhsAWTyzMLnlZJ4u/jS9V/YmJDSE92q/R4ncJRK1\nX7dLOFTy++STT8idOzd79uwhR44c0dYFBwdHe160aFF8fX0fPO/cuTNlypTBz8+P3r1789577zF/\n/nz69OnDwYMHyZw5MwBDhgwhODiYdevWOf+AlFJKxendte/i6eHJuOfHJWq7V598laqPVGXS7kkM\nrTc00ft1x4G/VDI7ceIEFStWjJVsAOTPnz/ebQsVKkT58uU5efIkABkyZGDatGmcOHGCjz/+GIDA\nwEAmT57MgAEDqFixYvIfgFJKKYes+WsN/of8+aLxF+Tzypfo7SsUqMCkFpPIkzVPorfVhENRokQJ\nAgMDOXz4cKK3DQsL4+zZs+TL99+JW6tWLd58800+//xzDh06xOuvv06pUqX44IMPkjNspZRSiRAS\nGkKfVX1o5N2Izk92TvH9a8KhGDBgACEhIVSpUoW6desyePBg1q9fT1hY7FudQkNDuXbtGteuXePA\ngQN07tyZK1eu0LFjx2jlPv30U/Lnz0/Dhg3Zu3cv33zzzYPLK0oppVKGMYZT/5xi4aGF+P7gy4V/\nLzC5xWREJMVj0T4cThASGsKx4GNO3Ue5/OXwyuiVLHU999xz/Prrr3z22WesXbuWnTt3MnbsWAoU\nKMCMGTNo1arVg7Jr166lQIECD557enrSpUsXRo8eHa3OHDlyMH78eDp27Iivr2+0DqRKKaWc6+T1\nkwzcMJAtp7dw5fYVAErnKc3kFpN5LN9jLolJEw4nOBZ8DJ9pCY+69jACewdGG4TlYfn4+LBkyRLC\nwsLYv38/y5Ytw8/Pjw4dOrBv3z7KlSsHwFNPPcUnn3wCgJeXF+XLlydnzpx266xRo8aDupVSSqWM\nFb+voMuPXcidJTe9qvXiqUefolbRWhTIViDhjZ1IEw4nKJe/HIG9A52+D2fw9PTEx8cHHx8fHnvs\nMbp3787ixYsZPnw4YHUifeaZhG+jUkoplbLCIsIYHjCc0dtH07psa75t8y25s+R2dVgPaMLhBF4Z\nvZK19cFVqlevDsDFixddHIlSSqm43Am9w4HLBxi8cTBbT29l7HNjGVBngEv6acRHEw7FL7/8QsOG\nDWMtX7VqFcCDyylKKaWSzhjD2ZtnMcYketCsmJb/vpzFRxaz9+JejgUfI9yE80j2RwjoGkD9EvWT\nKeLkpQmHom/fvoSEhPDiiy9Srlw57t+/z/bt21m0aBGlSpWiW7durg5RKaWc6m7YXTJ6ZCSDRwa7\n60NCQxjxywhe93md0nlLO1xvwMkAlv++nP2X97P/0n6u371OBsnAsPrDGFZ/GJ4eif8aDg4Jpt2i\ndpTLX456xevxTq13qFq4Kk8UeoIsnlkSXV9K0YRD8cUXX7B48WJ+/vlnpk+fzv379ylevDhvv/02\nQ4cOfdApVEQS3USXlG2UUiqlhEeEM3PvTIYGDKVUnlKs8F1BwWwFo5UJCQ2hlX8rAk4G8Pedv5nx\nwow4aotdd/tF7fHK6EXtYrV5t/a7VClchT0X9vDxlo9Zd3wd89rOo1SeUomKeenRpUSYCDZ22Rgr\n1tRMEw5F48aNady4cYLlTpw4kah6S5QoQXh4eFLDUkqpJPnhyA+UzV+WSgUrxVtu6+mt9FvTj72X\n9uJbyZdNpzZRZ2Yd1nRaQ5m8ZQCrf0Trha3ZeW4nrcu25vvD3/NV06/IlilbgnHsubCH63evs8J3\nBXWL132wvOXjLWlSugmdlnWi8pTKfN3sa7pW7urwj7OFhxbSyLuRWyUboAN/KaWUSkOO/32c9ovb\nU21qNUZtHkVoeGisMoevHMb3B1/qf1sfTw9Pdr62kwXtFvDra7/i6eFJ7Zm12XVuF3fD7tLm+zZs\nP7OdVa+swq+JH7fu3+KHoz84FMu64+vImTkntR6tFWtd7WK12ff6PtpXaE/3n7rz/eHvHarz4r8X\n+eXUL/hW8k24cCqjCYdSSqk0Y8qeKeTJkof3ar/HyM0jqTmjJvsu7cMYw7rj62g6rymVJldiy+kt\nzG49m509dz5ICErmLsmO13ZQNl9ZnpnzDM/MeYYtp7ew8pWVNCzZEO883jQs2ZBv933rUCzrTqyj\nkXejOPtp5Micg9mtZ9O0TFM+2/YZxpgE61x0eBGeHp68WP5Fh1+T1EITDqWUUmnC3bC7zN43m25V\nuvHZc5+xq+cuwiPCqTG9BmUnlqXJvCZcuX2FeS/O42S/k3Sr0g0Pif41mDdrXtZ3Xk+Lx1uw79I+\nVviu4FnvZx+s716lO5tObeLk9ZPxxnLj7g1+PfsrjUsnfLl6YJ2BHLh8gHXHE55Ne+HhhTR7rFmq\nGl/DUZpwKKWUShMWH17MtTvXeKP6GwD4FPFhT+89fFD/A6oXqc6mrpsI7B3Iq0++SqYMmeKsJ2vG\nrCxqv4jLAy7zXKno0zK0K9+O7JmyM2f/nHhj2XRqE+EmnCalmyQYd8OSDalRpAZjto+Jt9zJ6yfZ\neW4nL1d8OcE6UyPtNKqUUipVCg4J5q3Vb3En9A55s+YlT5Y85M2alxfKvkDlwpVjlZ+8ZzLPlXqO\nx/M9/mBZpgyZGN5geKL3LSLkzBx72oZsmbLRsUJH5uyfwwcNPojVQhJp3fF1lMlbBu883g7ta2Dd\ngXRY3IHfzv9GjaI17JZbdHgRWT2z0qpsK7vrUztt4VBKKZXq3A+/T7tF7Qg4GYDB8Offf7L2+Fq+\n3PklDec05MT16HfN7bu0j1/P/cqb1d90emzdq3bn1D+n2Hxqc5xl1h1fR+NSCV9OifRiuRcpk7cM\nY3eMjbPMwsMLaVW2FdkzZU9UvKmFJhxKKaVSFWMMfVb1Yee5nfz08k+s8F3B9h7bOfLWEU72O0ne\nrHlpt6gdd0LvPNhm8m+TKZKjCC+UfcHp8dUtVpfH8j7G7H2z7a4//vdxjl8/TpMyCV9OiZTBIwMD\nag/ghyM/8Nfff8Vafyz4GPsu7XPbyymgCYdSSqlUZvzO8czcO5PpraZTp1idaOtyZ8nN0o5LORZ8\njD6r+2CM4ea9m8w/OJ/e1XonaeTOxBIRulXpxpIjS7h572as9euOr8PTw5OGJRsmqt4ulbtQIFsB\nvtjxRax1Cw8tJGfmnDR7rFlSw3Y57cORCEePHnV1CGmevsZKpW+r/1zNgPUDGFR3EF0qd7FbpnLh\nykxtOZWuP3al9qO1CQ0P5W7YXXpW65licXZ+sjPDAoax+PBiXqv2WrR1606so/ajte32AYlP1oxZ\neafmO4zaMooRDUdQKHshwGrxWXhoIS+WezFVD12eEE04HJA/f368vLzo1KmTq0NJF7y8vMifP7+r\nw1BKpbDDVw7z8pKXafl4Sz5t9Gm8ZbtU7sKuc7vo+3NfCmYrSOtyrSmas2gKRQrFchWjcenGjNk+\nhtblWpPfy/rMCg0PZeOJjQyqOyhJ9fap0YfPtn1GK/9WFM1ZlPvh97kTeoffr/3O+Kbjk/MQUpwm\nHA4oXrw4R48eJTg42NWhpAv58+enePHirg5DKZWCztw4Q9P5TfHO4828F+fFefdHVH5N/Qi6FMTO\nczuZ3dp+fwpnmtBsAvVm16PJvCYEdAkgV5Zc7Dq/i3/v/+vQ+Bv25Mmah3GNx7HkyBLuh98no0dG\nsnllo287wBgqAAAgAElEQVTNvjTybpTMR5CyNOFwUPHixfVLUCmlkijCRLDz3E5qFa0Va0bWq7ev\n0nhuYzJ6ZGTNq2vIkTmHQ3VmypCJZS8tY8Xv0QfnSimP53uc9Z3X0/DbhrRY0IK1nday7vg68mbN\nS7VHqiW53jeqv/FgLJG0RDuNKqWUcrrxO8dTd1Zdnpr5FL+d/+3B8n/v/UvzBc25fvc66zqv45Ec\njySq3sLZC9PLp5dDLSLO8GShJ1nTaQ37L++nzfdtWPXnKp4v9Xyc09ynZ5pwKKWUcqrLty4zcvNI\nWpdtTWh4KLVm1KL3it5c+PcCbRe15ffg31nz6n8ztLqbmkVrstJ3JdvObCPoYlCSL6ekdZpwKKWU\ncqqhAUPJIBmY+cJM9vTew4RmE1h0eBHF/Yqz9fRWlvsup+ojVV0d5kNpULIBy15aRvUi1WnxWAtX\nh5MquWXCISJFRGSuiASLSIiI7BeRajHKfCQiF2zr14uIe6bOSinlxgIvBDJr7yxGPTOKfF758PTw\n5O2ab/NH3z/oW7Mvy15alujxKlKrpmWa8luv3x7czqqic7uEQ0RyA9uBe0AToDzwHnA9SplBwNtA\nb6AmcBtYKyJxz9ajlFIqyQIvBBISGhJtmTGGfmv6UbFgRV6v/nq0dQWzFcSvqZ9bD2SlEsftEg5g\nMHDGGNPTGBNojDltjNlgjIk6V3A/YJQxZqUx5hDQBSgCtHFFwEoplVYZYxjxywiqT69OuYnlWHho\nIcYYAPwP+bP97Ha+avpViowAqlI3d0w4WgF7RGSRiFwWkSAReTC8nIh4A4WBjZHLjDE3gV1A7RSP\nViml0qjwiHDeWv0WIzePZMjTQ6hRtAa+P/hSb3Y9tpzewsD1A2lbvq1LbllVqY87ppylgDeBL4BP\nsC6ZTBCRe8aYuVjJhgEux9jusm2dUkqph3Q37C6dlnZi2bFlzGg148Hw3gEnA+i3ph8Nvm1A5gyZ\nGff8OBdHqlILd0w4PIDdxpjhtuf7RaQS8AYw13VhKaVU+nDz3k1aL2zNznM7WfbSsmgztD7r/Sx7\nX9/L7L2zyZk5J955vF0YqUpN3DHhuAjEnOHrKNDW9u9LgACFiN7KUQjYG1/F/fv3J1euXNGW+fr6\n4uvr+zDxKqVUmvHvvX9pOq8pR64eYV2nddQrUS9WGU8PT3r59HJBdMrZ/P398ff3j7bsxo0bDm0r\nkZ173IWIzAceNcY0iLLMD6hhjHna9vwC8Lkxxs/2PCdW8tHFGLPYTp3VgMDAwECqVUv6cLRKKZWW\n3b5/m2bzm7H/8n42dN5AjaI1XB2SSgWCgoLw8fEB8DHGBMVVzh1bOPyA7SLyPrAIqAX0BKKm0+OB\nYSLyF3AKGAWcA35K2VCVUiptuBN6hxcWvsDeS3tZ22mtJhsq0dwu4TDG7BGRF4HRwHDgJNDPGLMw\nSpmxIuIFTAVyA1uBZsaY+66IWSml3NndsLu0+b4NO8/t5OdXf6ZOsTquDkm5IbdLOACMMauB1QmU\nGQGMSIl4lFIqLQoOCWbZ0WVMD5rOwSsHWfXKKuqXqO/qsJSbcsuEQymllHPcuHuDJUeWsOjIIjae\n2IjB0LBkQ9a8uoYGJRskXIFScdCEQyml0rkIE8GW01uYtXcWS44s4V74PRqUaMDE5hNpW74tBbMV\ndHWIKg3QhEMppdKxNX+t4a3Vb3Hi+gnK5C3D8PrD6VK5C0VzFnV1aCqN0YRDKaXSqXth9+i1ohcl\ncpXg29bf8nTxpxERV4el0ih3nEtFKaWUA3ae20mv5b24G3bX7vpZe2dx/uZ5preaTr0S9TTZUE6l\nLRxKKZUG/R78Oy0WtODvO39TMFtBPmn0SbT198Lu8em2T/F9wpfyBcq7KEqVnmgLh1JKpTFXb1+l\n+YLmFMpWiPdqv8fYHWPZf2l/tDIz987kwr8XGF5/eBy1KJW8NOFQSqk0JHJE0Nv3b7P61dV82uhT\nyuUvR88VPQmLCANsrRtbP8W3ki/l8pdzccQqvdCEQyml0ojwiHA6LevEgcsHWPnKSkrmLkmmDJmY\n0WoGgRcCmbBrAmC1bly8dVFbN1SK0oRDKaXSiMEbBvPjsR9Z2G4h1YtUf7C81qO1eKfWOwwLGMbR\nq0f5dOunvPLEK5TNX9aF0ar0RhMOpZRKA5YcWcK4X8fxReMvaFW2Vaz1Hz/7MQWzFaTe7HpcvHWR\nYfWGuSBKlZ5pwqGUUm7uj2t/0OOnHnSs2JF+tfrZLZM9U3amtpzKtTvXtHVDuYTeFquUUm4sJDSE\ndovaUSRHEWa0mhHvWBpNyjRh1SureOrRp1IwQqUsmnAopZSbMsbw5qo3OXH9BLt77iZH5hwJbtP8\nseYpEJlSsWnCoZRSbmpG0Ay+2/8d37X5jooFK7o6HKXipX04lFLKDZ24foK+P/fldZ/X6Vy5s6vD\nUSpBmnAopZQb+mzrZ+TOkpsvm3zp6lCUcogmHEop5WZO/3Oab/d/y//V+T+8Mnq5OhylHKIJh1JK\nuZnR20aTO0tu3qj+hqtDUcphmnAopZQbOXvjLDP3zmRA7QFky5TN1eEo5TBNOJRSyo2M2T6GHJlz\n0KdGH1eHolSiaMKhlFJu4vzN80wPms67T73r0JgbSqUmmnAopZSb+HzH53hl9OLtmm+7OhSlEk0T\nDqWUcgOXbl1iauBU/lfrf+TKksvV4SiVaJpwKKWUi/157U9eWvISV25fibPM0I1DyZQhE+/UeicF\nI1Mq+ejQ5kop5WKjtoxi0eFF/HP3H35+9Wc8JPpvwSVHljBr3yymtZxGnqx5XBSlUg9HWziUUsqF\nzt88j/8hf9qWb8v64+v5dOun0dafvXGWXit60a58O3pW6+miKJV6eNrCoZRSLjRx90SyemZl1guz\neKLgE3z4y4fULVaXZ7yfITwinE7LOpE9U3amtZoW79TzSqV2bt3CISKDRSRCRL6MsfwjEbkgIiEi\nsl5EyrgqRqWUisut+7eYEjiFXtV6kStLLobXH84zJZ/B9wdfLt26xGfbPmPr6a3Me3EeebPmdXW4\nSj0Ut004RKQG0BvYH2P5IOBt27qawG1grYhkSvEglVIqHt/u+5ab924+6AiawSMD89vOR0RoOq8p\nI34ZwdB6Q2lQsoGLI1Xq4bllwiEi2YF5QE/gnxir+wGjjDErjTGHgC5AEaBNykaplFJxC48IZ/zO\n8bSv0J4SuUs8WF4oeyH82/lz8MpBahStwQcNPnBhlEolH7dMOIBJwApjTEDUhSLiDRQGNkYuM8bc\nBHYBtVM0QqWUAowxbDixget3rkdbvvz35Ry/fpz3ar8Xa5uGJRuyrfs2VviuIGOGjCkVqlJO5XYJ\nh4i8DFQB3rezujBggMsxll+2rVNKqRQ1cvNInp/7PKUnlGbcjnHcDbsLwJc7v6RusbrULFrT7na1\ni9Umv1f+lAxVKadyq7tURORRYDzwnDEm1NXxKKVUfL7Y8QUjN49kaL2hXAu5xuANg/l699d0q9yN\nbWe2sbTjUleHqFSKcauEA/ABCgBB8t/9YRmA+iLyNlAOEKAQ0Vs5CgF7E6q8f//+5MoVfchgX19f\nfH19kyF0pVR6MmXPFAasH8CQp4fw8bMfA/C/p/7HkIAhfLTlI0rlKcULZV9wcZRKJY6/vz/+/v7R\nlt24ccOhbcUY44yYnEJEsgElYiz+FjgKjDbGHBWRC8Dnxhg/2zY5sZKPLsaYxXHUWw0IDAwMpFq1\nak6LXymVPsw7MI8uy7rQt2ZfxjcdH2v8jMALgXhl9KJ8gfIuilCp5BMUFISPjw+AjzEmKK5ybtXC\nYYy5DRyJukxEbgPXjDFHbYvGA8NE5C/gFDAKOAf8lIKhKqXSKf+D/nT7sRvdq3THr6mf3cG6fIr4\nuCAypVzLrRKOOERrojHGjBURL2AqkBvYCjQzxtx3RXBKqfTBGMO4HeMYuGEgXSp3YVqrabHmRFEq\nPXP7hMMY86ydZSOAESkejFIqXQqPCOedn9/hmz3fMKzeMD565iMdhlypGNw+4VBKKVcKCQ3B9wdf\nVv2ximktp9HLp5erQ1IqVdKEQymlkijCRNByQUt2n9/Nct/lNH+suatDUirV0oRDKaWSaPbe2Ww6\ntYmNXTbyrHesq7tKqSiSlHCIiAdQBihIjNFKjTFbkiEupZRK1f6+8zeDNgyi85OdNdlQygGJTjhE\n5ClgAdZ4GDF7RRmsgbiUUipNG7JxCKERoYx9fqyrQ1HKLSSlhWMKsAdoAVwkxm2pSimV1v12/jem\nBU7jq6ZfUTi7TtOklCOSknA8BrQ3xvyV3MEopVRqFx4RTp/VfahcuDJv1njT1eEo5TaSknDswuq/\noQmHUirdmRE0gz0X9rC9x3Y8PbTfvVKOSsr/lq+BL0SkMHAQiDZrqzHmQHIEppRSqc3ei3t5f+P7\ndK/SnTrF6rg6HKXcSlISjh9sf2dFWWawOpBqp1GlVJpzLeQawwKGMTVwKhUKVGDMc2NcHZJSbicp\nCYd3skehlFKpUFhEGNMCpzEsYBjhJpwvm3zJWzXeImOGjK4OTSm3k6iEQ0QyAh8Co4wxJ50TklJK\npQ59V/dlSuAUelTpwWfPfUbBbAVdHZJSbitRUxkaY0KBdk6KRSmlUo2L/15k5t6ZfNboM2a2nqnJ\nhlIPKSlzJ/8ItEnuQJRSKjWZuHsimT0z80b1N1wdilJpQlL6cPwJfCAidYFA4HbUlcaYCckRmFJK\nucrt+7eZvGcyPav2JHeW3K4OR6k0ISkJx2vAP4CP7RGVATThUEq5tW/3fcuNezfo91Q/V4eiVJqR\n6ITDGKN3qSil0qzwiHD8dvrRvkJ7SuYu6epwlEozdJg8pZSKYvnvyzl+/TgL2i1wdShKpSlJmS12\nVnzrjTE9kh6OUkq51he/fsHTxZ+mZtGarg5FqTQlKS0ceWI8zwhUAnIDAQ8dkVJKuciuc7vYfnY7\ny15a5upQlEpzktKH48WYy0TEA5gMHE+OoJRS6mEEhwQzavMo+tToQ9n8ZR3aJsJEMHbHWMrkLUOr\nx1s5OUKl0p+kjMMRizEmAvgS6J8c9SmlVFKFhIbQckFLJuyeQM0ZNfnp2E/xlr9+5zp+v/pRbmI5\nlh5dyuC6g8ngoVNCKZXckiXhsCmNdkJVSrlQWEQYvj/4cvDKQQK6BPBcqedo830bhgcMJzwi/EG5\ne2H3WH98Pa/99BpFvyzKoA2DqF6kOlu7b6VHVe2GppQzJKXT6JcxFwGPAC2AOckRlFJKJZYxhr6r\n+7Lqj1Us913OM97P0LBkQ8ZsH8PQgKHsubiHNmXb8PNfP7PhxAZuh96mRK4SDKs/jNeqvkah7IVc\nfQhKpWlJaZGoGuN5BHAVeI/oU9YrpVSKGb1tNFMCpzCj1QyaP9YcABFh8NODqfZINXx/8GXd8XXU\nKVaHYfWH0fyx5jxR8AlExMWRK5U+JKXT6DPOCEQppZLqu/3fMSRgCB82+JDXqr0Wa33j0o051e8U\nYRFh5Mka80Y7pVRKSHQfDhEJEJFYkwuISE4R0dtilVIpas1fa3ht+Wu8VvU1PmzwYZzlcmTOocmG\nUi6UlE6jDYFMdpZnAeo9VDRKqTTt6u2rLP99OddCriVLfbvP76bdonY0K9OMKS2n6OURpVIxhy+p\niMiTUZ5WEJHCUZ5nAJoC55MrsHjieB94ESgH3AF2AIOMMX/EKPcR0BNrQLLtwJvGmL+cHZ9Syr7w\niHDaLWrH1jNbEYQqhavQyLsRTco0oZF3o0QnC39c+4MWC1pQuVBlFrZfiKeH3iSnVGqWmP+h+7Bm\ngzXYH1H0DtA3OYJKQD3ga2APVvyfAetEpLwx5g6AiAwC3ga6AKeAj4G1tjL3UyBGpVQM43aMY9uZ\nbSzusJhb92+x8eRG5h+cz7hfx7Gw3UJeqvSSw3Vd/PciTeY1oYBXAVa+shKvjF5OjFwplRwSk3B4\nY90CewKoiXVnSqT7wBVjTLi9DZOTMaZ51Oci0g24AvgA22yL+wGjjDErbWW6AJeBNsAiZ8eolIou\n6GIQwzcNZ1DdQbSv0B6AblW6YYyh/rf1mbl3psMJR8DJAPqs6kNoeChbum0hb9a8zgxdKZVMHO7D\nYYw5bYw5ZYzxMMbssT2PfFxMiWQjDrmxWl3+BhARb6AwsDGygDHmJrALqO2KAJVKz0JCQ3h16atU\nKliJkc+MjLZOROhauSsbTmzg3M1z8dZz5OoRWi5oSaPvGpE3a142dNlAsVzFnBm6UioZJWmkURHp\nLCLbReSCiJSwLesvIq2TN7wE4xBgPLDNGHPEtrgwVgJyOUbxy7Z1SqkUNGj9IE79c4p5beeRKUPs\n/uYdKnQgs2dm5h+Yb3f7W/dv8fqK13li8hMcDT7K4g6L2d5jO+Xyl3N26EqpZJSU22LfxJo3ZTVW\n60LkpAPXgf8lX2gO+QaoALycwvtVSjng5z9/ZuJvE/n8+c+pUKCC3TK5suSiTbk2zNk/B2NMrPUj\nfxnJ3ANz+aLxFxx96yjtK7TXu1GUckNJ6dbdF+hljPlRRAZHWb4HGJc8YSVMRCYCzYF6xpiLUVZd\nwuprUojorRyFgL3x1dm/f39y5coVbZmvry++vr7JErNS6cmd0Dv0WtGLJqWb8FaNt+It27VyV5od\nasaeC3uoUbTGg+Wn/znNhN0TGFpvKP97KqV/zyilYvL398ff3z/ashs3bji0bVISDm/sf3HfA7Il\nob5EsyUbrYEGxpgzUdcZY06KyCWgEXDAVj4nUAuYFF+9fn5+VKtWzTlBK5XOTNw9kcu3L7O5+eYE\nWySeL/U8j2R/hDn750RLOIZvGk7erHl5t/a7zg5XKeUAez/Cg4KC8PHxSXDbpPThOAlUsbO8KXA0\nCfUlioh8A7wKvALcFpFCtkeWKMXGA8NEpJWIPAF8B5wD4p+nWimVLG7cvcHo7aPpWbUnpfOWTrB8\nBo8MdHqyE/6H/Lkfbt25vvfiXuYdmMeIBiPInim7s0NWSjlZUhKOL4FJIvIS1qWLmiIyFGs8jLHJ\nGVwc3gByAr8AF6I8OkYWMMaMxRqrYyrW3SlZgWY6BodSKWPcjnHcCb3D8AbDHd6mS+Uu/H3nb1b9\nsQqAQRsG8Xi+x+3OjaKUcj9JmbxthojcwRpMywtYgPWF388YszCZ47O3f4eSJGPMCGCEU4NRSsVy\n+dZl/Hb68U6tdyiSo4jD21UqWIlqj1Rjzv45ZMuUjfUn1rPspWU6gqhSaUSS/icbY+YD80XEC8hu\njLmSvGEppdzVJ1s/IWOGjAyqOyjR23at3JX31r3HH9f+oG6xurQum6J32iulnChJ43BEMsaERCYb\nIpJFRAYkT1hKKXd08vpJpuyZwsA6A5M0M6tvJasz2tHgo3z+/Od6+6tSaUiiWjhEpADW3R73gY3G\nmHARyQj0Ad631Zdit8YqpVKXEZtHkM8rH+/UeidJ2xfIVoDOT3Ym3IRTu5gODKxUWpKY2WKfBlZi\nddg0wB4R6Q78CIRh9ZeY44QYlVI2J6+fJMJEOHTnR0o7cvUIc/fPZWLziWTLlPQ75Ge1npWMUSml\nUovEXFL5GGt00ScAP6AGsAwYYoypYIyZEjlbq1Iq+Z29cZZaM2rx2NeP8dKSl9h/ab+rQ4rmo80f\nUTxXcXpW6+nqUJRSqVBiEo4ngI+NMYeB4VitHAONMUucEplS6oF7Yfdov7g9WTyz8FXTr/jt/G9U\nmVqFlgta8uvZX10dHkeuHmHR4UUMqTfE7nwpSimVmIQjDxAMYGvJCAEOOSMopVR0/db0Y9+lffzQ\n8Qf61urLH33/YO6Lczn5z0nqzKrDOz+/w51Q1zUwfrzlYx7N+SjdqnRzWQxKqdQtsXepVBCRJ0Xk\nSaxBv8pGPo+yXCmVjGbvnc3UwKlMaj7pwbDfnh6edHqyEwffPMiEphOYHjQdn2k+BF0MSvH4jgUf\nY+Ghhbz/9PvauqGUilNiE46NwD7bwwurE+k+rLlVIv8qpZJJ4IVA3lz1Jq9Vfc1u3wgP8aBvrb4E\n9g4ks2dmnprxFKO3jSY8IjzFYvx4y8cUzVmUHlV7pNg+lVLuJzG3xXo7LQqlFKf/Oc2c/XP45+4/\n3Lh7g5v3b7LtzDaeKPQEE5tPjHfbCgUqsKvnLj7c9CFDNg5h65mtLGy3kByZczg15j+u/YH/IX8m\nNJ1AZs/MTt2XUsq9OZxwGGNOOzMQpdKz0PBQWi9szYnrJ3g056PkzJyTXFly8Xyp5/nk2U/I4pkl\nwToyZcjEZ899RsOSDem4pCNPz36alb4rKZarmNPi/njLxxTOXljnO1FKJUgnKVAqFRizfQyHrhzi\nt16/UfWRqg9VV5MyTdjRYwctFrSg5oyarPBdQfUi1ZMp0v/8ee1P5h+cz/gm4x1KiJRS6dtDDW2u\nlHp4R64eYdSWUQysO/Chk41IFQtWZFfPXZTMXZL6s+vz07GfkqVeAGMM646vo92idhTKVohePr2S\nrW6lVNqlCYdSLhQeEU6Pn3pQKk8pPmjwQbLWXSh7IQK6BNC4dGO6/tiVG3dvPHSd285so+GchjSZ\n14TsmbLz08s/aeuGUsoheklFKRf6atdX7D6/m209tjnliztrxqxMbjEZ76+8mfTbJIbUG+LQdrvP\n72bAOmsuRk8PTzw9PPn3/r/sPLeTyoUqs9J3Jc0fa66TqymlHPZQLRwikl9EWojICyLySHIFpVR6\n8NfffzEsYBh9a/alTrE6TtvPIzkeoUfVHvjt9OP2/dsObbPw0EIOXTlEydwlKZy9MLmz5ObRnI/y\nffvvCXo9iBaPt9BkQymVKElu4RCRdsBM4A8gI9YgYG8ZY2YnV3BKpVV3w+7S/afuFMpeiE8afeL0\n/Q2sO5BpgdOYHjSd/z31vwTL7z6/m8alG/Pdi985PTalVPrgcAuHiGSPsehDoKYxpqYxpirQAXD+\nJ6dSbu5++H06Lu7Ingt7mPviXLJnivlfK/mVzF2STk92YtyOcdwLuxdv2dDwUIIuBlGzaE2nx6WU\nSj8Sc0klUERaR3keBhSM8rwQcD9ZolIqjQqLCOPVpa+y9vhalr20jKeLP51i+x789GAu/HuB7/bH\n32px+Oph7oTd0YRDKZWsEpNwNAF6i8gyESkC9AO+F5FLIhIMjAb6OCNIpdKC8Ihwuv3YjR+P/cji\nDotpWqZpiu6/XP5ytKvQjtHbRxMWERZnud3nd5NBMlC1cPLcoquUUpCIhMMYc8oY0wJYBGwGqgBl\ngOeB54DixpjVTolSKTcXYSJ4feXr+B/yZ0HbBbxQ9gWXxDHk6SGcuH6C7w99H2eZ3ed3U6lgJbJl\nypaCkSnlmLAwiIhwdRQqKRJ9l4oxxh+oAVQGfgE8jDH7jDF3kzk2pdKMZUeXMXPvTL5t/S0dKnZw\nWRxVH6lK88ea8+m2T4kw9j+1d5/frZdTVKp04wbUqgWVKsH+/a6ORiVWohIOEWkuIu8B1Y0xPYGB\nwHwR+VxEsjolQqXSgHkH51G9SHU6V+7s6lB4/+n3OXL1CAEnA2Ktu3X/FoevHtaEQ6U6ISHQqhWc\nPAmenlCzJnz1FRiT+LoiIuD48eSPUcUvMXepfAHMxmrdmCoiw40xm4FqwF1gr4g0c06YSrmvf+7+\nw+o/V+NbydfVoQBQt1hdvHN7s/jw4ljrgi4GEWEiNOFQqUpoKLz0EgQGwqpVsHs39OkD//sftGgB\nly8nXIcxsG8f/N//QfHiUKYMzNZBHFJUYlo4ugHNjTEvYyUdnQGMMfeNMcOBtoBjwxgqlY4sO7qM\n0PBQXqr4kqtDAUBEaF+hPUuPLY3VeXT3+d1ky5iNigUquig6paKLiIAePWDtWli6FGrXhixZwM8P\nVq+2kpCyZaF9e5g0CY4csZKLsDA4eBC++w7694eKFaFqVfj2W2jdGl58Efr1g9M6D3qKSczAX7cB\nbyAQKIbVqvGAMeYIUC/5QlMqbfA/5E/9EvUpmrOoq0N5oEOFDny+43O2nN7Cs97PPli+6/wufIr4\nkMEjgwujU+nVoUOweLGVUGTLZj127ID588HfH5o0iV6+WTM4cAAmToRNm6wWj7AwyJcPbt2Ce7Yh\nZ0qVgjp1YNw4eP55yJjR6g/yxBPQvTts2AAeKTSz2NWrcOKE1RclvUlMwvE+8J2ITAC8gK7OCUmp\ntOPyrctsPLmRb5p/4+pQoqlepDolcpVg8eHF0RKO3ed307FCRxdGptKrjRutVocMGazH7dtw967V\nX+Obb6xLKvYUKgSjRln/vn3bSlC2bYM8eawWjSpVIFeu2NvlymW1djRqBF9/bbV2ONvu3dYxXr5s\ndXqtmEYaEsPivss+msTcFjsfq2WjNVDSGJN8810rlUYtPrIYD/GgfYX2rg4lmqiXVcIjwgG4dOsS\nZ26c0f4bKsUtXGi1VtStC2fPQnAw3LljfZHdugVvvOFYPdmyWS0YI0darR0NGthPNiI9+yz07QuD\nB8OxY8lzLHGZPRvq1YMSJcDbG955J2kdXlOb27fh7bcdK5uoRiRjzDVjzG/GmH+SElhKEpG3ROSk\niNwRkZ0iUsPVMan0x/+QP41LNyafVz5XhxJLhwoduHL7ClvPbAXgt/O/AWjCoVLU+PHg62s9li+H\n7FFG+s+QATJndu7+R4+2OpF26WJ1Tj1/Hn7+GcaMgREjrOTnYYSGWslFjx7WPjZtsu6uCQiAH35I\nlkN4KA8zpsmNG9ZlrkOHHCufJqenF5GXgC+A3sBuoD+wVkQeN8Y85OmjlGNO/3OaHWd3MPfFua4O\nxa6aRWtSLGcxFh9eTMOSDdl9fjcFsxWkeK7irg5NpUF37sCiRfD339av4tu3rb4MixbBwIHWF78r\nJiD28rI6ltapY12GuW2bUDlnTuvL+Kuv4KOP4M03rcs7iXHnjtVBddMm67LQG29Yx9i8ObRsCe+9\nZ/3byyv5j8sR8+ZZd/uMHm3Flph+LMHBVrJx8iRMmQJdHehkkULdZFJcf2CqMeY7Y8wx4A0gBOgR\n3wNNnH8AACAASURBVEahoY7v4MQJKxNWKi4LDy0ki2cWWpdtnXBhF4h5WWX3BWvAL512XiW3W7es\n21e7dYMPPrA6eS5aBEePWv8eM8Y1yUakWrWsL99Bg+Cnn6wv0X/+sT7nO3Sw+ndUrWq1Sjgq8lbe\nbdtg3TorYYl6jH5+cOmSdeyucOeOdSkpb1546y1o3Dj6HTvGQFCQdewvv2y9TwcOWEnYpUvQsCGc\nOwe//GINxOYQY0yaegAZgVDghRjLvwWWxbFNNcC0ahVoIiJMnK5cMWbiRGNq1TIGjMmSxZivvzYm\nPDzubVT6VXlyZdNhUQdXhxGvHWd2GEZgfjn5i8k9Orf56JePXB2SckPh4cZ8/70xp07FXnf9ujF1\n6hiTI4cxW7emfGzJYc8e6xjAmDFjEi4fHm5Mp07GZMxozM8/x11uyBBjMmc25sSJ5IvVUWPGGOPp\nacyffxqzbp0xxYoZkz27MZMmGTNunDGVKlnHW7iwdewZM1rP8+a1lhUtaszRo1ZdgYGBBjBANRPf\n93N8K93xATwCRAC1YiwfA/waxzbVrBcr0Hz6aew35tgxY9q0sd4cT09jWrUyZuFCY/r2tV7Bxo2N\nOff/7d13eFVV1sDh306j9x46BIiiICCIiHRpiqCOIspQVNTPio69omPFioNlsAAiojIiFqoiIEUE\nQlGK9N5rgNBCsr4/1g0kIQkhuTVZ7/PcR3POPmfvzb25Z2XXrefxTps8b8XuFcIgZNyKcYEuSpaS\nkpOk8luVpdOoTsIgZPKayYEukgkxJ0+K9Omj34WRkSL/939nvg/37BFp3FikVCmR+fMDW87cSk4W\nefJJrec332Sd7t57RZzTICwrR46IVKmizxd/2r9fpGRJfa9SxMeL3HGH1i8qSuSmm0QmTBBJTNTz\nR4+K/PqryKBBIn37pg2SshtwOJE8MEw2FedcJWAbcLmI/JHq+OtAKxG5PINrGgNx1aq1YvPmEjRp\nAtHRkJQEUVG9mDChF1Wr6uIxPXtCuXJnrp06VedxHzum/Vg32YzCfEdEGLdyHGv2r+Fo4lGOJh5l\n4faFLN65mF2P7KJgRMFAFzFLAycPZMgfQwDY99g+ShcqHeASmVBx9Kh+502dCsOG6XTPwYN1HMRd\nd+lU1z174OefoUGDQJc290Tg1lt1AbIZM6B587PTPPssvPSS/nsMGHDue379tXZZVK+uz5aU1003\naTeULzzxhE4FXrcOKlZMe27lSj1WqlTG144ZM4YxY8akORYfH89vv/0G0EREFmWacVbRSCi+yEWX\nysKFcdKrl3aVvP22SI0aGuk995xGd5nZt0+jQRAZPjzzdCZvGrdinDAIKf16aan6dlWp95960uij\nRjJ49uBAFy1bZm+aLQxC6rxXJ9BFMSFk3z6Ryy8XKVJEm+RTxMeLvPiiSIkSItHRZ5rd84pjx0Su\nuEKkXLm0f+X/9ptI27b6HBh8Hr/6yckio0Zp68kdd2hrR61aItWq+aa7futWfcY9/bT37plvu1RE\nA4h5wJBUPztgC/BoJukbAxIXF3f6wwQiV10lsnp19v7Bk5NFBgzQJsXp07N3jQl9CScTpPo71aXL\nF10kOasBQEEspVul97jegS6KCRHbtolceKFI2bKZd5XEx+v4jbxozx6R2rVFYmNFJk8W6dBBnxkN\nG4p8/33u7z9rlt5v5szc3yu9O+/UcRgHD3rvntkNOPLktFjgbWCEcy6OM9NiC6OtHFkqWFA3B1q8\nWBeNye7I6W9X/o+dbb/gik1fcP31RZk3D+rWzXkFTGh4bfZr7Diyg1/6/BKyszvCXBhTek+hVKFM\n2lCNSWXPHl2dMyFBZ2DUq5dxuuLF/VsufypbVp8Tl18OnTvrLI1vv4UePbyzRHqLFlCjhs6cadUq\n9/dLsWoVfPqpzozJakE0X8mT02JF5BvgEeBFYDHQAOgkInuyc32JEjrlJzvPj0MnDtF3fF9uHHsj\nP67+ngGv/krFitr3tm9fzutgckdE+Hzp5/Qd3/f0Spretm7/OgbPGcyjLR4lpnSMT/Lwl/rl6xNd\nLDrQxTBB7uBBXXvhwAEdn5FZsJEf1Kun62uMH6/LlF9/vff2YwkL07Ei33yjy7t7Q1KSrr4aHa3T\nYAMhTwYcACLygYjUEJFCInK5iCz0dh6zN8+m4UcN+W7ld4zsMZIaJWswb9cvTJigK7Bdd92ZzYOM\n/xw8fpBbxt1C3/F9+Xzp58TtiPNJPg9OfpAKRSvw1JW2SbLJ+xISdLGqjRt1EGidOoEuUeA1bKgL\ne/li47dbb9XnyMSJub+XiC7hPnWqTm4oGKBx7Hk24PC1Dxd8SOsRralcrDJL715Kn4Z96FCzA9M2\nTKNmTY1658/Xkcd33aVL5Vrw4XuzN8/mko8uYdKaSYy+fjQlC5Zk4hov/Mam89Pqn5iwZgLvdHqH\nwpEBWibQ5Ct//w2ffKIz4vztxAn9A2rJEv0uu/hi/5chv7ngAmjSRLtVcuuVV+DDD+G//9WVTQPF\nAo4ciD8ezxPTnqBPwz7M7DeTmqVqAtC+VntW7FnB9sPbadEC/vgDevfWrY+7dtV+v4ED88aGPcFo\n6PyhtB7RmirFq7D07qXccvEtdKzdkUlrJ3k1n+OnjvPg5AfpWLsj18Ve59V7G5ORxERd8XLAAKhd\nW6c0equp/VyOHtW8f/sNfvwxf26rHii9e+tYkQMHcn6Pzz6DZ57R5dnvuMN7ZcsJCzhy4MOFH3L8\n1HFebvcy4WHhp4+nbPM9bf00QJvb3nwT1q6Fv/7SHfWGDIHRowNS7Dwt4WQCT057kn4N+zGj3wyq\nl6wOQNeYrizYtoDdCbu9lteniz5lc/xm3uv8XsgOFDWh5Z13YMUKHZjYsaP+4RITA++/79sWj5Ql\nrKdNg+++g7ZtfZeXOdvNN+uOuf/7X86unzAB7rxTW9mfeca7ZcsJCzjO07HEY7wz7x36Nux71iC7\n8kXK07BCQ6ZtmJbmuHM6ivnVV/UDNHCgjvQ23vPtym85cvIIz7R6hoiwM5OvOsd0RhCmrJ3itbwm\nr5tMq+qtqFc2H4+YM36zcaPuWvrAAzowccQI7V5p106PVaumi03t3Jmz+8+cqU3ua9emPb58uS5s\ntXWrtm506ZLLipjzVrEiXHXV+XernDgBb7yhLVPdumlgGgx/G1nAkcqmg5vOmWb4kuHsPbqXx654\nLMPz7Wu255f1v6Ss73GWIUO0S2XgwFwV1aTz2eLPaFuj7enurRQVilagSaUmXutWOZV8ipkbZ9K+\nZnuv3M+YrKQM9itdWpvEU9Spozucrl4Nt9yiW7xXq6Y7dn7xBXz1FYwdqytizp+f+f1Xr4Zrr9W/\nfuvU0QBj6FC9rkULndr6xx86lsAERu/eGvBtOvfjCRHt9rroInjySe2C+/JLCA8/97V+kdUiHfnl\nhWfhr4oPV5Rth7ZlurhJYlKi1Hi3hvQc2zPTNBNXTxQGISv3ZL683siRuqjLTz9lmsSch7X71gqD\nkFFLR2V4/tlfn5XSr5eWU0mncp3X71t+FwYh87bMy/W9jDmXceP0u+Lbb7NOd+CAyBtv6OqU+thJ\n+3rrrbOvOXxYpH59kXr1RHbu1P2hrrlG94sCkc6ddfEuE1iHD4sULiwZ7vN1/LjIunW6QNjo0bqv\nF+hCZMuW+a+M+Xql0fN9pQQc5R8uLxd/cLEcOJbx8nhfLP1CGIQs3rE403/4wycOS+SLkTL0j6GZ\npklO1g9G1aoihw5lmsxk0zPTnpHirxaXhJMJGZ5P2RF17ua5uc7rpZkvSfFXi0tiUmKu72VMVg4d\n0h05r7lGstzFOrXkZN2G4fBhDUL27hV54gn9pn/ttbTpevbU3UFXrEh7jz17dKnyRPuIB41bbtHl\nzp9+WqRXL5HmzUXKlz87sKxTR2T8+Ox/Xrwlv680miNDuwzlrri7uHbMtUzpPYVCkYVOn0uWZF6b\n8xpdYrpwScVLMr1H0aiiNK/SnF82/MK9zTJeXcU5nZ5Uvz489ZSOODc5k5ScxIilI7i5/s2ZTk9t\nVrkZpQuVZuKaiVxe9ay9+87LtA3TaF29dZpxIsbk1urVuulZWJh2YxQrplNQ9+/X74fs9r87B4UK\npT32yisQFaUbdp08qeM93nlHNw0bO1anX6ZWtqyOGzDB48479b0aORJq1YLYWB1TU60aVKmir8qV\n9XMTzOxbM5XapWvz0y0/0eHzDlz95dXcfendtK/ZnjKFyzBh9QSW7V7GB10/OOd9OtTqwNu/v82p\n5FOZPphq1ICXX4aHH9YPk81rz5lpG6ax9dBW+jfqn2ma8LBwOsd0ZuLaify73b9znNexxGPM3TKX\n1zu8nuN7mPxp6VJ9SBQocPa55ct1qfCICKhUCQ4fhkOHdPbJ22/rd0VuOAcvvACRkRpsrFqlYzwe\nfRT+8Y/c3dv4R+vWOhA0GAZ+5oYNGk2nRdUWfNfzO3Yc2UHP//Wk3BvluHTYpTw05SGuqHoFV1a/\n8pz36FCrA/En4lm0I/NdegHuuUcH88ya5a3S5z+fLf6MC8pewGWVs14coEtMFxbtWMTOIzkcyg/M\n3TKXE0knTk9/NiY73nsPLrlEB16mH8C5ZIlOO61YUfdvWrBAZ6Bs365rL9x9t/fK8cwz8NprOi2/\ndWtt+TChI9SDDbCAI0OdYjqx8t6VbHloC591/4x6ZeshCP9um72/jptGN6VoVFF+Wf9LlumiorQ5\n888/vVHq/Gf/sf2M/3s8tzW67ZzrYXSq3QmHY/LayVmm23BgA00/bsrGgxvPOjdtwzTKFS7HReUv\nyk2xTT4ybBg8+KAuuFSwoG729eij2noxf76ua1GzJvz6K5Qr5/vyPP64ToP97jttUTHGnyzgyEKV\n4lXod0k/Rl8/mnUPrKNtzeytehMZHkmbGm3OGXAA1G943AKOHBrz1xhOJZ+id4Pe50xbrkg5mlZu\nes5lzkf9OYqF2xfy75lnB5e/bviVdjXb2WJf5jQRbZnYsOHsc6NGaQvFffdp4DFvnrYq/Oc/0KAB\ndOgAF16o+5KULu2/Mrdqlbd3cjXBywIOH+lQswNztszhaOLRDM8nJSfxwowX+CamKEv2zyI52c8F\nDGJr9q3hsk8uY/ji4VmmG75kOFfXvZqKRStm675dY7oydd1UTiWfyjTNN8u/oVTBUoxcOpK1+8+s\nhBR/PJ4F2xfY+hsG0GXFR4yASy+Fxo11IF/Llrox1r59OsCvXz+4/XZde8c5bVF4/HEdz1GlClxx\nBUyZEphtwo0JBAs4fKR9rfacTDrJb5t+O+vcjsM7uGrUVbz424tEhkVxrOpPbNzo/zIGo982/Ubz\nT5uzdOdSHpj8AFvit2SYbsraKcTtiOO2S27L9r271ulK/Il45m6Zm+H5FXtWsHzPcj68+kPKFynP\nS7+9dPrczE0zSZZk2teygCM/WbFCZ5R98IG2TLz7LjzyCFStCv37Q4UK8NNPurhSiRLamlGpEvTq\npa+PPjp7J9GUbc0nTYKiRQNTL2MCwXrxfKR+ufrUKlWLbmO60aZGG7rX6073et1ZuXclvcf1JiIs\ngml9pjFk9jDGb5nO0qX6V1J+9sWfX3Db97fRslpLPuv+GS0+bcH9k+5n/M3j06Tbk7CHft/3o2Pt\njnSr1y3b928S3YQqxaswfMlwWlVvddb5scvHUrxAcbrHdmd3wm4GThnIU1c+Rd0ydfl1w69UL1Gd\nmiVrZnBnk9ccPaore771FiQlaetEeLi+ihTRrcPvvTftFu29esGuXTrddPduXY48aFZ4NCYIWAuH\njzjnmHvbXIZ0HkKYC+OhKQ9R7d1qdPqiE40qNWLJ3UtoU6MNXS5oC5XimP/noUAXOWBEhEEzBvHP\n7/5J7wa9mdx7MjVK1uC9Lu/x/arv+W7ld2nSDvhxAIlJiYzoPoIwl/2PcJgL4/5m9zP6z9HsOLzj\nrPNjV4zl2nrXUjCiIAOaDKBS0Uq8OFPXk562YRrta7a38Rv5wNSpujT0u+/C889r98nJkzrQ88gR\nDSrefTdtsJGiQgXd3+Sll2xQpjHpWcDhQxWKVuCepvcwpfcU9j66lzE3jGFkj5FMunUS5YuUB6Bd\nzbYQlszMDfl3buw3y7/hhZkv8Eq7V/j02k+JCo8C4IYLbuCautdw/6T7OXRCA7KPF33M96u+59Nr\nP6VSsUrnndedTe6kQEQBhs4fmub48t3LWb5nOTddeBMABSMK8vSVTzNm2RhmbpzJst3LrDsljzt2\nDPr0gU6ddO2LP//UqaRRUYEumTF5gwUcflKiYAluvuhm+jTsk+av8tqlalM0uQorj00PYOkC69PF\nn3JltSt58son07QgOOd4v+v7HDx+kKenPc3fe/9m4OSB3NXkLrrHds9RXiULluSORnfw4cIPSTiZ\ncPr42BXandKxdsfTx25rdBuVi1Wm5/96AtC2hu3NnVcdOKDbvn/7LQwfrtux160b6FIZk7dYwBFg\nzjkaFGvLwZLTOXIk0KXxv62HtvLL+l/o27BvhuerlajGv9v+m/cXvE+3Md2oVqIab3V8K1d5Ptj8\nQeJPxDNiyYjTx8auGEv3et0pEHFmKcgCEQV4ptUz7ErYxYXlLsxRi4oJftu361TRFSs00OjXL28s\nsmRMsLGAIwhcFdMWKi3m9yUHAl0Uvxu1dBQFIwpyY/0bM01z/2X306hSIzYd3MSXN3xJkagiucqz\nRska/OPCf/DOvHdISk5i+e7lrNizgpvq33RW2n6X9KNO6TpcU+eaXOVp/CcpSWeV1Kmj3SMvvQQz\nZmiXSXqrVuk27PHxMHu2bs9ujPENG9YUBG5u3oYXlgrjF/3GVS1z1lUQikSEkUtHcv0F11O8QOYr\nEUWERfBjrx/ZdHATjSs19kre/7r8X1z2yWX8sOoHluxcQvECxbmq1tk7VkWFR7H4rsVpWj5M8Fqy\nBO66S1fx7NlT9yV5803dQyQyUqezliihC18VLw6//64rfE6ZoueMMb5jAUcQiK1Yk8iE6sw+Oh3I\nPwHHH9v+YNW+VQztOvScaaOLRRNdLNpreTer3IyW1Vry5u9vcuDYAXrE9sg0qMhti4rxvSNHdBrq\nu+/qJmmzZulCXADJybBsmbZgbN6sG6MdOqStGl266M6pZcoEtPjG5AsWcASJyoltWRc+I9DF8KuR\nS0ZSpXiVgA3G/Nfl/+K6r68D4I2r3ghIGUzuzZ4NffvCjh3affLww2lnloSF6VLiDRoErozGGBvD\nETQuLdOWhGJL2ZuwL9BF8Yvjp47z1fKv6NOgD+FhgVkdqVvdbtQpXYcSBUpwVe2zu1NMcDt+HB57\nTAd8Vqqk01ifeMKmsRoTrCzgCBJX19e/8r+NmxngknjXgWMHuO7r6/hh1Q9pjv+w6gcOHj9In4Z9\nAlQyCA8L5+NuH/Pfa/57eu0P41vffqstELndO2jxYt3HZMgQ3XJ95kyIifFOGY0xvmEBR5Bof2lV\n2F+bn5blrfU4nvjlCb7/+3u6f9WdJ3958vTGaSOXjqRZdHMSd9bj2291v4olS3L/IDpfrWu0pudF\nPf2baT714Ydw4406ZuLTT3N+n6VLdXxGRAQsXKitHLaEuDHBz8ZwBIkqVSBqW1vml847AcesTbMY\ntmgY73d9n4STCTwx7QlmrptPhSVvM7H8ZJj4ARffqWmd062+S5eG1q2hXTtdD8E2twp9IvDqq/D0\n07rs9+HD8OijcPXVEH2e44D37oUePXQDtNmzoXBh35TZGON9IdPC4Zyr7pz7xDm33jl31Dm3xjk3\nyDkXmS5dVefcBOdcgnNup3NusHPnseFGgDgHtcLaspvl7E7YHeji5NqJUye486c7ubzK5dx96d30\nrPooXXZP4/e1yxlf7lLCXST/uasns2bpRldHj+oOmvfdpw+Vhx6Ce+4JdC1MboloC8TTT8MLL+gs\nkrfegkKFdPMzkezf69Qpnep65Ah8950FG8aEmqB/EKcSCzhgAHAh8BBwN/BySgJPYDERbblpDvQF\n+gEv+rmsOdK8UhsAZmycEdByeMNrs19j7f61vHDpMO6/L4yYGPjj6zY8W34R7Wq15Z7L7uS+O0rS\nsqWug1CwILRpow+l336D996DL77Q5nMTeo4cgR9+gBtu0HUwhgyB557TwLpUKRg6FMaP1zEd2fXI\nIzpWY+xYqF7dd2U3xviIiITsC3gEWJvq5y5AIlA21bG7gANARBb3aQxIXFycBNKwYSLcV1cGjP+/\ngJYjt1bsXiGRL0ZJg4FPS0SESOnSIq+8InL4cPbvcfKkSN26Ip06+a6cxrt27xYZMkSkY0eRqCgR\nEKlTR+TLLzNOf911IhUqiOzbd+57jxih9/vPf7xbZmNM7sXFxQkgQGPJ4pkdSi0cGSkJ7E/1c3Pg\nLxHZm+rYFKAEUN+fBcuJhg2Bbc34Y1Po/lm/8u9kWr1xF4l7qrPn22cYPBg2bYInnzy/8RiRkfDK\nK7oC5LRpviuvyR0R+OMP+Oc/dRzSo4/q8cGDYfVqffXqlfG177+vU1v/9a/M75+UpANM77oLbrtN\nu2GMMaEpZAeNOudigPuAh1MdrgjsSpd0V6pzQf0kr18f2FeP9fGTAl2U85aYqE3nz43/lFNdZ/Fw\n1V95ZU1BCuRiRfDrr9e9LR57DBYs0AWcTHDYswfGjYOPP4a4OKhZE15+Gfr3z/6qnZUq6XiOO+7Q\nMTx9++qOrRGeb6Wff9ZulD//hFtv1f1RbFM1Y0JXwAMO59yrwONZJBHgAhFZneqaysAk4GsR+czH\nRfSbIkWgYkQsO5P3sffoXsoWLhvoImXL4sVw++2wZPVeCjzyBD3r9+Gtf+R+9VDn9C/lVq3g668z\n/0vZ+MeBAxpkfP01/Pqrtm506gQ//QSdO+dsauptt2mwMWyYzlqpUAFuuQVWroTJk+GKK2DePLjs\nMu/XxxjjX07OZ5i4LwrgXBngXH8TrReRU5700cB0YK6I9E93rxeAbiLSONWxGsB6oJGIZNjC4Zxr\nDMS1atWKEiVKpDnXq1cvevnxSdf30WV8XvRi3rl4FgOvb+m3fHPqrbfg8cfhwguh1sA7mLnnW1bd\nt4ryRcp7LY9rr9W9MFauhAIFdK2ORYt0QOn11+sgRONbCQlQu7bOKGrdWmeL3HCDDvj1BhFdh2Xk\nSPjyS91Y7fXX9f21Vg1jgseYMWMYM2ZMmmPx8fH89ttvAE1EZFGmF2c1wCPYXkBlYBXwBZ5gKd35\nzpw9aPROdNBoZBb3DYpBoyIih44eE54PkwItPpZFiwJblj17RLZuzfx8QoJIgQIiAwaIzFw3VxiE\nvD//fa+XY/lykbAwkdtuE+nVS6RsWR1ACCKVKon8+KPXszTpTJig/97++BVJShJJTvZ9PsYY78hz\ng0Y9LRszgE3AY0B551wF51yFVMmmAiuAUc65Bs65TsC/gaEikujvMudEsUIFqVmyBiVrr6JLF9iw\nIXBluecebebOzPTpcOIEPDDwFA/+fA9NKjXhriZ3eb0cF14IAwbAZ5/pIMQ779Spsxs2QKNG0K2b\nLhJ28KDXszYeU6fq9u2NGvk+r7Awa9UwJi8K+BiO83AVUMvz2uI55tCoKhxARJKdc9cAHwJzgQRg\nBPC8vwubGxeUjyWx3d9s+F37yOfM8V7TdXYlJ+vskP37Yd06bU5Pb9IkqFEDfj38IUt3LmXeHfN8\nthHb0KG6Z0bJkmmP//QTjBgBAwfqIMMvv9Qmf+NdP/+sAzotEDDG5FTItHCIyEgRCU/3ChOR8HTp\ntojINSJSVEQqiMjjIuLnHTpyJ7ZMLBsO/82UKRAfD9dcowPr/OnPPzXYAPj++7PPi2jA0frqnTw7\n/RkGNB5As8rNfFaeiIizgw3QB2D//jrGo04dbe1YtsxnxciXtm6FFSvgKttQ1xiTCyETcOQnsWVj\nWX9gPZWrnWDSJH2A9u3r343Npk/XAZodOuiKkOmtWQPr18Pmeo8TGRbJK+1f8V/hMlC1qrZ21Kql\nAdru0F8dPmj88osGdu3bB7okxphQZgFHEIotG0uyJLN2/1oaN4bRo3UJ6Oee818ZZsyAFi3g5pu1\nSyf9A3zSJIgseojZB8fwZMsnKVM4m4sv+FDRovDjjzqupEcPXVTK5N7PP0PjxlA2NGZpG2OClAUc\nQahe2XoArNq3CtCH5+uv68JKo0b5Pv+kJN2zom1b7aIQ0daD1CZNgthrJpOYnMgNF97g+0JlU9Wq\n2gWUsjZIgGd9h7zk5DPjN4wxJjcs4AhC5QqXo1TBUvy99+/Txx55RBdJuuMObXHwpSVLdOxImzZQ\nvrwuvpS6W+XoUW0BibzoBxpUaECNkjV8W6Dz1KzZmfUcXnop0KUJbX/+qauK2vgNY0xuWcARhJxz\nxJaNTRNwOAcffgiXX64tHuvXZ32PHTtynv/06bp9eDPPGNAePfSv3IQE/XnGDDiRmMhaN4Hu9brn\nPCMfuukmGDQInn9eBzyanJk6VbeBb9Ei0CUxxoQ6CziCVPqAAyAqSsdylCwJXbvCvn0ZXzt4MERH\na+CQEzNmaKtGyj4o3bvreIipU/XnSZOgQrNZHEo8GLQBB+iGcVWqWCtHbvz8s04zzs2eOMYYAxZw\nBK2UgEPSDUIoU0Yf+Pv2nQkEUvvkE11qvEABXSjrfJ06pYtqtU21FUpMjG4sl9KtMmkSlL/yByoX\nq0zjSo0zvlEQiIrSoOOrr+Dvv8+d3qR17BjMmmXdKcYY77CAI0jVK1OPwycPs/PIzrPOxcTobIy4\nOOjT58x02XHjdBvve+6BZ5/Vnw8fzvj+hw7pdMf0Fi3Sa9q0SXu8Rw/Nc+VKWLdO2FXqe66tdy0u\nyFeCuu02be15JbCzdkPSrFk648cGjBpjvMECjiAVWzYW4KxulRTNm+ugyP/9T7dvnzZNd1O96Sb4\nz3/gn//UwZ3jxmV8/0cf1b9cJ0xIe3z6dN21tmnTtMd79NDdQp96CiIqL2P3yY1B3Z2SokAB/RMd\nvwAAGjpJREFUeOIJnVq8dm2gSxNafv5Zg7ULLwx0SYwxeYEFHEGqVqlaRIRFZBpwAFx3HQwZoju2\ndu0K7drp7IywMKhWTbtFRo48+7qtW2H4cB0LMmDAmRVFQcdvtGwJkZFpr2nSBCpX1m6Vah2/p1hU\nMdrUaOOVuvraHXfotucvvxzokgSHQ4fg6afTvu8ZmTpVg9Igb8QyxoQICziCVGR4JDGlY7IMOADu\nv19nYnTsqK0dUVFnzvXtqy0WmzalvebNN3WRrN9/1376Bx7Q44mJ2oyevjsF9KHTo4cnXc3v6RzT\nmQIRoTGSsGBBbQUaNercs3vyg48/1i6mZ5/NPM3OnTol1sZvGGO8xQKOIBZbNpa/9517tOOgQTq+\nokiRtMevv16nNI4efebY7t0wbJgGGbGx8N57en7cOFi4UKe+ph4wmlrPnhBRehtbkheGRHdKanfe\nqQNuX3010CUJrKQk+OADXTX0o48y33cmpSuuQwf/lc0Yk7dZwBHE6pWpx6q9q3J8fbFiGnSMHHlm\nxc1334Xw8DOtGr17a8vF3XfDN9/oNU2aZHy/K6+E17/7kXAXTpc6XXJcrkAoXFjHrYwYoYFVZtau\n1Zk+J0/6tjzbtukD/7XX9D358EPt5oqL822+kydrK8+4cbrvzMMPn70a66pV2iLUt692RRljjFeI\nSL5/AY0BiYuLk2AyfPFwYRCScDIhx/eYOlUERObNE9m/X6RYMZFHH02bZudOkTJlNF3Xrlnfr8sX\nXaTtiLY5Lk8gHTkiUru21vPyy0U++0yPnTwpMnasSIcOeg5Ebr9dJDnZu/mvXy/yxhsizZtrHhER\nIqVLixQuLBIWdubYjBnezTe1zp1FLr1U6/b995rnjz+eOX/0qEiDBiKxsSKHD/uuHMaYvCMuLk4A\nARpLFs/aiIBGOyZLKTNVVu9bzSUVL8nRPdq108Gen38OFSvqOI2HH06bpkIF/Qv7ppvSjt84fuo4\na/atISExgSMnj3D4xGGmbZjG4A6Dc1ijwCpSRFcd/eEHHcdw++3w4IPa+rFrl66mOXKkjmu5+264\n+GI9f75EdN2P+fN1HETKa/dunTXTubO+H9266cDdFMePw9VXww036LW1anmv7qA7/E6erK08zmn+\nHTro56FjRx3/M3AgrF6t+Rct6t38jTH5mwUcQaxeGd3E7e+9f+c44AgP126TYcP0IXPHHRp4pHfj\njToDJXXA0f/7/ny17Ks06QpFFKJHbI8clSUYREXBP/6hr40btRvj8GHo318DjBSrV+uD+IIL0q5D\ncfIkvPMOTJyo66FceKGmqVlTN4z7+Wd9bdum6WvVggYNNIC55BJ9wBcrlnHZChaEsWPhsss0GPj9\ndyhe3Ht1/+ADHcfSs6f+7By8/baWa+hQnQI7bJgGY6n/LYwxxiuyav7ILy+CtEtFRKTCGxXk+enP\n5+oey5adaa7ftCl71+xN2CtR/46SJ35+Qv7a9ZdsOLBBdh/ZLccTj+eqLKHi1CntfihZUmTVKj02\nbZp2NYSHi3TrJtKkiXaHpHTDgMhFF4k89JDIxIki8fE5y3vlSpESJbR769Qp79Tn8GG95+OPn33u\n//5PpHhxkaJFRW65xftdScaYvM26VPKIemXrnd6mPqfq14dWreCii3R9juz48q8vSZZkHr78YcoV\nKZer/ENReDiMGaMLrF17LTRqpEukt2ypg2tTWgCSk2HzZli3Tls7KlXKfd6xsZpH16460PWtt3K/\nFsbo0dqSc/fdZ5978UVdRC46Wgey2robxhhfsIAjyMWWiWX+9vm5vs/5buQ2fMlwrql7Tb4MNlKU\nLKnTjZs1g19/1fEd//xn2gdyWBjUqKEvb+rYUbtuHnhA1w9p3PjMq1077RrJzKlTGjCllFNEu0y6\ndcu4nGXLwpw5ULp05t09xhiTWxZwBLnYsrGM+nMUyZJMmMv5LOaw87h06c6lLN65mEFtBuU4v7yi\nTh0daFqkiHfHU2THfffp+JA5c3SPmy++0Gm05crp1N1rr02bXkSPP/KI/tywob5KldL1Nt55J/O8\n6tf3XT2MMQYs4Ah6zas059ipY/yy/hc61vbPLlrDlwynfJHydIkJrbU2fMUb3SQ54ZwOMk29+NaW\nLRqIdO+uy9K//bbOJtm0SQcE//KLDoCtWxeWLtWfV6/WLqD27QNTD2OMAQs4gl7zKs1pUKEBQ+cP\n9UvAcTLpJKP/Gk3fhn2JDI889wXGr6pW1dlEn3wCDz2kXWV9+8LgwVCihE577dQp7TVHj+p/bWyG\nMSaQbKXRIOec496m9/LT6p/YeHCjz/P7afVP7D26l/6X9Pd5XiZnnNPWjSVLdCzHs8/qVNdly84O\nNkDXGSlc2P/lNMaY1CzgCAG3XnwrxQsU56OFH/k8r+FLhtM0uin1y1unfrCLiYHZs3VBr48/1hYO\nY4wJVhZwhIAiUUXof0l/Pln0CcdPHfdZPjuP7GTSmknWuhFCIiI08DDGmGBnAUeIuKfpPew7to+v\nl33tszxGLR1FRFgEN190s8/yMMYYkz9ZwBEi6pSpQ6fanXh/wftpjosIHyz4gNdmv5ar+4sIw5cM\n57oLrqNUoVK5upcxxhiTngUcIeTepveyYPsC5m/ThcBOnDrBbT/cxr0T7+X5Gc+TcDIhx/feeHAj\nK/eu5Ob61rphjDHG+0Iy4HDORTnnljjnkp1zDdKdq+qcm+CcS3DO7XTODXYuFytmBZGudbpSvUR1\n3l/wPruO7KLd5+0Y89cYXmjzAieTTjJj44wc33vOljkAtKzW0kulNcYYY84I1QfxYGArulnMaZ7A\nYiK6vkhzoC/QD3jRz+XzifCwcO5peg9fL/uaZp80Y93+dczoN4NnWz1LzZI1mbR2Uo7vPWfzHGLL\nxlKmcBZrZhtjjDE5FHIBh3OuC3AV8AiQfimjTkAscKuI/CUiU4BngXudc3likbPbG91OeFg4ZQqV\nYcGABTSv0hznHF1iujB57eQc33fOljlcUfUKL5bUGGOMOSOkAg7nXAVgGNAbOJZBkubAXyKyN9Wx\nKUAJIE8sLFGmcBlW3ruSubfPpWqJqqePd47pzLoD61izb8153zP+eDzLdi+zgMMYY4zPhFTAAQwH\nPhCRxZmcrwjsSndsV6pzeUK1EtUoGFEwzbG2NdsSFR6Vo26VeVvnIQgtqrbwVhGNMcaYNAIecDjn\nXvUM/szsleScq+ucewAoCryecmkAix10ikYV5cpqV+aoW2XOljmULVyWumXq+qBkxhhjTHBs3vYm\n2nKRlQ1AW+By4IRLuwvVQufcaBHpD+wEmqa7toLnvzvPVZCHHnqIEunWh+7Vqxe9evU616VBoUtM\nF56Z/gzHEo9RKLJQtq+bs2UOLaq2wNnuXsYYY7IwZswYxowZk+ZYfHx8tq51InLuVEHAOVcFKJ7q\nUDQ6PuMGYL6IbHfOdQZ+BCqljONwzt2JtoqUF5HETO7dGIiLi4ujcePGvqyGT63Ys4L6H9Rn0q2T\n6BzTOVvXnEo+RcnXSvJc6+d47IrHfFxCY4wxec2iRYto0qQJQBMRWZRZuoB3qWSXiGwVkRUpL2AN\n2q2yXkS2e5JNBVYAo5xzDZxznYB/A0MzCzbykgvKXkDV4lXPq1tl6c6lJCQm2IBRY4wxPhUyAUcm\n0jTPiEgycA2QBMwFPgdGAM/7vWQBkDI99nwGjs7ZMoeo8CiaRDfxYcmMMcbkdyEbcIjIJhEJF5E/\n0x3fIiLXiEhREakgIo97ApF8oXNMZ1bvW836A+uzlX7OljlcGn3pWbNejDHGGG8K2YDDZKx9rfZE\nhEVkq1tFRJiz2Rb8MsYY43sWcOQxxQsU54qqV2SrW2Vz/Ga2Hd5mAYcxxhifs4AjD+oS04VfN/zK\niVMnskyXsmGbLfhljDHG1yzgyIM6xXTiaOJR5m2dl2W6OZvnULdMXcoVKeenkhljjMmvLODIgy4q\nfxGFIwuzYPuCLNPZhm3GGGP8xQKOPCgiLILGlRpnGXAcOnGIv3b/ZQGHMcYYv7CAI49qGt2UBdsy\nDzjmbZ1HsiRzRTULOIwxxvieBRx5VNPopmw4uIE9CXsyPD9r0yzKFCpjG7YZY4zxCws48qimlXUP\nu4XbF2Z4fvrG6bSp0YYwZx8BY4wxvmdPmzyqdqnalCpYKsNxHAknE5i/bT5ta7QNQMmMMcbkRxZw\n5FHOOZpWbpphwDF3y1wSkxNpW9MCDmOMMf5hAUceljJwVCTNHndM3zid8kXKc0HZCwJUMmOMMfmN\nBRx5WNPopuxK2MXWQ1vTHE8Zv+GcC1DJjDHG5DcWcORhKQNHU3erHDl5hAXbFtj4DWOMMX5lAUce\nFl0smuhi0WnW45i9eTZJkkSbGm0CVzBjjDH5jgUceVzT6KbM3z7/9M/TN0ynYtGK1CtTL4ClMsYY\nk99YwJHHNavcjIXbF5IsyQDM2DSDtjXa2vgNY4wxfmUBRx7XNLoph04cYs2+NRw6cYi47XHWnWKM\nMcbvIgJdAONbl0ZfCujA0VIFS5EkSTZg1BhjjN9ZwJHHlSpUipjSMSzYtoDI8EgqF6tMTOmYQBfL\nGGNMPmMBRz7QNFpXHD2ZdNLW3zDGGBMQNoYjH2ga3ZRFOxaxeOdi604xxhgTENbCkQ80q9yME0kn\nAGz/FGOMMQFhAUc+0KhSI8JdONHFoqlZsmagi2OMMSYfsoAjHygcWZgm0U1oUL6Bjd8wxhgTEBZw\n5BMTb5lIwYiCgS6GMcaYfMoCjnyiTOEygS6CMcaYfMxmqRhjjDHG50Iu4HDOXe2cm+ecO+qc2++c\nG5fufFXn3ATnXIJzbqdzbrBzLuTq6Q1jxowJdBG8Kq/VB/JenfJafcDqFAryWn0gb9YppB7Ezrkb\ngM+BT4GLgRbAl6nOhwET0a6i5kBfoB/wor/LGgzy2gc2r9UH8l6d8lp9wOoUCvJafSBv1ilkxnA4\n58KBd4F/iciIVKf+TvX/nYBYoK2I7AX+cs49C7zmnBskIqf8VmBjjDHGnBZKLRyNgWgA59wi59x2\n59xE51z9VGmaA395go0UU4ASQOp0XpGTCNRf1wBs27bNL3n565pgrk9OrwvmOvmrPjnNK5jrZJ87\n/15jn7uc5+PPz2ooBRy1AAc8j3aRXA0cAGY450p60lQEdqW7bleqc14V7G9uXvvABnN9cnpdMNfJ\nvvhVML9HOb0umOtknzuV194jCIIuFefcq8DjWSQR4ALOBEcvich4z7X9ga3AjcDHuShGQYCVK1ee\n10Xx8fEsWrQoKK8BSExMDNry5eSaYK5PTq8L5jr5qz45zSuY62SfO/9eY5+7nOfjjWtSPTuzXOzJ\nich5ZeRtzrkywLkWiVgPtAR+BVqKyNxU188DfhaRZ51zLwDdRKRxqvM1PNc3EpGlmZThFmB0buph\njDHG5HO3isiXmZ0MeAuHiOwD9p0rnXMuDjgB1APmeo5FAjWATZ5kvwNPOefKphrH0RGIB1Zkcfsp\nwK3ARuD4eVfCGGOMyb8Kos/iKVklCngLx/lwzr0D3ADcjgYZj6FjOWJFJN4zLXYxsB3tpqmETqMd\nJiLPBqbUxhhjjAl4C8d5egRIRIOIQsAfQDsRiQcQkWTn3DXAh2grSAIwAh1oaowxxpgACakWDmOM\nMcaEplCaFmuMMcaYEGUBhzHGGGN8Lk8EHM65J51z851zh5xzu5xz3znn6maQ7kXPCqVHnXM/O+di\n0p0v4Jx73zm31zl32Dn3P+dc+XRp6jjnxjvn9jjn4p1zs5xzbUK8To2dc1Odcwc89fqvc65IkNZn\ngHNuuuffPtk5VzyDe5Ryzo32pDngnPvE2/UJQJ2ecs7N8WxKuN/bdfF3nZxz1T3vy3rPPdY45wZ5\nZp6FXH08ab53zm1yzh3z3Otz51wlb9bH33VKlTbKObfEk65BKNfJObfRcy7lleSceyxU6+NJl+Wm\npsEiTwQcwJXAf4DLgA5AJDDVOVcoJYFz7nHgPuBOoBk6oHSKcy4q1X3eRWe93AC0QpdS/zZdXhOA\ncKANutz6UuAnl+4hHip18nwh/gys9tyjM7oM/IggrU8hYBLwMrooXEa+RBeLa4/WvRXwX29WxsOf\ndYoEvkEHRPuSv+oUi64cPAC4EHgIuNuTPhTrA7pO0I1AXeB6oDYw1puV8fBnnVIMRhdZ9NWgP3/W\nSYBngAroCtSVPHl7k9/q486xqWlQEZE89wLKAsnoImEpx7YDD6X6uThwDLgp1c8ngOtSpannuU8z\nz89lPD9fkSpNUc+xdiFapwHAjnR5XeRJUyuY6pPu+tZAElA83fFYz30bpTrWCTgFVAy29yg7dUqX\npi+w35f18HedUqV9BFibh+rTzfO5Cw/lOgFdgOWpfrcahPLnDtgAPODrOvijPugfv1uAfv6sT05f\neaWFI72SaDS4H8A5VxONZKelJBCRQ+i02ss9hy5FpwmnTrMK2JySRnSRsr+BPs65ws65COD/0P1a\n4nxbJd/UCSgAnEyXV8riZy29WoO0clKf7LgcOCAii1Md+8WT12W5LPO5+KpOgeTPOpVMyceH/FIf\n51xpdDHBOSKSlJsCZ4PP6uScqwAMA3qjD0N/8fX79ITTbuZFzrlHnO5G7ku+qk92NjUNGnku4HDO\nObQbYbaIpKwuWhF9szPa2C1lU7cKwEnPm55ZGoCr0Df5MPoL+CDQWTxrgfiCj+v0K1DR80sX6Zwr\nBbzqubfX+58hV/XJjorA7tQHPF/4+8/zPufFx3UKCH/WydN3fR/wUU7vkY08fF4f59xrzrkjwF6g\nKtAj5yXOVn6+rtNw4IN0AbxP+aFOQ4Cb0W7xj4CngNdzWt5z8XF9srOpadDIcwEH8AHaJ3yzD++/\nC7gCaAqMR8dwVPBRfil5+qROnl+AvsDDwFG0mW89+tBO9nZ+Hr5+jwLB6pRDzrnKaD/11yLymQ+z\n8kd9BgOXoH+YJAGjfJgX+LBOzrkH0C7jlIex83YemfDp+yQi74rIbyKyTESGod999zsvD1hOxZf1\nSbOpqScw7I8GMzf6IL9cyVMBh3NuKNAVaCMiO1Kd2on+sqQPCip4zqWkicpgFPDpNM659p779xSR\neSKyRETuQ1s6+nq1Mh6+rhOAiHwlItFo01wZ4AWgHBp4eFUu65MdO4H0s3DCgdLneZ9s80Od/M5f\ndXLORaOtbLNF5K4cFjc7+filPiKyX0TWisg0oBfQ1Tnnk648P9SpLdq8f8I5lwis8Rxf6JwbnrNS\nZy1Av0vz0a7nGrm8z1n8UJ+Ue57erlVETqLf3dXOu8A+lmcCDs8b2x1oKyKbU58TkQ3om9g+Vfri\naJ9+ys6zcegAr9Rp6qFvWkqaQmjkmP4v/2R88G/p4zr9nj4/EdkjIkfRSPwYOnslmOqTHb8DJZ1z\njVIda4/+cv+Rw6Jnyk918it/1cnTsjEdWADclstiZ5VPoN6jlHEBBXJ5n7P4qU73Aw1Tvbqg3383\nAU/npvwZCeD71Aj9Dt99roTnw0/1Sb2pacp90m9qGjwCPWrVGy+0yeoAOhWpQqpXwVRpHkN3pe2G\nTh0aj0bsUenuswHt22sCzAFmpTpfBv1QjgUaAHWAN9BBlheHYp08ae5Ff+nqeP4/Abg3SOtTAf3y\nuwPPqG/Pz6VSpZkILES7vK4AVgGjgvhzl506VfUcew7d/TjlIVAkFOuEtqatAaZ6/v90XiFan2ae\n352GaEDfDpjt+exFhmKdMsi3Oj6apeLH96k5Ou6uAVATHdi7C/gsFOvjSfMOOhHgKnRK9idoy0cJ\nb79Puf53CXQBvPTmJqP9pelffdKlG4SOUTiKbqMbk+58AXTu9F50UOhYoHy6NI3R/uY9wEH0Ad4x\nxOs00lOfY+huu7cEcX2ez+RefVKlKQl8gT6YDwAfA4VDvE7DM8mrVSjWCe2CTH8uGUgK0fpchM44\n2OO5xzpgKFAplD936dJX95z3RcDhr/epEdoKuh/9w2oZ+uD3dlDoz++GcHTs0A70mTQFuMDb75E3\nXrZ5mzHGGGN8Ls+M4TDGGGNM8LKAwxhjjDE+ZwGHMcYYY3zOAg5jjDHG+JwFHMYYY4zxOQs4jDHG\nGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhifs4DDGOMXzrnhzrlk51ySc+6kc26nc26qc66/cy7b\nW5875/o65w74sqzGGO+zgMMY40+TgIrovhyd0a3phwA/Ouey+33k0F1LjTEhxAIOY4w/nRCRPSKy\nQ0SWiMhr6BbeXYF+AM65h5xzfzrnjjjnNjvn3nfOFfacaw18BpRI1VrynOdclHPuTefcVs+1v3vS\nG2OCgAUcxpiAEpHpwFLges+hJOB+4EKgD9AW3Q0TYC4wEDiEbt1dCXjTc+594DLgJnS777HAJOdc\nbd/XwhhzLrZbrDHGL5xzw4ESInJ9BufGABeLyEUZnLsB+FBEynt+7gu8IyKlU6WpCqwHqorIzlTH\nfwb+EJFnvF4hY8x5iQh0AYwxhlTjMpxzHYAngFigOPo9VcA5V1BEjmdy/cVAOLA63QDUKGCvz0pt\njMk2CziMMcHgAmCDc6468CPaPfIUsB+4EvgEDR4yCziKAqeAxkByunNHfFFgY8z5sYDDGBNQzrl2\naAvFW0ATtKv3kVTnb053yUm0NSO1xZ5jFURkjg+La4zJIQs4jDH+VMA5VwFPcAB0QbtPfgBGoYFH\npHPuAbSloyVwV7p7bASKegKVpcBREVnjnPsS+Nw59wgagJQH2gFLRWSSz2tmjMmSzVIxxvhTZ2A7\nsAFdk6M1cJ+I9BD1J/Aw8BjwF9ALDUhOE5HfgY+Ar4HdwKOeU/2Az9FZK38D44BLgc2+rZIxJjts\nlooxxhhjfM5aOIwxxhjjcxZwGGOMMcbnLOAwxhhjjM9ZwGGMMcYYn7OAwxhjjDE+ZwGHMcYYY3zO\nAg5jjDHG+JwFHMYYY4zxOQs4jDHGGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhif+3+2vp9NFAZg\nlgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1010,7 +1039,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGHCAYAAABvUSKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8FMX7wPHPhIQSOgQSWgi9QyBU6UivUqRDQAGV8kWQ\nn0gRVEBBQRBQKdJLEAREOtI7SOi9F+mhBkJJmd8fe8GUS3I5LrmU5/167QuzOzP77OW8ezI7O6O0\n1gghhBBC2JuDvQMQQgghhABJSoQQQgiRQEhSIoQQQogEQZISIYQQQiQIkpQIIYQQIkGQpEQIIYQQ\nCYIkJUIIIYRIECQpEUIIIUSCIEmJEEIIIRIESUqEEEIIkSBIUiKSHKVUiAVbsFKqhlIqr5n9D5RS\n65RSlWM4z/emOj5RHI/Y9mul1H2l1B6l1BilVB4zdWqayrYKs8/btC9AKZXDTJ3tSqnjZvYrpVRX\npdQm03lfK6XuKqU2KqV6KqVSWvBahrax3/S6PFVKnVNKzVNKVTITd9hrvWQql89UZrDpWL0ozrVO\nKfVIKeVmQVxdlFI7TOWfK6WOK6W+VEo5myl7VSn1VxTteJli6mrm9xXde8c9hvicTfEcM8X3WCm1\nUynVJYryUZ3rlgWvRV6l1Byl1EWl1Aul1G3Ta/NVNHUOmtr/KIrj3mFieCeKMjdMx/+KsD/ia3XT\n9J6rGaFclL+XMGXmRPPaBERXVyROjvYOQIg40DnCz95AXdN+FWb/GSD0S2wxsA5IARQG+gBblVIV\ntNanojhPe+AK0EwplVZr/TyKcqFtOwCZgQpAf6C/UupDrfXvEcpHtSBVKuALU91oyyulUgN/AvWB\nPcAPwF0gC1AT+BmoCPSM4lyhpgC9TW0tBIKAIkAj4BJwIEL5ScAhwAkoB3wENFZKlQImAB2BX5RS\nJbXWr8LE+z7QEPhEa30nqmCUUg6AD/A+sBMYCQQA1U3//b5S6l2t9f0w1Sxd4Osekd87g4BcwKeE\nf+/cJwpKqezAVozXyQfjNUwNtAbmKaUaAZ105IXHNgHzI+x7EV3ASqkCGK/3c2A2cBXIgfHafw58\nZaZOQaA8xnu3EzA9mlO8wPid7Y3QRk2M1+VlFPVCr0UB+TDeQ1uVUo211htNZSz9vbwEPiT86w8Q\nbGF9kZhorWWTLUlvGF8KwVEcywuEAAMj7G9g2j81inq1MT4UawKvgC6Wtm06lgc4i/GhXyrM/pqm\nOq3C7PM27fPF+AJ2i9DWNuB4hH3TTPH1jSL+AsDHMbxu2U1t/BrFcZfo4jbt72tqY7Dp50oYic3o\nMGXSAf8Cuy34XQ4xnWesmWNNTG2vjbD/CvBXFO15mdrrGsXx1cDlWL7fNgCBQBMzx743ne//IuwP\nASZb8d7+2fT+yx3d7yfC/q+B28B7pt+Nu5kyoe+5ZRjJrEOE49OBg8DliK+tuWsBSpr2r7fk9xKm\nzBzgaWxfF9kS7ya3b4Qwb5fp3wJRHO8EnNZa7wA2m362mNb6BtANo/fjc0uqAN9i9G5+EV1BpVRu\njL8s12utp0Zx/kta62kxnDMfxl+ne80d1Fr7xRQ0Ro9B6F/LaK0PYCRMg5RSRU1lxgDZgF7RNWTq\n/RmEkcwNNRPPWmAe0FApVdGC2GzOdEurPjDHFE9EQ4ALwGClVCobnDI/8K/W+t+IB6L5/XTASDbW\nAk8wekLM0Rg9PVmBN7fclFJOQBuMHsCIvRfmG9L6JOCH6X0gRFQkKRHCvNAPz0cRD5jGYrTC+FAG\n44O7jqnb3mJa6/0Yt0DMjrEw4wpGl3jPGMZdNML4f3tRbOIx45rp3/eVUmmsbKOg6d8HYfYNwfiC\nmq6UKofRtf+D1vp0DG1Vw7j9tVhrHRJFmdBbBk2tjPdtNcP4Ml9g7qDWOhjjfZMZqBrhcGqlVNYI\nW0zjfq4BeZRStS0JzpQ0FQR8tNaBwAqiT6ivAvsxEplQjYEMwBJLzmk6b2aMa34QU9ko6kd8XbIq\npdJb05ZI2CQpEcLgbPqgy66UqobRbawx/qKMqBmQEQgdC/Inxm2D9lac9ySQTSmVzsLyYzDGawyO\npkxoD8TJsDuVUk4RPtSzRHcibYztmI9xW+RfpdRypdRApVSRaKqlN7XtppRqDPyE0W2/PEy7/sD/\nMMaBbMJItkZFF4tJcYzfSaRBvWEcM/1bzIL24kLxCHGYcwwjcYoY44cYY1VCt3vE/J6aDLwGtiil\nDiulJiqlmkeTRHYGrmut95l+XgIUV0qVjuYci4H3wvTsdAR26GjG/vBfguVi6rVahvF9szSG6zEn\nHeFfl9At4lgskQRIUiKE4WuMD7o7GAMoi2CMBVlppmxH4JDW+jKA1voZRld4rG7hmDwz/WvRX31a\n6ysYf4X3Ukq5RlEsQ4S2QzUm/If6VQvO1w1jXMhljDEIPwBnlFKblVI5zVSZbWr7FsZ4jDQY4zUO\nR2h3Bcbg38xAHx1m0Gs0Ql8j/2jKhB7LEE2ZuPQ2Ma7CGJAdutUDNhINU++SJ8Z7Ii9GsvcncFcp\n1SNsWaVUCqAt4Xs4tmL8vqJ77y7FGBDe1JQ8NyXmXrjQBOseRk9LFWCC1vqnGOqZ8wJ4l/CvTV1i\nuI0pEid5+kYIwwyMv+ZSA3UwPtwj/f+hlMqI8eU+xfTkQ6i9QCulVEGt9cVYnDe0hyS6L7GIRgNd\nMD6UB5g5HtpWxN6X3Rgf5mCMYzH7qGdEWutfgV9NXfBVgY8xXgMfjAGuYX1tOk8wxi2aM9HcavkH\n41aTryVx8N91RZfAWZIUmGPpkyAxCRvj0yjKRBXjv1rrrbE9oen95q2UUhg9NU0xfr/TlVKXw7TZ\nAGPszj9h3rsKY6B0B6LofdNa+ymlNmMk42kx/pj9I4awVgFTMV5Xf+CU1jraJ4miEay13mZlXZHI\nSFIihOFCmA/vdUqpEGCcUmpbhL/y22IMTv0MY9BlWBrjL86vY3HeksA9U2+LRbTWV5RSCzF6S8aZ\nKXIW48umJHAiTL0HGH8ZE9V8GTGc9xGwBlijlNoG1FBK5TEN2g110povVgudwbiu0kBU81uE3oYI\nOz7lJUaPjTnOYcrYwhmghSmO3VGUKYPxXolpDE2saK01cAo4pZTaj5FsdML0O8dIKszdktRgPOZr\nGrhtzmJgJsbjxutNt+CiY1WCJYTcvhHCvDEYf+GNjrC/I8YX/fsYTyCE3bYQ9ZMMkSilqmA83RNt\nF30URhP12JL1GD0V1txOstQh07+RJnOLQ7uBx0BHU6+AOd4YX7Jrwuy7hjH3jDlFTeWvRXE8ttZg\nJE5dzR00zbPSEWMA9R4bndOccL8fZUwq1wJjHEbE9+37GLcto3u/rMQYG1SJ/wZ4C2FzkpQIYYbW\n+gnGXAwNQgcBmh61rQH8rrVeEXHDGBxbUClVIab2lVJ5gbkYc0yMtyK+yxiTmX0EuEU4dgNjbEcj\npVSfKJqI8f99pZSrUirSgFHTI6F1Mb6kYnOr6q2Yuv/HYyQS35qJqwlGUrJBa30wzKF1QG6lVPMI\n5VMCPTDGPYQb8/IWMe7DeES8uymeiL7FePplnIXjaKKllKqmlDLX4x167rOmf1th9ApNjeK9uwZo\nbfrdRqKNiQE/xpiMbfXbxi1EVOT2jRBR+wljJs8vMP66Df1LMqoP5XX810PxT5j9XkqpThiJQCaM\nGV1bY3ypdzbN4RATcz0DYzDGlhQhwpM2prg9gMlKqfammO8BLhjjQpph3GqITm7goFJqK0Yv0B2M\nCdU6YNyemKi1fmhB7LY0FmNg5+emnqblGAMhq2O87qcw5n8JawbwAbBMKTUHOIIx90Y7oATGxHdB\nNoyxK0Zi8qcyliDYhXHLrxXGGJwlWJGIRmEwxvtrBf89leSF8b7ww5hhF4zX5gGwL1ILhr8wZvdt\ngjFQFiK857TWZh9zfksFlVLDzOw/orVeZ/pvR9P/P+aseIuxKiIBkqREJBfRDWTU5o5rrW8rpRYD\nnZSxfktH4JrW+kTEsqbyT5RSu4F2SqmBYdpub9qCMAY/XgB+BKabm/QqiljNxXdJKbWA/25ZhD32\nQinVEOPLqQvwfxhPezzGeCT1YyJPaR7ROYwp7RsDnwCuGGMvTgI9tNZzLIjbpkyDZtsqpbpi9HJ8\nA6TEmO9lJPBjxC8prfVLpVQNYATGE0TdMBIZX6CR1vrvmE4byxjvmB6D/Qzj1kgrjN/9ccBba70w\ninNY8/qNwXhf1jT964wxW+tijFlzryulsmEM3l5sGndizhaMqeo78V9SYkk85uKOzbUUwfgdRjQL\nI8kHI6GL6r26C7hu4blEIqCifo8KIYQQQsSfRDemRClVXSn1lzJWngyJeJ/YVOYbpdQtZayq+rdp\nAaqwx1MppX5WSvkppfyVUn/EdjZOIYQQQthWoktKMJ6TP4oxNbW51VEHY0z21AtjFdTnwMYI0zVP\nwrh32hpj4GJOwsw4KYQQQoj4l6hv35jmknhPa/1XmH23MNbRmGj6OQPGKpfeWuulpp/vA+1DZ+s0\nTZt9BqgcYdS+EEIIIeJJYuwpiZJpMKIbxqAtALTWT4EDGNMcA5THGOAbtsw5jMFSVRBCCCGEXSSp\npAQjIdEYPSNh3eW/uRxcgdemZCWqMpEopZyVUuVMkxAJIYQQwkKWfofKI8GW88SYgfGwUirilOAb\nsG5WTiGEECKpaQA0jLAvHVAOY56kvVFVTGpJyR2MCX9cCd9b4ooxYVJomZRKqQwRektcTcei4mH6\nt5yZYzUwM8OkEEIIIcLxILkkJaaFyu5gLHN9HN4MdK0E/Gwq5osxkdG7GOs5hA50dSfq2Q7BtMz7\nwoULKVYs0szbURowYAATJ06M1XXEV5169erx998xzRtlm3Ml5GuKr9isrZeQrykhX4+19RLyNcXn\nezWpXZO876w/jy3qnDlzhs6dO4PpuzQqiS4pUUqlxVg7InQK5PxKqTLAQ9OaH5OA4UqpixgXPwr4\nF2MpbbTWT5VSs4AflVKPMBZdmwzsieHJm5cAxYoVo1w5c50l5mXMmDFW5eOzjpOTU6zrWHuuhHxN\n8RWbtfUS8jUl5Ouxtl5Cvqb4fK8mtWuS953157FxnWhX5E50SQnG0zPb+G8q4wmm/fOAD7TW35sG\n0kzHWGdkF8ZU0q/DtDEAY42SPzCmMN4ARLVw2Vvp0KFDgq2TK1euWNex9lwJ+ZriKzZr6yXka0rI\n12NtvYR8TfH5Xk1q1yTvO+vPE5/vO7TWslmwYYwl0b6+vjqpaNasmb1DsDm5poQvqV2P1nJNiUFS\nux6tE9c1+fr6hnYklNPRfNcmtUeChRBCCJFISVKSjFndvZaAyTUlfEntekCuKTFIatcDSfOaEvU0\n8/FJKVUO8PX19Y1ywM/169fx8/OL38CSKRcXF9zd3e0dhhBCCAscPnwYLy8vAC+t9eGoyiXGga4J\n0vXr1ylWrBgBAQH2DiVZcHZ25syZM5KYCCFEEiJJiY34+fkREBAQ63lMROyFPu/u5+cnSYkQQiQh\nkpTYWGznMRFCCCGEQQa6CiGEECJBkKRECCGEEAmCJCVCCCGESBAkKRFCCCFEgiBJiRBCCCESBElK\nhEXmzZuHg4MDzs7O3L59O9LxWrVqUbp06Tc/e3h44ODgQP/+/SOV3bFjBw4ODqxYsSJOYxZCCJG4\nSFIiYuXVq1eMHTs20n6lVKSflVLMnDmTO3fuxFheCCFE0hWiQywqJ0mJiBVPT88oE42ISpQoQXBw\nsNkkRpY3EEKI5OHpq6f0Wt3LorKSlAiLKaUYOnQoQUFBZhONiDw8POjatavFSYwQQoik5cnLJ9Rf\nUJ8LDy5YVF6SEhEr+fLli1WiMWzYMAIDAy1KYoQQQiQ8L4Ne8ujFI2773+bKoyucuX+GY3eOcejW\nIfbd2MfOazu5+fRmpHqPXjyi3oJ6nH9wnmlNp1l0LplmXsTasGHDmD9/PuPGjWPixInRlvXw8KBL\nly7MnDmTIUOG4OrqGk9RCiGEeBsvg17Sa3UvFhxfEGNZB+VAs8LN+KT8J9QrUI/HLx9Tb0E9rj2+\nxlbvrYTcsmxMiSQldhIQAGfPxu05ihYFZ2fbt5svXz66dOnCjBkz+OKLL2JMNIYPH86CBQsYO3Zs\njEmMEEII+7v//D7v/f4eh28fZkL9CXhk8iC1Y2pSO6YmVYpUpEyREqcUTjg5OOHo4Mi2q9v49dCv\nNFzUkPyZ85MqRSruB9xnq/dWSruW5vCtwxadV5ISOzl7Fry84vYcvr4QV2sDxibRiJjECCGESLhO\n3z9N08VNCQgMYLv3dirlrhRjnSIuRfjI6yP2/7ufab7T8L3lyzbvbZTMXjJW55akxE6KFjWShrg+\nR1zJly8fnTt3ZsaMGQwePDjG8sOGDWPBggWMGzeOFi1axF1gQgghYi0gMIAbT27ge9uX3mt7kydj\nHrZ5byNvprwWt6GUokqeKlTJU8XqOCQpsRNn57jrxYgvw4cPZ+HChYwbNy7Gsvnz56dz585Mnz6d\nihUrxkN0QgghonLv+T1mH5nNH6f/4Orjqzx48eDNsUYFG7GkzRIypMoQ73FJUiKsFjbRyJs3L05O\nTtGWD73l8/3338vkaUIIEc+01uy6votph6bxx+k/cFAOtCzWkpZFW+Ke0f3N5pHJw26f0ZKUCIuZ\nm/As9LbMuXPnKFky+nuHoUnMvHnzJCkRQiRJz18/J23KtLGqo7Xm8cvH3PK/xe1nt7ntf5uMqTPS\nsGBDUqZIaVUcITqESfsnceTOEW4+vckt/1vc8r+F/2t/CmctzLi64/D29CZLmixWtR9XJCkRFjOX\nSBQoUIAuXbpESjRCp5mPaPjw4SxatIiQEMseDxNCCHu78OACq86tYuOljZTKXoqBVQaSO0PucGUu\nP7rMl9u+ZMnJJcx/bz6dSneyqO3nr59TYWYFzvidiXTMxdmFTqU60c2zG55unrGKeabvTD7b9BnV\n3KuRK30uPN08yZk+J145vKjlUSvB/mEoSYmwiLe3N97e3maPzZ49m9mzZ4fbd/nyZbNlCxQowOvX\nr20enxBCWOrSw0s0WNiAYtmK0alUJ5oXaY6z03/zJzx//Zz9/+5ny5UtrDq3itP3T5PaMTU18tZg\nztE5TD04lS6lu/B51c/JkiYLo3eO5tdDv+Li7ELVPFXpva43Vd2r4pHJI8ZYph6cysWHF1nQcgH5\nMuUjR/oc5EiXg0uPLjH36FwWHF/ATwd+wiuHF8veX0a+zPlibPPm05t8vvlzPiz7Ib81/+1tXqp4\nJ0mJEEKIZONF4AtaL21NsA7m/vP7dFjegbROaWlZrCWuaV3ZdX0Xh28fJigkiKxpstKkcBNG1x5N\n/QL1SZsyLf6v/JnuO50f9/3InKNzSOOUBkcHR76q9RX9K/UnKCSIMtPK0HlFZ7Z3246jQ9Rfs09e\nPmHcnnH0LNeTzqU7hztWMntJxtcfz3fvfseGixv4dOOnNF7cmL0f7CVzmsxRtqm15pO1n5DWKS3j\n64+32esWXyQpEUIIkWg9ffWUpaeWApDGMQ1pnNLg7ORM5dyVyZQ6U6Tyfdf15dyDc+z/cD9l3Mpw\n6eElfE764HPSh2evn1HNvRrdynSjet7qFM9WHAcVfjWW9KnSM+idQfSr2I8Fxxdwy/8WvSv0xsXZ\n5U2Zha0WUnNuTcbuHsvwGsOjjH3S/km8CHrBsBrDoizjlMKJZkWaUcSlCFVmVaHV0lZs6LSBVI6p\nzJZfemopq8+vZkXbFWavP6GTpEQIIUSitOb8Gj5Z+wk3n95EE34gvls6N35r9htNCjd5s2/W4VnM\nPjqbuS3mUsatDAAFshRgeI3h0SYP5qRyTEWPcj3MHqvmXo2h1Yby1favqF+gPhVzRZ4G4UHAA37c\n/yO9y/cmZ/qcMZ6vcNbC/NX+L96d/y49Vvdg/nvzI40LeRDwgH7r+9G6WGtaFmsZq+tJKGRBPiGE\nEInK3Wd3af9He5r5NKNU9lJc6X+F4BHBPB/6HL//8+N079N4unnS1KcpPf7qwdNXTzly+wh91vWh\nZ7meeHuaHx9nSyNqjsArpxedVnTi2etnkY6P3zue4JBgBleLefLJUFXdqzLvvXksPL6Qr7Z/Fen4\ngI0DCAwJZGrjqW8Tul1JT4kQQohEITgkmDlH5/D535+TwiEFi1otokPJDm96DJydnHF2ciarc1bW\ndVzHzMMzGbhxIFuubEFrTYnsJZjcaHK8xOqUwomFLRdSdnpZmixuws+Nf34z5frdZ3eZfHAyn1b6\nlOxps8eq3XYl23H18VW+2PIFe27swUE5EKyDCQwOZNf1XcxuPhu3dG5xcUnxQnpKhBBCJAh3nt1h\n/rH5XHt8LdKxPdf3UPG3ivRc3ZNmRZpxps8ZOpbqGOWjrUopenn14vgnx3HP6M6z18/44/0/SO2Y\nOq4v441CWQvxZ/s/ueV/izLTyvDR6o+4++wuY3ePxcnBiUHvDLKq3c+rfs7Yd8eSIVUGMqbOSDbn\nbLhndGd07dF08+xm24uIZ9JTIoQQwu4uPLhgLHX/xEhIvHJ40apYK2p51OLnf35m8YnFeOXwYu8H\ne2O1tkr+zPnZ7r2dl0EvSeOUJq7Cj1Ld/HU51fsUv/7zK1/v+JrFJxcTGBzI0OpDo32KJjpKqVjd\n9klMpKdECCGEXR2+fZiqs6uSxikNp3qfYknrJRTIUoBvd31L1dlV2Xx5M7Oaz+Jgz4NWLfamlLJL\nQhIqZYqU9K/cn4v/u0iPsj0o7VqaTyt/ard4EjLpKRFCCBGngkKC8Dnhw+KTiynrVpYWRVpQIVcF\nHJQD265so8WSFhR1Kcq6TutwcXaheLbitCvZjpdBLzl48yBlXMuQMXVGe1/GW8uSJgsTG060dxgJ\nmiQlQggh4sSroFfMPzafsXvGcvnRZarmqcoM3xl8t/s7cqTLwbv532XpqaXUyFuDFW1XkD5V+nD1\nQ2dRFcmHJCVCCCFsKjA4kFlHZjFm1xhuPr1Jm+JtWN52OZ5ungSFBLH3xl5WnV3Fuovr6FiqI9Oa\nTItyMjCRvEhSIoQQwia01qw6t4ovNn/B+Qfn6ViqI8OqD6NYtmJvyjg6OFIjbw1q5K3BhAYT7Bit\nSIhkoKuw2IkTJ2jTpg0eHh6kSZOG3LlzU79+faZO/W+iHg8PDxwcHN5srq6u1KhRgz///BOAq1ev\nkjZtWjp1Mr+C5u+//46DgwO//vprvFyTEOLtPX31lL8v/U31OdVp+XtL3DO6c/ijwyxstTBcQiJE\nTKSnRFhk79691KlTh7x589KrVy/c3Ny4ceMG+/fvZ/LkyfTt2xcwRrmXLVuWQYMGobXm1q1bTJ8+\nnVatWjFt2jR69erFyJEjGTJkCN27d6du3bpvzuHv78/AgQOpUqUKn3zyib0uVQgRBa01N/1vcujW\nIQ7fPszxu8c5fvc4Vx5fAaCMaxk2dt5I/QL17RypSKwkKREWGTNmDJkyZeLQoUOkTx9+MJqfn1+4\nn3PlykWHDh3e/NylSxcKFizIxIkT6dWrF5999hmLFi2id+/enDhxglSpjHvJQ4cOxc/Pj02bNsX9\nBQkhLLbizApmH5nNoVuHuPv8LgCuaV0p41aG1sVaU9q1NKVcS1HatXSkBeyEiA1JSoRFLl++TIkS\nJSIlJAAuLi5mavzH1dWVYsWKcfz4cQBSpEjBjBkzqFq1KqNHj2bUqFH4+vry66+/MnjwYEqUKBEn\n1yCEiGzntZ2cvHeSj8t/bDahWHJyCR2Xd6Sqe1V6lutJ+ZzlKZ+zPDnT54xyNlUhrJUkU1ql1Eil\nVEiE7XSEMt8opW4ppQKUUn8rpQraK97EIG/evPj6+nLq1KlY1w0KCuLGjRtkzZr1zb5KlSrxySef\n8MMPP3Dy5Ek++ugj8ufPz4gRI2wZthAiCvee38P7T29qzq1Jn3V9aPl7S/xf+Ycrs+b8Grqs7EKX\nMl3Y0W0Ho+qMokXRFuTKkEsSEhEnkmRSYnIScAXcTFu10ANKqcFAX6AXUBF4DmxUSqW0Q5yJwqBB\ngwgICMDT05OqVavyxRdf8PfffxMUFBSpbGBgIA8ePODBgwccP36cLl26cO/ePdq2bRuu3LfffouL\niwu1atXiyJEj/PLLL29u5Qgh4kZwSDDTDk2jyNQirDm/ht+a/cbqDqvZdmUbVWdX5erjqwBsu7KN\nNkvb0KxwM2Y1nyW3ZUS8SMq3b4K01vejONYfGKW1XgOglOoK3AXeA5bGR3ABgQGc9Tsbp+co6lIU\nZydnm7RVt25d9u3bx3fffcfGjRvZv38/33//PdmyZeO3336jWbNmb8pu3LiRbNmyvfnZ0dGRrl27\nMnbs2HBtpk+fnkmTJtG2bVs6dOgQbtCrEML2zj84j/ef3uz/dz8feH7AuHrjcHE2br/u+3AfzZc0\np8LMCnxd62sGbx5Mjbw18Gntg6NDUv6qEAlJUn6nFVJK3QReAvuAIVrrG0qpfBg9J1tCC2qtnyql\nDgBViKek5KzfWbxmeMXpOXx7+VIuRzmbtefl5cUff/xBUFAQx44dY+XKlUycOJH333+fo0ePUrRo\nUQAqV67MmDFjAHB2dqZYsWJkyJDBbJsVKlR407YQIm5orZnuO53PNn1GzvQ52dV9F9Xcq4UrUyJ7\nCQ70OECbpW3os64P7+R5h5XtVsqkZiJeJdWkZD/QDTgH5AC+AnYqpUpiJCQao2ckrLumY/GiqEtR\nfHv5xvk54oKjoyNeXl54eXlRqFAhunfvzrJly/jyyy8BY+Br7dq14+TcQojYue1/mw//+pD1F9fz\nsdfHjK8/nrQp05ot6+LswqYum1hycgnNizSPspwQcSVJJiVa641hfjyplDoIXAPaAm91z2TAgAFk\nzBh+YagOHTpQpEiRWLXj7ORs014MeylfvjwAt2/ftnMkQoiIDt48SONFjXFK4cTajmtpXKhxjHVS\npkhJ1zJd4yE6kVT5+Pjg4+MTbt+TJ08sqpskk5KItNZPlFLngYLAdkBhDIIN21viChyJqa2JEydS\nrlzkZOLw4cM2iTWh2r59O7Vq1Yq0f+3atQBvbt0IIRKG0/dP02hRI4q6FGVV+1Vvxo4IEdc6dOgQ\nbq4qML5Hp/onAAAgAElEQVQjLblNnyySEqVUOoyEZJ7W+opS6g7wLnDcdDwDUAn42X5RJmz9+vUj\nICCAli1bUrRoUV6/fs2ePXtYunQp+fPnp1u3bvYOUQhhcu3xNeovqE/uDLlZ23EtmVJnsndIQlgk\nSSYlSqkfgNUYt2xyAV8DgcASU5FJwHCl1EXgKjAK+BdYFe/BJhITJkxg2bJlrF+/npkzZ/L69Wvc\n3d3p27cvw4YNezOQVSkV6/kLrKkjhDDv3vN71FtQj1SOqdjQaYMkJCJRSZJJCZAbWAxkBe4Du4HK\nWusHAFrr75VSzsB0IBOwC2iktX5tp3gTvPr161O/fszrWVy+fDlW7ebNm5fg4GBrwxJChPHk5RMa\nLmyI/2t/9nywhxzpc9g7JCFiJUnOhqO17qC1zq21TqO1dtdad9RaX4lQ5iutdU6ttbPWuoHW+qK9\n4hVCiJjMOTKH8jPKs/fGXrPHLzy4QK15tbjy+AobO28kf+b88RyhEG8vSSYlQgiRlGy9spVea3px\n4+kNqs+pzohtIwgMDnxzfPGJxZSbUY6AwAC2e2+ntGtpO0YrhPUkKRFCiATs/IPztFnahjr56nDt\n02uMrDmSb3d9S/U51Tl+9zg9/upBpxWdaFGkBYd6HqKMWxl7hyyE1ZLqmBIhhEj0Hr14RDOfZrim\nc+X3Nr+T2jE1I2qOoH6B+nRe0Zky08rg7OTM7Oaz6ebZTQaMi0RPkhIhhLCj56+fM37veGYfnU0Z\n1zI0LtSYxoUakyNdDtosa4NfgB8HehwI9xRN5dyVOfrxUaYenErzIs0pnq24Ha9ACNuRpEQIIewg\nRIcw/9h8hm0dhl+AH11Kd+Hiw4v0XdeXYB2MWzo3/AL82NxlMwWzFIxUP13KdHxR7Qs7RC5E3JGk\nRAgh4pHWmo2XNjJ0y1CO3DlC2xJtGfvuWPJlzgfA45eP2Xx5MxsvbqRu/rrU9Khp54iFiD+SlAgh\nRDwICgnij9N/MHb3WI7dPUaV3FXY88Ee3snzTrhymVJnok3xNrQp3sZOkQphP5KU2NiZM2fsHUKS\nJ6+xSEy01sw5Oocxu8Zw+dFl6heoz9YGW6nlUUsGpgoRgSQlNuLi4oKzszOdO3e2dyjJgrOzMy4u\nssCYSNiCQoLot64f03yn8X7x91n2/rIksTq4EHFFkhIbcXd358yZM/j5+dk7lGTBxcUFd3d3e4ch\nRJQCAgNo/0d71l1Yx2/NfuPDch/aOyQhEjxJSmzI3d1dviiFENx/fp9mPs04ee8kqzusplGhRvYO\nSYhEQZISIYSwEf9X/my4uIGhW4fi/8qfHd124JXTy95hCZFoSFIihBBv4dGLRyw/s5w/z/7J5sub\neRX8ikq5KrGp86Y3j/kKISwjSYkQQljp/vP7VPqtEteeXKO6e3XG1h3Le0XfwyOTh71DEyJRkqRE\nCCGs8CroFS1/b8nzwOec73ueAlkK2DskIRI9SUqEECKWtNb0XN2TQ7cOsb3bdklIhLARSUqEECKW\nxu4ey4LjC1jcajGVc1e2dzhCJBkO9g5ACCHsQWvN3Wd3Y11v+enlDN06lJE1R9KhVIc4iEyI5Et6\nSoQQyc7Jeyfps64PO6/tpFKuSvSt2Jf3i79PKsdUkcre9r/Nvn/3se/GPvb9u48DNw/QvmR7RtYc\naYfIhUjaJCkRQiQb/q/8+XrH10zaP4kCWQowtdFUVp1bRZeVXRi4cSA9y/UkS5osnPU7y7kH5zjr\nd5b7AfcByJMhD1XyVOHHEj/S06unrFsjRByQpEQIkeRprVlycgmD/h7EoxePGFV7FAOrDCSVYyr6\nVOzDWb+z/PLPL0w5OIVgHUxRl6IUyVqEuvnrUiJbCSrnrkyuDLnsfRlCJHmSlAghEpT7z+9z1u8s\nBbIUIEe6HG/dI3H87nH6re/Hzms7aVWsFRMbTMQ9Y/jlIIq6FGVyo8n82OBHHJQDDkqG2wlhD5KU\nCCESjE2XNtFpRSf8AoyFLdM4pqFAlgKUcS3D5EaTyZImi8VtPXrxiBHbRvDLoV8onLUwmzpvol6B\netHWcXSQj0Qh7En+DxRC2F1wSDBf7/ia0TtHU79AfcbUGcMt/1tcfHiRS48usejEIgJDAlnSekm0\nPScPXzxk48WNrLmwhrXn1xKiQ/i+7vf0q9SPlClSxuMVCSGsIUmJEMKu7j67S8cVHdl+dTujao9i\nSPUhOCgHvPhvIbvq7tVpv7w9LYq0oGOpjpHa2HN9D0O3DmXP9T0E62DKupWlX8V+9K7Qmxzpc8Tn\n5Qgh3oIkJUIIuznnd4468+sQHBLM5i6bqZ2vttly7Uq2Y9W5VfRe25vq7tXJkzHPm2Nbr2ylmU8z\nSmQrwS9NfqFxocbkzpA7vi5BCGFDMppLCGEX5x+cp/a82mRKnYnDHx2OMiEJ9XPjn0mXMh3dVnUj\nRIcAxhiUJoubUN29Oju67aCXVy9JSIRIxKSnRAgR7y4+vPgmIdnadSuu6VxjrJM5TWbmvjeXegvq\nMeXAFApmKUirpa2oX6A+y95fRmrH1PEQuRAiLklSIoSIV5ceXqL2vNpkSJWBrd6WJSSh6uavS/9K\n/Rm8eTAhOoSmhZuypM0SGcQqRBIhSYkQScy1x9dwUA7hxl0kFFceXaH2vNo4OzmztetW3NK5xbqN\n7979jt3Xd1PUpShzWszBKYVTHEQqhLAHSUqESCICgwMZs2sMo3eOJlgHkz9zfup41KF2vtq8m+/d\nWPVIxIXb/repu6AuqRxTsc17m9VPxaRxSsM/Pf+Rad6FSIIkKREiCTh57yRdV3bl+N3jDKs+jDJu\nZdh2ZRvbrm7jtyO/4aAcqF+gPt3KdKNF0RbxPv7i0YtHNFjYgFdBr9j9wW5yps/5Vu1JQiJE0iRJ\niRCJyOvg11x6eImXQS/fbHtv7OWbnd9QMEtBDvQ4gFdOY36PVsVaAcY8IKvOrWLesXm0X96ejKky\n0r5ke/pU6EMp11JxHvPz189psrgJt/xvsbP7TjwyecT5OYUQiZMkJUIkEhceXKD5kuac9Tsbbr9C\n8VmVzxhVZ5TZHhDXdK708upFL69enH9wnvnH5jP36Fym+06nYcGGDKoyiDr56sRJ78OroFe0WtqK\nE/dOsLXrVopnK27zcwghkg5JSoRIBDZd2kS7P9rhmtaVTZ03kSVNFlI7pia1Y2oypc5EVuesFrVT\nOGthRtcZzciaI1l6aik/7P2BugvqUtatLN/X+566+eu+daxaa07eO8nGSxtZdnoZx+4cY32n9VTI\nVeGt2xZCJG2SlAiRgGmtmbR/EoP+HkTDgg1Z3GoxGVNnfOt2nVI40al0JzqW6siWK1v4Zsc3NFnc\nhE2dN1HTo6ZFbey5vofpvtNRShkr6+LAi6AX7Li2g1v+t0jjmIaaHjVZ03FNjBOjCSEESFIiRILl\nF+DHwI0DWXB8AYOrDmZMnTGkcEhh03Mopaibvy7V3avTZHETmi9pzq7uuyjtWjrGup9v/pwrj65Q\nIEsBQnQIIToEB+VAh5IdaFCgAdXzVpcJzYQQsSJJiRAJzIvAF0w+MJlvd38LwMKWC+lUulOcnjOV\nYypWtFtBrbm1aLSoEXs/2EveTHmjLH/q3in23tjL0jZLeb/E+3EamxAi+ZC1b4RIIEJ0CAuPL6TI\n1CIM3zYc7zLeXOx3Mc4TklAZUmVgXad1pEqRigYLG+AX4Bdl2d8O/0Y252y0KNoiXmITQiQPkpQI\nkUB8s+MbuqzsQoVcFTjd+zSTG00mW9ps8RqDWzo3NnXZxMMXD2nm04zXwa8jlXkZ9JL5x+fTzbOb\nTO8uhLCpZJ2UKKX6KKWuKKVeKKX2K6VifDxgyhT44ANo2hRGjIiPKEVycOzOMcbsGsOIGiNY3nY5\nhbIWslssBbMUZE3HNfxz8x8m7J0Q6fiKMyt4+OIhPcr1sEN0QoikLNkmJUqpdsAEYCRQFjgGbFRK\nuURXb9MmOH0a7t6Fb78Fv6h7uIWwSFBIEB/+9SFFXYoyrMYwe4cDQMVcFRlQeQDf7PyGy48uhzs2\nw3cGtTxqUThrYTtFJ4RIqpJtUgIMAKZrredrrc8CHwMBwAfRVVq9GvbvhzVrQGv488/4CFUkZRP2\nTuDInSPMbj47Qd0O+arWV2RPm50+6/qgtQbg/IPz7Li2g17letk5OiFEUpQskxKllBPgBWwJ3aeN\nT93NQBVL2nB1hZo1YenSuIlRJA/n/M4xcvtIBlYemOAmF0ubMi1TG01lw8UN/HH6D8AY4JolTRZa\nFmtp5+iEEElRskxKABcgBXA3wv67gMVrqbdtC1u3yi0cYZ0QHUKP1T3IkzEPX9f+2t7hmNWsSDPe\nK/oe/Tf0xy/Aj7lH59K1dFeZf0QIESdknpK30KoV9OkDK1dCz572jkYkZCE6hL8v/c2jl494Hfya\nwOBAjtw5wu7ru9nuvR1nJ2d7hxilyQ0nU/yX4tSZV4f7Affp6SVvdiFE3EiuSYkfEAy4RtjvCtyJ\nruKAAQPImPG/ab6zZIHJkzvQs2cHmwcpkoZXQa/ovqo7Pid9wu1PoVLwRdUvLJ7W3V7yZMzDN7W+\nYeCmgVTNU1UW1RNCRMvHxwcfn/Cfd0+ePLGorgodwJbcKKX2Awe01v1NPyvgOjBZa/2DmfLlAF9f\nX1/KlSv3Zv/06dC7N9y5A9mimFIiMDiQ9RfXM/foXG7632S793bSOKWJg6sSsXXq3imevX5GpdyV\n4qT9Jy+f0GppK/Zc38O89+bRpHATnByccErhhINKPHdPg0KC6PFXD7zLeMs6NkKIWDt8+DBeXl4A\nXlrrw1GVSzyfirb3I9BTKdVVKVUUmAY4A3Nj00hL03i/lSsjH7vw4AIDNw4k14+5aLGkBVceX8H3\nli8zfGe8ZejibTx5+YTph6ZT6bdKlPy1JDXn1uT6k+s2P88t/1vUmFsD31u+bOqyiXYl25EuZTpS\nOaZKVAkJgKODI3PfmysJiRAiTiWuT0Yb0lovBQYB3wBHgNJAA631/di0kz071K4d+SmcU/dOUfG3\niiw8vpDOpTtz9KOjHPnoCF3KdGHcnnG8DHppoysRltJaM2DDANwmuNF7XW+yOWdjSeslZEydkZHb\nR9r0XOcfnOedWe/w8MVDdn+wmxp5a9i0fSGESIqS65gSALTWvwC/vG07bdvCJ5/AvXtGknLz6U0a\nLmqIe0Z3dnbbGW6p+aHVhjL/2Hxm+s6kX6V+b3tqEQvTDk1j0oFJjKgxgo/Kf0TO9DkBYzXefuv7\nMbDyQEq5lrLJuXqt7oVTCid2dd1Fnox5bNKmEEIkdcm2p8RaI7eN5M6z8GNhW7YEpWDFCuPWQKNF\njVAo1nVcFy4hASiUtRCdSnVi7J6x0lsSj07fP83ATQPpXb43X9f++k1CAtDTqyf5M+dn6NahNjnX\nrmu72HFtBz/U+0ESEiGEiAVJSmJp1/VdFJ5SmAl7J7xZrCxbNuMWzu9/vKbV0lbceHqD9Z3WkytD\nLrNtDK8xnDvP7jDr8Kz4DD3ZehX0io7LO5I/c37G1x8f6XjKFCkZU2cMa86vYee1nW99vlE7R1Eq\neymaF2n+1m0JIURyIklJLK1stxLvMt58vvlz3Ma7UWVWFbqs7IJzo2/Y7tKe3dd282e7PymRvUSU\nbRTOWpgOJTswds9YXgW9isfok6chW4Zwxu8MPq19onzq6f0S7+OVw4vBmwdjyRNpUZU58O8B/r78\nN1/W+DLRDWYVQgh7k0/NWMqYOiNTGk/h2MfHGFhlIEWyFuHyo8vsDZoKhdbjtm8BZTLFPO/E8BrD\nufn0JrOPzI6xrCQu1tt0aRMT909kXN1xlHYtHWU5B+XAuLrj2P/vfladWxVtm0tOLiHHhBwc+PdA\npGOjdo6imEsxWhdv/daxCyFEciNJiZVKZi/J8BrDmfveXPZ8sIf7n9/jWLtn+O9vS4sW8DKG4SJF\nXYrSvmR7vtv9ndmkIyAwgHlH51F1dlUyjM3A8bvH4+hKEp+bT28y+O/BuI53ZczOMVH2Wlx7fA3v\nP71pUKAB/6v0vxjbfTf/u9QvUJ8hW4YQFBJktoxfgB991/XlyasnNFzUkGN3jr05dvj2YdZeWMuw\n6sOkl0QIIawgn5w2VLpkCtasgX/+gY4dITg4+vJf1viSm/43cfnBhUq/VaL7qu78sOcH+q3rR84J\nOem2qhvOTs5kT5ud73Z/Fz8XkYCdvHeSbn92I99P+ZjmO41q7tUYvm043n96R0rsVp9bTdnpZUnt\nmJq57821OEkY++5YzvmdY/jW4WaPD9o0iBAdwvGPj5M/c37qLajHOb9zgNFLUjBLQdqVbPd2FyqE\nEMmV1lo2CzagHKB9fX11TP76S+sUKbTu1UvrkJDoyx7494D+fvf32nult64wo4JOOyatdhvvpods\nHqIvPbyktdb654M/a4evHfSFBxdiPHdSNeXAFM1X6Nw/5tYT9k7QT14+0Vpr7XPCR6calUpXm11N\n339+X78KeqUHbhio+QrdwqeFfhjwMNbnmrB3guYr9Jwjc8Lt33J5i+Yr9EzfmVprre8/v6+L/1xc\n5/4xt/7r7F+ar9CzD89+62sVQoikxtfXVwMaKKej+a5NttPMx1ZU08xHZc4c+OADY6G+CRMgfXrL\nzhOiQ1AojFnvDS8CX5Dvp3w0L9KcGc2S32ywJ+6eoPzM8vQo24NJDSfhlMIp3PH9/+6nxZIWpEuZ\njmzO2fC97csP9X6gf6X+4V5HS2mt+WjNR8w9OpfNXTdTI28NXga9pPSvpXFL58b2btvf9Lzc9r9N\n9TnVufToEh6ZPDjf93yk+IQQIrmTaebtrHt3Y12cRYugeHH46y/L6jkoh0hfpGmc0jCwykBj7Zyn\nN+Mg2oTrVdArOq3oROGshZnQYILZL/zKuStzoMcBnJ2cufPsDru77+bTyp9alZAAKKX4ufHPVM9b\nnZa/t+Tiw4t8u+tbrj6+yvSm08PdCsqRPgdbum6hjGsZvnv3O0lIhBDiLUhPiYVi21MS6upVY8G+\n9euhdWuYMgVy5Ij9+Z++ekreSXnp7tmdHxv8GPsGEqn/2/R/TD44mYM9DlLGrUy0ZQODA9FoUqZI\naZNzP3rxiMqzKhMUEsSNJzf4otoXfFP7G5u0LYQQyYn0lCQQHh6wdi0sWQK7doGXF7x+Hft2MqTK\nQN8KfZnuO50HAQ9sHqc9PX75mF/++YXT90+H27/96nYm7JvA6NqjY0xIAJxSONksIQHInCYzazqs\n4dGLR3hk8mBoddvM+CqEEMI8SUrigVLQrh2sWwe3b8O+fda1879K/0NrzeQDk20boB1dfHiRKrOq\n0GddH0r8UoLa82qz7NQy7j+/T9eVXamRtwYDqwy0W3yFshbCt5cvW723ktoxtd3iEEKI5ECSknhU\ntiy4uMDff1tXP1vabPTy6sWUg1Pwf+Vv2+DsYMfVHVT6rRIhOoSTn5zEp7UPwSHBtP2jLbkn5ubJ\nqyfMe28eKRxS2DXOfJnzkTtDbrvGIIQQyYEkJfHIwQHq1oVNm6xv47Mqn/Hs9TNmHUnc6+bMOTKH\negvq4enmyf4P91Miewnal2zPzu47OfHJCXqX741Pax/yZspr71CFEELEE0lK4lm9enDoEDx8aF39\nPBnz0KhQI5afWW7bwOJJiA5hyOYhfPDXB3T37M6GThvInCZzuDIls5dkYsOJNC7U2E5RCiGEsAdJ\nSuJZvXqgNWzZYn0bTQo1Ye+NvTx68ch2gcWDV0Gv6LKyC2P3jGV8vfFMazpNHqEVQgjxhlVJiVLK\nQSlVWClVTSlVI+xm6wCTmjx5oGhR68eVADQu1JgQHcLGSxttF1gce/zyMY0WNWL56eUsbbOUz975\nzOp5RIQQQiRNjrGtoJSqDCwG8gIRv1U0YN9RiYlA/fqwapXRY2LN93LuDLkp7VqatRfW0r5ke9sH\naGM3ntyg0aJG3PK/xeaum6nmXs3eIQkhhEiArOkpmQYcAkoCWYDMYbYstgst6apXD65dg4sXrW+j\nSaEmbLi4geCQGFb9s7Onr55SbU41nr1+xt4P90pCIoQQIkrWJCWFgKFa6zNa68da6ydhN1sHmBTV\nrAmOjm9/C8cvwI9/bv1ju8DiwJidY7j//D7bu22nqEtRe4cjhBAiAbMmKTkAFLR1IMlJ+vTwzjtv\nl5RUzl2ZzKkzs+7COtsFZmMXH15k0oFJDK46GI9MHvYORwghRAJnTVIyBZiglOqmlPJSSpUOu9k6\nwKSqXj3YuhWCgqyr7+jgSIOCDVh7Ya1tA7OhQZsG4ZrWlf+r+n/2DkUIIUQiYE1SshwoBswG/gGO\nAkfC/CssUL8+PH0KBw9a30aTQk04fPswt/1v2y4wG9lyeQurzq3i+3rf4+zkbO9whBBCJALWJCX5\nzGz5w/wrLODlBZkzv90tnIYFG6JQrL+43naB2UBQSBCfbvyUqnmq0q5EO3uHI4QQIpGIVVKilHIC\nRgIOWutr5ra4CTPpSZEC6tR5uynnXZxdqJS7UoK7hTPDdwan7p3ip4Y/yVwkQgghLBareUq01oFK\nqdbAqDiKJ1mpXx9694YnTyBjRuvaaFKoCd/v+Z7Xwa9JmSKlbQO0wIOABxy/e5zXwa95Hfyal0Ev\nGbFtBN08u+GV0yve4xFCCJF4xXryNOBP4D1goo1jSXbq1YPgYBgxAsaMgXTpYt9G40KN+XLbl+y+\nvps6+erYPshoPHrxiLLTy3Lj6Y1w+3Oky8G3734br7EIIYRI/KxJSi4AI5RSVQFf4HnYg1rrybYI\nLDnIlw+++cZISJYtg1GjoFs349aOpcq6lSVHuhysu7AuXpMSrTUfrfkI/9f+HOp5CNd0rqRMkRIn\nByfSpUwna9oIIYSINWsGun4IPAa8gF7AgDDbp7YLLXn48ks4exZq1YIePaBsWdi92/L6SikaF2rM\nyrMreRX0Ks7ijGj+sfksO72M6U2n45XTi9wZcpM9bXYyp8ksCYkQQgirxDop0Vrni2aTp2+s4OEB\nixfDgQOQJg00bQq3Y/GUb58Kffj36b/039A/zmIM69LDS/Rd3xfvMt60LdE2Xs4phBAi6bNqlWAR\nNypWhHXrIFUq+N//LK9XNkdZfm78M9N9pzP7yOy4CxDjcd/OKzuTPW12JjeSO3VCCCFsx5pVgqP9\n1tNaf2B9OCJrVvjpJ+jQwVhJuEULy+r1KNeDA/8eoPfa3pR2LU35nOXDHX/++jlKqbeeyGz0ztH8\nc/MfdnXfRYZUGd6qLSGEECIsa3pKMkfYsgN1gFZAJtuFlny1aweNG0OfPsasr5aa0ngKpVxL0Xpp\na/wC/ADjVkv/9f1xm+BGw4UN0VpbHddZv7OM2jmKL2t8SZU8VaxuRwghhDAn1j0lWuuWEfcppRyA\nX4FLtggquVMKfv0ViheHIUPg558tq5faMTXL2y7Ha4YXrZe2JkuaLKw6u4osabLQulhr5h2bx+rz\nq2lepLlVcU0+MJlsztn4otoXVtUXQgghomOTMSVa6xDgR4wncIQNuLvDt98aycmePbGol9Gd39v8\nzp7rezjnd45pTadxfcB15rSYQ518dRi6ZSjBIcGxjufxy8fMOzaPj8t/TCrHVLGuL4QQQsTElgNd\nC2DdvCciCn36GINfe/aEwEDL69XJV4fbn93mZO+T9PLqhbOTM0opvnv3O07dP8WiE4tiHcusw7MI\nDA7k4/Ifx7quEEIIYQlrBrr+GHEXkANoAsyzRVDCkCIF/PgjVK1qrCZctarldbOlzRZpX8VcFWlV\nrBUjto2gXYl2Fvd4BIcEM/WfqbQr2Q63dG6WByGEEELEgjU9JWUjbKVN+z9DJk+zufLlwckJjh2z\nTXuja4/mxtMbTPedbnGd1edXc/XxVf5XMRbPKQshhBCxZM1A19pxEYgwL2VKY8Dr0aO2aa9YtmJ0\n9+zO6J2j6e7ZnfSp0sdYZ/KByVTJXYUKuSrYJgghhBDCjFj3lCiltiqlIj36q5TKoJTaapuwRFie\nnrZLSgBG1hzJ01dP+XFfxDtxkZ24e4JtV7fxv0rSSyKEECJuWXP7phaQ0sz+1ED1t4pGmOXpCSdO\nQFCQbdrLkzEPfSv2Zfy+8Tx68SjaspMPTCZn+py0LtbaNicXQgghomBxUqKUKq2UCh0/Ujz0Z9NW\nFmOhvptxEmUsKKWuKqVCwmzBSqnPI5TJo5Raq5R6rpS6o5T63jTXSoLk6QkvX8L587Zr87Mqn/Ei\n8AWLTyyOssyDgAcsPLGQ3uV7yyJ7Qggh4lxsxpQcBbRpM3eb5gXQzxZBvSUNDAdmYjwZBOAfetCU\nfKwDbgGVgZzAAuC1qV6CU6aM8e/Ro8b4ElvIkT4HTQs3ZdaRWfSp2MdsmRm+M9Ba08url21OKoQQ\nQkQjNr0D+TDmIlFARdPPoVsuIIPWOm5Xg7PcM631fa31PdP2IsyxBkBRoJPW+oTWeiPwJdBHKZUg\n51nJnBny5rXtuBIw1ss5cucIh28fjnTsReALJh2YhHcZb7OPFwshhBC2ZnFSorW+prW+qrV20Fof\nMv0cut3WWsd+mtC484VSyk8pdVgpNUgplSLMscrACa21X5h9G4GMQIl4jTIWPD1t91hwqIYFG5Ij\nXQ5mHZ4V6djsI7PxC/Dj86qfm6kphBBC2J5V4yiUUl2UUnuUUreUUnlN+wYopSxc0zZO/QS0xxiQ\nOw0YCowLc9wNuBuhzt0wxxIkT084cgTeYj29SBwdHOnu2Z1FJxYREBjwZn9gcCA/7P2BtiXaUiBL\nAdudUAghhIiGNY8Ef4Kxzs06jFWBQ3shHhFHk6cppb6LMHg14haslCoMoLWepLXeqbU+qbWeAQwE\n+imlEvVITU9PuH8f7tyxbbsflP2AJ6+esPz08jf7lpxcwrUn1xhSbYhtTyaEEEJEw5oxFP2Anlrr\nP5VSYZeLPQSMt01YkYwH5sRQ5nIU+w9iXKcHcAG4A0ScBczV9G+MX/kDBgwgY8aM4fZ16NCBDh06\nxN59bb8AACAASURBVFT1rYQd7Jojh+3aLZClAHXy1WHWkVl0KdOFEB3Cd7u/o0mhJpR2LR1zA0II\nIUQYPj4++Pj4hNv35MkTi+pak5TkA46Y2f8KSGtFezHSWj8AHlhZvSwQAtwz/bwPGKqUcgkzrqQ+\n8AQ4HVNjEydOpFy5claGYj0PD8iQwUhKGjWybdsflv2QTis6ceHBBU7dP8UZvzPMbDbTticRQgiR\nLJj7Q/3w4cN4eXnFWNeapOQK4Alci7C/IXDGivZsRilVGagEbMN4DPgdjFtNC7TWoWnaJozkY4FS\najDGYoKjgKla61isxRu/lLL9zK6hWhVrRebUmZl1ZBbbrm6jRt4aVHWPxep/QgghhA1Yk5T8CPys\nlEqN6fFgpVQHYAjQw5bBWeEVxiDXkUAqjARqAjAxtIDWOkQp1RT4FdgLPAfmmuokaJ6esGGD7dtN\n7ZiazqU789OBn3gZ9JL1ndbb/iRCCCFEDKxZkO83pdQLYDTgDCzGmIisv9Z6iY3ji21sR4AqFpS7\nATSN+4hsy9MTpkyBZ88gXTrbtt2jXA+mHJxCWbeyNCjQwLaNCyGEEBawarIwrfUiYJFSyhlIp7W+\nF1Md8fY8PY1Hgk+cgCoxpl6xU9q1NJ9V+YxmhZuhlIq5ghBCCGFjb7Xei9Y6IDQhUUqlVkoNsk1Y\nwpzixcHRMW7GlQCMrz+emh4146ZxIYQQIgaxSkqUUtmUUk2VUvVDZ0lVSjkppfoDV4Evom1AvJVU\nqYzEJK6SEiGEEMKeLL59o5SqBqwBMmAsendIKdUd+BMIAv6/vfsOk6o8/z/+vqUqCopGFCWIsYAN\nAXsLYkSxgF0RC0bjN7H3EkuIlcRuflhiFKMCFsSGGjSCbcUCKLGAJYpKEARBlCbs7v37456VYdhl\nd3an7+d1XXPBnPOcc55np5x7njoI+GcW8ihJsjUCR0REJN/SqSm5hpjFdVtiNMuOwBPAH919K3e/\nK2XhO8mC7beH//wHysvznRMREZHMSico2Ra4xt0/JFbVdeAidx+ZlZxJtbbfHpYsgU8/zXdORERE\nMiudoGQdYA5AokZkEfBBNjIlNUuebl5ERKSUpDskeCszq1pJ14AtzWyFqeXd/T8ZyZlUq21b6NAh\nmnCyvNyOiIhITqUblLxEBCNVRif+9cR2Z/mqwZIlm24KX3yR71yIiIhkVjpBSaes5ULSsskm8PHH\n+c6FiIhIZtU5KHH31AX4JE86doQXXsh3LkRERDKrQTO6Sn507AjffAM//ZTvnIiIiGSOgpIi1LFj\n/Pv11/nNh4iISCYpKClCVUHJl2pQExGREqKgpAh16BD/KigREZFSku6Q4BWY2XrAzsQw4Hfc/ZuM\n5EpWqUUL2HBDBSUiIlJa6h2UmNnhwL3AJ0AzYiK10919aKYyJzXr2BGmTct3LkRERDKnzs03ZrZm\nyqY/ATu5+07u3g04Erg2k5mTmnXsqJoSEREpLen0KZloZv2SnpcD6yc9bwcszUiupFYKSkREpNSk\n03yzHzDEzAYCpwNnA4+YWZPEeSqBgZnOoFRvk01g+nSoqIAmmthfRERKQDozuk4DDjSz/sArwO3A\nZolHE2Cquy/JRiZlZR07Qnk5zJixfDSOiIhIMUt7SLC7jwB2BLoCLwOruft7CkhyS3OViIhIqUkr\nKDGzA8zsfGAHdz8FuAgYZmY3mNnqWcmhVEtBiYiIlJp0Rt/cBAwlaknuNrMr3P0VoDuwBHjXzPpk\nJ5uSas01oW1bBSUiIlI60qkpGQgc4O7HEIHJ8QDuvtTdrwAOA/6Y8RxKjTQCR0RESkk6QclCoFPi\n/x2I2pGfuftH7r5npjImtVNQIiIipSSdoORS4AEzm0GMvrkiO1mSulJQIiIipSSdIcHDzOxfwKbA\np+7+ffayJXVRFZS4g1m+cyMiItIwaa194+7fAd9lKS+Spk02gcWLYfZsWH/9WpOLiIgUtLTnKZHC\noWHBIiJSShSUFDEFJSIiUkoUlBSxtm2hVSsFJSIiUhoUlBQxM43AERGR0qGgpMgpKBERkVKhoKTI\nKSgRkWLx00/5zoEUOgUlRU5BiYgUOne45RZYay24555850YKmYKSItexI3z/PfzwQ75zIiKysmXL\n4LTT4LzzYLvt4Pe/h1Gj8p0rKVQKSoqchgWLSKGaPx8OOgj+8Y94vPUWHHEE9O8P48blO3e5MWQI\njByZ3jHujbepS0FJkdtkk/hXQYmIFJIpU2C33eDtt2HMGDj5ZGjSBB54APbaC/r1g3ffXZ5+9mx4\n6KFo5qmszF++M+n22+GMM+C44+LvURcVFdC3b/yN3LObv0KkoKTIbbABNG8O06blOyci0ti5w+uv\nwyGHwNZbx6/98eOhV6/laVq0iOabzp1h//3hsstgxx2hXTs4/vho5vnLX/JXhkx55BE45xw466z4\n8XjCCdGUVZtBg2D06Ajmxo/Pdi4LT1pr30jhWW016NBBNSUikl/PPgtXXx1NNF26RHPNgAERhKRa\nay147jnYZx+44w7o3RtOPz2ClCFD4PLLYYcdYN99M5vH2bOhrCweEyZEPjbeOL5DN944gqovv4wf\neVWLnd533/Jm8roaOzaCkGOPjZqfCROi1uj66+HKK2s+7umn4Zpr4nHvvdEpeLfdGlTk4uPuRfMA\n/giUAQuBuTWk6QA8m0gzE/grsFpKmu2AV4HFwJfAhXW4dnfAJ06c6IWmVy/3I4/Mdy5ESt/Mme47\n7ODerZv73nu7H3qo+0knuT/7bL5zll/33+8O7nvtFX+Lioq6HVdZ6V5evuK28nL3/fZzX3dd92nT\nMpO/UaPct9wy8gjuG2/sfvjh7gce6N61a1yrat/667vvuGN8p3bsGMfNmVP3a02a5L7WWu69e7v/\n9NPy7Zdf7t60qfuECdUf9/HH7q1bx3uqstL9uuvcV1/dfd68BhW9YEycONEBB7r7Ku61xdZ80wx4\nFLizup1mthrwHFEDtAtwIjAQuCopzVrAGOALItC4EBhkZqdkM+PZpGHBIrkxaBB89hnssks0Nyxe\nHNXsffvCY4/lO3f5MWoU/Pa38LvfwcsvwwEHRA1uXZhFP5NkTZrAsGFRi3HEEbBkScPy9/DDcOSR\nsNlmMHx4fFd+/XV0Ph09Gt57D+bMgYUL4zFrVrymjz4KL74Ic+dGZ92FC2u/1ssvQ58+sOWW8Pjj\n0bRe5YorYNttowYltUwLFsBhh8GGG8L998ff5aSTorln2LCGlb/orCpiKdQHEWysVFMC9AGWAesl\nbfs/YB7QNPH8D8CcqueJbdcDH9VyzYKtKRk0KKJ7EcmeKVPcmzRxv/HGFbeXl7sPGBD7Ro7MT97y\n5YUX3Js3dz/66JVrPBpq4kT3Fi3cTzml/ud46CH31VZzP+GE+ufvnXfcW7WKWpWlS6tPs3Ch+1ln\nLa8tmjWr+nTvvx9/r5NPdh8+3H3IEPdrr43a7jXXdP/ooxXTH3qo+7bbRs1JsatrTUneA4z6PFYR\nlPwZmJSybROgEuiaeP5PYFRKmp5ABdBmFdcs2KBk+PB4JUulmk+kEB1ySFTnL1688r5ly9yPOSaq\n50eNynnW8uKNN9zXWMO9T58Vmyky6b774rvttNPcf/ghvWMfeCACkoEDGx4wjRkTr+1JJ60cIJSV\nuW++uXvLlu633lp709XNN/vPTUVNmrivt557587uTz+9ctrnn490b7654vYFC9wPOMD9ttsaVq5c\naqxByd3A8ynbVk8EJfslno8B7kxJ0yURlGy5imsWbFAyaVL1b1wRyYzXXovP2EMP1Zxm2TL3o46K\nm9f997s/84z73/7mfv757v37xw2mJt98E7+Yf/wx83nPtOnT48a69true+4ZtQTZdPvtEfxsvLH7\nU0+tOu2PP7q/9Vb8Lc2iRqKu/Vtq89BD8R5YfXX3tm3dN9zQvVOnCHx22SX6hNTV7NmR19pqQMrL\nIxD+7W+Xb1u61H3//SMvv/hF9gLCTKtrUJL30Tdmdj1w8SqSONDF3T/JUZZW6dxzz6VNmzYrbOvf\nvz/9+/fPU45giy3i36lTYeed85YNkZLkDhdeCN26xaRfNWnaNObZOPZYGDgwtjVrFn2+WrSIvhZX\nXw2XXrpin4vXXoOjjoKZM2Nm5sGD65fPefNieG1lZcyPkdyfoaHmzo2+GQ8/HEN+mzWLeUbuuQfW\nWCNz16nOmWfCwQfHrLD9+sHhh8dInVmz4Kuvon/ItGnw4YfwxRdxjFmkue22uvdvqc2AAdGP6IMP\nYqjzkiXxb8eOcMopK/eNWZX11qtbuiZN4tzXXw833xz9bH77W3jppXiNzzoLnngCjj66fmXKlhEj\nRjBixIgVts2fP79uB68qYsnFA1gX2KKWR9OUY9R8k6JjR/dLLsl3LkSK19Kl7vfcE/1Ckn99jhwZ\nv0r//e+6nae8PGovp09f/iu9osL9T3+K8xx6aDRFVFa633BDVOH37Ol+5pnR3+DTT9PP+8iR7hts\nEKM+mjePkR8LFqR/nup88ol7hw5RA7T//u5Dh+anqbiy0v3hh6P/XFXzR+vW7lttFfk6//zI2zvv\nZL/2JpemT4/3yB13uF9wQdQAPfxw7Ntrr3jvFIPG2nyzPyt3dD2V6OjaLPH890RH1yZJaa6jiDu6\nuscQun798p0LaczKy93/9a/iqU5O9uGH7j16xBd+VbX4+ee7T54c/QX23z8z13nqqQgcOnd279s3\nrnXxxdH0s3Bh3Pz79q3+2CefjBvQKadEs9Crr7pPnRpBDsRxX3/t/tJL0Wly553TG8panfffd2/X\nLvL75ZcNO1em/PBDvF7z5+c7J7nTr18EYBDNWVWq+hNOmZK/vNVVSQYlxBwkXYErgfmJ/3cFWiX2\nrwZMBp4n5iLZD5gFXJ10jtbAjESNyVbA0cAC4ORarl3QQcnZZ8d4epF8WLrU/dhj4xvl4IPdlyzJ\nd47qprw8aitatIgb79tvu3/wgfu55y6fu8IsgpNMmTo1rtWmzcp9JB55JK45ZsyK2//976gB2XFH\n9+23j/9X1Ra0a+f+2GMr9k94553oQLnVVvFLuz4mTIi/QdeuNY8mkdyo6vB62WUrbl+yJF7nc87J\n3rVnzIh+Og0dAVSqQcnQRDNL6mOvpDQdgNGJQGMW8BdWnjxtG+AVYBHwFXBBHa5d0EHJnXdG9WpN\nQ9ZEsmXJkvgl17Sp+6WXxg2+T5/qR6kUiu+/jxv57rtH0HHeee6LFq2YZskS90cfdR82LPPXX7zY\n/bvvVt5eWRmdR7t0Wf5ZnjAhaj722295LdTSpVGLMWqU+9y51V9j6tSoefnlL93ffbfmvLz4ovvp\np0dw9sQTcd6xY+OX+c4713x+ya0pU6oPDC66KDodp75/G+rTT91/97vlAfDWW7vffXf9m8ZKMijJ\n56PQg5Jx47xoqvGkdCxcGP0XWrRwHz06tr34YoxQ2Hff/Lbt//e/7q+8EjfYF1+MpqUbb4yZWJs2\njc/LdttFmkIyaVIESrfeGiM6fvGLCA7q00fkq69i9tmWLWOIbLJly6IfGkSftDXX9J9rX6rm20h3\nGK7k3mefxet1//0NP9ePP8ZIs2OOiVFF7dq5Dx4cNXf9+sX7sm3baHJM972hoKSRBSXffBOv5hNP\n5DsnUooqKqL9+vbb4+b21FMRCO+5Z0ws9dJLK6YfNy6277135jpcpmP8+PhSTb7JQtycDzggJq36\n4ovc56uuTj01mnc6doxak4b0DVm0KObqqJrv46efou/JHntEB8rBg+P1rayM75HXXnN//PHM//KW\n7OndO4YlV6msjCHMnTpFDVhNTS+zZkWT0EEHRdqqz8kmm8RnJPU98N//RtNmq1bRlDh7dt3zqKCk\nkQUllZVRhXfddfnOiZSa//0vaj1gxb4MEDfOsrLqj3vttfj1vdFG7ldfHevG5MLSpe7bbBMdV6dM\niWrozz+PjprFcqP99tv423boELUdDVVZ6X7XXe7NmsXaPeuuG/N+vP56w88t+TdqVHwe33031guq\nmsdkp53i39NPX3kCubKy+Gy2aRPNrRde6P7Pf0Zz4bJlq77epEkxCmrLLeveAfq++xSUNKqgxD0i\n5RNOyHcupJSMHLl8oqiqzpeLF0eAMXVq7b/gp0yJ0SKrrx43xAED4sswm9NmX3dd1ABMmpS9a+TC\nBx9EQJhJb74ZtS99+zZ8ZI4UjqVL3du3j4CzVasIOJ95JvbdfXd8Hvr2jebUysqYCbZp0+hTVd+O\n0J9+GrUrG20Uo6FW5dVX3Zs1U1DS6IKSgQMjMhZpqMWLY0ptcD/ssIbfwL77LvpzbLqp/1w9fPHF\nEThUrRQ7caL7LbfEENeLLqrfdT75JPq3XHhhw/JbykphHRVZ2Z//7D/XiqQOl3722QhWdtopZh2G\naIZp6MCIGTOiX1bbtjXXmH74YdTi9+ihoKTRBSWDB0ePeX3pSEPdeWf8urrvvsy+nyoqov/Jqacu\nH3LbqdPyORhatIghqBD9UtJRWRkLm3XqVFqTZ4nUxbJlq+4nNXHi8gn2Hnssc9edNy/6ljVp4n7N\nNSs2E02fHk2Q227r/vLLdQtKzOOGK7Uws+7AxIkTJ9K9e/d8Z6daTz0FhxwCM2bEEtgi9fWb38QU\n12PGZO8ay5bB2LHwzDOw0Uaw556w444xhfluu8HixTBxYkzfXhf33x/LvY8ZA717Zy/fIsVqzpyY\nGn+jjTJ73mXL4Kqr4Lrr4rP74IOwzjrxmf7+exg/HmbNmkSPHj0Aerj7pJrOlfe1byRzunSJf6dM\nUVAi9Td7Nrz8MtxxR3av06wZ7LdfPFLdfnus43TPPfCHP9R+rm+/hfPPh+OOU0AiUpO6rrmTrmbN\nYl2n3r3h+OOha1fYbLNYl6isLIKgWbPqdq4MLVUkhaBTp3hzTJ2a75xIMXvqqRhbc8gh+cvDTjvF\nonaXXx6Lwa2KO5x6aizCdvPNOcmeiFRjzz1h8uRYQHHKFHj6adhqq/TOoaCkhDRrFtGpghJpiJEj\n4de/hvXXz28+rr8+qoUHDVp1ujvvjEDq3nvhF7/ISdZEpAZt2sRq2fPmRZCSLgUlJaZzZwUlUn/z\n5sWy6Eccke+cwAYbwBVXRDPSBx9Un+b99+G88+CMM2JZexEpDC1a1O84BSUlRkGJNMTTT0NFBRx6\naL5zEs4+GzbdFM45J/KVbNEiOPpo2GILuOGG/ORPRDJLQUmJ6dw5OhctWJDvnEgxGjkSdt+9cDpK\nN28Ot90WtTedO0dTzaJFse/cc2HaNHj4YWjZMq/ZFJEMUVBSYqpG4Hz8cX7zIcVn/nx44YXCaLpJ\n1qcPvP02dO8ezTQdO0Yn2L//PQKWdDvSiUjhUlBSYrbcMv5VE46ka/RoWLoUDjss3zlZ2Y47wiOP\nwKefQv/+8NhjcNRRcMop+c6ZiGSSgpIS07o1tG+voETS9/jjMTdIhw75zknNNt005jCZPRuGD49h\nwCJSOhSUlCB1dpV0LVgAzz9feE03NVljjZhxVkRKi4KSEqSgRNL13HOwZAkcfni+cyIijZmCkhLU\npQt88gmUl+c7J1IMFiyAW26Bbt1iVmARkXxRUFKCOneODovTpuU7J1Lovv8+1qv48MPoqyEikk8K\nSkpQ1RDJO+6Aysr85qWx+uqrmG00HS+9BBddFM0oufDtt7D33jF8/KWXYI89cnNdEZGaKCgpQe3b\nxwyXt94KxxyzfLIpyb4ZM+C002INoh49YoRIbSoq4E9/gn33jdftiCOipiubpk+HvfaCb76BV16J\nIbciIvnWNN8ZkOy44AL41a9iKfeePWPBskKZpbMUzZ4Nf/kLDBkCq68ey3hPmQIDBsSN//zzqz9u\n5kw49tgIDK6+OgKZfv0imHzkkVhkMR1Ll0YNWXl5vO7bbw9NE5/yysqYhGz0aLj//hi98tprsPnm\nDSm5iEjmKCgpYYceGjedgw+OpeBHj4auXfOdq9IzfXoEE4sXw8UXx/TnbdqAe9RaXXBB1KDccAOs\nlqib/PZbGDs21nQxi+aTnj1j36hR8doddxwMG7Y8qKjNhx/C8cdHs1Hz5lFD1rp1rNTZti2MGRPX\nbdsWDjwQrrkGfvnLrPxJRETqRUFJievePX4dH3wwHHAAvPeelnfPpPLyqOlo3hwmT46VbauYwXXX\nRWBy1lkxG2nr1jB+PHz+eaTp3RseeADatVt+3IEHwqOPwpFHwoknwr33rnptl8rKGD1z2WVRO/bW\nW7DNNjBhArz8cjz+85+Ymv2gg2DXXese6IiI5JK5e77zUBTMrDswceLEiXTv3j3f2UnbjBlRS1JV\nY6KZMDPjiivg+uvjxr+qjqIjR0Zg0qFDBAW77gq77BI1FTW9Fo89Fs04zZrFTKt77RWP9u3j9fzf\n/+Lf55+HsrKoobn2Wi1OJyKFZ9KkSfTo0QOgh7tPqimdfi81Eu3bRz+Cgw6KDrDnnpvvHBW/f/87\ngoBrr6195MoRR6Q/W+qRR0aNxwsvwKuvwl13RZNLsvXWi9qRsWOXN/+IiBQrBSWNyIEHwnnnRb+H\nPfeEHXbId46K18yZ0efjN7+Jv2e2dOkSj7PPjj4qU6fCd9/BRhtFoNmiRfauLSKSaxoS3Mhcfz1s\nt100C/zwQ75zE77/Hm66Keb2KAYVFTGqxgwefHB559VsM4sAZY89YuZVBSQiUmoUlDQyzZvDww/H\nKIzf/z5+fefTrFkxgdcFF8TQ1HPOibwVqtdfh913h3HjYmRMcgdVERFpGAUljdBmm8VcFiNGRF+E\nfPnyy/jVP2tWjEi54goYOjSWp7/88rjxP/dcdBJ98EH417/yF0R98kkM091zzxhxM24c9OqVn7yI\niJQqjb6po2IffZPKPUbiNG8ev/5zPRrno49iOGyLFvDiixGIAMydC3/9a6zDsnjxyscddBDcfXf0\np8iFRYsiWLr99rjmdddB//65a7IRESkFdR19o6/WRsoMrroK3ngjRnfk0sSJMbS1bdsIiKoCEoht\ngwfHcNfPPot/582L9WCeegreeSdGpAwblv1akzffjJVzhwyJv9XUqdGXRAGJiEh26Ou1Edt//5gr\n48orc9csMmsW9O0bgcjLL9c89f0668RQ1/btYe21o0alb9+YtbRPnxj5cuihMRIl0376CS69NPqO\nrL12TDh36aUxfbyIiGSPgpJGzCzWW3n7bXj22exfr7w8mj4qKqLWo23b9M+x7rpRS/L441HL0rNn\nrC2TKT/+GBOV3XRTzAlSVgadO2fu/CIiUjMFJY3cPvtE581c1JZcfnlMAvboow1fHPCwwyIomTcv\nmoK+/DIzebzjjujv8tZbUTui6dhFRHJHQUkjV9W35N13o/YiW558MlbRHTw4gohM6Nw5FhysrIxR\nPB9/3LDzLV4MN98ca8R065aRLIqISBoUlAg9e8bw1iuvjBt8pn32WSwsd9hhcP75mT13p04RmFSt\nhjt5cv3Pde+9MGdOdmdoFRGRmikoESBqS95/P2o0MskdjjoqJhkbOjQ7Q4/bt4dXXonF7fbeO0b3\npGvp0hiKfMwx0cFWRERyT0GJADHSpHt3eOKJzJ73v/+NpqGbborajGxZb71YIG+LLaKfzNtvp3f8\nsGHw9dfRj0RERPJDQYn8bJ99YobXTHZ4LSuLf2tbRTcT1l475lzZemvYd9+YJbbK7NkxCVq7dtGM\nNH/+8n0VFdHXpV+/mANFRETyo6iCEjP7o5mVmdlCM5tbQ5rKlEeFmR2VkmY7M3vVzBab2ZdmdmFu\nSlDYevWCGTNiSvVMKSuLIGGddTJ3zlVp3Tqmo+/aNWaMHTkSzjoLOnaEW26JuU7GjoUdd4QPPohj\nHn88ynzZZbnJo4iIVK+oghKgGfAocGct6U4E2gEbABsCP/eUMLO1gDHAF0B34EJgkJmdko0MF5M9\n9oghsJlcD6esLJqGcmmtteD552GHHeDII6Np5uKLY9jwPffAhAnQsmVMHPfIIzF1/L77RqAiIiL5\nU1SzMLj7nwHM7MRaks5399k17DuOCG5OdvdyYIqZdQPOA/6RscwWoTXXjPVwxo2DP/yh4eebOzfm\n/MjHaJZWrWJCuOeei5lr11xz+b7NNoumnVNOiY6tEGUWEZH8KraakroaYmazzewtMzspZd8uwKuJ\ngKTKGGBLM2uTuywWpl694gadiaHBVX06dtut4eeqjzXWgCOOWDEgqdKqFQwfDn/7G5xxBvz617nP\nn4iIrKgUg5IrgKOA3wAjgTvM7Iyk/RsAs1KOmZW0r1Hr1Svm6qjqb9EQb7wB669fuENszSIg+dvf\ncr9KsoiIrCzvQYmZXV9N59TUjqpb1PV87n6tu49398nufgPwF6LfiNTBrrvG4neZ6FdS1Z9EN3wR\nEamLQuhTciMwtJY0nzfg/G8DV5hZM3dfBswkOsEmq3o+s7aTnXvuubRps2IrT//+/enfv38Dslg4\nWraMQGLsWDjnnPqfZ9mymCvk6qszlzcRESl8I0aMYMSIEStsm588D8Mq5D0ocffvgCwsQP+zbsC8\nREACMB64xsyauHtFYltv4GN3r/Wvdsstt9C9e/csZbUw9OoVs5uWl9d/Qbp33421ZHI98kZERPKr\nuh/qkyZNokePHrUem/fmm3SYWQcz6wp0BJqYWdfEo1Vi/0FmdrKZbW1mvzKzPwCXArcnnWY4sBS4\nz8y2MrOjgbOAm3JcnILVqxf88ANMmlT/c5SVRa1LicdvIiKSQXmvKUnTVcAJSc+rbpt7A68Cy4DT\ngZsBAz4DznH3n4f6uvsPZtYbGAJMAOYAg9z93uxnvzjssEOMWBk7NoYIr8pPP0GzZrBaSnhbVhbz\nfjRvnr18iohIaSmqoMTdTwJSh/gm7x9DDO+t7TwfABoEWoNmzWCvvSIoueSSVaft0ycCj+eeWx6Y\nuEdQMnBg1rMqIiIlpKiabyR3evWC11+PmpCafPRRzGkyZgwMGbJ8+xdfwMyZ+ZufREREipOCcyR8\n/wAADtBJREFUEqlWr17RUfWtt2pOM3QorLsunHpqzNpatWZO1SJ8CkpERCQdCkqkWl27xiJ6Nc1X\nsmwZPPggDBgAN98MG20EJ5wQI3bKyqBz5whYRERE6kpBiVRrtdWgZ0944YXq9//rXzBrVvQbadUK\nHngA3nknhhK/8YaGAouISPoUlEiNjjsu1q8ZPXrlfUOHRm1Kt27xfNdd4aKLYNCgmKJeQYmIiKRL\nQYnU6NBDoXdvOPNMWLRo+fbZs+GZZ+CklHFQgwZBly4x+kZBiYiIpEtBidTILEbVfPMNXHvt8u3D\nh8e+AQNWTN+iBTz8cHR63Xzz3OZVRESKn4ISWaXNNou5Sm64AaZOjW1Dh8LBB8N6662cvksXGDxY\ni/CJiEj6FJRIrS65BH75Szj99FjTZvJkTYwmIiKZp6BEatWyZTTjjB0bnV/btYuZXEVERDJJQYnU\nyX77wZFHxiyuxx9f/9WDRUREaqJbi9TZLbfELK+nnZbvnIiISClSUCJ1ttFGMRRYREQkG9R8IyIi\nIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAiIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIi\nIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAi\nIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQ\nIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBKJqgxMw6mtk/zOxzM1tkZp+a2SAza5aSroOZPWtm\nC81sppn91cxWS0mznZm9amaLzexLM7swt6UpDCNGjMh3FjJOZSp8pVYeUJmKQamVB0qzTEUTlACd\nAQN+B2wFnAv8Hri2KkEi+HgOaArsApwIDASuSkqzFjAG+ALoDlwIDDKzU3JRiEJSim9olanwlVp5\nQGUqBqVWHijNMjXNdwbqyt3HEMFElWlmdiMRmFyU2LYfEbzs7e5zgPfN7ApgsJkNcvdy4DigGXBy\n4vkUM+sGnAf8I0fFERERkRTFVFNSnbWBuUnPdwHeTwQkVcYAbYCtk9K8mghIktNsaWZtMp3B+kSy\nuTrmf//7X9rH1PdahVymXOWtvscVcpkKuTz1Pa6Qy5TL92qplUnvu/pfJ5fvu6INSsxsM+AM4K6k\nzRsAs1KSzkraV9c0GVPIbwAFJfW/joKS+h+jm0P9r6OgpP7H6H1X/+vk8n2X9+YbM7seuHgVSRzo\n4u6fJB2zEfA88Ii735flLFZpCTBlypS0Dpo/fz6TJk0qyGOWLVuW9jH1vVYhlylXeavvcYVcpkIu\nT32PK+Qy5fK9Wmpl0vuu/tfJxDFJ986WqzrO3D2tC2Wama0LrFtLss+rmlvMrD0wDnjD3U9KOdef\ngYPdvXvStk2Az4Fu7j7ZzP4JrOXuhyWl6Qm8BLR19/k15PNYYFh6pRMREZEkA9x9eE07815T4u7f\nAd/VJW2ihmQs8A7w22qSjAf+aGbrJfUr6Q3MBz5KSnONmTVx94qkNB/XFJAkjAEGANOAJXXJr4iI\niABRQ7IJKw5YWUnea0rqKlFD8goxlHcgUBVQ4O6zEmlWA94FZhBNQhsCDwB/d/crEmlaA1OBF4G/\nANsC9wJnu/u9OSqOiIiIpCimoOREILX/iAHu7k2S0nUA7gR6AguB+4FL3b0yKc02wBBgR2AOcLu7\n35jN/IuIiMiqFU1QIiIiIqWtaIcEi4iISGlRUCIiIiIFodEEJWZ2qZm9bWY/mNksM3vCzLaoJt1V\nZjYjsejfi4lJ2pL3tzCzIWY2x8x+NLORZrZ+SprNzexJM5ttZvPN7LXEsONiLlN3M3vBzOYlynW3\nmbUq0PL8zszGJf72lYnOzannWMfMhiXSzEss9pjR8uShTH80s7LEYpRzU/cXW5msjotwFkt5Emme\nslgEdHHiXA+Y2YaZLE+uy5SUtrmZvZdIt12xlsfMpiX2VT0qzOyi1HTFVKZEugPN7M3Eeeaa2ahM\nlykTGk1QAuwJ/A3YGfgNsf7NC2a2elUCM7uYmCX2VGAnoqPsGDNrnnSeW4EDgcOBvYD2wOMp13oW\naEJ0tu0OTAZGW8qNvljKlPjSfBH4JHGO/Ylp++8v0PKsTkyudy0x+V51hgNdgH2Isu8F3J3JwiTk\nskzNgEeJjt7ZlKsy1boIZ5GVB2JKgyOBLYDDgF8Bj2WyMAm5LFOVvwLT65CuPnJZHgcuB9oRs3xv\nmLh2puWsTGZ2ODES9V5ixOluxHdg4XH3RvkA1gMqgT2Sts0Azk163hpYDByV9Pwn4NCkNFsmzrNT\n4vm6iee7J6VZM7GtV5GW6XfANynX2iaRZtNCKk/K8b8mho63TtneOXHebknb9gPKgQ0K7TWqS5lS\n0pwIzM1mOXJdpqS0FwCflVB5Dk6875oUc5mAPsCHSZ+t7Yq1PMS0E2dlM/+5LBPxA/lrYGCuy1Sf\nR2OqKUm1NhFVzgUws05EVPxSVQJ3/wF4C9g1sWkHYsK55DQfA19VpfGYDG4qcIKZrWFmTYE/EOvr\nTMxukbJTJqAFsDTlWlUTyO2R0RKsqD7lqYtdgXnu/m7Stn8nrrVzA/Ncm2yVKZ9yWabURTizISfl\nMbO2xISMZb58IsdsyVqZzKwd8HdiBfbFGcpvbbL9Gl1i0Zw9ycwuMLMmtR/SYNkqU3ei9ptEeWaY\n2XNmtnUtx+VFowxKzMyIJovX3b1qptcNiDdEdYv1VS3U1w5Ymnhj1JQGYF/ijfAj8SE9G9jfVz1j\nbINkuUxjgQ0SH85mZrYOcH3i3BlvD4cGlacuNgC+Td6QuCnMTfM8aclymfIil2Wy6hfhzKhclMfM\nBpvZAmKOpA7AIfXPcZ2ul+0yDQXuSAnysyYH5bkNOIZofr8L+CMx0WbWZLlMmxLNoH8CriKaq+cB\nL5vZ2g3JdzY0yqAEuINooz4mi+efBexOTND2JNGnpF2Wrld1zayUKfEhORE4D1hEVCl+TtzYK1dx\naENk+zXKB5Wpnix3i3Dmojx/BbYnfrxUAA9m8VqQxTKZ2VlE83TVTdsyfY1qZPU1cvdb3f1Vd//A\n3f9OfO+daRnuYJ0im2Wqus9f4+5PJoLHk4iA58gsXK9BGl1QYmb/DzgA6Onu3yTtmkl8oFIDh3aJ\nfVVpmlfTu/nnNGa2T+L8R7v7m+7+nrufQdSYnJjRwiRku0wA7v6wu7cnqgHXBf4M/IIITjKqgeWp\ni5lA6uiiJkDbNM9TZzkoU87lqkwWS0yMJX5F/l89s1uX6+SkPO4+190/c/eXgP7AAWaWlWbDHJRp\nb6Ip4SczWwZ8mtg+wcyG1i/XNcvT5+htool7kwaep1o5KFPVOX9eptfdlxLf3b9MO8NZ1qiCksSL\n3w/Y292/St7n7l8QL/Q+SelbE30M3khsmkh0SktOsyXxwlalWZ2IQFNrECrJwt87y2Uan3o9d5/t\n7ouIiH4xMSqnkMpTF+OBtc2sW9K2fYgvgLfqmfUa5ahMOZWrMiVqSMZR8yKcGZHH16iqr0KLBp5n\nJTkq05lA16RHH+L77yjgsobkP1UeX6NuxPf3t7UlTFeOyjSRGMywZdJ5mhFB1pf1zXvW5Lunba4e\nRPXYPGIYVrukR8ukNBcRKxYfTAybepKI/JunnOcLor2xB1AGvJa0f13izfsYsB2wOXAD0TF022Is\nUyLN6cSHc/PE/xcCpxdoedoRX5CnkOjNnni+TlKa54AJRPPa7sDHwIMF/L6rS5k6JLZdSayMXXWj\naFWMZSJq5T4FXkj8/+drFWl5dkp8droSQX8v4PXEe69ZMZapmut2JAujb3L4Gu1C9AHcDuhEdESe\nBdxX5N8NtxCDF/YlhqP/g6hBaZPpcjX475LvDOSsoPFiVVTzOCEl3SCiz8QiYonlzVL2tyDGls8h\nOrI+BqyfkqY70f49G/ieuMn3LvIy/TNRnsXESszHFnB5/lTDuU5ISrM28BBx854H3AOsUeRlGlrD\ntfYqxjIRzZ2p+yqBiiItzzbESIrZiXP8F/h/wIbF/L5LSd8xsT/TQUmuXqNuRE3qXOKH1wdEYJDR\noDHXrxFRI/dXIhD5PnGeLpkuUyYeWpBPRERECkKj6lMiIiIihUtBiYiIiBQEBSUiIiJSEBSUiIiI\nSEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIFAwzG2pmlWZWYWZLzWym\nmb1gZieZmaVxnhPNbF428yoimaegREQKzfPABsQ6KvsDY4HbgGfMrK7fWUasVisiRURBiYgUmp/c\nfba7f+Pu77n7YGJ59wOAgQBmdq6Z/cfMFpjZV2Y2xMzWSOz7NXAf0Cap1uXKxL7mZnajmU1PHDs+\nkV5ECoCCEhEpeO4+DpgMHJbYVAGcCWwFnADsTayCCvAGcA7wA7Gs+4bAjYl9Q4CdgaOIpeAfA543\ns19lvxQiUhutEiwiBcPMhgJt3P2wavaNALZ1922q2Xc4cKe7r594fiJwi7u3TUrTAfgc6ODuM5O2\nvwi85e6XZ7xAIpKWpvnOgIhIHf3cT8TMfgNcAnQGWhPfZS3MrKW7L6nh+G2BJsAnKZ1mmwNzspZr\nEakzBSUiUiy6AF+YWUfgGaIp5o/AXGBP4B9EgFFTULImUA50BypT9i3IRoZFJD0KSkSk4JlZL6Km\n4yagB9H0fEHS/mNSDllK1IokezexrZ27l2UxuyJSTwpKRKTQtDCzdiQCCKAP0VTzNPAgEZw0M7Oz\niBqTPYD/SznHNGDNRDAzGVjk7p+a2XDgATO7gAhS1gd6AZPd/fmsl0xEVkmjb0Sk0OwPzAC+IOYs\n+TVwhrsf4uE/wHnARcD7QH8iaPmZu48H7gIeAb4FLkzsGgg8QIzGmQqMAnYAvspukUSkLjT6RkRE\nRAqCakpERESkICgoERERkYKgoEREREQKgoISERERKQgKSkRERKQgKCgRERGRgqCgRERERAqCghIR\nEREpCApKREREpCAoKBEREZGCoKBERERECoKCEhERESkI/x9NT+Qv7veq+gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, From 775d85a4061d0149e206542c27991f5d7f1418c5 Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Tue, 7 Feb 2017 16:17:22 -0800 Subject: [PATCH 05/31] Remove the cached pkl file --- Examples/Timeseries/Stock/stock_SPY.pkl | Bin 240560 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 Examples/Timeseries/Stock/stock_SPY.pkl diff --git a/Examples/Timeseries/Stock/stock_SPY.pkl b/Examples/Timeseries/Stock/stock_SPY.pkl deleted file mode 100644 index 5808595bd1cc5f6b48f956ec65932d3764688236..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 240560 zcmZ75do)#1_cw6&h(spXo#yFpK)}DLrHRm{I?LW>Tmh^ZjW(FKdyn9{z-CXu5?hXiY zSM&&S@pDg0;xKRtb}{_V_;i|FRNASus5IFm7U$sby>!xzPX2G8v!8pg3ntQbrX{gD z|7VmW@c*Xt_78Rs@^|swmzKn(=Nqtl&t?~Y7f<(~wEt$7-ASqW{(FVDzngoQ`#wci zmwmL1`Og0Cq0T0lqi8SQB-Z~O|7SV=SgS=6%YSd`AL6$+{C~>u3-Jy1b_oh{38$Mn z2f6PK@ZT346tX**(j>9|ConB(9+mx{kke^q3~_1tjIL?%Y1V17W{hTRasM}r)s3ol z$AwIm>nPHU@qeP2lNck@EG#Tc|IzWEH#42!G}mJ&hsAQQyMI~|i?O$-S6ULYc|a)T z)AtQPQEavWz9IiE=oN|7}F@KKCGRYQ%pUl9sgSKb@XUzh0tSZFY{~1S$mk4-c-Ss`y9+L@ zHkDdI&i7~MktXf`Wjn#bROJ%*Q=(}W8kRel%8)TL*J5SKXUB9qp}0u5gd7=g&1Wxk z+$HO{k}RIMTLgc{Sp9+~{KH1_Wag!aGceA6U5oiM@wu%f|FzpBLpHI9C zuUi`zDw2N(-%LaEkibn!yMXzprIeBi)a**g$Lb zgpKOt#b(hIIBtKl59)l`q_B=W5!n*~53J7g&>&mxD^x(?t@oMNlU^UTS;NYZ&lg~U zTw#(XIa#gM3-!#O$!U=%``p7|zyI$h*tWc?Yy&BJ%bZc0+_UMuC9LiaIS)C!=8wW@ zk>*!AZ!ob$i!i6g(K0&9N3N<6L#N0FvW-+h_ z8j~X@v+LkGNo8&mGX7ShBkbPfPz)P>EzU3{7ahMg1YJaRRn5rKlCBu|Puu4i{Q6y{ z)|}Lgz00|oOcbzkfUhqP6++o{5kH~8SM@;)(k<$VvL#v0?Q#e*U6^WzR?3M>w~)#E z-`H7^Z{`JFhVo}wr(nd&EPZRz^R1oIR`Pbh*C@!!c=!plIVB)sL*`2sdBfC~p4+yO z@4WuxL&e{z-(l486}q#_j5E2jqLObHdCkz=70$lwFNLPwA^+gn-y9Y$v73A_DI5%MTzTp2M$WDCy$(0GF#LttJJQYE$uD2!vf!%=ALBeo znKh9w;Qj_4Nl&uT=29T!AJ(Xcj9EX6y~r){Nxxz4U2zj{a%^)&2Hfz@WEieIJ@2^> z87`GAzK3kCSRDWt8#UHKk5~3wzU0=V#WOH(=`}+?a^m{NbhvS2*C0%J=Do(BY!$rg z8$d28+)@L*HHJ9$l2t9?+u@~y>IQ-2kA+W8LH&!n-osOCrj&xn_YKDm!uC)jpMB&~ zjyF}%H*4>_V6sM@)fUdLJzD^O?zKw|Aq|%uh!y0CF3p9`Je$Vg^^32yqR4aGGGq^upNHi`p+;DJBTV4f#ve_-%o=fp4=t`( z93uJpHFKbAV8<7DlgWMkVUi*3R{|V0stk@HwO*Swz~essyhq5M+2CDJE}7#76x4l` z6-&B5-!TGj?H*T;BbldSk3#FC!d*~j{mc5J@K`JTc=6xFOxLVV8 zk}O)kMf4Q;tM!8qG~OA02gc^LPM#(^Rd(s6k;@x@q{2YkWAC8Te52NMvgBN^@EP)t z!d@?Ec8{eJW?7zP%^~K2KU55-EchcuN^_ z$!~cEmQY*ubqiu9C}~_Uwgz-~Qc$cMqj4C?Yu*$vMKA#$lsk(#Y<>8F=Q?!XY>m zUZ8S~ROQr&ff9AoekJ7IEywS|y7yw7*GcYux9s6g7L!6~TE&)jgFI_;ZUBDjQBp1? z)qNjE!=rzn85A=%J%ShfAI(BfE`-@93yGXjfocy9$qj-y4-)0#Fk2!s4 zg|EJaEvXMJ+YROgl zQf@HvMO7K}PS}6`9$6*KISS_$=W5oGwpyx*@KRgzEBJnq2;Y5jb-@i67`@h@6t*|L znu9eFXFfk5=X1$xG?4Z=b@8xJ(WV>ztotPOko>UkGEXC^!m8;EW6nG+fzM>z{y_0N zGp0@C0>9g8k4VQk(>Pe1@~#v977t$DOq!Ij2SPQECdbEQ+)syM_#)xkFDSVr*0_ZX zDi+Fs&d%L2t>pD_pJ&jVFU|i6d9FaV7A9;TE^H%Tjzs)~(gzkAwv!=T1!?eM&bmQ( z(`vf?DakOHxU_?`3>Nc+=UH!6!_hOw9M8xeQ?@B6_a;mKIT_}sbP7J2Yv_l9soRx0 zNoE5bVfR(-Eo3P{zcLGsDAj#}>+Ww=A133i zKgGddw#$JZ$%c&e^>C5gQ|?csOZD!Zu+(g(80P$|$QU8NrkV~z&E@Y@Ka+{&`;NfZ z2JFva(@bOS7g8Y6f$J;jCi2YzmR~z^6*6fH&A@LHU4x^f_7R^oV`MV_zeDiNrPEKL zyt?eNZ=}$dA&zmAXzYIa0l58~;D@sQG7C*wuINCX@=`qa?KN zG89_CUANrVGm>-NCtkwMUXs#GWcIJhV0f$~WEV3j({cVU-0z}d&O$bRf0PBwF2@~Z zB^lQ(>4IAxUzcPfa~<@9;MkX!^{_WL{n|WorSi&I82;d%2|L-mb!#SEJoIrGZe6)v zVm_Hy(;fgP%y-{|8{huq;v`p{s+fV1lBPynWb3WB>2QhRz7Np*W!&T? zQ3pTxqhzcG>gybtzmPoDvDh9)$95U;knI9Kr{U5obMK+=y3?z9$(qM9(eNjC#GOT? z;RSAXJ~CZ7-xhv&pneHH+dq}cPl~fAzJmd0mnjO6_g0oi!UcDYTH)^i)=ELrgfWYC zF`0Qv(FT5$Y{-LZ6?PL)(p#WUhz$CDRbH69e_T5P@+|FahR)YL7cU{rT~{!Rkmn}v zSi#S+78js~;NTccxDvWSlnmLiR&FWz@ayAH$am1G3A!$v&VgE? z{$Js7c4kd+vgd5ZG5Bcnwh#$Y@ZCrQbl-b$(Q@(@BcBUoK7Hi|95-}7CrRqO`ZWSi zc%N7&MfUw(9uF0gD!ZWY#*q6fNUvucJkn&P>v<>0_G3*6+!ps}7V2rleUu?jwg{`q zlKnfb$3mr1y-s-W;7bWPa?hId1uMzw202H_vF%>+!s80TqUzP$bYRmdyj)jrJIx>-oRY-$;efq2i zlwF}%0Yh&;U|vr)8QEFG@>zauO_C}3Y7(?srris_ZS)M&BH#Rwa@#=4AH7osBNkgQ zYLkx(2P~n``q1-`bxbu;hqQ@){0iptILT}zzhC?w0(Dj5A40{C2Bo@WRM_h|_=LlM zvmPmOjwu`ZC}ezwcKtTp`sC%n5h(+5is|4!Xppw(0X)6p3eP6;&}+9p@Tt!)Q$upu zpX9U9FM0VVcz0Q)nh|;RdGK;$a%MM2AT*lFse@;ZuHiNzhZa9_gwI=JjZI03ox&M# z?^wwYtc%uDH6yusU&g@MhiU%iq^Yf3Ej;_NmUA=tDa_gds?Yye2=`fP3|f#6`rDK( zN!}pWLvR=K&vv-E@>ca0GTYdM!;1X!y3Y=--xG8h9{a;K1^1Ue?6)Qxb?ue5lKh>c zQE<0g%oA8PB`9J;=3aflwv8NH@4XFfc=9(NCha`+9rlh%>)Mjdc^?$)$i=GR2cSpe zf)-d|nk~Fw4|D7#Z*3`1(b5ZPyPOJpCZ&}-}iTmA;l3nqnA*lZ!2{zKgma@&jTsj$F(^evp6KD=r_ zsh1!a36->7c!rV(+q`bWHmAQVVWjBz$*pkDVd*@0r77%9I5};%Kt6)pG;%Q8ene(R;rU4*S~j zN0Xi6{0xW4?(oLKa?{Jt;f1-~_Y%o(DKlKhNo|Sb9Wc2}q6ogxzdZvV z|J?T>i4;1|rWj$rbpnKzAA{s&yNr zk|Li^uRclo9FUEMcerZXAp3bM(NmUpL((g@q zWIB1*&$tzG{(B>QhIB{`^nzC<*ec!%*1XP{*s*_0`Id=F2e7;1m57xDJ zHlHQAcX=(&B6m*wafjDpPTqpEeA3M4$WM<3$Dq1>*oJKK=x44Z*mdAy50qMKJu6$}Pb%_k$^*#tTPlViu6_->> zE|V{dNj~Ejs)pj1ud$br0qVMT@LqG*C0HDJ`eZrz zdx2~}G|9cIc#F(jZ50JS-XCg(FGBJwD@e(C>)39SL77i%;C(rle8^KXH39$nm-khY z<_yLPRphyoZzAC5<$;f(#w}K%JEXK%19LSQ^2^Q|K1}?20rH6+{svu31hi{NOP5Z$ zyX5)ro?&qG$e$*tC2&%pmOOrWg&TbICG`9~QZR~Z6uNU?)T|?K<*rSH7q?D^)RW^M z;vYht{i1yL$rJN#y1>57O{K8KoH_deDf~9$GxQ2j&}bkl8SckJwo}`>;p8U12MPUWSBKLGusy!mBUCiSk$7Fve+#VaUyqVmzPKEn1 znfCaRBOG*aEQV{oj{ky(qvDKPNPlI0)mF0h!OIxPW#jt{?igYae?k`RPxprzE4Mnd zk;63~3*p+$kw0PVTOPx9vNPaP8myPxedsB2hVU$P2P`-8FCc@A1YeXtAS$uWUf4Wk{hCZ>EZ6QK z-<&c^hVoKxdSOJx-j%)NV?)+(c>DJQw>Knfl3h8pS^AZ+kIcV*Xbb$VBajQ-vYMc5ndF0h1$&ci7?<;{& zVpg*r?oI08{zTR-b>9hRT`Mz2NYfu?!|-fezv^f5lVHdZ*wwNo;0r0`_^1}{8{NV6 zm3(k;+yV0P#9f7R4SMOLPcAfpnO7LIYMPwTSR4sAwidU*6vvIiKgqYFFFaxE#Zy~n$R#Q=dC>b|%{Z*u zwngU`Iq&0#WcVX1FZ?&Dub|!xPt~>x&XVsfcDcjV{Xfd#(zLSNKcw#pqcK=>yI1Qk zIp28iacKXVr3V@&KWLmI)0f%t|06%#_~HsxbPwHxG0*wwM@IYa(dS>_y~UpE8Oa4# zXA_{~`qY;&GkSoRnf%BTx(ll1ao&J&Di{937Y|jYgUd)S~zmPm(t2Yh%K6V@MkP6{@PQwH983tg>xwO^1B-{I8pGD-hpaXYc0W%Lf zA32#;U<><=UG?}$rJm_jcyQ10cd+e`n4$p5p%>&ONN(?BtAtnF&ao~gr>B%`;HLP8 zd2o$p%n2d#@Dss4*s-%%UYHd7rV|1E54~uHJ5*2IT0#~zN;8X)ziex)pz$Zm3os-6 z!x-$mrzW?QT)w3>6b8O`Zi4keKlqoCCDLUKV&tDnLrZ98(whUbdIG+}kv%M$;$*kj z18E6z#ZB7~7_9fD0XB3-FIrA6a_4t}|Ad~KOOh5v9_L_==IjXk`XptY6shSX6%S<> z4Fs(qL-Y6FhfS)SJkq2+C%I|+>jtfExOGy8^H;SkG#C2L95GYh@p5t)KYxVP6O zUyZEuot}W)bBP<($(<=;De#*3tv-16Md0IgJhyU=KbV*08@&em24v4YI*#DtJ;5?8j_LDDQ98pxa22T zRq(#kh@7Xkf4MPf`)Gb3{4t`!Z9=}!nfL`)D;+g9C8O(?WWaW-8$)pEpuVaZIX{C@ z+?=$RJ>w4x@2sqaKTYd6HcXlu?M){OA`GT*hA4*rH1@cwr3vDMY|4muj zljlfWaAL8f_r zj)Q|U2VcN7iF}ftq?qjwOtY*m`;^^qgm<6HeaF97=|)DNtz}m5$)@sLc<0yN<5490an>GaCz>UDki1-?7z(Gf8yexj_d_?MN#$4phC}2b zfg%g|^s;siT(++B3v`HDAss_r<*p8fGr1NG&`5cZ_Xw#vbm1>NvVX04Ectw1OBR$k z>ofxQuAEelBX_xYEfY%p9vO!F zjvrimjC>%<7YlE6bOa=lb1v@p;O5C+T*t}m*b_V87Xis4D6=EvLlU|FD~C!l*%)>H zFyvpT(g7J8#%oTHTWsRyr;xcr!uD`%|Me?y1H1k-TzQvaAe9W?oWA-b+5A>68ZO>@ zuMK)IZWTR6Zmr;9KTYNtUb2M~FEuW~jo$5(Fy*(aUK$yBU0gApY}KiVgiD^8v_fy! zx58)0s>vWPcDy2d=H-(o)jPwg1f$t2%@jX43^FKmoBODy_hVnyWF#T@$hHUb~X6_`Y@-D9jil5%qltTtcP4S;6?^PVz z4Hp!{xMvTfFOorVhZg0L_XP!9AWz}d8_-!p zdk$W2d2XIho;#Sju7Lc!a78@SxOk@vCakfLxUIE$4|eOxJvd&`R|2tx0&jopig~K5$Qf_^9$Ze8Zjy+ znU@_r1Fdf?8iG2zJ36kBCw{nzm5_aLzx<%W;uCk_fx_jS*GVtO{%Ke_8ocQS$rjC# z2DkB?AAkiH*C>~gC%27@-X!~nWA{L%FyU%=kmEXg8QGSlX9ue-81&0Yj{dZhaC@L! zKfJ(V)k0?fTUfcgWb*hs@Pvr=z_!Ts}5>0R~3Le1lFZ8+&WWl7}zk?vj7Dd51x> zkAItBR@f7=;aid75=(>55%4_2j?XKSH2|@v(<6 z=k-#)`{Y-jG8ZUY%98zn4AnjR88$s%rO`kNxIKu6R#*8SJR~oyzsl1{erw&}47GPY zFM;yBsb`zWh&-uJ@UhArwMV2- zPnDmN%i`S*K|i5i?eOl^hp>=JLdbCq5dG=2Xszl%H@l=dBdVwThGCe_nxQ{Yi)>$h-U&%&0M zbQ*0c5al576L$04TPKL+g`+DIkp`ew$WaASh z!8ato(?d77``h+%SaxWXv5#b26te}6HR@=+B{$f;NQ6nByk5iJ@V_$e$d#O@_QS<> zmahGz$CeMJu;P8#KghCgfyH}rD@$HB+*swDFhHi5{OE>ndlFU*lB;}|21DHH>Y5M*rc&aG+#W49^lV9>9xw@?|5Jo#~sE6&}o^gL7Yw}Zm z!})8aOh!oirm75BXt#M7{`~Y_^)vY)J6HS*siLSF0AuQ!YvHpkJGs7+;sX;7aKV`y zhNGmTj6pgqu6i{Hf1CKN86!=484p9XlseyUWSqE74SaF)6UR6ysUNi+2EE|D0^5vr7c|S<$0(M&%vNopxK5SB+gf}C;y`3T% zxMEjLla@I`k?_1?NedjU(-rBbnN9D0s(8=NHNBw^05! zX+4)84lkyxYlh?EZGy9;PMM24RPYe9`a`xP7>_~WC4E|dNw4C-<8Yg^Qs^96Fy7Dz zCl7Du|3~Wajk>~<1&43KgWGj-7ycy;9NAtq1J`{vH{v4W54=x@!AiM@7myA0Djjfy#A>3`fwqU1no zeh*Y$zD{l_d8qtJD12(*(gg3$EGt_^awe8Dh>;E=#+LBvwKq9%W<%gtI5eU7N}N!e8a4;E4@ z$fF^HL9mN0>^_vrPg_sLy!g1h>hOl8O${*#$-?qB>zn7#aFtSot~+kdYd`O1^I z4$Az>Sg?}ZpQzvn8%6FH!Lp|Z&&ZREE__39%l9iP3S{mPtr$4Q|EvS{HlMh=id^X+ z$*D+&f2p*G&5`DXa54A$X~^>6{D2a}!apf>}fz6$xH`(vvrsqYoJWG#8>7mqiLE@`(>Bipri=fkBPKPRBCOVUPl zvgW&Z3jC?Q@9{d)@bNq$4Km#!+XH_1vbq93%N@J0o)lL;@(l(&Sgfr{-rIUD2`(7g z*b9GW&NXR~CM!=1Y#=jhWZd9K^SfnG?d=vuZBp_S_b3dK%-7T*@842Sggk~%UP0%V zyJR+!=Es-u>5}I}%U$5-5~EV6q4Q=ACUorGtVcc+Xo%M*`L5V?L)Ud*r3}cMj}PsG z=cBZpH<6>abPHMib-6F(I9OQ?w=Xp3up-lJ z&g)x~gF|ah!8M_e`r%=AN2RS~$Jy~HSiAYUw++elPOl2?*!z-g8(GBYyAA$2#ZUl; z4ezDcl51aCzlE{h9~JD#&ffonf>I*{=#K`VEV-8<%m!xf|F9>L&)s|6iNmo;OIJIT_9m@V+1&Ei~WF$|7+Ls<)%Mi~08hHn?yw0DauWV)S~?Lt}^segeNUbSktlHa^{CBQdJ zmj&-8LH?-rh81^PFXAP+OkW=!ZN1#D1=W}@4;)3`d z@(_~~moNGB^mhm7cUxoz-Zd&U^dqm%`mOONXOfr>L!)IGPvMyx^2-9qp^f#v@cECZ z?R!ayql>Pue8BNYH-zLpw<8tqQW$>=H}{vc>?gAW^@KyoFHA2z;rg^ax8boB46I?~ z{@1nRu+hg_C!FN}Gn@=}Cm(nN=^-N@LFPVh6FfkU?RIsC8>XhqVbam#Op#>oVsR_j z+}fuVMK0bMbR2q&vGu@;=yS3MNfzGKp>U&Z%*|*r<)a|OA@Xflu?1W;e`5|@a_?`# zVba_3)Js^^FD)HI&I_suhPKRG8lZmVf*VK3Q^t9J;rrKW=CS1JJ*`+SD?lTztgE?f*8{Pd|7&C^+{4%Pd*xkbk?;& z*Z8PAr^uT^i`Y+-3`Li1p{1tgC3ybH(@A*zQ1ZJpvWIuMVmc|8e>)O}shYLIM~&}< z&ycsmb67J-X3jM>&^o&*502marjtqb1(nF3B^6loBH)4a?q=8`y=QS2DO~l>9kTh> zTAd@e{k6IP3r-A=!AY?L8?s5gn+ubml6zZd4ta3er3tphPxGHAMTL*=hI@*{%HVdV zzMNe0%D2F;aQYCN<^^)oqI1V!TE5aNc-U^V;UXy(A?T7v`g0cFfVJ5=bFgU3-;sRM zc%O890hz&4(*=jqEu}7zohA!-E|bf9FFL_MU$qig|F>lpE=+MYy+Z!cTdGz_n!UIg z3$xq}JK@N5kHl4ST|&TK7~FQhsEBNEvi$`Yjej;OCS49kpMe%@H^f{cbDExYz^`^5 zVkM;J$ZtQG7?E-phAM6@yiPXNy`P2xR{J;IAl(M$r@``lxdZTm%+B^w@>|t}=uJ}F z^ynU#+`FV2zVW@mUPcO)G3u9-p897_!rL!a_Cr>WI>lS$cj2fd6{K!4uQyE9x?Bn0 zwXJ8nO)5G+wSgjh$r~$4p8|;#cxUbHKFI#aRH2Hr+x{*B8gS)!+#yfrC|AG%#U|!z zQn}v28XmIxb^-damL%1XchBhdLQdIkxx1vp9iK3GX6|lTEjg58#dwcYl^C{!N6I43 z!{_=7M`7L1C$H*A?qe=8_2kYa(;@I$apFTbt0l&FpZqlbW)7;y1a5vn9_3@phFt|& zpP`hRl12l``}wQXLvq)F!~5V3F2M(IE~kj6k=(4L;|$ji{xNMLj|HDR3tzEHe}Xa@ z)oPE({j!#EaQ7Roz-F?{?_wQf{I{0-F}WqR#S!L8I2XgDF42q@ve)D05L`L4Nwt*> zKh_fio0kMUgB9%xwNFTvUH3WL$gLCG9AI9|=R!Ea7yT2yeWW$mPOh?lru>wQ{Oo=R zwjTK14wo!QS=vF`TEDk@MqU~WxeR{<&!2+&Y`OZ+$<@`4N}Xi1*+djm-}w(A`1-|3*gVL^zYEnbER%KnLcwb1;$*9Jn)iywt=?=ia)(1^ok7F zwcZonn`p0q#g~#Uz9xUGNsL32<_hf|GSl8P8GiiywimuQpZ%zplw7SW_=XI+-{=PK zTRW7)zZus?`$%&+U9Gp|x$3S&_}R?oHPq;vlX*unkbhB{~E5{3j| zMY$&q!i=rvK9l6|hyE(Kc7MpcA7t#j`L?h#^LzoUH+M{(A{V|Le+!)g;#N(QB@9a< z;h&S&Tj0nh-`hXQbuSrMXUKT3^sTV_ms}oPas1vmT%;5E<`?PG!6W~hEOogQ4*z}E zXoeQC?SiwU=DH-NKV;%#aVz-Rp&}Q`el;0`p;2$O{*rFW*|KwF`GeJ=kjbX85n2t| z^Zz3+>>qQ5$t$l}F!0hoT(dC;%5U!a0wdmfuV*A52h1hF+md&KnMl@(Ee+7daEOa66Gj$=omi0iU0$S(M%o{hAlezhl`WEdNy?joLRY|2pZkJ zGXu|TwlLx%k1%qnEFhnsx^NguNUiOFdn+C<<0k72o&4an-y-%4$=TzjSD@+AP1Eq~ z_16YG8Ov3Di?t1*>`ZXus zL78E*RsnKE$?}T zFHAOjGk7c^7tf~Mf*wh7%pzpP(tB1g@7aM3qU3}tPZHetqo4<-#A(PaCEp6Rhr-sD zG`wBYB}JwiZIN0*et7jE2&(vm--j`?3wWf-fE%r| z@ZQExv5l@aAn*<<%sE@#AP{`FdwN)JhhqRwj=xD`j6p_S`VAgL1mBFG2UC^8G60 zt;O|is7mOK%y$)-m3@pRZgg*>->ctGXX1Z;VjyiuL33^P+$ zN3zZDkAU0G1wV!b3LHWjwKYl6%913=v1d=1 z7P#IlWBI4Q?u}ErV;^4xHB}4^J%|g&ju=G<8TZA&o@nf3@uuEE*Hz z(1`#@e3ytVec!RMOBVmxn)$hk^6$yJ7vgQ7Hqm#Il%Y6ZxlK z#~GRhy(ocM%-(3|K^U=Ww%w9^d@p6`7E)-7lrQvrUsVln2W{rCBJ-s=r{MR>TzzX& z*F^OcOzmmzhwt|6RN6{D5fc%yAw_Q9@P}qtcG55ZX$8Ei>c(PEayHFaLkGL$i_nPEEZKoPll`t2 z4y_7axr0=#V-JT%w&Xm5ds%jrJCb$j-xzn2+%mCS;La+cTzJi-WE7tL>+{-){B+`< zj5Db&p0*zzy(!xWyYy=Lc9FaZ3oTs8UBU&~@J7+PFK|w?O~aM^@-1=2ZgTx$v0!*? z(X9vYRlYH=8!5B4&l&QMWSO~>yCamcU>WDbPmnQZySfLtMR7C^ZWt&E^dyt^>D0qs zmKWS!{#-FquXFd!s9nO3Te=J(HEP#C9^qFHXxq5r_ zb{IXvcLlab6i&gVTpJ7m$@%ram4ZlntCWMVa6qyR{@hn3vX3-m-RuKZ?##ChCSy!< z3*fU}l}RY>*Q^^t2Fy98LdUWtk^9MF{TnUt_X~aDP}0QXl_$*n>3bW-6|c+-BVTCM zjYG-ytvcc4{qe{*@Or`e<_Pld+NXjCNb^U#-Ql_IGv)B}ND@;d`7+0J3`#4#(~2TP z>h~Ro53SgHAm3oN>_L(t!+}4Vw3Pkk3eVp;aubf43NaiawccE_fO4rm>kpG*68{q5 zqq5U4p`d}RbPQ>IEMnIY^5T+(H{f`2{$HrGVV!v_c_1e7XdKzXC)NdpFO^FkCB4*) zgJ9*OH}$aKK-RT*a*|7F7V4dEFi9X!Ds9h%{qpvg7bBbIT$;W=0bXrho3ro&xU4mKG zzf;r5k--!1;JOe=#dI>Bttt|BXPCFb2DABD0%ZFBaSU1=iQJG) zYOAl8%OR7S+e6_S``t}Y{>xAP^JGM1(r)Ov+SD?aynX*|4rJZB?<=(VFi-OWnJVWH za*=#jJ=Opf&5ta~Bcu8jyTB*@*KWW&%YDw}lkB(VMxfoM)9VVz%iS{ZaLV&;7aS0Y zxPOUMF5%|6OditCcY;r!s+YiJE>C75r$FMzE2P8aWom`wRrT^%IMZy@35^`yNL(dV zxw94&kw#Y)Jt=70R) zQHE;!>txqSi$W+RIXDgX-3r}wgM6@wD-GWG^*FkeoJ(|ShnqzwMQ@VXCGmUU7j4mM zC==`dqm0}yz^q?RHeSv+3HjG4^h3t4Bdxc{El~%TRFJvceBN*@_ev$)psdAqn_M~c zYXXMvKe4frY@R2X0vDgH?1LUF%@wN1t#3Jm?vQx_=RM#AgGvS5czHJKvmXbmG@ z3TxMptzOrY;F8~Zz0mvkOS!vbm8fqR{NZx1td`WDv}U|Vo{Ifw3EvAuo`>y^H4^K{ zr90YRLEo>gGWBFl)Xxw&e__%?`165D>3!1B=ItCz9}3$1fc&t3UN%%=&;AU>@7i}a zkO7;=q#ly@-p1^M3-&I4038{x@idYq72bbfrs14v6Z!Gwsk2bcTjmpt`(2~dufrV(d7kCfL1$NW?#JZy$yP^r?#eOa7V`7DWf@STrECZ$>@ZSoC0~B+je!p@ zob`V~@~u&VfafS96ftAt)0}8*B*q&?><+4O7?8_JOt(5&9*~# zDGQEgg?I`o(I zYm$TG#6`G0Yxy|5B44T9Lr&i{ONN7cIl_C%HB9Fp!NaH52)-dZq#n6JvD-V!A(xME zZXda0wqz6*CFyCsC4Vh_nFx(?v`tON5=lBhx?r2im;&TFqmWBU)Yd!&TNP* zwXjzoCjY$~je{0}F)v^a(_+bw1f$+7F_s&nG?CZb9Fx2PNZzzyllQBXv>4qQq zOjzS=kb*FqD+?yBm<`-F~vPk|n$=!H49PYH$Y=)-uf0fUYXU`=w z{UJXoEVqK{_ipFHqn2i4a33>A&tLLET8``-$t%4k6z-~QYJ@k8ckursv;PRu!bbptHBI?T&VGHM>!1veaO%VHsu zcwI+eZ{D;zE4fnj_))m{lW`Cm=@H&n4=d&eEu2TPWV1QJt*g#mgB#y(&txZ4f<}ko zTjrRx9OSBW!B`k6UHlw+_jui#Pgd>u%f(5~`+IT+v^^nR1TTrz%)nEfVIR22_ihVR z7Lco_FCK=`@oF8gU8r>#H(B!}Vg5pLzSB~BX#efz69=?Z zDc#2C0YjY5+=36ktz;GzP z4xfRwGJ->p>rRo10%<(=$8Qyxk#h1b92S@6R3z7yRolbm9$}l5$iSamX|O)w;s9K@ zL```$=~Ubj4b7Yr_9&BC&~pg}Z_hlbLN<&j^ut95?klR2 zE?l-zur%j$E6lMftXxZe9nfM^BQ=Ac*}z0rk9_$0%YY&%ED0`LXXy z-D;^+RVt}9)!tXGtQCF_kNz!ulDow7#$c5-d#W`7htzI6OnC9^lS{&aL467}1=DA( zp1v9Azx1@9a80$~)xuxLzWfk2_a5D}Ip~zGX_Xe>@Oiff3$K*#d_h>`Kr+XcVApoD zItYW3d-=2i*H3@FLio4Dpl`xfyRtQI4bEw?DqcA1UqoCR@cP8xXNAQJP0Hs2_SjrB zR(Pc0u3f@S-+L}=3nm(!_KVOZ&%y@n!1-&cP8Pncee%BW)`t1mTBy?stWj3NOoef@L2s&*=sB>+T#O zJeB;yR$)}hpY6Osk2~Az_<&10v>Ye={O|rPVS`ECOZkG63#INY9C-Cus2_MX!f&%M z-;ei+{K44K!(4>B^W>f{TygH&=m79rQ0xt1P<6ruGm%&RXh-@WSzD8-hSb zpML*@_%W$1)0cHgg?YGz6US*s+`NS@*36h1F6t&lC!FX*s7w7#)4yfzW4}lz8bYscx--?sqMk+6>mQh zh8^rwsROvhHQ69xk|#6I3E$7~+}#nZTk3VHPT=_6abChZEwe2bmbts~i!j&ZhzFg) z$ilzNcLBF=nK(e0ym8SpLicMs^K=C#Y|32b@1quR9nsbVS)6 z;I3?W`w3Gm-*8gsRlQNJp5XEmHzI`b{inP30w1L>vq)HJLBf0Cpo;EwdxPf>z8ELm z+hcj}K499E&c}tmGtX!53$7{^7AE|$`^RSC(~jHc_XDdYYWY?;bn<=Y{@|s;-Ny(E zZB2Dkm?7%ekpW=9Pv5Kq!L?)FTZO;#4%;Yfu`ZWG99Z3Y?UiuErk!B;ocayzm2yZveF?1AI`uggN!ah-! zf}_C`KQDI_<{TTfPngV7eAO7x?ZWQw!o^mXCS$>mpB_&Y)*IIQv9MeXr}N{${wGi6 z9}k}P4QemU^XBtzVf27esV9J*m707NE<1Fq;Y9F@Tc;_)hEJ0|6i(?mv%)0s+@4p_ zlfnG0<8}($-^-eE3b?1!N)O@6A`$iD!S7ptO%yh1GVz{p+Vvvkrh-qRcJ>oq%-1t= z8dz|Bn(e|)mIcYCgZnR3aTBHwIk8CiEBlD?Gr;C6^4t;5tg)f=Oz`>1hJA!iem9N_ zi)5U>Wfs_VVd*5Z!Go0&+6prrc3U6}a)0qw*eccXn{&W9vuc%`3)b8ldQ>>7^^dIc zz#fUWJIn`Erxx$cb-ChefHAz)#0XYBH(P9h1w_|;~3v1_pe@HlX{m{&d zz+0AF!NTL8ueMwa<`^C`TNs|h;iYiviumeFz@#-xju3u$^R&xS&@!;^0pWy<88a>e z?=D;tAS_$C##&+SXJ2P52cvq8c_!SE%CXuCFvaXGLxmn?nq3k$xSxFgN^o-L+38k+ z4-!}K6IO^nyh=E*sP_+H?2YVCR)f2vS65yGrv6=bu+V$l<@3T7`J)P~1*cvtmS!FJ zIApiCu=1BSD};lGKmIDbkfV2_^!&4tv(|v+#1SqzyKMg;UR*B+R(aqyH8#u+6Je!gcot=H3ea>6|r6*fPn=?ZO({ z!xwJ@M>hTSL3r)P1j}}?SWJ-#!tTF!+!0zg^f<8t+*mJ7&YhscrTO8)HlbCv3g>+} zo@5s|X65jA!kabo)Y%P|JiUIbu$O+ub12dZdo)f+g>n9mC~WYc1QMa5-#*` zOSBJs|Ll1i;hovbYV8Nhl&v*d*mvK#>%x<5LW?JWxgLD)E?lzx-rob@r>5On9R%y& zOgTqbe*Do9hrj^^e6I@6YGO>&k!4kAjVA z#m^MRpDyuSI4JJvrDNdvOnnO-2Ma9D&{??mNcHq5z*W7!{t*61J*MeNu<4uv(}mN^ zZh0bny02-KQ{bg8$sJFFg_6$hAnZJ~{9a)~vBPQ3fEjjp`3Qf)!}dzHi`s7xWx-eYCJ))oDHMfm4o_ zIwE}Nxj)N&u;L3>t1zz5^9{oG<(AEP0Pfje^OZ17+jBJ@f<6yJMhaJU{eD&WWJmK% zkHIRym z_HVZ3@4;IWR(%ncDp=3Zv9sD%ttWks9kwJfv&mRL<<+KezZgQ z!MRt8&*0tnRX+*K4nA4$3)nA9;6&l6C7 z{*F)l8*DtWa9iQjf;;952Vdzv<_~xwJoQbXDxRqiR=m;3k;;p(%)HvR*D z2Ij^l6#L!}>skwE3~n%2_$mgyrbk8#-0skZ{{UdDI zu4c=m;Os|dX9-_+3wa@|k^H+;GO*aLt%Z|=-CH#8B0PNiZh|mNhprh?fYyI00)%Zg zA8D2noY&B2hVadmw@-!65ksn`0>^yMF;v)V&6SR+!DF?f_X)F~`*_hol_Fjs}qsWX6)2l9Ihx3}B8T$ucE zldr;0(~~{S2-Yt-t3oDl(ynp?h4)(=IwLH9$1`tcFz=*nDYJkvg;se8cWth-RG6yK zrB6bys}c3Hf{jKOEtd_9&$Fwa@X?yqr-YU2Jj#_F9CWT{q_D$~s%|;Jy;)B#5~f`i z@ImP7^r>!6aMke<Sh~mAU&1~qLYfx`Pt5o> zL%6Nw)}bZ9WOtig61sJ~Td*X!*r97D;m1iS_6zSdIwGZ0X@%06(|cX3;x?)_~ql|J;H`Vi>E0ER;>Qyt1#|F??&apb3WG5+(5K>;ycNNf2S>#Szq{t&C2aC!Q_4!r`7g+oduYfu@yxO?U# zVZm1A?h8BJJy@;^xWA)kf8mbcf#Ts8r`Y| z_E>PEq%(M=VuxPBtcMaG6Nb1=&sH0BN$H-b4mf}2i#Ecyr3TCs*4~r(jc{zM<+bX9 zy%U8Mw}8hd|L88vQDppKVffZUS?YmX8*dL5F8bN6RekWom{fCw6V_F#(Ez+#_t*&G zsZT?@HUx7I%XLt=V|o3+Mqr8>*VYO@zmA{T7;G@0*qr3Lsn(cQtq%2T>r5DqSq!m%aT z@%rI3t-yUz-af)~zuv46`i&j@O}IK=j>fIQ85b^BYy&>CM#TxMeg1P+IBeMDd@kVS z?8Re+2TnfrYzt=e>%B}E_$J*K;kp5f8ngrdWN?}+tl>WDv@1CBX}&ye;I*EcqJ+g# zHQ6D|vN!1xchK5;=11Yidu8i+fDWAxP7t<9?0Hw{ye;cVPjF0=l{vk@o7Zbc2uns^ z+$!w#D?F(;7`DF1d*K$#&N@C|l8ddz3EPD{yd_-txko8qaQuoY+5NyfHBN*I%bfDx zEbQy|F_Axb^38A;;r4|Moddw+m2Zp|x*u+TL%75}afv|i)6;1^g!gB;S%bjxWnOF$ z4%plOpYTlU%&mjLy!V&Q5vGa{9ccxLa|` zc}wH=V9_MarV6{o-+3fFRJ2Q_4q)c($p;DlMIVms2)6$1wOcrM+?!OLz}NW)dkJf8 z$i7_I^GoD|&fwAEf68|Ov*nyTKp48R*coA4|HnJJf(zdEO3@8`H!z)tuui5$ON8SV zRr@6D;IeX{pCyYqF>7;Pm?8dozf{WWEP1Xzicz=eguwIw4i-Z%C z9DFal7w=KGH+Z^f*3x~zJU3VL7DmU^J}%t(`$G1 zYYqadJWn)AIHdQqYr;-t-3|=~_wRe2X$Y9!rGJpn|3Rkp!Zlr%{SnSA7W!f+_EGcf42L$zWN>H_^g=8wc$ao~oZcu8dzaauSns*%;~lZ&n{k=Y&w{)YBe`u>KC8t&H%mpj2tgqktW|A z;kP*(OV0!wmuuWdSovX+@LAyCt~0g>FC;CSWH#tH?Lb>$$KoCfgnqZOjGY6nj$Lt6 z`16l*$+=*&2^V?_XE=r*6%M;xc+))aa@Y=s`C#F1E!zmYjC?Rxcpz7g*TQvYDqmj! z{s}l_Hz6314O&o_P^??P!C)!eU<6TP_B>zlfbJJlrSIOJSC@)2c54 z9THrNECt)NecnYl?_s|K!Z%$rWn2b2CtDUEEV(nJ`EsyV^Y1f+$8L>%Cd}TxV6_!s z*x#)~h3z(V?X(hH*dXP8;rq*T(yao=e><{D*mw1iX{*7L&N-h5bDdpNc?}pDSZ}a! z`}-^Bg-e!9*|Qe>RJBB!bzuEtd%T5{yxOi1-hc7rtMJU+#ShnmdCOO?xB-kwI6Y9f zt8MUEVX8-8@@@pbPTQPv6WFLkQ%_<1&f80cm2M|%uo)~c@ld%fV26TU{e^osy*?%M zy^<|zE7)|@CAV$h^xTn)g-=)i{vfPcdy-{4IP`4M3Bt~UANAP*CS>V#LYQG`TKt~? zun(@bFkHCySk2e>Xzi#9x!wA8QJ!N!PCox z3OAHEuu1rDr+cD(;Oq8T-Uw^`TV88FIC`S$)jffcW&a6AphMa=0SJomlAUSa;xN79@D z)6^OAP3UtjN8_{L%Ahsz!tWm}kAzKzT&Z{ttl~5!-+6Gz@#3+%o<$uy)aR>N4IW*F3WnBx&_X6O50ob_V|Kh!rDGnv)=|wrT>)Z4%mDC2p8e; z3VG)Xa~$08Mi}ne$oVelnj%Swd*GrO(|ZU%lq_>ZXxW{RjXP+PJ^&Wf~oMXAL#;4U^gd>Mq8h!w;WxFz2 zc=*KR0UyCEzQxZ7t*>|I`2=q4?-DI^$na!`@Xf(ROFo0nZcd+sW1gI<_XWJ!BWR+q zWXdmhh1vIPI{6h0Yt|w+)`Rbb;~RU{{Q=&&_G+B4 zOjO)$Vc(xwOaBBT*Ims13*25eB21Y4!mrIjck9H&zriJ+inJ9@TK>@a4|uIysvOW&vs4Hg8x!Jn<{KQtM6ms+|n59jA z+(+23^R45;hf|V<=LXL;IoLK2nE!^y0%7~;S8s)TehsXh7fdrQ>saA;%f+7gz$O>N zj|!)S{K}dieDZlhh_K4=BAbK-Yd)M?0PJ+C$7|t!zcjTR!SrwEj}rP1ta4r0yz<9G z1;Lqzhi5JXK6lR(EOdIde!Z}3nZz#(g9rCct6l`m)TZEgYDCBa0Y-8uD#D0Sax5AcwxUbOCAcNl334H0C&WH&07&nQEW_%&|`anUBabJx1_8D zJ{Xt0L1nN)f!ULU12>evFFafCaJeer?k|IKR|Qj#$Q~v1&bfNKaK*~H$*Y0iYF>5| zK7KpN;sjQXD>gwmIMePs!V8Pql&KCnR(ae{2Z0F=61%1Dk4t>tZ|-)dBzfe%VIY za{Rz~!jYFQT(1jW3k@%B0gHY8*ye3Pk4jRxS&BOi)11WS4j?<(x|JoiE2vEJ)5HUhJ!X&5L>vOiIa#$Y>_X)}cj zAC!77eBWh%wI*QQq;A86NdE5J6ztn<*?!^4n>Eun19Qcm^Akq?30W<4-&k;Zb8t!h zZBK-sE;X;x0<0f)Z?JIE*RB_Y16Ebs+Y&re>u8!*VBRx6KEjxQcPoUu-VOOCT)w#8 zqt@WpDpxDE0UI5SjuXav{yQst^n6M_7x4U?wyD~J1RmD3BX?p!xQIO5Eut-@}DCN1;^4`nX)UYL2wt~x$oaMd>B zgd2`Nx+R?3XW=nl@O7GM+5Ny;b5Di}N0$rSEWEM*QzCybTe8N^0buB~o1=xBi+8*s zOuREmi9qmO?13ynV4c72R^hk_FEtHZv_=Or)FydR-Na41TKd%at z<(^P91awxB0PrT!xQ7=K55)r+KD}(O{a} zOC4iCpY}C73RnI;yI1&qLP*+J@JWM$--T7KY;D{g91`Aqs_^2syN`qgM|G{#0Zd=J zV*ZYx|Jft4!Zm?DyM@2rzfIK%Y(991mvH#8E0a5eSG=Mh2#dV@TfPg}weOSx!l3eP zqq~CZ6Q1l4{%zYQMK`e3qx2raIo%d75soSmJh3}?edm|E!s0DPm+b-exShYB@JRd3 zCxx2|cHY(#Otd*!vR%?_n_Oo!BT6omF@%fuDz*jxVvGN^}-e3&(9hPej63`LfAOZPp4tv)HUOW3m?}md_{QS!~KNe zpyQD48AgB|v!)IZ?pr!|FW)~M2{!9Dtm-ImM!MWXh1DuFC^#A{{MaGg z7_dwCslLJk$xE#gW}LC_yD+e%Ym>2H%R3n>j{|3SSUO1f@?VYf!Wxs#<{uA^EELjS z*!`-b_XO~8#Mb4)EI*ok6h-)aA=Xp+(;7HsCDbs&Hv$_{-*^_ zMXjUiH=UCh>j(agv|5V1A2I*m`(TTf2aw&!(PUGrxnGm@Gn45_7qS%Vf!b~W%N1Cz zVzqR3__J@|M7Fyi*wov_atHEfkm;`%@2}wXIpkCFBJcktA&-On+hT854VpY!@h);rAd7SdM!&T>EUIEm*R(uWhXM!qkJ9E}Hv3t4eH!UQ!k${+_S{#N=lw@7ZdOyz#!f7Q z|IfV0&Fh$l4)SlP)go{h&3dh^7AZOmw^{@aw)xb>YLTLY%|FUmEu+rO4H{V2YLUzT z8(&VVMT+>__J-xGhAqkbqz4H_FWHlALrXOq7U z%Qk!5rF@^s-{ftwIqTcxgdR1HEa7#VexYxb+t%MI%3E@wt>_Myo}tIY6&^|26e%)AuS~AI$5BZ(7e5x8?n$M%v;XldXC>nTO?!^K@5Af8$XVn;TYWM$d6&##EoENYgwxQ+>)7LUD;Ktx_5Kakdl6(g zHF#9r)Yn+Xb*;ZT$TIpwo}lm^c0!WW9k4n!{{Bjv>Nt2g@uO_=O&x%Bx)qHC^Xg8(B>#y}%)4e~{Rk#}K$(YsH8>HjUu zH3KSCXjy$WdQk0~(5vWSq`jT}!Hepp-X3VNQRj_IpwZKL+5!HrdPo222O-pV zRo;jHs{IR*HG|A}`p|#i2kKAd=`U4SP7!46wiNA(9egSGSi4`S{_a73(NAvr;UU(0 z4LMpao!@CK<#!4+a*SqsX*lkh^ouCyQ^r3dz*06%vA-o+23V#g%Q7(Q_yA+4d#ERN zxxo50a9{j3oOXx{Fyr5Br`r8*fYI~e0NT&i9_^Z$?F@$>%D?;mX53Y2$If_O=4Dzw zUl{GHUs8@{?5`{3Nbon~>_a~}}9*1Lz-TA(z;DI_2?T|C!LP_<0J- zv4(!R+24%+Ddx>Q|9xLl+S=j$uKva^qFAnMzpnjPz&OP|waHd!PxQSH&xxKV+2^I| zc^l`Mx1Z^^2j@#Hub1RJ9puaT>0>eD^fu$q=3|~q?qlT2<;{LPO}}rwO#KSprrtDf zQ+Dw-^JgFGYrNuh2ewzt$M|1nUsM0QkC}gye2hMq`xw9I>SN?`_BHJ^Lw)hL5{w63 zA-BxO!{lempTOrY`51lm_cij=;W%%z-G07i9*_1l@?YgRcT&z}KF0oe(XZHZ1nW)n zHS&JobtlH7jAVkZdCt$z_|-|qz3F~NuSa-&7q4IAa|`^8UIw#_xN3`+I&atGzQmnq z+HWQq#rFCjK8imgzH0n-r#~Uisy}>X{hf@ni|G%LQ`eDfjIVXkujqLN+ZjfA?&Ep! zvjeQZmF=x$dzUDGX7-!P-^g=}^#d+A?yeT`g>d>-wp|Bs@-HUMRued$NpeNCL~$nsOR_s7@R;|u$JOF1CF+UW|% zag_G<z<;c`(K!_8)}j zHSSPf<4LU7x*v#R`^EeiKe>)y=J;FiesbEWI@>?M`Si>dkDyPnqZjp9gZ|o*cFt*& z&)2LIi>bd>nAfttbzy(M7+(%xUW?p+IlmiI@5R{9b6y|L_;HBwpd{@e&&l)S5og4& zA|S8)3!=QSj3=wu-U`@P=A*<7c`iNu!-f7b!0s1jp0nS@?Dq!Zm+Zriu$;;k4;eqL zxGwhS>}~w$9OA6_e@e!^_AHO|Hu}lp&2^6T-!U%V_cnH$h&V2C=Er@Jd%2gHZ+K4E z)6<@2ybHY8AMT4kpF&ycJ7GN#y)5@Ma#i%=IzV>ddg0(@`g`wT{Mp^p*!j7KdH$G( znOFHdO}}eAO#Kb+T#ww1T#Mbzct^S#|IFlW=37a3BjXm-nH~ zZl>QPS{v<2T>VJD`N#QKjs5JRf1aZrYS6#aa-5&p&u_M4^`w7# zns!k(^OEyrKjq#2A3Il|d_}2`4)6<^*OByNANY^RxrzRqiheoLo%4YH+ll^^gZ>8p zSO2*~zqegK>Bf1_>(fz|xLeQ`U-(=r%8?WCN#bHH+!s6S;rvO&@@qHFQ^+Opz=hX; z!~ZqzvY+iNN1(pEH!X9c|KPriHz()c7|x%xcKLPRaRTEPIWM?#-@v$8nfgpbd#$Hl z9#LO2VONPG^JrfW>I-tJULR6#n3p=vJhaDD&ZjJlS2=k72=$wq@#!w))VOK)PxX7- zb3N&oh->Pv&)`oojt6Z2664w&#p`@avC~ps$NQGSz zkA6h23(3xGcZ2=D>cz$De{z`jEz0+T^&Ppds0lelZ(p#!OTX74kNAH}?nAt|52?)e z!V_%w0P8_6ecxWg@t)y6;~&Sp3jIm^%E9rZhWFq@p%j=&pezDt8?rW}bpYzMs4)vSao9htwQJrXqH`L30?w^uyys)RuUN*a^ z{ts{*N4?GX_ptqgXjkJk-@6yG-f-L(fA2&8z;!)08BgA2e>ZqP6Zf^-XrHBQ_ZZvp zVZV7f9_;tDJ=q7!d0Pft*Y_6M`K7%djbG>O=LPEL)w$nBzZy@=a$j4S@Ao}Xmi9_> zKOMk*ZC+6KQQX%i@-cq2gY9p%?^{*AzZ_ph?uWZ@pX|+ZfKKR7&kM;w>LHx%uHf~K z+-EoPG2?EH`x2Mq*xpREFZ!;@`fcp;>HNUChS3wx3(Bya4nACuSs&*c>Q~z!pTvXf zZ2tx8o#cDPF}Am!_kU2I8>zR|)EnMMbiHrR_ncQg+;8!{qA=;o_n}IB?+D=eMKIr& z+VeeVILaFL_`Y(M@2Bs0p7EORH>vsFhW9TMANXEcmG9?;?eEj7#|nJ^3$>qbn7G6D zxRGq{INM8Lc?Qck2T^U+{Rz)4I@;eijb3=(;6twB`|BjWf8u;h*Ezfo ztKWU*b)1uEyJ>k2n2qPrcUk`|`$s$K-*fpMzMTD^h91PfZ?XKF<2cXf-%_5N)Dzk_ z@rL);@qITJ$Bp-YT?aBzew;gL`)Md=8J-K}rhXUky>uea5yHq}v^UNx)c>B-KeE`* zeN+z(sprl1@##8=^B%LGVSkWcuP=qYWWHd0Ccd#A&Xu$uyua)E4!dc6oF^Ima(wxz zk6F~y0$#_tg2u^S)Jr+mga4Vh$Z=-0kKgvYgW47TtLup$$L-H^!ce}4cj9|H&H=Tb z>h$+Ow!47$@w~Q&_jTj9w(}UyhnJjRg(x@VRKLhad)1>pEAxIG`iC#afpbCCAI7cw z6rBI59lFsEaPFh?%yzDVb6g!~TVC%3N<3*w{YS7roR?|bf?l=$Ldt`49BqFnpP$Hj z%~96%mCt|TxeBP`xB1}%UlVtJQjh2DaYEaDO#N-J>r1bH=6Q%G?n^&7KQZU)^g}rx zllPwx>Jxsf&&9LeSo-~L+N&4qO-6e%ew^RvIC0LS`#+rj>O4VQw9(8n#{c77Cn|7$ z736rkQclRH^59%a{R8JY>c3O%^GN;pv^`#`zH$Cz<_Yz3j?ZPIec>lM{^GPl5!$C9 z_3p~~@_(puSL3{K<~%4x`&A$vF;8UQf^$TTeWp?puZY9CZ*4~ZsYp4}vR@1R`4#nub3E184we(y+M&HR(Vozo`ZeaE_A`>aPQO7v zswbS^syz`ubX?Jt;{dsl`oiy%x=z$#+-_w1-H+$XEqMMpfajeHcs@NHW${PQ%x~N8 zlKfo==hf;zef^Dp;dd4@UwN*&iS5OqEc=Afws_9|FY))9Gw4tDBllPy$Mf2e>}MC- zeb4^V@b{xK{N1TsfQc)2*dOW{d!sCN%E{lIocJ7mk5fC82rz!zh`)b%^Y<@T{yrAM zcJuLfw)H%R$M3v4@A3PR?hB?;-W5ETpJ^|f_{j6)A(a0X@Asmfy09JC#q6h`XW8$$ zvA>qoPayT*kK>$Z|6NY~0KdpAnfKmEst`o{0_>c(D9p~o=#tr-)q5WKEoZG~G1?p+P-?%RRVR<{_-UY_N!(>wW z1*rNiNx7nF7tBLlUt8J7qw}*CpMyWCowL~N&-E=g{cjlUd4T0BY!CBO*Q48Kz>S_JF^q1zGj}1`XjPon2 zecq~{2eG{v`kx!-yV&)+eV(emZqQG1(C;9h_JeV0JLm24X+N;D`sZK9O?S#WkmH=h zd9sgkZQ}3d$R|-dtOe!0VJY?Sh;r@VxNh2h=jLr@r^H9h?0y4vhmJZ1aTk>lNqse)`D_&JV;HZEpnU z*JjR_J@l&}K8N+q=2xoEIrOi$XiwthefD>n{mo{5>%1Cof6mMo=GDv!H2!v)`9ELKkDk}E|8>m6>1l6A}M{+>EkmQr33$i$#D|fF?+8|>esgj()v@`9%lq`qTC0CFM)cc9G9#-U}#i z61I>0CF3`2Zw8)|`PhSc+r@mO*}RUtH66!XUVp`UXkYX23I(zv}ednL#_Uvz>-Pmd}S$K4^=4 zzGfNM#T|5Kdu~CNd)W^ByV`>HE09ftENPv;; zI9}vsYTlwZ^V2%o$FKShWk1N%R67mgedML8J;!mJpz00R)sE1UwwsIBtK03PesUFl zBlBJSUB)|!esPM7vHOv>>%j5+<#WsFch^Dr2R~6g$=^@8;i{*>FkGP`q$i_XC z6XUbR0kwl4<;HrXaq9usi#Lpy$on&KpU)v)YP)$Erv@;7VcwekALYROx6OOqA6((M z5I<~XTbxmOe$Xz7>37NO@xZ*#vi;|v{6pMPe=kKpszf_B=JSp0^GE&o|CH5lkvFO1 z2X#KQ;XK4VQG0`04}PkC(uw{T!g*AW{bIhUUt%7qzqRFa-8laT@cJnFZEyB7g!5@6 zpPxei>dyJwllS5GD&Kl?JLk(zwzrY}&Ea#)+0GrtGvrI_cy5u8m{)p}_uo>_$%0M% z&lqg-OEUzUc~&r(>qD@4|3-eijx$rRiT@>n8Bc=Ed~gpo`fz2rYB1vx+ienT^of3S zKY-^oPUa6b`Ovn!atrGrA71UyFxbSSMrevVTQpw`>M{$|?y(>Qa6*ALk8)!EPTU=s)M-Gk1DS**8`*C&&kn4f-__3+)1 z@e9iT#4ewFP>I37{d6m>^^pL}9?3&$b+9_Z)dMs=; zD$f_{IV;DT+G^~dn|k=h`+4p9P&)=%jon?Tx3;v) z2-;-~?S``MBc`*x^;V;wMOOML?J~}4>^+C=?6+DFo$<{u^?#fFu@ z=ZYcpmk`r`o)F_#A1Lo8tBE&v`1}>CMZ|SDPyb64V#ZU1?c%#d-N$62oR!FjRuktS zm$575I?C}4CGkC%&Ku}U_k+-fu3O1M%=NVF2Q=?V97igS8~WDg(u5d4XvgsdhM0Ez zLySF}P;cRs-;ehjg>YVm7`t8PY z2NL7b?{Eg#+tGCia;d$VSdG6#(Jv=)e5kMUeiZdFi~W`jG4rHU2>1UX#{bgMzu?#6 zMh+=y$9y4XT<||LKKi38>(^kp0sTCPc8g{GuJnUJwBua%+kti*$$nbV{_qDKZ#l|Y zi0#kjxG-PT-cPBo&$jr?_G{ap*Z5GE{gmUw{u;B|LJ@{oYT0vkp05mI)B{hkNr9S;^}8^ z*xz%GBPs3hfO6UV9?xmqLi=jB26lhfb;O7L$M8A$hx#A-QU6*%x!_OwdH20 z=-)574(;T+a**qkmFrMIWz_p7wtsdv|pARPC$GV<}QLa$>2ln~;KG}!$upd+XSL5||yxy7p=CSRgX#aoo(@XT1C$taz zP30~`{axiefc;gEv&g}$kMkAXXZ7TB?d<1d`g`1WzGp8CH2TFkhW@RW7yS5pUsJwE zx5=aLOXj1&nFIW+>ZkJ{>gdmWIrb}zl%^`ILB4LxENscoe1+re-~$e z-vfBQ!Sk8S=wE(UiKJdz@*Mm*&%N>crp}i&JZHf0 z^YOih#>2bJ*S^8;4u-IOeAl4RjJ2y%)_?Q z4^p5X$s6yBHPq0Bo!O1(qh#_ySz z?!K=u!Snu`aj>}$oX|W&dV=oU-NM3M_cWFp!V8A{br_J%EG?#{2+dh5X1Qa`)V9r$az$l z{&?G7Hv1js_v1Sx)t80yAK%5OAH1gj;=3(<59r8z`*NILp0@eKc23#9|1j~2al+sJ zy@1Y(+q^!P`TRG@XvUYBj9-H}U*hcFSLyuj&hJXr@OvA4M`QNI_UE<#{=DCsdHPSO z2aLNgr)Yjhf$ws3{@^#gp)CKPf8!_oerPq?mv#9Y`V&9i%kL4M(LODahc5m1;`$NI z{B=KmXRwud{41I7{?(puul`Zd+qCb*{BURHUzcZodLicXKjONC@4of9VCJcBvwvTp zaw8vK^^y$VAxM1b#ytM(?B^Qu(kc+Kw@`Y|8=1La3vy;*=N1rHnU9=v=V9#Gv zf5Latx}U&()x%(W-m_V+n9q3({pfsQ9^@Ui^T{rU)*nkbH&D;Ed{zhMb0hCj<-_;L zIv(Ud8b9T}&X%{BgZEu{9eKApZtVZezMJ{b_`X{0Jb-zX{g^j3pY0+aT;)byua18b z^C0`M{%MY994L7>?$jf`3(&ZO@!0%BxO8ixczDn%nbW)K8rG zKF}5QT73z5F^1aK6?{~;=)VNvLp7*2WPt3bP z9+1YL9?Xv^$$S^&N9y(Dc(0LoSDn1h_mBUz%W_7(pOmocOXD;0@zifJQy)z!_c7{u zEbJof@1TFZKFPvW{h-Ke_MNI9y2c8ggo;8fc!qa-`1Wtr~ZZfIjz5id39loCk=SL ziakG1^?8x;5P9sXuWOX^2jxbbQ-9oO&-c@DBfnVnyukK%zIZ>a?YxEOSR)y?kf*77 zK>m#S$3Esq$~l;xI^RS{k z?=EXUPt!a*&ezQOCeNcA^1KoGGkTs}j^~su`5eyS)NVfPw}buM zQtJ=r`Da(2x8eL=^Ai^EJQ>t_>+IC?>Qg+o#`(V5wHL>SyfBR~9Vr*iN%b5R=hRxy zi}H=-^Q(C-KAYn~{*2Zi&H6!Y={fpH&|@X>U;HUml)UF*0^D0e}~EphiG z=DVE#q-1+L0*zhLv;W5Qzfk-9(0QNEfd6SYI@Lo#uLVmvK5H;;{U~dZy#4&2{l4pTl=y`dnJZ^L4iP&;8^h zo`Y9qUg2DxvrlH8H}=aK$FaVuTpK9oW3E>*lxH5-*#?k9-gEFhlE!K5dsVOPn9q*y zGIX3+ugrTH<;OU6ok~G2=YD4)*F$^{W7ZL_M{~H&<2}T-KUKdf&gZf2tN!s`pneBA z_5OCQ%f%>HV(Pz-{ksaYZgG8^!8}V}uE$4g`R`nps`K}S>|CFobDcw+v-z{GOZW~z zyE~`PMq)FjE|9w2TT4_&xP>;aaGrcQS5g*;8K-TBPx7ugT;0CfGv@9`>UO8fd^)=~ami{F`bT`R_V z)%kmFN&YU3zrU>W3cqVBUr`@e$5gNAN8=spEAe~2%GaFrhw%4sP~-U+$}ybv2T_iR z{Jj{z3+wa9^HV>K=kLy`T93F;mGqWgh;_I;PGt1(<(8nHh7O#K~xspE*J zpG{!BrL2ejl8zVapZZ%_&V#h*M}BYp%HM^tZ_|Ad)=^u1l@ESt#>xG|M6Pex|7pKi zA9X%$A|LYkuj~i@tMxE%)Q<*nJ%>En{y6)*QGb2Pab%#MgX%ANY0r0T?=|No{9NV5 z{>dhf`r~fu@h!*okNqTKdsXatE;{aWtdIU}?Wx^=a~$Yj=LPJlaRPp2_Koy+_>J1J zE#*YMh1z)-?cSIEGK$3fP=A=h@=CkE>v)%N{Kz-e`M#g^E>Qk8>}NguMY}35@;$WQ zrIdFA>(8M7xMhHU2o<~ zS(vBg#{4S$y?NDZ9p+sn=KbH417#C;nD3R3_w$lfn1AI@xhk`t3d|Qv#xnjMz4n8@ z>#llx#&PAex1({WCi4a>QohHW*So2|z0_X{vxW7L@2l5WbDke({MbtW z=)pKynd3yhi|VN&{T6vYDkuC?+l9X=o!O2*?Hk2-HI)6w^Zs0puNVCiexiPGm~!7> ze#|<`0Xfxp9KTkQIvcG2>&o}zxclMu}dAncfugE(!^U0pC ztbTjf=8u#wYlw-<+y5iaZ{{H)k6Gt0`qB7~d}{Ol!F*5;d)}#8f0_5%Kg2xOi+Plz zn77)O&o^h@bQJSdJF&hO>-n-A$NF7Zj%0Z-IhlE^Q<(3HJXnoS?I~X!wvXp@J)21R zmh%2p*1y903CwGSylQvQtdG3!!hBbZOXKrA=6mm=JSSNO)nC!B`pt7*e`)Ve{kKS{ ziTCA0jh{CRHP5vQHP1!zeqgBSFP!(ghnhGvFVw96J9vK|%hyBAy7@5F*z0AevEQ&z zWA6!}W_%CW-r7*cnNZGOKHn$Q#Ov{F$I5<+v3}oBvo5U+HS2E_+aJOHs#2af_BV>< ziF|%@sM+7u3N`cjGwryRdCTXh|6lZr!qijNP~%@EC@-$-{LR4r+pt~8r`PB6I;iXS zBlh>2*Z;A-lwn3s$->OIQiXBd;PtX$W}G#`jQ&7f-&5FW_FrK}pM}GW{_=+zJJ$^} z_G%ht=6ky^qwf~1S1ioPi+bigEzHHo{U6|XwouOtsh7o}Ccey}eJ=3+ z4eDVG#|=Nz{ZnU_VIS4o@=!CM#?fB8dH+29;4J&i8fNSVYJ4aaX8gGbk^saHvg?99$U1GwFzw8b(^Y1LjbBF$MBh1WKl=b=dl>0ZwpEca*p-i}uBWbwt zCx>w37umy&-f&&*>KJb1uMlqh;uhs7%=-DmjUEz*8~&3jaY(W9+?_6XB%2KN7o^*2-R!5nWx>b(-_6K?zg_SE=Lm-5`@ z{J&1W|42V-#``^}=V8>}agGOiRsX+9y(Nn_JbkFIJSeYRl#!K|0lF0cBDJL`3&d=ny!|16C#{Ua2d_H-knFskJjeXKZ z8a-r)H2N$XX~ydtY34ypq_J~!r0Lf$()fW#q_IQoNTXlpNYkGs()gJV+aDKc{4p-l z%%g!UcZxKA*eufcXV*xh&p^u8gB%`d^s|ulcSaij+eLYn@VV(6M+7;7?QUjyJIjYS zuGQoij&D(<(O*KO@z?Vl$4%Zp$oo4u?j!7fi(P(wKhH${|G#=>k{wh zjxzR4M&^q${*aFCyrF%cb6iPy{|V*4#QQm;j6F+78Gon{W&9`&+d0E=9v~l3u4#6A z>-oSo`*qzgwK4E_!$QMyu7o*JlJ5%Oc8D7Me=AP??3hjd37Ct zKGfgqvs{+rkF$?U=gm0E4ZUfc{2XcQTZQAg&Up(vILJTvr=GVBq#mFbouAVXlfTd76>T{w|Nps;Y_}z!bB#9oM7uifZyfJc zj^E~2D{T6*-`9Ehm2$s^e&p}m)S=y~vE5eDX1>>oHhRLiRG;%W{w4IAd$iwkwg)?_ z|7|8$Q%~?mT_53}xo@~EGw8c^W?vbHxCOhb9^rp_Zj_jE@1Vck<$O9rzkER2;#mRq<3zb_ z_Ug<2MsfTzqAkrc;_ohvBmHSN%op_+$fbHie;NmWP%g|jjVFz0*Y+H5Yw8XDuKGmT zHa@M7_@;hZf^iLUn)3#>n}hmH$9a*R{@9fI#eC6y+ri6ShjH13>!&Z{NmuF>ab4#J{7~Zy{7T;skMjC`K9|NGKh#fC)9>oizhmfEh5s6h#w)C=+FouFlfQ!nld zuny~clqcJ>t()8J>!8h_ZSz3KgLOdHpA2jlcGdO$B>g*@{uNIDb)+BGq(8Lg{%a%s z%8UN9kMF;ZEH`Eu{-xvGYu^v5em2>kQ~yq2{fyi{{^fq~4eMRyd+0s(Tb=K#I2X|Q z--_>LC&SIUm!I`!u$?D-UoFP>2$WU7wK$J0^z+MnzjWfbCv$#`X*+|tUiV^s?61@hE%te(c7|W* zd^%y@H`@GN^?j4=PNlyL=lTzSP`OvJ-4*n!5%&40a$ud%ejFHQzeoLV-r3eS_5TK3 zZ!)od%4nk}>;u$aGcf+9XZafCy2E`B=BfJUeD32mlGvxK9GfT~o>RMH-B&vxj_7^| z^UAjGQJ($J{vGY8KhC9IH?Vw!%x0g@x}IRZn>fulP?+mi4bFe8A3A;y`}(H(?8Eg1 z>z(c=uwJP@V7*uSL60go)@3b2pDNcAjuY`i?U{=E59|k24)m+@xEt+OiSea8%dBnyv#-q=WA?TGZ2K+NOCDp!mp{hX zBVCLck0YPU7-QDGVligDPR07^?bpqE5@X`zJB}0e)V^p>@3)LG`@4oQMi0$m%)YxR z+eKOTPku2b&bv|$ON{aF=KufaRPT{7Mi1WXr%a5oLv6}e&fd>G-A~3C{gq~akjvPg z{rK=c`q%e>0<4F9qWZ;6?ps#UFXnL{wVwOk!`%Oz;ktH={sDbzdpTmve&9ascfe*> zyS-FjpSl11$@cz`Z@5mq;yRjydQL`up`4poe;C_^Tq^$}yIdx2v%TGve-Gt_e7gU; z!g0dC)c-DWzlwdf-k)oy%8mW6uIE_i)&BYH@kIAe*q5vSj^X%A#+Y^!)8C*c-4_<5 zy(`kb^ftB_Rqg^M`?*`Iu7E=#Psb}2Ref}2Ko6hIE(_i9gm*uR#f&FBTHS(8@ zrT@kny9M!jd$Lii@ncJ@nKva^zah&_V~syojy3v1d#ZQT*Y})uv1Z<6Aan4!kyg`Q zVypT8sUu&+LH^lTo!9X@yZ-;y>yw$S7OCc7yN|!yBt-}0dk7qYSP%IjQglF`fIg4B z3n@D63pW3M_>KJkxF2P|gLxhK0a_1#w@-<@3gvUsf$d#q8S-fR>8+;TMP5fgdL8)@ z%4NJhj~q|>@qTKu9O+1AXFVHnU*!oRLs<{e{EFnuLOF}1-67qe`Yo2q)&+qzY9`pIkyyv~oeCB%3dz4@4x_9pFGrS@1 ze`dTdDX%IOL$kui;C&}_B>wMRDu&mEO}t;l`_%7F;D|1db1CIbrDEt-C@U31Q7G{I zP2i{=o)*3bUMiD3rMKq8YV=5PLar+wBy=mZDHTIeXa`)y2l@Szz@I>QJLL?@p_HFd z7D~kcrf@LuAEdm7@}g2Pye^C=6+=-_-Q!$And~C9yQfqP%?jd6C<)ld&b$RFr-ck})d%Cb^1ybgZC{aTcYp<392`Yx1> zOU3ZG(44yH3e`fQe*(`RVI1jCc>OdHIQZW>Tg{5LB0zDr8gHkb6 z3#+InyI4~yhR21Ud0rPg_`OsNj|+P5{>szlQh5c>E&MTS_?DELO0oW*QZY0S`3XZ& z__|aKMPWYuCzpz$`ak?e^E~N?^wjW+rDAASNOEjcDu!y|_);+xh5EFUy%~?xuO-jx zmWrWS(1%bIs`0!Ic-IX& zuTP{)=W9$~Ki(@2*L9soF;(3Ab6c6im&r-IbRJ^;NtG(eV4%l#> z=lLT%SA4kjOYyyKFTT0m2HNio9gQgWr<8tp-By>l=VNmGtoJcm62EvX@rs*>6Bhs7 zPw~E~^!MuHj4wI(dq{E0ey=!auY2^|-%V!`zgtG!vd*7*efc2gEK0rO`H*io=ddoH ze{g*CzMOkFi*tre)js@m4#9AgPuu%8?{FUD8s4XSE9!FIMCUT&`Bl!xbmu(IAkOdH ztMfMD{L>=NwdkI9pCg&f`PG{A`xob6bk5y)==_h*`7~BNob%{LyX%0X``nG+=jl8V z^>9u${DyG8Rrg95&P>kzOy@l8D#jV{w{svNPkK1#sXSdi7xFFVV|1^E*WWtdlFp6z zyy;^2sCy1Pj?QDc-*xaUb24gYJiemcGTP}plI3_)K6h(*I6t;C_-@HKl84*(M*sE# z&i-j!&TsYN9PzE3+tIx;wxi2vr+jPae6R7=bIa)>+UZ=H-|JjjJV(TNqSJF}{yk3n zDe517i=bQghM0~%yg!9=S-N+}dNhl3W$S?d3*|2KSH1?r)A=;ZVHo;pl=@kCv)BUtNnY!*risz&`PgWiKP<{o=vlI5C{3)jUcFw=+Uefr!N5rc> zd0EaU-_0xJ{b|=dz8^u}g1gAybF-d@bCSwG5amj~n{vSm_OXF;_{t07cHc0b?$wKY zpx%(Y1rdRhS+7CSnz6;0;QJr#Q%I83S2IXr={Y| zybqRVQTW*(kw@XRobSMRE6;mR8e?C(wdneMYP9=Z?I zd|r!u+a5Nn|aM{&+x=OVo?F$2G9gfK6MeV=JiCjIU_S%Ux8sn<$?&BF-&@gMc{e=X zdi+Lb^lu<=&xEi41kUc{;rJ}`(R`A;jHmKOxvYV__80%dPx*Eif z16}cpZSWIS@Ds{YW&2m&5W`V^DC^CAz+Z%Xr~Ku4@P{WtpZb|!W6_7UD*#GQ7ew4lFKMnt^yk$||Fd&z1iz{B%Ei^j|6eCwbV`kSv- z5_#pe<{tZ%w66hQdqa0C_|lE{vo&7$jRW5^$S?X(rpNwM`2uanUAp2oq5op#Sq$sk zi=gK%;MIpO)5x!R3V8yRx7GM6uc_A$O>-XCXwT$xoW}ce$p_gNIqXZG$r+u|Tk@rL zqW(R3Fkh_^tqtt;zc+{jq)4A#dc^ zu92VPCExI!G>&|VJ<*SUQJ;w(R6$?5qYrI)erVSSx4PsU@-u##^);@i!0&VNy50vr ze&YFm!SgQiLr#H@BL%1GPQ!Ord;8&Gl#kNCBk$|MhuxujiTDugVJYyX$Ht>8bjhym zXHJF=<)e-8u^Z*pH2=$JcQkbF1f4S&=X}QL#`p*FT>5K$y$kz)Q+6EinNGga8_;XD zv%H3o-}J#Q(Jq>iPxn~*DSxf|>v`lSd1fc0zuTgh=cBK^(Dxp|IfrqI)c3?b8t}Xc z`EXC;x$MXKPynz0U{}k@>-r~oabF;>>j?7awgIn=*-qm;j6HpTzpS3~f|@S*0sDh$ z*ijAi=NH~b0UI03lF0k;`&Mlt>s_}_KlQIC1=Fy_G%m>2J%ej)SW2iW_! z$?nNNI*&Z4iyKO`g-iw9|a;^@{R+dp-IZd0Urti|dzJ z)RlMJerqy#Dc@@RUds7gZEqUi&pU!ocj}viPhFm0%=+X^z6+K2)$-WT?SJbB`%|qe zjNixbM|c^}TEN{AdRmf4v<7sop27xYT&j_8-++f?$3k3tStG43Sjn!`9>W%}Gd zz?~NIO7nc*oUhjQqjiz(L3wGdf66=S`S)=6FFD!I?Fybn@b3lv)8W(itfN-sGV%w$ zeadsK=jTJx+qZHOZ6sC(m~x?_O=b>rcz$M*U!&c}C99_u;G&y`~RlKVU%0N65NV`D?xI z+Lm?i@9_02@YyEiJIruR&lTWx4(s$8 za29;slJ5uQr8FOvAJO_+KbMies)zNlzGFQ8K>8`KZ=45mURCSyV!lICseF%74t(z^ zzoX$EO#UT(w;65^zE_oh)_An1-D$kn_nY-+6y+^^@BNGKzp!uN^@GZQ?}vQf{RTYk z58JL6=kH}5zLp@p>qWNv>#x6YQygx zGau6aoB6&Ecy6!u;Wq^OM?t^xep+tR;KNhcO`p6k6Y0f%hUI<2=zp=hO~4Z#)=%wk z7{6wsH{|&|5;H}LTYB$tFUoQ= z{x4;I8Xx5)^SnL={yl@-@1ow3aq2S8-jvFB8oz^~SNl}fyUiFs$Ro@j8_D;&ihZ${ z(ZgTichKAL9eOA4&lX?9{=*sUi(Cu8wLfC{zd-*NdH*4B<|41DDudrh@czJ0eulrT zgMU+gTl4XE{O1SwSM3K`ZXLjTOv=X#+{dUtjl7jl+;q!7T7P6u9)BhKd+&=s&I5?u z>AA;k3?C0ePHmBYtE?}{j^lSF{2qiJbyYk2@mzPiW6=ZYm;1{Y6uh(&BG2T7MQTk!I$gjrlD&WhWJ&yD|u5+ME{=@Bm!=9A)*Zm}S`wQ8j_4Zle z6TY*RPuO;;eKOM}xm)kQrfdU$`k^oKCvlzzj{Jo6`9t)%5q?^EwLRWxd0*6iN&B2} z9G=h4`C~1wlqXRCr?~wz{I>E9rhc~jaqLGw%sBdA$Ik`N^0*23U(jzocva(nsFgg| z|2>f(`2A1W2VcSd>u%&TJcj>=PUL^EfAW9QCjJ-Nk^i;ok)Q7b{{K?`UGt|a&%5yd zW_SHR75HDq|5F3`-zwyB4C`F|zZT^J9t)szVaC&RJ_R3i|B(4DKG}|x@6h~8`Nu=P z#BdMMSoku6eqG>iFXq__-VcHQL0;h}ep}C8qu*EjpZi9dr^!dy0Q!`#(fIAj^Ua{^ zc=)0G=h5H5-!n6ROo#YrzpB!FQl3bcJM+J=_+|a*1pL0hyOi-S2HtatkCd~)LwPAp zm;NV=>lfsp{|P;R2_NfYb?Epnd=($f->0GbCHOZu|Bqt-tp9s#ciR6?d^cSEFK@o+ z|8eVu{$GrKlXl_%a{q6SoZrs*=HvP%+eO5mep)XX{>#jN%kgI`S-0qaA-AueOZ$(e z@O2C5`40cK9{*DZy*Pq?(hI|p{+JH^Z)Cl=n&*9>yE}SPuIIsDhILi=AMJ4P9hCLS zd{*9S&qqtKC*{*L+;#Mq{hGe*kel+Adj6DrTs9}Krt*&(PBZ@hRsKrj+n)FP09U2u zBR%yvvRBJV{}-Ds*>_w&Wqpc%kNR2sZ?6BZ?Jp~^-vW9gdJJa=+RKk5{k7gIzkeD( zl^*|h?+%-ZY}DL%9(+-zK{U zj`(N(il3%u81xT>e~Mo)T*Xtk98SAy=_h)VysSs>L&v|7kNlYJUV3f)sDdB*A=`!J zqj@peTU<9Ye=bh;kAIMU`F+r{AP@N~k6RV|q?iAjXM%h_#4e?O$*)>3j}jf>7v`m~ zo)Vv&0$$XrEe$C8s_IT^4OCRF+#NmjaQSZ?g<*_yVOY*&m(Jx33y+6Wp#r;_S zbl+dJ2m0&2K=VcMHgO(A&i|F%1AQ+L*YYgwpVoWl|0n;e;)hJf=EU<9ls7WG|1kGA z{>npcIVqmUett@ZW4`u~2a_jr zf8x>V5}&qRt{Wfa&$gVm*7LBg2y}+~H54D^dG<}{TLqtV-=f>^MqFD>@`wtq&kJus zsl1-1YZ~&IjQpyQ@AGTX75vkD=+M2EKEEXX`P@`>@?R>R%JSI~(eTh^O?;aHKyT_Y3S_@v1%# zE&2OAo8nfjcZ%<`o_~vdO~meAM(;1h&JIuG;*amZF8eXQ?uW3yJQRO0DBErHhq-RQ z*%ANKlzCF|hW1youXtV&`RYChuMd*C({seW=D?_pjPcEAcNi=%@HQk6(r7 zN1uSlzv(vx zcu&wz{f+N4;3YVoCxnmnXEk)GwEtL1zZJQ({{JWC_l2K-Fy4ENul&3TAM3Tw!I-XE z(<*_;L{yEAB!BHW1JVs3;aSZJs&>>yjk?qxg^6|!E>D#GCrSzPaX2renB2# zJ-3~G%XsU^8~ihQi8ldnC-SxKNB-7*IM39C{J{GHx4`on|3Uxh? zel7R2eF*Q!Z}jR%@ZX$#u{u|1`6*wq?YnWmxSmjHJK9m<>$LCS@0RM^Pc@~}K=Y2eHUy6L|3Ebm=E4?=V zKf_**A}{qJIls2)?GC>#V7xK8EQDWM^t3DRDj0WM@(0+(^_0?o%Tf5mbtd@APK?iu z)J3=L^FhYH6}Xa<`%AClx-sjCs|D($XEKUBtb5c#7^v~Po6+ywlkS>LS}>(TqIq2o~coyNF2 zr)#(a!1ExU%l@KYgRjzm&kJ9|FZmVw`Ez;S3He{g`zgrn9OUp%+G)Osc`C3M%|n($ zb^L|q3$GtEzgd2%|1k9TCFqkJ)A-iMN6T!i<(x2pSZO1q8{we&O{Hf`XUAUd}&gJ>g-J9|d^iK1$;lIwjq4k6Dzbntb))%cq z3`gq^%TMGp`fP@89^oIgIsCue?6AziXN1S;l#h z_ET7AF9n}RSw|0p5BlEs_;=85I(XjxxkgL}9)`O=rUbZ{6w>_tj@)Hyf=707kaN|J$51ZrSFRo$opRC(0bo^T}uD+>8JI* z@zMC6H!cQF6V|y6(X(pwlb+e$b)MCJT>LbiYUk&&3-e9-YJ49=uGb<5efL>Eq<6Oe zv-AEzln?s01Nx)=q_~gHzQOzKQ)r*T`l9{BxK8D}UH3;?zJ1a@2m9H3=kImnHG%JQ z?W5U#*76;#eIDbn9eC?JqW1|#39kQ7r@g+vEzh)1sC`iXKQUT(g#BH8znhfsvISM|W!#Rh4sQ*yT$$Kr@O}S9wu%v#E*u!i^p`%AnY%%C!Vz~@vN5+2i%9a-kW&dj`+vD zh?{(f_|QSXQ5>iB`ylXAe5~mmL453T;%%!jUJK&UR}{BqB(asO^0{JBT` z3jf2_Kz^@*&wIp0>%5Bb-k@>9PjT!n+e7zo;@n$N-+_4Y&8eq2@~*_opF~{t@4Ww< z=iO5rJ#pu|LYMkk|2q;FF1n(BB3}I8iQj@7?B-|WCOoVsFL#b|`@K_?>(-s4p5E3e z>g{-)3kmT8mvxGKoj|#&6aJxNe11vC*zWrdQ4U9TjCQ`dLwtUZo`>HE-tXEm)`w88 zp?%9vaX!DIQ`Cby!0V{av3-&F`Wc-f-8aLJJ2(e0rE~PFOQfg4A3mUd{@<}v)V~ut zM|^wGZ$J1{^Dm|EBZn_D1vl{R0{9%xCj@k|Z@u3Y{XUNKG25Y+GtuXlI3J=odyjh(@$9EzH(L=OzYhN~0=u{tds036 zJ@kGPcB=C$wvTY0BmC4Z?o(4=llxg824Qz^$Zq|=A@-{{e)DB=vP=BpJp9gl;`l#L z_~Hlk-2dZ^l>LRcmyXa;3pkCi$Htu73FoB(e|2ucepznYu7=LhoFlla zTjbjv#JTIe=~$=vA^gwznc4;YZNT|J#jjgGG;ZvCkD=e$A% z@#i!1`2x#(r`+HC)P44ruj0F--%D}Nv|A0lU6>CaCO-Wg<{OW zRV5DmNan{*#KE7*^J|I!);w!EbiUL7r@YZ4>g8;e);HqP!}(0lqxA0z+)2c9{~P%C z5{IbxcCQ=eiO!%OJLhrZ|IWmTYdq7x2z(R|Zh!d$?|bBUNz6!&VnI)V36@KSuc<@*BkDNf$_^njj2;rDHNAM}1Y@%A54AHX=563>_7`V@C; zd%v1ETE!unUrTBKNsgP0el5ofS`QSb7~DbO3*g>L{Nh;TqPSA`D-dtEjn+#6KgFL~ ze-*E8{wQA4|7%@OeBtXke$?>Q-}b9`Rrjw3yqDB((EMW$6(5a{@V9*^&e#0fin!c; z6@M7c|0({`<0>A~{xO~VKa{w|ZosXi{cz$YZ)2UOcwCP^pLi*qo3`C6{@HvB&qMrD zio;gjcqvZPbdCqE;w>$|3E-=9$ku3|=SxBJU3OxM;a zK2!1!zZ%qa4k50K^Y{^O#`zLFzJi}gzO%t=s>)zrl8@m^F6OJ^(#?0BqqjW7PxC>1 zGu;o+PVx7~dogj=pV4m>om0=Cm*$DIO=pMgIog zEs0AyjkuR~{GY6NAoEZ0KITss`hCavClcRN4iQ{LthnFZN1jHlqhHXgyOtCUKi{y zeHT54KdzbMw=DT4 z2Dtkn*E_*irTNjD@f2roJoZlQnAbF)nC^$+i_S9{?-|TXS1>OLeuC%n75G09fAc*4 z{X6jaMs$bo2GJSq2Y-4hepd8a&L{Ew-t1RRr~Ik;sdGwh_hR-hhBpU(%>e#Szg-72ot`g%M5W-|4m>=WEW9G&8zt)~yrZw=4o zckI6=GT!Tq7vk5$Pwi4^|F;?bM*AA3dj@`JN{*+qT*lDu0`@xWt9Wk9S@Eyt|G$!-!XGN$G|v0%Pc6;yede3u zMWa0vSEIaL*5{*%cWKVP&K`Nc$9_xkH`db&*v~qbeH@k1A5o5FT5;)$%^%D-m1e`I{cADKSw<9VNXSM~{aA%3F~`&Zf@^L}nq_PrFBWWS*OLCa73 z&)z>%>3uiFZF%3j4RIcdfARa;>@O;Q#qw2LOSC8U<5C=0ibv5txA$XJ8o!%>^H|Y##qo_3v_F0_ay%Y5`!bIHpNaeMz}5b( z{Xw(8?LTiK{w(but8O_Q0soGIzdM81Ho(St0)UiNo$k@p<>zY1Uf!Z+h5 zy|w+_3138iswX{jeE@LoLEj#N?vLsBA#}cjeJjo@*{A82{@DII@V*!F(SEnr4T{sV zU)m4XUM_jisU(5ww6V{>EGk+ecc`58)^rF0i zagJvGQ9OK{AHZMVS8-lrp5HB>yE5JPL!bC#|G$iN;$^HKb*|LoJqesf%&YC`r}JI* zM_SkWJ7{#K&v-n-{5eU_!%uwheDNB1hI1ETKG}-@U(RR#(f<~nPnt519fV%)jvniO z8tX;k>u!>N_$e;cbPVEun>+b`s6c(wssLvge2-x7T;W4_io2IKoy zUbk2uwXX3v)quMz^L}^W-VK}-m;V6xD9+XL5WTiH%_Fua{cmRdkl*n8KCj`wip&L|uNx@7GYS#J_FCA6F$_U}yd>)&KOyL;uH{54-X|?!Nqwtp8EX zmm`@^6z^&Ot~|J=w|Q=F{C{A6{R93qV*WaY|6!XkzVgnSPd75oos54Ib;a>{9=nCO zh+Dx^|99KJ>3`nzKeg?02KY<{Kfy6wiqrEvum7;Hp0e>ubKEb?tKlG`;{fG42_(_k=&!ga@;8}lVH_`qXPj=?|>)7G%*?w%7g6Hxu z^!fzkr}bI%E67`RXSs?0=C9&xJf8H$>%W1>?F{t3EARgS{0nk?gy(0)L71LfbG(D` zP~3yzO<;V*3EQ7O0$#5{_X6x#aYk;hxL@-_aUG^t@kGgvT+X50491h)818-GspqEa zN#Lq~loRc@CB8}Ve)gZ+5C>Y5_^iIfMUBewd*+wo{!DKVzWkQrba=0O1FX-Im-TaV__`Q96a1u?rbltx(Y~OkHS#*nAYaMN z@JqN+(aDWL#1LN{HB8MtEFP7hWiqX-y6gaeu5r;M!&a! zr#N8CS8>9&yZ;hjtGe~&JK+8fek#pJ#c4*rPdu;gO)(ui64$$bjx#lXG>-YH{_eLs zanSR?Q}?V`|MlE(RCm8UXm>jGGl?VZP2B1Q#9fcf@v4S1ig@C?@_Uc3_V&MuQ}+CE z1#y>p9_J(CFGn-ZwZy-w^!vMsH@%m*=SQG-BKTcRyGr{{~2#m8UCUy>U~$nzYn|x&vri^{Ku9>{U1la+sfj4@lpD}Lc5tfKL`yf0Kl`R-5=^<}?`*uP0d#J_F@{<dVNAD9;J>dl)<)1y7a6V>V7=&u=eOM0q?9+*cUyJ^1wn_ndA5pQ_wu{an~}=j}=ireudtR717^q(Lc&%EABf^@HSMSH{7FIi+fbJXS~{svt$1# zukWElbbG!Y0)Nk7_Y{)m1blI7+3=}Pcf2>u_#r?27bHrx}t z19+x;U~BY8zreFK_r?AL{v4X_gXMi0{SW3o*x}H5CHKzW!o9Tj@%~!sw*#*dJk&3K zKf$kV@bPlwbOm@_#`}qkQ{sIu@El0lhu=E1wPmJk8*qnIX(*h&-ah^)fT!M zXZpNuDF@yU@LBii+OJgyFY(Fiz%!w%AN|MDPjuMtsP2Bk)9c!y{iB|Z>>urB9QaS5 zz3?>tdj@;jP+(WzDG9PSDuOO#)!1E{gyb*e~bq8TS`oP5s#c(O*2peZ&i>zruKr0{36sM|}5yD33d-zr^@+ zxu1A`u3PRe(|#)VgD>X&C)AhceqImHf!>7!SWjg-Jg+nZpOb)dDEt$jP2b+|=Ro>* zf$yyuuP@_?FY&vc@t%Z!;b*+RqTL4Wv;Jj3^e;Q6`*kT*x1XxUeYv}y75P&?-?MGK z);+t{>wURjSEc1#ll!{24$UQ^U>VD-GY0{x8*+Kl^I{d z7k{nSZ&A*Kf0DEDmK?oq5?_p;?vJ-VO+)^}(3g98E`2lK4x{`MJD8E}*7Tl--A>1k zETn7$f6s*P*I+L zwC<%ge!Ay4eqU0*nfsGpMlQNH+TW$mb1$;)JvJY|2kx(or+b$@|NO@D#k60Ae74}; zb=_m_{aoE&?e0j}RC*y9D?p@{{=w;xqd+iOUYc6dE>0ax%;p;7o^Az=l@Im*9dwy;HxBeIM zem?Ez=6kv0_bYspe5|i0A%_#7UvN#w-RSw0d{4RM_YHD+7CKg-AFGkC=(c_|=RV_h z10(-VlX`df+midacccAB_yye; zZvU@)x?Sr2am#%d@YxQ1833MwYdh^D`GxzV`*EN0Dacp%ft!zSLia50b>Au7&kS72 z&-2*lwA20R_NTQeYYdF|>;u1!9~kc~)_uyhgCn?ix-a)l_om!$VDxvo$K3dx!MG|- z*A>t)oc1@-UiX^&p5?P>e=>A-qZ|R>2XnvkG3aY!#<`SxpfAgK+AjJd=P|Uq1%6H8 zx$dPt;_{)h*G&fxmB!;~?u*ua(&p3s@Zo00zk#~onyzc$>unhy`<0H2BYm^p>b`f| z(b@FB68PtEulm86e&5F|J+!_~MxV~jczE0!8CUme7s5|^lE!tZaczh43;sSWz)$%f z`|Y2xud2v>Dfaap`tfI)R~TRNHor8E_5C`^@$ltg?Bou{xrlKt;GS*C)pq?O`rjn$ zQPOMQe=a$Doc39t?6;*Ko)2WF=1X!hE_pE1u2W*wmQm&g5q`FA7hi!YfsyA6nTq4uWl->ip@rcCqafAc!Za+$!o zVj}b2=gf!O;m3O77v5)`_#ES$20mKP_&fVx)>VDz{|Da-FR(tqRaR)OyH)H)GKWzW9JAUP4{PkHpuVh}*eC7G}V*1O^8P83$lYUuWzkuKJ z%a;HC$U%1Cd)Yf-FBfJ%VSALnv3;}~80nDQZC~ZTMBq-^NSNt^ak= zlLm~}3VS>jJCgnQ{`e!&^P})HEf~KCc*!3dp7hRsNBxbb`guI*m;HM!${&#LRm@*~ z;iu+9>+iPo-+}gLGT&)^XF4xsex1X5!LdDU249|J zJ$EVka}ava0sTD#J>8%3PQDZ8vaTD#_wL<%A1>uP=+*ww?=0#c$NQ0W-#osvTA+6w zv5P-xzX7v&@HYReVlTb&_mur&6X-pccDG>{ z*J5w;^7o1D<5&1~Aad9XJ^KTHq4&0LJvX1bBNxfp<7pk|_p%e~$)h~K6M5X1pW80S zV1MQ4iR5qlk-Tk>pYUGuy7lKv;QuGDw`}k4$6^0kC#Lm}{g~!G^M6gR{T*FE5?_~-tASx1>q zhoT?-;p3;!srkML&M6ru4-Bt{m)^Q5x+W>QID%t#`(TBSua;@?QPDUg-`!=U1{11-v%U z)ermyC$1Oh-weEtq}>_0eOzZ|yu5A^->mn$fybBd_XG54J#u)S_3AS8=v~%51?Xr} z8Q0x)8UGvfa2@g!|EwRoQzkxd1|3!DzXkl)bMs;A%4o;CR7QOfKAunC0FP(DPxv+n z>nW|5P0s@A?}6tc^h|o>{;QzxbM)wK^mhq(zYN?*(9`>wxAh%ky*)9{uhvtwvz;wX z>u30SQpVr!_lI9?D5bKUX(aw&f ze^=nCo#j#&ICTa^JNmtEymwu3EB0giQ!3ue^((oDy?!ay*YJE9&sS2m}X{3EU_Ux@31?|N(Mihpzc3+{by&-<~I$}i&guTm}C&ODr{Xy!AhjRPdsVff2^?iZUh;k_Kx>5g{cB02{ zx8V5@+9_VyaP-{oH>VW-t{)8FYL{ZY2IcKMe~9uIo^PbCyk3U;EYHg*m1n6Ce(Ha2 z;g4Cv6+hzo1*KR{q+CS#2IW}bwWi!azr?Q(pyMLwQyfYm{NAD*N2$1?@VHPc6+=-_ z9F5DpfZMzj>swG4Jiot_QgKYCOL0ube>BgVQI=6YOF5ge5%ALZ-vcMDaOq`)eH6hfpSc zk)9O7?~ziZQ+cvNweSJ$CYOq#S{Pj_hN3W`R18I7XsH;ALPy$l1D{0yF4U)jf8ytt z)Md}^{~r8qT#EHmD1~Ps{00F(@k#MW;c-E6L7^zz%==3y$54tM(>sN74&`H|V(3;# z`mZ>kP%W(F{W8ioa^3F>{faI>=J{0Un?afQl=vw-^!Tznmsgcy|03-r7t2q4^83UW z@x%J2_%1*Hg)-UMtH^s<=A+@LzuV8}`E<%vl*!HpQJ3DEo-eWMJMmvSAK~Y_q;YxQ zn&;co?-a^jlzk|-pr7JL4QFTSt$DBcz<4SS(s(c8x#;tA*_-<*9?j*=l>75ucI$o< zfuHO;`3Kpt`^kU1e4|fnpZwTWJb#u_=WYy7b(fFvycuO5$|3OKElT-&FyEWFF^B`u#62HqUjA z$M2OF+WMsP3$7=)I)`Qa1=nwK5L=adJ_{i@JT z`MKixN6vkm&v}UYoO4L;7xP^A9k~B3>6|3zSbEcb2Ela=v=tJSKi=!cs0%&{lPh!=A1u2F6G7IT#WAbi07Iql~2p( zP15`bwk6+tBhF{)T&VFK!TFKxIq$NJ^Yk~8_e}ZN&8JrR{HN*GIU4UT z=-jBsJwoupc@&+iGF>&ZygmNj#EVOxJ?{SKh1wb3ube}95xk1XwLNf83&vICd zoRz1{@MdTEn=d`cgQj~^4F3SyNsl7_@U1!LVVY(B`Tcdg*EwIq?;}2jJSBVQem~5m@*;Sg zCY(za-sY?BCo+CI|7Eym(q8AM&4-Pg2iplebS}*J^@DERlVW;xuShzt^uK-~&%)iD zn;r(fU6S1ZcUr#x#CRxQg7GZyz9HpW^!-Q9kMEhz)6sq$aP~>(o;gph`}BOSt}W-v zb>Exm{yo{F>?-6r*`IUn-;;-Y|9^`7Hv^%28F2fhe0SWhItaX!U&7-lPlDw7s_htK0H&x6mqEyGWZ zAdi6Z9$2r=CJ(};_`UAPLHPmf{~l8r@^SUS501dEzDhoUt9h<_InB2sc^5{~Pj%yU zI{tA5;~kCNe9wE`|7d(K#$Shg4Z&W5p7_W6qZl{jlLuKN_tuUT0?3|IMR zocExf{Dtk1`R;f0Yo+89>_DaA{E9w=`(mA6jP`G-UEqi2aqGMIZ+>-R++OJ05ad0P zvJZSeSNsn5Dv6KAXM6Pz_$Z%}>kF|9-REd|S50upH*zKRI5y`YF<+Gz$#^e79u3i# z=V&(u{&dIA4+h@5*#BeX|59msrjbWQ_avLnx3GWZ@$xuFDSt??i)Y9y@>TXretsVQ zrpP!Qb3Pg4dri(WV*c)&^(V^dFM1L3i^%_2KJyv>V#a%(=heVl_jnt=@|Hz@kk3r_ zu*daazL!0&kH}xvCHZ6Wb`DkD`as^Zo5;6$4EJC^uDovH*Pc9`rF4HgdE)lg`_O+n z`QV!6{Gis)!Q`K8#Jtf@?Sg-sO@6t}Q@%O!1TI%Tx{&`YQ|-mEw0+US49PR6W6BviCv<-91NWH`x~tA7a3F9(n(crF{+ZFz!Kp4S6ER!_UUhTZR0m%0Fp1LzSm8 z*uj^dfm7 zpHn_m+dX+DZ$!?0X)k@S-YCDN{l+r*Aw7-j1NeVC`4#{2Jo;twLw2BSik^G}9m)f1 zJ3cq(!!#YckmvD}EML=e1$l3Krie?d_^wT zQCEIn>s^7mr*4E(RJGT^5?rRHB#@|f;Mxpmej<0C&3{cy^6D!mJI%|fsLh5kNA z9@(q$H_F>;y_LS&U)9Erly}u|Wj~(xKc(MSz`YT8uaWol4a(~9b9Elqd{rJ;<8z<< zSkUh?u!}aG!CUxP9@tY~-hV*9h2)KueY^kT*u(AAl~34urMlNs_kjO2^6o0%ulYSL z^U-o@&U5)6+l}(X+8(}vj!n@219Etp`q}8q3-p&gT7GpT=im=E%XS&RmzfWmp|9`Y zzg|Y4N1{i!peOQ^#!vcXyrqZ!KmBv+_3^Vs?5ZVsq-&DDbwBE|OV3l|(8o*Yr+Rws z?@Hx!wOxG0xYAqm`9Si+w#DDKPIgNk*w^@OT9NX>G9Mp79_%va(ecc$^QoW9{5w{8 zR>M7vPw2hZt?C!n56XvX{af2D>WA{Enh!ad+hll)mH>qFv70F9mi}!U{hcuxa!utz(KLLI`0N(d7 z{_DW~FL3pJZ2SY=;k$M>)?KUVzZgC~2j9MgUf~`64*6tT!MCT$Q#%!Scd-t8DXqt7 zuY9=Hy9-$dDo=ZycgPnwhIYzRYk9u`ypI@1d3K|JA#ZGJ`fm%oU*Pjk(76ac=)L{T z0KVs6qu*QbVFso06~=uR>Kmb}KKb{Q$IyDQKkL^6$j`Tlyt~TR8`sM{qF)kx)2sah z%USvAxJ?hMLpvC^#Z;t2lM`6zB`o{$?fjsyHEQI z=1&Xu6VmtJ32GPkrF{&)@5%T6Kh!VCPk7lrPT~2@;5Cl@fH92w72ly#q2ousk3V3% zx!`+i?q~SQ&ucmAx%m_JO9FqjpJTnyeu(XTA^nu+(R^ACevA2D*7NAMGJV$5dB{)u z32~i@9Q57m_sTTy?eQz}{!E0M=}z={zTN{qZ2?^ep$|Q>J{i93!1B~Sq5B_+zG{EPdOQey z?Ls^4FPe_Fz>%HV?+b2Ruh6a%{-yC$nm+9(CA%~|+GjC5?Q5FvvR{uI@+*72$#e17 z?Y~w%$nkaBDX(kP7xq7tKiqJ}@m~9C=C}Ni+cic`+ri(K=(qfp`;B0nYtUQm+gZ-q z@9{j6gRr0fbEK2+b{`tTwWxcT->wg2&zl-n-`!xH5 z$L|_1e8<0+$8lZznARKVL*zH(4q?0-u*+fa>vZtFNG19d<$<1RKRWsGIKSh6ZUWE8 zsq23czdtzV^)sFNf5-T@VSiNlrY)ZvDF?F;dR2aII@|L9r~W@QUi#nDau`K<3+;Pp zyucUb_wzW{F#c@*_fdXb^FjG^<2si2Bl7s}_dNYS08iz)vtQBwPwuDuf7XBHwT3=2b(P;3$jsKm7|1D2> zAKDM$|Ax!JOaIe(Jmo|8I0wMTU9+4bKJY<#jID3`(f{nsPxpTjIXy)CS+x6u=Uec9 z<09};8NbJAUr%(0?`h>LH~+*Z>x=RSCqCE?9|q4y^EmD&c_cZ+^#%P7fWOLX>G$XH z{4V{^9`;E>9`*3ub_~yVLr&FI59^eg{9jp>_oCDKDf*1pb(z1eA0_<4uL=L7w4&_9 z^BTyfDRk)nN9%?D54T+%g8mFd&y@Evu4Cvgy)+*#)gN7v+e+U=ji zkMv_6(fZBp$K#(?W6ulny25rnmiJfW^^xa??~|X)c*p$#^j&n@?rNhazu+f+2ajpY zd#fm`!$;8<{S$DXO8mpidf?wTjJFnfd_=otjH^7Ame*?9tzeu2dbSGqslD>` zn-0Mi_BJ=W@Q%xZdP{^w#*bg5WioK@Z}`>NneI_Dzb*uyvA|3J z{oflqu;@QFM;m0gKuBr2gaa>^U+_;Ysnv2 zPkQja8T!!=y}F0?=c9KgQtyObXe~P^3!=GB@byxn^xNascNB8vE4yF+Yb0zs| z6+aW_Gx}XYT+GD3>@ z)`#Mc>FG&%S(cmOzSEm?R^-pzG37NU|LxA?3l+Wb{5N&QRhb`K5NB0`e4#t#e#YY$ z@cJmrE$Ul}1M3~njs2y+={q{->-9LNke{;+d_Fjrmh<7n0Unu4#{(+=Z#;KK99UE0 z5|t;|=dBI_Z`IQ{mZ!!s9(o@0Q$eTr;B#1_(|%@a@|YHgTigS*LmpUdi;M!^$*`eKjW_^ zF`wLqA5uH>NpXLscLn}#HP8P5PKdkn|004Pel@`7NBsV`%!i`K@Lt9qm(Wgmr>#G) zWj_=BF#0Kbu|5n2eu4IyFFg+}z)xzPbvxnb{*5wyaURNW?9Y`~JMqu{=LPDrd)v(; ziEiv?0sif?Y)|e#6FEK#AI9SslxN&>oI!iVJ=zXr4@vL+UV3LcQC@z>-O7$khvJ0| zzj3x3pBp_4eN%h)>ww?rnC;bZx)nTE-tA;Z)`RBwGufTbrJjtwD&E-gQyjGMxRCKL z$nl((v+{6Tj%U-p4|w#Yz48oO?;gWXskEPa3OiC9v+24O{L*E4kJIR;>67d#kV^i zT6w;0zuS=4buDz%qg|2r$}4UBThLE=z-^Dm)2|izZHJJ5_8jmWMqbz}$SZptaL47m z+tF_^j^J31CFsyO0^`{mc-Qj$G2l$4-z3Jrll;1q;mbYbhkZKd-L-xy|FQWn9sG1Y z!2WACbg94f;I<6cc0J&^pi`;b3Z&kNzFexWGzfe#l`9tVD1kh{)PSl-ev z<39-g>KupZR2kP@IS;$x)&`!=;o0t`NA6z+AEkem(**i`#Cx4%v7efQzPy$7%YI6F zVR?*4KFV*M`0w&7m`HHWB?-!Pe=Et4n6@G!d*sqgE`6KcWze=9uH-W2jN*+(`jrWV>EuNS2 z78}16!1DEI-2oD!pG;3&qK6ZO8)0R;m6O= z_XqUsL_T1(v;1}5%X(Fv{J*F4<9h`>yO2lt0O;+;`#Sl#?OX8758>^3L+91vx)V7a zK-nPYDR;m9smp%NpGD}e?A3TlpW?a|{8x}~T=r@`kUz2=$)9=r`q;-5?B`qR(s$cs zBlP!B_}Lcy>xzD^#tt`OPr}>%dcbF$yYo1Gz^5PiutkU4Rfq4bf!iDUr1$p6!+3uI z5tpL3;mBk z=l%3kf9ub=_?5k&zb^dL`9I?&JuyAq(B~So*F0grD7~^j(ER0jQu*nJmoU!F;JFxieUjhD^&jum-*EfUZg=RGo*B=2*s10t^QDCT zD35y~{KjSf>iME4_#6knbwD0{&^xc?9;N`#=m=^PJ(0rPR8~{M5NL zuRrf)J=d>KY(Ij1jptZr|BLsxupZXB)bd}(^Chg)9$`J&1U_q>7v;hEwHsKU4x`^F z)|Z0k`TG^tqhIn|_k~#hbl->Nt8wg4rn63-!*ksWVtTZ$HN7>E`$5dZHPgC@?}2M6 z^?hkMjQQL8Ui$*xr}&Edyy}5RIe6~`AAaP!=PG@d_r zS*_=zKG1I}{P>gaWSyh8|Et2fYFFgE34Tcqmaj_lXCm~BXWcLQ;yeHyTEDwpTlD8> z^r9|$(-6Pf06reWdQIyepGaX?dR}?k}=0ybeBWI5YMuQWnyFH~-ha&%VyCiC_HRc^>=R+8?(* zP2~TTS&APBe0_lb$1h9qMZ_H_uEg@*pSV56S9+iIP~!2%5x1?lV*7#16z3ZLUp$dG z%Ci-Z8sgUq6pOmv@P9&nF(Yz&U{Li5qS}eDIc>S2(I`+=sqTajjt= z`S-5TJ`Mt}*~GPuIz93$#evTtK3C@@yl<=X6_&5!sjasUD1O{}NI9c()RX3%-%2zr!#kunZul@PpI0y+=hN=Lls6HFU6r``mf%|izYpQVDa5tkOuY0q z#Kns~`-Sb`tKb-q-o#HQevW{z6X9cp>S2F;y2`MBeI)VrL({pJ96ucAZ{p}fyuQy{ z!=DM@HWqC*R zRnNWu-yzz`fDUoL^{Nh0Z>o2Qeq&zyi0A6|v3=JLaec8)??W8drVjD_lfYfexXV;> zF2(zsQ^2=Dr#SvCouWP0hd*;UztTDL%ldIS=U(*Qe*3mgk)F2jVKV%@S?36R?vr{6 z{jAj`_S=WDD)IB*U^hD75dSB^p5E^q?M~-%jQ`#e%kVREvL4&N*2kVydVbQmCF8SqKG$S>pTK#Q8cFYIw=?7D zyp8>_&ZBsqe4O$O{LqcW<2O-!eTa+dM5%Mh*3;uTM>Dc(r2iEB(|Co+NoHJNXUFTqokIoatc>;XPXt$W>U*~%C6W}?7a{`TkSD@562=ikje&Pe< z`4xU`aHijUJPi6u&^4BG1QR%SFg^Kq-Zv(`y$kb5E8@>v5^w*A{CDt6ck+G-@#{Yl zzy1|*@j5pU*CE7T*W|q5r^L~JL0N;i@b48b@3vzsSG*rBKh{L**c<^bQk6cLndrjiN7Z8`;g!t*f z#9==~ocbM#yAJcxK;i@+(ep6h3@5(2A#sFNi7!7q$BUc3{fPHY^b9Ay{t@_g5aYE5 z{?I(G*9VJ% z0MC>4weGk6v7T@ImpHmWpW+lFUc}K{!utPa;$##T_c)7eEtxUo$KuEa0NPk7y-JOJ@K1N&F}y6seP+HoB8 z^cmEQ2*WkSk{_suklK(KB&6A(h^YGKWWq3N*6z2)#v}5Xrf7yw7r4#;RPvorg zP4*{>$B*B+$gdyyAI?XPk5ay%GT1}4Oqb=k3H%keZoX}U-ZsF#`((e8-dlfkF2Zz; z$^P2_%O>LRt|!j)GWn69&nKpM z5ABZ-FKxbjOI))0#rX(4G`{UoaqGr!5%|mR#B~$nyqW!AoG-GU^n9?b#t(dH%f5=@ zrVVeR_G7|#i{d&h7sZRn%vLpLu8|c4=ct^$MM7@B{BiRQ_`K}bd zV|zKC{U*f?d7O*cpX$s0Qy2E_6rX3j$Fk3KFZ*M&>31FN^xk@`xE6mGe9HdUX6!#! zVP9KuOr~!m`)G;_G@rI&e=EglslA`?$Nr<@PRyS#^8T9l?G@)@dK9nX{}U7!<9;Wy z->G;L*R@aYeYEr0Pd*EH7qS0;5B;^jY`xL`f7EyO$Nvo;=deGj{ZH@z9>IR~AmEH; zAG;@XD^AA$FY3AdtH$@fsp7+oukxLx=bkSVpX2wU*YyVM!%jp#9oRRVhaAKYj}tOK++J}v-mjm;e*10Ubscc8%Ktxj-&pW1 zr?#{g|GhuoB#-O=@9u(b!8QKkxBa#Dr=xvQ*Z#HTr~eP!PX80Q|8kzc&UpHtAmtx) zd;R}nIA6ez8Q?nw{GUdi_e0+(;EP_7TcAnq0ziqk5zHB#&2Q%KMXF9AW;*a%0a!LP-rRN^+Lf%(`?-1zdLcLptZ~c{> z*&p0MDg8CiGtW-IlBJIU26w%Kd#%1wX3!!~Rk0G?(L^FLeIG@~+Fc zOZW~EA3P7}T&m}>!+|#|&+CTQ8vM21u%3OwI_#_T-IVt4pk7;(aX_(P@5YJ>d3z`2Xk=`1J&J#S42reHS<%=l_kZZ~Fhq{ho0MC??F5L51;DhXZ;+9V7lI< z{in>2`ajn6>`mO-UX;i4zp>&v?H4cN|J@P%Z>)F-``-(QKe(L#&Gmn?@#?_;-ijwO zT@U8=o)1d28wtGY!CU`p`~5)19YDP~^$qYr@qeD@M4$0f>2Y?<@foJ;6#jn}U0yHf ze|YO};_q(2Y0v-biYGMw7ekNeHyqJvc@O5f{%5!U5a0cLd+Ld=?;yut(5Dr79btG6 zAz!UGEMMuR$8E}d-V%Koh@6f^Z?$eo^Sj4ayoB{h>p%0Y9ph;Jj^EGNyW%LU7surO z9#`|A;SHdl;F(Wa4@UdW>mj#$jQ7$b+nw~+d>_N}TWEga`ia@~BEo|~`IbIW-=!t zUeo;~c*}0AuQw7uaV_m8Q@FDVpEQk<)zoDgMRJ#eaYA+>C!x{Fd!R@od)b zslZj-x1Zk&zOTZ!zC1q$cuk?RC2}|r`K(26zRG%SK5hp-$Ae!V>_GZren_5{hvaVl z>%H~paqv%~cQu@n2>_>J*ev*gV9sakt@;!-5ls?&C97}v(C)!EhY!_|vbL&MJ z@6QIm;k>__c+!dJ@8i^UuY$*aj(#r_PdJV7-{Scb=<@>f{cYgB1b*M-I8x86Yk9t& z_{lZs-H-IIN<8UG^n4a^tcpjqT!p9kbO(4&r{52Ge9K92J?|by{OAe9o3^K}IAhy; zS-)uC6~wpp=l$ixx1QAxe&+aA+oj@G?O$8buPgPF`$fK;P5g2n%8Ph@A#thK_lx$_ z1GpvdYesv;&Bl2JJRj;8=fB0kd71J0Wqj?g+Y%?8;$MZI`6hUl=heV@n*MVc=LO!s zOJrtCdB4C@W)rDU0^4c9!Fz zWzo+a0Gu;{-@h!{{W#za0{-X3DL)1OhQXI7;P*=OrXKYDmg1Sgrv~u1%Hw){P-48% zjCX5U^rzy7_4P~Y>)`Kyz-N6~)YC1?BcHY|XT4V*>1t3O;Z!Y;eBH!2YrwAx&(+_4 zZ-??YpR}O=apjRuCsQ8C^P0fjqddxg*Yb$xw&hXY+m%PWb}5f?p9B3<(UUtF|8C@c z4RX2%{H9Z%S%#g$ufAmwKgq*-T@L+2;nP*{Mfznsx{3D-8MhjAY?JXe-NN7N5Yg*- z|FrU`-yOmK=3KXbX-vC)%cFkP&HT21PJEQyT>le$*@zy0To%`rl7sDZCH#1t=i|Wt z8~9P1@%IAnLm0O+_zgtvQz>U7pSQtt7S9)zN4|Z9e11uCtB7)2R}Nl`^G$i=EDg^SJD6BiYO=bH^1A1e>2*v^nBSfDC&{HY?^-5=2RPDQkj_js@Vp07UxuVv8n5qNz8|0dIJ7I^$Z z|BZRvxPD`Njc2@P(5?r3Y)IJ(JnAxz2bDdu6xjkN@f)<+TC1bmP9-!Q4xGQUA#2 zv*}-=Uw7`GZP7pKbuI3x-Jbh!n^3mzANBB%{*e#I0JjJpJN1wHxaCJ|v{mLffD*fe`Amh6J9Ce2Q{c4WzTPs% zISV*vg7?w1tC#uW^?5n`9+vs%^=K#VqwWe{M1P!@D0@KP2j6=|JsDr^;&&wX65q%B zXY;+{UN>IExYtqkrN5s0dqMX-n?Kh>#}nLpd^Y!j>)vC_?}h=< z=KU?exfi;x2A@5-2l*%TW;5{l7XJT-=Zmv^;&(oH)`QNL@TWKZPvZUUnI7xU9Ps`$ z-*0X|t9#nLzO2Um%A4TZ_u!{{&&`kDzKMaWWR^YkdTkn=a{|fM0jC|gr z{UXW@@UJ2F^lr`ly}Ezh`ZWu9Qz=KoPx0UWb|mbhZ5y^;J+X3)B7Fa z$2-}6z5eKnpLsdY3%1Ymv8OAsxBp^KJ8}QF^waAY>Am@?`{d*I68PSQzE6Rk+T1&R zK)!d}bRT?H)bGQ%|F{$PoR@L$^98im{qoj}3hsd(mfu^SZ{)t`>$ng3YWS;rq|Gng zk8D2bUTEX1d*{=0+tU=D>%M8P(^qg`{Ri~>5x6hY?{eyAg4a;`?G7C2h4o2xV?HlH zp6ci4)9AMlI=+Xl^=CyrtEPK_!@av(42}<=eskyBP0M;2#Me{=nYe2cGOK(QSTr$avUZ zbicXBxfgn_f}YzLPxo?r{rWlmYNvaDxtF*R_h|3OJ;Sewf?khf?`-~g#{%A_c-FPQ?3s3uxvFO7i;CVBA*Zt`pU-;T?mLUK7;CaZv zD9>WP|J!=}JncsT{~q+=GvK}n{o{Bqxx1gnx7~dM9=hM%`mg)L{k|Uev}=6Rt$W;k zUwcbEFIC)sqV8e${2={L?F~=-G@W(fqww|p<+_*I{W`!m@!xQDPr2z`3%$A*-p|$E z{E%Ec&Qk7im;U-*Y{|!Z(4PJ~aqshy+#9d^)jjT|)UW2g=-c6=?pL>*RoZ^<&G*qK z`PX07vT(o!+(+Gm`==#;kE?s#Jx>e-UNi9B6MNg1@qR%Mbf3NXS1~Z!-QnCn|0{Yb zI<4=z&)wrn-;BTRd-wg!36Jy8Kk2FQ(748bAMlwBA0NZs7E>mFH5I*(z7)c5G<=mk z*^l0r>=rp5hTM(=zQ*^x-xm*z_flU2euF4`W`0y0^{vG zFxt&-@Kf@%KK+cIf0FgYa5q5DPf7V#(+NXA|61-x^L#_rn!xkZm=8_>Px(drC(Yy5bB$|z+Z{Wqfxi5J9?9>e_mTh9 z8={w6q35z2x6?dqxbmNt^YlEwdj5R~xJ_uciS^zY@JaKc=@kB!gVvF*Z_fLsdA=~8 zo`B9P@E`90U*p=JUJ5+P)$@?#Xt_)S?mv*X*3|ftS=6fU7(WhZ2k73vPUWw~H zo+mq<2VB{&@kr~`HLO>gA-@J$j^KEtIaySn;_Q~rb`+?K3uTzlgGw6f-z2`}- z)2wGRDdpeNbL&wl>xJcUIeMt|rr&>ze#l?jj=yJq(EM&Y(|RE8A7(#oIDhaRqIHh# zU>p4RX4tFj)O?$WUwJ#vPuAlb(BGS|Q{inm^5-7!J@8lr{(5dcYaQkHvTM_MEzh;i z_juy3;oJ=$@2CB%!1;}FHD7z3sP&cgL-VNNYW#ogWA z-5oCO?hZxo_s+>XcfRNDpFEjOPL3y&IXTh%%Efwp3y#=xl^CthXfNxjqQo0;h5yO< zf3X-XH}n5AF`92~9KQnlS0#Rp*sm_(tRVkJkuIz&1-@C%;5u?L<*|T#SVR7<<9f=A z^!*}V50I~$`TyTsj~(Rt@D=M1xc=SGb=phTuMz$+)*&z93-Azq1|Fy9&J5iF{S`ey zUG#Ps=S9$^=M9dxnEgPH*xh-S7+3TP>u7<$h;U&a!uK(RQ)`CRN7>t&gz z(vdG?Iq#3=diNRm2f9S>zHuFzC5G!rmephQdj{kq{12rb^<=$Q4C$sk$FSe97;QJB zDA#bdi{}61sK?VNpEdkHd92p^qOlrorC5$@J(u-+wOEa3##qgtJh57j@m%a3{e|Xji0_d48J6yZ zzk>BmEd5z_YOU{?H{l>&Lhg}o$p2sRUirHmKRur#j!5pOU&ZH%`MdoMq$7ee9gE6MF#TK+ZXVXdSR$^+&G-SXl)Km;@j@bxb9|2Y z7Wuy}|2O4-ll4Mj`hS0plaKY+>}SerFzbrtNcOMtpXV1?2YffDbY^K@nOnn?$$p{8HHQlFl7{Oh=(x>w^SUb0o$AO zl?hYE-)>3y9DERX(P7GX?3N)+8HF3{Tb>VQ`G0uG|4aBBaVJuL&hmbkmV^0xGM`^z z*@OLpS#QU(8p~q*{}B0jpC#hV1fTT$-=w1{`weAj>T?ISGvyo0`U;l7-_7_<4O2$p zb}UR8h1<3;WfX1~!jw_ConZT$Valkwy$n-EVc3c2TRi#vo$XGsL|#8>hx~AYx5=MP z|ADuQbv&2$6A5~y)?AMp&M3!CH-kqfvpGRBmgwJy1Yk0F7o~eImx~R&iTkXrZ?fOW}GhY zmG_oG{2%;~_t2(vTz=RxFuf9t%5(4UWS?-eQkZj4t)9K6s`$U5&O`k09E z?MI29gYrlIH{t&}3qN_k$P%ib;~a_5nUru3@SNjt@W(he)r;`Tl3&PkCj7-c8Nyea zdA^6|Z*V_`@CD~#wH(OD4m?MLdo~0g^PJBpwp)htG{$(zIet>|FNXaNQ!idqo)aNY zIoHMf3AmTUl%u>q;M|kQqdW0b#A_&@yLjFQ_l5}n%zO$s$1Hez@tjmy;#YyCKhH_w z{IEVJZJlq{eu3wnaQ;m62IrRq&mGkFOFX}Hg?4q3=a?t(ycy0tiF`}_=e+f2p0C4w zVS--)_CIKyr;~lC{2b>Y^I14)AES7VESPyeVhL{}>`TsL@f`dRmgf2SL^yA6&O*qmI=N6?N!2Xvg?;xI|cUkA>w7ppRApFMtS^7LD z;28FV`yK`E6#8YHTNJ!LvfoPT&mR82j`UnJ;h27wb_F;x&I9W_q~IGxJuO2$&P}^` zZ01>@U1J=P<9LpLl6qavJQvC5jmU>g#0&Xuw7!v^HpH_h@xeJ&!Q&g{iaZPAj|)?t zJ(xeEG4%uYN$PX1R{jq;|9PABqx?Ue$p_9~J9wTG`HRFKEj8_n`9N^bq}UhW2%YCl zeP(%*dXD>0#V@?4oUXGDKOxVNPe$yaCQD!DV`)r2C!`;WH|ga6Md(+Xvmf%+h`gak z=KL&vE{ggJebM&A`a-KN{6OAGnYaJ%-cWg7jCx#^|0AD<*aiHN$rruJ-;wuH!y_MI_ksuRG1li%S$<=_ktUX0L{FZW{(}Aq_c+V^rfC1~ z`9Jb`X}w{6JjONbwhQy6AWx0x(N4-W*3uv0Lp82vaPO$*3+qX#7ncFw_#Gg8Bd?ON zuFHhdu+KuIBZ_|V4)dH{W&W~v^wa&AcMJK?#GY}#w_b0+UmNg}5q=H&=Y{O&!+d7A zXI%Q>-gog2ZFp~c2i}W*i+R`faz3cV|MxL3-F@c8L*6&hm!Ztp_B4Rwv#f~xp~iiw zUzry$qnS^S`7hTaPn~i8_7n3*7B}-$A|IjT3w3b*a%sLH->AStUQDsq&de*ghk5c& zF%MvA<{8|?b|0M7L-tRKJbVUxqn{z)OUSEd@D2G2#ZHmmQ%VoeVf;dw2eldV|J`8T zyczueJ@N=jz7z6c8ToVpdH0OGNTbOIZ5_yGlgCnik}N+zR8x%dkeYg`Iyi9LvIXzjI``T=*&(%y2bVhO#LI>YxsO4=|d_0 z)kXYXFrVZ$;@_3})0p-)fc*xsoj>^=NIqR>zR+Z((}Vmy!uEe-Jn`40qXhN&I`edv zrG3|-e%E52Oc(72c{BAqOS^zxi=HD-rtr<3@QV|l8Ppf#)fGS9oq9Tt`E|1~AMp@A zA5T3Cq`p^R|Ln|HdXsrm;YUPYZkhVZGLCs@QxHxx+cn|%$ge8>P}hEo_JRDjGC!ZE zpFum(tIEvFi9D=Ar;%sX@H@9*H^$G*yLyHBSCJ1^_>-Grqg8xrsd4cn?C+2&}6BwlD=SS?{4*5(azbNvh z8h$UF?_&x0K6aaVS7!xkJzB{5yEWl%HsN4A!~aC{f3y?5L;hCLy7+e zZ(!b+c4>k%e@iegYA)to{Xu#bSb1Kx|090jgSHoz^O;}PgLEU$tBiZY;+tOY5uOPb zrSLzim7iAlJ&<%wBAk_^-{7M$-ygE_){4GAWB(i+zasO|W+#73vjl&{{(k~*Lq5s) zUYy*_3rjgPxAMqJyK9u&P4aOo{x{YOulRm_z*^UdUQFcpbGZH+#(q!G-jLgM=7lZ5 z_u`ivZ!yQ;LpmCm`D+R97xAxZ)x|FWzSu3s(|k7NK)TX$-Rj2oc)aiHd6)SKD|4M` zXa2pKeBTb{Ivf4&IMEjUh9!ui7dza`Mm@V6f*pVa(6f^=eh(I3Fk{KLB2SWhAE zq44!8`Ebg5F8?EsrSR`D;jHIA$vWck6LcB-qsjUH0C;*G#rGBLTZmuo!1s~Ld_QW( z{a8E~yrQi46zPvVslt!b=x5M%k?rwbD(@@V`97W3dY==03*>uUX1=H4{afA}&`#_P z`49zOXTG1~eO~y1eO{sW7~x_cM8=Tkr*51@^;xz2-aH z&*OO8_}-fMKY0^Ra9_b4@6CoEeaU|3Fuq||JIwc0(mR8AZRh?q_AA6s9_0Hi;K=-P zm;b-UK7_Gv^$+18FRaWrdr>!j3#`0XLO=G;MNg0iOXxtpQL&ScENhbvGoKXlkcwYy z%eZcU;a?5%rM|^S(XSPx=OXtFb`ozq*LuzIx9~mPhkSuP z=yf3J>28(ckAHA~r3mSsXzh!cdLip4>>r68V82KB@P%~kC7mg({T89CH0z((t{?eV zp7eL3zR$7t4~3t|^DKH(-{POh(Qes^=yO-@H(>ur+9U6&p6AGqilhUj&|jSVYDm3F zLVW_ih0Zl>5B(85x=;>rlnd-g@EAls4Yc^E=V!vfK8du0eTkemSo$gJDDYp#Yfk;{ zO*v!#M(;}y&r0kUPygY;|FJ(Mdi<99^MU&v*gunTA5hOWlkaQEmkHd5c}_VX@2=q8 zi|wjYF4!N__>-^L9}&4@A4u>=o@c2aVZU*d<5PdeFIHDiW zL-9+{e;FV8E#qSz5jwG-tL4c$^1}%}$TKMXZ@~S|O88!4yr0zIbL5j1JKIFRjC_7t zANjpyDfdCwbAL3L?fP>*7;W9ZqxFIN>-c^o{<0U_pCi1h+@HnwN0HN6e!m%R;bA`4 z>jAVk<~`(>6FkfCyI3Xbdz9GgZPIm@<7Vdfx1!efC$Xp8eBOlLs{#lQd2nT%iu}Ij z$?u(;o=c&o3%f#m$`d7KYZ^S+;ldp>MZ%93Kkk9y@V#-PA>}T;+=#Qozk0o5ttL>6- zA%F1``2H{Uw+8(s4vt7r!r;Vthmj$~__V1o9NV{Gh((;CE-_qt^bPb_qKae%B+M zAj@8bAE=9d;k&uaE8+bA8{zH){>Hw+NtVDv;D4dqksn*=dq6qowCK?MB0rth_iXXE z6RG$3uCMKocy6Vg#94VhwO=Bhrv5)9yff@~mHhcgI`T1I;vMNmUQTU?j7vcNOriTN z`MHDbRv*da zeVJkDm&ofq`2#s!}6EDOMnd1tb z8)zRbIS%sN%KuGC7vh^_Jm4wxVLXw`b@ns!UuR~VQFg|k6=uFk#0klHoQ%wa>5g{B zzT#)%lY((=h+h)9&*C_Xt#~OtkG0b0_S3OF#udKYZ>8ho5Z5ODYbWy!Pa6Lb%FPuaa4$B(*Bk7fDSpwl!kdZ5kDpVA9-`7U2*2qEWtP{Tm7UI@K5Aj_3$1KJq{Jk&dQbA^uIDyMa87 zeYxSZ8|bC*F%!qhh0@SJ#7BzVZl;~~wCqm$`?KFa^v8=We=hw;Fz&A~@iF|r5jU8G z<0|6sO*_s`cr~f#xW85OycF%^BJB{R_M@ z75o2AI)R_`-$%Q@M*bWi-ysK)8}wH6vw~$0G7j`r{;x|tf*pzdR-zu3qu#)7#6Dqv zf|nol*+u>h7a6{GsN5=0#y&pk)L@9RFpKynA{J#hfdautbTlOOQ zH-UI{B72A!Fv(yW;OA>W94Jj=Yi>89@5U9v;8CTEjja}BA#6QP*&zwMgCUp z&zMg&i}k-gFUo$^m?yOf^SlPKKk~+kA3~h8_#Kq`94Xsn=JRw`o>=)G_d{#H!no>s z%+uO{?fjUBwJYPV2NI95%+orK@$QJ*7ymYu&yn9&^d9+RMV>zFAIf~g6Nnf334O>* zD|oMDe%U?zf5(6F&#on2yV!3#@k8EYk?SM!?G*DLbktbL1oW#7f%dGs$@_ZxlJxV@4BRrf_ka^`k`(I=~oC^~B!Fdev zzc+~YAL4U@{{wIN{~-ILo%oY@%Gr~7j5d* z#`v;+0sZ1nei83%gqx=g^_uyB3$gx~{QHM+E|TtD7XJk98Ri>DDSCo@%%V5nDKDJQ zlIKZCPfp^WmwW)9g$|4(_%-GKA*2`iirtJK@(GK+`V#LjJ}<@RHJOJP^om@-f64fJ8{vX$ z{C`S4I7ogbH1l1Pe-Y$EKDLKn6Z!|!Z*(U+VqGZkvYGQJ$J@a1 z=Cj`}(%+ivalAJOUT)UC8^U+IkBVRJM*fr~UD)psecM918WZkd^79(unD=`u?Jpz(%u+9?wjNp2?Iq4WrJg~l& zc34k|Kf1v7R|)3<>Bl--`(2I)xWbomY>#!Dwi~XK1`>bRgUAiz%6wj%<0+1ZaYdg} zkRI?~>2JN~ zOZ_h2&#`|catLL+mfTN!j(uoj{}cOfBA>Lhd%V}ndp`C}^mwhb{-&h}rd=R+%xsUMV|MoMCcv!rz%ln*TfHyCee>bqv&36+zZ>5h zWj`kw<%WCbgwDnM-m;tDnehEq_CIibQ11`&yEo#0MBa(G4~{qz8E+cm3XFXcGp-DA zn;I|1TOz(&{8cV9KAZ7zUm2f?xNRLr5y1Cb##yd6HWuhU1nuGVJbe~&UoCO0h-=IjORw2ul`QJIO|iOL-unS zKitxaKNk8z%{XX3P0s^|*2`KvpU{r|a1KMui{p-9e6$_(82eyX7>Dg(T=q|w=HCJG zG1Tlwe*9v*b4~vL9_>Ys(9Ve4+E0G@S#i!H$HT;HG|N>iPqEx(;VW<^Fh03D&wW(j z`4OB45Wj`EcP$svSC8@5IIkgcJPy1J{$*lZbr#0C*CE~coLX*)NH5~Zbw50pxKhNi z8+M)>@!7_AZ^ZSBobyr+Tb)|oOVQ7u`yK078Hb*a@$~yZm$7ep%*2av@=tlL1LsIY ze=)wcH_Gv#gMQDU=?%tn~Uy2D$a98<4Iou>SuF{ufpFb zo{QP!_*ZX5KM{8;V;hLh+WuNF0kyygsaDa zz8U+gd8i)&mOhG|0G`-IxFvVdx0|fTqo2e%(q5PF{0Gh>34O3{nMZ1%Zs^5%_#wkz z?PHvNQQ8I09f^O(ISpxlj`n_>=V%u2e;@j*T0B2+**c#fcX8)+}w7+>EO zrJ=_Q>8BQ3=c)AfA-0=|xO>ANY@uH}%IB5o51(`VN2CYmx`dAj3Eyt|ThcLt=ctmv z&&qsE`z*%z{$KpxJkN%6Hez2Wwcn?Iar@7?7M#-%c@L*wT26l1$o~fPtH!w?Lry11 z*JINEi1fE({Q3}{Gl)Z6ykY0P81LSeaq+9z4)cS2H_XmBZ=CCv`5yjV`o(kpX^OaS zL+&*h*Z-Dr^JUS`;4jV_2;a)^T*4Hb6Eyg9l;;J1W1e7ttv8ID-plb$@q7SEv5Om4 zJiF-AT;i9C<9#MQg*o03E52Ry?yZRr_3)e;a(cc*7I-g@4 z(aXM!FTITajUVC*rQHn18zQb*^lU5R2{FE`gAmWD{Q#dME>rMB+^X2w-)#4Q_>3Xm zh%c4(5AfD{#JI{|tRwDHS{f+bb20hV?(`?WG5$_~?Si(5Q zbymEm;I|xcOU69Cn{l7$uh$u@_hQ`CYvK#}>vdmb43QNoKsi6Um!1u=;=J*CHBMd5mzQ~Hj{oY_HRvk z%5nT^jMsx*iTvG7{K!``KLFlaL{6su^)=)5*#ABC;vxN71M24+`i;-@D>(0>*M+pl z0Q!#y=J^};TWjhI&%v~U{>gg-{pS$+t46fn80ujt;L4Bs@SFOToc4w|cA@ho;ls}e z|C;e!!cC6zjq?TY5`TvCJ!1Fg_+GYw^U+w$QwCn!c`j;%HJ?bo--MHZLco6(~iY;QyrmWcmY~QxHCvqMdlKMEth+Kb(^h zd1j`))TF;cUEsoxh&~nKc%Fop7V1VW`BH!kbKO-5(4?ivaIx!9&c{XG{nt*Y+@qC`g@+Tq>_zi*E+lp(I^+qiF zPhwnW3D~otS3POhBWcHRuwP?e1aY~dkL&pV430CCer7)5Eo3{ytxCUN^jC=Q)cv`S zG@t$_%G&o3{fOqiQY!8b;U09+SHx#a|M6CwpXft+#*Lu8UPp0U)J3o0kEH)83s21# z`YXiE$he62)P90-j$1kYMLtKIpV(~0MK`N8zONO--uU(^BnO2!Xyc0$KtD^5l5eQxbfN!^Se+=uqYe2#nHHGjCDjr}v( z$3(oHwo~peCg;9lLaUvOmzVpF`B|3dzHd$LgCU+t_T3S;CHtq?-9=;a{AFvOq_i>4DZ*yOf{aWxj;K{g4 ztmhIBgMCuLV?9g6y9oa6*$;Th{@_^BSA%gZ!Q@*l?yDlMP_NG^N5mTmKM@Zo^jGBm zAowhD1>Xc8#GmPXWbPZbBHevR2lnm7PJxGszwlv&wcoD&F8Q{K{bzIkb3Ezl$U63i z#Xoc=K7&}dvusQLg73mtd@m9D@x8(P4kG^X3&%;s?>dOn5k6v{TKwEM^6w_wZRY;; zG2(;o6tYkIlYGT~x9BC}gJhh8e7=l&wv=#AQ$ANMxIz!;khl#qz6tUY{eZp*zwjMK z_;;J*g1>@iPr~=%xVg!v9DJUd{fYq}IXBDrv)8S(-WIX;g~dKDTXreqp`GAWg79D$ zB5!=h(d#0{$^GJfHoo(i-^EP(5Pt8ae0K8x{iOdD@jJukuqPQemU;tw5PgOnh@V7U zn0)tfkpAgxKb87)o^rUvau-YJmC%QNf>#4R2mPWanN9trzrsGf=zm)J%_Q`fX*ut; zBkR}fTrUpee3OpzLVvD9aqdX$ z6Z!n~e8Ksl8t0iFoClD<%A7x>#5!8+?+54UB5c=@cw(I_aB(h2=Ihp+KX9H&`nhx8 zy%6!hxlDl@#`QoNju*!H`UKYt*q4{}StHa9zukxHos7g|mbsqby!VED1i!T20YBqc zihRd85&gc$`O3pOKOpO-hMZ5^kw1SpAGb2~ne!&*FY~*H=z}Ni4Bv5Nyn*b8_*1D* z{J-xzJKNt|jJjT@@q5lG;+27Q#Bu6%Cg(qV2NC~<_*B{dGvn|36JO|s$p4I$XHM3I z8BMyk@2H{m?eLVHm#CM$)XDW0ePF3(qZSh0=M@Q<_80ss|L74g@a{FoO z0l%x+IX}JQC-r4+qi|@`*c3yhwtv% z&k&A-{lO2x58vOVUlxl$A_w3t_BM?05YH-d2OhGH0sXRG8%;hU{!sK4c!-_k<@o8? z9_s+nJIGD=@QHFiOufXsB6!Z?^AOHM6|MP9@EuM#SRcxKGm-Pr5bE1D>U}Tv!+J;i z4Yo@}z0G666**$vAb4ZFBki&76FJRgdo!+LJ=Z};toc^(g8qmc-%+2&(~j0zb|U{{ zUe@xbzRfi8qP)|R@5L>-2)_YW`2ErvU+_F?t!sq;@to)1kdKIK(ci%>JCJ!Bb|mu> z)>&ddSXYSNBJM!&OG3Lse1rUtQvR>Ney|H!55oS0Z!sJPaT}&y2;R_dk@pn#L!5@_ zff@e*eHZ>AUP{^{-c-grN_#p+zU&}e*oDwNjn6lbPaA0uYpmzy_|hKsCi=2~{SkjF zc*N5_+!=57p8x+QeW@6C=EwLu#HR|}0LGy?81LoJxG9vv@2ZT;E62FJM2sJMVe*Y} zf&Y+yDZ`Y=FD=J2{J)!eahHCjC*@I#@aqvS;&#N(R3`l2v{%@T@C$k> z^GrD94*w%~cd*76J6%Zn;CDnH*HP~fpDF(E2>ao=@N)%A=!w`L^h@;NEb%?h@!nEz zAb-K*3daRpQ%|%Vk*_Hz=e(@nVEfY?5Be(e2KXd;H_#eap4VbrV@1M2{GZrmO~&OR z-canYI^+MsC_j|au9a06zO)Y0^bWM*Plb*pguj~cglpOE1p6Q2^Q%@}_`Z#L{*3e? zPEf{q!1jon7XIJm^Y4s*MZBi=^Nhz#%sA;3j7Lq>M&pUNWbr?^7eeSnoU!cTI?zlvTX&Q``BMtXNJK6Ve|b1yKy{J0rcO@4e~`xC??p5qk_*Lqti zT-&)LT+6FnxVDex;hZPKwOw}(*LW-s*Z3Z0`&Hpu4tK+~U%3;m@qEJi-f+#&b>Z4x zR)%XmI~lI^9Pq^N>|(nP#AgiKV_eaASh`40S(aSD)+z)$cDCH(&6;}VX)jOE*Kz3zJ- zuKii!2;C2LvCBW?Z?*`{$NUkRu2Kt9rR4> zq#yY@jQr>puIU`h_B+Vuebht16TkP_;*-d+80pFpq4lW<>1Y(8=fyD6w=hEUe@2AX zzW~x-Jwn?9_$>2S?g*{d705sES=Q@r2}q~@z{B;^~a^=T&iPmR=k zo5uS^7e{LS#{H&xz0Z2DNUfheBefh_vYZ#G`LTxWW^lX!!mk^t?V%2zN3p$=_nK~t z)Ox(0cx~jk7l_v#_Wv2F{US<{%MXt4#ruZQPW`Tu8@iK8?f7+?JO z7xE{gd9QJlhKKedha|j@H3jce#l5UDUh_z;KZ0i1#nj=c`;>?AUfGen#};*&|DvL_enhife*O>s$^6lnb=;pTcH*+&>h&@E73V#< zz(dwqCLZZYUrCN1%KpGZ{0;8gm2zs7*1x8t)17qYWj&1JKOz4%P;c&1|B@0;UGfcZ z#NXiFUXgEK-lN-rboI9QCgV4^=#q8jD7G6-x&~37#*trv91n0sFTfv}7y1+KPU{|E zfwz$K#ZvzOPu_>7v)-BTmXO{}r2jPa;ywR=&3mv@^1j}Ty!SUd??=uOt?i+Jb^ou> z7t4EryYN2muDt)cMYQHqY2N!=m-R+$AI$s0NAkY#351XPz6EYyj^l5^*Xu{#Pux3N z>qAf8J8a(9y`24U@38*95Uu$!g7?EN=KapN=UcxA6K~x6EP9Ln!tZ@7d$8Qbeyc3_ zB7fXFEAtsj(a-JV*G{&ZN4WFZKTou_pR~L$yc+RzBV7s2dz2~1f`o_rnZ@6hA{>){ zy(~TmJ*x@#4CQc#{o^NEMq+3Bif7H4)7lL50<>-|2@>Bjl4e^ zau>gbd*nrLn)3NXwi`uwg~*qw)Q3#`|03-l_i~Hh=|Q{mp?x%@-$a6UF zZ^r%3vaT6J{%_wKMj!2Q)?Kko=Xp3hMVowx^A{?EjFa&Zs0 z_+ii~bm6{t`M)Ch`Gfk?i2U3`xFcD2k}tK%hin}0KIK%7_e9rXJKPU0dUlxO;J$3p zmv!Vn?x7ZXVL#%3Yx4iMw8QG;C+@EozdeZZ0z6sAgAUP;sr>&2>B9Zk`n{U>4_D%S z!F6~Ka9!RPT$A?~M_Kn3%Q%0rT{o7oyieN2_5*l-avQ>F!2ZqJX*uIwZqZ-d*Dd}L zbc^^Wk{{3?{XWPtJ?}0413nq|CYx|daaN7OIDD7+c{2h-aC$a z(S_gJs1N5j-Vf>#^jYxxhw{b!Khuyu9)#D@(kHne8+eL-;)#G!FBl3e?ioO@I^g!?qw&)SPtIT`5i;=F{lppL!^ceak{lF)& z?~E+Hsc&YzxW!Mw7j`c5tvlp8cvMaI0jB+Np5MTE3+rxK$28-7_?+tplrr8{K94u& zKdv)6bG}W_`D`uybr9#-KAb{yG&*nGre46$2|tUn4n39sOVf{dQLkYSVmE1Nzkn}( z3HQ%Se^XEI5}#H4ANDBoR5jXLbNb%}EMX_&4`!S8$@vTG9pPUmK0m(eb_!1bA844hFM(C;eX-7U)Fn<$fF$J^ZjWz7x-S+ zjqAZ<)W4yGznJU6iqzk79PcRChcEbk^@;uQ-X`{j_gK*nl;W2P5#BBCgE;yAw}a#1 zy-U{DcpnhHxzTjORHyh`L@IiuJ{o9tb}+us_y2g6|1y z9Vz@X=l}lveNnziQNPte?bx=Cn%DTTjamn|362{+52_ z6zve}4DmZh=^vo~0uSpWDY1T$^&r-r(jW7u;CF%ixyXJqtaY%A2fGotbJ@>a-^1?3 zpTkbXPJgmrAp0LO0 zb(Aee$-1&tjOKUM7`@J`z;=b%5B)_>Dn`lruvmkJV!J z{23Ih<&Zm8>q{y2ZyKxZsuJ55i`8N9wIpc+-bXWFW5f>fig$;;PS z9Hc@ger}s_Wspk!r0#C_RKY6joA=>1?}JndzrsDrJq=PFZin^npn}!Kp4&Io-5jKn z>`z^~CGKZxfAr6$K2?HL=fJG-_Rt{J%YCQcdB8bSI6>(YxF5@X(c4553kIoDbN_B{ zn;WPeN9DcdGcHga?6j`+@N0o8&=HiOM?j!DJuh*EXDU#YEA??xfy067_J;!d>$wG~ zg1$jM*GdE_Tjr^4%i+9jum1MIe^v+m%g>1oZ^e7!JZ`S58}4~N4OFF*ugM;~AV}3~ z^X6SF?gNcZ`eBfFg&=jKWy;dAOpo)db4#@@R}|+}=VbXET?zLwZT$9d%-6&rDq?A)!q0Jj z^;@pQkDDwAR!;_(jsJ;zprUR}Iq>viuxd1SV1Yvoga3u=zb(yQr*Bhk#e>!F#?KCK z{t={(22>s0^=Oc4uO|fhlQ!Yrt)Q4fTQiLbQtLP8{^v}QAXTHqosHM01gRd2 zCww26*Lwb>VN~ejUl#m!fO7S7kroVVdfBG^gZqWe=FiwRb{LxL75g2Gd$~DfD&ET* zqV|rj6rLz$h>9#bVu=^dc}C|>u=w=6V6|R-UeYu?SY?^um%?{VHoK{ z)EW1ByXNEG+kuyN_o|r@dUEOLvT3z(-Zw7K_r|S5RELh+^CeprqS7V&nBR%>Zhp~0 z-zGqRJnjZOsg3h!-nnKhK0Y!;h34)WVf!aojl6Ms+vRJ)s(sBYj}GI!;ku^rOZ%@1 zRw=hsU6OeU@J?E6=jiW2s?{sMyr1(1tJEthE`HiHSaliJbLYqo(Es>-JDhWaRdm52 ziyt2hR)-ffU3?Pf-S$k~6`s8W^l{7D$hn__)r~xDEB=7q3_4r6SAmbgYRvD5Z;x^Q z@OFJ@a$V?KYzvp@AW4``~5y{qu*YC9AvjoLezOE#COG z=eFPw)v9>U$ibjdns@uzoe3{(|5ciCSD_ZMC}c<}BK`1f1`+S=#C zZ_kODvG4=@@SDPw3x1snJL>gvQc~Q*H+R>^pn1p_uy}Hn1U|#9c8Ab?Vwqrd*86wK zYuSQT*-SgC{SA8Ex)u)}SOn)57lwCfhx_DyLxRfQG5|Azm5eQ-&9eE%TTZ{4=A0kG$N_M%Pi6$?^@W|U46;~u0=v>00W z)Ve_R;`5$tDbEM0)}xY5^{E)B2A0TLCdalw^=4kRVprY-s+J{v(%l~b|2(w7sQlf~ z{-V?OY4t!=zhINK->L+vZ>y%I*xxZw^$K58;h$vK82mPLsv8jQlH$szJK``sFDu-`|xz!=a}&8#g#>o*C$c$2j_-? z-~EzanQh1Y%-Pzm+~ZvyWzo{-8zUc0#&KKsZ%!Ae=I6Lo=Ds6PT~(hd_Z$?csyBGN zd+JooTRGG8>**b+X2e`fxMgjC@*6az{rwAps(sHi7y6A2RGul8%?jEdpejtgIVSpT zfLh)v&)q6_1JswuD}ARm3RGUD28HzW4OCa=7M!=aPN2$HXZ+fzm_YUO)R4~^Mh2=! z8Ar~WdMr?RckkAG+#-~@6aCfWOrW||x_dy6KY{A~$~j-Bro+75{c*!6pF_nAerBkw}b`HvPmAt(Ryjoy_EQg_|T-a8l^q}EI+o1y3NK((=nvtw%HPm1U? zbx#%C|5&-@py!Qn|KsT7|Ky2AzKnH))}}9p`#NQvfP5O2ZgxKW4){)fovz*R`k=FG zo8E^82dbmFHgt)O4^Rzqj4XBu`9=bgv@6{U_x?Jj+)v#$SAbe`q*~Fo@&0Odw#%Mz z-2>G8HJR6WAdkxZ8#(qqzJ=ZkyFw+&sYcSWxZNpTOX38zw-3BL{oI#rT; z<@)vL;8f|$UwpP0?V}TINRaNKQ++Hn?fp=1mwFVi=0To;xNkP7S?w1?Txzu2@}3`_ zxm2sUZPZuXL)#{0Esw^?&*VAhhx&NaUp2mxvc_5DkDAc#`nyrM=XFlG)T5sw?@GdJ z8Ot7u_E$-cT1a~bZVz3_Ho*udxj)v(EvH_4$t-#VS_ zyd3u`7pfn3W}{nxsKEYP<4E3f6jDL3Q(=O(8c?p@x~Uqx@sa5A8qze+#y+Lx45p_ijx zWe!;BuTqBh@Y?&qUnSjhW`q5`zp7aNLf>=!04KC!Y)Arsb@oZpI^MYe-&oMxa;c?W zjSDP);8Ix+l|DT$(qH8qc%?wI8UA`*=IgHtHAt{16nKtr3B_&cui8JIc%}A4e^uIj z@bT^K{Z&-alHcbeFW2NZeQTCSo~fk90wR&WUauhkmroQXY^T2}c4K3@k+`oq<(07a zr8?k$FZ?svUlnnjsdWK(59*sDWA@R|8?OUX2jTwVj$h_{-iJJ1#V#GGdf>TB4N3Pi zvF*D{wfBby$Nj}!{uIcN$HQOkJhZ#{k(B=G-oppglYyS&1;d}Uf9ukIb1L%nOe?T- z0rGLBZT=+1P}~Q-HPgi&O<`w!_C@ZD9p_Swj0N~VE_Lu%#xenSUCMTUZr|QxU20B+ zN9F2cv70xh|MbODPuD` z)qqm(Z}$msDy(u|M>IhGtcaL?ld3w@o`e^tl)3JwmMlM!`(X_~ z#=TkRr;1%ovgZu)UVYqlDQ5F|Kb0(eea`{k(SAkQZxch2=c;_IEByi;>SfQ?G27xC z%CB{7?h`K^YUz+K13cb2RP|lyyfQve}9nqYA+fj?SK^Ll4}Oeaq*)5B%ZCZ`lLKBQM>bdKYFiN@l@X8kuHG!on`K z>(i00+mgG~m(n@YK5qm6H~#U*oF|}nSf16#z1tHielK1HemmbaywFy1sdZr=W*;i< zQrT|B)OuGI&o?f)-R~6ipzrGvw%?%lyGQ?r@Uuf=gZ7nhxzwSIwiV0!xYU%9?@JB_ z9YvQ$^&S<8yk6G}`=@U1QrA7|zxD(j!!FdC-f1@ezx{F2)EO?-qSTJ3;~Th?GhtZz z5}>1OrN%Ai9&o9)t|nDZJ#nccEenNKMV_}&7rUlxfqTUpmK&7EYp6@rIdXPo_#Br) zcEFKoFiwlnt55B#1N~lJZCAQZ;16EslO%vW84W;xn#=ok?nmA;XxGQdubisT?wJ=S zWN@jEy-O9Yk>8~*=I)g50`kwTSpO_04)ayHzyF;3ihO?duW?=WL4Ku*4cJ#aJ^0&V ze&tv3cwS;$t6p6(zr6mqHjM*vh5E0o=2XUOl*;Z@Ki>MsJ@4;S9h&7&r1oQeyD=?p z(mJOaJ;C?HIpkf-+AhOn)pTnAhI`&mRlIe3Mq#IVkQ^`m z$j^3RbI_NafaB@0_vqm*(C4is%GZYeJW*-3w%_Pfv!=bNbGI1eR{NCiD%iJ&&y5$! zAdmCKQrH~G+gH_|K7HE_E)}{u@tDK#7oUg!JhApN{K-zA9RU|ys*>RtX1P?3L-B2I zPez`$-oG35MZ4DbcYf;xJu#-Soo`&Kfm_8fnZW-tYkk`E8SYZP>!(JHgj_3}Pxrk9 z?z6uzbIZzI(1&fq{raQ}cd5_++Nw90aPQV<=*OI8=RJ1hbg6{>$K|Vq`|J+} zbbD3a-KCB`-#KhuMwg0@_0IkpdH<^S?|6AW=vp%Rq3dt(sc-!}lR1Y|U77#8VYW7iZ-7$`j7*#J`Yfkv`}ou7<&b0Zr`>{@V*MlYY7?ibXDpQcooe6DM|;~L z-(T352APxM`GiwGS1y%sDyJ(tS6p(Z8g6Xt{eWM*n!DoR#OPo1;L*{29V$=7!>Qv( zI`sa}c85B3Fg9T-yF*Rfzh#AQ6NmbEC2#5u$Zy!|oLAc56b|**85QxXfJ3d^-?H_= zFMg`_%N}2+z4cRXYb8H1y^}+Eh9`Dbn(0t8Iz2C*BcDUR}}e;yGz@0(2(ulI49a}M-qohcea)XO%|2f>f6VZ)4bC=G z39k=K-ua7<%GRdfp2YioRpjj}>eFAo>Rr~)OSh-6sm-(272I{vri|nL*Hd7eU3hWM zU{^OQg%z){$fkx@S<~rsZJWxNpxL{JZG6>$ z?Z(dwv)a|{w2-%h;<`68E$-QiZQr(G4bjX8Mu zo?XQZs$Rfvy48ec^BKE+cpL79@Ora zO_iyW`YcPo2X{0 z>FV5_Cq($D8}75>0)v{V7c)MM?YGufEzBHL=J-utHLu^3TD>>g)b!OkXFqOaQ#t?6 zw)M~)o0?YlYpu9-Hnsao^50G4ZR#x4`{#9=s@d7?_rC8o<&ACH%nPmhsZl*L`rWaq zI@w=6tYFB?SVvs3DbH4K3Y}YFQtx)QuXCiwA(eNsJ9dPrE8%EKHFn zw2-mkfc&5n9%k>}ErDINx%Rb3lQ6q_mEhCF!dsz#32VQ4Fx9Rc>q8PBn{HPp^Z4vZ z1bg_~el@XuAN0*wh(T|5j!XL9YdiE~`RTB*-gY&v&!=n!U@x0WbXc4K_R={?hL*(4@;eC=X&tt?UNdnE8EqZ**{kwuWwf)FE`q@3-oo)l`rLtQFfKO z-2ATF8`@Rcpe3VvjP3WXn`R!^@+`7)X`jJBZwA20hsS?%tmKHf3ykd#19f>=!O& zjQ!xNcH|0)TR+ZMVOKBL#bdr|M)btN%g6hw!H%2_@22)ub&ggV;90;|`4|g?E50gs zufBb*mA0usH%C&B>^3#0#F$ZMpZNY;--FlgKAU{inp+FLhJ5l>(~r-ZRI9JAib;9C z$iqE1Ri4W!vp*yu(-Rsu#MZ<0W5}XzK8+!`j-^+^E-0Dh#$MuO(T=EL#M7>Na)A z4cI}^yCkLT!D5K zc)#ebF9YqWN{+I&EJ1d4X3OuQMf2Fzv_`4hyLGUuPgB~>AKwr5Yj1G;YFFshx&ppI zC|8b%?v`w`U1j=vT+arpP#XIiSM4hAw{G2!@3yN)9n!ANINq*?)~h$C*%`YUR`c-e z@`?Ramaf;*fBb1zUrKGMQu(7@T{d38)A*?bezPm>OoVwXU(0#tV7H>j=x^4yuJG+L z;)q>U+uiro;j?!2SIrLl`@-KRI_I}(P7yzqH~p}fiKp)%)xUh;DhtRs5$IzI^bkKB$Aa=>qM-Kd%M$~g3X zOF@VF)_hrkgYFL1;d{fzy^s1Syj@H<@YPSXX+3hzzFmH5W&HlUMV|Vp(won>nfk&{ z{hYYH`R^lsYQ&+aSNF3x)C2cIS1u<5omH{3^}$cANEGC|7VDNXmzte@^4?E+XtSt^%v{L7!VM=NHi0r@0) z<54(i28T*uY)EEws7+1x*WFXrp;~P@p7Mp$q2#l~bcgyG;6H0B-aE0{&zxkdLtQxg zN9~+}_v6o403ULw`;B2?cpnu#?%+_~livBg#CmYY+Tztp4tJ_<5PrTQ58yGr1$5n?)A64&4-FXi6&$CjkT4J5M;c*eK{Q(Zu>8~|e zvXlf}#{Odt&~@fb%eT#}`i+-e8mkcwRe$Q&q^+=CT-f+*j_BhKb!h0tHL-Uc3feI* z(MN|`gXy{f-sAhbN;vTH6+m3w2|{Ag6JbBD3sE||8* zXjc*Ezx^A1I=-a>-uEwM5BeUF#;F=#Jhk`0Iq>I9(EKh(9qN6v8r8R5aHw+$!Pv_V zWwtLfe$wl7Ih`sxU+uit@m`f0uLU3TIn}4!E3)pbkM*=`&!oSqV%;~SOWF3b0DdRKEgLE#HDp%h^7x7-UVdBm*D_XdeF)b{?J}q_$cTB*3 z!pv01KV`vt-m?+u4lTxe`S)~~`4_oV<5wM19N6Mg!&QmSkCBf)*jNzZJ=5R#E_2wW z-qtwYU<}&*Zs(Eq4BkV>WbTo93ihcgK4>{}`)8L*>~?%!^-nJK%Dcme;W@Fd82Wqu z;k5p0+!p8E@qb(@;&HLpZIPe8O9k%)x842KM9%_aBQegRxtEJwIB%7&_qFNu`k4j) z=ed%NFW`N+Wcy0RQXh1w=Yu939F2W4c~8JTVzN0)!z+9GtKHl4l&*z+!rB)uu8OPT zuhxvY744SWUqvp&0ND3i(JArD3|0Nr$>#&}z0U8iPNeXxzd3`y+Vd9{8cES^*_J}+r1ukvO*<~11ml9>xQk}S^buX>gWo9~tocn!cxYcckH24`_>z&@T?m;K6CF7@

      WP--m41law+deqsJ`XjeYtnwNE~dajAtjx_7Ks0Pn|Psn$Hoj(v@=ZQ-um zE^XJ**!MF&^kYBi<+M$yI&a55{*Yl)%7L#1sx7=WA9Cu@+Zde{n3M!c62*)2>Tk3N)~@P3H!7Q?7Kc=U#N@c)^ghyLhn3N_N_P9rIw|_ zN)G!=#iurH_GY3>RX09_m3OI)ZI`A!0Xrz>5!JtZQJ31Zed?#9J}%Yc$>wTlun#xp z=Y*ysDr4W{X!gY3DJ}jLe!b}VAlQrSSLMULhS#3wMN42`sR$%k7yDHQo_~Cb{gko~ z6J98^4EGeIIySQIQJ1r&kl&Ptx`667mD2ne(r#priMMV!E!R~Z;OxK z$J0!!54}E_6A^MRfd9ttJ1T&0JJjHZ$1C`&*6qj6eV@-?l^mAr>^kswbj~(!gTI3A zW8aQ0P3^CG1oSv~A9?j#8w=1oE|q6|_s-dFVxJ~)`MxPvy403L>xxG1bm@IE(7EzU z|Hasc!kE|1+_JOLeYVu2}s5*jen6)K1vlrA~hvTQ_d5-Q!}ZoXRjy?D&urP|RC&Lq zSdjUrQ~3?Vm(ur6m2ko6Y}>aw)vs(=$sTa3W`*h=$ort{xNB!~m&!7_>fOhKtg?_XF-^hutt#1DERBFY8F4*> z!H2CGf1bvEo%^-LovNS4ep*Q0!JXkR-o|WS&lb6=2B;RzV}S_$faU-oT%R7 zi%Wg=*k0!_^7uDBuzpfL=z%A~XZ}2eA3okH_zLvlaWi<#+pzD=Pmi}k`{6;+&&sXG zzH#~+$%0@f#%J$ctDtucI^~TR;Zn6*rYUd~@^jQk>{<-H9F)qt>I%r$H=t*+ZSY&i zp%z8p|72eadeioI@dWXW{Z-a1k4qeazD%wi6#oNu-PHKdiSd>^n7Z@(J?t-*#KLr) zOI?kta^e;EQgZ+0@MG9-t`?Ot`P!}6&-M1-@npD5{j53S`$z0sPQ`Nl_mP{?Pa=Z-?J*Vr=02kEt_{i~0NhI0;dt?6Q>X zA=z4NC%csPrrD>a*&;0@p^^wiB3qIcMG`8qM|Rm|SJ_KKwopobuRHVg@$=97F`2pV z`@ZkHp7T7fgZ1I%9sc;!h8_g(!M6&o2eDz@8hK}S#<+Fk-+y5aPA%JM*J=QVQUeyvO>FR>cI!^(tnJOA3dz{! z(fIqCh{q+n-yoj?mZ@#G z7*A(TH*0|Z%mv-0ZVHEng;lNiHHkx5y<`o@%W_hAb@Ap_@PDtftJWU;@9%%Vujcwf zIF#YB{mi3v9E!9p+3UWML(!Z~;~%Z(kj{i8_Y@iYi|eZw8Y?*DW%X#plr0=GOFPx? z7V=c|dk_-toW;@1dr9yEf4iXb@-&Ag-aepG3Xhx(M9iS6@E;UCG&a z4pj@B?R1a_;+j)u*LUzsj##<#=bv%7FWW!C510^ZksIg8p#>4&kNcy2)P7#%xlqhn zzJu2meob%hZ-IE8zxBGYto5Wo_*sQ0)h6(fAKfW$YSC{8T==rARbM=x+q!R-=%;1@`R&SF{+B0c z0f*M#Upi#(Xb!XXwl~N9)bkw&c|rP|UZg_#?_Ws#y)SyuAJcnj_kuj=Zl4{YK`TAz zNKV6*$@v~M)%WS8(O%dWw1Ok>jt7+u%75sDd@GHC4HXG^|KbPSVY$dZlAW4f%|U(_ zyX~q5ykg30tUoHjxcxT4)Sw5(oth)5!T5gUtH0C;?VJRnsyp%+&FE3~5aS2dR=aIx zc+ZSC!T0=PM;iGcze-lnQ`aE)?bGI6>-_8-{Ie$e`4ccc%jRGL?!%$e2Wp?r6JUIP zy!T~0cnP;lZok_2aj0Qp&wf+m&@Rri7nm*QP|LK_8+I?{X!f5;7>7026F+8hsBzw# zlY=8TG&^owW)$A%gKe3~JMcb3H!ZyRCY7U^hw%MdHm@6ArNGa=>t^=t%^WhwzW*UI zk3*MQ=?+w3oHoBGEQ~?EnX+$txR?>*;Ghe>}XEJnXk`{(L7 zv~cLB?ADDOjoqR-xS0jV-e+cWXu{;1@k7Ev_lv!}z^GPrBF=8@cV^aA5wqG~bivcz5u$Mt&Ky=c5eMHh9u_ z*%+Z?sweF%=MA{v=Si29z1$tZK^%NK#^eC_CY-8DI|)6h>oomkdMHO#}}pd>-U&LeJ?dzJD{~E6~r{%xlzd>F$4ZadlJ_$bLS~xRw|4FWz2gPlq#4Dlbp;q$Q3O zNA`~OBoj|}^RwWl{$9Ubp5^rn{nGbg_vc-M!ErH1XAIgeey4p|v?onshV}qYsYKmSZ*Te|h(C|5{87Hu_vTg6$ozGnbgT zcLVM>`?AHR3AS9CIS(M*R4z3>+cT*_i%T_&KxTngYda&}F0a;;6u^*v-}R)7o;L;* z;rpQLPKhM=-B`}e1<0o)^B?>+b_bV?W_ub*!973W*3M~}kGx5l!w!DA%%#yMy0v(p z!=)C2_+i)ga4CAD=zb0OM>S`#giB?oT7|s>k9c6DD=z{(T>i=ei$&naU6<_H*3E`X zBRvDN3y{xAAJv{OMZH)DLB68D_th~jSexL>rF1ictfp;TntWWV?RW5mpXbZg-ZJA- zrrqYkOmK*ovgUpaYr!Q);}4zoPXOmU+$i}Q@<6H2$7sL5pX*|uY;p(p|GRvguYDYs zv|H%(u{+BphAsIW0I$akb>Q@0zbLVIdyz{6oXzV-pTcthBhkCT)$9XrajB`zaF6>N zP=4gWu;$1Y)r}csi@Ef&oyzS+Hh%BFbj8JWT#bEX1y{o_#s6#9Tduu=Mx}FU&Olhs z4svNK0}8)!sk-l~{LdYDG_Nm+(B3@Sy?9H3LqBk#*~bH8yYr~Qt#gkxpST1s(9h=J zU|*k)j33&TNAF>Nv)AVl=+OT0EqU~2R>_!zGA^B~>^Z(;D;}w^owWPKrOkfmAr0VB z|5Wgf{NNI-1I0EbJo4OlxA`n99_3axJJ-_!{B7y1sdXRl9QArxmOsJ!xBFF6dIoU- z%7hC8uY*5-xK1zVJox^U4I^Kn{mQpqZK)W!#}yqsPd`(Im!ma)cVvFlQ^$XQx3*2{IdL|=zj&*$DLC1c zU+x{ZwBwP;cV+mVRXl<>`q_doaNxk{FU9bP9rw+V_vG*W^GX$463e+{|I+sG`)V$2 zDa_ny{*p@xE_XimM?X8cmbZgH8Sx9~PPP8vYUd8Ln~Z)kG+F<)VLL8m8R5i6XrD#T zEym-$v0=S756{gig8nw{030?e!Phbn`vRA=BH47%FSWVU`c`-6r|9?D(+{;8WXz@ZN#p;Eb7S|u)7ckuxV58=mlKO{1bua&W~J} zw-fc`%Jv-bK)K&f<&OF2N#i)14OiUvBv`|bO}viykprhfv)_Z4z0>mhu&Ll*cZFJi z=*p!H0ld%Y)t=<2m9*fq2=iPQoTwIY=~Vc+`H#c7^hQ-5xqmU2bXdhtV*GV2XmCG_ zcos(!PW2|PhI>W73cb1CX8#?;iI~o=^hEqaKW1Pl_*cIdPuFgW2Uk7$)^rTu1IEYZ)vI{-(4RvwEWb?Q(R5F@ zi|;0bL$`Sq-wtsOh4T%%y$`{-L^z8z_;j_M1{}KG?OH?W2*fdXMPKe{$)nHvgVMe( zMm*8Zlvh@p!KLq=7=IeqE2m7Q1&C9~|7EJz;vkQ9w9sBqyOT$TWiy}j1uxIc9_>?+ z--j)@u{=uqdZ=Q{S;Uo`d0-P*hk1bUbIthlIy32_anrxQKe+yBbmB9_85{&@f%t?c zJaNAx6A;(1ZJo5=Y(DXmF8|;m{^71i|BYeO5f8(-2S+|dL>f~x@+gIyygB_Ricdoj zPSkZPUt_;ZMI6AW%=*Q?`&@M_#sWm ze{}hU*Hg=u0-AJfjV>YI8Z#esy2q!ehUWTuC44e61fieCr`S%{&Ob`#(@&v6qd)Qq zIqLLU*ybglZoWzKn~!{Gf?T(*pLGSasdeAj(Us82KbMs;=N+G>o){he@)zP8uHQS6 zj{HL*VU;1`4SND^rEZNFGR^%)?{9R>6*b+%P)w19pt`FUmO9)ZT+ zk9-B{`D3|&*ff}fyg&V9u^Hv*0(Jb|aO4l0?->8M26@;F%^lyyR0wFB;L zkGlf;&DQPb0{U1IeW9dOKx#i!k$@OBnvftMg$$mrGXfGlGJo9elYne&4o+W$@BjVY z$W7S!9~Mxb`_tOWE(j?3OIYB(H3H4~CtIKy*SLQJrup5cQ9s5Nl;QdJEE)NylaS8c za!3knC8WgR7pph45fW!m$?u(?1@t9j)%78N1e$Yhm4HsvmF_ZbLb(VBsxL#umkP;6)-5C|P)Khl+#2nL^6T&C*}dx{q;&{Kx`})eCtil! z8x}95+jhJ!?RFr40*jwOo}wOWWTRH^5z^#ApI$3>qnvgP6Y`RUWISP7dxPaddNbrZir1gfw!|`Pl&@(4M1*1myP?k|4HA zsvp|>jn69&TfB#d*}{$`Uj(Fc69XH0Dnut|>1o*sHT~HI<+L)JQ-F3gh~xg~hxU82 z9v*k(eex`e@Uh_wsXdnUlx0HFW{xD}YhqYM$G1W{_ONRkzXl;0mLEQN7x|_)#7B-l zr6rryWF6calRKR|w| zzUR;C^vDs><94N8WXLbl#owoQJ?>*Oxz*PXSCMao1Ix~J5&a2-hZWD&jU8Cck$;H+ z=L5wWE*JSGZjHHdXE8@iU0ZL9v#vlp1OK(}C8mzHumB{9>EY$aZOjj&Uf;j%>6?$= z8+7;hazIQC{X!m3MShAmsVftYB7c-RK60Lzj;8*++yQwxYO~;guSXsc7I4%C?S?Rt ziFm)#rNgQUj|d5;=Z#0qM0B#9@7aR;LSkW|@9TxMEWDe^c;p2X3$jbP1PE!<(vv5p zH9|TrKwvEWd+t2NZJF-{A?4)w#auzZydebOhrH$q%)T{UNa2@y3=hIQH~5NA;GZu4 zzK7@<$DTWpzbxhA+d2D%#KH-JT8ikqV?bVd6UM{0pvPfC5uIak2c1O}3JjrQu89Wz8BKa$jy%nkT?C*(&aVRSBi+?Qx>*(-$R$|)k3~?-&OCHw!=7asV%x9 zc`PJV0H41Y<6wy&4z$xmq~zbUd5wNPBDHIc0M~O`+eZdCqkUL`$oC;)0W>n?M|p0z zJYuMrST%Geiz$*F%tndnyP-5O9QnlB5AU^LmxGv&zt0@36(%OZ1-GEk`o|u-5-9M3&CZ=G7&;7#t^J4)&ttGS}=FhnFS7I7!=3sZOtAt+nIa*uQ zK|%p-%{sgN5>s=8&`3n8&^ zxuGWnlyfC)e{d@yF}!tKaIJd-aEzY5srN17){?#7ls*tZZ4=21_JP~;+uV;SIJ=Daf zK?D4kC!+p=dFie0pdxEZ5 z_ay?doYVGO?;rt8% zmj(8jZ+q>nnu$D<>myPEUm{PHV~bX^Qm|hQTri}2Gvo^vF$W69)%HslD_<*w^z4w< zvSU-QulO+Yd-6)`KXhBpYmI&4w0lpAUsMYyt&>prrbFpBv`+H_Q1YnB=ZwD3aF!@$|wTkx`he1NPCBX0$NvZ zo^c1|XU+3;{VE{s>jop^y9(*>=kEo>k;m)rebX{4(*R!`Km3G(0^gB8u0+kG2f1G_I2HNN4nmCWq$d7xx!gO#6mo~P` zh;ihm2luNU{ce(DL2=1M=T+}4gyRjbBzoo>!2SW$ZQ zM1Jx^4|@NY4Ev8-e*x#@TkhX_Zp_8Ge)~$@(2jh{|00PkNBPT=?{CZ80X+o9C6+;_ zqu-=goDnz=#$8SeuYlc%y%)6a{D$7&A00uxV8+sVi#)nG?v=ql_V+$t*!zP0&uN2S z_kf46TmG*-RA&o1_D5W~n&0TerAVz$Z|=cvGG}MmCnxwBPS+fmX%G8LTniWwV0UQk z{p5zpQrOWLFjeVE(jD(a0~`Jq2Q5aN`Npt#nKyJlVk(;tmBF8Qa;ISj_$}1yiv;$S z%BJc-_;0e8FWoh17>C08^`D>zuA{tF!SknD?xYjEaWWTiBtMItmk(;^O7DOpm4eq? z?|mZk!7O(gF}+{gVfAjrrn_xbE|ix!!*v39LW?ON?KZno!LRCU0uQ!o>eI_9eG!*C zd{1Hx;zQJNR+C*xhyURRccu&3?}KGI-B}Zt4L(p0!`XDbD}AhuIyut@aWvU*a3FqV zHV9W=}|d$61gq}>x7aIPIKGKN#z8-9nqHShQ0$|e_$0?$w6FV zzjr%|tDQ-(sl}o(i^03*UYTmw%avGIR~op_CyR40&Hv~^&P)&m|F5LN?ql*?=+NDu z)YbD{D45^3>rQ)DvX(zdDC+4-yRa;HfS+Y%utPa6#HOYB{@_c0*$OidAIaR$XSv`< z?chmX=t8?5zyYLiAy^{~>K?k#_%nrb?-+q!WV$eiTxt1f&H?*{krR1^qVdKs{>vB zD<58?_vPTO8^>^W_eT7}OKI*aw`gaL9{}9Gdc2$l$FH;Qd%HNqlLX?x<>N%p-yEy* zNp_@ZKAxA1lui_Mk+-bv3@1(g#THJKX~CP}?&wGbz`q?T9SEu}?H}bhP`_oL{O?HS z5XX3l%K%dcvg>#E`k)aG)Z)W#SI%R5S}*OlbY=V;`Y^i0CG^4^3fl(DSiK`Dj+)h; z1Gm4PIg&g4tB>y2!yDg!a3Z!0(lNvnwB|*c2%N~E$GOYj*EkdX8sHE$!kN_H6CsWX zZr1fDoM~F^-1mDCxA0Z_{G7a-;OSXM{O&{tAJwL&&T^*cirdFpB0lPT7l7_{|BH{h z55BziN%Kc4XAM7q_fubp1Ghc+<)7WVwx8odOI}&S2#wN^@pBOdEb`08}L|Hcal z^x5R{U%6jz>%D5x&xITrNZHzj7Ca8S@_Doi^?Hi~GPvi2^QW&QqP$=4J9jCY+N09ygK}`WY##+)`^AGG#ek0B(plWV`~PvPSbZkB&T9IwB; zcK1swH}VUr%jk&s;T4cyXb+w^X!lj#lvuzcRrO`VC>mo7Vy5;m(dE%ujB{89c5+k$Js zzLPV?4)dT4s~Np|4Fw0+=zKr1-ksKm6<>}DbEg#Mcn8m#_HgtkEAWTvczy75VeG&O zzE`cgGYS0Yc%N&lLp><>`sbASi#@3GMz7BPo58hq$jRQ8<3XS2ZFm*{K1tnw!GWpQ zjXxgLl@<8egAh$S>zE;jM)uA$-1X9fo=lF9GE75#=R2Gnw!%Ymt_D{YR-@f;=#dBg z41TfG0Ne?@&qLOXfR4nTn^x_*c+f@DFJBk>deFkfI{Un_rG7vVwun8O6m z8*yQ3R3~Tf&m1@kmx7~t?dUdky$4y}nc`=((}NyIE||`EHDx|5161wV0(~u8ux{p_!0Ioh>|BCa4*Gz?rugu!6hwtFn&f8hwRs!$ngCIZpH?Y ztKe3~w$`bv0vD6d3|=oeRETA;u9`#lV*Cd!Yv%dieYUU-Ah;PN%tnUbU&byxJjn?h zgqouUSI~)pnjgTsHN?Hldj&p;>E?h-fOTYYZ~=IR`lFJ4kHC-d4|Lr2g+rr9LNN!t zLFEw33hd{YY|tBU3oQKkI5>}$!$B#sMy7v>on0?^&mLr1sD)Ov5FYayoRR_O*0b(t@4w$Wx8T#uP5K;-z0wH$MiGdA=y42!Y}EtkmiYd_ zlw}TX2xj&<;H55AzJBVYrDfvpwEN?gy0Px-?h3Q!_~xJ&E=9_>&f}c!Apo7 zcIEF7aEX~w?yllel2&5!G<=T-_h}RSs%0!78RxLzt2YB$;2fdmdn&+Bn3b+R4L|1q zzwDZg`1?m@U(~{RZf^gD+w^z@8Zvu_0nSz1;F%Kgh#kYLy`e7%_lO_-@{-rTLc%)m zXyb51=-cz?fnffK`|wZR7az)ff%Dw#i~P6GBjD#;bz_UI9RA6d6NBc0+u(ga@ie9m z9Km7Z%|GE+|CwMh@y26t4c|sf;)nC-`s!5Q+IaX=uRoI2so)2O{N1aKp0s)R@7XTs z=U!vB=8l~Pz5#M|55QUUy4C309{$!_nD)<%<7&pmW$;Zn-u1oaN&GMER^49UNl+K6 z8UlW4kt?1M=bXvfJtuF$ys*8iq)+mE=-Jf8%r9IB&aBk{%NQr{J<;6`g?0mH5dIRC+pm3J#dWMN0oN|^%e7ILivp<3-FU8-A4?; zylmzdxc)ZAZKf>anQIw`qSD%%m4PF|?6Y$X&RHYhUviqmN4>6iC%J)xDrKMr_^gx` zFdX1Km-l32^|)`~>+atT9D{Lx;b&8;k4wNSvA9#rPw&L&fRUJA5f<)n1-dnC0^Q(2 z3z88Lya@U-TU$)H@8Ln{y}ewPVLn}*PARA#RMrwD;Gfj|Hn_W{9XP>bzI=q`Y8rUH z{8yg7Wn2#85>v6-r z;O4GuKeZKHnbwJm8(ZU=av&Uh^o%vV1qy02OdU8#*n zjKcE3$G!X9;c_-UkMmovgZJ;ht2#a@-;+i)jGrDF?@9d+-Lf!#1MahFuzNb%SIz6? zU|wK)bC_?`Tv9FmpYbby@IF|)$p34vR})%qHTC6Cgato;hymXBO7w_99Aen6S2J*l zEP#a1Aq&VWmTLdIdNmYx>w|gwVjcpW@w{Exfdlh`^hjLx0JPWN=XZsS3**9^7+8z> z`1Jyix4WTFnK-1|mK5~o`WeqNz+I4U$ALc!Jc(gLuE)_XaOZXbrL-_W+pp#vI+lL+huAHQ|0NDSdp>?QxUX5cN<>o>Td?4wC9l8$nTKk2vP z<~z(6^GtVrxQ+4Ety0?$T#FhUYl2Q>WN+V6a920$S{M1aq zBQ9j}zLzCD>Po9RGuZEr@^M{?_(O4#YaGyt?oH|u?JO$lOgtHj_wLzjeSo1=Z1p1K^Js-X4!~$1}&AKklz=<{zno4&KBK&bwOw`@O|otnO z9tJ1D;zNr0G|A6xZ;P{h${rRR|L7c_GMkpHYI%cC!M7X(d)|d^;`dL#Zd~G%-nezM zBCfzrTxZ@v8-8F=g_-T!3F!SVJOS+454=|KC-xK2>8sj}J-Yn+|C~3{kjMc7demjt zwiwvY84jP#hkcg`FT@Mz{7CF zgdqdPPG9dFoWS= zKIqQCuiz0tBdof;K}er1U^(6kzxMbuMZQ#rnuh?opb?`k3W zw0P%zF9Uvmrq_8{sEOZsEu`tKPQ;GrFQS(-#(emBPe^+XC!BMxgCBO{f%Hj*LaNZl zNqHUoZoXePKZq4l>E)EHdAGqAKrS%x<-c-`O0tTI?eV-zoSb6dzinh3qZrS@bd^@% zdsUBZ`=`Jz4|i!d_=B13$se@uIOY(tL3=UI9(>E<(QUvY8E;Skv2i_ty$gU?{N!C=_;m6KeiMh_Rzu+~em{P5m;u>c;7p8&JM zu|}Z++7iam{!@l>nEfXgelT|6PeT7;0us{&*r=vdSO8uQt26>d!MFEeu6;5jY7@9a%B(*Zuu|d-F9j9nc<&#)Mw; zl?f@h`kEpXevj5i7Pc%EpncX}iynh#eiUs$pmoJdv$011o_|79N&`#%)W5_fn!j|ymw&(*x|;G)6=Mnf)} zfLGecPnZw8dZkF>G3YXnwx69`c?}%%`7t52XTgEKg1IyjI-~W>Z#Ee7Zc@{S86M!w zfO$8(0XN42-Lv6`=<#^SIq+)gb2j+9PMg!WEbRrpmj&?lMS0yDe|!G`hs)Xp`%)&8 zMjyc~S0%SS?!co3^CnEO(#N=LO0->O0$pAA!p1qor~5Nr=ug7B;{Z9`XVZBkMtIs4 ztY?EUy!yc}*R&EF{22Jx*Z~&%*Whtb?!@}GcMFu*2t4T^+laJe=y)@SGW-J%w!mXO zo=aIpx?jaQ!rTKn-~#VRH!DQ5vHpH3aqtd;-QPvh+`b+3pGQG~iUXeY zsNBpP{4X|tLJCzE4+F{Z&)*oORxr?d!B)F1=D%NI+kt67rd^)K7aSM z5j8hZubod0-nobU`2OA_^gHl1`aW8Gx|acA#>ITff*ZyfenTHrr+p~aA?BCp&!=~c zBZtm!`rTd^Z(W7{b={av+Q#7M`p7Oa{_aAQ{83>kc(pP4X2b3ah{;+lED>nV&-mWt z4#rciaKPb3D3;b@J=2n(iAurx!QAzMeFT)?ZZLnOy@0M=snO~W{~z0ayTd=q!n$6U z@u}XT@?d}X!*UURJG(ddqXWAVp4r0h)^2QY@7wSTxACp(BI1*mu}*xN2cNq937NX; zF8m}%XFgqj6gt!;tA}Uxfj>mRxuMgMr{TM>e_-Lz6>rg=x07PrS_nw5ugksRT3EL# zt@}Q2;M0a^*UHLS|LW(liyjZg`WX2&g1M`~ z3o_lff$;xT9yr-P2=hYbX^+Ws;1697i|IK5G18{kbXu;C(U80J|(0;CMcW+{(;$jcVRtZdW$cF8gBIi z{HIKx+*72{odCz;19_gkauFp@`{Y&x&Pwf1TMfRY2p)RyJbyp`{eOnnO1L7L%s_`j z;I}$k&bPQIB5Q>EWL*(a2GhR-pB3Sl<63b?L`>%1@|8%#|9=uu@5>oyx3v;eOBT@d zRz!0iX029&2k|I@L8necsbeNJm4M^=Vz1of=_8`4OgLf(c(Qk`gEv-*2&b=nv({od zy%@qNxT@{fTgCKpNvDG|;>09|yu4nan4VumV8>N4O)r^WYf&X80}pANxp%~*h+MR~ z(*=BHaaLE|o;l93o+e%1T9UNN(E+*Pzpkh#onCh4v^`e*_gt|38uMpF- zUfuWK1V6)Ykh(u&jqbxiu|^*+8(hekL)AHsVw%hZ8o_II*fRab2OTk8U>m;x{2ekN zy5P~Sy=pSO2aZG?_ZJC{$LDgXogC$jK2>vIq*!B@1&3D0^p+dJ%N;w^;%yK7o#|<= z7E{isGv>pK#Kh6rpSSX+nB+_V<&c=tqF_jRDc0!76obPlI5SfjEB>z@YQJZDG4(Wk zVtT(uMBB*j!_%|i&x{e7g7hR-C+}DSMXBIuZ(>{ z_wn`(mDsn$I|KMeKV*3DhOgL@3}rrpc!GDq-%Hx6&|SoQ?G+yS2} z(+7dSVRmS#h_sZjXjFpBSzlwksGUf||GJ1Yx`imu@%E{_)ZZe?ec$y%bZ0SHqB(wp z13a>RlJk@PVp6_qd(_}5%3*vB+VAiEJI<;d8M6-KVsqM%Js4kz?%itrPNdNTdWdnQ z+`s9no|u@sH4FUEQWmEr5K}+|1i3qkX+XnURnd77Syl#LG>O1C!}9cUxk%$@Z!Xs4 zP1yYJnr-kaaS0#X7s~_T22PRj5#an5n2#{)bV^KRNyrp(4SdyC2qAp~UlwLHbIosX zScfMpnW81p*nxB;)TE#5@v)VJ-o8Qr3-~d%E)La`(3|fPmt{jFwD6;DRm%|)nhbeB zCtMd@G%>nrDj~K!tnM$NgK!5PZy}-HMSahP_e8l^A4I(*1ZuZoR`-8@|9gL@c`Y4g z8%pR**}xf*?Il#NX!WJJu7sFefKVi%YfYg&a_37ZTNJ*x*h4}^kTDGMmJpNQ_YaUz z+gbAOak;1m6W+Waq5F{YuQ?(i7FIt$PeQ!=15aEyETO@`f7|2lbM%Ufr{?4P(D^CZ zFQL5$mu*#qOVsh4`{fcEk8lW^I0=Ovv660IA|ceL_NaAp<-7q=aTgn6Fxm@|eHfJrec80a=3bVoakYGfhyE@^QuGUz7le2FYoxm9OadrOd8lvqK;QE zL%T!0Lhs(Nf7iZU5NO7gsCDsvjY2!fEb>CfOUMBR>}Em<%}nvQ+ous6>XNyV{fU_0 zn!R{@I29b?Pmg{B_KG#SCzvO)+aOU$Z!yIlNL4XTPp2ZR=S@q@SImL+M6A)5C`Z4I zX>RE7LHu7ms&9v9=-~aYJ9pv8Cw&PWFU}gNXCcwVKTnlVdH$5fDbpl0Qfo-hbEtoN zmD`Iq=uagJ7mc(UDIvAK0ZC|JG{|Oq34M!mU6?UPLY?=GIND*Zg!E^gKhw(({c{;V z*UeQz+X7u%+?*mIM5PTpy--5;I>SJ+TS8DBKUEhcp$={B?%M4{xsajF3zpEtP|vIa zya%-(jU%B6_hzq?Iiq|mUz5Dptz4ut8`{m!~OE&Ij6!^Pw zc+=7VeJ^5e`eEI@=*9GFU5ZC|(H6MJpILfQ%{E65J!>!O68pTHTKo##b)S!?bU%e{zA z%Lx%)YF+Bwa4(uTes;V;v==eF@9kPIO@5d-d`9@li8Wrd=T7K)VYU|qR&o|J3-Y4R zv9sNudU%n{<5R%66-C@ z)z+KhOqy9O`hs=?E_B>b!UnA+UeCQKO^F#t+nbJ?T%P;vGwKO9PfBO+ z|E|VJ#PGz_n{qeI5r(2%eSk3bgS^%8f@bwzsFvQEewML zEzDaTAF#>QTf?(Nc+(XF80ZdpQ^>5Hot;m4(~WIiB`Np3397(LusfKeeRhkFKV^wxnPu(-krWY{O$*DV&?Sl z)>2I#pwHekiv7#+rpWN;XG0%(6VyZdKjjP`6H zrT9#J;hi_$lx>Je(6&+<9-ms5H{#!Y%EIe?E-mz?0Zafp3h#~OKbh%Gu!fFk8|+P> zmx4=ndsAD30G$VCy-Bf5EEs}%Jn96G>Q%Ha0%4C_K)dhq+ZYkwLj(T>vlyC|>^{GNipVtOwFMB2>Cf~m0oRqNpE3n9uQjbePv-e++Qs)h^ zz6J&V%I$UiRCV(+XwOb?XlF>NAxM7eyiiI3wnvAG9i)WrNX5gX8olLdQf%F)O#F9 zS4vy2Pk-BJC#9z>F2GqzeCeGwY3N^z8oTOfMg421itR&d&K{F${NveD5>(k~XQTdl zriEGMCHOtehf(jO#J25G{d_3k)|!%MMn04{jNAF;Pbu-De!5$~kkaqklrfX;OEtQM zm!$NpwQ)h4CsKOoy8qBYwA1n2`KM3qk*ec$;%-T4rsKvb7mKAD4kAfPH%@fobjJ5& zkYy5Xk*am*e(|JK@p;z3O(H4zvV;-%zV-(HPd%!on!F=TQetTcJa8Xl$XhrV`_K*q z=%1eKL%kcgLodmE==a&`s|Io(YT#>qc3kO0or^hIgXj8?QD>_s(aU^jsC0_u(#<~f z(5=g=@|`|ZXr$Y=#R(sRO0VC(T|Q**bm3U;1|RBvy>|9g{6EcmclZ85AFA6oWON7o z|KIPc<1B-H)H*pkPW#Xq)vpiB3w>zFAD-w$zK=Q&)WmWhVlpjne)^CwpjE^qeHpd+ zr8~j9(TA4ni%uQ+>_b)#DZM^F_fhKuw%3)BXUrS3<^yB|HLl=fV;Olrj7{s=S4K=0 ze3rS4`ZmU<=9$Up;C6#&yL!nei`k=F$q1@B%d=a`2z2=~tr{PVzRzG8F`4%LmNJ?j zb7k6?ellXZZ1djw(8=VmigOQqDC59m- zrsm1(xiUIX6#rmY2+GAi%PLAnmt8lEwn~u^!yVu6k`W7=X@To*2&IoXF4OQ>D`aZ_ zzBaCX12<&q2g!(qgkWrk)%wugzNPiyOMR%>rK_8)Q+>!rJ5GB? zqL0Q-iuaRQYIs6oB2&lrJE8qq7~w9tjD|O_+v}#1QM^USu(VY&VzT*dGGw%U^z`>x z*)qbZ+NB16e~ff3fqP^c-GNjYiB@e+xqk-Fmw|#$%P6;Hp=GN=8BInaC!41-vS)%x zRWjP<{#fsGk&Lupa2TsEC+0?T>m(=JA(!H&o5;zPUu}HIR8CW_pNz;cmQ(9QpEo($ zavJ;Y=+xn@)8?>zfGGcOM_mgCr zbHzEdqdgRv8f6r`>A>)TD2J~LWwEYua)~HBzrsRJh)&8G-A_)|{R*7&&E>?>+nJ!g zkpNig4CTb!3^Rtw$;)wEpdZQD- z;R=l%b&P^!*%CJwTLpawE*UXNL7-B-GL01ET(oF}_gDq>*MX+UNChp{+wePQfy!vRY1`JC`rH`B+YlTRwGf zgLW`g-so42cK+}vx#skBIXy)DjcJaYeEL^%XMK{B@j&}-4$TxaZhy-k-Rk62p6lma z*+)SKcNUI%I__UPtl*~244H@g?8sMgK2|~SjtwhMQfT7d4=Cu+_?eCd849(&<+<|; zQu4fIN05j5MDvtB(=RG$qUYu4nj!^VVFBPJDChl}DPwOd$aQjV_Ot5>T6#LZz5WFS z>BVj0D4r=aoXRZ)so>7l&QhrJE8IGR_ML6i{yOqj!>X4)F&*{(v*^j8WQE!;ItAr0 z{oRmz3c3~N_PqX^Ld{_=s8P_Pv6o)=J*%MQ1BVGbb}Gnv2^385{k_^qyre?Cl1tA0 z+O8l#K5KrjSE#wW-gr-wxE6xsp{Ot71y>^vcK@4w?meBaps%(NHd81xIvcv^M`u!3 ztqf9V^z9quba)E_V$k24H@aqD^pw+2U_iUPH2wdnjhv3Q+ihGo2JH_syK$(T6i6S| zm@B8#LL^M`T3z2KQN!?K~0nWn3KEe=ajfOBKYh=yhlpwN7-3g4!Tq${@72 zI`4w6lKg#B>wD@esm*TglQZ=Sf=aV_l(CXpBAjl#wNkA=(Pom8Cg?P;-{hjCE#c>% z96+A#0LYB|a7KP|xZNA^xoO+nyDNA~iat0sb%{txyyou^ zl#&kT?(Nl-fjsrmezEySQEvVT-`@F3Vsb|I=ap2p%Q&z62(AzIU#(iB)aa1rDb;?@ zkHyH_onh}=h3_ToTj4zGCVs!dXmDvd>WMJYExVL-BEYy`Eb9HYUdvB(8Ai2uzYsDq zzNVmMNI)_(Q9(#2J^TcoyA`kn-7F<-y(2Vyi*gzEppSgw*7sI^+*_rjpjZ2QO?#)L zVZ7x>AN*F5k^a%geyvpGP~X9=-5ca1uSLW)o`?BegVL15WWF|;E6M6fs~Y-_ej|7( zJZOvd?6!5%^FvCSdw3VE#X)G5!VDIJ+=JF(Z};Y?Fo>24)V3bebw;~ z^0O~~-&l$~?p}}!tU%uOij#vY3dZ35FaenjN@|aVM;3zTJ_PU-iDgRjKok+(5qd`UgFY zyE&=U>%ryGDneFOvxnnUv~XwX$_BiT^?E^Fy&9AhrRp{@9nWong`sk#lFrATS#jjP zQmtcq;((H{9k^_wrP6RzpOpWVlj_p{ny9ymCfM~KZ^BVgb^psF!|YVVWK4|kJV9$s z^)FsQKiq(XCC8P-(q0U}XC@oIrjv^D_T&$mSEeN0M6;;sOG>Igkv8}gKEFnKtgWq8 z6n=SCi?km~`dr%K^%%61THk7riV$`D^!RL*#x6KqMePs{T4fQxT(I&XU zT}6ejJN25StD-WqZyx2yL;qpSgh7KQqFsOqy%Xa5^E+Pz+(g$Ep}hrRC>Pk8jW_a) zBM$o2BD5FhZMO~r6@6>L3Dq)EY0mc&6)~Ao^9BFvVuOfkH?3t>_mpC#U`Rx~OH$Sur`Rp0LG6(nTzo|+#MMcl5q!Ux|JlUTWix2lu5q6OiuP9XXVg(XF zq23jPsM8I+$C|cbxq9X*svIvBk3_!<8(&*~0PVrT8b>03eS3t1cZ^aIs8y%687j5@ z@$h{rb>5rMP!+K>LYe5NVg^3>sOZ7aUW*yT!Z;% zY=Zw$YxJ9x!!1`nj70yKH>tZ6&o>QueAx3yWuw1_N>NYvIWBvs=mE^p1Lmn{raJ`E z#-bh*TNW)Ig7=+r$t7bc`dwk!z$>I8Cj>sPnyI3mACJEb!Dky&yQM8KUT48DIT`h4 z)fcE#v^(C%oZmRS3vw{YD?fLi|`z&=_(>^(!^-8ymS)-srD+o~b zQqo!+L!ROKru0;+-|rQK*>dA3?7N_9aJeoM`xjFmW5;X-CCYHJoP%{6302p>Q4o`N zys$|@30Ym2?Kq72Ed(nx_65i8+ln?ESCH=DN&6OQWB!7!OA+S(XDkt*8OAHZymGPL zvDe?fQo+=R0VZOfaAS!@C#>Hr-@**+m$pJy=XkI}?LTOGCfE31UtxdBf#cOtLD7&W zw-;mI;jz>A0PY8xcwS*YB@G;Y#VlT5so`rUD=8x`Zok12tV?N|5>jjCW~iL zrzFr8c2h7PY)_5$_Zp7zgtVX^OjOh~q$tE_u1am65Mf*lJRiN6gK^7bHot8{e@EJy zuNbe9lP82}<8$_|8VEAb{rY zv5uAH zaNtMoSG+gokW9or1nH~vvEKK;K5I~zn^L30g8d@Hq}-NaUzt8ZG;@VQ6aSU3AU_rm zh4X`J+mnSE`2SGj{Fw>Z_qBrIS&4l&j~Ski$*Fs`_mD8`$64CT#ZFkSVV|1x1Lr)J z|9v{f!A41TVoL?ZGRGD6eFqGnJbpw$OL_%fjmCYjJ-A~r4d0u4OjxB<(12^tT;^b( z$6e>#GFqi`N?uy!8KKj0*rV}B3Y-#bzwrxsN|evF~Es&L1VUd(~oG6V_oS|Lcx*_$+iMw$8vjhqP)rSTEZ% zKneYFo8{`c1-(>s^mI_+NAz2De)=vdjqb)kl{!9<-wo?A<8$0pn*AQuNxiG0PffTA z#-Dy$6o+{?FwW-WX{#s>l)D`qm>AK^-U8`pCblS{FYH_XCEzCtuV5MigPa z>bbZ;uu`ST_lEw-@;IHw`mnSR3ETKsPgy^+#6F}&g3&be>xyN_bnbxtnlzL%0sFCZ zoqeTGcB|--DkC#Uj`h=AKHEd7q746%(OFnGSzfRySZA1yP1s1x7oy_}yhf|&ce?iP zmc3Op=1cp}8Pl+bYK@>bzDZ- z!+-UT>0y82^H%H!*u0K;ORd+LhW%vAOl8Fy6-A|3EpI}54Zv}A|0V2`n0*-QDVDFO zLmhn8@3SN3OE;#cgn57${$j}OK3Er-oe$+@vHXjbC|B_6YE&)i5C7oti+HZ#|3}pI z$EUcy{}9F*LKub+LI^_`!VrcKLSq=R#R(w{A>;^Q2tx=Vgb;=h!Vtm`It(GqF@*5l z-j~no>yPt3*U$U9ulx7?JUxqz>KU3qe^)s;LDVv>A?IDMR8f?=;FlAlQ$?u-`}vb= zQfc42Iu+j;KJQEwRV*_gFXLdU=-`|pr}NIG(sxTvri$idPB=gPeyS)?@Or?4)2X7& z!oP#$PZjO>Q1D^NE2;GR=Im5a!;dE_Dlevr{_a^eXVCRjk-ur&{Rue*`URh7I(|D< zG_mkIjk{7s>RZN-)&jr(D`#K9-*^7{EmhRK@SyfNRrEjl_^iIOo(5Azg|FY=k4h7n zS6q(v6-^Trd>!hAyKE2N1Eeudw7(T7yg^nyP#eeq4IsPNBSUwfP?YFj~J-&0_(={|gILViJh z3V&D?NENB-d_VfR0RQJdzu{tsSI};SpD8_EP;S9f-S0bB zq>4-h&j&_nQbn^0en1|Wohtfys^iqbDgQ4oKjq2q%jSZ3QhQ7;n^DlN%7PE(tWOnn z=M;QN&5yYZZd{ovTC?|Eea)Oy(O%w&u@fg0;6~1yGX*$!?9)o; zgsGy!&ngWo=--7uH}w{bufpr+xo--__q~EQ57SdcDQhD7k(*LQ3lm#RS@%3u^r1$p z`tE{u$$ajw@6RpB$N4jx6AId|@crhJoHWtAr3DAag7*D+zH!ejt<&(nbjb#3B1ypy zJ{Jv76E&!i*sA4(G|}l-t|`okX`=A=Ve6|cDZqjcLNUjsi7q5QI(v9(nuz@?`tN(A z(?r+X_q|oVXPRitR>nW864UT^OIJ=$6Afwq&s3iwO_V&nU(L#|(?oOkY;Cjldx8Ig z?>{`Krxc0Hb=|k7hEi1UmN;v3AEjtn!JnPIQC=w;?-;X4 zeHJK1g`XMDPE?9IpD6glNJ6EE^QI%CAzvvf{F#fh^&h_Yk6yG=6jB!af!4qN*yk1W zJ9WnBwUw4I@J~@)QL{H=QHFxEBx67ZuXmB&Mfx0NEzVHXHx!*9%;?SNU4#V16y5sv z?c3{j!9V<`H>1GK(k|9T3`X{vbolb9W&=aFPLT8BBZ2Np#MfmG0WF<31sFGe0xYKu)#-C=QdK$fNV1(>ERi3Tm~0eST91=-dwjftt6J z2j5*YXn)LHpti|olJ8s$JDn>NbnL}5K;f~QKyxY5Pq}*tbbjyvP~VyA<=UMLTKSps zkagDxIVIc3TS^l9H@V|8Yr5$lyDZcOVsj{pv}$;u-AN1 z0$H!D;HNNBfQ;^xciSm9=)5NPf$4ju0l8n_0fQ3?I%B~<{_Vek@tdhVY$siyCBKIO zwc!~+OSeA2#PfrIh6f$@!%3b9V*pVNiQ9>JmS|=mNfWI`vn@*qxwVu9?8t zD%4NZ11ZmTbx-i4ef@!PsdAv`j2>um5lTI&pxNABz-$)vOaDL`Klv4#f$yjz1coY7 zp4ef^yXrLc=giMi$bBKIr#3Jeba)BbyL;0(OlU>rWF+;2JX+HUsNO(v=H5vL&1*~J z)A_a%(H|NDT|X%w_P$L)r-T~;1^*5JYTOi0-~{>0UO;GTErQ$^)fs5NJ|D>L(hZo< ze=tz`jM_)JP7In`j>c8ktp*(_L-T@MCIPJw#si&;DBkqM?w~y)%9n5^)i3)_8}K#t z|HK&~zQ#)VvL!SjKS9c)y$$6j*pcE2tS7(1fn4b2hN%9oy)-@*)u|prR%6JOt;mmU zXlu~gc@$@Q9Od79NC3X~a~#n0iSiO#nJ|2y75IKO*(F}2d`Oa}fgift66hY%5g7M{ z>cLw={Uf38pLw-5jZ62l>Clr;$N*}Cl)sqW6G7)Cr2&)ERse&|DSoY)XzraP@YM&Y zo(`{x^sgiU)9aI*^@PS1vr`uMc_)tmHA5+n8Cn{T89jD^pKy5*Fl&Jd$Z}F#wzJg# zT@#mqA64-8Eeroi!xX(UuPVL|yKxo(UkPqiR1LVA77lG^;$_Jwu z)myD5eg1MPKcFWJ523v3uTy)6kIaUBii_GSV;%LkNS*oM%QubyMk?$Ca$eHB92zhV zwCyqJXVjqfj~t%^zNQz=x4N`0pbaXr^B<@9n0A`4tXJLIMr^x}bZ~F|W4Lk)V9zP2-x~V_wmr*}Zw;ct( zEQQ)J`vtX=rPW>V|JM)nW1FFzNcR0DIqXo0cas2yKwUO5vTp#9&dUx)Ik zU2TapE(8r|9+Rvi`(W=s>&zI+ho>#oBWB+^_^}nE@tl2Q5a_5XG=J%0DDRf`lqZEP z9dgBQirfBt1!!3+fZsv>5W(a;JctAt!;X9$KK4Hwzfu zd?QeOI1}i3MfJ}qwE%S1xE8>~7E)lS$YEegC#t{g&_d9%7q5YN^^OChT5Sd9>Zo4_ zzf)e++bKTjL&}T(&-k^oX#9IxQM?W{<->H7`llp$KK!XCQe5muM?t$<9s_2)u>$#j z(fr_>PI`&mDBsS5uOLsEbRX!LvlnO|OL671uYficBRggG4$ztkhk)UH8fWIue$dK+ zv~F3HG{3QjP+k%f$zRkh$^+;57w9{`mO(p(-+Tfs{CgVc(6JuCsByi3iEFgT8#x5zvCr573U`eL;tJ z{spw`qU zVAw$Mh%PS&?HNb?Gq(oWYpOH^Uwxbn6b5f19`2B@Kuz&K<9zNo(1OXgfH|+~LEpxU z0~(fp1K)PW3$%9(0_Ejszrb0mg`TBj1)%tBEg*l%9q6%hJAe+Iqka-Suny4;enTET z*9Y{?A^*H2T3@mrKLg+0;vSHbI)t#pW?;gymB6T7+knc7Pl1t*l;;>>9_Y*grn59Yf(`0}_MWW?%soT- z;+La&(OQ-IyQFgrR^$*)f1#X90W>LEH)9D2-(C4eatX#Qbd>q_(`8Xqo6dC zap_WM{_t>eVeeDYeT8oR3((wpG%tuu)UUO1X7Hs`DDSctMNy7z5(gL>{>R^*CZO}C zQhahQjX%||>ENr%QoONqDuEWQR*-&wnm=TbJ)i?$Dgxtr(Z0t0h5EJXNh$P?1lxJY zlXuyG(iK*qxH645<6@ex6c?y}g|84_-;UOklsnYl;*|fQUbY_;Px|7f@S|M!XFkzW zyTmS~c_;VX2*@R4CIS5->W{Xl=Agao$H1&=oq;y~5X76@y$on+iC#eYK`~HMOiz06 z9|5_I+CV>?9|6tKbpdUh_zbkZ>;a%Au@x|yRT^^Z*xR7fYf(RmI$0OA>KOHF-Rq*o z3Mvg_aLonOe0d zUWhEW8g`a=0sL6ScR^=w+5=3#@fG~spOt{jN?!1dM;?I|F3SKd+w?EcTw)%OE1~@B z+I#_>*IEgEL%HLi9j%%Gqc0R8TyzWdPO-~D3qSM(+BHRizBne3-LyI|Xc+)>Z(Ios z4ZjI{^JXLJsXYD{%JVfU3OYQn5A;NrN&rn?X8;5DcEOI@Zv*J?rl~;t_5BpjjC-K1 zpSr*ww{!GEp+o$I+M$8}y0J=N3}K&AR2&?_Gfd4{|QkRKWaz9yp|Q2m_^ zzIkn9(BWmLLEB5Yfu5K(!0gZ~p!`=F%C%Jwf{yy?f}QkiCD7?beUQhVI|VdWn+)_^ z>jpi2=^jAt=#AiWCl3V%iyOd?shJL1!=4Sy-&BS8uS1|&M}90ot=JAIQ4h41B$yC-kFg<$KuU;$?uz&2GWok}M#-&SBywH3$0BXq*OlgF%a4kzH8R0<^heYoPML zJNS2wuLasui{=Hllg7R79_?qW&vq3KCkE$cY3MWW4xqTZUjb@{mxO(G*WEz<{FD9}@y z#(`)|UC`_zYUt?YKIg9~UL4G1ek&wrvF>3PX`N19L+3f`d}`i(7u-}*eCn% zLNER26JT6o4p2R+3FKVESD^CeD4=xf0w8DWQlK*{85lpX2K+jXQr^8+D}ZlPe+Ncg z76LsbR6xUxH9+rmc}v zcG{PkIorYKl{^NNSNsohR=@o~ak)d_$DO5lG4O%LpYcg$$eHRapy6NIM`#0j(41D? zU>9yq>r`+ltw*fc*TMHb`U`q7yJ;QDJM#hjP%Byw6HnGf+=e?e53#CH|M6XJgYg{r z`Ih7ptnib6DhPCMi-Vtx^8bKN_TC5WP8tK+9!uvGmmv*&d)waN>y)(LQ?O`#j2%MA zD@OYk!^8E^*Uc>s{gnQ+-b*^re$Cp4;qH$tY)4a+m z&wyOnp7QJ}n@e%6S_IUK)&d!w_5oEBE&@}kzK2~#8=60y-)KMOtaTak>}51BGKyXW zZLUb`e?a-C{NZ8nLsB#PQFtD$hpvg$;n&lP;?6u!AGGAoap+5TQ9Tpd{#mcYEg^S_ zj{w78qku7~j`JD{ zQD0*v6)@(T5vU8$I^;jI1~jiWtph2GPJ{Nep!VR`s0i9s^c(#9Z?^-wYHkB&6`}qY z=uhVWXFEIij-sVu7qf}x5$--3H}3W{4{@txL(eEmMm^Jy426FBmt#Qp_kBP{`5Vwn zo_!E{9xw!EC=?R85Kwg};sGfrA#mK&R8QAN; z)4C8PpmRW8aoUIRZ0WEQ7X26cmM;^KSMK>V*vTJKo>a@oF8e6;YhA|#$fZ@g!A>&Q z2lN-83{2ikaqzx!L9?YaE;%bwP!E5vDd2}+QM>X7(>S#mKS6HFp?TiYg2t_AwE+4i zac{_Z(`a4NC((N2Oj!qhU^KNuxa|wj=Iir;dHdQ@TtQm5EUjqVM3*Q3j`x!wk290K z=UXi5$Nxh8D!v(&my=F$I{VZ3lvk#DS$fj?#oa{fH6zZ1a-D-Ie+6I7fq%}7|OG~?vM6h{>}$KQkwR4=|{>!p7}iljMGtkx^(L2@egR9B=V_XC;B}R z$Z?i{KCinPezWgWzVtdN_>#j7$Zyjh&^Pp+4UG4m0Gi8^pPXH^|JN>~{Yk#f26=X{ zC{Ved<|9QX8qev2s6Fx{G_Rz1Y28vM(zuErR1f9mR5!q09dir$vY(-Liv9itv|uBx z&(4!HFR`c7I>Y=$>rl=hG3?oomCzS{DFQm@VQXMu9Oc6?AOu?ew;336)B5ONK=YyF z1l3!&fcACq{Y}tQZasrIIoY&MMYX1N#xr3Nz1Z!r4{ zP@d#4%`=|<>!25#kqABW!HYnRlLp~FDV+0H;;T?zD*8)wH0^fiT)^pJ<+FyDb)44N#%s1%Sim!ux`f+NPlp>Vh zGxEFHack-LLht_Mh zbP3vr`f-c+9aXzY<}+m9bJRgQQo}X(Bqvw1-|DDoo92OzDIpC>r&pG zttsxn%jwYPw#dr<_pwn|nt~tP-y7(@O6NUEGbzfC zcNGKQ|DDzY&#e})e89|J3|e1@?u*sF67ZMqtOI`X zuvDONiUDzPUeY=n+3*mwbir}RO{Wx~qh8p7k}55L_Fp9-S6=^f&N5QFc+cI0+;?*b z+9BsC75eIVJd&U733+Ts%7bucQ^?~!j)dHGu@U658+1P_D}5Yvt^zV{enmf0>S-R-52gJV zx2GI_QvRI_LY0Btht24!a(t9n#WZ& zseda+ZUvv&ZUEvBZWtF;IF4o71@NQ4LiYhdCeg0FKT%%F#8<$uLk!ICS`PXaxdtfP z`XBs-c0IsstUny>tgYJzVsqC|NKf*2sb9L@LQjPdXjdh7<; z9@4xRSi26ivq^KHl~)&N=l_lJM6Kz37a6#j%8g0}pHXHaXweZ`KLk6!foAj=4iqpq z0kiUt!e3lRnqSn{X*_EmzJi?f54D5aPxTD3nE=AT782-r&x?AC*~*3 z6YN@dpf3y2enY>dCE|+=ruGs0Y1}4XqkWpDT}jAYL+JUWJ|zwFfT-J_erzILTttJ(|c)=TF%n8Xvxd8&vP@Gfy6e5b5_6#jJe&cQyuG|dN^F|=<_2p<{tRM!Tk}h`mZm*od4|5a~&uH1dK3q}oFp#dRMwz%CWlYYsf}%Dya!w~zsgEeyy;_C zBfk9Cw_zXMcn<8Di)VwM!RQ0pyZSxk@{wB5*%=DRJ>J*AbPlcW`qz&TSMVSk`nrGU zdAzRIZRqhk(L5wrP2(=mR}KCAU2^DaipHTG#dca(T{YW)AB>{;G5jtC<;&ul00WEZ ze9wLS7=F_K{tx=TL^?kRukA*;arr;Mw-54w=57B1ef0`j2h7I*z*kn=0=lU*XZ<(Jfo2b< zc{cB74%W%Uvb2xNE%*|A;rR63PJ+LzT}6Nl-$L|zNvJ(&*T#`3N0LGHb#kbEV}G6j zUmT%(KFO`kpgoQ0e95Rx{oUE3E%?F68`MM9G=R9wmo%U`Y+CP?RgZw5@P^)di8Ld> z$v=e9^B$meMX+lZ;?fNKa}HU!3jSpyx&c$J(EcsZkmfaps1y7uo+koz2WVZ_Z2bkl z8GTq3_u#P<*Vy$y)@LCwF+33H%pMIrK?j=WdA>aG?Soo?@4P+}aT&M%8Mhy4{7V%l zP>%2CIOw~l_6I6nw1S=L6z$)vIj_Oj-=zMgIPd|q=q%k!M&;4I-8nu5d{%8QFlr{* zhimkLzvOIce|HHvtFV3fKQl1zJLez7d~H8q$Gps#whHTpqslU%JM2e)U_C2=_E#n; zLC5vE3ctqja?I<&8@I|7`pvqT3q7y0BhcRG6zVV5(EJzwg^hB;uPZ}tUO@W`Wfu?p z#&|zLKV47*dXd%r5Jy~P3-l$~r%z z{%e+i|Ckw{;K!0S9eiKu1n||5=p5tljYWB^a+{zhv)_hZ-eA%XRPIG_KAr-;x=k@4 zKUf6udgjvpCHFrb^sJT6Qn@m^4-{>_4!_bFm0+hY&O?25v(JN8j!*&FkKAad+|oBd zGa8iy+Q+_zKU3ogkh|tkeuHV>5I1jfQ?!e*#aEPLUi=)GyxtCZ^vN9fiJL*~8R)+Y z^61S*$T@E>BOZOyL$s^?#%z?M+Rla@i}4YBeJvfzk={LldV2>ng^_a_P~+L4HDWf<*P|Bf-7%lwFLKETzUu8M@MCwyfNy-1fp*VdR2*{FZdy+>8*D=R zMk3{)A3gFd>TQ^$gk9#3jfj`|BLsAheuI1%g7@JkH1!zT&AM|l;#dBA3ULcRYtRnd z==#Wq`MnN&Yu6DdC%NuB_~*=PjPlIc51`NEo&j3>F9JWV_y*WXKXpfcNnACca$$RB zmsx@S;A}ew{$;`x-hjPbDZ&iV}6@W6?FBWR-nEty332Clbm)XTP5 zhx%{>6Ce+{p22T&-=6U68hR4-HVml?G{(22`reI0esrDx1wY<18uc^(c#HU0-`k*G z?lU~l%-QMCH@z{!o?T@J_>%ZXC{K}n9q|Y%9ECs4?c-Sgl;?kAo=#XUg@1NT9`Y%9 zHW_FyPxD0nsA-UARDOWCP5X;bx&KW?9J<**QBQA5QFdWI!(HE^zVWLYARcCmKG3(8 z&p^Jz!;fPe$<3FbpTGA9#xsw9F@U zl|mkSa1!El&#H=e+}Hj?x!hSNK!=L9M*RFK9gr7Md?LzmZpwjQ&h_pi=U?*JG33{6AQqXeo9?&s5I?qLHP2tbQVNtvH>VglFQv1G+GWuP^qZ7Q1-}?5_$TSOn(VI9dLzkf20DF1bLdGo2GD`^BIferGS@ z=QX17!a7a!y{XzK$QcSg{2T8*1_`?U@L!Q`&2fpdxS)lc4CFlpYPK4b4vLVK! zOxGB4N4o@+$GzGD@g=-c0ELw*pr6H6VOA^bFX80<=#Ly}Jo;fu#-|#EeD>}7(C6t# z0i`S6pd8Z{F}44=!zd?EHv@6#{I^h^##WB zSLRbuyw5LypIiGk@~Sg*0&V;-8+5?c9CY@C2{NDUEW%DmfLO*KAX2h=_a~}Dz_dgA}^FFOpw)ln6GquacILIhB2sGF874gg$f1K-hC1Q-9GmJ%e&M*G{1S zYCoMo`?)gd`4!!IL^FilSFAKRn{0aS& zd89x5<;>p)|Bea<)JG70fciUO?xuWw_v}&2sBI-d$1FXF`b9oTQGVX~2H+dUwFcj(?GNeSr@NyhzmN6Z)@6t!)S$g$5{97HnVV6H_ zKIQj$Hr78Evlr^c-jM{ooZs~z=j`nQj4gYa`diCYl>a`|kNxK=fUm7q19}EkI%xgg zaiAIX@}Qr)^$uubG4hkJ@-E`bEcYkwt6IdRyxtW2VDl9CaXt}a-jH1?347H8s&_>8 z5%V|qLnY`5U+n?PI<$wLd_^k!v6|0-Ki%W=$ctrp3FyTJ7s0P`(nrWct%cyHb7|it zsIv=xoaw2Mi|hWxIOGQ8@RO5i0D86kf&6`2;LmP(2-LnPhVpr%+S2-xmI=Oa=5F}Y zl=+GH*|$r>uYQFEezM0(KpWQYhCXZeIMBMmXW=K|lLv8%qA$SSc612j=`%hh+~0fR-R zz@H#W4tpJU7Rpmh)dRIhib79TmhL-r$Ld2rdiZtBXHjjF;a4@YEcpKMbUsXZ`2uz} zT_e;la&s{JF{;c3KP74uXmQIiurnPT2Y%G3yNDxp{|3;$_J@J2)C;JuanM|ft2eD@ z;-wuxC!Ssbd1lA?Kz>vR@v&RBL44XnM}Za}-NSjd&^bQx_$2&iF6e`DeNSlLpLL}X z^f~r2KwI7t_>DR^1MzB|W}xO!L)ZmhM5DauEn%Q(O+(~AXBn**jIm>(FMRzTe*Et8 zu;a(gfq!v{cc=%S6%DzmXes!KZAte*X1@Y)x~kGXH|FdV(B=*cU?07M&K0@E{zf^0 zq}Is0eRE%+wd_P-`qCK0Wjf{qt$%j|ek`LEm?z@uG=N;OG!uSeYg7Mpdru-h^>P7_ zeQZ9;HT~!aTK1qS&~Y~jeBr|1s7FpJoog~GUj%K;9tgR<)MV73v+p}mD*1?Xsa3RqD^%?lN{BNL5=SO24T2Gk4XTPb1cogi8RNjZS@S9h2 zGUVwGM#F!gR};|THC>>W(eFL%0?`VffJ^P5l+p9QEF0aY#ZRL5ec0XU`GizO_nH9) zy}yxIVm$6+WS{81H?n#c$}=~33(V~0MY(w{J;mFI?rYP#Wg!khtDQjO$rsS~H>LSQ zzNt6rk(2xi`SaFYfq7oLXA3Y>#YKB^ny!Of&@T>o5hdNnyq#>+0j=v>K+pd&7kY_% zdQR(Bss(i@d}R zZ4JHTIaN?z{H(R0?JT;l<8*StE_kL4?A-sY0ovvqgMN0x0>q~X{sP}T;}y{4qj@y@ zoCI?9m;}TvU&w?%Uq3t0_ILxz3;eeUD5%~KafziFK>h><%F%9{2DwE?_hqsZt06ZQ zQ&V0(Z-ZR7dkg#;oPM-}X$#%I1SZiuz+N*C{`g%2u+I*yLcHvV0e1P%Tfr_a^cL%# z=_1`jGM`sLKZq>Ig}!FREa(|eZNj*B2G-Uu+-I|r89>#WOzaaqjQ`NS@$A3Q?(FH` zkPpqY4d@RsV^d+z*fR(IY`vGjF8!a)*aynGJwiW<;a5WWD#3QhnZ0vhpYrxS;>@ac zp5k3;gkJug{wOc&?R=Cc>Fk1C;^vF!FaDMTQ6BTyH_$vY#VHxP_)*>I+#Nfw3FH!45yX+Qza8v(6)HntuIh$;Ttf5*$Qj|= zp!4{z5vOjE1oqC>9AJL)Rq*d$WI_8F+ucEXD|Ls#7u2SH7iv!Tdoe2?z;9GOt8~w+KGOoY*h<#Pf@x*zGg7R z?>TFud=&f%qQdc^|8t*aco~cSs=P$&L|*S#h%+wlAnIlHKSF%T#yjArj5i^UtOoTk zZoPf{pk3OvC^!2S?cc1H#mKv8b1Lj(?I(~AnIQx{Ifu@dcEMEm$xSQ@|M|~m0!2#) zLXVL^^_IWe06+G|$tcg(NCiD_tA!M2hg+x@+vtW|UWD>(-ck#G^wnBGPsB@uo%UrX z#OGRi5wwQ+2zjuy?FRd}5?5en89fwo#ZbDh(>D^q5Bq}*@o26rp>y#9Dfrp*=((El zJRda2J{Eow(wXqXoXACeqnbz%ueL}#_=#RW678dA6b1Tk(Q`o8gG-Rdf2H-nHK8Q@ zrR-3EpH;Og^dn{IeVvT8M-WfK2R_jLemc(Y{7=1s*$bxu-E4Zk?tA_>)_2L}1o*Q! z1VCn=2>j;E=>z1wOho*aBfUYJa%kRHJ(-01NNODdKXGd@AlrNkeC?64WVd%F@|s__ zBxrua%aD64bl>Ioq@i5?)S?C@=%$>;0uyU0OJoHfj`bE zdaqMHg`SJBvks#?f3H^1OWaS-l@x0@6z}Boz=So+U?13j7Ia>P7id3*mF_ioPZrU< z6`l+~a-|BGK9-)#n0|hsc6mzYhV+Yz(BHM6-=dv!CeZk@=hA*WX6R?sk9VBTEg5O_ zJVbME64nFxkPo;A@FnqR{%Dkicuc419K_q`M4WytjZY7U?xXE*yQ99z_y0kCjH|Pt zr`aEac%z5E1f6ee3_V?D5$I*truou4i1v}822Idj&Kb90=WHGiJMm)LAB1mPVJ|3| z3ADx3fxhnjO4K*66uqxzoj~Kz+Nv7-*hbQOlcKyV&^faf1LGU2;9uH;-dEuJ7lW4l z-3jvCsn6k`BV3F;Xs7o8I%2LPezo^Lkhfwf+99;NE%do*qY1%f zwHB4zMy~B0b83pD1_&e~G(SqMXF-{UGNyWYN6y<2mH4^7NjFr(#3cu}`mp z|ESsff%*1p(AS@(^P#XgmBXlA1O6-}>A4Vl;yd^g+W5$;yx|sDb_Ro;o!urJZCErorUHoszn!u3mj_)$Y(iz|%^ zk+*Ix_>S+Duuo$(Is$*eI`n)ZdFc}5HF{4AlxwK62KTAHGD~pZWi^bY_32C&%6Gp% z20dB-E%1|h=M2!!9*w-Hn~jECu#}!#@@@3|i}kD>#w+veFZgo}q4hgz#0Tid_TPj0 z_)E2eKSRfk(2Ji}3gxQW&H~z2dU8LQ|yOkQ0l+97@>?Y{&q>Y=~r7`I_BU=Dyht1_ME zVkXo5Ps+J6$fvO=J=f2h`v7rCOtjyLn@Z!ZNC0(!B{=(%9_a=I6` z*Dzq*xF0uxer)H7!2H)%@R=EWlqcyv9H_WL`E+!A41b#Ync&-_Xg-iMdV;t$J-F}_ zQ}+w}s5jAli2CFj$ek~0(mb?xF5-)uK=1R$PNMw)W3?P|(}}~7D@}BcO*obTzHH*3 z=Zvg77?(Lm-_t&T^%V1{|JzO=+fW7iyh={QAsF^AXl?7$81D(@C7_*cJHU_gg#$GA z9qn_xrhAB2U8XqD|D5JsXZB_2CqEtmKf0y#-b(V;(cV#oD@y>910 z_)qs9g}$J#r^lV>Skl){7#3?EM z=RKtb^n5iw9E*76S7$)qGNm)nK9BZU@f|5&ydurOH?L?2lt$MBIsy+-uDae`_>m-0 zo@}H40v$^03Dm03LC?x-4vZhV5%zpZN%X&{XY{^;{Co?tn@8uwjO{m}ADBevBzS&|QpmaW=>E)lpZr_*=7Z1LSqrFlT!me*5v}jy3EjcB8rpy_-LML@E@mb2 zZCJh;e9N=r$get;hw&i#_6>U8%C!)usyyxA^BdE9QT{E%pr25I?)x%7MPptHecXWj ziz;7&e^)BKmtwZjy_>c)<&A%f+9P?*e)u=8JOurO`gGr@-&g_uO->Kwf@9y|SFR`q zJ^i;eh|k@vCipSsa)6odx&pIb)B8Xfx~iac3Lom}=|%f)SzKTE*T>O&cE-vs$l1C- z@8>n7eT=IYy#kw9qia=s6Ts?r0^H%beP(0ycFf>Zp5O0 z36hdvpLw79F|S2O*oS}SB5%Pq3g|oA*F(96#dL3)Xc!7Q|MVze{PF*Q($9b1BW*_S z`zIcZM}0Ld_fwolCy-v{z2Ngp(|aJwIv)|A`Mw2usxR-L7g|>pdfNB&o^gJsmpCUS z=A45(`5B#KO!FJTJ~96{`1ybRjkqoMQ{Yc0Y5=}#1ifFH(7P?@@Hl!8K(U_sMa}@4 zzr`{?{%LUEw5G0nToKksw8Pttb})n8rMH{_q9 z=S2yAdS5C_bsKqzj~#^a6m?QjKC8qQ>UZtCqn~LkbiTCK;6l%P;|c0(XHk3RUHS?? z!pL68xttZSPaIPOc@I6Vi+F9-=shs~fep~hFw=UaDc%6_Yon-r(gnHj$0<$k2XXTc z!QPou8JN(J>M69)JefC{?oW8Le?cw_(sMS`^WBKwTCO$vojP|U%E{?U>l;7w3G@RE z{-JuV`;+hIX7IW5zCb@={t96BaB6?XJ_X|AJ*N3r-QgML2vL0;l=={bR}XguVcUUaUObffc;?g-5bE_Wj2?4C6LJMYZ}t^em1{E52JdoGej zRK8$XH^glmcMy4J9;W*w)A6xruXyhZ@CbUnm_6Q+f z&C|gY=g(cplcGJ{|74$~`*+Fhm54`hpfU7KmtIo+U(xwCdfqnBrt7qy;?<&kRNm8{ zDBtAh1ONH0bbDdA7mOxzekDU ze1<>KHhO>Q&@j)t2684b-6Ly@E0!@G}ELp|7q%_khL=Zp5Xza}(uyH`4D{vLe)52_l@)-4( zL(bcj1v1=#cc{N7BsZ5i5GvMvMlGu(|rUWB7)Kc@e*0<`|R5`G-If6(rH6}@K} zoiLX2>Zj-A{uXqPqrXAV$76?4zYag5^S6A!YS`!0cfl@8OZS_02kmq0HSVFD^z}Uv zkN;ae>_0@O=>0vbhVBoYp?$DtY$=62IW8PW{d~(;g0Ip%1}%+h51MssHuA&#K>I?e zoYsHukXY!&t&RsqeWUlV{k+zQLvgAu>@w1OB5yYCQXsQt6UZ}U0$}(Dt*6W+8fTLC zC&ACDxE1KBIT2`zcEKN`1si_+`_mCWgSQs)Oz9->(<{;M{bc3oxuWfIS@0bVt3Xc| zs{x&{t1|ql7*wt|<~-<}`GvW(p z4FZaO4?=w`arFDc@JbHaJ)s3XpNLI)OYJj&=1R|6_PHY0wU`S9;pBn8?Je*|Bc`5*jR2hn~a?*Og0+HaXu z{~}G{M{BwRjM?J>-!tkt>=?yqJUDOB@1q3Ehr_RN6a(`SqYv#PV*1hhF@jpvAP;n- z--YU*((eNE;^=pp)>UH=pT81)pTx4THsv$)0Oj*WsZg#*P4di>v@eZv((`$9HvO*0 z-1r0X%1xv8SB!p&a(U(H_cf6n6t__%24DSl7s_Rxd4cjmJQez{e9C3?tAL)ybzHI6 z;O9S}_W%qAdcRdUUx59Z{W+aKQ$EvsJe=j!@3lpm!jHY)Jd`IrQXJ(ld+Y=quKx=d znBoGaWYM|Bu<0M@`M6XMfuuC(*jd@ggLut%p!d+fWIvz!g>mms)IVbfy=Tie{8@(= z)9=IB)o7f`2j79cX!Z=`H}O2}10-{)pJhrrpr5MDd|-AC?bC&+Gzg;Lk#>oXQ!Y( zoU+GZCph;F^^K|54{~928089n(t8Q|=p@jdCf%SfV|54ewp4(BK^Yp4p8E7%D%Ob3 z@Rz**2T3cTj=QO`+hA)Gh)%F1}{O=<8vxlmHHkYG)gJd4f6EXMc`v=Jz znnIpeikS8zSjd=A_`+@IixDR|+OAC;7g?36HLQFGu=bi)q4m>vH@kLMf@G$+&f&wi2S=in^* zy&WU+XP%o*>zA<8pM3Ib!C&|;^B6g zad1$+z|#Q8Q0xbqYEMBP7#D{^pV6M4YYDsgAooVk1BMmbp%<9zhF+d&FWQgAnSk*k z8d(y2!NDkCfJeVab(N;yo9b2cJFM^x4&)LqjXyyj+CSv%{eXVv$?bu4C6F~4aZ4Uo zMf-Vg>;fHCi{5L=oAV9vXs1qwKgLq}eSXgB8lW{3(x`s3hagVIpYOxONEd^z={^{G zCPisrIB_Y_L#cmwkJ5K0yz}ULJI23e!A`j69gtP0KlJmmm7qBrXrB^{p?!zsD*ayF zbd~n6!p8KwU+oL(Pwd6N5x?Tfa`@p@eh1oHhxY6CNqbOVMH>S& zdw}GzpHV*zgAcx_H=S2h3+VZW>Ia0{ zC{{b%gJ~XI0LqMXj~woF2+tLA?$yBkdhpFv%-5Qm^gL5Ph{l_JOEk)3bRk++@L}!3 z=O?VoA5mZJ9@>|SJIzD zY@*+3D>);fmpH95&|iW2nROB&^Qa!>>tEA(PpPKwATiI(MjU}I)V|p<^gW~SMhE=I z4VnrxPNI8O*K-y8xN5}$HKVA%%Jb-ZD%Ow&ak^usQ@z_PK|WkVW&vdqdY%#7NzV_$ z12kCQr1CmIWz*q6=b=ql=N*mccZc#iV)*l{T1mf)%SuIDk%Y4p4|g!RSU)cdD z8xu?G$k-WZFT)NE`1+(j=j&xt5m!RLO~`}qHofnWep8En5&dQ{?CmAC!9H@~2JA!m z1A(0BDUdT76#<=_KO6aX4*v-{GT<-B!$)L5OAUJO!Re*ws4 zH{tFu(0noNvjf#>A1^LO=Lw!_4cgIOnbvXMPnyRVn_43;>?OnCpFNw_LyO%A{n&OJ z!Ov)Z0D09OjYavQ8nnNU8?poAO5L5tMdtDK$V;582jaY1*yKrXm<9GEe6CFJg3Ay7PzLct zSoGXP_q#9n*+*#K$gEPF`fXR*?`SWU2krSp>m%<-CFpC?=-wv%<1_eE{&xxGin3ax z9@?jDV9GrDj)~{=71((*S|M-ha}_cE_-*L@vGnKkzJq(S5OPJsDEQ;`l%qfC&R#+} z*+17I9_Da5|C{CvfIjCc-CO2I(|EHy8VFY7KL z_?gv)U>$Rvr2CM()2EOxW9KfIfAbeE2OYMtfV>++kpGkk6tDX6OXM}PHQfWahEP9E z9zy3s%`*C4g?TPL-;JuPMtQMk=sm8ms1Nca70~`){B#NOs(LpM<$3?3^Fh`JdQUHK zpVp6LHoYe(t4{AlTXwHOTxKoZ6S{Y=hToLS)ZYVt)BM3YI|_Ws68fGEKdBSSGj*VQ zfpE?*Y=ov23bAtGO)K9n- zDNe~4F3MvM*$>Q5pnYs4jh+`I?xAyFRutU>^3KuzU)AX^_|?{GkN6DZ8c;jcqW8em zErsB7{~@`wF3lrKEzQH)i%&2=aU8iQH=#jQ&{kzztfRK2Cs5zymUkid9heSUJc^zd zhqlps#PXX|f7M``$NbTM=JyMaq3`JQ=RNZ8PmrJFH}ssv+Tje=i;SlI!S{dufptB$ z9OXTRvjz69C7XfX-MNS>eL3w%veqs_T<-dGo|k9Tfu1~v?)elWH-XM6QyzJ7Uvi>9 zs8-N>A&zq`Q9g48y?4mG*c9uJx6?4h;R&6@`xvU`JD?{U$;NvSxt;fcRt<|n+-k{1 z1-V5aRpzn3DTC7GtU@HyO59`o+$94V-JI8Y&_%W6HLoYG&68QWX^n4|8%5Tup zRd*rxt)}0{uymVHUgE!vfU!fWLoVA^74_w9r1!Bx$|j%_Z1lX1*P71f%8U)*=Tm)VETq0$RJ^k;X+lCX>F?nHlN=hD5Y+E)*JZigMf z>@T#Q^PbapVKgW5z!xUX1UiRaK|N)0dqHQF`UU^uSbFcB_5C#Xx#j75Vy==p$aOo@ zDGpOt$fM`p1s$`oI_UgqZ^&*7eJ4|IqVX91v#ygDUDVra_U&f#BkEBTd1??(9>u*p= z=hUd~YY>mD{wny3*U|f^!JbQzUxnEKJ2AI0~7G_8BNA~p4^>hoc5JM)Pla?^Hbd0 zhliiTc+~!&c|T_c?dP(i?qNLZy3=~?(9rv%k;W(B$5WQ>`-Jfk#Gy1&fAkKa{JW>c zLC;Y^Mf&B&pxo%nTI3_QQwN}7@(k*KE$KXLD|ZHT;tIOY%pcMO^~hqV4MxO}yF>In-uzN!;a?f628IR>fZV@|_K}e)Va$K# zZ;c_BPn!j~dO3Y3Q`mSO=)eRkHHwcqV-jHr4_YP%kA*%8%g(m+}__|m(aC7_}WTz zZsoObAzni{@?+{)1+=vj&C}}Yv>)}XEsb_J4W<39x($8rFCmZi$!5k^*lBiCT!|@k zFJ`^47JUCOl4tT4A`V5*jlks7qtM?SAL)Kqq3w_O@{aIO9=CcQ)F-Y2jSuNy>c6_y zNsx;rURILHZ9FCxXE7|E4Yptp36kNW65I@__BRb2Sod zK8Ly{IDH=|C<4Xa<6pakw4AEL3CGM9Yks+NS=grVM zB}1WoO3)MyZ$@ucAV;$kq)azMFGD}WAj2pXsIjySD34z!BUERGVIoXJYVDLBHUm9F z6FtKzKr4G#5-U=Rr(_89uqEZ>CubK=0onr+=g3VjiU*1S<*+&^vC~-tG~@#U;IjjP zG}v!I8thjf4Gtq94f19WTUlaGDafkeQlR-6^*tO(rI|S;nR&%idRU8dGLuuMOrGM+ X;?3&K2=aJFTSjbYYH2aZ-AQ@?!kZHA From 43ca6174251ef673f457da0f9b5a7f53328411a2 Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Tue, 7 Feb 2017 16:26:20 -0800 Subject: [PATCH 06/31] Fixed a data download condition --- ...TK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb index 9d7932181..bf171f8d4 100644 --- a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb +++ b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb @@ -142,12 +142,10 @@ " data.to_pickle(data_file)\n", " return data\n", "\n", - "data_found = False\n", "data_file = os.path.join(\"data\", \"Stock\", \"stock_SPY.pkl\")\n", "\n", "# Check for data in local cache\n", "if os.path.exists(data_file):\n", - " data_found = True\n", " print(\"File already exists\", data_file)\n", " data = pd.read_pickle(data_file) \n", "else: \n", @@ -160,13 +158,12 @@ " else:\n", " print(\"Test data directory missing file\", test_file)\n", " print(\"Downloading data from Yahoo Finance\")\n", - " data = download(data_file)\n", - " \n", + " data = download(data_file) \n", " else:\n", " # Local cache is not present and not test env\n", " # download the data from Yahoo finance and cache it in a local directory\n", " # Please check if there is trade data for the chosen stock symbol during this period\n", - " data = data_file" + " data = download(data_file)" ] }, { From 3f68277bdd22e1eb5c2f09b194c224aea6e840aa Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Tue, 7 Feb 2017 16:34:06 -0800 Subject: [PATCH 07/31] Updated caching of test data and retry logic --- ...e_Timeseries_Basic_with_Pandas_Numpy.ipynb | 123 +++++++++--------- 1 file changed, 61 insertions(+), 62 deletions(-) diff --git a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb index bf171f8d4..13ff3c42b 100644 --- a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb +++ b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 37, "metadata": { "collapsed": false }, @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 38, "metadata": { "collapsed": false }, @@ -94,7 +94,6 @@ " start = datetime.datetime(s_year, s_month, s_day)\n", " end = datetime.datetime(e_year, e_month, e_day)\n", " \n", - " retry = True\n", " retry_cnt, max_num_retry = 0, 3\n", " \n", " while(retry_cnt < max_num_retry):\n", @@ -111,7 +110,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 39, "metadata": { "collapsed": false }, @@ -189,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 40, "metadata": { "collapsed": false }, @@ -475,7 +474,7 @@ "2000-01-14 1 " ] }, - "execution_count": 4, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -519,7 +518,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 41, "metadata": { "collapsed": false }, @@ -552,7 +551,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 42, "metadata": { "collapsed": false }, @@ -578,7 +577,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 43, "metadata": { "collapsed": false }, @@ -610,7 +609,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 44, "metadata": { "collapsed": true }, @@ -637,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 45, "metadata": { "collapsed": false }, @@ -681,7 +680,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 46, "metadata": { "collapsed": false }, @@ -690,26 +689,26 @@ "name": "stdout", "output_type": "stream", "text": [ - "Minibatch: 0, Loss: 0.8458, Error: 52.00%\n", - "Minibatch: 1, Loss: 0.7292, Error: 53.00%\n", - "Minibatch: 2, Loss: 0.7177, Error: 52.00%\n", - "Minibatch: 3, Loss: 0.7022, Error: 52.00%\n", - "Minibatch: 4, Loss: 0.7118, Error: 53.00%\n", - "Minibatch: 5, Loss: 0.7118, Error: 53.00%\n", - "Minibatch: 6, Loss: 0.6900, Error: 44.00%\n", - "Minibatch: 7, Loss: 0.7228, Error: 61.00%\n", - "Minibatch: 8, Loss: 0.7242, Error: 61.00%\n", - "Minibatch: 9, Loss: 0.7087, Error: 48.00%\n", - "Minibatch: 10, Loss: 0.7006, Error: 54.00%\n", - "Minibatch: 11, Loss: 0.7013, Error: 54.00%\n", - "Minibatch: 12, Loss: 0.6948, Error: 53.00%\n", - "Minibatch: 13, Loss: 0.7122, Error: 56.00%\n", - "Minibatch: 14, Loss: 0.6950, Error: 49.00%\n", - "Minibatch: 15, Loss: 0.7011, Error: 55.00%\n", - "Minibatch: 16, Loss: 0.7015, Error: 48.00%\n", - "Minibatch: 17, Loss: 0.6794, Error: 46.00%\n", - "Minibatch: 18, Loss: 0.6874, Error: 49.00%\n", - "Minibatch: 19, Loss: 0.7077, Error: 49.00%\n" + "Minibatch: 0, Loss: 0.7004, Error: 53.00%\n", + "Minibatch: 1, Loss: 0.6930, Error: 47.00%\n", + "Minibatch: 2, Loss: 0.7122, Error: 56.00%\n", + "Minibatch: 3, Loss: 0.6941, Error: 44.00%\n", + "Minibatch: 4, Loss: 0.6901, Error: 38.00%\n", + "Minibatch: 5, Loss: 0.6797, Error: 49.00%\n", + "Minibatch: 6, Loss: 0.6960, Error: 50.00%\n", + "Minibatch: 7, Loss: 0.6986, Error: 52.00%\n", + "Minibatch: 8, Loss: 0.7059, Error: 49.00%\n", + "Minibatch: 9, Loss: 0.6972, Error: 52.00%\n", + "Minibatch: 10, Loss: 0.6962, Error: 45.00%\n", + "Minibatch: 11, Loss: 0.7007, Error: 44.00%\n", + "Minibatch: 12, Loss: 0.6800, Error: 46.00%\n", + "Minibatch: 13, Loss: 0.6853, Error: 42.00%\n", + "Minibatch: 14, Loss: 0.6927, Error: 47.00%\n", + "Minibatch: 15, Loss: 0.6794, Error: 47.00%\n", + "Minibatch: 16, Loss: 0.6913, Error: 47.00%\n", + "Minibatch: 17, Loss: 0.7049, Error: 48.00%\n", + "Minibatch: 18, Loss: 0.6713, Error: 41.00%\n", + "Minibatch: 19, Loss: 0.7048, Error: 54.00%\n" ] } ], @@ -733,16 +732,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecVOXZ//HPF0SIELGLGjUaexc0CcZeAqixRVE0scco\nGhViTEyiGPN7Hp9o1GDQ2MESUdNsiNgTFdEEBBtiVBQbCCpIVWCv3x/3GR2G2TY7uzO7+32/XvPa\nnXvuc841c3Z2rrnbUURgZmZmVi06VDoAMzMzs3xOTszMzKyqODkxMzOzquLkxMzMzKqKkxMzMzOr\nKk5OzMzMrKo4OTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk6sXZBUI+mCErd9S9JNefePy/bXs3wRlk7S\nhlk8gysdi9VO0jhJD5S47R2SJpc7pgYeu+S4zUrl5MRajbykoEbSLrXUeSd7/N6ChyK7laKmyLZl\nve6DpAGSzirnPq12kobn/S3Vdbup/r01WFP+BoP0d1gJvsaJtbgVKh2AWQkWAkcDY/MLJe0BrAcs\nKrLNV4AlJR5vc5r/g+FoYGtgaDMfx5JrgIfz7m8EXARcBzyZV/5GGY+5G6V/0P8AUBljMatqTk6s\nNXoAOELSmRGRnzQcDfwHWKNwg4j4vNSDRcTiUrdtrSStFBELKh1Hc4mIZ4Fnc/cl9QJ+CzwTEbc3\nZB+SukREsUS4tmOWmhwTEUtL3dasNXK3jrU2AYwEVgf2yxVK6gQcDtxOkW+YhWNOJF2YlX1D0ghJ\nn0iaLekmSV0Ktn2rlub9rpKulTRL0hxJN0tapWDbgyTdL+k9SYskvS7p15I65NV5HDgAyI0dqZH0\nZt7jnbN4p0haKOl9SX+TtFGR5/mj7BiLJD0naaf6XtC87rLdJV0taQbwTvbYCElTi2xzoaSagrIa\nSVdKOljSi1kML0nqU8/x15K0WNL5RR7bLNvvwOz+CpKGSHotey1mSXpS0j71Pc+mkDRd0l2SDpA0\nXtIi4NjssR9JekzSjCymFyWdWGQfy4zdkNQne24HZa/ne5IWSBojacOCbZcZcyJp89zrkt3eyI49\nVtL2RY59tKTJWZ2J2fMoeRyLpLWzv40Ps30+L2lAkXrHSpogaW72/pok6bS8x1eU9P8k/Tfbz0xJ\n/5S0eylxWdvhlhNrjd4CxgEDgDFZ2f7AysAdQEPGbuSa1+8C3gR+AfQETgZmAOcVqZtPwDDgE2AI\nqetnILABsFdeveOBucBlwDxgb1L3wVeBn2d1/h/QndQldXa273kAWRIzKtvnSOAP2bb7AdsA+YnD\nMUA3UpdFZPv/m6SNG/jN+2rgQ+A3wEp5z73Y86+tfDfgsGxfc4Ezgb9K2iAiPil20Ij4UNI/gf6k\n1ot8R5G64+7K7v+GdK6uA/5NOuc7kc7do/U/xZIFsB1wM+m5XQO8nD02MIvlH6Tuv0OAGyRFRAwv\n2EcxQ4DPgP8jJd3nAiNY9u+ottf7JKALcBXQkXTO/ypps4gIAEmHAbeRWhV/TmpZvBV4v46YaiWp\nK/AU6e/1SuBd4Ejgz5K6RcT1Wb3vZc9jNHAt6cvw1kBv4E/Z7i4mvV//BDxPeh98E9gB+FdjY7M2\nJCJ8861V3IDjgKWkD6KBwGygc/bYncAj2e9TgXsLtq0BLsi7PyQru66g3t+ADwvKpgI3FcRRQ+oW\n6JhXfk4W34F5ZZ2LPI8/kT64O+WV3Qe8WaTuCdmxzqzjddkwq/MhsHJe+feyePZvwOtaAzwBqOCx\n4bXENQRYWuQ1Xgh8Pa9s26x8YD0x/CiLdauC8peAh/PuP194bsv0t9Uri/PYWh7/IItv1yKPFTvH\njwEvFpQ9AzyQd79PdswJBX9HP8uOtXFe2Ujglbz7uXFQ7wFd88qPyLbdO69sCvDf/DhJyW1N/j7r\neG0K4/55doxD8spWICU/HwFd8v7Op9ez78nAXeU+n761/pu7day1uov07f5ASd2AA4E/N3IfQfpG\nl+9JYPVsn/W5LpZtkfgTWTLwxQEiPsv9LqmbpNVJ3zpXArZowDEOA2aSWmnqc0dEfJp3/0lSK8zG\nDdg2gOsjoqkzMx6OiLe+2GnEi8CnDYjh76TX7shcgaStga1IrWE5s4GtJW3SxDhLMTkiniosLDjH\n3SWtQfrWv6WkFRuw3xsK/o5yA3Ibct7+HBHzC7b94pxnXX+bAsPz44yIh0kJSyn6AW9HxN15+1sC\n/BFYBcjNpJsNdJe0dx37mg1sV6yL0to3JyfWKkXELOAR0iDYw0h/y38tYVfTCu7nuh5WrS8E4PWC\nmOaTvmF/PVcmaStJ/5A0m/QhPZPUpA6pCbs+3wCmxLIDf2vzTkE8s7Nf63suOW81sF6DY8h8Ul8M\nEfERqVumf17xUcBiUndJzgWkD8DXJL0g6RJJ2zYt5AZbbuwNpFlikh6XNJ/0XD/M4hSp26k+ha/Z\nJ9m2DTlvxbYlb9vc2JVis45eL1LWEBsCrxUpn0yKO3fMPwJvAw9LelvS9ZL2LdjmV8DawBvZWJiL\nJW1VYlzWhjg5sdbsdlIrxanA6IiYW8I+ahuL0eRpm5K6k75Bbwv8mtS6sy9fjjUp9/uvqc9lYZGy\n2lpSOjZDDHcAm0naLrt/BPBoRHz8RTART5ISthOAF0ljLiYUG4DaDJZ7fSRtATwEdCWNndifdI5z\nLV0NOcdNec2a7e+3qSLifdLf/qGkcVP7Ag9J+lNencdI5/MkUnLzY2CipGNaPmKrJk5OrDXLDUD8\nFilRaUkiNZd/WZAGCq7Dly0Qe5K+wR4XEcMi4oHsn/FslldbEvAGsLmk2pKB5vYJqaWi0Neb4Vh3\nk1pKjsxmnGxGGmuxjIiYHRE3R8QxwPrAC8CFzRBPQxxMGm+xf0TcEBEPZue4Wqafv539LNYNVmrX\n2Nukc1NoS9Lfce6YRMTiiLg3IgaSuppGAKdIWjevzscRMTwiBpAGlE8hjWmydszJibVaWTfKqaQP\npvsqEMIpkvJnvA0ktSjkposuJSUx+dOGV8zqFZpP8W6evwFrAmeUI+ASvEEaN7BNrkDSOqQZKWUV\nEXNIs6/6k7p0PgPuya8jabWCbRaQuic659VZOZtq25AulabKtVzkn+PVSYumNUSzrr4aEVNJY0uO\nV94UeaXp3ZvWumHdHiBNez84b38rkP5GZwNPZ2WF5ypIA5whO19F6swjzZ7rjLVrnkpsrc0yzdUR\ncWttFVvAisCjku4iDW49DXgyIu7PHh9Lanm4RdKVWdkPKP6BNB7oL+ky0rTUedl+biGtp3G5pG+R\nBjx2A/YBroqIciVltXUD3AH8Drg7ew5dSQnhFNKsqXK7kzTtdSAwpmCAL8Arkp4gvV4fAzuT1re5\nMq/OoaRZRseTXr/m9CDwv8BoSTeQWplOIc2iWW4xwCJaovvlV6TX9SlJtwBrkf5WX6a0L6hXkabc\n3y5pGGncy1Gkv4dT8wbe3iapM2kW2HuklpMzgGezpAnSWJPRpBlLn5CmGR8IXFJCXNaGODmx1qYh\n3zSLrQnR1OuaFNvfGaS1RX4DdCLNFvpijZWI+FjSAaQ1Tn5L+ud7K2ma6ZiC/V0NbE/6QD2b1DR+\nf0TUSOpH+oDJDf79iJSkvNiA59fQ5120TvYcDgEuJyUpU0nrjGzG8slJU2MAuJc0tqMry87SyRkK\nHESaCtuZ9Dr9Evh9kWM2Vl3bFH0OEfGSpCNI5/cy0ofwFaRWn6sbcIzajlnb69jQbb94LCL+KumH\nwPmkcziFlCQPBNYtuoc6jh0R8yXtRlqX5QTSujuTgWMiIv+cjSCNJRlISto+ICWLv8mrcwVpAcI+\npPM5lTSV+g8NjMvaKDV95qCZmbU22eqwr0XEwfVWNmthVTPmRNLpkqZmSxiPk7RzPfWPyaaezVda\nzvvG/P5Lfbkk91J9uSR4m71WiJlZMUpL/ncoKOtLWsjt8cpEZVa3qkhOJB1JahIdAuwITALGZIsZ\nFav/HdIy0teTFmk6nLTk8XUFVecAPfJuG2Jm1r58A3hZ0gVK1wH6A2mm29vAjZUNzay4ahlzMgi4\nNiJuAZB0Kqkf8kSKD4z6NjA1Iq7K7r8t6VrSNSnyRUTMbKaYzcxag5mk6dankAbpfkpakfe8EtcG\nMmt2FW85UbqabC/yLtqVTTl7hDRyu5hngPWzgYJIWpu0YNOognrdlK4oO03S3V550Mzam2wdkSMj\n4msR0SUi1oqIYyKicHVks6pR8eSElMl3JF0JNt8MUlfMciJiLGm0+Z2SPieNAv+EZdeCmEJqeTmI\nNKOiAzA2f/EfMzMzqz7V0q3TKFkLyFDS4lsPkVbl/D3pIm4nA0TEOGBc3jbP8OXyyEVXH8wWT+pD\nWuFzUXPFb2Zm1gZ1Ia0ePSa7XlbJqiE5mUVaZXHtgvK1gem1bPML4OmIuDy7/5KkgcCTkn4VEYWt\nMETEEknPU/eSzX1o/JVtzczM7EvH0MRLilQ8OYmIxZLGk1a8vBdAkrL7V9ay2UrA5wVlNaSFgoqu\nuJhNpduW5cel5HsL4LbbbmPLLbds4DOwajZo0CCuuOKKSodhZeLz2bb4fLYtkydP5gc/+AGU4Qrn\nFU9OMpcDI7Ik5TnS7J2VSCsMIuliYN2IOC6rfx9wXTarZwxplcMrSMsiT8+2OZ/UrfM6aXXCc0kX\nlbqhjjgWAWy55Zb07NkcK3NbS+vevbvPZRvi89m2+Hy2WU0eFlEVyUlE3JWtaXIRqTtnItAnbxpw\nD9LVR3P1b5bUDTidNNZkNmm2zy/ydrsqad2THqTBsuOB3hHxajM/HTMzM2uCqkhOACLiaopfi4KI\nOKFI2VWkC1DVtr/BwOCyBWhmZmYtohqmEled2bMrHYGZmVn75eSkiGefrXQEVi4DBgyodAhWRj6f\nbYvPp9XGyUkRY8dWOgIrF//za1t8PtsWn0+rjZOTIsaOhZqaSkdhZmbWPjk5KeLjj2HSpEpHYWZm\n1j45OSnioINgxRUrHYWZmVn75OSkiCFDYOutKx2FmZlZ++TkxMzMzKqKkxMzMzOrKk5OzMzMrKo4\nOTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk7qMH48DBtW6SjMzMzaFycndXjmGRg8GObOrXQkZmZm7YeT\nkzr07QuLF8Pjj1c6EjMzs/bDyUkdNtkk3UaPrnQkZmZm7YeTk3r07QsPPggRlY7EzMysfXByUo9+\n/eCtt+C11yodiZmZWfvg5KQee+wBnTu7a8fMzKylODmpR9eusPvuqWvHzMzMmt8KlQ6gNTj+eJgy\npdJRmJmZtQ9OThrg6KMrHYGZmVn74W4dMzMzqypVk5xIOl3SVEkLJY2TtHM99Y+RNFHSfEnvS7pR\n0moFdY6QNDnb5yRJ/Zr3WZiZmVlTVUVyIulI4DJgCLAjMAkYI2mNWup/B7gZuB7YCjgc+CZwXV6d\nXYDbszo7APcAd0vaqvmeiZmZmTVVVSQnwCDg2oi4JSJeBU4FFgAn1lL/28DUiLgqIt6OiLHAtaQE\nJedMYHREXB4RUyLiAmACcEbzPQ0zMzNrqoonJ5I6Ab2AR3NlERHAI0DvWjZ7Blg/100jaW3gCGBU\nXp3e2T7yjaljn2ZmZlYFKp6cAGsAHYEZBeUzgB7FNshaSn4A3Cnpc+AD4BOWbRXp0Zh9mpmZWXWo\nhuSk0bJxI0OBC4GeQB9gI1LXTrNZsgRuvhkmTWrOo5iZmbVv1bDOySxgKbB2QfnawPRatvkF8HRE\nXJ7df0nSQOBJSb+KiBnZto3Z5xcGDRpE9+7dlykbMGAARx01gPPOgwED4LLL6tuLmZlZ2zRy5EhG\njhy5TNmcOXPKtn9FFVxuV9I44NmIOCu7L2AacGVEXFqk/l+BzyPi6Lyy3sBTwHoRMV3SHcBXIuLg\nvDpPA5MiYmAtcfQExo8fP56ePXsWjfXEE+HZZ+Hll0t9tmZmZm3PhAkT6NWrF0CviJjQlH1VS7fO\n5cCPJB0raQvgGmAlYASApIsl3ZxX/z7g+5JOlbRRNrV4KCnBybWMDAX6ShosaXNJF5IG3g5rSqD9\n+sErr8C0aU3Zi5mZmdWmKpKTiLgLOAe4CHge2A7oExEzsyo9gPXz6t8MDAZOB14E7gQmA9/Pq/MM\ncDRwCjAROAw4OCJeaUqs++4LHTr4QoBmZmbNpSq6dapFQ7p1AHbdFdZaC/7+95aLzczMrJq1xW6d\nVqVvX3jkEVi8uNKRmJmZtT1OTkrQrx/MnQtjx1Y6EjMzs7bHyUkJdtwRDj8cOnasdCRmZmZtTzWs\nc9LqdOgAf/lLpaMwMzNrm9xyYmZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZ\nmVUVJydN9OabcNNNlY7CzMys7XBy0kRPPgknnQQffljpSMzMzNoGJydN1KdP+vnQQ5WNw8zMrK1w\nctJEPXqk5ewffLDSkZiZmbUNTk7KoF8/GDMGamoqHYmZmVnr5+SkDPr2hVmzYPz4SkdiZmbW+jk5\nKYPevaF7dxg9utKRmJmZtX5OTspghRVg33097sTMzKwcnJyUSf/+sPnmHndiZmbWVCUlJ5L6Sto1\n7/7pkiZKul3SquULr/Xo3x+GD4cOTvfMzMyapNSP0kuBlQEkbQtcBjwAbARcXp7QzMzMrD1aocTt\nNgJeyX7/PnB/RPxSUk9SkmJmZmZWklJbTj4HVsp+3xfIrY/6MVmLipmZmVkpSm05eQq4XNLTwDeB\nI7PyzYB3yxGYmZmZtU+ltpycASwBDgdOi4j3svJ+QEkTarNBtVMlLZQ0TtLOddQdLqlG0tLsZ+72\nYl6d44rUWVBKbGZmZtZySmo5iYhpwIFFygeVsj9JR5IG1Z4CPAcMAsZI2iwiZhXZ5Ezg53n3VwBe\nAO4qqDeH1JqjXIilxGdmZmYtp9SpxD2zWTq5+wdLulvS/0pasYRdDgKujYhbIuJV4FRgAXBiscoR\nMTciPszdSF1LqwAjlq8aM/PqziwhtkaJSFconjSpuY9kZmbWNpXarXMtqUUCSRsDd5CSiSOASxqz\nI0mdgF7Ao7myiAjgEaB3A3dzIvBIRLxTUN5N0luSpmXJ01aNia0UEpx1Fgwb1txHMjMza5tKTU42\nAyZmvx8B/CsijgaOJ00tbow1gI7AjILyGUCP+jaWtA5prMv1BQ9NISUtBwHHkJ7rWEnrNjK+Ruvb\nNy1lH+5EMjMza7RSkxPlbbsvX65t8g4p2WhJxwOfAPfkF0bEuIi4LSJeiIgngcOAmcCPmzugfv3g\n3XfhlVfqr2tmZmbLKnUq8X+AX0t6BNgDOC0r34jlW0DqMwtYCqxdUL42ML0B258A3BIRS+qqFBFL\nJD0PbFLfDgcNGkT37t2XKRswYAADBgxoQDiw++7wla+kqxRvvXWDNjEzM2s1Ro4cyciRI5cpmzNn\nTtn2ryih70HSdsCfgQ2AyyPiN1n5H4HVsy6exuxvHPBsRJyV3RcwDbgyIi6tY7s9SWNVtomIyfUc\nowPwMjAqIs6ppU5PYPz48ePp2bNnY57CcvbfHz7/HB55pEm7MTMzaxUmTJhAr169AHpFxISm7KvU\nqcQvANsWeehnpFaQxrocGCFpPF9OJV6JbPaNpIuBdSPiuILtTiIlNcslJpLOB8YBr5Nm8pxLSqZu\nKCG+RuvXD845B+bNg27dWuKIZmZmbUOTrqErqZekH2S3nhGxKCIWN3Y/EXEXcA5wEfA8sB3QJ2/q\nbw9g/YJjrwwcSu3JxqrAdaRrAI0CugG9s6nKza5v39Ry8vjjLXE0MzOztqOklhNJawF3ksabzM6K\nV5H0OHBUKeuJRMTVwNW1PHZCkbJPSQlHbfsbDAxubBzlsummcOCBsLSUdiQzM7N2rNSWkz+SEoOt\nI2K1iFgN2IZ00b8ryxVca3fffXDIIZWOwszMrHUpdbZOX2Df/LEeEfGKpNP58grFZmZmZo1WastJ\nB6DY2JLFTdinmZmZWcmJxGPA0PzVViWtB1yRPWZmZmZWklKTkzNI40vekvSGpDeAqcBXs8fMzMzM\nSlLqOifvZAuW7QtskRVPBl4FLgBOKU94ZmZm1t6UOiA2d+Xgh7MbAJK2Jy2M5uTEzMzMSuLBqy1g\n1iz4y18qHYWZmVnr4OSkBTz1FPTvD2++WelIzMzMqp+Tkxaw997QqRN8//swdCh88EGlIzIzM6te\njRpzIunv9VRZpQmxtFkrrwyjRsGwYfCzn8HgwbDnnjBgQEpYVl210hGamZlVj8a2nMyp5/Y2cEs5\nA2wr9tsP7rkHZsyA664DCX78Yy9vb2ZmVqhRLSfFLsBnjbPqqnDSSek2fXpKVsyaIiJdAXv+/PT7\n6qvXXf/SS+GII+DrX2+R8MzMGs1jTiqoRw/Yfvu66yxcCEuWtEw8Vv1++1vYcUfYbDNYbz1YZRVY\ncUXo0iUlJcceW/8+fvc72GSTVPfll5s/ZjOzxip5nRNrGVddlb7p9u+fxqj07p26hKx9Wn/99DfQ\ntSt065Z+5t/WX7/+fbz9NtxwA/z+93DrrXDQQXDeefDtbzd//GZmDaG0lpoBZKvejh8/fjw9e/as\ndDgAvPQSDB8Od94J770HG24IRx2Vbttv70SlLXntNXj88TQWqSV8/jncfntqSXn11TRI+1e/gn33\nbZnjm1nbMmHCBHr16gXQKyImNGVf7tapcttsA5ddBtOmwRNPQN++6VvvjjvCVlvBX/9a6QitHKZM\nScnB0KGpK68lrLgiHH986tr5299g3jy4+eaWObaZWV2cnLQSHTrAHnvANdekdVJGjYKddkofMNa6\nTZkCe+2VBks//jh85Sste/wOHeCww+C559Lfl5lZpXnMSSvUqRPsv3+6Wev26qspMVltNXjsMVh7\n7crFIqVxK2ZmleaWkzbOQ4qq1+TJqStn9dVTi0klE5OGevBB+OijSkdhZm2dk5M27LPPYOed04DH\nTz+tdDSW75VXUovJmmumxGSttSodUf0++wx++MM0KHvwYHj33UpHZGZtlZOTNmz+fOjZEy64ADbY\nIM3E+PDDSkeVWnPeeKP+emefna5LVNvtyivr3r6mJq3KW42tRy+9BOusk7py1lyz0tE0TOfOKaka\nNCjNINt4Yzj55DTLyFreZ5+l98DGG8PBB6cuQrO2wslJG7baammp/DffTB8iQ4emb70/+Ula66Il\nzZ0L//hHimO99dIspAUL6t5mtdXSB3htt+7d697+0UfT5QH69k2znapJ//7w73+3nsQkZ80100Jw\nb78N//u/8MADsMUWacXZCU2aOGgNtWRJSg432ywlit/+dppx9fHHlY7MrHy8zkmealznpJw+/jgt\n6jZ0KMyeDeeemz5gmstrr6VZRaNGwb/+BYsXpw+y/feHAw6A3XeHFZp5SPbo0XDKKTBnTlrM7pRT\nvDZMOS1aBLfcApdcklY8fuqpSkfUdkWkKd/nn59aSQ4/PCWKW2wBS5dCx46VjtDau3Kuc+LkJE9b\nT05y5s9Pa6WsuSYcfXTzHGP69NS60blzGluRS0g23rh5jleXOXPgnHPSc95nn/TT15Upr6VLU5fh\nOutUOpK269FH0wJ5ffrA//wPpM8As4b5/PM0Tqw5/we3yUXYJJ0uaaqkhZLGSdq5jrrDJdVIWpr9\nzN1eLKh3hKTJ2T4nSerX/M+k+nXtCmed1XyJCaRv0Y89lmZ2jB6dupIqkZhA6v65/noYMwb++9/U\npXTVVWlMipVHx471JyYTJ8KRR6bX/qWX/Po31t57p7VoHnyw8YnJggXwySfNE5dVvyeeSCuKH3xw\ndY7BK6YqkhNJRwKXAUOAHYFJwBhJa9SyyZlAD2Cd7OfXgI+Bu/L2uQtwO3A9sANwD3C3pK2a6Wm0\nC0uWwNNPp66h+uy1V3Wtm/Hd78KLL6YZJ7//ff1jXqy8Pv0U3nknDXTedts0Q+nQQ+EPf0jjVZYu\nrXSE1U1Ks+9K8cc/wkYbpRaXefPKG5dVrw8/TBf43GuvtGTB7be3om7tiKj4DRgHDM27L+Bd4NwG\nbn8IsARYP6/sDuDegnrPAFfXsZ+eQIwfPz7au5qaiKOOirjhhoj334+47baIAQMiVl01AiLWWCNi\nzpxKR1m6loh94sSI/faL+Oij5j9WazJvXsQjj0Scf37E7rtHdO6c/qa22abSkbVdH3wQ8ZOfRKy4\nYsSaa0ZccUXEwoWVjsqay9KlEddcE7HKKhGrrRZx442prLmNHz8+gAB6RhPzgoqvECupE9AL+GJo\nZkSEpEeA3g3czYnAIxHxTl5Zb1JrTL4xwMFNCLfdmDcvTVU8+eQvy3r2hNNPT2NHdt65dQ/AW3nl\n5t3/pElpfMuGGzbvcVqjrl3Ta7PPPun+okWpu6Kps02WLk3fCjvU0R78wQcwdWrqf1+8eNmfXbrA\nDjukafct7b330uDW3r3huOPKv/8ePdK043POgYsuSj8vuywtM3D88WnV6ZY2fXo6F0uWwC671P3/\nZNw4eP31dI6L3TbYIM3Ms9R9etpp6TU78cS0ztUatfVBVLGKJyfAGkBHYEZB+Qxg8/o2lrQO0A84\nquChHrXss0dpYbYvX/0q/P3vaRXT559PK5muu26lo2odJk5MH7wbbQQPP5yumWO169Ilzdyqz9y5\nKUH+7LPlE4vFi9MYlmeeSVNra3P77emDuTZf+1rqemops2bB//1fGofTtSt861vNe7wNNkgDws89\nFy68MM1e+93v0t/pRhs1zzGXLk0z9yZNSu+N3G1G3n/nOXPq/sJw/fVw003LlnXs+OXtu991cpLz\n8MPpvfLkk7DrrpWOpnQVn62TJRfvAb0j4tm88t8Bu0dEna0nks4DBgHrRsSSvPLPgGMj4s68stOA\nCyKi6NC93Gyd3Xffne4Fi2gMGDCAAQMGNPr5WesTkdbxKGVGz/PPpxkVG28MDz3kxKSc3nkHhg1L\nM8A6dUoXvcz9zP1+wAF1r7Y7a1bqh8/ftlOndJs7F95/H775zbrjGDUKNt0UNtmk7laausydC5df\nnlovAH7607RmSXO36BV64YW0FtLQoc3XEjp+fLpIKaTkaIcd0uDMHXZIr2OnTulnXcf/7LOUfK6w\nQqrX2NdzJJXNAAAP5ElEQVT9nXegW7f28X5cvDj9bO7WsJEjRzJy5MhlyubMmcO//vUvKMNsnWoY\nb9IJWAwcVFA+AvhHA7Z/Dfh9kfK3gTMLyi4Enq9jXx5zYnHrrWkcxCWXRCxZ0vDtJkxIY3J22ini\nk0+aLz6rnIULIzp2TGNkunWL2G23iLPPjrjlloiXX67/72XRoojLLktjtjp3jhg8OGLmzJaJvZxq\naiLefTdi1KiIf/6z7rqLFkU89lhlx14dcEDEuutG3H9/5WJoD8o55qTis3UiYjEwHtgnVyZJ2f2x\ndW0raU/gG8CNRR5+Jn+fmf2ycrNaHXZYGlvz85/Dd76TlmyvT26MySabpGbVVVZp/jit5XXpkroj\nHn4Yfv3rNH36/vvTjIitt04tH2Pr+K9VU5PGfhx6aBpDcdll1T8eYPHiNPX7ttvgZz+D/fZLrVNf\n+1pqqRo2rO7tc2sdrbZay8RbzLXXptaaAw9M4zBmz65cLNZATc1uynED+gMLgGOBLYBrgY+ANbPH\nLwZuLrLdrcDYWvbZG/gMGEwau3IhsAjYqo443HJiXxg7NmLzzdMMh4svjli8uPa6M2ZEHHusW0za\nq9mzIx5/PLWKzJpVd90FC1okpLI57bTUUgQRX/96xCGHRFx4YcTdd0e89VZqRWkNamrSrJWVV45Y\nb72I0aMrHVFpHn004rnnKh1FceVsOal4YvJFIDAQeAtYSGrd2CnvseHAYwX1VwbmASfWsc/vA69m\n+3wB6FNPDE5ObBkLFkSce25Ehw6pu+bFFysdkVnLeuGF1HXTVhLvadMivvvd9Ol30kkpsWwNpk+P\nOOaYFPfJJ1c6muLKmZxUfEBsNWkvy9db4z37bGoOXrQIpkxp/msCmVnziUizlgYPTqtXN+c1xppq\n6dI0aPm889L/nUsvTdPNSx2M3ZzKuXy9/8WaNcC3vpVWMX3jDScmZq2dBD/6UZqCvPrqlY6mds8/\nD6eemtYBOvnkNO28muMtpyrMvcyqU+fOsJUvfmDWZmy4YZpiXI1+8Ys0BXvhwnS17+uvbz+JCTg5\nMTMzqzprrAGXXJLWifnOdyodTctzA7WZmVkRixdXZml/qHsl4/bALSdmZmYFampg//3TgNn585u+\nv4UL4Ykn0rWN9tsvrb1itXNyYmZmVsT3vgc33gjbbQdpVfaGmzMHRo9Os2y+8x3o3j0tRnf55Wkx\nvx6+yludnJyYmZkV6NABzjwzrf68zjrp4qdnnw0LFjRs+x//OLW8DB8O662XkpKJE+Gjj+C+++Dg\ng5s1/FbPY07MzMxqsemm8M9/pssO/PKX6cKPI0bALrukKcm1GTIEfvvbdEmLuupZcW45MTMzq0PH\njumq0RMnplk0u+4Kjz1W9zZbbpkSGycmpXHLiZmZWQNsvnlac+SOO1JXjzUfJydmZmYN1LEjHHNM\npaNo+9ytY2ZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZmVUVJydmZmZWVZyc\nmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZmZlWlapITSadLmippoaRxknau\np/6Kkv5H0luSFkl6U9LxeY8fJ6lG0tLsZ42kBc3+RKyqjBw5stIhWBn5fLYtPp9Wm6pITiQdCVwG\nDAF2BCYBYyStUcdmfwH2Ak4ANgMGAFMK6swBeuTdNixv5Fbt/M+vbfH5bFt8Pq02K1Q6gMwg4NqI\nuAVA0qnAAcCJwCWFlSX1BXYDNo6I2VnxtCL7jYiY2Twhm5mZWXOoeMuJpE5AL+DRXFlEBPAI0LuW\nzb4H/Af4uaR3JU2RdKmkLgX1umXdPtMk3S1pq+Z4DmZmZlY+1dBysgbQEZhRUD4D2LyWbTYmtZws\nAg7J9vEnYDXgpKzOFFLLywtAd+BnwFhJW0XE++V8AmZmZlY+1ZCclKIDUAMcHRHzACQNBv4iaWBE\nfBYR44BxuQ0kPQNMBn5MGttSTBeAk08+ma9+9avLPNCnTx/69u1b9idizWvOnDlMmDCh0mFYmfh8\nti0+n63Xgw8+yJgxY5Ypmzt3bu7Xwl6MRlPqQamcrFtnAfD9iLg3r3wE0D0iDi2yzQhgl4jYLK9s\nC+BlYLOIeKOWY90FLI6IY2p5/Gjgz6U/GzMzs3bvmIi4vSk7qHjLSUQsljQe2Ae4F0CSsvtX1rLZ\n08DhklaKiNz04M1JrSnvFttAUgdgW2BUHeGMAY4B3iJ1GZmZmVnDdAG+TvosbZKKt5wASOoPjABO\nBZ4jzd45HNgiImZKuhhYNyKOy+p3BV4hddtcCKwJXA88HhGnZnXOzx5/HVgFOBc4COgVEa+22JMz\nMzOzRql4ywlARNyVrWlyEbA2MBHokzcNuAewfl79+ZL2A/4I/Bv4CLgTOD9vt6sC12XbfgKMB3o7\nMTEzM6tuVdFyYmZmZpZT8XVOzMzMzPI5Ock09to+Vp0kDcm7llLu9kql47KGk7SbpHslvZedv4OK\n1LlI0vuSFkh6WNImlYjV6lff+ZQ0vMh79oFKxWt1k3SepOckfSpphqR/SNqsSL0mvUednFDytX2s\ner1EGruUu6bSrpUNxxqpK2nc2UBguX5nST8HzgBOAb4JzCe9X1dsySCtweo8n5nRLPueHdAyoVkJ\ndiON9/wWsC/QCXhI0ldyFcrxHvWYE0DSOODZiDgruy/gHeDKiFju2j5WvSQNAQ6OiJ6VjsWaTlIN\ncEjBGkjvA5dGxBXZ/ZVJK0ofFxF3VSZSa4hazudw0ppWh1UuMitV9iX+Q2D3iHgqK2vye7Tdt5yU\neG0fq26bZk3Ib0i6TdL69W9irYGkjUjfrPPfr58Cz+L3a2u2Z9ZF8KqkqyWtVumArMFWIbWIfQzl\ne4+2++SEuq/t06Plw7EmGgccD/QhrZuzEfCvbG0ca/16kP4R+v3adowGjgX2Jq1HtQfwQNaCbVUs\nO0d/AJ6KiNzYvrK8R6tinROzcomI/JUJX5L0HPA20B8YXpmozKw2Bc38L0t6EXgD2BN4vCJBWUNd\nDWwFfKfcO3bLCcwClpIGY+VbG5je8uFYOUXEHOA1wLM52obpgPD7tc2KiKmk/8t+z1YxScOA/YE9\nI+KDvIfK8h5t98lJRCwmrR67T64s79o+YysVl5WHpG6kf3If1FfXql/2wTWdZd+vK5NmDvj92gZI\n+hqwOn7PVq0sMTkY2CsipuU/Vq73qLt1ksuBEdkFCHPX9lmJdL0fa0UkXQrcR+rKWQ/4DbAYGFnJ\nuKzhsvFBm5C+fQFsLGl74OOIeIfUx/1rSa+TLtL5W9IFP++pQLhWj7rOZ3YbAvyN9IG2CfA7Umtn\nky8eZ+Un6WrSVO+DgPmSci0kcyIid8HcJr9HPZU4I2kgaTBW7to+P4mI/1Q2KmssSSNJ8/BXB2YC\nTwG/yrJ5awUk7UEaa1D4z+nmiDgxq3MhaQ2FVYAngdMj4vWWjNMapq7zSVr75G5gB9K5fJ+UlFyQ\nd201qyLZdPBiicMJEXFLXr0LacJ71MmJmZmZVZV2P+bEzMzMqouTEzMzM6sqTk7MzMysqjg5MTMz\ns6ri5MTMzMyqipMTMzMzqypOTszMzKyqODkxMzOzquLkxMzMzKqKkxOzdkDS45Iub0T9DSXVSNou\nu79Hdn/l5ouy1liGS/p7Sx+3VJKGSHq+0nGYtWZOTsxaIUkjsmTh6iKPXZU9dlNe8aHA+Y04xDSg\nB/BSXlmTr3XR2CSpFfN1QcyawMmJWesUpATiKEmdc4XZ7wNIV2X+snLE7IiY3+CdJx9GRE25Aram\nkeSryFu74eTErPV6HngHOCyv7DBSYrJMt0Jhi4WkqZLOk3SjpE8lvS3pR3mPL9Otk2dXSZMkLZT0\njKSt87ZZTdLtkt6VNF/SC5KOynt8OLAHcFa276WSNsge21rSfZLmZPH8U9JGBc/hp5LelzRL0jBJ\nHWt7YXJdK5J+kD3X2ZJGSupa8BqcWbDd85IuyLtfI+mULLb5kl6R9G1J38he03mSni6MNdv2FEnT\nsu3ulPTVgsdPzva3MPt5WpHXv7+kJyQtAI6u7fmatTVOTsxarwBuAk7MKzsRGA6oAdsPBv5Nulz9\n1cCfJG1asP98Ai4BBgE7ATOBe/OShC7Af4B+wNbAtcAtknbKHj8LeAa4HlgbWAd4R9K6wD+BhcCe\nwI5ZnfyWgr2BjbPHjwWOz251+QZwMLA/cAApMfpFPdsU82tgBLA9MBm4HbgG+B+gF+l1GVawzabA\nEdlx+5Ce0xddcJKOAS4EzgO2AH4JXCTphwX7uRi4AtgSGFNC7GatkpsJzVq3PwP/J2l90peNXYAj\ngb0asO2oiLgm+/13kgZl2/03KyuW4FwYEY8BSDoOeJc0nuWvEfE+kD+e5CpJfYH+wH8i4lNJnwML\nImJmrpKkM4DZwICIWJoVv1Fw3I+BMyIigNckjQL2AW6s4/kJOC4iFmTHuTXbpjFjbwBuioi/Zfu4\nhJRg/SYiHsnKhpKSxHydgR9GxPSszk+AUZJ+GhEfkhKTn0bEPVn9t7NWqFOBW/P2c0VeHbN2w8mJ\nWSsWEbMk3Q+cQPowHhURH0sNaTjhxYL704G16jocMC7v2J9ImkL6Vo+kDsCvSC0G6wErZrf6xrps\nDzyZl5gU83KWmOR8AGxTz37fyiUmedvU9fxqk/86zch+vlRQ1kVSt4iYl5VNyyUmmWdIyePmkuaR\nWnVulHRDXp2OpCQt3/gS4jVr9ZycmLV+w0ndCgEMbMR2iwvuB03r6j0X+Amp++YlUlIylJSg1GVh\nA/ZdSqz1bVPD8q1DnerZT9RR1tDXrlv282TguYLHChO0Bg9iNmtLPObErPV7kJQArAA81IzHEfDt\nL+5IqwKbAa9kRbsA90TEyIh4EZiaPZ7vc1ILQb4XgN3qGuDaTGaSxr0AkK3hstzA1iIaMk14A0k9\n8u73JiUer2bdOu8D34iINwtu+bOsPB3Z2i0nJ2atXDbddwtg64Kuj+ZwgaS9JW1DGiQ6E8iNifgv\nsJ+k3pK2JA2IXbtg+7eAb2WzUVbPyoYBKwN3SuolaZNsls2mNK/HgB9K2lXSttnzWdKA7Yr1mRWW\nfQbcLGk7SbuRWpDuzBtrMwQ4T9JPJG0qaRtJx0s6u57jmLULTk7M2oCImJc33qFolXruN6ROkGa7\nDCXN8lkT+F5E5D7Q/x8wgdSS8xhpjMc/Cvbxe1ILwivAh5I2iIiPSbNxugJPkGb8nMzy3TLldjFp\nltB92e0fLD8QtyGvU7Gy/wJ/Bx4gvR4TgdO/qBxxI+k5nkBqOXoCOI7U2lTXcczaBTX/Fy0zMzOz\nhnPLiZmZmVUVJydmZmZWVZycmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZm\nZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVeX/A/kWwZ4Yxlp7AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYVPX1x/H3B6SoKPausSt2wQJGY4vBjl1XrFii2IIl\nxvzsPRollqhEEcToIokl2ELUaGIBjWBBRQRFxY4FUASknN8f564Ow5bZ2dm9d2bP63nmgblz7/ee\nO2XnzLfKzAghhBBCyIo2aQcQQgghhJArkpMQQgghZEokJyGEEELIlEhOQgghhJApkZyEEEIIIVMi\nOQkhhBBCpkRyEkIIIYRMieQkhBBCCJkSyUkIIYQQMiWSk9AqSJov6cIij31f0p05949OyutaugiL\nJ+lnSTxnph1LqJukUZIeK/LYoZLGlTqmAs9ddNwhFCuSk1A2cpKC+ZK2q2Ofycnjw/MesuRWjPm1\nHFvSdR8kVUk6o5RlhrpJGpTzXqrvdmfDpRWsKe9Bw9+HaYg1TkKLWyTtAEIowkzgcOCF3I2SdgRW\nBWbVcsyiwNwiz7cBzf/FcDiwMXBDM58nuNuAJ3LurwVcCvwFeDZn+7slPOcOFP9FfwSgEsYSQqZF\nchLK0WPAwZJON7PcpOFw4GVgufwDzOyHYk9mZnOKPbZcSVrMzL5PO47mYmYvAi/W3JfUDbgMGGlm\n9xZShqSOZlZbIlzXOYtNjjGzecUeG0I5imadUG4MqAaWBXar2SipHXAQcC+1/MLM73Mi6eJk2zqS\nBkv6RtJUSXdK6ph37Pt1VO8vLmmApC8lTZN0l6Sl8o7dV9Ijkj6WNEvSREnnS2qTs8/TwF5ATd+R\n+ZLey3m8QxLveEkzJX0i6X5Ja9VynSck55gl6SVJWzX0hOY0l/1C0i2SPgcmJ48NljSplmMuljQ/\nb9t8STdK6iVpbBLDG5J6NnD+FSTNkXRBLY+tn5TbN7m/iKSLJL2TPBdfSnpW0q4NXWdTSPpM0jBJ\ne0kaLWkWcFTy2AmS/i3p8ySmsZL61FLGAn03JPVMrm3f5Pn8WNL3kkZI+lnesQv0OZG0Qc3zktze\nTc79gqTNazn34ZLGJfu8mlxH0f1YJK2YvDe+SMp8RVJVLfsdJWmMpG+Tz9drkk7Oeby9pMslTUjK\nmSLpP5J+UUxcoXJEzUkoR+8Do4AqYESybU9gSWAoUEjfjZrq9WHAe8DvgK7A8cDnwHm17JtLwM3A\nN8BFeNNPX2ANYOec/Y4BvgWuA74DdsGbD5YAzk32uRzojDdJ/SYp+zuAJIl5NCmzGvhTcuxuwCZA\nbuLQG+iEN1lYUv79ktYu8Jf3LcAXwCXAYjnXXtv117V9B+CApKxvgdOBv0taw8y+qe2kZvaFpP8A\nh+C1F7kOw5vjhiX3L8Ffq78A/8Nf863w1+6phi+xaAZsBtyFX9ttwJvJY32TWB7Em//2A+6QZGY2\nKK+M2lwEzAauxpPu3wKDWfB9VNfzfRzQEfgz0BZ/zf8uaX0zMwBJBwB/xWsVz8VrFu8GPqknpjpJ\nWhx4Dn+/3gh8BBwK3COpk5ndnuy3T3IdjwMD8B/DGwM9gFuT4q7CP6+3Aq/gn4NtgC2A/zY2tlBB\nzCxucSuLG3A0MA//IuoLTAU6JI/dBzyZ/H8SMDzv2PnAhTn3L0q2/SVvv/uBL/K2TQLuzItjPt4s\n0DZn+9lJfHvnbOtQy3Xcin9xt8vZ9jDwXi37Hpuc6/R6npefJft8ASyZs32fJJ49C3he5wPPAMp7\nbFAdcV0EzKvlOZ4JrJmzbdNke98GYjghiXWjvO1vAE/k3H8l/7Ut0XurWxLnUXU8/mkS3/a1PFbb\na/xvYGzetpHAYzn3eybnHJP3PjonOdfaOduqgbdy7tf0g/oYWDxn+8HJsbvkbBsPTMiNE09u5+eW\nWc9zkx/3uck59svZtgie/HwFdMx5n3/WQNnjgGGlfj3jVv63aNYJ5WoY/ut+b0mdgL2BexpZhuG/\n6HI9CyyblNmQv9iCNRK3kiQDP57AbHbN/yV1krQs/qtzMWDDAs5xADAFr6VpyFAzm55z/1m8Fmbt\nAo414HYza+rIjCfM7P0fCzUbC0wvIIYH8Ofu0JoNkjYGNsJrw2pMBTaWtG4T4yzGODN7Ln9j3mvc\nWdJy+K/+LpLaF1DuHXnvo5oOuYW8bveY2Yy8Y398zZOmv/WAQblxmtkTeMJSjD2AD8zsoZzy5gI3\nAUsBNSPppgKdJe1ST1lTgc1qa6IMrVskJ6EsmdmXwJN4J9gD8Pfy34so6sO8+zVND0s3FAIwMS+m\nGfgv7DVrtknaSNKDkqbiX9JT8Cp18CrshqwDjLcFO/7WZXJePFOT/zZ0LTXeL3C/gmNIfNNQDGb2\nFd4sc0jO5sOAOXhzSY0L8S/AdyS9LukaSZs2LeSCLdT3BnyUmKSnJc3Ar/WLJE7hzU4NyX/OvkmO\nLeR1q+1Yco6t6btS26ijibVsK8TPgHdq2T4Oj7vmnDcBHwBPSPpA0u2Sfpl3zP8BKwLvJn1hrpK0\nUZFxhQoSyUkoZ/fitRQnAY+b2bdFlFFXX4wmD9uU1Bn/Bb0pcD5eu/NLfuprUurPX1OvZWYt2+qq\nSWnbDDEMBdaXtFly/2DgKTP7+sdgzJ7FE7ZjgbF4n4sxtXVAbQYLPT+SNgT+BSyO953YE3+Na2q6\nCnmNm/KcNdv7t6nM7BP8vb8/3m/ql8C/JN2as8+/8dfzODy5+TXwqqTeLR9xyJJITkI5q+mAuC2e\nqLQk4dXlP23wjoIr81MNxE74L9ijzexmM3ss+WM8lYXVlQS8C2wgqa5koLl9g9dU5FuzGc71EF5T\ncmgy4mR9vK/FAsxsqpndZWa9gdWB14GLmyGeQvTC+1vsaWZ3mNk/k9c4K8PPP0j+ra0ZrNimsQ/w\n1yZfF/x9XHNOzGyOmQ03s754U9Ng4ERJq+Ts87WZDTKzKrxD+Xi8T1NoxSI5CWUraUY5Cf9iejiF\nEE6UlDvirS9eo1AzXHQensTkDhtun+yXbwa1N/PcDywPnFqKgIvwLt5vYJOaDZJWxkeklJSZTcNH\nXx2CN+nMBv6Ru4+kZfKO+R5vnuiQs8+SyVDbQppUmqqm5iL3NV4WnzStEM06+6qZTcL7lhyjnCHy\n8uHd69V5YP0ew4e998opbxH8PToVeD7Zlv9aGd7BGZLXq5Z9vsNHz3UgtGoxlDiUmwWqq83s7rp2\nbAHtgackDcM7t54MPGtmjySPv4DXPAyRdGOy7Qhq/0IaDRwi6Tp8WOp3STlD8Pk0rpe0Ld7hsROw\nK/BnMytVUlZXM8BQ4A/AQ8k1LI4nhOPxUVOldh8+7LUvMCKvgy/AW5KewZ+vr4Gt8fltbszZZ398\nlNEx+PPXnP4JXAk8LukOvJbpRHwUzUKTAdaiJZpf/g9/Xp+TNARYAX+vvklxP1D/jA+5v1fSzXi/\nl8Pw98NJOR1v/yqpAz4K7GO85uRU4MUkaQLva/I4PmLpG3yY8d7ANUXEFSpIJCeh3BTyS7O2OSGa\nuq5JbeWdis8tcgnQDh8t9OMcK2b2taS98DlOLsP/+N6NDzMdkVfeLcDm+Bfqb/Cq8UfMbL6kPfAv\nmJrOv1/hScrYAq6v0OuudZ/kGvYDrseTlEn4PCPrs3By0tQYAIbjfTsWZ8FROjVuAPbFh8J2wJ+n\n3wN/rOWcjVXfMbVeg5m9Ielg/PW9Dv8S7o/X+txSwDnqOmddz2Ohx/74mJn9XdKRwAX4azgeT5L7\nAqvUWkI95zazGZJ2wOdlORafd2cc0NvMcl+zwXhfkr540vYpnixekrNPf3wCwp746zkJH0r9pwLj\nChVKTR85GEIIodwks8O+Y2a9Gtw5hBYWfU5CCKGCyaf8b5O3bXd8Iren04kqhPpFzUkIIVQwSRvg\nI6Gq8aaVjfEhu58BmxU5BD+EZhV9TkIIobJNwYdbn4h30p2Oz8h7XiQmIaui5iSEEEIImRJ9TkII\nIYSQKdGskyOZPKknPsPnrHSjCSGEEMpKR3z26BHJellFi+RkQT1p/Mq2IYQQQvhJb5q4pEgkJwt6\nH+Cvf/0rXbp0STmUUAr9+vWjf//+aYcRSiRez8oSr2dlGTduHEcccQSUYIXzSE4WNAugS5cudO3a\nHDNzh5bWuXPneC0rSLyelSVez4rV5G4R0SE2hBBCCJkSyUkIIYQQMiWSkxBCCCFkSiQnoaJVVVWl\nHUIooXg9K0u8nqEukZyEihZ//CpLvJ6VJV7PUJdITkIIIYSQKZGchBBCCCFTMpOcSDpF0iRJMyWN\nkrR1PfsOkjRf0rzk35rb2Jx9NpL096TM+ZJOb5krSceUKfDAA2lHEUIIITRdJpITSYcC1wEXAVsC\nrwEjJC1XxyGnAysBKyf/rgZ8DQzL2Wcx4F3gXODT5ok8O4YNg0MOgY8/TjuSEEIIoWkykZwA/YAB\nZjbEzN4GTgK+B/rUtrOZfWtmX9TcgG2ApYDBOfu8bGbnmtkw4Idmv4KUHXkkdOwId9yRdiQhhBBC\n06SenEhqB3QDnqrZZmYGPAn0KLCYPsCTZja59BFm1//9H7z0kv9/ySWhd2+4/XaYOzfduEIIIYSm\nSD05AZYD2gKf523/HG+yqZeklYE9gNtLH1p2jRsHV14JH3zw07aTT/ZmnYcfTi+uEEIIoakqYeG/\nY4BvgH+UqsB+/frRuXPnBbZVVVVlakz+wIGw7LKw774/bdtiC+jeHW69FfbfP73YQgghVLbq6mqq\nq6sX2DZt2rSSlZ+F5ORLYB6wYt72FYHPCjj+WGCImZWsMaN///6ZXinzhx9gyBDvZ9Khw4KPnXwy\nHH00TJgA662XTnwhhBAqW20/2MeMGUO3bt1KUn7qzTpmNgcYDexas02Skvsv1HespJ2AdYCBzRhi\n5jz6qA8d7lNLd+FDDoFlloEBA1o+rhBCCKEUslBzAnA9MFjSaOAlfPTOYiSjbyRdBaxiZkfnHXcc\n8KKZjcsvMOlouxEgoD2wqqTNge/M7N3mupCWMHAgbL01bLrpwo917AjXXAOrrNLycYUQQgilkInk\nxMyGJXOaXIo357wK9DSzKckuKwGr5x4jaUlgf3zOk9qsArwCWHL/7OT2H2CXkl5AC/r4Y3j8cbjl\nlrr3Oe64losnhBBCKLVMJCcAZnYLUOtXrpkdW8u26UCnesr7gAw0W5XaXXd5P5PDDks7khBCCKF5\nZCY5CYU54gjo0gXyBhOFEEIIFSOSkzKzxhp+CyGEECpVxTV7hBBCCKG8RXISQgghhEyJ5KQVmDsX\nzBreL4QQQsiCSE4q3AcfwJprwrPPph1JCCGEUJhITirc6qvDYov5ejshTJ8ON98MM2akHUkIIdQt\nkpMyMH168ce2aQMnnQT33w+f56/7HFqVadOgZ0847TQ4/HCYNy/tiEIIoXaRnGTc7Nmwzjpw223F\nl3HMMdC2Ldx5Z8nCCmVm6lTYbTd4+224+mp45BE455y0owohhNrFPCcZ99BD8OWXsNNOxZexzDI+\no+yAAfDb33qiElqPr7+GX/0K3nsPnnoKunaFxReH4cN9hev27dOOMIQQFhQ1Jxl3552w3Xaw4YZN\nK+fkk71z7D//WZq4Qvl4/nmYPBmeftoTE4BTT/U1miIxCSFkUSQnGfbBB/DEE6VZyG/rrf2LKTrG\ntj777AMTJ8Lmmy+4PWrQQghZFclJhg0e7NXvhxzS9LIkrz0ZPx5mzmx6eaG8LLFE2hGEEELhIjnJ\nqPnzYdAgOPRQ6FTn2suNc/TRnpwsumhpygshhNbihx/gmmuaNnoyTZMnQ1UVTJqUdiSFieQko556\nypt1+vQpXZnt2vnQ4hBCCI3zl7/AeefBhx/6/ZNPhqFD042pMZ5/3uNdfPG0IylMfFVl1NtvwxZb\nQI8eaUcSWpvnn087ghCyZfp0uPRSr33eZBPf9sorPiS/XIwcCWuvDSuskHYkhYnkJKNOOw1eftn7\nioTQkMmT4eCDfdhwU/znP7D99j7sPITgrr0Wvv3WE5QaPXr4F365GDWqvH7sRnKSYTGaIhTigw9g\nxx09mf3226aVteOOPsz4lFNgxIjSxBdCOfvkE7j+evjNb2C11X7a3r27zx30xRfpxVaoWbO8pqd7\n97QjKVwkJyGUsUmTPKGQ4Jln4Gc/a3qZ/fv7NPcHHwxvvNH08kIoZxdfDB07wrnnLri9phZi1KgW\nD6nRRo+GOXOi5iSE0AImTvTEpF270iUmAIss4h3n1l4b9toLPvusNOWGUG7GjYOBA+GCC2CppRZ8\nbPXVYeWVy6NpZ9QoH6W52WZpR1K4zCQnkk6RNEnSTEmjJG1dz76DJM2XNC/5t+Y2Nm+/gyWNS8p8\nTdIezX8l5WPo0PLq0BV+8s47vqTBoot6YrL66qUtf4kl/L0xZw7suy98/31pyw+hHAwcCGus4SNz\n8kleE1EONScjR8JWW/kPmXKRieRE0qHAdcBFwJbAa8AIScvVccjpwErAysm/qwFfA8NyytwOuBe4\nHdgC+AfwkKSNmukyys499/gvArO0IwmNUZOYLLGEJyarrto851ltNU9Q3nzTF48MobW55hrvJN6h\nQ+2Pd+8OL70Ec+e2bFyNtdde8Otfpx1F42Rl4b9+wAAzGwIg6SRgL6APcE3+zmb2LfBj1z9J+wFL\nAYNzdjsdeNzMrk/uXyhpN+BUoG8zXEPZ6dsX9twTXnyxvDpKtXZLLQU//zncfDOsuGLznqtrV7jv\nPm/qqWTTp8Pnn8N666UdSciSNm285qQue+zhtYuzZ2f7M3LssWlH0Hip15xIagd0A56q2WZmBjwJ\nFNp9pw/wpJlNztnWIykj14hGlNnibrzR5zdpKT17wlprxXo75WaFFeBvf2v+xKTG3nvD7ru3zLla\nmhlUV3tSMmRI2tGEcrPJJvD735fPxGblJPXkBFgOaAt8nrf9c7zJpl6SVgb2wJtvcq1UbJlpNHO8\n+y6ccYZXEbaUNm28qu++++Crr1ruvCFkwbhxsOuucPjh3rG43Kq9Q6hkWUhOmuoY4Bu8T0lJXHNN\nyycogwfDkkvCQQe17Hn79PFrHTy4Zc8bQlpmzPBfu5tv7pPXjRgBw4YtOIdFCCFdWWgl+xKYB+RX\nUq8IFDKI8VhgiJnld0n6rNgyhw3rx0svdWbTTX/aVlVVRVVVVQHhNN68eZ4cVFXBYos1yynqtPzy\nnhDddhv06xdr74TKZQbDh8Ppp/vEWRdcAOec43NYhBAap7q6murq6gW2TZs2rWTlyzIwVEPSKOBF\nMzsjuS/gQ+BGM7u2nuN2wvuqbGJm4/IeGwosama9crY9D7xmZrV2iJXUFRh9/vmjufzyrpx0Evz5\nz83/hf34494x9aWXYOs6B1A3n+eegx12gH/9C3bbreXPH2o3fbrXpoXSmDcPunXz0U033eTzuISQ\nyyyWDGmKMWPG0K1bN4BuZjamKWVl5Xfy9cAJko6StCFwG7AYyegbSVdJuquW447Dk5pxtTx2A7C7\npDMlbSDpYrzj7c0NBbP//j6+fcAAH98+f35xF1WogQNh0019HHoafv5zuOsu2GabdM4fFlazSNdT\nTzW8b1ree89rHpr781EqbdvC00/78OhITEK+zz7zScrGNOkrNZRKFpp1MLNhyZwml+JNL68CPc1s\nSrLLSsAC00xJWhLYHx8yXFuZIyUdDlyR3CYAvczsrUJi6tPHM+jjjvMx7jfeWMyVNWzKFK9qvvba\n9DJ2CY46Kp1zhwV98YX3fzjvPNhyy2wnjG++Cddd51/6V1+ddjSFWXrptCMIWXXJJfDxxz6CsVI8\n9JDPHL3llmlH0niZSE4AzOwW4JY6HltolLaZTQc6NVDm/cD9xcZ07LH+h7dU04LX5q9/9eTgiCOa\n7xwh26ZP9z8i994LTz7p74cDDvAatU71vsPTtc8+8Mc/wllnwbrrwvHHpx1RCMUZPx5uvx3+8Ifi\nEtiPPoIHH/S5o7K0YOvpp8Ohh5ZncpKVZp3MOuooH2bYXHbd1SfTWnbZ5jtHyK6nn/b5So4+GmbO\n9PfCp5/68O4sJyY1+vWDk07y5s+0m6DmzPEvmB9+aFo5zz/vf9DLpbkqNN155/lorVNOKe74CRM8\nERhXWweDlHz8sY9GK6fF/nJFcpKyzTaDE05IO4qQlq5d4bLL4MMPfZrsk06C5epatCGDJO9c+stf\nwoEHwlsFNZqW3rPP+nN50kn+PDbVsGFeZqh8zz/vtR6XX178yK2tt/aBE1laZ6dmQcJynf07kpMQ\nUtS5M5x9dukX7mtJiyziNT1rrOFreIwe3XLn/uILX/fnF7/wYfj/+1/TR5xttx2suaY3uYbKZga/\n/S1ssYVPxlesTp18UEOWkpNRo/wzucoqaUdSnEhOQmgGY8d6VfGvftU6FlZcckkfBTN/fsMT+s2f\n701YTTFvni+7sMEG3qH8L3/xX4pduzatXPDaoN69fYmAWbOaXl7Iroceghde8Ik3mzplRI8eP9VW\nZMHIkeXbpAORnDTJJ59kfzXKYph5e2VonPfegyuv9PU2NtvMh6KvtVbTv4jLxRpr+DIMV11V/34T\nJngtx6qren+uPn3giitg6FB4+WX45pv6j//oI6+q7tvXOw6PH+9No6Wcj6h3b5g2DR57rHRlhuyZ\nPdtrTEoxv1P37t6sOXVq08tqqh9+8BrMSE5aodmzfeKyo46qvASlf3+vomwtX6pNMWuWDzPv0QPW\nWce/ZDfbDB5+2OdNGDCg5Wf9TdMiizTckXf55WHQIE9KVl0V3ngDrr/eZ0jeemtYZhn44IO6j19h\nBU/6nn/eRzQtv3xprwGgSxefsC2adirbYYfBPfeUpqyavh0tuT5aXV591b+jyrW/CWRoKHG56dDB\nqwIPO8yrqf/612wvmd0YvXr58ND77vP2/FC3RRbx90HXrj4UeN99Y4XShiyzTO3vq2++8ZqXiRPr\nX+emfXvvsNrceveG3/3O44r5UUJD1l/f3yejRnlzbpqmTvUa3HIcQlyjqJoTSbtL2j7n/imSXpV0\nr6RW8zE+8ED/I3n//V41OGdOYcdlvaZlnXWgZ09v0w/1W2QRb84ZPtx/+UdiUryll/ZZkg87LBtz\nRRx2mH9W//73tCMJ5UDy2cXbt087Ek+Oxo7NRizFKrZZ51pgSQBJmwLXAY8Ba+FT0bca++/vf7we\nesi/nBpKUObO9U58d9/dMvEV6+STvXoypnJuWDn/AQh1W3ll+Mc/Wn6l8FC+Bg702rbQdMUmJ2sB\nNTMaHAg8Yma/B04B9ihFYOWkVy9PUIYP98mb6psE6rHH/Jd27orHWbTXXl61HrUnoTXbe+9o0gkh\nDcUmJz/gC/MB/BL4V/L/r0lqVFqbffeFBx6ARx/1KZDrMnCg90/YYouWi60YiywCJ57o/ShKuAp2\nCCGE0KBik5PngOslXQBsAzyabF8f+KgUgZWjvff2KbzPOqv2xz/91JOXPn1aNq5iHX+81wINGZJ2\nJCGE0HSvvpp2BKFQxSYnpwJzgYOAk82sZlaMPYB/liKwcrX99nUPHb37bq+RaMpMhC1p5ZV9VMXs\n2WlHkg0TJkQfnBDK1ahRPnrln636G6p8FDX41cw+BPauZXu/JkdUocy8SefAA8urDfv229OOIDsu\nvthnk5w4MRujSUIIhTGDc86BzTcvzYRrofkVlZxI6grMMbOxyf1ewLF4J9mLzayJ64JWnuefh3fe\niQ6m5erDD33el+uvj8QkhHLz8MPw3HNea1LJn99p03zerXL6AVyXYpt1BuD9S5C0NjAU+B44GLim\nNKFVlmefhbXXhp12SjuSUIw//cnXjymX/kKh9Mxi1uRyNHeuD+/dddeWmxxtxgyYPLllzpVryBBv\njq9vxGi5KDY5WR+o6Vp0MPBfMzscOAYfWhzynHeed8Yq5fofWXD77b7Q27x5aUfSfKZO9es8+eSG\np2YPlatXL1/PpzV5912YNCntKJpm0CAYN85ncpZa5pwHHpjOe2XkSO9XUwlzLxX7VamcY3+JT8AG\nMBlYrqlBVaollkg7gtJ7+WU49tifOppV4gq8Awb4L5HTTks7kpCmrl19NujWUnvy4ot+zbvuWr6d\n4mfMgIsu8kEIpVixulDbbusdcFv67+GoUeW92F+uYpOTl4HzJR0J7MhPQ4nXAj4vRWChPAwY4B+I\npZaCPfbwzmavvJJ2VKUzezbccIMv8LjSSmlHE9LUuzd8+633X6h0L77oTSDrruv9rf7857QjKs4N\nN8BXX8Hll7fseXv0gC+/9JqnlvL5517LVc6L/eUqNjn5DdAVuBm4wswmJtsPAl4oRWChfGy7Lfzn\nPz7V98cf+y+UI4+sf2XZclFd7fPTnHlm2pGEtK23nr/XK32l4pde8sRk003hmWfghBO8WXP+/LQj\na7w+fXwiybXWatnzbrON/ztqVMudc+RI/7dV15yY2etmtqmZdTazS3IeOgc4upgyk8UDJ0maKWmU\npK0b2L+9pCskvS9plqT3JB2T8/giki6UNDEp8xVJPYuJLTRM8llyx46F226DJ57wdYfKvZln++3h\n5puhS5e0IwlZ0Ls3PP64/yquRNOmeQ3oJpv4dS6xBFx1lScs5dhfbqWVvP9HS1tmGV9DrSZhaAmj\nRsGqq8Lqq7fcOZtTk95ukrpJOiK5dTWzWWZW4Nq8C5RzKL544EXAlsBrwAhJ9fVf+RuwMz6EeX2g\nChif8/gVwAn4ej9d8BFGD0ravLHxhcItsgj8+tc+F8g997RcB7Tmsu66cMopaUcRsuLQQz3h/tvf\n0o6keXTu7JNF1iQm4E22ldhfrrn16NHyNSeV0qQDRSYnklaQ9DTwP+DG5PaypKckLV9Ekf2AAWY2\nxMzeBk7ChybXOnBT0u7ADsCeZva0mX1oZi+aWW6eegTe5DTCzN43s9vwjrt1TC4fSqlTp6htCJVn\nhRWgZ8/KbtrZc08fNh+apnt3eO01+P775j/XvHne169SmnSg+JqTm4BOwMZmtoyZLQNsgi/6d2Nj\nCpLUDugGPFWzzcwMeBKo66neB++Ue66kjySNl3StpI45+3QA8vuYzwS2b0x8IYSQq3dvGD/eh5iH\nUJcePTy6A3ldAAAZ3ElEQVRpGDu2+c/Vtq339zv++OY/V0spNjnZHehrZuNqNpjZW3gTyh6NLGs5\noC0Lj/L5HKhrfMTaeM3JxsB+wBl4Z9zcPuUjgDMlrSu3G3AAsHIj4wvNYO5cby554420IwmhcQ46\nCD75xJs7QqjLxht736Rtt22Z8y2xhDfLVYpik5M2QG19S+Y0oczGnn8+cLiZvWxm/wTOBI6W1CHZ\n5wxgAvA2XoNyI3BnclxI2eTJMGIEbLEFPPlk2tGEULj27StjkqvQvNq2hWWXTTuK8lXU2jrAv4Eb\nJFWZ2ScAklYF+iePNcaXwDxgxbztKwKf1XHMp8DHZvZdzrZx+ORwqwHvmtmXwAGS2gPLmtmnkq4G\n3msooH79+tE5LwWtqqqiqqqqkOsJBVhrLXjrLdhrL59D5PXXYbmYvi+EFvHGGz7NebFfnmY+tDhL\n69T8979w441w553RZ6YlVFdXU11dvcC2adOmlax8WRFjPSWtDgzHm1VqVhBYHRgL9DKzjxpZ3ijg\nRTM7I7kv4EPgRjO7tpb9T8AToRXM7PtkWy/g70AnM1toPsOkb8tbwFAzu6COOLoCo0ePHk3XlpxO\nsBX75BOfT2GHHeDBB9Mf3TNtmndgWzka/0KFeu012GUXH/o/aFDjj583zzvN7rYbnH126eMrxuzZ\nXgu79NK+wF85DnuuBGPGjKFbt24A3cxsTFPKKnaek8n4JGx7AX9KbnsCvYALiyjyeuAESUdJ2hC4\nDVgMGAwg6SpJd+Xsfy/wFTBIUhdJv8AXHBxYk5hI2kbS/pLWkrQD8Dhes7JQshPSs8oqMHCgT+B2\n++1pR+Nzmmy4oU97HUKlef11n45+zTV9he1itG3rQ+wvvzw7871ce61PXzBgQCQmlaLol9HcE2Z2\nU3J7ElgWOK6IsoYBZwOXAq8AmwE9zWxKsstKeM1Mzf4zgN2ApfDhzHcD/8D7mdToCFwOvAncj9fw\nbG9m0xsbX2he++0HJ54Iv/kNvP12enHMmgU33QSHHQaLL55eHCE0h7FjPTFZYw2fJHHppYsv66KL\nvFnnsstKF1+xJk70ROmss7wWNlSGopp16izMJzgbY2YZaoksXDTrpGfGDOjWzf+4pDXB1R13eJL0\n9tuw/vrpxBBCc3jjDdh5Z1htNXjqKZ/BtKmuvhouuMD7jq23XtPLK4aZT7U/cSK8+SYstlg6cQSX\nerNOCKW2+OLwyCPFtYGXwvz5cN110KtXJCahcHPn+qizLDcDvvmm9zFZbTUfGVeKxATgjDO8Wfbc\nc0tTXjGqq/2abrmldSYmc+f6kOXhw9OOpPQiOQmZse66PrNsGh591GtMzjknnfOH8jR5Muy+u/eZ\nyqqaJOLJJ0s7tHXRReHKK70j+7PPlq7cQn3zDfTrB4cc4usBZdWHH/ps2S80w5K4b7zhNVdNaaLL\nqkYNJZb0QAO7xLREoSz98Y8+o+N226UdSSgna60FP/+5T2d/+OFpR1O76mofBdccc25UVUH//t7f\nY9Solu2MOneujxq68sqWO2cxVl7ZV2gfObL0f19GjvT1zLbaqrTlZkFj5zlpaBDzNGBIkbGEkIqX\nXvI5Eh5oKPUOoRZHHAGnngpffOFr72TN8sWsdlagNm28OfT++30476KLNt+58i2/fHrNwI3Rrp0n\nD82xCOCoUT6EuiWf95bSqOTEzI5trkBCSEu7dtCnj8/7EEJjHXwwnH463HcfnHZa2tG0vB139Fuo\nW48evkp7qY0c6QtRVqLocxJavS239LlWsjTbZSgfyy7rfR4qeaXi0DTdu/vCfB81anrS+n35JUyY\nUFkrEeeK5CRkmhncfTf88EPakYRQtyOO8ObBCRPSjiRkUffu/u/IkaUr88UX/d9ITkJIwTvvwHHH\nwYXFzDscQgvZe29fz6U5qu4L8c478NBD6Zw7NGzlleFnPyttv5ORI72P05prlq7MLCl24b8QWsQG\nG/jsj7/7nbet7rxz2hGFsLBFF/UZjtPoEDthgn8ullvOk6RF4q96JvXoUdrkpKoKtt46/fXImku8\njUPmnX22T3R15JG+aFksQx6y6JJLWv6cTzzhn4ull/bPSKUmJlOnwu9/789xc44+ak5nnulLZJTK\nxhv7rVJFs07IvDZt4K67fLXgE0/0fightGazZ/vcIr/6FWy2GTzzDKy0UtpR/WTCBP8hUSrnnecd\njsu579nWW/vq66EwkZyEsrDaar5q8QMP+Miappg/H2bOLE1cIbS0ceO8g+XNN/scI//8J6y4YtpR\nLahPHzj+eP+sNdXIkb7a8BVXwKqrNr28UB4iOQll48ADvXPsGWfA+PHFlzN8uHdO++yz0sUWQkuY\nMsV/gc+e7aM1zjyzZWdlLdRVV8HLL/vstE0xZw78+te+KGjfvqWJLZSHCm2hDJXqT3+CSZN8XY1i\nXXutd7TNUjV4CIVYfnn/wt9112wvdLf99nDAAd5P5IADip/BtH9/X7jwf/+LeYhamwzm3CHUrVMn\nX/K9Zt6AxnrhBb/FAn+hXO2zT7YTkxpXXw2ffAI33ljc8e+/Dxdf7DWlXbuWMrJQDiI5Ca3KH//o\ntSZ77512JCFUtvXW86aYK6/05qjGMINTTvGReZde2jzxhWyL5CS0GhMm+ERVZ52VzXb6UDmeeMKb\nNFq7Cy/0eTgaO8x65kxo3x5uuslrS8NPqqvhllvSjqL5xZ/o0Gpcf7232R95ZNqRhEr3wQfwhz94\ns0ZjmMGttzatw3eWLLssnH8+/OUvjeuAvthi8OCDsN9+zRdbWh57zJurinXnnT5Cq9JFchJahS++\ngMGDfdXYjh3TjiZUuoMO8gnRhg4t/JgpU6BXL28KeeSR5outpZ12mg8Hjg7obtw4uOYaH4nUWPPm\n+SitSl1PJ1ckJ6Fi1Dc52+TJsNFGcPLJLRdPaL2WWsr7NRW61s6IEbDppv4lPny4Nz1Wig4dfChw\ncD16eLPV2LGNP3bcOPj220hOQigbDzzgwyvrmkGyWzcYPTqmvg8t54gjYMwY/0Kpy6xZ0K8f7L47\nbL45vP66j8YJlWvLLaFdu+JWKB450vvLbbVV6ePKmswkJ5JOkTRJ0kxJoyRt3cD+7SVdIel9SbMk\nvSfpmLx9fiPpbUnfS/pQ0vWSOjTrhYRUrLEGPPts09pyQyilPff0GpS6ak/efBO23dY7N/bvD48/\n7qvXhsq26KKwxRbFLQI4apQvV9AaOglnIjmRdChwHXARsCXwGjBC0nL1HPY3YGfgWGB9oAr4sRuZ\npMOBq5IyNwT6AIcAVzTDJYSUbbUVXHaZz63wzDNpRxOCN2cccognJ7VN437nnTB3Lrz0kq9oHCPI\nWo8ePYqvOSl2jqdyk5WPQz9ggJkNMbO3gZOA7/GEYiGSdgd2APY0s6fN7EMze9HMcl/uHsBzZnZf\n8viTwFBgm+a9lJCWc86BHXf00Thff512NCFA794+mdgLLyz82BVX+BTvm2/e4mFlipmvE/TVV2lH\n0nK6d4d3323c/C/ffONNhK2hvwlkIDmR1A7oBjxVs83MDHgSTzBqsw/wMnCupI8kjZd0raTccRgv\nAN1qmockrQ3sCTzaDJcRMqBtWxgyBGbM8PU4YvXikLbtt4c77vDO2Pk6dix+WvdK8tBDPqLnv/9N\nO5KWU1P70ZimnRkz4JhjWs/KxllYW2c5oC3wed72z4EN6jhmbbzmZBawX1LGrcAywHEAZladNAs9\nJ0nJOW4zsz+U/ApCZqy+us+pcPDBPnT42GPTjii0Zm3a+GKVYUHXX+9zwFx0kScme+9dmXOa1GXN\nNf19scwyhR+z2mowaFCzhZQ5WUhOitEGmA8cbmbfAUg6E/ibpL5mNlvSTsDv8Sail4B1gRslfWpm\nl9dXeL9+/ejcufMC26qqqqiqqir9lYSSO+ggX7L99NN95MNy9fVcCiGk4k9/gokTvbni5pt9JtnW\nQvIatXJWXV1Ndd6y09OmTStZ+bKU676TZp3vgQPNbHjO9sFAZzPbv5ZjBgPbmdn6Ods2BN4E1jez\ndyX9FxhlZr/N2ac33rel1r7OkroCo0ePHk3XWGmqrH33HTz3nA/RDCFky+zZ3tT13nu+SvjZZ6cd\nUSiFMWPG0M0ntelmZmOaUlbqfU7MbA4wGti1ZlvSDLMr3m+kNs8Dq0jKXZtzA7w25aPk/mLA3Lzj\n5ueUHypYp06RmISQVR06wO23ex+KM85IO5qQRaknJ4nrgRMkHZXUgNyGJxeDASRdJemunP3vBb4C\nBknqIukXwDXAQDObnezzMNBX0qGS1pS0G3ApMNzSri4KIYRWbpddvA9Fu3ZpRxKyKBN9TsxsWNJ5\n9VJgReBVoKeZ1Qy0WglYPWf/GUmycRPwPzxRuQ+4IKfYy/CaksuAVYEpwHDg/Oa9mhBCCCE0RSaS\nEwAzuwWodSFoM1tozIWZvQP0rKe8msTkslLFGEIIIYTml5VmnRBCCCHk+e47eOwxn+ekNYnkJIQQ\nQkjB/Pm+3MbEiXXvM3Ik7LUXfPRR3ftUokhOQgghhBRIPmHk3XfXvc/IkbD00rDeei0XVxZEchJC\nCCGkQPKp7Oubxr5msb/WtjBkK7vcEEIIITu6d4cXX6x95er58/2x1rLYX65ITkIIIYSU9OgB06bB\n228v/Ng77/j0/jULBbYmkZyEEEIIKdl6a2+yqa1pZ+RIb/rZdtuWjyttkZyEEEIIKVliCdhkE09E\n8o0aBRtvDEsu2fJxpS2SkxBCCCFFdXWKnTYNtt++5ePJgszMEBtCCCG0Rj16wLPPwg8/QPv2P20f\nOhRa60pwUXMSQgghpOjoo+GttxZMTGpILR9PFkRyEkIIIaSotSYg9YnkJIQQQgiZEslJCCGEEDIl\nkpMQQgghZEokJyGEEELIlEhOQgghhAz57ru0I0hfJCchhBBCRkyf7hOvnXVW2pGkK5KTEEIIIQOG\nDoVlloGxY6FLl7SjSVfMEBtCCCFkwCabwLx5/v/WuBJxrszUnEg6RdIkSTMljZK0dQP7t5d0haT3\nJc2S9J6kY3Ief1rS/FpuDzf7xYTMqK6uTjuEUELxelaWeD0XtNFGvsjfkkv6/1uzTCQnkg4FrgMu\nArYEXgNGSFqunsP+BuwMHAusD1QB43Me3x9YKee2CTAPGFbq+EN2xR+/yhKvZ2WJ13NBbdrAz3/u\ntzaZ+HZOT1aadfoBA8xsCICkk4C9gD7ANfk7S9od2AFY28ymJps/zN0nZ3vNMYcDM4C/lzz6EEII\noQSGDEk7gmxIPTeT1A7oBjxVs83MDHgS6FHHYfsALwPnSvpI0nhJ10rqWM+p+gDVZjazRKGHEEII\nJbXccn5r7bJQc7Ic0Bb4PG/758AGdRyzNl5zMgvYLynjVmAZ4Lj8nSVtA2yMNwGFEEIIIcOykJwU\now0wHzjczL4DkHQm8DdJfc1sdt7+xwFjzWx0A+V2BBg3blyp4w0pmTZtGmPGjEk7jFAi8XpWlng9\nK0vOd2d9rRgFyUJy8iXeUXXFvO0rAp/VccynwMc1iUliHCBgNeDdmo2SFgMOBc4vIJY1AY444ohC\n4g5lolu3bmmHEEooXs/KEq9nRVoTeKEpBaSenJjZHEmjgV2B4QCSlNy/sY7DngcOkrSYmX2fbNsA\nr035KG/fQ4D2wD0FhDMC6A28jzcZhRBCCKEwHfHEZERTC5L3PU2XpEOAwcBJwEv46J2DgA3NbIqk\nq4BVzOzoZP/FgbeAUcDFwPLA7cDTZnZSXtnPApPN7PCWuZoQQgghNEXqNScAZjYsmdPkUrw551Wg\np5lNSXZZCVg9Z/8ZknYDbgL+B3wF3AdckFuupPWB7YDdmv0iQgghhFASmag5CSGEEEKokfo8JyGE\nEEIIuSI5STR2bZ+QTZIuqmU9pbfSjisUTtIOkoZL+jh5/fatZZ9LJX0i6XtJT0haN41YQ8Maej0l\nDarlM/tYWvGG+kk6T9JLkqZL+lzSg0kXivz9mvQZjeSEotf2Cdn1Bt53qWZdpe3TDSc00uJ4v7O+\nwELtzpLOBU4FTgS2wZelGCGpfUsGGQpW7+uZeJwFP7NVLRNaKMIOeH/PbYFfAu2Af0latGaHUnxG\no88JIGkU8KKZnZHcFzAZuNHMFlrbJ2SXpIuAXmbWNe1YQtNJmg/sZ2bDc7Z9AlxrZv2T+0viM0of\nbWaxsGeG1fF6DgI6m9kB6UUWipX8iP8C+IWZPZdsa/JntNXXnBS5tk/ItvWSKuR3Jf1V0uoNHxLK\ngaS18F/WuZ/X6cCLxOe1nO2UNBG8LekWScukHVAo2FJ4jdjXULrPaKtPTqh/bZ+VWj6c0ESjgGOA\nnvi8OWsB/03mxgnlbyX8D2F8XivH48BRwC7Ab4EdgceSGuyQYclr9CfgOTOr6dtXks9oJuY5CaFU\nzCx3ZsI3JL0EfIDPFDwonahCCHXJq+Z/U9JYfAmSnYCnUwkqFOoWYCPg56UuOGpOilvbJ5QJM5sG\nvAPEaI7K8Bm+hlZ8XiuUmU3C/y7HZzbDJN0M7AnsZGaf5jxUks9oq09OzGwOULO2D7DA2j5NWrgo\npE9SJ/yP3KcN7RuyL/ni+owFP69L4iMH4vNaASStBixLfGYzK0lMegE7m9mHuY+V6jMazTruemBw\nsgBhzdo+i+Hr/YQyIula4GG8KWdV4BJgDlCdZlyhcEn/oHXxX18Aa0vaHPjazCbjbdznS5qIL9J5\nGb7g5z9SCDc0oL7XM7ldBNyPf6GtC/wBr+1s8uJxofQk3YIP9d4XmCGppoZkmpnVLJjb5M9oDCVO\nSOqLd8aqWdvnNDN7Od2oQmNJqsbH4S8LTAGeA/4vyeZDGZC0I97XIP+P011m1ifZ52J8DoWlgGeB\nU8xsYkvGGQpT3+uJz33yELAF/lp+giclF+asrRYyJBkOXlvicKyZDcnZ72Ka8BmN5CSEEEIImdLq\n+5yEEEIIIVsiOQkhhBBCpkRyEkIIIYRMieQkhBBCCJkSyUkIIYQQMiWSkxBCCCFkSiQnIYQQQsiU\nSE5CCCGEkCmRnIQQQgghUyI5CaEVkPS0pOsbsf/PJM2XtFlyf8fk/pLNF2WdsQyS9EBLn7dYki6S\n9EracYRQziI5CaEMSRqcJAu31PLYn5PH7szZvD9wQSNO8SGwEvBGzrYmr3XR2CSpjMW6ICE0QSQn\nIZQnwxOIwyR1qNmY/L8KX5X5p53NpprZjIILd1+Y2fxSBRyaRlKsIh9ajUhOQihfrwCTgQNyth2A\nJyYLNCvk11hImiTpPEkDJU2X9IGkE3IeX6BZJ8f2kl6TNFPSSEkb5xyzjKR7JX0kaYak1yUdlvP4\nIGBH4Iyk7HmS1kge21jSw5KmJfH8R9JaeddwlqRPJH0p6WZJbet6YmqaViQdkVzrVEnVkhbPew5O\nzzvuFUkX5tyfL+nEJLYZkt6S1F3SOslz+p2k5/NjTY49UdKHyXH3SVoi7/Hjk/JmJv+eXMvzf4ik\nZyR9Dxxe1/WGUGkiOQmhfBlwJ9AnZ1sfYBCgAo4/E/gfvlz9LcCtktbLKz+XgGuAfsBWwBRgeE6S\n0BF4GdgD2BgYAAyRtFXy+BnASOB2YEVgZWCypFWA/wAzgZ2ALZN9cmsKdgHWTh4/CjgmudVnHaAX\nsCewF54Y/a6BY2pzPjAY2BwYB9wL3AZcAXTDn5eb845ZDzg4OW9P/Jp+bIKT1Bu4GDgP2BD4PXCp\npCPzyrkK6A90AUYUEXsIZSmqCUMob/cAV0taHf+xsR1wKLBzAcc+ama3Jf//g6R+yXETkm21JTgX\nm9m/ASQdDXyE92f5u5l9AuT2J/mzpN2BQ4CXzWy6pB+A781sSs1Okk4FpgJVZjYv2fxu3nm/Bk41\nMwPekfQosCswsJ7rE3C0mX2fnOfu5JjG9L0BuNPM7k/KuAZPsC4xsyeTbTfgSWKuDsCRZvZZss9p\nwKOSzjKzL/DE5Cwz+0ey/wdJLdRJwN055fTP2SeEViOSkxDKmJl9KekR4Fj8y/hRM/taKqTihLF5\n9z8DVqjvdMConHN/I2k8/qseSW2A/8NrDFYF2ie3hvq6bA48m5OY1ObNJDGp8SmwSQPlvl+TmOQc\nU9/11SX3efo8+feNvG0dJXUys++SbR/WJCaJkXjyuIGk7/BanYGS7sjZpy2epOUaXUS8IZS9SE5C\nKH+D8GYFA/o24rg5efeNpjX1/hY4DW++eQNPSm7AE5T6zCyg7GJibeiY+SxcO9SugXKsnm2FPned\nkn+PB17Keyw/QSu4E3MIlST6nIRQ/v6JJwCLAP9qxvMI6P7jHWlpYH3grWTTdsA/zKzazMYCk5LH\nc/2A1xDkeh3Yob4Ors1kCt7vBYBkDpeFOrbWopBhwmtIWinnfg888Xg7adb5BFjHzN7Lu+WOsorh\nyKHViuQkhDKXDPfdENg4r+mjOVwoaRdJm+CdRKcANX0iJgC7SeohqQveIXbFvOPfB7ZNRqMsm2y7\nGVgSuE9SN0nrJqNs1qN5/Rs4UtL2kjZNrmduAcfV1maWv202cJekzSTtgNcg3ZfT1+Yi4DxJp0la\nT9Imko6R9JsGzhNCqxDJSQgVwMy+y+nvUOsuDdwvZB/DR7vcgI/yWR7Yx8xqvtAvB8bgNTn/xvt4\nPJhXxh/xGoS3gC8krWFmX+OjcRYHnsFH/BzPws0ypXYVPkro4eT2IAt3xC3keapt2wTgAeAx/Pl4\nFTjlx53NBuLXeCxec/QMcDRe21TfeUJoFdT8P7RCCCGEEAoXNSchhBBCyJRITkIIIYSQKZGchBBC\nCCFTIjkJIYQQQqZEchJCCCGETInkJIQQQgiZEslJCCGEEDIlkpMQQgghZEokJyGEEELIlEhOQggh\nhJApkZyEEEIIIVMiOQkhhBBCpvw/qr1QKBFhkjAAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -750,9 +749,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYlOXVx/HvD4Miolh4FU1s2EssoFE0isZYYmwYG1hQ\nE0vAhlETK0aTGBtGVEQTe8GY2AtCjAUsaATFGLAXrCgWpCqw5/3jPCMPw8zuzLOzO7O753Ndc+3O\nU+4508/cVWZGCCGEEEKtaFftAEIIIYQQ0iI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CRUnqU7SORnPfVfS9anr/ZLyulcu\nwuwkrZ7Ec3K1Y2nLJD0h6eUKl7nQa6+WFXif9Epel9tX8DYyv49DaKxITkJBqaSgTtI2RY55P9l/\nf94uSy5Z1BU4t6JrLEjqI+nESpYZGpa8VoZUqLimWHejpDJT74s6SfMlfShppKReTRBTMYViLfsx\nkfQzSYPquY1mX99E0qC8xzj/8V6xuWMKze971Q4g1LzZQF/gmfTG5IP4+8CcAucsCczLeHvr4QlK\nU+oLbARc3sS3E1qvUcDNgIA1gf7AY5J2N7ORzR2MmT0paUkz+7bMU3fHY/99gX2NeR83lgHHAjML\n7PuqmWMJVRDJSWjIw8D+kk4ws3TS0Bd4AeiSf0KGD8j0uXOznttSSepoZrOqHUcoy+tmdnvuiqR7\ngZeBk4CCyYkkAYub2TdNEVDG950qXF4l3WVmX5RzgqQlgG+twIq2lXifxXu1+USzTqiPAcOBFYCd\ncxsltQf2A26nwIdbflu1pHOTbWtJulHSl5K+knS9pA555xZr919K0jWSpkqaJukmScvmnbuXpAeT\navY5kt6UdJakdqljHgd+DuT6jtRJeju1f4kk3tckzZb0kaS7JK1Z4H4eldzGHEnPS9qioQc01Vy2\nvaShkqYA7yf7bpT0ToFzzpVUl7etTtIQSXtL+m8SwyuSdm3g9leUNFfS2QX2rZuU2z+5/r2kiv31\n5LGYKmmMpJ0aup9ZlfIc5h3fXdLTkmZJelvSMQWOWVzS7yW9kZQ5WdKFkhavVNxm9gowFa9Fyd1u\n7jnqK+kVvJZx12SfJJ2UPGezJX0iaVj+azo59ix5E+pMSf+WtGGBYwr2OZG0laSHJX0haYakCZKO\nT/bdgNeapJuq5ufFf05eeZtLGpG8B6dLelTSVnnH5F7j20gaLOnT5LbvlrRC2Q9uEan7fKCkP0j6\nAK9pWVrS4cXeZxnuR8EyQtOKmpPQkHeBsUAfFvwi3B1YBrgDKKXvRu5XzJ3A28DvgO7Ar4ApwOkF\njk0TcCXwJTAIb/rpD6wG7Jg67nBgOnApMAP4CXAesDTw2+SYPwCd8Sapk5KyZwAkX4APJWUOB/6S\nnLszsDGQThwOBjoBw5KYfwvcJambmc2nYUOBT/Hq9I6p+16sL0Gh7dsB+yZlTQdOAP4paTUz+7LQ\njZrZp5KeBA4Azs/bfRBejX9ncv33+HN1LfAf/DnfAn/u/t3wXczkcBp+DnOWx5+vO/FE+QDgaknf\nmNmN8F1txQPANsA1wKvAD4GBwDr449dokpYDlgPeyNu1UxLXlXjy8m6y/VrgMOB6vHlxTeB4YDNJ\n2+ZeQ5LOB84EHgRG4I/9KKB9gTAWeo1I2hm/7x/hr+VPgA2APYAr8MdjFeCn+Ou5aC1KUt6GwGhg\nGvBn/LVyDPCEpO3N7D95p1wBfAGcC6yBP+ZX4p8lpVghef7S5pnZtLxtZwPfABcDSwDfsuCxSL/P\nlkrux0Zl3o9FygjNwMziEpdFLkA/YD7+Ydgfb+ddItn3d+DR5P93gPvzzq0DzkldH5RsuzbvuLuA\nT/O2vQNcnxdHHfAcsFhq+ylJfHukti1R4H5cjX/ZtU9tewB4u8CxRyS3dUI9j8vqyTGfAsuktu+Z\nxLN7CY9rHfAEoLx9NxSJaxAwv8BjPBtYI7Xth8n2/g3EcFQS64Z5218B/pW6/mL+c9vI11QdMKSB\nY0p9Dh9P7sOJqW3tgfHAx7nXCnAIMBfomVfm0cn5Wxd77TVwP67FaxS7AD8CHi0QT11y2+vlnf/j\nZN+Bedt3TrYflFzvgte23Jd33B+S49Lvk17J7W+fXG+H/xB4C1i6nvtyRf5rKy/+9Pv4nuQ1t3pq\nW1f8S/7xAq/xR/LKuxRPHIrGk3q91xW5TMy7z3V4Qrh4Ge+zcu/HImXEpekv0awTSnEn/ut+D0md\n8F9et5VZhuG/1NLG4L+OOpVw/rW2cI3E1STJwHc3kGrLl9QpqUJ+Kol9/RJuY1/gM/zXXUPuMLOv\nU9fH4L88u5VwrgF/teQTsBH+ZWbvfleo2X+Br0uI4W78sTswtyH5NbkhXhuW8xWwkaS1Gxlnycp8\nDufhSULu3Ln4a2xFoEeyeT9gEvC6pBVyFzy5EQvXvJXjl/hr5VO8ZrEncKmZ5XeyfsLMXsvbth/+\n2P47L6YX8dqiXEw74wnXFXnn/6WE+DbHayv+YmbTS7tLxSW1ijsD95jZe7ntZvYJXmv147z3sZF6\nbhJjgMXwBL8hBvTGa3XSlyMKHHujFe4fs8j7LOP9qMR7NZQpmnVCg8xsqqRH8U6wS+G/yv6ZoajJ\neddzTQ/LkTStFAsBeDMvppmSPsY/gIHvqp3/iH+4L5N3fucS4lsLeM0W7vhbzEJtz2b2VVIDvVwJ\n58KC6v3GKNT+/WVDMZjZ55L+jTc35IaRHoT/yr8ndeg5wL34F/srwCPALUkS1CTKfA4/MrPZedte\nx5OONYDn8aab9fFEIp/hiUwW9+FJrOG1Ov8rEAsUfp7XAZbFE5v6Ylot+Zv/2p8qqWCzXcpaSVn/\na+C4Uv0fniC+XmDfJPwzYdXk/5z812f6/V6KMVZah9h3y9iX5X7UV35oIpGchFLdDvwVWBkYkfHX\nWLG+GPW2dZdCUme8Hfkr4Cy8SnsO/gv6z1S+83dj70uhL7Jiv84Wa4IY7gCul7SJmb0M7A/8O/1l\nYGZjJK0F7A3sgtcWDJR0jJlVfLKyJnoO2wH/xfs7FHpcsnZw/MDMHivhuELPczu8r1XfIjEVSqRa\noiZ7v+cp9BiXsq8S5YcmEslJKNU9eJX5VqSaA5qJ8F+bT363QVoKT5QeSjbtgP8i29vMnk4dt1aB\n8oolAW8BP5K0mJXWqbXSvsR/Uedbowlu6178+Tww6XS4Ll5jsRAz+wq4CbhJUke8av5cvCNnpe1A\n6c8hwCryuT3SXx7r4c9vrvPyW8AmZvZ4E8Sb1Vt4R9lnrP5hxblmh3VI/XqX1IWGax/ewt83GwP1\nJVGlNld8BszCH998G+B9M1rCSJbWcj9avehzEkpiZjPxSZHOxTuUNrejJaWT6f54jcLDyfX5+Idx\netjw4slx+WZSuJnnLrza97hKBJzBW0BnSRvnNkhaGdin0jdkPuJhJN60cxA+2uG+9DGSls87Zxbe\nxLBE6phlJK0nKd0Ek1U5zyH4j6tjU8e2x0ddfIZ3jAXvL/UDSUflnyypQ5JwNbc78dgXmRpe0mJJ\nDRJ4J9t5+CietIEl3MZ4PEE7KVVeITOT2633+UuaOkcBe0vKNTchaSV89M0YM6uvabYmtJb70RZE\nzUmoz0LVr2Z2S7UCARbHOxDeifch+DX+QfJgsv8ZvObhZi2YIv0QCv8yHAccIOlSfIjsjKScm/Hh\nnYOTOQ/G4MOFdwKuMrNKJWXFqrXvAC4E7k3uw1L4l+9r+KipSvs7cCv+5T8yr4MvwERJT+CP1xfA\nlnhnzvQU9L3xUUaH449fQ7aQdGaB7Y9T3nMIPirnNElr4H0IDgI2AY5K1XzdwoIhxjsCT+NJ7QZ4\nU9YuLEhkmoWZjZZ0DfA7SZvhX5Zz8dqr/fAh4XcnfUsuSY57EE/ENwd2o3DTz3evKzMzSb8G7gde\nks9p8jH+3tnQzH6WHDouOe8KSSPxkTt/LxL6WXin1KclDcWTyaPx9+ZpxWIpcXuh4/aXVChRGGVm\npTR9FbutStyP0MQiOQn1KaXKt9AcHI1Zk6NYecfhczH8Hh/BcBupOVbM7AtJP8eHK56Pf8ndgldp\n58/YORTYFP9CPQmvPn/QzOok/QyfV6IvPnrnczxJSXcCLXc+kkLHLbrR78M+wGA8SXkHn2dkXRZN\nThobA/gX12w8CbqjwP7Lgb3w0Q1L4I/TGcAlBW6zFIY3C25VYN/ZZvZMGc8h+HNzON4xNTdnzoB0\nf5jkS3pvvLbhMLwWahben+UyFu4YWc7z16jjzOzXkl7Aa3r+iNeQvIsneE+njjtT0mw8Sd0BHxm0\nC96cWeh9kr6NUUlCNgg4Ga+ReouFR9HcjSebB7FgrpNccrJQ/GY2UdJ2wAX467JdEk9fM3uhvlhK\n2F7ouKFF9u3IguSsvvKKPfaVuB+hiSlGSIUQQgihltRMnxNJAyS9I5/KeaykLRs4fnFJf5RPdz5H\nPnX14an9uamH52vB1MyxJkIIIYRQ42qiWUfSgXhV7tH43AQDgZGS1jWzqUVO+wfeefEIvKpyZRZN\ntqbhVeK5dsOoJgohhBBqXFnNOsloiTPwaZM/qFgQ0ljgOTM7MbkufDjXEDO7qMDxu+HzbnRLhjoW\nKrMfcJmZLV9ofwghhBBqU1nNOmY2DziVCta4JMP/epBaSCyZKvhRfEroQvYEXgB+K+kD+QqyFytv\nhVugU9LsM1nSvSqwmmcIIYQQakuWPieP4QsuVUoXfGjflLztU/DFmArphq/IuhHe+/5EfAjeValj\nXgOOxEcbHIzf12ckrVKxyEMIIYRQcVlqQEYAf5b0Q3yM/Mz0TjO7vxKBNaAdPpNf39yEOZJOBv4h\nqb+ZfWNmY/HhYST7n8XXSziGBeuJLCRZfGtXfEjfnCa9ByGEEELr0gGf0XqkmX3emIKyJCe5secn\nF9hnFF8HpJip+CQ4K+VtXwn4pMg5HwMf5s3kNwnv+PoDvIPswoGZzZP0IlDfCqu7Uv5quyGEEEJY\n4GC8X2hmZScnZlbR4cdmNlfSOHwWzvvhuw6xO7HwTJRpTwP7SeqYTKkNvlZCHVCwo26yVPYPWbAW\nSyHvAtx6661ssMEGZd6TUIsGDhzIZZddVu0wQoXE89m6xPPZukyaNIlDDjkEKrCSc00MJcZnxLwx\nSVJyQ4k7AjcCSLoAWMXM+iXH345PQXyDpHPxIcUXAdflFtKSdDberPMmvpjaafgS5H+rJ445ABts\nsAHduzfFbOGhuXXu3Dmey1Ykns/WJZ7PVqvR3SIyJSeSegGn4OtTAEwELjazMVnKM7M7k5U2z8Ob\nc14Cdk2tn9AVWDV1/ExJOwNX4GujfI5PuXx2qtjl8Gmau+LTYI8DeprZq1liDCGEEELzKDs5kXQI\nvtBXbk0GgG3xRdkON7NM7UxmNpQiaymY2REFtr2O9xEpVt7JFO4XE0IIIYQalqXm5EzgNDNLNxQO\nSUbLnE0jO8GEEEIIoW3L0rm1G1Bo6fj7gTUbF04IldWnT59qhxAqKJ7P1iWez1BMluTkfXwkTb6f\nJvtCqBnx4de6xPPZusTzGYrJ0qxzKd6MsxnwTLJtW+BwfKbWEEIIIYTMssxzcrWkT4DfAAckmycB\nB5rZfZUMLoQQQghtT1nJiaTF8FqSx83snqYJKYQQQghtWbmrEs8HRuFziIQQQgghVFyWDrGv4CN2\nQgghhBAqLktychZwiaQ9JK0saZn0pdIBhhBCCKFtyTJa5+Hk7/34KsQ5ItuqxCGEEEII38mSnOxY\n8ShCCCGEEBLljtb5HtALuN7MPmiakEIIIYTQlpU7WmcecCoZVzMOIYQQQmhIlg6xj+G1JyGEEEII\nFZelBmQE8GdJPwTGATPTO83s/koEFkIIIYS2KUtyMjT5e3KBfTFaJ4QQQgiNkmVtnSxNQSGEUr31\nFgwdCnV18OMfwy9+UfzY6dPhnHPqL2/AAFh77crGGEIITahmOrZKGgCcAnQFJgDHm9l/6jl+cWAQ\ncHByzkfAeWZ2Y+qY/YHzgDWA14HfmdmIJroLIVTGVVfB1VdDt26wwgr1H/vttzBqVP3H9O1budhC\nCKEZlJycSHoY6GNm05LrvwOGmdlXyfUVgDFmtmG5QUg6ELgUOBp4HhgIjJS0rplNLXLaP4D/A44A\n3gJWJtXBV9I2wO3Ab4GH8CTmXkmbm9nEcmMModmMHg377w8339zwsSusAP/7X9PHFEIIzaicJppd\ngSVS188Alk9d/x6wXsY4BgLXmNnNZvYqcCwwCziy0MGSdgO2A3Y3s8fNbLKZPWdmz6YOOwEYYWaD\nzew1MzsHGA8clzHGEJre11/Diy/C9ttXO5IQQqiacpITNXA9E0ntgR7Av3PbzMyAR4GeRU7bE3gB\n+K2kDyS9JuliSR1Sx/RMykgbWU+ZIVTfM894X5OmTk7q6jwRCiGEGlQLfU664CN8puRtn0Lxmphu\neM3JHGCfpIyr8ZqcXybHdC1SZtfGhxxCExk9Grp2hXXWadrb+clPvJPs3/7WtLcTQggZlFNzYiy8\n0B8FrjeXdkAd0NfMXjCzR/Chzf0kLVH/qSHUsIkTvdZEFamYLG7rreG++2DevKa9nRBCyKCcmhMB\nN0r6JrneARgmKTcJW9akYCowH1gpb/tKwCdFzvkY+NDMZqS2TUpi/AHeQfaTMsv8zsCBA+ncufNC\n2/r06UOfPn0aOjWExrnnHpg9u+lvp3dvuPBCePpp6BUTPocQyjN8+HCGDx++0LZp06ZVrHx5944S\nDpRuKOU4Mzui7CCkscBzZnZicl3AZGCImV1c4PijgMuAFc1sVrJtb+CfQCcz+0bSHcCSZrZ36ryn\ngQlm1r9IHN2BcePGjaN79+7l3o0QWo66OlhtNdhvP/jLX6odTQihFRg/fjw9evQA6GFm4xtTVsk1\nJ1mSjjIMxmtlxrFgKHFH4EYASRcAq5hZv+T424GzgBsknYsPKb4IuM7McjU7lwNPSDoZH0rcB+94\ne1QT3o8QWoZ27WCffbym5rLLmr4ZKYQQylATs72a2Z34BGznAS8CmwC7mtlnySFdgVVTx88EdgaW\nBf4D3ALcB5yYOuZZoC8+d8pLwL7A3jHHSQiJ3r1h8mQY36gfOCGEUHG1MFoHADMbyoJ1e/L3LVJr\nY2av43Ov1FfmXcBdFQkwhNZm++1h+eXh7rvBq2JDCKEm1ETNSQihCtq3hz33hOeeq3YkIYSwkJqp\nOQkhVMGQIbD00tWOIoQQFhI1JyHUgrlzq3O7yywTnWFDCDUnU82JpHWAHYEVyUtwzOy8CsQVQtsx\nfz6ssorPO3JkweWkQgihTSk7OUnmGLkanzztExaeJdbwETchhFJNmABTp8K661Y7khBCqAlZak7O\nAs40swsrHUwIbdLo0bDEErDlltWOJIQQakKWPifLAf+odCAhtFmjR/taN0vEslAhhADZkpN/ALtU\nOpAQ2iQzT062377akYQQQs3I0qzzJnC+pK2B/wILDTMwsyGVCCyENmHSJPj889pYfG/mTI9ltdWq\nHUkIoY3LkpwcDcwAeiWXNAMiOQmhVKNHw/e+58061bbnnj7nyX33VTuSEEIbV3ZyYmZrNkUgIbRJ\no0fDFlvAUktVOxLYfXc4+2yvQamFeEIIbVajJmFTolLBhNDmXHEFXHddtaNwvXvDnDnwyCPVjiSE\n0MZlSk4kHSbpv8BsYLaklyUdWtnQQmgDVlgBNtyw2lG4tdaCTTaBe+6pdiQhhDau7ORE0sn4JGwP\nAwckl0eAYZIGVja8EEKz6t0bHnwQvv222pGEENqwLDUnxwO/NrPfmtn9yeU0oD9wQmXDCyE0q969\nYdo0ePzxakcSQmjDsiQnKwPPFNj+TLIvhNBSbbIJrLlmNO2EEKoqS3LyJt6Uk+9A4I3GhRNCqCoJ\n9t0XPvqo2pGEUj35pNd2hdCKZElOBgHnSXpE0tnJ5ZFk+zlZA5E0QNI7kmZLGiup6EIjknpJqsu7\nzJe0YuqYfqntuWNmZY0vhDbjoovg/vurHUVoyPTpcOihsMMOcNRR1Y4mhIoqOzkxs7uArfBVifdJ\nLlOBH5lZprpgSQcCl+IJzubABGCkpC71hQKsA3RNLiub2ad5x0xL7e8KrJ4lvhDalHaNmmEgNIcX\nXoDNN4d774Ujj4QHHoDJk6sdVQgVk+lTyMzGmdkhZtYjuRxiZi82Io6BwDVmdrOZvQocC8wCjmzg\nvM/M7NPcpXColj7ms0bEGELl7LUX3HprtaMILU1dHVx6KWyzDSy/PLz0Evztb/D667HsQGhVSkpO\nJC2T/r++S7kBSGoP9AD+ndtmZgY8CvSs71TgJUkfSRolaZsCx3SS9K6kyZLulVQjE0qENu2zz/yX\nbtRQhHKdcAKccgoMHAhPPeVz00iw6qrVjiyEiip1+vovJeWaTb7Cm1TyKdm+WJkxdEnOmZK3fQqw\nXpFzPgaOAV4AlgCOAp6Q9CMzeyk55jW85uVloDNwKvCMpA3NLHr7heoZM8b/brdddeMILc9RR3mt\n2y6xMHxo3UpNTn4CfJH8v2MTxVIyM3sdeD21aayktfDmoX7JMWOBsbkDJD0LTMKTmkHNF20IeUaP\n9uG68Ws3lGvTTasdQQjNoqTkxMyeTF19B3g/aXr5TrLGTpZP26nAfGClvO0rAZ+UUc7zwLbFdprZ\nPEkvAms3VNDAgQPp3LnzQtv69OlDnz59yggnhCJGj4btt692FCFUz9y50L59taMIjTB8+HCGDx++\n0LZpFRzSrrwco+ETpPkUGBkjaQXgUzMrt1kHSWOB58zsxOS6gMnAEDO7uMQyRgFfm9l+Rfa3A/4H\nPGRmpxQ5pjswbty4cXTv3r3cuxFCw6ZNg+WW806MRzbU37sGvP8+TJ3qI0NCqJSDDoIVV4QhQ6od\nSaig8ePH06NHD4AeZja+MWWV2qyTlutbkq8TMCdjHIOBGyWNw2tABgIdgRsBJF0ArGJm/ZLrJ+I1\nOP8DOuB9TnYEdv4uSOlsvFnnTWBZ4DRgNeBvGWMMofGefhrMoFevakdSmgED4IsvvPNlaHrTp3uf\npN13r0xZSy/d+HIq7Y474O9/978hFFFyciJpcPKvAefnTWi2GD73yUuLnFgCM7szmdPkPLw55yVg\n19TQ364s3GS0OD4vyir4kOOXgZ3MbHTqmOWAa5NzvwTGAT2TocohVMfo0bDKKtCtW7UjKc2++3oN\nz5QpsFJ+y2uoqBde8BqFL7+Ed96BZcoe/LjADTfAmWfCpEmQ10RdVR9+CP37+/088MBqRxNqWMnN\nOpJyK4H1Ap4F0suWfgu8C1xiZi12Cvto1glNbvx4/+L5xS+qHUlpPv/ck5KhQ+Hoo6sdzQJz58Kn\nhaY2Sllxxfr7NXz9tdcu5HTqVJ0v8ro6GDwYTj8dNtsMhg+HtRvsGle/Dz+E9dbz52zw4IaPbw5m\n8LOfwcsvwyuv+DwtoVWpSrOOme0IIOkG4EQz+7oxNxxCm9S9u19aihVW8M67d99dW8nJ66/DxhvX\nf8wrr8BGGxXfP3gw/P73C2/beGO/v7nLyk28luknn0C/fjBqFJx6KvzhD7D44o0v9/vf95qTc86B\nX/0KNqyBKZ6uuQZGjoQRIwonJpMm+RxA0Vk8kK1DbGdgMTP7Im/78sC8lpy0RM1JCAVceSWcfLJ/\ncdRKE8H06Q33g/nxj+vvc/HGG/Dmmwuuf/qpl/nkk75vhx3g8ceLnt5oI0fCYYf5JGo331z5uUu+\n+caTrdVXh3/9y2+nWt54w2uFDjsMrr668DH77AMvvuhJSseOzRtfqIhK1pxkSU5GAPeZ2bC87ccC\ne5lZBXpyVUckJyEU8MEHPifLbbdB377VjqZ5fPyxdwSur+Yl99mZ5Ut/8mSf3XWnneCmm5quP89D\nD8Eee8A//1ndpsTdd/farpde8uazQt580x/v3/1u0Rqt0CJUMjnJMn/2VkChnxNPJPtCCK3JD34A\nW24J92Ra17NlWnnl+hMT8F/4XbvC/vvDFVfAhAkwf35p5a+2mo/Kefjhpu1o/POf++Xkk2FWFRdl\nv+YaT5CKJSbg/Wx+8xu48ELvlxXatCzJyRL4aJl87YElGxdOCKEm9e0LSyzR/Lc7dWrz32apOnXy\n6eSnTPH1bjbbzPvo7LEHXHQRjB3rnV2L2Xrr5llf6S9/8b4tF17Y9LdVzKqr+uPTkDPOgC5dPJkK\nbVqWeU6eB44Gjs/bfiw+XDekzZ8P//0vPPusv0H32KPaEdW+J5/0x6uYFVdseAKza67xCc8OPtg7\nB4bGOemk5r/Np57yfhiPPw5b1WCl7GqreQdWgDlz4Pnn/bU7erQ3Syy5ZMMjiprD2mvDX//qtV+1\nrlMnuPhiT4ZHjYo1hNqwLH1OtsVXDP4PC1YS3gnYEtjFzMZUNMJmVJE+J3Pnwrhx/gE1erR/wE6b\n5r+QevTwD7C2aPp0eOYZf0z6968/YfjjH+Gyy4rv33hjeOKJ+m/vRz/y9u0DDoBbb80UcqiiGTN8\nHZmuXf01s1jZE09X19y58O67sM461Y6k5THzzshTpviw40qMXgrNoqp9TszsaaAn8D5wALAnPgvr\nJi05MamI+++HZZeFnj39l9O333p175NPwsyZ8OijDZcxefKCjnYt2eefw333eRvyllv647Lbbj5t\n+1tv1X/umWd6dX6xS0OJCXgSePHFPgvl5MkVuUuNcsEF8OCD1Y6i5TjlFP9yuvnmlpeYgM+vEolJ\nNpJPa//22/7ZGdqksmtOWrNG15y8/TbcdZeP0+/evfyFrd57D9ZYw5t/0nMtrLdedYcBlsPMk7Pn\nnvPrq67qU7Xn7su66zbffZkxw6veDz+8uhNRzZvn8zqccYaPRAj1GzHCR3cMGwbHHFPtaEK1fPSR\nz6YcWoxmn4RN0jK5+Usk1Tunckue56Sgzz/3ppnRo30io1/+svix3br5REpZ/d//ee1Lrt36jju8\nz8qKKy74cv/lL2t7DgDJRy8MGODxrr569WLp1MmbkC6/HM4+2xfcq4YJE7xZKyaXatjnn/trfLfd\namvSt1BUnkmqAAAcQElEQVS6//2v4ZFOpYjEpE0rtVnnS0krJv9/ha9Vk3/JbW/5Ro3yL9cf/tB7\nju+zD/zjHz4JVVPq2BH23BMuucSbJb780idqyo0IOPfc6iwzbgavvgrXXuuzTdY3AgG8KefQQ6ub\nmOQcf7y3/w8b1vCxTWX0aOjQAbbYonoxtBQDBnjn0uuuazm1hWGBESO8T1g0x4RGKqlZR1Iv4Gkz\nm5f8X5SZtdhX5XfNOkD3dddduGmlFr5o582D7zVQ2fXzn3tHvGKOOw5+/evi+197zRd7S/vsM78s\ntph36n3gAa/NaSmOPtpjfvfd6gyH7d3bO0U/9ljz33ZLMmECbL65ry0Ti8K1PJ9/7j/oNt3U52+J\n5LLNafZmnXTC0ZKTj5KNHFmbQ9gaSkwAtt3W+3UUs9Za9Z+/9NKL3vdllvFye/aszSXYG3LaaT6V\neXPMKZGvrs5rTo7PH3nfgr30ktfk7bprZcvddFNvEthgg8qWGxY1Z453PN9vP39fV0LUeoUKKrXP\nySalFmhmL2cPp0Z06VLtCLI744zGnb/KKvUP422J1l678au8ZjVxok+D3pr6mwwZ4sPCX3218mVH\nYtI82rf3UW9PPumd1xs7IuqOO+Dvf/e/0VckVECpk7C9BBig5G99WuC4vxCayOjRXuO19dbVjqRy\n9t0XbrjBp2+PZKJlWmwxX9Bxm23g+uu9X1tWH37oHc8POqjpm+O++sqnJQitXqn13GsC3ZK/vwDe\nAfoDmyeX/sBbyb4QQk5uBFctj7Aq109/6iOh7r672pGExujZ01cJPuMM73yfhZmPrurQAa66qrLx\n5Xv6aV/n6eWWXzkfGlZScmJm7+UuwBnACWZ2jZm9nFyuAU4Czm7KYENocXbbDf70p2pHUVkdOsDP\nfta2FgJsrS68EL75Bs45J9v5r77qScP11/tcPk1pyy09OTn++NYxUWWoV5Yegj/Ea07yvQNsmDUQ\nSQMkvSNptqSxkoouBCGpl6S6vMv81HDn3HH7S5qUlDlB0s+yxhdCSOnd28e11cLsuyG7rl1h0CAY\nOjRbjcQGG/gouN12q3hoi1h8ce/vNHq0928JrVqW5GQScLqk7xY8SP4/PdlXNkkHApcCg/BmognA\nSEn19Uw1YB2ga3JZ2cy+W2VL0jbA7cBfgc2A+4B7JWVOoEIIid13906V996b7fyJE+H11ysbU8jm\n+ON9hN8JJ2SrkVhhhcrHVMwuu8Dee/vyBjNmNN/thmaXJTk5FtgV+EDSo5IeBT5Ith2bMY6BwDVm\ndrOZvZqUMwtoYOlZPjOzT3OXvH0nACPMbLCZvWZm5wDjgeMyxhhai7o6Xyk6ZNe5s/c9ydK08803\n3nmyX7+onq8Fiy/usyjPm+cdTmvd4MG+xtYFF1Q7ktCEsiz89zzeOfYs4OXkcibQLdlXFkntgR4s\nWOEY85nhHsUXGCx6KvCSpI8kjUpqStJ6JmWkjWygzNAWXH21t19PmVLtSFq2fv18NtByE4xBg7yv\nwjXXxHwYtWKXXWDMmOot8VCObt187qJLLoE336x2NKGJZJqVysxmmtm1ZnZycvmrmc3MGEMXfPhx\n/jfFFLy5ppCPgWPw0UH74iskPyFps9QxXcssM7QVffv68N4rr6x2JC3bgQfCFVeUl2A89RRcdBGc\nfz5sUvL0SaE5tKRE8Xe/8/4yAwdWO5LQRDIlJ5IOlfRUUmuxerJtoKS9KxteYWb2epIQvWhmY83s\nl8AzePNQCPVbbjmf1+Gqq6LdujnNmOG1LT17ep+BELLq2NFnoo1VvlutUidh+46kXwPnAX/Bm3Zy\nk659iQ8nvq/MIqcC84GV8ravBHxSRjnPA9umrn+StcyBAwfSuXPnhbb16dOHPn36lBFOqGknneS/\n+q+/3jsCVtpDD/kvO19nIoAnJFOm+MKajZ2RNDS/sWNh9mzYccdqR+J++tNqR9CmDR8+nOHDhy+0\nbdq0aRUrv6SF/xY6QZoInGFm90qaDmxqZm9L2hh4wszKnvtd0ljgOTM7MbkuYDIwxMwuLrGMUcDX\nZrZfcv0OYEkz2zt1zNPABDPrX6QMX/hv3Di6d+9e7t0ILc0hh/gcDW+8Udq6ReVYf33/EL/66sqW\n21KNGOEjfIYNg2OOqXY0oVwzZvjaR6us4kN5W1ITUGg2lVz4L0uzzprAiwW2fwMslTGOwcBRkg6T\ntD4wDOgI3Agg6QJJN+UOlnSipL0krSVpI0l/AXYE0p0ILgd2k3SypPUknYt3vI2OBsGdeqrP0fDP\nf1a23ClTfHXnXvUu4N22PP+8JydHH13tSEIWuVqvG2+MxCQ0iyw/F9/B5w15L2/7bmSc58TM7kzm\nNDkPb3p5CdjVzD5LDukKrJo6ZXF8XpRV8CHHLwM7mdnoVJnPSuoL/DG5vAHsbWYTs8QYWqFNN4Wd\nd/YOmgceWLkP3TFj/O9221WmvNZg0CAfqhpfbC3HrFk+0d6MGT6yatiwhlc1D6FCsiQng4GrJHXA\nh/P+SFIffBK2X2UNxMyGAkOL7Dsi7/rFQIPNPWZ2F3BX1phCG3Dmmb4669y5Pt9DJYwe7R/i3/9+\nZcprLSrddBaa1oUXwqWXwtJL+wywUesVmlGWeU7+BvwW+APe9HI78GvgRDO7o7LhhdDEevXyX/WV\nSkzAk5Ptt69ceS3BY495lX9oPU4+GZZayifNu+66qPWqBcceC126FL8cfHDDZfznP00fZwWU9VMm\n6ai6KnCXmd0mqSPQqcDsrCG0TV9+6WuUnHRStSNpXo884snJoYfGSJzWonNnGDnS/19llerGUqqL\nL/bp9I9saHLxGjRypNe4rr128WN+/nNYY43i++s7N6eFPJfl1rMKeBPYCHjDzGbhfT5CCOCTjJm1\nvZqT3r39i+GZZ6KvTWuy2WYNH1NLXn3Vl1TYay+vSWgJvv3Wm5cvucRrqy69tPixe+7pl8ZoIc3N\nZTXrmFkd3rG0GVd6CqEFmTPHE5M116x2JM1rq61g5ZWzrbUTQqVccIGvnXXWWdWOpDRvvAHbbONr\nG11yiSf4Acg2lPh3wMXJvCYhhLT994cnn2x77fPt2sE++3hyMnCgD9EOobmtuCL8/vdw7bXwYqEZ\nL2rILbdA9+4wbZrXOP7mN/4+CkC25ORm4EfABEmzJX2RvlQ4vhBCS9G7tyclQ4bAhx9WO5rQVvXv\nDxtuCMcd58PXa8306XDYYX7Zd18YPx622KLaUdWcLGP7BgKxznlovb78smWszlprdtjBm7MOOwy2\n3bbBw0NoEu3b+6KeP/kJrLeer79z+OG+vRZceqnXMN5yi89SHQoqe/r61iymrw8MGQJ//jO88w4s\nsUS1o2l55s6tnS+B0La99BL86U/+d+LE2plnZ/Zs+Phj6Nat2pFUXFWmr5fUTtJpkp6W9B9Jf5a0\nZGNuPISas9tu8MkncOut1Y6kZYrEJNSKzTaDO+/0vie1kpgALLlkq0xMKq2cPidnAn8CpgMfAicC\nVzVFUCFUzbrrwt57e6/5urpqRxNCaKylsi75FqqpnOTkMKC/me1mZvsAewIHS4ruxaF1Oe00X7jv\nwQerHUkIoam98gpMnVrtKEKechKL1YARuStm9ijeMbZlTDcXQql69vQOneXMOfDGG/BFDFYLocXp\n399nXT31VG/Sbaw33oATToD58xtfVhtWTnLyPWBO3ra5QDQyh9bn1FN9ttdnny3t+AEDfOr2EELL\ncvfdPjfPtdd6knL88TB5craycnOXjBjhnV5DZuUkJwJulHR37gJ0AIblbQuh5dtzTx+GWErtydy5\nPolSW5uyPoTWoEsXOP98eO89n1n29tt9jZqjjoK33iqtjOnT/cdJeu6SH/ygaeNu5cpJTm4CPgWm\npS63Ah/lbQuh5WvXDk4/3ec7aahj7IsvwsyZvsJxCKFlWnZZT07ee8+HID/wAGy5pS9JUZ8XXoDN\nN4d77/Wak5tugqWXbp6YW7GSx1eZ2RFNGUgINadfP780ZPRo6NjRq3NDCC1bp05wyineVDthAnTo\nUPi4ujoYPNh/xGy2ma/MXcqqwKEkMdImhMYaPdo70S6+eLUjCSFUypJLwtZbF98/cyYMG+b9VZ5+\nOhKTCquhmWlCaIHq6mDMGP+ACiG0HUsv7TUrMY9Kk6iZmhNJAyS9kywmOFbSliWet62kuZLG523v\nJ6lO0vzkb52kWU0TfWizXnkFvvoqOsOG0BZFYtJkaiI5kXQgcCkwCNgcmACMlNSlgfM64x11Hy1y\nyDSga+qyeqViDgHwNTs6doSttqp2JCGE0GrURHKCr3R8jZndbGavAscCs4AjGzhvGHAbMLbIfjOz\nz8zs0+TyWeVCDgE46CD4/HNvnw4hhFARJfU5kbRXqQWa2f3lBCCpPdADX7cnV4ZJehToWc95RwBr\nAgcDZxc5rJOkd/EkbDxwhplNLCe+EBZSV+fDjNOK9eYPIYSQSakdYu8t8TgDFiszhi7JOVPytk8B\n1it0gqR18GTmx2ZWJ6nQYa/hNS8vA52BU4FnJG1oZh+VGWMIMHQo3Habzxxb+DUXQgihAkpKTsys\nVpp/SBYavA0YZGa56fsW+aYws7GkmnskPQtMAo7B+7YUNXDgQDp37rzQtj59+tCnT5/GBR9atnXX\n9Zlg//1v+OlPqx1NCCFUzfDhwxk+fPhC26ZNq9w8rDKz7CdLHcysgenzGiyjPd6/5BfpJiFJNwKd\nzax33vGdgS+BeSxIStol/88DdjGzJ4rc1p3AXDM7uMj+7sC4cePG0T0m1Ar5zHyitRVXhJEjqx1N\nCCHUlPHjx9OjRw+AHmY2vqHj61N2jYikxSSdLelDYIakbsn28yX9stzyzGwuMA7YKXUbSq4/U+CU\nr4GNgc2ATZPLMODV5P/nisTdDvghEKsxhWwkXxBw1Cif3yCEEEKTyNJccyZwOHAa8G1q+yvArzLG\nMRg4StJhktbHk42OwI0Aki6QdBN4Z1kzm5i+4Gv+zDGzSWY2OznnbEk7S1pT0uZ4U9BqwN8yxhgC\n7L8/rL56aQsChhBCyCRLcnIYcLSZ3QbMT22fAKyfJQgzuxM4BTgPeBHYBNg1NfS3K7BqmcUuB1wL\nTAQeAjoBPZOhyiFk0769zwZ7222+QFgIIYSKK7vPiaTZwPpm9p6k6cCmZva2pA2B582sU1ME2hyi\nz0koyYwZC1YdbUSfrRBCaE0q2ecky9o6E4HtgPyfjfvhtR4htG6dOsE//wmLlTtqPoQQQimyJCfn\nATdJ+j7eLLSvpPXw5p49KhlcCDXrF7+odgQhhNBqld3nxMzuA/YEfgrMxJOVDYA9zexflQ0vhBBC\nCG1NlpoTzGwMsHOFYwkhhBBCyJacAEjaAq8xAZhoZuMqE1IIIYQQ2rKykxNJPwCGA9sCXyWbl5X0\nDHCQmX1QwfhCCCGE0MZkmefkb0B7YAMzW97MlsdrUNoRE5yFEEIIoZGyNOv0ArYxs9dyG8zsNUnH\nA2MqFlkIIYQQ2qQsNSfv4zUn+RYDPmpcOCGEEEJo67IkJ6cCVyQdYoHvOsdejk9BH0IIIYSQWUnN\nOpK+BNLzdC8FPCdpXqqcecD1wL0VjTCEEEIIbUqpfU5OatIoQgghhBASJSUnZnZTUwcSQgghhACN\nmIQNQFIHYPH0NjP7ulERhRBCCKFNK7tDrKSlJF0p6VN8bZ0v8y4hhBBCCJllGa1zEfAT4NfAN8Cv\ngEH4MOLDKhdaCCGEENqiLM06ewKHmdkTkm4AxpjZm5LeAw4GbqtohCGEEEJoU7LUnCwPvJ38/3Vy\nHeApYPusgUgaIOkdSbMljZW0ZYnnbStprqTxBfbtL2lSUuYEST/LGl9omYYPH17tEEIFxfPZusTz\nGYrJkpy8DayZ/P8qcEDy/54sWAiwLJIOBC7Fm4c2ByYAIyV1aeC8zsBNwKMF9m0D3A78FdgMuA+4\nV9KGWWIMLVN8+LUu8Xy2LvF8hmKyJCc3AJsm//8ZGCBpDnAZcHHGOAYC15jZzWb2KnAsMAs4soHz\nhuHNSGML7DsBGGFmg83sNTM7BxgPHJcxxhBCCCE0g7L7nJjZZan/H5W0PtADeNPMXi63PEntk/P/\nlCrXJD0K9KznvCPwGpyDgbMLHNITr41JGwnsXW6MIYQQQmg+WWpOFmJm75nZ3cAXkq7NUEQXfNHA\nKXnbpwBdC50gaR08mTnYzOqKlNu1nDJDCCGEUBsaNQlbnhWAXwJHV7DMRUhqhzflDDKzt3KbK1R8\nB4BJkyZVqLhQbdOmTWP8+EX6SocWKp7P1iWez9Yl9d3ZobFlVTI5yWoqMB9YKW/7SsAnBY5fGtgC\n2EzSVcm2doAkfQvsYmZPJOeWWmbOGgCHHHJIGeGHWtejR49qhxAqKJ7P1iWez1ZpDeCZxhRQ9eTE\nzOZKGgfsBNwPnmUk14cUOOVrYOO8bQOAHYFfAO8m254tUMbOyfZiRuJ9WN4F5pRxN0IIIYS2rgOe\nmIxsbEFVT04Sg4EbkyTleXz0TkfgRgBJFwCrmFk/MzNgYvrkZCr9OWaWbo+5HHhC0snAQ0AfvOPt\nUcWCMLPP8eHHIYQQQihfo2pMckpOTiTd3cAhy2YNwszuTOY0OQ9venkJ2NXMPksO6QqsWmaZz0rq\nC/wxubwB7G1mE+s/M4QQQgjVJK+IKOFAn6q+QWZ2RKMiCiGEEEKbVnJyEkIIIYTQHBo9z0lrkXVt\nn1BbJA2SVJd3iaa8FkTSdpLul/Rh8vztVeCY8yR9JGmWpH9JWrsasYaGNfR8SrqhwHv24WrFG+on\n6XRJz0v6WtIUSfdIWrfAcY16j0ZyQva1fULNegXvu9Q1ufy4uuGEMi2F9zvrDyxStSvpt/gyFEcD\nPwJm4u/XxZszyFCyep/PxAgWfs/2aZ7QQgbbAVcAWwE/BdoDoyQtmTugEu/RaNYBJI0FnjOzE5Pr\nAt4HhpjZRVUNLpRF0iC843P3ascSGk9SHbCPmd2f2vYRcHFuKQ1Jy+CzP/czszurE2koRZHn8wag\ns5ntW73IQlbJj/hPge3N7KlkW6Pfo22+5iS1ts+/c9uS4cr1ru0Tato6SRXyW5JulVTWSK9QuySt\nif+yTr9fvwaeI96vLdkOSRPBq5KGSlq+2gGFki2L14h9AZV7j7b55IQMa/uEmjYWOBzYFV/dek1g\ntKSlqhlUqJiu+AdhvF9bjxHAYcBPgNOAXsDDSQ12qGHJc/QX4KnUNB0VeY/WyiRsIVSEmaVnJnxF\n0vPAe8ABQEnD4UMIzSevmv9/kv4LvAXsADxelaBCqYYCGwLbVrrgqDkpf22f0IKY2TTgdSBGc7QO\nn+ALfcb7tZUys3fwz+V4z9YwSVcCuwM7mNnHqV0VeY+2+eTEzOYCubV9gIXW9qnINLyheiR1wj/k\nPm7o2FD7ki+uT1j4/boMPnIg3q+tgKQf4Kvcx3u2RiWJyd7AjmY2Ob2vUu/RaNZx9a7tE1oOSRcD\nD+BNOd8Hfg/MBYZXM65QuqR/0Nr4ry+AbpI2Bb4ws/fxNu6zJL2JL9J5PvABcF8Vwg0NqO/5TC6D\ngLvwL7S1gQvx2s5GLx4XKk/SUHyo917ATEm5GpJpZpZbMLfR79EYSpyQ1B/vjJVb2+d4M3uhulGF\nckkajo/DXwH4DHgKODPJ5kMLIKkX3tcg/8PpJjM7MjnmXHwOhWWBMcAAM3uzOeMMpanv+cTnPrkX\n2Ax/Lj/Ck5JzUmurhRqSDAcvlDgcYWY3p447l0a8RyM5CSGEEEJNafN9TkIIIYRQWyI5CSGEEEJN\nieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CaENkPS4pMFlHL+6pDpJmyTXeyXXl2m6KIvGcoOku5v7drOSNEjSi9WOI4SWLJKTEFogSTcm\nycLQAvuuSvZdn9rcGzi7jJuYDHQFXklta/RaF+UmSS1YrAsSQiNEchJCy2R4AnGQpCVyG5P/++Cr\nMi842OwrM5tZcuHuUzOrq1TAoXEkxSryoc2I5CSElutF4H1g39S2ffHEZKFmhfwaC0nvSDpd0nWS\nvpb0nqSjUvsXatZJ+bGkCZJmS3pW0kapc5aXdLukDyTNlPSypINS+28AegEnJmXPl7Rasm8jSQ9I\nmpbE86SkNfPuw28kfSRpqqQrJS1W7IHJNa1IOiS5r19JGi5pqbzH4IS8816UdE7qep2ko5PYZkqa\nKGlrSWslj+kMSU/nx5qce7Skycl5f5e0dN7+XyXlzU7+/rrA43+ApCckzQL6Fru/IbQ2kZyE0HIZ\ncD1wZGrbkcANgEo4/2TgP/hy9UOBqyWtk1d+moCLgIHAFsBnwP2pJKED8ALwM2Aj4BrgZklbJPtP\nBJ4F/gqsBKwMvC9pFeBJYDawA7B5cky6puAnQLdk/2HA4cmlPmsBewO7Az/HE6PfNXBOIWcBNwKb\nApOA24FhwB+BHvjjcmXeOesA+ye3uyt+n75rgpN0MHAucDqwPnAGcJ6kQ/PKuQC4DNgAGJkh9hBa\npKgmDKFluw34s6RV8R8b2wAHAjuWcO5DZjYs+f9CSQOT895IthVKcM41s8cAJPUDPsD7s/zTzD4C\n0v1JrpK0G3AA8IKZfS3pW2CWmX2WO0jSccBXQB8zm59sfivvdr8AjjMzA16X9BCwE3BdPfdPQD8z\nm5Xczi3JOeX0vQG43szuSsq4CE+wfm9mjybbLseTxLQlgEPN7JPkmOOBhyT9xsw+xROT35jZfcnx\n7yW1UMcCt6TKuSx1TAhtRiQnIbRgZjZV0oPAEfiX8UNm9oVUSsUJ/827/gmwYn03B4xN3faXkl7D\nf9UjqR1wJl5j8H1g8eTSUF+XTYExqcSkkP8liUnOx8DGDZT7bi4xSZ1T3/0rJv04TUn+vpK3rYOk\nTmY2I9k2OZeYJJ7Fk8f1JM3Aa3Wuk/S31DGL4Ula2rgM8YbQ4kVyEkLLdwPerGBA/zLOm5t33Whc\nU+9pwPF4880reFJyOZ6g1Gd2CWVnibWhc+pYtHaofQPlWD3bSn3sOiV/fwU8n7cvP0EruRNzCK1J\n9DkJoeV7BE8AvgeMasLbEbD1d1ek5YB1gYnJpm2A+8xsuJn9F3gn2Z/2LV5DkPYysF19HVybyGd4\nvxcAkjlcFunYWkApw4RXk9Q1db0nnni8mjTrfASsZWZv513So6xiOHJosyI5CaGFS4b7rg9slNf0\n0RTOkfQTSRvjnUQ/A3J9It4AdpbUU9IGeIfYlfLOfxfYKhmNskKy7UpgGeDvknpIWjsZZbMOTesx\n4FBJP5b0w+T+zCvhvEJtZvnbvgFukrSJpO3wGqS/p/raDAJOl3S8pHUkbSzpcEknNXA7IbQJkZyE\n0AqY2YxUf4eChzRwvZRjDB/tcjk+yuf/gD3NLPeF/gdgPF6T8xjex+OevDIuwWsQJgKfSlrNzL7A\nR+MsBTyBj/j5FYs2y1TaBfgooQeSyz0s2hG3lMep0LY3gLuBh/HH4yVgwHcHm12H38cj8JqjJ4B+\neG1TfbcTQpugpv+hFUIIIYRQuqg5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGE\nEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkII\nIYRQU/4fIXIuPgDsW8EAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYVPX1x/H3B6REUbD8BE3U2GJvYAkaJcYoxkSxRAEb\n2I0dW2LFkkRjb7EXUCPGqCjGgsHesIAd7CgqCDZQKQrs+f1x7splmN2duTuzM7t7Xs9zn9255Ttn\nZnZ2znyrzIwQQgghhGrRptIBhBBCCCGkRXISQgghhKoSyUkIIYQQqkokJyGEEEKoKpGchBBCCKGq\nRHISQgghhKoSyUkIIYQQqkokJyGEEEKoKpGchBBCCKGqRHISSk5SjaTTM177oaQbU7cHJOV1L12E\n2UlaKYnn2ErH0ppJelzSayUuc4G/vWqW533SK/m73KqE95H5fRxCY0VyEvJKJQU1kjav45yPk+Mj\ncg5ZsmVRk+fakq6xIKm/pKNLWWZoWPK3clmJiivHuhsFlZl6X9RImifpU0kjJfUqQ0x1yRdr0c+J\npN9JGlzPfTT5+iaSBuc8x7nP97JNHVNoeotUOoBQ9WYBewLPpncm/4h/CszOc81PgLkZ728NPEEp\npz2BdYBLy3w/oeV6GLgZELAycBjwqKQdzGxkUwdjZk9I+omZ/VDkpTvgsZ+Z51hj3seNZcChwIw8\nx6Y1cSyhAiI5CQ15ANhd0lFmlk4a9gReApbJvSDDP8j0tXOyXttcSVrUzGZWOo5QlHfM7LbaG5Lu\nAV4DjgHyJieSBLQ3s+/LEVDG951KXF4p3WVmXxVzgaQOwA+WZ0XbUrzP4r3adKJZJ9THgGHA0sC2\ntTsltQP+CNxGnn9uuW3Vks5I9q0qaYikryVNk3SjpI4519bV7r+YpGskfSFpuqShkrrkXLuTpP8m\n1eyzJb0n6VRJbVLnPAb8HqjtO1Ij6YPU8Q5JvG9LmiVpkqS7JK2c53EelNzHbEkvSNq4oSc01Vy2\nlaQrJU0BPk6ODZE0Ic81Z0iqydlXI+kySX0kvZ7E8Iak3g3c/7KS5kg6Lc+xXyTlHpbcXiSpYn8n\neS6+kPSUpG0aepxZFfIa5pzfXdIzkmZK+kDSIXnOaS/pTEnvJmVOlPQPSe1LFbeZvQF8gdei1N5v\n7Wu0p6Q38FrG3skxSTomec1mSfpM0tW5f9PJuafKm1BnSHpE0tp5zsnb50TSZpIekPSVpO8kvSrp\nyOTYTXitSbqpal5O/KfnlLeRpAeT9+C3kkZJ2iznnNq/8c0lXSRpanLfd0tauugntw6px9xX0l8l\nfYLXtCwuaWBd77MMjyNvGaG8ouYkNORDYDTQn/nfCHcAlgBuBwrpu1H7LeYO4APgL0B34EBgCnBS\nnnPTBFwBfA0Mxpt+DgNWBLZOnTcQ+Ba4EPgO+A1wFrA48OfknL8CnfEmqWOSsr8DSD4A70/KHAZc\nkly7LbAukE4c9gI6AVcnMf8ZuEvSKmY2j4ZdCUzFq9MXTT32uvoS5Nu/JbBrUta3wFHAnZJWNLOv\n892pmU2V9ASwB3B2zuF+eDX+HcntM/HX6lrgRfw13xh/7R5p+CFmMpCGX8NaS+Gv1x14orwHcJWk\n781sCPxYW3EfsDlwDfAWsB4wCFgdf/4aTdKSwJLAuzmHtkniugJPXj5M9l8L7AvciDcvrgwcCWwo\naYvavyFJZwOnAP8FHsSf+4eBdnnCWOBvRNK2+GOfhP8tfwasBfwBuBx/PpYHfov/PddZi5KUtzbw\nJDAdOBf/WzkEeFzSVmb2Ys4llwNfAWcAP8ef8yvw/yWFWDp5/dLmmtn0nH2nAd8D5wMdgB+Y/1yk\n32eLJY9jnSIfx0JlhCZgZrHFttAGDADm4f8MD8PbeTskx/4NjEp+nwCMyLm2Bjg9dXtwsu/anPPu\nAqbm7JsA3JgTRw3wPNA2tf/4JL4/pPZ1yPM4rsI/7Nql9t0HfJDn3P2S+zqqnudlpeScqcASqf07\nJvHsUMDzWgM8Dijn2E11xDUYmJfnOZ4F/Dy1b71k/2ENxHBQEuvaOfvfAP6Xuv1y7mvbyL+pGuCy\nBs4p9DV8LHkMR6f2tQPGApNr/1aAvYE5QM+cMg9Orv9lXX97DTyOa/EaxWWATYFReeKpSe57jZzr\nf5Uc65uzf9tkf7/k9jJ4bcu9Oef9NTkv/T7pldz/VsntNvgXgfeBxet5LJfn/m3lxJ9+Hw9P/uZW\nSu3rhn/IP5bnb/yhnPIuxBOHOuNJ/b3X1LGNy3nMNXhC2L6I91mxj2OhMmIr/xbNOqEQd+Df7v8g\nqRP+zetfRZZh+De1tKfwb0edCrj+WluwRuIqkmTgxztIteVL6pRUIT+dxL5mAfexK/A5/u2uIbeb\n2Tep20/h3zxXKeBaA66z5D9gI/zPzD78sVCz14FvCojhbvy561u7I/k2uTZeG1ZrGrCOpNUaGWfB\ninwN5+JJQu21c/C/sWWBHsnuPwLjgXckLV274cmNWLDmrRgH4H8rU/GaxZ7AhWaW28n6cTN7O2ff\nH/Hn9pGcmF7Ga4tqY9oWT7guz7n+kgLi2wivrbjEzL4t7CHVLalV3BYYbmYf1e43s8/wWqtf5byP\njdRrk3gKaIsn+A0xYBe8Vie97Zfn3CGWv3/MQu+zjI+jFO/VUKRo1gkNMrMvJI3CO8Euhn8ruzND\nURNzbtc2PSxJ0rRSVwjAezkxzZA0Gf8HDPxY7fw3/J/7EjnXdy4gvlWBt23Bjr91WaDt2cymJTXQ\nSxZwLcyv3m+MfO3fXzcUg5l9KekRvLmhdhhpP/xb/vDUqacD9+Af7G8ADwG3JElQWRT5Gk4ys1k5\n+97Bk46fAy/gTTdr4olELsMTmSzuxZNYw2t13swTC+R/nVcHuuCJTX0xrZj8zP3b/0JS3ma7lFWT\nst5s4LxC/R+eIL6T59h4/H/CCsnvtXL/PtPv90I8ZYV1iP2wiGNZHkd95YcyieQkFOo24DpgOeDB\njN/G6uqLUW9bdyEkdcbbkacBp+JV2rPxb9DnUvrO3419LPk+yOr6dta2DDHcDtwoaX0zew3YHXgk\n/WFgZk9JWhXoA2yH1xYMknSImZV8srIyvYZtgNfx/g75npesHRw/MbNHCzgv3+vcBu9rtWcdMeVL\npJqjsr3fc+R7jgs5VoryQ5lEchIKNRyvMt+MVHNAExH+bfOJH3dIi+GJ0v3Jrl/j38j6mNkzqfNW\nzVNeXUnA+8CmktpaYZ1aS+1r/Bt1rp+X4b7uwV/Pvkmnw1/gNRYLMLNpwFBgqKRF8ar5M/COnKX2\nawp/DQGWl8/tkf7wWAN/fWs7L78PrG9mj5Uh3qzexzvKPmv1DyuubXZYndS3d0nL0HDtw/v4+2Zd\noL4kqtDmis+Bmfjzm2stvG9GcxjJ0lIeR4sXfU5CQcxsBj4p0hl4h9KmdrCkdDJ9GF6j8EByex7+\nzzg9bLh9cl6uGeRv5rkLr/Y9ohQBZ/A+0FnSurU7JC0H7FzqOzIf8TASb9rph492uDd9jqSlcq6Z\niTcxdEids4SkNSSlm2CyKuY1BP9ydWjq3Hb4qIvP8Y6x4P2lfibpoNyLJXVMEq6mdgce+0JTw0tq\nm9QggXeynYuP4kkbVMB9jMUTtGNS5eUzI7nfel+/pKnzYaCPpNrmJiR1xUffPGVm9TXNVoWW8jha\ng6g5CfVZoPrVzG6pVCBAe7wD4R14H4I/4f9I/pscfxavebhZ86dI35v83wzHAHtIuhAfIvtdUs7N\n+PDOi5I5D57ChwtvA/zTzEqVlNVVrX078A/gnuQxLIZ/+L6Nj5oqtX8Dt+If/iNzOvgCjJP0OP58\nfQVsgnfmTE9Bvws+ymgg/vw1ZGNJp+TZ/xjFvYbgo3JOlPRzvA9BP2B94KBUzdctzB9ivDXwDJ7U\nroU3ZW3H/ESmSZjZk5KuAf4iaUP8w3IOXnv1R3xI+N1J35ILkvP+iyfiGwHbk7/p58e/KzMzSX8C\nRgCvyOc0mYy/d9Y2s98lp45Jrrtc0kh85M6/6wj9VLxT6jOSrsSTyYPx9+aJdcVS4P585+0uKV+i\n8LCZFdL0Vdd9leJxhDKL5CTUp5Aq33xzcDRmTY66yjsCn4vhTHwEw79IzbFiZl9J+j0+XPFs/EPu\nFrxKO3fGziuBDfAP1GPw6vP/mlmNpN/h80rsiY/e+RJPUtKdQIudjyTfeQvv9MewM3ARnqRMwOcZ\n+QULJyeNjQH8g2sWngTdnuf4pcBO+OiGDvjzdDJwQZ77LIThzYKb5Tl2mpk9W8RrCP7aDMQ7ptbO\nmXN4uj9M8iHdB69t2BevhZqJ92e5mAU7Rhbz+jXqPDP7k6SX8Jqev+E1JB/iCd4zqfNOkTQLT1J/\njY8M2g5vzsz3Pknfx8NJQjYYOBavkXqfBUfR3I0nm/2YP9dJbXKyQPxmNk7SlsA5+N9lmySePc3s\npfpiKWB/vvOurOPY1sxPzuorr67nvhSPI5SZYoRUCCGEEKpJ1fQ5kXS4pAnyqZxHS9qkgfPbS/qb\nfLrz2fKpqwfmnLO7pPFJma8m34pDCCGEUMWqIjmR1Bevyh2Mt6m+CoxMeqXX5T949d5+eLV3f7xt\nvrbMzZk//HVDvLPfPcqzLkUIIYQQqkdRzTrJaImT8WmTPylZENJo4HkzOzq5LXw412Vmdl6e87fH\nE49VkqGO+cq8HVjUzHZK7XsOeNnM6ur9H0IIIYQKK6rmxMzmAidQwo60yfC/HqQWEkumCh6FTwmd\nz47AS8CfJX0iX0H2fC24wm3PpIy0kfWUGUIIIYQqkCXJeBRfcOnDEsWwDD60b0rO/inknygHfO2Q\nLfHZI3dOyrgKX6X0gOScbnWU2a3xIYcQQgihXLIkJw8C50paDx8jPyN90MxGlCKwBrTBZ/Lbs3bC\nHEnHAv+RdFgDsy7WKVl8qzeeeM0uUawhhBBCa9ARn9F6pJl92ZiCsiQntWPPj81zzKh7HZC6fIFP\ngtM1Z39X4LM6rpkMfJozk994fIz+z/Cx/J8VWSZ4YlLsarshhBBCmG8vvF9oZkUnJ2ZW0hE+ZjZH\n0hh8Fs4R8GOH2G1YcCbKtGeAP0paNJlSG7wJqAao7aj7XJ4ytk321+VDgFtvvZW11lqr+AcTqs6g\nQYO4+OKLKx1GKJF4PVuWeD1blvHjx7P33ntDCbp9VMsMsRcBQ5Ik5QV8NsdFgSEAks4BljezAcn5\nt+FTEN8k6Qx8PZTzgBtSTTqXAo8nzT3340ONewALrbGRMhtgrbXWonv3cswWHppa586d47VsQeL1\nbFni9WyxGt0tIlMtiKReku6T9F6yjUimA87EzO4AjgfOAl7G18fonVo/oRuwQur8GXgtSBd8bZRb\n8HlM0tOZP4dPQX4w8Ao+FXkfMxuXNc4QQgghlF/RNSeS9sYX+qpdkwFgC3xRtoFmlqmdycyupI61\nFMxsvzz73sH7iNRX5l34SrMhhBBCaCayNOucApxoZumGwsuS5pPTaGQnmBBCCCG0blmadVYB8i0d\nPwJYuXHhhFBa/fv3r3QIoYTi9WxZ4vUMdcmSnHyMj4LJ9dvkWAhVI/75tSzxerYs8XqGumRp1rkQ\nb8bZEHg22bcFMJBUh9QQQgghhCyyzHNylaTPgOOAPZLd44G+ZnZvKYMLIYQQQutTVHIiqS1eS/KY\nmQ0vT0ghhBBCaM2KXZV4HvAwsGR5wgkhhBBCa5elQ+wb+IidEEIIIYSSy5KcnApcIOkPkpaTtER6\nK3WAIYQQQmhdsozWeSD5OQJfhbiWyLYqcQghhBDCj7IkJ1uXPIoQQgghhESxo3UWAXoBN5rZJ+UJ\nKYQQQgitWbGjdeYCJ5CtxiWEEEIIoUFZOsQ+iteehBBCCCGUXJYakAeBcyWtB4wBZqQPmtmIUgQW\nQgghhNYpS3JyZfLz2DzHYrROCCGEEBoly9o6WZqCQgghhBAKUjWJhqTDJU2QNEvSaEmb1HNuL0k1\nOds8ScumzhmQ2l97zsymeTQhhBBCyKrg5ETSA5I6p27/RVKX1O2lJY3LEoSkvsCFwGBgI+BVYKSk\nZeq5zIDVgW7JtpyZTc05Z3rqeDdgpSzxhRBCCKHpFFNz0hvokLp9MrBU6vYiwBoZ4xgEXGNmN5vZ\nW8ChwExg/wau+9zMptZueY6bmaXP+TxjfM3DnDmVjiCEEEJotGKSEzVwOxNJ7YAewCO1+8zMgFFA\nzwbieUXSJEkPS9o8zzmdJH0oaaKkeyStXYqYq9JVV8Faa0FNTaUjCSGEEBqlGvqcLIOP8JmSs38K\n3hSTz2TgEGA3YFfgY+BxSRumznkbr3nZCdgLf6zPSlq+dKFX2COPwLx5/vt668H778Ozz1Y2phBC\nCKGRiklOjAUX+iPP7SZhZu+Y2XVm9rKZjTazA4Bn8eah2nNGm9mtZvaamT2FJzGf40lN8/fss/Db\n38LDD/vtzTeHn/0Mbr+9snGFEEIIjVTMUGIBQyR9n9zuCFwtqXYStg75L2vQF8A8oGvO/q7AZ0WU\n8wKwRV0HzWyupJeB1RoqaNCgQXTu3HmBff3796d///5FhFNm558Pa64JvXv77TZtoG9fuOUWuOQS\nWCRWGAghhFAew4YNY9iwYQvsmz59esnKl3fvKOBE6aZCzjOz/YoOQhoNPG9mRye3BUwELjOz8wss\n42HgGzP7Yx3H2wBvAveb2fF1nNMdGDNmzBi6d+9e7MNoOm+/7f1Lrr0WDjxw/v6XXoJNNoH//c9r\nVUIIIYQmMnbsWHr06AHQw8zGNqasgr9eZ0k6inARXiszBq8BGQQsCgwBkHQOsLyZDUhuHw1MwJON\njsBBwNbAtrUFSjoNGA28B3QBTgRWBK4v4+NoGhdeCF27wt57L7i/Rw9YZRVv2onkJIQQQjNVDR1i\nMbM7gOOBs4CXgfWB3qmhv92AFVKXtMfnRXkNeBxYD9jGzB5PnbMkcC0wDrgf6AT0TIYqN19TpsDN\nN8NRR0HHjgsek6BfP7jrLvjhh8rEF0IIITRSwc06rUGzaNY59VS49FKYOBGWXHLh46+/DhtsAE89\nBVvU2QUnhBBCKKmKNOuEKvDdd3DllXDQQfkTE4B114XJk73ZJ4QQQqh19dXw7bdwwgmVjqRBkZw0\nNyecAHvtVfdxKRKTEEIIC7viCu+b2AxURZ+TUKBOneCkk2DFFSsdSQghhObk3XfhzTdhl10qHUlB\nMtWcSFodHx2zLDkJjpmdVYK4QgghhFAqw4fDT34C221X6UgKUnRyIukg4Cp88rTPWHCWWMNH3IQQ\nQgihWgwfDttvD4suWulICpKl5uRU4BQz+0epgwkhhBBCiX36KYwe7dNQNBNZ+pwsCfyn1IGEEEII\noQzuvdeXNPnDHyodScGyJCf/AZpHo1VWI0dWOoLSee89+OabSkcRQgihUgYMgEcfrXsKiiqUJTl5\nDzhb0hBJx0k6Kr2VOsCKOOccmDSp0lG4iROzX/vll7DGGnDHHaWLJ4QQQvOy2GKw5ZaVjqIoWZKT\ng4HvgF7AEfg6OLXbMaULrYI6dIADDoBKz5770Uew6qpw553Zrl96adh6a19rJ4QQQmgmik5OzGzl\nerZVyhFkkzv9dHjoIV/1t5IuuQQWX9x7WGfVrx889hh89lnp4gohhBDKqFGTsClRqmCqxhZbwCGH\nwLHHep+NSvj6a7juOjj8cJ98Latdd4U2bbLXvoSm9eST8Je/VDqKxpkypdIRhBCauUzJiaR9Jb0O\nzAJmSXpN0j6lDa3CLrgAunWD66+vzP1ffTXMnQtHHNG4cpZayifdiaad6mUGDz8MW20FvXrBgw/C\n9OmVjiqboUPhF7/w9Z1CCCGjopMTScfik7A9AOyRbA8BV0saVNrwKqhTJ3j6ae8c29Rmz/aVhwcM\nKM06Of36wTPPNK5zbSg9MxgxAjbbDHr39td9xAh45RXo3LnS0WWz447Qrl3zr/0JIVRUlpqTI4E/\nmdmfzWxEsp0IHAa0jNE6tZZbzhfSa2q33gpTp8Jxx5WmvD59vJNvjNqpHnffDRtu6K9Nx45ec/L8\n8/7h3pxbSpdaCv72N5/s6dlnKx1NCK1XTY1vzVSW5GQ5IN9/nWeTY6Examq8SWnnnb16vBSWWAL6\n9vWlskN1GDXKa8WeeML7mWy7bWFJiRnMmFH++Orz7bcwZ07dxw88ELp3hyOPhHnzmi6uEMJ8jzzi\ni8Q20ybWrPOc7JFnf1/g3caFE5gxw/sdnHhiacsdOhTOPLO0ZYbsLrtsfj+TYlx5pde4vPRSeeJq\nyEsveeLxt7/VfU7btnD55TB2LNxwQ9PFFkKYb/hwb2Lt1q3SkWSSJTkZDJwl6SFJpyXbQ8n+07MG\nIulwSRMkzZI0WtIm9ZzbS1JNzjZP0rI55+0uaXxS5quSfpc1viaz+OJwzTXwy19WOpJQTotkWhDc\n+6Z06QKbbw4XXth01bY1NX5/m2/u97/33vWfv/nmsM8+cPLJPvIshNB0amrgnntgl12abTNxlnlO\n7gI2w1cl3jnZvgA2NbPhWYKQ1Be4EE9wNgJeBUZKWqa+UIDVgW7JtpyZTU2VuTlwG3AdsCFwL3CP\npLWzxBhCwb791kfclMNqq3nn5qOPhuOPhx12KP/Q3SlT/H6OPx6OOcbvf7XVGr7uH/+AH36AM84o\nb3whhAU9/7w35+yyS6UjySzTUGIzG2Nme5tZj2Tb28xebkQcg4BrzOxmM3sLOBSYCezfwHWfm9nU\n2i3n2FHAg2Z2kZm9bWanA2PxWW2z+/Zb+Ne/GlVEaKGmTYOzz4af/xx23718w4Hbt4fzz/eJAl9+\nGdZfv3zrQY0c6eW/8or/ft55fv+FWG45f68ce2x5Ygsh5Dd8OCy7rNdgNlMFJSeSlkj/Xt9WbACS\n2gE9gEdq95mZAaOAnvVdCrwiaZKkh5OakrSeSRlpIxsos2F33eVV2uX6Zhyany++gFNOgZVWgr//\nHfbaC8aPL/9w4N694bXXvA/K9tvDueeWtvyLL/ZyN9oIXn3V58sp1o47+vMSQmgaZp6c9Onj/b+a\nqUJrTr5O9eeYBnydZ6vdX6xlgLZAbt30FLy5Jp/JwCHAbsCuwMfA45I2TJ3TrcgyCzNggH8oHHAA\nfPVVo4oKzdzkyd7UsdJKPi/NIYfAhAne2XWFFZomhq5dPVE+/3zYdNPSlr311j5y7IEHSjPfTgih\n/N54w2c2b8ZNOgCF9sr7DVD7Sbx1mWIpmJm9A7yT2jVa0qp489CAst655CMQ1lvPp5YfNqysdxeq\n2KGHwuOPe7PFMcf4QouV0KaNJ0mltuGGvoUQmo8HH/SBFb/5TaUjaZSCkhMzeyJ1cwLwcdL08qNk\njZ0sXxe/AOYBuV/NugLFrFb3ArBF6vZnWcscNGgQnXOq5Pv370///v39xk9/6kM6+/f3qrN+/YoI\nM4/Zs30irqbywgswaZLPpRKyu/RSH7nSpUulIwkhBHf88bDbbj7xZhkNGzaMYTlfzqeXsJ+dcnKM\nhi+Q5pEzMibZvzQw1cyKbuSSNBp43syOTm4LmAhcZmbnF1jGw8A3ZvbH5PbtwE/MrE/qnGeAV83s\nsDrK6A6MGTNmDN27d2/4Tvv187kq3ngDll++kDAX9t13sPrqvgJx377ZyijWEUfAvffCRx/5t+7g\n5szxuTmefNK344/3OWdCCCE0aOzYsfTo0QOgh5mNbUxZWT6ZhA/jzdUJmJ0xjouAg5IFBdcErgYW\nBYYASDpH0tAfA5COlrSTpFUlrSPpEry56YpUmZcC20s6VtIaks7AO96mz2mcf/7TazwOOMA7IWVx\nww3w+efQs3H9dIvSrx988klMLz5rls/QevbZPkNrly4+v8yZZ8L332d/TavRuHELz4lSU1O5ydxC\nCKEeBc8EJemi5FcDzpY0M3W4LT73yStZgjCzO5I5Tc7Cm15eAXqb2efJKd1YsMmoPT4vyvL4kOPX\ngG3M7MlUmc9J2hP4W7K9C/Qxs3FZYsxr6aU9ufjHP+Cbb4ofnTFnDlx0kTcPrbhiycJq0Oabw89+\n5isV/+pXTXe/1WbLLWHMGH/dttzS5+Po1ctHp7RrV+noSufrrz357dnTZwru2hU++8w7dz/+uHfi\nzVrzV6zZs+Goo7xJcYcdmuY+QwjNTsHNOpIeS37tBTwH/JA6/APwIXCBmTXbKeyLbtapZZZtFr7b\nbvNhp6+8AhtsUPz1jXHccb7A4KefZp+ttLl74gmvLVl33WY95K4gDz/sM7YCnHCCj+6RfIG+LEOE\nszKD3/7WV8h+442yt4uHEJpORZp1zGxrM9saGAr8rvZ2svU2s0Oac2LSKFkSEzP/gNhuu6ZPTMCb\ndqZO9W/OLVFNTcPNMr16+XPf0hMT8L+z117zWqETTmjc3CWNIflQ6wkTfB6VEELII0ufk2PI0xwk\naaksk7C1Wo884jUmpV7gr1AbbwyrrOJNOy3RnXfC2mvHSsxpXbv6nCUvvljZuUvWWcdXLP7rX73m\nLoQQcmRJTm4n/6rEeyTHQiHOO8+/vVZqLLrktSd33eXrn7Q0Q4bAkkv6eP8wX5s2nphWepTW4MGw\n6KKVS85DaElmz4aZMxs+rxnJ8h9qM+CxPPsfT46Fhsye7cnBiSdWdsXIvfaC/fdvcX/UTJrk68AM\nHFjpSEJdunTx6fZvuw2eeqrS0YTQvA0fDv/3fy1q1vIsPSE74KNlcrUDftK4cFqJjh39w7PSQ1XX\nXhsuvLCyMZTDrbf64nR75KvgC1Vj4EC45hpv4hkzpnX0/QmhHIYPh7XWgqWWqnQkJZOl5uQF4OA8\n+w8FxjQunBbi++99Sftnnqn/vErWmrRUZt6ks8suMXNrtWvTBi6/3IcxT5tW6WhCKMxHH3lSPWlS\npSNxs2d7H7JmvpZOriw1J6cCoyRtwPyVhLcBNgGauOt/lVpkEZ/c6v77vdNrp06Vjqj1ePFFXxH4\nkksqHUkoxKab+j/WEJqLF17wdbXuucf/div9JfN//4MZM2DXXSsbR4kVXXNiZs8APfGVgPcAdgTe\nA9Y3s2g8Bq+eHjrUV6094YRKR9O6DBniax9ts02lIwkhNDezZsEXX9R/zo47wr//DQ89BPfd1zRx\n1Wf4cFh9ynR6AAAd0UlEQVRjDW/WaUEyddk3s1fMbC8zW8fMNjaz/VvtHCd1WW01789x9dW+SmQo\nPzN49FHYd9/ovxBCaNi333r/v1NO8Vmiu3TxmaLr07Ej7L479O4NgwZ5s0qlzJ0LI0a0uCYdKLBZ\nR9ISZvZN7e/1nVt7XgAOOcSr/g44wGfDbEGdlaqSBK+/7t9+Qgghn2eegbvv9sU9X34Z5s2DZZeF\nrbaCCy7wGYwbInnT8Xrr+TWnnlr+uPN5+mn48svWm5wAX0uqXYl4GvkX/qtdEDC+staSfO2d9daD\nww+HnOWlQxm0a9ey1sUJIZTWyJHwn//4DNEHH+xJyS9+UXzfkTXXhGOOgb//3Wtrm3J9tFrPP+/r\npG28cdPfd5kVtLaOpF7AM2Y2N/m9Tmb2RKmCa2qZ19ZpyO23++J+V13lHamq0XvvwcknezNU1PCE\nEHL997/w5z/XfXyRRXxJhPoceaQ3vdbl97/3CSrrMmcObLhh/fdx2WX19zmbM6d0X2C++cb7e2y5\nJdxxR2nKzBLDEtUxOXsp19YpqOYknXA05+SjYvr183bJSs0GW4hOnXy22N69vRkqhEqZNs0nZttx\nx0pHEtKWW67+tZgK6ee14Yb1LzS63nr1Xy81vB7UssvWf7yUNatLLOHD4b/6KvsCsKWIoQUqtOZk\n/UILNLPXGhVRBZWt5qS5qG1rHTWqsnGE1u2887wN//XX/VtpCKFZaPKaE+AVvD9Jbb+S+kSfk+aq\nXz/vxPvZZ9CtW6WjCa3VUUd58+LRR/tIt0rPIxFCaHKFDiVeGVgl+bkbMAE4DNgo2Q4D3k+OheZq\n11191s4776x0JKE169gRLr7YOy5WwzwSrcnMmZVfViMECkxOzOyj2g04GTjKzK4xs9eS7RrgGOC0\ncgYbymyppbw99/ZmtLj07Nk+E+/cuZWOJJTSTjtVxzwSrcncuf4F5fDDKx1JCJkmYVsPrznJNQFY\nO2sgkg6XNEHSLEmjJW1S4HVbSJojaWzO/gGSaiTNS37WSGphy++WQb9+Pg/AxImVjqQwI0bAH/4A\n779f6UhCKUlw6aXw8cc+j0QovxNP9P5mu0UFeKi8LMnJeOAkST+uTJz8flJyrGiS+gIXAoPxZqJX\ngZGSlmngus7AUKCuHpzTgW6pbaUs8bUqffpAhw6VGxZXrCFDoGfP6DjZEq2xxvx5JJpLsgw+qdcd\nd/gaT83FjTd6U9oll8TSD9Vu2jT49NNKR1F2WZKTQ4HewCeSRkkaBXyS7Ms6iccg4Bozu9nM3krK\nmQns38B1VwP/AkbXcdzM7HMzm5psn2eMr/VYYgmfLK5v30pH0rBJk7xfwsCBlY4klMtpp/mU4jfe\nWOlIGjZ3Ltx8M6yzjr9/7rmn0hEV5plnfP6lgw+OJp1SefBBX/OmHG69FVZZBb77rjzlV4ksC/+9\ngHeOPRV4LdlOAVZJjhVFUjugB/NXOMZ8fPMofIHBuq7bD++ge2Y9xXeS9KGkiZLukZS52alV2WUX\nWGGFSkfRsFtvhfbtYY89Kh1JKJfFF4fnnoPBgysdSd2+/x6uu85nGR0wwH8+/zycdFL+88184bia\nmqaNM5+JE72fSc+ePl9HjIwqjVtu8YRv+vTSl3333bD11i1+tfusC//NMLNrzezYZLvOzGZkjGEZ\nfPjxlJz9U/CmmIVIWh34O7CXmdX1Dn8br3nZCdgLf6zPSlo+Y5yhmph5k84uu/g369ByrbRSdX5o\nzprlH+irreZD8Dfe2NdqGTECNt207uteeMFnjD7oIG8CqpQZM7zj8aKL+gSM7ds3fE0ozPnn+/N7\nZn3fnTP48ktfE6gFrqWTK1NyImkfSU9LmiRppWTfIEl9Shte3vtugzflDDaz2l6QC/3nMrPRZnZr\nMproKWBX4HPgkHLHGJrAiy96m3406YRK+fBDOO44/xb75pvez6ShqdUBNtvMm3+GDPGalkqNNJsw\nwZsGRoyAZert3heK9dOf+kSCl18O48aVrtz77vMatz5l/6ituIJmiF3gAulPwFnAJXjTzjpm9oGk\ngcAAM9u6yPLa4f1LdjOzEan9Q4DOZrZLzvmdga+BucxPStokv88FtjOzx+u4rzuAOWa2Vx3HuwNj\nttpqKzp37rzAsf79+9O/f/9iHloop8MO83+qH31U2LTZoWV65x3ve7TZZvCTnzT9/U+d2vB06XX5\nz39gzz1h553httsqs2Dl3Ln1Tycfsvv+e5+Of8UV4X//K03t3047+VT5Tz/d+LIaadiwYQzLWcx2\n+vTpPPnkk1CCGWIxs6I2YBywc/L7t3hfE4B1gS+KLS+5djRwaeq2gI+BE/KcK3zIcnr7ZxLXWsBP\n6riPNvhoogvqiaM7YGPGjLFQ5S67zOzSSysdRai0k082A7P27c1+9Su//dBDZt98U+nICnPPPWbt\n2pnttJPZ7NmVjiaU2v33+9/nnXc2vqxvvzXr0MHsggsaX1aZjBkzxvBZ5LtbhlwgvWVp1lkZeDnP\n/u+BxTKUB3ARcJCkfSWtiY/CWRQYAiDpHElDwTvLmtm49AZMBWab2Xgzm5Vcc5qkbSWtLGkjvClo\nReD6jDGGanLkkT7NeWjdzjoLXnnF50Lp1g2uvx623x6WXBI22cRXqM1q8mT/llpOffrAvff6qLOd\nd/Z+LKHl2GEHn4fp2GN99t3GeOghr41pBf1NIFufkwlAvobV7ck4z4mZ3QEcjzcXvQysD/S2+UN/\nuwHFDh9ZErgWr1G5H+gE9DQfqhyKUQ2jCkLIp21b2GADT1b/8x9fF+qtt+Cqq2DNNb1TYrEmToQj\njoCVV/a5P8rtd7/zWY5fesn7roSW5eKLPel89dXGlfPhh958ucoqJQmr2mXpc3IgcAZwHHADcCCw\nKj4J24Fm1ozmPl9Qq1+VOJ/ddoNVV/WVYkNoaaZM8VqLrbby/hfnngtDh0Lnzj51/uGHN91osO++\na/HDQ1ut2bN9zajGqqnx9c+qVCVWJf6RmV0vaRbwV7zp5TZgEnB0c05MQh2WW87nEzn99PjHGVqe\n55/3ETO1unaFc87xOSqa+u+9XPdn5ssArLhiecoPDStFYgJVnZiUWlGPVG5F4C4zWx1vKulmZj8z\nsxvKEmGorEGDfCKhE06odCQhlN5OO/ncEffe6zUmEybA8ce3rET8wgth3XW9D00IzUSxaZiA90j6\nf5jZTDObWvKoQvVYdVX/53b11T4lcwgtzVJLeZKy776VGY5cTvff7wv6HXGE14KG0EwUlZyYz8b6\nLrB0ecIJVemQQ3z5+gMOKP/ohRBCaYwb5zPR7rgj/PWvlY4mhKJkacD6C3C+pHVLHUyoUhLccIN3\n6qrUwmCzZ/s/2TFjKnP/IVTKhx/6SsEff1z4NV9+6bVBK63kfcZaUV+F0DJk+Yu9GdgUeFXSLElf\npbcSxxeqxU9/Cv/8J9x+uy881dTuuw/++9+W1RcghEKYwQcf+IiiCRMaPn/OHF8Mc9o0n0V58cXL\nH2Mo3ttvVzqCqpZl3uJB+AxwobXp18/njdhuu6a/7yFDfOXUNdZo+vsOoZJWXhmeeMJrT7baCh59\nFFZfve7zBw3yxeFGjfJrQ/UZNQq23Raefdb/r9Xlk098uHv37tW5+GUZZRlKPKQMcYTmQIIDD2z6\n+5082WdHvOqqpr/vEKrBiisumKA88gisvfbC59XU+Bo9V1wBvXo1fZyhMFtv7QnHkUf6cPa61ge7\n/nq45BJfw6mVrRpdcLOOpDaSTpT0jKQXJZ0rqYV1bQ9V6dZb/Y25xx6VjiSEyll+eU9Q/u//4Ne/\nhtdeW/icNm18RtJDYvH1qta2rSeQY8bAjTfWfd7dd/v0960sMYHi+pycAvwdX+zvU+BofMG9EMrH\nzJt0dtml6WbqDKFaLbssPPYYrLCCf/uO6e6br549ffj6ySfD118vfPz99+H111vNWjq5iklO9gUO\nM7PtzWxnYEdgL0nRDTyUz0sv+ZDIgQMrHUkI1WHppb1ZZ599ok9Jc3fuub6Y3+mnL3xs+HCfWXb7\n7Zs+ripQTGKxIvDjLFxmNgrvGLt8qYMK4UdDh/pIoW22qXQkIVSPLl28L8Kii1Y6ktAYyy3nicmV\nVy7cTDd8uA8+WGyxysRWYcUkJ4sAs3P2zQHalS6c0CzV1HiHrXI4+2xvd62rw1gIITRnRx3lo6/+\n/Of5+yZP9pE8u+5aubgqrJjROgKGSPo+ta8jcLWkH9clN7PW+2y2Vkcf7R31XnwROnQobdlLLgmb\nblraMkMIoVq0bw+33eYdnWvde69/Idtxx8rFVWHF1JwMBaYC01PbrfiKxOl9obU58EB46y0YPLjS\nkYQQQvPTvbt3cq41d66PTlxqqcrFVGEF15yY2X7lDCQ0YxtsAGedBaec4pn+FltUOqIQQmi+jjjC\nt1YsRtqE0jjhBNhsMxgwAL77rtLRhBBCaMYiOQml0batj6yZPNkTlRBCCCGjqklOJB0uaUKymOBo\nSZsUeN0WkuZIGpvn2O6Sxidlvirpd6WPPPxo9dXhggvg6qvhwQcbPj+EEELIoyqSE0l9gQuBwcBG\nwKvASEnLNHBdZ7yj7qg8xzYHbgOuAzYE7gXukZRnQYpQMoceCr17w5ln+uyuWXz6afZrQwghNHtV\nkZzgKx1fY2Y3m9lbwKHATGD/Bq67GvgXMDrPsaOAB83sIjN728xOB8YCrbuXUblJ3rzz0EPZVtGc\nPRvWWw8uuqj0sYUQQmgWChqtI2mnQgs0sxHFBCCpHdADX7entgyTNAqocy1pSfsBKwN7AaflOaUn\nXhuTNhLoU0x8IYOuXbNfe999vs7E739funhCCCE0K4UOJb6nwPMMKHYqz2WSa6bk7J8CrJHvAkmr\n48nMr8ysRvm/oXero8xuRcYXmtKQIfDLX8Kaa1Y6khBCCBVSUHJiZtXS/EOy0OC/gMFm9n7t7lLe\nx6BBg+jcufMC+/r370///v1LeTch1+TJ3hx05ZWVjiSEEEI9hg0bxrBhwxbYN3166eZhLWb6+oVI\n6mhmuevtFOsLYB6Q2xbQFfgsz/mLAxsDG0r6Z7KvjYejH4DtzOzx5NpCy1zAxRdfTPfu3Qt+AKFE\nbr0V2rWDvn0rHUkIIYR65PvCPnbsWHr06FGS8ouuEZHUVtJpkj4FvpO0SrL/bEkHFFuemc0BxgA/\nLjsrb6fZBng2zyXfAOviI3A2SLargbeS359PznsuXWZi22R/qDZm3qSzyy6+4moIIYRWK0tzzSnA\nQOBE4IfU/jeAAzPGcRFwkKR9Ja2JJxuLAkMAJJ0jaSh4Z1kzG5fe8DV/ZpvZeDOblZR5KbC9pGMl\nrSHpDLzj7RUZYwyNYeZLgM+bl//4Sy/BuHEwcGCThhVCCKH6ZElO9gUONrN/4c0xtV4FMvViNLM7\ngOOBs4CXgfWB3mb2eXJKN2CFOi6vq8zngD2Bg4FXgF2BPkkyE5ram2/CbrvB+efnPz5hgg8h/u1v\nmzauEEIIVUdW5GRXkmYBa5rZR5K+BTYwsw+Syc1eMLNO5Qi0KUjqDowZM2ZM9Dkph7/8xecvefFF\nXywwl1m2uVFCCCFUXKrPSQ8zW2jW9mJkqTkZB2yZZ/8f8VqPEPI780wfIrzPPvD99wsfj8QkhBAC\n2ZKTs4ArJP05uX5XSdfhfVHOKmVwoYXp0AFuuQXeegsGD650NCGEEKpU0cmJmd0L7Aj8FpiBJyRr\nATua2f9KG15ocTbYAM46C847D55+utLRhBBCqEKZ5jkxs6fwYbkhFO+EE3ya+gED4NVXoVOz7aYU\nQgihDDLP/CppY0n7JFtpZl0JrUPbtr44oATvvlvpaEIIIVSZomtOJP0MGAZsAUxLdneR9CzQz8w+\nKWF8oaVabTXve7JIoyYpDiGE0AJlqTm5HmgHrGVmS5nZUnifkzbJsRAKE4lJCCGEPLJ8OvQCNjez\nt2t3mNnbko4EnipZZCGEEEJolbLUnHyM15zkagtMalw4IYQQQmjtsiQnJwCXS9q4dkfy+6X4FPQh\nhBBCCJkV1Kwj6WsgPc/9YsDzkuamypkL3AjcU9IIQwghhNCqFNrn5JiyRhFCCCGEkCgoOTGzoeUO\nJIQQQggBMs4QW0tSR6B9ep+ZfdOoiEIIIYTQqhXdIVbSYpKukDQVX1vn65wthBBCCCGzLKN1zgN+\nA/wJ+B44EBiMDyPet3ShhRBCCKE1ytKssyOwr5k9Lukm4Ckze0/SR8BewL9KGmEIIYQQWpUsNSdL\nAR8kv3+T3AZ4GtgqayCSDpc0QdIsSaMlbVLPuVtIelrSF5JmShov6ZiccwZIqpE0L/lZI2lm1vhC\n8zRs2LBKhxBKKF7PliVez1CXLMnJB8DKye9vAXskv+/I/IUAiyKpL3Ah3jy0EfAqMFLSMnVcMgO4\nHNgSWBM4G/irpANzzpsOdEttK2WJLzRf8c+vZYnXs2WJ1zPUJUtychOwQfL7ucDhkmYDFwPnZ4xj\nEHCNmd1sZm8BhwIzgf3znWxmr5jZv81svJlNNLPbgJF4spJzqn1uZlOT7fOM8YUQQgihiRTd58TM\nLk79PkrSmkAP4D0ze63Y8iS1S67/e6pckzQK6FlgGRsl556Sc6iTpA/xJGwscLKZjSs2xhBCCCE0\nnSw1Jwsws4/M7G7gK0nXZihiGXzRwCk5+6fgTTF1kvRxUmvzAvBPM7spdfhtvOZlJ7yjbhvgWUnL\nZ4gxhBBCCE2kUZOw5VgaOAA4uIRlNuRXQCfgl8A/JL1nZv8GMLPRwOjaEyU9B4wHDsH7tuTTEWD8\n+PHljDk0oenTpzN27NhKhxFKJF7PliVez5Yl9dnZsbFlycwaPquQgqQNgLFm1rbI69rh/Ut2M7MR\nqf1DgM5mtkuB5ZwC7G1ma9Vzzh3AHDPbq47jexJDoUMIIYTG2CvpC5pZKWtOMjGzOZLGANsAIwAk\nKbl9WRFFtQU61HVQUhtgPeD+esoYiTcBfQjMLuK+QwghhNauI/Bz/LO0USqenCQuAoYkScoL+Oid\nRYEhAJLOAZY3swHJ7cOAifhQZoBewHHAJbUFSjoNb9Z5D+gCnAisCFxfVxBm9iXQqGwvhBBCaMWe\nLUUhBScnku5u4JQuWYMwszuSOU3OAroCrwC9U0N/uwErpC5pA5yDZ2hzgfeBE8ws3SF3SeDa5Nqv\ngTFAz2SocgghhBCqVMF9TpKp6htkZvs1KqIQQgghtGol6xAbQgghhFAKjZ7npKUoZm2fUL0kDU6t\npVS7xcR7zYikLSWNkPRp8vrtlOecsyRNStbW+p+k1SoRa2hYQ6+npJvyvGcfqFS8oX6STpL0gqRv\nJE2RNFzSL/Kc16j3aCQnZFrbJ1S3N/C+S7VrKv2qsuGEIi2G9zs7DFioalfSn4Ej8DmVNsXX2hop\nqX1TBhkKVu/rmXiQBd+z/ZsmtJDBlvjadpsBvwXaAQ9L+kntCaV4j0azDiBpNPC8mR2d3BbwMXCZ\nmZ1X0eBCUSQNBvqYWfdKxxIaT1INsHPOHEiTgPNrl9KQtAQ+o/QAM7ujMpGGQtTxet6Ez2m1a+Ui\nC1klX+KnAluZ2dPJvka/R1t9zUlqbZ9HaveZZ2wFr+0Tqs7qSRXy+5JulbRCw5eE5kDSyvg36/T7\n9RvgeeL92pz9OmkieEvSlZKWqnRAoWBd8Bqxr6B079FWn5zQiLV9QlUaDQwEeuOrW68MPClpsUoG\nFUqmG/6PMN6vLceDwL7Ab/D5qHoBDyQ12KGKJa/RJcDTqUV1S/IerZZJ2EIoCTNLz0z4hqQXgI+A\nPYCChsOHEJpOTjX/m5Jex+eu+jXwWEWCCoW6Elgb2KLUBUfNCXwBzMM7Y6V1BT5r+nBCKZnZdOAd\nIEZztAyfASLery2WmU3A/y/He7aKSboC2AH4tZlNTh0qyXu01ScnZjYHnz12m9p9qbV9SjINb6gc\nSZ3wf3KTGzo3VL/kg+szFny/LoGPHIj3awsg6Wf4Kvfxnq1SSWLSB9jazCamj5XqPRrNOq7etX1C\n8yHpfOA+vCnnp8CZwBxgWCXjCoVL+gethn/7AlglWfX8KzP7GG/jPlXSe/ginWcDnwD3ViDc0ID6\nXs9kGwzchX+grQb8A6/tbPTicaH0JF2JD/XeCZghqbaGZLqZ1S6Y2+j3aAwlTiSLCZ7I/LV9jjSz\nlyobVSiWpGH4OPylgc+Bp4FTkmw+NAOSeuF9DXL/OQ01s/2Tc87A51DoAjwFHG5m7zVlnKEw9b2e\n+Nwn9wAb4q/lJDwpOT21tlqoIslw8HyJw35mdnPqvDNoxHs0kpMQQgghVJVW3+ckhBBCCNUlkpMQ\nQgghVJVITkIIIYRQVSI5CSGEEEJVieQkhBBCCFUlkpMQQgghVJVITkIIIYRQVSI5CSGEEEJVieQk\nhBBCCFUlkpMQWgFJj0m6qIjzV5JUI2n95Hav5PYS5YuyzlhuknR3U99vVpIGS3q50nGE0JxFchJC\nMyRpSJIsXJnn2D+TYzemdu8CnFbEXUwEugFvpPY1eq2LYpOkZizWBQmhESI5CaF5MjyB6CepQ+3O\n5Pf++KrM8082m2ZmMwou3E01s5pSBRwaR1KsIh9ajUhOQmi+XgY+BnZN7dsVT0wWaFbIrbGQNEHS\nSZJukPSNpI8kHZQ6vkCzTsqvJL0qaZak5yStk7pmKUm3SfpE0gxJr0nqlzp+E9ALODope56kFZNj\n60i6T9L0JJ4nJK2c8xiOkzRJ0heSrpDUtq4nprZpRdLeyWOdJmmYpMVynoOjcq57WdLpqds1kg5O\nYpshaZykX0paNXlOv5P0TG6sybUHS5qYXPdvSYvnHD8wKW9W8vNPeZ7/PSQ9LmkmsGddjzeEliaS\nkxCaLwNuBPZP7dsfuAlQAdcfC7yIL1d/JXCVpNVzyk8TcB4wCNgY+BwYkUoSOgIvAb8D1gGuAW6W\ntHFy/GjgOeA6oCuwHPCxpOWBJ4BZwK+BjZJz0jUFvwFWSY7vCwxMtvqsCvQBdgB+jydGf2ngmnxO\nBYYAGwDjgduAq4G/AT3w5+WKnGtWB3ZP7rc3/ph+bIKTtBdwBnASsCZwMnCWpH1yyjkHuBhYCxiZ\nIfYQmqWoJgyhefsXcK6kFfAvG5sDfYGtC7j2fjO7Ovn9H5IGJde9m+zLl+CcYWaPAkgaAHyC92e5\n08wmAen+JP+UtD2wB/CSmX0j6Qdgppl9XnuSpCOAaUB/M5uX7H4/536/Ao4wMwPekXQ/sA1wQz2P\nT8AAM5uZ3M8tyTXF9L0BuNHM7krKOA9PsM40s1HJvkvxJDGtA7CPmX2WnHMkcL+k48xsKp6YHGdm\n9ybnf5TUQh0K3JIq5+LUOSG0GpGchNCMmdkXkv4L7Id/GN9vZl9JhVSc8HrO7c+AZeu7O2B06r6/\nlvQ2/q0eSW2AU/Aag58C7ZOtob4uGwBPpRKTfN5MEpNak4F1Gyj3w9rEJHVNfY+vLunnaUry842c\nfR0ldTKz75J9E2sTk8RzePK4hqTv8FqdGyRdnzqnLZ6kpY3JEG8IzV4kJyE0fzfhzQoGHFbEdXNy\nbhuNa+o9ETgSb755A09KLsUTlPrMKqDsLLE2dE0NC9cOtWugHKtnX6HPXafk54HACznHchO0gjsx\nh9CSRJ+TEJq/h/AEYBHg4TLej4Bf/nhDWhL4BTAu2bU5cK+ZDTOz14EJyfG0H/AagrTXgC3r6+Ba\nJp/j/V4ASOZwWahjax6FDBNeUVK31O2eeOLxVtKsMwlY1cw+yNnSo6xiOHJotSI5CaGZS4b7rgms\nk9P0UQ6nS/qNpHXxTqKfA7V9It4FtpXUU9JaeIfYrjnXfwhsloxGWTrZdwWwBPBvST0krZaMslmd\n8noU2EfSryStlzyeuQVcl6/NLHff98BQSetL2hKvQfp3qq/NYOAkSUdKWl3SupIGSjqmgfsJoVWI\n5CSEFsDMvkv1d8h7SgO3CznH8NEul+KjfP4P2NHMaj/Q/wqMxWtyHsX7eAzPKeMCvAZhHDBV0opm\n9hU+Gmcx4HF8xM+BLNwsU2rn4KOE7ku24SzcEbeQ5ynfvneBu4EH8OfjFeDwH082uwF/jPvhNUeP\nAwPw2qb67ieEVkHl/6IVQgghhFC4qDkJIYQQQlWJ5CSEEEIIVSWSkxBCCCFUlUhOQgghhFBVIjkJ\nIYQQQlWJ5CSEEEIIVSWSkxBCCCFUlUhOQgghhFBVIjkJIYQQQlWJ5CSEEEIIVSWSkxBCCCFUlUhO\nQgghhFBV/h+ak11DUWCsCQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -789,7 +788,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 48, "metadata": { "collapsed": false }, @@ -798,7 +797,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Average error: 49.00%\n" + "Average error: 46.50%\n" ] } ], @@ -822,7 +821,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 49, "metadata": { "collapsed": false }, @@ -860,7 +859,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 50, "metadata": { "collapsed": true }, @@ -898,16 +897,16 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGHCAYAAAB1bcIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X98FNXV+PHPQUSIEZVEQVtTLVSQx1oLLci3oGJbUCyr\n1RbEh6KhGmuBamqR2moJ+rQKtQaEtNVHbKjVgEUaf7QCPlKUqIglolYBSQVTpSCJIKwhRML9/jEb\n3N0kkN0kM5s95/167Uv3zt3ZczIz5GTmzh1xzmGMMcYYk2o6BR2AMcYYY0xTrEgxxhhjTEqyIsUY\nY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgxxhhjTEqyIsUYY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgx\nJo6IFIjIAZ++a6WI/D3q/XkickBELvPp+4tFZLMf35UsETlaRB4Qkf9Efjb3BB0TgIhsEZEn2nB9\nLd72TW23yGd/EfX+6khbTgLffW5y0RvTPqxIMWlNRK6K/OPb8NorIu+LyFIRmSIimU18zAEJFSki\ncpKITBeRsxIMsanvatNnVRwmtoRzDcDPgQlAETAeeKi5jpHCIXp7bxeR50Xk0naIqz2eKdLSdbZk\nu7n49YnI9SJyVSu/2xjfdA46AGN84IDbgC3AkUAv4HxgNvBjEQk5596I6n8HcGeC33EyMB3YDLye\nwOe+2USbJPjdh3Oo2K4h9f9YGQ6sds79Twv6OuBV4G68n+PJwHXAEhH5gXPu/vYLs020dNu3ZLv9\nEShxztVFtf0Q2AEsiO7onHtORLrF9TUmcFakGC2WOufKo97PFJHzgb8Cj4vIGc65fQDOuQNAov9Y\nJ1RYRH4h7HXO7U/we5LRbGzOuXqg3ocYWuNE4M0E+r/vnCtpeCMiDwEVQD7QbJEiIl2dc7VJR+mj\nlmw35z09tsX7sRUoJhWl+l9QxrQb59xKvLMmn8O7jAA0PSZFRL4pIqtEZKeI7BGRDSLyy8iy84A1\neH/FF0cuM9SLyITI8pUi8rqIDIhcevgY+GXUshXxoQFHiMivIuMwwiLyuIh8Ni6mLSLyYHxe0ets\nQWxNjW3IEJHfiEiliNRGcr2pie85ICL3isglIvJGpO8/RWTkYX70DZ8/QUTmi8i2yGW4dQ1xNcQe\n2Q6nAt+Kiv2wYyyiOee2A+uB06LWvUVEnhCRESLyiojsBfIiy44QkdtEpCKS02YR+aWIdGkmj2+K\nyKuRHN4UkW/HLT9eRO6O7AN7ROQjEfnbIS6/tWTbH3YsUfyYlEj//wLOj7ocdnA/kSbGpIjI4Mil\n0V0i8nFk3/p/cX0yRWR25OdUG7nEtlxEzj5UfMa0hJ1JMdo9BPwKGAHMj7TFXMsXkf7Ak8A6vMtG\n+4A+QMM/1uuBXwC3A/cBqyLtL0atLxv4G7AQ7zT89qhl8QS4FW/MwV14ZxLygWdE5OyGMz7NfDa+\nvSWxxa/nSeA84AHgNWAk8GsROdk5F1+sDAMuA34L7AF+BCwWkRzn3M5m4kNEugLPAZ8H5uJdivsu\nXiF1rHNuLvAWXvE4G/g38JvIx3c0t95mvqszcApQHdXsgH7AI3g/l/uBjZFl8/HGwDyKd9loMHBL\npP/lcas/HW+b/h4oBnKBP4vISOfcs5E+nwdCwJ/xLrn1xLsEtVJE+jvntkWHS8u3/eHGkMT3uQGY\nh7ed/ifyXdvj+n8aiMgFePvsP4CCSEy5wAoRGeqc+0ek6314+8BcvP0tCxgKnIF3zBiTPOecveyV\nti/gKrzT4gMO0Wcn8I+o99OB+qj3N0TWcfwh1jEQ7x/xCU0s+3vk89c0s2xF1PvzIuupBDKi2r8T\naZ8c1bYZeLAF6zxUbH8A3ol6f0mk70/j+j0K7AdOi2o7AOwFTo1q+2Kk/YeH2S4NP9MrotqOAF4A\nPgKOjsvziRZu783A03i/KLOAs4CSyHcVxvWrB74R9/mzIvH/Pq59VqT/eU2s45KotmOA9+P2pyOb\niDMn8rP7eZLbPma7RW2PXzSx7+dEtb0RvW/EfXc9cG5U20bgr3H9jgL+hXf5NPr4ube1x6q97NXU\nyy73GANhvF8uzdkV+e+3RSTZQa378P7SbqkFzrmahjfOucXAf4BRSX5/S12EV4zMjWv/Dd7l4Yvi\n2p9xzm1peOO8Aci78c4eHO57tjnnFkZ9th64F8jE+6WZrJF4Z1t24P0lfzne2aufxvXb7Jz7v7i2\nUXhnFArj2n+Dd+bh4rj2rc65x6Ny2BP5ri+LyImRtk8alotIJxHpAdTgFQEDmog/qG1/UORSzReA\nEhHJanjhHSfPAtGXhXYBg0XkJL/iM3pYkWKM90txzyGWL8L7C/9/ge0iUiIi302wYHnfJTZItqKZ\ntlMTWEcyPof3i/fjuPb1Ucuj/buJdewEjm/B92xqon09XjEQ/z2JWA18PfIaAmQ753Ldp5dKGjQ1\npuNzeGckYn7+zhvXsquJuJraTm9H/nsqgHjyReRtvGK1CvgA76zTsU18PqhtH+0Lkf/+kU8Lvh14\ncV8DdBGRhthvBs4E/i0iL4t3u/tp8Ss0Jhk2JsWoJiKfwftF0dQvBgCcd8fHuSIyHO8v6QuBscCz\nIjLCOdeS+SX2tkW88aE1034E3tkQPzR3h0lb30adiCrn3N8P3+2Q26Qt5wz5Od6YoAfwxpt8iFcI\nzSF1/1BsiOsmvHFJTQkDOOf+LCLPA9/GG9v1E2CaiHzbObes3SM1ac2KFKPdBLxfSEsP1zHyi+/v\nwE9E5Ba8wYfDgRW0/URYX2iirQ+xvzB2Asc10e9zeOMGGiQS27vA10Xk6LizKWdELW8L7+KdSYjX\n1t+TqHfxfkF/gU8H0hK5dHNcE3H1aWIdfSP/3RL57+V440DyojuJyHE0PQi4Jds+WS3dFxr2nz3O\nufi7zxqv1DvT9Hvg9yKSjTdXzc8BK1JMq6RqFW9Mu4vcvXAr8A7eXR7N9Wvq0sVreGcLjoq8b/iF\n3lTRkIwJEjUbroh8FzgJ726LBv8CzoncvdLQ71t4d7JESyS2v+H98TI5rj0f76//p1sUfcu+p5eI\njG1oEJEjgCl4l96ea6PvSSYuAW6Ma78J7xf8X+PaT46+5VhEugPfA151zn0Qaa4n7sxSZHt+ppkY\nWrLtk/UxLdsP1uLtXz8RkaPjF0YKkYYxNt2jlznnqoCtfHpsGJM0O5NiNBBglIicgbfP9wQuwJvt\ndTMQcoeeyOoXkfkj/or3l3RP4Hq8uzDKIn3+hTdm4QciEsb7ZbDaOZfsGYEPgTIR+QPeDLk34I11\neCCqzwN4d34sE5FHgd54t+zGX7pKJLYn8c4W/TIyrqDhFuTReHfHtNVzfu7Huw23WES+wqe3IA8B\nbmhiTIwvnHOvi8gCIC9SnD6HdwvyBGCJcy6+eHobeEBEvop3O+/38W4bjp56/ingNvHmtHkR7wzS\nfxN7titaS7Z9stbi7Qc/x9tPPoi6NHawkHLOORG5Bq8wejMSy/t4hdVwvDuwLsEbSPueiCzG21fC\neMfVV4Aft0G8Rrugby+yl73a88Wnt2E2vPbi/WO7FJhE1K2uUZ+ZDuyPen8+sARvkOjeyH8fAnrH\nfe5beLd47ot814RI+9+B15qJ7+/As1HvG24FHYN3Oek/eP/wPw58tonP34hXLNXg/UL9cvw6DxPb\nH4B/xfXNwJsf5N9ALbAByG/iu+uBOU20vwPMb8G2ycb7xbs98nNdB3yvmfU93sLt3aK+h+qHd4b5\nVrxf4rV4BdQdxN1K3LAO4BuR2GvwZsb9dly/Lni3ML8X2ZbPAYPwLhMmte2b2W71wG1N7PvRtyCf\nCDyBV7TWE7kdmSZuQY60n4U3v8sHkfzewbul+/zI8iPx5nMpj6xzd+T/84I+9u2VHi9xrq0vpRtj\njDHGtF7gY1IiUykfaOI1N6rP7SKyVURqROQZEekTt46jRKRIRKrEm3Z6ccMcBcYYY4zpmAIvUvCu\nXfaKen0Tb4DaowAiMg1vEF8e3inSj/GuwUc/R2M23q2hl+NNMnQy8JhP8RtjjDGmHaTc5R4RmQ2M\ncs6dHnm/Ffi1c64w8r473jXsq5xzj0be78CbXvsvkT598SaFOsc5tyaIPIwxxhjTOqlwJuUgETkS\nb9T7/Mj70/DOrjQ8qAvn3G7gZby7AMA7E9M5rs9GvMGEDX2MMcYY08GkVJGCN2PhscCCyPteeJd+\ntsf12x5ZBt7toHWR4qW5PsYYY4zpYFJtnpSJwNMu9tHl7SLysKyReLcX1rb39xljjDFppCve86SW\nOeeq2+tLUqZIEZEcvPkGLo1q3oY3wVBPYs+m9MSbdrmhTxcR6R53NqVnZFlzRgIPtzZuY4wxRrH/\n5hAzdrdWyhQpeGdRthM19bNzbrOIbMN7munrcHDg7GCgKNJtLd7D1L4ORA+czQFeOsT3bQH405/+\nxBlnnHGIbh1ffn4+hYXxT55PP1ryBD25Wp7pxfJMH+vXr2f8+PHw6TOq2kVKFCmRR95fDRQ75w7E\nLZ4N3CoiFXw68+N7eLMw4pzbLSLzgXtEZCfecz/uBV44zJ09tQBnnHEGAwYMaMNsUs+xxx6b9jmC\nnjxBT66WZ3qxPNNSuw6XSIkiBe8yzyl4Uz3HcM7NEpEM4D68B2OtAi5ysc9ayceb0nkx3kOtGqY8\nN8C2be0+xCclaMkT9ORqeaYXy9MkKiWKFOfcM8ARh1heABQcYvk+vKenTmnr2NLB+++/H3QIvtCS\nJ+jJ1fJML5anSVSq3YJs2sHAgQODDsEXWvIEPblanunF8jSJsiJFgXHjxgUdgi+05Al6crU804vl\naRKVctPi+0VEBgBr165dq2mAkzHGJK2yspKqqqqgwzA+yc7OJicnp8ll5eXlDWeMBjrnytsrhpQY\nk2KMMSa1VVZWcsYZZ1BTUxN0KMYnGRkZrF+/vtlCxQ9WpCiQm5vLH/7Q6MaptKMlT9CTq+WZOqqq\nqqipqVExt5T5dB6UqqoqK1JM+xoxYkTQIfhCS56gJ1fLM/VomFvKpA4bOKuAlkFcWvIEPblansbo\nZkWKMcYYY1KSFSnGGGOMSUlWpChQVlYWdAi+0JIn6MnV8jRGNytSFJg1a1bQIfhCS56gJ1fL0xjd\n7O4eBRYuXBh0CL7QkifoydXy7DjC4TC1te36QNzD6tq1K5mZmYHGYNqWFSkKZGRkBB2CL7TkCXpy\ntTw7hnA4zP33P0p19f5A48jK6kxe3hgrVNKIFSnGGGNapba2lurq/XTrdgEZGccFEkNNzS6qq1dQ\nW1trRUoasTEpxhhj2kRGxnFkZmYH8mptcVRQUECnTp3YuHEjY8aM4dhjjyU7O5sbb7yRffv2tXg9\n559/PhdccEGj9quvvprTTjvt4Pt3332XTp06cc899zB79mxOPfVUMjIyOP/883nzzTdblUs6sSJF\ngalTpwYdgi+05Al6crU8jV9EBIAxY8ZQV1fHXXfdxcUXX8y9997Lddddl/B6mmpvatmCBQuYO3cu\nkydP5mc/+xlvvvkmX//619mxY0dyiaQZu9yjQJDPXfCTljxBT66Wp/Fb7969WbJkCQDXX389xxxz\nDL/73e/4yU9+wplnntnm3/evf/2LiooKevXqBcDIkSMZPHgwM2fO5O67727z7+to7EyKAlOmTAk6\nBF9oyRP05Gp5Gj+JCJMmTYppmzJlCs45/va3v7XLd377298+WKAAfPWrX2Xw4MHt9n0djRUpxhhj\nTESfPn1i3vfu3ZtOnTqxZcsWX74P4PTTT2+37+torEgxxhhjmtHcGJNE+9fX17dFOOpYkaLAhg0b\ngg7BF1ryBD25Wp7Gb5s2bYp5X1FRwYEDBzj11FNb9Pnjjz+eXbt2NWp/9913W/R9AG+//XaLvy/d\nWZGiwM033xx0CL7QkifoydXyNH5yzlFUVBTTdu+99yIiXHTRRS1aR+/evdmwYQPV1dUH21577TVe\neOGFJvuXlpaydevWg+/XrFnDyy+/zKhRo5LIIP3Y3T0KzJs3L+gQfNGR80x0SvHbb7+dqqqqg+/T\ndTrwjrxNm9PUto7fnoeSytu6pqbxGYSO9t2bN2/mkksu4cILL+TFF1/k4YcfZvz48Xzxi19s0ecn\nTpzIPffcw4gRI/j+97/P9u3bue+++zjzzDPZvXt3o/59+vRh6NChXH/99dTW1jJnzhxOOOEEuy09\nwooUBbTc3thR8wyHw9z/x/upDlcfvnMzsjKzyJuQl7K/vJLVUbdpcw49ffyaFq0jFad+79q1K1lZ\nnamuXsHevcHFkZXVma5duyb9eRFh0aJF3Hbbbdxyyy107tyZH/3oRwk9ALJfv3489NBD/OIXv+Cm\nm26if//+/OlPf+Lhhx/m+eefb9R/woQJdOrUidmzZ/PBBx8wePBg5s6dS8+ePZPOI51YkWJMwGpr\na6kOV9Pt9G5kHJP4M1xq9tRQ/Xa1TQfeAbR2+vhUnfo9MzOTvLwxafGAwRNOOIFHH320VesYN24c\n48aNi2n7xje+0Wz/G2+8kRtvvLFV35murEgxJkVkHJNB5nHJ/QO7lwD/fDUJa5g+PhlBnqk4lMzM\nzJQqnEx6sIGzCsycOTPoEHyhJU+ApcVLgw7BF1q26dKlOvLsyHbv3s327dsP+TJtz86kKFBTUxN0\nCL7QkidA3b66oEPwhZZtWlenI8+O7IYbbmDBggXNLheRhOdCae55PuZTVqQoMGPGjKBD8IWWPAFC\n14WCDsEXWrZpKKQjz1Q2ffp0pk+f3uzyadOm8b3vfa/Nvu9zn/ucTfDWAlakGGOMMYfRr18/+vXr\nF3QY6tiYFGOMMcakJCtSFGjpJFEdnZY8AcK7wkGH4Ast2zQc1pGnMYmyIkWBiRMnBh2CL7TkCbBg\nRvMD+NKJlm26YIGOPI1JVEoUKSJysog8JCJVIlIjIq+JyIC4PreLyNbI8mdEpE/c8qNEpCiyjj0i\nslhETvQ3k9RUUFAQdAi+0JInwOjrRgcdgi+0bNPRowuCDsGYlBR4kSIixwEvAPuAkcAZwE3Azqg+\n04DJQB4wCPgYWCYiXaJWNRu4GLgcOBc4GXjMhxRS3oABAw7fKQ1oyRMgp196TRffHC3bNCdHR57G\nJCoV7u75KVDpnLsmqi3+mdY3AHc4554CEJEJwHbgUuBREekOTASucM49F+mTC6wXkUHOuZY9FMMY\nY4wxKSPwMynAaOAfIvKoiGwXkXIROViwiMhpQC/g2YY259xu4GVgSKTpK3gFV3SfjUBlVB9jjDHG\ndCCpcCbl88D1wG+AX+JdzrlXRPY55x7CK1Ac3pmTaNsjywB6AnWR4qW5PmrNnz+f73//+0GH0e60\n5AlQVlrG0EuHBh1Gu9OyTcvK5jN0aMfOMxwOp8UDBtvL1VdfzXPPPcfmzZuDDqVDSYUipROwxjl3\nW+T9ayJyJvAD4KHgwkof5eXlKv6h15InQOXGyqBD8IWWbVpZWQ503DzD4TD3//F+qsPVgcaRlZlF\n3oS8lCxUbAr85KTC5Z7/AOvj2tYDDSMDtwGCd7YkWs/IsoY+XSJjU5rr06RRo0YRCoViXkOGDKG0\ntDSm3/LlywmFGk9FPmnSJObPnx/TVl5eTigUajTHw/Tp0xs9MK2yspJQKMSGDRti2ufOncvUqVNj\n2mpqagiFQpSVlcW0l5SUkJub2yi2sWPHUlpaSlFRUVrkEa2pPIqKijpkHuPHj2/U95GZj1BWGrve\nyg2VFOUXEd4V5sppVx5sX7pgKS+tfCnwPNpjv5o2bVpa5NGwPTZt2hTTvmLFXBYvnsqVV356jNbV\n1VBUFKKiIjaPNWtKWLhwSqB5NKe2tpbqcDXdTu9G1sCsQF7dTu9Gdbg68LM56aikpOTg78ZevXoR\nCoXIz8/35bvFOefLFzUbgMjDwGedc+dFtRUCX3XODY283wr82jlXGHnfHe9SzgTn3J8j73fgDZz9\nS6RPX7xi55ymBs5GbnFeu3btWjV3EJjUVFVVReGDhWQNzCLzuMT/AgzvClO9tpr8iflkZ2e3Q4Sm\nrVRVVVFYuISsrMvIzEx8W4XDVVRXLyE//zLft3V5eTkDBw6kqX8zW7sPt4VUPw5yc3N57rnneOed\nd4IOpUUOtb2jlwMDnXPl7RVHKpxJKQTOEZFbRKS3iFwJXAPMi+ozG7hVREaLyBeBPwLvAY/DwYG0\n84F7ROR8ERkIPAi8YHf2GGOMOZyCggI6derExo0bGTNmDMceeyzZ2dnceOON7Nu3L6F1lZaWcuaZ\nZ9KtWzfOOuusRme6GtTU1HDTTTeRk5ND165d6devH7/5zW9i+lx++eUNxcBBo0ePplOnTjz11FMH\n29asWUOnTp1YtmwZAMXFxXTq1IkXX3yRH//4x5x44olkZmZy2WWXUV0d7GW5RARepDjn/gF8GxgH\nvAH8HLjBObcwqs8sYC5wH95dPd2Ai5xz0c+rzweeAhYDK4GteHOmGGOMMYfUMF5kzJgx1NXVcddd\nd3HxxRdz7733ct1117V4PcuXL+c73/kOnTt35q677uLSSy8lNzeXf/zjH436jh49mjlz5jBq1CgK\nCwvp168fU6dO5aabbjrYZ9iwYbz++uuEw58+CuPFF1/kiCOOYNWqVQfbnn/+eY444gi+9rWvxeQz\nZcoU3njjDQoKCvjhD3/Ik08+yeTJkxP74QQoFQbO4pz7G/C3w/QpAAoOsXwfMCXyMlFCoRBPPPFE\n0GG0Oy15AhTlFzGpcFLQYbQ7Ldu0qCjEpEnpn2dH0Lt3b5YsWQLA9ddfzzHHHMPvfvc7fvKTn3Dm\nmWce9vPTpk2jV69elJWVHRzAe9555/HNb36TU0899WC/xx9/nL///e/86le/4qc//enB7xszZgxz\n5sxh8uTJnHbaaQwbNoz6+npeeOEFRo4cyT//+U927tzJmDFjYoqUsrIyvvSlLzUaNHzCCSewdOnS\ng+/r6+uZO3cue/bs4Zhjjkn65+SXwM+kmPbXkarm1tCSJ8DwscODDsEXWrbp8OE68kx1IsKkSbHF\n/5QpU3DO8be/HfLvaAC2bdvGa6+9xtVXXx1TLHz961+nf//+MX2ffvppOnfuzJQpsX9X33TTTRw4\ncICnn34agC9/+ctkZmby/PPPA7Bq1SpOOeUUJkyYwNq1aw8OFC4rK2PYsGGN8snLy4tpayh63n03\nfs7U1GRFigIjRowIOgRfaMkToP85/Q/fKQ1o2ab9++vIsyPo0yfmsXD07t2bTp06sWXLlsN+tuEX\nf/w6APr27duo78knn8zRRx8d037GGWfErKtTp04MGTLk4FmTVatWMWzYML72ta9RX1/P6tWreeut\nt/jwww8bFSkAp5xySsz7448/HoCdO3c26puKrEgxxhhjmpEKc5sMHTqUV155hX379rFq1SrOPfdc\njj32WM4880xWrVrFqlWrEJEmi5QjjjiiyXUGfWdvS1mRYowxxkTEz2VTUVHBgQMHYsaTNOdzn/tc\nk+sA2LhxY6O+W7du5eOPP45pX79+fcy6wLtEU1dXR0lJCVu3bj1YjJx77rk8//zzrFq1itNPP50T\nTjjh8Al2MFakKNDc7W/pRkueAOtWrgs6BF9o2abr1unIM9U552ImvwS49957EREuuuiiw36+V69e\nnH322SxYsIA9e/YcbH/mmWd46623YvqOGjWK/fv3M2/evJj2wsJCOnXqFPN9gwcPpnPnzsycOZMe\nPXocvCQ0bNgwVq9ezfPPP9/kWZR0kBJ395j2VVJSwqWXXhp0GO1OS54Aa5at4ezzzw46jHanZZuu\nWVPC2Wd3/Dxr9tR0+O/evHkzl1xyCRdeeCEvvvgiDz/8MOPHj+eLX/xiiz5/55138q1vfYuvfe1r\nTJw4kerqaubNm8eZZ54Zcxvx6NGjGT58OD//+c/ZvHkzX/rSl1i2bBlPPvkk+fn5nHbaaQf7duvW\njYEDB7J69eqYmYTPPfdcPv74Y2pqaposUpq7pNNRLvWAFSkqLFq0KOgQfKElT4C8O/MO3ykNaNmm\neXkdO8+uXbuSlZlF9dvV7GVvYHFkZWbRtWvXpD8vIixatIjbbruNW265hc6dO/OjH/2IWbNmtXgd\nI0eO5M9//jO33norP/vZz+jduzfFxcWUlpYevEOn4buefPJJfvGLX7Bo0SKKi4s59dRTufvuu5uc\ncn7YsGG8/PLLMcVIz5496dOnD++8806TRUpz42lSYZxNS1mRYowxplUyMzPJm5AX+HNz2uIpyCec\ncAKPPvpoq9Zx6aWXNjoDeMkllzTql5GRwd13383dd9992HXOnDmzyWcpvf322032v+qqq7jqqqsa\ntZ933nnU19cf9vtShRUpxhhjWi0zMzMlnz5sOjYrUowxxpjD2L17N3v3HvpSVs+ePX2KRg+7u0eB\nph5Tn4605AlQPKM46BB8oWWbFhfryLMju+GGGzjppJOafZ188slBh5iW7EyKAlpm7dSSJ0D/wTbj\nbDqxGWeDN336dKZPn97s8mnTpvG9733Px4gMWJGiwrhx44IOwRda8gQYdOGgoEPwhZZtOmiQjjw7\nsn79+tGvX7+gw1DHLvcYY4wxJiVZkWKMMcaYlGRFigJlZWVBh+ALLXkCVKyrCDoEX2jZphUVOvI0\nJlE2JkWBWbNmMXTo0KDDaHda8gRYtmAZfc5u/Dj4dKNlmy5bNos+fTpGng0PwDPpLVW2sxUpCixc\nuDDoEHyhJU+Aa++8NugQfKFlm157bernmZ2dTUZGBuPHjw86FOOTjIwMsrOzA43BihQFMjIygg7B\nF1ryBOjStUvQIfhCyzbt0iX188zJyWH9+vVUVVUFHYrxSXZ2Njk5OYHGYEWKMcaYFsnJyQn8l5bR\nxQbOGmOMMSYlWZGiwNSpU4MOwRda8gRYPGdx0CH4Qss2XbxYR55atqeWPP1gRYoCWk7PaskToEfP\nHkGH4Ast27RHDx15atmeWvL0gxUpCkyZMiXoEHyhJU+AC664IOgQfKFlm15wgY48tWxPLXn6wYoU\nY4wxxqQkK1KMMcYYk5KsSFFgw4YNQYfgCy15Amzbsi3oEHyhZZtu26YjTy3bU0uefrAiRYGbb745\n6BB8oSVzuTLTAAAgAElEQVRPgMfmPBZ0CL7Qsk0fe0xHnlq2p5Y8/WBFigLz5s0LOgRfaMkTYNy0\ncUGH4Ast23TcOB15atmeWvL0gxUpCmi5HU5LngA9etktyOnEbkFOL1ry9IMVKcYYY4xJSVakGGOM\nMSYlWZGiwMyZM4MOwRda8gRYWrw06BB8oWWbLl2qI08t21NLnn6wIkWBmpqaoEPwhZY8Aer21QUd\ngi+0bNO6Oh15atmeWvL0Q+BFiohMF5EDca+34vrcLiJbRaRGRJ4RkT5xy48SkSIRqRKRPSKyWERO\n9DeT1DVjxoygQ/CFljwBQteFgg7BF1q2aSikI08t21NLnn4IvEiJ+CfQE+gVeQ1tWCAi04DJQB4w\nCPgYWCYiXaI+Pxu4GLgcOBc4GdAxkYQxxhiTpjoHHUDEfufcjmaW3QDc4Zx7CkBEJgDbgUuBR0Wk\nOzARuMI591ykTy6wXkQGOefWtH/4xhhjjGlrqXIm5Qsi8r6I/EtE/iQipwCIyGl4Z1aebejonNsN\nvAwMiTR9Ba/Yiu6zEaiM6qNaVVVV0CH4QkueAOFd4aBD8IWWbRoO68hTy/bUkqcfUqFIWQ1cDYwE\nfgCcBjwvIkfjFSgO78xJtO2RZeBdJqqLFC/N9VFt4sSJQYfgCy15AiyYsSDoEHyhZZsuWKAjTy3b\nU0uefgi8SHHOLXPOPeac+6dz7hlgFHA8MMaP7x81ahShUCjmNWTIEEpLS2P6LV++nFCo8WDFSZMm\nMX/+/Ji28vJyQqFQo2p6+vTpjW5Nq6ysJBQKNXog1dy5c5k6dWpMW01NDaFQiLKyspj2kpIScnNz\nG8U2duxYSktLKSgoSIs8ojWVR0FBQYfMY/z48Y36PjLzEcpKY9dbuaGSovwiwrvCjL5u9MH2pQuW\n8tLKlwLPoz32q+uuuy4t8mjYHps2bYppX7FiLosXT2X06IKDbXV1NRQVhaioiM1jzZoSFi6ckhJ5\nJLs9CgoKUmp7tNd+dd5556VFHg3bo6Sk5ODvxl69ehEKhcjPz2/0mfYgzjlfvigRIrIGeAZ4APgX\ncLZz7vWo5SuBV51z+SIyHPg/4PjosykisgUodM7NaeY7BgBr165dy4ABA9otF2MOp6qqisIHC8ka\nmEXmcZkJfz68K0z12mryJ+aTnZ3dDhGatlJVVUVh4RKysi4jMzPxbRUOV1FdvYT8/MtsW5tAlZeX\nM3DgQICBzrny9vqewM+kxBORTKAPsNU5txnYBnw9anl3YDDwYqRpLbA/rk9fIAeI/fPSGGOMMR1G\n4Hf3iMivgSeBd4HPADOAT4CFkS6zgVtFpALYAtwBvAc8Dt5AWhGZD9wjIjuBPcC9wAt2Z48xxhjT\ncaXCmZTPAo8AG/AKkx3AOc65agDn3CxgLnAf3l093YCLnHPRU27mA08Bi4GVwFa8OVMMNLrmma60\n5Ak0Gq+SrrRs07IyHXlq2Z5a8vRD4EWKc26cc+6zzrluzrkc59yVkcs80X0KnHMnO+cynHMjnXMV\nccv3OeemOOeynXPHOOe+65z7wN9MUld5ebtdLkwpWvIEqNxYGXQIvtCyTSsrdeSpZXtqydMPgRcp\npv0VFRUFHYIvtOQJcOW0K4MOwRdatumVV+rIU8v21JKnH6xIMcYYY0xKsiLFGGOMMSnJihRjjDHG\npCQrUhRoaqbDdKQlT4CifB3XvLVs06IiHXlq2Z5a8vSDFSkKTJ48OegQfKElT4DhY4cHHYIvtGzT\n4cN15Klle2rJ0w9WpCgwYsSIoEPwhZY8Afqf0z/oEHyhZZv2768jTy3bU0uefgh8xlljjF7btm3j\no48+Suqzxx57LL162YPOjUlnVqQYYwKxbds28n50A9XhPUl9PivzGO6/d44VKsakMbvco0D848/T\nlZY8AdatXBd0CK320UcfUR3eQ9cv9CVr4DlNvuoyj22yvesX+lId3pP0WZhUs26djn1XyzGqJU8/\nWJGiQElJSdAh+EJLngBrlqXPszOP7n483bN6Nfn6YNOmJtuP7n580GG3qTVrdOy7Wo5RLXn6wYoU\nBRYtWhR0CL7QkidA3p15QYfgi2FX6cgzL0/HvqvlGNWSpx+sSDHGGGNMSrIixRhjjDEpyYoUY4wx\nxqQkK1IUyM3NDToEX2jJE6B4RnHQIfjipZLioEPwRXGxjn1XyzGqJU8/WJGigJbZD7XkCdB/sI4Z\nZ0/qqyNPm3E2vWjJ0w9WpCgwbty4oEPwhZY8AQZdOCjoEHxx6gAdeQ4apGPf1XKMasnTD1akGGOM\nMSYlWZFijDHGmJRkRYoCZWVlQYfgCy15AlSsqwg6BF988I6OPCsqdOy7Wo5RLXn6wYoUBWbNmhV0\nCL7QkifAsgXLgg7BF2+t0JHnsmU69l0tx6iWPP1gRYoCCxcuDDoEX2jJE+DaO68NOgRfDJ2gI89r\nr9Wx72o5RrXk6QcrUhTIyMgIOgRfaMkToEvXLkGH4IvOXXTk2aWLjn1XyzGqJU8/WJFijDHGmJRk\nRYoxxhhjUpIVKQpMnTo16BB8oSVPgMVzFgcdgi/Kn9CR5+LFOvZdLceoljz9kFSRIiLfE5GubR2M\naR85OTlBh+ALLXkC9OjZI+gQfHH0cTry7NFDx76r5RjVkqcfkj2TUghsE5H7RETHvNUd2JQpU4IO\nwRda8gS44IoLgg7BF33P1ZHnBRfo2He1HKNa8vRDskXKycC1wGeBF0TknyJyk4ic0HahGWOMMUaz\npIoU51ydc+7PzrmLgRzgIeD7wHsiskRELhYRactAjTHGGKNLqwfOOuf+A/wf8HfAAV8BSoBNIjKs\ntes3rbdhw4agQ/CFljwBtm3ZFnQIvvhou448t23Tse9qOUa15OmHpIsUEckWkRtF5DXgBeBE4FLg\nc8BngFLgj20SpWmVm2++OegQfKElT4DH5jwWdAi+ePVJHXk+9piOfVfLMaolTz8ke3fPX4D3gR/g\nXeo5xTn3XefcUufZA8zCK1gSXfdPReSAiNwT1367iGwVkRoReUZE+sQtP0pEikSkSkT2iMhiETkx\nmfzSzbx584IOwRda8gQYN21c0CH44quX68hz3Dgd+66WY1RLnn5I9kzKbuAbzrl+zrm7nXM7muiz\nA/hCIisVka8CecBrce3TgMmRZYOAj4FlIhI9Z/Zs4GLgcuBcvMG9Ov4MOwwtt8NpyROgRy8dt+Ye\nfbyOPO0W5PSiJU8/JDtw9irn3KrD9HHOuX+1dJ0ikgn8CbgG2BW3+AbgDufcU865fwIT8IqQSyOf\n7Q5MBPKdc885514FcoGv2S3SxhhjTMeU7OWeQhGZ1ET7JBH5TZKxFAFPOudWxK3zNKAX8GxDm3Nu\nN/AyMCTS9BWgc1yfjUBlVB9jjDHGdCDJXu75LvBiE+2rgbGJrkxErgDOBm5pYnEvvLuGtse1b48s\nA+gJ1EWKl+b6qDVz5sygQ/CFljwBlhYvDToEX7z5rI48ly7Vse9qOUa15OmHZIuUbLxxKfE+iixr\nMRH5LN54kv92zn2SZDxJGzVqFKFQKOY1ZMgQSktLY/otX76cUCjU6POTJk1i/vz5MW3l5eWEQiGq\nqqpi2qdPn95o562srCQUCjW6ZW3u3LmNnv9QU1NDKBSirKwspr2kpITc3NxGsY0dO5bS0lJqamrS\nIo9oTeVRU1PTIfMYP358o76PzHyEstLY9VZuqKQov4jwrjB1++oOti9dsJSXVr4UeB6J7lc7d+6M\naX/96ScaFSV7P/qIlQ8UNboVefMrq9kSl1tQeSSyX23atCmmfcWKuSxePJW6uk+P0bq6GoqKQlRU\nxOaxZk0JCxc2nsk0iDyS3a9qampSanu01/FRXl6eFnk0bI+SkpKDvxt79epFKBQiPz+/0Wfagzjn\nEv+QyJtAkXPut3Htk4DJzrkzEljXJcASoB5omADuCLyzJ/VAP6ACONs593rU51YCrzrn8kVkON5c\nLcdHn00RkS1AoXNuThPfOwBYu3btWgYMGNDScI1pc1VVVRQ+WEjWwCwyj8tM+PPhXWGq11aTPzGf\n7OyE/kYI1MaNG5mYn0/WwHPonpXYCc/d1duoXruaBwsL6du3bztF2PaqqqooLFxCVtZlZGYmvq3C\n4Sqqq5eQn39Zh9rWJv2Ul5czcOBAgIHOufLD9U9W5yQ/NxuYLSJZQMMYkq8DNwM/SXBd/wd8Ma6t\nGFgP3OWce0dEtkXW/zocHCg7GG8cC8BaYH+kz18iffrizYYb+yemMcYYYzqEpIoU59z/Rp6C/DNg\nRqT5PeBHzrkHE1zXx8Bb0W0i8jFQ7ZxbH2maDdwqIhXAFuCOyPc9HlnHbhGZD9wjIjuBPcC9wAvO\nuTVJpGiMMcaYgCU946xzbq5z7iS82WV7OOdyEi1QDrX6uO+aBcwF7sO7q6cbcJFzri6qWz7wFLAY\nWAlsxZszRb34a5vpSkue4F3i0aA2rCPPcFjHvqvlGNWSpx/a5Nk9zrn4eU1au84LnHM/jmsrcM6d\n7JzLcM6NdM5VxC3f55yb4pzLds4dE5kB94O2jKujmjhxYtAh+EJLngALZiwIOgRfrF6oI88FC3Ts\nu1qOUS15+iHZeVJOEJE/iEiliNSKSF30q62DNK1TUFAQdAi+0JInwOjrRgcdgi/OGqkjz9GjC4IO\nwRdajlEtefoh2YGzxUBv4NfAf4i7PGNSi5a7l7TkCZDTT8e02z1O0ZFnTo6OfVfLMaolTz8kW6Sc\nC5wbmX7eGGOMMabNJTsm5T3s7Ikxxhhj2lGyRUo+cGdktliT4uJnNExXWvIEGs1Gm64qVuvIs6xM\nx76r5RjVkqcfki1SHgKGA++KyE4R+SD61YbxmTYQP0VzutKSJ0DlxsqgQ/DFh+/pyLOyUse+q+UY\n1ZKnH5Idk/LTNo3CtKuioqLDd0oDWvIEuHLalUGH4ItB39GR55VX6th3tRyjWvL0Q7Izztq5LGOM\nMca0q6QncxORU0WkQEQeEpETI20jRKTFDxc0xhhjjGlOspO5DQPeBM4DxgANj24dCNzeNqEZY4wx\nRrNkz6TMBAqcc8OB6BlmnwXOaXVUpk2FQqGgQ/CFljwBivJ1XPNe+YCOPIuKdOy7Wo5RLXn6Idki\n5Sy8B/nF+wA4IflwTHuYPHly0CH4QkueAMPHDg86BF/0Haojz+HDdey7Wo5RLXn6Idki5SOgVxPt\nXwLeTz4c0x5GjBgRdAi+0JInQP9z+gcdgi9O6qcjz/79dey7Wo5RLXn6IdkiZRFwl4icQGTmWREZ\nDPwG+FMbxWaMMcYYxZItUm4B3gG24g2afQt4EXgFuKNtQjPGGGOMZkkVKc65fc65XOB04FJgIvBf\nzrlxzrn9bRmgab3S0tKgQ/CFljwB1q1cF3QIvvj3GzryXLdOx76r5RjVkqcfkp4nBcA5t9k594Rz\n7hHn3Ia2Csq0rZKSkqBD8IWWPAHWLFsTdAi+2FKuI881a3Tsu1qOUS15+iGpGWdF5P5DLXfO5SUX\njmkPixYtCjoEX2jJEyDvTh2H2LCrdOSZl6dj39VyjGrJ0w/JPrvnpLj3RwL/BRwDPN+qiIwxxhhj\nSP7ZPaPj20SkM/B7vEG0xhhjjDGt0qoxKdEiA2Z/DUxtq3UaY4wxRq82K1IiTsO79GNSSG5ubtAh\n+EJLngDFM4qDDsEXL5UUBx2CL4qLdey7Wo5RLXn6IdmBs7Pim/DGqYSwydxSjpbZD7XkCdB/sI6Z\nWE/qqyNPm3E2vWjJ0w/JDpwdEvf+ALAD+Cnwv62KyLS5cePGBR2CL7TkCTDowkFBh+CLUwfoyHPQ\nIB37rpZjVEuefkh24Oywtg7EGGOMMSZaW49JMcYYY4xpE0kVKSLyioisacmrrQM2iSsrKws6BF9o\nyROgYl1F0CH44oN3dORZUaFj39VyjGrJ0w/Jnkn5O9AXb8Ds6siLSNtKYFnUywRs1qz4cc7pSUue\nAMsW6Di03lqhI89ly3Tsu1qOUS15+iHZgbPHAUXOuZ9FN4rIL4GezrlrWh2ZaTMLFy4MOgRfaMkT\n4No7rw06BF8MnaAjz2uv1bHvajlGteTph2TPpIwB/tBEezHw3aSjMe0iIyMj6BB8oSVPgC5duwQd\ngi86d9GRZ5cuOvZdLceoljz9kGyRsg84p4n2cyLLjDHGGGNaJdnLPfcC94nIl4GGwbGDgWuBO9si\nMGOMMcboltSZFOfcL4FrgK8B90de/w/IiywzKWTqVB2PU9KSJ8DiOYuDDsEX5U/oyHPxYh37rpZj\nVEuefkh6nhTn3CPOucHOue6R12Dn3COJrkdEfiAir4nIR5HXiyJyYVyf20Vkq4jUiMgzItInbvlR\nIlIkIlUiskdEFovIicnmlm5ycnKCDsEXWvIE6NGzR9Ah+OLo43Tk2aOHjn1XyzGqJU8/JF2kiEh3\nEbk6UkAcH2n7koiclOCq/g1MAwYAA4EVwOMickZkndOAyUAeMAj4GFgmItEj6mYDFwOXA+cCJwOP\nJZtbupkyZUrQIfhCS54AF1xxQdAh+KLvuTryvOACHfuulmNUS55+SPYBg2cC/wfUAKfg3dWzExgL\nfAa4qqXrcs79Na7pVhG5Hm8Q7nrgBuAO59xTke+eAGwHLgUeFZHuwETgCufcc5E+ucB6ERnknLMJ\n5YwxxpgOKNkzKYXAI0BvoDaq/a94ZzKSIiKdROQKIAN4UUROA3oBzzb0cc7tBl7m04ccfgWv2Iru\nsxGopPGDEI0xxhjTQSRbpHwV+K1zzsW1vw8kerkHETlTRPbg3b78W+DbkUKjF+DwzpxE2x5ZBtAT\nqIsUL831UW3Dhg1Bh+ALLXkCbNuyLegQfPHRdh15btumY9/VcoxqydMPyRYpnwCZTbT3AaqSWN8G\n4Et4Y05+B/xRRPolGZuJc/PNNwcdgi+05Anw2BwdQ65efVJHno89pmPf1XKMasnTD8kWKU8Ct4lI\nw5gWJyKfAe4CliS6MufcfufcO865V51zPwdewxuLsg3v+UA94z7SM7KMyH+7RMamNNenWaNGjSIU\nCsW8hgwZQmlpaUy/5cuXEwqFGn1+0qRJzJ8/P6atvLycUChEVVVsvTZ9+nRmzpwZ01ZZWUkoFGpU\nec+dO7fRbWw1NTWEQqFGD68qKSkhNze3UWxjx46ltLSUefPmpUUe0ZrKY968eR0yj/Hjxzfq+8jM\nRygrjV1v5YZKivKLCO8KM27auIPtSxcs5aWVLwWeR6L71c6dO2PaX3/6Cd58dmlM23994yJWPlDU\n6IzK5ldWsyUut6DySGS/2rRpU0z7ihVzWbx4KuPGfXqM1tXVUFQUavTQwTVrSli4sPGAzCDySHa/\nmjdvXkptj/Y6PkaPHp0WeTRsj5KSkoO/G3v16kUoFCI/P7/RZ9qDNL5i04IPeXfzLAG+iPccn3/j\n3VHzCnChcy7cqqBEngXedc5NFJGtwK+dc4WRZd3xLuVMcM79OfJ+B97A2b9E+vTFG3R7TnMDZ0Vk\nALB27dq1DBgwoDXhGtMqVVVVFD5YSNbALDKPa+oE5aGFd4WpXltN/sR8srOz2yHC9rFx40Ym5ueT\nNfAcumcldmV2d/U2qteu5sHCQvr27dtOEba9qqoqCguXkJV1GZmZiW+rcLiK6uol5Odf1qG2tUk/\n5eXlDBw4EGCgc668vb4nqbt7nHM7geEich7eZZpMoBxY1sQ4lUMSkV8BT+MNdD0G+G/gPGBEpMts\nvDt+KoAtwB3Ae8DjkVh2i8h84B4R2QnswZsR9wW7s8cYY4zpuBIuUkTkSOApYHLklt/nWhnDicAC\nvAG3HwGvAyOccysAnHOzRCQDuA/vrM0q4CLnXF3UOvKBemAxcBSwFJjUyriMMcYYE6CEx6Q45z7B\nm3Qt8etETa/vGufc551z3ZxzvZxzBwuUqD4FzrmTnXMZzrmRzrmKuOX7nHNTnHPZzrljnHPfdc59\n0BbxpYP465jpSkueAEuLlx6+UxqIH6OSrpYu1bHvajlGteTph2QHzj4MNB5pY1JSTU1N0CH4Qkue\nAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfkn0KsgMmi8g3gH/gTVX/6ULn7P6rFDJjxoygQ/CFljwB\nQtc1vlMgHZ11kY48QyEd+66WY1RLnn5ItkgZiDd2BOCsuGVtchnIGGOMMbolVKSIyOeBzc65Ye0U\njzHGGGMMkPiYlE3ACQ1vRGSRiMRPtGZSTPykQOlKS57gzY2iQW1YR57hsI59V8sxqiVPPyRapEjc\n+1HA0W0Ui2knEydODDoEX2jJE2DBjAVBh+CL1Qt15LlggY59V8sxqiVPPyR7d4/pQAoKCoIOwRda\n8gQYfd3ow3dKA2eN1JHn6NEFQYfgCy3HqJY8/ZBokeJoPDDWBsqmOC3T/mvJEyCnX07QIfiixyk6\n8szJ0bHvajlGteTph0Tv7hGgWET2Rd53BX4vIvG3IF/WFsEZY4wxRq9Ei5T4C8R/aqtAjDHGGGOi\nJXS5xzmX25JXewVrkhP/KPB0pSVPgLLSssN3SgMVq3XkWVamY9/VcoxqydMPNnBWgfLydnuKdkrR\nkidA5cbKoEPwxYfv6cizslLHvqvlGNWSpx+sSFGgqKgo6BB8oSVPgCunXRl0CL4Y9B0deV55pY59\nV8sxqiVPP1iRYowxxpiUZEWKMcYYY1KSFSnGGGOMSUlWpCgQCml53L2OPAGK8nVc8175gI48i4p0\n7LtajlEtefrBihQFJk+eHHQIvtCSJ8DwscODDsEXfYfqyHP4cB37rpZjVEuefrAiRYERI0YEHYIv\ntOQJ0P+c/kGH4IuT+unIs39/HfuulmNUS55+sCLFGGOMMSnJihRjjDHGpCQrUhQoLS0NOgRfaMkT\nYN3KdUGH4It/v6Ejz3XrdOy7Wo5RLXn6wYoUBUpKSoIOwRda8gRYs2xN0CH4Yku5jjzXrNGx72o5\nRrXk6QcrUhRYtGhR0CH4QkueAHl35gUdgi+GXaUjz7w8HfuulmNUS55+sCLFGGOMMSnJihRjjDHG\npCQrUowxxhiTkqxIUSA3NzfoEHyhJU+A4hnFQYfgi5dKioMOwRfFxTr2XS3HqJY8/WBFigJaZj/U\nkidA/8E6ZmI9qa+OPG3G2fSiJU8/WJGiwLhx44IOwRda8gQYdOGgoEPwxakDdOQ5aJCOfVfLMaol\nTz9YkWKMMcaYlGRFijHGGGNSkhUpCpSVlQUdgi+05AlQsa4i6BB88cE7OvKsqNCx72o5RrXk6YfA\nixQRuUVE1ojIbhHZLiJ/EZHTm+h3u4hsFZEaEXlGRPrELT9KRIpEpEpE9ojIYhE50b9MUtesWbOC\nDsEXWvIEWLZgWdAh+OKtFTryXLZMx76r5RjVkqcfAi9SgGHAXGAw8A3gSGC5iHRr6CAi04DJQB4w\nCPgYWCYiXaLWMxu4GLgcOBc4GXjMjwRS3cKFC4MOwRda8gS49s5rgw7BF0Mn6Mjz2mt17LtajlEt\nefqhc9ABOOdGRb8XkauBD4CBQMM5sxuAO5xzT0X6TAC2A5cCj4pId2AicIVz7rlIn1xgvYgMcs7p\neEpZMzIyMoIOwRda8gTo0rXL4Tulgc5ddOTZpYuOfVfLMaolTz+kwpmUeMcBDvgQQEROA3oBzzZ0\ncM7tBl4GhkSavoJXcEX32QhURvUxxhhjTAeSUkWKiAjeZZsy59xbkeZeeEXL9rju2yPLAHoCdZHi\npbk+xhhjjOlAUqpIAX4L9AeuCDqQdDJ16tSgQ/CFljwBFs9ZHHQIvih/Qkeeixfr2He1HKNa8vRD\nyhQpIjIPGAWc75z7T9SibYDgnS2J1jOyrKFPl8jYlOb6NGnUqFGEQqGY15AhQygtLY3pt3z5ckKh\nUKPPT5o0ifnz58e0lZeXEwqFqKqqimmfPn06M2fOjGmrrKwkFAqxYcOGmPa5c+c22tFramoIhUKN\nbm8rKSlp8lkRY8eOpbS0lJycnLTII1pTeeTk5HTIPMaPH9+o7yMzH6GsNHa9lRsqKcovIrwrTI+e\nPQ62L12wlJdWvhR4HonuVzt37oxpf/3pJ3jz2aUxbZ27HMXKB4r4aHvsYbz5ldVsicstqDwS2a82\nbdoU075ixVwWL55Kjx6fHqN1dTUUFYUa3Za8Zk0JCxdOSYk8kt2vcnJyUmp7tNfxsWvXrrTIo2F7\nlJSUHPzd2KtXL0KhEPn5+Y0+0x7EOefLFx0yCK9AuQQ4zzn3ThPLtwK/ds4VRt53x7uUM8E59+fI\n+x14A2f/EunTF1gPnNPUwFkRGQCsXbt2LQMGDGiv1Iw5rKqqKgofLCRrYBaZx2Um/PnwrjDVa6vJ\nn5hPdnZ2O0TYPjZu3MjE/HyyBp5D96zErsrurt5G9drVPFhYSN++fdspwrZXVVVFYeESsrIuIzMz\n8W0VDldRXb2E/PzLOtS2NumnvLycgQMHAgx0zpW31/cEfnePiPwWGAeEgI9FpOGMyUfOudrI/88G\nbhWRCmALcAfwHvA4eANpRWQ+cI+I7AT2APcCL2i/s8cYY4zpqAIvUoAf4A2MXRnXngv8EcA5N0tE\nMoD78O7+WQVc5Jyri+qfD9QDi4GjgKXApHaN3BhjjDHtJvAxKc65Ts65I5p4/TGuX4Fz7mTnXIZz\nbqRzriJu+T7n3BTnXLZz7hjn3Hedcx/4m01qir9ema605Amwbcshh1qljfixKOlq2zYd+66WY1RL\nnn4IvEgx7e/mm28OOgRfaMkT4LE5OiZTfvVJHXk+9piOfVfLMaolTz9YkaLAvHnzgg7BF1ryBBg3\nbVzQIfjiq5fryHPcOB37rpZjVEuefrAiRYHoW5DTmZY8AXr06nH4Tmng6ON15Bl9C3I603KMasnT\nD1akGGOMMSYlWZFijDHGmJRkRYoC8bMUpisteQIsLV56+E5pIH4G2nS1dKmOfVfLMaolTz9YkaJA\nTU1N0CH4QkueAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfrEhRYMaMGUGH4AsteQKErmv8HJB0dNZF\nOssVS10AACAASURBVPIMhXTsu1qOUS15+sGKFGOMMcakJCtSjDHGGJOSrEhRIP6R3+lKS57gPflY\ng9qwjjzDYR37rpZjVEuefrAiRYGJEycGHYIvtOQJsGDGgqBD8MXqhTryXLBAx76r5RjVkqcfrEhR\noKCgIOgQfKElT4DR140OOgRfnDVSR56jRxcEHYIvtByjWvL0gxUpCgwYMCDoEHyhJU+AnH46pt3u\ncYqOPHNydOy7Wo5RLXn6wYoUY4wxxqQkK1KMMcYYk5KsSFFg/vz5QYfgCy15ApSVlgUdgi8qVuvI\ns6xMx76r5RjVkqcfrEhRoLy8POgQfKElT4DKjZVBh+CLD9/TkWdlpY59V8sxqiVPP1iRokBRUVHQ\nIfhCS54AV067MugQfDHoOzryvPJKHfuulmNUS55+sCLFGGOMMSnJihRjjDHGpKTOQQdgjOm4wuEw\ntbW1SX12586d1NfXJ/3d9fv3s3PnzqSnIO/atSuZmZlJf78xpv1ZkaJAKBTiiSeeCDqMdqclT4Ci\n/CImFU4KNIZwOMz99z9KdfX+pD5fXb2NbdurOH5/859f+UAR51/TOM/9dfvYvuPfFP+lmKysrKS+\nPyszi7wJeSlRqBQVhZg0Kf33XS3HqJY8/WBFigKTJ08OOgRfaMkTYPjY4UGHQG1tLdXV++nW7QIy\nMo5L+PPhcDn7PynlwCHOpvQd2nSe9fv384nUcVSfo8j6fOJFSs2eGqrfrqa2tjYlipThw3Xsu1qO\nUS15+sGKFAVGjBgRdAi+0JInQP9z+gcdwkEZGceRmZmd8Oe6du1+2D4n9Tt0nl2P7krmcckVGXvZ\nm9Tn2kP//jr2XS3HqJY8/WADZ40xxhiTkqxIMcYYY0xKsiJFgdLS0qBD8IWWPAHWrVwXdAi++Pcb\nOvJct07HvqvlGNWSpx+sSFGgpKQk6BB8oSVPgDXL1gQdgi+2lOvIc80aHfuulmNUS55+sIGzCixa\ntCjoEHyhJU+AvDvzgg7hoH37wkl9rqZmF84dep6UYVc1n6dzjr179xIOJ/794XCYuk/qEv5ce8nL\n07HvajlGteTpBytSjDFJq6ur5aVXH2L/EYlP6Lbzw/f4eF8V9fWfJPzZ+v11hD/+mFdeeZuKLR8m\n/Pm6mlrYUks4HCY7O/E7k4wx/rAixZgorZlBdf/+/XTunPghVV1dnVJ/1Sdi//791NR/yNFfyOLI\nbhkJfXbPuzuo/1c99fWJTwZXX7+fAweEzp0/z9FH90n48wfqdrBn72vs27cv4c8Gra6ulurq6qQ+\nm+w+2sBm6TV+syLFmIhwOMz9f7yf6nDivwDq9tWxcf1G+v5XX7oc2SWhz9Z8XMMbG97g+C8fTybJ\n/QKo21eX9C+utvjFc2S3DLomuI7ORx3Vqu8E6Ny5K0d1TTz2fV2Su0TVINlitrq6mrq65AvSffvC\nvPrqG/z+9/VkZByd0Gfr6mrZuPFN+vb9Il26JLaPNsjK6kxe3hgrVIxvrEhRIDc3lz/84Q9Bh9Hu\nWptnbW0t1eFqup3ejYxjEjsrsOP9HVS/Ws2Rpx5JVq/EZkA98P4B9r6xl/2ftPyMQvGMYq6efjUA\n+/bu49XXXuX39b8nIyOxuCG1poeP91JJMUPGXR10GDFa8ziAmpowb7xRwfHH1xL94y4uzuXqqw+/\n737yyT727j2Cbt2Gk5X12YS+e8eOd6iufosjjxya8GfBG0NUXb2iVbP02r9FJlEpUaSIyDBgKjAQ\nOAm41Dn3RFyf24FrgOOAF4DrnXMVUcuPAu4BxgJHAcuAHzrnPvAliRSmZfbDtsoz45iMhGcxDX/k\n/WXeNTPxGVAbPpuI/oM/nYn1k7pP2HtgL92+0C3hAinVpoePd1Lf1JlZt0FrHgdw4MA77N37Nvvj\nnleU6IyzXbsmPstvOHKGMJnPNtjbykl67d8ik6iUKFKAo4F1wHxgSfxCEZkGTAYmAFuA/wGWicgZ\nzrmGc6ezgYuAy4HdQBHwGDCsvYNPdePGjQs6BF9oyRNg0IWDGrUlUyBBak0PH+/UAY3zTBXJPA4g\n3MylxEGDdOy7Wo5RLXn6ISWKFOfcUmApgIhIE11uAO5wzj0V6TMB2A5cCjwqIt2BicAVzrnnIn1y\ngfUiMsg5p2OyBWOMMSaNpPxkbiJyGtALeLahzTm3G3gZGBJp+gpewRXdZyNQGdXHGGOMMR1Iyhcp\neAWKwztzEm17ZBlAT6AuUrw010etsrKyoEPwhZY8ASrWVRy+Uxr44B0deVZU6Nh3tRyjWvL0Q0co\nUtrVqFGjCIVCMa8hQ4Y0evbC8uXLCYVCjT4/adIk5s+fH9NWXl5OKBSiqqoqpn369OnMnDkzpq2y\nspJQKMSGDRti2ufOncvUqVNj2mpqagiFQo0OgJKSEnJzcxvFNnbsWEpLS5k1a1Za5BGtqTxmzZrV\n6jw+2vkR82+bz7Yt22LaVyxcweI5i2Pa6mrrKMovalQwrFm6huIZxY3yuP+W+xs9c+et1W/xyJ2P\nNOr7yMxHKPv/7d19mFTVfcDx7w9mYdmFCKwvxKpBQyTmRRCMjdGaSBKpJtJWE2OMT1VMjY2xDWk1\naZ8m0fSxiaYJTeImYjQS20JsjBrSGkjR0ESFIC8i4oIgLAvIwu6wuzA7O7Pz8usfd1ZmZ3dh7rze\nuff3eZ59dubOPXfOb8+8/Pbce855avDfp21rG80Lmol0R1jx0xWD6rb3tb2D9j3UfojmBc15xZHo\nT3D99dcX1R4Hdmxj1UPNQ/Zd+/gSdqwZfNxDe9pY9VAz/TlXYb7862VseWb54G3Lf8Wqh5rpOTA4\njr0vbyLeeWTQtmR/P6seah6S2LRuWMvqpYuH1G3bxo2sXLly0DY374+9ezfR3DyPSGTw62rZsq+z\nfPng19WhQ200N8+jo2PnoO3PPvsDHn/8DlasOPoe7e+P0tw8b0jisnbtUp588h+G1O3BBz81ZO2f\nV1/9Dc3NQ+PYufP3rF8/eDbUtrYNecfR03OI66+/vuD3+X333Vf0+xy8/3m1YMECX8Qx0B5Lly59\n87txypQpzJs3b0iM5SKqWpEnypeIpMka3ZM53fM6MFNVX87abxWwUVUXiMilwEpgUnZvioi0AgtV\n9XvDPM8sYP369euZNWtWOUOqumg0WtDQ1FpTbJydnZ0s/MlCmmY3ub4AtX13Oyv+YwVzb5jLlNPc\ndd4VUrY/1s+Y+jFFP3ekO0J4fZgF8xe4nnm1s7OTe+55lM1te5h43umu50nZt2Mz65b/nPM/fh1/\nNPWdw+6T7O8nNMycHvmUPZbD4XbC69fwk4ULmT59uquynZ2dLFz4BE1NV7m+cLa9fRsrVixk7tyv\nMGXK1De39/dHGTPm+K/dkcoX89z5ikQ6CYefYMGCqwqepdc+i/xjw4YNzJ49G2C2qm4o1/N44sLZ\nY1HVXSLSDnwYeBkgc6HsH+OM4AFYDyQz+zyZ2Wc6cAawutJ19hq/v1kGBCVO4M0EpRT6E4VNBFfs\nxGT5GC5BKZVUMklXV9eQ/1iPx4m7sFmJR5JPguIHQXmPBiXOSvBEkiIijcA0YGBkz1kiMgM4pKp7\ncIYX/5OI7MAZgvzPwF7gl+BcSCsiDwPfFZEu4AjwfeB5G9ljzMhi8RgbN7TwQOf/0NDgrifEmZhs\nG6Mme29+leNJ9sc50LGHxU8upqnJ5dwy0SibW/YyefK8gucbMcbkxxNJCs7onN/iXCCrwHcy238K\nzFfV+0SkAViEM5nb74HLs+ZIAVgApIDHcSZzWw7cVpnqG1ObkokkfX1p6usvpqnpLFdl0+mdxGKb\nqE+ly1S78kklkySkn7HTxtJ0lrskRduVvrW9JBK1t+6PMbXGExfOqur/qeooVR2d8zM/a5+7VPVU\nVW1Q1bnZs81mHo+r6u2qeqKqTlDVT9pss47cC6j8KihxAkMufi1GKpkknXafaKTTaRKJWEGrGOdr\nw7LSxZlLVdFR6vyr5uInJSlSqVRJ6/L448F47QblPRqUOCvBKz0ppozOOOOMalehIoISJ8DkUyYP\nup9Kpejt7SUScTfFfle4i/0HdrP61cWMb3PXoxCJhGmPtjCuYwInJ6dCgYsjHkvjxMnH36kAqWQ/\nkd5eXnzxNXa0HnJVNtJ9mDfeOEBXVzvjx7v7m/X2dpFI9BGP9w7aPnlyMF67QXmPBiXOSrAkJQBu\nv/32alehIoISJ8Cca+e8eTsej9PeHmb16hbGT9zn6jhd+zvo7jvM1DNCNLzV3Rdu6nCSUX2jSHTH\nSKXcL7aXj+mXzDn+TgVIpZKk00IodBaNjdNcle3t2k7P4Q2saXmUbe0uR1NFwrzRu5l1ryzllFO+\nQn1mBec5c4Lx2g3KezQocVaCJSnG1LhkMkkykaau7kwaG9/mquyRuq2k05sYVTfG9RDi/lSEUaEQ\nzmVktSkUqmdsvbu4RxEiXZckNHUsDacVkNilRtOX7iKZjFGO3idj/MSSFGN8opAv3NDosWWqjf+F\n6usLS+zqQlB71xobUxWeuHDWlFfubIR+FZQ4gSEzyfpV7kyzftXeHozXblDeo0GJsxIsSQmAO++8\ns9pVqIhajjP7wtd8fh777mNv3o5Go3ht5uhS2firX1S7CmWRSiaIRMJEIp1EIp089tgX37x9rJ/e\n3q6yjqYqt1p+j7oRlDgrwU73BMD9999f7SpURK3GWciFryfPPpuVK52ZqLv2dxDp7Sv5sFgveN/V\nn652FUounUyx/8AWfrfpgTdnmj357dNY+eLC45aNRMIc6Hl1yOigWlGr71G3ghJnJViSEgBBGQ5X\nq3EWcuFrY+PR2wMXv6ZqcFK142mcVJ4hyNWkqTSJUTHqzhxHw0TnwtsG8rsAN34wQmJnnGSyNieS\nq9X3qFtBibMSLEkxxiMKufAV7OLXWlU3zv2Ft6HD9WWqjTHeZNekGGOMMcaTLEkJgHvvvbfaVaiI\noMQJsOWZ5dWuQkVYnP4SlPdoUOKsBEtSAiAajVa7ChURlDgBUv39x9/JByxOfwnKezQocVaCJSkB\ncPfdd1e7ChURlDgBzr18XrWrUBEWp78E5T0alDgrwZIUY4wxxniSje4xvhKJRIjFYgWVDYfD9CeC\n0e1uTCH6+2OEw+GCytbX1zPe5WgmYyxJCYDOzk5OPPHEalej7FpbW3ni6ScIRwr7EI32Rtm8dTOT\nzpvEeI8v/BaLRFwPX61FFqd3xOMRNm7czAMPpGhoaDx+gRxNTSGuumoOU6dOLX3lPCYon7mVYElK\nAMyfP59ly5ZVuxpld+uttzJ7zmzGnT2OhgkNrsun96Xp29xHMpEsQ+1Ka83PfsqHPntbtatRdhan\ndyQScfr6RjNu3KU0NZ3mqmw02k04/Cy33nory5f7fyRTUD5zK8GSlAC46667ql2Firjjjjt4dv2z\nNExoYPxE9/+VRnoiZahVeZw798pqV6EiLE7vqa+fyPjx7nsJ+vqc92gQBOUztxLswtkAmDVrVrWr\nUBEzZsyodhUqZvLpwZh22+L0l6C8R4PymVsJlqQYY4wxxpMsSTHGGGOMJ9k1KQHw8MMPc/PNN1e7\nGnkrdBjxokWL6CcYQ4h3rHmOae+/uNrVKDuL0z/6+2MsWrSIz33uc67L1trw5Vr7zPUyS1ICYMOG\nDTXzholEIjz46IMFDSP+76f+m5POOqkmhhAX69DetmpXoSIsTn8YGL7c0dFCNHqS6/JNTSFuueWa\nmklUaukz1+ssSQmA5ubmalchb7FYjHAkXNAw4iumXMHvnvpdTQwhLtYFn7iu2lWoCIvTHwaGL3/s\nY/cXPHw5FovVTJJSS5+5XmdJivGkQoYR19IQYmOCqJjhyyaYLEkxpkRSqRS9vb1EIu6SpWg0iqqW\nqVbGb9LpFNFoF5FIp6tyvb1dpFKJMtXKmPKwJMWYEojH47S3h1m9uoXxE/e5Ktu1v4NIbx+pVKpM\ntTN+kezvpzcaZt32Jbze+ayrspFImAM9rxKP95apdsaUniUpATBv3ryKT9Fc6AidYhb5W/LNJTSd\n3lRQ2WIlk0mSiTR1dWfS2Pg2V2WP1G0lnd5EKpXOu8yqh5o9P416KVicg6WTSdJ1SUJTx9JwmrvX\nevxghMTOOMlkvNBqFm3Jks/ypS+tdF2umIUNofKjg6rxmetXlqQEwBe+8IWKPl8xI3SKWeTvgssv\n4PVXXnf9nKUUCtUztt5dvUOjx7p+nukXX+q6TC2yOIcXqq93vSBh6HC9q/3L4YIL/tJ1mWIXNoTK\njw6q9Geun1mSEgCXXXZZRZ+vmBE6xSzyN23mtKonKZXy1ne+q9pVqAiL01+mTbvEdZliFjaE6owO\nqvRnrp9ZkmKGVejpGjh6yqZpQpON0DHGlEShI4MAenoKP11UaxPJ+Y0lKWaIYk7XQHGnbIwxppSK\nPV1UaxPJ+Y0lKT420Bvy9NNPc8UVV+RdLhwOs79rPye8+wTXp2uguFM2xWj5Q0tFn6+a9mx+idPf\nO7Pa1Sg7i9NfWlp+w5Qpt1T0OYs5XRSNdrN//9Ps27ePpqb8L1Qe+My1Xpji+S5JEZHbgL8HpgCb\ngNtV9cVq1EVV6erqKrh8fX09DQ3ukwQY3Buy+P7FbGvflnfZgZ6QOefNcX26Bqp3yua5J5/jjPcE\nY8n7Lc8sD8SXmsXpL8899yMuvbSyScqAQk4XFdoLs3jxt9i2LWa9MCXgqyRFRD4FfAe4BVgLLABW\niMjZqupu5qMSWLduHctWLUMpbKKuSfWTuPaqaxk71v3oj+zekImnTaRpdv7/BVSrJ6RYjScUduV/\nLaofP6HaVagIi9NfGhurM0VAoQrthZk48QnGjZtTUC9MtmQySShU2Ne0X3pxfJWk4CQli1T1UQAR\nuRX4GDAfuK/SlTl8+DBdo7o4c8aZrsuG3wiz4lcraD/czpi6Ma7LZ/eGhEIhVz0idvGqMcYc5bYX\nJhQaw+jRoaKuhenvj7Ft2xamT38vY8a4/w7wSy+Ob5IUEakDZgP/MrBNVVVEVgIXVqteo0OjmTDJ\n/X9JPR099KX6qH9HPZOaJrkuX6u9IdWUTqVJp9Mkk0kSCXfTh6eSNlusMeaoYodOd3TsJBx+lbq6\niwOxKONIfJOkACcCo4EDOdsPANMrXx1HKpki0u2+ZyIWdYb/jhs/rqauC6lVyWSStS++xN69B/n9\n719iwqS3uCp/aH8HiaSti2K8rdB1f8DW/ilUoUOnI5nRlUFflNFPSYpb9QAtLeUbEbJv3z762vrY\n0rbFddlYX4xEb4Ldr+yms839B0rXwS4i3RFaN7ey85WdbH1xa0Flu/d3F/XcbssXU3bPa3sYO2Fs\nQWWTySQduw4Sj8QJt3XS2+lufZNI1xH6o3E6du2g71CPq7LdB/eSiicI795BKhLNq0xH6+u0vbKh\n4PLFPPeAWF8PsUOHkQi0b2+he/8bJX/u7DhLVe9iy5fjbzZSnKV87p7wfg537+eZtd9h/Bb3vbOx\n2BE6D7Syfftv6e52d4F6V9c+IpEO9uzZyNatzxRUtrV1Nd3d7idrLKZ8oWV37lzDrl1/qFq9Y7EI\n8XgbmzZtYtIk922dj6zvzrJOZSx+WX01c7onClytqsuyti8GTlDVv8jZ/zrgPytaSWOMMcZfPqOq\nS8p1cN/0pKhqQkTWAx8GlgGIiGTuf3+YIiuAzwCtQGFTqxpjjDHBVA9MxfkuLRvf9KQAiMg1wGLg\nVo4OQf4E8E5V7ahi1Ywxxhjjkm96UgBU9b9E5ETgG8ApwEvAXEtQjDHGmNrjq54UY4wxxvjHqGpX\nwBhjjDFmOJakGGOMMcaTfJOkiMhtIrJLRPpEZI2IvO8Y+14kIs+JSKeIREWkRUS+OMx+n8w81ici\nm0Tk8vJGkZ9SxyoiN4hIWkRSmd9pEXE/+USJuYkzp9xFIpIQkSETT3ixTUsdpx/aU0Q+mFX3dFY8\nJ+fsV9PtmU+cfmjPzP5jROQeEWkVkZiI7BSRG3P2qen2zOx/zDi92p7g+rX7yDBxpEVkc85+xbWp\nqtb8D/ApnGHEfwm8E1gEHAJOHGH/mZky5wBnANcBEeCzWft8AEgAX8KZsfYbQBx4lw9jvQHoAk4C\nTs78nFRLcWaVOwHYAfwa2JDzmOfatExx1nx7Ah8EUsDbs2I42W/tmWecNd+emTK/BF4ALs18Fv0x\ncKGf2jPPOD3XngW+didkv2aBU4FO4KulbNOq/lFK+MddA3wv674Ae4E7XRzjF8BPs+7/DFiWs89q\n4Ic+jPUG4FC127EUcQJLgbuBrzP0y9tzbVqmOGu+PTn65f2WYxyz5tszzzj90J5/mvnCm+jz9swn\nTs+1ZyGxDlP+z4EkcHop27TmT/fI0YUF35xrWZ2/RN4LC4rIeZl9V2VtvjBzjGwr8j1mOZQxVoDx\nme7JNhF5SkTeVZpau1donCJyE3Amzpf3cDzVpmWME3zQnjgfki+JyBsi8hsR+UDO475oT44fJ9R+\ne14JrAO+LCJ7RWSbiHxbRLKnVPdDe+YTJ3ioPaE03y3AfGClqu7J2lZ0m9Z8ksKxFxaccqyCIrJH\nRGI4E781q+ojWQ9PKeSYZVauWLfhvMDm4czCOwp4QUROLVXFXXIdp4i8A2cF7M+oanqE43qtTcsV\nZ823J7Af+BxwNXAVsAdYJSIzs/ap+fYkvzj90J5nAX8CvBvnP+6/xZloszlrHz+0Zz5xeq09oYjv\nFgAReStwOfDjnIeKblNfTeZWgIuB8cD7gXtFZIeqPlblOpXLiLGq6hqcrj4ARGQ10ILz4fn1KtTV\nFREZhbMO09dVdWAlLqlilcoi3zhrvT0BVPU14LWsTWtE5O04s0jfUJ1alV4+cfqhPXG+iNPAdaoa\nARCRLwE/F5HPq2q8qrUrnePG6ZP2zHUjznU2vyz1gf2QpHTinNM9JWf7KUD7sQqq6u7MzS0iMgW4\nCxhIUtoLOWaZlSvW3H2TIrIRmFZUbQvnNs4JwPnATBEZ+I9lFM7yTf3AZaq6Cu+1abniHKQG23Mk\na4GLsu7XenuOJDfOQWq0PfcD+wa+uDNacJLs04DX8Ud75hPnIB5oTyj+tXsT8KiqJnO2F92mNX+6\nR1UTwMDCgsCghQVfcHGo0cDYrPurs4+Z8dHM9qooY6yDZP5jfy/OG67iCojzMPAenJFMMzI/DwBb\nM7f/kNnPU21axjgHqcH2HMlMBsdQ6+05ktw4B6nR9nweOFVEGrK2Tcfpddibue+H9swnzkGq3Z5Q\n3GtXRD6EMzrt4WEeLr5Nq31FcSl+gGuAKIOHToXJDOsCvsng0SyfBz6Ok7lOA24GeoC7s/a5EGeo\n1MDQqbtwhmdVewhyOWL9auaFcyZwHs7IkV6chRlrIs5hyg836sVzbVqmOGu+PXHO5c/D+fB7N/Bv\nOEMZP+Sn9swzTj+0ZyOwG6f39hzgEpxrMx7wWXvmE6fn2rOQWLPK/TvwwgjHLLpNq/YHKcMf+PNA\nK9CHk6Wdn/XYI8CzWfe/AGwGjuCcR1sH3DLMMa/G+S+1D3gZZ7FC38UKfBfYlTneG8CvgHNrKc5h\nyg758vZqm5Y6Tj+0J3AHsD3z4d2BM+rgEr+1Zz5x+qE9M9vOxhnZEcH5Ir8PGOun9swnTq+2Z4Gx\nviUT5/xjHLOoNrUFBo0xxhjjSTV/TYoxxhhj/MmSFGOMMcZ4kiUpxhhjjPEkS1KMMcYY40mWpBhj\njDHGkyxJMcYYY4wnWZJijDHGGE+yJMUYY4wxnmRJijGmIkTkbSKSFpFzizzOIyLyxHH2+a2IfDfr\n/i4R+ZtintcYU3mWpBhjhsgkAmkRSYlIXES2i8hXM4uhFaNaU1yfDzw4cCcT27wq1cUYk6dQtStg\njPGsXwM3AvXA5cAPcRYLuy97p0zioprfGhtS4jrmRVXD1XheY0xxrCfFGDOSuKp2qOoeVX0QWAn8\nmYjcICJdInKliGzBWdX0dHF8TUT2iEhMRDaKyNxhjnuOiDwvIn0isllELhl4QERGichDIrJTRKIi\nsnWk0zSZ5zooIj0i8iMRGfGfruzTPSKyC6dH56lMj8rOzKmolIjMyin3RRFpdfuHM8aUhiUpxph8\nxYAxmdsNwJ3AzcC7gYPAF4EFOMuyvxdnJdhlIvL2nOPcB3wbmImz0uoyEZmUeWwUsAdn5dRzgLuB\ne0TkEznH+AjOcvIfBK4FrsJZETof78Pp0bkBmAK8T1V3A/8L3JSz743AT/I8rjGmxCxJMcYcl4h8\nBJgLPJPZFAL+WlXXqOp2VY0Bfwd8S1V/ntn2FeAlnOQl2w9U9SlV3Qb8NXAYJ9lBVZOqereqblTV\n3aq6FFgMXJNzjDhwk6q2qOqvga8BeV0Yq6qdmZs9qnow61TQw8CnRaQuE/Ms4D2Z5zfGVIElKcaY\nkVwpIkdEJAb8D7AUp2cDoF9VXxnYUUQmAKcCL+Qc43mcHpFsawZuqGoKWJe9j4jcJiLrMqdyjgC3\nAGfkHGOTqsaz7q8GxovI6W6DzPIUkAb+InP/RuC3qtpWxDGNMUWwJMUYM5JngXOBacA4VZ2vqn2Z\nx/pGLlY4EbkW51TQj4GPAjOARzh6mqlsVDUBPArclOlN+TRO74oxpkosSTHGjKRXVXep6l5VTR9r\nR1U9ArwBXJTz0EXAqznb3j9wQ0RGA7Oz9vkA8LyqLlLVTaq6E8i9pgVghoiMzbp/IRBR1T3HjcqR\nAEYPs/0hnOTo85nHn8zzeMaYMrAkxRhTKt8Gviwi14jI2SLyLZyekO/l7HebiPy5iEzHGdY8Eae3\nBGA7cL6IXCYi7xCRb+Bc6JprDPCwiJwjIlcAdwE/cFHXVuDDInKKiEwc2KiqW3FOR90LLMk5pWSM\nqTCbJ8UYUyrfB94C/CtwMk7vyJWq+nrWPgp8JfMzA9iR2edQ5vFFOKN+fpbZdynQjDNPS7ZncBKa\n3+EkLEs4er3MwPNwjPt/B3wH+CtgH3BW1mMP4/TM2KgeY6pM8pt/yRhjgkFEvgpcraozq10XRDhs\nLwAAAIJJREFUY4LOelKMMQYQkUbgTOA24B+rXB1jDHZNijHGDLgfeBFnVNMjx9nXGFMBdrrHGGOM\nMZ5kPSnGGGOM8SRLUowxxhjjSZakGGOMMcaTLEkxxhhjjCdZkmKMMcYYT7IkxRhjjDGeZEmKMcYY\nYzzJkhRjjDHGeJIlKcYYY4zxpP8H4qHiDWIZvp8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGHCAYAAAB1bcIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X+cVHXZ+P/XhaSwLootyPojlCTFsiy2NL6KShYk5qh4\nB/KJUDDpNiDcDMnSWPOuAM1FYO+CWwoTXX5F648Q8BZTVm6gWBVLUFB0U2J1NwnGYVmF6/vHOYsz\ns7uwM7tzzuy8r+fjMQ+d93mfc66L9wxzcX68j6gqxhhjjDHZplPYARhjjDHGNMeKFGOMMcZkJStS\njDHGGJOVrEgxxhhjTFayIsUYY4wxWcmKFGOMMcZkJStSjDHGGJOVrEgxxhhjTFayIsUYY4wxWcmK\nFGOSiEiJiBwMaF9/FpGn495fLCIHRWRYQPtfICI7gthXukTkWBG5X0T+6f/Z3Bt2TAAi8oaIPNqO\n22v12Dc3bv66P417f73f1juFfV+UXvTGZIYVKSanich1/l++ja99IvK2iKwUkYkikt/MagqkVKSI\nyEkiMlVEPpdiiM3tq12fVXGE2FLONQQ/AUYDZcAo4MGWOvqFQ/x414jIsyJyVQbiysQzRVq7zdaM\nmyZvT0RuEpHr2rhvYwLTOewAjAmAAncAbwAfAwqBS4CZwA9EJKKqL8X1vwv4ZYr7OBmYCuwANqew\n3teaaZMU930kh4vtO2T/P1YGAetV9b9a0VeB54F78P4cTwa+CywXkf9U1XmZC7NdtHbsWzNuvwfK\nVbUhru17wLvAA/EdVfUZEema1NeY0FmRYlyxUlWr4t5PF5FLgD8Bj4jI2aq6H0BVDwKp/mWdUmHh\n/yDsU9UPU9xPOlqMTVUPAAcCiKEtTgT+nkL/t1W1vPGNiDwIbAeKgRaLFBHpoqr1aUcZoNaMm3pP\nj23159gKFJONsv1fUMZkjKr+Ge+oyWl4pxGA5q9JEZGvichaEXlPRPaKyFYR+bm/7GJgI96/4hf4\npxkOiMhof/mfRWSziPT3Tz28D/w8btma5NCAo0TkF/51GFEReURETk2K6Q0R+W1yXvHbbEVszV3b\nkCcivxKRahGp93O9pZn9HBSRWSJypYi85Pf9m4gMOcIffeP6PUVkvojs8k/DvdAYV2Ps/jicDnwj\nLvYjXmMRT1VrgC1An7htvyEij4rIYBH5i4jsA8b5y44SkTtEZLuf0w4R+bmIHN1CHl8Tkef9HP4u\nIlcnLT9BRO7xPwN7ReTfIrLiMKffWjP2R7yWKPmaFL//Z4BL4k6HHfqcSDPXpIjI+f6p0d0i8r7/\n2fr/kvrki8hM/8+p3j/FtlpEPn+4+IxpDTuSYlz3IPALYDAw329LOJcvIp8GHgNewDtttB/oCzT+\nZb0F+CnwM2AusNZvXxe3vR7ACmAR3mH4mrhlyQS4He+ag2l4RxKKgSdF5PONR3xaWDe5vTWxJW/n\nMeBi4H7gRWAIcLeInKyqycXKQGAY8N/AXuD7wDIR6a2q77UQHyLSBXgG+CQwG+9U3DfxCqnjVXU2\n8DJe8TgT+AfwK3/1d1vabgv76gx8AqiLa1agH/Aw3p/LPOAVf9l8vGtgluCdNjofuM3vf03S5s/E\nG9PfAAuAMcBSERmiqk/5fT4JRICleKfceuGdgvqziHxaVXfFh0vrx/5I15Ak95kEzMEbp//y91WT\n1P+jQES+gveZ/StQ4sc0BlgjIheq6l/9rnPxPgOz8T5vBcCFwNl43xlj0qeq9rJXzr6A6/AOi/c/\nTJ/3gL/GvZ8KHIh7P8nfxgmH2UYR3l/io5tZ9rS//ndaWLYm7v3F/naqgby49v/w2yfEte0AftuK\nbR4utt8Br8e9v9Lv+6OkfkuAD4E+cW0HgX3A6XFtn/Xbv3eEcWn8M702ru0o4Dng38CxSXk+2srx\n3gE8gfdDWQB8Dij391Wa1O8A8NWk9T/nx/+bpPYZfv+Lm9nGlXFt3YC3kz5PH2smzt7+n91P0hz7\nhHGLG4+fNvPZ7x3X9lL8ZyNp3weAi+LaXgH+lNTvGOA1vNOn8d+fWW39rtrLXs297HSPMRDF+3Fp\nyW7/v1eLSLoXte7H+5d2az2gqrHGN6q6DPgnMDTN/bfWZXjFyOyk9l/hnR6+LKn9SVV9o/GNehcg\n78E7enCk/exS1UVx6x4AZgH5eD+a6RqCd7TlXbx/yV+Dd/TqR0n9dqjq/ya1DcU7olCa1P4rvCMP\nlye171TVR+Jy2Ovv6wsicqLf9kHjchHpJCIfB2J4RUD/ZuIPa+wP8U/VfAooF5GCxhfe9+QpIP60\n0G7gfBE5Kaj4jDusSDHG+1Hce5jli/H+hf8/QI2IlIvIN1MsWN7W1C6S3d5C2+kpbCMdp+H98L6f\n1L4lbnm8fzSzjfeAE1qxn23NtG/BKwaS95OK9cCl/msA0ENVx+hHp0oaNXdNx2l4RyQS/vzVu65l\ndzNxNTdOr/r/PR1APMUi8ipesVoLvIN31On4ZtYPa+zjfcr/7+/5qOB7Fy/u7wBHi0hj7LcC5wD/\nEJEN4t3u3id5g8akw65JMU4TkVPwfiia+2EAQL07Pi4SkUF4/5L+OjACeEpEBqtqa+aX2Nce8SaH\n1kL7UXhHQ4LQ0h0m7X0bdSpqVfXpI3c77Ji055whP8G7Juh+vOtN/oVXCN1H9v5DsTGuW/CuS2pO\nFEBVl4rIs8DVeNd2/RCYIiJXq+qqjEdqcpoVKcZ1o/F+kFYeqaP/w/c08EMRuQ3v4sNBwBrafyKs\nTzXT1pfEH4z3gO7N9DsN77qBRqnE9iZwqYgcm3Q05ey45e3hTbwjCcnaez+pehPvB/pTfHQhLf6p\nm+7NxNW3mW2c5f/3Df+/1+BdBzIuvpOIdKf5i4BbM/bpau1nofHzs1dVk+8+a7pR70jTb4DfiEgP\nvLlqfgJYkWLaJFureGMyzr974Xbgdby7PFrq19ypixfxjhYc479v/EFvrmhIx2iJmw1XRL4JnIR3\nt0Wj14Av+3evNPb7Bt6dLPFSiW0F3j9eJiS1F+P96/+JVkXfuv0UisiIxgYROQqYiHfq7Zl22k86\ncQlwc1L7LXg/8H9Kaj85/pZjETkO+DbwvKq+4zcfIOnIkj+ep7QQQ2vGPl3v07rPwSa8z9cPReTY\n5IV+IdJ4jc1x8ctUtRbYyUffDWPSZkdSjAsEGCoiZ+N95nsBX8Gb7XUHENHDT2T1U3/+iD/h/Uu6\nF3AT3l0YlX6f1/CuWfhPEYni/RisV9V0jwj8C6gUkd/hzZA7Ce9ah/vj+tyPd+fHKhFZApyBd8tu\n8qmrVGJ7DO9o0c/96woab0G+Au/umPZ6zs88vNtwF4jIF/noFuQBwKRmrokJhKpuFpEHgHF+cfoM\n3i3Io4HlqppcPL0K3C8iX8K7nfcGvNuG46eefxy4Q7w5bdbhHUH6FolHu+K1ZuzTtQnvc/ATvM/J\nO3Gnxg4VUqqqIvIdvMLo734sb+MVVoPw7sC6Eu9C2rdEZBneZyWK9736IvCDdojXuC7s24vsZa9M\nvvjoNszG1z68v2xXAuOJu9U1bp2pwIdx7y8BluNdJLrP/++DwBlJ630D7xbP/f6+RvvtTwMvthDf\n08BTce8bbwUdjnc66Z94f/E/ApzazPo34xVLMbwf1C8kb/MIsf0OeC2pbx7e/CD/AOqBrUBxM/s+\nANzXTPvrwPxWjE0PvB/eGv/P9QXg2y1s75FWjner+h6uH94R5tvxfsTr8Qqou0i6lbhxG8BX/dhj\neDPjXp3U72i8W5jf8sfyGeA8vNOEaY19C+N2ALijmc9+/C3IJwKP4hWtB/BvR6aZW5D99s/hze/y\njp/f63i3dF/iL/8Y3nwuVf429/j/Py7s7769cuMlqu19Kt0YY4wxpu1CvybFP6d5l4i8LiIx8aai\nvr2Zfj8TkZ1+nydFpG/S8mNEpExEav2pp5c1zlNgjDHGmI4n9CIFb4Kl7+I9nbMf3j33t4rIoQv3\nRGQK3oV84/AOk76Pdx4+/lkaM/FuD70Gb6Khk4E/BJGAMcYYY9pf6Kd7ROQxvJknb4xrWwbEVLXx\nIWg7gbtVtdR/fxzeeezrVHWJ//5dvCm2/+j3OQtvYqgvq+rGQJMyxhhjTJtlw5GUdXjzMnwKQETO\nBS7Av93Ov8OgEG8qZgBUdQ+wAe9OAPCuJO+c1OcVvAsKG/sYY4wxpgPJhluQpwHHAVtF5ABe4fQT\n/eiZHoV48xPUJK1X4y8D75bQBr94aamPMcYYYzqQbChSRgD/D7gW79HsnwfuE5GdqvpgpnbqPyxr\nCN7thfWZ2o8xxhiTg7rgPU9qlarWZWon2VCkzAB+qapL/fd/F5HTgdvw5qLYhTfJUC8Sj6b0wpt6\nGb/P0SJyXNLRlF7+suYMAR5qjwSMMcYYR32Lw8zY3VbZUKTk0fQhZQfxr5dR1R0isgvviaab4dCF\ns+cDZX7/TXgPVLsUiL9wtjfwfy3s9w2AhQsXcvbZZ7fQJTcUFxdTWpr85Pnc40qe4E6ulmdusTxz\nx5YtWxg1ahR89IyqjMiGIuUx4HYReQtvtsb+eM8JiZ8CeqbfZzsfzf74Ft5MjKjqHhGZD9wrIu/h\nPftjFvDcYe7sqQc4++yz6d+/f7snlU2OP/74nM8R3MkT3MnV8swtlmdOyujlEtlQpEzAKzrK8KZs\n3gn82m8DQFVniEgeMBfv4Vhrgcs08XkrxXhHZJbhPdiqcdpz5+3a1dIZr9ziSp7gTq6WZ26xPE2q\nQi9S1HuQ2A84wsOoVLUEKDnM8v14T1Cd2I7h5YS333477BAC4Uqe4E6ulmdusTxNqrJhnhSTYUVF\nRWGHEAhX8gR3crU8c4vlaVJlRYoDRo4cGXYIgXAlT3AnV8szt1ieJlWhT4sfFhHpD2zatGmTSxc4\nGWNM2qqrq6mtrQ07DBOQHj160Lt372aXVVVVNR4xKlLVqkzFEPo1KcYYY7JfdXU1Z599NrFYLOxQ\nTEDy8vLYsmVLi4VKEKxIccCYMWP43e9+F3YYGedKnuBOrpZn9qitrSUWizkxt5T5aB6U2tpaK1JM\nZg0ePDjsEALhSp7gTq6WZ/ZxYW4pkz3swlkHuHIRlyt5gju5Wp7GuM2KFGOMMcZkJStSjDHGGJOV\nrEhxQGVlZdghBMKVPMGdXC1PY9xmRYoDZsyYEXYIgXAlT3AnV8vTGLfZ3T0OWLRoUdghBMKVPMGd\nXC3PjiMajVJfn9EH4h5Rly5dyM/PDzUG076sSHFAXl5e2CEEwpU8wZ1cLc+OIRqNMm/eEurqPgw1\njoKCzowbN9wKlRxiRYoxxpg2qa+vp67uQ7p2/Qp5ed1DiSEW201d3Rrq6+utSMkhdk2KMcaYdpGX\n1538/B6hvNpaHJWUlNCpUydeeeUVhg8fzvHHH0+PHj24+eab2b9/f6u3c8kll/CVr3ylSfv1119P\nnz59Dr1/88036dSpE/feey8zZ87k9NNPJy8vj0suuYS///3vbcoll1iR4oDJkyeHHUIgXMkT3MnV\n8jRBEREAhg8fTkNDA9OmTePyyy9n1qxZfPe73015O821N7fsgQceYPbs2UyYMIEf//jH/P3vf+fS\nSy/l3XffTS+RHGOnexwQ5nMXguRKnuBOrpanCdoZZ5zB8uXLAbjpppvo1q0bv/71r/nhD3/IOeec\n0+77e+2119i+fTuFhYUADBkyhPPPP5/p06dzzz33tPv+Oho7kuKAiRMnhh1CIFzJE9zJ1fI0QRIR\nxo8fn9A2ceJEVJUVK1ZkZJ9XX331oQIF4Etf+hLnn39+xvbX0ViRYowxxvj69u2b8P6MM86gU6dO\nvPHGG4HsD+DMM8/M2P46GitSjDHGmBa0dI1Jqv0PHDjQHuE4x4oUB2zdujXsEALhSp7gTq6Wpwna\ntm3bEt5v376dgwcPcvrpp7dq/RNOOIHdu3c3aX/zzTdbtT+AV199tdX7y3VWpDjg1ltvDTuEQLiS\nJ3ScXKPRKLW1tSm/otEo4OXZ1m10BB1lPHOdqlJWVpbQNmvWLESEyy67rFXbOOOMM9i6dSt1dXWH\n2l588UWee+65ZvtXVFSwc+fOQ+83btzIhg0bGDp0aBoZ5B67u8cBc+bMCTuEQLiSJ3SMXKPRKPN+\nP4+6aN2ROycpyC9g3OhxTJ8+Pe2ZTDvS7KMdYTxbIxZregSho+17x44dXHnllXz9619n3bp1PPTQ\nQ4waNYrPfvazrVp/7Nix3HvvvQwePJgbbriBmpoa5s6dyznnnMOePXua9O/bty8XXnghN910E/X1\n9dx333307NnTbkv3WZHiAFdub3QlT+gYudbX11MXraPrmV3J69b6ad9je2PUvVpHfX09PXv2TGsm\n0442+2hHGM/D6dKlCwUFnamrW8O+feHFUVDQmS5duqS9voiwePFi7rjjDm677TY6d+7M97///ZQe\nANmvXz8efPBBfvrTn3LLLbfw6U9/moULF/LQQw/x7LPPNuk/evRoOnXqxMyZM3nnnXc4//zzmT17\nNr169Uo7j1xiRYoxJqPyuuWR3z21QmEfib90jTOZprSNEH8sXZOfn8+4ccNz4gGDPXv2ZMmSJW3a\nxsiRIxk5cmRC21e/+tUW+998883cfPPNbdpnrrIixRhjTJvl5+d3iKNWpmOxC2cdMH369LBDCIQr\neYI7uc6aNSvsEALhynh2ZHv27KGmpuawL9P+7EiKA2KxWNghBMKVPMGdXPft28fRR4cdRea5Mp4d\n2aRJk3jggQdaXC4iKc+F0tLzfMxHQi9SRGQHcFozi8pUdaLf52fAd4DuwHPATaq6PW4bxwD3AiOA\nY4BVwPdU9Z0Mh98h3HnnnWGHEAhX8gR3cp0yZQqlpcvDDiPjXBnPbDZ16lSmTp3a4vIpU6bw7W9/\nu932d9ppp9kEb60QepECfBE4Ku79Z4HVwBIAEZkCTABGA28A/wWsEpGzVbXBX2cmcBlwDbAHKAP+\nAAwMIH5jjDE5rl+/fvTr1y/sMJwTepGiqgmTKIjIFcBrqrrWb5oE3KWqj/vLRwM1wFXAEhE5DhgL\nXKuqz/h9xgBbROQ8Vd0YUCrGGGOMaUdZdeGsiHwM+BYw33/fBygEnmrso6p7gA3AAL/pi3jFVnyf\nV4DquD5Oq62tDTuEQLiSJ7iTa/ysnbnMlfE0JlVZVaQAVwPHA41XJxUCinfkJF6NvwygF9DgFy8t\n9XHa2LFjww4hEK7kCe7kOmnSpLBDCIQr42lMqrKtSBkLPKGqu4La4dChQ4lEIgmvAQMGUFFRkdBv\n9erVRCKRJuuPHz+e+fPnJ7RVVVURiUSa/Oto6tSpTW41rK6uJhKJNHnA2OzZs5tMixyLxYhEIlRW\nVia0l5eXM2bMmCaxjRgxgoqKCkpKSnIij3jN5VFSUpITecCRxyN+TLM5j5UVK9nwxIbE2LZWU1Zc\nRnR34rN1Hp37KCsXrExoGz16NEuXllFTk/gQtjVrZrNsWWIeDQ0xysoibN8e/HjES2c84sczzM/V\nkfIwbiovLz/021hYWEgkEqG4uDiQfYuqBrKjIxGR3sDrwFVx15/0AV4DPq+qm+P6/hl4XlWLRWQQ\n8L/ACfFHU0TkDaBUVe9rYX/9gU2bNm2if//+GcrKGHfV1tZS+ttSCooKUppxNro7St2mOorHen8J\nlpYup6BgWEozzkajtdTVLae4eBg9eqQ2U61pXlVVFUVFRdjfmW440ng3LgeKVLUqU3Fk05GUsXin\naFY0NqjqDmAXcGljm3+h7PnAOr9pE/BhUp+zgN7A/2U8amOMMcZkROh39wCIN5vN9cACVT2YtHgm\ncLuIbMe7Bfku4C3gEfAupBWR+cC9IvIesBeYBTxnd/YYY4wxHVdWFCnAV4FPAL9LXqCqM0QkD5iL\nN5nbWuCyuDlSAIqBA8AyvMncVgLjMx10RzF//nxuuOGGsMPIOFfyBHdyXbhwIdD6Jyh3VLkwntFo\nNCceMJgp119/Pc888ww7duwIO5QOJSuKFFV9ksQJ3ZKXlwAlh1m+H5jov0ySqqqqDv8XYGu4kie4\nk+vmzZs56aQvhx1GxnX08YxGo8z7/TzqouHeMl6QX8C40eOyslCxKfDTkxVFismssrKysEMIhCt5\ngju5zpgxw4lp8Tv6eNbX11MXraPrmV3J6xbOka/Y3hh1r9ZRX1+flUWKSY8VKcYYY9pFXre8lO7k\nam/72Bfavk1mZNPdPcYYY0woSkpK6NSpE6+88grDhw/n+OOPp0ePHtx8883s378/pW1VVFRwzjnn\n0LVrVz73uc81mcemUSwW45ZbbqF379506dKFfv368atf/SqhzzXXXNN4q+8hV1xxBZ06deLxxx8/\n1LZx40Y6derEqlWrAFiwYAGdOnVi3bp1/OAHP+DEE08kPz+fYcOGdaiZnK1IMcYY47zG60WGDx9O\nQ0MD06ZN4/LLL2fWrFl897vfbfV2Vq9ezX/8x3/QuXNnpk2bxlVXXcWYMWP461//2qTvFVdcwX33\n3cfQoUMpLS2lX79+TJ48mVtuueVQn4EDB7J582ai0Y8mP1y3bh1HHXUUa9euPdT27LPPctRRR3HB\nBRck5DNx4kReeuklSkpK+N73vsdjjz3GhAkTUvvDCZGd7nFAJBLh0UcfDTuMjHMlT3An11GjRlFU\nNCzsMDLOlfHsCM444wyWL/eug7rpppvo1q0bv/71r/nhD3/IOeecc8T1p0yZQmFhIZWVlYeujbn4\n4ov52te+xumnn36o3yOPPMLTTz/NL37xC370ox8d2t/w4cO57777mDBhAn369GHgwIEcOHCA5557\njiFDhvC3v/2N9957j+HDhycUKZWVlZx77rlNrsfp2bMnK1d+NJPzgQMHmD17Nnv37qVbt25p/zkF\nxY6kOKAjVc1t4Uqe4E6uHfmOl1S4Mp7ZTkQYPz5x9oqJEyeiqqxYsaKFtT6ya9cuXnzxRa6//vqE\nYuHSSy/l05/+dELfJ554gs6dOzNxYuJNqbfccgsHDx7kiSeeAOALX/gC+fn5PPvsswCsXbuWT3zi\nE4wePZpNmzYduu27srKSgQMHNsln3LhxCW2NRc+bb755xHyygRUpDhg8eHDYIQTClTzBnVwHDRoU\ndgiBcGU8O4K+ffsmvD/jjDPo1KkTb7zxxhHXbfzhT94GwFlnndWk78knn8yxxx6b0H722WcnbKtT\np04MGDDg0FGTtWvXMnDgQC644AIOHDjA+vXrefnll/nXv/7VpEgB+MQnPpHw/oQTTgDgvffeO2I+\n2cCKFGOMMaYF2TC3yYUXXshf/vIX9u/fz9q1a7nooos4/vjjOeecc1i7di1r165FRJotUo46qvkp\nyLLluX1HYkWKMcYY49u2LfGJ29u3b+fgwYMJ15O05LTTTmt2GwCvvPJKk747d+7k/fffT2jfsmVL\nwrbAO0XT0NBAeXk5O3fuPFSMXHTRRTz77LOsXbuWM888k549ex45wQ7GihQHtHT7W65xJU9wJ9fW\nXAeQC1wZz2ynqk0m1ps1axYiwmWXXXbE9QsLC/n85z/PAw88wN69ew+1P/nkk7z88ssJfYcOHcqH\nH37InDlzEtpLS0vp1KlTwv7OP/98OnfuzPTp0/n4xz9+6JTQwIEDWb9+Pc8++2yzR1Fygd3d44Dy\n8nKuuuqqsMPIOFfyBHdyXb58OZ/5zNCww8i4XBnP2N5Yh9/3jh07uPLKK/n617/OunXreOihhxg1\nahSf/exnW7X+L3/5S77xjW9wwQUXMHbsWOrq6pgzZw7nnHNOwm3EV1xxBYMGDeInP/kJO3bs4Nxz\nz2XVqlU89thjFBcX06dPn0N9u3btSlFREevXrycSiRxqv+iii3j//feJxWLNFiktndLpKKd6wIoU\nJyxevDjsEALhSp7gTq7333+/E9Pid/Tx7NKlCwX5BdS9WhfqrK8F+QV06dIl7fVFhMWLF3PHHXdw\n22230blzZ77//e8zY8aMVm9jyJAhLF26lNtvv50f//jHnHHGGSxYsICKiopDd+g07uuxxx7jpz/9\nKYsXL2bBggWcfvrp3HPPPRQXFzfZ7sCBA9mwYUNCMdKrVy/69u3L66+/3myR0tL1NNlwnU1rWZFi\njDGmTfLz8xk3elxOPAW5Z8+eLFmypE3buOqqq5ocGbvyyiub9MvLy+Oee+7hnnvuOeI2p0+fzvTp\n05u0v/rqq832v+6667juuuuatF988cUcOHDgiPvLFlakGGOMabP8/Hx7sJ9pd1akGGOMMUewZ88e\n9u07/KmsXr16BRSNO+zuHgeMGTMm7BAC4Uqe4E6uybNx5ipXxrMjmzRpEieddFKLr5NPPjnsEHOS\nHUlxgCuzWbqSJ7iT66BBg+ggs3e3iSvjmc2mTp3K1KlTW1w+ZcoUvv3tbwcYkQErUpwwcuTIsEMI\nhCt5gju5Dhs2zIm7e1wZz46sX79+9OvXL+wwnGOne4wxxhiTlaxIMcYYY0xWsiLFAZWVlWGHEAhX\n8gR3cl2/fn3YIQTClfE0JlV2TYoDZsyYwYUXXhh2GBnnSp7gTq5z5syhqGhY2GFkXEcaz8YH4Jnc\nli3jbEWKAxYtWhR2CIFwJU9wJ9d58+Yxd+7KsMPIuI4wnj169CAvL49Ro0aFHYoJSF5eHj169Ag1\nBitSHJCXlxd2CIFwJU9wJ1fLM3v07t2bLVu2UFtbG3YoJiA9evSgd+/eocZgRYoxxphW6d27d+g/\nWsYtduGsMcYYY7KSFSkOmDx5ctghBMKVPMGdXEtKSsIOIRCujKflaVKVFUWKiJwsIg+KSK2IxETk\nRRHpn9TnZyKy01/+pIj0TVp+jIiU+dvYKyLLROTEYDPJTq4cnnUlT3An11NOOSXsEALhynhaniZV\noRcpItIdeA7YDwwBzgZuAd6L6zMFmACMA84D3gdWicjRcZuaCVwOXANcBJwM/CGAFLKeKw9pcyVP\ncCfXG2+8MewQAuHKeFqeJlXZcOHsj4BqVf1OXFvyI8UmAXep6uMAIjIaqAGuApaIyHHAWOBaVX3G\n7zMG2CIi56nqxkwnYYwxxpj2FfqRFOAK4K8iskREakSkSkQOFSwi0gcoBJ5qbFPVPcAGYIDf9EW8\ngiu+zyuIO60tAAAgAElEQVRAdVwfY4wxxnQg2VCkfBK4CXgFGAz8GpglIo3PxC4EFO/ISbwafxlA\nL6DBL15a6uOsrVu3hh1CIFzJE9zJddu2bWGHEAhXxtPyNKnKhiKlE7BJVe9Q1RdV9X+A/wH+M+S4\ncsatt94adgiBcCVPcCfXO++8M+wQAuHKeFqeJlXZUKT8E0h+SMAWoPHy6F2A4B0tidfLX9bY52j/\n2pSW+jRr6NChRCKRhNeAAQOoqKhI6Ld69WoikUiT9cePH8/8+fMT2qqqqohEIk1mZpw6dSrTp09P\naKuuriYSiTSpvGfPnt3kNrZYLEYkEmnyMLLy8nLGjBnTJLYRI0ZQUVHBnDlzciKPeM3lMWfOnJzI\nA448HvFjms15rKxYyYYnNiTGtrWasuIyorujCe2Pzn2UlQsSp8CfNGkSS5eWUVOTeERlzZrZLFuW\nmEdDQ4yysgjbtwc/HvHSGY/48Qzzc9XWPOI1l8ecOXNyIg84/HhcccUVOZFH43iUl5cf+m0sLCwk\nEolQXFzcZJ1MEFUNZEctBiDyEHCqql4c11YKfElVL/Tf7wTuVtVS//1xeKdyRqvqUv/9u3gXzv7R\n73MWXrHz5eYunPVvcd60adMm+vfvn7zYGNNGtbW1lP62lIKiAvK757d6vejuKHWb6ige6/0lWFq6\nnIKCYeTnt/4ZItFoLXV1yykuHhb6s0eMyUVVVVUUFRUBFKlqVab2kw1395QCz4nIbcAS4HzgO0D8\nvYczgdtFZDvwBnAX8BbwCHgX0orIfOBeEXkP2AvMAp6zO3uMMcaYjin0IkVV/yoiVwPTgDuAHcAk\nVV0U12eGiOQBc4HuwFrgMlVtiNtUMXAAWAYcA6wExgeThTHGGGPaWzZck4KqrlDVz6lqnqp+RlV/\n20yfElU92e8zRFW3Jy3fr6oTVbWHqnZT1W+q6jvBZZG9ks9j5ipX8gR3cp01a1bYIQTClfG0PE2q\nsqJIMZkVi8XCDiEQruQJ7uS6b9++sEMIhCvjaXmaVFmR4gBXbuN0JU9wJ9cpU6aEHUIgXBlPy9Ok\nyooUY4wxxmQlK1KMMcYYk5WsSHFA8qRAucqVPMGdXOvq6sIOIRCujKflaVJlRYoDxo4dG3YIgXAl\nT3An10mTJoUdQiBcGU/L06TKihQHlJSUhB1CIFzJE9zJNXlq71zlynhaniZVVqQ4wJVp/13JE9zJ\n9dxzzw07hEC4Mp6Wp0mVFSnGGGOMyUpWpBhjjDEmK1mR4oDkR4HnKlfyBHdyXbhwYdghBMKV8bQ8\nTaqsSHFAVVXGnqKdVVzJE9zJdfPmzWGHEAhXxtPyNKmyIsUBZWVlYYcQCFfyBHdynTFjRtghBMKV\n8bQ8TaqsSDHGGGNMVrIixRhjjDFZyYoUY4wxxmQlK1IcEIlEwg4hEK7kCe7kOmrUqLBDCIQr42l5\nmlRZkeKACRMmhB1CIFzJE9zJ9YYbbgg7hEC4Mp6Wp0mVFSkOGDx4cNghBMKVPMGdXAcNGhR2CIFw\nZTwtT5MqK1KMMcYYk5WsSDHGGGNMVrIixQEVFRVhhxAIV/IEd3JdsWJF2CEEwpXxtDxNqqxIcUB5\neXnYIQTClTzBnVyXL18edgiBcGU8LU+TKitSHLB48eKwQwiEK3mCO7nef//9YYcQCFfG0/I0qbIi\nxRhjjDFZyYoUY4wxxmQlK1KMMcYYk5WsSHHAmDFjwg4hEK7kCe7kOnHixLBDCIQr42l5mlSFXqSI\nyFQROZj0ejmpz89EZKeIxETkSRHpm7T8GBEpE5FaEdkrIstE5MRgM8lersx+6Eqe4E6uNuNsbrE8\nTapCL1J8fwN6AYX+68LGBSIyBZgAjAPOA94HVonI0XHrzwQuB64BLgJOBv4QSOQdwMiRI8MOIRCu\n5Anu5Dps2LCwQwiEK+NpeZpUdQ47AN+HqvpuC8smAXep6uMAIjIaqAGuApaIyHHAWOBaVX3G7zMG\n2CIi56nqxsyHb4wxxpj2li1HUj4lIm+LyGsislBEPgEgIn3wjqw81dhRVfcAG4ABftMX8Yqt+D6v\nANVxfYwxxhjTwWRDkbIeuB4YAvwn0Ad4VkSOxStQFO/ISbwafxl4p4ka/OKlpT5Oq6ysDDuEQLiS\nJ7iT6/r168MOIRCujKflaVIVepGiqqtU9Q+q+jdVfRIYCpwADA85tJwxY8aMsEMIhCt5gju5zpkz\nJ+wQAuHKeFqeJlWhFynJVPXfwKtAX2AXIHhHS+L18pfh//do/9qUlvq0aOjQoUQikYTXgAEDmjwg\navXq1UQikSbrjx8/nvnz5ye0VVVVEYlEqK2tTWifOnUq06dPT2irrq4mEomwdevWhPbZs2czefLk\nhLZYLEYkEmlSpZeXlzd7y9uIESOoqKhg0aJFOZFHvObyWLRoUU7kAUcej/gxzeY8VlasZMMTGxJj\n21pNWXEZ0d3RhPZH5z7KygUrE9qmTp3K0qVl1NRsS2hfs2Y2y5Yl5tHQEKOsLML27cGPR3LMqY5H\n/HiG+blqax7xmstj0aJFOZEHHH48vvWtb+VEHo3jUV5efui3sbCwkEgkQnFxcZN1MkFUNZAdtZaI\n5ONdT3KHqpaJyE7gblUt9Zcfh3cqZ7SqLvXfv4t34ewf/T5nAVuAL7d04ayI9Ac2bdq0if79+2c+\nMWMcU1tbS+lvSykoKiC/e36r14vujlK3qY7isd5fgqWlyykoGEZ+fo/WbyNaS13dcoqLh9GjR+vX\nM8a0TlVVFUVFRQBFqlqVqf2EfnePiNwNPAa8CZwC3Al8ADT+02ImcLuIbAfeAO4C3gIeAe9CWhGZ\nD9wrIu8Be4FZwHN2Z48xxhjTcYVepACnAg8DBXhHRCrxjoDUAajqDBHJA+YC3YG1wGWq2hC3jWLg\nALAMOAZYCYwPLANjOoBoNEp9fX1a63bp0oX8/NYfDeno0v2zcu3PyZhMC71IUdUjznqjqiVAyWGW\n7wcm+i+TZPLkydx9991hh5FxruQJqecajUaZ9/t51EXr0tpfQX4B40aPC/wHuKSkhOOP/1yg+4xG\no8ybt4S6ug9TXregoDPjxg1P+c/Jlc+u5WlSlVaRIiLfBpaqanr/LDOB6t27d9ghBMKVPCH1XOvr\n66mL1tH1zK7kdctLad3Y3hh1r9ZRX18feJFyyimnEI0euV97qq+vp67uQ7p2/Qp5ed1bvV4stpu6\nujVp/Tm58tm1PE2q0j2SUgrMFpHFwHy79iO7ufKQNlfyhPRzzeuWl9JFrI32sS+t/bXVjTfeSGnp\n8lD2nZfXPaWLdQH2pfnH5Mpn1/I0qUr3FuSTgRvxrid5TkT+JiK3iEjP9gvNGGOMMS5Lq0hR1QZV\nXaqqlwO9gQeBG4C3RGS5iFwuItKegRpjjDHGLW2ezE1V/wn8L/A03hT2XwTKgW0iMrCt2zdtlzzR\nT65yJU9wJ9dt27YduVMOcGU8LU+TqrSLFBHpISI3i8iLwHPAiXhPJj4Nb76TCuD37RKlaZNbb701\n7BAC4Uqe4E6ud955Z9ghBMKV8bQ8TarSKlJE5I/A23gPBHwQ+ISqflNVV6pnLzADr2AxIXPl+Seu\n5Anu5Dpt2rSwQwiEK+NpeZpUpXt3zx7gq6q69jB93gU+leb2TTty5XY4V/IEd3I99dRTgdy/edCV\n8bQ8TarSKlJU9bpW9FHgtXS2b4wxxhiT7umeUhFpMu28iIwXkV+1PSxjjDHGuC7dC2e/Caxrpn09\nMCL9cEwmJD/eO1e5kie4k+usWbPCDiEQroyn5WlSlW6R0gPvupRk//aXmSwSi8XCDiEQruQJ7uS6\nL90pXDsYV8bT8jSpSrdIeQ0Y0kz7EGBH+uGYTHDlNk5X8gR3cp0yZUrYIQTClfG0PE2q0r27ZyYw\nU0QKgDV+26XArcAP2yMwY4wxxrgt3bt7/kdEugA/BhpLxreA76vqb9srOGOMMca4K+0ZZ1V1tqqe\nhDe77MdVtbcVKNmptrY27BAC4Uqe4E6udXV1YYcQCFfG0/I0qWqXZ/eo6u72CMZkxtixY8MOIRCu\n5Anu5Dpp0qSwQwiEK+NpeZpUpTtPSk8R+Z2IVItIvYg0xL/aO0jTNiUlJWGHEAhX8gR3cp08eXLY\nIQTClfG0PE2q0r1wdgFwBnA38E+8px+bLNW/f/+wQwiEK3mCO7mee+65rFmT+xNXuzKelqdJVbpF\nykXARar6fHsGY4wxxhjTKN1rUt7Cjp4YY4wxJoPSLVKKgV+KyKntGYzJjPnz54cdQiBcyRPcyXXh\nwoVhhxAIV8bT8jSpSrdIeRAYBLwpIu+JyDvxr3aMz7SDqqqqsEMIhCt5gju5bt68OewQAuHKeFqe\nJlXpXpPyo3aNwmRUWVlZ2CEEwpU8wZ1cZ8yYQWnp8rDDyDhXxtPyNKlKd8ZZO5ZljDHGmIxKezI3\nETldREpE5EEROdFvGywiZ7dfeMYYY4xxVbqTuQ0E/g5cDAwH8v1FRcDP2ic0Y4wxxrgs3SMp04ES\nVR0ExM8w+xTw5TZHZdpVJBIJO4RAuJInuJPrqFGjwg4hEK6Mp+VpUpVukfI5YFkz7e8APdMPB0Tk\nRyJyUETuTWr/mYjsFJGYiDwpIn2Tlh8jImUiUisie0VkWeNpKNdNmDAh7BAC4Uqe4E6uN9xwQ9gh\nBMKV8bQ8TarSLVL+DRQ2034u8Ha6wYjIl4BxwItJ7VOACf6y84D3gVUicnRct5nA5cA1eDPingz8\nId1YcsngwYPDDiEQruQJ7uQ6aNCgsEMIhCvjaXmaVKVbpCwGpolIT/yZZ0XkfOBXQFqzL4lIvr/u\nd4DkpypPAu5S1cdV9W/AaLwi5Cp/3eOAsUCxqj7jT9c/BrhARM5LJx5jjDHGhCvdIuU24HVgJ95F\nsy8D64C/AHeluc0y4DFVXRPfKCJ98I7aPNXYpqp7gA3AAL/pi3i3U8f3eQWojutjjDHGmA4krSJF\nVfer6hjgTLyjGWOBz6jqSFX9MNXtici1wOfxip9khXhHa2qS2mv46JRTL6DBL15a6uOsioqKsEMI\nhCt5gju5rlixIuwQAuHKeFqeJlVpz5MCoKo7VPVRVX1YVbemsw3/+T8zgW+p6gdticc0r7y8POwQ\nAuFKnuBOrsuX5/5ss+DOeFqeJlXpzpMy73CvFDdXhHdHUJWIfCAiH+DNvzJJRBrwjoYI3tGSeL2A\nXf7/7wKO9q9NaalPs4YOHUokEkl4DRgwoEklvHr16mZvKxs/fnyTh0lVVVURiUSora1NaJ86dSrT\np09PaKuuriYSibB1a2KNN3v2bCZPnpzQFovFiEQiVFZWJrSXl5czZsyYJrGNGDGCiooKFi9enBN5\nxGsuj8WLF+dEHnDk8Ygf01TyWPvHtSy7L/HGvIb6BsqKy9j+wvaE9o0rN7LgzgVtymNlxUo2PLEh\nMbat1ZQVlxHdHU1of3Tuo6xcsDKhraSkhKVLy6ip2ZbQvmbNbJYtSxyPhoYYZWURtm9v23g0d9vz\nww+Pp7IycTyqq6soK4sQjSZ+rqZPn57y5yp+PMP8XMXLxPdj8eLFOZEHHH48Ro4cmRN5NI5HeXn5\nod/GwsJCIpEIxcXFTdbJBFHV1FcSeSyp6WPAZ4BuwLOq2uqbxEXkWOC0pOYFwBZgmqpuEZGdwN2q\nWuqvcxxe8TJaVZf6798FrlXVP/p9zvK38WVV3djMfvsDmzZt2kT//v1bG64xHVJtbS2lvy2loKiA\n/O75R14hTnR3lLpNdRSPLaZHjx4Z32f8/gBKS5dTUDCM/PzW7zsaraWubjnFxcNSivlQ3AHv05iO\npqqqiqKiIoAiVc3YExXTfXbPFcltItIZ+A3eRbSpbOv95HVE5H2gTlW3+E0zgdtFZDvwBt7FuW8B\nj/jb2CMi84F7ReQ9YC8wC3iuuQLFGGOMMdkv3acgN6GqH4rI3cCfgXuP0P2Im0va9gwRyQPmAt2B\ntcBlqho/220xcABvkrljgJXA+DbGYYwxxpiQtOnC2Wb0wTv10yaq+hVV/UFSW4mqnqyqeao6RFW3\nJy3fr6oTVbWHqnZT1W+q6jttjSUXNHe+MRe5kie4k+vEiRPDDiEQroyn5WlSldaRFBGZkdwEnARE\nSHMyN5M5rsx+6Eqe4E6ugwYN4s03w44i81wZT8vTpCrdIykDkl7nAV2AH+HNDmuySPKV5rnKlTzB\nnVyHDRsWdgiBcGU8LU+TqnQvnB3Y3oEYY4wxxsRr72tSjDHGGGPaRbqTuf1FRDa25tXeAZvUJU/e\nk6tcyRPcyXX9+vVhhxAIV8bT8jSpSvdIytPAWXgXzK73X/htfwZWxb1MyGbMSL7OOTe5kie4k+uc\nOXPCDiEQroyn5WlSle48Kd2BMlX9cXyjiPwc6KWq32lzZKbdLFq0KOwQAuFKnuBOrvPmzWPu3JVH\n7tjBuTKelqdJVbpHUoYDv2umfQHwzbSjMRmRl5cXdgiBcCVPcCdXyzO3WJ4mVekWKfuBLzfT/mV/\nmTHGGGNMm6R7umcWMFdEvgA0Xhx7PnAj8Mv2CMwYY4wxbkvrSIqq/hz4DnABMM9//X/AOH+ZySLJ\nj+zOVa7kCe7kWlJSEnYIgXBlPC1Pk6q0HzCoqg8DD7djLCZDevfuHXYIgXAlT3An11NOOYVoNOwo\nMs+V8bQ8TarSnsxNRI4TketF5GcicoLfdq6InNR+4Zn24MpD2lzJE9zJ9cYbbww7hEC4Mp6Wp0lV\nug8YPAf4XyAGfALvrp73gBHAKcB17RSfMcYYYxyV7pGUUrxTPWcA9XHtfwIuamtQxhhjjDHpFilf\nAv5bVTWp/W3ATvdkma1bt4YdQiBcyRPcyXXbtm1hhxAIV8bT8jSpSrdI+QDIb6a9L1CbfjgmE269\n9dawQwiEK3mCO7neeeedYYcQCFfG0/I0qUq3SHkMuENEGq9pURE5BZgGLG+XyEy7ceX5J67kCe7k\nOm3atLBDCIQr42l5mlSlW6TcAnwc2AV0BdYAr+Ndn/Ljw6xnQuDK7XCu5Anu5HrqqaeGHUIgXBlP\ny9OkKq27e1T1PWCQiFwMnIt36qcKWNXMdSrGGGOMMSlLuUgRkY8BjwMTVPUZ4Jl2j8oYY4wxzkv5\ndI+qfgAUAXbEpIOYPn162CEEwpU8wZ1cZ82aFXYIgXBlPC1Pk6p0r0l5CBjTnoGYzInFYmGHEAhX\n8gR3ct23b1/YIQTClfG0PE2q0n12jwITROSrwF+B9xMWqtr9V1nElds4XckT3Ml1ypQplJbm/g2D\nroyn5WlSlW6RUgRs9v//c0nL7DSQMcYYY9ospSJFRD4J7FDVgRmKxxhjjDEGSP2alG1Az8Y3IrJY\nRHq1b0imvdXWujEJsCt5gju51tXVhR1CIFwZT8vTpCrVIkWS3g8Fjm2nWEyGjB07NuwQAuFKnuBO\nrpMmTQo7hEC4Mp6Wp0lVunf3tBsR+U8ReVFE/u2/1onI15P6/ExEdopITESeFJG+ScuPEZEyEakV\nkb0iskxETgw2k+xVUlISdgiBcCVPcCfXyZMnhx1CIFwZT8vTpCrVIkVpemFsWy+U/QcwBeiPd0Hu\nGuARETkbQESmABOAccB5eHcSrRKRo+O2MRO4HLgGuAg4GfhDG+PKGf379w87hEC4kie4k+u5554b\ndgiBcGU8LU+TqlTv7hFggYjs9993AX4jIsm3IA9r7QZV9U9JTbeLyE3Al4EtwCTgLlV9HEBERgM1\nwFXAEhE5DhgLXOvPgIuIjAG2iMh5qroxxRyNMcYYkwVSPZLyAPAO8G//tRDYGfe+8ZUWEekkItcC\necA6EekDFAJPNfZR1T3ABmCA3/RFvGIrvs8rQHVcH2OMMcZ0MCkVKao6pjWvVIMQkXNEZC+wH/hv\n4Gq/0CjEO51Uk7RKjb8MoBfQ4BcvLfVx2vz588MOIRCu5Anu5Lpw4cKwQwiEK+NpeZpUhX7hrG8r\n3tOUzwN+DfxeRPoFseOhQ4cSiUQSXgMGDKCioiKh3+rVq4lEIk3WHz9+fJMPZFVVFZFIpMltaFOn\nTm3yTIfq6moikQhbt25NaJ89e3aTiwZjsRiRSITKysqE9vLycsaMaVobjhgxgoqKCqqqqnIij3jN\n5VFVVZUTecCRxyN+TFPJY+0f17LsvmUJbQ31DZQVl7H9he0J7RtXbmTBnQvalMfKipVseGJDYmxb\nqykrLiO6O5rQ/ujcR1m5YGVC27p161i6tIyamm0J7WvWzGbZssTxaGiIUVYWYfv2to3HqFGjmvR9\n+OHxVFYmjkd1dRVlZRGi0cTP1fTp01P+XMWPZ5ifq3iZ+H5UVVXlRB5w+PFYtizxO9ZR82gcj/Ly\n8kO/jYWFhUQiEYqLi5uskwmimn0TxIrIk8B2YAbwGvB5Vd0ct/zPwPOqWiwig4D/BU6IP5oiIm8A\npap6Xwv76A9s2rRpk13kZHJebW0tpb8tpaCogPzu+SmtG90dpW5THcVji+nRo0fG9xm/P4DS0uUU\nFAwjP7/1+45Ga6mrW05x8bCUYj4Ud8D7NKajqaqqoqioCKBIVauO1D9d2XIkJVkn4BhV3QHsAi5t\nXOBfKHs+sM5v2gR8mNTnLKA38H9BBWyMMcaY9pXus3vajYj8AngC70LXbsC3gIuBwX6XmXh3/GwH\n3gDuAt4CHgHvQloRmQ/cKyLvAXuBWcBzdmePMcYY03GFXqQAJ+LdNXQS3p1Bm4HBqroGQFVniEge\nMBfoDqwFLlPVhrhtFAMHgGXAMcBKYHxgGRhjjDGm3YV+ukdVv6Oqn1TVrqpaqKqHCpS4PiWqerKq\n5qnqEFXdnrR8v6pOVNUeqtpNVb+pqu8Em0n2au6CrVzkSp7gTq7NXcSai1wZT8vTpCr0IsVk3oQJ\nE8IOIRCu5Anu5HrDDTeEHUIgXBlPy9OkyooUBwwePPjInXKAK3mCO7kOGjQo7BAC4cp4Wp4mVVak\nGGOMMSYrWZFijDHGmKxkRYoDkmdxzFWu5Anu5LpixYqwQwiEK+NpeZpUWZHigPLy8rBDCIQreYI7\nuS5fvjzsEALhynhaniZVVqQ4YPHixWGHEAhX8gR3cr3//vvDDiEQroyn5WlSZUWKMcYYY7KSFSnG\nGGOMyUpWpBhjjDEmK1mR4oAxY8aEHUIgXMkT3Ml14sSJYYcQCFfG0/I0qbIixQGuzH7oSp7gTq42\n42xusTxNqqxIccDIkSPDDiEQruQJ7uQ6bNiwsEMIhCvjaXmaVFmRYowxxpisZEWKMcYYY7KSFSkO\nqKysDDuEQLiSJ7iT6/r168MOIRCujKflaVJlRYoDZsyYEXYIgXAlT3An1zlz5oQdQiBcGU/L06Sq\nc9gBmMxbtGhR2CEEwpU8o9Eoc+bMoba2ttXr1NXV0fBBQwajyox58+Yxd+7KsMNotYaGeurq6lJe\nz5Xp/135jrqSZxCsSHFAXl5e2CEEwoU8o9Eo834/j7poaj+EsfdjvLT1JU74wgnkk5+h6NpfRxrT\n/fujPP/8S/zmNwfIyzs2pXULCjozbtxw8vM7ztikoyONZ1u4kmcQrEgxpgOpr6+nLlpH1zO7ktet\n9X8RHnz7IPte2seHH3yYwejc9sEH+9m37yi6dh1EQcGprV4vFttNXd0a6uvrc75IMSZVVqQY0wHl\ndcsjv3vrf9Ci/45mMBoTr0uX7uTn90hpnX37MhSMMR2cXTjrgMmTJ4cdQiBcyRPgsbmPhR1CIEpK\nSsIOIRBPPbUs7BAC4cp31JU8g2BFigN69+4ddgiBcCVPgO4ndg87hECccsopYYcQiOOO+3jYIQTC\nle+oK3kGwYoUB7jykDZX8gQYePXAsEMIxI033hh2CIH40pe+EnYIgXDlO+pKnkGwIsUYY4wxWcmK\nFGOMMcZkJStSHLB169awQwiEK3kC1FTXhB1CILZt2xZ2CIGord0VdgiBcOU76kqeQQi9SBGR20Rk\no4jsEZEaEfmjiJzZTL+fichOEYmJyJMi0jdp+TEiUiYitSKyV0SWiciJwWWSvW699dawQwiEK3kC\nPP4/j4cdQiDuvPPOsEMIxNNP/yHsEALhynfUlTyDkA3zpAwEZgN/xYvnl8BqETlbVfcBiMgUYAIw\nGngD+C9gld+nca7vmcBlwDXAHqAM+IO/fae58vwTV/IEGDZhWKD7a9jfkPJ07+0xFf+0adNYunRj\nWuumO0V9XV0dDQ3BPkJg8OCRge4vLK58R13JMwihFymqOjT+vYhcD7wDFAGNj5KcBNylqo/7fUYD\nNcBVwBIROQ4YC1yrqs/4fcYAW0TkPFVN72+5HOHK7XCu5AlwQq8TAtvX/n37ef7F5/nNgd+kNN13\ne0zFf+qppwKpf33bMkV9LBblpZe2c8IJ9QQ1Aezxx9styLnElTyDEHqR0ozugAL/AhCRPkAh8FRj\nB1XdIyIbgAHAEuCLeLnE93lFRKr9Pk4XKca0xQcNH7Dv4D66fqorBYUFrV4vzKn4052iHuDgwdfZ\nt+9VPvzQHiFgTNiyqkgREcE7bVOpqi/7zYV4RUvylYI1/jKAXkCDqu45TB9jTBt0ye/S4abiT2eK\n+miKD280xmRO6BfOJvlv4NPAtWEHkkumT58edgiBcCVPgDWL1oQdQiBmzZoVdgiB+L//Wxl2CIFw\n5TvqSp5ByJoiRUTmAEOBS1T1n3GLdgGCd7QkXi9/WWOfo/1rU1rq06yhQ4cSiUQSXgMGDKCioiKh\n3+rVq4lEIk3WHz9+PPPnz09oq6qqIhKJUFtbm9A+derUJh/e6upqIpFIk1vWZs+e3eT5D7FYjEgk\nQmVlZUJ7eXk5Y8aMaRLbiBEjqKioIBaL5UQe8ZrLIxaL5UQe0PJ4jBo1itj7MRr2f3Rh56NzH2Xl\ngsQfuX/t+hdlxWXseiPx47/+8fUsuy/xOTEN9Q2UFZex/YXtCe0bV25kwZ0LmsQ277Z5vPDnFxLa\nXl7/MmXFZU36vv7C62x6clNCW/XWasqKy4juTjzS0lweNTU1LF1aRk1N4q3Ia9bMZtmyxPFoaIhR\nVgTQrZ4AACAASURBVBZh+/bE8di4sZwFC5qOx7x5I3jhhcTxePnl1Tz88E1N+j788HgqKxPHo7q6\nirKyCNFo4udqzZpSVq5M/Fz961/VlJVF2LVra1Lf2Tz2WAkfxF1gHMbnKqjvRywWy4k84PDjUVVV\nlRN5NI5HeXn5od/GwsJCIpEIxcXFTdbJBFHVQHZ02CC8AuVK4GJVfb2Z5TuBu1W11H9/HN6pnNGq\nutR//y7ehbN/9PucBWwBvtzchbMi0h/YtGnTJvr375+p1IxpV7W1tZT+tpSCooKUTr3senMXqxau\nYsh1Qyg8NbUzoOmum+560d1R6jbVUTzW+0uwtHQ5BQXDUjpts2vXK6xaVcqQIT+isPD0Vq/XlnXT\nXS8araWubjnFxcPo0SO1U1PGhKWqqoqioiKAIlWtOlL/dIV+TYqI/DcwEogA74tI4xGTf6tqvf//\nM4HbRWQ73i3IdwFvAY/AoQtp5wP3ish7wF5gFvCc63f2GGOMMR1V6EUK8J94F8b+Oal9DPB7AFWd\nISJ5wFy8u3/WApfFzZECUAwcAJYBxwArgfEZjdwYY4wxGRP6NSmq2klVj2rm9fukfiWqerKq5qnq\nEFXdnrR8v6pOVNUeqtpNVb+pqu8Em012Sj63matcyROy486ZIKQzGVtHFIu5MZ6ufEddyTMIoRcp\nJvPGjh0bdgiBcCVPgMX3LA47hEBMmjQp7BAC8ac/PRB2CIFw5TvqSp5BsCLFASUlJWGHEAhX8gQY\nMnpI2CEEIvkOhVw1cOAVYYcQCFe+o67kGQQrUhzgyt1LruQJcOqnUptFtaM699xzww4hEIWFbkyj\n7sp31JU8g2BFijHGGGOykhUpxhhjjMlKVqQ4IHlGw1zlSp4AG57YEHYIgVi4cGHYIQTihRcqj9wp\nB7jyHXUlzyBYkeKA5Cmac5UreQK8te2tsEMIxObNm8MOIRC7dlWHHUIgXPmOupJnEKxIcUBZWdNn\nquQiV/IEuOb714QdQiBmzJgRdgiB+PrX/1/YIQTCle+oK3kGwYoUY4wxxmQlK1KMMcYYk5WsSDHG\nGGNMVrIixQGRSCTsEALhSp4A8+9w4+6BUaNGhR1CIJYudeMaBle+o67kGQQrUhwwYcKEsEMIhCt5\nAlx45YVhhxCIG264IewQAlFUNCjsEALhynfUlTyDYEWKAwYPHhx2CIFwJU+As754VtghBGLQIDd+\nvD/5yU+HHUIgXPmOupJnEKxIMcYYY0xWsiLFGGOMMVnJihQHVFRUhB1CIFzJE+Cl514KO4RArFix\nIuwQAvHKKy+EHUIgXPmOupJnEKxIcUB5eXnYIQTClTwBnl/zfNghBGL58uVhhxCIl1/eGHYIgXDl\nO+pKnkGwIsUBixcvDjuEQLiSJ8DoO0aHHUIg7r///rBDCMTVV48LO4RAuPIddSXPIFiRYowxxpis\nZEWKMcYYY7KSFSnGGGOMyUpWpDhgzJgxYYcQCFfyBFh096KwQwjExIkTww4hEI8/viDsEALhynfU\nlTyDYEWKA1yZ/dCVPAHOLDoz7BAC4cqMs3362IyzucSVPINgRYoDRo4cGXYIgXAlT4D+X+kfdgiB\nGDZsWNghBOIznzkv7BAC4cp31JU8g2BFijHGGGOykhUpxhhjjMlKVqQ4oLKyMuwQAuFKngCvv/R6\n2CEEYv369WGHEIh//GN72CEEwpXvqCt5BiErihQRGSgij4rI2yJyUEQizfT5mYjsFJGYiDwpIn2T\nlh8jImUiUisie0VkmYicGFwW2WvGjBlhhxAIV/IEeHrJ02GHEIg5c+aEHUIg1q9fFXYIgXDlO+pK\nnkHIiiIFOBZ4AfgeoMkLRWQKMAEYB5wHvA+sEpGj47rNBC4HrgEuAk4G/pDZsDuGRYvcuF3VlTwB\nvv2Tb4cdQiDmzZsXdgiBuOqqG8MOIRCufEddyTMIncMOAEBVVwIrAUREmukyCbhLVR/3+4wGaoCr\ngCUichwwFrhWVZ/x+4wBtojIearqxtO7WpCXlxd2CIHIy8sjGo1SX1+f1vpdunQhPz+/naPKjKO7\nHH3kTjnAlc/uxz7WccYz3e9YR/p+tZUrn9sgZEWRcjgi0gcoBJ5qbNP/v717D5OyuhM8/v31/Qrd\naYLtNV6I4BgDAXVDHI06M2F1Yq9jshqTPF7IDBODs4bMoJl5JiO6T3bFbMIGpydIhshks5BVkyC6\nK5qArqDghYuidAMtIk1D34ruhqque5/5463W6qIv9VZ1vW9dfp/nqQfqrXPe95w+VW/96rznvMeY\nkyLyOjAfeBK4HKsu8Wn2i8iRWJqCDlIKhdfrZfUvV+PxelLK31DTwKI7FhXMiVQpu7xeL6tXP4nH\nE7Gdt6GhhEWLbtXPl7Il64MUrADFYPWcxOuKvQZwBhAyxpwcJ43Kc4FAAI/XQ+XFlVTV2vslM3hq\nEM8BD4FAQE+iSo0hEAjg8USorLyeqqq6pPMNDvbj8WzRz5eyLVvGpKgMWrp0qdtFcMSyZcsAqKqt\noqauxtbDblDjtmcff9btIjhiuE3z3ebNT7tdBFuqquqoqZmW9GM4oCmU9iyUc64TciFI6QQEq7ck\n3hmx14bTlMXGpoyVZlQ33ngjTU1NIx7z589nw4YNI9K9+OKLNDWdNumIxYsXs2bNmhHbdu3aRVNT\nE729vSO2P/jggyxfvnzEtiNHjtDU1ERra+uI7Y899thpb/TBwUGamppOm962fv36UdeKuO2229iw\nYQPnnXdeXtQj3mj1OPvss9m0YROvP//6yLK1HqF5STPefu+I7Rsf38imtZtGbDt69Kjr9YCx2+Ob\n3/wmg75B6qZ//Ct2tHqc6DxB85JmOg+PfPvveG4HT/905BdiKBCieUkzbXtGToN9Y9MbrH1o7Wll\nW/33q9nz8p4R2/bt2EfzkubT0h7ac4idv985Ypud9qiuruapp5rp6jo4YvuWLY/x9NMj2yMUGqS5\nuYm2tpHt8cYb61m79vT2WL36NvbsGdke+/a9yLp195yWdt26xWzbNrI9jhzZRXNzE17vyM/Hli0r\n2LRp5OfjxIkjNDc30dnZmpD2MZ59dhlTpnzio21uvK+S/ZwfPXo0rfY4++yzs6IemT5f9ff350U9\nhttj/fr1H303NjY20tTUxJIlS07LkwlizGmTaVwlIkPAzcaYjXHbjgE/MsasiD2fgnUp5w5jzFOx\n5z1YA2d/F0szE2gBPj/awFkRmQvs3LlzJ3PnFsYtxvNdb28vK36xgoZ5DdTU2etS9vZ78ez0sGTh\nEqZNm5ahEqYv1Tp2ftjJC796gQV3LqDxHHtXQFPNm2q++LYAWLHitzQ03EJNTfLt0tm5nxdeWMGC\nBd+nsfH8pPOlkzfVfF5vLx7Pb1my5Jasfu9B7P2XQnvkUh1Vcnbt2sW8efMA5hljdmXqOFkxJkVE\nqoEZWD0mABeKyGzghDGmHWt68T+KSBtwGPivwFHgGfhoIO0a4Cci0gecAlYCrxb6zB6llFIqV2VF\nkII1O+clrAGyBvhxbPu/AQuNMY+KSBXwOFAHbAVuMMaE4vaxBIgCTwPlWFOaFztTfKXURALBAJHw\nxLNCvF4v/f39tLVZl5/6+09QXp7cjK2SkgoqKnRgplL5IiuClNi9TcYdH2OMWQYsG+f1IPA3sYeK\n09rayqxZs9wuRsYdPHhw4kR5outIl+1LWm4KBANsfWUnPl90wrSD/V4+3LafN9/aj9/n45QvxPnn\nd1BVmTjk7HTVJQ1cfcWiySiyo3p7xx06lzcOHjxYEJd7CuWc64RcGDir0nT//fe7XQRHPPTQQ24X\nwTHP/fw5t4tgSyQcweeLUlo6i+rqueM+ystmYspqqZ11KZ2dXfCpMsovnkLVpQ3jPkovrMQX8RCJ\npHYzPze99FJh3By7UD6jhXLOdUJW9KSozCqU9U8eeeQRnnrxKbeL4Yhb7r3F7SKkpKysivIJLseU\nlXkpLi6lemoDs5tu5oOOtyivrqYiiftrhPFPVlEd9aUv3e52ERzxyCOPuF0ERxTKOdcJ2pNSAOKn\nIOezc845x+0iOKb+jHq3i+CIqrrkbxiWy6ZO/cTEifJAoXxGC+Wc6wQNUpRSSimVlTRIUUoppVRW\n0jEpBWD58uU88MADbhcj41auXAkuTHhJdVXYSCRCSYm9j6DH4yEUDrHl11to+vbpd7DMN23btkIB\nXNnauvU57rjji7bzpfIeAvdWJF65ciUPP/yw48d1WqGcc52gQUoBGBwcdLsIjvD7/ZTVOLvkfaor\nL4eCIfa37GfmpTMpK02+zIO+Qfa27mWoeMhuUXNSNBx2uwgZFwx6OXr0KKtW/T+qqqqTzhcKBdi/\n/z1mzryMsjJ773u3ViT2+3NzYLNdhXLOdYIGKQWgUKb9PfDAA6z4xQpHj5nqyss9HT14dnsoPb+U\nhsaGpPMNdQzh3+tnwdcXpFLcnDPzuut5770/uF2MjAqHg5x55pVUVl5HQ0PyA0t7eg7h8eyjtPSP\nbeVzc0XiQuldKJRzrhM0SFFqEgyvvJws74C1uF5FTUVK+VT+qaios7kejielfAAF0qGh8oAOnFVK\nKaVUVtKelALQ29tbELei9njsjQtJFAqGbO9jeCCr03wnfY4f0w1BX2HUMxx2tmsjFAqk9HnxeDyE\nQqm/3z0eT0GciwrlnOsEDVIKwMKFC9m4caPbxci4++67j3nXz0spb9AfZPfbu1kVXUVVVfJjS4YH\nstZ/rp4aB6cWPfPYM3zvZ99z7HhuefuZZ6iePd3tYmRcW9v/d+xYwaCX3bv3smpV1NZAXYDBQS97\n97ZRXx8gleEs9913H5s2bbKfMccUyjnXCRqkFIBly5a5XQRHLF26lC07t6SUNxwK4x/yU/npypQG\nsiazuu9kuvZr1zp6PLdcfO21dPTtc7sYGXfuuakF16kIh4P4/cW2B+oCDA0dwu8/QCSS2vt96dKl\nKeXLNYVyznWCBikFYO7cuW4XwRGzZ89OOUgZlisDWc+66CxXjuu0urPOKoggpabmk44fM5UBt16b\nU+0TzZ49O638uaJQzrlO0IGzSimllMpKGqQopZRSKitpkFIA1qxZ43YRHPGrX/3K7SI4Zufvd7pd\nBEcc2VUY9ezqanW7CI4olM9ooZxznaBBSgHYtWuX20VwxDvvvON2ERxz/NBxt4vgiIHjhVFPn6/H\n7SI4olA+o4VyznWCBikFoLm52e0iOOLRRx91uwiO+fJff9ntIjjisj8vjHpeeOHVbhfBEYXyGS2U\nc64TdHZPgUl1xV63Vk1VSiknpXqOBD1PZoIGKQUk1RV7ARpqGlh0xyLHPoCpnCjcuvurUmpiqd7l\n1skvfq/Xy+rVT+LxpHYfGLdWl85nGqQUkFRX7B08NYjngMexVVNTDabcuvurUmp86dzl1skv/kAg\ngMcTobLyeqqq6mzldXN16XymQUoBaGpqGnGLZrsr9gL4cW5tkVSDqSf/7kmmXzDd8bu/umHdD9cV\nxG3x31i3riBui9/SsokFC77vdjEyZvgut889t4F77vlN0vnc+uKvqrJ/ozv4eHXpxHOuSp0GKQXg\n3nvvdbsIKbEbTM2/aT7vv/t+BkuUPa688Uq3i+CI86+8kp7gYbeLkXFnnnmp20VwxPz537L95e93\ndu3FSZGr59xspEFKDrI7XmPu3Ln09vbm/ZiNGXNmFEyQMuNzM9LeRyAYSKrXyefzEQ6H8fl8eL1e\nSkpLqCivSPv4yZg+YwY97x125FiBgJdIJIDP10c47MfnO4HXO3GQXFJSQUVFer/y6+rOTSt/rpgx\n4xq3i5BRw+Nuhs+5ydIBt2PTICXHpDP4VcdsqGGBYICtr+zE54tOmNbrGeBYh4ft21uoqeugurqY\nq6+Z51ig4oRAwMvWN1fji3jwej0c8+1l+7411ByZeFxCdUkDV1+xyIFSqmyWK+Nuco0GKTkm1fEa\n4M6KvTpLJztFwhF8viilpbMoKxv/fRQd7KKktIvKyksoLa1lYOBd+vv6JzyhxvfAUAKRyMQBUboi\n4RBer8d2b4jX62EgcJzKi6dSGZ5KSVE5lTPrqJoy/orYYf8gvkMeIpHUpqyqieXCrCBIfXVpHXA7\nPg1ScpSd8Rp7Xt7DnGvnOL5ir9OzdFpeb7FbxJzVsqOFxq82pr2fsrIqyie4VFFW5qW4uJTy8mqK\niopob+/glVeGKCsrGzdffA9MWVU5HR09VFWHKbdRvuMtybdpJBikvWM3r5hVhEJ+W70hoeAgHd17\nmXXp9ZSXVVNcXkp5dTUVSXxphCdhULnH80Ha+8gFLS0v0tiYfK9TLvZOVFTU0da2jTlzbk46Ty6O\nu3FK3gUpIrIY+DugEXgb+BtjzJvulspdm9ZuYs61cxw/bqq9Pqn2+Gz73TbO+8x5douZk7b9dhvX\nffU6otEoQ2ZowvSRSIShoSEi0QjhSJhoNLVejWg0QigklJbOpLq6fvy0cT0wRaVFhEJdDNk8btur\n2/jE/AuSK1skTEj8lF5QSXFRWdK9IQBDniFCnX6i0YgrZ8WOjj3OH9QF27b9jOuuSz5IydXeiU2b\nltsKUtTY8ipIEZHbgB8Di4A3gCXACyJysTEm+VFMeaa2vjbtfYSCIdtdrsOXbRpqG2zN0km1x6d6\nqr1fWrmsemo1J0+dZMf2dwiHJw5STvUM0NHRzbate6itn0JxcZQU4xQASksrbfXApHqmKbf56xmg\ntLICSrDVGxL0pd7LmOolpvgBt6WllSkfP5dUV08cMI6mosL+lOCBAfuXiTweD6FQ+peaa2s/mfY+\nlCWvghSsoORxY8wvAUTk28CfAwuBjC0ake+3mg/6g+x+ezeroquoqrJxEzgdqJtR/kE/fX1D1NZe\nAiLjppWiHoRjFBVdRDQ6Ba93HzB+HjWxdC4x6YDbzEn1MtHgoJe9e9uorw+QA6fmvP/ugTwKUkSk\nFJgH/LfhbcYYIyJ/AOZPlP/dd9+l7f0228f1+/3se38fQ6UT/5pNVFNSw+233G7rzeLGoNJwKIx/\nyE/lpytpaEz+l5AbA3ULUU3NtAmDlKgvQklpBVVV9VRU1eo18EmS6iUmHXCbWaleJhoaOoTff4BI\nxNlzViqDg71eL+vXP4/XW2z7eDU1EW6//UbbgYobwU3eBCnANKAY6ErY3gXMnCjzq2++yo4jOygt\nL7V10AHPAJyEy264zNa4i77uPjb/ZjPdJ7tzpneioqbCkcs2yp5g0MtEvSKhkI9oNEww6KOozP5J\nTY0vlUtMkzHgVo3P7mUibwq3dkhXur0+8+cvpr7+jKTz9fV1sHnzP9PdHcyJwcj5FKTYVQHQEps9\n0O/pp+hEEVHsXagv8ZfQP9DPsfePUVGd/H0j+rr76DnRQ3e4m1pJfszIyeBJenp6aNvVRu+05IbZ\nHHr3EK1vttLX3Ye338vhvYfpP95vq6y5kK/9QDvlteW287lR1nTzte9vp31fO/7u43x47PiE+QIn\n/QwOHON421YqqiopLo4SCgn+rr2UlI4/3yYwcJLBk/10HmyBYhjs6qezdB/9leOfqCYjX9/RdqSx\nLKPHc6OOkWCISFeQAwdeIRj04vV2c/jwdvr7k78ZYV9fB15vj2P5JuOY7e27aW3d7Njx3PrbHDq0\nI+l69vV10NNzgu7uGmprP5H08U6ejNLT00VHxzv4fMkvHZHq8UIhP52drbz++uvU19d/9N1J7Ls0\nU8QYk8n9OyZ2uWcQ+IoxZmPc9rXAVGPMXySk/zrwvx0tpFJKKZVfvmGMWZepnedNT4oxJiwiO4E/\nATYCiIjEnq8cJcsLwDeAw4BeGFZKKaWSVwGcj/VdmjF505MCICK3AmuBb/PxFOSvArOMMT0uFk0p\npZRSNuVNTwqAMeZJEZkGPAycAewBFmiAopRSSuWevOpJUUoppVT+KHK7AEoppZRSo9EgRSmllFJZ\nKW+CFBFZLCIfiIhfRHaIyBXjpL1KRLaJSK+IDIpIi4h8d5R0/zn2ml9E3haRGzJbi+RMdl1F5E4R\nGRKRaOzfIREZzHxNxmenngn5rhKRsIjsGuW1rGvTya5nPrSniHwxruxDcfWZnpAup9szmXrmQ3vG\n0peJyA9F5LCIBETkkIjclZAmp9szln7cemZre4Lt9+4To9RjSET2JqRLr02NMTn/AG7DmkZ8BzAL\neBw4AUwbI/2cWJ5LgPOArwNe4C/j0nwBCAPfw7pj7cNAEPijPKzrnUAf8ElgeuzxyVyqZ1y+qUAb\n8DywK+G1rGvTDNUz59sT+CIQBS6Kq8P0fGvPJOuZ8+0Zy/MM8BpwXexc9B+A+fnUnknWM+vaM8X3\nbm38exY4C+gFfjCZberqH2US/7g7gJ/GPRfgKHC/jX38Bvi3uOe/BjYmpNkO/Ese1vVO4ITb7TgZ\n9QTWAw8BD3L6l3fWtWmG6pnz7cnHX95TxtlnzrdnkvXMh/b8j7EvvLo8b89k6pl17ZlKXUfJfzMQ\nAc6dzDbN+cs98vHCgh/dg9hYf4mkFhaM7eNzsbQvx22eH9tHvBeS3WcmZLCuADWx7skjIrJBRP5o\nckptX6r1FJG7gQuwvrxHk1VtmsF6Qh60J9ZJco+IHBORF0XkCwmv50V7MnE9Iffb8ybgLeABETkq\nIvtF5EciEn9L9Xxoz2TqCVnUnjA53y3AQuAPxpj2uG1pt2nOBymMv7Bg43gZRaRdRAJYN35rNsY8\nEfdyYyr7zLBM1XU/1husCesuvEXAayJy1mQV3Cbb9RSRT2OtgP0NY8xYS1JnW5tmqp45357AceCv\nga8AtwDtwMsiMicuTc63J8nVMx/a80LgauBSrF/c92HdaLM5Lk0+tGcy9cy29oQ0vlsARORM4Abg\n5wkvpd2meXUztxT8MVADfB5YLiJtxpj/43KZMmXMuhpjdmB19QEgItuBFqyT54MulNUWESnCWofp\nQWPM8Kpg4y8LnIOSrWeutyeAMeYAcCBu0w4RuQjrLtJ3ulOqyZdMPfOhPbG+iIeArxtjvAAi8j3g\nKRH5jjEm6GrpJs+E9cyT9kx0F9Y4m2cme8f5EKT0Yl3TTVyr+gygc7yMxpgPY/99T0QagWXAcJDS\nmco+MyxTdU1MGxGR3cCMtEqbOrv1rAUuB+aIyPAvliKs5ZtCwJeMMS+TfW2aqXqOkIPtOZY3gKvi\nnud6e44lsZ4j5Gh7Hgc6hr+4Y1qwguxzgPfJj/ZMpp4jZEF7Qvrv3buBXxpjIgnb027TnL/cY4wJ\nA8MLCwIjFhZ8zcauioH4Neu3x+8z5s9i212RwbqOEPvFfhnWB85xKdTzJPAZrJlMs2OPVUBr7P+v\nx9JlVZtmsJ4j5GB7jmUOI+uQ6+05lsR6jpCj7fkqcJaIVMVtm4nV63A09jwf2jOZeo7gdntCeu9d\nEbkWa3bamlFeTr9N3R5RPBkP4FZgkJFTpzzEpnUB/52Rs1m+A3wZK3KdAXwLGAAeikszH2uq1PDU\nqWVY07PcnoKcibr+IPbGuQD4HNbMER/Wwow5Uc9R8o826yXr2jRD9cz59sS6lt+EdfK7FPifWFMZ\nr82n9kyynvnQntXAh1i9t5cA12CNzViVZ+2ZTD2zrj1TqWtcvv8FvDbGPtNuU9f+IBn4A38HOAz4\nsaK0y+NeewLYEvf8XmAvcArrOtpbwKJR9vkVrF+pfuAdrMUK866uwE+AD2L7OwY8C3w2l+o5St7T\nvryztU0nu5750J7AUuBg7OTdgzXr4Jp8a89k6pkP7RnbdjHWzA4v1hf5o0B5PrVnMvXM1vZMsa5T\nYvVcOM4+02pTXWBQKaWUUlkp58ekKKWUUio/aZCilFJKqaykQYpSSimlspIGKUoppZTKShqkKKWU\nUioraZCilFJKqaykQYpSSimlspIGKUoppZTKShqkKKUcISKfEpEhEflsmvt5QkR+O0Gal0TkJ3HP\nPxCR/5LOcZVSztMgRSl1mlggMCQiUREJishBEflBbDG0dLh1i+vLgdXDT2J1a3KpLEqpJJW4XQCl\nVNZ6HrgLqABuAP4Fa7GwR+MTxQIXY5JbY0MmuYxJMcZ43DiuUio92pOilBpL0BjTY4xpN8asBv4A\n/CcRuVNE+kTkJhF5D2tV03PF8k8i0i4iARHZLSILRtnvJSLyqoj4RWSviFwz/IKIFInIv4rIIREZ\nFJHWsS7TxI7VLSIDIvIzERnzR1f85R4R+QCrR2dDrEflUOxSVFRE5ibk+66IHLb7h1NKTQ4NUpRS\nyQoAZbH/VwH3A98CLgW6ge8CS7CWZb8MayXYjSJyUcJ+HgV+BMzBWml1o4jUx14rAtqxVk69BHgI\n+KGIfDVhH3+KtZz8F4GvAbdgrQidjCuwenTuBBqBK4wxHwK/B+5OSHsX8Isk96uUmmQapCilJiQi\nfwosADbHNpUA9xhjdhhjDhpjAsDfAo8YY56Kbfs+sAcreIn3mDFmgzFmP3APcBIr2MEYEzHGPGSM\n2W2M+dAYsx5YC9yasI8gcLcxpsUY8zzwT0BSA2ONMb2x/w4YY7rjLgWtAW4XkdJYnecCn4kdXynl\nAg1SlFJjuUlETolIAPi/wHqsng2AkDHm3eGEIlILnAW8lrCPV7F6ROLtGP6PMSYKvBWfRkQWi8hb\nsUs5p4BFwHkJ+3jbGBOMe74dqBGRc+1WMs4GYAj4i9jzu4CXjDFH0tinUioNGqQopcayBfgsMAOo\nNMYsNMb4Y6/5x86WOhH5GtaloJ8DfwbMBp7g48tMGWOMCQO/BO6O9abcjtW7opRyiQYpSqmx+Iwx\nHxhjjhpjhsZLaIw5BRwDrkp46SpgX8K2zw//R0SKgXlxab4AvGqMedwY87Yx5hCQOKYFYLaIlMc9\nnw94jTHtE9bKEgaKR9n+r1jB0Xdir/8uyf0ppTJAgxSl1GT5EfCAiNwqIheLyCNYPSE/TUi3WERu\nFpGZWNOa67B6SwAOApeLyJdE5NMi8jDWQNdEZcAaEblERG4ElgGP2SjrYeBPROQMEakb3miM/Nrr\n0wAAAP1JREFUacW6HLUcWJdwSUkp5TC9T4pSarKsBKYA/wOYjtU7cpMx5v24NAb4fuwxG2iLpTkR\ne/1xrFk/v46lXQ80Y92nJd5mrIDmFayAZR0fj5cZPg7jPP9b4MfAXwEdwIVxr63B6pnRWT1KuUyS\nu/+SUkoVBhH5AfAVY8wct8uiVKHTnhSllAJEpBq4AFgM/IPLxVFKoWNSlFJq2D8Db2LNanpigrRK\nKQfo5R6llFJKZSXtSVFKKaVUVtIgRSmllFJZSYMUpZRSSmUlDVKUUkoplZU0SFFKKaVUVtIgRSml\nlFJZSYMUpZRSSmUlDVKUUkoplZU0SFFKKaVUVvp3pSUw5+Fb2GUAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -927,7 +926,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 52, "metadata": { "collapsed": false }, @@ -938,24 +937,24 @@ "text": [ "TRADING STATS\n", "AVG Monthly Return :: 0.03%\n", - "STD Monthly :: 2.94%\n", + "STD Monthly :: 3.03%\n", "SHARPE :: 0.03\n", - "MAX DRAWDOWN :: 35.16%, 75.0 months\n", - "Correlation to SPY :: 0.00\n", - "NUMBER OF TRADES :: 769\n", + "MAX DRAWDOWN :: 26.51%, 55.0 months\n", + "Correlation to SPY :: -0.04\n", + "NUMBER OF TRADES :: 439\n", "TOTAL TRADING DAYS :: 4277\n", "SPY MONTHLY RETURN :: 0.76%\n", "SPY STD RETURN :: 4.44%\n", "SPY SHARPE :: 0.59\n", "SPY DRAWDOWN :: 55.37%, 8.0 months\n", - "0.351648144393\n" + "0.265131925445\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4FNXXwPHvCaGF3hGkBFCqUkIRkKIoHUGaRukCKor8\nUF5AioJYANEggnQQKUFAUJrUIFVAEnqx0DsEEYRQUu77x2wwZZNsQjabTc7nefYJO3PnzpndYffs\nnTv3ijEGpZRSSiln8nB1AEoppZRK+zThUEoppZTTacKhlFJKKafThEMppZRSTqcJh1JKKaWcThMO\npZRSSjmdJhxKKaWUcjpNOJRSSinldJpwKKWUUsrpNOFQSimllNNpwqHciohEOPAIF5H6IlLCzvJr\nIrJaRJ5KYD9jbdv4x7E+Zt33ReSqiGwXkU9EpJidbRrYyraNsqyrbVmIiDxiZ5tfROSAneUiIl1E\nZJ1tv/dF5LKIrBWRXiKSyYHXMrKOnbbX5aaI/C4ic0Sklp24ox7rcVs5b1uZQbZ1z8exr9Uicl1E\nCjsQV2cR2Wwrf1tEDojIcBHxslP2lIgsj6MeH1tMXey8X/GdO8UTiM/LFs9+W3z/iMgWEekcR/m4\n9nXBgdeihIjMFpG/ROSOiFy0vTYj4tlmt63+1+NY3zVKDHXiKHPWtn55jOUxX6vztnOuQYxycb4v\nUcrMjue1CYlvW+WePF0dgFKJ1CnG867Ac7blEmX5USDyC2oBsBrIADwOvAUEiEgNY8zhOPbzMnAS\naCUi2Ywxt+MoF1m3B5AHqAH0A/qJyGvGmO9jlI9r8qLMwGDbtvGWF5EswI9AY2A78DlwGcgLNAAm\nATWBXnHsK9LXQB9bXfOAMKAs0Aw4DuyKUX48sAfICFQDXgeai8gTwBfAK8A3IlLJGHMvSrwdgKbA\nm8aYS3EFIyIegD/QAdgCfAiEAPVs/+4gIo2MMVejbOboZFBXiH3uDACKAv8j+rlzlTiISEEgAOt1\n8sd6DbMA7YA5ItIMeNXEnqRqHfBdjGV34gtYREpjvd63gVnAKeARrNd+IDDCzjZlgOpY5+6rwNR4\ndnEH6z3bEaOOBlivy904tos8FgG8sc6hABFpboxZayvj6PtyF3iN6K8/QLiD2yt3YozRhz7c9oH1\ngR8ex7oSQATwbozlTWzLJ8ax3TNYH3gNgHtAZ0frtq0rBhzD+kB/IsryBrZt2kZZ1tW2LBDry7Vw\njLo2AQdiLJtii+/tOOIvDbyRwOtW0FbH5DjW548vbtvyt211DLI9r4WVtHwcpUx24BywzYH38n3b\nfkbbWdfCVveqGMtPAsvjqM/HVl+XONavAE4k8nxbA4QCLeysG2vb3//FWB4BTEjCuT3Jdv49Gt/7\nE2P5SOAi0Mb23hS3UybynFuMlah6xFg/FdgNnIj52to7FqCSbfnPjrwvUcrMBm4m9nXRh/s+9JKK\nSo+22v6WjmP9q8ARY8xmYIPtucOMMWeBblitFgMd2QT4FKvFcXB8BUXkUaxfhD8bYybGsf/jxpgp\nCezTG+tX5Q57K40xwQkFjfVLP/JXLsaYXVjJ0AARKWcr8wlQAOgdX0W2VpsBWInaEDvxrALmAE1F\npKYDsSU722WmxsBsWzwxvQ/8CQwSkczJsMtSwDljzLmYK+J5f3yxEolVwA2sFgx7DFYLTT7gwWUw\nEckItMdquYvZ6mC/ImMOAcHYzgOl4qIJh0qPIj8Yr8dcYev70BbrAxesD+VnbU3pDjPG7MS6LGG3\nT4MdJ7GaqXsl0M+hGdb/2/mJiceO07a/HUQkaxLrKGP7ey3Ksvexvnymikg1rOb2z40xRxKo62ms\nS1ILjDERcZSJbMZvmcR4H1YrrC/qufZWGmPCsc6bPEDdGKuziEi+GI+E+tmcBoqJyDOOBGdLiMoA\n/saYUGAp8SfLp4CdWElKpOZATmChI/u07TcP1jFfS6hsHNvHfF3yiUiOpNSlUjdNOFR64GX7ECso\nIk9jNeUarF+CMbUCcgGRfS9+xGrKfzkJ+z0EFBCR7A6W/wSrf8SgeMpEthwcirpQRDLG+MDOG9+O\njNWX4jusSxXnROQHEXlXRMrGs1kOW92FRaQ58BVWU/oPUer9F3gHq9/FOqxEalR8sdhUwHpPYnWQ\njWK/7W95B+pzhgox4rBnP1ZSFDPG17D6hkQ+rpDwOTUBuA9sFJEgEfETkRfiSRA7AWeMMb/ani8E\nKojIk/HsYwHQJkqLzCvAZhNPXxv+S57y21qbFmN9lyxK4HjsyU701yXyEbPvk0oDNOFQ6cFIrA+x\nS1idEcti9b1YZqfsK8AeY8wJAGPMLazm6URdVrG5Zfvr0K81Y8xJrF/PvUWkUBzFcsaoO1Jzon9g\nn3Jgf92w+mGcwLrm/zlwVEQ2iEgRO5vMstV9Aav/Q1as/hFBMepditWRNg/wlonSgTQeka/Rv/GU\niVyXM54yzvQwMf6E1bk58vE8sJZ42FqFqmCdEyWwErkfgcsi0jNqWRHJAHQkestEANb7Fd+5uwir\nc3VLW2LckoRbzyKTpytYLSS1gS+MMV8lsJ09d4BGRH9tniOBS4vKPeldKio9mIb1KywL8CzWB3es\nc19EcmF9cX9tu0Mg0g6grYiUMcb8lYj9RrZsxPcFFdPHQGesD9z+dtZH1hWz1WQb1gc1WP1G7N7u\nGJMxZjIw2dYsXhd4A+s18MfqLBrVSNt+wrEumxyN5/LHb1iXfwIdiYP/jiu+5MyRL3x7HL1jIiFR\nY7wZR5m4YjxnjAlI7A5t51tXERGsFpaWWO/vVBE5EaXOJlh9ZX6Lcu4KVqdjX+JoNTPGBIvIBqxE\nOxvWj9AlCYT1EzAR63X9FzhsjIn3jpt4hBtjNiVxW+VmNOFQ6cGfUT6YV4tIBDBGRDbF+HXeEauj\n53tYHRijMli/FEcmYr+VgCu2VhKHGGNOisg8rFaOMXaKHMP6IqkEHIyy3TWsX7TENR5EAvu9DqwE\nVorIJqC+iBSzdYCNdCgpX5oOOop1XE8CcY3fEHlpIGp/kLtYLS32eEUpkxyOAq1tcWyLo0xlrHMl\noT4riWKMMcBh4LCI7MRKJF7F9p5jJQz2LhMasG51tXWCtmcBMB3rltufbZfF4pOk5EkpvaSi0qNP\nsH6ZfRxj+StYX+IdsHrqR31sJO4e/7GISG2su2DibTaPw8fE3ZfjZ6wWhqRc4nHUHtvfWAOROdE2\n4B/gFduveXu6Yn2Broyy7DTW2Cr2lLOVPx3H+sRaiZUUdbG30jaOyCtYnZG3J9M+7Yn2/og1IFpr\nrH4PMc/bDliXEuM7X5Zh9cWpxX+dpZVKdppwqHTHGHMDa6yBJpEd6my3m9YHvjfGLI35wOpoWkZE\naiRUv4iUAL7FGkNhXBLiO4E1ENfrQOEY685i9aVoJiJvxVFFgv+vRaSQiMTqfGm7LfI5rC+gxFw+\neii2JvlxWEnCp3biaoGVcKwxxuyOsmo18KiIvBCjfCagJ1Y/g2h9TB4ixl+xbpPubosnpk+x7hIZ\n42C/lXiJyNMiYq8VOnLfx2x/22K15kyM49xdCbSzvbexGGtQuzewBhJb8bBxKxUXvaSi0quvsEaY\nHIz1qzTyF2BcH7ir+a9l4bcoy31E5FWsL/ncWCONtsP6wu5kG6MgIfZ+0X+C1ZejLDHuSLHFXRKY\nICIv22K+AuTH6ofRCqv5Pz6PArtFJACr9eYS1mBgvliXDPyMMX87EHtyGo3VSXKgrYXoB6xOhfWw\nXvfDWOObRDUN6AEsFpHZwF6ssSVeAipiDdoWlowxdsFKOn4Ua9j7rViX4dpi9XlZSBKSzDgMwjq/\nlvLf3Ts+WOdFMNbIr2C9NteAX2PVYFmONepsC6xOpxDjnDPG2L3V9yGVEZGhdpbvNcastv3b0/b/\nx56lD9E3RKVCmnCotCC+ToHG3npjzEURWQC8KtZ8IK8Ap40xB2OWtZW/ISLbgJdE5N0odb9se4Rh\ndST8E/gSmGpvwKY4YrUX33ERmct/lxGirrsjIk2xvng6A/+HdVfEP1i3Zb5B7GG0Y/odaxj15sCb\nQCGsvg6HgJ7GmNkOxJ2sbB1QO4pIF6zWiY+ATFjjmXwIfBnzC8gYc1dE6gMfYN1p0w0rSQkEmhlj\n1ie020TGeMl2K+h7WJcr2mK99weArsaYeXHsIymv3ydY52UD218vrFFEF2CN5npGRApgdYReYOvn\nYc9GrOHRX+W/hMOReOzFnZhjKYv1HsY0EyuBBytZi+tc3QqccXBfyg1I3OeoUkoppVTySFV9OESk\nnogsF2sGwoiY12VtZT4SkQtiza653jZZUdT1mUVkkogEi8i/IrIksaNEKqWUUip5paqEA+s+8H1Y\nwyHbmyVzENZARb2xZsO8DayNMUTweKxrle2wOgEWIcpIiEoppZRKean2koptrIQ2xpjlUZZdwJqX\nwc/2PCfWbIddjTGLbM+vAi9HjiJpG6r5KPBUjN7tSimllEohqa2FI062jn2FsTpAAWCMuQnswhpa\nF6A6VkfYqGV+x+p4VBullFJKuYTbJBxYyYbBatGI6jL/jVVQCLhvS0TiKqOUUkqpFKa3xWJNj4w1\nF8Epkm8YZKWUUio9yII1NtBa2zQLdrlTwnEJa7CaQkRv5SiENdhPZJlMIpIzRitHIdu6uDQh4RkS\nlVJKKRW3V4lneHy3SThsk1pdwprK+AA86DRaC5hkKxaINQhPI6z5ASI7jRYn7lH4wDaV97x58yhf\nPtZoz3Hq378/fn5+iTqOlNoG4Pnnn2f9+oTGPXr4faXUNqn5eJK6XWo+ppQ6nqTuKzUfk553KbuN\nnndJ309ybHP06FE6deoEtu/SuKSqhENEsmHNRRA57G4pEakM/G2bQ2I8MExE/sI6sFHAOazpkjHG\n3BSRmcCXInIda4KuCcD2BO5QuQtQvnx5qlWr5nC8uXLlSlT5lNwGIGPGjKk2vqRsk5qPJ6nbpeZj\nSqnjSeq+UvMx6XmXstvoeZf0/STzNvF2SUhVCQfWXSab+G/43C9sy+cAPYwxY20zI07FmrdiK9bw\nxfej1NEfa86LJVjD5q4B4prk6qH4+vqm2m0AihYtmiL7SqltUvPxJHW71HxMKXU8Sd1Xaj4mPe9S\ndhs975K+n5Q8VzHGpPsHUA0wgYGBJi1p1aqVq0NIVmnteIxJe8eU1o7HGD0md5DWjscY9zqmwMDA\nyEaCaiae71p3ui1WKaWUUm5KE440LMnNXqlUWjseSHvHlNaOB/SY3EFaOx5Im8eUaoc2T0kiUg0I\nDAwMjLPzzJkzZwgODk7ZwNKp/PnzU7x4cVeHoZRSygFBQUH4+PgA+BhjguIql9o6jaZKZ86coXz5\n8oSEhLg6lHTBy8uLo0ePatKhlFJpiCYcDggODiYkJCTR43SoxIu8nzs4OFgTDqWUSkM04UiExI7T\noZRSSimLdhpVSimllNNpwqGUUkopp9OEQymllFJOpwmHUkoppZxOEw6llFJKOZ0mHIo5c+bg4eGB\nl5cXFy9ejLW+YcOGPPnkkw+elyxZEg8PD/r16xer7ObNm/Hw8GDp0qVOjVkppZR70YRDPXDv3j1G\njx4da7mIxHouIkyfPp1Lly4lWF4ppZTShEM9UKVKlTiTiJgqVqxIeHi43QRFh8tXSikVkyYcCrBa\nJYYMGUJYWJjdJCKmkiVL0qVLF4cTFKWUUumbJhzqAW9v70QlEUOHDiU0NNShBEUppVT6pgmHiiYy\niRgzZkyCZUuWLEnnzp2ZPn06ly9fToHolFJKuSudS8UJQkLg2DHn7qNcOfDySv56vb296dy5M9Om\nTWPw4MEUKlQo3vLDhg1j7ty5jB49Gj8/v+QPSCmlVJqgCYcTHDsGPj7O3UdgIDhrHrnEJBExExSl\nlFLKHk04nKBcOSshcPY+nMXb25tOnToxbdo0Bg0alGD5oUOHMnfuXMaMGUPr1q2dF5hSSim3pQmH\nE3h5Oa/1IaUMGzaMefPmOdSXo1SpUnTq1ImpU6dSs2bNFIhOKaWUu9FOo8quqEmEI3esDBs2jPv3\n7zN27Fgd+EsppVQsmnAowP5gXZF3rPz+++8Jbh+ZoOzbt88Z4SmllHJzmnAowP5w5KVLl6Zz584P\nhjKPWtZe+WHDhuHp6aktHEoppWLRPhyKrl270rVrV7vrZs2axaxZs6ItO3HihN2ypUuX5v79+8ke\nn1JKKfenLRxKKaWUcjpNOJRSSinldJpwKKWUUsrp3C7hEBEPERklIidEJERE/hKRYXbKfSQiF2xl\n1otIGVfEq5RSSik3TDiAwcDrQB+gHDAQGCgib0cWEJFBwNtAb6AmcBtYKyKZUj5cpZRSKu2yN6yC\nPe54l0pt4CdjzBrb8zMi8gpWYhGpHzDKGLMSQES6AJeBNsCilAxWKaWUSssGrh/oUDl3bOHYATQS\nkccARKQyUBdYbXvuDRQGNkZuYIy5CezCSlaUUkoplQw2n9pMwMkAh8q6YwvHaCAncExEwrGSpqHG\nmIW29YUBg9WiEdVl2zqllFJKPSRjDIM2DKJ8gfIc5WiC5d0x4XgJeAV4GTgCVAG+EpELxpi5D1Nx\n//79yZUrV7Rlvr6+lC1b9mGqVUoppdIEf39//P39Abj470X2XNjDE7mfcGhbd0w4xgKfGWMW254f\nFpGSwPvAXOASIEAhordyFAL2xlexn58f1exM8xoUFPTQQSullFLuxBjDvfB7ZMqQCQ+xemD4+vri\n6+tLaHgoFb+pSNO8Tfmk/Cf4+PgkWJ87JhxeQHiMZRHY+qMYY06KyCWgEXAAQERyArWASSkYp1JK\nKZVqnbx+klFbRnE15Co37t7gxr0b3Lh7g9uht7kTeoeQ0BAMhjJ5y/B9+++p9sh/P8hnBM3gr7//\nYknHJYSdD3Nof+6YcKwAhonIOeAwUA3oD8yIUma8rcxfwClgFHAO+CllQ1VKKaVSnwgTQZcfu/Dn\ntT+pWbQmJXKXIFfmXOTKnIvsmbKTNWNWvDJ6kcUzCxN2TaDOzDpMaDaBXtV6cTv0NiM3j6Rz5c48\nWehJgs47dhXAHROOt7ESiElAQeACMNm2DABjzFgR8QKmArmBrUAzY4zOLBaHgwcPMnLkSPbs2cPl\ny5fJly8fFSpU4IUXXuDtt60hTkqWLMmZM2cebFOgQAHKli3Lu+++S5s2bTh16hQVK1akTZs2zJ8/\nP9Y+vv/+e3x9fZk0aRJvvvlmih2bUkqp6GYGzWTbmW0EdAngGe9n4i3bsWJH+q/pz+srX2fbmW0U\nyVGE63ev81HDjxK1T7dLOIwxt4F3bY/4yo0ARqRASG5vx44dPPvss5QoUYLevXtTuHBhzp49y86d\nO5kwYcKDhENEqFq1KgMGDMAYw4ULF5g6dSpt27ZlypQp9O7dmw8//JD333+f7t2789xzzz3Yx7//\n/su7775L7dq1NdlQSikXunTrEgM3DKRblW4JJhsAWTyzMLnlZJ4u/jS9V/YmJDSE92q/R4ncJRK1\nX7dLOFTy++STT8idOzd79uwhR44c0dYFBwdHe160aFF8fX0fPO/cuTNlypTBz8+P3r1789577zF/\n/nz69OnDwYMHyZw5MwBDhgwhODiYdevWOf+AlFJKxendte/i6eHJuOfHJWq7V598laqPVGXS7kkM\nrTc00ft1x4G/VDI7ceIEFStWjJVsAOTPnz/ebQsVKkT58uU5efIkABkyZGDatGmcOHGCjz/+GIDA\nwEAmT57MgAEDqFixYvIfgFJKKYes+WsN/of8+aLxF+Tzypfo7SsUqMCkFpPIkzVPorfVhENRokQJ\nAgMDOXz4cKK3DQsL4+zZs+TL99+JW6tWLd58800+//xzDh06xOuvv06pUqX44IMPkjNspZRSiRAS\nGkKfVX1o5N2Izk92TvH9a8KhGDBgACEhIVSpUoW6desyePBg1q9fT1hY7FudQkNDuXbtGteuXePA\ngQN07tyZK1eu0LFjx2jlPv30U/Lnz0/Dhg3Zu3cv33zzzYPLK0oppVKGMYZT/5xi4aGF+P7gy4V/\nLzC5xWREJMVj0T4cThASGsKx4GNO3Ue5/OXwyuiVLHU999xz/Prrr3z22WesXbuWnTt3MnbsWAoU\nKMCMGTNo1arVg7Jr166lQIECD557enrSpUsXRo8eHa3OHDlyMH78eDp27Iivr2+0DqRKKaWc6+T1\nkwzcMJAtp7dw5fYVAErnKc3kFpN5LN9jLolJEw4nOBZ8DJ9pCY+69jACewdGG4TlYfn4+LBkyRLC\nwsLYv38/y5Ytw8/Pjw4dOrBv3z7KlSsHwFNPPcUnn3wCgJeXF+XLlydnzpx266xRo8aDupVSSqWM\nFb+voMuPXcidJTe9qvXiqUefolbRWhTIViDhjZ1IEw4nKJe/HIG9A52+D2fw9PTEx8cHHx8fHnvs\nMbp3787ixYsZPnw4YHUifeaZhG+jUkoplbLCIsIYHjCc0dtH07psa75t8y25s+R2dVgPaMLhBF4Z\nvZK19cFVqlevDsDFixddHIlSSqm43Am9w4HLBxi8cTBbT29l7HNjGVBngEv6acRHEw7FL7/8QsOG\nDWMtX7VqFcCDyylKKaWSzhjD2ZtnMcYketCsmJb/vpzFRxaz9+JejgUfI9yE80j2RwjoGkD9EvWT\nKeLkpQmHom/fvoSEhPDiiy9Srlw57t+/z/bt21m0aBGlSpWiW7durg5RKaWc6m7YXTJ6ZCSDRwa7\n60NCQxjxywhe93md0nlLO1xvwMkAlv++nP2X97P/0n6u371OBsnAsPrDGFZ/GJ4eif8aDg4Jpt2i\ndpTLX456xevxTq13qFq4Kk8UeoIsnlkSXV9K0YRD8cUXX7B48WJ+/vlnpk+fzv379ylevDhvv/02\nQ4cOfdApVEQS3USXlG2UUiqlhEeEM3PvTIYGDKVUnlKs8F1BwWwFo5UJCQ2hlX8rAk4G8Pedv5nx\nwow4aotdd/tF7fHK6EXtYrV5t/a7VClchT0X9vDxlo9Zd3wd89rOo1SeUomKeenRpUSYCDZ22Rgr\n1tRMEw5F48aNady4cYLlTpw4kah6S5QoQXh4eFLDUkqpJPnhyA+UzV+WSgUrxVtu6+mt9FvTj72X\n9uJbyZdNpzZRZ2Yd1nRaQ5m8ZQCrf0Trha3ZeW4nrcu25vvD3/NV06/IlilbgnHsubCH63evs8J3\nBXWL132wvOXjLWlSugmdlnWi8pTKfN3sa7pW7urwj7OFhxbSyLuRWyUboAN/KaWUSkOO/32c9ovb\nU21qNUZtHkVoeGisMoevHMb3B1/qf1sfTw9Pdr62kwXtFvDra7/i6eFJ7Zm12XVuF3fD7tLm+zZs\nP7OdVa+swq+JH7fu3+KHoz84FMu64+vImTkntR6tFWtd7WK12ff6PtpXaE/3n7rz/eHvHarz4r8X\n+eXUL/hW8k24cCqjCYdSSqk0Y8qeKeTJkof3ar/HyM0jqTmjJvsu7cMYw7rj62g6rymVJldiy+kt\nzG49m509dz5ICErmLsmO13ZQNl9ZnpnzDM/MeYYtp7ew8pWVNCzZEO883jQs2ZBv933rUCzrTqyj\nkXejOPtp5Micg9mtZ9O0TFM+2/YZxpgE61x0eBGeHp68WP5Fh1+T1EITDqWUUmnC3bC7zN43m25V\nuvHZc5+xq+cuwiPCqTG9BmUnlqXJvCZcuX2FeS/O42S/k3Sr0g0Pif41mDdrXtZ3Xk+Lx1uw79I+\nVviu4FnvZx+s716lO5tObeLk9ZPxxnLj7g1+PfsrjUsnfLl6YJ2BHLh8gHXHE55Ne+HhhTR7rFmq\nGl/DUZpwKKWUShMWH17MtTvXeKP6GwD4FPFhT+89fFD/A6oXqc6mrpsI7B3Iq0++SqYMmeKsJ2vG\nrCxqv4jLAy7zXKno0zK0K9+O7JmyM2f/nHhj2XRqE+EmnCalmyQYd8OSDalRpAZjto+Jt9zJ6yfZ\neW4nL1d8OcE6UyPtNKqUUipVCg4J5q3Vb3En9A55s+YlT5Y85M2alxfKvkDlwpVjlZ+8ZzLPlXqO\nx/M9/mBZpgyZGN5geKL3LSLkzBx72oZsmbLRsUJH5uyfwwcNPojVQhJp3fF1lMlbBu883g7ta2Dd\ngXRY3IHfzv9GjaI17JZbdHgRWT2z0qpsK7vrUztt4VBKKZXq3A+/T7tF7Qg4GYDB8Offf7L2+Fq+\n3PklDec05MT16HfN7bu0j1/P/cqb1d90emzdq3bn1D+n2Hxqc5xl1h1fR+NSCV9OifRiuRcpk7cM\nY3eMjbPMwsMLaVW2FdkzZU9UvKmFJhxKKaVSFWMMfVb1Yee5nfz08k+s8F3B9h7bOfLWEU72O0ne\nrHlpt6gdd0LvPNhm8m+TKZKjCC+UfcHp8dUtVpfH8j7G7H2z7a4//vdxjl8/TpMyCV9OiZTBIwMD\nag/ghyM/8Nfff8Vafyz4GPsu7XPbyymgCYdSSqlUZvzO8czcO5PpraZTp1idaOtyZ8nN0o5LORZ8\njD6r+2CM4ea9m8w/OJ/e1XonaeTOxBIRulXpxpIjS7h572as9euOr8PTw5OGJRsmqt4ulbtQIFsB\nvtjxRax1Cw8tJGfmnDR7rFlSw3Y57cORCEePHnV1CGmevsZKpW+r/1zNgPUDGFR3EF0qd7FbpnLh\nykxtOZWuP3al9qO1CQ0P5W7YXXpW65licXZ+sjPDAoax+PBiXqv2WrR1606so/ajte32AYlP1oxZ\neafmO4zaMooRDUdQKHshwGrxWXhoIS+WezFVD12eEE04HJA/f368vLzo1KmTq0NJF7y8vMifP7+r\nw1BKpbDDVw7z8pKXafl4Sz5t9Gm8ZbtU7sKuc7vo+3NfCmYrSOtyrSmas2gKRQrFchWjcenGjNk+\nhtblWpPfy/rMCg0PZeOJjQyqOyhJ9fap0YfPtn1GK/9WFM1ZlPvh97kTeoffr/3O+Kbjk/MQUpwm\nHA4oXrw4R48eJTg42NWhpAv58+enePHirg5DKZWCztw4Q9P5TfHO4828F+fFefdHVH5N/Qi6FMTO\nczuZ3dp+fwpnmtBsAvVm16PJvCYEdAkgV5Zc7Dq/i3/v/+vQ+Bv25Mmah3GNx7HkyBLuh98no0dG\nsnllo287wBgqAAAgAElEQVTNvjTybpTMR5CyNOFwUPHixfVLUCmlkijCRLDz3E5qFa0Va0bWq7ev\n0nhuYzJ6ZGTNq2vIkTmHQ3VmypCJZS8tY8Xv0QfnSimP53uc9Z3X0/DbhrRY0IK1nday7vg68mbN\nS7VHqiW53jeqv/FgLJG0RDuNKqWUcrrxO8dTd1Zdnpr5FL+d/+3B8n/v/UvzBc25fvc66zqv45Ec\njySq3sLZC9PLp5dDLSLO8GShJ1nTaQ37L++nzfdtWPXnKp4v9Xyc09ynZ5pwKKWUcqrLty4zcvNI\nWpdtTWh4KLVm1KL3it5c+PcCbRe15ffg31nz6n8ztLqbmkVrstJ3JdvObCPoYlCSL6ekdZpwKKWU\ncqqhAUPJIBmY+cJM9vTew4RmE1h0eBHF/Yqz9fRWlvsup+ojVV0d5kNpULIBy15aRvUi1WnxWAtX\nh5MquWXCISJFRGSuiASLSIiI7BeRajHKfCQiF2zr14uIe6bOSinlxgIvBDJr7yxGPTOKfF758PTw\n5O2ab/NH3z/oW7Mvy15alujxKlKrpmWa8luv3x7czqqic7uEQ0RyA9uBe0AToDzwHnA9SplBwNtA\nb6AmcBtYKyJxz9ajlFIqyQIvBBISGhJtmTGGfmv6UbFgRV6v/nq0dQWzFcSvqZ9bD2SlEsftEg5g\nMHDGGNPTGBNojDltjNlgjIk6V3A/YJQxZqUx5hDQBSgCtHFFwEoplVYZYxjxywiqT69OuYnlWHho\nIcYYAPwP+bP97Ha+avpViowAqlI3d0w4WgF7RGSRiFwWkSAReTC8nIh4A4WBjZHLjDE3gV1A7RSP\nViml0qjwiHDeWv0WIzePZMjTQ6hRtAa+P/hSb3Y9tpzewsD1A2lbvq1LbllVqY87ppylgDeBL4BP\nsC6ZTBCRe8aYuVjJhgEux9jusm2dUkqph3Q37C6dlnZi2bFlzGg148Hw3gEnA+i3ph8Nvm1A5gyZ\nGff8OBdHqlILd0w4PIDdxpjhtuf7RaQS8AYw13VhKaVU+nDz3k1aL2zNznM7WfbSsmgztD7r/Sx7\nX9/L7L2zyZk5J955vF0YqUpN3DHhuAjEnOHrKNDW9u9LgACFiN7KUQjYG1/F/fv3J1euXNGW+fr6\n4uvr+zDxKqVUmvHvvX9pOq8pR64eYV2nddQrUS9WGU8PT3r59HJBdMrZ/P398ff3j7bsxo0bDm0r\nkZ173IWIzAceNcY0iLLMD6hhjHna9vwC8Lkxxs/2PCdW8tHFGLPYTp3VgMDAwECqVUv6cLRKKZWW\n3b5/m2bzm7H/8n42dN5AjaI1XB2SSgWCgoLw8fEB8DHGBMVVzh1bOPyA7SLyPrAIqAX0BKKm0+OB\nYSLyF3AKGAWcA35K2VCVUiptuBN6hxcWvsDeS3tZ22mtJhsq0dwu4TDG7BGRF4HRwHDgJNDPGLMw\nSpmxIuIFTAVyA1uBZsaY+66IWSml3NndsLu0+b4NO8/t5OdXf6ZOsTquDkm5IbdLOACMMauB1QmU\nGQGMSIl4lFIqLQoOCWbZ0WVMD5rOwSsHWfXKKuqXqO/qsJSbcsuEQymllHPcuHuDJUeWsOjIIjae\n2IjB0LBkQ9a8uoYGJRskXIFScdCEQyml0rkIE8GW01uYtXcWS44s4V74PRqUaMDE5hNpW74tBbMV\ndHWIKg3QhEMppdKxNX+t4a3Vb3Hi+gnK5C3D8PrD6VK5C0VzFnV1aCqN0YRDKaXSqXth9+i1ohcl\ncpXg29bf8nTxpxERV4el0ih3nEtFKaWUA3ae20mv5b24G3bX7vpZe2dx/uZ5preaTr0S9TTZUE6l\nLRxKKZUG/R78Oy0WtODvO39TMFtBPmn0SbT198Lu8em2T/F9wpfyBcq7KEqVnmgLh1JKpTFXb1+l\n+YLmFMpWiPdqv8fYHWPZf2l/tDIz987kwr8XGF5/eBy1KJW8NOFQSqk0JHJE0Nv3b7P61dV82uhT\nyuUvR88VPQmLCANsrRtbP8W3ki/l8pdzccQqvdCEQyml0ojwiHA6LevEgcsHWPnKSkrmLkmmDJmY\n0WoGgRcCmbBrAmC1bly8dVFbN1SK0oRDKaXSiMEbBvPjsR9Z2G4h1YtUf7C81qO1eKfWOwwLGMbR\nq0f5dOunvPLEK5TNX9aF0ar0RhMOpZRKA5YcWcK4X8fxReMvaFW2Vaz1Hz/7MQWzFaTe7HpcvHWR\nYfWGuSBKlZ5pwqGUUm7uj2t/0OOnHnSs2JF+tfrZLZM9U3amtpzKtTvXtHVDuYTeFquUUm4sJDSE\ndovaUSRHEWa0mhHvWBpNyjRh1SureOrRp1IwQqUsmnAopZSbMsbw5qo3OXH9BLt77iZH5hwJbtP8\nseYpEJlSsWnCoZRSbmpG0Ay+2/8d37X5jooFK7o6HKXipX04lFLKDZ24foK+P/fldZ/X6Vy5s6vD\nUSpBmnAopZQb+mzrZ+TOkpsvm3zp6lCUcogmHEop5WZO/3Oab/d/y//V+T+8Mnq5OhylHKIJh1JK\nuZnR20aTO0tu3qj+hqtDUcphmnAopZQbOXvjLDP3zmRA7QFky5TN1eEo5TBNOJRSyo2M2T6GHJlz\n0KdGH1eHolSiaMKhlFJu4vzN80wPms67T73r0JgbSqUmmnAopZSb+HzH53hl9OLtmm+7OhSlEk0T\nDqWUcgOXbl1iauBU/lfrf+TKksvV4SiVaJpwKKWUi/157U9eWvISV25fibPM0I1DyZQhE+/UeicF\nI1Mq+ejQ5kop5WKjtoxi0eFF/HP3H35+9Wc8JPpvwSVHljBr3yymtZxGnqx5XBSlUg9HWziUUsqF\nzt88j/8hf9qWb8v64+v5dOun0dafvXGWXit60a58O3pW6+miKJV6eNrCoZRSLjRx90SyemZl1guz\neKLgE3z4y4fULVaXZ7yfITwinE7LOpE9U3amtZoW79TzSqV2bt3CISKDRSRCRL6MsfwjEbkgIiEi\nsl5EyrgqRqWUisut+7eYEjiFXtV6kStLLobXH84zJZ/B9wdfLt26xGfbPmPr6a3Me3EeebPmdXW4\nSj0Ut004RKQG0BvYH2P5IOBt27qawG1grYhkSvEglVIqHt/u+5ab924+6AiawSMD89vOR0RoOq8p\nI34ZwdB6Q2lQsoGLI1Xq4bllwiEi2YF5QE/gnxir+wGjjDErjTGHgC5AEaBNykaplFJxC48IZ/zO\n8bSv0J4SuUs8WF4oeyH82/lz8MpBahStwQcNPnBhlEolH7dMOIBJwApjTEDUhSLiDRQGNkYuM8bc\nBHYBtVM0QqWUAowxbDixget3rkdbvvz35Ry/fpz3ar8Xa5uGJRuyrfs2VviuIGOGjCkVqlJO5XYJ\nh4i8DFQB3rezujBggMsxll+2rVNKqRQ1cvNInp/7PKUnlGbcjnHcDbsLwJc7v6RusbrULFrT7na1\ni9Umv1f+lAxVKadyq7tURORRYDzwnDEm1NXxKKVUfL7Y8QUjN49kaL2hXAu5xuANg/l699d0q9yN\nbWe2sbTjUleHqFSKcauEA/ABCgBB8t/9YRmA+iLyNlAOEKAQ0Vs5CgF7E6q8f//+5MoVfchgX19f\nfH19kyF0pVR6MmXPFAasH8CQp4fw8bMfA/C/p/7HkIAhfLTlI0rlKcULZV9wcZRKJY6/vz/+/v7R\nlt24ccOhbcUY44yYnEJEsgElYiz+FjgKjDbGHBWRC8Dnxhg/2zY5sZKPLsaYxXHUWw0IDAwMpFq1\nak6LXymVPsw7MI8uy7rQt2ZfxjcdH2v8jMALgXhl9KJ8gfIuilCp5BMUFISPjw+AjzEmKK5ybtXC\nYYy5DRyJukxEbgPXjDFHbYvGA8NE5C/gFDAKOAf8lIKhKqXSKf+D/nT7sRvdq3THr6mf3cG6fIr4\nuCAypVzLrRKOOERrojHGjBURL2AqkBvYCjQzxtx3RXBKqfTBGMO4HeMYuGEgXSp3YVqrabHmRFEq\nPXP7hMMY86ydZSOAESkejFIqXQqPCOedn9/hmz3fMKzeMD565iMdhlypGNw+4VBKKVcKCQ3B9wdf\nVv2ximktp9HLp5erQ1IqVdKEQymlkijCRNByQUt2n9/Nct/lNH+suatDUirV0oRDKaWSaPbe2Ww6\ntYmNXTbyrHesq7tKqSiSlHCIiAdQBihIjNFKjTFbkiEupZRK1f6+8zeDNgyi85OdNdlQygGJTjhE\n5ClgAdZ4GDF7RRmsgbiUUipNG7JxCKERoYx9fqyrQ1HKLSSlhWMKsAdoAVwkxm2pSimV1v12/jem\nBU7jq6ZfUTi7TtOklCOSknA8BrQ3xvyV3MEopVRqFx4RTp/VfahcuDJv1njT1eEo5TaSknDswuq/\noQmHUirdmRE0gz0X9rC9x3Y8PbTfvVKOSsr/lq+BL0SkMHAQiDZrqzHmQHIEppRSqc3ei3t5f+P7\ndK/SnTrF6rg6HKXcSlISjh9sf2dFWWawOpBqp1GlVJpzLeQawwKGMTVwKhUKVGDMc2NcHZJSbicp\nCYd3skehlFKpUFhEGNMCpzEsYBjhJpwvm3zJWzXeImOGjK4OTSm3k6iEQ0QyAh8Co4wxJ50TklJK\npQ59V/dlSuAUelTpwWfPfUbBbAVdHZJSbitRUxkaY0KBdk6KRSmlUo2L/15k5t6ZfNboM2a2nqnJ\nhlIPKSlzJ/8ItEnuQJRSKjWZuHsimT0z80b1N1wdilJpQlL6cPwJfCAidYFA4HbUlcaYCckRmFJK\nucrt+7eZvGcyPav2JHeW3K4OR6k0ISkJx2vAP4CP7RGVATThUEq5tW/3fcuNezfo91Q/V4eiVJqR\n6ITDGKN3qSil0qzwiHD8dvrRvkJ7SuYu6epwlEozdJg8pZSKYvnvyzl+/TgL2i1wdShKpSlJmS12\nVnzrjTE9kh6OUkq51he/fsHTxZ+mZtGarg5FqTQlKS0ceWI8zwhUAnIDAQ8dkVJKuciuc7vYfnY7\ny15a5upQlEpzktKH48WYy0TEA5gMHE+OoJRS6mEEhwQzavMo+tToQ9n8ZR3aJsJEMHbHWMrkLUOr\nx1s5OUKl0p+kjMMRizEmAvgS6J8c9SmlVFKFhIbQckFLJuyeQM0ZNfnp2E/xlr9+5zp+v/pRbmI5\nlh5dyuC6g8ngoVNCKZXckiXhsCmNdkJVSrlQWEQYvj/4cvDKQQK6BPBcqedo830bhgcMJzwi/EG5\ne2H3WH98Pa/99BpFvyzKoA2DqF6kOlu7b6VHVe2GppQzJKXT6JcxFwGPAC2AOckRlFJKJZYxhr6r\n+7Lqj1Us913OM97P0LBkQ8ZsH8PQgKHsubiHNmXb8PNfP7PhxAZuh96mRK4SDKs/jNeqvkah7IVc\nfQhKpWlJaZGoGuN5BHAVeI/oU9YrpVSKGb1tNFMCpzCj1QyaP9YcABFh8NODqfZINXx/8GXd8XXU\nKVaHYfWH0fyx5jxR8AlExMWRK5U+JKXT6DPOCEQppZLqu/3fMSRgCB82+JDXqr0Wa33j0o051e8U\nYRFh5Mka80Y7pVRKSHQfDhEJEJFYkwuISE4R0dtilVIpas1fa3ht+Wu8VvU1PmzwYZzlcmTOocmG\nUi6UlE6jDYFMdpZnAeo9VDRKqTTt6u2rLP99OddCriVLfbvP76bdonY0K9OMKS2n6OURpVIxhy+p\niMiTUZ5WEJHCUZ5nAJoC55MrsHjieB94ESgH3AF2AIOMMX/EKPcR0BNrQLLtwJvGmL+cHZ9Syr7w\niHDaLWrH1jNbEYQqhavQyLsRTco0oZF3o0QnC39c+4MWC1pQuVBlFrZfiKeH3iSnVGqWmP+h+7Bm\ngzXYH1H0DtA3OYJKQD3ga2APVvyfAetEpLwx5g6AiAwC3ga6AKeAj4G1tjL3UyBGpVQM43aMY9uZ\nbSzusJhb92+x8eRG5h+cz7hfx7Gw3UJeqvSSw3Vd/PciTeY1oYBXAVa+shKvjF5OjFwplRwSk3B4\nY90CewKoiXVnSqT7wBVjTLi9DZOTMaZ51Oci0g24AvgA22yL+wGjjDErbWW6AJeBNsAiZ8eolIou\n6GIQwzcNZ1DdQbSv0B6AblW6YYyh/rf1mbl3psMJR8DJAPqs6kNoeChbum0hb9a8zgxdKZVMHO7D\nYYw5bYw5ZYzxMMbssT2PfFxMiWQjDrmxWl3+BhARb6AwsDGygDHmJrALqO2KAJVKz0JCQ3h16atU\nKliJkc+MjLZOROhauSsbTmzg3M1z8dZz5OoRWi5oSaPvGpE3a142dNlAsVzFnBm6UioZJWmkURHp\nLCLbReSCiJSwLesvIq2TN7wE4xBgPLDNGHPEtrgwVgJyOUbxy7Z1SqkUNGj9IE79c4p5beeRKUPs\n/uYdKnQgs2dm5h+Yb3f7W/dv8fqK13li8hMcDT7K4g6L2d5jO+Xyl3N26EqpZJSU22LfxJo3ZTVW\n60LkpAPXgf8lX2gO+QaoALycwvtVSjng5z9/ZuJvE/n8+c+pUKCC3TK5suSiTbk2zNk/B2NMrPUj\nfxnJ3ANz+aLxFxx96yjtK7TXu1GUckNJ6dbdF+hljPlRRAZHWb4HGJc8YSVMRCYCzYF6xpiLUVZd\nwuprUojorRyFgL3x1dm/f39y5coVbZmvry++vr7JErNS6cmd0Dv0WtGLJqWb8FaNt+It27VyV5od\nasaeC3uoUbTGg+Wn/znNhN0TGFpvKP97KqV/zyilYvL398ff3z/ashs3bji0bVISDm/sf3HfA7Il\nob5EsyUbrYEGxpgzUdcZY06KyCWgEXDAVj4nUAuYFF+9fn5+VKtWzTlBK5XOTNw9kcu3L7O5+eYE\nWySeL/U8j2R/hDn750RLOIZvGk7erHl5t/a7zg5XKeUAez/Cg4KC8PHxSXDbpPThOAlUsbO8KXA0\nCfUlioh8A7wKvALcFpFCtkeWKMXGA8NEpJWIPAF8B5wD4p+nWimVLG7cvcHo7aPpWbUnpfOWTrB8\nBo8MdHqyE/6H/Lkfbt25vvfiXuYdmMeIBiPInim7s0NWSjlZUhKOL4FJIvIS1qWLmiIyFGs8jLHJ\nGVwc3gByAr8AF6I8OkYWMMaMxRqrYyrW3SlZgWY6BodSKWPcjnHcCb3D8AbDHd6mS+Uu/H3nb1b9\nsQqAQRsG8Xi+x+3OjaKUcj9JmbxthojcwRpMywtYgPWF388YszCZ47O3f4eSJGPMCGCEU4NRSsVy\n+dZl/Hb68U6tdyiSo4jD21UqWIlqj1Rjzv45ZMuUjfUn1rPspWU6gqhSaUSS/icbY+YD80XEC8hu\njLmSvGEppdzVJ1s/IWOGjAyqOyjR23at3JX31r3HH9f+oG6xurQum6J32iulnChJ43BEMsaERCYb\nIpJFRAYkT1hKKXd08vpJpuyZwsA6A5M0M6tvJasz2tHgo3z+/Od6+6tSaUiiWjhEpADW3R73gY3G\nmHARyQj0Ad631Zdit8YqpVKXEZtHkM8rH+/UeidJ2xfIVoDOT3Ym3IRTu5gODKxUWpKY2WKfBlZi\nddg0wB4R6Q78CIRh9ZeY44QYlVI2J6+fJMJEOHTnR0o7cvUIc/fPZWLziWTLlPQ75Ge1npWMUSml\nUovEXFL5GGt00ScAP6AGsAwYYoypYIyZEjlbq1Iq+Z29cZZaM2rx2NeP8dKSl9h/ab+rQ4rmo80f\nUTxXcXpW6+nqUJRSqVBiEo4ngI+NMYeB4VitHAONMUucEplS6oF7Yfdov7g9WTyz8FXTr/jt/G9U\nmVqFlgta8uvZX10dHkeuHmHR4UUMqTfE7nwpSimVmIQjDxAMYGvJCAEOOSMopVR0/db0Y9+lffzQ\n8Qf61urLH33/YO6Lczn5z0nqzKrDOz+/w51Q1zUwfrzlYx7N+SjdqnRzWQxKqdQtsXepVBCRJ0Xk\nSaxBv8pGPo+yXCmVjGbvnc3UwKlMaj7pwbDfnh6edHqyEwffPMiEphOYHjQdn2k+BF0MSvH4jgUf\nY+Ghhbz/9PvauqGUilNiE46NwD7bwwurE+k+rLlVIv8qpZJJ4IVA3lz1Jq9Vfc1u3wgP8aBvrb4E\n9g4ks2dmnprxFKO3jSY8IjzFYvx4y8cUzVmUHlV7pNg+lVLuJzG3xXo7LQqlFKf/Oc2c/XP45+4/\n3Lh7g5v3b7LtzDaeKPQEE5tPjHfbCgUqsKvnLj7c9CFDNg5h65mtLGy3kByZczg15j+u/YH/IX8m\nNJ1AZs/MTt2XUsq9OZxwGGNOOzMQpdKz0PBQWi9szYnrJ3g056PkzJyTXFly8Xyp5/nk2U/I4pkl\nwToyZcjEZ899RsOSDem4pCNPz36alb4rKZarmNPi/njLxxTOXljnO1FKJUgnKVAqFRizfQyHrhzi\nt16/UfWRqg9VV5MyTdjRYwctFrSg5oyarPBdQfUi1ZMp0v/8ee1P5h+cz/gm4x1KiJRS6dtDDW2u\nlHp4R64eYdSWUQysO/Chk41IFQtWZFfPXZTMXZL6s+vz07GfkqVeAGMM646vo92idhTKVohePr2S\nrW6lVNqlCYdSLhQeEU6Pn3pQKk8pPmjwQbLWXSh7IQK6BNC4dGO6/tiVG3dvPHSd285so+GchjSZ\n14TsmbLz08s/aeuGUsoheklFKRf6atdX7D6/m209tjnliztrxqxMbjEZ76+8mfTbJIbUG+LQdrvP\n72bAOmsuRk8PTzw9PPn3/r/sPLeTyoUqs9J3Jc0fa66TqymlHPZQLRwikl9EWojICyLySHIFpVR6\n8NfffzEsYBh9a/alTrE6TtvPIzkeoUfVHvjt9OP2/dsObbPw0EIOXTlEydwlKZy9MLmz5ObRnI/y\nffvvCXo9iBaPt9BkQymVKElu4RCRdsBM4A8gI9YgYG8ZY2YnV3BKpVV3w+7S/afuFMpeiE8afeL0\n/Q2sO5BpgdOYHjSd/z31vwTL7z6/m8alG/Pdi985PTalVPrgcAuHiGSPsehDoKYxpqYxpirQAXD+\nJ6dSbu5++H06Lu7Ingt7mPviXLJnivlfK/mVzF2STk92YtyOcdwLuxdv2dDwUIIuBlGzaE2nx6WU\nSj8Sc0klUERaR3keBhSM8rwQcD9ZolIqjQqLCOPVpa+y9vhalr20jKeLP51i+x789GAu/HuB7/bH\n32px+Oph7oTd0YRDKZWsEpNwNAF6i8gyESkC9AO+F5FLIhIMjAb6OCNIpdKC8Ihwuv3YjR+P/cji\nDotpWqZpiu6/XP5ytKvQjtHbRxMWERZnud3nd5NBMlC1cPLcoquUUpCIhMMYc8oY0wJYBGwGqgBl\ngOeB54DixpjVTolSKTcXYSJ4feXr+B/yZ0HbBbxQ9gWXxDHk6SGcuH6C7w99H2eZ3ed3U6lgJbJl\nypaCkSnlmLAwiIhwdRQqKRJ9l4oxxh+oAVQGfgE8jDH7jDF3kzk2pdKMZUeXMXPvTL5t/S0dKnZw\nWRxVH6lK88ea8+m2T4kw9j+1d5/frZdTVKp04wbUqgWVKsH+/a6ORiVWohIOEWkuIu8B1Y0xPYGB\nwHwR+VxEsjolQqXSgHkH51G9SHU6V+7s6lB4/+n3OXL1CAEnA2Ktu3X/FoevHtaEQ6U6ISHQqhWc\nPAmenlCzJnz1FRiT+LoiIuD48eSPUcUvMXepfAHMxmrdmCoiw40xm4FqwF1gr4g0c06YSrmvf+7+\nw+o/V+NbydfVoQBQt1hdvHN7s/jw4ljrgi4GEWEiNOFQqUpoKLz0EgQGwqpVsHs39OkD//sftGgB\nly8nXIcxsG8f/N//QfHiUKYMzNZBHFJUYlo4ugHNjTEvYyUdnQGMMfeNMcOBtoBjwxgqlY4sO7qM\n0PBQXqr4kqtDAUBEaF+hPUuPLY3VeXT3+d1ky5iNigUquig6paKLiIAePWDtWli6FGrXhixZwM8P\nVq+2kpCyZaF9e5g0CY4csZKLsDA4eBC++w7694eKFaFqVfj2W2jdGl58Efr1g9M6D3qKSczAX7cB\nbyAQKIbVqvGAMeYIUC/5QlMqbfA/5E/9EvUpmrOoq0N5oEOFDny+43O2nN7Cs97PPli+6/wufIr4\nkMEjgwujU+nVoUOweLGVUGTLZj127ID588HfH5o0iV6+WTM4cAAmToRNm6wWj7AwyJcPbt2Ce7Yh\nZ0qVgjp1YNw4eP55yJjR6g/yxBPQvTts2AAeKTSz2NWrcOKE1RclvUlMwvE+8J2ITAC8gK7OCUmp\ntOPyrctsPLmRb5p/4+pQoqlepDolcpVg8eHF0RKO3ed307FCRxdGptKrjRutVocMGazH7dtw967V\nX+Obb6xLKvYUKgSjRln/vn3bSlC2bYM8eawWjSpVIFeu2NvlymW1djRqBF9/bbV2ONvu3dYxXr5s\ndXqtmEYaEsPivss+msTcFjsfq2WjNVDSGJN8810rlUYtPrIYD/GgfYX2rg4lmqiXVcIjwgG4dOsS\nZ26c0f4bKsUtXGi1VtStC2fPQnAw3LljfZHdugVvvOFYPdmyWS0YI0darR0NGthPNiI9+yz07QuD\nB8OxY8lzLHGZPRvq1YMSJcDbG955J2kdXlOb27fh7bcdK5uoRiRjzDVjzG/GmH+SElhKEpG3ROSk\niNwRkZ0iUsPVMan0x/+QP41LNyafVz5XhxJLhwoduHL7ClvPbAXgt/O/AWjCoVLU+PHg62s9li+H\n7FFG+s+QATJndu7+R4+2OpF26WJ1Tj1/Hn7+GcaMgREjrOTnYYSGWslFjx7WPjZtsu6uCQiAH35I\nlkN4KA8zpsmNG9ZlrkOHHCufJqenF5GXgC+A3sBuoD+wVkQeN8Y85OmjlGNO/3OaHWd3MPfFua4O\nxa6aRWtSLGcxFh9eTMOSDdl9fjcFsxWkeK7irg5NpUF37sCiRfD339av4tu3rb4MixbBwIHWF78r\nJiD28rI6ltapY12GuW2bUDlnTuvL+Kuv4KOP4M03rcs7iXHnjtVBddMm67LQG29Yx9i8ObRsCe+9\nZ/3byyv5j8sR8+ZZd/uMHm3Flph+LMHBVrJx8iRMmQJdHehkkULdZFJcf2CqMeY7Y8wx4A0gBOgR\n3wNNnH8AACAASURBVEahoY7v4MQJKxNWKi4LDy0ki2cWWpdtnXBhF4h5WWX3BWvAL512XiW3W7es\n21e7dYMPPrA6eS5aBEePWv8eM8Y1yUakWrWsL99Bg+Cnn6wv0X/+sT7nO3Sw+ndUrWq1Sjgq8lbe\nbdtg3TorYYl6jH5+cOmSdeyucOeOdSkpb1546y1o3Dj6HTvGQFCQdewvv2y9TwcOWEnYpUvQsCGc\nOwe//GINxOYQY0yaegAZgVDghRjLvwWWxbFNNcC0ahVoIiJMnK5cMWbiRGNq1TIGjMmSxZivvzYm\nPDzubVT6VXlyZdNhUQdXhxGvHWd2GEZgfjn5i8k9Orf56JePXB2SckPh4cZ8/70xp07FXnf9ujF1\n6hiTI4cxW7emfGzJYc8e6xjAmDFjEi4fHm5Mp07GZMxozM8/x11uyBBjMmc25sSJ5IvVUWPGGOPp\nacyffxqzbp0xxYoZkz27MZMmGTNunDGVKlnHW7iwdewZM1rP8+a1lhUtaszRo1ZdgYGBBjBANRPf\n93N8K93xATwCRAC1YiwfA/waxzbVrBcr0Hz6aew35tgxY9q0sd4cT09jWrUyZuFCY/r2tV7Bxo2N\nOff/7d13eFVV1sDh306j9x46BIiiICCIiHRpiqCOIspQVNTPio69omPFioNlsAAiojIiFqoiIEUE\nQlGK9N5rgNBCsr4/1g0kIQkhuTVZ7/PcR3POPmfvzb25Z2XXrefxTps8b8XuFcIgZNyKcYEuSpaS\nkpOk8luVpdOoTsIgZPKayYEukgkxJ0+K9Omj34WRkSL/939nvg/37BFp3FikVCmR+fMDW87cSk4W\nefJJrec332Sd7t57RZzTICwrR46IVKmizxd/2r9fpGRJfa9SxMeL3HGH1i8qSuSmm0QmTBBJTNTz\nR4+K/PqryKBBIn37pg2SshtwOJE8MEw2FedcJWAbcLmI/JHq+OtAKxG5PINrGgNx1aq1YvPmEjRp\nAtHRkJQEUVG9mDChF1Wr6uIxPXtCuXJnrp06VedxHzum/Vg32YzCfEdEGLdyHGv2r+Fo4lGOJh5l\n4faFLN65mF2P7KJgRMFAFzFLAycPZMgfQwDY99g+ShcqHeASmVBx9Kh+502dCsOG6XTPwYN1HMRd\nd+lU1z174OefoUGDQJc290Tg1lt1AbIZM6B587PTPPssvPSS/nsMGHDue379tXZZVK+uz5aU1003\naTeULzzxhE4FXrcOKlZMe27lSj1WqlTG144ZM4YxY8akORYfH89vv/0G0EREFmWacVbRSCi+yEWX\nysKFcdKrl3aVvP22SI0aGuk995xGd5nZt0+jQRAZPjzzdCZvGrdinDAIKf16aan6dlWp95960uij\nRjJ49uBAFy1bZm+aLQxC6rxXJ9BFMSFk3z6Ryy8XKVJEm+RTxMeLvPiiSIkSItHRZ5rd84pjx0Su\nuEKkXLm0f+X/9ptI27b6HBh8Hr/6yckio0Zp68kdd2hrR61aItWq+aa7futWfcY9/bT37plvu1RE\nA4h5wJBUPztgC/BoJukbAxIXF3f6wwQiV10lsnp19v7Bk5NFBgzQJsXp07N3jQl9CScTpPo71aXL\nF10kOasBQEEspVul97jegS6KCRHbtolceKFI2bKZd5XEx+v4jbxozx6R2rVFYmNFJk8W6dBBnxkN\nG4p8/33u7z9rlt5v5szc3yu9O+/UcRgHD3rvntkNOPLktFjgbWCEcy6OM9NiC6OtHFkqWFA3B1q8\nWBeNye7I6W9X/o+dbb/gik1fcP31RZk3D+rWzXkFTGh4bfZr7Diyg1/6/BKyszvCXBhTek+hVKFM\n2lCNSWXPHl2dMyFBZ2DUq5dxuuLF/VsufypbVp8Tl18OnTvrLI1vv4UePbyzRHqLFlCjhs6cadUq\n9/dLsWoVfPqpzozJakE0X8mT02JF5BvgEeBFYDHQAOgkInuyc32JEjrlJzvPj0MnDtF3fF9uHHsj\nP67+ngGv/krFitr3tm9fzutgckdE+Hzp5/Qd3/f0Spretm7/OgbPGcyjLR4lpnSMT/Lwl/rl6xNd\nLDrQxTBB7uBBXXvhwAEdn5FZsJEf1Kun62uMH6/LlF9/vff2YwkL07Ei33yjy7t7Q1KSrr4aHa3T\nYAMhTwYcACLygYjUEJFCInK5iCz0dh6zN8+m4UcN+W7ld4zsMZIaJWswb9cvTJigK7Bdd92ZzYOM\n/xw8fpBbxt1C3/F9+Xzp58TtiPNJPg9OfpAKRSvw1JW2SbLJ+xISdLGqjRt1EGidOoEuUeA1bKgL\ne/li47dbb9XnyMSJub+XiC7hPnWqTm4oGKBx7Hk24PC1Dxd8SOsRralcrDJL715Kn4Z96FCzA9M2\nTKNmTY1658/Xkcd33aVL5Vrw4XuzN8/mko8uYdKaSYy+fjQlC5Zk4hov/Mam89Pqn5iwZgLvdHqH\nwpEBWibQ5Ct//w2ffKIz4vztxAn9A2rJEv0uu/hi/5chv7ngAmjSRLtVcuuVV+DDD+G//9WVTQPF\nAo4ciD8ezxPTnqBPwz7M7DeTmqVqAtC+VntW7FnB9sPbadEC/vgDevfWrY+7dtV+v4ED88aGPcFo\n6PyhtB7RmirFq7D07qXccvEtdKzdkUlrJ3k1n+OnjvPg5AfpWLsj18Ve59V7G5ORxERd8XLAAKhd\nW6c0equp/VyOHtW8f/sNfvwxf26rHii9e+tYkQMHcn6Pzz6DZ57R5dnvuMN7ZcsJCzhy4MOFH3L8\n1HFebvcy4WHhp4+nbPM9bf00QJvb3nwT1q6Fv/7SHfWGDIHRowNS7Dwt4WQCT057kn4N+zGj3wyq\nl6wOQNeYrizYtoDdCbu9lteniz5lc/xm3uv8XsgOFDWh5Z13YMUKHZjYsaP+4RITA++/79sWj5Ql\nrKdNg+++g7ZtfZeXOdvNN+uOuf/7X86unzAB7rxTW9mfeca7ZcsJCzjO07HEY7wz7x36Nux71iC7\n8kXK07BCQ6ZtmJbmuHM6ivnVV/UDNHCgjvQ23vPtym85cvIIz7R6hoiwM5OvOsd0RhCmrJ3itbwm\nr5tMq+qtqFc2H4+YM36zcaPuWvrAAzowccQI7V5p106PVaumi03t3Jmz+8+cqU3ua9emPb58uS5s\ntXWrtm506ZLLipjzVrEiXHXV+XernDgBb7yhLVPdumlgGgx/G1nAkcqmg5vOmWb4kuHsPbqXx654\nLMPz7Wu255f1v6Ss73GWIUO0S2XgwFwV1aTz2eLPaFuj7enurRQVilagSaUmXutWOZV8ipkbZ9K+\nZnuv3M+YrKQM9itdWpvEU9Spozucrl4Nt9yiW7xXq6Y7dn7xBXz1FYwdqytizp+f+f1Xr4Zrr9W/\nfuvU0QBj6FC9rkULndr6xx86lsAERu/eGvBtOvfjCRHt9rroInjySe2C+/JLCA8/97V+kdUiHfnl\nhWfhr4oPV5Rth7ZlurhJYlKi1Hi3hvQc2zPTNBNXTxQGISv3ZL683siRuqjLTz9lmsSch7X71gqD\nkFFLR2V4/tlfn5XSr5eWU0mncp3X71t+FwYh87bMy/W9jDmXceP0u+Lbb7NOd+CAyBtv6OqU+thJ\n+3rrrbOvOXxYpH59kXr1RHbu1P2hrrlG94sCkc6ddfEuE1iHD4sULiwZ7vN1/LjIunW6QNjo0bqv\nF+hCZMuW+a+M+Xql0fN9pQQc5R8uLxd/cLEcOJbx8nhfLP1CGIQs3rE403/4wycOS+SLkTL0j6GZ\npklO1g9G1aoihw5lmsxk0zPTnpHirxaXhJMJGZ5P2RF17ua5uc7rpZkvSfFXi0tiUmKu72VMVg4d\n0h05r7lGstzFOrXkZN2G4fBhDUL27hV54gn9pn/ttbTpevbU3UFXrEh7jz17dKnyRPuIB41bbtHl\nzp9+WqRXL5HmzUXKlz87sKxTR2T8+Ox/Xrwlv680miNDuwzlrri7uHbMtUzpPYVCkYVOn0uWZF6b\n8xpdYrpwScVLMr1H0aiiNK/SnF82/MK9zTJeXcU5nZ5Uvz489ZSOODc5k5ScxIilI7i5/s2ZTk9t\nVrkZpQuVZuKaiVxe9ay9+87LtA3TaF29dZpxIsbk1urVuulZWJh2YxQrplNQ9+/X74fs9r87B4UK\npT32yisQFaUbdp08qeM93nlHNw0bO1anX6ZWtqyOGzDB48479b0aORJq1YLYWB1TU60aVKmir8qV\n9XMTzOxbM5XapWvz0y0/0eHzDlz95dXcfendtK/ZnjKFyzBh9QSW7V7GB10/OOd9OtTqwNu/v82p\n5FOZPphq1ICXX4aHH9YPk81rz5lpG6ax9dBW+jfqn2ma8LBwOsd0ZuLaify73b9znNexxGPM3TKX\n1zu8nuN7mPxp6VJ9SBQocPa55ct1qfCICKhUCQ4fhkOHdPbJ22/rd0VuOAcvvACRkRpsrFqlYzwe\nfRT+8Y/c3dv4R+vWOhA0GAZ+5oYNGk2nRdUWfNfzO3Yc2UHP//Wk3BvluHTYpTw05SGuqHoFV1a/\n8pz36FCrA/En4lm0I/NdegHuuUcH88ya5a3S5z+fLf6MC8pewGWVs14coEtMFxbtWMTOIzkcyg/M\n3TKXE0knTk9/NiY73nsPLrlEB16mH8C5ZIlOO61YUfdvWrBAZ6Bs365rL9x9t/fK8cwz8NprOi2/\ndWtt+TChI9SDDbCAI0OdYjqx8t6VbHloC591/4x6ZeshCP9um72/jptGN6VoVFF+Wf9LlumiorQ5\n888/vVHq/Gf/sf2M/3s8tzW67ZzrYXSq3QmHY/LayVmm23BgA00/bsrGgxvPOjdtwzTKFS7HReUv\nyk2xTT4ybBg8+KAuuFSwoG729eij2noxf76ua1GzJvz6K5Qr5/vyPP64ToP97jttUTHGnyzgyEKV\n4lXod0k/Rl8/mnUPrKNtzeytehMZHkmbGm3OGXAA1G943AKOHBrz1xhOJZ+id4Pe50xbrkg5mlZu\nes5lzkf9OYqF2xfy75lnB5e/bviVdjXb2WJf5jQRbZnYsOHsc6NGaQvFffdp4DFvnrYq/Oc/0KAB\ndOgAF16o+5KULu2/Mrdqlbd3cjXBywIOH+lQswNztszhaOLRDM8nJSfxwowX+CamKEv2zyI52c8F\nDGJr9q3hsk8uY/ji4VmmG75kOFfXvZqKRStm675dY7oydd1UTiWfyjTNN8u/oVTBUoxcOpK1+8+s\nhBR/PJ4F2xfY+hsG0GXFR4yASy+Fxo11IF/Llrox1r59OsCvXz+4/XZde8c5bVF4/HEdz1GlClxx\nBUyZEphtwo0JBAs4fKR9rfacTDrJb5t+O+vcjsM7uGrUVbz424tEhkVxrOpPbNzo/zIGo982/Ubz\nT5uzdOdSHpj8AFvit2SYbsraKcTtiOO2S27L9r271ulK/Il45m6Zm+H5FXtWsHzPcj68+kPKFynP\nS7+9dPrczE0zSZZk2teygCM/WbFCZ5R98IG2TLz7LjzyCFStCv37Q4UK8NNPurhSiRLamlGpEvTq\npa+PPjp7J9GUbc0nTYKiRQNTL2MCwXrxfKR+ufrUKlWLbmO60aZGG7rX6073et1ZuXclvcf1JiIs\ngml9pjFk9jDGb5nO0qX6V1J+9sWfX3Db97fRslpLPuv+GS0+bcH9k+5n/M3j06Tbk7CHft/3o2Pt\njnSr1y3b928S3YQqxaswfMlwWlVvddb5scvHUrxAcbrHdmd3wm4GThnIU1c+Rd0ydfl1w69UL1Gd\nmiVrZnBnk9ccPaore771FiQlaetEeLi+ihTRrcPvvTftFu29esGuXTrddPduXY48aFZ4NCYIWAuH\njzjnmHvbXIZ0HkKYC+OhKQ9R7d1qdPqiE40qNWLJ3UtoU6MNXS5oC5XimP/noUAXOWBEhEEzBvHP\n7/5J7wa9mdx7MjVK1uC9Lu/x/arv+W7ld2nSDvhxAIlJiYzoPoIwl/2PcJgL4/5m9zP6z9HsOLzj\nrPNjV4zl2nrXUjCiIAOaDKBS0Uq8OFPXk562YRrta7a38Rv5wNSpujT0u+/C889r98nJkzrQ88gR\nDSrefTdtsJGiQgXd3+Sll2xQpjHpWcDhQxWKVuCepvcwpfcU9j66lzE3jGFkj5FMunUS5YuUB6Bd\nzbYQlszMDfl3buw3y7/hhZkv8Eq7V/j02k+JCo8C4IYLbuCautdw/6T7OXRCA7KPF33M96u+59Nr\nP6VSsUrnndedTe6kQEQBhs4fmub48t3LWb5nOTddeBMABSMK8vSVTzNm2RhmbpzJst3LrDsljzt2\nDPr0gU6ddO2LP//UqaRRUYEumTF5gwUcflKiYAluvuhm+jTsk+av8tqlalM0uQorj00PYOkC69PF\nn3JltSt58son07QgOOd4v+v7HDx+kKenPc3fe/9m4OSB3NXkLrrHds9RXiULluSORnfw4cIPSTiZ\ncPr42BXandKxdsfTx25rdBuVi1Wm5/96AtC2hu3NnVcdOKDbvn/7LQwfrtux160b6FIZk7dYwBFg\nzjkaFGvLwZLTOXIk0KXxv62HtvLL+l/o27BvhuerlajGv9v+m/cXvE+3Md2oVqIab3V8K1d5Ptj8\nQeJPxDNiyYjTx8auGEv3et0pEHFmKcgCEQV4ptUz7ErYxYXlLsxRi4oJftu361TRFSs00OjXL28s\nsmRMsLGAIwhcFdMWKi3m9yUHAl0Uvxu1dBQFIwpyY/0bM01z/2X306hSIzYd3MSXN3xJkagiucqz\nRska/OPCf/DOvHdISk5i+e7lrNizgpvq33RW2n6X9KNO6TpcU+eaXOVp/CcpSWeV1Kmj3SMvvQQz\nZmiXSXqrVuk27PHxMHu2bs9ujPENG9YUBG5u3oYXlgrjF/3GVS1z1lUQikSEkUtHcv0F11O8QOYr\nEUWERfBjrx/ZdHATjSs19kre/7r8X1z2yWX8sOoHluxcQvECxbmq1tk7VkWFR7H4rsVpWj5M8Fqy\nBO66S1fx7NlT9yV5803dQyQyUqezliihC18VLw6//64rfE6ZoueMMb5jAUcQiK1Yk8iE6sw+Oh3I\nPwHHH9v+YNW+VQztOvScaaOLRRNdLNpreTer3IyW1Vry5u9vcuDYAXrE9sg0qMhti4rxvSNHdBrq\nu+/qJmmzZulCXADJybBsmbZgbN6sG6MdOqStGl266M6pZcoEtPjG5AsWcASJyoltWRc+I9DF8KuR\nS0ZSpXiVgA3G/Nfl/+K6r68D4I2r3ghIGUzuzZ4NffvCjh3affLww2lnloSF6VLiDRoErozGGBvD\nETQuLdOWhGJL2ZuwL9BF8Yvjp47z1fKv6NOgD+FhgVkdqVvdbtQpXYcSBUpwVe2zu1NMcDt+HB57\nTAd8Vqqk01ifeMKmsRoTrCzgCBJX19e/8r+NmxngknjXgWMHuO7r6/hh1Q9pjv+w6gcOHj9In4Z9\nAlQyCA8L5+NuH/Pfa/57eu0P41vffqstELndO2jxYt3HZMgQ3XJ95kyIifFOGY0xvmEBR5Bof2lV\n2F+bn5blrfU4nvjlCb7/+3u6f9WdJ3958vTGaSOXjqRZdHMSd9bj2291v4olS3L/IDpfrWu0pudF\nPf2baT714Ydw4406ZuLTT3N+n6VLdXxGRAQsXKitHLaEuDHBz8ZwBIkqVSBqW1vml847AcesTbMY\ntmgY73d9n4STCTwx7QlmrptPhSVvM7H8ZJj4ARffqWmd062+S5eG1q2hXTtdD8E2twp9IvDqq/D0\n07rs9+HD8OijcPXVEH2e44D37oUePXQDtNmzoXBh35TZGON9IdPC4Zyr7pz7xDm33jl31Dm3xjk3\nyDkXmS5dVefcBOdcgnNup3NusHPnseFGgDgHtcLaspvl7E7YHeji5NqJUye486c7ubzK5dx96d30\nrPooXXZP4/e1yxlf7lLCXST/uasns2bpRldHj+oOmvfdpw+Vhx6Ce+4JdC1MboloC8TTT8MLL+gs\nkrfegkKFdPMzkezf69Qpnep65Ah8950FG8aEmqB/EKcSCzhgAHAh8BBwN/BySgJPYDERbblpDvQF\n+gEv+rmsOdK8UhsAZmycEdByeMNrs19j7f61vHDpMO6/L4yYGPjj6zY8W34R7Wq15Z7L7uS+O0rS\nsqWug1CwILRpow+l336D996DL77Q5nMTeo4cgR9+gBtu0HUwhgyB557TwLpUKRg6FMaP1zEd2fXI\nIzpWY+xYqF7dd2U3xviIiITsC3gEWJvq5y5AIlA21bG7gANARBb3aQxIXFycBNKwYSLcV1cGjP+/\ngJYjt1bsXiGRL0ZJg4FPS0SESOnSIq+8InL4cPbvcfKkSN26Ip06+a6cxrt27xYZMkSkY0eRqCgR\nEKlTR+TLLzNOf911IhUqiOzbd+57jxih9/vPf7xbZmNM7sXFxQkgQGPJ4pkdSi0cGSkJ7E/1c3Pg\nLxHZm+rYFKAEUN+fBcuJhg2Bbc34Y1Po/lm/8u9kWr1xF4l7qrPn22cYPBg2bYInnzy/8RiRkfDK\nK7oC5LRpviuvyR0R+OMP+Oc/dRzSo4/q8cGDYfVqffXqlfG177+vU1v/9a/M75+UpANM77oLbrtN\nu2GMMaEpZAeNOudigPuAh1MdrgjsSpd0V6pzQf0kr18f2FeP9fGTAl2U85aYqE3nz43/lFNdZ/Fw\n1V95ZU1BCuRiRfDrr9e9LR57DBYs0AWcTHDYswfGjYOPP4a4OKhZE15+Gfr3z/6qnZUq6XiOO+7Q\nMTx9++qOrRGeb6Wff9ZulD//hFtv1f1RbFM1Y0JXwAMO59yrwONZJBHgAhFZneqaysAk4GsR+czH\nRfSbIkWgYkQsO5P3sffoXsoWLhvoImXL4sVw++2wZPVeCjzyBD3r9+Gtf+R+9VDn9C/lVq3g668z\n/0vZ+MeBAxpkfP01/Pqrtm506gQ//QSdO+dsauptt2mwMWyYzlqpUAFuuQVWroTJk+GKK2DePLjs\nMu/XxxjjX07OZ5i4LwrgXBngXH8TrReRU5700cB0YK6I9E93rxeAbiLSONWxGsB6oJGIZNjC4Zxr\nDMS1atWKEiVKpDnXq1cvevnxSdf30WV8XvRi3rl4FgOvb+m3fHPqrbfg8cfhwguh1sA7mLnnW1bd\nt4ryRcp7LY9rr9W9MFauhAIFdK2ORYt0QOn11+sgRONbCQlQu7bOKGrdWmeL3HCDDvj1BhFdh2Xk\nSPjyS91Y7fXX9f21Vg1jgseYMWMYM2ZMmmPx8fH89ttvAE1EZFGmF2c1wCPYXkBlYBXwBZ5gKd35\nzpw9aPROdNBoZBb3DYpBoyIih44eE54PkwItPpZFiwJblj17RLZuzfx8QoJIgQIiAwaIzFw3VxiE\nvD//fa+XY/lykbAwkdtuE+nVS6RsWR1ACCKVKon8+KPXszTpTJig/97++BVJShJJTvZ9PsYY78hz\ng0Y9LRszgE3AY0B551wF51yFVMmmAiuAUc65Bs65TsC/gaEikujvMudEsUIFqVmyBiVrr6JLF9iw\nIXBluecebebOzPTpcOIEPDDwFA/+fA9NKjXhriZ3eb0cF14IAwbAZ5/pIMQ779Spsxs2QKNG0K2b\nLhJ28KDXszYeU6fq9u2NGvk+r7Awa9UwJi8K+BiO83AVUMvz2uI55tCoKhxARJKdc9cAHwJzgQRg\nBPC8vwubGxeUjyWx3d9s+F37yOfM8V7TdXYlJ+vskP37Yd06bU5Pb9IkqFEDfj38IUt3LmXeHfN8\nthHb0KG6Z0bJkmmP//QTjBgBAwfqIMMvv9Qmf+NdP/+sAzotEDDG5FTItHCIyEgRCU/3ChOR8HTp\ntojINSJSVEQqiMjjIuLnHTpyJ7ZMLBsO/82UKRAfD9dcowPr/OnPPzXYAPj++7PPi2jA0frqnTw7\n/RkGNB5As8rNfFaeiIizgw3QB2D//jrGo04dbe1YtsxnxciXtm6FFSvgKttQ1xiTCyETcOQnsWVj\nWX9gPZWrnWDSJH2A9u3r343Npk/XAZodOuiKkOmtWQPr18Pmeo8TGRbJK+1f8V/hMlC1qrZ21Kql\nAdru0F8dPmj88osGdu3bB7okxphQZgFHEIotG0uyJLN2/1oaN4bRo3UJ6Oee818ZZsyAFi3g5pu1\nSyf9A3zSJIgseojZB8fwZMsnKVM4m4sv+FDRovDjjzqupEcPXVTK5N7PP0PjxlA2NGZpG2OClAUc\nQahe2XoArNq3CtCH5+uv68JKo0b5Pv+kJN2zom1b7aIQ0daD1CZNgthrJpOYnMgNF97g+0JlU9Wq\n2gWUsjZIgGd9h7zk5DPjN4wxJjcs4AhC5QqXo1TBUvy99+/Txx55RBdJuuMObXHwpSVLdOxImzZQ\nvrwuvpS6W+XoUW0BibzoBxpUaECNkjV8W6Dz1KzZmfUcXnop0KUJbX/+qauK2vgNY0xuWcARhJxz\nxJaNTRNwOAcffgiXX64tHuvXZ32PHTtynv/06bp9eDPPGNAePfSv3IQE/XnGDDiRmMhaN4Hu9brn\nPCMfuukmGDQInn9eBzyanJk6VbeBb9Ei0CUxxoQ6CziCVPqAAyAqSsdylCwJXbvCvn0ZXzt4MERH\na+CQEzNmaKtGyj4o3bvreIipU/XnSZOgQrNZHEo8GLQBB+iGcVWqWCtHbvz8s04zzs2eOMYYAxZw\nBK2UgEPSDUIoU0Yf+Pv2nQkEUvvkE11qvEABXSjrfJ06pYtqtU21FUpMjG4sl9KtMmkSlL/yByoX\nq0zjSo0zvlEQiIrSoOOrr+Dvv8+d3qR17BjMmmXdKcYY77CAI0jVK1OPwycPs/PIzrPOxcTobIy4\nOOjT58x02XHjdBvve+6BZ5/Vnw8fzvj+hw7pdMf0Fi3Sa9q0SXu8Rw/Nc+VKWLdO2FXqe66tdy0u\nyFeCuu02be15JbCzdkPSrFk648cGjBpjvMECjiAVWzYW4KxulRTNm+ugyP/9T7dvnzZNd1O96Sb4\nz3/gn//UwZ3jxmV8/0cf1b9cJ0xIe3z6dN21tmnTtMd79NDdQp96CiIqL2P3yY1B3Z2SokAB/RMd\nvwAAGjpJREFUeOIJnVq8dm2gSxNafv5Zg7ULLwx0SYwxeYEFHEGqVqlaRIRFZBpwAFx3HQwZoju2\ndu0K7drp7IywMKhWTbtFRo48+7qtW2H4cB0LMmDAmRVFQcdvtGwJkZFpr2nSBCpX1m6Vah2/p1hU\nMdrUaOOVuvraHXfotucvvxzokgSHQ4fg6afTvu8ZmTpVg9Igb8QyxoQICziCVGR4JDGlY7IMOADu\nv19nYnTsqK0dUVFnzvXtqy0WmzalvebNN3WRrN9/1376Bx7Q44mJ2oyevjsF9KHTo4cnXc3v6RzT\nmQIRoTGSsGBBbQUaNercs3vyg48/1i6mZ5/NPM3OnTol1sZvGGO8xQKOIBZbNpa/9517tOOgQTq+\nokiRtMevv16nNI4efebY7t0wbJgGGbGx8N57en7cOFi4UKe+ph4wmlrPnhBRehtbkheGRHdKanfe\nqQNuX3010CUJrKQk+OADXTX0o48y33cmpSuuQwf/lc0Yk7dZwBHE6pWpx6q9q3J8fbFiGnSMHHlm\nxc1334Xw8DOtGr17a8vF3XfDN9/oNU2aZHy/K6+E17/7kXAXTpc6XXJcrkAoXFjHrYwYoYFVZtau\n1Zk+J0/6tjzbtukD/7XX9D358EPt5oqL822+kydrK8+4cbrvzMMPn70a66pV2iLUt692RRljjFeI\nSL5/AY0BiYuLk2AyfPFwYRCScDIhx/eYOlUERObNE9m/X6RYMZFHH02bZudOkTJlNF3Xrlnfr8sX\nXaTtiLY5Lk8gHTkiUru21vPyy0U++0yPnTwpMnasSIcOeg5Ebr9dJDnZu/mvXy/yxhsizZtrHhER\nIqVLixQuLBIWdubYjBnezTe1zp1FLr1U6/b995rnjz+eOX/0qEiDBiKxsSKHD/uuHMaYvCMuLk4A\nARpLFs/aiIBGOyZLKTNVVu9bzSUVL8nRPdq108Gen38OFSvqOI2HH06bpkIF/Qv7ppvSjt84fuo4\na/atISExgSMnj3D4xGGmbZjG4A6Dc1ijwCpSRFcd/eEHHcdw++3w4IPa+rFrl66mOXKkjmu5+264\n+GI9f75EdN2P+fN1HETKa/dunTXTubO+H9266cDdFMePw9VXww036LW1anmv7qA7/E6erK08zmn+\nHTro56FjRx3/M3AgrF6t+Rct6t38jTH5mwUcQaxeGd3E7e+9f+c44AgP126TYcP0IXPHHRp4pHfj\njToDJXXA0f/7/ny17Ks06QpFFKJHbI8clSUYREXBP/6hr40btRvj8GHo318DjBSrV+uD+IIL0q5D\ncfIkvPMOTJyo66FceKGmqVlTN4z7+Wd9bdum6WvVggYNNIC55BJ9wBcrlnHZChaEsWPhsss0GPj9\ndyhe3Ht1/+ADHcfSs6f+7By8/baWa+hQnQI7bJgGY6n/LYwxxiuyav7ILy+CtEtFRKTCGxXk+enP\n5+oey5adaa7ftCl71+xN2CtR/46SJ35+Qv7a9ZdsOLBBdh/ZLccTj+eqLKHi1CntfihZUmTVKj02\nbZp2NYSHi3TrJtKkiXaHpHTDgMhFF4k89JDIxIki8fE5y3vlSpESJbR769Qp79Tn8GG95+OPn33u\n//5PpHhxkaJFRW65xftdScaYvM26VPKIemXrnd6mPqfq14dWreCii3R9juz48q8vSZZkHr78YcoV\nKZer/ENReDiMGaMLrF17LTRqpEukt2ypg2tTWgCSk2HzZli3Tls7KlXKfd6xsZpH16460PWtt3K/\nFsbo0dqSc/fdZ5978UVdRC46Wgey2robxhhfsIAjyMWWiWX+9vm5vs/5buQ2fMlwrql7Tb4MNlKU\nLKnTjZs1g19/1fEd//xn2gdyWBjUqKEvb+rYUbtuHnhA1w9p3PjMq1077RrJzKlTGjCllFNEu0y6\ndcu4nGXLwpw5ULp05t09xhiTWxZwBLnYsrGM+nMUyZJMmMv5LOaw87h06c6lLN65mEFtBuU4v7yi\nTh0daFqkiHfHU2THfffp+JA5c3SPmy++0Gm05crp1N1rr02bXkSPP/KI/tywob5KldL1Nt55J/O8\n6tf3XT2MMQYs4Ah6zas059ipY/yy/hc61vbPLlrDlwynfJHydIkJrbU2fMUb3SQ54ZwOMk29+NaW\nLRqIdO+uy9K//bbOJtm0SQcE//KLDoCtWxeWLtWfV6/WLqD27QNTD2OMAQs4gl7zKs1pUKEBQ+cP\n9UvAcTLpJKP/Gk3fhn2JDI889wXGr6pW1dlEn3wCDz2kXWV9+8LgwVCihE577dQp7TVHj+p/bWyG\nMSaQbKXRIOec496m9/LT6p/YeHCjz/P7afVP7D26l/6X9Pd5XiZnnNPWjSVLdCzHs8/qVNdly84O\nNkDXGSlc2P/lNMaY1CzgCAG3XnwrxQsU56OFH/k8r+FLhtM0uin1y1unfrCLiYHZs3VBr48/1hYO\nY4wJVhZwhIAiUUXof0l/Pln0CcdPHfdZPjuP7GTSmknWuhFCIiI08DDGmGBnAUeIuKfpPew7to+v\nl33tszxGLR1FRFgEN190s8/yMMYYkz9ZwBEi6pSpQ6fanXh/wftpjosIHyz4gNdmv5ar+4sIw5cM\n57oLrqNUoVK5upcxxhiTngUcIeTepveyYPsC5m/ThcBOnDrBbT/cxr0T7+X5Gc+TcDIhx/feeHAj\nK/eu5Ob61rphjDHG+0Iy4HDORTnnljjnkp1zDdKdq+qcm+CcS3DO7XTODXYuFytmBZGudbpSvUR1\n3l/wPruO7KLd5+0Y89cYXmjzAieTTjJj44wc33vOljkAtKzW0kulNcYYY84I1QfxYGArulnMaZ7A\nYiK6vkhzoC/QD3jRz+XzifCwcO5peg9fL/uaZp80Y93+dczoN4NnWz1LzZI1mbR2Uo7vPWfzHGLL\nxlKmcBZrZhtjjDE5FHIBh3OuC3AV8AiQfimjTkAscKuI/CUiU4BngXudc3likbPbG91OeFg4ZQqV\nYcGABTSv0hznHF1iujB57eQc33fOljlcUfUKL5bUGGOMOSOkAg7nXAVgGNAbOJZBkubAXyKyN9Wx\nKUAJIE8sLFGmcBlW3ruSubfPpWqJqqePd47pzLoD61izb8153zP+eDzLdi+zgMMYY4zPhFTAAQwH\nPhCRxZmcrwjsSndsV6pzeUK1EtUoGFEwzbG2NdsSFR6Vo26VeVvnIQgtqrbwVhGNMcaYNAIecDjn\nXvUM/szsleScq+ucewAoCryecmkAix10ikYV5cpqV+aoW2XOljmULVyWumXq+qBkxhhjTHBs3vYm\n2nKRlQ1AW+By4IRLuwvVQufcaBHpD+wEmqa7toLnvzvPVZCHHnqIEunWh+7Vqxe9evU616VBoUtM\nF56Z/gzHEo9RKLJQtq+bs2UOLaq2wNnuXsYYY7IwZswYxowZk+ZYfHx8tq51InLuVEHAOVcFKJ7q\nUDQ6PuMGYL6IbHfOdQZ+BCqljONwzt2JtoqUF5HETO7dGIiLi4ujcePGvqyGT63Ys4L6H9Rn0q2T\n6BzTOVvXnEo+RcnXSvJc6+d47IrHfFxCY4wxec2iRYto0qQJQBMRWZRZuoB3qWSXiGwVkRUpL2AN\n2q2yXkS2e5JNBVYAo5xzDZxznYB/A0MzCzbykgvKXkDV4lXPq1tl6c6lJCQm2IBRY4wxPhUyAUcm\n0jTPiEgycA2QBMwFPgdGAM/7vWQBkDI99nwGjs7ZMoeo8CiaRDfxYcmMMcbkdyEbcIjIJhEJF5E/\n0x3fIiLXiEhREakgIo97ApF8oXNMZ1bvW836A+uzlX7OljlcGn3pWbNejDHGGG8K2YDDZKx9rfZE\nhEVkq1tFRJiz2Rb8MsYY43sWcOQxxQsU54qqV2SrW2Vz/Ga2Hd5mAYcxxhifs4AjD+oS04VfN/zK\niVMnskyXsmGbLfhljDHG1yzgyIM6xXTiaOJR5m2dl2W6OZvnULdMXcoVKeenkhljjMmvLODIgy4q\nfxGFIwuzYPuCLNPZhm3GGGP8xQKOPCgiLILGlRpnGXAcOnGIv3b/ZQGHMcYYv7CAI49qGt2UBdsy\nDzjmbZ1HsiRzRTULOIwxxvieBRx5VNPopmw4uIE9CXsyPD9r0yzKFCpjG7YZY4zxCws48qimlXUP\nu4XbF2Z4fvrG6bSp0YYwZx8BY4wxvmdPmzyqdqnalCpYKsNxHAknE5i/bT5ta7QNQMmMMcbkRxZw\n5FHOOZpWbpphwDF3y1wSkxNpW9MCDmOMMf5hAUceljJwVCTNHndM3zid8kXKc0HZCwJUMmOMMfmN\nBRx5WNPopuxK2MXWQ1vTHE8Zv+GcC1DJjDHG5DcWcORhKQNHU3erHDl5hAXbFtj4DWOMMX5lAUce\nFl0smuhi0WnW45i9eTZJkkSbGm0CVzBjjDH5jgUceVzT6KbM3z7/9M/TN0ynYtGK1CtTL4ClMsYY\nk99YwJHHNavcjIXbF5IsyQDM2DSDtjXa2vgNY4wxfmUBRx7XNLoph04cYs2+NRw6cYi47XHWnWKM\nMcbvIgJdAONbl0ZfCujA0VIFS5EkSTZg1BhjjN9ZwJHHlSpUipjSMSzYtoDI8EgqF6tMTOmYQBfL\nGGNMPmMBRz7QNFpXHD2ZdNLW3zDGGBMQNoYjH2ga3ZRFOxaxeOdi604xxhgTENbCkQ80q9yME0kn\nAGz/FGOMMQFhAUc+0KhSI8JdONHFoqlZsmagi2OMMSYfsoAjHygcWZgm0U1oUL6Bjd8wxhgTEBZw\n5BMTb5lIwYiCgS6GMcaYfMoCjnyiTOEygS6CMcaYfMxmqRhjjDHG50Iu4HDOXe2cm+ecO+qc2++c\nG5fufFXn3ATnXIJzbqdzbrBzLuTq6Q1jxowJdBG8Kq/VB/JenfJafcDqFAryWn0gb9YppB7Ezrkb\ngM+BT4GLgRbAl6nOhwET0a6i5kBfoB/wor/LGgzy2gc2r9UH8l6d8lp9wOoUCvJafSBv1ilkxnA4\n58KBd4F/iciIVKf+TvX/nYBYoK2I7AX+cs49C7zmnBskIqf8VmBjjDHGnBZKLRyNgWgA59wi59x2\n59xE51z9VGmaA395go0UU4ASQOp0XpGTCNRf1wBs27bNL3n565pgrk9OrwvmOvmrPjnNK5jrZJ87\n/15jn7uc5+PPz2ooBRy1AAc8j3aRXA0cAGY450p60lQEdqW7bleqc14V7G9uXvvABnN9cnpdMNfJ\nvvhVML9HOb0umOtknzuV194jCIIuFefcq8DjWSQR4ALOBEcvich4z7X9ga3AjcDHuShGQYCVK1ee\n10Xx8fEsWrQoKK8BSExMDNry5eSaYK5PTq8L5jr5qz45zSuY62SfO/9eY5+7nOfjjWtSPTuzXOzJ\nich5ZeRtzrkywLkWiVgPtAR+BVqKyNxU188DfhaRZ51zLwDdRKRxqvM1PNc3EpGlmZThFmB0buph\njDHG5HO3isiXmZ0MeAuHiOwD9p0rnXMuDjgB1APmeo5FAjWATZ5kvwNPOefKphrH0RGIB1Zkcfsp\nwK3ARuD4eVfCGGOMyb8Kos/iKVklCngLx/lwzr0D3ADcjgYZj6FjOWJFJN4zLXYxsB3tpqmETqMd\nJiLPBqbUxhhjjAl4C8d5egRIRIOIQsAfQDsRiQcQkWTn3DXAh2grSAIwAh1oaowxxpgACakWDmOM\nMcaEplCaFmuMMcaYEGUBhzHGGGN8Lk8EHM65J51z851zh5xzu5xz3znn6maQ7kXPCqVHnXM/O+di\n0p0v4Jx73zm31zl32Dn3P+dc+XRp6jjnxjvn9jjn4p1zs5xzbUK8To2dc1Odcwc89fqvc65IkNZn\ngHNuuuffPtk5VzyDe5Ryzo32pDngnPvE2/UJQJ2ecs7N8WxKuN/bdfF3nZxz1T3vy3rPPdY45wZ5\nZp6FXH08ab53zm1yzh3z3Otz51wlb9bH33VKlTbKObfEk65BKNfJObfRcy7lleSceyxU6+NJl+Wm\npsEiTwQcwJXAf4DLgA5AJDDVOVcoJYFz7nHgPuBOoBk6oHSKcy4q1X3eRWe93AC0QpdS/zZdXhOA\ncKANutz6UuAnl+4hHip18nwh/gys9tyjM7oM/IggrU8hYBLwMrooXEa+RBeLa4/WvRXwX29WxsOf\ndYoEvkEHRPuSv+oUi64cPAC4EHgIuNuTPhTrA7pO0I1AXeB6oDYw1puV8fBnnVIMRhdZ9NWgP3/W\nSYBngAroCtSVPHl7k9/q486xqWlQEZE89wLKAsnoImEpx7YDD6X6uThwDLgp1c8ngOtSpannuU8z\nz89lPD9fkSpNUc+xdiFapwHAjnR5XeRJUyuY6pPu+tZAElA83fFYz30bpTrWCTgFVAy29yg7dUqX\npi+w35f18HedUqV9BFibh+rTzfO5Cw/lOgFdgOWpfrcahPLnDtgAPODrOvijPugfv1uAfv6sT05f\neaWFI72SaDS4H8A5VxONZKelJBCRQ+i02ss9hy5FpwmnTrMK2JySRnSRsr+BPs65ws65COD/0P1a\n4nxbJd/UCSgAnEyXV8riZy29WoO0clKf7LgcOCAii1Md+8WT12W5LPO5+KpOgeTPOpVMyceH/FIf\n51xpdDHBOSKSlJsCZ4PP6uScqwAMA3qjD0N/8fX79ITTbuZFzrlHnO5G7ku+qk92NjUNGnku4HDO\nObQbYbaIpKwuWhF9szPa2C1lU7cKwEnPm55ZGoCr0Df5MPoL+CDQWTxrgfiCj+v0K1DR80sX6Zwr\nBbzqubfX+58hV/XJjorA7tQHPF/4+8/zPufFx3UKCH/WydN3fR/wUU7vkY08fF4f59xrzrkjwF6g\nKtAj5yXOVn6+rtNw4IN0AbxP+aFOQ4Cb0W7xj4CngNdzWt5z8XF9srOpadDIcwEH8AHaJ3yzD++/\nC7gCaAqMR8dwVPBRfil5+qROnl+AvsDDwFG0mW89+tBO9nZ+Hr5+jwLB6pRDzrnKaD/11yLymQ+z\n8kd9BgOXoH+YJAGjfJgX+LBOzrkH0C7jlIex83YemfDp+yQi74rIbyKyTESGod999zsvD1hOxZf1\nSbOpqScw7I8GMzf6IL9cyVMBh3NuKNAVaCMiO1Kd2on+sqQPCip4zqWkicpgFPDpNM659p779xSR\neSKyRETuQ1s6+nq1Mh6+rhOAiHwlItFo01wZ4AWgHBp4eFUu65MdO4H0s3DCgdLneZ9s80Od/M5f\ndXLORaOtbLNF5K4cFjc7+filPiKyX0TWisg0oBfQ1Tnnk648P9SpLdq8f8I5lwis8Rxf6JwbnrNS\nZy1Av0vz0a7nGrm8z1n8UJ+Ue57erlVETqLf3dXOu8A+lmcCDs8b2x1oKyKbU58TkQ3om9g+Vfri\naJ9+ys6zcegAr9Rp6qFvWkqaQmjkmP4v/2R88G/p4zr9nj4/EdkjIkfRSPwYOnslmOqTHb8DJZ1z\njVIda4/+cv+Rw6Jnyk918it/1cnTsjEdWADclstiZ5VPoN6jlHEBBXJ5n7P4qU73Aw1Tvbqg3383\nAU/npvwZCeD71Aj9Dt99roTnw0/1Sb2pacp90m9qGjwCPWrVGy+0yeoAOhWpQqpXwVRpHkN3pe2G\nTh0aj0bsUenuswHt22sCzAFmpTpfBv1QjgUaAHWAN9BBlheHYp08ae5Ff+nqeP4/Abg3SOtTAf3y\nuwPPqG/Pz6VSpZkILES7vK4AVgGjgvhzl506VfUcew7d/TjlIVAkFOuEtqatAaZ6/v90XiFan2ae\n352GaEDfDpjt+exFhmKdMsi3Oj6apeLH96k5Ou6uAVATHdi7C/gsFOvjSfMOOhHgKnRK9idoy0cJ\nb79Puf53CXQBvPTmJqP9pelffdKlG4SOUTiKbqMbk+58AXTu9F50UOhYoHy6NI3R/uY9wEH0Ad4x\nxOs00lOfY+huu7cEcX2ez+RefVKlKQl8gT6YDwAfA4VDvE7DM8mrVSjWCe2CTH8uGUgK0fpchM44\n2OO5xzpgKFAplD936dJX95z3RcDhr/epEdoKuh/9w2oZ+uD3dlDoz++GcHTs0A70mTQFuMDb75E3\nXrZ5mzHGGGN8Ls+M4TDGGGNM8LKAwxhjjDE+ZwGHMcYYY3zOAg5jjDHG+JwFHMYYY4zxOQs4jDHG\nGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhifs4DDGOMXzrnhzrlk51ySc+6kc26nc26qc66/cy7b\nW5875/o65w74sqzGGO+zgMMY40+TgIrovhyd0a3phwA/Ouey+33k0F1LjTEhxAIOY4w/nRCRPSKy\nQ0SWiMhr6BbeXYF+AM65h5xzfzrnjjjnNjvn3nfOFfacaw18BpRI1VrynOdclHPuTefcVs+1v3vS\nG2OCgAUcxpiAEpHpwFLges+hJOB+4EKgD9AW3Q0TYC4wEDiEbt1dCXjTc+594DLgJnS777HAJOdc\nbd/XwhhzLrZbrDHGL5xzw4ESInJ9BufGABeLyEUZnLsB+FBEynt+7gu8IyKlU6WpCqwHqorIzlTH\nfwb+EJFnvF4hY8x5iQh0AYwxhlTjMpxzHYAngFigOPo9VcA5V1BEjmdy/cVAOLA63QDUKGCvz0pt\njMk2CziMMcHgAmCDc6468CPaPfIUsB+4EvgEDR4yCziKAqeAxkByunNHfFFgY8z5sYDDGBNQzrl2\naAvFW0ATtKv3kVTnb053yUm0NSO1xZ5jFURkjg+La4zJIQs4jDH+VMA5VwFPcAB0QbtPfgBGoYFH\npHPuAbSloyVwV7p7bASKegKVpcBREVnjnPsS+Nw59wgagJQH2gFLRWSSz2tmjMmSzVIxxvhTZ2A7\nsAFdk6M1cJ+I9BD1J/Aw8BjwF9ALDUhOE5HfgY+Ar4HdwKOeU/2Az9FZK38D44BLgc2+rZIxJjts\nlooxxhhjfM5aOIwxxhjjcxZwGGOMMcbnLOAwxhhjjM9ZwGGMMcYYn7OAwxhjjDE+ZwGHMcYYY3zO\nAg5jjDHG+JwFHMYYY4zxOQs4jDHGGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhif+3+2vp9NFAZg\nlgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmcTeUfwPHPd+xjl61kV5YKmWxJlOxESE32CqUk8oui\nIskSkZTsZBkhylL2soaMLVtlT7ZItjH78/vjucMsd2bujLlz547v+/W6r3HPec5zvufONfd7n/M9\nzxFjDEoppZRS7uTj6QCUUkoplf5pwqGUUkopt9OEQymllFJupwmHUkoppdxOEw6llFJKuZ0mHEop\npZRyO004lFJKKeV2mnAopZRSyu004VBKKaWU22nCoZRSSim304RDeRURiXThESEij4tIcSfLL4rI\nDyJSI5H9jHRsExDP+th9h4rIPyKyWUSGikhRJ9vUcbRtFW1ZJ8eyIBG528k2P4vIXifLRUQ6isgq\nx35DReSciKwUka4iktmF1zKqj62O1+WKiPwuIjNFpLqTuKMf6xFHu5KONv0c6+rHs68fROSSiBR2\nIa4OIrLe0f66iOwVkfdExNdJ2+MisiSefvwcMXV08vtK6L1TLJH4fB3x7HHE95+IbBCRDvG0j29f\np114LYqLyHQROSwiN0TkjOO1GZTANtsd/XePZ32naDE8Gk+bvxzrl8RaHvu1+tvxnqsTq128v5do\nbaYn8NoEJbSt8k4ZPR2AUknUPtbzTsBTjuUSbflBIOoDai7wA5ABuB94DVgnIlWNMfvj2c/zwDGg\nuYhkN8Zcj6ddVN8+QF6gKtAL6CUiLxljvonVPr6bF2UB+ju2TbC9iGQFvgMaAJuBT4BzQD6gDvAF\nUA3oGs++onwO9HD0NRsIB8oCjYEjwLZY7ccCO4BMQBWgO9BERB4CRgMvAF+KyIPGmJBo8T4LNAJe\nNcacjS8YEfEBAoBngQ3AB0AQUNvx72dFpJ4x5p9om7l6M6jzxH3v9AWKAG8S873zD/EQkYLAOuzr\nFIB9DbMCrYGZItIYaGfi3qRqFfB1rGU3EgpYREpjX+/rwDTgOHA39rV/GxjkZJsywCPY9247YGIC\nu7iB/Z1tidVHHezrEhzPdlHHIkBJ7HtonYg0McasdLRx9fcSDLxEzNcfIMLF7ZU3McboQx9e+8D+\nwY+IZ11xIBLoE2t5Q8fy8fFs9wT2D14dIATo4GrfjnVFgUPYP+gPRVtex7FNq2jLOjmWBWI/XAvH\n6usnYG+sZV854ns9nvhLA68k8roVdPQxIZ71+ROK27H8dUcf/RzPq2OTlo+itckBnAI2ufC7fMex\nn+FO1jV19L081vJjwJJ4+vNz9NcxnvVLgaNJfL+tAMKApk7WjXTs73+xlkcC45Lx3v7C8f67N6Hf\nT6zlg4EzQEvH76aYkzZR77kF2ETVJ9b6icB24Gjs19bZsQAPOpb/6MrvJVqb6cCVpL4u+vDeh55S\nUXeijY6fpeNZ3w44YIxZD6xxPHeZMeYvoDN21OJtVzYBPsaOOPZPqKGI3Iv9RvijMWZ8PPs/Yoz5\nKpF9lsR+q9zibKUx5kJiQWO/6Ud9y8UYsw2bDPUVkXKONkOBAkC3hDpyjNr0xSZq7zqJZzkwE2gk\nItVciC3FOU4zNQCmO+KJ7R3gT6CfiGRJgV2WAk4ZY07FXpHA78cfm0gsBy5jRzCcMdgRmruAm6fB\nRCQT0AY7chd71MF5R8bsAy7geB8oFR9NONSdKOoP46XYKxy1D62wf3DB/lF+0jGU7jJjzFbsaQmn\nNQ1OHMMOU3dNpM6hMfb/7ZykxOPECcfPZ0UkWzL7KOP4eTHasnewHz4TRaQKdrj9E2PMgUT6egx7\nSmquMSYynjZRw/jNkhnv7WqO/aCe5WylMSYC+77JC9SKtTqriNwV65FYnc0JoKiIPOFKcI6EqAwQ\nYIwJAxaRcLJ8HNiKTVKiNAFyAfNc2adjv3mxx3wxsbbxbB/7dblLRHImpy+VtmnCoe4Evo4/YgVF\n5DHsUK7BfhOMrTmQG4iqvfgOO5T/fDL2uw8oICI5XGw/FFsf0S+BNlEjB/uiLxSRTLH+YOdLaEfG\n1lJ8jT1VcUpEvhWRPiJSNoHNcjr6LiwiTYDPsEPp30br9yrwBrbuYhU2kRqSUCwOFbC/kzgFstHs\ncfws70J/7lAhVhzO7MEmRbFjfAlbGxL1OE/i76lxQCiwVkR2isgYEXk6gQSxPXDSGPOL4/k8oIKI\nVExgH3OBltFGZF4A1psEam24lTzld4w2LcB+lsxP5HicyUHM1yXqEbv2SaUDmnCoO8Fg7B+xs9hi\nxLLY2ovFTtq+AOwwxhwFMMZcww5PJ+m0isM1x0+Xvq0ZY45hvz13E5FC8TTLFavvKE2I+Qf7uAv7\n64ytwziKPef/CXBQRNaIyD1ONpnm6Ps0tv4hG7Y+YmesfhdhC2nzAq+ZaAWkCYh6ja4m0CZqXa4E\n2rjT7cT4Pba4OepRH1hJAhyjQpWx74ni2ETuO+CciLwcva2IZADaEnNkYh3295XQe3c+tri6mSMx\nbkbio2dRydN57AhJTWC0MeazRLZz5gZQj5ivzVMkcmpReSe9SkXdCSZhv4VlBZ7E/uGO894XkdzY\nD+7PHVcIRNkCtBKRMsaYw0nYb9TIRkIfULF9BHTA/sHt7WR9VF+xR002Yf9Qg60bcXq5Y2zGmAnA\nBMeweC3gFexrEIAtFo1usGM/EdjTJgcTOP3xK/b0T6ArcXDruBJKzlz5wHfG1SsmEhM9xivxtIkv\nxlPGmHVJ3aHj/dZJRAQ7wtIM+/udKCJHo/XZEFsr82u0965gi479iWfUzBhzQUTWYBPt7NgvoQsT\nCet7YDz2db0K7DfGJHjFTQIijDE/JXNb5WU04VB3gj+j/WH+QUQigREi8lOsb+dtsYWeb2ELGKMz\n2G+Kg5Ow3weB845REpcYY46JyGzsKMcIJ00OYT9IHgR+i7bdRew3WuKbDyKR/V4ClgHLROQn4HER\nKeoogI2yLzkfmi46iD2uikB88zdEnRqIXg8SjB1pccY3WpuUcBBo4YhjUzxtKmHfK4nVrCSJMcYA\n+4H9IrIVm0i0w/E7xyYMzk4TGrCXujqKoJ2ZC0zGXnL7o+O0WEKSlTwppadU1J1oKPab2Uexlr+A\n/RB/FlupH/2xlvgr/uMQkZrYq2ASHDaPx0fEX8vxI3aEITmneFy1w/EzzkRkbrQJ+A94wfFt3plO\n2A/QZdGWncDOreJMOUf7E/GsT6pl2KSoo7OVjnlEXsAWI29OoX06E+P3I3ZCtBbYuofY79tnsacS\nE3q/LMbW4lTnVrG0UilOEw51xzHGXMbONdAwqqDOcbnp48A3xphFsR/YQtMyIlI1sf5FpDgwAzuH\nwqhkxHcUOxFXd6BwrHV/YWspGovIa/F0kej/axEpJCJxii8dl0U+hf0ASsrpo9viGJIfhU0SPnYS\nV1NswrHCGLM92qofgHtF5OlY7TMDL2PrDGLUmNxGjL9gL5Pu4ognto+xV4mMcLFuJUEi8piIOBuF\njtr3IcfPVtjRnPHxvHeXAa0dv9s4jJ3U7hXsRGJLbzdupeKjp1TUneoz7AyT/bHfSqO+Acb3B/cH\nbo0s/BptuZ+ItMN+yOfBzjTaGvuB3d4xR0FinH2jH4qt5ShLrCtSHHGXAMaJyPOOmM8D+bF1GM2x\nw/8JuRfYLiLrsKM3Z7GTgfljTxmMMcb860LsKWk4tkjybccI0bfYosLa2Nd9P3Z+k+gmAS8CC0Rk\nOrALO7fEc8AD2EnbwlMwxo7YpOM7sdPeb8SehmuFrXmZRzKSzHj0w76/FnHr6h0/7PviAnbmV7Cv\nzUXglzg9WEuws842xRadQqz3nDHG6aW+t6mMiAxwsnyXMeYHx78zOv7/OLPoNmpDVBqkCYdKDxIq\nCjTO1htjzojIXKCd2PuBvACcMMb8Fruto/1lEdkEPCcifaL1/bzjEY4tJPwT+BSY6GzCpnhidRbf\nERGZxa3TCNHX3RCRRtgPng7A/7BXRfyHvSzzFeJOox3b79hp1JsArwKFsLUO+4CXjTHTXYg7RTkK\nUNuKSEfs6MSHQGbsfCYfAJ/G/gAyxgSLyOPA+9grbTpjk5RAoLExZnViu01ijGcdl4K+hT1d0Qr7\nu98LdDLGzI5nH8l5/YZi35d1HD99sbOIzsXO5npSRApgC6HnOuo8nFmLnR69HbcSDlficRZ3Uo6l\nLPZ3GNtUbAIPNlmL7726ETjp4r6UF5D436NKKaWUUikjTdVwiEhtEVki9g6EkbHPyzrafCgip8Xe\nXXO142ZF0ddnEZEvROSCiFwVkYVJnSVSKaWUUikrTSUc2OvAd2OnQ3Z2l8x+2ImKumHvhnkdWBlr\niuCx2HOVrbFFgPcQbSZEpZRSSqW+NHtKxTFXQktjzJJoy05j78swxvE8F/Zuh52MMfMdz/8Bno+a\nRdIxVfNBoEas6nallFJKpZK0NsIRL0dhX2FsARQAxpgrwDbs1LoAj2ALYaO3+R1beFQTpZRSSnmE\n1yQc2GTDYEc0ojvHrbkKCgGhjkQkvjZKKaWUSmV6WSz29sjYexEcJ+WmQVZKKaXuBFmxcwOtdNxm\nwSlvSjjOYierKUTMUY5C2Ml+otpkFpFcsUY5CjnWxachid8hUSmllFLxa0cC0+N7TcLhuKnVWeyt\njPfCzaLR6sAXjmaB2El46mHvDxBVNFqM+GfhA8etvGfPnk358nFme45X7969GTNmTJKOI7W2Aahf\nvz6rVyc279Ht7yu1tknLx5Pc7dLyMaXW8SR3X2n5mPR9l7rb6Psu+ftJiW0OHjxI+/btwfFZGp80\nlXCISHbsvQiipt0tJSKVgH8d95AYCwwUkcPYAxsCnMLeLhljzBURmQp8KiKXsDfoGgdsTuQKlWCA\n8uXLU6VKFZfjzZ07d5Lap+Y2AJkyZUqz8SVnm7R8PMndLi0fU2odT3L3lZaPSd93qbuNvu+Sv58U\n3ibBkoQ0lXBgrzL5iVvT5452LJ8JvGiMGem4M+JE7H0rNmKnLw6N1kdv7D0vFmKnzV0BxHeTq9vi\n7++fZrcBKFKkSKrsK7W2ScvHk9zt0vIxpdbxJHdfafmY9H2Xutvo+y75+0nN9yrGmDv+AVQBTGBg\noElPmjdv7ukQUlR6Ox5j0t8xpbfjMUaPyRukt+MxxruOKTAwMGqQoIpJ4LPWmy6LVUoppZSX0oQj\nHUv2sFcald6OB9LfMaW34wE9Jm+Q3o4H0ucxpdmpzVOTiFQBAgMDA+Mtnjl58iQXLlxI3cDuUPnz\n56dYsWKeDkMppZQLdu7ciZ+fH4CfMWZnfO3SWtFomnTy5EnKly9PUFCQp0O5I/j6+nLw4EFNOpRS\nKh3RhMMFFy5cICgoKMnzdKiki7qe+8KFC5pwKKVUOqIJRxIkdZ4OpZRSSllaNKqUUkopt9OEQyml\nlFJupwmHUkoppdxOEw6llFJKuZ0mHEoppZRyO004FDNnzsTHxwdfX1/OnDkTZ33dunWpWLHizecl\nSpTAx8eHXr16xWm7fv16fHx8WLRokVtjVkop5V004VA3hYSEMHz48DjLRSTOcxFh8uTJnD17NtH2\nSimllCYc6qbKlSvHm0TE9sADDxAREeE0QdHp8pVSSsWmCYcC7KjEu+++S3h4uNMkIrYSJUrQsWNH\nlxMUpZRSdzZNONRNJUuWTFISMWDAAMLCwlxKUJRSSt3ZNOFQMUQlESNGjEi0bYkSJejQoQOTJ0/m\n3LlzqRCdUkopb6X3UnGDoCA4dMi9+yhXDnx9U77fkiVL0qFDByZNmkT//v0pVKhQgu0HDhzIrFmz\nGD58OGPGjEn5gJRSSqULmnC4waFD4Ofn3n0EBoK77iOXlCQidoKilFJKOaMJhxuUK2cTAnfvw11K\nlixJ+/btmTRpEv369Uu0/YABA5g1axYjRoygRYsW7gtMKaWU19KEww18fd03+pBaBg4cyOzZs12q\n5ShVqhTt27dn4sSJVKtWLRWiU0op5W20aFQ5FT2JcOWKlYEDBxIaGsrIkSN14i+llFJxaMKhAOeT\ndUVdsfL7778nun1UgrJ79253hKeUUsrLacKhAOfTkZcuXZoOHTrcnMo8eltn7QcOHEjGjBl1hEMp\npVQcWsOh6NSpE506dXK6btq0aUybNi3GsqNHjzptW7p0aUJDQ1M8PqWUUt5PRziUUkop5XaacCil\nlFLK7TThUEoppZTbeV3CISI+IjJERI6KSJCIHBaRgU7afSgipx1tVotIGU/Eq5RSSikvTDiA/kB3\noAdQDngbeFtEXo9qICL9gNeBbkA14DqwUkQyp364SimlVPrlbFoFZ7zxKpWawPfGmBWO5ydF5AVs\nYhGlFzDEGLMMQEQ6AueAlsD81AxWKaWUSs/eXv22S+28cYRjC1BPRO4DEJFKQC3gB8fzkkBhYG3U\nBsaYK8A2bLKilFJKqRSw/vh61h1b51JbbxzhGA7kAg6JSAQ2aRpgjJnnWF8YMNgRjejOOdYppZRS\n6jYZY+i3ph/lC5TnIAcTbe+NCcdzwAvA88ABoDLwmYicNsbMup2Oe/fuTe7cuWMs8/f3p2zZsrfT\nrVJKKZUuBAQEEBAQAMCZq2fYcXoHD+V5yKVtvTHhGAkMM8YscDzfLyIlgHeAWcBZQIBCxBzlKATs\nSqjjMWPGUMXJbV537tx520ErpZRS3sQYQ0hECJkzZMZHbAWGv78//v7+hEWE8cCXD9AoXyOGlh+K\nn59fov15Y8LhC0TEWhaJox7FGHNMRM4C9YC9ACKSC6gOfJGKcSqllFJp1rFLxxiyYQj/BP3D5eDL\nXA65zOXgy1wPu86NsBsEhQVhMJTJV4Zv2nxDlbtvfSGfsnMKh/89zMK2Cwn/O9yl/XljwrEUGCgi\np4D9QBWgNzAlWpuxjjaHgePAEOAU8H3qhqqUUkqlPZEmko7fdeTPi39SrUg1iucpTu4sucmdJTc5\nMucgW6Zs+GbyJWvGrIzbNo5Hpz7KuMbj6FqlK9fDrjN4/WA6VOpAxUIV2fm3a2cBvDHheB2bQHwB\nFAROAxMcywAwxowUEV9gIpAH2Ag0NsboncXi8dtvvzF48GB27NjBuXPnuOuuu6hQoQJPP/00r79u\npzgpUaIEJ0+evLlNgQIFKFu2LH369KFly5YcP36cBx54gJYtWzJnzpw4+/jmm2/w9/fniy++4NVX\nX021Y1NKKRXT1J1T2XRyE+s6ruOJkk8k2LbtA23pvaI33Zd1Z9PJTdyT8x4uBV/iw7ofJmmfXpdw\nGGOuA30cj4TaDQIGpUJIXm/Lli08+eSTFC9enG7dulG4cGH++usvtm7dyrhx424mHCLCww8/TN++\nfTHGcPr0aSZOnEirVq346quv6NatGx988AHvvPMOXbp04amnnrq5j6tXr9KnTx9q1qypyYZSSnnQ\n2WtneXvN23Su3DnRZAMga8asTGg2gceKPUa3Zd0ICgvirZpvUTxP8STt1+sSDpXyhg4dSp48edix\nYwc5c+aMse7ChQsxnhcpUgR/f/+bzzt06ECZMmUYM2YM3bp146233mLOnDn06NGD3377jSxZsgDw\n7rvvcuHCBVatWuX+A1JKKRWvPiv7kNEnI6Pqj0rSdu0qtuPhux/mi+1fMKD2gCTv1xsn/lIp7OjR\nozzwwANxkg2A/PnzJ7htoUKFKF++PMeOHQMgQ4YMTJo0iaNHj/LRRx8BEBgYyIQJE+jbty8PPPBA\nyh+AUkopl6w4vIKAfQGMbjCau3zvSvL2FQpU4IumX5A3W94kb6sJh6J48eIEBgayf//+JG8bHh7O\nX3/9xV133XrjVq9enVdffZVPPvmEffv20b17d0qVKsX777+fkmErpZRKgqCwIHos70G9kvXoULFD\nqu9fEw5F3759CQoKonLlytSqVYv+/fuzevVqwsPjXuoUFhbGxYsXuXjxInv37qVDhw6cP3+etm3b\nxmj38ccfkz9/furWrcuuXbv48ssvb55eUUoplTqMMRz/7zjz9s3D/1t/Tl89zYSmExCRVI9Fazjc\nICgsiEMXDrl1H+Xyl8M3k2+K9PXUU0/xyy+/MGzYMFauXMnWrVsZOXIkBQoUYMqUKTRv3vxm25Ur\nV1KgQIGbzzNmzEjHjh0ZPnx4jD5z5szJ2LFjadu2Lf7+/jEKSJVSSrnXsUvHeHvN22w4sYHz188D\nUDpvaSY0ncB9d93nkZg04XCDQxcO4Tcp8VnXbkdgt8AYk7DcLj8/PxYuXEh4eDh79uxh8eLFjBkz\nhmeffZbdu3dTrlw5AGrUqMHQoUMB8PX1pXz58uTKlctpn1WrVr3Zt1JKqdSx9PeldPyuI3my5qFr\nla7UuLcG1YtUp0D2Aolv7EaacLhBufzlCOwW6PZ9uEPGjBnx8/PDz8+P++67jy5durBgwQLee+89\nwBaRPvFE4pdRKaWUSl3hkeG8t+49hm8eTouyLZjRcgZ5subxdFg3acLhBr6ZfFN09MFTHnnkEQDO\nnDnj4UiUUkrF50bYDfae20v/tf3ZeGIjI58aSd9H+3qkTiMhmnAofv75Z+rWrRtn+fLlywFunk5R\nSimVfMYY/rryF8aYJE+aFduS35ew4MACdp3ZxaELh4gwEdyd427WdVrH48UfT6GIU5YmHIqePXsS\nFBTEM888Q7ly5QgNDWXz5s3Mnz+fUqVK0blzZ0+HqJRSbhUcHkwmn0xk8MngdH1QWBCDfh5Ed7/u\nlM5X2uV+1x1bx5Lfl7Dn3B72nN3DpeBLZJAMDHx8IAMfH0hGn6R/DF8IukDr+a0pl78ctYvV5o3q\nb/Bw4Yd5qNBDZM2YNcn9pRZNOBSjR49mwYIF/Pjjj0yePJnQ0FCKFSvG66+/zoABA24WhYpIkofo\nkrONUkqllojICKbumsqAdQMolbcUS/2XUjB7wRhtgsKCaB7QnHXH1vHvjX+Z8vSUeHqL23eb+W3w\nzeRLzaI16VOzD5ULV2bH6R18tOEjVh1ZxexWsymVt1SSYl50cBGRJpK1HdfGiTUt04RD0aBBAxo0\naJBou6NHjyap3+LFixMREZHcsJRSKlm+PfAtZfOX5cGCDybYbuOJjfRa0YtdZ3fh/6A/Px3/iUen\nPsqK9isok68MYOsjWsxrwdZTW2lRtgXf7P+Gzxp9RvbM2RONY8fpHVwKvsRS/6XUKlbr5vJm9zej\nYemGtF/cnkpfVeLzxp/TqVInl7+czds3j3ol63lVsgE68ZdSSql05Mi/R2izoA1VJlZhyPohhEWE\nxWmz//x+/L/15/EZj5PRJyNbX9rK3NZz+eWlX8jok5GaU2uy7dQ2gsODaflNSzaf3MzyF5YzpuEY\nroVe49uD37oUy6ojq8iVJRfV760eZ13NojXZ3X03bSq0ocv3Xfhm/zcu9Xnm6hl+Pv4z/g/6J944\njdGEQymlVLrx1Y6vyJs1L2/VfIvB6wdTbUo1dp/djTGGVUdW0Wh2Ix6c8CAbTmxgeovpbH15682E\noESeEmx5aQtl7yrLEzOf4ImZT7DhxAaWvbCMuiXqUjJvSeqWqMuM3TNcimXV0VXUK1kv3jqNnFly\nMr3FdBqVacSwTcMwxiTa5/z988nok5Fnyj/j8muSVmjCoZRSKl0IDg9m+u7pdK7cmWFPDWPby9uI\niIyg6uSqlB1floazG3L++nlmPzObY72O0blyZ3wk5sdgvmz5WN1hNU3vb8rus7tZ6r+UJ0s+eXN9\nl8pd+On4Txy7dCzBWC4HX+aXv36hQenET1e//ejb7D23l1VHEr+b9rz982h8X+M0Nb+GqzThUEop\nlS4s2L+Aizcu8sojrwDgd48fO7rt4P3H3+eRex7hp04/EdgtkHYV25E5Q+Z4+8mWKRvz28znXN9z\nPFUq5m0ZWpdvTY7MOZi5Z2aCsfx0/CciTAQNSzdMNO66JepS9Z6qjNg8IsF2xy4dY+uprTz/wPOJ\n9pkWadGoUkqpNOlC0AVe++E1boTdIF+2fOTNmpd82fLxdNmnqVS4Upz2E3ZM4KlST3H/XfffXJY5\nQ2beq/NekvctIuTKEve2DdkzZ6dthbbM3DOT9+u8H2eEJMqqI6sok68MJfOWdGlfb9d6m2cXPMuv\nf/9K1SJVnbabv38+2TJmo3nZ5k7Xp3U6wqGUUirNCY0IpfX81qw7tg6D4c9//2TlkZV8uvVT6s6s\ny9FLMa+a2312N7+c+oVXH3nV7bF1ebgLx/87zvrj6+Nts+rIKhqUSvx0SpRnyj1DmXxlGLllZLxt\n5u2fR/OyzcmROUeS4k0rNOFQSimVphhj6LG8B1tPbeX7579nqf9SNr+4mQOvHeBYr2Pky5aP1vNb\ncyPsxs1tJvw6gXty3sPTZZ92e3y1itbivnz3MX33dKfrj/x7hCOXjtCwTOKnU6Jk8MlA35p9+fbA\ntxz+93Cc9YcuHGL32d1eezoFNOFQSimVxozdOpapu6YyuflkHi36aIx1ebLmYVHbRRy6cIgeP/TA\nGMOVkCvM+W0O3ap0S9bMnUklInSu3JmFBxZyJeRKnPWrjqwio09G6paom6R+O1bqSIHsBRi9ZXSc\ndfP2zSNXllw0vq9xcsP2OK3hSIKDBw96OoR0T19jpe5sP/z5A31X96VfrX50rNTRaZtKhSsxsdlE\nOn3XiZr31iQsIozg8GBervJyqsXZoWIHBq4byIL9C3ipyksx1q06uoqa99Z0WgOSkGyZsvFGtTcY\nsmEIg+oOolCOQoAd8Zm3bx7PlHsmTU9dnhhNOFyQP39+fH19ad++vadDuSP4+vqSP39+T4ehlEpl\n+8/v5/mFz9Ps/mZ8XO/jBNt2rNSRbae20fPHnhTMXpAW5VpQJFeRVIoUiuYuSoPSDRixeQQtyrUg\nv6/9mxUWEcbao2vpV6tfsvrtUbUHwzYNo3lAc4rkKkJoRCg3wm7w+8XfGdtobEoeQqrThMMFxYoV\n4+DBg1y4cMHTodwR8ufPT7FixTwdhlIqFZ28fJJGcxpRMm9JZj8zO96rP6Ib02gMO8/uZOuprUxv\n4byewp3GNR5H7em1aTi7Ies6riN31txs+3sbV0OvujT/hjN5s+VlVINRLDywkNCIUDL5ZCK7b3Z6\nVutJvZIBzgnoAAAgAElEQVT1UvgIUpcmHC4qVqyYfggqpVQyRZpItp7aSvUi1ePckfWf6//QYFYD\nMvlkYkW7FeTMktOlPjNnyMzi5xaz9PeYk3Ollvvvup/VHVZTd0Zdms5tysr2K1l1ZBX5suWjyt1V\nkt3vK4+8cnMukfREi0aVUkq53ditY6k1rRY1ptbg179/vbn8ashVmsxtwqXgS6zqsIq7c96dpH4L\n5yhMV7+uLo2IuEPFQhVZ0X4Fe87toeU3LVn+53Lql6of723u72SacCillHKrc9fOMXj9YFqUbUFY\nRBjVp1Sn29JunL56mlbzW/H7hd9Z0e7WHVq9TbUi1Vjmv4xNJzex88zOZJ9OSe804VBKKeVWA9YN\nIINkYOrTU9nRbQfjGo9j/v75FBtTjI0nNrLEfwkP3/2wp8O8LXVK1GHxc4t55J5HaHpfU0+HkyZ5\nZcIhIveIyCwRuSAiQSKyR0SqxGrzoYicdqxfLSLemTorpZQXCzwdyLRd0xjyxBDu8r2LjD4Zeb3a\n6/zR8w96VuvJ4ucWJ3m+irSqUZlG/Nr115uXs6qYvC7hEJE8wGYgBGgIlAfeAi5Fa9MPeB3oBlQD\nrgMrRST+u/UopZRKtsDTgQSFBcVYZoyh14pePFDwAbo/0j3GuoLZCzKm0RivnshKJY3XJRxAf+Ck\nMeZlY0ygMeaEMWaNMSb6vYJ7AUOMMcuMMfuAjsA9QEtPBKyUUumVMYZBPw/ikcmPUG58Oebtm4cx\nBoCAfQFs/msznzX6LFVmAFVpmzcmHM2BHSIyX0TOichOEbk5vZyIlAQKA2ujlhljrgDbgJqpHq1S\nSqVTEZERvPbDawxeP5h3H3uXqkWq4v+tP7Wn12bDiQ28vfptWpVv5ZFLVlXa440pZyngVWA0MBR7\nymSciIQYY2Zhkw0DnIu13TnHOqWUUrcpODyY9ovas/jQYqY0n3Jzeu91x9bRa0Uv6syoQ5YMWRhV\nf5SHI1VphTcmHD7AdmPMe47ne0TkQeAVYJbnwlJKqTvDlZArtJjXgq2ntrL4ucUx7tD6ZMkn2dV9\nF9N3TSdXllyUzFvSg5GqtMQbE44zQOw7fB0EWjn+fRYQoBAxRzkKAbsS6rh3797kzp07xjJ/f3/8\n/f1vJ16llEo3roZcpdHsRhz45wCr2q+idvHacdpk9MlIV7+uHohOuVtAQAABAQExll2+fNmlbSWq\nuMdbiMgc4F5jTJ1oy8YAVY0xjzmenwY+McaMcTzPhU0+OhpjFjjpswoQGBgYSJUqyZ+OViml0rPr\noddpPKcxe87tYU2HNVQtUtXTIak0YOfOnfj5+QH4GWN2xtfOG0c4xgCbReQdYD5QHXgZiJ5OjwUG\nishh4DgwBDgFfJ+6oSqlVPpwI+wGT897ml1nd7Gy/UpNNlSSeV3CYYzZISLPAMOB94BjQC9jzLxo\nbUaKiC8wEcgDbAQaG2NCPRGzUkp5s+DwYFp+05Ktp7byY7sfebToo54OSXkhr0s4AIwxPwA/JNJm\nEDAoNeJRSqn06ELQBRYfXMzknZP57fxvLH9hOY8Xf9zTYSkv5ZUJh1JKKfe4HHyZhQcWMv/AfNYe\nXYvBULdEXVa0W0GdEnUS70CpeGjCoZRSd7hIE8mGExuYtmsaCw8sJCQihDrF6zC+yXhalW9FwewF\nPR2iSgc04VBKqTvYisMreO2H1zh66Shl8pXhvcffo2OljhTJVcTToal0RhMOpZS6Q4WEh9B1aVeK\n5y7OjBYzeKzYY4iIp8NS6ZQ33ktFKaWUC7ae2krXJV0JDg92un7armn8feVvJjefTO3itTXZUG6l\nIxxKKZUO/X7hd5rObcq/N/6lYPaCDK03NMb6kPAQPt70Mf4P+VO+QHkPRanuJDrCoZRS6cw/1/+h\nydwmFMpeiLdqvsXILSPZc3ZPjDZTd03l9NXTvPf4e/H0olTK0oRDKaXSkagZQa+HXueHdj/wcb2P\nKZe/HC8vfZnwyHDAMbqx8WP8H/SnXP5yHo5Y3Sk04VBKqXQiIjKC9ovbs/fcXpa9sIwSeUqQOUNm\npjSfQuDpQMZtGwfY0Y0z187o6IZKVZpwKKVUOtF/TX++O/Qd81rP45F7Hrm5vPq91Xmj+hsMXDeQ\ng/8c5OONH/PCQy9QNn9ZD0ar7jSacCilVDqw8MBCRv0yitENRtO8bPM46z968iMKZi9I7em1OXPt\nDANrD/RAlOpOpgmHUkp5uT8u/sGL379I2wfa0qt6L6dtcmTOwcRmE7l446KObiiP0MtilVLKiwWF\nBdF6fmvuyXkPU5pPSXAujYZlGrL8heXUuLdGKkaolKUJh1JKeSljDK8uf5Wjl46y/eXt5MySM9Ft\nmtzXJBUiUyouTTiUUspLTdk5ha/3fM3XLb/mgYIPeDocpRKkNRxKKeWFjl46Ss8fe9LdrzsdKnXw\ndDhKJUoTDqWU8kLDNg4jT9Y8fNrwU0+HopRLNOFQSikvc+K/E8zYM4P/Pfo/fDP5ejocpVyiCYdS\nSnmZ4ZuGkydrHl555BVPh6KUyzThUEopL/LX5b+YumsqfWv2JXvm7J4ORymXacKhlFJeZMTmEeTM\nkpMeVXt4OhSlkkQTDqWU8hJ/X/mbyTsn06dGH5fm3FAqLdGEQymlvMQnWz7BN5Mvr1d73dOhKJVk\nmnAopZQXOHvtLBMDJ/Jm9TfJnTW3p8NRKsk04VBKKQ/78+KfPLfwOc5fPx9vmwFrB5A5Q2beqP5G\nKkamVMrRqc2VUsrDhmwYwvz98/kv+D9+bPcjPhLzu+DCAwuZtnsak5pNIm+2vB6KUqnboyMcSinl\nQX9f+ZuAfQG0Kt+K1UdW8/HGj2Os/+vyX3Rd2pXW5VvzcpWXPRSlUrdPRziUUsqDxm8fT7aM2Zj2\n9DQeKvgQH/z8AbWK1uKJkk8QERlB+8XtyZE5B5OaT0rw1vNKpXVePcIhIv1FJFJEPo21/EMROS0i\nQSKyWkTKeCpGpZSKz7XQa3wV+BVdq3Qld9bcvPf4ezxR4gn8v/Xn7LWzDNs0jI0nNjL7mdnky5bP\n0+EqdVu8NuEQkapAN2BPrOX9gNcd66oB14GVIpI51YNUSqkEzNg9gyshV24WgmbwycCcVnMQERrN\nbsSgnwcxoPYA6pSo4+FIlbp9XplwiEgOYDbwMvBfrNW9gCHGmGXGmH1AR+AeoGXqRqmUUvGLiIxg\n7NaxtKnQhuJ5it9cXihHIQJaB/Db+d+oWqQq79d534NRKpVyvDLhAL4Alhpj1kVfKCIlgcLA2qhl\nxpgrwDagZqpGqJRSgDGGNUfXcOnGpRjLl/y+hCOXjvBWzbfibFO3RF02ddnEUv+lZMqQKbVCVcqt\nvC7hEJHngcrAO05WFwYMcC7W8nOOdUoplaoGrx9M/Vn1KT2uNKO2jCI4PBiAT7d+Sq2itahWpJrT\n7WoWrUl+3/ypGapSbuVVV6mIyL3AWOApY0yYp+NRSqmEjN4ymsHrBzOg9gAuBl2k/5r+fL79czpX\n6symk5tY1HaRp0NUKtV4VcIB+AEFgJ1y6/qwDMDjIvI6UA4QoBAxRzkKAbsS67x3797kzh1zymB/\nf3/8/f1TIHSl1J3kqx1f0Xd1X9597F0+evIjAN6s8SbvrnuXDzd8SKm8pXi67NMejlKppAkICCAg\nICDGssuXL7u0rRhj3BGTW4hIdqB4rMUzgIPAcGPMQRE5DXxijBnj2CYXNvnoaIxZEE+/VYDAwMBA\nqlSp4rb4lVJ3htl7Z9NxcUd6VuvJ2EZj48yfEXg6EN9MvpQvUN5DESqVcnbu3Imfnx+AnzFmZ3zt\nvGqEwxhzHTgQfZmIXAcuGmMOOhaNBQaKyGHgODAEOAV8n4qhKqXuUAG/BdD5u850qdyFMY3GOJ2s\ny+8ePw9EppRneVXCEY8YQzTGmJEi4gtMBPIAG4HGxphQTwSnlLozGGMYtWUUb695m46VOjKp+aQ4\n90RR6k7m9QmHMeZJJ8sGAYNSPRil1B0pIjKCN358gy93fMnA2gP58IkPdRpypWLx+oRDKaU8KSgs\nCP9v/Vn+x3ImNZtEV7+ung5JqTRJEw6llEqmSBNJs7nN2P73dpb4L6HJfU08HZJSaZYmHEoplUzT\nd03np+M/sbbjWp4sGefsrlIqmmQlHCLiA5QBChJrtlJjzIYUiEsppdK0f2/8S781/ehQsYMmG0q5\nIMkJh4jUAOZi58OIXRVlsBNxKaVUuvbu2ncJiwxjZP2Rng5FKa+QnBGOr4AdQFPgDLEuS1VKqfTu\n179/ZVLgJD5r9BmFc+htmpRyRXISjvuANsaYwykdjFJKpXURkRH0+KEHlQpX4tWqr3o6HKW8RnIS\njm3Y+g1NOJRSd5wpO6ew4/QONr+4mYw+WnevlKuS87/lc2C0iBQGfgNi3LXVGLM3JQJTSqm0ZteZ\nXbyz9h26VO7Co0Uf9XQ4SnmV5CQc3zp+Tou2zGALSLVoVCmV7lwMusjAdQOZGDiRCgUqMOKpEZ4O\nSSmvk5yEo2SKR6GUUmlQeGQ4kwInMXDdQCJMBJ82/JTXqr5GpgyZPB2aUl4nSQmHiGQCPgCGGGOO\nuSckpZRKG3r+0JOvAr/ixcovMuypYRTMXtDTISnltZJ0K0NjTBjQ2k2xKKVUmnHm6hmm7prKsHrD\nmNpiqiYbSt2m5Nw7+TugZUoHopRSacn47ePJkjELrzzyiqdDUSpdSE4Nx5/A+yJSCwgErkdfaYwZ\nlxKBKaWUp1wPvc6EHRN4+eGXyZM1j6fDUSpdSE7C8RLwH+DneERnAE04lFJebcbuGVwOuUyvGr08\nHYpS6UaSEw5jjF6lopRKtyIiIxizdQxtKrShRJ4Sng5HqXRDp8lTSqlolvy+hCOXjjC39VxPh6JU\nupKcu8VOS2i9MebF5IejlFKeNfqX0TxW7DGqFanm6VCUSleSM8KRN9bzTMCDQB5g3W1HpJRSHrLt\n1DY2/7WZxc8t9nQoSqU7yanheCb2MhHxASYAR1IiKKWUuh0Xgi4wZP0QelTtQdn8ZV3aJtJEMnLL\nSMrkK0Pz+5u7OUKl7jzJmYcjDmNMJPAp0Dsl+lNKqeQKCgui2dxmjNs+jmpTqvH9oe8TbH/pxiXG\n/DKGcuPLsejgIvrX6k8GH70llFIpLUUSDofSaBGqUsqDwiPD8f/Wn9/O/8a6jut4qtRTtPymJe+t\ne4+IyIib7ULCQ1h9ZDUvff8SRT4tQr81/XjknkfY2GUjLz6sZWhKuUNyikY/jb0IuBtoCsxMiaCU\nUiqpjDH0/KEny/9YzhL/JTxR8gnqlqjLiM0jGLBuADvO7KBl2Zb8ePhH1hxdw/Ww6xTPXZyBjw/k\npYdfolCOQp4+BKXSteSMSDwc63kk8A/wFjFvWa+UUqlm+KbhfBX4FVOaT6HJfU0AEBH6P9afKndX\nwf9bf1YdWcWjRR9l4OMDaXJfEx4q+BAi4uHIlbozJKdo9Al3BKKUUsn19Z6veXfdu3xQ5wNeqvJS\nnPUNSjfgeK/jhEeGkzdb7AvtlFKpIck1HCKyTkTi3FxARHKJiF4Wq5RKVSsOr+ClJS/x0sMv8UGd\nD+JtlzNLTk02lPKg5BSN1gUyO1meFah9W9EopdK1f67/w5Lfl3Ax6GKK9Lf97+20nt+axmUa81Wz\nr/T0iFJpmMunVESkYrSnFUSkcLTnGYBGwN8pFVgCcbwDPAOUA24AW4B+xpg/YrX7EHgZOyHZZuBV\nY8xhd8enlHIuIjKC1vNbs/HkRgShcuHK1CtZj4ZlGlKvZL0kJwt/XPyDpnObUqlQJea1mUdGH71I\nTqm0LCn/Q3dj7wZrcD6j6A2gZ0oElYjawOfADmz8w4BVIlLeGHMDQET6Aa8DHYHjwEfASkeb0FSI\nUSkVy6gto9h0chMLnl3AtdBrrD22ljm/zWHUL6OY13oezz34nMt9nbl6hoazG1LAtwDLXliGbyZf\nN0aulEoJSUk4SmIvgT0KVMNemRIlFDhvjIlwtmFKMsY0if5cRDoD5wE/YJNjcS9giDFmmaNNR+Ac\n0BKY7+4YlVIx7Tyzk/d+eo9+tfrRpkIbADpX7owxhsdnPM7UXVNdTjjWHVtHj+U9CIsIY0PnDeTL\nls+doSulUojLNRzGmBPGmOPGGB9jzA7H86jHmdRINuKRBzvq8i+AiJQECgNroxoYY64A24CanghQ\nqTtZUFgQ7Ra148GCDzL4icEx1okInSp1Ys3RNZy6cirBfg78c4Bmc5tR7+t65MuWjzUd11A0d1F3\nhq6USkHJmmlURDqIyGYROS0ixR3LeotIi5QNL9E4BBgLbDLGHHAsLoxNQM7Fan7OsU4plYr6re7H\n8f+OM7vVbDJniFtv/myFZ8mSMQtz9s5xuv210Gt0X9qdhyY8xMELB1nw7AI2v7iZcvnLuTt0pVQK\nSs5lsa9i75vyA3Z0IeqmA5eAN1MuNJd8CVQAnk/l/SqlXPDjnz8y/tfxfFL/EyoUqOC0Te6suWlZ\nriUz98zEGBNn/eCfBzNr7yxGNxjNwdcO0qZCG70aRSkvlJyy7p5AV2PMdyLSP9ryHcColAkrcSIy\nHmgC1DbGnIm26iy21qQQMUc5CgG7Euqzd+/e5M6dO8Yyf39//P39UyRmpe4kN8Ju0HVpVxqWbshr\nVV9LsG2nSp1ovK8xO07voGqRqjeXn/jvBOO2j2NA7QG8WSO1v88opWILCAggICAgxrLLly+7tG1y\nEo6SOP/gDgGyJ6O/JHMkGy2AOsaYk9HXGWOOichZoB6w19E+F1Ad+CKhfseMGUOVKlXcE7RSd5jx\n28dz7vo51jdZn+iIRP1S9bk7x93M3DMzRsLx3k/vkS9bPvrU7OPucJVSLnD2JXznzp34+fklum1y\najiOAZWdLG8EHExGf0kiIl8C7YAXgOsiUsjxyBqt2VhgoIg0F5GHgK+BU0DC96lWSqWIy8GXGb55\nOC8//DKl85VOtH0Gnwy0r9iegH0BhEbYK9d3ndnF7L2zGVRnEDky53B3yEopN0vOCMenwBeOD3gB\nqomIP/AOdqItd3sFWxT6c6zlXbCJBcaYkSLiC0zE1plsBBrrHBxKpY5RW0ZxI+wG79V5L866y5fh\n5En7OHECrl6Frl2hY6WOfLLlE5b/sZxnyj9DvzX9uP+u+53eGyUtCwmxx1iwoKcjUSptSc7N26aI\nyA3sZFq+wFzgNNDLGDMvheNztn+XRmWMMYOAQW4NRikVx7lr5xizdQyvPfIGE0fdw/bt8M8/tx43\nbtxqmzEjiMDWrbBo0YNUubsKM/fMJHvm7Kw+uprFzy1GTEb++APuv99zx5SYoCD48Uf49ltYtswm\nUQ0bwiuvQLNm9jiVutMl67+BMWYOMMcxipDDGHM+ZcNSSnmroRuHktEnE5tG9CNwEzRpAlWqQIEC\n9lt/oUJQrBgULw6FC8OSJdCqFcycaYtH31r1Fn9c/INaRWvx9P0teOUVmDwZ/vc/GDYMMmRIPAZ3\nOX8e5syBc+fg0iX7uHgRfvnFJlIVK0LfvnD33TBlCjzzDBQpYkdw3n4bsmXzXOxKedpt5d3GmCAg\nCMBxiuV1Y0yqXamilEpbjl06xoRfvyLHr4M5uj8vP/0EtWolvM0zz0CnTvDGG/DTdn/gLQ5eOMiW\nF7fwySfC5Mng7w+jR8O+fTB3LuSJc79q97p6FT79FEaNgvBwm1DkzWsf+fLBBx/YpOm++25t07Ur\n7NwJEyfaROniRRg3LnXjViotEWfXvcfbWKQA9mqPUGCtMSZCRDIBPbA1HBmNMfndEqkbiUgVIDAw\nMFCvUlHKReHhtg4jY8Zbj2fndmLD36uotP4wSxZmp1gx1/q6fNmODpQoAaV6v0gkETQOnom/P7z/\nPgweDCtXwvPP2xGSJUtS5xRLUBBMnw4ffgj//Qc9e8I778BddyWtnzFj4K237EhI9eruiVUpT4l2\nlYqfMWZnfO2ScrfYx4BlQC5s0eYOEekCfAeEY+slZt5GzEqpRBy7dIxIE+nSlR/uFBICTz4JW7ZE\nW1jgAPSYhd+18Wz4OTu+SbifWu7c9pTKk09C8+bTqFED6tWDDh1g0CDbpmFD2LYNnn4aqlWDfv2g\nRQsoX97WgdyuyEgYOhS2b4e//rKPf/+1fXfqZJMeVxOo2Hr2tKdiunaFwEDIlOn241XK27g8wiEi\nP2OLQ4dirwjpA/wJDDDGLHRXgKlBRziUN/jr8l/4TfLjQtAFnn3gWd597F0qFa6U6nEYAy++CAEB\nMGOG/bYfFgbD/nyeP29s5UTfP8iSMe4U5q7o2xc+/xyyZ4dKleyoRuZYXV2+DL16wcKFcP06lClj\nEw9/f3BhKoB4jR5t99+0qU0sihaFe++1yU3ZssnvN8quXVC1KgwZYkdJlEovXB3hwBjj0gO4CFRw\n/DsbEAG0cHX7tPwAqgAmMDDQKJUWBYcFm2qTq5minxY147aOMyXHljQMwjSd09RsObklVWMZO9YY\nMObrr28t239+v5FBYibumHhbfd+4YcxDDxlTvrwx//6beNtly4zp2tWYQoVsTM88Y8zBg87bh4QY\nExnpfN3OncZkymRM3763FX6i/vc/Y7JkMeaPP9y7H6VSU2BgoMGe+ahiEvqsTWilifmhHAkUjPb8\nKlDa1e3T8kMTDpXWdV/a3WQektlsP7XdGGNMWESYmbVnlqnwRQXDIEzPH3qaoNAgt8exerUxGTIY\n89ZbMZf7L/Q3RT8takLCQ257H9euGROUxEMJDzdm1ixjihc3xsfHmJdfNubYMWM2bTLmww+NqVPH\nmMyZjale3ZjTp2Nue/26MeXKGVO5sjHBwbcdfoKuXzemZEljnnwy/uRHKW/jroSjLlDR8biGvZdJ\nxegPV/tLSw9NOFRaNm3nNMMgzOTAyXHWRURGmHFbx5msH2U15ceXN4Gn3fce/vNPY/LmNaZhQ/sB\nH+XgPweNDBLz5fYv3bZvVwUH2xGYu+6yf93AmNy5jWnRwpgRI4wpUsQ+ov9Xf/VVY7JmNebAgdSJ\nceVKG1fnzsb06GFM27Y2AalTx5jp0+1IjFLexNWEIyk1HJGODp2VZ0UtN8YYD14lnzxaw6HSqsDT\ngdSaVov2Fdsz5ekp8bY78M8B2i1qx/7z+/nwiQ/536P/I4NPyv1XvHbNXl0RFmYLN/PmvbWu/aL2\nrD+xnsM9D5MlY5YU2+ftuHIFvv/eFpQ+/PCtuTtOn4aWLe3ltbNm2fqQp5+GL7+EV19Nvfj+9z9b\nA5M/v30UKGDn9Fi50s7b8eab0K2brWU5dMgWsm7fbq8MeuWV26tVUSqluVrDkZSEo7gr7YwxJ1zq\nMA3RhEOlBSf+O8HMPTP5L/g/Lgdf5kroFTad3MS9ue5lY5eNZM2YNcHtQyNC+eCnDxixeQSN72vM\nvNbzyJklZ4rE1qmTnUXz11/th3iUPy7+QfkvyjOu0Theq5bwHWHTihs3oEsX+OYbyJED6ta1l9mm\nhTveHzhgi1dnzYKsjl/31as2tvLlbZHsiRNQuzb07m2TJR8fOxHZ77/bR6VKeumtSl0pnnCkZ5pw\nKE8Liwij6uSqHL10lHtz3UuuLLnInTU3hbIXYuiTQymau6jLfa08vJK2C9tSIk8JlvkvS9K2zsyY\nYT+gZ82C9u1jruu4uCNrj63lyBtHEk2I0hJj4KOPYNEiO6qQ1u57cvq0nak0SxZ7lYyfH+TKZUc4\nvv/ezuuxebOdqfXGDXvlThQRO+fHRx/Z7dOKyEg7ipPUOUxSQ0iInSPl7FmbwEU9Spa0I2QqYSl+\nlUp6fqA1HMrDhqwfYjIMzmB2nt6ZIv3tO7fPFB9T3BQeVdj8+vevye9nnzHZshnz4otx1/1x4Q/j\nM9jHjNs67jYiVcm1fbsxffoY8/HHxixaZGtQbtwwZuRIWyD70EPG7N7t2RivXDHm22+N6dLFmIIF\nbe1K797uK84NCTHms8+MKVzYmEqVbMGws9qcsDBjDh0yZvx4Y5o1MyZ79ls1P9EfIsb89JN7Yk1P\nUryGIz3TEQ7lSQf+OcDDEx/mrZpv8XG9j1Os33PXztHym5bsObuHgNYBtCjXIknbX79uv12L2PqB\nqIm8jDGsPrqavqv6ciHoAkd7HfWq0Y07wd69dtK0gwdh+HDo08f9+wwJgf377Xwju3fbn7/+CqGh\nUKGCvYldjhx25KVCBVvDUq7cre23bbNzsGzaZD/uoxhjR3bCwm79LFHC1uK0bHmrnuW77+xkcIcP\nQ8eOdr9Ll9r6o/LloXJlO5nbiRPw9992xCVTJjv1fqNGdmK50qXt/iIjISIC2ra1NTR79thaG+Wc\nnlJJAk04lKdEREZQa1otLodcZlf3XSn+wX0j7Ab+3/rz8/GfOfHmCXJnze3yti++aOscduy4Vbex\n6eQmBqwbwIYTG6h5b00+a/QZVYtUTdGYVcoICbE3jBs3Dn77DR580D37iYiACRPg3Xdv1ZuULWs/\n4GvWtBOplY42Me7u3XaSthMn7Kmh7NltorF9O5QqBW3axD0VlDGjTQ6iptDfvdsmE5cu2cnZChe2\n79MGDeCTT+w0+QDBwbB6ta0/Onr01k0DixWzp0tq1oScCZQ5nT5t+6pVyyY0aaHOJy3SUyp6SkV5\ngdFbRhsZJGbzyc1u28fpK6dNliFZzNANQ40xxpw8aczDDxuzcWP82wz4cpuhS21z/7Da5okZT5j6\nX9c3NabUMAzCVJpQySz7fZmJ1Ikk0ryQEGPy57enXtxh7147twkY0727Mb/8YudRScy1a8Z063br\n1EX9+sYsXRrzcuvEhIYas3atMT172ku1V6xI/nEkZOlSG+Pnn7un//QgVU6piEh+7M3cMgC/GmPO\nJLszD9IRDuUJh/89TMUJFelapSufNf7MrfvqsbwHCw4s4Hiv40yflJ2ePe0Q8fbt9ptedD//DE+O\n6EPmajNoW7kZ4ZHhhEeGYzA8W+FZ2lRog4/4uDVelXLefNOevjh1KuXu4RIcbKdoHznS3iF30iR4\n7Irg8tMAACAASURBVLGk97Ntmy2GjX7lU1rUq5e96++2bfYqIBWT20+piEhrYCrwB5AJKAu8ZoyZ\nnqwOPUgTDpXagsODqT+rPqeunOK3V38jR+Ycbt3f8f+OU2ZcGUY1GMVPw97k1Cl7ZUPWrPYGbLly\n2XZ//gk1akBEp8doUONe5red59a4lPvt2WNPb3z/vb2M9nYFB9t71/z8sz2N0r9/2roaxh2Cg+3/\ni5AQe+ome3ZPR5S2uJpwuPw1RURi/0X8AKhmjKlmjHkYeBZ7YzelVAJCI0Jpu6AtO07vYNYzs9ye\nbACUyFOC9hXbM2rLKNZtCKF1a1i2zH7rff55W4z377/2fHuBQmGE3rWTGkWruT0u5X6VKtlLO6en\nwFfBkBBo3Ro2bIAff4QPPkj/yQbYxHzePFsHMnWqp6PxXkkZFw0Ukehl7uFA9KvXCwGhKRKVUulU\neGQ47Ra1Y+WRlSx+bjGPFUvGOHQy9X+sP6evnuZaqa+pX99eITB/PqxaZSeRatPGJh2fzNzPjfAb\nVCuiCUd60aWLTTDPn09+H2Fh8NxzsHatHS158smUi88blCtnJ4lbtszTkXivpCQcDYFuIrJYRO4B\negHfiMhZEbkADAd6uCNIpdKDiMgIOn/Xme8OfceCZxfQqEyjVN1/ufzlKGda4/P4cCpWDgdsVf9n\nn8H48fZyxMWL4YzPdjJIBh4urDMepRcvvGAnspozJ3nbh4fbK0t+/NFOltagQcrG5y2aNoX16+2l\ntirpXE44jDHHjTFNgfnAeqAyUAaoDzwFFDPG/OCWKJXycpEmku7LuhOwL4C5rebydNkUOJmeDJl+\neZfIPEdZePCbm8teew0+/RQWLrRTZm//ezsPFnyQ7Jn1RHV6cdddtn5j+vSYc1y4Ijzczunx/few\nYAE0aeKeGL1B06Z2fo81azwdiXdKcqm5MSYAqApUAn6G/7d33+FVFdvDx79DQgi9hBpaKJIIAlKC\nCAhEehOuioKFYr8oIna8FizXn9dyQS9gRUBKRF5FlCIqAgqI9EgX6b0TSihJznr/mBM4Cek5NVmf\n5zmPZu/Zs2c4bZ2pFBKRdSJywc1lUyrfmLl5JuPXjmdi74n0bdDXJ2U4dQo2/NyE64p0580lb+IQ\nx+VzKftygA04tDsl/xk82K7HsSbjVRKukpxs12OZMcOOYXDHoNNAVqeOXWNkzhxflyQw5SjgMMZ0\nN8Y8BTQXkQeAZ4Gpxph3jDFFPVJCpfKBKeun0Dy8Ofc2vtdnZVi40K6g+HLMCDYd3cQvO3+5Ks3Z\nS2fZeHSjBhz5UOfOUKVK9gePOhzw4IO2G2bqVDtYVNlWjjlzct5SpHI2S+U9YAK2deNjY8xLIrIY\nu2jWBWCtMaabZ4rp/xwO2wf+8cd2GeEePezc8ldf1RdmQXfqwinmbptL/+v6+7QcP/1k10y4vUVr\napWpxYyNM65Ks+bgGhzi0IAjHwoOtkt+T5tmp3lmRgT++U+7cd+kSXawqLJ69ICDB+3S7SpngnOQ\ndhDQWURWG2PKAcuB10XkEvCSMSYW+BiY5/5i+lZ8vP110KePXau/UJow7fRpu333t99CUJBdnjcy\nEpo3h5EjYft2u/NjSIhPiq98bObmmSQmJ3Jng9Sf2mfO2P1JgoLSv87hsDNIihWzr6nw8Ktfeznx\n4492vwhjDLfXv50J6yYwtsdYggtd+RhYsX8FxQsXp0GFBrm/kfJbgwfDf/5jP59cp7OWKGEXgEt5\nrF1rp39OmHD1DsEFXZs2djn0OXNAl23KmZwEHOeAWsBqoDq2VeMyEdkE3OS+ovmPceNsv+fKlXZK\n2OTJtmkSYOtWG4gcOGDX6+/ZM3Vg0aOHDUZSzpfO/lYWKp+I3RBL25ptqVqq6uVjR47YvS1q1bKr\nQNaunfqakyftQD3XvuIiRWz6wYPtHhk5sWOHDXw7dbJ/963fl3eWvcOvu3/l5lpX5jf+sf8PmoU3\nI6hQBlGQCmiRkXbfkx07Uh+Pj4edO+2Ppt27bbD7yScwaJBPiunXQkJs4D5nDrz0kq9LE1hyEnCM\nAL4wxnwAFAMGeqZI/iUhwW4w9MADdp2Ce+6xC+l88YUdvX333faX54oV9s2cVr9+Njjp0wfatrVB\nR2iofYOfPm3zaNUq41+5KrAdPnuYBTsXMK77uFTHhw2zH+rHjtlFmT791O5MCXZjqttus0HHd99B\n3br2C2LHDli92rayJSfDiBHZL8dPP9nXWEyM/bt5eHNqlq7JjI0zUgUcK/av4I76d+S12sqPPfJI\n5ueTkuD8+cw3NSvoevSwg2mPHoUKFXxdGs9KTIQNG+z3VtGi9lGsmG0Vy/FmdplttJL2AYRhx3CU\nycl1/v4gk83bRo8WCQoS2bHD/n34sEi3bnYzH2NEbrlFJD4+gx1tXGzcKFKjxpXNilwfPXqInDmT\ndR4q8Pzvj/9J8GvBcuzcscvHvvvOPu9TpoicOiVy553274ceEhk/XiQ01G6ulvKaS2vkSJt+9Ojs\nl+O220RatUp97Kn5T0nFdypKUrLdMevgmYPCSOSrDV/ltJpKFSiHDtn34KRJvi6JZzkcdmO99L63\ngoJEwsJE6tYVqV8/e5u35aSFAxE5DhzPYUzjE8aYR4GngcpAHDBURFbmJI+LF+1Wx3fffWWDq4oV\n7UpzH35oB14NH569fvX69e0a/IsW2ciwdGn72LbNDuRq29bmGx6ew4oqn0tMtJtY9e599RbgsRti\n6VynM2HFwgDbsvXPf0K3bnYxJmNsl0rHjvD441easceNs78k0vPyy3bhoSeesHs6PPBA5uVLTrZd\ngcOGpT7et35f3vv9PX7b8xvtI9qzcr99e+iAUaUyV6kSREfbbpUBA3xdGs+ZONG2jk6YYAecnz9v\nH+fO2Wn2J0/ax7ZtsGlTNjLMLBoJ1AdwJ3aMyQAgCjuY9QRQPoP06bZwfPqpbcXYtCk3sWH2xcWJ\nVKtmH3Fxnr2Xcr9nnrERf2ioyMcf218FIiK7Tu4SRiKT4yZfTvvwwyIlSojs3n11Pps3i8yceeX6\nzDgcIkOG2Nfn1KmZp12+3JZv6dK0eTik+n+ry5DZQ0RE5MUFL0rFdyrqtvNKZcPIkSKlSolcupR5\nuvffF7nrLpF77xUZPFjkgQds66S/v80OHhQpU8aWOyvZ3Z7e58GBJx7YGTTvu/xtgH3Asxmkvyrg\nSEwUqVPHNkV7w/79thm9ZEmRhQu9c8+CICHBs/nPmmXfRf/+tw0mQKRvX5GTJ0Xe+u0tCX0jVE5f\nOC0iIosW2fNjxrjn3snJIoMG2aDjscdETp++Os2pUyL9+9sPxsTEq88P/2G4VH63siQlJ0nnyZ2l\n57Se7imcUvncypX2/ZzZ5/WMGTZNy5YiN91kuzWbN7fHxo1zb3kOHhT58kvbVTtxou2e/eKL3HfX\n9+0rUr68yNGjWactsAEHUBhIBG5Jc3wiMDODa64KOKZOtf86a9Zk/Y/tLmfO2Bdm2r52lTujR9sI\n/cIFz+S/c6fNv3fvK79WvvrKfrlHRIhUe6OxRL/dVyZOtB8A11wj0rq1DRTcJSnJ1rNYMdtCNnu2\nPX7hgj0eFiZStGjGQc6yPcuEkciinYukzFtl5LVFr7mvcErlY8nJIpUqiTz9dPrn9+0TKVdO5Pbb\nr27NGDpUJCREZMWKvJfD4RCZNk2kbFlJd6xFjRoi33+fszy//dZeO21a9tIX5ICjCuAAbkhz/D/A\n7xlckyrgSE4WadDADg71tnHjRIKD0/+1qrJv926R4sU9FzReuCASHS1Sq5bIiROpz+3YIXJ9p03C\nSISoby6/8cuXt90mnrBzp0iXLvY+vXvbchUqZJtv9+3L+LpkR7JUfa+qdJncRRiJ/LDtB88UUKl8\n6NFHbUA/a1bq48nJdrBllSoix45dfd3FiyI33CBSs6bI8eO5v/+RIzagAZF+/WxLeUKCzT8pSWT7\n9iufC7ffbs+nXPfll/bzoUMHkf/8R+Tvv+25U6dEwsNFunfPfrdPdgOOHA0aze8ee2w4ly6V5tAh\n2L8fypSB2Nj+9O/vvRUiO3a009J+/dVOvVK5M2yYndaXkGCnmTZx88anzzwDcXGwdCmUKSN8vekb\ntp3YRkJiAgmJCZS+axWlDpVi35puhDrfZYUKeW76c0SE3clz2jR48UVo2NAOQq5fP/PrCplC3F7/\ndt7/430AoqtGe6aASuVD775rVx39xz/go4/sUvBgd1/+6SeYP99unJdWSAh89ZX9XBowwE5/z8mi\nfkeP2ryfesoOCp8+/cq0ele1a9vPhenT7WfitdfaCRBxcfZ8/fpQsya88oqdbt+4sf3eO33aToxI\nb9prbGwssbGxqY7Fx8dnr+CZRSOB+CAPXSqwWkAkKkrkjTeyF9m5m8MhUr26yBNP+Ob++UHKuIrp\n0203xrBh7s1/5kxJNRbjm03fCCORcv8pJ9X/W10i/xcpTT5qIm8vedu9N/aQJbuXCCORaz64xtdF\nUSrgJCXZlg4QeeUVkfXrRYoUyd7nzrx5dgzWm29mnu7iRTuJYcAAOw01pdW0Vy87diM7Tpyw3ysD\nBtixHSmtHSK2O3/GDNtKUqaMHfyeEwW2S0Ukw0Gje4FnMkjfFJDXXludafOztwweLNKwoa9LEZjO\nnrV9ll262OCtb1+R9u3dl//Jk7aZtFcvm/+5S+ek5qia0m1Kt4Cd3ZHSrXLPN/f4uihKBSSHwwYN\nYAf+16+f/QHrL71kuz8zG3w6bJhN06yZHSA+bZrtRvUXBT3guANIIPW02ONAhQzSZ7jwV3bN2DhD\nesf2ljMX876C15Qp9pk5dCjPWRU4zz5rf12k9Ee+8YaN2N0VCzzyiJ3WumeP/fulX16SkNdDZNvx\nbe65gY9sOLxB9p/en3VCpVSGJk604zLWrs3+NUlJIjffbH/IHDly9flffrHfB6NGua2YbpfdgCMP\nW0H5LxH5Crvo12vAWqAR0EVEjrr7XqcvnmbgtwPpO6Mvs7bOSnfL75y62bnS9C95z6pA2bAB/vtf\nO4ahdm3hi7gv+KX0QE7FJ7N3b97zX7bM9tO++SZUrw7bT2zn7aVv80yrZ6hbrm7eb+BDDSo2ILyk\nrjqnVF4MHAi7dsH112f/mqAgmDLFjt0bONBueZDi9Gm7d1K7dnZhwECXLwMOABEZJyIRIlJURG4U\nkVXuvseSPUto/FFjZm6eyaQ+k4goE8HPO37Oc75VqkCDBvBz3rPK9w4ftm/WAQPsPiF16sCDQ09x\n1zd3MfDbgfxy/AsIX826ddnLLynJbs536lTq45cuwUMPQYsWMGSIPTbsh2FUKlGJF256wb2VUkoV\nKFWq2P255s2zP5pSPPkkHD9uV/rMy07R/iIfVME3Plz5Ie0mtqNqyarEPRLHgMYD6FirIwt2LnBL\n/h062IDD9viotE6cgNatoXJlu6vq+vVw//3w2sQl3DDheuZtm8fUW6dSJrQMoY3mXh6VnZVvvrHB\nS7169k2e8mvjnXdgyxa79HhQEMz+azZzts1hVJdRFCtczHMVVUoVCF272l2gR4yA5cvtsunjx9sA\nJGVrjUCnAUcuxF+I5/kFzzOg8QAWD1pMrbL21dChdgc2Hd3EgTMH8nyPjh1hzx67pbi62tixsHat\n/VVw8KD9/2q3jqH/j+2oVqoacY/EcVfDu+hcpzMh187LdsAxc6adOtapk90NsnVru8Pv66/bKWiN\nG8OFpAsM+2EYnet05h9R//BsRZVSBcYbb0Dz5tC/v90jqVu3rPdKCiQacOTCh6s+5ELSBf59878J\nKnRlYYWUbb4X7Mh7K0e7dvaX9AL3NJjkKxcu2HnuAwfa1o3KleHcpXOMWDCCQY0HsWjQImqWqQlA\n97rdOV1yJau2HMky34sX7a+Kfv1g6lS70d7Zs3D77XZTvVdesenGrxnPnvg9fND1A0yO92dWSqn0\nFS5sN3M8dcp+Hn32WS62gPdjGnDk0PnE84xaPoqBjQdeNciuYvGKNK7U2C3dKqVK2fECGnBcbepU\nu/DN8OFXjn29+WvOXjrLi21fJLjQlfXsutbtCkbYHTSfM2cyz3fRIjhzBvr0sX+3awdr1thmzW++\ngWLOnpMftv9A25ptiSwf6d6KKaUKvIgIO2Hg55/z3+7hGnC42H1qd5ZpJqybwLGEYzzb+tl0z3eo\n1YGfd/ycMt02Tzp0sC8811HLBZ2I7dPs1cuOs0jx+drPiYmIudy9laJSiUrUL9MMrpnH+vWZ5z1z\npl2Zr2HDK8cKF7ZdKymjzpMcSSzetZgOtTq4qUZKKZVakybQtKmvS+F+GnC4GDJnSKbjL5IcSbyz\n7B361u+b4TTIjrU7sv/MfrYe35rn8nTsaEcoZ3f8QUHwww+waZMdT5Fi+4ntLN69mPua3JfuNX0a\ndIc681mzNjnDfB0OmDXLtm5k1oS56sAqzlw6owGHUkrlkAYcLhw46DqlK6cunEr3/PQN09l1ahfP\nt3k+wzxuqnkThQsVdss4jpYtoWhRnR7r6r337KCqm266cmziuomUKlKKW6+9Nd1rekZ2g2In+Hnz\nigzzXbECDh260p2SkQU7FlCqSCmahTfLTfGVUqrA0oDDxZhuY9h3eh+3xN7C+cTzqc45xMFbS9+i\nW91uXF8541VdSoSUoGW1lvy8M+9RQpEi0LatjuNIsW6d/bd46qkrrRDJjmQmxk2kX4N+GU5PbVG1\nBSHJ5VgZPzfDvGfOhAoVoFWrzMuwYOcC2tVsl2qciFJKqaxpwOGiTrk6zL5rNqsOrKLHtB58tfEr\njiccB2DOX3PYcGQDI9qMyDKfjrU7snDnQpIcSXkuU4cOdufYS5fynFXA++9/oUYNO2skxYKdC9h3\neh+DmwzO8LqgQkE0KNKVgyXmkpxOr4qIDThuuSXz3VzPJ55n2d5l2p2ilFK5oAFHGq2qt2LmnTM5\nePYgd/6/O6nwTgWaf9Kc4fOH07p6a26qeVOWeXSs3ZH4i/GsObgmz+Vp1w7On7ezJQqy/fvtdLFh\nwyDYpXHh87Wfc235a7mh6g2ZXt+lTjek8hp+X3/oqnNbtsC2bVl3pyzbu4yLyRcvT39WSimVfRpw\npKNL3S5sfnQze4fv5fPenxNZPhJBeD3m9WxdHx0eTYmQEm5Z5vz66yE01O7jUVAtXw633mqnpbou\ngnPi/Am+3fIt9zW5L8v1MAa16QJimPrHD1edmzkTihe3g3R3ntxJ9KfR7Dq166p0C3YuoEKxClxX\n8bq8VkkppQocDTgyUa1UNQZdP4ipt05l++PbiakVk63rCgcVpn1E+2wFHBeSLmR6PiTErsdREAOO\n7dvhjjvgxhvtIjizZ9v1SVLEro8lyZHEPY3uyTKvyGoVKHw0mkX7rx7H8e23dkW/0FCY/OdkVh1Y\nxeuLrw4uf9n5CzfXulkX+1JKqVzQgMNDOtbqyNK9S0lITEj3fLIjmVcXvUqJN0vw2+7fMs2rVStY\nurTg7Kuy7fg2qo68gcg7J7BsGUycCKtXp56ZAnZNlB71elC5ROVs5RuR2J2/5cdUY2v27YOVK690\np3y18SvKhpZlUtwk/j7x9+V08RfiWXlgpY7fUEqpXNKAw0M61O7ApeRL/Lr716vOHTxzkE6TO/Ha\nr68REhTC7L9mZ5pXq1Z2yuburNclC3i/7v6V6I9bciA5jkI9H+eXVXsZOPDqwZzz/57P6oOrue/6\n9NfeSE/rit1JCo5n2V7bXCRiN2gLDoYePWDT0U1sPLqRD3t8SMXiFXnj1zcuX7t492Ic4qBDbQ04\nlFIqNzTg8JAGFRpQu2xtesX2otPkToxZMYa98Xv5cfuPNP6oMVuObWHBgAX0ierDwl0LM83rxhvt\nf5cu9ULBfWjKn1Po+EVHipxqTLVvt1C+ZEmeXTT0qnRHzx1l0KxBdK7TmV6RvbKdf5eGzSC+GuN+\nn8CMGdCsGbz8st2PpUwZmLFxBqWKlKJ3VG9GtBnB5D8n89fxvwDbnVKzdE1qlckn2zYqpZSXacDh\nIcYYlt23jPe7vk8hU4jh84dTY3QNukzpQpMqTVj3yDraR7QnJiKG1QdXc/ri6QzzKl8eIiPz7zgO\nEWHkopHcO/Neete6h2Ojf+D5RyL4oNsHzNo6i5mbZ6ZK++D3D5KYnMjE3hMpZLL/Em7apBCsGMr0\nTVO5476DhIXZdT3Gj7fnZ2yawS2RtxAaHMqDzR6kSokqvLb4NcAOGO1Qq4OO31BKqVzSgMODKpWo\nxJDoIcy/Zz7HnjlG7G2xTOoziXl3z6Ni8YoAxNSKwSGObI3jyK8Bx1cbv+LVxa/y5s1vUnnFeMqW\nCmHwYLjt2tvoWa8nQ+cNvRyQfbrmU2ZtncX4W8ZTpWSVHN2nTh247tJDBFOEQR+O4aef4Oab7SJi\nG49sZOPRjdxR/w4AQoND+ddN/yJ2QyyLdy1mw5EN2p2ilFJ5oAGHl5QOLU2/6/oxoPGAVL/K65St\nQ7VS1bLsVmnVCv78k3R3PD140A589LTkZNuts20bJOV9TbPLxq8dz001buLBa0cw/jPD0KF2Cqwx\nhrHdx3Lqwin+teBfbDm2hSd+eIKHmz1M76jeOb5PUBCsX1GGx1o9wKz9H3Lu0rnL52Zsst0pnet0\nvnzsvib3UbVkVe78f3cCEBORvVlKSimlrqYBh48ZY4iJiMlWwOFw2D0/0rr3XrsE+rZtHiokdsBq\n+/bQpo3dpbVoUYiKsqtzjh8PiYm5y3ff6X38vONnBjYeyNix9tijj145X6N0DV6PeZ2xK8fSK7YX\nNUrX4L3O7+WpLsNaDiP+YjwT1028fGzGphn0juxNkeAil48VCS7Ci21f5PC5w9SvUD/HLSpKKaWu\n0IDDD8RExLD24FpOnj+ZYZqoKDuwMe3A0bg4Ow7BGHjoIc9MnZ0+HRo3hj17YO5cu5ncBx9A165w\n7pxdjKtevdwFHpPjJhMaHEqPWn353//g/vvtmBVXQ28YSpMqTdh9ajfTbptG8ZDieapPRJkIbq9/\nO6OWjyLZkczGIxvZdHQTdzS446q0g64fxDXlrqHnNT3zdE+llCroNODwA+0j2iNIulNoUxQqlP44\njlGjoHp1+OYbWLQIPv/cfeU6cwYGD4Z+/WxwERdnF8jq0AH++U8YPdoGO3/+aXdwTQk8pkzJXv4i\nwqS4Sdx67a18Pa0UJ0/Ck09enS64UDDf9/+exYMW07RKU7fU7akbn2L7ye18t/U7vtr4FaWKlKJT\n7U5XpQsJCmHtw2v5d4d/u+W+SilVUGnA4Qdqla1FzdI1s9Wt8vvvtmsF7NiNadPg8cdtQDBokN1J\n9eDBvJXn0iUYN84GDzNm2IW3YmNtC0t6Gja06f78E5o2tV08Tz55pZwZ+WP/H2w9vpV7Gw7ivffs\nqqK1Mph1Gl4ynBur35inerlqUbUFbWq04d3f32XGphn0ieqTqjvFVfGQ4ro7rFJK5ZEGHH4iplYM\ni3YtyjRNq1Zw+jRs2mT/HjvWbmGfsr/Iu+/av4devXRFtiQnw+TJtvvmscegc2fYsAEGDryyHXxm\nGjaEr7+23S2jR9sA4vz59NPu3QsvTJ9EscRqDGofw86d8OyzuSt3bj1141Ms27uMzcc2X56dopRS\nyjM04PATMRExxB2O43jC8QzTtGhhZ1osWwYJCfDRR3bMQ0rLQ1iY/bL/+mu7IVlOnDsHN9wAAwbY\n8Rrr18OkSRARkfO6DB1q7z93rt0Q7dgx29rxxx/wwgvQoAHUqH2BhUe/pOTOAdx7dxBLlkCTJjm/\nV170qteLa8pdQ+kipelU5+ruFKWUUu6j7cR+ImXK5eLdi7n12lvTTVO8uN09dtkyOzj05EnbneLq\njjtg6lQ706NDh9SbnWXmzTdta8aSJdC6dV5qYvXuDQsXQo/bT1Lj2fsI3TyYk8tvISwMevWCLk9+\nx6h9p1j8/gAiy2ednycEFQri016fcujsIUKCQnxTCKWUKiC0hcNPVC9dnTpl67BwZ9bjOJYssYNF\n+/SB2rVTnzcGxoyBo0dt90h2/PUXvPMOPP+8e4KNFDfcAJ3eep7zNWZxsmtv7p4wgv0Hk5gwAbYW\nnUTLai2JLB/pvhvmQruIdtx53Z0+LYNSShUEGnD4keyux7F9O2zdmv6MDoAaNWwrwiefZD1NVsR2\ngVSrBs89l8uCZ+C33b/x5d+fMLbHGN7u+Daxe96me2wX4g7F8cPfPzCo8SD33lAppZTfCpiAwxhT\n0xjzmTFmhzEmwRizzRgz0hhTOE266saYOcaYc8aYQ8aYt43JwYYbPhRTK4aNRzdy5NyRDNO0amX/\n26LFlf9Pz0MP2VkjWa1A+s038OOPduxH0aK5KHQGLiZd5KHZD3FjtRt5pPkjPNP6GRYMWMDGIxtp\n/mlzChcqrC0LSilVgATEF7FTFGCAB4H6wHDgEeDyAgnOwGIudmxKS2AgMAh4zctlzZX2Ee0BMp2t\nUqMG3H23HXOR2cyRTp1s2k8+yTjNuXPwxBO2NaSnm9e1emvJW/x94m8+6fXJ5aXc20e0Z83Da4iJ\niOGhZg9RJjSDebZKKaXynYAJOERkvojcLyILRGSXiMwG3gVcR1h2wQYmd4vIehGZD7wEPGqM8fsB\nsuElw6kXVi/L6bFTptgBoZkJCrIzWL780k6lTc8bb9ixHqNH5668Gdl8dDNvLnmT51o/x3UVr0t1\nLrxkOD/e+yMfdPvAvTdVSinl1wIm4MhAGeCEy98tgfUicszl2HygNNDAmwXLrRZVWxB3OM4ted13\nn10HIzb26nObNsF778GIEVcPPM0Lhzh4ePbD1Cxdkxfbvui+jJVSSgW0gA04jDF1gceAj1wOVwYO\np0l62OWc34sMi2Trsa1uyataNejeHT79NPXxo0ftpmt16rh/sa3xa8bz257f+Ljnx4QGh7o3c6WU\nUgHL5wGHMeb/jDGOTB7Jxph6aa6pCswDpouIG3cP8b2o8lEcP3+cYwnHsk6cDQ89BKtXw5o1Ri87\nnwAAGCtJREFU9u+EBDtm48wZuzCXOweKHks4xvMLnmdA4wHE1NKt3JVSSl3hD+Ma3gUmZJFmR8r/\nGGPCgV+AJSLycJp0h4DoNMcquZzL1PDhwyldunSqY/3796d///5ZXeo2UeWjANhybAttarTJc37d\nukF4uG3lGDMG7rnHriK6eHHG+5bk1vM/P49DHLzT6R33ZqyUUsovxMbGEpumnz4+Pj5b1/o84BCR\n40DG63m7cLZs/AKsBO5LJ8nvwAvGmPIu4zg6A/HApqzyHzVqFE2bumc30tyqW64uhUwhtwUcwcF2\n8Ojo0XbNjVmz4Ntv7e6u7vT73t8Zv3Y8Y7uPpWLxiu7NXCmllF9I70f4mjVraNasWZbX+rxLJbuc\nLRuLgN3As0BFY0wlY0wll2Q/YgOLycaYRsaYLsDrwBgRSfR2mXMjNDiUiDIRbhvHATbgOHsWPv4Y\n/vc/26XiTkmOJIbMHUKzKs14uFnaRiellFLKD1o4cqATUNv52Os8ZgABggBExGGM6Ql8CCwDzgET\ngVe8Xdi8iCofxZbjW9yWX82aMHw4lC8PQ4a4LdvLPlz5IXGH4lj+wHKCCgW5/wZKKaUCXsAEHCIy\nCZiUjXR7ATcvY+VdUWFRfPfXd27N87333JrdZYfOHuLFhS/yYNMHaVG1hWduopRSKuAFTJdKQRJV\nPoodJ3dwMemir4uSped+fo7ChQrzZoc3fV0UpZRSfkwDDj8UVT4Khzj4+8Tfvi5Kpk5fPE3s+lhG\ntBlBWLEwXxdHKaWUH9OAww+lbNm+9bj7Bo56wg9//0CiI5Hb6t/m66IopZTycxpw+KEKxSpQNrQs\nW465b+CoJ3y39TsaVWpERJkIXxdFKaWUn9OAww8ZY+xMFT8OOBKTE5mzbQ69I3v7uihKKaUCgAYc\nfsrfA47f9vzGqQunNOBQSimVLRpw+KmUgENEfF2UdH239TuqlqxK0yq+XZlVKaVUYNCAw09FhkVy\n5tIZDp3NcgsYrxMRZm2dxS2Rt2CM8XVxlFJKBQANOPyU6yZu/mbDkQ3sOrVLu1OUUkplmwYcfqp2\n2doEFwr2y4Bj1tZZlAwpSfuI9r4uilJKqQChAYefKhxUmLrl6vptwNG1bleKBBfxdVGUUkoFCA04\n/Ji7N3Fzh/2n97PqwCrtTlFKKZUjGnD4sciwSLduU+8O3//1PUEmiG7XdPN1UZRSSgUQDTj8WFT5\nKHbH7yYhMcHXRbnsu63f0bZmW8oVLefroiillAogAbM9fUGUMlPlr+N/cX3l671+/wtJF9h2fBvn\nEs9x9tJZzlw8w4KdC3i749teL4tSSqnApgGHH4sMs5u4bTm2xScBx+BZg/lyw5epjhUNLkqfqD5e\nL4tSSqnApgGHHytbtCyVilfyyUyV4wnH+WbzNzzf+nnubnQ3JUJKULxwcUoVKaWzU5RSSuWYBhx+\nLrJ8pE+2qZ+2fhoOcfDkjU9SoXgFr99fKaVU/qKDRv1cVJhvNnGbsG4CPev11GBDKaWUW2jA4eei\nykex9dhWHOLw2j3jDsWx9tBaBl8/2Gv3VEoplb9pwOHnWlZryfmk8/y842ev3XPCuglULF6RbnV1\nrQ2llFLuoQGHn2tZrSWNKjVizIoxXrnfpeRLTF0/lXsb3UvhoMJeuadSSqn8TwMOP2eM4dHoR5n9\n12x2ndrl8fvN/ms2xxKOaXeKUkopt9KAIwDc3fBuShUpxUerPvL4vSasm0B0eDQNKjbw+L2UUkoV\nHBpwBIDiIcUZfP1gPlvzGReSLnjsPofOHmLetnnauqGUUsrtNOAIEEOih3D8/HGmb5jusXtMjptM\ncKFg+l3Xz2P3UEopVTBpwBEgrgm7hi51ujB25dhUx0WEcSvH8daSt/KUv4gwYd0E/nHtPyhbtGye\n8lJKKaXS0oAjgDwa/SgrD6xkxf4VAFxMush9393Ho3Mf5ZVFr3Du0rlc573r1C42H9tMvwbauqGU\nUsr9AjLgMMaEGGPWGWMcxphGac5VN8bMMcacM8YcMsa8bYwJyHqm1f2a7tQsXZOxK8dy+Oxhbv7i\nZmLXx/Jq+1e5lHyJRbsW5TrvpXuXAtCmRhs3lVYppZS6IlC/iN8G9gHietAZWMzF7hHTEhgIDAJe\n83L5PCKoUBBDoocwfcN0WnzWgu0ntrNo0CJeavsStcrUYt7f83Kd99I9S4kqH0VYsTA3llgppZSy\nAi7gMMZ0AzoBTwMmzekuQBRwt4isF5H5wEvAo8aYfLFR3f1N7ieoUBBhRcNY+eBKWlZriTGGbnW7\n8cPfP+Q636V7l9K6ems3llQppZS6IqACDmNMJeAT4B7gfDpJWgLrReSYy7H5QGkgXywsEVYsjM2P\nbmbZ/cuoXrr65eNd63Zl+8ntbDu+Lcd5xl+IZ8ORDRpwKKWU8piACjiACcA4EVmbwfnKwOE0xw67\nnMsXapSuQWhwaKpjMbViCAkKyVW3yvJ9yxGEVtVbuauISimlVCo+DziMMf/nHPyZ0SPZGFPPGPM4\nUAL4T8qlPiy23ykRUoKbatyUq26VpXuXUr5YeeqF1fNAyZRSSik7uNLX3sW2XGRmJxAD3AhcNCZV\nrLHKGDNVRAYDh4DoNNdWcv73UFYFGT58OKVLl051rH///vTv3z+rS/1Ct7rdeHHhi5xPPE/RwkWz\nfd3SvUtpVb0Vaf5dlVJKqVRiY2OJjY1NdSw+Pj5b1xoRyTqVHzDGVANKuRwKx47PuA1YISIHjDFd\nge+BKinjOIwxD2FbRSqKSGIGeTcFVq9evZqmTZt6shoetenoJhqMa8C8u+fRtW7XbF2T5EiizFtl\neLndyzzb+lkPl1AppVR+s2bNGpo1awbQTETWZJTO510q2SUi+0RkU8oD2IbtVtkhIgecyX4ENgGT\njTGNjDFdgNeBMRkFG/nJteWvpXqp6jnqVok7FMe5xHM6YFQppZRHBUzAkYFUzTMi4gB6AsnAMuAL\nYCLwitdL5gMp02NzMnB06d6lhASF0Cy8mQdLppRSqqAL2IBDRHaLSJCI/Jnm+F4R6SkiJUSkkog8\n5wxECoSudbvy1/G/2HFyR7bSL927lObhza+a9aKUUkq5U8AGHCp9HWp3ILhQcLa6VUSEpXt0wS+l\nlFKepwFHPlOqSClaV2+drW6VPfF72H9mvwYcSimlPE4DjnyoW91u/LLzFy4mXcw0XcqGbbrgl1JK\nKU/TgCMf6lK3CwmJCSzftzzTdEv3LKVeWD0qFK/gpZIppZQqqDTgyIeuq3gdxQoXY+WBlZmm0w3b\nlFJKeYsGHPlQcKFgmlZpmmnAcfriadYfWa8Bh1JKKa/QgCOfig6PZuX+jAOO5fuW4xAHrWtowKGU\nUsrzNODIp6LDo9l5aidHzx1N9/xvu38jrGiYbtimlFLKKzTgyKeiq9o97FYdWJXu+YW7FtI+oj2F\njL4ElFJKeZ5+2+RTdcrWoWxo2XTHcZy7dI4V+1cQExHjg5IppZQqiDTgyKeMMURXjU434Fi2dxmJ\njkRiamnAoZRSyjs04MjHUgaOiqTa446FuxZSsXhFri1/rY9KppRSqqDRgCMfiw6P5vC5w+w7vS/V\n8ZTxG8YYH5VMKaVUQaMBRz6WMnDUtVvl7KWzrNy/UsdvKKWU8ioNOPKx8JLhhJcMT7Uex5I9S0iW\nZNpHtPddwZRSShU4GnDkc9Hh0aw4sOLy3wt3LqRyicpEhkX6sFRKKaUKGg048rkWVVuw6sAqHOIA\nYNHuRcRExOj4DaWUUl6lAUc+Fx0ezemLp9l2fBunL55m9YHV2p2ilFLK64J9XQDlWc3DmwN24GjZ\n0LIkS7IOGFVKKeV1GnDkc2WLlqVuubqs3L+SwkGFqVqyKnXL1fV1sZRSShUwGnAUANHhdsXRS8mX\ndP0NpZRSPqFjOAqA6PBo1hxcw9pDa7U7RSmllE9oC0cB0KJqCy4mXwTQ/VOUUkr5hAYcBUCTKk0I\nMkGElwynVplavi6OUkqpAkgDjgKgWOFiNAtvRqOKjXT8hlJKKZ/QgKOAmHvXXEKDQ31dDKWUUgWU\nBhwFRFixMF8XQSmlVAGms1SUUkop5XEBF3AYY3oYY5YbYxKMMSeMMd+kOV/dGDPHGHPOGHPIGPO2\nMSbg6ukOsbGxvi6CW+W3+kD+q1N+qw9onQJBfqsP5M86BdQXsTHmNuALYDzQEGgFTHM5XwiYi+0q\nagkMBAYBr3m7rP4gv71g81t9IP/VKb/VB7ROgSC/1QfyZ50CZgyHMSYIGA08JSITXU5tcfn/LkAU\nECMix4D1xpiXgLeMMSNFJMlrBVZKKaXUZYHUwtEUCAcwxqwxxhwwxsw1xjRwSdMSWO8MNlLMB0oD\nruncIjcRqLeuAdi/f79X7uWta/y5Prm9zp/r5K365PZe/lwnfd159xp93eX+Pt58rQZSwFEbMMAr\n2C6SHsBJYJExpowzTWXgcJrrDruccyt/f3Lz2wvWn+uT2+v8uU76wW/583OU2+v8uU76urPy23ME\nftClYoz5P+C5TJIIcC1XgqM3RORb57WDgX1AX+DTPBQjFGDz5s05uig+Pp41a9b45TUAiYmJflu+\n3Fzjz/XJ7XX+XCdv1Se39/LnOunrzrvX6Osu9/dxxzUu352ZLvZkRCRHN3I3Y0wYkNUiETuANsAv\nQBsRWeZy/XLgJxF5yRjzKtBLRJq6nI9wXt9EROIyKMNdwNS81EMppZQq4O4WkWkZnfR5C4eIHAeO\nZ5XOGLMauAhEAsucxwoDEcBuZ7LfgReMMeVdxnF0BuKBTZlkPx+4G9gFXMhxJZRSSqmCKxT7XTw/\ns0Q+b+HICWPMKOA24H5skPEsdixHlIjEO6fFrgUOYLtpqmCn0X4iIi/5ptRKKaWU8nkLRw49DSRi\ng4iiwB/AzSISDyAiDmNMT+BDbCvIOWAidqCpUkoppXwkoFo4lFJKKRWYAmlarFJKKaUClAYcSiml\nlPK4fBFwGGNGGGNWGGNOG2MOG2NmGmPqpZPuNecKpQnGmJ+MMXXTnC9ijBlrjDlmjDljjPl/xpiK\nadJcY4z51hhz1BgTb4z5zRjTPsDr1NQY86Mx5qSzXh8bY4r7aX0eNMYsdP7bO4wxpdLJo6wxZqoz\nzUljzGfuro8P6vSCMWapc1PCE+6ui7frZIyp6Xxedjjz2GaMGemceRZw9XGmmWWM2W2MOe/M6wtj\nTBV31sfbdXJJG2KMWedM1yiQ62SM2eU8l/JINsY8G6j1cabLdFNTf5EvAg7gJuB/wA1AR6Aw8KMx\npmhKAmPMc8BjwENAC+yA0vnGmBCXfEZjZ73cBrTFLqX+dZp7zQGCgPbY5dbjgNkmzZd4oNTJ+YH4\nE/CXM4+u2GXgJ/ppfYoC84B/YxeFS8807GJxHbB1bwt87M7KOHmzToWBr7ADoj3JW3WKwq4c/CBQ\nHxgOPOJMH4j1AbtOUF+gHnArUAeY4c7KOHmzTinexi6y6KlBf96skwAvApWwK1BXcd7bnbxWH5PF\npqZ+RUTy3QMoDziwi4SlHDsADHf5uxRwHrjD5e+LwD9c0kQ682nh/DvM+XdrlzQlnMduDtA6PQgc\nTHOv65xpavtTfdJc3w5IBkqlOR7lzLeJy7EuQBJQ2d+eo+zUKU2agcAJT9bD23VySfs08Hc+qk8v\n5+suKJDrBHQDNrq8txoF8usO2Ak87uk6eKM+2B+/e4FB3qxPbh/5pYUjrTLYaPAEgDGmFjaSXZCS\nQEROY6fV3ug81Bw7Tdg1zVZgT0oasYuUbQEGGGOKGWOCgX9i92tZ7dkqeaZOQBHgUpp7pSx+1sat\nNUgtN/XJjhuBkyKy1uXYz8573ZDHMmfFU3XyJW/WqUzKfTzIK/UxxpTDLia4VESS81LgbPBYnYwx\nlYBPgHuwX4be4unn6Xlju5nXGGOeNnY3ck/yVH2ys6mp38h3AYcxxmC7EZaISMrqopWxT3Z6G7ul\nbOpWCbjkfNIzSgPQCfskn8G+AYcBXcW5FogneLhOvwCVnW+6wsaYssD/OfN2e/8z5Kk+2VEZOOJ6\nwPmBfyKH+eSIh+vkE96sk7Pv+jHgo9zmkY17eLw+xpi3jDFngWNAdaBP7kucrft5uk4TgHFpAniP\n8kKd3gf6YbvFPwJeAP6T2/JmxcP1yc6mpn4j3wUcwDhsn3A/D+Z/GGgNRAPfYsdwVPLQ/VLu6ZE6\nOd8AA4EngQRsM98O7Je2w933c/L0c+QLWqdcMsZUxfZTTxeRzz14K2/U523geuwPk2RgsgfvBR6s\nkzHmcWyXccqXsXH3PTLg0edJREaLyK8iskFEPsF+9g01bh6w7MKT9Um1qakzMByMDWb6euB+eZKv\nAg5jzBigO9BeRA66nDqEfbOkDQoqOc+lpAlJZxTw5TTGmA7O/O8UkeUisk5EHsO2dAx0a2WcPF0n\nABH5UkTCsU1zYcCrQAVs4OFWeaxPdhwC0s7CCQLK5TCfbPNCnbzOW3UyxoRjW9mWiMjDuSxudu7j\nlfqIyAkR+VtEFgD9ge7GGI905XmhTjHY5v2LxphEYJvz+CpjzITclTpzPnovrcB2PUfkMZ+reKE+\nKXle3q5VRC5hP7tr5LjAHpZvAg7nE9sbiBGRPa7nRGQn9kns4JK+FLZPP2Xn2dXYAV6uaSKxT1pK\nmqLYyDHtL38HHvi39HCdfk97PxE5KiIJ2Ej8PHb2ij/VJzt+B8oYY5q4HOuAfXP/kcuiZ8hLdfIq\nb9XJ2bKxEFgJ3JfHYmd2H189RynjAorkMZ+reKlOQ4HGLo9u2M+/O4B/5aX86fHh89QE+xl+JKuE\nOeGl+rhuapqST9pNTf2Hr0etuuOBbbI6iZ2KVMnlEeqS5lnsrrS9sFOHvsVG7CFp8tmJ7dtrBiwF\nfnM5H4Z9Uc4AGgHXAO9gB1k2DMQ6OdM8in3TXeP8/3PAo35an0rYD78HcI76dv5d1iXNXGAVtsur\nNbAVmOzHr7vs1Km689jL2N2PU74EigdinbCtaduAH53/f/leAVqfFs73TmNsQH8zsMT52isciHVK\n57418dAsFS8+Ty2x4+4aAbWwA3sPA58HYn2caUZhJwJ0wk7J/gzb8lHa3c9Tnv9dfF0ANz25Dmx/\nadrHgDTpRmLHKCRgt9Gtm+Z8Eezc6WPYQaEzgIpp0jTF9jcfBU5hv8A7B3idJjnrcx672+5dflyf\nVzLIa4BLmjLAFOwX80ngU6BYgNdpQgb3ahuIdcJ2QaY95wCSA7Q+12FnHBx15rEdGANUCeTXXZr0\nNZ3nPRFweOt5aoJtBT2B/WG1AfvF7+6g0JufDUHYsUMHsd9J84Fr3f0cueOhm7cppZRSyuPyzRgO\npZRSSvkvDTiUUkop5XEacCillFLK4zTgUEoppZTHacChlFJKKY/TgEMppZRSHqcBh1JKKaU8TgMO\npZRSSnmcBhxKKaWU8jgNOJRSXmGMmWCMcRhjko0xl4wxh4wxPxpjBhtjsr31uTFmoDHmpCfLqpRy\nPw04lFLeNA+ojN2Xoyt2a/r3ge+NMdn9PDLYXUuVUgFEAw6llDddFJGjInJQRNaJyFvYLby7A4MA\njDHDjTF/GmPOGmP2GGPGGmOKOc+1Az4HSru0lrzsPBdijHnXGLPPee3vzvRKKT+gAYdSyqdEZCEQ\nB9zqPJQMDAXqAwOAGOxumADLgCeA09itu6sA7zrPjQVuAO7Abvc9A5hnjKnj+VoopbKiu8UqpbzC\nGDMBKC0it6ZzLhZoKCLXpXPuNuBDEano/HsgMEpEyrmkqQ7sAKqLyCGX4z8Bf4jIi26vkFIqR4J9\nXQCllMJlXIYxpiPwPBAFlMJ+ThUxxoSKyIUMrm8IBAF/pRmAGgIc81iplVLZpgGHUsofXAvsNMbU\nBL7Hdo+8AJwAbgI+wwYPGQUcJYAkoCngSHPurCcKrJTKGQ04lFI+ZYy5GdtC8R7QDNvV+7TL+X5p\nLrmEbc1wtdZ5rJKILPVgcZVSuaQBh1LKm4oYYyrhDA6Abtjuk++AydjAo7Ax5nFsS0cb4OE0eewC\nSjgDlTggQUS2GWOmAV8YY57GBiAVgZuBOBGZ5/GaKaUypbNUlFLe1BU4AOzErsnRDnhMRPqI9Sfw\nJPAssB7ojw1ILhOR34GPgOnAEeAZ56lBwBfYWStbgG+A5sAez1ZJKZUdOktFKaWUUh6nLRxKKaWU\n8jgNOJRSSinlcRpwKKWUUsrjNOBQSimllMdpwKGUUkopj9OAQymllFIepwGHUkoppTxOAw6llFJK\neZwGHEoppZTyOA04lFJKKeVxGnAopZRSyuM04FBKKaWUx/1/ZBMbtOzxkeQAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1015,7 +1014,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 53, "metadata": { "collapsed": false }, @@ -1025,18 +1024,18 @@ "output_type": "stream", "text": [ "TRADING STATS\n", - "AVG Monthly Return :: -1.01%\n", - "STD Monthly :: 7.03%\n", - "SHARPE :: -0.50\n", - "MAX DRAWDOWN :: 170.53%, 105.0 months\n", - "Correlation to SPY :: -0.05\n" + "AVG Monthly Return :: 0.68%\n", + "STD Monthly :: 4.98%\n", + "SHARPE :: 0.47\n", + "MAX DRAWDOWN :: 49.38%, 11.0 months\n", + "Correlation to SPY :: 0.03\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGHCAYAAABvUSKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8FMX7wPHPhIQSOgQSWgi9QyBU6UivUqRDQAGV8kWQ\nn0gRVEBBQRBQKdJLEAREOtI7SOi9F+mhBkJJmd8fe8GUS3I5LrmU5/167QuzOzP77OW8ezI7O6O0\n1gghhBBC2JuDvQMQQgghhABJSoQQQgiRQEhSIoQQQogEQZISIYQQQiQIkpQIIYQQIkGQpEQIIYQQ\nCYIkJUIIIYRIECQpEUIIIUSCIEmJEEIIIRIESUqEEEIIkSBIUiKSHKVUiAVbsFKqhlIqr5n9D5RS\n65RSlWM4z/emOj5RHI/Y9mul1H2l1B6l1BilVB4zdWqayrYKs8/btC9AKZXDTJ3tSqnjZvYrpVRX\npdQm03lfK6XuKqU2KqV6KqVSWvBahrax3/S6PFVKnVNKzVNKVTITd9hrvWQql89UZrDpWL0ozrVO\nKfVIKeVmQVxdlFI7TOWfK6WOK6W+VEo5myl7VSn1VxTteJli6mrm9xXde8c9hvicTfEcM8X3WCm1\nUynVJYryUZ3rlgWvRV6l1Byl1EWl1Aul1G3Ta/NVNHUOmtr/KIrj3mFieCeKMjdMx/+KsD/ia3XT\n9J6rGaFclL+XMGXmRPPaBERXVyROjvYOQIg40DnCz95AXdN+FWb/GSD0S2wxsA5IARQG+gBblVIV\ntNanojhPe+AK0EwplVZr/TyKcqFtOwCZgQpAf6C/UupDrfXvEcpHtSBVKuALU91oyyulUgN/AvWB\nPcAPwF0gC1AT+BmoCPSM4lyhpgC9TW0tBIKAIkAj4BJwIEL5ScAhwAkoB3wENFZKlQImAB2BX5RS\nJbXWr8LE+z7QEPhEa30nqmCUUg6AD/A+sBMYCQQA1U3//b5S6l2t9f0w1Sxd4Osekd87g4BcwKeE\nf+/cJwpKqezAVozXyQfjNUwNtAbmKaUaAZ105IXHNgHzI+x7EV3ASqkCGK/3c2A2cBXIgfHafw58\nZaZOQaA8xnu3EzA9mlO8wPid7Y3QRk2M1+VlFPVCr0UB+TDeQ1uVUo211htNZSz9vbwEPiT86w8Q\nbGF9kZhorWWTLUlvGF8KwVEcywuEAAMj7G9g2j81inq1MT4UawKvgC6Wtm06lgc4i/GhXyrM/pqm\nOq3C7PM27fPF+AJ2i9DWNuB4hH3TTPH1jSL+AsDHMbxu2U1t/BrFcZfo4jbt72tqY7Dp50oYic3o\nMGXSAf8Cuy34XQ4xnWesmWNNTG2vjbD/CvBXFO15mdrrGsXx1cDlWL7fNgCBQBMzx743ne//IuwP\nASZb8d7+2fT+yx3d7yfC/q+B28B7pt+Nu5kyoe+5ZRjJrEOE49OBg8DliK+tuWsBSpr2r7fk9xKm\nzBzgaWxfF9kS7ya3b4Qwb5fp3wJRHO8EnNZa7wA2m362mNb6BtANo/fjc0uqAN9i9G5+EV1BpVRu\njL8s12utp0Zx/kta62kxnDMfxl+ne80d1Fr7xRQ0Ro9B6F/LaK0PYCRMg5RSRU1lxgDZgF7RNWTq\n/RmEkcwNNRPPWmAe0FApVdGC2GzOdEurPjDHFE9EQ4ALwGClVCobnDI/8K/W+t+IB6L5/XTASDbW\nAk8wekLM0Rg9PVmBN7fclFJOQBuMHsCIvRfmG9L6JOCH6X0gRFQkKRHCvNAPz0cRD5jGYrTC+FAG\n44O7jqnb3mJa6/0Yt0DMjrEw4wpGl3jPGMZdNML4f3tRbOIx45rp3/eVUmmsbKOg6d8HYfYNwfiC\nmq6UKofRtf+D1vp0DG1Vw7j9tVhrHRJFmdBbBk2tjPdtNcP4Ml9g7qDWOhjjfZMZqBrhcGqlVNYI\nW0zjfq4BeZRStS0JzpQ0FQR8tNaBwAqiT6ivAvsxEplQjYEMwBJLzmk6b2aMa34QU9ko6kd8XbIq\npdJb05ZI2CQpEcLgbPqgy66UqobRbawx/qKMqBmQEQgdC/Inxm2D9lac9ySQTSmVzsLyYzDGawyO\npkxoD8TJsDuVUk4RPtSzRHcibYztmI9xW+RfpdRypdRApVSRaKqlN7XtppRqDPyE0W2/PEy7/sD/\nMMaBbMJItkZFF4tJcYzfSaRBvWEcM/1bzIL24kLxCHGYcwwjcYoY44cYY1VCt3vE/J6aDLwGtiil\nDiulJiqlmkeTRHYGrmut95l+XgIUV0qVjuYci4H3wvTsdAR26GjG/vBfguVi6rVahvF9szSG6zEn\nHeFfl9At4lgskQRIUiKE4WuMD7o7GAMoi2CMBVlppmxH4JDW+jKA1voZRld4rG7hmDwz/WvRX31a\n6ysYf4X3Ukq5RlEsQ4S2QzUm/If6VQvO1w1jXMhljDEIPwBnlFKblVI5zVSZbWr7FsZ4jDQY4zUO\nR2h3Bcbg38xAHx1m0Gs0Ql8j/2jKhB7LEE2ZuPQ2Ma7CGJAdutUDNhINU++SJ8Z7Ii9GsvcncFcp\n1SNsWaVUCqAt4Xs4tmL8vqJ77y7FGBDe1JQ8NyXmXrjQBOseRk9LFWCC1vqnGOqZ8wJ4l/CvTV1i\nuI0pEid5+kYIwwyMv+ZSA3UwPtwj/f+hlMqI8eU+xfTkQ6i9QCulVEGt9cVYnDe0hyS6L7GIRgNd\nMD6UB5g5HtpWxN6X3Rgf5mCMYzH7qGdEWutfgV9NXfBVgY8xXgMfjAGuYX1tOk8wxi2aM9HcavkH\n41aTryVx8N91RZfAWZIUmGPpkyAxCRvj0yjKRBXjv1rrrbE9oen95q2UUhg9NU0xfr/TlVKXw7TZ\nAGPszj9h3rsKY6B0B6LofdNa+ymlNmMk42kx/pj9I4awVgFTMV5Xf+CU1jraJ4miEay13mZlXZHI\nSFIihOFCmA/vdUqpEGCcUmpbhL/y22IMTv0MY9BlWBrjL86vY3HeksA9U2+LRbTWV5RSCzF6S8aZ\nKXIW48umJHAiTL0HGH8ZE9V8GTGc9xGwBlijlNoG1FBK5TEN2g110povVgudwbiu0kBU81uE3oYI\nOz7lJUaPjTnOYcrYwhmghSmO3VGUKYPxXolpDE2saK01cAo4pZTaj5FsdML0O8dIKszdktRgPOZr\nGrhtzmJgJsbjxutNt+CiY1WCJYTcvhHCvDEYf+GNjrC/I8YX/fsYTyCE3bYQ9ZMMkSilqmA83RNt\nF30URhP12JL1GD0V1txOstQh07+RJnOLQ7uBx0BHU6+AOd4YX7Jrwuy7hjH3jDlFTeWvRXE8ttZg\nJE5dzR00zbPSEWMA9R4bndOccL8fZUwq1wJjHEbE9+37GLcto3u/rMQYG1SJ/wZ4C2FzkpQIYYbW\n+gnGXAwNQgcBmh61rQH8rrVeEXHDGBxbUClVIab2lVJ5gbkYc0yMtyK+yxiTmX0EuEU4dgNjbEcj\npVSfKJqI8f99pZSrUirSgFHTI6F1Mb6kYnOr6q2Yuv/HYyQS35qJqwlGUrJBa30wzKF1QG6lVPMI\n5VMCPTDGPYQb8/IWMe7DeES8uymeiL7FePplnIXjaKKllKqmlDLX4x167rOmf1th9ApNjeK9uwZo\nbfrdRqKNiQE/xpiMbfXbxi1EVOT2jRBR+wljJs8vMP66Df1LMqoP5XX810PxT5j9XkqpThiJQCaM\nGV1bY3ypdzbN4RATcz0DYzDGlhQhwpM2prg9gMlKqfammO8BLhjjQpph3GqITm7goFJqK0Yv0B2M\nCdU6YNyemKi1fmhB7LY0FmNg5+emnqblGAMhq2O87qcw5n8JawbwAbBMKTUHOIIx90Y7oATGxHdB\nNoyxK0Zi8qcyliDYhXHLrxXGGJwlWJGIRmEwxvtrBf89leSF8b7ww5hhF4zX5gGwL1ILhr8wZvdt\ngjFQFiK857TWZh9zfksFlVLDzOw/orVeZ/pvR9P/P+aseIuxKiIBkqREJBfRDWTU5o5rrW8rpRYD\nnZSxfktH4JrW+kTEsqbyT5RSu4F2SqmBYdpub9qCMAY/XgB+BKabm/QqiljNxXdJKbWA/25ZhD32\nQinVEOPLqQvwfxhPezzGeCT1YyJPaR7ROYwp7RsDnwCuGGMvTgI9tNZzLIjbpkyDZtsqpbpi9HJ8\nA6TEmO9lJPBjxC8prfVLpVQNYATGE0TdMBIZX6CR1vrvmE4byxjvmB6D/Qzj1kgrjN/9ccBba70w\ninNY8/qNwXhf1jT964wxW+tijFlzryulsmEM3l5sGndizhaMqeo78V9SYkk85uKOzbUUwfgdRjQL\nI8kHI6GL6r26C7hu4blEIqCifo8KIYQQQsSfRDemRClVXSn1lzJWngyJeJ/YVOYbpdQtZayq+rdp\nAaqwx1MppX5WSvkppfyVUn/EdjZOIYQQQthWoktKMJ6TP4oxNbW51VEHY0z21AtjFdTnwMYI0zVP\nwrh32hpj4GJOwsw4KYQQQoj4l6hv35jmknhPa/1XmH23MNbRmGj6OQPGKpfeWuulpp/vA+1DZ+s0\nTZt9BqgcYdS+EEIIIeJJYuwpiZJpMKIbxqAtALTWT4EDGNMcA5THGOAbtsw5jMFSVRBCCCGEXSSp\npAQjIdEYPSNh3eW/uRxcgdemZCWqMpEopZyVUuVMkxAJIYQQwkKWfofKI8GW88SYgfGwUirilOAb\nsG5WTiGEECKpaQA0jLAvHVAOY56kvVFVTGpJyR2MCX9cCd9b4ooxYVJomZRKqQwRektcTcei4mH6\nt5yZYzUwM8OkEEIIIcLxILkkJaaFyu5gLHN9HN4MdK0E/Gwq5osxkdG7GOs5hA50dSfq2Q7BtMz7\nwoULKVYs0szbURowYAATJ06M1XXEV5169erx998xzRtlm3Ml5GuKr9isrZeQrykhX4+19RLyNcXn\nezWpXZO876w/jy3qnDlzhs6dO4PpuzQqiS4pUUqlxVg7InQK5PxKqTLAQ9OaH5OA4UqpixgXPwr4\nF2MpbbTWT5VSs4AflVKPMBZdmwzsieHJm5cAxYoVo1w5c50l5mXMmDFW5eOzjpOTU6zrWHuuhHxN\n8RWbtfUS8jUl5Ouxtl5Cvqb4fK8mtWuS953157FxnWhX5E50SQnG0zPb+G8q4wmm/fOAD7TW35sG\n0kzHWGdkF8ZU0q/DtDEAY42SPzCmMN4ARLVw2Vvp0KFDgq2TK1euWNex9lwJ+ZriKzZr6yXka0rI\n12NtvYR8TfH5Xk1q1yTvO+vPE5/vO7TWslmwYYwl0b6+vjqpaNasmb1DsDm5poQvqV2P1nJNiUFS\nux6tE9c1+fr6hnYklNPRfNcmtUeChRBCCJFISVKSjFndvZaAyTUlfEntekCuKTFIatcDSfOaEvU0\n8/FJKVUO8PX19Y1ywM/169fx8/OL38CSKRcXF9zd3e0dhhBCCAscPnwYLy8vAC+t9eGoyiXGga4J\n0vXr1ylWrBgBAQH2DiVZcHZ25syZM5KYCCFEEiJJiY34+fkREBAQ63lMROyFPu/u5+cnSYkQQiQh\nkpTYWGznMRFCCCGEQQa6CiGEECJBkKRECCGEEAmCJCVCCCGESBAkKRFCCCFEgiBJiRBCCCESBElK\nhEXmzZuHg4MDzs7O3L59O9LxWrVqUbp06Tc/e3h44ODgQP/+/SOV3bFjBw4ODqxYsSJOYxZCCJG4\nSFIiYuXVq1eMHTs20n6lVKSflVLMnDmTO3fuxFheCCFE0hWiQywqJ0mJiBVPT88oE42ISpQoQXBw\nsNkkRpY3EEKI5OHpq6f0Wt3LorKSlAiLKaUYOnQoQUFBZhONiDw8POjatavFSYwQQoik5cnLJ9Rf\nUJ8LDy5YVF6SEhEr+fLli1WiMWzYMAIDAy1KYoQQQiQ8L4Ne8ujFI2773+bKoyucuX+GY3eOcejW\nIfbd2MfOazu5+fRmpHqPXjyi3oJ6nH9wnmlNp1l0LplmXsTasGHDmD9/PuPGjWPixInRlvXw8KBL\nly7MnDmTIUOG4OrqGk9RCiGEeBsvg17Sa3UvFhxfEGNZB+VAs8LN+KT8J9QrUI/HLx9Tb0E9rj2+\nxlbvrYTcsmxMiSQldhIQAGfPxu05ihYFZ2fbt5svXz66dOnCjBkz+OKLL2JMNIYPH86CBQsYO3Zs\njEmMEEII+7v//D7v/f4eh28fZkL9CXhk8iC1Y2pSO6YmVYpUpEyREqcUTjg5OOHo4Mi2q9v49dCv\nNFzUkPyZ85MqRSruB9xnq/dWSruW5vCtwxadV5ISOzl7Fry84vYcvr4QV2sDxibRiJjECCGESLhO\n3z9N08VNCQgMYLv3dirlrhRjnSIuRfjI6yP2/7ufab7T8L3lyzbvbZTMXjJW55akxE6KFjWShrg+\nR1zJly8fnTt3ZsaMGQwePDjG8sOGDWPBggWMGzeOFi1axF1gQgghYi0gMIAbT27ge9uX3mt7kydj\nHrZ5byNvprwWt6GUokqeKlTJU8XqOCQpsRNn57jrxYgvw4cPZ+HChYwbNy7Gsvnz56dz585Mnz6d\nihUrxkN0QgghonLv+T1mH5nNH6f/4Orjqzx48eDNsUYFG7GkzRIypMoQ73FJUiKsFjbRyJs3L05O\nTtGWD73l8/3338vkaUIIEc+01uy6votph6bxx+k/cFAOtCzWkpZFW+Ke0f3N5pHJw26f0ZKUCIuZ\nm/As9LbMuXPnKFky+nuHoUnMvHnzJCkRQiRJz18/J23KtLGqo7Xm8cvH3PK/xe1nt7ntf5uMqTPS\nsGBDUqZIaVUcITqESfsnceTOEW4+vckt/1vc8r+F/2t/CmctzLi64/D29CZLmixWtR9XJCkRFjOX\nSBQoUIAuXbpESjRCp5mPaPjw4SxatIiQEMseDxNCCHu78OACq86tYuOljZTKXoqBVQaSO0PucGUu\nP7rMl9u+ZMnJJcx/bz6dSneyqO3nr59TYWYFzvidiXTMxdmFTqU60c2zG55unrGKeabvTD7b9BnV\n3KuRK30uPN08yZk+J145vKjlUSvB/mEoSYmwiLe3N97e3maPzZ49m9mzZ4fbd/nyZbNlCxQowOvX\nr20enxBCWOrSw0s0WNiAYtmK0alUJ5oXaY6z03/zJzx//Zz9/+5ny5UtrDq3itP3T5PaMTU18tZg\nztE5TD04lS6lu/B51c/JkiYLo3eO5tdDv+Li7ELVPFXpva43Vd2r4pHJI8ZYph6cysWHF1nQcgH5\nMuUjR/oc5EiXg0uPLjH36FwWHF/ATwd+wiuHF8veX0a+zPlibPPm05t8vvlzPiz7Ib81/+1tXqp4\nJ0mJEEKIZONF4AtaL21NsA7m/vP7dFjegbROaWlZrCWuaV3ZdX0Xh28fJigkiKxpstKkcBNG1x5N\n/QL1SZsyLf6v/JnuO50f9/3InKNzSOOUBkcHR76q9RX9K/UnKCSIMtPK0HlFZ7Z3246jQ9Rfs09e\nPmHcnnH0LNeTzqU7hztWMntJxtcfz3fvfseGixv4dOOnNF7cmL0f7CVzmsxRtqm15pO1n5DWKS3j\n64+32esWXyQpEUIIkWg9ffWUpaeWApDGMQ1pnNLg7ORM5dyVyZQ6U6Tyfdf15dyDc+z/cD9l3Mpw\n6eElfE764HPSh2evn1HNvRrdynSjet7qFM9WHAcVfjWW9KnSM+idQfSr2I8Fxxdwy/8WvSv0xsXZ\n5U2Zha0WUnNuTcbuHsvwGsOjjH3S/km8CHrBsBrDoizjlMKJZkWaUcSlCFVmVaHV0lZs6LSBVI6p\nzJZfemopq8+vZkXbFWavP6GTpEQIIUSitOb8Gj5Z+wk3n95EE34gvls6N35r9htNCjd5s2/W4VnM\nPjqbuS3mUsatDAAFshRgeI3h0SYP5qRyTEWPcj3MHqvmXo2h1Yby1favqF+gPhVzRZ4G4UHAA37c\n/yO9y/cmZ/qcMZ6vcNbC/NX+L96d/y49Vvdg/nvzI40LeRDwgH7r+9G6WGtaFmsZq+tJKGRBPiGE\nEInK3Wd3af9He5r5NKNU9lJc6X+F4BHBPB/6HL//8+N079N4unnS1KcpPf7qwdNXTzly+wh91vWh\nZ7meeHuaHx9nSyNqjsArpxedVnTi2etnkY6P3zue4JBgBleLefLJUFXdqzLvvXksPL6Qr7Z/Fen4\ngI0DCAwJZGrjqW8Tul1JT4kQQohEITgkmDlH5/D535+TwiEFi1otokPJDm96DJydnHF2ciarc1bW\ndVzHzMMzGbhxIFuubEFrTYnsJZjcaHK8xOqUwomFLRdSdnpZmixuws+Nf34z5frdZ3eZfHAyn1b6\nlOxps8eq3XYl23H18VW+2PIFe27swUE5EKyDCQwOZNf1XcxuPhu3dG5xcUnxQnpKhBBCJAh3nt1h\n/rH5XHt8LdKxPdf3UPG3ivRc3ZNmRZpxps8ZOpbqGOWjrUopenn14vgnx3HP6M6z18/44/0/SO2Y\nOq4v441CWQvxZ/s/ueV/izLTyvDR6o+4++wuY3ePxcnBiUHvDLKq3c+rfs7Yd8eSIVUGMqbOSDbn\nbLhndGd07dF08+xm24uIZ9JTIoQQwu4uPLhgLHX/xEhIvHJ40apYK2p51OLnf35m8YnFeOXwYu8H\ne2O1tkr+zPnZ7r2dl0EvSeOUJq7Cj1Ld/HU51fsUv/7zK1/v+JrFJxcTGBzI0OpDo32KJjpKqVjd\n9klMpKdECCGEXR2+fZiqs6uSxikNp3qfYknrJRTIUoBvd31L1dlV2Xx5M7Oaz+Jgz4NWLfamlLJL\nQhIqZYqU9K/cn4v/u0iPsj0o7VqaTyt/ard4EjLpKRFCCBGngkKC8Dnhw+KTiynrVpYWRVpQIVcF\nHJQD265so8WSFhR1Kcq6TutwcXaheLbitCvZjpdBLzl48yBlXMuQMXVGe1/GW8uSJgsTG060dxgJ\nmiQlQggh4sSroFfMPzafsXvGcvnRZarmqcoM3xl8t/s7cqTLwbv532XpqaXUyFuDFW1XkD5V+nD1\nQ2dRFcmHJCVCCCFsKjA4kFlHZjFm1xhuPr1Jm+JtWN52OZ5ungSFBLH3xl5WnV3Fuovr6FiqI9Oa\nTItyMjCRvEhSIoQQwia01qw6t4ovNn/B+Qfn6ViqI8OqD6NYtmJvyjg6OFIjbw1q5K3BhAYT7Bit\nSIhkoKuw2IkTJ2jTpg0eHh6kSZOG3LlzU79+faZO/W+iHg8PDxwcHN5srq6u1KhRgz///BOAq1ev\nkjZtWjp1Mr+C5u+//46DgwO//vprvFyTEOLtPX31lL8v/U31OdVp+XtL3DO6c/ijwyxstTBcQiJE\nTKSnRFhk79691KlTh7x589KrVy/c3Ny4ceMG+/fvZ/LkyfTt2xcwRrmXLVuWQYMGobXm1q1bTJ8+\nnVatWjFt2jR69erFyJEjGTJkCN27d6du3bpvzuHv78/AgQOpUqUKn3zyib0uVQgRBa01N/1vcujW\nIQ7fPszxu8c5fvc4Vx5fAaCMaxk2dt5I/QL17RypSKwkKREWGTNmDJkyZeLQoUOkTx9+MJqfn1+4\nn3PlykWHDh3e/NylSxcKFizIxIkT6dWrF5999hmLFi2id+/enDhxglSpjHvJQ4cOxc/Pj02bNsX9\nBQkhLLbizApmH5nNoVuHuPv8LgCuaV0p41aG1sVaU9q1NKVcS1HatXSkBeyEiA1JSoRFLl++TIkS\nJSIlJAAuLi5mavzH1dWVYsWKcfz4cQBSpEjBjBkzqFq1KqNHj2bUqFH4+vry66+/MnjwYEqUKBEn\n1yCEiGzntZ2cvHeSj8t/bDahWHJyCR2Xd6Sqe1V6lutJ+ZzlKZ+zPDnT54xyNlUhrJUkU1ql1Eil\nVEiE7XSEMt8opW4ppQKUUn8rpQraK97EIG/evPj6+nLq1KlY1w0KCuLGjRtkzZr1zb5KlSrxySef\n8MMPP3Dy5Ek++ugj8ufPz4gRI2wZthAiCvee38P7T29qzq1Jn3V9aPl7S/xf+Ycrs+b8Grqs7EKX\nMl3Y0W0Ho+qMokXRFuTKkEsSEhEnkmRSYnIScAXcTFu10ANKqcFAX6AXUBF4DmxUSqW0Q5yJwqBB\ngwgICMDT05OqVavyxRdf8PfffxMUFBSpbGBgIA8ePODBgwccP36cLl26cO/ePdq2bRuu3LfffouL\niwu1atXiyJEj/PLLL29u5Qgh4kZwSDDTDk2jyNQirDm/ht+a/cbqDqvZdmUbVWdX5erjqwBsu7KN\nNkvb0KxwM2Y1nyW3ZUS8SMq3b4K01vejONYfGKW1XgOglOoK3AXeA5bGR3ABgQGc9Tsbp+co6lIU\nZydnm7RVt25d9u3bx3fffcfGjRvZv38/33//PdmyZeO3336jWbNmb8pu3LiRbNmyvfnZ0dGRrl27\nMnbs2HBtpk+fnkmTJtG2bVs6dOgQbtCrEML2zj84j/ef3uz/dz8feH7AuHrjcHE2br/u+3AfzZc0\np8LMCnxd62sGbx5Mjbw18Gntg6NDUv6qEAlJUn6nFVJK3QReAvuAIVrrG0qpfBg9J1tCC2qtnyql\nDgBViKek5KzfWbxmeMXpOXx7+VIuRzmbtefl5cUff/xBUFAQx44dY+XKlUycOJH333+fo0ePUrRo\nUQAqV67MmDFjAHB2dqZYsWJkyJDBbJsVKlR407YQIm5orZnuO53PNn1GzvQ52dV9F9Xcq4UrUyJ7\nCQ70OECbpW3os64P7+R5h5XtVsqkZiJeJdWkZD/QDTgH5AC+AnYqpUpiJCQao2ckrLumY/GiqEtR\nfHv5xvk54oKjoyNeXl54eXlRqFAhunfvzrJly/jyyy8BY+Br7dq14+TcQojYue1/mw//+pD1F9fz\nsdfHjK8/nrQp05ot6+LswqYum1hycgnNizSPspwQcSVJJiVa641hfjyplDoIXAPaAm91z2TAgAFk\nzBh+YagOHTpQpEiRWLXj7ORs014MeylfvjwAt2/ftnMkQoiIDt48SONFjXFK4cTajmtpXKhxjHVS\npkhJ1zJd4yE6kVT5+Pjg4+MTbt+TJ08sqpskk5KItNZPlFLngYLAdkBhDIIN21viChyJqa2JEydS\nrlzkZOLw4cM2iTWh2r59O7Vq1Yq0f+3atQBvbt0IIRKG0/dP02hRI4q6FGVV+1Vvxo4IEdc6dOgQ\nbq4qML5Hp/onAAAgAElEQVQjLblNnyySEqVUOoyEZJ7W+opS6g7wLnDcdDwDUAn42X5RJmz9+vUj\nICCAli1bUrRoUV6/fs2ePXtYunQp+fPnp1u3bvYOUQhhcu3xNeovqE/uDLlZ23EtmVJnsndIQlgk\nSSYlSqkfgNUYt2xyAV8DgcASU5FJwHCl1EXgKjAK+BdYFe/BJhITJkxg2bJlrF+/npkzZ/L69Wvc\n3d3p27cvw4YNezOQVSkV6/kLrKkjhDDv3vN71FtQj1SOqdjQaYMkJCJRSZJJCZAbWAxkBe4Du4HK\nWusHAFrr75VSzsB0IBOwC2iktX5tp3gTvPr161O/fszrWVy+fDlW7ebNm5fg4GBrwxJChPHk5RMa\nLmyI/2t/9nywhxzpc9g7JCFiJUnOhqO17qC1zq21TqO1dtdad9RaX4lQ5iutdU6ttbPWuoHW+qK9\n4hVCiJjMOTKH8jPKs/fGXrPHLzy4QK15tbjy+AobO28kf+b88RyhEG8vSSYlQgiRlGy9spVea3px\n4+kNqs+pzohtIwgMDnxzfPGJxZSbUY6AwAC2e2+ntGtpO0YrhPUkKRFCiATs/IPztFnahjr56nDt\n02uMrDmSb3d9S/U51Tl+9zg9/upBpxWdaFGkBYd6HqKMWxl7hyyE1ZLqmBIhhEj0Hr14RDOfZrim\nc+X3Nr+T2jE1I2qOoH6B+nRe0Zky08rg7OTM7Oaz6ebZTQaMi0RPkhIhhLCj56+fM37veGYfnU0Z\n1zI0LtSYxoUakyNdDtosa4NfgB8HehwI9xRN5dyVOfrxUaYenErzIs0pnq24Ha9ACNuRpEQIIewg\nRIcw/9h8hm0dhl+AH11Kd+Hiw4v0XdeXYB2MWzo3/AL82NxlMwWzFIxUP13KdHxR7Qs7RC5E3JGk\nRAgh4pHWmo2XNjJ0y1CO3DlC2xJtGfvuWPJlzgfA45eP2Xx5MxsvbqRu/rrU9Khp54iFiD+SlAgh\nRDwICgnij9N/MHb3WI7dPUaV3FXY88Ee3snzTrhymVJnok3xNrQp3sZOkQphP5KU2NiZM2fsHUKS\nJ6+xSEy01sw5Oocxu8Zw+dFl6heoz9YGW6nlUUsGpgoRgSQlNuLi4oKzszOdO3e2dyjJgrOzMy4u\nssCYSNiCQoLot64f03yn8X7x91n2/rIksTq4EHFFkhIbcXd358yZM/j5+dk7lGTBxcUFd3d3e4ch\nRJQCAgNo/0d71l1Yx2/NfuPDch/aOyQhEjxJSmzI3d1dviiFENx/fp9mPs04ee8kqzusplGhRvYO\nSYhEQZISIYSwEf9X/my4uIGhW4fi/8qfHd124JXTy95hCZFoSFIihBBv4dGLRyw/s5w/z/7J5sub\neRX8ikq5KrGp86Y3j/kKISwjSYkQQljp/vP7VPqtEteeXKO6e3XG1h3Le0XfwyOTh71DEyJRkqRE\nCCGs8CroFS1/b8nzwOec73ueAlkK2DskIRI9SUqEECKWtNb0XN2TQ7cOsb3bdklIhLARSUqEECKW\nxu4ey4LjC1jcajGVc1e2dzhCJBkO9g5ACCHsQWvN3Wd3Y11v+enlDN06lJE1R9KhVIc4iEyI5Et6\nSoQQyc7Jeyfps64PO6/tpFKuSvSt2Jf3i79PKsdUkcre9r/Nvn/3se/GPvb9u48DNw/QvmR7RtYc\naYfIhUjaJCkRQiQb/q/8+XrH10zaP4kCWQowtdFUVp1bRZeVXRi4cSA9y/UkS5osnPU7y7kH5zjr\nd5b7AfcByJMhD1XyVOHHEj/S06unrFsjRByQpEQIkeRprVlycgmD/h7EoxePGFV7FAOrDCSVYyr6\nVOzDWb+z/PLPL0w5OIVgHUxRl6IUyVqEuvnrUiJbCSrnrkyuDLnsfRlCJHmSlAghEpT7z+9z1u8s\nBbIUIEe6HG/dI3H87nH6re/Hzms7aVWsFRMbTMQ9Y/jlIIq6FGVyo8n82OBHHJQDDkqG2wlhD5KU\nCCESjE2XNtFpRSf8AoyFLdM4pqFAlgKUcS3D5EaTyZImi8VtPXrxiBHbRvDLoV8onLUwmzpvol6B\netHWcXSQj0Qh7En+DxRC2F1wSDBf7/ia0TtHU79AfcbUGcMt/1tcfHiRS48usejEIgJDAlnSekm0\nPScPXzxk48WNrLmwhrXn1xKiQ/i+7vf0q9SPlClSxuMVCSGsIUmJEMKu7j67S8cVHdl+dTujao9i\nSPUhOCgHvPhvIbvq7tVpv7w9LYq0oGOpjpHa2HN9D0O3DmXP9T0E62DKupWlX8V+9K7Qmxzpc8Tn\n5Qgh3oIkJUIIuznnd4468+sQHBLM5i6bqZ2vttly7Uq2Y9W5VfRe25vq7tXJkzHPm2Nbr2ylmU8z\nSmQrwS9NfqFxocbkzpA7vi5BCGFDMppLCGEX5x+cp/a82mRKnYnDHx2OMiEJ9XPjn0mXMh3dVnUj\nRIcAxhiUJoubUN29Oju67aCXVy9JSIRIxKSnRAgR7y4+vPgmIdnadSuu6VxjrJM5TWbmvjeXegvq\nMeXAFApmKUirpa2oX6A+y95fRmrH1PEQuRAiLklSIoSIV5ceXqL2vNpkSJWBrd6WJSSh6uavS/9K\n/Rm8eTAhOoSmhZuypM0SGcQqRBIhSYkQScy1x9dwUA7hxl0kFFceXaH2vNo4OzmztetW3NK5xbqN\n7979jt3Xd1PUpShzWszBKYVTHEQqhLAHSUqESCICgwMZs2sMo3eOJlgHkz9zfup41KF2vtq8m+/d\nWPVIxIXb/repu6AuqRxTsc17m9VPxaRxSsM/Pf+Rad6FSIIkKREiCTh57yRdV3bl+N3jDKs+jDJu\nZdh2ZRvbrm7jtyO/4aAcqF+gPt3KdKNF0RbxPv7i0YtHNFjYgFdBr9j9wW5yps/5Vu1JQiJE0iRJ\niRCJyOvg11x6eImXQS/fbHtv7OWbnd9QMEtBDvQ4gFdOY36PVsVaAcY8IKvOrWLesXm0X96ejKky\n0r5ke/pU6EMp11JxHvPz189psrgJt/xvsbP7TjwyecT5OYUQiZMkJUIkEhceXKD5kuac9Tsbbr9C\n8VmVzxhVZ5TZHhDXdK708upFL69enH9wnvnH5jP36Fym+06nYcGGDKoyiDr56sRJ78OroFe0WtqK\nE/dOsLXrVopnK27zcwghkg5JSoRIBDZd2kS7P9rhmtaVTZ03kSVNFlI7pia1Y2oypc5EVuesFrVT\nOGthRtcZzciaI1l6aik/7P2BugvqUtatLN/X+566+eu+daxaa07eO8nGSxtZdnoZx+4cY32n9VTI\nVeGt2xZCJG2SlAiRgGmtmbR/EoP+HkTDgg1Z3GoxGVNnfOt2nVI40al0JzqW6siWK1v4Zsc3NFnc\nhE2dN1HTo6ZFbey5vofpvtNRShkr6+LAi6AX7Li2g1v+t0jjmIaaHjVZ03FNjBOjCSEESFIiRILl\nF+DHwI0DWXB8AYOrDmZMnTGkcEhh03Mopaibvy7V3avTZHETmi9pzq7uuyjtWjrGup9v/pwrj65Q\nIEsBQnQIIToEB+VAh5IdaFCgAdXzVpcJzYQQsSJJiRAJzIvAF0w+MJlvd38LwMKWC+lUulOcnjOV\nYypWtFtBrbm1aLSoEXs/2EveTHmjLH/q3in23tjL0jZLeb/E+3EamxAi+ZC1b4RIIEJ0CAuPL6TI\n1CIM3zYc7zLeXOx3Mc4TklAZUmVgXad1pEqRigYLG+AX4Bdl2d8O/0Y252y0KNoiXmITQiQPkpQI\nkUB8s+MbuqzsQoVcFTjd+zSTG00mW9ps8RqDWzo3NnXZxMMXD2nm04zXwa8jlXkZ9JL5x+fTzbOb\nTO8uhLCpZJ2UKKX6KKWuKKVeKKX2K6VifDxgyhT44ANo2hRGjIiPKEVycOzOMcbsGsOIGiNY3nY5\nhbIWslssBbMUZE3HNfxz8x8m7J0Q6fiKMyt4+OIhPcr1sEN0QoikLNkmJUqpdsAEYCRQFjgGbFRK\nuURXb9MmOH0a7t6Fb78Fv6h7uIWwSFBIEB/+9SFFXYoyrMYwe4cDQMVcFRlQeQDf7PyGy48uhzs2\nw3cGtTxqUThrYTtFJ4RIqpJtUgIMAKZrredrrc8CHwMBwAfRVVq9GvbvhzVrQGv488/4CFUkZRP2\nTuDInSPMbj47Qd0O+arWV2RPm50+6/qgtQbg/IPz7Li2g17letk5OiFEUpQskxKllBPgBWwJ3aeN\nT93NQBVL2nB1hZo1YenSuIlRJA/n/M4xcvtIBlYemOAmF0ubMi1TG01lw8UN/HH6D8AY4JolTRZa\nFmtp5+iEEElRskxKABcgBXA3wv67gMVrqbdtC1u3yi0cYZ0QHUKP1T3IkzEPX9f+2t7hmNWsSDPe\nK/oe/Tf0xy/Aj7lH59K1dFeZf0QIESdknpK30KoV9OkDK1dCz572jkYkZCE6hL8v/c2jl494Hfya\nwOBAjtw5wu7ru9nuvR1nJ2d7hxilyQ0nU/yX4tSZV4f7Affp6SVvdiFE3EiuSYkfEAy4RtjvCtyJ\nruKAAQPImPG/ab6zZIHJkzvQs2cHmwcpkoZXQa/ovqo7Pid9wu1PoVLwRdUvLJ7W3V7yZMzDN7W+\nYeCmgVTNU1UW1RNCRMvHxwcfn/Cfd0+ePLGorgodwJbcKKX2Awe01v1NPyvgOjBZa/2DmfLlAF9f\nX1/KlSv3Zv/06dC7N9y5A9mimFIiMDiQ9RfXM/foXG7632S793bSOKWJg6sSsXXq3imevX5GpdyV\n4qT9Jy+f0GppK/Zc38O89+bRpHATnByccErhhINKPHdPg0KC6PFXD7zLeMs6NkKIWDt8+DBeXl4A\nXlrrw1GVSzyfirb3I9BTKdVVKVUUmAY4A3Nj00hL03i/lSsjH7vw4AIDNw4k14+5aLGkBVceX8H3\nli8zfGe8ZejibTx5+YTph6ZT6bdKlPy1JDXn1uT6k+s2P88t/1vUmFsD31u+bOqyiXYl25EuZTpS\nOaZKVAkJgKODI3PfmysJiRAiTiWuT0Yb0lovBQYB3wBHgNJAA631/di0kz071K4d+SmcU/dOUfG3\niiw8vpDOpTtz9KOjHPnoCF3KdGHcnnG8DHppoysRltJaM2DDANwmuNF7XW+yOWdjSeslZEydkZHb\nR9r0XOcfnOedWe/w8MVDdn+wmxp5a9i0fSGESIqS65gSALTWvwC/vG07bdvCJ5/AvXtGknLz6U0a\nLmqIe0Z3dnbbGW6p+aHVhjL/2Hxm+s6kX6V+b3tqEQvTDk1j0oFJjKgxgo/Kf0TO9DkBYzXefuv7\nMbDyQEq5lrLJuXqt7oVTCid2dd1Fnox5bNKmEEIkdcm2p8RaI7eN5M6z8GNhW7YEpWDFCuPWQKNF\njVAo1nVcFy4hASiUtRCdSnVi7J6x0lsSj07fP83ATQPpXb43X9f++k1CAtDTqyf5M+dn6NahNjnX\nrmu72HFtBz/U+0ESEiGEiAVJSmJp1/VdFJ5SmAl7J7xZrCxbNuMWzu9/vKbV0lbceHqD9Z3WkytD\nLrNtDK8xnDvP7jDr8Kz4DD3ZehX0io7LO5I/c37G1x8f6XjKFCkZU2cMa86vYee1nW99vlE7R1Eq\neymaF2n+1m0JIURyIklJLK1stxLvMt58vvlz3Ma7UWVWFbqs7IJzo2/Y7tKe3dd282e7PymRvUSU\nbRTOWpgOJTswds9YXgW9isfok6chW4Zwxu8MPq19onzq6f0S7+OVw4vBmwdjyRNpUZU58O8B/r78\nN1/W+DLRDWYVQgh7k0/NWMqYOiNTGk/h2MfHGFhlIEWyFuHyo8vsDZoKhdbjtm8BZTLFPO/E8BrD\nufn0JrOPzI6xrCQu1tt0aRMT909kXN1xlHYtHWU5B+XAuLrj2P/vfladWxVtm0tOLiHHhBwc+PdA\npGOjdo6imEsxWhdv/daxCyFEciNJiZVKZi/J8BrDmfveXPZ8sIf7n9/jWLtn+O9vS4sW8DKG4SJF\nXYrSvmR7vtv9ndmkIyAwgHlH51F1dlUyjM3A8bvH4+hKEp+bT28y+O/BuI53ZczOMVH2Wlx7fA3v\nP71pUKAB/6v0vxjbfTf/u9QvUJ8hW4YQFBJktoxfgB991/XlyasnNFzUkGN3jr05dvj2YdZeWMuw\n6sOkl0QIIawgn5w2VLpkCtasgX/+gY4dITg4+vJf1viSm/43cfnBhUq/VaL7qu78sOcH+q3rR84J\nOem2qhvOTs5kT5ud73Z/Fz8XkYCdvHeSbn92I99P+ZjmO41q7tUYvm043n96R0rsVp9bTdnpZUnt\nmJq57821OEkY++5YzvmdY/jW4WaPD9o0iBAdwvGPj5M/c37qLajHOb9zgNFLUjBLQdqVbPd2FyqE\nEMmV1lo2CzagHKB9fX11TP76S+sUKbTu1UvrkJDoyx7494D+fvf32nult64wo4JOOyatdhvvpods\nHqIvPbyktdb654M/a4evHfSFBxdiPHdSNeXAFM1X6Nw/5tYT9k7QT14+0Vpr7XPCR6calUpXm11N\n339+X78KeqUHbhio+QrdwqeFfhjwMNbnmrB3guYr9Jwjc8Lt33J5i+Yr9EzfmVprre8/v6+L/1xc\n5/4xt/7r7F+ar9CzD89+62sVQoikxtfXVwMaKKej+a5NttPMx1ZU08xHZc4c+OADY6G+CRMgfXrL\nzhOiQ1AojFnvDS8CX5Dvp3w0L9KcGc2S32ywJ+6eoPzM8vQo24NJDSfhlMIp3PH9/+6nxZIWpEuZ\njmzO2fC97csP9X6gf6X+4V5HS2mt+WjNR8w9OpfNXTdTI28NXga9pPSvpXFL58b2btvf9Lzc9r9N\n9TnVufToEh6ZPDjf93yk+IQQIrmTaebtrHt3Y12cRYugeHH46y/L6jkoh0hfpGmc0jCwykBj7Zyn\nN+Mg2oTrVdArOq3oROGshZnQYILZL/zKuStzoMcBnJ2cufPsDru77+bTyp9alZAAKKX4ufHPVM9b\nnZa/t+Tiw4t8u+tbrj6+yvSm08PdCsqRPgdbum6hjGsZvnv3O0lIhBDiLUhPiYVi21MS6upVY8G+\n9euhdWuYMgVy5Ij9+Z++ekreSXnp7tmdHxv8GPsGEqn/2/R/TD44mYM9DlLGrUy0ZQODA9FoUqZI\naZNzP3rxiMqzKhMUEsSNJzf4otoXfFP7G5u0LYQQyYn0lCQQHh6wdi0sWQK7doGXF7x+Hft2MqTK\nQN8KfZnuO50HAQ9sHqc9PX75mF/++YXT90+H27/96nYm7JvA6NqjY0xIAJxSONksIQHInCYzazqs\n4dGLR3hk8mBoddvM+CqEEMI8SUrigVLQrh2sWwe3b8O+fda1879K/0NrzeQDk20boB1dfHiRKrOq\n0GddH0r8UoLa82qz7NQy7j+/T9eVXamRtwYDqwy0W3yFshbCt5cvW723ktoxtd3iEEKI5ECSknhU\ntiy4uMDff1tXP1vabPTy6sWUg1Pwf+Vv2+DsYMfVHVT6rRIhOoSTn5zEp7UPwSHBtP2jLbkn5ubJ\nqyfMe28eKRxS2DXOfJnzkTtDbrvGIIQQyYEkJfHIwQHq1oVNm6xv47Mqn/Hs9TNmHUnc6+bMOTKH\negvq4enmyf4P91Miewnal2zPzu47OfHJCXqX741Pax/yZspr71CFEELEE0lK4lm9enDoEDx8aF39\nPBnz0KhQI5afWW7bwOJJiA5hyOYhfPDXB3T37M6GThvInCZzuDIls5dkYsOJNC7U2E5RCiGEsAdJ\nSuJZvXqgNWzZYn0bTQo1Ye+NvTx68ch2gcWDV0Gv6LKyC2P3jGV8vfFMazpNHqEVQgjxhlVJiVLK\nQSlVWClVTSlVI+xm6wCTmjx5oGhR68eVADQu1JgQHcLGSxttF1gce/zyMY0WNWL56eUsbbOUz975\nzOp5RIQQQiRNjrGtoJSqDCwG8gIRv1U0YN9RiYlA/fqwapXRY2LN93LuDLkp7VqatRfW0r5ke9sH\naGM3ntyg0aJG3PK/xeaum6nmXs3eIQkhhEiArOkpmQYcAkoCWYDMYbYstgst6apXD65dg4sXrW+j\nSaEmbLi4geCQGFb9s7Onr55SbU41nr1+xt4P90pCIoQQIkrWJCWFgKFa6zNa68da6ydhN1sHmBTV\nrAmOjm9/C8cvwI9/bv1ju8DiwJidY7j//D7bu22nqEtRe4cjhBAiAbMmKTkAFLR1IMlJ+vTwzjtv\nl5RUzl2ZzKkzs+7COtsFZmMXH15k0oFJDK46GI9MHvYORwghRAJnTVIyBZiglOqmlPJSSpUOu9k6\nwKSqXj3YuhWCgqyr7+jgSIOCDVh7Ya1tA7OhQZsG4ZrWlf+r+n/2DkUIIUQiYE1SshwoBswG/gGO\nAkfC/CssUL8+PH0KBw9a30aTQk04fPswt/1v2y4wG9lyeQurzq3i+3rf4+zkbO9whBBCJALWJCX5\nzGz5w/wrLODlBZkzv90tnIYFG6JQrL+43naB2UBQSBCfbvyUqnmq0q5EO3uHI4QQIpGIVVKilHIC\nRgIOWutr5ra4CTPpSZEC6tR5uynnXZxdqJS7UoK7hTPDdwan7p3ip4Y/yVwkQgghLBareUq01oFK\nqdbAqDiKJ1mpXx9694YnTyBjRuvaaFKoCd/v+Z7Xwa9JmSKlbQO0wIOABxy/e5zXwa95Hfyal0Ev\nGbFtBN08u+GV0yve4xFCCJF4xXryNOBP4D1goo1jSXbq1YPgYBgxAsaMgXTpYt9G40KN+XLbl+y+\nvps6+erYPshoPHrxiLLTy3Lj6Y1w+3Oky8G3734br7EIIYRI/KxJSi4AI5RSVQFf4HnYg1rrybYI\nLDnIlw+++cZISJYtg1GjoFs349aOpcq6lSVHuhysu7AuXpMSrTUfrfkI/9f+HOp5CNd0rqRMkRIn\nByfSpUwna9oIIYSINWsGun4IPAa8gF7AgDDbp7YLLXn48ks4exZq1YIePaBsWdi92/L6SikaF2rM\nyrMreRX0Ks7ijGj+sfksO72M6U2n45XTi9wZcpM9bXYyp8ksCYkQQgirxDop0Vrni2aTp2+s4OEB\nixfDgQOQJg00bQq3Y/GUb58Kffj36b/039A/zmIM69LDS/Rd3xfvMt60LdE2Xs4phBAi6bNqlWAR\nNypWhHXrIFUq+N//LK9XNkdZfm78M9N9pzP7yOy4CxDjcd/OKzuTPW12JjeSO3VCCCFsx5pVgqP9\n1tNaf2B9OCJrVvjpJ+jQwVhJuEULy+r1KNeDA/8eoPfa3pR2LU35nOXDHX/++jlKqbeeyGz0ztH8\nc/MfdnXfRYZUGd6qLSGEECIsa3pKMkfYsgN1gFZAJtuFlny1aweNG0OfPsasr5aa0ngKpVxL0Xpp\na/wC/ADjVkv/9f1xm+BGw4UN0VpbHddZv7OM2jmKL2t8SZU8VaxuRwghhDAn1j0lWuuWEfcppRyA\nX4FLtggquVMKfv0ViheHIUPg558tq5faMTXL2y7Ha4YXrZe2JkuaLKw6u4osabLQulhr5h2bx+rz\nq2lepLlVcU0+MJlsztn4otoXVtUXQgghomOTMSVa6xDgR4wncIQNuLvDt98aycmePbGol9Gd39v8\nzp7rezjnd45pTadxfcB15rSYQ518dRi6ZSjBIcGxjufxy8fMOzaPj8t/TCrHVLGuL4QQQsTElgNd\nC2DdvCciCn36GINfe/aEwEDL69XJV4fbn93mZO+T9PLqhbOTM0opvnv3O07dP8WiE4tiHcusw7MI\nDA7k4/Ifx7quEEIIYQlrBrr+GHEXkANoAsyzRVDCkCIF/PgjVK1qrCZctarldbOlzRZpX8VcFWlV\nrBUjto2gXYl2Fvd4BIcEM/WfqbQr2Q63dG6WByGEEELEgjU9JWUjbKVN+z9DJk+zufLlwckJjh2z\nTXuja4/mxtMbTPedbnGd1edXc/XxVf5XMRbPKQshhBCxZM1A19pxEYgwL2VKY8Dr0aO2aa9YtmJ0\n9+zO6J2j6e7ZnfSp0sdYZ/KByVTJXYUKuSrYJgghhBDCjFj3lCiltiqlIj36q5TKoJTaapuwRFie\nnrZLSgBG1hzJ01dP+XFfxDtxkZ24e4JtV7fxv0rSSyKEECJuWXP7phaQ0sz+1ED1t4pGmOXpCSdO\nQFCQbdrLkzEPfSv2Zfy+8Tx68SjaspMPTCZn+py0LtbaNicXQgghomBxUqKUKq2UCh0/Ujz0Z9NW\nFmOhvptxEmUsKKWuKqVCwmzBSqnPI5TJo5Raq5R6rpS6o5T63jTXSoLk6QkvX8L587Zr87Mqn/Ei\n8AWLTyyOssyDgAcsPLGQ3uV7yyJ7Qggh4lxsxpQcBbRpM3eb5gXQzxZBvSUNDAdmYjwZBOAfetCU\nfKwDbgGVgZzAAuC1qV6CU6aM8e/Ro8b4ElvIkT4HTQs3ZdaRWfSp2MdsmRm+M9Ba08url21OKoQQ\nQkQjNr0D+TDmIlFARdPPoVsuIIPWOm5Xg7PcM631fa31PdP2IsyxBkBRoJPW+oTWeiPwJdBHKZUg\n51nJnBny5rXtuBIw1ss5cucIh28fjnTsReALJh2YhHcZb7OPFwshhBC2ZnFSorW+prW+qrV20Fof\nMv0cut3WWsd+mtC484VSyk8pdVgpNUgplSLMscrACa21X5h9G4GMQIl4jTIWPD1t91hwqIYFG5Ij\nXQ5mHZ4V6djsI7PxC/Dj86qfm6kphBBC2J5V4yiUUl2UUnuUUreUUnlN+wYopSxc0zZO/QS0xxiQ\nOw0YCowLc9wNuBuhzt0wxxIkT084cgTeYj29SBwdHOnu2Z1FJxYREBjwZn9gcCA/7P2BtiXaUiBL\nAdudUAghhIiGNY8Ef4Kxzs06jFWBQ3shHhFHk6cppb6LMHg14haslCoMoLWepLXeqbU+qbWeAQwE\n+imlEvVITU9PuH8f7tyxbbsflP2AJ6+esPz08jf7lpxcwrUn1xhSbYhtTyaEEEJEw5oxFP2Anlrr\nP5VSYZeLPQSMt01YkYwH5sRQ5nIU+w9iXKcHcAG4A0ScBczV9G+MX/kDBgwgY8aM4fZ16NCBDh06\nxN59bb8AACAASURBVFT1rYQd7Jojh+3aLZClAHXy1WHWkVl0KdOFEB3Cd7u/o0mhJpR2LR1zA0II\nIUQYPj4++Pj4hNv35MkTi+pak5TkA46Y2f8KSGtFezHSWj8AHlhZvSwQAtwz/bwPGKqUcgkzrqQ+\n8AQ4HVNjEydOpFy5claGYj0PD8iQwUhKGjWybdsflv2QTis6ceHBBU7dP8UZvzPMbDbTticRQgiR\nLJj7Q/3w4cN4eXnFWNeapOQK4Alci7C/IXDGivZsRilVGagEbMN4DPgdjFtNC7TWoWnaJozkY4FS\najDGYoKjgKla61isxRu/lLL9zK6hWhVrRebUmZl1ZBbbrm6jRt4aVHWPxep/QgghhA1Yk5T8CPys\nlEqN6fFgpVQHYAjQw5bBWeEVxiDXkUAqjARqAjAxtIDWOkQp1RT4FdgLPAfmmuokaJ6esGGD7dtN\n7ZiazqU789OBn3gZ9JL1ndbb/iRCCCFEDKxZkO83pdQLYDTgDCzGmIisv9Z6iY3ji21sR4AqFpS7\nATSN+4hsy9MTpkyBZ88gXTrbtt2jXA+mHJxCWbeyNCjQwLaNCyGEEBawarIwrfUiYJFSyhlIp7W+\nF1Md8fY8PY1Hgk+cgCoxpl6xU9q1NJ9V+YxmhZuhlIq5ghBCCGFjb7Xei9Y6IDQhUUqlVkoNsk1Y\nwpzixcHRMW7GlQCMrz+emh4146ZxIYQQIgaxSkqUUtmUUk2VUvVDZ0lVSjkppfoDV4Evom1AvJVU\nqYzEJK6SEiGEEMKeLL59o5SqBqwBMmAsendIKdUd+BMIAv6/vfsOk6o8/z/+vqUqCopGFCWIsYAN\nAXsLYkSxgF0RC0bjN7H3EkuIlcRuflhiFKMCFsSGGjSCbcUCKLGAJYpKEARBlCbs7v37456VYdhl\nd3an7+d1XXPBnPOcc55np5x7njoI+GcW8ihJsjUCR0REJN/SqSm5hpjFdVtiNMuOwBPAH919K3e/\nK2XhO8mC7beH//wHysvznRMREZHMSico2Ra4xt0/JFbVdeAidx+ZlZxJtbbfHpYsgU8/zXdORERE\nMiudoGQdYA5AokZkEfBBNjIlNUuebl5ERKSUpDskeCszq1pJ14AtzWyFqeXd/T8ZyZlUq21b6NAh\nmnCyvNyOiIhITqUblLxEBCNVRif+9cR2Z/mqwZIlm24KX3yR71yIiIhkVjpBSaes5ULSsskm8PHH\n+c6FiIhIZtU5KHH31AX4JE86doQXXsh3LkRERDKrQTO6Sn507AjffAM//ZTvnIiIiGSOgpIi1LFj\n/Pv11/nNh4iISCYpKClCVUHJl2pQExGREqKgpAh16BD/KigREZFSku6Q4BWY2XrAzsQw4Hfc/ZuM\n5EpWqUUL2HBDBSUiIlJa6h2UmNnhwL3AJ0AzYiK10919aKYyJzXr2BGmTct3LkRERDKnzs03ZrZm\nyqY/ATu5+07u3g04Erg2k5mTmnXsqJoSEREpLen0KZloZv2SnpcD6yc9bwcszUiupFYKSkREpNSk\n03yzHzDEzAYCpwNnA4+YWZPEeSqBgZnOoFRvk01g+nSoqIAmmthfRERKQDozuk4DDjSz/sArwO3A\nZolHE2Cquy/JRiZlZR07Qnk5zJixfDSOiIhIMUt7SLC7jwB2BLoCLwOruft7CkhyS3OViIhIqUkr\nKDGzA8zsfGAHdz8FuAgYZmY3mNnqWcmhVEtBiYiIlJp0Rt/cBAwlaknuNrMr3P0VoDuwBHjXzPpk\nJ5uSas01oW1bBSUiIlI60qkpGQgc4O7HEIHJ8QDuvtTdrwAOA/6Y8RxKjTQCR0RESkk6QclCoFPi\n/x2I2pGfuftH7r5npjImtVNQIiIipSSdoORS4AEzm0GMvrkiO1mSulJQIiIipSSdIcHDzOxfwKbA\np+7+ffayJXVRFZS4g1m+cyMiItIwaa194+7fAd9lKS+Spk02gcWLYfZsWH/9WpOLiIgUtLTnKZHC\noWHBIiJSShSUFDEFJSIiUkoUlBSxtm2hVSsFJSIiUhoUlBQxM43AERGR0qGgpMgpKBERkVKhoKTI\nKSgRkWLx00/5zoEUOgUlRU5BiYgUOne45RZYay24555850YKmYKSItexI3z/PfzwQ75zIiKysmXL\n4LTT4LzzYLvt4Pe/h1Gj8p0rKVQKSoqchgWLSKGaPx8OOgj+8Y94vPUWHHEE9O8P48blO3e5MWQI\njByZ3jHujbepS0FJkdtkk/hXQYmIFJIpU2C33eDtt2HMGDj5ZGjSBB54APbaC/r1g3ffXZ5+9mx4\n6KFo5qmszF++M+n22+GMM+C44+LvURcVFdC3b/yN3LObv0KkoKTIbbABNG8O06blOyci0ti5w+uv\nwyGHwNZbx6/98eOhV6/laVq0iOabzp1h//3hsstgxx2hXTs4/vho5vnLX/JXhkx55BE45xw466z4\n8XjCCdGUVZtBg2D06Ajmxo/Pdi4LT1pr30jhWW016NBBNSUikl/PPgtXXx1NNF26RHPNgAERhKRa\nay147jnYZx+44w7o3RtOPz2ClCFD4PLLYYcdYN99M5vH2bOhrCweEyZEPjbeOL5DN944gqovv4wf\neVWLnd533/Jm8roaOzaCkGOPjZqfCROi1uj66+HKK2s+7umn4Zpr4nHvvdEpeLfdGlTk4uPuRfMA\n/giUAQuBuTWk6QA8m0gzE/grsFpKmu2AV4HFwJfAhXW4dnfAJ06c6IWmVy/3I4/Mdy5ESt/Mme47\n7ODerZv73nu7H3qo+0knuT/7bL5zll/33+8O7nvtFX+Lioq6HVdZ6V5evuK28nL3/fZzX3dd92nT\nMpO/UaPct9wy8gjuG2/sfvjh7gce6N61a1yrat/667vvuGN8p3bsGMfNmVP3a02a5L7WWu69e7v/\n9NPy7Zdf7t60qfuECdUf9/HH7q1bx3uqstL9uuvcV1/dfd68BhW9YEycONEBB7r7Ku61xdZ80wx4\nFLizup1mthrwHFEDtAtwIjAQuCopzVrAGOALItC4EBhkZqdkM+PZpGHBIrkxaBB89hnssks0Nyxe\nHNXsffvCY4/lO3f5MWoU/Pa38LvfwcsvwwEHRA1uXZhFP5NkTZrAsGFRi3HEEbBkScPy9/DDcOSR\nsNlmMHx4fFd+/XV0Ph09Gt57D+bMgYUL4zFrVrymjz4KL74Ic+dGZ92FC2u/1ssvQ58+sOWW8Pjj\n0bRe5YorYNttowYltUwLFsBhh8GGG8L998ff5aSTorln2LCGlb/orCpiKdQHEWysVFMC9AGWAesl\nbfs/YB7QNPH8D8CcqueJbdcDH9VyzYKtKRk0KKJ7EcmeKVPcmzRxv/HGFbeXl7sPGBD7Ro7MT97y\n5YUX3Js3dz/66JVrPBpq4kT3Fi3cTzml/ud46CH31VZzP+GE+ufvnXfcW7WKWpWlS6tPs3Ch+1ln\nLa8tmjWr+nTvvx9/r5NPdh8+3H3IEPdrr43a7jXXdP/ooxXTH3qo+7bbRs1JsatrTUneA4z6PFYR\nlPwZmJSybROgEuiaeP5PYFRKmp5ABdBmFdcs2KBk+PB4JUulmk+kEB1ySFTnL1688r5ly9yPOSaq\n50eNynnW8uKNN9zXWMO9T58Vmyky6b774rvttNPcf/ghvWMfeCACkoEDGx4wjRkTr+1JJ60cIJSV\nuW++uXvLlu633lp709XNN/vPTUVNmrivt557587uTz+9ctrnn490b7654vYFC9wPOMD9ttsaVq5c\naqxByd3A8ynbVk8EJfslno8B7kxJ0yURlGy5imsWbFAyaVL1b1wRyYzXXovP2EMP1Zxm2TL3o46K\nm9f997s/84z73/7mfv757v37xw2mJt98E7+Yf/wx83nPtOnT48a69true+4ZtQTZdPvtEfxsvLH7\nU0+tOu2PP7q/9Vb8Lc2iRqKu/Vtq89BD8R5YfXX3tm3dN9zQvVOnCHx22SX6hNTV7NmR19pqQMrL\nIxD+7W+Xb1u61H3//SMvv/hF9gLCTKtrUJL30Tdmdj1w8SqSONDF3T/JUZZW6dxzz6VNmzYrbOvf\nvz/9+/fPU45giy3i36lTYeed85YNkZLkDhdeCN26xaRfNWnaNObZOPZYGDgwtjVrFn2+WrSIvhZX\nXw2XXrpin4vXXoOjjoKZM2Nm5sGD65fPefNieG1lZcyPkdyfoaHmzo2+GQ8/HEN+mzWLeUbuuQfW\nWCNz16nOmWfCwQfHrLD9+sHhh8dInVmz4Kuvon/ItGnw4YfwxRdxjFmkue22uvdvqc2AAdGP6IMP\nYqjzkiXxb8eOcMopK/eNWZX11qtbuiZN4tzXXw833xz9bH77W3jppXiNzzoLnngCjj66fmXKlhEj\nRjBixIgVts2fP79uB68qYsnFA1gX2KKWR9OUY9R8k6JjR/dLLsl3LkSK19Kl7vfcE/1Ckn99jhwZ\nv0r//e+6nae8PGovp09f/iu9osL9T3+K8xx6aDRFVFa633BDVOH37Ol+5pnR3+DTT9PP+8iR7hts\nEKM+mjePkR8LFqR/nup88ol7hw5RA7T//u5Dh+anqbiy0v3hh6P/XFXzR+vW7lttFfk6//zI2zvv\nZL/2JpemT4/3yB13uF9wQdQAPfxw7Ntrr3jvFIPG2nyzPyt3dD2V6OjaLPH890RH1yZJaa6jiDu6\nuscQun798p0LaczKy93/9a/iqU5O9uGH7j16xBd+VbX4+ee7T54c/QX23z8z13nqqQgcOnd279s3\nrnXxxdH0s3Bh3Pz79q3+2CefjBvQKadEs9Crr7pPnRpBDsRxX3/t/tJL0Wly553TG8panfffd2/X\nLvL75ZcNO1em/PBDvF7z5+c7J7nTr18EYBDNWVWq+hNOmZK/vNVVSQYlxBwkXYErgfmJ/3cFWiX2\nrwZMBp4n5iLZD5gFXJ10jtbAjESNyVbA0cAC4ORarl3QQcnZZ8d4epF8WLrU/dhj4xvl4IPdlyzJ\nd47qprw8aitatIgb79tvu3/wgfu55y6fu8IsgpNMmTo1rtWmzcp9JB55JK45ZsyK2//976gB2XFH\n9+23j/9X1Ra0a+f+2GMr9k94553oQLnVVvFLuz4mTIi/QdeuNY8mkdyo6vB62WUrbl+yJF7nc87J\n3rVnzIh+Og0dAVSqQcnQRDNL6mOvpDQdgNGJQGMW8BdWnjxtG+AVYBHwFXBBHa5d0EHJnXdG9WpN\nQ9ZEsmXJkvgl17Sp+6WXxg2+T5/qR6kUiu+/jxv57rtH0HHeee6LFq2YZskS90cfdR82LPPXX7zY\n/bvvVt5eWRmdR7t0Wf5ZnjAhaj722295LdTSpVGLMWqU+9y51V9j6tSoefnlL93ffbfmvLz4ovvp\np0dw9sQTcd6xY+OX+c4713x+ya0pU6oPDC66KDodp75/G+rTT91/97vlAfDWW7vffXf9m8ZKMijJ\n56PQg5Jx47xoqvGkdCxcGP0XWrRwHz06tr34YoxQ2Hff/Lbt//e/7q+8EjfYF1+MpqUbb4yZWJs2\njc/LdttFmkIyaVIESrfeGiM6fvGLCA7q00fkq69i9tmWLWOIbLJly6IfGkSftDXX9J9rX6rm20h3\nGK7k3mefxet1//0NP9ePP8ZIs2OOiVFF7dq5Dx4cNXf9+sX7sm3baHJM972hoKSRBSXffBOv5hNP\n5DsnUooqKqL9+vbb4+b21FMRCO+5Z0ws9dJLK6YfNy6277135jpcpmP8+PhSTb7JQtycDzggJq36\n4ovc56uuTj01mnc6doxak4b0DVm0KObqqJrv46efou/JHntEB8rBg+P1rayM75HXXnN//PHM//KW\n7OndO4YlV6msjCHMnTpFDVhNTS+zZkWT0EEHRdqqz8kmm8RnJPU98N//RtNmq1bRlDh7dt3zqKCk\nkQUllZVRhXfddfnOiZSa//0vaj1gxb4MEDfOsrLqj3vttfj1vdFG7ldfHevG5MLSpe7bbBMdV6dM\niWrozz+PjprFcqP99tv423boELUdDVVZ6X7XXe7NmsXaPeuuG/N+vP56w88t+TdqVHwe33031guq\nmsdkp53i39NPX3kCubKy+Gy2aRPNrRde6P7Pf0Zz4bJlq77epEkxCmrLLeveAfq++xSUNKqgxD0i\n5RNOyHcupJSMHLl8oqiqzpeLF0eAMXVq7b/gp0yJ0SKrrx43xAED4sswm9NmX3dd1ABMmpS9a+TC\nBx9EQJhJb74ZtS99+zZ8ZI4UjqVL3du3j4CzVasIOJ95JvbdfXd8Hvr2jebUysqYCbZp0+hTVd+O\n0J9+GrUrG20Uo6FW5dVX3Zs1U1DS6IKSgQMjMhZpqMWLY0ptcD/ssIbfwL77LvpzbLqp/1w9fPHF\nEThUrRQ7caL7LbfEENeLLqrfdT75JPq3XHhhw/JbykphHRVZ2Z//7D/XiqQOl3722QhWdtopZh2G\naIZp6MCIGTOiX1bbtjXXmH74YdTi9+ihoKTRBSWDB0ePeX3pSEPdeWf8urrvvsy+nyoqov/Jqacu\nH3LbqdPyORhatIghqBD9UtJRWRkLm3XqVFqTZ4nUxbJlq+4nNXHi8gn2Hnssc9edNy/6ljVp4n7N\nNSs2E02fHk2Q227r/vLLdQtKzOOGK7Uws+7AxIkTJ9K9e/d8Z6daTz0FhxwCM2bEEtgi9fWb38QU\n12PGZO8ay5bB2LHwzDOw0Uaw556w444xhfluu8HixTBxYkzfXhf33x/LvY8ZA717Zy/fIsVqzpyY\nGn+jjTJ73mXL4Kqr4Lrr4rP74IOwzjrxmf7+exg/HmbNmkSPHj0Aerj7pJrOlfe1byRzunSJf6dM\nUVAi9Td7Nrz8MtxxR3av06wZ7LdfPFLdfnus43TPPfCHP9R+rm+/hfPPh+OOU0AiUpO6rrmTrmbN\nYl2n3r3h+OOha1fYbLNYl6isLIKgWbPqdq4MLVUkhaBTp3hzTJ2a75xIMXvqqRhbc8gh+cvDTjvF\nonaXXx6Lwa2KO5x6aizCdvPNOcmeiFRjzz1h8uRYQHHKFHj6adhqq/TOoaCkhDRrFtGpghJpiJEj\n4de/hvXXz28+rr8+qoUHDVp1ujvvjEDq3nvhF7/ISdZEpAZt2sRq2fPmRZCSLgUlJaZzZwUlUn/z\n5sWy6Eccke+cwAYbwBVXRDPSBx9Un+b99+G88+CMM2JZexEpDC1a1O84BSUlRkGJNMTTT0NFBRx6\naL5zEs4+GzbdFM45J/KVbNEiOPpo2GILuOGG/ORPRDJLQUmJ6dw5OhctWJDvnEgxGjkSdt+9cDpK\nN28Ot90WtTedO0dTzaJFse/cc2HaNHj4YWjZMq/ZFJEMUVBSYqpG4Hz8cX7zIcVn/nx44YXCaLpJ\n1qcPvP02dO8ezTQdO0Yn2L//PQKWdDvSiUjhUlBSYrbcMv5VE46ka/RoWLoUDjss3zlZ2Y47wiOP\nwKefQv/+8NhjcNRRcMop+c6ZiGSSgpIS07o1tG+voETS9/jjMTdIhw75zknNNt005jCZPRuGD49h\nwCJSOhSUlCB1dpV0LVgAzz9feE03NVljjZhxVkRKi4KSEqSgRNL13HOwZAkcfni+cyIijZmCkhLU\npQt88gmUl+c7J1IMFiyAW26Bbt1iVmARkXxRUFKCOneODovTpuU7J1Lovv8+1qv48MPoqyEikk8K\nSkpQ1RDJO+6Aysr85qWx+uqrmG00HS+9BBddFM0oufDtt7D33jF8/KWXYI89cnNdEZGaKCgpQe3b\nxwyXt94KxxyzfLIpyb4ZM+C002INoh49YoRIbSoq4E9/gn33jdftiCOipiubpk+HvfaCb76BV16J\nIbciIvnWNN8ZkOy44AL41a9iKfeePWPBskKZpbMUzZ4Nf/kLDBkCq68ey3hPmQIDBsSN//zzqz9u\n5kw49tgIDK6+OgKZfv0imHzkkVhkMR1Ll0YNWXl5vO7bbw9NE5/yysqYhGz0aLj//hi98tprsPnm\nDSm5iEjmKCgpYYceGjedgw+OpeBHj4auXfOdq9IzfXoEE4sXw8UXx/TnbdqAe9RaXXBB1KDccAOs\nlqib/PZbGDs21nQxi+aTnj1j36hR8doddxwMG7Y8qKjNhx/C8cdHs1Hz5lFD1rp1rNTZti2MGRPX\nbdsWDjwQrrkGfvnLrPxJRETqRUFJievePX4dH3wwHHAAvPeelnfPpPLyqOlo3hwmT46VbauYwXXX\nRWBy1lkxG2nr1jB+PHz+eaTp3RseeADatVt+3IEHwqOPwpFHwoknwr33rnptl8rKGD1z2WVRO/bW\nW7DNNjBhArz8cjz+85+Ymv2gg2DXXese6IiI5JK5e77zUBTMrDswceLEiXTv3j3f2UnbjBlRS1JV\nY6KZMDPjiivg+uvjxr+qjqIjR0Zg0qFDBAW77gq77BI1FTW9Fo89Fs04zZrFTKt77RWP9u3j9fzf\n/+Lf55+HsrKoobn2Wi1OJyKFZ9KkSfTo0QOgh7tPqimdfi81Eu3bRz+Cgw6KDrDnnpvvHBW/f/87\ngoBrr6195MoRR6Q/W+qRR0aNxwsvwKuvwl13RZNLsvXWi9qRsWOXN/+IiBQrBSWNyIEHwnnnRb+H\nPfeEHXbId46K18yZ0efjN7+Jv2e2dOkSj7PPjj4qU6fCd9/BRhtFoNmiRfauLSKSaxoS3Mhcfz1s\nt100C/zwQ75zE77/Hm66Keb2KAYVFTGqxgwefHB559VsM4sAZY89YuZVBSQiUmoUlDQyzZvDww/H\nKIzf/z5+fefTrFkxgdcFF8TQ1HPOibwVqtdfh913h3HjYmRMcgdVERFpGAUljdBmm8VcFiNGRF+E\nfPnyy/jVP2tWjEi54goYOjSWp7/88rjxP/dcdBJ98EH417/yF0R98kkM091zzxhxM24c9OqVn7yI\niJQqjb6po2IffZPKPUbiNG8ev/5zPRrno49iOGyLFvDiixGIAMydC3/9a6zDsnjxyscddBDcfXf0\np8iFRYsiWLr99rjmdddB//65a7IRESkFdR19o6/WRsoMrroK3ngjRnfk0sSJMbS1bdsIiKoCEoht\ngwfHcNfPPot/582L9WCeegreeSdGpAwblv1akzffjJVzhwyJv9XUqdGXRAGJiEh26Ou1Edt//5gr\n48orc9csMmsW9O0bgcjLL9c89f0668RQ1/btYe21o0alb9+YtbRPnxj5cuihMRIl0376CS69NPqO\nrL12TDh36aUxfbyIiGSPgpJGzCzWW3n7bXj22exfr7w8mj4qKqLWo23b9M+x7rpRS/L441HL0rNn\nrC2TKT/+GBOV3XRTzAlSVgadO2fu/CIiUjMFJY3cPvtE581c1JZcfnlMAvboow1fHPCwwyIomTcv\nmoK+/DIzebzjjujv8tZbUTui6dhFRHJHQUkjV9W35N13o/YiW558MlbRHTw4gohM6Nw5FhysrIxR\nPB9/3LDzLV4MN98ca8R065aRLIqISBoUlAg9e8bw1iuvjBt8pn32WSwsd9hhcP75mT13p04RmFSt\nhjt5cv3Pde+9MGdOdmdoFRGRmikoESBqS95/P2o0MskdjjoqJhkbOjQ7Q4/bt4dXXonF7fbeO0b3\npGvp0hiKfMwx0cFWRERyT0GJADHSpHt3eOKJzJ73v/+NpqGbborajGxZb71YIG+LLaKfzNtvp3f8\nsGHw9dfRj0RERPJDQYn8bJ99YobXTHZ4LSuLf2tbRTcT1l475lzZemvYd9+YJbbK7NkxCVq7dtGM\nNH/+8n0VFdHXpV+/mANFRETyo6iCEjP7o5mVmdlCM5tbQ5rKlEeFmR2VkmY7M3vVzBab2ZdmdmFu\nSlDYevWCGTNiSvVMKSuLIGGddTJ3zlVp3Tqmo+/aNWaMHTkSzjoLOnaEW26JuU7GjoUdd4QPPohj\nHn88ynzZZbnJo4iIVK+oghKgGfAocGct6U4E2gEbABsCP/eUMLO1gDHAF0B34EJgkJmdko0MF5M9\n9oghsJlcD6esLJqGcmmtteD552GHHeDII6Np5uKLY9jwPffAhAnQsmVMHPfIIzF1/L77RqAiIiL5\nU1SzMLj7nwHM7MRaks5399k17DuOCG5OdvdyYIqZdQPOA/6RscwWoTXXjPVwxo2DP/yh4eebOzfm\n/MjHaJZWrWJCuOeei5lr11xz+b7NNoumnVNOiY6tEGUWEZH8KraakroaYmazzewtMzspZd8uwKuJ\ngKTKGGBLM2uTuywWpl694gadiaHBVX06dtut4eeqjzXWgCOOWDEgqdKqFQwfDn/7G5xxBvz617nP\nn4iIrKgUg5IrgKOA3wAjgTvM7Iyk/RsAs1KOmZW0r1Hr1Svm6qjqb9EQb7wB669fuENszSIg+dvf\ncr9KsoiIrCzvQYmZXV9N59TUjqpb1PV87n6tu49398nufgPwF6LfiNTBrrvG4neZ6FdS1Z9EN3wR\nEamLQuhTciMwtJY0nzfg/G8DV5hZM3dfBswkOsEmq3o+s7aTnXvuubRps2IrT//+/enfv38Dslg4\nWraMQGLsWDjnnPqfZ9mymCvk6qszlzcRESl8I0aMYMSIEStsm588D8Mq5D0ocffvgCwsQP+zbsC8\nREACMB64xsyauHtFYltv4GN3r/Wvdsstt9C9e/csZbUw9OoVs5uWl9d/Qbp33421ZHI98kZERPKr\nuh/qkyZNokePHrUem/fmm3SYWQcz6wp0BJqYWdfEo1Vi/0FmdrKZbW1mvzKzPwCXArcnnWY4sBS4\nz8y2MrOjgbOAm3JcnILVqxf88ANMmlT/c5SVRa1LicdvIiKSQXmvKUnTVcAJSc+rbpt7A68Cy4DT\ngZsBAz4DznH3n4f6uvsPZtYbGAJMAOYAg9z93uxnvzjssEOMWBk7NoYIr8pPP0GzZrBaSnhbVhbz\nfjRvnr18iohIaSmqoMTdTwJSh/gm7x9DDO+t7TwfABoEWoNmzWCvvSIoueSSVaft0ycCj+eeWx6Y\nuEdQMnBg1rMqIiIlpKiabyR3evWC11+PmpCafPRRzGkyZgwMGbJ8+xdfwMyZ+ZufREREipOCcyR8\n/wAADtBJREFUEqlWr17RUfWtt2pOM3QorLsunHpqzNpatWZO1SJ8CkpERCQdCkqkWl27xiJ6Nc1X\nsmwZPPggDBgAN98MG20EJ5wQI3bKyqBz5whYRERE6kpBiVRrtdWgZ0944YXq9//rXzBrVvQbadUK\nHngA3nknhhK/8YaGAouISPoUlEiNjjsu1q8ZPXrlfUOHRm1Kt27xfNdd4aKLYNCgmKJeQYmIiKRL\nQYnU6NBDoXdvOPNMWLRo+fbZs+GZZ+CklHFQgwZBly4x+kZBiYiIpEtBidTILEbVfPMNXHvt8u3D\nh8e+AQNWTN+iBTz8cHR63Xzz3OZVRESKn4ISWaXNNou5Sm64AaZOjW1Dh8LBB8N6662cvksXGDxY\ni/CJiEj6FJRIrS65BH75Szj99FjTZvJkTYwmIiKZp6BEatWyZTTjjB0bnV/btYuZXEVERDJJQYnU\nyX77wZFHxiyuxx9f/9WDRUREaqJbi9TZLbfELK+nnZbvnIiISClSUCJ1ttFGMRRYREQkG9R8IyIi\nIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAiIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIi\nIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAi\nIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQ\nIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBKJqgxMw6mtk/zOxzM1tkZp+a2SAza5aSroOZPWtm\nC81sppn91cxWS0mznZm9amaLzexLM7swt6UpDCNGjMh3FjJOZSp8pVYeUJmKQamVB0qzTEUTlACd\nAQN+B2wFnAv8Hri2KkEi+HgOaArsApwIDASuSkqzFjAG+ALoDlwIDDKzU3JRiEJSim9olanwlVp5\nQGUqBqVWHijNMjXNdwbqyt3HEMFElWlmdiMRmFyU2LYfEbzs7e5zgPfN7ApgsJkNcvdy4DigGXBy\n4vkUM+sGnAf8I0fFERERkRTFVFNSnbWBuUnPdwHeTwQkVcYAbYCtk9K8mghIktNsaWZtMp3B+kSy\nuTrmf//7X9rH1PdahVymXOWtvscVcpkKuTz1Pa6Qy5TL92qplUnvu/pfJ5fvu6INSsxsM+AM4K6k\nzRsAs1KSzkraV9c0GVPIbwAFJfW/joKS+h+jm0P9r6OgpP7H6H1X/+vk8n2X9+YbM7seuHgVSRzo\n4u6fJB2zEfA88Ii735flLFZpCTBlypS0Dpo/fz6TJk0qyGOWLVuW9jH1vVYhlylXeavvcYVcpkIu\nT32PK+Qy5fK9Wmpl0vuu/tfJxDFJ986WqzrO3D2tC2Wama0LrFtLss+rmlvMrD0wDnjD3U9KOdef\ngYPdvXvStk2Az4Fu7j7ZzP4JrOXuhyWl6Qm8BLR19/k15PNYYFh6pRMREZEkA9x9eE07815T4u7f\nAd/VJW2ihmQs8A7w22qSjAf+aGbrJfUr6Q3MBz5KSnONmTVx94qkNB/XFJAkjAEGANOAJXXJr4iI\niABRQ7IJKw5YWUnea0rqKlFD8goxlHcgUBVQ4O6zEmlWA94FZhBNQhsCDwB/d/crEmlaA1OBF4G/\nANsC9wJnu/u9OSqOiIiIpCimoOREILX/iAHu7k2S0nUA7gR6AguB+4FL3b0yKc02wBBgR2AOcLu7\n35jN/IuIiMiqFU1QIiIiIqWtaIcEi4iISGlRUCIiIiIFodEEJWZ2qZm9bWY/mNksM3vCzLaoJt1V\nZjYjsejfi4lJ2pL3tzCzIWY2x8x+NLORZrZ+SprNzexJM5ttZvPN7LXEsONiLlN3M3vBzOYlynW3\nmbUq0PL8zszGJf72lYnOzannWMfMhiXSzEss9pjR8uShTH80s7LEYpRzU/cXW5msjotwFkt5Emme\nslgEdHHiXA+Y2YaZLE+uy5SUtrmZvZdIt12xlsfMpiX2VT0qzOyi1HTFVKZEugPN7M3Eeeaa2ahM\nlykTGk1QAuwJ/A3YGfgNsf7NC2a2elUCM7uYmCX2VGAnoqPsGDNrnnSeW4EDgcOBvYD2wOMp13oW\naEJ0tu0OTAZGW8qNvljKlPjSfBH4JHGO/Ylp++8v0PKsTkyudy0x+V51hgNdgH2Isu8F3J3JwiTk\nskzNgEeJjt7ZlKsy1boIZ5GVB2JKgyOBLYDDgF8Bj2WyMAm5LFOVvwLT65CuPnJZHgcuB9oRs3xv\nmLh2puWsTGZ2ODES9V5ixOluxHdg4XH3RvkA1gMqgT2Sts0Azk163hpYDByV9Pwn4NCkNFsmzrNT\n4vm6iee7J6VZM7GtV5GW6XfANynX2iaRZtNCKk/K8b8mho63TtneOXHebknb9gPKgQ0K7TWqS5lS\n0pwIzM1mOXJdpqS0FwCflVB5Dk6875oUc5mAPsCHSZ+t7Yq1PMS0E2dlM/+5LBPxA/lrYGCuy1Sf\nR2OqKUm1NhFVzgUws05EVPxSVQJ3/wF4C9g1sWkHYsK55DQfA19VpfGYDG4qcIKZrWFmTYE/EOvr\nTMxukbJTJqAFsDTlWlUTyO2R0RKsqD7lqYtdgXnu/m7Stn8nrrVzA/Ncm2yVKZ9yWabURTizISfl\nMbO2xISMZb58IsdsyVqZzKwd8HdiBfbFGcpvbbL9Gl1i0Zw9ycwuMLMmtR/SYNkqU3ei9ptEeWaY\n2XNmtnUtx+VFowxKzMyIJovX3b1qptcNiDdEdYv1VS3U1w5Ymnhj1JQGYF/ijfAj8SE9G9jfVz1j\nbINkuUxjgQ0SH85mZrYOcH3i3BlvD4cGlacuNgC+Td6QuCnMTfM8aclymfIil2Wy6hfhzKhclMfM\nBpvZAmKOpA7AIfXPcZ2ul+0yDQXuSAnysyYH5bkNOIZofr8L+CMx0WbWZLlMmxLNoH8CriKaq+cB\nL5vZ2g3JdzY0yqAEuINooz4mi+efBexOTND2JNGnpF2Wrld1zayUKfEhORE4D1hEVCl+TtzYK1dx\naENk+zXKB5Wpnix3i3Dmojx/BbYnfrxUAA9m8VqQxTKZ2VlE83TVTdsyfY1qZPU1cvdb3f1Vd//A\n3f9OfO+daRnuYJ0im2Wqus9f4+5PJoLHk4iA58gsXK9BGl1QYmb/DzgA6Onu3yTtmkl8oFIDh3aJ\nfVVpmlfTu/nnNGa2T+L8R7v7m+7+nrufQdSYnJjRwiRku0wA7v6wu7cnqgHXBf4M/IIITjKqgeWp\ni5lA6uiiJkDbNM9TZzkoU87lqkwWS0yMJX5F/l89s1uX6+SkPO4+190/c/eXgP7AAWaWlWbDHJRp\nb6Ip4SczWwZ8mtg+wcyG1i/XNcvT5+htool7kwaep1o5KFPVOX9eptfdlxLf3b9MO8NZ1qiCksSL\n3w/Y292/St7n7l8QL/Q+SelbE30M3khsmkh0SktOsyXxwlalWZ2IQFNrECrJwt87y2Uan3o9d5/t\n7ouIiH4xMSqnkMpTF+OBtc2sW9K2fYgvgLfqmfUa5ahMOZWrMiVqSMZR8yKcGZHH16iqr0KLBp5n\nJTkq05lA16RHH+L77yjgsobkP1UeX6NuxPf3t7UlTFeOyjSRGMywZdJ5mhFB1pf1zXvW5Lunba4e\nRPXYPGIYVrukR8ukNBcRKxYfTAybepKI/JunnOcLor2xB1AGvJa0f13izfsYsB2wOXAD0TF022Is\nUyLN6cSHc/PE/xcCpxdoedoRX5CnkOjNnni+TlKa54AJRPPa7sDHwIMF/L6rS5k6JLZdSayMXXWj\naFWMZSJq5T4FXkj8/+drFWl5dkp8droSQX8v4PXEe69ZMZapmut2JAujb3L4Gu1C9AHcDuhEdESe\nBdxX5N8NtxCDF/YlhqP/g6hBaZPpcjX475LvDOSsoPFiVVTzOCEl3SCiz8QiYonlzVL2tyDGls8h\nOrI+BqyfkqY70f49G/ieuMn3LvIy/TNRnsXESszHFnB5/lTDuU5ISrM28BBx854H3AOsUeRlGlrD\ntfYqxjIRzZ2p+yqBiiItzzbESIrZiXP8F/h/wIbF/L5LSd8xsT/TQUmuXqNuRE3qXOKH1wdEYJDR\noDHXrxFRI/dXIhD5PnGeLpkuUyYeWpBPRERECkKj6lMiIiIihUtBiYiIiBQEBSUiIiJSEBSUiIiI\nSEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIFAwzG2pmlWZWYWZLzWym\nmb1gZieZmaVxnhPNbF428yoimaegREQKzfPABsQ6KvsDY4HbgGfMrK7fWUasVisiRURBiYgUmp/c\nfba7f+Pu77n7YGJ59wOAgQBmdq6Z/cfMFpjZV2Y2xMzWSOz7NXAf0Cap1uXKxL7mZnajmU1PHDs+\nkV5ECoCCEhEpeO4+DpgMHJbYVAGcCWwFnADsTayCCvAGcA7wA7Gs+4bAjYl9Q4CdgaOIpeAfA543\ns19lvxQiUhutEiwiBcPMhgJt3P2wavaNALZ1922q2Xc4cKe7r594fiJwi7u3TUrTAfgc6ODuM5O2\nvwi85e6XZ7xAIpKWpvnOgIhIHf3cT8TMfgNcAnQGWhPfZS3MrKW7L6nh+G2BJsAnKZ1mmwNzspZr\nEakzBSUiUiy6AF+YWUfgGaIp5o/AXGBP4B9EgFFTULImUA50BypT9i3IRoZFJD0KSkSk4JlZL6Km\n4yagB9H0fEHS/mNSDllK1IokezexrZ27l2UxuyJSTwpKRKTQtDCzdiQCCKAP0VTzNPAgEZw0M7Oz\niBqTPYD/SznHNGDNRDAzGVjk7p+a2XDgATO7gAhS1gd6AZPd/fmsl0xEVkmjb0Sk0OwPzAC+IOYs\n+TVwhrsf4uE/wHnARcD7QH8iaPmZu48H7gIeAb4FLkzsGgg8QIzGmQqMAnYAvspukUSkLjT6RkRE\nRAqCakpERESkICgoERERkYKgoEREREQKgoISERERKQgKSkRERKQgKCgRERGRgqCgRERERAqCghIR\nEREpCApKREREpCAoKBEREZGCoKBERERECoKCEhERESkI/x9NT+Qv7veq+gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VEUXwOHfhNBC7wgihCJVQTpSBOlNEBQNkCDSBESk\nfII0KVJEMEjviAKhi3QpQaRrQq9KbwEMIi1A2nx/zAZSdpNNyAY2nPd59gl779y5czdL9uzcmTNK\na40QQgghhCO5POsGCCGEECL5k4BDCCGEEA4nAYcQQgghHE4CDiGEEEI4nAQcQgghhHA4CTiEEEII\n4XAScAghhBDC4STgEEIIIYTDScAhhBBCCIeTgEMIIYQQDicBh3AqSqlwOx5hSqkaSqn8VrbfVEqt\nV0pVjuM8Yy3H+NjYH73uYKXUP0qpXUqpkUqpfFaOectStkWkbe0s24KUUi9ZOeY3pdRhK9uVUspL\nKbXJct5gpdR1pdSvSqlOSqlUdryWEXXstbwud5RSp5RS85VSlay0O/K1nrGUc7eU6WfZV9fGudYr\npW4ppXLb0S5PpdR2S/n7SqnDSqnBSik3K2XPK6VW26innKVNXlZ+X7G9d16Jo31ulvYcsrTvP6XU\n70opTxvlbZ3rqh2vRX6l1Dyl1Gml1AOlVIDltRkayzF/WOrvYmN/u0hteNNGmUuW/aujbY/+Wl2x\nvOfeilbO5u8lUpl5sbw2QbEdK5yT67NugBDx1Dba83ZAHct2FWn7CSDiA2oRsB5IAbwKdAd8lVIV\ntNbHbJznQ+Ac0FQplU5rfd9GuYi6XYAsQAWgJ9BTKdVBa70kWnlbixelBvpbjo21vFIqDbAKqAfs\nAr4FrgNZgbeAKUBFoJONc0WYBHSz1LUACAWKAg2BM8C+aOUnAH5ASqAs0AVopJR6DRgPtAamKqVK\naa0fRWrv+0ADoKvW+pqtxiilXAAf4H3gd+ArIAiobvn3+0qp2lrrfyIdZu9iUDeI+d7pC+QFPifq\ne+cfbFBK5QR8Ma+TD+Y1TAO0BOYrpRoCbXTMRao2AT9G2/YgtgYrpQphXu/7wFzgPPAS5rX/Ahhq\n5ZjCQHnMe7cNMCOWUzzA/M52R6vjLczr8tDGcRHXogB3zHvIVynVSGv9q6WMvb+Xh0AHor7+AGF2\nHi+cidZaHvJw2gfmD36YjX35gXCgd7Tt9S3bJ9s4rhbmD95bwCPA0966LfvyAScxf9Bfi7T9Lcsx\nLSJta2fZ5o/5cM0dra5twOFo26Zb2vepjfYXAj6J43XLaaljmo392WNrt2X7p5Y6+lmeV8IELV9H\nKpMeuAzstON3+aXlPGOs7GtsqXtdtO3ngNU26itnqc/Lxv41wNl4vt82AiFAYyv7xlrO979o28OB\niQl4b0+xvP9eju33E237MCAAaG753bxipUzEe24ZJlB1ibZ/BvAHcDb6a2vtWoBSlu0b7Pm9RCoz\nD7gT39dFHs77kFsq4kW0w/KzkI39bYDjWuvtwBbLc7tprS8BH2F6Lb6w5xBgFKbHsX9sBZVSL2O+\nEW7QWk+2cf4zWuvpcZzTHfOtcre1nVrrwLgajfmmH/EtF631Pkww1FcpVcxSZiSQA+gcW0WWXpu+\nmEBtgJX2rAPmAw2UUhXtaFuis9xmqgfMs7Qnui+Bv4F+SqnUiXDKgsBlrfXl6Dti+f14YAKJdcBt\nTA+GNRrTQ5MNeHwbTCmVEngP03MXvdfBekVaHwUCsbwPhLBFAg7xIor4w3gr+g7L2IcWmD+4YP4o\nv23pSreb1nov5raE1TENVpzDdFN3imOcQ0PM/9uF8WmPFRcsP99XSqVNYB2FLT9vRtr2JebDZ4ZS\nqiymu/1brfXxOOqqhrkltUhrHW6jTEQ3fpMEtvdpNcV8UP9kbafWOgzzvskCVI22O41SKlu0R1zj\nbC4A+ZRStexpnCUgKgz4aK1DgJXEHiyfB/ZigpQIjYCMwGJ7zmk5bxbMNd+Mq6yN46O/LtmUUhkS\nUpd4vknAIV4EbpY/YjmVUtUwXbka800wuqZAJiBi7MUqTFf+hwk471Egh1IqvZ3lR2LGR/SLpUxE\nz8HRyBuVUimj/cHOGtuJtBlL8SPmVsVlpdQKpVRvpVTRWA7LYKk7t1KqEfA9pit9RaR67wKfYcZd\nbMIEUiNia4tFCczvJMYA2UgOWX4Wt6M+RygRrR3WHMIERdHb2AEzNiTicYO431MTgWBgq1Jqv1LK\nWyn1TiwBYlvgotZ6j+X5YqCEUur1WM6xCGgeqUemNbBdxzLWhifBU3ZLb9MyzGfJ0jiux5r0RH1d\nIh7Rxz6JZEACDvEiGIb5I3YNMxixKGbsxc9WyrYG/LTWZwG01vcw3dPxuq1icc/y065va1rrc5hv\nz52VUrlsFMsYre4IjYj6B/u8Hef7CDMO4yzmnv+3wAml1BalVB4rh8y11H0VM/4hLWZ8xP5o9a7E\nDKTNAnTXkQaQxiLiNbobS5mIfRljKeNIT9PGXzCDmyMedYFfiYWlV6gM5j2RHxPIrQKuK6U6Ri6r\nlEoBtCJqz4Qv5vcV23t3KWZwdRNLYNyEuHvPIoKnG5gekirAeK3193EcZ80DoDZRX5s6xHFrUTgn\nmaUiXgQzMd/C0gBvY/5wx3jvK6UyYT64J1lmCETYDbRQShXWWp+Ox3kjejZi+4CK7mvAE/MHt5eV\n/RF1Re812Yn5Qw1m3IjV6Y7Raa2nAdMs3eJVgU8wr4EPZrBoZMMs5wnD3DY5Ecvtjz8xt3/87WkH\nT64rtuDMng98a+ydMRGXyG28Y6OMrTZe1lr7xveElvdbO6WUwvSwNMH8fmcopc5GqrM+ZqzMn5He\nuwoz6NgDG71mWutApdQWTKCdDvMldHkczfoFmIx5Xe8Cx7TWsc64iUWY1npbAo8VTkYCDvEi+DvS\nH+b1Sqlw4Bul1LZo385bYQZ69sEMYIxMY74pDovHeUsBNyy9JHbRWp9TSi3A9HJ8Y6XIScwHSSng\nSKTjbmK+0WIrH0Qc570FrAXWKqW2ATWUUvksA2AjHE3Ih6adTmCu63XAVv6GiFsDkceDPMT0tFjj\nFqlMYjgBNLO0Y6eNMqUx75W4xqzEi9ZaA8eAY0qpvZhAog2W3zkmYLB2m1CDmepqGQRtzSJgFmbK\n7QbLbbHYJCh4EkJuqYgX0UjMN7Ovo21vjfkQfx8zUj/yYyu2R/zHoJSqgpkFE2u3uQ1fY3ssxwZM\nD0NCbvHYy8/yM0YiMgfaCfwHtLZ8m7emHeYDdG2kbRcwuVWsKWYpf8HG/vhaiwmKvKzttOQRaY0Z\njLwrkc5pTZTfjzIJ0Zphxj1Ef9++j7mVGNv75WfMWJxKPBksLUSik4BDvHC01rcxuQbqRwyos0w3\nrQEs0VqvjP7ADDQtrJSqEFf9Sqn8wA+YHArjEtC+s5hEXF2A3NH2XcKMpWiolOpuo4o4/18rpXIp\npWIMvrRMi6yD+QCKz+2jp2Lpkh+HCRJGWWlXY0zAsVFr/UekXeuBl5VS70QrnwroiBlnEGWMyVO0\ncQ9mmnR7S3uiG4WZJfKNneNWYqWUqqaUstYLHXHuk5afLTC9OZNtvHfXAi0tv9sYtElq9wkmkdia\np223ELbILRXxovoek2GyP+ZbacQ3QFt/cNfzpGfhz0jbyyml2mA+5DNjMo22xHxgt7XkKIiLtW/0\nIzFjOYoSbUaKpd0FgIlKqQ8tbb4BZMeMw2iK6f6PzcvAH0opX0zvzTVMMjAPzC0Db631v3a0PTGN\nwQyS/MLSQ7QCM6iwOuZ1P4bJbxLZTOBjYJlSah5wAJNb4gOgJCZpW2gittELE3SsUibt/Q7MbbgW\nmDEvi0lAkGlDP8z7ayVPZu+Uw7wvAjGZX8G8NjeBPTFqMFZjss42xgw6hWjvOa211am+T6mwUmqg\nle0HtNbrLf92tfz/sWblU4wNEc8hCThEchDboEBtbb/WOkAptQhoo8x6IK2BC1rrI9HLWsrfVkrt\nBD5QSvWOVPeHlkcoZiDh38B3wAxrCZtstNVa+84opX7iyW2EyPseKKUaYD54PIH/YWZF/IeZlvkJ\nMdNoR3cKk0a9EdAVyIUZ63AU6Ki1nmdHuxOVZQBqK6WUF6Z3YjiQCpPP5Cvgu+gfQFrrh0qpGsAQ\nzEybjzBBij/QUGu9Oa7TxrON1yxTQftgble0wPzuDwPttNYLbJwjIa/fSMz78i3LTzdMFtFFmGyu\nF5VSOTADoRdZxnlYsxWTHr0NTwIOe9pjrd3xuZaimN9hdHMwATyYYM3We3UHcNHOcwknoGy/R4UQ\nQgghEsdzNYZDKVVdKbVamRUIw6Pfl7WUGa6UuqrM6pqbLYsVRd6fWik1RSkVqJS6q5RaHt8skUII\nIYRIXM9VwIGZB34Qkw7Z2iqZ/TCJijpjVsO8D/waLUXwBMy9ypaYQYB5iJQJUQghhBBJ77m9pWLJ\nldBca7060rarmHUZvC3PM2JWO2yntV5qef4P8GFEFklLquYTQOVoo9uFEEIIkUSetx4OmywD+3Jj\nBkABoLW+A+zDpNYFKI8ZCBu5zCnMwKMqCCGEEOKZcJqAAxNsaEyPRmTXeZKrIBcQbAlEbJURQggh\nRBKTabGY5ZExaxGcJ/HSIAshhBAvgjSY3EC/WpZZsMqZAo5rmGQ1uYjay5ELk+wnokwqpVTGaL0c\nuSz7bKlP3CskCiGEEMK2NsSSHt9pAg7LolbXMEsZH4bHg0YrAVMsxfwxSXhqY9YHiBg0+gq2s/CB\nZSnvBQsWULx4jGzPNvXq1Qtvb+94XUdSHQNQt25dNm+OK+/R058rqY55nq8nocc9z9eUVNeT0HM9\nz9ck77ukPUbedwk/T2Icc+LECdq2bQuWz1JbnquAQymVDrMWQUTa3YJKqdLAv5Y1JCYAg5RSpzEX\nNgK4jFkuGa31HaXUHOA7pdQtzAJdE4FdccxQeQhQvHhxypYta3d7M2XKFK/ySXkMQMqUKZ/b9iXk\nmOf5ehJ63PN8TUl1PQk91/N8TfK+S9pj5H2X8PMk8jGxDkl4rgIOzCyTbTxJnzvesn0+8LHWeqxl\nZcQZmHUrdmDSFwdHqqMXZs2L5Zi0uRsBW4tcPRUPD4/n9hiAvHnzJsm5kuqY5/l6Enrc83xNSXU9\nCT3X83xN8r5L2mPkfZfw8yTlexWt9Qv/AMoC2t/fXycnTZs2fdZNSFTJ7Xq0Tn7XlNyuR2u5JmeQ\n3K5Ha+e6Jn9//4hOgrI6ls9aZ5oWK4QQQggnJQFHMpbgbq/nVHK7Hkh+15TcrgfkmpxBcrseSJ7X\n9NymNk9KSqmygL+/v7/NwTMXL14kMDAwaRv2gsqePTuvvPLKs26GEEIIO+zfv59y5coBlNNa77dV\n7nkbNPpcunjxIsWLFycoKOhZN+WF4ObmxokTJyToEEKIZEQCDjsEBgYSFBQU7zwdIv4i5nMHBgZK\nwCGEEMmIBBzxEN88HUIIIYQwZNCoEEIIIRxOAg4hhBBCOJwEHEIIIYRwOAk4hBBCCOFwEnAIIYQQ\nwuEk4BDMnz8fFxcX3NzcCAgIiLG/Zs2avP7664+fFyhQABcXF3r27Bmj7Pbt23FxcWHlypUObbMQ\nQgjnIgGHeOzRo0eMGTMmxnalVIznSilmzZrFtWvX4iwvhBBCSMAhHitTpozNICK6kiVLEhYWZjVA\nkXT5QgghopOAQwCmV2LAgAGEhoZaDSKiK1CgAF5eXnYHKEIIIV5sEnCIx9zd3eMVRAwcOJCQkBC7\nAhQhhBAvNgk4RBQRQcQ333wTZ9kCBQrg6enJrFmzuH79ehK0TgghhLOStVQcICgITp507DmKFQM3\nt8Sv193dHU9PT2bOnEn//v3JlStXrOUHDRrETz/9xJgxY/D29k78BgkhhEgWJOBwgJMnoVw5x57D\n3x8ctY5cfIKI6AGKEEIIYY0EHA5QrJgJCBx9Dkdxd3enbdu2zJw5k379+sVZfuDAgfz000988803\nNGvWzHENE0II4bQk4HAANzfH9T4klUGDBrFgwQK7xnIULFiQtm3bMmPGDCpWrJgErRNCCOFsZNCo\nsCpyEGHPjJVBgwYRHBzM2LFjJfGXEEKIGCTgEID1ZF0RM1ZOnToV5/ERAcrBgwcd0TwhhBBOTgIO\nAVhPR16oUCE8PT0fpzKPXNZa+UGDBuHq6io9HEIIIWKQMRyCdu3a0a5dO6v75s6dy9y5c6NsO3v2\nrNWyhQoVIjg4ONHbJ4QQwvlJD4cQQgghHE4CDiGEEEI4nAQcQgghhHA4pws4lFIuSqkRSqmzSqkg\npdRppdQgK+WGK6WuWspsVkoVfhbtFUIIIYQTBhxAf6AL0A0oBnwBfKGU+jSigFKqH/Ap0BmoCNwH\nflVKpUr65gohhBDJl7W0CtY44yyVKsAvWuuNlucXlVKtMYFFhJ7ACK31WgCllBdwHWgOLE3Kxgoh\nhBDJ2Rebv7CrnDP2cOwGaiuligAopUoDVYH1lufuQG5ga8QBWus7wD5MsCKEEEKIRLD9/HZ8z/na\nVdYZezjGABmBk0qpMEzQNFBrvdiyPzegMT0akV237BNCCCHEU9Ja029LP4rnKM4JTsRZ3hkDjg+A\n1sCHwHGgDPC9Uuqq1vqnp6m4V69eZMqUKco2Dw8PihYt+jTVCiGEEMmCj48PPj4+AATcDcDvqh+v\nZX7NrmOdMeAYC4zWWi+zPD+mlCoAfAn8BFwDFJCLqL0cuYADsVXs7e1NWSvLvO7fv/+pGy2EEEI4\nE601j8IekSpFKlyUGYHh4eGBh4cHIWEhlJxakgZZGzCy+EjKlSsXZ33OGHC4AWHRtoVjGY+itT6n\nlLoG1AYOAyilMgKVgClJ2E4hhBDiuXXu1jlG/D6Cf4L+4fbD29x+dJvbD29zP+Q+D0IeEBQShEZT\nOGthlry3hLIvPflCPnv/bE7/e5rlrZYTeiXUrvM5Y8CxBhiklLoMHAPKAr2A2ZHKTLCUOQ2cB0YA\nl4FfkrapQgghxPMnXIfjtcqLv2/+TcW8FcmfOT+ZUmciU+pMpE+VnrQp0+KW0o00rmmYuG8ib855\nk4kNJ9KpbCfuh9xn2PZheJb25PVcr7P/in13AZwx4PgUE0BMAXICV4Fplm0AaK3HKqXcgBlAZmAH\n0FBrLSuL2XDkyBGGDRuGn58f169fJ1u2bJQoUYJ33nmHTz81KU4KFCjAxYsXHx+TI0cOihYtSu/e\nvWnevDnnz5+nZMmSNG/enIULF8Y4x5IlS/Dw8GDKlCl07do1ya5NCCFEVHP2z2HnxZ34evlSy71W\nrGVblWxFr4296LK2Czsv7iRPhjzceniL4TWHx+ucThdwaK3vA70tj9jKDQWGJkGTnN7u3bt5++23\nyZ8/P507dyZ37txcunSJvXv3MnHixMcBh1KKN954g759+6K15urVq8yYMYMWLVowffp0OnfuzFdf\nfcWXX35J+/btqVOnzuNz3L17l969e1OlShUJNoQQ4hm6du8aX2z5go/KfBRnsAGQxjUN05pMo9or\n1ei8tjNBIUH0qdKH/Jnzx+u8ThdwiMQ3cuRIMmfOjJ+fHxkyZIiyLzAwMMrzvHnz4uHh8fi5p6cn\nhQsXxtvbm86dO9OnTx8WLlxIt27dOHLkCKlTpwZgwIABBAYGsmnTJsdfkBBCCJt6/9obVxdXxtUd\nF6/j2rzehjdeeoMpf0xhYPWB8T6vMyb+Eons7NmzlCxZMkawAZA9e/ZYj82VKxfFixfn3LlzAKRI\nkYKZM2dy9uxZvv76awD8/f2ZNm0affv2pWTJkol/AUIIIeyy8fRGfI76ML7eeLK5ZYv38SVylGBK\n4ylkSZsl3sdKwCHInz8//v7+HDt2LN7HhoaGcunSJbJle/LGrVSpEl27duXbb7/l6NGjdOnShYIF\nCzJkyJDEbLYQQoh4CAoJotu6btR2r43n655Jfn4JOAR9+/YlKCiIMmXKULVqVfr378/mzZsJDY05\n1SkkJISbN29y8+ZNDh8+jKenJzdu3KBVq1ZRyo0aNYrs2bNTs2ZNDhw4wNSpUx/fXhFCCJE0tNac\n/+88i48uxmOFB1fvXmVa42kopZK8LTKGwwGCQoI4GXjSoecolr0YbindEqWuOnXqsGfPHkaPHs2v\nv/7K3r17GTt2LDly5GD27Nk0bdr0cdlff/2VHDlyPH7u6uqKl5cXY8aMiVJnhgwZmDBhAq1atcLD\nwyPKAFIhhBCOde7WOb7Y8gW/X/idG/dvAFAoSyGmNZ5GkWxFnkmbJOBwgJOBJyk3M+6sa0/Dv7N/\nlCQsT6tcuXIsX76c0NBQDh06xM8//4y3tzfvv/8+Bw8epFixYgBUrlyZkSNHAuDm5kbx4sXJmDGj\n1TorVKjwuG4hhBBJY82pNXit8iJzmsx0KtuJyi9XplLeSuRIlyPugx1IAg4HKJa9GP6d/R1+Dkdw\ndXWlXLlylCtXjiJFitC+fXuWLVvG4MGDATOItFatuKdRCSGESFqh4aEM9h3MmF1jaFa0GT80/4HM\naTI/62Y9JgGHA7ildEvU3odnpXz58gAEBAQ845YIIYSw5UHIAw5fP0z/rf3ZcWEHY+uMpe+bfZNs\nnMbvv9tXTgIOwW+//UbNmjVjbF+3bh3A49spQgghEk5rzaU7l9BaxztpVnSrT61m2fFlHAg4wMnA\nk4TpMF5K/xK+7Xypkb9GIrU4bvfvw1df2VdWAg5Bjx49CAoK4t1336VYsWIEBweza9culi5dSsGC\nBfnoo4+edROFEMKhHoY+JKVLSlK4pLC6PygkiKG/DaVLuS4UylrI7np9z/nyy6nV7L9yiCM3DnE7\n+BYpVAoG1RjEoBqDcHWJ/8dwYFAgLZe2pFj2YlR/pTqfVfqMN3K/wWu5XiONa5p41/c05syBe/fs\nKysBh2D8+PEsW7aMDRs2MGvWLIKDg3nllVf49NNPGThw4ONBoUqpeHfRJeQYIYRIKmHhYcw5MIeB\nvgMpmKUgazzWkDNdzihlgkKCaOrTFN9zvvz74F9mvzPbRm0x624w9z1CgtzgUhW43huulSH8ZT9G\n6K/ZdGYTC1osoGCWgvFq88oTKwnX4Wz12hqjrUkpJATGj4f69WHDhrjLS8AhqFevHvXq1Yuz3Nmz\nZ+NVb/78+QkLC0tos4QQIkFWHF9B0exFKZWzVKzldlzYQc+NPTlw7QAepTzYdn4bb855k41tN1I4\na2HAjI9otrgZey/vpVnRZiw5toTvG3xPulTp4mzHtr/8CHG9RZOHa/B8ryo5ckCOHDB4cBPW/1if\nC53bUnp6aSY1nES70u3s/nK2+OhiarvXfqbBBsCyZXDxInzzjX0BhyT+EkIIkWyc+fcM7y17j7Iz\nyjJi+whCwkJilDl24xgeKzyo8UMNXF1c2dthL4taLmJPhz24urhSZU4V9l3ex8PQhzRf0pxdF3ex\nrvU6vOt7cy/4HitOrLCrLT/s2AQPMzLu80q0agW1akGpUuDjA9Xdq3Bn7EFq5XyP9r+0Z8mxJXbV\nGXA3gN/O/4ZHKY+4CyeC0FAICoq5XWsYO9b0brz6qn11ScAhhBAi2ZjuN50sabLQp0ofhm0fRsXZ\nFTl47SBaazad2USDBQ0oNa0Uv1/4nXnN5rG3414qvVwJgAKZC7C7w26KZitKrfm1qDW/Fr9f+J21\nrddSs0BN3LO4U7NATX44+INdbfnt0ibSBNTm1cJRbyakSQOrVkHJIhnY3W8e1XI3YPTO0Wit46xz\n6bGluLq48m7xd+P92sTXzZvw5psmoDh1Kuq+TZvg0CHo18/++iTgEEIIkSw8DH3IvIPz+KjMR4yu\nM5p9HfcRFh5GhVkVKDq5KPUX1OfG/RsseHcB53qe46MyH+Gion4MZk2blc2em2n8amMOXjvIGo81\nvO3+9uP97cu0Z9v5bZy7dS7Wttx+eJsrag+vudXD2p2S9Olh/XrIkwdOzPqCw9cPs+lM3KtpLz62\nmIZFGjo8v8bVq1CjBpw7BxkyQM2acPz4k/1jx0L58ma7vSTgEEIIkSwsO7aMmw9u8kn5TwAol6cc\nfp39GFJjCOXzlGdbu234d/anzettSJUilc160qZMy9L3lnK973XqFIy6LEPL4i1Jnyo98w/Nj7Ut\n645vA5cw3n2tvs0yWbOanoL7x2uSz6UC3+z6JtY6z906x97Le/mw5IexlgMzoNPbG5YuNeMs7Og8\neXKec1C9Oty+DTt2mDwbOXOa4OLIEfDzA19f+OILrAZTtsigUSGEEM+lwKBAuq/vzoOQB2RNm5Us\nabKQNW1W3in6DqVzl45RfprfNOoUrMOr2Z4MKkiVIhWD3xoc73MrpciYOuayDelSpaNViVbMPzSf\nIW8NidFDEmHRvk1wszAtPdxjPU/u3FCjuuL6iS/YFv4+f175kwp5K1gtu/TYUtK6pqVp0aZW90fm\n7R31dkfu3FC5snlUqWJ6J9ysLMd14gTUrWtu++zcCQUKmO2+vmZ7rVpQvDgUKgQtWsTZjCikh0MI\nIcRzJzgsmJZLW+J7zheN5u9//+bXM7/y3d7vqDm/JmdvRZ01d/DaQfZc3kPX8l0d3rb2b7Tn/H/n\n2X5+u80yu65twi2gHkXsWCetbl049cu7FMpSmLG7x9ost/jYYpoWbUr6VOljre/CBRg2DD7/HK5d\ng19+gY8/hjt34Ouv4a23IFMmE3R4ekKjRvDGG/DSS2ZQa5YspmcjItgAyJYNtm6FggVNINK3L6Sw\nnrLEJunhEEII8VzRWtNtXTf2Xt7LtnbbeDPfm4/3/ffwP8rNLEfLpS3Z/fFu0qZMC8C0P6eRJ0Me\n3in6jsPbVzVfVYpkLcK8g/Oo5R5zbakz/57hP5czVMtU365bDnXrwv/+l4Km2fry/fGunP739ONp\nuRFOBp7k4LWDDKkxJM76Pv8cMmc2QUfGjPDOO+YBEBYGR4/Cnj2wezecPm1ul1SqZAKOvHnhvffM\n8dFlyQKbN8OiRdC+fdzXFZ30cAghhHiuTNg7gTkH5jCr6awowQZA5jSZWdlqJScDT9JtfTe01tx5\ndIeFRxbSuWznBGXuBJOiOyTmDFqrlFJ8VOYjlh9fzp1Hd2LsX3N8E4S50qJsTbvqe+0186Gf4qgX\nOdLlYPzcofSwAAAgAElEQVTu8THKLD66mIypM9KwSMNY61q71syA8fY2wUZ0KVJA6dLwySfw448m\n6Fi1CqZPNynKO3a0HmxEyJQJunaF1KnturQopIcjHk6cOPGsm5DsyWssxItt/d/r6bu5L/2q9sOr\ntJfVMqVzl2ZGkxm0W9WOKi9XISQshIehD+lYtmOCznn1qpn+GTGIM3v2uI/xfN2TQb6DWHZsGR3K\ndoiyb9n+TXC5Cg08rHziW+HiAnXqwPYtafls/GeM+H0EQ2sOJVf6XIDp8Vl8dDHvFns31tTlQUHQ\nowfUqwfvv2/XqZOUBBx2yJ49O25ubrRt2/ZZN+WF4ObmRnZ7/scLIZKVYzeO8eHyD2nyahNG1R4V\na1mv0l7su7yPHht6kDNdTpoVa0bejHnjfc67d6FJE5Pg6soVMxNj82ZzeyG669dNT4RSkC9TPuoV\nqsc3u76hWbFmZHczf7NCwkLw+3cr6a71Iz7rXtataxKCLS7UjdE7R9PUpyl5M+YlOCyYByEPOHXz\nFBMaTIi1jlGjTPC0aVP8Zo8kFQk47PDKK69w4sQJAgMDn3VTXgjZs2fnlVdeedbNEEIkoYu3L9Jg\nYQPcs7iz4N0FNmd/RObdwJv91/az9/Je5jWbF+9zhoZCq1ZmHMPOnZAqFdSubQZVbt0K+fKZcseO\nwdChsHw5zJ4NHSwdGhMbTqT6vOrUX1AfXy9fMqXJxL4r+whWd6mW3Xr+DVvq1jVTV/fvzsK4euNY\nfnw5wWHBpHRJSTq3dPSo2IPa7rVtHn/qlMmN8eWX2DVQ9ZnQWr/wD6AsoP39/bUQQojEFxYepndd\n3KVDw0Jj7Ltx74YuOqmodp/grq/euRqvegPuBuiZfjN1WHiYOU+Y1nPnan36dOzHhYdr3amT1q6u\nWm/a9GT7mTNaFyigdf78ZruHh9ZKmedFi2pdu3bUeg5dO6SzjMmiq86pqu89uqf7/zpY80VWPXFS\nzOuMS/Hipk3xFRamdbVqWhcqpHVQUPyPf1r+/v4a0EBZHctnrQwaFUII4XAT9k6g6tyqVJ5TmT+v\n/Pl4+91Hd2m0qBG3Ht5ik+cmXsrw5F7GzZvQrJnJG1G1qsl8WbOmGdwYHGzK5E6fm07lOuGiXAgO\nBi8vMwW0Vi24fNl2e8aMgVmzzKNu3SfbCxY0ia5SpzZjIXbsgGnT4K+/oFcv+O03064Ir+d6nY1t\nN3Lo+iGaL2nOisPr4GxdatWM55xRTDs2b45fki6AyZNND82cOZA2bbxPm2Qk4BBCCOFQ1+9dZ9j2\nYTQr2oyQsBAqza5E5zWduXr3Ki2WtuBU4Ck2ttkYYypojx7mw79kSbOeR4ECZgzFqFEmCIm8vsft\n29CwoVnBdMoUM4ahfn3499+obQkLgwEDzOOrr+Cjj2K2N18+E2j4+JjbLV26mNstzZtDeLjJaxFZ\nxbwVWeuxlp0Xd/L3/f2ku1aPEiXi/zrVrQvnz8OZM/Yfc/o09O8Pn35qbgU912Lr/nhRHsgtFSGE\ncJgOv3TQWcZk0YH3A3VIWIietG+SzjQ6k04xLIVOPSK13nZuW4xjli/XGrReuDBmfX5+Wr/6qtZp\n02o9fbrWly5p/frrWmfOrPVvv5kyJ05onS2b1lWqaH3/vtl244bWdepo7eKi9TffmNsq8VW9utaN\nGlnft+HvDTp97/K6Uatr8a9Ya33njrnFM3WqfeXDwrSuUUNrd3et795N0CkThb23VJ75h31CHkAe\n4CcgEAgCDkW/UGA4cNWyfzNQOJb6JOAQQggH8Lvip9VQpSfvmxxl+/V71/XnGz7X6/9aH+OYGze0\nzpFD63fftR0U3LundZcu5lMsbVqt8+XT+ujRqGX27dM6XToTIOzaZcrkyKH11q0Jv54JE7ROlUrr\n//6LuS8oyOz7/vuE11+tmrlue0yaZK7f1zfh50sMyXYMh1IqM7ALeATUB4oDfYBbkcr0Az4FOgMV\ngfvAr0op26v1CCGESDD/q/4EhQRF2aa1pufGnpTMWZIu5btE2ZczXU68G3jHSGSltUkspbVJRmVr\npke6dGb/qlUmi+aePebWS2QVK8LKlWZcRNWqZmXW/fvh7bet12mPFi3M+JF162LuW7PG7KsVM/mo\n3erWNeuWhIbGXu7sWbNWSrduT3e+pOR0AQfQH7iote6otfbXWl/QWm/RWkdeK7gnMEJrvVZrfRTw\nwvSKNH8WDRZCiORKa83Q34ZSflZ5ik0uxuKjiyN6jvE56sOuS7v4vsH3dmcAXbIEVqyAqVPNeI24\nNGsGixeblNzW1Ktn6hs8GLZvh5dftvfKrMuXzwQyK1ZE3f7ggVk9tXFjkzk0oerWNeNR/PxslwkL\nMwNjc+aEb2JfYPa54owBR1PATym1VCl1XSm1Xyn1OL2cUsodyA1sjdimtb4D7AOqJHlrhRAimQoL\nD6P7+u4M2z6MAdUGUCFvBTxWeFB9XnV+v/A7X2z+ghbFW/C2u31dCteuQffu8MEHiZsps2lTGD48\nYem4rWnZEjZsMJk9I4wbZ5JueXs/Xd0VKpj04Zs32y4zYoQZ1DpvHqSPfR2354ozBhwFga7AKaAe\nMA2YqJTytOzPjbmXdD3acdct+4QQQjylh6EP+WD5B8zwn8HsprMZWXskK1qtYKvXVm4/us1bP7xF\nYFAg4+qOs7vO3r3B1dVM83yetWhhejQ2bjTPL12C0aPNomlPm3TL1dWs3jphAhw8GHP/li0meBo6\n1EwRdibOmGnUBfhDaz3Y8vyQUqoU8AlmIKkQQggHuvPoDs0WN2Pv5b38/MHPUVZofdv9bQ50OcC8\nA/PImDoj7lnc7aozYhrqvHn2rWXyLBUuDK+/bm6rtGhhbqVkzAiDBiVO/VOmmFtBtWubjKdlypjt\nV69C69bmtsvAgYlzrqTkjAFHABB9ha8TQAvLv68BCshF1F6OXMCB2Cru1asXmTJlirLNw8MDDw+P\np2mvEEIkG3cf3aXBggYc/+c4m9puonr+6jHKuLq40qlcJ7vrDAuDzz4zYyO8rK/X9txp2RLGjzc9\nDosXm0DJ2uqsCZEli1kPJXLQUaoUeHhAypSwYIFZ8O1Z8PHxwcfHJ8q227dv23Wsihjc4yyUUguB\nl7XWb0Xa5g1U0FpXszy/Cnyrtfa2PM+ICT68tNbLrNRZFvD39/enbNmySXEZQgjhdO4H36fhwoYc\nun6ILZ5bqJC3QqLUO3OmSa61dy9UqpQoVTrcsWMmCMic2SQl27Mn8YOAW7dM0HH2rLnN4uMD27ZB\n9Zgx3jO1f/9+ypUrB1BOa73fVjlnHMPhDVRWSn2plCqklGoNdAQi3/WbAAxSSjVVSr0G/AhcBn6J\nWZ0QQoi4PAh5wDuL3+HAtQNsaLMh3sHGgwfw009w/37U7bdumayf7do5T7ABUKKECTT++w++/94x\nPQ4RPR0FC5pejZEjn79gIz6cLuDQWvsB7wIewBFgINBTa704UpmxwCRgBmZ2SlqgodY6OOlbLIQQ\nzu1h6EOaL2nO3st7Wdd6HW/me/PxvgcPzADH4sXNh6Mt48aZ2yUlSkRNDT50KDx6ZAZdOhOlzFTb\n4cOhcmXHnSdLFjNjZckS+N//HHeepOB0t1QcQW6pCCFETIFBgfx84mdm7Z/FkRtHWNd63eMprg8f\nmoXPRo+GGzcgd27IkAGOHDEzLSL77z+zDkrjxqZHY8MGk6zrk0/MlNXRo53/w/RFlpxvqQghhHCQ\n2w9vM2f/HOovqE/ucbn5ZN0nZEidgY1tNj4ONvbuNTM1Pv/czJg4eRJWrzY/582LWed335kMnOPH\nmwydy5ebxFaNGpnbBT17JvFFimfCGWepCCGESEThOpzfL/zO3ANzWX58OY/CHvFW/reY3GgyLYq3\nIGe6Jyk/Hz0yK6zmzm1ScL/66pN6WreGIUPMz3TpzLabN80tl+7dzTFgZnjUq2e2169vVmIVyZ8E\nHEII8QLbeHoj3dd35+ytsxTOWpjBNQbjVdqLvBmt5wr/9luzfPqBA1GDDYCvv4ZixUy2zYicFOPG\nmSXdv/giatkMGcwYCPHikIBDCCFeUI9CH9FpTSfyZ8rPD81+oNor1VC2VkvDTM8cOdJkBC1VKuZ+\nd3ezmNjYsWaaq9YwcaK5ZZIjhwMvRDgFGcMhhBDJ1N7Le+m0uhMPQx9a3T/3wFyu3LnCrKazqJ6/\neqzBhtbmtkjOnOa2iS0DB5oZHCNGmIXFXF2hb9+nvRKRHEgPhxBCJEOnAk/ReFFj/n3wLznT5WRk\n7ZFR9j8KfcSonaPweM2D4jmKR9mndcxl4VesMGuHrFr1ZHyGNdmzw5dfmtslrq5mCfWsWRPrqoQz\nkx4OIYRIZv65/w+NFjUiV7pc9KnSh7G7x3Lo2qEoZeYcmMPVu1cZXCPqQIr58834imrVYNIkCAiA\nu3fNjJR33jHLwcelZ0/IlQvSpDHHCQEScAghRLISkRH0fvB91rdZz6jaoyiWvRgd13QkNDwUsPRu\n7BiFRykPimUv9vjYuXOhfXto2NCk7O7dG/LmNQuV3bplxmPYI21aWLsW1qwx9QgBEnAIIUSyERYe\nRtuf23L4+mHWtl5LgcwFSJUiFbObzsb/qj8T95mIYc6BOQTcC4jSuzFzJnToAF27mqyWa9fC9esw\nezaULGnSd+fPb39bypQxvSRCRJAxHEIIkUz039KfVSdXseqDVZTPU/7x9kovV+KzSp8xyHcQDQs3\nZNSOUbR+rTVFsxcFYNo0M7ukRw8TWESM38iaFT7+2DyEeFrSwyGEEMnA8uPLGbdnHOPrjadp0aaA\nGX+xfLnZ//XbX5MzXU6qz6tOwL0ABlU3iTJ++skEG59/HjXYECKxScAhhBBO7q+bf/HxLx/TqmQr\nelYyecL374cKFeD992HnTkifKj0zmszg5oObj3s3QkLMSq2tWpn04xJsCEeSgEMIIZxYUEgQLZe2\nJE+GPMxuOhulFCtXmmXMX3rJZP6MWIm1fuH6rGu9ju8bfA/A4sVw+bKZwirBhnA0CTiEEMJJaa3p\nuq4rZ2+dZUWrFaRPlYHRo81aJY0bw/btJhHX+vVw+LA5plGRRmRNmxWtTZryRo2sZw0VIrFJwCGE\nEE5q9v7Z/HjoR6Y3nk7wlZI0b25ukQwebHov3Nzggw/M7JIxY6Ieu2mTWUpeloUXSUUCDiGEcEJn\nb52lx4YeNH2pCwv7eVK2LBw9CkuXwvDh4GL5654ypUktvmSJWQslwrffQvny8NZbz6b94sUjAYcQ\nQjihYb6jCQ/KzJpPvyMgABYtglOnzCDR6D7+GLJlMyu3ghlQunWr6d2QsRsiqUjAIYQQTubCfxdY\ncOQH2P0/1v7sxsGD4OFh1i6xxs3NpBufOxeuXTOBh7s7tGiRpM0WLzgJOIQQwskM2DCG8AeZ6Vvz\nExo3tq+Xols3c3uld29z26V3b9sBihCOIAGHEEI4kUu3L7H41BwyHO7LwP/FsmxrNFmymLTlPj6Q\nKZNZM0WIpCQBhxBCOJFeK74h/EEGRrfsFusy8dZ8/rlZwbVHj9iXmBfCEaRDTQghHEhrs2pqnTpm\nLMXTuHz7CisvzCL3uSF8MipDvI/PkwdOnDArwAqR1KSHQwghHGjJEmjWDLy9n76uzvO/RT9yY3qH\nT0mRImF1FChgxnIIkdQk4BBCCAe5dw/69IEUKWDOHAgPT3hdF25eY+M/Myjy7+c0q58p8RopRBKR\ngEMIIRzk66/h339h/nw4dw58fa2X+/vm37y78ANu3L9hs673pg5Eh6bix+6fOai1QjiWBBxCCOEA\np06ZFVi//BJat4bixWH2bOtl280dwarTS2k025NwHbMbZOKW5fiFz6WOHkfl0lkc3HIhHEMCDiGE\nSGRaw2efwcsvP8nm2bEj/PwzBAZGLftXwBX23PVBnWyB/63NDNw4Ksr+C7cu0ee3TqS70JJVgzsm\n4VUIkbgk4BBCiATS2qQSb9LErMgaMUZj1SqzONr330PatGabp6cpv2BB1Do+njEZQtOyuftc0v45\nhDH7vsL37DYAwsLDqDutLaFB6Vn44UzSpZM85MJ5OXXAoZTqr5QKV0p9F237cKXUVaVUkFJqs1Kq\n8LNqoxAi+dq2DZYvh7/+MsvBFy4MY8dCr15m2fcmTZ6UzZED3n0XZs0ygQfA6Yv32PVoOuVdOlG7\nWiaWdBsM52rRfIEH1+5do/+60fwdvIMmwQtoVi/rs7lIIRKJ0wYcSqkKQGfgULTt/YBPLfsqAveB\nX5VSqZK8kUKIZG3kSChb1ozX2LMHqlUzS8MHBMCECTFTjnfsCMePw9695rnXdz9AqjvM6WwGgjZt\nnIJO2RZy967irVkNGO8/lPQHBrJgpCzpKpyfUwYcSqn0wAKgI/BftN09gRFa67Va66OAF5AHaJ60\nrRRCJGd795pZJwMGmMCicmX48Ue4fNmsxlqkSMxjatc2eTBmz4ZDR8LYoyfwRur3eP2V/I/LTBqd\ni0IHffjrvyPoyxX4scMQMsksWJEMOGXAAUwB1mito0wyU0q5A7mBrRHbtNZ3gH1AlSRtoRAiWRs1\nCooVM7dJIsuRA0qWfPJca82Ws1u49eAWLi7QoQMsXgxthq+GrGeY1LpPlONTp4a1k2qSetFO3n24\nhnffkSxdInlwuoBDKfUhUAb40sru3IAGrkfbft2yTwghntrhwyZdef/+4BLHX9Fh24dR96e6FJpY\niHG7x/Fh24c8fAjHMnxHMbeqVC1QMcYxxYrB2e1VWDIvu4OuQIik51RrqSilXgYmAHW01iHPuj1C\niBfTmDGQP7/JrxGb8bvHM2z7MAZWH8jNoJv039KfSRkn8WqXjziZaycjm6y0eWyePIncaCGeMacK\nOIByQA5gv1KPh2OlAGoopT4FigEKyEXUXo5cwIG4Ku/VqxeZot0s9fDwwMPDIxGaLoRIDk6fNuuj\nTJoU+5ok0/2m03dzXwZUG8DXb38NwOeVP2eA7wBW3h6Oe+aCNCv6ThK1WojE4ePjg4+PT5Rtt2/f\ntutYpSPmZzkBpVQ6IH+0zT8AJ4AxWusTSqmrwLdaa2/LMRkxwYeX1nqZjXrLAv7+/v6ULVvWYe0X\nQji/Tp3M7ZTz581S79YsOLwAr5+96FGxBxMaTEBFm67if9Uft5RuFM9R3PENFsLB9u/fT7ly5QDK\naa332yrnVD0cWuv7wPHI25RS94GbWusTlk0TgEFKqdPAeWAEcBn4JQmbKoRIZm7fhkWLzLooI0fa\nDjZ8jvjw0aqPaF+mPd4NvGMEGwDl8pRzcGuFeP44VcBhQ5QuGq31WKWUGzADyAzsABpqrYOfReOE\nEM5La9i3D2bONLdRHj2C5s2ha1drZTXjdo/jiy1f4FXai5lNZ+KinG5cvhAO4/QBh9b6bSvbhgJD\nk7wxQohkIyLHxr59ZoDol19C+/aQN2/MsmHhYXy24TOm+k1lUPVBDK813GrPhhAvMqcPOIQQIjH9\n+acJNLZsgQoVYN06aNDA9vTXoJAgPFZ4sO6vdcxsMpNO5TolbYOFcBLS3yeESHYuXDBBwnffwZ07\n9h0TGgpt2kDFinDlCqxcaXo3GjWyHWyE63CaLGrC1rNbWe2xWoINIWIhAYcQIll5+BBatjQ9Ff36\nmSXi+/QxQUhsxo0zGUBnzYIjR0wG0bjuisw7MI9t57ex2mM1jYo0SryLECIZSlDAoZRyUUq9qpSq\nppSqEfmR2A0UQoj4+OwzOHoUNm82U1c//RTmzYOCBWHgwCcrtUZ27Bh89ZUJTDp2hBQp4j7Pvw/+\npd+Wfni+7snb7jGGkgkhoon3GA6lVGVgESYfRvT4X2MScQkhRJKbO9f0UMyZY1ZxBbPmycCBMH68\nCSrc3MzzCKGh8NFHJiAZPtz+cw3YOoCQ8BDG1h2bqNcgRHKVkEGj0wE/oDEQQLRpqUII8Szs3w/d\nupkeio8/jrovXToYMsT0bgwaBNmywSefmH3ffmuO3b3bdm6N6P688icz/WfyfYPvyZ1elmkSwh4J\nCTiKAO9prU8ndmOEEMnb8eOwYgXUrw/ly8e98Jm9/v3XjNsoVcqkHLdlyBC4edMEJlmymFVdhw6F\nvn2hUiX7zhUWHka39d0onbs0XStYScghhLAqIQHHPqAwIAGHECJeunWD7dvNB/9LL8E775hAoW7d\nhNf56BG8956ZjbJtW+y9FErBhAlw6xZ4epr8GoUKwbBh9p9v9v7Z+F31Y9fHu3B1kcwCQtgrIf9b\nJgHjlVK5gSNAlFVbtdaHE6NhQojkZft281ixwtzS+OUX85gxw/x8JwHrmIWFmcBh924zSLRAgbiP\ncXExYz1u3zY5NuJzK+VAwAG+3Pol7cu05818b8a/wUK8wOK9eJtSKtzKZo0ZQKq11k43aFQWbxPC\n8WrXNrc+9u9/Mt1Ua3jtNXN75Ycf4lef1tCjB0ybZoKY5s3jd3xwMFy8CIULx132ZtBNBvkOYob/\nDErkKMG2dtvIkS5H/E4oRDLlyMXb3BPcKiHEC2nnTpMqfOXKqLktlILGjU2wER4evzEdo0bBlClm\nnZP4BhsAqVLFHWyEhocy038mg3wHEabD+K7+d3Sv0J2UKWJZl14IYVW8hmwppVICXwEuWusL1h6O\naaYQwpkNH256Mpo1i7mvcWO4cQP8/OyrKzzcBBqDBpmxF50cmNyzx/oedF/fnXeLvcvfPf7m88qf\nS7AhRALFK+DQWocALR3UFiFEMrRnjxlfMWSI9R6MN9+EzJnNeIrYnD9v8mi4u5tkXt26weDBDmky\nAAF3A5hzYA6ja49mTrM55EyX03EnE+IFkJBJaauABHRgCiFeRMOHm+mnLVpY3+/qaqbJ2go4rlwx\ns1jc3cHbG+rVMwM9J0+OO/X405j8x2RSu6bmk/KfOO4kQrxAEjKG429giFKqKuAP3I+8U2s9MTEa\nJoRwfn/8ARs3mjVKYhuf0bgxeHlBQICZLhvZsGFw8CDMn2+m0KZL59g2A9wPvs80v2l0fKMjmdNk\ndvwJhXgBJCTg6AD8B5SzPCLTgAQcQgjAJNUqXtzkyYhNgwamt2LDhqhZQgMCTKAxbJgJSJLKDwd/\n4Paj2/Ss3DPpTipEMhfvgENrLbNUhBBxWrXKBBArVsS9GFqOHCbT57p1UQOOCRNMjoyuSZjQMyw8\nDO+93rxX4j0KZC6QdCcWIpmT5emFEInuzh0zsLNJE7PMuz0aNzaDS4ODzfPbt2H6dLPmSaZMjmtr\ndKtPrebMrTP0qdIn6U4qxAsgIavFzo1tv9b649j2CyGSv0GDTPrw+AzsbNzYzDrZscMkCZs2DR4+\nhM8/d2xboxu/ZzzVXqlGxbwVk/bEQiRzCRnDkSXa85RAKSAz4PvULRJC2LR0qZlCWq/es26JbX/8\nYQKNcePMWiX2KlMG8uQxt1WqVjW3U9q1izmI1JH2Xd7Hrku7+PmDn5PupEK8IBIyhiNGB6lSygWY\nBpxJjEYJIWKaOhW6dzezNA4cgCJFnnWLYgoNhc6d4Y034LPP4nesUtCokQk4ihY1ycD+97+EtSMw\nKJAR20fQrUI3imYvatcx4TqcsbvHUjhrYZq+2jRhJxZC2JQoYzi01uHAd0CvxKhPCBHVrFkm2OjW\nzXzjb90aQkJilgsNhfHj4ciRpG8jmF6JI0dMunHXBPSfNm4Mf/1lkoS1bJmwoCooJIgmi5ow8Y+J\nVJxdkV9O/hJr+VsPbuG9x5tik4ux8sRK+lftTwoXp1sSSojnXmIOGi1Ewm7RCCFi8cMP0KWLCTgm\nT4ZFi0xeiq++ilru0SP48EPo2xdq1IA//0zadl64YNrUoweUiz5h3k516pg1Tm7cgH794n98aHgo\nHis8OHLjCL5evtQpWIfmS5oz2HcwYeFhj8s9Cn3E5jOb6fBLB/J+l5d+W/pRPk95drTfwcdvyDA0\nIRwhIYNGv4u+CXgJaAzMT4xGCSGMBQvMNNHOnWHSJHPboUIFk71z4EAzlqNmTQgKMpk8f/vNHDNl\nihl4uWGDGQ+RFHr3NuNLRoxIeB3p05usoyEhZgXZ+NBa02N9D9b9tY7VHqup5V6LmgVq8s2ubxjo\nOxC/AD+aF23OhtMb2HJ2C/dD7pM/U34G1RhEhzc6kCt9roQ3XAgRp4QsT78t2qZw4B/MgNG5WuvQ\nRGpbkpHl6cXzaMECM2iyfXtziyJyps6wMBNQnDljVmL19DTLvq9eDW+/DXfvQtOmZkG0tWtNUOJI\nW7aY9OMLF5rbPU/j4UPzM02a+B03esdoBvgOYHbT2XQo2yHKvk1nNuGxwoP/Hv7Hm/nepHGRxjQq\n0ojXcr6GcmR+dCFeAPYuTx/vgCM5koBDPG9++MH0bEQEG9YSZ126BK+/bj6g06QxvRmVKz/ZHxRk\nlm3fsQN++cVxM1tCQqB0aciWDX7/3bHrm9jy46EfabeqHV+99RVDaw61Wubuo7uEhoeSJW30iXZC\niKdhb8AR7zEcSilfpVSMxQWUUhmVUjItVoinNGuWCTQ6dzb/tpWlM18+mDfPDKz87beowQaAm5vp\n8ahRw9QXHu6Y9k6eDKdOPbnlk9Q2nt5Ih9Ud6PBGB7566yub5TKkziDBhhDPUEIGjdYEUlnZngao\n/lStEeIFN3WqCTS6dzeJr2Jb8AxMD8bhw6aHwZo0acxAzqtXza2XxHb9ulkvpUsXk0cjLv/c/4fV\np1ZzM+hmopz/jyt/0HJpSxoWbsj0JtPl9ogQzzG7B40qpV6P9LSEUip3pOcpgAbAlcRqWCzt+BJ4\nFygGPAB2A/201n9FKzcc6IhJSLYL6Kq1Pu3o9glhj0eP4Oef4cQJMyPj+nW4dg327DGZNb/7LvF6\nCypXhpdfNknDatRInDojfPmlmf5qz0DRsPAwWi5tyY6LO1AoyuQuQ2332tQvXJ/a7rXjHSz8dfMv\nGi9qTOlcpVn83mJcXWSSnBDPs/j8Dz2IWQ1WYz2j6AOgR2I0Kg7VgUmAH6b9o4FNSqniWusHAEqp\nfmqd/VkAACAASURBVMCngBdwHvga+NVSJjgJ2iiEVTdumPVBpk41QUaePJArF+TMaW6NeHqatUMS\n84u6iwu0amUGdH7/fdwLqdlr3z5zS2fqVDN+Iy7jdo9j58WdLHt/GfeC77H13FYWHlnIuD3jWNxy\nMR+U+sDucwfcDaD+gvrkcMvB2tZrcUvp9hRXIoRICnYPGlVK5cdMgT0LVMTMTIkQDNzQWodZO9aR\nlFLZgRtADa31Tsu2q8C3Wmtvy/OMwHWgndZ6qZU6ZNCocKg7d6BPH/jpJxMAtGsHPXtCsWJJc/4/\n/jCrsW7damaxPK3bt03PSZo0ZiZMXEHM/oD9VJ5dmT5V+jC6zujH27XW1PihBmld07LJc5Nd5/Y9\n50u3dd24F3yPPR32kC9Tvqe5FCHEU0r0QaNa6wta6/NaaxettZ/lecQj4FkEGxaZMb0u/wIopdyB\n3MDWiAJa6zvAPqDKs2igEP/7HyxebMY7XL5sxmckVbABJndHgQKwZMnT1xUWBm3aQECAqS+uYCMo\nJIg2K9tQKmcphtUaFmWfUop2pdux5ewWLt+5HGs9x/85TpNFTaj9Y22yps3KFq8tEmwI4UQSlGlU\nKeWplNqllLpq6flAKdVLKdUscZsXZzsUMAHYqbU+btmcGxOAXI9W/LplnxBJavduM7V1zBjo3x+y\nZk36NihlbqusWGHSnz+NIUPMFNzFi+HVV+Mu329zP87/d54FLRaQKkXM8ebvl3if1K6pWXh4odXj\n7wXfo8uaLrw27TVOBJ5g2fvL2PXxLoplT8KITQjx1BIyLbYrZt2U9ZjehYjvN7eAJF5ImqlACeDD\nJD6vEHYJCTFjMsqXNz+fpQ8+gJs3wfcpJq8vXQqjRsHo0dCgQdzlN/y9gcl/Tubbut9SIkcJq2Uy\npclE82LNmX9oPtZu8Q77bRg/Hf6J8fXGc6L7Cd4r8Z7MRhHCCSVkWHcPoJPWepVSqn+k7X7AuMRp\nVtyUUpOBRkB1rXVApF3XMGNNchG1lyMXcCC2Onv16kWmTJmibPPw8MDDwyNR2ixePBMnwrFjZgxF\nYg3WTKg33oBChcxtkIQkATt40OTz8PCwbxXXByEP6LSmE/UL1ad7he6xlm1Xuh0NjzbE76ofFfJW\neLz9wn8XmPjHRAZWH8jnlZP6+4wQIjofHx98fHyibLt9+7Z9B2ut4/XAzEbJb/n3XaCg5d9FgAfx\nrS8hD2AycCni3Fb2XwV6RXqe0dLu922ULwtof39/LURiuXBB63TptP7ss2fdkicGDNA6SxatHz2K\n33HBwVoXKKB12bJa379v3zFjd47VrsNd9embp+MsGxoWql8a95Luvq57lO2eKz117nG59d1Hd+PX\nYCFEkvH394+YwVpWx/LZnZAxHOcAayl+GgAnElBfvCilpgJtgNbAfaVULssj8soLE4BBSqmmSqnX\ngB+By0Ds61QLkYh69oSMGZ9uMbPE9sEHcOuWWfskPnbtgvPnzWDX/7d33+FVVVkDh38rhVATeiC0\n0CMlhI5SQ69iQ8VRQKyjY2HGUUEcHdtgG0Y/sCMCQgRsKF2qFJHQIr036TW0EFL298e+CTchPffe\ntPU+T56Qc/Y5Z29ukruy2yqZhRWo0VejGbNqDA83f5i65etmWt7by5v7Q+8nYksE1xLsyvWNxzby\n9R9f82rnVyldrHT2KqyUyndyEnD8FxgvIvdghy7aiMhL2P0w3nFl5dLxOLbHYhm2JyPp4+6kAsaY\nd7B7dXyKXZ1SAuhjdA8O5SE//ww//mj3vfD3z+vaXNe0KTRsmP3VKnPm2P1CsprB9b3V7xETF8PL\nnV/O8jOGNBvC2ZizzNk1B4AXFr1AgwoNbkjEppQqmLI9h8MY84WIxGA30yoJTMO+4T9jjPnGxfVL\n6/lZCpKMMa8Cr7q1Mkql4ehRePhh6NMH7rorr2uTkojt5fjf/+xup35+Wbtu7lzo2zfzrdYBTlw6\nwdg1Y3m67dMElQnKct2aVG5Ci6otmBQ1iVLFSvHLvl/44Z4fdAdRpQqJHC2LNcZMNcbUB0oDVYwx\n1Y0xE1xbNaUKnvh4uPdeu933V1/lTTKzzNxxh92I7Lffslb+wAHYts0GHFnx5oo38fX25YX2L2S7\nbkObDWXO7jk8O/9Z2tdoz8CGHl1pr5RyoxwFHEmMMVeMMScBRKS4iDznmmopVTC99JLdd2P6dLtd\neX7UuLHt2di0KWvl5861AVSPHpmX3X9uP5+s+4Tnb3k+R5lZBzexK8K2n97Ouz3e1eWvShUi2eqr\nFJFKQFvsVuaLjTEJIuILPAGMdNzPY0tjlcpPfvoJ3nkH3n0XOnTI69qkz8fHzuXIasAxZ45tT6oV\n42l6dfmrVChZgafbPp2julUqVYkHQh8gwSRwcw3dGFipwiQ72WI7ALOxEzYNsE5EHgR+BOKx8yUm\nuaGOSuV7+/bZ/Ci33WZzprjL/nP7STSJWVr5kZGwMIiMzLxcTIzdKCwrK222ndrGlKgpjOs7jlLF\nSuW4bl8O/DLH1yql8q/sDKm8gd1dtCkwFmgN/ACMMsY0MsZ8YhzZWpUqSuLi7Lbh5cvb7KnuGgU4\nHH2Ytl+0pf7/1eeeb+8h6nhUju8VFmbnZVzLZN3W0qVw9WrW5m+8tvw1agbU5OEWD+e4Xkqpwis7\nAUdT4A1jzFbgZWwvx/PGmG/dUjOlCojPP4cNG2xukbJl3fOM2PhY7pp5F8V9ivNB7w+IPBJJ2Kdh\n9J/Wn98OZ3H2p5OwMBsobc9k55y5c23St5tuyrjctlPbmLF1BqM6jkozX4pSSmUn4CgHnAZw9GRc\nAba4o1JKFRQXLtgMsEOG2Iys7vLM/GfYdHwT3939HU+1fYpdT+1iyu1T2H9+P7d8eQtPz3uamLis\ndzCGhtrPGc3jMMbO3+jbN/Nemzd+fYPq/tUZFjYsy3VQShUt2V2l0khEQkUkFLvpV8Okr52OK1Vk\nvP02XLwIb7zhvmdM3DiRT9d/yvi+45PzjPh4+XB/6P1s/utmPuz9IZ9v+JyWn7Vkw7ENWbpnmTJQ\nr17GAceOHXZJbL9+Gd9rx+kdfLPlG0Z2GKm9G0qpdGU34FgMbHJ8lMROIt2ETYqW9FmpIuHPP+G/\n/4W//x2qV3fPM9YfXc9f5/yVh5o/lObcCC/x4qm2T7H+0fX4+fjR7ot2jFk5hoTEhEzvHRaWccAx\ndy4ULw5dumR8nzd+fYNq/tUY3nx4ps9UShVd2VkWW9tttVCqABo92vYUvJD9/a3SdPD8QSZFTeL8\n1fNEX43mwrULrDy0kqaBTRnXd1yG1zaq1IjfH/6dV5a+wqjFo1hxaAXf3PkNZfzKpHtNWBi8954d\nOklryGTOHOjaNePcKbvO7CJiSwQf9v4QP58sbluqlCqSshxwGGMOurMiShUkmzbB5MkwfrxrcqXE\nJcQx8JuB7Du3j+r+1fH38yegeAA96vTgza5vUtyneKb3KOZdjP90/w9dgrtw97d302FiB2YPnk2N\ngBpplg8Lg/Pn4dAhqFUr5bkLF2DFCrsFekbe+PUNqpSuovlOlFKZ0iQFSmWTMfDPf0KDBjZniiu8\nvepttpzcQuQjkTSv2jxX9+pVrxerh6+m37R+tPmiDT8P/plWQTdmXQtz5HzetOnGgGPhQrtNe0bL\nYXef2c3UzVP5X6//ZSkgUkoVbbna2lypouiXX2x693feAV/f3N9v26ltvP7r6zzf/vlcBxtJGldu\nzO8P/05w2WA6TezErB2zbigTFAQVK0JUGtt5TJtmA5LaaQykGmNYuHchd864k8BSgTzS8hGX1Fkp\nVbhpwKFUNk2YYJeVDhiQ+3slJCYwfNZw6pSrw786/yv3N3QSWDqQJUOW0LNuT4b+OJToq9EpzotA\ns2Y3Thw9cwZmz7Y7p6a28tBKukzqQq+ve1G6WGlm3TtLezeUUlmiQypKZcPly/bN+OWXXbOj6Ae/\nf8DaI2tZOXylW964S/iW4ON+H1P7g9qMjxzPqI6jUpwPC4Pvv095TUQEJFZdy/SSz/H9RLsE18fL\nh4vXLrLmzzU0C2zG7MGz6Vu/ryZXU0plWa56OESkooj0E5FbRaSqqyqlVH41Zw5cuWK3Ms+tPWf3\nMHrJaJ5q8xS31Lgl9zdMR9UyVRnefDhj14zl8rXLKc6FhcH+/XbyaJJJk6BWv2/YeW4LwWWDqVK6\nCmWLl6W6f3Wm3zWdDY9toF+DfhpsKKWyJcc9HCJyJzAB2AX4YjcBe9IYM9FVlVMqv5kxA1q1gjp1\ncnefq/FXeXDWgwSWDuTNbm+6pnIZeL7983y2/jM+3/A5z7Z7Nvl40sTRP/6ATp1sfpV16yDk7rX0\nrN2TybdPdnvdlFJFQ5Z7OESkdKpDrwBtjDFtjDHNgUGA+39zKpVHLl60PRy57d24lnCNu2fezbqj\n65hy+xRKF0v9o+V6wWWDuT/0ft5b/R6x8bHJxxs2BD+/6/M4Jk2CchXjOHhtA22qtXF7vZRSRUd2\nhlTWi8hAp6/jgcpOXwcCmeSeVCp/O3AAQkLsX/qpzZ5tM6cOGpTz+8cnxvOX7//Cgr0L+OGeH+hQ\ns0POb5ZNL3Z4kaMXjzI56nqvha8vNGliA46EBPj6a+hx31Zi4mM04FBKuVR2Ao5ewKMi8oOIBAHP\nANNF5LiInAbGAE+4o5JKecry5bBzJzzxhN1vw9mMGdC2rc2emhMJiQkM+3EYP+74kZmDZtK7Xu9c\n1zc7QiqGcGejOxmzagzxifHJx8PC7NLYRYvg6FGo22kt3uJN8yquWaKrlFKQjYDDGHPAGNMPmAEs\nB8KAekAPoDtQ0xgz1y21VMpDNm2yW3kvX273okhy4QLMm5fz4ZREk8hjsx8jYksE0+6Yxq0Nb3VN\nhbNpVIdR7Du3j+lbpicfCwuDLVvgiy9sGvoTvmtpUrkJpYqVypM6KqUKp2yvUjHGRACtgWbAMsDL\nGLPJGHPVxXVTyuM2bbK7aw4aBP/4B0Q7tq746SeIjc35cMoP239gwsYJfDXwKwY1zsWYTC41r9qc\nvvX78tbKt0g0iYANOK5dg2+/tXtvRB5Zq8MpSimXy1bAISJ9ReQfQCtjzMPA88BUEXlXREq4pYZK\neYgxNuAIC7NZYC9dgn859uKaMQNuuQVqpJ2WJFNfb/6aVkGteKDZA66rcA6N7DCSbae2sWT/EsBu\nYgbg5QW333OJrae2asChlHK57KxSeR+YiO3d+FREXjbGLAdaAFeBjSLSxz3VVMr9Dh2y+1GEhdl0\n86++CuPG2eGV+fNzPpxy/up55u6ey+Amg11a35xqX6M9tcvWZubWmYBNPlevHnTvDsdlA4kmUQMO\npZTLZaeHYxjQ1xhzLzboeADAGHPNGPMycAcwKv3LlcrfkpaGJu1N8cwzdk7DgAE2kdldd+Xsvj9s\n/4G4hDjuaXyPayqaSyLCXY3u4vsd3ydPHp06FT7+GNYeWUsp31I0rtQ4j2uplCpsshNwXAaSUjnV\nwPZqJDPGbDPGdHRVxZTytE2bbDKzoCD7ta8vfPSR3X+jQweoVi1n943YEkGnWp2o5p/DG7jBoEaD\nOH3lNL8e/BWANm3sZma/H/mdlkEt8fbyzuMaKqUKm+wEHCOBySJyFLtK5WX3VEmpvJE0f8N5x+5O\nnex8jldfzdk9T1w6weL9i/PNcEqSVkGtqBVQK3lYJcnaI2tpE6TDKUop18vOstip2J6NgUCwMebG\nfNdK5SOxsbB+fdbLJwUcqY0YAV275qwOM7fNxEu8uKtRDsdj3MR5WCUhMQGA45eOcyj6kM7fUEq5\nRbZWqRhjzhhjIo0x5zMvnbdE5EkR2S8iMSKyRkRa53WdlGe9+abdqOvs2czLnj9vdxlNK+DIjYgt\nEfSs25MKJSu49sYuMKjRIE5ePsmKQysAiDwSCaABh1LKLXKVLTa/EpF7gPex+V6aA1HAAhGpmKcV\nUx5z5Yqdf5GQAKtXZ14+Ksp+dmXAcfD8QVYfXp3vhlOStKnWhhr+NZKHVdYeWUvlUpWpGVAzj2um\nlCqMCmXAAYwAPjXGTDbG7AAeB64Aw/O2WspTJk2Cc+cgIABWrsy8/KZNNolZw4auq8M3W76huE9x\nBjYcmHnhPJB6WGXtUbvhl6adV0q5Q6ELOETEF2gJLE46ZowxwCLg5ryql/KcxEQYOxbuuAN69sx6\nwNG0Kfj4uK4eEVsiGNBgAGX8yrjupi42qNEgjl86zspDK3XCqFLKrQpdwAFUBLyBE6mOnwCqeL46\nytN+/hl277Zbk3foAJGRNstrRtKbMJpT209tJ+pEVL4dTknStnpbqpWpxn9W/ofzV8/r/A2llNu4\n8O+5gm/EiBEEBASkODZ48GAGD87fbxoqpffft9uQt2sHxYrZPCHr1tngIy3XrsHWrfDwwzl7njGG\n77d/z+6zu7kSd4UrcVdYd3Qd/n7+9KmfvzffTVpB88HvHwDQuprOrVZKpS8iIoKIiIgUx6KTkk5l\nojAGHKeBBCAw1fFA4HhGF44dO5YWLVq4q17KAyIjYcUK+O47+3VoKJQpY4dV0gs4tm+HuLic93D8\nuONH7pp5F+VLlKeUbylK+pakpG9JRnccTXGf4jm7qQcNajSID37/gPrl61O+RPm8ro5SKh9L64/w\nDRs20LJly0yvLXQBhzEmTkTWA92AnwDEzoLrBnyYl3VT7vf++1C3Lgx0zNP08YGbb854HsemTXaz\nr6QkZtlxJe4KIxaMoE+9Psy5b06BnHB5c42bqVamGm2rt83rqiilCrHCOIcD4L/AIyIyRERCgE+A\nksBX7nrgt9u+5bZvbuPStUvueoTKxIEDNsX6s8+Ct9PO3B06wKpVdjJpWjZtssnLyuRgbueYlWM4\ndukYH/b5sEAGG2CHVRbcv4C3u7+d11VRShVihTLgMMbMAJ4DXgM2AqFAL2PMKVc/60LsBYb+OJRB\nMwcxa+es5JTfyvM+/NBmPn3wQTuvYnLUZIb+OJSb2ydw/jxs25b2dTmdMLr37F7eWfUO/7zln9Qr\nXy93lc9jjSs3JqhMUF5XQylViBXKgAPAGPORMSbYGFPCGHOzMWadq5+x8tBKmn3SjB+2/8Ck2yYR\nXDaYRfsWufoxKguuXbN7bzz0EMR5n+e+7+9j6I9DmRw1Gd+a6/HxSXtYxZicBxzPzH+GwNKBjOqo\nSZKVUiozhTbgcLePIz+m81edqVamGlGPRzGk2RC61+7O4v2LM79Yudwvv9gtzBv3WUnYJ2HM2z2P\nqXdMpWzxsiz9cy4tWqQdcBw6ZLc1z27AMXvXbObsnsPYXmMp6VvSNY1QSqlCTAOOHIi+Gs2Li19k\nSLMhLB+2nNrlagPQrU43tp3axtGLR/O4hkXPtGlQ5dZxPLSyM9X9qxP1eBT3Nb2PnnV7Mm/PPDp0\nSDvg2LTJfs5OwHE1/irPzH+GnnV7cnvI7a5pgFJKFXIacDiJiclauY/XfczV+Ku82fVNvL2uz07s\nWtumFF28T3s5POnyZfhx7mXOthjJsGbDWDZsGbXK1gKgb72+RB6JpEm7kxw8CIcPp7x2/XqoVAmq\nVs368yZsmMCh6EN82LvgThRVSilP04DDydq1mZeJiYth7JqxDG029IZJdpVLVaZZYDMdVvGwn3+G\nK7W+4xqXGN1pND5e11d7967XG4PhSpUFgF2tkmTtWruMtn9/uyw2q+bvnU+nWp1oWNGFiVeUUqqQ\n04DDydzVBzMtM3HTRE5fOc3z7Z9P83y32t1YtG8RNn2L8oRp06BMpy8JDw5PHt5KElg6kJZVW7Lq\n5DwaNLg+rLJnD/TrB82awbhxWX9WfGI8yw8sp1vtbi5sgVJKFX4acDhZUvwJjlxIf/5FfGI8765+\nl0GNBqW7DLJ7ne4cuXiEnWd2uquaysnZszBvzV4uVljO8OZpJwPuW78vC/Yu4JYOCaxcCSdOQK9e\nUKGC7R0pmY05n+uOruPitYsacCilVDZpwOEkMTGRLl/05vzV82men75lOgfOH+DFDi+me4+OtTri\n6+Wr8zg85LvvIL7pV5Qp5s8dN92RZpk+9fpwNuYsQa3X8scf0Ls3XLkC8+fboCM7Fu9bjL+fPy2D\nMt/GVyml1HUacDgpvmwcRy7+ya0RtxITl3IGaaJJZMyqMfSp14ewKukvaShdrDTtqrdj0X7dj8MT\npk5LwK/tVwxucm+6y1PbVGtD+RLlOV9xLsbA3r0wbx4EB2f/eYv3L6Zzrc4p5okopZTKnAYcTjo0\nqkvw6tmsO7qOftP6MWPrDM5cOQPAnF1z2HJyCyM7jMz0Pt3rdGfp/qXEJ8a7u8pF2pEjsPzwYmL9\n/uTB5g+mW87by5ve9Xqz5uxcRoywwyg52egrJi6G1YdX63CKUkrlgAYcTjp2hO0Lb+HLXj9w7NIx\n7vn2Hiq9W4lWn7VixIIRtK/Rno61OmZ6n+51uhMdG82GYxs8UOuia/p08Gr5JQ3L30TbahknHutT\nrw8bjm3g+deO07lzzp63+vBqYhNik5c/K6WUyjoNOJy0b2+XR8Zs7sX2J7dzeMRhvhz4JQ0rNsRg\neD389Szdp3VQa0oXK63bnLvZ5JlnIeRHHm45PNP9MHrV7YUgzN8zP8Ny+8/tp/XnrTlw/sAN5xbv\nX0ylkpVoUrlJbqqtlFJFkgYcTsqVg3btYPZs+3V1/+oMCxvG1DumsvfpvYTXDs/SfXy9fekS3CVL\nAcfV+Ku5qXKRtW8fRCVEgFc894fen2n5SqUq0bpaa+bunpthuSl/TGHd0XW8vvzG4HLJ/iV0rd1V\nN/tSSqkc0IAjlf79YeFCiI3N3X261+7OqsOruBJ3Jc3zCYkJ/HvZvyn9VmlWHFyRu4cVMrvP7Kbt\nF22ZuHFiumV++QVoPpHedfpRpXSVLN23b72+LNy7MMO5NTO2zqBc8XJMiprEnrN7ko9HX40m8mik\nzt9QSqkc0oAjlf794dIlWJHLGKBbnW5cS7jGrwd/veHcsYvH6DGlB6/9+hrFvIsxe9fs3D2sEPn1\n4K+0m9COqONRPD3/aQ5HH06z3NQ1CyBoPY+2TnvvjbT0rd+X6NhoVh9eneb5bae2sfXUVj7u9zGV\nS1XmjV/fSD63/OByEk0i3epowKGUUjmhAUcqTZtC9erXh1VyqnGlxtQpV4cBEQPoMaUH49aO43D0\nYRbuXUizT5qx4/QOFg9ZzG0ht7H0wFLXVL6A+/qPr+k+uTvNApux4287KFOsDE/Ne+qGcicunmJl\npWHUSezJgIYDsnz/lkEtqe5fnYmb0u45mbl1Jv5+/gwMGcjIDiOZ8scUdp3ZBdjhlFoBtahdtnaa\n1yqllMqYBhypiNhejtwGHCLC6uGr+aD3B3iJFyMWjKDm/2rS6+teNK/anE2Pb6JLcBfCg8NZf2w9\nF2IvuKYBBZAxhleXvcoDPzzA/aH3M//++QSXDebDPh8ya+csftj+Q4qy9057BCNxjLn5K7wk69/C\nXuLFU22eYuofUzl28dgN52dum8mtDW+luE9xHmn5CFVLV+W15a8BdsJot9rddP6GUkrlkAYcaejb\n124OtWdP5mUzElg6kCdaP8GC+xdw+p+nibgzgkm3TWLeX+ZRuVRlAMJrh5NoEov0PI4ZW2fw7+X/\n5q2ubzHh1gkU8y4GwJ033Un/Bv15at5TyQHZ5xs+Z9nxWfjMncCALtlI8erwaMtH8fPxY9zalAlU\ntp7cytZTW7m70d0AFPcpzksdXyJiSwTLDyxny8ktOpyilFK5oAFHGrp0AR8fO3nUVQKKB3Bvk3sZ\n0mxIir/K65arS3X/6kV6WGXCxgl0rNmRkR1HpuhBEBHG9x3P+avneWnxS+w4vYNn5z9LzZOP0any\nQIoXz/6zyhYvy8PNH+bjdR9z+drl5OMzt9nhlJ51eyYfG958ONXKVOOeb+8BIDw4a6uUlFJK3UgD\njjSUKWP35FiwwP3PEhHCg8OLbMDx54U/WbRvEUObDU3zfM2Amrwe/jrjI8czIGIANfxrcibifbrl\norPhmXbPEB0bzVebvko+NnPbTAY2HIifj1/yMT8fP0Z3Gs2JyydoVKkRVctkv0dFKaWUpQFHOnr2\nhCVLIC7O/c8KDw5n47GNnIs55/6H5TNToqZQ3Kc4gxoPSrfMU22fonnV5hw8f5CRDaZx+VwpuuZi\ns8/gssHc1eguxq4ZS0JiAltPbmXbqW3c3fjuG8oOCxtG/fL16V+/f84fqJRSSgOO9PTsaZfHrlnj\n/md1Ce6CwaS5hLYwM8YwKWoSd9x0B/5+/snHExNtvpOTJ+3XPl4+/Dz4Z5YPW86RdS0oUwZatcrd\ns/9x8z/Ye24vP+38iRlbZ+Dv50+POj1uKFfMuxgbH9vIm93ezN0DlVKqiNOAIx0tWtjU5Z4YVqld\nrja1AmoVuWGV34/8zs4zOxkWNiz52Lp1cMstcOut8MADYIw9HlQmiJtr3MzixdC5s51jkxttqrWh\nQ80OvPfbe8zcNpPbQm5LMZzirFSxUpodVimlckkDjnR4eUGPHq6dOJqR8NrhLDuwzDMPyycmbZpE\ndf/qhAeHc/o0PPootGkDV67A66/b//vvvrtePiYGVq8mV/M3nP3j5n+w+vBqtp/enrw6RSmllHto\nwJGBXr3sX9xnzrj/WeHB4USdiOLMFQ88LB+4Gn+Vb7Z+w5DQIezY7k2DBjBzJnz4IWzYAKNH216O\nZ5+1Q1tgg43YWHI1f8PZgAYDqF++PgF+AfSoe+NwilJKKdfRgCMDPXrYLv1FaeRgO3kSDh1y3bOS\nllwuP7jcdTfNB87FnOP26bfz086fUhz/aedPnL96niHNhjB+PJQsCbt2wd/+dn245H//s8Hea3bv\nLZYsgUqVoImLkrV6e3nz+YDP+bT/p8l7fyillHIPDTgyUK0aNG5847BKTIydR9CwIYwdayc55laN\ngBrULVeXpfsL1zyOFxe9yKwdsxj4zUBGLhqZnDhtUtQk2lVvR23/hkyfDvffb4MJZ7Vrw0svLaz5\nbgAAIABJREFU2f/jrVth8WIID7fDXa7SObgz9zS5x3U3VEoplSYNODLRq5cNOJImL4Lt7t+/H+67\nD/7+d/smuG9f7p9V2PbjWHFwBZ9t+IxxfcfxTvd3eGf1O/T6uhdRx6OYv2c+w5oNY948OHvWBhxp\n+ec/beDx8MMQGem6+RtKKaU8q8AEHCJSS0S+EJF9InJFRHaLyKsi4puqXA0RmSMil0XkuIi8I5KN\nhBup9OwJf/4J27fbr1essH9xv/kmTJgAS5faoZXQUPjii9y1Mbx2OFtPbeXk5ZO5u1E+EBsfy6Oz\nH+Xm6jfzeKvH+Wf7f7J4yGK2ntxKq89b4evlyz1N7uHrr6FZs/SHSfz8YNw4uzw5MdF18zeUUkp5\nVoEJOIAQQIBHgEbACOBxIHmDBEdgMRfwAdoBQ4FhwGs5fWinTvZNb+FCO3lx2DC7bPPZZ+35Ll3g\njz/g7rvhkUdg8+acPsnuxwEUitUqY1aOYc/ZPXw24LPkrdy7BHdhw2MbCA8O59GWj8LVsvz8s13+\nmpGePe3/b9269kMppVTBU2A2FzDGLACcd8U4ICLvYYOO5x3HemEDk3BjzGlgs4i8DIwRkVeNMfHZ\nfW6JEjboWLgQdu+G48ft3hze3tfLlCkDH38M334Ls2bZFPc5EVQmiAYVGrDswLI0d70sKLaf2s5b\nK9/ihfYv0KRyyq6LoDJBLHzATor54gu7k+vgwZnfc/JkuHDBZvNVSilV8BSkHo60lAXOOn3dDtjs\nCDaSLAACgMY5fUjPnvDLL/DRR/D221Cv3o1l/PzsfI+ff87pU6w21doQdSIqdzfJQ4kmkcdmP0at\ngFqM7jQ6w7JTptg5GUFBmd/Xz+/GSaVKKaUKjgIbcIhIPeBvwCdOh6sAJ1IVPeF0Lkd69YL4eDt/\n4Ikn0i93662wdi0cO5bTJ0HDCg3ZeXpnzm+QxyZsmMCKQyv4tP+nFPdJP53rwYPw66/pTxZVSilV\nuOR5wCEi/xGRxAw+EkSkQaprqgHzgOnGmC/dXccmTeD99+1f5Bktyezb156fMyfnzypxOYQzMWc4\nfeV05oXzmdNXTvPi4hcZ0mwI4bUzTuU+bZrde+OOOzxUOaWUUnkqP8zheA+YmEmZ5EWnIhIELAFW\nGmMeS1XuONA61bFAp3MZGjFiBAEBASmODR48mMGDB/P3v2d2tc290r49/PSTXcaZE5+9FQLdYcfp\nHXSo2SFnN8kjLy56kUSTyLs93s2wnDE2eLvtNihd2kOVU0oplWsRERFERESkOBYdHZ2la/M84DDG\nnAGytJ+3o2djCRAJDE+jyG/AKBGp6DSPoycQDWzL7P5jx46lRYsWWap3em69FV5+2eYDKVkye9ee\nPg271tSDrl5s+rNgBRy/Hf6NCRsnML7veCqXqpxh2Y0b7TLj//7XQ5VTSinlEkl/hDvbsGEDLVu2\nzPTaPB9SySpHz8Yy4CB2VUplEQkUkUCnYguxgcUUEQkVkV7A68A4Y0ycJ+o5YABcvWp3xcyuZcuA\n+OJwPpglfxSceRzxifE8MfcJWlZtyWMtU3c63WjKFAgMhO7dPVA5pZRS+UKBCTiAHkAdoBtwGDgK\nHHN8BsAYkwj0BxKA1cBk4CvgFU9VsmFDaNDADqtk19KldgVMicshbDy8w/WVc5OPIz8m6ngUH/X7\nCG8v7wzLXr1ql7j+5S+5TzGvlFKq4Cgwv/KNMZOASVkodxgbdOSZAQNg6lS7M2Z28n4sWWJXwqwu\nE8LO2BxELHng+KXjjF46mkdaPEKbam0yLT9zpt3K/LHMO0KUUkoVIgWph6PAuPVWu0HYunVZv+bo\nUdixwwYctzQIIa7UPvYejHVfJV3khUUv4Ovly1vd3spS+U8+sXtvNGiQeVmllFKFhwYcbnDLLVCu\nXPY2AVu2zH7u0gUG3BwCXolEzN/jjuq5zIXYC0RsjmBkh5FUKFkh0/J//AGrV8Nf/+qByimllMpX\nNOBwAx8f6Ncve/M4liyx+30EBkKbOg0BWLA+f08cnb9nPnGJcXStemeWyn/yCVStanuAlFJKFS0a\ncLjJgAH2L/qDB7NWPmn+BkClkpUobsqx4fAOEhMzvu7QIZg4EebNy119c2LWjp/wPh3K2FeCMy17\n8aJdnfLww+Drm2lxpZRShYwGHG7Sq5d9Y/3668zLHjgA+/dDuGNzThGhbkAIV0rsICqNtCpLlthh\niQYNoFYtGD485xuN5VRcQhw/75xDwtaBfPedDSgyMm2a3ZvkkUc8Uz+llFL5iwYcbhIQYPOuvPqq\nzRmSkaVLbRbUzp2vH2tZKwSvyjv45ZeUZZcvt/tXLFoEPXrAd9/ZTLVHj8KZLG2f5horDq3gYtx5\nfPYOJCbGZspNjzG2jv37Q40anqujUkqp/EMDDjd6913o2BHuvDPjoZUlS6BFCzvRNEnjwBCk8g4W\n/mKSj507Z5OddepkV7SMH29zkXTqZM9v3uymhqThp50/4RdbjfCQFoSHw6QMFiz//jtERcHjj3uu\nfkoppfIXDTjcyNcXZsyw+UIGDoTLl28sY0zK+RtJGlZoSIL3RVZsOE5MjC332GNw6ZKdC+HttL9W\ngwZQrJjnAg5jDD/umEXCtlvp3k0YNsz2vOzfn3b5jz+G2rXtMJNSSqmiSQMON6tY0a5W2bMHHnzQ\nBg7Odu+2wyHhqZKrhlQMAeCa/w5WrLA9CDNnwqef3jgs4eMDjRvbSaqesOXkFg5GHyB+y0C6dbO9\nLKVL20AotUOHYPp0GyxlZxM0pZRShYu+BXhA06b2zXjmTBg1Cq5du35uyRIbMHRIlaetTrk6+Hj5\nEFB3B59+Cn/7GwwbBnffnfYzQkM9F3DM2jmLYqYM5S50ISwMSpWCu+6yW5Y7B1SJiTbIqlRJdxZV\nSqmiTgMOD7n9dnjrLRgzxuZL+b//g5gYG3C0aQNlyqQs7+vtS73y9agauoPvv4cqVeDDD9O/f9Om\nsGULmS6jdYVZO2dR5kRvunbySx7aGToU9u6FVauulxs/3rZv4kQoW9b99VJKKZV/acDhQSNH2qCg\nc2cYMQKCg2H+/BvnbyQJqRiCX9AOfH3tstLUQYmz0FC77HTfPrdUPdmRC0dYd3Qd59YMTJHttVMn\nu0Q3afLozp3wwgu2Z0azwiqllNKAw8MaN7bDK7t22V4PETuhNC0NKzTkvM9Ojh2zvSAZCQ21n909\nrPLzrp/xwpvEnX3o1u36cS8vGDLETpK9eNH+u3p1ePtt99ZHKaVUwaABRx6pU8du9R0dDa1apV0m\npGIIB6MPUsL/Sqb3Cwy0cyXcHXD8tPMnguI6UaNieerVS3luyBC4cAF697aJ6yZPhpIl3VsfpZRS\nBUOBSU9fFCWtVNl1ZhdhVcIyLe/qiaNX46+y+8xuLsdd5tK1S1yMvcji/YupsO0dene3vTPO6tWD\n9u3tPI5Ro6BdO9fVRSmlVMGmAUc+1rCCTeK24/SOLAcc2clQm5kHZz3IN1u+SXGshE8Jji25jW7j\n077m5ZftJNFXXnFdPZRSShV8OqSSj5UrUY7AUoHsOL0jS+VDQ+1KkUuXcv/sM1fO8N2273mo4Yts\n/utm9j+zn5PPneST4HMQXSvdia69esE339iNyJRSSqkkGnDkcw0rNmTnmaylqW/a1O6DsXVrzp+X\nmGh7SW5+dBpxcYlMeOjvfDi6Cf6JwVQqVYlfl/rRuLFNM6+UUkpllQYc+VxIhZAs93A0amRXi+Rk\nHkd8vN2CvGFDuPVWOFJ5Iq0D+jPunUpMn26PT5wIixeTYnWKUkoplRUacORzIRVD2Hl6J4km8x29\nSpSweVWyG3BERdkJnk8+aZPITV4QxZWAjYzu/yBPPmn31OjZE4YPhwMHNOBQSimVfRpw5HPtqrcj\nJj6GRfsWZal8aGjWk7hdvQovvWSX5cbGwm+/2bwn6xMnUrlUZfrU6wPYXU6nTrW9G489pht5KaWU\nyj4NOPK5dtXbERoYyri147JUvmlT28OROklcagcOQFgYvPuuXVmyfj20bQvXEq4xdfNUHgh9AF9v\n3xTXdO1q9w7RvTWUUkpllwYc+ZyI8GTrJ5m9azYHzh/ItHxoKJw7B0eOZFxu2jRbZuNG+Ne/rq8q\nmb1rNqevnObBsAdzX3mllFLKQQOOAuAvTf+Cv58/n6z7JNOyWd3ifPduu81648Ypj0/cNJHWQa1p\nXLlx2hcqpZRSOaABRwFQqlgpHgx7kC82fMHV+KsZlq1VyyZ5y2wex65dUL9+ymPHLx1n3u552ruh\nlFLK5TTgKCCeaP0EZ2LOMH3L9AzLiVyfx5GRXbvsihZnU6Km4OPlw71N7s1lbZVSSqmUNOAoIOpX\nqE+vur0YH5lyT3FjDB9FfsSYlWOSj2WWU+XcOTh9OmXAYYxh4qaJ3H7T7ZQrUc7V1VdKKVXEacBR\ngDzZ+kkij0ay9shaAGLjYxn+03CenPskryx7hcvXLgM24NixA65dS/s+u3fbz85DKgfOH2D76e3c\n21h7N5RSSrlegQw4RKSYiGwSkUQRCU11roaIzBGRyyJyXETeEZEC2c7U+tbvS62AWoyPHM+JSyfo\nOrkrEZsj+HeXf3Mt4RrLDiwDbMARHw/bt6d9n1277GfngGPV4VUAdKjZwY0tUEopVVQV1Dfid4A/\ngRS7TTgCi7nYLLjtgKHAMOA1D9fPLby9vHmi9RNM3zKdNl+0Ye/ZvSwbtoyXO71M7bK1mbdnHmDn\ncABs2pT2fXbvtpt5lSlz/diqQ6sIqRhChZIV3NwKpZRSRVGBCzhEpA/QA3gOkFSnewEhwF+MMZuN\nMQuAl4EnRcTHszV1j4eaP4S3lzcVSlQg8pFI2lVvh4jQp14f5u+ZD4C/P9Stm37AkdaE0VWHV9G+\nRns3114ppVRRVaACDhEJBD4D7gdi0ijSDthsjDntdGwBEAAUio0lKpSswPYnt7P6odXUCKiRfLx3\nvd7sPbeX3WfsBI3mzbMecERfjWbLyS0acCillHKbAhVwABOBj4wxG9M5XwU4kerYCadzhULNgJoU\n9yme4lh47XCKeRdLHlYJC7MBR+otzo2xQyrO8zfW/LkGg+GWGre4u+pKKaWKqDwPOETkP47Jn+l9\nJIhIAxF5GigNvJ10aR5WO98pXaw0HWt2TB5Wad4czp+HgwdTljtxAi5eTNnDserwKiqWrEiDCqnG\nWZRSSikXyQ/zGt7D9lxkZD8QDtwMxIqkiDXWichUY8yDwHGgdaprAx2fj2dWkREjRhAQEJDi2ODB\ngxk8eHBml+YLfer1YfTS0cTExRAWVgKwvRzBwdfLJC2JTR1w3FLjFlL9vyqllFIpREREEBERkeJY\ndHR0lq7N84DDGHMGOJNZORF5CnjJ6VAQdn7G3cBax7HfgFEiUtFpHkdPIBrYltkzxo4dS4sWLbJR\n+/ylT/0+PPfLcyw/uJxedXtTqZJNznbbbdfL7NpldyOtU8d+HZ8Yz+9//s6/Ov8rbyqtlFKqwEjr\nj/ANGzbQsmXLTK/N8yGVrDLG/GmM2Zb0AezGDqvsM8YcdRRbiA0spohIqIj0Al4Hxhlj4vKm5p5z\nU8WbqOFfg/l75iOS9sTRXbtsvpXijikgUcejuBx3WSeMKqWUcqsCE3CkI8WUSGNMItAfSABWA5OB\nr4BXPF6zPJC0PDb1xFFnqSeMrjq8imLexWgZlHl0qpRSSuVUgQ04jDEHjTHexpg/Uh0/bIzpb4wp\nbYwJNMa84AhEioTe9Xqz68wu9p3bR/PmcOgQnHEasEq9JHbV4VW0Cmp1w6oXpZRSypUKbMCh0tat\nTjd8vHyYv2c+YWH2WFSU/ZyYCHv2XA84jDGsOqQbfimllHI/DTgKGX8/f9rXaM+8PfOoXx9KlrQT\nRwEOH4bY2OtDKoeiD3Hk4hENOJRSSrmdBhyFUJ96fViyfwnxJpbQ0OvzOJKStiX1cCQlbNMNv5RS\nSrmbBhyFUK96vbgSd4U1f65JMXF01y7w9bWrVMAmbGtQoQGVSlXKu8oqpZQqEjTgKISaVG5CSd+S\nRB6NpHlzm6Y+JsauUKlTB3wcu69owjallFKeogFHIeTj5UOLqi2IPBpJWBgkJMDWrSlXqFyIvcDm\nk5s14FBKKeURGnAUUq2DWhN5JJKmTcHLyw6r7N59PeBY8+caEk0i7WtqwKGUUsr9NOAopFoHtWb/\n+f1cSjxFSAisXQv7919fobLi4AoqlKigCduUUkp5hAYchVTrajaH3bqj62jeHGbNskMrST0cSw8s\npUtwF7xEvwWUUkq5n77bFFJ1y9WlXPFyyfM4Tp60x+vXh8vXLrP2yFrCg8PztpJKKaWKDA04CikR\noXW11skBB9hNwIKCYPXh1cQlxhFeWwMOpZRSnqEBRyGWNHG0WTOb465+fTuBdOmBpVQuVZmbKt6U\nxzVUSilVVGjAUYi1DmrNicsnuFrsT6pXvz5hNGn+hojkbQWVUkoVGT55XQHlPkkTRyOPRvLeezWo\nXh0uXbtE5JFIhjYbmse1U0opVZRoD0chFlQmiKAyQUQeieSee6B9e1h5aCUJJoEuwV3yunpKKaWK\nEA04CrnWQa1Ze3Rt8tdL9y+lSukqNKzQMA9rpZRSqqjRgKOQa1OtDeuOriPRJAKw7OAywoPDdf6G\nUkopj9KAo5BrHdSaC7EX2H1mNxdiL7D+6HodTlFKKeVxOmm0kGsV1AqwE0fLFS9HgknQDb+UUkp5\nnAYchVy5EuWoV74ekUci8fX2pVqZatQrXy+vq6WUUqqI0YCjCGgdZHccvZZwTfffUEoplSd0DkcR\n0DqoNRuObWDj8Y06nKKUUipPaA9HEdCmWhtiE2IBNH+KUkqpPKEBRxHQvGpzvMWboDJB1C5bO6+r\no5RSqgjSgKMIKOlbkpZBLQmtHKrzN5RSSuUJDTiKiLn3zaW4T/G8roZSSqkiSgOOIqJCyQp5XQWl\nlFJFmK5SUUoppZTbFbiAQ0T6icgaEbkiImdF5PtU52uIyBwRuSwix0XkHREpcO10hYiIiLyugksV\ntvZA4WtTYWsPaJsKgsLWHiicbSpQb8QicicwGZgANAVuAaY5nfcC5mKHitoBQ4FhwGuermt+UNi+\nYQtbe6DwtamwtQe0TQVBYWsPFM42FZg5HCLiDfwP+Icx5iunUzuc/t0LCAHCjTGngc0i8jIwRkRe\nNcbEe6zCSimllEpWkHo4WgBBACKyQUSOishcEWnsVKYdsNkRbCRZAAQAzuVcIicRqKeuAThy5IhH\nnuWpa/Jze3J6XX5uk6fak9Nn5ec26fedZ6/R77ucP8eT36sFKeCoAwjwCnaIpB9wDlgmImUdZaoA\nJ1Jdd8LpnEvl9xe3sH3D5uf25PS6/Nwm/cVv5efXKKfX5ec26fedVdheI8gHQyoi8h/ghQyKGOAm\nrgdHbxhjfnRc+yDwJzAI+DwX1SgOsH379mxdFB0dzYYNG/LlNQBxcXH5tn45uSY/tyen1+XnNnmq\nPTl9Vn5uk37fefYa/b7L+XNccY3Te2eGmz2JMSZbD3I1EakAZLZJxD6gA7AE6GCMWe10/RrgF2PM\nyyLyb2CAMaaF0/lgx/XNjTFR6dThPmBqbtqhlFJKFXF/McZMS+9knvdwGGPOAGcyKyci64FYoCGw\n2nHMFwgGDjqK/QaMEpGKTvM4egLRwLYMbr8A+AtwALia7UYopZRSRVdx7HvxgowK5XkPR3aIyFjg\nTuAhbJDxPHYuR4gxJtqxLHYjcBQ7TFMVu4z2M2PMy3lTa6WUUkrleQ9HNj0HxGGDiBLA70BXY0w0\ngDEmUUT6Ax9je0EuA19hJ5oqpZRSKo8UqB4OpZRSShVMBWlZrFJKKaUKKA04lFJKKeV2hSLgEJGR\nIrJWRC6IyAkR+UFEGqRR7jXHDqVXROQXEamX6ryfiIwXkdMiclFEvhWRyqnK1BeRH0XklIhEi8gK\nEelSwNvUQkQWisg5R7s+FZFS+bQ9j4jIUsf/faKI+Kdxj3IiMtVR5pyIfOHq9uRBm0aJyCpHUsKz\nrm6Lp9skIrUcr8s+xz12i8irjpVnBa49jjKzROSgiMQ47jVZRKq6sj2ebpNT2WIisslRLrQgt0lE\nDjjOJX0kiMjzBbU9jnIZJjXNLwpFwAF0BP4PaAt0B3yBhSJSIqmAiLwA/A14FGiDnVC6QESKOd3n\nf9hVL3cCnbBbqX+X6llzAG+gC3a79ShgtqR6Ey8obXL8QvwF2OW4R2/sNvBf5dP2lADmAW9iN4VL\nyzTsZnHdsG3vBHzqysY4eLJNvsAM7IRod/JUm0KwOwc/AjQCRgCPO8oXxPaA3SdoENAAuAOoC8x0\nZWMcPNmmJO9gN1l016Q/T7bJAKOBQOwO1FUdz3Ylj7VHMklqmq8YYwrdB1ARSMRuEpZ07Cgwwulr\nfyAGuNvp61jgdqcyDR33aeP4uoLj6/ZOZUo7jnUtoG16BDiW6llNHGXq5Kf2pLq+M5AA+Kc6HuK4\nb3OnY72AeKBKfnuNstKmVGWGAmfd2Q5Pt8mp7HPAnkLUngGO7zvvgtwmoA+w1elnK7Qgf98B+4Gn\n3d0GT7QH+8fvYWCYJ9uT04/C0sORWllsNHgWQERqYyPZxUkFjDEXsMtqb3YcaoVdJuxcZidwKKmM\nsZuU7QCGiEhJEfEB/orN17LevU1yT5sAP+BaqmclbX7WwaUtSCkn7cmKm4FzxpiNTscWOZ7VNpd1\nzoy72pSXPNmmsknPcSOPtEdEymM3E1xljEnITYWzwG1tEpFA4DPgfuyboae4+3V6Ueww8wYReU5s\nNnJ3cld7spLUNN8odAGHiAh2GGGlMSZpd9Eq2Bc7rcRuSUndAoFrjhc9vTIAPbAv8kXsD+AzQG/j\n2AvEHdzcpiVAFccPna+IlAP+47i3y8efIVftyYoqwEnnA45f+GezeZ9scXOb8oQn2+QYu/4b8ElO\n75GFZ7i9PSIyRkQuAaeBGsBtOa9xlp7n7jZNBD5KFcC7lQfa9AFwL3ZY/BNgFPB2TuubGTe3JytJ\nTfONQhdwAB9hx4TvdeP9TwDtgdbAj9g5HIFuel7SM93SJscPwFDg78AVbDffPuybdqKrn+fg7tco\nL2ibckhEqmHHqacbY75046M80Z53gDDsHyYJwBQ3Pgvc2CYReRo7ZJz0ZiyufkY63Po6GWP+Z4z5\n1RizxRjzGfZ331Pi4gnLTtzZnhRJTR2B4YPYYGaQG56XK4Uq4BCRcUBfoIsx5pjTqePYH5bUQUGg\n41xSmWJpzAJOLiMi3Rz3v8cYs8YYs8kY8zdsT8dQlzbGwd1tAjDGfGOMCcJ2zVUA/g1UwgYeLpXL\n9mTFcSD1KhxvoHw275NlHmiTx3mqTSIShO1lW2mMeSyH1c3KczzSHmPMWWPMHmPMYmAw0FdE3DKU\n54E2hWO792NFJA7Y7Ti+TkQm5qzWGcujn6W12KHn4Fze5wYeaE/SPZPTtRpjrmF/d9fMdoXdrNAE\nHI4XdiAQbow55HzOGLMf+yJ2cyrvjx3TT8o8ux47wcu5TEPsi5ZUpgQ2ckz9l38ibvi/dHObfkv9\nPGPMKWPMFWwkHoNdvZKf2pMVvwFlRaS507Fu2B/u33NY9XR5qE0e5ak2OXo2lgKRwPBcVjuj5+TV\na5Q0L8Avl/e5gYfa9BTQzOmjD/b3393AS7mpf1ry8HVqjv0dfjKzgtnhofY4JzVNuk/qpKb5R17P\nWnXFB7bL6hx2KVKg00dxpzLPY7PSDsAuHfoRG7EXS3Wf/dixvZbAKmCF0/kK2G/KmUAoUB94FzvJ\nsmlBbJOjzJPYH7r6jn9fBp7Mp+0JxP7yexjHrG/H1+WcyswF1mGHvNoDO4Ep+fj7LittquE49i9s\n9uOkN4FSBbFN2N603cBCx7+Tn1VA29PG8bPTDBvQdwVWOr73fAtim9J4bi3ctErFg69TO+y8u1Cg\nNnZi7wngy4LYHkeZsdiFAD2wS7K/wPZ8BLj6dcr1/0teV8BFL24idrw09ceQVOVexc5RuIJNo1sv\n1Xk/7Nrp09hJoTOByqnKtMCON58CzmPfwHsW8DZNcrQnBptt97583J5X0rnXEKcyZYGvsW/M54DP\ngZIFvE0T03lWp4LYJuwQZOpziUBCAW1PE+yKg1OOe+wFxgFVC/L3XarytRzn3RFweOp1ao7tBT2L\n/cNqC/aN39VBoSd/N3hj5w4dw74nLQBucvVr5IoPTd6mlFJKKbcrNHM4lFJKKZV/acChlFJKKbfT\ngEMppZRSbqcBh1JKKaXcTgMOpZRSSrmdBhxKKaWUcjsNOJRSSinldhpwKKWUUsrtNOBQSimllNtp\nwKGU8ggRmSgiiSKSICLXROS4iCwUkQdFJMupz0VkqIicc2ddlVKupwGHUsqT5gFVsHk5emNT038A\n/CwiWf19JNispUqpAkQDDqWUJ8UaY04ZY44ZYzYZY8ZgU3j3BYYBiMgIEflDRC6JyCERGS8iJR3n\nOgNfAgFOvSX/cpwrJiLvicifjmt/c5RXSuUDGnAopfKUMWYpEAXc4TiUADwFNAKGAOHYbJgAq4Fn\ngQvY1N1Vgfcc58YDbYG7sem+ZwLzRKSu+1uhlMqMZotVSnmEiEwEAowxd6RxLgJoaoxpksa5O4GP\njTGVHV8PBcYaY8o7lakB7ANqGGOOOx3/BfjdGDPa5Q1SSmWLT15XQCmlcJqXISLdgReBEMAf+3vK\nT0SKG2OupnN9U8Ab2JVqAmox4LTbaq2UyjINOJRS+cFNwH4RqQX8jB0eGQWcBToCX2CDh/QCjtJA\nPNACSEx17pI7KqyUyh4NOJRSeUpEumJ7KN4HWmKHep9zOn9vqkuuYXsznG10HAs0xqxyY3WVUjmk\nAYdSypP8RCQQR3AA9MEOn/wETMEGHr4i8jS2p6MD8FiqexwASjsClSjgijFmt4hMAyaLyHPYAKQy\n0BWIMsbMc3vLlFIZ0lUqSilP6g0cBfZj9+ToDPzNGHObsf4A/g48D2wGBmMDkmTGmN/NUSwiAAAA\njUlEQVSAT4DpwEngn45Tw4DJ2FUrO4DvgVbAIfc2SSmVFbpKRSmllFJupz0cSimllHI7DTiUUkop\n5XYacCillFLK7TTgUEoppZTbacChlFJKKbfTgEMppZRSbqcBh1JKKaXcTgMOpZRSSrmdBhxKKaWU\ncjsNOJRSSinldhpwKKWUUsrtNOBQSimllNv9P3YRs6LS9AjJAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1087,7 +1086,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 54, "metadata": { "collapsed": false }, @@ -1096,7 +1095,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.49\n" + "0.54\n" ] } ], From 937dab567581ed10c4bcb5d66bfbb517b06e344c Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Tue, 7 Feb 2017 16:39:17 -0800 Subject: [PATCH 08/31] Incorporated CR feedback with retry logic --- ...e_Timeseries_Basic_with_Pandas_Numpy.ipynb | 122 +++++++++--------- 1 file changed, 61 insertions(+), 61 deletions(-) diff --git a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb index 13ff3c42b..e7ee9dfae 100644 --- a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb +++ b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -110,7 +110,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -188,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -474,7 +474,7 @@ "2000-01-14 1 " ] }, - "execution_count": 40, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -518,7 +518,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -551,7 +551,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -577,7 +577,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -609,7 +609,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 8, "metadata": { "collapsed": true }, @@ -636,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 9, "metadata": { "collapsed": false }, @@ -680,7 +680,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -689,26 +689,26 @@ "name": "stdout", "output_type": "stream", "text": [ - "Minibatch: 0, Loss: 0.7004, Error: 53.00%\n", - "Minibatch: 1, Loss: 0.6930, Error: 47.00%\n", - "Minibatch: 2, Loss: 0.7122, Error: 56.00%\n", - "Minibatch: 3, Loss: 0.6941, Error: 44.00%\n", - "Minibatch: 4, Loss: 0.6901, Error: 38.00%\n", - "Minibatch: 5, Loss: 0.6797, Error: 49.00%\n", - "Minibatch: 6, Loss: 0.6960, Error: 50.00%\n", - "Minibatch: 7, Loss: 0.6986, Error: 52.00%\n", - "Minibatch: 8, Loss: 0.7059, Error: 49.00%\n", - "Minibatch: 9, Loss: 0.6972, Error: 52.00%\n", - "Minibatch: 10, Loss: 0.6962, Error: 45.00%\n", - "Minibatch: 11, Loss: 0.7007, Error: 44.00%\n", - "Minibatch: 12, Loss: 0.6800, Error: 46.00%\n", - "Minibatch: 13, Loss: 0.6853, Error: 42.00%\n", - "Minibatch: 14, Loss: 0.6927, Error: 47.00%\n", - "Minibatch: 15, Loss: 0.6794, Error: 47.00%\n", - "Minibatch: 16, Loss: 0.6913, Error: 47.00%\n", - "Minibatch: 17, Loss: 0.7049, Error: 48.00%\n", - "Minibatch: 18, Loss: 0.6713, Error: 41.00%\n", - "Minibatch: 19, Loss: 0.7048, Error: 54.00%\n" + "Minibatch: 0, Loss: 0.8458, Error: 52.00%\n", + "Minibatch: 1, Loss: 0.7292, Error: 53.00%\n", + "Minibatch: 2, Loss: 0.7177, Error: 52.00%\n", + "Minibatch: 3, Loss: 0.7022, Error: 52.00%\n", + "Minibatch: 4, Loss: 0.7118, Error: 53.00%\n", + "Minibatch: 5, Loss: 0.7118, Error: 53.00%\n", + "Minibatch: 6, Loss: 0.6900, Error: 44.00%\n", + "Minibatch: 7, Loss: 0.7228, Error: 61.00%\n", + "Minibatch: 8, Loss: 0.7242, Error: 61.00%\n", + "Minibatch: 9, Loss: 0.7087, Error: 48.00%\n", + "Minibatch: 10, Loss: 0.7006, Error: 54.00%\n", + "Minibatch: 11, Loss: 0.7013, Error: 54.00%\n", + "Minibatch: 12, Loss: 0.6948, Error: 53.00%\n", + "Minibatch: 13, Loss: 0.7122, Error: 56.00%\n", + "Minibatch: 14, Loss: 0.6950, Error: 49.00%\n", + "Minibatch: 15, Loss: 0.7011, Error: 55.00%\n", + "Minibatch: 16, Loss: 0.7015, Error: 48.00%\n", + "Minibatch: 17, Loss: 0.6794, Error: 46.00%\n", + "Minibatch: 18, Loss: 0.6874, Error: 49.00%\n", + "Minibatch: 19, Loss: 0.7077, Error: 49.00%\n" ] } ], @@ -732,16 +732,16 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYVPX1x/H3B6SoKPausSt2wQJGY4vBjl1XrFii2IIl\nxvzsPRollqhEEcToIokl2ELUaGIBjWBBRQRFxY4FUASknN8f564Ow5bZ2dm9d2bP63nmgblz7/ee\nO2XnzLfKzAghhBBCyIo2aQcQQgghhJArkpMQQgghZEokJyGEEELIlEhOQgghhJApkZyEEEIIIVMi\nOQkhhBBCpkRyEkIIIYRMieQkhBBCCJkSyUkIIYQQMiWSk9AqSJov6cIij31f0p05949OyutaugiL\nJ+lnSTxnph1LqJukUZIeK/LYoZLGlTqmAs9ddNwhFCuSk1A2cpKC+ZK2q2Ofycnjw/MesuRWjPm1\nHFvSdR8kVUk6o5RlhrpJGpTzXqrvdmfDpRWsKe9Bw9+HaYg1TkKLWyTtAEIowkzgcOCF3I2SdgRW\nBWbVcsyiwNwiz7cBzf/FcDiwMXBDM58nuNuAJ3LurwVcCvwFeDZn+7slPOcOFP9FfwSgEsYSQqZF\nchLK0WPAwZJON7PcpOFw4GVgufwDzOyHYk9mZnOKPbZcSVrMzL5PO47mYmYvAi/W3JfUDbgMGGlm\n9xZShqSOZlZbIlzXOYtNjjGzecUeG0I5imadUG4MqAaWBXar2SipHXAQcC+1/MLM73Mi6eJk2zqS\nBkv6RtJUSXdK6ph37Pt1VO8vLmmApC8lTZN0l6Sl8o7dV9Ijkj6WNEvSREnnS2qTs8/TwF5ATd+R\n+ZLey3m8QxLveEkzJX0i6X5Ja9VynSck55gl6SVJWzX0hOY0l/1C0i2SPgcmJ48NljSplmMuljQ/\nb9t8STdK6iVpbBLDG5J6NnD+FSTNkXRBLY+tn5TbN7m/iKSLJL2TPBdfSnpW0q4NXWdTSPpM0jBJ\ne0kaLWkWcFTy2AmS/i3p8ySmsZL61FLGAn03JPVMrm3f5Pn8WNL3kkZI+lnesQv0OZG0Qc3zktze\nTc79gqTNazn34ZLGJfu8mlxH0f1YJK2YvDe+SMp8RVJVLfsdJWmMpG+Tz9drkk7Oeby9pMslTUjK\nmSLpP5J+UUxcoXJEzUkoR+8Do4AqYESybU9gSWAoUEjfjZrq9WHAe8DvgK7A8cDnwHm17JtLwM3A\nN8BFeNNPX2ANYOec/Y4BvgWuA74DdsGbD5YAzk32uRzojDdJ/SYp+zuAJIl5NCmzGvhTcuxuwCZA\nbuLQG+iEN1lYUv79ktYu8Jf3LcAXwCXAYjnXXtv117V9B+CApKxvgdOBv0taw8y+qe2kZvaFpP8A\nh+C1F7kOw5vjhiX3L8Ffq78A/8Nf863w1+6phi+xaAZsBtyFX9ttwJvJY32TWB7Em//2A+6QZGY2\nKK+M2lwEzAauxpPu3wKDWfB9VNfzfRzQEfgz0BZ/zf8uaX0zMwBJBwB/xWsVz8VrFu8GPqknpjpJ\nWhx4Dn+/3gh8BBwK3COpk5ndnuy3T3IdjwMD8B/DGwM9gFuT4q7CP6+3Aq/gn4NtgC2A/zY2tlBB\nzCxucSuLG3A0MA//IuoLTAU6JI/dBzyZ/H8SMDzv2PnAhTn3L0q2/SVvv/uBL/K2TQLuzItjPt4s\n0DZn+9lJfHvnbOtQy3Xcin9xt8vZ9jDwXi37Hpuc6/R6npefJft8ASyZs32fJJ49C3he5wPPAMp7\nbFAdcV0EzKvlOZ4JrJmzbdNke98GYjghiXWjvO1vAE/k3H8l/7Ut0XurWxLnUXU8/mkS3/a1PFbb\na/xvYGzetpHAYzn3eybnHJP3PjonOdfaOduqgbdy7tf0g/oYWDxn+8HJsbvkbBsPTMiNE09u5+eW\nWc9zkx/3uck59svZtgie/HwFdMx5n3/WQNnjgGGlfj3jVv63aNYJ5WoY/ut+b0mdgL2BexpZhuG/\n6HI9CyyblNmQv9iCNRK3kiQDP57AbHbN/yV1krQs/qtzMWDDAs5xADAFr6VpyFAzm55z/1m8Fmbt\nAo414HYza+rIjCfM7P0fCzUbC0wvIIYH8Ofu0JoNkjYGNsJrw2pMBTaWtG4T4yzGODN7Ln9j3mvc\nWdJy+K/+LpLaF1DuHXnvo5oOuYW8bveY2Yy8Y398zZOmv/WAQblxmtkTeMJSjD2AD8zsoZzy5gI3\nAUsBNSPppgKdJe1ST1lTgc1qa6IMrVskJ6EsmdmXwJN4J9gD8Pfy34so6sO8+zVND0s3FAIwMS+m\nGfgv7DVrtknaSNKDkqbiX9JT8Cp18CrshqwDjLcFO/7WZXJePFOT/zZ0LTXeL3C/gmNIfNNQDGb2\nFd4sc0jO5sOAOXhzSY0L8S/AdyS9LukaSZs2LeSCLdT3BnyUmKSnJc3Ar/WLJE7hzU4NyX/OvkmO\nLeR1q+1Yco6t6btS26ijibVsK8TPgHdq2T4Oj7vmnDcBHwBPSPpA0u2Sfpl3zP8BKwLvJn1hrpK0\nUZFxhQoSyUkoZ/fitRQnAY+b2bdFlFFXX4wmD9uU1Bn/Bb0pcD5eu/NLfuprUurPX1OvZWYt2+qq\nSWnbDDEMBdaXtFly/2DgKTP7+sdgzJ7FE7ZjgbF4n4sxtXVAbQYLPT+SNgT+BSyO953YE3+Na2q6\nCnmNm/KcNdv7t6nM7BP8vb8/3m/ql8C/JN2as8+/8dfzODy5+TXwqqTeLR9xyJJITkI5q+mAuC2e\nqLQk4dXlP23wjoIr81MNxE74L9ijzexmM3ss+WM8lYXVlQS8C2wgqa5koLl9g9dU5FuzGc71EF5T\ncmgy4mR9vK/FAsxsqpndZWa9gdWB14GLmyGeQvTC+1vsaWZ3mNk/k9c4K8PPP0j+ra0ZrNimsQ/w\n1yZfF/x9XHNOzGyOmQ03s754U9Ng4ERJq+Ts87WZDTKzKrxD+Xi8T1NoxSI5CWUraUY5Cf9iejiF\nEE6UlDvirS9eo1AzXHQensTkDhtun+yXbwa1N/PcDywPnFqKgIvwLt5vYJOaDZJWxkeklJSZTcNH\nXx2CN+nMBv6Ru4+kZfKO+R5vnuiQs8+SyVDbQppUmqqm5iL3NV4WnzStEM06+6qZTcL7lhyjnCHy\n8uHd69V5YP0ew4e998opbxH8PToVeD7Zlv9aGd7BGZLXq5Z9vsNHz3UgtGoxlDiUmwWqq83s7rp2\nbAHtgackDcM7t54MPGtmjySPv4DXPAyRdGOy7Qhq/0IaDRwi6Tp8WOp3STlD8Pk0rpe0Ld7hsROw\nK/BnMytVUlZXM8BQ4A/AQ8k1LI4nhOPxUVOldh8+7LUvMCKvgy/AW5KewZ+vr4Gt8fltbszZZ398\nlNEx+PPXnP4JXAk8LukOvJbpRHwUzUKTAdaiJZpf/g9/Xp+TNARYAX+vvklxP1D/jA+5v1fSzXi/\nl8Pw98NJOR1v/yqpAz4K7GO85uRU4MUkaQLva/I4PmLpG3yY8d7ANUXEFSpIJCeh3BTyS7O2OSGa\nuq5JbeWdis8tcgnQDh8t9OMcK2b2taS98DlOLsP/+N6NDzMdkVfeLcDm+Bfqb/Cq8UfMbL6kPfAv\nmJrOv1/hScrYAq6v0OuudZ/kGvYDrseTlEn4PCPrs3By0tQYAIbjfTsWZ8FROjVuAPbFh8J2wJ+n\n3wN/rOWcjVXfMbVeg5m9Ielg/PW9Dv8S7o/X+txSwDnqOmddz2Ohx/74mJn9XdKRwAX4azgeT5L7\nAqvUWkI95zazGZJ2wOdlORafd2cc0NvMcl+zwXhfkr540vYpnixekrNPf3wCwp746zkJH0r9pwLj\nChVKTR85GEIIodwks8O+Y2a9Gtw5hBYWfU5CCKGCyaf8b5O3bXd8Iren04kqhPpFzUkIIVQwSRvg\nI6Gq8aaVjfEhu58BmxU5BD+EZhV9TkIIobJNwYdbn4h30p2Oz8h7XiQmIaui5iSEEEIImRJ9TkII\nIYSQKdGskyOZPKknPsPnrHSjCSGEEMpKR3z26BHJellFi+RkQT1p/Mq2IYQQQvhJb5q4pEgkJwt6\nH+Cvf/0rXbp0STmUUAr9+vWjf//+aYcRSiRez8oSr2dlGTduHEcccQSUYIXzSE4WNAugS5cudO3a\nHDNzh5bWuXPneC0rSLyelSVez4rV5G4R0SE2hBBCCJkSyUkIIYQQMiWSkxBCCCFkSiQnoaJVVVWl\nHUIooXg9K0u8nqEukZyEihZ//CpLvJ6VJV7PUJdITkIIIYSQKZGchBBCCCFTMpOcSDpF0iRJMyWN\nkrR1PfsOkjRf0rzk35rb2Jx9NpL096TM+ZJOb5krSceUKfDAA2lHEUIIITRdJpITSYcC1wEXAVsC\nrwEjJC1XxyGnAysBKyf/rgZ8DQzL2Wcx4F3gXODT5ok8O4YNg0MOgY8/TjuSEEIIoWkykZwA/YAB\nZjbEzN4GTgK+B/rUtrOZfWtmX9TcgG2ApYDBOfu8bGbnmtkw4Idmv4KUHXkkdOwId9yRdiQhhBBC\n06SenEhqB3QDnqrZZmYGPAn0KLCYPsCTZja59BFm1//9H7z0kv9/ySWhd2+4/XaYOzfduEIIIYSm\nSD05AZYD2gKf523/HG+yqZeklYE9gNtLH1p2jRsHV14JH3zw07aTT/ZmnYcfTi+uEEIIoakqYeG/\nY4BvgH+UqsB+/frRuXPnBbZVVVVlakz+wIGw7LKw774/bdtiC+jeHW69FfbfP73YQgghVLbq6mqq\nq6sX2DZt2rSSlZ+F5ORLYB6wYt72FYHPCjj+WGCImZWsMaN///6ZXinzhx9gyBDvZ9Khw4KPnXwy\nHH00TJgA662XTnwhhBAqW20/2MeMGUO3bt1KUn7qzTpmNgcYDexas02Skvsv1HespJ2AdYCBzRhi\n5jz6qA8d7lNLd+FDDoFlloEBA1o+rhBCCKEUslBzAnA9MFjSaOAlfPTOYiSjbyRdBaxiZkfnHXcc\n8KKZjcsvMOlouxEgoD2wqqTNge/M7N3mupCWMHAgbL01bLrpwo917AjXXAOrrNLycYUQQgilkInk\nxMyGJXOaXIo357wK9DSzKckuKwGr5x4jaUlgf3zOk9qsArwCWHL/7OT2H2CXkl5AC/r4Y3j8cbjl\nlrr3Oe64losnhBBCKLVMJCcAZnYLUOtXrpkdW8u26UCnesr7gAw0W5XaXXd5P5PDDks7khBCCKF5\nZCY5CYU54gjo0gXyBhOFEEIIFSOSkzKzxhp+CyGEECpVxTV7hBBCCKG8RXISQgghhEyJ5KQVmDsX\nzBreL4QQQsiCSE4q3AcfwJprwrPPph1JCCGEUJhITirc6qvDYov5ejshTJ8ON98MM2akHUkIIdQt\nkpMyMH168ce2aQMnnQT33w+f56/7HFqVadOgZ0847TQ4/HCYNy/tiEIIoXaRnGTc7Nmwzjpw223F\nl3HMMdC2Ldx5Z8nCCmVm6lTYbTd4+224+mp45BE455y0owohhNrFPCcZ99BD8OWXsNNOxZexzDI+\no+yAAfDb33qiElqPr7+GX/0K3nsPnnoKunaFxReH4cN9hev27dOOMIQQFhQ1Jxl3552w3Xaw4YZN\nK+fkk71z7D//WZq4Qvl4/nmYPBmeftoTE4BTT/U1miIxCSFkUSQnGfbBB/DEE6VZyG/rrf2LKTrG\ntj777AMTJ8Lmmy+4PWrQQghZFclJhg0e7NXvhxzS9LIkrz0ZPx5mzmx6eaG8LLFE2hGEEELhIjnJ\nqPnzYdAgOPRQ6FTn2suNc/TRnpwsumhpygshhNbihx/gmmuaNnoyTZMnQ1UVTJqUdiSFieQko556\nypt1+vQpXZnt2vnQ4hBCCI3zl7/AeefBhx/6/ZNPhqFD042pMZ5/3uNdfPG0IylMfFVl1NtvwxZb\nQI8eaUcSWpvnn087ghCyZfp0uPRSr33eZBPf9sorPiS/XIwcCWuvDSuskHYkhYnkJKNOOw1eftn7\nioTQkMmT4eCDfdhwU/znP7D99j7sPITgrr0Wvv3WE5QaPXr4F365GDWqvH7sRnKSYTGaIhTigw9g\nxx09mf3226aVteOOPsz4lFNgxIjSxBdCOfvkE7j+evjNb2C11X7a3r27zx30xRfpxVaoWbO8pqd7\n97QjKVwkJyGUsUmTPKGQ4Jln4Gc/a3qZ/fv7NPcHHwxvvNH08kIoZxdfDB07wrnnLri9phZi1KgW\nD6nRRo+GOXOi5iSE0AImTvTEpF270iUmAIss4h3n1l4b9toLPvusNOWGUG7GjYOBA+GCC2CppRZ8\nbPXVYeWVy6NpZ9QoH6W52WZpR1K4zCQnkk6RNEnSTEmjJG1dz76DJM2XNC/5t+Y2Nm+/gyWNS8p8\nTdIezX8l5WPo0PLq0BV+8s47vqTBoot6YrL66qUtf4kl/L0xZw7suy98/31pyw+hHAwcCGus4SNz\n8kleE1EONScjR8JWW/kPmXKRieRE0qHAdcBFwJbAa8AIScvVccjpwErAysm/qwFfA8NyytwOuBe4\nHdgC+AfwkKSNmukyys499/gvArO0IwmNUZOYLLGEJyarrto851ltNU9Q3nzTF48MobW55hrvJN6h\nQ+2Pd+8OL70Ec+e2bFyNtdde8Otfpx1F42Rl4b9+wAAzGwIg6SRgL6APcE3+zmb2LfBj1z9J+wFL\nAYNzdjsdeNzMrk/uXyhpN+BUoG8zXEPZ6dsX9twTXnyxvDpKtXZLLQU//zncfDOsuGLznqtrV7jv\nPm/qqWTTp8Pnn8N666UdSciSNm285qQue+zhtYuzZ2f7M3LssWlH0Hip15xIagd0A56q2WZmBjwJ\nFNp9pw/wpJlNztnWIykj14hGlNnibrzR5zdpKT17wlprxXo75WaFFeBvf2v+xKTG3nvD7ru3zLla\nmhlUV3tSMmRI2tGEcrPJJvD735fPxGblJPXkBFgOaAt8nrf9c7zJpl6SVgb2wJtvcq1UbJlpNHO8\n+y6ccYZXEbaUNm28qu++++Crr1ruvCFkwbhxsOuucPjh3rG43Kq9Q6hkWUhOmuoY4Bu8T0lJXHNN\nyycogwfDkkvCQQe17Hn79PFrHTy4Zc8bQlpmzPBfu5tv7pPXjRgBw4YtOIdFCCFdWWgl+xKYB+RX\nUq8IFDKI8VhgiJnld0n6rNgyhw3rx0svdWbTTX/aVlVVRVVVVQHhNN68eZ4cVFXBYos1yynqtPzy\nnhDddhv06xdr74TKZQbDh8Ppp/vEWRdcAOec43NYhBAap7q6murq6gW2TZs2rWTlyzIwVEPSKOBF\nMzsjuS/gQ+BGM7u2nuN2wvuqbGJm4/IeGwosama9crY9D7xmZrV2iJXUFRh9/vmjufzyrpx0Evz5\nz83/hf34494x9aWXYOs6B1A3n+eegx12gH/9C3bbreXPH2o3fbrXpoXSmDcPunXz0U033eTzuISQ\nyyyWDGmKMWPG0K1bN4BuZjamKWVl5Xfy9cAJko6StCFwG7AYyegbSVdJuquW447Dk5pxtTx2A7C7\npDMlbSDpYrzj7c0NBbP//j6+fcAAH98+f35xF1WogQNh0019HHoafv5zuOsu2GabdM4fFlazSNdT\nTzW8b1ree89rHpr781EqbdvC00/78OhITEK+zz7zScrGNOkrNZRKFpp1MLNhyZwml+JNL68CPc1s\nSrLLSsAC00xJWhLYHx8yXFuZIyUdDlyR3CYAvczsrUJi6tPHM+jjjvMx7jfeWMyVNWzKFK9qvvba\n9DJ2CY46Kp1zhwV98YX3fzjvPNhyy2wnjG++Cddd51/6V1+ddjSFWXrptCMIWXXJJfDxxz6CsVI8\n9JDPHL3llmlH0niZSE4AzOwW4JY6HltolLaZTQc6NVDm/cD9xcZ07LH+h7dU04LX5q9/9eTgiCOa\n7xwh26ZP9z8i994LTz7p74cDDvAatU71vsPTtc8+8Mc/wllnwbrrwvHHpx1RCMUZPx5uvx3+8Ifi\nEtiPPoIHH/S5o7K0YOvpp8Ohh5ZncpKVZp3MOuooH2bYXHbd1SfTWnbZ5jtHyK6nn/b5So4+GmbO\n9PfCp5/68O4sJyY1+vWDk07y5s+0m6DmzPEvmB9+aFo5zz/vf9DLpbkqNN155/lorVNOKe74CRM8\nERhXWweDlHz8sY9GK6fF/nJFcpKyzTaDE05IO4qQlq5d4bLL4MMPfZrsk06C5epatCGDJO9c+stf\nwoEHwlsFNZqW3rPP+nN50kn+PDbVsGFeZqh8zz/vtR6XX178yK2tt/aBE1laZ6dmQcJynf07kpMQ\nUtS5M5x9dukX7mtJiyziNT1rrOFreIwe3XLn/uILX/fnF7/wYfj/+1/TR5xttx2suaY3uYbKZga/\n/S1ssYVPxlesTp18UEOWkpNRo/wzucoqaUdSnEhOQmgGY8d6VfGvftU6FlZcckkfBTN/fsMT+s2f\n701YTTFvni+7sMEG3qH8L3/xX4pduzatXPDaoN69fYmAWbOaXl7Iroceghde8Ik3mzplRI8eP9VW\nZMHIkeXbpAORnDTJJ59kfzXKYph5e2VonPfegyuv9PU2NtvMh6KvtVbTv4jLxRpr+DIMV11V/34T\nJngtx6qren+uPn3giitg6FB4+WX45pv6j//oI6+q7tvXOw6PH+9No6Wcj6h3b5g2DR57rHRlhuyZ\nPdtrTEoxv1P37t6sOXVq08tqqh9+8BrMSE5aodmzfeKyo46qvASlf3+vomwtX6pNMWuWDzPv0QPW\nWce/ZDfbDB5+2OdNGDCg5Wf9TdMiizTckXf55WHQIE9KVl0V3ngDrr/eZ0jeemtYZhn44IO6j19h\nBU/6nn/eRzQtv3xprwGgSxefsC2adirbYYfBPfeUpqyavh0tuT5aXV591b+jyrW/CWRoKHG56dDB\nqwIPO8yrqf/612wvmd0YvXr58ND77vP2/FC3RRbx90HXrj4UeN99Y4XShiyzTO3vq2++8ZqXiRPr\nX+emfXvvsNrceveG3/3O44r5UUJD1l/f3yejRnlzbpqmTvUa3HIcQlyjqJoTSbtL2j7n/imSXpV0\nr6RW8zE+8ED/I3n//V41OGdOYcdlvaZlnXWgZ09v0w/1W2QRb84ZPtx/+UdiUryll/ZZkg87LBtz\nRRx2mH9W//73tCMJ5UDy2cXbt087Ek+Oxo7NRizFKrZZ51pgSQBJmwLXAY8Ba+FT0bca++/vf7we\nesi/nBpKUObO9U58d9/dMvEV6+STvXoypnJuWDn/AQh1W3ll+Mc/Wn6l8FC+Bg702rbQdMUmJ2sB\nNTMaHAg8Yma/B04B9ihFYOWkVy9PUIYP98mb6psE6rHH/Jd27orHWbTXXl61HrUnoTXbe+9o0gkh\nDcUmJz/gC/MB/BL4V/L/r0lqVFqbffeFBx6ARx/1KZDrMnCg90/YYouWi60YiywCJ57o/ShKuAp2\nCCGE0KBik5PngOslXQBsAzyabF8f+KgUgZWjvff2KbzPOqv2xz/91JOXPn1aNq5iHX+81wINGZJ2\nJCGE0HSvvpp2BKFQxSYnpwJzgYOAk82sZlaMPYB/liKwcrX99nUPHb37bq+RaMpMhC1p5ZV9VMXs\n2WlHkg0TJkQfnBDK1ahRPnrln636G6p8FDX41cw+BPauZXu/JkdUocy8SefAA8urDfv229OOIDsu\nvthnk5w4MRujSUIIhTGDc86BzTcvzYRrofkVlZxI6grMMbOxyf1ewLF4J9mLzayJ64JWnuefh3fe\niQ6m5erDD33el+uvj8QkhHLz8MPw3HNea1LJn99p03zerXL6AVyXYpt1BuD9S5C0NjAU+B44GLim\nNKFVlmefhbXXhp12SjuSUIw//cnXjymX/kKh9Mxi1uRyNHeuD+/dddeWmxxtxgyYPLllzpVryBBv\njq9vxGi5KDY5WR+o6Vp0MPBfMzscOAYfWhzynHeed8Yq5fofWXD77b7Q27x5aUfSfKZO9es8+eSG\np2YPlatXL1/PpzV5912YNCntKJpm0CAYN85ncpZa5pwHHpjOe2XkSO9XUwlzLxX7VamcY3+JT8AG\nMBlYrqlBVaollkg7gtJ7+WU49tifOppV4gq8Awb4L5HTTks7kpCmrl19NujWUnvy4ot+zbvuWr6d\n4mfMgIsu8kEIpVixulDbbusdcFv67+GoUeW92F+uYpOTl4HzJR0J7MhPQ4nXAj4vRWChPAwY4B+I\npZaCPfbwzmavvJJ2VKUzezbccIMv8LjSSmlHE9LUuzd8+633X6h0L77oTSDrruv9rf7857QjKs4N\nN8BXX8Hll7fseXv0gC+/9JqnlvL5517LVc6L/eUqNjn5DdAVuBm4wswmJtsPAl4oRWChfGy7Lfzn\nPz7V98cf+y+UI4+sf2XZclFd7fPTnHlm2pGEtK23nr/XK32l4pde8sRk003hmWfghBO8WXP+/LQj\na7w+fXwiybXWatnzbrON/ztqVMudc+RI/7dV15yY2etmtqmZdTazS3IeOgc4upgyk8UDJ0maKWmU\npK0b2L+9pCskvS9plqT3JB2T8/giki6UNDEp8xVJPYuJLTRM8llyx46F226DJ57wdYfKvZln++3h\n5puhS5e0IwlZ0Ls3PP64/yquRNOmeQ3oJpv4dS6xBFx1lScs5dhfbqWVvP9HS1tmGV9DrSZhaAmj\nRsGqq8Lqq7fcOZtTk95ukrpJOiK5dTWzWWZW4Nq8C5RzKL544EXAlsBrwAhJ9fVf+RuwMz6EeX2g\nChif8/gVwAn4ej9d8BFGD0ravLHxhcItsgj8+tc+F8g997RcB7Tmsu66cMopaUcRsuLQQz3h/tvf\n0o6keXTu7JNF1iQm4E22ldhfrrn16NHyNSeV0qQDRSYnklaQ9DTwP+DG5PaypKckLV9Ekf2AAWY2\nxMzeBk7ChybXOnBT0u7ADsCeZva0mX1oZi+aWW6eegTe5DTCzN43s9vwjrt1TC4fSqlTp6htCJVn\nhRWgZ8/KbtrZc08fNh+apnt3eO01+P775j/XvHne169SmnSg+JqTm4BOwMZmtoyZLQNsgi/6d2Nj\nCpLUDugGPFWzzcwMeBKo66neB++Ue66kjySNl3StpI45+3QA8vuYzwS2b0x8IYSQq3dvGD/eh5iH\nUJcePTy6A3ldAAAZ3ElEQVRpGDu2+c/Vtq339zv++OY/V0spNjnZHehrZuNqNpjZW3gTyh6NLGs5\noC0Lj/L5HKhrfMTaeM3JxsB+wBl4Z9zcPuUjgDMlrSu3G3AAsHIj4wvNYO5cby554420IwmhcQ46\nCD75xJs7QqjLxht736Rtt22Z8y2xhDfLVYpik5M2QG19S+Y0oczGnn8+cLiZvWxm/wTOBI6W1CHZ\n5wxgAvA2XoNyI3BnclxI2eTJMGIEbLEFPPlk2tGEULj27StjkqvQvNq2hWWXTTuK8lXU2jrAv4Eb\nJFWZ2ScAklYF+iePNcaXwDxgxbztKwKf1XHMp8DHZvZdzrZx+ORwqwHvmtmXwAGS2gPLmtmnkq4G\n3msooH79+tE5LwWtqqqiqqqqkOsJBVhrLXjrLdhrL59D5PXXYbmYvi+EFvHGGz7NebFfnmY+tDhL\n69T8979w441w553RZ6YlVFdXU11dvcC2adOmlax8WRFjPSWtDgzHm1VqVhBYHRgL9DKzjxpZ3ijg\nRTM7I7kv4EPgRjO7tpb9T8AToRXM7PtkWy/g70AnM1toPsOkb8tbwFAzu6COOLoCo0ePHk3XlpxO\nsBX75BOfT2GHHeDBB9Mf3TNtmndgWzka/0KFeu012GUXH/o/aFDjj583zzvN7rYbnH126eMrxuzZ\nXgu79NK+wF85DnuuBGPGjKFbt24A3cxsTFPKKnaek8n4JGx7AX9KbnsCvYALiyjyeuAESUdJ2hC4\nDVgMGAwg6SpJd+Xsfy/wFTBIUhdJv8AXHBxYk5hI2kbS/pLWkrQD8Dhes7JQshPSs8oqMHCgT+B2\n++1pR+Nzmmy4oU97HUKlef11n45+zTV9he1itG3rQ+wvvzw7871ce61PXzBgQCQmlaLol9HcE2Z2\nU3J7ElgWOK6IsoYBZwOXAq8AmwE9zWxKsstKeM1Mzf4zgN2ApfDhzHcD/8D7mdToCFwOvAncj9fw\nbG9m0xsbX2he++0HJ54Iv/kNvP12enHMmgU33QSHHQaLL55eHCE0h7FjPTFZYw2fJHHppYsv66KL\nvFnnsstKF1+xJk70ROmss7wWNlSGopp16izMJzgbY2YZaoksXDTrpGfGDOjWzf+4pDXB1R13eJL0\n9tuw/vrpxBBCc3jjDdh5Z1htNXjqKZ/BtKmuvhouuMD7jq23XtPLK4aZT7U/cSK8+SYstlg6cQSX\nerNOCKW2+OLwyCPFtYGXwvz5cN110KtXJCahcHPn+qizLDcDvvmm9zFZbTUfGVeKxATgjDO8Wfbc\nc0tTXjGqq/2abrmldSYmc+f6kOXhw9OOpPQiOQmZse66PrNsGh591GtMzjknnfOH8jR5Muy+u/eZ\nyqqaJOLJJ0s7tHXRReHKK70j+7PPlq7cQn3zDfTrB4cc4usBZdWHH/ps2S80w5K4b7zhNVdNaaLL\nqkYNJZb0QAO7xLREoSz98Y8+o+N226UdSSgna60FP/+5T2d/+OFpR1O76mofBdccc25UVUH//t7f\nY9Solu2MOneujxq68sqWO2cxVl7ZV2gfObL0f19GjvT1zLbaqrTlZkFj5zlpaBDzNGBIkbGEkIqX\nXvI5Eh5oKPUOoRZHHAGnngpffOFr72TN8sWsdlagNm28OfT++30476KLNt+58i2/fHrNwI3Rrp0n\nD82xCOCoUT6EuiWf95bSqOTEzI5trkBCSEu7dtCnj8/7EEJjHXwwnH463HcfnHZa2tG0vB139Fuo\nW48evkp7qY0c6QtRVqLocxJavS239LlWsjTbZSgfyy7rfR4qeaXi0DTdu/vCfB81anrS+n35JUyY\nUFkrEeeK5CRkmhncfTf88EPakYRQtyOO8ObBCRPSjiRkUffu/u/IkaUr88UX/d9ITkJIwTvvwHHH\nwYXFzDscQgvZe29fz6U5qu4L8c478NBD6Zw7NGzlleFnPyttv5ORI72P05prlq7MLCl24b8QWsQG\nG/jsj7/7nbet7rxz2hGFsLBFF/UZjtPoEDthgn8ullvOk6RF4q96JvXoUdrkpKoKtt46/fXImku8\njUPmnX22T3R15JG+aFksQx6y6JJLWv6cTzzhn4ull/bPSKUmJlOnwu9/789xc44+ak5nnulLZJTK\nxhv7rVJFs07IvDZt4K67fLXgE0/0fightGazZ/vcIr/6FWy2GTzzDKy0UtpR/WTCBP8hUSrnnecd\njsu579nWW/vq66EwkZyEsrDaar5q8QMP+Miappg/H2bOLE1cIbS0ceO8g+XNN/scI//8J6y4YtpR\nLahPHzj+eP+sNdXIkb7a8BVXwKqrNr28UB4iOQll48ADvXPsGWfA+PHFlzN8uHdO++yz0sUWQkuY\nMsV/gc+e7aM1zjyzZWdlLdRVV8HLL/vstE0xZw78+te+KGjfvqWJLZSHCm2hDJXqT3+CSZN8XY1i\nXXutd7TNUjV4CIVYfnn/wt9112wvdLf99nDAAd5P5IADip/BtH9/X7jwf/+LeYhamwzm3CHUrVMn\nX/K9Zt6AxnrhBb/FAn+hXO2zT7YTkxpXXw2ffAI33ljc8e+/Dxdf7DWlXbuWMrJQDiI5Ca3KH//o\ntSZ77512JCFUtvXW86aYK6/05qjGMINTTvGReZde2jzxhWyL5CS0GhMm+ERVZ52VzXb6UDmeeMKb\nNFq7Cy/0eTgaO8x65kxo3x5uuslrS8NPqqvhllvSjqL5xZ/o0Gpcf7232R95ZNqRhEr3wQfwhz94\ns0ZjmMGttzatw3eWLLssnH8+/OUvjeuAvthi8OCDsN9+zRdbWh57zJurinXnnT5Cq9JFchJahS++\ngMGDfdXYjh3TjiZUuoMO8gnRhg4t/JgpU6BXL28KeeSR5outpZ12mg8Hjg7obtw4uOYaH4nUWPPm\n+SitSl1PJ1ckJ6Fi1Dc52+TJsNFGcPLJLRdPaL2WWsr7NRW61s6IEbDppv4lPny4Nz1Wig4dfChw\ncD16eLPV2LGNP3bcOPj220hOQigbDzzgwyvrmkGyWzcYPTqmvg8t54gjYMwY/0Kpy6xZ0K8f7L47\nbL45vP66j8YJlWvLLaFdu+JWKB450vvLbbVV6ePKmswkJ5JOkTRJ0kxJoyRt3cD+7SVdIel9SbMk\nvSfpmLx9fiPpbUnfS/pQ0vWSOjTrhYRUrLEGPPts09pyQyilPff0GpS6ak/efBO23dY7N/bvD48/\n7qvXhsq26KKwxRbFLQI4apQvV9AaOglnIjmRdChwHXARsCXwGjBC0nL1HPY3YGfgWGB9oAr4sRuZ\npMOBq5IyNwT6AIcAVzTDJYSUbbUVXHaZz63wzDNpRxOCN2cccognJ7VN437nnTB3Lrz0kq9oHCPI\nWo8ePYqvOSl2jqdyk5WPQz9ggJkNMbO3gZOA7/GEYiGSdgd2APY0s6fN7EMze9HMcl/uHsBzZnZf\n8viTwFBgm+a9lJCWc86BHXf00Thff512NCFA794+mdgLLyz82BVX+BTvm2/e4mFlipmvE/TVV2lH\n0nK6d4d3323c/C/ffONNhK2hvwlkIDmR1A7oBjxVs83MDHgSTzBqsw/wMnCupI8kjZd0raTccRgv\nAN1qmockrQ3sCTzaDJcRMqBtWxgyBGbM8PU4YvXikLbtt4c77vDO2Pk6dix+WvdK8tBDPqLnv/9N\nO5KWU1P70ZimnRkz4JhjWs/KxllYW2c5oC3wed72z4EN6jhmbbzmZBawX1LGrcAywHEAZladNAs9\nJ0nJOW4zsz+U/ApCZqy+us+pcPDBPnT42GPTjii0Zm3a+GKVYUHXX+9zwFx0kScme+9dmXOa1GXN\nNf19scwyhR+z2mowaFCzhZQ5WUhOitEGmA8cbmbfAUg6E/ibpL5mNlvSTsDv8Sail4B1gRslfWpm\nl9dXeL9+/ejcufMC26qqqqiqqir9lYSSO+ggX7L99NN95MNy9fVcCiGk4k9/gokTvbni5pt9JtnW\nQvIatXJWXV1Ndd6y09OmTStZ+bKU676TZp3vgQPNbHjO9sFAZzPbv5ZjBgPbmdn6Ods2BN4E1jez\ndyX9FxhlZr/N2ac33rel1r7OkroCo0ePHk3XWGmqrH33HTz3nA/RDCFky+zZ3tT13nu+SvjZZ6cd\nUSiFMWPG0M0ntelmZmOaUlbqfU7MbA4wGti1ZlvSDLMr3m+kNs8Dq0jKXZtzA7w25aPk/mLA3Lzj\n5ueUHypYp06RmISQVR06wO23ex+KM85IO5qQRaknJ4nrgRMkHZXUgNyGJxeDASRdJemunP3vBb4C\nBknqIukXwDXAQDObnezzMNBX0qGS1pS0G3ApMNzSri4KIYRWbpddvA9Fu3ZpRxKyKBN9TsxsWNJ5\n9VJgReBVoKeZ1Qy0WglYPWf/GUmycRPwPzxRuQ+4IKfYy/CaksuAVYEpwHDg/Oa9mhBCCCE0RSaS\nEwAzuwWodSFoM1tozIWZvQP0rKe8msTkslLFGEIIIYTml5VmnRBCCCHk+e47eOwxn+ekNYnkJIQQ\nQkjB/Pm+3MbEiXXvM3Ik7LUXfPRR3ftUokhOQgghhBRIPmHk3XfXvc/IkbD00rDeei0XVxZEchJC\nCCGkQPKp7Oubxr5msb/WtjBkK7vcEEIIITu6d4cXX6x95er58/2x1rLYX65ITkIIIYSU9OgB06bB\n228v/Ng77/j0/jULBbYmkZyEEEIIKdl6a2+yqa1pZ+RIb/rZdtuWjyttkZyEEEIIKVliCdhkE09E\n8o0aBRtvDEsu2fJxpS2SkxBCCCFFdXWKnTYNtt++5ePJgszMEBtCCCG0Rj16wLPPwg8/QPv2P20f\nOhRa60pwUXMSQgghpOjoo+GttxZMTGpILR9PFkRyEkIIIaSotSYg9YnkJIQQQgiZEslJCCGEEDIl\nkpMQQgghZEokJyGEEELIlEhOQgghhAz57ru0I0hfJCchhBBCRkyf7hOvnXVW2pGkK5KTEEIIIQOG\nDoVlloGxY6FLl7SjSVfMEBtCCCFkwCabwLx5/v/WuBJxrszUnEg6RdIkSTMljZK0dQP7t5d0haT3\nJc2S9J6kY3Ief1rS/FpuDzf7xYTMqK6uTjuEUELxelaWeD0XtNFGvsjfkkv6/1uzTCQnkg4FrgMu\nArYEXgNGSFqunsP+BuwMHAusD1QB43Me3x9YKee2CTAPGFbq+EN2xR+/yhKvZ2WJ13NBbdrAz3/u\ntzaZ+HZOT1aadfoBA8xsCICkk4C9gD7ANfk7S9od2AFY28ymJps/zN0nZ3vNMYcDM4C/lzz6EEII\noQSGDEk7gmxIPTeT1A7oBjxVs83MDHgS6FHHYfsALwPnSvpI0nhJ10rqWM+p+gDVZjazRKGHEEII\nJbXccn5r7bJQc7Ic0Bb4PG/758AGdRyzNl5zMgvYLynjVmAZ4Lj8nSVtA2yMNwGFEEIIIcOykJwU\now0wHzjczL4DkHQm8DdJfc1sdt7+xwFjzWx0A+V2BBg3blyp4w0pmTZtGmPGjEk7jFAi8XpWlng9\nK0vOd2d9rRgFyUJy8iXeUXXFvO0rAp/VccynwMc1iUliHCBgNeDdmo2SFgMOBc4vIJY1AY444ohC\n4g5lolu3bmmHEEooXs/KEq9nRVoTeKEpBaSenJjZHEmjgV2B4QCSlNy/sY7DngcOkrSYmX2fbNsA\nr035KG/fQ4D2wD0FhDMC6A28jzcZhRBCCKEwHfHEZERTC5L3PU2XpEOAwcBJwEv46J2DgA3NbIqk\nq4BVzOzoZP/FgbeAUcDFwPLA7cDTZnZSXtnPApPN7PCWuZoQQgghNEXqNScAZjYsmdPkUrw551Wg\np5lNSXZZCVg9Z/8ZknYDbgL+B3wF3AdckFuupPWB7YDdmv0iQgghhFASmag5CSGEEEKokfo8JyGE\nEEIIuSI5STR2bZ+QTZIuqmU9pbfSjisUTtIOkoZL+jh5/fatZZ9LJX0i6XtJT0haN41YQ8Maej0l\nDarlM/tYWvGG+kk6T9JLkqZL+lzSg0kXivz9mvQZjeSEotf2Cdn1Bt53qWZdpe3TDSc00uJ4v7O+\nwELtzpLOBU4FTgS2wZelGCGpfUsGGQpW7+uZeJwFP7NVLRNaKMIOeH/PbYFfAu2Af0latGaHUnxG\no88JIGkU8KKZnZHcFzAZuNHMFlrbJ2SXpIuAXmbWNe1YQtNJmg/sZ2bDc7Z9AlxrZv2T+0viM0of\nbWaxsGeG1fF6DgI6m9kB6UUWipX8iP8C+IWZPZdsa/JntNXXnBS5tk/ItvWSKuR3Jf1V0uoNHxLK\ngaS18F/WuZ/X6cCLxOe1nO2UNBG8LekWScukHVAo2FJ4jdjXULrPaKtPTqh/bZ+VWj6c0ESjgGOA\nnvi8OWsB/03mxgnlbyX8D2F8XivH48BRwC7Ab4EdgceSGuyQYclr9CfgOTOr6dtXks9oJuY5CaFU\nzCx3ZsI3JL0EfIDPFDwonahCCHXJq+Z/U9JYfAmSnYCnUwkqFOoWYCPg56UuOGpOilvbJ5QJM5sG\nvAPEaI7K8Bm+hlZ8XiuUmU3C/y7HZzbDJN0M7AnsZGaf5jxUks9oq09OzGwOULO2D7DA2j5NWrgo\npE9SJ/yP3KcN7RuyL/ni+owFP69L4iMH4vNaASStBixLfGYzK0lMegE7m9mHuY+V6jMazTruemBw\nsgBhzdo+i+Hr/YQyIula4GG8KWdV4BJgDlCdZlyhcEn/oHXxX18Aa0vaHPjazCbjbdznS5qIL9J5\nGb7g5z9SCDc0oL7XM7ldBNyPf6GtC/wBr+1s8uJxofQk3YIP9d4XmCGppoZkmpnVLJjb5M9oDCVO\nSOqLd8aqWdvnNDN7Od2oQmNJqsbH4S8LTAGeA/4vyeZDGZC0I97XIP+P011m1ifZ52J8DoWlgGeB\nU8xsYkvGGQpT3+uJz33yELAF/lp+giclF+asrRYyJBkOXlvicKyZDcnZ72Ka8BmN5CSEEEIImdLq\n+5yEEEIIIVsiOQkhhBBCpkRyEkIIIYRMieQkhBBCCJkSyUkIIYQQMiWSkxBCCCFkSiQnIYQQQsiU\nSE5CCCGEkCmRnIQQQgghUyI5CaEVkPS0pOsbsf/PJM2XtFlyf8fk/pLNF2WdsQyS9EBLn7dYki6S\n9EracYRQziI5CaEMSRqcJAu31PLYn5PH7szZvD9wQSNO8SGwEvBGzrYmr3XR2CSpjMW6ICE0QSQn\nIZQnwxOIwyR1qNmY/L8KX5X5p53NpprZjIILd1+Y2fxSBRyaRlKsIh9ajUhOQihfrwCTgQNyth2A\nJyYLNCvk11hImiTpPEkDJU2X9IGkE3IeX6BZJ8f2kl6TNFPSSEkb5xyzjKR7JX0kaYak1yUdlvP4\nIGBH4Iyk7HmS1kge21jSw5KmJfH8R9JaeddwlqRPJH0p6WZJbet6YmqaViQdkVzrVEnVkhbPew5O\nzzvuFUkX5tyfL+nEJLYZkt6S1F3SOslz+p2k5/NjTY49UdKHyXH3SVoi7/Hjk/JmJv+eXMvzf4ik\nZyR9Dxxe1/WGUGkiOQmhfBlwJ9AnZ1sfYBCgAo4/E/gfvlz9LcCtktbLKz+XgGuAfsBWwBRgeE6S\n0BF4GdgD2BgYAAyRtFXy+BnASOB2YEVgZWCypFWA/wAzgZ2ALZN9cmsKdgHWTh4/CjgmudVnHaAX\nsCewF54Y/a6BY2pzPjAY2BwYB9wL3AZcAXTDn5eb845ZDzg4OW9P/Jp+bIKT1Bu4GDgP2BD4PXCp\npCPzyrkK6A90AUYUEXsIZSmqCUMob/cAV0taHf+xsR1wKLBzAcc+ama3Jf//g6R+yXETkm21JTgX\nm9m/ASQdDXyE92f5u5l9AuT2J/mzpN2BQ4CXzWy6pB+A781sSs1Okk4FpgJVZjYv2fxu3nm/Bk41\nMwPekfQosCswsJ7rE3C0mX2fnOfu5JjG9L0BuNPM7k/KuAZPsC4xsyeTbTfgSWKuDsCRZvZZss9p\nwKOSzjKzL/DE5Cwz+0ey/wdJLdRJwN055fTP2SeEViOSkxDKmJl9KekR4Fj8y/hRM/taKqTihLF5\n9z8DVqjvdMConHN/I2k8/qseSW2A/8NrDFYF2ie3hvq6bA48m5OY1ObNJDGp8SmwSQPlvl+TmOQc\nU9/11SX3efo8+feNvG0dJXUys++SbR/WJCaJkXjyuIGk7/BanYGS7sjZpy2epOUaXUS8IZS9SE5C\nKH+D8GYFA/o24rg5efeNpjX1/hY4DW++eQNPSm7AE5T6zCyg7GJibeiY+SxcO9SugXKsnm2FPned\nkn+PB17Keyw/QSu4E3MIlST6nIRQ/v6JJwCLAP9qxvMI6P7jHWlpYH3grWTTdsA/zKzazMYCk5LH\nc/2A1xDkeh3Yob4Ors1kCt7vBYBkDpeFOrbWopBhwmtIWinnfg888Xg7adb5BFjHzN7Lu+WOsorh\nyKHViuQkhDKXDPfdENg4r+mjOVwoaRdJm+CdRKcANX0iJgC7SeohqQveIXbFvOPfB7ZNRqMsm2y7\nGVgSuE9SN0nrJqNs1qN5/Rs4UtL2kjZNrmduAcfV1maWv202cJekzSTtgNcg3ZfT1+Yi4DxJp0la\nT9Imko6R9JsGzhNCqxDJSQgVwMy+y+nvUOsuDdwvZB/DR7vcgI/yWR7Yx8xqvtAvB8bgNTn/xvt4\nPJhXxh/xGoS3gC8krWFmX+OjcRYHnsFH/BzPws0ypXYVPkro4eT2IAt3xC3keapt2wTgAeAx/Pl4\nFTjlx53NBuLXeCxec/QMcDRe21TfeUJoFdT8P7RCCCGEEAoXNSchhBBCyJRITkIIIYSQKZGchBBC\nCCFTIjkJIYQQQqZEchJCCCGETInkJIQQQgiZEslJCCGEEDIlkpMQQgghZEokJyGEEELIlEhOQggh\nhJApkZyEEEIIIVMiOQkhhBBCpvw/qr1QKBFhkjAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecVOXZ//HPF0SIELGLGjUaexc0CcZeAqixRVE0scco\nGhViTEyiGPN7Hp9o1GDQ2MESUdNsiNgTFdEEBBtiVBQbCCpIVWCv3x/3GR2G2TY7uzO7+32/XvPa\nnXvuc841c3Z2rrnbUURgZmZmVi06VDoAMzMzs3xOTszMzKyqODkxMzOzquLkxMzMzKqKkxMzMzOr\nKk5OzMzMrKo4OTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk6sXZBUI+mCErd9S9JNefePy/bXs3wRlk7S\nhlk8gysdi9VO0jhJD5S47R2SJpc7pgYeu+S4zUrl5MRajbykoEbSLrXUeSd7/N6ChyK7laKmyLZl\nve6DpAGSzirnPq12kobn/S3Vdbup/r01WFP+BoP0d1gJvsaJtbgVKh2AWQkWAkcDY/MLJe0BrAcs\nKrLNV4AlJR5vc5r/g+FoYGtgaDMfx5JrgIfz7m8EXARcBzyZV/5GGY+5G6V/0P8AUBljMatqTk6s\nNXoAOELSmRGRnzQcDfwHWKNwg4j4vNSDRcTiUrdtrSStFBELKh1Hc4mIZ4Fnc/cl9QJ+CzwTEbc3\nZB+SukREsUS4tmOWmhwTEUtL3dasNXK3jrU2AYwEVgf2yxVK6gQcDtxOkW+YhWNOJF2YlX1D0ghJ\nn0iaLekmSV0Ktn2rlub9rpKulTRL0hxJN0tapWDbgyTdL+k9SYskvS7p15I65NV5HDgAyI0dqZH0\nZt7jnbN4p0haKOl9SX+TtFGR5/mj7BiLJD0naaf6XtC87rLdJV0taQbwTvbYCElTi2xzoaSagrIa\nSVdKOljSi1kML0nqU8/x15K0WNL5RR7bLNvvwOz+CpKGSHotey1mSXpS0j71Pc+mkDRd0l2SDpA0\nXtIi4NjssR9JekzSjCymFyWdWGQfy4zdkNQne24HZa/ne5IWSBojacOCbZcZcyJp89zrkt3eyI49\nVtL2RY59tKTJWZ2J2fMoeRyLpLWzv40Ps30+L2lAkXrHSpogaW72/pok6bS8x1eU9P8k/Tfbz0xJ\n/5S0eylxWdvhlhNrjd4CxgEDgDFZ2f7AysAdQEPGbuSa1+8C3gR+AfQETgZmAOcVqZtPwDDgE2AI\nqetnILABsFdeveOBucBlwDxgb1L3wVeBn2d1/h/QndQldXa273kAWRIzKtvnSOAP2bb7AdsA+YnD\nMUA3UpdFZPv/m6SNG/jN+2rgQ+A3wEp5z73Y86+tfDfgsGxfc4Ezgb9K2iAiPil20Ij4UNI/gf6k\n1ot8R5G64+7K7v+GdK6uA/5NOuc7kc7do/U/xZIFsB1wM+m5XQO8nD02MIvlH6Tuv0OAGyRFRAwv\n2EcxQ4DPgP8jJd3nAiNY9u+ottf7JKALcBXQkXTO/ypps4gIAEmHAbeRWhV/TmpZvBV4v46YaiWp\nK/AU6e/1SuBd4Ejgz5K6RcT1Wb3vZc9jNHAt6cvw1kBv4E/Z7i4mvV//BDxPeh98E9gB+FdjY7M2\nJCJ8861V3IDjgKWkD6KBwGygc/bYncAj2e9TgXsLtq0BLsi7PyQru66g3t+ADwvKpgI3FcRRQ+oW\n6JhXfk4W34F5ZZ2LPI8/kT64O+WV3Qe8WaTuCdmxzqzjddkwq/MhsHJe+feyePZvwOtaAzwBqOCx\n4bXENQRYWuQ1Xgh8Pa9s26x8YD0x/CiLdauC8peAh/PuP194bsv0t9Uri/PYWh7/IItv1yKPFTvH\njwEvFpQ9AzyQd79PdswJBX9HP8uOtXFe2Ujglbz7uXFQ7wFd88qPyLbdO69sCvDf/DhJyW1N/j7r\neG0K4/55doxD8spWICU/HwFd8v7Op9ez78nAXeU+n761/pu7day1uov07f5ASd2AA4E/N3IfQfpG\nl+9JYPVsn/W5LpZtkfgTWTLwxQEiPsv9LqmbpNVJ3zpXArZowDEOA2aSWmnqc0dEfJp3/0lSK8zG\nDdg2gOsjoqkzMx6OiLe+2GnEi8CnDYjh76TX7shcgaStga1IrWE5s4GtJW3SxDhLMTkiniosLDjH\n3SWtQfrWv6WkFRuw3xsK/o5yA3Ibct7+HBHzC7b94pxnXX+bAsPz44yIh0kJSyn6AW9HxN15+1sC\n/BFYBcjNpJsNdJe0dx37mg1sV6yL0to3JyfWKkXELOAR0iDYw0h/y38tYVfTCu7nuh5WrS8E4PWC\nmOaTvmF/PVcmaStJ/5A0m/QhPZPUpA6pCbs+3wCmxLIDf2vzTkE8s7Nf63suOW81sF6DY8h8Ul8M\nEfERqVumf17xUcBiUndJzgWkD8DXJL0g6RJJ2zYt5AZbbuwNpFlikh6XNJ/0XD/M4hSp26k+ha/Z\nJ9m2DTlvxbYlb9vc2JVis45eL1LWEBsCrxUpn0yKO3fMPwJvAw9LelvS9ZL2LdjmV8DawBvZWJiL\nJW1VYlzWhjg5sdbsdlIrxanA6IiYW8I+ahuL0eRpm5K6k75Bbwv8mtS6sy9fjjUp9/uvqc9lYZGy\n2lpSOjZDDHcAm0naLrt/BPBoRHz8RTART5ISthOAF0ljLiYUG4DaDJZ7fSRtATwEdCWNndifdI5z\nLV0NOcdNec2a7e+3qSLifdLf/qGkcVP7Ag9J+lNencdI5/MkUnLzY2CipGNaPmKrJk5OrDXLDUD8\nFilRaUkiNZd/WZAGCq7Dly0Qe5K+wR4XEcMi4oHsn/FslldbEvAGsLmk2pKB5vYJqaWi0Neb4Vh3\nk1pKjsxmnGxGGmuxjIiYHRE3R8QxwPrAC8CFzRBPQxxMGm+xf0TcEBEPZue4Wqafv539LNYNVmrX\n2Nukc1NoS9Lfce6YRMTiiLg3IgaSuppGAKdIWjevzscRMTwiBpAGlE8hjWmydszJibVaWTfKqaQP\npvsqEMIpkvJnvA0ktSjkposuJSUx+dOGV8zqFZpP8W6evwFrAmeUI+ASvEEaN7BNrkDSOqQZKWUV\nEXNIs6/6k7p0PgPuya8jabWCbRaQuic659VZOZtq25AulabKtVzkn+PVSYumNUSzrr4aEVNJY0uO\nV94UeaXp3ZvWumHdHiBNez84b38rkP5GZwNPZ2WF5ypIA5whO19F6swjzZ7rjLVrnkpsrc0yzdUR\ncWttFVvAisCjku4iDW49DXgyIu7PHh9Lanm4RdKVWdkPKP6BNB7oL+ky0rTUedl+biGtp3G5pG+R\nBjx2A/YBroqIciVltXUD3AH8Drg7ew5dSQnhFNKsqXK7kzTtdSAwpmCAL8Arkp4gvV4fAzuT1re5\nMq/OoaRZRseTXr/m9CDwv8BoSTeQWplOIc2iWW4xwCJaovvlV6TX9SlJtwBrkf5WX6a0L6hXkabc\n3y5pGGncy1Gkv4dT8wbe3iapM2kW2HuklpMzgGezpAnSWJPRpBlLn5CmGR8IXFJCXNaGODmx1qYh\n3zSLrQnR1OuaFNvfGaS1RX4DdCLNFvpijZWI+FjSAaQ1Tn5L+ud7K2ma6ZiC/V0NbE/6QD2b1DR+\nf0TUSOpH+oDJDf79iJSkvNiA59fQ5120TvYcDgEuJyUpU0nrjGzG8slJU2MAuJc0tqMry87SyRkK\nHESaCtuZ9Dr9Evh9kWM2Vl3bFH0OEfGSpCNI5/cy0ofwFaRWn6sbcIzajlnb69jQbb94LCL+KumH\nwPmkcziFlCQPBNYtuoc6jh0R8yXtRlqX5QTSujuTgWMiIv+cjSCNJRlISto+ICWLv8mrcwVpAcI+\npPM5lTSV+g8NjMvaKDV95qCZmbU22eqwr0XEwfVWNmthVTPmRNLpkqZmSxiPk7RzPfWPyaaezVda\nzvvG/P5Lfbkk91J9uSR4m71WiJlZMUpL/ncoKOtLWsjt8cpEZVa3qkhOJB1JahIdAuwITALGZIsZ\nFav/HdIy0teTFmk6nLTk8XUFVecAPfJuG2Jm1r58A3hZ0gVK1wH6A2mm29vAjZUNzay4ahlzMgi4\nNiJuAZB0Kqkf8kSKD4z6NjA1Iq7K7r8t6VrSNSnyRUTMbKaYzcxag5mk6dankAbpfkpakfe8EtcG\nMmt2FW85UbqabC/yLtqVTTl7hDRyu5hngPWzgYJIWpu0YNOognrdlK4oO03S3V550Mzam2wdkSMj\n4msR0SUi1oqIYyKicHVks6pR8eSElMl3JF0JNt8MUlfMciJiLGm0+Z2SPieNAv+EZdeCmEJqeTmI\nNKOiAzA2f/EfMzMzqz7V0q3TKFkLyFDS4lsPkVbl/D3pIm4nA0TEOGBc3jbP8OXyyEVXH8wWT+pD\nWuFzUXPFb2Zm1gZ1Ia0ePSa7XlbJqiE5mUVaZXHtgvK1gem1bPML4OmIuDy7/5KkgcCTkn4VEYWt\nMETEEknPU/eSzX1o/JVtzczM7EvH0MRLilQ8OYmIxZLGk1a8vBdAkrL7V9ay2UrA5wVlNaSFgoqu\nuJhNpduW5cel5HsL4LbbbmPLLbds4DOwajZo0CCuuOKKSodhZeLz2bb4fLYtkydP5gc/+AGU4Qrn\nFU9OMpcDI7Ik5TnS7J2VSCsMIuliYN2IOC6rfx9wXTarZwxplcMrSMsiT8+2OZ/UrfM6aXXCc0kX\nlbqhjjgWAWy55Zb07NkcK3NbS+vevbvPZRvi89m2+Hy2WU0eFlEVyUlE3JWtaXIRqTtnItAnbxpw\nD9LVR3P1b5bUDTidNNZkNmm2zy/ydrsqad2THqTBsuOB3hHxajM/HTMzM2uCqkhOACLiaopfi4KI\nOKFI2VWkC1DVtr/BwOCyBWhmZmYtohqmEled2bMrHYGZmVn75eSkiGefrXQEVi4DBgyodAhWRj6f\nbYvPp9XGyUkRY8dWOgIrF//za1t8PtsWn0+rjZOTIsaOhZqaSkdhZmbWPjk5KeLjj2HSpEpHYWZm\n1j45OSnioINgxRUrHYWZmVn75OSkiCFDYOutKx2FmZlZ++TkxMzMzKqKkxMzMzOrKk5OzMzMrKo4\nOTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk7qMH48DBtW6SjMzMzaFycndXjmGRg8GObOrXQkZmZm7YeT\nkzr07QuLF8Pjj1c6EjMzs/bDyUkdNtkk3UaPrnQkZmZm7YeTk3r07QsPPggRlY7EzMysfXByUo9+\n/eCtt+C11yodiZmZWfvg5KQee+wBnTu7a8fMzKylODmpR9eusPvuqWvHzMzMmt8KlQ6gNTj+eJgy\npdJRmJmZtQ9OThrg6KMrHYGZmVn74W4dMzMzqypVk5xIOl3SVEkLJY2TtHM99Y+RNFHSfEnvS7pR\n0moFdY6QNDnb5yRJ/Zr3WZiZmVlTVUVyIulI4DJgCLAjMAkYI2mNWup/B7gZuB7YCjgc+CZwXV6d\nXYDbszo7APcAd0vaqvmeiZmZmTVVVSQnwCDg2oi4JSJeBU4FFgAn1lL/28DUiLgqIt6OiLHAtaQE\nJedMYHREXB4RUyLiAmACcEbzPQ0zMzNrqoonJ5I6Ab2AR3NlERHAI0DvWjZ7Blg/100jaW3gCGBU\nXp3e2T7yjaljn2ZmZlYFKp6cAGsAHYEZBeUzgB7FNshaSn4A3Cnpc+AD4BOWbRXp0Zh9mpmZWXWo\nhuSk0bJxI0OBC4GeQB9gI1LXTrNZsgRuvhkmTWrOo5iZmbVv1bDOySxgKbB2QfnawPRatvkF8HRE\nXJ7df0nSQOBJSb+KiBnZto3Z5xcGDRpE9+7dlykbMGAARx01gPPOgwED4LLL6tuLmZlZ2zRy5EhG\njhy5TNmcOXPKtn9FFVxuV9I44NmIOCu7L2AacGVEXFqk/l+BzyPi6Lyy3sBTwHoRMV3SHcBXIuLg\nvDpPA5MiYmAtcfQExo8fP56ePXsWjfXEE+HZZ+Hll0t9tmZmZm3PhAkT6NWrF0CviJjQlH1VS7fO\n5cCPJB0raQvgGmAlYASApIsl3ZxX/z7g+5JOlbRRNrV4KCnBybWMDAX6ShosaXNJF5IG3g5rSqD9\n+sErr8C0aU3Zi5mZmdWmKpKTiLgLOAe4CHge2A7oExEzsyo9gPXz6t8MDAZOB14E7gQmA9/Pq/MM\ncDRwCjAROAw4OCJeaUqs++4LHTr4QoBmZmbNpSq6dapFQ7p1AHbdFdZaC/7+95aLzczMrJq1xW6d\nVqVvX3jkEVi8uNKRmJmZtT1OTkrQrx/MnQtjx1Y6EjMzs7bHyUkJdtwRDj8cOnasdCRmZmZtTzWs\nc9LqdOgAf/lLpaMwMzNrm9xyYmZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZ\nmVUVJydN9OabcNNNlY7CzMys7XBy0kRPPgknnQQffljpSMzMzNoGJydN1KdP+vnQQ5WNw8zMrK1w\nctJEPXqk5ewffLDSkZiZmbUNTk7KoF8/GDMGamoqHYmZmVnr5+SkDPr2hVmzYPz4SkdiZmbW+jk5\nKYPevaF7dxg9utKRmJmZtX5OTspghRVg33097sTMzKwcnJyUSf/+sPnmHndiZmbWVCUlJ5L6Sto1\n7/7pkiZKul3SquULr/Xo3x+GD4cOTvfMzMyapNSP0kuBlQEkbQtcBjwAbARcXp7QzMzMrD1aocTt\nNgJeyX7/PnB/RPxSUk9SkmJmZmZWklJbTj4HVsp+3xfIrY/6MVmLipmZmVkpSm05eQq4XNLTwDeB\nI7PyzYB3yxGYmZmZtU+ltpycASwBDgdOi4j3svJ+QEkTarNBtVMlLZQ0TtLOddQdLqlG0tLsZ+72\nYl6d44rUWVBKbGZmZtZySmo5iYhpwIFFygeVsj9JR5IG1Z4CPAcMAsZI2iwiZhXZ5Ezg53n3VwBe\nAO4qqDeH1JqjXIilxGdmZmYtp9SpxD2zWTq5+wdLulvS/0pasYRdDgKujYhbIuJV4FRgAXBiscoR\nMTciPszdSF1LqwAjlq8aM/PqziwhtkaJSFconjSpuY9kZmbWNpXarXMtqUUCSRsDd5CSiSOASxqz\nI0mdgF7Ao7myiAjgEaB3A3dzIvBIRLxTUN5N0luSpmXJ01aNia0UEpx1Fgwb1txHMjMza5tKTU42\nAyZmvx8B/CsijgaOJ00tbow1gI7AjILyGUCP+jaWtA5prMv1BQ9NISUtBwHHkJ7rWEnrNjK+Ruvb\nNy1lH+5EMjMza7RSkxPlbbsvX65t8g4p2WhJxwOfAPfkF0bEuIi4LSJeiIgngcOAmcCPmzugfv3g\n3XfhlVfqr2tmZmbLKnUq8X+AX0t6BNgDOC0r34jlW0DqMwtYCqxdUL42ML0B258A3BIRS+qqFBFL\nJD0PbFLfDgcNGkT37t2XKRswYAADBgxoQDiw++7wla+kqxRvvXWDNjEzM2s1Ro4cyciRI5cpmzNn\nTtn2ryih70HSdsCfgQ2AyyPiN1n5H4HVsy6exuxvHPBsRJyV3RcwDbgyIi6tY7s9SWNVtomIyfUc\nowPwMjAqIs6ppU5PYPz48ePp2bNnY57CcvbfHz7/HB55pEm7MTMzaxUmTJhAr169AHpFxISm7KvU\nqcQvANsWeehnpFaQxrocGCFpPF9OJV6JbPaNpIuBdSPiuILtTiIlNcslJpLOB8YBr5Nm8pxLSqZu\nKCG+RuvXD845B+bNg27dWuKIZmZmbUOTrqErqZekH2S3nhGxKCIWN3Y/EXEXcA5wEfA8sB3QJ2/q\nbw9g/YJjrwwcSu3JxqrAdaRrAI0CugG9s6nKza5v39Ry8vjjLXE0MzOztqOklhNJawF3ksabzM6K\nV5H0OHBUKeuJRMTVwNW1PHZCkbJPSQlHbfsbDAxubBzlsummcOCBsLSUdiQzM7N2rNSWkz+SEoOt\nI2K1iFgN2IZ00b8ryxVca3fffXDIIZWOwszMrHUpdbZOX2Df/LEeEfGKpNP58grFZmZmZo1WastJ\nB6DY2JLFTdinmZmZWcmJxGPA0PzVViWtB1yRPWZmZmZWklKTkzNI40vekvSGpDeAqcBXs8fMzMzM\nSlLqOifvZAuW7QtskRVPBl4FLgBOKU94ZmZm1t6UOiA2d+Xgh7MbAJK2Jy2M5uTEzMzMSuLBqy1g\n1iz4y18qHYWZmVnr4OSkBTz1FPTvD2++WelIzMzMqp+Tkxaw997QqRN8//swdCh88EGlIzIzM6te\njRpzIunv9VRZpQmxtFkrrwyjRsGwYfCzn8HgwbDnnjBgQEpYVl210hGamZlVj8a2nMyp5/Y2cEs5\nA2wr9tsP7rkHZsyA664DCX78Yy9vb2ZmVqhRLSfFLsBnjbPqqnDSSek2fXpKVsyaIiJdAXv+/PT7\n6qvXXf/SS+GII+DrX2+R8MzMGs1jTiqoRw/Yfvu66yxcCEuWtEw8Vv1++1vYcUfYbDNYbz1YZRVY\ncUXo0iUlJcceW/8+fvc72GSTVPfll5s/ZjOzxip5nRNrGVddlb7p9u+fxqj07p26hKx9Wn/99DfQ\ntSt065Z+5t/WX7/+fbz9NtxwA/z+93DrrXDQQXDeefDtbzd//GZmDaG0lpoBZKvejh8/fjw9e/as\ndDgAvPQSDB8Od94J770HG24IRx2Vbttv70SlLXntNXj88TQWqSV8/jncfntqSXn11TRI+1e/gn33\nbZnjm1nbMmHCBHr16gXQKyImNGVf7tapcttsA5ddBtOmwRNPQN++6VvvjjvCVlvBX/9a6QitHKZM\nScnB0KGpK68lrLgiHH986tr5299g3jy4+eaWObaZWV2cnLQSHTrAHnvANdekdVJGjYKddkofMNa6\nTZkCe+2VBks//jh85Sste/wOHeCww+C559Lfl5lZpXnMSSvUqRPsv3+6Wev26qspMVltNXjsMVh7\n7crFIqVxK2ZmleaWkzbOQ4qq1+TJqStn9dVTi0klE5OGevBB+OijSkdhZm2dk5M27LPPYOed04DH\nTz+tdDSW75VXUovJmmumxGSttSodUf0++wx++MM0KHvwYHj33UpHZGZtlZOTNmz+fOjZEy64ADbY\nIM3E+PDDSkeVWnPeeKP+emefna5LVNvtyivr3r6mJq3KW42tRy+9BOusk7py1lyz0tE0TOfOKaka\nNCjNINt4Yzj55DTLyFreZ5+l98DGG8PBB6cuQrO2wslJG7baammp/DffTB8iQ4emb70/+Ula66Il\nzZ0L//hHimO99dIspAUL6t5mtdXSB3htt+7d697+0UfT5QH69k2znapJ//7w73+3nsQkZ80100Jw\nb78N//u/8MADsMUWacXZCU2aOGgNtWRJSg432ywlit/+dppx9fHHlY7MrHy8zkmealznpJw+/jgt\n6jZ0KMyeDeeemz5gmstrr6VZRaNGwb/+BYsXpw+y/feHAw6A3XeHFZp5SPbo0XDKKTBnTlrM7pRT\nvDZMOS1aBLfcApdcklY8fuqpSkfUdkWkKd/nn59aSQ4/PCWKW2wBS5dCx46VjtDau3Kuc+LkJE9b\nT05y5s9Pa6WsuSYcfXTzHGP69NS60blzGluRS0g23rh5jleXOXPgnHPSc95nn/TT15Upr6VLU5fh\nOutUOpK269FH0wJ5ffrA//wPpM8As4b5/PM0Tqw5/we3yUXYJJ0uaaqkhZLGSdq5jrrDJdVIWpr9\nzN1eLKh3hKTJ2T4nSerX/M+k+nXtCmed1XyJCaRv0Y89lmZ2jB6dupIqkZhA6v65/noYMwb++9/U\npXTVVWlMipVHx471JyYTJ8KRR6bX/qWX/Po31t57p7VoHnyw8YnJggXwySfNE5dVvyeeSCuKH3xw\ndY7BK6YqkhNJRwKXAUOAHYFJwBhJa9SyyZlAD2Cd7OfXgI+Bu/L2uQtwO3A9sANwD3C3pK2a6Wm0\nC0uWwNNPp66h+uy1V3Wtm/Hd78KLL6YZJ7//ff1jXqy8Pv0U3nknDXTedts0Q+nQQ+EPf0jjVZYu\nrXSE1U1Ks+9K8cc/wkYbpRaXefPKG5dVrw8/TBf43GuvtGTB7be3om7tiKj4DRgHDM27L+Bd4NwG\nbn8IsARYP6/sDuDegnrPAFfXsZ+eQIwfPz7au5qaiKOOirjhhoj334+47baIAQMiVl01AiLWWCNi\nzpxKR1m6loh94sSI/faL+Oij5j9WazJvXsQjj0Scf37E7rtHdO6c/qa22abSkbVdH3wQ8ZOfRKy4\nYsSaa0ZccUXEwoWVjsqay9KlEddcE7HKKhGrrRZx442prLmNHz8+gAB6RhPzgoqvECupE9AL+GJo\nZkSEpEeA3g3czYnAIxHxTl5Zb1JrTL4xwMFNCLfdmDcvTVU8+eQvy3r2hNNPT2NHdt65dQ/AW3nl\n5t3/pElpfMuGGzbvcVqjrl3Ta7PPPun+okWpu6Kps02WLk3fCjvU0R78wQcwdWrqf1+8eNmfXbrA\nDjukafct7b330uDW3r3huOPKv/8ePdK043POgYsuSj8vuywtM3D88WnV6ZY2fXo6F0uWwC671P3/\nZNw4eP31dI6L3TbYIM3Ms9R9etpp6TU78cS0ztUatfVBVLGKJyfAGkBHYEZB+Qxg8/o2lrQO0A84\nquChHrXss0dpYbYvX/0q/P3vaRXT559PK5muu26lo2odJk5MH7wbbQQPP5yumWO169Ilzdyqz9y5\nKUH+7LPlE4vFi9MYlmeeSVNra3P77emDuTZf+1rqemops2bB//1fGofTtSt861vNe7wNNkgDws89\nFy68MM1e+93v0t/pRhs1zzGXLk0z9yZNSu+N3G1G3n/nOXPq/sJw/fVw003LlnXs+OXtu991cpLz\n8MPpvfLkk7DrrpWOpnQVn62TJRfvAb0j4tm88t8Bu0dEna0nks4DBgHrRsSSvPLPgGMj4s68stOA\nCyKi6NC93Gyd3Xffne4Fi2gMGDCAAQMGNPr5WesTkdbxKGVGz/PPpxkVG28MDz3kxKSc3nkHhg1L\nM8A6dUoXvcz9zP1+wAF1r7Y7a1bqh8/ftlOndJs7F95/H775zbrjGDUKNt0UNtmk7laausydC5df\nnlovAH7607RmSXO36BV64YW0FtLQoc3XEjp+fLpIKaTkaIcd0uDMHXZIr2OnTulnXcf/7LOUfK6w\nQqrX2NdzJJXNAAAP5ElEQVT9nXegW7f28X5cvDj9bO7WsJEjRzJy5MhlyubMmcO//vUvKMNsnWoY\nb9IJWAwcVFA+AvhHA7Z/Dfh9kfK3gTMLyi4Enq9jXx5zYnHrrWkcxCWXRCxZ0vDtJkxIY3J22ini\nk0+aLz6rnIULIzp2TGNkunWL2G23iLPPjrjlloiXX67/72XRoojLLktjtjp3jhg8OGLmzJaJvZxq\naiLefTdi1KiIf/6z7rqLFkU89lhlx14dcEDEuutG3H9/5WJoD8o55qTis3UiYjEwHtgnVyZJ2f2x\ndW0raU/gG8CNRR5+Jn+fmf2ycrNaHXZYGlvz85/Dd76TlmyvT26MySabpGbVVVZp/jit5XXpkroj\nHn4Yfv3rNH36/vvTjIitt04tH2Pr+K9VU5PGfhx6aBpDcdll1T8eYPHiNPX7ttvgZz+D/fZLrVNf\n+1pqqRo2rO7tc2sdrbZay8RbzLXXptaaAw9M4zBmz65cLNZATc1uynED+gMLgGOBLYBrgY+ANbPH\nLwZuLrLdrcDYWvbZG/gMGEwau3IhsAjYqo443HJiXxg7NmLzzdMMh4svjli8uPa6M2ZEHHusW0za\nq9mzIx5/PLWKzJpVd90FC1okpLI57bTUUgQRX/96xCGHRFx4YcTdd0e89VZqRWkNamrSrJWVV45Y\nb72I0aMrHVFpHn004rnnKh1FceVsOal4YvJFIDAQeAtYSGrd2CnvseHAYwX1VwbmASfWsc/vA69m\n+3wB6FNPDE5ObBkLFkSce25Ehw6pu+bFFysdkVnLeuGF1HXTVhLvadMivvvd9Ol30kkpsWwNpk+P\nOOaYFPfJJ1c6muLKmZxUfEBsNWkvy9db4z37bGoOXrQIpkxp/msCmVnziUizlgYPTqtXN+c1xppq\n6dI0aPm889L/nUsvTdPNSx2M3ZzKuXy9/8WaNcC3vpVWMX3jDScmZq2dBD/6UZqCvPrqlY6mds8/\nD6eemtYBOvnkNO28muMtpyrMvcyqU+fOsJUvfmDWZmy4YZpiXI1+8Ys0BXvhwnS17+uvbz+JCTg5\nMTMzqzprrAGXXJLWifnOdyodTctzA7WZmVkRixdXZml/qHsl4/bALSdmZmYFampg//3TgNn585u+\nv4UL4Ykn0rWN9tsvrb1itXNyYmZmVsT3vgc33gjbbQdpVfaGmzMHRo9Os2y+8x3o3j0tRnf55Wkx\nvx6+yludnJyYmZkV6NABzjwzrf68zjrp4qdnnw0LFjRs+x//OLW8DB8O662XkpKJE+Gjj+C+++Dg\ng5s1/FbPY07MzMxqsemm8M9/pssO/PKX6cKPI0bALrukKcm1GTIEfvvbdEmLuupZcW45MTMzq0PH\njumq0RMnplk0u+4Kjz1W9zZbbpkSGycmpXHLiZmZWQNsvnlac+SOO1JXjzUfJydmZmYN1LEjHHNM\npaNo+9ytY2ZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZmVUVJydmZmZWVZyc\nmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZmZlWlapITSadLmippoaRxknau\np/6Kkv5H0luSFkl6U9LxeY8fJ6lG0tLsZ42kBc3+RKyqjBw5stIhWBn5fLYtPp9Wm6pITiQdCVwG\nDAF2BCYBYyStUcdmfwH2Ak4ANgMGAFMK6swBeuTdNixv5Fbt/M+vbfH5bFt8Pq02K1Q6gMwg4NqI\nuAVA0qnAAcCJwCWFlSX1BXYDNo6I2VnxtCL7jYiY2Twhm5mZWXOoeMuJpE5AL+DRXFlEBPAI0LuW\nzb4H/Af4uaR3JU2RdKmkLgX1umXdPtMk3S1pq+Z4DmZmZlY+1dBysgbQEZhRUD4D2LyWbTYmtZws\nAg7J9vEnYDXgpKzOFFLLywtAd+BnwFhJW0XE++V8AmZmZlY+1ZCclKIDUAMcHRHzACQNBv4iaWBE\nfBYR44BxuQ0kPQNMBn5MGttSTBeAk08+ma9+9avLPNCnTx/69u1b9idizWvOnDlMmDCh0mFYmfh8\nti0+n63Xgw8+yJgxY5Ypmzt3bu7Xwl6MRlPqQamcrFtnAfD9iLg3r3wE0D0iDi2yzQhgl4jYLK9s\nC+BlYLOIeKOWY90FLI6IY2p5/Gjgz6U/GzMzs3bvmIi4vSk7qHjLSUQsljQe2Ae4F0CSsvtX1rLZ\n08DhklaKiNz04M1JrSnvFttAUgdgW2BUHeGMAY4B3iJ1GZmZmVnDdAG+TvosbZKKt5wASOoPjABO\nBZ4jzd45HNgiImZKuhhYNyKOy+p3BV4hddtcCKwJXA88HhGnZnXOzx5/HVgFOBc4COgVEa+22JMz\nMzOzRql4ywlARNyVrWlyEbA2MBHokzcNuAewfl79+ZL2A/4I/Bv4CLgTOD9vt6sC12XbfgKMB3o7\nMTEzM6tuVdFyYmZmZpZT8XVOzMzMzPI5Ock09to+Vp0kDcm7llLu9kql47KGk7SbpHslvZedv4OK\n1LlI0vuSFkh6WNImlYjV6lff+ZQ0vMh79oFKxWt1k3SepOckfSpphqR/SNqsSL0mvUednFDytX2s\ner1EGruUu6bSrpUNxxqpK2nc2UBguX5nST8HzgBOAb4JzCe9X1dsySCtweo8n5nRLPueHdAyoVkJ\ndiON9/wWsC/QCXhI0ldyFcrxHvWYE0DSOODZiDgruy/gHeDKiFju2j5WvSQNAQ6OiJ6VjsWaTlIN\ncEjBGkjvA5dGxBXZ/ZVJK0ofFxF3VSZSa4hazudw0ppWh1UuMitV9iX+Q2D3iHgqK2vye7Tdt5yU\neG0fq26bZk3Ib0i6TdL69W9irYGkjUjfrPPfr58Cz+L3a2u2Z9ZF8KqkqyWtVumArMFWIbWIfQzl\ne4+2++SEuq/t06Plw7EmGgccD/QhrZuzEfCvbG0ca/16kP4R+v3adowGjgX2Jq1HtQfwQNaCbVUs\nO0d/AJ6KiNzYvrK8R6tinROzcomI/JUJX5L0HPA20B8YXpmozKw2Bc38L0t6EXgD2BN4vCJBWUNd\nDWwFfKfcO3bLCcwClpIGY+VbG5je8uFYOUXEHOA1wLM52obpgPD7tc2KiKmk/8t+z1YxScOA/YE9\nI+KDvIfK8h5t98lJRCwmrR67T64s79o+YysVl5WHpG6kf3If1FfXql/2wTWdZd+vK5NmDvj92gZI\n+hqwOn7PVq0sMTkY2CsipuU/Vq73qLt1ksuBEdkFCHPX9lmJdL0fa0UkXQrcR+rKWQ/4DbAYGFnJ\nuKzhsvFBm5C+fQFsLGl74OOIeIfUx/1rSa+TLtL5W9IFP++pQLhWj7rOZ3YbAvyN9IG2CfA7Umtn\nky8eZ+Un6WrSVO+DgPmSci0kcyIid8HcJr9HPZU4I2kgaTBW7to+P4mI/1Q2KmssSSNJ8/BXB2YC\nTwG/yrJ5awUk7UEaa1D4z+nmiDgxq3MhaQ2FVYAngdMj4vWWjNMapq7zSVr75G5gB9K5fJ+UlFyQ\nd201qyLZdPBiicMJEXFLXr0LacJ71MmJmZmZVZV2P+bEzMzMqouTEzMzM6sqTk7MzMysqjg5MTMz\ns6ri5MTMzMyqipMTMzMzqypOTszMzKyqODkxMzOzquLkxMzMzKqKkxOzdkDS45Iub0T9DSXVSNou\nu79Hdn/l5ouy1liGS/p7Sx+3VJKGSHq+0nGYtWZOTsxaIUkjsmTh6iKPXZU9dlNe8aHA+Y04xDSg\nB/BSXlmTr3XR2CSpFfN1QcyawMmJWesUpATiKEmdc4XZ7wNIV2X+snLE7IiY3+CdJx9GRE25Aram\nkeSryFu74eTErPV6HngHOCyv7DBSYrJMt0Jhi4WkqZLOk3SjpE8lvS3pR3mPL9Otk2dXSZMkLZT0\njKSt87ZZTdLtkt6VNF/SC5KOynt8OLAHcFa276WSNsge21rSfZLmZPH8U9JGBc/hp5LelzRL0jBJ\nHWt7YXJdK5J+kD3X2ZJGSupa8BqcWbDd85IuyLtfI+mULLb5kl6R9G1J38he03mSni6MNdv2FEnT\nsu3ulPTVgsdPzva3MPt5WpHXv7+kJyQtAI6u7fmatTVOTsxarwBuAk7MKzsRGA6oAdsPBv5Nulz9\n1cCfJG1asP98Ai4BBgE7ATOBe/OShC7Af4B+wNbAtcAtknbKHj8LeAa4HlgbWAd4R9K6wD+BhcCe\nwI5ZnfyWgr2BjbPHjwWOz251+QZwMLA/cAApMfpFPdsU82tgBLA9MBm4HbgG+B+gF+l1GVawzabA\nEdlx+5Ce0xddcJKOAS4EzgO2AH4JXCTphwX7uRi4AtgSGFNC7GatkpsJzVq3PwP/J2l90peNXYAj\ngb0asO2oiLgm+/13kgZl2/03KyuW4FwYEY8BSDoOeJc0nuWvEfE+kD+e5CpJfYH+wH8i4lNJnwML\nImJmrpKkM4DZwICIWJoVv1Fw3I+BMyIigNckjQL2AW6s4/kJOC4iFmTHuTXbpjFjbwBuioi/Zfu4\nhJRg/SYiHsnKhpKSxHydgR9GxPSszk+AUZJ+GhEfkhKTn0bEPVn9t7NWqFOBW/P2c0VeHbN2w8mJ\nWSsWEbMk3Q+cQPowHhURH0sNaTjhxYL704G16jocMC7v2J9ImkL6Vo+kDsCvSC0G6wErZrf6xrps\nDzyZl5gU83KWmOR8AGxTz37fyiUmedvU9fxqk/86zch+vlRQ1kVSt4iYl5VNyyUmmWdIyePmkuaR\nWnVulHRDXp2OpCQt3/gS4jVr9ZycmLV+w0ndCgEMbMR2iwvuB03r6j0X+Amp++YlUlIylJSg1GVh\nA/ZdSqz1bVPD8q1DnerZT9RR1tDXrlv282TguYLHChO0Bg9iNmtLPObErPV7kJQArAA81IzHEfDt\nL+5IqwKbAa9kRbsA90TEyIh4EZiaPZ7vc1ILQb4XgN3qGuDaTGaSxr0AkK3hstzA1iIaMk14A0k9\n8u73JiUer2bdOu8D34iINwtu+bOsPB3Z2i0nJ2atXDbddwtg64Kuj+ZwgaS9JW1DGiQ6E8iNifgv\nsJ+k3pK2JA2IXbtg+7eAb2WzUVbPyoYBKwN3SuolaZNsls2mNK/HgB9K2lXSttnzWdKA7Yr1mRWW\nfQbcLGk7SbuRWpDuzBtrMwQ4T9JPJG0qaRtJx0s6u57jmLULTk7M2oCImJc33qFolXruN6ROkGa7\nDCXN8lkT+F5E5D7Q/x8wgdSS8xhpjMc/Cvbxe1ILwivAh5I2iIiPSbNxugJPkGb8nMzy3TLldjFp\nltB92e0fLD8QtyGvU7Gy/wJ/Bx4gvR4TgdO/qBxxI+k5nkBqOXoCOI7U2lTXcczaBTX/Fy0zMzOz\nhnPLiZmZmVUVJydmZmZWVZycmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZm\nZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVeX/A/kWwZ4Yxlp7AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -749,9 +749,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYVPX1x/H3B6REUbD8BE3U2GJvYAkaJcYoxkSxRAEb\n2I0dW2LFkkRjb7EXUCPGqCjGgsHesIAd7CgqCDZQKQrs+f1x7splmN2duTuzM7t7Xs9zn9255Ttn\nZnZ2znyrzIwQQgghhGrRptIBhBBCCCGkRXISQgghhKoSyUkIIYQQqkokJyGEEEKoKpGchBBCCKGq\nRHISQgghhKoSyUkIIYQQqkokJyGEEEKoKpGchBBCCKGqRHISSk5SjaTTM177oaQbU7cHJOV1L12E\n2UlaKYnn2ErH0ppJelzSayUuc4G/vWqW533SK/m73KqE95H5fRxCY0VyEvJKJQU1kjav45yPk+Mj\ncg5ZsmVRk+fakq6xIKm/pKNLWWZoWPK3clmJiivHuhsFlZl6X9RImifpU0kjJfUqQ0x1yRdr0c+J\npN9JGlzPfTT5+iaSBuc8x7nP97JNHVNoeotUOoBQ9WYBewLPpncm/4h/CszOc81PgLkZ728NPEEp\npz2BdYBLy3w/oeV6GLgZELAycBjwqKQdzGxkUwdjZk9I+omZ/VDkpTvgsZ+Z51hj3seNZcChwIw8\nx6Y1cSyhAiI5CQ15ANhd0lFmlk4a9gReApbJvSDDP8j0tXOyXttcSVrUzGZWOo5QlHfM7LbaG5Lu\nAV4DjgHyJieSBLQ3s+/LEVDG951KXF4p3WVmXxVzgaQOwA+WZ0XbUrzP4r3adKJZJ9THgGHA0sC2\ntTsltQP+CNxGnn9uuW3Vks5I9q0qaYikryVNk3SjpI4519bV7r+YpGskfSFpuqShkrrkXLuTpP8m\n1eyzJb0n6VRJbVLnPAb8HqjtO1Ij6YPU8Q5JvG9LmiVpkqS7JK2c53EelNzHbEkvSNq4oSc01Vy2\nlaQrJU0BPk6ODZE0Ic81Z0iqydlXI+kySX0kvZ7E8Iak3g3c/7KS5kg6Lc+xXyTlHpbcXiSpYn8n\neS6+kPSUpG0aepxZFfIa5pzfXdIzkmZK+kDSIXnOaS/pTEnvJmVOlPQPSe1LFbeZvQF8gdei1N5v\n7Wu0p6Q38FrG3skxSTomec1mSfpM0tW5f9PJuafKm1BnSHpE0tp5zsnb50TSZpIekPSVpO8kvSrp\nyOTYTXitSbqpal5O/KfnlLeRpAeT9+C3kkZJ2iznnNq/8c0lXSRpanLfd0tauugntw6px9xX0l8l\nfYLXtCwuaWBd77MMjyNvGaG8ouYkNORDYDTQn/nfCHcAlgBuBwrpu1H7LeYO4APgL0B34EBgCnBS\nnnPTBFwBfA0Mxpt+DgNWBLZOnTcQ+Ba4EPgO+A1wFrA48OfknL8CnfEmqWOSsr8DSD4A70/KHAZc\nkly7LbAukE4c9gI6AVcnMf8ZuEvSKmY2j4ZdCUzFq9MXTT32uvoS5Nu/JbBrUta3wFHAnZJWNLOv\n892pmU2V9ASwB3B2zuF+eDX+HcntM/HX6lrgRfw13xh/7R5p+CFmMpCGX8NaS+Gv1x14orwHcJWk\n781sCPxYW3EfsDlwDfAWsB4wCFgdf/4aTdKSwJLAuzmHtkniugJPXj5M9l8L7AvciDcvrgwcCWwo\naYvavyFJZwOnAP8FHsSf+4eBdnnCWOBvRNK2+GOfhP8tfwasBfwBuBx/PpYHfov/PddZi5KUtzbw\nJDAdOBf/WzkEeFzSVmb2Ys4llwNfAWcAP8ef8yvw/yWFWDp5/dLmmtn0nH2nAd8D5wMdgB+Y/1yk\n32eLJY9jnSIfx0JlhCZgZrHFttAGDADm4f8MD8PbeTskx/4NjEp+nwCMyLm2Bjg9dXtwsu/anPPu\nAqbm7JsA3JgTRw3wPNA2tf/4JL4/pPZ1yPM4rsI/7Nql9t0HfJDn3P2S+zqqnudlpeScqcASqf07\nJvHsUMDzWgM8Dijn2E11xDUYmJfnOZ4F/Dy1b71k/2ENxHBQEuvaOfvfAP6Xuv1y7mvbyL+pGuCy\nBs4p9DV8LHkMR6f2tQPGApNr/1aAvYE5QM+cMg9Orv9lXX97DTyOa/EaxWWATYFReeKpSe57jZzr\nf5Uc65uzf9tkf7/k9jJ4bcu9Oef9NTkv/T7pldz/VsntNvgXgfeBxet5LJfn/m3lxJ9+Hw9P/uZW\nSu3rhn/IP5bnb/yhnPIuxBOHOuNJ/b3X1LGNy3nMNXhC2L6I91mxj2OhMmIr/xbNOqEQd+Df7v8g\nqRP+zetfRZZh+De1tKfwb0edCrj+WluwRuIqkmTgxztIteVL6pRUIT+dxL5mAfexK/A5/u2uIbeb\n2Tep20/h3zxXKeBaA66z5D9gI/zPzD78sVCz14FvCojhbvy561u7I/k2uTZeG1ZrGrCOpNUaGWfB\ninwN5+JJQu21c/C/sWWBHsnuPwLjgXckLV274cmNWLDmrRgH4H8rU/GaxZ7AhWaW28n6cTN7O2ff\nH/Hn9pGcmF7Ga4tqY9oWT7guz7n+kgLi2wivrbjEzL4t7CHVLalV3BYYbmYf1e43s8/wWqtf5byP\njdRrk3gKaIsn+A0xYBe8Vie97Zfn3CGWv3/MQu+zjI+jFO/VUKRo1gkNMrMvJI3CO8Euhn8ruzND\nURNzbtc2PSxJ0rRSVwjAezkxzZA0Gf8HDPxY7fw3/J/7EjnXdy4gvlWBt23Bjr91WaDt2cymJTXQ\nSxZwLcyv3m+MfO3fXzcUg5l9KekRvLmhdhhpP/xb/vDUqacD9+Af7G8ADwG3JElQWRT5Gk4ys1k5\n+97Bk46fAy/gTTdr4olELsMTmSzuxZNYw2t13swTC+R/nVcHuuCJTX0xrZj8zP3b/0JS3ma7lFWT\nst5s4LxC/R+eIL6T59h4/H/CCsnvtXL/PtPv90I8ZYV1iP2wiGNZHkd95YcyieQkFOo24DpgOeDB\njN/G6uqLUW9bdyEkdcbbkacBp+JV2rPxb9DnUvrO3419LPk+yOr6dta2DDHcDtwoaX0zew3YHXgk\n/WFgZk9JWhXoA2yH1xYMknSImZV8srIyvYZtgNfx/g75npesHRw/MbNHCzgv3+vcBu9rtWcdMeVL\npJqjsr3fc+R7jgs5VoryQ5lEchIKNRyvMt+MVHNAExH+bfOJH3dIi+GJ0v3Jrl/j38j6mNkzqfNW\nzVNeXUnA+8CmktpaYZ1aS+1r/Bt1rp+X4b7uwV/Pvkmnw1/gNRYLMLNpwFBgqKRF8ar5M/COnKX2\nawp/DQGWl8/tkf7wWAN/fWs7L78PrG9mj5Uh3qzexzvKPmv1DyuubXZYndS3d0nL0HDtw/v4+2Zd\noL4kqtDmis+Bmfjzm2stvG9GcxjJ0lIeR4sXfU5CQcxsBj4p0hl4h9KmdrCkdDJ9GF6j8EByex7+\nzzg9bLh9cl6uGeRv5rkLr/Y9ohQBZ/A+0FnSurU7JC0H7FzqOzIf8TASb9rph492uDd9jqSlcq6Z\niTcxdEids4SkNSSlm2CyKuY1BP9ydWjq3Hb4qIvP8Y6x4P2lfibpoNyLJXVMEq6mdgce+0JTw0tq\nm9QggXeynYuP4kkbVMB9jMUTtGNS5eUzI7nfel+/pKnzYaCPpNrmJiR1xUffPGVm9TXNVoWW8jha\ng6g5CfVZoPrVzG6pVCBAe7wD4R14H4I/4f9I/pscfxavebhZ86dI35v83wzHAHtIuhAfIvtdUs7N\n+PDOi5I5D57ChwtvA/zTzEqVlNVVrX078A/gnuQxLIZ/+L6Nj5oqtX8Dt+If/iNzOvgCjJP0OP58\nfQVsgnfmTE9Bvws+ymgg/vw1ZGNJp+TZ/xjFvYbgo3JOlPRzvA9BP2B94KBUzdctzB9ivDXwDJ7U\nroU3ZW3H/ESmSZjZk5KuAf4iaUP8w3IOXnv1R3xI+N1J35ILkvP+iyfiGwHbk7/p58e/KzMzSX8C\nRgCvyOc0mYy/d9Y2s98lp45Jrrtc0kh85M6/6wj9VLxT6jOSrsSTyYPx9+aJdcVS4P585+0uKV+i\n8LCZFdL0Vdd9leJxhDKL5CTUp5Aq33xzcDRmTY66yjsCn4vhTHwEw79IzbFiZl9J+j0+XPFs/EPu\nFrxKO3fGziuBDfAP1GPw6vP/mlmNpN/h80rsiY/e+RJPUtKdQIudjyTfeQvv9MewM3ARnqRMwOcZ\n+QULJyeNjQH8g2sWngTdnuf4pcBO+OiGDvjzdDJwQZ77LIThzYKb5Tl2mpk9W8RrCP7aDMQ7ptbO\nmXN4uj9M8iHdB69t2BevhZqJ92e5mAU7Rhbz+jXqPDP7k6SX8Jqev+E1JB/iCd4zqfNOkTQLT1J/\njY8M2g5vzsz3Pknfx8NJQjYYOBavkXqfBUfR3I0nm/2YP9dJbXKyQPxmNk7SlsA5+N9lmySePc3s\npfpiKWB/vvOurOPY1sxPzuorr67nvhSPI5SZYoRUCCGEEKpJ1fQ5kXS4pAnyqZxHS9qkgfPbS/qb\nfLrz2fKpqwfmnLO7pPFJma8m34pDCCGEUMWqIjmR1Bevyh2Mt6m+CoxMeqXX5T949d5+eLV3f7xt\nvrbMzZk//HVDvLPfPcqzLkUIIYQQqkdRzTrJaImT8WmTPylZENJo4HkzOzq5LXw412Vmdl6e87fH\nE49VkqGO+cq8HVjUzHZK7XsOeNnM6ur9H0IIIYQKK6rmxMzmAidQwo60yfC/HqQWEkumCh6FTwmd\nz47AS8CfJX0iX0H2fC24wm3PpIy0kfWUGUIIIYQqkCXJeBRfcOnDEsWwDD60b0rO/inknygHfO2Q\nLfHZI3dOyrgKX6X0gOScbnWU2a3xIYcQQgihXLIkJw8C50paDx8jPyN90MxGlCKwBrTBZ/Lbs3bC\nHEnHAv+RdFgDsy7WKVl8qzeeeM0uUawhhBBCa9ARn9F6pJl92ZiCsiQntWPPj81zzKh7HZC6fIFP\ngtM1Z39X4LM6rpkMfJozk994fIz+z/Cx/J8VWSZ4YlLsarshhBBCmG8vvF9oZkUnJ2ZW0hE+ZjZH\n0hh8Fs4R8GOH2G1YcCbKtGeAP0paNJlSG7wJqAao7aj7XJ4ytk321+VDgFtvvZW11lqr+AcTqs6g\nQYO4+OKLKx1GKJF4PVuWeD1blvHjx7P33ntDCbp9VMsMsRcBQ5Ik5QV8NsdFgSEAks4BljezAcn5\nt+FTEN8k6Qx8PZTzgBtSTTqXAo8nzT3340ONewALrbGRMhtgrbXWonv3cswWHppa586d47VsQeL1\nbFni9WyxGt0tIlMtiKReku6T9F6yjUimA87EzO4AjgfOAl7G18fonVo/oRuwQur8GXgtSBd8bZRb\n8HlM0tOZP4dPQX4w8Ao+FXkfMxuXNc4QQgghlF/RNSeS9sYX+qpdkwFgC3xRtoFmlqmdycyupI61\nFMxsvzz73sH7iNRX5l34SrMhhBBCaCayNOucApxoZumGwsuS5pPTaGQnmBBCCCG0blmadVYB8i0d\nPwJYuXHhhFBa/fv3r3QIoYTi9WxZ4vUMdcmSnHyMj4LJ9dvkWAhVI/75tSzxerYs8XqGumRp1rkQ\nb8bZEHg22bcFMJBUh9QQQgghhCyyzHNylaTPgOOAPZLd44G+ZnZvKYMLIYQQQutTVHIiqS1eS/KY\nmQ0vT0ghhBBCaM2KXZV4HvAwsGR5wgkhhBBCa5elQ+wb+IidEEIIIYSSy5KcnApcIOkPkpaTtER6\nK3WAIYQQQmhdsozWeSD5OQJfhbiWyLYqcQghhBDCj7IkJ1uXPIoQQgghhESxo3UWAXoBN5rZJ+UJ\nKYQQQgitWbGjdeYCJ5CtxiWEEEIIoUFZOsQ+iteehBBCCCGUXJYakAeBcyWtB4wBZqQPmtmIUgQW\nQgghhNYpS3JyZfLz2DzHYrROCCGEEBoly9o6WZqCQgghhBAKUjWJhqTDJU2QNEvSaEmb1HNuL0k1\nOds8ScumzhmQ2l97zsymeTQhhBBCyKrg5ETSA5I6p27/RVKX1O2lJY3LEoSkvsCFwGBgI+BVYKSk\nZeq5zIDVgW7JtpyZTc05Z3rqeDdgpSzxhRBCCKHpFFNz0hvokLp9MrBU6vYiwBoZ4xgEXGNmN5vZ\nW8ChwExg/wau+9zMptZueY6bmaXP+TxjfM3DnDmVjiCEEEJotGKSEzVwOxNJ7YAewCO1+8zMgFFA\nzwbieUXSJEkPS9o8zzmdJH0oaaKkeyStXYqYq9JVV8Faa0FNTaUjCSGEEBqlGvqcLIOP8JmSs38K\n3hSTz2TgEGA3YFfgY+BxSRumznkbr3nZCdgLf6zPSlq+dKFX2COPwLx5/vt668H778Ozz1Y2phBC\nCKGRiklOjAUX+iPP7SZhZu+Y2XVm9rKZjTazA4Bn8eah2nNGm9mtZvaamT2FJzGf40lN8/fss/Db\n38LDD/vtzTeHn/0Mbr+9snGFEEIIjVTMUGIBQyR9n9zuCFwtqXYStg75L2vQF8A8oGvO/q7AZ0WU\n8wKwRV0HzWyupJeB1RoqaNCgQXTu3HmBff3796d///5FhFNm558Pa64JvXv77TZtoG9fuOUWuOQS\nWCRWGAghhFAew4YNY9iwYQvsmz59esnKl3fvKOBE6aZCzjOz/YoOQhoNPG9mRye3BUwELjOz8wss\n42HgGzP7Yx3H2wBvAveb2fF1nNMdGDNmzBi6d+9e7MNoOm+/7f1Lrr0WDjxw/v6XXoJNNoH//c9r\nVUIIIYQmMnbsWHr06AHQw8zGNqasgr9eZ0k6inARXiszBq8BGQQsCgwBkHQOsLyZDUhuHw1MwJON\njsBBwNbAtrUFSjoNGA28B3QBTgRWBK4v4+NoGhdeCF27wt57L7i/Rw9YZRVv2onkJIQQQjNVDR1i\nMbM7gOOBs4CXgfWB3qmhv92AFVKXtMfnRXkNeBxYD9jGzB5PnbMkcC0wDrgf6AT0TIYqN19TpsDN\nN8NRR0HHjgsek6BfP7jrLvjhh8rEF0IIITRSwc06rUGzaNY59VS49FKYOBGWXHLh46+/DhtsAE89\nBVvU2QUnhBBCKKmKNOuEKvDdd3DllXDQQfkTE4B114XJk73ZJ4QQQqh19dXw7bdwwgmVjqRBkZw0\nNyecAHvtVfdxKRKTEEIIC7viCu+b2AxURZ+TUKBOneCkk2DFFSsdSQghhObk3XfhzTdhl10qHUlB\nMtWcSFodHx2zLDkJjpmdVYK4QgghhFAqw4fDT34C221X6UgKUnRyIukg4Cp88rTPWHCWWMNH3IQQ\nQgihWgwfDttvD4suWulICpKl5uRU4BQz+0epgwkhhBBCiX36KYwe7dNQNBNZ+pwsCfyn1IGEEEII\noQzuvdeXNPnDHyodScGyJCf/AZpHo1VWI0dWOoLSee89+OabSkcRQgihUgYMgEcfrXsKiiqUJTl5\nDzhb0hBJx0k6Kr2VOsCKOOccmDSp0lG4iROzX/vll7DGGnDHHaWLJ4QQQvOy2GKw5ZaVjqIoWZKT\ng4HvgF7AEfg6OLXbMaULrYI6dIADDoBKz5770Uew6qpw553Zrl96adh6a19rJ4QQQmgmik5OzGzl\nerZVyhFkkzv9dHjoIV/1t5IuuQQWX9x7WGfVrx889hh89lnp4gohhBDKqFGTsClRqmCqxhZbwCGH\nwLHHep+NSvj6a7juOjj8cJ98Latdd4U2bbLXvoSm9eST8Je/VDqKxpkypdIRhBCauUzJiaR9Jb0O\nzAJmSXpN0j6lDa3CLrgAunWD66+vzP1ffTXMnQtHHNG4cpZayifdiaad6mUGDz8MW20FvXrBgw/C\n9OmVjiqboUPhF7/w9Z1CCCGjopMTScfik7A9AOyRbA8BV0saVNrwKqhTJ3j6ae8c29Rmz/aVhwcM\nKM06Of36wTPPNK5zbSg9MxgxAjbbDHr39td9xAh45RXo3LnS0WWz447Qrl3zr/0JIVRUlpqTI4E/\nmdmfzWxEsp0IHAa0jNE6tZZbzhfSa2q33gpTp8Jxx5WmvD59vJNvjNqpHnffDRtu6K9Nx45ec/L8\n8/7h3pxbSpdaCv72N5/s6dlnKx1NCK1XTY1vzVSW5GQ5IN9/nWeTY6Examq8SWnnnb16vBSWWAL6\n9vWlskN1GDXKa8WeeML7mWy7bWFJiRnMmFH++Orz7bcwZ07dxw88ELp3hyOPhHnzmi6uEMJ8jzzi\ni8Q20ybWrPOc7JFnf1/g3caFE5gxw/sdnHhiacsdOhTOPLO0ZYbsLrtsfj+TYlx5pde4vPRSeeJq\nyEsveeLxt7/VfU7btnD55TB2LNxwQ9PFFkKYb/hwb2Lt1q3SkWSSJTkZDJwl6SFJpyXbQ8n+07MG\nIulwSRMkzZI0WtIm9ZzbS1JNzjZP0rI55+0uaXxS5quSfpc1viaz+OJwzTXwy19WOpJQTotkWhDc\n+6Z06QKbbw4XXth01bY1NX5/m2/u97/33vWfv/nmsM8+cPLJPvIshNB0amrgnntgl12abTNxlnlO\n7gI2w1cl3jnZvgA2NbPhWYKQ1Be4EE9wNgJeBUZKWqa+UIDVgW7JtpyZTU2VuTlwG3AdsCFwL3CP\npLWzxBhCwb791kfclMNqq3nn5qOPhuOPhx12KP/Q3SlT/H6OPx6OOcbvf7XVGr7uH/+AH36AM84o\nb3whhAU9/7w35+yyS6UjySzTUGIzG2Nme5tZj2Tb28xebkQcg4BrzOxmM3sLOBSYCezfwHWfm9nU\n2i3n2FHAg2Z2kZm9bWanA2PxWW2z+/Zb+Ne/GlVEaKGmTYOzz4af/xx23718w4Hbt4fzz/eJAl9+\nGdZfv3zrQY0c6eW/8or/ft55fv+FWG45f68ce2x5Ygsh5Dd8OCy7rNdgNlMFJSeSlkj/Xt9WbACS\n2gE9gEdq95mZAaOAnvVdCrwiaZKkh5OakrSeSRlpIxsos2F33eVV2uX6Zhyany++gFNOgZVWgr//\nHfbaC8aPL/9w4N694bXXvA/K9tvDueeWtvyLL/ZyN9oIXn3V58sp1o47+vMSQmgaZp6c9Onj/b+a\nqUJrTr5O9eeYBnydZ6vdX6xlgLZAbt30FLy5Jp/JwCHAbsCuwMfA45I2TJ3TrcgyCzNggH8oHHAA\nfPVVo4oKzdzkyd7UsdJKPi/NIYfAhAne2XWFFZomhq5dPVE+/3zYdNPSlr311j5y7IEHSjPfTgih\n/N54w2c2b8ZNOgCF9sr7DVD7Sbx1mWIpmJm9A7yT2jVa0qp489CAst655CMQ1lvPp5YfNqysdxeq\n2KGHwuOPe7PFMcf4QouV0KaNJ0mltuGGvoUQmo8HH/SBFb/5TaUjaZSCkhMzeyJ1cwLwcdL08qNk\njZ0sXxe/AOYBuV/NugLFrFb3ArBF6vZnWcscNGgQnXOq5Pv370///v39xk9/6kM6+/f3qrN+/YoI\nM4/Zs30irqbywgswaZLPpRKyu/RSH7nSpUulIwkhBHf88bDbbj7xZhkNGzaMYTlfzqeXsJ+dcnKM\nhi+Q5pEzMibZvzQw1cyKbuSSNBp43syOTm4LmAhcZmbnF1jGw8A3ZvbH5PbtwE/MrE/qnGeAV83s\nsDrK6A6MGTNmDN27d2/4Tvv187kq3ngDll++kDAX9t13sPrqvgJx377ZyijWEUfAvffCRx/5t+7g\n5szxuTmefNK344/3OWdCCCE0aOzYsfTo0QOgh5mNbUxZWT6ZhA/jzdUJmJ0xjouAg5IFBdcErgYW\nBYYASDpH0tAfA5COlrSTpFUlrSPpEry56YpUmZcC20s6VtIaks7AO96mz2mcf/7TazwOOMA7IWVx\nww3w+efQs3H9dIvSrx988klMLz5rls/QevbZPkNrly4+v8yZZ8L332d/TavRuHELz4lSU1O5ydxC\nCKEeBc8EJemi5FcDzpY0M3W4LT73yStZgjCzO5I5Tc7Cm15eAXqb2efJKd1YsMmoPT4vyvL4kOPX\ngG3M7MlUmc9J2hP4W7K9C/Qxs3FZYsxr6aU9ufjHP+Cbb4ofnTFnDlx0kTcPrbhiycJq0Oabw89+\n5isV/+pXTXe/1WbLLWHMGH/dttzS5+Po1ctHp7RrV+noSufrrz357dnTZwru2hU++8w7dz/+uHfi\nzVrzV6zZs+Goo7xJcYcdmuY+QwjNTsHNOpIeS37tBTwH/JA6/APwIXCBmTXbKeyLbtapZZZtFr7b\nbvNhp6+8AhtsUPz1jXHccb7A4KefZp+ttLl74gmvLVl33WY95K4gDz/sM7YCnHCCj+6RfIG+LEOE\nszKD3/7WV8h+442yt4uHEJpORZp1zGxrM9saGAr8rvZ2svU2s0Oac2LSKFkSEzP/gNhuu6ZPTMCb\ndqZO9W/OLVFNTcPNMr16+XPf0hMT8L+z117zWqETTmjc3CWNIflQ6wkTfB6VEELII0ufk2PI0xwk\naaksk7C1Wo884jUmpV7gr1AbbwyrrOJNOy3RnXfC2mvHSsxpXbv6nCUvvljZuUvWWcdXLP7rX73m\nLoQQcmRJTm4n/6rEeyTHQiHOO8+/vVZqLLrktSd33eXrn7Q0Q4bAkkv6eP8wX5s2nphWepTW4MGw\n6KKVS85DaElmz4aZMxs+rxnJ8h9qM+CxPPsfT46Fhsye7cnBiSdWdsXIvfaC/fdvcX/UTJrk68AM\nHFjpSEJdunTx6fZvuw2eeqrS0YTQvA0fDv/3fy1q1vIsPSE74KNlcrUDftK4cFqJjh39w7PSQ1XX\nXhsuvLCyMZTDrbf64nR75KvgC1Vj4EC45hpv4hkzpnX0/QmhHIYPh7XWgqWWqnQkJZOl5uQF4OA8\n+w8FxjQunBbi++99Sftnnqn/vErWmrRUZt6ks8suMXNrtWvTBi6/3IcxT5tW6WhCKMxHH3lSPWlS\npSNxs2d7H7JmvpZOriw1J6cCoyRtwPyVhLcBNgGauOt/lVpkEZ/c6v77vdNrp06Vjqj1ePFFXxH4\nkksqHUkoxKab+j/WEJqLF17wdbXuucf/div9JfN//4MZM2DXXSsbR4kVXXNiZs8APfGVgPcAdgTe\nA9Y3s2g8Bq+eHjrUV6094YRKR9O6DBniax9ts02lIwkhNDezZsEXX9R/zo47wr//DQ89BPfd1zRx\n1Wf4cFh9ynR6AAAd0UlEQVRjDW/WaUEyddk3s1fMbC8zW8fMNjaz/VvtHCd1WW01789x9dW+SmQo\nPzN49FHYd9/ovxBCaNi333r/v1NO8Vmiu3TxmaLr07Ej7L479O4NgwZ5s0qlzJ0LI0a0uCYdKLBZ\nR9ISZvZN7e/1nVt7XgAOOcSr/g44wGfDbEGdlaqSBK+/7t9+Qgghn2eegbvv9sU9X34Z5s2DZZeF\nrbaCCy7wGYwbInnT8Xrr+TWnnlr+uPN5+mn48svWm5wAX0uqXYl4GvkX/qtdEDC+staSfO2d9daD\nww+HnOWlQxm0a9ey1sUJIZTWyJHwn//4DNEHH+xJyS9+UXzfkTXXhGOOgb//3Wtrm3J9tFrPP+/r\npG28cdPfd5kVtLaOpF7AM2Y2N/m9Tmb2RKmCa2qZ19ZpyO23++J+V13lHamq0XvvwcknezNU1PCE\nEHL997/w5z/XfXyRRXxJhPoceaQ3vdbl97/3CSrrMmcObLhh/fdx2WX19zmbM6d0X2C++cb7e2y5\nJdxxR2nKzBLDEtUxOXsp19YpqOYknXA05+SjYvr183bJSs0GW4hOnXy22N69vRkqhEqZNs0nZttx\nx0pHEtKWW67+tZgK6ee14Yb1LzS63nr1Xy81vB7UssvWf7yUNatLLOHD4b/6KvsCsKWIoQUqtOZk\n/UILNLPXGhVRBZWt5qS5qG1rHTWqsnGE1u2887wN//XX/VtpCKFZaPKaE+AVvD9Jbb+S+kSfk+aq\nXz/vxPvZZ9CtW6WjCa3VUUd58+LRR/tIt0rPIxFCaHKFDiVeGVgl+bkbMAE4DNgo2Q4D3k+OheZq\n11191s4776x0JKE169gRLr7YOy5WwzwSrcnMmZVfViMECkxOzOyj2g04GTjKzK4xs9eS7RrgGOC0\ncgYbymyppbw99/ZmtLj07Nk+E+/cuZWOJJTSTjtVxzwSrcncuf4F5fDDKx1JCJkmYVsPrznJNQFY\nO2sgkg6XNEHSLEmjJW1S4HVbSJojaWzO/gGSaiTNS37WSGphy++WQb9+Pg/AxImVjqQwI0bAH/4A\n779f6UhCKUlw6aXw8cc+j0QovxNP9P5mu0UFeKi8LMnJeOAkST+uTJz8flJyrGiS+gIXAoPxZqJX\ngZGSlmngus7AUKCuHpzTgW6pbaUs8bUqffpAhw6VGxZXrCFDoGfP6DjZEq2xxvx5JJpLsgw+qdcd\nd/gaT83FjTd6U9oll8TSD9Vu2jT49NNKR1F2WZKTQ4HewCeSRkkaBXyS7Ms6iccg4Bozu9nM3krK\nmQns38B1VwP/AkbXcdzM7HMzm5psn2eMr/VYYgmfLK5v30pH0rBJk7xfwsCBlY4klMtpp/mU4jfe\nWOlIGjZ3Ltx8M6yzjr9/7rmn0hEV5plnfP6lgw+OJp1SefBBX/OmHG69FVZZBb77rjzlV4ksC/+9\ngHeOPRV4LdlOAVZJjhVFUjugB/NXOMZ8fPMofIHBuq7bD++ge2Y9xXeS9KGkiZLukZS52alV2WUX\nWGGFSkfRsFtvhfbtYY89Kh1JKJfFF4fnnoPBgysdSd2+/x6uu85nGR0wwH8+/zycdFL+88184bia\nmqaNM5+JE72fSc+ePl9HjIwqjVtu8YRv+vTSl3333bD11i1+tfusC//NMLNrzezYZLvOzGZkjGEZ\nfPjxlJz9U/CmmIVIWh34O7CXmdX1Dn8br3nZCdgLf6zPSlo+Y5yhmph5k84uu/g369ByrbRSdX5o\nzprlH+irreZD8Dfe2NdqGTECNt207uteeMFnjD7oIG8CqpQZM7zj8aKL+gSM7ds3fE0ozPnn+/N7\nZn3fnTP48ktfE6gFrqWTK1NyImkfSU9LmiRppWTfIEl9Shte3vtugzflDDaz2l6QC/3nMrPRZnZr\nMproKWBX4HPgkHLHGJrAiy96m3406YRK+fBDOO44/xb75pvez6ShqdUBNtvMm3+GDPGalkqNNJsw\nwZsGRoyAZert3heK9dOf+kSCl18O48aVrtz77vMatz5l/6ituIJmiF3gAulPwFnAJXjTzjpm9oGk\ngcAAM9u6yPLa4f1LdjOzEan9Q4DOZrZLzvmdga+BucxPStokv88FtjOzx+u4rzuAOWa2Vx3HuwNj\nttpqKzp37rzAsf79+9O/f/9iHloop8MO83+qH31U2LTZoWV65x3ve7TZZvCTnzT9/U+d2vB06XX5\nz39gzz1h553httsqs2Dl3Ln1Tycfsvv+e5+Of8UV4X//K03t3047+VT5Tz/d+LIaadiwYQzLWcx2\n+vTpPPnkk1CCGWIxs6I2YBywc/L7t3hfE4B1gS+KLS+5djRwaeq2gI+BE/KcK3zIcnr7ZxLXWsBP\n6riPNvhoogvqiaM7YGPGjLFQ5S67zOzSSysdRai0k082A7P27c1+9Su//dBDZt98U+nICnPPPWbt\n2pnttJPZ7NmVjiaU2v33+9/nnXc2vqxvvzXr0MHsggsaX1aZjBkzxvBZ5LtbhlwgvWVp1lkZeDnP\n/u+BxTKUB3ARcJCkfSWtiY/CWRQYAiDpHElDwTvLmtm49AZMBWab2Xgzm5Vcc5qkbSWtLGkjvClo\nReD6jDGGanLkkT7NeWjdzjoLXnnF50Lp1g2uvx623x6WXBI22cRXqM1q8mT/llpOffrAvff6qLOd\nd/Z+LKHl2GEHn4fp2GN99t3GeOghr41pBf1NIFufkwlAvobV7ck4z4mZ3QEcjzcXvQysD/S2+UN/\nuwHFDh9ZErgWr1G5H+gE9DQfqhyKUQ2jCkLIp21b2GADT1b/8x9fF+qtt+Cqq2DNNb1TYrEmToQj\njoCVV/a5P8rtd7/zWY5fesn7roSW5eKLPel89dXGlfPhh958ucoqJQmr2mXpc3IgcAZwHHADcCCw\nKj4J24Fm1ozmPl9Qq1+VOJ/ddoNVV/WVYkNoaaZM8VqLrbby/hfnngtDh0Lnzj51/uGHN91osO++\na/HDQ1ut2bN9zajGqqnx9c+qVCVWJf6RmV0vaRbwV7zp5TZgEnB0c05MQh2WW87nEzn99PjHGVqe\n55/3ETO1unaFc87xOSqa+u+9XPdn5ssArLhiecoPDStFYgJVnZiUWlGPVG5F4C4zWx1vKulmZj8z\nsxvKEmGorEGDfCKhE06odCQhlN5OO/ncEffe6zUmEybA8ce3rET8wgth3XW9D00IzUSxaZiA90j6\nf5jZTDObWvKoQvVYdVX/53b11T4lcwgtzVJLeZKy776VGY5cTvff7wv6HXGE14KG0EwUlZyYz8b6\nLrB0ecIJVemQQ3z5+gMOKP/ohRBCaYwb5zPR7rgj/PWvlY4mhKJkacD6C3C+pHVLHUyoUhLccIN3\n6qrUwmCzZ/s/2TFjKnP/IVTKhx/6SsEff1z4NV9+6bVBK63kfcZaUV+F0DJk+Yu9GdgUeFXSLElf\npbcSxxeqxU9/Cv/8J9x+uy881dTuuw/++9+W1RcghEKYwQcf+IiiCRMaPn/OHF8Mc9o0n0V58cXL\nH2Mo3ttvVzqCqpZl3uJB+AxwobXp18/njdhuu6a/7yFDfOXUNdZo+vsOoZJWXhmeeMJrT7baCh59\nFFZfve7zBw3yxeFGjfJrQ/UZNQq23Raefdb/r9Xlk098uHv37tW5+GUZZRlKPKQMcYTmQIIDD2z6\n+5082WdHvOqqpr/vEKrBiisumKA88gisvfbC59XU+Bo9V1wBvXo1fZyhMFtv7QnHkUf6cPa61ge7\n/nq45BJfw6mVrRpdcLOOpDaSTpT0jKQXJZ0rqYV1bQ9V6dZb/Y25xx6VjiSEyll+eU9Q/u//4Ne/\nhtdeW/icNm18RtJDYvH1qta2rSeQY8bAjTfWfd7dd/v0960sMYHi+pycAvwdX+zvU+BofMG9EMrH\nzJt0dtml6WbqDKFaLbssPPYYrLCCf/uO6e6br549ffj6ySfD118vfPz99+H111vNWjq5iklO9gUO\nM7PtzWxnYEdgL0nRDTyUz0sv+ZDIgQMrHUkI1WHppb1ZZ599ok9Jc3fuub6Y3+mnL3xs+HCfWXb7\n7Zs+ripQTGKxIvDjLFxmNgrvGLt8qYMK4UdDh/pIoW22qXQkIVSPLl28L8Kii1Y6ktAYyy3nicmV\nVy7cTDd8uA8+WGyxysRWYcUkJ4sAs3P2zQHalS6c0CzV1HiHrXI4+2xvd62rw1gIITRnRx3lo6/+\n/Of5+yZP9pE8u+5aubgqrJjROgKGSPo+ta8jcLWkH9clN7PW+2y2Vkcf7R31XnwROnQobdlLLgmb\nblraMkMIoVq0bw+33eYdnWvde69/Idtxx8rFVWHF1JwMBaYC01PbrfiKxOl9obU58EB46y0YPLjS\nkYQQQvPTvbt3cq41d66PTlxqqcrFVGEF15yY2X7lDCQ0YxtsAGedBaec4pn+FltUOqIQQmi+jjjC\nt1YsRtqE0jjhBNhsMxgwAL77rtLRhBBCaMYiOQml0batj6yZPNkTlRBCCCGjqklOJB0uaUKymOBo\nSZsUeN0WkuZIGpvn2O6Sxidlvirpd6WPPPxo9dXhggvg6qvhwQcbPj+EEELIoyqSE0l9gQuBwcBG\nwKvASEnLNHBdZ7yj7qg8xzYHbgOuAzYE7gXukZRnQYpQMoceCr17w5ln+uyuWXz6afZrQwghNHtV\nkZzgKx1fY2Y3m9lbwKHATGD/Bq67GvgXMDrPsaOAB83sIjN728xOB8YCrbuXUblJ3rzz0EPZVtGc\nPRvWWw8uuqj0sYUQQmgWChqtI2mnQgs0sxHFBCCpHdADX7entgyTNAqocy1pSfsBKwN7AaflOaUn\nXhuTNhLoU0x8IYOuXbNfe999vs7E739funhCCCE0K4UOJb6nwPMMKHYqz2WSa6bk7J8CrJHvAkmr\n48nMr8ysRvm/oXero8xuRcYXmtKQIfDLX8Kaa1Y6khBCCBVSUHJiZtXS/EOy0OC/gMFm9n7t7lLe\nx6BBg+jcufMC+/r370///v1LeTch1+TJ3hx05ZWVjiSEEEI9hg0bxrBhwxbYN3166eZhLWb6+oVI\n6mhmuevtFOsLYB6Q2xbQFfgsz/mLAxsDG0r6Z7KvjYejH4DtzOzx5NpCy1zAxRdfTPfu3Qt+AKFE\nbr0V2rWDvn0rHUkIIYR65PvCPnbsWHr06FGS8ouuEZHUVtJpkj4FvpO0SrL/bEkHFFuemc0BxgA/\nLjsrb6fZBng2zyXfAOviI3A2SLargbeS359PznsuXWZi22R/qDZm3qSzyy6+4moIIYRWK0tzzSnA\nQOBE4IfU/jeAAzPGcRFwkKR9Ja2JJxuLAkMAJJ0jaSh4Z1kzG5fe8DV/ZpvZeDOblZR5KbC9pGMl\nrSHpDLzj7RUZYwyNYeZLgM+bl//4Sy/BuHEwcGCThhVCCKH6ZElO9gUONrN/4c0xtV4FMvViNLM7\ngOOBs4CXgfWB3mb2eXJKN2CFOi6vq8zngD2Bg4FXgF2BPkkyE5ram2/CbrvB+efnPz5hgg8h/u1v\nmzauEEIIVUdW5GRXkmYBa5rZR5K+BTYwsw+Syc1eMLNO5Qi0KUjqDowZM2ZM9Dkph7/8xecvefFF\nXywwl1m2uVFCCCFUXKrPSQ8zW2jW9mJkqTkZB2yZZ/8f8VqPEPI780wfIrzPPvD99wsfj8QkhBAC\n2ZKTs4ArJP05uX5XSdfhfVHOKmVwoYXp0AFuuQXeegsGD650NCGEEKpU0cmJmd0L7Aj8FpiBJyRr\nATua2f9KG15ocTbYAM46C847D55+utLRhBBCqEKZ5jkxs6fwYbkhFO+EE3ya+gED4NVXoVOz7aYU\nQgihDDLP/CppY0n7JFtpZl0JrUPbtr44oATvvlvpaEIIIVSZomtOJP0MGAZsAUxLdneR9CzQz8w+\nKWF8oaVabTXve7JIoyYpDiGE0AJlqTm5HmgHrGVmS5nZUnifkzbJsRAKE4lJCCGEPLJ8OvQCNjez\nt2t3mNnbko4EnipZZCGEEEJolbLUnHyM15zkagtMalw4IYQQQmjtsiQnJwCXS9q4dkfy+6X4FPQh\nhBBCCJkV1Kwj6WsgPc/9YsDzkuamypkL3AjcU9IIQwghhNCqFNrn5JiyRhFCCCGEkCgoOTGzoeUO\nJIQQQggBMs4QW0tSR6B9ep+ZfdOoiEIIIYTQqhXdIVbSYpKukDQVX1vn65wthBBCCCGzLKN1zgN+\nA/wJ+B44EBiMDyPet3ShhRBCCKE1ytKssyOwr5k9Lukm4Ckze0/SR8BewL9KGmEIIYQQWpUsNSdL\nAR8kv3+T3AZ4GtgqayCSDpc0QdIsSaMlbVLPuVtIelrSF5JmShov6ZiccwZIqpE0L/lZI2lm1vhC\n8zRs2LBKhxBKKF7PliVez1CXLMnJB8DKye9vAXskv+/I/IUAiyKpL3Ah3jy0EfAqMFLSMnVcMgO4\nHNgSWBM4G/irpANzzpsOdEttK2WJLzRf8c+vZYnXs2WJ1zPUJUtychOwQfL7ucDhkmYDFwPnZ4xj\nEHCNmd1sZm8BhwIzgf3znWxmr5jZv81svJlNNLPbgJF4spJzqn1uZlOT7fOM8YUQQgihiRTd58TM\nLk79PkrSmkAP4D0ze63Y8iS1S67/e6pckzQK6FlgGRsl556Sc6iTpA/xJGwscLKZjSs2xhBCCCE0\nnSw1Jwsws4/M7G7gK0nXZihiGXzRwCk5+6fgTTF1kvRxUmvzAvBPM7spdfhtvOZlJ7yjbhvgWUnL\nZ4gxhBBCCE2kUZOw5VgaOAA4uIRlNuRXQCfgl8A/JL1nZv8GMLPRwOjaEyU9B4wHDsH7tuTTEWD8\n+PHljDk0oenTpzN27NhKhxFKJF7PliVez5Yl9dnZsbFlycwaPquQgqQNgLFm1rbI69rh/Ut2M7MR\nqf1DgM5mtkuB5ZwC7G1ma9Vzzh3AHDPbq47jexJDoUMIIYTG2CvpC5pZKWtOMjGzOZLGANsAIwAk\nKbl9WRFFtQU61HVQUhtgPeD+esoYiTcBfQjMLuK+QwghhNauI/Bz/LO0USqenCQuAoYkScoL+Oid\nRYEhAJLOAZY3swHJ7cOAifhQZoBewHHAJbUFSjoNb9Z5D+gCnAisCFxfVxBm9iXQqGwvhBBCaMWe\nLUUhBScnku5u4JQuWYMwszuSOU3OAroCrwC9U0N/uwErpC5pA5yDZ2hzgfeBE8ws3SF3SeDa5Nqv\ngTFAz2SocgghhBCqVMF9TpKp6htkZvs1KqIQQgghtGol6xAbQgghhFAKjZ7npKUoZm2fUL0kDU6t\npVS7xcR7zYikLSWNkPRp8vrtlOecsyRNStbW+p+k1SoRa2hYQ6+npJvyvGcfqFS8oX6STpL0gqRv\nJE2RNFzSL/Kc16j3aCQnZFrbJ1S3N/C+S7VrKv2qsuGEIi2G9zs7DFioalfSn4Ej8DmVNsXX2hop\nqX1TBhkKVu/rmXiQBd+z/ZsmtJDBlvjadpsBvwXaAQ9L+kntCaV4j0azDiBpNPC8mR2d3BbwMXCZ\nmZ1X0eBCUSQNBvqYWfdKxxIaT1INsHPOHEiTgPNrl9KQtAQ+o/QAM7ujMpGGQtTxet6Ez2m1a+Ui\nC1klX+KnAluZ2dPJvka/R1t9zUlqbZ9HaveZZ2wFr+0Tqs7qSRXy+5JulbRCw5eE5kDSyvg36/T7\n9RvgeeL92pz9OmkieEvSlZKWqnRAoWBd8Bqxr6B079FWn5zQiLV9QlUaDQwEeuOrW68MPClpsUoG\nFUqmG/6PMN6vLceDwL7Ab/D5qHoBDyQ12KGKJa/RJcDTqUV1S/IerZZJ2EIoCTNLz0z4hqQXgI+A\nPYCChsOHEJpOTjX/m5Jex+eu+jXwWEWCCoW6Elgb2KLUBUfNCXwBzMM7Y6V1BT5r+nBCKZnZdOAd\nIEZztAyfASLery2WmU3A/y/He7aKSboC2AH4tZlNTh0qyXu01ScnZjYHnz12m9p9qbV9SjINb6gc\nSZ3wf3KTGzo3VL/kg+szFny/LoGPHIj3awsg6Wf4Kvfxnq1SSWLSB9jazCamj5XqPRrNOq7etX1C\n8yHpfOA+vCnnp8CZwBxgWCXjCoVL+gethn/7AlglWfX8KzP7GG/jPlXSe/ginWcDnwD3ViDc0ID6\nXs9kGwzchX+grQb8A6/tbPTicaH0JF2JD/XeCZghqbaGZLqZ1S6Y2+j3aAwlTiSLCZ7I/LV9jjSz\nlyobVSiWpGH4OPylgc+Bp4FTkmw+NAOSeuF9DXL/OQ01s/2Tc87A51DoAjwFHG5m7zVlnKEw9b2e\n+Nwn9wAb4q/lJDwpOT21tlqoIslw8HyJw35mdnPqvDNoxHs0kpMQQgghVJVW3+ckhBBCCNUlkpMQ\nQgghVJVITkIIIYRQVSI5CSGEEEJVieQkhBBCCFUlkpMQQgghVJVITkIIIYRQVSI5CSGEEEJVieQk\nhBBCCFUlkpMQWgFJj0m6qIjzV5JUI2n95Hav5PYS5YuyzlhuknR3U99vVpIGS3q50nGE0JxFchJC\nMyRpSJIsXJnn2D+TYzemdu8CnFbEXUwEugFvpPY1eq2LYpOkZizWBQmhESI5CaF5MjyB6CepQ+3O\n5Pf++KrM8082m2ZmMwou3E01s5pSBRwaR1KsIh9ajUhOQmi+XgY+BnZN7dsVT0wWaFbIrbGQNEHS\nSZJukPSNpI8kHZQ6vkCzTsqvJL0qaZak5yStk7pmKUm3SfpE0gxJr0nqlzp+E9ALODope56kFZNj\n60i6T9L0JJ4nJK2c8xiOkzRJ0heSrpDUtq4nprZpRdLeyWOdJmmYpMVynoOjcq57WdLpqds1kg5O\nYpshaZykX0paNXlOv5P0TG6sybUHS5qYXPdvSYvnHD8wKW9W8vNPeZ7/PSQ9LmkmsGddjzeEliaS\nkxCaLwNuBPZP7dsfuAlQAdcfC7yIL1d/JXCVpNVzyk8TcB4wCNgY+BwYkUoSOgIvAb8D1gGuAW6W\ntHFy/GjgOeA6oCuwHPCxpOWBJ4BZwK+BjZJz0jUFvwFWSY7vCwxMtvqsCvQBdgB+jydGf2ngmnxO\nBYYAGwDjgduAq4G/AT3w5+WKnGtWB3ZP7rc3/ph+bIKTtBdwBnASsCZwMnCWpH1yyjkHuBhYCxiZ\nIfYQmqWoJgyhefsXcK6kFfAvG5sDfYGtC7j2fjO7Ovn9H5IGJde9m+zLl+CcYWaPAkgaAHyC92e5\n08wmAen+JP+UtD2wB/CSmX0j6Qdgppl9XnuSpCOAaUB/M5uX7H4/536/Ao4wMwPekXQ/sA1wQz2P\nT8AAM5uZ3M8tyTXF9L0BuNHM7krKOA9PsM40s1HJvkvxJDGtA7CPmX2WnHMkcL+k48xsKp6YHGdm\n9ybnf5TUQh0K3JIq5+LUOSG0GpGchNCMmdkXkv4L7Id/GN9vZl9JhVSc8HrO7c+AZeu7O2B06r6/\nlvQ2/q0eSW2AU/Aag58C7ZOtob4uGwBPpRKTfN5MEpNak4F1Gyj3w9rEJHVNfY+vLunnaUry842c\nfR0ldTKz75J9E2sTk8RzePK4hqTv8FqdGyRdnzqnLZ6kpY3JEG8IzV4kJyE0fzfhzQoGHFbEdXNy\nbhuNa+o9ETgSb755A09KLsUTlPrMKqDsLLE2dE0NC9cOtWugHKtnX6HPXafk54HACznHchO0gjsx\nh9CSRJ+TEJq/h/AEYBHg4TLej4Bf/nhDWhL4BTAu2bU5cK+ZDTOz14EJyfG0H/AagrTXgC3r6+Ba\nJp/j/V4ASOZwWahjax6FDBNeUVK31O2eeOLxVtKsMwlY1cw+yNnSo6xiOHJotSI5CaGZS4b7rgms\nk9P0UQ6nS/qNpHXxTqKfA7V9It4FtpXUU9JaeIfYrjnXfwhsloxGWTrZdwWwBPBvST0krZaMslmd\n8noU2EfSryStlzyeuQVcl6/NLHff98BQSetL2hKvQfp3qq/NYOAkSUdKWl3SupIGSjqmgfsJoVWI\n5CSEFsDMvkv1d8h7SgO3CznH8NEul+KjfP4P2NHMaj/Q/wqMxWtyHsX7eAzPKeMCvAZhHDBV0opm\n9hU+Gmcx4HF8xM+BLNwsU2rn4KOE7ku24SzcEbeQ5ynfvneBu4EH8OfjFeDwH082uwF/jPvhNUeP\nAwPw2qb67ieEVkHl/6IVQgghhFC4qDkJIYQQQlWJ5CSEEEIIVSWSkxBCCCFUlUhOQgghhFBVIjkJ\nIYQQQlWJ5CSEEEIIVSWSkxBCCCFUlUhOQgghhFBVIjkJIYQQQlWJ5CSEEEIIVSWSkxBCCCFUlUhO\nQgghhFBV/h+ak11DUWCsCQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYlOXVx/HvD4Miolh4FU1s2EssoFE0isZYYmwYG1hQ\nE0vAhlETK0aTGBtGVEQTe8GY2AtCjAUsaATFGLAXrCgWpCqw5/3jPCMPw8zuzLOzO7O753Ndc+3O\nU+4508/cVWZGCCGEEEKtaFftAEIIIYQQ0iI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CRUnqU7SORnPfVfS9anr/ZLyulcu\nwuwkrZ7Ec3K1Y2nLJD0h6eUKl7nQa6+WFXif9Epel9tX8DYyv49DaKxITkJBqaSgTtI2RY55P9l/\nf94uSy5Z1BU4t6JrLEjqI+nESpYZGpa8VoZUqLimWHejpDJT74s6SfMlfShppKReTRBTMYViLfsx\nkfQzSYPquY1mX99E0qC8xzj/8V6xuWMKze971Q4g1LzZQF/gmfTG5IP4+8CcAucsCczLeHvr4QlK\nU+oLbARc3sS3E1qvUcDNgIA1gf7AY5J2N7ORzR2MmT0paUkz+7bMU3fHY/99gX2NeR83lgHHAjML\n7PuqmWMJVRDJSWjIw8D+kk4ws3TS0Bd4AeiSf0KGD8j0uXOznttSSepoZrOqHUcoy+tmdnvuiqR7\ngZeBk4CCyYkkAYub2TdNEVDG950qXF4l3WVmX5RzgqQlgG+twIq2lXifxXu1+USzTqiPAcOBFYCd\ncxsltQf2A26nwIdbflu1pHOTbWtJulHSl5K+knS9pA555xZr919K0jWSpkqaJukmScvmnbuXpAeT\navY5kt6UdJakdqljHgd+DuT6jtRJeju1f4kk3tckzZb0kaS7JK1Z4H4eldzGHEnPS9qioQc01Vy2\nvaShkqYA7yf7bpT0ToFzzpVUl7etTtIQSXtL+m8SwyuSdm3g9leUNFfS2QX2rZuU2z+5/r2kiv31\n5LGYKmmMpJ0aup9ZlfIc5h3fXdLTkmZJelvSMQWOWVzS7yW9kZQ5WdKFkhavVNxm9gowFa9Fyd1u\n7jnqK+kVvJZx12SfJJ2UPGezJX0iaVj+azo59ix5E+pMSf+WtGGBYwr2OZG0laSHJX0haYakCZKO\nT/bdgNeapJuq5ufFf05eeZtLGpG8B6dLelTSVnnH5F7j20gaLOnT5LbvlrRC2Q9uEan7fKCkP0j6\nAK9pWVrS4cXeZxnuR8EyQtOKmpPQkHeBsUAfFvwi3B1YBrgDKKXvRu5XzJ3A28DvgO7Ar4ApwOkF\njk0TcCXwJTAIb/rpD6wG7Jg67nBgOnApMAP4CXAesDTw2+SYPwCd8Sapk5KyZwAkX4APJWUOB/6S\nnLszsDGQThwOBjoBw5KYfwvcJambmc2nYUOBT/Hq9I6p+16sL0Gh7dsB+yZlTQdOAP4paTUz+7LQ\njZrZp5KeBA4Azs/bfRBejX9ncv33+HN1LfAf/DnfAn/u/t3wXczkcBp+DnOWx5+vO/FE+QDgaknf\nmNmN8F1txQPANsA1wKvAD4GBwDr449dokpYDlgPeyNu1UxLXlXjy8m6y/VrgMOB6vHlxTeB4YDNJ\n2+ZeQ5LOB84EHgRG4I/9KKB9gTAWeo1I2hm/7x/hr+VPgA2APYAr8MdjFeCn+Ou5aC1KUt6GwGhg\nGvBn/LVyDPCEpO3N7D95p1wBfAGcC6yBP+ZX4p8lpVghef7S5pnZtLxtZwPfABcDSwDfsuCxSL/P\nlkrux0Zl3o9FygjNwMziEpdFLkA/YD7+Ydgfb+ddItn3d+DR5P93gPvzzq0DzkldH5RsuzbvuLuA\nT/O2vQNcnxdHHfAcsFhq+ylJfHukti1R4H5cjX/ZtU9tewB4u8CxRyS3dUI9j8vqyTGfAsuktu+Z\nxLN7CY9rHfAEoLx9NxSJaxAwv8BjPBtYI7Xth8n2/g3EcFQS64Z5218B/pW6/mL+c9vI11QdMKSB\nY0p9Dh9P7sOJqW3tgfHAx7nXCnAIMBfomVfm0cn5Wxd77TVwP67FaxS7AD8CHi0QT11y2+vlnf/j\nZN+Bedt3TrYflFzvgte23Jd33B+S49Lvk17J7W+fXG+H/xB4C1i6nvtyRf5rKy/+9Pv4nuQ1t3pq\nW1f8S/7xAq/xR/LKuxRPHIrGk3q91xW5TMy7z3V4Qrh4Ge+zcu/HImXEpekv0awTSnEn/ut+D0md\n8F9et5VZhuG/1NLG4L+OOpVw/rW2cI3E1STJwHc3kGrLl9QpqUJ+Kol9/RJuY1/gM/zXXUPuMLOv\nU9fH4L88u5VwrgF/teQTsBH+ZWbvfleo2X+Br0uI4W78sTswtyH5NbkhXhuW8xWwkaS1Gxlnycp8\nDufhSULu3Ln4a2xFoEeyeT9gEvC6pBVyFzy5EQvXvJXjl/hr5VO8ZrEncKmZ5XeyfsLMXsvbth/+\n2P47L6YX8dqiXEw74wnXFXnn/6WE+DbHayv+YmbTS7tLxSW1ijsD95jZe7ntZvYJXmv147z3sZF6\nbhJjgMXwBL8hBvTGa3XSlyMKHHujFe4fs8j7LOP9qMR7NZQpmnVCg8xsqqRH8U6wS+G/yv6ZoajJ\neddzTQ/LkTStFAsBeDMvppmSPsY/gIHvqp3/iH+4L5N3fucS4lsLeM0W7vhbzEJtz2b2VVIDvVwJ\n58KC6v3GKNT+/WVDMZjZ55L+jTc35IaRHoT/yr8ndeg5wL34F/srwCPALUkS1CTKfA4/MrPZedte\nx5OONYDn8aab9fFEIp/hiUwW9+FJrOG1Ov8rEAsUfp7XAZbFE5v6Ylot+Zv/2p8qqWCzXcpaSVn/\na+C4Uv0fniC+XmDfJPwzYdXk/5z812f6/V6KMVZah9h3y9iX5X7UV35oIpGchFLdDvwVWBkYkfHX\nWLG+GPW2dZdCUme8Hfkr4Cy8SnsO/gv6z1S+83dj70uhL7Jiv84Wa4IY7gCul7SJmb0M7A/8O/1l\nYGZjJK0F7A3sgtcWDJR0jJlVfLKyJnoO2wH/xfs7FHpcsnZw/MDMHivhuELPczu8r1XfIjEVSqRa\noiZ7v+cp9BiXsq8S5YcmEslJKNU9eJX5VqSaA5qJ8F+bT363QVoKT5QeSjbtgP8i29vMnk4dt1aB\n8oolAW8BP5K0mJXWqbXSvsR/Uedbowlu6178+Tww6XS4Ll5jsRAz+wq4CbhJUke8av5cvCNnpe1A\n6c8hwCryuT3SXx7r4c9vrvPyW8AmZvZ4E8Sb1Vt4R9lnrP5hxblmh3VI/XqX1IWGax/ewt83GwP1\nJVGlNld8BszCH998G+B9M1rCSJbWcj9avehzEkpiZjPxSZHOxTuUNrejJaWT6f54jcLDyfX5+Idx\netjw4slx+WZSuJnnLrza97hKBJzBW0BnSRvnNkhaGdin0jdkPuJhJN60cxA+2uG+9DGSls87Zxbe\nxLBE6phlJK0nKd0Ek1U5zyH4j6tjU8e2x0ddfIZ3jAXvL/UDSUflnyypQ5JwNbc78dgXmRpe0mJJ\nDRJ4J9t5+CietIEl3MZ4PEE7KVVeITOT2633+UuaOkcBe0vKNTchaSV89M0YM6uvabYmtJb70RZE\nzUmoz0LVr2Z2S7UCARbHOxDeifch+DX+QfJgsv8ZvObhZi2YIv0QCv8yHAccIOlSfIjsjKScm/Hh\nnYOTOQ/G4MOFdwKuMrNKJWXFqrXvAC4E7k3uw1L4l+9r+KipSvs7cCv+5T8yr4MvwERJT+CP1xfA\nlnhnzvQU9L3xUUaH449fQ7aQdGaB7Y9T3nMIPirnNElr4H0IDgI2AY5K1XzdwoIhxjsCT+NJ7QZ4\nU9YuLEhkmoWZjZZ0DfA7SZvhX5Zz8dqr/fAh4XcnfUsuSY57EE/ENwd2o3DTz3evKzMzSb8G7gde\nks9p8jH+3tnQzH6WHDouOe8KSSPxkTt/LxL6WXin1KclDcWTyaPx9+ZpxWIpcXuh4/aXVChRGGVm\npTR9FbutStyP0MQiOQn1KaXKt9AcHI1Zk6NYecfhczH8Hh/BcBupOVbM7AtJP8eHK56Pf8ndgldp\n58/YORTYFP9CPQmvPn/QzOok/QyfV6IvPnrnczxJSXcCLXc+kkLHLbrR78M+wGA8SXkHn2dkXRZN\nThobA/gX12w8CbqjwP7Lgb3w0Q1L4I/TGcAlBW6zFIY3C25VYN/ZZvZMGc8h+HNzON4xNTdnzoB0\nf5jkS3pvvLbhMLwWahben+UyFu4YWc7z16jjzOzXkl7Aa3r+iNeQvIsneE+njjtT0mw8Sd0BHxm0\nC96cWeh9kr6NUUlCNgg4Ga+ReouFR9HcjSebB7FgrpNccrJQ/GY2UdJ2wAX467JdEk9fM3uhvlhK\n2F7ouKFF9u3IguSsvvKKPfaVuB+hiSlGSIUQQgihltRMnxNJAyS9I5/KeaykLRs4fnFJf5RPdz5H\nPnX14an9uamH52vB1MyxJkIIIYRQ42qiWUfSgXhV7tH43AQDgZGS1jWzqUVO+wfeefEIvKpyZRZN\ntqbhVeK5dsOoJgohhBBqXFnNOsloiTPwaZM/qFgQ0ljgOTM7MbkufDjXEDO7qMDxu+HzbnRLhjoW\nKrMfcJmZLV9ofwghhBBqU1nNOmY2DziVCta4JMP/epBaSCyZKvhRfEroQvYEXgB+K+kD+QqyFytv\nhVugU9LsM1nSvSqwmmcIIYQQakuWPieP4QsuVUoXfGjflLztU/DFmArphq/IuhHe+/5EfAjeValj\nXgOOxEcbHIzf12ckrVKxyEMIIYRQcVlqQEYAf5b0Q3yM/Mz0TjO7vxKBNaAdPpNf39yEOZJOBv4h\nqb+ZfWNmY/HhYST7n8XXSziGBeuJLCRZfGtXfEjfnCa9ByGEEELr0gGf0XqkmX3emIKyJCe5secn\nF9hnFF8HpJip+CQ4K+VtXwn4pMg5HwMf5s3kNwnv+PoDvIPswoGZzZP0IlDfCqu7Uv5quyGEEEJY\n4GC8X2hmZScnZlbR4cdmNlfSOHwWzvvhuw6xO7HwTJRpTwP7SeqYTKkNvlZCHVCwo26yVPYPWbAW\nSyHvAtx6661ssMEGZd6TUIsGDhzIZZddVu0wQoXE89m6xPPZukyaNIlDDjkEKrCSc00MJcZnxLwx\nSVJyQ4k7AjcCSLoAWMXM+iXH345PQXyDpHPxIcUXAdflFtKSdDberPMmvpjaafgS5H+rJ445ABts\nsAHduzfFbOGhuXXu3Dmey1Ykns/WJZ7PVqvR3SIyJSeSegGn4OtTAEwELjazMVnKM7M7k5U2z8Ob\nc14Cdk2tn9AVWDV1/ExJOwNX4GujfI5PuXx2qtjl8Gmau+LTYI8DeprZq1liDCGEEELzKDs5kXQI\nvtBXbk0GgG3xRdkON7NM7UxmNpQiaymY2REFtr2O9xEpVt7JFO4XE0IIIYQalqXm5EzgNDNLNxQO\nSUbLnE0jO8GEEEIIoW3L0rm1G1Bo6fj7gTUbF04IldWnT59qhxAqKJ7P1iWez1BMluTkfXwkTb6f\nJvtCqBnx4de6xPPZusTzGYrJ0qxzKd6MsxnwTLJtW+BwfKbWEEIIIYTMssxzcrWkT4DfAAckmycB\nB5rZfZUMLoQQQghtT1nJiaTF8FqSx83snqYJKYQQQghtWbmrEs8HRuFziIQQQgghVFyWDrGv4CN2\nQgghhBAqLktychZwiaQ9JK0saZn0pdIBhhBCCKFtyTJa5+Hk7/34KsQ5ItuqxCGEEEII38mSnOxY\n8ShCCCGEEBLljtb5HtALuN7MPmiakEIIIYTQlpU7WmcecCoZVzMOIYQQQmhIlg6xj+G1JyGEEEII\nFZelBmQE8GdJPwTGATPTO83s/koEFkIIIYS2KUtyMjT5e3KBfTFaJ4QQQgiNkmVtnSxNQSGEUr31\nFgwdCnV18OMfwy9+UfzY6dPhnHPqL2/AAFh77crGGEIITahmOrZKGgCcAnQFJgDHm9l/6jl+cWAQ\ncHByzkfAeWZ2Y+qY/YHzgDWA14HfmdmIJroLIVTGVVfB1VdDt26wwgr1H/vttzBqVP3H9O1budhC\nCKEZlJycSHoY6GNm05LrvwOGmdlXyfUVgDFmtmG5QUg6ELgUOBp4HhgIjJS0rplNLXLaP4D/A44A\n3gJWJtXBV9I2wO3Ab4GH8CTmXkmbm9nEcmMModmMHg377w8339zwsSusAP/7X9PHFEIIzaicJppd\ngSVS188Alk9d/x6wXsY4BgLXmNnNZvYqcCwwCziy0MGSdgO2A3Y3s8fNbLKZPWdmz6YOOwEYYWaD\nzew1MzsHGA8clzHGEJre11/Diy/C9ttXO5IQQqiacpITNXA9E0ntgR7Av3PbzMyAR4GeRU7bE3gB\n+K2kDyS9JuliSR1Sx/RMykgbWU+ZIVTfM894X5OmTk7q6jwRCiGEGlQLfU664CN8puRtn0Lxmphu\neM3JHGCfpIyr8ZqcXybHdC1SZtfGhxxCExk9Grp2hXXWadrb+clPvJPs3/7WtLcTQggZlFNzYiy8\n0B8FrjeXdkAd0NfMXjCzR/Chzf0kLVH/qSHUsIkTvdZEFamYLG7rreG++2DevKa9nRBCyKCcmhMB\nN0r6JrneARgmKTcJW9akYCowH1gpb/tKwCdFzvkY+NDMZqS2TUpi/AHeQfaTMsv8zsCBA+ncufNC\n2/r06UOfPn0aOjWExrnnHpg9u+lvp3dvuPBCePpp6BUTPocQyjN8+HCGDx++0LZp06ZVrHx5944S\nDpRuKOU4Mzui7CCkscBzZnZicl3AZGCImV1c4PijgMuAFc1sVrJtb+CfQCcz+0bSHcCSZrZ36ryn\ngQlm1r9IHN2BcePGjaN79+7l3o0QWo66OlhtNdhvP/jLX6odTQihFRg/fjw9evQA6GFm4xtTVsk1\nJ1mSjjIMxmtlxrFgKHFH4EYASRcAq5hZv+T424GzgBsknYsPKb4IuM7McjU7lwNPSDoZH0rcB+94\ne1QT3o8QWoZ27WCffbym5rLLmr4ZKYQQylATs72a2Z34BGznAS8CmwC7mtlnySFdgVVTx88EdgaW\nBf4D3ALcB5yYOuZZoC8+d8pLwL7A3jHHSQiJ3r1h8mQY36gfOCGEUHG1MFoHADMbyoJ1e/L3LVJr\nY2av43Ov1FfmXcBdFQkwhNZm++1h+eXh7rvBq2JDCKEm1ETNSQihCtq3hz33hOeeq3YkIYSwkJqp\nOQkhVMGQIbD00tWOIoQQFhI1JyHUgrlzq3O7yywTnWFDCDUnU82JpHWAHYEVyUtwzOy8CsQVQtsx\nfz6ssorPO3JkweWkQgihTSk7OUnmGLkanzztExaeJdbwETchhFJNmABTp8K661Y7khBCqAlZak7O\nAs40swsrHUwIbdLo0bDEErDlltWOJIQQakKWPifLAf+odCAhtFmjR/taN0vEslAhhADZkpN/ALtU\nOpAQ2iQzT062377akYQQQs3I0qzzJnC+pK2B/wILDTMwsyGVCCyENmHSJPj889pYfG/mTI9ltdWq\nHUkIoY3LkpwcDcwAeiWXNAMiOQmhVKNHw/e+58061bbnnj7nyX33VTuSEEIbV3ZyYmZrNkUgIbRJ\no0fDFlvAUktVOxLYfXc4+2yvQamFeEIIbVajJmFTolLBhNDmXHEFXHddtaNwvXvDnDnwyCPVjiSE\n0MZlSk4kHSbpv8BsYLaklyUdWtnQQmgDVlgBNtyw2lG4tdaCTTaBe+6pdiQhhDau7ORE0sn4JGwP\nAwckl0eAYZIGVja8EEKz6t0bHnwQvv222pGEENqwLDUnxwO/NrPfmtn9yeU0oD9wQmXDCyE0q969\nYdo0ePzxakcSQmjDsiQnKwPPFNj+TLIvhNBSbbIJrLlmNO2EEKoqS3LyJt6Uk+9A4I3GhRNCqCoJ\n9t0XPvqo2pGEUj35pNd2hdCKZElOBgHnSXpE0tnJ5ZFk+zlZA5E0QNI7kmZLGiup6EIjknpJqsu7\nzJe0YuqYfqntuWNmZY0vhDbjoovg/vurHUVoyPTpcOihsMMOcNRR1Y4mhIoqOzkxs7uArfBVifdJ\nLlOBH5lZprpgSQcCl+IJzubABGCkpC71hQKsA3RNLiub2ad5x0xL7e8KrJ4lvhDalHaNmmEgNIcX\nXoDNN4d774Ujj4QHHoDJk6sdVQgVk+lTyMzGmdkhZtYjuRxiZi82Io6BwDVmdrOZvQocC8wCjmzg\nvM/M7NPcpXColj7ms0bEGELl7LUX3HprtaMILU1dHVx6KWyzDSy/PLz0Evztb/D667HsQGhVSkpO\nJC2T/r++S7kBSGoP9AD+ndtmZgY8CvSs71TgJUkfSRolaZsCx3SS9K6kyZLulVQjE0qENu2zz/yX\nbtRQhHKdcAKccgoMHAhPPeVz00iw6qrVjiyEiip1+vovJeWaTb7Cm1TyKdm+WJkxdEnOmZK3fQqw\nXpFzPgaOAV4AlgCOAp6Q9CMzeyk55jW85uVloDNwKvCMpA3NLHr7heoZM8b/brdddeMILc9RR3mt\n2y6xMHxo3UpNTn4CfJH8v2MTxVIyM3sdeD21aayktfDmoX7JMWOBsbkDJD0LTMKTmkHNF20IeUaP\n9uG68Ws3lGvTTasdQQjNoqTkxMyeTF19B3g/aXr5TrLGTpZP26nAfGClvO0rAZ+UUc7zwLbFdprZ\nPEkvAms3VNDAgQPp3LnzQtv69OlDnz59yggnhCJGj4btt692FCFUz9y50L59taMIjTB8+HCGDx++\n0LZpFRzSrrwco+ETpPkUGBkjaQXgUzMrt1kHSWOB58zsxOS6gMnAEDO7uMQyRgFfm9l+Rfa3A/4H\nPGRmpxQ5pjswbty4cXTv3r3cuxFCw6ZNg+WW806MRzbU37sGvP8+TJ3qI0NCqJSDDoIVV4QhQ6od\nSaig8ePH06NHD4AeZja+MWWV2qyTlutbkq8TMCdjHIOBGyWNw2tABgIdgRsBJF0ArGJm/ZLrJ+I1\nOP8DOuB9TnYEdv4uSOlsvFnnTWBZ4DRgNeBvGWMMofGefhrMoFevakdSmgED4IsvvPNlaHrTp3uf\npN13r0xZSy/d+HIq7Y474O9/978hFFFyciJpcPKvAefnTWi2GD73yUuLnFgCM7szmdPkPLw55yVg\n19TQ364s3GS0OD4vyir4kOOXgZ3MbHTqmOWAa5NzvwTGAT2TocohVMfo0bDKKtCtW7UjKc2++3oN\nz5QpsFJ+y2uoqBde8BqFL7+Ed96BZcoe/LjADTfAmWfCpEmQ10RdVR9+CP37+/088MBqRxNqWMnN\nOpJyK4H1Ap4F0suWfgu8C1xiZi12Cvto1glNbvx4/+L5xS+qHUlpPv/ck5KhQ+Hoo6sdzQJz58Kn\nhaY2Sllxxfr7NXz9tdcu5HTqVJ0v8ro6GDwYTj8dNtsMhg+HtRvsGle/Dz+E9dbz52zw4IaPbw5m\n8LOfwcsvwyuv+DwtoVWpSrOOme0IIOkG4EQz+7oxNxxCm9S9u19aihVW8M67d99dW8nJ66/DxhvX\nf8wrr8BGGxXfP3gw/P73C2/beGO/v7nLyk28luknn0C/fjBqFJx6KvzhD7D44o0v9/vf95qTc86B\nX/0KNqyBKZ6uuQZGjoQRIwonJpMm+RxA0Vk8kK1DbGdgMTP7Im/78sC8lpy0RM1JCAVceSWcfLJ/\ncdRKE8H06Q33g/nxj+vvc/HGG/Dmmwuuf/qpl/nkk75vhx3g8ceLnt5oI0fCYYf5JGo331z5uUu+\n+caTrdVXh3/9y2+nWt54w2uFDjsMrr668DH77AMvvuhJSseOzRtfqIhK1pxkSU5GAPeZ2bC87ccC\ne5lZBXpyVUckJyEU8MEHPifLbbdB377VjqZ5fPyxdwSur+Yl99mZ5Ut/8mSf3XWnneCmm5quP89D\nD8Eee8A//1ndpsTdd/farpde8uazQt580x/v3/1u0Rqt0CJUMjnJMn/2VkChnxNPJPtCCK3JD34A\nW24J92Ra17NlWnnl+hMT8F/4XbvC/vvDFVfAhAkwf35p5a+2mo/Kefjhpu1o/POf++Xkk2FWFRdl\nv+YaT5CKJSbg/Wx+8xu48ELvlxXatCzJyRL4aJl87YElGxdOCKEm9e0LSyzR/Lc7dWrz32apOnXy\n6eSnTPH1bjbbzPvo7LEHXHQRjB3rnV2L2Xrr5llf6S9/8b4tF17Y9LdVzKqr+uPTkDPOgC5dPJkK\nbVqWeU6eB44Gjs/bfiw+XDekzZ8P//0vPPusv0H32KPaEdW+J5/0x6uYFVdseAKza67xCc8OPtg7\nB4bGOemk5r/Np57yfhiPPw5b1WCl7GqreQdWgDlz4Pnn/bU7erQ3Syy5ZMMjiprD2mvDX//qtV+1\nrlMnuPhiT4ZHjYo1hNqwLH1OtsVXDP4PC1YS3gnYEtjFzMZUNMJmVJE+J3Pnwrhx/gE1erR/wE6b\n5r+QevTwD7C2aPp0eOYZf0z6968/YfjjH+Gyy4rv33hjeOKJ+m/vRz/y9u0DDoBbb80UcqiiGTN8\nHZmuXf01s1jZE09X19y58O67sM461Y6k5THzzshTpviw40qMXgrNoqp9TszsaaAn8D5wALAnPgvr\nJi05MamI+++HZZeFnj39l9O333p175NPwsyZ8OijDZcxefKCjnYt2eefw333eRvyllv647Lbbj5t\n+1tv1X/umWd6dX6xS0OJCXgSePHFPgvl5MkVuUuNcsEF8OCD1Y6i5TjlFP9yuvnmlpeYgM+vEolJ\nNpJPa//22/7ZGdqksmtOWrNG15y8/TbcdZeP0+/evfyFrd57D9ZYw5t/0nMtrLdedYcBlsPMk7Pn\nnvPrq67qU7Xn7su66zbffZkxw6veDz+8uhNRzZvn8zqccYaPRAj1GzHCR3cMGwbHHFPtaEK1fPSR\nz6YcWoxmn4RN0jK5+Usk1Tunckue56Sgzz/3ppnRo30io1/+svix3br5REpZ/d//ee1Lrt36jju8\nz8qKKy74cv/lL2t7DgDJRy8MGODxrr569WLp1MmbkC6/HM4+2xfcq4YJE7xZKyaXatjnn/trfLfd\namvSt1BUnkmqAAAcQElEQVS6//2v4ZFOpYjEpE0rtVnnS0krJv9/ha9Vk3/JbW/5Ro3yL9cf/tB7\nju+zD/zjHz4JVVPq2BH23BMuucSbJb780idqyo0IOPfc6iwzbgavvgrXXuuzTdY3AgG8KefQQ6ub\nmOQcf7y3/w8b1vCxTWX0aOjQAbbYonoxtBQDBnjn0uuuazm1hWGBESO8T1g0x4RGKqlZR1Iv4Gkz\nm5f8X5SZtdhX5XfNOkD3dddduGmlFr5o582D7zVQ2fXzn3tHvGKOOw5+/evi+197zRd7S/vsM78s\ntph36n3gAa/NaSmOPtpjfvfd6gyH7d3bO0U/9ljz33ZLMmECbL65ry0Ti8K1PJ9/7j/oNt3U52+J\n5LLNafZmnXTC0ZKTj5KNHFmbQ9gaSkwAtt3W+3UUs9Za9Z+/9NKL3vdllvFye/aszSXYG3LaaT6V\neXPMKZGvrs5rTo7PH3nfgr30ktfk7bprZcvddFNvEthgg8qWGxY1Z453PN9vP39fV0LUeoUKKrXP\nySalFmhmL2cPp0Z06VLtCLI744zGnb/KKvUP422J1l678au8ZjVxok+D3pr6mwwZ4sPCX3218mVH\nYtI82rf3UW9PPumd1xs7IuqOO+Dvf/e/0VckVECpk7C9BBig5G99WuC4vxCayOjRXuO19dbVjqRy\n9t0XbrjBp2+PZKJlWmwxX9Bxm23g+uu9X1tWH37oHc8POqjpm+O++sqnJQitXqn13GsC3ZK/vwDe\nAfoDmyeX/sBbyb4QQk5uBFctj7Aq109/6iOh7r672pGExujZ01cJPuMM73yfhZmPrurQAa66qrLx\n5Xv6aV/n6eWWXzkfGlZScmJm7+UuwBnACWZ2jZm9nFyuAU4Czm7KYENocXbbDf70p2pHUVkdOsDP\nfta2FgJsrS68EL75Bs45J9v5r77qScP11/tcPk1pyy09OTn++NYxUWWoV5Yegj/Ea07yvQNsmDUQ\nSQMkvSNptqSxkoouBCGpl6S6vMv81HDn3HH7S5qUlDlB0s+yxhdCSOnd28e11cLsuyG7rl1h0CAY\nOjRbjcQGG/gouN12q3hoi1h8ce/vNHq0928JrVqW5GQScLqk7xY8SP4/PdlXNkkHApcCg/BmognA\nSEn19Uw1YB2ga3JZ2cy+W2VL0jbA7cBfgc2A+4B7JWVOoEIIid13906V996b7fyJE+H11ysbU8jm\n+ON9hN8JJ2SrkVhhhcrHVMwuu8Dee/vyBjNmNN/thmaXJTk5FtgV+EDSo5IeBT5Ith2bMY6BwDVm\ndrOZvZqUMwtoYOlZPjOzT3OXvH0nACPMbLCZvWZm5wDjgeMyxhhai7o6Xyk6ZNe5s/c9ydK08803\n3nmyX7+onq8Fiy/usyjPm+cdTmvd4MG+xtYFF1Q7ktCEsiz89zzeOfYs4OXkcibQLdlXFkntgR4s\nWOEY85nhHsUXGCx6KvCSpI8kjUpqStJ6JmWkjWygzNAWXH21t19PmVLtSFq2fv18NtByE4xBg7yv\nwjXXxHwYtWKXXWDMmOot8VCObt187qJLLoE336x2NKGJZJqVysxmmtm1ZnZycvmrmc3MGEMXfPhx\n/jfFFLy5ppCPgWPw0UH74iskPyFps9QxXcssM7QVffv68N4rr6x2JC3bgQfCFVeUl2A89RRcdBGc\nfz5sUvL0SaE5tKRE8Xe/8/4yAwdWO5LQRDIlJ5IOlfRUUmuxerJtoKS9KxteYWb2epIQvWhmY83s\nl8AzePNQCPVbbjmf1+Gqq6LdujnNmOG1LT17ep+BELLq2NFnoo1VvlutUidh+46kXwPnAX/Bm3Zy\nk659iQ8nvq/MIqcC84GV8ravBHxSRjnPA9umrn+StcyBAwfSuXPnhbb16dOHPn36lBFOqGknneS/\n+q+/3jsCVtpDD/kvO19nIoAnJFOm+MKajZ2RNDS/sWNh9mzYccdqR+J++tNqR9CmDR8+nOHDhy+0\nbdq0aRUrv6SF/xY6QZoInGFm90qaDmxqZm9L2hh4wszKnvtd0ljgOTM7MbkuYDIwxMwuLrGMUcDX\nZrZfcv0OYEkz2zt1zNPABDPrX6QMX/hv3Di6d+9e7t0ILc0hh/gcDW+8Udq6ReVYf33/EL/66sqW\n21KNGOEjfIYNg2OOqXY0oVwzZvjaR6us4kN5W1ITUGg2lVz4L0uzzprAiwW2fwMslTGOwcBRkg6T\ntD4wDOgI3Agg6QJJN+UOlnSipL0krSVpI0l/AXYE0p0ILgd2k3SypPUknYt3vI2OBsGdeqrP0fDP\nf1a23ClTfHXnXvUu4N22PP+8JydHH13tSEIWuVqvG2+MxCQ0iyw/F9/B5w15L2/7bmSc58TM7kzm\nNDkPb3p5CdjVzD5LDukKrJo6ZXF8XpRV8CHHLwM7mdnoVJnPSuoL/DG5vAHsbWYTs8QYWqFNN4Wd\nd/YOmgceWLkP3TFj/O9221WmvNZg0CAfqhpfbC3HrFk+0d6MGT6yatiwhlc1D6FCsiQng4GrJHXA\nh/P+SFIffBK2X2UNxMyGAkOL7Dsi7/rFQIPNPWZ2F3BX1phCG3Dmmb4669y5Pt9DJYwe7R/i3/9+\nZcprLSrddBaa1oUXwqWXwtJL+wywUesVmlGWeU7+BvwW+APe9HI78GvgRDO7o7LhhdDEevXyX/WV\nSkzAk5Ptt69ceS3BY495lX9oPU4+GZZayifNu+66qPWqBcceC126FL8cfHDDZfznP00fZwWU9VMm\n6ai6KnCXmd0mqSPQqcDsrCG0TV9+6WuUnHRStSNpXo884snJoYfGSJzWonNnGDnS/19llerGUqqL\nL/bp9I9saHLxGjRypNe4rr128WN+/nNYY43i++s7N6eFPJfl1rMKeBPYCHjDzGbhfT5CCOCTjJm1\nvZqT3r39i+GZZ6KvTWuy2WYNH1NLXn3Vl1TYay+vSWgJvv3Wm5cvucRrqy69tPixe+7pl8ZoIc3N\nZTXrmFkd3rG0GVd6CqEFmTPHE5M116x2JM1rq61g5ZWzrbUTQqVccIGvnXXWWdWOpDRvvAHbbONr\nG11yiSf4Acg2lPh3wMXJvCYhhLT994cnn2x77fPt2sE++3hyMnCgD9EOobmtuCL8/vdw7bXwYqEZ\nL2rILbdA9+4wbZrXOP7mN/4+CkC25ORm4EfABEmzJX2RvlQ4vhBCS9G7tyclQ4bAhx9WO5rQVvXv\nDxtuCMcd58PXa8306XDYYX7Zd18YPx622KLaUdWcLGP7BgKxznlovb78smWszlprdtjBm7MOOwy2\n3bbBw0NoEu3b+6KeP/kJrLeer79z+OG+vRZceqnXMN5yi89SHQoqe/r61iymrw8MGQJ//jO88w4s\nsUS1o2l55s6tnS+B0La99BL86U/+d+LE2plnZ/Zs+Phj6Nat2pFUXFWmr5fUTtJpkp6W9B9Jf5a0\nZGNuPISas9tu8MkncOut1Y6kZYrEJNSKzTaDO+/0vie1kpgALLlkq0xMKq2cPidnAn8CpgMfAicC\nVzVFUCFUzbrrwt57e6/5urpqRxNCaKylsi75FqqpnOTkMKC/me1mZvsAewIHS4ruxaF1Oe00X7jv\nwQerHUkIoam98gpMnVrtKEKechKL1YARuStm9ijeMbZlTDcXQql69vQOneXMOfDGG/BFDFYLocXp\n399nXT31VG/Sbaw33oATToD58xtfVhtWTnLyPWBO3ra5QDQyh9bn1FN9ttdnny3t+AEDfOr2EELL\ncvfdPjfPtdd6knL88TB5craycnOXjBjhnV5DZuUkJwJulHR37gJ0AIblbQuh5dtzTx+GWErtydy5\nPolSW5uyPoTWoEsXOP98eO89n1n29tt9jZqjjoK33iqtjOnT/cdJeu6SH/ygaeNu5cpJTm4CPgWm\npS63Ah/lbQuh5WvXDk4/3ec7aahj7IsvwsyZvsJxCKFlWnZZT07ee8+HID/wAGy5pS9JUZ8XXoDN\nN4d77/Wak5tugqWXbp6YW7GSx1eZ2RFNGUgINadfP780ZPRo6NjRq3NDCC1bp05wyineVDthAnTo\nUPi4ujoYPNh/xGy2ma/MXcqqwKEkMdImhMYaPdo70S6+eLUjCSFUypJLwtZbF98/cyYMG+b9VZ5+\nOhKTCquhmWlCaIHq6mDMGP+ACiG0HUsv7TUrMY9Kk6iZmhNJAyS9kywmOFbSliWet62kuZLG523v\nJ6lO0vzkb52kWU0TfWizXnkFvvoqOsOG0BZFYtJkaiI5kXQgcCkwCNgcmACMlNSlgfM64x11Hy1y\nyDSga+qyeqViDgHwNTs6doSttqp2JCGE0GrURHKCr3R8jZndbGavAscCs4AjGzhvGHAbMLbIfjOz\nz8zs0+TyWeVCDgE46CD4/HNvnw4hhFARJfU5kbRXqQWa2f3lBCCpPdADX7cnV4ZJehToWc95RwBr\nAgcDZxc5rJOkd/EkbDxwhplNLCe+EBZSV+fDjNOK9eYPIYSQSakdYu8t8TgDFiszhi7JOVPytk8B\n1it0gqR18GTmx2ZWJ6nQYa/hNS8vA52BU4FnJG1oZh+VGWMIMHQo3Habzxxb+DUXQgihAkpKTsys\nVpp/SBYavA0YZGa56fsW+aYws7GkmnskPQtMAo7B+7YUNXDgQDp37rzQtj59+tCnT5/GBR9atnXX\n9Zlg//1v+OlPqx1NCCFUzfDhwxk+fPhC26ZNq9w8rDKz7CdLHcysgenzGiyjPd6/5BfpJiFJNwKd\nzax33vGdgS+BeSxIStol/88DdjGzJ4rc1p3AXDM7uMj+7sC4cePG0T0m1Ar5zHyitRVXhJEjqx1N\nCCHUlPHjx9OjRw+AHmY2vqHj61N2jYikxSSdLelDYIakbsn28yX9stzyzGwuMA7YKXUbSq4/U+CU\nr4GNgc2ATZPLMODV5P/nisTdDvghEKsxhWwkXxBw1Cif3yCEEEKTyNJccyZwOHAa8G1q+yvArzLG\nMRg4StJhktbHk42OwI0Aki6QdBN4Z1kzm5i+4Gv+zDGzSWY2OznnbEk7S1pT0uZ4U9BqwN8yxhgC\n7L8/rL56aQsChhBCyCRLcnIYcLSZ3QbMT22fAKyfJQgzuxM4BTgPeBHYBNg1NfS3K7BqmcUuB1wL\nTAQeAjoBPZOhyiFk0769zwZ7222+QFgIIYSKK7vPiaTZwPpm9p6k6cCmZva2pA2B582sU1ME2hyi\nz0koyYwZC1YdbUSfrRBCaE0q2ecky9o6E4HtgPyfjfvhtR4htG6dOsE//wmLlTtqPoQQQimyJCfn\nATdJ+j7eLLSvpPXw5p49KhlcCDXrF7+odgQhhNBqld3nxMzuA/YEfgrMxJOVDYA9zexflQ0vhBBC\nCG1NlpoTzGwMsHOFYwkhhBBCyJacAEjaAq8xAZhoZuMqE1IIIYQQ2rKykxNJPwCGA9sCXyWbl5X0\nDHCQmX1QwfhCCCGE0MZkmefkb0B7YAMzW97MlsdrUNoRE5yFEEIIoZGyNOv0ArYxs9dyG8zsNUnH\nA2MqFlkIIYQQ2qQsNSfv4zUn+RYDPmpcOCGEEEJo67IkJ6cCVyQdYoHvOsdejk9BH0IIIYSQWUnN\nOpK+BNLzdC8FPCdpXqqcecD1wL0VjTCEEEIIbUqpfU5OatIoQgghhBASJSUnZnZTUwcSQgghhACN\nmIQNQFIHYPH0NjP7ulERhRBCCKFNK7tDrKSlJF0p6VN8bZ0v8y4hhBBCCJllGa1zEfAT4NfAN8Cv\ngEH4MOLDKhdaCCGEENqiLM06ewKHmdkTkm4AxpjZm5LeAw4GbqtohCGEEEJoU7LUnCwPvJ38/3Vy\nHeApYPusgUgaIOkdSbMljZW0ZYnnbStprqTxBfbtL2lSUuYEST/LGl9omYYPH17tEEIFxfPZusTz\nGYrJkpy8DayZ/P8qcEDy/54sWAiwLJIOBC7Fm4c2ByYAIyV1aeC8zsBNwKMF9m0D3A78FdgMuA+4\nV9KGWWIMLVN8+LUu8Xy2LvF8hmKyJCc3AJsm//8ZGCBpDnAZcHHGOAYC15jZzWb2KnAsMAs4soHz\nhuHNSGML7DsBGGFmg83sNTM7BxgPHJcxxhBCCCE0g7L7nJjZZan/H5W0PtADeNPMXi63PEntk/P/\nlCrXJD0K9KznvCPwGpyDgbMLHNITr41JGwnsXW6MIYQQQmg+WWpOFmJm75nZ3cAXkq7NUEQXfNHA\nKXnbpwBdC50gaR08mTnYzOqKlNu1nDJDCCGEUBsaNQlbnhWAXwJHV7DMRUhqhzflDDKzt3KbK1R8\nB4BJkyZVqLhQbdOmTWP8+EX6SocWKp7P1iWez9Yl9d3ZobFlVTI5yWoqMB9YKW/7SsAnBY5fGtgC\n2EzSVcm2doAkfQvsYmZPJOeWWmbOGgCHHHJIGeGHWtejR49qhxAqKJ7P1iWez1ZpDeCZxhRQ9eTE\nzOZKGgfsBNwPnmUk14cUOOVrYOO8bQOAHYFfAO8m254tUMbOyfZiRuJ9WN4F5pRxN0IIIYS2rgOe\nmIxsbEFVT04Sg4EbkyTleXz0TkfgRgBJFwCrmFk/MzNgYvrkZCr9OWaWbo+5HHhC0snAQ0AfvOPt\nUcWCMLPP8eHHIYQQQihfo2pMckpOTiTd3cAhy2YNwszuTOY0OQ9venkJ2NXMPksO6QqsWmaZz0rq\nC/wxubwB7G1mE+s/M4QQQgjVJK+IKOFAn6q+QWZ2RKMiCiGEEEKbVnJyEkIIIYTQHBo9z0lrkXVt\nn1BbJA2SVJd3iaa8FkTSdpLul/Rh8vztVeCY8yR9JGmWpH9JWrsasYaGNfR8SrqhwHv24WrFG+on\n6XRJz0v6WtIUSfdIWrfAcY16j0ZyQva1fULNegXvu9Q1ufy4uuGEMi2F9zvrDyxStSvpt/gyFEcD\nPwJm4u/XxZszyFCyep/PxAgWfs/2aZ7QQgbbAVcAWwE/BdoDoyQtmTugEu/RaNYBJI0FnjOzE5Pr\nAt4HhpjZRVUNLpRF0iC843P3ascSGk9SHbCPmd2f2vYRcHFuKQ1Jy+CzP/czszurE2koRZHn8wag\ns5ntW73IQlbJj/hPge3N7KlkW6Pfo22+5iS1ts+/c9uS4cr1ru0Tato6SRXyW5JulVTWSK9QuySt\nif+yTr9fvwaeI96vLdkOSRPBq5KGSlq+2gGFki2L14h9AZV7j7b55IQMa/uEmjYWOBzYFV/dek1g\ntKSlqhlUqJiu+AdhvF9bjxHAYcBPgNOAXsDDSQ12qGHJc/QX4KnUNB0VeY/WyiRsIVSEmaVnJnxF\n0vPAe8ABQEnD4UMIzSevmv9/kv4LvAXsADxelaBCqYYCGwLbVrrgqDkpf22f0IKY2TTgdSBGc7QO\nn+ALfcb7tZUys3fwz+V4z9YwSVcCuwM7mNnHqV0VeY+2+eTEzOYCubV9gIXW9qnINLyheiR1wj/k\nPm7o2FD7ki+uT1j4/boMPnIg3q+tgKQf4Kvcx3u2RiWJyd7AjmY2Ob2vUu/RaNZx9a7tE1oOSRcD\nD+BNOd8Hfg/MBYZXM65QuqR/0Nr4ry+AbpI2Bb4ws/fxNu6zJL2JL9J5PvABcF8Vwg0NqO/5TC6D\ngLvwL7S1gQvx2s5GLx4XKk/SUHyo917ATEm5GpJpZpZbMLfR79EYSpyQ1B/vjJVb2+d4M3uhulGF\nckkajo/DXwH4DHgKODPJ5kMLIKkX3tcg/8PpJjM7MjnmXHwOhWWBMcAAM3uzOeMMpanv+cTnPrkX\n2Ax/Lj/Ck5JzUmurhRqSDAcvlDgcYWY3p447l0a8RyM5CSGEEEJNafN9TkIIIYRQWyI5CSGEEEJN\nieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CaENkPS4pMFlHL+6pDpJmyTXeyXXl2m6KIvGcoOku5v7drOSNEjSi9WOI4SWLJKTEFogSTcm\nycLQAvuuSvZdn9rcGzi7jJuYDHQFXklta/RaF+UmSS1YrAsSQiNEchJCy2R4AnGQpCVyG5P/++Cr\nMi842OwrM5tZcuHuUzOrq1TAoXEkxSryoc2I5CSElutF4H1g39S2ffHEZKFmhfwaC0nvSDpd0nWS\nvpb0nqSjUvsXatZJ+bGkCZJmS3pW0kapc5aXdLukDyTNlPSypINS+28AegEnJmXPl7Rasm8jSQ9I\nmpbE86SkNfPuw28kfSRpqqQrJS1W7IHJNa1IOiS5r19JGi5pqbzH4IS8816UdE7qep2ko5PYZkqa\nKGlrSWslj+kMSU/nx5qce7Skycl5f5e0dN7+XyXlzU7+/rrA43+ApCckzQL6Fru/IbQ2kZyE0HIZ\ncD1wZGrbkcANgEo4/2TgP/hy9UOBqyWtk1d+moCLgIHAFsBnwP2pJKED8ALwM2Aj4BrgZklbJPtP\nBJ4F/gqsBKwMvC9pFeBJYDawA7B5cky6puAnQLdk/2HA4cmlPmsBewO7Az/HE6PfNXBOIWcBNwKb\nApOA24FhwB+BHvjjcmXeOesA+ye3uyt+n75rgpN0MHAucDqwPnAGcJ6kQ/PKuQC4DNgAGJkh9hBa\npKgmDKFluw34s6RV8R8b2wAHAjuWcO5DZjYs+f9CSQOT895IthVKcM41s8cAJPUDPsD7s/zTzD4C\n0v1JrpK0G3AA8IKZfS3pW2CWmX2WO0jSccBXQB8zm59sfivvdr8AjjMzA16X9BCwE3BdPfdPQD8z\nm5Xczi3JOeX0vQG43szuSsq4CE+wfm9mjybbLseTxLQlgEPN7JPkmOOBhyT9xsw+xROT35jZfcnx\n7yW1UMcCt6TKuSx1TAhtRiQnIbRgZjZV0oPAEfiX8UNm9oVUSsUJ/827/gmwYn03B4xN3faXkl7D\nf9UjqR1wJl5j8H1g8eTSUF+XTYExqcSkkP8liUnOx8DGDZT7bi4xSZ1T3/0rJv04TUn+vpK3rYOk\nTmY2I9k2OZeYJJ7Fk8f1JM3Aa3Wuk/S31DGL4Ula2rgM8YbQ4kVyEkLLdwPerGBA/zLOm5t33Whc\nU+9pwPF4880reFJyOZ6g1Gd2CWVnibWhc+pYtHaofQPlWD3bSn3sOiV/fwU8n7cvP0EruRNzCK1J\n9DkJoeV7BE8AvgeMasLbEbD1d1ek5YB1gYnJpm2A+8xsuJn9F3gn2Z/2LV5DkPYysF19HVybyGd4\nvxcAkjlcFunYWkApw4RXk9Q1db0nnni8mjTrfASsZWZv513So6xiOHJosyI5CaGFS4b7rg9slNf0\n0RTOkfQTSRvjnUQ/A3J9It4AdpbUU9IGeIfYlfLOfxfYKhmNskKy7UpgGeDvknpIWjsZZbMOTesx\n4FBJP5b0w+T+zCvhvEJtZvnbvgFukrSJpO3wGqS/p/raDAJOl3S8pHUkbSzpcEknNXA7IbQJkZyE\n0AqY2YxUf4eChzRwvZRjDB/tcjk+yuf/gD3NLPeF/gdgPF6T8xjex+OevDIuwWsQJgKfSlrNzL7A\nR+MsBTyBj/j5FYs2y1TaBfgooQeSyz0s2hG3lMep0LY3gLuBh/HH4yVgwHcHm12H38cj8JqjJ4B+\neG1TfbcTQpugpv+hFUIIIYRQuqg5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGE\nEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkII\nIYRQU/4fIXIuPgDsW8EAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -788,7 +788,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -797,7 +797,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Average error: 46.50%\n" + "Average error: 49.00%\n" ] } ], @@ -821,7 +821,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -859,7 +859,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 14, "metadata": { "collapsed": true }, @@ -897,16 +897,16 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGHCAYAAAB1bcIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X+cVHXZ+P/XhaSwLootyPojlCTFsiy2NL6KShYk5qh4\nB/KJUDDpNiDcDMnSWPOuAM1FYO+CWwoTXX5F648Q8BZTVm6gWBVLUFB0U2J1NwnGYVmF6/vHOYsz\ns7uwM7tzzuy8r+fjMQ+d93mfc66L9wxzcX68j6gqxhhjjDHZplPYARhjjDHGNMeKFGOMMcZkJStS\njDHGGJOVrEgxxhhjTFayIsUYY4wxWcmKFGOMMcZkJStSjDHGGJOVrEgxxhhjTFayIsUYY4wxWcmK\nFGOSiEiJiBwMaF9/FpGn495fLCIHRWRYQPtfICI7gthXukTkWBG5X0T+6f/Z3Bt2TAAi8oaIPNqO\n22v12Dc3bv66P417f73f1juFfV+UXvTGZIYVKSanich1/l++ja99IvK2iKwUkYkikt/MagqkVKSI\nyEkiMlVEPpdiiM3tq12fVXGE2FLONQQ/AUYDZcAo4MGWOvqFQ/x414jIsyJyVQbiysQzRVq7zdaM\nmyZvT0RuEpHr2rhvYwLTOewAjAmAAncAbwAfAwqBS4CZwA9EJKKqL8X1vwv4ZYr7OBmYCuwANqew\n3teaaZMU930kh4vtO2T/P1YGAetV9b9a0VeB54F78P4cTwa+CywXkf9U1XmZC7NdtHbsWzNuvwfK\nVbUhru17wLvAA/EdVfUZEema1NeY0FmRYlyxUlWr4t5PF5FLgD8Bj4jI2aq6H0BVDwKp/mWdUmHh\n/yDsU9UPU9xPOlqMTVUPAAcCiKEtTgT+nkL/t1W1vPGNiDwIbAeKgRaLFBHpoqr1aUcZoNaMm3pP\nj23159gKFJONsv1fUMZkjKr+Ge+oyWl4pxGA5q9JEZGvichaEXlPRPaKyFYR+bm/7GJgI96/4hf4\npxkOiMhof/mfRWSziPT3Tz28D/w8btma5NCAo0TkF/51GFEReURETk2K6Q0R+W1yXvHbbEVszV3b\nkCcivxKRahGp93O9pZn9HBSRWSJypYi85Pf9m4gMOcIffeP6PUVkvojs8k/DvdAYV2Ps/jicDnwj\nLvYjXmMRT1VrgC1An7htvyEij4rIYBH5i4jsA8b5y44SkTtEZLuf0w4R+bmIHN1CHl8Tkef9HP4u\nIlcnLT9BRO7xPwN7ReTfIrLiMKffWjP2R7yWKPmaFL//Z4BL4k6HHfqcSDPXpIjI+f6p0d0i8r7/\n2fr/kvrki8hM/8+p3j/FtlpEPn+4+IxpDTuSYlz3IPALYDAw329LOJcvIp8GHgNewDtttB/oCzT+\nZb0F+CnwM2AusNZvXxe3vR7ACmAR3mH4mrhlyQS4He+ag2l4RxKKgSdF5PONR3xaWDe5vTWxJW/n\nMeBi4H7gRWAIcLeInKyqycXKQGAY8N/AXuD7wDIR6a2q77UQHyLSBXgG+CQwG+9U3DfxCqnjVXU2\n8DJe8TgT+AfwK3/1d1vabgv76gx8AqiLa1agH/Aw3p/LPOAVf9l8vGtgluCdNjofuM3vf03S5s/E\nG9PfAAuAMcBSERmiqk/5fT4JRICleKfceuGdgvqziHxaVXfFh0vrx/5I15Ak95kEzMEbp//y91WT\n1P+jQES+gveZ/StQ4sc0BlgjIheq6l/9rnPxPgOz8T5vBcCFwNl43xlj0qeq9rJXzr6A6/AOi/c/\nTJ/3gL/GvZ8KHIh7P8nfxgmH2UYR3l/io5tZ9rS//ndaWLYm7v3F/naqgby49v/w2yfEte0AftuK\nbR4utt8Br8e9v9Lv+6OkfkuAD4E+cW0HgX3A6XFtn/Xbv3eEcWn8M702ru0o4Dng38CxSXk+2srx\n3gE8gfdDWQB8Dij391Wa1O8A8NWk9T/nx/+bpPYZfv+Lm9nGlXFt3YC3kz5PH2smzt7+n91P0hz7\nhHGLG4+fNvPZ7x3X9lL8ZyNp3weAi+LaXgH+lNTvGOA1vNOn8d+fWW39rtrLXs297HSPMRDF+3Fp\nyW7/v1eLSLoXte7H+5d2az2gqrHGN6q6DPgnMDTN/bfWZXjFyOyk9l/hnR6+LKn9SVV9o/GNehcg\n78E7enCk/exS1UVx6x4AZgH5eD+a6RqCd7TlXbx/yV+Dd/TqR0n9dqjq/ya1DcU7olCa1P4rvCMP\nlye171TVR+Jy2Ovv6wsicqLf9kHjchHpJCIfB2J4RUD/ZuIPa+wP8U/VfAooF5GCxhfe9+QpIP60\n0G7gfBE5Kaj4jDusSDHG+1Hce5jli/H+hf8/QI2IlIvIN1MsWN7W1C6S3d5C2+kpbCMdp+H98L6f\n1L4lbnm8fzSzjfeAE1qxn23NtG/BKwaS95OK9cCl/msA0ENVx+hHp0oaNXdNx2l4RyQS/vzVu65l\ndzNxNTdOr/r/PR1APMUi8ipesVoLvIN31On4ZtYPa+zjfcr/7+/5qOB7Fy/u7wBHi0hj7LcC5wD/\nEJEN4t3u3id5g8akw65JMU4TkVPwfiia+2EAQL07Pi4SkUF4/5L+OjACeEpEBqtqa+aX2Nce8SaH\n1kL7UXhHQ4LQ0h0m7X0bdSpqVfXpI3c77Ji055whP8G7Juh+vOtN/oVXCN1H9v5DsTGuW/CuS2pO\nFEBVl4rIs8DVeNd2/RCYIiJXq+qqjEdqcpoVKcZ1o/F+kFYeqaP/w/c08EMRuQ3v4sNBwBrafyKs\nTzXT1pfEH4z3gO7N9DsN77qBRqnE9iZwqYgcm3Q05ey45e3hTbwjCcnaez+pehPvB/pTfHQhLf6p\nm+7NxNW3mW2c5f/3Df+/1+BdBzIuvpOIdKf5i4BbM/bpau1nofHzs1dVk+8+a7pR70jTb4DfiEgP\nvLlqfgJYkWLaJFureGMyzr974Xbgdby7PFrq19ypixfxjhYc479v/EFvrmhIx2iJmw1XRL4JnIR3\nt0Wj14Av+3evNPb7Bt6dLPFSiW0F3j9eJiS1F+P96/+JVkXfuv0UisiIxgYROQqYiHfq7Zl22k86\ncQlwc1L7LXg/8H9Kaj85/pZjETkO+DbwvKq+4zcfIOnIkj+ep7QQQ2vGPl3v07rPwSa8z9cPReTY\n5IV+IdJ4jc1x8ctUtRbYyUffDWPSZkdSjAsEGCoiZ+N95nsBX8Gb7XUHENHDT2T1U3/+iD/h/Uu6\nF3AT3l0YlX6f1/CuWfhPEYni/RisV9V0jwj8C6gUkd/hzZA7Ce9ah/vj+tyPd+fHKhFZApyBd8tu\n8qmrVGJ7DO9o0c/96woab0G+Au/umPZ6zs88vNtwF4jIF/noFuQBwKRmrokJhKpuFpEHgHF+cfoM\n3i3Io4HlqppcPL0K3C8iX8K7nfcGvNuG46eefxy4Q7w5bdbhHUH6FolHu+K1ZuzTtQnvc/ATvM/J\nO3Gnxg4VUqqqIvIdvMLo734sb+MVVoPw7sC6Eu9C2rdEZBneZyWK9736IvCDdojXuC7s24vsZa9M\nvvjoNszG1z68v2xXAuOJu9U1bp2pwIdx7y8BluNdJLrP/++DwBlJ630D7xbP/f6+RvvtTwMvthDf\n08BTce8bbwUdjnc66Z94f/E/ApzazPo34xVLMbwf1C8kb/MIsf0OeC2pbx7e/CD/AOqBrUBxM/s+\nANzXTPvrwPxWjE0PvB/eGv/P9QXg2y1s75FWjner+h6uH94R5tvxfsTr8Qqou0i6lbhxG8BX/dhj\neDPjXp3U72i8W5jf8sfyGeA8vNOEaY19C+N2ALijmc9+/C3IJwKP4hWtB/BvR6aZW5D99s/hze/y\njp/f63i3dF/iL/8Y3nwuVf429/j/Py7s7769cuMlqu19Kt0YY4wxpu1CvybFP6d5l4i8LiIx8aai\nvr2Zfj8TkZ1+nydFpG/S8mNEpExEav2pp5c1zlNgjDHGmI4n9CIFb4Kl7+I9nbMf3j33t4rIoQv3\nRGQK3oV84/AOk76Pdx4+/lkaM/FuD70Gb6Khk4E/BJGAMcYYY9pf6Kd7ROQxvJknb4xrWwbEVLXx\nIWg7gbtVtdR/fxzeeezrVHWJ//5dvCm2/+j3OQtvYqgvq+rGQJMyxhhjTJtlw5GUdXjzMnwKQETO\nBS7Av93Ov8OgEG8qZgBUdQ+wAe9OAPCuJO+c1OcVvAsKG/sYY4wxpgPJhluQpwHHAVtF5ABe4fQT\n/eiZHoV48xPUJK1X4y8D75bQBr94aamPMcYYYzqQbChSRgD/D7gW79HsnwfuE5GdqvpgpnbqPyxr\nCN7thfWZ2o8xxhiTg7rgPU9qlarWZWon2VCkzAB+qapL/fd/F5HTgdvw5qLYhTfJUC8Sj6b0wpt6\nGb/P0SJyXNLRlF7+suYMAR5qjwSMMcYYR32Lw8zY3VbZUKTk0fQhZQfxr5dR1R0isgvviaab4dCF\ns+cDZX7/TXgPVLsUiL9wtjfwfy3s9w2AhQsXcvbZZ7fQJTcUFxdTWpr85Pnc40qe4E6ulmdusTxz\nx5YtWxg1ahR89IyqjMiGIuUx4HYReQtvtsb+eM8JiZ8CeqbfZzsfzf74Ft5MjKjqHhGZD9wrIu/h\nPftjFvDcYe7sqQc4++yz6d+/f7snlU2OP/74nM8R3MkT3MnV8swtlmdOyujlEtlQpEzAKzrK8KZs\n3gn82m8DQFVniEgeMBfv4Vhrgcs08XkrxXhHZJbhPdiqcdpz5+3a1dIZr9ziSp7gTq6WZ26xPE2q\nQi9S1HuQ2A84wsOoVLUEKDnM8v14T1Cd2I7h5YS333477BAC4Uqe4E6ulmdusTxNqrJhnhSTYUVF\nRWGHEAhX8gR3crU8c4vlaVJlRYoDRo4cGXYIgXAlT3AnV8szt1ieJlWhT4sfFhHpD2zatGmTSxc4\nGWNM2qqrq6mtrQ07DBOQHj160Lt372aXVVVVNR4xKlLVqkzFEPo1KcYYY7JfdXU1Z599NrFYLOxQ\nTEDy8vLYsmVLi4VKEKxIccCYMWP43e9+F3YYGedKnuBOrpZn9qitrSUWizkxt5T5aB6U2tpaK1JM\nZg0ePDjsEALhSp7gTq6WZ/ZxYW4pkz3swlkHuHIRlyt5gju5Wp7GuM2KFGOMMcZkJStSjDHGGJOV\nrEhxQGVlZdghBMKVPMGdXC1PY9xmRYoDZsyYEXYIgXAlT3AnV8vTGLfZ3T0OWLRoUdghBMKVPMGd\nXC3PjiMajVJfn9EH4h5Rly5dyM/PDzUG076sSHFAXl5e2CEEwpU8wZ1cLc+OIRqNMm/eEurqPgw1\njoKCzowbN9wKlRxiRYoxxpg2qa+vp67uQ7p2/Qp5ed1DiSEW201d3Rrq6+utSMkhdk2KMcaYdpGX\n1538/B6hvNpaHJWUlNCpUydeeeUVhg8fzvHHH0+PHj24+eab2b9/f6u3c8kll/CVr3ylSfv1119P\nnz59Dr1/88036dSpE/feey8zZ87k9NNPJy8vj0suuYS///3vbcoll1iR4oDJkyeHHUIgXMkT3MnV\n8jRBEREAhg8fTkNDA9OmTePyyy9n1qxZfPe73015O821N7fsgQceYPbs2UyYMIEf//jH/P3vf+fS\nSy/l3XffTS+RHGOnexwQ5nMXguRKnuBOrpanCdoZZ5zB8uXLAbjpppvo1q0bv/71r/nhD3/IOeec\n0+77e+2119i+fTuFhYUADBkyhPPPP5/p06dzzz33tPv+Oho7kuKAiRMnhh1CIFzJE9zJ1fI0QRIR\nxo8fn9A2ceJEVJUVK1ZkZJ9XX331oQIF4Etf+hLnn39+xvbX0ViRYowxxvj69u2b8P6MM86gU6dO\nvPHGG4HsD+DMM8/M2P46GitSjDHGmBa0dI1Jqv0PHDjQHuE4x4oUB2zdujXsEALhSp7gTq6Wpwna\ntm3bEt5v376dgwcPcvrpp7dq/RNOOIHdu3c3aX/zzTdbtT+AV199tdX7y3VWpDjg1ltvDTuEQLiS\nJ3ScXKPRKLW1tSm/otEo4OXZ1m10BB1lPHOdqlJWVpbQNmvWLESEyy67rFXbOOOMM9i6dSt1dXWH\n2l588UWee+65ZvtXVFSwc+fOQ+83btzIhg0bGDp0aBoZ5B67u8cBc+bMCTuEQLiSJ3SMXKPRKPN+\nP4+6aN2ROycpyC9g3OhxTJ8+Pe2ZTDvS7KMdYTxbIxZregSho+17x44dXHnllXz9619n3bp1PPTQ\nQ4waNYrPfvazrVp/7Nix3HvvvQwePJgbbriBmpoa5s6dyznnnMOePXua9O/bty8XXnghN910E/X1\n9dx333307NnTbkv3WZHiAFdub3QlT+gYudbX11MXraPrmV3J69b6ad9je2PUvVpHfX09PXv2TGsm\n0442+2hHGM/D6dKlCwUFnamrW8O+feHFUVDQmS5duqS9voiwePFi7rjjDm677TY6d+7M97///ZQe\nANmvXz8efPBBfvrTn3LLLbfw6U9/moULF/LQQw/x7LPPNuk/evRoOnXqxMyZM3nnnXc4//zzmT17\nNr169Uo7j1xiRYoxJqPyuuWR3z21QmEfib90jTOZprSNEH8sXZOfn8+4ccNz4gGDPXv2ZMmSJW3a\nxsiRIxk5cmRC21e/+tUW+998883cfPPNbdpnrrIixRhjTJvl5+d3iKNWpmOxC2cdMH369LBDCIQr\neYI7uc6aNSvsEALhynh2ZHv27KGmpuawL9P+7EiKA2KxWNghBMKVPMGdXPft28fRR4cdRea5Mp4d\n2aRJk3jggQdaXC4iKc+F0tLzfMxHQi9SRGQHcFozi8pUdaLf52fAd4DuwHPATaq6PW4bxwD3AiOA\nY4BVwPdU9Z0Mh98h3HnnnWGHEAhX8gR3cp0yZQqlpcvDDiPjXBnPbDZ16lSmTp3a4vIpU6bw7W9/\nu932d9ppp9kEb60QepECfBE4Ku79Z4HVwBIAEZkCTABGA28A/wWsEpGzVbXBX2cmcBlwDbAHKAP+\nAAwMIH5jjDE5rl+/fvTr1y/sMJwTepGiqgmTKIjIFcBrqrrWb5oE3KWqj/vLRwM1wFXAEhE5DhgL\nXKuqz/h9xgBbROQ8Vd0YUCrGGGOMaUdZdeGsiHwM+BYw33/fBygEnmrso6p7gA3AAL/pi3jFVnyf\nV4DquD5Oq62tDTuEQLiSJ7iTa/ysnbnMlfE0JlVZVaQAVwPHA41XJxUCinfkJF6NvwygF9DgFy8t\n9XHa2LFjww4hEK7kCe7kOmnSpLBDCIQr42lMqrKtSBkLPKGqu4La4dChQ4lEIgmvAQMGUFFRkdBv\n9erVRCKRJuuPHz+e+fPnJ7RVVVURiUSa/Oto6tSpTW41rK6uJhKJNHnA2OzZs5tMixyLxYhEIlRW\nVia0l5eXM2bMmCaxjRgxgoqKCkpKSnIij3jN5VFSUpITecCRxyN+TLM5j5UVK9nwxIbE2LZWU1Zc\nRnR34rN1Hp37KCsXrExoGz16NEuXllFTk/gQtjVrZrNsWWIeDQ0xysoibN8e/HjES2c84sczzM/V\nkfIwbiovLz/021hYWEgkEqG4uDiQfYuqBrKjIxGR3sDrwFVx15/0AV4DPq+qm+P6/hl4XlWLRWQQ\n8L/ACfFHU0TkDaBUVe9rYX/9gU2bNm2if//+GcrKGHfV1tZS+ttSCooKUppxNro7St2mOorHen8J\nlpYup6BgWEozzkajtdTVLae4eBg9eqQ2U61pXlVVFUVFRdjfmW440ng3LgeKVLUqU3Fk05GUsXin\naFY0NqjqDmAXcGljm3+h7PnAOr9pE/BhUp+zgN7A/2U8amOMMcZkROh39wCIN5vN9cACVT2YtHgm\ncLuIbMe7Bfku4C3gEfAupBWR+cC9IvIesBeYBTxnd/YYY4wxHVdWFCnAV4FPAL9LXqCqM0QkD5iL\nN5nbWuCyuDlSAIqBA8AyvMncVgLjMx10RzF//nxuuOGGsMPIOFfyBHdyXbhwIdD6Jyh3VLkwntFo\nNCceMJgp119/Pc888ww7duwIO5QOJSuKFFV9ksQJ3ZKXlwAlh1m+H5jov0ySqqqqDv8XYGu4kie4\nk+vmzZs56aQvhx1GxnX08YxGo8z7/TzqouHeMl6QX8C40eOyslCxKfDTkxVFismssrKysEMIhCt5\ngju5zpgxw4lp8Tv6eNbX11MXraPrmV3J6xbOka/Y3hh1r9ZRX1+flUWKSY8VKcYYY9pFXre8lO7k\nam/72Bfavk1mZNPdPcYYY0woSkpK6NSpE6+88grDhw/n+OOPp0ePHtx8883s378/pW1VVFRwzjnn\n0LVrVz73uc81mcemUSwW45ZbbqF379506dKFfv368atf/SqhzzXXXNN4q+8hV1xxBZ06deLxxx8/\n1LZx40Y6derEqlWrAFiwYAGdOnVi3bp1/OAHP+DEE08kPz+fYcOGdaiZnK1IMcYY47zG60WGDx9O\nQ0MD06ZN4/LLL2fWrFl897vfbfV2Vq9ezX/8x3/QuXNnpk2bxlVXXcWYMWP461//2qTvFVdcwX33\n3cfQoUMpLS2lX79+TJ48mVtuueVQn4EDB7J582ai0Y8mP1y3bh1HHXUUa9euPdT27LPPctRRR3HB\nBRck5DNx4kReeuklSkpK+N73vsdjjz3GhAkTUvvDCZGd7nFAJBLh0UcfDTuMjHMlT3An11GjRlFU\nNCzsMDLOlfHsCM444wyWL/eug7rpppvo1q0bv/71r/nhD3/IOeecc8T1p0yZQmFhIZWVlYeujbn4\n4ov52te+xumnn36o3yOPPMLTTz/NL37xC370ox8d2t/w4cO57777mDBhAn369GHgwIEcOHCA5557\njiFDhvC3v/2N9957j+HDhycUKZWVlZx77rlNrsfp2bMnK1d+NJPzgQMHmD17Nnv37qVbt25p/zkF\nxY6kOKAjVc1t4Uqe4E6uHfmOl1S4Mp7ZTkQYPz5x9oqJEyeiqqxYsaKFtT6ya9cuXnzxRa6//vqE\nYuHSSy/l05/+dELfJ554gs6dOzNxYuJNqbfccgsHDx7kiSeeAOALX/gC+fn5PPvsswCsXbuWT3zi\nE4wePZpNmzYduu27srKSgQMHNsln3LhxCW2NRc+bb755xHyygRUpDhg8eHDYIQTClTzBnVwHDRoU\ndgiBcGU8O4K+ffsmvD/jjDPo1KkTb7zxxhHXbfzhT94GwFlnndWk78knn8yxxx6b0H722WcnbKtT\np04MGDDg0FGTtWvXMnDgQC644AIOHDjA+vXrefnll/nXv/7VpEgB+MQnPpHw/oQTTgDgvffeO2I+\n2cCKFGOMMaYF2TC3yYUXXshf/vIX9u/fz9q1a7nooos4/vjjOeecc1i7di1r165FRJotUo46qvkp\nyLLluX1HYkWKMcYY49u2LfGJ29u3b+fgwYMJ15O05LTTTmt2GwCvvPJKk747d+7k/fffT2jfsmVL\nwrbAO0XT0NBAeXk5O3fuPFSMXHTRRTz77LOsXbuWM888k549ex45wQ7GihQHtHT7W65xJU9wJ9fW\nXAeQC1wZz2ynqk0m1ps1axYiwmWXXXbE9QsLC/n85z/PAw88wN69ew+1P/nkk7z88ssJfYcOHcqH\nH37InDlzEtpLS0vp1KlTwv7OP/98OnfuzPTp0/n4xz9+6JTQwIEDWb9+Pc8++2yzR1Fygd3d44Dy\n8nKuuuqqsMPIOFfyBHdyXb58OZ/5zNCww8i4XBnP2N5Yh9/3jh07uPLKK/n617/OunXreOihhxg1\nahSf/exnW7X+L3/5S77xjW9wwQUXMHbsWOrq6pgzZw7nnHNOwm3EV1xxBYMGDeInP/kJO3bs4Nxz\nz2XVqlU89thjFBcX06dPn0N9u3btSlFREevXrycSiRxqv+iii3j//feJxWLNFiktndLpKKd6wIoU\nJyxevDjsEALhSp7gTq7333+/E9Pid/Tx7NKlCwX5BdS9WhfqrK8F+QV06dIl7fVFhMWLF3PHHXdw\n22230blzZ77//e8zY8aMVm9jyJAhLF26lNtvv50f//jHnHHGGSxYsICKiopDd+g07uuxxx7jpz/9\nKYsXL2bBggWcfvrp3HPPPRQXFzfZ7sCBA9mwYUNCMdKrVy/69u3L66+/3myR0tL1NNlwnU1rWZFi\njDGmTfLz8xk3elxOPAW5Z8+eLFmypE3buOqqq5ocGbvyyiub9MvLy+Oee+7hnnvuOeI2p0+fzvTp\n05u0v/rqq832v+6667juuuuatF988cUcOHDgiPvLFlakGGOMabP8/Hx7sJ9pd1akGGOMMUewZ88e\n9u07/KmsXr16BRSNO+zuHgeMGTMm7BAC4Uqe4E6uybNx5ipXxrMjmzRpEieddFKLr5NPPjnsEHOS\nHUlxgCuzWbqSJ7iT66BBg+ggs3e3iSvjmc2mTp3K1KlTW1w+ZcoUvv3tbwcYkQErUpwwcuTIsEMI\nhCt5gju5Dhs2zIm7e1wZz46sX79+9OvXL+wwnGOne4wxxhiTlaxIMcYYY0xWsiLFAZWVlWGHEAhX\n8gR3cl2/fn3YIQTClfE0JlV2TYoDZsyYwYUXXhh2GBnnSp7gTq5z5syhqGhY2GFkXEcaz8YH4Jnc\nli3jbEWKAxYtWhR2CIFwJU9wJ9d58+Yxd+7KsMPIuI4wnj169CAvL49Ro0aFHYoJSF5eHj169Ag1\nBitSHJCXlxd2CIFwJU9wJ1fLM3v07t2bLVu2UFtbG3YoJiA9evSgd+/eocZgRYoxxphW6d27d+g/\nWsYtduGsMcYYY7KSFSkOmDx5ctghBMKVPMGdXEtKSsIOIRCujKflaVKVFUWKiJwsIg+KSK2IxETk\nRRHpn9TnZyKy01/+pIj0TVp+jIiU+dvYKyLLROTEYDPJTq4cnnUlT3An11NOOSXsEALhynhaniZV\noRcpItIdeA7YDwwBzgZuAd6L6zMFmACMA84D3gdWicjRcZuaCVwOXANcBJwM/CGAFLKeKw9pcyVP\ncCfXG2+8MewQAuHKeFqeJlXZcOHsj4BqVf1OXFvyI8UmAXep6uMAIjIaqAGuApaIyHHAWOBaVX3G\n7zMG2CIi56nqxkwnYYwxxpj2FfqRFOAK4K8iskREakSkSkQOFSwi0gcoBJ5qbFPVPcAGYIDf9EW8\ngiu+zyuIO60tAAAgAElEQVRAdVwfY4wxxnQg2VCkfBK4CXgFGAz8GpglIo3PxC4EFO/ISbwafxlA\nL6DBL15a6uOsrVu3hh1CIFzJE9zJddu2bWGHEAhXxtPyNKnKhiKlE7BJVe9Q1RdV9X+A/wH+M+S4\ncsatt94adgiBcCVPcCfXO++8M+wQAuHKeFqeJlXZUKT8E0h+SMAWoPHy6F2A4B0tidfLX9bY52j/\n2pSW+jRr6NChRCKRhNeAAQOoqKhI6Ld69WoikUiT9cePH8/8+fMT2qqqqohEIk1mZpw6dSrTp09P\naKuuriYSiTSpvGfPnt3kNrZYLEYkEmnyMLLy8nLGjBnTJLYRI0ZQUVHBnDlzciKPeM3lMWfOnJzI\nA448HvFjms15rKxYyYYnNiTGtrWasuIyorujCe2Pzn2UlQsSp8CfNGkSS5eWUVOTeERlzZrZLFuW\nmEdDQ4yysgjbtwc/HvHSGY/48Qzzc9XWPOI1l8ecOXNyIg84/HhcccUVOZFH43iUl5cf+m0sLCwk\nEolQXFzcZJ1MEFUNZEctBiDyEHCqql4c11YKfElVL/Tf7wTuVtVS//1xeKdyRqvqUv/9u3gXzv7R\n73MWXrHz5eYunPVvcd60adMm+vfvn7zYGNNGtbW1lP62lIKiAvK757d6vejuKHWb6ige6/0lWFq6\nnIKCYeTnt/4ZItFoLXV1yykuHhb6s0eMyUVVVVUUFRUBFKlqVab2kw1395QCz4nIbcAS4HzgO0D8\nvYczgdtFZDvwBnAX8BbwCHgX0orIfOBeEXkP2AvMAp6zO3uMMcaYjin0IkVV/yoiVwPTgDuAHcAk\nVV0U12eGiOQBc4HuwFrgMlVtiNtUMXAAWAYcA6wExgeThTHGGGPaWzZck4KqrlDVz6lqnqp+RlV/\n20yfElU92e8zRFW3Jy3fr6oTVbWHqnZT1W+q6jvBZZG9ks9j5ipX8gR3cp01a1bYIQTClfG0PE2q\nsqJIMZkVi8XCDiEQruQJ7uS6b9++sEMIhCvjaXmaVFmR4gBXbuN0JU9wJ9cpU6aEHUIgXBlPy9Ok\nyooUY4wxxmQlK1KMMcYYk5WsSHFA8qRAucqVPMGdXOvq6sIOIRCujKflaVJlRYoDxo4dG3YIgXAl\nT3An10mTJoUdQiBcGU/L06TKihQHlJSUhB1CIFzJE9zJNXlq71zlynhaniZVVqQ4wJVp/13JE9zJ\n9dxzzw07hEC4Mp6Wp0mVFSnGGGOMyUpWpBhjjDEmK1mR4oDkR4HnKlfyBHdyXbhwYdghBMKV8bQ8\nTaqsSHFAVVXGnqKdVVzJE9zJdfPmzWGHEAhXxtPyNKmyIsUBZWVlYYcQCFfyBHdynTFjRtghBMKV\n8bQ8TaqsSDHGGGNMVrIixRhjjDFZyYoUY4wxxmQlK1IcEIlEwg4hEK7kCe7kOmrUqLBDCIQr42l5\nmlRZkeKACRMmhB1CIFzJE9zJ9YYbbgg7hEC4Mp6Wp0mVFSkOGDx4cNghBMKVPMGdXAcNGhR2CIFw\nZTwtT5MqK1KMMcYYk5WsSDHGGGNMVrIixQEVFRVhhxAIV/IEd3JdsWJF2CEEwpXxtDxNqqxIcUB5\neXnYIQTClTzBnVyXL18edgiBcGU8LU+TKitSHLB48eKwQwiEK3mCO7nef//9YYcQCFfG0/I0qbIi\nxRhjjDFZyYoUY4wxxmQlK1KMMcYYk5WsSHHAmDFjwg4hEK7kCe7kOnHixLBDCIQr42l5mlSFXqSI\nyFQROZj0ejmpz89EZKeIxETkSRHpm7T8GBEpE5FaEdkrIstE5MRgM8lersx+6Eqe4E6uNuNsbrE8\nTapCL1J8fwN6AYX+68LGBSIyBZgAjAPOA94HVonI0XHrzwQuB64BLgJOBv4QSOQdwMiRI8MOIRCu\n5Anu5Dps2LCwQwiEK+NpeZpUdQ47AN+HqvpuC8smAXep6uMAIjIaqAGuApaIyHHAWOBaVX3G7zMG\n2CIi56nqxsyHb4wxxpj2li1HUj4lIm+LyGsislBEPgEgIn3wjqw81dhRVfcAG4ABftMX8Yqt+D6v\nANVxfYwxxhjTwWRDkbIeuB4YAvwn0Ad4VkSOxStQFO/ISbwafxl4p4ka/OKlpT5Oq6ysDDuEQLiS\nJ7iT6/r168MOIRCujKflaVIVepGiqqtU9Q+q+jdVfRIYCpwADA85tJwxY8aMsEMIhCt5gju5zpkz\nJ+wQAuHKeFqeJlWhFynJVPXfwKtAX2AXIHhHS+L18pfh//do/9qUlvq0aOjQoUQikYTXgAEDmjwg\navXq1UQikSbrjx8/nvnz5ye0VVVVEYlEqK2tTWifOnUq06dPT2irrq4mEomwdevWhPbZs2czefLk\nhLZYLEYkEmlSpZeXlzd7y9uIESOoqKhg0aJFOZFHvObyWLRoUU7kAUcej/gxzeY8VlasZMMTGxJj\n21pNWXEZ0d3RhPZH5z7KygUrE9qmTp3K0qVl1NRsS2hfs2Y2y5Yl5tHQEKOsLML27cGPR3LMqY5H\n/HiG+blqax7xmstj0aJFOZEHHH48vvWtb+VEHo3jUV5efui3sbCwkEgkQnFxcZN1MkFUNZAdtZaI\n5ONdT3KHqpaJyE7gblUt9Zcfh3cqZ7SqLvXfv4t34ewf/T5nAVuAL7d04ayI9Ac2bdq0if79+2c+\nMWMcU1tbS+lvSykoKiC/e36r14vujlK3qY7isd5fgqWlyykoGEZ+fo/WbyNaS13dcoqLh9GjR+vX\nM8a0TlVVFUVFRQBFqlqVqf2EfnePiNwNPAa8CZwC3Al8ADT+02ImcLuIbAfeAO4C3gIeAe9CWhGZ\nD9wrIu8Be4FZwHN2Z48xxhjTcYVepACnAg8DBXhHRCrxjoDUAajqDBHJA+YC3YG1wGWq2hC3jWLg\nALAMOAZYCYwPLANjOoBoNEp9fX1a63bp0oX8/NYfDeno0v2zcu3PyZhMC71IUdUjznqjqiVAyWGW\n7wcm+i+TZPLkydx9991hh5FxruQJqecajUaZ9/t51EXr0tpfQX4B40aPC/wHuKSkhOOP/1yg+4xG\no8ybt4S6ug9TXregoDPjxg1P+c/Jlc+u5WlSlVaRIiLfBpaqanr/LDOB6t27d9ghBMKVPCH1XOvr\n66mL1tH1zK7kdctLad3Y3hh1r9ZRX18feJFyyimnEI0euV97qq+vp67uQ7p2/Qp5ed1bvV4stpu6\nujVp/Tm58tm1PE2q0j2SUgrMFpHFwHy79iO7ufKQNlfyhPRzzeuWl9JFrI32sS+t/bXVjTfeSGnp\n8lD2nZfXPaWLdQH2pfnH5Mpn1/I0qUr3FuSTgRvxrid5TkT+JiK3iEjP9gvNGGOMMS5Lq0hR1QZV\nXaqqlwO9gQeBG4C3RGS5iFwuItKegRpjjDHGLW2ezE1V/wn8L/A03hT2XwTKgW0iMrCt2zdtlzzR\nT65yJU9wJ9dt27YduVMOcGU8LU+TqrSLFBHpISI3i8iLwHPAiXhPJj4Nb76TCuD37RKlaZNbb701\n7BAC4Uqe4E6ud955Z9ghBMKV8bQ8TarSKlJE5I/A23gPBHwQ+ISqflNVV6pnLzADr2AxIXPl+Seu\n5Anu5Dpt2rSwQwiEK+NpeZpUpXt3zx7gq6q69jB93gU+leb2TTty5XY4V/IEd3I99dRTgdy/edCV\n8bQ8TarSKlJU9bpW9FHgtXS2b4wxxhiT7umeUhFpMu28iIwXkV+1PSxjjDHGuC7dC2e/Caxrpn09\nMCL9cEwmJD/eO1e5kie4k+usWbPCDiEQroyn5WlSlW6R0gPvupRk//aXmSwSi8XCDiEQruQJ7uS6\nL90pXDsYV8bT8jSpSrdIeQ0Y0kz7EGBH+uGYTHDlNk5X8gR3cp0yZUrYIQTClfG0PE2q0r27ZyYw\nU0QKgDV+26XArcAP2yMwY4wxxrgt3bt7/kdEugA/BhpLxreA76vqb9srOGOMMca4K+0ZZ1V1tqqe\nhDe77MdVtbcVKNmptrY27BAC4Uqe4E6udXV1YYcQCFfG0/I0qWqXZ/eo6u72CMZkxtixY8MOIRCu\n5Anu5Dpp0qSwQwiEK+NpeZpUpTtPSk8R+Z2IVItIvYg0xL/aO0jTNiUlJWGHEAhX8gR3cp08eXLY\nIQTClfG0PE2q0r1wdgFwBnA38E+8px+bLNW/f/+wQwiEK3mCO7mee+65rFmT+xNXuzKelqdJVbpF\nykXARar6fHsGY4wxxhjTKN1rUt7Cjp4YY4wxJoPSLVKKgV+KyKntGYzJjPnz54cdQiBcyRPcyXXh\nwoVhhxAIV8bT8jSpSrdIeRAYBLwpIu+JyDvxr3aMz7SDqqqqsEMIhCt5gju5bt68OewQAuHKeFqe\nJlXpXpPyo3aNwmRUWVlZ2CEEwpU8wZ1cZ8yYQWnp8rDDyDhXxtPyNKlKd8ZZO5ZljDHGmIxKezI3\nETldREpE5EEROdFvGywiZ7dfeMYYY4xxVbqTuQ0E/g5cDAwH8v1FRcDP2ic0Y4wxxrgs3SMp04ES\nVR0ExM8w+xTw5TZHZdpVJBIJO4RAuJInuJPrqFGjwg4hEK6Mp+VpUpVukfI5YFkz7e8APdMPB0Tk\nRyJyUETuTWr/mYjsFJGYiDwpIn2Tlh8jImUiUisie0VkWeNpKNdNmDAh7BAC4Uqe4E6uN9xwQ9gh\nBMKV8bQ8TarSLVL+DRQ2034u8Ha6wYjIl4BxwItJ7VOACf6y84D3gVUicnRct5nA5cA1eDPingz8\nId1YcsngwYPDDiEQruQJ7uQ6aNCgsEMIhCvjaXmaVKVbpCwGpolIT/yZZ0XkfOBXQFqzL4lIvr/u\nd4DkpypPAu5S1cdV9W/AaLwi5Cp/3eOAsUCxqj7jT9c/BrhARM5LJx5jjDHGhCvdIuU24HVgJ95F\nsy8D64C/AHeluc0y4DFVXRPfKCJ98I7aPNXYpqp7gA3AAL/pi3i3U8f3eQWojutjjDHGmA4krSJF\nVfer6hjgTLyjGWOBz6jqSFX9MNXtici1wOfxip9khXhHa2qS2mv46JRTL6DBL15a6uOsioqKsEMI\nhCt5gju5rlixIuwQAuHKeFqeJlVpz5MCoKo7VPVRVX1YVbemsw3/+T8zgW+p6gdticc0r7y8POwQ\nAuFKnuBOrsuX5/5ss+DOeFqeJlXpzpMy73CvFDdXhHdHUJWIfCAiH+DNvzJJRBrwjoYI3tGSeL2A\nXf7/7wKO9q9NaalPs4YOHUokEkl4DRgwoEklvHr16mZvKxs/fnyTh0lVVVURiUSora1NaJ86dSrT\np09PaKuuriYSibB1a2KNN3v2bCZPnpzQFovFiEQiVFZWJrSXl5czZsyYJrGNGDGCiooKFi9enBN5\nxGsuj8WLF+dEHnDk8Ygf01TyWPvHtSy7L/HGvIb6BsqKy9j+wvaE9o0rN7LgzgVtymNlxUo2PLEh\nMbat1ZQVlxHdHU1of3Tuo6xcsDKhraSkhKVLy6ip2ZbQvmbNbJYtSxyPhoYYZWURtm9v23g0d9vz\nww+Pp7IycTyqq6soK4sQjSZ+rqZPn57y5yp+PMP8XMXLxPdj8eLFOZEHHH48Ro4cmRN5NI5HeXn5\nod/GwsJCIpEIxcXFTdbJBFHV1FcSeSyp6WPAZ4BuwLOq2uqbxEXkWOC0pOYFwBZgmqpuEZGdwN2q\nWuqvcxxe8TJaVZf6798FrlXVP/p9zvK38WVV3djMfvsDmzZt2kT//v1bG64xHVJtbS2lvy2loKiA\n/O75R14hTnR3lLpNdRSPLaZHjx4Z32f8/gBKS5dTUDCM/PzW7zsaraWubjnFxcNSivlQ3AHv05iO\npqqqiqKiIoAiVc3YExXTfXbPFcltItIZ+A3eRbSpbOv95HVE5H2gTlW3+E0zgdtFZDvwBt7FuW8B\nj/jb2CMi84F7ReQ9YC8wC3iuuQLFGGOMMdkv3acgN6GqH4rI3cCfgXuP0P2Im0va9gwRyQPmAt2B\ntcBlqho/220xcABvkrljgJXA+DbGYYwxxpiQtOnC2Wb0wTv10yaq+hVV/UFSW4mqnqyqeao6RFW3\nJy3fr6oTVbWHqnZT1W+q6jttjSUXNHe+MRe5kie4k+vEiRPDDiEQroyn5WlSldaRFBGZkdwEnARE\nSHMyN5M5rsx+6Eqe4E6ugwYN4s03w44i81wZT8vTpCrdIykDkl7nAV2AH+HNDmuySPKV5rnKlTzB\nnVyHDRsWdgiBcGU8LU+TqnQvnB3Y3oEYY4wxxsRr72tSjDHGGGPaRbqTuf1FRDa25tXeAZvUJU/e\nk6tcyRPcyXX9+vVhhxAIV8bT8jSpSvdIytPAWXgXzK73X/htfwZWxb1MyGbMSL7OOTe5kie4k+uc\nOXPCDiEQroyn5WlSle48Kd2BMlX9cXyjiPwc6KWq32lzZKbdLFq0KOwQAuFKnuBOrvPmzWPu3JVH\n7tjBuTKelqdJVbpHUoYDv2umfQHwzbSjMRmRl5cXdgiBcCVPcCdXyzO3WJ4mVekWKfuBLzfT/mV/\nmTHGGGNMm6R7umcWMFdEvgA0Xhx7PnAj8Mv2CMwYY4wxbkvrSIqq/hz4DnABMM9//X/AOH+ZySLJ\nj+zOVa7kCe7kWlJSEnYIgXBlPC1Pk6q0HzCoqg8DD7djLCZDevfuHXYIgXAlT3An11NOOYVoNOwo\nMs+V8bQ8TarSnsxNRI4TketF5GcicoLfdq6InNR+4Zn24MpD2lzJE9zJ9cYbbww7hEC4Mp6Wp0lV\nug8YPAf4XyAGfALvrp73gBHAKcB17RSfMcYYYxyV7pGUUrxTPWcA9XHtfwIuamtQxhhjjDHpFilf\nAv5bVTWp/W3ATvdkma1bt4YdQiBcyRPcyXXbtm1hhxAIV8bT8jSpSrdI+QDIb6a9L1CbfjgmE269\n9dawQwiEK3mCO7neeeedYYcQCFfG0/I0qUq3SHkMuENEGq9pURE5BZgGLG+XyEy7ceX5J67kCe7k\nOm3atLBDCIQr42l5mlSlW6TcAnwc2AV0BdYAr+Ndn/Ljw6xnQuDK7XCu5Anu5HrqqaeGHUIgXBlP\ny9OkKq27e1T1PWCQiFwMnIt36qcKWNXMdSrGGGOMMSlLuUgRkY8BjwMTVPUZ4Jl2j8oYY4wxzkv5\ndI+qfgAUAXbEpIOYPn162CEEwpU8wZ1cZ82aFXYIgXBlPC1Pk6p0r0l5CBjTnoGYzInFYmGHEAhX\n8gR3ct23b1/YIQTClfG0PE2q0n12jwITROSrwF+B9xMWqtr9V1nElds4XckT3Ml1ypQplJbm/g2D\nroyn5WlSlW6RUgRs9v//c0nL7DSQMcYYY9ospSJFRD4J7FDVgRmKxxhjjDEGSP2alG1Az8Y3IrJY\nRHq1b0imvdXWujEJsCt5gju51tXVhR1CIFwZT8vTpCrVIkWS3g8Fjm2nWEyGjB07NuwQAuFKnuBO\nrpMmTQo7hEC4Mp6Wp0lVunf3tBsR+U8ReVFE/u2/1onI15P6/ExEdopITESeFJG+ScuPEZEyEakV\nkb0iskxETgw2k+xVUlISdgiBcCVPcCfXyZMnhx1CIFwZT8vTpCrVIkVpemFsWy+U/QcwBeiPd0Hu\nGuARETkbQESmABOAccB5eHcSrRKRo+O2MRO4HLgGuAg4GfhDG+PKGf379w87hEC4kie4k+u5554b\ndgiBcGU8LU+TqlTv7hFggYjs9993AX4jIsm3IA9r7QZV9U9JTbeLyE3Al4EtwCTgLlV9HEBERgM1\nwFXAEhE5DhgLXOvPgIuIjAG2iMh5qroxxRyNMcYYkwVSPZLyAPAO8G//tRDYGfe+8ZUWEekkItcC\necA6EekDFAJPNfZR1T3ABmCA3/RFvGIrvs8rQHVcH2OMMcZ0MCkVKao6pjWvVIMQkXNEZC+wH/hv\n4Gq/0CjEO51Uk7RKjb8MoBfQ4BcvLfVx2vz588MOIRCu5Anu5Lpw4cKwQwiEK+NpeZpUhX7hrG8r\n3tOUzwN+DfxeRPoFseOhQ4cSiUQSXgMGDKCioiKh3+rVq4lEIk3WHz9+fJMPZFVVFZFIpMltaFOn\nTm3yTIfq6moikQhbt25NaJ89e3aTiwZjsRiRSITKysqE9vLycsaMaVobjhgxgoqKCqqqqnIij3jN\n5VFVVZUTecCRxyN+TFPJY+0f17LsvmUJbQ31DZQVl7H9he0J7RtXbmTBnQvalMfKipVseGJDYmxb\nqykrLiO6O5rQ/ujcR1m5YGVC27p161i6tIyamm0J7WvWzGbZssTxaGiIUVYWYfv2to3HqFGjmvR9\n+OHxVFYmjkd1dRVlZRGi0cTP1fTp01P+XMWPZ5ifq3iZ+H5UVVXlRB5w+PFYtizxO9ZR82gcj/Ly\n8kO/jYWFhUQiEYqLi5uskwmimn0TxIrIk8B2YAbwGvB5Vd0ct/zPwPOqWiwig4D/BU6IP5oiIm8A\npap6Xwv76A9s2rRpk13kZHJebW0tpb8tpaCogPzu+SmtG90dpW5THcVji+nRo0fG9xm/P4DS0uUU\nFAwjP7/1+45Ga6mrW05x8bCUYj4Ud8D7NKajqaqqoqioCKBIVauO1D9d2XIkJVkn4BhV3QHsAi5t\nXOBfKHs+sM5v2gR8mNTnLKA38H9BBWyMMcaY9pXus3vajYj8AngC70LXbsC3gIuBwX6XmXh3/GwH\n3gDuAt4CHgHvQloRmQ/cKyLvAXuBWcBzdmePMcYY03GFXqQAJ+LdNXQS3p1Bm4HBqroGQFVniEge\nMBfoDqwFLlPVhrhtFAMHgGXAMcBKYHxgGRhjjDGm3YV+ukdVv6Oqn1TVrqpaqKqHCpS4PiWqerKq\n5qnqEFXdnrR8v6pOVNUeqtpNVb+pqu8Em0n2au6CrVzkSp7gTq7NXcSai1wZT8vTpCr0IsVk3oQJ\nE8IOIRCu5Anu5HrDDTeEHUIgXBlPy9OkyooUBwwePPjInXKAK3mCO7kOGjQo7BAC4cp4Wp4mVVak\nGGOMMSYrWZFijDHGmKxkRYoDkmdxzFWu5Anu5LpixYqwQwiEK+NpeZpUWZHigPLy8rBDCIQreYI7\nuS5fvjzsEALhynhaniZVVqQ4YPHixWGHEAhX8gR3cr3//vvDDiEQroyn5WlSZUWKMcYYY7KSFSnG\nGGOMyUpWpBhjjDEmK1mR4oAxY8aEHUIgXMkT3Ml14sSJYYcQCFfG0/I0qbIixQGuzH7oSp7gTq42\n42xusTxNqqxIccDIkSPDDiEQruQJ7uQ6bNiwsEMIhCvjaXmaVFmRYowxxpisZEWKMcYYY7KSFSkO\nqKysDDuEQLiSJ7iT6/r168MOIRCujKflaVJlRYoDZsyYEXYIgXAlT3An1zlz5oQdQiBcGU/L06Sq\nc9gBmMxbtGhR2CEEwpU8o9Eoc+bMoba2ttXr1NXV0fBBQwajyox58+Yxd+7KsMNotYaGeurq6lJe\nz5Xp/135jrqSZxCsSHFAXl5e2CEEwoU8o9Eo834/j7poaj+EsfdjvLT1JU74wgnkk5+h6NpfRxrT\n/fujPP/8S/zmNwfIyzs2pXULCjozbtxw8vM7ztikoyONZ1u4kmcQrEgxpgOpr6+nLlpH1zO7ktet\n9X8RHnz7IPte2seHH3yYwejc9sEH+9m37yi6dh1EQcGprV4vFttNXd0a6uvrc75IMSZVVqQY0wHl\ndcsjv3vrf9Ci/45mMBoTr0uX7uTn90hpnX37MhSMMR2cXTjrgMmTJ4cdQiBcyRPgsbmPhR1CIEpK\nSsIOIRBPPbUs7BAC4cp31JU8g2BFigN69+4ddgiBcCVPgO4ndg87hECccsopYYcQiOOO+3jYIQTC\nle+oK3kGwYoUB7jykDZX8gQYePXAsEMIxI033hh2CIH40pe+EnYIgXDlO+pKnkGwIsUYY4wxWcmK\nFGOMMcZkJStSHLB169awQwiEK3kC1FTXhB1CILZt2xZ2CIGord0VdgiBcOU76kqeQQi9SBGR20Rk\no4jsEZEaEfmjiJzZTL+fichOEYmJyJMi0jdp+TEiUiYitSKyV0SWiciJwWWSvW699dawQwiEK3kC\nPP4/j4cdQiDuvPPOsEMIxNNP/yHsEALhynfUlTyDkA3zpAwEZgN/xYvnl8BqETlbVfcBiMgUYAIw\nGngD+C9gld+nca7vmcBlwDXAHqAM+IO/fae58vwTV/IEGDZhWKD7a9jfkPJ07+0xFf+0adNYunRj\nWuumO0V9XV0dDQ3BPkJg8OCRge4vLK58R13JMwihFymqOjT+vYhcD7wDFAGNj5KcBNylqo/7fUYD\nNcBVwBIROQ4YC1yrqs/4fcYAW0TkPFVN72+5HOHK7XCu5AlwQq8TAtvX/n37ef7F5/nNgd+kNN13\ne0zFf+qppwKpf33bMkV9LBblpZe2c8IJ9QQ1Aezxx9styLnElTyDEHqR0ozugAL/AhCRPkAh8FRj\nB1XdIyIbgAHAEuCLeLnE93lFRKr9Pk4XKca0xQcNH7Dv4D66fqorBYUFrV4vzKn4052iHuDgwdfZ\nt+9VPvzQHiFgTNiyqkgREcE7bVOpqi/7zYV4RUvylYI1/jKAXkCDqu45TB9jTBt0ye/S4abiT2eK\n+miKD280xmRO6BfOJvlv4NPAtWEHkkumT58edgiBcCVPgDWL1oQdQiBmzZoVdgiB+L//Wxl2CIFw\n5TvqSp5ByJoiRUTmAEOBS1T1n3GLdgGCd7QkXi9/WWOfo/1rU1rq06yhQ4cSiUQSXgMGDKCioiKh\n3+rVq4lEIk3WHz9+PPPnz09oq6qqIhKJUFtbm9A+derUJh/e6upqIpFIk1vWZs+e3eT5D7FYjEgk\nQmVlZUJ7eXk5Y8aMaRLbiBEjqKioIBaL5UQe8ZrLIxaL5UQe0PJ4jBo1itj7MRr2f3Rh56NzH2Xl\ngsQfuX/t+hdlxWXseiPx47/+8fUsuy/xOTEN9Q2UFZex/YXtCe0bV25kwZ0LmsQ277Z5vPDnFxLa\nXl7/MmXFZU36vv7C62x6clNCW/XWasqKy4juTjzS0lweNTU1LF1aRk1N4q3Ia9bMZtmyxPFoaIhR\nVgTQrZ4AACAASURBVBZh+/bE8di4sZwFC5qOx7x5I3jhhcTxePnl1Tz88E1N+j788HgqKxPHo7q6\nirKyCNFo4udqzZpSVq5M/Fz961/VlJVF2LVra1Lf2Tz2WAkfxF1gHMbnKqjvRywWy4k84PDjUVVV\nlRN5NI5HeXn5od/GwsJCIpEIxcXFTdbJBFHVQHZ02CC8AuVK4GJVfb2Z5TuBu1W11H9/HN6pnNGq\nutR//y7ehbN/9PucBWwBvtzchbMi0h/YtGnTJvr375+p1IxpV7W1tZT+tpSCooKUTr3senMXqxau\nYsh1Qyg8NbUzoOmum+560d1R6jbVUTzW+0uwtHQ5BQXDUjpts2vXK6xaVcqQIT+isPD0Vq/XlnXT\nXS8araWubjnFxcPo0SO1U1PGhKWqqoqioiKAIlWtOlL/dIV+TYqI/DcwEogA74tI4xGTf6tqvf//\nM4HbRWQ73i3IdwFvAY/AoQtp5wP3ish7wF5gFvCc63f2GGOMMR1V6EUK8J94F8b+Oal9DPB7AFWd\nISJ5wFy8u3/WApfFzZECUAwcAJYBxwArgfEZjdwYY4wxGRP6NSmq2klVj2rm9fukfiWqerKq5qnq\nEFXdnrR8v6pOVNUeqtpNVb+pqu8Em012Sj63matcyROy486ZIKQzGVtHFIu5MZ6ufEddyTMIoRcp\nJvPGjh0bdgiBcCVPgMX3LA47hEBMmjQp7BAC8ac/PRB2CIFw5TvqSp5BsCLFASUlJWGHEAhX8gQY\nMnpI2CEEIvkOhVw1cOAVYYcQCFe+o67kGQQrUhzgyt1LruQJcOqnUptFtaM699xzww4hEIWFbkyj\n7sp31JU8g2BFijHGGGOykhUpxhhjjMlKVqQ4IHlGw1zlSp4AG57YEHYIgVi4cGHYIQTihRcqj9wp\nB7jyHXUlzyBYkeKA5Cmac5UreQK8te2tsEMIxObNm8MOIRC7dlWHHUIgXPmOupJnEKxIcUBZWdNn\nquQiV/IEuOb714QdQiBmzJgRdgiB+PrX/1/YIQTCle+oK3kGwYoUY4wxxmQlK1KMMcYYk5WsSDHG\nGGNMVrIixQGRSCTsEALhSp4A8+9w4+6BUaNGhR1CIJYudeMaBle+o67kGQQrUhwwYcKEsEMIhCt5\nAlx45YVhhxCIG264IewQAlFUNCjsEALhynfUlTyDYEWKAwYPHhx2CIFwJU+As754VtghBGLQIDd+\nvD/5yU+HHUIgXPmOupJnEKxIMcYYY0xWsiLFGGOMMVnJihQHVFRUhB1CIFzJE+Cl514KO4RArFix\nIuwQAvHKKy+EHUIgXPmOupJnEKxIcUB5eXnYIQTClTwBnl/zfNghBGL58uVhhxCIl1/eGHYIgXDl\nO+pKnkGwIsUBixcvDjuEQLiSJ8DoO0aHHUIg7r///rBDCMTVV48LO4RAuPIddSXPIFiRYowxxpis\nZEWKMcYYY7KSFSnGGGOMyUpWpDhgzJgxYYcQCFfyBFh096KwQwjExIkTww4hEI8/viDsEALhynfU\nlTyDYEWKA1yZ/dCVPAHOLDoz7BAC4cqMs3362IyzucSVPINgRYoDRo4cGXYIgXAlT4D+X+kfdgiB\nGDZsWNghBOIznzkv7BAC4cp31JU8g2BFijHGGGOykhUpxhhjjMlKVqQ4oLKyMuwQAuFKngCvv/R6\n2CEEYv369WGHEIh//GN72CEEwpXvqCt5BiErihQRGSgij4rI2yJyUEQizfT5mYjsFJGYiDwpIn2T\nlh8jImUiUisie0VkmYicGFwW2WvGjBlhhxAIV/IEeHrJ02GHEIg5c+aEHUIg1q9fFXYIgXDlO+pK\nnkHIiiIFOBZ4AfgeoMkLRWQKMAEYB5wHvA+sEpGj47rNBC4HrgEuAk4G/pDZsDuGRYvcuF3VlTwB\nvv2Tb4cdQiDmzZsXdgiBuOqqG8MOIRCufEddyTMIncMOAEBVVwIrAUREmukyCbhLVR/3+4wGaoCr\ngCUichwwFrhWVZ/x+4wBtojIearqxtO7WpCXlxd2CIHIy8sjGo1SX1+f1vpdunQhPz+/naPKjKO7\nHH3kTjnAlc/uxz7WccYz3e9YR/p+tZUrn9sgZEWRcjgi0gcoBJ5qbNP/v717D5OyuhM8/v31/Qrd\naYLtNV6I4BgDAXVDHI06M2F1Yq9jshqTPF7IDBODs4bMoJl5JiO6T3bFbMIGpydIhshks5BVkyC6\nK5qArqDghYuidAMtIk1D34ruhqque5/5463W6qIv9VZ1vW9dfp/nqQfqrXPe95w+VW/96rznvMeY\nkyLyOjAfeBK4HKsu8Wn2i8iRWJqCDlIKhdfrZfUvV+PxelLK31DTwKI7FhXMiVQpu7xeL6tXP4nH\nE7Gdt6GhhEWLbtXPl7Il64MUrADFYPWcxOuKvQZwBhAyxpwcJ43Kc4FAAI/XQ+XFlVTV2vslM3hq\nEM8BD4FAQE+iSo0hEAjg8USorLyeqqq6pPMNDvbj8WzRz5eyLVvGpKgMWrp0qdtFcMSyZcsAqKqt\noqauxtbDblDjtmcff9btIjhiuE3z3ebNT7tdBFuqquqoqZmW9GM4oCmU9iyUc64TciFI6QQEq7ck\n3hmx14bTlMXGpoyVZlQ33ngjTU1NIx7z589nw4YNI9K9+OKLNDWdNumIxYsXs2bNmhHbdu3aRVNT\nE729vSO2P/jggyxfvnzEtiNHjtDU1ERra+uI7Y899thpb/TBwUGamppOm962fv36UdeKuO2229iw\nYQPnnXdeXtQj3mj1OPvss9m0YROvP//6yLK1HqF5STPefu+I7Rsf38imtZtGbDt69Kjr9YCx2+Ob\n3/wmg75B6qZ//Ct2tHqc6DxB85JmOg+PfPvveG4HT/905BdiKBCieUkzbXtGToN9Y9MbrH1o7Wll\nW/33q9nz8p4R2/bt2EfzkubT0h7ac4idv985Ypud9qiuruapp5rp6jo4YvuWLY/x9NMj2yMUGqS5\nuYm2tpHt8cYb61m79vT2WL36NvbsGdke+/a9yLp195yWdt26xWzbNrI9jhzZRXNzE17vyM/Hli0r\n2LRp5OfjxIkjNDc30dnZmpD2MZ59dhlTpnzio21uvK+S/ZwfPXo0rfY4++yzs6IemT5f9ff350U9\nhttj/fr1H303NjY20tTUxJIlS07LkwlizGmTaVwlIkPAzcaYjXHbjgE/MsasiD2fgnUp5w5jzFOx\n5z1YA2d/F0szE2gBPj/awFkRmQvs3LlzJ3PnFsYtxvNdb28vK36xgoZ5DdTU2etS9vZ78ez0sGTh\nEqZNm5ahEqYv1Tp2ftjJC796gQV3LqDxHHtXQFPNm2q++LYAWLHitzQ03EJNTfLt0tm5nxdeWMGC\nBd+nsfH8pPOlkzfVfF5vLx7Pb1my5Jasfu9B7P2XQnvkUh1Vcnbt2sW8efMA5hljdmXqOFkxJkVE\nqoEZWD0mABeKyGzghDGmHWt68T+KSBtwGPivwFHgGfhoIO0a4Cci0gecAlYCrxb6zB6llFIqV2VF\nkII1O+clrAGyBvhxbPu/AQuNMY+KSBXwOFAHbAVuMMaE4vaxBIgCTwPlWFOaFztTfKXURALBAJHw\nxLNCvF4v/f39tLVZl5/6+09QXp7cjK2SkgoqKnRgplL5IiuClNi9TcYdH2OMWQYsG+f1IPA3sYeK\n09rayqxZs9wuRsYdPHhw4kR5outIl+1LWm4KBANsfWUnPl90wrSD/V4+3LafN9/aj9/n45QvxPnn\nd1BVmTjk7HTVJQ1cfcWiySiyo3p7xx06lzcOHjxYEJd7CuWc64RcGDir0nT//fe7XQRHPPTQQ24X\nwTHP/fw5t4tgSyQcweeLUlo6i+rqueM+ystmYspqqZ11KZ2dXfCpMsovnkLVpQ3jPkovrMQX8RCJ\npHYzPze99FJh3By7UD6jhXLOdUJW9KSozCqU9U8eeeQRnnrxKbeL4Yhb7r3F7SKkpKysivIJLseU\nlXkpLi6lemoDs5tu5oOOtyivrqYiiftrhPFPVlEd9aUv3e52ERzxyCOPuF0ERxTKOdcJ2pNSAOKn\nIOezc845x+0iOKb+jHq3i+CIqrrkbxiWy6ZO/cTEifJAoXxGC+Wc6wQNUpRSSimVlTRIUUoppVRW\n0jEpBWD58uU88MADbhcj41auXAkuTHhJdVXYSCRCSYm9j6DH4yEUDrHl11to+vbpd7DMN23btkIB\nXNnauvU57rjji7bzpfIeAvdWJF65ciUPP/yw48d1WqGcc52gQUoBGBwcdLsIjvD7/ZTVOLvkfaor\nL4eCIfa37GfmpTMpK02+zIO+Qfa27mWoeMhuUXNSNBx2uwgZFwx6OXr0KKtW/T+qqqqTzhcKBdi/\n/z1mzryMsjJ773u3ViT2+3NzYLNdhXLOdYIGKQWgUKb9PfDAA6z4xQpHj5nqyss9HT14dnsoPb+U\nhsaGpPMNdQzh3+tnwdcXpFLcnDPzuut5770/uF2MjAqHg5x55pVUVl5HQ0PyA0t7eg7h8eyjtPSP\nbeVzc0XiQuldKJRzrhM0SFFqEgyvvJws74C1uF5FTUVK+VT+qaios7kejielfAAF0qGh8oAOnFVK\nKaVUVtKelALQ29tbELei9njsjQtJFAqGbO9jeCCr03wnfY4f0w1BX2HUMxx2tmsjFAqk9HnxeDyE\nQqm/3z0eT0GciwrlnOsEDVIKwMKFC9m4caPbxci4++67j3nXz0spb9AfZPfbu1kVXUVVVfJjS4YH\nstZ/rp4aB6cWPfPYM3zvZ99z7HhuefuZZ6iePd3tYmRcW9v/d+xYwaCX3bv3smpV1NZAXYDBQS97\n97ZRXx8gleEs9913H5s2bbKfMccUyjnXCRqkFIBly5a5XQRHLF26lC07t6SUNxwK4x/yU/npypQG\nsiazuu9kuvZr1zp6PLdcfO21dPTtc7sYGXfuuakF16kIh4P4/cW2B+oCDA0dwu8/QCSS2vt96dKl\nKeXLNYVyznWCBikFYO7cuW4XwRGzZ89OOUgZlisDWc+66CxXjuu0urPOKoggpabmk44fM5UBt16b\nU+0TzZ49O638uaJQzrlO0IGzSimllMpKGqQopZRSKitpkFIA1qxZ43YRHPGrX/3K7SI4Zufvd7pd\nBEcc2VUY9ezqanW7CI4olM9ooZxznaBBSgHYtWuX20VwxDvvvON2ERxz/NBxt4vgiIHjhVFPn6/H\n7SI4olA+o4VyznWCBikFoLm52e0iOOLRRx91uwiO+fJff9ntIjjisj8vjHpeeOHVbhfBEYXyGS2U\nc64TdHZPgUl1xV63Vk1VSiknpXqOBD1PZoIGKQUk1RV7ARpqGlh0xyLHPoCpnCjcuvurUmpiqd7l\n1skvfq/Xy+rVT+LxpHYfGLdWl85nGqQUkFRX7B08NYjngMexVVNTDabcuvurUmp86dzl1skv/kAg\ngMcTobLyeqqq6mzldXN16XymQUoBaGpqGnGLZrsr9gL4cW5tkVSDqSf/7kmmXzDd8bu/umHdD9cV\nxG3x31i3riBui9/SsokFC77vdjEyZvgut889t4F77vlN0vnc+uKvqrJ/ozv4eHXpxHOuSp0GKQXg\n3nvvdbsIKbEbTM2/aT7vv/t+BkuUPa688Uq3i+CI86+8kp7gYbeLkXFnnnmp20VwxPz537L95e93\ndu3FSZGr59xspEFKDrI7XmPu3Ln09vbm/ZiNGXNmFEyQMuNzM9LeRyAYSKrXyefzEQ6H8fl8eL1e\nSkpLqCivSPv4yZg+YwY97x125FiBgJdIJIDP10c47MfnO4HXO3GQXFJSQUVFer/y6+rOTSt/rpgx\n4xq3i5BRw+Nuhs+5ydIBt2PTICXHpDP4VcdsqGGBYICtr+zE54tOmNbrGeBYh4ft21uoqeugurqY\nq6+Z51ig4oRAwMvWN1fji3jwej0c8+1l+7411ByZeFxCdUkDV1+xyIFSqmyWK+Nuco0GKTkm1fEa\n4M6KvTpLJztFwhF8viilpbMoKxv/fRQd7KKktIvKyksoLa1lYOBd+vv6JzyhxvfAUAKRyMQBUboi\n4RBer8d2b4jX62EgcJzKi6dSGZ5KSVE5lTPrqJoy/orYYf8gvkMeIpHUpqyqieXCrCBIfXVpHXA7\nPg1ScpSd8Rp7Xt7DnGvnOL5ir9OzdFpeb7FbxJzVsqOFxq82pr2fsrIqyie4VFFW5qW4uJTy8mqK\niopob+/glVeGKCsrGzdffA9MWVU5HR09VFWHKbdRvuMtybdpJBikvWM3r5hVhEJ+W70hoeAgHd17\nmXXp9ZSXVVNcXkp5dTUVSXxphCdhULnH80Ha+8gFLS0v0tiYfK9TLvZOVFTU0da2jTlzbk46Ty6O\nu3FK3gUpIrIY+DugEXgb+BtjzJvulspdm9ZuYs61cxw/bqq9Pqn2+Gz73TbO+8x5douZk7b9dhvX\nffU6otEoQ2ZowvSRSIShoSEi0QjhSJhoNLVejWg0QigklJbOpLq6fvy0cT0wRaVFhEJdDNk8btur\n2/jE/AuSK1skTEj8lF5QSXFRWdK9IQBDniFCnX6i0YgrZ8WOjj3OH9QF27b9jOuuSz5IydXeiU2b\nltsKUtTY8ipIEZHbgB8Di4A3gCXACyJysTEm+VFMeaa2vjbtfYSCIdtdrsOXbRpqG2zN0km1x6d6\nqr1fWrmsemo1J0+dZMf2dwiHJw5STvUM0NHRzbate6itn0JxcZQU4xQASksrbfXApHqmKbf56xmg\ntLICSrDVGxL0pd7LmOolpvgBt6WllSkfP5dUV08cMI6mosL+lOCBAfuXiTweD6FQ+peaa2s/mfY+\nlCWvghSsoORxY8wvAUTk28CfAwuBjC0ake+3mg/6g+x+ezeroquoqrJxEzgdqJtR/kE/fX1D1NZe\nAiLjppWiHoRjFBVdRDQ6Ba93HzB+HjWxdC4x6YDbzEn1MtHgoJe9e9uorw+QA6fmvP/ugTwKUkSk\nFJgH/LfhbcYYIyJ/AOZPlP/dd9+l7f0228f1+/3se38fQ6UT/5pNVFNSw+233G7rzeLGoNJwKIx/\nyE/lpytpaEz+l5AbA3ULUU3NtAmDlKgvQklpBVVV9VRU1eo18EmS6iUmHXCbWaleJhoaOoTff4BI\nxNlzViqDg71eL+vXP4/XW2z7eDU1EW6//UbbgYobwU3eBCnANKAY6ErY3gXMnCjzq2++yo4jOygt\nL7V10AHPAJyEy264zNa4i77uPjb/ZjPdJ7tzpneioqbCkcs2yp5g0MtEvSKhkI9oNEww6KOozP5J\nTY0vlUtMkzHgVo3P7mUibwq3dkhXur0+8+cvpr7+jKTz9fV1sHnzP9PdHcyJwcj5FKTYVQHQEps9\n0O/pp+hEEVHsXagv8ZfQP9DPsfePUVGd/H0j+rr76DnRQ3e4m1pJfszIyeBJenp6aNvVRu+05IbZ\nHHr3EK1vttLX3Ye338vhvYfpP95vq6y5kK/9QDvlteW287lR1nTzte9vp31fO/7u43x47PiE+QIn\n/QwOHON421YqqiopLo4SCgn+rr2UlI4/3yYwcJLBk/10HmyBYhjs6qezdB/9leOfqCYjX9/RdqSx\nLKPHc6OOkWCISFeQAwdeIRj04vV2c/jwdvr7k78ZYV9fB15vj2P5JuOY7e27aW3d7Njx3PrbHDq0\nI+l69vV10NNzgu7uGmprP5H08U6ejNLT00VHxzv4fMkvHZHq8UIhP52drbz++uvU19d/9N1J7Ls0\nU8QYk8n9OyZ2uWcQ+IoxZmPc9rXAVGPMXySk/zrwvx0tpFJKKZVfvmGMWZepnedNT4oxJiwiO4E/\nATYCiIjEnq8cJcsLwDeAw4BeGFZKKaWSVwGcj/VdmjF505MCICK3AmuBb/PxFOSvArOMMT0uFk0p\npZRSNuVNTwqAMeZJEZkGPAycAewBFmiAopRSSuWevOpJUUoppVT+KHK7AEoppZRSo9EgRSmllFJZ\nKW+CFBFZLCIfiIhfRHaIyBXjpL1KRLaJSK+IDIpIi4h8d5R0/zn2ml9E3haRGzJbi+RMdl1F5E4R\nGRKRaOzfIREZzHxNxmenngn5rhKRsIjsGuW1rGvTya5nPrSniHwxruxDcfWZnpAup9szmXrmQ3vG\n0peJyA9F5LCIBETkkIjclZAmp9szln7cemZre4Lt9+4To9RjSET2JqRLr02NMTn/AG7DmkZ8BzAL\neBw4AUwbI/2cWJ5LgPOArwNe4C/j0nwBCAPfw7pj7cNAEPijPKzrnUAf8ElgeuzxyVyqZ1y+qUAb\n8DywK+G1rGvTDNUz59sT+CIQBS6Kq8P0fGvPJOuZ8+0Zy/MM8BpwXexc9B+A+fnUnknWM+vaM8X3\nbm38exY4C+gFfjCZberqH2US/7g7gJ/GPRfgKHC/jX38Bvi3uOe/BjYmpNkO/Ese1vVO4ITb7TgZ\n9QTWAw8BD3L6l3fWtWmG6pnz7cnHX95TxtlnzrdnkvXMh/b8j7EvvLo8b89k6pl17ZlKXUfJfzMQ\nAc6dzDbN+cs98vHCgh/dg9hYf4mkFhaM7eNzsbQvx22eH9tHvBeS3WcmZLCuADWx7skjIrJBRP5o\nckptX6r1FJG7gQuwvrxHk1VtmsF6Qh60J9ZJco+IHBORF0XkCwmv50V7MnE9Iffb8ybgLeABETkq\nIvtF5EciEn9L9Xxoz2TqCVnUnjA53y3AQuAPxpj2uG1pt2nOBymMv7Bg43gZRaRdRAJYN35rNsY8\nEfdyYyr7zLBM1XU/1husCesuvEXAayJy1mQV3Cbb9RSRT2OtgP0NY8xYS1JnW5tmqp45357AceCv\nga8AtwDtwMsiMicuTc63J8nVMx/a80LgauBSrF/c92HdaLM5Lk0+tGcy9cy29oQ0vlsARORM4Abg\n5wkvpd2meXUztxT8MVADfB5YLiJtxpj/43KZMmXMuhpjdmB19QEgItuBFqyT54MulNUWESnCWofp\nQWPM8Kpg4y8LnIOSrWeutyeAMeYAcCBu0w4RuQjrLtJ3ulOqyZdMPfOhPbG+iIeArxtjvAAi8j3g\nKRH5jjEm6GrpJs+E9cyT9kx0F9Y4m2cme8f5EKT0Yl3TTVyr+gygc7yMxpgPY/99T0QagWXAcJDS\nmco+MyxTdU1MGxGR3cCMtEqbOrv1rAUuB+aIyPAvliKs5ZtCwJeMMS+TfW2aqXqOkIPtOZY3gKvi\nnud6e44lsZ4j5Gh7Hgc6hr+4Y1qwguxzgPfJj/ZMpp4jZEF7Qvrv3buBXxpjIgnb027TnL/cY4wJ\nA8MLCwIjFhZ8zcauioH4Neu3x+8z5s9i212RwbqOEPvFfhnWB85xKdTzJPAZrJlMs2OPVUBr7P+v\nx9JlVZtmsJ4j5GB7jmUOI+uQ6+05lsR6jpCj7fkqcJaIVMVtm4nV63A09jwf2jOZeo7gdntCeu9d\nEbkWa3bamlFeTr9N3R5RPBkP4FZgkJFTpzzEpnUB/52Rs1m+A3wZK3KdAXwLGAAeikszH2uq1PDU\nqWVY07PcnoKcibr+IPbGuQD4HNbMER/Wwow5Uc9R8o826yXr2jRD9cz59sS6lt+EdfK7FPifWFMZ\nr82n9kyynvnQntXAh1i9t5cA12CNzViVZ+2ZTD2zrj1TqWtcvv8FvDbGPtNuU9f+IBn4A38HOAz4\nsaK0y+NeewLYEvf8XmAvcArrOtpbwKJR9vkVrF+pfuAdrMUK866uwE+AD2L7OwY8C3w2l+o5St7T\nvryztU0nu5750J7AUuBg7OTdgzXr4Jp8a89k6pkP7RnbdjHWzA4v1hf5o0B5PrVnMvXM1vZMsa5T\nYvVcOM4+02pTXWBQKaWUUlkp58ekKKWUUio/aZCilFJKqaykQYpSSimlspIGKUoppZTKShqkKKWU\nUioraZCilFJKqaykQYpSSimlspIGKUoppZTKShqkKKUcISKfEpEhEflsmvt5QkR+O0Gal0TkJ3HP\nPxCR/5LOcZVSztMgRSl1mlggMCQiUREJishBEflBbDG0dLh1i+vLgdXDT2J1a3KpLEqpJJW4XQCl\nVNZ6HrgLqABuAP4Fa7GwR+MTxQIXY5JbY0MmuYxJMcZ43DiuUio92pOilBpL0BjTY4xpN8asBv4A\n/CcRuVNE+kTkJhF5D2tV03PF8k8i0i4iARHZLSILRtnvJSLyqoj4RWSviFwz/IKIFInIv4rIIREZ\nFJHWsS7TxI7VLSIDIvIzERnzR1f85R4R+QCrR2dDrEflUOxSVFRE5ibk+66IHLb7h1NKTQ4NUpRS\nyQoAZbH/VwH3A98CLgW6ge8CS7CWZb8MayXYjSJyUcJ+HgV+BMzBWml1o4jUx14rAtqxVk69BHgI\n+KGIfDVhH3+KtZz8F4GvAbdgrQidjCuwenTuBBqBK4wxHwK/B+5OSHsX8Isk96uUmmQapCilJiQi\nfwosADbHNpUA9xhjdhhjDhpjAsDfAo8YY56Kbfs+sAcreIn3mDFmgzFmP3APcBIr2MEYEzHGPGSM\n2W2M+dAYsx5YC9yasI8gcLcxpsUY8zzwT0BSA2ONMb2x/w4YY7rjLgWtAW4XkdJYnecCn4kdXynl\nAg1SlFJjuUlETolIAPi/wHqsng2AkDHm3eGEIlILnAW8lrCPV7F6ROLtGP6PMSYKvBWfRkQWi8hb\nsUs5p4BFwHkJ+3jbGBOMe74dqBGRc+1WMs4GYAj4i9jzu4CXjDFH0tinUioNGqQopcayBfgsMAOo\nNMYsNMb4Y6/5x86WOhH5GtaloJ8DfwbMBp7g48tMGWOMCQO/BO6O9abcjtW7opRyiQYpSqmx+Iwx\nHxhjjhpjhsZLaIw5BRwDrkp46SpgX8K2zw//R0SKgXlxab4AvGqMedwY87Yx5hCQOKYFYLaIlMc9\nnw94jTHtE9bKEgaKR9n+r1jB0Xdir/8uyf0ppTJAgxSl1GT5EfCAiNwqIheLyCNYPSE/TUi3WERu\nFpGZWNOa67B6SwAOApeLyJdE5NMi8jDWQNdEZcAaEblERG4ElgGP2SjrYeBPROQMEakb3miM/Nrr\n0wAAAP1JREFUacW6HLUcWJdwSUkp5TC9T4pSarKsBKYA/wOYjtU7cpMx5v24NAb4fuwxG2iLpTkR\ne/1xrFk/v46lXQ80Y92nJd5mrIDmFayAZR0fj5cZPg7jPP9b4MfAXwEdwIVxr63B6pnRWT1KuUyS\nu/+SUkoVBhH5AfAVY8wct8uiVKHTnhSllAJEpBq4AFgM/IPLxVFKoWNSlFJq2D8Db2LNanpigrRK\nKQfo5R6llFJKZSXtSVFKKaVUVtIgRSmllFJZSYMUpZRSSmUlDVKUUkoplZU0SFFKKaVUVtIgRSml\nlFJZSYMUpZRSSmUlDVKUUkoplZU0SFFKKaVUVvp3pSUw5+Fb2GUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGHCAYAAAB1bcIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X98FNXV+PHPQUSIEZVEQVtTLVSQx1oLLci3oGJbUCyr\n1RbEh6KhGmuBamqR2moJ+rQKtQaEtNVHbKjVgEUaf7QCPlKUqIglolYBSQVTpSCJIKwhRML9/jEb\n3N0kkN0kM5s95/167Uv3zt3ZczIz5GTmzh1xzmGMMcYYk2o6BR2AMcYYY0xTrEgxxhhjTEqyIsUY\nY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgxxhhjTEqyIsUYY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgx\nJo6IFIjIAZ++a6WI/D3q/XkickBELvPp+4tFZLMf35UsETlaRB4Qkf9Efjb3BB0TgIhsEZEn2nB9\nLd72TW23yGd/EfX+6khbTgLffW5y0RvTPqxIMWlNRK6K/OPb8NorIu+LyFIRmSIimU18zAEJFSki\ncpKITBeRsxIMsanvatNnVRwmtoRzDcDPgQlAETAeeKi5jpHCIXp7bxeR50Xk0naIqz2eKdLSdbZk\nu7n49YnI9SJyVSu/2xjfdA46AGN84IDbgC3AkUAv4HxgNvBjEQk5596I6n8HcGeC33EyMB3YDLye\nwOe+2USbJPjdh3Oo2K4h9f9YGQ6sds79Twv6OuBV4G68n+PJwHXAEhH5gXPu/vYLs020dNu3ZLv9\nEShxztVFtf0Q2AEsiO7onHtORLrF9TUmcFakGC2WOufKo97PFJHzgb8Cj4vIGc65fQDOuQNAov9Y\nJ1RYRH4h7HXO7U/we5LRbGzOuXqg3ocYWuNE4M0E+r/vnCtpeCMiDwEVQD7QbJEiIl2dc7VJR+mj\nlmw35z09tsX7sRUoJhWl+l9QxrQb59xKvLMmn8O7jAA0PSZFRL4pIqtEZKeI7BGRDSLyy8iy84A1\neH/FF0cuM9SLyITI8pUi8rqIDIhcevgY+GXUshXxoQFHiMivIuMwwiLyuIh8Ni6mLSLyYHxe0ets\nQWxNjW3IEJHfiEiliNRGcr2pie85ICL3isglIvJGpO8/RWTkYX70DZ8/QUTmi8i2yGW4dQ1xNcQe\n2Q6nAt+Kiv2wYyyiOee2A+uB06LWvUVEnhCRESLyiojsBfIiy44QkdtEpCKS02YR+aWIdGkmj2+K\nyKuRHN4UkW/HLT9eRO6O7AN7ROQjEfnbIS6/tWTbH3YsUfyYlEj//wLOj7ocdnA/kSbGpIjI4Mil\n0V0i8nFk3/p/cX0yRWR25OdUG7nEtlxEzj5UfMa0hJ1JMdo9BPwKGAHMj7TFXMsXkf7Ak8A6vMtG\n+4A+QMM/1uuBXwC3A/cBqyLtL0atLxv4G7AQ7zT89qhl8QS4FW/MwV14ZxLygWdE5OyGMz7NfDa+\nvSWxxa/nSeA84AHgNWAk8GsROdk5F1+sDAMuA34L7AF+BCwWkRzn3M5m4kNEugLPAZ8H5uJdivsu\nXiF1rHNuLvAWXvE4G/g38JvIx3c0t95mvqszcApQHdXsgH7AI3g/l/uBjZFl8/HGwDyKd9loMHBL\npP/lcas/HW+b/h4oBnKBP4vISOfcs5E+nwdCwJ/xLrn1xLsEtVJE+jvntkWHS8u3/eHGkMT3uQGY\nh7ed/ifyXdvj+n8aiMgFePvsP4CCSEy5wAoRGeqc+0ek6314+8BcvP0tCxgKnIF3zBiTPOecveyV\nti/gKrzT4gMO0Wcn8I+o99OB+qj3N0TWcfwh1jEQ7x/xCU0s+3vk89c0s2xF1PvzIuupBDKi2r8T\naZ8c1bYZeLAF6zxUbH8A3ol6f0mk70/j+j0K7AdOi2o7AOwFTo1q+2Kk/YeH2S4NP9MrotqOAF4A\nPgKOjsvziRZu783A03i/KLOAs4CSyHcVxvWrB74R9/mzIvH/Pq59VqT/eU2s45KotmOA9+P2pyOb\niDMn8rP7eZLbPma7RW2PXzSx7+dEtb0RvW/EfXc9cG5U20bgr3H9jgL+hXf5NPr4ube1x6q97NXU\nyy73GANhvF8uzdkV+e+3RSTZQa378P7SbqkFzrmahjfOucXAf4BRSX5/S12EV4zMjWv/Dd7l4Yvi\n2p9xzm1peOO8Aci78c4eHO57tjnnFkZ9th64F8jE+6WZrJF4Z1t24P0lfzne2aufxvXb7Jz7v7i2\nUXhnFArj2n+Dd+bh4rj2rc65x6Ny2BP5ri+LyImRtk8alotIJxHpAdTgFQEDmog/qG1/UORSzReA\nEhHJanjhHSfPAtGXhXYBg0XkJL/iM3pYkWKM90txzyGWL8L7C/9/ge0iUiIi302wYHnfJTZItqKZ\ntlMTWEcyPof3i/fjuPb1Ucuj/buJdewEjm/B92xqon09XjEQ/z2JWA18PfIaAmQ753Ldp5dKGjQ1\npuNzeGckYn7+zhvXsquJuJraTm9H/nsqgHjyReRtvGK1CvgA76zTsU18PqhtH+0Lkf/+kU8Lvh14\ncV8DdBGRhthvBs4E/i0iL4t3u/tp8Ss0Jhk2JsWoJiKfwftF0dQvBgCcd8fHuSIyHO8v6QuBscCz\nIjLCOdeS+SX2tkW88aE1034E3tkQPzR3h0lb30adiCrn3N8P3+2Q26Qt5wz5Od6YoAfwxpt8iFcI\nzSF1/1BsiOsmvHFJTQkDOOf+LCLPA9/GG9v1E2CaiHzbObes3SM1ac2KFKPdBLxfSEsP1zHyi+/v\nwE9E5Ba8wYfDgRW0/URYX2iirQ+xvzB2Asc10e9zeOMGGiQS27vA10Xk6LizKWdELW8L7+KdSYjX\n1t+TqHfxfkF/gU8H0hK5dHNcE3H1aWIdfSP/3RL57+V440DyojuJyHE0PQi4Jds+WS3dFxr2nz3O\nufi7zxqv1DvT9Hvg9yKSjTdXzc8BK1JMq6RqFW9Mu4vcvXAr8A7eXR7N9Wvq0sVreGcLjoq8b/iF\n3lTRkIwJEjUbroh8FzgJ726LBv8CzoncvdLQ71t4d7JESyS2v+H98TI5rj0f76//p1sUfcu+p5eI\njG1oEJEjgCl4l96ea6PvSSYuAW6Ma78J7xf8X+PaT46+5VhEugPfA151zn0Qaa4n7sxSZHt+ppkY\nWrLtk/UxLdsP1uLtXz8RkaPjF0YKkYYxNt2jlznnqoCtfHpsGJM0O5NiNBBglIicgbfP9wQuwJvt\ndTMQcoeeyOoXkfkj/or3l3RP4Hq8uzDKIn3+hTdm4QciEsb7ZbDaOZfsGYEPgTIR+QPeDLk34I11\neCCqzwN4d34sE5FHgd54t+zGX7pKJLYn8c4W/TIyrqDhFuTReHfHtNVzfu7Huw23WES+wqe3IA8B\nbmhiTIwvnHOvi8gCIC9SnD6HdwvyBGCJcy6+eHobeEBEvop3O+/38W4bjp56/ingNvHmtHkR7wzS\nfxN7titaS7Z9stbi7Qc/x9tPPoi6NHawkHLOORG5Bq8wejMSy/t4hdVwvDuwLsEbSPueiCzG21fC\neMfVV4Aft0G8Rrugby+yl73a88Wnt2E2vPbi/WO7FJhE1K2uUZ+ZDuyPen8+sARvkOjeyH8fAnrH\nfe5beLd47ot814RI+9+B15qJ7+/As1HvG24FHYN3Oek/eP/wPw58tonP34hXLNXg/UL9cvw6DxPb\nH4B/xfXNwJsf5N9ALbAByG/iu+uBOU20vwPMb8G2ycb7xbs98nNdB3yvmfU93sLt3aK+h+qHd4b5\nVrxf4rV4BdQdxN1K3LAO4BuR2GvwZsb9dly/Lni3ML8X2ZbPAYPwLhMmte2b2W71wG1N7PvRtyCf\nCDyBV7TWE7kdmSZuQY60n4U3v8sHkfzewbul+/zI8iPx5nMpj6xzd+T/84I+9u2VHi9xrq0vpRtj\njDHGtF7gY1IiUykfaOI1N6rP7SKyVURqROQZEekTt46jRKRIRKrEm3Z6ccMcBcYYY4zpmAIvUvCu\nXfaKen0Tb4DaowAiMg1vEF8e3inSj/GuwUc/R2M23q2hl+NNMnQy8JhP8RtjjDGmHaTc5R4RmQ2M\ncs6dHnm/Ffi1c64w8r473jXsq5xzj0be78CbXvsvkT598SaFOsc5tyaIPIwxxhjTOqlwJuUgETkS\nb9T7/Mj70/DOrjQ8qAvn3G7gZby7AMA7E9M5rs9GvMGEDX2MMcYY08GkVJGCN2PhscCCyPteeJd+\ntsf12x5ZBt7toHWR4qW5PsYYY4zpYFJtnpSJwNMu9tHl7SLysKyReLcX1rb39xljjDFppCve86SW\nOeeq2+tLUqZIEZEcvPkGLo1q3oY3wVBPYs+m9MSbdrmhTxcR6R53NqVnZFlzRgIPtzZuY4wxRrH/\n5hAzdrdWyhQpeGdRthM19bNzbrOIbMN7munrcHDg7GCgKNJtLd7D1L4ORA+czQFeOsT3bQH405/+\nxBlnnHGIbh1ffn4+hYXxT55PP1ryBD25Wp7pxfJMH+vXr2f8+PHw6TOq2kVKFCmRR95fDRQ75w7E\nLZ4N3CoiFXw68+N7eLMw4pzbLSLzgXtEZCfecz/uBV44zJ09tQBnnHEGAwYMaMNsUs+xxx6b9jmC\nnjxBT66WZ3qxPNNSuw6XSIkiBe8yzyl4Uz3HcM7NEpEM4D68B2OtAi5ysc9ayceb0nkx3kOtGqY8\nN8C2be0+xCclaMkT9ORqeaYXy9MkKiWKFOfcM8ARh1heABQcYvk+vKenTmnr2NLB+++/H3QIvtCS\nJ+jJ1fJML5anSVSq3YJs2sHAgQODDsEXWvIEPblanunF8jSJsiJFgXHjxgUdgi+05Al6crU804vl\naRKVctPi+0VEBgBr165dq2mAkzHGJK2yspKqqqqgwzA+yc7OJicnp8ll5eXlDWeMBjrnytsrhpQY\nk2KMMSa1VVZWcsYZZ1BTUxN0KMYnGRkZrF+/vtlCxQ9WpCiQm5vLH/7Q6MaptKMlT9CTq+WZOqqq\nqqipqVExt5T5dB6UqqoqK1JM+xoxYkTQIfhCS56gJ1fLM/VomFvKpA4bOKuAlkFcWvIEPblansbo\nZkWKMcYYY1KSFSnGGGOMSUlWpChQVlYWdAi+0JIn6MnV8jRGNytSFJg1a1bQIfhCS56gJ1fL0xjd\n7O4eBRYuXBh0CL7QkifoydXy7DjC4TC1te36QNzD6tq1K5mZmYHGYNqWFSkKZGRkBB2CL7TkCXpy\ntTw7hnA4zP33P0p19f5A48jK6kxe3hgrVNKIFSnGGGNapba2lurq/XTrdgEZGccFEkNNzS6qq1dQ\nW1trRUoasTEpxhhj2kRGxnFkZmYH8mptcVRQUECnTp3YuHEjY8aM4dhjjyU7O5sbb7yRffv2tXg9\n559/PhdccEGj9quvvprTTjvt4Pt3332XTp06cc899zB79mxOPfVUMjIyOP/883nzzTdblUs6sSJF\ngalTpwYdgi+05Al6crU8jV9EBIAxY8ZQV1fHXXfdxcUXX8y9997Lddddl/B6mmpvatmCBQuYO3cu\nkydP5mc/+xlvvvkmX//619mxY0dyiaQZu9yjQJDPXfCTljxBT66Wp/Fb7969WbJkCQDXX389xxxz\nDL/73e/4yU9+wplnntnm3/evf/2LiooKevXqBcDIkSMZPHgwM2fO5O67727z7+to7EyKAlOmTAk6\nBF9oyRP05Gp5Gj+JCJMmTYppmzJlCs45/va3v7XLd377298+WKAAfPWrX2Xw4MHt9n0djRUpxhhj\nTESfPn1i3vfu3ZtOnTqxZcsWX74P4PTTT2+37+torEgxxhhjmtHcGJNE+9fX17dFOOpYkaLAhg0b\ngg7BF1ryBD25Wp7Gb5s2bYp5X1FRwYEDBzj11FNb9Pnjjz+eXbt2NWp/9913W/R9AG+//XaLvy/d\nWZGiwM033xx0CL7QkifoydXyNH5yzlFUVBTTdu+99yIiXHTRRS1aR+/evdmwYQPV1dUH21577TVe\neOGFJvuXlpaydevWg+/XrFnDyy+/zKhRo5LIIP3Y3T0KzJs3L+gQfNGR80x0SvHbb7+dqqqqg+/T\ndTrwjrxNm9PUto7fnoeSytu6pqbxGYSO9t2bN2/mkksu4cILL+TFF1/k4YcfZvz48Xzxi19s0ecn\nTpzIPffcw4gRI/j+97/P9u3bue+++zjzzDPZvXt3o/59+vRh6NChXH/99dTW1jJnzhxOOOEEuy09\nwooUBbTc3thR8wyHw9z/x/upDlcfvnMzsjKzyJuQl7K/vJLVUbdpcw49ffyaFq0jFad+79q1K1lZ\nnamuXsHevcHFkZXVma5duyb9eRFh0aJF3Hbbbdxyyy107tyZH/3oRwk9ALJfv3489NBD/OIXv+Cm\nm26if//+/OlPf+Lhhx/m+eefb9R/woQJdOrUidmzZ/PBBx8wePBg5s6dS8+ePZPOI51YkWJMwGpr\na6kOV9Pt9G5kHJP4M1xq9tRQ/Xa1TQfeAbR2+vhUnfo9MzOTvLwxafGAwRNOOIFHH320VesYN24c\n48aNi2n7xje+0Wz/G2+8kRtvvLFV35murEgxJkVkHJNB5nHJ/QO7lwD/fDUJa5g+PhlBnqk4lMzM\nzJQqnEx6sIGzCsycOTPoEHyhJU+ApcVLgw7BF1q26dKlOvLsyHbv3s327dsP+TJtz86kKFBTUxN0\nCL7QkidA3b66oEPwhZZtWlenI8+O7IYbbmDBggXNLheRhOdCae55PuZTVqQoMGPGjKBD8IWWPAFC\n14WCDsEXWrZpKKQjz1Q2ffp0pk+f3uzyadOm8b3vfa/Nvu9zn/ucTfDWAlakGGOMMYfRr18/+vXr\nF3QY6tiYFGOMMcakJCtSFGjpJFEdnZY8AcK7wkGH4Ast2zQc1pGnMYmyIkWBiRMnBh2CL7TkCbBg\nRvMD+NKJlm26YIGOPI1JVEoUKSJysog8JCJVIlIjIq+JyIC4PreLyNbI8mdEpE/c8qNEpCiyjj0i\nslhETvQ3k9RUUFAQdAi+0JInwOjrRgcdgi+0bNPRowuCDsGYlBR4kSIixwEvAPuAkcAZwE3Azqg+\n04DJQB4wCPgYWCYiXaJWNRu4GLgcOBc4GXjMhxRS3oABAw7fKQ1oyRMgp196TRffHC3bNCdHR57G\nJCoV7u75KVDpnLsmqi3+mdY3AHc4554CEJEJwHbgUuBREekOTASucM49F+mTC6wXkUHOuZY9FMMY\nY4wxKSPwMynAaOAfIvKoiGwXkXIROViwiMhpQC/g2YY259xu4GVgSKTpK3gFV3SfjUBlVB9jjDHG\ndCCpcCbl88D1wG+AX+JdzrlXRPY55x7CK1Ac3pmTaNsjywB6AnWR4qW5PmrNnz+f73//+0GH0e60\n5AlQVlrG0EuHBh1Gu9OyTcvK5jN0aMfOMxwOp8UDBtvL1VdfzXPPPcfmzZuDDqVDSYUipROwxjl3\nW+T9ayJyJvAD4KHgwkof5eXlKv6h15InQOXGyqBD8IWWbVpZWQ503DzD4TD3//F+qsPVgcaRlZlF\n3oS8lCxUbAr85KTC5Z7/AOvj2tYDDSMDtwGCd7YkWs/IsoY+XSJjU5rr06RRo0YRCoViXkOGDKG0\ntDSm3/LlywmFGk9FPmnSJObPnx/TVl5eTigUajTHw/Tp0xs9MK2yspJQKMSGDRti2ufOncvUqVNj\n2mpqagiFQpSVlcW0l5SUkJub2yi2sWPHUlpaSlFRUVrkEa2pPIqKijpkHuPHj2/U95GZj1BWGrve\nyg2VFOUXEd4V5sppVx5sX7pgKS+tfCnwPNpjv5o2bVpa5NGwPTZt2hTTvmLFXBYvnsqVV356jNbV\n1VBUFKKiIjaPNWtKWLhwSqB5NKe2tpbqcDXdTu9G1sCsQF7dTu9Gdbg68LM56aikpOTg78ZevXoR\nCoXIz8/35bvFOefLFzUbgMjDwGedc+dFtRUCX3XODY283wr82jlXGHnfHe9SzgTn3J8j73fgDZz9\nS6RPX7xi55ymBs5GbnFeu3btWjV3EJjUVFVVReGDhWQNzCLzuMT/AgzvClO9tpr8iflkZ2e3Q4Sm\nrVRVVVFYuISsrMvIzEx8W4XDVVRXLyE//zLft3V5eTkDBw6kqX8zW7sPt4VUPw5yc3N57rnneOed\nd4IOpUUOtb2jlwMDnXPl7RVHKpxJKQTOEZFbRKS3iFwJXAPMi+ozG7hVREaLyBeBPwLvAY/DwYG0\n84F7ROR8ERkIPAi8YHf2GGOMOZyCggI6derExo0bGTNmDMceeyzZ2dnceOON7Nu3L6F1lZaWcuaZ\nZ9KtWzfOOuusRme6GtTU1HDTTTeRk5ND165d6devH7/5zW9i+lx++eUNxcBBo0ePplOnTjz11FMH\n29asWUOnTp1YtmwZAMXFxXTq1IkXX3yRH//4x5x44olkZmZy2WWXUV0d7GW5RARepDjn/gF8GxgH\nvAH8HLjBObcwqs8sYC5wH95dPd2Ai5xz0c+rzweeAhYDK4GteHOmGGOMMYfUMF5kzJgx1NXVcddd\nd3HxxRdz7733ct1117V4PcuXL+c73/kOnTt35q677uLSSy8lNzeXf/zjH436jh49mjlz5jBq1CgK\nCwvp168fU6dO5aabbjrYZ9iwYbz++uuEw58+CuPFF1/kiCOOYNWqVQfbnn/+eY444gi+9rWvxeQz\nZcoU3njjDQoKCvjhD3/Ik08+yeTJkxP74QQoFQbO4pz7G/C3w/QpAAoOsXwfMCXyMlFCoRBPPPFE\n0GG0Oy15AhTlFzGpcFLQYbQ7Ldu0qCjEpEnpn2dH0Lt3b5YsWQLA9ddfzzHHHMPvfvc7fvKTn3Dm\nmWce9vPTpk2jV69elJWVHRzAe9555/HNb36TU0899WC/xx9/nL///e/86le/4qc//enB7xszZgxz\n5sxh8uTJnHbaaQwbNoz6+npeeOEFRo4cyT//+U927tzJmDFjYoqUsrIyvvSlLzUaNHzCCSewdOnS\ng+/r6+uZO3cue/bs4Zhjjkn65+SXwM+kmPbXkarm1tCSJ8DwscODDsEXWrbp8OE68kx1IsKkSbHF\n/5QpU3DO8be/HfLvaAC2bdvGa6+9xtVXXx1TLHz961+nf//+MX2ffvppOnfuzJQpsX9X33TTTRw4\ncICnn34agC9/+ctkZmby/PPPA7Bq1SpOOeUUJkyYwNq1aw8OFC4rK2PYsGGN8snLy4tpayh63n03\nfs7U1GRFigIjRowIOgRfaMkToP85/Q/fKQ1o2ab9++vIsyPo0yfmsXD07t2bTp06sWXLlsN+tuEX\nf/w6APr27duo78knn8zRRx8d037GGWfErKtTp04MGTLk4FmTVatWMWzYML72ta9RX1/P6tWreeut\nt/jwww8bFSkAp5xySsz7448/HoCdO3c26puKrEgxxhhjmpEKc5sMHTqUV155hX379rFq1SrOPfdc\njj32WM4880xWrVrFqlWrEJEmi5QjjjiiyXUGfWdvS1mRYowxxkTEz2VTUVHBgQMHYsaTNOdzn/tc\nk+sA2LhxY6O+W7du5eOPP45pX79+fcy6wLtEU1dXR0lJCVu3bj1YjJx77rk8//zzrFq1itNPP50T\nTjjh8Al2MFakKNDc7W/pRkueAOtWrgs6BF9o2abr1unIM9U552ImvwS49957EREuuuiiw36+V69e\nnH322SxYsIA9e/YcbH/mmWd46623YvqOGjWK/fv3M2/evJj2wsJCOnXqFPN9gwcPpnPnzsycOZMe\nPXocvCQ0bNgwVq9ezfPPP9/kWZR0kBJ395j2VVJSwqWXXhp0GO1OS54Aa5at4ezzzw46jHanZZuu\nWVPC2Wd3/Dxr9tR0+O/evHkzl1xyCRdeeCEvvvgiDz/8MOPHj+eLX/xiiz5/55138q1vfYuvfe1r\nTJw4kerqaubNm8eZZ54Zcxvx6NGjGT58OD//+c/ZvHkzX/rSl1i2bBlPPvkk+fn5nHbaaQf7duvW\njYEDB7J69eqYmYTPPfdcPv74Y2pqaposUpq7pNNRLvWAFSkqLFq0KOgQfKElT4C8O/MO3ykNaNmm\neXkdO8+uXbuSlZlF9dvV7GVvYHFkZWbRtWvXpD8vIixatIjbbruNW265hc6dO/OjH/2IWbNmtXgd\nI0eO5M9//jO33norP/vZz+jduzfFxcWUlpYevEOn4buefPJJfvGLX7Bo0SKKi4s59dRTufvuu5uc\ncn7YsGG8/PLLMcVIz5496dOnD++8806TRUpz42lSYZxNS1mRYowxplUyMzPJm5AX+HNz2uIpyCec\ncAKPPvpoq9Zx6aWXNjoDeMkllzTql5GRwd13383dd9992HXOnDmzyWcpvf322032v+qqq7jqqqsa\ntZ933nnU19cf9vtShRUpxhhjWi0zMzMlnz5sOjYrUowxxpjD2L17N3v3HvpSVs+ePX2KRg+7u0eB\nph5Tn4605AlQPKM46BB8oWWbFhfryLMju+GGGzjppJOafZ188slBh5iW7EyKAlpm7dSSJ0D/wTbj\nbDqxGWeDN336dKZPn97s8mnTpvG9733Px4gMWJGiwrhx44IOwRda8gQYdOGgoEPwhZZtOmiQjjw7\nsn79+tGvX7+gw1DHLvcYY4wxJiVZkWKMMcaYlGRFigJlZWVBh+ALLXkCVKyrCDoEX2jZphUVOvI0\nJlE2JkWBWbNmMXTo0KDDaHda8gRYtmAZfc5u/Dj4dKNlmy5bNos+fTpGng0PwDPpLVW2sxUpCixc\nuDDoEHyhJU+Aa++8NugQfKFlm157bernmZ2dTUZGBuPHjw86FOOTjIwMsrOzA43BihQFMjIygg7B\nF1ryBOjStUvQIfhCyzbt0iX188zJyWH9+vVUVVUFHYrxSXZ2Njk5OYHGYEWKMcaYFsnJyQn8l5bR\nxQbOGmOMMSYlWZGiwNSpU4MOwRda8gRYPGdx0CH4Qss2XbxYR55atqeWPP1gRYoCWk7PaskToEfP\nHkGH4Ast27RHDx15atmeWvL0gxUpCkyZMiXoEHyhJU+AC664IOgQfKFlm15wgY48tWxPLXn6wYoU\nY4wxxqQkK1KMMcYYk5KsSFFgw4YNQYfgCy15Amzbsi3oEHyhZZtu26YjTy3bU0uefrAiRYGbb745\n6BB8oSVzuTLTAAAgAElEQVRPgMfmPBZ0CL7Qsk0fe0xHnlq2p5Y8/WBFigLz5s0LOgRfaMkTYNy0\ncUGH4Ast23TcOB15atmeWvL0gxUpCmi5HU5LngA9etktyOnEbkFOL1ry9IMVKcYYY4xJSVakGGOM\nMSYlWZGiwMyZM4MOwRda8gRYWrw06BB8oWWbLl2qI08t21NLnn6wIkWBmpqaoEPwhZY8Aer21QUd\ngi+0bNO6Oh15atmeWvL0Q+BFiohMF5EDca+34vrcLiJbRaRGRJ4RkT5xy48SkSIRqRKRPSKyWERO\n9DeT1DVjxoygQ/CFljwBQteFgg7BF1q2aSikI08t21NLnn4IvEiJ+CfQE+gVeQ1tWCAi04DJQB4w\nCPgYWCYiXaI+Pxu4GLgcOBc4GdAxkYQxxhiTpjoHHUDEfufcjmaW3QDc4Zx7CkBEJgDbgUuBR0Wk\nOzARuMI591ykTy6wXkQGOefWtH/4xhhjjGlrqXIm5Qsi8r6I/EtE/iQipwCIyGl4Z1aebejonNsN\nvAwMiTR9Ba/Yiu6zEaiM6qNaVVVV0CH4QkueAOFd4aBD8IWWbRoO68hTy/bUkqcfUqFIWQ1cDYwE\nfgCcBjwvIkfjFSgO78xJtO2RZeBdJqqLFC/N9VFt4sSJQYfgCy15AiyYsSDoEHyhZZsuWKAjTy3b\nU0uefgi8SHHOLXPOPeac+6dz7hlgFHA8MMaP7x81ahShUCjmNWTIEEpLS2P6LV++nFCo8WDFSZMm\nMX/+/Ji28vJyQqFQo2p6+vTpjW5Nq6ysJBQKNXog1dy5c5k6dWpMW01NDaFQiLKyspj2kpIScnNz\nG8U2duxYSktLKSgoSIs8ojWVR0FBQYfMY/z48Y36PjLzEcpKY9dbuaGSovwiwrvCjL5u9MH2pQuW\n8tLKlwLPoz32q+uuuy4t8mjYHps2bYppX7FiLosXT2X06IKDbXV1NRQVhaioiM1jzZoSFi6ckhJ5\nJLs9CgoKUmp7tNd+dd5556VFHg3bo6Sk5ODvxl69ehEKhcjPz2/0mfYgzjlfvigRIrIGeAZ4APgX\ncLZz7vWo5SuBV51z+SIyHPg/4PjosykisgUodM7NaeY7BgBr165dy4ABA9otF2MOp6qqisIHC8ka\nmEXmcZkJfz68K0z12mryJ+aTnZ3dDhGatlJVVUVh4RKysi4jMzPxbRUOV1FdvYT8/MtsW5tAlZeX\nM3DgQICBzrny9vqewM+kxBORTKAPsNU5txnYBnw9anl3YDDwYqRpLbA/rk9fIAeI/fPSGGOMMR1G\n4Hf3iMivgSeBd4HPADOAT4CFkS6zgVtFpALYAtwBvAc8Dt5AWhGZD9wjIjuBPcC9wAt2Z48xxhjT\ncaXCmZTPAo8AG/AKkx3AOc65agDn3CxgLnAf3l093YCLnHPRU27mA08Bi4GVwFa8OVMMNLrmma60\n5Ak0Gq+SrrRs07IyHXlq2Z5a8vRD4EWKc26cc+6zzrluzrkc59yVkcs80X0KnHMnO+cynHMjnXMV\nccv3OeemOOeynXPHOOe+65z7wN9MUld5ebtdLkwpWvIEqNxYGXQIvtCyTSsrdeSpZXtqydMPgRcp\npv0VFRUFHYIvtOQJcOW0K4MOwRdatumVV+rIU8v21JKnH6xIMcYYY0xKsiLFGGOMMSnJihRjjDHG\npCQrUhRoaqbDdKQlT4CifB3XvLVs06IiHXlq2Z5a8vSDFSkKTJ48OegQfKElT4DhY4cHHYIvtGzT\n4cN15Klle2rJ0w9WpCgwYsSIoEPwhZY8Afqf0z/oEHyhZZv2768jTy3bU0uefgh8xlljjF7btm3j\no48+Suqzxx57LL162YPOjUlnVqQYYwKxbds28n50A9XhPUl9PivzGO6/d44VKsakMbvco0D848/T\nlZY8AdatXBd0CK320UcfUR3eQ9cv9CVr4DlNvuoyj22yvesX+lId3pP0WZhUs26djn1XyzGqJU8/\nWJGiQElJSdAh+EJLngBrlqXPszOP7n483bN6Nfn6YNOmJtuP7n580GG3qTVrdOy7Wo5RLXn6wYoU\nBRYtWhR0CL7QkidA3p15QYfgi2FX6cgzL0/HvqvlGNWSpx+sSDHGGGNMSrIixRhjjDEpyYoUY4wx\nxqQkK1IUyM3NDToEX2jJE6B4RnHQIfjipZLioEPwRXGxjn1XyzGqJU8/WJGigJbZD7XkCdB/sI4Z\nZ0/qqyNPm3E2vWjJ0w9WpCgwbty4oEPwhZY8AQZdOCjoEHxx6gAdeQ4apGPf1XKMasnTD1akGGOM\nMSYlWZFijDHGmJRkRYoCZWVlQYfgCy15AlSsqwg6BF988I6OPCsqdOy7Wo5RLXn6wYoUBWbNmhV0\nCL7QkifAsgXLgg7BF2+t0JHnsmU69l0tx6iWPP1gRYoCCxcuDDoEX2jJE+DaO68NOgRfDJ2gI89r\nr9Wx72o5RrXk6QcrUhTIyMgIOgRfaMkToEvXLkGH4IvOXXTk2aWLjn1XyzGqJU8/WJFijDHGmJRk\nRYoxxhhjUpIVKQpMnTo16BB8oSVPgMVzFgcdgi/Kn9CR5+LFOvZdLceoljz9kFSRIiLfE5GubR2M\naR85OTlBh+ALLXkC9OjZI+gQfHH0cTry7NFDx76r5RjVkqcfkj2TUghsE5H7RETHvNUd2JQpU4IO\nwRda8gS44IoLgg7BF33P1ZHnBRfo2He1HKNa8vRDskXKycC1wGeBF0TknyJyk4ic0HahGWOMMUaz\npIoU51ydc+7PzrmLgRzgIeD7wHsiskRELhYRactAjTHGGKNLqwfOOuf+A/wf8HfAAV8BSoBNIjKs\ntes3rbdhw4agQ/CFljwBtm3ZFnQIvvhou448t23Tse9qOUa15OmHpIsUEckWkRtF5DXgBeBE4FLg\nc8BngFLgj20SpWmVm2++OegQfKElT4DH5jwWdAi+ePVJHXk+9piOfVfLMaolTz8ke3fPX4D3gR/g\nXeo5xTn3XefcUufZA8zCK1gSXfdPReSAiNwT1367iGwVkRoReUZE+sQtP0pEikSkSkT2iMhiETkx\nmfzSzbx584IOwRda8gQYN21c0CH44quX68hz3Dgd+66WY1RLnn5I9kzKbuAbzrl+zrm7nXM7muiz\nA/hCIisVka8CecBrce3TgMmRZYOAj4FlIhI9Z/Zs4GLgcuBcvMG9Ov4MOwwtt8NpyROgRy8dt+Ye\nfbyOPO0W5PSiJU8/JDtw9irn3KrD9HHOuX+1dJ0ikgn8CbgG2BW3+AbgDufcU865fwIT8IqQSyOf\n7Q5MBPKdc885514FcoGv2S3SxhhjTMeU7OWeQhGZ1ET7JBH5TZKxFAFPOudWxK3zNKAX8GxDm3Nu\nN/AyMCTS9BWgc1yfjUBlVB9jjDHGdCDJXu75LvBiE+2rgbGJrkxErgDOBm5pYnEvvLuGtse1b48s\nA+gJ1EWKl+b6qDVz5sygQ/CFljwBlhYvDToEX7z5rI48ly7Vse9qOUa15OmHZIuUbLxxKfE+iixr\nMRH5LN54kv92zn2SZDxJGzVqFKFQKOY1ZMgQSktLY/otX76cUCjU6POTJk1i/vz5MW3l5eWEQiGq\nqqpi2qdPn95o562srCQUCjW6ZW3u3LmNnv9QU1NDKBSirKwspr2kpITc3NxGsY0dO5bS0lJqamrS\nIo9oTeVRU1PTIfMYP358o76PzHyEstLY9VZuqKQov4jwrjB1++oOti9dsJSXVr4UeB6J7lc7d+6M\naX/96ScaFSV7P/qIlQ8UNboVefMrq9kSl1tQeSSyX23atCmmfcWKuSxePJW6uk+P0bq6GoqKQlRU\nxOaxZk0JCxc2nsk0iDyS3a9qampSanu01/FRXl6eFnk0bI+SkpKDvxt79epFKBQiPz+/0Wfagzjn\nEv+QyJtAkXPut3Htk4DJzrkzEljXJcASoB5omADuCLyzJ/VAP6ACONs593rU51YCrzrn8kVkON5c\nLcdHn00RkS1AoXNuThPfOwBYu3btWgYMGNDScI1pc1VVVRQ+WEjWwCwyj8tM+PPhXWGq11aTPzGf\n7OyE/kYI1MaNG5mYn0/WwHPonpXYCc/d1duoXruaBwsL6du3bztF2PaqqqooLFxCVtZlZGYmvq3C\n4Sqqq5eQn39Zh9rWJv2Ul5czcOBAgIHOufLD9U9W5yQ/NxuYLSJZQMMYkq8DNwM/SXBd/wd8Ma6t\nGFgP3OWce0dEtkXW/zocHCg7GG8cC8BaYH+kz18iffrizYYb+yemMcYYYzqEpIoU59z/Rp6C/DNg\nRqT5PeBHzrkHE1zXx8Bb0W0i8jFQ7ZxbH2maDdwqIhXAFuCOyPc9HlnHbhGZD9wjIjuBPcC9wAvO\nuTVJpGiMMcaYgCU946xzbq5z7iS82WV7OOdyEi1QDrX6uO+aBcwF7sO7q6cbcJFzri6qWz7wFLAY\nWAlsxZszRb34a5vpSkue4F3i0aA2rCPPcFjHvqvlGNWSpx/a5Nk9zrn4eU1au84LnHM/jmsrcM6d\n7JzLcM6NdM5VxC3f55yb4pzLds4dE5kB94O2jKujmjhxYtAh+EJLngALZiwIOgRfrF6oI88FC3Ts\nu1qOUS15+iHZeVJOEJE/iEiliNSKSF30q62DNK1TUFAQdAi+0JInwOjrRgcdgi/OGqkjz9GjC4IO\nwRdajlEtefoh2YGzxUBv4NfAf4i7PGNSi5a7l7TkCZDTT8e02z1O0ZFnTo6OfVfLMaolTz8kW6Sc\nC5wbmX7eGGOMMabNJTsm5T3s7Ikxxhhj2lGyRUo+cGdktliT4uJnNExXWvIEGs1Gm64qVuvIs6xM\nx76r5RjVkqcfki1SHgKGA++KyE4R+SD61YbxmTYQP0VzutKSJ0DlxsqgQ/DFh+/pyLOyUse+q+UY\n1ZKnH5Idk/LTNo3CtKuioqLDd0oDWvIEuHLalUGH4ItB39GR55VX6th3tRyjWvL0Q7Izztq5LGOM\nMca0q6QncxORU0WkQEQeEpETI20jRKTFDxc0xhhjjGlOspO5DQPeBM4DxgANj24dCNzeNqEZY4wx\nRrNkz6TMBAqcc8OB6BlmnwXOaXVUpk2FQqGgQ/CFljwBivJ1XPNe+YCOPIuKdOy7Wo5RLXn6Idki\n5Sy8B/nF+wA4IflwTHuYPHly0CH4QkueAMPHDg86BF/0Haojz+HDdey7Wo5RLXn6Idki5SOgVxPt\nXwLeTz4c0x5GjBgRdAi+0JInQP9z+gcdgi9O6qcjz/79dey7Wo5RLXn6IdkiZRFwl4icQGTmWREZ\nDPwG+FMbxWaMMcYYxZItUm4B3gG24g2afQt4EXgFuKNtQjPGGGOMZkkVKc65fc65XOB04FJgIvBf\nzrlxzrn9bRmgab3S0tKgQ/CFljwB1q1cF3QIvvj3GzryXLdOx76r5RjVkqcfkp4nBcA5t9k594Rz\n7hHn3Ia2Csq0rZKSkqBD8IWWPAHWLFsTdAi+2FKuI881a3Tsu1qOUS15+iGpGWdF5P5DLXfO5SUX\njmkPixYtCjoEX2jJEyDvTh2H2LCrdOSZl6dj39VyjGrJ0w/JPrvnpLj3RwL/BRwDPN+qiIwxxhhj\nSP7ZPaPj20SkM/B7vEG0xhhjjDGt0qoxKdEiA2Z/DUxtq3UaY4wxRq82K1IiTsO79GNSSG5ubtAh\n+EJLngDFM4qDDsEXL5UUBx2CL4qLdey7Wo5RLXn6IdmBs7Pim/DGqYSwydxSjpbZD7XkCdB/sI6Z\nWE/qqyNPm3E2vWjJ0w/JDpwdEvf+ALAD+Cnwv62KyLS5cePGBR2CL7TkCTDowkFBh+CLUwfoyHPQ\nIB37rpZjVEuefkh24Oywtg7EGGOMMSZaW49JMcYYY4xpE0kVKSLyioisacmrrQM2iSsrKws6BF9o\nyROgYl1F0CH44oN3dORZUaFj39VyjGrJ0w/Jnkn5O9AXb8Ds6siLSNtKYFnUywRs1qz4cc7pSUue\nAMsW6Di03lqhI89ly3Tsu1qOUS15+iHZgbPHAUXOuZ9FN4rIL4GezrlrWh2ZaTMLFy4MOgRfaMkT\n4No7rw06BF8MnaAjz2uv1bHvajlGteTph2TPpIwB/tBEezHw3aSjMe0iIyMj6BB8oSVPgC5duwQd\ngi86d9GRZ5cuOvZdLceoljz9kGyRsg84p4n2cyLLjDHGGGNaJdnLPfcC94nIl4GGwbGDgWuBO9si\nMGOMMcboltSZFOfcL4FrgK8B90de/w/IiywzKWTqVB2PU9KSJ8DiOYuDDsEX5U/oyHPxYh37rpZj\nVEuefkh6nhTn3CPOucHOue6R12Dn3COJrkdEfiAir4nIR5HXiyJyYVyf20Vkq4jUiMgzItInbvlR\nIlIkIlUiskdEFovIicnmlm5ycnKCDsEXWvIE6NGzR9Ah+OLo43Tk2aOHjn1XyzGqJU8/JF2kiEh3\nEbk6UkAcH2n7koiclOCq/g1MAwYAA4EVwOMickZkndOAyUAeMAj4GFgmItEj6mYDFwOXA+cCJwOP\nJZtbupkyZUrQIfhCS54AF1xxQdAh+KLvuTryvOACHfuulmNUS55+SPYBg2cC/wfUAKfg3dWzExgL\nfAa4qqXrcs79Na7pVhG5Hm8Q7nrgBuAO59xTke+eAGwHLgUeFZHuwETgCufcc5E+ucB6ERnknLMJ\n5YwxxpgOKNkzKYXAI0BvoDaq/a94ZzKSIiKdROQKIAN4UUROA3oBzzb0cc7tBl7m04ccfgWv2Iru\nsxGopPGDEI0xxhjTQSRbpHwV+K1zzsW1vw8kerkHETlTRPbg3b78W+DbkUKjF+DwzpxE2x5ZBtAT\nqIsUL831UW3Dhg1Bh+ALLXkCbNuyLegQfPHRdh15btumY9/VcoxqydMPyRYpnwCZTbT3AaqSWN8G\n4Et4Y05+B/xRRPolGZuJc/PNNwcdgi+05Anw2BwdQ65efVJHno89pmPf1XKMasnTD8kWKU8Ct4lI\nw5gWJyKfAe4CliS6MufcfufcO865V51zPwdewxuLsg3v+UA94z7SM7KMyH+7RMamNNenWaNGjSIU\nCsW8hgwZQmlpaUy/5cuXEwqFGn1+0qRJzJ8/P6atvLycUChEVVVsvTZ9+nRmzpwZ01ZZWUkoFGpU\nec+dO7fRbWw1NTWEQqFGD68qKSkhNze3UWxjx46ltLSUefPmpUUe0ZrKY968eR0yj/Hjxzfq+8jM\nRygrjV1v5YZKivKLCO8KM27auIPtSxcs5aWVLwWeR6L71c6dO2PaX3/6Cd58dmlM23994yJWPlDU\n6IzK5ldWsyUut6DySGS/2rRpU0z7ihVzWbx4KuPGfXqM1tXVUFQUavTQwTVrSli4sPGAzCDySHa/\nmjdvXkptj/Y6PkaPHp0WeTRsj5KSkoO/G3v16kUoFCI/P7/RZ9qDNL5i04IPeXfzLAG+iPccn3/j\n3VHzCnChcy7cqqBEngXedc5NFJGtwK+dc4WRZd3xLuVMcM79OfJ+B97A2b9E+vTFG3R7TnMDZ0Vk\nALB27dq1DBgwoDXhGtMqVVVVFD5YSNbALDKPa+oE5aGFd4WpXltN/sR8srOz2yHC9rFx40Ym5ueT\nNfAcumcldmV2d/U2qteu5sHCQvr27dtOEba9qqoqCguXkJV1GZmZiW+rcLiK6uol5Odf1qG2tUk/\n5eXlDBw4EGCgc668vb4nqbt7nHM7geEich7eZZpMoBxY1sQ4lUMSkV8BT+MNdD0G+G/gPGBEpMts\nvDt+KoAtwB3Ae8DjkVh2i8h84B4R2QnswZsR9wW7s8cYY4zpuBIuUkTkSOApYHLklt/nWhnDicAC\nvAG3HwGvAyOccysAnHOzRCQDuA/vrM0q4CLnXF3UOvKBemAxcBSwFJjUyriMMcYYE6CEx6Q45z7B\nm3Qt8etETa/vGufc551z3ZxzvZxzBwuUqD4FzrmTnXMZzrmRzrmKuOX7nHNTnHPZzrljnHPfdc59\n0BbxpYP465jpSkueAEuLlx6+UxqIH6OSrpYu1bHvajlGteTph2QHzj4MNB5pY1JSTU1N0CH4Qkue\nAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfkn0KsgMmi8g3gH/gTVX/6ULn7P6rFDJjxoygQ/CFljwB\nQtc1vlMgHZ11kY48QyEd+66WY1RLnn5ItkgZiDd2BOCsuGVtchnIGGOMMbolVKSIyOeBzc65Ye0U\njzHGGGMMkPiYlE3ACQ1vRGSRiMRPtGZSTPykQOlKS57gzY2iQW1YR57hsI59V8sxqiVPPyRapEjc\n+1HA0W0Ui2knEydODDoEX2jJE2DBjAVBh+CL1Qt15LlggY59V8sxqiVPPyR7d4/pQAoKCoIOwRda\n8gQYfd3ow3dKA2eN1JHn6NEFQYfgCy3HqJY8/ZBokeJoPDDWBsqmOC3T/mvJEyCnX07QIfiixyk6\n8szJ0bHvajlGteTph0Tv7hGgWET2Rd53BX4vIvG3IF/WFsEZY4wxRq9Ei5T4C8R/aqtAjDHGGGOi\nJXS5xzmX25JXewVrkhP/KPB0pSVPgLLSssN3SgMVq3XkWVamY9/VcoxqydMPNnBWgfLydnuKdkrR\nkidA5cbKoEPwxYfv6cizslLHvqvlGNWSpx+sSFGgqKgo6BB8oSVPgCunXRl0CL4Y9B0deV55pY59\nV8sxqiVPP1iRYowxxpiUZEWKMcYYY1KSFSnGGGOMSUlWpCgQCml53L2OPAGK8nVc8175gI48i4p0\n7LtajlEtefrBihQFJk+eHHQIvtCSJ8DwscODDsEXfYfqyHP4cB37rpZjVEuefrAiRYERI0YEHYIv\ntOQJ0P+c/kGH4IuT+unIs39/HfuulmNUS55+sCLFGGOMMSnJihRjjDHGpCQrUhQoLS0NOgRfaMkT\nYN3KdUGH4It/v6Ejz3XrdOy7Wo5RLXn6wYoUBUpKSoIOwRda8gRYs2xN0CH4Yku5jjzXrNGx72o5\nRrXk6QcrUhRYtGhR0CH4QkueAHl35gUdgi+GXaUjz7w8HfuulmNUS55+sCLFGGOMMSnJihRjjDHG\npCQrUowxxhiTkqxIUSA3NzfoEHyhJU+A4hnFQYfgi5dKioMOwRfFxTr2XS3HqJY8/WBFigJaZj/U\nkidA/8E6ZmI9qa+OPG3G2fSiJU8/WJGiwLhx44IOwRda8gQYdOGgoEPwxakDdOQ5aJCOfVfLMaol\nTz9YkWKMMcaYlGRFijHGGGNSkhUpCpSVlQUdgi+05AlQsa4i6BB88cE7OvKsqNCx72o5RrXk6YfA\nixQRuUVE1ojIbhHZLiJ/EZHTm+h3u4hsFZEaEXlGRPrELT9KRIpEpEpE9ojIYhE50b9MUtesWbOC\nDsEXWvIEWLZgWdAh+OKtFTryXLZMx76r5RjVkqcfAi9SgGHAXGAw8A3gSGC5iHRr6CAi04DJQB4w\nCPgYWCYiXaLWMxu4GLgcOBc4GXjMjwRS3cKFC4MOwRda8gS49s5rgw7BF0Mn6Mjz2mt17LtajlEt\nefqhc9ABOOdGRb8XkauBD4CBQMM5sxuAO5xzT0X6TAC2A5cCj4pId2AicIVz7rlIn1xgvYgMcs7p\neEpZMzIyMoIOwRda8gTo0rXL4Tulgc5ddOTZpYuOfVfLMaolTz+kwpmUeMcBDvgQQEROA3oBzzZ0\ncM7tBl4GhkSavoJXcEX32QhURvUxxhhjTAeSUkWKiAjeZZsy59xbkeZeeEXL9rju2yPLAHoCdZHi\npbk+xhhjjOlAUqpIAX4L9AeuCDqQdDJ16tSgQ/CFljwBFs9ZHHQIvih/Qkeeixfr2He1HKNa8vRD\nyhQpIjIPGAWc75z7T9SibYDgnS2J1jOyrKFPl8jYlOb6NGnUqFGEQqGY15AhQygtLY3pt3z5ckKh\nUKPPT5o0ifnz58e0lZeXEwqFqKqqimmfPn06M2fOjGmrrKwkFAqxYcOGmPa5c+c22tFramoIhUKN\nbm8rKSlp8lkRY8eOpbS0lJycnLTII1pTeeTk5HTIPMaPH9+o7yMzH6GsNHa9lRsqKcovIrwrTI+e\nPQ62L12wlJdWvhR4HonuVzt37oxpf/3pJ3jz2aUxbZ27HMXKB4r4aHvsYbz5ldVsicstqDwS2a82\nbdoU075ixVwWL55Kjx6fHqN1dTUUFYUa3Za8Zk0JCxdOSYk8kt2vcnJyUmp7tNfxsWvXrrTIo2F7\nlJSUHPzd2KtXL0KhEPn5+Y0+0x7EOefLFx0yCK9AuQQ4zzn3ThPLtwK/ds4VRt53x7uUM8E59+fI\n+x14A2f/EunTF1gPnNPUwFkRGQCsXbt2LQMGDGiv1Iw5rKqqKgofLCRrYBaZx2Um/PnwrjDVa6vJ\nn5hPdnZ2O0TYPjZu3MjE/HyyBp5D96zErsrurt5G9drVPFhYSN++fdspwrZXVVVFYeESsrIuIzMz\n8W0VDldRXb2E/PzLOtS2NumnvLycgQMHAgx0zpW31/cEfnePiPwWGAeEgI9FpOGMyUfOudrI/88G\nbhWRCmALcAfwHvA4eANpRWQ+cI+I7AT2APcCL2i/s8cYY4zpqAIvUoAf4A2MXRnXngv8EcA5N0tE\nMoD78O7+WQVc5Jyri+qfD9QDi4GjgKXApHaN3BhjjDHtJvAxKc65Ts65I5p4/TGuX4Fz7mTnXIZz\nbqRzriJu+T7n3BTnXLZz7hjn3Hedcx/4m01qir9ema605Amwbcshh1qljfixKOlq2zYd+66WY1RL\nnn4IvEgx7e/mm28OOgRfaMkT4LE5OiZTfvVJHXk+9piOfVfLMaolTz9YkaLAvHnzgg7BF1ryBBg3\nbVzQIfjiq5fryHPcOB37rpZjVEuefrAiRYHoW5DTmZY8AXr06nH4Tmng6ON15Bl9C3I603KMasnT\nD1akGGOMMSYlWZFijDHGmJRkRYoC8bMUpisteQIsLV56+E5pIH4G2nS1dKmOfVfLMaolTz9YkaJA\nTU1N0CH4QkueAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfrEhRYMaMGUGH4AsteQKErmv8HJB0dNZF\nOssVS10AACAASURBVPIMhXTsu1qOUS15+sGKFGOMMcakJCtSjDHGGJOSrEhRIP6R3+lKS57gPflY\ng9qwjjzDYR37rpZjVEuefrAiRYGJEycGHYIvtOQJsGDGgqBD8MXqhTryXLBAx76r5RjVkqcfrEhR\noKCgIOgQfKElT4DR140OOgRfnDVSR56jRxcEHYIvtByjWvL0gxUpCgwYMCDoEHyhJU+AnH46pt3u\ncYqOPHNydOy7Wo5RLXn6wYoUY4wxxqQkK1KMMcYYk5KsSFFg/vz5QYfgCy15ApSVlgUdgi8qVuvI\ns6xMx76r5RjVkqcfrEhRoLy8POgQfKElT4DKjZVBh+CLD9/TkWdlpY59V8sxqiVPP1iRokBRUVHQ\nIfhCS54AV067MugQfDHoOzryvPJKHfuulmNUS55+sCLFGGOMMSnJihRjjDHGpKTOQQdgjOm4wuEw\ntbW1SX12586d1NfXJ/3d9fv3s3PnzqSnIO/atSuZmZlJf78xpv1ZkaJAKBTiiSeeCDqMdqclT4Ci\n/CImFU4KNIZwOMz99z9KdfX+pD5fXb2NbdurOH5/859f+UAR51/TOM/9dfvYvuPfFP+lmKysrKS+\nPyszi7wJeSlRqBQVhZg0Kf33XS3HqJY8/WBFigKTJ08OOgRfaMkTYPjY4UGHQG1tLdXV++nW7QIy\nMo5L+PPhcDn7PynlwCHOpvQd2nSe9fv384nUcVSfo8j6fOJFSs2eGqrfrqa2tjYlipThw3Xsu1qO\nUS15+sGKFAVGjBgRdAi+0JInQP9z+gcdwkEZGceRmZmd8Oe6du1+2D4n9Tt0nl2P7krmcckVGXvZ\nm9Tn2kP//jr2XS3HqJY8/WADZ40xxhiTkqxIMcYYY0xKsiJFgdLS0qBD8IWWPAHWrVwXdAi++Pcb\nOvJct07HvqvlGNWSpx+sSFGgpKQk6BB8oSVPgDXL1gQdgi+2lOvIc80aHfuulmNUS55+sIGzCixa\ntCjoEHyhJU+AvDvzgg7hoH37wkl9rqZmF84dep6UYVc1n6dzjr179xIOJ/794XCYuk/qEv5ce8nL\n07HvajlGteTpBytSjDFJq6ur5aVXH2L/EYlP6Lbzw/f4eF8V9fWfJPzZ+v11hD/+mFdeeZuKLR8m\n/Pm6mlrYUks4HCY7O/E7k4wx/rAixZgorZlBdf/+/XTunPghVV1dnVJ/1Sdi//791NR/yNFfyOLI\nbhkJfXbPuzuo/1c99fWJTwZXX7+fAweEzp0/z9FH90n48wfqdrBn72vs27cv4c8Gra6ulurq6qQ+\nm+w+2sBm6TV+syLFmIhwOMz9f7yf6nDivwDq9tWxcf1G+v5XX7oc2SWhz9Z8XMMbG97g+C8fTybJ\n/QKo21eX9C+utvjFc2S3DLomuI7ORx3Vqu8E6Ny5K0d1TTz2fV2Su0TVINlitrq6mrq65AvSffvC\nvPrqG/z+9/VkZByd0Gfr6mrZuPFN+vb9Il26JLaPNsjK6kxe3hgrVIxvrEhRIDc3lz/84Q9Bh9Hu\nWptnbW0t1eFqup3ejYxjEjsrsOP9HVS/Ws2Rpx5JVq/EZkA98P4B9r6xl/2ftPyMQvGMYq6efjUA\n+/bu49XXXuX39b8nIyOxuCG1poeP91JJMUPGXR10GDFa8ziAmpowb7xRwfHH1xL94y4uzuXqqw+/\n737yyT727j2Cbt2Gk5X12YS+e8eOd6iufosjjxya8GfBG0NUXb2iVbP02r9FJlEpUaSIyDBgKjAQ\nOAm41Dn3RFyf24FrgOOAF4DrnXMVUcuPAu4BxgJHAcuAHzrnPvAliRSmZfbDtsoz45iMhGcxDX/k\n/WXeNTPxGVAbPpuI/oM/nYn1k7pP2HtgL92+0C3hAinVpoePd1Lf1JlZt0FrHgdw4MA77N37Nvvj\nnleU6IyzXbsmPstvOHKGMJnPNtjbykl67d8ik6iUKFKAo4F1wHxgSfxCEZkGTAYmAFuA/wGWicgZ\nzrmGc6ezgYuAy4HdQBHwGDCsvYNPdePGjQs6BF9oyRNg0IWDGrUlUyBBak0PH+/UAY3zTBXJPA4g\n3MylxEGDdOy7Wo5RLXn6ISWKFOfcUmApgIhIE11uAO5wzj0V6TMB2A5cCjwqIt2BicAVzrnnIn1y\ngfUiMsg5p2OyBWOMMSaNpPxkbiJyGtALeLahzTm3G3gZGBJp+gpewRXdZyNQGdXHGGOMMR1Iyhcp\neAWKwztzEm17ZBlAT6AuUrw010etsrKyoEPwhZY8ASrWVRy+Uxr44B0deVZU6Nh3tRyjWvL0Q0co\nUtrVqFGjCIVCMa8hQ4Y0evbC8uXLCYVCjT4/adIk5s+fH9NWXl5OKBSiqqoqpn369OnMnDkzpq2y\nspJQKMSGDRti2ufOncvUqVNj2mpqagiFQo0OgJKSEnJzcxvFNnbsWEpLS5k1a1Za5BGtqTxmzZrV\n6jw+2vkR82+bz7Yt22LaVyxcweI5i2Pa6mrrKMovalQwrFm6huIZxY3yuP+W+xs9c+et1W/xyJ2P\nNOr7yMxHKPv/7d19mFTVfcDx7w9mYdmFCKwvxKpBQyTmRRCMjdGaSBKpJtJWE2OMT1VMjY2xDWk1\naZ8m0fSxiaYJTeImYjQS20JsjBrSGkjR0ESFIC8i4oIgLAvIwu6wuzA7O7Pz8usfd1ZmZ3dh7rze\nuff3eZ59dubOPXfOb8+8/Pbce855avDfp21rG80Lmol0R1jx0xWD6rb3tb2D9j3UfojmBc15xZHo\nT3D99dcX1R4Hdmxj1UPNQ/Zd+/gSdqwZfNxDe9pY9VAz/TlXYb7862VseWb54G3Lf8Wqh5rpOTA4\njr0vbyLeeWTQtmR/P6seah6S2LRuWMvqpYuH1G3bxo2sXLly0DY374+9ezfR3DyPSGTw62rZsq+z\nfPng19WhQ200N8+jo2PnoO3PPvsDHn/8DlasOPoe7e+P0tw8b0jisnbtUp588h+G1O3BBz81ZO2f\nV1/9Dc3NQ+PYufP3rF8/eDbUtrYNecfR03OI66+/vuD3+X333Vf0+xy8/3m1YMECX8Qx0B5Lly59\n87txypQpzJs3b0iM5SKqWpEnypeIpMka3ZM53fM6MFNVX87abxWwUVUXiMilwEpgUnZvioi0AgtV\n9XvDPM8sYP369euZNWtWOUOqumg0WtDQ1FpTbJydnZ0s/MlCmmY3ub4AtX13Oyv+YwVzb5jLlNPc\ndd4VUrY/1s+Y+jFFP3ekO0J4fZgF8xe4nnm1s7OTe+55lM1te5h43umu50nZt2Mz65b/nPM/fh1/\nNPWdw+6T7O8nNMycHvmUPZbD4XbC69fwk4ULmT59uquynZ2dLFz4BE1NV7m+cLa9fRsrVixk7tyv\nMGXK1De39/dHGTPm+K/dkcoX89z5ikQ6CYefYMGCqwqepdc+i/xjw4YNzJ49G2C2qm4o1/N44sLZ\nY1HVXSLSDnwYeBkgc6HsH+OM4AFYDyQz+zyZ2Wc6cAawutJ19hq/v1kGBCVO4M0EpRT6E4VNBFfs\nxGT5GC5BKZVUMklXV9eQ/1iPx4m7sFmJR5JPguIHQXmPBiXOSvBEkiIijcA0YGBkz1kiMgM4pKp7\ncIYX/5OI7MAZgvzPwF7gl+BcSCsiDwPfFZEu4AjwfeB5G9ljzMhi8RgbN7TwQOf/0NDgrifEmZhs\nG6Mme29+leNJ9sc50LGHxU8upqnJ5dwy0SibW/YyefK8gucbMcbkxxNJCs7onN/iXCCrwHcy238K\nzFfV+0SkAViEM5nb74HLs+ZIAVgApIDHcSZzWw7cVpnqG1ObkokkfX1p6usvpqnpLFdl0+mdxGKb\nqE+ly1S78kklkySkn7HTxtJ0lrskRduVvrW9JBK1t+6PMbXGExfOqur/qeooVR2d8zM/a5+7VPVU\nVW1Q1bnZs81mHo+r6u2qeqKqTlDVT9pss47cC6j8KihxAkMufi1GKpkknXafaKTTaRKJWEGrGOdr\nw7LSxZlLVdFR6vyr5uInJSlSqVRJ6/L448F47QblPRqUOCvBKz0ppozOOOOMalehIoISJ8DkUyYP\nup9Kpejt7SUScTfFfle4i/0HdrP61cWMb3PXoxCJhGmPtjCuYwInJ6dCgYsjHkvjxMnH36kAqWQ/\nkd5eXnzxNXa0HnJVNtJ9mDfeOEBXVzvjx7v7m/X2dpFI9BGP9w7aPnlyMF67QXmPBiXOSrAkJQBu\nv/32alehIoISJ8Cca+e8eTsej9PeHmb16hbGT9zn6jhd+zvo7jvM1DNCNLzV3Rdu6nCSUX2jSHTH\nSKXcL7aXj+mXzDn+TgVIpZKk00IodBaNjdNcle3t2k7P4Q2saXmUbe0uR1NFwrzRu5l1ryzllFO+\nQn1mBec5c4Lx2g3KezQocVaCJSnG1LhkMkkykaau7kwaG9/mquyRuq2k05sYVTfG9RDi/lSEUaEQ\nzmVktSkUqmdsvbu4RxEiXZckNHUsDacVkNilRtOX7iKZjFGO3idj/MSSFGN8opAv3NDosWWqjf+F\n6usLS+zqQlB71xobUxWeuHDWlFfubIR+FZQ4gSEzyfpV7kyzftXeHozXblDeo0GJsxIsSQmAO++8\ns9pVqIhajjP7wtd8fh777mNv3o5Go3ht5uhS2firX1S7CmWRSiaIRMJEIp1EIp089tgX37x9rJ/e\n3q6yjqYqt1p+j7oRlDgrwU73BMD9999f7SpURK3GWciFryfPPpuVK52ZqLv2dxDp7Sv5sFgveN/V\nn652FUounUyx/8AWfrfpgTdnmj357dNY+eLC45aNRMIc6Hl1yOigWlGr71G3ghJnJViSEgBBGQ5X\nq3EWcuFrY+PR2wMXv6ZqcFK142mcVJ4hyNWkqTSJUTHqzhxHw0TnwtsG8rsAN34wQmJnnGSyNieS\nq9X3qFtBibMSLEkxxiMKufAV7OLXWlU3zv2Ft6HD9WWqjTHeZNekGGOMMcaTLEkJgHvvvbfaVaiI\noMQJsOWZ5dWuQkVYnP4SlPdoUOKsBEtSAiAajVa7ChURlDgBUv39x9/JByxOfwnKezQocVaCJSkB\ncPfdd1e7ChURlDgBzr18XrWrUBEWp78E5T0alDgrwZIUY4wxxniSje4xvhKJRIjFYgWVDYfD9CeC\n0e1uTCH6+2OEw+GCytbX1zPe5WgmYyxJCYDOzk5OPPHEalej7FpbW3ni6ScIRwr7EI32Rtm8dTOT\nzpvEeI8v/BaLRFwPX61FFqd3xOMRNm7czAMPpGhoaDx+gRxNTSGuumoOU6dOLX3lPCYon7mVYElK\nAMyfP59ly5ZVuxpld+uttzJ7zmzGnT2OhgkNrsun96Xp29xHMpEsQ+1Ka83PfsqHPntbtatRdhan\ndyQScfr6RjNu3KU0NZ3mqmw02k04/Cy33nory5f7fyRTUD5zK8GSlAC46667ql2Firjjjjt4dv2z\nNExoYPxE9/+VRnoiZahVeZw798pqV6EiLE7vqa+fyPjx7nsJ+vqc92gQBOUztxLswtkAmDVrVrWr\nUBEzZsyodhUqZvLpwZh22+L0l6C8R4PymVsJlqQYY4wxxpMsSTHGGGOMJ9k1KQHw8MMPc/PNN1e7\nGnkrdBjxokWL6CcYQ4h3rHmOae+/uNrVKDuL0z/6+2MsWrSIz33uc67L1trw5Vr7zPUyS1ICYMOG\nDTXzholEIjz46IMFDSP+76f+m5POOqkmhhAX69DetmpXoSIsTn8YGL7c0dFCNHqS6/JNTSFuueWa\nmklUaukz1+ssSQmA5ubmalchb7FYjHAkXNAw4iumXMHvnvpdTQwhLtYFn7iu2lWoCIvTHwaGL3/s\nY/cXPHw5FovVTJJSS5+5XmdJivGkQoYR19IQYmOCqJjhyyaYLEkxpkRSqRS9vb1EIu6SpWg0iqqW\nqVbGb9LpFNFoF5FIp6tyvb1dpFKJMtXKmPKwJMWYEojH47S3h1m9uoXxE/e5Ktu1v4NIbx+pVKpM\ntTN+kezvpzcaZt32Jbze+ayrspFImAM9rxKP95apdsaUniUpATBv3ryKT9Fc6AidYhb5W/LNJTSd\n3lRQ2WIlk0mSiTR1dWfS2Pg2V2WP1G0lnd5EKpXOu8yqh5o9P416KVicg6WTSdJ1SUJTx9JwmrvX\nevxghMTOOMlkvNBqFm3Jks/ypS+tdF2umIUNofKjg6rxmetXlqQEwBe+8IWKPl8xI3SKWeTvgssv\n4PVXXnf9nKUUCtUztt5dvUOjx7p+nukXX+q6TC2yOIcXqq93vSBh6HC9q/3L4YIL/tJ1mWIXNoTK\njw6q9Geun1mSEgCXXXZZRZ+vmBE6xSzyN23mtKonKZXy1ne+q9pVqAiL01+mTbvEdZliFjaE6owO\nqvRnrp9ZkmKGVejpGjh6yqZpQpON0DHGlEShI4MAenoKP11UaxPJ+Y0lKWaIYk7XQHGnbIwxppSK\nPV1UaxPJ+Y0lKT420Bvy9NNPc8UVV+RdLhwOs79rPye8+wTXp2uguFM2xWj5Q0tFn6+a9mx+idPf\nO7Pa1Sg7i9NfWlp+w5Qpt1T0OYs5XRSNdrN//9Ps27ePpqb8L1Qe+My1Xpji+S5JEZHbgL8HpgCb\ngNtV9cVq1EVV6erqKrh8fX09DQ3ukwQY3Buy+P7FbGvflnfZgZ6QOefNcX26Bqp3yua5J5/jjPcE\nY8n7Lc8sD8SXmsXpL8899yMuvbSyScqAQk4XFdoLs3jxt9i2LWa9MCXgqyRFRD4FfAe4BVgLLABW\niMjZqupu5qMSWLduHctWLUMpbKKuSfWTuPaqaxk71v3oj+zekImnTaRpdv7/BVSrJ6RYjScUduV/\nLaofP6HaVagIi9NfGhurM0VAoQrthZk48QnGjZtTUC9MtmQySShU2Ne0X3pxfJWk4CQli1T1UQAR\nuRX4GDAfuK/SlTl8+DBdo7o4c8aZrsuG3wiz4lcraD/czpi6Ma7LZ/eGhEIhVz0idvGqMcYc5bYX\nJhQaw+jRoaKuhenvj7Ft2xamT38vY8a4/w7wSy+Ob5IUEakDZgP/MrBNVVVEVgIXVqteo0OjmTDJ\n/X9JPR099KX6qH9HPZOaJrkuX6u9IdWUTqVJp9Mkk0kSCXfTh6eSNlusMeaoYodOd3TsJBx+lbq6\niwOxKONIfJOkACcCo4EDOdsPANMrXx1HKpki0u2+ZyIWdYb/jhs/rqauC6lVyWSStS++xN69B/n9\n719iwqS3uCp/aH8HiaSti2K8rdB1f8DW/ilUoUOnI5nRlUFflNFPSYpb9QAtLeUbEbJv3z762vrY\n0rbFddlYX4xEb4Ldr+yms839B0rXwS4i3RFaN7ey85WdbH1xa0Flu/d3F/XcbssXU3bPa3sYO2Fs\nQWWTySQduw4Sj8QJt3XS2+lufZNI1xH6o3E6du2g71CPq7LdB/eSiicI795BKhLNq0xH6+u0vbKh\n4PLFPPeAWF8PsUOHkQi0b2+he/8bJX/u7DhLVe9iy5fjbzZSnKV87p7wfg537+eZtd9h/Bb3vbOx\n2BE6D7Syfftv6e52d4F6V9c+IpEO9uzZyNatzxRUtrV1Nd3d7idrLKZ8oWV37lzDrl1/qFq9Y7EI\n8XgbmzZtYtIk922dj6zvzrJOZSx+WX01c7onClytqsuyti8GTlDVv8jZ/zrgPytaSWOMMcZfPqOq\nS8p1cN/0pKhqQkTWAx8GlgGIiGTuf3+YIiuAzwCtQGFTqxpjjDHBVA9MxfkuLRvf9KQAiMg1wGLg\nVo4OQf4E8E5V7ahi1Ywxxhjjkm96UgBU9b9E5ETgG8ApwEvAXEtQjDHGmNrjq54UY4wxxvjHqGpX\nwBhjjDFmOJakGGOMMcaTfJOkiMhtIrJLRPpEZI2IvO8Y+14kIs+JSKeIREWkRUS+OMx+n8w81ici\nm0Tk8vJGkZ9SxyoiN4hIWkRSmd9pEXE/+USJuYkzp9xFIpIQkSETT3ixTUsdpx/aU0Q+mFX3dFY8\nJ+fsV9PtmU+cfmjPzP5jROQeEWkVkZiI7BSRG3P2qen2zOx/zDi92p7g+rX7yDBxpEVkc85+xbWp\nqtb8D/ApnGHEfwm8E1gEHAJOHGH/mZky5wBnANcBEeCzWft8AEgAX8KZsfYbQBx4lw9jvQHoAk4C\nTs78nFRLcWaVOwHYAfwa2JDzmOfatExx1nx7Ah8EUsDbs2I42W/tmWecNd+emTK/BF4ALs18Fv0x\ncKGf2jPPOD3XngW+didkv2aBU4FO4KulbNOq/lFK+MddA3wv674Ae4E7XRzjF8BPs+7/DFiWs89q\n4Ic+jPUG4FC127EUcQJLgbuBrzP0y9tzbVqmOGu+PTn65f2WYxyz5tszzzj90J5/mvnCm+jz9swn\nTs+1ZyGxDlP+z4EkcHop27TmT/fI0YUF35xrWZ2/RN4LC4rIeZl9V2VtvjBzjGwr8j1mOZQxVoDx\nme7JNhF5SkTeVZpau1donCJyE3Amzpf3cDzVpmWME3zQnjgfki+JyBsi8hsR+UDO475oT44fJ9R+\ne14JrAO+LCJ7RWSbiHxbRLKnVPdDe+YTJ3ioPaE03y3AfGClqu7J2lZ0m9Z8ksKxFxaccqyCIrJH\nRGI4E781q+ojWQ9PKeSYZVauWLfhvMDm4czCOwp4QUROLVXFXXIdp4i8A2cF7M+oanqE43qtTcsV\nZ823J7Af+BxwNXAVsAdYJSIzs/ap+fYkvzj90J5nAX8CvBvnP+6/xZloszlrHz+0Zz5xeq09oYjv\nFgAReStwOfDjnIeKblNfTeZWgIuB8cD7gXtFZIeqPlblOpXLiLGq6hqcrj4ARGQ10ILz4fn1KtTV\nFREZhbMO09dVdWAlLqlilcoi3zhrvT0BVPU14LWsTWtE5O04s0jfUJ1alV4+cfqhPXG+iNPAdaoa\nARCRLwE/F5HPq2q8qrUrnePG6ZP2zHUjznU2vyz1gf2QpHTinNM9JWf7KUD7sQqq6u7MzS0iMgW4\nCxhIUtoLOWaZlSvW3H2TIrIRmFZUbQvnNs4JwPnATBEZ+I9lFM7yTf3AZaq6Cu+1abniHKQG23Mk\na4GLsu7XenuOJDfOQWq0PfcD+wa+uDNacJLs04DX8Ud75hPnIB5oTyj+tXsT8KiqJnO2F92mNX+6\nR1UTwMDCgsCghQVfcHGo0cDYrPurs4+Z8dHM9qooY6yDZP5jfy/OG67iCojzMPAenJFMMzI/DwBb\nM7f/kNnPU21axjgHqcH2HMlMBsdQ6+05ktw4B6nR9nweOFVEGrK2Tcfpddibue+H9swnzkGq3Z5Q\n3GtXRD6EMzrt4WEeLr5Nq31FcSl+gGuAKIOHToXJDOsCvsng0SyfBz6Ok7lOA24GeoC7s/a5EGeo\n1MDQqbtwhmdVewhyOWL9auaFcyZwHs7IkV6chRlrIs5hyg836sVzbVqmOGu+PXHO5c/D+fB7N/Bv\nOEMZP+Sn9swzTj+0ZyOwG6f39hzgEpxrMx7wWXvmE6fn2rOQWLPK/TvwwgjHLLpNq/YHKcMf+PNA\nK9CHk6Wdn/XYI8CzWfe/AGwGjuCcR1sH3DLMMa/G+S+1D3gZZ7FC38UKfBfYlTneG8CvgHNrKc5h\nyg758vZqm5Y6Tj+0J3AHsD3z4d2BM+rgEr+1Zz5x+qE9M9vOxhnZEcH5Ir8PGOun9swnTq+2Z4Gx\nviUT5/xjHLOoNrUFBo0xxhjjSTV/TYoxxhhj/MmSFGOMMcZ4kiUpxhhjjPEkS1KMMcYY40mWpBhj\njDHGkyxJMcYYY4wnWZJijDHGGE+yJMUYY4wxnmRJijGmIkTkbSKSFpFzizzOIyLyxHH2+a2IfDfr\n/i4R+ZtintcYU3mWpBhjhsgkAmkRSYlIXES2i8hXM4uhFaNaU1yfDzw4cCcT27wq1cUYk6dQtStg\njPGsXwM3AvXA5cAPcRYLuy97p0zioprfGhtS4jrmRVXD1XheY0xxrCfFGDOSuKp2qOoeVX0QWAn8\nmYjcICJdInKliGzBWdX0dHF8TUT2iEhMRDaKyNxhjnuOiDwvIn0isllELhl4QERGichDIrJTRKIi\nsnWk0zSZ5zooIj0i8iMRGfGfruzTPSKyC6dH56lMj8rOzKmolIjMyin3RRFpdfuHM8aUhiUpxph8\nxYAxmdsNwJ3AzcC7gYPAF4EFOMuyvxdnJdhlIvL2nOPcB3wbmImz0uoyEZmUeWwUsAdn5dRzgLuB\ne0TkEznH+AjOcvIfBK4FrsJZETof78Pp0bkBmAK8T1V3A/8L3JSz743AT/I8rjGmxCxJMcYcl4h8\nBJgLPJPZFAL+WlXXqOp2VY0Bfwd8S1V/ntn2FeAlnOQl2w9U9SlV3Qb8NXAYJ9lBVZOqereqblTV\n3aq6FFgMXJNzjDhwk6q2qOqvga8BeV0Yq6qdmZs9qnow61TQw8CnRaQuE/Ms4D2Z5zfGVIElKcaY\nkVwpIkdEJAb8D7AUp2cDoF9VXxnYUUQmAKcCL+Qc43mcHpFsawZuqGoKWJe9j4jcJiLrMqdyjgC3\nAGfkHGOTqsaz7q8GxovI6W6DzPIUkAb+InP/RuC3qtpWxDGNMUWwJMUYM5JngXOBacA4VZ2vqn2Z\nx/pGLlY4EbkW51TQj4GPAjOARzh6mqlsVDUBPArclOlN+TRO74oxpkosSTHGjKRXVXep6l5VTR9r\nR1U9ArwBXJTz0EXAqznb3j9wQ0RGA7Oz9vkA8LyqLlLVTaq6E8i9pgVghoiMzbp/IRBR1T3HjcqR\nAEYPs/0hnOTo85nHn8zzeMaYMrAkxRhTKt8Gviwi14jI2SLyLZyekO/l7HebiPy5iEzHGdY8Eae3\nBGA7cL6IXCYi7xCRb+Bc6JprDPCwiJwjIlcAdwE/cFHXVuDDInKKiEwc2KiqW3FOR90LLMk5pWSM\nqTCbJ8UYUyrfB94C/CtwMk7vyJWq+nrWPgp8JfMzA9iR2edQ5vFFOKN+fpbZdynQjDNPS7ZncBKa\n3+EkLEs4er3MwPNwjPt/B3wH+CtgH3BW1mMP4/TM2KgeY6pM8pt/yRhjgkFEvgpcraozq10XRDhs\nLwAAAIJJREFUY4LOelKMMQYQkUbgTOA24B+rXB1jDHZNijHGDLgfeBFnVNMjx9nXGFMBdrrHGGOM\nMZ5kPSnGGGOM8SRLUowxxhjjSZakGGOMMcaTLEkxxhhjjCdZkmKMMcYYT7IkxRhjjDGeZEmKMcYY\nYzzJkhRjjDHGeJIlKcYYY4zxpP8H4qHiDWIZvp8AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -926,7 +926,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 16, "metadata": { "collapsed": false }, @@ -937,24 +937,24 @@ "text": [ "TRADING STATS\n", "AVG Monthly Return :: 0.03%\n", - "STD Monthly :: 3.03%\n", + "STD Monthly :: 2.94%\n", "SHARPE :: 0.03\n", - "MAX DRAWDOWN :: 26.51%, 55.0 months\n", - "Correlation to SPY :: -0.04\n", - "NUMBER OF TRADES :: 439\n", + "MAX DRAWDOWN :: 35.16%, 75.0 months\n", + "Correlation to SPY :: 0.00\n", + "NUMBER OF TRADES :: 769\n", "TOTAL TRADING DAYS :: 4277\n", "SPY MONTHLY RETURN :: 0.76%\n", "SPY STD RETURN :: 4.44%\n", "SPY SHARPE :: 0.59\n", "SPY DRAWDOWN :: 55.37%, 8.0 months\n", - "0.265131925445\n" + "0.351648144393\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmcTeUfwPHPd+xjl61kV5YKmWxJlOxESE32CqUk8oui\nIskSkZTsZBkhylL2soaMLVtlT7ZItjH78/vjucMsd2bujLlz547v+/W6r3HPec5zvufONfd7n/M9\nzxFjDEoppZRS7uTj6QCUUkoplf5pwqGUUkopt9OEQymllFJupwmHUkoppdxOEw6llFJKuZ0mHEop\npZRyO004lFJKKeV2mnAopZRSyu004VBKKaWU22nCoZRSSim304RDeRURiXThESEij4tIcSfLL4rI\nDyJSI5H9jHRsExDP+th9h4rIPyKyWUSGikhRJ9vUcbRtFW1ZJ8eyIBG528k2P4vIXifLRUQ6isgq\nx35DReSciKwUka4iktmF1zKqj62O1+WKiPwuIjNFpLqTuKMf6xFHu5KONv0c6+rHs68fROSSiBR2\nIa4OIrLe0f66iOwVkfdExNdJ2+MisiSefvwcMXV08vtK6L1TLJH4fB3x7HHE95+IbBCRDvG0j29f\np114LYqLyHQROSwiN0TkjOO1GZTANtsd/XePZ32naDE8Gk+bvxzrl8RaHvu1+tvxnqsTq128v5do\nbaYn8NoEJbSt8k4ZPR2AUknUPtbzTsBTjuUSbflBIOoDai7wA5ABuB94DVgnIlWNMfvj2c/zwDGg\nuYhkN8Zcj6ddVN8+QF6gKtAL6CUiLxljvonVPr6bF2UB+ju2TbC9iGQFvgMaAJuBT4BzQD6gDvAF\nUA3oGs++onwO9HD0NRsIB8oCjYEjwLZY7ccCO4BMQBWgO9BERB4CRgMvAF+KyIPGmJBo8T4LNAJe\nNcacjS8YEfEBAoBngQ3AB0AQUNvx72dFpJ4x5p9om7l6M6jzxH3v9AWKAG8S873zD/EQkYLAOuzr\nFIB9DbMCrYGZItIYaGfi3qRqFfB1rGU3EgpYREpjX+/rwDTgOHA39rV/GxjkZJsywCPY9247YGIC\nu7iB/Z1tidVHHezrEhzPdlHHIkBJ7HtonYg0McasdLRx9fcSDLxEzNcfIMLF7ZU3McboQx9e+8D+\nwY+IZ11xIBLoE2t5Q8fy8fFs9wT2D14dIATo4GrfjnVFgUPYP+gPRVtex7FNq2jLOjmWBWI/XAvH\n6usnYG+sZV854ns9nvhLA68k8roVdPQxIZ71+ROK27H8dUcf/RzPq2OTlo+itckBnAI2ufC7fMex\nn+FO1jV19L081vJjwJJ4+vNz9NcxnvVLgaNJfL+tAMKApk7WjXTs73+xlkcC45Lx3v7C8f67N6Hf\nT6zlg4EzQEvH76aYkzZR77kF2ETVJ9b6icB24Gjs19bZsQAPOpb/6MrvJVqb6cCVpL4u+vDeh55S\nUXeijY6fpeNZ3w44YIxZD6xxPHeZMeYvoDN21OJtVzYBPsaOOPZPqKGI3Iv9RvijMWZ8PPs/Yoz5\nKpF9lsR+q9zibKUx5kJiQWO/6Ud9y8UYsw2bDPUVkXKONkOBAkC3hDpyjNr0xSZq7zqJZzkwE2gk\nItVciC3FOU4zNQCmO+KJ7R3gT6CfiGRJgV2WAk4ZY07FXpHA78cfm0gsBy5jRzCcMdgRmruAm6fB\nRCQT0AY7chd71MF5R8bsAy7geB8oFR9NONSdKOoP46XYKxy1D62wf3DB/lF+0jGU7jJjzFbsaQmn\nNQ1OHMMOU3dNpM6hMfb/7ZykxOPECcfPZ0UkWzL7KOP4eTHasnewHz4TRaQKdrj9E2PMgUT6egx7\nSmquMSYynjZRw/jNkhnv7WqO/aCe5WylMSYC+77JC9SKtTqriNwV65FYnc0JoKiIPOFKcI6EqAwQ\nYIwJAxaRcLJ8HNiKTVKiNAFyAfNc2adjv3mxx3wxsbbxbB/7dblLRHImpy+VtmnCoe4Evo4/YgVF\n5DHsUK7BfhOMrTmQG4iqvfgOO5T/fDL2uw8oICI5XGw/FFsf0S+BNlEjB/uiLxSRTLH+YOdLaEfG\n1lJ8jT1VcUpEvhWRPiJSNoHNcjr6LiwiTYDPsEPp30br9yrwBrbuYhU2kRqSUCwOFbC/kzgFstHs\ncfws70J/7lAhVhzO7MEmRbFjfAlbGxL1OE/i76lxQCiwVkR2isgYEXk6gQSxPXDSGPOL4/k8oIKI\nVExgH3OBltFGZF4A1psEam24lTzld4w2LcB+lsxP5HicyUHM1yXqEbv2SaUDmnCoO8Fg7B+xs9hi\nxLLY2ovFTtq+AOwwxhwFMMZcww5PJ+m0isM1x0+Xvq0ZY45hvz13E5FC8TTLFavvKE2I+Qf7uAv7\n64ytwziKPef/CXBQRNaIyD1ONpnm6Ps0tv4hG7Y+YmesfhdhC2nzAq+ZaAWkCYh6ja4m0CZqXa4E\n2rjT7cT4Pba4OepRH1hJAhyjQpWx74ni2ETuO+CciLwcva2IZADaEnNkYh3295XQe3c+tri6mSMx\nbkbio2dRydN57AhJTWC0MeazRLZz5gZQj5ivzVMkcmpReSe9SkXdCSZhv4VlBZ7E/uGO894XkdzY\nD+7PHVcIRNkCtBKRMsaYw0nYb9TIRkIfULF9BHTA/sHt7WR9VF+xR002Yf9Qg60bcXq5Y2zGmAnA\nBMeweC3gFexrEIAtFo1usGM/EdjTJgcTOP3xK/b0T6ArcXDruBJKzlz5wHfG1SsmEhM9xivxtIkv\nxlPGmHVJ3aHj/dZJRAQ7wtIM+/udKCJHo/XZEFsr82u0965gi479iWfUzBhzQUTWYBPt7NgvoQsT\nCet7YDz2db0K7DfGJHjFTQIijDE/JXNb5WU04VB3gj+j/WH+QUQigREi8lOsb+dtsYWeb2ELGKMz\n2G+Kg5Ow3weB845REpcYY46JyGzsKMcIJ00OYT9IHgR+i7bdRew3WuKbDyKR/V4ClgHLROQn4HER\nKeoogI2yLzkfmi46iD2uikB88zdEnRqIXg8SjB1pccY3WpuUcBBo4YhjUzxtKmHfK4nVrCSJMcYA\n+4H9IrIVm0i0w/E7xyYMzk4TGrCXujqKoJ2ZC0zGXnL7o+O0WEKSlTwppadU1J1oKPab2Uexlr+A\n/RB/FlupH/2xlvgr/uMQkZrYq2ASHDaPx0fEX8vxI3aEITmneFy1w/EzzkRkbrQJ+A94wfFt3plO\n2A/QZdGWncDOreJMOUf7E/GsT6pl2KSoo7OVjnlEXsAWI29OoX06E+P3I3ZCtBbYuofY79tnsacS\nE3q/LMbW4lTnVrG0UilOEw51xzHGXMbONdAwqqDOcbnp48A3xphFsR/YQtMyIlI1sf5FpDgwAzuH\nwqhkxHcUOxFXd6BwrHV/YWspGovIa/F0kej/axEpJCJxii8dl0U+hf0ASsrpo9viGJIfhU0SPnYS\nV1NswrHCGLM92qofgHtF5OlY7TMDL2PrDGLUmNxGjL9gL5Pu4ognto+xV4mMcLFuJUEi8piIOBuF\njtr3IcfPVtjRnPHxvHeXAa0dv9s4jJ3U7hXsRGJLbzdupeKjp1TUneoz7AyT/bHfSqO+Acb3B/cH\nbo0s/BptuZ+ItMN+yOfBzjTaGvuB3d4xR0FinH2jH4qt5ShLrCtSHHGXAMaJyPOOmM8D+bF1GM2x\nw/8JuRfYLiLrsKM3Z7GTgfljTxmMMcb860LsKWk4tkjybccI0bfYosLa2Nd9P3Z+k+gmAS8CC0Rk\nOrALO7fEc8AD2EnbwlMwxo7YpOM7sdPeb8SehmuFrXmZRzKSzHj0w76/FnHr6h0/7PviAnbmV7Cv\nzUXglzg9WEuws842xRadQqz3nDHG6aW+t6mMiAxwsnyXMeYHx78zOv7/OLPoNmpDVBqkCYdKDxIq\nCjTO1htjzojIXKCd2PuBvACcMMb8Fruto/1lEdkEPCcifaL1/bzjEY4tJPwT+BSY6GzCpnhidRbf\nERGZxa3TCNHX3RCRRtgPng7A/7BXRfyHvSzzFeJOox3b79hp1JsArwKFsLUO+4CXjTHTXYg7RTkK\nUNuKSEfs6MSHQGbsfCYfAJ/G/gAyxgSLyOPA+9grbTpjk5RAoLExZnViu01ijGcdl4K+hT1d0Qr7\nu98LdDLGzI5nH8l5/YZi35d1HD99sbOIzsXO5npSRApgC6HnOuo8nFmLnR69HbcSDlficRZ3Uo6l\nLPZ3GNtUbAIPNlmL7726ETjp4r6UF5D436NKKaWUUikjTdVwiEhtEVki9g6EkbHPyzrafCgip8Xe\nXXO142ZF0ddnEZEvROSCiFwVkYVJnSVSKaWUUikrTSUc2OvAd2OnQ3Z2l8x+2ImKumHvhnkdWBlr\niuCx2HOVrbFFgPcQbSZEpZRSSqW+NHtKxTFXQktjzJJoy05j78swxvE8F/Zuh52MMfMdz/8Bno+a\nRdIxVfNBoEas6nallFJKpZK0NsIRL0dhX2FsARQAxpgrwDbs1LoAj2ALYaO3+R1beFQTpZRSSnmE\n1yQc2GTDYEc0ojvHrbkKCgGhjkQkvjZKKaWUSmV6WSz29sjYexEcJ+WmQVZKKaXuBFmxcwOtdNxm\nwSlvSjjOYierKUTMUY5C2Ml+otpkFpFcsUY5CjnWxachid8hUSmllFLxa0cC0+N7TcLhuKnVWeyt\njPfCzaLR6sAXjmaB2El46mHvDxBVNFqM+GfhA8etvGfPnk358nFme45X7969GTNmTJKOI7W2Aahf\nvz6rVyc279Ht7yu1tknLx5Pc7dLyMaXW8SR3X2n5mPR9l7rb6Psu+ftJiW0OHjxI+/btwfFZGp80\nlXCISHbsvQiipt0tJSKVgH8d95AYCwwUkcPYAxsCnMLeLhljzBURmQp8KiKXsDfoGgdsTuQKlWCA\n8uXLU6VKFZfjzZ07d5Lap+Y2AJkyZUqz8SVnm7R8PMndLi0fU2odT3L3lZaPSd93qbuNvu+Sv58U\n3ibBkoQ0lXBgrzL5iVvT5452LJ8JvGiMGem4M+JE7H0rNmKnLw6N1kdv7D0vFmKnzV0BxHeTq9vi\n7++fZrcBKFKkSKrsK7W2ScvHk9zt0vIxpdbxJHdfafmY9H2Xutvo+y75+0nN9yrGmDv+AVQBTGBg\noElPmjdv7ukQUlR6Ox5j0t8xpbfjMUaPyRukt+MxxruOKTAwMGqQoIpJ4LPWmy6LVUoppZSX0oQj\nHUv2sFcald6OB9LfMaW34wE9Jm+Q3o4H0ucxpdmpzVOTiFQBAgMDA+Mtnjl58iQXLlxI3cDuUPnz\n56dYsWKeDkMppZQLdu7ciZ+fH4CfMWZnfO3SWtFomnTy5EnKly9PUFCQp0O5I/j6+nLw4EFNOpRS\nKh3RhMMFFy5cICgoKMnzdKiki7qe+8KFC5pwKKVUOqIJRxIkdZ4OpZRSSllaNKqUUkopt9OEQyml\nlFJupwmHUkoppdxOEw6llFJKuZ0mHEoppZRyO004FDNnzsTHxwdfX1/OnDkTZ33dunWpWLHizecl\nSpTAx8eHXr16xWm7fv16fHx8WLRokVtjVkop5V004VA3hYSEMHz48DjLRSTOcxFh8uTJnD17NtH2\nSimllCYc6qbKlSvHm0TE9sADDxAREeE0QdHp8pVSSsWmCYcC7KjEu+++S3h4uNMkIrYSJUrQsWNH\nlxMUpZRSdzZNONRNJUuWTFISMWDAAMLCwlxKUJRSSt3ZNOFQMUQlESNGjEi0bYkSJejQoQOTJ0/m\n3LlzqRCdUkopb6X3UnGDoCA4dMi9+yhXDnx9U77fkiVL0qFDByZNmkT//v0pVKhQgu0HDhzIrFmz\nGD58OGPGjEn5gJRSSqULmnC4waFD4Ofn3n0EBoK77iOXlCQidoKilFJKOaMJhxuUK2cTAnfvw11K\nlixJ+/btmTRpEv369Uu0/YABA5g1axYjRoygRYsW7gtMKaWU19KEww18fd03+pBaBg4cyOzZs12q\n5ShVqhTt27dn4sSJVKtWLRWiU0op5W20aFQ5FT2JcOWKlYEDBxIaGsrIkSN14i+llFJxaMKhAOeT\ndUVdsfL7778nun1UgrJ79253hKeUUsrLacKhAOfTkZcuXZoOHTrcnMo8eltn7QcOHEjGjBl1hEMp\npVQcWsOh6NSpE506dXK6btq0aUybNi3GsqNHjzptW7p0aUJDQ1M8PqWUUt5PRziUUkop5XaacCil\nlFLK7TThUEoppZTbeV3CISI+IjJERI6KSJCIHBaRgU7afSgipx1tVotIGU/Eq5RSSikvTDiA/kB3\noAdQDngbeFtEXo9qICL9gNeBbkA14DqwUkQyp364SimlVPrlbFoFZ7zxKpWawPfGmBWO5ydF5AVs\nYhGlFzDEGLMMQEQ6AueAlsD81AxWKaWUSs/eXv22S+28cYRjC1BPRO4DEJFKQC3gB8fzkkBhYG3U\nBsaYK8A2bLKilFJKqRSw/vh61h1b51JbbxzhGA7kAg6JSAQ2aRpgjJnnWF8YMNgRjejOOdYppZRS\n6jYZY+i3ph/lC5TnIAcTbe+NCcdzwAvA88ABoDLwmYicNsbMup2Oe/fuTe7cuWMs8/f3p2zZsrfT\nrVJKKZUuBAQEEBAQAMCZq2fYcXoHD+V5yKVtvTHhGAkMM8YscDzfLyIlgHeAWcBZQIBCxBzlKATs\nSqjjMWPGUMXJbV537tx520ErpZRS3sQYQ0hECJkzZMZHbAWGv78//v7+hEWE8cCXD9AoXyOGlh+K\nn59fov15Y8LhC0TEWhaJox7FGHNMRM4C9YC9ACKSC6gOfJGKcSqllFJp1rFLxxiyYQj/BP3D5eDL\nXA65zOXgy1wPu86NsBsEhQVhMJTJV4Zv2nxDlbtvfSGfsnMKh/89zMK2Cwn/O9yl/XljwrEUGCgi\np4D9QBWgNzAlWpuxjjaHgePAEOAU8H3qhqqUUkqlPZEmko7fdeTPi39SrUg1iucpTu4sucmdJTc5\nMucgW6Zs+GbyJWvGrIzbNo5Hpz7KuMbj6FqlK9fDrjN4/WA6VOpAxUIV2fm3a2cBvDHheB2bQHwB\nFAROAxMcywAwxowUEV9gIpAH2Ag0NsboncXi8dtvvzF48GB27NjBuXPnuOuuu6hQoQJPP/00r79u\npzgpUaIEJ0+evLlNgQIFKFu2LH369KFly5YcP36cBx54gJYtWzJnzpw4+/jmm2/w9/fniy++4NVX\nX021Y1NKKRXT1J1T2XRyE+s6ruOJkk8k2LbtA23pvaI33Zd1Z9PJTdyT8x4uBV/iw7ofJmmfXpdw\nGGOuA30cj4TaDQIGpUJIXm/Lli08+eSTFC9enG7dulG4cGH++usvtm7dyrhx424mHCLCww8/TN++\nfTHGcPr0aSZOnEirVq346quv6NatGx988AHvvPMOXbp04amnnrq5j6tXr9KnTx9q1qypyYZSSnnQ\n2WtneXvN23Su3DnRZAMga8asTGg2gceKPUa3Zd0ICgvirZpvUTxP8STt1+sSDpXyhg4dSp48edix\nYwc5c+aMse7ChQsxnhcpUgR/f/+bzzt06ECZMmUYM2YM3bp146233mLOnDn06NGD3377jSxZsgDw\n7rvvcuHCBVatWuX+A1JKKRWvPiv7kNEnI6Pqj0rSdu0qtuPhux/mi+1fMKD2gCTv1xsn/lIp7OjR\nozzwwANxkg2A/PnzJ7htoUKFKF++PMeOHQMgQ4YMTJo0iaNHj/LRRx8BEBgYyIQJE+jbty8PPPBA\nyh+AUkopl6w4vIKAfQGMbjCau3zvSvL2FQpU4IumX5A3W94kb6sJh6J48eIEBgayf//+JG8bHh7O\nX3/9xV133XrjVq9enVdffZVPPvmEffv20b17d0qVKsX777+fkmErpZRKgqCwIHos70G9kvXoULFD\nqu9fEw5F3759CQoKonLlytSqVYv+/fuzevVqwsPjXuoUFhbGxYsXuXjxInv37qVDhw6cP3+etm3b\nxmj38ccfkz9/furWrcuuXbv48ssvb55eUUoplTqMMRz/7zjz9s3D/1t/Tl89zYSmExCRVI9Fazjc\nICgsiEMXDrl1H+Xyl8M3k2+K9PXUU0/xyy+/MGzYMFauXMnWrVsZOXIkBQoUYMqUKTRv3vxm25Ur\nV1KgQIGbzzNmzEjHjh0ZPnx4jD5z5szJ2LFjadu2Lf7+/jEKSJVSSrnXsUvHeHvN22w4sYHz188D\nUDpvaSY0ncB9d93nkZg04XCDQxcO4Tcp8VnXbkdgt8AYk7DcLj8/PxYuXEh4eDh79uxh8eLFjBkz\nhmeffZbdu3dTrlw5AGrUqMHQoUMB8PX1pXz58uTKlctpn1WrVr3Zt1JKqdSx9PeldPyuI3my5qFr\nla7UuLcG1YtUp0D2Aolv7EaacLhBufzlCOwW6PZ9uEPGjBnx8/PDz8+P++67jy5durBgwQLee+89\nwBaRPvFE4pdRKaWUSl3hkeG8t+49hm8eTouyLZjRcgZ5subxdFg3acLhBr6ZfFN09MFTHnnkEQDO\nnDnj4UiUUkrF50bYDfae20v/tf3ZeGIjI58aSd9H+3qkTiMhmnAofv75Z+rWrRtn+fLlywFunk5R\nSimVfMYY/rryF8aYJE+aFduS35ew4MACdp3ZxaELh4gwEdyd427WdVrH48UfT6GIU5YmHIqePXsS\nFBTEM888Q7ly5QgNDWXz5s3Mnz+fUqVK0blzZ0+HqJRSbhUcHkwmn0xk8MngdH1QWBCDfh5Ed7/u\nlM5X2uV+1x1bx5Lfl7Dn3B72nN3DpeBLZJAMDHx8IAMfH0hGn6R/DF8IukDr+a0pl78ctYvV5o3q\nb/Bw4Yd5qNBDZM2YNcn9pRZNOBSjR49mwYIF/Pjjj0yePJnQ0FCKFSvG66+/zoABA24WhYpIkofo\nkrONUkqllojICKbumsqAdQMolbcUS/2XUjB7wRhtgsKCaB7QnHXH1vHvjX+Z8vSUeHqL23eb+W3w\nzeRLzaI16VOzD5ULV2bH6R18tOEjVh1ZxexWsymVt1SSYl50cBGRJpK1HdfGiTUt04RD0aBBAxo0\naJBou6NHjyap3+LFixMREZHcsJRSKlm+PfAtZfOX5cGCDybYbuOJjfRa0YtdZ3fh/6A/Px3/iUen\nPsqK9isok68MYOsjWsxrwdZTW2lRtgXf7P+Gzxp9RvbM2RONY8fpHVwKvsRS/6XUKlbr5vJm9zej\nYemGtF/cnkpfVeLzxp/TqVInl7+czds3j3ol63lVsgE68ZdSSql05Mi/R2izoA1VJlZhyPohhEWE\nxWmz//x+/L/15/EZj5PRJyNbX9rK3NZz+eWlX8jok5GaU2uy7dQ2gsODaflNSzaf3MzyF5YzpuEY\nroVe49uD37oUy6ojq8iVJRfV760eZ13NojXZ3X03bSq0ocv3Xfhm/zcu9Xnm6hl+Pv4z/g/6J944\njdGEQymlVLrx1Y6vyJs1L2/VfIvB6wdTbUo1dp/djTGGVUdW0Wh2Ix6c8CAbTmxgeovpbH15682E\noESeEmx5aQtl7yrLEzOf4ImZT7DhxAaWvbCMuiXqUjJvSeqWqMuM3TNcimXV0VXUK1kv3jqNnFly\nMr3FdBqVacSwTcMwxiTa5/z988nok5Fnyj/j8muSVmjCoZRSKl0IDg9m+u7pdK7cmWFPDWPby9uI\niIyg6uSqlB1floazG3L++nlmPzObY72O0blyZ3wk5sdgvmz5WN1hNU3vb8rus7tZ6r+UJ0s+eXN9\nl8pd+On4Txy7dCzBWC4HX+aXv36hQenET1e//ejb7D23l1VHEr+b9rz982h8X+M0Nb+GqzThUEop\nlS4s2L+Aizcu8sojrwDgd48fO7rt4P3H3+eRex7hp04/EdgtkHYV25E5Q+Z4+8mWKRvz28znXN9z\nPFUq5m0ZWpdvTY7MOZi5Z2aCsfx0/CciTAQNSzdMNO66JepS9Z6qjNg8IsF2xy4dY+uprTz/wPOJ\n9pkWadGoUkqpNOlC0AVe++E1boTdIF+2fOTNmpd82fLxdNmnqVS4Upz2E3ZM4KlST3H/XfffXJY5\nQ2beq/NekvctIuTKEve2DdkzZ6dthbbM3DOT9+u8H2eEJMqqI6sok68MJfOWdGlfb9d6m2cXPMuv\nf/9K1SJVnbabv38+2TJmo3nZ5k7Xp3U6wqGUUirNCY0IpfX81qw7tg6D4c9//2TlkZV8uvVT6s6s\ny9FLMa+a2312N7+c+oVXH3nV7bF1ebgLx/87zvrj6+Nts+rIKhqUSvx0SpRnyj1DmXxlGLllZLxt\n5u2fR/OyzcmROUeS4k0rNOFQSimVphhj6LG8B1tPbeX7579nqf9SNr+4mQOvHeBYr2Pky5aP1vNb\ncyPsxs1tJvw6gXty3sPTZZ92e3y1itbivnz3MX33dKfrj/x7hCOXjtCwTOKnU6Jk8MlA35p9+fbA\ntxz+93Cc9YcuHGL32d1eezoFNOFQSimVxozdOpapu6YyuflkHi36aIx1ebLmYVHbRRy6cIgeP/TA\nGMOVkCvM+W0O3ap0S9bMnUklInSu3JmFBxZyJeRKnPWrjqwio09G6paom6R+O1bqSIHsBRi9ZXSc\ndfP2zSNXllw0vq9xcsP2OK3hSIKDBw96OoR0T19jpe5sP/z5A31X96VfrX50rNTRaZtKhSsxsdlE\nOn3XiZr31iQsIozg8GBervJyqsXZoWIHBq4byIL9C3ipyksx1q06uoqa99Z0WgOSkGyZsvFGtTcY\nsmEIg+oOolCOQoAd8Zm3bx7PlHsmTU9dnhhNOFyQP39+fH19ad++vadDuSP4+vqSP39+T4ehlEpl\n+8/v5/mFz9Ps/mZ8XO/jBNt2rNSRbae20fPHnhTMXpAW5VpQJFeRVIoUiuYuSoPSDRixeQQtyrUg\nv6/9mxUWEcbao2vpV6tfsvrtUbUHwzYNo3lAc4rkKkJoRCg3wm7w+8XfGdtobEoeQqrThMMFxYoV\n4+DBg1y4cMHTodwR8ufPT7FixTwdhlIqFZ28fJJGcxpRMm9JZj8zO96rP6Ib02gMO8/uZOuprUxv\n4byewp3GNR5H7em1aTi7Ies6riN31txs+3sbV0OvujT/hjN5s+VlVINRLDywkNCIUDL5ZCK7b3Z6\nVutJvZIBzgnoAAAgAElEQVT1UvgIUpcmHC4qVqyYfggqpVQyRZpItp7aSvUi1ePckfWf6//QYFYD\nMvlkYkW7FeTMktOlPjNnyMzi5xaz9PeYk3Ollvvvup/VHVZTd0Zdms5tysr2K1l1ZBX5suWjyt1V\nkt3vK4+8cnMukfREi0aVUkq53ditY6k1rRY1ptbg179/vbn8ashVmsxtwqXgS6zqsIq7c96dpH4L\n5yhMV7+uLo2IuEPFQhVZ0X4Fe87toeU3LVn+53Lql6of723u72SacCillHKrc9fOMXj9YFqUbUFY\nRBjVp1Sn29JunL56mlbzW/H7hd9Z0e7WHVq9TbUi1Vjmv4xNJzex88zOZJ9OSe804VBKKeVWA9YN\nIINkYOrTU9nRbQfjGo9j/v75FBtTjI0nNrLEfwkP3/2wp8O8LXVK1GHxc4t55J5HaHpfU0+HkyZ5\nZcIhIveIyCwRuSAiQSKyR0SqxGrzoYicdqxfLSLemTorpZQXCzwdyLRd0xjyxBDu8r2LjD4Zeb3a\n6/zR8w96VuvJ4ucWJ3m+irSqUZlG/Nr115uXs6qYvC7hEJE8wGYgBGgIlAfeAi5Fa9MPeB3oBlQD\nrgMrRST+u/UopZRKtsDTgQSFBcVYZoyh14pePFDwAbo/0j3GuoLZCzKm0RivnshKJY3XJRxAf+Ck\nMeZlY0ygMeaEMWaNMSb6vYJ7AUOMMcuMMfuAjsA9QEtPBKyUUumVMYZBPw/ikcmPUG58Oebtm4cx\nBoCAfQFs/msznzX6LFVmAFVpmzcmHM2BHSIyX0TOichOEbk5vZyIlAQKA2ujlhljrgDbgJqpHq1S\nSqVTEZERvPbDawxeP5h3H3uXqkWq4v+tP7Wn12bDiQ28vfptWpVv5ZFLVlXa440pZyngVWA0MBR7\nymSciIQYY2Zhkw0DnIu13TnHOqWUUrcpODyY9ovas/jQYqY0n3Jzeu91x9bRa0Uv6syoQ5YMWRhV\nf5SHI1VphTcmHD7AdmPMe47ne0TkQeAVYJbnwlJKqTvDlZArtJjXgq2ntrL4ucUx7tD6ZMkn2dV9\nF9N3TSdXllyUzFvSg5GqtMQbE44zQOw7fB0EWjn+fRYQoBAxRzkKAbsS6rh3797kzp07xjJ/f3/8\n/f1vJ16llEo3roZcpdHsRhz45wCr2q+idvHacdpk9MlIV7+uHohOuVtAQAABAQExll2+fNmlbSWq\nuMdbiMgc4F5jTJ1oy8YAVY0xjzmenwY+McaMcTzPhU0+OhpjFjjpswoQGBgYSJUqyZ+OViml0rPr\noddpPKcxe87tYU2HNVQtUtXTIak0YOfOnfj5+QH4GWN2xtfOG0c4xgCbReQdYD5QHXgZiJ5OjwUG\nishh4DgwBDgFfJ+6oSqlVPpwI+wGT897ml1nd7Gy/UpNNlSSeV3CYYzZISLPAMOB94BjQC9jzLxo\nbUaKiC8wEcgDbAQaG2NCPRGzUkp5s+DwYFp+05Ktp7byY7sfebToo54OSXkhr0s4AIwxPwA/JNJm\nEDAoNeJRSqn06ELQBRYfXMzknZP57fxvLH9hOY8Xf9zTYSkv5ZUJh1JKKfe4HHyZhQcWMv/AfNYe\nXYvBULdEXVa0W0GdEnUS70CpeGjCoZRSd7hIE8mGExuYtmsaCw8sJCQihDrF6zC+yXhalW9FwewF\nPR2iSgc04VBKqTvYisMreO2H1zh66Shl8pXhvcffo2OljhTJVcTToal0RhMOpZS6Q4WEh9B1aVeK\n5y7OjBYzeKzYY4iIp8NS6ZQ33ktFKaWUC7ae2krXJV0JDg92un7armn8feVvJjefTO3itTXZUG6l\nIxxKKZUO/X7hd5rObcq/N/6lYPaCDK03NMb6kPAQPt70Mf4P+VO+QHkPRanuJDrCoZRS6cw/1/+h\nydwmFMpeiLdqvsXILSPZc3ZPjDZTd03l9NXTvPf4e/H0olTK0oRDKaXSkagZQa+HXueHdj/wcb2P\nKZe/HC8vfZnwyHDAMbqx8WP8H/SnXP5yHo5Y3Sk04VBKqXQiIjKC9ovbs/fcXpa9sIwSeUqQOUNm\npjSfQuDpQMZtGwfY0Y0z187o6IZKVZpwKKVUOtF/TX++O/Qd81rP45F7Hrm5vPq91Xmj+hsMXDeQ\ng/8c5OONH/PCQy9QNn9ZD0ar7jSacCilVDqw8MBCRv0yitENRtO8bPM46z968iMKZi9I7em1OXPt\nDANrD/RAlOpOpgmHUkp5uT8u/sGL379I2wfa0qt6L6dtcmTOwcRmE7l446KObiiP0MtilVLKiwWF\nBdF6fmvuyXkPU5pPSXAujYZlGrL8heXUuLdGKkaolKUJh1JKeSljDK8uf5Wjl46y/eXt5MySM9Ft\nmtzXJBUiUyouTTiUUspLTdk5ha/3fM3XLb/mgYIPeDocpRKkNRxKKeWFjl46Ss8fe9LdrzsdKnXw\ndDhKJUoTDqWU8kLDNg4jT9Y8fNrwU0+HopRLNOFQSikvc+K/E8zYM4P/Pfo/fDP5ejocpVyiCYdS\nSnmZ4ZuGkydrHl555BVPh6KUyzThUEopL/LX5b+YumsqfWv2JXvm7J4ORymXacKhlFJeZMTmEeTM\nkpMeVXt4OhSlkkQTDqWU8hJ/X/mbyTsn06dGH5fm3FAqLdGEQymlvMQnWz7BN5Mvr1d73dOhKJVk\nmnAopZQXOHvtLBMDJ/Jm9TfJnTW3p8NRKsk04VBKKQ/78+KfPLfwOc5fPx9vmwFrB5A5Q2beqP5G\nKkamVMrRqc2VUsrDhmwYwvz98/kv+D9+bPcjPhLzu+DCAwuZtnsak5pNIm+2vB6KUqnboyMcSinl\nQX9f+ZuAfQG0Kt+K1UdW8/HGj2Os/+vyX3Rd2pXW5VvzcpWXPRSlUrdPRziUUsqDxm8fT7aM2Zj2\n9DQeKvgQH/z8AbWK1uKJkk8QERlB+8XtyZE5B5OaT0rw1vNKpXVePcIhIv1FJFJEPo21/EMROS0i\nQSKyWkTKeCpGpZSKz7XQa3wV+BVdq3Qld9bcvPf4ezxR4gn8v/Xn7LWzDNs0jI0nNjL7mdnky5bP\n0+EqdVu8NuEQkapAN2BPrOX9gNcd66oB14GVIpI51YNUSqkEzNg9gyshV24WgmbwycCcVnMQERrN\nbsSgnwcxoPYA6pSo4+FIlbp9XplwiEgOYDbwMvBfrNW9gCHGmGXGmH1AR+AeoGXqRqmUUvGLiIxg\n7NaxtKnQhuJ5it9cXihHIQJaB/Db+d+oWqQq79d534NRKpVyvDLhAL4Alhpj1kVfKCIlgcLA2qhl\nxpgrwDagZqpGqJRSgDGGNUfXcOnGpRjLl/y+hCOXjvBWzbfibFO3RF02ddnEUv+lZMqQKbVCVcqt\nvC7hEJHngcrAO05WFwYMcC7W8nOOdUoplaoGrx9M/Vn1KT2uNKO2jCI4PBiAT7d+Sq2itahWpJrT\n7WoWrUl+3/ypGapSbuVVV6mIyL3AWOApY0yYp+NRSqmEjN4ymsHrBzOg9gAuBl2k/5r+fL79czpX\n6symk5tY1HaRp0NUKtV4VcIB+AEFgJ1y6/qwDMDjIvI6UA4QoBAxRzkKAbsS67x3797kzh1zymB/\nf3/8/f1TIHSl1J3kqx1f0Xd1X9597F0+evIjAN6s8SbvrnuXDzd8SKm8pXi67NMejlKppAkICCAg\nICDGssuXL7u0rRhj3BGTW4hIdqB4rMUzgIPAcGPMQRE5DXxijBnj2CYXNvnoaIxZEE+/VYDAwMBA\nqlSp4rb4lVJ3htl7Z9NxcUd6VuvJ2EZj48yfEXg6EN9MvpQvUN5DESqVcnbu3Imfnx+AnzFmZ3zt\nvGqEwxhzHTgQfZmIXAcuGmMOOhaNBQaKyGHgODAEOAV8n4qhKqXuUAG/BdD5u850qdyFMY3GOJ2s\ny+8ePw9EppRneVXCEY8YQzTGmJEi4gtMBPIAG4HGxphQTwSnlLozGGMYtWUUb695m46VOjKp+aQ4\n90RR6k7m9QmHMeZJJ8sGAYNSPRil1B0pIjKCN358gy93fMnA2gP58IkPdRpypWLx+oRDKaU8KSgs\nCP9v/Vn+x3ImNZtEV7+ung5JqTRJEw6llEqmSBNJs7nN2P73dpb4L6HJfU08HZJSaZYmHEoplUzT\nd03np+M/sbbjWp4sGefsrlIqmmQlHCLiA5QBChJrtlJjzIYUiEsppdK0f2/8S781/ehQsYMmG0q5\nIMkJh4jUAOZi58OIXRVlsBNxKaVUuvbu2ncJiwxjZP2Rng5FKa+QnBGOr4AdQFPgDLEuS1VKqfTu\n179/ZVLgJD5r9BmFc+htmpRyRXISjvuANsaYwykdjFJKpXURkRH0+KEHlQpX4tWqr3o6HKW8RnIS\njm3Y+g1NOJRSd5wpO6ew4/QONr+4mYw+WnevlKuS87/lc2C0iBQGfgNi3LXVGLM3JQJTSqm0ZteZ\nXbyz9h26VO7Co0Uf9XQ4SnmV5CQc3zp+Tou2zGALSLVoVCmV7lwMusjAdQOZGDiRCgUqMOKpEZ4O\nSSmvk5yEo2SKR6GUUmlQeGQ4kwInMXDdQCJMBJ82/JTXqr5GpgyZPB2aUl4nSQmHiGQCPgCGGGOO\nuSckpZRKG3r+0JOvAr/ixcovMuypYRTMXtDTISnltZJ0K0NjTBjQ2k2xKKVUmnHm6hmm7prKsHrD\nmNpiqiYbSt2m5Nw7+TugZUoHopRSacn47ePJkjELrzzyiqdDUSpdSE4Nx5/A+yJSCwgErkdfaYwZ\nlxKBKaWUp1wPvc6EHRN4+eGXyZM1j6fDUSpdSE7C8RLwH+DneERnAE04lFJebcbuGVwOuUyvGr08\nHYpS6UaSEw5jjF6lopRKtyIiIxizdQxtKrShRJ4Sng5HqXRDp8lTSqlolvy+hCOXjjC39VxPh6JU\nupKcu8VOS2i9MebF5IejlFKeNfqX0TxW7DGqFanm6VCUSleSM8KRN9bzTMCDQB5g3W1HpJRSHrLt\n1DY2/7WZxc8t9nQoSqU7yanheCb2MhHxASYAR1IiKKWUuh0Xgi4wZP0QelTtQdn8ZV3aJtJEMnLL\nSMrkK0Pz+5u7OUKl7jzJmYcjDmNMJPAp0Dsl+lNKqeQKCgui2dxmjNs+jmpTqvH9oe8TbH/pxiXG\n/DKGcuPLsejgIvrX6k8GH70llFIpLUUSDofSaBGqUsqDwiPD8f/Wn9/O/8a6jut4qtRTtPymJe+t\ne4+IyIib7ULCQ1h9ZDUvff8SRT4tQr81/XjknkfY2GUjLz6sZWhKuUNyikY/jb0IuBtoCsxMiaCU\nUiqpjDH0/KEny/9YzhL/JTxR8gnqlqjLiM0jGLBuADvO7KBl2Zb8ePhH1hxdw/Ww6xTPXZyBjw/k\npYdfolCOQp4+BKXSteSMSDwc63kk8A/wFjFvWa+UUqlm+KbhfBX4FVOaT6HJfU0AEBH6P9afKndX\nwf9bf1YdWcWjRR9l4OMDaXJfEx4q+BAi4uHIlbozJKdo9Al3BKKUUsn19Z6veXfdu3xQ5wNeqvJS\nnPUNSjfgeK/jhEeGkzdb7AvtlFKpIck1HCKyTkTi3FxARHKJiF4Wq5RKVSsOr+ClJS/x0sMv8UGd\nD+JtlzNLTk02lPKg5BSN1gUyO1meFah9W9EopdK1f67/w5Lfl3Ax6GKK9Lf97+20nt+axmUa81Wz\nr/T0iFJpmMunVESkYrSnFUSkcLTnGYBGwN8pFVgCcbwDPAOUA24AW4B+xpg/YrX7EHgZOyHZZuBV\nY8xhd8enlHIuIjKC1vNbs/HkRgShcuHK1CtZj4ZlGlKvZL0kJwt/XPyDpnObUqlQJea1mUdGH71I\nTqm0LCn/Q3dj7wZrcD6j6A2gZ0oElYjawOfADmz8w4BVIlLeGHMDQET6Aa8DHYHjwEfASkeb0FSI\nUSkVy6gto9h0chMLnl3AtdBrrD22ljm/zWHUL6OY13oezz34nMt9nbl6hoazG1LAtwDLXliGbyZf\nN0aulEoJSUk4SmIvgT0KVMNemRIlFDhvjIlwtmFKMsY0if5cRDoD5wE/YJNjcS9giDFmmaNNR+Ac\n0BKY7+4YlVIx7Tyzk/d+eo9+tfrRpkIbADpX7owxhsdnPM7UXVNdTjjWHVtHj+U9CIsIY0PnDeTL\nls+doSulUojLNRzGmBPGmOPGGB9jzA7H86jHmdRINuKRBzvq8i+AiJQECgNroxoYY64A24CanghQ\nqTtZUFgQ7Ra148GCDzL4icEx1okInSp1Ys3RNZy6cirBfg78c4Bmc5tR7+t65MuWjzUd11A0d1F3\nhq6USkHJmmlURDqIyGYROS0ixR3LeotIi5QNL9E4BBgLbDLGHHAsLoxNQM7Fan7OsU4plYr6re7H\n8f+OM7vVbDJniFtv/myFZ8mSMQtz9s5xuv210Gt0X9qdhyY8xMELB1nw7AI2v7iZcvnLuTt0pVQK\nSs5lsa9i75vyA3Z0IeqmA5eAN1MuNJd8CVQAnk/l/SqlXPDjnz8y/tfxfFL/EyoUqOC0Te6suWlZ\nriUz98zEGBNn/eCfBzNr7yxGNxjNwdcO0qZCG70aRSkvlJyy7p5AV2PMdyLSP9ryHcColAkrcSIy\nHmgC1DbGnIm26iy21qQQMUc5CgG7Euqzd+/e5M6dO8Yyf39//P39UyRmpe4kN8Ju0HVpVxqWbshr\nVV9LsG2nSp1ovK8xO07voGqRqjeXn/jvBOO2j2NA7QG8WSO1v88opWILCAggICAgxrLLly+7tG1y\nEo6SOP/gDgGyJ6O/JHMkGy2AOsaYk9HXGWOOichZoB6w19E+F1Ad+CKhfseMGUOVKlXcE7RSd5jx\n28dz7vo51jdZn+iIRP1S9bk7x93M3DMzRsLx3k/vkS9bPvrU7OPucJVSLnD2JXznzp34+fklum1y\najiOAZWdLG8EHExGf0kiIl8C7YAXgOsiUsjxyBqt2VhgoIg0F5GHgK+BU0DC96lWSqWIy8GXGb55\nOC8//DKl85VOtH0Gnwy0r9iegH0BhEbYK9d3ndnF7L2zGVRnEDky53B3yEopN0vOCMenwBeOD3gB\nqomIP/AOdqItd3sFWxT6c6zlXbCJBcaYkSLiC0zE1plsBBrrHBxKpY5RW0ZxI+wG79V5L866y5fh\n5En7OHECrl6Frl2hY6WOfLLlE5b/sZxnyj9DvzX9uP+u+53eGyUtCwmxx1iwoKcjUSptSc7N26aI\nyA3sZFq+wFzgNNDLGDMvheNztn+XRmWMMYOAQW4NRikVx7lr5xizdQyvPfIGE0fdw/bt8M8/tx43\nbtxqmzEjiMDWrbBo0YNUubsKM/fMJHvm7Kw+uprFzy1GTEb++APuv99zx5SYoCD48Uf49ltYtswm\nUQ0bwiuvQLNm9jiVutMl67+BMWYOMMcxipDDGHM+ZcNSSnmroRuHktEnE5tG9CNwEzRpAlWqQIEC\n9lt/oUJQrBgULw6FC8OSJdCqFcycaYtH31r1Fn9c/INaRWvx9P0teOUVmDwZ/vc/GDYMMmRIPAZ3\nOX8e5syBc+fg0iX7uHgRfvnFJlIVK0LfvnD33TBlCjzzDBQpYkdw3n4bsmXzXOxKedpt5d3GmCAg\nCMBxiuV1Y0yqXamilEpbjl06xoRfvyLHr4M5uj8vP/0EtWolvM0zz0CnTvDGG/DTdn/gLQ5eOMiW\nF7fwySfC5Mng7w+jR8O+fTB3LuSJc79q97p6FT79FEaNgvBwm1DkzWsf+fLBBx/YpOm++25t07Ur\n7NwJEyfaROniRRg3LnXjViotEWfXvcfbWKQA9mqPUGCtMSZCRDIBPbA1HBmNMfndEqkbiUgVIDAw\nMFCvUlHKReHhtg4jY8Zbj2fndmLD36uotP4wSxZmp1gx1/q6fNmODpQoAaV6v0gkETQOnom/P7z/\nPgweDCtXwvPP2xGSJUtS5xRLUBBMnw4ffgj//Qc9e8I778BddyWtnzFj4K237EhI9eruiVUpT4l2\nlYqfMWZnfO2ScrfYx4BlQC5s0eYOEekCfAeEY+slZt5GzEqpRBy7dIxIE+nSlR/uFBICTz4JW7ZE\nW1jgAPSYhd+18Wz4OTu+SbifWu7c9pTKk09C8+bTqFED6tWDDh1g0CDbpmFD2LYNnn4aqlWDfv2g\nRQsoX97WgdyuyEgYOhS2b4e//rKPf/+1fXfqZJMeVxOo2Hr2tKdiunaFwEDIlOn241XK27g8wiEi\nP2OLQ4dirwjpA/wJDDDGLHRXgKlBRziUN/jr8l/4TfLjQtAFnn3gWd597F0qFa6U6nEYAy++CAEB\nMGOG/bYfFgbD/nyeP29s5UTfP8iSMe4U5q7o2xc+/xyyZ4dKleyoRuZYXV2+DL16wcKFcP06lClj\nEw9/f3BhKoB4jR5t99+0qU0sihaFe++1yU3ZssnvN8quXVC1KgwZYkdJlEovXB3hwBjj0gO4CFRw\n/DsbEAG0cHX7tPwAqgAmMDDQKJUWBYcFm2qTq5minxY147aOMyXHljQMwjSd09RsObklVWMZO9YY\nMObrr28t239+v5FBYibumHhbfd+4YcxDDxlTvrwx//6beNtly4zp2tWYQoVsTM88Y8zBg87bh4QY\nExnpfN3OncZkymRM3763FX6i/vc/Y7JkMeaPP9y7H6VSU2BgoMGe+ahiEvqsTWilifmhHAkUjPb8\nKlDa1e3T8kMTDpXWdV/a3WQektlsP7XdGGNMWESYmbVnlqnwRQXDIEzPH3qaoNAgt8exerUxGTIY\n89ZbMZf7L/Q3RT8takLCQ257H9euGROUxEMJDzdm1ixjihc3xsfHmJdfNubYMWM2bTLmww+NqVPH\nmMyZjale3ZjTp2Nue/26MeXKGVO5sjHBwbcdfoKuXzemZEljnnwy/uRHKW/jroSjLlDR8biGvZdJ\nxegPV/tLSw9NOFRaNm3nNMMgzOTAyXHWRURGmHFbx5msH2U15ceXN4Gn3fce/vNPY/LmNaZhQ/sB\nH+XgPweNDBLz5fYv3bZvVwUH2xGYu+6yf93AmNy5jWnRwpgRI4wpUsQ+ov9Xf/VVY7JmNebAgdSJ\nceVKG1fnzsb06GFM27Y2AalTx5jp0+1IjFLexNWEIyk1HJGODp2VZ0UtN8YYD14lnzxaw6HSqsDT\ngdSaVov2Fdsz5ekp8bY78M8B2i1qx/7z+/nwiQ/536P/I4NPyv1XvHbNXl0RFmYLN/PmvbWu/aL2\nrD+xnsM9D5MlY5YU2+ftuHIFvv/eFpQ+/PCtuTtOn4aWLe3ltbNm2fqQp5+GL7+EV19Nvfj+9z9b\nA5M/v30UKGDn9Fi50s7b8eab0K2brWU5dMgWsm7fbq8MeuWV26tVUSqluVrDkZSEo7gr7YwxJ1zq\nMA3RhEOlBSf+O8HMPTP5L/g/Lgdf5kroFTad3MS9ue5lY5eNZM2YNcHtQyNC+eCnDxixeQSN72vM\nvNbzyJklZ4rE1qmTnUXz11/th3iUPy7+QfkvyjOu0Theq5bwHWHTihs3oEsX+OYbyJED6ta1l9mm\nhTveHzhgi1dnzYKsjl/31as2tvLlbZHsiRNQuzb07m2TJR8fOxHZ77/bR6VKeumtSl0pnnCkZ5pw\nKE8Liwij6uSqHL10lHtz3UuuLLnInTU3hbIXYuiTQymau6jLfa08vJK2C9tSIk8JlvkvS9K2zsyY\nYT+gZ82C9u1jruu4uCNrj63lyBtHEk2I0hJj4KOPYNEiO6qQ1u57cvq0nak0SxZ7lYyfH+TKZUc4\nvv/ezuuxebOdqfXGDXvlThQRO+fHRx/Z7dOKyEg7ipPUOUxSQ0iInSPl7FmbwEU9Spa0I2QqYSl+\nlUp6fqA1HMrDhqwfYjIMzmB2nt6ZIv3tO7fPFB9T3BQeVdj8+vevye9nnzHZshnz4otx1/1x4Q/j\nM9jHjNs67jYiVcm1fbsxffoY8/HHxixaZGtQbtwwZuRIWyD70EPG7N7t2RivXDHm22+N6dLFmIIF\nbe1K797uK84NCTHms8+MKVzYmEqVbMGws9qcsDBjDh0yZvx4Y5o1MyZ79ls1P9EfIsb89JN7Yk1P\nUryGIz3TEQ7lSQf+OcDDEx/mrZpv8XG9j1Os33PXztHym5bsObuHgNYBtCjXIknbX79uv12L2PqB\nqIm8jDGsPrqavqv6ciHoAkd7HfWq0Y07wd69dtK0gwdh+HDo08f9+wwJgf377Xwju3fbn7/+CqGh\nUKGCvYldjhx25KVCBVvDUq7cre23bbNzsGzaZD/uoxhjR3bCwm79LFHC1uK0bHmrnuW77+xkcIcP\nQ8eOdr9Ll9r6o/LloXJlO5nbiRPw9992xCVTJjv1fqNGdmK50qXt/iIjISIC2ra1NTR79thaG+Wc\nnlJJAk04lKdEREZQa1otLodcZlf3XSn+wX0j7Ab+3/rz8/GfOfHmCXJnze3yti++aOscduy4Vbex\n6eQmBqwbwIYTG6h5b00+a/QZVYtUTdGYVcoICbE3jBs3Dn77DR580D37iYiACRPg3Xdv1ZuULWs/\n4GvWtBOplY42Me7u3XaSthMn7Kmh7NltorF9O5QqBW3axD0VlDGjTQ6iptDfvdsmE5cu2cnZChe2\n79MGDeCTT+w0+QDBwbB6ta0/Onr01k0DixWzp0tq1oScCZQ5nT5t+6pVyyY0aaHOJy3SUyp6SkV5\ngdFbRhsZJGbzyc1u28fpK6dNliFZzNANQ40xxpw8aczDDxuzcWP82wz4cpuhS21z/7Da5okZT5j6\nX9c3NabUMAzCVJpQySz7fZmJ1Ikk0ryQEGPy57enXtxh7147twkY0727Mb/8YudRScy1a8Z063br\n1EX9+sYsXRrzcuvEhIYas3atMT172ku1V6xI/nEkZOlSG+Pnn7un//QgVU6piEh+7M3cMgC/GmPO\nJLszD9IRDuUJh/89TMUJFelapSufNf7MrfvqsbwHCw4s4Hiv40yflJ2ePe0Q8fbt9ptedD//DE+O\n6EPmajNoW7kZ4ZHhhEeGYzA8W+FZ2lRog4/4uDVelXLefNOevjh1KuXu4RIcbKdoHznS3iF30iR4\n7Irg8tMAACAASURBVLGk97Ntmy2GjX7lU1rUq5e96++2bfYqIBWT20+piEhrYCrwB5AJKAu8ZoyZ\nnqwOPUgTDpXagsODqT+rPqeunOK3V38jR+Ycbt3f8f+OU2ZcGUY1GMVPw97k1Cl7ZUPWrPYGbLly\n2XZ//gk1akBEp8doUONe5red59a4lPvt2WNPb3z/vb2M9nYFB9t71/z8sz2N0r9/2roaxh2Cg+3/\ni5AQe+ome3ZPR5S2uJpwuPw1RURi/0X8AKhmjKlmjHkYeBZ7YzelVAJCI0Jpu6AtO07vYNYzs9ye\nbACUyFOC9hXbM2rLKNZtCKF1a1i2zH7rff55W4z377/2fHuBQmGE3rWTGkWruT0u5X6VKtlLO6en\nwFfBkBBo3Ro2bIAff4QPPkj/yQbYxHzePFsHMnWqp6PxXkkZFw0Ukehl7uFA9KvXCwGhKRKVUulU\neGQ47Ra1Y+WRlSx+bjGPFUvGOHQy9X+sP6evnuZaqa+pX99eITB/PqxaZSeRatPGJh2fzNzPjfAb\nVCuiCUd60aWLTTDPn09+H2Fh8NxzsHatHS158smUi88blCtnJ4lbtszTkXivpCQcDYFuIrJYRO4B\negHfiMhZEbkADAd6uCNIpdKDiMgIOn/Xme8OfceCZxfQqEyjVN1/ufzlKGda4/P4cCpWDgdsVf9n\nn8H48fZyxMWL4YzPdjJIBh4urDMepRcvvGAnspozJ3nbh4fbK0t+/NFOltagQcrG5y2aNoX16+2l\ntirpXE44jDHHjTFNgfnAeqAyUAaoDzwFFDPG/OCWKJXycpEmku7LuhOwL4C5rebydNkUOJmeDJl+\neZfIPEdZePCbm8teew0+/RQWLrRTZm//ezsPFnyQ7Jn1RHV6cdddtn5j+vSYc1y4Ijzczunx/few\nYAE0aeKeGL1B06Z2fo81azwdiXdKcqm5MSYAqApUAn6G/7d33+FVFdvDx79DQgi9hBpaKJIIAlKC\nCAhEehOuioKFYr8oIna8FizXn9dyQS9gRUBKRF5FlCIqAgqI9EgX6b0TSihJznr/mBM4Cek5NVmf\n5zmPZu/Zs2c4bZ2pFBKRdSJywc1lUyrfmLl5JuPXjmdi74n0bdDXJ2U4dQo2/NyE64p0580lb+IQ\nx+VzKftygA04tDsl/xk82K7HsSbjVRKukpxs12OZMcOOYXDHoNNAVqeOXWNkzhxflyQw5SjgMMZ0\nN8Y8BTQXkQeAZ4Gpxph3jDFFPVJCpfKBKeun0Dy8Ofc2vtdnZVi40K6g+HLMCDYd3cQvO3+5Ks3Z\nS2fZeHSjBhz5UOfOUKVK9gePOhzw4IO2G2bqVDtYVNlWjjlzct5SpHI2S+U9YAK2deNjY8xLIrIY\nu2jWBWCtMaabZ4rp/xwO2wf+8cd2GeEePezc8ldf1RdmQXfqwinmbptL/+v6+7QcP/1k10y4vUVr\napWpxYyNM65Ks+bgGhzi0IAjHwoOtkt+T5tmp3lmRgT++U+7cd+kSXawqLJ69ICDB+3S7SpngnOQ\ndhDQWURWG2PKAcuB10XkEvCSMSYW+BiY5/5i+lZ8vP110KePXau/UJow7fRpu333t99CUJBdnjcy\nEpo3h5EjYft2u/NjSIhPiq98bObmmSQmJ3Jng9Sf2mfO2P1JgoLSv87hsDNIihWzr6nw8Ktfeznx\n4492vwhjDLfXv50J6yYwtsdYggtd+RhYsX8FxQsXp0GFBrm/kfJbgwfDf/5jP59cp7OWKGEXgEt5\nrF1rp39OmHD1DsEFXZs2djn0OXNAl23KmZwEHOeAWsBqoDq2VeMyEdkE3OS+ovmPceNsv+fKlXZK\n2OTJtmkSYOtWG4gcOGDX6+/ZM3Vg0aOHDUZSzpfO/lYWKp+I3RBL25ptqVqq6uVjR47YvS1q1bKr\nQNaunfqakyftQD3XvuIiRWz6wYPtHhk5sWOHDXw7dbJ/963fl3eWvcOvu3/l5lpX5jf+sf8PmoU3\nI6hQBlGQCmiRkXbfkx07Uh+Pj4edO+2Ppt27bbD7yScwaJBPiunXQkJs4D5nDrz0kq9LE1hyEnCM\nAL4wxnwAFAMGeqZI/iUhwW4w9MADdp2Ce+6xC+l88YUdvX333faX54oV9s2cVr9+Njjp0wfatrVB\nR2iofYOfPm3zaNUq41+5KrAdPnuYBTsXMK77uFTHhw2zH+rHjtlFmT791O5MCXZjqttus0HHd99B\n3br2C2LHDli92rayJSfDiBHZL8dPP9nXWEyM/bt5eHNqlq7JjI0zUgUcK/av4I76d+S12sqPPfJI\n5ueTkuD8+cw3NSvoevSwg2mPHoUKFXxdGs9KTIQNG+z3VtGi9lGsmG0Vy/FmdplttJL2AYRhx3CU\nycl1/v4gk83bRo8WCQoS2bHD/n34sEi3bnYzH2NEbrlFJD4+gx1tXGzcKFKjxpXNilwfPXqInDmT\ndR4q8Pzvj/9J8GvBcuzcscvHvvvOPu9TpoicOiVy553274ceEhk/XiQ01G6ulvKaS2vkSJt+9Ojs\nl+O220RatUp97Kn5T0nFdypKUrLdMevgmYPCSOSrDV/ltJpKFSiHDtn34KRJvi6JZzkcdmO99L63\ngoJEwsJE6tYVqV8/e5u35aSFAxE5DhzPYUzjE8aYR4GngcpAHDBURFbmJI+LF+1Wx3fffWWDq4oV\n7UpzH35oB14NH569fvX69e0a/IsW2ciwdGn72LbNDuRq29bmGx6ew4oqn0tMtJtY9e599RbgsRti\n6VynM2HFwgDbsvXPf0K3bnYxJmNsl0rHjvD441easceNs78k0vPyy3bhoSeesHs6PPBA5uVLTrZd\ngcOGpT7et35f3vv9PX7b8xvtI9qzcr99e+iAUaUyV6kSREfbbpUBA3xdGs+ZONG2jk6YYAecnz9v\nH+fO2Wn2J0/ax7ZtsGlTNjLMLBoJ1AdwJ3aMyQAgCjuY9QRQPoP06bZwfPqpbcXYtCk3sWH2xcWJ\nVKtmH3Fxnr2Xcr9nnrERf2ioyMcf218FIiK7Tu4SRiKT4yZfTvvwwyIlSojs3n11Pps3i8yceeX6\nzDgcIkOG2Nfn1KmZp12+3JZv6dK0eTik+n+ry5DZQ0RE5MUFL0rFdyrqtvNKZcPIkSKlSolcupR5\nuvffF7nrLpF77xUZPFjkgQds66S/v80OHhQpU8aWOyvZ3Z7e58GBJx7YGTTvu/xtgH3Asxmkvyrg\nSEwUqVPHNkV7w/79thm9ZEmRhQu9c8+CICHBs/nPmmXfRf/+tw0mQKRvX5GTJ0Xe+u0tCX0jVE5f\nOC0iIosW2fNjxrjn3snJIoMG2aDjscdETp++Os2pUyL9+9sPxsTEq88P/2G4VH63siQlJ0nnyZ2l\n57Se7imcUvncypX2/ZzZ5/WMGTZNy5YiN91kuzWbN7fHxo1zb3kOHhT58kvbVTtxou2e/eKL3HfX\n9+0rUr68yNGjWactsAEHUBhIBG5Jc3wiMDODa64KOKZOtf86a9Zk/Y/tLmfO2Bdm2r52lTujR9sI\n/cIFz+S/c6fNv3fvK79WvvrKfrlHRIhUe6OxRL/dVyZOtB8A11wj0rq1DRTcJSnJ1rNYMdtCNnu2\nPX7hgj0eFiZStGjGQc6yPcuEkciinYukzFtl5LVFr7mvcErlY8nJIpUqiTz9dPrn9+0TKVdO5Pbb\nr27NGDpUJCREZMWKvJfD4RCZNk2kbFlJd6xFjRoi33+fszy//dZeO21a9tIX5ICjCuAAbkhz/D/A\n7xlckyrgSE4WadDADg71tnHjRIKD0/+1qrJv926R4sU9FzReuCASHS1Sq5bIiROpz+3YIXJ9p03C\nSISoby6/8cuXt90mnrBzp0iXLvY+vXvbchUqZJtv9+3L+LpkR7JUfa+qdJncRRiJ/LDtB88UUKl8\n6NFHbUA/a1bq48nJdrBllSoix45dfd3FiyI33CBSs6bI8eO5v/+RIzagAZF+/WxLeUKCzT8pSWT7\n9iufC7ffbs+nXPfll/bzoUMHkf/8R+Tvv+25U6dEwsNFunfPfrdPdgOOHA0aze8ee2w4ly6V5tAh\n2L8fypSB2Nj+9O/vvRUiO3a009J+/dVOvVK5M2yYndaXkGCnmTZx88anzzwDcXGwdCmUKSN8vekb\ntp3YRkJiAgmJCZS+axWlDpVi35puhDrfZYUKeW76c0SE3clz2jR48UVo2NAOQq5fP/PrCplC3F7/\ndt7/430AoqtGe6aASuVD775rVx39xz/go4/sUvBgd1/+6SeYP99unJdWSAh89ZX9XBowwE5/z8mi\nfkeP2ryfesoOCp8+/cq0ele1a9vPhenT7WfitdfaCRBxcfZ8/fpQsya88oqdbt+4sf3eO33aToxI\nb9prbGwssbGxqY7Fx8dnr+CZRSOB+CAPXSqwWkAkKkrkjTeyF9m5m8MhUr26yBNP+Ob++UHKuIrp\n0203xrBh7s1/5kxJNRbjm03fCCORcv8pJ9X/W10i/xcpTT5qIm8vedu9N/aQJbuXCCORaz64xtdF\nUSrgJCXZlg4QeeUVkfXrRYoUyd7nzrx5dgzWm29mnu7iRTuJYcAAOw01pdW0Vy87diM7Tpyw3ysD\nBtixHSmtHSK2O3/GDNtKUqaMHfyeEwW2S0Ukw0Gje4FnMkjfFJDXXludafOztwweLNKwoa9LEZjO\nnrV9ll262OCtb1+R9u3dl//Jk7aZtFcvm/+5S+ek5qia0m1Kt4Cd3ZHSrXLPN/f4uihKBSSHwwYN\nYAf+16+f/QHrL71kuz8zG3w6bJhN06yZHSA+bZrtRvUXBT3guANIIPW02ONAhQzSZ7jwV3bN2DhD\nesf2ljMX876C15Qp9pk5dCjPWRU4zz5rf12k9Ee+8YaN2N0VCzzyiJ3WumeP/fulX16SkNdDZNvx\nbe65gY9sOLxB9p/en3VCpVSGJk604zLWrs3+NUlJIjffbH/IHDly9flffrHfB6NGua2YbpfdgCMP\nW0H5LxH5Crvo12vAWqAR0EVEjrr7XqcvnmbgtwPpO6Mvs7bOSnfL75y62bnS9C95z6pA2bAB/vtf\nO4ahdm3hi7gv+KX0QE7FJ7N3b97zX7bM9tO++SZUrw7bT2zn7aVv80yrZ6hbrm7eb+BDDSo2ILyk\nrjqnVF4MHAi7dsH112f/mqAgmDLFjt0bONBueZDi9Gm7d1K7dnZhwECXLwMOABEZJyIRIlJURG4U\nkVXuvseSPUto/FFjZm6eyaQ+k4goE8HPO37Oc75VqkCDBvBz3rPK9w4ftm/WAQPsPiF16sCDQ09x\n1zd3MfDbgfxy/AsIX826ddnLLynJbs536lTq45cuwUMPQYsWMGSIPTbsh2FUKlGJF256wb2VUkoV\nKFWq2P255s2zP5pSPPkkHD9uV/rMy07R/iIfVME3Plz5Ie0mtqNqyarEPRLHgMYD6FirIwt2LnBL\n/h062IDD9viotE6cgNatoXJlu6vq+vVw//3w2sQl3DDheuZtm8fUW6dSJrQMoY3mXh6VnZVvvrHB\nS7169k2e8mvjnXdgyxa79HhQEMz+azZzts1hVJdRFCtczHMVVUoVCF272l2gR4yA5cvtsunjx9sA\nJGVrjUCnAUcuxF+I5/kFzzOg8QAWD1pMrbL21dChdgc2Hd3EgTMH8nyPjh1hzx67pbi62tixsHat\n/VVw8KD9/2q3jqH/j+2oVqoacY/EcVfDu+hcpzMh187LdsAxc6adOtapk90NsnVru8Pv66/bKWiN\nG8OFpAsM+2EYnet05h9R//BsRZVSBcYbb0Dz5tC/v90jqVu3rPdKCiQacOTCh6s+5ELSBf59878J\nKnRlYYWUbb4X7Mh7K0e7dvaX9AL3NJjkKxcu2HnuAwfa1o3KleHcpXOMWDCCQY0HsWjQImqWqQlA\n97rdOV1yJau2HMky34sX7a+Kfv1g6lS70d7Zs3D77XZTvVdesenGrxnPnvg9fND1A0yO92dWSqn0\nFS5sN3M8dcp+Hn32WS62gPdjGnDk0PnE84xaPoqBjQdeNciuYvGKNK7U2C3dKqVK2fECGnBcbepU\nu/DN8OFXjn29+WvOXjrLi21fJLjQlfXsutbtCkbYHTSfM2cyz3fRIjhzBvr0sX+3awdr1thmzW++\ngWLOnpMftv9A25ptiSwf6d6KKaUKvIgIO2Hg55/z3+7hGnC42H1qd5ZpJqybwLGEYzzb+tl0z3eo\n1YGfd/ycMt02Tzp0sC8811HLBZ2I7dPs1cuOs0jx+drPiYmIudy9laJSiUrUL9MMrpnH+vWZ5z1z\npl2Zr2HDK8cKF7ZdKymjzpMcSSzetZgOtTq4qUZKKZVakybQtKmvS+F+GnC4GDJnSKbjL5IcSbyz\n7B361u+b4TTIjrU7sv/MfrYe35rn8nTsaEcoZ3f8QUHwww+waZMdT5Fi+4ntLN69mPua3JfuNX0a\ndIc681mzNjnDfB0OmDXLtm5k1oS56sAqzlw6owGHUkrlkAYcLhw46DqlK6cunEr3/PQN09l1ahfP\nt3k+wzxuqnkThQsVdss4jpYtoWhRnR7r6r337KCqm266cmziuomUKlKKW6+9Nd1rekZ2g2In+Hnz\nigzzXbECDh260p2SkQU7FlCqSCmahTfLTfGVUqrA0oDDxZhuY9h3eh+3xN7C+cTzqc45xMFbS9+i\nW91uXF8541VdSoSUoGW1lvy8M+9RQpEi0LatjuNIsW6d/bd46qkrrRDJjmQmxk2kX4N+GU5PbVG1\nBSHJ5VgZPzfDvGfOhAoVoFWrzMuwYOcC2tVsl2qciFJKqaxpwOGiTrk6zL5rNqsOrKLHtB58tfEr\njiccB2DOX3PYcGQDI9qMyDKfjrU7snDnQpIcSXkuU4cOdufYS5fynFXA++9/oUYNO2skxYKdC9h3\neh+DmwzO8LqgQkE0KNKVgyXmkpxOr4qIDThuuSXz3VzPJ55n2d5l2p2ilFK5oAFHGq2qt2LmnTM5\nePYgd/6/O6nwTgWaf9Kc4fOH07p6a26qeVOWeXSs3ZH4i/GsObgmz+Vp1w7On7ezJQqy/fvtdLFh\nwyDYpXHh87Wfc235a7mh6g2ZXt+lTjek8hp+X3/oqnNbtsC2bVl3pyzbu4yLyRcvT39WSimVfRpw\npKNL3S5sfnQze4fv5fPenxNZPhJBeD3m9WxdHx0eTYmQEm5Z5vz66yE01O7jUVAtXw633mqnpbou\ngnPi/Am+3fIt9zW5L8v1MAa16QJimPrHD1edmzkTihe3g3R3ntxJ9KfR7Dq166p0C3YuoEKxClxX\n8bq8VkkppQocDTgyUa1UNQZdP4ipt05l++PbiakVk63rCgcVpn1E+2wFHBeSLmR6PiTErsdREAOO\n7dvhjjvgxhvtIjizZ9v1SVLEro8lyZHEPY3uyTKvyGoVKHw0mkX7rx7H8e23dkW/0FCY/OdkVh1Y\nxeuLrw4uf9n5CzfXulkX+1JKqVzQgMNDOtbqyNK9S0lITEj3fLIjmVcXvUqJN0vw2+7fMs2rVStY\nurTg7Kuy7fg2qo68gcg7J7BsGUycCKtXp56ZAnZNlB71elC5ROVs5RuR2J2/5cdUY2v27YOVK690\np3y18SvKhpZlUtwk/j7x9+V08RfiWXlgpY7fUEqpXNKAw0M61O7ApeRL/Lr716vOHTxzkE6TO/Ha\nr68REhTC7L9mZ5pXq1Z2yuburNclC3i/7v6V6I9bciA5jkI9H+eXVXsZOPDqwZzz/57P6oOrue/6\n9NfeSE/rit1JCo5n2V7bXCRiN2gLDoYePWDT0U1sPLqRD3t8SMXiFXnj1zcuX7t492Ic4qBDbQ04\nlFIqNzTg8JAGFRpQu2xtesX2otPkToxZMYa98Xv5cfuPNP6oMVuObWHBgAX0ierDwl0LM83rxhvt\nf5cu9ULBfWjKn1Po+EVHipxqTLVvt1C+ZEmeXTT0qnRHzx1l0KxBdK7TmV6RvbKdf5eGzSC+GuN+\nn8CMGdCsGbz8st2PpUwZmLFxBqWKlKJ3VG9GtBnB5D8n89fxvwDbnVKzdE1qlckn2zYqpZSXacDh\nIcYYlt23jPe7vk8hU4jh84dTY3QNukzpQpMqTVj3yDraR7QnJiKG1QdXc/ri6QzzKl8eIiPz7zgO\nEWHkopHcO/Neete6h2Ojf+D5RyL4oNsHzNo6i5mbZ6ZK++D3D5KYnMjE3hMpZLL/Em7apBCsGMr0\nTVO5476DhIXZdT3Gj7fnZ2yawS2RtxAaHMqDzR6kSokqvLb4NcAOGO1Qq4OO31BKqVzSgMODKpWo\nxJDoIcy/Zz7HnjlG7G2xTOoziXl3z6Ni8YoAxNSKwSGObI3jyK8Bx1cbv+LVxa/y5s1vUnnFeMqW\nCmHwYLjt2tvoWa8nQ+cNvRyQfbrmU2ZtncX4W8ZTpWSVHN2nTh247tJDBFOEQR+O4aef4Oab7SJi\nG49sZOPRjdxR/w4AQoND+ddN/yJ2QyyLdy1mw5EN2p2ilFJ5oAGHl5QOLU2/6/oxoPGAVL/K65St\nQ7VS1bLsVmnVCv78k3R3PD140A589LTkZNuts20bJOV9TbPLxq8dz001buLBa0cw/jPD0KF2Cqwx\nhrHdx3Lqwin+teBfbDm2hSd+eIKHmz1M76jeOb5PUBCsX1GGx1o9wKz9H3Lu0rnL52Zsst0pnet0\nvnzsvib3UbVkVe78f3cCEBORvVlKSimlrqYBh48ZY4iJiMlWwOFw2D0/0rr3XrsE+rZtHiokdsBq\n+/bQpo3dpbVoUYiKsqtzjh8PiYm5y3ff6X38vONnBjYeyNix9tijj145X6N0DV6PeZ2xK8fSK7YX\nNUrX4L3O7+WpLsNaDiP+YjwT1028fGzGphn0juxNkeAil48VCS7Ci21f5PC5w9SvUD/HLSpKKaWu\n0IDDD8RExLD24FpOnj+ZYZqoKDuwMe3A0bg4Ow7BGHjoIc9MnZ0+HRo3hj17YO5cu5ncBx9A165w\n7pxdjKtevdwFHpPjJhMaHEqPWn353//g/vvtmBVXQ28YSpMqTdh9ajfTbptG8ZDieapPRJkIbq9/\nO6OWjyLZkczGIxvZdHQTdzS446q0g64fxDXlrqHnNT3zdE+llCroNODwA+0j2iNIulNoUxQqlP44\njlGjoHp1+OYbWLQIPv/cfeU6cwYGD4Z+/WxwERdnF8jq0AH++U8YPdoGO3/+aXdwTQk8pkzJXv4i\nwqS4Sdx67a18Pa0UJ0/Ck09enS64UDDf9/+exYMW07RKU7fU7akbn2L7ye18t/U7vtr4FaWKlKJT\n7U5XpQsJCmHtw2v5d4d/u+W+SilVUGnA4Qdqla1FzdI1s9Wt8vvvtmsF7NiNadPg8cdtQDBokN1J\n9eDBvJXn0iUYN84GDzNm2IW3YmNtC0t6Gja06f78E5o2tV08Tz55pZwZ+WP/H2w9vpV7Gw7ivffs\nqqK1Mph1Gl4ynBur35inerlqUbUFbWq04d3f32XGphn0ieqTqjvFVfGQ4ro7rFJK5ZEGHH4iplYM\ni3YtyjRNq1Zw+jRs2mT/HjvWbmGfsr/Iu+/av4devXRFtiQnw+TJtvvmscegc2fYsAEGDryyHXxm\nGjaEr7+23S2jR9sA4vz59NPu3QsvTJ9EscRqDGofw86d8OyzuSt3bj1141Ms27uMzcc2X56dopRS\nyjM04PATMRExxB2O43jC8QzTtGhhZ1osWwYJCfDRR3bMQ0rLQ1iY/bL/+mu7IVlOnDsHN9wAAwbY\n8Rrr18OkSRARkfO6DB1q7z93rt0Q7dgx29rxxx/wwgvQoAHUqH2BhUe/pOTOAdx7dxBLlkCTJjm/\nV170qteLa8pdQ+kipelU5+ruFKWUUu6j7cR+ImXK5eLdi7n12lvTTVO8uN09dtkyOzj05EnbneLq\njjtg6lQ706NDh9SbnWXmzTdta8aSJdC6dV5qYvXuDQsXQo/bT1Lj2fsI3TyYk8tvISwMevWCLk9+\nx6h9p1j8/gAiy2ednycEFQri016fcujsIUKCQnxTCKWUKiC0hcNPVC9dnTpl67BwZ9bjOJYssYNF\n+/SB2rVTnzcGxoyBo0dt90h2/PUXvPMOPP+8e4KNFDfcAJ3eep7zNWZxsmtv7p4wgv0Hk5gwAbYW\nnUTLai2JLB/pvhvmQruIdtx53Z0+LYNSShUEGnD4keyux7F9O2zdmv6MDoAaNWwrwiefZD1NVsR2\ngVSrBs89l8uCZ+C33b/x5d+fMLbHGN7u+Daxe96me2wX4g7F8cPfPzCo8SD33lAppZTfCpiAwxhT\n0xjzmTFmhzEmwRizzRgz0hhTOE266saYOcaYc8aYQ8aYt43JwYYbPhRTK4aNRzdy5NyRDNO0amX/\n26LFlf9Pz0MP2VkjWa1A+s038OOPduxH0aK5KHQGLiZd5KHZD3FjtRt5pPkjPNP6GRYMWMDGIxtp\n/mlzChcqrC0LSilVgATEF7FTFGCAB4H6wHDgEeDyAgnOwGIudmxKS2AgMAh4zctlzZX2Ee0BMp2t\nUqMG3H23HXOR2cyRTp1s2k8+yTjNuXPwxBO2NaSnm9e1emvJW/x94m8+6fXJ5aXc20e0Z83Da4iJ\niOGhZg9RJjSDebZKKaXynYAJOERkvojcLyILRGSXiMwG3gVcR1h2wQYmd4vIehGZD7wEPGqM8fsB\nsuElw6kXVi/L6bFTptgBoZkJCrIzWL780k6lTc8bb9ixHqNH5668Gdl8dDNvLnmT51o/x3UVr0t1\nLrxkOD/e+yMfdPvAvTdVSinl1wIm4MhAGeCEy98tgfUicszl2HygNNDAmwXLrRZVWxB3OM4ted13\nn10HIzb26nObNsF778GIEVcPPM0Lhzh4ePbD1Cxdkxfbvui+jJVSSgW0gA04jDF1gceAj1wOVwYO\np0l62OWc34sMi2Trsa1uyataNejeHT79NPXxo0ftpmt16rh/sa3xa8bz257f+Ljnx4QGh7o3c6WU\nUgHL5wGHMeb/jDGOTB7Jxph6aa6pCswDpouIG3cP8b2o8lEcP3+cYwnHsk6cDQ89BKtXw5o1Ri87\nnwAAGCtJREFU9u+EBDtm48wZuzCXOweKHks4xvMLnmdA4wHE1NKt3JVSSl3hD+Ma3gUmZJFmR8r/\nGGPCgV+AJSLycJp0h4DoNMcquZzL1PDhwyldunSqY/3796d///5ZXeo2UeWjANhybAttarTJc37d\nukF4uG3lGDMG7rnHriK6eHHG+5bk1vM/P49DHLzT6R33ZqyUUsovxMbGEpumnz4+Pj5b1/o84BCR\n40DG63m7cLZs/AKsBO5LJ8nvwAvGmPIu4zg6A/HApqzyHzVqFE2bumc30tyqW64uhUwhtwUcwcF2\n8Ojo0XbNjVmz4Ntv7e6u7vT73t8Zv3Y8Y7uPpWLxiu7NXCmllF9I70f4mjVraNasWZbX+rxLJbuc\nLRuLgN3As0BFY0wlY0wll2Q/YgOLycaYRsaYLsDrwBgRSfR2mXMjNDiUiDIRbhvHATbgOHsWPv4Y\n/vc/26XiTkmOJIbMHUKzKs14uFnaRiellFLKD1o4cqATUNv52Os8ZgABggBExGGM6Ql8CCwDzgET\ngVe8Xdi8iCofxZbjW9yWX82aMHw4lC8PQ4a4LdvLPlz5IXGH4lj+wHKCCgW5/wZKKaUCXsAEHCIy\nCZiUjXR7ATcvY+VdUWFRfPfXd27N87333JrdZYfOHuLFhS/yYNMHaVG1hWduopRSKuAFTJdKQRJV\nPoodJ3dwMemir4uSped+fo7ChQrzZoc3fV0UpZRSfkwDDj8UVT4Khzj4+8Tfvi5Kpk5fPE3s+lhG\ntBlBWLEwXxdHKaWUH9OAww+lbNm+9bj7Bo56wg9//0CiI5Hb6t/m66IopZTycxpw+KEKxSpQNrQs\nW465b+CoJ3y39TsaVWpERJkIXxdFKaWUn9OAww8ZY+xMFT8OOBKTE5mzbQ69I3v7uihKKaUCgAYc\nfsrfA47f9vzGqQunNOBQSimVLRpw+KmUgENEfF2UdH239TuqlqxK0yq+XZlVKaVUYNCAw09FhkVy\n5tIZDp3NcgsYrxMRZm2dxS2Rt2CM8XVxlFJKBQANOPyU6yZu/mbDkQ3sOrVLu1OUUkplmwYcfqp2\n2doEFwr2y4Bj1tZZlAwpSfuI9r4uilJKqQChAYefKhxUmLrl6vptwNG1bleKBBfxdVGUUkoFCA04\n/Ji7N3Fzh/2n97PqwCrtTlFKKZUjGnD4sciwSLduU+8O3//1PUEmiG7XdPN1UZRSSgUQDTj8WFT5\nKHbH7yYhMcHXRbnsu63f0bZmW8oVLefroiillAogAbM9fUGUMlPlr+N/cX3l671+/wtJF9h2fBvn\nEs9x9tJZzlw8w4KdC3i749teL4tSSqnApgGHH4sMs5u4bTm2xScBx+BZg/lyw5epjhUNLkqfqD5e\nL4tSSqnApgGHHytbtCyVilfyyUyV4wnH+WbzNzzf+nnubnQ3JUJKULxwcUoVKaWzU5RSSuWYBhx+\nLrJ8pE+2qZ+2fhoOcfDkjU9SoXgFr99fKaVU/qKDRv1cVJhvNnGbsG4CPev11GBDKaWUW2jA4eei\nykex9dhWHOLw2j3jDsWx9tBaBl8/2Gv3VEoplb9pwOHnWlZryfmk8/y842ev3XPCuglULF6RbnV1\nrQ2llFLuoQGHn2tZrSWNKjVizIoxXrnfpeRLTF0/lXsb3UvhoMJeuadSSqn8TwMOP2eM4dHoR5n9\n12x2ndrl8fvN/ms2xxKOaXeKUkopt9KAIwDc3fBuShUpxUerPvL4vSasm0B0eDQNKjbw+L2UUkoV\nHBpwBIDiIcUZfP1gPlvzGReSLnjsPofOHmLetnnauqGUUsrtNOAIEEOih3D8/HGmb5jusXtMjptM\ncKFg+l3Xz2P3UEopVTBpwBEgrgm7hi51ujB25dhUx0WEcSvH8daSt/KUv4gwYd0E/nHtPyhbtGye\n8lJKKaXS0oAjgDwa/SgrD6xkxf4VAFxMush9393Ho3Mf5ZVFr3Du0rlc573r1C42H9tMvwbauqGU\nUsr9AjLgMMaEGGPWGWMcxphGac5VN8bMMcacM8YcMsa8bYwJyHqm1f2a7tQsXZOxK8dy+Oxhbv7i\nZmLXx/Jq+1e5lHyJRbsW5TrvpXuXAtCmRhs3lVYppZS6IlC/iN8G9gHietAZWMzF7hHTEhgIDAJe\n83L5PCKoUBBDoocwfcN0WnzWgu0ntrNo0CJeavsStcrUYt7f83Kd99I9S4kqH0VYsTA3llgppZSy\nAi7gMMZ0AzoBTwMmzekuQBRwt4isF5H5wEvAo8aYfLFR3f1N7ieoUBBhRcNY+eBKWlZriTGGbnW7\n8cPfP+Q636V7l9K6ems3llQppZS6IqACDmNMJeAT4B7gfDpJWgLrReSYy7H5QGkgXywsEVYsjM2P\nbmbZ/cuoXrr65eNd63Zl+8ntbDu+Lcd5xl+IZ8ORDRpwKKWU8piACjiACcA4EVmbwfnKwOE0xw67\nnMsXapSuQWhwaKpjMbViCAkKyVW3yvJ9yxGEVtVbuauISimlVCo+DziMMf/nHPyZ0SPZGFPPGPM4\nUAL4T8qlPiy23ykRUoKbatyUq26VpXuXUr5YeeqF1fNAyZRSSik7uNLX3sW2XGRmJxAD3AhcNCZV\nrLHKGDNVRAYDh4DoNNdWcv73UFYFGT58OKVLl051rH///vTv3z+rS/1Ct7rdeHHhi5xPPE/RwkWz\nfd3SvUtpVb0Vaf5dlVJKqVRiY2OJjY1NdSw+Pj5b1xoRyTqVHzDGVANKuRwKx47PuA1YISIHjDFd\nge+BKinjOIwxD2FbRSqKSGIGeTcFVq9evZqmTZt6shoetenoJhqMa8C8u+fRtW7XbF2T5EiizFtl\neLndyzzb+lkPl1AppVR+s2bNGpo1awbQTETWZJTO510q2SUi+0RkU8oD2IbtVtkhIgecyX4ENgGT\njTGNjDFdgNeBMRkFG/nJteWvpXqp6jnqVok7FMe5xHM6YFQppZRHBUzAkYFUzTMi4gB6AsnAMuAL\nYCLwitdL5gMp02NzMnB06d6lhASF0Cy8mQdLppRSqqAL2IBDRHaLSJCI/Jnm+F4R6SkiJUSkkog8\n5wxECoSudbvy1/G/2HFyR7bSL927lObhza+a9aKUUkq5U8AGHCp9HWp3ILhQcLa6VUSEpXt0wS+l\nlFKepwFHPlOqSClaV2+drW6VPfF72H9mvwYcSimlPE4DjnyoW91u/LLzFy4mXcw0XcqGbbrgl1JK\nKU/TgCMf6lK3CwmJCSzftzzTdEv3LKVeWD0qFK/gpZIppZQqqDTgyIeuq3gdxQoXY+WBlZmm0w3b\nlFJKeYsGHPlQcKFgmlZpmmnAcfriadYfWa8Bh1JKKa/QgCOfig6PZuX+jAOO5fuW4xAHrWtowKGU\nUsrzNODIp6LDo9l5aidHzx1N9/xvu38jrGiYbtimlFLKKzTgyKeiq9o97FYdWJXu+YW7FtI+oj2F\njL4ElFJKeZ5+2+RTdcrWoWxo2XTHcZy7dI4V+1cQExHjg5IppZQqiDTgyKeMMURXjU434Fi2dxmJ\njkRiamnAoZRSyjs04MjHUgaOiqTa446FuxZSsXhFri1/rY9KppRSqqDRgCMfiw6P5vC5w+w7vS/V\n8ZTxG8YYH5VMKaVUQaMBRz6WMnDUtVvl7KWzrNy/UsdvKKWU8ioNOPKx8JLhhJcMT7Uex5I9S0iW\nZNpHtPddwZRSShU4GnDkc9Hh0aw4sOLy3wt3LqRyicpEhkX6sFRKKaUKGg048rkWVVuw6sAqHOIA\nYNHuRcRExOj4DaWUUl6lAUc+Fx0ezemLp9l2fBunL55m9YHV2p2ilFLK64J9XQDlWc3DmwN24GjZ\n0LIkS7IOGFVKKeV1GnDkc2WLlqVuubqs3L+SwkGFqVqyKnXL1fV1sZRSShUwGnAUANHhdsXRS8mX\ndP0NpZRSPqFjOAqA6PBo1hxcw9pDa7U7RSmllE9oC0cB0KJqCy4mXwTQ/VOUUkr5hAYcBUCTKk0I\nMkGElwynVplavi6OUkqpAkgDjgKgWOFiNAtvRqOKjXT8hlJKKZ/QgKOAmHvXXEKDQ31dDKWUUgWU\nBhwFRFixMF8XQSmlVAGms1SUUkop5XEBF3AYY3oYY5YbYxKMMSeMMd+kOV/dGDPHGHPOGHPIGPO2\nMSbg6ukOsbGxvi6CW+W3+kD+q1N+qw9onQJBfqsP5M86BdQXsTHmNuALYDzQEGgFTHM5XwiYi+0q\nagkMBAYBr3m7rP4gv71g81t9IP/VKb/VB7ROgSC/1QfyZ50CZgyHMSYIGA08JSITXU5tcfn/LkAU\nECMix4D1xpiXgLeMMSNFJMlrBVZKKaXUZYHUwtEUCAcwxqwxxhwwxsw1xjRwSdMSWO8MNlLMB0oD\nruncIjcRqLeuAdi/f79X7uWta/y5Prm9zp/r5K365PZe/lwnfd159xp93eX+Pt58rQZSwFEbMMAr\n2C6SHsBJYJExpowzTWXgcJrrDruccyt/f3Lz2wvWn+uT2+v8uU76wW/583OU2+v8uU76urPy23ME\nftClYoz5P+C5TJIIcC1XgqM3RORb57WDgX1AX+DTPBQjFGDz5s05uig+Pp41a9b45TUAiYmJflu+\n3Fzjz/XJ7XX+XCdv1Se39/LnOunrzrvX6Osu9/dxxzUu352ZLvZkRCRHN3I3Y0wYkNUiETuANsAv\nQBsRWeZy/XLgJxF5yRjzKtBLRJq6nI9wXt9EROIyKMNdwNS81EMppZQq4O4WkWkZnfR5C4eIHAeO\nZ5XOGLMauAhEAsucxwoDEcBuZ7LfgReMMeVdxnF0BuKBTZlkPx+4G9gFXMhxJZRSSqmCKxT7XTw/\ns0Q+b+HICWPMKOA24H5skPEsdixHlIjEO6fFrgUOYLtpqmCn0X4iIi/5ptRKKaWU8nkLRw49DSRi\ng4iiwB/AzSISDyAiDmNMT+BDbCvIOWAidqCpUkoppXwkoFo4lFJKKRWYAmlarFJKKaUClAYcSiml\nlPK4fBFwGGNGGGNWGGNOG2MOG2NmGmPqpZPuNecKpQnGmJ+MMXXTnC9ijBlrjDlmjDljjPl/xpiK\nadJcY4z51hhz1BgTb4z5zRjTPsDr1NQY86Mx5qSzXh8bY4r7aX0eNMYsdP7bO4wxpdLJo6wxZqoz\nzUljzGfuro8P6vSCMWapc1PCE+6ui7frZIyp6Xxedjjz2GaMGemceRZw9XGmmWWM2W2MOe/M6wtj\nTBV31sfbdXJJG2KMWedM1yiQ62SM2eU8l/JINsY8G6j1cabLdFNTf5EvAg7gJuB/wA1AR6Aw8KMx\npmhKAmPMc8BjwENAC+yA0vnGmBCXfEZjZ73cBrTFLqX+dZp7zQGCgPbY5dbjgNkmzZd4oNTJ+YH4\nE/CXM4+u2GXgJ/ppfYoC84B/YxeFS8807GJxHbB1bwt87M7KOHmzToWBr7ADoj3JW3WKwq4c/CBQ\nHxgOPOJMH4j1AbtOUF+gHnArUAeY4c7KOHmzTinexi6y6KlBf96skwAvApWwK1BXcd7bnbxWH5PF\npqZ+RUTy3QMoDziwi4SlHDsADHf5uxRwHrjD5e+LwD9c0kQ682nh/DvM+XdrlzQlnMduDtA6PQgc\nTHOv65xpavtTfdJc3w5IBkqlOR7lzLeJy7EuQBJQ2d+eo+zUKU2agcAJT9bD23VySfs08Hc+qk8v\n5+suKJDrBHQDNrq8txoF8usO2Ak87uk6eKM+2B+/e4FB3qxPbh/5pYUjrTLYaPAEgDGmFjaSXZCS\nQEROY6fV3ug81Bw7Tdg1zVZgT0oasYuUbQEGGGOKGWOCgX9i92tZ7dkqeaZOQBHgUpp7pSx+1sat\nNUgtN/XJjhuBkyKy1uXYz8573ZDHMmfFU3XyJW/WqUzKfTzIK/UxxpTDLia4VESS81LgbPBYnYwx\nlYBPgHuwX4be4unn6Xlju5nXGGOeNnY3ck/yVH2ys6mp38h3AYcxxmC7EZaISMrqopWxT3Z6G7ul\nbOpWCbjkfNIzSgPQCfskn8G+AYcBXcW5FogneLhOvwCVnW+6wsaYssD/OfN2e/8z5Kk+2VEZOOJ6\nwPmBfyKH+eSIh+vkE96sk7Pv+jHgo9zmkY17eLw+xpi3jDFngWNAdaBP7kucrft5uk4TgHFpAniP\n8kKd3gf6YbvFPwJeAP6T2/JmxcP1yc6mpn4j3wUcwDhsn3A/D+Z/GGgNRAPfYsdwVPLQ/VLu6ZE6\nOd8AA4EngQRsM98O7Je2w933c/L0c+QLWqdcMsZUxfZTTxeRzz14K2/U523geuwPk2RgsgfvBR6s\nkzHmcWyXccqXsXH3PTLg0edJREaLyK8iskFEPsF+9g01bh6w7MKT9Um1qakzMByMDWb6euB+eZKv\nAg5jzBigO9BeRA66nDqEfbOkDQoqOc+lpAlJZxTw5TTGmA7O/O8UkeUisk5EHsO2dAx0a2WcPF0n\nABH5UkTCsU1zYcCrQAVs4OFWeaxPdhwC0s7CCQLK5TCfbPNCnbzOW3UyxoRjW9mWiMjDuSxudu7j\nlfqIyAkR+VtEFgD9ge7GGI905XmhTjHY5v2LxphEYJvz+CpjzITclTpzPnovrcB2PUfkMZ+reKE+\nKXle3q5VRC5hP7tr5LjAHpZvAg7nE9sbiBGRPa7nRGQn9kns4JK+FLZPP2Xn2dXYAV6uaSKxT1pK\nmqLYyDHtL38HHvi39HCdfk97PxE5KiIJ2Ej8PHb2ij/VJzt+B8oYY5q4HOuAfXP/kcuiZ8hLdfIq\nb9XJ2bKxEFgJ3JfHYmd2H189RynjAorkMZ+reKlOQ4HGLo9u2M+/O4B/5aX86fHh89QE+xl+JKuE\nOeGl+rhuapqST9pNTf2Hr0etuuOBbbI6iZ2KVMnlEeqS5lnsrrS9sFOHvsVG7CFp8tmJ7dtrBiwF\nfnM5H4Z9Uc4AGgHXAO9gB1k2DMQ6OdM8in3TXeP8/3PAo35an0rYD78HcI76dv5d1iXNXGAVtsur\nNbAVmOzHr7vs1Km689jL2N2PU74EigdinbCtaduAH53/f/leAVqfFs73TmNsQH8zsMT52isciHVK\n57418dAsFS8+Ty2x4+4aAbWwA3sPA58HYn2caUZhJwJ0wk7J/gzb8lHa3c9Tnv9dfF0ANz25Dmx/\nadrHgDTpRmLHKCRgt9Gtm+Z8Eezc6WPYQaEzgIpp0jTF9jcfBU5hv8A7B3idJjnrcx672+5dflyf\nVzLIa4BLmjLAFOwX80ngU6BYgNdpQgb3ahuIdcJ2QaY95wCSA7Q+12FnHBx15rEdGANUCeTXXZr0\nNZ3nPRFweOt5aoJtBT2B/WG1AfvF7+6g0JufDUHYsUMHsd9J84Fr3f0cueOhm7cppZRSyuPyzRgO\npZRSSvkvDTiUUkop5XEacCillFLK4zTgUEoppZTHacChlFJKKY/TgEMppZRSHqcBh1JKKaU8TgMO\npZRSSnmcBhxKKaWU8jgNOJRSXmGMmWCMcRhjko0xl4wxh4wxPxpjBhtjsr31uTFmoDHmpCfLqpRy\nPw04lFLeNA+ojN2Xoyt2a/r3ge+NMdn9PDLYXUuVUgFEAw6llDddFJGjInJQRNaJyFvYLby7A4MA\njDHDjTF/GmPOGmP2GGPGGmOKOc+1Az4HSru0lrzsPBdijHnXGLPPee3vzvRKKT+gAYdSyqdEZCEQ\nB9zqPJQMDAXqAwOAGOxumADLgCeA09itu6sA7zrPjQVuAO7Abvc9A5hnjKnj+VoopbKiu8UqpbzC\nGDMBKC0it6ZzLhZoKCLXpXPuNuBDEano/HsgMEpEyrmkqQ7sAKqLyCGX4z8Bf4jIi26vkFIqR4J9\nXQCllMJlXIYxpiPwPBAFlMJ+ThUxxoSKyIUMrm8IBAF/pRmAGgIc81iplVLZpgGHUsofXAvsNMbU\nBL7Hdo+8AJwAbgI+wwYPGQUcJYAkoCngSHPurCcKrJTKGQ04lFI+ZYy5GdtC8R7QDNvV+7TL+X5p\nLrmEbc1wtdZ5rJKILPVgcZVSuaQBh1LKm4oYYyrhDA6Abtjuk++AydjAo7Ax5nFsS0cb4OE0eewC\nSjgDlTggQUS2GWOmAV8YY57GBiAVgZuBOBGZ5/GaKaUypbNUlFLe1BU4AOzErsnRDnhMRPqI9Sfw\nJPAssB7ojw1ILhOR34GPgOnAEeAZ56lBwBfYWStbgG+A5sAez1ZJKZUdOktFKaWUUh6nLRxKKaWU\n8jgNOJRSSinlcRpwKKWUUsrjNOBQSimllMdpwKGUUkopj9OAQymllFIepwGHUkoppTxOAw6llFJK\neZwGHEoppZTyOA04lFJKKeVxGnAopZRSyuM04FBKKaWUx/1/ZBMbtOzxkeQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4FNXXwPHvCaGF3hGkBFCqUkIRkKIoHUGaRukCKor8\nUF5AioJYANEggnQQKUFAUJrUIFVAEnqx0DsEEYRQUu77x2wwZZNsQjabTc7nefYJO3PnzpndYffs\nnTv3ijEGpZRSSiln8nB1AEoppZRK+zThUEoppZTTacKhlFJKKafThEMppZRSTqcJh1JKKaWcThMO\npZRSSjmdJhxKKaWUcjpNOJRSSinldJpwKKWUUsrpNOFQSimllNNpwqHciohEOPAIF5H6IlLCzvJr\nIrJaRJ5KYD9jbdv4x7E+Zt33ReSqiGwXkU9EpJidbRrYyraNsqyrbVmIiDxiZ5tfROSAneUiIl1E\nZJ1tv/dF5LKIrBWRXiKSyYHXMrKOnbbX5aaI/C4ic0Sklp24ox7rcVs5b1uZQbZ1z8exr9Uicl1E\nCjsQV2cR2Wwrf1tEDojIcBHxslP2lIgsj6MeH1tMXey8X/GdO8UTiM/LFs9+W3z/iMgWEekcR/m4\n9nXBgdeihIjMFpG/ROSOiFy0vTYj4tlmt63+1+NY3zVKDHXiKHPWtn55jOUxX6vztnOuQYxycb4v\nUcrMjue1CYlvW+WePF0dgFKJ1CnG867Ac7blEmX5USDyC2oBsBrIADwOvAUEiEgNY8zhOPbzMnAS\naCUi2Ywxt+MoF1m3B5AHqAH0A/qJyGvGmO9jlI9r8qLMwGDbtvGWF5EswI9AY2A78DlwGcgLNAAm\nATWBXnHsK9LXQB9bXfOAMKAs0Aw4DuyKUX48sAfICFQDXgeai8gTwBfAK8A3IlLJGHMvSrwdgKbA\nm8aYS3EFIyIegD/QAdgCfAiEAPVs/+4gIo2MMVejbOboZFBXiH3uDACKAv8j+rlzlTiISEEgAOt1\n8sd6DbMA7YA5ItIMeNXEnqRqHfBdjGV34gtYREpjvd63gVnAKeARrNd+IDDCzjZlgOpY5+6rwNR4\ndnEH6z3bEaOOBlivy904tos8FgG8sc6hABFpboxZayvj6PtyF3iN6K8/QLiD2yt3YozRhz7c9oH1\ngR8ex7oSQATwbozlTWzLJ8ax3TNYH3gNgHtAZ0frtq0rBhzD+kB/IsryBrZt2kZZ1tW2LBDry7Vw\njLo2AQdiLJtii+/tOOIvDbyRwOtW0FbH5DjW548vbtvyt211DLI9r4WVtHwcpUx24BywzYH38n3b\nfkbbWdfCVveqGMtPAsvjqM/HVl+XONavAE4k8nxbA4QCLeysG2vb3//FWB4BTEjCuT3Jdv49Gt/7\nE2P5SOAi0Mb23hS3UybynFuMlah6xFg/FdgNnIj52to7FqCSbfnPjrwvUcrMBm4m9nXRh/s+9JKK\nSo+22v6WjmP9q8ARY8xmYIPtucOMMWeBblitFgMd2QT4FKvFcXB8BUXkUaxfhD8bYybGsf/jxpgp\nCezTG+tX5Q57K40xwQkFjfVLP/JXLsaYXVjJ0AARKWcr8wlQAOgdX0W2VpsBWInaEDvxrALmAE1F\npKYDsSU722WmxsBsWzwxvQ/8CQwSkczJsMtSwDljzLmYK+J5f3yxEolVwA2sFgx7DFYLTT7gwWUw\nEckItMdquYvZ6mC/ImMOAcHYzgOl4qIJh0qPIj8Yr8dcYev70BbrAxesD+VnbU3pDjPG7MS6LGG3\nT4MdJ7GaqXsl0M+hGdb/2/mJiceO07a/HUQkaxLrKGP7ey3Ksvexvnymikg1rOb2z40xRxKo62ms\nS1ILjDERcZSJbMZvmcR4H1YrrC/qufZWGmPCsc6bPEDdGKuziEi+GI+E+tmcBoqJyDOOBGdLiMoA\n/saYUGAp8SfLp4CdWElKpOZATmChI/u07TcP1jFfS6hsHNvHfF3yiUiOpNSlUjdNOFR64GX7ECso\nIk9jNeUarF+CMbUCcgGRfS9+xGrKfzkJ+z0EFBCR7A6W/wSrf8SgeMpEthwcirpQRDLG+MDOG9+O\njNWX4jusSxXnROQHEXlXRMrGs1kOW92FRaQ58BVWU/oPUer9F3gHq9/FOqxEalR8sdhUwHpPYnWQ\njWK/7W95B+pzhgox4rBnP1ZSFDPG17D6hkQ+rpDwOTUBuA9sFJEgEfETkRfiSRA7AWeMMb/ani8E\nKojIk/HsYwHQJkqLzCvAZhNPXxv+S57y21qbFmN9lyxK4HjsyU701yXyEbPvk0oDNOFQ6cFIrA+x\nS1idEcti9b1YZqfsK8AeY8wJAGPMLazm6URdVrG5Zfvr0K81Y8xJrF/PvUWkUBzFcsaoO1Jzon9g\nn3Jgf92w+mGcwLrm/zlwVEQ2iEgRO5vMstV9Aav/Q1as/hFBMepditWRNg/wlonSgTQeka/Rv/GU\niVyXM54yzvQwMf6E1bk58vE8sJZ42FqFqmCdEyWwErkfgcsi0jNqWRHJAHQkestEANb7Fd+5uwir\nc3VLW2LckoRbzyKTpytYLSS1gS+MMV8lsJ09d4BGRH9tniOBS4vKPeldKio9mIb1KywL8CzWB3es\nc19EcmF9cX9tu0Mg0g6grYiUMcb8lYj9RrZsxPcFFdPHQGesD9z+dtZH1hWz1WQb1gc1WP1G7N7u\nGJMxZjIw2dYsXhd4A+s18MfqLBrVSNt+wrEumxyN5/LHb1iXfwIdiYP/jiu+5MyRL3x7HL1jIiFR\nY7wZR5m4YjxnjAlI7A5t51tXERGsFpaWWO/vVBE5EaXOJlh9ZX6Lcu4KVqdjX+JoNTPGBIvIBqxE\nOxvWj9AlCYT1EzAR63X9FzhsjIn3jpt4hBtjNiVxW+VmNOFQ6cGfUT6YV4tIBDBGRDbF+HXeEauj\n53tYHRijMli/FEcmYr+VgCu2VhKHGGNOisg8rFaOMXaKHMP6IqkEHIyy3TWsX7TENR5EAvu9DqwE\nVorIJqC+iBSzdYCNdCgpX5oOOop1XE8CcY3fEHlpIGp/kLtYLS32eEUpkxyOAq1tcWyLo0xlrHMl\noT4riWKMMcBh4LCI7MRKJF7F9p5jJQz2LhMasG51tXWCtmcBMB3rltufbZfF4pOk5EkpvaSi0qNP\nsH6ZfRxj+StYX+IdsHrqR31sJO4e/7GISG2su2DibTaPw8fE3ZfjZ6wWhqRc4nHUHtvfWAOROdE2\n4B/gFduveXu6Yn2Broyy7DTW2Cr2lLOVPx3H+sRaiZUUdbG30jaOyCtYnZG3J9M+7Yn2/og1IFpr\nrH4PMc/bDliXEuM7X5Zh9cWpxX+dpZVKdppwqHTHGHMDa6yBJpEd6my3m9YHvjfGLI35wOpoWkZE\naiRUv4iUAL7FGkNhXBLiO4E1ENfrQOEY685i9aVoJiJvxVFFgv+vRaSQiMTqfGm7LfI5rC+gxFw+\neii2JvlxWEnCp3biaoGVcKwxxuyOsmo18KiIvBCjfCagJ1Y/g2h9TB4ixl+xbpPubosnpk+x7hIZ\n42C/lXiJyNMiYq8VOnLfx2x/22K15kyM49xdCbSzvbexGGtQuzewBhJb8bBxKxUXvaSi0quvsEaY\nHIz1qzTyF2BcH7ir+a9l4bcoy31E5FWsL/ncWCONtsP6wu5kG6MgIfZ+0X+C1ZejLDHuSLHFXRKY\nICIv22K+AuTH6ofRCqv5Pz6PArtFJACr9eYS1mBgvliXDPyMMX87EHtyGo3VSXKgrYXoB6xOhfWw\nXvfDWOObRDUN6AEsFpHZwF6ssSVeAipiDdoWlowxdsFKOn4Ua9j7rViX4dpi9XlZSBKSzDgMwjq/\nlvLf3Ts+WOdFMNbIr2C9NteAX2PVYFmONepsC6xOpxDjnDPG2L3V9yGVEZGhdpbvNcastv3b0/b/\nx56lD9E3RKVCmnCotCC+ToHG3npjzEURWQC8KtZ8IK8Ap40xB2OWtZW/ISLbgJdE5N0odb9se4Rh\ndST8E/gSmGpvwKY4YrUX33ERmct/lxGirrsjIk2xvng6A/+HdVfEP1i3Zb5B7GG0Y/odaxj15sCb\nQCGsvg6HgJ7GmNkOxJ2sbB1QO4pIF6zWiY+ATFjjmXwIfBnzC8gYc1dE6gMfYN1p0w0rSQkEmhlj\n1ie020TGeMl2K+h7WJcr2mK99weArsaYeXHsIymv3ydY52UD218vrFFEF2CN5npGRApgdYReYOvn\nYc9GrOHRX+W/hMOReOzFnZhjKYv1HsY0EyuBBytZi+tc3QqccXBfyg1I3OeoUkoppVTySFV9OESk\nnogsF2sGwoiY12VtZT4SkQtiza653jZZUdT1mUVkkogEi8i/IrIksaNEKqWUUip5paqEA+s+8H1Y\nwyHbmyVzENZARb2xZsO8DayNMUTweKxrle2wOgEWIcpIiEoppZRKean2koptrIQ2xpjlUZZdwJqX\nwc/2PCfWbIddjTGLbM+vAi9HjiJpG6r5KPBUjN7tSimllEohqa2FI062jn2FsTpAAWCMuQnswhpa\nF6A6VkfYqGV+x+p4VBullFJKuYTbJBxYyYbBatGI6jL/jVVQCLhvS0TiKqOUUkqpFKa3xWJNj4w1\nF8Epkm8YZKWUUio9yII1NtBa2zQLdrlTwnEJa7CaQkRv5SiENdhPZJlMIpIzRitHIdu6uDQh4RkS\nlVJKKRW3V4lneHy3SThsk1pdwprK+AA86DRaC5hkKxaINQhPI6z5ASI7jRYn7lH4wDaV97x58yhf\nPtZoz3Hq378/fn5+iTqOlNoG4Pnnn2f9+oTGPXr4faXUNqn5eJK6XWo+ppQ6nqTuKzUfk553KbuN\nnndJ309ybHP06FE6deoEtu/SuKSqhENEsmHNRRA57G4pEakM/G2bQ2I8MExE/sI6sFHAOazpkjHG\n3BSRmcCXInIda4KuCcD2BO5QuQtQvnx5qlWr5nC8uXLlSlT5lNwGIGPGjKk2vqRsk5qPJ6nbpeZj\nSqnjSeq+UvMx6XmXstvoeZf0/STzNvF2SUhVCQfWXSab+G/43C9sy+cAPYwxY20zI07FmrdiK9bw\nxfej1NEfa86LJVjD5q4B4prk6qH4+vqm2m0AihYtmiL7SqltUvPxJHW71HxMKXU8Sd1Xaj4mPe9S\ndhs975K+n5Q8VzHGpPsHUA0wgYGBJi1p1aqVq0NIVmnteIxJe8eU1o7HGD0md5DWjscY9zqmwMDA\nyEaCaiae71p3ui1WKaWUUm5KE440LMnNXqlUWjseSHvHlNaOB/SY3EFaOx5Im8eUaoc2T0kiUg0I\nDAwMjLPzzJkzZwgODk7ZwNKp/PnzU7x4cVeHoZRSygFBQUH4+PgA+BhjguIql9o6jaZKZ86coXz5\n8oSEhLg6lHTBy8uLo0ePatKhlFJpiCYcDggODiYkJCTR43SoxIu8nzs4OFgTDqWUSkM04UiExI7T\noZRSSimLdhpVSimllNNpwqGUUkopp9OEQymllFJOpwmHUkoppZxOEw6llFJKOZ0mHIo5c+bg4eGB\nl5cXFy9ejLW+YcOGPPnkkw+elyxZEg8PD/r16xer7ObNm/Hw8GDp0qVOjVkppZR70YRDPXDv3j1G\njx4da7mIxHouIkyfPp1Lly4lWF4ppZTShEM9UKVKlTiTiJgqVqxIeHi43QRFh8tXSikVkyYcCrBa\nJYYMGUJYWJjdJCKmkiVL0qVLF4cTFKWUUumbJhzqAW9v70QlEUOHDiU0NNShBEUppVT6pgmHiiYy\niRgzZkyCZUuWLEnnzp2ZPn06ly9fToHolFJKuSudS8UJQkLg2DHn7qNcOfDySv56vb296dy5M9Om\nTWPw4MEUKlQo3vLDhg1j7ty5jB49Gj8/v+QPSCmlVJqgCYcTHDsGPj7O3UdgIDhrHrnEJBExExSl\nlFLKHk04nKBcOSshcPY+nMXb25tOnToxbdo0Bg0alGD5oUOHMnfuXMaMGUPr1q2dF5hSSim3pQmH\nE3h5Oa/1IaUMGzaMefPmOdSXo1SpUnTq1ImpU6dSs2bNFIhOKaWUu9FOo8quqEmEI3esDBs2jPv3\n7zN27Fgd+EsppVQsmnAowP5gXZF3rPz+++8Jbh+ZoOzbt88Z4SmllHJzmnAowP5w5KVLl6Zz584P\nhjKPWtZe+WHDhuHp6aktHEoppWLRPhyKrl270rVrV7vrZs2axaxZs6ItO3HihN2ypUuX5v79+8ke\nn1JKKfenLRxKKaWUcjpNOJRSSinldJpwKKWUUsrp3C7hEBEPERklIidEJERE/hKRYXbKfSQiF2xl\n1otIGVfEq5RSSik3TDiAwcDrQB+gHDAQGCgib0cWEJFBwNtAb6AmcBtYKyKZUj5cpZRSKu2yN6yC\nPe54l0pt4CdjzBrb8zMi8gpWYhGpHzDKGLMSQES6AJeBNsCilAxWKaWUSssGrh/oUDl3bOHYATQS\nkccARKQyUBdYbXvuDRQGNkZuYIy5CezCSlaUUkoplQw2n9pMwMkAh8q6YwvHaCAncExEwrGSpqHG\nmIW29YUBg9WiEdVl2zqllFJKPSRjDIM2DKJ8gfIc5WiC5d0x4XgJeAV4GTgCVAG+EpELxpi5D1Nx\n//79yZUrV7Rlvr6+lC1b9mGqVUoppdIEf39//P39Abj470X2XNjDE7mfcGhbd0w4xgKfGWMW254f\nFpGSwPvAXOASIEAhordyFAL2xlexn58f1exM8xoUFPTQQSullFLuxBjDvfB7ZMqQCQ+xemD4+vri\n6+tLaHgoFb+pSNO8Tfmk/Cf4+PgkWJ87JhxeQHiMZRHY+qMYY06KyCWgEXAAQERyArWASSkYp1JK\nKZVqnbx+klFbRnE15Co37t7gxr0b3Lh7g9uht7kTeoeQ0BAMhjJ5y/B9+++p9sh/P8hnBM3gr7//\nYknHJYSdD3Nof+6YcKwAhonIOeAwUA3oD8yIUma8rcxfwClgFHAO+CllQ1VKKaVSnwgTQZcfu/Dn\ntT+pWbQmJXKXIFfmXOTKnIvsmbKTNWNWvDJ6kcUzCxN2TaDOzDpMaDaBXtV6cTv0NiM3j6Rz5c48\nWehJgs47dhXAHROOt7ESiElAQeACMNm2DABjzFgR8QKmArmBrUAzY4zOLBaHgwcPMnLkSPbs2cPl\ny5fJly8fFSpU4IUXXuDtt60hTkqWLMmZM2cebFOgQAHKli3Lu+++S5s2bTh16hQVK1akTZs2zJ8/\nP9Y+vv/+e3x9fZk0aRJvvvlmih2bUkqp6GYGzWTbmW0EdAngGe9n4i3bsWJH+q/pz+srX2fbmW0U\nyVGE63ev81HDjxK1T7dLOIwxt4F3bY/4yo0ARqRASG5vx44dPPvss5QoUYLevXtTuHBhzp49y86d\nO5kwYcKDhENEqFq1KgMGDMAYw4ULF5g6dSpt27ZlypQp9O7dmw8//JD333+f7t2789xzzz3Yx7//\n/su7775L7dq1NdlQSikXunTrEgM3DKRblW4JJhsAWTyzMLnlZJ4u/jS9V/YmJDSE92q/R4ncJRK1\nX7dLOFTy++STT8idOzd79uwhR44c0dYFBwdHe160aFF8fX0fPO/cuTNlypTBz8+P3r1789577zF/\n/nz69OnDwYMHyZw5MwBDhgwhODiYdevWOf+AlFJKxendte/i6eHJuOfHJWq7V598laqPVGXS7kkM\nrTc00ft1x4G/VDI7ceIEFStWjJVsAOTPnz/ebQsVKkT58uU5efIkABkyZGDatGmcOHGCjz/+GIDA\nwEAmT57MgAEDqFixYvIfgFJKKYes+WsN/of8+aLxF+Tzypfo7SsUqMCkFpPIkzVPorfVhENRokQJ\nAgMDOXz4cKK3DQsL4+zZs+TL99+JW6tWLd58800+//xzDh06xOuvv06pUqX44IMPkjNspZRSiRAS\nGkKfVX1o5N2Izk92TvH9a8KhGDBgACEhIVSpUoW6desyePBg1q9fT1hY7FudQkNDuXbtGteuXePA\ngQN07tyZK1eu0LFjx2jlPv30U/Lnz0/Dhg3Zu3cv33zzzYPLK0oppVKGMYZT/5xi4aGF+P7gy4V/\nLzC5xWREJMVj0T4cThASGsKx4GNO3Ue5/OXwyuiVLHU999xz/Prrr3z22WesXbuWnTt3MnbsWAoU\nKMCMGTNo1arVg7Jr166lQIECD557enrSpUsXRo8eHa3OHDlyMH78eDp27Iivr2+0DqRKKaWc6+T1\nkwzcMJAtp7dw5fYVAErnKc3kFpN5LN9jLolJEw4nOBZ8DJ9pCY+69jACewdGG4TlYfn4+LBkyRLC\nwsLYv38/y5Ytw8/Pjw4dOrBv3z7KlSsHwFNPPcUnn3wCgJeXF+XLlydnzpx266xRo8aDupVSSqWM\nFb+voMuPXcidJTe9qvXiqUefolbRWhTIViDhjZ1IEw4nKJe/HIG9A52+D2fw9PTEx8cHHx8fHnvs\nMbp3787ixYsZPnw4YHUifeaZhG+jUkoplbLCIsIYHjCc0dtH07psa75t8y25s+R2dVgPaMLhBF4Z\nvZK19cFVqlevDsDFixddHIlSSqm43Am9w4HLBxi8cTBbT29l7HNjGVBngEv6acRHEw7FL7/8QsOG\nDWMtX7VqFcCDyylKKaWSzhjD2ZtnMcYketCsmJb/vpzFRxaz9+JejgUfI9yE80j2RwjoGkD9EvWT\nKeLkpQmHom/fvoSEhPDiiy9Srlw57t+/z/bt21m0aBGlSpWiW7durg5RKaWc6m7YXTJ6ZCSDRwa7\n60NCQxjxywhe93md0nlLO1xvwMkAlv++nP2X97P/0n6u371OBsnAsPrDGFZ/GJ4eif8aDg4Jpt2i\ndpTLX456xevxTq13qFq4Kk8UeoIsnlkSXV9K0YRD8cUXX7B48WJ+/vlnpk+fzv379ylevDhvv/02\nQ4cOfdApVEQS3USXlG2UUiqlhEeEM3PvTIYGDKVUnlKs8F1BwWwFo5UJCQ2hlX8rAk4G8Pedv5nx\nwow4aotdd/tF7fHK6EXtYrV5t/a7VClchT0X9vDxlo9Zd3wd89rOo1SeUomKeenRpUSYCDZ22Rgr\n1tRMEw5F48aNady4cYLlTpw4kah6S5QoQXh4eFLDUkqpJPnhyA+UzV+WSgUrxVtu6+mt9FvTj72X\n9uJbyZdNpzZRZ2Yd1nRaQ5m8ZQCrf0Trha3ZeW4nrcu25vvD3/NV06/IlilbgnHsubCH63evs8J3\nBXWL132wvOXjLWlSugmdlnWi8pTKfN3sa7pW7urwj7OFhxbSyLuRWyUboAN/KaWUSkOO/32c9ovb\nU21qNUZtHkVoeGisMoevHMb3B1/qf1sfTw9Pdr62kwXtFvDra7/i6eFJ7Zm12XVuF3fD7tLm+zZs\nP7OdVa+swq+JH7fu3+KHoz84FMu64+vImTkntR6tFWtd7WK12ff6PtpXaE/3n7rz/eHvHarz4r8X\n+eXUL/hW8k24cCqjCYdSSqk0Y8qeKeTJkof3ar/HyM0jqTmjJvsu7cMYw7rj62g6rymVJldiy+kt\nzG49m509dz5ICErmLsmO13ZQNl9ZnpnzDM/MeYYtp7ew8pWVNCzZEO883jQs2ZBv933rUCzrTqyj\nkXejOPtp5Micg9mtZ9O0TFM+2/YZxpgE61x0eBGeHp68WP5Fh1+T1EITDqWUUmnC3bC7zN43m25V\nuvHZc5+xq+cuwiPCqTG9BmUnlqXJvCZcuX2FeS/O42S/k3Sr0g0Pif41mDdrXtZ3Xk+Lx1uw79I+\nVviu4FnvZx+s716lO5tObeLk9ZPxxnLj7g1+PfsrjUsnfLl6YJ2BHLh8gHXHE55Ne+HhhTR7rFmq\nGl/DUZpwKKWUShMWH17MtTvXeKP6GwD4FPFhT+89fFD/A6oXqc6mrpsI7B3Iq0++SqYMmeKsJ2vG\nrCxqv4jLAy7zXKno0zK0K9+O7JmyM2f/nHhj2XRqE+EmnCalmyQYd8OSDalRpAZjto+Jt9zJ6yfZ\neW4nL1d8OcE6UyPtNKqUUipVCg4J5q3Vb3En9A55s+YlT5Y85M2alxfKvkDlwpVjlZ+8ZzLPlXqO\nx/M9/mBZpgyZGN5geKL3LSLkzBx72oZsmbLRsUJH5uyfwwcNPojVQhJp3fF1lMlbBu883g7ta2Dd\ngXRY3IHfzv9GjaI17JZbdHgRWT2z0qpsK7vrUztt4VBKKZXq3A+/T7tF7Qg4GYDB8Offf7L2+Fq+\n3PklDec05MT16HfN7bu0j1/P/cqb1d90emzdq3bn1D+n2Hxqc5xl1h1fR+NSCV9OifRiuRcpk7cM\nY3eMjbPMwsMLaVW2FdkzZU9UvKmFJhxKKaVSFWMMfVb1Yee5nfz08k+s8F3B9h7bOfLWEU72O0ne\nrHlpt6gdd0LvPNhm8m+TKZKjCC+UfcHp8dUtVpfH8j7G7H2z7a4//vdxjl8/TpMyCV9OiZTBIwMD\nag/ghyM/8Nfff8Vafyz4GPsu7XPbyymgCYdSSqlUZvzO8czcO5PpraZTp1idaOtyZ8nN0o5LORZ8\njD6r+2CM4ea9m8w/OJ/e1XonaeTOxBIRulXpxpIjS7h572as9euOr8PTw5OGJRsmqt4ulbtQIFsB\nvtjxRax1Cw8tJGfmnDR7rFlSw3Y57cORCEePHnV1CGmevsZKpW+r/1zNgPUDGFR3EF0qd7FbpnLh\nykxtOZWuP3al9qO1CQ0P5W7YXXpW65licXZ+sjPDAoax+PBiXqv2WrR1606so/ajte32AYlP1oxZ\neafmO4zaMooRDUdQKHshwGrxWXhoIS+WezFVD12eEE04HJA/f368vLzo1KmTq0NJF7y8vMifP7+r\nw1BKpbDDVw7z8pKXafl4Sz5t9Gm8ZbtU7sKuc7vo+3NfCmYrSOtyrSmas2gKRQrFchWjcenGjNk+\nhtblWpPfy/rMCg0PZeOJjQyqOyhJ9fap0YfPtn1GK/9WFM1ZlPvh97kTeoffr/3O+Kbjk/MQUpwm\nHA4oXrw4R48eJTg42NWhpAv58+enePHirg5DKZWCztw4Q9P5TfHO4828F+fFefdHVH5N/Qi6FMTO\nczuZ3dp+fwpnmtBsAvVm16PJvCYEdAkgV5Zc7Dq/i3/v/+vQ+Bv25Mmah3GNx7HkyBLuh98no0dG\nsnllo287wBgqAAAgAElEQVTNvjTybpTMR5CyNOFwUPHixfVLUCmlkijCRLDz3E5qFa0Va0bWq7ev\n0nhuYzJ6ZGTNq2vIkTmHQ3VmypCJZS8tY8Xv0QfnSimP53uc9Z3X0/DbhrRY0IK1nday7vg68mbN\nS7VHqiW53jeqv/FgLJG0RDuNKqWUcrrxO8dTd1Zdnpr5FL+d/+3B8n/v/UvzBc25fvc66zqv45Ec\njySq3sLZC9PLp5dDLSLO8GShJ1nTaQ37L++nzfdtWPXnKp4v9Xyc09ynZ5pwKKWUcqrLty4zcvNI\nWpdtTWh4KLVm1KL3it5c+PcCbRe15ffg31nz6n8ztLqbmkVrstJ3JdvObCPoYlCSL6ekdZpwKKWU\ncqqhAUPJIBmY+cJM9vTew4RmE1h0eBHF/Yqz9fRWlvsup+ojVV0d5kNpULIBy15aRvUi1WnxWAtX\nh5MquWXCISJFRGSuiASLSIiI7BeRajHKfCQiF2zr14uIe6bOSinlxgIvBDJr7yxGPTOKfF758PTw\n5O2ab/NH3z/oW7Mvy15alujxKlKrpmWa8luv3x7czqqic7uEQ0RyA9uBe0AToDzwHnA9SplBwNtA\nb6AmcBtYKyJxz9ajlFIqyQIvBBISGhJtmTGGfmv6UbFgRV6v/nq0dQWzFcSvqZ9bD2SlEsftEg5g\nMHDGGNPTGBNojDltjNlgjIk6V3A/YJQxZqUx5hDQBSgCtHFFwEoplVYZYxjxywiqT69OuYnlWHho\nIcYYAPwP+bP97Ha+avpViowAqlI3d0w4WgF7RGSRiFwWkSAReTC8nIh4A4WBjZHLjDE3gV1A7RSP\nViml0qjwiHDeWv0WIzePZMjTQ6hRtAa+P/hSb3Y9tpzewsD1A2lbvq1LbllVqY87ppylgDeBL4BP\nsC6ZTBCRe8aYuVjJhgEux9jusm2dUkqph3Q37C6dlnZi2bFlzGg148Hw3gEnA+i3ph8Nvm1A5gyZ\nGff8OBdHqlILd0w4PIDdxpjhtuf7RaQS8AYw13VhKaVU+nDz3k1aL2zNznM7WfbSsmgztD7r/Sx7\nX9/L7L2zyZk5J955vF0YqUpN3DHhuAjEnOHrKNDW9u9LgACFiN7KUQjYG1/F/fv3J1euXNGW+fr6\n4uvr+zDxKqVUmvHvvX9pOq8pR64eYV2nddQrUS9WGU8PT3r59HJBdMrZ/P398ff3j7bsxo0bDm0r\nkZ173IWIzAceNcY0iLLMD6hhjHna9vwC8Lkxxs/2PCdW8tHFGLPYTp3VgMDAwECqVUv6cLRKKZWW\n3b5/m2bzm7H/8n42dN5AjaI1XB2SSgWCgoLw8fEB8DHGBMVVzh1bOPyA7SLyPrAIqAX0BKKm0+OB\nYSLyF3AKGAWcA35K2VCVUiptuBN6hxcWvsDeS3tZ22mtJhsq0dwu4TDG7BGRF4HRwHDgJNDPGLMw\nSpmxIuIFTAVyA1uBZsaY+66IWSml3NndsLu0+b4NO8/t5OdXf6ZOsTquDkm5IbdLOACMMauB1QmU\nGQGMSIl4lFIqLQoOCWbZ0WVMD5rOwSsHWfXKKuqXqO/qsJSbcsuEQymllHPcuHuDJUeWsOjIIjae\n2IjB0LBkQ9a8uoYGJRskXIFScdCEQyml0rkIE8GW01uYtXcWS44s4V74PRqUaMDE5hNpW74tBbMV\ndHWIKg3QhEMppdKxNX+t4a3Vb3Hi+gnK5C3D8PrD6VK5C0VzFnV1aCqN0YRDKaXSqXth9+i1ohcl\ncpXg29bf8nTxpxERV4el0ih3nEtFKaWUA3ae20mv5b24G3bX7vpZe2dx/uZ5preaTr0S9TTZUE6l\nLRxKKZUG/R78Oy0WtODvO39TMFtBPmn0SbT198Lu8em2T/F9wpfyBcq7KEqVnmgLh1JKpTFXb1+l\n+YLmFMpWiPdqv8fYHWPZf2l/tDIz987kwr8XGF5/eBy1KJW8NOFQSqk0JHJE0Nv3b7P61dV82uhT\nyuUvR88VPQmLCANsrRtbP8W3ki/l8pdzccQqvdCEQyml0ojwiHA6LevEgcsHWPnKSkrmLkmmDJmY\n0WoGgRcCmbBrAmC1bly8dVFbN1SK0oRDKaXSiMEbBvPjsR9Z2G4h1YtUf7C81qO1eKfWOwwLGMbR\nq0f5dOunvPLEK5TNX9aF0ar0RhMOpZRKA5YcWcK4X8fxReMvaFW2Vaz1Hz/7MQWzFaTe7HpcvHWR\nYfWGuSBKlZ5pwqGUUm7uj2t/0OOnHnSs2JF+tfrZLZM9U3amtpzKtTvXtHVDuYTeFquUUm4sJDSE\ndovaUSRHEWa0mhHvWBpNyjRh1SureOrRp1IwQqUsmnAopZSbMsbw5qo3OXH9BLt77iZH5hwJbtP8\nseYpEJlSsWnCoZRSbmpG0Ay+2/8d37X5jooFK7o6HKXipX04lFLKDZ24foK+P/fldZ/X6Vy5s6vD\nUSpBmnAopZQb+mzrZ+TOkpsvm3zp6lCUcogmHEop5WZO/3Oab/d/y//V+T+8Mnq5OhylHKIJh1JK\nuZnR20aTO0tu3qj+hqtDUcphmnAopZQbOXvjLDP3zmRA7QFky5TN1eEo5TBNOJRSyo2M2T6GHJlz\n0KdGH1eHolSiaMKhlFJu4vzN80wPms67T73r0JgbSqUmmnAopZSb+HzH53hl9OLtmm+7OhSlEk0T\nDqWUcgOXbl1iauBU/lfrf+TKksvV4SiVaJpwKKWUi/157U9eWvISV25fibPM0I1DyZQhE+/UeicF\nI1Mq+ejQ5kop5WKjtoxi0eFF/HP3H35+9Wc8JPpvwSVHljBr3yymtZxGnqx5XBSlUg9HWziUUsqF\nzt88j/8hf9qWb8v64+v5dOun0dafvXGWXit60a58O3pW6+miKJV6eNrCoZRSLjRx90SyemZl1guz\neKLgE3z4y4fULVaXZ7yfITwinE7LOpE9U3amtZoW79TzSqV2bt3CISKDRSRCRL6MsfwjEbkgIiEi\nsl5EyrgqRqWUisut+7eYEjiFXtV6kStLLobXH84zJZ/B9wdfLt26xGfbPmPr6a3Me3EeebPmdXW4\nSj0Ut004RKQG0BvYH2P5IOBt27qawG1grYhkSvEglVIqHt/u+5ab924+6AiawSMD89vOR0RoOq8p\nI34ZwdB6Q2lQsoGLI1Xq4bllwiEi2YF5QE/gnxir+wGjjDErjTGHgC5AEaBNykaplFJxC48IZ/zO\n8bSv0J4SuUs8WF4oeyH82/lz8MpBahStwQcNPnBhlEolH7dMOIBJwApjTEDUhSLiDRQGNkYuM8bc\nBHYBtVM0QqWUAowxbDixget3rkdbvvz35Ry/fpz3ar8Xa5uGJRuyrfs2VviuIGOGjCkVqlJO5XYJ\nh4i8DFQB3rezujBggMsxll+2rVNKqRQ1cvNInp/7PKUnlGbcjnHcDbsLwJc7v6RusbrULFrT7na1\ni9Umv1f+lAxVKadyq7tURORRYDzwnDEm1NXxKKVUfL7Y8QUjN49kaL2hXAu5xuANg/l699d0q9yN\nbWe2sbTjUleHqFSKcauEA/ABCgBB8t/9YRmA+iLyNlAOEKAQ0Vs5CgF7E6q8f//+5MoVfchgX19f\nfH19kyF0pVR6MmXPFAasH8CQp4fw8bMfA/C/p/7HkIAhfLTlI0rlKcULZV9wcZRKJY6/vz/+/v7R\nlt24ccOhbcUY44yYnEJEsgElYiz+FjgKjDbGHBWRC8Dnxhg/2zY5sZKPLsaYxXHUWw0IDAwMpFq1\nak6LXymVPsw7MI8uy7rQt2ZfxjcdH2v8jMALgXhl9KJ8gfIuilCp5BMUFISPjw+AjzEmKK5ybtXC\nYYy5DRyJukxEbgPXjDFHbYvGA8NE5C/gFDAKOAf8lIKhKqXSKf+D/nT7sRvdq3THr6mf3cG6fIr4\nuCAypVzLrRKOOERrojHGjBURL2AqkBvYCjQzxtx3RXBKqfTBGMO4HeMYuGEgXSp3YVqrabHmRFEq\nPXP7hMMY86ydZSOAESkejFIqXQqPCOedn9/hmz3fMKzeMD565iMdhlypGNw+4VBKKVcKCQ3B9wdf\nVv2ximktp9HLp5erQ1IqVdKEQymlkijCRNByQUt2n9/Nct/lNH+suatDUirV0oRDKaWSaPbe2Ww6\ntYmNXTbyrHesq7tKqSiSlHCIiAdQBihIjNFKjTFbkiEupZRK1f6+8zeDNgyi85OdNdlQygGJTjhE\n5ClgAdZ4GDF7RRmsgbiUUipNG7JxCKERoYx9fqyrQ1HKLSSlhWMKsAdoAVwkxm2pSimV1v12/jem\nBU7jq6ZfUTi7TtOklCOSknA8BrQ3xvyV3MEopVRqFx4RTp/VfahcuDJv1njT1eEo5TaSknDswuq/\noQmHUirdmRE0gz0X9rC9x3Y8PbTfvVKOSsr/lq+BL0SkMHAQiDZrqzHmQHIEppRSqc3ei3t5f+P7\ndK/SnTrF6rg6HKXcSlISjh9sf2dFWWawOpBqp1GlVJpzLeQawwKGMTVwKhUKVGDMc2NcHZJSbicp\nCYd3skehlFKpUFhEGNMCpzEsYBjhJpwvm3zJWzXeImOGjK4OTSm3k6iEQ0QyAh8Co4wxJ50TklJK\npQ59V/dlSuAUelTpwWfPfUbBbAVdHZJSbitRUxkaY0KBdk6KRSmlUo2L/15k5t6ZfNboM2a2nqnJ\nhlIPKSlzJ/8ItEnuQJRSKjWZuHsimT0z80b1N1wdilJpQlL6cPwJfCAidYFA4HbUlcaYCckRmFJK\nucrt+7eZvGcyPav2JHeW3K4OR6k0ISkJx2vAP4CP7RGVATThUEq5tW/3fcuNezfo91Q/V4eiVJqR\n6ITDGKN3qSil0qzwiHD8dvrRvkJ7SuYu6epwlEozdJg8pZSKYvnvyzl+/TgL2i1wdShKpSlJmS12\nVnzrjTE9kh6OUkq51he/fsHTxZ+mZtGarg5FqTQlKS0ceWI8zwhUAnIDAQ8dkVJKuciuc7vYfnY7\ny15a5upQlEpzktKH48WYy0TEA5gMHE+OoJRS6mEEhwQzavMo+tToQ9n8ZR3aJsJEMHbHWMrkLUOr\nx1s5OUKl0p+kjMMRizEmAvgS6J8c9SmlVFKFhIbQckFLJuyeQM0ZNfnp2E/xlr9+5zp+v/pRbmI5\nlh5dyuC6g8ngoVNCKZXckiXhsCmNdkJVSrlQWEQYvj/4cvDKQQK6BPBcqedo830bhgcMJzwi/EG5\ne2H3WH98Pa/99BpFvyzKoA2DqF6kOlu7b6VHVe2GppQzJKXT6JcxFwGPAC2AOckRlFJKJZYxhr6r\n+7Lqj1Us913OM97P0LBkQ8ZsH8PQgKHsubiHNmXb8PNfP7PhxAZuh96mRK4SDKs/jNeqvkah7IVc\nfQhKpWlJaZGoGuN5BHAVeI/oU9YrpVSKGb1tNFMCpzCj1QyaP9YcABFh8NODqfZINXx/8GXd8XXU\nKVaHYfWH0fyx5jxR8AlExMWRK5U+JKXT6DPOCEQppZLqu/3fMSRgCB82+JDXqr0Wa33j0o051e8U\nYRFh5Mka80Y7pVRKSHQfDhEJEJFYkwuISE4R0dtilVIpas1fa3ht+Wu8VvU1PmzwYZzlcmTOocmG\nUi6UlE6jDYFMdpZnAeo9VDRKqTTt6u2rLP99OddCriVLfbvP76bdonY0K9OMKS2n6OURpVIxhy+p\niMiTUZ5WEJHCUZ5nAJoC55MrsHjieB94ESgH3AF2AIOMMX/EKPcR0BNrQLLtwJvGmL+cHZ9Syr7w\niHDaLWrH1jNbEYQqhavQyLsRTco0oZF3o0QnC39c+4MWC1pQuVBlFrZfiKeH3iSnVGqWmP+h+7Bm\ngzXYH1H0DtA3OYJKQD3ga2APVvyfAetEpLwx5g6AiAwC3ga6AKeAj4G1tjL3UyBGpVQM43aMY9uZ\nbSzusJhb92+x8eRG5h+cz7hfx7Gw3UJeqvSSw3Vd/PciTeY1oYBXAVa+shKvjF5OjFwplRwSk3B4\nY90CewKoiXVnSqT7wBVjTLi9DZOTMaZ51Oci0g24AvgA22yL+wGjjDErbWW6AJeBNsAiZ8eolIou\n6GIQwzcNZ1DdQbSv0B6AblW6YYyh/rf1mbl3psMJR8DJAPqs6kNoeChbum0hb9a8zgxdKZVMHO7D\nYYw5bYw5ZYzxMMbssT2PfFxMiWQjDrmxWl3+BhARb6AwsDGygDHmJrALqO2KAJVKz0JCQ3h16atU\nKliJkc+MjLZOROhauSsbTmzg3M1z8dZz5OoRWi5oSaPvGpE3a142dNlAsVzFnBm6UioZJWmkURHp\nLCLbReSCiJSwLesvIq2TN7wE4xBgPLDNGHPEtrgwVgJyOUbxy7Z1SqkUNGj9IE79c4p5beeRKUPs\n/uYdKnQgs2dm5h+Yb3f7W/dv8fqK13li8hMcDT7K4g6L2d5jO+Xyl3N26EqpZJSU22LfxJo3ZTVW\n60LkpAPXgf8lX2gO+QaoALycwvtVSjng5z9/ZuJvE/n8+c+pUKCC3TK5suSiTbk2zNk/B2NMrPUj\nfxnJ3ANz+aLxFxx96yjtK7TXu1GUckNJ6dbdF+hljPlRRAZHWb4HGJc8YSVMRCYCzYF6xpiLUVZd\nwuprUojorRyFgL3x1dm/f39y5coVbZmvry++vr7JErNS6cmd0Dv0WtGLJqWb8FaNt+It27VyV5od\nasaeC3uoUbTGg+Wn/znNhN0TGFpvKP97KqV/zyilYvL398ff3z/ashs3bji0bVISDm/sf3HfA7Il\nob5EsyUbrYEGxpgzUdcZY06KyCWgEXDAVj4nUAuYFF+9fn5+VKtWzTlBK5XOTNw9kcu3L7O5+eYE\nWySeL/U8j2R/hDn750RLOIZvGk7erHl5t/a7zg5XKeUAez/Cg4KC8PHxSXDbpPThOAlUsbO8KXA0\nCfUlioh8A7wKvALcFpFCtkeWKMXGA8NEpJWIPAF8B5wD4p+nWimVLG7cvcHo7aPpWbUnpfOWTrB8\nBo8MdHqyE/6H/Lkfbt25vvfiXuYdmMeIBiPInim7s0NWSjlZUhKOL4FJIvIS1qWLmiIyFGs8jLHJ\nGVwc3gByAr8AF6I8OkYWMMaMxRqrYyrW3SlZgWY6BodSKWPcjnHcCb3D8AbDHd6mS+Uu/H3nb1b9\nsQqAQRsG8Xi+x+3OjaKUcj9JmbxthojcwRpMywtYgPWF388YszCZ47O3f4eSJGPMCGCEU4NRSsVy\n+dZl/Hb68U6tdyiSo4jD21UqWIlqj1Rjzv45ZMuUjfUn1rPspWU6gqhSaUSS/icbY+YD80XEC8hu\njLmSvGEppdzVJ1s/IWOGjAyqOyjR23at3JX31r3HH9f+oG6xurQum6J32iulnChJ43BEMsaERCYb\nIpJFRAYkT1hKKXd08vpJpuyZwsA6A5M0M6tvJasz2tHgo3z+/Od6+6tSaUiiWjhEpADW3R73gY3G\nmHARyQj0Ad631Zdit8YqpVKXEZtHkM8rH+/UeidJ2xfIVoDOT3Ym3IRTu5gODKxUWpKY2WKfBlZi\nddg0wB4R6Q78CIRh9ZeY44QYlVI2J6+fJMJEOHTnR0o7cvUIc/fPZWLziWTLlPQ75Ge1npWMUSml\nUovEXFL5GGt00ScAP6AGsAwYYoypYIyZEjlbq1Iq+Z29cZZaM2rx2NeP8dKSl9h/ab+rQ4rmo80f\nUTxXcXpW6+nqUJRSqVBiEo4ngI+NMYeB4VitHAONMUucEplS6oF7Yfdov7g9WTyz8FXTr/jt/G9U\nmVqFlgta8uvZX10dHkeuHmHR4UUMqTfE7nwpSimVmIQjDxAMYGvJCAEOOSMopVR0/db0Y9+lffzQ\n8Qf61urLH33/YO6Lczn5z0nqzKrDOz+/w51Q1zUwfrzlYx7N+SjdqnRzWQxKqdQtsXepVBCRJ0Xk\nSaxBv8pGPo+yXCmVjGbvnc3UwKlMaj7pwbDfnh6edHqyEwffPMiEphOYHjQdn2k+BF0MSvH4jgUf\nY+Ghhbz/9PvauqGUilNiE46NwD7bwwurE+k+rLlVIv8qpZJJ4IVA3lz1Jq9Vfc1u3wgP8aBvrb4E\n9g4ks2dmnprxFKO3jSY8IjzFYvx4y8cUzVmUHlV7pNg+lVLuJzG3xXo7LQqlFKf/Oc2c/XP45+4/\n3Lh7g5v3b7LtzDaeKPQEE5tPjHfbCgUqsKvnLj7c9CFDNg5h65mtLGy3kByZczg15j+u/YH/IX8m\nNJ1AZs/MTt2XUsq9OZxwGGNOOzMQpdKz0PBQWi9szYnrJ3g056PkzJyTXFly8Xyp5/nk2U/I4pkl\nwToyZcjEZ899RsOSDem4pCNPz36alb4rKZarmNPi/njLxxTOXljnO1FKJUgnKVAqFRizfQyHrhzi\nt16/UfWRqg9VV5MyTdjRYwctFrSg5oyarPBdQfUi1ZMp0v/8ee1P5h+cz/gm4x1KiJRS6dtDDW2u\nlHp4R64eYdSWUQysO/Chk41IFQtWZFfPXZTMXZL6s+vz07GfkqVeAGMM646vo92idhTKVohePr2S\nrW6lVNqlCYdSLhQeEU6Pn3pQKk8pPmjwQbLWXSh7IQK6BNC4dGO6/tiVG3dvPHSd285so+GchjSZ\n14TsmbLz08s/aeuGUsoheklFKRf6atdX7D6/m209tjnliztrxqxMbjEZ76+8mfTbJIbUG+LQdrvP\n72bAOmsuRk8PTzw9PPn3/r/sPLeTyoUqs9J3Jc0fa66TqymlHPZQLRwikl9EWojICyLySHIFpVR6\n8NfffzEsYBh9a/alTrE6TtvPIzkeoUfVHvjt9OP2/dsObbPw0EIOXTlEydwlKZy9MLmz5ObRnI/y\nffvvCXo9iBaPt9BkQymVKElu4RCRdsBM4A8gI9YgYG8ZY2YnV3BKpVV3w+7S/afuFMpeiE8afeL0\n/Q2sO5BpgdOYHjSd/z31vwTL7z6/m8alG/Pdi985PTalVPrgcAuHiGSPsehDoKYxpqYxpirQAXD+\nJ6dSbu5++H06Lu7Ingt7mPviXLJnivlfK/mVzF2STk92YtyOcdwLuxdv2dDwUIIuBlGzaE2nx6WU\nSj8Sc0klUERaR3keBhSM8rwQcD9ZolIqjQqLCOPVpa+y9vhalr20jKeLP51i+x789GAu/HuB7/bH\n32px+Oph7oTd0YRDKZWsEpNwNAF6i8gyESkC9AO+F5FLIhIMjAb6OCNIpdKC8Ihwuv3YjR+P/cji\nDotpWqZpiu6/XP5ytKvQjtHbRxMWERZnud3nd5NBMlC1cPLcoquUUpCIhMMYc8oY0wJYBGwGqgBl\ngOeB54DixpjVTolSKTcXYSJ4feXr+B/yZ0HbBbxQ9gWXxDHk6SGcuH6C7w99H2eZ3ed3U6lgJbJl\nypaCkSnlmLAwiIhwdRQqKRJ9l4oxxh+oAVQGfgE8jDH7jDF3kzk2pdKMZUeXMXPvTL5t/S0dKnZw\nWRxVH6lK88ea8+m2T4kw9j+1d5/frZdTVKp04wbUqgWVKsH+/a6ORiVWohIOEWkuIu8B1Y0xPYGB\nwHwR+VxEsjolQqXSgHkH51G9SHU6V+7s6lB4/+n3OXL1CAEnA2Ktu3X/FoevHtaEQ6U6ISHQqhWc\nPAmenlCzJnz1FRiT+LoiIuD48eSPUcUvMXepfAHMxmrdmCoiw40xm4FqwF1gr4g0c06YSrmvf+7+\nw+o/V+NbydfVoQBQt1hdvHN7s/jw4ljrgi4GEWEiNOFQqUpoKLz0EgQGwqpVsHs39OkD//sftGgB\nly8nXIcxsG8f/N//QfHiUKYMzNZBHFJUYlo4ugHNjTEvYyUdnQGMMfeNMcOBtoBjwxgqlY4sO7qM\n0PBQXqr4kqtDAUBEaF+hPUuPLY3VeXT3+d1ky5iNigUquig6paKLiIAePWDtWli6FGrXhixZwM8P\nVq+2kpCyZaF9e5g0CY4csZKLsDA4eBC++w7694eKFaFqVfj2W2jdGl58Efr1g9M6D3qKSczAX7cB\nbyAQKIbVqvGAMeYIUC/5QlMqbfA/5E/9EvUpmrOoq0N5oEOFDny+43O2nN7Cs97PPli+6/wufIr4\nkMEjgwujU+nVoUOweLGVUGTLZj127ID588HfH5o0iV6+WTM4cAAmToRNm6wWj7AwyJcPbt2Ce7Yh\nZ0qVgjp1YNw4eP55yJjR6g/yxBPQvTts2AAeKTSz2NWrcOKE1RclvUlMwvE+8J2ITAC8gK7OCUmp\ntOPyrctsPLmRb5p/4+pQoqlepDolcpVg8eHF0RKO3ed307FCRxdGptKrjRutVocMGazH7dtw967V\nX+Obb6xLKvYUKgSjRln/vn3bSlC2bYM8eawWjSpVIFeu2NvlymW1djRqBF9/bbV2ONvu3dYxXr5s\ndXqtmEYaEsPivss+msTcFjsfq2WjNVDSGJN8810rlUYtPrIYD/GgfYX2rg4lmqiXVcIjwgG4dOsS\nZ26c0f4bKsUtXGi1VtStC2fPQnAw3LljfZHdugVvvOFYPdmyWS0YI0darR0NGthPNiI9+yz07QuD\nB8OxY8lzLHGZPRvq1YMSJcDbG955J2kdXlOb27fh7bcdK5uoRiRjzDVjzG/GmH+SElhKEpG3ROSk\niNwRkZ0iUsPVMan0x/+QP41LNyafVz5XhxJLhwoduHL7ClvPbAXgt/O/AWjCoVLU+PHg62s9li+H\n7FFG+s+QATJndu7+R4+2OpF26WJ1Tj1/Hn7+GcaMgREjrOTnYYSGWslFjx7WPjZtsu6uCQiAH35I\nlkN4KA8zpsmNG9ZlrkOHHCufJqenF5GXgC+A3sBuoD+wVkQeN8Y85OmjlGNO/3OaHWd3MPfFua4O\nxa6aRWtSLGcxFh9eTMOSDdl9fjcFsxWkeK7irg5NpUF37sCiRfD339av4tu3rb4MixbBwIHWF78r\nJiD28rI6ltapY12GuW2bUDlnTuvL+Kuv4KOP4M03rcs7iXHnjtVBddMm67LQG29Yx9i8ObRsCe+9\nZ/3byyv5j8sR8+ZZd/uMHm3Flph+LMHBVrJx8iRMmQJdHehkkULdZFJcf2CqMeY7Y8wx4A0gBOgR\n3wNNnH8AACAASURBVEahoY7v4MQJKxNWKi4LDy0ki2cWWpdtnXBhF4h5WWX3BWvAL512XiW3W7es\n21e7dYMPPrA6eS5aBEePWv8eM8Y1yUakWrWsL99Bg+Cnn6wv0X/+sT7nO3Sw+ndUrWq1Sjgq8lbe\nbdtg3TorYYl6jH5+cOmSdeyucOeOdSkpb1546y1o3Dj6HTvGQFCQdewvv2y9TwcOWEnYpUvQsCGc\nOwe//GINxOYQY0yaegAZgVDghRjLvwWWxbFNNcC0ahVoIiJMnK5cMWbiRGNq1TIGjMmSxZivvzYm\nPDzubVT6VXlyZdNhUQdXhxGvHWd2GEZgfjn5i8k9Orf56JePXB2SckPh4cZ8/70xp07FXnf9ujF1\n6hiTI4cxW7emfGzJYc8e6xjAmDFjEi4fHm5Mp07GZMxozM8/x11uyBBjMmc25sSJ5IvVUWPGGOPp\nacyffxqzbp0xxYoZkz27MZMmGTNunDGVKlnHW7iwdewZM1rP8+a1lhUtaszRo1ZdgYGBBjBANRPf\n93N8K93xATwCRAC1YiwfA/waxzbVrBcr0Hz6aew35tgxY9q0sd4cT09jWrUyZuFCY/r2tV7Bxo2N\nOff/7d13eFVV1sDh306j9x46BIiiICCIiHRpiqCOIspQVNTPio69omPFioNlsAAiojIiFqoiIEUE\nQlGK9N5rgNBCsr4/1g0kIQkhuTVZ7/PcR3POPmfvzb25Z2XXrefxTps8b8XuFcIgZNyKcYEuSpaS\nkpOk8luVpdOoTsIgZPKayYEukgkxJ0+K9Omj34WRkSL/939nvg/37BFp3FikVCmR+fMDW87cSk4W\nefJJrec332Sd7t57RZzTICwrR46IVKmizxd/2r9fpGRJfa9SxMeL3HGH1i8qSuSmm0QmTBBJTNTz\nR4+K/PqryKBBIn37pg2SshtwOJE8MEw2FedcJWAbcLmI/JHq+OtAKxG5PINrGgNx1aq1YvPmEjRp\nAtHRkJQEUVG9mDChF1Wr6uIxPXtCuXJnrp06VedxHzum/Vg32YzCfEdEGLdyHGv2r+Fo4lGOJh5l\n4faFLN65mF2P7KJgRMFAFzFLAycPZMgfQwDY99g+ShcqHeASmVBx9Kh+502dCsOG6XTPwYN1HMRd\nd+lU1z174OefoUGDQJc290Tg1lt1AbIZM6B587PTPPssvPSS/nsMGHDue379tXZZVK+uz5aU1003\naTeULzzxhE4FXrcOKlZMe27lSj1WqlTG144ZM4YxY8akORYfH89vv/0G0EREFmWacVbRSCi+yEWX\nysKFcdKrl3aVvP22SI0aGuk995xGd5nZt0+jQRAZPjzzdCZvGrdinDAIKf16aan6dlWp95960uij\nRjJ49uBAFy1bZm+aLQxC6rxXJ9BFMSFk3z6Ryy8XKVJEm+RTxMeLvPiiSIkSItHRZ5rd84pjx0Su\nuEKkXLm0f+X/9ptI27b6HBh8Hr/6yckio0Zp68kdd2hrR61aItWq+aa7futWfcY9/bT37plvu1RE\nA4h5wJBUPztgC/BoJukbAxIXF3f6wwQiV10lsnp19v7Bk5NFBgzQJsXp07N3jQl9CScTpPo71aXL\nF10kOasBQEEspVul97jegS6KCRHbtolceKFI2bKZd5XEx+v4jbxozx6R2rVFYmNFJk8W6dBBnxkN\nG4p8/33u7z9rlt5v5szc3yu9O+/UcRgHD3rvntkNOPLktFjgbWCEcy6OM9NiC6OtHFkqWFA3B1q8\nWBeNye7I6W9X/o+dbb/gik1fcP31RZk3D+rWzXkFTGh4bfZr7Diyg1/6/BKyszvCXBhTek+hVKFM\n2lCNSWXPHl2dMyFBZ2DUq5dxuuLF/VsufypbVp8Tl18OnTvrLI1vv4UePbyzRHqLFlCjhs6cadUq\n9/dLsWoVfPqpzozJakE0X8mT02JF5BvgEeBFYDHQAOgkInuyc32JEjrlJzvPj0MnDtF3fF9uHHsj\nP67+ngGv/krFitr3tm9fzutgckdE+Hzp5/Qd3/f0Spretm7/OgbPGcyjLR4lpnSMT/Lwl/rl6xNd\nLDrQxTBB7uBBXXvhwAEdn5FZsJEf1Kun62uMH6/LlF9/vff2YwkL07Ei33yjy7t7Q1KSrr4aHa3T\nYAMhTwYcACLygYjUEJFCInK5iCz0dh6zN8+m4UcN+W7ld4zsMZIaJWswb9cvTJigK7Bdd92ZzYOM\n/xw8fpBbxt1C3/F9+Xzp58TtiPNJPg9OfpAKRSvw1JW2SbLJ+xISdLGqjRt1EGidOoEuUeA1bKgL\ne/li47dbb9XnyMSJub+XiC7hPnWqTm4oGKBx7Hk24PC1Dxd8SOsRralcrDJL715Kn4Z96FCzA9M2\nTKNmTY1658/Xkcd33aVL5Vrw4XuzN8/mko8uYdKaSYy+fjQlC5Zk4hov/Mam89Pqn5iwZgLvdHqH\nwpEBWibQ5Ct//w2ffKIz4vztxAn9A2rJEv0uu/hi/5chv7ngAmjSRLtVcuuVV+DDD+G//9WVTQPF\nAo4ciD8ezxPTnqBPwz7M7DeTmqVqAtC+VntW7FnB9sPbadEC/vgDevfWrY+7dtV+v4ED88aGPcFo\n6PyhtB7RmirFq7D07qXccvEtdKzdkUlrJ3k1n+OnjvPg5AfpWLsj18Ve59V7G5ORxERd8XLAAKhd\nW6c0equp/VyOHtW8f/sNfvwxf26rHii9e+tYkQMHcn6Pzz6DZ57R5dnvuMN7ZcsJCzhy4MOFH3L8\n1HFebvcy4WHhp4+nbPM9bf00QJvb3nwT1q6Fv/7SHfWGDIHRowNS7Dwt4WQCT057kn4N+zGj3wyq\nl6wOQNeYrizYtoDdCbu9lteniz5lc/xm3uv8XsgOFDWh5Z13YMUKHZjYsaP+4RITA++/79sWj5Ql\nrKdNg+++g7ZtfZeXOdvNN+uOuf/7X86unzAB7rxTW9mfeca7ZcsJCzjO07HEY7wz7x36Nux71iC7\n8kXK07BCQ6ZtmJbmuHM6ivnVV/UDNHCgjvQ23vPtym85cvIIz7R6hoiwM5OvOsd0RhCmrJ3itbwm\nr5tMq+qtqFc2H4+YM36zcaPuWvrAAzowccQI7V5p106PVaumi03t3Jmz+8+cqU3ua9emPb58uS5s\ntXWrtm506ZLLipjzVrEiXHXV+XernDgBb7yhLVPdumlgGgx/G1nAkcqmg5vOmWb4kuHsPbqXx654\nLMPz7Wu255f1v6Ss73GWIUO0S2XgwFwV1aTz2eLPaFuj7enurRQVilagSaUmXutWOZV8ipkbZ9K+\nZnuv3M+YrKQM9itdWpvEU9Spozucrl4Nt9yiW7xXq6Y7dn7xBXz1FYwdqytizp+f+f1Xr4Zrr9W/\nfuvU0QBj6FC9rkULndr6xx86lsAERu/eGvBtOvfjCRHt9rroInjySe2C+/JLCA8/97V+kdUiHfnl\nhWfhr4oPV5Rth7ZlurhJYlKi1Hi3hvQc2zPTNBNXTxQGISv3ZL683siRuqjLTz9lmsSch7X71gqD\nkFFLR2V4/tlfn5XSr5eWU0mncp3X71t+FwYh87bMy/W9jDmXceP0u+Lbb7NOd+CAyBtv6OqU+thJ\n+3rrrbOvOXxYpH59kXr1RHbu1P2hrrlG94sCkc6ddfEuE1iHD4sULiwZ7vN1/LjIunW6QNjo0bqv\nF+hCZMuW+a+M+Xql0fN9pQQc5R8uLxd/cLEcOJbx8nhfLP1CGIQs3rE403/4wycOS+SLkTL0j6GZ\npklO1g9G1aoihw5lmsxk0zPTnpHirxaXhJMJGZ5P2RF17ua5uc7rpZkvSfFXi0tiUmKu72VMVg4d\n0h05r7lGstzFOrXkZN2G4fBhDUL27hV54gn9pn/ttbTpevbU3UFXrEh7jz17dKnyRPuIB41bbtHl\nzp9+WqRXL5HmzUXKlz87sKxTR2T8+Ox/Xrwlv680miNDuwzlrri7uHbMtUzpPYVCkYVOn0uWZF6b\n8xpdYrpwScVLMr1H0aiiNK/SnF82/MK9zTJeXcU5nZ5Uvz489ZSOODc5k5ScxIilI7i5/s2ZTk9t\nVrkZpQuVZuKaiVxe9ay9+87LtA3TaF29dZpxIsbk1urVuulZWJh2YxQrplNQ9+/X74fs9r87B4UK\npT32yisQFaUbdp08qeM93nlHNw0bO1anX6ZWtqyOGzDB48479b0aORJq1YLYWB1TU60aVKmir8qV\n9XMTzOxbM5XapWvz0y0/0eHzDlz95dXcfendtK/ZnjKFyzBh9QSW7V7GB10/OOd9OtTqwNu/v82p\n5FOZPphq1ICXX4aHH9YPk81rz5lpG6ax9dBW+jfqn2ma8LBwOsd0ZuLaify73b9znNexxGPM3TKX\n1zu8nuN7mPxp6VJ9SBQocPa55ct1qfCICKhUCQ4fhkOHdPbJ22/rd0VuOAcvvACRkRpsrFqlYzwe\nfRT+8Y/c3dv4R+vWOhA0GAZ+5oYNGk2nRdUWfNfzO3Yc2UHP//Wk3BvluHTYpTw05SGuqHoFV1a/\n8pz36FCrA/En4lm0I/NdegHuuUcH88ya5a3S5z+fLf6MC8pewGWVs14coEtMFxbtWMTOIzkcyg/M\n3TKXE0knTk9/NiY73nsPLrlEB16mH8C5ZIlOO61YUfdvWrBAZ6Bs365rL9x9t/fK8cwz8NprOi2/\ndWtt+TChI9SDDbCAI0OdYjqx8t6VbHloC591/4x6ZeshCP9um72/jptGN6VoVFF+Wf9LlumiorQ5\n888/vVHq/Gf/sf2M/3s8tzW67ZzrYXSq3QmHY/LayVmm23BgA00/bsrGgxvPOjdtwzTKFS7HReUv\nyk2xTT4ybBg8+KAuuFSwoG729eij2noxf76ua1GzJvz6K5Qr5/vyPP64ToP97jttUTHGnyzgyEKV\n4lXod0k/Rl8/mnUPrKNtzeytehMZHkmbGm3OGXAA1G943AKOHBrz1xhOJZ+id4Pe50xbrkg5mlZu\nes5lzkf9OYqF2xfy75lnB5e/bviVdjXb2WJf5jQRbZnYsOHsc6NGaQvFffdp4DFvnrYq/Oc/0KAB\ndOgAF16o+5KULu2/Mrdqlbd3cjXBywIOH+lQswNztszhaOLRDM8nJSfxwowX+CamKEv2zyI52c8F\nDGJr9q3hsk8uY/ji4VmmG75kOFfXvZqKRStm675dY7oydd1UTiWfyjTNN8u/oVTBUoxcOpK1+8+s\nhBR/PJ4F2xfY+hsG0GXFR4yASy+Fxo11IF/Llrox1r59OsCvXz+4/XZde8c5bVF4/HEdz1GlClxx\nBUyZEphtwo0JBAs4fKR9rfacTDrJb5t+O+vcjsM7uGrUVbz424tEhkVxrOpPbNzo/zIGo982/Ubz\nT5uzdOdSHpj8AFvit2SYbsraKcTtiOO2S27L9r271ulK/Il45m6Zm+H5FXtWsHzPcj68+kPKFynP\nS7+9dPrczE0zSZZk2teygCM/WbFCZ5R98IG2TLz7LjzyCFStCv37Q4UK8NNPurhSiRLamlGpEvTq\npa+PPjp7J9GUbc0nTYKiRQNTL2MCwXrxfKR+ufrUKlWLbmO60aZGG7rX6073et1ZuXclvcf1JiIs\ngml9pjFk9jDGb5nO0qX6V1J+9sWfX3Db97fRslpLPuv+GS0+bcH9k+5n/M3j06Tbk7CHft/3o2Pt\njnSr1y3b928S3YQqxaswfMlwWlVvddb5scvHUrxAcbrHdmd3wm4GThnIU1c+Rd0ydfl1w69UL1Gd\nmiVrZnBnk9ccPaore771FiQlaetEeLi+ihTRrcPvvTftFu29esGuXTrddPduXY48aFZ4NCYIWAuH\njzjnmHvbXIZ0HkKYC+OhKQ9R7d1qdPqiE40qNWLJ3UtoU6MNXS5oC5XimP/noUAXOWBEhEEzBvHP\n7/5J7wa9mdx7MjVK1uC9Lu/x/arv+W7ld2nSDvhxAIlJiYzoPoIwl/2PcJgL4/5m9zP6z9HsOLzj\nrPNjV4zl2nrXUjCiIAOaDKBS0Uq8OFPXk562YRrta7a38Rv5wNSpujT0u+/C889r98nJkzrQ88gR\nDSrefTdtsJGiQgXd3+Sll2xQpjHpWcDhQxWKVuCepvcwpfcU9j66lzE3jGFkj5FMunUS5YuUB6Bd\nzbYQlszMDfl3buw3y7/hhZkv8Eq7V/j02k+JCo8C4IYLbuCautdw/6T7OXRCA7KPF33M96u+59Nr\nP6VSsUrnndedTe6kQEQBhs4fmub48t3LWb5nOTddeBMABSMK8vSVTzNm2RhmbpzJst3LrDsljzt2\nDPr0gU6ddO2LP//UqaRRUYEumTF5gwUcflKiYAluvuhm+jTsk+av8tqlalM0uQorj00PYOkC69PF\nn3JltSt58son07QgOOd4v+v7HDx+kKenPc3fe/9m4OSB3NXkLrrHds9RXiULluSORnfw4cIPSTiZ\ncPr42BXandKxdsfTx25rdBuVi1Wm5/96AtC2hu3NnVcdOKDbvn/7LQwfrtux160b6FIZk7dYwBFg\nzjkaFGvLwZLTOXIk0KXxv62HtvLL+l/o27BvhuerlajGv9v+m/cXvE+3Md2oVqIab3V8K1d5Ptj8\nQeJPxDNiyYjTx8auGEv3et0pEHFmKcgCEQV4ptUz7ErYxYXlLsxRi4oJftu361TRFSs00OjXL28s\nsmRMsLGAIwhcFdMWKi3m9yUHAl0Uvxu1dBQFIwpyY/0bM01z/2X306hSIzYd3MSXN3xJkagiucqz\nRska/OPCf/DOvHdISk5i+e7lrNizgpvq33RW2n6X9KNO6TpcU+eaXOVp/CcpSWeV1Kmj3SMvvQQz\nZmiXSXqrVuk27PHxMHu2bs9ujPENG9YUBG5u3oYXlgrjF/3GVS1z1lUQikSEkUtHcv0F11O8QOYr\nEUWERfBjrx/ZdHATjSs19kre/7r8X1z2yWX8sOoHluxcQvECxbmq1tk7VkWFR7H4rsVpWj5M8Fqy\nBO66S1fx7NlT9yV5803dQyQyUqezliihC18VLw6//64rfE6ZoueMMb5jAUcQiK1Yk8iE6sw+Oh3I\nPwHHH9v+YNW+VQztOvScaaOLRRNdLNpreTer3IyW1Vry5u9vcuDYAXrE9sg0qMhti4rxvSNHdBrq\nu+/qJmmzZulCXADJybBsmbZgbN6sG6MdOqStGl266M6pZcoEtPjG5AsWcASJyoltWRc+I9DF8KuR\nS0ZSpXiVgA3G/Nfl/+K6r68D4I2r3ghIGUzuzZ4NffvCjh3affLww2lnloSF6VLiDRoErozGGBvD\nETQuLdOWhGJL2ZuwL9BF8Yvjp47z1fKv6NOgD+FhgVkdqVvdbtQpXYcSBUpwVe2zu1NMcDt+HB57\nTAd8Vqqk01ifeMKmsRoTrCzgCBJX19e/8r+NmxngknjXgWMHuO7r6/hh1Q9pjv+w6gcOHj9In4Z9\nAlQyCA8L5+NuH/Pfa/57eu0P41vffqstELndO2jxYt3HZMgQ3XJ95kyIifFOGY0xvmEBR5Bof2lV\n2F+bn5blrfU4nvjlCb7/+3u6f9WdJ3958vTGaSOXjqRZdHMSd9bj2291v4olS3L/IDpfrWu0pudF\nPf2baT714Ydw4406ZuLTT3N+n6VLdXxGRAQsXKitHLaEuDHBz8ZwBIkqVSBqW1vml847AcesTbMY\ntmgY73d9n4STCTwx7QlmrptPhSVvM7H8ZJj4ARffqWmd062+S5eG1q2hXTtdD8E2twp9IvDqq/D0\n07rs9+HD8OijcPXVEH2e44D37oUePXQDtNmzoXBh35TZGON9IdPC4Zyr7pz7xDm33jl31Dm3xjk3\nyDkXmS5dVefcBOdcgnNup3NusHPnseFGgDgHtcLaspvl7E7YHeji5NqJUye486c7ubzK5dx96d30\nrPooXXZP4/e1yxlf7lLCXST/uasns2bpRldHj+oOmvfdpw+Vhx6Ce+4JdC1MboloC8TTT8MLL+gs\nkrfegkKFdPMzkezf69Qpnep65Ah8950FG8aEmqB/EKcSCzhgAHAh8BBwN/BySgJPYDERbblpDvQF\n+gEv+rmsOdK8UhsAZmycEdByeMNrs19j7f61vHDpMO6/L4yYGPjj6zY8W34R7Wq15Z7L7uS+O0rS\nsqWug1CwILRpow+l336D996DL77Q5nMTeo4cgR9+gBtu0HUwhgyB557TwLpUKRg6FMaP1zEd2fXI\nIzpWY+xYqF7dd2U3xviIiITsC3gEWJvq5y5AIlA21bG7gANARBb3aQxIXFycBNKwYSLcV1cGjP+/\ngJYjt1bsXiGRL0ZJg4FPS0SESOnSIq+8InL4cPbvcfKkSN26Ip06+a6cxrt27xYZMkSkY0eRqCgR\nEKlTR+TLLzNOf911IhUqiOzbd+57jxih9/vPf7xbZmNM7sXFxQkgQGPJ4pkdSi0cGSkJ7E/1c3Pg\nLxHZm+rYFKAEUN+fBcuJhg2Bbc34Y1Po/lm/8u9kWr1xF4l7qrPn22cYPBg2bYInnzy/8RiRkfDK\nK7oC5LRpviuvyR0R+OMP+Oc/dRzSo4/q8cGDYfVqffXqlfG177+vU1v/9a/M75+UpANM77oLbrtN\nu2GMMaEpZAeNOudigPuAh1MdrgjsSpd0V6pzQf0kr18f2FeP9fGTAl2U85aYqE3nz43/lFNdZ/Fw\n1V95ZU1BCuRiRfDrr9e9LR57DBYs0AWcTHDYswfGjYOPP4a4OKhZE15+Gfr3z/6qnZUq6XiOO+7Q\nMTx9++qOrRGeb6Wff9ZulD//hFtv1f1RbFM1Y0JXwAMO59yrwONZJBHgAhFZneqaysAk4GsR+czH\nRfSbIkWgYkQsO5P3sffoXsoWLhvoImXL4sVw++2wZPVeCjzyBD3r9+Gtf+R+9VDn9C/lVq3g668z\n/0vZ+MeBAxpkfP01/Pqrtm506gQ//QSdO+dsauptt2mwMWyYzlqpUAFuuQVWroTJk+GKK2DePLjs\nMu/XxxjjX07OZ5i4LwrgXBngXH8TrReRU5700cB0YK6I9E93rxeAbiLSONWxGsB6oJGIZNjC4Zxr\nDMS1atWKEiVKpDnXq1cvevnxSdf30WV8XvRi3rl4FgOvb+m3fHPqrbfg8cfhwguh1sA7mLnnW1bd\nt4ryRcp7LY9rr9W9MFauhAIFdK2ORYt0QOn11+sgRONbCQlQu7bOKGrdWmeL3HCDDvj1BhFdh2Xk\nSPjyS91Y7fXX9f21Vg1jgseYMWMYM2ZMmmPx8fH89ttvAE1EZFGmF2c1wCPYXkBlYBXwBZ5gKd35\nzpw9aPROdNBoZBb3DYpBoyIih44eE54PkwItPpZFiwJblj17RLZuzfx8QoJIgQIiAwaIzFw3VxiE\nvD//fa+XY/lykbAwkdtuE+nVS6RsWR1ACCKVKon8+KPXszTpTJig/97++BVJShJJTvZ9PsYY78hz\ng0Y9LRszgE3AY0B551wF51yFVMmmAiuAUc65Bs65TsC/gaEikujvMudEsUIFqVmyBiVrr6JLF9iw\nIXBluecebebOzPTpcOIEPDDwFA/+fA9NKjXhriZ3eb0cF14IAwbAZ5/pIMQ779Spsxs2QKNG0K2b\nLhJ28KDXszYeU6fq9u2NGvk+r7Awa9UwJi8K+BiO83AVUMvz2uI55tCoKhxARJKdc9cAHwJzgQRg\nBPC8vwubGxeUjyWx3d9s+F37yOfM8V7TdXYlJ+vskP37Yd06bU5Pb9IkqFEDfj38IUt3LmXeHfN8\nthHb0KG6Z0bJkmmP//QTjBgBAwfqIMMvv9Qmf+NdP/+sAzotEDDG5FTItHCIyEgRCU/3ChOR8HTp\ntojINSJSVEQqiMjjIuLnHTpyJ7ZMLBsO/82UKRAfD9dcowPr/OnPPzXYAPj++7PPi2jA0frqnTw7\n/RkGNB5As8rNfFaeiIizgw3QB2D//jrGo04dbe1YtsxnxciXtm6FFSvgKttQ1xiTCyETcOQnsWVj\nWX9gPZWrnWDSJH2A9u3r343Npk/XAZodOuiKkOmtWQPr18Pmeo8TGRbJK+1f8V/hMlC1qrZ21Kql\nAdru0F8dPmj88osGdu3bB7okxphQZgFHEIotG0uyJLN2/1oaN4bRo3UJ6Oee818ZZsyAFi3g5pu1\nSyf9A3zSJIgseojZB8fwZMsnKVM4m4sv+FDRovDjjzqupEcPXVTK5N7PP0PjxlA2NGZpG2OClAUc\nQahe2XoArNq3CtCH5+uv68JKo0b5Pv+kJN2zom1b7aIQ0daD1CZNgthrJpOYnMgNF97g+0JlU9Wq\n2gWUsjZIgGd9h7zk5DPjN4wxJjcs4AhC5QqXo1TBUvy99+/Txx55RBdJuuMObXHwpSVLdOxImzZQ\nvrwuvpS6W+XoUW0BibzoBxpUaECNkjV8W6Dz1KzZmfUcXnop0KUJbX/+qauK2vgNY0xuWcARhJxz\nxJaNTRNwOAcffgiXX64tHuvXZ32PHTtynv/06bp9eDPPGNAePfSv3IQE/XnGDDiRmMhaN4Hu9brn\nPCMfuukmGDQInn9eBzyanJk6VbeBb9Ei0CUxxoQ6CziCVPqAAyAqSsdylCwJXbvCvn0ZXzt4MERH\na+CQEzNmaKtGyj4o3bvreIipU/XnSZOgQrNZHEo8GLQBB+iGcVWqWCtHbvz8s04zzs2eOMYYAxZw\nBK2UgEPSDUIoU0Yf+Pv2nQkEUvvkE11qvEABXSjrfJ06pYtqtU21FUpMjG4sl9KtMmkSlL/yByoX\nq0zjSo0zvlEQiIrSoOOrr+Dvv8+d3qR17BjMmmXdKcYY77CAI0jVK1OPwycPs/PIzrPOxcTobIy4\nOOjT58x02XHjdBvve+6BZ5/Vnw8fzvj+hw7pdMf0Fi3Sa9q0SXu8Rw/Nc+VKWLdO2FXqe66tdy0u\nyFeCuu02be15JbCzdkPSrFk648cGjBpjvMECjiAVWzYW4KxulRTNm+ugyP/9T7dvnzZNd1O96Sb4\nz3/gn//UwZ3jxmV8/0cf1b9cJ0xIe3z6dN21tmnTtMd79NDdQp96CiIqL2P3yY1B3Z2SokAB/RMd\nvwAAGjpJREFUeOIJnVq8dm2gSxNafv5Zg7ULLwx0SYwxeYEFHEGqVqlaRIRFZBpwAFx3HQwZoju2\ndu0K7drp7IywMKhWTbtFRo48+7qtW2H4cB0LMmDAmRVFQcdvtGwJkZFpr2nSBCpX1m6Vah2/p1hU\nMdrUaOOVuvraHXfotucvvxzokgSHQ4fg6afTvu8ZmTpVg9Igb8QyxoQICziCVGR4JDGlY7IMOADu\nv19nYnTsqK0dUVFnzvXtqy0WmzalvebNN3WRrN9/1376Bx7Q44mJ2oyevjsF9KHTo4cnXc3v6RzT\nmQIRoTGSsGBBbQUaNercs3vyg48/1i6mZ5/NPM3OnTol1sZvGGO8xQKOIBZbNpa/9517tOOgQTq+\nokiRtMevv16nNI4efebY7t0wbJgGGbGx8N57en7cOFi4UKe+ph4wmlrPnhBRehtbkheGRHdKanfe\nqQNuX3010CUJrKQk+OADXTX0o48y33cmpSuuQwf/lc0Yk7dZwBHE6pWpx6q9q3J8fbFiGnSMHHlm\nxc1334Xw8DOtGr17a8vF3XfDN9/oNU2aZHy/K6+E17/7kXAXTpc6XXJcrkAoXFjHrYwYoYFVZtau\n1Zk+J0/6tjzbtukD/7XX9D358EPt5oqL822+kydrK8+4cbrvzMMPn70a66pV2iLUt692RRljjFeI\nSL5/AY0BiYuLk2AyfPFwYRCScDIhx/eYOlUERObNE9m/X6RYMZFHH02bZudOkTJlNF3Xrlnfr8sX\nXaTtiLY5Lk8gHTkiUru21vPyy0U++0yPnTwpMnasSIcOeg5Ebr9dJDnZu/mvXy/yxhsizZtrHhER\nIqVLixQuLBIWdubYjBnezTe1zp1FLr1U6/b995rnjz+eOX/0qEiDBiKxsSKHD/uuHMaYvCMuLk4A\nARpLFs/aiIBGOyZLKTNVVu9bzSUVL8nRPdq108Gen38OFSvqOI2HH06bpkIF/Qv7ppvSjt84fuo4\na/atISExgSMnj3D4xGGmbZjG4A6Dc1ijwCpSRFcd/eEHHcdw++3w4IPa+rFrl66mOXKkjmu5+264\n+GI9f75EdN2P+fN1HETKa/dunTXTubO+H9266cDdFMePw9VXww036LW1anmv7qA7/E6erK08zmn+\nHTro56FjRx3/M3AgrF6t+Rct6t38jTH5mwUcQaxeGd3E7e+9f+c44AgP126TYcP0IXPHHRp4pHfj\njToDJXXA0f/7/ny17Ks06QpFFKJHbI8clSUYREXBP/6hr40btRvj8GHo318DjBSrV+uD+IIL0q5D\ncfIkvPMOTJyo66FceKGmqVlTN4z7+Wd9bdum6WvVggYNNIC55BJ9wBcrlnHZChaEsWPhsss0GPj9\ndyhe3Ht1/+ADHcfSs6f+7By8/baWa+hQnQI7bJgGY6n/LYwxxiuyav7ILy+CtEtFRKTCGxXk+enP\n5+oey5adaa7ftCl71+xN2CtR/46SJ35+Qv7a9ZdsOLBBdh/ZLccTj+eqLKHi1CntfihZUmTVKj02\nbZp2NYSHi3TrJtKkiXaHpHTDgMhFF4k89JDIxIki8fE5y3vlSpESJbR769Qp79Tn8GG95+OPn33u\n//5PpHhxkaJFRW65xftdScaYvM26VPKIemXrnd6mPqfq14dWreCii3R9juz48q8vSZZkHr78YcoV\nKZer/ENReDiMGaMLrF17LTRqpEukt2ypg2tTWgCSk2HzZli3Tls7KlXKfd6xsZpH16460PWtt3K/\nFsbo0dqSc/fdZ5978UVdRC46Wgey2robxhhfsIAjyMWWiWX+9vm5vs/5buQ2fMlwrql7Tb4MNlKU\nLKnTjZs1g19/1fEd//xn2gdyWBjUqKEvb+rYUbtuHnhA1w9p3PjMq1077RrJzKlTGjCllFNEu0y6\ndcu4nGXLwpw5ULp05t09xhiTWxZwBLnYsrGM+nMUyZJMmMv5LOaw87h06c6lLN65mEFtBuU4v7yi\nTh0daFqkiHfHU2THfffp+JA5c3SPmy++0Gm05crp1N1rr02bXkSPP/KI/tywob5KldL1Nt55J/O8\n6tf3XT2MMQYs4Ah6zas059ipY/yy/hc61vbPLlrDlwynfJHydIkJrbU2fMUb3SQ54ZwOMk29+NaW\nLRqIdO+uy9K//bbOJtm0SQcE//KLDoCtWxeWLtWfV6/WLqD27QNTD2OMAQs4gl7zKs1pUKEBQ+cP\n9UvAcTLpJKP/Gk3fhn2JDI889wXGr6pW1dlEn3wCDz2kXWV9+8LgwVCihE577dQp7TVHj+p/bWyG\nMSaQbKXRIOec496m9/LT6p/YeHCjz/P7afVP7D26l/6X9Pd5XiZnnNPWjSVLdCzHs8/qVNdly84O\nNkDXGSlc2P/lNMaY1CzgCAG3XnwrxQsU56OFH/k8r+FLhtM0uin1y1unfrCLiYHZs3VBr48/1hYO\nY4wJVhZwhIAiUUXof0l/Pln0CcdPHfdZPjuP7GTSmknWuhFCIiI08DDGmGBnAUeIuKfpPew7to+v\nl33tszxGLR1FRFgEN190s8/yMMYYkz9ZwBEi6pSpQ6fanXh/wftpjosIHyz4gNdmv5ar+4sIw5cM\n57oLrqNUoVK5upcxxhiTngUcIeTepveyYPsC5m/ThcBOnDrBbT/cxr0T7+X5Gc+TcDIhx/feeHAj\nK/eu5Ob61rphjDHG+0Iy4HDORTnnljjnkp1zDdKdq+qcm+CcS3DO7XTODXYuFytmBZGudbpSvUR1\n3l/wPruO7KLd5+0Y89cYXmjzAieTTjJj44wc33vOljkAtKzW0kulNcYYY84I1QfxYGArulnMaZ7A\nYiK6vkhzoC/QD3jRz+XzifCwcO5peg9fL/uaZp80Y93+dczoN4NnWz1LzZI1mbR2Uo7vPWfzHGLL\nxlKmcBZrZhtjjDE5FHIBh3OuC3AV8AiQfimjTkAscKuI/CUiU4BngXudc3likbPbG91OeFg4ZQqV\nYcGABTSv0hznHF1iujB57eQc33fOljlcUfUKL5bUGGOMOSOkAg7nXAVgGNAbOJZBkubAXyKyN9Wx\nKUAJIE8sLFGmcBlW3ruSubfPpWqJqqePd47pzLoD61izb8153zP+eDzLdi+zgMMYY4zPhFTAAQwH\nPhCRxZmcrwjsSndsV6pzeUK1EtUoGFEwzbG2NdsSFR6Vo26VeVvnIQgtqrbwVhGNMcaYNAIecDjn\nXvUM/szsleScq+ucewAoCryecmkAix10ikYV5cpqV+aoW2XOljmULVyWumXq+qBkxhhjTHBs3vYm\n2nKRlQ1AW+By4IRLuwvVQufcaBHpD+wEmqa7toLnvzvPVZCHHnqIEunWh+7Vqxe9evU616VBoUtM\nF56Z/gzHEo9RKLJQtq+bs2UOLaq2wNnuXsYYY7IwZswYxowZk+ZYfHx8tq51InLuVEHAOVcFKJ7q\nUDQ6PuMGYL6IbHfOdQZ+BCqljONwzt2JtoqUF5HETO7dGIiLi4ujcePGvqyGT63Ys4L6H9Rn0q2T\n6BzTOVvXnEo+RcnXSvJc6+d47IrHfFxCY4wxec2iRYto0qQJQBMRWZRZuoB3qWSXiGwVkRUpL2AN\n2q2yXkS2e5JNBVYAo5xzDZxznYB/A0MzCzbykgvKXkDV4lXPq1tl6c6lJCQm2IBRY4wxPhUyAUcm\n0jTPiEgycA2QBMwFPgdGAM/7vWQBkDI99nwGjs7ZMoeo8CiaRDfxYcmMMcbkdyEbcIjIJhEJF5E/\n0x3fIiLXiEhREakgIo97ApF8oXNMZ1bvW836A+uzlX7OljlcGn3pWbNejDHGGG8K2YDDZKx9rfZE\nhEVkq1tFRJiz2Rb8MsYY43sWcOQxxQsU54qqV2SrW2Vz/Ga2Hd5mAYcxxhifs4AjD+oS04VfN/zK\niVMnskyXsmGbLfhljDHG1yzgyIM6xXTiaOJR5m2dl2W6OZvnULdMXcoVKeenkhljjMmvLODIgy4q\nfxGFIwuzYPuCLNPZhm3GGGP8xQKOPCgiLILGlRpnGXAcOnGIv3b/ZQGHMcYYv7CAI49qGt2UBdsy\nDzjmbZ1HsiRzRTULOIwxxvieBRx5VNPopmw4uIE9CXsyPD9r0yzKFCpjG7YZY4zxCws48qimlXUP\nu4XbF2Z4fvrG6bSp0YYwZx8BY4wxvmdPmzyqdqnalCpYKsNxHAknE5i/bT5ta7QNQMmMMcbkRxZw\n5FHOOZpWbpphwDF3y1wSkxNpW9MCDmOMMf5hAUceljJwVCTNHndM3zid8kXKc0HZCwJUMmOMMfmN\nBRx5WNPopuxK2MXWQ1vTHE8Zv+GcC1DJjDHG5DcWcORhKQNHU3erHDl5hAXbFtj4DWOMMX5lAUce\nFl0smuhi0WnW45i9eTZJkkSbGm0CVzBjjDH5jgUceVzT6KbM3z7/9M/TN0ynYtGK1CtTL4ClMsYY\nk99YwJHHNavcjIXbF5IsyQDM2DSDtjXa2vgNY4wxfmUBRx7XNLoph04cYs2+NRw6cYi47XHWnWKM\nMcbvIgJdAONbl0ZfCujA0VIFS5EkSTZg1BhjjN9ZwJHHlSpUipjSMSzYtoDI8EgqF6tMTOmYQBfL\nGGNMPmMBRz7QNFpXHD2ZdNLW3zDGGBMQNoYjH2ga3ZRFOxaxeOdi604xxhgTENbCkQ80q9yME0kn\nAGz/FGOMMQFhAUc+0KhSI8JdONHFoqlZsmagi2OMMSYfsoAjHygcWZgm0U1oUL6Bjd8wxhgTEBZw\n5BMTb5lIwYiCgS6GMcaYfMoCjnyiTOEygS6CMcaYfMxmqRhjjDHG50Iu4HDOXe2cm+ecO+qc2++c\nG5fufFXn3ATnXIJzbqdzbrBzLuTq6Q1jxowJdBG8Kq/VB/JenfJafcDqFAryWn0gb9YppB7Ezrkb\ngM+BT4GLgRbAl6nOhwET0a6i5kBfoB/wor/LGgzy2gc2r9UH8l6d8lp9wOoUCvJafSBv1ilkxnA4\n58KBd4F/iciIVKf+TvX/nYBYoK2I7AX+cs49C7zmnBskIqf8VmBjjDHGnBZKLRyNgWgA59wi59x2\n59xE51z9VGmaA395go0UU4ASQOp0XpGTCNRf1wBs27bNL3n565pgrk9OrwvmOvmrPjnNK5jrZJ87\n/15jn7uc5+PPz2ooBRy1AAc8j3aRXA0cAGY450p60lQEdqW7bleqc14V7G9uXvvABnN9cnpdMNfJ\nvvhVML9HOb0umOtknzuV194jCIIuFefcq8DjWSQR4ALOBEcvich4z7X9ga3AjcDHuShGQYCVK1ee\n10Xx8fEsWrQoKK8BSExMDNry5eSaYK5PTq8L5jr5qz45zSuY62SfO/9eY5+7nOfjjWtSPTuzXOzJ\nich5ZeRtzrkywLkWiVgPtAR+BVqKyNxU188DfhaRZ51zLwDdRKRxqvM1PNc3EpGlmZThFmB0buph\njDHG5HO3isiXmZ0MeAuHiOwD9p0rnXMuDjgB1APmeo5FAjWATZ5kvwNPOefKphrH0RGIB1Zkcfsp\nwK3ARuD4eVfCGGOMyb8Kos/iKVklCngLx/lwzr0D3ADcjgYZj6FjOWJFJN4zLXYxsB3tpqmETqMd\nJiLPBqbUxhhjjAl4C8d5egRIRIOIQsAfQDsRiQcQkWTn3DXAh2grSAIwAh1oaowxxpgACakWDmOM\nMcaEplCaFmuMMcaYEGUBhzHGGGN8Lk8EHM65J51z851zh5xzu5xz3znn6maQ7kXPCqVHnXM/O+di\n0p0v4Jx73zm31zl32Dn3P+dc+XRp6jjnxjvn9jjn4p1zs5xzbUK8To2dc1Odcwc89fqvc65IkNZn\ngHNuuuffPtk5VzyDe5Ryzo32pDngnPvE2/UJQJ2ecs7N8WxKuN/bdfF3nZxz1T3vy3rPPdY45wZ5\nZp6FXH08ab53zm1yzh3z3Otz51wlb9bH33VKlTbKObfEk65BKNfJObfRcy7lleSceyxU6+NJl+Wm\npsEiTwQcwJXAf4DLgA5AJDDVOVcoJYFz7nHgPuBOoBk6oHSKcy4q1X3eRWe93AC0QpdS/zZdXhOA\ncKANutz6UuAnl+4hHip18nwh/gys9tyjM7oM/IggrU8hYBLwMrooXEa+RBeLa4/WvRXwX29WxsOf\ndYoEvkEHRPuSv+oUi64cPAC4EHgIuNuTPhTrA7pO0I1AXeB6oDYw1puV8fBnnVIMRhdZ9NWgP3/W\nSYBngAroCtSVPHl7k9/q486xqWlQEZE89wLKAsnoImEpx7YDD6X6uThwDLgp1c8ngOtSpannuU8z\nz89lPD9fkSpNUc+xdiFapwHAjnR5XeRJUyuY6pPu+tZAElA83fFYz30bpTrWCTgFVAy29yg7dUqX\npi+w35f18HedUqV9BFibh+rTzfO5Cw/lOgFdgOWpfrcahPLnDtgAPODrOvijPugfv1uAfv6sT05f\neaWFI72SaDS4H8A5VxONZKelJBCRQ+i02ss9hy5FpwmnTrMK2JySRnSRsr+BPs65ws65COD/0P1a\n4nxbJd/UCSgAnEyXV8riZy29WoO0clKf7LgcOCAii1Md+8WT12W5LPO5+KpOgeTPOpVMyceH/FIf\n51xpdDHBOSKSlJsCZ4PP6uScqwAMA3qjD0N/8fX79ITTbuZFzrlHnO5G7ku+qk92NjUNGnku4HDO\nObQbYbaIpKwuWhF9szPa2C1lU7cKwEnPm55ZGoCr0Df5MPoL+CDQWTxrgfiCj+v0K1DR80sX6Zwr\nBbzqubfX+58hV/XJjorA7tQHPF/4+8/zPufFx3UKCH/WydN3fR/wUU7vkY08fF4f59xrzrkjwF6g\nKtAj5yXOVn6+rtNw4IN0AbxP+aFOQ4Cb0W7xj4CngNdzWt5z8XF9srOpadDIcwEH8AHaJ3yzD++/\nC7gCaAqMR8dwVPBRfil5+qROnl+AvsDDwFG0mW89+tBO9nZ+Hr5+jwLB6pRDzrnKaD/11yLymQ+z\n8kd9BgOXoH+YJAGjfJgX+LBOzrkH0C7jlIex83YemfDp+yQi74rIbyKyTESGod999zsvD1hOxZf1\nSbOpqScw7I8GMzf6IL9cyVMBh3NuKNAVaCMiO1Kd2on+sqQPCip4zqWkicpgFPDpNM659p779xSR\neSKyRETuQ1s6+nq1Mh6+rhOAiHwlItFo01wZ4AWgHBp4eFUu65MdO4H0s3DCgdLneZ9s80Od/M5f\ndXLORaOtbLNF5K4cFjc7+filPiKyX0TWisg0oBfQ1Tnnk648P9SpLdq8f8I5lwis8Rxf6JwbnrNS\nZy1Av0vz0a7nGrm8z1n8UJ+Ue57erlVETqLf3dXOu8A+lmcCDs8b2x1oKyKbU58TkQ3om9g+Vfri\naJ9+ys6zcegAr9Rp6qFvWkqaQmjkmP4v/2R88G/p4zr9nj4/EdkjIkfRSPwYOnslmOqTHb8DJZ1z\njVIda4/+cv+Rw6Jnyk918it/1cnTsjEdWADclstiZ5VPoN6jlHEBBXJ5n7P4qU73Aw1Tvbqg3383\nAU/npvwZCeD71Aj9Dt99roTnw0/1Sb2pacp90m9qGjwCPWrVGy+0yeoAOhWpQqpXwVRpHkN3pe2G\nTh0aj0bsUenuswHt22sCzAFmpTpfBv1QjgUaAHWAN9BBlheHYp08ae5Ff+nqeP4/Abg3SOtTAf3y\nuwPPqG/Pz6VSpZkILES7vK4AVgGjgvhzl506VfUcew7d/TjlIVAkFOuEtqatAaZ6/v90XiFan2ae\n352GaEDfDpjt+exFhmKdMsi3Oj6apeLH96k5Ou6uAVATHdi7C/gsFOvjSfMOOhHgKnRK9idoy0cJ\nb79Puf53CXQBvPTmJqP9pelffdKlG4SOUTiKbqMbk+58AXTu9F50UOhYoHy6NI3R/uY9wEH0Ad4x\nxOs00lOfY+huu7cEcX2ez+RefVKlKQl8gT6YDwAfA4VDvE7DM8mrVSjWCe2CTH8uGUgK0fpchM44\n2OO5xzpgKFAplD936dJX95z3RcDhr/epEdoKuh/9w2oZ+uD3dlDoz++GcHTs0A70mTQFuMDb75E3\nXrZ5mzHGGGN8Ls+M4TDGGGNM8LKAwxhjjDE+ZwGHMcYYY3zOAg5jjDHG+JwFHMYYY4zxOQs4jDHG\nGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhifs4DDGOMXzrnhzrlk51ySc+6kc26nc26qc66/cy7b\nW5875/o65w74sqzGGO+zgMMY40+TgIrovhyd0a3phwA/Ouey+33k0F1LjTEhxAIOY4w/nRCRPSKy\nQ0SWiMhr6BbeXYF+AM65h5xzfzrnjjjnNjvn3nfOFfacaw18BpRI1VrynOdclHPuTefcVs+1v3vS\nG2OCgAUcxpiAEpHpwFLges+hJOB+4EKgD9AW3Q0TYC4wEDiEbt1dCXjTc+594DLgJnS777HAJOdc\nbd/XwhhzLrZbrDHGL5xzw4ESInJ9BufGABeLyEUZnLsB+FBEynt+7gu8IyKlU6WpCqwHqorIzlTH\nfwb+EJFnvF4hY8x5iQh0AYwxhlTjMpxzHYAngFigOPo9VcA5V1BEjmdy/cVAOLA63QDUKGCvz0pt\njMk2CziMMcHgAmCDc6468CPaPfIUsB+4EvgEDR4yCziKAqeAxkByunNHfFFgY8z5sYDDGBNQzrl2\naAvFW0ATtKv3kVTnb053yUm0NSO1xZ5jFURkjg+La4zJIQs4jDH+VMA5VwFPcAB0QbtPfgBGoYFH\npHPuAbSloyVwV7p7bASKegKVpcBREVnjnPsS+Nw59wgagJQH2gFLRWSSz2tmjMmSzVIxxvhTZ2A7\nsAFdk6M1cJ+I9BD1J/Aw8BjwF9ALDUhOE5HfgY+Ar4HdwKOeU/2Az9FZK38D44BLgc2+rZIxJjts\nlooxxhhjfM5aOIwxxhjjcxZwGGOMMcbnLOAwxhhjjM9ZwGGMMcYYn7OAwxhjjDE+ZwGHMcYYY3zO\nAg5jjDHG+JwFHMYYY4zxOQs4jDHGGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhif+3+2vp9NFAZg\nlgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1014,7 +1014,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 17, "metadata": { "collapsed": false }, @@ -1024,18 +1024,18 @@ "output_type": "stream", "text": [ "TRADING STATS\n", - "AVG Monthly Return :: 0.68%\n", - "STD Monthly :: 4.98%\n", - "SHARPE :: 0.47\n", - "MAX DRAWDOWN :: 49.38%, 11.0 months\n", - "Correlation to SPY :: 0.03\n" + "AVG Monthly Return :: -1.01%\n", + "STD Monthly :: 7.03%\n", + "SHARPE :: -0.50\n", + "MAX DRAWDOWN :: 170.53%, 105.0 months\n", + "Correlation to SPY :: -0.05\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VEUXwOHfhNBC7wgihCJVQTpSBOlNEBQNkCDSBESk\nfII0KVJEMEjviAKhi3QpQaRrQq9KbwEMIi1A2nx/zAZSdpNNyAY2nPd59gl779y5czdL9uzcmTNK\na40QQgghhCO5POsGCCGEECL5k4BDCCGEEA4nAYcQQgghHE4CDiGEEEI4nAQcQgghhHA4CTiEEEII\n4XAScAghhBDC4STgEEIIIYTDScAhhBBCCIeTgEMIIYQQDicBh3AqSqlwOx5hSqkaSqn8VrbfVEqt\nV0pVjuM8Yy3H+NjYH73uYKXUP0qpXUqpkUqpfFaOectStkWkbe0s24KUUi9ZOeY3pdRhK9uVUspL\nKbXJct5gpdR1pdSvSqlOSqlUdryWEXXstbwud5RSp5RS85VSlay0O/K1nrGUc7eU6WfZV9fGudYr\npW4ppXLb0S5PpdR2S/n7SqnDSqnBSik3K2XPK6VW26innKVNXlZ+X7G9d16Jo31ulvYcsrTvP6XU\n70opTxvlbZ3rqh2vRX6l1Dyl1Gml1AOlVIDltRkayzF/WOrvYmN/u0hteNNGmUuW/aujbY/+Wl2x\nvOfeilbO5u8lUpl5sbw2QbEdK5yT67NugBDx1Dba83ZAHct2FWn7CSDiA2oRsB5IAbwKdAd8lVIV\ntNbHbJznQ+Ac0FQplU5rfd9GuYi6XYAsQAWgJ9BTKdVBa70kWnlbixelBvpbjo21vFIqDbAKqAfs\nAr4FrgNZgbeAKUBFoJONc0WYBHSz1LUACAWKAg2BM8C+aOUnAH5ASqAs0AVopJR6DRgPtAamKqVK\naa0fRWrv+0ADoKvW+pqtxiilXAAf4H3gd+ArIAiobvn3+0qp2lrrfyIdZu9iUDeI+d7pC+QFPifq\ne+cfbFBK5QR8Ma+TD+Y1TAO0BOYrpRoCbXTMRao2AT9G2/YgtgYrpQphXu/7wFzgPPAS5rX/Ahhq\n5ZjCQHnMe7cNMCOWUzzA/M52R6vjLczr8tDGcRHXogB3zHvIVynVSGv9q6WMvb+Xh0AHor7+AGF2\nHi+cidZaHvJw2gfmD36YjX35gXCgd7Tt9S3bJ9s4rhbmD95bwCPA0966LfvyAScxf9Bfi7T9Lcsx\nLSJta2fZ5o/5cM0dra5twOFo26Zb2vepjfYXAj6J43XLaaljmo392WNrt2X7p5Y6+lmeV8IELV9H\nKpMeuAzstON3+aXlPGOs7GtsqXtdtO3ngNU26itnqc/Lxv41wNl4vt82AiFAYyv7xlrO979o28OB\niQl4b0+xvP9eju33E237MCAAaG753bxipUzEe24ZJlB1ibZ/BvAHcDb6a2vtWoBSlu0b7Pm9RCoz\nD7gT39dFHs77kFsq4kW0w/KzkI39bYDjWuvtwBbLc7tprS8BH2F6Lb6w5xBgFKbHsX9sBZVSL2O+\nEW7QWk+2cf4zWuvpcZzTHfOtcre1nVrrwLgajfmmH/EtF631Pkww1FcpVcxSZiSQA+gcW0WWXpu+\nmEBtgJX2rAPmAw2UUhXtaFuis9xmqgfMs7Qnui+Bv4F+SqnUiXDKgsBlrfXl6Dti+f14YAKJdcBt\nTA+GNRrTQ5MNeHwbTCmVEngP03MXvdfBekVaHwUCsbwPhLBFAg7xIor4w3gr+g7L2IcWmD+4YP4o\nv23pSreb1nov5raE1TENVpzDdFN3imOcQ0PM/9uF8WmPFRcsP99XSqVNYB2FLT9vRtr2JebDZ4ZS\nqiymu/1brfXxOOqqhrkltUhrHW6jTEQ3fpMEtvdpNcV8UP9kbafWOgzzvskCVI22O41SKlu0R1zj\nbC4A+ZRStexpnCUgKgz4aK1DgJXEHiyfB/ZigpQIjYCMwGJ7zmk5bxbMNd+Mq6yN46O/LtmUUhkS\nUpd4vknAIV4EbpY/YjmVUtUwXbka800wuqZAJiBi7MUqTFf+hwk471Egh1IqvZ3lR2LGR/SLpUxE\nz8HRyBuVUimj/cHOGtuJtBlL8SPmVsVlpdQKpVRvpVTRWA7LYKk7t1KqEfA9pit9RaR67wKfYcZd\nbMIEUiNia4tFCczvJMYA2UgOWX4Wt6M+RygRrR3WHMIERdHb2AEzNiTicYO431MTgWBgq1Jqv1LK\nWyn1TiwBYlvgotZ6j+X5YqCEUur1WM6xCGgeqUemNbBdxzLWhifBU3ZLb9MyzGfJ0jiux5r0RH1d\nIh7Rxz6JZEACDvEiGIb5I3YNMxixKGbsxc9WyrYG/LTWZwG01vcw3dPxuq1icc/y065va1rrc5hv\nz52VUrlsFMsYre4IjYj6B/u8Hef7CDMO4yzmnv+3wAml1BalVB4rh8y11H0VM/4hLWZ8xP5o9a7E\nDKTNAnTXkQaQxiLiNbobS5mIfRljKeNIT9PGXzCDmyMedYFfiYWlV6gM5j2RHxPIrQKuK6U6Ri6r\nlEoBtCJqz4Qv5vcV23t3KWZwdRNLYNyEuHvPIoKnG5gekirAeK3193EcZ80DoDZRX5s6xHFrUTgn\nmaUiXgQzMd/C0gBvY/5wx3jvK6UyYT64J1lmCETYDbRQShXWWp+Ox3kjejZi+4CK7mvAE/MHt5eV\n/RF1Re812Yn5Qw1m3IjV6Y7Raa2nAdMs3eJVgU8wr4EPZrBoZMMs5wnD3DY5Ecvtjz8xt3/87WkH\nT64rtuDMng98a+ydMRGXyG28Y6OMrTZe1lr7xveElvdbO6WUwvSwNMH8fmcopc5GqrM+ZqzMn5He\nuwoz6NgDG71mWutApdQWTKCdDvMldHkczfoFmIx5Xe8Cx7TWsc64iUWY1npbAo8VTkYCDvEi+DvS\nH+b1Sqlw4Bul1LZo385bYQZ69sEMYIxMY74pDovHeUsBNyy9JHbRWp9TSi3A9HJ8Y6XIScwHSSng\nSKTjbmK+0WIrH0Qc570FrAXWKqW2ATWUUvksA2AjHE3Ih6adTmCu63XAVv6GiFsDkceDPMT0tFjj\nFqlMYjgBNLO0Y6eNMqUx75W4xqzEi9ZaA8eAY0qpvZhAog2W3zkmYLB2m1CDmepqGQRtzSJgFmbK\n7QbLbbHYJCh4EkJuqYgX0UjMN7Ovo21vjfkQfx8zUj/yYyu2R/zHoJSqgpkFE2u3uQ1fY3ssxwZM\nD0NCbvHYy8/yM0YiMgfaCfwHtLZ8m7emHeYDdG2kbRcwuVWsKWYpf8HG/vhaiwmKvKzttOQRaY0Z\njLwrkc5pTZTfjzIJ0Zphxj1Ef9++j7mVGNv75WfMWJxKPBksLUSik4BDvHC01rcxuQbqRwyos0w3\nrQEs0VqvjP7ADDQtrJSqEFf9Sqn8wA+YHArjEtC+s5hEXF2A3NH2XcKMpWiolOpuo4o4/18rpXIp\npWIMvrRMi6yD+QCKz+2jp2Lpkh+HCRJGWWlXY0zAsVFr/UekXeuBl5VS70QrnwroiBlnEGWMyVO0\ncQ9mmnR7S3uiG4WZJfKNneNWYqWUqqaUstYLHXHuk5afLTC9OZNtvHfXAi0tv9sYtElq9wkmkdia\np223ELbILRXxovoek2GyP+ZbacQ3QFt/cNfzpGfhz0jbyyml2mA+5DNjMo22xHxgt7XkKIiLtW/0\nIzFjOYoSbUaKpd0FgIlKqQ8tbb4BZMeMw2iK6f6PzcvAH0opX0zvzTVMMjAPzC0Db631v3a0PTGN\nwQyS/MLSQ7QCM6iwOuZ1P4bJbxLZTOBjYJlSah5wAJNb4gOgJCZpW2gittELE3SsUibt/Q7MbbgW\nmDEvi0lAkGlDP8z7ayVPZu+Uw7wvAjGZX8G8NjeBPTFqMFZjss42xgw6hWjvOa211am+T6mwUmqg\nle0HtNbrLf92tfz/sWblU4wNEc8hCThEchDboEBtbb/WOkAptQhoo8x6IK2BC1rrI9HLWsrfVkrt\nBD5QSvWOVPeHlkcoZiDh38B3wAxrCZtstNVa+84opX7iyW2EyPseKKUaYD54PIH/YWZF/IeZlvkJ\nMdNoR3cKk0a9EdAVyIUZ63AU6Ki1nmdHuxOVZQBqK6WUF6Z3YjiQCpPP5Cvgu+gfQFrrh0qpGsAQ\nzEybjzBBij/QUGu9Oa7TxrON1yxTQftgble0wPzuDwPttNYLbJwjIa/fSMz78i3LTzdMFtFFmGyu\nF5VSOTADoRdZxnlYsxWTHr0NTwIOe9pjrd3xuZaimN9hdHMwATyYYM3We3UHcNHOcwknoGy/R4UQ\nQgghEsdzNYZDKVVdKbVamRUIw6Pfl7WUGa6UuqrM6pqbLYsVRd6fWik1RSkVqJS6q5RaHt8skUII\nIYRIXM9VwIGZB34Qkw7Z2iqZ/TCJijpjVsO8D/waLUXwBMy9ypaYQYB5iJQJUQghhBBJ77m9pWLJ\nldBca7060rarmHUZvC3PM2JWO2yntV5qef4P8GFEFklLquYTQOVoo9uFEEIIkUSetx4OmywD+3Jj\nBkABoLW+A+zDpNYFKI8ZCBu5zCnMwKMqCCGEEOKZcJqAAxNsaEyPRmTXeZKrIBcQbAlEbJURQggh\nRBKTabGY5ZExaxGcJ/HSIAshhBAvgjSY3EC/WpZZsMqZAo5rmGQ1uYjay5ELk+wnokwqpVTGaL0c\nuSz7bKlP3CskCiGEEMK2NsSSHt9pAg7LolbXMEsZH4bHg0YrAVMsxfwxSXhqY9YHiBg0+gq2s/CB\nZSnvBQsWULx4jGzPNvXq1Qtvb+94XUdSHQNQt25dNm+OK+/R058rqY55nq8nocc9z9eUVNeT0HM9\nz9ck77ukPUbedwk/T2Icc+LECdq2bQuWz1JbnquAQymVDrMWQUTa3YJKqdLAv5Y1JCYAg5RSpzEX\nNgK4jFkuGa31HaXUHOA7pdQtzAJdE4FdccxQeQhQvHhxypYta3d7M2XKFK/ySXkMQMqUKZ/b9iXk\nmOf5ehJ63PN8TUl1PQk91/N8TfK+S9pj5H2X8PMk8jGxDkl4rgIOzCyTbTxJnzvesn0+8LHWeqxl\nZcQZmHUrdmDSFwdHqqMXZs2L5Zi0uRsBW4tcPRUPD4/n9hiAvHnzJsm5kuqY5/l6Enrc83xNSXU9\nCT3X83xN8r5L2mPkfZfw8yTlexWt9Qv/AMoC2t/fXycnTZs2fdZNSFTJ7Xq0Tn7XlNyuR2u5JmeQ\n3K5Ha+e6Jn9//4hOgrI6ls9aZ5oWK4QQQggnJQFHMpbgbq/nVHK7Hkh+15TcrgfkmpxBcrseSJ7X\n9NymNk9KSqmygL+/v7/NwTMXL14kMDAwaRv2gsqePTuvvPLKs26GEEIIO+zfv59y5coBlNNa77dV\n7nkbNPpcunjxIsWLFycoKOhZN+WF4ObmxokTJyToEEKIZEQCDjsEBgYSFBQU7zwdIv4i5nMHBgZK\nwCGEEMmIBBzxEN88HUIIIYQwZNCoEEIIIRxOAg4hhBBCOJwEHEIIIYRwOAk4hBBCCOFwEnAIIYQQ\nwuEk4BDMnz8fFxcX3NzcCAgIiLG/Zs2avP7664+fFyhQABcXF3r27Bmj7Pbt23FxcWHlypUObbMQ\nQgjnIgGHeOzRo0eMGTMmxnalVIznSilmzZrFtWvX4iwvhBBCSMAhHitTpozNICK6kiVLEhYWZjVA\nkXT5QgghopOAQwCmV2LAgAGEhoZaDSKiK1CgAF5eXnYHKEIIIV5sEnCIx9zd3eMVRAwcOJCQkBC7\nAhQhhBAvNgk4RBQRQcQ333wTZ9kCBQrg6enJrFmzuH79ehK0TgghhLOStVQcICgITp507DmKFQM3\nt8Sv193dHU9PT2bOnEn//v3JlStXrOUHDRrETz/9xJgxY/D29k78BgkhhEgWJOBwgJMnoVw5x57D\n3x8ctY5cfIKI6AGKEEIIYY0EHA5QrJgJCBx9Dkdxd3enbdu2zJw5k379+sVZfuDAgfz000988803\nNGvWzHENE0II4bQk4HAANzfH9T4klUGDBrFgwQK7xnIULFiQtm3bMmPGDCpWrJgErRNCCOFsZNCo\nsCpyEGHPjJVBgwYRHBzM2LFjJfGXEEKIGCTgEID1ZF0RM1ZOnToV5/ERAcrBgwcd0TwhhBBOTgIO\nAVhPR16oUCE8PT0fpzKPXNZa+UGDBuHq6io9HEIIIWKQMRyCdu3a0a5dO6v75s6dy9y5c6NsO3v2\nrNWyhQoVIjg4ONHbJ4QQwvlJD4cQQgghHE4CDiGEEEI4nAQcQgghhHA4pws4lFIuSqkRSqmzSqkg\npdRppdQgK+WGK6WuWspsVkoVfhbtFUIIIYQTBhxAf6AL0A0oBnwBfKGU+jSigFKqH/Ap0BmoCNwH\nflVKpUr65gohhBDJl7W0CtY44yyVKsAvWuuNlucXlVKtMYFFhJ7ACK31WgCllBdwHWgOLE3Kxgoh\nhBDJ2Rebv7CrnDP2cOwGaiuligAopUoDVYH1lufuQG5ga8QBWus7wD5MsCKEEEKIRLD9/HZ8z/na\nVdYZezjGABmBk0qpMEzQNFBrvdiyPzegMT0akV237BNCCCHEU9Ja029LP4rnKM4JTsRZ3hkDjg+A\n1sCHwHGgDPC9Uuqq1vqnp6m4V69eZMqUKco2Dw8PihYt+jTVCiGEEMmCj48PPj4+AATcDcDvqh+v\nZX7NrmOdMeAYC4zWWi+zPD+mlCoAfAn8BFwDFJCLqL0cuYADsVXs7e1NWSvLvO7fv/+pGy2EEEI4\nE601j8IekSpFKlyUGYHh4eGBh4cHIWEhlJxakgZZGzCy+EjKlSsXZ33OGHC4AWHRtoVjGY+itT6n\nlLoG1AYOAyilMgKVgClJ2E4hhBDiuXXu1jlG/D6Cf4L+4fbD29x+dJvbD29zP+Q+D0IeEBQShEZT\nOGthlry3hLIvPflCPnv/bE7/e5rlrZYTeiXUrvM5Y8CxBhiklLoMHAPKAr2A2ZHKTLCUOQ2cB0YA\nl4FfkrapQgghxPMnXIfjtcqLv2/+TcW8FcmfOT+ZUmciU+pMpE+VnrQp0+KW0o00rmmYuG8ib855\nk4kNJ9KpbCfuh9xn2PZheJb25PVcr7P/in13AZwx4PgUE0BMAXICV4Fplm0AaK3HKqXcgBlAZmAH\n0FBrLSuL2XDkyBGGDRuGn58f169fJ1u2bJQoUYJ33nmHTz81KU4KFCjAxYsXHx+TI0cOihYtSu/e\nvWnevDnnz5+nZMmSNG/enIULF8Y4x5IlS/Dw8GDKlCl07do1ya5NCCFEVHP2z2HnxZ34evlSy71W\nrGVblWxFr4296LK2Czsv7iRPhjzceniL4TWHx+ucThdwaK3vA70tj9jKDQWGJkGTnN7u3bt5++23\nyZ8/P507dyZ37txcunSJvXv3MnHixMcBh1KKN954g759+6K15urVq8yYMYMWLVowffp0OnfuzFdf\nfcWXX35J+/btqVOnzuNz3L17l969e1OlShUJNoQQ4hm6du8aX2z5go/KfBRnsAGQxjUN05pMo9or\n1ei8tjNBIUH0qdKH/Jnzx+u8ThdwiMQ3cuRIMmfOjJ+fHxkyZIiyLzAwMMrzvHnz4uHh8fi5p6cn\nhQsXxtvbm86dO9OnTx8WLlxIt27dOHLkCKlTpwZgwIABBAYGsmnTJsdfkBBCCJt6/9obVxdXxtUd\nF6/j2rzehjdeeoMpf0xhYPWB8T6vMyb+Eons7NmzlCxZMkawAZA9e/ZYj82VKxfFixfn3LlzAKRI\nkYKZM2dy9uxZvv76awD8/f2ZNm0affv2pWTJkol/AUIIIeyy8fRGfI76ML7eeLK5ZYv38SVylGBK\n4ylkSZsl3sdKwCHInz8//v7+HDt2LN7HhoaGcunSJbJle/LGrVSpEl27duXbb7/l6NGjdOnShYIF\nCzJkyJDEbLYQQoh4CAoJotu6btR2r43n655Jfn4JOAR9+/YlKCiIMmXKULVqVfr378/mzZsJDY05\n1SkkJISbN29y8+ZNDh8+jKenJzdu3KBVq1ZRyo0aNYrs2bNTs2ZNDhw4wNSpUx/fXhFCCJE0tNac\n/+88i48uxmOFB1fvXmVa42kopZK8LTKGwwGCQoI4GXjSoecolr0YbindEqWuOnXqsGfPHkaPHs2v\nv/7K3r17GTt2LDly5GD27Nk0bdr0cdlff/2VHDlyPH7u6uqKl5cXY8aMiVJnhgwZmDBhAq1atcLD\nwyPKAFIhhBCOde7WOb7Y8gW/X/idG/dvAFAoSyGmNZ5GkWxFnkmbJOBwgJOBJyk3M+6sa0/Dv7N/\nlCQsT6tcuXIsX76c0NBQDh06xM8//4y3tzfvv/8+Bw8epFixYgBUrlyZkSNHAuDm5kbx4sXJmDGj\n1TorVKjwuG4hhBBJY82pNXit8iJzmsx0KtuJyi9XplLeSuRIlyPugx1IAg4HKJa9GP6d/R1+Dkdw\ndXWlXLlylCtXjiJFitC+fXuWLVvG4MGDATOItFatuKdRCSGESFqh4aEM9h3MmF1jaFa0GT80/4HM\naTI/62Y9JgGHA7ildEvU3odnpXz58gAEBAQ845YIIYSw5UHIAw5fP0z/rf3ZcWEHY+uMpe+bfZNs\nnMbvv9tXTgIOwW+//UbNmjVjbF+3bh3A49spQgghEk5rzaU7l9BaxztpVnSrT61m2fFlHAg4wMnA\nk4TpMF5K/xK+7Xypkb9GIrU4bvfvw1df2VdWAg5Bjx49CAoK4t1336VYsWIEBweza9culi5dSsGC\nBfnoo4+edROFEMKhHoY+JKVLSlK4pLC6PygkiKG/DaVLuS4UylrI7np9z/nyy6nV7L9yiCM3DnE7\n+BYpVAoG1RjEoBqDcHWJ/8dwYFAgLZe2pFj2YlR/pTqfVfqMN3K/wWu5XiONa5p41/c05syBe/fs\nKysBh2D8+PEsW7aMDRs2MGvWLIKDg3nllVf49NNPGThw4ONBoUqpeHfRJeQYIYRIKmHhYcw5MIeB\nvgMpmKUgazzWkDNdzihlgkKCaOrTFN9zvvz74F9mvzPbRm0x624w9z1CgtzgUhW43huulSH8ZT9G\n6K/ZdGYTC1osoGCWgvFq88oTKwnX4Wz12hqjrUkpJATGj4f69WHDhrjLS8AhqFevHvXq1Yuz3Nmz\nZ+NVb/78+QkLC0tos4QQIkFWHF9B0exFKZWzVKzldlzYQc+NPTlw7QAepTzYdn4bb855k41tN1I4\na2HAjI9otrgZey/vpVnRZiw5toTvG3xPulTp4mzHtr/8CHG9RZOHa/B8ryo5ckCOHDB4cBPW/1if\nC53bUnp6aSY1nES70u3s/nK2+OhiarvXfqbBBsCyZXDxInzzjX0BhyT+EkIIkWyc+fcM7y17j7Iz\nyjJi+whCwkJilDl24xgeKzyo8UMNXF1c2dthL4taLmJPhz24urhSZU4V9l3ex8PQhzRf0pxdF3ex\nrvU6vOt7cy/4HitOrLCrLT/s2AQPMzLu80q0agW1akGpUuDjA9Xdq3Bn7EFq5XyP9r+0Z8mxJXbV\nGXA3gN/O/4ZHKY+4CyeC0FAICoq5XWsYO9b0brz6qn11ScAhhBAi2ZjuN50sabLQp0ofhm0fRsXZ\nFTl47SBaazad2USDBQ0oNa0Uv1/4nXnN5rG3414qvVwJgAKZC7C7w26KZitKrfm1qDW/Fr9f+J21\nrddSs0BN3LO4U7NATX44+INdbfnt0ibSBNTm1cJRbyakSQOrVkHJIhnY3W8e1XI3YPTO0Wit46xz\n6bGluLq48m7xd+P92sTXzZvw5psmoDh1Kuq+TZvg0CHo18/++iTgEEIIkSw8DH3IvIPz+KjMR4yu\nM5p9HfcRFh5GhVkVKDq5KPUX1OfG/RsseHcB53qe46MyH+Gion4MZk2blc2em2n8amMOXjvIGo81\nvO3+9uP97cu0Z9v5bZy7dS7Wttx+eJsrag+vudXD2p2S9Olh/XrIkwdOzPqCw9cPs+lM3KtpLz62\nmIZFGjo8v8bVq1CjBpw7BxkyQM2acPz4k/1jx0L58ma7vSTgEEIIkSwsO7aMmw9u8kn5TwAol6cc\nfp39GFJjCOXzlGdbu234d/anzettSJUilc160qZMy9L3lnK973XqFIy6LEPL4i1Jnyo98w/Nj7Ut\n645vA5cw3n2tvs0yWbOanoL7x2uSz6UC3+z6JtY6z906x97Le/mw5IexlgMzoNPbG5YuNeMs7Og8\neXKec1C9Oty+DTt2mDwbOXOa4OLIEfDzA19f+OILrAZTtsigUSGEEM+lwKBAuq/vzoOQB2RNm5Us\nabKQNW1W3in6DqVzl45RfprfNOoUrMOr2Z4MKkiVIhWD3xoc73MrpciYOuayDelSpaNViVbMPzSf\nIW8NidFDEmHRvk1wszAtPdxjPU/u3FCjuuL6iS/YFv4+f175kwp5K1gtu/TYUtK6pqVp0aZW90fm\n7R31dkfu3FC5snlUqWJ6J9ysLMd14gTUrWtu++zcCQUKmO2+vmZ7rVpQvDgUKgQtWsTZjCikh0MI\nIcRzJzgsmJZLW+J7zheN5u9//+bXM7/y3d7vqDm/JmdvRZ01d/DaQfZc3kPX8l0d3rb2b7Tn/H/n\n2X5+u80yu65twi2gHkXsWCetbl049cu7FMpSmLG7x9ost/jYYpoWbUr6VOljre/CBRg2DD7/HK5d\ng19+gY8/hjt34Ouv4a23IFMmE3R4ekKjRvDGG/DSS2ZQa5YspmcjItgAyJYNtm6FggVNINK3L6Sw\nnrLEJunhEEII8VzRWtNtXTf2Xt7LtnbbeDPfm4/3/ffwP8rNLEfLpS3Z/fFu0qZMC8C0P6eRJ0Me\n3in6jsPbVzVfVYpkLcK8g/Oo5R5zbakz/57hP5czVMtU365bDnXrwv/+l4Km2fry/fGunP739ONp\nuRFOBp7k4LWDDKkxJM76Pv8cMmc2QUfGjPDOO+YBEBYGR4/Cnj2wezecPm1ul1SqZAKOvHnhvffM\n8dFlyQKbN8OiRdC+fdzXFZ30cAghhHiuTNg7gTkH5jCr6awowQZA5jSZWdlqJScDT9JtfTe01tx5\ndIeFRxbSuWznBGXuBJOiOyTmDFqrlFJ8VOYjlh9fzp1Hd2LsX3N8E4S50qJsTbvqe+0186Gf4qgX\nOdLlYPzcofSwAAAgAElEQVTu8THKLD66mIypM9KwSMNY61q71syA8fY2wUZ0KVJA6dLwySfw448m\n6Fi1CqZPNynKO3a0HmxEyJQJunaF1KnturQopIcjHk6cOPGsm5DsyWssxItt/d/r6bu5L/2q9sOr\ntJfVMqVzl2ZGkxm0W9WOKi9XISQshIehD+lYtmOCznn1qpn+GTGIM3v2uI/xfN2TQb6DWHZsGR3K\ndoiyb9n+TXC5Cg08rHziW+HiAnXqwPYtafls/GeM+H0EQ2sOJVf6XIDp8Vl8dDHvFns31tTlQUHQ\nowfUqwfvv2/XqZOUBBx2yJ49O25ubrRt2/ZZN+WF4ObmRnZ7/scLIZKVYzeO8eHyD2nyahNG1R4V\na1mv0l7su7yPHht6kDNdTpoVa0bejHnjfc67d6FJE5Pg6soVMxNj82ZzeyG669dNT4RSkC9TPuoV\nqsc3u76hWbFmZHczf7NCwkLw+3cr6a71Iz7rXtataxKCLS7UjdE7R9PUpyl5M+YlOCyYByEPOHXz\nFBMaTIi1jlGjTPC0aVP8Zo8kFQk47PDKK69w4sQJAgMDn3VTXgjZs2fnlVdeedbNEEIkoYu3L9Jg\nYQPcs7iz4N0FNmd/RObdwJv91/az9/Je5jWbF+9zhoZCq1ZmHMPOnZAqFdSubQZVbt0K+fKZcseO\nwdChsHw5zJ4NHSwdGhMbTqT6vOrUX1AfXy9fMqXJxL4r+whWd6mW3Xr+DVvq1jVTV/fvzsK4euNY\nfnw5wWHBpHRJSTq3dPSo2IPa7rVtHn/qlMmN8eWX2DVQ9ZnQWr/wD6AsoP39/bUQQojEFxYepndd\n3KVDw0Jj7Ltx74YuOqmodp/grq/euRqvegPuBuiZfjN1WHiYOU+Y1nPnan36dOzHhYdr3amT1q6u\nWm/a9GT7mTNaFyigdf78ZruHh9ZKmedFi2pdu3bUeg5dO6SzjMmiq86pqu89uqf7/zpY80VWPXFS\nzOuMS/Hipk3xFRamdbVqWhcqpHVQUPyPf1r+/v4a0EBZHctnrQwaFUII4XAT9k6g6tyqVJ5TmT+v\n/Pl4+91Hd2m0qBG3Ht5ik+cmXsrw5F7GzZvQrJnJG1G1qsl8WbOmGdwYHGzK5E6fm07lOuGiXAgO\nBi8vMwW0Vi24fNl2e8aMgVmzzKNu3SfbCxY0ia5SpzZjIXbsgGnT4K+/oFcv+O03064Ir+d6nY1t\nN3Lo+iGaL2nOisPr4GxdatWM55xRTDs2b45fki6AyZNND82cOZA2bbxPm2Qk4BBCCOFQ1+9dZ9j2\nYTQr2oyQsBAqza5E5zWduXr3Ki2WtuBU4Ck2ttkYYypojx7mw79kSbOeR4ECZgzFqFEmCIm8vsft\n29CwoVnBdMoUM4ahfn3499+obQkLgwEDzOOrr+Cjj2K2N18+E2j4+JjbLV26mNstzZtDeLjJaxFZ\nxbwVWeuxlp0Xd/L3/f2ku1aPEiXi/zrVrQvnz8OZM/Yfc/o09O8Pn35qbgU912Lr/nhRHsgtFSGE\ncJgOv3TQWcZk0YH3A3VIWIietG+SzjQ6k04xLIVOPSK13nZuW4xjli/XGrReuDBmfX5+Wr/6qtZp\n02o9fbrWly5p/frrWmfOrPVvv5kyJ05onS2b1lWqaH3/vtl244bWdepo7eKi9TffmNsq8VW9utaN\nGlnft+HvDTp97/K6Uatr8a9Ya33njrnFM3WqfeXDwrSuUUNrd3et795N0CkThb23VJ75h31CHkAe\n4CcgEAgCDkW/UGA4cNWyfzNQOJb6JOAQQggH8Lvip9VQpSfvmxxl+/V71/XnGz7X6/9aH+OYGze0\nzpFD63fftR0U3LundZcu5lMsbVqt8+XT+ujRqGX27dM6XToTIOzaZcrkyKH11q0Jv54JE7ROlUrr\n//6LuS8oyOz7/vuE11+tmrlue0yaZK7f1zfh50sMyXYMh1IqM7ALeATUB4oDfYBbkcr0Az4FOgMV\ngfvAr0op26v1CCGESDD/q/4EhQRF2aa1pufGnpTMWZIu5btE2ZczXU68G3jHSGSltUkspbVJRmVr\npke6dGb/qlUmi+aePebWS2QVK8LKlWZcRNWqZmXW/fvh7bet12mPFi3M+JF162LuW7PG7KsVM/mo\n3erWNeuWhIbGXu7sWbNWSrduT3e+pOR0AQfQH7iote6otfbXWl/QWm/RWkdeK7gnMEJrvVZrfRTw\nwvSKNH8WDRZCiORKa83Q34ZSflZ5ik0uxuKjiyN6jvE56sOuS7v4vsH3dmcAXbIEVqyAqVPNeI24\nNGsGixeblNzW1Ktn6hs8GLZvh5dftvfKrMuXzwQyK1ZE3f7ggVk9tXFjkzk0oerWNeNR/PxslwkL\nMwNjc+aEb2JfYPa54owBR1PATym1VCl1XSm1Xyn1OL2cUsodyA1sjdimtb4D7AOqJHlrhRAimQoL\nD6P7+u4M2z6MAdUGUCFvBTxWeFB9XnV+v/A7X2z+ghbFW/C2u31dCteuQffu8MEHiZsps2lTGD48\nYem4rWnZEjZsMJk9I4wbZ5JueXs/Xd0VKpj04Zs32y4zYoQZ1DpvHqSPfR2354ozBhwFga7AKaAe\nMA2YqJTytOzPjbmXdD3acdct+4QQQjylh6EP+WD5B8zwn8HsprMZWXskK1qtYKvXVm4/us1bP7xF\nYFAg4+qOs7vO3r3B1dVM83yetWhhejQ2bjTPL12C0aPNomlPm3TL1dWs3jphAhw8GHP/li0meBo6\n1EwRdibOmGnUBfhDaz3Y8vyQUqoU8AlmIKkQQggHuvPoDs0WN2Pv5b38/MHPUVZofdv9bQ50OcC8\nA/PImDoj7lnc7aozYhrqvHn2rWXyLBUuDK+/bm6rtGhhbqVkzAiDBiVO/VOmmFtBtWubjKdlypjt\nV69C69bmtsvAgYlzrqTkjAFHABB9ha8TQAvLv68BCshF1F6OXMCB2Cru1asXmTJlirLNw8MDDw+P\np2mvEEIkG3cf3aXBggYc/+c4m9puonr+6jHKuLq40qlcJ7vrDAuDzz4zYyO8rK/X9txp2RLGjzc9\nDosXm0DJ2uqsCZEli1kPJXLQUaoUeHhAypSwYIFZ8O1Z8PHxwcfHJ8q227dv23Wsihjc4yyUUguB\nl7XWb0Xa5g1U0FpXszy/Cnyrtfa2PM+ICT68tNbLrNRZFvD39/enbNmySXEZQgjhdO4H36fhwoYc\nun6ILZ5bqJC3QqLUO3OmSa61dy9UqpQoVTrcsWMmCMic2SQl27Mn8YOAW7dM0HH2rLnN4uMD27ZB\n9Zgx3jO1f/9+ypUrB1BOa73fVjlnHMPhDVRWSn2plCqklGoNdAQi3/WbAAxSSjVVSr0G/AhcBn6J\nWZ0QQoi4PAh5wDuL3+HAtQNsaLMh3sHGgwfw009w/37U7bdumayf7do5T7ABUKKECTT++w++/94x\nPQ4RPR0FC5pejZEjn79gIz6cLuDQWvsB7wIewBFgINBTa704UpmxwCRgBmZ2SlqgodY6OOlbLIQQ\nzu1h6EOaL2nO3st7Wdd6HW/me/PxvgcPzADH4sXNh6Mt48aZ2yUlSkRNDT50KDx6ZAZdOhOlzFTb\n4cOhcmXHnSdLFjNjZckS+N//HHeepOB0t1QcQW6pCCFETIFBgfx84mdm7Z/FkRtHWNd63eMprg8f\nmoXPRo+GGzcgd27IkAGOHDEzLSL77z+zDkrjxqZHY8MGk6zrk0/MlNXRo53/w/RFlpxvqQghhHCQ\n2w9vM2f/HOovqE/ucbn5ZN0nZEidgY1tNj4ONvbuNTM1Pv/czJg4eRJWrzY/582LWed335kMnOPH\nmwydy5ebxFaNGpnbBT17JvFFimfCGWepCCGESEThOpzfL/zO3ANzWX58OY/CHvFW/reY3GgyLYq3\nIGe6Jyk/Hz0yK6zmzm1ScL/66pN6WreGIUPMz3TpzLabN80tl+7dzTFgZnjUq2e2169vVmIVyZ8E\nHEII8QLbeHoj3dd35+ytsxTOWpjBNQbjVdqLvBmt5wr/9luzfPqBA1GDDYCvv4ZixUy2zYicFOPG\nmSXdv/giatkMGcwYCPHikIBDCCFeUI9CH9FpTSfyZ8rPD81+oNor1VC2VkvDTM8cOdJkBC1VKuZ+\nd3ezmNjYsWaaq9YwcaK5ZZIjhwMvRDgFGcMhhBDJ1N7Le+m0uhMPQx9a3T/3wFyu3LnCrKazqJ6/\neqzBhtbmtkjOnOa2iS0DB5oZHCNGmIXFXF2hb9+nvRKRHEgPhxBCJEOnAk/ReFFj/n3wLznT5WRk\n7ZFR9j8KfcSonaPweM2D4jmKR9mndcxl4VesMGuHrFr1ZHyGNdmzw5dfmtslrq5mCfWsWRPrqoQz\nkx4OIYRIZv65/w+NFjUiV7pc9KnSh7G7x3Lo2qEoZeYcmMPVu1cZXCPqQIr58834imrVYNIkCAiA\nu3fNjJR33jHLwcelZ0/IlQvSpDHHCQEScAghRLISkRH0fvB91rdZz6jaoyiWvRgd13QkNDwUsPRu\n7BiFRykPimUv9vjYuXOhfXto2NCk7O7dG/LmNQuV3bplxmPYI21aWLsW1qwx9QgBEnAIIUSyERYe\nRtuf23L4+mHWtl5LgcwFSJUiFbObzsb/qj8T95mIYc6BOQTcC4jSuzFzJnToAF27mqyWa9fC9esw\nezaULGnSd+fPb39bypQxvSRCRJAxHEIIkUz039KfVSdXseqDVZTPU/7x9kovV+KzSp8xyHcQDQs3\nZNSOUbR+rTVFsxcFYNo0M7ukRw8TWESM38iaFT7+2DyEeFrSwyGEEMnA8uPLGbdnHOPrjadp0aaA\nGX+xfLnZ//XbX5MzXU6qz6tOwL0ABlU3iTJ++skEG59/HjXYECKxScAhhBBO7q+bf/HxLx/TqmQr\nelYyecL374cKFeD992HnTkifKj0zmszg5oObj3s3QkLMSq2tWpn04xJsCEeSgEMIIZxYUEgQLZe2\nJE+GPMxuOhulFCtXmmXMX3rJZP6MWIm1fuH6rGu9ju8bfA/A4sVw+bKZwirBhnA0CTiEEMJJaa3p\nuq4rZ2+dZUWrFaRPlYHRo81aJY0bw/btJhHX+vVw+LA5plGRRmRNmxWtTZryRo2sZw0VIrFJwCGE\nEE5q9v7Z/HjoR6Y3nk7wlZI0b25ukQwebHov3Nzggw/M7JIxY6Ieu2mTWUpeloUXSUUCDiGEcEJn\nb52lx4YeNH2pCwv7eVK2LBw9CkuXwvDh4GL5654ypUktvmSJWQslwrffQvny8NZbz6b94sUjAYcQ\nQjihYb6jCQ/KzJpPvyMgABYtglOnzCDR6D7+GLJlMyu3ghlQunWr6d2QsRsiqUjAIYQQTubCfxdY\ncOQH2P0/1v7sxsGD4OFh1i6xxs3NpBufOxeuXTOBh7s7tGiRpM0WLzgJOIQQwskM2DCG8AeZ6Vvz\nExo3tq+Xols3c3uld29z26V3b9sBihCOIAGHEEI4kUu3L7H41BwyHO7LwP/FsmxrNFmymLTlPj6Q\nKZNZM0WIpCQBhxBCOJFeK74h/EEGRrfsFusy8dZ8/rlZwbVHj9iXmBfCEaRDTQghHEhrs2pqnTpm\nLMXTuHz7CisvzCL3uSF8MipDvI/PkwdOnDArwAqR1KSHQwghHGjJEmjWDLy9n76uzvO/RT9yY3qH\nT0mRImF1FChgxnIIkdQk4BBCCAe5dw/69IEUKWDOHAgPT3hdF25eY+M/Myjy7+c0q58p8RopRBKR\ngEMIIRzk66/h339h/nw4dw58fa2X+/vm37y78ANu3L9hs673pg5Eh6bix+6fOai1QjiWBBxCCOEA\np06ZFVi//BJat4bixWH2bOtl280dwarTS2k025NwHbMbZOKW5fiFz6WOHkfl0lkc3HIhHEMCDiGE\nSGRaw2efwcsvP8nm2bEj/PwzBAZGLftXwBX23PVBnWyB/63NDNw4Ksr+C7cu0ee3TqS70JJVgzsm\n4VUIkbgk4BBCiATS2qQSb9LErMgaMUZj1SqzONr330PatGabp6cpv2BB1Do+njEZQtOyuftc0v45\nhDH7vsL37DYAwsLDqDutLaFB6Vn44UzSpZM85MJ5OXXAoZTqr5QKV0p9F237cKXUVaVUkFJqs1Kq\n8LNqoxAi+dq2DZYvh7/+MsvBFy4MY8dCr15m2fcmTZ6UzZED3n0XZs0ygQfA6Yv32PVoOuVdOlG7\nWiaWdBsM52rRfIEH1+5do/+60fwdvIMmwQtoVi/rs7lIIRKJ0wYcSqkKQGfgULTt/YBPLfsqAveB\nX5VSqZK8kUKIZG3kSChb1ozX2LMHqlUzS8MHBMCECTFTjnfsCMePw9695rnXdz9AqjvM6WwGgjZt\nnIJO2RZy967irVkNGO8/lPQHBrJgpCzpKpyfUwYcSqn0wAKgI/BftN09gRFa67Va66OAF5AHaJ60\nrRRCJGd795pZJwMGmMCicmX48Ue4fNmsxlqkSMxjatc2eTBmz4ZDR8LYoyfwRur3eP2V/I/LTBqd\ni0IHffjrvyPoyxX4scMQMsksWJEMOGXAAUwB1mito0wyU0q5A7mBrRHbtNZ3gH1AlSRtoRAiWRs1\nCooVM7dJIsuRA0qWfPJca82Ws1u49eAWLi7QoQMsXgxthq+GrGeY1LpPlONTp4a1k2qSetFO3n24\nhnffkSxdInlwuoBDKfUhUAb40sru3IAGrkfbft2yTwghntrhwyZdef/+4BLHX9Fh24dR96e6FJpY\niHG7x/Fh24c8fAjHMnxHMbeqVC1QMcYxxYrB2e1VWDIvu4OuQIik51RrqSilXgYmAHW01iHPuj1C\niBfTmDGQP7/JrxGb8bvHM2z7MAZWH8jNoJv039KfSRkn8WqXjziZaycjm6y0eWyePIncaCGeMacK\nOIByQA5gv1KPh2OlAGoopT4FigEKyEXUXo5cwIG4Ku/VqxeZot0s9fDwwMPDIxGaLoRIDk6fNuuj\nTJoU+5ok0/2m03dzXwZUG8DXb38NwOeVP2eA7wBW3h6Oe+aCNCv6ThK1WojE4ePjg4+PT5Rtt2/f\ntutYpSPmZzkBpVQ6IH+0zT8AJ4AxWusTSqmrwLdaa2/LMRkxwYeX1nqZjXrLAv7+/v6ULVvWYe0X\nQji/Tp3M7ZTz581S79YsOLwAr5+96FGxBxMaTEBFm67if9Uft5RuFM9R3PENFsLB9u/fT7ly5QDK\naa332yrnVD0cWuv7wPHI25RS94GbWusTlk0TgEFKqdPAeWAEcBn4JQmbKoRIZm7fhkWLzLooI0fa\nDjZ8jvjw0aqPaF+mPd4NvGMEGwDl8pRzcGuFeP44VcBhQ5QuGq31WKWUGzADyAzsABpqrYOfReOE\nEM5La9i3D2bONLdRHj2C5s2ha1drZTXjdo/jiy1f4FXai5lNZ+KinG5cvhAO4/QBh9b6bSvbhgJD\nk7wxQohkIyLHxr59ZoDol19C+/aQN2/MsmHhYXy24TOm+k1lUPVBDK813GrPhhAvMqcPOIQQIjH9\n+acJNLZsgQoVYN06aNDA9vTXoJAgPFZ4sO6vdcxsMpNO5TolbYOFcBLS3yeESHYuXDBBwnffwZ07\n9h0TGgpt2kDFinDlCqxcaXo3GjWyHWyE63CaLGrC1rNbWe2xWoINIWIhAYcQIll5+BBatjQ9Ff36\nmSXi+/QxQUhsxo0zGUBnzYIjR0wG0bjuisw7MI9t57ex2mM1jYo0SryLECIZSlDAoZRyUUq9qpSq\nppSqEfmR2A0UQoj4+OwzOHoUNm82U1c//RTmzYOCBWHgwCcrtUZ27Bh89ZUJTDp2hBQp4j7Pvw/+\npd+Wfni+7snb7jGGkgkhoon3GA6lVGVgESYfRvT4X2MScQkhRJKbO9f0UMyZY1ZxBbPmycCBMH68\nCSrc3MzzCKGh8NFHJiAZPtz+cw3YOoCQ8BDG1h2bqNcgRHKVkEGj0wE/oDEQQLRpqUII8Szs3w/d\nupkeio8/jrovXToYMsT0bgwaBNmywSefmH3ffmuO3b3bdm6N6P688icz/WfyfYPvyZ1elmkSwh4J\nCTiKAO9prU8ndmOEEMnb8eOwYgXUrw/ly8e98Jm9/v3XjNsoVcqkHLdlyBC4edMEJlmymFVdhw6F\nvn2hUiX7zhUWHka39d0onbs0XStYScghhLAqIQHHPqAwIAGHECJeunWD7dvNB/9LL8E775hAoW7d\nhNf56BG8956ZjbJtW+y9FErBhAlw6xZ4epr8GoUKwbBh9p9v9v7Z+F31Y9fHu3B1kcwCQtgrIf9b\nJgHjlVK5gSNAlFVbtdaHE6NhQojkZft281ixwtzS+OUX85gxw/x8JwHrmIWFmcBh924zSLRAgbiP\ncXExYz1u3zY5NuJzK+VAwAG+3Pol7cu05818b8a/wUK8wOK9eJtSKtzKZo0ZQKq11k43aFQWbxPC\n8WrXNrc+9u9/Mt1Ua3jtNXN75Ycf4lef1tCjB0ybZoKY5s3jd3xwMFy8CIULx132ZtBNBvkOYob/\nDErkKMG2dtvIkS5H/E4oRDLlyMXb3BPcKiHEC2nnTpMqfOXKqLktlILGjU2wER4evzEdo0bBlClm\nnZP4BhsAqVLFHWyEhocy038mg3wHEabD+K7+d3Sv0J2UKWJZl14IYVW8hmwppVICXwEuWusL1h6O\naaYQwpkNH256Mpo1i7mvcWO4cQP8/OyrKzzcBBqDBpmxF50cmNyzx/oedF/fnXeLvcvfPf7m88qf\nS7AhRALFK+DQWocALR3UFiFEMrRnjxlfMWSI9R6MN9+EzJnNeIrYnD9v8mi4u5tkXt26weDBDmky\nAAF3A5hzYA6ja49mTrM55EyX03EnE+IFkJBJaauABHRgCiFeRMOHm+mnLVpY3+/qaqbJ2go4rlwx\ns1jc3cHbG+rVMwM9J0+OO/X405j8x2RSu6bmk/KfOO4kQrxAEjKG429giFKqKuAP3I+8U2s9MTEa\nJoRwfn/8ARs3mjVKYhuf0bgxeHlBQICZLhvZsGFw8CDMn2+m0KZL59g2A9wPvs80v2l0fKMjmdNk\ndvwJhXgBJCTg6AD8B5SzPCLTgAQcQgjAJNUqXtzkyYhNgwamt2LDhqhZQgMCTKAxbJgJSJLKDwd/\n4Paj2/Ss3DPpTipEMhfvgENrLbNUhBBxWrXKBBArVsS9GFqOHCbT57p1UQOOCRNMjoyuSZjQMyw8\nDO+93rxX4j0KZC6QdCcWIpmT5emFEInuzh0zsLNJE7PMuz0aNzaDS4ODzfPbt2H6dLPmSaZMjmtr\ndKtPrebMrTP0qdIn6U4qxAsgIavFzo1tv9b649j2CyGSv0GDTPrw+AzsbNzYzDrZscMkCZs2DR4+\nhM8/d2xboxu/ZzzVXqlGxbwVk/bEQiRzCRnDkSXa85RAKSAz4PvULRJC2LR0qZlCWq/es26JbX/8\nYQKNcePMWiX2KlMG8uQxt1WqVjW3U9q1izmI1JH2Xd7Hrku7+PmDn5PupEK8IBIyhiNGB6lSygWY\nBpxJjEYJIWKaOhW6dzezNA4cgCJFnnWLYgoNhc6d4Y034LPP4nesUtCokQk4ihY1ycD+97+EtSMw\nKJAR20fQrUI3imYvatcx4TqcsbvHUjhrYZq+2jRhJxZC2JQoYzi01uHAd0CvxKhPCBHVrFkm2OjW\nzXzjb90aQkJilgsNhfHj4ciRpG8jmF6JI0dMunHXBPSfNm4Mf/1lkoS1bJmwoCooJIgmi5ow8Y+J\nVJxdkV9O/hJr+VsPbuG9x5tik4ux8sRK+lftTwoXp1sSSojnXmIOGi1Ewm7RCCFi8cMP0KWLCTgm\nT4ZFi0xeiq++ilru0SP48EPo2xdq1IA//0zadl64YNrUoweUiz5h3k516pg1Tm7cgH794n98aHgo\nHis8OHLjCL5evtQpWIfmS5oz2HcwYeFhj8s9Cn3E5jOb6fBLB/J+l5d+W/pRPk95drTfwcdvyDA0\nIRwhIYNGv4u+CXgJaAzMT4xGCSGMBQvMNNHOnWHSJHPboUIFk71z4EAzlqNmTQgKMpk8f/vNHDNl\nihl4uWGDGQ+RFHr3NuNLRoxIeB3p05usoyEhZgXZ+NBa02N9D9b9tY7VHqup5V6LmgVq8s2ubxjo\nOxC/AD+aF23OhtMb2HJ2C/dD7pM/U34G1RhEhzc6kCt9roQ3XAgRp4QsT78t2qZw4B/MgNG5WuvQ\nRGpbkpHl6cXzaMECM2iyfXtziyJyps6wMBNQnDljVmL19DTLvq9eDW+/DXfvQtOmZkG0tWtNUOJI\nW7aY9OMLF5rbPU/j4UPzM02a+B03esdoBvgOYHbT2XQo2yHKvk1nNuGxwoP/Hv7Hm/nepHGRxjQq\n0ojXcr6GcmR+dCFeAPYuTx/vgCM5koBDPG9++MH0bEQEG9YSZ126BK+/bj6g06QxvRmVKz/ZHxRk\nlm3fsQN++cVxM1tCQqB0aciWDX7/3bHrm9jy46EfabeqHV+99RVDaw61Wubuo7uEhoeSJW30iXZC\niKdhb8AR7zEcSilfpVSMxQWUUhmVUjItVoinNGuWCTQ6dzb/tpWlM18+mDfPDKz87beowQaAm5vp\n8ahRw9QXHu6Y9k6eDKdOPbnlk9Q2nt5Ih9Ud6PBGB7566yub5TKkziDBhhDPUEIGjdYEUlnZngao\n/lStEeIFN3WqCTS6dzeJr2Jb8AxMD8bhw6aHwZo0acxAzqtXza2XxHb9ulkvpUsXk0cjLv/c/4fV\np1ZzM+hmopz/jyt/0HJpSxoWbsj0JtPl9ogQzzG7B40qpV6P9LSEUip3pOcpgAbAlcRqWCzt+BJ4\nFygGPAB2A/201n9FKzcc6IhJSLYL6Kq1Pu3o9glhj0eP4Oef4cQJMyPj+nW4dg327DGZNb/7LvF6\nCypXhpdfNknDatRInDojfPmlmf5qz0DRsPAwWi5tyY6LO1AoyuQuQ2332tQvXJ/a7rXjHSz8dfMv\nGi9qTOlcpVn83mJcXWSSnBDPs/j8Dz2IWQ1WYz2j6AOgR2I0Kg7VgUmAH6b9o4FNSqniWusHAEqp\nfmqd/VkAACAASURBVMCngBdwHvga+NVSJjgJ2iiEVTdumPVBpk41QUaePJArF+TMaW6NeHqatUMS\n84u6iwu0amUGdH7/fdwLqdlr3z5zS2fqVDN+Iy7jdo9j58WdLHt/GfeC77H13FYWHlnIuD3jWNxy\nMR+U+sDucwfcDaD+gvrkcMvB2tZrcUvp9hRXIoRICnYPGlVK5cdMgT0LVMTMTIkQDNzQWodZO9aR\nlFLZgRtADa31Tsu2q8C3Wmtvy/OMwHWgndZ6qZU6ZNCocKg7d6BPH/jpJxMAtGsHPXtCsWJJc/4/\n/jCrsW7damaxPK3bt03PSZo0ZiZMXEHM/oD9VJ5dmT5V+jC6zujH27XW1PihBmld07LJc5Nd5/Y9\n50u3dd24F3yPPR32kC9Tvqe5FCHEU0r0QaNa6wta6/NaaxettZ/lecQj4FkEGxaZMb0u/wIopdyB\n3MDWiAJa6zvAPqDKs2igEP/7HyxebMY7XL5sxmckVbABJndHgQKwZMnT1xUWBm3aQECAqS+uYCMo\nJIg2K9tQKmcphtUaFmWfUop2pdux5ewWLt+5HGs9x/85TpNFTaj9Y22yps3KFq8tEmwI4UQSlGlU\nKeWplNqllLpq6flAKdVLKdUscZsXZzsUMAHYqbU+btmcGxOAXI9W/LplnxBJavduM7V1zBjo3x+y\nZk36NihlbqusWGHSnz+NIUPMFNzFi+HVV+Mu329zP87/d54FLRaQKkXM8ebvl3if1K6pWXh4odXj\n7wXfo8uaLrw27TVOBJ5g2fvL2PXxLoplT8KITQjx1BIyLbYrZt2U9ZjehYjvN7eAJF5ImqlACeDD\nJD6vEHYJCTFjMsqXNz+fpQ8+gJs3wfcpJq8vXQqjRsHo0dCgQdzlN/y9gcl/Tubbut9SIkcJq2Uy\npclE82LNmX9oPtZu8Q77bRg/Hf6J8fXGc6L7Cd4r8Z7MRhHCCSVkWHcPoJPWepVSqn+k7X7AuMRp\nVtyUUpOBRkB1rXVApF3XMGNNchG1lyMXcCC2Onv16kWmTJmibPPw8MDDwyNR2ixePBMnwrFjZgxF\nYg3WTKg33oBChcxtkIQkATt40OTz8PCwbxXXByEP6LSmE/UL1ad7he6xlm1Xuh0NjzbE76ofFfJW\neLz9wn8XmPjHRAZWH8jnlZP6+4wQIjofHx98fHyibLt9+7Z9B2ut4/XAzEbJb/n3XaCg5d9FgAfx\nrS8hD2AycCni3Fb2XwV6RXqe0dLu922ULwtof39/LURiuXBB63TptP7ss2fdkicGDNA6SxatHz2K\n33HBwVoXKKB12bJa379v3zFjd47VrsNd9embp+MsGxoWql8a95Luvq57lO2eKz117nG59d1Hd+PX\nYCFEkvH394+YwVpWx/LZnZAxHOcAayl+GgAnElBfvCilpgJtgNbAfaVULssj8soLE4BBSqmmSqnX\ngB+By0Ds61QLkYh69oSMGZ9uMbPE9sEHcOuWWfskPnbtgvPnzWDX/7d33+FVVVkDh38rhVATeiC0\n0CMlhI5SQ69iQ8VRQKyjY2HGUUEcHdtgG0Y/sCMCQgRsKF2qFJHQIr036TW0EFL298e+CTchPffe\ntPU+T56Qc/Y5Z29ukruy2yqZhRWo0VejGbNqDA83f5i65etmWt7by5v7Q+8nYksE1xLsyvWNxzby\n9R9f82rnVyldrHT2KqyUyndyEnD8FxgvIvdghy7aiMhL2P0w3nFl5dLxOLbHYhm2JyPp4+6kAsaY\nd7B7dXyKXZ1SAuhjdA8O5SE//ww//mj3vfD3z+vaXNe0KTRsmP3VKnPm2P1CsprB9b3V7xETF8PL\nnV/O8jOGNBvC2ZizzNk1B4AXFr1AgwoNbkjEppQqmLI9h8MY84WIxGA30yoJTMO+4T9jjPnGxfVL\n6/lZCpKMMa8Cr7q1Mkql4ehRePhh6NMH7rorr2uTkojt5fjf/+xup35+Wbtu7lzo2zfzrdYBTlw6\nwdg1Y3m67dMElQnKct2aVG5Ci6otmBQ1iVLFSvHLvl/44Z4fdAdRpQqJHC2LNcZMNcbUB0oDVYwx\n1Y0xE1xbNaUKnvh4uPdeu933V1/lTTKzzNxxh92I7Lffslb+wAHYts0GHFnx5oo38fX25YX2L2S7\nbkObDWXO7jk8O/9Z2tdoz8CGHl1pr5RyoxwFHEmMMVeMMScBRKS4iDznmmopVTC99JLdd2P6dLtd\neX7UuLHt2di0KWvl5861AVSPHpmX3X9uP5+s+4Tnb3k+R5lZBzexK8K2n97Ouz3e1eWvShUi2eqr\nFJFKQFvsVuaLjTEJIuILPAGMdNzPY0tjlcpPfvoJ3nkH3n0XOnTI69qkz8fHzuXIasAxZ45tT6oV\n42l6dfmrVChZgafbPp2julUqVYkHQh8gwSRwcw3dGFipwiQ72WI7ALOxEzYNsE5EHgR+BOKx8yUm\nuaGOSuV7+/bZ/Ci33WZzprjL/nP7STSJWVr5kZGwMIiMzLxcTIzdKCwrK222ndrGlKgpjOs7jlLF\nSuW4bl8O/DLH1yql8q/sDKm8gd1dtCkwFmgN/ACMMsY0MsZ8YhzZWpUqSuLi7Lbh5cvb7KnuGgU4\nHH2Ytl+0pf7/1eeeb+8h6nhUju8VFmbnZVzLZN3W0qVw9WrW5m+8tvw1agbU5OEWD+e4Xkqpwis7\nAUdT4A1jzFbgZWwvx/PGmG/dUjOlCojPP4cNG2xukbJl3fOM2PhY7pp5F8V9ivNB7w+IPBJJ2Kdh\n9J/Wn98OZ3H2p5OwMBsobc9k55y5c23St5tuyrjctlPbmLF1BqM6jkozX4pSSmUn4CgHnAZw9GRc\nAba4o1JKFRQXLtgMsEOG2Iys7vLM/GfYdHwT3939HU+1fYpdT+1iyu1T2H9+P7d8eQtPz3uamLis\ndzCGhtrPGc3jMMbO3+jbN/Nemzd+fYPq/tUZFjYsy3VQShUt2V2l0khEQkUkFLvpV8Okr52OK1Vk\nvP02XLwIb7zhvmdM3DiRT9d/yvi+45PzjPh4+XB/6P1s/utmPuz9IZ9v+JyWn7Vkw7ENWbpnmTJQ\nr17GAceOHXZJbL9+Gd9rx+kdfLPlG0Z2GKm9G0qpdGU34FgMbHJ8lMROIt2ETYqW9FmpIuHPP+G/\n/4W//x2qV3fPM9YfXc9f5/yVh5o/lObcCC/x4qm2T7H+0fX4+fjR7ot2jFk5hoTEhEzvHRaWccAx\ndy4ULw5dumR8nzd+fYNq/tUY3nx4ps9UShVd2VkWW9tttVCqABo92vYUvJD9/a3SdPD8QSZFTeL8\n1fNEX43mwrULrDy0kqaBTRnXd1yG1zaq1IjfH/6dV5a+wqjFo1hxaAXf3PkNZfzKpHtNWBi8954d\nOklryGTOHOjaNePcKbvO7CJiSwQf9v4QP58sbluqlCqSshxwGGMOurMiShUkmzbB5MkwfrxrcqXE\nJcQx8JuB7Du3j+r+1fH38yegeAA96vTgza5vUtyneKb3KOZdjP90/w9dgrtw97d302FiB2YPnk2N\ngBpplg8Lg/Pn4dAhqFUr5bkLF2DFCrsFekbe+PUNqpSuovlOlFKZ0iQFSmWTMfDPf0KDBjZniiu8\nvepttpzcQuQjkTSv2jxX9+pVrxerh6+m37R+tPmiDT8P/plWQTdmXQtz5HzetOnGgGPhQrtNe0bL\nYXef2c3UzVP5X6//ZSkgUkoVbbna2lypouiXX2x693feAV/f3N9v26ltvP7r6zzf/vlcBxtJGldu\nzO8P/05w2WA6TezErB2zbigTFAQVK0JUGtt5TJtmA5LaaQykGmNYuHchd864k8BSgTzS8hGX1Fkp\nVbhpwKFUNk2YYJeVDhiQ+3slJCYwfNZw6pSrw786/yv3N3QSWDqQJUOW0LNuT4b+OJToq9EpzotA\ns2Y3Thw9cwZmz7Y7p6a28tBKukzqQq+ve1G6WGlm3TtLezeUUlmiQypKZcPly/bN+OWXXbOj6Ae/\nf8DaI2tZOXylW964S/iW4ON+H1P7g9qMjxzPqI6jUpwPC4Pvv095TUQEJFZdy/SSz/H9RLsE18fL\nh4vXLrLmzzU0C2zG7MGz6Vu/ryZXU0plWa56OESkooj0E5FbRaSqqyqlVH41Zw5cuWK3Ms+tPWf3\nMHrJaJ5q8xS31Lgl9zdMR9UyVRnefDhj14zl8rXLKc6FhcH+/XbyaJJJk6BWv2/YeW4LwWWDqVK6\nCmWLl6W6f3Wm3zWdDY9toF+DfhpsKKWyJcc9HCJyJzAB2AX4YjcBe9IYM9FVlVMqv5kxA1q1gjp1\ncnefq/FXeXDWgwSWDuTNbm+6pnIZeL7983y2/jM+3/A5z7Z7Nvl40sTRP/6ATp1sfpV16yDk7rX0\nrN2TybdPdnvdlFJFQ5Z7OESkdKpDrwBtjDFtjDHNgUGA+39zKpVHLl60PRy57d24lnCNu2fezbqj\n65hy+xRKF0v9o+V6wWWDuT/0ft5b/R6x8bHJxxs2BD+/6/M4Jk2CchXjOHhtA22qtXF7vZRSRUd2\nhlTWi8hAp6/jgcpOXwcCmeSeVCp/O3AAQkLsX/qpzZ5tM6cOGpTz+8cnxvOX7//Cgr0L+OGeH+hQ\ns0POb5ZNL3Z4kaMXjzI56nqvha8vNGliA46EBPj6a+hx31Zi4mM04FBKuVR2Ao5ewKMi8oOIBAHP\nANNF5LiInAbGAE+4o5JKecry5bBzJzzxhN1vw9mMGdC2rc2emhMJiQkM+3EYP+74kZmDZtK7Xu9c\n1zc7QiqGcGejOxmzagzxifHJx8PC7NLYRYvg6FGo22kt3uJN8yquWaKrlFKQjYDDGHPAGNMPmAEs\nB8KAekAPoDtQ0xgz1y21VMpDNm2yW3kvX273okhy4QLMm5fz4ZREk8hjsx8jYksE0+6Yxq0Nb3VN\nhbNpVIdR7Du3j+lbpicfCwuDLVvgiy9sGvoTvmtpUrkJpYqVypM6KqUKp2yvUjHGRACtgWbAMsDL\nGLPJGHPVxXVTyuM2bbK7aw4aBP/4B0Q7tq746SeIjc35cMoP239gwsYJfDXwKwY1zsWYTC41r9qc\nvvX78tbKt0g0iYANOK5dg2+/tXtvRB5Zq8MpSimXy1bAISJ9ReQfQCtjzMPA88BUEXlXREq4pYZK\neYgxNuAIC7NZYC9dgn859uKaMQNuuQVqpJ2WJFNfb/6aVkGteKDZA66rcA6N7DCSbae2sWT/EsBu\nYgbg5QW333OJrae2asChlHK57KxSeR+YiO3d+FREXjbGLAdaAFeBjSLSxz3VVMr9Dh2y+1GEhdl0\n86++CuPG2eGV+fNzPpxy/up55u6ey+Amg11a35xqX6M9tcvWZubWmYBNPlevHnTvDsdlA4kmUQMO\npZTLZaeHYxjQ1xhzLzboeADAGHPNGPMycAcwKv3LlcrfkpaGJu1N8cwzdk7DgAE2kdldd+Xsvj9s\n/4G4hDjuaXyPayqaSyLCXY3u4vsd3ydPHp06FT7+GNYeWUsp31I0rtQ4j2uplCpsshNwXAaSUjnV\nwPZqJDPGbDPGdHRVxZTytE2bbDKzoCD7ta8vfPSR3X+jQweoVi1n943YEkGnWp2o5p/DG7jBoEaD\nOH3lNL8e/BWANm3sZma/H/mdlkEt8fbyzuMaKqUKm+wEHCOBySJyFLtK5WX3VEmpvJE0f8N5x+5O\nnex8jldfzdk9T1w6weL9i/PNcEqSVkGtqBVQK3lYJcnaI2tpE6TDKUop18vOstip2J6NgUCwMebG\nfNdK5SOxsbB+fdbLJwUcqY0YAV275qwOM7fNxEu8uKtRDsdj3MR5WCUhMQGA45eOcyj6kM7fUEq5\nRbZWqRhjzhhjIo0x5zMvnbdE5EkR2S8iMSKyRkRa53WdlGe9+abdqOvs2czLnj9vdxlNK+DIjYgt\nEfSs25MKJSu49sYuMKjRIE5ePsmKQysAiDwSCaABh1LKLXKVLTa/EpF7gPex+V6aA1HAAhGpmKcV\nUx5z5Yqdf5GQAKtXZ14+Ksp+dmXAcfD8QVYfXp3vhlOStKnWhhr+NZKHVdYeWUvlUpWpGVAzj2um\nlCqMCmXAAYwAPjXGTDbG7AAeB64Aw/O2WspTJk2Cc+cgIABWrsy8/KZNNolZw4auq8M3W76huE9x\nBjYcmHnhPJB6WGXtUbvhl6adV0q5Q6ELOETEF2gJLE46ZowxwCLg5ryql/KcxEQYOxbuuAN69sx6\nwNG0Kfj4uK4eEVsiGNBgAGX8yrjupi42qNEgjl86zspDK3XCqFLKrQpdwAFUBLyBE6mOnwCqeL46\nytN+/hl277Zbk3foAJGRNstrRtKbMJpT209tJ+pEVL4dTknStnpbqpWpxn9W/ofzV8/r/A2llNu4\n8O+5gm/EiBEEBASkODZ48GAGD87fbxoqpffft9uQt2sHxYrZPCHr1tngIy3XrsHWrfDwwzl7njGG\n77d/z+6zu7kSd4UrcVdYd3Qd/n7+9KmfvzffTVpB88HvHwDQuprOrVZKpS8iIoKIiIgUx6KTkk5l\nojAGHKeBBCAw1fFA4HhGF44dO5YWLVq4q17KAyIjYcUK+O47+3VoKJQpY4dV0gs4tm+HuLic93D8\nuONH7pp5F+VLlKeUbylK+pakpG9JRnccTXGf4jm7qQcNajSID37/gPrl61O+RPm8ro5SKh9L64/w\nDRs20LJly0yvLXQBhzEmTkTWA92AnwDEzoLrBnyYl3VT7vf++1C3Lgx0zNP08YGbb854HsemTXaz\nr6QkZtlxJe4KIxaMoE+9Psy5b06BnHB5c42bqVamGm2rt83rqiilCrHCOIcD4L/AIyIyRERCgE+A\nksBX7nrgt9u+5bZvbuPStUvueoTKxIEDNsX6s8+Ct9PO3B06wKpVdjJpWjZtssnLyuRgbueYlWM4\ndukYH/b5sEAGG2CHVRbcv4C3u7+d11VRShVihTLgMMbMAJ4DXgM2AqFAL2PMKVc/60LsBYb+OJRB\nMwcxa+es5JTfyvM+/NBmPn3wQTuvYnLUZIb+OJSb2ydw/jxs25b2dTmdMLr37F7eWfUO/7zln9Qr\nXy93lc9jjSs3JqhMUF5XQylViBXKgAPAGPORMSbYGFPCGHOzMWadq5+x8tBKmn3SjB+2/8Ck2yYR\nXDaYRfsWufoxKguuXbN7bzz0EMR5n+e+7+9j6I9DmRw1Gd+a6/HxSXtYxZicBxzPzH+GwNKBjOqo\nSZKVUiozhTbgcLePIz+m81edqVamGlGPRzGk2RC61+7O4v2LM79Yudwvv9gtzBv3WUnYJ2HM2z2P\nqXdMpWzxsiz9cy4tWqQdcBw6ZLc1z27AMXvXbObsnsPYXmMp6VvSNY1QSqlCTAOOHIi+Gs2Li19k\nSLMhLB+2nNrlagPQrU43tp3axtGLR/O4hkXPtGlQ5dZxPLSyM9X9qxP1eBT3Nb2PnnV7Mm/PPDp0\nSDvg2LTJfs5OwHE1/irPzH+GnnV7cnvI7a5pgFJKFXIacDiJiclauY/XfczV+Ku82fVNvL2uz07s\nWtumFF28T3s5POnyZfhx7mXOthjJsGbDWDZsGbXK1gKgb72+RB6JpEm7kxw8CIcPp7x2/XqoVAmq\nVs368yZsmMCh6EN82LvgThRVSilP04DDydq1mZeJiYth7JqxDG029IZJdpVLVaZZYDMdVvGwn3+G\nK7W+4xqXGN1pND5e11d7967XG4PhSpUFgF2tkmTtWruMtn9/uyw2q+bvnU+nWp1oWNGFiVeUUqqQ\n04DDydzVBzMtM3HTRE5fOc3z7Z9P83y32t1YtG8RNn2L8oRp06BMpy8JDw5PHt5KElg6kJZVW7Lq\n5DwaNLg+rLJnD/TrB82awbhxWX9WfGI8yw8sp1vtbi5sgVJKFX4acDhZUvwJjlxIf/5FfGI8765+\nl0GNBqW7DLJ7ne4cuXiEnWd2uquaysnZszBvzV4uVljO8OZpJwPuW78vC/Yu4JYOCaxcCSdOQK9e\nUKGC7R0pmY05n+uOruPitYsacCilVDZpwOEkMTGRLl/05vzV82men75lOgfOH+DFDi+me4+OtTri\n6+Wr8zg85LvvIL7pV5Qp5s8dN92RZpk+9fpwNuYsQa3X8scf0Ls3XLkC8+fboCM7Fu9bjL+fPy2D\nMt/GVyml1HUacDgpvmwcRy7+ya0RtxITl3IGaaJJZMyqMfSp14ewKukvaShdrDTtqrdj0X7dj8MT\npk5LwK/tVwxucm+6y1PbVGtD+RLlOV9xLsbA3r0wbx4EB2f/eYv3L6Zzrc4p5okopZTKnAYcTjo0\nqkvw6tmsO7qOftP6MWPrDM5cOQPAnF1z2HJyCyM7jMz0Pt3rdGfp/qXEJ8a7u8pF2pEjsPzwYmL9\n/uTB5g+mW87by5ve9Xqz5uxcRoywwyg52egrJi6G1YdX63CKUkrlgAYcTjp2hO0Lb+HLXj9w7NIx\n7vn2Hiq9W4lWn7VixIIRtK/Rno61OmZ6n+51uhMdG82GYxs8UOuia/p08Gr5JQ3L30TbahknHutT\nrw8bjm3g+deO07lzzp63+vBqYhNik5c/K6WUyjoNOJy0b2+XR8Zs7sX2J7dzeMRhvhz4JQ0rNsRg\neD389Szdp3VQa0oXK63bnLvZ5JlnIeRHHm45PNP9MHrV7YUgzN8zP8Ny+8/tp/XnrTlw/sAN5xbv\nX0ylkpVoUrlJbqqtlFJFkgYcTsqVg3btYPZs+3V1/+oMCxvG1DumsvfpvYTXDs/SfXy9fekS3CVL\nAcfV+Ku5qXKRtW8fRCVEgFc894fen2n5SqUq0bpaa+bunpthuSl/TGHd0XW8vvzG4HLJ/iV0rd1V\nN/tSSqkc0IAjlf79YeFCiI3N3X261+7OqsOruBJ3Jc3zCYkJ/HvZvyn9VmlWHFyRu4cVMrvP7Kbt\nF22ZuHFiumV++QVoPpHedfpRpXSVLN23b72+LNy7MMO5NTO2zqBc8XJMiprEnrN7ko9HX40m8mik\nzt9QSqkc0oAjlf794dIlWJHLGKBbnW5cS7jGrwd/veHcsYvH6DGlB6/9+hrFvIsxe9fs3D2sEPn1\n4K+0m9COqONRPD3/aQ5HH06z3NQ1CyBoPY+2TnvvjbT0rd+X6NhoVh9eneb5bae2sfXUVj7u9zGV\nS1XmjV/fSD63/OByEk0i3epowKGUUjmhAUcqTZtC9erXh1VyqnGlxtQpV4cBEQPoMaUH49aO43D0\nYRbuXUizT5qx4/QOFg9ZzG0ht7H0wFLXVL6A+/qPr+k+uTvNApux4287KFOsDE/Ne+qGcicunmJl\npWHUSezJgIYDsnz/lkEtqe5fnYmb0u45mbl1Jv5+/gwMGcjIDiOZ8scUdp3ZBdjhlFoBtahdtnaa\n1yqllMqYBhypiNhejtwGHCLC6uGr+aD3B3iJFyMWjKDm/2rS6+teNK/anE2Pb6JLcBfCg8NZf2w9\nF2IvuKYBBZAxhleXvcoDPzzA/aH3M//++QSXDebDPh8ya+csftj+Q4qy9057BCNxjLn5K7wk69/C\nXuLFU22eYuofUzl28dgN52dum8mtDW+luE9xHmn5CFVLV+W15a8BdsJot9rddP6GUkrlkAYcaejb\n124OtWdP5mUzElg6kCdaP8GC+xdw+p+nibgzgkm3TWLeX+ZRuVRlAMJrh5NoEov0PI4ZW2fw7+X/\n5q2ubzHh1gkU8y4GwJ033Un/Bv15at5TyQHZ5xs+Z9nxWfjMncCALtlI8erwaMtH8fPxY9zalAlU\ntp7cytZTW7m70d0AFPcpzksdXyJiSwTLDyxny8ktOpyilFK5oAFHGrp0AR8fO3nUVQKKB3Bvk3sZ\n0mxIir/K65arS3X/6kV6WGXCxgl0rNmRkR1HpuhBEBHG9x3P+avneWnxS+w4vYNn5z9LzZOP0any\nQIoXz/6zyhYvy8PNH+bjdR9z+drl5OMzt9nhlJ51eyYfG958ONXKVOOeb+8BIDw4a6uUlFJK3UgD\njjSUKWP35FiwwP3PEhHCg8OLbMDx54U/WbRvEUObDU3zfM2Amrwe/jrjI8czIGIANfxrcibifbrl\norPhmXbPEB0bzVebvko+NnPbTAY2HIifj1/yMT8fP0Z3Gs2JyydoVKkRVctkv0dFKaWUpQFHOnr2\nhCVLIC7O/c8KDw5n47GNnIs55/6H5TNToqZQ3Kc4gxoPSrfMU22fonnV5hw8f5CRDaZx+VwpuuZi\ns8/gssHc1eguxq4ZS0JiAltPbmXbqW3c3fjuG8oOCxtG/fL16V+/f84fqJRSSgOO9PTsaZfHrlnj\n/md1Ce6CwaS5hLYwM8YwKWoSd9x0B/5+/snHExNtvpOTJ+3XPl4+/Dz4Z5YPW86RdS0oUwZatcrd\ns/9x8z/Ye24vP+38iRlbZ+Dv50+POj1uKFfMuxgbH9vIm93ezN0DlVKqiNOAIx0tWtjU5Z4YVqld\nrja1AmoVuWGV34/8zs4zOxkWNiz52Lp1cMstcOut8MADYIw9HlQmiJtr3MzixdC5s51jkxttqrWh\nQ80OvPfbe8zcNpPbQm5LMZzirFSxUpodVimlckkDjnR4eUGPHq6dOJqR8NrhLDuwzDMPyycmbZpE\ndf/qhAeHc/o0PPootGkDV67A66/b//vvvrtePiYGVq8mV/M3nP3j5n+w+vBqtp/enrw6RSmllHto\nwJGBXr3sX9xnzrj/WeHB4USdiOLMFQ88LB+4Gn+Vb7Z+w5DQIezY7k2DBjBzJnz4IWzYAKNH216O\nZ5+1Q1tgg43YWHI1f8PZgAYDqF++PgF+AfSoe+NwilJKKdfRgCMDPXrYLv1FaeRgO3kSDh1y3bOS\nllwuP7jcdTfNB87FnOP26bfz086fUhz/aedPnL96niHNhjB+PJQsCbt2wd/+dn245H//s8Hea3bv\nLZYsgUqVoImLkrV6e3nz+YDP+bT/p8l7fyillHIPDTgyUK0aNG5847BKTIydR9CwIYwdayc55laN\ngBrULVeXpfsL1zyOFxe9yKwdsxj4zUBGLhqZnDhtUtQk2lVvR23/hkyfDvffb4MJZ7Vrw0svLaz5\nbgAAIABJREFU2f/jrVth8WIID7fDXa7SObgz9zS5x3U3VEoplSYNODLRq5cNOJImL4Lt7t+/H+67\nD/7+d/smuG9f7p9V2PbjWHFwBZ9t+IxxfcfxTvd3eGf1O/T6uhdRx6OYv2c+w5oNY948OHvWBhxp\n+ec/beDx8MMQGem6+RtKKaU8q8AEHCJSS0S+EJF9InJFRHaLyKsi4puqXA0RmSMil0XkuIi8I5KN\nhBup9OwJf/4J27fbr1essH9xv/kmTJgAS5faoZXQUPjii9y1Mbx2OFtPbeXk5ZO5u1E+EBsfy6Oz\nH+Xm6jfzeKvH+Wf7f7J4yGK2ntxKq89b4evlyz1N7uHrr6FZs/SHSfz8YNw4uzw5MdF18zeUUkp5\nVoEJOIAQQIBHgEbACOBxIHmDBEdgMRfwAdoBQ4FhwGs5fWinTvZNb+FCO3lx2DC7bPPZZ+35Ll3g\njz/g7rvhkUdg8+acPsnuxwEUitUqY1aOYc/ZPXw24LPkrdy7BHdhw2MbCA8O59GWj8LVsvz8s13+\nmpGePe3/b9269kMppVTBU2A2FzDGLACcd8U4ICLvYYOO5x3HemEDk3BjzGlgs4i8DIwRkVeNMfHZ\nfW6JEjboWLgQdu+G48ft3hze3tfLlCkDH38M334Ls2bZFPc5EVQmiAYVGrDswLI0d70sKLaf2s5b\nK9/ihfYv0KRyyq6LoDJBLHzATor54gu7k+vgwZnfc/JkuHDBZvNVSilV8BSkHo60lAXOOn3dDtjs\nCDaSLAACgMY5fUjPnvDLL/DRR/D221Cv3o1l/PzsfI+ff87pU6w21doQdSIqdzfJQ4kmkcdmP0at\ngFqM7jQ6w7JTptg5GUFBmd/Xz+/GSaVKKaUKjgIbcIhIPeBvwCdOh6sAJ1IVPeF0Lkd69YL4eDt/\n4Ikn0i93662wdi0cO5bTJ0HDCg3ZeXpnzm+QxyZsmMCKQyv4tP+nFPdJP53rwYPw66/pTxZVSilV\nuOR5wCEi/xGRxAw+EkSkQaprqgHzgOnGmC/dXccmTeD99+1f5Bktyezb156fMyfnzypxOYQzMWc4\nfeV05oXzmdNXTvPi4hcZ0mwI4bUzTuU+bZrde+OOOzxUOaWUUnkqP8zheA+YmEmZ5EWnIhIELAFW\nGmMeS1XuONA61bFAp3MZGjFiBAEBASmODR48mMGDB/P3v2d2tc290r49/PSTXcaZE5+9FQLdYcfp\nHXSo2SFnN8kjLy56kUSTyLs93s2wnDE2eLvtNihd2kOVU0oplWsRERFERESkOBYdHZ2la/M84DDG\nnAGytJ+3o2djCRAJDE+jyG/AKBGp6DSPoycQDWzL7P5jx46lRYsWWap3em69FV5+2eYDKVkye9ee\nPg271tSDrl5s+rNgBRy/Hf6NCRsnML7veCqXqpxh2Y0b7TLj//7XQ5VTSinlEkl/hDvbsGEDLVu2\nzPTaPB9SySpHz8Yy4CB2VUplEQkUkUCnYguxgcUUEQkVkV7A68A4Y0ycJ+o5YABcvWp3xcyuZcuA\n+OJwPpglfxSceRzxifE8MfcJWlZtyWMtU3c63WjKFAgMhO7dPVA5pZRS+UKBCTiAHkAdoBtwGDgK\nHHN8BsAYkwj0BxKA1cBk4CvgFU9VsmFDaNDADqtk19KldgVMicshbDy8w/WVc5OPIz8m6ngUH/X7\nCG8v7wzLXr1ql7j+5S+5TzGvlFKq4Cgwv/KNMZOASVkodxgbdOSZAQNg6lS7M2Z28n4sWWJXwqwu\nE8LO2BxELHng+KXjjF46mkdaPEKbam0yLT9zpt3K/LHMO0KUUkoVIgWph6PAuPVWu0HYunVZv+bo\nUdixwwYctzQIIa7UPvYejHVfJV3khUUv4Ovly1vd3spS+U8+sXtvNGiQeVmllFKFhwYcbnDLLVCu\nXPY2AVu2zH7u0gUG3BwCXolEzN/jjuq5zIXYC0RsjmBkh5FUKFkh0/J//AGrV8Nf/+qByimllMpX\nNOBwAx8f6Ncve/M4liyx+30EBkKbOg0BWLA+f08cnb9nPnGJcXStemeWyn/yCVStanuAlFJKFS0a\ncLjJgAH2L/qDB7NWPmn+BkClkpUobsqx4fAOEhMzvu7QIZg4EebNy119c2LWjp/wPh3K2FeCMy17\n8aJdnfLww+Drm2lxpZRShYwGHG7Sq5d9Y/3668zLHjgA+/dDuGNzThGhbkAIV0rsICqNtCpLlthh\niQYNoFYtGD485xuN5VRcQhw/75xDwtaBfPedDSgyMm2a3ZvkkUc8Uz+llFL5iwYcbhIQYPOuvPqq\nzRmSkaVLbRbUzp2vH2tZKwSvyjv45ZeUZZcvt/tXLFoEPXrAd9/ZTLVHj8KZLG2f5horDq3gYtx5\nfPYOJCbGZspNjzG2jv37Q40anqujUkqp/EMDDjd6913o2BHuvDPjoZUlS6BFCzvRNEnjwBCk8g4W\n/mKSj507Z5OddepkV7SMH29zkXTqZM9v3uymhqThp50/4RdbjfCQFoSHw6QMFiz//jtERcHjj3uu\nfkoppfIXDTjcyNcXZsyw+UIGDoTLl28sY0zK+RtJGlZoSIL3RVZsOE5MjC332GNw6ZKdC+HttL9W\ngwZQrJjnAg5jDD/umEXCtlvp3k0YNsz2vOzfn3b5jz+G2rXtMJNSSqmiSQMON6tY0a5W2bMHHnzQ\nBg7Odu+2wyHhqZKrhlQMAeCa/w5WrLA9CDNnwqef3jgs4eMDjRvbSaqesOXkFg5GHyB+y0C6dbO9\nLKVL20AotUOHYPp0GyxlZxM0pZRShYu+BXhA06b2zXjmTBg1Cq5du35uyRIbMHRIlaetTrk6+Hj5\nEFB3B59+Cn/7GwwbBnffnfYzQkM9F3DM2jmLYqYM5S50ISwMSpWCu+6yW5Y7B1SJiTbIqlRJdxZV\nSqmiTgMOD7n9dnjrLRgzxuZL+b//g5gYG3C0aQNlyqQs7+vtS73y9agauoPvv4cqVeDDD9O/f9Om\nsGULmS6jdYVZO2dR5kRvunbySx7aGToU9u6FVauulxs/3rZv4kQoW9b99VJKKZV/acDhQSNH2qCg\nc2cYMQKCg2H+/BvnbyQJqRiCX9AOfH3tstLUQYmz0FC77HTfPrdUPdmRC0dYd3Qd59YMTJHttVMn\nu0Q3afLozp3wwgu2Z0azwiqllNKAw8MaN7bDK7t22V4PETuhNC0NKzTkvM9Ojh2zvSAZCQ21n909\nrPLzrp/xwpvEnX3o1u36cS8vGDLETpK9eNH+u3p1ePtt99ZHKaVUwaABRx6pU8du9R0dDa1apV0m\npGIIB6MPUsL/Sqb3Cwy0cyXcHXD8tPMnguI6UaNieerVS3luyBC4cAF697aJ6yZPhpIl3VsfpZRS\nBUOBSU9fFCWtVNl1ZhdhVcIyLe/qiaNX46+y+8xuLsdd5tK1S1yMvcji/YupsO0dene3vTPO6tWD\n9u3tPI5Ro6BdO9fVRSmlVMGmAUc+1rCCTeK24/SOLAcc2clQm5kHZz3IN1u+SXGshE8Jji25jW7j\n077m5ZftJNFXXnFdPZRSShV8OqSSj5UrUY7AUoHsOL0jS+VDQ+1KkUuXcv/sM1fO8N2273mo4Yts\n/utm9j+zn5PPneST4HMQXSvdia69esE339iNyJRSSqkkGnDkcw0rNmTnmaylqW/a1O6DsXVrzp+X\nmGh7SW5+dBpxcYlMeOjvfDi6Cf6JwVQqVYlfl/rRuLFNM6+UUkpllQYc+VxIhZAs93A0amRXi+Rk\nHkd8vN2CvGFDuPVWOFJ5Iq0D+jPunUpMn26PT5wIixeTYnWKUkoplRUacORzIRVD2Hl6J4km8x29\nSpSweVWyG3BERdkJnk8+aZPITV4QxZWAjYzu/yBPPmn31OjZE4YPhwMHNOBQSimVfRpw5HPtqrcj\nJj6GRfsWZal8aGjWk7hdvQovvWSX5cbGwm+/2bwn6xMnUrlUZfrU6wPYXU6nTrW9G489pht5KaWU\nyj4NOPK5dtXbERoYyri147JUvmlT28OROklcagcOQFgYvPuuXVmyfj20bQvXEq4xdfNUHgh9AF9v\n3xTXdO1q9w7RvTWUUkpllwYc+ZyI8GTrJ5m9azYHzh/ItHxoKJw7B0eOZFxu2jRbZuNG+Ne/rq8q\nmb1rNqevnObBsAdzX3mllFLKQQOOAuAvTf+Cv58/n6z7JNOyWd3ifPduu81648Ypj0/cNJHWQa1p\nXLlx2hcqpZRSOaABRwFQqlgpHgx7kC82fMHV+KsZlq1VyyZ5y2wex65dUL9+ymPHLx1n3u552ruh\nlFLK5TTgKCCeaP0EZ2LOMH3L9AzLiVyfx5GRXbvsihZnU6Km4OPlw71N7s1lbZVSSqmUNOAoIOpX\nqE+vur0YH5lyT3FjDB9FfsSYlWOSj2WWU+XcOTh9OmXAYYxh4qaJ3H7T7ZQrUc7V1VdKKVXEacBR\ngDzZ+kkij0ay9shaAGLjYxn+03CenPskryx7hcvXLgM24NixA65dS/s+u3fbz85DKgfOH2D76e3c\n21h7N5RSSrlegQw4RKSYiGwSkUQRCU11roaIzBGRyyJyXETeEZEC2c7U+tbvS62AWoyPHM+JSyfo\nOrkrEZsj+HeXf3Mt4RrLDiwDbMARHw/bt6d9n1277GfngGPV4VUAdKjZwY0tUEopVVQV1Dfid4A/\ngRS7TTgCi7nYLLjtgKHAMOA1D9fPLby9vHmi9RNM3zKdNl+0Ye/ZvSwbtoyXO71M7bK1mbdnHmDn\ncABs2pT2fXbvtpt5lSlz/diqQ6sIqRhChZIV3NwKpZRSRVGBCzhEpA/QA3gOkFSnewEhwF+MMZuN\nMQuAl4EnRcTHszV1j4eaP4S3lzcVSlQg8pFI2lVvh4jQp14f5u+ZD4C/P9Stm37AkdaE0VWHV9G+\nRns3114ppVRRVaACDhEJBD4D7gdi0ijSDthsjDntdGwBEAAUio0lKpSswPYnt7P6odXUCKiRfLx3\nvd7sPbeX3WfsBI3mzbMecERfjWbLyS0acCillHKbAhVwABOBj4wxG9M5XwU4kerYCadzhULNgJoU\n9yme4lh47XCKeRdLHlYJC7MBR+otzo2xQyrO8zfW/LkGg+GWGre4u+pKKaWKqDwPOETkP47Jn+l9\nJIhIAxF5GigNvJ10aR5WO98pXaw0HWt2TB5Wad4czp+HgwdTljtxAi5eTNnDserwKiqWrEiDCqnG\nWZRSSikXyQ/zGt7D9lxkZD8QDtwMxIqkiDXWichUY8yDwHGgdaprAx2fj2dWkREjRhAQEJDi2ODB\ngxk8eHBml+YLfer1YfTS0cTExRAWVgKwvRzBwdfLJC2JTR1w3FLjFlL9vyqllFIpREREEBERkeJY\ndHR0lq7N84DDGHMGOJNZORF5CnjJ6VAQdn7G3cBax7HfgFEiUtFpHkdPIBrYltkzxo4dS4sWLbJR\n+/ylT/0+PPfLcyw/uJxedXtTqZJNznbbbdfL7NpldyOtU8d+HZ8Yz+9//s6/Ov8rbyqtlFKqwEjr\nj/ANGzbQsmXLTK/N8yGVrDLG/GmM2Zb0AezGDqvsM8YcdRRbiA0spohIqIj0Al4Hxhlj4vKm5p5z\nU8WbqOFfg/l75iOS9sTRXbtsvpXijikgUcejuBx3WSeMKqWUcqsCE3CkI8WUSGNMItAfSABWA5OB\nr4BXPF6zPJC0PDb1xFFnqSeMrjq8imLexWgZlHl0qpRSSuVUgQ04jDEHjTHexpg/Uh0/bIzpb4wp\nbYwJNMa84AhEioTe9Xqz68wu9p3bR/PmcOgQnHEasEq9JHbV4VW0Cmp1w6oXpZRSypUKbMCh0tat\nTjd8vHyYv2c+YWH2WFSU/ZyYCHv2XA84jDGsOqQbfimllHI/DTgKGX8/f9rXaM+8PfOoXx9KlrQT\nRwEOH4bY2OtDKoeiD3Hk4hENOJRSSrmdBhyFUJ96fViyfwnxJpbQ0OvzOJKStiX1cCQlbNMNv5RS\nSrmbBhyFUK96vbgSd4U1f65JMXF01y7w9bWrVMAmbGtQoQGVSlXKu8oqpZQqEjTgKISaVG5CSd+S\nRB6NpHlzm6Y+JsauUKlTB3wcu69owjallFKeogFHIeTj5UOLqi2IPBpJWBgkJMDWrSlXqFyIvcDm\nk5s14FBKKeURGnAUUq2DWhN5JJKmTcHLyw6r7N59PeBY8+caEk0i7WtqwKGUUsr9NOAopFoHtWb/\n+f1cSjxFSAisXQv7919fobLi4AoqlKigCduUUkp5hAYchVTrajaH3bqj62jeHGbNskMrST0cSw8s\npUtwF7xEvwWUUkq5n77bFFJ1y9WlXPFyyfM4Tp60x+vXh8vXLrP2yFrCg8PztpJKKaWKDA04CikR\noXW11skBB9hNwIKCYPXh1cQlxhFeWwMOpZRSnqEBRyGWNHG0WTOb465+fTuBdOmBpVQuVZmbKt6U\nxzVUSilVVGjAUYi1DmrNicsnuFrsT6pXvz5hNGn+hojkbQWVUkoVGT55XQHlPkkTRyOPRvLeezWo\nXh0uXbtE5JFIhjYbmse1U0opVZRoD0chFlQmiKAyQUQeieSee6B9e1h5aCUJJoEuwV3yunpKKaWK\nEA04CrnWQa1Ze3Rt8tdL9y+lSukqNKzQMA9rpZRSqqjRgKOQa1OtDeuOriPRJAKw7OAywoPDdf6G\nUkopj9KAo5BrHdSaC7EX2H1mNxdiL7D+6HodTlFKKeVxOmm0kGsV1AqwE0fLFS9HgknQDb+UUkp5\nnAYchVy5EuWoV74ekUci8fX2pVqZatQrXy+vq6WUUqqI0YCjCGgdZHccvZZwTfffUEoplSd0DkcR\n0DqoNRuObWDj8Y06nKKUUipPaA9HEdCmWhtiE2IBNH+KUkqpPKEBRxHQvGpzvMWboDJB1C5bO6+r\no5RSqgjSgKMIKOlbkpZBLQmtHKrzN5RSSuUJDTiKiLn3zaW4T/G8roZSSqkiSgOOIqJCyQp5XQWl\nlFJFmK5SUUoppZTbFbiAQ0T6icgaEbkiImdF5PtU52uIyBwRuSwix0XkHREpcO10hYiIiLyugksV\ntvZA4WtTYWsPaJsKgsLWHiicbSpQb8QicicwGZgANAVuAaY5nfcC5mKHitoBQ4FhwGuermt+UNi+\nYQtbe6DwtamwtQe0TQVBYWsPFM42FZg5HCLiDfwP+Icx5iunUzuc/t0LCAHCjTGngc0i8jIwRkRe\nNcbEe6zCSimllEpWkHo4WgBBACKyQUSOishcEWnsVKYdsNkRbCRZAAQAzuVcIicRqKeuAThy5IhH\nnuWpa/Jze3J6XX5uk6fak9Nn5ec26fedZ6/R77ucP8eT36sFKeCoAwjwCnaIpB9wDlgmImUdZaoA\nJ1Jdd8LpnEvl9xe3sH3D5uf25PS6/Nwm/cVv5efXKKfX5ec26fedVdheI8gHQyoi8h/ghQyKGOAm\nrgdHbxhjfnRc+yDwJzAI+DwX1SgOsH379mxdFB0dzYYNG/LlNQBxcXH5tn45uSY/tyen1+XnNnmq\nPTl9Vn5uk37fefYa/b7L+XNccY3Te2eGmz2JMSZbD3I1EakAZLZJxD6gA7AE6GCMWe10/RrgF2PM\nyyLyb2CAMaaF0/lgx/XNjTFR6dThPmBqbtqhlFJKFXF/McZMS+9knvdwGGPOAGcyKyci64FYoCGw\n2nHMFwgGDjqK/QaMEpGKTvM4egLRwLYMbr8A+AtwALia7UYopZRSRVdx7HvxgowK5XkPR3aIyFjg\nTuAhbJDxPHYuR4gxJtqxLHYjcBQ7TFMVu4z2M2PMy3lTa6WUUkrleQ9HNj0HxGGDiBLA70BXY0w0\ngDEmUUT6Ax9je0EuA19hJ5oqpZRSKo8UqB4OpZRSShVMBWlZrFJKKaUKKA04lFJKKeV2hSLgEJGR\nIrJWRC6IyAkR+UFEGqRR7jXHDqVXROQXEamX6ryfiIwXkdMiclFEvhWRyqnK1BeRH0XklIhEi8gK\nEelSwNvUQkQWisg5R7s+FZFS+bQ9j4jIUsf/faKI+Kdxj3IiMtVR5pyIfOHq9uRBm0aJyCpHUsKz\nrm6Lp9skIrUcr8s+xz12i8irjpVnBa49jjKzROSgiMQ47jVZRKq6sj2ebpNT2WIisslRLrQgt0lE\nDjjOJX0kiMjzBbU9jnIZJjXNLwpFwAF0BP4PaAt0B3yBhSJSIqmAiLwA/A14FGiDnVC6QESKOd3n\nf9hVL3cCnbBbqX+X6llzAG+gC3a79ShgtqR6Ey8obXL8QvwF2OW4R2/sNvBf5dP2lADmAW9iN4VL\nyzTsZnHdsG3vBHzqysY4eLJNvsAM7IRod/JUm0KwOwc/AjQCRgCPO8oXxPaA3SdoENAAuAOoC8x0\nZWMcPNmmJO9gN1l016Q/T7bJAKOBQOwO1FUdz3Ylj7VHMklqmq8YYwrdB1ARSMRuEpZ07Cgwwulr\nfyAGuNvp61jgdqcyDR33aeP4uoLj6/ZOZUo7jnUtoG16BDiW6llNHGXq5Kf2pLq+M5AA+Kc6HuK4\nb3OnY72AeKBKfnuNstKmVGWGAmfd2Q5Pt8mp7HPAnkLUngGO7zvvgtwmoA+w1elnK7Qgf98B+4Gn\n3d0GT7QH+8fvYWCYJ9uT04/C0sORWllsNHgWQERqYyPZxUkFjDEXsMtqb3YcaoVdJuxcZidwKKmM\nsZuU7QCGiEhJEfEB/orN17LevU1yT5sAP+BaqmclbX7WwaUtSCkn7cmKm4FzxpiNTscWOZ7VNpd1\nzoy72pSXPNmmsknPcSOPtEdEymM3E1xljEnITYWzwG1tEpFA4DPgfuyboae4+3V6Ueww8wYReU5s\nNnJ3cld7spLUNN8odAGHiAh2GGGlMSZpd9Eq2Bc7rcRuSUndAoFrjhc9vTIAPbAv8kXsD+AzQG/j\n2AvEHdzcpiVAFccPna+IlAP+47i3y8efIVftyYoqwEnnA45f+GezeZ9scXOb8oQn2+QYu/4b8ElO\n75GFZ7i9PSIyRkQuAaeBGsBtOa9xlp7n7jZNBD5KFcC7lQfa9AFwL3ZY/BNgFPB2TuubGTe3JytJ\nTfONQhdwAB9hx4TvdeP9TwDtgdbAj9g5HIFuel7SM93SJscPwFDg78AVbDffPuybdqKrn+fg7tco\nL2ibckhEqmHHqacbY75046M80Z53gDDsHyYJwBQ3Pgvc2CYReRo7ZJz0ZiyufkY63Po6GWP+Z4z5\n1RizxRjzGfZ331Pi4gnLTtzZnhRJTR2B4YPYYGaQG56XK4Uq4BCRcUBfoIsx5pjTqePYH5bUQUGg\n41xSmWJpzAJOLiMi3Rz3v8cYs8YYs8kY8zdsT8dQlzbGwd1tAjDGfGOMCcJ2zVUA/g1UwgYeLpXL\n9mTFcSD1KhxvoHw275NlHmiTx3mqTSIShO1lW2mMeSyH1c3KczzSHmPMWWPMHmPMYmAw0FdE3DKU\n54E2hWO792NFJA7Y7Ti+TkQm5qzWGcujn6W12KHn4Fze5wYeaE/SPZPTtRpjrmF/d9fMdoXdrNAE\nHI4XdiAQbow55HzOGLMf+yJ2cyrvjx3TT8o8ux47wcu5TEPsi5ZUpgQ2ckz9l38ibvi/dHObfkv9\nPGPMKWPMFWwkHoNdvZKf2pMVvwFlRaS507Fu2B/u33NY9XR5qE0e5ak2OXo2lgKRwPBcVjuj5+TV\na5Q0L8Avl/e5gYfa9BTQzOmjD/b3393AS7mpf1ry8HVqjv0dfjKzgtnhofY4JzVNuk/qpKb5R17P\nWnXFB7bL6hx2KVKg00dxpzLPY7PSDsAuHfoRG7EXS3Wf/dixvZbAKmCF0/kK2G/KmUAoUB94FzvJ\nsmlBbJOjzJPYH7r6jn9fBp7Mp+0JxP7yexjHrG/H1+WcyswF1mGHvNoDO4Ep+fj7LittquE49i9s\n9uOkN4FSBbFN2N603cBCx7+Tn1VA29PG8bPTDBvQdwVWOr73fAtim9J4bi3ctErFg69TO+y8u1Cg\nNnZi7wngy4LYHkeZsdiFAD2wS7K/wPZ8BLj6dcr1/0teV8BFL24idrw09ceQVOVexc5RuIJNo1sv\n1Xk/7Nrp09hJoTOByqnKtMCON58CzmPfwHsW8DZNcrQnBptt97583J5X0rnXEKcyZYGvsW/M54DP\ngZIFvE0T03lWp4LYJuwQZOpziUBCAW1PE+yKg1OOe+wFxgFVC/L3XarytRzn3RFweOp1ao7tBT2L\n/cNqC/aN39VBoSd/N3hj5w4dw74nLQBucvVr5IoPTd6mlFJKKbcrNHM4lFJKKZV/acChlFJKKbfT\ngEMppZRSbqcBh1JKKaXcTgMOpZRSSrmdBhxKKaWUcjsNOJRSSinldhpwKKWUUsrtNOBQSimllNtp\nwKGU8ggRmSgiiSKSICLXROS4iCwUkQdFJMupz0VkqIicc2ddlVKupwGHUsqT5gFVsHk5emNT038A\n/CwiWf19JNispUqpAkQDDqWUJ8UaY04ZY44ZYzYZY8ZgU3j3BYYBiMgIEflDRC6JyCERGS8iJR3n\nOgNfAgFOvSX/cpwrJiLvicifjmt/c5RXSuUDGnAopfKUMWYpEAXc4TiUADwFNAKGAOHYbJgAq4Fn\ngQvY1N1Vgfcc58YDbYG7sem+ZwLzRKSu+1uhlMqMZotVSnmEiEwEAowxd6RxLgJoaoxpksa5O4GP\njTGVHV8PBcYaY8o7lakB7ANqGGOOOx3/BfjdGDPa5Q1SSmWLT15XQCmlcJqXISLdgReBEMAf+3vK\nT0SKG2OupnN9U8Ab2JVqAmox4LTbaq2UyjINOJRS+cFNwH4RqQX8jB0eGQWcBToCX2CDh/QCjtJA\nPNACSEx17pI7KqyUyh4NOJRSeUpEumJ7KN4HWmKHep9zOn9vqkuuYXsznG10HAs0xqxyY3WVUjmk\nAYdSypP8RCQQR3AA9MEOn/wETMEGHr4i8jS2p6MD8FiqexwASjsClSjgijFmt4hMAyaLyHPYAKQy\n0BWIMsbMc3vLlFIZ0lUqSilP6g0cBfZj9+ToDPzNGHObsf4A/g48D2wGBmMDkmTGmN/NUSwiAAAA\njUlEQVSAT4DpwEngn45Tw4DJ2FUrO4DvgVbAIfc2SSmVFbpKRSmllFJupz0cSimllHI7DTiUUkop\n5XYacCillFLK7TTgUEoppZTbacChlFJKKbfTgEMppZRSbqcBh1JKKaXcTgMOpZRSSrmdBhxKKaWU\ncjsNOJRSSinldhpwKKWUUsrtNOBQSimllNv9P3YRs6LS9AjJAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGHCAYAAABvUSKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8FMX7wPHPhIQSOgQSWgi9QyBU6UivUqRDQAGV8kWQ\nn0gRVEBBQRBQKdJLEAREOtI7SOi9F+mhBkJJmd8fe8GUS3I5LrmU5/167QuzOzP77OW8ezI7O6O0\n1gghhBBC2JuDvQMQQgghhABJSoQQQgiRQEhSIoQQQogEQZISIYQQQiQIkpQIIYQQIkGQpEQIIYQQ\nCYIkJUIIIYRIECQpEUIIIUSCIEmJEEIIIRIESUqEEEIIkSBIUiKSHKVUiAVbsFKqhlIqr5n9D5RS\n65RSlWM4z/emOj5RHI/Y9mul1H2l1B6l1BilVB4zdWqayrYKs8/btC9AKZXDTJ3tSqnjZvYrpVRX\npdQm03lfK6XuKqU2KqV6KqVSWvBahrax3/S6PFVKnVNKzVNKVTITd9hrvWQql89UZrDpWL0ozrVO\nKfVIKeVmQVxdlFI7TOWfK6WOK6W+VEo5myl7VSn1VxTteJli6mrm9xXde8c9hvicTfEcM8X3WCm1\nUynVJYryUZ3rlgWvRV6l1Byl1EWl1Aul1G3Ta/NVNHUOmtr/KIrj3mFieCeKMjdMx/+KsD/ia3XT\n9J6rGaFclL+XMGXmRPPaBERXVyROjvYOQIg40DnCz95AXdN+FWb/GSD0S2wxsA5IARQG+gBblVIV\ntNanojhPe+AK0EwplVZr/TyKcqFtOwCZgQpAf6C/UupDrfXvEcpHtSBVKuALU91oyyulUgN/AvWB\nPcAPwF0gC1AT+BmoCPSM4lyhpgC9TW0tBIKAIkAj4BJwIEL5ScAhwAkoB3wENFZKlQImAB2BX5RS\nJbXWr8LE+z7QEPhEa30nqmCUUg6AD/A+sBMYCQQA1U3//b5S6l2t9f0w1Sxd4Osekd87g4BcwKeE\nf+/cJwpKqezAVozXyQfjNUwNtAbmKaUaAZ105IXHNgHzI+x7EV3ASqkCGK/3c2A2cBXIgfHafw58\nZaZOQaA8xnu3EzA9mlO8wPid7Y3QRk2M1+VlFPVCr0UB+TDeQ1uVUo211htNZSz9vbwEPiT86w8Q\nbGF9kZhorWWTLUlvGF8KwVEcywuEAAMj7G9g2j81inq1MT4UawKvgC6Wtm06lgc4i/GhXyrM/pqm\nOq3C7PM27fPF+AJ2i9DWNuB4hH3TTPH1jSL+AsDHMbxu2U1t/BrFcZfo4jbt72tqY7Dp50oYic3o\nMGXSAf8Cuy34XQ4xnWesmWNNTG2vjbD/CvBXFO15mdrrGsXx1cDlWL7fNgCBQBMzx743ne//IuwP\nASZb8d7+2fT+yx3d7yfC/q+B28B7pt+Nu5kyoe+5ZRjJrEOE49OBg8DliK+tuWsBSpr2r7fk9xKm\nzBzgaWxfF9kS7ya3b4Qwb5fp3wJRHO8EnNZa7wA2m362mNb6BtANo/fjc0uqAN9i9G5+EV1BpVRu\njL8s12utp0Zx/kta62kxnDMfxl+ne80d1Fr7xRQ0Ro9B6F/LaK0PYCRMg5RSRU1lxgDZgF7RNWTq\n/RmEkcwNNRPPWmAe0FApVdGC2GzOdEurPjDHFE9EQ4ALwGClVCobnDI/8K/W+t+IB6L5/XTASDbW\nAk8wekLM0Rg9PVmBN7fclFJOQBuMHsCIvRfmG9L6JOCH6X0gRFQkKRHCvNAPz0cRD5jGYrTC+FAG\n44O7jqnb3mJa6/0Yt0DMjrEw4wpGl3jPGMZdNML4f3tRbOIx45rp3/eVUmmsbKOg6d8HYfYNwfiC\nmq6UKofRtf+D1vp0DG1Vw7j9tVhrHRJFmdBbBk2tjPdtNcP4Ml9g7qDWOhjjfZMZqBrhcGqlVNYI\nW0zjfq4BeZRStS0JzpQ0FQR8tNaBwAqiT6ivAvsxEplQjYEMwBJLzmk6b2aMa34QU9ko6kd8XbIq\npdJb05ZI2CQpEcLgbPqgy66UqobRbawx/qKMqBmQEQgdC/Inxm2D9lac9ySQTSmVzsLyYzDGawyO\npkxoD8TJsDuVUk4RPtSzRHcibYztmI9xW+RfpdRypdRApVSRaKqlN7XtppRqDPyE0W2/PEy7/sD/\nMMaBbMJItkZFF4tJcYzfSaRBvWEcM/1bzIL24kLxCHGYcwwjcYoY44cYY1VCt3vE/J6aDLwGtiil\nDiulJiqlmkeTRHYGrmut95l+XgIUV0qVjuYci4H3wvTsdAR26GjG/vBfguVi6rVahvF9szSG6zEn\nHeFfl9At4lgskQRIUiKE4WuMD7o7GAMoi2CMBVlppmxH4JDW+jKA1voZRld4rG7hmDwz/WvRX31a\n6ysYf4X3Ukq5RlEsQ4S2QzUm/If6VQvO1w1jXMhljDEIPwBnlFKblVI5zVSZbWr7FsZ4jDQY4zUO\nR2h3Bcbg38xAHx1m0Gs0Ql8j/2jKhB7LEE2ZuPQ2Ma7CGJAdutUDNhINU++SJ8Z7Ii9GsvcncFcp\n1SNsWaVUCqAt4Xs4tmL8vqJ77y7FGBDe1JQ8NyXmXrjQBOseRk9LFWCC1vqnGOqZ8wJ4l/CvTV1i\nuI0pEid5+kYIwwyMv+ZSA3UwPtwj/f+hlMqI8eU+xfTkQ6i9QCulVEGt9cVYnDe0hyS6L7GIRgNd\nMD6UB5g5HtpWxN6X3Rgf5mCMYzH7qGdEWutfgV9NXfBVgY8xXgMfjAGuYX1tOk8wxi2aM9HcavkH\n41aTryVx8N91RZfAWZIUmGPpkyAxCRvj0yjKRBXjv1rrrbE9oen95q2UUhg9NU0xfr/TlVKXw7TZ\nAGPszj9h3rsKY6B0B6LofdNa+ymlNmMk42kx/pj9I4awVgFTMV5Xf+CU1jraJ4miEay13mZlXZHI\nSFIihOFCmA/vdUqpEGCcUmpbhL/y22IMTv0MY9BlWBrjL86vY3HeksA9U2+LRbTWV5RSCzF6S8aZ\nKXIW48umJHAiTL0HGH8ZE9V8GTGc9xGwBlijlNoG1FBK5TEN2g110povVgudwbiu0kBU81uE3oYI\nOz7lJUaPjTnOYcrYwhmghSmO3VGUKYPxXolpDE2saK01cAo4pZTaj5FsdML0O8dIKszdktRgPOZr\nGrhtzmJgJsbjxutNt+CiY1WCJYTcvhHCvDEYf+GNjrC/I8YX/fsYTyCE3bYQ9ZMMkSilqmA83RNt\nF30URhP12JL1GD0V1txOstQh07+RJnOLQ7uBx0BHU6+AOd4YX7Jrwuy7hjH3jDlFTeWvRXE8ttZg\nJE5dzR00zbPSEWMA9R4bndOccL8fZUwq1wJjHEbE9+37GLcto3u/rMQYG1SJ/wZ4C2FzkpQIYYbW\n+gnGXAwNQgcBmh61rQH8rrVeEXHDGBxbUClVIab2lVJ5gbkYc0yMtyK+yxiTmX0EuEU4dgNjbEcj\npVSfKJqI8f99pZSrUirSgFHTI6F1Mb6kYnOr6q2Yuv/HYyQS35qJqwlGUrJBa30wzKF1QG6lVPMI\n5VMCPTDGPYQb8/IWMe7DeES8uymeiL7FePplnIXjaKKllKqmlDLX4x167rOmf1th9ApNjeK9uwZo\nbfrdRqKNiQE/xpiMbfXbxi1EVOT2jRBR+wljJs8vMP66Df1LMqoP5XX810PxT5j9XkqpThiJQCaM\nGV1bY3ypdzbN4RATcz0DYzDGlhQhwpM2prg9gMlKqfammO8BLhjjQpph3GqITm7goFJqK0Yv0B2M\nCdU6YNyemKi1fmhB7LY0FmNg5+emnqblGAMhq2O87qcw5n8JawbwAbBMKTUHOIIx90Y7oATGxHdB\nNoyxK0Zi8qcyliDYhXHLrxXGGJwlWJGIRmEwxvtrBf89leSF8b7ww5hhF4zX5gGwL1ILhr8wZvdt\ngjFQFiK857TWZh9zfksFlVLDzOw/orVeZ/pvR9P/P+aseIuxKiIBkqREJBfRDWTU5o5rrW8rpRYD\nnZSxfktH4JrW+kTEsqbyT5RSu4F2SqmBYdpub9qCMAY/XgB+BKabm/QqiljNxXdJKbWA/25ZhD32\nQinVEOPLqQvwfxhPezzGeCT1YyJPaR7ROYwp7RsDnwCuGGMvTgI9tNZzLIjbpkyDZtsqpbpi9HJ8\nA6TEmO9lJPBjxC8prfVLpVQNYATGE0TdMBIZX6CR1vrvmE4byxjvmB6D/Qzj1kgrjN/9ccBba70w\ninNY8/qNwXhf1jT964wxW+tijFlzryulsmEM3l5sGndizhaMqeo78V9SYkk85uKOzbUUwfgdRjQL\nI8kHI6GL6r26C7hu4blEIqCifo8KIYQQQsSfRDemRClVXSn1lzJWngyJeJ/YVOYbpdQtZayq+rdp\nAaqwx1MppX5WSvkppfyVUn/EdjZOIYQQQthWoktKMJ6TP4oxNbW51VEHY0z21AtjFdTnwMYI0zVP\nwrh32hpj4GJOwsw4KYQQQoj4l6hv35jmknhPa/1XmH23MNbRmGj6OQPGKpfeWuulpp/vA+1DZ+s0\nTZt9BqgcYdS+EEIIIeJJYuwpiZJpMKIbxqAtALTWT4EDGNMcA5THGOAbtsw5jMFSVRBCCCGEXSSp\npAQjIdEYPSNh3eW/uRxcgdemZCWqMpEopZyVUuVMkxAJIYQQwkKWfofKI8GW88SYgfGwUirilOAb\nsG5WTiGEECKpaQA0jLAvHVAOY56kvVFVTGpJyR2MCX9cCd9b4ooxYVJomZRKqQwRektcTcei4mH6\nt5yZYzUwM8OkEEIIIcLxILkkJaaFyu5gLHN9HN4MdK0E/Gwq5osxkdG7GOs5hA50dSfq2Q7BtMz7\nwoULKVYs0szbURowYAATJ06M1XXEV5169erx998xzRtlm3Ml5GuKr9isrZeQrykhX4+19RLyNcXn\nezWpXZO876w/jy3qnDlzhs6dO4PpuzQqiS4pUUqlxVg7InQK5PxKqTLAQ9OaH5OA4UqpixgXPwr4\nF2MpbbTWT5VSs4AflVKPMBZdmwzsieHJm5cAxYoVo1w5c50l5mXMmDFW5eOzjpOTU6zrWHuuhHxN\n8RWbtfUS8jUl5Ouxtl5Cvqb4fK8mtWuS953157FxnWhX5E50SQnG0zPb+G8q4wmm/fOAD7TW35sG\n0kzHWGdkF8ZU0q/DtDEAY42SPzCmMN4ARLVw2Vvp0KFDgq2TK1euWNex9lwJ+ZriKzZr6yXka0rI\n12NtvYR8TfH5Xk1q1yTvO+vPE5/vO7TWslmwYYwl0b6+vjqpaNasmb1DsDm5poQvqV2P1nJNiUFS\nux6tE9c1+fr6hnYklNPRfNcmtUeChRBCCJFISVKSjFndvZaAyTUlfEntekCuKTFIatcDSfOaEvU0\n8/FJKVUO8PX19Y1ywM/169fx8/OL38CSKRcXF9zd3e0dhhBCCAscPnwYLy8vAC+t9eGoyiXGga4J\n0vXr1ylWrBgBAQH2DiVZcHZ25syZM5KYCCFEEiJJiY34+fkREBAQ63lMROyFPu/u5+cnSYkQQiQh\nkpTYWGznMRFCCCGEQQa6CiGEECJBkKRECCGEEAmCJCVCCCGESBAkKRFCCCFEgiBJiRBCCCESBElK\nhEXmzZuHg4MDzs7O3L59O9LxWrVqUbp06Tc/e3h44ODgQP/+/SOV3bFjBw4ODqxYsSJOYxZCCJG4\nSFIiYuXVq1eMHTs20n6lVKSflVLMnDmTO3fuxFheCCFE0hWiQywqJ0mJiBVPT88oE42ISpQoQXBw\nsNkkRpY3EEKI5OHpq6f0Wt3LorKSlAiLKaUYOnQoQUFBZhONiDw8POjatavFSYwQQoik5cnLJ9Rf\nUJ8LDy5YVF6SEhEr+fLli1WiMWzYMAIDAy1KYoQQQiQ8L4Ne8ujFI2773+bKoyucuX+GY3eOcejW\nIfbd2MfOazu5+fRmpHqPXjyi3oJ6nH9wnmlNp1l0LplmXsTasGHDmD9/PuPGjWPixInRlvXw8KBL\nly7MnDmTIUOG4OrqGk9RCiGEeBsvg17Sa3UvFhxfEGNZB+VAs8LN+KT8J9QrUI/HLx9Tb0E9rj2+\nxlbvrYTcsmxMiSQldhIQAGfPxu05ihYFZ2fbt5svXz66dOnCjBkz+OKLL2JMNIYPH86CBQsYO3Zs\njEmMEEII+7v//D7v/f4eh28fZkL9CXhk8iC1Y2pSO6YmVYpUpEyREqcUTjg5OOHo4Mi2q9v49dCv\nNFzUkPyZ85MqRSruB9xnq/dWSruW5vCtwxadV5ISOzl7Fry84vYcvr4QV2sDxibRiJjECCGESLhO\n3z9N08VNCQgMYLv3dirlrhRjnSIuRfjI6yP2/7ufab7T8L3lyzbvbZTMXjJW55akxE6KFjWShrg+\nR1zJly8fnTt3ZsaMGQwePDjG8sOGDWPBggWMGzeOFi1axF1gQgghYi0gMIAbT27ge9uX3mt7kydj\nHrZ5byNvprwWt6GUokqeKlTJU8XqOCQpsRNn57jrxYgvw4cPZ+HChYwbNy7Gsvnz56dz585Mnz6d\nihUrxkN0QgghonLv+T1mH5nNH6f/4Orjqzx48eDNsUYFG7GkzRIypMoQ73FJUiKsFjbRyJs3L05O\nTtGWD73l8/3338vkaUIIEc+01uy6votph6bxx+k/cFAOtCzWkpZFW+Ke0f3N5pHJw26f0ZKUCIuZ\nm/As9LbMuXPnKFky+nuHoUnMvHnzJCkRQiRJz18/J23KtLGqo7Xm8cvH3PK/xe1nt7ntf5uMqTPS\nsGBDUqZIaVUcITqESfsnceTOEW4+vckt/1vc8r+F/2t/CmctzLi64/D29CZLmixWtR9XJCkRFjOX\nSBQoUIAuXbpESjRCp5mPaPjw4SxatIiQEMseDxNCCHu78OACq86tYuOljZTKXoqBVQaSO0PucGUu\nP7rMl9u+ZMnJJcx/bz6dSneyqO3nr59TYWYFzvidiXTMxdmFTqU60c2zG55unrGKeabvTD7b9BnV\n3KuRK30uPN08yZk+J145vKjlUSvB/mEoSYmwiLe3N97e3maPzZ49m9mzZ4fbd/nyZbNlCxQowOvX\nr20enxBCWOrSw0s0WNiAYtmK0alUJ5oXaY6z03/zJzx//Zz9/+5ny5UtrDq3itP3T5PaMTU18tZg\nztE5TD04lS6lu/B51c/JkiYLo3eO5tdDv+Li7ELVPFXpva43Vd2r4pHJI8ZYph6cysWHF1nQcgH5\nMuUjR/oc5EiXg0uPLjH36FwWHF/ATwd+wiuHF8veX0a+zPlibPPm05t8vvlzPiz7Ib81/+1tXqp4\nJ0mJEEKIZONF4AtaL21NsA7m/vP7dFjegbROaWlZrCWuaV3ZdX0Xh28fJigkiKxpstKkcBNG1x5N\n/QL1SZsyLf6v/JnuO50f9/3InKNzSOOUBkcHR76q9RX9K/UnKCSIMtPK0HlFZ7Z3246jQ9Rfs09e\nPmHcnnH0LNeTzqU7hztWMntJxtcfz3fvfseGixv4dOOnNF7cmL0f7CVzmsxRtqm15pO1n5DWKS3j\n64+32esWXyQpEUIIkWg9ffWUpaeWApDGMQ1pnNLg7ORM5dyVyZQ6U6Tyfdf15dyDc+z/cD9l3Mpw\n6eElfE764HPSh2evn1HNvRrdynSjet7qFM9WHAcVfjWW9KnSM+idQfSr2I8Fxxdwy/8WvSv0xsXZ\n5U2Zha0WUnNuTcbuHsvwGsOjjH3S/km8CHrBsBrDoizjlMKJZkWaUcSlCFVmVaHV0lZs6LSBVI6p\nzJZfemopq8+vZkXbFWavP6GTpEQIIUSitOb8Gj5Z+wk3n95EE34gvls6N35r9htNCjd5s2/W4VnM\nPjqbuS3mUsatDAAFshRgeI3h0SYP5qRyTEWPcj3MHqvmXo2h1Yby1favqF+gPhVzRZ4G4UHAA37c\n/yO9y/cmZ/qcMZ6vcNbC/NX+L96d/y49Vvdg/nvzI40LeRDwgH7r+9G6WGtaFmsZq+tJKGRBPiGE\nEInK3Wd3af9He5r5NKNU9lJc6X+F4BHBPB/6HL//8+N079N4unnS1KcpPf7qwdNXTzly+wh91vWh\nZ7meeHuaHx9nSyNqjsArpxedVnTi2etnkY6P3zue4JBgBleLefLJUFXdqzLvvXksPL6Qr7Z/Fen4\ngI0DCAwJZGrjqW8Tul1JT4kQQohEITgkmDlH5/D535+TwiEFi1otokPJDm96DJydnHF2ciarc1bW\ndVzHzMMzGbhxIFuubEFrTYnsJZjcaHK8xOqUwomFLRdSdnpZmixuws+Nf34z5frdZ3eZfHAyn1b6\nlOxps8eq3XYl23H18VW+2PIFe27swUE5EKyDCQwOZNf1XcxuPhu3dG5xcUnxQnpKhBBCJAh3nt1h\n/rH5XHt8LdKxPdf3UPG3ivRc3ZNmRZpxps8ZOpbqGOWjrUopenn14vgnx3HP6M6z18/44/0/SO2Y\nOq4v441CWQvxZ/s/ueV/izLTyvDR6o+4++wuY3ePxcnBiUHvDLKq3c+rfs7Yd8eSIVUGMqbOSDbn\nbLhndGd07dF08+xm24uIZ9JTIoQQwu4uPLhgLHX/xEhIvHJ40apYK2p51OLnf35m8YnFeOXwYu8H\ne2O1tkr+zPnZ7r2dl0EvSeOUJq7Cj1Ld/HU51fsUv/7zK1/v+JrFJxcTGBzI0OpDo32KJjpKqVjd\n9klMpKdECCGEXR2+fZiqs6uSxikNp3qfYknrJRTIUoBvd31L1dlV2Xx5M7Oaz+Jgz4NWLfamlLJL\nQhIqZYqU9K/cn4v/u0iPsj0o7VqaTyt/ard4EjLpKRFCCBGngkKC8Dnhw+KTiynrVpYWRVpQIVcF\nHJQD265so8WSFhR1Kcq6TutwcXaheLbitCvZjpdBLzl48yBlXMuQMXVGe1/GW8uSJgsTG060dxgJ\nmiQlQggh4sSroFfMPzafsXvGcvnRZarmqcoM3xl8t/s7cqTLwbv532XpqaXUyFuDFW1XkD5V+nD1\nQ2dRFcmHJCVCCCFsKjA4kFlHZjFm1xhuPr1Jm+JtWN52OZ5ungSFBLH3xl5WnV3Fuovr6FiqI9Oa\nTItyMjCRvEhSIoQQwia01qw6t4ovNn/B+Qfn6ViqI8OqD6NYtmJvyjg6OFIjbw1q5K3BhAYT7Bit\nSIhkoKuw2IkTJ2jTpg0eHh6kSZOG3LlzU79+faZO/W+iHg8PDxwcHN5srq6u1KhRgz///BOAq1ev\nkjZtWjp1Mr+C5u+//46DgwO//vprvFyTEOLtPX31lL8v/U31OdVp+XtL3DO6c/ijwyxstTBcQiJE\nTKSnRFhk79691KlTh7x589KrVy/c3Ny4ceMG+/fvZ/LkyfTt2xcwRrmXLVuWQYMGobXm1q1bTJ8+\nnVatWjFt2jR69erFyJEjGTJkCN27d6du3bpvzuHv78/AgQOpUqUKn3zyib0uVQgRBa01N/1vcujW\nIQ7fPszxu8c5fvc4Vx5fAaCMaxk2dt5I/QL17RypSKwkKREWGTNmDJkyZeLQoUOkTx9+MJqfn1+4\nn3PlykWHDh3e/NylSxcKFizIxIkT6dWrF5999hmLFi2id+/enDhxglSpjHvJQ4cOxc/Pj02bNsX9\nBQkhLLbizApmH5nNoVuHuPv8LgCuaV0p41aG1sVaU9q1NKVcS1HatXSkBeyEiA1JSoRFLl++TIkS\nJSIlJAAuLi5mavzH1dWVYsWKcfz4cQBSpEjBjBkzqFq1KqNHj2bUqFH4+vry66+/MnjwYEqUKBEn\n1yCEiGzntZ2cvHeSj8t/bDahWHJyCR2Xd6Sqe1V6lutJ+ZzlKZ+zPDnT54xyNlUhrJUkU1ql1Eil\nVEiE7XSEMt8opW4ppQKUUn8rpQraK97EIG/evPj6+nLq1KlY1w0KCuLGjRtkzZr1zb5KlSrxySef\n8MMPP3Dy5Ek++ugj8ufPz4gRI2wZthAiCvee38P7T29qzq1Jn3V9aPl7S/xf+Ycrs+b8Grqs7EKX\nMl3Y0W0Ho+qMokXRFuTKkEsSEhEnkmRSYnIScAXcTFu10ANKqcFAX6AXUBF4DmxUSqW0Q5yJwqBB\ngwgICMDT05OqVavyxRdf8PfffxMUFBSpbGBgIA8ePODBgwccP36cLl26cO/ePdq2bRuu3LfffouL\niwu1atXiyJEj/PLLL29u5Qgh4kZwSDDTDk2jyNQirDm/ht+a/cbqDqvZdmUbVWdX5erjqwBsu7KN\nNkvb0KxwM2Y1nyW3ZUS8SMq3b4K01vejONYfGKW1XgOglOoK3AXeA5bGR3ABgQGc9Tsbp+co6lIU\nZydnm7RVt25d9u3bx3fffcfGjRvZv38/33//PdmyZeO3336jWbNmb8pu3LiRbNmyvfnZ0dGRrl27\nMnbs2HBtpk+fnkmTJtG2bVs6dOgQbtCrEML2zj84j/ef3uz/dz8feH7AuHrjcHE2br/u+3AfzZc0\np8LMCnxd62sGbx5Mjbw18Gntg6NDUv6qEAlJUn6nFVJK3QReAvuAIVrrG0qpfBg9J1tCC2qtnyql\nDgBViKek5KzfWbxmeMXpOXx7+VIuRzmbtefl5cUff/xBUFAQx44dY+XKlUycOJH333+fo0ePUrRo\nUQAqV67MmDFjAHB2dqZYsWJkyJDBbJsVKlR407YQIm5orZnuO53PNn1GzvQ52dV9F9Xcq4UrUyJ7\nCQ70OECbpW3os64P7+R5h5XtVsqkZiJeJdWkZD/QDTgH5AC+AnYqpUpiJCQao2ckrLumY/GiqEtR\nfHv5xvk54oKjoyNeXl54eXlRqFAhunfvzrJly/jyyy8BY+Br7dq14+TcQojYue1/mw//+pD1F9fz\nsdfHjK8/nrQp05ot6+LswqYum1hycgnNizSPspwQcSVJJiVa641hfjyplDoIXAPaAm91z2TAgAFk\nzBh+YagOHTpQpEiRWLXj7ORs014MeylfvjwAt2/ftnMkQoiIDt48SONFjXFK4cTajmtpXKhxjHVS\npkhJ1zJd4yE6kVT5+Pjg4+MTbt+TJ08sqpskk5KItNZPlFLngYLAdkBhDIIN21viChyJqa2JEydS\nrlzkZOLw4cM2iTWh2r59O7Vq1Yq0f+3atQBvbt0IIRKG0/dP02hRI4q6FGVV+1Vvxo4IEdc6dOgQ\nbq4qML5Hp/onAAAgAElEQVQjLblNnyySEqVUOoyEZJ7W+opS6g7wLnDcdDwDUAn42X5RJmz9+vUj\nICCAli1bUrRoUV6/fs2ePXtYunQp+fPnp1u3bvYOUQhhcu3xNeovqE/uDLlZ23EtmVJnsndIQlgk\nSSYlSqkfgNUYt2xyAV8DgcASU5FJwHCl1EXgKjAK+BdYFe/BJhITJkxg2bJlrF+/npkzZ/L69Wvc\n3d3p27cvw4YNezOQVSkV6/kLrKkjhDDv3vN71FtQj1SOqdjQaYMkJCJRSZJJCZAbWAxkBe4Du4HK\nWusHAFrr75VSzsB0IBOwC2iktX5tp3gTvPr161O/fszrWVy+fDlW7ebNm5fg4GBrwxJChPHk5RMa\nLmyI/2t/9nywhxzpc9g7JCFiJUnOhqO17qC1zq21TqO1dtdad9RaX4lQ5iutdU6ttbPWuoHW+qK9\n4hVCiJjMOTKH8jPKs/fGXrPHLzy4QK15tbjy+AobO28kf+b88RyhEG8vSSYlQgiRlGy9spVea3px\n4+kNqs+pzohtIwgMDnxzfPGJxZSbUY6AwAC2e2+ntGtpO0YrhPUkKRFCiATs/IPztFnahjr56nDt\n02uMrDmSb3d9S/U51Tl+9zg9/upBpxWdaFGkBYd6HqKMWxl7hyyE1ZLqmBIhhEj0Hr14RDOfZrim\nc+X3Nr+T2jE1I2qOoH6B+nRe0Zky08rg7OTM7Oaz6ebZTQaMi0RPkhIhhLCj56+fM37veGYfnU0Z\n1zI0LtSYxoUakyNdDtosa4NfgB8HehwI9xRN5dyVOfrxUaYenErzIs0pnq24Ha9ACNuRpEQIIewg\nRIcw/9h8hm0dhl+AH11Kd+Hiw4v0XdeXYB2MWzo3/AL82NxlMwWzFIxUP13KdHxR7Qs7RC5E3JGk\nRAgh4pHWmo2XNjJ0y1CO3DlC2xJtGfvuWPJlzgfA45eP2Xx5MxsvbqRu/rrU9Khp54iFiD+SlAgh\nRDwICgnij9N/MHb3WI7dPUaV3FXY88Ee3snzTrhymVJnok3xNrQp3sZOkQphP5KU2NiZM2fsHUKS\nJ6+xSEy01sw5Oocxu8Zw+dFl6heoz9YGW6nlUUsGpgoRgSQlNuLi4oKzszOdO3e2dyjJgrOzMy4u\nssCYSNiCQoLot64f03yn8X7x91n2/rIksTq4EHFFkhIbcXd358yZM/j5+dk7lGTBxcUFd3d3e4ch\nRJQCAgNo/0d71l1Yx2/NfuPDch/aOyQhEjxJSmzI3d1dviiFENx/fp9mPs04ee8kqzusplGhRvYO\nSYhEQZISIYSwEf9X/my4uIGhW4fi/8qfHd124JXTy95hCZFoSFIihBBv4dGLRyw/s5w/z/7J5sub\neRX8ikq5KrGp86Y3j/kKISwjSYkQQljp/vP7VPqtEteeXKO6e3XG1h3Le0XfwyOTh71DEyJRkqRE\nCCGs8CroFS1/b8nzwOec73ueAlkK2DskIRI9SUqEECKWtNb0XN2TQ7cOsb3bdklIhLARSUqEECKW\nxu4ey4LjC1jcajGVc1e2dzhCJBkO9g5ACCHsQWvN3Wd3Y11v+enlDN06lJE1R9KhVIc4iEyI5Et6\nSoQQyc7Jeyfps64PO6/tpFKuSvSt2Jf3i79PKsdUkcre9r/Nvn/3se/GPvb9u48DNw/QvmR7RtYc\naYfIhUjaJCkRQiQb/q/8+XrH10zaP4kCWQowtdFUVp1bRZeVXRi4cSA9y/UkS5osnPU7y7kH5zjr\nd5b7AfcByJMhD1XyVOHHEj/S06unrFsjRByQpEQIkeRprVlycgmD/h7EoxePGFV7FAOrDCSVYyr6\nVOzDWb+z/PLPL0w5OIVgHUxRl6IUyVqEuvnrUiJbCSrnrkyuDLnsfRlCJHmSlAghEpT7z+9z1u8s\nBbIUIEe6HG/dI3H87nH6re/Hzms7aVWsFRMbTMQ9Y/jlIIq6FGVyo8n82OBHHJQDDkqG2wlhD5KU\nCCESjE2XNtFpRSf8AoyFLdM4pqFAlgKUcS3D5EaTyZImi8VtPXrxiBHbRvDLoV8onLUwmzpvol6B\netHWcXSQj0Qh7En+DxRC2F1wSDBf7/ia0TtHU79AfcbUGcMt/1tcfHiRS48usejEIgJDAlnSekm0\nPScPXzxk48WNrLmwhrXn1xKiQ/i+7vf0q9SPlClSxuMVCSGsIUmJEMKu7j67S8cVHdl+dTujao9i\nSPUhOCgHvPhvIbvq7tVpv7w9LYq0oGOpjpHa2HN9D0O3DmXP9T0E62DKupWlX8V+9K7Qmxzpc8Tn\n5Qgh3oIkJUIIuznnd4468+sQHBLM5i6bqZ2vttly7Uq2Y9W5VfRe25vq7tXJkzHPm2Nbr2ylmU8z\nSmQrwS9NfqFxocbkzpA7vi5BCGFDMppLCGEX5x+cp/a82mRKnYnDHx2OMiEJ9XPjn0mXMh3dVnUj\nRIcAxhiUJoubUN29Oju67aCXVy9JSIRIxKSnRAgR7y4+vPgmIdnadSuu6VxjrJM5TWbmvjeXegvq\nMeXAFApmKUirpa2oX6A+y95fRmrH1PEQuRAiLklSIoSIV5ceXqL2vNpkSJWBrd6WJSSh6uavS/9K\n/Rm8eTAhOoSmhZuypM0SGcQqRBIhSYkQScy1x9dwUA7hxl0kFFceXaH2vNo4OzmztetW3NK5xbqN\n7979jt3Xd1PUpShzWszBKYVTHEQqhLAHSUqESCICgwMZs2sMo3eOJlgHkz9zfup41KF2vtq8m+/d\nWPVIxIXb/repu6AuqRxTsc17m9VPxaRxSsM/Pf+Rad6FSIIkKREiCTh57yRdV3bl+N3jDKs+jDJu\nZdh2ZRvbrm7jtyO/4aAcqF+gPt3KdKNF0RbxPv7i0YtHNFjYgFdBr9j9wW5yps/5Vu1JQiJE0iRJ\niRCJyOvg11x6eImXQS/fbHtv7OWbnd9QMEtBDvQ4gFdOY36PVsVaAcY8IKvOrWLesXm0X96ejKky\n0r5ke/pU6EMp11JxHvPz189psrgJt/xvsbP7TjwyecT5OYUQiZMkJUIkEhceXKD5kuac9Tsbbr9C\n8VmVzxhVZ5TZHhDXdK708upFL69enH9wnvnH5jP36Fym+06nYcGGDKoyiDr56sRJ78OroFe0WtqK\nE/dOsLXrVopnK27zcwghkg5JSoRIBDZd2kS7P9rhmtaVTZ03kSVNFlI7pia1Y2oypc5EVuesFrVT\nOGthRtcZzciaI1l6aik/7P2BugvqUtatLN/X+566+eu+daxaa07eO8nGSxtZdnoZx+4cY32n9VTI\nVeGt2xZCJG2SlAiRgGmtmbR/EoP+HkTDgg1Z3GoxGVNnfOt2nVI40al0JzqW6siWK1v4Zsc3NFnc\nhE2dN1HTo6ZFbey5vofpvtNRShkr6+LAi6AX7Li2g1v+t0jjmIaaHjVZ03FNjBOjCSEESFIiRILl\nF+DHwI0DWXB8AYOrDmZMnTGkcEhh03Mopaibvy7V3avTZHETmi9pzq7uuyjtWjrGup9v/pwrj65Q\nIEsBQnQIIToEB+VAh5IdaFCgAdXzVpcJzYQQsSJJiRAJzIvAF0w+MJlvd38LwMKWC+lUulOcnjOV\nYypWtFtBrbm1aLSoEXs/2EveTHmjLH/q3in23tjL0jZLeb/E+3EamxAi+ZC1b4RIIEJ0CAuPL6TI\n1CIM3zYc7zLeXOx3Mc4TklAZUmVgXad1pEqRigYLG+AX4Bdl2d8O/0Y252y0KNoiXmITQiQPkpQI\nkUB8s+MbuqzsQoVcFTjd+zSTG00mW9ps8RqDWzo3NnXZxMMXD2nm04zXwa8jlXkZ9JL5x+fTzbOb\nTO8uhLCpZJ2UKKX6KKWuKKVeKKX2K6VifDxgyhT44ANo2hRGjIiPKEVycOzOMcbsGsOIGiNY3nY5\nhbIWslssBbMUZE3HNfxz8x8m7J0Q6fiKMyt4+OIhPcr1sEN0QoikLNkmJUqpdsAEYCRQFjgGbFRK\nuURXb9MmOH0a7t6Fb78Fv6h7uIWwSFBIEB/+9SFFXYoyrMYwe4cDQMVcFRlQeQDf7PyGy48uhzs2\nw3cGtTxqUThrYTtFJ4RIqpJtUgIMAKZrredrrc8CHwMBwAfRVVq9GvbvhzVrQGv488/4CFUkZRP2\nTuDInSPMbj47Qd0O+arWV2RPm50+6/qgtQbg/IPz7Li2g17letk5OiFEUpQskxKllBPgBWwJ3aeN\nT93NQBVL2nB1hZo1YenSuIlRJA/n/M4xcvtIBlYemOAmF0ubMi1TG01lw8UN/HH6D8AY4JolTRZa\nFmtp5+iEEElRskxKABcgBXA3wv67gMVrqbdtC1u3yi0cYZ0QHUKP1T3IkzEPX9f+2t7hmNWsSDPe\nK/oe/Tf0xy/Aj7lH59K1dFeZf0QIESdknpK30KoV9OkDK1dCz572jkYkZCE6hL8v/c2jl494Hfya\nwOBAjtw5wu7ru9nuvR1nJ2d7hxilyQ0nU/yX4tSZV4f7Affp6SVvdiFE3EiuSYkfEAy4RtjvCtyJ\nruKAAQPImPG/ab6zZIHJkzvQs2cHmwcpkoZXQa/ovqo7Pid9wu1PoVLwRdUvLJ7W3V7yZMzDN7W+\nYeCmgVTNU1UW1RNCRMvHxwcfn/Cfd0+ePLGorgodwJbcKKX2Awe01v1NPyvgOjBZa/2DmfLlAF9f\nX1/KlSv3Zv/06dC7N9y5A9mimFIiMDiQ9RfXM/foXG7632S793bSOKWJg6sSsXXq3imevX5GpdyV\n4qT9Jy+f0GppK/Zc38O89+bRpHATnByccErhhINKPHdPg0KC6PFXD7zLeMs6NkKIWDt8+DBeXl4A\nXlrrw1GVSzyfirb3I9BTKdVVKVUUmAY4A3Nj00hL03i/lSsjH7vw4AIDNw4k14+5aLGkBVceX8H3\nli8zfGe8ZejibTx5+YTph6ZT6bdKlPy1JDXn1uT6k+s2P88t/1vUmFsD31u+bOqyiXYl25EuZTpS\nOaZKVAkJgKODI3PfmysJiRAiTiWuT0Yb0lovBQYB3wBHgNJAA631/di0kz071K4d+SmcU/dOUfG3\niiw8vpDOpTtz9KOjHPnoCF3KdGHcnnG8DHppoysRltJaM2DDANwmuNF7XW+yOWdjSeslZEydkZHb\nR9r0XOcfnOedWe/w8MVDdn+wmxp5a9i0fSGESIqS65gSALTWvwC/vG07bdvCJ5/AvXtGknLz6U0a\nLmqIe0Z3dnbbGW6p+aHVhjL/2Hxm+s6kX6V+b3tqEQvTDk1j0oFJjKgxgo/Kf0TO9DkBYzXefuv7\nMbDyQEq5lrLJuXqt7oVTCid2dd1Fnox5bNKmEEIkdcm2p8RaI7eN5M6z8GNhW7YEpWDFCuPWQKNF\njVAo1nVcFy4hASiUtRCdSnVi7J6x0lsSj07fP83ATQPpXb43X9f++k1CAtDTqyf5M+dn6NahNjnX\nrmu72HFtBz/U+0ESEiGEiAVJSmJp1/VdFJ5SmAl7J7xZrCxbNuMWzu9/vKbV0lbceHqD9Z3WkytD\nLrNtDK8xnDvP7jDr8Kz4DD3ZehX0io7LO5I/c37G1x8f6XjKFCkZU2cMa86vYee1nW99vlE7R1Eq\neymaF2n+1m0JIURyIklJLK1stxLvMt58vvlz3Ma7UWVWFbqs7IJzo2/Y7tKe3dd282e7PymRvUSU\nbRTOWpgOJTswds9YXgW9isfok6chW4Zwxu8MPq19onzq6f0S7+OVw4vBmwdjyRNpUZU58O8B/r78\nN1/W+DLRDWYVQgh7k0/NWMqYOiNTGk/h2MfHGFhlIEWyFuHyo8vsDZoKhdbjtm8BZTLFPO/E8BrD\nufn0JrOPzI6xrCQu1tt0aRMT909kXN1xlHYtHWU5B+XAuLrj2P/vfladWxVtm0tOLiHHhBwc+PdA\npGOjdo6imEsxWhdv/daxCyFEciNJiZVKZi/J8BrDmfveXPZ8sIf7n9/jWLtn+O9vS4sW8DKG4SJF\nXYrSvmR7vtv9ndmkIyAwgHlH51F1dlUyjM3A8bvH4+hKEp+bT28y+O/BuI53ZczOMVH2Wlx7fA3v\nP71pUKAB/6v0vxjbfTf/u9QvUJ8hW4YQFBJktoxfgB991/XlyasnNFzUkGN3jr05dvj2YdZeWMuw\n6sOkl0QIIawgn5w2VLpkCtasgX/+gY4dITg4+vJf1viSm/43cfnBhUq/VaL7qu78sOcH+q3rR84J\nOem2qhvOTs5kT5ud73Z/Fz8XkYCdvHeSbn92I99P+ZjmO41q7tUYvm043n96R0rsVp9bTdnpZUnt\nmJq57821OEkY++5YzvmdY/jW4WaPD9o0iBAdwvGPj5M/c37qLajHOb9zgNFLUjBLQdqVbPd2FyqE\nEMmV1lo2CzagHKB9fX11TP76S+sUKbTu1UvrkJDoyx7494D+fvf32nult64wo4JOOyatdhvvpods\nHqIvPbyktdb654M/a4evHfSFBxdiPHdSNeXAFM1X6Nw/5tYT9k7QT14+0Vpr7XPCR6calUpXm11N\n339+X78KeqUHbhio+QrdwqeFfhjwMNbnmrB3guYr9Jwjc8Lt33J5i+Yr9EzfmVprre8/v6+L/1xc\n5/4xt/7r7F+ar9CzD89+62sVQoikxtfXVwMaKKej+a5NttPMx1ZU08xHZc4c+OADY6G+CRMgfXrL\nzhOiQ1AojFnvDS8CX5Dvp3w0L9KcGc2S32ywJ+6eoPzM8vQo24NJDSfhlMIp3PH9/+6nxZIWpEuZ\njmzO2fC97csP9X6gf6X+4V5HS2mt+WjNR8w9OpfNXTdTI28NXga9pPSvpXFL58b2btvf9Lzc9r9N\n9TnVufToEh6ZPDjf93yk+IQQIrmTaebtrHt3Y12cRYugeHH46y/L6jkoh0hfpGmc0jCwykBj7Zyn\nN+Mg2oTrVdArOq3oROGshZnQYILZL/zKuStzoMcBnJ2cufPsDru77+bTyp9alZAAKKX4ufHPVM9b\nnZa/t+Tiw4t8u+tbrj6+yvSm08PdCsqRPgdbum6hjGsZvnv3O0lIhBDiLUhPiYVi21MS6upVY8G+\n9euhdWuYMgVy5Ij9+Z++ekreSXnp7tmdHxv8GPsGEqn/2/R/TD44mYM9DlLGrUy0ZQODA9FoUqZI\naZNzP3rxiMqzKhMUEsSNJzf4otoXfFP7G5u0LYQQyYn0lCQQHh6wdi0sWQK7doGXF7x+Hft2MqTK\nQN8KfZnuO50HAQ9sHqc9PX75mF/++YXT90+H27/96nYm7JvA6NqjY0xIAJxSONksIQHInCYzazqs\n4dGLR3hk8mBoddvM+CqEEMI8SUrigVLQrh2sWwe3b8O+fda1879K/0NrzeQDk20boB1dfHiRKrOq\n0GddH0r8UoLa82qz7NQy7j+/T9eVXamRtwYDqwy0W3yFshbCt5cvW723ktoxtd3iEEKI5ECSknhU\ntiy4uMDff1tXP1vabPTy6sWUg1Pwf+Vv2+DsYMfVHVT6rRIhOoSTn5zEp7UPwSHBtP2jLbkn5ubJ\nqyfMe28eKRxS2DXOfJnzkTtDbrvGIIQQyYEkJfHIwQHq1oVNm6xv47Mqn/Hs9TNmHUnc6+bMOTKH\negvq4enmyf4P91Miewnal2zPzu47OfHJCXqX741Pax/yZspr71CFEELEE0lK4lm9enDoEDx8aF39\nPBnz0KhQI5afWW7bwOJJiA5hyOYhfPDXB3T37M6GThvInCZzuDIls5dkYsOJNC7U2E5RCiGEsAdJ\nSuJZvXqgNWzZYn0bTQo1Ye+NvTx68ch2gcWDV0Gv6LKyC2P3jGV8vfFMazpNHqEVQgjxhlVJiVLK\nQSlVWClVTSlVI+xm6wCTmjx5oGhR68eVADQu1JgQHcLGSxttF1gce/zyMY0WNWL56eUsbbOUz975\nzOp5RIQQQiRNjrGtoJSqDCwG8gIRv1U0YN9RiYlA/fqwapXRY2LN93LuDLkp7VqatRfW0r5ke9sH\naGM3ntyg0aJG3PK/xeaum6nmXs3eIQkhhEiArOkpmQYcAkoCWYDMYbYstgst6apXD65dg4sXrW+j\nSaEmbLi4geCQGFb9s7Onr55SbU41nr1+xt4P90pCIoQQIkrWJCWFgKFa6zNa68da6ydhN1sHmBTV\nrAmOjm9/C8cvwI9/bv1ju8DiwJidY7j//D7bu22nqEtRe4cjhBAiAbMmKTkAFLR1IMlJ+vTwzjtv\nl5RUzl2ZzKkzs+7COtsFZmMXH15k0oFJDK46GI9MHvYORwghRAJnTVIyBZiglOqmlPJSSpUOu9k6\nwKSqXj3YuhWCgqyr7+jgSIOCDVh7Ya1tA7OhQZsG4ZrWlf+r+n/2DkUIIUQiYE1SshwoBswG/gGO\nAkfC/CssUL8+PH0KBw9a30aTQk04fPswt/1v2y4wG9lyeQurzq3i+3rf4+zkbO9whBBCJALWJCX5\nzGz5w/wrLODlBZkzv90tnIYFG6JQrL+43naB2UBQSBCfbvyUqnmq0q5EO3uHI4QQIpGIVVKilHIC\nRgIOWutr5ra4CTPpSZEC6tR5uynnXZxdqJS7UoK7hTPDdwan7p3ip4Y/yVwkQgghLBareUq01oFK\nqdbAqDiKJ1mpXx9694YnTyBjRuvaaFKoCd/v+Z7Xwa9JmSKlbQO0wIOABxy/e5zXwa95Hfyal0Ev\nGbFtBN08u+GV0yve4xFCCJF4xXryNOBP4D1goo1jSXbq1YPgYBgxAsaMgXTpYt9G40KN+XLbl+y+\nvps6+erYPshoPHrxiLLTy3Lj6Y1w+3Oky8G3734br7EIIYRI/KxJSi4AI5RSVQFf4HnYg1rrybYI\nLDnIlw+++cZISJYtg1GjoFs349aOpcq6lSVHuhysu7AuXpMSrTUfrfkI/9f+HOp5CNd0rqRMkRIn\nByfSpUwna9oIIYSINWsGun4IPAa8gF7AgDDbp7YLLXn48ks4exZq1YIePaBsWdi92/L6SikaF2rM\nyrMreRX0Ks7ijGj+sfksO72M6U2n45XTi9wZcpM9bXYyp8ksCYkQQgirxDop0Vrni2aTp2+s4OEB\nixfDgQOQJg00bQq3Y/GUb58Kffj36b/039A/zmIM69LDS/Rd3xfvMt60LdE2Xs4phBAi6bNqlWAR\nNypWhHXrIFUq+N//LK9XNkdZfm78M9N9pzP7yOy4CxDjcd/OKzuTPW12JjeSO3VCCCFsx5pVgqP9\n1tNaf2B9OCJrVvjpJ+jQwVhJuEULy+r1KNeDA/8eoPfa3pR2LU35nOXDHX/++jlKqbeeyGz0ztH8\nc/MfdnXfRYZUGd6qLSGEECIsa3pKMkfYsgN1gFZAJtuFlny1aweNG0OfPsasr5aa0ngKpVxL0Xpp\na/wC/ADjVkv/9f1xm+BGw4UN0VpbHddZv7OM2jmKL2t8SZU8VaxuRwghhDAn1j0lWuuWEfcppRyA\nX4FLtggquVMKfv0ViheHIUPg558tq5faMTXL2y7Ha4YXrZe2JkuaLKw6u4osabLQulhr5h2bx+rz\nq2lepLlVcU0+MJlsztn4otoXVtUXQgghomOTMSVa6xDgR4wncIQNuLvDt98aycmePbGol9Gd39v8\nzp7rezjnd45pTadxfcB15rSYQ518dRi6ZSjBIcGxjufxy8fMOzaPj8t/TCrHVLGuL4QQQsTElgNd\nC2DdvCciCn36GINfe/aEwEDL69XJV4fbn93mZO+T9PLqhbOTM0opvnv3O07dP8WiE4tiHcusw7MI\nDA7k4/Ifx7quEEIIYQlrBrr+GHEXkANoAsyzRVDCkCIF/PgjVK1qrCZctarldbOlzRZpX8VcFWlV\nrBUjto2gXYl2Fvd4BIcEM/WfqbQr2Q63dG6WByGEEELEgjU9JWUjbKVN+z9DJk+zufLlwckJjh2z\nTXuja4/mxtMbTPedbnGd1edXc/XxVf5XMRbPKQshhBCxZM1A19pxEYgwL2VKY8Dr0aO2aa9YtmJ0\n9+zO6J2j6e7ZnfSp0sdYZ/KByVTJXYUKuSrYJgghhBDCjFj3lCiltiqlIj36q5TKoJTaapuwRFie\nnrZLSgBG1hzJ01dP+XFfxDtxkZ24e4JtV7fxv0rSSyKEECJuWXP7phaQ0sz+1ED1t4pGmOXpCSdO\nQFCQbdrLkzEPfSv2Zfy+8Tx68SjaspMPTCZn+py0LtbaNicXQgghomBxUqKUKq2UCh0/Ujz0Z9NW\nFmOhvptxEmUsKKWuKqVCwmzBSqnPI5TJo5Raq5R6rpS6o5T63jTXSoLk6QkvX8L587Zr87Mqn/Ei\n8AWLTyyOssyDgAcsPLGQ3uV7yyJ7Qggh4lxsxpQcBbRpM3eb5gXQzxZBvSUNDAdmYjwZBOAfetCU\nfKwDbgGVgZzAAuC1qV6CU6aM8e/Ro8b4ElvIkT4HTQs3ZdaRWfSp2MdsmRm+M9Ba08url21OKoQQ\nQkQjNr0D+TDmIlFARdPPoVsuIIPWOm5Xg7PcM631fa31PdP2IsyxBkBRoJPW+oTWeiPwJdBHKZUg\n51nJnBny5rXtuBIw1ss5cucIh28fjnTsReALJh2YhHcZb7OPFwshhBC2ZnFSorW+prW+qrV20Fof\nMv0cut3WWsd+mtC484VSyk8pdVgpNUgplSLMscrACa21X5h9G4GMQIl4jTIWPD1t91hwqIYFG5Ij\nXQ5mHZ4V6djsI7PxC/Dj86qfm6kphBBC2J5V4yiUUl2UUnuUUreUUnlN+wYopSxc0zZO/QS0xxiQ\nOw0YCowLc9wNuBuhzt0wxxIkT084cgTeYj29SBwdHOnu2Z1FJxYREBjwZn9gcCA/7P2BtiXaUiBL\nAdudUAghhIiGNY8Ef4Kxzs06jFWBQ3shHhFHk6cppb6LMHg14haslCoMoLWepLXeqbU+qbWeAQwE\n+imlEvVITU9PuH8f7tyxbbsflP2AJ6+esPz08jf7lpxcwrUn1xhSbYhtTyaEEEJEw5oxFP2Anlrr\nP5VSYZeLPQSMt01YkYwH5sRQ5nIU+w9iXKcHcAG4A0ScBczV9G+MX/kDBgwgY8aM4fZ16NCBDh06\nxN59bb8AACAASURBVFT1rYQd7Jojh+3aLZClAHXy1WHWkVl0KdOFEB3Cd7u/o0mhJpR2LR1zA0II\nIUQYPj4++Pj4hNv35MkTi+pak5TkA46Y2f8KSGtFezHSWj8AHlhZvSwQAtwz/bwPGKqUcgkzrqQ+\n8AQ4HVNjEydOpFy5claGYj0PD8iQwUhKGjWybdsflv2QTis6ceHBBU7dP8UZvzPMbDbTticRQgiR\nLJj7Q/3w4cN4eXnFWNeapOQK4Alci7C/IXDGivZsRilVGagEbMN4DPgdjFtNC7TWoWnaJozkY4FS\najDGYoKjgKla61isxRu/lLL9zK6hWhVrRebUmZl1ZBbbrm6jRt4aVHWPxep/QgghhA1Yk5T8CPys\nlEqN6fFgpVQHYAjQw5bBWeEVxiDXkUAqjARqAjAxtIDWOkQp1RT4FdgLPAfmmuokaJ6esGGD7dtN\n7ZiazqU789OBn3gZ9JL1ndbb/iRCCCFEDKxZkO83pdQLYDTgDCzGmIisv9Z6iY3ji21sR4AqFpS7\nATSN+4hsy9MTpkyBZ88gXTrbtt2jXA+mHJxCWbeyNCjQwLaNCyGEEBawarIwrfUiYJFSyhlIp7W+\nF1Md8fY8PY1Hgk+cgCoxpl6xU9q1NJ9V+YxmhZuhlIq5ghBCCGFjb7Xei9Y6IDQhUUqlVkoNsk1Y\nwpzixcHRMW7GlQCMrz+emh4146ZxIYQQIgaxSkqUUtmUUk2VUvVDZ0lVSjkppfoDV4Evom1AvJVU\nqYzEJK6SEiGEEMKeLL59o5SqBqwBMmAsendIKdUd+BMIAv6/vfsOk6o8/z/+vqUqCopGFCWIsYAN\nAXsLYkSxgF0RC0bjN7H3EkuIlcRuflhiFKMCFsSGGjSCbcUCKLGAJYpKEARBlCbs7v37456VYdhl\nd3an7+d1XXPBnPOcc55np5x7njoI+GcW8ihJsjUCR0REJN/SqSm5hpjFdVtiNMuOwBPAH919K3e/\nK2XhO8mC7beH//wHysvznRMREZHMSico2Ra4xt0/JFbVdeAidx+ZlZxJtbbfHpYsgU8/zXdORERE\nMiudoGQdYA5AokZkEfBBNjIlNUuebl5ERKSUpDskeCszq1pJ14AtzWyFqeXd/T8ZyZlUq21b6NAh\nmnCyvNyOiIhITqUblLxEBCNVRif+9cR2Z/mqwZIlm24KX3yR71yIiIhkVjpBSaes5ULSsskm8PHH\n+c6FiIhIZtU5KHH31AX4JE86doQXXsh3LkRERDKrQTO6Sn507AjffAM//ZTvnIiIiGSOgpIi1LFj\n/Pv11/nNh4iISCYpKClCVUHJl2pQExGREqKgpAh16BD/KigREZFSku6Q4BWY2XrAzsQw4Hfc/ZuM\n5EpWqUUL2HBDBSUiIlJa6h2UmNnhwL3AJ0AzYiK10919aKYyJzXr2BGmTct3LkRERDKnzs03ZrZm\nyqY/ATu5+07u3g04Erg2k5mTmnXsqJoSEREpLen0KZloZv2SnpcD6yc9bwcszUiupFYKSkREpNSk\n03yzHzDEzAYCpwNnA4+YWZPEeSqBgZnOoFRvk01g+nSoqIAmmthfRERKQDozuk4DDjSz/sArwO3A\nZolHE2Cquy/JRiZlZR07Qnk5zJixfDSOiIhIMUt7SLC7jwB2BLoCLwOruft7CkhyS3OViIhIqUkr\nKDGzA8zsfGAHdz8FuAgYZmY3mNnqWcmhVEtBiYiIlJp0Rt/cBAwlaknuNrMr3P0VoDuwBHjXzPpk\nJ5uSas01oW1bBSUiIlI60qkpGQgc4O7HEIHJ8QDuvtTdrwAOA/6Y8RxKjTQCR0RESkk6QclCoFPi\n/x2I2pGfuftH7r5npjImtVNQIiIipSSdoORS4AEzm0GMvrkiO1mSulJQIiIipSSdIcHDzOxfwKbA\np+7+ffayJXVRFZS4g1m+cyMiItIwaa194+7fAd9lKS+Spk02gcWLYfZsWH/9WpOLiIgUtLTnKZHC\noWHBIiJSShSUFDEFJSIiUkoUlBSxtm2hVSsFJSIiUhoUlBQxM43AERGR0qGgpMgpKBERkVKhoKTI\nKSgRkWLx00/5zoEUOgUlRU5BiYgUOne45RZYay24555850YKmYKSItexI3z/PfzwQ75zIiKysmXL\n4LTT4LzzYLvt4Pe/h1Gj8p0rKVQKSoqchgWLSKGaPx8OOgj+8Y94vPUWHHEE9O8P48blO3e5MWQI\njByZ3jHujbepS0FJkdtkk/hXQYmIFJIpU2C33eDtt2HMGDj5ZGjSBB54APbaC/r1g3ffXZ5+9mx4\n6KFo5qmszF++M+n22+GMM+C44+LvURcVFdC3b/yN3LObv0KkoKTIbbABNG8O06blOyci0ti5w+uv\nwyGHwNZbx6/98eOhV6/laVq0iOabzp1h//3hsstgxx2hXTs4/vho5vnLX/JXhkx55BE45xw466z4\n8XjCCdGUVZtBg2D06Ajmxo/Pdi4LT1pr30jhWW016NBBNSUikl/PPgtXXx1NNF26RHPNgAERhKRa\nay147jnYZx+44w7o3RtOPz2ClCFD4PLLYYcdYN99M5vH2bOhrCweEyZEPjbeOL5DN944gqovv4wf\neVWLnd533/Jm8roaOzaCkGOPjZqfCROi1uj66+HKK2s+7umn4Zpr4nHvvdEpeLfdGlTk4uPuRfMA\n/giUAQuBuTWk6QA8m0gzE/grsFpKmu2AV4HFwJfAhXW4dnfAJ06c6IWmVy/3I4/Mdy5ESt/Mme47\n7ODerZv73nu7H3qo+0knuT/7bL5zll/33+8O7nvtFX+Lioq6HVdZ6V5evuK28nL3/fZzX3dd92nT\nMpO/UaPct9wy8gjuG2/sfvjh7gce6N61a1yrat/667vvuGN8p3bsGMfNmVP3a02a5L7WWu69e7v/\n9NPy7Zdf7t60qfuECdUf9/HH7q1bx3uqstL9uuvcV1/dfd68BhW9YEycONEBB7r7Ku61xdZ80wx4\nFLizup1mthrwHFEDtAtwIjAQuCopzVrAGOALItC4EBhkZqdkM+PZpGHBIrkxaBB89hnssks0Nyxe\nHNXsffvCY4/lO3f5MWoU/Pa38LvfwcsvwwEHRA1uXZhFP5NkTZrAsGFRi3HEEbBkScPy9/DDcOSR\nsNlmMHx4fFd+/XV0Ph09Gt57D+bMgYUL4zFrVrymjz4KL74Ic+dGZ92FC2u/1ssvQ58+sOWW8Pjj\n0bRe5YorYNttowYltUwLFsBhh8GGG8L998ff5aSTorln2LCGlb/orCpiKdQHEWysVFMC9AGWAesl\nbfs/YB7QNPH8D8CcqueJbdcDH9VyzYKtKRk0KKJ7EcmeKVPcmzRxv/HGFbeXl7sPGBD7Ro7MT97y\n5YUX3Js3dz/66JVrPBpq4kT3Fi3cTzml/ud46CH31VZzP+GE+ufvnXfcW7WKWpWlS6tPs3Ch+1ln\nLa8tmjWr+nTvvx9/r5NPdh8+3H3IEPdrr43a7jXXdP/ooxXTH3qo+7bbRs1JsatrTUneA4z6PFYR\nlPwZmJSybROgEuiaeP5PYFRKmp5ABdBmFdcs2KBk+PB4JUulmk+kEB1ySFTnL1688r5ly9yPOSaq\n50eNynnW8uKNN9zXWMO9T58Vmyky6b774rvttNPcf/ghvWMfeCACkoEDGx4wjRkTr+1JJ60cIJSV\nuW++uXvLlu633lp709XNN/vPTUVNmrivt557587uTz+9ctrnn490b7654vYFC9wPOMD9ttsaVq5c\naqxByd3A8ynbVk8EJfslno8B7kxJ0yURlGy5imsWbFAyaVL1b1wRyYzXXovP2EMP1Zxm2TL3o46K\nm9f997s/84z73/7mfv757v37xw2mJt98E7+Yf/wx83nPtOnT48a69true+4ZtQTZdPvtEfxsvLH7\nU0+tOu2PP7q/9Vb8Lc2iRqKu/Vtq89BD8R5YfXX3tm3dN9zQvVOnCHx22SX6hNTV7NmR19pqQMrL\nIxD+7W+Xb1u61H3//SMvv/hF9gLCTKtrUJL30Tdmdj1w8SqSONDF3T/JUZZW6dxzz6VNmzYrbOvf\nvz/9+/fPU45giy3i36lTYeed85YNkZLkDhdeCN26xaRfNWnaNObZOPZYGDgwtjVrFn2+WrSIvhZX\nXw2XXrpin4vXXoOjjoKZM2Nm5sGD65fPefNieG1lZcyPkdyfoaHmzo2+GQ8/HEN+mzWLeUbuuQfW\nWCNz16nOmWfCwQfHrLD9+sHhh8dInVmz4Kuvon/ItGnw4YfwxRdxjFmkue22uvdvqc2AAdGP6IMP\nYqjzkiXxb8eOcMopK/eNWZX11qtbuiZN4tzXXw833xz9bH77W3jppXiNzzoLnngCjj66fmXKlhEj\nRjBixIgVts2fP79uB68qYsnFA1gX2KKWR9OUY9R8k6JjR/dLLsl3LkSK19Kl7vfcE/1Ckn99jhwZ\nv0r//e+6nae8PGovp09f/iu9osL9T3+K8xx6aDRFVFa633BDVOH37Ol+5pnR3+DTT9PP+8iR7hts\nEKM+mjePkR8LFqR/nup88ol7hw5RA7T//u5Dh+anqbiy0v3hh6P/XFXzR+vW7lttFfk6//zI2zvv\nZL/2JpemT4/3yB13uF9wQdQAPfxw7Ntrr3jvFIPG2nyzPyt3dD2V6OjaLPH890RH1yZJaa6jiDu6\nuscQun798p0LaczKy93/9a/iqU5O9uGH7j16xBd+VbX4+ee7T54c/QX23z8z13nqqQgcOnd279s3\nrnXxxdH0s3Bh3Pz79q3+2CefjBvQKadEs9Crr7pPnRpBDsRxX3/t/tJL0Wly553TG8panfffd2/X\nLvL75ZcNO1em/PBDvF7z5+c7J7nTr18EYBDNWVWq+hNOmZK/vNVVSQYlxBwkXYErgfmJ/3cFWiX2\nrwZMBp4n5iLZD5gFXJ10jtbAjESNyVbA0cAC4ORarl3QQcnZZ8d4epF8WLrU/dhj4xvl4IPdlyzJ\nd47qprw8aitatIgb79tvu3/wgfu55y6fu8IsgpNMmTo1rtWmzcp9JB55JK45ZsyK2//976gB2XFH\n9+23j/9X1Ra0a+f+2GMr9k94553oQLnVVvFLuz4mTIi/QdeuNY8mkdyo6vB62WUrbl+yJF7nc87J\n3rVnzIh+Og0dAVSqQcnQRDNL6mOvpDQdgNGJQGMW8BdWnjxtG+AVYBHwFXBBHa5d0EHJnXdG9WpN\nQ9ZEsmXJkvgl17Sp+6WXxg2+T5/qR6kUiu+/jxv57rtH0HHeee6LFq2YZskS90cfdR82LPPXX7zY\n/bvvVt5eWRmdR7t0Wf5ZnjAhaj722295LdTSpVGLMWqU+9y51V9j6tSoefnlL93ffbfmvLz4ovvp\np0dw9sQTcd6xY+OX+c4713x+ya0pU6oPDC66KDodp75/G+rTT91/97vlAfDWW7vffXf9m8ZKMijJ\n56PQg5Jx47xoqvGkdCxcGP0XWrRwHz06tr34YoxQ2Hff/Lbt//e/7q+8EjfYF1+MpqUbb4yZWJs2\njc/LdttFmkIyaVIESrfeGiM6fvGLCA7q00fkq69i9tmWLWOIbLJly6IfGkSftDXX9J9rX6rm20h3\nGK7k3mefxet1//0NP9ePP8ZIs2OOiVFF7dq5Dx4cNXf9+sX7sm3baHJM972hoKSRBSXffBOv5hNP\n5DsnUooqKqL9+vbb4+b21FMRCO+5Z0ws9dJLK6YfNy6277135jpcpmP8+PhSTb7JQtycDzggJq36\n4ovc56uuTj01mnc6doxak4b0DVm0KObqqJrv46efou/JHntEB8rBg+P1rayM75HXXnN//PHM//KW\n7OndO4YlV6msjCHMnTpFDVhNTS+zZkWT0EEHRdqqz8kmm8RnJPU98N//RtNmq1bRlDh7dt3zqKCk\nkQUllZVRhXfddfnOiZSa//0vaj1gxb4MEDfOsrLqj3vttfj1vdFG7ldfHevG5MLSpe7bbBMdV6dM\niWrozz+PjprFcqP99tv423boELUdDVVZ6X7XXe7NmsXaPeuuG/N+vP56w88t+TdqVHwe33031guq\nmsdkp53i39NPX3kCubKy+Gy2aRPNrRde6P7Pf0Zz4bJlq77epEkxCmrLLeveAfq++xSUNKqgxD0i\n5RNOyHcupJSMHLl8oqiqzpeLF0eAMXVq7b/gp0yJ0SKrrx43xAED4sswm9NmX3dd1ABMmpS9a+TC\nBx9EQJhJb74ZtS99+zZ8ZI4UjqVL3du3j4CzVasIOJ95JvbdfXd8Hvr2jebUysqYCbZp0+hTVd+O\n0J9+GrUrG20Uo6FW5dVX3Zs1U1DS6IKSgQMjMhZpqMWLY0ptcD/ssIbfwL77LvpzbLqp/1w9fPHF\nEThUrRQ7caL7LbfEENeLLqrfdT75JPq3XHhhw/JbykphHRVZ2Z//7D/XiqQOl3722QhWdtopZh2G\naIZp6MCIGTOiX1bbtjXXmH74YdTi9+ihoKTRBSWDB0ePeX3pSEPdeWf8urrvvsy+nyoqov/Jqacu\nH3LbqdPyORhatIghqBD9UtJRWRkLm3XqVFqTZ4nUxbJlq+4nNXHi8gn2Hnssc9edNy/6ljVp4n7N\nNSs2E02fHk2Q227r/vLLdQtKzOOGK7Uws+7AxIkTJ9K9e/d8Z6daTz0FhxwCM2bEEtgi9fWb38QU\n12PGZO8ay5bB2LHwzDOw0Uaw556w444xhfluu8HixTBxYkzfXhf33x/LvY8ZA717Zy/fIsVqzpyY\nGn+jjTJ73mXL4Kqr4Lrr4rP74IOwzjrxmf7+exg/HmbNmkSPHj0Aerj7pJrOlfe1byRzunSJf6dM\nUVAi9Td7Nrz8MtxxR3av06wZ7LdfPFLdfnus43TPPfCHP9R+rm+/hfPPh+OOU0AiUpO6rrmTrmbN\nYl2n3r3h+OOha1fYbLNYl6isLIKgWbPqdq4MLVUkhaBTp3hzTJ2a75xIMXvqqRhbc8gh+cvDTjvF\nonaXXx6Lwa2KO5x6aizCdvPNOcmeiFRjzz1h8uRYQHHKFHj6adhqq/TOoaCkhDRrFtGpghJpiJEj\n4de/hvXXz28+rr8+qoUHDVp1ujvvjEDq3nvhF7/ISdZEpAZt2sRq2fPmRZCSLgUlJaZzZwUlUn/z\n5sWy6Eccke+cwAYbwBVXRDPSBx9Un+b99+G88+CMM2JZexEpDC1a1O84BSUlRkGJNMTTT0NFBRx6\naL5zEs4+GzbdFM45J/KVbNEiOPpo2GILuOGG/ORPRDJLQUmJ6dw5OhctWJDvnEgxGjkSdt+9cDpK\nN28Ot90WtTedO0dTzaJFse/cc2HaNHj4YWjZMq/ZFJEMUVBSYqpG4Hz8cX7zIcVn/nx44YXCaLpJ\n1qcPvP02dO8ezTQdO0Yn2L//PQKWdDvSiUjhUlBSYrbcMv5VE46ka/RoWLoUDjss3zlZ2Y47wiOP\nwKefQv/+8NhjcNRRcMop+c6ZiGSSgpIS07o1tG+voETS9/jjMTdIhw75zknNNt005jCZPRuGD49h\nwCJSOhSUlCB1dpV0LVgAzz9feE03NVljjZhxVkRKi4KSEqSgRNL13HOwZAkcfni+cyIijZmCkhLU\npQt88gmUl+c7J1IMFiyAW26Bbt1iVmARkXxRUFKCOneODovTpuU7J1Lovv8+1qv48MPoqyEikk8K\nSkpQ1RDJO+6Aysr85qWx+uqrmG00HS+9BBddFM0oufDtt7D33jF8/KWXYI89cnNdEZGaKCgpQe3b\nxwyXt94KxxyzfLIpyb4ZM+C002INoh49YoRIbSoq4E9/gn33jdftiCOipiubpk+HvfaCb76BV16J\nIbciIvnWNN8ZkOy44AL41a9iKfeePWPBskKZpbMUzZ4Nf/kLDBkCq68ey3hPmQIDBsSN//zzqz9u\n5kw49tgIDK6+OgKZfv0imHzkkVhkMR1Ll0YNWXl5vO7bbw9NE5/yysqYhGz0aLj//hi98tprsPnm\nDSm5iEjmKCgpYYceGjedgw+OpeBHj4auXfOdq9IzfXoEE4sXw8UXx/TnbdqAe9RaXXBB1KDccAOs\nlqib/PZbGDs21nQxi+aTnj1j36hR8doddxwMG7Y8qKjNhx/C8cdHs1Hz5lFD1rp1rNTZti2MGRPX\nbdsWDjwQrrkGfvnLrPxJRETqRUFJievePX4dH3wwHHAAvPeelnfPpPLyqOlo3hwmT46VbauYwXXX\nRWBy1lkxG2nr1jB+PHz+eaTp3RseeADatVt+3IEHwqOPwpFHwoknwr33rnptl8rKGD1z2WVRO/bW\nW7DNNjBhArz8cjz+85+Ymv2gg2DXXese6IiI5JK5e77zUBTMrDswceLEiXTv3j3f2UnbjBlRS1JV\nY6KZMDPjiivg+uvjxr+qjqIjR0Zg0qFDBAW77gq77BI1FTW9Fo89Fs04zZrFTKt77RWP9u3j9fzf\n/+Lf55+HsrKoobn2Wi1OJyKFZ9KkSfTo0QOgh7tPqimdfi81Eu3bRz+Cgw6KDrDnnpvvHBW/f/87\ngoBrr6195MoRR6Q/W+qRR0aNxwsvwKuvwl13RZNLsvXWi9qRsWOXN/+IiBQrBSWNyIEHwnnnRb+H\nPfeEHXbId46K18yZ0efjN7+Jv2e2dOkSj7PPjj4qU6fCd9/BRhtFoNmiRfauLSKSaxoS3Mhcfz1s\nt100C/zwQ75zE77/Hm66Keb2KAYVFTGqxgwefHB559VsM4sAZY89YuZVBSQiUmoUlDQyzZvDww/H\nKIzf/z5+fefTrFkxgdcFF8TQ1HPOibwVqtdfh913h3HjYmRMcgdVERFpGAUljdBmm8VcFiNGRF+E\nfPnyy/jVP2tWjEi54goYOjSWp7/88rjxP/dcdBJ98EH417/yF0R98kkM091zzxhxM24c9OqVn7yI\niJQqjb6po2IffZPKPUbiNG8ev/5zPRrno49iOGyLFvDiixGIAMydC3/9a6zDsnjxyscddBDcfXf0\np8iFRYsiWLr99rjmdddB//65a7IRESkFdR19o6/WRsoMrroK3ngjRnfk0sSJMbS1bdsIiKoCEoht\ngwfHcNfPPot/582L9WCeegreeSdGpAwblv1akzffjJVzhwyJv9XUqdGXRAGJiEh26Ou1Edt//5gr\n48orc9csMmsW9O0bgcjLL9c89f0668RQ1/btYe21o0alb9+YtbRPnxj5cuihMRIl0376CS69NPqO\nrL12TDh36aUxfbyIiGSPgpJGzCzWW3n7bXj22exfr7w8mj4qKqLWo23b9M+x7rpRS/L441HL0rNn\nrC2TKT/+GBOV3XRTzAlSVgadO2fu/CIiUjMFJY3cPvtE581c1JZcfnlMAvboow1fHPCwwyIomTcv\nmoK+/DIzebzjjujv8tZbUTui6dhFRHJHQUkjV9W35N13o/YiW558MlbRHTw4gohM6Nw5FhysrIxR\nPB9/3LDzLV4MN98ca8R065aRLIqISBoUlAg9e8bw1iuvjBt8pn32WSwsd9hhcP75mT13p04RmFSt\nhjt5cv3Pde+9MGdOdmdoFRGRmikoESBqS95/P2o0MskdjjoqJhkbOjQ7Q4/bt4dXXonF7fbeO0b3\npGvp0hiKfMwx0cFWRERyT0GJADHSpHt3eOKJzJ73v/+NpqGbborajGxZb71YIG+LLaKfzNtvp3f8\nsGHw9dfRj0RERPJDQYn8bJ99YobXTHZ4LSuLf2tbRTcT1l475lzZemvYd9+YJbbK7NkxCVq7dtGM\nNH/+8n0VFdHXpV+/mANFRETyo6iCEjP7o5mVmdlCM5tbQ5rKlEeFmR2VkmY7M3vVzBab2ZdmdmFu\nSlDYevWCGTNiSvVMKSuLIGGddTJ3zlVp3Tqmo+/aNWaMHTkSzjoLOnaEW26JuU7GjoUdd4QPPohj\nHn88ynzZZbnJo4iIVK+oghKgGfAocGct6U4E2gEbABsCP/eUMLO1gDHAF0B34EJgkJmdko0MF5M9\n9oghsJlcD6esLJqGcmmtteD552GHHeDII6Np5uKLY9jwPffAhAnQsmVMHPfIIzF1/L77RqAiIiL5\nU1SzMLj7nwHM7MRaks5399k17DuOCG5OdvdyYIqZdQPOA/6RscwWoTXXjPVwxo2DP/yh4eebOzfm\n/MjHaJZWrWJCuOeei5lr11xz+b7NNoumnVNOiY6tEGUWEZH8KraakroaYmazzewtMzspZd8uwKuJ\ngKTKGGBLM2uTuywWpl694gadiaHBVX06dtut4eeqjzXWgCOOWDEgqdKqFQwfDn/7G5xxBvz617nP\nn4iIrKgUg5IrgKOA3wAjgTvM7Iyk/RsAs1KOmZW0r1Hr1Svm6qjqb9EQb7wB669fuENszSIg+dvf\ncr9KsoiIrCzvQYmZXV9N59TUjqpb1PV87n6tu49398nufgPwF6LfiNTBrrvG4neZ6FdS1Z9EN3wR\nEamLQuhTciMwtJY0nzfg/G8DV5hZM3dfBswkOsEmq3o+s7aTnXvuubRps2IrT//+/enfv38Dslg4\nWraMQGLsWDjnnPqfZ9mymCvk6qszlzcRESl8I0aMYMSIEStsm588D8Mq5D0ocffvgCwsQP+zbsC8\nREACMB64xsyauHtFYltv4GN3r/Wvdsstt9C9e/csZbUw9OoVs5uWl9d/Qbp33421ZHI98kZERPKr\nuh/qkyZNokePHrUem/fmm3SYWQcz6wp0BJqYWdfEo1Vi/0FmdrKZbW1mvzKzPwCXArcnnWY4sBS4\nz8y2MrOjgbOAm3JcnILVqxf88ANMmlT/c5SVRa1LicdvIiKSQXmvKUnTVcAJSc+rbpt7A68Cy4DT\ngZsBAz4DznH3n4f6uvsPZtYbGAJMAOYAg9z93uxnvzjssEOMWBk7NoYIr8pPP0GzZrBaSnhbVhbz\nfjRvnr18iohIaSmqoMTdTwJSh/gm7x9DDO+t7TwfABoEWoNmzWCvvSIoueSSVaft0ycCj+eeWx6Y\nuEdQMnBg1rMqIiIlpKiabyR3evWC11+PmpCafPRRzGkyZgwMGbJ8+xdfwMyZ+ZufREREipOCcyR8\n/wAADtBJREFUEqlWr17RUfWtt2pOM3QorLsunHpqzNpatWZO1SJ8CkpERCQdCkqkWl27xiJ6Nc1X\nsmwZPPggDBgAN98MG20EJ5wQI3bKyqBz5whYRERE6kpBiVRrtdWgZ0944YXq9//rXzBrVvQbadUK\nHngA3nknhhK/8YaGAouISPoUlEiNjjsu1q8ZPXrlfUOHRm1Kt27xfNdd4aKLYNCgmKJeQYmIiKRL\nQYnU6NBDoXdvOPNMWLRo+fbZs+GZZ+CklHFQgwZBly4x+kZBiYiIpEtBidTILEbVfPMNXHvt8u3D\nh8e+AQNWTN+iBTz8cHR63Xzz3OZVRESKn4ISWaXNNou5Sm64AaZOjW1Dh8LBB8N6662cvksXGDxY\ni/CJiEj6FJRIrS65BH75Szj99FjTZvJkTYwmIiKZp6BEatWyZTTjjB0bnV/btYuZXEVERDJJQYnU\nyX77wZFHxiyuxx9f/9WDRUREaqJbi9TZLbfELK+nnZbvnIiISClSUCJ1ttFGMRRYREQkG9R8IyIi\nIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAiIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIi\nIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAi\nIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQ\nIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBKJqgxMw6mtk/zOxzM1tkZp+a2SAza5aSroOZPWtm\nC81sppn91cxWS0mznZm9amaLzexLM7swt6UpDCNGjMh3FjJOZSp8pVYeUJmKQamVB0qzTEUTlACd\nAQN+B2wFnAv8Hri2KkEi+HgOaArsApwIDASuSkqzFjAG+ALoDlwIDDKzU3JRiEJSim9olanwlVp5\nQGUqBqVWHijNMjXNdwbqyt3HEMFElWlmdiMRmFyU2LYfEbzs7e5zgPfN7ApgsJkNcvdy4DigGXBy\n4vkUM+sGnAf8I0fFERERkRTFVFNSnbWBuUnPdwHeTwQkVcYAbYCtk9K8mghIktNsaWZtMp3B+kSy\nuTrmf//7X9rH1PdahVymXOWtvscVcpkKuTz1Pa6Qy5TL92qplUnvu/pfJ5fvu6INSsxsM+AM4K6k\nzRsAs1KSzkraV9c0GVPIbwAFJfW/joKS+h+jm0P9r6OgpP7H6H1X/+vk8n2X9+YbM7seuHgVSRzo\n4u6fJB2zEfA88Ii735flLFZpCTBlypS0Dpo/fz6TJk0qyGOWLVuW9jH1vVYhlylXeavvcYVcpkIu\nT32PK+Qy5fK9Wmpl0vuu/tfJxDFJ986WqzrO3D2tC2Wama0LrFtLss+rmlvMrD0wDnjD3U9KOdef\ngYPdvXvStk2Az4Fu7j7ZzP4JrOXuhyWl6Qm8BLR19/k15PNYYFh6pRMREZEkA9x9eE07815T4u7f\nAd/VJW2ihmQs8A7w22qSjAf+aGbrJfUr6Q3MBz5KSnONmTVx94qkNB/XFJAkjAEGANOAJXXJr4iI\niABRQ7IJKw5YWUnea0rqKlFD8goxlHcgUBVQ4O6zEmlWA94FZhBNQhsCDwB/d/crEmlaA1OBF4G/\nANsC9wJnu/u9OSqOiIiIpCimoOREILX/iAHu7k2S0nUA7gR6AguB+4FL3b0yKc02wBBgR2AOcLu7\n35jN/IuIiMiqFU1QIiIiIqWtaIcEi4iISGlRUCIiIiIFodEEJWZ2qZm9bWY/mNksM3vCzLaoJt1V\nZjYjsejfi4lJ2pL3tzCzIWY2x8x+NLORZrZ+SprNzexJM5ttZvPN7LXEsONiLlN3M3vBzOYlynW3\nmbUq0PL8zszGJf72lYnOzannWMfMhiXSzEss9pjR8uShTH80s7LEYpRzU/cXW5msjotwFkt5Emme\nslgEdHHiXA+Y2YaZLE+uy5SUtrmZvZdIt12xlsfMpiX2VT0qzOyi1HTFVKZEugPN7M3Eeeaa2ahM\nlykTGk1QAuwJ/A3YGfgNsf7NC2a2elUCM7uYmCX2VGAnoqPsGDNrnnSeW4EDgcOBvYD2wOMp13oW\naEJ0tu0OTAZGW8qNvljKlPjSfBH4JHGO/Ylp++8v0PKsTkyudy0x+V51hgNdgH2Isu8F3J3JwiTk\nskzNgEeJjt7ZlKsy1boIZ5GVB2JKgyOBLYDDgF8Bj2WyMAm5LFOVvwLT65CuPnJZHgcuB9oRs3xv\nmLh2puWsTGZ2ODES9V5ixOluxHdg4XH3RvkA1gMqgT2Sts0Azk163hpYDByV9Pwn4NCkNFsmzrNT\n4vm6iee7J6VZM7GtV5GW6XfANynX2iaRZtNCKk/K8b8mho63TtneOXHebknb9gPKgQ0K7TWqS5lS\n0pwIzM1mOXJdpqS0FwCflVB5Dk6875oUc5mAPsCHSZ+t7Yq1PMS0E2dlM/+5LBPxA/lrYGCuy1Sf\nR2OqKUm1NhFVzgUws05EVPxSVQJ3/wF4C9g1sWkHYsK55DQfA19VpfGYDG4qcIKZrWFmTYE/EOvr\nTMxukbJTJqAFsDTlWlUTyO2R0RKsqD7lqYtdgXnu/m7Stn8nrrVzA/Ncm2yVKZ9yWabURTizISfl\nMbO2xISMZb58IsdsyVqZzKwd8HdiBfbFGcpvbbL9Gl1i0Zw9ycwuMLMmtR/SYNkqU3ei9ptEeWaY\n2XNmtnUtx+VFowxKzMyIJovX3b1qptcNiDdEdYv1VS3U1w5Ymnhj1JQGYF/ijfAj8SE9G9jfVz1j\nbINkuUxjgQ0SH85mZrYOcH3i3BlvD4cGlacuNgC+Td6QuCnMTfM8aclymfIil2Wy6hfhzKhclMfM\nBpvZAmKOpA7AIfXPcZ2ul+0yDQXuSAnysyYH5bkNOIZofr8L+CMx0WbWZLlMmxLNoH8CriKaq+cB\nL5vZ2g3JdzY0yqAEuINooz4mi+efBexOTND2JNGnpF2Wrld1zayUKfEhORE4D1hEVCl+TtzYK1dx\naENk+zXKB5Wpnix3i3Dmojx/BbYnfrxUAA9m8VqQxTKZ2VlE83TVTdsyfY1qZPU1cvdb3f1Vd//A\n3f9OfO+daRnuYJ0im2Wqus9f4+5PJoLHk4iA58gsXK9BGl1QYmb/DzgA6Onu3yTtmkl8oFIDh3aJ\nfVVpmlfTu/nnNGa2T+L8R7v7m+7+nrufQdSYnJjRwiRku0wA7v6wu7cnqgHXBf4M/IIITjKqgeWp\ni5lA6uiiJkDbNM9TZzkoU87lqkwWS0yMJX5F/l89s1uX6+SkPO4+190/c/eXgP7AAWaWlWbDHJRp\nb6Ip4SczWwZ8mtg+wcyG1i/XNcvT5+htool7kwaep1o5KFPVOX9eptfdlxLf3b9MO8NZ1qiCksSL\n3w/Y292/St7n7l8QL/Q+SelbE30M3khsmkh0SktOsyXxwlalWZ2IQFNrECrJwt87y2Uan3o9d5/t\n7ouIiH4xMSqnkMpTF+OBtc2sW9K2fYgvgLfqmfUa5ahMOZWrMiVqSMZR8yKcGZHH16iqr0KLBp5n\nJTkq05lA16RHH+L77yjgsobkP1UeX6NuxPf3t7UlTFeOyjSRGMywZdJ5mhFB1pf1zXvW5Lunba4e\nRPXYPGIYVrukR8ukNBcRKxYfTAybepKI/JunnOcLor2xB1AGvJa0f13izfsYsB2wOXAD0TF022Is\nUyLN6cSHc/PE/xcCpxdoedoRX5CnkOjNnni+TlKa54AJRPPa7sDHwIMF/L6rS5k6JLZdSayMXXWj\naFWMZSJq5T4FXkj8/+drFWl5dkp8droSQX8v4PXEe69ZMZapmut2JAujb3L4Gu1C9AHcDuhEdESe\nBdxX5N8NtxCDF/YlhqP/g6hBaZPpcjX475LvDOSsoPFiVVTzOCEl3SCiz8QiYonlzVL2tyDGls8h\nOrI+BqyfkqY70f49G/ieuMn3LvIy/TNRnsXESszHFnB5/lTDuU5ISrM28BBx854H3AOsUeRlGlrD\ntfYqxjIRzZ2p+yqBiiItzzbESIrZiXP8F/h/wIbF/L5LSd8xsT/TQUmuXqNuRE3qXOKH1wdEYJDR\noDHXrxFRI/dXIhD5PnGeLpkuUyYeWpBPRERECkKj6lMiIiIihUtBiYiIiBQEBSUiIiJSEBSUiIiI\nSEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIFAwzG2pmlWZWYWZLzWym\nmb1gZieZmaVxnhPNbF428yoimaegREQKzfPABsQ6KvsDY4HbgGfMrK7fWUasVisiRURBiYgUmp/c\nfba7f+Pu77n7YGJ59wOAgQBmdq6Z/cfMFpjZV2Y2xMzWSOz7NXAf0Cap1uXKxL7mZnajmU1PHDs+\nkV5ECoCCEhEpeO4+DpgMHJbYVAGcCWwFnADsTayCCvAGcA7wA7Gs+4bAjYl9Q4CdgaOIpeAfA543\ns19lvxQiUhutEiwiBcPMhgJt3P2wavaNALZ1922q2Xc4cKe7r594fiJwi7u3TUrTAfgc6ODuM5O2\nvwi85e6XZ7xAIpKWpvnOgIhIHf3cT8TMfgNcAnQGWhPfZS3MrKW7L6nh+G2BJsAnKZ1mmwNzspZr\nEakzBSUiUiy6AF+YWUfgGaIp5o/AXGBP4B9EgFFTULImUA50BypT9i3IRoZFJD0KSkSk4JlZL6Km\n4yagB9H0fEHS/mNSDllK1IokezexrZ27l2UxuyJSTwpKRKTQtDCzdiQCCKAP0VTzNPAgEZw0M7Oz\niBqTPYD/SznHNGDNRDAzGVjk7p+a2XDgATO7gAhS1gd6AZPd/fmsl0xEVkmjb0Sk0OwPzAC+IOYs\n+TVwhrsf4uE/wHnARcD7QH8iaPmZu48H7gIeAb4FLkzsGgg8QIzGmQqMAnYAvspukUSkLjT6RkRE\nRAqCakpERESkICgoERERkYKgoEREREQKgoISERERKQgKSkRERKQgKCgRERGRgqCgRERERAqCghIR\nEREpCApKREREpCAoKBEREZGCoKBERERECoKCEhERESkI/x9NT+Qv7veq+gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1086,7 +1086,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 18, "metadata": { "collapsed": false }, @@ -1095,7 +1095,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.54\n" + "0.49\n" ] } ], From b1eb518b36f7300b125dd17e58fc1f95ec74f5a2 Mon Sep 17 00:00:00 2001 From: "REDMOND\\sayanpa" Date: Tue, 7 Feb 2017 22:11:28 -0800 Subject: [PATCH 09/31] Fixed the pickle file version --- ...nance_Timeseries_Basic_with_Pandas_Numpy.ipynb | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) diff --git a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb index e7ee9dfae..917d98c6c 100644 --- a/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb +++ b/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb @@ -124,6 +124,8 @@ } ], "source": [ + "import pickle as pkl\n", + "\n", "# We search in cached stock data set with symbol SPY. \n", "# Check for an environment variable defined in CNTK's test infrastructure\n", "envvar = 'CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'\n", @@ -138,7 +140,8 @@ " \n", " if not os.path.isfile(data_file):\n", " print(\"Saving\", data_file )\n", - " data.to_pickle(data_file)\n", + " with open(data_file, 'wb') as f:\n", + " pkl.dump(data, f, protocol = 2)\n", " return data\n", "\n", "data_file = os.path.join(\"data\", \"Stock\", \"stock_SPY.pkl\")\n", @@ -741,7 +744,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecVOXZ//HPF0SIELGLGjUaexc0CcZeAqixRVE0scco\nGhViTEyiGPN7Hp9o1GDQ2MESUdNsiNgTFdEEBBtiVBQbCCpIVWCv3x/3GR2G2TY7uzO7+32/XvPa\nnXvuc841c3Z2rrnbUURgZmZmVi06VDoAMzMzs3xOTszMzKyqODkxMzOzquLkxMzMzKqKkxMzMzOr\nKk5OzMzMrKo4OTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk6sXZBUI+mCErd9S9JNefePy/bXs3wRlk7S\nhlk8gysdi9VO0jhJD5S47R2SJpc7pgYeu+S4zUrl5MRajbykoEbSLrXUeSd7/N6ChyK7laKmyLZl\nve6DpAGSzirnPq12kobn/S3Vdbup/r01WFP+BoP0d1gJvsaJtbgVKh2AWQkWAkcDY/MLJe0BrAcs\nKrLNV4AlJR5vc5r/g+FoYGtgaDMfx5JrgIfz7m8EXARcBzyZV/5GGY+5G6V/0P8AUBljMatqTk6s\nNXoAOELSmRGRnzQcDfwHWKNwg4j4vNSDRcTiUrdtrSStFBELKh1Hc4mIZ4Fnc/cl9QJ+CzwTEbc3\nZB+SukREsUS4tmOWmhwTEUtL3dasNXK3jrU2AYwEVgf2yxVK6gQcDtxOkW+YhWNOJF2YlX1D0ghJ\nn0iaLekmSV0Ktn2rlub9rpKulTRL0hxJN0tapWDbgyTdL+k9SYskvS7p15I65NV5HDgAyI0dqZH0\nZt7jnbN4p0haKOl9SX+TtFGR5/mj7BiLJD0naaf6XtC87rLdJV0taQbwTvbYCElTi2xzoaSagrIa\nSVdKOljSi1kML0nqU8/x15K0WNL5RR7bLNvvwOz+CpKGSHotey1mSXpS0j71Pc+mkDRd0l2SDpA0\nXtIi4NjssR9JekzSjCymFyWdWGQfy4zdkNQne24HZa/ne5IWSBojacOCbZcZcyJp89zrkt3eyI49\nVtL2RY59tKTJWZ2J2fMoeRyLpLWzv40Ps30+L2lAkXrHSpogaW72/pok6bS8x1eU9P8k/Tfbz0xJ\n/5S0eylxWdvhlhNrjd4CxgEDgDFZ2f7AysAdQEPGbuSa1+8C3gR+AfQETgZmAOcVqZtPwDDgE2AI\nqetnILABsFdeveOBucBlwDxgb1L3wVeBn2d1/h/QndQldXa273kAWRIzKtvnSOAP2bb7AdsA+YnD\nMUA3UpdFZPv/m6SNG/jN+2rgQ+A3wEp5z73Y86+tfDfgsGxfc4Ezgb9K2iAiPil20Ij4UNI/gf6k\n1ot8R5G64+7K7v+GdK6uA/5NOuc7kc7do/U/xZIFsB1wM+m5XQO8nD02MIvlH6Tuv0OAGyRFRAwv\n2EcxQ4DPgP8jJd3nAiNY9u+ottf7JKALcBXQkXTO/ypps4gIAEmHAbeRWhV/TmpZvBV4v46YaiWp\nK/AU6e/1SuBd4Ejgz5K6RcT1Wb3vZc9jNHAt6cvw1kBv4E/Z7i4mvV//BDxPeh98E9gB+FdjY7M2\nJCJ8861V3IDjgKWkD6KBwGygc/bYncAj2e9TgXsLtq0BLsi7PyQru66g3t+ADwvKpgI3FcRRQ+oW\n6JhXfk4W34F5ZZ2LPI8/kT64O+WV3Qe8WaTuCdmxzqzjddkwq/MhsHJe+feyePZvwOtaAzwBqOCx\n4bXENQRYWuQ1Xgh8Pa9s26x8YD0x/CiLdauC8peAh/PuP194bsv0t9Uri/PYWh7/IItv1yKPFTvH\njwEvFpQ9AzyQd79PdswJBX9HP8uOtXFe2Ujglbz7uXFQ7wFd88qPyLbdO69sCvDf/DhJyW1N/j7r\neG0K4/55doxD8spWICU/HwFd8v7Op9ez78nAXeU+n761/pu7day1uov07f5ASd2AA4E/N3IfQfpG\nl+9JYPVsn/W5LpZtkfgTWTLwxQEiPsv9LqmbpNVJ3zpXArZowDEOA2aSWmnqc0dEfJp3/0lSK8zG\nDdg2gOsjoqkzMx6OiLe+2GnEi8CnDYjh76TX7shcgaStga1IrWE5s4GtJW3SxDhLMTkiniosLDjH\n3SWtQfrWv6WkFRuw3xsK/o5yA3Ibct7+HBHzC7b94pxnXX+bAsPz44yIh0kJSyn6AW9HxN15+1sC\n/BFYBcjNpJsNdJe0dx37mg1sV6yL0to3JyfWKkXELOAR0iDYw0h/y38tYVfTCu7nuh5WrS8E4PWC\nmOaTvmF/PVcmaStJ/5A0m/QhPZPUpA6pCbs+3wCmxLIDf2vzTkE8s7Nf63suOW81sF6DY8h8Ul8M\nEfERqVumf17xUcBiUndJzgWkD8DXJL0g6RJJ2zYt5AZbbuwNpFlikh6XNJ/0XD/M4hSp26k+ha/Z\nJ9m2DTlvxbYlb9vc2JVis45eL1LWEBsCrxUpn0yKO3fMPwJvAw9LelvS9ZL2LdjmV8DawBvZWJiL\nJW1VYlzWhjg5sdbsdlIrxanA6IiYW8I+ahuL0eRpm5K6k75Bbwv8mtS6sy9fjjUp9/uvqc9lYZGy\n2lpSOjZDDHcAm0naLrt/BPBoRHz8RTART5ISthOAF0ljLiYUG4DaDJZ7fSRtATwEdCWNndifdI5z\nLV0NOcdNec2a7e+3qSLifdLf/qGkcVP7Ag9J+lNencdI5/MkUnLzY2CipGNaPmKrJk5OrDXLDUD8\nFilRaUkiNZd/WZAGCq7Dly0Qe5K+wR4XEcMi4oHsn/FslldbEvAGsLmk2pKB5vYJqaWi0Neb4Vh3\nk1pKjsxmnGxGGmuxjIiYHRE3R8QxwPrAC8CFzRBPQxxMGm+xf0TcEBEPZue4Wqafv539LNYNVmrX\n2Nukc1NoS9Lfce6YRMTiiLg3IgaSuppGAKdIWjevzscRMTwiBpAGlE8hjWmydszJibVaWTfKqaQP\npvsqEMIpkvJnvA0ktSjkposuJSUx+dOGV8zqFZpP8W6evwFrAmeUI+ASvEEaN7BNrkDSOqQZKWUV\nEXNIs6/6k7p0PgPuya8jabWCbRaQuic659VZOZtq25AulabKtVzkn+PVSYumNUSzrr4aEVNJY0uO\nV94UeaXp3ZvWumHdHiBNez84b38rkP5GZwNPZ2WF5ypIA5whO19F6swjzZ7rjLVrnkpsrc0yzdUR\ncWttFVvAisCjku4iDW49DXgyIu7PHh9Lanm4RdKVWdkPKP6BNB7oL+ky0rTUedl+biGtp3G5pG+R\nBjx2A/YBroqIciVltXUD3AH8Drg7ew5dSQnhFNKsqXK7kzTtdSAwpmCAL8Arkp4gvV4fAzuT1re5\nMq/OoaRZRseTXr/m9CDwv8BoSTeQWplOIc2iWW4xwCJaovvlV6TX9SlJtwBrkf5WX6a0L6hXkabc\n3y5pGGncy1Gkv4dT8wbe3iapM2kW2HuklpMzgGezpAnSWJPRpBlLn5CmGR8IXFJCXNaGODmx1qYh\n3zSLrQnR1OuaFNvfGaS1RX4DdCLNFvpijZWI+FjSAaQ1Tn5L+ud7K2ma6ZiC/V0NbE/6QD2b1DR+\nf0TUSOpH+oDJDf79iJSkvNiA59fQ5120TvYcDgEuJyUpU0nrjGzG8slJU2MAuJc0tqMry87SyRkK\nHESaCtuZ9Dr9Evh9kWM2Vl3bFH0OEfGSpCNI5/cy0ofwFaRWn6sbcIzajlnb69jQbb94LCL+KumH\nwPmkcziFlCQPBNYtuoc6jh0R8yXtRlqX5QTSujuTgWMiIv+cjSCNJRlISto+ICWLv8mrcwVpAcI+\npPM5lTSV+g8NjMvaKDV95qCZmbU22eqwr0XEwfVWNmthVTPmRNLpkqZmSxiPk7RzPfWPyaaezVda\nzvvG/P5Lfbkk91J9uSR4m71WiJlZMUpL/ncoKOtLWsjt8cpEZVa3qkhOJB1JahIdAuwITALGZIsZ\nFav/HdIy0teTFmk6nLTk8XUFVecAPfJuG2Jm1r58A3hZ0gVK1wH6A2mm29vAjZUNzay4ahlzMgi4\nNiJuAZB0Kqkf8kSKD4z6NjA1Iq7K7r8t6VrSNSnyRUTMbKaYzcxag5mk6dankAbpfkpakfe8EtcG\nMmt2FW85UbqabC/yLtqVTTl7hDRyu5hngPWzgYJIWpu0YNOognrdlK4oO03S3V550Mzam2wdkSMj\n4msR0SUi1oqIYyKicHVks6pR8eSElMl3JF0JNt8MUlfMciJiLGm0+Z2SPieNAv+EZdeCmEJqeTmI\nNKOiAzA2f/EfMzMzqz7V0q3TKFkLyFDS4lsPkVbl/D3pIm4nA0TEOGBc3jbP8OXyyEVXH8wWT+pD\nWuFzUXPFb2Zm1gZ1Ia0ePSa7XlbJqiE5mUVaZXHtgvK1gem1bPML4OmIuDy7/5KkgcCTkn4VEYWt\nMETEEknPU/eSzX1o/JVtzczM7EvH0MRLilQ8OYmIxZLGk1a8vBdAkrL7V9ay2UrA5wVlNaSFgoqu\nuJhNpduW5cel5HsL4LbbbmPLLbds4DOwajZo0CCuuOKKSodhZeLz2bb4fLYtkydP5gc/+AGU4Qrn\nFU9OMpcDI7Ik5TnS7J2VSCsMIuliYN2IOC6rfx9wXTarZwxplcMrSMsiT8+2OZ/UrfM6aXXCc0kX\nlbqhjjgWAWy55Zb07NkcK3NbS+vevbvPZRvi89m2+Hy2WU0eFlEVyUlE3JWtaXIRqTtnItAnbxpw\nD9LVR3P1b5bUDTidNNZkNmm2zy/ydrsqad2THqTBsuOB3hHxajM/HTMzM2uCqkhOACLiaopfi4KI\nOKFI2VWkC1DVtr/BwOCyBWhmZmYtohqmEled2bMrHYGZmVn75eSkiGefrXQEVi4DBgyodAhWRj6f\nbYvPp9XGyUkRY8dWOgIrF//za1t8PtsWn0+rjZOTIsaOhZqaSkdhZmbWPjk5KeLjj2HSpEpHYWZm\n1j45OSnioINgxRUrHYWZmVn75OSkiCFDYOutKx2FmZlZ++TkxMzMzKqKkxMzMzOrKk5OzMzMrKo4\nOTEzM7Oq4uTEzMzMqoqTEzMzM6sqTk7qMH48DBtW6SjMzMzaFycndXjmGRg8GObOrXQkZmZm7YeT\nkzr07QuLF8Pjj1c6EjMzs/bDyUkdNtkk3UaPrnQkZmZm7YeTk3r07QsPPggRlY7EzMysfXByUo9+\n/eCtt+C11yodiZmZWfvg5KQee+wBnTu7a8fMzKylODmpR9eusPvuqWvHzMzMmt8KlQ6gNTj+eJgy\npdJRmJmZtQ9OThrg6KMrHYGZmVn74W4dMzMzqypVk5xIOl3SVEkLJY2TtHM99Y+RNFHSfEnvS7pR\n0moFdY6QNDnb5yRJ/Zr3WZiZmVlTVUVyIulI4DJgCLAjMAkYI2mNWup/B7gZuB7YCjgc+CZwXV6d\nXYDbszo7APcAd0vaqvmeiZmZmTVVVSQnwCDg2oi4JSJeBU4FFgAn1lL/28DUiLgqIt6OiLHAtaQE\nJedMYHREXB4RUyLiAmACcEbzPQ0zMzNrqoonJ5I6Ab2AR3NlERHAI0DvWjZ7Blg/100jaW3gCGBU\nXp3e2T7yjaljn2ZmZlYFKp6cAGsAHYEZBeUzgB7FNshaSn4A3Cnpc+AD4BOWbRXp0Zh9mpmZWXWo\nhuSk0bJxI0OBC4GeQB9gI1LXTrNZsgRuvhkmTWrOo5iZmbVv1bDOySxgKbB2QfnawPRatvkF8HRE\nXJ7df0nSQOBJSb+KiBnZto3Z5xcGDRpE9+7dlykbMGAARx01gPPOgwED4LLL6tuLmZlZ2zRy5EhG\njhy5TNmcOXPKtn9FFVxuV9I44NmIOCu7L2AacGVEXFqk/l+BzyPi6Lyy3sBTwHoRMV3SHcBXIuLg\nvDpPA5MiYmAtcfQExo8fP56ePXsWjfXEE+HZZ+Hll0t9tmZmZm3PhAkT6NWrF0CviJjQlH1VS7fO\n5cCPJB0raQvgGmAlYASApIsl3ZxX/z7g+5JOlbRRNrV4KCnBybWMDAX6ShosaXNJF5IG3g5rSqD9\n+sErr8C0aU3Zi5mZmdWmKpKTiLgLOAe4CHge2A7oExEzsyo9gPXz6t8MDAZOB14E7gQmA9/Pq/MM\ncDRwCjAROAw4OCJeaUqs++4LHTr4QoBmZmbNpSq6dapFQ7p1AHbdFdZaC/7+95aLzczMrJq1xW6d\nVqVvX3jkEVi8uNKRmJmZtT1OTkrQrx/MnQtjx1Y6EjMzs7bHyUkJdtwRDj8cOnasdCRmZmZtTzWs\nc9LqdOgAf/lLpaMwMzNrm9xyYmZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZ\nmVUVJydN9OabcNNNlY7CzMys7XBy0kRPPgknnQQffljpSMzMzNoGJydN1KdP+vnQQ5WNw8zMrK1w\nctJEPXqk5ewffLDSkZiZmbUNTk7KoF8/GDMGamoqHYmZmVnr5+SkDPr2hVmzYPz4SkdiZmbW+jk5\nKYPevaF7dxg9utKRmJmZtX5OTspghRVg33097sTMzKwcnJyUSf/+sPnmHndiZmbWVCUlJ5L6Sto1\n7/7pkiZKul3SquULr/Xo3x+GD4cOTvfMzMyapNSP0kuBlQEkbQtcBjwAbARcXp7QzMzMrD1aocTt\nNgJeyX7/PnB/RPxSUk9SkmJmZmZWklJbTj4HVsp+3xfIrY/6MVmLipmZmVkpSm05eQq4XNLTwDeB\nI7PyzYB3yxGYmZmZtU+ltpycASwBDgdOi4j3svJ+QEkTarNBtVMlLZQ0TtLOddQdLqlG0tLsZ+72\nYl6d44rUWVBKbGZmZtZySmo5iYhpwIFFygeVsj9JR5IG1Z4CPAcMAsZI2iwiZhXZ5Ezg53n3VwBe\nAO4qqDeH1JqjXIilxGdmZmYtp9SpxD2zWTq5+wdLulvS/0pasYRdDgKujYhbIuJV4FRgAXBiscoR\nMTciPszdSF1LqwAjlq8aM/PqziwhtkaJSFconjSpuY9kZmbWNpXarXMtqUUCSRsDd5CSiSOASxqz\nI0mdgF7Ao7myiAjgEaB3A3dzIvBIRLxTUN5N0luSpmXJ01aNia0UEpx1Fgwb1txHMjMza5tKTU42\nAyZmvx8B/CsijgaOJ00tbow1gI7AjILyGUCP+jaWtA5prMv1BQ9NISUtBwHHkJ7rWEnrNjK+Ruvb\nNy1lH+5EMjMza7RSkxPlbbsvX65t8g4p2WhJxwOfAPfkF0bEuIi4LSJeiIgngcOAmcCPmzugfv3g\n3XfhlVfqr2tmZmbLKnUq8X+AX0t6BNgDOC0r34jlW0DqMwtYCqxdUL42ML0B258A3BIRS+qqFBFL\nJD0PbFLfDgcNGkT37t2XKRswYAADBgxoQDiw++7wla+kqxRvvXWDNjEzM2s1Ro4cyciRI5cpmzNn\nTtn2ryih70HSdsCfgQ2AyyPiN1n5H4HVsy6exuxvHPBsRJyV3RcwDbgyIi6tY7s9SWNVtomIyfUc\nowPwMjAqIs6ppU5PYPz48ePp2bNnY57CcvbfHz7/HB55pEm7MTMzaxUmTJhAr169AHpFxISm7KvU\nqcQvANsWeehnpFaQxrocGCFpPF9OJV6JbPaNpIuBdSPiuILtTiIlNcslJpLOB8YBr5Nm8pxLSqZu\nKCG+RuvXD845B+bNg27dWuKIZmZmbUOTrqErqZekH2S3nhGxKCIWN3Y/EXEXcA5wEfA8sB3QJ2/q\nbw9g/YJjrwwcSu3JxqrAdaRrAI0CugG9s6nKza5v39Ry8vjjLXE0MzOztqOklhNJawF3ksabzM6K\nV5H0OHBUKeuJRMTVwNW1PHZCkbJPSQlHbfsbDAxubBzlsummcOCBsLSUdiQzM7N2rNSWkz+SEoOt\nI2K1iFgN2IZ00b8ryxVca3fffXDIIZWOwszMrHUpdbZOX2Df/LEeEfGKpNP58grFZmZmZo1WastJ\nB6DY2JLFTdinmZmZWcmJxGPA0PzVViWtB1yRPWZmZmZWklKTkzNI40vekvSGpDeAqcBXs8fMzMzM\nSlLqOifvZAuW7QtskRVPBl4FLgBOKU94ZmZm1t6UOiA2d+Xgh7MbAJK2Jy2M5uTEzMzMSuLBqy1g\n1iz4y18qHYWZmVnr4OSkBTz1FPTvD2++WelIzMzMqp+Tkxaw997QqRN8//swdCh88EGlIzIzM6te\njRpzIunv9VRZpQmxtFkrrwyjRsGwYfCzn8HgwbDnnjBgQEpYVl210hGamZlVj8a2nMyp5/Y2cEs5\nA2wr9tsP7rkHZsyA664DCX78Yy9vb2ZmVqhRLSfFLsBnjbPqqnDSSek2fXpKVsyaIiJdAXv+/PT7\n6qvXXf/SS+GII+DrX2+R8MzMGs1jTiqoRw/Yfvu66yxcCEuWtEw8Vv1++1vYcUfYbDNYbz1YZRVY\ncUXo0iUlJcceW/8+fvc72GSTVPfll5s/ZjOzxip5nRNrGVddlb7p9u+fxqj07p26hKx9Wn/99DfQ\ntSt065Z+5t/WX7/+fbz9NtxwA/z+93DrrXDQQXDeefDtbzd//GZmDaG0lpoBZKvejh8/fjw9e/as\ndDgAvPQSDB8Od94J770HG24IRx2Vbttv70SlLXntNXj88TQWqSV8/jncfntqSXn11TRI+1e/gn33\nbZnjm1nbMmHCBHr16gXQKyImNGVf7tapcttsA5ddBtOmwRNPQN++6VvvjjvCVlvBX/9a6QitHKZM\nScnB0KGpK68lrLgiHH986tr5299g3jy4+eaWObaZWV2cnLQSHTrAHnvANdekdVJGjYKddkofMNa6\nTZkCe+2VBks//jh85Sste/wOHeCww+C559Lfl5lZpXnMSSvUqRPsv3+6Wev26qspMVltNXjsMVh7\n7crFIqVxK2ZmleaWkzbOQ4qq1+TJqStn9dVTi0klE5OGevBB+OijSkdhZm2dk5M27LPPYOed04DH\nTz+tdDSW75VXUovJmmumxGSttSodUf0++wx++MM0KHvwYHj33UpHZGZtlZOTNmz+fOjZEy64ADbY\nIM3E+PDDSkeVWnPeeKP+emefna5LVNvtyivr3r6mJq3KW42tRy+9BOusk7py1lyz0tE0TOfOKaka\nNCjNINt4Yzj55DTLyFreZ5+l98DGG8PBB6cuQrO2wslJG7baammp/DffTB8iQ4emb70/+Ula66Il\nzZ0L//hHimO99dIspAUL6t5mtdXSB3htt+7d697+0UfT5QH69k2znapJ//7w73+3nsQkZ80100Jw\nb78N//u/8MADsMUWacXZCU2aOGgNtWRJSg432ywlit/+dppx9fHHlY7MrHy8zkmealznpJw+/jgt\n6jZ0KMyeDeeemz5gmstrr6VZRaNGwb/+BYsXpw+y/feHAw6A3XeHFZp5SPbo0XDKKTBnTlrM7pRT\nvDZMOS1aBLfcApdcklY8fuqpSkfUdkWkKd/nn59aSQ4/PCWKW2wBS5dCx46VjtDau3Kuc+LkJE9b\nT05y5s9Pa6WsuSYcfXTzHGP69NS60blzGluRS0g23rh5jleXOXPgnHPSc95nn/TT15Upr6VLU5fh\nOutUOpK269FH0wJ5ffrA//wPpM8As4b5/PM0Tqw5/we3yUXYJJ0uaaqkhZLGSdq5jrrDJdVIWpr9\nzN1eLKh3hKTJ2T4nSerX/M+k+nXtCmed1XyJCaRv0Y89lmZ2jB6dupIqkZhA6v65/noYMwb++9/U\npXTVVWlMipVHx471JyYTJ8KRR6bX/qWX/Po31t57p7VoHnyw8YnJggXwySfNE5dVvyeeSCuKH3xw\ndY7BK6YqkhNJRwKXAUOAHYFJwBhJa9SyyZlAD2Cd7OfXgI+Bu/L2uQtwO3A9sANwD3C3pK2a6Wm0\nC0uWwNNPp66h+uy1V3Wtm/Hd78KLL6YZJ7//ff1jXqy8Pv0U3nknDXTedts0Q+nQQ+EPf0jjVZYu\nrXSE1U1Ks+9K8cc/wkYbpRaXefPKG5dVrw8/TBf43GuvtGTB7be3om7tiKj4DRgHDM27L+Bd4NwG\nbn8IsARYP6/sDuDegnrPAFfXsZ+eQIwfPz7au5qaiKOOirjhhoj334+47baIAQMiVl01AiLWWCNi\nzpxKR1m6loh94sSI/faL+Oij5j9WazJvXsQjj0Scf37E7rtHdO6c/qa22abSkbVdH3wQ8ZOfRKy4\nYsSaa0ZccUXEwoWVjsqay9KlEddcE7HKKhGrrRZx442prLmNHz8+gAB6RhPzgoqvECupE9AL+GJo\nZkSEpEeA3g3czYnAIxHxTl5Zb1JrTL4xwMFNCLfdmDcvTVU8+eQvy3r2hNNPT2NHdt65dQ/AW3nl\n5t3/pElpfMuGGzbvcVqjrl3Ta7PPPun+okWpu6Kps02WLk3fCjvU0R78wQcwdWrqf1+8eNmfXbrA\nDjukafct7b330uDW3r3huOPKv/8ePdK043POgYsuSj8vuywtM3D88WnV6ZY2fXo6F0uWwC671P3/\nZNw4eP31dI6L3TbYIM3Ms9R9etpp6TU78cS0ztUatfVBVLGKJyfAGkBHYEZB+Qxg8/o2lrQO0A84\nquChHrXss0dpYbYvX/0q/P3vaRXT559PK5muu26lo2odJk5MH7wbbQQPP5yumWO169Ilzdyqz9y5\nKUH+7LPlE4vFi9MYlmeeSVNra3P77emDuTZf+1rqemops2bB//1fGofTtSt861vNe7wNNkgDws89\nFy68MM1e+93v0t/pRhs1zzGXLk0z9yZNSu+N3G1G3n/nOXPq/sJw/fVw003LlnXs+OXtu991cpLz\n8MPpvfLkk7DrrpWOpnQVn62TJRfvAb0j4tm88t8Bu0dEna0nks4DBgHrRsSSvPLPgGMj4s68stOA\nCyKi6NC93Gyd3Xffne4Fi2gMGDCAAQMGNPr5WesTkdbxKGVGz/PPpxkVG28MDz3kxKSc3nkHhg1L\nM8A6dUoXvcz9zP1+wAF1r7Y7a1bqh8/ftlOndJs7F95/H775zbrjGDUKNt0UNtmk7laausydC5df\nnlovAH7607RmSXO36BV64YW0FtLQoc3XEjp+fLpIKaTkaIcd0uDMHXZIr2OnTulnXcf/7LOUfK6w\nQqrX2NdzJJXNAAAP5ElEQVT9nXegW7f28X5cvDj9bO7WsJEjRzJy5MhlyubMmcO//vUvKMNsnWoY\nb9IJWAwcVFA+AvhHA7Z/Dfh9kfK3gTMLyi4Enq9jXx5zYnHrrWkcxCWXRCxZ0vDtJkxIY3J22ini\nk0+aLz6rnIULIzp2TGNkunWL2G23iLPPjrjlloiXX67/72XRoojLLktjtjp3jhg8OGLmzJaJvZxq\naiLefTdi1KiIf/6z7rqLFkU89lhlx14dcEDEuutG3H9/5WJoD8o55qTis3UiYjEwHtgnVyZJ2f2x\ndW0raU/gG8CNRR5+Jn+fmf2ycrNaHXZYGlvz85/Dd76TlmyvT26MySabpGbVVVZp/jit5XXpkroj\nHn4Yfv3rNH36/vvTjIitt04tH2Pr+K9VU5PGfhx6aBpDcdll1T8eYPHiNPX7ttvgZz+D/fZLrVNf\n+1pqqRo2rO7tc2sdrbZay8RbzLXXptaaAw9M4zBmz65cLNZATc1uynED+gMLgGOBLYBrgY+ANbPH\nLwZuLrLdrcDYWvbZG/gMGEwau3IhsAjYqo443HJiXxg7NmLzzdMMh4svjli8uPa6M2ZEHHusW0za\nq9mzIx5/PLWKzJpVd90FC1okpLI57bTUUgQRX/96xCGHRFx4YcTdd0e89VZqRWkNamrSrJWVV45Y\nb72I0aMrHVFpHn004rnnKh1FceVsOal4YvJFIDAQeAtYSGrd2CnvseHAYwX1VwbmASfWsc/vA69m\n+3wB6FNPDE5ObBkLFkSce25Ehw6pu+bFFysdkVnLeuGF1HXTVhLvadMivvvd9Ol30kkpsWwNpk+P\nOOaYFPfJJ1c6muLKmZxUfEBsNWkvy9db4z37bGoOXrQIpkxp/msCmVnziUizlgYPTqtXN+c1xppq\n6dI0aPm889L/nUsvTdPNSx2M3ZzKuXy9/8WaNcC3vpVWMX3jDScmZq2dBD/6UZqCvPrqlY6mds8/\nD6eemtYBOvnkNO28muMtpyrMvcyqU+fOsJUvfmDWZmy4YZpiXI1+8Ys0BXvhwnS17+uvbz+JCTg5\nMTMzqzprrAGXXJLWifnOdyodTctzA7WZmVkRixdXZml/qHsl4/bALSdmZmYFampg//3TgNn585u+\nv4UL4Ykn0rWN9tsvrb1itXNyYmZmVsT3vgc33gjbbQdpVfaGmzMHRo9Os2y+8x3o3j0tRnf55Wkx\nvx6+yludnJyYmZkV6NABzjwzrf68zjrp4qdnnw0LFjRs+x//OLW8DB8O662XkpKJE+Gjj+C+++Dg\ng5s1/FbPY07MzMxqsemm8M9/pssO/PKX6cKPI0bALrukKcm1GTIEfvvbdEmLuupZcW45MTMzq0PH\njumq0RMnplk0u+4Kjz1W9zZbbpkSGycmpXHLiZmZWQNsvnlac+SOO1JXjzUfJydmZmYN1LEjHHNM\npaNo+9ytY2ZmZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVcXJiZmZmVUVJydmZmZWVZyc\nmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZmZlWlapITSadLmippoaRxknau\np/6Kkv5H0luSFkl6U9LxeY8fJ6lG0tLsZ42kBc3+RKyqjBw5stIhWBn5fLYtPp9Wm6pITiQdCVwG\nDAF2BCYBYyStUcdmfwH2Ak4ANgMGAFMK6swBeuTdNixv5Fbt/M+vbfH5bFt8Pq02K1Q6gMwg4NqI\nuAVA0qnAAcCJwCWFlSX1BXYDNo6I2VnxtCL7jYiY2Twhm5mZWXOoeMuJpE5AL+DRXFlEBPAI0LuW\nzb4H/Af4uaR3JU2RdKmkLgX1umXdPtMk3S1pq+Z4DmZmZlY+1dBysgbQEZhRUD4D2LyWbTYmtZws\nAg7J9vEnYDXgpKzOFFLLywtAd+BnwFhJW0XE++V8AmZmZlY+1ZCclKIDUAMcHRHzACQNBv4iaWBE\nfBYR44BxuQ0kPQNMBn5MGttSTBeAk08+ma9+9avLPNCnTx/69u1b9idizWvOnDlMmDCh0mFYmfh8\nti0+n63Xgw8+yJgxY5Ypmzt3bu7Xwl6MRlPqQamcrFtnAfD9iLg3r3wE0D0iDi2yzQhgl4jYLK9s\nC+BlYLOIeKOWY90FLI6IY2p5/Gjgz6U/GzMzs3bvmIi4vSk7qHjLSUQsljQe2Ae4F0CSsvtX1rLZ\n08DhklaKiNz04M1JrSnvFttAUgdgW2BUHeGMAY4B3iJ1GZmZmVnDdAG+TvosbZKKt5wASOoPjABO\nBZ4jzd45HNgiImZKuhhYNyKOy+p3BV4hddtcCKwJXA88HhGnZnXOzx5/HVgFOBc4COgVEa+22JMz\nMzOzRql4ywlARNyVrWlyEbA2MBHokzcNuAewfl79+ZL2A/4I/Bv4CLgTOD9vt6sC12XbfgKMB3o7\nMTEzM6tuVdFyYmZmZpZT8XVOzMzMzPI5Ock09to+Vp0kDcm7llLu9kql47KGk7SbpHslvZedv4OK\n1LlI0vuSFkh6WNImlYjV6lff+ZQ0vMh79oFKxWt1k3SepOckfSpphqR/SNqsSL0mvUednFDytX2s\ner1EGruUu6bSrpUNxxqpK2nc2UBguX5nST8HzgBOAb4JzCe9X1dsySCtweo8n5nRLPueHdAyoVkJ\ndiON9/wWsC/QCXhI0ldyFcrxHvWYE0DSOODZiDgruy/gHeDKiFju2j5WvSQNAQ6OiJ6VjsWaTlIN\ncEjBGkjvA5dGxBXZ/ZVJK0ofFxF3VSZSa4hazudw0ppWh1UuMitV9iX+Q2D3iHgqK2vye7Tdt5yU\neG0fq26bZk3Ib0i6TdL69W9irYGkjUjfrPPfr58Cz+L3a2u2Z9ZF8KqkqyWtVumArMFWIbWIfQzl\ne4+2++SEuq/t06Plw7EmGgccD/QhrZuzEfCvbG0ca/16kP4R+v3adowGjgX2Jq1HtQfwQNaCbVUs\nO0d/AJ6KiNzYvrK8R6tinROzcomI/JUJX5L0HPA20B8YXpmozKw2Bc38L0t6EXgD2BN4vCJBWUNd\nDWwFfKfcO3bLCcwClpIGY+VbG5je8uFYOUXEHOA1wLM52obpgPD7tc2KiKmk/8t+z1YxScOA/YE9\nI+KDvIfK8h5t98lJRCwmrR67T64s79o+YysVl5WHpG6kf3If1FfXql/2wTWdZd+vK5NmDvj92gZI\n+hqwOn7PVq0sMTkY2CsipuU/Vq73qLt1ksuBEdkFCHPX9lmJdL0fa0UkXQrcR+rKWQ/4DbAYGFnJ\nuKzhsvFBm5C+fQFsLGl74OOIeIfUx/1rSa+TLtL5W9IFP++pQLhWj7rOZ3YbAvyN9IG2CfA7Umtn\nky8eZ+Un6WrSVO+DgPmSci0kcyIid8HcJr9HPZU4I2kgaTBW7to+P4mI/1Q2KmssSSNJ8/BXB2YC\nTwG/yrJ5awUk7UEaa1D4z+nmiDgxq3MhaQ2FVYAngdMj4vWWjNMapq7zSVr75G5gB9K5fJ+UlFyQ\nd201qyLZdPBiicMJEXFLXr0LacJ71MmJmZmZVZV2P+bEzMzMqouTEzMzM6sqTk7MzMysqjg5MTMz\ns6ri5MTMzMyqipMTMzMzqypOTszMzKyqODkxMzOzquLkxMzMzKqKkxOzdkDS45Iub0T9DSXVSNou\nu79Hdn/l5ouy1liGS/p7Sx+3VJKGSHq+0nGYtWZOTsxaIUkjsmTh6iKPXZU9dlNe8aHA+Y04xDSg\nB/BSXlmTr3XR2CSpFfN1QcyawMmJWesUpATiKEmdc4XZ7wNIV2X+snLE7IiY3+CdJx9GRE25Aram\nkeSryFu74eTErPV6HngHOCyv7DBSYrJMt0Jhi4WkqZLOk3SjpE8lvS3pR3mPL9Otk2dXSZMkLZT0\njKSt87ZZTdLtkt6VNF/SC5KOynt8OLAHcFa276WSNsge21rSfZLmZPH8U9JGBc/hp5LelzRL0jBJ\nHWt7YXJdK5J+kD3X2ZJGSupa8BqcWbDd85IuyLtfI+mULLb5kl6R9G1J38he03mSni6MNdv2FEnT\nsu3ulPTVgsdPzva3MPt5WpHXv7+kJyQtAI6u7fmatTVOTsxarwBuAk7MKzsRGA6oAdsPBv5Nulz9\n1cCfJG1asP98Ai4BBgE7ATOBe/OShC7Af4B+wNbAtcAtknbKHj8LeAa4HlgbWAd4R9K6wD+BhcCe\nwI5ZnfyWgr2BjbPHjwWOz251+QZwMLA/cAApMfpFPdsU82tgBLA9MBm4HbgG+B+gF+l1GVawzabA\nEdlx+5Ce0xddcJKOAS4EzgO2AH4JXCTphwX7uRi4AtgSGFNC7GatkpsJzVq3PwP/J2l90peNXYAj\ngb0asO2oiLgm+/13kgZl2/03KyuW4FwYEY8BSDoOeJc0nuWvEfE+kD+e5CpJfYH+wH8i4lNJnwML\nImJmrpKkM4DZwICIWJoVv1Fw3I+BMyIigNckjQL2AW6s4/kJOC4iFmTHuTXbpjFjbwBuioi/Zfu4\nhJRg/SYiHsnKhpKSxHydgR9GxPSszk+AUZJ+GhEfkhKTn0bEPVn9t7NWqFOBW/P2c0VeHbN2w8mJ\nWSsWEbMk3Q+cQPowHhURH0sNaTjhxYL704G16jocMC7v2J9ImkL6Vo+kDsCvSC0G6wErZrf6xrps\nDzyZl5gU83KWmOR8AGxTz37fyiUmedvU9fxqk/86zch+vlRQ1kVSt4iYl5VNyyUmmWdIyePmkuaR\nWnVulHRDXp2OpCQt3/gS4jVr9ZycmLV+w0ndCgEMbMR2iwvuB03r6j0X+Amp++YlUlIylJSg1GVh\nA/ZdSqz1bVPD8q1DnerZT9RR1tDXrlv282TguYLHChO0Bg9iNmtLPObErPV7kJQArAA81IzHEfDt\nL+5IqwKbAa9kRbsA90TEyIh4EZiaPZ7vc1ILQb4XgN3qGuDaTGaSxr0AkK3hstzA1iIaMk14A0k9\n8u73JiUer2bdOu8D34iINwtu+bOsPB3Z2i0nJ2atXDbddwtg64Kuj+ZwgaS9JW1DGiQ6E8iNifgv\nsJ+k3pK2JA2IXbtg+7eAb2WzUVbPyoYBKwN3SuolaZNsls2mNK/HgB9K2lXSttnzWdKA7Yr1mRWW\nfQbcLGk7SbuRWpDuzBtrMwQ4T9JPJG0qaRtJx0s6u57jmLULTk7M2oCImJc33qFolXruN6ROkGa7\nDCXN8lkT+F5E5D7Q/x8wgdSS8xhpjMc/Cvbxe1ILwivAh5I2iIiPSbNxugJPkGb8nMzy3TLldjFp\nltB92e0fLD8QtyGvU7Gy/wJ/Bx4gvR4TgdO/qBxxI+k5nkBqOXoCOI7U2lTXcczaBTX/Fy0zMzOz\nhnPLiZmZmVUVJydmZmZWVZycmJmZWVVxcmJmZmZVxcmJmZmZVRUnJ2ZmZlZVnJyYmZlZVXFyYmZm\nZlXFyYmZmZlVFScnZmZmVlWcnJiZmVlVcXJiZmZmVeX/A/kWwZ4Yxlp7AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -751,7 +754,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAADeCAYAAADmUqAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYlOXVx/HvD4Miolh4FU1s2EssoFE0isZYYmwYG1hQ\nE0vAhlETK0aTGBtGVEQTe8GY2AtCjAUsaATFGLAXrCgWpCqw5/3jPCMPw8zuzLOzO7O753Ndc+3O\nU+4508/cVWZGCCGEEEKtaFftAEIIIYQQ0iI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CRUnqU7SORnPfVfS9anr/ZLyulcu\nwuwkrZ7Ec3K1Y2nLJD0h6eUKl7nQa6+WFXif9Epel9tX8DYyv49DaKxITkJBqaSgTtI2RY55P9l/\nf94uSy5Z1BU4t6JrLEjqI+nESpYZGpa8VoZUqLimWHejpDJT74s6SfMlfShppKReTRBTMYViLfsx\nkfQzSYPquY1mX99E0qC8xzj/8V6xuWMKze971Q4g1LzZQF/gmfTG5IP4+8CcAucsCczLeHvr4QlK\nU+oLbARc3sS3E1qvUcDNgIA1gf7AY5J2N7ORzR2MmT0paUkz+7bMU3fHY/99gX2NeR83lgHHAjML\n7PuqmWMJVRDJSWjIw8D+kk4ws3TS0Bd4AeiSf0KGD8j0uXOznttSSepoZrOqHUcoy+tmdnvuiqR7\ngZeBk4CCyYkkAYub2TdNEVDG950qXF4l3WVmX5RzgqQlgG+twIq2lXifxXu1+USzTqiPAcOBFYCd\ncxsltQf2A26nwIdbflu1pHOTbWtJulHSl5K+knS9pA555xZr919K0jWSpkqaJukmScvmnbuXpAeT\navY5kt6UdJakdqljHgd+DuT6jtRJeju1f4kk3tckzZb0kaS7JK1Z4H4eldzGHEnPS9qioQc01Vy2\nvaShkqYA7yf7bpT0ToFzzpVUl7etTtIQSXtL+m8SwyuSdm3g9leUNFfS2QX2rZuU2z+5/r2kiv31\n5LGYKmmMpJ0aup9ZlfIc5h3fXdLTkmZJelvSMQWOWVzS7yW9kZQ5WdKFkhavVNxm9gowFa9Fyd1u\n7jnqK+kVvJZx12SfJJ2UPGezJX0iaVj+azo59ix5E+pMSf+WtGGBYwr2OZG0laSHJX0haYakCZKO\nT/bdgNeapJuq5ufFf05eeZtLGpG8B6dLelTSVnnH5F7j20gaLOnT5LbvlrRC2Q9uEan7fKCkP0j6\nAK9pWVrS4cXeZxnuR8EyQtOKmpPQkHeBsUAfFvwi3B1YBrgDKKXvRu5XzJ3A28DvgO7Ar4ApwOkF\njk0TcCXwJTAIb/rpD6wG7Jg67nBgOnApMAP4CXAesDTw2+SYPwCd8Sapk5KyZwAkX4APJWUOB/6S\nnLszsDGQThwOBjoBw5KYfwvcJambmc2nYUOBT/Hq9I6p+16sL0Gh7dsB+yZlTQdOAP4paTUz+7LQ\njZrZp5KeBA4Azs/bfRBejX9ncv33+HN1LfAf/DnfAn/u/t3wXczkcBp+DnOWx5+vO/FE+QDgaknf\nmNmN8F1txQPANsA1wKvAD4GBwDr449dokpYDlgPeyNu1UxLXlXjy8m6y/VrgMOB6vHlxTeB4YDNJ\n2+ZeQ5LOB84EHgRG4I/9KKB9gTAWeo1I2hm/7x/hr+VPgA2APYAr8MdjFeCn+Ou5aC1KUt6GwGhg\nGvBn/LVyDPCEpO3N7D95p1wBfAGcC6yBP+ZX4p8lpVghef7S5pnZtLxtZwPfABcDSwDfsuCxSL/P\nlkrux0Zl3o9FygjNwMziEpdFLkA/YD7+Ydgfb+ddItn3d+DR5P93gPvzzq0DzkldH5RsuzbvuLuA\nT/O2vQNcnxdHHfAcsFhq+ylJfHukti1R4H5cjX/ZtU9tewB4u8CxRyS3dUI9j8vqyTGfAsuktu+Z\nxLN7CY9rHfAEoLx9NxSJaxAwv8BjPBtYI7Xth8n2/g3EcFQS64Z5218B/pW6/mL+c9vI11QdMKSB\nY0p9Dh9P7sOJqW3tgfHAx7nXCnAIMBfomVfm0cn5Wxd77TVwP67FaxS7AD8CHi0QT11y2+vlnf/j\nZN+Bedt3TrYflFzvgte23Jd33B+S49Lvk17J7W+fXG+H/xB4C1i6nvtyRf5rKy/+9Pv4nuQ1t3pq\nW1f8S/7xAq/xR/LKuxRPHIrGk3q91xW5TMy7z3V4Qrh4Ge+zcu/HImXEpekv0awTSnEn/ut+D0md\n8F9et5VZhuG/1NLG4L+OOpVw/rW2cI3E1STJwHc3kGrLl9QpqUJ+Kol9/RJuY1/gM/zXXUPuMLOv\nU9fH4L88u5VwrgF/teQTsBH+ZWbvfleo2X+Br0uI4W78sTswtyH5NbkhXhuW8xWwkaS1Gxlnycp8\nDufhSULu3Ln4a2xFoEeyeT9gEvC6pBVyFzy5EQvXvJXjl/hr5VO8ZrEncKmZ5XeyfsLMXsvbth/+\n2P47L6YX8dqiXEw74wnXFXnn/6WE+DbHayv+YmbTS7tLxSW1ijsD95jZe7ntZvYJXmv147z3sZF6\nbhJjgMXwBL8hBvTGa3XSlyMKHHujFe4fs8j7LOP9qMR7NZQpmnVCg8xsqqRH8U6wS+G/yv6ZoajJ\neddzTQ/LkTStFAsBeDMvppmSPsY/gIHvqp3/iH+4L5N3fucS4lsLeM0W7vhbzEJtz2b2VVIDvVwJ\n58KC6v3GKNT+/WVDMZjZ55L+jTc35IaRHoT/yr8ndeg5wL34F/srwCPALUkS1CTKfA4/MrPZedte\nx5OONYDn8aab9fFEIp/hiUwW9+FJrOG1Ov8rEAsUfp7XAZbFE5v6Ylot+Zv/2p8qqWCzXcpaSVn/\na+C4Uv0fniC+XmDfJPwzYdXk/5z812f6/V6KMVZah9h3y9iX5X7UV35oIpGchFLdDvwVWBkYkfHX\nWLG+GPW2dZdCUme8Hfkr4Cy8SnsO/gv6z1S+83dj70uhL7Jiv84Wa4IY7gCul7SJmb0M7A/8O/1l\nYGZjJK0F7A3sgtcWDJR0jJlVfLKyJnoO2wH/xfs7FHpcsnZw/MDMHivhuELPczu8r1XfIjEVSqRa\noiZ7v+cp9BiXsq8S5YcmEslJKNU9eJX5VqSaA5qJ8F+bT363QVoKT5QeSjbtgP8i29vMnk4dt1aB\n8oolAW8BP5K0mJXWqbXSvsR/Uedbowlu6178+Tww6XS4Ll5jsRAz+wq4CbhJUke8av5cvCNnpe1A\n6c8hwCryuT3SXx7r4c9vrvPyW8AmZvZ4E8Sb1Vt4R9lnrP5hxblmh3VI/XqX1IWGax/ewt83GwP1\nJVGlNld8BszCH998G+B9M1rCSJbWcj9avehzEkpiZjPxSZHOxTuUNrejJaWT6f54jcLDyfX5+Idx\netjw4slx+WZSuJnnLrza97hKBJzBW0BnSRvnNkhaGdin0jdkPuJhJN60cxA+2uG+9DGSls87Zxbe\nxLBE6phlJK0nKd0Ek1U5zyH4j6tjU8e2x0ddfIZ3jAXvL/UDSUflnyypQ5JwNbc78dgXmRpe0mJJ\nDRJ4J9t5+CietIEl3MZ4PEE7KVVeITOT2633+UuaOkcBe0vKNTchaSV89M0YM6uvabYmtJb70RZE\nzUmoz0LVr2Z2S7UCARbHOxDeifch+DX+QfJgsv8ZvObhZi2YIv0QCv8yHAccIOlSfIjsjKScm/Hh\nnYOTOQ/G4MOFdwKuMrNKJWXFqrXvAC4E7k3uw1L4l+9r+KipSvs7cCv+5T8yr4MvwERJT+CP1xfA\nlnhnzvQU9L3xUUaH449fQ7aQdGaB7Y9T3nMIPirnNElr4H0IDgI2AY5K1XzdwoIhxjsCT+NJ7QZ4\nU9YuLEhkmoWZjZZ0DfA7SZvhX5Zz8dqr/fAh4XcnfUsuSY57EE/ENwd2o3DTz3evKzMzSb8G7gde\nks9p8jH+3tnQzH6WHDouOe8KSSPxkTt/LxL6WXin1KclDcWTyaPx9+ZpxWIpcXuh4/aXVChRGGVm\npTR9FbutStyP0MQiOQn1KaXKt9AcHI1Zk6NYecfhczH8Hh/BcBupOVbM7AtJP8eHK56Pf8ndgldp\n58/YORTYFP9CPQmvPn/QzOok/QyfV6IvPnrnczxJSXcCLXc+kkLHLbrR78M+wGA8SXkHn2dkXRZN\nThobA/gX12w8CbqjwP7Lgb3w0Q1L4I/TGcAlBW6zFIY3C25VYN/ZZvZMGc8h+HNzON4xNTdnzoB0\nf5jkS3pvvLbhMLwWahben+UyFu4YWc7z16jjzOzXkl7Aa3r+iNeQvIsneE+njjtT0mw8Sd0BHxm0\nC96cWeh9kr6NUUlCNgg4Ga+ReouFR9HcjSebB7FgrpNccrJQ/GY2UdJ2wAX467JdEk9fM3uhvlhK\n2F7ouKFF9u3IguSsvvKKPfaVuB+hiSlGSIUQQgihltRMnxNJAyS9I5/KeaykLRs4fnFJf5RPdz5H\nPnX14an9uamH52vB1MyxJkIIIYRQ42qiWUfSgXhV7tH43AQDgZGS1jWzqUVO+wfeefEIvKpyZRZN\ntqbhVeK5dsOoJgohhBBqXFnNOsloiTPwaZM/qFgQ0ljgOTM7MbkufDjXEDO7qMDxu+HzbnRLhjoW\nKrMfcJmZLV9ofwghhBBqU1nNOmY2DziVCta4JMP/epBaSCyZKvhRfEroQvYEXgB+K+kD+QqyFytv\nhVugU9LsM1nSvSqwmmcIIYQQakuWPieP4QsuVUoXfGjflLztU/DFmArphq/IuhHe+/5EfAjeValj\nXgOOxEcbHIzf12ckrVKxyEMIIYRQcVlqQEYAf5b0Q3yM/Mz0TjO7vxKBNaAdPpNf39yEOZJOBv4h\nqb+ZfWNmY/HhYST7n8XXSziGBeuJLCRZfGtXfEjfnCa9ByGEEELr0gGf0XqkmX3emIKyJCe5secn\nF9hnFF8HpJip+CQ4K+VtXwn4pMg5HwMf5s3kNwnv+PoDvIPswoGZzZP0IlDfCqu7Uv5quyGEEEJY\n4GC8X2hmZScnZlbR4cdmNlfSOHwWzvvhuw6xO7HwTJRpTwP7SeqYTKkNvlZCHVCwo26yVPYPWbAW\nSyHvAtx6661ssMEGZd6TUIsGDhzIZZddVu0wQoXE89m6xPPZukyaNIlDDjkEKrCSc00MJcZnxLwx\nSVJyQ4k7AjcCSLoAWMXM+iXH345PQXyDpHPxIcUXAdflFtKSdDberPMmvpjaafgS5H+rJ445ABts\nsAHduzfFbOGhuXXu3Dmey1Ykns/WJZ7PVqvR3SIyJSeSegGn4OtTAEwELjazMVnKM7M7k5U2z8Ob\nc14Cdk2tn9AVWDV1/ExJOwNX4GujfI5PuXx2qtjl8Gmau+LTYI8DeprZq1liDCGEEELzKDs5kXQI\nvtBXbk0GgG3xRdkON7NM7UxmNpQiaymY2REFtr2O9xEpVt7JFO4XE0IIIYQalqXm5EzgNDNLNxQO\nSUbLnE0jO8GEEEIIoW3L0rm1G1Bo6fj7gTUbF04IldWnT59qhxAqKJ7P1iWez1BMluTkfXwkTb6f\nJvtCqBnx4de6xPPZusTzGYrJ0qxzKd6MsxnwTLJtW+BwfKbWEEIIIYTMssxzcrWkT4DfAAckmycB\nB5rZfZUMLoQQQghtT1nJiaTF8FqSx83snqYJKYQQQghtWbmrEs8HRuFziIQQQgghVFyWDrGv4CN2\nQgghhBAqLktychZwiaQ9JK0saZn0pdIBhhBCCKFtyTJa5+Hk7/34KsQ5ItuqxCGEEEII38mSnOxY\n8ShCCCGEEBLljtb5HtALuN7MPmiakEIIIYTQlpU7WmcecCoZVzMOIYQQQmhIlg6xj+G1JyGEEEII\nFZelBmQE8GdJPwTGATPTO83s/koEFkIIIYS2KUtyMjT5e3KBfTFaJ4QQQgiNkmVtnSxNQSGEUr31\nFgwdCnV18OMfwy9+UfzY6dPhnHPqL2/AAFh77crGGEIITahmOrZKGgCcAnQFJgDHm9l/6jl+cWAQ\ncHByzkfAeWZ2Y+qY/YHzgDWA14HfmdmIJroLIVTGVVfB1VdDt26wwgr1H/vttzBqVP3H9O1budhC\nCKEZlJycSHoY6GNm05LrvwOGmdlXyfUVgDFmtmG5QUg6ELgUOBp4HhgIjJS0rplNLXLaP4D/A44A\n3gJWJtXBV9I2wO3Ab4GH8CTmXkmbm9nEcmMModmMHg377w8339zwsSusAP/7X9PHFEIIzaicJppd\ngSVS188Alk9d/x6wXsY4BgLXmNnNZvYqcCwwCziy0MGSdgO2A3Y3s8fNbLKZPWdmz6YOOwEYYWaD\nzew1MzsHGA8clzHGEJre11/Diy/C9ttXO5IQQqiacpITNXA9E0ntgR7Av3PbzMyAR4GeRU7bE3gB\n+K2kDyS9JuliSR1Sx/RMykgbWU+ZIVTfM894X5OmTk7q6jwRCiGEGlQLfU664CN8puRtn0Lxmphu\neM3JHGCfpIyr8ZqcXybHdC1SZtfGhxxCExk9Grp2hXXWadrb+clPvJPs3/7WtLcTQggZlFNzYiy8\n0B8FrjeXdkAd0NfMXjCzR/Chzf0kLVH/qSHUsIkTvdZEFamYLG7rreG++2DevKa9nRBCyKCcmhMB\nN0r6JrneARgmKTcJW9akYCowH1gpb/tKwCdFzvkY+NDMZqS2TUpi/AHeQfaTMsv8zsCBA+ncufNC\n2/r06UOfPn0aOjWExrnnHpg9u+lvp3dvuPBCePpp6BUTPocQyjN8+HCGDx++0LZp06ZVrHx5944S\nDpRuKOU4Mzui7CCkscBzZnZicl3AZGCImV1c4PijgMuAFc1sVrJtb+CfQCcz+0bSHcCSZrZ36ryn\ngQlm1r9IHN2BcePGjaN79+7l3o0QWo66OlhtNdhvP/jLX6odTQihFRg/fjw9evQA6GFm4xtTVsk1\nJ1mSjjIMxmtlxrFgKHFH4EYASRcAq5hZv+T424GzgBsknYsPKb4IuM7McjU7lwNPSDoZH0rcB+94\ne1QT3o8QWoZ27WCffbym5rLLmr4ZKYQQylATs72a2Z34BGznAS8CmwC7mtlnySFdgVVTx88EdgaW\nBf4D3ALcB5yYOuZZoC8+d8pLwL7A3jHHSQiJ3r1h8mQY36gfOCGEUHG1MFoHADMbyoJ1e/L3LVJr\nY2av43Ov1FfmXcBdFQkwhNZm++1h+eXh7rvBq2JDCKEm1ETNSQihCtq3hz33hOeeq3YkIYSwkJqp\nOQkhVMGQIbD00tWOIoQQFhI1JyHUgrlzq3O7yywTnWFDCDUnU82JpHWAHYEVyUtwzOy8CsQVQtsx\nfz6ssorPO3JkweWkQgihTSk7OUnmGLkanzztExaeJdbwETchhFJNmABTp8K661Y7khBCqAlZak7O\nAs40swsrHUwIbdLo0bDEErDlltWOJIQQakKWPifLAf+odCAhtFmjR/taN0vEslAhhADZkpN/ALtU\nOpAQ2iQzT062377akYQQQs3I0qzzJnC+pK2B/wILDTMwsyGVCCyENmHSJPj889pYfG/mTI9ltdWq\nHUkIoY3LkpwcDcwAeiWXNAMiOQmhVKNHw/e+58061bbnnj7nyX33VTuSEEIbV3ZyYmZrNkUgIbRJ\no0fDFlvAUktVOxLYfXc4+2yvQamFeEIIbVajJmFTolLBhNDmXHEFXHddtaNwvXvDnDnwyCPVjiSE\n0MZlSk4kHSbpv8BsYLaklyUdWtnQQmgDVlgBNtyw2lG4tdaCTTaBe+6pdiQhhDau7ORE0sn4JGwP\nAwckl0eAYZIGVja8EEKz6t0bHnwQvv222pGEENqwLDUnxwO/NrPfmtn9yeU0oD9wQmXDCyE0q969\nYdo0ePzxakcSQmjDsiQnKwPPFNj+TLIvhNBSbbIJrLlmNO2EEKoqS3LyJt6Uk+9A4I3GhRNCqCoJ\n9t0XPvqo2pGEUj35pNd2hdCKZElOBgHnSXpE0tnJ5ZFk+zlZA5E0QNI7kmZLGiup6EIjknpJqsu7\nzJe0YuqYfqntuWNmZY0vhDbjoovg/vurHUVoyPTpcOihsMMOcNRR1Y4mhIoqOzkxs7uArfBVifdJ\nLlOBH5lZprpgSQcCl+IJzubABGCkpC71hQKsA3RNLiub2ad5x0xL7e8KrJ4lvhDalHaNmmEgNIcX\nXoDNN4d774Ujj4QHHoDJk6sdVQgVk+lTyMzGmdkhZtYjuRxiZi82Io6BwDVmdrOZvQocC8wCjmzg\nvM/M7NPcpXColj7ms0bEGELl7LUX3HprtaMILU1dHVx6KWyzDSy/PLz0Evztb/D667HsQGhVSkpO\nJC2T/r++S7kBSGoP9AD+ndtmZgY8CvSs71TgJUkfSRolaZsCx3SS9K6kyZLulVQjE0qENu2zz/yX\nbtRQhHKdcAKccgoMHAhPPeVz00iw6qrVjiyEiip1+vovJeWaTb7Cm1TyKdm+WJkxdEnOmZK3fQqw\nXpFzPgaOAV4AlgCOAp6Q9CMzeyk55jW85uVloDNwKvCMpA3NLHr7heoZM8b/brdddeMILc9RR3mt\n2y6xMHxo3UpNTn4CfJH8v2MTxVIyM3sdeD21aayktfDmoX7JMWOBsbkDJD0LTMKTmkHNF20IeUaP\n9uG68Ws3lGvTTasdQQjNoqTkxMyeTF19B3g/aXr5TrLGTpZP26nAfGClvO0rAZ+UUc7zwLbFdprZ\nPEkvAms3VNDAgQPp3LnzQtv69OlDnz59yggnhCJGj4btt692FCFUz9y50L59taMIjTB8+HCGDx++\n0LZpFRzSrrwco+ETpPkUGBkjaQXgUzMrt1kHSWOB58zsxOS6gMnAEDO7uMQyRgFfm9l+Rfa3A/4H\nPGRmpxQ5pjswbty4cXTv3r3cuxFCw6ZNg+WW806MRzbU37sGvP8+TJ3qI0NCqJSDDoIVV4QhQ6od\nSaig8ePH06NHD4AeZja+MWWV2qyTlutbkq8TMCdjHIOBGyWNw2tABgIdgRsBJF0ArGJm/ZLrJ+I1\nOP8DOuB9TnYEdv4uSOlsvFnnTWBZ4DRgNeBvGWMMofGefhrMoFevakdSmgED4IsvvPNlaHrTp3uf\npN13r0xZSy/d+HIq7Y474O9/978hFFFyciJpcPKvAefnTWi2GD73yUuLnFgCM7szmdPkPLw55yVg\n19TQ364s3GS0OD4vyir4kOOXgZ3MbHTqmOWAa5NzvwTGAT2TocohVMfo0bDKKtCtW7UjKc2++3oN\nz5QpsFJ+y2uoqBde8BqFL7+Ed96BZcoe/LjADTfAmWfCpEmQ10RdVR9+CP37+/088MBqRxNqWMnN\nOpJyK4H1Ap4F0suWfgu8C1xiZi12Cvto1glNbvx4/+L5xS+qHUlpPv/ck5KhQ+Hoo6sdzQJz58Kn\nhaY2Sllxxfr7NXz9tdcu5HTqVJ0v8ro6GDwYTj8dNtsMhg+HtRvsGle/Dz+E9dbz52zw4IaPbw5m\n8LOfwcsvwyuv+DwtoVWpSrOOme0IIOkG4EQz+7oxNxxCm9S9u19aihVW8M67d99dW8nJ66/DxhvX\nf8wrr8BGGxXfP3gw/P73C2/beGO/v7nLyk28luknn0C/fjBqFJx6KvzhD7D44o0v9/vf95qTc86B\nX/0KNqyBKZ6uuQZGjoQRIwonJpMm+RxA0Vk8kK1DbGdgMTP7Im/78sC8lpy0RM1JCAVceSWcfLJ/\ncdRKE8H06Q33g/nxj+vvc/HGG/Dmmwuuf/qpl/nkk75vhx3g8ceLnt5oI0fCYYf5JGo331z5uUu+\n+caTrdVXh3/9y2+nWt54w2uFDjsMrr668DH77AMvvuhJSseOzRtfqIhK1pxkSU5GAPeZ2bC87ccC\ne5lZBXpyVUckJyEU8MEHPifLbbdB377VjqZ5fPyxdwSur+Yl99mZ5Ut/8mSf3XWnneCmm5quP89D\nD8Eee8A//1ndpsTdd/farpde8uazQt580x/v3/1u0Rqt0CJUMjnJMn/2VkChnxNPJPtCCK3JD34A\nW24J92Ra17NlWnnl+hMT8F/4XbvC/vvDFVfAhAkwf35p5a+2mo/Kefjhpu1o/POf++Xkk2FWFRdl\nv+YaT5CKJSbg/Wx+8xu48ELvlxXatCzJyRL4aJl87YElGxdOCKEm9e0LSyzR/Lc7dWrz32apOnXy\n6eSnTPH1bjbbzPvo7LEHXHQRjB3rnV2L2Xrr5llf6S9/8b4tF17Y9LdVzKqr+uPTkDPOgC5dPJkK\nbVqWeU6eB44Gjs/bfiw+XDekzZ8P//0vPPusv0H32KPaEdW+J5/0x6uYFVdseAKza67xCc8OPtg7\nB4bGOemk5r/Np57yfhiPPw5b1WCl7GqreQdWgDlz4Pnn/bU7erQ3Syy5ZMMjiprD2mvDX//qtV+1\nrlMnuPhiT4ZHjYo1hNqwLH1OtsVXDP4PC1YS3gnYEtjFzMZUNMJmVJE+J3Pnwrhx/gE1erR/wE6b\n5r+QevTwD7C2aPp0eOYZf0z6968/YfjjH+Gyy4rv33hjeOKJ+m/vRz/y9u0DDoBbb80UcqiiGTN8\nHZmuXf01s1jZE09X19y58O67sM461Y6k5THzzshTpviw40qMXgrNoqp9TszsaaAn8D5wALAnPgvr\nJi05MamI+++HZZeFnj39l9O333p175NPwsyZ8OijDZcxefKCjnYt2eefw333eRvyllv647Lbbj5t\n+1tv1X/umWd6dX6xS0OJCXgSePHFPgvl5MkVuUuNcsEF8OCD1Y6i5TjlFP9yuvnmlpeYgM+vEolJ\nNpJPa//22/7ZGdqksmtOWrNG15y8/TbcdZeP0+/evfyFrd57D9ZYw5t/0nMtrLdedYcBlsPMk7Pn\nnvPrq67qU7Xn7su66zbffZkxw6veDz+8uhNRzZvn8zqccYaPRAj1GzHCR3cMGwbHHFPtaEK1fPSR\nz6YcWoxmn4RN0jK5+Usk1Tunckue56Sgzz/3ppnRo30io1/+svix3br5REpZ/d//ee1Lrt36jju8\nz8qKKy74cv/lL2t7DgDJRy8MGODxrr569WLp1MmbkC6/HM4+2xfcq4YJE7xZKyaXatjnn/trfLfd\namvSt1BUnkmqAAAcQElEQVS6//2v4ZFOpYjEpE0rtVnnS0krJv9/ha9Vk3/JbW/5Ro3yL9cf/tB7\nju+zD/zjHz4JVVPq2BH23BMuucSbJb780idqyo0IOPfc6iwzbgavvgrXXuuzTdY3AgG8KefQQ6ub\nmOQcf7y3/w8b1vCxTWX0aOjQAbbYonoxtBQDBnjn0uuuazm1hWGBESO8T1g0x4RGKqlZR1Iv4Gkz\nm5f8X5SZtdhX5XfNOkD3dddduGmlFr5o582D7zVQ2fXzn3tHvGKOOw5+/evi+197zRd7S/vsM78s\ntph36n3gAa/NaSmOPtpjfvfd6gyH7d3bO0U/9ljz33ZLMmECbL65ry0Ti8K1PJ9/7j/oNt3U52+J\n5LLNafZmnXTC0ZKTj5KNHFmbQ9gaSkwAtt3W+3UUs9Za9Z+/9NKL3vdllvFye/aszSXYG3LaaT6V\neXPMKZGvrs5rTo7PH3nfgr30ktfk7bprZcvddFNvEthgg8qWGxY1Z453PN9vP39fV0LUeoUKKrXP\nySalFmhmL2cPp0Z06VLtCLI744zGnb/KKvUP422J1l678au8ZjVxok+D3pr6mwwZ4sPCX3218mVH\nYtI82rf3UW9PPumd1xs7IuqOO+Dvf/e/0VckVECpk7C9BBig5G99WuC4vxCayOjRXuO19dbVjqRy\n9t0XbrjBp2+PZKJlWmwxX9Bxm23g+uu9X1tWH37oHc8POqjpm+O++sqnJQitXqn13GsC3ZK/vwDe\nAfoDmyeX/sBbyb4QQk5uBFctj7Aq109/6iOh7r672pGExujZ01cJPuMM73yfhZmPrurQAa66qrLx\n5Xv6aV/n6eWWXzkfGlZScmJm7+UuwBnACWZ2jZm9nFyuAU4Czm7KYENocXbbDf70p2pHUVkdOsDP\nfta2FgJsrS68EL75Bs45J9v5r77qScP11/tcPk1pyy09OTn++NYxUWWoV5Yegj/Ea07yvQNsmDUQ\nSQMkvSNptqSxkoouBCGpl6S6vMv81HDn3HH7S5qUlDlB0s+yxhdCSOnd28e11cLsuyG7rl1h0CAY\nOjRbjcQGG/gouN12q3hoi1h8ce/vNHq0928JrVqW5GQScLqk7xY8SP4/PdlXNkkHApcCg/BmognA\nSEn19Uw1YB2ga3JZ2cy+W2VL0jbA7cBfgc2A+4B7JWVOoEIIid13906V996b7fyJE+H11ysbU8jm\n+ON9hN8JJ2SrkVhhhcrHVMwuu8Dee/vyBjNmNN/thmaXJTk5FtgV+EDSo5IeBT5Ith2bMY6BwDVm\ndrOZvZqUMwtoYOlZPjOzT3OXvH0nACPMbLCZvWZm5wDjgeMyxhhai7o6Xyk6ZNe5s/c9ydK08803\n3nmyX7+onq8Fiy/usyjPm+cdTmvd4MG+xtYFF1Q7ktCEsiz89zzeOfYs4OXkcibQLdlXFkntgR4s\nWOEY85nhHsUXGCx6KvCSpI8kjUpqStJ6JmWkjWygzNAWXH21t19PmVLtSFq2fv18NtByE4xBg7yv\nwjXXxHwYtWKXXWDMmOot8VCObt187qJLLoE336x2NKGJZJqVysxmmtm1ZnZycvmrmc3MGEMXfPhx\n/jfFFLy5ppCPgWPw0UH74iskPyFps9QxXcssM7QVffv68N4rr6x2JC3bgQfCFVeUl2A89RRcdBGc\nfz5sUvL0SaE5tKRE8Xe/8/4yAwdWO5LQRDIlJ5IOlfRUUmuxerJtoKS9KxteYWb2epIQvWhmY83s\nl8AzePNQCPVbbjmf1+Gqq6LdujnNmOG1LT17ep+BELLq2NFnoo1VvlutUidh+46kXwPnAX/Bm3Zy\nk659iQ8nvq/MIqcC84GV8ravBHxSRjnPA9umrn+StcyBAwfSuXPnhbb16dOHPn36lBFOqGknneS/\n+q+/3jsCVtpDD/kvO19nIoAnJFOm+MKajZ2RNDS/sWNh9mzYccdqR+J++tNqR9CmDR8+nOHDhy+0\nbdq0aRUrv6SF/xY6QZoInGFm90qaDmxqZm9L2hh4wszKnvtd0ljgOTM7MbkuYDIwxMwuLrGMUcDX\nZrZfcv0OYEkz2zt1zNPABDPrX6QMX/hv3Di6d+9e7t0ILc0hh/gcDW+8Udq6ReVYf33/EL/66sqW\n21KNGOEjfIYNg2OOqXY0oVwzZvjaR6us4kN5W1ITUGg2lVz4L0uzzprAiwW2fwMslTGOwcBRkg6T\ntD4wDOgI3Agg6QJJN+UOlnSipL0krSVpI0l/AXYE0p0ILgd2k3SypPUknYt3vI2OBsGdeqrP0fDP\nf1a23ClTfHXnXvUu4N22PP+8JydHH13tSEIWuVqvG2+MxCQ0iyw/F9/B5w15L2/7bmSc58TM7kzm\nNDkPb3p5CdjVzD5LDukKrJo6ZXF8XpRV8CHHLwM7mdnoVJnPSuoL/DG5vAHsbWYTs8QYWqFNN4Wd\nd/YOmgceWLkP3TFj/O9221WmvNZg0CAfqhpfbC3HrFk+0d6MGT6yatiwhlc1D6FCsiQng4GrJHXA\nh/P+SFIffBK2X2UNxMyGAkOL7Dsi7/rFQIPNPWZ2F3BX1phCG3Dmmb4669y5Pt9DJYwe7R/i3/9+\nZcprLSrddBaa1oUXwqWXwtJL+wywUesVmlGWeU7+BvwW+APe9HI78GvgRDO7o7LhhdDEevXyX/WV\nSkzAk5Ptt69ceS3BY495lX9oPU4+GZZayifNu+66qPWqBcceC126FL8cfHDDZfznP00fZwWU9VMm\n6ai6KnCXmd0mqSPQqcDsrCG0TV9+6WuUnHRStSNpXo884snJoYfGSJzWonNnGDnS/19llerGUqqL\nL/bp9I9saHLxGjRypNe4rr128WN+/nNYY43i++s7N6eFPJfl1rMKeBPYCHjDzGbhfT5CCOCTjJm1\nvZqT3r39i+GZZ6KvTWuy2WYNH1NLXn3Vl1TYay+vSWgJvv3Wm5cvucRrqy69tPixe+7pl8ZoIc3N\nZTXrmFkd3rG0GVd6CqEFmTPHE5M116x2JM1rq61g5ZWzrbUTQqVccIGvnXXWWdWOpDRvvAHbbONr\nG11yiSf4Acg2lPh3wMXJvCYhhLT994cnn2x77fPt2sE++3hyMnCgD9EOobmtuCL8/vdw7bXwYqEZ\nL2rILbdA9+4wbZrXOP7mN/4+CkC25ORm4EfABEmzJX2RvlQ4vhBCS9G7tyclQ4bAhx9WO5rQVvXv\nDxtuCMcd58PXa8306XDYYX7Zd18YPx622KLaUdWcLGP7BgKxznlovb78smWszlprdtjBm7MOOwy2\n3bbBw0NoEu3b+6KeP/kJrLeer79z+OG+vRZceqnXMN5yi89SHQoqe/r61iymrw8MGQJ//jO88w4s\nsUS1o2l55s6tnS+B0La99BL86U/+d+LE2plnZ/Zs+Phj6Nat2pFUXFWmr5fUTtJpkp6W9B9Jf5a0\nZGNuPISas9tu8MkncOut1Y6kZYrEJNSKzTaDO+/0vie1kpgALLlkq0xMKq2cPidnAn8CpgMfAicC\nVzVFUCFUzbrrwt57e6/5urpqRxNCaKylsi75FqqpnOTkMKC/me1mZvsAewIHS4ruxaF1Oe00X7jv\nwQerHUkIoam98gpMnVrtKEKechKL1YARuStm9ijeMbZlTDcXQql69vQOneXMOfDGG/BFDFYLocXp\n399nXT31VG/Sbaw33oATToD58xtfVhtWTnLyPWBO3ra5QDQyh9bn1FN9ttdnny3t+AEDfOr2EELL\ncvfdPjfPtdd6knL88TB5craycnOXjBjhnV5DZuUkJwJulHR37gJ0AIblbQuh5dtzTx+GWErtydy5\nPolSW5uyPoTWoEsXOP98eO89n1n29tt9jZqjjoK33iqtjOnT/cdJeu6SH/ygaeNu5cpJTm4CPgWm\npS63Ah/lbQuh5WvXDk4/3ec7aahj7IsvwsyZvsJxCKFlWnZZT07ee8+HID/wAGy5pS9JUZ8XXoDN\nN4d77/Wak5tugqWXbp6YW7GSx1eZ2RFNGUgINadfP780ZPRo6NjRq3NDCC1bp05wyineVDthAnTo\nUPi4ujoYPNh/xGy2ma/MXcqqwKEkMdImhMYaPdo70S6+eLUjCSFUypJLwtZbF98/cyYMG+b9VZ5+\nOhKTCquhmWlCaIHq6mDMGP+ACiG0HUsv7TUrMY9Kk6iZmhNJAyS9kywmOFbSliWet62kuZLG523v\nJ6lO0vzkb52kWU0TfWizXnkFvvoqOsOG0BZFYtJkaiI5kXQgcCkwCNgcmACMlNSlgfM64x11Hy1y\nyDSga+qyeqViDgHwNTs6doSttqp2JCGE0GrURHKCr3R8jZndbGavAscCs4AjGzhvGHAbMLbIfjOz\nz8zs0+TyWeVCDgE46CD4/HNvnw4hhFARJfU5kbRXqQWa2f3lBCCpPdADX7cnV4ZJehToWc95RwBr\nAgcDZxc5rJOkd/EkbDxwhplNLCe+EBZSV+fDjNOK9eYPIYSQSakdYu8t8TgDFiszhi7JOVPytk8B\n1it0gqR18GTmx2ZWJ6nQYa/hNS8vA52BU4FnJG1oZh+VGWMIMHQo3Habzxxb+DUXQgihAkpKTsys\nVpp/SBYavA0YZGa56fsW+aYws7GkmnskPQtMAo7B+7YUNXDgQDp37rzQtj59+tCnT5/GBR9atnXX\n9Zlg//1v+OlPqx1NCCFUzfDhwxk+fPhC26ZNq9w8rDKz7CdLHcysgenzGiyjPd6/5BfpJiFJNwKd\nzax33vGdgS+BeSxIStol/88DdjGzJ4rc1p3AXDM7uMj+7sC4cePG0T0m1Ar5zHyitRVXhJEjqx1N\nCCHUlPHjx9OjRw+AHmY2vqHj61N2jYikxSSdLelDYIakbsn28yX9stzyzGwuMA7YKXUbSq4/U+CU\nr4GNgc2ATZPLMODV5P/nisTdDvghEKsxhWwkXxBw1Cif3yCEEEKTyNJccyZwOHAa8G1q+yvArzLG\nMRg4StJhktbHk42OwI0Aki6QdBN4Z1kzm5i+4Gv+zDGzSWY2OznnbEk7S1pT0uZ4U9BqwN8yxhgC\n7L8/rL56aQsChhBCyCRLcnIYcLSZ3QbMT22fAKyfJQgzuxM4BTgPeBHYBNg1NfS3K7BqmcUuB1wL\nTAQeAjoBPZOhyiFk0769zwZ7222+QFgIIYSKK7vPiaTZwPpm9p6k6cCmZva2pA2B582sU1ME2hyi\nz0koyYwZC1YdbUSfrRBCaE0q2ecky9o6E4HtgPyfjfvhtR4htG6dOsE//wmLlTtqPoQQQimyJCfn\nATdJ+j7eLLSvpPXw5p49KhlcCDXrF7+odgQhhNBqld3nxMzuA/YEfgrMxJOVDYA9zexflQ0vhBBC\nCG1NlpoTzGwMsHOFYwkhhBBCyJacAEjaAq8xAZhoZuMqE1IIIYQQ2rKykxNJPwCGA9sCXyWbl5X0\nDHCQmX1QwfhCCCGE0MZkmefkb0B7YAMzW97MlsdrUNoRE5yFEEIIoZGyNOv0ArYxs9dyG8zsNUnH\nA2MqFlkIIYQQ2qQsNSfv4zUn+RYDPmpcOCGEEEJo67IkJ6cCVyQdYoHvOsdejk9BH0IIIYSQWUnN\nOpK+BNLzdC8FPCdpXqqcecD1wL0VjTCEEEIIbUqpfU5OatIoQgghhBASJSUnZnZTUwcSQgghhACN\nmIQNQFIHYPH0NjP7ulERhRBCCKFNK7tDrKSlJF0p6VN8bZ0v8y4hhBBCCJllGa1zEfAT4NfAN8Cv\ngEH4MOLDKhdaCCGEENqiLM06ewKHmdkTkm4AxpjZm5LeAw4GbqtohCGEEEJoU7LUnCwPvJ38/3Vy\nHeApYPusgUgaIOkdSbMljZW0ZYnnbStprqTxBfbtL2lSUuYEST/LGl9omYYPH17tEEIFxfPZusTz\nGYrJkpy8DayZ/P8qcEDy/54sWAiwLJIOBC7Fm4c2ByYAIyV1aeC8zsBNwKMF9m0D3A78FdgMuA+4\nV9KGWWIMLVN8+LUu8Xy2LvF8hmKyJCc3AJsm//8ZGCBpDnAZcHHGOAYC15jZzWb2KnAsMAs4soHz\nhuHNSGML7DsBGGFmg83sNTM7BxgPHJcxxhBCCCE0g7L7nJjZZan/H5W0PtADeNPMXi63PEntk/P/\nlCrXJD0K9KznvCPwGpyDgbMLHNITr41JGwnsXW6MIYQQQmg+WWpOFmJm75nZ3cAXkq7NUEQXfNHA\nKXnbpwBdC50gaR08mTnYzOqKlNu1nDJDCCGEUBsaNQlbnhWAXwJHV7DMRUhqhzflDDKzt3KbK1R8\nB4BJkyZVqLhQbdOmTWP8+EX6SocWKp7P1iWez9Yl9d3ZobFlVTI5yWoqMB9YKW/7SsAnBY5fGtgC\n2EzSVcm2doAkfQvsYmZPJOeWWmbOGgCHHHJIGeGHWtejR49qhxAqKJ7P1iWez1ZpDeCZxhRQ9eTE\nzOZKGgfsBNwPnmUk14cUOOVrYOO8bQOAHYFfAO8m254tUMbOyfZiRuJ9WN4F5pRxN0IIIYS2rgOe\nmIxsbEFVT04Sg4EbkyTleXz0TkfgRgBJFwCrmFk/MzNgYvrkZCr9OWaWbo+5HHhC0snAQ0AfvOPt\nUcWCMLPP8eHHIYQQQihfo2pMckpOTiTd3cAhy2YNwszuTOY0OQ9venkJ2NXMPksO6QqsWmaZz0rq\nC/wxubwB7G1mE+s/M4QQQgjVJK+IKOFAn6q+QWZ2RKMiCiGEEEKbVnJyEkIIIYTQHBo9z0lrkXVt\nn1BbJA2SVJd3iaa8FkTSdpLul/Rh8vztVeCY8yR9JGmWpH9JWrsasYaGNfR8SrqhwHv24WrFG+on\n6XRJz0v6WtIUSfdIWrfAcY16j0ZyQva1fULNegXvu9Q1ufy4uuGEMi2F9zvrDyxStSvpt/gyFEcD\nPwJm4u/XxZszyFCyep/PxAgWfs/2aZ7QQgbbAVcAWwE/BdoDoyQtmTugEu/RaNYBJI0FnjOzE5Pr\nAt4HhpjZRVUNLpRF0iC843P3ascSGk9SHbCPmd2f2vYRcHFuKQ1Jy+CzP/czszurE2koRZHn8wag\ns5ntW73IQlbJj/hPge3N7KlkW6Pfo22+5iS1ts+/c9uS4cr1ru0Tato6SRXyW5JulVTWSK9QuySt\nif+yTr9fvwaeI96vLdkOSRPBq5KGSlq+2gGFki2L14h9AZV7j7b55IQMa/uEmjYWOBzYFV/dek1g\ntKSlqhlUqJiu+AdhvF9bjxHAYcBPgNOAXsDDSQ12qGHJc/QX4KnUNB0VeY/WyiRsIVSEmaVnJnxF\n0vPAe8ABQEnD4UMIzSevmv9/kv4LvAXsADxelaBCqYYCGwLbVrrgqDkpf22f0IKY2TTgdSBGc7QO\nn+ALfcb7tZUys3fwz+V4z9YwSVcCuwM7mNnHqV0VeY+2+eTEzOYCubV9gIXW9qnINLyheiR1wj/k\nPm7o2FD7ki+uT1j4/boMPnIg3q+tgKQf4Kvcx3u2RiWJyd7AjmY2Ob2vUu/RaNZx9a7tE1oOSRcD\nD+BNOd8Hfg/MBYZXM65QuqR/0Nr4ry+AbpI2Bb4ws/fxNu6zJL2JL9J5PvABcF8Vwg0NqO/5TC6D\ngLvwL7S1gQvx2s5GLx4XKk/SUHyo917ATEm5GpJpZpZbMLfR79EYSpyQ1B/vjJVb2+d4M3uhulGF\nckkajo/DXwH4DHgKODPJ5kMLIKkX3tcg/8PpJjM7MjnmXHwOhWWBMcAAM3uzOeMMpanv+cTnPrkX\n2Ax/Lj/Ck5JzUmurhRqSDAcvlDgcYWY3p447l0a8RyM5CSGEEEJNafN9TkIIIYRQWyI5CSGEEEJN\nieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQ\nUyI5CaENkPS4pMFlHL+6pDpJmyTXeyXXl2m6KIvGcoOku5v7drOSNEjSi9WOI4SWLJKTEFogSTcm\nycLQAvuuSvZdn9rcGzi7jJuYDHQFXklta/RaF+UmSS1YrAsSQiNEchJCy2R4AnGQpCVyG5P/++Cr\nMi842OwrM5tZcuHuUzOrq1TAoXEkxSryoc2I5CSElutF4H1g39S2ffHEZKFmhfwaC0nvSDpd0nWS\nvpb0nqSjUvsXatZJ+bGkCZJmS3pW0kapc5aXdLukDyTNlPSypINS+28AegEnJmXPl7Rasm8jSQ9I\nmpbE86SkNfPuw28kfSRpqqQrJS1W7IHJNa1IOiS5r19JGi5pqbzH4IS8816UdE7qep2ko5PYZkqa\nKGlrSWslj+kMSU/nx5qce7Skycl5f5e0dN7+XyXlzU7+/rrA43+ApCckzQL6Fru/IbQ2kZyE0HIZ\ncD1wZGrbkcANgEo4/2TgP/hy9UOBqyWtk1d+moCLgIHAFsBnwP2pJKED8ALwM2Aj4BrgZklbJPtP\nBJ4F/gqsBKwMvC9pFeBJYDawA7B5cky6puAnQLdk/2HA4cmlPmsBewO7Az/HE6PfNXBOIWcBNwKb\nApOA24FhwB+BHvjjcmXeOesA+ye3uyt+n75rgpN0MHAucDqwPnAGcJ6kQ/PKuQC4DNgAGJkh9hBa\npKgmDKFluw34s6RV8R8b2wAHAjuWcO5DZjYs+f9CSQOT895IthVKcM41s8cAJPUDPsD7s/zTzD4C\n0v1JrpK0G3AA8IKZfS3pW2CWmX2WO0jSccBXQB8zm59sfivvdr8AjjMzA16X9BCwE3BdPfdPQD8z\nm5Xczi3JOeX0vQG43szuSsq4CE+wfm9mjybbLseTxLQlgEPN7JPkmOOBhyT9xsw+xROT35jZfcnx\n7yW1UMcCt6TKuSx1TAhtRiQnIbRgZjZV0oPAEfiX8UNm9oVUSsUJ/827/gmwYn03B4xN3faXkl7D\nf9UjqR1wJl5j8H1g8eTSUF+XTYExqcSkkP8liUnOx8DGDZT7bi4xSZ1T3/0rJv04TUn+vpK3rYOk\nTmY2I9k2OZeYJJ7Fk8f1JM3Aa3Wuk/S31DGL4Ula2rgM8YbQ4kVyEkLLdwPerGBA/zLOm5t33Whc\nU+9pwPF4880reFJyOZ6g1Gd2CWVnibWhc+pYtHaofQPlWD3bSn3sOiV/fwU8n7cvP0EruRNzCK1J\n9DkJoeV7BE8AvgeMasLbEbD1d1ek5YB1gYnJpm2A+8xsuJn9F3gn2Z/2LV5DkPYysF19HVybyGd4\nvxcAkjlcFunYWkApw4RXk9Q1db0nnni8mjTrfASsZWZv513So6xiOHJosyI5CaGFS4b7rg9slNf0\n0RTOkfQTSRvjnUQ/A3J9It4AdpbUU9IGeIfYlfLOfxfYKhmNskKy7UpgGeDvknpIWjsZZbMOTesx\n4FBJP5b0w+T+zCvhvEJtZvnbvgFukrSJpO3wGqS/p/raDAJOl3S8pHUkbSzpcEknNXA7IbQJkZyE\n0AqY2YxUf4eChzRwvZRjDB/tcjk+yuf/gD3NLPeF/gdgPF6T8xjex+OevDIuwWsQJgKfSlrNzL7A\nR+MsBTyBj/j5FYs2y1TaBfgooQeSyz0s2hG3lMep0LY3gLuBh/HH4yVgwHcHm12H38cj8JqjJ4B+\neG1TfbcTQpugpv+hFUIIIYRQuqg5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGE\nEEJNieQkhBBCCDUlkpMQQggh1JRITkIIIYRQUyI5CSGEEEJNieQkhBBCCDUlkpMQQggh1JRITkII\nIYRQU/4fIXIuPgDsW8EAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -906,7 +909,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGHCAYAAAB1bcIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X98FNXV+PHPQUSIEZVEQVtTLVSQx1oLLci3oGJbUCyr\n1RbEh6KhGmuBamqR2moJ+rQKtQaEtNVHbKjVgEUaf7QCPlKUqIglolYBSQVTpSCJIKwhRML9/jEb\n3N0kkN0kM5s95/167Uv3zt3ZczIz5GTmzh1xzmGMMcYYk2o6BR2AMcYYY0xTrEgxxhhjTEqyIsUY\nY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgxxhhjTEqyIsUYY4wxKcmKFGOMMcakJCtSjDHGGJOSrEgx\nJo6IFIjIAZ++a6WI/D3q/XkickBELvPp+4tFZLMf35UsETlaRB4Qkf9Efjb3BB0TgIhsEZEn2nB9\nLd72TW23yGd/EfX+6khbTgLffW5y0RvTPqxIMWlNRK6K/OPb8NorIu+LyFIRmSIimU18zAEJFSki\ncpKITBeRsxIMsanvatNnVRwmtoRzDcDPgQlAETAeeKi5jpHCIXp7bxeR50Xk0naIqz2eKdLSdbZk\nu7n49YnI9SJyVSu/2xjfdA46AGN84IDbgC3AkUAv4HxgNvBjEQk5596I6n8HcGeC33EyMB3YDLye\nwOe+2USbJPjdh3Oo2K4h9f9YGQ6sds79Twv6OuBV4G68n+PJwHXAEhH5gXPu/vYLs020dNu3ZLv9\nEShxztVFtf0Q2AEsiO7onHtORLrF9TUmcFakGC2WOufKo97PFJHzgb8Cj4vIGc65fQDOuQNAov9Y\nJ1RYRH4h7HXO7U/we5LRbGzOuXqg3ocYWuNE4M0E+r/vnCtpeCMiDwEVQD7QbJEiIl2dc7VJR+mj\nlmw35z09tsX7sRUoJhWl+l9QxrQb59xKvLMmn8O7jAA0PSZFRL4pIqtEZKeI7BGRDSLyy8iy84A1\neH/FF0cuM9SLyITI8pUi8rqIDIhcevgY+GXUshXxoQFHiMivIuMwwiLyuIh8Ni6mLSLyYHxe0ets\nQWxNjW3IEJHfiEiliNRGcr2pie85ICL3isglIvJGpO8/RWTkYX70DZ8/QUTmi8i2yGW4dQ1xNcQe\n2Q6nAt+Kiv2wYyyiOee2A+uB06LWvUVEnhCRESLyiojsBfIiy44QkdtEpCKS02YR+aWIdGkmj2+K\nyKuRHN4UkW/HLT9eRO6O7AN7ROQjEfnbIS6/tWTbH3YsUfyYlEj//wLOj7ocdnA/kSbGpIjI4Mil\n0V0i8nFk3/p/cX0yRWR25OdUG7nEtlxEzj5UfMa0hJ1JMdo9BPwKGAHMj7TFXMsXkf7Ak8A6vMtG\n+4A+QMM/1uuBXwC3A/cBqyLtL0atLxv4G7AQ7zT89qhl8QS4FW/MwV14ZxLygWdE5OyGMz7NfDa+\nvSWxxa/nSeA84AHgNWAk8GsROdk5F1+sDAMuA34L7AF+BCwWkRzn3M5m4kNEugLPAZ8H5uJdivsu\nXiF1rHNuLvAWXvE4G/g38JvIx3c0t95mvqszcApQHdXsgH7AI3g/l/uBjZFl8/HGwDyKd9loMHBL\npP/lcas/HW+b/h4oBnKBP4vISOfcs5E+nwdCwJ/xLrn1xLsEtVJE+jvntkWHS8u3/eHGkMT3uQGY\nh7ed/ifyXdvj+n8aiMgFePvsP4CCSEy5wAoRGeqc+0ek6314+8BcvP0tCxgKnIF3zBiTPOecveyV\nti/gKrzT4gMO0Wcn8I+o99OB+qj3N0TWcfwh1jEQ7x/xCU0s+3vk89c0s2xF1PvzIuupBDKi2r8T\naZ8c1bYZeLAF6zxUbH8A3ol6f0mk70/j+j0K7AdOi2o7AOwFTo1q+2Kk/YeH2S4NP9MrotqOAF4A\nPgKOjsvziRZu783A03i/KLOAs4CSyHcVxvWrB74R9/mzIvH/Pq59VqT/eU2s45KotmOA9+P2pyOb\niDMn8rP7eZLbPma7RW2PXzSx7+dEtb0RvW/EfXc9cG5U20bgr3H9jgL+hXf5NPr4ube1x6q97NXU\nyy73GANhvF8uzdkV+e+3RSTZQa378P7SbqkFzrmahjfOucXAf4BRSX5/S12EV4zMjWv/Dd7l4Yvi\n2p9xzm1peOO8Aci78c4eHO57tjnnFkZ9th64F8jE+6WZrJF4Z1t24P0lfzne2aufxvXb7Jz7v7i2\nUXhnFArj2n+Dd+bh4rj2rc65x6Ny2BP5ri+LyImRtk8alotIJxHpAdTgFQEDmog/qG1/UORSzReA\nEhHJanjhHSfPAtGXhXYBg0XkJL/iM3pYkWKM90txzyGWL8L7C/9/ge0iUiIi302wYHnfJTZItqKZ\ntlMTWEcyPof3i/fjuPb1Ucuj/buJdewEjm/B92xqon09XjEQ/z2JWA18PfIaAmQ753Ldp5dKGjQ1\npuNzeGckYn7+zhvXsquJuJraTm9H/nsqgHjyReRtvGK1CvgA76zTsU18PqhtH+0Lkf/+kU8Lvh14\ncV8DdBGRhthvBs4E/i0iL4t3u/tp8Ss0Jhk2JsWoJiKfwftF0dQvBgCcd8fHuSIyHO8v6QuBscCz\nIjLCOdeS+SX2tkW88aE1034E3tkQPzR3h0lb30adiCrn3N8P3+2Q26Qt5wz5Od6YoAfwxpt8iFcI\nzSF1/1BsiOsmvHFJTQkDOOf+LCLPA9/GG9v1E2CaiHzbObes3SM1ac2KFKPdBLxfSEsP1zHyi+/v\nwE9E5Ba8wYfDgRW0/URYX2iirQ+xvzB2Asc10e9zeOMGGiQS27vA10Xk6LizKWdELW8L7+KdSYjX\n1t+TqHfxfkF/gU8H0hK5dHNcE3H1aWIdfSP/3RL57+V440DyojuJyHE0PQi4Jds+WS3dFxr2nz3O\nufi7zxqv1DvT9Hvg9yKSjTdXzc8BK1JMq6RqFW9Mu4vcvXAr8A7eXR7N9Wvq0sVreGcLjoq8b/iF\n3lTRkIwJEjUbroh8FzgJ726LBv8CzoncvdLQ71t4d7JESyS2v+H98TI5rj0f76//p1sUfcu+p5eI\njG1oEJEjgCl4l96ea6PvSSYuAW6Ma78J7xf8X+PaT46+5VhEugPfA151zn0Qaa4n7sxSZHt+ppkY\nWrLtk/UxLdsP1uLtXz8RkaPjF0YKkYYxNt2jlznnqoCtfHpsGJM0O5NiNBBglIicgbfP9wQuwJvt\ndTMQcoeeyOoXkfkj/or3l3RP4Hq8uzDKIn3+hTdm4QciEsb7ZbDaOZfsGYEPgTIR+QPeDLk34I11\neCCqzwN4d34sE5FHgd54t+zGX7pKJLYn8c4W/TIyrqDhFuTReHfHtNVzfu7Huw23WES+wqe3IA8B\nbmhiTIwvnHOvi8gCIC9SnD6HdwvyBGCJcy6+eHobeEBEvop3O+/38W4bjp56/ingNvHmtHkR7wzS\nfxN7titaS7Z9stbi7Qc/x9tPPoi6NHawkHLOORG5Bq8wejMSy/t4hdVwvDuwLsEbSPueiCzG21fC\neMfVV4Aft0G8Rrugby+yl73a88Wnt2E2vPbi/WO7FJhE1K2uUZ+ZDuyPen8+sARvkOjeyH8fAnrH\nfe5beLd47ot814RI+9+B15qJ7+/As1HvG24FHYN3Oek/eP/wPw58tonP34hXLNXg/UL9cvw6DxPb\nH4B/xfXNwJsf5N9ALbAByG/iu+uBOU20vwPMb8G2ycb7xbs98nNdB3yvmfU93sLt3aK+h+qHd4b5\nVrxf4rV4BdQdxN1K3LAO4BuR2GvwZsb9dly/Lni3ML8X2ZbPAYPwLhMmte2b2W71wG1N7PvRtyCf\nCDyBV7TWE7kdmSZuQY60n4U3v8sHkfzewbul+/zI8iPx5nMpj6xzd+T/84I+9u2VHi9xrq0vpRtj\njDHGtF7gY1IiUykfaOI1N6rP7SKyVURqROQZEekTt46jRKRIRKrEm3Z6ccMcBcYYY4zpmAIvUvCu\nXfaKen0Tb4DaowAiMg1vEF8e3inSj/GuwUc/R2M23q2hl+NNMnQy8JhP8RtjjDGmHaTc5R4RmQ2M\ncs6dHnm/Ffi1c64w8r473jXsq5xzj0be78CbXvsvkT598SaFOsc5tyaIPIwxxhjTOqlwJuUgETkS\nb9T7/Mj70/DOrjQ8qAvn3G7gZby7AMA7E9M5rs9GvMGEDX2MMcYY08GkVJGCN2PhscCCyPteeJd+\ntsf12x5ZBt7toHWR4qW5PsYYY4zpYFJtnpSJwNMu9tHl7SLysKyReLcX1rb39xljjDFppCve86SW\nOeeq2+tLUqZIEZEcvPkGLo1q3oY3wVBPYs+m9MSbdrmhTxcR6R53NqVnZFlzRgIPtzZuY4wxRrH/\n5hAzdrdWyhQpeGdRthM19bNzbrOIbMN7munrcHDg7GCgKNJtLd7D1L4ORA+czQFeOsT3bQH405/+\nxBlnnHGIbh1ffn4+hYXxT55PP1ryBD25Wp7pxfJMH+vXr2f8+PHw6TOq2kVKFCmRR95fDRQ75w7E\nLZ4N3CoiFXw68+N7eLMw4pzbLSLzgXtEZCfecz/uBV44zJ09tQBnnHEGAwYMaMNsUs+xxx6b9jmC\nnjxBT66WZ3qxPNNSuw6XSIkiBe8yzyl4Uz3HcM7NEpEM4D68B2OtAi5ysc9ayceb0nkx3kOtGqY8\nN8C2be0+xCclaMkT9ORqeaYXy9MkKiWKFOfcM8ARh1heABQcYvk+vKenTmnr2NLB+++/H3QIvtCS\nJ+jJ1fJML5anSVSq3YJs2sHAgQODDsEXWvIEPblanunF8jSJsiJFgXHjxgUdgi+05Al6crU804vl\naRKVctPi+0VEBgBr165dq2mAkzHGJK2yspKqqqqgwzA+yc7OJicnp8ll5eXlDWeMBjrnytsrhpQY\nk2KMMSa1VVZWcsYZZ1BTUxN0KMYnGRkZrF+/vtlCxQ9WpCiQm5vLH/7Q6MaptKMlT9CTq+WZOqqq\nqqipqVExt5T5dB6UqqoqK1JM+xoxYkTQIfhCS56gJ1fLM/VomFvKpA4bOKuAlkFcWvIEPblansbo\nZkWKMcYYY1KSFSnGGGOMSUlWpChQVlYWdAi+0JIn6MnV8jRGNytSFJg1a1bQIfhCS56gJ1fL0xjd\n7O4eBRYuXBh0CL7QkifoydXy7DjC4TC1te36QNzD6tq1K5mZmYHGYNqWFSkKZGRkBB2CL7TkCXpy\ntTw7hnA4zP33P0p19f5A48jK6kxe3hgrVNKIFSnGGGNapba2lurq/XTrdgEZGccFEkNNzS6qq1dQ\nW1trRUoasTEpxhhj2kRGxnFkZmYH8mptcVRQUECnTp3YuHEjY8aM4dhjjyU7O5sbb7yRffv2tXg9\n559/PhdccEGj9quvvprTTjvt4Pt3332XTp06cc899zB79mxOPfVUMjIyOP/883nzzTdblUs6sSJF\ngalTpwYdgi+05Al6crU8jV9EBIAxY8ZQV1fHXXfdxcUXX8y9997Lddddl/B6mmpvatmCBQuYO3cu\nkydP5mc/+xlvvvkmX//619mxY0dyiaQZu9yjQJDPXfCTljxBT66Wp/Fb7969WbJkCQDXX389xxxz\nDL/73e/4yU9+wplnntnm3/evf/2LiooKevXqBcDIkSMZPHgwM2fO5O67727z7+to7EyKAlOmTAk6\nBF9oyRP05Gp5Gj+JCJMmTYppmzJlCs45/va3v7XLd377298+WKAAfPWrX2Xw4MHt9n0djRUpxhhj\nTESfPn1i3vfu3ZtOnTqxZcsWX74P4PTTT2+37+torEgxxhhjmtHcGJNE+9fX17dFOOpYkaLAhg0b\ngg7BF1ryBD25Wp7Gb5s2bYp5X1FRwYEDBzj11FNb9Pnjjz+eXbt2NWp/9913W/R9AG+//XaLvy/d\nWZGiwM033xx0CL7QkifoydXyNH5yzlFUVBTTdu+99yIiXHTRRS1aR+/evdmwYQPV1dUH21577TVe\neOGFJvuXlpaydevWg+/XrFnDyy+/zKhRo5LIIP3Y3T0KzJs3L+gQfNGR80x0SvHbb7+dqqqqg+/T\ndTrwjrxNm9PUto7fnoeSytu6pqbxGYSO9t2bN2/mkksu4cILL+TFF1/k4YcfZvz48Xzxi19s0ecn\nTpzIPffcw4gRI/j+97/P9u3bue+++zjzzDPZvXt3o/59+vRh6NChXH/99dTW1jJnzhxOOOEEuy09\nwooUBbTc3thR8wyHw9z/x/upDlcfvnMzsjKzyJuQl7K/vJLVUbdpcw49ffyaFq0jFad+79q1K1lZ\nnamuXsHevcHFkZXVma5duyb9eRFh0aJF3Hbbbdxyyy107tyZH/3oRwk9ALJfv3489NBD/OIXv+Cm\nm26if//+/OlPf+Lhhx/m+eefb9R/woQJdOrUidmzZ/PBBx8wePBg5s6dS8+ePZPOI51YkWJMwGpr\na6kOV9Pt9G5kHJP4M1xq9tRQ/Xa1TQfeAbR2+vhUnfo9MzOTvLwxafGAwRNOOIFHH320VesYN24c\n48aNi2n7xje+0Wz/G2+8kRtvvLFV35murEgxJkVkHJNB5nHJ/QO7lwD/fDUJa5g+PhlBnqk4lMzM\nzJQqnEx6sIGzCsycOTPoEHyhJU+ApcVLgw7BF1q26dKlOvLsyHbv3s327dsP+TJtz86kKFBTUxN0\nCL7QkidA3b66oEPwhZZtWlenI8+O7IYbbmDBggXNLheRhOdCae55PuZTVqQoMGPGjKBD8IWWPAFC\n14WCDsEXWrZpKKQjz1Q2ffp0pk+f3uzyadOm8b3vfa/Nvu9zn/ucTfDWAlakGGOMMYfRr18/+vXr\nF3QY6tiYFGOMMcakJCtSFGjpJFEdnZY8AcK7wkGH4Ast2zQc1pGnMYmyIkWBiRMnBh2CL7TkCbBg\nRvMD+NKJlm26YIGOPI1JVEoUKSJysog8JCJVIlIjIq+JyIC4PreLyNbI8mdEpE/c8qNEpCiyjj0i\nslhETvQ3k9RUUFAQdAi+0JInwOjrRgcdgi+0bNPRowuCDsGYlBR4kSIixwEvAPuAkcAZwE3Azqg+\n04DJQB4wCPgYWCYiXaJWNRu4GLgcOBc4GXjMhxRS3oABAw7fKQ1oyRMgp196TRffHC3bNCdHR57G\nJCoV7u75KVDpnLsmqi3+mdY3AHc4554CEJEJwHbgUuBREekOTASucM49F+mTC6wXkUHOuZY9FMMY\nY4wxKSPwMynAaOAfIvKoiGwXkXIROViwiMhpQC/g2YY259xu4GVgSKTpK3gFV3SfjUBlVB9jjDHG\ndCCpcCbl88D1wG+AX+JdzrlXRPY55x7CK1Ac3pmTaNsjywB6AnWR4qW5PmrNnz+f73//+0GH0e60\n5AlQVlrG0EuHBh1Gu9OyTcvK5jN0aMfOMxwOp8UDBtvL1VdfzXPPPcfmzZuDDqVDSYUipROwxjl3\nW+T9ayJyJvAD4KHgwkof5eXlKv6h15InQOXGyqBD8IWWbVpZWQ503DzD4TD3//F+qsPVgcaRlZlF\n3oS8lCxUbAr85KTC5Z7/AOvj2tYDDSMDtwGCd7YkWs/IsoY+XSJjU5rr06RRo0YRCoViXkOGDKG0\ntDSm3/LlywmFGk9FPmnSJObPnx/TVl5eTigUajTHw/Tp0xs9MK2yspJQKMSGDRti2ufOncvUqVNj\n2mpqagiFQpSVlcW0l5SUkJub2yi2sWPHUlpaSlFRUVrkEa2pPIqKijpkHuPHj2/U95GZj1BWGrve\nyg2VFOUXEd4V5sppVx5sX7pgKS+tfCnwPNpjv5o2bVpa5NGwPTZt2hTTvmLFXBYvnsqVV356jNbV\n1VBUFKKiIjaPNWtKWLhwSqB5NKe2tpbqcDXdTu9G1sCsQF7dTu9Gdbg68LM56aikpOTg78ZevXoR\nCoXIz8/35bvFOefLFzUbgMjDwGedc+dFtRUCX3XODY283wr82jlXGHnfHe9SzgTn3J8j73fgDZz9\nS6RPX7xi55ymBs5GbnFeu3btWjV3EJjUVFVVReGDhWQNzCLzuMT/AgzvClO9tpr8iflkZ2e3Q4Sm\nrVRVVVFYuISsrMvIzEx8W4XDVVRXLyE//zLft3V5eTkDBw6kqX8zW7sPt4VUPw5yc3N57rnneOed\nd4IOpUUOtb2jlwMDnXPl7RVHKpxJKQTOEZFbRKS3iFwJXAPMi+ozG7hVREaLyBeBPwLvAY/DwYG0\n84F7ROR8ERkIPAi8YHf2GGOMOZyCggI6derExo0bGTNmDMceeyzZ2dnceOON7Nu3L6F1lZaWcuaZ\nZ9KtWzfOOuusRme6GtTU1HDTTTeRk5ND165d6devH7/5zW9i+lx++eUNxcBBo0ePplOnTjz11FMH\n29asWUOnTp1YtmwZAMXFxXTq1IkXX3yRH//4x5x44olkZmZy2WWXUV0d7GW5RARepDjn/gF8GxgH\nvAH8HLjBObcwqs8sYC5wH95dPd2Ai5xz0c+rzweeAhYDK4GteHOmGGOMMYfUMF5kzJgx1NXVcddd\nd3HxxRdz7733ct1117V4PcuXL+c73/kOnTt35q677uLSSy8lNzeXf/zjH436jh49mjlz5jBq1CgK\nCwvp168fU6dO5aabbjrYZ9iwYbz++uuEw58+CuPFF1/kiCOOYNWqVQfbnn/+eY444gi+9rWvxeQz\nZcoU3njjDQoKCvjhD3/Ik08+yeTJkxP74QQoFQbO4pz7G/C3w/QpAAoOsXwfMCXyMlFCoRBPPPFE\n0GG0Oy15AhTlFzGpcFLQYbQ7Ldu0qCjEpEnpn2dH0Lt3b5YsWQLA9ddfzzHHHMPvfvc7fvKTn3Dm\nmWce9vPTpk2jV69elJWVHRzAe9555/HNb36TU0899WC/xx9/nL///e/86le/4qc//enB7xszZgxz\n5sxh8uTJnHbaaQwbNoz6+npeeOEFRo4cyT//+U927tzJmDFjYoqUsrIyvvSlLzUaNHzCCSewdOnS\ng+/r6+uZO3cue/bs4Zhjjkn65+SXwM+kmPbXkarm1tCSJ8DwscODDsEXWrbp8OE68kx1IsKkSbHF\n/5QpU3DO8be/HfLvaAC2bdvGa6+9xtVXXx1TLHz961+nf//+MX2ffvppOnfuzJQpsX9X33TTTRw4\ncICnn34agC9/+ctkZmby/PPPA7Bq1SpOOeUUJkyYwNq1aw8OFC4rK2PYsGGN8snLy4tpayh63n03\nfs7U1GRFigIjRowIOgRfaMkToP85/Q/fKQ1o2ab9++vIsyPo0yfmsXD07t2bTp06sWXLlsN+tuEX\nf/w6APr27duo78knn8zRRx8d037GGWfErKtTp04MGTLk4FmTVatWMWzYML72ta9RX1/P6tWreeut\nt/jwww8bFSkAp5xySsz7448/HoCdO3c26puKrEgxxhhjmpEKc5sMHTqUV155hX379rFq1SrOPfdc\njj32WM4880xWrVrFqlWrEJEmi5QjjjiiyXUGfWdvS1mRYowxxkTEz2VTUVHBgQMHYsaTNOdzn/tc\nk+sA2LhxY6O+W7du5eOPP45pX79+fcy6wLtEU1dXR0lJCVu3bj1YjJx77rk8//zzrFq1itNPP50T\nTjjh8Al2MFakKNDc7W/pRkueAOtWrgs6BF9o2abr1unIM9U552ImvwS49957EREuuuiiw36+V69e\nnH322SxYsIA9e/YcbH/mmWd46623YvqOGjWK/fv3M2/evJj2wsJCOnXqFPN9gwcPpnPnzsycOZMe\nPXocvCQ0bNgwVq9ezfPPP9/kWZR0kBJ395j2VVJSwqWXXhp0GO1OS54Aa5at4ezzzw46jHanZZuu\nWVPC2Wd3/Dxr9tR0+O/evHkzl1xyCRdeeCEvvvgiDz/8MOPHj+eLX/xiiz5/55138q1vfYuvfe1r\nTJw4kerqaubNm8eZZ54Zcxvx6NGjGT58OD//+c/ZvHkzX/rSl1i2bBlPPvkk+fn5nHbaaQf7duvW\njYEDB7J69eqYmYTPPfdcPv74Y2pqaposUpq7pNNRLvWAFSkqLFq0KOgQfKElT4C8O/MO3ykNaNmm\neXkdO8+uXbuSlZlF9dvV7GVvYHFkZWbRtWvXpD8vIixatIjbbruNW265hc6dO/OjH/2IWbNmtXgd\nI0eO5M9//jO33norP/vZz+jduzfFxcWUlpYevEOn4buefPJJfvGLX7Bo0SKKi4s59dRTufvuu5uc\ncn7YsGG8/PLLMcVIz5496dOnD++8806TRUpz42lSYZxNS1mRYowxplUyMzPJm5AX+HNz2uIpyCec\ncAKPPvpoq9Zx6aWXNjoDeMkllzTql5GRwd13383dd9992HXOnDmzyWcpvf322032v+qqq7jqqqsa\ntZ933nnU19cf9vtShRUpxhhjWi0zMzMlnz5sOjYrUowxxpjD2L17N3v3HvpSVs+ePX2KRg+7u0eB\nph5Tn4605AlQPKM46BB8oWWbFhfryLMju+GGGzjppJOafZ188slBh5iW7EyKAlpm7dSSJ0D/wTbj\nbDqxGWeDN336dKZPn97s8mnTpvG9733Px4gMWJGiwrhx44IOwRda8gQYdOGgoEPwhZZtOmiQjjw7\nsn79+tGvX7+gw1DHLvcYY4wxJiVZkWKMMcaYlGRFigJlZWVBh+ALLXkCVKyrCDoEX2jZphUVOvI0\nJlE2JkWBWbNmMXTo0KDDaHda8gRYtmAZfc5u/Dj4dKNlmy5bNos+fTpGng0PwDPpLVW2sxUpCixc\nuDDoEHyhJU+Aa++8NugQfKFlm157bernmZ2dTUZGBuPHjw86FOOTjIwMsrOzA43BihQFMjIygg7B\nF1ryBOjStUvQIfhCyzbt0iX188zJyWH9+vVUVVUFHYrxSXZ2Njk5OYHGYEWKMcaYFsnJyQn8l5bR\nxQbOGmOMMSYlWZGiwNSpU4MOwRda8gRYPGdx0CH4Qss2XbxYR55atqeWPP1gRYoCWk7PaskToEfP\nHkGH4Ast27RHDx15atmeWvL0gxUpCkyZMiXoEHyhJU+AC664IOgQfKFlm15wgY48tWxPLXn6wYoU\nY4wxxqQkK1KMMcYYk5KsSFFgw4YNQYfgCy15Amzbsi3oEHyhZZtu26YjTy3bU0uefrAiRYGbb745\n6BB8oSVzuTLTAAAgAElEQVRPgMfmPBZ0CL7Qsk0fe0xHnlq2p5Y8/WBFigLz5s0LOgRfaMkTYNy0\ncUGH4Ast23TcOB15atmeWvL0gxUpCmi5HU5LngA9etktyOnEbkFOL1ry9IMVKcYYY4xJSVakGGOM\nMSYlWZGiwMyZM4MOwRda8gRYWrw06BB8oWWbLl2qI08t21NLnn6wIkWBmpqaoEPwhZY8Aer21QUd\ngi+0bNO6Oh15atmeWvL0Q+BFiohMF5EDca+34vrcLiJbRaRGRJ4RkT5xy48SkSIRqRKRPSKyWERO\n9DeT1DVjxoygQ/CFljwBQteFgg7BF1q2aSikI08t21NLnn4IvEiJ+CfQE+gVeQ1tWCAi04DJQB4w\nCPgYWCYiXaI+Pxu4GLgcOBc4GdAxkYQxxhiTpjoHHUDEfufcjmaW3QDc4Zx7CkBEJgDbgUuBR0Wk\nOzARuMI591ykTy6wXkQGOefWtH/4xhhjjGlrqXIm5Qsi8r6I/EtE/iQipwCIyGl4Z1aebejonNsN\nvAwMiTR9Ba/Yiu6zEaiM6qNaVVVV0CH4QkueAOFd4aBD8IWWbRoO68hTy/bUkqcfUqFIWQ1cDYwE\nfgCcBjwvIkfjFSgO78xJtO2RZeBdJqqLFC/N9VFt4sSJQYfgCy15AiyYsSDoEHyhZZsuWKAjTy3b\nU0uefgi8SHHOLXPOPeac+6dz7hlgFHA8MMaP7x81ahShUCjmNWTIEEpLS2P6LV++nFCo8WDFSZMm\nMX/+/Ji28vJyQqFQo2p6+vTpjW5Nq6ysJBQKNXog1dy5c5k6dWpMW01NDaFQiLKyspj2kpIScnNz\nG8U2duxYSktLKSgoSIs8ojWVR0FBQYfMY/z48Y36PjLzEcpKY9dbuaGSovwiwrvCjL5u9MH2pQuW\n8tLKlwLPoz32q+uuuy4t8mjYHps2bYppX7FiLosXT2X06IKDbXV1NRQVhaioiM1jzZoSFi6ckhJ5\nJLs9CgoKUmp7tNd+dd5556VFHg3bo6Sk5ODvxl69ehEKhcjPz2/0mfYgzjlfvigRIrIGeAZ4APgX\ncLZz7vWo5SuBV51z+SIyHPg/4PjosykisgUodM7NaeY7BgBr165dy4ABA9otF2MOp6qqisIHC8ka\nmEXmcZkJfz68K0z12mryJ+aTnZ3dDhGatlJVVUVh4RKysi4jMzPxbRUOV1FdvYT8/MtsW5tAlZeX\nM3DgQICBzrny9vqewM+kxBORTKAPsNU5txnYBnw9anl3YDDwYqRpLbA/rk9fIAeI/fPSGGOMMR1G\n4Hf3iMivgSeBd4HPADOAT4CFkS6zgVtFpALYAtwBvAc8Dt5AWhGZD9wjIjuBPcC9wAt2Z48xxhjT\ncaXCmZTPAo8AG/AKkx3AOc65agDn3CxgLnAf3l093YCLnHPRU27mA08Bi4GVwFa8OVMMNLrmma60\n5Ak0Gq+SrrRs07IyHXlq2Z5a8vRD4EWKc26cc+6zzrluzrkc59yVkcs80X0KnHMnO+cynHMjnXMV\nccv3OeemOOeynXPHOOe+65z7wN9MUld5ebtdLkwpWvIEqNxYGXQIvtCyTSsrdeSpZXtqydMPgRcp\npv0VFRUFHYIvtOQJcOW0K4MOwRdatumVV+rIU8v21JKnH6xIMcYYY0xKsiLFGGOMMSnJihRjjDHG\npCQrUhRoaqbDdKQlT4CifB3XvLVs06IiHXlq2Z5a8vSDFSkKTJ48OegQfKElT4DhY4cHHYIvtGzT\n4cN15Klle2rJ0w9WpCgwYsSIoEPwhZY8Afqf0z/oEHyhZZv2768jTy3bU0uefgh8xlljjF7btm3j\no48+Suqzxx57LL162YPOjUlnVqQYYwKxbds28n50A9XhPUl9PivzGO6/d44VKsakMbvco0D848/T\nlZY8AdatXBd0CK320UcfUR3eQ9cv9CVr4DlNvuoyj22yvesX+lId3pP0WZhUs26djn1XyzGqJU8/\nWJGiQElJSdAh+EJLngBrlqXPszOP7n483bN6Nfn6YNOmJtuP7n580GG3qTVrdOy7Wo5RLXn6wYoU\nBRYtWhR0CL7QkidA3p15QYfgi2FX6cgzL0/HvqvlGNWSpx+sSDHGGGNMSrIixRhjjDEpyYoUY4wx\nxqQkK1IUyM3NDToEX2jJE6B4RnHQIfjipZLioEPwRXGxjn1XyzGqJU8/WJGigJbZD7XkCdB/sI4Z\nZ0/qqyNPm3E2vWjJ0w9WpCgwbty4oEPwhZY8AQZdOCjoEHxx6gAdeQ4apGPf1XKMasnTD1akGGOM\nMSYlWZFijDHGmJRkRYoCZWVlQYfgCy15AlSsqwg6BF988I6OPCsqdOy7Wo5RLXn6wYoUBWbNmhV0\nCL7QkifAsgXLgg7BF2+t0JHnsmU69l0tx6iWPP1gRYoCCxcuDDoEX2jJE+DaO68NOgRfDJ2gI89r\nr9Wx72o5RrXk6QcrUhTIyMgIOgRfaMkToEvXLkGH4IvOXXTk2aWLjn1XyzGqJU8/WJFijDHGmJRk\nRYoxxhhjUpIVKQpMnTo16BB8oSVPgMVzFgcdgi/Kn9CR5+LFOvZdLceoljz9kFSRIiLfE5GubR2M\naR85OTlBh+ALLXkC9OjZI+gQfHH0cTry7NFDx76r5RjVkqcfkj2TUghsE5H7RETHvNUd2JQpU4IO\nwRda8gS44IoLgg7BF33P1ZHnBRfo2He1HKNa8vRDskXKycC1wGeBF0TknyJyk4ic0HahGWOMMUaz\npIoU51ydc+7PzrmLgRzgIeD7wHsiskRELhYRactAjTHGGKNLqwfOOuf+A/wf8HfAAV8BSoBNIjKs\ntes3rbdhw4agQ/CFljwBtm3ZFnQIvvhou448t23Tse9qOUa15OmHpIsUEckWkRtF5DXgBeBE4FLg\nc8BngFLgj20SpWmVm2++OegQfKElT4DH5jwWdAi+ePVJHXk+9piOfVfLMaolTz8ke3fPX4D3gR/g\nXeo5xTn3XefcUufZA8zCK1gSXfdPReSAiNwT1367iGwVkRoReUZE+sQtP0pEikSkSkT2iMhiETkx\nmfzSzbx584IOwRda8gQYN21c0CH44quX68hz3Dgd+66WY1RLnn5I9kzKbuAbzrl+zrm7nXM7muiz\nA/hCIisVka8CecBrce3TgMmRZYOAj4FlIhI9Z/Zs4GLgcuBcvMG9Ov4MOwwtt8NpyROgRy8dt+Ye\nfbyOPO0W5PSiJU8/JDtw9irn3KrD9HHOuX+1dJ0ikgn8CbgG2BW3+AbgDufcU865fwIT8IqQSyOf\n7Q5MBPKdc885514FcoGv2S3SxhhjTMeU7OWeQhGZ1ET7JBH5TZKxFAFPOudWxK3zNKAX8GxDm3Nu\nN/AyMCTS9BWgc1yfjUBlVB9jjDHGdCDJXu75LvBiE+2rgbGJrkxErgDOBm5pYnEvvLuGtse1b48s\nA+gJ1EWKl+b6qDVz5sygQ/CFljwBlhYvDToEX7z5rI48ly7Vse9qOUa15OmHZIuUbLxxKfE+iixr\nMRH5LN54kv92zn2SZDxJGzVqFKFQKOY1ZMgQSktLY/otX76cUCjU6POTJk1i/vz5MW3l5eWEQiGq\nqqpi2qdPn95o562srCQUCjW6ZW3u3LmNnv9QU1NDKBSirKwspr2kpITc3NxGsY0dO5bS0lJqamrS\nIo9oTeVRU1PTIfMYP358o76PzHyEstLY9VZuqKQov4jwrjB1++oOti9dsJSXVr4UeB6J7lc7d+6M\naX/96ScaFSV7P/qIlQ8UNboVefMrq9kSl1tQeSSyX23atCmmfcWKuSxePJW6uk+P0bq6GoqKQlRU\nxOaxZk0JCxc2nsk0iDyS3a9qampSanu01/FRXl6eFnk0bI+SkpKDvxt79epFKBQiPz+/0Wfagzjn\nEv+QyJtAkXPut3Htk4DJzrkzEljXJcASoB5omADuCLyzJ/VAP6ACONs593rU51YCrzrn8kVkON5c\nLcdHn00RkS1AoXNuThPfOwBYu3btWgYMGNDScI1pc1VVVRQ+WEjWwCwyj8tM+PPhXWGq11aTPzGf\n7OyE/kYI1MaNG5mYn0/WwHPonpXYCc/d1duoXruaBwsL6du3bztF2PaqqqooLFxCVtZlZGYmvq3C\n4Sqqq5eQn39Zh9rWJv2Ul5czcOBAgIHOufLD9U9W5yQ/NxuYLSJZQMMYkq8DNwM/SXBd/wd8Ma6t\nGFgP3OWce0dEtkXW/zocHCg7GG8cC8BaYH+kz18iffrizYYb+yemMcYYYzqEpIoU59z/Rp6C/DNg\nRqT5PeBHzrkHE1zXx8Bb0W0i8jFQ7ZxbH2maDdwqIhXAFuCOyPc9HlnHbhGZD9wjIjuBPcC9wAvO\nuTVJpGiMMcaYgCU946xzbq5z7iS82WV7OOdyEi1QDrX6uO+aBcwF7sO7q6cbcJFzri6qWz7wFLAY\nWAlsxZszRb34a5vpSkue4F3i0aA2rCPPcFjHvqvlGNWSpx/a5Nk9zrn4eU1au84LnHM/jmsrcM6d\n7JzLcM6NdM5VxC3f55yb4pzLds4dE5kB94O2jKujmjhxYtAh+EJLngALZiwIOgRfrF6oI88FC3Ts\nu1qOUS15+iHZeVJOEJE/iEiliNSKSF30q62DNK1TUFAQdAi+0JInwOjrRgcdgi/OGqkjz9GjC4IO\nwRdajlEtefoh2YGzxUBv4NfAf4i7PGNSi5a7l7TkCZDTT8e02z1O0ZFnTo6OfVfLMaolTz8kW6Sc\nC5wbmX7eGGOMMabNJTsm5T3s7Ikxxhhj2lGyRUo+cGdktliT4uJnNExXWvIEGs1Gm64qVuvIs6xM\nx76r5RjVkqcfki1SHgKGA++KyE4R+SD61YbxmTYQP0VzutKSJ0DlxsqgQ/DFh+/pyLOyUse+q+UY\n1ZKnH5Idk/LTNo3CtKuioqLDd0oDWvIEuHLalUGH4ItB39GR55VX6th3tRyjWvL0Q7Izztq5LGOM\nMca0q6QncxORU0WkQEQeEpETI20jRKTFDxc0xhhjjGlOspO5DQPeBM4DxgANj24dCNzeNqEZY4wx\nRrNkz6TMBAqcc8OB6BlmnwXOaXVUpk2FQqGgQ/CFljwBivJ1XPNe+YCOPIuKdOy7Wo5RLXn6Idki\n5Sy8B/nF+wA4IflwTHuYPHly0CH4QkueAMPHDg86BF/0Haojz+HDdey7Wo5RLXn6Idki5SOgVxPt\nXwLeTz4c0x5GjBgRdAi+0JInQP9z+gcdgi9O6qcjz/79dey7Wo5RLXn6IdkiZRFwl4icQGTmWREZ\nDPwG+FMbxWaMMcYYxZItUm4B3gG24g2afQt4EXgFuKNtQjPGGGOMZkkVKc65fc65XOB04FJgIvBf\nzrlxzrn9bRmgab3S0tKgQ/CFljwB1q1cF3QIvvj3GzryXLdOx76r5RjVkqcfkp4nBcA5t9k594Rz\n7hHn3Ia2Csq0rZKSkqBD8IWWPAHWLFsTdAi+2FKuI881a3Tsu1qOUS15+iGpGWdF5P5DLXfO5SUX\njmkPixYtCjoEX2jJEyDvTh2H2LCrdOSZl6dj39VyjGrJ0w/JPrvnpLj3RwL/BRwDPN+qiIwxxhhj\nSP7ZPaPj20SkM/B7vEG0xhhjjDGt0qoxKdEiA2Z/DUxtq3UaY4wxRq82K1IiTsO79GNSSG5ubtAh\n+EJLngDFM4qDDsEXL5UUBx2CL4qLdey7Wo5RLXn6IdmBs7Pim/DGqYSwydxSjpbZD7XkCdB/sI6Z\nWE/qqyNPm3E2vWjJ0w/JDpwdEvf+ALAD+Cnwv62KyLS5cePGBR2CL7TkCTDowkFBh+CLUwfoyHPQ\nIB37rpZjVEuefkh24Oywtg7EGGOMMSZaW49JMcYYY4xpE0kVKSLyioisacmrrQM2iSsrKws6BF9o\nyROgYl1F0CH44oN3dORZUaFj39VyjGrJ0w/Jnkn5O9AXb8Ds6siLSNtKYFnUywRs1qz4cc7pSUue\nAMsW6Di03lqhI89ly3Tsu1qOUS15+iHZgbPHAUXOuZ9FN4rIL4GezrlrWh2ZaTMLFy4MOgRfaMkT\n4No7rw06BF8MnaAjz2uv1bHvajlGteTph2TPpIwB/tBEezHw3aSjMe0iIyMj6BB8oSVPgC5duwQd\ngi86d9GRZ5cuOvZdLceoljz9kGyRsg84p4n2cyLLjDHGGGNaJdnLPfcC94nIl4GGwbGDgWuBO9si\nMGOMMcboltSZFOfcL4FrgK8B90de/w/IiywzKWTqVB2PU9KSJ8DiOYuDDsEX5U/oyHPxYh37rpZj\nVEuefkh6nhTn3CPOucHOue6R12Dn3COJrkdEfiAir4nIR5HXiyJyYVyf20Vkq4jUiMgzItInbvlR\nIlIkIlUiskdEFovIicnmlm5ycnKCDsEXWvIE6NGzR9Ah+OLo43Tk2aOHjn1XyzGqJU8/JF2kiEh3\nEbk6UkAcH2n7koiclOCq/g1MAwYAA4EVwOMickZkndOAyUAeMAj4GFgmItEj6mYDFwOXA+cCJwOP\nJZtbupkyZUrQIfhCS54AF1xxQdAh+KLvuTryvOACHfuulmNUS55+SPYBg2cC/wfUAKfg3dWzExgL\nfAa4qqXrcs79Na7pVhG5Hm8Q7nrgBuAO59xTke+eAGwHLgUeFZHuwETgCufcc5E+ucB6ERnknLMJ\n5YwxxpgOKNkzKYXAI0BvoDaq/a94ZzKSIiKdROQKIAN4UUROA3oBzzb0cc7tBl7m04ccfgWv2Iru\nsxGopPGDEI0xxhjTQSRbpHwV+K1zzsW1vw8kerkHETlTRPbg3b78W+DbkUKjF+DwzpxE2x5ZBtAT\nqIsUL831UW3Dhg1Bh+ALLXkCbNuyLegQfPHRdh15btumY9/VcoxqydMPyRYpnwCZTbT3AaqSWN8G\n4Et4Y05+B/xRRPolGZuJc/PNNwcdgi+05Anw2BwdQ65efVJHno89pmPf1XKMasnTD8kWKU8Ct4lI\nw5gWJyKfAe4CliS6MufcfufcO865V51zPwdewxuLsg3v+UA94z7SM7KMyH+7RMamNNenWaNGjSIU\nCsW8hgwZQmlpaUy/5cuXEwqFGn1+0qRJzJ8/P6atvLycUChEVVVsvTZ9+nRmzpwZ01ZZWUkoFGpU\nec+dO7fRbWw1NTWEQqFGD68qKSkhNze3UWxjx46ltLSUefPmpUUe0ZrKY968eR0yj/Hjxzfq+8jM\nRygrjV1v5YZKivKLCO8KM27auIPtSxcs5aWVLwWeR6L71c6dO2PaX3/6Cd58dmlM23994yJWPlDU\n6IzK5ldWsyUut6DySGS/2rRpU0z7ihVzWbx4KuPGfXqM1tXVUFQUavTQwTVrSli4sPGAzCDySHa/\nmjdvXkptj/Y6PkaPHp0WeTRsj5KSkoO/G3v16kUoFCI/P7/RZ9qDNL5i04IPeXfzLAG+iPccn3/j\n3VHzCnChcy7cqqBEngXedc5NFJGtwK+dc4WRZd3xLuVMcM79OfJ+B97A2b9E+vTFG3R7TnMDZ0Vk\nALB27dq1DBgwoDXhGtMqVVVVFD5YSNbALDKPa+oE5aGFd4WpXltN/sR8srOz2yHC9rFx40Ym5ueT\nNfAcumcldmV2d/U2qteu5sHCQvr27dtOEba9qqoqCguXkJV1GZmZiW+rcLiK6uol5Odf1qG2tUk/\n5eXlDBw4EGCgc668vb4nqbt7nHM7geEich7eZZpMoBxY1sQ4lUMSkV8BT+MNdD0G+G/gPGBEpMts\nvDt+KoAtwB3Ae8DjkVh2i8h84B4R2QnswZsR9wW7s8cYY4zpuBIuUkTkSOApYHLklt/nWhnDicAC\nvAG3HwGvAyOccysAnHOzRCQDuA/vrM0q4CLnXF3UOvKBemAxcBSwFJjUyriMMcYYE6CEx6Q45z7B\nm3Qt8etETa/vGufc551z3ZxzvZxzBwuUqD4FzrmTnXMZzrmRzrmKuOX7nHNTnHPZzrljnHPfdc59\n0BbxpYP465jpSkueAEuLlx6+UxqIH6OSrpYu1bHvajlGteTph2QHzj4MNB5pY1JSTU1N0CH4Qkue\nAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfkn0KsgMmi8g3gH/gTVX/6ULn7P6rFDJjxoygQ/CFljwB\nQtc1vlMgHZ11kY48QyEd+66WY1RLnn5ItkgZiDd2BOCsuGVtchnIGGOMMbolVKSIyOeBzc65Ye0U\njzHGGGMMkPiYlE3ACQ1vRGSRiMRPtGZSTPykQOlKS57gzY2iQW1YR57hsI59V8sxqiVPPyRapEjc\n+1HA0W0Ui2knEydODDoEX2jJE2DBjAVBh+CL1Qt15LlggY59V8sxqiVPPyR7d4/pQAoKCoIOwRda\n8gQYfd3ow3dKA2eN1JHn6NEFQYfgCy3HqJY8/ZBokeJoPDDWBsqmOC3T/mvJEyCnX07QIfiixyk6\n8szJ0bHvajlGteTph0Tv7hGgWET2Rd53BX4vIvG3IF/WFsEZY4wxRq9Ei5T4C8R/aqtAjDHGGGOi\nJXS5xzmX25JXewVrkhP/KPB0pSVPgLLSssN3SgMVq3XkWVamY9/VcoxqydMPNnBWgfLydnuKdkrR\nkidA5cbKoEPwxYfv6cizslLHvqvlGNWSpx+sSFGgqKgo6BB8oSVPgCunXRl0CL4Y9B0deV55pY59\nV8sxqiVPP1iRYowxxpiUZEWKMcYYY1KSFSnGGGOMSUlWpCgQCml53L2OPAGK8nVc8175gI48i4p0\n7LtajlEtefrBihQFJk+eHHQIvtCSJ8DwscODDsEXfYfqyHP4cB37rpZjVEuefrAiRYERI0YEHYIv\ntOQJ0P+c/kGH4IuT+unIs39/HfuulmNUS55+sCLFGGOMMSnJihRjjDHGpCQrUhQoLS0NOgRfaMkT\nYN3KdUGH4It/v6Ejz3XrdOy7Wo5RLXn6wYoUBUpKSoIOwRda8gRYs2xN0CH4Yku5jjzXrNGx72o5\nRrXk6QcrUhRYtGhR0CH4QkueAHl35gUdgi+GXaUjz7w8HfuulmNUS55+sCLFGGOMMSnJihRjjDHG\npCQrUowxxhiTkqxIUSA3NzfoEHyhJU+A4hnFQYfgi5dKioMOwRfFxTr2XS3HqJY8/WBFigJaZj/U\nkidA/8E6ZmI9qa+OPG3G2fSiJU8/WJGiwLhx44IOwRda8gQYdOGgoEPwxakDdOQ5aJCOfVfLMaol\nTz9YkWKMMcaYlGRFijHGGGNSkhUpCpSVlQUdgi+05AlQsa4i6BB88cE7OvKsqNCx72o5RrXk6YfA\nixQRuUVE1ojIbhHZLiJ/EZHTm+h3u4hsFZEaEXlGRPrELT9KRIpEpEpE9ojIYhE50b9MUtesWbOC\nDsEXWvIEWLZgWdAh+OKtFTryXLZMx76r5RjVkqcfAi9SgGHAXGAw8A3gSGC5iHRr6CAi04DJQB4w\nCPgYWCYiXaLWMxu4GLgcOBc4GXjMjwRS3cKFC4MOwRda8gS49s5rgw7BF0Mn6Mjz2mt17LtajlEt\nefqhc9ABOOdGRb8XkauBD4CBQMM5sxuAO5xzT0X6TAC2A5cCj4pId2AicIVz7rlIn1xgvYgMcs7p\neEpZMzIyMoIOwRda8gTo0rXL4Tulgc5ddOTZpYuOfVfLMaolTz+kwpmUeMcBDvgQQEROA3oBzzZ0\ncM7tBl4GhkSavoJXcEX32QhURvUxxhhjTAeSUkWKiAjeZZsy59xbkeZeeEXL9rju2yPLAHoCdZHi\npbk+xhhjjOlAUqpIAX4L9AeuCDqQdDJ16tSgQ/CFljwBFs9ZHHQIvih/Qkeeixfr2He1HKNa8vRD\nyhQpIjIPGAWc75z7T9SibYDgnS2J1jOyrKFPl8jYlOb6NGnUqFGEQqGY15AhQygtLY3pt3z5ckKh\nUKPPT5o0ifnz58e0lZeXEwqFqKqqimmfPn06M2fOjGmrrKwkFAqxYcOGmPa5c+c22tFramoIhUKN\nbm8rKSlp8lkRY8eOpbS0lJycnLTII1pTeeTk5HTIPMaPH9+o7yMzH6GsNHa9lRsqKcovIrwrTI+e\nPQ62L12wlJdWvhR4HonuVzt37oxpf/3pJ3jz2aUxbZ27HMXKB4r4aHvsYbz5ldVsicstqDwS2a82\nbdoU075ixVwWL55Kjx6fHqN1dTUUFYUa3Za8Zk0JCxdOSYk8kt2vcnJyUmp7tNfxsWvXrrTIo2F7\nlJSUHPzd2KtXL0KhEPn5+Y0+0x7EOefLFx0yCK9AuQQ4zzn3ThPLtwK/ds4VRt53x7uUM8E59+fI\n+x14A2f/EunTF1gPnNPUwFkRGQCsXbt2LQMGDGiv1Iw5rKqqKgofLCRrYBaZx2Um/PnwrjDVa6vJ\nn5hPdnZ2O0TYPjZu3MjE/HyyBp5D96zErsrurt5G9drVPFhYSN++fdspwrZXVVVFYeESsrIuIzMz\n8W0VDldRXb2E/PzLOtS2NumnvLycgQMHAgx0zpW31/cEfnePiPwWGAeEgI9FpOGMyUfOudrI/88G\nbhWRCmALcAfwHvA4eANpRWQ+cI+I7AT2APcCL2i/s8cYY4zpqAIvUoAf4A2MXRnXngv8EcA5N0tE\nMoD78O7+WQVc5Jyri+qfD9QDi4GjgKXApHaN3BhjjDHtJvAxKc65Ts65I5p4/TGuX4Fz7mTnXIZz\nbqRzriJu+T7n3BTnXLZz7hjn3Hedcx/4m01qir9ema605Amwbcshh1qljfixKOlq2zYd+66WY1RL\nnn4IvEgx7e/mm28OOgRfaMkT4LE5OiZTfvVJHXk+9piOfVfLMaolTz9YkaLAvHnzgg7BF1ryBBg3\nbVzQIfjiq5fryHPcOB37rpZjVEuefrAiRYHoW5DTmZY8AXr06nH4Tmng6ON15Bl9C3I603KMasnT\nD1akGGOMMSYlWZFijDHGmJRkRYoC8bMUpisteQIsLV56+E5pIH4G2nS1dKmOfVfLMaolTz9YkaJA\nTU1N0CH4QkueAHX76g7fKQ3U1+nIs65Ox76r5RjVkqcfrEhRYMaMGUGH4AsteQKErmv8HJB0dNZF\nOssVS10AACAASURBVPIMhXTsu1qOUS15+sGKFGOMMcakJCtSjDHGGJOSrEhRIP6R3+lKS57gPflY\ng9qwjjzDYR37rpZjVEuefrAiRYGJEycGHYIvtOQJsGDGgqBD8MXqhTryXLBAx76r5RjVkqcfrEhR\noKCgIOgQfKElT4DR140OOgRfnDVSR56jRxcEHYIvtByjWvL0gxUpCgwYMCDoEHyhJU+AnH46pt3u\ncYqOPHNydOy7Wo5RLXn6wYoUY4wxxqQkK1KMMcYYk5KsSFFg/vz5QYfgCy15ApSVlgUdgi8qVuvI\ns6xMx76r5RjVkqcfrEhRoLy8POgQfKElT4DKjZVBh+CLD9/TkWdlpY59V8sxqiVPP1iRokBRUVHQ\nIfhCS54AV067MugQfDHoOzryvPJKHfuulmNUS55+sCLFGGOMMSnJihRjjDHGpKTOQQdgjOm4wuEw\ntbW1SX12586d1NfXJ/3d9fv3s3PnzqSnIO/atSuZmZlJf78xpv1ZkaJAKBTiiSeeCDqMdqclT4Ci\n/CImFU4KNIZwOMz99z9KdfX+pD5fXb2NbdurOH5/859f+UAR51/TOM/9dfvYvuPfFP+lmKysrKS+\nPyszi7wJeSlRqBQVhZg0Kf33XS3HqJY8/WBFigKTJ08OOgRfaMkTYPjY4UGHQG1tLdXV++nW7QIy\nMo5L+PPhcDn7PynlwCHOpvQd2nSe9fv384nUcVSfo8j6fOJFSs2eGqrfrqa2tjYlipThw3Xsu1qO\nUS15+sGKFAVGjBgRdAi+0JInQP9z+gcdwkEZGceRmZmd8Oe6du1+2D4n9Tt0nl2P7krmcckVGXvZ\nm9Tn2kP//jr2XS3HqJY8/WADZ40xxhiTkqxIMcYYY0xKsiJFgdLS0qBD8IWWPAHWrVwXdAi++Pcb\nOvJct07HvqvlGNWSpx+sSFGgpKQk6BB8oSVPgDXL1gQdgi+2lOvIc80aHfuulmNUS55+sIGzCixa\ntCjoEHyhJU+AvDvzgg7hoH37wkl9rqZmF84dep6UYVc1n6dzjr179xIOJ/794XCYuk/qEv5ce8nL\n07HvajlGteTpBytSjDFJq6ur5aVXH2L/EYlP6Lbzw/f4eF8V9fWfJPzZ+v11hD/+mFdeeZuKLR8m\n/Pm6mlrYUks4HCY7O/E7k4wx/rAixZgorZlBdf/+/XTunPghVV1dnVJ/1Sdi//791NR/yNFfyOLI\nbhkJfXbPuzuo/1c99fWJTwZXX7+fAweEzp0/z9FH90n48wfqdrBn72vs27cv4c8Gra6ulurq6qQ+\nm+w+2sBm6TV+syLFmIhwOMz9f7yf6nDivwDq9tWxcf1G+v5XX7oc2SWhz9Z8XMMbG97g+C8fTybJ\n/QKo21eX9C+utvjFc2S3DLomuI7ORx3Vqu8E6Ny5K0d1TTz2fV2Su0TVINlitrq6mrq65AvSffvC\nvPrqG/z+9/VkZByd0Gfr6mrZuPFN+vb9Il26JLaPNsjK6kxe3hgrVIxvrEhRIDc3lz/84Q9Bh9Hu\nWptnbW0t1eFqup3ejYxjEjsrsOP9HVS/Ws2Rpx5JVq/EZkA98P4B9r6xl/2ftPyMQvGMYq6efjUA\n+/bu49XXXuX39b8nIyOxuCG1poeP91JJMUPGXR10GDFa8ziAmpowb7xRwfHH1xL94y4uzuXqqw+/\n737yyT727j2Cbt2Gk5X12YS+e8eOd6iufosjjxya8GfBG0NUXb2iVbP02r9FJlEpUaSIyDBgKjAQ\nOAm41Dn3RFyf24FrgOOAF4DrnXMVUcuPAu4BxgJHAcuAHzrnPvAliRSmZfbDtsoz45iMhGcxDX/k\n/WXeNTPxGVAbPpuI/oM/nYn1k7pP2HtgL92+0C3hAinVpoePd1Lf1JlZt0FrHgdw4MA77N37Nvvj\nnleU6IyzXbsmPstvOHKGMJnPNtjbykl67d8ik6iUKFKAo4F1wHxgSfxCEZkGTAYmAFuA/wGWicgZ\nzrmGc6ezgYuAy4HdQBHwGDCsvYNPdePGjQs6BF9oyRNg0IWDGrUlUyBBak0PH+/UAY3zTBXJPA4g\n3MylxEGDdOy7Wo5RLXn6ISWKFOfcUmApgIhIE11uAO5wzj0V6TMB2A5cCjwqIt2BicAVzrnnIn1y\ngfUiMsg5p2OyBWOMMSaNpPxkbiJyGtALeLahzTm3G3gZGBJp+gpewRXdZyNQGdXHGGOMMR1Iyhcp\neAWKwztzEm17ZBlAT6AuUrw010etsrKyoEPwhZY8ASrWVRy+Uxr44B0deVZU6Nh3tRyjWvL0Q0co\nUtrVqFGjCIVCMa8hQ4Y0evbC8uXLCYVCjT4/adIk5s+fH9NWXl5OKBSiqqoqpn369OnMnDkzpq2y\nspJQKMSGDRti2ufOncvUqVNj2mpqagiFQo0OgJKSEnJzcxvFNnbsWEpLS5k1a1Za5BGtqTxmzZrV\n6jw+2vkR82+bz7Yt22LaVyxcweI5i2Pa6mrrKMovalQwrFm6huIZxY3yuP+W+xs9c+et1W/xyJ2P\nNOr7yMxHKPv/7d19mFTVfcDx7w9mYdmFCKwvxKpBQyTmRRCMjdGaSBKpJtJWE2OMT1VMjY2xDWk1\naZ8m0fSxiaYJTeImYjQS20JsjBrSGkjR0ESFIC8i4oIgLAvIwu6wuzA7O7Pz8usfd1ZmZ3dh7rze\nuff3eZ59dubOPXfOb8+8/Pbce855avDfp21rG80Lmol0R1jx0xWD6rb3tb2D9j3UfojmBc15xZHo\nT3D99dcX1R4Hdmxj1UPNQ/Zd+/gSdqwZfNxDe9pY9VAz/TlXYb7862VseWb54G3Lf8Wqh5rpOTA4\njr0vbyLeeWTQtmR/P6seah6S2LRuWMvqpYuH1G3bxo2sXLly0DY374+9ezfR3DyPSGTw62rZsq+z\nfPng19WhQ200N8+jo2PnoO3PPvsDHn/8DlasOPoe7e+P0tw8b0jisnbtUp588h+G1O3BBz81ZO2f\nV1/9Dc3NQ+PYufP3rF8/eDbUtrYNecfR03OI66+/vuD3+X333Vf0+xy8/3m1YMECX8Qx0B5Lly59\n87txypQpzJs3b0iM5SKqWpEnypeIpMka3ZM53fM6MFNVX87abxWwUVUXiMilwEpgUnZvioi0AgtV\n9XvDPM8sYP369euZNWtWOUOqumg0WtDQ1FpTbJydnZ0s/MlCmmY3ub4AtX13Oyv+YwVzb5jLlNPc\ndd4VUrY/1s+Y+jFFP3ekO0J4fZgF8xe4nnm1s7OTe+55lM1te5h43umu50nZt2Mz65b/nPM/fh1/\nNPWdw+6T7O8nNMycHvmUPZbD4XbC69fwk4ULmT59uquynZ2dLFz4BE1NV7m+cLa9fRsrVixk7tyv\nMGXK1De39/dHGTPm+K/dkcoX89z5ikQ6CYefYMGCqwqepdc+i/xjw4YNzJ49G2C2qm4o1/N44sLZ\nY1HVXSLSDnwYeBkgc6HsH+OM4AFYDyQz+zyZ2Wc6cAawutJ19hq/v1kGBCVO4M0EpRT6E4VNBFfs\nxGT5GC5BKZVUMklXV9eQ/1iPx4m7sFmJR5JPguIHQXmPBiXOSvBEkiIijcA0YGBkz1kiMgM4pKp7\ncIYX/5OI7MAZgvzPwF7gl+BcSCsiDwPfFZEu4AjwfeB5G9ljzMhi8RgbN7TwQOf/0NDgrifEmZhs\nG6Mme29+leNJ9sc50LGHxU8upqnJ5dwy0SibW/YyefK8gucbMcbkxxNJCs7onN/iXCCrwHcy238K\nzFfV+0SkAViEM5nb74HLs+ZIAVgApIDHcSZzWw7cVpnqG1ObkokkfX1p6usvpqnpLFdl0+mdxGKb\nqE+ly1S78kklkySkn7HTxtJ0lrskRduVvrW9JBK1t+6PMbXGExfOqur/qeooVR2d8zM/a5+7VPVU\nVW1Q1bnZs81mHo+r6u2qeqKqTlDVT9pss47cC6j8KihxAkMufi1GKpkknXafaKTTaRKJWEGrGOdr\nw7LSxZlLVdFR6vyr5uInJSlSqVRJ6/L448F47QblPRqUOCvBKz0ppozOOOOMalehIoISJ8DkUyYP\nup9Kpejt7SUScTfFfle4i/0HdrP61cWMb3PXoxCJhGmPtjCuYwInJ6dCgYsjHkvjxMnH36kAqWQ/\nkd5eXnzxNXa0HnJVNtJ9mDfeOEBXVzvjx7v7m/X2dpFI9BGP9w7aPnlyMF67QXmPBiXOSrAkJQBu\nv/32alehIoISJ8Cca+e8eTsej9PeHmb16hbGT9zn6jhd+zvo7jvM1DNCNLzV3Rdu6nCSUX2jSHTH\nSKXcL7aXj+mXzDn+TgVIpZKk00IodBaNjdNcle3t2k7P4Q2saXmUbe0uR1NFwrzRu5l1ryzllFO+\nQn1mBec5c4Lx2g3KezQocVaCJSnG1LhkMkkykaau7kwaG9/mquyRuq2k05sYVTfG9RDi/lSEUaEQ\nzmVktSkUqmdsvbu4RxEiXZckNHUsDacVkNilRtOX7iKZjFGO3idj/MSSFGN8opAv3NDosWWqjf+F\n6usLS+zqQlB71xobUxWeuHDWlFfubIR+FZQ4gSEzyfpV7kyzftXeHozXblDeo0GJsxIsSQmAO++8\ns9pVqIhajjP7wtd8fh777mNv3o5Go3ht5uhS2firX1S7CmWRSiaIRMJEIp1EIp089tgX37x9rJ/e\n3q6yjqYqt1p+j7oRlDgrwU73BMD9999f7SpURK3GWciFryfPPpuVK52ZqLv2dxDp7Sv5sFgveN/V\nn652FUounUyx/8AWfrfpgTdnmj357dNY+eLC45aNRMIc6Hl1yOigWlGr71G3ghJnJViSEgBBGQ5X\nq3EWcuFrY+PR2wMXv6ZqcFK142mcVJ4hyNWkqTSJUTHqzhxHw0TnwtsG8rsAN34wQmJnnGSyNieS\nq9X3qFtBibMSLEkxxiMKufAV7OLXWlU3zv2Ft6HD9WWqjTHeZNekGGOMMcaTLEkJgHvvvbfaVaiI\noMQJsOWZ5dWuQkVYnP4SlPdoUOKsBEtSAiAajVa7ChURlDgBUv39x9/JByxOfwnKezQocVaCJSkB\ncPfdd1e7ChURlDgBzr18XrWrUBEWp78E5T0alDgrwZIUY4wxxniSje4xvhKJRIjFYgWVDYfD9CeC\n0e1uTCH6+2OEw+GCytbX1zPe5WgmYyxJCYDOzk5OPPHEalej7FpbW3ni6ScIRwr7EI32Rtm8dTOT\nzpvEeI8v/BaLRFwPX61FFqd3xOMRNm7czAMPpGhoaDx+gRxNTSGuumoOU6dOLX3lPCYon7mVYElK\nAMyfP59ly5ZVuxpld+uttzJ7zmzGnT2OhgkNrsun96Xp29xHMpEsQ+1Ka83PfsqHPntbtatRdhan\ndyQScfr6RjNu3KU0NZ3mqmw02k04/Cy33nory5f7fyRTUD5zK8GSlAC46667ql2Firjjjjt4dv2z\nNExoYPxE9/+VRnoiZahVeZw798pqV6EiLE7vqa+fyPjx7nsJ+vqc92gQBOUztxLswtkAmDVrVrWr\nUBEzZsyodhUqZvLpwZh22+L0l6C8R4PymVsJlqQYY4wxxpMsSTHGGGOMJ9k1KQHw8MMPc/PNN1e7\nGnkrdBjxokWL6CcYQ4h3rHmOae+/uNrVKDuL0z/6+2MsWrSIz33uc67L1trw5Vr7zPUyS1ICYMOG\nDTXzholEIjz46IMFDSP+76f+m5POOqkmhhAX69DetmpXoSIsTn8YGL7c0dFCNHqS6/JNTSFuueWa\nmklUaukz1+ssSQmA5ubmalchb7FYjHAkXNAw4iumXMHvnvpdTQwhLtYFn7iu2lWoCIvTHwaGL3/s\nY/cXPHw5FovVTJJSS5+5XmdJivGkQoYR19IQYmOCqJjhyyaYLEkxpkRSqRS9vb1EIu6SpWg0iqqW\nqVbGb9LpFNFoF5FIp6tyvb1dpFKJMtXKmPKwJMWYEojH47S3h1m9uoXxE/e5Ktu1v4NIbx+pVKpM\ntTN+kezvpzcaZt32Jbze+ayrspFImAM9rxKP95apdsaUniUpATBv3ryKT9Fc6AidYhb5W/LNJTSd\n3lRQ2WIlk0mSiTR1dWfS2Pg2V2WP1G0lnd5EKpXOu8yqh5o9P416KVicg6WTSdJ1SUJTx9JwmrvX\nevxghMTOOMlkvNBqFm3Jks/ypS+tdF2umIUNofKjg6rxmetXlqQEwBe+8IWKPl8xI3SKWeTvgssv\n4PVXXnf9nKUUCtUztt5dvUOjx7p+nukXX+q6TC2yOIcXqq93vSBh6HC9q/3L4YIL/tJ1mWIXNoTK\njw6q9Geun1mSEgCXXXZZRZ+vmBE6xSzyN23mtKonKZXy1ne+q9pVqAiL01+mTbvEdZliFjaE6owO\nqvRnrp9ZkmKGVejpGjh6yqZpQpON0DHGlEShI4MAenoKP11UaxPJ+Y0lKWaIYk7XQHGnbIwxppSK\nPV1UaxPJ+Y0lKT420Bvy9NNPc8UVV+RdLhwOs79rPye8+wTXp2uguFM2xWj5Q0tFn6+a9mx+idPf\nO7Pa1Sg7i9NfWlp+w5Qpt1T0OYs5XRSNdrN//9Ps27ePpqb8L1Qe+My1Xpji+S5JEZHbgL8HpgCb\ngNtV9cVq1EVV6erqKrh8fX09DQ3ukwQY3Buy+P7FbGvflnfZgZ6QOefNcX26Bqp3yua5J5/jjPcE\nY8n7Lc8sD8SXmsXpL8899yMuvbSyScqAQk4XFdoLs3jxt9i2LWa9MCXgqyRFRD4FfAe4BVgLLABW\niMjZqupu5qMSWLduHctWLUMpbKKuSfWTuPaqaxk71v3oj+zekImnTaRpdv7/BVSrJ6RYjScUduV/\nLaofP6HaVagIi9NfGhurM0VAoQrthZk48QnGjZtTUC9MtmQySShU2Ne0X3pxfJWk4CQli1T1UQAR\nuRX4GDAfuK/SlTl8+DBdo7o4c8aZrsuG3wiz4lcraD/czpi6Ma7LZ/eGhEIhVz0idvGqMcYc5bYX\nJhQaw+jRoaKuhenvj7Ft2xamT38vY8a4/w7wSy+Ob5IUEakDZgP/MrBNVVVEVgIXVqteo0OjmTDJ\n/X9JPR099KX6qH9HPZOaJrkuX6u9IdWUTqVJp9Mkk0kSCXfTh6eSNlusMeaoYodOd3TsJBx+lbq6\niwOxKONIfJOkACcCo4EDOdsPANMrXx1HKpki0u2+ZyIWdYb/jhs/rqauC6lVyWSStS++xN69B/n9\n719iwqS3uCp/aH8HiaSti2K8rdB1f8DW/ilUoUOnI5nRlUFflNFPSYpb9QAtLeUbEbJv3z762vrY\n0rbFddlYX4xEb4Ldr+yms839B0rXwS4i3RFaN7ey85WdbH1xa0Flu/d3F/XcbssXU3bPa3sYO2Fs\nQWWTySQduw4Sj8QJt3XS2+lufZNI1xH6o3E6du2g71CPq7LdB/eSiicI795BKhLNq0xH6+u0vbKh\n4PLFPPeAWF8PsUOHkQi0b2+he/8bJX/u7DhLVe9iy5fjbzZSnKV87p7wfg537+eZtd9h/Bb3vbOx\n2BE6D7Syfftv6e52d4F6V9c+IpEO9uzZyNatzxRUtrV1Nd3d7idrLKZ8oWV37lzDrl1/qFq9Y7EI\n8XgbmzZtYtIk922dj6zvzrJOZSx+WX01c7onClytqsuyti8GTlDVv8jZ/zrgPytaSWOMMcZfPqOq\nS8p1cN/0pKhqQkTWAx8GlgGIiGTuf3+YIiuAzwCtQGFTqxpjjDHBVA9MxfkuLRvf9KQAiMg1wGLg\nVo4OQf4E8E5V7ahi1Ywxxhjjkm96UgBU9b9E5ETgG8ApwEvAXEtQjDHGmNrjq54UY4wxxvjHqGpX\nwBhjjDFmOJakGGOMMcaTfJOkiMhtIrJLRPpEZI2IvO8Y+14kIs+JSKeIREWkRUS+OMx+n8w81ici\nm0Tk8vJGkZ9SxyoiN4hIWkRSmd9pEXE/+USJuYkzp9xFIpIQkSETT3ixTUsdpx/aU0Q+mFX3dFY8\nJ+fsV9PtmU+cfmjPzP5jROQeEWkVkZiI7BSRG3P2qen2zOx/zDi92p7g+rX7yDBxpEVkc85+xbWp\nqtb8D/ApnGHEfwm8E1gEHAJOHGH/mZky5wBnANcBEeCzWft8AEgAX8KZsfYbQBx4lw9jvQHoAk4C\nTs78nFRLcWaVOwHYAfwa2JDzmOfatExx1nx7Ah8EUsDbs2I42W/tmWecNd+emTK/BF4ALs18Fv0x\ncKGf2jPPOD3XngW+didkv2aBU4FO4KulbNOq/lFK+MddA3wv674Ae4E7XRzjF8BPs+7/DFiWs89q\n4Ic+jPUG4FC127EUcQJLgbuBrzP0y9tzbVqmOGu+PTn65f2WYxyz5tszzzj90J5/mvnCm+jz9swn\nTs+1ZyGxDlP+z4EkcHop27TmT/fI0YUF35xrWZ2/RN4LC4rIeZl9V2VtvjBzjGwr8j1mOZQxVoDx\nme7JNhF5SkTeVZpau1donCJyE3Amzpf3cDzVpmWME3zQnjgfki+JyBsi8hsR+UDO475oT44fJ9R+\ne14JrAO+LCJ7RWSbiHxbRLKnVPdDe+YTJ3ioPaE03y3AfGClqu7J2lZ0m9Z8ksKxFxaccqyCIrJH\nRGI4E781q+ojWQ9PKeSYZVauWLfhvMDm4czCOwp4QUROLVXFXXIdp4i8A2cF7M+oanqE43qtTcsV\nZ823J7Af+BxwNXAVsAdYJSIzs/ap+fYkvzj90J5nAX8CvBvnP+6/xZloszlrHz+0Zz5xeq09oYjv\nFgAReStwOfDjnIeKblNfTeZWgIuB8cD7gXtFZIeqPlblOpXLiLGq6hqcrj4ARGQ10ILz4fn1KtTV\nFREZhbMO09dVdWAlLqlilcoi3zhrvT0BVPU14LWsTWtE5O04s0jfUJ1alV4+cfqhPXG+iNPAdaoa\nARCRLwE/F5HPq2q8qrUrnePG6ZP2zHUjznU2vyz1gf2QpHTinNM9JWf7KUD7sQqq6u7MzS0iMgW4\nCxhIUtoLOWaZlSvW3H2TIrIRmFZUbQvnNs4JwPnATBEZ+I9lFM7yTf3AZaq6Cu+1abniHKQG23Mk\na4GLsu7XenuOJDfOQWq0PfcD+wa+uDNacJLs04DX8Ud75hPnIB5oTyj+tXsT8KiqJnO2F92mNX+6\nR1UTwMDCgsCghQVfcHGo0cDYrPurs4+Z8dHM9qooY6yDZP5jfy/OG67iCojzMPAenJFMMzI/DwBb\nM7f/kNnPU21axjgHqcH2HMlMBsdQ6+05ktw4B6nR9nweOFVEGrK2Tcfpddibue+H9swnzkGq3Z5Q\n3GtXRD6EMzrt4WEeLr5Nq31FcSl+gGuAKIOHToXJDOsCvsng0SyfBz6Ok7lOA24GeoC7s/a5EGeo\n1MDQqbtwhmdVewhyOWL9auaFcyZwHs7IkV6chRlrIs5hyg836sVzbVqmOGu+PXHO5c/D+fB7N/Bv\nOEMZP+Sn9swzTj+0ZyOwG6f39hzgEpxrMx7wWXvmE6fn2rOQWLPK/TvwwgjHLLpNq/YHKcMf+PNA\nK9CHk6Wdn/XYI8CzWfe/AGwGjuCcR1sH3DLMMa/G+S+1D3gZZ7FC38UKfBfYlTneG8CvgHNrKc5h\nyg758vZqm5Y6Tj+0J3AHsD3z4d2BM+rgEr+1Zz5x+qE9M9vOxhnZEcH5Ir8PGOun9swnTq+2Z4Gx\nviUT5/xjHLOoNrUFBo0xxhjjSTV/TYoxxhhj/MmSFGOMMcZ4kiUpxhhjjPEkS1KMMcYY40mWpBhj\njDHGkyxJMcYYY4wnWZJijDHGGE+yJMUYY4wxnmRJijGmIkTkbSKSFpFzizzOIyLyxHH2+a2IfDfr\n/i4R+ZtintcYU3mWpBhjhsgkAmkRSYlIXES2i8hXM4uhFaNaU1yfDzw4cCcT27wq1cUYk6dQtStg\njPGsXwM3AvXA5cAPcRYLuy97p0zioprfGhtS4jrmRVXD1XheY0xxrCfFGDOSuKp2qOoeVX0QWAn8\nmYjcICJdInKliGzBWdX0dHF8TUT2iEhMRDaKyNxhjnuOiDwvIn0isllELhl4QERGichDIrJTRKIi\nsnWk0zSZ5zooIj0i8iMRGfGfruzTPSKyC6dH56lMj8rOzKmolIjMyin3RRFpdfuHM8aUhiUpxph8\nxYAxmdsNwJ3AzcC7gYPAF4EFOMuyvxdnJdhlIvL2nOPcB3wbmImz0uoyEZmUeWwUsAdn5dRzgLuB\ne0TkEznH+AjOcvIfBK4FrsJZETof78Pp0bkBmAK8T1V3A/8L3JSz743AT/I8rjGmxCxJMcYcl4h8\nBJgLPJPZFAL+WlXXqOp2VY0Bfwd8S1V/ntn2FeAlnOQl2w9U9SlV3Qb8NXAYJ9lBVZOqereqblTV\n3aq6FFgMXJNzjDhwk6q2qOqvga8BeV0Yq6qdmZs9qnow61TQw8CnRaQuE/Ms4D2Z5zfGVIElKcaY\nkVwpIkdEJAb8D7AUp2cDoF9VXxnYUUQmAKcCL+Qc43mcHpFsawZuqGoKWJe9j4jcJiLrMqdyjgC3\nAGfkHGOTqsaz7q8GxovI6W6DzPIUkAb+InP/RuC3qtpWxDGNMUWwJMUYM5JngXOBacA4VZ2vqn2Z\nx/pGLlY4EbkW51TQj4GPAjOARzh6mqlsVDUBPArclOlN+TRO74oxpkosSTHGjKRXVXep6l5VTR9r\nR1U9ArwBXJTz0EXAqznb3j9wQ0RGA7Oz9vkA8LyqLlLVTaq6E8i9pgVghoiMzbp/IRBR1T3HjcqR\nAEYPs/0hnOTo85nHn8zzeMaYMrAkxRhTKt8Gviwi14jI2SLyLZyekO/l7HebiPy5iEzHGdY8Eae3\nBGA7cL6IXCYi7xCRb+Bc6JprDPCwiJwjIlcAdwE/cFHXVuDDInKKiEwc2KiqW3FOR90LLMk5pWSM\nqTCbJ8UYUyrfB94C/CtwMk7vyJWq+nrWPgp8JfMzA9iR2edQ5vFFOKN+fpbZdynQjDNPS7ZncBKa\n3+EkLEs4er3MwPNwjPt/B3wH+CtgH3BW1mMP4/TM2KgeY6pM8pt/yRhjgkFEvgpcraozq10XRDhs\nLwAAAIJJREFUY4LOelKMMQYQkUbgTOA24B+rXB1jDHZNijHGDLgfeBFnVNMjx9nXGFMBdrrHGGOM\nMZ5kPSnGGGOM8SRLUowxxhjjSZakGGOMMcaTLEkxxhhjjCdZkmKMMcYYT7IkxRhjjDGeZEmKMcYY\nYzzJkhRjjDHGeJIlKcYYY4zxpP8H4qHiDWIZvp8AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -954,7 +957,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGHCAYAAAD7t4thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4FNXXwPHvCaGF3hGkBFCqUkIRkKIoHUGaRukCKor8\nUF5AioJYANEggnQQKUFAUJrUIFVAEnqx0DsEEYRQUu77x2wwZZNsQjabTc7nefYJO3PnzpndYffs\nnTv3ijEGpZRSSiln8nB1AEoppZRK+zThUEoppZTTacKhlFJKKafThEMppZRSTqcJh1JKKaWcThMO\npZRSSjmdJhxKKaWUcjpNOJRSSinldJpwKKWUUsrpNOFQSimllNNpwqHciohEOPAIF5H6IlLCzvJr\nIrJaRJ5KYD9jbdv4x7E+Zt33ReSqiGwXkU9EpJidbRrYyraNsqyrbVmIiDxiZ5tfROSAneUiIl1E\nZJ1tv/dF5LKIrBWRXiKSyYHXMrKOnbbX5aaI/C4ic0Sklp24ox7rcVs5b1uZQbZ1z8exr9Uicl1E\nCjsQV2cR2Wwrf1tEDojIcBHxslP2lIgsj6MeH1tMXey8X/GdO8UTiM/LFs9+W3z/iMgWEekcR/m4\n9nXBgdeihIjMFpG/ROSOiFy0vTYj4tlmt63+1+NY3zVKDHXiKHPWtn55jOUxX6vztnOuQYxycb4v\nUcrMjue1CYlvW+WePF0dgFKJ1CnG867Ac7blEmX5USDyC2oBsBrIADwOvAUEiEgNY8zhOPbzMnAS\naCUi2Ywxt+MoF1m3B5AHqAH0A/qJyGvGmO9jlI9r8qLMwGDbtvGWF5EswI9AY2A78DlwGcgLNAAm\nATWBXnHsK9LXQB9bXfOAMKAs0Aw4DuyKUX48sAfICFQDXgeai8gTwBfAK8A3IlLJGHMvSrwdgKbA\nm8aYS3EFIyIegD/QAdgCfAiEAPVs/+4gIo2MMVejbOboZFBXiH3uDACKAv8j+rlzlTiISEEgAOt1\n8sd6DbMA7YA5ItIMeNXEnqRqHfBdjGV34gtYREpjvd63gVnAKeARrNd+IDDCzjZlgOpY5+6rwNR4\ndnEH6z3bEaOOBlivy904tos8FgG8sc6hABFpboxZayvj6PtyF3iN6K8/QLiD2yt3YozRhz7c9oH1\ngR8ex7oSQATwbozlTWzLJ8ax3TNYH3gNgHtAZ0frtq0rBhzD+kB/IsryBrZt2kZZ1tW2LBDry7Vw\njLo2AQdiLJtii+/tOOIvDbyRwOtW0FbH5DjW548vbtvyt211DLI9r4WVtHwcpUx24BywzYH38n3b\nfkbbWdfCVveqGMtPAsvjqM/HVl+XONavAE4k8nxbA4QCLeysG2vb3//FWB4BTEjCuT3Jdv49Gt/7\nE2P5SOAi0Mb23hS3UybynFuMlah6xFg/FdgNnIj52to7FqCSbfnPjrwvUcrMBm4m9nXRh/s+9JKK\nSo+22v6WjmP9q8ARY8xmYIPtucOMMWeBblitFgMd2QT4FKvFcXB8BUXkUaxfhD8bYybGsf/jxpgp\nCezTG+tX5Q57K40xwQkFjfVLP/JXLsaYXVjJ0AARKWcr8wlQAOgdX0W2VpsBWInaEDvxrALmAE1F\npKYDsSU722WmxsBsWzwxvQ/8CQwSkczJsMtSwDljzLmYK+J5f3yxEolVwA2sFgx7DFYLTT7gwWUw\nEckItMdquYvZ6mC/ImMOAcHYzgOl4qIJh0qPIj8Yr8dcYev70BbrAxesD+VnbU3pDjPG7MS6LGG3\nT4MdJ7GaqXsl0M+hGdb/2/mJiceO07a/HUQkaxLrKGP7ey3Ksvexvnymikg1rOb2z40xRxKo62ms\nS1ILjDERcZSJbMZvmcR4H1YrrC/qufZWGmPCsc6bPEDdGKuziEi+GI+E+tmcBoqJyDOOBGdLiMoA\n/saYUGAp8SfLp4CdWElKpOZATmChI/u07TcP1jFfS6hsHNvHfF3yiUiOpNSlUjdNOFR64GX7ECso\nIk9jNeUarF+CMbUCcgGRfS9+xGrKfzkJ+z0EFBCR7A6W/wSrf8SgeMpEthwcirpQRDLG+MDOG9+O\njNWX4jusSxXnROQHEXlXRMrGs1kOW92FRaQ58BVWU/oPUer9F3gHq9/FOqxEalR8sdhUwHpPYnWQ\njWK/7W95B+pzhgox4rBnP1ZSFDPG17D6hkQ+rpDwOTUBuA9sFJEgEfETkRfiSRA7AWeMMb/ani8E\nKojIk/HsYwHQJkqLzCvAZhNPXxv+S57y21qbFmN9lyxK4HjsyU701yXyEbPvk0oDNOFQ6cFIrA+x\nS1idEcti9b1YZqfsK8AeY8wJAGPMLazm6URdVrG5Zfvr0K81Y8xJrF/PvUWkUBzFcsaoO1Jzon9g\nn3Jgf92w+mGcwLrm/zlwVEQ2iEgRO5vMstV9Aav/Q1as/hFBMepditWRNg/wlonSgTQeka/Rv/GU\niVyXM54yzvQwMf6E1bk58vE8sJZ42FqFqmCdEyWwErkfgcsi0jNqWRHJAHQkestEANb7Fd+5uwir\nc3VLW2LckoRbzyKTpytYLSS1gS+MMV8lsJ09d4BGRH9tniOBS4vKPeldKio9mIb1KywL8CzWB3es\nc19EcmF9cX9tu0Mg0g6grYiUMcb8lYj9RrZsxPcFFdPHQGesD9z+dtZH1hWz1WQb1gc1WP1G7N7u\nGJMxZjIw2dYsXhd4A+s18MfqLBrVSNt+wrEumxyN5/LHb1iXfwIdiYP/jiu+5MyRL3x7HL1jIiFR\nY7wZR5m4YjxnjAlI7A5t51tXERGsFpaWWO/vVBE5EaXOJlh9ZX6Lcu4KVqdjX+JoNTPGBIvIBqxE\nOxvWj9AlCYT1EzAR63X9FzhsjIn3jpt4hBtjNiVxW+VmNOFQ6cGfUT6YV4tIBDBGRDbF+HXeEauj\n53tYHRijMli/FEcmYr+VgCu2VhKHGGNOisg8rFaOMXaKHMP6IqkEHIyy3TWsX7TENR5EAvu9DqwE\nVorIJqC+iBSzdYCNdCgpX5oOOop1XE8CcY3fEHlpIGp/kLtYLS32eEUpkxyOAq1tcWyLo0xlrHMl\noT4riWKMMcBh4LCI7MRKJF7F9p5jJQz2LhMasG51tXWCtmcBMB3rltufbZfF4pOk5EkpvaSi0qNP\nsH6ZfRxj+StYX+IdsHrqR31sJO4e/7GISG2su2DibTaPw8fE3ZfjZ6wWhqRc4nHUHtvfWAOROdE2\n4B/gFduveXu6Yn2Broyy7DTW2Cr2lLOVPx3H+sRaiZUUdbG30jaOyCtYnZG3J9M+7Yn2/og1IFpr\nrH4PMc/bDliXEuM7X5Zh9cWpxX+dpZVKdppwqHTHGHMDa6yBJpEd6my3m9YHvjfGLI35wOpoWkZE\naiRUv4iUAL7FGkNhXBLiO4E1ENfrQOEY685i9aVoJiJvxVFFgv+vRaSQiMTqfGm7LfI5rC+gxFw+\neii2JvlxWEnCp3biaoGVcKwxxuyOsmo18KiIvBCjfCagJ1Y/g2h9TB4ixl+xbpPubosnpk+x7hIZ\n42C/lXiJyNMiYq8VOnLfx2x/22K15kyM49xdCbSzvbexGGtQuzewBhJb8bBxKxUXvaSi0quvsEaY\nHIz1qzTyF2BcH7ir+a9l4bcoy31E5FWsL/ncWCONtsP6wu5kG6MgIfZ+0X+C1ZejLDHuSLHFXRKY\nICIv22K+AuTH6ofRCqv5Pz6PArtFJACr9eYS1mBgvliXDPyMMX87EHtyGo3VSXKgrYXoB6xOhfWw\nXvfDWOObRDUN6AEsFpHZwF6ssSVeAipiDdoWlowxdsFKOn4Ua9j7rViX4dpi9XlZSBKSzDgMwjq/\nlvLf3Ts+WOdFMNbIr2C9NteAX2PVYFmONepsC6xOpxDjnDPG2L3V9yGVEZGhdpbvNcastv3b0/b/\nx56lD9E3RKVCmnCotCC+ToHG3npjzEURWQC8KtZ8IK8Ap40xB2OWtZW/ISLbgJdE5N0odb9se4Rh\ndST8E/gSmGpvwKY4YrUX33ERmct/lxGirrsjIk2xvng6A/+HdVfEP1i3Zb5B7GG0Y/odaxj15sCb\nQCGsvg6HgJ7GmNkOxJ2sbB1QO4pIF6zWiY+ATFjjmXwIfBnzC8gYc1dE6gMfYN1p0w0rSQkEmhlj\n1ie020TGeMl2K+h7WJcr2mK99weArsaYeXHsIymv3ydY52UD218vrFFEF2CN5npGRApgdYReYOvn\nYc9GrOHRX+W/hMOReOzFnZhjKYv1HsY0EyuBBytZi+tc3QqccXBfyg1I3OeoUkoppVTySFV9OESk\nnogsF2sGwoiY12VtZT4SkQtiza653jZZUdT1mUVkkogEi8i/IrIksaNEKqWUUip5paqEA+s+8H1Y\nwyHbmyVzENZARb2xZsO8DayNMUTweKxrle2wOgEWIcpIiEoppZRKean2koptrIQ2xpjlUZZdwJqX\nwc/2PCfWbIddjTGLbM+vAi9HjiJpG6r5KPBUjN7tSimllEohqa2FI062jn2FsTpAAWCMuQnswhpa\nF6A6VkfYqGV+x+p4VBullFJKuYTbJBxYyYbBatGI6jL/jVVQCLhvS0TiKqOUUkqpFKa3xWJNj4w1\nF8Epkm8YZKWUUio9yII1NtBa2zQLdrlTwnEJa7CaQkRv5SiENdhPZJlMIpIzRitHIdu6uDQh4RkS\nlVJKKRW3V4lneHy3SThsk1pdwprK+AA86DRaC5hkKxaINQhPI6z5ASI7jRYn7lH4wDaV97x58yhf\nPtZoz3Hq378/fn5+iTqOlNoG4Pnnn2f9+oTGPXr4faXUNqn5eJK6XWo+ppQ6nqTuKzUfk553KbuN\nnndJ309ybHP06FE6deoEtu/SuKSqhENEsmHNRRA57G4pEakM/G2bQ2I8MExE/sI6sFHAOazpkjHG\n3BSRmcCXInIda4KuCcD2BO5QuQtQvnx5qlWr5nC8uXLlSlT5lNwGIGPGjKk2vqRsk5qPJ6nbpeZj\nSqnjSeq+UvMx6XmXstvoeZf0/STzNvF2SUhVCQfWXSab+G/43C9sy+cAPYwxY20zI07FmrdiK9bw\nxfej1NEfa86LJVjD5q4B4prk6qH4+vqm2m0AihYtmiL7SqltUvPxJHW71HxMKXU8Sd1Xaj4mPe9S\ndhs975K+n5Q8VzHGpPsHUA0wgYGBJi1p1aqVq0NIVmnteIxJe8eU1o7HGD0md5DWjscY9zqmwMDA\nyEaCaiae71p3ui1WKaWUUm5KE440LMnNXqlUWjseSHvHlNaOB/SY3EFaOx5Im8eUaoc2T0kiUg0I\nDAwMjLPzzJkzZwgODk7ZwNKp/PnzU7x4cVeHoZRSygFBQUH4+PgA+BhjguIql9o6jaZKZ86coXz5\n8oSEhLg6lHTBy8uLo0ePatKhlFJpiCYcDggODiYkJCTR43SoxIu8nzs4OFgTDqWUSkM04UiExI7T\noZRSSimLdhpVSimllNNpwqGUUkopp9OEQymllFJOpwmHUkoppZxOEw6llFJKOZ0mHIo5c+bg4eGB\nl5cXFy9ejLW+YcOGPPnkkw+elyxZEg8PD/r16xer7ObNm/Hw8GDp0qVOjVkppZR70YRDPXDv3j1G\njx4da7mIxHouIkyfPp1Lly4lWF4ppZTShEM9UKVKlTiTiJgqVqxIeHi43QRFh8tXSikVkyYcCrBa\nJYYMGUJYWJjdJCKmkiVL0qVLF4cTFKWUUumbJhzqAW9v70QlEUOHDiU0NNShBEUppVT6pgmHiiYy\niRgzZkyCZUuWLEnnzp2ZPn06ly9fToHolFJKuSudS8UJQkLg2DHn7qNcOfDySv56vb296dy5M9Om\nTWPw4MEUKlQo3vLDhg1j7ty5jB49Gj8/v+QPSCmlVJqgCYcTHDsGPj7O3UdgIDhrHrnEJBExExSl\nlFLKHk04nKBcOSshcPY+nMXb25tOnToxbdo0Bg0alGD5oUOHMnfuXMaMGUPr1q2dF5hSSim3pQmH\nE3h5Oa/1IaUMGzaMefPmOdSXo1SpUnTq1ImpU6dSs2bNFIhOKaWUu9FOo8quqEmEI3esDBs2jPv3\n7zN27Fgd+EsppVQsmnAowP5gXZF3rPz+++8Jbh+ZoOzbt88Z4SmllHJzmnAowP5w5KVLl6Zz584P\nhjKPWtZe+WHDhuHp6aktHEoppWLRPhyKrl270rVrV7vrZs2axaxZs6ItO3HihN2ypUuX5v79+8ke\nn1JKKfenLRxKKaWUcjpNOJRSSinldJpwKKWUUsrp3C7hEBEPERklIidEJERE/hKRYXbKfSQiF2xl\n1otIGVfEq5RSSik3TDiAwcDrQB+gHDAQGCgib0cWEJFBwNtAb6AmcBtYKyKZUj5cpZRSKu2yN6yC\nPe54l0pt4CdjzBrb8zMi8gpWYhGpHzDKGLMSQES6AJeBNsCilAxWKaWUSssGrh/oUDl3bOHYATQS\nkccARKQyUBdYbXvuDRQGNkZuYIy5CezCSlaUUkoplQw2n9pMwMkAh8q6YwvHaCAncExEwrGSpqHG\nmIW29YUBg9WiEdVl2zqllFJKPSRjDIM2DKJ8gfIc5WiC5d0x4XgJeAV4GTgCVAG+EpELxpi5D1Nx\n//79yZUrV7Rlvr6+lC1b9mGqVUoppdIEf39//P39Abj470X2XNjDE7mfcGhbd0w4xgKfGWMW254f\nFpGSwPvAXOASIEAhordyFAL2xlexn58f1exM8xoUFPTQQSullFLuxBjDvfB7ZMqQCQ+xemD4+vri\n6+tLaHgoFb+pSNO8Tfmk/Cf4+PgkWJ87JhxeQHiMZRHY+qMYY06KyCWgEXAAQERyArWASSkYp1JK\nKZVqnbx+klFbRnE15Co37t7gxr0b3Lh7g9uht7kTeoeQ0BAMhjJ5y/B9+++p9sh/P8hnBM3gr7//\nYknHJYSdD3Nof+6YcKwAhonIOeAwUA3oD8yIUma8rcxfwClgFHAO+CllQ1VKKaVSnwgTQZcfu/Dn\ntT+pWbQmJXKXIFfmXOTKnIvsmbKTNWNWvDJ6kcUzCxN2TaDOzDpMaDaBXtV6cTv0NiM3j6Rz5c48\nWehJgs47dhXAHROOt7ESiElAQeACMNm2DABjzFgR8QKmArmBrUAzY4zOLBaHgwcPMnLkSPbs2cPl\ny5fJly8fFSpU4IUXXuDtt60hTkqWLMmZM2cebFOgQAHKli3Lu+++S5s2bTh16hQVK1akTZs2zJ8/\nP9Y+vv/+e3x9fZk0aRJvvvlmih2bUkqp6GYGzWTbmW0EdAngGe9n4i3bsWJH+q/pz+srX2fbmW0U\nyVGE63ev81HDjxK1T7dLOIwxt4F3bY/4yo0ARqRASG5vx44dPPvss5QoUYLevXtTuHBhzp49y86d\nO5kwYcKDhENEqFq1KgMGDMAYw4ULF5g6dSpt27ZlypQp9O7dmw8//JD333+f7t2789xzzz3Yx7//\n/su7775L7dq1NdlQSikXunTrEgM3DKRblW4JJhsAWTyzMLnlZJ4u/jS9V/YmJDSE92q/R4ncJRK1\nX7dLOFTy++STT8idOzd79uwhR44c0dYFBwdHe160aFF8fX0fPO/cuTNlypTBz8+P3r1789577zF/\n/nz69OnDwYMHyZw5MwBDhgwhODiYdevWOf+AlFJKxendte/i6eHJuOfHJWq7V598laqPVGXS7kkM\nrTc00ft1x4G/VDI7ceIEFStWjJVsAOTPnz/ebQsVKkT58uU5efIkABkyZGDatGmcOHGCjz/+GIDA\nwEAmT57MgAEDqFixYvIfgFJKKYes+WsN/of8+aLxF+Tzypfo7SsUqMCkFpPIkzVPorfVhENRokQJ\nAgMDOXz4cKK3DQsL4+zZs+TL99+JW6tWLd58800+//xzDh06xOuvv06pUqX44IMPkjNspZRSiRAS\nGkKfVX1o5N2Izk92TvH9a8KhGDBgACEhIVSpUoW6desyePBg1q9fT1hY7FudQkNDuXbtGteuXePA\ngQN07tyZK1eu0LFjx2jlPv30U/Lnz0/Dhg3Zu3cv33zzzYPLK0oppVKGMYZT/5xi4aGF+P7gy4V/\nLzC5xWREJMVj0T4cThASGsKx4GNO3Ue5/OXwyuiVLHU999xz/Prrr3z22WesXbuWnTt3MnbsWAoU\nKMCMGTNo1arVg7Jr166lQIECD557enrSpUsXRo8eHa3OHDlyMH78eDp27Iivr2+0DqRKKaWc6+T1\nkwzcMJAtp7dw5fYVAErnKc3kFpN5LN9jLolJEw4nOBZ8DJ9pCY+69jACewdGG4TlYfn4+LBkyRLC\nwsLYv38/y5Ytw8/Pjw4dOrBv3z7KlSsHwFNPPcUnn3wCgJeXF+XLlydnzpx266xRo8aDupVSSqWM\nFb+voMuPXcidJTe9qvXiqUefolbRWhTIViDhjZ1IEw4nKJe/HIG9A52+D2fw9PTEx8cHHx8fHnvs\nMbp3787ixYsZPnw4YHUifeaZhG+jUkoplbLCIsIYHjCc0dtH07psa75t8y25s+R2dVgPaMLhBF4Z\nvZK19cFVqlevDsDFixddHIlSSqm43Am9w4HLBxi8cTBbT29l7HNjGVBngEv6acRHEw7FL7/8QsOG\nDWMtX7VqFcCDyylKKaWSzhjD2ZtnMcYketCsmJb/vpzFRxaz9+JejgUfI9yE80j2RwjoGkD9EvWT\nKeLkpQmHom/fvoSEhPDiiy9Srlw57t+/z/bt21m0aBGlSpWiW7durg5RKaWc6m7YXTJ6ZCSDRwa7\n60NCQxjxywhe93md0nlLO1xvwMkAlv++nP2X97P/0n6u371OBsnAsPrDGFZ/GJ4eif8aDg4Jpt2i\ndpTLX456xevxTq13qFq4Kk8UeoIsnlkSXV9K0YRD8cUXX7B48WJ+/vlnpk+fzv379ylevDhvv/02\nQ4cOfdApVEQS3USXlG2UUiqlhEeEM3PvTIYGDKVUnlKs8F1BwWwFo5UJCQ2hlX8rAk4G8Pedv5nx\nwow4aotdd/tF7fHK6EXtYrV5t/a7VClchT0X9vDxlo9Zd3wd89rOo1SeUomKeenRpUSYCDZ22Rgr\n1tRMEw5F48aNady4cYLlTpw4kah6S5QoQXh4eFLDUkqpJPnhyA+UzV+WSgUrxVtu6+mt9FvTj72X\n9uJbyZdNpzZRZ2Yd1nRaQ5m8ZQCrf0Trha3ZeW4nrcu25vvD3/NV06/IlilbgnHsubCH63evs8J3\nBXWL132wvOXjLWlSugmdlnWi8pTKfN3sa7pW7urwj7OFhxbSyLuRWyUboAN/KaWUSkOO/32c9ovb\nU21qNUZtHkVoeGisMoevHMb3B1/qf1sfTw9Pdr62kwXtFvDra7/i6eFJ7Zm12XVuF3fD7tLm+zZs\nP7OdVa+swq+JH7fu3+KHoz84FMu64+vImTkntR6tFWtd7WK12ff6PtpXaE/3n7rz/eHvHarz4r8X\n+eXUL/hW8k24cCqjCYdSSqk0Y8qeKeTJkof3ar/HyM0jqTmjJvsu7cMYw7rj62g6rymVJldiy+kt\nzG49m509dz5ICErmLsmO13ZQNl9ZnpnzDM/MeYYtp7ew8pWVNCzZEO883jQs2ZBv933rUCzrTqyj\nkXejOPtp5Micg9mtZ9O0TFM+2/YZxpgE61x0eBGeHp68WP5Fh1+T1EITDqWUUmnC3bC7zN43m25V\nuvHZc5+xq+cuwiPCqTG9BmUnlqXJvCZcuX2FeS/O42S/k3Sr0g0Pif41mDdrXtZ3Xk+Lx1uw79I+\nVviu4FnvZx+s716lO5tObeLk9ZPxxnLj7g1+PfsrjUsnfLl6YJ2BHLh8gHXHE55Ne+HhhTR7rFmq\nGl/DUZpwKKWUShMWH17MtTvXeKP6GwD4FPFhT+89fFD/A6oXqc6mrpsI7B3Iq0++SqYMmeKsJ2vG\nrCxqv4jLAy7zXKno0zK0K9+O7JmyM2f/nHhj2XRqE+EmnCalmyQYd8OSDalRpAZjto+Jt9zJ6yfZ\neW4nL1d8OcE6UyPtNKqUUipVCg4J5q3Vb3En9A55s+YlT5Y85M2alxfKvkDlwpVjlZ+8ZzLPlXqO\nx/M9/mBZpgyZGN5geKL3LSLkzBx72oZsmbLRsUJH5uyfwwcNPojVQhJp3fF1lMlbBu883g7ta2Dd\ngXRY3IHfzv9GjaI17JZbdHgRWT2z0qpsK7vrUztt4VBKKZXq3A+/T7tF7Qg4GYDB8Offf7L2+Fq+\n3PklDec05MT16HfN7bu0j1/P/cqb1d90emzdq3bn1D+n2Hxqc5xl1h1fR+NSCV9OifRiuRcpk7cM\nY3eMjbPMwsMLaVW2FdkzZU9UvKmFJhxKKaVSFWMMfVb1Yee5nfz08k+s8F3B9h7bOfLWEU72O0ne\nrHlpt6gdd0LvPNhm8m+TKZKjCC+UfcHp8dUtVpfH8j7G7H2z7a4//vdxjl8/TpMyCV9OiZTBIwMD\nag/ghyM/8Nfff8Vafyz4GPsu7XPbyymgCYdSSqlUZvzO8czcO5PpraZTp1idaOtyZ8nN0o5LORZ8\njD6r+2CM4ea9m8w/OJ/e1XonaeTOxBIRulXpxpIjS7h572as9euOr8PTw5OGJRsmqt4ulbtQIFsB\nvtjxRax1Cw8tJGfmnDR7rFlSw3Y57cORCEePHnV1CGmevsZKpW+r/1zNgPUDGFR3EF0qd7FbpnLh\nykxtOZWuP3al9qO1CQ0P5W7YXXpW65licXZ+sjPDAoax+PBiXqv2WrR1606so/ajte32AYlP1oxZ\neafmO4zaMooRDUdQKHshwGrxWXhoIS+WezFVD12eEE04HJA/f368vLzo1KmTq0NJF7y8vMifP7+r\nw1BKpbDDVw7z8pKXafl4Sz5t9Gm8ZbtU7sKuc7vo+3NfCmYrSOtyrSmas2gKRQrFchWjcenGjNk+\nhtblWpPfy/rMCg0PZeOJjQyqOyhJ9fap0YfPtn1GK/9WFM1ZlPvh97kTeoffr/3O+Kbjk/MQUpwm\nHA4oXrw4R48eJTg42NWhpAv58+enePHirg5DKZWCztw4Q9P5TfHO4828F+fFefdHVH5N/Qi6FMTO\nczuZ3dp+fwpnmtBsAvVm16PJvCYEdAkgV5Zc7Dq/i3/v/+vQ+Bv25Mmah3GNx7HkyBLuh98no0dG\nsnllo287wBgqAAAgAElEQVTNvjTybpTMR5CyNOFwUPHixfVLUCmlkijCRLDz3E5qFa0Va0bWq7ev\n0nhuYzJ6ZGTNq2vIkTmHQ3VmypCJZS8tY8Xv0QfnSimP53uc9Z3X0/DbhrRY0IK1nday7vg68mbN\nS7VHqiW53jeqv/FgLJG0RDuNKqWUcrrxO8dTd1Zdnpr5FL+d/+3B8n/v/UvzBc25fvc66zqv45Ec\njySq3sLZC9PLp5dDLSLO8GShJ1nTaQ37L++nzfdtWPXnKp4v9Xyc09ynZ5pwKKWUcqrLty4zcvNI\nWpdtTWh4KLVm1KL3it5c+PcCbRe15ffg31nz6n8ztLqbmkVrstJ3JdvObCPoYlCSL6ekdZpwKKWU\ncqqhAUPJIBmY+cJM9vTew4RmE1h0eBHF/Yqz9fRWlvsup+ojVV0d5kNpULIBy15aRvUi1WnxWAtX\nh5MquWXCISJFRGSuiASLSIiI7BeRajHKfCQiF2zr14uIe6bOSinlxgIvBDJr7yxGPTOKfF758PTw\n5O2ab/NH3z/oW7Mvy15alujxKlKrpmWa8luv3x7czqqic7uEQ0RyA9uBe0AToDzwHnA9SplBwNtA\nb6AmcBtYKyJxz9ajlFIqyQIvBBISGhJtmTGGfmv6UbFgRV6v/nq0dQWzFcSvqZ9bD2SlEsftEg5g\nMHDGGNPTGBNojDltjNlgjIk6V3A/YJQxZqUx5hDQBSgCtHFFwEoplVYZYxjxywiqT69OuYnlWHho\nIcYYAPwP+bP97Ha+avpViowAqlI3d0w4WgF7RGSRiFwWkSAReTC8nIh4A4WBjZHLjDE3gV1A7RSP\nViml0qjwiHDeWv0WIzePZMjTQ6hRtAa+P/hSb3Y9tpzewsD1A2lbvq1LbllVqY87ppylgDeBL4BP\nsC6ZTBCRe8aYuVjJhgEux9jusm2dUkqph3Q37C6dlnZi2bFlzGg148Hw3gEnA+i3ph8Nvm1A5gyZ\nGff8OBdHqlILd0w4PIDdxpjhtuf7RaQS8AYw13VhKaVU+nDz3k1aL2zNznM7WfbSsmgztD7r/Sx7\nX9/L7L2zyZk5J955vF0YqUpN3DHhuAjEnOHrKNDW9u9LgACFiN7KUQjYG1/F/fv3J1euXNGW+fr6\n4uvr+zDxKqVUmvHvvX9pOq8pR64eYV2nddQrUS9WGU8PT3r59HJBdMrZ/P398ff3j7bsxo0bDm0r\nkZ173IWIzAceNcY0iLLMD6hhjHna9vwC8Lkxxs/2PCdW8tHFGLPYTp3VgMDAwECqVUv6cLRKKZWW\n3b5/m2bzm7H/8n42dN5AjaI1XB2SSgWCgoLw8fEB8DHGBMVVzh1bOPyA7SLyPrAIqAX0BKKm0+OB\nYSLyF3AKGAWcA35K2VCVUiptuBN6hxcWvsDeS3tZ22mtJhsq0dwu4TDG7BGRF4HRwHDgJNDPGLMw\nSpmxIuIFTAVyA1uBZsaY+66IWSml3NndsLu0+b4NO8/t5OdXf6ZOsTquDkm5IbdLOACMMauB1QmU\nGQGMSIl4lFIqLQoOCWbZ0WVMD5rOwSsHWfXKKuqXqO/qsJSbcsuEQymllHPcuHuDJUeWsOjIIjae\n2IjB0LBkQ9a8uoYGJRskXIFScdCEQyml0rkIE8GW01uYtXcWS44s4V74PRqUaMDE5hNpW74tBbMV\ndHWIKg3QhEMppdKxNX+t4a3Vb3Hi+gnK5C3D8PrD6VK5C0VzFnV1aCqN0YRDKaXSqXth9+i1ohcl\ncpXg29bf8nTxpxERV4el0ih3nEtFKaWUA3ae20mv5b24G3bX7vpZe2dx/uZ5preaTr0S9TTZUE6l\nLRxKKZUG/R78Oy0WtODvO39TMFtBPmn0SbT198Lu8em2T/F9wpfyBcq7KEqVnmgLh1JKpTFXb1+l\n+YLmFMpWiPdqv8fYHWPZf2l/tDIz987kwr8XGF5/eBy1KJW8NOFQSqk0JHJE0Nv3b7P61dV82uhT\nyuUvR88VPQmLCANsrRtbP8W3ki/l8pdzccQqvdCEQyml0ojwiHA6LevEgcsHWPnKSkrmLkmmDJmY\n0WoGgRcCmbBrAmC1bly8dVFbN1SK0oRDKaXSiMEbBvPjsR9Z2G4h1YtUf7C81qO1eKfWOwwLGMbR\nq0f5dOunvPLEK5TNX9aF0ar0RhMOpZRKA5YcWcK4X8fxReMvaFW2Vaz1Hz/7MQWzFaTe7HpcvHWR\nYfWGuSBKlZ5pwqGUUm7uj2t/0OOnHnSs2JF+tfrZLZM9U3amtpzKtTvXtHVDuYTeFquUUm4sJDSE\ndovaUSRHEWa0mhHvWBpNyjRh1SureOrRp1IwQqUsmnAopZSbMsbw5qo3OXH9BLt77iZH5hwJbtP8\nseYpEJlSsWnCoZRSbmpG0Ay+2/8d37X5jooFK7o6HKXipX04lFLKDZ24foK+P/fldZ/X6Vy5s6vD\nUSpBmnAopZQb+mzrZ+TOkpsvm3zp6lCUcogmHEop5WZO/3Oab/d/y//V+T+8Mnq5OhylHKIJh1JK\nuZnR20aTO0tu3qj+hqtDUcphmnAopZQbOXvjLDP3zmRA7QFky5TN1eEo5TBNOJRSyo2M2T6GHJlz\n0KdGH1eHolSiaMKhlFJu4vzN80wPms67T73r0JgbSqUmmnAopZSb+HzH53hl9OLtmm+7OhSlEk0T\nDqWUcgOXbl1iauBU/lfrf+TKksvV4SiVaJpwKKWUi/157U9eWvISV25fibPM0I1DyZQhE+/UeicF\nI1Mq+ejQ5kop5WKjtoxi0eFF/HP3H35+9Wc8JPpvwSVHljBr3yymtZxGnqx5XBSlUg9HWziUUsqF\nzt88j/8hf9qWb8v64+v5dOun0dafvXGWXit60a58O3pW6+miKJV6eNrCoZRSLjRx90SyemZl1guz\neKLgE3z4y4fULVaXZ7yfITwinE7LOpE9U3amtZoW79TzSqV2bt3CISKDRSRCRL6MsfwjEbkgIiEi\nsl5EyrgqRqWUisut+7eYEjiFXtV6kStLLobXH84zJZ/B9wdfLt26xGfbPmPr6a3Me3EeebPmdXW4\nSj0Ut004RKQG0BvYH2P5IOBt27qawG1grYhkSvEglVIqHt/u+5ab924+6AiawSMD89vOR0RoOq8p\nI34ZwdB6Q2lQsoGLI1Xq4bllwiEi2YF5QE/gnxir+wGjjDErjTGHgC5AEaBNykaplFJxC48IZ/zO\n8bSv0J4SuUs8WF4oeyH82/lz8MpBahStwQcNPnBhlEolH7dMOIBJwApjTEDUhSLiDRQGNkYuM8bc\nBHYBtVM0QqWUAowxbDixget3rkdbvvz35Ry/fpz3ar8Xa5uGJRuyrfs2VviuIGOGjCkVqlJO5XYJ\nh4i8DFQB3rezujBggMsxll+2rVNKqRQ1cvNInp/7PKUnlGbcjnHcDbsLwJc7v6RusbrULFrT7na1\ni9Umv1f+lAxVKadyq7tURORRYDzwnDEm1NXxKKVUfL7Y8QUjN49kaL2hXAu5xuANg/l699d0q9yN\nbWe2sbTjUleHqFSKcauEA/ABCgBB8t/9YRmA+iLyNlAOEKAQ0Vs5CgF7E6q8f//+5MoVfchgX19f\nfH19kyF0pVR6MmXPFAasH8CQp4fw8bMfA/C/p/7HkIAhfLTlI0rlKcULZV9wcZRKJY6/vz/+/v7R\nlt24ccOhbcUY44yYnEJEsgElYiz+FjgKjDbGHBWRC8Dnxhg/2zY5sZKPLsaYxXHUWw0IDAwMpFq1\nak6LXymVPsw7MI8uy7rQt2ZfxjcdH2v8jMALgXhl9KJ8gfIuilCp5BMUFISPjw+AjzEmKK5ybtXC\nYYy5DRyJukxEbgPXjDFHbYvGA8NE5C/gFDAKOAf8lIKhKqXSKf+D/nT7sRvdq3THr6mf3cG6fIr4\nuCAypVzLrRKOOERrojHGjBURL2AqkBvYCjQzxtx3RXBKqfTBGMO4HeMYuGEgXSp3YVqrabHmRFEq\nPXP7hMMY86ydZSOAESkejFIqXQqPCOedn9/hmz3fMKzeMD565iMdhlypGNw+4VBKKVcKCQ3B9wdf\nVv2ximktp9HLp5erQ1IqVdKEQymlkijCRNByQUt2n9/Nct/lNH+suatDUirV0oRDKaWSaPbe2Ww6\ntYmNXTbyrHesq7tKqSiSlHCIiAdQBihIjNFKjTFbkiEupZRK1f6+8zeDNgyi85OdNdlQygGJTjhE\n5ClgAdZ4GDF7RRmsgbiUUipNG7JxCKERoYx9fqyrQ1HKLSSlhWMKsAdoAVwkxm2pSimV1v12/jem\nBU7jq6ZfUTi7TtOklCOSknA8BrQ3xvyV3MEopVRqFx4RTp/VfahcuDJv1njT1eEo5TaSknDswuq/\noQmHUirdmRE0gz0X9rC9x3Y8PbTfvVKOSsr/lq+BL0SkMHAQiDZrqzHmQHIEppRSqc3ei3t5f+P7\ndK/SnTrF6rg6HKXcSlISjh9sf2dFWWawOpBqp1GlVJpzLeQawwKGMTVwKhUKVGDMc2NcHZJSbicp\nCYd3skehlFKpUFhEGNMCpzEsYBjhJpwvm3zJWzXeImOGjK4OTSm3k6iEQ0QyAh8Co4wxJ50TklJK\npQ59V/dlSuAUelTpwWfPfUbBbAVdHZJSbitRUxkaY0KBdk6KRSmlUo2L/15k5t6ZfNboM2a2nqnJ\nhlIPKSlzJ/8ItEnuQJRSKjWZuHsimT0z80b1N1wdilJpQlL6cPwJfCAidYFA4HbUlcaYCckRmFJK\nucrt+7eZvGcyPav2JHeW3K4OR6k0ISkJx2vAP4CP7RGVATThUEq5tW/3fcuNezfo91Q/V4eiVJqR\n6ITDGKN3qSil0qzwiHD8dvrRvkJ7SuYu6epwlEozdJg8pZSKYvnvyzl+/TgL2i1wdShKpSlJmS12\nVnzrjTE9kh6OUkq51he/fsHTxZ+mZtGarg5FqTQlKS0ceWI8zwhUAnIDAQ8dkVJKuciuc7vYfnY7\ny15a5upQlEpzktKH48WYy0TEA5gMHE+OoJRS6mEEhwQzavMo+tToQ9n8ZR3aJsJEMHbHWMrkLUOr\nx1s5OUKl0p+kjMMRizEmAvgS6J8c9SmlVFKFhIbQckFLJuyeQM0ZNfnp2E/xlr9+5zp+v/pRbmI5\nlh5dyuC6g8ngoVNCKZXckiXhsCmNdkJVSrlQWEQYvj/4cvDKQQK6BPBcqedo830bhgcMJzwi/EG5\ne2H3WH98Pa/99BpFvyzKoA2DqF6kOlu7b6VHVe2GppQzJKXT6JcxFwGPAC2AOckRlFJKJZYxhr6r\n+7Lqj1Us913OM97P0LBkQ8ZsH8PQgKHsubiHNmXb8PNfP7PhxAZuh96mRK4SDKs/jNeqvkah7IVc\nfQhKpWlJaZGoGuN5BHAVeI/oU9YrpVSKGb1tNFMCpzCj1QyaP9YcABFh8NODqfZINXx/8GXd8XXU\nKVaHYfWH0fyx5jxR8AlExMWRK5U+JKXT6DPOCEQppZLqu/3fMSRgCB82+JDXqr0Wa33j0o051e8U\nYRFh5Mka80Y7pVRKSHQfDhEJEJFYkwuISE4R0dtilVIpas1fa3ht+Wu8VvU1PmzwYZzlcmTOocmG\nUi6UlE6jDYFMdpZnAeo9VDRKqTTt6u2rLP99OddCriVLfbvP76bdonY0K9OMKS2n6OURpVIxhy+p\niMiTUZ5WEJHCUZ5nAJoC55MrsHjieB94ESgH3AF2AIOMMX/EKPcR0BNrQLLtwJvGmL+cHZ9Syr7w\niHDaLWrH1jNbEYQqhavQyLsRTco0oZF3o0QnC39c+4MWC1pQuVBlFrZfiKeH3iSnVGqWmP+h+7Bm\ngzXYH1H0DtA3OYJKQD3ga2APVvyfAetEpLwx5g6AiAwC3ga6AKeAj4G1tjL3UyBGpVQM43aMY9uZ\nbSzusJhb92+x8eRG5h+cz7hfx7Gw3UJeqvSSw3Vd/PciTeY1oYBXAVa+shKvjF5OjFwplRwSk3B4\nY90CewKoiXVnSqT7wBVjTLi9DZOTMaZ51Oci0g24AvgA22yL+wGjjDErbWW6AJeBNsAiZ8eolIou\n6GIQwzcNZ1DdQbSv0B6AblW6YYyh/rf1mbl3psMJR8DJAPqs6kNoeChbum0hb9a8zgxdKZVMHO7D\nYYw5bYw5ZYzxMMbssT2PfFxMiWQjDrmxWl3+BhARb6AwsDGygDHmJrALqO2KAJVKz0JCQ3h16atU\nKliJkc+MjLZOROhauSsbTmzg3M1z8dZz5OoRWi5oSaPvGpE3a142dNlAsVzFnBm6UioZJWmkURHp\nLCLbReSCiJSwLesvIq2TN7wE4xBgPLDNGHPEtrgwVgJyOUbxy7Z1SqkUNGj9IE79c4p5beeRKUPs\n/uYdKnQgs2dm5h+Yb3f7W/dv8fqK13li8hMcDT7K4g6L2d5jO+Xyl3N26EqpZJSU22LfxJo3ZTVW\n60LkpAPXgf8lX2gO+QaoALycwvtVSjng5z9/ZuJvE/n8+c+pUKCC3TK5suSiTbk2zNk/B2NMrPUj\nfxnJ3ANz+aLxFxx96yjtK7TXu1GUckNJ6dbdF+hljPlRRAZHWb4HGJc8YSVMRCYCzYF6xpiLUVZd\nwuprUojorRyFgL3x1dm/f39y5coVbZmvry++vr7JErNS6cmd0Dv0WtGLJqWb8FaNt+It27VyV5od\nasaeC3uoUbTGg+Wn/znNhN0TGFpvKP97KqV/zyilYvL398ff3z/ashs3bji0bVISDm/sf3HfA7Il\nob5EsyUbrYEGxpgzUdcZY06KyCWgEXDAVj4nUAuYFF+9fn5+VKtWzTlBK5XOTNw9kcu3L7O5+eYE\nWySeL/U8j2R/hDn750RLOIZvGk7erHl5t/a7zg5XKeUAez/Cg4KC8PHxSXDbpPThOAlUsbO8KXA0\nCfUlioh8A7wKvALcFpFCtkeWKMXGA8NEpJWIPAF8B5wD4p+nWimVLG7cvcHo7aPpWbUnpfOWTrB8\nBo8MdHqyE/6H/Lkfbt25vvfiXuYdmMeIBiPInim7s0NWSjlZUhKOL4FJIvIS1qWLmiIyFGs8jLHJ\nGVwc3gByAr8AF6I8OkYWMMaMxRqrYyrW3SlZgWY6BodSKWPcjnHcCb3D8AbDHd6mS+Uu/H3nb1b9\nsQqAQRsG8Xi+x+3OjaKUcj9JmbxthojcwRpMywtYgPWF388YszCZ47O3f4eSJGPMCGCEU4NRSsVy\n+dZl/Hb68U6tdyiSo4jD21UqWIlqj1Rjzv45ZMuUjfUn1rPspWU6gqhSaUSS/icbY+YD80XEC8hu\njLmSvGEppdzVJ1s/IWOGjAyqOyjR23at3JX31r3HH9f+oG6xurQum6J32iulnChJ43BEMsaERCYb\nIpJFRAYkT1hKKXd08vpJpuyZwsA6A5M0M6tvJasz2tHgo3z+/Od6+6tSaUiiWjhEpADW3R73gY3G\nmHARyQj0Ad631Zdit8YqpVKXEZtHkM8rH+/UeidJ2xfIVoDOT3Ym3IRTu5gODKxUWpKY2WKfBlZi\nddg0wB4R6Q78CIRh9ZeY44QYlVI2J6+fJMJEOHTnR0o7cvUIc/fPZWLziWTLlPQ75Ge1npWMUSml\nUovEXFL5GGt00ScAP6AGsAwYYoypYIyZEjlbq1Iq+Z29cZZaM2rx2NeP8dKSl9h/ab+rQ4rmo80f\nUTxXcXpW6+nqUJRSqVBiEo4ngI+NMYeB4VitHAONMUucEplS6oF7Yfdov7g9WTyz8FXTr/jt/G9U\nmVqFlgta8uvZX10dHkeuHmHR4UUMqTfE7nwpSimVmIQjDxAMYGvJCAEOOSMopVR0/db0Y9+lffzQ\n8Qf61urLH33/YO6Lczn5z0nqzKrDOz+/w51Q1zUwfrzlYx7N+SjdqnRzWQxKqdQtsXepVBCRJ0Xk\nSaxBv8pGPo+yXCmVjGbvnc3UwKlMaj7pwbDfnh6edHqyEwffPMiEphOYHjQdn2k+BF0MSvH4jgUf\nY+Ghhbz/9PvauqGUilNiE46NwD7bwwurE+k+rLlVIv8qpZJJ4IVA3lz1Jq9Vfc1u3wgP8aBvrb4E\n9g4ks2dmnprxFKO3jSY8IjzFYvx4y8cUzVmUHlV7pNg+lVLuJzG3xXo7LQqlFKf/Oc2c/XP45+4/\n3Lh7g5v3b7LtzDaeKPQEE5tPjHfbCgUqsKvnLj7c9CFDNg5h65mtLGy3kByZczg15j+u/YH/IX8m\nNJ1AZs/MTt2XUsq9OZxwGGNOOzMQpdKz0PBQWi9szYnrJ3g056PkzJyTXFly8Xyp5/nk2U/I4pkl\nwToyZcjEZ899RsOSDem4pCNPz36alb4rKZarmNPi/njLxxTOXljnO1FKJUgnKVAqFRizfQyHrhzi\nt16/UfWRqg9VV5MyTdjRYwctFrSg5oyarPBdQfUi1ZMp0v/8ee1P5h+cz/gm4x1KiJRS6dtDDW2u\nlHp4R64eYdSWUQysO/Chk41IFQtWZFfPXZTMXZL6s+vz07GfkqVeAGMM646vo92idhTKVohePr2S\nrW6lVNqlCYdSLhQeEU6Pn3pQKk8pPmjwQbLWXSh7IQK6BNC4dGO6/tiVG3dvPHSd285so+GchjSZ\n14TsmbLz08s/aeuGUsoheklFKRf6atdX7D6/m209tjnliztrxqxMbjEZ76+8mfTbJIbUG+LQdrvP\n72bAOmsuRk8PTzw9PPn3/r/sPLeTyoUqs9J3Jc0fa66TqymlHPZQLRwikl9EWojICyLySHIFpVR6\n8NfffzEsYBh9a/alTrE6TtvPIzkeoUfVHvjt9OP2/dsObbPw0EIOXTlEydwlKZy9MLmz5ObRnI/y\nffvvCXo9iBaPt9BkQymVKElu4RCRdsBM4A8gI9YgYG8ZY2YnV3BKpVV3w+7S/afuFMpeiE8afeL0\n/Q2sO5BpgdOYHjSd/z31vwTL7z6/m8alG/Pdi985PTalVPrgcAuHiGSPsehDoKYxpqYxpirQAXD+\nJ6dSbu5++H06Lu7Ingt7mPviXLJnivlfK/mVzF2STk92YtyOcdwLuxdv2dDwUIIuBlGzaE2nx6WU\nSj8Sc0klUERaR3keBhSM8rwQcD9ZolIqjQqLCOPVpa+y9vhalr20jKeLP51i+x789GAu/HuB7/bH\n32px+Oph7oTd0YRDKZWsEpNwNAF6i8gyESkC9AO+F5FLIhIMjAb6OCNIpdKC8Ihwuv3YjR+P/cji\nDotpWqZpiu6/XP5ytKvQjtHbRxMWERZnud3nd5NBMlC1cPLcoquUUpCIhMMYc8oY0wJYBGwGqgBl\ngOeB54DixpjVTolSKTcXYSJ4feXr+B/yZ0HbBbxQ9gWXxDHk6SGcuH6C7w99H2eZ3ed3U6lgJbJl\nypaCkSnlmLAwiIhwdRQqKRJ9l4oxxh+oAVQGfgE8jDH7jDF3kzk2pdKMZUeXMXPvTL5t/S0dKnZw\nWRxVH6lK88ea8+m2T4kw9j+1d5/frZdTVKp04wbUqgWVKsH+/a6ORiVWohIOEWkuIu8B1Y0xPYGB\nwHwR+VxEsjolQqXSgHkH51G9SHU6V+7s6lB4/+n3OXL1CAEnA2Ktu3X/FoevHtaEQ6U6ISHQqhWc\nPAmenlCzJnz1FRiT+LoiIuD48eSPUcUvMXepfAHMxmrdmCoiw40xm4FqwF1gr4g0c06YSrmvf+7+\nw+o/V+NbydfVoQBQt1hdvHN7s/jw4ljrgi4GEWEiNOFQqUpoKLz0EgQGwqpVsHs39OkD//sftGgB\nly8nXIcxsG8f/N//QfHiUKYMzNZBHFJUYlo4ugHNjTEvYyUdnQGMMfeNMcOBtoBjwxgqlY4sO7qM\n0PBQXqr4kqtDAUBEaF+hPUuPLY3VeXT3+d1ky5iNigUquig6paKLiIAePWDtWli6FGrXhixZwM8P\nVq+2kpCyZaF9e5g0CY4csZKLsDA4eBC++w7694eKFaFqVfj2W2jdGl58Efr1g9M6D3qKSczAX7cB\nbyAQKIbVqvGAMeYIUC/5QlMqbfA/5E/9EvUpmrOoq0N5oEOFDny+43O2nN7Cs97PPli+6/wufIr4\nkMEjgwujU+nVoUOweLGVUGTLZj127ID588HfH5o0iV6+WTM4cAAmToRNm6wWj7AwyJcPbt2Ce7Yh\nZ0qVgjp1YNw4eP55yJjR6g/yxBPQvTts2AAeKTSz2NWrcOKE1RclvUlMwvE+8J2ITAC8gK7OCUmp\ntOPyrctsPLmRb5p/4+pQoqlepDolcpVg8eHF0RKO3ed307FCRxdGptKrjRutVocMGazH7dtw967V\nX+Obb6xLKvYUKgSjRln/vn3bSlC2bYM8eawWjSpVIFeu2NvlymW1djRqBF9/bbV2ONvu3dYxXr5s\ndXqtmEYaEsPivss+msTcFjsfq2WjNVDSGJN8810rlUYtPrIYD/GgfYX2rg4lmqiXVcIjwgG4dOsS\nZ26c0f4bKsUtXGi1VtStC2fPQnAw3LljfZHdugVvvOFYPdmyWS0YI0darR0NGthPNiI9+yz07QuD\nB8OxY8lzLHGZPRvq1YMSJcDbG955J2kdXlOb27fh7bcdK5uoRiRjzDVjzG/GmH+SElhKEpG3ROSk\niNwRkZ0iUsPVMan0x/+QP41LNyafVz5XhxJLhwoduHL7ClvPbAXgt/O/AWjCoVLU+PHg62s9li+H\n7FFG+s+QATJndu7+R4+2OpF26WJ1Tj1/Hn7+GcaMgREjrOTnYYSGWslFjx7WPjZtsu6uCQiAH35I\nlkN4KA8zpsmNG9ZlrkOHHCufJqenF5GXgC+A3sBuoD+wVkQeN8Y85OmjlGNO/3OaHWd3MPfFua4O\nxa6aRWtSLGcxFh9eTMOSDdl9fjcFsxWkeK7irg5NpUF37sCiRfD339av4tu3rb4MixbBwIHWF78r\nJiD28rI6ltapY12GuW2bUDlnTuvL+Kuv4KOP4M03rcs7iXHnjtVBddMm67LQG29Yx9i8ObRsCe+9\nZ/3byyv5j8sR8+ZZd/uMHm3Flph+LMHBVrJx8iRMmQJdHehkkULdZFJcf2CqMeY7Y8wx4A0gBOgR\n3wNNnH8AACAASURBVEahoY7v4MQJKxNWKi4LDy0ki2cWWpdtnXBhF4h5WWX3BWvAL512XiW3W7es\n21e7dYMPPrA6eS5aBEePWv8eM8Y1yUakWrWsL99Bg+Cnn6wv0X/+sT7nO3Sw+ndUrWq1Sjgq8lbe\nbdtg3TorYYl6jH5+cOmSdeyucOeOdSkpb1546y1o3Dj6HTvGQFCQdewvv2y9TwcOWEnYpUvQsCGc\nOwe//GINxOYQY0yaegAZgVDghRjLvwWWxbFNNcC0ahVoIiJMnK5cMWbiRGNq1TIGjMmSxZivvzYm\nPDzubVT6VXlyZdNhUQdXhxGvHWd2GEZgfjn5i8k9Orf56JePXB2SckPh4cZ8/70xp07FXnf9ujF1\n6hiTI4cxW7emfGzJYc8e6xjAmDFjEi4fHm5Mp07GZMxozM8/x11uyBBjMmc25sSJ5IvVUWPGGOPp\nacyffxqzbp0xxYoZkz27MZMmGTNunDGVKlnHW7iwdewZM1rP8+a1lhUtaszRo1ZdgYGBBjBANRPf\n93N8K93xATwCRAC1YiwfA/waxzbVrBcr0Hz6aew35tgxY9q0sd4cT09jWrUyZuFCY/r2tV7Bxo2N\nOff/7d13eFVV1sDh306j9x46BIiiICCIiHRpiqCOIspQVNTPio69omPFioNlsAAiojIiFqoiIEUE\nQlGK9N5rgNBCsr4/1g0kIQkhuTVZ7/PcR3POPmfvzb25Z2XXrefxTps8b8XuFcIgZNyKcYEuSpaS\nkpOk8luVpdOoTsIgZPKayYEukgkxJ0+K9Omj34WRkSL/939nvg/37BFp3FikVCmR+fMDW87cSk4W\nefJJrec332Sd7t57RZzTICwrR46IVKmizxd/2r9fpGRJfa9SxMeL3HGH1i8qSuSmm0QmTBBJTNTz\nR4+K/PqryKBBIn37pg2SshtwOJE8MEw2FedcJWAbcLmI/JHq+OtAKxG5PINrGgNx1aq1YvPmEjRp\nAtHRkJQEUVG9mDChF1Wr6uIxPXtCuXJnrp06VedxHzum/Vg32YzCfEdEGLdyHGv2r+Fo4lGOJh5l\n4faFLN65mF2P7KJgRMFAFzFLAycPZMgfQwDY99g+ShcqHeASmVBx9Kh+502dCsOG6XTPwYN1HMRd\nd+lU1z174OefoUGDQJc290Tg1lt1AbIZM6B587PTPPssvPSS/nsMGHDue379tXZZVK+uz5aU1003\naTeULzzxhE4FXrcOKlZMe27lSj1WqlTG144ZM4YxY8akORYfH89vv/0G0EREFmWacVbRSCi+yEWX\nysKFcdKrl3aVvP22SI0aGuk995xGd5nZt0+jQRAZPjzzdCZvGrdinDAIKf16aan6dlWp95960uij\nRjJ49uBAFy1bZm+aLQxC6rxXJ9BFMSFk3z6Ryy8XKVJEm+RTxMeLvPiiSIkSItHRZ5rd84pjx0Su\nuEKkXLm0f+X/9ptI27b6HBh8Hr/6yckio0Zp68kdd2hrR61aItWq+aa7futWfcY9/bT37plvu1RE\nA4h5wJBUPztgC/BoJukbAxIXF3f6wwQiV10lsnp19v7Bk5NFBgzQJsXp07N3jQl9CScTpPo71aXL\nF10kOasBQEEspVul97jegS6KCRHbtolceKFI2bKZd5XEx+v4jbxozx6R2rVFYmNFJk8W6dBBnxkN\nG4p8/33u7z9rlt5v5szc3yu9O+/UcRgHD3rvntkNOPLktFjgbWCEcy6OM9NiC6OtHFkqWFA3B1q8\nWBeNye7I6W9X/o+dbb/gik1fcP31RZk3D+rWzXkFTGh4bfZr7Diyg1/6/BKyszvCXBhTek+hVKFM\n2lCNSWXPHl2dMyFBZ2DUq5dxuuLF/VsufypbVp8Tl18OnTvrLI1vv4UePbyzRHqLFlCjhs6cadUq\n9/dLsWoVfPqpzozJakE0X8mT02JF5BvgEeBFYDHQAOgkInuyc32JEjrlJzvPj0MnDtF3fF9uHHsj\nP67+ngGv/krFitr3tm9fzutgckdE+Hzp5/Qd3/f0Spretm7/OgbPGcyjLR4lpnSMT/Lwl/rl6xNd\nLDrQxTBB7uBBXXvhwAEdn5FZsJEf1Kun62uMH6/LlF9/vff2YwkL07Ei33yjy7t7Q1KSrr4aHa3T\nYAMhTwYcACLygYjUEJFCInK5iCz0dh6zN8+m4UcN+W7ld4zsMZIaJWswb9cvTJigK7Bdd92ZzYOM\n/xw8fpBbxt1C3/F9+Xzp58TtiPNJPg9OfpAKRSvw1JW2SbLJ+xISdLGqjRt1EGidOoEuUeA1bKgL\ne/li47dbb9XnyMSJub+XiC7hPnWqTm4oGKBx7Hk24PC1Dxd8SOsRralcrDJL715Kn4Z96FCzA9M2\nTKNmTY1658/Xkcd33aVL5Vrw4XuzN8/mko8uYdKaSYy+fjQlC5Zk4hov/Mam89Pqn5iwZgLvdHqH\nwpEBWibQ5Ct//w2ffKIz4vztxAn9A2rJEv0uu/hi/5chv7ngAmjSRLtVcuuVV+DDD+G//9WVTQPF\nAo4ciD8ezxPTnqBPwz7M7DeTmqVqAtC+VntW7FnB9sPbadEC/vgDevfWrY+7dtV+v4ED88aGPcFo\n6PyhtB7RmirFq7D07qXccvEtdKzdkUlrJ3k1n+OnjvPg5AfpWLsj18Ve59V7G5ORxERd8XLAAKhd\nW6c0equp/VyOHtW8f/sNfvwxf26rHii9e+tYkQMHcn6Pzz6DZ57R5dnvuMN7ZcsJCzhy4MOFH3L8\n1HFebvcy4WHhp4+nbPM9bf00QJvb3nwT1q6Fv/7SHfWGDIHRowNS7Dwt4WQCT057kn4N+zGj3wyq\nl6wOQNeYrizYtoDdCbu9lteniz5lc/xm3uv8XsgOFDWh5Z13YMUKHZjYsaP+4RITA++/79sWj5Ql\nrKdNg+++g7ZtfZeXOdvNN+uOuf/7X86unzAB7rxTW9mfeca7ZcsJCzjO07HEY7wz7x36Nux71iC7\n8kXK07BCQ6ZtmJbmuHM6ivnVV/UDNHCgjvQ23vPtym85cvIIz7R6hoiwM5OvOsd0RhCmrJ3itbwm\nr5tMq+qtqFc2H4+YM36zcaPuWvrAAzowccQI7V5p106PVaumi03t3Jmz+8+cqU3ua9emPb58uS5s\ntXWrtm506ZLLipjzVrEiXHXV+XernDgBb7yhLVPdumlgGgx/G1nAkcqmg5vOmWb4kuHsPbqXx654\nLMPz7Wu255f1v6Ss73GWIUO0S2XgwFwV1aTz2eLPaFuj7enurRQVilagSaUmXutWOZV8ipkbZ9K+\nZnuv3M+YrKQM9itdWpvEU9Spozucrl4Nt9yiW7xXq6Y7dn7xBXz1FYwdqytizp+f+f1Xr4Zrr9W/\nfuvU0QBj6FC9rkULndr6xx86lsAERu/eGvBtOvfjCRHt9rroInjySe2C+/JLCA8/97V+kdUiHfnl\nhWfhr4oPV5Rth7ZlurhJYlKi1Hi3hvQc2zPTNBNXTxQGISv3ZL683siRuqjLTz9lmsSch7X71gqD\nkFFLR2V4/tlfn5XSr5eWU0mncp3X71t+FwYh87bMy/W9jDmXceP0u+Lbb7NOd+CAyBtv6OqU+thJ\n+3rrrbOvOXxYpH59kXr1RHbu1P2hrrlG94sCkc6ddfEuE1iHD4sULiwZ7vN1/LjIunW6QNjo0bqv\nF+hCZMuW+a+M+Xql0fN9pQQc5R8uLxd/cLEcOJbx8nhfLP1CGIQs3rE403/4wycOS+SLkTL0j6GZ\npklO1g9G1aoihw5lmsxk0zPTnpHirxaXhJMJGZ5P2RF17ua5uc7rpZkvSfFXi0tiUmKu72VMVg4d\n0h05r7lGstzFOrXkZN2G4fBhDUL27hV54gn9pn/ttbTpevbU3UFXrEh7jz17dKnyRPuIB41bbtHl\nzp9+WqRXL5HmzUXKlz87sKxTR2T8+Ox/Xrwlv680miNDuwzlrri7uHbMtUzpPYVCkYVOn0uWZF6b\n8xpdYrpwScVLMr1H0aiiNK/SnF82/MK9zTJeXcU5nZ5Uvz489ZSOODc5k5ScxIilI7i5/s2ZTk9t\nVrkZpQuVZuKaiVxe9ay9+87LtA3TaF29dZpxIsbk1urVuulZWJh2YxQrplNQ9+/X74fs9r87B4UK\npT32yisQFaUbdp08qeM93nlHNw0bO1anX6ZWtqyOGzDB48479b0aORJq1YLYWB1TU60aVKmir8qV\n9XMTzOxbM5XapWvz0y0/0eHzDlz95dXcfendtK/ZnjKFyzBh9QSW7V7GB10/OOd9OtTqwNu/v82p\n5FOZPphq1ICXX4aHH9YPk81rz5lpG6ax9dBW+jfqn2ma8LBwOsd0ZuLaify73b9znNexxGPM3TKX\n1zu8nuN7mPxp6VJ9SBQocPa55ct1qfCICKhUCQ4fhkOHdPbJ22/rd0VuOAcvvACRkRpsrFqlYzwe\nfRT+8Y/c3dv4R+vWOhA0GAZ+5oYNGk2nRdUWfNfzO3Yc2UHP//Wk3BvluHTYpTw05SGuqHoFV1a/\n8pz36FCrA/En4lm0I/NdegHuuUcH88ya5a3S5z+fLf6MC8pewGWVs14coEtMFxbtWMTOIzkcyg/M\n3TKXE0knTk9/NiY73nsPLrlEB16mH8C5ZIlOO61YUfdvWrBAZ6Bs365rL9x9t/fK8cwz8NprOi2/\ndWtt+TChI9SDDbCAI0OdYjqx8t6VbHloC591/4x6ZeshCP9um72/jptGN6VoVFF+Wf9LlumiorQ5\n888/vVHq/Gf/sf2M/3s8tzW67ZzrYXSq3QmHY/LayVmm23BgA00/bsrGgxvPOjdtwzTKFS7HReUv\nyk2xTT4ybBg8+KAuuFSwoG729eij2noxf76ua1GzJvz6K5Qr5/vyPP64ToP97jttUTHGnyzgyEKV\n4lXod0k/Rl8/mnUPrKNtzeytehMZHkmbGm3OGXAA1G943AKOHBrz1xhOJZ+id4Pe50xbrkg5mlZu\nes5lzkf9OYqF2xfy75lnB5e/bviVdjXb2WJf5jQRbZnYsOHsc6NGaQvFffdp4DFvnrYq/Oc/0KAB\ndOgAF16o+5KULu2/Mrdqlbd3cjXBywIOH+lQswNztszhaOLRDM8nJSfxwowX+CamKEv2zyI52c8F\nDGJr9q3hsk8uY/ji4VmmG75kOFfXvZqKRStm675dY7oydd1UTiWfyjTNN8u/oVTBUoxcOpK1+8+s\nhBR/PJ4F2xfY+hsG0GXFR4yASy+Fxo11IF/Llrox1r59OsCvXz+4/XZde8c5bVF4/HEdz1GlClxx\nBUyZEphtwo0JBAs4fKR9rfacTDrJb5t+O+vcjsM7uGrUVbz424tEhkVxrOpPbNzo/zIGo982/Ubz\nT5uzdOdSHpj8AFvit2SYbsraKcTtiOO2S27L9r271ulK/Il45m6Zm+H5FXtWsHzPcj68+kPKFynP\nS7+9dPrczE0zSZZk2teygCM/WbFCZ5R98IG2TLz7LjzyCFStCv37Q4UK8NNPurhSiRLamlGpEvTq\npa+PPjp7J9GUbc0nTYKiRQNTL2MCwXrxfKR+ufrUKlWLbmO60aZGG7rX6073et1ZuXclvcf1JiIs\ngml9pjFk9jDGb5nO0qX6V1J+9sWfX3Db97fRslpLPuv+GS0+bcH9k+5n/M3j06Tbk7CHft/3o2Pt\njnSr1y3b928S3YQqxaswfMlwWlVvddb5scvHUrxAcbrHdmd3wm4GThnIU1c+Rd0ydfl1w69UL1Gd\nmiVrZnBnk9ccPaore771FiQlaetEeLi+ihTRrcPvvTftFu29esGuXTrddPduXY48aFZ4NCYIWAuH\njzjnmHvbXIZ0HkKYC+OhKQ9R7d1qdPqiE40qNWLJ3UtoU6MNXS5oC5XimP/noUAXOWBEhEEzBvHP\n7/5J7wa9mdx7MjVK1uC9Lu/x/arv+W7ld2nSDvhxAIlJiYzoPoIwl/2PcJgL4/5m9zP6z9HsOLzj\nrPNjV4zl2nrXUjCiIAOaDKBS0Uq8OFPXk562YRrta7a38Rv5wNSpujT0u+/C889r98nJkzrQ88gR\nDSrefTdtsJGiQgXd3+Sll2xQpjHpWcDhQxWKVuCepvcwpfcU9j66lzE3jGFkj5FMunUS5YuUB6Bd\nzbYQlszMDfl3buw3y7/hhZkv8Eq7V/j02k+JCo8C4IYLbuCautdw/6T7OXRCA7KPF33M96u+59Nr\nP6VSsUrnndedTe6kQEQBhs4fmub48t3LWb5nOTddeBMABSMK8vSVTzNm2RhmbpzJst3LrDsljzt2\nDPr0gU6ddO2LP//UqaRRUYEumTF5gwUcflKiYAluvuhm+jTsk+av8tqlalM0uQorj00PYOkC69PF\nn3JltSt58son07QgOOd4v+v7HDx+kKenPc3fe/9m4OSB3NXkLrrHds9RXiULluSORnfw4cIPSTiZ\ncPr42BXandKxdsfTx25rdBuVi1Wm5/96AtC2hu3NnVcdOKDbvn/7LQwfrtux160b6FIZk7dYwBFg\nzjkaFGvLwZLTOXIk0KXxv62HtvLL+l/o27BvhuerlajGv9v+m/cXvE+3Md2oVqIab3V8K1d5Ptj8\nQeJPxDNiyYjTx8auGEv3et0pEHFmKcgCEQV4ptUz7ErYxYXlLsxRi4oJftu361TRFSs00OjXL28s\nsmRMsLGAIwhcFdMWKi3m9yUHAl0Uvxu1dBQFIwpyY/0bM01z/2X306hSIzYd3MSXN3xJkagiucqz\nRska/OPCf/DOvHdISk5i+e7lrNizgpvq33RW2n6X9KNO6TpcU+eaXOVp/CcpSWeV1Kmj3SMvvQQz\nZmiXSXqrVuk27PHxMHu2bs9ujPENG9YUBG5u3oYXlgrjF/3GVS1z1lUQikSEkUtHcv0F11O8QOYr\nEUWERfBjrx/ZdHATjSs19kre/7r8X1z2yWX8sOoHluxcQvECxbmq1tk7VkWFR7H4rsVpWj5M8Fqy\nBO66S1fx7NlT9yV5803dQyQyUqezliihC18VLw6//64rfE6ZoueMMb5jAUcQiK1Yk8iE6sw+Oh3I\nPwHHH9v+YNW+VQztOvScaaOLRRNdLNpreTer3IyW1Vry5u9vcuDYAXrE9sg0qMhti4rxvSNHdBrq\nu+/qJmmzZulCXADJybBsmbZgbN6sG6MdOqStGl266M6pZcoEtPjG5AsWcASJyoltWRc+I9DF8KuR\nS0ZSpXiVgA3G/Nfl/+K6r68D4I2r3ghIGUzuzZ4NffvCjh3affLww2lnloSF6VLiDRoErozGGBvD\nETQuLdOWhGJL2ZuwL9BF8Yvjp47z1fKv6NOgD+FhgVkdqVvdbtQpXYcSBUpwVe2zu1NMcDt+HB57\nTAd8Vqqk01ifeMKmsRoTrCzgCBJX19e/8r+NmxngknjXgWMHuO7r6/hh1Q9pjv+w6gcOHj9In4Z9\nAlQyCA8L5+NuH/Pfa/57eu0P41vffqstELndO2jxYt3HZMgQ3XJ95kyIifFOGY0xvmEBR5Bof2lV\n2F+bn5blrfU4nvjlCb7/+3u6f9WdJ3958vTGaSOXjqRZdHMSd9bj2291v4olS3L/IDpfrWu0pudF\nPf2baT714Ydw4406ZuLTT3N+n6VLdXxGRAQsXKitHLaEuDHBz8ZwBIkqVSBqW1vml847AcesTbMY\ntmgY73d9n4STCTwx7QlmrptPhSVvM7H8ZJj4ARffqWmd062+S5eG1q2hXTtdD8E2twp9IvDqq/D0\n07rs9+HD8OijcPXVEH2e44D37oUePXQDtNmzoXBh35TZGON9IdPC4Zyr7pz7xDm33jl31Dm3xjk3\nyDkXmS5dVefcBOdcgnNup3NusHPnseFGgDgHtcLaspvl7E7YHeji5NqJUye486c7ubzK5dx96d30\nrPooXXZP4/e1yxlf7lLCXST/uasns2bpRldHj+oOmvfdpw+Vhx6Ce+4JdC1MboloC8TTT8MLL+gs\nkrfegkKFdPMzkezf69Qpnep65Ah8950FG8aEmqB/EKcSCzhgAHAh8BBwN/BySgJPYDERbblpDvQF\n+gEv+rmsOdK8UhsAZmycEdByeMNrs19j7f61vHDpMO6/L4yYGPjj6zY8W34R7Wq15Z7L7uS+O0rS\nsqWug1CwILRpow+l336D996DL77Q5nMTeo4cgR9+gBtu0HUwhgyB557TwLpUKRg6FMaP1zEd2fXI\nIzpWY+xYqF7dd2U3xviIiITsC3gEWJvq5y5AIlA21bG7gANARBb3aQxIXFycBNKwYSLcV1cGjP+/\ngJYjt1bsXiGRL0ZJg4FPS0SESOnSIq+8InL4cPbvcfKkSN26Ip06+a6cxrt27xYZMkSkY0eRqCgR\nEKlTR+TLLzNOf911IhUqiOzbd+57jxih9/vPf7xbZmNM7sXFxQkgQGPJ4pkdSi0cGSkJ7E/1c3Pg\nLxHZm+rYFKAEUN+fBcuJhg2Bbc34Y1Po/lm/8u9kWr1xF4l7qrPn22cYPBg2bYInnzy/8RiRkfDK\nK7oC5LRpviuvyR0R+OMP+Oc/dRzSo4/q8cGDYfVqffXqlfG177+vU1v/9a/M75+UpANM77oLbrtN\nu2GMMaEpZAeNOudigPuAh1MdrgjsSpd0V6pzQf0kr18f2FeP9fGTAl2U85aYqE3nz43/lFNdZ/Fw\n1V95ZU1BCuRiRfDrr9e9LR57DBYs0AWcTHDYswfGjYOPP4a4OKhZE15+Gfr3z/6qnZUq6XiOO+7Q\nMTx9++qOrRGeb6Wff9ZulD//hFtv1f1RbFM1Y0JXwAMO59yrwONZJBHgAhFZneqaysAk4GsR+czH\nRfSbIkWgYkQsO5P3sffoXsoWLhvoImXL4sVw++2wZPVeCjzyBD3r9+Gtf+R+9VDn9C/lVq3g668z\n/0vZ+MeBAxpkfP01/Pqrtm506gQ//QSdO+dsauptt2mwMWyYzlqpUAFuuQVWroTJk+GKK2DePLjs\nMu/XxxjjX07OZ5i4LwrgXBngXH8TrReRU5700cB0YK6I9E93rxeAbiLSONWxGsB6oJGIZNjC4Zxr\nDMS1atWKEiVKpDnXq1cvevnxSdf30WV8XvRi3rl4FgOvb+m3fHPqrbfg8cfhwguh1sA7mLnnW1bd\nt4ryRcp7LY9rr9W9MFauhAIFdK2ORYt0QOn11+sgRONbCQlQu7bOKGrdWmeL3HCDDvj1BhFdh2Xk\nSPjyS91Y7fXX9f21Vg1jgseYMWMYM2ZMmmPx8fH89ttvAE1EZFGmF2c1wCPYXkBlYBXwBZ5gKd35\nzpw9aPROdNBoZBb3DYpBoyIih44eE54PkwItPpZFiwJblj17RLZuzfx8QoJIgQIiAwaIzFw3VxiE\nvD//fa+XY/lykbAwkdtuE+nVS6RsWR1ACCKVKon8+KPXszTpTJig/97++BVJShJJTvZ9PsYY78hz\ng0Y9LRszgE3AY0B551wF51yFVMmmAiuAUc65Bs65TsC/gaEikujvMudEsUIFqVmyBiVrr6JLF9iw\nIXBluecebebOzPTpcOIEPDDwFA/+fA9NKjXhriZ3eb0cF14IAwbAZ5/pIMQ779Spsxs2QKNG0K2b\nLhJ28KDXszYeU6fq9u2NGvk+r7Awa9UwJi8K+BiO83AVUMvz2uI55tCoKhxARJKdc9cAHwJzgQRg\nBPC8vwubGxeUjyWx3d9s+F37yOfM8V7TdXYlJ+vskP37Yd06bU5Pb9IkqFEDfj38IUt3LmXeHfN8\nthHb0KG6Z0bJkmmP//QTjBgBAwfqIMMvv9Qmf+NdP/+sAzotEDDG5FTItHCIyEgRCU/3ChOR8HTp\ntojINSJSVEQqiMjjIuLnHTpyJ7ZMLBsO/82UKRAfD9dcowPr/OnPPzXYAPj++7PPi2jA0frqnTw7\n/RkGNB5As8rNfFaeiIizgw3QB2D//jrGo04dbe1YtsxnxciXtm6FFSvgKttQ1xiTCyETcOQnsWVj\nWX9gPZWrnWDSJH2A9u3r343Npk/XAZodOuiKkOmtWQPr18Pmeo8TGRbJK+1f8V/hMlC1qrZ21Kql\nAdru0F8dPmj88osGdu3bB7okxphQZgFHEIotG0uyJLN2/1oaN4bRo3UJ6Oee818ZZsyAFi3g5pu1\nSyf9A3zSJIgseojZB8fwZMsnKVM4m4sv+FDRovDjjzqupEcPXVTK5N7PP0PjxlA2NGZpG2OClAUc\nQahe2XoArNq3CtCH5+uv68JKo0b5Pv+kJN2zom1b7aIQ0daD1CZNgthrJpOYnMgNF97g+0JlU9Wq\n2gWUsjZIgGd9h7zk5DPjN4wxJjcs4AhC5QqXo1TBUvy99+/Txx55RBdJuuMObXHwpSVLdOxImzZQ\nvrwuvpS6W+XoUW0BibzoBxpUaECNkjV8W6Dz1KzZmfUcXnop0KUJbX/+qauK2vgNY0xuWcARhJxz\nxJaNTRNwOAcffgiXX64tHuvXZ32PHTtynv/06bp9eDPPGNAePfSv3IQE/XnGDDiRmMhaN4Hu9brn\nPCMfuukmGDQInn9eBzyanJk6VbeBb9Ei0CUxxoQ6CziCVPqAAyAqSsdylCwJXbvCvn0ZXzt4MERH\na+CQEzNmaKtGyj4o3bvreIipU/XnSZOgQrNZHEo8GLQBB+iGcVWqWCtHbvz8s04zzs2eOMYYAxZw\nBK2UgEPSDUIoU0Yf+Pv2nQkEUvvkE11qvEABXSjrfJ06pYtqtU21FUpMjG4sl9KtMmkSlL/yByoX\nq0zjSo0zvlEQiIrSoOOrr+Dvv8+d3qR17BjMmmXdKcYY77CAI0jVK1OPwycPs/PIzrPOxcTobIy4\nOOjT58x02XHjdBvve+6BZ5/Vnw8fzvj+hw7pdMf0Fi3Sa9q0SXu8Rw/Nc+VKWLdO2FXqe66tdy0u\nyFeCuu02be15JbCzdkPSrFk648cGjBpjvMECjiAVWzYW4KxulRTNm+ugyP/9T7dvnzZNd1O96Sb4\nz3/gn//UwZ3jxmV8/0cf1b9cJ0xIe3z6dN21tmnTtMd79NDdQp96CiIqL2P3yY1B3Z2SokAB/RMd\nvwAAGjpJREFUeOIJnVq8dm2gSxNafv5Zg7ULLwx0SYwxeYEFHEGqVqlaRIRFZBpwAFx3HQwZoju2\ndu0K7drp7IywMKhWTbtFRo48+7qtW2H4cB0LMmDAmRVFQcdvtGwJkZFpr2nSBCpX1m6Vah2/p1hU\nMdrUaOOVuvraHXfotucvvxzokgSHQ4fg6afTvu8ZmTpVg9Igb8QyxoQICziCVGR4JDGlY7IMOADu\nv19nYnTsqK0dUVFnzvXtqy0WmzalvebNN3WRrN9/1376Bx7Q44mJ2oyevjsF9KHTo4cnXc3v6RzT\nmQIRoTGSsGBBbQUaNercs3vyg48/1i6mZ5/NPM3OnTol1sZvGGO8xQKOIBZbNpa/9517tOOgQTq+\nokiRtMevv16nNI4efebY7t0wbJgGGbGx8N57en7cOFi4UKe+ph4wmlrPnhBRehtbkheGRHdKanfe\nqQNuX3010CUJrKQk+OADXTX0o48y33cmpSuuQwf/lc0Yk7dZwBHE6pWpx6q9q3J8fbFiGnSMHHlm\nxc1334Xw8DOtGr17a8vF3XfDN9/oNU2aZHy/K6+E17/7kXAXTpc6XXJcrkAoXFjHrYwYoYFVZtau\n1Zk+J0/6tjzbtukD/7XX9D358EPt5oqL822+kydrK8+4cbrvzMMPn70a66pV2iLUt692RRljjFeI\nSL5/AY0BiYuLk2AyfPFwYRCScDIhx/eYOlUERObNE9m/X6RYMZFHH02bZudOkTJlNF3Xrlnfr8sX\nXaTtiLY5Lk8gHTkiUru21vPyy0U++0yPnTwpMnasSIcOeg5Ebr9dJDnZu/mvXy/yxhsizZtrHhER\nIqVLixQuLBIWdubYjBnezTe1zp1FLr1U6/b995rnjz+eOX/0qEiDBiKxsSKHD/uuHMaYvCMuLk4A\nARpLFs/aiIBGOyZLKTNVVu9bzSUVL8nRPdq108Gen38OFSvqOI2HH06bpkIF/Qv7ppvSjt84fuo4\na/atISExgSMnj3D4xGGmbZjG4A6Dc1ijwCpSRFcd/eEHHcdw++3w4IPa+rFrl66mOXKkjmu5+264\n+GI9f75EdN2P+fN1HETKa/dunTXTubO+H9266cDdFMePw9VXww036LW1anmv7qA7/E6erK08zmn+\nHTro56FjRx3/M3AgrF6t+Rct6t38jTH5mwUcQaxeGd3E7e+9f+c44AgP126TYcP0IXPHHRp4pHfj\njToDJXXA0f/7/ny17Ks06QpFFKJHbI8clSUYREXBP/6hr40btRvj8GHo318DjBSrV+uD+IIL0q5D\ncfIkvPMOTJyo66FceKGmqVlTN4z7+Wd9bdum6WvVggYNNIC55BJ9wBcrlnHZChaEsWPhsss0GPj9\ndyhe3Ht1/+ADHcfSs6f+7By8/baWa+hQnQI7bJgGY6n/LYwxxiuyav7ILy+CtEtFRKTCGxXk+enP\n5+oey5adaa7ftCl71+xN2CtR/46SJ35+Qv7a9ZdsOLBBdh/ZLccTj+eqLKHi1CntfihZUmTVKj02\nbZp2NYSHi3TrJtKkiXaHpHTDgMhFF4k89JDIxIki8fE5y3vlSpESJbR769Qp79Tn8GG95+OPn33u\n//5PpHhxkaJFRW65xftdScaYvM26VPKIemXrnd6mPqfq14dWreCii3R9juz48q8vSZZkHr78YcoV\nKZer/ENReDiMGaMLrF17LTRqpEukt2ypg2tTWgCSk2HzZli3Tls7KlXKfd6xsZpH16460PWtt3K/\nFsbo0dqSc/fdZ5978UVdRC46Wgey2robxhhfsIAjyMWWiWX+9vm5vs/5buQ2fMlwrql7Tb4MNlKU\nLKnTjZs1g19/1fEd//xn2gdyWBjUqKEvb+rYUbtuHnhA1w9p3PjMq1077RrJzKlTGjCllFNEu0y6\ndcu4nGXLwpw5ULp05t09xhiTWxZwBLnYsrGM+nMUyZJMmMv5LOaw87h06c6lLN65mEFtBuU4v7yi\nTh0daFqkiHfHU2THfffp+JA5c3SPmy++0Gm05crp1N1rr02bXkSPP/KI/tywob5KldL1Nt55J/O8\n6tf3XT2MMQYs4Ah6zas059ipY/yy/hc61vbPLlrDlwynfJHydIkJrbU2fMUb3SQ54ZwOMk29+NaW\nLRqIdO+uy9K//bbOJtm0SQcE//KLDoCtWxeWLtWfV6/WLqD27QNTD2OMAQs4gl7zKs1pUKEBQ+cP\n9UvAcTLpJKP/Gk3fhn2JDI889wXGr6pW1dlEn3wCDz2kXWV9+8LgwVCihE577dQp7TVHj+p/bWyG\nMSaQbKXRIOec496m9/LT6p/YeHCjz/P7afVP7D26l/6X9Pd5XiZnnNPWjSVLdCzHs8/qVNdly84O\nNkDXGSlc2P/lNMaY1CzgCAG3XnwrxQsU56OFH/k8r+FLhtM0uin1y1unfrCLiYHZs3VBr48/1hYO\nY4wJVhZwhIAiUUXof0l/Pln0CcdPHfdZPjuP7GTSmknWuhFCIiI08DDGmGBnAUeIuKfpPew7to+v\nl33tszxGLR1FRFgEN190s8/yMMYYkz9ZwBEi6pSpQ6fanXh/wftpjosIHyz4gNdmv5ar+4sIw5cM\n57oLrqNUoVK5upcxxhiTngUcIeTepveyYPsC5m/ThcBOnDrBbT/cxr0T7+X5Gc+TcDIhx/feeHAj\nK/eu5Ob61rphjDHG+0Iy4HDORTnnljjnkp1zDdKdq+qcm+CcS3DO7XTODXYuFytmBZGudbpSvUR1\n3l/wPruO7KLd5+0Y89cYXmjzAieTTjJj44wc33vOljkAtKzW0kulNcYYY84I1QfxYGArulnMaZ7A\nYiK6vkhzoC/QD3jRz+XzifCwcO5peg9fL/uaZp80Y93+dczoN4NnWz1LzZI1mbR2Uo7vPWfzHGLL\nxlKmcBZrZhtjjDE5FHIBh3OuC3AV8AiQfimjTkAscKuI/CUiU4BngXudc3likbPbG91OeFg4ZQqV\nYcGABTSv0hznHF1iujB57eQc33fOljlcUfUKL5bUGGOMOSOkAg7nXAVgGNAbOJZBkubAXyKyN9Wx\nKUAJIE8sLFGmcBlW3ruSubfPpWqJqqePd47pzLoD61izb8153zP+eDzLdi+zgMMYY4zPhFTAAQwH\nPhCRxZmcrwjsSndsV6pzeUK1EtUoGFEwzbG2NdsSFR6Vo26VeVvnIQgtqrbwVhGNMcaYNAIecDjn\nXvUM/szsleScq+ucewAoCryecmkAix10ikYV5cpqV+aoW2XOljmULVyWumXq+qBkxhhjTHBs3vYm\n2nKRlQ1AW+By4IRLuwvVQufcaBHpD+wEmqa7toLnvzvPVZCHHnqIEunWh+7Vqxe9evU616VBoUtM\nF56Z/gzHEo9RKLJQtq+bs2UOLaq2wNnuXsYYY7IwZswYxowZk+ZYfHx8tq51InLuVEHAOVcFKJ7q\nUDQ6PuMGYL6IbHfOdQZ+BCqljONwzt2JtoqUF5HETO7dGIiLi4ujcePGvqyGT63Ys4L6H9Rn0q2T\n6BzTOVvXnEo+RcnXSvJc6+d47IrHfFxCY4wxec2iRYto0qQJQBMRWZRZuoB3qWSXiGwVkRUpL2AN\n2q2yXkS2e5JNBVYAo5xzDZxznYB/A0MzCzbykgvKXkDV4lXPq1tl6c6lJCQm2IBRY4wxPhUyAUcm\n0jTPiEgycA2QBMwFPgdGAM/7vWQBkDI99nwGjs7ZMoeo8CiaRDfxYcmMMcbkdyEbcIjIJhEJF5E/\n0x3fIiLXiEhREakgIo97ApF8oXNMZ1bvW836A+uzlX7OljlcGn3pWbNejDHGGG8K2YDDZKx9rfZE\nhEVkq1tFRJiz2Rb8MsYY43sWcOQxxQsU54qqV2SrW2Vz/Ga2Hd5mAYcxxhifs4AjD+oS04VfN/zK\niVMnskyXsmGbLfhljDHG1yzgyIM6xXTiaOJR5m2dl2W6OZvnULdMXcoVKeenkhljjMmvLODIgy4q\nfxGFIwuzYPuCLNPZhm3GGGP8xQKOPCgiLILGlRpnGXAcOnGIv3b/ZQGHMcYYv7CAI49qGt2UBdsy\nDzjmbZ1HsiRzRTULOIwxxvieBRx5VNPopmw4uIE9CXsyPD9r0yzKFCpjG7YZY4zxCws48qimlXUP\nu4XbF2Z4fvrG6bSp0YYwZx8BY4wxvmdPmzyqdqnalCpYKsNxHAknE5i/bT5ta7QNQMmMMcbkRxZw\n5FHOOZpWbpphwDF3y1wSkxNpW9MCDmOMMf5hAUceljJwVCTNHndM3zid8kXKc0HZCwJUMmOMMfmN\nBRx5WNPopuxK2MXWQ1vTHE8Zv+GcC1DJjDHG5DcWcORhKQNHU3erHDl5hAXbFtj4DWOMMX5lAUce\nFl0smuhi0WnW45i9eTZJkkSbGm0CVzBjjDH5jgUceVzT6KbM3z7/9M/TN0ynYtGK1CtTL4ClMsYY\nk99YwJHHNavcjIXbF5IsyQDM2DSDtjXa2vgNY4wxfmUBRx7XNLoph04cYs2+NRw6cYi47XHWnWKM\nMcbvIgJdAONbl0ZfCujA0VIFS5EkSTZg1BhjjN9ZwJHHlSpUipjSMSzYtoDI8EgqF6tMTOmYQBfL\nGGNMPmMBRz7QNFpXHD2ZdNLW3zDGGBMQNoYjH2ga3ZRFOxaxeOdi604xxhgTENbCkQ80q9yME0kn\nAGz/FGOMMQFhAUc+0KhSI8JdONHFoqlZsmagi2OMMSYfsoAjHygcWZgm0U1oUL6Bjd8wxhgTEBZw\n5BMTb5lIwYiCgS6GMcaYfMoCjnyiTOEygS6CMcaYfMxmqRhjjDHG50Iu4HDOXe2cm+ecO+qc2++c\nG5fufFXn3ATnXIJzbqdzbrBzLuTq6Q1jxowJdBG8Kq/VB/JenfJafcDqFAryWn0gb9YppB7Ezrkb\ngM+BT4GLgRbAl6nOhwET0a6i5kBfoB/wor/LGgzy2gc2r9UH8l6d8lp9wOoUCvJafSBv1ilkxnA4\n58KBd4F/iciIVKf+TvX/nYBYoK2I7AX+cs49C7zmnBskIqf8VmBjjDHGnBZKLRyNgWgA59wi59x2\n59xE51z9VGmaA395go0UU4ASQOp0XpGTCNRf1wBs27bNL3n565pgrk9OrwvmOvmrPjnNK5jrZJ87\n/15jn7uc5+PPz2ooBRy1AAc8j3aRXA0cAGY450p60lQEdqW7bleqc14V7G9uXvvABnN9cnpdMNfJ\nvvhVML9HOb0umOtknzuV194jCIIuFefcq8DjWSQR4ALOBEcvich4z7X9ga3AjcDHuShGQYCVK1ee\n10Xx8fEsWrQoKK8BSExMDNry5eSaYK5PTq8L5jr5qz45zSuY62SfO/9eY5+7nOfjjWtSPTuzXOzJ\nich5ZeRtzrkywLkWiVgPtAR+BVqKyNxU188DfhaRZ51zLwDdRKRxqvM1PNc3EpGlmZThFmB0buph\njDHG5HO3isiXmZ0MeAuHiOwD9p0rnXMuDjgB1APmeo5FAjWATZ5kvwNPOefKphrH0RGIB1Zkcfsp\nwK3ARuD4eVfCGGOMyb8Kos/iKVklCngLx/lwzr0D3ADcjgYZj6FjOWJFJN4zLXYxsB3tpqmETqMd\nJiLPBqbUxhhjjAl4C8d5egRIRIOIQsAfQDsRiQcQkWTn3DXAh2grSAIwAh1oaowxxpgACakWDmOM\nMcaEplCaFmuMMcaYEGUBhzHGGGN8Lk8EHM65J51z851zh5xzu5xz3znn6maQ7kXPCqVHnXM/O+di\n0p0v4Jx73zm31zl32Dn3P+dc+XRp6jjnxjvn9jjn4p1zs5xzbUK8To2dc1Odcwc89fqvc65IkNZn\ngHNuuuffPtk5VzyDe5Ryzo32pDngnPvE2/UJQJ2ecs7N8WxKuN/bdfF3nZxz1T3vy3rPPdY45wZ5\nZp6FXH08ab53zm1yzh3z3Otz51wlb9bH33VKlTbKObfEk65BKNfJObfRcy7lleSceyxU6+NJl+Wm\npsEiTwQcwJXAf4DLgA5AJDDVOVcoJYFz7nHgPuBOoBk6oHSKcy4q1X3eRWe93AC0QpdS/zZdXhOA\ncKANutz6UuAnl+4hHip18nwh/gys9tyjM7oM/IggrU8hYBLwMrooXEa+RBeLa4/WvRXwX29WxsOf\ndYoEvkEHRPuSv+oUi64cPAC4EHgIuNuTPhTrA7pO0I1AXeB6oDYw1puV8fBnnVIMRhdZ9NWgP3/W\nSYBngAroCtSVPHl7k9/q486xqWlQEZE89wLKAsnoImEpx7YDD6X6uThwDLgp1c8ngOtSpannuU8z\nz89lPD9fkSpNUc+xdiFapwHAjnR5XeRJUyuY6pPu+tZAElA83fFYz30bpTrWCTgFVAy29yg7dUqX\npi+w35f18HedUqV9BFibh+rTzfO5Cw/lOgFdgOWpfrcahPLnDtgAPODrOvijPugfv1uAfv6sT05f\neaWFI72SaDS4H8A5VxONZKelJBCRQ+i02ss9hy5FpwmnTrMK2JySRnSRsr+BPs65ws65COD/0P1a\n4nxbJd/UCSgAnEyXV8riZy29WoO0clKf7LgcOCAii1Md+8WT12W5LPO5+KpOgeTPOpVMyceH/FIf\n51xpdDHBOSKSlJsCZ4PP6uScqwAMA3qjD0N/8fX79ITTbuZFzrlHnO5G7ku+qk92NjUNGnku4HDO\nObQbYbaIpKwuWhF9szPa2C1lU7cKwEnPm55ZGoCr0Df5MPoL+CDQWTxrgfiCj+v0K1DR80sX6Zwr\nBbzqubfX+58hV/XJjorA7tQHPF/4+8/zPufFx3UKCH/WydN3fR/wUU7vkY08fF4f59xrzrkjwF6g\nKtAj5yXOVn6+rtNw4IN0AbxP+aFOQ4Cb0W7xj4CngNdzWt5z8XF9srOpadDIcwEH8AHaJ3yzD++/\nC7gCaAqMR8dwVPBRfil5+qROnl+AvsDDwFG0mW89+tBO9nZ+Hr5+jwLB6pRDzrnKaD/11yLymQ+z\n8kd9BgOXoH+YJAGjfJgX+LBOzrkH0C7jlIex83YemfDp+yQi74rIbyKyTESGod999zsvD1hOxZf1\nSbOpqScw7I8GMzf6IL9cyVMBh3NuKNAVaCMiO1Kd2on+sqQPCip4zqWkicpgFPDpNM659p779xSR\neSKyRETuQ1s6+nq1Mh6+rhOAiHwlItFo01wZ4AWgHBp4eFUu65MdO4H0s3DCgdLneZ9s80Od/M5f\ndXLORaOtbLNF5K4cFjc7+filPiKyX0TWisg0oBfQ1Tnnk648P9SpLdq8f8I5lwis8Rxf6JwbnrNS\nZy1Av0vz0a7nGrm8z1n8UJ+Ue57erlVETqLf3dXOu8A+lmcCDs8b2x1oKyKbU58TkQ3om9g+Vfri\naJ9+ys6zcegAr9Rp6qFvWkqaQmjkmP4v/2R88G/p4zr9nj4/EdkjIkfRSPwYOnslmOqTHb8DJZ1z\njVIda4/+cv+Rw6Jnyk918it/1cnTsjEdWADclstiZ5VPoN6jlHEBBXJ5n7P4qU73Aw1Tvbqg3383\nAU/npvwZCeD71Aj9Dt99roTnw0/1Sb2pacp90m9qGjwCPWrVGy+0yeoAOhWpQqpXwVRpHkN3pe2G\nTh0aj0bsUenuswHt22sCzAFmpTpfBv1QjgUaAHWAN9BBlheHYp08ae5Ff+nqeP4/Abg3SOtTAf3y\nuwPPqG/Pz6VSpZkILES7vK4AVgGjgvhzl506VfUcew7d/TjlIVAkFOuEtqatAaZ6/v90XiFan2ae\n352GaEDfDpjt+exFhmKdMsi3Oj6apeLH96k5Ou6uAVATHdi7C/gsFOvjSfMOOhHgKnRK9idoy0cJ\nb79Puf53CXQBvPTmJqP9pelffdKlG4SOUTiKbqMbk+58AXTu9F50UOhYoHy6NI3R/uY9wEH0Ad4x\nxOs00lOfY+huu7cEcX2ez+RefVKlKQl8gT6YDwAfA4VDvE7DM8mrVSjWCe2CTH8uGUgK0fpchM44\n2OO5xzpgKFAplD936dJX95z3RcDhr/epEdoKuh/9w2oZ+uD3dlDoz++GcHTs0A70mTQFuMDb75E3\nXrZ5mzHGGGN8Ls+M4TDGGGNM8LKAwxhjjDE+ZwGHMcYYY3zOAg5jjDHG+JwFHMYYY4zxOQs4jDHG\nGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhifs4DDGOMXzrnhzrlk51ySc+6kc26nc26qc66/cy7b\nW5875/o65w74sqzGGO+zgMMY40+TgIrovhyd0a3phwA/Ouey+33k0F1LjTEhxAIOY4w/nRCRPSKy\nQ0SWiMhr6BbeXYF+AM65h5xzfzrnjjjnNjvn3nfOFfacaw18BpRI1VrynOdclHPuTefcVs+1v3vS\nG2OCgAUcxpiAEpHpwFLges+hJOB+4EKgD9AW3Q0TYC4wEDiEbt1dCXjTc+594DLgJnS777HAJOdc\nbd/XwhhzLrZbrDHGL5xzw4ESInJ9BufGABeLyEUZnLsB+FBEynt+7gu8IyKlU6WpCqwHqorIzlTH\nfwb+EJFnvF4hY8x5iQh0AYwxhlTjMpxzHYAngFigOPo9VcA5V1BEjmdy/cVAOLA63QDUKGCvz0pt\njMk2CziMMcHgAmCDc6468CPaPfIUsB+4EvgEDR4yCziKAqeAxkByunNHfFFgY8z5sYDDGBNQzrl2\naAvFW0ATtKv3kVTnb053yUm0NSO1xZ5jFURkjg+La4zJIQs4jDH+VMA5VwFPcAB0QbtPfgBGoYFH\npHPuAbSloyVwV7p7bASKegKVpcBREVnjnPsS+Nw59wgagJQH2gFLRWSSz2tmjMmSzVIxxvhTZ2A7\nsAFdk6M1cJ+I9BD1J/Aw8BjwF9ALDUhOE5HfgY+Ar4HdwKOeU/2Az9FZK38D44BLgc2+rZIxJjts\nlooxxhhjfM5aOIwxxhjjcxZwGGOMMcbnLOAwxhhjjM9ZwGGMMcYYn7OAwxhjjDE+ZwGHMcYYY3zO\nAg5jjDHG+JwFHMYYY4zxOQs4jDHGGONzFnAYY4wxxucs4DDGGGOMz1nAYYwxxhif+3+2vp9NFAZg\nlgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1035,7 +1038,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGHCAYAAABvUSKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8FMX7wPHPhIQSOgQSWgi9QyBU6UivUqRDQAGV8kWQ\nn0gRVEBBQRBQKdJLEAREOtI7SOi9F+mhBkJJmd8fe8GUS3I5LrmU5/167QuzOzP77OW8ezI7O6O0\n1gghhBBC2JuDvQMQQgghhABJSoQQQgiRQEhSIoQQQogEQZISIYQQQiQIkpQIIYQQIkGQpEQIIYQQ\nCYIkJUIIIYRIECQpEUIIIUSCIEmJEEIIIRIESUqEEEIIkSBIUiKSHKVUiAVbsFKqhlIqr5n9D5RS\n65RSlWM4z/emOj5RHI/Y9mul1H2l1B6l1BilVB4zdWqayrYKs8/btC9AKZXDTJ3tSqnjZvYrpVRX\npdQm03lfK6XuKqU2KqV6KqVSWvBahrax3/S6PFVKnVNKzVNKVTITd9hrvWQql89UZrDpWL0ozrVO\nKfVIKeVmQVxdlFI7TOWfK6WOK6W+VEo5myl7VSn1VxTteJli6mrm9xXde8c9hvicTfEcM8X3WCm1\nUynVJYryUZ3rlgWvRV6l1Byl1EWl1Aul1G3Ta/NVNHUOmtr/KIrj3mFieCeKMjdMx/+KsD/ia3XT\n9J6rGaFclL+XMGXmRPPaBERXVyROjvYOQIg40DnCz95AXdN+FWb/GSD0S2wxsA5IARQG+gBblVIV\ntNanojhPe+AK0EwplVZr/TyKcqFtOwCZgQpAf6C/UupDrfXvEcpHtSBVKuALU91oyyulUgN/AvWB\nPcAPwF0gC1AT+BmoCPSM4lyhpgC9TW0tBIKAIkAj4BJwIEL5ScAhwAkoB3wENFZKlQImAB2BX5RS\nJbXWr8LE+z7QEPhEa30nqmCUUg6AD/A+sBMYCQQA1U3//b5S6l2t9f0w1Sxd4Osekd87g4BcwKeE\nf+/cJwpKqezAVozXyQfjNUwNtAbmKaUaAZ105IXHNgHzI+x7EV3ASqkCGK/3c2A2cBXIgfHafw58\nZaZOQaA8xnu3EzA9mlO8wPid7Y3QRk2M1+VlFPVCr0UB+TDeQ1uVUo211htNZSz9vbwEPiT86w8Q\nbGF9kZhorWWTLUlvGF8KwVEcywuEAAMj7G9g2j81inq1MT4UawKvgC6Wtm06lgc4i/GhXyrM/pqm\nOq3C7PM27fPF+AJ2i9DWNuB4hH3TTPH1jSL+AsDHMbxu2U1t/BrFcZfo4jbt72tqY7Dp50oYic3o\nMGXSAf8Cuy34XQ4xnWesmWNNTG2vjbD/CvBXFO15mdrrGsXx1cDlWL7fNgCBQBMzx743ne//IuwP\nASZb8d7+2fT+yx3d7yfC/q+B28B7pt+Nu5kyoe+5ZRjJrEOE49OBg8DliK+tuWsBSpr2r7fk9xKm\nzBzgaWxfF9kS7ya3b4Qwb5fp3wJRHO8EnNZa7wA2m362mNb6BtANo/fjc0uqAN9i9G5+EV1BpVRu\njL8s12utp0Zx/kta62kxnDMfxl+ne80d1Fr7xRQ0Ro9B6F/LaK0PYCRMg5RSRU1lxgDZgF7RNWTq\n/RmEkcwNNRPPWmAe0FApVdGC2GzOdEurPjDHFE9EQ4ALwGClVCobnDI/8K/W+t+IB6L5/XTASDbW\nAk8wekLM0Rg9PVmBN7fclFJOQBuMHsCIvRfmG9L6JOCH6X0gRFQkKRHCvNAPz0cRD5jGYrTC+FAG\n44O7jqnb3mJa6/0Yt0DMjrEw4wpGl3jPGMZdNML4f3tRbOIx45rp3/eVUmmsbKOg6d8HYfYNwfiC\nmq6UKofRtf+D1vp0DG1Vw7j9tVhrHRJFmdBbBk2tjPdtNcP4Ml9g7qDWOhjjfZMZqBrhcGqlVNYI\nW0zjfq4BeZRStS0JzpQ0FQR8tNaBwAqiT6ivAvsxEplQjYEMwBJLzmk6b2aMa34QU9ko6kd8XbIq\npdJb05ZI2CQpEcLgbPqgy66UqobRbawx/qKMqBmQEQgdC/Inxm2D9lac9ySQTSmVzsLyYzDGawyO\npkxoD8TJsDuVUk4RPtSzRHcibYztmI9xW+RfpdRypdRApVSRaKqlN7XtppRqDPyE0W2/PEy7/sD/\nMMaBbMJItkZFF4tJcYzfSaRBvWEcM/1bzIL24kLxCHGYcwwjcYoY44cYY1VCt3vE/J6aDLwGtiil\nDiulJiqlmkeTRHYGrmut95l+XgIUV0qVjuYci4H3wvTsdAR26GjG/vBfguVi6rVahvF9szSG6zEn\nHeFfl9At4lgskQRIUiKE4WuMD7o7GAMoi2CMBVlppmxH4JDW+jKA1voZRld4rG7hmDwz/WvRX31a\n6ysYf4X3Ukq5RlEsQ4S2QzUm/If6VQvO1w1jXMhljDEIPwBnlFKblVI5zVSZbWr7FsZ4jDQY4zUO\nR2h3Bcbg38xAHx1m0Gs0Ql8j/2jKhB7LEE2ZuPQ2Ma7CGJAdutUDNhINU++SJ8Z7Ii9GsvcncFcp\n1SNsWaVUCqAt4Xs4tmL8vqJ77y7FGBDe1JQ8NyXmXrjQBOseRk9LFWCC1vqnGOqZ8wJ4l/CvTV1i\nuI0pEid5+kYIwwyMv+ZSA3UwPtwj/f+hlMqI8eU+xfTkQ6i9QCulVEGt9cVYnDe0hyS6L7GIRgNd\nMD6UB5g5HtpWxN6X3Rgf5mCMYzH7qGdEWutfgV9NXfBVgY8xXgMfjAGuYX1tOk8wxi2aM9HcavkH\n41aTryVx8N91RZfAWZIUmGPpkyAxCRvj0yjKRBXjv1rrrbE9oen95q2UUhg9NU0xfr/TlVKXw7TZ\nAGPszj9h3rsKY6B0B6LofdNa+ymlNmMk42kx/pj9I4awVgFTMV5Xf+CU1jraJ4miEay13mZlXZHI\nSFIihOFCmA/vdUqpEGCcUmpbhL/y22IMTv0MY9BlWBrjL86vY3HeksA9U2+LRbTWV5RSCzF6S8aZ\nKXIW48umJHAiTL0HGH8ZE9V8GTGc9xGwBlijlNoG1FBK5TEN2g110povVgudwbiu0kBU81uE3oYI\nOz7lJUaPjTnOYcrYwhmghSmO3VGUKYPxXolpDE2saK01cAo4pZTaj5FsdML0O8dIKszdktRgPOZr\nGrhtzmJgJsbjxutNt+CiY1WCJYTcvhHCvDEYf+GNjrC/I8YX/fsYTyCE3bYQ9ZMMkSilqmA83RNt\nF30URhP12JL1GD0V1txOstQh07+RJnOLQ7uBx0BHU6+AOd4YX7Jrwuy7hjH3jDlFTeWvRXE8ttZg\nJE5dzR00zbPSEWMA9R4bndOccL8fZUwq1wJjHEbE9+37GLcto3u/rMQYG1SJ/wZ4C2FzkpQIYYbW\n+gnGXAwNQgcBmh61rQH8rrVeEXHDGBxbUClVIab2lVJ5gbkYc0yMtyK+yxiTmX0EuEU4dgNjbEcj\npVSfKJqI8f99pZSrUirSgFHTI6F1Mb6kYnOr6q2Yuv/HYyQS35qJqwlGUrJBa30wzKF1QG6lVPMI\n5VMCPTDGPYQb8/IWMe7DeES8uymeiL7FePplnIXjaKKllKqmlDLX4x167rOmf1th9ApNjeK9uwZo\nbfrdRqKNiQE/xpiMbfXbxi1EVOT2jRBR+wljJs8vMP66Df1LMqoP5XX810PxT5j9XkqpThiJQCaM\nGV1bY3ypdzbN4RATcz0DYzDGlhQhwpM2prg9gMlKqfammO8BLhjjQpph3GqITm7goFJqK0Yv0B2M\nCdU6YNyemKi1fmhB7LY0FmNg5+emnqblGAMhq2O87qcw5n8JawbwAbBMKTUHOIIx90Y7oATGxHdB\nNoyxK0Zi8qcyliDYhXHLrxXGGJwlWJGIRmEwxvtrBf89leSF8b7ww5hhF4zX5gGwL1ILhr8wZvdt\ngjFQFiK857TWZh9zfksFlVLDzOw/orVeZ/pvR9P/P+aseIuxKiIBkqREJBfRDWTU5o5rrW8rpRYD\nnZSxfktH4JrW+kTEsqbyT5RSu4F2SqmBYdpub9qCMAY/XgB+BKabm/QqiljNxXdJKbWA/25ZhD32\nQinVEOPLqQvwfxhPezzGeCT1YyJPaR7ROYwp7RsDnwCuGGMvTgI9tNZzLIjbpkyDZtsqpbpi9HJ8\nA6TEmO9lJPBjxC8prfVLpVQNYATGE0TdMBIZX6CR1vrvmE4byxjvmB6D/Qzj1kgrjN/9ccBba70w\ninNY8/qNwXhf1jT964wxW+tijFlzryulsmEM3l5sGndizhaMqeo78V9SYkk85uKOzbUUwfgdRjQL\nI8kHI6GL6r26C7hu4blEIqCifo8KIYQQQsSfRDemRClVXSn1lzJWngyJeJ/YVOYbpdQtZayq+rdp\nAaqwx1MppX5WSvkppfyVUn/EdjZOIYQQQthWoktKMJ6TP4oxNbW51VEHY0z21AtjFdTnwMYI0zVP\nwrh32hpj4GJOwsw4KYQQQoj4l6hv35jmknhPa/1XmH23MNbRmGj6OQPGKpfeWuulpp/vA+1DZ+s0\nTZt9BqgcYdS+EEIIIeJJYuwpiZJpMKIbxqAtALTWT4EDGNMcA5THGOAbtsw5jMFSVRBCCCGEXSSp\npAQjIdEYPSNh3eW/uRxcgdemZCWqMpEopZyVUuVMkxAJIYQQwkKWfofKI8GW88SYgfGwUirilOAb\nsG5WTiGEECKpaQA0jLAvHVAOY56kvVFVTGpJyR2MCX9cCd9b4ooxYVJomZRKqQwRektcTcei4mH6\nt5yZYzUwM8OkEEIIIcLxILkkJaaFyu5gLHN9HN4MdK0E/Gwq5osxkdG7GOs5hA50dSfq2Q7BtMz7\nwoULKVYs0szbURowYAATJ06M1XXEV5169erx998xzRtlm3Ml5GuKr9isrZeQrykhX4+19RLyNcXn\nezWpXZO876w/jy3qnDlzhs6dO4PpuzQqiS4pUUqlxVg7InQK5PxKqTLAQ9OaH5OA4UqpixgXPwr4\nF2MpbbTWT5VSs4AflVKPMBZdmwzsieHJm5cAxYoVo1w5c50l5mXMmDFW5eOzjpOTU6zrWHuuhHxN\n8RWbtfUS8jUl5Ouxtl5Cvqb4fK8mtWuS953157FxnWhX5E50SQnG0zPb+G8q4wmm/fOAD7TW35sG\n0kzHWGdkF8ZU0q/DtDEAY42SPzCmMN4ARLVw2Vvp0KFDgq2TK1euWNex9lwJ+ZriKzZr6yXka0rI\n12NtvYR8TfH5Xk1q1yTvO+vPE5/vO7TWslmwYYwl0b6+vjqpaNasmb1DsDm5poQvqV2P1nJNiUFS\nux6tE9c1+fr6hnYklNPRfNcmtUeChRBCCJFISVKSjFndvZaAyTUlfEntekCuKTFIatcDSfOaEvU0\n8/FJKVUO8PX19Y1ywM/169fx8/OL38CSKRcXF9zd3e0dhhBCCAscPnwYLy8vAC+t9eGoyiXGga4J\n0vXr1ylWrBgBAQH2DiVZcHZ25syZM5KYCCFEEiJJiY34+fkREBAQ63lMROyFPu/u5+cnSYkQQiQh\nkpTYWGznMRFCCCGEQQa6CiGEECJBkKRECCGEEAmCJCVCCCGESBAkKRFCCCFEgiBJiRBCCCESBElK\nhEXmzZuHg4MDzs7O3L59O9LxWrVqUbp06Tc/e3h44ODgQP/+/SOV3bFjBw4ODqxYsSJOYxZCCJG4\nSFIiYuXVq1eMHTs20n6lVKSflVLMnDmTO3fuxFheCCFE0hWiQywqJ0mJiBVPT88oE42ISpQoQXBw\nsNkkRpY3EEKI5OHpq6f0Wt3LorKSlAiLKaUYOnQoQUFBZhONiDw8POjatavFSYwQQoik5cnLJ9Rf\nUJ8LDy5YVF6SEhEr+fLli1WiMWzYMAIDAy1KYoQQQiQ8L4Ne8ujFI2773+bKoyucuX+GY3eOcejW\nIfbd2MfOazu5+fRmpHqPXjyi3oJ6nH9wnmlNp1l0LplmXsTasGHDmD9/PuPGjWPixInRlvXw8KBL\nly7MnDmTIUOG4OrqGk9RCiGEeBsvg17Sa3UvFhxfEGNZB+VAs8LN+KT8J9QrUI/HLx9Tb0E9rj2+\nxlbvrYTcsmxMiSQldhIQAGfPxu05ihYFZ2fbt5svXz66dOnCjBkz+OKLL2JMNIYPH86CBQsYO3Zs\njEmMEEII+7v//D7v/f4eh28fZkL9CXhk8iC1Y2pSO6YmVYpUpEyREqcUTjg5OOHo4Mi2q9v49dCv\nNFzUkPyZ85MqRSruB9xnq/dWSruW5vCtwxadV5ISOzl7Fry84vYcvr4QV2sDxibRiJjECCGESLhO\n3z9N08VNCQgMYLv3dirlrhRjnSIuRfjI6yP2/7ufab7T8L3lyzbvbZTMXjJW55akxE6KFjWShrg+\nR1zJly8fnTt3ZsaMGQwePDjG8sOGDWPBggWMGzeOFi1axF1gQgghYi0gMIAbT27ge9uX3mt7kydj\nHrZ5byNvprwWt6GUokqeKlTJU8XqOCQpsRNn57jrxYgvw4cPZ+HChYwbNy7Gsvnz56dz585Mnz6d\nihUrxkN0QgghonLv+T1mH5nNH6f/4Orjqzx48eDNsUYFG7GkzRIypMoQ73FJUiKsFjbRyJs3L05O\nTtGWD73l8/3338vkaUIIEc+01uy6votph6bxx+k/cFAOtCzWkpZFW+Ke0f3N5pHJw26f0ZKUCIuZ\nm/As9LbMuXPnKFky+nuHoUnMvHnzJCkRQiRJz18/J23KtLGqo7Xm8cvH3PK/xe1nt7ntf5uMqTPS\nsGBDUqZIaVUcITqESfsnceTOEW4+vckt/1vc8r+F/2t/CmctzLi64/D29CZLmixWtR9XJCkRFjOX\nSBQoUIAuXbpESjRCp5mPaPjw4SxatIiQEMseDxNCCHu78OACq86tYuOljZTKXoqBVQaSO0PucGUu\nP7rMl9u+ZMnJJcx/bz6dSneyqO3nr59TYWYFzvidiXTMxdmFTqU60c2zG55unrGKeabvTD7b9BnV\n3KuRK30uPN08yZk+J145vKjlUSvB/mEoSYmwiLe3N97e3maPzZ49m9mzZ4fbd/nyZbNlCxQowOvX\nr20enxBCWOrSw0s0WNiAYtmK0alUJ5oXaY6z03/zJzx//Zz9/+5ny5UtrDq3itP3T5PaMTU18tZg\nztE5TD04lS6lu/B51c/JkiYLo3eO5tdDv+Li7ELVPFXpva43Vd2r4pHJI8ZYph6cysWHF1nQcgH5\nMuUjR/oc5EiXg0uPLjH36FwWHF/ATwd+wiuHF8veX0a+zPlibPPm05t8vvlzPiz7Ib81/+1tXqp4\nJ0mJEEKIZONF4AtaL21NsA7m/vP7dFjegbROaWlZrCWuaV3ZdX0Xh28fJigkiKxpstKkcBNG1x5N\n/QL1SZsyLf6v/JnuO50f9/3InKNzSOOUBkcHR76q9RX9K/UnKCSIMtPK0HlFZ7Z3246jQ9Rfs09e\nPmHcnnH0LNeTzqU7hztWMntJxtcfz3fvfseGixv4dOOnNF7cmL0f7CVzmsxRtqm15pO1n5DWKS3j\n64+32esWXyQpEUIIkWg9ffWUpaeWApDGMQ1pnNLg7ORM5dyVyZQ6U6Tyfdf15dyDc+z/cD9l3Mpw\n6eElfE764HPSh2evn1HNvRrdynSjet7qFM9WHAcVfjWW9KnSM+idQfSr2I8Fxxdwy/8WvSv0xsXZ\n5U2Zha0WUnNuTcbuHsvwGsOjjH3S/km8CHrBsBrDoizjlMKJZkWaUcSlCFVmVaHV0lZs6LSBVI6p\nzJZfemopq8+vZkXbFWavP6GTpEQIIUSitOb8Gj5Z+wk3n95EE34gvls6N35r9htNCjd5s2/W4VnM\nPjqbuS3mUsatDAAFshRgeI3h0SYP5qRyTEWPcj3MHqvmXo2h1Yby1favqF+gPhVzRZ4G4UHAA37c\n/yO9y/cmZ/qcMZ6vcNbC/NX+L96d/y49Vvdg/nvzI40LeRDwgH7r+9G6WGtaFmsZq+tJKGRBPiGE\nEInK3Wd3af9He5r5NKNU9lJc6X+F4BHBPB/6HL//8+N079N4unnS1KcpPf7qwdNXTzly+wh91vWh\nZ7meeHuaHx9nSyNqjsArpxedVnTi2etnkY6P3zue4JBgBleLefLJUFXdqzLvvXksPL6Qr7Z/Fen4\ngI0DCAwJZGrjqW8Tul1JT4kQQohEITgkmDlH5/D535+TwiEFi1otokPJDm96DJydnHF2ciarc1bW\ndVzHzMMzGbhxIFuubEFrTYnsJZjcaHK8xOqUwomFLRdSdnpZmixuws+Nf34z5frdZ3eZfHAyn1b6\nlOxps8eq3XYl23H18VW+2PIFe27swUE5EKyDCQwOZNf1XcxuPhu3dG5xcUnxQnpKhBBCJAh3nt1h\n/rH5XHt8LdKxPdf3UPG3ivRc3ZNmRZpxps8ZOpbqGOWjrUopenn14vgnx3HP6M6z18/44/0/SO2Y\nOq4v441CWQvxZ/s/ueV/izLTyvDR6o+4++wuY3ePxcnBiUHvDLKq3c+rfs7Yd8eSIVUGMqbOSDbn\nbLhndGd07dF08+xm24uIZ9JTIoQQwu4uPLhgLHX/xEhIvHJ40apYK2p51OLnf35m8YnFeOXwYu8H\ne2O1tkr+zPnZ7r2dl0EvSeOUJq7Cj1Ld/HU51fsUv/7zK1/v+JrFJxcTGBzI0OpDo32KJjpKqVjd\n9klMpKdECCGEXR2+fZiqs6uSxikNp3qfYknrJRTIUoBvd31L1dlV2Xx5M7Oaz+Jgz4NWLfamlLJL\nQhIqZYqU9K/cn4v/u0iPsj0o7VqaTyt/ard4EjLpKRFCCBGngkKC8Dnhw+KTiynrVpYWRVpQIVcF\nHJQD265so8WSFhR1Kcq6TutwcXaheLbitCvZjpdBLzl48yBlXMuQMXVGe1/GW8uSJgsTG060dxgJ\nmiQlQggh4sSroFfMPzafsXvGcvnRZarmqcoM3xl8t/s7cqTLwbv532XpqaXUyFuDFW1XkD5V+nD1\nQ2dRFcmHJCVCCCFsKjA4kFlHZjFm1xhuPr1Jm+JtWN52OZ5ungSFBLH3xl5WnV3Fuovr6FiqI9Oa\nTItyMjCRvEhSIoQQwia01qw6t4ovNn/B+Qfn6ViqI8OqD6NYtmJvyjg6OFIjbw1q5K3BhAYT7Bit\nSIhkoKuw2IkTJ2jTpg0eHh6kSZOG3LlzU79+faZO/W+iHg8PDxwcHN5srq6u1KhRgz///BOAq1ev\nkjZtWjp1Mr+C5u+//46DgwO//vprvFyTEOLtPX31lL8v/U31OdVp+XtL3DO6c/ijwyxstTBcQiJE\nTKSnRFhk79691KlTh7x589KrVy/c3Ny4ceMG+/fvZ/LkyfTt2xcwRrmXLVuWQYMGobXm1q1bTJ8+\nnVatWjFt2jR69erFyJEjGTJkCN27d6du3bpvzuHv78/AgQOpUqUKn3zyib0uVQgRBa01N/1vcujW\nIQ7fPszxu8c5fvc4Vx5fAaCMaxk2dt5I/QL17RypSKwkKREWGTNmDJkyZeLQoUOkTx9+MJqfn1+4\nn3PlykWHDh3e/NylSxcKFizIxIkT6dWrF5999hmLFi2id+/enDhxglSpjHvJQ4cOxc/Pj02bNsX9\nBQkhLLbizApmH5nNoVuHuPv8LgCuaV0p41aG1sVaU9q1NKVcS1HatXSkBeyEiA1JSoRFLl++TIkS\nJSIlJAAuLi5mavzH1dWVYsWKcfz4cQBSpEjBjBkzqFq1KqNHj2bUqFH4+vry66+/MnjwYEqUKBEn\n1yCEiGzntZ2cvHeSj8t/bDahWHJyCR2Xd6Sqe1V6lutJ+ZzlKZ+zPDnT54xyNlUhrJUkU1ql1Eil\nVEiE7XSEMt8opW4ppQKUUn8rpQraK97EIG/evPj6+nLq1KlY1w0KCuLGjRtkzZr1zb5KlSrxySef\n8MMPP3Dy5Ek++ugj8ufPz4gRI2wZthAiCvee38P7T29qzq1Jn3V9aPl7S/xf+Ycrs+b8Grqs7EKX\nMl3Y0W0Ho+qMokXRFuTKkEsSEhEnkmRSYnIScAXcTFu10ANKqcFAX6AXUBF4DmxUSqW0Q5yJwqBB\ngwgICMDT05OqVavyxRdf8PfffxMUFBSpbGBgIA8ePODBgwccP36cLl26cO/ePdq2bRuu3LfffouL\niwu1atXiyJEj/PLLL29u5Qgh4kZwSDDTDk2jyNQirDm/ht+a/cbqDqvZdmUbVWdX5erjqwBsu7KN\nNkvb0KxwM2Y1nyW3ZUS8SMq3b4K01vejONYfGKW1XgOglOoK3AXeA5bGR3ABgQGc9Tsbp+co6lIU\nZydnm7RVt25d9u3bx3fffcfGjRvZv38/33//PdmyZeO3336jWbNmb8pu3LiRbNmyvfnZ0dGRrl27\nMnbs2HBtpk+fnkmTJtG2bVs6dOgQbtCrEML2zj84j/ef3uz/dz8feH7AuHrjcHE2br/u+3AfzZc0\np8LMCnxd62sGbx5Mjbw18Gntg6NDUv6qEAlJUn6nFVJK3QReAvuAIVrrG0qpfBg9J1tCC2qtnyql\nDgBViKek5KzfWbxmeMXpOXx7+VIuRzmbtefl5cUff/xBUFAQx44dY+XKlUycOJH333+fo0ePUrRo\nUQAqV67MmDFjAHB2dqZYsWJkyJDBbJsVKlR407YQIm5orZnuO53PNn1GzvQ52dV9F9Xcq4UrUyJ7\nCQ70OECbpW3os64P7+R5h5XtVsqkZiJeJdWkZD/QDTgH5AC+AnYqpUpiJCQao2ckrLumY/GiqEtR\nfHv5xvk54oKjoyNeXl54eXlRqFAhunfvzrJly/jyyy8BY+Br7dq14+TcQojYue1/mw//+pD1F9fz\nsdfHjK8/nrQp05ot6+LswqYum1hycgnNizSPspwQcSVJJiVa641hfjyplDoIXAPaAm91z2TAgAFk\nzBh+YagOHTpQpEiRWLXj7ORs014MeylfvjwAt2/ftnMkQoiIDt48SONFjXFK4cTajmtpXKhxjHVS\npkhJ1zJd4yE6kVT5+Pjg4+MTbt+TJ08sqpskk5KItNZPlFLngYLAdkBhDIIN21viChyJqa2JEydS\nrlzkZOLw4cM2iTWh2r59O7Vq1Yq0f+3atQBvbt0IIRKG0/dP02hRI4q6FGVV+1Vvxo4IEdc6dOgQ\nbq4qML5Hp/onAAAgAElEQVQjLblNnyySEqVUOoyEZJ7W+opS6g7wLnDcdDwDUAn42X5RJmz9+vUj\nICCAli1bUrRoUV6/fs2ePXtYunQp+fPnp1u3bvYOUQhhcu3xNeovqE/uDLlZ23EtmVJnsndIQlgk\nSSYlSqkfgNUYt2xyAV8DgcASU5FJwHCl1EXgKjAK+BdYFe/BJhITJkxg2bJlrF+/npkzZ/L69Wvc\n3d3p27cvw4YNezOQVSkV6/kLrKkjhDDv3vN71FtQj1SOqdjQaYMkJCJRSZJJCZAbWAxkBe4Du4HK\nWusHAFrr75VSzsB0IBOwC2iktX5tp3gTvPr161O/fszrWVy+fDlW7ebNm5fg4GBrwxJChPHk5RMa\nLmyI/2t/9nywhxzpc9g7JCFiJUnOhqO17qC1zq21TqO1dtdad9RaX4lQ5iutdU6ttbPWuoHW+qK9\n4hVCiJjMOTKH8jPKs/fGXrPHLzy4QK15tbjy+AobO28kf+b88RyhEG8vSSYlQgiRlGy9spVea3px\n4+kNqs+pzohtIwgMDnxzfPGJxZSbUY6AwAC2e2+ntGtpO0YrhPUkKRFCiATs/IPztFnahjr56nDt\n02uMrDmSb3d9S/U51Tl+9zg9/upBpxWdaFGkBYd6HqKMWxl7hyyE1ZLqmBIhhEj0Hr14RDOfZrim\nc+X3Nr+T2jE1I2qOoH6B+nRe0Zky08rg7OTM7Oaz6ebZTQaMi0RPkhIhhLCj56+fM37veGYfnU0Z\n1zI0LtSYxoUakyNdDtosa4NfgB8HehwI9xRN5dyVOfrxUaYenErzIs0pnq24Ha9ACNuRpEQIIewg\nRIcw/9h8hm0dhl+AH11Kd+Hiw4v0XdeXYB2MWzo3/AL82NxlMwWzFIxUP13KdHxR7Qs7RC5E3JGk\nRAgh4pHWmo2XNjJ0y1CO3DlC2xJtGfvuWPJlzgfA45eP2Xx5MxsvbqRu/rrU9Khp54iFiD+SlAgh\nRDwICgnij9N/MHb3WI7dPUaV3FXY88Ee3snzTrhymVJnok3xNrQp3sZOkQphP5KU2NiZM2fsHUKS\nJ6+xSEy01sw5Oocxu8Zw+dFl6heoz9YGW6nlUUsGpgoRgSQlNuLi4oKzszOdO3e2dyjJgrOzMy4u\nssCYSNiCQoLot64f03yn8X7x91n2/rIksTq4EHFFkhIbcXd358yZM/j5+dk7lGTBxcUFd3d3e4ch\nRJQCAgNo/0d71l1Yx2/NfuPDch/aOyQhEjxJSmzI3d1dviiFENx/fp9mPs04ee8kqzusplGhRvYO\nSYhEQZISIYSwEf9X/my4uIGhW4fi/8qfHd124JXTy95hCZFoSFIihBBv4dGLRyw/s5w/z/7J5sub\neRX8ikq5KrGp86Y3j/kKISwjSYkQQljp/vP7VPqtEteeXKO6e3XG1h3Le0XfwyOTh71DEyJRkqRE\nCCGs8CroFS1/b8nzwOec73ueAlkK2DskIRI9SUqEECKWtNb0XN2TQ7cOsb3bdklIhLARSUqEECKW\nxu4ey4LjC1jcajGVc1e2dzhCJBkO9g5ACCHsQWvN3Wd3Y11v+enlDN06lJE1R9KhVIc4iEyI5Et6\nSoQQyc7Jeyfps64PO6/tpFKuSvSt2Jf3i79PKsdUkcre9r/Nvn/3se/GPvb9u48DNw/QvmR7RtYc\naYfIhUjaJCkRQiQb/q/8+XrH10zaP4kCWQowtdFUVp1bRZeVXRi4cSA9y/UkS5osnPU7y7kH5zjr\nd5b7AfcByJMhD1XyVOHHEj/S06unrFsjRByQpEQIkeRprVlycgmD/h7EoxePGFV7FAOrDCSVYyr6\nVOzDWb+z/PLPL0w5OIVgHUxRl6IUyVqEuvnrUiJbCSrnrkyuDLnsfRlCJHmSlAghEpT7z+9z1u8s\nBbIUIEe6HG/dI3H87nH6re/Hzms7aVWsFRMbTMQ9Y/jlIIq6FGVyo8n82OBHHJQDDkqG2wlhD5KU\nCCESjE2XNtFpRSf8AoyFLdM4pqFAlgKUcS3D5EaTyZImi8VtPXrxiBHbRvDLoV8onLUwmzpvol6B\netHWcXSQj0Qh7En+DxRC2F1wSDBf7/ia0TtHU79AfcbUGcMt/1tcfHiRS48usejEIgJDAlnSekm0\nPScPXzxk48WNrLmwhrXn1xKiQ/i+7vf0q9SPlClSxuMVCSGsIUmJEMKu7j67S8cVHdl+dTujao9i\nSPUhOCgHvPhvIbvq7tVpv7w9LYq0oGOpjpHa2HN9D0O3DmXP9T0E62DKupWlX8V+9K7Qmxzpc8Tn\n5Qgh3oIkJUIIuznnd4468+sQHBLM5i6bqZ2vttly7Uq2Y9W5VfRe25vq7tXJkzHPm2Nbr2ylmU8z\nSmQrwS9NfqFxocbkzpA7vi5BCGFDMppLCGEX5x+cp/a82mRKnYnDHx2OMiEJ9XPjn0mXMh3dVnUj\nRIcAxhiUJoubUN29Oju67aCXVy9JSIRIxKSnRAgR7y4+vPgmIdnadSuu6VxjrJM5TWbmvjeXegvq\nMeXAFApmKUirpa2oX6A+y95fRmrH1PEQuRAiLklSIoSIV5ceXqL2vNpkSJWBrd6WJSSh6uavS/9K\n/Rm8eTAhOoSmhZuypM0SGcQqRBIhSYkQScy1x9dwUA7hxl0kFFceXaH2vNo4OzmztetW3NK5xbqN\n7979jt3Xd1PUpShzWszBKYVTHEQqhLAHSUqESCICgwMZs2sMo3eOJlgHkz9zfup41KF2vtq8m+/d\nWPVIxIXb/repu6AuqRxTsc17m9VPxaRxSsM/Pf+Rad6FSIIkKREiCTh57yRdV3bl+N3jDKs+jDJu\nZdh2ZRvbrm7jtyO/4aAcqF+gPt3KdKNF0RbxPv7i0YtHNFjYgFdBr9j9wW5yps/5Vu1JQiJE0iRJ\niRCJyOvg11x6eImXQS/fbHtv7OWbnd9QMEtBDvQ4gFdOY36PVsVaAcY8IKvOrWLesXm0X96ejKky\n0r5ke/pU6EMp11JxHvPz189psrgJt/xvsbP7TjwyecT5OYUQiZMkJUIkEhceXKD5kuac9Tsbbr9C\n8VmVzxhVZ5TZHhDXdK708upFL69enH9wnvnH5jP36Fym+06nYcGGDKoyiDr56sRJ78OroFe0WtqK\nE/dOsLXrVopnK27zcwghkg5JSoRIBDZd2kS7P9rhmtaVTZ03kSVNFlI7pia1Y2oypc5EVuesFrVT\nOGthRtcZzciaI1l6aik/7P2BugvqUtatLN/X+566+eu+daxaa07eO8nGSxtZdnoZx+4cY32n9VTI\nVeGt2xZCJG2SlAiRgGmtmbR/EoP+HkTDgg1Z3GoxGVNnfOt2nVI40al0JzqW6siWK1v4Zsc3NFnc\nhE2dN1HTo6ZFbey5vofpvtNRShkr6+LAi6AX7Li2g1v+t0jjmIaaHjVZ03FNjBOjCSEESFIiRILl\nF+DHwI0DWXB8AYOrDmZMnTGkcEhh03Mopaibvy7V3avTZHETmi9pzq7uuyjtWjrGup9v/pwrj65Q\nIEsBQnQIIToEB+VAh5IdaFCgAdXzVpcJzYQQsSJJiRAJzIvAF0w+MJlvd38LwMKWC+lUulOcnjOV\nYypWtFtBrbm1aLSoEXs/2EveTHmjLH/q3in23tjL0jZLeb/E+3EamxAi+ZC1b4RIIEJ0CAuPL6TI\n1CIM3zYc7zLeXOx3Mc4TklAZUmVgXad1pEqRigYLG+AX4Bdl2d8O/0Y252y0KNoiXmITQiQPkpQI\nkUB8s+MbuqzsQoVcFTjd+zSTG00mW9ps8RqDWzo3NnXZxMMXD2nm04zXwa8jlXkZ9JL5x+fTzbOb\nTO8uhLCpZJ2UKKX6KKWuKKVeKKX2K6VifDxgyhT44ANo2hRGjIiPKEVycOzOMcbsGsOIGiNY3nY5\nhbIWslssBbMUZE3HNfxz8x8m7J0Q6fiKMyt4+OIhPcr1sEN0QoikLNkmJUqpdsAEYCRQFjgGbFRK\nuURXb9MmOH0a7t6Fb78Fv6h7uIWwSFBIEB/+9SFFXYoyrMYwe4cDQMVcFRlQeQDf7PyGy48uhzs2\nw3cGtTxqUThrYTtFJ4RIqpJtUgIMAKZrredrrc8CHwMBwAfRVVq9GvbvhzVrQGv488/4CFUkZRP2\nTuDInSPMbj47Qd0O+arWV2RPm50+6/qgtQbg/IPz7Li2g17letk5OiFEUpQskxKllBPgBWwJ3aeN\nT93NQBVL2nB1hZo1YenSuIlRJA/n/M4xcvtIBlYemOAmF0ubMi1TG01lw8UN/HH6D8AY4JolTRZa\nFmtp5+iEEElRskxKABcgBXA3wv67gMVrqbdtC1u3yi0cYZ0QHUKP1T3IkzEPX9f+2t7hmNWsSDPe\nK/oe/Tf0xy/Aj7lH59K1dFeZf0QIESdknpK30KoV9OkDK1dCz572jkYkZCE6hL8v/c2jl494Hfya\nwOBAjtw5wu7ru9nuvR1nJ2d7hxilyQ0nU/yX4tSZV4f7Affp6SVvdiFE3EiuSYkfEAy4RtjvCtyJ\nruKAAQPImPG/ab6zZIHJkzvQs2cHmwcpkoZXQa/ovqo7Pid9wu1PoVLwRdUvLJ7W3V7yZMzDN7W+\nYeCmgVTNU1UW1RNCRMvHxwcfn/Cfd0+ePLGorgodwJbcKKX2Awe01v1NPyvgOjBZa/2DmfLlAF9f\nX1/KlSv3Zv/06dC7N9y5A9mimFIiMDiQ9RfXM/foXG7632S793bSOKWJg6sSsXXq3imevX5GpdyV\n4qT9Jy+f0GppK/Zc38O89+bRpHATnByccErhhINKPHdPg0KC6PFXD7zLeMs6NkKIWDt8+DBeXl4A\nXlrrw1GVSzyfirb3I9BTKdVVKVUUmAY4A3Nj00hL03i/lSsjH7vw4AIDNw4k14+5aLGkBVceX8H3\nli8zfGe8ZejibTx5+YTph6ZT6bdKlPy1JDXn1uT6k+s2P88t/1vUmFsD31u+bOqyiXYl25EuZTpS\nOaZKVAkJgKODI3PfmysJiRAiTiWuT0Yb0lovBQYB3wBHgNJAA631/di0kz071K4d+SmcU/dOUfG3\niiw8vpDOpTtz9KOjHPnoCF3KdGHcnnG8DHppoysRltJaM2DDANwmuNF7XW+yOWdjSeslZEydkZHb\nR9r0XOcfnOedWe/w8MVDdn+wmxp5a9i0fSGESIqS65gSALTWvwC/vG07bdvCJ5/AvXtGknLz6U0a\nLmqIe0Z3dnbbGW6p+aHVhjL/2Hxm+s6kX6V+b3tqEQvTDk1j0oFJjKgxgo/Kf0TO9DkBYzXefuv7\nMbDyQEq5lrLJuXqt7oVTCid2dd1Fnox5bNKmEEIkdcm2p8RaI7eN5M6z8GNhW7YEpWDFCuPWQKNF\njVAo1nVcFy4hASiUtRCdSnVi7J6x0lsSj07fP83ATQPpXb43X9f++k1CAtDTqyf5M+dn6NahNjnX\nrmu72HFtBz/U+0ESEiGEiAVJSmJp1/VdFJ5SmAl7J7xZrCxbNuMWzu9/vKbV0lbceHqD9Z3WkytD\nLrNtDK8xnDvP7jDr8Kz4DD3ZehX0io7LO5I/c37G1x8f6XjKFCkZU2cMa86vYee1nW99vlE7R1Eq\neymaF2n+1m0JIURyIklJLK1stxLvMt58vvlz3Ma7UWVWFbqs7IJzo2/Y7tKe3dd282e7PymRvUSU\nbRTOWpgOJTswds9YXgW9isfok6chW4Zwxu8MPq19onzq6f0S7+OVw4vBmwdjyRNpUZU58O8B/r78\nN1/W+DLRDWYVQgh7k0/NWMqYOiNTGk/h2MfHGFhlIEWyFuHyo8vsDZoKhdbjtm8BZTLFPO/E8BrD\nufn0JrOPzI6xrCQu1tt0aRMT909kXN1xlHYtHWU5B+XAuLrj2P/vfladWxVtm0tOLiHHhBwc+PdA\npGOjdo6imEsxWhdv/daxCyFEciNJiZVKZi/J8BrDmfveXPZ8sIf7n9/jWLtn+O9vS4sW8DKG4SJF\nXYrSvmR7vtv9ndmkIyAwgHlH51F1dlUyjM3A8bvH4+hKEp+bT28y+O/BuI53ZczOMVH2Wlx7fA3v\nP71pUKAB/6v0vxjbfTf/u9QvUJ8hW4YQFBJktoxfgB991/XlyasnNFzUkGN3jr05dvj2YdZeWMuw\n6sOkl0QIIawgn5w2VLpkCtasgX/+gY4dITg4+vJf1viSm/43cfnBhUq/VaL7qu78sOcH+q3rR84J\nOem2qhvOTs5kT5ud73Z/Fz8XkYCdvHeSbn92I99P+ZjmO41q7tUYvm043n96R0rsVp9bTdnpZUnt\nmJq57821OEkY++5YzvmdY/jW4WaPD9o0iBAdwvGPj5M/c37qLajHOb9zgNFLUjBLQdqVbPd2FyqE\nEMmV1lo2CzagHKB9fX11TP76S+sUKbTu1UvrkJDoyx7494D+fvf32nult64wo4JOOyatdhvvpods\nHqIvPbyktdb654M/a4evHfSFBxdiPHdSNeXAFM1X6Nw/5tYT9k7QT14+0Vpr7XPCR6calUpXm11N\n339+X78KeqUHbhio+QrdwqeFfhjwMNbnmrB3guYr9Jwjc8Lt33J5i+Yr9EzfmVprre8/v6+L/1xc\n5/4xt/7r7F+ar9CzD89+62sVQoikxtfXVwMaKKej+a5NttPMx1ZU08xHZc4c+OADY6G+CRMgfXrL\nzhOiQ1AojFnvDS8CX5Dvp3w0L9KcGc2S32ywJ+6eoPzM8vQo24NJDSfhlMIp3PH9/+6nxZIWpEuZ\njmzO2fC97csP9X6gf6X+4V5HS2mt+WjNR8w9OpfNXTdTI28NXga9pPSvpXFL58b2btvf9Lzc9r9N\n9TnVufToEh6ZPDjf93yk+IQQIrmTaebtrHt3Y12cRYugeHH46y/L6jkoh0hfpGmc0jCwykBj7Zyn\nN+Mg2oTrVdArOq3oROGshZnQYILZL/zKuStzoMcBnJ2cufPsDru77+bTyp9alZAAKKX4ufHPVM9b\nnZa/t+Tiw4t8u+tbrj6+yvSm08PdCsqRPgdbum6hjGsZvnv3O0lIhBDiLUhPiYVi21MS6upVY8G+\n9euhdWuYMgVy5Ij9+Z++ekreSXnp7tmdHxv8GPsGEqn/2/R/TD44mYM9DlLGrUy0ZQODA9FoUqZI\naZNzP3rxiMqzKhMUEsSNJzf4otoXfFP7G5u0LYQQyYn0lCQQHh6wdi0sWQK7doGXF7x+Hft2MqTK\nQN8KfZnuO50HAQ9sHqc9PX75mF/++YXT90+H27/96nYm7JvA6NqjY0xIAJxSONksIQHInCYzazqs\n4dGLR3hk8mBoddvM+CqEEMI8SUrigVLQrh2sWwe3b8O+fda1879K/0NrzeQDk20boB1dfHiRKrOq\n0GddH0r8UoLa82qz7NQy7j+/T9eVXamRtwYDqwy0W3yFshbCt5cvW723ktoxtd3iEEKI5ECSknhU\ntiy4uMDff1tXP1vabPTy6sWUg1Pwf+Vv2+DsYMfVHVT6rRIhOoSTn5zEp7UPwSHBtP2jLbkn5ubJ\nqyfMe28eKRxS2DXOfJnzkTtDbrvGIIQQyYEkJfHIwQHq1oVNm6xv47Mqn/Hs9TNmHUnc6+bMOTKH\negvq4enmyf4P91Miewnal2zPzu47OfHJCXqX741Pax/yZspr71CFEELEE0lK4lm9enDoEDx8aF39\nPBnz0KhQI5afWW7bwOJJiA5hyOYhfPDXB3T37M6GThvInCZzuDIls5dkYsOJNC7U2E5RCiGEsAdJ\nSuJZvXqgNWzZYn0bTQo1Ye+NvTx68ch2gcWDV0Gv6LKyC2P3jGV8vfFMazpNHqEVQgjxhlVJiVLK\nQSlVWClVTSlVI+xm6wCTmjx5oGhR68eVADQu1JgQHcLGSxttF1gce/zyMY0WNWL56eUsbbOUz975\nzOp5RIQQQiRNjrGtoJSqDCwG8gIRv1U0YN9RiYlA/fqwapXRY2LN93LuDLkp7VqatRfW0r5ke9sH\naGM3ntyg0aJG3PK/xeaum6nmXs3eIQkhhEiArOkpmQYcAkoCWYDMYbYstgst6apXD65dg4sXrW+j\nSaEmbLi4geCQGFb9s7Onr55SbU41nr1+xt4P90pCIoQQIkrWJCWFgKFa6zNa68da6ydhN1sHmBTV\nrAmOjm9/C8cvwI9/bv1ju8DiwJidY7j//D7bu22nqEtRe4cjhBAiAbMmKTkAFLR1IMlJ+vTwzjtv\nl5RUzl2ZzKkzs+7COtsFZmMXH15k0oFJDK46GI9MHvYORwghRAJnTVIyBZiglOqmlPJSSpUOu9k6\nwKSqXj3YuhWCgqyr7+jgSIOCDVh7Ya1tA7OhQZsG4ZrWlf+r+n/2DkUIIUQiYE1SshwoBswG/gGO\nAkfC/CssUL8+PH0KBw9a30aTQk04fPswt/1v2y4wG9lyeQurzq3i+3rf4+zkbO9whBBCJALWJCX5\nzGz5w/wrLODlBZkzv90tnIYFG6JQrL+43naB2UBQSBCfbvyUqnmq0q5EO3uHI4QQIpGIVVKilHIC\nRgIOWutr5ra4CTPpSZEC6tR5uynnXZxdqJS7UoK7hTPDdwan7p3ip4Y/yVwkQgghLBareUq01oFK\nqdbAqDiKJ1mpXx9694YnTyBjRuvaaFKoCd/v+Z7Xwa9JmSKlbQO0wIOABxy/e5zXwa95Hfyal0Ev\nGbFtBN08u+GV0yve4xFCCJF4xXryNOBP4D1goo1jSXbq1YPgYBgxAsaMgXTpYt9G40KN+XLbl+y+\nvps6+erYPshoPHrxiLLTy3Lj6Y1w+3Oky8G3734br7EIIYRI/KxJSi4AI5RSVQFf4HnYg1rrybYI\nLDnIlw+++cZISJYtg1GjoFs349aOpcq6lSVHuhysu7AuXpMSrTUfrfkI/9f+HOp5CNd0rqRMkRIn\nByfSpUwna9oIIYSINWsGun4IPAa8gF7AgDDbp7YLLXn48ks4exZq1YIePaBsWdi92/L6SikaF2rM\nyrMreRX0Ks7ijGj+sfksO72M6U2n45XTi9wZcpM9bXYyp8ksCYkQQgirxDop0Vrni2aTp2+s4OEB\nixfDgQOQJg00bQq3Y/GUb58Kffj36b/039A/zmIM69LDS/Rd3xfvMt60LdE2Xs4phBAi6bNqlWAR\nNypWhHXrIFUq+N//LK9XNkdZfm78M9N9pzP7yOy4CxDjcd/OKzuTPW12JjeSO3VCCCFsx5pVgqP9\n1tNaf2B9OCJrVvjpJ+jQwVhJuEULy+r1KNeDA/8eoPfa3pR2LU35nOXDHX/++jlKqbeeyGz0ztH8\nc/MfdnXfRYZUGd6qLSGEECIsa3pKMkfYsgN1gFZAJtuFlny1aweNG0OfPsasr5aa0ngKpVxL0Xpp\na/wC/ADjVkv/9f1xm+BGw4UN0VpbHddZv7OM2jmKL2t8SZU8VaxuRwghhDAn1j0lWuuWEfcppRyA\nX4FLtggquVMKfv0ViheHIUPg558tq5faMTXL2y7Ha4YXrZe2JkuaLKw6u4osabLQulhr5h2bx+rz\nq2lepLlVcU0+MJlsztn4otoXVtUXQgghomOTMSVa6xDgR4wncIQNuLvDt98aycmePbGol9Gd39v8\nzp7rezjnd45pTadxfcB15rSYQ518dRi6ZSjBIcGxjufxy8fMOzaPj8t/TCrHVLGuL4QQQsTElgNd\nC2DdvCciCn36GINfe/aEwEDL69XJV4fbn93mZO+T9PLqhbOTM0opvnv3O07dP8WiE4tiHcusw7MI\nDA7k4/Ifx7quEEIIYQlrBrr+GHEXkANoAsyzRVDCkCIF/PgjVK1qrCZctarldbOlzRZpX8VcFWlV\nrBUjto2gXYl2Fvd4BIcEM/WfqbQr2Q63dG6WByGEEELEgjU9JWUjbKVN+z9DJk+zufLlwckJjh2z\nTXuja4/mxtMbTPedbnGd1edXc/XxVf5XMRbPKQshhBCxZM1A19pxEYgwL2VKY8Dr0aO2aa9YtmJ0\n9+zO6J2j6e7ZnfSp0sdYZ/KByVTJXYUKuSrYJgghhBDCjFj3lCiltiqlIj36q5TKoJTaapuwRFie\nnrZLSgBG1hzJ01dP+XFfxDtxkZ24e4JtV7fxv0rSSyKEECJuWXP7phaQ0sz+1ED1t4pGmOXpCSdO\nQFCQbdrLkzEPfSv2Zfy+8Tx68SjaspMPTCZn+py0LtbaNicXQgghomBxUqKUKq2UCh0/Ujz0Z9NW\nFmOhvptxEmUsKKWuKqVCwmzBSqnPI5TJo5Raq5R6rpS6o5T63jTXSoLk6QkvX8L587Zr87Mqn/Ei\n8AWLTyyOssyDgAcsPLGQ3uV7yyJ7Qggh4lxsxpQcBbRpM3eb5gXQzxZBvSUNDAdmYjwZBOAfetCU\nfKwDbgGVgZzAAuC1qV6CU6aM8e/Ro8b4ElvIkT4HTQs3ZdaRWfSp2MdsmRm+M9Ba08url21OKoQQ\nQkQjNr0D+TDmIlFARdPPoVsuIIPWOm5Xg7PcM631fa31PdP2IsyxBkBRoJPW+oTWeiPwJdBHKZUg\n51nJnBny5rXtuBIw1ss5cucIh28fjnTsReALJh2YhHcZb7OPFwshhBC2ZnFSorW+prW+qrV20Fof\nMv0cut3WWsd+mtC484VSyk8pdVgpNUgplSLMscrACa21X5h9G4GMQIl4jTIWPD1t91hwqIYFG5Ij\nXQ5mHZ4V6djsI7PxC/Dj86qfm6kphBBC2J5V4yiUUl2UUnuUUreUUnlN+wYopSxc0zZO/QS0xxiQ\nOw0YCowLc9wNuBuhzt0wxxIkT084cgTeYj29SBwdHOnu2Z1FJxYREBjwZn9gcCA/7P2BtiXaUiBL\nAdudUAghhIiGNY8Ef4Kxzs06jFWBQ3shHhFHk6cppb6LMHg14haslCoMoLWepLXeqbU+qbWeAQwE\n+imlEvVITU9PuH8f7tyxbbsflP2AJ6+esPz08jf7lpxcwrUn1xhSbYhtTyaEEEJEw5oxFP2Anlrr\nP5VSYZeLPQSMt01YkYwH5sRQ5nIU+w9iXKcHcAG4A0ScBczV9G+MX/kDBgwgY8aM4fZ16NCBDh06\nxN59bb8AACAASURBVFT1rYQd7Jojh+3aLZClAHXy1WHWkVl0KdOFEB3Cd7u/o0mhJpR2LR1zA0II\nIUQYPj4++Pj4hNv35MkTi+pak5TkA46Y2f8KSGtFezHSWj8AHlhZvSwQAtwz/bwPGKqUcgkzrqQ+\n8AQ4HVNjEydOpFy5claGYj0PD8iQwUhKGjWybdsflv2QTis6ceHBBU7dP8UZvzPMbDbTticRQgiR\nLJj7Q/3w4cN4eXnFWNeapOQK4Alci7C/IXDGivZsRilVGagEbMN4DPgdjFtNC7TWoWnaJozkY4FS\najDGYoKjgKla61isxRu/lLL9zK6hWhVrRebUmZl1ZBbbrm6jRt4aVHWPxep/QgghhA1Yk5T8CPys\nlEqN6fFgpVQHYAjQw5bBWeEVxiDXkUAqjARqAjAxtIDWOkQp1RT4FdgLPAfmmuokaJ6esGGD7dtN\n7ZiazqU789OBn3gZ9JL1ndbb/iRCCCFEDKxZkO83pdQLYDTgDCzGmIisv9Z6iY3ji21sR4AqFpS7\nATSN+4hsy9MTpkyBZ88gXTrbtt2jXA+mHJxCWbeyNCjQwLaNCyGEEBawarIwrfUiYJFSyhlIp7W+\nF1Md8fY8PY1Hgk+cgCoxpl6xU9q1NJ9V+YxmhZuhlIq5ghBCCGFjb7Xei9Y6IDQhUUqlVkoNsk1Y\nwpzixcHRMW7GlQCMrz+emh4146ZxIYQQIgaxSkqUUtmUUk2VUvVDZ0lVSjkppfoDV4Evom1AvJVU\nqYzEJK6SEiGEEMKeLL59o5SqBqwBMmAsendIKdUd+BMIAv6/vfsOk6o8/z/+vqUqCopGFCWIsYAN\nAXsLYkSxgF0RC0bjN7H3EkuIlcRuflhiFKMCFsSGGjSCbcUCKLGAJYpKEARBlCbs7v37456VYdhl\nd3an7+d1XXPBnPOcc55np5x7njoI+GcW8ihJsjUCR0REJN/SqSm5hpjFdVtiNMuOwBPAH919K3e/\nK2XhO8mC7beH//wHysvznRMREZHMSico2Ra4xt0/JFbVdeAidx+ZlZxJtbbfHpYsgU8/zXdORERE\nMiudoGQdYA5AokZkEfBBNjIlNUuebl5ERKSUpDskeCszq1pJ14AtzWyFqeXd/T8ZyZlUq21b6NAh\nmnCyvNyOiIhITqUblLxEBCNVRif+9cR2Z/mqwZIlm24KX3yR71yIiIhkVjpBSaes5ULSsskm8PHH\n+c6FiIhIZtU5KHH31AX4JE86doQXXsh3LkRERDKrQTO6Sn507AjffAM//ZTvnIiIiGSOgpIi1LFj\n/Pv11/nNh4iISCYpKClCVUHJl2pQExGREqKgpAh16BD/KigREZFSku6Q4BWY2XrAzsQw4Hfc/ZuM\n5EpWqUUL2HBDBSUiIlJa6h2UmNnhwL3AJ0AzYiK10919aKYyJzXr2BGmTct3LkRERDKnzs03ZrZm\nyqY/ATu5+07u3g04Erg2k5mTmnXsqJoSEREpLen0KZloZv2SnpcD6yc9bwcszUiupFYKSkREpNSk\n03yzHzDEzAYCpwNnA4+YWZPEeSqBgZnOoFRvk01g+nSoqIAmmthfRERKQDozuk4DDjSz/sArwO3A\nZolHE2Cquy/JRiZlZR07Qnk5zJixfDSOiIhIMUt7SLC7jwB2BLoCLwOruft7CkhyS3OViIhIqUkr\nKDGzA8zsfGAHdz8FuAgYZmY3mNnqWcmhVEtBiYiIlJp0Rt/cBAwlaknuNrMr3P0VoDuwBHjXzPpk\nJ5uSas01oW1bBSUiIlI60qkpGQgc4O7HEIHJ8QDuvtTdrwAOA/6Y8RxKjTQCR0RESkk6QclCoFPi\n/x2I2pGfuftH7r5npjImtVNQIiIipSSdoORS4AEzm0GMvrkiO1mSulJQIiIipSSdIcHDzOxfwKbA\np+7+ffayJXVRFZS4g1m+cyMiItIwaa194+7fAd9lKS+Spk02gcWLYfZsWH/9WpOLiIgUtLTnKZHC\noWHBIiJSShSUFDEFJSIiUkoUlBSxtm2hVSsFJSIiUhoUlBQxM43AERGR0qGgpMgpKBERkVKhoKTI\nKSgRkWLx00/5zoEUOgUlRU5BiYgUOne45RZYay24555850YKmYKSItexI3z/PfzwQ75zIiKysmXL\n4LTT4LzzYLvt4Pe/h1Gj8p0rKVQKSoqchgWLSKGaPx8OOgj+8Y94vPUWHHEE9O8P48blO3e5MWQI\njByZ3jHujbepS0FJkdtkk/hXQYmIFJIpU2C33eDtt2HMGDj5ZGjSBB54APbaC/r1g3ffXZ5+9mx4\n6KFo5qmszF++M+n22+GMM+C44+LvURcVFdC3b/yN3LObv0KkoKTIbbABNG8O06blOyci0ti5w+uv\nwyGHwNZbx6/98eOhV6/laVq0iOabzp1h//3hsstgxx2hXTs4/vho5vnLX/JXhkx55BE45xw466z4\n8XjCCdGUVZtBg2D06Ajmxo/Pdi4LT1pr30jhWW016NBBNSUikl/PPgtXXx1NNF26RHPNgAERhKRa\nay147jnYZx+44w7o3RtOPz2ClCFD4PLLYYcdYN99M5vH2bOhrCweEyZEPjbeOL5DN944gqovv4wf\neVWLnd533/Jm8roaOzaCkGOPjZqfCROi1uj66+HKK2s+7umn4Zpr4nHvvdEpeLfdGlTk4uPuRfMA\n/giUAQuBuTWk6QA8m0gzE/grsFpKmu2AV4HFwJfAhXW4dnfAJ06c6IWmVy/3I4/Mdy5ESt/Mme47\n7ODerZv73nu7H3qo+0knuT/7bL5zll/33+8O7nvtFX+Lioq6HVdZ6V5evuK28nL3/fZzX3dd92nT\nMpO/UaPct9wy8gjuG2/sfvjh7gce6N61a1yrat/667vvuGN8p3bsGMfNmVP3a02a5L7WWu69e7v/\n9NPy7Zdf7t60qfuECdUf9/HH7q1bx3uqstL9uuvcV1/dfd68BhW9YEycONEBB7r7Ku61xdZ80wx4\nFLizup1mthrwHFEDtAtwIjAQuCopzVrAGOALItC4EBhkZqdkM+PZpGHBIrkxaBB89hnssks0Nyxe\nHNXsffvCY4/lO3f5MWoU/Pa38LvfwcsvwwEHRA1uXZhFP5NkTZrAsGFRi3HEEbBkScPy9/DDcOSR\nsNlmMHx4fFd+/XV0Ph09Gt57D+bMgYUL4zFrVrymjz4KL74Ic+dGZ92FC2u/1ssvQ58+sOWW8Pjj\n0bRe5YorYNttowYltUwLFsBhh8GGG8L998ff5aSTorln2LCGlb/orCpiKdQHEWysVFMC9AGWAesl\nbfs/YB7QNPH8D8CcqueJbdcDH9VyzYKtKRk0KKJ7EcmeKVPcmzRxv/HGFbeXl7sPGBD7Ro7MT97y\n5YUX3Js3dz/66JVrPBpq4kT3Fi3cTzml/ud46CH31VZzP+GE+ufvnXfcW7WKWpWlS6tPs3Ch+1ln\nLa8tmjWr+nTvvx9/r5NPdh8+3H3IEPdrr43a7jXXdP/ooxXTH3qo+7bbRs1JsatrTUneA4z6PFYR\nlPwZmJSybROgEuiaeP5PYFRKmp5ABdBmFdcs2KBk+PB4JUulmk+kEB1ySFTnL1688r5ly9yPOSaq\n50eNynnW8uKNN9zXWMO9T58Vmyky6b774rvttNPcf/ghvWMfeCACkoEDGx4wjRkTr+1JJ60cIJSV\nuW++uXvLlu633lp709XNN/vPTUVNmrivt557587uTz+9ctrnn490b7654vYFC9wPOMD9ttsaVq5c\naqxByd3A8ynbVk8EJfslno8B7kxJ0yURlGy5imsWbFAyaVL1b1wRyYzXXovP2EMP1Zxm2TL3o46K\nm9f997s/84z73/7mfv757v37xw2mJt98E7+Yf/wx83nPtOnT48a69true+4ZtQTZdPvtEfxsvLH7\nU0+tOu2PP7q/9Vb8Lc2iRqKu/Vtq89BD8R5YfXX3tm3dN9zQvVOnCHx22SX6hNTV7NmR19pqQMrL\nIxD+7W+Xb1u61H3//SMvv/hF9gLCTKtrUJL30Tdmdj1w8SqSONDF3T/JUZZW6dxzz6VNmzYrbOvf\nvz/9+/fPU45giy3i36lTYeed85YNkZLkDhdeCN26xaRfNWnaNObZOPZYGDgwtjVrFn2+WrSIvhZX\nXw2XXrpin4vXXoOjjoKZM2Nm5sGD65fPefNieG1lZcyPkdyfoaHmzo2+GQ8/HEN+mzWLeUbuuQfW\nWCNz16nOmWfCwQfHrLD9+sHhh8dInVmz4Kuvon/ItGnw4YfwxRdxjFmkue22uvdvqc2AAdGP6IMP\nYqjzkiXxb8eOcMopK/eNWZX11qtbuiZN4tzXXw833xz9bH77W3jppXiNzzoLnngCjj66fmXKlhEj\nRjBixIgVts2fP79uB68qYsnFA1gX2KKWR9OUY9R8k6JjR/dLLsl3LkSK19Kl7vfcE/1Ckn99jhwZ\nv0r//e+6nae8PGovp09f/iu9osL9T3+K8xx6aDRFVFa633BDVOH37Ol+5pnR3+DTT9PP+8iR7hts\nEKM+mjePkR8LFqR/nup88ol7hw5RA7T//u5Dh+anqbiy0v3hh6P/XFXzR+vW7lttFfk6//zI2zvv\nZL/2JpemT4/3yB13uF9wQdQAPfxw7Ntrr3jvFIPG2nyzPyt3dD2V6OjaLPH890RH1yZJaa6jiDu6\nuscQun798p0LaczKy93/9a/iqU5O9uGH7j16xBd+VbX4+ee7T54c/QX23z8z13nqqQgcOnd279s3\nrnXxxdH0s3Bh3Pz79q3+2CefjBvQKadEs9Crr7pPnRpBDsRxX3/t/tJL0Wly553TG8panfffd2/X\nLvL75ZcNO1em/PBDvF7z5+c7J7nTr18EYBDNWVWq+hNOmZK/vNVVSQYlxBwkXYErgfmJ/3cFWiX2\nrwZMBp4n5iLZD5gFXJ10jtbAjESNyVbA0cAC4ORarl3QQcnZZ8d4epF8WLrU/dhj4xvl4IPdlyzJ\nd47qprw8aitatIgb79tvu3/wgfu55y6fu8IsgpNMmTo1rtWmzcp9JB55JK45ZsyK2//976gB2XFH\n9+23j/9X1Ra0a+f+2GMr9k94553oQLnVVvFLuz4mTIi/QdeuNY8mkdyo6vB62WUrbl+yJF7nc87J\n3rVnzIh+Og0dAVSqQcnQRDNL6mOvpDQdgNGJQGMW8BdWnjxtG+AVYBHwFXBBHa5d0EHJnXdG9WpN\nQ9ZEsmXJkvgl17Sp+6WXxg2+T5/qR6kUiu+/jxv57rtH0HHeee6LFq2YZskS90cfdR82LPPXX7zY\n/bvvVt5eWRmdR7t0Wf5ZnjAhaj722295LdTSpVGLMWqU+9y51V9j6tSoefnlL93ffbfmvLz4ovvp\np0dw9sQTcd6xY+OX+c4713x+ya0pU6oPDC66KDodp75/G+rTT91/97vlAfDWW7vffXf9m8ZKMijJ\n56PQg5Jx47xoqvGkdCxcGP0XWrRwHz06tr34YoxQ2Hff/Lbt//e/7q+8EjfYF1+MpqUbb4yZWJs2\njc/LdttFmkIyaVIESrfeGiM6fvGLCA7q00fkq69i9tmWLWOIbLJly6IfGkSftDXX9J9rX6rm20h3\nGK7k3mefxet1//0NP9ePP8ZIs2OOiVFF7dq5Dx4cNXf9+sX7sm3baHJM972hoKSRBSXffBOv5hNP\n5DsnUooqKqL9+vbb4+b21FMRCO+5Z0ws9dJLK6YfNy6277135jpcpmP8+PhSTb7JQtycDzggJq36\n4ovc56uuTj01mnc6doxak4b0DVm0KObqqJrv46efou/JHntEB8rBg+P1rayM75HXXnN//PHM//KW\n7OndO4YlV6msjCHMnTpFDVhNTS+zZkWT0EEHRdqqz8kmm8RnJPU98N//RtNmq1bRlDh7dt3zqKCk\nkQUllZVRhXfddfnOiZSa//0vaj1gxb4MEDfOsrLqj3vttfj1vdFG7ldfHevG5MLSpe7bbBMdV6dM\niWrozz+PjprFcqP99tv423boELUdDVVZ6X7XXe7NmsXaPeuuG/N+vP56w88t+TdqVHwe33031guq\nmsdkp53i39NPX3kCubKy+Gy2aRPNrRde6P7Pf0Zz4bJlq77epEkxCmrLLeveAfq++xSUNKqgxD0i\n5RNOyHcupJSMHLl8oqiqzpeLF0eAMXVq7b/gp0yJ0SKrrx43xAED4sswm9NmX3dd1ABMmpS9a+TC\nBx9EQJhJb74ZtS99+zZ8ZI4UjqVL3du3j4CzVasIOJ95JvbdfXd8Hvr2jebUysqYCbZp0+hTVd+O\n0J9+GrUrG20Uo6FW5dVX3Zs1U1DS6IKSgQMjMhZpqMWLY0ptcD/ssIbfwL77LvpzbLqp/1w9fPHF\nEThUrRQ7caL7LbfEENeLLqrfdT75JPq3XHhhw/JbykphHRVZ2Z//7D/XiqQOl3722QhWdtopZh2G\naIZp6MCIGTOiX1bbtjXXmH74YdTi9+ihoKTRBSWDB0ePeX3pSEPdeWf8urrvvsy+nyoqov/Jqacu\nH3LbqdPyORhatIghqBD9UtJRWRkLm3XqVFqTZ4nUxbJlq+4nNXHi8gn2Hnssc9edNy/6ljVp4n7N\nNSs2E02fHk2Q227r/vLLdQtKzOOGK7Uws+7AxIkTJ9K9e/d8Z6daTz0FhxwCM2bEEtgi9fWb38QU\n12PGZO8ay5bB2LHwzDOw0Uaw556w444xhfluu8HixTBxYkzfXhf33x/LvY8ZA717Zy/fIsVqzpyY\nGn+jjTJ73mXL4Kqr4Lrr4rP74IOwzjrxmf7+exg/HmbNmkSPHj0Aerj7pJrOlfe1byRzunSJf6dM\nUVAi9Td7Nrz8MtxxR3av06wZ7LdfPFLdfnus43TPPfCHP9R+rm+/hfPPh+OOU0AiUpO6rrmTrmbN\nYl2n3r3h+OOha1fYbLNYl6isLIKgWbPqdq4MLVUkhaBTp3hzTJ2a75xIMXvqqRhbc8gh+cvDTjvF\nonaXXx6Lwa2KO5x6aizCdvPNOcmeiFRjzz1h8uRYQHHKFHj6adhqq/TOoaCkhDRrFtGpghJpiJEj\n4de/hvXXz28+rr8+qoUHDVp1ujvvjEDq3nvhF7/ISdZEpAZt2sRq2fPmRZCSLgUlJaZzZwUlUn/z\n5sWy6Eccke+cwAYbwBVXRDPSBx9Un+b99+G88+CMM2JZexEpDC1a1O84BSUlRkGJNMTTT0NFBRx6\naL5zEs4+GzbdFM45J/KVbNEiOPpo2GILuOGG/ORPRDJLQUmJ6dw5OhctWJDvnEgxGjkSdt+9cDpK\nN28Ot90WtTedO0dTzaJFse/cc2HaNHj4YWjZMq/ZFJEMUVBSYqpG4Hz8cX7zIcVn/nx44YXCaLpJ\n1qcPvP02dO8ezTQdO0Yn2L//PQKWdDvSiUjhUlBSYrbcMv5VE46ka/RoWLoUDjss3zlZ2Y47wiOP\nwKefQv/+8NhjcNRRcMop+c6ZiGSSgpIS07o1tG+voETS9/jjMTdIhw75zknNNt005jCZPRuGD49h\nwCJSOhSUlCB1dpV0LVgAzz9feE03NVljjZhxVkRKi4KSEqSgRNL13HOwZAkcfni+cyIijZmCkhLU\npQt88gmUl+c7J1IMFiyAW26Bbt1iVmARkXxRUFKCOneODovTpuU7J1Lovv8+1qv48MPoqyEikk8K\nSkpQ1RDJO+6Aysr85qWx+uqrmG00HS+9BBddFM0oufDtt7D33jF8/KWXYI89cnNdEZGaKCgpQe3b\nxwyXt94KxxyzfLIpyb4ZM+C002INoh49YoRIbSoq4E9/gn33jdftiCOipiubpk+HvfaCb76BV16J\nIbciIvnWNN8ZkOy44AL41a9iKfeePWPBskKZpbMUzZ4Nf/kLDBkCq68ey3hPmQIDBsSN//zzqz9u\n5kw49tgIDK6+OgKZfv0imHzkkVhkMR1Ll0YNWXl5vO7bbw9NE5/yysqYhGz0aLj//hi98tprsPnm\nDSm5iEjmKCgpYYceGjedgw+OpeBHj4auXfOdq9IzfXoEE4sXw8UXx/TnbdqAe9RaXXBB1KDccAOs\nlqib/PZbGDs21nQxi+aTnj1j36hR8doddxwMG7Y8qKjNhx/C8cdHs1Hz5lFD1rp1rNTZti2MGRPX\nbdsWDjwQrrkGfvnLrPxJRETqRUFJievePX4dH3wwHHAAvPeelnfPpPLyqOlo3hwmT46VbauYwXXX\nRWBy1lkxG2nr1jB+PHz+eaTp3RseeADatVt+3IEHwqOPwpFHwoknwr33rnptl8rKGD1z2WVRO/bW\nW7DNNjBhArz8cjz+85+Ymv2gg2DXXese6IiI5JK5e77zUBTMrDswceLEiXTv3j3f2UnbjBlRS1JV\nY6KZMDPjiivg+uvjxr+qjqIjR0Zg0qFDBAW77gq77BI1FTW9Fo89Fs04zZrFTKt77RWP9u3j9fzf\n/+Lf55+HsrKoobn2Wi1OJyKFZ9KkSfTo0QOgh7tPqimdfi81Eu3bRz+Cgw6KDrDnnpvvHBW/f/87\ngoBrr6195MoRR6Q/W+qRR0aNxwsvwKuvwl13RZNLsvXWi9qRsWOXN/+IiBQrBSWNyIEHwnnnRb+H\nPfeEHXbId46K18yZ0efjN7+Jv2e2dOkSj7PPjj4qU6fCd9/BRhtFoNmiRfauLSKSaxoS3Mhcfz1s\nt100C/zwQ75zE77/Hm66Keb2KAYVFTGqxgwefHB559VsM4sAZY89YuZVBSQiUmoUlDQyzZvDww/H\nKIzf/z5+fefTrFkxgdcFF8TQ1HPOibwVqtdfh913h3HjYmRMcgdVERFpGAUljdBmm8VcFiNGRF+E\nfPnyy/jVP2tWjEi54goYOjSWp7/88rjxP/dcdBJ98EH417/yF0R98kkM091zzxhxM24c9OqVn7yI\niJQqjb6po2IffZPKPUbiNG8ev/5zPRrno49iOGyLFvDiixGIAMydC3/9a6zDsnjxyscddBDcfXf0\np8iFRYsiWLr99rjmdddB//65a7IRESkFdR19o6/WRsoMrroK3ngjRnfk0sSJMbS1bdsIiKoCEoht\ngwfHcNfPPot/582L9WCeegreeSdGpAwblv1akzffjJVzhwyJv9XUqdGXRAGJiEh26Ou1Edt//5gr\n48orc9csMmsW9O0bgcjLL9c89f0668RQ1/btYe21o0alb9+YtbRPnxj5cuihMRIl0376CS69NPqO\nrL12TDh36aUxfbyIiGSPgpJGzCzWW3n7bXj22exfr7w8mj4qKqLWo23b9M+x7rpRS/L441HL0rNn\nrC2TKT/+GBOV3XRTzAlSVgadO2fu/CIiUjMFJY3cPvtE581c1JZcfnlMAvboow1fHPCwwyIomTcv\nmoK+/DIzebzjjujv8tZbUTui6dhFRHJHQUkjV9W35N13o/YiW558MlbRHTw4gohM6Nw5FhysrIxR\nPB9/3LDzLV4MN98ca8R065aRLIqISBoUlAg9e8bw1iuvjBt8pn32WSwsd9hhcP75mT13p04RmFSt\nhjt5cv3Pde+9MGdOdmdoFRGRmikoESBqS95/P2o0MskdjjoqJhkbOjQ7Q4/bt4dXXonF7fbeO0b3\npGvp0hiKfMwx0cFWRERyT0GJADHSpHt3eOKJzJ73v/+NpqGbborajGxZb71YIG+LLaKfzNtvp3f8\nsGHw9dfRj0RERPJDQYn8bJ99YobXTHZ4LSuLf2tbRTcT1l475lzZemvYd9+YJbbK7NkxCVq7dtGM\nNH/+8n0VFdHXpV+/mANFRETyo6iCEjP7o5mVmdlCM5tbQ5rKlEeFmR2VkmY7M3vVzBab2ZdmdmFu\nSlDYevWCGTNiSvVMKSuLIGGddTJ3zlVp3Tqmo+/aNWaMHTkSzjoLOnaEW26JuU7GjoUdd4QPPohj\nHn88ynzZZbnJo4iIVK+oghKgGfAocGct6U4E2gEbABsCP/eUMLO1gDHAF0B34EJgkJmdko0MF5M9\n9oghsJlcD6esLJqGcmmtteD552GHHeDII6Np5uKLY9jwPffAhAnQsmVMHPfIIzF1/L77RqAiIiL5\nU1SzMLj7nwHM7MRaks5399k17DuOCG5OdvdyYIqZdQPOA/6RscwWoTXXjPVwxo2DP/yh4eebOzfm\n/MjHaJZWrWJCuOeei5lr11xz+b7NNoumnVNOiY6tEGUWEZH8KraakroaYmazzewtMzspZd8uwKuJ\ngKTKGGBLM2uTuywWpl694gadiaHBVX06dtut4eeqjzXWgCOOWDEgqdKqFQwfDn/7G5xxBvz617nP\nn4iIrKgUg5IrgKOA3wAjgTvM7Iyk/RsAs1KOmZW0r1Hr1Svm6qjqb9EQb7wB669fuENszSIg+dvf\ncr9KsoiIrCzvQYmZXV9N59TUjqpb1PV87n6tu49398nufgPwF6LfiNTBrrvG4neZ6FdS1Z9EN3wR\nEamLQuhTciMwtJY0nzfg/G8DV5hZM3dfBswkOsEmq3o+s7aTnXvuubRps2IrT//+/enfv38Dslg4\nWraMQGLsWDjnnPqfZ9mymCvk6qszlzcRESl8I0aMYMSIEStsm588D8Mq5D0ocffvgCwsQP+zbsC8\nREACMB64xsyauHtFYltv4GN3r/Wvdsstt9C9e/csZbUw9OoVs5uWl9d/Qbp33421ZHI98kZERPKr\nuh/qkyZNokePHrUem/fmm3SYWQcz6wp0BJqYWdfEo1Vi/0FmdrKZbW1mvzKzPwCXArcnnWY4sBS4\nz8y2MrOjgbOAm3JcnILVqxf88ANMmlT/c5SVRa1LicdvIiKSQXmvKUnTVcAJSc+rbpt7A68Cy4DT\ngZsBAz4DznH3n4f6uvsPZtYbGAJMAOYAg9z93uxnvzjssEOMWBk7NoYIr8pPP0GzZrBaSnhbVhbz\nfjRvnr18iohIaSmqoMTdTwJSh/gm7x9DDO+t7TwfABoEWoNmzWCvvSIoueSSVaft0ycCj+eeWx6Y\nuEdQMnBg1rMqIiIlpKiabyR3evWC11+PmpCafPRRzGkyZgwMGbJ8+xdfwMyZ+ZufREREipOCcyR8\n/wAADtBJREFUEqlWr17RUfWtt2pOM3QorLsunHpqzNpatWZO1SJ8CkpERCQdCkqkWl27xiJ6Nc1X\nsmwZPPggDBgAN98MG20EJ5wQI3bKyqBz5whYRERE6kpBiVRrtdWgZ0944YXq9//rXzBrVvQbadUK\nHngA3nknhhK/8YaGAouISPoUlEiNjjsu1q8ZPXrlfUOHRm1Kt27xfNdd4aKLYNCgmKJeQYmIiKRL\nQYnU6NBDoXdvOPNMWLRo+fbZs+GZZ+CklHFQgwZBly4x+kZBiYiIpEtBidTILEbVfPMNXHvt8u3D\nh8e+AQNWTN+iBTz8cHR63Xzz3OZVRESKn4ISWaXNNou5Sm64AaZOjW1Dh8LBB8N6662cvksXGDxY\ni/CJiEj6FJRIrS65BH75Szj99FjTZvJkTYwmIiKZp6BEatWyZTTjjB0bnV/btYuZXEVERDJJQYnU\nyX77wZFHxiyuxx9f/9WDRUREaqJbi9TZLbfELK+nnZbvnIiISClSUCJ1ttFGMRRYREQkG9R8IyIi\nIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAiIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIi\nIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBUFAi\nIiIiBUFBiYiIiBQEBSUiIiJSEBSUiIiISEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQ\nIiIiIgVBQYmIiIgUBAUlIiIiUhAUlIiIiEhBKJqgxMw6mtk/zOxzM1tkZp+a2SAza5aSroOZPWtm\nC81sppn91cxWS0mznZm9amaLzexLM7swt6UpDCNGjMh3FjJOZSp8pVYeUJmKQamVB0qzTEUTlACd\nAQN+B2wFnAv8Hri2KkEi+HgOaArsApwIDASuSkqzFjAG+ALoDlwIDDKzU3JRiEJSim9olanwlVp5\nQGUqBqVWHijNMjXNdwbqyt3HEMFElWlmdiMRmFyU2LYfEbzs7e5zgPfN7ApgsJkNcvdy4DigGXBy\n4vkUM+sGnAf8I0fFERERkRTFVFNSnbWBuUnPdwHeTwQkVcYAbYCtk9K8mghIktNsaWZtMp3B+kSy\nuTrmf//7X9rH1PdahVymXOWtvscVcpkKuTz1Pa6Qy5TL92qplUnvu/pfJ5fvu6INSsxsM+AM4K6k\nzRsAs1KSzkraV9c0GVPIbwAFJfW/joKS+h+jm0P9r6OgpP7H6H1X/+vk8n2X9+YbM7seuHgVSRzo\n4u6fJB2zEfA88Ii735flLFZpCTBlypS0Dpo/fz6TJk0qyGOWLVuW9jH1vVYhlylXeavvcYVcpkIu\nT32PK+Qy5fK9Wmpl0vuu/tfJxDFJ986WqzrO3D2tC2Wama0LrFtLss+rmlvMrD0wDnjD3U9KOdef\ngYPdvXvStk2Az4Fu7j7ZzP4JrOXuhyWl6Qm8BLR19/k15PNYYFh6pRMREZEkA9x9eE07815T4u7f\nAd/VJW2ihmQs8A7w22qSjAf+aGbrJfUr6Q3MBz5KSnONmTVx94qkNB/XFJAkjAEGANOAJXXJr4iI\niABRQ7IJKw5YWUnea0rqKlFD8goxlHcgUBVQ4O6zEmlWA94FZhBNQhsCDwB/d/crEmlaA1OBF4G/\nANsC9wJnu/u9OSqOiIiIpCimoOREILX/iAHu7k2S0nUA7gR6AguB+4FL3b0yKc02wBBgR2AOcLu7\n35jN/IuIiMiqFU1QIiIiIqWtaIcEi4iISGlRUCIiIiIFodEEJWZ2qZm9bWY/mNksM3vCzLaoJt1V\nZjYjsejfi4lJ2pL3tzCzIWY2x8x+NLORZrZ+SprNzexJM5ttZvPN7LXEsONiLlN3M3vBzOYlynW3\nmbUq0PL8zszGJf72lYnOzannWMfMhiXSzEss9pjR8uShTH80s7LEYpRzU/cXW5msjotwFkt5Emme\nslgEdHHiXA+Y2YaZLE+uy5SUtrmZvZdIt12xlsfMpiX2VT0qzOyi1HTFVKZEugPN7M3Eeeaa2ahM\nlykTGk1QAuwJ/A3YGfgNsf7NC2a2elUCM7uYmCX2VGAnoqPsGDNrnnSeW4EDgcOBvYD2wOMp13oW\naEJ0tu0OTAZGW8qNvljKlPjSfBH4JHGO/Ylp++8v0PKsTkyudy0x+V51hgNdgH2Isu8F3J3JwiTk\nskzNgEeJjt7ZlKsy1boIZ5GVB2JKgyOBLYDDgF8Bj2WyMAm5LFOVvwLT65CuPnJZHgcuB9oRs3xv\nmLh2puWsTGZ2ODES9V5ixOluxHdg4XH3RvkA1gMqgT2Sts0Azk163hpYDByV9Pwn4NCkNFsmzrNT\n4vm6iee7J6VZM7GtV5GW6XfANynX2iaRZtNCKk/K8b8mho63TtneOXHebknb9gPKgQ0K7TWqS5lS\n0pwIzM1mOXJdpqS0FwCflVB5Dk6875oUc5mAPsCHSZ+t7Yq1PMS0E2dlM/+5LBPxA/lrYGCuy1Sf\nR2OqKUm1NhFVzgUws05EVPxSVQJ3/wF4C9g1sWkHYsK55DQfA19VpfGYDG4qcIKZrWFmTYE/EOvr\nTMxukbJTJqAFsDTlWlUTyO2R0RKsqD7lqYtdgXnu/m7Stn8nrrVzA/Ncm2yVKZ9yWabURTizISfl\nMbO2xISMZb58IsdsyVqZzKwd8HdiBfbFGcpvbbL9Gl1i0Zw9ycwuMLMmtR/SYNkqU3ei9ptEeWaY\n2XNmtnUtx+VFowxKzMyIJovX3b1qptcNiDdEdYv1VS3U1w5Ymnhj1JQGYF/ijfAj8SE9G9jfVz1j\nbINkuUxjgQ0SH85mZrYOcH3i3BlvD4cGlacuNgC+Td6QuCnMTfM8aclymfIil2Wy6hfhzKhclMfM\nBpvZAmKOpA7AIfXPcZ2ul+0yDQXuSAnysyYH5bkNOIZofr8L+CMx0WbWZLlMmxLNoH8CriKaq+cB\nL5vZ2g3JdzY0yqAEuINooz4mi+efBexOTND2JNGnpF2Wrld1zayUKfEhORE4D1hEVCl+TtzYK1dx\naENk+zXKB5Wpnix3i3Dmojx/BbYnfrxUAA9m8VqQxTKZ2VlE83TVTdsyfY1qZPU1cvdb3f1Vd//A\n3f9OfO+daRnuYJ0im2Wqus9f4+5PJoLHk4iA58gsXK9BGl1QYmb/DzgA6Onu3yTtmkl8oFIDh3aJ\nfVVpmlfTu/nnNGa2T+L8R7v7m+7+nrufQdSYnJjRwiRku0wA7v6wu7cnqgHXBf4M/IIITjKqgeWp\ni5lA6uiiJkDbNM9TZzkoU87lqkwWS0yMJX5F/l89s1uX6+SkPO4+190/c/eXgP7AAWaWlWbDHJRp\nb6Ip4SczWwZ8mtg+wcyG1i/XNcvT5+htool7kwaep1o5KFPVOX9eptfdlxLf3b9MO8NZ1qiCksSL\n3w/Y292/St7n7l8QL/Q+SelbE30M3khsmkh0SktOsyXxwlalWZ2IQFNrECrJwt87y2Uan3o9d5/t\n7ouIiH4xMSqnkMpTF+OBtc2sW9K2fYgvgLfqmfUa5ahMOZWrMiVqSMZR8yKcGZHH16iqr0KLBp5n\nJTkq05lA16RHH+L77yjgsobkP1UeX6NuxPf3t7UlTFeOyjSRGMywZdJ5mhFB1pf1zXvW5Lunba4e\nRPXYPGIYVrukR8ukNBcRKxYfTAybepKI/JunnOcLor2xB1AGvJa0f13izfsYsB2wOXAD0TF022Is\nUyLN6cSHc/PE/xcCpxdoedoRX5CnkOjNnni+TlKa54AJRPPa7sDHwIMF/L6rS5k6JLZdSayMXXWj\naFWMZSJq5T4FXkj8/+drFWl5dkp8droSQX8v4PXEe69ZMZapmut2JAujb3L4Gu1C9AHcDuhEdESe\nBdxX5N8NtxCDF/YlhqP/g6hBaZPpcjX475LvDOSsoPFiVVTzOCEl3SCiz8QiYonlzVL2tyDGls8h\nOrI+BqyfkqY70f49G/ieuMn3LvIy/TNRnsXESszHFnB5/lTDuU5ISrM28BBx854H3AOsUeRlGlrD\ntfYqxjIRzZ2p+yqBiiItzzbESIrZiXP8F/h/wIbF/L5LSd8xsT/TQUmuXqNuRE3qXOKH1wdEYJDR\noDHXrxFRI/dXIhD5PnGeLpkuUyYeWpBPRERECkKj6lMiIiIihUtBiYiIiBQEBSUiIiJSEBSUiIiI\nSEFQUCIiIiIFQUGJiIiIFAQFJSIiIlIQFJSIiIhIQVBQIiIiIgVBQYmIFAwzG2pmlWZWYWZLzWym\nmb1gZieZmaVxnhPNbF428yoimaegREQKzfPABsQ6KvsDY4HbgGfMrK7fWUasVisiRURBiYgUmp/c\nfba7f+Pu77n7YGJ59wOAgQBmdq6Z/cfMFpjZV2Y2xMzWSOz7NXAf0Cap1uXKxL7mZnajmU1PHDs+\nkV5ECoCCEhEpeO4+DpgMHJbYVAGcCWwFnADsTayCCvAGcA7wA7Gs+4bAjYl9Q4CdgaOIpeAfA543\ns19lvxQiUhutEiwiBcPMhgJt3P2wavaNALZ1922q2Xc4cKe7r594fiJwi7u3TUrTAfgc6ODuM5O2\nvwi85e6XZ7xAIpKWpvnOgIhIHf3cT8TMfgNcAnQGWhPfZS3MrKW7L6nh+G2BJsAnKZ1mmwNzspZr\nEakzBSUiUiy6AF+YWUfgGaIp5o/AXGBP4B9EgFFTULImUA50BypT9i3IRoZFJD0KSkSk4JlZL6Km\n4yagB9H0fEHS/mNSDllK1IokezexrZ27l2UxuyJSTwpKRKTQtDCzdiQCCKAP0VTzNPAgEZw0M7Oz\niBqTPYD/SznHNGDNRDAzGVjk7p+a2XDgATO7gAhS1gd6AZPd/fmsl0xEVkmjb0Sk0OwPzAC+IOYs\n+TVwhrsf4uE/wHnARcD7QH8iaPmZu48H7gIeAb4FLkzsGgg8QIzGmQqMAnYAvspukUSkLjT6RkRE\nRAqCakpERESkICgoERERkYKgoEREREQKgoISERERKQgKSkRERKQgKCgRERGRgqCgRERERAqCghIR\nEREpCApKREREpCAoKBEREZGCoKBERERECoKCEhERESkI/x9NT+Qv7veq+gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, From 6a7eabf23d4a57499ea7982ab690df4bc0b88b52 Mon Sep 17 00:00:00 2001 From: Willi Richert Date: Mon, 30 Jan 2017 09:38:12 +0100 Subject: [PATCH 10/31] Require user-defined functions to be wrapped in as_composite() --- bindings/python/cntk/ops/functions.py | 26 ++++++++++--- .../ops/tests/userfunction_complex_test.py | 3 +- .../cntk/ops/tests/userfunction_test.py | 37 +++++++++++++------ bindings/python/cntk/utils/__init__.py | 1 + bindings/python/doc/extend.rst | 7 +++- 5 files changed, 53 insertions(+), 21 deletions(-) diff --git a/bindings/python/cntk/ops/functions.py b/bindings/python/cntk/ops/functions.py index e63b7730b..b180d3329 100644 --- a/bindings/python/cntk/ops/functions.py +++ b/bindings/python/cntk/ops/functions.py @@ -647,11 +647,7 @@ class UserFunction(Function): ''' def __init__(self, inputs, name=''): - # FIXME we need to save a reference here so that the function does not - # disappear - self.var_inputs = inputs - - super(Function, self).__init__(inputs, name) + super(UserFunction, self).__init__(var_inputs, name) # Memory management for user defined functions has to be controlled by # the C++ side. For more information: @@ -753,11 +749,29 @@ class UserFunction(Function): outputs.extend(self.infer_outputs()) def infer_outputs(self): - raise NotImplementedError('infer_outputs has to be overridden') + ''' + Returns a list of all output variables this user-defined function + outputs. + + Output variables are created by + :meth:`~cntk.ops.functions.output_variable`. + ''' + raise NotImplementedError('infer_outputs has to be overwritten') def op_name(self): + ''' + Returns the operator name. + ''' return 'UserFunction' + def compose(self): + ''' + Wraps the passed Function to create a composite representing the + composite Function graph rooted at the passed root Function. + ''' + from . import as_composite + return as_composite(self) + @typemap def load_model(filename, device=None): ''' diff --git a/bindings/python/cntk/ops/tests/userfunction_complex_test.py b/bindings/python/cntk/ops/tests/userfunction_complex_test.py index 536ecff1c..0d1dc1cc5 100644 --- a/bindings/python/cntk/ops/tests/userfunction_complex_test.py +++ b/bindings/python/cntk/ops/tests/userfunction_complex_test.py @@ -46,7 +46,8 @@ def linear_layer(input_var, output_dim): def dense_layer(input, output_dim, nonlinearity): r = linear_layer(input, output_dim) - r = nonlinearity(r) + if isinstance(nonlinearity, UserFunction): + r = nonlinearity(r).compose() return r def fully_connected_classifier_net(input, num_output_classes, hidden_layer_dim, diff --git a/bindings/python/cntk/ops/tests/userfunction_test.py b/bindings/python/cntk/ops/tests/userfunction_test.py index 28332a40f..0e454e6a5 100644 --- a/bindings/python/cntk/ops/tests/userfunction_test.py +++ b/bindings/python/cntk/ops/tests/userfunction_test.py @@ -45,7 +45,7 @@ def test_ext_eval_1(): dim = 4 p = parameter(shape=(dim,), init=10, name='p') i = input_variable(dim, needs_gradient=True, name='i_var') - m = MyPlus(i, constant(3)) + m = MyPlus(i, constant(3)).compose() z = m+p input_data = np.random.rand(dim) @@ -56,7 +56,7 @@ def test_ext_eval_2_only_param(): dim = 4 p = parameter(shape=(dim,), init=10, name='p') i = input_variable(dim, needs_gradient=True, name='i_var') - m = MyPlus(p, constant(3)) + m = MyPlus(p, constant(3)).compose() # combine does not work # z = combine([m.output]) z = m+i @@ -68,7 +68,7 @@ def test_ext_eval_2_only_param(): def test_ext_eval_3_no_input(): dim = 4 p = parameter(shape=(dim,), init=10, name='p') - m = MyPlus(p, constant(3)) + m = MyPlus(p, constant(3)).compose() z = m+0 result = z.eval() @@ -79,7 +79,7 @@ def test_ext_eval_4_a_inside_graph(): dim = 4 p_init = 10 p = parameter(shape=(dim,), init=p_init, name='p') - m = MyPlus(p, constant(3)) + m = MyPlus(p, constant(3)).compose() z = p * m result = z.eval() @@ -90,7 +90,7 @@ def test_ext_eval_4_b_inside_graph(): dim = 4 p_init = 10 p = parameter(shape=(dim,), init=p_init, name='p') - z = p * MyPlus(p, constant(3)) + z = p * MyPlus(p, constant(3)).compose() result = z.eval() # No batch dimension since we have no input @@ -100,14 +100,14 @@ def test_ext_eval_5_times(): dim = 2 p_init = 10 p = parameter(shape=(dim,), init=p_init, name='p') - m = MyPlus(p, constant(3)) + m = MyPlus(p, constant(3)).compose() z = times(m, parameter(shape=(2,50), init=2)) result = z.eval() # No batch dimension since we have no input assert np.allclose(result, ((p_init*np.ones_like(result))+3)*2*2) -def test_ext_clone(): +def test_ext_eval_6_clone(): dim = 4 i = input_variable(dim, needs_gradient=True, name='i_var') m = i + 3 @@ -115,20 +115,33 @@ def test_ext_clone(): p = parameter(shape=(dim,), init=10, name='p') z = m + p - m_udf = MyPlus(i, constant(3)) + m_udf = MyPlus(i, constant(3)).compose() z_clone = z.clone('share', {m : m_udf} ); input_data = np.random.rand(dim) result = z_clone.eval([input_data]) assert np.allclose(result[0][0], input_data+3+10) +def test_ext_eval_7_placeholder(): + dim = 4 + p = parameter(shape=(dim,), init=10, name='p') + i = input_variable(dim, needs_gradient=True, name='i_var') + pl = placeholder_variable() + m = MyPlus(pl, constant(3)).compose() + m.replace_placeholder(i) + z = m+p + + input_data = np.random.rand(dim) + result = z.eval([input_data]) + assert np.allclose(result[0][0], input_data+3+10) + def test_ext_train(): dim = 4 p = parameter(shape=(dim,), init=10) i = input_variable(dim, needs_gradient=True, name='i_var') m = MyPlus(i, constant(3)) - z = m+p + z = m.compose()+p momentum_time_constant = momentum_as_time_constant_schedule(1100) lr_per_sample = learning_rate_schedule(0.007, UnitType.sample) @@ -172,7 +185,7 @@ def test_ext_backpropstate(payload): p = parameter(shape=(dim,), init=10) in1 = input_variable(dim, needs_gradient=True, name='i_var') - m = TestBackPropState(in1, payload) + m = TestBackPropState(in1, payload).compose() z = m+p lr_per_sample = learning_rate_schedule(0.007, UnitType.sample) @@ -222,7 +235,7 @@ def test_ext_lambdafunc(): k = i*p m = LambdaFunc(k, when=lambda arg: np.sum(arg)>1, - execute=cb.inc) + execute=cb.inc).compose() z = m+0 momentum_time_constant = momentum_as_time_constant_schedule(1100) @@ -262,7 +275,7 @@ def test_udf_plus_and_last(): x = input_variable(shape=(2,)) y = input_variable(shape=(2,), dynamic_axes=[Axis.default_batch_axis()]) - func = as_composite(PlusAndLast(x, y)) + func = PlusAndLast(x, y).compose() dt_precision = np.float32 operand1 = [AA([[1., 2.], [3., 4.]], dtype=dt_precision)] diff --git a/bindings/python/cntk/utils/__init__.py b/bindings/python/cntk/utils/__init__.py index 95cdafdef..30679f91f 100644 --- a/bindings/python/cntk/utils/__init__.py +++ b/bindings/python/cntk/utils/__init__.py @@ -112,6 +112,7 @@ def sanitize_input(arg, fallback_dtype=np.float32, reshape=None): ``arg`` is a number or NumPy array. Variable otherwise. """ + from cntk.ops.functions import UserFunction from cntk.ops.variables import Constant, Variable, Parameter from cntk.ops.functions import Function from cntk.ops import constant diff --git a/bindings/python/doc/extend.rst b/bindings/python/doc/extend.rst index deb368376..b4b04ca12 100644 --- a/bindings/python/doc/extend.rst +++ b/bindings/python/doc/extend.rst @@ -48,7 +48,10 @@ tuple, strings, etc.):: This can now be used as a normal operator like:: - s = MySigmoid(prev_node) + s = MySigmoid(prev_node).compose() + +Note that we cannot pass the `UserFunction` instance directly into the graph, but +rather its `compose()` ed version. In case, the operator is initialized with multiple inputs, ``forward()`` 's ``argument`` will be a list of those inputs:: @@ -133,7 +136,7 @@ interesting behavior, for instance:: debug_node = LambdaFunc(node, when=lambda arg: np.var(arg)>1, execute=lambda arg: pdb.set_trace()) - # out = ... using debug_node ... + # out = ... using debug_node.compose() ... # ... training out Now, if the variance of the input tensor exceeds 1, we will be put into From 9cb7f392d2c18b492c12ae27878d37b90fd9a03e Mon Sep 17 00:00:00 2001 From: Willi Richert Date: Wed, 8 Feb 2017 17:04:17 +0100 Subject: [PATCH 11/31] Change UserFunction.compose() to cntk.user_function() --- bindings/python/cntk/core.py | 7 +++++ bindings/python/cntk/ops/functions.py | 9 +----- .../ops/tests/userfunction_complex_test.py | 2 +- .../cntk/ops/tests/userfunction_test.py | 31 ++++++++++--------- bindings/python/cntk/utils/__init__.py | 4 +++ bindings/python/doc/extend.rst | 8 ++--- 6 files changed, 34 insertions(+), 27 deletions(-) diff --git a/bindings/python/cntk/core.py b/bindings/python/cntk/core.py index 999976bf7..046727cf1 100644 --- a/bindings/python/cntk/core.py +++ b/bindings/python/cntk/core.py @@ -292,3 +292,10 @@ class Value(cntk_py.Value): ''' return self.shape[0] +def user_function(user_func): + ''' + Wraps the passed Function to create a composite representing the + composite Function graph rooted at the passed root Function. + ''' + from . import as_composite + return as_composite(user_func) diff --git a/bindings/python/cntk/ops/functions.py b/bindings/python/cntk/ops/functions.py index b180d3329..3e6816c36 100644 --- a/bindings/python/cntk/ops/functions.py +++ b/bindings/python/cntk/ops/functions.py @@ -647,7 +647,7 @@ class UserFunction(Function): ''' def __init__(self, inputs, name=''): - super(UserFunction, self).__init__(var_inputs, name) + super(UserFunction, self).__init__(inputs, name) # Memory management for user defined functions has to be controlled by # the C++ side. For more information: @@ -764,13 +764,6 @@ class UserFunction(Function): ''' return 'UserFunction' - def compose(self): - ''' - Wraps the passed Function to create a composite representing the - composite Function graph rooted at the passed root Function. - ''' - from . import as_composite - return as_composite(self) @typemap def load_model(filename, device=None): diff --git a/bindings/python/cntk/ops/tests/userfunction_complex_test.py b/bindings/python/cntk/ops/tests/userfunction_complex_test.py index 0d1dc1cc5..8966eea03 100644 --- a/bindings/python/cntk/ops/tests/userfunction_complex_test.py +++ b/bindings/python/cntk/ops/tests/userfunction_complex_test.py @@ -47,7 +47,7 @@ def linear_layer(input_var, output_dim): def dense_layer(input, output_dim, nonlinearity): r = linear_layer(input, output_dim) if isinstance(nonlinearity, UserFunction): - r = nonlinearity(r).compose() + r = user_function(nonlinearity(r)) return r def fully_connected_classifier_net(input, num_output_classes, hidden_layer_dim, diff --git a/bindings/python/cntk/ops/tests/userfunction_test.py b/bindings/python/cntk/ops/tests/userfunction_test.py index 0e454e6a5..512b46706 100644 --- a/bindings/python/cntk/ops/tests/userfunction_test.py +++ b/bindings/python/cntk/ops/tests/userfunction_test.py @@ -25,7 +25,8 @@ class MyPlus(UserFunction): self.backward_calls = 0 def infer_outputs(self): - return [output_variable(self.inputs[0].shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes)] + return [output_variable(self.inputs[0].shape, + self.inputs[0].dtype, self.inputs[0].dynamic_axes)] def forward(self, arguments, device=None, outputs_to_retain=None): assert len(self.inputs)==2 @@ -45,7 +46,7 @@ def test_ext_eval_1(): dim = 4 p = parameter(shape=(dim,), init=10, name='p') i = input_variable(dim, needs_gradient=True, name='i_var') - m = MyPlus(i, constant(3)).compose() + m = user_function(MyPlus(i, constant(3))) z = m+p input_data = np.random.rand(dim) @@ -56,7 +57,7 @@ def test_ext_eval_2_only_param(): dim = 4 p = parameter(shape=(dim,), init=10, name='p') i = input_variable(dim, needs_gradient=True, name='i_var') - m = MyPlus(p, constant(3)).compose() + m = user_function(MyPlus(p, constant(3))) # combine does not work # z = combine([m.output]) z = m+i @@ -68,7 +69,7 @@ def test_ext_eval_2_only_param(): def test_ext_eval_3_no_input(): dim = 4 p = parameter(shape=(dim,), init=10, name='p') - m = MyPlus(p, constant(3)).compose() + m = user_function(MyPlus(p, constant(3))) z = m+0 result = z.eval() @@ -79,7 +80,7 @@ def test_ext_eval_4_a_inside_graph(): dim = 4 p_init = 10 p = parameter(shape=(dim,), init=p_init, name='p') - m = MyPlus(p, constant(3)).compose() + m = user_function(MyPlus(p, constant(3))) z = p * m result = z.eval() @@ -90,7 +91,7 @@ def test_ext_eval_4_b_inside_graph(): dim = 4 p_init = 10 p = parameter(shape=(dim,), init=p_init, name='p') - z = p * MyPlus(p, constant(3)).compose() + z = user_function(p * MyPlus(p, constant(3))) result = z.eval() # No batch dimension since we have no input @@ -100,7 +101,7 @@ def test_ext_eval_5_times(): dim = 2 p_init = 10 p = parameter(shape=(dim,), init=p_init, name='p') - m = MyPlus(p, constant(3)).compose() + m = user_function(MyPlus(p, constant(3))) z = times(m, parameter(shape=(2,50), init=2)) result = z.eval() @@ -115,7 +116,7 @@ def test_ext_eval_6_clone(): p = parameter(shape=(dim,), init=10, name='p') z = m + p - m_udf = MyPlus(i, constant(3)).compose() + m_udf = user_function(MyPlus(i, constant(3))) z_clone = z.clone('share', {m : m_udf} ); input_data = np.random.rand(dim) @@ -127,9 +128,9 @@ def test_ext_eval_7_placeholder(): p = parameter(shape=(dim,), init=10, name='p') i = input_variable(dim, needs_gradient=True, name='i_var') pl = placeholder_variable() - m = MyPlus(pl, constant(3)).compose() - m.replace_placeholder(i) + m = user_function(MyPlus(pl, constant(3))) z = m+p + z.replace_placeholder(i) input_data = np.random.rand(dim) result = z.eval([input_data]) @@ -141,7 +142,8 @@ def test_ext_train(): p = parameter(shape=(dim,), init=10) i = input_variable(dim, needs_gradient=True, name='i_var') m = MyPlus(i, constant(3)) - z = m.compose()+p + # keeping m unwrapped since we need to access its member variables + z = user_function(m)+p momentum_time_constant = momentum_as_time_constant_schedule(1100) lr_per_sample = learning_rate_schedule(0.007, UnitType.sample) @@ -185,7 +187,7 @@ def test_ext_backpropstate(payload): p = parameter(shape=(dim,), init=10) in1 = input_variable(dim, needs_gradient=True, name='i_var') - m = TestBackPropState(in1, payload).compose() + m = user_function(TestBackPropState(in1, payload)) z = m+p lr_per_sample = learning_rate_schedule(0.007, UnitType.sample) @@ -235,7 +237,8 @@ def test_ext_lambdafunc(): k = i*p m = LambdaFunc(k, when=lambda arg: np.sum(arg)>1, - execute=cb.inc).compose() + execute=cb.inc) + m = user_function(m) z = m+0 momentum_time_constant = momentum_as_time_constant_schedule(1100) @@ -275,7 +278,7 @@ def test_udf_plus_and_last(): x = input_variable(shape=(2,)) y = input_variable(shape=(2,), dynamic_axes=[Axis.default_batch_axis()]) - func = PlusAndLast(x, y).compose() + func = user_function(PlusAndLast(x, y)) dt_precision = np.float32 operand1 = [AA([[1., 2.], [3., 4.]], dtype=dt_precision)] diff --git a/bindings/python/cntk/utils/__init__.py b/bindings/python/cntk/utils/__init__.py index 30679f91f..16562ea5f 100644 --- a/bindings/python/cntk/utils/__init__.py +++ b/bindings/python/cntk/utils/__init__.py @@ -34,6 +34,8 @@ def sanitize_precision(precision): return np.float32 elif precision in [cntk_py.DataType_Double, 'double', 'float64', np.float64]: return np.float64 + elif precision in [cntk_py.DataType_Unknown]: + return None else: raise ValueError('precision value: "%s" is not supported' % precision) @@ -484,6 +486,8 @@ def sanitize_dtype_cntk(dtype): return cntk_py.DataType_Float elif dtype == np.float64: return cntk_py.DataType_Double + elif dtype == object: + return cntk_py.DataType_Unknown else: raise ValueError('data type "%s" is not supported' % dtype) diff --git a/bindings/python/doc/extend.rst b/bindings/python/doc/extend.rst index b4b04ca12..50473f8fb 100644 --- a/bindings/python/doc/extend.rst +++ b/bindings/python/doc/extend.rst @@ -48,10 +48,10 @@ tuple, strings, etc.):: This can now be used as a normal operator like:: - s = MySigmoid(prev_node).compose() + s = user_function(MySigmoid(prev_node)) -Note that we cannot pass the `UserFunction` instance directly into the graph, but -rather its `compose()` ed version. +Note that we cannot pass the `UserFunction` instance directly into the graph. +It is representing a pure function, which we have to pass through `user_function()`. In case, the operator is initialized with multiple inputs, ``forward()`` 's ``argument`` will be a list of those inputs:: @@ -136,7 +136,7 @@ interesting behavior, for instance:: debug_node = LambdaFunc(node, when=lambda arg: np.var(arg)>1, execute=lambda arg: pdb.set_trace()) - # out = ... using debug_node.compose() ... + # out = ... using user_function(debug_node) ... # ... training out Now, if the variance of the input tensor exceeds 1, we will be put into From c89f9a5ad3e8ddb9d12841cae42d779973a4f809 Mon Sep 17 00:00:00 2001 From: Willi Richert Date: Wed, 8 Feb 2017 18:40:19 +0100 Subject: [PATCH 12/31] Add Variable.as_constant/parameter() and do the proper conversion in graph's DFS --- bindings/python/cntk/graph.py | 5 ++++ bindings/python/cntk/ops/variables.py | 20 +++++++++++++++ bindings/python/cntk/tests/graph_test.py | 31 +++++++++++++++--------- bindings/python/doc/extend.rst | 2 +- 4 files changed, 46 insertions(+), 12 deletions(-) diff --git a/bindings/python/cntk/graph.py b/bindings/python/cntk/graph.py index bd3db3980..014792680 100644 --- a/bindings/python/cntk/graph.py +++ b/bindings/python/cntk/graph.py @@ -42,6 +42,11 @@ def depth_first_search(node, visitor): pass if visitor(node): + if node.is_parameter: + node = node.as_parameter() + elif node.is_constant: + node = node.as_constant() + accum.append(node) visited.add(node) diff --git a/bindings/python/cntk/ops/variables.py b/bindings/python/cntk/ops/variables.py index dacf27f64..7d831f673 100644 --- a/bindings/python/cntk/ops/variables.py +++ b/bindings/python/cntk/ops/variables.py @@ -132,6 +132,26 @@ class Variable(VariableMixin, TensorOpsMixin, cntk_py.Variable): super(Variable, self).__init__(shape, is_sparse, dtype, needs_gradient, name, dynamic_axes) + @typemap + def as_parameter(self): + ''' + Converts this instance into a :class:`Parameter` + ''' + if not self.is_parameter: + raise TypeError('cannot be converted into a Parameter') + + return cntk_py.Parameter(self) + + @typemap + def as_constant(self): + ''' + Converts this instance into a :class:`Constant` + ''' + if not self.is_constant: + raise TypeError('cannot be converted into a Constant') + + return cntk_py.Constant(self) + class Parameter(VariableMixin, TensorOpsMixin, cntk_py.Parameter): ''' diff --git a/bindings/python/cntk/tests/graph_test.py b/bindings/python/cntk/tests/graph_test.py index 38571678f..83bdbb9f0 100644 --- a/bindings/python/cntk/tests/graph_test.py +++ b/bindings/python/cntk/tests/graph_test.py @@ -20,15 +20,13 @@ def _graph_dict(): d['i1'] = input_variable( shape=(2, 3), dynamic_axes=input_dynamic_axes, name='i1') - d['i2'] = input_variable( - shape=(2, 3), dynamic_axes=input_dynamic_axes, name='i2') + d['c1'] = constant(shape=(2, 3), value=6, name='c1') + d['p1'] = parameter(shape=(3, 2), init=7, name='p1') - d['p1'] = parameter(shape=(3, 2), name='p1') - - d['op1'] = plus(d['i1'], d['i2'], name='op1') + d['op1'] = plus(d['i1'], d['c1'], name='op1') d['op2'] = times(d['op1'], d['p1'], name='op2') - #d['slice'] = slice(d['i2'], Axis.default_dynamic_axis(), 0, 3) + #d['slice'] = slice(d['c1'], Axis.default_dynamic_axis(), 0, 3) #label_sentence_start = sequence.first(raw_labels) # no name @@ -49,9 +47,9 @@ def _simple_dict(): d = {} d['i1'] = input_variable(shape=(2, 3), name='i1') - d['i2'] = input_variable(shape=(2, 3), name='i2') - d['p1'] = parameter(shape=(3, 2), name='p1') - d['op1'] = plus(d['i1'], d['i2'], name='op1') + d['c1'] = constant(shape=(2, 3), value=6, name='c1') + d['p1'] = parameter(shape=(3, 2), init=7, name='p1') + d['op1'] = plus(d['i1'], d['c1'], name='op1') d['op2'] = times(d['op1'], d['p1'], name='op2') d['root'] = d['op2'] @@ -64,7 +62,7 @@ def _simple_dict(): def test_find_nodes(): d = _graph_dict() - for name in ['i1', 'i2', 'p1', 'op1', 'op2', 'past']: + for name in ['i1', 'c1', 'p1', 'op1', 'op2', 'past']: n = find_all_with_name(d['root'], name) assert len(n) == 1, name assert n[0].name == name, name @@ -89,6 +87,17 @@ def test_find_nodes(): assert find_by_name(d['root'], 'none') is None +def test_find_nodes_returning_proper_types(): + d = _graph_dict() + + c1 = find_by_name(d['root'], 'c1') + assert isinstance(c1, Constant) + assert np.allclose(c1.value, np.zeros((2,3))+6) + + p1 = find_by_name(d['root'], 'p1') + assert isinstance(p1, Parameter) + assert np.allclose(p1.value, np.zeros((3,2))+7) + def test_plot(): d = _simple_dict() @@ -107,4 +116,4 @@ def test_depth_first_search(): found = depth_first_search(d['op2'], lambda x:True) found_names = [v.name for v in found] - assert found_names == ['op2', 'op1', 'i1', 'i2', 'p1'] + assert found_names == ['op2', 'op1', 'i1', 'c1', 'p1'] diff --git a/bindings/python/doc/extend.rst b/bindings/python/doc/extend.rst index 50473f8fb..48d2d7945 100644 --- a/bindings/python/doc/extend.rst +++ b/bindings/python/doc/extend.rst @@ -51,7 +51,7 @@ This can now be used as a normal operator like:: s = user_function(MySigmoid(prev_node)) Note that we cannot pass the `UserFunction` instance directly into the graph. -It is representing a pure function, which we have to pass through `user_function()`. +It is representing a primitive function, which we have to pass through `user_function()`. In case, the operator is initialized with multiple inputs, ``forward()`` 's ``argument`` will be a list of those inputs:: From 6beb7cdb31d70467ed667133ef3854a3b112f64d Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Fri, 27 Jan 2017 15:48:01 -0800 Subject: [PATCH 13/31] Adding preliminary version of VGG 16 and 19 in BS. --- .../BrainScript/ResNet101_ImageNet1K.cntk | 2 +- .../ResNet/BrainScript/ResNet110_CIFAR10.cntk | 2 +- .../BrainScript/ResNet152_ImageNet1K.cntk | 2 +- .../ResNet/BrainScript/ResNet20_CIFAR10.cntk | 2 +- .../BrainScript/ResNet50_ImageNet1K.cntk | 2 +- .../VGG/BrainScript/VGG16_ImageNet.cntk | 177 +++++++++++++++++ .../VGG/BrainScript/VGG19_ImageNet.cntk | 180 ++++++++++++++++++ 7 files changed, 362 insertions(+), 5 deletions(-) create mode 100644 Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk create mode 100644 Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk diff --git a/Examples/Image/Classification/ResNet/BrainScript/ResNet101_ImageNet1K.cntk b/Examples/Image/Classification/ResNet/BrainScript/ResNet101_ImageNet1K.cntk index 626df070c..a97d60615 100644 --- a/Examples/Image/Classification/ResNet/BrainScript/ResNet101_ImageNet1K.cntk +++ b/Examples/Image/Classification/ResNet/BrainScript/ResNet101_ImageNet1K.cntk @@ -1,4 +1,4 @@ -# Node: ResNet-50 with ImageNet -- 101 layers bottleneck ResNet for image classification +# ResNet-101 with ImageNet -- 101 layers bottleneck ResNet for image classification # Reference: "Deep Residual Learning for Image Recognition" https://arxiv.org/abs/1512.03385 command = TrainNetwork:BNStatistics:Eval diff --git a/Examples/Image/Classification/ResNet/BrainScript/ResNet110_CIFAR10.cntk b/Examples/Image/Classification/ResNet/BrainScript/ResNet110_CIFAR10.cntk index ca0e09a84..18cffd463 100644 --- a/Examples/Image/Classification/ResNet/BrainScript/ResNet110_CIFAR10.cntk +++ b/Examples/Image/Classification/ResNet/BrainScript/ResNet110_CIFAR10.cntk @@ -1,4 +1,4 @@ -# ConvNet applied on CIFAR-10 dataset, with data augmentation (translation and flipping). +# ResNet110 applied on CIFAR-10 dataset, with data augmentation (translation and flipping). command = TrainConvNet:Eval diff --git a/Examples/Image/Classification/ResNet/BrainScript/ResNet152_ImageNet1K.cntk b/Examples/Image/Classification/ResNet/BrainScript/ResNet152_ImageNet1K.cntk index d92d7ec9f..e72499af7 100644 --- a/Examples/Image/Classification/ResNet/BrainScript/ResNet152_ImageNet1K.cntk +++ b/Examples/Image/Classification/ResNet/BrainScript/ResNet152_ImageNet1K.cntk @@ -1,4 +1,4 @@ -# Node: ResNet-50 with ImageNet -- 152 layers bottleneck ResNet for image classification +# ResNet-152 with ImageNet -- 152 layers bottleneck ResNet for image classification # Reference: "Deep Residual Learning for Image Recognition" https://arxiv.org/abs/1512.03385 command = TrainNetwork:BNStatistics:Eval diff --git a/Examples/Image/Classification/ResNet/BrainScript/ResNet20_CIFAR10.cntk b/Examples/Image/Classification/ResNet/BrainScript/ResNet20_CIFAR10.cntk index c3b638e21..353675a4f 100644 --- a/Examples/Image/Classification/ResNet/BrainScript/ResNet20_CIFAR10.cntk +++ b/Examples/Image/Classification/ResNet/BrainScript/ResNet20_CIFAR10.cntk @@ -1,4 +1,4 @@ -# ConvNet applied on CIFAR-10 dataset, with data augmentation (translation and flipping). +# ResNet20 applied on CIFAR-10 dataset, with data augmentation (translation and flipping). command = TrainConvNet:Eval diff --git a/Examples/Image/Classification/ResNet/BrainScript/ResNet50_ImageNet1K.cntk b/Examples/Image/Classification/ResNet/BrainScript/ResNet50_ImageNet1K.cntk index ccf3e6467..91c6e4e93 100644 --- a/Examples/Image/Classification/ResNet/BrainScript/ResNet50_ImageNet1K.cntk +++ b/Examples/Image/Classification/ResNet/BrainScript/ResNet50_ImageNet1K.cntk @@ -1,4 +1,4 @@ -# Node: ResNet-50 with ImageNet -- 50 layers bottleneck ResNet for image classification +# ResNet-50 with ImageNet -- 50 layers bottleneck ResNet for image classification # Reference: "Deep Residual Learning for Image Recognition" https://arxiv.org/abs/1512.03385 command = TrainNetwork:BNStatistics:Eval diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk new file mode 100644 index 000000000..7bbe9ac61 --- /dev/null +++ b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk @@ -0,0 +1,177 @@ +# VGG16 with ImageNet -- 16 layers ConvNet for image classification +# Reference: "Very Deep Convolutional Networks for Large-Scale Image Recognition" https://arxiv.org/abs/1409.1556 + +RootDir = "." + +ConfigDir = "$RootDir$" +DataDir = "$RootDir$" +OutputDir = "$RootDir$/Output" +ModelDir = "$OutputDir$/Models" + +ndlMacros="$ConfigDir$/Macros.ndl" + +precision = "float" +deviceId = "Auto" + +command = Train:Test + +parallelTrain = "true" +traceLevel = 1 +numMBsToShowResult = 500 + +modelPath = "$ModelDir$/VGG16" +stderr = "$OutputDir$/VGG16" + +################################ +Train = { + action = "train" + + BrainScriptNetworkBuilder = { + imageShape = 224:224:3 + labelDim = 1000 + + model = Sequential ( + ConvolutionalLayer {64, (3:3)} : ReLU : + ConvolutionalLayer {64, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {128, (3:3)} : ReLU : + ConvolutionalLayer {128, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {256, (3:3)} : ReLU : + ConvolutionalLayer {256, (3:3)} : ReLU : + ConvolutionalLayer {256, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + DenseLayer {4096, activation=ReLU} : Dropout : + DenseLayer {4096, activation=ReLU} : Dropout : + LinearLayer {labelDim} + ) + + # inputs + features = Input {imageShape} + featNorm = features - Splice(Constant(103.939):Constant(116.779):Constant(123.68), axis=3) + labels = Input {labelDim} + + # apply model to features + z = model (featNorm) + + # loss and error computation + ce = CrossEntropyWithSoftmax (labels, z) + errs = ClassificationError (labels, z) + top5Errs = ClassificationError (labels, z, topN=5) # only used in Eval action + + # declare special nodes + featureNodes = (features) + labelNodes = (labels) + criterionNodes = (ce) + evaluationNodes = (errs) + outputNodes = (z) + } + + SGD = { + epochSize = 0 + minibatchSize = 256 + # CNTK weights new gradient by (1-momentum) for unit gain, thus we multiply Caffe's learning rate by (1-momentum) + learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001 + momentumPerMB = 0.9 + maxEpochs = 74 + gradUpdateType = None + L2RegWeight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe + dropoutRate = 0.5 + + # TODO: try less bits? + ParallelTrain = { + parallelizationMethod = "DataParallelSGD" + distributedMBReading = "true" + parallelizationStartEpoch = 1 + DataParallelSGD = { + gradientBits = 32 + } + } + + numMBsToShowResult = 100 + } + + # Reader + reader = { + verbosity = 0 + randomize = true + randomizationWindow = 1 + + deserializers = ( + { + type = "ImageDeserializer" ; module = "ImageReader" + file = "$DataDir$/train_map.txt" + input = { + features = { + transforms = ( + { + type = "Crop" + cropType = "RandomSide" + sideRatio = 0.875 + jitterType = "UniRatio" + }:{ + type = "Scale" + width = 224 + height = 224 + channels = 3 + interpolations = "linear" + }:{ + type = "Transpose" + } + ) + } + labels = { + labelDim = 1000 + } + } + }) + } +} + +################################ +Test = { + action=test + minibatchSize=128 + evalNodeNames = errs:top5Errs # also test top-5 error rate + + # Reader + reader = { + verbosity = 0 + randomize = false + + deserializers = ( + { + type = "ImageDeserializer" ; module = "ImageReader" + file="$DataDir$/val_map.txt" + input = { + features = { + transforms = ( + { + type = "Crop" + cropType = "center" + sideRatio = 0.875 + }:{ + type = "Scale" + width = 224 + height = 224 + channels = 3 + }:{ + type = "Transpose" + } + ) + } + labels = { + labelDim = 1000 + } + } + }) + } +} diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk new file mode 100644 index 000000000..03a5137cf --- /dev/null +++ b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk @@ -0,0 +1,180 @@ +# VGG19 with ImageNet -- 19 layers ConvNet for image classification +# Reference: "Very Deep Convolutional Networks for Large-Scale Image Recognition" https://arxiv.org/abs/1409.1556 + +RootDir = "." + +ConfigDir = "$RootDir$" +DataDir = "$RootDir$" +OutputDir = "$RootDir$/Output" +ModelDir = "$OutputDir$/Models" + +ndlMacros="$ConfigDir$/Macros.ndl" + +precision = "float" +deviceId = "Auto" + +command = Train:Test + +parallelTrain = "true" +traceLevel = 1 +numMBsToShowResult = 500 + +modelPath = "$ModelDir$/VGG19" +stderr = "$OutputDir$/VGG19" + +################################ +Train = { + action = "train" + + BrainScriptNetworkBuilder = { + imageShape = 224:224:3 + labelDim = 1000 + + model = Sequential ( + ConvolutionalLayer {64, (3:3)} : ReLU : + ConvolutionalLayer {64, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {128, (3:3)} : ReLU : + ConvolutionalLayer {128, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {256, (3:3)} : ReLU : + ConvolutionalLayer {256, (3:3)} : ReLU : + ConvolutionalLayer {256, (3:3)} : ReLU : + ConvolutionalLayer {256, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3)} : ReLU : + MaxPoolingLayer {(2:2), stride=(2:2)} : + DenseLayer {4096, activation=ReLU} : Dropout : + DenseLayer {4096, activation=ReLU} : Dropout : + LinearLayer {labelDim} + ) + + # inputs + features = Input {imageShape} + featNorm = features - Splice(Constant(103.939):Constant(116.779):Constant(123.68), axis=3) + labels = Input {labelDim} + + # apply model to features + z = model (featNorm) + + # loss and error computation + ce = CrossEntropyWithSoftmax (labels, z) + errs = ClassificationError (labels, z) + top5Errs = ClassificationError (labels, z, topN=5) # only used in Eval action + + # declare special nodes + featureNodes = (features) + labelNodes = (labels) + criterionNodes = (ce) + evaluationNodes = (errs) + outputNodes = (z) + } + + SGD = { + epochSize = 0 + minibatchSize = 256 + # CNTK weights new gradient by (1-momentum) for unit gain, thus we multiply Caffe's learning rate by (1-momentum) + learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001 + momentumPerMB = 0.9 + maxEpochs = 74 + gradUpdateType = None + L2RegWeight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe + dropoutRate = 0.5 + + # TODO: try less bits? + ParallelTrain = { + parallelizationMethod = "DataParallelSGD" + distributedMBReading = "true" + parallelizationStartEpoch = 1 + DataParallelSGD = { + gradientBits = 32 + } + } + + numMBsToShowResult = 100 + } + + # Reader + reader = { + verbosity = 0 + randomize = true + randomizationWindow = 1 + + deserializers = ( + { + type = "ImageDeserializer" ; module = "ImageReader" + file = "$DataDir$/train_map.txt" + input = { + features = { + transforms = ( + { + type = "Crop" + cropType = "RandomSide" + sideRatio = 0.875 + jitterType = "UniRatio" + }:{ + type = "Scale" + width = 224 + height = 224 + channels = 3 + interpolations = "linear" + }:{ + type = "Transpose" + } + ) + } + labels = { + labelDim = 1000 + } + } + }) + } +} + +################################ +Test = { + action=test + minibatchSize=128 + evalNodeNames = errs:top5Errs # also test top-5 error rate + + # Reader + reader = { + verbosity = 0 + randomize = false + + deserializers = ( + { + type = "ImageDeserializer" ; module = "ImageReader" + file="$DataDir$/val_map.txt" + input = { + features = { + transforms = ( + { + type = "Crop" + cropType = "center" + sideRatio = 0.875 + }:{ + type = "Scale" + width = 224 + height = 224 + channels = 3 + }:{ + type = "Transpose" + } + ) + } + labels = { + labelDim = 1000 + } + } + }) + } +} From 330376ff894f34641fb63064b32006e0b2162d86 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Fri, 27 Jan 2017 16:44:26 -0800 Subject: [PATCH 14/31] Working version, but haven't verify accuracy. --- .../AlexNet/BrainScript/AlexNet_ImageNet.cntk | 2 - .../VGG/BrainScript/VGG16_ImageNet.cntk | 115 ++++++++--------- .../VGG/BrainScript/VGG19_ImageNet.cntk | 121 ++++++++---------- 3 files changed, 105 insertions(+), 133 deletions(-) diff --git a/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk b/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk index 7ce5f9a69..51c57e41d 100644 --- a/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk +++ b/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk @@ -6,8 +6,6 @@ DataDir = "$RootDir$" OutputDir = "$RootDir$/Output" ModelDir = "$OutputDir$/Models" -ndlMacros="$ConfigDir$/Macros.ndl" - precision = "float" deviceId = "Auto" diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk index 7bbe9ac61..2bc9b4212 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk @@ -8,8 +8,6 @@ DataDir = "$RootDir$" OutputDir = "$RootDir$/Output" ModelDir = "$OutputDir$/Models" -ndlMacros="$ConfigDir$/Macros.ndl" - precision = "float" deviceId = "Auto" @@ -22,32 +20,37 @@ numMBsToShowResult = 500 modelPath = "$ModelDir$/VGG16" stderr = "$OutputDir$/VGG16" +ImageH = 224 +ImageW = 224 +ImageC = 3 +NumLabels = 1000 + ################################ Train = { action = "train" BrainScriptNetworkBuilder = { - imageShape = 224:224:3 - labelDim = 1000 + imageShape = $ImageH$:$ImageW$:$ImageC$ + labelDim = $NumLabels$ model = Sequential ( - ConvolutionalLayer {64, (3:3)} : ReLU : - ConvolutionalLayer {64, (3:3)} : ReLU : + ConvolutionalLayer {64, (3:3), pad = true} : ReLU : + ConvolutionalLayer {64, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {128, (3:3)} : ReLU : - ConvolutionalLayer {128, (3:3)} : ReLU : + ConvolutionalLayer {128, (3:3), pad = true} : ReLU : + ConvolutionalLayer {128, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {256, (3:3)} : ReLU : - ConvolutionalLayer {256, (3:3)} : ReLU : - ConvolutionalLayer {256, (3:3)} : ReLU : + ConvolutionalLayer {256, (3:3), pad = true} : ReLU : + ConvolutionalLayer {256, (3:3), pad = true} : ReLU : + ConvolutionalLayer {256, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : DenseLayer {4096, activation=ReLU} : Dropout : DenseLayer {4096, activation=ReLU} : Dropout : @@ -56,7 +59,7 @@ Train = { # inputs features = Input {imageShape} - featNorm = features - Splice(Constant(103.939):Constant(116.779):Constant(123.68), axis=3) + featNorm = features - Splice(Constant(104):Constant(117):Constant(124), axis=3) labels = Input {labelDim} # apply model to features @@ -101,36 +104,33 @@ Train = { # Reader reader = { - verbosity = 0 - randomize = true - randomizationWindow = 1 - - deserializers = ( - { + verbosity = 0 ; randomize = true + deserializers = ({ type = "ImageDeserializer" ; module = "ImageReader" file = "$DataDir$/train_map.txt" input = { - features = { - transforms = ( - { - type = "Crop" - cropType = "RandomSide" - sideRatio = 0.875 - jitterType = "UniRatio" - }:{ - type = "Scale" - width = 224 - height = 224 - channels = 3 - interpolations = "linear" - }:{ - type = "Transpose" - } - ) - } - labels = { - labelDim = 1000 - } + features = { transforms = ( + { type = "Crop" ; cropType = "randomSide" ; sideRatio = 0.875 ; jitterType = "uniRatio" } : + { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : + { type = "Transpose" } + )} + labels = { labelDim = $NumLabels$ } + } + }) + } + + cvreader = { + verbosity = 0 ; randomize = false + deserializers = ({ + type = "ImageDeserializer" ; module = "ImageReader" + file = "$DataDir$/val_map.txt" + input = { + features = { transforms = ( + { type = "Crop" ; cropType = "Center" ; sideRatio = 0.875 } : + { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : + { type = "Transpose" } + )} + labels = { labelDim = $NumLabels$ } } }) } @@ -152,25 +152,12 @@ Test = { type = "ImageDeserializer" ; module = "ImageReader" file="$DataDir$/val_map.txt" input = { - features = { - transforms = ( - { - type = "Crop" - cropType = "center" - sideRatio = 0.875 - }:{ - type = "Scale" - width = 224 - height = 224 - channels = 3 - }:{ - type = "Transpose" - } - ) - } - labels = { - labelDim = 1000 - } + features = { transforms = ( + { type = "Crop"; cropType = "center"; sideRatio = 0.875 } : + { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : + { type = "Transpose" } + )} + labels = { labelDim = 1000} } }) } diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk index 03a5137cf..56a949940 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk @@ -8,8 +8,6 @@ DataDir = "$RootDir$" OutputDir = "$RootDir$/Output" ModelDir = "$OutputDir$/Models" -ndlMacros="$ConfigDir$/Macros.ndl" - precision = "float" deviceId = "Auto" @@ -22,35 +20,40 @@ numMBsToShowResult = 500 modelPath = "$ModelDir$/VGG19" stderr = "$OutputDir$/VGG19" +ImageH = 224 +ImageW = 224 +ImageC = 3 +NumLabels = 1000 + ################################ Train = { action = "train" BrainScriptNetworkBuilder = { - imageShape = 224:224:3 - labelDim = 1000 + imageShape = $ImageH$:$ImageW$:$ImageC$ + labelDim = $NumLabels$ model = Sequential ( - ConvolutionalLayer {64, (3:3)} : ReLU : - ConvolutionalLayer {64, (3:3)} : ReLU : + ConvolutionalLayer {64, (3:3), pad = true} : ReLU : + ConvolutionalLayer {64, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {128, (3:3)} : ReLU : - ConvolutionalLayer {128, (3:3)} : ReLU : + ConvolutionalLayer {128, (3:3), pad = true} : ReLU : + ConvolutionalLayer {128, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {256, (3:3)} : ReLU : - ConvolutionalLayer {256, (3:3)} : ReLU : - ConvolutionalLayer {256, (3:3)} : ReLU : - ConvolutionalLayer {256, (3:3)} : ReLU : + ConvolutionalLayer {256, (3:3), pad = true} : ReLU : + ConvolutionalLayer {256, (3:3), pad = true} : ReLU : + ConvolutionalLayer {256, (3:3), pad = true} : ReLU : + ConvolutionalLayer {256, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : - ConvolutionalLayer {512, (3:3)} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : + ConvolutionalLayer {512, (3:3), pad = true} : ReLU : MaxPoolingLayer {(2:2), stride=(2:2)} : DenseLayer {4096, activation=ReLU} : Dropout : DenseLayer {4096, activation=ReLU} : Dropout : @@ -59,7 +62,7 @@ Train = { # inputs features = Input {imageShape} - featNorm = features - Splice(Constant(103.939):Constant(116.779):Constant(123.68), axis=3) + featNorm = features - Splice(Constant(104):Constant(117):Constant(124), axis=3) labels = Input {labelDim} # apply model to features @@ -104,36 +107,33 @@ Train = { # Reader reader = { - verbosity = 0 - randomize = true - randomizationWindow = 1 - - deserializers = ( - { + verbosity = 0 ; randomize = true + deserializers = ({ type = "ImageDeserializer" ; module = "ImageReader" file = "$DataDir$/train_map.txt" input = { - features = { - transforms = ( - { - type = "Crop" - cropType = "RandomSide" - sideRatio = 0.875 - jitterType = "UniRatio" - }:{ - type = "Scale" - width = 224 - height = 224 - channels = 3 - interpolations = "linear" - }:{ - type = "Transpose" - } - ) - } - labels = { - labelDim = 1000 - } + features = { transforms = ( + { type = "Crop" ; cropType = "randomSide" ; sideRatio = 0.875 ; jitterType = "uniRatio" } : + { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : + { type = "Transpose" } + )} + labels = { labelDim = $NumLabels$ } + } + }) + } + + cvreader = { + verbosity = 0 ; randomize = false + deserializers = ({ + type = "ImageDeserializer" ; module = "ImageReader" + file = "$DataDir$/val_map.txt" + input = { + features = { transforms = ( + { type = "Crop" ; cropType = "Center" ; sideRatio = 0.875 } : + { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : + { type = "Transpose" } + )} + labels = { labelDim = $NumLabels$ } } }) } @@ -155,25 +155,12 @@ Test = { type = "ImageDeserializer" ; module = "ImageReader" file="$DataDir$/val_map.txt" input = { - features = { - transforms = ( - { - type = "Crop" - cropType = "center" - sideRatio = 0.875 - }:{ - type = "Scale" - width = 224 - height = 224 - channels = 3 - }:{ - type = "Transpose" - } - ) - } - labels = { - labelDim = 1000 - } + features = { transforms = ( + { type = "Crop"; cropType = "center"; sideRatio = 0.875 } : + { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : + { type = "Transpose" } + )} + labels = { labelDim = 1000} } }) } From b896648497044311ba451201ce0f330a236365ec Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Fri, 27 Jan 2017 15:48:01 -0800 Subject: [PATCH 15/31] Adding preliminary version of VGG 16 and 19 in BS. --- .../Classification/VGG/BrainScript/VGG16_ImageNet.cntk | 6 +++++- .../Classification/VGG/BrainScript/VGG19_ImageNet.cntk | 1 - 2 files changed, 5 insertions(+), 2 deletions(-) diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk index 2bc9b4212..2a429ef24 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk @@ -8,6 +8,11 @@ DataDir = "$RootDir$" OutputDir = "$RootDir$/Output" ModelDir = "$OutputDir$/Models" +<<<<<<< HEAD +======= +ndlMacros="$ConfigDir$/Macros.ndl" + +>>>>>>> Adding preliminary version of VGG 16 and 19 in BS. precision = "float" deviceId = "Auto" @@ -25,7 +30,6 @@ ImageW = 224 ImageC = 3 NumLabels = 1000 -################################ Train = { action = "train" diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk index 56a949940..4635c7837 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk @@ -25,7 +25,6 @@ ImageW = 224 ImageC = 3 NumLabels = 1000 -################################ Train = { action = "train" From 0685829a2bac9bc895f8991d4c84860e91e06261 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Fri, 27 Jan 2017 16:44:26 -0800 Subject: [PATCH 16/31] Working version, but haven't verify accuracy. --- .../Classification/VGG/BrainScript/VGG16_ImageNet.cntk | 6 +----- .../Classification/VGG/BrainScript/VGG19_ImageNet.cntk | 1 + 2 files changed, 2 insertions(+), 5 deletions(-) diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk index 2a429ef24..2bc9b4212 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk @@ -8,11 +8,6 @@ DataDir = "$RootDir$" OutputDir = "$RootDir$/Output" ModelDir = "$OutputDir$/Models" -<<<<<<< HEAD -======= -ndlMacros="$ConfigDir$/Macros.ndl" - ->>>>>>> Adding preliminary version of VGG 16 and 19 in BS. precision = "float" deviceId = "Auto" @@ -30,6 +25,7 @@ ImageW = 224 ImageC = 3 NumLabels = 1000 +################################ Train = { action = "train" diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk index 4635c7837..56a949940 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk @@ -25,6 +25,7 @@ ImageW = 224 ImageC = 3 NumLabels = 1000 +################################ Train = { action = "train" From 065480ed463e4e15c8c17332fa5aa1c4f2a9b681 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Tue, 31 Jan 2017 07:46:25 -0800 Subject: [PATCH 17/31] Revision of VGG model to train on Philly. Clean up the directory. --- .../Python/AlexNet_ImageNet_Distributed.py | 15 +- .../VGG/BrainScript/VGG16_ImageNet.cntk | 17 +- .../VGG/BrainScript/VGG19_ImageNet.cntk | 17 +- .../Classification/VGG/CreateEvalModel.mel | 7 - .../Classification/VGG/ImageNet1K_mean.xml | 37643 ---------------- Examples/Image/Classification/VGG/Macros.ndl | 55 - .../VGG/Python/VGG16_ImageNet_Distributed.py | 234 + Examples/Image/Classification/VGG/VGG_A.ndl | 76 - .../VGG/VGG_A_ndl_deprecated.cntk | 109 - Examples/Image/Classification/VGG/VGG_E.ndl | 84 - .../Image/Classification/VGG/VGG_E_BN.ndl | 85 - .../VGG/VGG_E_BN_ndl_deprecated.cntk | 118 - .../VGG/VGG_E_ndl_deprecated.cntk | 118 - 13 files changed, 262 insertions(+), 38316 deletions(-) delete mode 100644 Examples/Image/Classification/VGG/CreateEvalModel.mel delete mode 100644 Examples/Image/Classification/VGG/ImageNet1K_mean.xml delete mode 100644 Examples/Image/Classification/VGG/Macros.ndl create mode 100644 Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py delete mode 100644 Examples/Image/Classification/VGG/VGG_A.ndl delete mode 100644 Examples/Image/Classification/VGG/VGG_A_ndl_deprecated.cntk delete mode 100644 Examples/Image/Classification/VGG/VGG_E.ndl delete mode 100644 Examples/Image/Classification/VGG/VGG_E_BN.ndl delete mode 100644 Examples/Image/Classification/VGG/VGG_E_BN_ndl_deprecated.cntk delete mode 100644 Examples/Image/Classification/VGG/VGG_E_ndl_deprecated.cntk diff --git a/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py b/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py index b2439538b..75a80e2a5 100644 --- a/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py +++ b/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py @@ -17,7 +17,7 @@ from cntk.ops import * from cntk.distributed import data_parallel_distributed_learner, Communicator from cntk.io import ImageDeserializer, MinibatchSource, StreamDef, StreamDefs, FULL_DATA_SWEEP from cntk.blocks import Placeholder, Block -from cntk.layers import Convolution, Activation, MaxPooling, Dense, Dropout, default_options +from cntk.layers import Convolution2D, Activation, MaxPooling, Dense, Dropout, default_options from cntk.models import Sequential from cntk.initializer import normal @@ -32,6 +32,7 @@ image_height = 227 image_width = 227 num_channels = 3 # RGB num_classes = 1000 +model_name = "AlexNet.model" # Create a minibatch source. def create_image_mb_source(map_file, is_training, total_number_of_samples): @@ -95,21 +96,21 @@ def create_alexnet(): with default_options(activation=None, pad=True, bias=True): z = Sequential([ # we separate Convolution and ReLU to name the output for feature extraction (usually before ReLU) - Convolution((11,11), 96, init=normal(0.01), pad=False, strides=(4,4), name='conv1'), + Convolution2D((11,11), 96, init=normal(0.01), pad=False, strides=(4,4), name='conv1'), Activation(activation=relu, name='relu1'), LocalResponseNormalization(1.0, 2, 0.0001, 0.75, name='norm1'), MaxPooling((3,3), (2,2), name='pool1'), - Convolution((5,5), 192, init=normal(0.01), init_bias=0.1, name='conv2'), + Convolution2D((5,5), 192, init=normal(0.01), init_bias=0.1, name='conv2'), Activation(activation=relu, name='relu2'), LocalResponseNormalization(1.0, 2, 0.0001, 0.75, name='norm2'), MaxPooling((3,3), (2,2), name='pool2'), - Convolution((3,3), 384, init=normal(0.01), name='conv3'), + Convolution2D((3,3), 384, init=normal(0.01), name='conv3'), Activation(activation=relu, name='relu3'), - Convolution((3,3), 384, init=normal(0.01), init_bias=0.1, name='conv4'), + Convolution2D((3,3), 384, init=normal(0.01), init_bias=0.1, name='conv4'), Activation(activation=relu, name='relu4'), - Convolution((3,3), 256, init=normal(0.01), init_bias=0.1, name='conv5'), + Convolution2D((3,3), 256, init=normal(0.01), init_bias=0.1, name='conv5'), Activation(activation=relu, name='relu5'), MaxPooling((3,3), (2,2), name='pool5'), @@ -164,7 +165,7 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer } training_session = cntk.training_session(train_source, trainer, - cntk.minibatch_size_schedule(minibatch_size), progress_printer, input_map, os.path.join(model_path, "AlexNet_"), epoch_size) + cntk.minibatch_size_schedule(minibatch_size), progress_printer, input_map, os.path.join(model_path, model_name), epoch_size) training_session.train() # process minibatches and evaluate the model diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk index 2bc9b4212..4aceeea8c 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk @@ -25,6 +25,9 @@ ImageW = 224 ImageC = 3 NumLabels = 1000 +parallelTrain = true +hyperCompressMemory = true + ################################ Train = { action = "train" @@ -80,11 +83,11 @@ Train = { SGD = { epochSize = 0 - minibatchSize = 256 + minibatchSize = 128 # CNTK weights new gradient by (1-momentum) for unit gain, thus we multiply Caffe's learning rate by (1-momentum) - learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001 + learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001*10:0.00001 momentumPerMB = 0.9 - maxEpochs = 74 + maxEpochs = 80 gradUpdateType = None L2RegWeight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe dropoutRate = 0.5 @@ -99,7 +102,7 @@ Train = { } } - numMBsToShowResult = 100 + numMBsToShowResult = 250 } # Reader @@ -110,7 +113,7 @@ Train = { file = "$DataDir$/train_map.txt" input = { features = { transforms = ( - { type = "Crop" ; cropType = "randomSide" ; sideRatio = 0.875 ; jitterType = "uniRatio" } : + { type = "Crop" ; cropType = "randomSide" ; sideRatio = 0.4375:0.875 ; jitterType = "uniRatio" } : # [256, 512] jitter in scale { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : { type = "Transpose" } )} @@ -126,7 +129,7 @@ Train = { file = "$DataDir$/val_map.txt" input = { features = { transforms = ( - { type = "Crop" ; cropType = "Center" ; sideRatio = 0.875 } : + { type = "Crop" ; cropType = "Center" ; sideRatio = 0.5833333 } : # 384 crop to 224 { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : { type = "Transpose" } )} @@ -153,7 +156,7 @@ Test = { file="$DataDir$/val_map.txt" input = { features = { transforms = ( - { type = "Crop"; cropType = "center"; sideRatio = 0.875 } : + { type = "Crop"; cropType = "center"; sideRatio = 0.5833333 } : # 384 crop to 224 { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : { type = "Transpose" } )} diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk index 56a949940..b345aef42 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk @@ -25,6 +25,9 @@ ImageW = 224 ImageC = 3 NumLabels = 1000 +parallelTrain = true +hyperCompressMemory = true + ################################ Train = { action = "train" @@ -83,11 +86,11 @@ Train = { SGD = { epochSize = 0 - minibatchSize = 256 + minibatchSize = 128 # CNTK weights new gradient by (1-momentum) for unit gain, thus we multiply Caffe's learning rate by (1-momentum) - learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001 + learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001*10:0.00001 momentumPerMB = 0.9 - maxEpochs = 74 + maxEpochs = 80 gradUpdateType = None L2RegWeight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe dropoutRate = 0.5 @@ -102,7 +105,7 @@ Train = { } } - numMBsToShowResult = 100 + numMBsToShowResult = 250 } # Reader @@ -113,7 +116,7 @@ Train = { file = "$DataDir$/train_map.txt" input = { features = { transforms = ( - { type = "Crop" ; cropType = "randomSide" ; sideRatio = 0.875 ; jitterType = "uniRatio" } : + { type = "Crop" ; cropType = "randomSide" ; sideRatio = 0.4375:0.875 ; jitterType = "uniRatio" } : # [256, 512] jitter in scale { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : { type = "Transpose" } )} @@ -129,7 +132,7 @@ Train = { file = "$DataDir$/val_map.txt" input = { features = { transforms = ( - { type = "Crop" ; cropType = "Center" ; sideRatio = 0.875 } : + { type = "Crop" ; cropType = "Center" ; sideRatio = 0.5833333 } : # 384 crop to 224 { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : { type = "Transpose" } )} @@ -156,7 +159,7 @@ Test = { file="$DataDir$/val_map.txt" input = { features = { transforms = ( - { type = "Crop"; cropType = "center"; sideRatio = 0.875 } : + { type = "Crop"; cropType = "center"; sideRatio = 0.5833333 } : # 384 crop to 224 { type = "Scale" ; width = $ImageW$ ; height = $ImageH$ ; channels = $ImageC$ ; interpolations = "linear" } : { type = "Transpose" } )} diff --git a/Examples/Image/Classification/VGG/CreateEvalModel.mel b/Examples/Image/Classification/VGG/CreateEvalModel.mel deleted file mode 100644 index 256730e23..000000000 --- a/Examples/Image/Classification/VGG/CreateEvalModel.mel +++ /dev/null @@ -1,7 +0,0 @@ -m1=LoadModel($CurModel$, format=cntk) -SetDefaultModel(m1) - -# Add top-5 error prediction node. -ErrTop5 = ClassificationError(labels, OutputNodes.z, Const(5), tag = "eval") - -SaveModel(m1, $NewModel$, format=cntk) \ No newline at end of file diff --git a/Examples/Image/Classification/VGG/ImageNet1K_mean.xml b/Examples/Image/Classification/VGG/ImageNet1K_mean.xml deleted file mode 100644 index d0559fe23..000000000 --- a/Examples/Image/Classification/VGG/ImageNet1K_mean.xml +++ /dev/null @@ -1,37643 +0,0 @@ - - -3 -224 -224 - - 1 - 150528 -

      f
      - - 1.14421082e+002 1.23886177e+002 1.25102142e+002 1.14528633e+002 - 1.24029129e+002 1.25247543e+002 1.14600151e+002 1.24108231e+002 - 1.25336716e+002 1.14648720e+002 1.24191330e+002 1.25423950e+002 - 1.14682617e+002 1.24233604e+002 1.25500443e+002 1.14694283e+002 - 1.24279190e+002 1.25554878e+002 1.14731667e+002 1.24340919e+002 - 1.25643700e+002 1.14758606e+002 1.24405815e+002 1.25709961e+002 - 1.14816902e+002 1.24470901e+002 1.25805214e+002 1.14776230e+002 - 1.24462746e+002 1.25810654e+002 1.14790581e+002 1.24475845e+002 - 1.25868042e+002 1.14831467e+002 1.24545944e+002 1.25945343e+002 - 1.14857819e+002 1.24574120e+002 1.26008453e+002 1.14855255e+002 - 1.24607857e+002 1.26050598e+002 1.14903374e+002 1.24656021e+002 - 1.26115402e+002 1.14899757e+002 1.24695023e+002 1.26160515e+002 - 1.14957581e+002 1.24753906e+002 1.26274422e+002 1.14925034e+002 - 1.24765938e+002 1.26284309e+002 1.14946121e+002 1.24781296e+002 - 1.26331642e+002 1.14964256e+002 1.24815979e+002 1.26380722e+002 - 1.15015709e+002 1.24861694e+002 1.26462387e+002 1.15021767e+002 - 1.24893906e+002 1.26503578e+002 1.15043251e+002 1.24921928e+002 - 1.26555542e+002 1.15047134e+002 1.24949043e+002 1.26598473e+002 - 1.15108376e+002 1.25010010e+002 1.26689507e+002 1.15107399e+002 - 1.25025932e+002 1.26725960e+002 1.15116783e+002 1.25023125e+002 - 1.26767548e+002 1.15140007e+002 1.25069969e+002 1.26828133e+002 - 1.15157341e+002 1.25078773e+002 1.26881332e+002 1.15173828e+002 - 1.25121361e+002 1.26927711e+002 1.15191513e+002 1.25142616e+002 - 1.26980255e+002 1.15197319e+002 1.25186951e+002 1.27016609e+002 - 1.15247276e+002 1.25220169e+002 1.27117088e+002 1.15215782e+002 - 1.25234184e+002 1.27127335e+002 1.15241806e+002 1.25251144e+002 - 1.27173012e+002 1.15276436e+002 1.25304382e+002 1.27236809e+002 - 1.15316666e+002 1.25330147e+002 1.27308357e+002 1.15324089e+002 - 1.25363441e+002 1.27354347e+002 1.15330986e+002 1.25375389e+002 - 1.27406250e+002 1.15340065e+002 1.25398293e+002 1.27445244e+002 - 1.15376648e+002 1.25430519e+002 1.27507133e+002 1.15368141e+002 - 1.25438530e+002 1.27534584e+002 1.15411713e+002 1.25464233e+002 - 1.27607445e+002 1.15423004e+002 1.25493568e+002 1.27648544e+002 - 1.15438576e+002 1.25505348e+002 1.27695938e+002 1.15422890e+002 - 1.25509560e+002 1.27706207e+002 1.15445518e+002 1.25523178e+002 - 1.27745804e+002 1.15435738e+002 1.25547020e+002 1.27764938e+002 - 1.15492386e+002 1.25577042e+002 1.27863983e+002 1.15465790e+002 - 1.25589821e+002 1.27876961e+002 1.15488731e+002 1.25607071e+002 - 1.27924202e+002 1.15496658e+002 1.25627037e+002 1.27954567e+002 - 1.15519188e+002 1.25629723e+002 1.27997215e+002 1.15495285e+002 - 1.25635139e+002 1.28005539e+002 1.15498085e+002 1.25624413e+002 - 1.28023285e+002 1.15492989e+002 1.25644394e+002 1.28049118e+002 - 1.15537857e+002 1.25687607e+002 1.28128418e+002 1.15498283e+002 - 1.25665176e+002 1.28120285e+002 1.15513748e+002 1.25669495e+002 - 1.28166779e+002 1.15534401e+002 1.25713730e+002 1.28219910e+002 - 1.15544441e+002 1.25722328e+002 1.28258499e+002 1.15543877e+002 - 1.25743828e+002 1.28290070e+002 1.15556480e+002 1.25743279e+002 - 1.28310684e+002 1.15535690e+002 1.25746254e+002 1.28316315e+002 - 1.15575089e+002 1.25753433e+002 1.28383469e+002 1.15558891e+002 - 1.25766373e+002 1.28398697e+002 1.15567833e+002 1.25766212e+002 - 1.28421005e+002 1.15570732e+002 1.25790810e+002 1.28449722e+002 - 1.15590561e+002 1.25793533e+002 1.28487686e+002 1.15568954e+002 - 1.25786865e+002 1.28493713e+002 1.15568810e+002 1.25777634e+002 - 1.28516052e+002 1.15571915e+002 1.25797722e+002 1.28547424e+002 - 1.15596146e+002 1.25815201e+002 1.28594208e+002 1.15590858e+002 - 1.25826729e+002 1.28624390e+002 1.15583954e+002 1.25806389e+002 - 1.28644958e+002 1.15596817e+002 1.25835899e+002 1.28686203e+002 - 1.15633896e+002 1.25866394e+002 1.28740173e+002 1.15625221e+002 - 1.25875969e+002 1.28750809e+002 1.15652481e+002 1.25900497e+002 - 1.28791153e+002 1.15663025e+002 1.25936554e+002 1.28818222e+002 - 1.15686165e+002 1.25921768e+002 1.28860901e+002 1.15660439e+002 - 1.25943596e+002 1.28873871e+002 1.15682556e+002 1.25950302e+002 - 1.28903168e+002 1.15680733e+002 1.25964607e+002 1.28924255e+002 - 1.15673561e+002 1.25945648e+002 1.28939362e+002 1.15649971e+002 - 1.25947159e+002 1.28943954e+002 1.15664597e+002 1.25964157e+002 - 1.28984085e+002 1.15682365e+002 1.25999023e+002 1.29019409e+002 - 1.15731682e+002 1.26044518e+002 1.29083008e+002 1.15705383e+002 - 1.26026146e+002 1.29076340e+002 1.15712128e+002 1.26011436e+002 - 1.29091476e+002 1.15708153e+002 1.26020538e+002 1.29105347e+002 - 1.15728111e+002 1.26031090e+002 1.29135544e+002 1.15717346e+002 - 1.26041275e+002 1.29141830e+002 1.15724388e+002 1.26043457e+002 - 1.29161224e+002 1.15725151e+002 1.26068344e+002 1.29174896e+002 - 1.15740738e+002 1.26048355e+002 1.29199509e+002 1.15694939e+002 - 1.26037888e+002 1.29176941e+002 1.15705444e+002 1.26035492e+002 - 1.29182144e+002 1.15713852e+002 1.26059654e+002 1.29203827e+002 - 1.15729401e+002 1.26045227e+002 1.29217728e+002 1.15718285e+002 - 1.26054672e+002 1.29222946e+002 1.15741936e+002 1.26073593e+002 - 1.29250977e+002 1.15738914e+002 1.26084129e+002 1.29258408e+002 - 1.15755264e+002 1.26091179e+002 1.29278946e+002 1.15759758e+002 - 1.26105438e+002 1.29287277e+002 1.15785736e+002 1.26116974e+002 - 1.29318924e+002 1.15788658e+002 1.26138519e+002 1.29333359e+002 - 1.15780998e+002 1.26118660e+002 1.29323776e+002 1.15763069e+002 - 1.26123123e+002 1.29309296e+002 1.15789116e+002 1.26137207e+002 - 1.29337738e+002 1.15790741e+002 1.26162521e+002 1.29342270e+002 - 1.15798195e+002 1.26129051e+002 1.29345551e+002 1.15754662e+002 - 1.26115669e+002 1.29315567e+002 1.15765915e+002 1.26117340e+002 - 1.29319290e+002 1.15750793e+002 1.26115990e+002 1.29304947e+002 - 1.15766449e+002 1.26115440e+002 1.29321289e+002 1.15737350e+002 - 1.26098946e+002 1.29292313e+002 1.15706032e+002 1.26058968e+002 - 1.29252563e+002 1.15719185e+002 1.26087082e+002 1.29267166e+002 - 1.15715874e+002 1.26066345e+002 1.29249603e+002 1.15697426e+002 - 1.26060402e+002 1.29236801e+002 1.15721359e+002 1.26045670e+002 - 1.29231644e+002 1.15718262e+002 1.26053688e+002 1.29223618e+002 - 1.15750076e+002 1.26058846e+002 1.29231064e+002 1.15729172e+002 - 1.26054123e+002 1.29204025e+002 1.15753487e+002 1.26064079e+002 - 1.29216263e+002 1.15762108e+002 1.26093208e+002 1.29207870e+002 - 1.15779839e+002 1.26067795e+002 1.29204742e+002 1.15750595e+002 - 1.26077637e+002 1.29177567e+002 1.15755402e+002 1.26068161e+002 - 1.29163849e+002 1.15755341e+002 1.26077950e+002 1.29153198e+002 - 1.15766624e+002 1.26064110e+002 1.29151718e+002 1.15741096e+002 - 1.26043869e+002 1.29111130e+002 1.15744598e+002 1.26035904e+002 - 1.29093567e+002 1.15729797e+002 1.26021851e+002 1.29061371e+002 - 1.15722183e+002 1.25994576e+002 1.29026566e+002 1.15706535e+002 - 1.25981636e+002 1.28994125e+002 1.15732269e+002 1.25980804e+002 - 1.28989685e+002 1.15738899e+002 1.26000969e+002 1.28982300e+002 - 1.15721581e+002 1.25966042e+002 1.28937912e+002 1.15689049e+002 - 1.25943352e+002 1.28885727e+002 1.15687614e+002 1.25921844e+002 - 1.28860184e+002 1.15691185e+002 1.25948868e+002 1.28844666e+002 - 1.15704292e+002 1.25916374e+002 1.28811539e+002 1.15644600e+002 - 1.25885277e+002 1.28753159e+002 1.15640015e+002 1.25868416e+002 - 1.28724930e+002 1.15632713e+002 1.25870537e+002 1.28706787e+002 - 1.15638565e+002 1.25863045e+002 1.28691086e+002 1.15587563e+002 - 1.25827507e+002 1.28623245e+002 1.15595108e+002 1.25821709e+002 - 1.28602356e+002 1.15602524e+002 1.25835556e+002 1.28587265e+002 - 1.15616692e+002 1.25837357e+002 1.28575745e+002 1.15594185e+002 - 1.25825058e+002 1.28541580e+002 1.15612366e+002 1.25812004e+002 - 1.28530243e+002 1.15579025e+002 1.25796158e+002 1.28478760e+002 - 1.15612778e+002 1.25810631e+002 1.28482620e+002 1.15571190e+002 - 1.25777046e+002 1.28421616e+002 1.15572128e+002 1.25765526e+002 - 1.28401016e+002 1.15582970e+002 1.25791275e+002 1.28387939e+002 - 1.15563789e+002 1.25729156e+002 1.28334213e+002 1.15530830e+002 - 1.25726486e+002 1.28297348e+002 1.15534515e+002 1.25717155e+002 - 1.28280579e+002 1.15524223e+002 1.25719254e+002 1.28251709e+002 - 1.15529533e+002 1.25690254e+002 1.28219696e+002 1.15519630e+002 - 1.25696388e+002 1.28191483e+002 1.15503754e+002 1.25666161e+002 - 1.28141663e+002 1.15482613e+002 1.25651268e+002 1.28097992e+002 - 1.15483925e+002 1.25629684e+002 1.28066757e+002 1.15456276e+002 - 1.25607254e+002 1.28015656e+002 1.15489594e+002 1.25602135e+002 - 1.28001434e+002 1.15467102e+002 1.25592331e+002 1.27960220e+002 - 1.15456924e+002 1.25561493e+002 1.27914139e+002 1.15423065e+002 - 1.25544235e+002 1.27860611e+002 1.15435051e+002 1.25542717e+002 - 1.27845375e+002 1.15402832e+002 1.25523491e+002 1.27777161e+002 - 1.15423988e+002 1.25492149e+002 1.27743294e+002 1.15406616e+002 - 1.25503937e+002 1.27713387e+002 1.15401382e+002 1.25483681e+002 - 1.27686623e+002 1.15378227e+002 1.25470482e+002 1.27649055e+002 - 1.15382454e+002 1.25438820e+002 1.27616463e+002 1.15353088e+002 - 1.25425072e+002 1.27563446e+002 1.15341011e+002 1.25387802e+002 - 1.27516640e+002 1.15326942e+002 1.25385582e+002 1.27477036e+002 - 1.15323708e+002 1.25356895e+002 1.27432037e+002 1.15292381e+002 - 1.25328835e+002 1.27372696e+002 1.15311867e+002 1.25312500e+002 - 1.27343948e+002 1.15290108e+002 1.25293457e+002 1.27295227e+002 - 1.15303146e+002 1.25290993e+002 1.27270485e+002 1.15275009e+002 - 1.25273773e+002 1.27217789e+002 1.15268341e+002 1.25250168e+002 - 1.27189697e+002 1.15259460e+002 1.25251877e+002 1.27141365e+002 - 1.15269020e+002 1.25207069e+002 1.27087456e+002 1.15227829e+002 - 1.25187614e+002 1.27021156e+002 1.15219360e+002 1.25161362e+002 - 1.26983437e+002 1.15192924e+002 1.25137955e+002 1.26927849e+002 - 1.15190239e+002 1.25100739e+002 1.26885750e+002 1.15146866e+002 - 1.25062378e+002 1.26815643e+002 1.15123772e+002 1.25017220e+002 - 1.26747879e+002 1.15102982e+002 1.24999786e+002 1.26697975e+002 - 1.15066628e+002 1.24929848e+002 1.26613449e+002 1.15046120e+002 - 1.24906647e+002 1.26563011e+002 1.15054703e+002 1.24873001e+002 - 1.26524147e+002 1.15043190e+002 1.24864120e+002 1.26484833e+002 - 1.15019081e+002 1.24822067e+002 1.26416817e+002 1.14964211e+002 - 1.24776711e+002 1.26339752e+002 1.14954094e+002 1.24745476e+002 - 1.26294868e+002 1.14923767e+002 1.24722084e+002 1.26228477e+002 - 1.14932610e+002 1.24671936e+002 1.26173401e+002 1.14898956e+002 - 1.24648468e+002 1.26114082e+002 1.14877876e+002 1.24601372e+002 - 1.26052826e+002 1.14858330e+002 1.24582336e+002 1.26005928e+002 - 1.14865974e+002 1.24542839e+002 1.25955826e+002 1.14824776e+002 - 1.24505600e+002 1.25882690e+002 1.14806992e+002 1.24461571e+002 - 1.25814964e+002 1.14779099e+002 1.24429520e+002 1.25748329e+002 - 1.14738800e+002 1.24351891e+002 1.25663979e+002 1.14716347e+002 - 1.24324326e+002 1.25608650e+002 1.14713089e+002 1.24275993e+002 - 1.25556137e+002 1.14688347e+002 1.24249184e+002 1.25504776e+002 - 1.14656204e+002 1.24174286e+002 1.25428246e+002 1.14585442e+002 - 1.24112091e+002 1.25328506e+002 1.14524757e+002 1.24017654e+002 - 1.25233772e+002 1.14421127e+002 1.23890442e+002 1.25091064e+002 - 1.14470184e+002 1.23984108e+002 1.25232750e+002 1.14586777e+002 - 1.24137917e+002 1.25384468e+002 1.14663521e+002 1.24228249e+002 - 1.25484581e+002 1.14722801e+002 1.24316643e+002 1.25576981e+002 - 1.14756783e+002 1.24368546e+002 1.25658630e+002 1.14763069e+002 - 1.24403442e+002 1.25703888e+002 1.14799210e+002 1.24462387e+002 - 1.25792511e+002 1.14814079e+002 1.24509521e+002 1.25843193e+002 - 1.14865921e+002 1.24571274e+002 1.25940903e+002 1.14841644e+002 - 1.24576141e+002 1.25961632e+002 1.14862762e+002 1.24595299e+002 - 1.26019264e+002 1.14887451e+002 1.24647041e+002 1.26082611e+002 - 1.14897720e+002 1.24672455e+002 1.26133591e+002 1.14907776e+002 - 1.24708824e+002 1.26182983e+002 1.14958847e+002 1.24763710e+002 - 1.26252289e+002 1.14966866e+002 1.24800865e+002 1.26303673e+002 - 1.15014229e+002 1.24871048e+002 1.26418213e+002 1.14984665e+002 - 1.24873726e+002 1.26426704e+002 1.15008781e+002 1.24890450e+002 - 1.26482330e+002 1.15035057e+002 1.24931206e+002 1.26533546e+002 - 1.15071724e+002 1.24966698e+002 1.26606918e+002 1.15087631e+002 - 1.25009575e+002 1.26657837e+002 1.15101997e+002 1.25032104e+002 - 1.26712494e+002 1.15107628e+002 1.25054909e+002 1.26746002e+002 - 1.15159271e+002 1.25111893e+002 1.26832886e+002 1.15156395e+002 - 1.25123894e+002 1.26860298e+002 1.15172295e+002 1.25131897e+002 - 1.26915733e+002 1.15185455e+002 1.25157906e+002 1.26962608e+002 - 1.15209023e+002 1.25185738e+002 1.27025108e+002 1.15225945e+002 - 1.25230721e+002 1.27081772e+002 1.15228218e+002 1.25234795e+002 - 1.27113632e+002 1.15239105e+002 1.25266243e+002 1.27157326e+002 - 1.15269745e+002 1.25306213e+002 1.27238266e+002 1.15248535e+002 - 1.25319153e+002 1.27255768e+002 1.15288612e+002 1.25352234e+002 - 1.27320992e+002 1.15314804e+002 1.25396797e+002 1.27376106e+002 - 1.15362892e+002 1.25438019e+002 1.27461349e+002 1.15373795e+002 - 1.25463097e+002 1.27496605e+002 1.15377243e+002 1.25470230e+002 - 1.27547600e+002 1.15379120e+002 1.25490585e+002 1.27582718e+002 - 1.15418221e+002 1.25518471e+002 1.27648384e+002 1.15405617e+002 - 1.25523994e+002 1.27673706e+002 1.15432541e+002 1.25537766e+002 - 1.27729271e+002 1.15446892e+002 1.25572090e+002 1.27778534e+002 - 1.15454727e+002 1.25576508e+002 1.27814880e+002 1.15440948e+002 - 1.25580002e+002 1.27821297e+002 1.15465614e+002 1.25598488e+002 - 1.27869278e+002 1.15454002e+002 1.25600296e+002 1.27883553e+002 - 1.15487984e+002 1.25633530e+002 1.27962723e+002 1.15470612e+002 - 1.25644272e+002 1.27977165e+002 1.15485748e+002 1.25655647e+002 - 1.28019150e+002 1.15511459e+002 1.25696075e+002 1.28076065e+002 - 1.15548126e+002 1.25724075e+002 1.28136032e+002 1.15528053e+002 - 1.25718117e+002 1.28140274e+002 1.15516846e+002 1.25706802e+002 - 1.28158875e+002 1.15527298e+002 1.25728920e+002 1.28191238e+002 - 1.15576759e+002 1.25780075e+002 1.28275482e+002 1.15531456e+002 - 1.25754143e+002 1.28263351e+002 1.15550476e+002 1.25763138e+002 - 1.28312851e+002 1.15550262e+002 1.25780174e+002 1.28346771e+002 - 1.15550247e+002 1.25785194e+002 1.28378815e+002 1.15553284e+002 - 1.25807083e+002 1.28403305e+002 1.15557465e+002 1.25795670e+002 - 1.28424500e+002 1.15546181e+002 1.25798332e+002 1.28428833e+002 - 1.15564651e+002 1.25809532e+002 1.28491379e+002 1.15551712e+002 - 1.25815781e+002 1.28500656e+002 1.15568405e+002 1.25822357e+002 - 1.28534775e+002 1.15571281e+002 1.25839119e+002 1.28556381e+002 - 1.15596741e+002 1.25857361e+002 1.28608078e+002 1.15590561e+002 - 1.25860023e+002 1.28623917e+002 1.15598328e+002 1.25864418e+002 - 1.28661682e+002 1.15580994e+002 1.25861336e+002 1.28668427e+002 - 1.15593094e+002 1.25864037e+002 1.28701447e+002 1.15586693e+002 - 1.25874039e+002 1.28728851e+002 1.15600914e+002 1.25879608e+002 - 1.28769333e+002 1.15612808e+002 1.25904045e+002 1.28813126e+002 - 1.15638428e+002 1.25923264e+002 1.28859146e+002 1.15630280e+002 - 1.25940376e+002 1.28869293e+002 1.15673462e+002 1.25969986e+002 - 1.28922546e+002 1.15689545e+002 1.26004929e+002 1.28955261e+002 - 1.15685226e+002 1.25994438e+002 1.28980804e+002 1.15668205e+002 - 1.26002747e+002 1.28994995e+002 1.15684326e+002 1.26005829e+002 - 1.29021637e+002 1.15681717e+002 1.26020256e+002 1.29043762e+002 - 1.15697243e+002 1.26030632e+002 1.29082001e+002 1.15672287e+002 - 1.26025970e+002 1.29081833e+002 1.15683502e+002 1.26042656e+002 - 1.29121841e+002 1.15701309e+002 1.26068573e+002 1.29153168e+002 - 1.15734795e+002 1.26100121e+002 1.29203674e+002 1.15716743e+002 - 1.26092323e+002 1.29200424e+002 1.15723656e+002 1.26082138e+002 - 1.29221191e+002 1.15706047e+002 1.26071716e+002 1.29215668e+002 - 1.15722252e+002 1.26081718e+002 1.29247833e+002 1.15730324e+002 - 1.26107796e+002 1.29273453e+002 1.15736893e+002 1.26109062e+002 - 1.29290192e+002 1.15735916e+002 1.26119576e+002 1.29300705e+002 - 1.15741051e+002 1.26118874e+002 1.29320114e+002 1.15702164e+002 - 1.26102852e+002 1.29299667e+002 1.15698715e+002 1.26087166e+002 - 1.29293762e+002 1.15713211e+002 1.26106201e+002 1.29316940e+002 - 1.15717682e+002 1.26098030e+002 1.29327271e+002 1.15727715e+002 - 1.26119789e+002 1.29346603e+002 1.15746155e+002 1.26136597e+002 - 1.29378494e+002 1.15736816e+002 1.26139984e+002 1.29375732e+002 - 1.15772148e+002 1.26161896e+002 1.29408035e+002 1.15762054e+002 - 1.26169128e+002 1.29415451e+002 1.15793030e+002 1.26185753e+002 - 1.29448318e+002 1.15784195e+002 1.26190048e+002 1.29445435e+002 - 1.15785881e+002 1.26188652e+002 1.29449402e+002 1.15775970e+002 - 1.26187347e+002 1.29439667e+002 1.15795563e+002 1.26201523e+002 - 1.29462326e+002 1.15786560e+002 1.26197052e+002 1.29453979e+002 - 1.15781487e+002 1.26181343e+002 1.29451447e+002 1.15761520e+002 - 1.26180992e+002 1.29437302e+002 1.15786499e+002 1.26197006e+002 - 1.29463242e+002 1.15775253e+002 1.26189674e+002 1.29448822e+002 - 1.15772362e+002 1.26177887e+002 1.29442535e+002 1.15756500e+002 - 1.26172455e+002 1.29428177e+002 1.15732521e+002 1.26143768e+002 - 1.29402344e+002 1.15720367e+002 1.26146339e+002 1.29384262e+002 - 1.15729408e+002 1.26135910e+002 1.29382843e+002 1.15708344e+002 - 1.26124420e+002 1.29361862e+002 1.15723869e+002 1.26107796e+002 - 1.29351273e+002 1.15715820e+002 1.26100342e+002 1.29327271e+002 - 1.15741074e+002 1.26114464e+002 1.29338181e+002 1.15731422e+002 - 1.26109474e+002 1.29315094e+002 1.15740326e+002 1.26103691e+002 - 1.29317581e+002 1.15748772e+002 1.26125954e+002 1.29311890e+002 - 1.15755249e+002 1.26123634e+002 1.29297928e+002 1.15734741e+002 - 1.26120575e+002 1.29274719e+002 1.15750206e+002 1.26121071e+002 - 1.29270538e+002 1.15750252e+002 1.26123459e+002 1.29262680e+002 - 1.15753914e+002 1.26111298e+002 1.29252472e+002 1.15746742e+002 - 1.26111145e+002 1.29230667e+002 1.15747147e+002 1.26089912e+002 - 1.29211487e+002 1.15729370e+002 1.26078026e+002 1.29169739e+002 - 1.15720245e+002 1.26050362e+002 1.29146896e+002 1.15721558e+002 - 1.26053925e+002 1.29126953e+002 1.15763626e+002 1.26071434e+002 - 1.29134598e+002 1.15761482e+002 1.26074455e+002 1.29109879e+002 - 1.15741661e+002 1.26038338e+002 1.29066345e+002 1.15718384e+002 - 1.26018845e+002 1.29024750e+002 1.15717087e+002 1.26005768e+002 - 1.29004181e+002 1.15722618e+002 1.26012375e+002 1.28977112e+002 - 1.15715759e+002 1.25998039e+002 1.28942032e+002 1.15676048e+002 - 1.25974686e+002 1.28890015e+002 1.15659615e+002 1.25937988e+002 - 1.28851761e+002 1.15644760e+002 1.25930725e+002 1.28825287e+002 - 1.15633583e+002 1.25907829e+002 1.28796143e+002 1.15602287e+002 - 1.25889648e+002 1.28748154e+002 1.15596680e+002 1.25878731e+002 - 1.28719849e+002 1.15614906e+002 1.25905373e+002 1.28716965e+002 - 1.15610291e+002 1.25886017e+002 1.28681595e+002 1.15606071e+002 - 1.25886871e+002 1.28656677e+002 1.15622482e+002 1.25875313e+002 - 1.28646545e+002 1.15598503e+002 1.25866592e+002 1.28602463e+002 - 1.15610909e+002 1.25863457e+002 1.28589035e+002 1.15577339e+002 - 1.25845238e+002 1.28539459e+002 1.15573090e+002 1.25818596e+002 - 1.28510742e+002 1.15577034e+002 1.25825241e+002 1.28484497e+002 - 1.15571754e+002 1.25802650e+002 1.28456039e+002 1.15560387e+002 - 1.25810341e+002 1.28428696e+002 1.15563362e+002 1.25794388e+002 - 1.28411469e+002 1.15537926e+002 1.25777824e+002 1.28366440e+002 - 1.15532654e+002 1.25748779e+002 1.28332916e+002 1.15529190e+002 - 1.25759453e+002 1.28303253e+002 1.15508873e+002 1.25715981e+002 - 1.28246017e+002 1.15496346e+002 1.25703339e+002 1.28205872e+002 - 1.15487572e+002 1.25678024e+002 1.28161392e+002 1.15459335e+002 - 1.25655434e+002 1.28115891e+002 1.15481827e+002 1.25656860e+002 - 1.28103516e+002 1.15479362e+002 1.25657211e+002 1.28077515e+002 - 1.15471695e+002 1.25635727e+002 1.28035614e+002 1.15454163e+002 - 1.25627121e+002 1.27995827e+002 1.15464653e+002 1.25623840e+002 - 1.27975899e+002 1.15441086e+002 1.25604073e+002 1.27919312e+002 - 1.15440834e+002 1.25577957e+002 1.27869080e+002 1.15425537e+002 - 1.25574745e+002 1.27836594e+002 1.15419952e+002 1.25551720e+002 - 1.27808998e+002 1.15404404e+002 1.25544746e+002 1.27772980e+002 - 1.15408707e+002 1.25523956e+002 1.27744644e+002 1.15372902e+002 - 1.25490860e+002 1.27687721e+002 1.15369591e+002 1.25470444e+002 - 1.27644470e+002 1.15367218e+002 1.25481758e+002 1.27617195e+002 - 1.15370491e+002 1.25458069e+002 1.27584427e+002 1.15353416e+002 - 1.25443619e+002 1.27542053e+002 1.15359100e+002 1.25412819e+002 - 1.27494911e+002 1.15327866e+002 1.25388817e+002 1.27433861e+002 - 1.15321983e+002 1.25366463e+002 1.27395599e+002 1.15291351e+002 - 1.25346565e+002 1.27341576e+002 1.15287338e+002 1.25322365e+002 - 1.27306877e+002 1.15297226e+002 1.25334679e+002 1.27282791e+002 - 1.15296677e+002 1.25301857e+002 1.27221062e+002 1.15277061e+002 - 1.25290665e+002 1.27167534e+002 1.15262321e+002 1.25250702e+002 - 1.27117538e+002 1.15212753e+002 1.25209427e+002 1.27041313e+002 - 1.15217628e+002 1.25179092e+002 1.27000824e+002 1.15201378e+002 - 1.25164185e+002 1.26955635e+002 1.15172752e+002 1.25114555e+002 - 1.26885254e+002 1.15158669e+002 1.25096596e+002 1.26833412e+002 - 1.15131981e+002 1.25041435e+002 1.26764435e+002 1.15101250e+002 - 1.25009560e+002 1.26707588e+002 1.15087807e+002 1.24951462e+002 - 1.26642876e+002 1.15077507e+002 1.24947403e+002 1.26607994e+002 - 1.15061920e+002 1.24913727e+002 1.26545326e+002 1.15020844e+002 - 1.24876480e+002 1.26480782e+002 1.15006111e+002 1.24850746e+002 - 1.26429581e+002 1.14988487e+002 1.24830315e+002 1.26378700e+002 - 1.14982079e+002 1.24784477e+002 1.26315483e+002 1.14959114e+002 - 1.24764709e+002 1.26266594e+002 1.14948647e+002 1.24728340e+002 - 1.26216187e+002 1.14919487e+002 1.24690231e+002 1.26152306e+002 - 1.14921959e+002 1.24657082e+002 1.26099709e+002 1.14873291e+002 - 1.24607841e+002 1.26014435e+002 1.14847488e+002 1.24549454e+002 - 1.25935715e+002 1.14822884e+002 1.24522095e+002 1.25871590e+002 - 1.14783020e+002 1.24447937e+002 1.25790604e+002 1.14763893e+002 - 1.24422424e+002 1.25738594e+002 1.14767227e+002 1.24381760e+002 - 1.25688828e+002 1.14745636e+002 1.24350327e+002 1.25640877e+002 - 1.14703384e+002 1.24280441e+002 1.25562286e+002 1.14644791e+002 - 1.24217957e+002 1.25469643e+002 1.14573730e+002 1.24108871e+002 - 1.25365036e+002 1.14445396e+002 1.23973793e+002 1.25200554e+002 - 1.14444458e+002 1.24005203e+002 1.25276108e+002 1.14574913e+002 - 1.24171913e+002 1.25439545e+002 1.14685326e+002 1.24295013e+002 - 1.25574608e+002 1.14737976e+002 1.24375053e+002 1.25659943e+002 - 1.14783150e+002 1.24436211e+002 1.25752975e+002 1.14781303e+002 - 1.24471405e+002 1.25796036e+002 1.14813637e+002 1.24523720e+002 - 1.25879829e+002 1.14805389e+002 1.24544571e+002 1.25910042e+002 - 1.14879059e+002 1.24630173e+002 1.26026222e+002 1.14852257e+002 - 1.24625687e+002 1.26037262e+002 1.14867645e+002 1.24646118e+002 - 1.26099808e+002 1.14896019e+002 1.24702354e+002 1.26162994e+002 - 1.14895622e+002 1.24710320e+002 1.26205521e+002 1.14911255e+002 - 1.24752434e+002 1.26253929e+002 1.14944267e+002 1.24794456e+002 - 1.26315933e+002 1.14971237e+002 1.24851135e+002 1.26377625e+002 - 1.15014236e+002 1.24912872e+002 1.26486504e+002 1.14977844e+002 - 1.24911079e+002 1.26490448e+002 1.15016083e+002 1.24940872e+002 - 1.26556938e+002 1.15045021e+002 1.24983932e+002 1.26616051e+002 - 1.15066940e+002 1.25014458e+002 1.26676018e+002 1.15078690e+002 - 1.25044258e+002 1.26720955e+002 1.15095154e+002 1.25076103e+002 - 1.26784058e+002 1.15100136e+002 1.25100243e+002 1.26824104e+002 - 1.15139763e+002 1.25142426e+002 1.26898338e+002 1.15130234e+002 - 1.25139671e+002 1.26916077e+002 1.15134262e+002 1.25142220e+002 - 1.26957924e+002 1.15150200e+002 1.25171867e+002 1.27007004e+002 - 1.15182358e+002 1.25208054e+002 1.27080902e+002 1.15201668e+002 - 1.25254280e+002 1.27135025e+002 1.15216866e+002 1.25270271e+002 - 1.27186394e+002 1.15223907e+002 1.25298500e+002 1.27222733e+002 - 1.15241882e+002 1.25328896e+002 1.27292053e+002 1.15231087e+002 - 1.25345505e+002 1.27329224e+002 1.15266006e+002 1.25375580e+002 - 1.27381310e+002 1.15292198e+002 1.25416138e+002 1.27433243e+002 - 1.15329803e+002 1.25450661e+002 1.27509422e+002 1.15329826e+002 - 1.25466469e+002 1.27544624e+002 1.15340843e+002 1.25477402e+002 - 1.27593231e+002 1.15330971e+002 1.25482971e+002 1.27617607e+002 - 1.15383865e+002 1.25524132e+002 1.27693764e+002 1.15368591e+002 - 1.25527962e+002 1.27716270e+002 1.15382042e+002 1.25533844e+002 - 1.27762375e+002 1.15394028e+002 1.25563446e+002 1.27809708e+002 - 1.15413139e+002 1.25576660e+002 1.27853867e+002 1.15403633e+002 - 1.25587196e+002 1.27872429e+002 1.15414658e+002 1.25591797e+002 - 1.27902748e+002 1.15413315e+002 1.25608253e+002 1.27923233e+002 - 1.15449455e+002 1.25647934e+002 1.28011215e+002 1.15444534e+002 - 1.25672234e+002 1.28044937e+002 1.15465698e+002 1.25691193e+002 - 1.28091400e+002 1.15490868e+002 1.25725487e+002 1.28140869e+002 - 1.15519218e+002 1.25745255e+002 1.28195694e+002 1.15506729e+002 - 1.25748566e+002 1.28212357e+002 1.15498680e+002 1.25741470e+002 - 1.28239380e+002 1.15514145e+002 1.25768669e+002 1.28278290e+002 - 1.15517868e+002 1.25776649e+002 1.28315155e+002 1.15493767e+002 - 1.25767258e+002 1.28320389e+002 1.15502357e+002 1.25765732e+002 - 1.28362076e+002 1.15518089e+002 1.25792427e+002 1.28406433e+002 - 1.15520813e+002 1.25800217e+002 1.28440613e+002 1.15520340e+002 - 1.25814606e+002 1.28460388e+002 1.15509277e+002 1.25797806e+002 - 1.28468658e+002 1.15512970e+002 1.25805260e+002 1.28490921e+002 - 1.15526337e+002 1.25814812e+002 1.28544189e+002 1.15509277e+002 - 1.25818398e+002 1.28552689e+002 1.15531128e+002 1.25830627e+002 - 1.28590317e+002 1.15543030e+002 1.25856064e+002 1.28617325e+002 - 1.15557915e+002 1.25867043e+002 1.28662537e+002 1.15550613e+002 - 1.25872940e+002 1.28681076e+002 1.15561989e+002 1.25883041e+002 - 1.28719131e+002 1.15536964e+002 1.25861221e+002 1.28715256e+002 - 1.15564224e+002 1.25884293e+002 1.28766739e+002 1.15578583e+002 - 1.25911339e+002 1.28808609e+002 1.15584732e+002 1.25906418e+002 - 1.28847992e+002 1.15586678e+002 1.25926888e+002 1.28877274e+002 - 1.15590515e+002 1.25919342e+002 1.28897858e+002 1.15583359e+002 - 1.25935951e+002 1.28914169e+002 1.15611816e+002 1.25956436e+002 - 1.28957764e+002 1.15618614e+002 1.25975983e+002 1.28980743e+002 - 1.15650635e+002 1.26004807e+002 1.29040405e+002 1.15635719e+002 - 1.26012871e+002 1.29053131e+002 1.15644127e+002 1.26008377e+002 - 1.29075287e+002 1.15639366e+002 1.26020805e+002 1.29092682e+002 - 1.15655113e+002 1.26031120e+002 1.29127411e+002 1.15640656e+002 - 1.26030815e+002 1.29140701e+002 1.15654114e+002 1.26056618e+002 - 1.29186157e+002 1.15667244e+002 1.26079865e+002 1.29217270e+002 - 1.15704224e+002 1.26113441e+002 1.29266693e+002 1.15681496e+002 - 1.26098045e+002 1.29263519e+002 1.15684814e+002 1.26082657e+002 - 1.29274414e+002 1.15659988e+002 1.26069695e+002 1.29266693e+002 - 1.15667793e+002 1.26070580e+002 1.29296005e+002 1.15653694e+002 - 1.26079559e+002 1.29299820e+002 1.15665970e+002 1.26086067e+002 - 1.29321869e+002 1.15674271e+002 1.26101952e+002 1.29338608e+002 - 1.15688148e+002 1.26113914e+002 1.29368790e+002 1.15649033e+002 - 1.26092285e+002 1.29345901e+002 1.15645584e+002 1.26076561e+002 - 1.29341522e+002 1.15647675e+002 1.26082710e+002 1.29349808e+002 - 1.15655426e+002 1.26075340e+002 1.29360168e+002 1.15671722e+002 - 1.26109131e+002 1.29391785e+002 1.15706245e+002 1.26142365e+002 - 1.29437408e+002 1.15703674e+002 1.26154778e+002 1.29446335e+002 - 1.15717834e+002 1.26155907e+002 1.29460876e+002 1.15702522e+002 - 1.26155434e+002 1.29459579e+002 1.15723129e+002 1.26159767e+002 - 1.29482208e+002 1.15724419e+002 1.26174278e+002 1.29490845e+002 - 1.15738762e+002 1.26181244e+002 1.29503143e+002 1.15731873e+002 - 1.26194946e+002 1.29496979e+002 1.15735817e+002 1.26187988e+002 - 1.29508759e+002 1.15736877e+002 1.26196121e+002 1.29501221e+002 - 1.15733391e+002 1.26186424e+002 1.29502258e+002 1.15720879e+002 - 1.26190697e+002 1.29501572e+002 1.15733818e+002 1.26192924e+002 - 1.29507568e+002 1.15727478e+002 1.26194122e+002 1.29501144e+002 - 1.15727203e+002 1.26182640e+002 1.29498795e+002 1.15698189e+002 - 1.26161003e+002 1.29468903e+002 1.15677742e+002 1.26130219e+002 - 1.29445099e+002 1.15671837e+002 1.26140572e+002 1.29436432e+002 - 1.15672546e+002 1.26124458e+002 1.29428787e+002 1.15663383e+002 - 1.26118736e+002 1.29410019e+002 1.15686523e+002 1.26119225e+002 - 1.29416489e+002 1.15674919e+002 1.26110596e+002 1.29389679e+002 - 1.15675125e+002 1.26096657e+002 1.29371689e+002 1.15660583e+002 - 1.26093887e+002 1.29351547e+002 1.15682289e+002 1.26100983e+002 - 1.29363419e+002 1.15714500e+002 1.26143562e+002 1.29381012e+002 - 1.15722404e+002 1.26136795e+002 1.29363861e+002 1.15686684e+002 - 1.26124443e+002 1.29322418e+002 1.15707558e+002 1.26122086e+002 - 1.29329758e+002 1.15698326e+002 1.26126717e+002 1.29313599e+002 - 1.15693680e+002 1.26102028e+002 1.29292664e+002 1.15696480e+002 - 1.26112404e+002 1.29281845e+002 1.15702232e+002 1.26101082e+002 - 1.29263992e+002 1.15670967e+002 1.26075180e+002 1.29217804e+002 - 1.15676056e+002 1.26060593e+002 1.29193359e+002 1.15677017e+002 - 1.26065788e+002 1.29181839e+002 1.15722954e+002 1.26083672e+002 - 1.29197128e+002 1.15718147e+002 1.26083145e+002 1.29163391e+002 - 1.15703674e+002 1.26049255e+002 1.29119492e+002 1.15686523e+002 - 1.26037338e+002 1.29081543e+002 1.15690857e+002 1.26030678e+002 - 1.29068954e+002 1.15677948e+002 1.26021103e+002 1.29034363e+002 - 1.15665794e+002 1.25997871e+002 1.28985001e+002 1.15630661e+002 - 1.25980942e+002 1.28942764e+002 1.15624420e+002 1.25954391e+002 - 1.28918381e+002 1.15601639e+002 1.25942688e+002 1.28885010e+002 - 1.15580444e+002 1.25902649e+002 1.28841141e+002 1.15555771e+002 - 1.25888786e+002 1.28793716e+002 1.15550827e+002 1.25878311e+002 - 1.28767746e+002 1.15554169e+002 1.25895569e+002 1.28748352e+002 - 1.15550285e+002 1.25877556e+002 1.28717117e+002 1.15542206e+002 - 1.25874863e+002 1.28696869e+002 1.15568954e+002 1.25870018e+002 - 1.28680710e+002 1.15555603e+002 1.25864082e+002 1.28641434e+002 - 1.15553993e+002 1.25852356e+002 1.28618042e+002 1.15529518e+002 - 1.25836075e+002 1.28575592e+002 1.15516014e+002 1.25812332e+002 - 1.28539246e+002 1.15532166e+002 1.25828590e+002 1.28533188e+002 - 1.15526360e+002 1.25799332e+002 1.28486725e+002 1.15499184e+002 - 1.25788231e+002 1.28446548e+002 1.15506042e+002 1.25780449e+002 - 1.28436981e+002 1.15483475e+002 1.25766212e+002 1.28393738e+002 - 1.15479004e+002 1.25741867e+002 1.28358673e+002 1.15461731e+002 - 1.25726524e+002 1.28316544e+002 1.15452461e+002 1.25705078e+002 - 1.28275070e+002 1.15448357e+002 1.25707748e+002 1.28245926e+002 - 1.15447479e+002 1.25684593e+002 1.28212173e+002 1.15432182e+002 - 1.25676613e+002 1.28177063e+002 1.15443733e+002 1.25660408e+002 - 1.28149414e+002 1.15441437e+002 1.25669525e+002 1.28126846e+002 - 1.15426422e+002 1.25633308e+002 1.28072479e+002 1.15407913e+002 - 1.25631973e+002 1.28038635e+002 1.15410576e+002 1.25619545e+002 - 1.28012131e+002 1.15387199e+002 1.25600571e+002 1.27954514e+002 - 1.15388512e+002 1.25578255e+002 1.27909653e+002 1.15381088e+002 - 1.25580215e+002 1.27883080e+002 1.15392395e+002 1.25572876e+002 - 1.27869652e+002 1.15377647e+002 1.25562386e+002 1.27834961e+002 - 1.15372086e+002 1.25536232e+002 1.27798004e+002 1.15339165e+002 - 1.25504784e+002 1.27741608e+002 1.15358002e+002 1.25505798e+002 - 1.27720879e+002 1.15370834e+002 1.25526070e+002 1.27713310e+002 - 1.15346710e+002 1.25486588e+002 1.27650719e+002 1.15325165e+002 - 1.25466736e+002 1.27603813e+002 1.15335297e+002 1.25441017e+002 - 1.27565804e+002 1.15312790e+002 1.25423332e+002 1.27515190e+002 - 1.15304695e+002 1.25394897e+002 1.27461426e+002 1.15277351e+002 - 1.25379539e+002 1.27409477e+002 1.15278862e+002 1.25362350e+002 - 1.27382339e+002 1.15288216e+002 1.25363800e+002 1.27343399e+002 - 1.15281853e+002 1.25329979e+002 1.27277458e+002 1.15268990e+002 - 1.25325012e+002 1.27232338e+002 1.15241508e+002 1.25275597e+002 - 1.27174355e+002 1.15208397e+002 1.25243401e+002 1.27111633e+002 - 1.15204788e+002 1.25212326e+002 1.27063805e+002 1.15186371e+002 - 1.25193359e+002 1.27017303e+002 1.15155449e+002 1.25135712e+002 - 1.26944298e+002 1.15137299e+002 1.25115791e+002 1.26887703e+002 - 1.15118889e+002 1.25071754e+002 1.26829544e+002 1.15099434e+002 - 1.25050041e+002 1.26780907e+002 1.15088173e+002 1.25001343e+002 - 1.26718155e+002 1.15073662e+002 1.24992615e+002 1.26675858e+002 - 1.15067039e+002 1.24967712e+002 1.26629074e+002 1.15014366e+002 - 1.24923027e+002 1.26547997e+002 1.14997414e+002 1.24884430e+002 - 1.26497597e+002 1.14979958e+002 1.24865921e+002 1.26444901e+002 - 1.14983566e+002 1.24830078e+002 1.26391602e+002 1.14966629e+002 - 1.24816925e+002 1.26349380e+002 1.14955238e+002 1.24771217e+002 - 1.26289742e+002 1.14908249e+002 1.24726982e+002 1.26211601e+002 - 1.14903152e+002 1.24684372e+002 1.26152359e+002 1.14865387e+002 - 1.24647041e+002 1.26076714e+002 1.14848030e+002 1.24595566e+002 - 1.26003967e+002 1.14815506e+002 1.24561081e+002 1.25940048e+002 - 1.14791756e+002 1.24502251e+002 1.25870102e+002 1.14771835e+002 - 1.24478012e+002 1.25822281e+002 1.14776054e+002 1.24436775e+002 - 1.25771271e+002 1.14751801e+002 1.24405991e+002 1.25716003e+002 - 1.14713638e+002 1.24333038e+002 1.25639435e+002 1.14655037e+002 - 1.24266716e+002 1.25551155e+002 1.14575577e+002 1.24158623e+002 - 1.25434898e+002 1.14429237e+002 1.23996223e+002 1.25247948e+002 - 1.14407616e+002 1.24008728e+002 1.25308327e+002 1.14534500e+002 - 1.24178246e+002 1.25473328e+002 1.14661774e+002 1.24314980e+002 - 1.25624435e+002 1.14704681e+002 1.24389961e+002 1.25703392e+002 - 1.14746696e+002 1.24447411e+002 1.25791046e+002 1.14762978e+002 - 1.24497803e+002 1.25855057e+002 1.14793663e+002 1.24551781e+002 - 1.25938255e+002 1.14797562e+002 1.24579788e+002 1.25975868e+002 - 1.14841904e+002 1.24638504e+002 1.26068047e+002 1.14815147e+002 - 1.24639076e+002 1.26082397e+002 1.14842529e+002 1.24666771e+002 - 1.26154854e+002 1.14872131e+002 1.24721741e+002 1.26216301e+002 - 1.14882736e+002 1.24738419e+002 1.26268242e+002 1.14885681e+002 - 1.24773941e+002 1.26304245e+002 1.14915337e+002 1.24812614e+002 - 1.26362595e+002 1.14942093e+002 1.24869812e+002 1.26430679e+002 - 1.14978722e+002 1.24920654e+002 1.26532600e+002 1.14947777e+002 - 1.24931236e+002 1.26547874e+002 1.14997803e+002 1.24966850e+002 - 1.26615738e+002 1.15012329e+002 1.25003654e+002 1.26666725e+002 - 1.15038887e+002 1.25027580e+002 1.26727432e+002 1.15041122e+002 - 1.25057106e+002 1.26769569e+002 1.15059860e+002 1.25078850e+002 - 1.26825859e+002 1.15050980e+002 1.25097107e+002 1.26853310e+002 - 1.15083466e+002 1.25129112e+002 1.26920868e+002 1.15074669e+002 - 1.25143875e+002 1.26945824e+002 1.15091782e+002 1.25144638e+002 - 1.27005814e+002 1.15118065e+002 1.25189247e+002 1.27067589e+002 - 1.15157829e+002 1.25233406e+002 1.27144402e+002 1.15174294e+002 - 1.25275284e+002 1.27193947e+002 1.15185158e+002 1.25282860e+002 - 1.27240326e+002 1.15188591e+002 1.25309410e+002 1.27281128e+002 - 1.15214981e+002 1.25344208e+002 1.27352341e+002 1.15195488e+002 - 1.25352875e+002 1.27370872e+002 1.15226593e+002 1.25373459e+002 - 1.27426971e+002 1.15261459e+002 1.25430641e+002 1.27493263e+002 - 1.15274376e+002 1.25437935e+002 1.27539421e+002 1.15262421e+002 - 1.25446342e+002 1.27566795e+002 1.15276245e+002 1.25461090e+002 - 1.27617737e+002 1.15289902e+002 1.25484688e+002 1.27660873e+002 - 1.15333794e+002 1.25521996e+002 1.27736198e+002 1.15314392e+002 - 1.25520943e+002 1.27752686e+002 1.15325806e+002 1.25521507e+002 - 1.27796387e+002 1.15334496e+002 1.25551094e+002 1.27840042e+002 - 1.15344383e+002 1.25554451e+002 1.27881004e+002 1.15343590e+002 - 1.25570801e+002 1.27901703e+002 1.15355453e+002 1.25572235e+002 - 1.27930222e+002 1.15366440e+002 1.25604408e+002 1.27972595e+002 - 1.15400421e+002 1.25651749e+002 1.28062698e+002 1.15409363e+002 - 1.25686096e+002 1.28104294e+002 1.15438240e+002 1.25708191e+002 - 1.28157288e+002 1.15453423e+002 1.25738289e+002 1.28195297e+002 - 1.15454773e+002 1.25732590e+002 1.28233246e+002 1.15450500e+002 - 1.25743645e+002 1.28253586e+002 1.15434891e+002 1.25723335e+002 - 1.28272873e+002 1.15436012e+002 1.25741882e+002 1.28295151e+002 - 1.15456299e+002 1.25761841e+002 1.28349152e+002 1.15422829e+002 - 1.25748154e+002 1.28348175e+002 1.15449699e+002 1.25761299e+002 - 1.28409927e+002 1.15470024e+002 1.25792824e+002 1.28457138e+002 - 1.15477455e+002 1.25805099e+002 1.28494827e+002 1.15470810e+002 - 1.25810844e+002 1.28512268e+002 1.15482147e+002 1.25807335e+002 - 1.28540375e+002 1.15492638e+002 1.25836609e+002 1.28576431e+002 - 1.15491066e+002 1.25829918e+002 1.28610687e+002 1.15469322e+002 - 1.25830925e+002 1.28612991e+002 1.15483421e+002 1.25833138e+002 - 1.28643372e+002 1.15487656e+002 1.25849037e+002 1.28670242e+002 - 1.15501907e+002 1.25856354e+002 1.28707947e+002 1.15507278e+002 - 1.25877655e+002 1.28740265e+002 1.15513336e+002 1.25876610e+002 - 1.28773041e+002 1.15477814e+002 1.25849159e+002 1.28755829e+002 - 1.15502708e+002 1.25874458e+002 1.28810287e+002 1.15518219e+002 - 1.25902596e+002 1.28852463e+002 1.15536102e+002 1.25902382e+002 - 1.28896805e+002 1.15543556e+002 1.25916794e+002 1.28923477e+002 - 1.15536674e+002 1.25916145e+002 1.28948578e+002 1.15521729e+002 - 1.25920105e+002 1.28951019e+002 1.15544754e+002 1.25930511e+002 - 1.28986481e+002 1.15546379e+002 1.25945480e+002 1.29006775e+002 - 1.15569695e+002 1.25970787e+002 1.29064758e+002 1.15561623e+002 - 1.25983398e+002 1.29080719e+002 1.15571243e+002 1.25983376e+002 - 1.29107681e+002 1.15572632e+002 1.26000099e+002 1.29128326e+002 - 1.15588562e+002 1.26006943e+002 1.29168015e+002 1.15568710e+002 - 1.26010376e+002 1.29172775e+002 1.15586914e+002 1.26037735e+002 - 1.29219727e+002 1.15598694e+002 1.26059029e+002 1.29245270e+002 - 1.15650558e+002 1.26098984e+002 1.29310257e+002 1.15616249e+002 - 1.26082611e+002 1.29295685e+002 1.15628403e+002 1.26070496e+002 - 1.29316299e+002 1.15595985e+002 1.26051163e+002 1.29309647e+002 - 1.15589729e+002 1.26042969e+002 1.29317612e+002 1.15580086e+002 - 1.26053650e+002 1.29329422e+002 1.15596603e+002 1.26064499e+002 - 1.29358170e+002 1.15613892e+002 1.26088318e+002 1.29382919e+002 - 1.15607735e+002 1.26083199e+002 1.29400497e+002 1.15575005e+002 - 1.26069130e+002 1.29379288e+002 1.15582909e+002 1.26063148e+002 - 1.29395569e+002 1.15596054e+002 1.26081688e+002 1.29411774e+002 - 1.15606163e+002 1.26077538e+002 1.29426743e+002 1.15617516e+002 - 1.26102478e+002 1.29444778e+002 1.15645126e+002 1.26128593e+002 - 1.29482025e+002 1.15634506e+002 1.26132523e+002 1.29479492e+002 - 1.15624229e+002 1.26116890e+002 1.29474716e+002 1.15612770e+002 - 1.26115601e+002 1.29475266e+002 1.15632401e+002 1.26112816e+002 - 1.29497940e+002 1.15638634e+002 1.26132729e+002 1.29509415e+002 - 1.15657753e+002 1.26155434e+002 1.29531754e+002 1.15650871e+002 - 1.26164345e+002 1.29527267e+002 1.15651657e+002 1.26152832e+002 - 1.29531097e+002 1.15655617e+002 1.26161148e+002 1.29530502e+002 - 1.15658287e+002 1.26154655e+002 1.29532471e+002 1.15641525e+002 - 1.26158516e+002 1.29523270e+002 1.15635834e+002 1.26142395e+002 - 1.29515457e+002 1.15634384e+002 1.26150375e+002 1.29513062e+002 - 1.15650581e+002 1.26152107e+002 1.29523422e+002 1.15619446e+002 - 1.26126228e+002 1.29492432e+002 1.15597595e+002 1.26105011e+002 - 1.29471786e+002 1.15604340e+002 1.26117302e+002 1.29471558e+002 - 1.15594307e+002 1.26097931e+002 1.29453278e+002 1.15566956e+002 - 1.26075668e+002 1.29423920e+002 1.15605103e+002 1.26078964e+002 - 1.29441513e+002 1.15591621e+002 1.26066498e+002 1.29412766e+002 - 1.15579086e+002 1.26044029e+002 1.29380768e+002 1.15585945e+002 - 1.26067245e+002 1.29378342e+002 1.15608368e+002 1.26075554e+002 - 1.29393921e+002 1.15650261e+002 1.26126579e+002 1.29420609e+002 - 1.15650192e+002 1.26117699e+002 1.29395508e+002 1.15622246e+002 - 1.26105476e+002 1.29364746e+002 1.15629524e+002 1.26094360e+002 - 1.29356140e+002 1.15617500e+002 1.26090988e+002 1.29330750e+002 - 1.15617516e+002 1.26072769e+002 1.29317764e+002 1.15624382e+002 - 1.26089241e+002 1.29318405e+002 1.15625015e+002 1.26079910e+002 - 1.29297318e+002 1.15613152e+002 1.26066238e+002 1.29262695e+002 - 1.15606049e+002 1.26038727e+002 1.29231125e+002 1.15598717e+002 - 1.26036476e+002 1.29211090e+002 1.15639809e+002 1.26045815e+002 - 1.29215332e+002 1.15641991e+002 1.26052597e+002 1.29195328e+002 - 1.15633049e+002 1.26029617e+002 1.29158936e+002 1.15594009e+002 - 1.25996109e+002 1.29098053e+002 1.15600990e+002 1.25987259e+002 - 1.29080490e+002 1.15600418e+002 1.25987198e+002 1.29053680e+002 - 1.15589661e+002 1.25970749e+002 1.29015137e+002 1.15569382e+002 - 1.25971375e+002 1.28979767e+002 1.15570908e+002 1.25950905e+002 - 1.28965073e+002 1.15542458e+002 1.25931923e+002 1.28920776e+002 - 1.15512421e+002 1.25884712e+002 1.28871719e+002 1.15488319e+002 - 1.25873589e+002 1.28824677e+002 1.15500435e+002 1.25876968e+002 - 1.28818085e+002 1.15500069e+002 1.25886711e+002 1.28795303e+002 - 1.15504417e+002 1.25877136e+002 1.28767258e+002 1.15482185e+002 - 1.25861198e+002 1.28728851e+002 1.15513771e+002 1.25859612e+002 - 1.28723694e+002 1.15511887e+002 1.25862984e+002 1.28692078e+002 - 1.15510361e+002 1.25846489e+002 1.28666702e+002 1.15475716e+002 - 1.25830528e+002 1.28611404e+002 1.15466179e+002 1.25804222e+002 - 1.28578827e+002 1.15481888e+002 1.25823311e+002 1.28574112e+002 - 1.15458885e+002 1.25782417e+002 1.28514435e+002 1.15431198e+002 - 1.25764374e+002 1.28469437e+002 1.15441025e+002 1.25757271e+002 - 1.28462082e+002 1.15456207e+002 1.25779221e+002 1.28454651e+002 - 1.15448517e+002 1.25751923e+002 1.28416199e+002 1.15410751e+002 - 1.25722534e+002 1.28351074e+002 1.15415550e+002 1.25713074e+002 - 1.28330841e+002 1.15402481e+002 1.25708626e+002 1.28291763e+002 - 1.15400101e+002 1.25687141e+002 1.28261917e+002 1.15374069e+002 - 1.25665405e+002 1.28211365e+002 1.15394775e+002 1.25661331e+002 - 1.28200180e+002 1.15406868e+002 1.25678802e+002 1.28180191e+002 - 1.15387894e+002 1.25650543e+002 1.28133743e+002 1.15353050e+002 - 1.25633659e+002 1.28081329e+002 1.15364609e+002 1.25623016e+002 - 1.28062531e+002 1.15351318e+002 1.25611160e+002 1.28020340e+002 - 1.15329262e+002 1.25573189e+002 1.27949944e+002 1.15321060e+002 - 1.25575798e+002 1.27920761e+002 1.15321472e+002 1.25550980e+002 - 1.27897232e+002 1.15318176e+002 1.25548805e+002 1.27867683e+002 - 1.15319122e+002 1.25524719e+002 1.27835289e+002 1.15298630e+002 - 1.25511688e+002 1.27788216e+002 1.15302902e+002 1.25500580e+002 - 1.27759453e+002 1.15302612e+002 1.25503021e+002 1.27734726e+002 - 1.15275589e+002 1.25463684e+002 1.27673271e+002 1.15255867e+002 - 1.25447464e+002 1.27627426e+002 1.15284393e+002 1.25431816e+002 - 1.27602249e+002 1.15283394e+002 1.25436386e+002 1.27567879e+002 - 1.15268494e+002 1.25401390e+002 1.27510979e+002 1.15231339e+002 - 1.25378639e+002 1.27450874e+002 1.15225182e+002 1.25353088e+002 - 1.27416168e+002 1.15226280e+002 1.25349739e+002 1.27374672e+002 - 1.15238792e+002 1.25327461e+002 1.27319893e+002 1.15228645e+002 - 1.25328056e+002 1.27268387e+002 1.15193024e+002 1.25268112e+002 - 1.27207573e+002 1.15167870e+002 1.25243500e+002 1.27145790e+002 - 1.15168900e+002 1.25214554e+002 1.27104164e+002 1.15137154e+002 - 1.25187737e+002 1.27048439e+002 1.15108505e+002 1.25142731e+002 - 1.26979942e+002 1.15098114e+002 1.25128220e+002 1.26927887e+002 - 1.15075554e+002 1.25074615e+002 1.26865211e+002 1.15054199e+002 - 1.25059029e+002 1.26822083e+002 1.15060234e+002 1.25016777e+002 - 1.26772591e+002 1.15041939e+002 1.25007835e+002 1.26722000e+002 - 1.15042297e+002 1.24983894e+002 1.26679138e+002 1.14983467e+002 - 1.24937431e+002 1.26595131e+002 1.14966003e+002 1.24897789e+002 - 1.26546722e+002 1.14959099e+002 1.24890419e+002 1.26506088e+002 - 1.14963585e+002 1.24852783e+002 1.26446136e+002 1.14944641e+002 - 1.24837044e+002 1.26396111e+002 1.14937233e+002 1.24797455e+002 - 1.26342697e+002 1.14907608e+002 1.24768066e+002 1.26284111e+002 - 1.14906273e+002 1.24727516e+002 1.26227211e+002 1.14860428e+002 - 1.24682396e+002 1.26146240e+002 1.14838432e+002 1.24632103e+002 - 1.26074532e+002 1.14809578e+002 1.24598274e+002 1.26008141e+002 - 1.14768013e+002 1.24517670e+002 1.25920708e+002 1.14751152e+002 - 1.24500725e+002 1.25875908e+002 1.14757957e+002 1.24458038e+002 - 1.25825768e+002 1.14725349e+002 1.24418098e+002 1.25760941e+002 - 1.14698540e+002 1.24356323e+002 1.25690918e+002 1.14646347e+002 - 1.24302071e+002 1.25607307e+002 1.14570290e+002 1.24182869e+002 - 1.25497955e+002 1.14420120e+002 1.24032280e+002 1.25315231e+002 - 1.14337906e+002 1.23990654e+002 1.25336464e+002 1.14466377e+002 - 1.24157028e+002 1.25500862e+002 1.14591232e+002 1.24297386e+002 - 1.25663040e+002 1.14640327e+002 1.24378922e+002 1.25746368e+002 - 1.14686684e+002 1.24439919e+002 1.25839020e+002 1.14697075e+002 - 1.24489449e+002 1.25897491e+002 1.14734055e+002 1.24543228e+002 - 1.25986885e+002 1.14734734e+002 1.24572601e+002 1.26022041e+002 - 1.14766754e+002 1.24616249e+002 1.26102600e+002 1.14740173e+002 - 1.24617981e+002 1.26113953e+002 1.14782173e+002 1.24657768e+002 - 1.26199287e+002 1.14785072e+002 1.24688805e+002 1.26236504e+002 - 1.14803307e+002 1.24720535e+002 1.26293388e+002 1.14809372e+002 - 1.24756844e+002 1.26330429e+002 1.14840057e+002 1.24786095e+002 - 1.26393578e+002 1.14868835e+002 1.24846413e+002 1.26455544e+002 - 1.14884430e+002 1.24885612e+002 1.26542686e+002 1.14871231e+002 - 1.24909126e+002 1.26576973e+002 1.14921295e+002 1.24946022e+002 - 1.26651176e+002 1.14931549e+002 1.24980736e+002 1.26688271e+002 - 1.14956291e+002 1.25008240e+002 1.26753761e+002 1.14954926e+002 - 1.25020668e+002 1.26782646e+002 1.14966270e+002 1.25044754e+002 - 1.26840355e+002 1.14954964e+002 1.25054443e+002 1.26860847e+002 - 1.14996368e+002 1.25095009e+002 1.26944801e+002 1.14985550e+002 - 1.25103477e+002 1.26964081e+002 1.14994865e+002 1.25096130e+002 - 1.27018532e+002 1.15014336e+002 1.25133896e+002 1.27070580e+002 - 1.15045761e+002 1.25180229e+002 1.27146149e+002 1.15052902e+002 - 1.25205208e+002 1.27191734e+002 1.15058548e+002 1.25206955e+002 - 1.27225807e+002 1.15071526e+002 1.25239677e+002 1.27267242e+002 - 1.15102730e+002 1.25286781e+002 1.27354362e+002 1.15087433e+002 - 1.25298874e+002 1.27382126e+002 1.15118202e+002 1.25329407e+002 - 1.27447739e+002 1.15136917e+002 1.25361031e+002 1.27487701e+002 - 1.15147438e+002 1.25365425e+002 1.27538208e+002 1.15150879e+002 - 1.25389717e+002 1.27575073e+002 1.15174782e+002 1.25415352e+002 - 1.27644211e+002 1.15168999e+002 1.25425224e+002 1.27663895e+002 - 1.15191193e+002 1.25438530e+002 1.27718666e+002 1.15183456e+002 - 1.25446075e+002 1.27735649e+002 1.15192078e+002 1.25440582e+002 - 1.27783859e+002 1.15191017e+002 1.25450264e+002 1.27814278e+002 - 1.15202713e+002 1.25467606e+002 1.27855446e+002 1.15213043e+002 - 1.25495972e+002 1.27893784e+002 1.15248886e+002 1.25517685e+002 - 1.27945732e+002 1.15247360e+002 1.25534248e+002 1.27967026e+002 - 1.15245216e+002 1.25544937e+002 1.28020691e+002 1.15260048e+002 - 1.25589409e+002 1.28079224e+002 1.15303688e+002 1.25629112e+002 - 1.28152390e+002 1.15303139e+002 1.25646721e+002 1.28176682e+002 - 1.15328087e+002 1.25658592e+002 1.28224319e+002 1.15306931e+002 - 1.25660217e+002 1.28236526e+002 1.15297195e+002 1.25645592e+002 - 1.28265625e+002 1.15281509e+002 1.25651878e+002 1.28274017e+002 - 1.15317375e+002 1.25683586e+002 1.28341431e+002 1.15301941e+002 - 1.25685074e+002 1.28355362e+002 1.15327736e+002 1.25696800e+002 - 1.28415649e+002 1.15336441e+002 1.25714241e+002 1.28445374e+002 - 1.15358063e+002 1.25738525e+002 1.28502533e+002 1.15361107e+002 - 1.25756218e+002 1.28525772e+002 1.15366241e+002 1.25752586e+002 - 1.28557922e+002 1.15363403e+002 1.25763824e+002 1.28573212e+002 - 1.15361961e+002 1.25751076e+002 1.28608078e+002 1.15346436e+002 - 1.25754959e+002 1.28620621e+002 1.15348259e+002 1.25747665e+002 - 1.28642303e+002 1.15346687e+002 1.25764435e+002 1.28663040e+002 - 1.15369453e+002 1.25777252e+002 1.28712845e+002 1.15374832e+002 - 1.25802078e+002 1.28742874e+002 1.15379456e+002 1.25802017e+002 - 1.28773499e+002 1.15363472e+002 1.25796196e+002 1.28777237e+002 - 1.15386414e+002 1.25813789e+002 1.28826889e+002 1.15377808e+002 - 1.25820900e+002 1.28844360e+002 1.15411774e+002 1.25830177e+002 - 1.28903870e+002 1.15404198e+002 1.25836731e+002 1.28924210e+002 - 1.15394867e+002 1.25828415e+002 1.28933228e+002 1.15385658e+002 - 1.25840492e+002 1.28947525e+002 1.15401062e+002 1.25841278e+002 - 1.28975113e+002 1.15412552e+002 1.25867889e+002 1.29001907e+002 - 1.15428535e+002 1.25889313e+002 1.29059586e+002 1.15397079e+002 - 1.25877686e+002 1.29057053e+002 1.15420418e+002 1.25887253e+002 - 1.29095230e+002 1.15414452e+002 1.25899254e+002 1.29110565e+002 - 1.15444893e+002 1.25916710e+002 1.29159225e+002 1.15418694e+002 - 1.25914375e+002 1.29154892e+002 1.15443649e+002 1.25944901e+002 - 1.29203720e+002 1.15456276e+002 1.25968498e+002 1.29227905e+002 - 1.15499893e+002 1.26008476e+002 1.29291077e+002 1.15467987e+002 - 1.25990471e+002 1.29274948e+002 1.15487083e+002 1.25984947e+002 - 1.29309464e+002 1.15466049e+002 1.25981888e+002 1.29312271e+002 - 1.15462395e+002 1.25971909e+002 1.29326096e+002 1.15433319e+002 - 1.25964844e+002 1.29319229e+002 1.15459808e+002 1.25986633e+002 - 1.29356812e+002 1.15462044e+002 1.26002754e+002 1.29370605e+002 - 1.15451836e+002 1.25988129e+002 1.29384048e+002 1.15436913e+002 - 1.25995697e+002 1.29387421e+002 1.15451492e+002 1.25985535e+002 - 1.29403656e+002 1.15455788e+002 1.26005592e+002 1.29413315e+002 - 1.15485474e+002 1.26017845e+002 1.29447891e+002 1.15488258e+002 - 1.26028343e+002 1.29454849e+002 1.15511131e+002 1.26048576e+002 - 1.29489288e+002 1.15503555e+002 1.26054298e+002 1.29486969e+002 - 1.15487907e+002 1.26035751e+002 1.29478424e+002 1.15480659e+002 - 1.26040833e+002 1.29483429e+002 1.15499619e+002 1.26040848e+002 - 1.29503540e+002 1.15495308e+002 1.26052437e+002 1.29504303e+002 - 1.15513992e+002 1.26067261e+002 1.29527496e+002 1.15510323e+002 - 1.26085182e+002 1.29531448e+002 1.15508926e+002 1.26072655e+002 - 1.29529053e+002 1.15514656e+002 1.26078697e+002 1.29524078e+002 - 1.15525787e+002 1.26076065e+002 1.29532776e+002 1.15493988e+002 - 1.26069931e+002 1.29512268e+002 1.15487831e+002 1.26051140e+002 - 1.29502106e+002 1.15470459e+002 1.26042419e+002 1.29484161e+002 - 1.15480522e+002 1.26031265e+002 1.29488541e+002 1.15461906e+002 - 1.26030167e+002 1.29475601e+002 1.15456436e+002 1.26016396e+002 - 1.29465469e+002 1.15460419e+002 1.26030655e+002 1.29463501e+002 - 1.15468651e+002 1.26023750e+002 1.29465805e+002 1.15433281e+002 - 1.26000397e+002 1.29427765e+002 1.15451385e+002 1.25986237e+002 - 1.29429321e+002 1.15434570e+002 1.25978218e+002 1.29398102e+002 - 1.15434708e+002 1.25962532e+002 1.29377045e+002 1.15439774e+002 - 1.25977364e+002 1.29375320e+002 1.15469856e+002 1.25996147e+002 - 1.29395172e+002 1.15490089e+002 1.26026726e+002 1.29400040e+002 - 1.15498222e+002 1.26027222e+002 1.29384308e+002 1.15456322e+002 - 1.25997910e+002 1.29340637e+002 1.15473305e+002 1.25989922e+002 - 1.29336258e+002 1.15468674e+002 1.25999969e+002 1.29322449e+002 - 1.15465302e+002 1.25979324e+002 1.29307480e+002 1.15452866e+002 - 1.25974159e+002 1.29281998e+002 1.15471992e+002 1.25978577e+002 - 1.29285492e+002 1.15473541e+002 1.25984734e+002 1.29264496e+002 - 1.15458206e+002 1.25949753e+002 1.29230026e+002 1.15458206e+002 - 1.25955597e+002 1.29207565e+002 1.15482788e+002 1.25939941e+002 - 1.29196747e+002 1.15504616e+002 1.25973335e+002 1.29195526e+002 - 1.15511658e+002 1.25957458e+002 1.29168579e+002 1.15453087e+002 - 1.25917549e+002 1.29091003e+002 1.15458969e+002 1.25901260e+002 - 1.29075668e+002 1.15466652e+002 1.25911476e+002 1.29050385e+002 - 1.15450264e+002 1.25884941e+002 1.29010605e+002 1.15439438e+002 - 1.25891098e+002 1.28986786e+002 1.15443024e+002 1.25874763e+002 - 1.28975479e+002 1.15406471e+002 1.25854340e+002 1.28922638e+002 - 1.15382393e+002 1.25811241e+002 1.28877594e+002 1.15349594e+002 - 1.25790840e+002 1.28826920e+002 1.15379753e+002 1.25810806e+002 - 1.28830627e+002 1.15379578e+002 1.25820763e+002 1.28811981e+002 - 1.15382179e+002 1.25806839e+002 1.28784012e+002 1.15366455e+002 - 1.25794060e+002 1.28742554e+002 1.15389282e+002 1.25782730e+002 - 1.28719528e+002 1.15391022e+002 1.25793083e+002 1.28698044e+002 - 1.15391747e+002 1.25791885e+002 1.28675171e+002 1.15353653e+002 - 1.25762360e+002 1.28612610e+002 1.15323868e+002 1.25711510e+002 - 1.28567047e+002 1.15334999e+002 1.25727997e+002 1.28548111e+002 - 1.15333649e+002 1.25704918e+002 1.28507065e+002 1.15304787e+002 - 1.25692574e+002 1.28464233e+002 1.15327354e+002 1.25691780e+002 - 1.28464310e+002 1.15343262e+002 1.25712433e+002 1.28458923e+002 - 1.15338417e+002 1.25693642e+002 1.28427933e+002 1.15301399e+002 - 1.25667671e+002 1.28367279e+002 1.15305573e+002 1.25659584e+002 - 1.28343994e+002 1.15284294e+002 1.25640259e+002 1.28298340e+002 - 1.15277138e+002 1.25616875e+002 1.28260529e+002 1.15260101e+002 - 1.25601433e+002 1.28217163e+002 1.15268166e+002 1.25587532e+002 - 1.28196442e+002 1.15270302e+002 1.25601112e+002 1.28173111e+002 - 1.15265038e+002 1.25588509e+002 1.28134308e+002 1.15235664e+002 - 1.25575897e+002 1.28082458e+002 1.15235672e+002 1.25551231e+002 - 1.28060333e+002 1.15240372e+002 1.25555527e+002 1.28023621e+002 - 1.15235214e+002 1.25528687e+002 1.27979156e+002 1.15207062e+002 - 1.25514717e+002 1.27929077e+002 1.15176826e+002 1.25460686e+002 - 1.27870712e+002 1.15183380e+002 1.25479507e+002 1.27858513e+002 - 1.15198395e+002 1.25465805e+002 1.27844017e+002 1.15174271e+002 - 1.25443077e+002 1.27789719e+002 1.15163849e+002 1.25421547e+002 - 1.27746956e+002 1.15169495e+002 1.25433548e+002 1.27721413e+002 - 1.15155724e+002 1.25396622e+002 1.27671936e+002 1.15123474e+002 - 1.25372246e+002 1.27617287e+002 1.15137909e+002 1.25344742e+002 - 1.27574471e+002 1.15157669e+002 1.25368370e+002 1.27564430e+002 - 1.15156906e+002 1.25344322e+002 1.27516853e+002 1.15130356e+002 - 1.25326149e+002 1.27464813e+002 1.15132889e+002 1.25308777e+002 - 1.27437073e+002 1.15125824e+002 1.25296310e+002 1.27383270e+002 - 1.15128059e+002 1.25272583e+002 1.27324203e+002 1.15122688e+002 - 1.25275703e+002 1.27281929e+002 1.15094810e+002 1.25218849e+002 - 1.27222847e+002 1.15058083e+002 1.25187950e+002 1.27160934e+002 - 1.15051430e+002 1.25154930e+002 1.27111343e+002 1.15027901e+002 - 1.25131004e+002 1.27054710e+002 1.14993042e+002 1.25080376e+002 - 1.26980469e+002 1.14967659e+002 1.25052574e+002 1.26910789e+002 - 1.14956924e+002 1.25017494e+002 1.26866631e+002 1.14937943e+002 - 1.24994125e+002 1.26819633e+002 1.14943626e+002 1.24964325e+002 - 1.26773018e+002 1.14924309e+002 1.24945656e+002 1.26720062e+002 - 1.14937485e+002 1.24936119e+002 1.26686218e+002 1.14900963e+002 - 1.24908745e+002 1.26625175e+002 1.14886841e+002 1.24873665e+002 - 1.26578796e+002 1.14891747e+002 1.24873138e+002 1.26541428e+002 - 1.14886429e+002 1.24826019e+002 1.26466545e+002 1.14857079e+002 - 1.24803490e+002 1.26415146e+002 1.14859055e+002 1.24777100e+002 - 1.26376343e+002 1.14841530e+002 1.24758492e+002 1.26323463e+002 - 1.14824097e+002 1.24707802e+002 1.26257736e+002 1.14801018e+002 - 1.24682472e+002 1.26203514e+002 1.14774292e+002 1.24628159e+002 - 1.26127083e+002 1.14756599e+002 1.24593353e+002 1.26061363e+002 - 1.14718445e+002 1.24522591e+002 1.25979774e+002 1.14697777e+002 - 1.24500938e+002 1.25927727e+002 1.14711136e+002 1.24464958e+002 - 1.25891182e+002 1.14683289e+002 1.24433678e+002 1.25829666e+002 - 1.14649834e+002 1.24354347e+002 1.25749496e+002 1.14590836e+002 - 1.24295448e+002 1.25661682e+002 1.14516418e+002 1.24180145e+002 - 1.25548706e+002 1.14373322e+002 1.24032265e+002 1.25370720e+002 - 1.14276733e+002 1.23976944e+002 1.25358459e+002 1.14381454e+002 - 1.24125893e+002 1.25506134e+002 1.14505615e+002 1.24260147e+002 - 1.25663994e+002 1.14560242e+002 1.24350342e+002 1.25757507e+002 - 1.14599205e+002 1.24404724e+002 1.25841713e+002 1.14594879e+002 - 1.24437920e+002 1.25886299e+002 1.14635468e+002 1.24493904e+002 - 1.25975266e+002 1.14640953e+002 1.24528641e+002 1.26019051e+002 - 1.14666733e+002 1.24564445e+002 1.26084061e+002 1.14652184e+002 - 1.24581726e+002 1.26114296e+002 1.14688271e+002 1.24620132e+002 - 1.26194695e+002 1.14695694e+002 1.24655357e+002 1.26238457e+002 - 1.14726303e+002 1.24690018e+002 1.26303093e+002 1.14729019e+002 - 1.24720985e+002 1.26335014e+002 1.14763283e+002 1.24761765e+002 - 1.26399223e+002 1.14789154e+002 1.24812157e+002 1.26470230e+002 - 1.14792931e+002 1.24840607e+002 1.26542862e+002 1.14792114e+002 - 1.24870766e+002 1.26583092e+002 1.14832153e+002 1.24909065e+002 - 1.26653976e+002 1.14844879e+002 1.24941574e+002 1.26690926e+002 - 1.14862038e+002 1.24957886e+002 1.26745979e+002 1.14834618e+002 - 1.24959145e+002 1.26761238e+002 1.14849998e+002 1.24978188e+002 - 1.26818535e+002 1.14857132e+002 1.25005638e+002 1.26851761e+002 - 1.14898933e+002 1.25048302e+002 1.26940552e+002 1.14893486e+002 - 1.25060944e+002 1.26966850e+002 1.14896942e+002 1.25048401e+002 - 1.27012558e+002 1.14917580e+002 1.25087242e+002 1.27067947e+002 - 1.14949722e+002 1.25128975e+002 1.27146538e+002 1.14932465e+002 - 1.25134895e+002 1.27161415e+002 1.14942543e+002 1.25141068e+002 - 1.27205963e+002 1.14967766e+002 1.25191711e+002 1.27272858e+002 - 1.15000023e+002 1.25230232e+002 1.27349579e+002 1.14972916e+002 - 1.25230560e+002 1.27366188e+002 1.14997093e+002 1.25259346e+002 - 1.27425194e+002 1.15021416e+002 1.25297386e+002 1.27480721e+002 - 1.15024117e+002 1.25295860e+002 1.27521721e+002 1.15031532e+002 - 1.25324539e+002 1.27564819e+002 1.15066544e+002 1.25361076e+002 - 1.27640137e+002 1.15071060e+002 1.25377640e+002 1.27668266e+002 - 1.15071114e+002 1.25374893e+002 1.27701233e+002 1.15058807e+002 - 1.25372910e+002 1.27723335e+002 1.15066963e+002 1.25371681e+002 - 1.27762856e+002 1.15064766e+002 1.25380089e+002 1.27789490e+002 - 1.15073685e+002 1.25387917e+002 1.27824318e+002 1.15076920e+002 - 1.25404900e+002 1.27852646e+002 1.15102997e+002 1.25423698e+002 - 1.27897652e+002 1.15112259e+002 1.25450508e+002 1.27940430e+002 - 1.15134712e+002 1.25489113e+002 1.28017990e+002 1.15141983e+002 - 1.25515884e+002 1.28062912e+002 1.15174179e+002 1.25548531e+002 - 1.28123688e+002 1.15176552e+002 1.25566444e+002 1.28154343e+002 - 1.15189651e+002 1.25573997e+002 1.28201797e+002 1.15182137e+002 - 1.25581589e+002 1.28225098e+002 1.15175339e+002 1.25575722e+002 - 1.28247910e+002 1.15174843e+002 1.25592957e+002 1.28274750e+002 - 1.15184395e+002 1.25600838e+002 1.28319397e+002 1.15172745e+002 - 1.25604019e+002 1.28339935e+002 1.15212006e+002 1.25626938e+002 - 1.28405609e+002 1.15224808e+002 1.25647415e+002 1.28448471e+002 - 1.15241692e+002 1.25669960e+002 1.28493240e+002 1.15251930e+002 - 1.25698181e+002 1.28531845e+002 1.15245712e+002 1.25676353e+002 - 1.28541611e+002 1.15214645e+002 1.25661308e+002 1.28540741e+002 - 1.15203804e+002 1.25646469e+002 1.28564774e+002 1.15203316e+002 - 1.25665367e+002 1.28589981e+002 1.15220871e+002 1.25675720e+002 - 1.28624985e+002 1.15229515e+002 1.25697075e+002 1.28660278e+002 - 1.15250160e+002 1.25704689e+002 1.28705399e+002 1.15259117e+002 - 1.25733528e+002 1.28739380e+002 1.15272629e+002 1.25741295e+002 - 1.28777512e+002 1.15257065e+002 1.25740356e+002 1.28786194e+002 - 1.15271179e+002 1.25750648e+002 1.28826340e+002 1.15254280e+002 - 1.25744202e+002 1.28833679e+002 1.15276321e+002 1.25752289e+002 - 1.28882996e+002 1.15290260e+002 1.25777412e+002 1.28918106e+002 - 1.15271454e+002 1.25759293e+002 1.28924072e+002 1.15243439e+002 - 1.25748787e+002 1.28918457e+002 1.15261200e+002 1.25753937e+002 - 1.28949738e+002 1.15268105e+002 1.25776550e+002 1.28980560e+002 - 1.15280083e+002 1.25788216e+002 1.29028534e+002 1.15259842e+002 - 1.25795746e+002 1.29037720e+002 1.15285912e+002 1.25808907e+002 - 1.29080780e+002 1.15290962e+002 1.25828789e+002 1.29105423e+002 - 1.15306198e+002 1.25829300e+002 1.29137268e+002 1.15291008e+002 - 1.25829529e+002 1.29138626e+002 1.15324203e+002 1.25861633e+002 - 1.29192429e+002 1.15333061e+002 1.25890625e+002 1.29214340e+002 - 1.15376205e+002 1.25929176e+002 1.29279114e+002 1.15333313e+002 - 1.25898277e+002 1.29258560e+002 1.15342972e+002 1.25889771e+002 - 1.29283493e+002 1.15348297e+002 1.25912704e+002 1.29310455e+002 - 1.15325317e+002 1.25893890e+002 1.29311096e+002 1.15291824e+002 - 1.25876930e+002 1.29298508e+002 1.15321922e+002 1.25904381e+002 - 1.29342117e+002 1.15319824e+002 1.25918533e+002 1.29358322e+002 - 1.15329163e+002 1.25919510e+002 1.29381882e+002 1.15324196e+002 - 1.25933441e+002 1.29393158e+002 1.15338219e+002 1.25928963e+002 - 1.29412964e+002 1.15336708e+002 1.25939201e+002 1.29418274e+002 - 1.15357849e+002 1.25941139e+002 1.29442139e+002 1.15358437e+002 - 1.25958611e+002 1.29455215e+002 1.15374573e+002 1.25967827e+002 - 1.29476639e+002 1.15355064e+002 1.25960693e+002 1.29464920e+002 - 1.15349854e+002 1.25947205e+002 1.29464920e+002 1.15343628e+002 - 1.25953888e+002 1.29463928e+002 1.15369789e+002 1.25963730e+002 - 1.29495285e+002 1.15348160e+002 1.25956825e+002 1.29480728e+002 - 1.15348244e+002 1.25957352e+002 1.29482559e+002 1.15354179e+002 - 1.25973648e+002 1.29490067e+002 1.15369476e+002 1.25982315e+002 - 1.29506134e+002 1.15374908e+002 1.25990303e+002 1.29507584e+002 - 1.15382027e+002 1.25989792e+002 1.29517487e+002 1.15354279e+002 - 1.25982666e+002 1.29495865e+002 1.15349922e+002 1.25966537e+002 - 1.29492371e+002 1.15342903e+002 1.25970238e+002 1.29490036e+002 - 1.15350784e+002 1.25960831e+002 1.29486694e+002 1.15341179e+002 - 1.25956200e+002 1.29472946e+002 1.15326912e+002 1.25929047e+002 - 1.29458344e+002 1.15319336e+002 1.25932022e+002 1.29446671e+002 - 1.15322960e+002 1.25924591e+002 1.29437897e+002 1.15287018e+002 - 1.25903625e+002 1.29403580e+002 1.15311180e+002 1.25899734e+002 - 1.29412537e+002 1.15310646e+002 1.25905342e+002 1.29404724e+002 - 1.15307358e+002 1.25894028e+002 1.29384888e+002 1.15299515e+002 - 1.25896240e+002 1.29371445e+002 1.15335396e+002 1.25919746e+002 - 1.29394226e+002 1.15339844e+002 1.25934792e+002 1.29376572e+002 - 1.15355278e+002 1.25939430e+002 1.29371750e+002 1.15321869e+002 - 1.25922554e+002 1.29333069e+002 1.15336983e+002 1.25914001e+002 - 1.29328400e+002 1.15332237e+002 1.25914398e+002 1.29313644e+002 - 1.15321854e+002 1.25886528e+002 1.29284515e+002 1.15315651e+002 - 1.25887184e+002 1.29263702e+002 1.15320511e+002 1.25872986e+002 - 1.29252350e+002 1.15319160e+002 1.25878311e+002 1.29234116e+002 - 1.15319107e+002 1.25859848e+002 1.29205917e+002 1.15322456e+002 - 1.25863220e+002 1.29186447e+002 1.15347733e+002 1.25859566e+002 - 1.29174835e+002 1.15362511e+002 1.25875526e+002 1.29174911e+002 - 1.15348396e+002 1.25851471e+002 1.29125916e+002 1.15305183e+002 - 1.25820862e+002 1.29067474e+002 1.15322418e+002 1.25815094e+002 - 1.29050278e+002 1.15320847e+002 1.25818047e+002 1.29027390e+002 - 1.15312706e+002 1.25802063e+002 1.28989029e+002 1.15295891e+002 - 1.25800354e+002 1.28963333e+002 1.15286537e+002 1.25772827e+002 - 1.28934250e+002 1.15256752e+002 1.25754471e+002 1.28894257e+002 - 1.15250908e+002 1.25729141e+002 1.28861008e+002 1.15224968e+002 - 1.25712959e+002 1.28814438e+002 1.15260223e+002 1.25743965e+002 - 1.28827072e+002 1.15273216e+002 1.25762024e+002 1.28816406e+002 - 1.15250282e+002 1.25723801e+002 1.28765900e+002 1.15227028e+002 - 1.25707901e+002 1.28721573e+002 1.15247597e+002 1.25692230e+002 - 1.28700989e+002 1.15243752e+002 1.25698021e+002 1.28666946e+002 - 1.15268204e+002 1.25708450e+002 1.28663193e+002 1.15231354e+002 - 1.25684296e+002 1.28603867e+002 1.15222557e+002 1.25661858e+002 - 1.28571396e+002 1.15216431e+002 1.25655785e+002 1.28538742e+002 - 1.15208847e+002 1.25631706e+002 1.28488663e+002 1.15186493e+002 - 1.25620766e+002 1.28453827e+002 1.15192474e+002 1.25605530e+002 - 1.28438278e+002 1.15193672e+002 1.25615585e+002 1.28421890e+002 - 1.15188805e+002 1.25593628e+002 1.28389404e+002 1.15177513e+002 - 1.25593796e+002 1.28355835e+002 1.15179138e+002 1.25583374e+002 - 1.28331253e+002 1.15163574e+002 1.25566406e+002 1.28280716e+002 - 1.15146095e+002 1.25532822e+002 1.28232971e+002 1.15148491e+002 - 1.25540291e+002 1.28219711e+002 1.15142982e+002 1.25512688e+002 - 1.28175751e+002 1.15145370e+002 1.25525955e+002 1.28158081e+002 - 1.15145706e+002 1.25508995e+002 1.28121384e+002 1.15122940e+002 - 1.25511177e+002 1.28083267e+002 1.15118790e+002 1.25485718e+002 - 1.28052704e+002 1.15115181e+002 1.25481766e+002 1.28017685e+002 - 1.15124771e+002 1.25471329e+002 1.27975471e+002 1.15104240e+002 - 1.25459511e+002 1.27928261e+002 1.15080841e+002 1.25417587e+002 - 1.27883080e+002 1.15077141e+002 1.25423401e+002 1.27866768e+002 - 1.15091888e+002 1.25409920e+002 1.27848549e+002 1.15062965e+002 - 1.25390411e+002 1.27787704e+002 1.15059372e+002 1.25369797e+002 - 1.27752533e+002 1.15068947e+002 1.25382935e+002 1.27728973e+002 - 1.15035683e+002 1.25332664e+002 1.27658737e+002 1.15010902e+002 - 1.25310799e+002 1.27606491e+002 1.15022133e+002 1.25283585e+002 - 1.27564743e+002 1.15039063e+002 1.25300598e+002 1.27543655e+002 - 1.15062271e+002 1.25299362e+002 1.27523521e+002 1.15036743e+002 - 1.25281830e+002 1.27471802e+002 1.15049171e+002 1.25271088e+002 - 1.27448997e+002 1.15026588e+002 1.25251892e+002 1.27388718e+002 - 1.15011269e+002 1.25205597e+002 1.27312210e+002 1.15006844e+002 - 1.25209679e+002 1.27271347e+002 1.14992661e+002 1.25169182e+002 - 1.27221947e+002 1.14956818e+002 1.25137581e+002 1.27161041e+002 - 1.14946663e+002 1.25101204e+002 1.27103714e+002 1.14912468e+002 - 1.25071457e+002 1.27042809e+002 1.14898567e+002 1.25034538e+002 - 1.26982552e+002 1.14870506e+002 1.25007423e+002 1.26916458e+002 - 1.14861900e+002 1.24972786e+002 1.26869606e+002 1.14828354e+002 - 1.24942635e+002 1.26806908e+002 1.14837013e+002 1.24907280e+002 - 1.26765289e+002 1.14821388e+002 1.24893379e+002 1.26710052e+002 - 1.14822899e+002 1.24871490e+002 1.26667389e+002 1.14784813e+002 - 1.24843018e+002 1.26606384e+002 1.14776955e+002 1.24808868e+002 - 1.26561600e+002 1.14795441e+002 1.24829597e+002 1.26541389e+002 - 1.14783287e+002 1.24776886e+002 1.26466019e+002 1.14769936e+002 - 1.24760773e+002 1.26415184e+002 1.14779099e+002 1.24749786e+002 - 1.26386681e+002 1.14753326e+002 1.24723434e+002 1.26330910e+002 - 1.14732773e+002 1.24669113e+002 1.26265579e+002 1.14723488e+002 - 1.24654602e+002 1.26216774e+002 1.14699921e+002 1.24603096e+002 - 1.26146729e+002 1.14681465e+002 1.24573921e+002 1.26087265e+002 - 1.14653976e+002 1.24511032e+002 1.26009315e+002 1.14620735e+002 - 1.24466599e+002 1.25941696e+002 1.14646889e+002 1.24441620e+002 - 1.25912430e+002 1.14610855e+002 1.24401840e+002 1.25847336e+002 - 1.14588600e+002 1.24341721e+002 1.25778908e+002 1.14534889e+002 - 1.24281654e+002 1.25689819e+002 1.14456970e+002 1.24161263e+002 - 1.25571701e+002 1.14318047e+002 1.24014595e+002 1.25397461e+002 - 1.14196342e+002 1.23974068e+002 1.25390450e+002 1.14300728e+002 - 1.24117638e+002 1.25536423e+002 1.14412598e+002 1.24242508e+002 - 1.25683624e+002 1.14460716e+002 1.24324623e+002 1.25768532e+002 - 1.14486008e+002 1.24364861e+002 1.25844040e+002 1.14487442e+002 - 1.24397621e+002 1.25890350e+002 1.14533691e+002 1.24461975e+002 - 1.25986031e+002 1.14521713e+002 1.24483177e+002 1.26010246e+002 - 1.14558365e+002 1.24535759e+002 1.26091125e+002 1.14555565e+002 - 1.24558037e+002 1.26126945e+002 1.14583931e+002 1.24584053e+002 - 1.26200935e+002 1.14613075e+002 1.24639748e+002 1.26263580e+002 - 1.14633858e+002 1.24667984e+002 1.26327187e+002 1.14637520e+002 - 1.24698174e+002 1.26360542e+002 1.14665543e+002 1.24732803e+002 - 1.26420677e+002 1.14674683e+002 1.24763847e+002 1.26461716e+002 - 1.14703430e+002 1.24812233e+002 1.26561569e+002 1.14671753e+002 - 1.24827904e+002 1.26587662e+002 1.14720894e+002 1.24865967e+002 - 1.26659866e+002 1.14743538e+002 1.24913239e+002 1.26716606e+002 - 1.14750839e+002 1.24919456e+002 1.26757507e+002 1.14738579e+002 - 1.24928535e+002 1.26780472e+002 1.14753212e+002 1.24954674e+002 - 1.26839104e+002 1.14752312e+002 1.24973671e+002 1.26871468e+002 - 1.14784012e+002 1.25001320e+002 1.26943550e+002 1.14762207e+002 - 1.24994316e+002 1.26953087e+002 1.14766815e+002 1.24989883e+002 - 1.26997360e+002 1.14795853e+002 1.25038811e+002 1.27066376e+002 - 1.14838760e+002 1.25086166e+002 1.27150696e+002 1.14813560e+002 - 1.25082695e+002 1.27158302e+002 1.14824524e+002 1.25094170e+002 - 1.27207909e+002 1.14847031e+002 1.25135437e+002 1.27262672e+002 - 1.14855293e+002 1.25150337e+002 1.27330147e+002 1.14820618e+002 - 1.25155655e+002 1.27345642e+002 1.14849960e+002 1.25176048e+002 - 1.27400780e+002 1.14864433e+002 1.25210915e+002 1.27452225e+002 - 1.14882904e+002 1.25229225e+002 1.27511658e+002 1.14894348e+002 - 1.25254311e+002 1.27554016e+002 1.14923759e+002 1.25288132e+002 - 1.27624878e+002 1.14916977e+002 1.25294853e+002 1.27647934e+002 - 1.14942688e+002 1.25316742e+002 1.27700035e+002 1.14936134e+002 - 1.25323204e+002 1.27725838e+002 1.14953407e+002 1.25324364e+002 - 1.27775444e+002 1.14931877e+002 1.25318817e+002 1.27781349e+002 - 1.14945938e+002 1.25322037e+002 1.27825668e+002 1.14944679e+002 - 1.25340401e+002 1.27846100e+002 1.14956131e+002 1.25344391e+002 - 1.27883919e+002 1.14971611e+002 1.25374718e+002 1.27926392e+002 - 1.15003426e+002 1.25420815e+002 1.28017014e+002 1.14997643e+002 - 1.25446548e+002 1.28058502e+002 1.15025787e+002 1.25473267e+002 - 1.28107529e+002 1.15035141e+002 1.25494629e+002 1.28141937e+002 - 1.15037445e+002 1.25492599e+002 1.28174957e+002 1.15042747e+002 - 1.25514015e+002 1.28211639e+002 1.15045563e+002 1.25518524e+002 - 1.28253815e+002 1.15035789e+002 1.25527252e+002 1.28265106e+002 - 1.15049881e+002 1.25541588e+002 1.28318405e+002 1.15053589e+002 - 1.25557228e+002 1.28351517e+002 1.15085907e+002 1.25569687e+002 - 1.28414825e+002 1.15100708e+002 1.25594208e+002 1.28452179e+002 - 1.15116829e+002 1.25615311e+002 1.28504929e+002 1.15108742e+002 - 1.25625626e+002 1.28519730e+002 1.15099800e+002 1.25606842e+002 - 1.28540344e+002 1.15069054e+002 1.25586250e+002 1.28528778e+002 - 1.15065369e+002 1.25579521e+002 1.28560257e+002 1.15051414e+002 - 1.25584778e+002 1.28578018e+002 1.15081001e+002 1.25599075e+002 - 1.28619980e+002 1.15090767e+002 1.25627922e+002 1.28659088e+002 - 1.15110909e+002 1.25641350e+002 1.28706100e+002 1.15120689e+002 - 1.25663765e+002 1.28739273e+002 1.15134003e+002 1.25674004e+002 - 1.28779861e+002 1.15125259e+002 1.25676132e+002 1.28795792e+002 - 1.15136391e+002 1.25683434e+002 1.28831299e+002 1.15117035e+002 - 1.25677917e+002 1.28836090e+002 1.15132156e+002 1.25680000e+002 - 1.28877823e+002 1.15136353e+002 1.25697411e+002 1.28905380e+002 - 1.15115196e+002 1.25675079e+002 1.28909592e+002 1.15104156e+002 - 1.25674309e+002 1.28918259e+002 1.15102684e+002 1.25662788e+002 - 1.28932205e+002 1.15120590e+002 1.25693687e+002 1.28966965e+002 - 1.15131531e+002 1.25710274e+002 1.29012482e+002 1.15134315e+002 - 1.25736038e+002 1.29055313e+002 1.15145645e+002 1.25739349e+002 - 1.29081863e+002 1.15151703e+002 1.25758583e+002 1.29108597e+002 - 1.15164612e+002 1.25756180e+002 1.29134872e+002 1.15141846e+002 - 1.25754242e+002 1.29131744e+002 1.15159218e+002 1.25771919e+002 - 1.29165817e+002 1.15174126e+002 1.25802162e+002 1.29199722e+002 - 1.15216843e+002 1.25837784e+002 1.29254898e+002 1.15174751e+002 - 1.25808762e+002 1.29238968e+002 1.15179359e+002 1.25798531e+002 - 1.29263977e+002 1.15186165e+002 1.25823273e+002 1.29296494e+002 - 1.15170929e+002 1.25811310e+002 1.29309128e+002 1.15156807e+002 - 1.25815926e+002 1.29316666e+002 1.15177574e+002 1.25829193e+002 - 1.29347656e+002 1.15184723e+002 1.25845291e+002 1.29364197e+002 - 1.15184570e+002 1.25842979e+002 1.29381149e+002 1.15166313e+002 - 1.25851273e+002 1.29392151e+002 1.15197044e+002 1.25855331e+002 - 1.29424469e+002 1.15196999e+002 1.25866493e+002 1.29432449e+002 - 1.15204254e+002 1.25859901e+002 1.29441940e+002 1.15214714e+002 - 1.25881454e+002 1.29457550e+002 1.15215614e+002 1.25876511e+002 - 1.29467453e+002 1.15198868e+002 1.25867630e+002 1.29456497e+002 - 1.15201096e+002 1.25864929e+002 1.29460922e+002 1.15179291e+002 - 1.25857803e+002 1.29454254e+002 1.15202263e+002 1.25864342e+002 - 1.29479919e+002 1.15185471e+002 1.25867714e+002 1.29471298e+002 - 1.15185097e+002 1.25861557e+002 1.29472733e+002 1.15176300e+002 - 1.25872688e+002 1.29472504e+002 1.15205154e+002 1.25887474e+002 - 1.29496582e+002 1.15217773e+002 1.25902412e+002 1.29497818e+002 - 1.15218987e+002 1.25898117e+002 1.29507568e+002 1.15180672e+002 - 1.25882339e+002 1.29479156e+002 1.15180527e+002 1.25874847e+002 - 1.29476807e+002 1.15187057e+002 1.25884964e+002 1.29482056e+002 - 1.15197693e+002 1.25877762e+002 1.29488510e+002 1.15174164e+002 - 1.25862122e+002 1.29460510e+002 1.15159317e+002 1.25838928e+002 - 1.29440842e+002 1.15151024e+002 1.25837883e+002 1.29423706e+002 - 1.15134369e+002 1.25803604e+002 1.29403687e+002 1.15113960e+002 - 1.25797546e+002 1.29380463e+002 1.15142296e+002 1.25801979e+002 - 1.29397186e+002 1.15161179e+002 1.25835495e+002 1.29407501e+002 - 1.15144241e+002 1.25809692e+002 1.29372177e+002 1.15122299e+002 - 1.25798141e+002 1.29345657e+002 1.15150162e+002 1.25816177e+002 - 1.29362854e+002 1.15171768e+002 1.25836708e+002 1.29364365e+002 - 1.15191910e+002 1.25844604e+002 1.29357849e+002 1.15134666e+002 - 1.25811821e+002 1.29305664e+002 1.15147652e+002 1.25803711e+002 - 1.29295380e+002 1.15150078e+002 1.25821281e+002 1.29290573e+002 - 1.15165337e+002 1.25802940e+002 1.29283920e+002 1.15153038e+002 - 1.25802078e+002 1.29259659e+002 1.15164864e+002 1.25794769e+002 - 1.29248734e+002 1.15165634e+002 1.25790810e+002 1.29219711e+002 - 1.15160706e+002 1.25771477e+002 1.29192429e+002 1.15155396e+002 - 1.25768059e+002 1.29169388e+002 1.15170769e+002 1.25752563e+002 - 1.29153168e+002 1.15169724e+002 1.25759232e+002 1.29134201e+002 - 1.15166313e+002 1.25736053e+002 1.29096268e+002 1.15131927e+002 - 1.25718094e+002 1.29043228e+002 1.15153183e+002 1.25719826e+002 - 1.29036560e+002 1.15151672e+002 1.25718231e+002 1.29000122e+002 - 1.15140747e+002 1.25693901e+002 1.28966568e+002 1.15115257e+002 - 1.25689613e+002 1.28931244e+002 1.15096634e+002 1.25650749e+002 - 1.28893433e+002 1.15080475e+002 1.25649567e+002 1.28865784e+002 - 1.15095329e+002 1.25647514e+002 1.28852676e+002 1.15078476e+002 - 1.25642609e+002 1.28816147e+002 1.15089516e+002 1.25636566e+002 - 1.28796600e+002 1.15090782e+002 1.25651451e+002 1.28775345e+002 - 1.15086319e+002 1.25628075e+002 1.28739120e+002 1.15073830e+002 - 1.25618942e+002 1.28699478e+002 1.15099213e+002 1.25606544e+002 - 1.28686661e+002 1.15100670e+002 1.25617271e+002 1.28663147e+002 - 1.15125488e+002 1.25632004e+002 1.28657104e+002 1.15074409e+002 - 1.25601311e+002 1.28589996e+002 1.15075859e+002 1.25582962e+002 - 1.28570435e+002 1.15080200e+002 1.25582718e+002 1.28540558e+002 - 1.15069946e+002 1.25553406e+002 1.28491928e+002 1.15034233e+002 - 1.25537544e+002 1.28443100e+002 1.15029358e+002 1.25509918e+002 - 1.28414642e+002 1.15043663e+002 1.25532608e+002 1.28410431e+002 - 1.15040001e+002 1.25513901e+002 1.28379913e+002 1.15028328e+002 - 1.25511032e+002 1.28340729e+002 1.15032349e+002 1.25499779e+002 - 1.28312012e+002 1.15017220e+002 1.25493370e+002 1.28277863e+002 - 1.15022194e+002 1.25473175e+002 1.28246872e+002 1.15004471e+002 - 1.25460739e+002 1.28211411e+002 1.15006058e+002 1.25442978e+002 - 1.28173065e+002 1.15006386e+002 1.25454132e+002 1.28150909e+002 - 1.15003845e+002 1.25440018e+002 1.28116898e+002 1.14983307e+002 - 1.25435127e+002 1.28077484e+002 1.14966530e+002 1.25403252e+002 - 1.28035095e+002 1.14955826e+002 1.25396980e+002 1.27992355e+002 - 1.14971512e+002 1.25391228e+002 1.27956390e+002 1.14945061e+002 - 1.25373009e+002 1.27914886e+002 1.14936058e+002 1.25353661e+002 - 1.27879135e+002 1.14931313e+002 1.25347488e+002 1.27852936e+002 - 1.14934364e+002 1.25331680e+002 1.27825607e+002 1.14921944e+002 - 1.25322136e+002 1.27786858e+002 1.14915291e+002 1.25298561e+002 - 1.27745445e+002 1.14908173e+002 1.25299538e+002 1.27707268e+002 - 1.14895874e+002 1.25266815e+002 1.27659431e+002 1.14884254e+002 - 1.25254700e+002 1.27613312e+002 1.14908073e+002 1.25237183e+002 - 1.27579544e+002 1.14905586e+002 1.25231361e+002 1.27544899e+002 - 1.14923744e+002 1.25229301e+002 1.27518410e+002 1.14901405e+002 - 1.25221695e+002 1.27469818e+002 1.14897766e+002 1.25189537e+002 - 1.27434067e+002 1.14887550e+002 1.25177658e+002 1.27378754e+002 - 1.14893349e+002 1.25147827e+002 1.27313637e+002 1.14862503e+002 - 1.25139183e+002 1.27260620e+002 1.14854324e+002 1.25104813e+002 - 1.27221619e+002 1.14828094e+002 1.25085381e+002 1.27167023e+002 - 1.14818039e+002 1.25049538e+002 1.27109146e+002 1.14782272e+002 - 1.25016930e+002 1.27038528e+002 1.14769722e+002 1.24987434e+002 - 1.26986198e+002 1.14757912e+002 1.24971344e+002 1.26934967e+002 - 1.14742409e+002 1.24936279e+002 1.26878456e+002 1.14712036e+002 - 1.24901962e+002 1.26817337e+002 1.14720207e+002 1.24864281e+002 - 1.26775467e+002 1.14695145e+002 1.24840515e+002 1.26712463e+002 - 1.14706116e+002 1.24832100e+002 1.26679741e+002 1.14659409e+002 - 1.24793724e+002 1.26601646e+002 1.14649635e+002 1.24757057e+002 - 1.26554527e+002 1.14660469e+002 1.24757408e+002 1.26526855e+002 - 1.14661575e+002 1.24723625e+002 1.26455757e+002 1.14641167e+002 - 1.24714691e+002 1.26420288e+002 1.14641762e+002 1.24686005e+002 - 1.26373718e+002 1.14615028e+002 1.24660858e+002 1.26323013e+002 - 1.14613602e+002 1.24624550e+002 1.26269165e+002 1.14605598e+002 - 1.24613060e+002 1.26229713e+002 1.14589622e+002 1.24566879e+002 - 1.26163597e+002 1.14570618e+002 1.24537827e+002 1.26100227e+002 - 1.14555893e+002 1.24489624e+002 1.26035988e+002 1.14542152e+002 - 1.24457306e+002 1.25986610e+002 1.14551010e+002 1.24414566e+002 - 1.25934029e+002 1.14523224e+002 1.24377739e+002 1.25871887e+002 - 1.14505211e+002 1.24328461e+002 1.25809433e+002 1.14434242e+002 - 1.24246330e+002 1.25701904e+002 1.14353615e+002 1.24127617e+002 - 1.25581291e+002 1.14218140e+002 1.23980774e+002 1.25407501e+002 - 1.14101509e+002 1.23917099e+002 1.25377800e+002 1.14213730e+002 - 1.24074524e+002 1.25528740e+002 1.14328629e+002 1.24199554e+002 - 1.25683075e+002 1.14371925e+002 1.24271896e+002 1.25763199e+002 - 1.14381424e+002 1.24308723e+002 1.25826454e+002 1.14397285e+002 - 1.24351822e+002 1.25883102e+002 1.14446739e+002 1.24417664e+002 - 1.25980728e+002 1.14422424e+002 1.24423920e+002 1.25996124e+002 - 1.14464439e+002 1.24480179e+002 1.26079323e+002 1.14457283e+002 - 1.24491570e+002 1.26112083e+002 1.14479324e+002 1.24520370e+002 - 1.26178558e+002 1.14517632e+002 1.24580994e+002 1.26251595e+002 - 1.14530655e+002 1.24603546e+002 1.26304604e+002 1.14540031e+002 - 1.24641975e+002 1.26343658e+002 1.14567955e+002 1.24669487e+002 - 1.26402206e+002 1.14560814e+002 1.24691666e+002 1.26436874e+002 - 1.14576958e+002 1.24731117e+002 1.26529350e+002 1.14554466e+002 - 1.24741982e+002 1.26554192e+002 1.14597481e+002 1.24780174e+002 - 1.26622253e+002 1.14612106e+002 1.24820145e+002 1.26667366e+002 - 1.14627777e+002 1.24841042e+002 1.26724747e+002 1.14633774e+002 - 1.24866440e+002 1.26763962e+002 1.14618813e+002 1.24860275e+002 - 1.26797928e+002 1.14613289e+002 1.24872452e+002 1.26828064e+002 - 1.14631752e+002 1.24887398e+002 1.26875549e+002 1.14628639e+002 - 1.24900986e+002 1.26905556e+002 1.14659073e+002 1.24921906e+002 - 1.26976715e+002 1.14680519e+002 1.24965530e+002 1.27041397e+002 - 1.14714027e+002 1.25001221e+002 1.27117142e+002 1.14687675e+002 - 1.24997047e+002 1.27125008e+002 1.14693878e+002 1.24996902e+002 - 1.27159424e+002 1.14693954e+002 1.25020973e+002 1.27202400e+002 - 1.14716331e+002 1.25058945e+002 1.27287422e+002 1.14686424e+002 - 1.25057991e+002 1.27304321e+002 1.14720932e+002 1.25086128e+002 - 1.27363617e+002 1.14728149e+002 1.25114128e+002 1.27411850e+002 - 1.14749954e+002 1.25134537e+002 1.27470085e+002 1.14757660e+002 - 1.25164680e+002 1.27519760e+002 1.14795998e+002 1.25201714e+002 - 1.27592079e+002 1.14782898e+002 1.25204575e+002 1.27611565e+002 - 1.14807404e+002 1.25225754e+002 1.27662796e+002 1.14803955e+002 - 1.25229012e+002 1.27684326e+002 1.14797913e+002 1.25210419e+002 - 1.27714821e+002 1.14790314e+002 1.25218475e+002 1.27740036e+002 - 1.14808174e+002 1.25230522e+002 1.27781197e+002 1.14820717e+002 - 1.25257187e+002 1.27820213e+002 1.14833488e+002 1.25263107e+002 - 1.27858330e+002 1.14828835e+002 1.25275467e+002 1.27888771e+002 - 1.14881882e+002 1.25333389e+002 1.27994301e+002 1.14859482e+002 - 1.25346794e+002 1.28019470e+002 1.14884705e+002 1.25373154e+002 - 1.28068802e+002 1.14882896e+002 1.25383705e+002 1.28094650e+002 - 1.14900688e+002 1.25387489e+002 1.28137909e+002 1.14909874e+002 - 1.25415077e+002 1.28177994e+002 1.14919762e+002 1.25431137e+002 - 1.28227798e+002 1.14895767e+002 1.25423920e+002 1.28230545e+002 - 1.14929688e+002 1.25450172e+002 1.28293991e+002 1.14929077e+002 - 1.25468269e+002 1.28327759e+002 1.14948425e+002 1.25473030e+002 - 1.28375824e+002 1.14951805e+002 1.25486824e+002 1.28411423e+002 - 1.14965881e+002 1.25501740e+002 1.28455032e+002 1.14952072e+002 - 1.25503464e+002 1.28467194e+002 1.14948112e+002 1.25492485e+002 - 1.28494186e+002 1.14926704e+002 1.25489822e+002 1.28497437e+002 - 1.14939667e+002 1.25491470e+002 1.28545975e+002 1.14924622e+002 - 1.25499100e+002 1.28555191e+002 1.14960777e+002 1.25523582e+002 - 1.28609848e+002 1.14979218e+002 1.25557236e+002 1.28658279e+002 - 1.14982445e+002 1.25551628e+002 1.28681229e+002 1.14986038e+002 - 1.25576096e+002 1.28720535e+002 1.14988564e+002 1.25565353e+002 - 1.28746521e+002 1.14962425e+002 1.25558723e+002 1.28744202e+002 - 1.14974800e+002 1.25559296e+002 1.28778305e+002 1.14966957e+002 - 1.25562134e+002 1.28794556e+002 1.14988586e+002 1.25576355e+002 - 1.28835388e+002 1.14984489e+002 1.25578781e+002 1.28860184e+002 - 1.14972198e+002 1.25568329e+002 1.28876892e+002 1.14959023e+002 - 1.25573608e+002 1.28885544e+002 1.14964073e+002 1.25561073e+002 - 1.28898636e+002 1.14984802e+002 1.25602173e+002 1.28944321e+002 - 1.14995178e+002 1.25615433e+002 1.28994247e+002 1.14981239e+002 - 1.25626411e+002 1.29015915e+002 1.14989845e+002 1.25625626e+002 - 1.29039307e+002 1.14985329e+002 1.25639076e+002 1.29057236e+002 - 1.14989944e+002 1.25627945e+002 1.29073578e+002 1.14978767e+002 - 1.25630844e+002 1.29079269e+002 1.14999489e+002 1.25649330e+002 - 1.29124802e+002 1.15021233e+002 1.25689201e+002 1.29160370e+002 - 1.15057083e+002 1.25712250e+002 1.29206192e+002 1.15012650e+002 - 1.25684334e+002 1.29188507e+002 1.15023293e+002 1.25682785e+002 - 1.29217377e+002 1.15027534e+002 1.25706863e+002 1.29249741e+002 - 1.15030449e+002 1.25703476e+002 1.29276947e+002 1.15014427e+002 - 1.25714645e+002 1.29286102e+002 1.15018021e+002 1.25706230e+002 - 1.29302017e+002 1.15004959e+002 1.25713745e+002 1.29307999e+002 - 1.15027039e+002 1.25732292e+002 1.29347229e+002 1.15010994e+002 - 1.25728409e+002 1.29346344e+002 1.15040260e+002 1.25748978e+002 - 1.29384979e+002 1.15043877e+002 1.25759430e+002 1.29396072e+002 - 1.15067474e+002 1.25762650e+002 1.29420486e+002 1.15055740e+002 - 1.25765808e+002 1.29421921e+002 1.15046844e+002 1.25750961e+002 - 1.29423355e+002 1.15034859e+002 1.25748741e+002 1.29414597e+002 - 1.15039711e+002 1.25745102e+002 1.29419434e+002 1.15005562e+002 - 1.25722710e+002 1.29396027e+002 1.15016464e+002 1.25720764e+002 - 1.29415756e+002 1.15013290e+002 1.25732765e+002 1.29420334e+002 - 1.15024376e+002 1.25744415e+002 1.29431717e+002 1.15019081e+002 - 1.25752808e+002 1.29430649e+002 1.15026390e+002 1.25746651e+002 - 1.29438644e+002 1.15043999e+002 1.25775703e+002 1.29454483e+002 - 1.15064056e+002 1.25785576e+002 1.29473526e+002 1.15033119e+002 - 1.25772575e+002 1.29446274e+002 1.15021622e+002 1.25759827e+002 - 1.29434540e+002 1.15024567e+002 1.25760803e+002 1.29438095e+002 - 1.15046898e+002 1.25772041e+002 1.29449677e+002 1.15031487e+002 - 1.25759903e+002 1.29437119e+002 1.15019867e+002 1.25738098e+002 - 1.29423981e+002 1.15013229e+002 1.25736076e+002 1.29403290e+002 - 1.15011665e+002 1.25721176e+002 1.29396881e+002 1.14985428e+002 - 1.25712631e+002 1.29371307e+002 1.15009277e+002 1.25716232e+002 - 1.29378708e+002 1.15027351e+002 1.25745544e+002 1.29394135e+002 - 1.15003250e+002 1.25706703e+002 1.29351608e+002 1.14981239e+002 - 1.25700333e+002 1.29321823e+002 1.14994705e+002 1.25702721e+002 - 1.29326904e+002 1.15000565e+002 1.25715096e+002 1.29319565e+002 - 1.15020607e+002 1.25719864e+002 1.29320251e+002 1.14986702e+002 - 1.25696152e+002 1.29272369e+002 1.14995209e+002 1.25688919e+002 - 1.29262863e+002 1.15003273e+002 1.25701584e+002 1.29257019e+002 - 1.14991287e+002 1.25673759e+002 1.29227661e+002 1.14974861e+002 - 1.25658821e+002 1.29192719e+002 1.14973228e+002 1.25638290e+002 - 1.29168915e+002 1.15002663e+002 1.25674759e+002 1.29174103e+002 - 1.15010803e+002 1.25657745e+002 1.29161377e+002 1.14994568e+002 - 1.25648964e+002 1.29127716e+002 1.15014984e+002 1.25641113e+002 - 1.29113342e+002 1.15013176e+002 1.25642212e+002 1.29094452e+002 - 1.15006195e+002 1.25620316e+002 1.29057938e+002 1.14972076e+002 - 1.25588257e+002 1.28999359e+002 1.14990860e+002 1.25596748e+002 - 1.28995667e+002 1.15000465e+002 1.25613976e+002 1.28973160e+002 - 1.15003098e+002 1.25604408e+002 1.28950302e+002 1.14961998e+002 - 1.25576759e+002 1.28893478e+002 1.14952957e+002 1.25547707e+002 - 1.28862366e+002 1.14935524e+002 1.25540329e+002 1.28828400e+002 - 1.14953522e+002 1.25542412e+002 1.28817535e+002 1.14942253e+002 - 1.25540070e+002 1.28787582e+002 1.14941170e+002 1.25528114e+002 - 1.28758163e+002 1.14926407e+002 1.25515152e+002 1.28713303e+002 - 1.14915115e+002 1.25488762e+002 1.28672379e+002 1.14903938e+002 - 1.25481644e+002 1.28640793e+002 1.14932709e+002 1.25484138e+002 - 1.28634979e+002 1.14932571e+002 1.25490074e+002 1.28607758e+002 - 1.14973663e+002 1.25517723e+002 1.28614914e+002 1.14934013e+002 - 1.25491364e+002 1.28558426e+002 1.14926079e+002 1.25468933e+002 - 1.28531769e+002 1.14931587e+002 1.25482315e+002 1.28510239e+002 - 1.14928703e+002 1.25458794e+002 1.28463943e+002 1.14901207e+002 - 1.25443367e+002 1.28417923e+002 1.14888901e+002 1.25414352e+002 - 1.28386536e+002 1.14884895e+002 1.25419411e+002 1.28361176e+002 - 1.14903564e+002 1.25416054e+002 1.28348557e+002 1.14883621e+002 - 1.25402267e+002 1.28308807e+002 1.14899719e+002 1.25403015e+002 - 1.28288803e+002 1.14893761e+002 1.25406502e+002 1.28254990e+002 - 1.14893707e+002 1.25379166e+002 1.28220413e+002 1.14871765e+002 - 1.25366890e+002 1.28173096e+002 1.14878197e+002 1.25346321e+002 - 1.28145462e+002 1.14872932e+002 1.25347054e+002 1.28113495e+002 - 1.14875328e+002 1.25343346e+002 1.28086517e+002 1.14856659e+002 - 1.25340881e+002 1.28046158e+002 1.14835815e+002 1.25309586e+002 - 1.28009155e+002 1.14828255e+002 1.25305321e+002 1.27969612e+002 - 1.14843819e+002 1.25301056e+002 1.27938728e+002 1.14822266e+002 - 1.25294250e+002 1.27893417e+002 1.14799843e+002 1.25253014e+002 - 1.27846451e+002 1.14786423e+002 1.25239639e+002 1.27811554e+002 - 1.14784538e+002 1.25222115e+002 1.27778473e+002 1.14775505e+002 - 1.25215408e+002 1.27737686e+002 1.14754837e+002 1.25175812e+002 - 1.27683151e+002 1.14753212e+002 1.25188576e+002 1.27652893e+002 - 1.14757370e+002 1.25160873e+002 1.27615326e+002 1.14755096e+002 - 1.25159309e+002 1.27574272e+002 1.14779892e+002 1.25146439e+002 - 1.27549057e+002 1.14779648e+002 1.25145210e+002 1.27514862e+002 - 1.14774170e+002 1.25120476e+002 1.27468895e+002 1.14739502e+002 - 1.25095184e+002 1.27399673e+002 1.14721939e+002 1.25056503e+002 - 1.27353951e+002 1.14716995e+002 1.25050598e+002 1.27308990e+002 - 1.14743660e+002 1.25046219e+002 1.27265991e+002 1.14749130e+002 - 1.25061478e+002 1.27239891e+002 1.14740135e+002 1.25032494e+002 - 1.27192688e+002 1.14721581e+002 1.25021111e+002 1.27156143e+002 - 1.14706459e+002 1.24979828e+002 1.27096756e+002 1.14674469e+002 - 1.24950455e+002 1.27024223e+002 1.14660957e+002 1.24919983e+002 - 1.26967613e+002 1.14634850e+002 1.24895317e+002 1.26904160e+002 - 1.14615067e+002 1.24844902e+002 1.26842613e+002 1.14597206e+002 - 1.24823868e+002 1.26792015e+002 1.14603210e+002 1.24796196e+002 - 1.26755119e+002 1.14593536e+002 1.24782646e+002 1.26703377e+002 - 1.14599388e+002 1.24764473e+002 1.26665649e+002 1.14551895e+002 - 1.24721886e+002 1.26584648e+002 1.14538521e+002 1.24691025e+002 - 1.26536491e+002 1.14543755e+002 1.24689278e+002 1.26503609e+002 - 1.14539970e+002 1.24639603e+002 1.26431999e+002 1.14540710e+002 - 1.24643211e+002 1.26401855e+002 1.14526695e+002 1.24608337e+002 - 1.26350700e+002 1.14514397e+002 1.24596237e+002 1.26308052e+002 - 1.14513268e+002 1.24558601e+002 1.26259819e+002 1.14484856e+002 - 1.24532768e+002 1.26197739e+002 1.14471336e+002 1.24486549e+002 - 1.26135048e+002 1.14460167e+002 1.24466492e+002 1.26083168e+002 - 1.14461105e+002 1.24424934e+002 1.26028923e+002 1.14438774e+002 - 1.24395660e+002 1.25970726e+002 1.14444885e+002 1.24354195e+002 - 1.25916550e+002 1.14422630e+002 1.24320717e+002 1.25854904e+002 - 1.14418419e+002 1.24271858e+002 1.25801613e+002 1.14334854e+002 - 1.24179619e+002 1.25681213e+002 1.14238716e+002 1.24048912e+002 - 1.25550232e+002 1.14121437e+002 1.23924202e+002 1.25401756e+002 - 1.14038216e+002 1.23912766e+002 1.25420738e+002 1.14150040e+002 - 1.24067596e+002 1.25573463e+002 1.14242126e+002 1.24169014e+002 - 1.25708191e+002 1.14316414e+002 1.24278664e+002 1.25818298e+002 - 1.14329323e+002 1.24307663e+002 1.25876671e+002 1.14328964e+002 - 1.24343597e+002 1.25922394e+002 1.14350266e+002 1.24380501e+002 - 1.25996239e+002 1.14352844e+002 1.24415977e+002 1.26031654e+002 - 1.14393318e+002 1.24460999e+002 1.26114769e+002 1.14369576e+002 - 1.24463898e+002 1.26127983e+002 1.14380676e+002 1.24475159e+002 - 1.26184326e+002 1.14422653e+002 1.24548523e+002 1.26266640e+002 - 1.14445915e+002 1.24578690e+002 1.26331993e+002 1.14455238e+002 - 1.24613823e+002 1.26372604e+002 1.14473244e+002 1.24632652e+002 - 1.26419975e+002 1.14463852e+002 1.24649414e+002 1.26449127e+002 - 1.14482033e+002 1.24689301e+002 1.26545937e+002 1.14459930e+002 - 1.24705742e+002 1.26572227e+002 1.14488182e+002 1.24725433e+002 - 1.26624329e+002 1.14505676e+002 1.24760117e+002 1.26674767e+002 - 1.14516541e+002 1.24782890e+002 1.26732018e+002 1.14521088e+002 - 1.24806274e+002 1.26772751e+002 1.14539871e+002 1.24841026e+002 - 1.26841942e+002 1.14506027e+002 1.24822433e+002 1.26837372e+002 - 1.14518127e+002 1.24830299e+002 1.26888428e+002 1.14503517e+002 - 1.24831726e+002 1.26907372e+002 1.14538338e+002 1.24853241e+002 - 1.26981125e+002 1.14566757e+002 1.24906654e+002 1.27048019e+002 - 1.14587578e+002 1.24928360e+002 1.27108261e+002 1.14560448e+002 - 1.24924240e+002 1.27118240e+002 1.14573616e+002 1.24936432e+002 - 1.27165237e+002 1.14564713e+002 1.24940872e+002 1.27188835e+002 - 1.14585953e+002 1.24980888e+002 1.27274239e+002 1.14567085e+002 - 1.24993790e+002 1.27307915e+002 1.14589897e+002 1.25013786e+002 - 1.27362480e+002 1.14604263e+002 1.25050652e+002 1.27410889e+002 - 1.14632225e+002 1.25075081e+002 1.27477341e+002 1.14649933e+002 - 1.25118126e+002 1.27532166e+002 1.14668854e+002 1.25135559e+002 - 1.27591293e+002 1.14646957e+002 1.25127716e+002 1.27600365e+002 - 1.14674149e+002 1.25149345e+002 1.27651794e+002 1.14663208e+002 - 1.25147324e+002 1.27669586e+002 1.14656288e+002 1.25129128e+002 - 1.27699699e+002 1.14675308e+002 1.25159737e+002 1.27745255e+002 - 1.14685860e+002 1.25167122e+002 1.27782471e+002 1.14674423e+002 - 1.25171776e+002 1.27801605e+002 1.14702232e+002 1.25192108e+002 - 1.27856941e+002 1.14703583e+002 1.25204063e+002 1.27884079e+002 - 1.14731812e+002 1.25243065e+002 1.27968140e+002 1.14724274e+002 - 1.25266457e+002 1.28010941e+002 1.14737999e+002 1.25284073e+002 - 1.28049149e+002 1.14737305e+002 1.25296440e+002 1.28079819e+002 - 1.14760956e+002 1.25308937e+002 1.28126785e+002 1.14761330e+002 - 1.25323822e+002 1.28157532e+002 1.14755386e+002 1.25318405e+002 - 1.28187683e+002 1.14751549e+002 1.25338051e+002 1.28218582e+002 - 1.14768852e+002 1.25347176e+002 1.28268661e+002 1.14780701e+002 - 1.25375702e+002 1.28312622e+002 1.14800682e+002 1.25380409e+002 - 1.28362564e+002 1.14798698e+002 1.25387619e+002 1.28387665e+002 - 1.14799683e+002 1.25392738e+002 1.28419312e+002 1.14794113e+002 - 1.25403114e+002 1.28447464e+002 1.14806465e+002 1.25411545e+002 - 1.28485199e+002 1.14793411e+002 1.25409462e+002 1.28492599e+002 - 1.14811363e+002 1.25419441e+002 1.28548767e+002 1.14791588e+002 - 1.25423950e+002 1.28566071e+002 1.14820168e+002 1.25440994e+002 - 1.28609604e+002 1.14835915e+002 1.25471642e+002 1.28643173e+002 - 1.14823921e+002 1.25457520e+002 1.28662033e+002 1.14817543e+002 - 1.25464981e+002 1.28686600e+002 1.14816032e+002 1.25466385e+002 - 1.28717941e+002 1.14813461e+002 1.25470619e+002 1.28735336e+002 - 1.14819328e+002 1.25464584e+002 1.28763733e+002 1.14817543e+002 - 1.25476196e+002 1.28788452e+002 1.14834541e+002 1.25482780e+002 - 1.28828751e+002 1.14851486e+002 1.25504814e+002 1.28867508e+002 - 1.14836662e+002 1.25490700e+002 1.28876648e+002 1.14826233e+002 - 1.25503349e+002 1.28894714e+002 1.14830246e+002 1.25483742e+002 - 1.28909225e+002 1.14842117e+002 1.25512802e+002 1.28937271e+002 - 1.14846169e+002 1.25521431e+002 1.28977646e+002 1.14827805e+002 - 1.25530090e+002 1.28997955e+002 1.14834129e+002 1.25529762e+002 - 1.29021667e+002 1.14828072e+002 1.25534958e+002 1.29039856e+002 - 1.14833778e+002 1.25531311e+002 1.29059921e+002 1.14825096e+002 - 1.25540504e+002 1.29070465e+002 1.14864433e+002 1.25574425e+002 - 1.29129623e+002 1.14888275e+002 1.25616875e+002 1.29170456e+002 - 1.14912018e+002 1.25629013e+002 1.29205795e+002 1.14866699e+002 - 1.25594055e+002 1.29185455e+002 1.14854095e+002 1.25573296e+002 - 1.29196014e+002 1.14873764e+002 1.25606522e+002 1.29238205e+002 - 1.14879211e+002 1.25609314e+002 1.29266937e+002 1.14860191e+002 - 1.25614426e+002 1.29271698e+002 1.14859428e+002 1.25607903e+002 - 1.29284744e+002 1.14853157e+002 1.25609879e+002 1.29289825e+002 - 1.14869835e+002 1.25620796e+002 1.29328293e+002 1.14866875e+002 - 1.25642998e+002 1.29350540e+002 1.14885231e+002 1.25647842e+002 - 1.29374725e+002 1.14883781e+002 1.25654961e+002 1.29386841e+002 - 1.14891098e+002 1.25653061e+002 1.29400146e+002 1.14880287e+002 - 1.25649803e+002 1.29399017e+002 1.14875961e+002 1.25632896e+002 - 1.29397980e+002 1.14870781e+002 1.25633545e+002 1.29390411e+002 - 1.14881462e+002 1.25644958e+002 1.29412628e+002 1.14843933e+002 - 1.25614807e+002 1.29380844e+002 1.14855133e+002 1.25614334e+002 - 1.29400223e+002 1.14865723e+002 1.25642311e+002 1.29422363e+002 - 1.14877037e+002 1.25646667e+002 1.29431931e+002 1.14857841e+002 - 1.25644646e+002 1.29417923e+002 1.14871078e+002 1.25650276e+002 - 1.29435333e+002 1.14884171e+002 1.25667976e+002 1.29437332e+002 - 1.14911072e+002 1.25679436e+002 1.29461517e+002 1.14869598e+002 - 1.25665054e+002 1.29428299e+002 1.14867943e+002 1.25650726e+002 - 1.29425674e+002 1.14873627e+002 1.25664902e+002 1.29431747e+002 - 1.14891350e+002 1.25673492e+002 1.29449234e+002 1.14857918e+002 - 1.25645271e+002 1.29410904e+002 1.14857559e+002 1.25635529e+002 - 1.29404770e+002 1.14859039e+002 1.25638725e+002 1.29397293e+002 - 1.14844727e+002 1.25615662e+002 1.29376266e+002 1.14831215e+002 - 1.25612198e+002 1.29362030e+002 1.14858521e+002 1.25621208e+002 - 1.29371094e+002 1.14843056e+002 1.25613014e+002 1.29350693e+002 - 1.14840759e+002 1.25603836e+002 1.29336136e+002 1.14816933e+002 - 1.25589882e+002 1.29300903e+002 1.14815094e+002 1.25583839e+002 - 1.29294891e+002 1.14817970e+002 1.25588860e+002 1.29277725e+002 - 1.14835503e+002 1.25586113e+002 1.29276978e+002 1.14807877e+002 - 1.25574669e+002 1.29241348e+002 1.14838089e+002 1.25584511e+002 - 1.29250656e+002 1.14851364e+002 1.25601875e+002 1.29246613e+002 - 1.14822548e+002 1.25557274e+002 1.29204300e+002 1.14805992e+002 - 1.25541649e+002 1.29161835e+002 1.14811401e+002 1.25533707e+002 - 1.29151413e+002 1.14796539e+002 1.25521172e+002 1.29114975e+002 - 1.14824982e+002 1.25526466e+002 1.29113968e+002 1.14825233e+002 - 1.25531647e+002 1.29099365e+002 1.14841858e+002 1.25518974e+002 - 1.29084335e+002 1.14852669e+002 1.25540642e+002 1.29076477e+002 - 1.14850609e+002 1.25523209e+002 1.29048920e+002 1.14836227e+002 - 1.25514977e+002 1.29010559e+002 1.14847778e+002 1.25512856e+002 - 1.28996597e+002 1.14848488e+002 1.25517509e+002 1.28965912e+002 - 1.14837326e+002 1.25489113e+002 1.28921875e+002 1.14815819e+002 - 1.25475800e+002 1.28879486e+002 1.14812805e+002 1.25460838e+002 - 1.28856705e+002 1.14802208e+002 1.25457176e+002 1.28828247e+002 - 1.14815582e+002 1.25456329e+002 1.28813370e+002 1.14814857e+002 - 1.25467461e+002 1.28794281e+002 1.14806961e+002 1.25445656e+002 - 1.28756439e+002 1.14803780e+002 1.25443840e+002 1.28727341e+002 - 1.14754700e+002 1.25382935e+002 1.28655518e+002 1.14750565e+002 - 1.25387016e+002 1.28626984e+002 1.14794662e+002 1.25401733e+002 - 1.28636993e+002 1.14793190e+002 1.25405273e+002 1.28609116e+002 - 1.14812912e+002 1.25416969e+002 1.28598724e+002 1.14779488e+002 - 1.25391243e+002 1.28543839e+002 1.14767815e+002 1.25367073e+002 - 1.28514847e+002 1.14775932e+002 1.25374779e+002 1.28488678e+002 - 1.14778801e+002 1.25364861e+002 1.28451904e+002 1.14746445e+002 - 1.25344910e+002 1.28402176e+002 1.14728325e+002 1.25312721e+002 - 1.28366562e+002 1.14739990e+002 1.25322853e+002 1.28354156e+002 - 1.14783569e+002 1.25345917e+002 1.28360428e+002 1.14767715e+002 - 1.25335419e+002 1.28319534e+002 1.14762192e+002 1.25315735e+002 - 1.28285080e+002 1.14768425e+002 1.25327896e+002 1.28261353e+002 - 1.14757195e+002 1.25295776e+002 1.28212646e+002 1.14743645e+002 - 1.25286171e+002 1.28176193e+002 1.14758484e+002 1.25275444e+002 - 1.28151810e+002 1.14767502e+002 1.25295486e+002 1.28139450e+002 - 1.14755737e+002 1.25271500e+002 1.28093063e+002 1.14739861e+002 - 1.25269012e+002 1.28055328e+002 1.14738777e+002 1.25255402e+002 - 1.28034546e+002 1.14732094e+002 1.25253967e+002 1.27995628e+002 - 1.14721840e+002 1.25231400e+002 1.27945023e+002 1.14684937e+002 - 1.25207405e+002 1.27884201e+002 1.14670792e+002 1.25175545e+002 - 1.27846764e+002 1.14653328e+002 1.25162537e+002 1.27807938e+002 - 1.14642265e+002 1.25129662e+002 1.27764427e+002 1.14622223e+002 - 1.25115829e+002 1.27715897e+002 1.14618263e+002 1.25094933e+002 - 1.27673233e+002 1.14620407e+002 1.25102951e+002 1.27643295e+002 - 1.14615898e+002 1.25072281e+002 1.27592957e+002 1.14619774e+002 - 1.25078323e+002 1.27567879e+002 1.14663536e+002 1.25087067e+002 - 1.27561020e+002 1.14635857e+002 1.25057610e+002 1.27496017e+002 - 1.14618210e+002 1.25022041e+002 1.27436050e+002 1.14584976e+002 - 1.24998337e+002 1.27373993e+002 1.14596695e+002 1.24990227e+002 - 1.27352676e+002 1.14609070e+002 1.25001305e+002 1.27322952e+002 - 1.14624908e+002 1.24985321e+002 1.27268005e+002 1.14616776e+002 - 1.24987442e+002 1.27227913e+002 1.14628654e+002 1.24977341e+002 - 1.27205795e+002 1.14600052e+002 1.24949829e+002 1.27149101e+002 - 1.14605637e+002 1.24936081e+002 1.27112846e+002 1.14560287e+002 - 1.24898125e+002 1.27032295e+002 1.14542618e+002 1.24851967e+002 - 1.26964752e+002 1.14514343e+002 1.24829567e+002 1.26896713e+002 - 1.14495483e+002 1.24782104e+002 1.26836258e+002 1.14470558e+002 - 1.24751671e+002 1.26779022e+002 1.14492340e+002 1.24744118e+002 - 1.26756447e+002 1.14482376e+002 1.24730293e+002 1.26709641e+002 - 1.14496613e+002 1.24716507e+002 1.26675491e+002 1.14439034e+002 - 1.24664940e+002 1.26588295e+002 1.14431366e+002 1.24632408e+002 - 1.26548805e+002 1.14449493e+002 1.24645805e+002 1.26525757e+002 - 1.14460930e+002 1.24614494e+002 1.26466049e+002 1.14459480e+002 - 1.24624252e+002 1.26438469e+002 1.14432320e+002 1.24568512e+002 - 1.26373093e+002 1.14420395e+002 1.24554199e+002 1.26329124e+002 - 1.14398926e+002 1.24500153e+002 1.26263229e+002 1.14382004e+002 - 1.24482658e+002 1.26209442e+002 1.14392616e+002 1.24461288e+002 - 1.26171043e+002 1.14376381e+002 1.24438660e+002 1.26116974e+002 - 1.14351868e+002 1.24375664e+002 1.26033501e+002 1.14358421e+002 - 1.24370071e+002 1.26008553e+002 1.14372536e+002 1.24337425e+002 - 1.25966187e+002 1.14343903e+002 1.24302719e+002 1.25901100e+002 - 1.14332809e+002 1.24245872e+002 1.25831154e+002 1.14255608e+002 - 1.24160210e+002 1.25718849e+002 1.14192078e+002 1.24057846e+002 - 1.25614777e+002 1.14068375e+002 1.23922653e+002 1.25443993e+002 - 1.13949005e+002 1.23862022e+002 1.25419228e+002 1.14043823e+002 - 1.24005051e+002 1.25554344e+002 1.14143890e+002 1.24113693e+002 - 1.25689507e+002 1.14200165e+002 1.24200127e+002 1.25784447e+002 - 1.14216751e+002 1.24231445e+002 1.25848076e+002 1.14216705e+002 - 1.24270851e+002 1.25891769e+002 1.14234497e+002 1.24307076e+002 - 1.25965393e+002 1.14234863e+002 1.24337822e+002 1.26000923e+002 - 1.14265320e+002 1.24381821e+002 1.26075874e+002 1.14243439e+002 - 1.24385445e+002 1.26093933e+002 1.14278061e+002 1.24411484e+002 - 1.26169205e+002 1.14301010e+002 1.24468315e+002 1.26236572e+002 - 1.14316109e+002 1.24492767e+002 1.26291496e+002 1.14313217e+002 - 1.24518471e+002 1.26326759e+002 1.14333443e+002 1.24536659e+002 - 1.26373383e+002 1.14331535e+002 1.24558098e+002 1.26414970e+002 - 1.14341789e+002 1.24591904e+002 1.26495270e+002 1.14309364e+002 - 1.24596100e+002 1.26513565e+002 1.14327538e+002 1.24606606e+002 - 1.26559601e+002 1.14345222e+002 1.24642525e+002 1.26608032e+002 - 1.14377716e+002 1.24683937e+002 1.26688118e+002 1.14371399e+002 - 1.24698456e+002 1.26720978e+002 1.14383827e+002 1.24720688e+002 - 1.26777924e+002 1.14364967e+002 1.24723686e+002 1.26795212e+002 - 1.14407829e+002 1.24763176e+002 1.26876625e+002 1.14376045e+002 - 1.24747017e+002 1.26879044e+002 1.14396629e+002 1.24763298e+002 - 1.26940910e+002 1.14422028e+002 1.24805099e+002 1.27004181e+002 - 1.14436638e+002 1.24828163e+002 1.27060883e+002 1.14422249e+002 - 1.24832077e+002 1.27081161e+002 1.14422562e+002 1.24830475e+002 - 1.27115631e+002 1.14417854e+002 1.24838043e+002 1.27147240e+002 - 1.14423203e+002 1.24863892e+002 1.27221947e+002 1.14413536e+002 - 1.24884377e+002 1.27259758e+002 1.14440834e+002 1.24913490e+002 - 1.27325737e+002 1.14458984e+002 1.24945007e+002 1.27369957e+002 - 1.14470200e+002 1.24956161e+002 1.27423164e+002 1.14475456e+002 - 1.24987709e+002 1.27462990e+002 1.14489944e+002 1.24997139e+002 - 1.27517273e+002 1.14480240e+002 1.25002083e+002 1.27530098e+002 - 1.14502289e+002 1.25020241e+002 1.27588013e+002 1.14492485e+002 - 1.25027695e+002 1.27614922e+002 1.14490082e+002 1.25013237e+002 - 1.27638840e+002 1.14491814e+002 1.25022789e+002 1.27672386e+002 - 1.14490166e+002 1.25024384e+002 1.27700607e+002 1.14503403e+002 - 1.25050041e+002 1.27742073e+002 1.14524033e+002 1.25062851e+002 - 1.27780685e+002 1.14514206e+002 1.25065788e+002 1.27803543e+002 - 1.14539795e+002 1.25098259e+002 1.27890984e+002 1.14537750e+002 - 1.25125603e+002 1.27928909e+002 1.14571594e+002 1.25157043e+002 - 1.27987625e+002 1.14588913e+002 1.25188965e+002 1.28031631e+002 - 1.14594208e+002 1.25185867e+002 1.28063721e+002 1.14577164e+002 - 1.25184937e+002 1.28083252e+002 1.14584778e+002 1.25202621e+002 - 1.28132584e+002 1.14593445e+002 1.25221756e+002 1.28176483e+002 - 1.14625633e+002 1.25252701e+002 1.28236664e+002 1.14619064e+002 - 1.25261993e+002 1.28269882e+002 1.14625114e+002 1.25243172e+002 - 1.28295578e+002 1.14614105e+002 1.25244522e+002 1.28321976e+002 - 1.14630264e+002 1.25263878e+002 1.28364822e+002 1.14639893e+002 - 1.25292328e+002 1.28410141e+002 1.14642929e+002 1.25290367e+002 - 1.28432312e+002 1.14619286e+002 1.25277939e+002 1.28434784e+002 - 1.14620399e+002 1.25278877e+002 1.28476974e+002 1.14614868e+002 - 1.25298035e+002 1.28504517e+002 1.14635857e+002 1.25302086e+002 - 1.28533539e+002 1.14628998e+002 1.25313057e+002 1.28558243e+002 - 1.14622223e+002 1.25299713e+002 1.28579163e+002 1.14613190e+002 - 1.25307877e+002 1.28599808e+002 1.14617912e+002 1.25311150e+002 - 1.28638336e+002 1.14620163e+002 1.25329643e+002 1.28667801e+002 - 1.14631676e+002 1.25328186e+002 1.28699844e+002 1.14630836e+002 - 1.25336601e+002 1.28725632e+002 1.14656036e+002 1.25352371e+002 - 1.28778534e+002 1.14646820e+002 1.25352638e+002 1.28786484e+002 - 1.14657539e+002 1.25358597e+002 1.28823471e+002 1.14668762e+002 - 1.25383469e+002 1.28855301e+002 1.14690567e+002 1.25397133e+002 - 1.28893753e+002 1.14676147e+002 1.25390327e+002 1.28891220e+002 - 1.14679253e+002 1.25399681e+002 1.28939224e+002 1.14660423e+002 - 1.25410225e+002 1.28953339e+002 1.14686371e+002 1.25425346e+002 - 1.28994736e+002 1.14687973e+002 1.25442284e+002 1.29019684e+002 - 1.14692406e+002 1.25440559e+002 1.29046768e+002 1.14673782e+002 - 1.25434029e+002 1.29046356e+002 1.14709518e+002 1.25464912e+002 - 1.29096481e+002 1.14723038e+002 1.25490234e+002 1.29124771e+002 - 1.14727211e+002 1.25491371e+002 1.29145187e+002 1.14679070e+002 - 1.25456520e+002 1.29126953e+002 1.14677185e+002 1.25441505e+002 - 1.29138901e+002 1.14681915e+002 1.25453659e+002 1.29169876e+002 - 1.14677597e+002 1.25456146e+002 1.29192017e+002 1.14673088e+002 - 1.25467346e+002 1.29203186e+002 1.14669052e+002 1.25458656e+002 - 1.29219727e+002 1.14664391e+002 1.25465363e+002 1.29230682e+002 - 1.14682243e+002 1.25474937e+002 1.29260681e+002 1.14684601e+002 - 1.25500267e+002 1.29288177e+002 1.14694244e+002 1.25498993e+002 - 1.29308151e+002 1.14696724e+002 1.25514603e+002 1.29326920e+002 - 1.14706322e+002 1.25511192e+002 1.29345551e+002 1.14694679e+002 - 1.25506638e+002 1.29338882e+002 1.14703331e+002 1.25505135e+002 - 1.29356232e+002 1.14688171e+002 1.25499802e+002 1.29341156e+002 - 1.14693352e+002 1.25501602e+002 1.29350098e+002 1.14672234e+002 - 1.25488815e+002 1.29341782e+002 1.14692780e+002 1.25492371e+002 - 1.29363831e+002 1.14707184e+002 1.25520821e+002 1.29388000e+002 - 1.14693741e+002 1.25513115e+002 1.29383362e+002 1.14682213e+002 - 1.25516525e+002 1.29374420e+002 1.14698914e+002 1.25514236e+002 - 1.29389862e+002 1.14696640e+002 1.25520721e+002 1.29385010e+002 - 1.14699089e+002 1.25511192e+002 1.29381638e+002 1.14676361e+002 - 1.25509445e+002 1.29362747e+002 1.14684479e+002 1.25508347e+002 - 1.29366211e+002 1.14665581e+002 1.25500580e+002 1.29352509e+002 - 1.14697113e+002 1.25515839e+002 1.29376175e+002 1.14675011e+002 - 1.25507980e+002 1.29358078e+002 1.14682205e+002 1.25506622e+002 - 1.29361481e+002 1.14669800e+002 1.25501404e+002 1.29341568e+002 - 1.14664223e+002 1.25485901e+002 1.29328278e+002 1.14637505e+002 - 1.25467781e+002 1.29297516e+002 1.14660027e+002 1.25467056e+002 - 1.29303284e+002 1.14646935e+002 1.25462135e+002 1.29282898e+002 - 1.14637009e+002 1.25441093e+002 1.29256424e+002 1.14610741e+002 - 1.25434113e+002 1.29226044e+002 1.14599487e+002 1.25408195e+002 - 1.29210846e+002 1.14598679e+002 1.25409882e+002 1.29186447e+002 - 1.14630379e+002 1.25423698e+002 1.29196243e+002 1.14617599e+002 - 1.25430382e+002 1.29171982e+002 1.14649673e+002 1.25438972e+002 - 1.29188705e+002 1.14638527e+002 1.25438286e+002 1.29166550e+002 - 1.14641243e+002 1.25419014e+002 1.29148392e+002 1.14641212e+002 - 1.25425499e+002 1.29132629e+002 1.14637321e+002 1.25404716e+002 - 1.29103210e+002 1.14618973e+002 1.25387581e+002 1.29055283e+002 - 1.14648880e+002 1.25403313e+002 1.29061234e+002 1.14651917e+002 - 1.25406189e+002 1.29054108e+002 1.14686348e+002 1.25411072e+002 - 1.29052719e+002 1.14683479e+002 1.25413559e+002 1.29034378e+002 - 1.14662285e+002 1.25381897e+002 1.28981781e+002 1.14641403e+002 - 1.25370567e+002 1.28940796e+002 1.14661781e+002 1.25370537e+002 - 1.28934814e+002 1.14669167e+002 1.25380661e+002 1.28912247e+002 - 1.14672874e+002 1.25366249e+002 1.28879272e+002 1.14640282e+002 - 1.25352303e+002 1.28827515e+002 1.14633537e+002 1.25317528e+002 - 1.28793991e+002 1.14634674e+002 1.25329384e+002 1.28777298e+002 - 1.14650055e+002 1.25329170e+002 1.28763580e+002 1.14635345e+002 - 1.25324440e+002 1.28733643e+002 1.14632233e+002 1.25307678e+002 - 1.28705231e+002 1.14621193e+002 1.25301231e+002 1.28663376e+002 - 1.14594109e+002 1.25259949e+002 1.28605194e+002 1.14585464e+002 - 1.25261131e+002 1.28581558e+002 1.14613899e+002 1.25259056e+002 - 1.28578888e+002 1.14601151e+002 1.25255348e+002 1.28536377e+002 - 1.14617111e+002 1.25264168e+002 1.28523514e+002 1.14592133e+002 - 1.25251968e+002 1.28475784e+002 1.14600700e+002 1.25242050e+002 - 1.28463745e+002 1.14597359e+002 1.25244385e+002 1.28438812e+002 - 1.14608421e+002 1.25232910e+002 1.28402237e+002 1.14603409e+002 - 1.25240898e+002 1.28369156e+002 1.14577209e+002 1.25194397e+002 - 1.28324570e+002 1.14574165e+002 1.25199875e+002 1.28296722e+002 - 1.14594025e+002 1.25196014e+002 1.28281174e+002 1.14596756e+002 - 1.25204170e+002 1.28252945e+002 1.14586151e+002 1.25179298e+002 - 1.28212875e+002 1.14602425e+002 1.25202286e+002 1.28204422e+002 - 1.14591270e+002 1.25169243e+002 1.28152740e+002 1.14585213e+002 - 1.25169876e+002 1.28124786e+002 1.14598289e+002 1.25148499e+002 - 1.28095917e+002 1.14607758e+002 1.25171616e+002 1.28079666e+002 - 1.14611031e+002 1.25162407e+002 1.28055603e+002 1.14594322e+002 - 1.25158485e+002 1.28019318e+002 1.14583191e+002 1.25137344e+002 - 1.27989159e+002 1.14561790e+002 1.25121109e+002 1.27932098e+002 - 1.14536377e+002 1.25086327e+002 1.27867722e+002 1.14512917e+002 - 1.25076164e+002 1.27828728e+002 1.14506088e+002 1.25050087e+002 - 1.27794861e+002 1.14480759e+002 1.25030182e+002 1.27746620e+002 - 1.14464874e+002 1.24993416e+002 1.27690277e+002 1.14455070e+002 - 1.24986443e+002 1.27656761e+002 1.14447380e+002 1.24963982e+002 - 1.27610779e+002 1.14455460e+002 1.24973747e+002 1.27580383e+002 - 1.14451538e+002 1.24947845e+002 1.27538322e+002 1.14448952e+002 - 1.24945580e+002 1.27498207e+002 1.14486504e+002 1.24950951e+002 - 1.27488342e+002 1.14460670e+002 1.24927574e+002 1.27428680e+002 - 1.14448807e+002 1.24895279e+002 1.27367828e+002 1.14425758e+002 - 1.24883118e+002 1.27312775e+002 1.14434593e+002 1.24879883e+002 - 1.27298386e+002 1.14454773e+002 1.24890259e+002 1.27272301e+002 - 1.14447838e+002 1.24858597e+002 1.27195618e+002 1.14447403e+002 - 1.24868263e+002 1.27166542e+002 1.14469437e+002 1.24870529e+002 - 1.27157692e+002 1.14441444e+002 1.24847832e+002 1.27100922e+002 - 1.14450356e+002 1.24831711e+002 1.27062691e+002 1.14411316e+002 - 1.24789909e+002 1.26984123e+002 1.14396416e+002 1.24757370e+002 - 1.26923508e+002 1.14382988e+002 1.24738213e+002 1.26860458e+002 - 1.14382111e+002 1.24710197e+002 1.26817390e+002 1.14351967e+002 - 1.24683098e+002 1.26761902e+002 1.14370865e+002 1.24664711e+002 - 1.26726044e+002 1.14358833e+002 1.24646408e+002 1.26678665e+002 - 1.14369064e+002 1.24638977e+002 1.26644936e+002 1.14324051e+002 - 1.24593719e+002 1.26572838e+002 1.14325050e+002 1.24572487e+002 - 1.26538940e+002 1.14327263e+002 1.24565926e+002 1.26501411e+002 - 1.14337090e+002 1.24535728e+002 1.26441208e+002 1.14337532e+002 - 1.24541641e+002 1.26409126e+002 1.14303375e+002 1.24485390e+002 - 1.26342796e+002 1.14284912e+002 1.24461685e+002 1.26288559e+002 - 1.14272400e+002 1.24415245e+002 1.26228691e+002 1.14260612e+002 - 1.24399994e+002 1.26177010e+002 1.14263519e+002 1.24376785e+002 - 1.26140068e+002 1.14262062e+002 1.24365959e+002 1.26094582e+002 - 1.14239120e+002 1.24311333e+002 1.26021317e+002 1.14249107e+002 - 1.24312325e+002 1.25998222e+002 1.14246803e+002 1.24263214e+002 - 1.25941177e+002 1.14219612e+002 1.24221420e+002 1.25872337e+002 - 1.14201141e+002 1.24165367e+002 1.25799026e+002 1.14156570e+002 - 1.24107971e+002 1.25712349e+002 1.14092827e+002 1.23999794e+002 - 1.25603256e+002 1.13963181e+002 1.23857826e+002 1.25429291e+002 - 1.13829231e+002 1.23792694e+002 1.25408096e+002 1.13932198e+002 - 1.23938286e+002 1.25555176e+002 1.14030182e+002 1.24048164e+002 - 1.25684669e+002 1.14080276e+002 1.24127617e+002 1.25769157e+002 - 1.14104828e+002 1.24166046e+002 1.25846764e+002 1.14103394e+002 - 1.24198799e+002 1.25888184e+002 1.14120239e+002 1.24236557e+002 - 1.25959137e+002 1.14119530e+002 1.24268547e+002 1.25997490e+002 - 1.14158478e+002 1.24319214e+002 1.26077065e+002 1.14130943e+002 - 1.24320557e+002 1.26088806e+002 1.14166161e+002 1.24349991e+002 - 1.26172249e+002 1.14199318e+002 1.24409294e+002 1.26245026e+002 - 1.14198853e+002 1.24423050e+002 1.26292343e+002 1.14205315e+002 - 1.24455681e+002 1.26332497e+002 1.14205528e+002 1.24451843e+002 - 1.26357582e+002 1.14201057e+002 1.24475189e+002 1.26395248e+002 - 1.14217712e+002 1.24514702e+002 1.26482918e+002 1.14187340e+002 - 1.24516563e+002 1.26511627e+002 1.14193832e+002 1.24515587e+002 - 1.26540939e+002 1.14204201e+002 1.24546471e+002 1.26587646e+002 - 1.14241241e+002 1.24584229e+002 1.26666176e+002 1.14236794e+002 - 1.24600510e+002 1.26701935e+002 1.14230377e+002 1.24611465e+002 - 1.26745651e+002 1.14223099e+002 1.24622406e+002 1.26772491e+002 - 1.14261177e+002 1.24665977e+002 1.26850060e+002 1.14241005e+002 - 1.24662964e+002 1.26868782e+002 1.14256157e+002 1.24661217e+002 - 1.26926117e+002 1.14276695e+002 1.24706573e+002 1.26982216e+002 - 1.14284805e+002 1.24719627e+002 1.27036873e+002 1.14290009e+002 - 1.24747635e+002 1.27075813e+002 1.14301109e+002 1.24756996e+002 - 1.27121864e+002 1.14286751e+002 1.24761887e+002 1.27141533e+002 - 1.14286263e+002 1.24772987e+002 1.27209335e+002 1.14267708e+002 - 1.24788673e+002 1.27241905e+002 1.14297295e+002 1.24813301e+002 - 1.27300323e+002 1.14318596e+002 1.24856300e+002 1.27358719e+002 - 1.14324303e+002 1.24856537e+002 1.27403427e+002 1.14312088e+002 - 1.24864609e+002 1.27428566e+002 1.14334785e+002 1.24886513e+002 - 1.27489578e+002 1.14330612e+002 1.24895851e+002 1.27512840e+002 - 1.14364845e+002 1.24929001e+002 1.27575584e+002 1.14354767e+002 - 1.24934441e+002 1.27606659e+002 1.14352493e+002 1.24923355e+002 - 1.27637794e+002 1.14351242e+002 1.24931198e+002 1.27664856e+002 - 1.14328560e+002 1.24909691e+002 1.27675369e+002 1.14347267e+002 - 1.24945259e+002 1.27718903e+002 1.14366287e+002 1.24948227e+002 - 1.27756149e+002 1.14351082e+002 1.24951279e+002 1.27770508e+002 - 1.14374710e+002 1.24981041e+002 1.27857826e+002 1.14394188e+002 - 1.25024750e+002 1.27916428e+002 1.14426498e+002 1.25058655e+002 - 1.27977310e+002 1.14446915e+002 1.25093163e+002 1.28025269e+002 - 1.14463150e+002 1.25102966e+002 1.28070892e+002 1.14417816e+002 - 1.25071297e+002 1.28058441e+002 1.14428085e+002 1.25087555e+002 - 1.28111832e+002 1.14431480e+002 1.25108833e+002 1.28151886e+002 - 1.14461418e+002 1.25135399e+002 1.28212448e+002 1.14470345e+002 - 1.25150772e+002 1.28253098e+002 1.14480034e+002 1.25146210e+002 - 1.28292801e+002 1.14458084e+002 1.25137772e+002 1.28302811e+002 - 1.14484856e+002 1.25161926e+002 1.28353500e+002 1.14491676e+002 - 1.25191971e+002 1.28391937e+002 1.14506577e+002 1.25196251e+002 - 1.28433685e+002 1.14464203e+002 1.25164780e+002 1.28413376e+002 - 1.14479362e+002 1.25186584e+002 1.28469788e+002 1.14443359e+002 - 1.25169052e+002 1.28470917e+002 1.14466286e+002 1.25184731e+002 - 1.28509689e+002 1.14447563e+002 1.25178505e+002 1.28513474e+002 - 1.14444267e+002 1.25164360e+002 1.28538422e+002 1.14440971e+002 - 1.25180122e+002 1.28568695e+002 1.14455650e+002 1.25197243e+002 - 1.28616501e+002 1.14454994e+002 1.25210915e+002 1.28644516e+002 - 1.14479301e+002 1.25225403e+002 1.28692673e+002 1.14473679e+002 - 1.25236359e+002 1.28716537e+002 1.14503326e+002 1.25241837e+002 - 1.28769669e+002 1.14493660e+002 1.25248566e+002 1.28784317e+002 - 1.14500122e+002 1.25250107e+002 1.28811340e+002 1.14500328e+002 - 1.25268402e+002 1.28832535e+002 1.14541084e+002 1.25294693e+002 - 1.28883804e+002 1.14535088e+002 1.25301445e+002 1.28894577e+002 - 1.14540604e+002 1.25307304e+002 1.28934067e+002 1.14513931e+002 - 1.25314507e+002 1.28950378e+002 1.14529839e+002 1.25317696e+002 - 1.28981323e+002 1.14526421e+002 1.25331245e+002 1.28999893e+002 - 1.14544830e+002 1.25335968e+002 1.29034592e+002 1.14526321e+002 - 1.25331696e+002 1.29036758e+002 1.14542969e+002 1.25347755e+002 - 1.29075974e+002 1.14554420e+002 1.25371170e+002 1.29103973e+002 - 1.14566559e+002 1.25371071e+002 1.29133728e+002 1.14524559e+002 - 1.25342369e+002 1.29112091e+002 1.14529640e+002 1.25332489e+002 - 1.29140137e+002 1.14518211e+002 1.25338837e+002 1.29152527e+002 - 1.14532692e+002 1.25354324e+002 1.29195343e+002 1.14517029e+002 - 1.25357185e+002 1.29194061e+002 1.14524597e+002 1.25358131e+002 - 1.29219818e+002 1.14507523e+002 1.25346619e+002 1.29210037e+002 - 1.14517776e+002 1.25357460e+002 1.29247833e+002 1.14514641e+002 - 1.25379051e+002 1.29265625e+002 1.14515007e+002 1.25368637e+002 - 1.29281128e+002 1.14518166e+002 1.25376617e+002 1.29289551e+002 - 1.14521553e+002 1.25365913e+002 1.29303238e+002 1.14503494e+002 - 1.25366096e+002 1.29298141e+002 1.14510933e+002 1.25360077e+002 - 1.29315338e+002 1.14511894e+002 1.25369293e+002 1.29316528e+002 - 1.14516380e+002 1.25362816e+002 1.29322723e+002 1.14519615e+002 - 1.25379524e+002 1.29336349e+002 1.14538406e+002 1.25383659e+002 - 1.29360855e+002 1.14536377e+002 1.25399078e+002 1.29364700e+002 - 1.14532524e+002 1.25388779e+002 1.29370621e+002 1.14526131e+002 - 1.25400345e+002 1.29366150e+002 1.14523514e+002 1.25383705e+002 - 1.29365021e+002 1.14508171e+002 1.25379074e+002 1.29345245e+002 - 1.14530052e+002 1.25386047e+002 1.29360611e+002 1.14520752e+002 - 1.25395988e+002 1.29355713e+002 1.14520874e+002 1.25390305e+002 - 1.29358536e+002 1.14500328e+002 1.25378563e+002 1.29341095e+002 - 1.14514191e+002 1.25383537e+002 1.29350784e+002 1.14497482e+002 - 1.25375877e+002 1.29332047e+002 1.14524986e+002 1.25397247e+002 - 1.29355072e+002 1.14514755e+002 1.25392403e+002 1.29341354e+002 - 1.14491524e+002 1.25358154e+002 1.29303680e+002 1.14468750e+002 - 1.25341049e+002 1.29282364e+002 1.14481323e+002 1.25338303e+002 - 1.29274918e+002 1.14465538e+002 1.25329460e+002 1.29250519e+002 - 1.14446617e+002 1.25301094e+002 1.29218384e+002 1.14431694e+002 - 1.25297523e+002 1.29198364e+002 1.14435577e+002 1.25289032e+002 - 1.29192352e+002 1.14444504e+002 1.25302208e+002 1.29179413e+002 - 1.14457008e+002 1.25301155e+002 1.29167816e+002 1.14427658e+002 - 1.25283287e+002 1.29133423e+002 1.14462929e+002 1.25300224e+002 - 1.29147293e+002 1.14462204e+002 1.25306076e+002 1.29137238e+002 - 1.14475067e+002 1.25292931e+002 1.29119171e+002 1.14467461e+002 - 1.25292595e+002 1.29095306e+002 1.14485146e+002 1.25292801e+002 - 1.29092865e+002 1.14459167e+002 1.25276428e+002 1.29047714e+002 - 1.14486893e+002 1.25284683e+002 1.29050369e+002 1.14507523e+002 - 1.25304070e+002 1.29048050e+002 1.14523201e+002 1.25289658e+002 - 1.29035309e+002 1.14520378e+002 1.25291794e+002 1.29007172e+002 - 1.14498711e+002 1.25260368e+002 1.28957825e+002 1.14475029e+002 - 1.25249504e+002 1.28915634e+002 1.14484200e+002 1.25239418e+002 - 1.28898010e+002 1.14486160e+002 1.25246056e+002 1.28867325e+002 - 1.14491478e+002 1.25231209e+002 1.28834869e+002 1.14461670e+002 - 1.25215714e+002 1.28785950e+002 1.14461067e+002 1.25195305e+002 - 1.28759201e+002 1.14450005e+002 1.25193672e+002 1.28734634e+002 - 1.14460205e+002 1.25185898e+002 1.28714691e+002 1.14450439e+002 - 1.25184692e+002 1.28684952e+002 1.14456657e+002 1.25179832e+002 - 1.28664810e+002 1.14430145e+002 1.25158142e+002 1.28619629e+002 - 1.14434052e+002 1.25148544e+002 1.28589081e+002 1.14426384e+002 - 1.25147484e+002 1.28561432e+002 1.14436165e+002 1.25127853e+002 - 1.28537689e+002 1.14429237e+002 1.25135399e+002 1.28515457e+002 - 1.14439835e+002 1.25134933e+002 1.28490005e+002 1.14404716e+002 - 1.25114326e+002 1.28433136e+002 1.14428848e+002 1.25117004e+002 - 1.28434662e+002 1.14429375e+002 1.25122871e+002 1.28402573e+002 - 1.14422501e+002 1.25095024e+002 1.28350189e+002 1.14423767e+002 - 1.25109848e+002 1.28334396e+002 1.14425674e+002 1.25088478e+002 - 1.28307007e+002 1.14416008e+002 1.25089653e+002 1.28275116e+002 - 1.14421913e+002 1.25071022e+002 1.28248337e+002 1.14413513e+002 - 1.25068924e+002 1.28213043e+002 1.14425301e+002 1.25057396e+002 - 1.28179688e+002 1.14434563e+002 1.25079277e+002 1.28168655e+002 - 1.14421120e+002 1.25046028e+002 1.28119171e+002 1.14416359e+002 - 1.25046303e+002 1.28093430e+002 1.14430992e+002 1.25028831e+002 - 1.28061295e+002 1.14441284e+002 1.25049324e+002 1.28044632e+002 - 1.14446480e+002 1.25042786e+002 1.28016449e+002 1.14451141e+002 - 1.25060280e+002 1.28004074e+002 1.14429398e+002 1.25024895e+002 - 1.27963470e+002 1.14414581e+002 1.25019104e+002 1.27914200e+002 - 1.14382912e+002 1.24973984e+002 1.27841179e+002 1.14348495e+002 - 1.24952927e+002 1.27788727e+002 1.14354179e+002 1.24938515e+002 - 1.27768044e+002 1.14343102e+002 1.24928398e+002 1.27729210e+002 - 1.14333633e+002 1.24895203e+002 1.27685913e+002 1.14317123e+002 - 1.24891167e+002 1.27642662e+002 1.14305000e+002 1.24865242e+002 - 1.27597618e+002 1.14316864e+002 1.24873650e+002 1.27569214e+002 - 1.14308807e+002 1.24851730e+002 1.27520287e+002 1.14310303e+002 - 1.24850510e+002 1.27490288e+002 1.14344833e+002 1.24852165e+002 - 1.27469208e+002 1.14314423e+002 1.24822144e+002 1.27407074e+002 - 1.14296432e+002 1.24789154e+002 1.27350067e+002 1.14274734e+002 - 1.24776489e+002 1.27296852e+002 1.14299164e+002 1.24786095e+002 - 1.27287933e+002 1.14297890e+002 1.24788124e+002 1.27242966e+002 - 1.14309105e+002 1.24766846e+002 1.27183952e+002 1.14321571e+002 - 1.24791115e+002 1.27163910e+002 1.14341873e+002 1.24792862e+002 - 1.27157516e+002 1.14310654e+002 1.24763664e+002 1.27088867e+002 - 1.14324570e+002 1.24746964e+002 1.27052261e+002 1.14293198e+002 - 1.24718575e+002 1.26983421e+002 1.14272598e+002 1.24679977e+002 - 1.26920456e+002 1.14256927e+002 1.24661255e+002 1.26867004e+002 - 1.14265961e+002 1.24645981e+002 1.26825584e+002 1.14245453e+002 - 1.24621925e+002 1.26776802e+002 1.14264412e+002 1.24603508e+002 - 1.26739021e+002 1.14240883e+002 1.24577766e+002 1.26679611e+002 - 1.14240379e+002 1.24557884e+002 1.26635292e+002 1.14220535e+002 - 1.24541054e+002 1.26589020e+002 1.14222237e+002 1.24519707e+002 - 1.26555237e+002 1.14219666e+002 1.24505531e+002 1.26507324e+002 - 1.14240555e+002 1.24486412e+002 1.26456444e+002 1.14225578e+002 - 1.24473152e+002 1.26414703e+002 1.14203278e+002 1.24422287e+002 - 1.26358154e+002 1.14183235e+002 1.24399765e+002 1.26301613e+002 - 1.14156708e+002 1.24338745e+002 1.26222931e+002 1.14131020e+002 - 1.24313583e+002 1.26158638e+002 1.14139252e+002 1.24294441e+002 - 1.26119179e+002 1.14137672e+002 1.24283989e+002 1.26077400e+002 - 1.14117271e+002 1.24236755e+002 1.26015419e+002 1.14121613e+002 - 1.24232010e+002 1.25984161e+002 1.14118919e+002 1.24183479e+002 - 1.25918495e+002 1.14106400e+002 1.24157326e+002 1.25864769e+002 - 1.14098419e+002 1.24103416e+002 1.25806473e+002 1.14068192e+002 - 1.24067261e+002 1.25732689e+002 1.13997063e+002 1.23950577e+002 - 1.25618233e+002 1.13877686e+002 1.23813156e+002 1.25449715e+002 - 1.13778839e+002 1.23778862e+002 1.25438934e+002 1.13865837e+002 - 1.23913261e+002 1.25575523e+002 1.13946198e+002 1.24003967e+002 - 1.25690964e+002 1.14004196e+002 1.24089691e+002 1.25784119e+002 - 1.14030296e+002 1.24127029e+002 1.25856499e+002 1.14017937e+002 - 1.24153969e+002 1.25895004e+002 1.14034508e+002 1.24192108e+002 - 1.25964081e+002 1.14046761e+002 1.24232834e+002 1.26014870e+002 - 1.14078491e+002 1.24269089e+002 1.26082336e+002 1.14051628e+002 - 1.24275894e+002 1.26106987e+002 1.14084496e+002 1.24303871e+002 - 1.26179749e+002 1.14118416e+002 1.24364822e+002 1.26256012e+002 - 1.14143745e+002 1.24403999e+002 1.26326935e+002 1.14136703e+002 - 1.24426407e+002 1.26358780e+002 1.14135452e+002 1.24423225e+002 - 1.26385086e+002 1.14126961e+002 1.24439857e+002 1.26417618e+002 - 1.14128845e+002 1.24463272e+002 1.26493286e+002 1.14106590e+002 - 1.24473114e+002 1.26519089e+002 1.14115135e+002 1.24475128e+002 - 1.26558151e+002 1.14130394e+002 1.24514297e+002 1.26608368e+002 - 1.14155106e+002 1.24529541e+002 1.26672821e+002 1.14151062e+002 - 1.24558136e+002 1.26710648e+002 1.14144905e+002 1.24560295e+002 - 1.26750275e+002 1.14134026e+002 1.24576447e+002 1.26783020e+002 - 1.14159004e+002 1.24604691e+002 1.26850174e+002 1.14131805e+002 - 1.24598587e+002 1.26858025e+002 1.14138390e+002 1.24587875e+002 - 1.26905823e+002 1.14149261e+002 1.24615013e+002 1.26956551e+002 - 1.14155312e+002 1.24629547e+002 1.27004669e+002 1.14169380e+002 - 1.24665115e+002 1.27056244e+002 1.14178284e+002 1.24671555e+002 - 1.27102119e+002 1.14163513e+002 1.24679489e+002 1.27132362e+002 - 1.14182648e+002 1.24713898e+002 1.27211266e+002 1.14160812e+002 - 1.24721886e+002 1.27242828e+002 1.14185555e+002 1.24745155e+002 - 1.27296837e+002 1.14203636e+002 1.24782341e+002 1.27353851e+002 - 1.14208145e+002 1.24777763e+002 1.27395798e+002 1.14201881e+002 - 1.24791374e+002 1.27425461e+002 1.14232101e+002 1.24829765e+002 - 1.27494423e+002 1.14234222e+002 1.24844025e+002 1.27527969e+002 - 1.14250473e+002 1.24857727e+002 1.27573273e+002 1.14221077e+002 - 1.24844803e+002 1.27580971e+002 1.14223557e+002 1.24833519e+002 - 1.27618645e+002 1.14228951e+002 1.24856636e+002 1.27659805e+002 - 1.14233849e+002 1.24856102e+002 1.27696091e+002 1.14237984e+002 - 1.24877029e+002 1.27718727e+002 1.14256653e+002 1.24884888e+002 - 1.27764664e+002 1.14251045e+002 1.24895432e+002 1.27793709e+002 - 1.14279579e+002 1.24932472e+002 1.27878693e+002 1.14292793e+002 - 1.24981285e+002 1.27932785e+002 1.14320404e+002 1.24995300e+002 - 1.27986099e+002 1.14325943e+002 1.25019264e+002 1.28020645e+002 - 1.14339516e+002 1.25014946e+002 1.28060287e+002 1.14313087e+002 - 1.25001953e+002 1.28070068e+002 1.14331146e+002 1.25028397e+002 - 1.28132126e+002 1.14321510e+002 1.25032730e+002 1.28152878e+002 - 1.14356354e+002 1.25063751e+002 1.28219620e+002 1.14355675e+002 - 1.25077164e+002 1.28248581e+002 1.14359749e+002 1.25064362e+002 - 1.28284851e+002 1.14345100e+002 1.25061516e+002 1.28302200e+002 - 1.14357811e+002 1.25071602e+002 1.28342316e+002 1.14353905e+002 - 1.25086678e+002 1.28365616e+002 1.14355736e+002 1.25080322e+002 - 1.28393051e+002 1.14326378e+002 1.25068199e+002 1.28391678e+002 - 1.14327049e+002 1.25068436e+002 1.28435684e+002 1.14306793e+002 - 1.25074890e+002 1.28451569e+002 1.14340500e+002 1.25094437e+002 - 1.28503769e+002 1.14331596e+002 1.25109512e+002 1.28525269e+002 - 1.14321922e+002 1.25089813e+002 1.28540573e+002 1.14304222e+002 - 1.25086555e+002 1.28554642e+002 1.14302361e+002 1.25080383e+002 - 1.28586823e+002 1.14315063e+002 1.25113327e+002 1.28628479e+002 - 1.14337090e+002 1.25123360e+002 1.28672028e+002 1.14319344e+002 - 1.25124008e+002 1.28687500e+002 1.14362206e+002 1.25142540e+002 - 1.28755127e+002 1.14363716e+002 1.25161713e+002 1.28777588e+002 - 1.14378616e+002 1.25175209e+002 1.28811203e+002 1.14395477e+002 - 1.25204170e+002 1.28848557e+002 1.14420380e+002 1.25216682e+002 - 1.28879089e+002 1.14406815e+002 1.25217995e+002 1.28887772e+002 - 1.14399376e+002 1.25214363e+002 1.28916519e+002 1.14382027e+002 - 1.25224869e+002 1.28931656e+002 1.14388695e+002 1.25219269e+002 - 1.28955719e+002 1.14377167e+002 1.25225540e+002 1.28971512e+002 - 1.14391266e+002 1.25224190e+002 1.29000336e+002 1.14379814e+002 - 1.25229851e+002 1.29008621e+002 1.14376160e+002 1.25219437e+002 - 1.29030975e+002 1.14397659e+002 1.25248505e+002 1.29068100e+002 - 1.14424316e+002 1.25268967e+002 1.29114517e+002 1.14384773e+002 - 1.25243988e+002 1.29103073e+002 1.14391914e+002 1.25235130e+002 - 1.29123581e+002 1.14402634e+002 1.25261230e+002 1.29164917e+002 - 1.14409180e+002 1.25269547e+002 1.29189804e+002 1.14395042e+002 - 1.25275917e+002 1.29203293e+002 1.14409317e+002 1.25282478e+002 - 1.29235260e+002 1.14388596e+002 1.25273895e+002 1.29227585e+002 - 1.14413361e+002 1.25297539e+002 1.29271133e+002 1.14404144e+002 - 1.25305702e+002 1.29286880e+002 1.14390747e+002 1.25279556e+002 - 1.29278961e+002 1.14385590e+002 1.25291420e+002 1.29287048e+002 - 1.14389267e+002 1.25274483e+002 1.29297836e+002 1.14372620e+002 - 1.25271774e+002 1.29290466e+002 1.14367729e+002 1.25265030e+002 - 1.29302292e+002 1.14372375e+002 1.25273407e+002 1.29304230e+002 - 1.14373619e+002 1.25269424e+002 1.29313354e+002 1.14370003e+002 - 1.25272987e+002 1.29321213e+002 1.14383827e+002 1.25268478e+002 - 1.29336472e+002 1.14384987e+002 1.25281975e+002 1.29343842e+002 - 1.14380714e+002 1.25280991e+002 1.29351715e+002 1.14384796e+002 - 1.25296722e+002 1.29360336e+002 1.14376572e+002 1.25275833e+002 - 1.29352264e+002 1.14364044e+002 1.25269615e+002 1.29326431e+002 - 1.14368248e+002 1.25262840e+002 1.29324936e+002 1.14360397e+002 - 1.25271126e+002 1.29323364e+002 1.14379318e+002 1.25283165e+002 - 1.29344528e+002 1.14362244e+002 1.25282516e+002 1.29330688e+002 - 1.14351990e+002 1.25251442e+002 1.29318039e+002 1.14337906e+002 - 1.25253342e+002 1.29305405e+002 1.14373909e+002 1.25287895e+002 - 1.29338547e+002 1.14378166e+002 1.25293144e+002 1.29336197e+002 - 1.14353081e+002 1.25260956e+002 1.29304596e+002 1.14324905e+002 - 1.25248207e+002 1.29274536e+002 1.14332581e+002 1.25224754e+002 - 1.29261368e+002 1.14325592e+002 1.25224579e+002 1.29235184e+002 - 1.14314278e+002 1.25207741e+002 1.29215317e+002 1.14304123e+002 - 1.25213036e+002 1.29193329e+002 1.14295280e+002 1.25192734e+002 - 1.29176270e+002 1.14298141e+002 1.25200897e+002 1.29154282e+002 - 1.14313423e+002 1.25196129e+002 1.29156799e+002 1.14305298e+002 - 1.25198914e+002 1.29133682e+002 1.14333046e+002 1.25205887e+002 - 1.29135620e+002 1.14352570e+002 1.25235130e+002 1.29145142e+002 - 1.14361221e+002 1.25215660e+002 1.29126892e+002 1.14337257e+002 - 1.25195992e+002 1.29089401e+002 1.14340874e+002 1.25189713e+002 - 1.29071671e+002 1.14326553e+002 1.25179947e+002 1.29037842e+002 - 1.14344551e+002 1.25183853e+002 1.29029602e+002 1.14350357e+002 - 1.25196701e+002 1.29017990e+002 1.14369186e+002 1.25179329e+002 - 1.29008881e+002 1.14383385e+002 1.25197365e+002 1.29000656e+002 - 1.14364456e+002 1.25165260e+002 1.28950775e+002 1.14339256e+002 - 1.25148132e+002 1.28901108e+002 1.14348221e+002 1.25146538e+002 - 1.28886108e+002 1.14338753e+002 1.25144363e+002 1.28849670e+002 - 1.14330887e+002 1.25117599e+002 1.28800812e+002 1.14312012e+002 - 1.25111282e+002 1.28762451e+002 1.14317223e+002 1.25092072e+002 - 1.28737396e+002 1.14310478e+002 1.25096954e+002 1.28717346e+002 - 1.14325180e+002 1.25095322e+002 1.28704025e+002 1.14305099e+002 - 1.25077751e+002 1.28657516e+002 1.14306946e+002 1.25071716e+002 - 1.28637512e+002 1.14293373e+002 1.25062302e+002 1.28603714e+002 - 1.14310226e+002 1.25063675e+002 1.28588364e+002 1.14292572e+002 - 1.25056931e+002 1.28549957e+002 1.14304382e+002 1.25039207e+002 - 1.28534027e+002 1.14318970e+002 1.25066139e+002 1.28523819e+002 - 1.14325592e+002 1.25060181e+002 1.28496872e+002 1.14277237e+002 - 1.25026596e+002 1.28425781e+002 1.14292717e+002 1.25024925e+002 - 1.28418945e+002 1.14302765e+002 1.25038185e+002 1.28403900e+002 - 1.14303207e+002 1.25017532e+002 1.28355057e+002 1.14299980e+002 - 1.25023834e+002 1.28324646e+002 1.14303040e+002 1.25007553e+002 - 1.28305084e+002 1.14304756e+002 1.25019165e+002 1.28282394e+002 - 1.14309578e+002 1.24993088e+002 1.28252075e+002 1.14300064e+002 - 1.24996246e+002 1.28213959e+002 1.14307404e+002 1.24985237e+002 - 1.28181763e+002 1.14337051e+002 1.25013649e+002 1.28179581e+002 - 1.14317535e+002 1.24979553e+002 1.28131500e+002 1.14288574e+002 - 1.24959557e+002 1.28078476e+002 1.14304649e+002 1.24941177e+002 - 1.28046158e+002 1.14317223e+002 1.24967087e+002 1.28039337e+002 - 1.14325844e+002 1.24959068e+002 1.28008865e+002 1.14325256e+002 - 1.24974106e+002 1.27988792e+002 1.14310776e+002 1.24945618e+002 - 1.27953094e+002 1.14305511e+002 1.24949478e+002 1.27914665e+002 - 1.14284355e+002 1.24913147e+002 1.27852119e+002 1.14241066e+002 - 1.24881775e+002 1.27785522e+002 1.14234009e+002 1.24861084e+002 - 1.27753723e+002 1.14224655e+002 1.24850372e+002 1.27719467e+002 - 1.14216415e+002 1.24820747e+002 1.27682571e+002 1.14195786e+002 - 1.24808823e+002 1.27628876e+002 1.14180382e+002 1.24772316e+002 - 1.27574608e+002 1.14198967e+002 1.24797195e+002 1.27566971e+002 - 1.14200554e+002 1.24775299e+002 1.27521599e+002 1.14210892e+002 - 1.24786942e+002 1.27494644e+002 1.14234245e+002 1.24778061e+002 - 1.27463821e+002 1.14206078e+002 1.24759331e+002 1.27404381e+002 - 1.14194061e+002 1.24731705e+002 1.27347595e+002 1.14186234e+002 - 1.24732368e+002 1.27313248e+002 1.14210747e+002 1.24737633e+002 - 1.27295631e+002 1.14210693e+002 1.24741821e+002 1.27257866e+002 - 1.14215790e+002 1.24714432e+002 1.27192535e+002 1.14219398e+002 - 1.24730339e+002 1.27164085e+002 1.14241745e+002 1.24731041e+002 - 1.27155319e+002 1.14226128e+002 1.24725632e+002 1.27110771e+002 - 1.14224609e+002 1.24691338e+002 1.27056168e+002 1.14175888e+002 - 1.24642456e+002 1.26974754e+002 1.14168045e+002 1.24614235e+002 - 1.26915436e+002 1.14169479e+002 1.24611671e+002 1.26873787e+002 - 1.14179535e+002 1.24596817e+002 1.26836884e+002 1.14161575e+002 - 1.24586861e+002 1.26793808e+002 1.14175003e+002 1.24562866e+002 - 1.26750610e+002 1.14151436e+002 1.24535095e+002 1.26690704e+002 - 1.14142731e+002 1.24499413e+002 1.26631874e+002 1.14132645e+002 - 1.24494698e+002 1.26592522e+002 1.14141350e+002 1.24481560e+002 - 1.26574188e+002 1.14157509e+002 1.24489014e+002 1.26543999e+002 - 1.14163292e+002 1.24454178e+002 1.26486588e+002 1.14131958e+002 - 1.24426109e+002 1.26418655e+002 1.14137001e+002 1.24395309e+002 - 1.26380325e+002 1.14123024e+002 1.24381195e+002 1.26331047e+002 - 1.14100121e+002 1.24323250e+002 1.26264595e+002 1.14060516e+002 - 1.24284996e+002 1.26188499e+002 1.14056664e+002 1.24249046e+002 - 1.26129379e+002 1.14065712e+002 1.24255753e+002 1.26098160e+002 - 1.14040878e+002 1.24205032e+002 1.26029869e+002 1.14024918e+002 - 1.24177834e+002 1.25979774e+002 1.14021492e+002 1.24129677e+002 - 1.25914886e+002 1.14026505e+002 1.24121132e+002 1.25877007e+002 - 1.14034805e+002 1.24081734e+002 1.25829552e+002 1.13992393e+002 - 1.24032990e+002 1.25744003e+002 1.13936867e+002 1.23924149e+002 - 1.25639061e+002 1.13816093e+002 1.23793411e+002 1.25471039e+002 - 1.13691704e+002 1.23741104e+002 1.25446228e+002 1.13774445e+002 - 1.23874535e+002 1.25578041e+002 1.13837898e+002 1.23945221e+002 - 1.25682632e+002 1.13896645e+002 1.24036697e+002 1.25778076e+002 - 1.13920975e+002 1.24074799e+002 1.25848000e+002 1.13908722e+002 - 1.24098518e+002 1.25883804e+002 1.13932846e+002 1.24143929e+002 - 1.25967499e+002 1.13945412e+002 1.24185875e+002 1.26015282e+002 - 1.13962723e+002 1.24215950e+002 1.26078835e+002 1.13934883e+002 - 1.24213203e+002 1.26090851e+002 1.13963631e+002 1.24235458e+002 - 1.26167870e+002 1.13987984e+002 1.24286308e+002 1.26231346e+002 - 1.14006348e+002 1.24320503e+002 1.26298538e+002 1.14028923e+002 - 1.24373306e+002 1.26351830e+002 1.14024315e+002 1.24371185e+002 - 1.26389351e+002 1.13989113e+002 1.24361443e+002 1.26390465e+002 - 1.14008171e+002 1.24396019e+002 1.26474113e+002 1.13980690e+002 - 1.24408195e+002 1.26501503e+002 1.13996300e+002 1.24411644e+002 - 1.26545639e+002 1.14002525e+002 1.24442551e+002 1.26595139e+002 - 1.14017159e+002 1.24454659e+002 1.26649094e+002 1.14004768e+002 - 1.24468521e+002 1.26679993e+002 1.14001411e+002 1.24477448e+002 - 1.26728218e+002 1.13986549e+002 1.24488235e+002 1.26758514e+002 - 1.14018646e+002 1.24523994e+002 1.26830154e+002 1.13996689e+002 - 1.24517075e+002 1.26846176e+002 1.14002838e+002 1.24513641e+002 - 1.26890358e+002 1.13994469e+002 1.24531723e+002 1.26930283e+002 - 1.14005333e+002 1.24542023e+002 1.26979202e+002 1.14005295e+002 - 1.24563332e+002 1.27014793e+002 1.14014824e+002 1.24566826e+002 - 1.27055344e+002 1.14008652e+002 1.24583923e+002 1.27089775e+002 - 1.14027122e+002 1.24611412e+002 1.27180679e+002 1.14007179e+002 - 1.24636368e+002 1.27219124e+002 1.14039093e+002 1.24660568e+002 - 1.27284698e+002 1.14046074e+002 1.24682411e+002 1.27318146e+002 - 1.14049614e+002 1.24678253e+002 1.27363564e+002 1.14059982e+002 - 1.24708099e+002 1.27410027e+002 1.14076942e+002 1.24731529e+002 - 1.27477501e+002 1.14066826e+002 1.24739670e+002 1.27494949e+002 - 1.14102196e+002 1.24772118e+002 1.27557991e+002 1.14065941e+002 - 1.24750145e+002 1.27557976e+002 1.14049965e+002 1.24722061e+002 - 1.27580383e+002 1.14059410e+002 1.24748688e+002 1.27623856e+002 - 1.14078644e+002 1.24761726e+002 1.27671936e+002 1.14081909e+002 - 1.24784134e+002 1.27702621e+002 1.14088753e+002 1.24780685e+002 - 1.27729507e+002 1.14086830e+002 1.24794746e+002 1.27761063e+002 - 1.14138985e+002 1.24845116e+002 1.27865959e+002 1.14138374e+002 - 1.24883476e+002 1.27913292e+002 1.14144714e+002 1.24881416e+002 - 1.27944885e+002 1.14139450e+002 1.24889862e+002 1.27974236e+002 - 1.14152557e+002 1.24887733e+002 1.28019455e+002 1.14134438e+002 - 1.24889473e+002 1.28033798e+002 1.14152985e+002 1.24909416e+002 - 1.28092865e+002 1.14136047e+002 1.24911530e+002 1.28107483e+002 - 1.14171333e+002 1.24944138e+002 1.28178391e+002 1.14176064e+002 - 1.24955299e+002 1.28205322e+002 1.14193146e+002 1.24955452e+002 - 1.28257050e+002 1.14183411e+002 1.24954590e+002 1.28273254e+002 - 1.14173805e+002 1.24950417e+002 1.28294479e+002 1.14155548e+002 - 1.24949280e+002 1.28307724e+002 1.14153900e+002 1.24942749e+002 - 1.28330841e+002 1.14144554e+002 1.24945236e+002 1.28345413e+002 - 1.14125870e+002 1.24926048e+002 1.28371979e+002 1.14103668e+002 - 1.24933167e+002 1.28391510e+002 1.14142174e+002 1.24959991e+002 - 1.28441864e+002 1.14155617e+002 1.24985474e+002 1.28485107e+002 - 1.14137611e+002 1.24961746e+002 1.28495300e+002 1.14123901e+002 - 1.24967239e+002 1.28513992e+002 1.14118195e+002 1.24959633e+002 - 1.28543869e+002 1.14132790e+002 1.24990089e+002 1.28583267e+002 - 1.14150352e+002 1.24995872e+002 1.28625809e+002 1.14130272e+002 - 1.24995789e+002 1.28632874e+002 1.14160240e+002 1.24999344e+002 - 1.28683777e+002 1.14173256e+002 1.25034851e+002 1.28731277e+002 - 1.14206276e+002 1.25066437e+002 1.28785187e+002 1.14221237e+002 - 1.25091240e+002 1.28815872e+002 1.14238297e+002 1.25103729e+002 - 1.28845169e+002 1.14233612e+002 1.25113083e+002 1.28855087e+002 - 1.14227928e+002 1.25099304e+002 1.28877533e+002 1.14193733e+002 - 1.25098831e+002 1.28880554e+002 1.14199570e+002 1.25097641e+002 - 1.28904770e+002 1.14182259e+002 1.25088417e+002 1.28912750e+002 - 1.14178635e+002 1.25067108e+002 1.28925705e+002 1.14154930e+002 - 1.25065308e+002 1.28929825e+002 1.14171669e+002 1.25072906e+002 - 1.28965561e+002 1.14184845e+002 1.25093674e+002 1.28998245e+002 - 1.14212357e+002 1.25117378e+002 1.29045532e+002 1.14173027e+002 - 1.25091934e+002 1.29028931e+002 1.14185966e+002 1.25088776e+002 - 1.29069305e+002 1.14185143e+002 1.25108009e+002 1.29086899e+002 - 1.14210907e+002 1.25132896e+002 1.29137589e+002 1.14213333e+002 - 1.25152870e+002 1.29163269e+002 1.14235397e+002 1.25170578e+002 - 1.29205215e+002 1.14234001e+002 1.25172913e+002 1.29212906e+002 - 1.14251884e+002 1.25191132e+002 1.29251144e+002 1.14233498e+002 - 1.25194107e+002 1.29255234e+002 1.14226196e+002 1.25173790e+002 - 1.29258133e+002 1.14225655e+002 1.25190712e+002 1.29272858e+002 - 1.14207726e+002 1.25155991e+002 1.29261566e+002 1.14170494e+002 - 1.25140244e+002 1.29242416e+002 1.14180077e+002 1.25138435e+002 - 1.29261917e+002 1.14177536e+002 1.25137024e+002 1.29261642e+002 - 1.14181236e+002 1.25137260e+002 1.29268234e+002 1.14190041e+002 - 1.25153152e+002 1.29282028e+002 1.14207626e+002 1.25154594e+002 - 1.29305878e+002 1.14195770e+002 1.25157089e+002 1.29304153e+002 - 1.14189667e+002 1.25148674e+002 1.29302612e+002 1.14196182e+002 - 1.25166405e+002 1.29316757e+002 1.14196922e+002 1.25152321e+002 - 1.29315109e+002 1.14187004e+002 1.25147049e+002 1.29295944e+002 - 1.14184822e+002 1.25139595e+002 1.29283279e+002 1.14175438e+002 - 1.25144890e+002 1.29282806e+002 1.14190117e+002 1.25152069e+002 - 1.29298172e+002 1.14182281e+002 1.25159599e+002 1.29294159e+002 - 1.14165115e+002 1.25126465e+002 1.29270782e+002 1.14147728e+002 - 1.25121437e+002 1.29261917e+002 1.14177574e+002 1.25146751e+002 - 1.29292435e+002 1.14175690e+002 1.25160027e+002 1.29284531e+002 - 1.14165924e+002 1.25133774e+002 1.29256485e+002 1.14124771e+002 - 1.25103111e+002 1.29211075e+002 1.14153862e+002 1.25106445e+002 - 1.29222839e+002 1.14147606e+002 1.25106583e+002 1.29202896e+002 - 1.14126450e+002 1.25082794e+002 1.29163895e+002 1.14120949e+002 - 1.25091423e+002 1.29156357e+002 1.14125511e+002 1.25083199e+002 - 1.29149261e+002 1.14128983e+002 1.25087288e+002 1.29130066e+002 - 1.14128670e+002 1.25069321e+002 1.29108704e+002 1.14122475e+002 - 1.25078438e+002 1.29089462e+002 1.14149239e+002 1.25086052e+002 - 1.29091675e+002 1.14179390e+002 1.25119873e+002 1.29109177e+002 - 1.14170906e+002 1.25091400e+002 1.29085541e+002 1.14149101e+002 - 1.25073914e+002 1.29045395e+002 1.14153610e+002 1.25067993e+002 - 1.29030792e+002 1.14142281e+002 1.25059166e+002 1.28997101e+002 - 1.14156586e+002 1.25054787e+002 1.28983734e+002 1.14165749e+002 - 1.25070442e+002 1.28977768e+002 1.14183693e+002 1.25048538e+002 - 1.28956543e+002 1.14188065e+002 1.25065849e+002 1.28944641e+002 - 1.14182419e+002 1.25044128e+002 1.28911713e+002 1.14164291e+002 - 1.25035362e+002 1.28870804e+002 1.14158791e+002 1.25013824e+002 - 1.28839447e+002 1.14156754e+002 1.25014610e+002 1.28804764e+002 - 1.14154968e+002 1.24999382e+002 1.28766205e+002 1.14117157e+002 - 1.24982651e+002 1.28711914e+002 1.14127197e+002 1.24965515e+002 - 1.28691132e+002 1.14115509e+002 1.24957298e+002 1.28656036e+002 - 1.14132881e+002 1.24960060e+002 1.28648849e+002 1.14104469e+002 - 1.24942696e+002 1.28598358e+002 1.14105591e+002 1.24937500e+002 - 1.28577576e+002 1.14110611e+002 1.24943481e+002 1.28560532e+002 - 1.14131439e+002 1.24951241e+002 1.28549423e+002 1.14118553e+002 - 1.24947884e+002 1.28518829e+002 1.14138710e+002 1.24930969e+002 - 1.28501831e+002 1.14151871e+002 1.24959671e+002 1.28495331e+002 - 1.14152573e+002 1.24948395e+002 1.28462296e+002 1.14090279e+002 - 1.24898285e+002 1.28383545e+002 1.14095428e+002 1.24887688e+002 - 1.28359177e+002 1.14122948e+002 1.24914215e+002 1.28352234e+002 - 1.14127609e+002 1.24901352e+002 1.28308411e+002 1.14112938e+002 - 1.24900734e+002 1.28277496e+002 1.14127357e+002 1.24886940e+002 - 1.28258469e+002 1.14122665e+002 1.24893784e+002 1.28235153e+002 - 1.14125610e+002 1.24866829e+002 1.28197311e+002 1.14114944e+002 - 1.24868576e+002 1.28159760e+002 1.14138748e+002 1.24872772e+002 - 1.28143829e+002 1.14160919e+002 1.24903709e+002 1.28139587e+002 - 1.14154449e+002 1.24882813e+002 1.28106216e+002 1.14123428e+002 - 1.24853569e+002 1.28049057e+002 1.14141106e+002 1.24837158e+002 - 1.28021683e+002 1.14153236e+002 1.24861748e+002 1.28004272e+002 - 1.14169785e+002 1.24863594e+002 1.27984711e+002 1.14145782e+002 - 1.24860985e+002 1.27948647e+002 1.14139336e+002 1.24838669e+002 - 1.27913948e+002 1.14138626e+002 1.24838943e+002 1.27875114e+002 - 1.14139557e+002 1.24823967e+002 1.27828682e+002 1.14096184e+002 - 1.24792725e+002 1.27764572e+002 1.14104492e+002 1.24783577e+002 - 1.27745430e+002 1.14082848e+002 1.24767921e+002 1.27699982e+002 - 1.14066650e+002 1.24724762e+002 1.27654701e+002 1.14054085e+002 - 1.24723076e+002 1.27612328e+002 1.14023094e+002 1.24676941e+002 - 1.27544647e+002 1.14036102e+002 1.24696121e+002 1.27521111e+002 - 1.14027260e+002 1.24668900e+002 1.27470444e+002 1.14039352e+002 - 1.24676468e+002 1.27444115e+002 1.14065399e+002 1.24668335e+002 - 1.27416977e+002 1.14052917e+002 1.24664917e+002 1.27372894e+002 - 1.14039650e+002 1.24633095e+002 1.27311798e+002 1.14045959e+002 - 1.24647781e+002 1.27285950e+002 1.14058784e+002 1.24648293e+002 - 1.27272400e+002 1.14073372e+002 1.24661568e+002 1.27242599e+002 - 1.14082138e+002 1.24650116e+002 1.27184166e+002 1.14075859e+002 - 1.24653061e+002 1.27143242e+002 1.14086906e+002 1.24639114e+002 - 1.27118317e+002 1.14066605e+002 1.24621040e+002 1.27064438e+002 - 1.14053391e+002 1.24577759e+002 1.27001656e+002 1.14027847e+002 - 1.24556961e+002 1.26942497e+002 1.14034081e+002 1.24539680e+002 - 1.26900177e+002 1.14018524e+002 1.24528023e+002 1.26847427e+002 - 1.14010017e+002 1.24495369e+002 1.26791702e+002 1.14006882e+002 - 1.24493591e+002 1.26756622e+002 1.14026863e+002 1.24473511e+002 - 1.26719879e+002 1.14005119e+002 1.24448013e+002 1.26660667e+002 - 1.14017250e+002 1.24436211e+002 1.26628189e+002 1.13996101e+002 - 1.24416313e+002 1.26573296e+002 1.13994217e+002 1.24394035e+002 - 1.26539116e+002 1.14012962e+002 1.24396408e+002 1.26511192e+002 - 1.14025154e+002 1.24372154e+002 1.26459816e+002 1.13989494e+002 - 1.24341225e+002 1.26386383e+002 1.14009590e+002 1.24328949e+002 - 1.26366447e+002 1.13994003e+002 1.24313446e+002 1.26313751e+002 - 1.13993843e+002 1.24280815e+002 1.26269485e+002 1.13956192e+002 - 1.24243858e+002 1.26195107e+002 1.13944664e+002 1.24210243e+002 - 1.26132591e+002 1.13945709e+002 1.24197128e+002 1.26086281e+002 - 1.13931488e+002 1.24153793e+002 1.26027184e+002 1.13924706e+002 - 1.24133896e+002 1.25979713e+002 1.13928055e+002 1.24093651e+002 - 1.25930183e+002 1.13913803e+002 1.24063583e+002 1.25867416e+002 - 1.13932434e+002 1.24034325e+002 1.25824654e+002 1.13893188e+002 - 1.23994713e+002 1.25747162e+002 1.13831856e+002 1.23879631e+002 - 1.25635918e+002 1.13725441e+002 1.23752747e+002 1.25476486e+002 - 1.13627449e+002 1.23711075e+002 1.25457039e+002 1.13721619e+002 - 1.23848495e+002 1.25599686e+002 1.13793648e+002 1.23928497e+002 - 1.25708061e+002 1.13839844e+002 1.24010857e+002 1.25795998e+002 - 1.13857483e+002 1.24041595e+002 1.25856842e+002 1.13855492e+002 - 1.24078110e+002 1.25910416e+002 1.13874916e+002 1.24116051e+002 - 1.25979576e+002 1.13885681e+002 1.24162010e+002 1.26033066e+002 - 1.13907959e+002 1.24193657e+002 1.26101189e+002 1.13869057e+002 - 1.24177010e+002 1.26103279e+002 1.13879601e+002 1.24189438e+002 - 1.26162384e+002 1.13900414e+002 1.24228958e+002 1.26217735e+002 - 1.13910881e+002 1.24256897e+002 1.26278717e+002 1.13923683e+002 - 1.24297920e+002 1.26335892e+002 1.13909294e+002 1.24294273e+002 - 1.26356949e+002 1.13894180e+002 1.24302567e+002 1.26375992e+002 - 1.13906631e+002 1.24328697e+002 1.26460136e+002 1.13887550e+002 - 1.24339958e+002 1.26482132e+002 1.13889503e+002 1.24336227e+002 - 1.26518013e+002 1.13884918e+002 1.24353546e+002 1.26553116e+002 - 1.13901405e+002 1.24368835e+002 1.26614151e+002 1.13906158e+002 - 1.24399879e+002 1.26661880e+002 1.13899757e+002 1.24416313e+002 - 1.26718430e+002 1.13890900e+002 1.24425545e+002 1.26743881e+002 - 1.13923332e+002 1.24469742e+002 1.26825356e+002 1.13900688e+002 - 1.24459351e+002 1.26842468e+002 1.13873528e+002 1.24424629e+002 - 1.26861023e+002 1.13877060e+002 1.24451767e+002 1.26904732e+002 - 1.13885429e+002 1.24456078e+002 1.26954002e+002 1.13893333e+002 - 1.24485100e+002 1.26997353e+002 1.13896469e+002 1.24488152e+002 - 1.27030846e+002 1.13888962e+002 1.24505447e+002 1.27067436e+002 - 1.13910469e+002 1.24538307e+002 1.27162933e+002 1.13890511e+002 - 1.24552940e+002 1.27195793e+002 1.13922112e+002 1.24578217e+002 - 1.27251907e+002 1.13925171e+002 1.24595192e+002 1.27291672e+002 - 1.13928802e+002 1.24588509e+002 1.27333130e+002 1.13931725e+002 - 1.24619545e+002 1.27382858e+002 1.13958916e+002 1.24642525e+002 - 1.27444130e+002 1.13950279e+002 1.24656662e+002 1.27471954e+002 - 1.13979759e+002 1.24685623e+002 1.27534874e+002 1.13954407e+002 - 1.24674355e+002 1.27545364e+002 1.13935013e+002 1.24647568e+002 - 1.27566216e+002 1.13940254e+002 1.24662827e+002 1.27599724e+002 - 1.13940414e+002 1.24662338e+002 1.27632072e+002 1.13950661e+002 - 1.24690018e+002 1.27673111e+002 1.13943153e+002 1.24673729e+002 - 1.27685501e+002 1.13942551e+002 1.24686516e+002 1.27720757e+002 - 1.13984413e+002 1.24726868e+002 1.27813782e+002 1.13968018e+002 - 1.24743828e+002 1.27846962e+002 1.13985901e+002 1.24750237e+002 - 1.27884270e+002 1.13989014e+002 1.24772705e+002 1.27919449e+002 - 1.13995476e+002 1.24767624e+002 1.27960510e+002 1.13993103e+002 - 1.24788803e+002 1.27999062e+002 1.14010513e+002 1.24800377e+002 - 1.28052505e+002 1.13993179e+002 1.24799255e+002 1.28063934e+002 - 1.14036827e+002 1.24832214e+002 1.28134872e+002 1.14045883e+002 - 1.24857452e+002 1.28177902e+002 1.14054253e+002 1.24846313e+002 - 1.28213455e+002 1.14026474e+002 1.24833450e+002 1.28213882e+002 - 1.14026886e+002 1.24837990e+002 1.28247162e+002 1.14020882e+002 - 1.24839394e+002 1.28262115e+002 1.14015846e+002 1.24835274e+002 - 1.28286057e+002 1.13993279e+002 1.24835281e+002 1.28296310e+002 - 1.13987701e+002 1.24820869e+002 1.28343536e+002 1.13959396e+002 - 1.24823822e+002 1.28352676e+002 1.13985313e+002 1.24840141e+002 - 1.28396133e+002 1.13987213e+002 1.24856911e+002 1.28422043e+002 - 1.13982407e+002 1.24838593e+002 1.28445160e+002 1.13962036e+002 - 1.24840042e+002 1.28460754e+002 1.13965729e+002 1.24844063e+002 - 1.28495590e+002 1.13973122e+002 1.24863647e+002 1.28525848e+002 - 1.13989746e+002 1.24876160e+002 1.28568985e+002 1.13980782e+002 - 1.24876495e+002 1.28588715e+002 1.14008957e+002 1.24895332e+002 - 1.28648102e+002 1.14034859e+002 1.24934906e+002 1.28697784e+002 - 1.14071526e+002 1.24970512e+002 1.28757187e+002 1.14070923e+002 - 1.24983414e+002 1.28773041e+002 1.14077133e+002 1.24980179e+002 - 1.28792587e+002 1.14091766e+002 1.25006599e+002 1.28821136e+002 - 1.14087044e+002 1.25001984e+002 1.28849380e+002 1.14056847e+002 - 1.24992668e+002 1.28848618e+002 1.14054749e+002 1.24986549e+002 - 1.28866669e+002 1.14034805e+002 1.24976128e+002 1.28872421e+002 - 1.14029289e+002 1.24957962e+002 1.28884995e+002 1.14004829e+002 - 1.24953117e+002 1.28887131e+002 1.14024574e+002 1.24961716e+002 - 1.28927322e+002 1.14051376e+002 1.24994202e+002 1.28971420e+002 - 1.14071686e+002 1.25008202e+002 1.29011841e+002 1.14033928e+002 - 1.24986031e+002 1.28999680e+002 1.14023956e+002 1.24960609e+002 - 1.29014435e+002 1.14024940e+002 1.24979355e+002 1.29041977e+002 - 1.14051704e+002 1.25002228e+002 1.29087387e+002 1.14039665e+002 - 1.25007378e+002 1.29095795e+002 1.14081879e+002 1.25055458e+002 - 1.29162445e+002 1.14094528e+002 1.25070007e+002 1.29179291e+002 - 1.14100761e+002 1.25078949e+002 1.29215637e+002 1.14074196e+002 - 1.25070023e+002 1.29208435e+002 1.14062645e+002 1.25052574e+002 - 1.29207977e+002 1.14066261e+002 1.25062111e+002 1.29222015e+002 - 1.14053688e+002 1.25030128e+002 1.29216675e+002 1.14018524e+002 - 1.25016518e+002 1.29198074e+002 1.14023666e+002 1.25015892e+002 - 1.29217300e+002 1.14015472e+002 1.25017143e+002 1.29213867e+002 - 1.14019882e+002 1.25009323e+002 1.29223343e+002 1.14023315e+002 - 1.25025520e+002 1.29232391e+002 1.14047104e+002 1.25032433e+002 - 1.29260361e+002 1.14025627e+002 1.25022148e+002 1.29247955e+002 - 1.14015594e+002 1.25006325e+002 1.29238556e+002 1.14030495e+002 - 1.25026573e+002 1.29256882e+002 1.14052505e+002 1.25039398e+002 - 1.29279663e+002 1.14041351e+002 1.25036659e+002 1.29256958e+002 - 1.14050652e+002 1.25035675e+002 1.29259567e+002 1.14039391e+002 - 1.25046700e+002 1.29253738e+002 1.14042122e+002 1.25037872e+002 - 1.29252823e+002 1.14033546e+002 1.25039574e+002 1.29250443e+002 - 1.14017082e+002 1.25015068e+002 1.29237457e+002 1.14007057e+002 - 1.25014374e+002 1.29229370e+002 1.14009956e+002 1.25012993e+002 - 1.29229538e+002 1.14004906e+002 1.25018890e+002 1.29215302e+002 - 1.13997253e+002 1.24997177e+002 1.29198563e+002 1.13953926e+002 - 1.24962090e+002 1.29152817e+002 1.13987923e+002 1.24970383e+002 - 1.29157516e+002 1.13980507e+002 1.24974159e+002 1.29140152e+002 - 1.13965080e+002 1.24945107e+002 1.29108017e+002 1.13955666e+002 - 1.24959717e+002 1.29096680e+002 1.13966583e+002 1.24957108e+002 - 1.29099365e+002 1.13967651e+002 1.24964317e+002 1.29080872e+002 - 1.13968643e+002 1.24944168e+002 1.29050110e+002 1.13957985e+002 - 1.24946281e+002 1.29027451e+002 1.13984787e+002 1.24953079e+002 - 1.29029694e+002 1.14002861e+002 1.24978188e+002 1.29047424e+002 - 1.14026642e+002 1.24981010e+002 1.29047989e+002 1.14005898e+002 - 1.24963608e+002 1.29009644e+002 1.13997780e+002 1.24947617e+002 - 1.28991730e+002 1.14005867e+002 1.24962364e+002 1.28975098e+002 - 1.14005554e+002 1.24946671e+002 1.28947800e+002 1.14017113e+002 - 1.24960930e+002 1.28943130e+002 1.14036858e+002 1.24948570e+002 - 1.28927063e+002 1.14029137e+002 1.24945236e+002 1.28898682e+002 - 1.14051765e+002 1.24951630e+002 1.28888412e+002 1.14037270e+002 - 1.24945793e+002 1.28855042e+002 1.14020470e+002 1.24913277e+002 - 1.28812653e+002 1.14019432e+002 1.24919060e+002 1.28778931e+002 - 1.13991867e+002 1.24874733e+002 1.28714386e+002 1.13958252e+002 - 1.24853355e+002 1.28657867e+002 1.13979004e+002 1.24854904e+002 - 1.28655197e+002 1.13961014e+002 1.24841537e+002 1.28611435e+002 - 1.13969955e+002 1.24838905e+002 1.28592667e+002 1.13959335e+002 - 1.24835747e+002 1.28559570e+002 1.13957802e+002 1.24826340e+002 - 1.28535858e+002 1.13962822e+002 1.24836121e+002 1.28523819e+002 - 1.13980507e+002 1.24832924e+002 1.28507721e+002 1.13975563e+002 - 1.24844536e+002 1.28489120e+002 1.14002708e+002 1.24839905e+002 - 1.28473846e+002 1.13992485e+002 1.24839752e+002 1.28445786e+002 - 1.14009254e+002 1.24835381e+002 1.28421570e+002 1.13965134e+002 - 1.24806496e+002 1.28356857e+002 1.13974098e+002 1.24800728e+002 - 1.28340683e+002 1.13980858e+002 1.24813232e+002 1.28320755e+002 - 1.13993843e+002 1.24802414e+002 1.28283997e+002 1.13976982e+002 - 1.24796005e+002 1.28238037e+002 1.13980965e+002 1.24782532e+002 - 1.28221939e+002 1.13974846e+002 1.24783134e+002 1.28190765e+002 - 1.14003685e+002 1.24789291e+002 1.28184753e+002 1.13990921e+002 - 1.24783279e+002 1.28143036e+002 1.13992096e+002 1.24770470e+002 - 1.28106995e+002 1.14016884e+002 1.24797371e+002 1.28099350e+002 - 1.14002213e+002 1.24770020e+002 1.28052643e+002 1.13981194e+002 - 1.24755684e+002 1.28013290e+002 1.13994293e+002 1.24736160e+002 - 1.27974098e+002 1.14022728e+002 1.24770782e+002 1.27973747e+002 - 1.14042114e+002 1.24774864e+002 1.27954849e+002 1.14018867e+002 - 1.24773125e+002 1.27914291e+002 1.14002396e+002 1.24744606e+002 - 1.27872467e+002 1.13989594e+002 1.24741058e+002 1.27826271e+002 - 1.14015388e+002 1.24737282e+002 1.27797035e+002 1.13980965e+002 - 1.24714134e+002 1.27738434e+002 1.13990318e+002 1.24705002e+002 - 1.27721954e+002 1.13987572e+002 1.24707001e+002 1.27696602e+002 - 1.13961395e+002 1.24655922e+002 1.27639603e+002 1.13936447e+002 - 1.24644432e+002 1.27590546e+002 1.13906937e+002 1.24598534e+002 - 1.27522873e+002 1.13899719e+002 1.24593628e+002 1.27472992e+002 - 1.13916214e+002 1.24586060e+002 1.27444580e+002 1.13910957e+002 - 1.24584862e+002 1.27413467e+002 1.13926727e+002 1.24567924e+002 - 1.27372719e+002 1.13935448e+002 1.24579330e+002 1.27341789e+002 - 1.13936310e+002 1.24566139e+002 1.27304504e+002 1.13925171e+002 - 1.24564545e+002 1.27260101e+002 1.13936661e+002 1.24566551e+002 - 1.27241577e+002 1.13954857e+002 1.24583260e+002 1.27218910e+002 - 1.13972336e+002 1.24581017e+002 1.27166359e+002 1.13970367e+002 - 1.24587997e+002 1.27125908e+002 1.13959427e+002 1.24552628e+002 - 1.27077843e+002 1.13940765e+002 1.24528976e+002 1.27023842e+002 - 1.13925117e+002 1.24486305e+002 1.26962410e+002 1.13907410e+002 - 1.24466721e+002 1.26908096e+002 1.13898315e+002 1.24440544e+002 - 1.26857368e+002 1.13897247e+002 1.24438309e+002 1.26814880e+002 - 1.13875061e+002 1.24391273e+002 1.26744621e+002 1.13881042e+002 - 1.24393326e+002 1.26718178e+002 1.13910942e+002 1.24389656e+002 - 1.26693329e+002 1.13897583e+002 1.24377617e+002 1.26643776e+002 - 1.13909668e+002 1.24364235e+002 1.26603371e+002 1.13895233e+002 - 1.24347679e+002 1.26555389e+002 1.13880707e+002 1.24317070e+002 - 1.26514656e+002 1.13888062e+002 1.24316795e+002 1.26477386e+002 - 1.13903267e+002 1.24290764e+002 1.26422546e+002 1.13873039e+002 - 1.24265190e+002 1.26358086e+002 1.13899094e+002 1.24259125e+002 - 1.26343025e+002 1.13886238e+002 1.24244934e+002 1.26291916e+002 - 1.13878349e+002 1.24210579e+002 1.26236969e+002 1.13857819e+002 - 1.24188026e+002 1.26176651e+002 1.13847198e+002 1.24147263e+002 - 1.26115364e+002 1.13844780e+002 1.24139679e+002 1.26066689e+002 - 1.13838661e+002 1.24098755e+002 1.26015671e+002 1.13832642e+002 - 1.24077751e+002 1.25963814e+002 1.13829170e+002 1.24034248e+002 - 1.25907516e+002 1.13832817e+002 1.24019203e+002 1.25864830e+002 - 1.13843353e+002 1.23979988e+002 1.25814415e+002 1.13812218e+002 - 1.23937592e+002 1.25739708e+002 1.13767586e+002 1.23848412e+002 - 1.25643219e+002 1.13655777e+002 1.23716431e+002 1.25477463e+002 - 1.13565781e+002 1.23683945e+002 1.25457527e+002 1.13662155e+002 - 1.23820747e+002 1.25604996e+002 1.13742783e+002 1.23908752e+002 - 1.25723373e+002 1.13772736e+002 1.23971817e+002 1.25795456e+002 - 1.13780128e+002 1.23995399e+002 1.25850082e+002 1.13780289e+002 - 1.24032127e+002 1.25897636e+002 1.13787796e+002 1.24065483e+002 - 1.25964653e+002 1.13805290e+002 1.24114014e+002 1.26023415e+002 - 1.13827408e+002 1.24148483e+002 1.26090805e+002 1.13787292e+002 - 1.24127876e+002 1.26091400e+002 1.13795975e+002 1.24137985e+002 - 1.26149414e+002 1.13816879e+002 1.24192558e+002 1.26217697e+002 - 1.13815720e+002 1.24197464e+002 1.26264977e+002 1.13812798e+002 - 1.24223694e+002 1.26299652e+002 1.13804993e+002 1.24222191e+002 - 1.26328484e+002 1.13816483e+002 1.24255409e+002 1.26375290e+002 - 1.13814781e+002 1.24271500e+002 1.26442879e+002 1.13775291e+002 - 1.24267792e+002 1.26454361e+002 1.13781837e+002 1.24266365e+002 - 1.26498482e+002 1.13778618e+002 1.24278168e+002 1.26531212e+002 - 1.13797333e+002 1.24301208e+002 1.26596512e+002 1.13805687e+002 - 1.24336800e+002 1.26650330e+002 1.13808746e+002 1.24355331e+002 - 1.26709373e+002 1.13786545e+002 1.24360863e+002 1.26725876e+002 - 1.13815994e+002 1.24390862e+002 1.26802711e+002 1.13782265e+002 - 1.24380058e+002 1.26812218e+002 1.13751686e+002 1.24344559e+002 - 1.26829681e+002 1.13745667e+002 1.24355598e+002 1.26863625e+002 - 1.13750954e+002 1.24368584e+002 1.26914391e+002 1.13768021e+002 - 1.24403275e+002 1.26970146e+002 1.13768539e+002 1.24406776e+002 - 1.27007355e+002 1.13771561e+002 1.24428917e+002 1.27047905e+002 - 1.13807861e+002 1.24472366e+002 1.27151123e+002 1.13772995e+002 - 1.24474548e+002 1.27169655e+002 1.13784149e+002 1.24478706e+002 - 1.27213379e+002 1.13795464e+002 1.24502136e+002 1.27254166e+002 - 1.13800743e+002 1.24496964e+002 1.27292358e+002 1.13806625e+002 - 1.24527580e+002 1.27342751e+002 1.13817482e+002 1.24548454e+002 - 1.27398071e+002 1.13801796e+002 1.24549141e+002 1.27417870e+002 - 1.13825912e+002 1.24569115e+002 1.27475342e+002 1.13800209e+002 - 1.24558823e+002 1.27487854e+002 1.13801834e+002 1.24550797e+002 - 1.27526367e+002 1.13806549e+002 1.24570686e+002 1.27562981e+002 - 1.13805267e+002 1.24561386e+002 1.27592285e+002 1.13812569e+002 - 1.24589722e+002 1.27630234e+002 1.13825485e+002 1.24589554e+002 - 1.27663864e+002 1.13810272e+002 1.24591682e+002 1.27682335e+002 - 1.13823570e+002 1.24606445e+002 1.27741684e+002 1.13799057e+002 - 1.24609917e+002 1.27762367e+002 1.13815018e+002 1.24620552e+002 - 1.27813057e+002 1.13831169e+002 1.24653564e+002 1.27856804e+002 - 1.13858467e+002 1.24674057e+002 1.27921356e+002 1.13859924e+002 - 1.24688095e+002 1.27956863e+002 1.13864433e+002 1.24690369e+002 - 1.28002853e+002 1.13862427e+002 1.24703804e+002 1.28029266e+002 - 1.13882843e+002 1.24716194e+002 1.28077789e+002 1.13884583e+002 - 1.24733749e+002 1.28109436e+002 1.13888542e+002 1.24720215e+002 - 1.28145386e+002 1.13872017e+002 1.24717941e+002 1.28155350e+002 - 1.13876610e+002 1.24720650e+002 1.28195480e+002 1.13870964e+002 - 1.24727882e+002 1.28212753e+002 1.13857277e+002 1.24707840e+002 - 1.28222900e+002 1.13826218e+002 1.24697884e+002 1.28224365e+002 - 1.13839462e+002 1.24705627e+002 1.28286194e+002 1.13801285e+002 - 1.24697960e+002 1.28293549e+002 1.13826569e+002 1.24714180e+002 - 1.28338989e+002 1.13824097e+002 1.24731155e+002 1.28366547e+002 - 1.13819473e+002 1.24722115e+002 1.28389923e+002 1.13811119e+002 - 1.24726883e+002 1.28413315e+002 1.13828407e+002 1.24742821e+002 - 1.28460083e+002 1.13838173e+002 1.24769966e+002 1.28495789e+002 - 1.13846336e+002 1.24771019e+002 1.28525955e+002 1.13823021e+002 - 1.24756966e+002 1.28528778e+002 1.13855881e+002 1.24779221e+002 - 1.28588272e+002 1.13877258e+002 1.24823158e+002 1.28638657e+002 - 1.13876610e+002 1.24820724e+002 1.28669907e+002 1.13876411e+002 - 1.24836197e+002 1.28690735e+002 1.13902176e+002 1.24849998e+002 - 1.28720444e+002 1.13910645e+002 1.24870163e+002 1.28743042e+002 - 1.13909447e+002 1.24856552e+002 1.28766815e+002 1.13895210e+002 - 1.24869354e+002 1.28784760e+002 1.13898720e+002 1.24860184e+002 - 1.28802704e+002 1.13901115e+002 1.24877434e+002 1.28832275e+002 - 1.13886566e+002 1.24853691e+002 1.28839005e+002 1.13879395e+002 - 1.24861359e+002 1.28858719e+002 1.13879326e+002 1.24851280e+002 - 1.28883224e+002 1.13892532e+002 1.24879646e+002 1.28919891e+002 - 1.13917610e+002 1.24894119e+002 1.28965912e+002 1.13893906e+002 - 1.24886650e+002 1.28964127e+002 1.13879646e+002 1.24856865e+002 - 1.28975830e+002 1.13869743e+002 1.24859947e+002 1.28984909e+002 - 1.13874626e+002 1.24866554e+002 1.29016220e+002 1.13880157e+002 - 1.24887794e+002 1.29044037e+002 1.13928230e+002 1.24929848e+002 - 1.29112091e+002 1.13928856e+002 1.24937531e+002 1.29118896e+002 - 1.13926880e+002 1.24935226e+002 1.29142899e+002 1.13898003e+002 - 1.24930862e+002 1.29138641e+002 1.13895195e+002 1.24918633e+002 - 1.29151154e+002 1.13896484e+002 1.24930344e+002 1.29156586e+002 - 1.13882973e+002 1.24903000e+002 1.29152603e+002 1.13856331e+002 - 1.24888710e+002 1.29143204e+002 1.13867043e+002 1.24896912e+002 - 1.29168228e+002 1.13849464e+002 1.24892731e+002 1.29161072e+002 - 1.13865494e+002 1.24894791e+002 1.29177353e+002 1.13848839e+002 - 1.24887985e+002 1.29169205e+002 1.13879959e+002 1.24901176e+002 - 1.29199112e+002 1.13871819e+002 1.24902885e+002 1.29198532e+002 - 1.13866997e+002 1.24887039e+002 1.29191330e+002 1.13861023e+002 - 1.24894630e+002 1.29188492e+002 1.13877190e+002 1.24900299e+002 - 1.29207565e+002 1.13887787e+002 1.24918030e+002 1.29205109e+002 - 1.13886581e+002 1.24901451e+002 1.29192825e+002 1.13883354e+002 - 1.24925537e+002 1.29200317e+002 1.13884346e+002 1.24919617e+002 - 1.29201492e+002 1.13866905e+002 1.24911415e+002 1.29187500e+002 - 1.13853996e+002 1.24893990e+002 1.29179062e+002 1.13836311e+002 - 1.24886398e+002 1.29164932e+002 1.13846275e+002 1.24885002e+002 - 1.29167892e+002 1.13843941e+002 1.24889610e+002 1.29161209e+002 - 1.13828995e+002 1.24865707e+002 1.29132111e+002 1.13811386e+002 - 1.24853867e+002 1.29108719e+002 1.13815117e+002 1.24836647e+002 - 1.29093552e+002 1.13823311e+002 1.24849457e+002 1.29083466e+002 - 1.13800194e+002 1.24823944e+002 1.29047775e+002 1.13786919e+002 - 1.24821358e+002 1.29023987e+002 1.13813873e+002 1.24838203e+002 - 1.29044266e+002 1.13813629e+002 1.24833862e+002 1.29018417e+002 - 1.13817032e+002 1.24822845e+002 1.28998199e+002 1.13795288e+002 - 1.24821823e+002 1.28969391e+002 1.13808548e+002 1.24814812e+002 - 1.28966324e+002 1.13818687e+002 1.24833672e+002 1.28967743e+002 - 1.13849464e+002 1.24845200e+002 1.28979065e+002 1.13841286e+002 - 1.24844902e+002 1.28958359e+002 1.13842972e+002 1.24829102e+002 - 1.28941483e+002 1.13859688e+002 1.24850708e+002 1.28935303e+002 - 1.13853668e+002 1.24835533e+002 1.28904129e+002 1.13847717e+002 - 1.24828804e+002 1.28882339e+002 1.13880646e+002 1.24832939e+002 - 1.28876389e+002 1.13875153e+002 1.24829613e+002 1.28849716e+002 - 1.13897453e+002 1.24832420e+002 1.28840530e+002 1.13874168e+002 - 1.24817566e+002 1.28787933e+002 1.13866074e+002 1.24797714e+002 - 1.28758362e+002 1.13875999e+002 1.24809631e+002 1.28739349e+002 - 1.13840698e+002 1.24761726e+002 1.28669739e+002 1.13814133e+002 - 1.24747604e+002 1.28626282e+002 1.13827919e+002 1.24744766e+002 - 1.28610764e+002 1.13829002e+002 1.24753586e+002 1.28587143e+002 - 1.13841423e+002 1.24755516e+002 1.28573288e+002 1.13825294e+002 - 1.24743378e+002 1.28535889e+002 1.13831680e+002 1.24734100e+002 - 1.28510925e+002 1.13838486e+002 1.24741615e+002 1.28495834e+002 - 1.13824425e+002 1.24718369e+002 1.28452591e+002 1.13813431e+002 - 1.24714966e+002 1.28426239e+002 1.13836586e+002 1.24713669e+002 - 1.28414627e+002 1.13835800e+002 1.24721573e+002 1.28390137e+002 - 1.13852623e+002 1.24716026e+002 1.28366196e+002 1.13817856e+002 - 1.24696259e+002 1.28310883e+002 1.13813232e+002 1.24675026e+002 - 1.28282700e+002 1.13820236e+002 1.24685173e+002 1.28258469e+002 - 1.13846680e+002 1.24689743e+002 1.28234467e+002 1.13830803e+002 - 1.24689766e+002 1.28199799e+002 1.13848473e+002 1.24689629e+002 - 1.28188538e+002 1.13835960e+002 1.24683319e+002 1.28151260e+002 - 1.13860878e+002 1.24679825e+002 1.28142822e+002 1.13851601e+002 - 1.24686996e+002 1.28110336e+002 1.13861351e+002 1.24676704e+002 - 1.28076096e+002 1.13867706e+002 1.24690475e+002 1.28055679e+002 - 1.13855957e+002 1.24660141e+002 1.28009842e+002 1.13844215e+002 - 1.24651749e+002 1.27971886e+002 1.13855995e+002 1.24637665e+002 - 1.27936584e+002 1.13878799e+002 1.24671234e+002 1.27930336e+002 - 1.13888725e+002 1.24661919e+002 1.27900261e+002 1.13867645e+002 - 1.24663239e+002 1.27858192e+002 1.13859779e+002 1.24643433e+002 - 1.27830551e+002 1.13858269e+002 1.24642609e+002 1.27787231e+002 - 1.13864311e+002 1.24624512e+002 1.27731941e+002 1.13840858e+002 - 1.24613449e+002 1.27690216e+002 1.13846924e+002 1.24605492e+002 - 1.27674606e+002 1.13854195e+002 1.24607101e+002 1.27652779e+002 - 1.13829155e+002 1.24563210e+002 1.27595901e+002 1.13804504e+002 - 1.24547623e+002 1.27548920e+002 1.13779991e+002 1.24509941e+002 - 1.27487694e+002 1.13770348e+002 1.24501312e+002 1.27440292e+002 - 1.13771484e+002 1.24483116e+002 1.27402481e+002 1.13772255e+002 - 1.24480431e+002 1.27366737e+002 1.13776108e+002 1.24459473e+002 - 1.27315498e+002 1.13791855e+002 1.24478157e+002 1.27290161e+002 - 1.13802681e+002 1.24468781e+002 1.27256004e+002 1.13790443e+002 - 1.24472900e+002 1.27217308e+002 1.13812973e+002 1.24480095e+002 - 1.27205757e+002 1.13834747e+002 1.24503876e+002 1.27176987e+002 - 1.13843155e+002 1.24485954e+002 1.27121849e+002 1.13831139e+002 - 1.24486786e+002 1.27079575e+002 1.13811996e+002 1.24440033e+002 - 1.27023949e+002 1.13805992e+002 1.24435371e+002 1.26982513e+002 - 1.13822250e+002 1.24417351e+002 1.26946381e+002 1.13804054e+002 - 1.24398369e+002 1.26893311e+002 1.13783760e+002 1.24358231e+002 - 1.26830666e+002 1.13776108e+002 1.24351250e+002 1.26782417e+002 - 1.13762192e+002 1.24309914e+002 1.26722610e+002 1.13775192e+002 - 1.24321762e+002 1.26695114e+002 1.13789154e+002 1.24301933e+002 - 1.26651749e+002 1.13773293e+002 1.24288048e+002 1.26594841e+002 - 1.13790405e+002 1.24275696e+002 1.26565697e+002 1.13773506e+002 - 1.24267578e+002 1.26517578e+002 1.13773491e+002 1.24243774e+002 - 1.26486427e+002 1.13773956e+002 1.24239799e+002 1.26442146e+002 - 1.13789169e+002 1.24211304e+002 1.26386719e+002 1.13780922e+002 - 1.24207359e+002 1.26349266e+002 1.13790428e+002 1.24189972e+002 - 1.26316147e+002 1.13785919e+002 1.24181526e+002 1.26270790e+002 - 1.13778618e+002 1.24144829e+002 1.26218620e+002 1.13754936e+002 - 1.24118401e+002 1.26153679e+002 1.13760254e+002 1.24093208e+002 - 1.26101669e+002 1.13745934e+002 1.24077950e+002 1.26042732e+002 - 1.13749115e+002 1.24039581e+002 1.25995354e+002 1.13756882e+002 - 1.24040710e+002 1.25965675e+002 1.13767685e+002 1.24002953e+002 - 1.25918930e+002 1.13762215e+002 1.23980537e+002 1.25866417e+002 - 1.13755707e+002 1.23925560e+002 1.25796059e+002 1.13727249e+002 - 1.23884727e+002 1.25724220e+002 1.13688484e+002 1.23803001e+002 - 1.25633308e+002 1.13588997e+002 1.23681786e+002 1.25482582e+002 - 1.13497421e+002 1.23629105e+002 1.25469681e+002 1.13583878e+002 - 1.23776459e+002 1.25606689e+002 1.13657921e+002 1.23862946e+002 - 1.25717964e+002 1.13682388e+002 1.23919884e+002 1.25783768e+002 - 1.13695580e+002 1.23946907e+002 1.25844772e+002 1.13686775e+002 - 1.23969986e+002 1.25880768e+002 1.13691856e+002 1.23997108e+002 - 1.25944885e+002 1.13693283e+002 1.24034592e+002 1.25990234e+002 - 1.13733658e+002 1.24087738e+002 1.26080589e+002 1.13680656e+002 - 1.24066399e+002 1.26071541e+002 1.13712448e+002 1.24088318e+002 - 1.26157814e+002 1.13726166e+002 1.24132614e+002 1.26217560e+002 - 1.13725784e+002 1.24152428e+002 1.26268265e+002 1.13720306e+002 - 1.24177261e+002 1.26301849e+002 1.13723824e+002 1.24172997e+002 - 1.26336838e+002 1.13720116e+002 1.24198914e+002 1.26377518e+002 - 1.13716774e+002 1.24217400e+002 1.26442078e+002 1.13661423e+002 - 1.24196732e+002 1.26439812e+002 1.13667343e+002 1.24191559e+002 - 1.26479172e+002 1.13678383e+002 1.24226311e+002 1.26528793e+002 - 1.13691597e+002 1.24227936e+002 1.26586922e+002 1.13684975e+002 - 1.24259720e+002 1.26630470e+002 1.13697876e+002 1.24284920e+002 - 1.26695412e+002 1.13670166e+002 1.24287086e+002 1.26712372e+002 - 1.13686325e+002 1.24300674e+002 1.26769936e+002 1.13650482e+002 - 1.24293800e+002 1.26785995e+002 1.13652992e+002 1.24281738e+002 - 1.26829430e+002 1.13632698e+002 1.24286209e+002 1.26857368e+002 - 1.13634583e+002 1.24293419e+002 1.26898788e+002 1.13632744e+002 - 1.24316696e+002 1.26937370e+002 1.13650291e+002 1.24324936e+002 - 1.26989273e+002 1.13653526e+002 1.24351097e+002 1.27038727e+002 - 1.13665154e+002 1.24380989e+002 1.27112556e+002 1.13639832e+002 - 1.24380882e+002 1.27134712e+002 1.13653938e+002 1.24387169e+002 - 1.27177711e+002 1.13667137e+002 1.24416794e+002 1.27227013e+002 - 1.13658447e+002 1.24388779e+002 1.27250206e+002 1.13657875e+002 - 1.24421585e+002 1.27298264e+002 1.13666794e+002 1.24438248e+002 - 1.27345261e+002 1.13633621e+002 1.24421745e+002 1.27351479e+002 - 1.13675880e+002 1.24458755e+002 1.27427055e+002 1.13635620e+002 - 1.24437843e+002 1.27426010e+002 1.13649910e+002 1.24431206e+002 - 1.27475327e+002 1.13654877e+002 1.24459114e+002 1.27518562e+002 - 1.13653305e+002 1.24447426e+002 1.27538841e+002 1.13671501e+002 - 1.24487823e+002 1.27591049e+002 1.13684914e+002 1.24476936e+002 - 1.27621330e+002 1.13671799e+002 1.24477882e+002 1.27642159e+002 - 1.13677345e+002 1.24495178e+002 1.27703270e+002 1.13655998e+002 - 1.24502747e+002 1.27727158e+002 1.13660271e+002 1.24505844e+002 - 1.27761856e+002 1.13663193e+002 1.24527878e+002 1.27803604e+002 - 1.13705307e+002 1.24551544e+002 1.27873062e+002 1.13710648e+002 - 1.24578865e+002 1.27916176e+002 1.13722481e+002 1.24582817e+002 - 1.27962135e+002 1.13710800e+002 1.24585236e+002 1.27977371e+002 - 1.13736488e+002 1.24609764e+002 1.28034653e+002 1.13706108e+002 - 1.24601196e+002 1.28040192e+002 1.13708565e+002 1.24574211e+002 - 1.28074631e+002 1.13710960e+002 1.24589508e+002 1.28107208e+002 - 1.13714073e+002 1.24598099e+002 1.28137177e+002 1.13689110e+002 - 1.24589973e+002 1.28143295e+002 1.13681190e+002 1.24569435e+002 - 1.28159485e+002 1.13662834e+002 1.24566154e+002 1.28173996e+002 - 1.13675072e+002 1.24577660e+002 1.28237152e+002 1.13626602e+002 - 1.24562256e+002 1.28229202e+002 1.13655502e+002 1.24583427e+002 - 1.28281998e+002 1.13650017e+002 1.24609337e+002 1.28318466e+002 - 1.13680656e+002 1.24612373e+002 1.28362213e+002 1.13664879e+002 - 1.24615295e+002 1.28375107e+002 1.13688637e+002 1.24637650e+002 - 1.28430466e+002 1.13703682e+002 1.24674240e+002 1.28477570e+002 - 1.13701073e+002 1.24661751e+002 1.28495300e+002 1.13660957e+002 - 1.24643005e+002 1.28492020e+002 1.13688133e+002 1.24644409e+002 - 1.28540848e+002 1.13711266e+002 1.24694946e+002 1.28597031e+002 - 1.13707581e+002 1.24693703e+002 1.28616180e+002 1.13695290e+002 - 1.24702606e+002 1.28627945e+002 1.13723442e+002 1.24705727e+002 - 1.28664749e+002 1.13733231e+002 1.24727394e+002 1.28691254e+002 - 1.13743820e+002 1.24737137e+002 1.28722061e+002 1.13724541e+002 - 1.24743568e+002 1.28732025e+002 1.13725975e+002 1.24733078e+002 - 1.28750778e+002 1.13713470e+002 1.24734299e+002 1.28760498e+002 - 1.13717148e+002 1.24714493e+002 1.28786636e+002 1.13688507e+002 - 1.24706924e+002 1.28788773e+002 1.13698761e+002 1.24713554e+002 - 1.28823288e+002 1.13701935e+002 1.24734627e+002 1.28853439e+002 - 1.13722893e+002 1.24748024e+002 1.28893784e+002 1.13674858e+002 - 1.24717850e+002 1.28874786e+002 1.13670151e+002 1.24685654e+002 - 1.28887054e+002 1.13707108e+002 1.24735161e+002 1.28943268e+002 - 1.13698601e+002 1.24733498e+002 1.28959427e+002 1.13690430e+002 - 1.24744568e+002 1.28973129e+002 1.13731567e+002 1.24768555e+002 - 1.29031082e+002 1.13742271e+002 1.24789940e+002 1.29054504e+002 - 1.13743088e+002 1.24795906e+002 1.29083130e+002 1.13705757e+002 - 1.24775627e+002 1.29064545e+002 1.13706009e+002 1.24768570e+002 - 1.29076462e+002 1.13699471e+002 1.24777802e+002 1.29079010e+002 - 1.13719292e+002 1.24771889e+002 1.29106522e+002 1.13684029e+002 - 1.24759827e+002 1.29088898e+002 1.13682976e+002 1.24751648e+002 - 1.29102646e+002 1.13662254e+002 1.24747017e+002 1.29088318e+002 - 1.13672920e+002 1.24747528e+002 1.29114288e+002 1.13694130e+002 - 1.24776939e+002 1.29139160e+002 1.13726349e+002 1.24773727e+002 - 1.29166504e+002 1.13735405e+002 1.24802551e+002 1.29181839e+002 - 1.13720543e+002 1.24786804e+002 1.29165649e+002 1.13695175e+002 - 1.24777161e+002 1.29146912e+002 1.13720833e+002 1.24784683e+002 - 1.29167023e+002 1.13711304e+002 1.24788902e+002 1.29155106e+002 - 1.13717110e+002 1.24784904e+002 1.29155777e+002 1.13707718e+002 - 1.24787704e+002 1.29150497e+002 1.13716782e+002 1.24789841e+002 - 1.29162064e+002 1.13696701e+002 1.24782753e+002 1.29137970e+002 - 1.13691528e+002 1.24765396e+002 1.29138718e+002 1.13651794e+002 - 1.24740547e+002 1.29103119e+002 1.13668892e+002 1.24747337e+002 - 1.29117813e+002 1.13674194e+002 1.24764336e+002 1.29122116e+002 - 1.13671989e+002 1.24744194e+002 1.29095795e+002 1.13646797e+002 - 1.24733963e+002 1.29063995e+002 1.13655876e+002 1.24709198e+002 - 1.29054321e+002 1.13672302e+002 1.24733398e+002 1.29055267e+002 - 1.13645882e+002 1.24707161e+002 1.29017044e+002 1.13630623e+002 - 1.24702477e+002 1.28993027e+002 1.13659348e+002 1.24714005e+002 - 1.29006393e+002 1.13655540e+002 1.24715317e+002 1.28984573e+002 - 1.13657715e+002 1.24702133e+002 1.28961227e+002 1.13630562e+002 - 1.24686195e+002 1.28921127e+002 1.13633499e+002 1.24674042e+002 - 1.28909439e+002 1.13638603e+002 1.24696800e+002 1.28910355e+002 - 1.13666367e+002 1.24697235e+002 1.28924362e+002 1.13670341e+002 - 1.24711906e+002 1.28910400e+002 1.13677933e+002 1.24706642e+002 - 1.28898209e+002 1.13673912e+002 1.24709160e+002 1.28878525e+002 - 1.13676445e+002 1.24700996e+002 1.28859406e+002 1.13661072e+002 - 1.24694824e+002 1.28823441e+002 1.13715233e+002 1.24699059e+002 - 1.28835281e+002 1.13711479e+002 1.24703201e+002 1.28805786e+002 - 1.13712288e+002 1.24695000e+002 1.28775436e+002 1.13686470e+002 - 1.24675667e+002 1.28726120e+002 1.13686096e+002 1.24648453e+002 - 1.28697968e+002 1.13693108e+002 1.24666489e+002 1.28680908e+002 - 1.13696526e+002 1.24656624e+002 1.28650314e+002 1.13655075e+002 - 1.24630096e+002 1.28592468e+002 1.13670738e+002 1.24625298e+002 - 1.28574539e+002 1.13677307e+002 1.24641533e+002 1.28556976e+002 - 1.13691147e+002 1.24630157e+002 1.28546310e+002 1.13677681e+002 - 1.24626396e+002 1.28503769e+002 1.13679626e+002 1.24621605e+002 - 1.28484833e+002 1.13665833e+002 1.24611122e+002 1.28438293e+002 - 1.13665184e+002 1.24593964e+002 1.28419373e+002 1.13645309e+002 - 1.24600334e+002 1.28381714e+002 1.13664146e+002 1.24577858e+002 - 1.28360107e+002 1.13677994e+002 1.24602020e+002 1.28346130e+002 - 1.13670799e+002 1.24585472e+002 1.28310745e+002 1.13639053e+002 - 1.24564034e+002 1.28244614e+002 1.13646675e+002 1.24545074e+002 - 1.28232178e+002 1.13652382e+002 1.24552567e+002 1.28202347e+002 - 1.13659561e+002 1.24545647e+002 1.28165207e+002 1.13646759e+002 - 1.24546738e+002 1.28126801e+002 1.13660599e+002 1.24539879e+002 - 1.28117264e+002 1.13663284e+002 1.24556190e+002 1.28095612e+002 - 1.13699265e+002 1.24559059e+002 1.28096741e+002 1.13675957e+002 - 1.24553940e+002 1.28042343e+002 1.13689568e+002 1.24548111e+002 - 1.28023392e+002 1.13705009e+002 1.24575073e+002 1.28005524e+002 - 1.13691696e+002 1.24540993e+002 1.27965767e+002 1.13679451e+002 - 1.24542191e+002 1.27918907e+002 1.13696602e+002 1.24520905e+002 - 1.27899429e+002 1.13710037e+002 1.24549141e+002 1.27879662e+002 - 1.13712410e+002 1.24542961e+002 1.27848526e+002 1.13684547e+002 - 1.24529686e+002 1.27794464e+002 1.13678596e+002 1.24503983e+002 - 1.27762474e+002 1.13693520e+002 1.24518883e+002 1.27732841e+002 - 1.13687721e+002 1.24494255e+002 1.27676353e+002 1.13663795e+002 - 1.24478607e+002 1.27619598e+002 1.13679916e+002 1.24478706e+002 - 1.27613312e+002 1.13656136e+002 1.24461823e+002 1.27571373e+002 - 1.13661858e+002 1.24440369e+002 1.27545601e+002 1.13622604e+002 - 1.24410698e+002 1.27475525e+002 1.13607468e+002 1.24381233e+002 - 1.27427467e+002 1.13605110e+002 1.24380836e+002 1.27388779e+002 - 1.13612564e+002 1.24366501e+002 1.27352760e+002 1.13598152e+002 - 1.24362411e+002 1.27300224e+002 1.13625504e+002 1.24341782e+002 - 1.27274857e+002 1.13641426e+002 1.24365723e+002 1.27248337e+002 - 1.13657364e+002 1.24370255e+002 1.27215492e+002 1.13636154e+002 - 1.24360489e+002 1.27162888e+002 1.13669304e+002 1.24372482e+002 - 1.27163689e+002 1.13702156e+002 1.24411896e+002 1.27150963e+002 - 1.13695229e+002 1.24379227e+002 1.27078400e+002 1.13663231e+002 - 1.24358902e+002 1.27010262e+002 1.13669540e+002 1.24331329e+002 - 1.26977982e+002 1.13687973e+002 1.24355774e+002 1.26965233e+002 - 1.13711937e+002 1.24344521e+002 1.26939613e+002 1.13665344e+002 - 1.24299759e+002 1.26859451e+002 1.13646660e+002 1.24266266e+002 - 1.26800095e+002 1.13638695e+002 1.24255234e+002 1.26743416e+002 - 1.13650955e+002 1.24240364e+002 1.26712509e+002 1.13651367e+002 - 1.24247070e+002 1.26671234e+002 1.13695328e+002 1.24241890e+002 - 1.26658234e+002 1.13676804e+002 1.24221832e+002 1.26595093e+002 - 1.13685410e+002 1.24216759e+002 1.26557190e+002 1.13656548e+002 - 1.24192329e+002 1.26496132e+002 1.13652870e+002 1.24161682e+002 - 1.26461761e+002 1.13650528e+002 1.24156990e+002 1.26420929e+002 - 1.13652939e+002 1.24120064e+002 1.26354874e+002 1.13652245e+002 - 1.24121544e+002 1.26313072e+002 1.13655113e+002 1.24101715e+002 - 1.26282967e+002 1.13647621e+002 1.24094849e+002 1.26230751e+002 - 1.13653862e+002 1.24060265e+002 1.26184631e+002 1.13642548e+002 - 1.24047401e+002 1.26129128e+002 1.13656403e+002 1.24031990e+002 - 1.26086617e+002 1.13641449e+002 1.24011475e+002 1.26029182e+002 - 1.13646439e+002 1.23974907e+002 1.25979965e+002 1.13660500e+002 - 1.23981728e+002 1.25950394e+002 1.13686760e+002 1.23951363e+002 - 1.25919472e+002 1.13666969e+002 1.23917610e+002 1.25850319e+002 - 1.13669228e+002 1.23877159e+002 1.25792046e+002 1.13639702e+002 - 1.23842339e+002 1.25717293e+002 1.13602486e+002 1.23747978e+002 - 1.25633369e+002 1.13483643e+002 1.23617233e+002 1.25459229e+002 - 1.13385994e+002 1.23583809e+002 1.25494904e+002 1.13473892e+002 - 1.23732056e+002 1.25634033e+002 1.13563385e+002 1.23840439e+002 - 1.25766609e+002 1.13597343e+002 1.23905617e+002 1.25841988e+002 - 1.13615524e+002 1.23925835e+002 1.25901695e+002 1.13585991e+002 - 1.23945068e+002 1.25926842e+002 1.13585800e+002 1.23962303e+002 - 1.25976715e+002 1.13599541e+002 1.24008499e+002 1.26035873e+002 - 1.13621681e+002 1.24040047e+002 1.26107613e+002 1.13569969e+002 - 1.24028473e+002 1.26110809e+002 1.13600601e+002 1.24056084e+002 - 1.26199524e+002 1.13596146e+002 1.24077148e+002 1.26244713e+002 - 1.13585152e+002 1.24087189e+002 1.26285286e+002 1.13579895e+002 - 1.24112831e+002 1.26323677e+002 1.13577484e+002 1.24104500e+002 - 1.26356537e+002 1.13572014e+002 1.24125092e+002 1.26392998e+002 - 1.13587502e+002 1.24169502e+002 1.26478287e+002 1.13526741e+002 - 1.24143990e+002 1.26477646e+002 1.13519791e+002 1.24128754e+002 - 1.26497459e+002 1.13546974e+002 1.24175636e+002 1.26557167e+002 - 1.13563713e+002 1.24182205e+002 1.26618034e+002 1.13535538e+002 - 1.24190384e+002 1.26643700e+002 1.13533104e+002 1.24199615e+002 - 1.26694641e+002 1.13510597e+002 1.24206444e+002 1.26720192e+002 - 1.13543869e+002 1.24238579e+002 1.26791191e+002 1.13492699e+002 - 1.24215614e+002 1.26791878e+002 1.13474014e+002 1.24179359e+002 - 1.26822144e+002 1.13469749e+002 1.24204483e+002 1.26861511e+002 - 1.13463043e+002 1.24211464e+002 1.26905334e+002 1.13438850e+002 - 1.24209717e+002 1.26922752e+002 1.13469772e+002 1.24225777e+002 - 1.26982414e+002 1.13472092e+002 1.24251015e+002 1.27026733e+002 - 1.13493752e+002 1.24281540e+002 1.27108345e+002 1.13463524e+002 - 1.24288055e+002 1.27137207e+002 1.13471230e+002 1.24281166e+002 - 1.27164993e+002 1.13479912e+002 1.24316208e+002 1.27209419e+002 - 1.13492050e+002 1.24307617e+002 1.27251984e+002 1.13469711e+002 - 1.24312401e+002 1.27273445e+002 1.13472916e+002 1.24311638e+002 - 1.27320107e+002 1.13455772e+002 1.24321938e+002 1.27342888e+002 - 1.13471893e+002 1.24326172e+002 1.27395775e+002 1.13454849e+002 - 1.24331581e+002 1.27415092e+002 1.13476326e+002 1.24328979e+002 - 1.27469269e+002 1.13488701e+002 1.24357697e+002 1.27515877e+002 - 1.13485222e+002 1.24351501e+002 1.27543243e+002 1.13494621e+002 - 1.24381149e+002 1.27588135e+002 1.13513992e+002 1.24374954e+002 - 1.27624306e+002 1.13492264e+002 1.24372429e+002 1.27639740e+002 - 1.13491692e+002 1.24385628e+002 1.27693367e+002 1.13482582e+002 - 1.24407745e+002 1.27730965e+002 1.13487595e+002 1.24401726e+002 - 1.27759445e+002 1.13482857e+002 1.24416100e+002 1.27790466e+002 - 1.13504486e+002 1.24424759e+002 1.27843819e+002 1.13486053e+002 - 1.24427132e+002 1.27866432e+002 1.13489029e+002 1.24429550e+002 - 1.27903511e+002 1.13483994e+002 1.24438698e+002 1.27925667e+002 - 1.13516479e+002 1.24468330e+002 1.27990768e+002 1.13479485e+002 - 1.24452568e+002 1.27993813e+002 1.13510757e+002 1.24454834e+002 - 1.28055374e+002 1.13510544e+002 1.24471855e+002 1.28090195e+002 - 1.13507202e+002 1.24467491e+002 1.28117172e+002 1.13487778e+002 - 1.24471405e+002 1.28124191e+002 1.13494240e+002 1.24461365e+002 - 1.28160477e+002 1.13467773e+002 1.24450584e+002 1.28162903e+002 - 1.13462952e+002 1.24449532e+002 1.28205231e+002 1.13436852e+002 - 1.24450912e+002 1.28223053e+002 1.13454811e+002 1.24461800e+002 - 1.28266388e+002 1.13452209e+002 1.24478958e+002 1.28294601e+002 - 1.13487007e+002 1.24495018e+002 1.28352661e+002 1.13461639e+002 - 1.24488998e+002 1.28359604e+002 1.13503128e+002 1.24534607e+002 - 1.28429367e+002 1.13520302e+002 1.24564857e+002 1.28475128e+002 - 1.13518463e+002 1.24556847e+002 1.28499573e+002 1.13486069e+002 - 1.24548347e+002 1.28502625e+002 1.13504150e+002 1.24540825e+002 - 1.28552536e+002 1.13507637e+002 1.24567474e+002 1.28582611e+002 - 1.13511009e+002 1.24577682e+002 1.28615891e+002 1.13477036e+002 - 1.24562019e+002 1.28607651e+002 1.13518478e+002 1.24581863e+002 - 1.28657654e+002 1.13522720e+002 1.24599014e+002 1.28683578e+002 - 1.13528839e+002 1.24603333e+002 1.28705200e+002 1.13502792e+002 - 1.24598900e+002 1.28705521e+002 1.13529518e+002 1.24612572e+002 - 1.28748260e+002 1.13524307e+002 1.24618233e+002 1.28756912e+002 - 1.13503967e+002 1.24581161e+002 1.28764725e+002 1.13474457e+002 - 1.24568253e+002 1.28759476e+002 1.13480995e+002 1.24570900e+002 - 1.28791504e+002 1.13498634e+002 1.24605415e+002 1.28836334e+002 - 1.13500755e+002 1.24603073e+002 1.28863708e+002 1.13466049e+002 - 1.24590569e+002 1.28854431e+002 1.13449638e+002 1.24544899e+002 - 1.28860168e+002 1.13478165e+002 1.24587372e+002 1.28909439e+002 - 1.13485535e+002 1.24600395e+002 1.28941422e+002 1.13471779e+002 - 1.24607178e+002 1.28949081e+002 1.13511536e+002 1.24621269e+002 - 1.28998886e+002 1.13538284e+002 1.24661003e+002 1.29045959e+002 - 1.13538055e+002 1.24666573e+002 1.29066452e+002 1.13487114e+002 - 1.24646828e+002 1.29040482e+002 1.13481621e+002 1.24625916e+002 - 1.29042267e+002 1.13476639e+002 1.24639496e+002 1.29052597e+002 - 1.13500755e+002 1.24637161e+002 1.29086029e+002 1.13470573e+002 - 1.24626587e+002 1.29073273e+002 1.13474342e+002 1.24624588e+002 - 1.29094620e+002 1.13459892e+002 1.24621445e+002 1.29080536e+002 - 1.13480438e+002 1.24630180e+002 1.29108643e+002 1.13492851e+002 - 1.24661217e+002 1.29130020e+002 1.13521873e+002 1.24654564e+002 - 1.29160339e+002 1.13500206e+002 1.24648552e+002 1.29145538e+002 - 1.13523262e+002 1.24673691e+002 1.29168365e+002 1.13490150e+002 - 1.24657349e+002 1.29147217e+002 1.13504616e+002 1.24643845e+002 - 1.29151993e+002 1.13485855e+002 1.24633644e+002 1.29128922e+002 - 1.13492378e+002 1.24637474e+002 1.29133362e+002 1.13478424e+002 - 1.24637314e+002 1.29123474e+002 1.13501205e+002 1.24645348e+002 - 1.29142548e+002 1.13492516e+002 1.24654999e+002 1.29135162e+002 - 1.13490349e+002 1.24635429e+002 1.29138214e+002 1.13464264e+002 - 1.24620003e+002 1.29112640e+002 1.13464935e+002 1.24612724e+002 - 1.29112839e+002 1.13478577e+002 1.24640907e+002 1.29117798e+002 - 1.13504440e+002 1.24652687e+002 1.29130249e+002 1.13459702e+002 - 1.24621040e+002 1.29080704e+002 1.13477936e+002 1.24601570e+002 - 1.29075806e+002 1.13472130e+002 1.24604271e+002 1.29054199e+002 - 1.13459290e+002 1.24590691e+002 1.29024948e+002 1.13449951e+002 - 1.24596214e+002 1.29007309e+002 1.13485603e+002 1.24609116e+002 - 1.29029144e+002 1.13462227e+002 1.24593925e+002 1.28989532e+002 - 1.13445808e+002 1.24563919e+002 1.28951874e+002 1.13411949e+002 - 1.24548073e+002 1.28913010e+002 1.13443359e+002 1.24568077e+002 - 1.28929657e+002 1.13455734e+002 1.24589554e+002 1.28926849e+002 - 1.13471016e+002 1.24576317e+002 1.28922546e+002 1.13472733e+002 - 1.24592278e+002 1.28914688e+002 1.13463989e+002 1.24575157e+002 - 1.28889679e+002 1.13465660e+002 1.24584740e+002 1.28868774e+002 - 1.13472153e+002 1.24575485e+002 1.28851501e+002 1.13482224e+002 - 1.24587509e+002 1.28834030e+002 1.13510284e+002 1.24577194e+002 - 1.28829803e+002 1.13503555e+002 1.24579414e+002 1.28793671e+002 - 1.13510208e+002 1.24578278e+002 1.28774246e+002 1.13468445e+002 - 1.24548645e+002 1.28712830e+002 1.13477066e+002 1.24530014e+002 - 1.28698929e+002 1.13484604e+002 1.24547531e+002 1.28675812e+002 - 1.13484009e+002 1.24526779e+002 1.28642014e+002 1.13447693e+002 - 1.24510277e+002 1.28592453e+002 1.13470131e+002 1.24507469e+002 - 1.28582077e+002 1.13482536e+002 1.24527718e+002 1.28571960e+002 - 1.13489319e+002 1.24499092e+002 1.28538986e+002 1.13479385e+002 - 1.24496742e+002 1.28493149e+002 1.13473030e+002 1.24489395e+002 - 1.28468140e+002 1.13471016e+002 1.24491745e+002 1.28436905e+002 - 1.13477249e+002 1.24477524e+002 1.28420181e+002 1.13470024e+002 - 1.24485199e+002 1.28388901e+002 1.13478615e+002 1.24458443e+002 - 1.28363083e+002 1.13493858e+002 1.24484039e+002 1.28348465e+002 - 1.13504326e+002 1.24494308e+002 1.28329315e+002 1.13474495e+002 - 1.24477524e+002 1.28275574e+002 1.13469772e+002 1.24444481e+002 - 1.28242996e+002 1.13468597e+002 1.24448982e+002 1.28204605e+002 - 1.13483147e+002 1.24441505e+002 1.28167252e+002 1.13471878e+002 - 1.24436096e+002 1.28136841e+002 1.13502281e+002 1.24450294e+002 - 1.28138474e+002 1.13499031e+002 1.24463036e+002 1.28105759e+002 - 1.13526932e+002 1.24462036e+002 1.28105392e+002 1.13514183e+002 - 1.24462471e+002 1.28062485e+002 1.13526505e+002 1.24466408e+002 - 1.28042130e+002 1.13562721e+002 1.24511818e+002 1.28050247e+002 - 1.13544975e+002 1.24477974e+002 1.27997940e+002 1.13529152e+002 - 1.24471390e+002 1.27959496e+002 1.13525894e+002 1.24429504e+002 - 1.27913177e+002 1.13518974e+002 1.24435226e+002 1.27878799e+002 - 1.13491310e+002 1.24413033e+002 1.27821274e+002 1.13467072e+002 - 1.24395721e+002 1.27773430e+002 1.13467422e+002 1.24373055e+002 - 1.27743431e+002 1.13490456e+002 1.24396362e+002 1.27723465e+002 - 1.13486916e+002 1.24384384e+002 1.27668297e+002 1.13472031e+002 - 1.24381523e+002 1.27627502e+002 1.13488388e+002 1.24369225e+002 - 1.27610550e+002 1.13473976e+002 1.24369293e+002 1.27573639e+002 - 1.13482521e+002 1.24342171e+002 1.27542175e+002 1.13446495e+002 - 1.24322090e+002 1.27483032e+002 1.13435875e+002 1.24293465e+002 - 1.27435204e+002 1.13429634e+002 1.24293839e+002 1.27390305e+002 - 1.13456009e+002 1.24292007e+002 1.27369896e+002 1.13429779e+002 - 1.24274780e+002 1.27310486e+002 1.13463974e+002 1.24265694e+002 - 1.27290894e+002 1.13474228e+002 1.24283775e+002 1.27258751e+002 - 1.13498154e+002 1.24299698e+002 1.27242203e+002 1.13468445e+002 - 1.24277565e+002 1.27176147e+002 1.13489830e+002 1.24271538e+002 - 1.27161201e+002 1.13499603e+002 1.24282204e+002 1.27119125e+002 - 1.13504166e+002 1.24262955e+002 1.27058708e+002 1.13491417e+002 - 1.24267387e+002 1.27005676e+002 1.13492348e+002 1.24232124e+002 - 1.26970528e+002 1.13511917e+002 1.24257584e+002 1.26954605e+002 - 1.13529739e+002 1.24240364e+002 1.26931519e+002 1.13502495e+002 - 1.24219772e+002 1.26862350e+002 1.13508789e+002 1.24205986e+002 - 1.26824280e+002 1.13493378e+002 1.24194443e+002 1.26763802e+002 - 1.13497742e+002 1.24171562e+002 1.26727287e+002 1.13504387e+002 - 1.24181465e+002 1.26689407e+002 1.13537857e+002 1.24168869e+002 - 1.26676033e+002 1.13517853e+002 1.24150383e+002 1.26609818e+002 - 1.13515800e+002 1.24125519e+002 1.26558449e+002 1.13473969e+002 - 1.24092964e+002 1.26483543e+002 1.13486015e+002 1.24079300e+002 - 1.26464226e+002 1.13487656e+002 1.24079071e+002 1.26424019e+002 - 1.13499817e+002 1.24059303e+002 1.26369713e+002 1.13494026e+002 - 1.24054535e+002 1.26320816e+002 1.13498894e+002 1.24028671e+002 - 1.26286049e+002 1.13490318e+002 1.24019600e+002 1.26229652e+002 - 1.13506966e+002 1.23996758e+002 1.26199738e+002 1.13507439e+002 - 1.23988869e+002 1.26148422e+002 1.13525917e+002 1.23979752e+002 - 1.26113716e+002 1.13535538e+002 1.23980591e+002 1.26076126e+002 - 1.13525871e+002 1.23934319e+002 1.26018852e+002 1.13522934e+002 - 1.23923355e+002 1.25969086e+002 1.13538544e+002 1.23882301e+002 - 1.25929489e+002 1.13560989e+002 1.23888100e+002 1.25891411e+002 - 1.13559860e+002 1.23853592e+002 1.25833458e+002 1.13529388e+002 - 1.23808922e+002 1.25749527e+002 1.13485497e+002 1.23704979e+002 - 1.25656570e+002 1.13383476e+002 1.23590347e+002 1.25497955e+002 - 1.13239807e+002 1.23505768e+002 1.25448013e+002 1.13354752e+002 - 1.23663849e+002 1.25612923e+002 1.13448044e+002 1.23770493e+002 - 1.25754021e+002 1.13485130e+002 1.23833923e+002 1.25833023e+002 - 1.13484245e+002 1.23849159e+002 1.25874359e+002 1.13482872e+002 - 1.23880394e+002 1.25915558e+002 1.13475990e+002 1.23896828e+002 - 1.25972473e+002 1.13486481e+002 1.23934616e+002 1.26022888e+002 - 1.13487732e+002 1.23953224e+002 1.26078186e+002 1.13452446e+002 - 1.23950615e+002 1.26095711e+002 1.13459915e+002 1.23971519e+002 - 1.26163147e+002 1.13450104e+002 1.23993103e+002 1.26213661e+002 - 1.13443382e+002 1.23994713e+002 1.26256813e+002 1.13437111e+002 - 1.24016846e+002 1.26292770e+002 1.13414558e+002 1.24002327e+002 - 1.26311226e+002 1.13402870e+002 1.24019852e+002 1.26346657e+002 - 1.13431816e+002 1.24065483e+002 1.26447754e+002 1.13396614e+002 - 1.24064827e+002 1.26464470e+002 1.13382378e+002 1.24044495e+002 - 1.26478638e+002 1.13382896e+002 1.24068283e+002 1.26516785e+002 - 1.13391396e+002 1.24075340e+002 1.26567688e+002 1.13372620e+002 - 1.24083046e+002 1.26591530e+002 1.13366089e+002 1.24083496e+002 - 1.26639427e+002 1.13330696e+002 1.24070892e+002 1.26647606e+002 - 1.13364456e+002 1.24111855e+002 1.26728722e+002 1.13336433e+002 - 1.24103004e+002 1.26748604e+002 1.13316925e+002 1.24074905e+002 - 1.26772102e+002 1.13297531e+002 1.24087387e+002 1.26809868e+002 - 1.13292030e+002 1.24086639e+002 1.26852684e+002 1.13281479e+002 - 1.24103104e+002 1.26884254e+002 1.13312454e+002 1.24129974e+002 - 1.26948219e+002 1.13316071e+002 1.24154892e+002 1.26996552e+002 - 1.13343575e+002 1.24187073e+002 1.27080772e+002 1.13308731e+002 - 1.24181557e+002 1.27095238e+002 1.13304947e+002 1.24172264e+002 - 1.27118141e+002 1.13292511e+002 1.24171417e+002 1.27139099e+002 - 1.13306969e+002 1.24184776e+002 1.27195335e+002 1.13300140e+002 - 1.24196640e+002 1.27225090e+002 1.13294296e+002 1.24194702e+002 - 1.27265259e+002 1.13289337e+002 1.24207466e+002 1.27298172e+002 - 1.13295258e+002 1.24208878e+002 1.27338074e+002 1.13293472e+002 - 1.24213264e+002 1.27373367e+002 1.13317421e+002 1.24221542e+002 - 1.27429779e+002 1.13307205e+002 1.24222443e+002 1.27449753e+002 - 1.13317421e+002 1.24231148e+002 1.27498955e+002 1.13321892e+002 - 1.24250519e+002 1.27534836e+002 1.13320572e+002 1.24241089e+002 - 1.27567955e+002 1.13318199e+002 1.24252815e+002 1.27596077e+002 - 1.13326302e+002 1.24270271e+002 1.27656403e+002 1.13301613e+002 - 1.24276054e+002 1.27674332e+002 1.13315048e+002 1.24280212e+002 - 1.27719345e+002 1.13306854e+002 1.24286293e+002 1.27738258e+002 - 1.13302315e+002 1.24280701e+002 1.27768661e+002 1.13294731e+002 - 1.24288734e+002 1.27795082e+002 1.13304512e+002 1.24288429e+002 - 1.27848412e+002 1.13305771e+002 1.24308487e+002 1.27877472e+002 - 1.13320992e+002 1.24329323e+002 1.27927513e+002 1.13286552e+002 - 1.24306854e+002 1.27930626e+002 1.13308609e+002 1.24310875e+002 - 1.27980331e+002 1.13304657e+002 1.24319618e+002 1.28009903e+002 - 1.13308243e+002 1.24318665e+002 1.28048767e+002 1.13320992e+002 - 1.24347450e+002 1.28093918e+002 1.13331482e+002 1.24351501e+002 - 1.28127838e+002 1.13299461e+002 1.24336037e+002 1.28125671e+002 - 1.13291100e+002 1.24320976e+002 1.28163879e+002 1.13254143e+002 - 1.24318832e+002 1.28171890e+002 1.13273216e+002 1.24328423e+002 - 1.28210403e+002 1.13277824e+002 1.24344284e+002 1.28245071e+002 - 1.13302246e+002 1.24366539e+002 1.28299454e+002 1.13294502e+002 - 1.24369057e+002 1.28321991e+002 1.13319336e+002 1.24396507e+002 - 1.28383041e+002 1.13331619e+002 1.24430054e+002 1.28420471e+002 - 1.13327415e+002 1.24417686e+002 1.28447250e+002 1.13300598e+002 - 1.24406975e+002 1.28448105e+002 1.13311653e+002 1.24407310e+002 - 1.28493835e+002 1.13306168e+002 1.24425079e+002 1.28525101e+002 - 1.13317345e+002 1.24428391e+002 1.28561066e+002 1.13312424e+002 - 1.24445488e+002 1.28579910e+002 1.13333382e+002 1.24460884e+002 - 1.28621460e+002 1.13321968e+002 1.24455254e+002 1.28617706e+002 - 1.13322464e+002 1.24448952e+002 1.28642334e+002 1.13306374e+002 - 1.24455620e+002 1.28649231e+002 1.13314888e+002 1.24451668e+002 - 1.28673340e+002 1.13306129e+002 1.24452148e+002 1.28688248e+002 - 1.13295067e+002 1.24432747e+002 1.28701202e+002 1.13267166e+002 - 1.24410744e+002 1.28693985e+002 1.13289276e+002 1.24438347e+002 - 1.28741730e+002 1.13305756e+002 1.24459648e+002 1.28784958e+002 - 1.13312279e+002 1.24469002e+002 1.28811844e+002 1.13270340e+002 - 1.24438217e+002 1.28798203e+002 1.13267845e+002 1.24427193e+002 - 1.28819656e+002 1.13278732e+002 1.24449600e+002 1.28853851e+002 - 1.13287300e+002 1.24458916e+002 1.28887604e+002 1.13283340e+002 - 1.24470154e+002 1.28906204e+002 1.13304108e+002 1.24478699e+002 - 1.28939560e+002 1.13292908e+002 1.24481567e+002 1.28941650e+002 - 1.13302109e+002 1.24488060e+002 1.28972565e+002 1.13271065e+002 - 1.24481133e+002 1.28966980e+002 1.13262009e+002 1.24460037e+002 - 1.28964920e+002 1.13272827e+002 1.24483368e+002 1.28990402e+002 - 1.13273048e+002 1.24473640e+002 1.29002792e+002 1.13239731e+002 - 1.24449333e+002 1.28980881e+002 1.13246765e+002 1.24444618e+002 - 1.28998062e+002 1.13258514e+002 1.24472168e+002 1.29020981e+002 - 1.13289886e+002 1.24500099e+002 1.29059540e+002 1.13292419e+002 - 1.24506767e+002 1.29074982e+002 1.13306068e+002 1.24503746e+002 - 1.29092636e+002 1.13311050e+002 1.24516098e+002 1.29103531e+002 - 1.13314461e+002 1.24517509e+002 1.29112640e+002 1.13301010e+002 - 1.24515472e+002 1.29098328e+002 1.13290062e+002 1.24492256e+002 - 1.29079956e+002 1.13270012e+002 1.24472267e+002 1.29050217e+002 - 1.13283340e+002 1.24470795e+002 1.29067688e+002 1.13288811e+002 - 1.24492157e+002 1.29071182e+002 1.13280853e+002 1.24482719e+002 - 1.29064758e+002 1.13278656e+002 1.24486580e+002 1.29060532e+002 - 1.13298141e+002 1.24494995e+002 1.29081024e+002 1.13277924e+002 - 1.24489571e+002 1.29069092e+002 1.13285423e+002 1.24490120e+002 - 1.29080872e+002 1.13301147e+002 1.24513763e+002 1.29084732e+002 - 1.13300552e+002 1.24498688e+002 1.29072708e+002 1.13264580e+002 - 1.24475586e+002 1.29031876e+002 1.13277245e+002 1.24460464e+002 - 1.29020126e+002 1.13269913e+002 1.24461746e+002 1.29001236e+002 - 1.13253380e+002 1.24433365e+002 1.28964447e+002 1.13251099e+002 - 1.24442039e+002 1.28953430e+002 1.13273262e+002 1.24449135e+002 - 1.28958267e+002 1.13270180e+002 1.24449486e+002 1.28938660e+002 - 1.13256752e+002 1.24425430e+002 1.28909363e+002 1.13225815e+002 - 1.24415962e+002 1.28871811e+002 1.13262833e+002 1.24433540e+002 - 1.28891815e+002 1.13279266e+002 1.24462677e+002 1.28896774e+002 - 1.13283752e+002 1.24455093e+002 1.28884460e+002 1.13282654e+002 - 1.24459511e+002 1.28865707e+002 1.13276871e+002 1.24439804e+002 - 1.28842758e+002 1.13262047e+002 1.24429543e+002 1.28809540e+002 - 1.13263168e+002 1.24417915e+002 1.28786560e+002 1.13259003e+002 - 1.24414253e+002 1.28764069e+002 1.13278496e+002 1.24407822e+002 - 1.28746170e+002 1.13272064e+002 1.24406921e+002 1.28713821e+002 - 1.13275597e+002 1.24400467e+002 1.28692535e+002 1.13268593e+002 - 1.24399353e+002 1.28663345e+002 1.13268089e+002 1.24384819e+002 - 1.28637512e+002 1.13279045e+002 1.24396843e+002 1.28623825e+002 - 1.13279259e+002 1.24384247e+002 1.28590424e+002 1.13249573e+002 - 1.24367607e+002 1.28542328e+002 1.13266556e+002 1.24365562e+002 - 1.28527985e+002 1.13256577e+002 1.24352997e+002 1.28491608e+002 - 1.13270287e+002 1.24342270e+002 1.28462601e+002 1.13265083e+002 - 1.24335449e+002 1.28429871e+002 1.13269501e+002 1.24332939e+002 - 1.28405716e+002 1.13264549e+002 1.24334137e+002 1.28371429e+002 - 1.13283852e+002 1.24341309e+002 1.28359909e+002 1.13266678e+002 - 1.24327362e+002 1.28320801e+002 1.13289558e+002 1.24324837e+002 - 1.28306244e+002 1.13282928e+002 1.24336739e+002 1.28278412e+002 - 1.13289444e+002 1.24326958e+002 1.28249786e+002 1.13272354e+002 - 1.24322876e+002 1.28210098e+002 1.13274025e+002 1.24303627e+002 - 1.28183563e+002 1.13283981e+002 1.24307915e+002 1.28153046e+002 - 1.13299477e+002 1.24309761e+002 1.28123001e+002 1.13275063e+002 - 1.24299950e+002 1.28074112e+002 1.13306633e+002 1.24313507e+002 - 1.28077682e+002 1.13308945e+002 1.24326187e+002 1.28053833e+002 - 1.13334908e+002 1.24334137e+002 1.28044739e+002 1.13343384e+002 - 1.24348938e+002 1.28026733e+002 1.13350983e+002 1.24342995e+002 - 1.27998596e+002 1.13363770e+002 1.24367706e+002 1.27984535e+002 - 1.13354004e+002 1.24339600e+002 1.27942276e+002 1.13329712e+002 - 1.24322372e+002 1.27895691e+002 1.13326599e+002 1.24293724e+002 - 1.27851524e+002 1.13316139e+002 1.24291107e+002 1.27808372e+002 - 1.13311455e+002 1.24279175e+002 1.27771660e+002 1.13298805e+002 - 1.24279114e+002 1.27733940e+002 1.13311562e+002 1.24272110e+002 - 1.27714806e+002 1.13294571e+002 1.24265114e+002 1.27666451e+002 - 1.13307503e+002 1.24253914e+002 1.27617996e+002 1.13311378e+002 - 1.24268250e+002 1.27590195e+002 1.13311180e+002 1.24246742e+002 - 1.27561584e+002 1.13303696e+002 1.24246956e+002 1.27532135e+002 - 1.13298775e+002 1.24221054e+002 1.27489128e+002 1.13282303e+002 - 1.24211464e+002 1.27446419e+002 1.13272774e+002 1.24186089e+002 - 1.27394363e+002 1.13274315e+002 1.24191643e+002 1.27362083e+002 - 1.13299728e+002 1.24195129e+002 1.27343086e+002 1.13286491e+002 - 1.24183289e+002 1.27297188e+002 1.13300461e+002 1.24166328e+002 - 1.27253166e+002 1.13315178e+002 1.24184662e+002 1.27226128e+002 - 1.13318481e+002 1.24167267e+002 1.27185081e+002 1.13308342e+002 - 1.24171150e+002 1.27140831e+002 1.13306931e+002 1.24147133e+002 - 1.27102966e+002 1.13321770e+002 1.24158836e+002 1.27066124e+002 - 1.13336845e+002 1.24146637e+002 1.27010513e+002 1.13338356e+002 - 1.24155617e+002 1.26972588e+002 1.13334953e+002 1.24124405e+002 - 1.26927711e+002 1.13349869e+002 1.24143127e+002 1.26910057e+002 - 1.13370834e+002 1.24131172e+002 1.26877121e+002 1.13362144e+002 - 1.24130775e+002 1.26840584e+002 1.13363441e+002 1.24109894e+002 - 1.26786232e+002 1.13347282e+002 1.24095009e+002 1.26734589e+002 - 1.13347778e+002 1.24073776e+002 1.26682724e+002 1.13341179e+002 - 1.24066612e+002 1.26648743e+002 1.13348206e+002 1.24038147e+002 - 1.26599998e+002 1.13322395e+002 1.24013557e+002 1.26532860e+002 - 1.13330795e+002 1.23996933e+002 1.26493095e+002 1.13308121e+002 - 1.23975792e+002 1.26434853e+002 1.13315895e+002 1.23969383e+002 - 1.26413971e+002 1.13326401e+002 1.23974678e+002 1.26382645e+002 - 1.13337204e+002 1.23950325e+002 1.26319328e+002 1.13324631e+002 - 1.23943398e+002 1.26271111e+002 1.13342163e+002 1.23929459e+002 - 1.26238167e+002 1.13350578e+002 1.23929756e+002 1.26201462e+002 - 1.13370926e+002 1.23912148e+002 1.26160461e+002 1.13374870e+002 - 1.23908966e+002 1.26124718e+002 1.13395103e+002 1.23903496e+002 - 1.26092590e+002 1.13406738e+002 1.23904709e+002 1.26056969e+002 - 1.13410538e+002 1.23868065e+002 1.26008118e+002 1.13415009e+002 - 1.23862358e+002 1.25972122e+002 1.13419891e+002 1.23818489e+002 - 1.25907433e+002 1.13422829e+002 1.23807892e+002 1.25857941e+002 - 1.13431328e+002 1.23762497e+002 1.25802452e+002 1.13411774e+002 - 1.23734863e+002 1.25734039e+002 1.13363991e+002 1.23642387e+002 - 1.25635780e+002 1.13256844e+002 1.23516258e+002 1.25473038e+002 - 1.13182198e+002 1.23479721e+002 1.25467010e+002 1.13263771e+002 - 1.23608978e+002 1.25600235e+002 1.13348991e+002 1.23706184e+002 - 1.25725822e+002 1.13397186e+002 1.23782867e+002 1.25816925e+002 - 1.13418777e+002 1.23820099e+002 1.25881004e+002 1.13405319e+002 - 1.23837769e+002 1.25916138e+002 1.13401497e+002 1.23853470e+002 - 1.25971260e+002 1.13383713e+002 1.23867882e+002 1.25997696e+002 - 1.13394142e+002 1.23898438e+002 1.26061714e+002 1.13363319e+002 - 1.23898415e+002 1.26085854e+002 1.13362030e+002 1.23911316e+002 - 1.26149673e+002 1.13347061e+002 1.23925400e+002 1.26190796e+002 - 1.13341515e+002 1.23931160e+002 1.26238770e+002 1.13335892e+002 - 1.23955734e+002 1.26274834e+002 1.13325577e+002 1.23949226e+002 - 1.26304970e+002 1.13299751e+002 1.23950615e+002 1.26326927e+002 - 1.13326401e+002 1.24003601e+002 1.26426605e+002 1.13296669e+002 - 1.24005829e+002 1.26451294e+002 1.13293442e+002 1.23996376e+002 - 1.26479324e+002 1.13295769e+002 1.24008636e+002 1.26505363e+002 - 1.13282143e+002 1.24004463e+002 1.26542664e+002 1.13264984e+002 - 1.24008835e+002 1.26567505e+002 1.13254929e+002 1.24011009e+002 - 1.26610817e+002 1.13218987e+002 1.23998024e+002 1.26613701e+002 - 1.13238770e+002 1.24021248e+002 1.26683739e+002 1.13196136e+002 - 1.24003616e+002 1.26689217e+002 1.13179085e+002 1.23983376e+002 - 1.26719902e+002 1.13168243e+002 1.23995003e+002 1.26761742e+002 - 1.13193420e+002 1.24024200e+002 1.26838181e+002 1.13192924e+002 - 1.24040283e+002 1.26876282e+002 1.13211159e+002 1.24064827e+002 - 1.26932770e+002 1.13214989e+002 1.24081833e+002 1.26976067e+002 - 1.13223854e+002 1.24102951e+002 1.27047043e+002 1.13181633e+002 - 1.24088867e+002 1.27047768e+002 1.13185654e+002 1.24083130e+002 - 1.27079178e+002 1.13183647e+002 1.24096306e+002 1.27112373e+002 - 1.13187256e+002 1.24094086e+002 1.27153854e+002 1.13168243e+002 - 1.24096817e+002 1.27174110e+002 1.13171104e+002 1.24110306e+002 - 1.27228539e+002 1.13176666e+002 1.24123711e+002 1.27263817e+002 - 1.13172890e+002 1.24122810e+002 1.27303955e+002 1.13166138e+002 - 1.24122620e+002 1.27333717e+002 1.13173637e+002 1.24113739e+002 - 1.27372009e+002 1.13171982e+002 1.24119499e+002 1.27402519e+002 - 1.13181023e+002 1.24128914e+002 1.27451836e+002 1.13176498e+002 - 1.24146996e+002 1.27481033e+002 1.13187332e+002 1.24147400e+002 - 1.27522499e+002 1.13174103e+002 1.24150581e+002 1.27541725e+002 - 1.13181549e+002 1.24159737e+002 1.27597763e+002 1.13152351e+002 - 1.24160500e+002 1.27614311e+002 1.13164452e+002 1.24163193e+002 - 1.27654411e+002 1.13157784e+002 1.24173164e+002 1.27680855e+002 - 1.13158951e+002 1.24165596e+002 1.27715546e+002 1.13146278e+002 - 1.24170837e+002 1.27746094e+002 1.13144920e+002 1.24164032e+002 - 1.27779625e+002 1.13157516e+002 1.24196304e+002 1.27823196e+002 - 1.13159790e+002 1.24198204e+002 1.27860039e+002 1.13142960e+002 - 1.24193558e+002 1.27877899e+002 1.13154343e+002 1.24186386e+002 - 1.27922356e+002 1.13147491e+002 1.24195107e+002 1.27945686e+002 - 1.13144379e+002 1.24184303e+002 1.27971062e+002 1.13157570e+002 - 1.24213303e+002 1.28013718e+002 1.13173752e+002 1.24219917e+002 - 1.28052322e+002 1.13159851e+002 1.24215645e+002 1.28071289e+002 - 1.13164360e+002 1.24227837e+002 1.28131409e+002 1.13125824e+002 - 1.24221466e+002 1.28133087e+002 1.13118813e+002 1.24209404e+002 - 1.28150879e+002 1.13125198e+002 1.24227264e+002 1.28188110e+002 - 1.13160156e+002 1.24257835e+002 1.28253296e+002 1.13155067e+002 - 1.24268425e+002 1.28280563e+002 1.13162178e+002 1.24276146e+002 - 1.28320053e+002 1.13178276e+002 1.24312263e+002 1.28358337e+002 - 1.13178078e+002 1.24304207e+002 1.28396484e+002 1.13174690e+002 - 1.24317093e+002 1.28418289e+002 1.13175713e+002 1.24307716e+002 - 1.28451080e+002 1.13178474e+002 1.24321106e+002 1.28486359e+002 - 1.13186378e+002 1.24328835e+002 1.28521790e+002 1.13170143e+002 - 1.24335342e+002 1.28531357e+002 1.13173950e+002 1.24333481e+002 - 1.28556076e+002 1.13170807e+002 1.24336288e+002 1.28562958e+002 - 1.13169945e+002 1.24333382e+002 1.28589554e+002 1.13153709e+002 - 1.24340096e+002 1.28599091e+002 1.13146530e+002 1.24315323e+002 - 1.28605026e+002 1.13146500e+002 1.24321106e+002 1.28628006e+002 - 1.13144096e+002 1.24310272e+002 1.28645828e+002 1.13117767e+002 - 1.24292107e+002 1.28643723e+002 1.13150970e+002 1.24323959e+002 - 1.28697968e+002 1.13136421e+002 1.24324585e+002 1.28711243e+002 - 1.13137947e+002 1.24320366e+002 1.28732620e+002 1.13104218e+002 - 1.24303322e+002 1.28733749e+002 1.13096733e+002 1.24285812e+002 - 1.28744370e+002 1.13101685e+002 1.24302742e+002 1.28778152e+002 - 1.13115517e+002 1.24322525e+002 1.28821381e+002 1.13121017e+002 - 1.24343658e+002 1.28854736e+002 1.13138458e+002 1.24354836e+002 - 1.28879196e+002 1.13116768e+002 1.24342209e+002 1.28868439e+002 - 1.13131142e+002 1.24349129e+002 1.28905930e+002 1.13092354e+002 - 1.24330643e+002 1.28887558e+002 1.13084450e+002 1.24316910e+002 - 1.28892929e+002 1.13088890e+002 1.24331032e+002 1.28904083e+002 - 1.13083771e+002 1.24317520e+002 1.28916306e+002 1.13086517e+002 - 1.24327873e+002 1.28926498e+002 1.13103355e+002 1.24343185e+002 - 1.28959000e+002 1.13119331e+002 1.24368195e+002 1.28982437e+002 - 1.13143494e+002 1.24381844e+002 1.29008804e+002 1.13140411e+002 - 1.24388718e+002 1.29022110e+002 1.13161499e+002 1.24391975e+002 - 1.29049362e+002 1.13155670e+002 1.24396896e+002 1.29048538e+002 - 1.13147125e+002 1.24380013e+002 1.29040115e+002 1.13135872e+002 - 1.24384735e+002 1.29032883e+002 1.13125732e+002 1.24361664e+002 - 1.29019699e+002 1.13126106e+002 1.24361794e+002 1.29008026e+002 - 1.13151337e+002 1.24381783e+002 1.29036209e+002 1.13142555e+002 - 1.24392937e+002 1.29033386e+002 1.13141548e+002 1.24379227e+002 - 1.29029846e+002 1.13144867e+002 1.24388443e+002 1.29031372e+002 - 1.13155373e+002 1.24389618e+002 1.29039322e+002 1.13126411e+002 - 1.24370880e+002 1.29014877e+002 1.13130966e+002 1.24374519e+002 - 1.29030518e+002 1.13124382e+002 1.24371819e+002 1.29007248e+002 - 1.13125412e+002 1.24363861e+002 1.29001801e+002 1.13102043e+002 - 1.24344757e+002 1.28969498e+002 1.13106316e+002 1.24327049e+002 - 1.28953720e+002 1.13116730e+002 1.24338150e+002 1.28946594e+002 - 1.13122726e+002 1.24333420e+002 1.28937744e+002 1.13106651e+002 - 1.24326088e+002 1.28912399e+002 1.13125412e+002 1.24336601e+002 - 1.28921204e+002 1.13106491e+002 1.24320587e+002 1.28884445e+002 - 1.13091476e+002 1.24293488e+002 1.28843018e+002 1.13065399e+002 - 1.24285362e+002 1.28812134e+002 1.13108849e+002 1.24321304e+002 - 1.28838455e+002 1.13113235e+002 1.24329048e+002 1.28838654e+002 - 1.13117531e+002 1.24323891e+002 1.28820770e+002 1.13118118e+002 - 1.24326897e+002 1.28807785e+002 1.13107452e+002 1.24311958e+002 - 1.28783386e+002 1.13089684e+002 1.24293289e+002 1.28740082e+002 - 1.13094910e+002 1.24288666e+002 1.28719940e+002 1.13086830e+002 - 1.24283440e+002 1.28699387e+002 1.13118340e+002 1.24282310e+002 - 1.28691910e+002 1.13113472e+002 1.24284874e+002 1.28668304e+002 - 1.13138451e+002 1.24297264e+002 1.28659927e+002 1.13126732e+002 - 1.24293152e+002 1.28629379e+002 1.13135353e+002 1.24292130e+002 - 1.28621719e+002 1.13119888e+002 1.24275085e+002 1.28572357e+002 - 1.13119904e+002 1.24263802e+002 1.28537811e+002 1.13102409e+002 - 1.24258797e+002 1.28494614e+002 1.13100586e+002 1.24240700e+002 - 1.28472610e+002 1.13102028e+002 1.24231300e+002 1.28437943e+002 - 1.13106766e+002 1.24208008e+002 1.28401840e+002 1.13098007e+002 - 1.24212448e+002 1.28371033e+002 1.13108902e+002 1.24212418e+002 - 1.28354706e+002 1.13099861e+002 1.24211304e+002 1.28310486e+002 - 1.13102867e+002 1.24200539e+002 1.28285995e+002 1.13096283e+002 - 1.24194008e+002 1.28252213e+002 1.13127197e+002 1.24202812e+002 - 1.28245667e+002 1.13121078e+002 1.24207146e+002 1.28211136e+002 - 1.13111084e+002 1.24187584e+002 1.28168488e+002 1.13088959e+002 - 1.24182793e+002 1.28133774e+002 1.13111336e+002 1.24179520e+002 - 1.28118607e+002 1.13111610e+002 1.24173164e+002 1.28075790e+002 - 1.13136147e+002 1.24187660e+002 1.28056625e+002 1.13121841e+002 - 1.24183067e+002 1.28020157e+002 1.13151215e+002 1.24191170e+002 - 1.28020065e+002 1.13151611e+002 1.24200447e+002 1.27994507e+002 - 1.13175415e+002 1.24206093e+002 1.27982155e+002 1.13164734e+002 - 1.24211403e+002 1.27948730e+002 1.13170746e+002 1.24206604e+002 - 1.27921036e+002 1.13181335e+002 1.24219780e+002 1.27900566e+002 - 1.13186180e+002 1.24208305e+002 1.27868790e+002 1.13166595e+002 - 1.24191574e+002 1.27823486e+002 1.13187538e+002 1.24186897e+002 - 1.27799240e+002 1.13191124e+002 1.24200302e+002 1.27774551e+002 - 1.13203049e+002 1.24198723e+002 1.27749489e+002 1.13172676e+002 - 1.24184776e+002 1.27693825e+002 1.13166000e+002 1.24160751e+002 - 1.27658432e+002 1.13150627e+002 1.24146286e+002 1.27601646e+002 - 1.13158005e+002 1.24137497e+002 1.27561798e+002 1.13174278e+002 - 1.24159386e+002 1.27544388e+002 1.13165001e+002 1.24132050e+002 - 1.27509880e+002 1.13162849e+002 1.24134750e+002 1.27480499e+002 - 1.13168495e+002 1.24124832e+002 1.27449715e+002 1.13136787e+002 - 1.24098045e+002 1.27387596e+002 1.13141136e+002 1.24094917e+002 - 1.27360260e+002 1.13159302e+002 1.24115456e+002 1.27345192e+002 - 1.13170578e+002 1.24103729e+002 1.27307594e+002 1.13168694e+002 - 1.24100441e+002 1.27262718e+002 1.13164574e+002 1.24067535e+002 - 1.27210365e+002 1.13177925e+002 1.24080910e+002 1.27183876e+002 - 1.13195030e+002 1.24085007e+002 1.27154030e+002 1.13174553e+002 - 1.24073051e+002 1.27095932e+002 1.13180473e+002 1.24059990e+002 - 1.27065788e+002 1.13201187e+002 1.24075912e+002 1.27032570e+002 - 1.13217278e+002 1.24057945e+002 1.26969765e+002 1.13213501e+002 - 1.24064499e+002 1.26929977e+002 1.13214294e+002 1.24036201e+002 - 1.26888016e+002 1.13210968e+002 1.24037521e+002 1.26852173e+002 - 1.13230278e+002 1.24028381e+002 1.26822746e+002 1.13231850e+002 - 1.24023827e+002 1.26783531e+002 1.13235863e+002 1.24011383e+002 - 1.26740906e+002 1.13222946e+002 1.23999947e+002 1.26684807e+002 - 1.13230125e+002 1.23986732e+002 1.26649040e+002 1.13222610e+002 - 1.23984123e+002 1.26605591e+002 1.13236984e+002 1.23961990e+002 - 1.26562172e+002 1.13213028e+002 1.23938950e+002 1.26501076e+002 - 1.13226814e+002 1.23923462e+002 1.26463013e+002 1.13189598e+002 - 1.23894745e+002 1.26397881e+002 1.13182793e+002 1.23870117e+002 - 1.26361954e+002 1.13209984e+002 1.23892105e+002 1.26338135e+002 - 1.13215256e+002 1.23865784e+002 1.26273148e+002 1.13208046e+002 - 1.23859695e+002 1.26222229e+002 1.13206932e+002 1.23827164e+002 - 1.26172752e+002 1.13237808e+002 1.23852966e+002 1.26161812e+002 - 1.13268578e+002 1.23845001e+002 1.26134163e+002 1.13286629e+002 - 1.23856201e+002 1.26107384e+002 1.13329163e+002 1.23862030e+002 - 1.26094810e+002 1.13330376e+002 1.23856224e+002 1.26052788e+002 - 1.13318069e+002 1.23814255e+002 1.25990891e+002 1.13333542e+002 - 1.23811630e+002 1.25962082e+002 1.13334229e+002 1.23765022e+002 - 1.25894272e+002 1.13327675e+002 1.23743675e+002 1.25837395e+002 - 1.13342499e+002 1.23708038e+002 1.25786240e+002 1.13322395e+002 - 1.23681694e+002 1.25720604e+002 1.13280479e+002 1.23595398e+002 - 1.25626526e+002 1.13164726e+002 1.23456062e+002 1.25458191e+002 - 1.13116882e+002 1.23451721e+002 1.25478424e+002 1.13210144e+002 - 1.23587471e+002 1.25621788e+002 1.13275749e+002 1.23673340e+002 - 1.25731163e+002 1.13320496e+002 1.23745277e+002 1.25817802e+002 - 1.13346512e+002 1.23776047e+002 1.25886177e+002 1.13314674e+002 - 1.23778847e+002 1.25899811e+002 1.13314934e+002 1.23804337e+002 - 1.25965576e+002 1.13306145e+002 1.23825478e+002 1.26003105e+002 - 1.13325005e+002 1.23866714e+002 1.26067482e+002 1.13284187e+002 - 1.23861870e+002 1.26090004e+002 1.13305847e+002 1.23883850e+002 - 1.26175072e+002 1.13296204e+002 1.23906708e+002 1.26219437e+002 - 1.13285873e+002 1.23910118e+002 1.26259850e+002 1.13261009e+002 - 1.23918221e+002 1.26284164e+002 1.13258652e+002 1.23916206e+002 - 1.26322350e+002 1.13233513e+002 1.23923767e+002 1.26346893e+002 - 1.13258636e+002 1.23970436e+002 1.26448189e+002 1.13211220e+002 - 1.23957809e+002 1.26451149e+002 1.13212402e+002 1.23950043e+002 - 1.26477798e+002 1.13207672e+002 1.23957985e+002 1.26505188e+002 - 1.13195412e+002 1.23951149e+002 1.26538879e+002 1.13167862e+002 - 1.23948738e+002 1.26554802e+002 1.13145294e+002 1.23941948e+002 - 1.26587837e+002 1.13133492e+002 1.23949890e+002 1.26619865e+002 - 1.13158783e+002 1.23983856e+002 1.26687920e+002 1.13114807e+002 - 1.23962181e+002 1.26689827e+002 1.13097275e+002 1.23936104e+002 - 1.26725464e+002 1.13098694e+002 1.23958359e+002 1.26779411e+002 - 1.13110001e+002 1.23977440e+002 1.26840721e+002 1.13108124e+002 - 1.23996758e+002 1.26875290e+002 1.13112732e+002 1.24002327e+002 - 1.26920319e+002 1.13100571e+002 1.24004028e+002 1.26947998e+002 - 1.13111969e+002 1.24030006e+002 1.27019295e+002 1.13080673e+002 - 1.24018303e+002 1.27035126e+002 1.13092079e+002 1.24028534e+002 - 1.27072510e+002 1.13089691e+002 1.24036537e+002 1.27100845e+002 - 1.13075882e+002 1.24016106e+002 1.27127792e+002 1.13056038e+002 - 1.24020279e+002 1.27152985e+002 1.13058632e+002 1.24028969e+002 - 1.27203323e+002 1.13074059e+002 1.24058121e+002 1.27250755e+002 - 1.13090889e+002 1.24068504e+002 1.27305931e+002 1.13072418e+002 - 1.24063889e+002 1.27324165e+002 1.13089020e+002 1.24059143e+002 - 1.27379005e+002 1.13086311e+002 1.24066383e+002 1.27409409e+002 - 1.13087181e+002 1.24071404e+002 1.27447540e+002 1.13067924e+002 - 1.24073524e+002 1.27469872e+002 1.13079811e+002 1.24079987e+002 - 1.27515877e+002 1.13061028e+002 1.24077301e+002 1.27528664e+002 - 1.13055786e+002 1.24070595e+002 1.27572403e+002 1.13038902e+002 - 1.24078674e+002 1.27598740e+002 1.13040016e+002 1.24073456e+002 - 1.27630325e+002 1.13038826e+002 1.24081306e+002 1.27659569e+002 - 1.13020340e+002 1.24057419e+002 1.27677757e+002 1.12994377e+002 - 1.24050064e+002 1.27687767e+002 1.12997925e+002 1.24053322e+002 - 1.27731956e+002 1.13031311e+002 1.24101074e+002 1.27794495e+002 - 1.13049065e+002 1.24122780e+002 1.27847786e+002 1.13018555e+002 - 1.24109070e+002 1.27851646e+002 1.13014336e+002 1.24086105e+002 - 1.27880943e+002 1.13012276e+002 1.24092987e+002 1.27909767e+002 - 1.13006393e+002 1.24080513e+002 1.27929474e+002 1.13011024e+002 - 1.24101868e+002 1.27959038e+002 1.13053802e+002 1.24130104e+002 - 1.28030075e+002 1.13053101e+002 1.24151619e+002 1.28064621e+002 - 1.13056763e+002 1.24154457e+002 1.28121231e+002 1.13024353e+002 - 1.24152641e+002 1.28129272e+002 1.13027611e+002 1.24147957e+002 - 1.28156876e+002 1.13037064e+002 1.24172516e+002 1.28197250e+002 - 1.13035957e+002 1.24167442e+002 1.28227753e+002 1.13026535e+002 - 1.24173409e+002 1.28249023e+002 1.13028351e+002 1.24182381e+002 - 1.28289963e+002 1.13030281e+002 1.24198463e+002 1.28316696e+002 - 1.13047729e+002 1.24213661e+002 1.28364410e+002 1.13018471e+002 - 1.24201813e+002 1.28367371e+002 1.13029945e+002 1.24196541e+002 - 1.28407898e+002 1.13033821e+002 1.24218643e+002 1.28447037e+002 - 1.13036438e+002 1.24212006e+002 1.28473587e+002 1.13010612e+002 - 1.24209328e+002 1.28477875e+002 1.13023514e+002 1.24206810e+002 - 1.28503769e+002 1.13026062e+002 1.24222252e+002 1.28524216e+002 - 1.13030487e+002 1.24230263e+002 1.28557465e+002 1.13011574e+002 - 1.24231308e+002 1.28567886e+002 1.13008278e+002 1.24216286e+002 - 1.28580948e+002 1.13022919e+002 1.24240913e+002 1.28615692e+002 - 1.13027390e+002 1.24231659e+002 1.28642731e+002 1.13005280e+002 - 1.24220131e+002 1.28644897e+002 1.13018173e+002 1.24227875e+002 - 1.28688492e+002 1.13014847e+002 1.24238663e+002 1.28699829e+002 - 1.13013786e+002 1.24236214e+002 1.28726227e+002 1.12970512e+002 - 1.24207344e+002 1.28710098e+002 1.12986015e+002 1.24199242e+002 - 1.28743027e+002 1.12980865e+002 1.24216911e+002 1.28767380e+002 - 1.12995102e+002 1.24234718e+002 1.28809479e+002 1.13002235e+002 - 1.24257248e+002 1.28837402e+002 1.13020706e+002 1.24264290e+002 - 1.28865891e+002 1.13000977e+002 1.24262695e+002 1.28871017e+002 - 1.12980377e+002 1.24235580e+002 1.28867844e+002 1.12950729e+002 - 1.24235497e+002 1.28864105e+002 1.12965195e+002 1.24235466e+002 - 1.28880310e+002 1.12967041e+002 1.24243439e+002 1.28895782e+002 - 1.12972702e+002 1.24235756e+002 1.28912048e+002 1.12971077e+002 - 1.24252426e+002 1.28923080e+002 1.12962646e+002 1.24241226e+002 - 1.28931351e+002 1.12969101e+002 1.24253067e+002 1.28945618e+002 - 1.12982826e+002 1.24262070e+002 1.28963852e+002 1.12988724e+002 - 1.24277367e+002 1.28986237e+002 1.13018997e+002 1.24281311e+002 - 1.29009293e+002 1.13018318e+002 1.24291542e+002 1.29018356e+002 - 1.13006065e+002 1.24275940e+002 1.29007797e+002 1.13007477e+002 - 1.24290558e+002 1.29007706e+002 1.13003586e+002 1.24275635e+002 - 1.29007523e+002 1.13015572e+002 1.24293625e+002 1.29016815e+002 - 1.13029510e+002 1.24297462e+002 1.29023849e+002 1.13003075e+002 - 1.24289635e+002 1.29004730e+002 1.13019470e+002 1.24286232e+002 - 1.29009827e+002 1.13024673e+002 1.24303291e+002 1.29019699e+002 - 1.13031433e+002 1.24304245e+002 1.29027496e+002 1.13009392e+002 - 1.24290779e+002 1.29008102e+002 1.13013397e+002 1.24290817e+002 - 1.29008286e+002 1.12996628e+002 1.24284996e+002 1.28985947e+002 - 1.13015610e+002 1.24286461e+002 1.28993500e+002 1.12982216e+002 - 1.24262932e+002 1.28956299e+002 1.12982376e+002 1.24236206e+002 - 1.28936386e+002 1.12971466e+002 1.24230499e+002 1.28915985e+002 - 1.12992928e+002 1.24239967e+002 1.28915344e+002 1.12982376e+002 - 1.24248421e+002 1.28900009e+002 1.12992554e+002 1.24242165e+002 - 1.28899384e+002 1.12970749e+002 1.24224213e+002 1.28858963e+002 - 1.12962120e+002 1.24199211e+002 1.28830231e+002 1.12934219e+002 - 1.24190971e+002 1.28793900e+002 1.12983643e+002 1.24224457e+002 - 1.28825821e+002 1.12983940e+002 1.24242546e+002 1.28819397e+002 - 1.12984413e+002 1.24220734e+002 1.28798904e+002 1.12956642e+002 - 1.24205284e+002 1.28764618e+002 1.12966446e+002 1.24207657e+002 - 1.28755859e+002 1.12982765e+002 1.24223045e+002 1.28743958e+002 - 1.12958138e+002 1.24184441e+002 1.28691742e+002 1.12945076e+002 - 1.24178711e+002 1.28666611e+002 1.12975044e+002 1.24175362e+002 - 1.28664139e+002 1.12990486e+002 1.24199440e+002 1.28663986e+002 - 1.12994026e+002 1.24194778e+002 1.28640274e+002 1.12983429e+002 - 1.24193085e+002 1.28603210e+002 1.13015297e+002 1.24209183e+002 - 1.28614365e+002 1.13001144e+002 1.24195580e+002 1.28573944e+002 - 1.12994751e+002 1.24180443e+002 1.28528336e+002 1.12974907e+002 - 1.24170464e+002 1.28479568e+002 1.12985748e+002 1.24153503e+002 - 1.28455490e+002 1.12973289e+002 1.24144737e+002 1.28418091e+002 - 1.12976585e+002 1.24117203e+002 1.28383530e+002 1.12963783e+002 - 1.24116562e+002 1.28344589e+002 1.12959961e+002 1.24107750e+002 - 1.28317017e+002 1.12950745e+002 1.24099327e+002 1.28280167e+002 - 1.12958061e+002 1.24089516e+002 1.28247498e+002 1.12957741e+002 - 1.24096344e+002 1.28228607e+002 1.12989159e+002 1.24097107e+002 - 1.28213715e+002 1.13001549e+002 1.24118210e+002 1.28202179e+002 - 1.12992805e+002 1.24101181e+002 1.28155563e+002 1.12966827e+002 - 1.24089523e+002 1.28108597e+002 1.12982079e+002 1.24081398e+002 - 1.28093674e+002 1.13002983e+002 1.24105965e+002 1.28076859e+002 - 1.13022514e+002 1.24111954e+002 1.28052994e+002 1.13014801e+002 - 1.24119148e+002 1.28015656e+002 1.13035278e+002 1.24111481e+002 - 1.28001678e+002 1.13024727e+002 1.24113029e+002 1.27968430e+002 - 1.13042709e+002 1.24109871e+002 1.27953781e+002 1.13042908e+002 - 1.24120087e+002 1.27922981e+002 1.13056664e+002 1.24128662e+002 - 1.27906197e+002 1.13053322e+002 1.24123711e+002 1.27869057e+002 - 1.13041512e+002 1.24104691e+002 1.27826996e+002 1.13049080e+002 - 1.24118225e+002 1.27804741e+002 1.13062057e+002 1.24100479e+002 - 1.27774117e+002 1.13091866e+002 1.24140495e+002 1.27773582e+002 - 1.13103851e+002 1.24139122e+002 1.27745659e+002 1.13061043e+002 - 1.24104385e+002 1.27675034e+002 1.13053604e+002 1.24083542e+002 - 1.27640991e+002 1.13051964e+002 1.24079926e+002 1.27593559e+002 - 1.13027222e+002 1.24038185e+002 1.27524048e+002 1.13028648e+002 - 1.24047302e+002 1.27495979e+002 1.13041183e+002 1.24039207e+002 - 1.27475700e+002 1.13057175e+002 1.24061768e+002 1.27464775e+002 - 1.13078156e+002 1.24064186e+002 1.27454758e+002 1.13047493e+002 - 1.24042519e+002 1.27392502e+002 1.13048889e+002 1.24033188e+002 - 1.27357735e+002 1.13070198e+002 1.24064888e+002 1.27345261e+002 - 1.13067825e+002 1.24040169e+002 1.27294655e+002 1.13062683e+002 - 1.24031403e+002 1.27253540e+002 1.13052177e+002 1.23987541e+002 - 1.27193298e+002 1.13059723e+002 1.23997986e+002 1.27159286e+002 - 1.13089790e+002 1.24012398e+002 1.27139130e+002 1.13077888e+002 - 1.24015205e+002 1.27093971e+002 1.13092194e+002 1.24004028e+002 - 1.27066452e+002 1.13102371e+002 1.24012497e+002 1.27025276e+002 - 1.13105576e+002 1.23983696e+002 1.26949409e+002 1.13102905e+002 - 1.23985199e+002 1.26906517e+002 1.13137260e+002 1.23993698e+002 - 1.26902077e+002 1.13133987e+002 1.23989540e+002 1.26857727e+002 - 1.13153046e+002 1.23975906e+002 1.26827515e+002 1.13128708e+002 - 1.23956734e+002 1.26768158e+002 1.13144196e+002 1.23952713e+002 - 1.26730392e+002 1.13152412e+002 1.23961754e+002 1.26698174e+002 - 1.13136284e+002 1.23928482e+002 1.26637817e+002 1.13110901e+002 - 1.23906677e+002 1.26580246e+002 1.13135139e+002 1.23896286e+002 - 1.26549309e+002 1.13139175e+002 1.23894966e+002 1.26507507e+002 - 1.13145653e+002 1.23878006e+002 1.26471519e+002 1.13108398e+002 - 1.23848297e+002 1.26395111e+002 1.13088417e+002 1.23808983e+002 - 1.26341988e+002 1.13116791e+002 1.23830490e+002 1.26327820e+002 - 1.13133842e+002 1.23813911e+002 1.26265182e+002 1.13121925e+002 - 1.23810295e+002 1.26211655e+002 1.13127373e+002 1.23776962e+002 - 1.26170082e+002 1.13155617e+002 1.23800850e+002 1.26158493e+002 - 1.13169136e+002 1.23778511e+002 1.26111671e+002 1.13201126e+002 - 1.23806221e+002 1.26100967e+002 1.13235535e+002 1.23806206e+002 - 1.26078064e+002 1.13244499e+002 1.23804161e+002 1.26039833e+002 - 1.13217049e+002 1.23741730e+002 1.25960045e+002 1.13249306e+002 - 1.23762596e+002 1.25955910e+002 1.13264130e+002 1.23725220e+002 - 1.25898575e+002 1.13265968e+002 1.23716003e+002 1.25855202e+002 - 1.13273521e+002 1.23673271e+002 1.25797234e+002 1.13238144e+002 - 1.23634178e+002 1.25713234e+002 1.13205612e+002 1.23553841e+002 - 1.25629471e+002 1.13107201e+002 1.23442390e+002 1.25482307e+002 - 1.13018829e+002 1.23392700e+002 1.25480644e+002 1.13114784e+002 - 1.23530373e+002 1.25630295e+002 1.13180832e+002 1.23617592e+002 - 1.25744377e+002 1.13229630e+002 1.23697334e+002 1.25827530e+002 - 1.13243065e+002 1.23713928e+002 1.25884552e+002 1.13220238e+002 - 1.23727020e+002 1.25910606e+002 1.13201813e+002 1.23734535e+002 - 1.25951942e+002 1.13190903e+002 1.23750587e+002 1.25988243e+002 - 1.13220657e+002 1.23798439e+002 1.26073677e+002 1.13189842e+002 - 1.23806061e+002 1.26101166e+002 1.13196030e+002 1.23814690e+002 - 1.26168869e+002 1.13200653e+002 1.23852280e+002 1.26236504e+002 - 1.13195320e+002 1.23868240e+002 1.26288696e+002 1.13158241e+002 - 1.23860397e+002 1.26298088e+002 1.13135323e+002 1.23836342e+002 - 1.26309189e+002 1.13119202e+002 1.23852570e+002 1.26342049e+002 - 1.13127083e+002 1.23883186e+002 1.26421814e+002 1.13082214e+002 - 1.23876205e+002 1.26434975e+002 1.13098785e+002 1.23878983e+002 - 1.26479935e+002 1.13082649e+002 1.23879501e+002 1.26497147e+002 - 1.13054726e+002 1.23851784e+002 1.26512856e+002 1.13035027e+002 - 1.23859108e+002 1.26536758e+002 1.13012573e+002 1.23849731e+002 - 1.26569443e+002 1.12998360e+002 1.23858788e+002 1.26592720e+002 - 1.13016632e+002 1.23887321e+002 1.26663429e+002 1.12972565e+002 - 1.23863129e+002 1.26665428e+002 1.12973938e+002 1.23855003e+002 - 1.26718918e+002 1.12966064e+002 1.23867638e+002 1.26758804e+002 - 1.12982330e+002 1.23891808e+002 1.26825394e+002 1.12987839e+002 - 1.23913734e+002 1.26870491e+002 1.12985901e+002 1.23913246e+002 - 1.26909042e+002 1.12969025e+002 1.23912285e+002 1.26927017e+002 - 1.12964966e+002 1.23917908e+002 1.26982628e+002 1.12912689e+002 - 1.23889412e+002 1.26980988e+002 1.12941116e+002 1.23909492e+002 - 1.27035118e+002 1.12953644e+002 1.23942169e+002 1.27081749e+002 - 1.12935417e+002 1.23917824e+002 1.27109238e+002 1.12898079e+002 - 1.23897751e+002 1.27111282e+002 1.12921822e+002 1.23924126e+002 - 1.27178139e+002 1.12915985e+002 1.23936401e+002 1.27208260e+002 - 1.12948723e+002 1.23967125e+002 1.27282753e+002 1.12925529e+002 - 1.23959694e+002 1.27294830e+002 1.12931328e+002 1.23941650e+002 - 1.27338142e+002 1.12933586e+002 1.23963326e+002 1.27384048e+002 - 1.12925705e+002 1.23947304e+002 1.27404282e+002 1.12909866e+002 - 1.23959061e+002 1.27431252e+002 1.12920425e+002 1.23962265e+002 - 1.27475616e+002 1.12919632e+002 1.23977043e+002 1.27497734e+002 - 1.12914162e+002 1.23971519e+002 1.27550659e+002 1.12876564e+002 - 1.23959457e+002 1.27563332e+002 1.12879585e+002 1.23947121e+002 - 1.27594933e+002 1.12869995e+002 1.23955933e+002 1.27624504e+002 - 1.12857018e+002 1.23933678e+002 1.27646309e+002 1.12816544e+002 - 1.23913986e+002 1.27647507e+002 1.12800217e+002 1.23904770e+002 - 1.27674561e+002 1.12832649e+002 1.23950943e+002 1.27737938e+002 - 1.12854965e+002 1.23966476e+002 1.27782906e+002 1.12831993e+002 - 1.23966461e+002 1.27797409e+002 1.12831116e+002 1.23942558e+002 - 1.27823524e+002 1.12844475e+002 1.23967712e+002 1.27867218e+002 - 1.12849739e+002 1.23968361e+002 1.27904663e+002 1.12858017e+002 - 1.23991653e+002 1.27942154e+002 1.12891190e+002 1.24017769e+002 - 1.27999199e+002 1.12884216e+002 1.24023247e+002 1.28024933e+002 - 1.12875397e+002 1.24022728e+002 1.28066895e+002 1.12830788e+002 - 1.24003143e+002 1.28069504e+002 1.12854782e+002 1.24017982e+002 - 1.28113983e+002 1.12886177e+002 1.24068008e+002 1.28177368e+002 - 1.12883789e+002 1.24056297e+002 1.28203934e+002 1.12858864e+002 - 1.24048203e+002 1.28209183e+002 1.12864494e+002 1.24059441e+002 - 1.28253891e+002 1.12865181e+002 1.24078499e+002 1.28285461e+002 - 1.12845367e+002 1.24053398e+002 1.28296753e+002 1.12825493e+002 - 1.24055771e+002 1.28309418e+002 1.12837944e+002 1.24049278e+002 - 1.28346252e+002 1.12838257e+002 1.24060966e+002 1.28376511e+002 - 1.12829865e+002 1.24052673e+002 1.28400253e+002 1.12815933e+002 - 1.24050659e+002 1.28406387e+002 1.12835602e+002 1.24062592e+002 - 1.28448502e+002 1.12840958e+002 1.24078697e+002 1.28473175e+002 - 1.12858330e+002 1.24103310e+002 1.28526184e+002 1.12819626e+002 - 1.24085831e+002 1.28520081e+002 1.12830956e+002 1.24082832e+002 - 1.28548920e+002 1.12831680e+002 1.24096817e+002 1.28571335e+002 - 1.12842178e+002 1.24094231e+002 1.28604187e+002 1.12821762e+002 - 1.24086143e+002 1.28608627e+002 1.12812317e+002 1.24071770e+002 - 1.28624771e+002 1.12844292e+002 1.24112328e+002 1.28681061e+002 - 1.12848053e+002 1.24113815e+002 1.28699890e+002 1.12820015e+002 - 1.24100800e+002 1.28707550e+002 1.12838318e+002 1.24096245e+002 - 1.28739777e+002 1.12846542e+002 1.24127457e+002 1.28774796e+002 - 1.12850288e+002 1.24134262e+002 1.28809418e+002 1.12833412e+002 - 1.24138535e+002 1.28813538e+002 1.12867447e+002 1.24163033e+002 - 1.28863998e+002 1.12853767e+002 1.24158913e+002 1.28863968e+002 - 1.12821426e+002 1.24114388e+002 1.28846634e+002 1.12797546e+002 - 1.24116814e+002 1.28848129e+002 1.12809647e+002 1.24113892e+002 - 1.28861450e+002 1.12813721e+002 1.24131752e+002 1.28872086e+002 - 1.12833191e+002 1.24130363e+002 1.28904022e+002 1.12816071e+002 - 1.24132545e+002 1.28906372e+002 1.12806923e+002 1.24124031e+002 - 1.28909302e+002 1.12819641e+002 1.24147224e+002 1.28940125e+002 - 1.12818665e+002 1.24141228e+002 1.28949219e+002 1.12821053e+002 - 1.24151245e+002 1.28955460e+002 1.12850761e+002 1.24163834e+002 - 1.28991013e+002 1.12861000e+002 1.24178246e+002 1.29003540e+002 - 1.12841141e+002 1.24158722e+002 1.28989288e+002 1.12839729e+002 - 1.24171310e+002 1.28986954e+002 1.12835571e+002 1.24151604e+002 - 1.28985657e+002 1.12848160e+002 1.24173126e+002 1.28987183e+002 - 1.12851982e+002 1.24168877e+002 1.28987396e+002 1.12832016e+002 - 1.24162849e+002 1.28976410e+002 1.12839645e+002 1.24158012e+002 - 1.28975891e+002 1.12859741e+002 1.24186684e+002 1.28994324e+002 - 1.12879211e+002 1.24189598e+002 1.29007065e+002 1.12863022e+002 - 1.24185066e+002 1.28993851e+002 1.12844566e+002 1.24167343e+002 - 1.28980408e+002 1.12833572e+002 1.24157188e+002 1.28958450e+002 - 1.12844292e+002 1.24166405e+002 1.28966492e+002 1.12820099e+002 - 1.24150497e+002 1.28935852e+002 1.12813766e+002 1.24110329e+002 - 1.28915344e+002 1.12800468e+002 1.24104248e+002 1.28887772e+002 - 1.12795120e+002 1.24086700e+002 1.28866623e+002 1.12780899e+002 - 1.24082695e+002 1.28839142e+002 1.12802620e+002 1.24094231e+002 - 1.28848389e+002 1.12792572e+002 1.24089775e+002 1.28819855e+002 - 1.12795601e+002 1.24077850e+002 1.28805435e+002 1.12770798e+002 - 1.24075829e+002 1.28779877e+002 1.12795937e+002 1.24080635e+002 - 1.28778275e+002 1.12799980e+002 1.24095062e+002 1.28772263e+002 - 1.12792297e+002 1.24072090e+002 1.28751587e+002 1.12789238e+002 - 1.24073044e+002 1.28731888e+002 1.12813393e+002 1.24095230e+002 - 1.28736633e+002 1.12822090e+002 1.24106110e+002 1.28732544e+002 - 1.12808014e+002 1.24077278e+002 1.28687744e+002 1.12797073e+002 - 1.24067345e+002 1.28656723e+002 1.12809669e+002 1.24048935e+002 - 1.28639496e+002 1.12815620e+002 1.24067474e+002 1.28627777e+002 - 1.12811409e+002 1.24060738e+002 1.28606735e+002 1.12813408e+002 - 1.24065025e+002 1.28579254e+002 1.12838272e+002 1.24086166e+002 - 1.28592529e+002 1.12830177e+002 1.24075775e+002 1.28551834e+002 - 1.12846252e+002 1.24078171e+002 1.28518890e+002 1.12826408e+002 - 1.24068092e+002 1.28480209e+002 1.12830666e+002 1.24049454e+002 - 1.28455048e+002 1.12809914e+002 1.24026535e+002 1.28401291e+002 - 1.12810287e+002 1.23998306e+002 1.28363220e+002 1.12813095e+002 - 1.24010048e+002 1.28337250e+002 1.12813896e+002 1.24005363e+002 - 1.28307312e+002 1.12823463e+002 1.24020950e+002 1.28289963e+002 - 1.12820267e+002 1.24002007e+002 1.28251801e+002 1.12790314e+002 - 1.23974297e+002 1.28194153e+002 1.12825668e+002 1.23973541e+002 - 1.28186630e+002 1.12838074e+002 1.24003143e+002 1.28174805e+002 - 1.12835396e+002 1.23992500e+002 1.28139252e+002 1.12808189e+002 - 1.23974243e+002 1.28087402e+002 1.12809235e+002 1.23955376e+002 - 1.28054291e+002 1.12839508e+002 1.23983337e+002 1.28039719e+002 - 1.12876900e+002 1.24006241e+002 1.28028854e+002 1.12843315e+002 - 1.23989105e+002 1.27976753e+002 1.12856239e+002 1.23986130e+002 - 1.27964859e+002 1.12852760e+002 1.23987343e+002 1.27933456e+002 - 1.12884079e+002 1.24000946e+002 1.27926262e+002 1.12879410e+002 - 1.24009026e+002 1.27896416e+002 1.12898476e+002 1.24019005e+002 - 1.27880783e+002 1.12874336e+002 1.23994316e+002 1.27822685e+002 - 1.12865395e+002 1.23971924e+002 1.27775337e+002 1.12893845e+002 - 1.24006828e+002 1.27777252e+002 1.12916351e+002 1.23996758e+002 - 1.27755447e+002 1.12925743e+002 1.24014198e+002 1.27734856e+002 - 1.12929886e+002 1.24010658e+002 1.27701019e+002 1.12900436e+002 - 1.23995026e+002 1.27641502e+002 1.12881622e+002 1.23953911e+002 - 1.27594933e+002 1.12884445e+002 1.23959145e+002 1.27555450e+002 - 1.12871132e+002 1.23920944e+002 1.27489479e+002 1.12864159e+002 - 1.23923203e+002 1.27460365e+002 1.12878708e+002 1.23921440e+002 - 1.27442421e+002 1.12884758e+002 1.23928200e+002 1.27417953e+002 - 1.12898354e+002 1.23923462e+002 1.27400703e+002 1.12887352e+002 - 1.23921631e+002 1.27361908e+002 1.12895111e+002 1.23913315e+002 - 1.27325104e+002 1.12917114e+002 1.23945267e+002 1.27313286e+002 - 1.12921158e+002 1.23930222e+002 1.27268875e+002 1.12925430e+002 - 1.23933754e+002 1.27236710e+002 1.12928078e+002 1.23898285e+002 - 1.27181145e+002 1.12930237e+002 1.23908913e+002 1.27150612e+002 - 1.12955139e+002 1.23913635e+002 1.27127197e+002 1.12928413e+002 - 1.23904541e+002 1.27063202e+002 1.12946449e+002 1.23896980e+002 - 1.27034058e+002 1.12944275e+002 1.23889923e+002 1.26980339e+002 - 1.12952118e+002 1.23870392e+002 1.26908768e+002 1.12953880e+002 - 1.23876808e+002 1.26871231e+002 1.12992981e+002 1.23885834e+002 - 1.26868942e+002 1.12993217e+002 1.23889137e+002 1.26834747e+002 - 1.12997917e+002 1.23866852e+002 1.26791710e+002 1.12978516e+002 - 1.23845398e+002 1.26728455e+002 1.13006416e+002 1.23856079e+002 - 1.26704292e+002 1.13023743e+002 1.23870010e+002 1.26682091e+002 - 1.13005272e+002 1.23834450e+002 1.26618347e+002 1.12984741e+002 - 1.23818085e+002 1.26565453e+002 1.13008629e+002 1.23800262e+002 - 1.26530640e+002 1.13010612e+002 1.23809731e+002 1.26495216e+002 - 1.13010979e+002 1.23782806e+002 1.26443367e+002 1.12981277e+002 - 1.23762589e+002 1.26384361e+002 1.12978981e+002 1.23736252e+002 - 1.26338310e+002 1.12991570e+002 1.23742867e+002 1.26299957e+002 - 1.13023514e+002 1.23740372e+002 1.26255188e+002 1.13016800e+002 - 1.23736946e+002 1.26208328e+002 1.13025742e+002 1.23708885e+002 - 1.26171265e+002 1.13020470e+002 1.23708336e+002 1.26129005e+002 - 1.13046021e+002 1.23698486e+002 1.26098457e+002 1.13073296e+002 - 1.23716003e+002 1.26081436e+002 1.13118477e+002 1.23719940e+002 - 1.26059418e+002 1.13123573e+002 1.23717789e+002 1.26023102e+002 - 1.13102104e+002 1.23661575e+002 1.25948418e+002 1.13140747e+002 - 1.23698723e+002 1.25949440e+002 1.13160088e+002 1.23661026e+002 - 1.25898949e+002 1.13153458e+002 1.23639450e+002 1.25847420e+002 - 1.13178696e+002 1.23620193e+002 1.25805824e+002 1.13135651e+002 - 1.23574722e+002 1.25719017e+002 1.13102783e+002 1.23490524e+002 - 1.25635880e+002 1.13007294e+002 1.23379539e+002 1.25483269e+002 - 1.12928627e+002 1.23341705e+002 1.25479668e+002 1.13009079e+002 - 1.23463570e+002 1.25611923e+002 1.13100616e+002 1.23572014e+002 - 1.25743240e+002 1.13147980e+002 1.23646164e+002 1.25830978e+002 - 1.13142273e+002 1.23654312e+002 1.25873627e+002 1.13116928e+002 - 1.23662300e+002 1.25897903e+002 1.13111786e+002 1.23680016e+002 - 1.25957123e+002 1.13107452e+002 1.23703606e+002 1.25988930e+002 - 1.13127472e+002 1.23744087e+002 1.26067070e+002 1.13095940e+002 - 1.23743156e+002 1.26090805e+002 1.13097084e+002 1.23748398e+002 - 1.26161186e+002 1.13097725e+002 1.23778046e+002 1.26219925e+002 - 1.13083694e+002 1.23791832e+002 1.26269554e+002 1.13057648e+002 - 1.23798157e+002 1.26291794e+002 1.13046394e+002 1.23791588e+002 - 1.26316055e+002 1.13023376e+002 1.23804474e+002 1.26347343e+002 - 1.13008919e+002 1.23804771e+002 1.26410782e+002 1.12970039e+002 - 1.23798431e+002 1.26415741e+002 1.12975410e+002 1.23799400e+002 - 1.26454346e+002 1.12966690e+002 1.23802498e+002 1.26477074e+002 - 1.12945023e+002 1.23786217e+002 1.26502602e+002 1.12928902e+002 - 1.23790260e+002 1.26526726e+002 1.12905251e+002 1.23785675e+002 - 1.26560860e+002 1.12877586e+002 1.23775734e+002 1.26576920e+002 - 1.12895508e+002 1.23802528e+002 1.26634903e+002 1.12861763e+002 - 1.23791924e+002 1.26654236e+002 1.12860268e+002 1.23779556e+002 - 1.26707878e+002 1.12844269e+002 1.23784630e+002 1.26738083e+002 - 1.12858780e+002 1.23803215e+002 1.26799240e+002 1.12864761e+002 - 1.23835823e+002 1.26847252e+002 1.12871841e+002 1.23832825e+002 - 1.26893059e+002 1.12860199e+002 1.23846451e+002 1.26924866e+002 - 1.12831192e+002 1.23821533e+002 1.26953712e+002 1.12790894e+002 - 1.23801926e+002 1.26954399e+002 1.12812347e+002 1.23815285e+002 - 1.27003098e+002 1.12824135e+002 1.23843590e+002 1.27054649e+002 - 1.12835876e+002 1.23846634e+002 1.27100883e+002 1.12785095e+002 - 1.23824715e+002 1.27099342e+002 1.12795845e+002 1.23839607e+002 - 1.27154907e+002 1.12789726e+002 1.23851921e+002 1.27187080e+002 - 1.12797424e+002 1.23856361e+002 1.27232735e+002 1.12793877e+002 - 1.23862236e+002 1.27272278e+002 1.12792747e+002 1.23845764e+002 - 1.27303520e+002 1.12787308e+002 1.23849869e+002 1.27335564e+002 - 1.12767502e+002 1.23832649e+002 1.27361794e+002 1.12757248e+002 - 1.23846909e+002 1.27390968e+002 1.12773293e+002 1.23855042e+002 - 1.27431091e+002 1.12765923e+002 1.23862022e+002 1.27460403e+002 - 1.12774384e+002 1.23870415e+002 1.27527954e+002 1.12730743e+002 - 1.23849892e+002 1.27526703e+002 1.12722687e+002 1.23833023e+002 - 1.27547173e+002 1.12727562e+002 1.23855202e+002 1.27592461e+002 - 1.12725128e+002 1.23842438e+002 1.27628159e+002 1.12670898e+002 - 1.23808990e+002 1.27613190e+002 1.12660248e+002 1.23804749e+002 - 1.27649414e+002 1.12682892e+002 1.23844086e+002 1.27701393e+002 - 1.12721413e+002 1.23884323e+002 1.27771309e+002 1.12698608e+002 - 1.23875473e+002 1.27781609e+002 1.12685295e+002 1.23842789e+002 - 1.27801941e+002 1.12701157e+002 1.23866127e+002 1.27846214e+002 - 1.12715858e+002 1.23875183e+002 1.27881844e+002 1.12717957e+002 - 1.23889694e+002 1.27919197e+002 1.12736816e+002 1.23895599e+002 - 1.27961319e+002 1.12733429e+002 1.23912674e+002 1.27989998e+002 - 1.12731621e+002 1.23920158e+002 1.28040161e+002 1.12690369e+002 - 1.23907219e+002 1.28046799e+002 1.12714584e+002 1.23918953e+002 - 1.28090714e+002 1.12732758e+002 1.23950737e+002 1.28132828e+002 - 1.12717270e+002 1.23930824e+002 1.28155975e+002 1.12716759e+002 - 1.23947128e+002 1.28188156e+002 1.12716270e+002 1.23949364e+002 - 1.28219788e+002 1.12706306e+002 1.23953537e+002 1.28240341e+002 - 1.12697372e+002 1.23941200e+002 1.28258408e+002 1.12678993e+002 - 1.23943420e+002 1.28279739e+002 1.12681229e+002 1.23930260e+002 - 1.28311935e+002 1.12694237e+002 1.23956581e+002 1.28352509e+002 - 1.12682762e+002 1.23941811e+002 1.28366547e+002 1.12674095e+002 - 1.23949265e+002 1.28384430e+002 1.12674110e+002 1.23944168e+002 - 1.28407944e+002 1.12665794e+002 1.23952690e+002 1.28429398e+002 - 1.12676620e+002 1.23965477e+002 1.28477051e+002 1.12652077e+002 - 1.23959679e+002 1.28483124e+002 1.12660568e+002 1.23958130e+002 - 1.28507080e+002 1.12646393e+002 1.23949638e+002 1.28510529e+002 - 1.12661797e+002 1.23953217e+002 1.28548859e+002 1.12643822e+002 - 1.23951118e+002 1.28556000e+002 1.12641548e+002 1.23942085e+002 - 1.28578476e+002 1.12680565e+002 1.23991592e+002 1.28642242e+002 - 1.12702782e+002 1.24006386e+002 1.28682098e+002 1.12686897e+002 - 1.24008835e+002 1.28698074e+002 1.12703461e+002 1.24009949e+002 - 1.28735458e+002 1.12687325e+002 1.24004257e+002 1.28740280e+002 - 1.12675308e+002 1.23997284e+002 1.28756439e+002 1.12655579e+002 - 1.23996223e+002 1.28763031e+002 1.12681488e+002 1.24017265e+002 - 1.28809174e+002 1.12679016e+002 1.24025955e+002 1.28817474e+002 - 1.12676941e+002 1.24013634e+002 1.28834030e+002 1.12658386e+002 - 1.24010963e+002 1.28833496e+002 1.12664009e+002 1.24004501e+002 - 1.28841232e+002 1.12661247e+002 1.24014984e+002 1.28851486e+002 - 1.12688972e+002 1.24026299e+002 1.28888992e+002 1.12673172e+002 - 1.24036011e+002 1.28892654e+002 1.12684174e+002 1.24039101e+002 - 1.28913361e+002 1.12703903e+002 1.24070145e+002 1.28949905e+002 - 1.12697800e+002 1.24056870e+002 1.28945007e+002 1.12686882e+002 - 1.24063339e+002 1.28950638e+002 1.12712051e+002 1.24064049e+002 - 1.28975128e+002 1.12712410e+002 1.24074356e+002 1.28982742e+002 - 1.12697029e+002 1.24051537e+002 1.28968002e+002 1.12706345e+002 - 1.24076454e+002 1.28981522e+002 1.12708954e+002 1.24060791e+002 - 1.28978180e+002 1.12701157e+002 1.24063263e+002 1.28966446e+002 - 1.12719841e+002 1.24073380e+002 1.28984756e+002 1.12702232e+002 - 1.24072990e+002 1.28971222e+002 1.12710587e+002 1.24065659e+002 - 1.28967285e+002 1.12717094e+002 1.24082611e+002 1.28977188e+002 - 1.12743073e+002 1.24090027e+002 1.28995132e+002 1.12734505e+002 - 1.24089577e+002 1.28986237e+002 1.12713913e+002 1.24070633e+002 - 1.28968445e+002 1.12693405e+002 1.24051971e+002 1.28942261e+002 - 1.12696037e+002 1.24047737e+002 1.28940186e+002 1.12679016e+002 - 1.24045731e+002 1.28924393e+002 1.12691147e+002 1.24024750e+002 - 1.28912231e+002 1.12680588e+002 1.24018379e+002 1.28892487e+002 - 1.12665619e+002 1.23993149e+002 1.28861420e+002 1.12639542e+002 - 1.23975670e+002 1.28826813e+002 1.12642410e+002 1.23972786e+002 - 1.28820892e+002 1.12636581e+002 1.23973991e+002 1.28795563e+002 - 1.12639999e+002 1.23968285e+002 1.28780319e+002 1.12627342e+002 - 1.23970200e+002 1.28757309e+002 1.12625389e+002 1.23953239e+002 - 1.28737808e+002 1.12625755e+002 1.23960945e+002 1.28724442e+002 - 1.12628799e+002 1.23948792e+002 1.28715546e+002 1.12619675e+002 - 1.23941826e+002 1.28690857e+002 1.12624741e+002 1.23938690e+002 - 1.28674164e+002 1.12660934e+002 1.23977715e+002 1.28686340e+002 - 1.12643608e+002 1.23947121e+002 1.28647476e+002 1.12622169e+002 - 1.23930824e+002 1.28606339e+002 1.12649345e+002 1.23929413e+002 - 1.28609909e+002 1.12646034e+002 1.23934914e+002 1.28590042e+002 - 1.12658134e+002 1.23946205e+002 1.28577972e+002 1.12662994e+002 - 1.23960243e+002 1.28565613e+002 1.12679268e+002 1.23964500e+002 - 1.28563141e+002 1.12680954e+002 1.23974045e+002 1.28533524e+002 - 1.12678780e+002 1.23956932e+002 1.28492371e+002 1.12661018e+002 - 1.23941772e+002 1.28438828e+002 1.12663330e+002 1.23920555e+002 - 1.28413055e+002 1.12643723e+002 1.23901070e+002 1.28362076e+002 - 1.12651520e+002 1.23884361e+002 1.28331863e+002 1.12650993e+002 - 1.23890511e+002 1.28299530e+002 1.12663345e+002 1.23896538e+002 - 1.28282425e+002 1.12665306e+002 1.23897064e+002 1.28253983e+002 - 1.12644798e+002 1.23868706e+002 1.28201050e+002 1.12629921e+002 - 1.23857849e+002 1.28161850e+002 1.12658447e+002 1.23853539e+002 - 1.28145111e+002 1.12657539e+002 1.23859215e+002 1.28111465e+002 - 1.12663559e+002 1.23856239e+002 1.28082611e+002 1.12648842e+002 - 1.23852829e+002 1.28046890e+002 1.12641190e+002 1.23828552e+002 - 1.28007019e+002 1.12658974e+002 1.23853226e+002 1.27990646e+002 - 1.12683823e+002 1.23862274e+002 1.27967941e+002 1.12680901e+002 - 1.23868828e+002 1.27932587e+002 1.12721443e+002 1.23888885e+002 - 1.27940231e+002 1.12706841e+002 1.23884109e+002 1.27901161e+002 - 1.12726936e+002 1.23887497e+002 1.27889038e+002 1.12716797e+002 - 1.23890671e+002 1.27853958e+002 1.12735619e+002 1.23898163e+002 - 1.27834908e+002 1.12736839e+002 1.23901283e+002 1.27801727e+002 - 1.12731194e+002 1.23877083e+002 1.27753937e+002 1.12746193e+002 - 1.23892830e+002 1.27739189e+002 1.12769035e+002 1.23888275e+002 - 1.27717964e+002 1.12766838e+002 1.23895317e+002 1.27684288e+002 - 1.12771698e+002 1.23887894e+002 1.27645233e+002 1.12758331e+002 - 1.23890442e+002 1.27610855e+002 1.12750801e+002 1.23860748e+002 - 1.27571350e+002 1.12764824e+002 1.23877907e+002 1.27547760e+002 - 1.12741470e+002 1.23828949e+002 1.27472214e+002 1.12731194e+002 - 1.23824303e+002 1.27438126e+002 1.12740601e+002 1.23819420e+002 - 1.27414734e+002 1.12735588e+002 1.23817940e+002 1.27380722e+002 - 1.12764229e+002 1.23823982e+002 1.27370026e+002 1.12754860e+002 - 1.23828255e+002 1.27334381e+002 1.12749329e+002 1.23809258e+002 - 1.27290970e+002 1.12770462e+002 1.23830826e+002 1.27269104e+002 - 1.12784599e+002 1.23827888e+002 1.27232811e+002 1.12798798e+002 - 1.23843941e+002 1.27205414e+002 1.12799034e+002 1.23812004e+002 - 1.27157104e+002 1.12819374e+002 1.23832375e+002 1.27133041e+002 - 1.12838936e+002 1.23836891e+002 1.27101303e+002 1.12807838e+002 - 1.23813927e+002 1.27042595e+002 1.12801704e+002 1.23788811e+002 - 1.26993027e+002 1.12817993e+002 1.23801567e+002 1.26954361e+002 - 1.12828369e+002 1.23784058e+002 1.26891907e+002 1.12834778e+002 - 1.23792122e+002 1.26854843e+002 1.12859314e+002 1.23797516e+002 - 1.26837830e+002 1.12870544e+002 1.23810646e+002 1.26814728e+002 - 1.12892082e+002 1.23796196e+002 1.26788429e+002 1.12874977e+002 - 1.23781281e+002 1.26726433e+002 1.12892082e+002 1.23777863e+002 - 1.26692787e+002 1.12882866e+002 1.23766907e+002 1.26639267e+002 - 1.12865349e+002 1.23739159e+002 1.26581245e+002 1.12864708e+002 - 1.23734528e+002 1.26543030e+002 1.12886101e+002 1.23719727e+002 - 1.26510895e+002 1.12886993e+002 1.23716263e+002 1.26461700e+002 - 1.12890022e+002 1.23701042e+002 1.26412811e+002 1.12871841e+002 - 1.23686378e+002 1.26364479e+002 1.12884789e+002 1.23677238e+002 - 1.26338936e+002 1.12889702e+002 1.23679222e+002 1.26292816e+002 - 1.12925980e+002 1.23686729e+002 1.26254562e+002 1.12901680e+002 - 1.23659370e+002 1.26184006e+002 1.12896866e+002 1.23622261e+002 - 1.26132988e+002 1.12895920e+002 1.23617920e+002 1.26095284e+002 - 1.12944710e+002 1.23634941e+002 1.26082520e+002 1.12960472e+002 - 1.23639221e+002 1.26054108e+002 1.13006531e+002 1.23647453e+002 - 1.26038315e+002 1.13019218e+002 1.23653358e+002 1.26006752e+002 - 1.13011879e+002 1.23614349e+002 1.25954422e+002 1.13040871e+002 - 1.23631477e+002 1.25938042e+002 1.13053062e+002 1.23594116e+002 - 1.25878571e+002 1.13061577e+002 1.23583900e+002 1.25836632e+002 - 1.13070770e+002 1.23558372e+002 1.25790947e+002 1.13029549e+002 - 1.23508194e+002 1.25706886e+002 1.13015823e+002 1.23449738e+002 - 1.25640274e+002 1.12927841e+002 1.23342979e+002 1.25502289e+002 - 1.12826317e+002 1.23293190e+002 1.25484245e+002 1.12921059e+002 - 1.23433426e+002 1.25630562e+002 1.12994476e+002 1.23519722e+002 - 1.25744080e+002 1.13043900e+002 1.23595879e+002 1.25834137e+002 - 1.13042984e+002 1.23611099e+002 1.25883690e+002 1.13009888e+002 - 1.23613274e+002 1.25902451e+002 1.13011612e+002 1.23634003e+002 - 1.25963455e+002 1.12992592e+002 1.23648918e+002 1.25994576e+002 - 1.13015411e+002 1.23687103e+002 1.26069511e+002 1.12972313e+002 - 1.23673607e+002 1.26083885e+002 1.12979256e+002 1.23688667e+002 - 1.26156342e+002 1.12986984e+002 1.23724823e+002 1.26222443e+002 - 1.12954544e+002 1.23716942e+002 1.26251007e+002 1.12932877e+002 - 1.23725723e+002 1.26280426e+002 1.12917297e+002 1.23722115e+002 - 1.26308052e+002 1.12894142e+002 1.23722496e+002 1.26329956e+002 - 1.12892433e+002 1.23744255e+002 1.26409035e+002 1.12853935e+002 - 1.23742767e+002 1.26425537e+002 1.12850983e+002 1.23732727e+002 - 1.26450638e+002 1.12828568e+002 1.23729431e+002 1.26462227e+002 - 1.12816544e+002 1.23721176e+002 1.26497017e+002 1.12788132e+002 - 1.23713478e+002 1.26514351e+002 1.12762543e+002 1.23703949e+002 - 1.26543587e+002 1.12727470e+002 1.23686745e+002 1.26551941e+002 - 1.12747757e+002 1.23716156e+002 1.26618233e+002 1.12724472e+002 - 1.23713928e+002 1.26642944e+002 1.12705193e+002 1.23685066e+002 - 1.26672897e+002 1.12697853e+002 1.23692650e+002 1.26712486e+002 - 1.12711601e+002 1.23713745e+002 1.26770195e+002 1.12708862e+002 - 1.23733612e+002 1.26816956e+002 1.12711662e+002 1.23726120e+002 - 1.26850868e+002 1.12695374e+002 1.23732513e+002 1.26881020e+002 - 1.12702209e+002 1.23738449e+002 1.26941063e+002 1.12657310e+002 - 1.23726807e+002 1.26944687e+002 1.12673325e+002 1.23732452e+002 - 1.26989883e+002 1.12682686e+002 1.23759491e+002 1.27026321e+002 - 1.12680206e+002 1.23745102e+002 1.27067764e+002 1.12633118e+002 - 1.23727219e+002 1.27066010e+002 1.12644608e+002 1.23740929e+002 - 1.27132065e+002 1.12624329e+002 1.23736008e+002 1.27148361e+002 - 1.12644508e+002 1.23755569e+002 1.27203758e+002 1.12623856e+002 - 1.23749260e+002 1.27228989e+002 1.12629501e+002 1.23737198e+002 - 1.27273399e+002 1.12627701e+002 1.23742493e+002 1.27311089e+002 - 1.12621284e+002 1.23739418e+002 1.27344231e+002 1.12598244e+002 - 1.23738472e+002 1.27361839e+002 1.12605293e+002 1.23736397e+002 - 1.27397148e+002 1.12600800e+002 1.23750046e+002 1.27424561e+002 - 1.12592133e+002 1.23750763e+002 1.27480911e+002 1.12549599e+002 - 1.23729805e+002 1.27482742e+002 1.12550270e+002 1.23723259e+002 - 1.27516502e+002 1.12562035e+002 1.23748512e+002 1.27567329e+002 - 1.12539665e+002 1.23719376e+002 1.27585678e+002 1.12508698e+002 - 1.23715904e+002 1.27593681e+002 1.12501663e+002 1.23707787e+002 - 1.27630699e+002 1.12497093e+002 1.23717705e+002 1.27655685e+002 - 1.12522194e+002 1.23743988e+002 1.27717766e+002 1.12509323e+002 - 1.23741592e+002 1.27731094e+002 1.12508232e+002 1.23724358e+002 - 1.27764748e+002 1.12519737e+002 1.23747665e+002 1.27812569e+002 - 1.12522659e+002 1.23742165e+002 1.27837158e+002 1.12521423e+002 - 1.23753784e+002 1.27867416e+002 1.12552605e+002 1.23775665e+002 - 1.27922607e+002 1.12543953e+002 1.23788887e+002 1.27946922e+002 - 1.12558716e+002 1.23798363e+002 1.28003525e+002 1.12527565e+002 - 1.23803322e+002 1.28018936e+002 1.12541504e+002 1.23801262e+002 - 1.28053253e+002 1.12547371e+002 1.23816803e+002 1.28087799e+002 - 1.12536575e+002 1.23801926e+002 1.28108582e+002 1.12526741e+002 - 1.23808784e+002 1.28126389e+002 1.12521484e+002 1.23813965e+002 - 1.28165680e+002 1.12514069e+002 1.23815910e+002 1.28188065e+002 - 1.12517616e+002 1.23820007e+002 1.28223389e+002 1.12501640e+002 - 1.23823883e+002 1.28244675e+002 1.12511520e+002 1.23821930e+002 - 1.28287766e+002 1.12515762e+002 1.23839539e+002 1.28322647e+002 - 1.12502556e+002 1.23823532e+002 1.28337173e+002 1.12481972e+002 - 1.23819481e+002 1.28341080e+002 1.12473190e+002 1.23797195e+002 - 1.28356812e+002 1.12467781e+002 1.23811340e+002 1.28371384e+002 - 1.12487091e+002 1.23828201e+002 1.28436050e+002 1.12471504e+002 - 1.23832321e+002 1.28450653e+002 1.12475792e+002 1.23825653e+002 - 1.28469345e+002 1.12458832e+002 1.23821083e+002 1.28476318e+002 - 1.12463715e+002 1.23807549e+002 1.28503769e+002 1.12452660e+002 - 1.23817459e+002 1.28518433e+002 1.12466446e+002 1.23828392e+002 - 1.28563812e+002 1.12491348e+002 1.23867027e+002 1.28610306e+002 - 1.12516556e+002 1.23885796e+002 1.28655731e+002 1.12509949e+002 - 1.23894569e+002 1.28682007e+002 1.12522110e+002 1.23887047e+002 - 1.28714371e+002 1.12498909e+002 1.23877571e+002 1.28716965e+002 - 1.12481987e+002 1.23867340e+002 1.28728424e+002 1.12474228e+002 - 1.23874809e+002 1.28740616e+002 1.12501251e+002 1.23897789e+002 - 1.28783249e+002 1.12506683e+002 1.23908669e+002 1.28794952e+002 - 1.12515343e+002 1.23903305e+002 1.28816986e+002 1.12472771e+002 - 1.23882851e+002 1.28800049e+002 1.12477104e+002 1.23882599e+002 - 1.28811508e+002 1.12483543e+002 1.23897972e+002 1.28832291e+002 - 1.12499954e+002 1.23903122e+002 1.28859848e+002 1.12484703e+002 - 1.23902061e+002 1.28860260e+002 1.12494522e+002 1.23908600e+002 - 1.28886459e+002 1.12514931e+002 1.23940628e+002 1.28919510e+002 - 1.12501427e+002 1.23924042e+002 1.28910263e+002 1.12480721e+002 - 1.23911736e+002 1.28894638e+002 1.12504204e+002 1.23909706e+002 - 1.28917786e+002 1.12502831e+002 1.23917336e+002 1.28923798e+002 - 1.12519051e+002 1.23932159e+002 1.28937424e+002 1.12523125e+002 - 1.23942047e+002 1.28945084e+002 1.12517174e+002 1.23923805e+002 - 1.28933441e+002 1.12515968e+002 1.23927795e+002 1.28927582e+002 - 1.12545464e+002 1.23951118e+002 1.28958954e+002 1.12528305e+002 - 1.23953224e+002 1.28948135e+002 1.12527428e+002 1.23939278e+002 - 1.28937866e+002 1.12532341e+002 1.23948280e+002 1.28939468e+002 - 1.12538017e+002 1.23937592e+002 1.28940735e+002 1.12523994e+002 - 1.23940262e+002 1.28924896e+002 1.12528656e+002 1.23936104e+002 - 1.28930054e+002 1.12522110e+002 1.23935944e+002 1.28922913e+002 - 1.12511307e+002 1.23914909e+002 1.28904800e+002 1.12494850e+002 - 1.23911636e+002 1.28887726e+002 1.12500954e+002 1.23886536e+002 - 1.28872589e+002 1.12497780e+002 1.23891304e+002 1.28865387e+002 - 1.12481873e+002 1.23867706e+002 1.28830536e+002 1.12453285e+002 - 1.23852165e+002 1.28795029e+002 1.12461250e+002 1.23847595e+002 - 1.28796234e+002 1.12440674e+002 1.23830551e+002 1.28743759e+002 - 1.12456833e+002 1.23834373e+002 1.28736542e+002 1.12436478e+002 - 1.23829437e+002 1.28713867e+002 1.12443459e+002 1.23828613e+002 - 1.28706665e+002 1.12452721e+002 1.23841026e+002 1.28706284e+002 - 1.12463173e+002 1.23837517e+002 1.28694092e+002 1.12444717e+002 - 1.23819633e+002 1.28656906e+002 1.12437523e+002 1.23803635e+002 - 1.28628494e+002 1.12465408e+002 1.23839455e+002 1.28632278e+002 - 1.12473282e+002 1.23835220e+002 1.28624222e+002 1.12453339e+002 - 1.23819023e+002 1.28591141e+002 1.12475731e+002 1.23815590e+002 - 1.28581299e+002 1.12472778e+002 1.23820671e+002 1.28567139e+002 - 1.12505653e+002 1.23851616e+002 1.28576767e+002 1.12497856e+002 - 1.23857452e+002 1.28555664e+002 1.12500481e+002 1.23843048e+002 - 1.28537003e+002 1.12498505e+002 1.23844940e+002 1.28502670e+002 - 1.12507439e+002 1.23840179e+002 1.28468033e+002 1.12476326e+002 - 1.23818657e+002 1.28411133e+002 1.12482811e+002 1.23807449e+002 - 1.28384064e+002 1.12471191e+002 1.23795631e+002 1.28344040e+002 - 1.12466560e+002 1.23763321e+002 1.28298462e+002 1.12463524e+002 - 1.23768242e+002 1.28268372e+002 1.12485222e+002 1.23780373e+002 - 1.28257538e+002 1.12510323e+002 1.23807083e+002 1.28246582e+002 - 1.12482506e+002 1.23761887e+002 1.28182022e+002 1.12465027e+002 - 1.23752548e+002 1.28136017e+002 1.12502678e+002 1.23755005e+002 - 1.28129562e+002 1.12478760e+002 1.23739021e+002 1.28076767e+002 - 1.12492302e+002 1.23739861e+002 1.28052979e+002 1.12460152e+002 - 1.23725830e+002 1.27999687e+002 1.12471268e+002 1.23724922e+002 - 1.27986160e+002 1.12479424e+002 1.23736984e+002 1.27949646e+002 - 1.12511086e+002 1.23753647e+002 1.27928085e+002 1.12514893e+002 - 1.23772881e+002 1.27908417e+002 1.12537132e+002 1.23769714e+002 - 1.27901154e+002 1.12522400e+002 1.23766022e+002 1.27855629e+002 - 1.12546204e+002 1.23775787e+002 1.27846313e+002 1.12548409e+002 - 1.23783813e+002 1.27821075e+002 1.12558563e+002 1.23783401e+002 - 1.27793747e+002 1.12557487e+002 1.23785416e+002 1.27760803e+002 - 1.12555931e+002 1.23768555e+002 1.27718521e+002 1.12548248e+002 - 1.23759537e+002 1.27680511e+002 1.12583450e+002 1.23767570e+002 - 1.27664291e+002 1.12598244e+002 1.23783432e+002 1.27648529e+002 - 1.12593285e+002 1.23767044e+002 1.27600922e+002 1.12597244e+002 - 1.23782578e+002 1.27583153e+002 1.12590424e+002 1.23759689e+002 - 1.27546051e+002 1.12596817e+002 1.23763496e+002 1.27511742e+002 - 1.12584518e+002 1.23730392e+002 1.27450623e+002 1.12580467e+002 - 1.23736198e+002 1.27423683e+002 1.12583763e+002 1.23725182e+002 - 1.27398544e+002 1.12598167e+002 1.23742531e+002 1.27383446e+002 - 1.12615273e+002 1.23737885e+002 1.27362404e+002 1.12573502e+002 - 1.23708649e+002 1.27287399e+002 1.12574112e+002 1.23697594e+002 - 1.27246796e+002 1.12599312e+002 1.23726944e+002 1.27233200e+002 - 1.12612663e+002 1.23716743e+002 1.27194633e+002 1.12636040e+002 - 1.23740646e+002 1.27176620e+002 1.12657784e+002 1.23725273e+002 - 1.27139061e+002 1.12675346e+002 1.23746338e+002 1.27110733e+002 - 1.12695541e+002 1.23755318e+002 1.27083618e+002 1.12662285e+002 - 1.23728317e+002 1.27018158e+002 1.12658600e+002 1.23706940e+002 - 1.26972099e+002 1.12653542e+002 1.23700371e+002 1.26920830e+002 - 1.12660667e+002 1.23673615e+002 1.26849220e+002 1.12677132e+002 - 1.23699570e+002 1.26829155e+002 1.12695038e+002 1.23694275e+002 - 1.26803925e+002 1.12716080e+002 1.23707512e+002 1.26783806e+002 - 1.12738579e+002 1.23706375e+002 1.26765198e+002 1.12714149e+002 - 1.23680527e+002 1.26692215e+002 1.12732819e+002 1.23680649e+002 - 1.26655563e+002 1.12732216e+002 1.23674065e+002 1.26610405e+002 - 1.12723312e+002 1.23649162e+002 1.26561745e+002 1.12732941e+002 - 1.23660065e+002 1.26532021e+002 1.12749054e+002 1.23632355e+002 - 1.26486130e+002 1.12745270e+002 1.23629555e+002 1.26437637e+002 - 1.12749802e+002 1.23619492e+002 1.26390915e+002 1.12731483e+002 - 1.23603378e+002 1.26338539e+002 1.12741920e+002 1.23594330e+002 - 1.26312538e+002 1.12757568e+002 1.23600838e+002 1.26275948e+002 - 1.12783646e+002 1.23598824e+002 1.26226089e+002 1.12769470e+002 - 1.23590721e+002 1.26174736e+002 1.12757820e+002 1.23552132e+002 - 1.26116455e+002 1.12784584e+002 1.23570389e+002 1.26100990e+002 - 1.12822273e+002 1.23570061e+002 1.26077560e+002 1.12835945e+002 - 1.23584427e+002 1.26052109e+002 1.12877327e+002 1.23582764e+002 - 1.26031067e+002 1.12908409e+002 1.23603180e+002 1.26014984e+002 - 1.12921799e+002 1.23584549e+002 1.25971069e+002 1.12928192e+002 - 1.23579750e+002 1.25936714e+002 1.12936798e+002 1.23535515e+002 - 1.25883476e+002 1.12955612e+002 1.23541260e+002 1.25852180e+002 - 1.12977783e+002 1.23526863e+002 1.25817612e+002 1.12936996e+002 - 1.23477348e+002 1.25732590e+002 1.12919258e+002 1.23410934e+002 - 1.25657562e+002 1.12821198e+002 1.23294510e+002 1.25503845e+002 - 1.12742172e+002 1.23238930e+002 1.25474350e+002 1.12847488e+002 - 1.23384155e+002 1.25631317e+002 1.12925468e+002 1.23479317e+002 - 1.25751770e+002 1.12958054e+002 1.23545021e+002 1.25830086e+002 - 1.12953583e+002 1.23552963e+002 1.25877068e+002 1.12928001e+002 - 1.23559525e+002 1.25901901e+002 1.12908211e+002 1.23560249e+002 - 1.25939415e+002 1.12892487e+002 1.23578506e+002 1.25973007e+002 - 1.12924042e+002 1.23621918e+002 1.26056419e+002 1.12878883e+002 - 1.23605133e+002 1.26065613e+002 1.12887985e+002 1.23627525e+002 - 1.26148750e+002 1.12891335e+002 1.23657784e+002 1.26208969e+002 - 1.12866844e+002 1.23655548e+002 1.26249557e+002 1.12845238e+002 - 1.23671036e+002 1.26281242e+002 1.12817154e+002 1.23643295e+002 - 1.26295715e+002 1.12776428e+002 1.23642197e+002 1.26302917e+002 - 1.12796585e+002 1.23682709e+002 1.26395645e+002 1.12749641e+002 - 1.23668213e+002 1.26406265e+002 1.12743759e+002 1.23660194e+002 - 1.26430603e+002 1.12729767e+002 1.23662018e+002 1.26450485e+002 - 1.12710762e+002 1.23649277e+002 1.26482216e+002 1.12681366e+002 - 1.23644867e+002 1.26499557e+002 1.12663132e+002 1.23638573e+002 - 1.26534698e+002 1.12628754e+002 1.23622063e+002 1.26547073e+002 - 1.12633270e+002 1.23633469e+002 1.26597878e+002 1.12598106e+002 - 1.23616241e+002 1.26611305e+002 1.12577431e+002 1.23587807e+002 - 1.26640511e+002 1.12568977e+002 1.23594193e+002 1.26679375e+002 - 1.12574715e+002 1.23603943e+002 1.26726219e+002 1.12591919e+002 - 1.23633904e+002 1.26781769e+002 1.12586800e+002 1.23627731e+002 - 1.26814270e+002 1.12574165e+002 1.23635094e+002 1.26850807e+002 - 1.12578880e+002 1.23651451e+002 1.26917488e+002 1.12529915e+002 - 1.23624962e+002 1.26912102e+002 1.12566422e+002 1.23652077e+002 - 1.26970863e+002 1.12556763e+002 1.23653587e+002 1.26994904e+002 - 1.12543762e+002 1.23638451e+002 1.27022049e+002 1.12521423e+002 - 1.23642906e+002 1.27047691e+002 1.12507011e+002 1.23633118e+002 - 1.27087006e+002 1.12480759e+002 1.23621414e+002 1.27099205e+002 - 1.12482361e+002 1.23627632e+002 1.27142967e+002 1.12487144e+002 - 1.23642799e+002 1.27197594e+002 1.12497894e+002 1.23632309e+002 - 1.27241440e+002 1.12492188e+002 1.23642799e+002 1.27280945e+002 - 1.12496323e+002 1.23647003e+002 1.27322357e+002 1.12456093e+002 - 1.23627533e+002 1.27322800e+002 1.12449936e+002 1.23609428e+002 - 1.27344543e+002 1.12446793e+002 1.23631783e+002 1.27380112e+002 - 1.12429420e+002 1.23613113e+002 1.27421013e+002 1.12408867e+002 - 1.23619957e+002 1.27446854e+002 1.12407700e+002 1.23611084e+002 - 1.27476936e+002 1.12411064e+002 1.23630318e+002 1.27518425e+002 - 1.12383125e+002 1.23598122e+002 1.27534172e+002 1.12377190e+002 - 1.23613174e+002 1.27566559e+002 1.12383896e+002 1.23628807e+002 - 1.27620155e+002 1.12369003e+002 1.23630981e+002 1.27632423e+002 - 1.12383064e+002 1.23635178e+002 1.27677917e+002 1.12357887e+002 - 1.23623138e+002 1.27687294e+002 1.12355225e+002 1.23599747e+002 - 1.27716255e+002 1.12365814e+002 1.23624550e+002 1.27767624e+002 - 1.12368416e+002 1.23618744e+002 1.27790611e+002 1.12364143e+002 - 1.23631828e+002 1.27819427e+002 1.12383736e+002 1.23644905e+002 - 1.27861626e+002 1.12399063e+002 1.23675964e+002 1.27919373e+002 - 1.12400887e+002 1.23679688e+002 1.27966766e+002 1.12382309e+002 - 1.23683746e+002 1.27989136e+002 1.12389908e+002 1.23680252e+002 - 1.28011353e+002 1.12384521e+002 1.23690750e+002 1.28037033e+002 - 1.12395813e+002 1.23689705e+002 1.28081284e+002 1.12376678e+002 - 1.23693924e+002 1.28095779e+002 1.12378952e+002 1.23696182e+002 - 1.28130463e+002 1.12371849e+002 1.23702019e+002 1.28155960e+002 - 1.12380737e+002 1.23715057e+002 1.28200348e+002 1.12360069e+002 - 1.23706017e+002 1.28216873e+002 1.12387070e+002 1.23722473e+002 - 1.28272278e+002 1.12392700e+002 1.23740654e+002 1.28312775e+002 - 1.12366417e+002 1.23715126e+002 1.28316879e+002 1.12332535e+002 - 1.23693550e+002 1.28305176e+002 1.12314346e+002 1.23674179e+002 - 1.28308563e+002 1.12331512e+002 1.23702591e+002 1.28358017e+002 - 1.12323738e+002 1.23698448e+002 1.28393509e+002 1.12307541e+002 - 1.23699654e+002 1.28410706e+002 1.12315720e+002 1.23700096e+002 - 1.28431564e+002 1.12305244e+002 1.23698906e+002 1.28445648e+002 - 1.12321808e+002 1.23701958e+002 1.28482437e+002 1.12310593e+002 - 1.23698021e+002 1.28491531e+002 1.12323700e+002 1.23712448e+002 - 1.28537369e+002 1.12338631e+002 1.23744316e+002 1.28578537e+002 - 1.12361809e+002 1.23759605e+002 1.28620743e+002 1.12351494e+002 - 1.23763870e+002 1.28643494e+002 1.12357300e+002 1.23754707e+002 - 1.28666412e+002 1.12357422e+002 1.23766617e+002 1.28689575e+002 - 1.12350540e+002 1.23761024e+002 1.28712067e+002 1.12331993e+002 - 1.23758392e+002 1.28715683e+002 1.12336006e+002 1.23758453e+002 - 1.28729889e+002 1.12349770e+002 1.23779060e+002 1.28757614e+002 - 1.12346092e+002 1.23778000e+002 1.28777496e+002 1.12321190e+002 - 1.23767181e+002 1.28772400e+002 1.12341972e+002 1.23777046e+002 - 1.28802261e+002 1.12341423e+002 1.23786430e+002 1.28811707e+002 - 1.12333046e+002 1.23769043e+002 1.28816071e+002 1.12326759e+002 - 1.23772514e+002 1.28824371e+002 1.12335228e+002 1.23782768e+002 - 1.28852402e+002 1.12358887e+002 1.23814529e+002 1.28885101e+002 - 1.12355965e+002 1.23802498e+002 1.28879410e+002 1.12341003e+002 - 1.23800789e+002 1.28876846e+002 1.12368622e+002 1.23804520e+002 - 1.28899124e+002 1.12363480e+002 1.23811607e+002 1.28900040e+002 - 1.12369637e+002 1.23807922e+002 1.28911453e+002 1.12374359e+002 - 1.23828156e+002 1.28914963e+002 1.12373772e+002 1.23814178e+002 - 1.28912262e+002 1.12358368e+002 1.23801704e+002 1.28898834e+002 - 1.12377342e+002 1.23812256e+002 1.28915543e+002 1.12366653e+002 - 1.23821274e+002 1.28905991e+002 1.12359169e+002 1.23799568e+002 - 1.28892685e+002 1.12368362e+002 1.23813950e+002 1.28893814e+002 - 1.12385185e+002 1.23816010e+002 1.28908661e+002 1.12375008e+002 - 1.23813103e+002 1.28899002e+002 1.12371124e+002 1.23804611e+002 - 1.28891403e+002 1.12381538e+002 1.23824905e+002 1.28900574e+002 - 1.12362106e+002 1.23791809e+002 1.28871948e+002 1.12328102e+002 - 1.23765060e+002 1.28840057e+002 1.12342064e+002 1.23752220e+002 - 1.28838943e+002 1.12350739e+002 1.23769081e+002 1.28837646e+002 - 1.12320419e+002 1.23732513e+002 1.28792160e+002 1.12307343e+002 - 1.23736122e+002 1.28773163e+002 1.12307632e+002 1.23720665e+002 - 1.28757050e+002 1.12314552e+002 1.23738625e+002 1.28750854e+002 - 1.12303421e+002 1.23717453e+002 1.28711288e+002 1.12274475e+002 - 1.23702415e+002 1.28681595e+002 1.12297226e+002 1.23710106e+002 - 1.28683594e+002 1.12306656e+002 1.23724770e+002 1.28678848e+002 - 1.12306870e+002 1.23707573e+002 1.28654999e+002 1.12299866e+002 - 1.23706711e+002 1.28632965e+002 1.12297768e+002 1.23690506e+002 - 1.28606522e+002 1.12301201e+002 1.23707024e+002 1.28591354e+002 - 1.12319244e+002 1.23707214e+002 1.28587540e+002 1.12313049e+002 - 1.23705376e+002 1.28561035e+002 1.12335243e+002 1.23707710e+002 - 1.28562820e+002 1.12341072e+002 1.23724075e+002 1.28558212e+002 - 1.12355141e+002 1.23729378e+002 1.28542953e+002 1.12325417e+002 - 1.23712883e+002 1.28500793e+002 1.12341087e+002 1.23721626e+002 - 1.28497238e+002 1.12344086e+002 1.23723526e+002 1.28466064e+002 - 1.12338730e+002 1.23700844e+002 1.28414459e+002 1.12300758e+002 - 1.23677162e+002 1.28354874e+002 1.12291924e+002 1.23644760e+002 - 1.28314331e+002 1.12297478e+002 1.23648750e+002 1.28285583e+002 - 1.12310318e+002 1.23642960e+002 1.28258087e+002 1.12304062e+002 - 1.23638702e+002 1.28221542e+002 1.12302521e+002 1.23626511e+002 - 1.28187607e+002 1.12341583e+002 1.23672791e+002 1.28195480e+002 - 1.12330086e+002 1.23644394e+002 1.28143799e+002 1.12324936e+002 - 1.23638062e+002 1.28111679e+002 1.12351906e+002 1.23637115e+002 - 1.28091644e+002 1.12331360e+002 1.23620819e+002 1.28041992e+002 - 1.12329735e+002 1.23609390e+002 1.28006454e+002 1.12310493e+002 - 1.23608986e+002 1.27967537e+002 1.12308670e+002 1.23592995e+002 - 1.27937340e+002 1.12331482e+002 1.23623039e+002 1.27916534e+002 - 1.12376457e+002 1.23654259e+002 1.27913704e+002 1.12359642e+002 - 1.23646683e+002 1.27860115e+002 1.12377083e+002 1.23642273e+002 - 1.27848274e+002 1.12386368e+002 1.23662888e+002 1.27836845e+002 - 1.12423637e+002 1.23687271e+002 1.27838867e+002 1.12420303e+002 - 1.23695236e+002 1.27805161e+002 1.12412636e+002 1.23674881e+002 - 1.27767525e+002 1.12414436e+002 1.23681572e+002 1.27723114e+002 - 1.12420113e+002 1.23664436e+002 1.27690964e+002 1.12404579e+002 - 1.23647667e+002 1.27641586e+002 1.12416107e+002 1.23632195e+002 - 1.27604660e+002 1.12421501e+002 1.23636803e+002 1.27574860e+002 - 1.12438972e+002 1.23646332e+002 1.27552719e+002 1.12451202e+002 - 1.23669708e+002 1.27536034e+002 1.12453659e+002 1.23648430e+002 - 1.27509666e+002 1.12471855e+002 1.23671684e+002 1.27495331e+002 - 1.12468460e+002 1.23649712e+002 1.27445625e+002 1.12453987e+002 - 1.23644730e+002 1.27406776e+002 1.12473969e+002 1.23644791e+002 - 1.27392151e+002 1.12472557e+002 1.23651360e+002 1.27368713e+002 - 1.12468781e+002 1.23626884e+002 1.27318405e+002 1.12438820e+002 - 1.23605789e+002 1.27258690e+002 1.12444740e+002 1.23595535e+002 - 1.27224953e+002 1.12463112e+002 1.23621040e+002 1.27200554e+002 - 1.12490265e+002 1.23631035e+002 1.27172989e+002 1.12505310e+002 - 1.23641533e+002 1.27141197e+002 1.12542595e+002 1.23641685e+002 - 1.27116432e+002 1.12545998e+002 1.23644470e+002 1.27075912e+002 - 1.12558617e+002 1.23636177e+002 1.27032196e+002 1.12531967e+002 - 1.23620468e+002 1.26974533e+002 1.12535110e+002 1.23606842e+002 - 1.26939590e+002 1.12521599e+002 1.23593803e+002 1.26877060e+002 - 1.12533501e+002 1.23570549e+002 1.26818077e+002 1.12549660e+002 - 1.23598526e+002 1.26795883e+002 1.12571892e+002 1.23596016e+002 - 1.26778664e+002 1.12598213e+002 1.23628471e+002 1.26774651e+002 - 1.12618996e+002 1.23621101e+002 1.26741943e+002 1.12594070e+002 - 1.23590485e+002 1.26670547e+002 1.12610756e+002 1.23585594e+002 - 1.26631050e+002 1.12613289e+002 1.23589157e+002 1.26587700e+002 - 1.12600876e+002 1.23556786e+002 1.26537010e+002 1.12602608e+002 - 1.23557060e+002 1.26494995e+002 1.12626938e+002 1.23548233e+002 - 1.26457146e+002 1.12632195e+002 1.23549721e+002 1.26411407e+002 - 1.12630058e+002 1.23529358e+002 1.26363113e+002 1.12610992e+002 - 1.23517532e+002 1.26301476e+002 1.12624695e+002 1.23508408e+002 - 1.26276985e+002 1.12626091e+002 1.23506866e+002 1.26237495e+002 - 1.12661247e+002 1.23503563e+002 1.26185837e+002 1.12657799e+002 - 1.23505013e+002 1.26139069e+002 1.12684166e+002 1.23504318e+002 - 1.26123543e+002 1.12702843e+002 1.23518097e+002 1.26102379e+002 - 1.12729271e+002 1.23507317e+002 1.26069405e+002 1.12745682e+002 - 1.23525139e+002 1.26045830e+002 1.12802277e+002 1.23539993e+002 - 1.26039238e+002 1.12808250e+002 1.23540428e+002 1.26000931e+002 - 1.12798569e+002 1.23492523e+002 1.25931068e+002 1.12814796e+002 - 1.23496529e+002 1.25913460e+002 1.12843925e+002 1.23477325e+002 - 1.25871811e+002 1.12854591e+002 1.23478180e+002 1.25838295e+002 - 1.12877701e+002 1.23459427e+002 1.25797379e+002 1.12848396e+002 - 1.23422295e+002 1.25720253e+002 1.12822014e+002 1.23344528e+002 - 1.25645866e+002 1.12714943e+002 1.23223526e+002 1.25484444e+002 - 1.12674362e+002 1.23214783e+002 1.25504402e+002 1.12779465e+002 - 1.23364098e+002 1.25664818e+002 1.12849525e+002 1.23447914e+002 - 1.25777763e+002 1.12867981e+002 1.23497726e+002 1.25843025e+002 - 1.12865387e+002 1.23520805e+002 1.25895592e+002 1.12858917e+002 - 1.23543686e+002 1.25938553e+002 1.12840721e+002 1.23544174e+002 - 1.25986473e+002 1.12806709e+002 1.23539551e+002 1.26001892e+002 - 1.12834427e+002 1.23577690e+002 1.26079453e+002 1.12813354e+002 - 1.23584312e+002 1.26117050e+002 1.12807060e+002 1.23591316e+002 - 1.26173615e+002 1.12799294e+002 1.23610626e+002 1.26225853e+002 - 1.12789291e+002 1.23622253e+002 1.26281517e+002 1.12755325e+002 - 1.23615349e+002 1.26296280e+002 1.12736954e+002 1.23605705e+002 - 1.26322693e+002 1.12700310e+002 1.23601967e+002 1.26333344e+002 - 1.12703972e+002 1.23635963e+002 1.26418724e+002 1.12657539e+002 - 1.23622612e+002 1.26425743e+002 1.12630333e+002 1.23592316e+002 - 1.26434090e+002 1.12615898e+002 1.23596939e+002 1.26458618e+002 - 1.12613251e+002 1.23597038e+002 1.26502876e+002 1.12580368e+002 - 1.23582474e+002 1.26509254e+002 1.12559875e+002 1.23577141e+002 - 1.26548035e+002 1.12532524e+002 1.23575882e+002 1.26571053e+002 - 1.12539833e+002 1.23589195e+002 1.26628471e+002 1.12503654e+002 - 1.23567802e+002 1.26639252e+002 1.12491997e+002 1.23546944e+002 - 1.26676743e+002 1.12481010e+002 1.23551819e+002 1.26709198e+002 - 1.12470360e+002 1.23542152e+002 1.26741806e+002 1.12469208e+002 - 1.23562546e+002 1.26778511e+002 1.12482010e+002 1.23564430e+002 - 1.26826180e+002 1.12475601e+002 1.23578995e+002 1.26859299e+002 - 1.12468033e+002 1.23580414e+002 1.26918350e+002 1.12411072e+002 - 1.23548004e+002 1.26910675e+002 1.12420975e+002 1.23551727e+002 - 1.26945145e+002 1.12428192e+002 1.23577866e+002 1.26990578e+002 - 1.12422951e+002 1.23563004e+002 1.27026138e+002 1.12387085e+002 - 1.23551704e+002 1.27037674e+002 1.12360985e+002 1.23529274e+002 - 1.27057579e+002 1.12338638e+002 1.23532768e+002 1.27085953e+002 - 1.12357147e+002 1.23549072e+002 1.27152184e+002 1.12336594e+002 - 1.23538704e+002 1.27174026e+002 1.12345505e+002 1.23532608e+002 - 1.27229202e+002 1.12344650e+002 1.23544937e+002 1.27264832e+002 - 1.12346031e+002 1.23543053e+002 1.27307541e+002 1.12314774e+002 - 1.23534317e+002 1.27313171e+002 1.12299301e+002 1.23512741e+002 - 1.27329933e+002 1.12285851e+002 1.23516357e+002 1.27351440e+002 - 1.12281891e+002 1.23512276e+002 1.27403320e+002 1.12263100e+002 - 1.23522568e+002 1.27438034e+002 1.12254166e+002 1.23510780e+002 - 1.27460655e+002 1.12267052e+002 1.23540840e+002 1.27512955e+002 - 1.12241982e+002 1.23510338e+002 1.27528305e+002 1.12223885e+002 - 1.23513817e+002 1.27552292e+002 1.12238129e+002 1.23524101e+002 - 1.27602409e+002 1.12226120e+002 1.23529160e+002 1.27623001e+002 - 1.12228775e+002 1.23527985e+002 1.27657227e+002 1.12207870e+002 - 1.23513191e+002 1.27667702e+002 1.12201065e+002 1.23496689e+002 - 1.27700821e+002 1.12223518e+002 1.23522415e+002 1.27751472e+002 - 1.12227814e+002 1.23525238e+002 1.27787590e+002 1.12228577e+002 - 1.23542366e+002 1.27818764e+002 1.12228256e+002 1.23534142e+002 - 1.27847099e+002 1.12232559e+002 1.23556862e+002 1.27879509e+002 - 1.12255463e+002 1.23577507e+002 1.27950920e+002 1.12244766e+002 - 1.23589920e+002 1.27981979e+002 1.12248474e+002 1.23591721e+002 - 1.28009659e+002 1.12235374e+002 1.23588684e+002 1.28028290e+002 - 1.12257988e+002 1.23600487e+002 1.28080307e+002 1.12240791e+002 - 1.23597626e+002 1.28093338e+002 1.12217438e+002 1.23570427e+002 - 1.28101166e+002 1.12209145e+002 1.23584198e+002 1.28130722e+002 - 1.12231476e+002 1.23602379e+002 1.28187103e+002 1.12212105e+002 - 1.23602707e+002 1.28204300e+002 1.12240944e+002 1.23620193e+002 - 1.28269989e+002 1.12224266e+002 1.23617294e+002 1.28280273e+002 - 1.12205864e+002 1.23595985e+002 1.28294662e+002 1.12183128e+002 - 1.23590904e+002 1.28296524e+002 1.12170731e+002 1.23569466e+002 - 1.28304581e+002 1.12174873e+002 1.23582123e+002 1.28335175e+002 - 1.12176361e+002 1.23588058e+002 1.28385574e+002 1.12147041e+002 - 1.23585426e+002 1.28392273e+002 1.12161591e+002 1.23585861e+002 - 1.28416092e+002 1.12161163e+002 1.23600800e+002 1.28441315e+002 - 1.12187553e+002 1.23611435e+002 1.28492920e+002 1.12180519e+002 - 1.23612076e+002 1.28506271e+002 1.12201866e+002 1.23636200e+002 - 1.28561218e+002 1.12212929e+002 1.23664200e+002 1.28600464e+002 - 1.12218025e+002 1.23661987e+002 1.28626892e+002 1.12199295e+002 - 1.23647827e+002 1.28631210e+002 1.12212990e+002 1.23645309e+002 - 1.28659836e+002 1.12229630e+002 1.23676468e+002 1.28708466e+002 - 1.12209908e+002 1.23659767e+002 1.28710785e+002 1.12184708e+002 - 1.23652550e+002 1.28707031e+002 1.12192833e+002 1.23654282e+002 - 1.28730194e+002 1.12197952e+002 1.23671532e+002 1.28744614e+002 - 1.12189339e+002 1.23661652e+002 1.28763123e+002 1.12153656e+002 - 1.23644279e+002 1.28751968e+002 1.12177521e+002 1.23662079e+002 - 1.28786530e+002 1.12192612e+002 1.23687668e+002 1.28817703e+002 - 1.12192558e+002 1.23674507e+002 1.28828522e+002 1.12177597e+002 - 1.23670174e+002 1.28827911e+002 1.12193832e+002 1.23680946e+002 - 1.28856339e+002 1.12220482e+002 1.23720612e+002 1.28890701e+002 - 1.12208168e+002 1.23700859e+002 1.28884460e+002 1.12186928e+002 - 1.23683846e+002 1.28865479e+002 1.12194733e+002 1.23675156e+002 - 1.28872360e+002 1.12189949e+002 1.23680664e+002 1.28878738e+002 - 1.12223869e+002 1.23713081e+002 1.28911911e+002 1.12213844e+002 - 1.23711807e+002 1.28903259e+002 1.12198059e+002 1.23685181e+002 - 1.28891891e+002 1.12215828e+002 1.23712555e+002 1.28899384e+002 - 1.12238182e+002 1.23719276e+002 1.28916733e+002 1.12220337e+002 - 1.23713585e+002 1.28908264e+002 1.12203064e+002 1.23685547e+002 - 1.28885117e+002 1.12204826e+002 1.23691864e+002 1.28881943e+002 - 1.12230865e+002 1.23699692e+002 1.28901016e+002 1.12208107e+002 - 1.23691017e+002 1.28880280e+002 1.12205009e+002 1.23679077e+002 - 1.28871552e+002 1.12218864e+002 1.23701408e+002 1.28882538e+002 - 1.12199394e+002 1.23669418e+002 1.28857285e+002 1.12172203e+002 - 1.23647667e+002 1.28823990e+002 1.12169357e+002 1.23621231e+002 - 1.28811111e+002 1.12179100e+002 1.23638191e+002 1.28811890e+002 - 1.12167786e+002 1.23626099e+002 1.28792831e+002 1.12150810e+002 - 1.23620964e+002 1.28760498e+002 1.12156532e+002 1.23617966e+002 - 1.28755203e+002 1.12170952e+002 1.23639526e+002 1.28746246e+002 - 1.12169533e+002 1.23623154e+002 1.28724350e+002 1.12142868e+002 - 1.23614609e+002 1.28693848e+002 1.12152481e+002 1.23610435e+002 - 1.28688766e+002 1.12158607e+002 1.23624626e+002 1.28676834e+002 - 1.12159500e+002 1.23607803e+002 1.28656265e+002 1.12131088e+002 - 1.23585800e+002 1.28608398e+002 1.12139496e+002 1.23583496e+002 - 1.28597137e+002 1.12139008e+002 1.23592354e+002 1.28573456e+002 - 1.12152046e+002 1.23587746e+002 1.28566208e+002 1.12138039e+002 - 1.23579880e+002 1.28534683e+002 1.12153793e+002 1.23579338e+002 - 1.28527390e+002 1.12161926e+002 1.23587982e+002 1.28516357e+002 - 1.12164612e+002 1.23582329e+002 1.28491211e+002 1.12140770e+002 - 1.23572487e+002 1.28450241e+002 1.12162949e+002 1.23582329e+002 - 1.28459946e+002 1.12158043e+002 1.23581902e+002 1.28417023e+002 - 1.12149452e+002 1.23550995e+002 1.28358139e+002 1.12128571e+002 - 1.23542297e+002 1.28318634e+002 1.12116714e+002 1.23508469e+002 - 1.28275208e+002 1.12125160e+002 1.23525230e+002 1.28259979e+002 - 1.12135254e+002 1.23511688e+002 1.28234253e+002 1.12135490e+002 - 1.23526451e+002 1.28204559e+002 1.12171577e+002 1.23544037e+002 - 1.28203079e+002 1.12200874e+002 1.23583473e+002 1.28196655e+002 - 1.12215561e+002 1.23574234e+002 1.28170975e+002 1.12195923e+002 - 1.23558296e+002 1.28123138e+002 1.12205872e+002 1.23534180e+002 - 1.28082947e+002 1.12180656e+002 1.23512650e+002 1.28027740e+002 - 1.12180870e+002 1.23512543e+002 1.27997322e+002 1.12173737e+002 - 1.23516335e+002 1.27964592e+002 1.12167992e+002 1.23498512e+002 - 1.27932037e+002 1.12178574e+002 1.23512375e+002 1.27894920e+002 - 1.12221687e+002 1.23539749e+002 1.27885239e+002 1.12213478e+002 - 1.23549858e+002 1.27857750e+002 1.12230476e+002 1.23544357e+002 - 1.27844139e+002 1.12244385e+002 1.23564568e+002 1.27833946e+002 - 1.12291168e+002 1.23600571e+002 1.27846489e+002 1.12261070e+002 - 1.23585823e+002 1.27788979e+002 1.12264847e+002 1.23575020e+002 - 1.27754974e+002 1.12274239e+002 1.23592690e+002 1.27732056e+002 - 1.12298203e+002 1.23597908e+002 1.27708923e+002 1.12251083e+002 - 1.23548195e+002 1.27629723e+002 1.12277679e+002 1.23540848e+002 - 1.27599449e+002 1.12281242e+002 1.23543633e+002 1.27569626e+002 - 1.12303062e+002 1.23553780e+002 1.27550522e+002 1.12300453e+002 - 1.23559120e+002 1.27517914e+002 1.12321632e+002 1.23562805e+002 - 1.27513168e+002 1.12352768e+002 1.23594749e+002 1.27502716e+002 - 1.12330887e+002 1.23557152e+002 1.27439148e+002 1.12323753e+002 - 1.23555473e+002 1.27404251e+002 1.12330818e+002 1.23556290e+002 - 1.27384583e+002 1.12330086e+002 1.23546860e+002 1.27348503e+002 - 1.12344673e+002 1.23548492e+002 1.27328247e+002 1.12313423e+002 - 1.23526779e+002 1.27262970e+002 1.12313660e+002 1.23508781e+002 - 1.27221794e+002 1.12312912e+002 1.23515038e+002 1.27181366e+002 - 1.12339928e+002 1.23525475e+002 1.27152405e+002 1.12365341e+002 - 1.23546494e+002 1.27130104e+002 1.12401543e+002 1.23546684e+002 - 1.27101532e+002 1.12395050e+002 1.23534935e+002 1.27050461e+002 - 1.12426773e+002 1.23552193e+002 1.27032028e+002 1.12414635e+002 - 1.23546432e+002 1.26980537e+002 1.12392319e+002 1.23506355e+002 - 1.26919594e+002 1.12415466e+002 1.23519783e+002 1.26888824e+002 - 1.12439087e+002 1.23518585e+002 1.26841454e+002 1.12431496e+002 - 1.23522346e+002 1.26800804e+002 1.12440384e+002 1.23508057e+002 - 1.26768311e+002 1.12456398e+002 1.23528214e+002 1.26747337e+002 - 1.12474968e+002 1.23524216e+002 1.26723602e+002 1.12458603e+002 - 1.23505524e+002 1.26665741e+002 1.12469772e+002 1.23496017e+002 - 1.26616425e+002 1.12485542e+002 1.23511513e+002 1.26589622e+002 - 1.12490875e+002 1.23489845e+002 1.26544662e+002 1.12477539e+002 - 1.23481354e+002 1.26488739e+002 1.12508385e+002 1.23476509e+002 - 1.26458153e+002 1.12511360e+002 1.23480003e+002 1.26414581e+002 - 1.12508232e+002 1.23462845e+002 1.26356796e+002 1.12488426e+002 - 1.23439552e+002 1.26294975e+002 1.12502342e+002 1.23434158e+002 - 1.26270828e+002 1.12539566e+002 1.23466530e+002 1.26256859e+002 - 1.12570114e+002 1.23458824e+002 1.26207611e+002 1.12569542e+002 - 1.23465866e+002 1.26166641e+002 1.12580391e+002 1.23443512e+002 - 1.26130928e+002 1.12591972e+002 1.23452492e+002 1.26105049e+002 - 1.12625267e+002 1.23453545e+002 1.26076668e+002 1.12638641e+002 - 1.23459641e+002 1.26046318e+002 1.12686584e+002 1.23477859e+002 - 1.26033356e+002 1.12710716e+002 1.23492699e+002 1.26014580e+002 - 1.12705696e+002 1.23454720e+002 1.25957985e+002 1.12735291e+002 - 1.23466270e+002 1.25944298e+002 1.12766197e+002 1.23455040e+002 - 1.25905098e+002 1.12754433e+002 1.23425491e+002 1.25845566e+002 - 1.12766235e+002 1.23393822e+002 1.25793961e+002 1.12737015e+002 - 1.23355873e+002 1.25720917e+002 1.12712799e+002 1.23290855e+002 - 1.25645409e+002 1.12628563e+002 1.23185440e+002 1.25497520e+002 - 1.12567482e+002 1.23140282e+002 1.25479118e+002 1.12651863e+002 - 1.23267601e+002 1.25617935e+002 1.12729332e+002 1.23363762e+002 - 1.25739883e+002 1.12751038e+002 1.23415550e+002 1.25801643e+002 - 1.12741272e+002 1.23421898e+002 1.25851532e+002 1.12736855e+002 - 1.23453270e+002 1.25900398e+002 1.12735542e+002 1.23472740e+002 - 1.25966515e+002 1.12707565e+002 1.23472313e+002 1.25984039e+002 - 1.12709641e+002 1.23484879e+002 1.26043304e+002 1.12679207e+002 - 1.23483238e+002 1.26067696e+002 1.12692230e+002 1.23505699e+002 - 1.26144730e+002 1.12694817e+002 1.23537445e+002 1.26205833e+002 - 1.12664169e+002 1.23530785e+002 1.26243736e+002 1.12628265e+002 - 1.23524780e+002 1.26258034e+002 1.12599625e+002 1.23505592e+002 - 1.26275085e+002 1.12562012e+002 1.23497040e+002 1.26290321e+002 - 1.12557289e+002 1.23517258e+002 1.26361046e+002 1.12517365e+002 - 1.23516800e+002 1.26373566e+002 1.12507385e+002 1.23500076e+002 - 1.26397873e+002 1.12492752e+002 1.23503876e+002 1.26424759e+002 - 1.12480713e+002 1.23493484e+002 1.26461128e+002 1.12437935e+002 - 1.23478493e+002 1.26469055e+002 1.12416634e+002 1.23470543e+002 - 1.26502151e+002 1.12390480e+002 1.23467392e+002 1.26527191e+002 - 1.12403152e+002 1.23483803e+002 1.26593658e+002 1.12365356e+002 - 1.23466003e+002 1.26606491e+002 1.12362831e+002 1.23454918e+002 - 1.26648605e+002 1.12329185e+002 1.23434090e+002 1.26659973e+002 - 1.12301949e+002 1.23407738e+002 1.26676857e+002 1.12303848e+002 - 1.23426018e+002 1.26712334e+002 1.12346397e+002 1.23464333e+002 - 1.26787506e+002 1.12334183e+002 1.23476273e+002 1.26825729e+002 - 1.12312248e+002 1.23458817e+002 1.26868614e+002 1.12258087e+002 - 1.23433998e+002 1.26860725e+002 1.12279358e+002 1.23446953e+002 - 1.26910820e+002 1.12273849e+002 1.23453865e+002 1.26939468e+002 - 1.12287170e+002 1.23460197e+002 1.26993256e+002 1.12256027e+002 - 1.23456345e+002 1.27011513e+002 1.12223572e+002 1.23430687e+002 - 1.27034431e+002 1.12215912e+002 1.23433815e+002 1.27064392e+002 - 1.12220413e+002 1.23441689e+002 1.27119492e+002 1.12185867e+002 - 1.23423843e+002 1.27129417e+002 1.12201561e+002 1.23426468e+002 - 1.27188141e+002 1.12190826e+002 1.23430016e+002 1.27223091e+002 - 1.12188950e+002 1.23429649e+002 1.27263680e+002 1.12163399e+002 - 1.23422371e+002 1.27271477e+002 1.12139519e+002 1.23399765e+002 - 1.27284714e+002 1.12123222e+002 1.23395836e+002 1.27302544e+002 - 1.12107178e+002 1.23379036e+002 1.27346809e+002 1.12071945e+002 - 1.23373657e+002 1.27354797e+002 1.12073967e+002 1.23363228e+002 - 1.27386810e+002 1.12073669e+002 1.23385277e+002 1.27428543e+002 - 1.12065277e+002 1.23366364e+002 1.27460564e+002 1.12038261e+002 - 1.23359344e+002 1.27472382e+002 1.12045471e+002 1.23368973e+002 - 1.27523094e+002 1.12033417e+002 1.23373795e+002 1.27543625e+002 - 1.12055099e+002 1.23388412e+002 1.27593468e+002 1.12031616e+002 - 1.23376488e+002 1.27610519e+002 1.12037689e+002 1.23363213e+002 - 1.27647903e+002 1.12053177e+002 1.23391785e+002 1.27699036e+002 - 1.12066261e+002 1.23405975e+002 1.27738510e+002 1.12080887e+002 - 1.23433258e+002 1.27789192e+002 1.12080772e+002 1.23431465e+002 - 1.27819946e+002 1.12062256e+002 1.23427414e+002 1.27835350e+002 - 1.12081825e+002 1.23446472e+002 1.27906555e+002 1.12071060e+002 - 1.23457939e+002 1.27931389e+002 1.12070686e+002 1.23449860e+002 - 1.27953003e+002 1.12061417e+002 1.23446228e+002 1.27964966e+002 - 1.12088882e+002 1.23468040e+002 1.28028717e+002 1.12079590e+002 - 1.23476219e+002 1.28049896e+002 1.12040871e+002 1.23435982e+002 - 1.28048904e+002 1.12051414e+002 1.23461411e+002 1.28094208e+002 - 1.12057312e+002 1.23458923e+002 1.28128174e+002 1.12034096e+002 - 1.23458939e+002 1.28149155e+002 1.12056847e+002 1.23469208e+002 - 1.28204559e+002 1.12049782e+002 1.23478096e+002 1.28230865e+002 - 1.12040421e+002 1.23460785e+002 1.28244354e+002 1.12022926e+002 - 1.23459511e+002 1.28255157e+002 1.12037773e+002 1.23464973e+002 - 1.28294739e+002 1.12026138e+002 1.23470963e+002 1.28313034e+002 - 1.12018883e+002 1.23468605e+002 1.28355301e+002 1.11986458e+002 - 1.23458580e+002 1.28351608e+002 1.12006943e+002 1.23466042e+002 - 1.28385315e+002 1.12014999e+002 1.23487549e+002 1.28419067e+002 - 1.12038963e+002 1.23497765e+002 1.28462219e+002 1.12042358e+002 - 1.23512474e+002 1.28491623e+002 1.12045258e+002 1.23517036e+002 - 1.28529922e+002 1.12038376e+002 1.23523491e+002 1.28544083e+002 - 1.12047493e+002 1.23524216e+002 1.28578125e+002 1.12041008e+002 - 1.23532761e+002 1.28598297e+002 1.12059357e+002 1.23522980e+002 - 1.28628052e+002 1.12060143e+002 1.23550507e+002 1.28663300e+002 - 1.12066040e+002 1.23552956e+002 1.28693054e+002 1.12046028e+002 - 1.23551682e+002 1.28695801e+002 1.12043793e+002 1.23535446e+002 - 1.28697861e+002 1.12044693e+002 1.23544533e+002 1.28716614e+002 - 1.12039391e+002 1.23539238e+002 1.28735336e+002 1.11983948e+002 - 1.23509720e+002 1.28712463e+002 1.12016861e+002 1.23529411e+002 - 1.28749222e+002 1.12038002e+002 1.23564766e+002 1.28789169e+002 - 1.12039963e+002 1.23554688e+002 1.28802124e+002 1.12027725e+002 - 1.23561470e+002 1.28808685e+002 1.12038177e+002 1.23563004e+002 - 1.28827347e+002 1.12046135e+002 1.23578278e+002 1.28838837e+002 - 1.12028900e+002 1.23553688e+002 1.28822815e+002 1.12001350e+002 - 1.23542511e+002 1.28808136e+002 1.12019531e+002 1.23535019e+002 - 1.28820953e+002 1.12032120e+002 1.23553680e+002 1.28842697e+002 - 1.12045479e+002 1.23562393e+002 1.28857895e+002 1.12027161e+002 - 1.23558670e+002 1.28844299e+002 1.12008293e+002 1.23534882e+002 - 1.28828140e+002 1.12031143e+002 1.23559250e+002 1.28848526e+002 - 1.12053009e+002 1.23569237e+002 1.28866104e+002 1.12051239e+002 - 1.23583565e+002 1.28864426e+002 1.12053772e+002 1.23573074e+002 - 1.28861755e+002 1.12035080e+002 1.23562103e+002 1.28843674e+002 - 1.12053413e+002 1.23560432e+002 1.28853317e+002 1.12054077e+002 - 1.23571045e+002 1.28853256e+002 1.12051743e+002 1.23562378e+002 - 1.28848022e+002 1.12055084e+002 1.23572426e+002 1.28847107e+002 - 1.12035355e+002 1.23535629e+002 1.28817001e+002 1.12003998e+002 - 1.23510490e+002 1.28781281e+002 1.12013573e+002 1.23493782e+002 - 1.28777634e+002 1.12011101e+002 1.23500839e+002 1.28768982e+002 - 1.11995193e+002 1.23482941e+002 1.28738632e+002 1.11971947e+002 - 1.23473900e+002 1.28707458e+002 1.11981552e+002 1.23475723e+002 - 1.28706375e+002 1.11974274e+002 1.23479797e+002 1.28680603e+002 - 1.11972435e+002 1.23463425e+002 1.28653595e+002 1.11951454e+002 - 1.23459999e+002 1.28627319e+002 1.11970741e+002 1.23463219e+002 - 1.28627655e+002 1.11966805e+002 1.23467384e+002 1.28604630e+002 - 1.11976570e+002 1.23457214e+002 1.28597061e+002 1.11960114e+002 - 1.23447845e+002 1.28564041e+002 1.11969292e+002 1.23454071e+002 - 1.28555191e+002 1.11973808e+002 1.23463036e+002 1.28537125e+002 - 1.11990723e+002 1.23463448e+002 1.28528229e+002 1.11971825e+002 - 1.23452698e+002 1.28492569e+002 1.11979904e+002 1.23436432e+002 - 1.28470261e+002 1.11978516e+002 1.23442390e+002 1.28451233e+002 - 1.11992645e+002 1.23446297e+002 1.28438324e+002 1.11965256e+002 - 1.23428650e+002 1.28390335e+002 1.11970825e+002 1.23423195e+002 - 1.28380417e+002 1.11985962e+002 1.23438232e+002 1.28365372e+002 - 1.11975868e+002 1.23413177e+002 1.28309860e+002 1.11952019e+002 - 1.23398567e+002 1.28262802e+002 1.11943741e+002 1.23369392e+002 - 1.28223206e+002 1.11939392e+002 1.23373383e+002 1.28196930e+002 - 1.11976593e+002 1.23386230e+002 1.28195541e+002 1.11982079e+002 - 1.23403152e+002 1.28166992e+002 1.11992096e+002 1.23403641e+002 - 1.28143097e+002 1.12016022e+002 1.23433502e+002 1.28136368e+002 - 1.12027046e+002 1.23430611e+002 1.28111221e+002 1.12015488e+002 - 1.23418678e+002 1.28060608e+002 1.12032234e+002 1.23398445e+002 - 1.28032074e+002 1.12022575e+002 1.23398018e+002 1.27996155e+002 - 1.12026825e+002 1.23386658e+002 1.27959175e+002 1.11987923e+002 - 1.23370056e+002 1.27899231e+002 1.11982712e+002 1.23349640e+002 - 1.27865784e+002 1.12004372e+002 1.23376961e+002 1.27853531e+002 - 1.12051239e+002 1.23405388e+002 1.27845093e+002 1.12038040e+002 - 1.23408524e+002 1.27795708e+002 1.12059631e+002 1.23408157e+002 - 1.27785469e+002 1.12082932e+002 1.23443336e+002 1.27786758e+002 - 1.12115234e+002 1.23458786e+002 1.27790886e+002 1.12104828e+002 - 1.23457329e+002 1.27741257e+002 1.12109612e+002 1.23457664e+002 - 1.27717171e+002 1.12128494e+002 1.23482094e+002 1.27697784e+002 - 1.12140671e+002 1.23474823e+002 1.27671211e+002 1.12104767e+002 - 1.23438568e+002 1.27597740e+002 1.12126854e+002 1.23429291e+002 - 1.27570503e+002 1.12150612e+002 1.23447258e+002 1.27553268e+002 - 1.12154549e+002 1.23439507e+002 1.27516563e+002 1.12141235e+002 - 1.23436447e+002 1.27472626e+002 1.12164536e+002 1.23439194e+002 - 1.27469559e+002 1.12181969e+002 1.23456627e+002 1.27450272e+002 - 1.12164452e+002 1.23423836e+002 1.27388657e+002 1.12147438e+002 - 1.23419884e+002 1.27342339e+002 1.12167183e+002 1.23421707e+002 - 1.27328537e+002 1.12154396e+002 1.23411179e+002 1.27286064e+002 - 1.12168022e+002 1.23409386e+002 1.27261086e+002 1.12160576e+002 - 1.23402664e+002 1.27215027e+002 1.12155418e+002 1.23384483e+002 - 1.27169502e+002 1.12168831e+002 1.23405777e+002 1.27141754e+002 - 1.12171158e+002 1.23384583e+002 1.27084923e+002 1.12203125e+002 - 1.23416779e+002 1.27074081e+002 1.12246727e+002 1.23422348e+002 - 1.27044685e+002 1.12254280e+002 1.23426704e+002 1.27010727e+002 - 1.12282875e+002 1.23440308e+002 1.26984222e+002 1.12261200e+002 - 1.23429031e+002 1.26929710e+002 1.12250244e+002 1.23393585e+002 - 1.26882195e+002 1.12273376e+002 1.23412521e+002 1.26854820e+002 - 1.12284767e+002 1.23398567e+002 1.26797684e+002 1.12293945e+002 - 1.23415741e+002 1.26768921e+002 1.12294357e+002 1.23392685e+002 - 1.26729691e+002 1.12309967e+002 1.23417198e+002 1.26709274e+002 - 1.12322739e+002 1.23406090e+002 1.26669228e+002 1.12306206e+002 - 1.23387390e+002 1.26616058e+002 1.12327591e+002 1.23385078e+002 - 1.26572525e+002 1.12339043e+002 1.23396820e+002 1.26540550e+002 - 1.12323166e+002 1.23364738e+002 1.26479294e+002 1.12324242e+002 - 1.23362991e+002 1.26439293e+002 1.12355400e+002 1.23353363e+002 - 1.26401741e+002 1.12361778e+002 1.23366089e+002 1.26361427e+002 - 1.12352165e+002 1.23339676e+002 1.26294250e+002 1.12336304e+002 - 1.23329330e+002 1.26241653e+002 1.12364105e+002 1.23334267e+002 - 1.26225906e+002 1.12407639e+002 1.23365982e+002 1.26221397e+002 - 1.12439781e+002 1.23361511e+002 1.26175339e+002 1.12434540e+002 - 1.23353737e+002 1.26119461e+002 1.12461105e+002 1.23357620e+002 - 1.26102264e+002 1.12474243e+002 1.23369324e+002 1.26072884e+002 - 1.12500580e+002 1.23363174e+002 1.26047066e+002 1.12514954e+002 - 1.23379150e+002 1.26017990e+002 1.12563263e+002 1.23391998e+002 - 1.26004066e+002 1.12573639e+002 1.23394684e+002 1.25968925e+002 - 1.12582031e+002 1.23371742e+002 1.25920807e+002 1.12602272e+002 - 1.23378708e+002 1.25899574e+002 1.12629051e+002 1.23351646e+002 - 1.25857788e+002 1.12628151e+002 1.23333862e+002 1.25801552e+002 - 1.12632736e+002 1.23297272e+002 1.25745491e+002 1.12613800e+002 - 1.23267052e+002 1.25680916e+002 1.12579643e+002 1.23188438e+002 - 1.25591766e+002 1.12477554e+002 1.23068771e+002 1.25437050e+002 - 1.12467888e+002 1.23071541e+002 1.25477074e+002 1.12558350e+002 - 1.23204369e+002 1.25623230e+002 1.12635834e+002 1.23298195e+002 - 1.25748001e+002 1.12651482e+002 1.23350464e+002 1.25806412e+002 - 1.12633118e+002 1.23353256e+002 1.25850670e+002 1.12623154e+002 - 1.23372253e+002 1.25894241e+002 1.12640778e+002 1.23402229e+002 - 1.25965729e+002 1.12621353e+002 1.23413963e+002 1.25997765e+002 - 1.12628860e+002 1.23430290e+002 1.26056404e+002 1.12584381e+002 - 1.23423019e+002 1.26072868e+002 1.12590408e+002 1.23431503e+002 - 1.26147125e+002 1.12586136e+002 1.23458954e+002 1.26201439e+002 - 1.12555664e+002 1.23452545e+002 1.26240974e+002 1.12501755e+002 - 1.23431160e+002 1.26241302e+002 1.12481209e+002 1.23420425e+002 - 1.26268341e+002 1.12440086e+002 1.23409012e+002 1.26270309e+002 - 1.12429970e+002 1.23423073e+002 1.26342163e+002 1.12405907e+002 - 1.23436836e+002 1.26374191e+002 1.12404541e+002 1.23435081e+002 - 1.26415352e+002 1.12398720e+002 1.23444801e+002 1.26443939e+002 - 1.12378090e+002 1.23426018e+002 1.26476990e+002 1.12341103e+002 - 1.23412155e+002 1.26488029e+002 1.12304787e+002 1.23391762e+002 - 1.26517113e+002 1.12288849e+002 1.23392647e+002 1.26541962e+002 - 1.12284180e+002 1.23397095e+002 1.26595070e+002 1.12254669e+002 - 1.23386780e+002 1.26615685e+002 1.12252831e+002 1.23369247e+002 - 1.26658508e+002 1.12235573e+002 1.23376915e+002 1.26686356e+002 - 1.12221619e+002 1.23363701e+002 1.26713936e+002 1.12205872e+002 - 1.23365799e+002 1.26735939e+002 1.12229713e+002 1.23382584e+002 - 1.26796585e+002 1.12199051e+002 1.23375618e+002 1.26802879e+002 - 1.12174065e+002 1.23356659e+002 1.26848671e+002 1.12122322e+002 - 1.23330940e+002 1.26848808e+002 1.12146362e+002 1.23345352e+002 - 1.26895103e+002 1.12135773e+002 1.23350098e+002 1.26926018e+002 - 1.12128609e+002 1.23340996e+002 1.26962997e+002 1.12095688e+002 - 1.23328857e+002 1.26975418e+002 1.12090942e+002 1.23332756e+002 - 1.27028725e+002 1.12084061e+002 1.23343117e+002 1.27063629e+002 - 1.12079498e+002 1.23343330e+002 1.27105728e+002 1.12052376e+002 - 1.23326958e+002 1.27122787e+002 1.12073105e+002 1.23333488e+002 - 1.27185852e+002 1.12056221e+002 1.23326859e+002 1.27208832e+002 - 1.12039429e+002 1.23314644e+002 1.27240143e+002 1.12019791e+002 - 1.23317978e+002 1.27261147e+002 1.12020416e+002 1.23314194e+002 - 1.27293083e+002 1.11991570e+002 1.23297836e+002 1.27292969e+002 - 1.11982117e+002 1.23290329e+002 1.27337830e+002 1.11940842e+002 - 1.23275192e+002 1.27351913e+002 1.11951317e+002 1.23283623e+002 - 1.27392616e+002 1.11938904e+002 1.23281372e+002 1.27412575e+002 - 1.11931198e+002 1.23267685e+002 1.27451752e+002 1.11892532e+002 - 1.23243263e+002 1.27450584e+002 1.11909355e+002 1.23265625e+002 - 1.27515854e+002 1.11914413e+002 1.23285095e+002 1.27548012e+002 - 1.11921547e+002 1.23287407e+002 1.27583443e+002 1.11901642e+002 - 1.23282951e+002 1.27604225e+002 1.11901237e+002 1.23264793e+002 - 1.27642883e+002 1.11939575e+002 1.23317146e+002 1.27716545e+002 - 1.11940987e+002 1.23316559e+002 1.27752052e+002 1.11927879e+002 - 1.23319916e+002 1.27765228e+002 1.11933113e+002 1.23322266e+002 - 1.27806564e+002 1.11938301e+002 1.23336365e+002 1.27836609e+002 - 1.11924530e+002 1.23329857e+002 1.27882004e+002 1.11895142e+002 - 1.23321503e+002 1.27891235e+002 1.11891014e+002 1.23306313e+002 - 1.27910789e+002 1.11885216e+002 1.23310760e+002 1.27924370e+002 - 1.11908073e+002 1.23324364e+002 1.27986984e+002 1.11901749e+002 - 1.23327934e+002 1.28006226e+002 1.11873215e+002 1.23304878e+002 - 1.28027725e+002 1.11890549e+002 1.23331558e+002 1.28070114e+002 - 1.11887962e+002 1.23327499e+002 1.28103149e+002 1.11872101e+002 - 1.23329155e+002 1.28124847e+002 1.11881584e+002 1.23325012e+002 - 1.28167191e+002 1.11884956e+002 1.23341873e+002 1.28204254e+002 - 1.11892174e+002 1.23343178e+002 1.28233597e+002 1.11879196e+002 - 1.23353020e+002 1.28256454e+002 1.11880058e+002 1.23346878e+002 - 1.28280991e+002 1.11869492e+002 1.23339371e+002 1.28293900e+002 - 1.11855721e+002 1.23337746e+002 1.28325439e+002 1.11835861e+002 - 1.23348976e+002 1.28341873e+002 1.11860435e+002 1.23355560e+002 - 1.28383011e+002 1.11859573e+002 1.23366661e+002 1.28402054e+002 - 1.11865311e+002 1.23360954e+002 1.28430939e+002 1.11864746e+002 - 1.23371422e+002 1.28457413e+002 1.11874023e+002 1.23375641e+002 - 1.28495682e+002 1.11871132e+002 1.23382660e+002 1.28511765e+002 - 1.11896309e+002 1.23406487e+002 1.28562607e+002 1.11900398e+002 - 1.23421158e+002 1.28597031e+002 1.11899818e+002 1.23399864e+002 - 1.28615234e+002 1.11886787e+002 1.23407074e+002 1.28631882e+002 - 1.11900337e+002 1.23421432e+002 1.28674286e+002 1.11890846e+002 - 1.23424797e+002 1.28679977e+002 1.11882843e+002 1.23413071e+002 - 1.28686905e+002 1.11892075e+002 1.23428825e+002 1.28704300e+002 - 1.11905159e+002 1.23442680e+002 1.28750458e+002 1.11872429e+002 - 1.23432915e+002 1.28744736e+002 1.11878960e+002 1.23429863e+002 - 1.28768890e+002 1.11888016e+002 1.23445160e+002 1.28781891e+002 - 1.11909958e+002 1.23460960e+002 1.28816116e+002 1.11886467e+002 - 1.23453217e+002 1.28809357e+002 1.11881783e+002 1.23445175e+002 - 1.28816803e+002 1.11880692e+002 1.23451843e+002 1.28822342e+002 - 1.11873924e+002 1.23435486e+002 1.28817047e+002 1.11863762e+002 - 1.23435150e+002 1.28811630e+002 1.11851433e+002 1.23403702e+002 - 1.28806656e+002 1.11864548e+002 1.23423096e+002 1.28824615e+002 - 1.11893005e+002 1.23444374e+002 1.28856262e+002 1.11871880e+002 - 1.23443237e+002 1.28842712e+002 1.11866943e+002 1.23423195e+002 - 1.28838165e+002 1.11885056e+002 1.23444565e+002 1.28844833e+002 - 1.11886810e+002 1.23437111e+002 1.28839081e+002 1.11875465e+002 - 1.23440506e+002 1.28841736e+002 1.11885818e+002 1.23434174e+002 - 1.28841461e+002 1.11888550e+002 1.23446472e+002 1.28839417e+002 - 1.11915237e+002 1.23458076e+002 1.28858978e+002 1.11892693e+002 - 1.23445099e+002 1.28841660e+002 1.11896477e+002 1.23432999e+002 - 1.28834656e+002 1.11901398e+002 1.23442238e+002 1.28829132e+002 - 1.11892662e+002 1.23421295e+002 1.28810928e+002 1.11859238e+002 - 1.23391960e+002 1.28773331e+002 1.11871590e+002 1.23382843e+002 - 1.28770676e+002 1.11868744e+002 1.23386002e+002 1.28762329e+002 - 1.11865356e+002 1.23379326e+002 1.28749344e+002 1.11840271e+002 - 1.23371880e+002 1.28714340e+002 1.11847885e+002 1.23372208e+002 - 1.28707687e+002 1.11814140e+002 1.23345367e+002 1.28651962e+002 - 1.11797409e+002 1.23318878e+002 1.28619370e+002 1.11795525e+002 - 1.23333763e+002 1.28604675e+002 1.11812759e+002 1.23341820e+002 - 1.28606171e+002 1.11805527e+002 1.23339722e+002 1.28587234e+002 - 1.11822983e+002 1.23343170e+002 1.28585266e+002 1.11816925e+002 - 1.23341408e+002 1.28558167e+002 1.11822327e+002 1.23347542e+002 - 1.28550415e+002 1.11815117e+002 1.23347725e+002 1.28524902e+002 - 1.11824043e+002 1.23336052e+002 1.28501419e+002 1.11807373e+002 - 1.23323776e+002 1.28467316e+002 1.11804077e+002 1.23289520e+002 - 1.28432648e+002 1.11809296e+002 1.23305214e+002 1.28418320e+002 - 1.11829544e+002 1.23315956e+002 1.28407990e+002 1.11817642e+002 - 1.23314018e+002 1.28376831e+002 1.11809837e+002 1.23291054e+002 - 1.28349792e+002 1.11821014e+002 1.23305275e+002 1.28322983e+002 - 1.11797836e+002 1.23263618e+002 1.28257370e+002 1.11760315e+002 - 1.23237579e+002 1.28205734e+002 1.11765022e+002 1.23223656e+002 - 1.28178207e+002 1.11776665e+002 1.23245132e+002 1.28172607e+002 - 1.11810562e+002 1.23260117e+002 1.28168182e+002 1.11816826e+002 - 1.23274353e+002 1.28140396e+002 1.11827553e+002 1.23272995e+002 - 1.28119766e+002 1.11833649e+002 1.23290245e+002 1.28096985e+002 - 1.11842255e+002 1.23282883e+002 1.28063934e+002 1.11840767e+002 - 1.23280716e+002 1.28030487e+002 1.11876335e+002 1.23275780e+002 - 1.28013519e+002 1.11867790e+002 1.23278542e+002 1.27978302e+002 - 1.11868965e+002 1.23268188e+002 1.27941330e+002 1.11832611e+002 - 1.23248184e+002 1.27883904e+002 1.11845627e+002 1.23250015e+002 - 1.27864998e+002 1.11860977e+002 1.23265961e+002 1.27835045e+002 - 1.11890274e+002 1.23277618e+002 1.27812943e+002 1.11897667e+002 - 1.23302094e+002 1.27792297e+002 1.11917198e+002 1.23304054e+002 - 1.27785484e+002 1.11920982e+002 1.23315193e+002 1.27763336e+002 - 1.11949135e+002 1.23322372e+002 1.27751053e+002 1.11933037e+002 - 1.23320755e+002 1.27709724e+002 1.11960526e+002 1.23338776e+002 - 1.27698257e+002 1.11960121e+002 1.23344482e+002 1.27665665e+002 - 1.11966232e+002 1.23328758e+002 1.27620880e+002 1.11939789e+002 - 1.23306587e+002 1.27565460e+002 1.11977272e+002 1.23310913e+002 - 1.27552795e+002 1.12010773e+002 1.23343109e+002 1.27544563e+002 - 1.12004944e+002 1.23327759e+002 1.27499779e+002 1.11983437e+002 - 1.23319542e+002 1.27452606e+002 1.12022331e+002 1.23329918e+002 - 1.27451302e+002 1.12032768e+002 1.23346413e+002 1.27427834e+002 - 1.12014061e+002 1.23312012e+002 1.27361717e+002 1.11985100e+002 - 1.23296822e+002 1.27314720e+002 1.12005829e+002 1.23299194e+002 - 1.27299652e+002 1.12004982e+002 1.23297249e+002 1.27265465e+002 - 1.12029625e+002 1.23301544e+002 1.27246834e+002 1.12016808e+002 - 1.23296638e+002 1.27200539e+002 1.12023811e+002 1.23287361e+002 - 1.27161552e+002 1.12021667e+002 1.23294579e+002 1.27120697e+002 - 1.12029488e+002 1.23274742e+002 1.27063431e+002 1.12056587e+002 - 1.23299210e+002 1.27053047e+002 1.12083183e+002 1.23293625e+002 - 1.27011627e+002 1.12110382e+002 1.23320778e+002 1.26990685e+002 - 1.12136223e+002 1.23327606e+002 1.26963165e+002 1.12098549e+002 - 1.23297386e+002 1.26891182e+002 1.12125023e+002 1.23297852e+002 - 1.26870216e+002 1.12140121e+002 1.23311707e+002 1.26837418e+002 - 1.12149940e+002 1.23295151e+002 1.26780350e+002 1.12142754e+002 - 1.23294449e+002 1.26732887e+002 1.12138138e+002 1.23274742e+002 - 1.26694611e+002 1.12175789e+002 1.23313385e+002 1.26695190e+002 - 1.12197334e+002 1.23306587e+002 1.26664894e+002 1.12169922e+002 - 1.23284035e+002 1.26593330e+002 1.12188278e+002 1.23275955e+002 - 1.26555565e+002 1.12185181e+002 1.23274834e+002 1.26507111e+002 - 1.12178535e+002 1.23249664e+002 1.26449715e+002 1.12183167e+002 - 1.23251343e+002 1.26409950e+002 1.12201630e+002 1.23233841e+002 - 1.26361816e+002 1.12226875e+002 1.23269775e+002 1.26339989e+002 - 1.12232246e+002 1.23253540e+002 1.26290398e+002 1.12225883e+002 - 1.23250618e+002 1.26240425e+002 1.12267357e+002 1.23265427e+002 - 1.26241066e+002 1.12316101e+002 1.23307640e+002 1.26231850e+002 - 1.12343422e+002 1.23293625e+002 1.26182533e+002 1.12331680e+002 - 1.23283463e+002 1.26124207e+002 1.12355484e+002 1.23284836e+002 - 1.26102440e+002 1.12362831e+002 1.23290230e+002 1.26073364e+002 - 1.12385582e+002 1.23281250e+002 1.26043404e+002 1.12399475e+002 - 1.23295334e+002 1.26008354e+002 1.12434967e+002 1.23302757e+002 - 1.25990128e+002 1.12448700e+002 1.23312225e+002 1.25960304e+002 - 1.12456093e+002 1.23278313e+002 1.25902122e+002 1.12484268e+002 - 1.23297539e+002 1.25889420e+002 1.12530106e+002 1.23286606e+002 - 1.25863846e+002 1.12530228e+002 1.23271309e+002 1.25815193e+002 - 1.12538933e+002 1.23238815e+002 1.25756035e+002 1.12523033e+002 - 1.23207481e+002 1.25687553e+002 1.12505516e+002 1.23138855e+002 - 1.25613808e+002 1.12386955e+002 1.23005638e+002 1.25439186e+002 - 1.12416992e+002 1.23050438e+002 1.25507523e+002 1.12481346e+002 - 1.23163704e+002 1.25628983e+002 1.12562347e+002 1.23255547e+002 - 1.25756683e+002 1.12599953e+002 1.23329346e+002 1.25838333e+002 - 1.12604973e+002 1.23351051e+002 1.25899612e+002 1.12571053e+002 - 1.23355682e+002 1.25921547e+002 1.12568283e+002 1.23368217e+002 - 1.25979851e+002 1.12554558e+002 1.23377312e+002 1.26011986e+002 - 1.12560036e+002 1.23394096e+002 1.26076218e+002 1.12508186e+002 - 1.23373589e+002 1.26084122e+002 1.12502518e+002 1.23372566e+002 - 1.26143631e+002 1.12494049e+002 1.23400894e+002 1.26196815e+002 - 1.12467873e+002 1.23393257e+002 1.26235085e+002 1.12416840e+002 - 1.23376114e+002 1.26243401e+002 1.12406143e+002 1.23374893e+002 - 1.26278839e+002 1.12368637e+002 1.23364922e+002 1.26293579e+002 - 1.12358559e+002 1.23378433e+002 1.26357170e+002 1.12320160e+002 - 1.23382050e+002 1.26379051e+002 1.12326065e+002 1.23380783e+002 - 1.26420815e+002 1.12323456e+002 1.23403214e+002 1.26462090e+002 - 1.12302711e+002 1.23378860e+002 1.26494873e+002 1.12247322e+002 - 1.23348991e+002 1.26494881e+002 1.12224442e+002 1.23341423e+002 - 1.26535393e+002 1.12216637e+002 1.23359642e+002 1.26573563e+002 - 1.12205971e+002 1.23353287e+002 1.26616158e+002 1.12157021e+002 - 1.23321411e+002 1.26618210e+002 1.12156853e+002 1.23308762e+002 - 1.26664268e+002 1.12158302e+002 1.23332268e+002 1.26705704e+002 - 1.12151894e+002 1.23326256e+002 1.26743073e+002 1.12141342e+002 - 1.23335526e+002 1.26768318e+002 1.12152611e+002 1.23337540e+002 - 1.26811745e+002 1.12122398e+002 1.23329353e+002 1.26834076e+002 - 1.12092567e+002 1.23304192e+002 1.26871368e+002 1.12030098e+002 - 1.23269936e+002 1.26858391e+002 1.12040161e+002 1.23268524e+002 - 1.26893608e+002 1.12026039e+002 1.23278389e+002 1.26924980e+002 - 1.12018555e+002 1.23259819e+002 1.26955688e+002 1.11979439e+002 - 1.23242134e+002 1.26968452e+002 1.11978859e+002 1.23250900e+002 - 1.27017654e+002 1.11980881e+002 1.23267639e+002 1.27062492e+002 - 1.11984024e+002 1.23277267e+002 1.27118889e+002 1.11940979e+002 - 1.23251129e+002 1.27118813e+002 1.11955490e+002 1.23244858e+002 - 1.27174889e+002 1.11939255e+002 1.23247742e+002 1.27202888e+002 - 1.11929604e+002 1.23245445e+002 1.27240944e+002 1.11907082e+002 - 1.23242447e+002 1.27252869e+002 1.11897942e+002 1.23229195e+002 - 1.27285614e+002 1.11887451e+002 1.23233086e+002 1.27304466e+002 - 1.11876526e+002 1.23221695e+002 1.27343124e+002 1.11825211e+002 - 1.23192970e+002 1.27340302e+002 1.11834221e+002 1.23197578e+002 - 1.27377075e+002 1.11812828e+002 1.23189438e+002 1.27399635e+002 - 1.11794212e+002 1.23166504e+002 1.27417801e+002 1.11769630e+002 - 1.23154343e+002 1.27428947e+002 1.11787369e+002 1.23176018e+002 - 1.27494698e+002 1.11789253e+002 1.23190262e+002 1.27532188e+002 - 1.11806366e+002 1.23203384e+002 1.27585091e+002 1.11790001e+002 - 1.23203781e+002 1.27606056e+002 1.11797035e+002 1.23185677e+002 - 1.27650093e+002 1.11808662e+002 1.23216156e+002 1.27700134e+002 - 1.11804512e+002 1.23211823e+002 1.27728668e+002 1.11798248e+002 - 1.23218132e+002 1.27750473e+002 1.11801270e+002 1.23220055e+002 - 1.27785957e+002 1.11805313e+002 1.23240204e+002 1.27820885e+002 - 1.11802277e+002 1.23239212e+002 1.27873238e+002 1.11769058e+002 - 1.23228226e+002 1.27880859e+002 1.11780525e+002 1.23229797e+002 - 1.27916862e+002 1.11793533e+002 1.23250832e+002 1.27951515e+002 - 1.11791138e+002 1.23237526e+002 1.27985397e+002 1.11781746e+002 - 1.23243248e+002 1.28014511e+002 1.11762276e+002 1.23224998e+002 - 1.28029892e+002 1.11765366e+002 1.23234833e+002 1.28058212e+002 - 1.11760040e+002 1.23227562e+002 1.28093491e+002 1.11732918e+002 - 1.23220917e+002 1.28107208e+002 1.11765961e+002 1.23235733e+002 - 1.28171661e+002 1.11768463e+002 1.23255249e+002 1.28211456e+002 - 1.11774483e+002 1.23259155e+002 1.28241425e+002 1.11746490e+002 - 1.23250694e+002 1.28242615e+002 1.11762451e+002 1.23253891e+002 - 1.28279922e+002 1.11747826e+002 1.23257950e+002 1.28297058e+002 - 1.11743195e+002 1.23254814e+002 1.28336136e+002 1.11726311e+002 - 1.23263817e+002 1.28359238e+002 1.11737701e+002 1.23258911e+002 - 1.28380661e+002 1.11720825e+002 1.23255798e+002 1.28383804e+002 - 1.11716385e+002 1.23238480e+002 1.28402298e+002 1.11721992e+002 - 1.23259132e+002 1.28432739e+002 1.11729660e+002 1.23261658e+002 - 1.28470215e+002 1.11747665e+002 1.23290627e+002 1.28513794e+002 - 1.11767914e+002 1.23302841e+002 1.28551437e+002 1.11769958e+002 - 1.23323288e+002 1.28589249e+002 1.11745277e+002 1.23273643e+002 - 1.28585846e+002 1.11739708e+002 1.23289581e+002 1.28607788e+002 - 1.11768723e+002 1.23317490e+002 1.28662506e+002 1.11775368e+002 - 1.23339996e+002 1.28686874e+002 1.11774567e+002 1.23331604e+002 - 1.28693283e+002 1.11769218e+002 1.23338600e+002 1.28708481e+002 - 1.11762917e+002 1.23337509e+002 1.28735809e+002 1.11748688e+002 - 1.23343796e+002 1.28747192e+002 1.11759583e+002 1.23336403e+002 - 1.28759659e+002 1.11759239e+002 1.23348961e+002 1.28779037e+002 - 1.11783508e+002 1.23360931e+002 1.28818665e+002 1.11754471e+002 - 1.23355072e+002 1.28802536e+002 1.11721169e+002 1.23316620e+002 - 1.28781265e+002 1.11736038e+002 1.23339676e+002 1.28797165e+002 - 1.11739433e+002 1.23332581e+002 1.28805115e+002 1.11728561e+002 - 1.23332466e+002 1.28800232e+002 1.11742393e+002 1.23317993e+002 - 1.28815018e+002 1.11774879e+002 1.23356430e+002 1.28858047e+002 - 1.11786903e+002 1.23368942e+002 1.28876007e+002 1.11740746e+002 - 1.23341110e+002 1.28836639e+002 1.11746414e+002 1.23327705e+002 - 1.28838669e+002 1.11750473e+002 1.23343781e+002 1.28842636e+002 - 1.11753601e+002 1.23337463e+002 1.28845093e+002 1.11731277e+002 - 1.23328110e+002 1.28821213e+002 1.11737137e+002 1.23319107e+002 - 1.28825165e+002 1.11758232e+002 1.23351547e+002 1.28839066e+002 - 1.11781357e+002 1.23352333e+002 1.28852859e+002 1.11764015e+002 - 1.23339508e+002 1.28833344e+002 1.11764816e+002 1.23331291e+002 - 1.28823593e+002 1.11774216e+002 1.23346001e+002 1.28822372e+002 - 1.11780899e+002 1.23336441e+002 1.28814484e+002 1.11734879e+002 - 1.23301384e+002 1.28765854e+002 1.11747169e+002 1.23284569e+002 - 1.28758728e+002 1.11751938e+002 1.23295998e+002 1.28756897e+002 - 1.11733757e+002 1.23276070e+002 1.28724106e+002 1.11703346e+002 - 1.23264862e+002 1.28689651e+002 1.11697815e+002 1.23251076e+002 - 1.28672318e+002 1.11691116e+002 1.23251366e+002 1.28652252e+002 - 1.11677826e+002 1.23232681e+002 1.28619629e+002 1.11656372e+002 - 1.23224937e+002 1.28586075e+002 1.11671387e+002 1.23225204e+002 - 1.28578323e+002 1.11670982e+002 1.23237778e+002 1.28571747e+002 - 1.11710228e+002 1.23264275e+002 1.28588013e+002 1.11672585e+002 - 1.23235077e+002 1.28539200e+002 1.11669563e+002 1.23224449e+002 - 1.28513062e+002 1.11675056e+002 1.23233017e+002 1.28497726e+002 - 1.11673485e+002 1.23219528e+002 1.28472168e+002 1.11662308e+002 - 1.23217010e+002 1.28444382e+002 1.11685707e+002 1.23209953e+002 - 1.28433456e+002 1.11693069e+002 1.23219292e+002 1.28416534e+002 - 1.11718704e+002 1.23229332e+002 1.28407730e+002 1.11694702e+002 - 1.23221130e+002 1.28366226e+002 1.11688683e+002 1.23198700e+002 - 1.28333786e+002 1.11676903e+002 1.23195168e+002 1.28297806e+002 - 1.11654839e+002 1.23151115e+002 1.28233719e+002 1.11639992e+002 - 1.23151871e+002 1.28202911e+002 1.11646210e+002 1.23134621e+002 - 1.28175903e+002 1.11649628e+002 1.23143723e+002 1.28150848e+002 - 1.11683426e+002 1.23161812e+002 1.28157562e+002 1.11695412e+002 - 1.23182289e+002 1.28134140e+002 1.11700607e+002 1.23182312e+002 - 1.28106369e+002 1.11701492e+002 1.23184029e+002 1.28070053e+002 - 1.11707451e+002 1.23177422e+002 1.28045105e+002 1.11714905e+002 - 1.23188232e+002 1.28021042e+002 1.11731316e+002 1.23170624e+002 - 1.27991196e+002 1.11724350e+002 1.23169167e+002 1.27952202e+002 - 1.11738876e+002 1.23172348e+002 1.27930489e+002 1.11723679e+002 - 1.23175934e+002 1.27889137e+002 1.11731209e+002 1.23164032e+002 - 1.27863609e+002 1.11737526e+002 1.23175797e+002 1.27832710e+002 - 1.11754448e+002 1.23177505e+002 1.27793533e+002 1.11767708e+002 - 1.23203430e+002 1.27777550e+002 1.11783806e+002 1.23199348e+002 - 1.27760445e+002 1.11783585e+002 1.23206390e+002 1.27733704e+002 - 1.11800865e+002 1.23206993e+002 1.27720306e+002 1.11806839e+002 - 1.23223892e+002 1.27691544e+002 1.11825447e+002 1.23234917e+002 - 1.27676704e+002 1.11825844e+002 1.23234406e+002 1.27636169e+002 - 1.11832260e+002 1.23225449e+002 1.27596169e+002 1.11828979e+002 - 1.23217369e+002 1.27558098e+002 1.11846588e+002 1.23210037e+002 - 1.27532028e+002 1.11883667e+002 1.23250366e+002 1.27530701e+002 - 1.11898094e+002 1.23250389e+002 1.27498466e+002 1.11876648e+002 - 1.23238068e+002 1.27452896e+002 1.11906448e+002 1.23242508e+002 - 1.27448288e+002 1.11920433e+002 1.23265305e+002 1.27424782e+002 - 1.11905472e+002 1.23242172e+002 1.27370476e+002 1.11892143e+002 - 1.23235558e+002 1.27328224e+002 1.11897720e+002 1.23215462e+002 - 1.27294594e+002 1.11900017e+002 1.23225891e+002 1.27269737e+002 - 1.11907257e+002 1.23211685e+002 1.27226151e+002 1.11905975e+002 - 1.23216324e+002 1.27193710e+002 1.11928154e+002 1.23224617e+002 - 1.27169502e+002 1.11937958e+002 1.23238136e+002 1.27136871e+002 - 1.11932999e+002 1.23212524e+002 1.27078003e+002 1.11951340e+002 - 1.23229385e+002 1.27044235e+002 1.11981018e+002 1.23225250e+002 - 1.27011986e+002 1.12001358e+002 1.23249283e+002 1.26981491e+002 - 1.12019440e+002 1.23245232e+002 1.26951591e+002 1.11993340e+002 - 1.23222229e+002 1.26889389e+002 1.12037025e+002 1.23243401e+002 - 1.26883904e+002 1.12055656e+002 1.23264252e+002 1.26861763e+002 - 1.12066338e+002 1.23244095e+002 1.26798134e+002 1.12051003e+002 - 1.23237480e+002 1.26742455e+002 1.12057198e+002 1.23219116e+002 - 1.26706528e+002 1.12076027e+002 1.23249031e+002 1.26692863e+002 - 1.12106842e+002 1.23247307e+002 1.26671486e+002 1.12069122e+002 - 1.23217270e+002 1.26595581e+002 1.12085724e+002 1.23210487e+002 - 1.26552444e+002 1.12087158e+002 1.23208664e+002 1.26509270e+002 - 1.12096123e+002 1.23197411e+002 1.26461548e+002 1.12097069e+002 - 1.23195389e+002 1.26418289e+002 1.12102806e+002 1.23168655e+002 - 1.26361076e+002 1.12123352e+002 1.23189560e+002 1.26329796e+002 - 1.12152000e+002 1.23200073e+002 1.26300499e+002 1.12135750e+002 - 1.23187202e+002 1.26243652e+002 1.12183891e+002 1.23215126e+002 - 1.26248024e+002 1.12206497e+002 1.23227478e+002 1.26215553e+002 - 1.12244713e+002 1.23229561e+002 1.26172813e+002 1.12241417e+002 - 1.23225723e+002 1.26126404e+002 1.12271523e+002 1.23220505e+002 - 1.26107063e+002 1.12288895e+002 1.23242401e+002 1.26087364e+002 - 1.12300735e+002 1.23231873e+002 1.26045639e+002 1.12314163e+002 - 1.23238213e+002 1.26011810e+002 1.12355026e+002 1.23252228e+002 - 1.25993553e+002 1.12378189e+002 1.23272835e+002 1.25972923e+002 - 1.12370674e+002 1.23222893e+002 1.25905922e+002 1.12401543e+002 - 1.23247772e+002 1.25897041e+002 1.12439575e+002 1.23227722e+002 - 1.25853241e+002 1.12465660e+002 1.23237389e+002 1.25827789e+002 - 1.12474045e+002 1.23195816e+002 1.25772614e+002 1.12450859e+002 - 1.23166183e+002 1.25699745e+002 1.12444756e+002 1.23106033e+002 - 1.25635864e+002 1.12315598e+002 1.22970222e+002 1.25450447e+002 - 1.12295227e+002 1.22977798e+002 1.25486954e+002 1.12371025e+002 - 1.23103584e+002 1.25619255e+002 1.12435738e+002 1.23178047e+002 - 1.25727531e+002 1.12469521e+002 1.23246284e+002 1.25807785e+002 - 1.12477890e+002 1.23267479e+002 1.25872574e+002 1.12461525e+002 - 1.23284500e+002 1.25905594e+002 1.12442719e+002 1.23292175e+002 - 1.25954552e+002 1.12408348e+002 1.23281052e+002 1.25971588e+002 - 1.12437386e+002 1.23320114e+002 1.26053513e+002 1.12396172e+002 - 1.23310974e+002 1.26072845e+002 1.12374969e+002 1.23292229e+002 - 1.26114983e+002 1.12347282e+002 1.23294464e+002 1.26148987e+002 - 1.12320282e+002 1.23288643e+002 1.26187653e+002 1.12285728e+002 - 1.23289246e+002 1.26215813e+002 1.12266479e+002 1.23282448e+002 - 1.26239975e+002 1.12242126e+002 1.23281303e+002 1.26260323e+002 - 1.12235359e+002 1.23297813e+002 1.26334229e+002 1.12191628e+002 - 1.23299362e+002 1.26357246e+002 1.12190376e+002 1.23297012e+002 - 1.26396545e+002 1.12167030e+002 1.23293236e+002 1.26418228e+002 - 1.12170753e+002 1.23291214e+002 1.26474998e+002 1.12119911e+002 - 1.23267960e+002 1.26474686e+002 1.12094650e+002 1.23262520e+002 - 1.26519775e+002 1.12078941e+002 1.23269539e+002 1.26555115e+002 - 1.12058456e+002 1.23246841e+002 1.26582130e+002 1.12010353e+002 - 1.23222305e+002 1.26585815e+002 1.11999413e+002 1.23199661e+002 - 1.26620697e+002 1.12019005e+002 1.23236328e+002 1.26679115e+002 - 1.12013947e+002 1.23235184e+002 1.26723564e+002 1.11992592e+002 - 1.23234329e+002 1.26736473e+002 1.11999214e+002 1.23232193e+002 - 1.26773254e+002 1.11987045e+002 1.23236565e+002 1.26802475e+002 - 1.11970573e+002 1.23228249e+002 1.26866753e+002 1.11901642e+002 - 1.23184959e+002 1.26846474e+002 1.11899193e+002 1.23174362e+002 - 1.26871986e+002 1.11882507e+002 1.23175125e+002 1.26888947e+002 - 1.11865746e+002 1.23155502e+002 1.26928413e+002 1.11826706e+002 - 1.23139030e+002 1.26931160e+002 1.11804573e+002 1.23123970e+002 - 1.26963829e+002 1.11800156e+002 1.23136108e+002 1.27004753e+002 - 1.11812195e+002 1.23152893e+002 1.27067200e+002 1.11780197e+002 - 1.23133736e+002 1.27076477e+002 1.11790268e+002 1.23127129e+002 - 1.27132355e+002 1.11770508e+002 1.23124916e+002 1.27153122e+002 - 1.11772408e+002 1.23138046e+002 1.27211067e+002 1.11740112e+002 - 1.23128212e+002 1.27220673e+002 1.11734566e+002 1.23112564e+002 - 1.27243401e+002 1.11722275e+002 1.23121284e+002 1.27268677e+002 - 1.11712624e+002 1.23107986e+002 1.27308319e+002 1.11681915e+002 - 1.23104622e+002 1.27321732e+002 1.11687706e+002 1.23099594e+002 - 1.27356346e+002 1.11661720e+002 1.23092133e+002 1.27367996e+002 - 1.11638275e+002 1.23061600e+002 1.27387184e+002 1.11612350e+002 - 1.23051369e+002 1.27406349e+002 1.11625267e+002 1.23065071e+002 - 1.27466774e+002 1.11631737e+002 1.23087852e+002 1.27508698e+002 - 1.11639954e+002 1.23087242e+002 1.27547714e+002 1.11622284e+002 - 1.23084991e+002 1.27567719e+002 1.11635864e+002 1.23078445e+002 - 1.27620544e+002 1.11616112e+002 1.23076164e+002 1.27642151e+002 - 1.11619919e+002 1.23079086e+002 1.27679253e+002 1.11632408e+002 - 1.23112556e+002 1.27724174e+002 1.11635017e+002 1.23104538e+002 - 1.27750114e+002 1.11630913e+002 1.23111504e+002 1.27776131e+002 - 1.11624413e+002 1.23109184e+002 1.27824867e+002 1.11595253e+002 - 1.23108330e+002 1.27842529e+002 1.11618759e+002 1.23114700e+002 - 1.27883018e+002 1.11625275e+002 1.23139145e+002 1.27919388e+002 - 1.11610428e+002 1.23106506e+002 1.27937904e+002 1.11599449e+002 - 1.23112206e+002 1.27967705e+002 1.11589813e+002 1.23104988e+002 - 1.27995430e+002 1.11598305e+002 1.23122658e+002 1.28032486e+002 - 1.11599213e+002 1.23119339e+002 1.28068665e+002 1.11571548e+002 - 1.23109444e+002 1.28078537e+002 1.11608177e+002 1.23125320e+002 - 1.28152054e+002 1.11610542e+002 1.23145462e+002 1.28187378e+002 - 1.11605743e+002 1.23142601e+002 1.28213760e+002 1.11584015e+002 - 1.23135246e+002 1.28218369e+002 1.11593468e+002 1.23142204e+002 - 1.28252731e+002 1.11571938e+002 1.23125267e+002 1.28257935e+002 - 1.11556381e+002 1.23108131e+002 1.28280869e+002 1.11525520e+002 - 1.23109245e+002 1.28293121e+002 1.11545486e+002 1.23106506e+002 - 1.28318848e+002 1.11547234e+002 1.23125595e+002 1.28348541e+002 - 1.11544930e+002 1.23111778e+002 1.28370712e+002 1.11536537e+002 - 1.23112068e+002 1.28384995e+002 1.11529465e+002 1.23106308e+002 - 1.28411163e+002 1.11555367e+002 1.23144440e+002 1.28462036e+002 - 1.11578461e+002 1.23164642e+002 1.28504349e+002 1.11559235e+002 - 1.23157028e+002 1.28516251e+002 1.11569466e+002 1.23144638e+002 - 1.28549561e+002 1.11567284e+002 1.23161583e+002 1.28578064e+002 - 1.11581604e+002 1.23179497e+002 1.28613037e+002 1.11596977e+002 - 1.23211937e+002 1.28653290e+002 1.11595345e+002 1.23207130e+002 - 1.28663788e+002 1.11584267e+002 1.23202850e+002 1.28667984e+002 - 1.11571976e+002 1.23190155e+002 1.28681107e+002 1.11546425e+002 - 1.23193192e+002 1.28685242e+002 1.11549126e+002 1.23184776e+002 - 1.28698105e+002 1.11566818e+002 1.23201973e+002 1.28722412e+002 - 1.11591156e+002 1.23216072e+002 1.28756180e+002 1.11566147e+002 - 1.23209854e+002 1.28746613e+002 1.11538841e+002 1.23175056e+002 - 1.28733627e+002 1.11534332e+002 1.23179634e+002 1.28742188e+002 - 1.11544800e+002 1.23185722e+002 1.28753159e+002 1.11530212e+002 - 1.23177994e+002 1.28743851e+002 1.11559586e+002 1.23179619e+002 - 1.28773636e+002 1.11580994e+002 1.23209312e+002 1.28798401e+002 - 1.11596893e+002 1.23224037e+002 1.28823792e+002 1.11560112e+002 - 1.23198425e+002 1.28786316e+002 1.11554741e+002 1.23183449e+002 - 1.28785339e+002 1.11559128e+002 1.23198013e+002 1.28782684e+002 - 1.11560226e+002 1.23192459e+002 1.28781799e+002 1.11545815e+002 - 1.23194305e+002 1.28776901e+002 1.11551208e+002 1.23181953e+002 - 1.28780609e+002 1.11558952e+002 1.23201134e+002 1.28786499e+002 - 1.11575523e+002 1.23200478e+002 1.28791641e+002 1.11557213e+002 - 1.23194832e+002 1.28767853e+002 1.11565071e+002 1.23185516e+002 - 1.28764908e+002 1.11585754e+002 1.23206070e+002 1.28769623e+002 - 1.11592331e+002 1.23195953e+002 1.28765213e+002 1.11531113e+002 - 1.23140381e+002 1.28700928e+002 1.11561264e+002 1.23152107e+002 - 1.28711792e+002 1.11566628e+002 1.23160988e+002 1.28702377e+002 - 1.11552185e+002 1.23140381e+002 1.28673157e+002 1.11540459e+002 - 1.23151741e+002 1.28663116e+002 1.11541916e+002 1.23141953e+002 - 1.28655060e+002 1.11533325e+002 1.23138733e+002 1.28625351e+002 - 1.11535896e+002 1.23130547e+002 1.28601730e+002 1.11495293e+002 - 1.23113441e+002 1.28554642e+002 1.11511154e+002 1.23113457e+002 - 1.28551239e+002 1.11520638e+002 1.23131653e+002 1.28547272e+002 - 1.11558441e+002 1.23150185e+002 1.28561691e+002 1.11517441e+002 - 1.23122261e+002 1.28509460e+002 1.11530479e+002 1.23129585e+002 - 1.28503952e+002 1.11523659e+002 1.23127327e+002 1.28477859e+002 - 1.11513596e+002 1.23104385e+002 1.28443237e+002 1.11504616e+002 - 1.23102066e+002 1.28417053e+002 1.11530167e+002 1.23093559e+002 - 1.28407074e+002 1.11547325e+002 1.23117310e+002 1.28399078e+002 - 1.11539627e+002 1.23102928e+002 1.28364212e+002 1.11524734e+002 - 1.23089279e+002 1.28324112e+002 1.11531052e+002 1.23086426e+002 - 1.28313034e+002 1.11530991e+002 1.23089417e+002 1.28277664e+002 - 1.11514816e+002 1.23053757e+002 1.28224213e+002 1.11480850e+002 - 1.23040443e+002 1.28174484e+002 1.11479401e+002 1.23011887e+002 - 1.28141510e+002 1.11488029e+002 1.23038300e+002 1.28130249e+002 - 1.11524696e+002 1.23049522e+002 1.28128128e+002 1.11528191e+002 - 1.23067123e+002 1.28099960e+002 1.11543617e+002 1.23072227e+002 - 1.28083069e+002 1.11544342e+002 1.23077797e+002 1.28044525e+002 - 1.11545998e+002 1.23060852e+002 1.28017181e+002 1.11534851e+002 - 1.23052681e+002 1.27979477e+002 1.11554794e+002 1.23036812e+002 - 1.27951630e+002 1.11567284e+002 1.23066208e+002 1.27930222e+002 - 1.11585640e+002 1.23070320e+002 1.27907684e+002 1.11561600e+002 - 1.23059181e+002 1.27856705e+002 1.11564758e+002 1.23048691e+002 - 1.27831253e+002 1.11560562e+002 1.23041557e+002 1.27781059e+002 - 1.11592369e+002 1.23061127e+002 1.27756973e+002 1.11592232e+002 - 1.23076447e+002 1.27733231e+002 1.11624054e+002 1.23084343e+002 - 1.27736679e+002 1.11616638e+002 1.23083755e+002 1.27698463e+002 - 1.11644463e+002 1.23092163e+002 1.27689079e+002 1.11661804e+002 - 1.23119736e+002 1.27672638e+002 1.11672600e+002 1.23127563e+002 - 1.27651756e+002 1.11669197e+002 1.23129189e+002 1.27608643e+002 - 1.11678932e+002 1.23119560e+002 1.27572914e+002 1.11677109e+002 - 1.23120636e+002 1.27537506e+002 1.11701981e+002 1.23111870e+002 - 1.27507744e+002 1.11726509e+002 1.23140305e+002 1.27503090e+002 - 1.11754486e+002 1.23146774e+002 1.27479607e+002 1.11730095e+002 - 1.23141815e+002 1.27428818e+002 1.11749603e+002 1.23141052e+002 - 1.27420265e+002 1.11745743e+002 1.23140144e+002 1.27376518e+002 - 1.11746590e+002 1.23127579e+002 1.27322517e+002 1.11733177e+002 - 1.23130997e+002 1.27286812e+002 1.11749992e+002 1.23123520e+002 - 1.27263885e+002 1.11758629e+002 1.23137772e+002 1.27250755e+002 - 1.11758690e+002 1.23105835e+002 1.27197365e+002 1.11756195e+002 - 1.23113213e+002 1.27159050e+002 1.11773979e+002 1.23118912e+002 - 1.27136757e+002 1.11790741e+002 1.23137283e+002 1.27105263e+002 - 1.11779366e+002 1.23108955e+002 1.27038048e+002 1.11782631e+002 - 1.23111557e+002 1.26998665e+002 1.11838585e+002 1.23130859e+002 - 1.26991753e+002 1.11849426e+002 1.23142662e+002 1.26956596e+002 - 1.11867104e+002 1.23138939e+002 1.26915047e+002 1.11856377e+002 - 1.23135620e+002 1.26871475e+002 1.11887093e+002 1.23141617e+002 - 1.26861320e+002 1.11904625e+002 1.23152771e+002 1.26822998e+002 - 1.11910507e+002 1.23136307e+002 1.26756592e+002 1.11913536e+002 - 1.23151207e+002 1.26720566e+002 1.11938507e+002 1.23151543e+002 - 1.26704552e+002 1.11928886e+002 1.23149635e+002 1.26655388e+002 - 1.11951332e+002 1.23154617e+002 1.26630409e+002 1.11950218e+002 - 1.23145050e+002 1.26580414e+002 1.11968437e+002 1.23145401e+002 - 1.26543602e+002 1.11962395e+002 1.23133362e+002 1.26492294e+002 - 1.11983116e+002 1.23139740e+002 1.26463699e+002 1.11967926e+002 - 1.23124428e+002 1.26408478e+002 1.11979141e+002 1.23092049e+002 - 1.26345779e+002 1.12008827e+002 1.23120796e+002 1.26325500e+002 - 1.12021980e+002 1.23113968e+002 1.26281601e+002 1.12017372e+002 - 1.23117065e+002 1.26234596e+002 1.12044472e+002 1.23123566e+002 - 1.26216324e+002 1.12072334e+002 1.23133537e+002 1.26182617e+002 - 1.12111832e+002 1.23138657e+002 1.26145004e+002 1.12113594e+002 - 1.23140427e+002 1.26104614e+002 1.12134087e+002 1.23133484e+002 - 1.26075043e+002 1.12136215e+002 1.23136360e+002 1.26037384e+002 - 1.12178688e+002 1.23149193e+002 1.26021362e+002 1.12206139e+002 - 1.23179756e+002 1.26007690e+002 1.12239105e+002 1.23186485e+002 - 1.25983398e+002 1.12279694e+002 1.23219147e+002 1.25975334e+002 - 1.12259735e+002 1.23158028e+002 1.25895142e+002 1.12281693e+002 - 1.23172485e+002 1.25872047e+002 1.12314827e+002 1.23151192e+002 - 1.25831337e+002 1.12337280e+002 1.23160049e+002 1.25795532e+002 - 1.12360245e+002 1.23130936e+002 1.25760551e+002 1.12325951e+002 - 1.23089104e+002 1.25672295e+002 1.12303574e+002 1.23017815e+002 - 1.25595367e+002 1.12192421e+002 1.22892914e+002 1.25421387e+002 - 1.12211403e+002 1.22929855e+002 1.25480858e+002 1.12287224e+002 - 1.23047386e+002 1.25612663e+002 1.12354103e+002 1.23126839e+002 - 1.25721329e+002 1.12392593e+002 1.23192665e+002 1.25803665e+002 - 1.12402344e+002 1.23224464e+002 1.25874275e+002 1.12383751e+002 - 1.23238991e+002 1.25905273e+002 1.12359245e+002 1.23235207e+002 - 1.25950058e+002 1.12322830e+002 1.23221802e+002 1.25954727e+002 - 1.12325790e+002 1.23234695e+002 1.26016243e+002 1.12286316e+002 - 1.23226540e+002 1.26039085e+002 1.12266495e+002 1.23215446e+002 - 1.26082344e+002 1.12238815e+002 1.23222893e+002 1.26116356e+002 - 1.12211571e+002 1.23206772e+002 1.26154030e+002 1.12195168e+002 - 1.23222519e+002 1.26193146e+002 1.12180672e+002 1.23220818e+002 - 1.26227615e+002 1.12164673e+002 1.23235092e+002 1.26263206e+002 - 1.12140419e+002 1.23232780e+002 1.26322815e+002 1.12094803e+002 - 1.23230820e+002 1.26341751e+002 1.12104828e+002 1.23235901e+002 - 1.26386566e+002 1.12076553e+002 1.23230110e+002 1.26409088e+002 - 1.12065872e+002 1.23218048e+002 1.26451523e+002 1.12014534e+002 - 1.23194839e+002 1.26452950e+002 1.11974686e+002 1.23166405e+002 - 1.26476097e+002 1.11945984e+002 1.23156715e+002 1.26497978e+002 - 1.11943764e+002 1.23164009e+002 1.26548721e+002 1.11905899e+002 - 1.23141617e+002 1.26557922e+002 1.11900513e+002 1.23132858e+002 - 1.26604843e+002 1.11920418e+002 1.23174660e+002 1.26669472e+002 - 1.11916191e+002 1.23165054e+002 1.26708824e+002 1.11877426e+002 - 1.23145027e+002 1.26708298e+002 1.11885406e+002 1.23147209e+002 - 1.26745041e+002 1.11884903e+002 1.23164345e+002 1.26786804e+002 - 1.11862473e+002 1.23142113e+002 1.26839767e+002 1.11819252e+002 - 1.23130562e+002 1.26848633e+002 1.11802704e+002 1.23104858e+002 - 1.26860352e+002 1.11757469e+002 1.23082123e+002 1.26859276e+002 - 1.11748978e+002 1.23066475e+002 1.26894768e+002 1.11696213e+002 - 1.23033226e+002 1.26888275e+002 1.11681511e+002 1.23027557e+002 - 1.26932510e+002 1.11675819e+002 1.23037926e+002 1.26967316e+002 - 1.11671547e+002 1.23032974e+002 1.27010185e+002 1.11664131e+002 - 1.23039230e+002 1.27047882e+002 1.11673645e+002 1.23040520e+002 - 1.27106087e+002 1.11632797e+002 1.23016891e+002 1.27108833e+002 - 1.11635658e+002 1.23029953e+002 1.27162338e+002 1.11615265e+002 - 1.23031151e+002 1.27185265e+002 1.11610168e+002 1.23023735e+002 - 1.27216248e+002 1.11582939e+002 1.23011925e+002 1.27222435e+002 - 1.11575249e+002 1.23005577e+002 1.27270874e+002 1.11549744e+002 - 1.23006889e+002 1.27288696e+002 1.11551910e+002 1.22998444e+002 - 1.27317757e+002 1.11547775e+002 1.23002533e+002 1.27346756e+002 - 1.11531998e+002 1.22977875e+002 1.27371147e+002 1.11525017e+002 - 1.22995934e+002 1.27415146e+002 1.11515312e+002 1.22983185e+002 - 1.27450851e+002 1.11527229e+002 1.23005600e+002 1.27496445e+002 - 1.11540756e+002 1.23018906e+002 1.27548096e+002 1.11503441e+002 - 1.22998680e+002 1.27553818e+002 1.11504936e+002 1.22977219e+002 - 1.27593040e+002 1.11486404e+002 1.22980003e+002 1.27613701e+002 - 1.11502838e+002 1.22993965e+002 1.27664215e+002 1.11492737e+002 - 1.23003494e+002 1.27682762e+002 1.11498581e+002 1.23001358e+002 - 1.27712639e+002 1.11496582e+002 1.23015877e+002 1.27745071e+002 - 1.11486832e+002 1.22999474e+002 1.27788567e+002 1.11465721e+002 - 1.23011108e+002 1.27811371e+002 1.11466026e+002 1.22993286e+002 - 1.27829216e+002 1.11459625e+002 1.22998367e+002 1.27856277e+002 - 1.11458382e+002 1.22986305e+002 1.27890999e+002 1.11453224e+002 - 1.22995720e+002 1.27921257e+002 1.11425507e+002 1.22969124e+002 - 1.27936752e+002 1.11420578e+002 1.22976967e+002 1.27963570e+002 - 1.11442810e+002 1.22989143e+002 1.28016373e+002 1.11445190e+002 - 1.23002670e+002 1.28058426e+002 1.11462875e+002 1.23018044e+002 - 1.28115784e+002 1.11463249e+002 1.23031151e+002 1.28147812e+002 - 1.11471703e+002 1.23035553e+002 1.28185318e+002 1.11437546e+002 - 1.23017838e+002 1.28179459e+002 1.11449501e+002 1.23017143e+002 - 1.28210587e+002 1.11453369e+002 1.23036827e+002 1.28246979e+002 - 1.11417793e+002 1.23004089e+002 1.28256256e+002 1.11389091e+002 - 1.22998619e+002 1.28268234e+002 1.11394798e+002 1.22988396e+002 - 1.28280426e+002 1.11400131e+002 1.23000130e+002 1.28300903e+002 - 1.11406174e+002 1.23001656e+002 1.28334183e+002 1.11383713e+002 - 1.22997932e+002 1.28341187e+002 1.11387520e+002 1.22996445e+002 - 1.28374557e+002 1.11398170e+002 1.23016640e+002 1.28402405e+002 - 1.11428131e+002 1.23039299e+002 1.28459274e+002 1.11423347e+002 - 1.23046867e+002 1.28483963e+002 1.11433655e+002 1.23043007e+002 - 1.28521011e+002 1.11413635e+002 1.23039635e+002 1.28530243e+002 - 1.11427757e+002 1.23048065e+002 1.28568130e+002 1.11425095e+002 - 1.23074577e+002 1.28592529e+002 1.11444656e+002 1.23086906e+002 - 1.28624039e+002 1.11451973e+002 1.23107742e+002 1.28646729e+002 - 1.11447975e+002 1.23093994e+002 1.28661957e+002 1.11429497e+002 - 1.23102013e+002 1.28674561e+002 1.11440208e+002 1.23097816e+002 - 1.28688339e+002 1.11430695e+002 1.23096069e+002 1.28691635e+002 - 1.11429070e+002 1.23090858e+002 1.28705124e+002 1.11407074e+002 - 1.23073074e+002 1.28695023e+002 1.11406090e+002 1.23070557e+002 - 1.28709534e+002 1.11403381e+002 1.23075226e+002 1.28712067e+002 - 1.11390358e+002 1.23060753e+002 1.28711075e+002 1.11387085e+002 - 1.23067680e+002 1.28714798e+002 1.11411774e+002 1.23065338e+002 - 1.28736221e+002 1.11429756e+002 1.23088249e+002 1.28754440e+002 - 1.11454506e+002 1.23106506e+002 1.28783508e+002 1.11422089e+002 - 1.23088387e+002 1.28752808e+002 1.11416954e+002 1.23074287e+002 - 1.28751770e+002 1.11405006e+002 1.23072289e+002 1.28738983e+002 - 1.11399323e+002 1.23058357e+002 1.28736450e+002 1.11384537e+002 - 1.23062874e+002 1.28726257e+002 1.11409111e+002 1.23070755e+002 - 1.28738770e+002 1.11423325e+002 1.23090263e+002 1.28747360e+002 - 1.11442245e+002 1.23087006e+002 1.28763016e+002 1.11420662e+002 - 1.23074310e+002 1.28733627e+002 1.11408653e+002 1.23053345e+002 - 1.28712341e+002 1.11417557e+002 1.23068344e+002 1.28705856e+002 - 1.11422203e+002 1.23055031e+002 1.28699005e+002 1.11387009e+002 - 1.23024773e+002 1.28656799e+002 1.11416344e+002 1.23030457e+002 - 1.28670441e+002 1.11416702e+002 1.23040947e+002 1.28654053e+002 - 1.11427048e+002 1.23049553e+002 1.28653870e+002 1.11429565e+002 - 1.23067329e+002 1.28651596e+002 1.11410126e+002 1.23039322e+002 - 1.28626526e+002 1.11406693e+002 1.23045639e+002 1.28609573e+002 - 1.11408440e+002 1.23035599e+002 1.28584625e+002 1.11370644e+002 - 1.23014229e+002 1.28535645e+002 1.11375557e+002 1.23001534e+002 - 1.28516693e+002 1.11396683e+002 1.23034309e+002 1.28521057e+002 - 1.11413933e+002 1.23035553e+002 1.28518280e+002 1.11386368e+002 - 1.23013069e+002 1.28472733e+002 1.11403221e+002 1.23023613e+002 - 1.28474884e+002 1.11385918e+002 1.23015266e+002 1.28438248e+002 - 1.11371132e+002 1.22988914e+002 1.28402161e+002 1.11357224e+002 - 1.22983185e+002 1.28369675e+002 1.11394890e+002 1.22984268e+002 - 1.28369293e+002 1.11419487e+002 1.23015030e+002 1.28368423e+002 - 1.11429657e+002 1.23011223e+002 1.28347351e+002 1.11417229e+002 - 1.23007637e+002 1.28309372e+002 1.11414932e+002 1.23000671e+002 - 1.28287109e+002 1.11386993e+002 1.22974655e+002 1.28234238e+002 - 1.11379517e+002 1.22951111e+002 1.28198822e+002 1.11340446e+002 - 1.22930260e+002 1.28141891e+002 1.11340965e+002 1.22912773e+002 - 1.28110504e+002 1.11355560e+002 1.22933395e+002 1.28098297e+002 - 1.11399345e+002 1.22956200e+002 1.28102631e+002 1.11400169e+002 - 1.22964462e+002 1.28076035e+002 1.11406975e+002 1.22963501e+002 - 1.28041901e+002 1.11403954e+002 1.22969200e+002 1.28006821e+002 - 1.11415359e+002 1.22961121e+002 1.27987808e+002 1.11397034e+002 - 1.22943680e+002 1.27943497e+002 1.11410347e+002 1.22932053e+002 - 1.27913803e+002 1.11412956e+002 1.22938477e+002 1.27880608e+002 - 1.11449738e+002 1.22962044e+002 1.27874138e+002 1.11428360e+002 - 1.22952278e+002 1.27826981e+002 1.11433243e+002 1.22949593e+002 - 1.27803879e+002 1.11440773e+002 1.22957581e+002 1.27765739e+002 - 1.11475403e+002 1.22971992e+002 1.27745689e+002 1.11465714e+002 - 1.22980171e+002 1.27705116e+002 1.11480797e+002 1.22967171e+002 - 1.27686172e+002 1.11476410e+002 1.22965729e+002 1.27652924e+002 - 1.11509697e+002 1.22984299e+002 1.27644798e+002 1.11519371e+002 - 1.23003403e+002 1.27627251e+002 1.11533150e+002 1.23014603e+002 - 1.27604599e+002 1.11543388e+002 1.23030830e+002 1.27578697e+002 - 1.11540581e+002 1.23004303e+002 1.27526382e+002 1.11528404e+002 - 1.22997711e+002 1.27485741e+002 1.11555267e+002 1.22996437e+002 - 1.27457420e+002 1.11583687e+002 1.23025475e+002 1.27447655e+002 - 1.11618034e+002 1.23038399e+002 1.27433205e+002 1.11601837e+002 - 1.23035965e+002 1.27392853e+002 1.11615936e+002 1.23034088e+002 - 1.27376976e+002 1.11603096e+002 1.23027954e+002 1.27326851e+002 - 1.11588448e+002 1.22999619e+002 1.27256088e+002 1.11591972e+002 - 1.23014069e+002 1.27232910e+002 1.11601852e+002 1.22999321e+002 - 1.27203926e+002 1.11615364e+002 1.23017014e+002 1.27187714e+002 - 1.11629074e+002 1.23008263e+002 1.27156944e+002 1.11617447e+002 - 1.22997894e+002 1.27108246e+002 1.11645073e+002 1.23011711e+002 - 1.27084885e+002 1.11665268e+002 1.23040398e+002 1.27064636e+002 - 1.11652542e+002 1.23004379e+002 1.26997162e+002 1.11650352e+002 - 1.23006851e+002 1.26954498e+002 1.11702034e+002 1.23025635e+002 - 1.26941788e+002 1.11726097e+002 1.23052559e+002 1.26922096e+002 - 1.11752113e+002 1.23053497e+002 1.26896889e+002 1.11731667e+002 - 1.23038612e+002 1.26832825e+002 1.11744431e+002 1.23036148e+002 - 1.26807251e+002 1.11784370e+002 1.23065674e+002 1.26789093e+002 - 1.11805885e+002 1.23064888e+002 1.26738724e+002 1.11809387e+002 - 1.23075310e+002 1.26702034e+002 1.11840942e+002 1.23085464e+002 - 1.26688881e+002 1.11833611e+002 1.23082848e+002 1.26648178e+002 - 1.11856018e+002 1.23084442e+002 1.26621452e+002 1.11842644e+002 - 1.23076973e+002 1.26567551e+002 1.11857719e+002 1.23063652e+002 - 1.26520569e+002 1.11851181e+002 1.23053406e+002 1.26468170e+002 - 1.11874290e+002 1.23060730e+002 1.26435387e+002 1.11877983e+002 - 1.23063049e+002 1.26404915e+002 1.11894279e+002 1.23040504e+002 - 1.26344841e+002 1.11913116e+002 1.23059265e+002 1.26314621e+002 - 1.11916748e+002 1.23038834e+002 1.26257790e+002 1.11920105e+002 - 1.23044228e+002 1.26220695e+002 1.11946236e+002 1.23048401e+002 - 1.26201065e+002 1.11977859e+002 1.23071701e+002 1.26171631e+002 - 1.12016960e+002 1.23068146e+002 1.26124405e+002 1.12033379e+002 - 1.23087601e+002 1.26097473e+002 1.12041573e+002 1.23063072e+002 - 1.26051697e+002 1.12050789e+002 1.23073868e+002 1.26020477e+002 - 1.12091431e+002 1.23093201e+002 1.26010101e+002 1.12102966e+002 - 1.23104912e+002 1.25977638e+002 1.12152000e+002 1.23133163e+002 - 1.25975769e+002 1.12200363e+002 1.23165131e+002 1.25970062e+002 - 1.12179596e+002 1.23103035e+002 1.25887062e+002 1.12200089e+002 - 1.23115051e+002 1.25864220e+002 1.12231064e+002 1.23095222e+002 - 1.25816612e+002 1.12255829e+002 1.23101463e+002 1.25785378e+002 - 1.12285461e+002 1.23086044e+002 1.25748116e+002 1.12251160e+002 - 1.23039680e+002 1.25668747e+002 1.12211983e+002 1.22950089e+002 - 1.25565231e+002 1.12102730e+002 1.22830048e+002 1.25410881e+002 - 1.12112808e+002 1.22854698e+002 1.25451561e+002 1.12189423e+002 - 1.22977814e+002 1.25587051e+002 1.12259560e+002 1.23060867e+002 - 1.25698761e+002 1.12304558e+002 1.23133507e+002 1.25791153e+002 - 1.12302757e+002 1.23155212e+002 1.25850670e+002 1.12275536e+002 - 1.23160507e+002 1.25869537e+002 1.12252319e+002 1.23159073e+002 - 1.25916832e+002 1.12223244e+002 1.23156815e+002 1.25933548e+002 - 1.12219185e+002 1.23159721e+002 1.25980453e+002 1.12166496e+002 - 1.23131111e+002 1.25983101e+002 1.12155922e+002 1.23133896e+002 - 1.26045570e+002 1.12122597e+002 1.23131821e+002 1.26072060e+002 - 1.12097198e+002 1.23122849e+002 1.26116028e+002 1.12074219e+002 - 1.23127190e+002 1.26141228e+002 1.12069199e+002 1.23132439e+002 - 1.26182854e+002 1.12057205e+002 1.23146286e+002 1.26220345e+002 - 1.12050789e+002 1.23168251e+002 1.26299423e+002 1.12008675e+002 - 1.23168877e+002 1.26322968e+002 1.12005867e+002 1.23161812e+002 - 1.26364586e+002 1.11978081e+002 1.23158615e+002 1.26386009e+002 - 1.11948280e+002 1.23132088e+002 1.26412971e+002 1.11907669e+002 - 1.23116638e+002 1.26427048e+002 1.11857864e+002 1.23078476e+002 - 1.26443596e+002 1.11822945e+002 1.23060318e+002 1.26448189e+002 - 1.11832748e+002 1.23077133e+002 1.26515099e+002 1.11810707e+002 - 1.23068069e+002 1.26535324e+002 1.11799408e+002 1.23058800e+002 - 1.26580971e+002 1.11792725e+002 1.23067307e+002 1.26622177e+002 - 1.11789604e+002 1.23062248e+002 1.26657707e+002 1.11743744e+002 - 1.23031799e+002 1.26648209e+002 1.11776955e+002 1.23067909e+002 - 1.26716270e+002 1.11772209e+002 1.23078072e+002 1.26752373e+002 - 1.11741096e+002 1.23049301e+002 1.26802231e+002 1.11687111e+002 - 1.23026344e+002 1.26805038e+002 1.11675293e+002 1.23004929e+002 - 1.26822411e+002 1.11643745e+002 1.22991478e+002 1.26832359e+002 - 1.11631248e+002 1.22976677e+002 1.26862595e+002 1.11577934e+002 - 1.22941635e+002 1.26857475e+002 1.11556206e+002 1.22927071e+002 - 1.26892082e+002 1.11548683e+002 1.22935143e+002 1.26923492e+002 - 1.11549698e+002 1.22938766e+002 1.26976006e+002 1.11525131e+002 - 1.22929482e+002 1.27001999e+002 1.11496498e+002 1.22892578e+002 - 1.27021126e+002 1.11481323e+002 1.22899689e+002 1.27050964e+002 - 1.11470917e+002 1.22890320e+002 1.27091049e+002 1.11447281e+002 - 1.22892990e+002 1.27109001e+002 1.11451263e+002 1.22895538e+002 - 1.27151299e+002 1.11436653e+002 1.22892204e+002 1.27168579e+002 - 1.11441132e+002 1.22903633e+002 1.27231659e+002 1.11408310e+002 - 1.22890732e+002 1.27240532e+002 1.11415634e+002 1.22889267e+002 - 1.27277031e+002 1.11409248e+002 1.22896339e+002 1.27304741e+002 - 1.11398918e+002 1.22875648e+002 1.27335320e+002 1.11389519e+002 - 1.22888580e+002 1.27369949e+002 1.11388634e+002 1.22888931e+002 - 1.27415565e+002 1.11396210e+002 1.22910751e+002 1.27460190e+002 - 1.11412186e+002 1.22920639e+002 1.27511345e+002 1.11375854e+002 - 1.22891830e+002 1.27514130e+002 1.11361404e+002 1.22868576e+002 - 1.27544052e+002 1.11362732e+002 1.22882317e+002 1.27586388e+002 - 1.11387909e+002 1.22911453e+002 1.27642326e+002 1.11367073e+002 - 1.22907906e+002 1.27654274e+002 1.11365936e+002 1.22899872e+002 - 1.27677017e+002 1.11358536e+002 1.22902580e+002 1.27691780e+002 - 1.11351326e+002 1.22893639e+002 1.27740295e+002 1.11309937e+002 - 1.22877182e+002 1.27746826e+002 1.11315338e+002 1.22872375e+002 - 1.27778351e+002 1.11313385e+002 1.22884460e+002 1.27811760e+002 - 1.11311966e+002 1.22879105e+002 1.27851395e+002 1.11307594e+002 - 1.22885796e+002 1.27881508e+002 1.11291191e+002 1.22867226e+002 - 1.27905807e+002 1.11283676e+002 1.22872246e+002 1.27929985e+002 - 1.11289574e+002 1.22865639e+002 1.27962631e+002 1.11283249e+002 - 1.22871475e+002 1.27996017e+002 1.11313965e+002 1.22896149e+002 - 1.28065689e+002 1.11318596e+002 1.22917534e+002 1.28105347e+002 - 1.11322266e+002 1.22919159e+002 1.28142990e+002 1.11279030e+002 - 1.22888832e+002 1.28126389e+002 1.11266083e+002 1.22872635e+002 - 1.28140015e+002 1.11272949e+002 1.22886520e+002 1.28168427e+002 - 1.11256073e+002 1.22872139e+002 1.28196976e+002 1.11216949e+002 - 1.22853989e+002 1.28192734e+002 1.11233047e+002 1.22853844e+002 - 1.28221176e+002 1.11236496e+002 1.22869904e+002 1.28247528e+002 - 1.11244965e+002 1.22862534e+002 1.28269745e+002 1.11224579e+002 - 1.22865227e+002 1.28284225e+002 1.11226341e+002 1.22865181e+002 - 1.28315079e+002 1.11246300e+002 1.22892120e+002 1.28354126e+002 - 1.11255219e+002 1.22893440e+002 1.28385880e+002 1.11253670e+002 - 1.22906868e+002 1.28411728e+002 1.11262169e+002 1.22892670e+002 - 1.28447205e+002 1.11242828e+002 1.22895653e+002 1.28464737e+002 - 1.11266930e+002 1.22917610e+002 1.28515228e+002 1.11288010e+002 - 1.22958397e+002 1.28554962e+002 1.11292892e+002 1.22951073e+002 - 1.28565140e+002 1.11300812e+002 1.22978027e+002 1.28589523e+002 - 1.11309441e+002 1.22979935e+002 1.28621506e+002 1.11288071e+002 - 1.22986046e+002 1.28630157e+002 1.11291595e+002 1.22970123e+002 - 1.28637741e+002 1.11281815e+002 1.22976067e+002 1.28643295e+002 - 1.11282562e+002 1.22959229e+002 1.28646637e+002 1.11242241e+002 - 1.22934479e+002 1.28628601e+002 1.11261169e+002 1.22952042e+002 - 1.28667175e+002 1.11258896e+002 1.22958778e+002 1.28673553e+002 - 1.11233795e+002 1.22933815e+002 1.28659027e+002 1.11226563e+002 - 1.22932083e+002 1.28658661e+002 1.11265984e+002 1.22947433e+002 - 1.28691238e+002 1.11277222e+002 1.22969009e+002 1.28706848e+002 - 1.11291809e+002 1.22978767e+002 1.28724106e+002 1.11265945e+002 - 1.22962067e+002 1.28701523e+002 1.11258224e+002 1.22937988e+002 - 1.28695709e+002 1.11276642e+002 1.22972496e+002 1.28702332e+002 - 1.11271278e+002 1.22958595e+002 1.28699738e+002 1.11230286e+002 - 1.22937225e+002 1.28670670e+002 1.11254143e+002 1.22939438e+002 - 1.28680618e+002 1.11260834e+002 1.22953438e+002 1.28685562e+002 - 1.11277733e+002 1.22951851e+002 1.28693100e+002 1.11265678e+002 - 1.22942612e+002 1.28673553e+002 1.11258461e+002 1.22925110e+002 - 1.28658554e+002 1.11260384e+002 1.22940002e+002 1.28651810e+002 - 1.11259262e+002 1.22927071e+002 1.28637009e+002 1.11240105e+002 - 1.22913322e+002 1.28609573e+002 1.11256912e+002 1.22899277e+002 - 1.28603729e+002 1.11261108e+002 1.22914108e+002 1.28598648e+002 - 1.11266281e+002 1.22914360e+002 1.28590378e+002 1.11255051e+002 - 1.22918816e+002 1.28570984e+002 1.11241676e+002 1.22900795e+002 - 1.28552704e+002 1.11256813e+002 1.22921951e+002 1.28548080e+002 - 1.11252953e+002 1.22906319e+002 1.28521423e+002 1.11217178e+002 - 1.22896736e+002 1.28482132e+002 1.11214355e+002 1.22867165e+002 - 1.28456985e+002 1.11239403e+002 1.22899437e+002 1.28459686e+002 - 1.11245659e+002 1.22892441e+002 1.28446686e+002 1.11223572e+002 - 1.22878143e+002 1.28406601e+002 1.11256287e+002 1.22898674e+002 - 1.28420364e+002 1.11234306e+002 1.22892181e+002 1.28381485e+002 - 1.11229462e+002 1.22870163e+002 1.28355118e+002 1.11211540e+002 - 1.22862320e+002 1.28318954e+002 1.11248085e+002 1.22874336e+002 - 1.28321259e+002 1.11263481e+002 1.22892769e+002 1.28307297e+002 - 1.11290955e+002 1.22901512e+002 1.28301178e+002 1.11266190e+002 - 1.22887932e+002 1.28254959e+002 1.11248108e+002 1.22855835e+002 - 1.28218918e+002 1.11232246e+002 1.22845657e+002 1.28175751e+002 - 1.11205200e+002 1.22808266e+002 1.28116409e+002 1.11194519e+002 - 1.22812462e+002 1.28091019e+002 1.11192734e+002 1.22796417e+002 - 1.28064896e+002 1.11216415e+002 1.22824570e+002 1.28055405e+002 - 1.11261322e+002 1.22850319e+002 1.28066269e+002 1.11247246e+002 - 1.22844414e+002 1.28016510e+002 1.11259346e+002 1.22839638e+002 - 1.27984749e+002 1.11262299e+002 1.22853554e+002 1.27962654e+002 - 1.11261406e+002 1.22833519e+002 1.27933769e+002 1.11245262e+002 - 1.22818962e+002 1.27889526e+002 1.11267677e+002 1.22810394e+002 - 1.27864761e+002 1.11261162e+002 1.22820534e+002 1.27827728e+002 - 1.11286385e+002 1.22827415e+002 1.27809723e+002 1.11275948e+002 - 1.22829285e+002 1.27768982e+002 1.11299812e+002 1.22842850e+002 - 1.27762413e+002 1.11323341e+002 1.22868225e+002 1.27738396e+002 - 1.11339035e+002 1.22865326e+002 1.27704109e+002 1.11349205e+002 - 1.22885574e+002 1.27679115e+002 1.11369789e+002 1.22885071e+002 - 1.27669846e+002 1.11376595e+002 1.22898415e+002 1.27644485e+002 - 1.11391792e+002 1.22892456e+002 1.27624268e+002 1.11388359e+002 - 1.22895729e+002 1.27586014e+002 1.11407402e+002 1.22912651e+002 - 1.27573425e+002 1.11413345e+002 1.22927582e+002 1.27543304e+002 - 1.11415108e+002 1.22909630e+002 1.27497032e+002 1.11397720e+002 - 1.22893593e+002 1.27443977e+002 1.11406799e+002 1.22880432e+002 - 1.27407387e+002 1.11446854e+002 1.22922966e+002 1.27403717e+002 - 1.11480675e+002 1.22935730e+002 1.27386932e+002 1.11456619e+002 - 1.22922974e+002 1.27338310e+002 1.11486740e+002 1.22939598e+002 - 1.27337753e+002 1.11465462e+002 1.22920105e+002 1.27270988e+002 - 1.11444016e+002 1.22882698e+002 1.27193298e+002 1.11441818e+002 - 1.22895813e+002 1.27164246e+002 1.11460625e+002 1.22886932e+002 - 1.27148689e+002 1.11464035e+002 1.22897125e+002 1.27119911e+002 - 1.11472481e+002 1.22879189e+002 1.27080902e+002 1.11464752e+002 - 1.22874611e+002 1.27035500e+002 1.11482048e+002 1.22879616e+002 - 1.27002968e+002 1.11526009e+002 1.22925575e+002 1.27007751e+002 - 1.11510429e+002 1.22897987e+002 1.26937469e+002 1.11508011e+002 - 1.22894028e+002 1.26891510e+002 1.11552742e+002 1.22903122e+002 - 1.26875923e+002 1.11584961e+002 1.22938698e+002 1.26865868e+002 - 1.11595428e+002 1.22926414e+002 1.26821396e+002 1.11569466e+002 - 1.22911224e+002 1.26759865e+002 1.11593391e+002 1.22910774e+002 - 1.26747917e+002 1.11639648e+002 1.22949127e+002 1.26728470e+002 - 1.11667526e+002 1.22950340e+002 1.26681686e+002 1.11689133e+002 - 1.22979385e+002 1.26655685e+002 1.11713898e+002 1.22985283e+002 - 1.26639626e+002 1.11703156e+002 1.22984543e+002 1.26598778e+002 - 1.11730453e+002 1.22989426e+002 1.26578743e+002 1.11729904e+002 - 1.22992554e+002 1.26535858e+002 1.11743317e+002 1.22985420e+002 - 1.26493423e+002 1.11749138e+002 1.22988014e+002 1.26452431e+002 - 1.11764801e+002 1.22980240e+002 1.26414185e+002 1.11762405e+002 - 1.22977287e+002 1.26366501e+002 1.11782585e+002 1.22955559e+002 - 1.26310722e+002 1.11790428e+002 1.22965027e+002 1.26269600e+002 - 1.11827042e+002 1.22976639e+002 1.26251015e+002 1.11826683e+002 - 1.22983612e+002 1.26207245e+002 1.11842682e+002 1.22975777e+002 - 1.26169540e+002 1.11878922e+002 1.23000717e+002 1.26147072e+002 - 1.11926315e+002 1.23008720e+002 1.26109833e+002 1.11934372e+002 - 1.23016090e+002 1.26074326e+002 1.11953804e+002 1.23008301e+002 - 1.26039787e+002 1.11958672e+002 1.23016342e+002 1.26004715e+002 - 1.11996674e+002 1.23023460e+002 1.25985207e+002 1.12005905e+002 - 1.23035301e+002 1.25948471e+002 1.12064026e+002 1.23068893e+002 - 1.25952324e+002 1.12091629e+002 1.23087425e+002 1.25932869e+002 - 1.12091156e+002 1.23047340e+002 1.25869125e+002 1.12114029e+002 - 1.23050583e+002 1.25839058e+002 1.12154846e+002 1.23040573e+002 - 1.25805138e+002 1.12169205e+002 1.23046242e+002 1.25764587e+002 - 1.12182220e+002 1.23009422e+002 1.25711357e+002 1.12159218e+002 - 1.22973320e+002 1.25641762e+002 1.12112137e+002 1.22877640e+002 - 1.25532433e+002 1.12017197e+002 1.22761528e+002 1.25376450e+002 - 1.12016762e+002 1.22768456e+002 1.25436638e+002 1.12095871e+002 - 1.22914635e+002 1.25574570e+002 1.12174316e+002 1.23006287e+002 - 1.25705452e+002 1.12189011e+002 1.23056328e+002 1.25768234e+002 - 1.12185791e+002 1.23056633e+002 1.25811607e+002 1.12145630e+002 - 1.23064026e+002 1.25831573e+002 1.12138550e+002 1.23079735e+002 - 1.25892479e+002 1.12113747e+002 1.23082092e+002 1.25913712e+002 - 1.12112320e+002 1.23091896e+002 1.25968651e+002 1.12051651e+002 - 1.23064072e+002 1.25963669e+002 1.12047256e+002 1.23045250e+002 - 1.26019402e+002 1.12013412e+002 1.23050461e+002 1.26056404e+002 - 1.11986176e+002 1.23041656e+002 1.26088417e+002 1.11977997e+002 - 1.23069321e+002 1.26130692e+002 1.11977409e+002 1.23061867e+002 - 1.26176163e+002 1.11945320e+002 1.23060486e+002 1.26195297e+002 - 1.11950615e+002 1.23102142e+002 1.26289711e+002 1.11899666e+002 - 1.23086105e+002 1.26304131e+002 1.11888786e+002 1.23078201e+002 - 1.26335663e+002 1.11857277e+002 1.23071404e+002 1.26357246e+002 - 1.11828445e+002 1.23037514e+002 1.26384293e+002 1.11783958e+002 - 1.23015228e+002 1.26395287e+002 1.11739784e+002 1.22982132e+002 - 1.26407166e+002 1.11695587e+002 1.22966675e+002 1.26417389e+002 - 1.11699135e+002 1.22969307e+002 1.26469856e+002 1.11677521e+002 - 1.22975792e+002 1.26502647e+002 1.11685776e+002 1.22962776e+002 - 1.26556488e+002 1.11655975e+002 1.22959969e+002 1.26578209e+002 - 1.11656189e+002 1.22962769e+002 1.26622307e+002 1.11613167e+002 - 1.22935364e+002 1.26610962e+002 1.11633034e+002 1.22944199e+002 - 1.26667763e+002 1.11627785e+002 1.22957306e+002 1.26708786e+002 - 1.11592697e+002 1.22936188e+002 1.26748711e+002 1.11535461e+002 - 1.22906792e+002 1.26751160e+002 1.11505577e+002 1.22865204e+002 - 1.26749886e+002 1.11485695e+002 1.22871422e+002 1.26772858e+002 - 1.11491028e+002 1.22862381e+002 1.26822182e+002 1.11456146e+002 - 1.22856712e+002 1.26845512e+002 1.11430092e+002 1.22830833e+002 - 1.26864944e+002 1.11423027e+002 1.22841103e+002 1.26906319e+002 - 1.11414429e+002 1.22835182e+002 1.26947655e+002 1.11367149e+002 - 1.22814491e+002 1.26948235e+002 1.11365791e+002 1.22789063e+002 - 1.26988297e+002 1.11338615e+002 1.22783005e+002 1.27011002e+002 - 1.11328995e+002 1.22782715e+002 1.27050537e+002 1.11293655e+002 - 1.22780273e+002 1.27063217e+002 1.11295044e+002 1.22767479e+002 - 1.27098595e+002 1.11280045e+002 1.22770805e+002 1.27126907e+002 - 1.11300911e+002 1.22793716e+002 1.27194366e+002 1.11268051e+002 - 1.22778831e+002 1.27207520e+002 1.11275108e+002 1.22780243e+002 - 1.27241539e+002 1.11277611e+002 1.22796265e+002 1.27277184e+002 - 1.11277458e+002 1.22785065e+002 1.27321815e+002 1.11259697e+002 - 1.22783203e+002 1.27342995e+002 1.11238380e+002 1.22767342e+002 - 1.27372910e+002 1.11230484e+002 1.22776863e+002 1.27403244e+002 - 1.11240929e+002 1.22777985e+002 1.27447861e+002 1.11203659e+002 - 1.22762688e+002 1.27458755e+002 1.11222084e+002 1.22753479e+002 - 1.27510292e+002 1.11236145e+002 1.22783302e+002 1.27565529e+002 - 1.11246887e+002 1.22807259e+002 1.27617325e+002 1.11226326e+002 - 1.22804733e+002 1.27626678e+002 1.11232559e+002 1.22791298e+002 - 1.27652924e+002 1.11222343e+002 1.22798180e+002 1.27671669e+002 - 1.11221992e+002 1.22796265e+002 1.27724815e+002 1.11173180e+002 - 1.22775024e+002 1.27724861e+002 1.11163750e+002 1.22753281e+002 - 1.27738739e+002 1.11162178e+002 1.22768745e+002 1.27771965e+002 - 1.11167130e+002 1.22757553e+002 1.27814629e+002 1.11170502e+002 - 1.22775673e+002 1.27861298e+002 1.11140808e+002 1.22751144e+002 - 1.27877823e+002 1.11142044e+002 1.22766991e+002 1.27908081e+002 - 1.11177986e+002 1.22786003e+002 1.27975395e+002 1.11129944e+002 - 1.22758728e+002 1.27966339e+002 1.11148514e+002 1.22755127e+002 - 1.28021561e+002 1.11154884e+002 1.22782402e+002 1.28068283e+002 - 1.11151169e+002 1.22781342e+002 1.28095978e+002 1.11126717e+002 - 1.22782372e+002 1.28101700e+002 1.11125160e+002 1.22760185e+002 - 1.28118988e+002 1.11121239e+002 1.22763557e+002 1.28136475e+002 - 1.11114365e+002 1.22756752e+002 1.28171585e+002 1.11086647e+002 - 1.22751709e+002 1.28176773e+002 1.11096649e+002 1.22750847e+002 - 1.28208740e+002 1.11092422e+002 1.22754021e+002 1.28220871e+002 - 1.11081314e+002 1.22730225e+002 1.28226242e+002 1.11048729e+002 - 1.22723183e+002 1.28225189e+002 1.11060303e+002 1.22727943e+002 - 1.28262146e+002 1.11086281e+002 1.22764275e+002 1.28313248e+002 - 1.11120224e+002 1.22787361e+002 1.28367279e+002 1.11107925e+002 - 1.22789177e+002 1.28381882e+002 1.11124886e+002 1.22776199e+002 - 1.28429123e+002 1.11127747e+002 1.22797043e+002 1.28457077e+002 - 1.11137657e+002 1.22816322e+002 1.28491043e+002 1.11123871e+002 - 1.22825180e+002 1.28507996e+002 1.11129631e+002 1.22810707e+002 - 1.28518753e+002 1.11144676e+002 1.22845451e+002 1.28548752e+002 - 1.11152824e+002 1.22855400e+002 1.28578278e+002 1.11136337e+002 - 1.22853165e+002 1.28588867e+002 1.11140579e+002 1.22839981e+002 - 1.28600098e+002 1.11132141e+002 1.22857239e+002 1.28604355e+002 - 1.11133087e+002 1.22830788e+002 1.28610382e+002 1.11091873e+002 - 1.22808517e+002 1.28588730e+002 1.11089981e+002 1.22804199e+002 - 1.28602539e+002 1.11100906e+002 1.22825493e+002 1.28626465e+002 - 1.11087128e+002 1.22810181e+002 1.28622696e+002 1.11061340e+002 - 1.22797440e+002 1.28605682e+002 1.11113419e+002 1.22818619e+002 - 1.28653839e+002 1.11132515e+002 1.22848244e+002 1.28677780e+002 - 1.11128517e+002 1.22843788e+002 1.28677902e+002 1.11113373e+002 - 1.22844360e+002 1.28662323e+002 1.11098106e+002 1.22812988e+002 - 1.28651123e+002 1.11124771e+002 1.22844040e+002 1.28668564e+002 - 1.11104240e+002 1.22825005e+002 1.28648163e+002 1.11085007e+002 - 1.22812904e+002 1.28630920e+002 1.11103653e+002 1.22814552e+002 - 1.28644470e+002 1.11103218e+002 1.22819946e+002 1.28633575e+002 - 1.11112198e+002 1.22807472e+002 1.28636047e+002 1.11095459e+002 - 1.22798042e+002 1.28614212e+002 1.11081970e+002 1.22775696e+002 - 1.28593475e+002 1.11089493e+002 1.22796745e+002 1.28590881e+002 - 1.11087334e+002 1.22778748e+002 1.28578629e+002 1.11067589e+002 - 1.22768829e+002 1.28547333e+002 1.11098648e+002 1.22770851e+002 - 1.28562408e+002 1.11100494e+002 1.22779381e+002 1.28553177e+002 - 1.11091049e+002 1.22769768e+002 1.28529846e+002 1.11078438e+002 - 1.22772339e+002 1.28512161e+002 1.11091354e+002 1.22772018e+002 - 1.28519318e+002 1.11089531e+002 1.22784363e+002 1.28501358e+002 - 1.11080223e+002 1.22765709e+002 1.28468552e+002 1.11056549e+002 - 1.22754219e+002 1.28433136e+002 1.11043617e+002 1.22727570e+002 - 1.28399734e+002 1.11071808e+002 1.22766098e+002 1.28413391e+002 - 1.11089493e+002 1.22756889e+002 1.28405533e+002 1.11052078e+002 - 1.22735962e+002 1.28349060e+002 1.11072769e+002 1.22747650e+002 - 1.28349030e+002 1.11072906e+002 1.22754730e+002 1.28327255e+002 - 1.11047455e+002 1.22716965e+002 1.28285553e+002 1.11030029e+002 - 1.22717880e+002 1.28250580e+002 1.11077477e+002 1.22724785e+002 - 1.28260040e+002 1.11100952e+002 1.22750748e+002 1.28253372e+002 - 1.11116463e+002 1.22754845e+002 1.28236343e+002 1.11085632e+002 - 1.22737732e+002 1.28187744e+002 1.11090179e+002 1.22725906e+002 - 1.28176437e+002 1.11072754e+002 1.22715340e+002 1.28131470e+002 - 1.11062714e+002 1.22691391e+002 1.28089172e+002 1.11048813e+002 - 1.22694832e+002 1.28056976e+002 1.11052551e+002 1.22685219e+002 - 1.28037308e+002 1.11069824e+002 1.22712143e+002 1.28024857e+002 - 1.11098572e+002 1.22713684e+002 1.28012390e+002 1.11087715e+002 - 1.22711533e+002 1.27965706e+002 1.11102257e+002 1.22708885e+002 - 1.27947006e+002 1.11121498e+002 1.22738785e+002 1.27933998e+002 - 1.11093712e+002 1.22689476e+002 1.27873192e+002 1.11074005e+002 - 1.22684181e+002 1.27833275e+002 1.11114532e+002 1.22683105e+002 - 1.27827965e+002 1.11107697e+002 1.22688728e+002 1.27785278e+002 - 1.11136620e+002 1.22704460e+002 1.27769936e+002 1.11132904e+002 - 1.22726219e+002 1.27733566e+002 1.11154572e+002 1.22719749e+002 - 1.27728096e+002 1.11164398e+002 1.22731354e+002 1.27692238e+002 - 1.11184204e+002 1.22736710e+002 1.27657089e+002 1.11213699e+002 - 1.22774399e+002 1.27649940e+002 1.11231026e+002 1.22774872e+002 - 1.27635559e+002 1.11244812e+002 1.22799339e+002 1.27621819e+002 - 1.11249107e+002 1.22772003e+002 1.27583618e+002 1.11230316e+002 - 1.22769768e+002 1.27534538e+002 1.11264679e+002 1.22799713e+002 - 1.27540428e+002 1.11281143e+002 1.22817062e+002 1.27511078e+002 - 1.11271614e+002 1.22794685e+002 1.27463799e+002 1.11225304e+002 - 1.22760590e+002 1.27383675e+002 1.11261406e+002 1.22757629e+002 - 1.27370712e+002 1.11308044e+002 1.22808517e+002 1.27375717e+002 - 1.11328133e+002 1.22814873e+002 1.27347130e+002 1.11308876e+002 - 1.22812317e+002 1.27293167e+002 1.11330612e+002 1.22810654e+002 - 1.27283386e+002 1.11322319e+002 1.22812531e+002 1.27236084e+002 - 1.11295319e+002 1.22765533e+002 1.27154968e+002 1.11290642e+002 - 1.22770729e+002 1.27112885e+002 1.11319710e+002 1.22779686e+002 - 1.27105164e+002 1.11301010e+002 1.22761398e+002 1.27056999e+002 - 1.11320305e+002 1.22749359e+002 1.27025047e+002 1.11324577e+002 - 1.22763657e+002 1.26992027e+002 1.11339890e+002 1.22769676e+002 - 1.26964767e+002 1.11364937e+002 1.22798203e+002 1.26942360e+002 - 1.11355087e+002 1.22768066e+002 1.26882652e+002 1.11368599e+002 - 1.22786263e+002 1.26851532e+002 1.11413109e+002 1.22792725e+002 - 1.26839310e+002 1.11436874e+002 1.22820686e+002 1.26820038e+002 - 1.11454597e+002 1.22823845e+002 1.26786728e+002 1.11435936e+002 - 1.22815109e+002 1.26730515e+002 1.11465012e+002 1.22813614e+002 - 1.26717117e+002 1.11499382e+002 1.22843796e+002 1.26694626e+002 - 1.11532211e+002 1.22849678e+002 1.26644295e+002 1.11542854e+002 - 1.22864670e+002 1.26605835e+002 1.11569244e+002 1.22870285e+002 - 1.26592491e+002 1.11574051e+002 1.22889046e+002 1.26562996e+002 - 1.11588562e+002 1.22874573e+002 1.26526917e+002 1.11576012e+002 - 1.22866531e+002 1.26471664e+002 1.11624901e+002 1.22896141e+002 - 1.26470490e+002 1.11637917e+002 1.22910591e+002 1.26433075e+002 - 1.11633781e+002 1.22880051e+002 1.26379242e+002 1.11624489e+002 - 1.22879944e+002 1.26319969e+002 1.11648956e+002 1.22850342e+002 - 1.26275497e+002 1.11660194e+002 1.22857101e+002 1.26232231e+002 - 1.11685234e+002 1.22870316e+002 1.26201973e+002 1.11688606e+002 - 1.22884338e+002 1.26164932e+002 1.11714706e+002 1.22871933e+002 - 1.26134697e+002 1.11742767e+002 1.22896378e+002 1.26107521e+002 - 1.11775642e+002 1.22884384e+002 1.26051376e+002 1.11808037e+002 - 1.22928169e+002 1.26034615e+002 1.11830490e+002 1.22915634e+002 - 1.26007790e+002 1.11857788e+002 1.22948402e+002 1.25996872e+002 - 1.11905937e+002 1.22962341e+002 1.25986336e+002 1.11930725e+002 - 1.22988091e+002 1.25960258e+002 1.11969566e+002 1.23002228e+002 - 1.25942284e+002 1.11995712e+002 1.23015068e+002 1.25913940e+002 - 1.11999496e+002 1.22986343e+002 1.25862885e+002 1.12007401e+002 - 1.22981796e+002 1.25809860e+002 1.12048592e+002 1.22956543e+002 - 1.25774666e+002 1.12079910e+002 1.22977219e+002 1.25749222e+002 - 1.12093323e+002 1.22954971e+002 1.25705566e+002 1.12052162e+002 - 1.22906006e+002 1.25613708e+002 1.12017479e+002 1.22813316e+002 - 1.25521820e+002 1.11924545e+002 1.22709160e+002 1.25371086e+002 - 1.11883530e+002 1.22701180e+002 1.25449188e+002 1.11952980e+002 - 1.22834030e+002 1.25579491e+002 1.12044792e+002 1.22941536e+002 - 1.25718666e+002 1.12061928e+002 1.22994774e+002 1.25787804e+002 - 1.12054848e+002 1.22997574e+002 1.25836693e+002 1.12020302e+002 - 1.23006454e+002 1.25863144e+002 1.11994843e+002 1.23006691e+002 - 1.25902122e+002 1.11949333e+002 1.22987083e+002 1.25909218e+002 - 1.11974609e+002 1.23015305e+002 1.25983177e+002 1.11902428e+002 - 1.22983757e+002 1.25969849e+002 1.11888908e+002 1.22964561e+002 - 1.26023003e+002 1.11885201e+002 1.22983810e+002 1.26075905e+002 - 1.11854729e+002 1.22971680e+002 1.26102127e+002 1.11836121e+002 - 1.22985832e+002 1.26136887e+002 1.11835548e+002 1.22984093e+002 - 1.26181404e+002 1.11815605e+002 1.22989632e+002 1.26218575e+002 - 1.11793213e+002 1.23002228e+002 1.26279518e+002 1.11735016e+002 - 1.22989044e+002 1.26294701e+002 1.11734589e+002 1.22979454e+002 - 1.26331192e+002 1.11711014e+002 1.22986053e+002 1.26359268e+002 - 1.11683159e+002 1.22952522e+002 1.26390831e+002 1.11615234e+002 - 1.22904640e+002 1.26375526e+002 1.11559387e+002 1.22869141e+002 - 1.26381958e+002 1.11516037e+002 1.22848534e+002 1.26395203e+002 - 1.11520248e+002 1.22855576e+002 1.26451210e+002 1.11504303e+002 - 1.22867027e+002 1.26492332e+002 1.11508545e+002 1.22851418e+002 - 1.26541641e+002 1.11466408e+002 1.22829613e+002 1.26548836e+002 - 1.11471245e+002 1.22844788e+002 1.26594879e+002 1.11421936e+002 - 1.22818161e+002 1.26592270e+002 1.11447289e+002 1.22824066e+002 - 1.26647308e+002 1.11433861e+002 1.22830826e+002 1.26681839e+002 - 1.11384918e+002 1.22792435e+002 1.26705513e+002 1.11328087e+002 - 1.22767334e+002 1.26702660e+002 1.11319130e+002 1.22749023e+002 - 1.26724701e+002 1.11290283e+002 1.22741158e+002 1.26739120e+002 - 1.11275307e+002 1.22713821e+002 1.26772842e+002 1.11243553e+002 - 1.22707138e+002 1.26797142e+002 1.11237534e+002 1.22705940e+002 - 1.26845139e+002 1.11226593e+002 1.22718987e+002 1.26885750e+002 - 1.11240318e+002 1.22726410e+002 1.26943077e+002 1.11200462e+002 - 1.22716362e+002 1.26956062e+002 1.11194633e+002 1.22680824e+002 - 1.26992264e+002 1.11149124e+002 1.22656670e+002 1.26995689e+002 - 1.11136497e+002 1.22658707e+002 1.27036240e+002 1.11117393e+002 - 1.22663887e+002 1.27057480e+002 1.11113884e+002 1.22647026e+002 - 1.27087517e+002 1.11105850e+002 1.22656181e+002 1.27120010e+002 - 1.11121559e+002 1.22675468e+002 1.27194336e+002 1.11071358e+002 - 1.22648392e+002 1.27189522e+002 1.11086853e+002 1.22650902e+002 - 1.27228714e+002 1.11081985e+002 1.22663635e+002 1.27262093e+002 - 1.11081352e+002 1.22650177e+002 1.27298073e+002 1.11056259e+002 - 1.22643196e+002 1.27324776e+002 1.11031570e+002 1.22619766e+002 - 1.27345222e+002 1.11035950e+002 1.22645378e+002 1.27390114e+002 - 1.11025162e+002 1.22626869e+002 1.27418915e+002 1.10978981e+002 - 1.22598946e+002 1.27416054e+002 1.11009911e+002 1.22602119e+002 - 1.27482780e+002 1.11044373e+002 1.22654221e+002 1.27557648e+002 - 1.11060265e+002 1.22679733e+002 1.27615387e+002 1.11010025e+002 - 1.22649788e+002 1.27593178e+002 1.11039040e+002 1.22664223e+002 - 1.27649246e+002 1.11036903e+002 1.22674355e+002 1.27678139e+002 - 1.11019196e+002 1.22662125e+002 1.27709435e+002 1.10977470e+002 - 1.22637665e+002 1.27713158e+002 1.10994614e+002 1.22639496e+002 - 1.27750862e+002 1.10993217e+002 1.22658806e+002 1.27782547e+002 - 1.10982185e+002 1.22628136e+002 1.27815407e+002 1.10961922e+002 - 1.22629959e+002 1.27836861e+002 1.10941238e+002 1.22613258e+002 - 1.27860413e+002 1.10946671e+002 1.22633331e+002 1.27896355e+002 - 1.10955597e+002 1.22631569e+002 1.27940552e+002 1.10912727e+002 - 1.22610733e+002 1.27940155e+002 1.10937126e+002 1.22604980e+002 - 1.27997223e+002 1.10921585e+002 1.22605179e+002 1.28025192e+002 - 1.10919830e+002 1.22611809e+002 1.28058289e+002 1.10924652e+002 - 1.22639862e+002 1.28095947e+002 1.10924019e+002 1.22628761e+002 - 1.28116364e+002 1.10912018e+002 1.22622276e+002 1.28124939e+002 - 1.10913116e+002 1.22619469e+002 1.28160172e+002 1.10892296e+002 - 1.22622887e+002 1.28172043e+002 1.10905434e+002 1.22617310e+002 - 1.28201874e+002 1.10897682e+002 1.22630882e+002 1.28216644e+002 - 1.10878685e+002 1.22594276e+002 1.28216461e+002 1.10857254e+002 - 1.22587494e+002 1.28224609e+002 1.10877335e+002 1.22609924e+002 - 1.28273056e+002 1.10892372e+002 1.22634750e+002 1.28313019e+002 - 1.10903763e+002 1.22629898e+002 1.28344116e+002 1.10880722e+002 - 1.22632591e+002 1.28345764e+002 1.10891045e+002 1.22609604e+002 - 1.28379227e+002 1.10893921e+002 1.22628845e+002 1.28418884e+002 - 1.10910767e+002 1.22651665e+002 1.28454453e+002 1.10896439e+002 - 1.22658379e+002 1.28467590e+002 1.10910606e+002 1.22651161e+002 - 1.28496277e+002 1.10925919e+002 1.22675240e+002 1.28511871e+002 - 1.10958885e+002 1.22710342e+002 1.28572937e+002 1.10934944e+002 - 1.22710960e+002 1.28575272e+002 1.10940331e+002 1.22702164e+002 - 1.28583435e+002 1.10930145e+002 1.22707123e+002 1.28584885e+002 - 1.10927475e+002 1.22685143e+002 1.28587982e+002 1.10887466e+002 - 1.22664597e+002 1.28566788e+002 1.10900116e+002 1.22672844e+002 - 1.28592010e+002 1.10896095e+002 1.22683670e+002 1.28608627e+002 - 1.10885529e+002 1.22655518e+002 1.28601791e+002 1.10866623e+002 - 1.22655548e+002 1.28587814e+002 1.10908478e+002 1.22668633e+002 - 1.28635986e+002 1.10920807e+002 1.22691948e+002 1.28651794e+002 - 1.10928772e+002 1.22705048e+002 1.28662064e+002 1.10911339e+002 - 1.22698097e+002 1.28648010e+002 1.10921333e+002 1.22692902e+002 - 1.28660370e+002 1.10924980e+002 1.22700882e+002 1.28659851e+002 - 1.10919586e+002 1.22686783e+002 1.28646759e+002 1.10912315e+002 - 1.22696037e+002 1.28644897e+002 1.10916733e+002 1.22680275e+002 - 1.28633560e+002 1.10910767e+002 1.22682320e+002 1.28620209e+002 - 1.10910828e+002 1.22657509e+002 1.28614639e+002 1.10869377e+002 - 1.22627106e+002 1.28568237e+002 1.10874748e+002 1.22618843e+002 - 1.28569717e+002 1.10885216e+002 1.22642082e+002 1.28566025e+002 - 1.10905380e+002 1.22650879e+002 1.28568985e+002 1.10870544e+002 - 1.22633926e+002 1.28533310e+002 1.10887238e+002 1.22611977e+002 - 1.28533203e+002 1.10874901e+002 1.22611137e+002 1.28511108e+002 - 1.10873825e+002 1.22610458e+002 1.28490753e+002 1.10860748e+002 - 1.22613136e+002 1.28476334e+002 1.10876198e+002 1.22614586e+002 - 1.28485031e+002 1.10874771e+002 1.22623001e+002 1.28469330e+002 - 1.10853806e+002 1.22595604e+002 1.28434357e+002 1.10803780e+002 - 1.22572021e+002 1.28382599e+002 1.10811279e+002 1.22560181e+002 - 1.28364960e+002 1.10844177e+002 1.22599800e+002 1.28370880e+002 - 1.10883194e+002 1.22608711e+002 1.28382904e+002 1.10836525e+002 - 1.22574829e+002 1.28319153e+002 1.10851517e+002 1.22584595e+002 - 1.28313110e+002 1.10845085e+002 1.22590332e+002 1.28287933e+002 - 1.10828819e+002 1.22557289e+002 1.28247772e+002 1.10828102e+002 - 1.22572647e+002 1.28229645e+002 1.10863197e+002 1.22565712e+002 - 1.28229095e+002 1.10862198e+002 1.22573532e+002 1.28200745e+002 - 1.10883133e+002 1.22589706e+002 1.28201920e+002 1.10873512e+002 - 1.22592628e+002 1.28171066e+002 1.10880829e+002 1.22575058e+002 - 1.28150330e+002 1.10873428e+002 1.22577026e+002 1.28121338e+002 - 1.10862595e+002 1.22557823e+002 1.28079132e+002 1.10830902e+002 - 1.22541328e+002 1.28026779e+002 1.10858315e+002 1.22552376e+002 - 1.28024246e+002 1.10861313e+002 1.22565025e+002 1.27997040e+002 - 1.10900536e+002 1.22570290e+002 1.27989479e+002 1.10874496e+002 - 1.22561493e+002 1.27941101e+002 1.10900925e+002 1.22574806e+002 - 1.27933945e+002 1.10879555e+002 1.22560181e+002 1.27885178e+002 - 1.10860825e+002 1.22533745e+002 1.27839211e+002 1.10853653e+002 - 1.22534081e+002 1.27799171e+002 1.10915634e+002 1.22549019e+002 - 1.27809311e+002 1.10937141e+002 1.22582550e+002 1.27795082e+002 - 1.10945412e+002 1.22584846e+002 1.27754074e+002 1.10935020e+002 - 1.22588219e+002 1.27713211e+002 1.10944649e+002 1.22569466e+002 - 1.27687607e+002 1.10974068e+002 1.22593300e+002 1.27666725e+002 - 1.10987900e+002 1.22604553e+002 1.27632271e+002 1.11015869e+002 - 1.22640450e+002 1.27624092e+002 1.11049728e+002 1.22654121e+002 - 1.27627289e+002 1.11067909e+002 1.22689964e+002 1.27616264e+002 - 1.11077454e+002 1.22664841e+002 1.27584801e+002 1.11038536e+002 - 1.22643669e+002 1.27519875e+002 1.11038666e+002 1.22640961e+002 - 1.27490814e+002 1.11057320e+002 1.22661850e+002 1.27473351e+002 - 1.11067612e+002 1.22653397e+002 1.27437973e+002 1.11048630e+002 - 1.22649498e+002 1.27388458e+002 1.11074257e+002 1.22629341e+002 - 1.27358261e+002 1.11115303e+002 1.22681625e+002 1.27367241e+002 - 1.11134499e+002 1.22689224e+002 1.27338699e+002 1.11115906e+002 - 1.22684273e+002 1.27287437e+002 1.11123726e+002 1.22663116e+002 - 1.27255379e+002 1.11129616e+002 1.22675079e+002 1.27215599e+002 - 1.11124535e+002 1.22655968e+002 1.27151443e+002 1.11128319e+002 - 1.22673264e+002 1.27125893e+002 1.11137672e+002 1.22661880e+002 - 1.27103050e+002 1.11097832e+002 1.22628868e+002 1.27030029e+002 - 1.11133301e+002 1.22628654e+002 1.27009300e+002 1.11125885e+002 - 1.22635300e+002 1.26966118e+002 1.11135536e+002 1.22621529e+002 - 1.26928635e+002 1.11172974e+002 1.22667694e+002 1.26918831e+002 - 1.11174049e+002 1.22649742e+002 1.26879036e+002 1.11167885e+002 - 1.22650101e+002 1.26833939e+002 1.11213150e+002 1.22653938e+002 - 1.26816490e+002 1.11235748e+002 1.22680412e+002 1.26790474e+002 - 1.11261223e+002 1.22697685e+002 1.26768684e+002 1.11247757e+002 - 1.22695557e+002 1.26720352e+002 1.11276794e+002 1.22698494e+002 - 1.26706581e+002 1.11320084e+002 1.22737419e+002 1.26688553e+002 - 1.11340141e+002 1.22724892e+002 1.26621391e+002 1.11360542e+002 - 1.22750847e+002 1.26591682e+002 1.11385544e+002 1.22756042e+002 - 1.26571312e+002 1.11377563e+002 1.22755333e+002 1.26525269e+002 - 1.11401794e+002 1.22745201e+002 1.26500069e+002 1.11399147e+002 - 1.22750687e+002 1.26450188e+002 1.11436790e+002 1.22772018e+002 - 1.26436310e+002 1.11459755e+002 1.22795296e+002 1.26415642e+002 - 1.11465385e+002 1.22777847e+002 1.26366035e+002 1.11477272e+002 - 1.22795067e+002 1.26325874e+002 1.11489227e+002 1.22753906e+002 - 1.26276535e+002 1.11494881e+002 1.22756981e+002 1.26229446e+002 - 1.11506721e+002 1.22760452e+002 1.26192680e+002 1.11506424e+002 - 1.22758713e+002 1.26139229e+002 1.11547714e+002 1.22770042e+002 - 1.26130066e+002 1.11584068e+002 1.22793617e+002 1.26103867e+002 - 1.11613113e+002 1.22794121e+002 1.26052200e+002 1.11637207e+002 - 1.22820435e+002 1.26021049e+002 1.11672806e+002 1.22824440e+002 - 1.26008064e+002 1.11703583e+002 1.22858459e+002 1.25994102e+002 - 1.11737427e+002 1.22859573e+002 1.25975616e+002 1.11739021e+002 - 1.22860596e+002 1.25922417e+002 1.11791962e+002 1.22889709e+002 - 1.25915298e+002 1.11846687e+002 1.22924965e+002 1.25913734e+002 - 1.11862648e+002 1.22900848e+002 1.25863556e+002 1.11875565e+002 - 1.22906815e+002 1.25818871e+002 1.11926743e+002 1.22899147e+002 - 1.25796768e+002 1.11961395e+002 1.22915031e+002 1.25774338e+002 - 1.11966118e+002 1.22882713e+002 1.25719452e+002 1.11924942e+002 - 1.22833969e+002 1.25626038e+002 1.11896919e+002 1.22752693e+002 - 1.25548943e+002 1.11815941e+002 1.22663467e+002 1.25404411e+002 - 1.11745979e+002 1.22630928e+002 1.25417793e+002 1.11824425e+002 - 1.22750206e+002 1.25553169e+002 1.11893684e+002 1.22836060e+002 - 1.25673630e+002 1.11917160e+002 1.22895851e+002 1.25750298e+002 - 1.11907280e+002 1.22906990e+002 1.25795380e+002 1.11879486e+002 - 1.22906807e+002 1.25825081e+002 1.11851700e+002 1.22907356e+002 - 1.25863281e+002 1.11821922e+002 1.22900963e+002 1.25883018e+002 - 1.11816551e+002 1.22911377e+002 1.25937317e+002 1.11757835e+002 - 1.22877945e+002 1.25933105e+002 1.11749062e+002 1.22875061e+002 - 1.25991432e+002 1.11748642e+002 1.22902122e+002 1.26043266e+002 - 1.11733452e+002 1.22896126e+002 1.26090614e+002 1.11715454e+002 - 1.22905090e+002 1.26122696e+002 1.11710037e+002 1.22907738e+002 - 1.26168022e+002 1.11669388e+002 1.22898262e+002 1.26184906e+002 - 1.11643448e+002 1.22895592e+002 1.26244965e+002 1.11596230e+002 - 1.22891846e+002 1.26262306e+002 1.11573311e+002 1.22870811e+002 - 1.26287399e+002 1.11562263e+002 1.22871185e+002 1.26319153e+002 - 1.11537781e+002 1.22845375e+002 1.26349854e+002 1.11456558e+002 - 1.22788139e+002 1.26324280e+002 1.11408752e+002 1.22758888e+002 - 1.26344536e+002 1.11376793e+002 1.22746735e+002 1.26363014e+002 - 1.11365486e+002 1.22745766e+002 1.26410934e+002 1.11337578e+002 - 1.22742653e+002 1.26435585e+002 1.11329849e+002 1.22730019e+002 - 1.26481720e+002 1.11291779e+002 1.22713852e+002 1.26492371e+002 - 1.11296227e+002 1.22717026e+002 1.26541664e+002 1.11268677e+002 - 1.22705704e+002 1.26550697e+002 1.11292381e+002 1.22726967e+002 - 1.26613464e+002 1.11276573e+002 1.22729652e+002 1.26649506e+002 - 1.11232201e+002 1.22690941e+002 1.26676346e+002 1.11163109e+002 - 1.22650787e+002 1.26662239e+002 1.11154068e+002 1.22631996e+002 - 1.26682838e+002 1.11112122e+002 1.22607468e+002 1.26680389e+002 - 1.11097122e+002 1.22585960e+002 1.26717346e+002 1.11074120e+002 - 1.22579803e+002 1.26748039e+002 1.11059669e+002 1.22573936e+002 - 1.26792946e+002 1.11043068e+002 1.22579575e+002 1.26822609e+002 - 1.11067139e+002 1.22606415e+002 1.26900841e+002 1.11040215e+002 - 1.22594849e+002 1.26917236e+002 1.11021263e+002 1.22560822e+002 - 1.26944351e+002 1.10985886e+002 1.22543587e+002 1.26960060e+002 - 1.10983253e+002 1.22550102e+002 1.27006180e+002 1.10967850e+002 - 1.22558357e+002 1.27036362e+002 1.10940315e+002 1.22528214e+002 - 1.27043633e+002 1.10961594e+002 1.22565475e+002 1.27104630e+002 - 1.10952988e+002 1.22551025e+002 1.27158791e+002 1.10894730e+002 - 1.22519707e+002 1.27146179e+002 1.10906143e+002 1.22513985e+002 - 1.27180771e+002 1.10890808e+002 1.22508430e+002 1.27198914e+002 - 1.10886688e+002 1.22503563e+002 1.27239555e+002 1.10871277e+002 - 1.22509392e+002 1.27272438e+002 1.10851036e+002 1.22490250e+002 - 1.27299278e+002 1.10853020e+002 1.22508270e+002 1.27341522e+002 - 1.10844261e+002 1.22499435e+002 1.27374870e+002 1.10821922e+002 - 1.22486626e+002 1.27393951e+002 1.10854469e+002 1.22504807e+002 - 1.27459831e+002 1.10871864e+002 1.22531395e+002 1.27515991e+002 - 1.10885201e+002 1.22548943e+002 1.27571777e+002 1.10864235e+002 - 1.22549294e+002 1.27588844e+002 1.10873199e+002 1.22550468e+002 - 1.27622665e+002 1.10852806e+002 1.22541672e+002 1.27633858e+002 - 1.10841026e+002 1.22526550e+002 1.27672218e+002 1.10785530e+002 - 1.22488922e+002 1.27655136e+002 1.10805763e+002 1.22505768e+002 - 1.27703804e+002 1.10803391e+002 1.22511337e+002 1.27734703e+002 - 1.10785881e+002 1.22481430e+002 1.27750473e+002 1.10757668e+002 - 1.22472847e+002 1.27766464e+002 1.10759308e+002 1.22472885e+002 - 1.27815903e+002 1.10768646e+002 1.22497879e+002 1.27858704e+002 - 1.10759407e+002 1.22477974e+002 1.27884888e+002 1.10725746e+002 - 1.22453865e+002 1.27889000e+002 1.10763588e+002 1.22475197e+002 - 1.27964806e+002 1.10756783e+002 1.22480667e+002 1.27994865e+002 - 1.10752922e+002 1.22479355e+002 1.28028488e+002 1.10743706e+002 - 1.22493629e+002 1.28052277e+002 1.10735847e+002 1.22480171e+002 - 1.28068787e+002 1.10731308e+002 1.22488770e+002 1.28085434e+002 - 1.10733101e+002 1.22482193e+002 1.28119278e+002 1.10700623e+002 - 1.22470192e+002 1.28117996e+002 1.10707130e+002 1.22465141e+002 - 1.28139648e+002 1.10686958e+002 1.22461136e+002 1.28143539e+002 - 1.10678490e+002 1.22439209e+002 1.28158401e+002 1.10673492e+002 - 1.22443062e+002 1.28178879e+002 1.10683601e+002 1.22451584e+002 - 1.28217407e+002 1.10691620e+002 1.22475372e+002 1.28246521e+002 - 1.10713249e+002 1.22491196e+002 1.28293320e+002 1.10702316e+002 - 1.22491882e+002 1.28304657e+002 1.10685570e+002 1.22455017e+002 - 1.28316940e+002 1.10703758e+002 1.22482613e+002 1.28357498e+002 - 1.10722252e+002 1.22496193e+002 1.28403839e+002 1.10720490e+002 - 1.22514412e+002 1.28426117e+002 1.10733490e+002 1.22511505e+002 - 1.28448120e+002 1.10738213e+002 1.22524132e+002 1.28462860e+002 - 1.10764435e+002 1.22549507e+002 1.28510422e+002 1.10756805e+002 - 1.22565041e+002 1.28522964e+002 1.10759171e+002 1.22555611e+002 - 1.28532715e+002 1.10713875e+002 1.22531044e+002 1.28501480e+002 - 1.10707314e+002 1.22507492e+002 1.28501099e+002 1.10687485e+002 - 1.22501511e+002 1.28500153e+002 1.10694954e+002 1.22512093e+002 - 1.28528671e+002 1.10698601e+002 1.22524315e+002 1.28544220e+002 - 1.10682739e+002 1.22501335e+002 1.28541138e+002 1.10699600e+002 - 1.22525688e+002 1.28560608e+002 1.10741905e+002 1.22540237e+002 - 1.28602676e+002 1.10722267e+002 1.22540649e+002 1.28588928e+002 - 1.10729858e+002 1.22544731e+002 1.28600983e+002 1.10727898e+002 - 1.22555496e+002 1.28602219e+002 1.10748627e+002 1.22573143e+002 - 1.28636200e+002 1.10731331e+002 1.22554512e+002 1.28611603e+002 - 1.10733665e+002 1.22540291e+002 1.28601959e+002 1.10721527e+002 - 1.22544731e+002 1.28589417e+002 1.10714882e+002 1.22520691e+002 - 1.28569885e+002 1.10712173e+002 1.22521721e+002 1.28559357e+002 - 1.10722160e+002 1.22514313e+002 1.28555145e+002 1.10691315e+002 - 1.22488510e+002 1.28519394e+002 1.10685822e+002 1.22474609e+002 - 1.28508224e+002 1.10694916e+002 1.22496590e+002 1.28512375e+002 - 1.10701942e+002 1.22489220e+002 1.28507172e+002 1.10682137e+002 - 1.22488884e+002 1.28489609e+002 1.10694160e+002 1.22474533e+002 - 1.28482849e+002 1.10672386e+002 1.22458313e+002 1.28445740e+002 - 1.10657639e+002 1.22432159e+002 1.28420395e+002 1.10655960e+002 - 1.22446899e+002 1.28407700e+002 1.10675430e+002 1.22458763e+002 - 1.28419083e+002 1.10666138e+002 1.22459885e+002 1.28404205e+002 - 1.10647545e+002 1.22434921e+002 1.28374084e+002 1.10600037e+002 - 1.22411942e+002 1.28326019e+002 1.10626587e+002 1.22420609e+002 - 1.28324188e+002 1.10638016e+002 1.22435822e+002 1.28312363e+002 - 1.10652641e+002 1.22434219e+002 1.28298859e+002 1.10627350e+002 - 1.22414413e+002 1.28250198e+002 1.10640602e+002 1.22422348e+002 - 1.28245834e+002 1.10620621e+002 1.22407898e+002 1.28203857e+002 - 1.10621483e+002 1.22398094e+002 1.28173630e+002 1.10637924e+002 - 1.22419464e+002 1.28171021e+002 1.10675018e+002 1.22422310e+002 - 1.28181824e+002 1.10657288e+002 1.22419739e+002 1.28143555e+002 - 1.10685425e+002 1.22432976e+002 1.28146713e+002 1.10673317e+002 - 1.22440620e+002 1.28116333e+002 1.10689896e+002 1.22441032e+002 - 1.28109879e+002 1.10679886e+002 1.22439827e+002 1.28075180e+002 - 1.10679886e+002 1.22418999e+002 1.28038208e+002 1.10651367e+002 - 1.22405876e+002 1.27987259e+002 1.10661041e+002 1.22397369e+002 - 1.27962448e+002 1.10671707e+002 1.22412628e+002 1.27940315e+002 - 1.10700882e+002 1.22430290e+002 1.27933762e+002 1.10676346e+002 - 1.22414238e+002 1.27881508e+002 1.10669807e+002 1.22393784e+002 - 1.27842178e+002 1.10661781e+002 1.22393013e+002 1.27808273e+002 - 1.10678131e+002 1.22392174e+002 1.27790817e+002 1.10684036e+002 - 1.22405975e+002 1.27762749e+002 1.10726494e+002 1.22418747e+002 - 1.27760178e+002 1.10743530e+002 1.22446335e+002 1.27736313e+002 - 1.10762688e+002 1.22441650e+002 1.27703995e+002 1.10749802e+002 - 1.22443916e+002 1.27662582e+002 1.10755371e+002 1.22433357e+002 - 1.27631447e+002 1.10788963e+002 1.22464531e+002 1.27615509e+002 - 1.10816879e+002 1.22480743e+002 1.27588951e+002 1.10822296e+002 - 1.22493683e+002 1.27564621e+002 1.10844666e+002 1.22495903e+002 - 1.27547287e+002 1.10851105e+002 1.22513016e+002 1.27529823e+002 - 1.10876846e+002 1.22514885e+002 1.27513092e+002 1.10865959e+002 - 1.22518257e+002 1.27476265e+002 1.10876732e+002 1.22523331e+002 - 1.27457420e+002 1.10880531e+002 1.22528603e+002 1.27426796e+002 - 1.10874275e+002 1.22506905e+002 1.27377602e+002 1.10887848e+002 - 1.22521591e+002 1.27358032e+002 1.10908508e+002 1.22517975e+002 - 1.27327835e+002 1.10917870e+002 1.22534241e+002 1.27303680e+002 - 1.10951492e+002 1.22552040e+002 1.27286537e+002 1.10932762e+002 - 1.22543922e+002 1.27236885e+002 1.10945747e+002 1.22540550e+002 - 1.27215691e+002 1.10971321e+002 1.22563705e+002 1.27193375e+002 - 1.10974243e+002 1.22550392e+002 1.27132561e+002 1.10970497e+002 - 1.22567513e+002 1.27103188e+002 1.10989754e+002 1.22563690e+002 - 1.27083633e+002 1.10962494e+002 1.22538254e+002 1.27021790e+002 - 1.10987350e+002 1.22534332e+002 1.26987495e+002 1.10973984e+002 - 1.22526260e+002 1.26935272e+002 1.10988518e+002 1.22519760e+002 - 1.26903084e+002 1.11002823e+002 1.22540398e+002 1.26876236e+002 - 1.11022224e+002 1.22543358e+002 1.26849037e+002 1.11024078e+002 - 1.22549042e+002 1.26811485e+002 1.11066963e+002 1.22561234e+002 - 1.26795296e+002 1.11063477e+002 1.22558685e+002 1.26743629e+002 - 1.11099609e+002 1.22573174e+002 1.26729141e+002 1.11108971e+002 - 1.22597137e+002 1.26699867e+002 1.11133247e+002 1.22603081e+002 - 1.26680336e+002 1.11141693e+002 1.22610703e+002 1.26633003e+002 - 1.11182541e+002 1.22614319e+002 1.26587372e+002 1.11195198e+002 - 1.22634750e+002 1.26547699e+002 1.11222008e+002 1.22636604e+002 - 1.26528954e+002 1.11226395e+002 1.22645294e+002 1.26490875e+002 - 1.11259552e+002 1.22648529e+002 1.26469009e+002 1.11263733e+002 - 1.22659065e+002 1.26428780e+002 1.11289520e+002 1.22667908e+002 - 1.26403313e+002 1.11288712e+002 1.22671219e+002 1.26359093e+002 - 1.11306007e+002 1.22660103e+002 1.26317268e+002 1.11313240e+002 - 1.22664261e+002 1.26276680e+002 1.11335365e+002 1.22647476e+002 - 1.26232384e+002 1.11341820e+002 1.22659546e+002 1.26194855e+002 - 1.11355446e+002 1.22645027e+002 1.26147453e+002 1.11361595e+002 - 1.22650475e+002 1.26103668e+002 1.11393463e+002 1.22661789e+002 - 1.26088127e+002 1.11439461e+002 1.22701103e+002 1.26076164e+002 - 1.11468521e+002 1.22693535e+002 1.26015495e+002 1.11478165e+002 - 1.22708008e+002 1.25976921e+002 1.11515167e+002 1.22716057e+002 - 1.25962456e+002 1.11556290e+002 1.22755432e+002 1.25959656e+002 - 1.11583939e+002 1.22751274e+002 1.25924789e+002 1.11574860e+002 - 1.22732803e+002 1.25864769e+002 1.11641747e+002 1.22771439e+002 - 1.25866104e+002 1.11697914e+002 1.22819687e+002 1.25864082e+002 - 1.11711723e+002 1.22794472e+002 1.25812653e+002 1.11742157e+002 - 1.22810532e+002 1.25793121e+002 1.11806725e+002 1.22816948e+002 - 1.25773666e+002 1.11836159e+002 1.22831871e+002 1.25745964e+002 - 1.11849838e+002 1.22807106e+002 1.25704544e+002 1.11814690e+002 - 1.22765182e+002 1.25620445e+002 1.11770317e+002 1.22675919e+002 - 1.25522797e+002 1.11689270e+002 1.22584763e+002 1.25384285e+002 - 1.11659584e+002 1.22575882e+002 1.25403992e+002 1.11726974e+002 - 1.22687607e+002 1.25532936e+002 1.11780708e+002 1.22758774e+002 - 1.25640060e+002 1.11786934e+002 1.22796158e+002 1.25693314e+002 - 1.11798859e+002 1.22820419e+002 1.25764389e+002 1.11771156e+002 - 1.22831398e+002 1.25796196e+002 1.11750465e+002 1.22833534e+002 - 1.25841606e+002 1.11723114e+002 1.22836227e+002 1.25864418e+002 - 1.11729156e+002 1.22857658e+002 1.25927765e+002 1.11673607e+002 - 1.22830765e+002 1.25929749e+002 1.11653648e+002 1.22813202e+002 - 1.25973160e+002 1.11630623e+002 1.22816826e+002 1.26012688e+002 - 1.11625366e+002 1.22818474e+002 1.26058777e+002 1.11616882e+002 - 1.22836205e+002 1.26098984e+002 1.11587624e+002 1.22815147e+002 - 1.26121826e+002 1.11542725e+002 1.22804070e+002 1.26137474e+002 - 1.11519699e+002 1.22805420e+002 1.26204994e+002 1.11458679e+002 - 1.22784355e+002 1.26206406e+002 1.11447304e+002 1.22772324e+002 - 1.26236771e+002 1.11434860e+002 1.22777481e+002 1.26269165e+002 - 1.11418900e+002 1.22756477e+002 1.26307495e+002 1.11347321e+002 - 1.22717323e+002 1.26297112e+002 1.11290672e+002 1.22670555e+002 - 1.26307693e+002 1.11253792e+002 1.22660355e+002 1.26325516e+002 - 1.11235031e+002 1.22646629e+002 1.26357857e+002 1.11209244e+002 - 1.22639488e+002 1.26383369e+002 1.11199913e+002 1.22629707e+002 - 1.26429459e+002 1.11164307e+002 1.22617508e+002 1.26448013e+002 - 1.11165886e+002 1.22617882e+002 1.26495132e+002 1.11144768e+002 - 1.22616219e+002 1.26517952e+002 1.11154854e+002 1.22623123e+002 - 1.26567345e+002 1.11145180e+002 1.22635254e+002 1.26603310e+002 - 1.11116478e+002 1.22609764e+002 1.26646469e+002 1.11041138e+002 - 1.22560486e+002 1.26631233e+002 1.11030067e+002 1.22547417e+002 - 1.26651901e+002 1.11011322e+002 1.22538887e+002 1.26668327e+002 - 1.10996391e+002 1.22514946e+002 1.26704544e+002 1.10965668e+002 - 1.22509132e+002 1.26727180e+002 1.10952026e+002 1.22502220e+002 - 1.26779060e+002 1.10942436e+002 1.22507233e+002 1.26810829e+002 - 1.10946495e+002 1.22520493e+002 1.26869255e+002 1.10927414e+002 - 1.22513748e+002 1.26894218e+002 1.10911842e+002 1.22486366e+002 - 1.26924713e+002 1.10870605e+002 1.22459877e+002 1.26934036e+002 - 1.10871300e+002 1.22473915e+002 1.26987480e+002 1.10827034e+002 - 1.22450546e+002 1.26986725e+002 1.10821609e+002 1.22440620e+002 - 1.27017029e+002 1.10824196e+002 1.22453270e+002 1.27057320e+002 - 1.10831078e+002 1.22463135e+002 1.27123726e+002 1.10744270e+002 - 1.22400208e+002 1.27093124e+002 1.10739769e+002 1.22382866e+002 - 1.27110870e+002 1.10727119e+002 1.22383621e+002 1.27132904e+002 - 1.10736092e+002 1.22383118e+002 1.27180542e+002 1.10722954e+002 - 1.22386917e+002 1.27214539e+002 1.10709785e+002 1.22381523e+002 - 1.27251984e+002 1.10715347e+002 1.22399742e+002 1.27295403e+002 - 1.10720428e+002 1.22401306e+002 1.27337250e+002 1.10708099e+002 - 1.22401230e+002 1.27360954e+002 1.10712860e+002 1.22392532e+002 - 1.27411095e+002 1.10701767e+002 1.22399017e+002 1.27444244e+002 - 1.10725533e+002 1.22417198e+002 1.27504128e+002 1.10698112e+002 - 1.22413551e+002 1.27512421e+002 1.10706551e+002 1.22418777e+002 - 1.27553070e+002 1.10700943e+002 1.22417526e+002 1.27578758e+002 - 1.10684647e+002 1.22395073e+002 1.27611389e+002 1.10652252e+002 - 1.22389160e+002 1.27622444e+002 1.10656975e+002 1.22379936e+002 - 1.27653999e+002 1.10641312e+002 1.22377434e+002 1.27669296e+002 - 1.10624504e+002 1.22350349e+002 1.27686493e+002 1.10610802e+002 - 1.22350311e+002 1.27718071e+002 1.10617371e+002 1.22359764e+002 - 1.27766563e+002 1.10621803e+002 1.22380371e+002 1.27806511e+002 - 1.10623466e+002 1.22371994e+002 1.27843193e+002 1.10603119e+002 - 1.22359268e+002 1.27857613e+002 1.10630661e+002 1.22371246e+002 - 1.27923691e+002 1.10605232e+002 1.22358055e+002 1.27937065e+002 - 1.10595230e+002 1.22347565e+002 1.27962997e+002 1.10577194e+002 - 1.22354149e+002 1.27973213e+002 1.10580032e+002 1.22355957e+002 - 1.28007462e+002 1.10567139e+002 1.22352310e+002 1.28016235e+002 - 1.10563156e+002 1.22338860e+002 1.28038788e+002 1.10530960e+002 - 1.22334290e+002 1.28039429e+002 1.10552170e+002 1.22338020e+002 - 1.28077637e+002 1.10555367e+002 1.22353287e+002 1.28104996e+002 - 1.10577148e+002 1.22363464e+002 1.28149170e+002 1.10545052e+002 - 1.22338051e+002 1.28139633e+002 1.10535255e+002 1.22329979e+002 - 1.28161514e+002 1.10542938e+002 1.22352859e+002 1.28187820e+002 - 1.10553169e+002 1.22355843e+002 1.28219254e+002 1.10549271e+002 - 1.22362000e+002 1.28245697e+002 1.10543480e+002 1.22338806e+002 - 1.28263428e+002 1.10552620e+002 1.22359093e+002 1.28297333e+002 - 1.10551346e+002 1.22349922e+002 1.28324539e+002 1.10544914e+002 - 1.22360466e+002 1.28331955e+002 1.10570404e+002 1.22375801e+002 - 1.28365601e+002 1.10577736e+002 1.22391571e+002 1.28383255e+002 - 1.10615776e+002 1.22425407e+002 1.28447556e+002 1.10594978e+002 - 1.22430092e+002 1.28452316e+002 1.10587547e+002 1.22403877e+002 - 1.28450882e+002 1.10556892e+002 1.22394493e+002 1.28435471e+002 - 1.10554176e+002 1.22383179e+002 1.28443375e+002 1.10530327e+002 - 1.22373703e+002 1.28436829e+002 1.10539680e+002 1.22375366e+002 - 1.28467896e+002 1.10534744e+002 1.22386978e+002 1.28478729e+002 - 1.10539642e+002 1.22384995e+002 1.28490417e+002 1.10544113e+002 - 1.22396507e+002 1.28508667e+002 1.10590874e+002 1.22419624e+002 - 1.28551666e+002 1.10563507e+002 1.22409592e+002 1.28533234e+002 - 1.10569016e+002 1.22407021e+002 1.28534805e+002 1.10562469e+002 - 1.22420921e+002 1.28534668e+002 1.10572212e+002 1.22419174e+002 - 1.28553192e+002 1.10578369e+002 1.22425346e+002 1.28547089e+002 - 1.10580383e+002 1.22419647e+002 1.28548325e+002 1.10555305e+002 - 1.22413391e+002 1.28526138e+002 1.10561874e+002 1.22396622e+002 - 1.28515625e+002 1.10564995e+002 1.22401443e+002 1.28506531e+002 - 1.10573074e+002 1.22392120e+002 1.28498245e+002 1.10552147e+002 - 1.22377174e+002 1.28475937e+002 1.10552521e+002 1.22372345e+002 - 1.28470520e+002 1.10558372e+002 1.22390625e+002 1.28467529e+002 - 1.10564705e+002 1.22385139e+002 1.28470444e+002 1.10552383e+002 - 1.22383347e+002 1.28449326e+002 1.10553108e+002 1.22361488e+002 - 1.28434998e+002 1.10529030e+002 1.22341255e+002 1.28398758e+002 - 1.10509193e+002 1.22317253e+002 1.28365921e+002 1.10503799e+002 - 1.22326332e+002 1.28358368e+002 1.10496407e+002 1.22316605e+002 - 1.28344864e+002 1.10514488e+002 1.22340668e+002 1.28350906e+002 - 1.10492874e+002 1.22312508e+002 1.28313705e+002 1.10460175e+002 - 1.22301071e+002 1.28287628e+002 1.10477097e+002 1.22298599e+002 - 1.28274445e+002 1.10465225e+002 1.22293602e+002 1.28240677e+002 - 1.10485565e+002 1.22291679e+002 1.28229935e+002 1.10465714e+002 - 1.22283386e+002 1.28193451e+002 1.10460388e+002 1.22268661e+002 - 1.28168945e+002 1.10472725e+002 1.22291840e+002 1.28156677e+002 - 1.10490112e+002 1.22294579e+002 1.28145233e+002 1.10498978e+002 - 1.22313820e+002 1.28138504e+002 1.10520447e+002 1.22305206e+002 - 1.28132385e+002 1.10500542e+002 1.22296585e+002 1.28091751e+002 - 1.10524666e+002 1.22300804e+002 1.28089249e+002 1.10512878e+002 - 1.22312210e+002 1.28061707e+002 1.10529373e+002 1.22312935e+002 - 1.28056564e+002 1.10525108e+002 1.22310272e+002 1.28016983e+002 - 1.10532303e+002 1.22304657e+002 1.27985939e+002 1.10500603e+002 - 1.22285133e+002 1.27930412e+002 1.10507408e+002 1.22269157e+002 - 1.27899475e+002 1.10531761e+002 1.22308647e+002 1.27899437e+002 - 1.10552040e+002 1.22315331e+002 1.27882645e+002 1.10516449e+002 - 1.22291405e+002 1.27820961e+002 1.10508095e+002 1.22266350e+002 - 1.27780022e+002 1.10493835e+002 1.22263016e+002 1.27733269e+002 - 1.10506638e+002 1.22261345e+002 1.27712883e+002 1.10515488e+002 - 1.22270744e+002 1.27693588e+002 1.10572029e+002 1.22304245e+002 - 1.27701317e+002 1.10589249e+002 1.22333076e+002 1.27686157e+002 - 1.10613197e+002 1.22332764e+002 1.27653542e+002 1.10584480e+002 - 1.22314407e+002 1.27589333e+002 1.10601151e+002 1.22313507e+002 - 1.27570427e+002 1.10632759e+002 1.22343269e+002 1.27555038e+002 - 1.10650726e+002 1.22341820e+002 1.27516838e+002 1.10657784e+002 - 1.22356430e+002 1.27490013e+002 1.10674561e+002 1.22351898e+002 - 1.27470222e+002 1.10682487e+002 1.22376816e+002 1.27454819e+002 - 1.10707764e+002 1.22377548e+002 1.27436424e+002 1.10705788e+002 - 1.22390800e+002 1.27408363e+002 1.10728096e+002 1.22404312e+002 - 1.27401566e+002 1.10718552e+002 1.22403152e+002 1.27360878e+002 - 1.10724197e+002 1.22395149e+002 1.27327713e+002 1.10716667e+002 - 1.22389687e+002 1.27289871e+002 1.10752525e+002 1.22394569e+002 - 1.27266541e+002 1.10778709e+002 1.22427155e+002 1.27253975e+002 - 1.10796661e+002 1.22423744e+002 1.27230972e+002 1.10786766e+002 - 1.22424980e+002 1.27180061e+002 1.10812645e+002 1.22430847e+002 - 1.27168953e+002 1.10847099e+002 1.22474632e+002 1.27159637e+002 - 1.10858025e+002 1.22466766e+002 1.27107361e+002 1.10865860e+002 - 1.22487473e+002 1.27084335e+002 1.10879456e+002 1.22479767e+002 - 1.27058067e+002 1.10852554e+002 1.22454803e+002 1.26999931e+002 - 1.10865509e+002 1.22443176e+002 1.26952438e+002 1.10853745e+002 - 1.22433014e+002 1.26898903e+002 1.10874741e+002 1.22436043e+002 - 1.26871193e+002 1.10873886e+002 1.22440941e+002 1.26833824e+002 - 1.10893456e+002 1.22440552e+002 1.26801300e+002 1.10897156e+002 - 1.22451210e+002 1.26772194e+002 1.10934357e+002 1.22457649e+002 - 1.26748680e+002 1.10931534e+002 1.22454803e+002 1.26702316e+002 - 1.10971825e+002 1.22482613e+002 1.26684624e+002 1.10978317e+002 - 1.22493378e+002 1.26652740e+002 1.11007416e+002 1.22514786e+002 - 1.26646935e+002 1.11033295e+002 1.22531700e+002 1.26612625e+002 - 1.11052490e+002 1.22519356e+002 1.26539894e+002 1.11052925e+002 - 1.22522171e+002 1.26493073e+002 1.11092224e+002 1.22538391e+002 - 1.26483971e+002 1.11092560e+002 1.22537193e+002 1.26441940e+002 - 1.11128792e+002 1.22545486e+002 1.26423164e+002 1.11146362e+002 - 1.22572449e+002 1.26400696e+002 1.11161247e+002 1.22568176e+002 - 1.26356636e+002 1.11173904e+002 1.22583252e+002 1.26323517e+002 - 1.11179047e+002 1.22563141e+002 1.26272110e+002 1.11178024e+002 - 1.22563782e+002 1.26226089e+002 1.11202164e+002 1.22548195e+002 - 1.26177681e+002 1.11215729e+002 1.22560020e+002 1.26143379e+002 - 1.11240578e+002 1.22560318e+002 1.26107109e+002 1.11234833e+002 - 1.22558197e+002 1.26058983e+002 1.11265594e+002 1.22564766e+002 - 1.26034889e+002 1.11319496e+002 1.22610764e+002 1.26028099e+002 - 1.11366562e+002 1.22627609e+002 1.25994591e+002 1.11379349e+002 - 1.22642761e+002 1.25954224e+002 1.11403839e+002 1.22637016e+002 - 1.25926888e+002 1.11428207e+002 1.22655945e+002 1.25909882e+002 - 1.11458801e+002 1.22650276e+002 1.25875725e+002 1.11465698e+002 - 1.22658066e+002 1.25829742e+002 1.11531677e+002 1.22693336e+002 - 1.25829529e+002 1.11586327e+002 1.22744850e+002 1.25834488e+002 - 1.11595993e+002 1.22709984e+002 1.25773903e+002 1.11632523e+002 - 1.22733398e+002 1.25758965e+002 1.11696976e+002 1.22744965e+002 - 1.25741882e+002 1.11738846e+002 1.22764809e+002 1.25723526e+002 - 1.11750626e+002 1.22737373e+002 1.25675316e+002 1.11722610e+002 - 1.22703568e+002 1.25598213e+002 1.11676979e+002 1.22618530e+002 - 1.25497269e+002 1.11588348e+002 1.22509605e+002 1.25351051e+002 - 1.11597168e+002 1.22542114e+002 1.25421387e+002 1.11666550e+002 - 1.22658829e+002 1.25549080e+002 1.11715767e+002 1.22723106e+002 - 1.25648132e+002 1.11704254e+002 1.22743019e+002 1.25689194e+002 - 1.11705978e+002 1.22760048e+002 1.25745667e+002 1.11681328e+002 - 1.22768921e+002 1.25782486e+002 1.11653076e+002 1.22765823e+002 - 1.25825157e+002 1.11632446e+002 1.22774734e+002 1.25846260e+002 - 1.11630623e+002 1.22790749e+002 1.25907440e+002 1.11593758e+002 - 1.22778419e+002 1.25927673e+002 1.11586060e+002 1.22771080e+002 - 1.25986549e+002 1.11557640e+002 1.22766380e+002 1.26014656e+002 - 1.11531487e+002 1.22754982e+002 1.26043396e+002 1.11502487e+002 - 1.22751411e+002 1.26065102e+002 1.11467873e+002 1.22728653e+002 - 1.26086746e+002 1.11444908e+002 1.22734764e+002 1.26122581e+002 - 1.11421799e+002 1.22735260e+002 1.26189697e+002 1.11357872e+002 - 1.22709999e+002 1.26183701e+002 1.11346054e+002 1.22694283e+002 - 1.26211739e+002 1.11332596e+002 1.22702751e+002 1.26250397e+002 - 1.11313560e+002 1.22686256e+002 1.26289711e+002 1.11249283e+002 - 1.22644592e+002 1.26281540e+002 1.11212402e+002 1.22622665e+002 - 1.26314201e+002 1.11178894e+002 1.22617355e+002 1.26330383e+002 - 1.11139519e+002 1.22581375e+002 1.26346931e+002 1.11102608e+002 - 1.22569847e+002 1.26363930e+002 1.11089729e+002 1.22545830e+002 - 1.26407585e+002 1.11074776e+002 1.22551292e+002 1.26438110e+002 - 1.11055359e+002 1.22538567e+002 1.26474754e+002 1.11027283e+002 - 1.22533844e+002 1.26488365e+002 1.11028511e+002 1.22524132e+002 - 1.26529755e+002 1.11022240e+002 1.22538528e+002 1.26567978e+002 - 1.10992142e+002 1.22516357e+002 1.26616760e+002 1.10930573e+002 - 1.22487663e+002 1.26607132e+002 1.10932182e+002 1.22477699e+002 - 1.26641365e+002 1.10894066e+002 1.22456917e+002 1.26649719e+002 - 1.10866310e+002 1.22418251e+002 1.26668121e+002 1.10841232e+002 - 1.22417450e+002 1.26701355e+002 1.10844337e+002 1.22419464e+002 - 1.26760376e+002 1.10834663e+002 1.22427528e+002 1.26792389e+002 - 1.10842575e+002 1.22448387e+002 1.26857887e+002 1.10825096e+002 - 1.22447884e+002 1.26888489e+002 1.10833290e+002 1.22433464e+002 - 1.26940964e+002 1.10784546e+002 1.22406670e+002 1.26939987e+002 - 1.10756386e+002 1.22380920e+002 1.26963806e+002 1.10707291e+002 - 1.22358620e+002 1.26959145e+002 1.10704170e+002 1.22349472e+002 - 1.26992668e+002 1.10711464e+002 1.22371109e+002 1.27044304e+002 - 1.10706078e+002 1.22371330e+002 1.27097397e+002 1.10624252e+002 - 1.22311699e+002 1.27064323e+002 1.10601196e+002 1.22279488e+002 - 1.27076050e+002 1.10600502e+002 1.22289116e+002 1.27104118e+002 - 1.10615150e+002 1.22296387e+002 1.27163963e+002 1.10606285e+002 - 1.22308159e+002 1.27198303e+002 1.10595978e+002 1.22296539e+002 - 1.27231758e+002 1.10592148e+002 1.22306976e+002 1.27264542e+002 - 1.10604843e+002 1.22312057e+002 1.27314301e+002 1.10574326e+002 - 1.22301643e+002 1.27326523e+002 1.10578194e+002 1.22288857e+002 - 1.27374458e+002 1.10583862e+002 1.22305626e+002 1.27418442e+002 - 1.10583755e+002 1.22308235e+002 1.27468735e+002 1.10557564e+002 - 1.22306824e+002 1.27471626e+002 1.10571854e+002 1.22309227e+002 - 1.27524643e+002 1.10560287e+002 1.22312187e+002 1.27545738e+002 - 1.10545876e+002 1.22292564e+002 1.27586151e+002 1.10506096e+002 - 1.22271637e+002 1.27573761e+002 1.10503822e+002 1.22253738e+002 - 1.27598824e+002 1.10490822e+002 1.22255737e+002 1.27616997e+002 - 1.10484253e+002 1.22235558e+002 1.27646233e+002 1.10490097e+002 - 1.22255051e+002 1.27691040e+002 1.10487976e+002 1.22251137e+002 - 1.27734787e+002 1.10496445e+002 1.22275505e+002 1.27778275e+002 - 1.10497696e+002 1.22269562e+002 1.27807747e+002 1.10477325e+002 - 1.22263252e+002 1.27827904e+002 1.10507973e+002 1.22270607e+002 - 1.27890648e+002 1.10507172e+002 1.22279991e+002 1.27930801e+002 - 1.10478508e+002 1.22256599e+002 1.27936592e+002 1.10446976e+002 - 1.22249077e+002 1.27934822e+002 1.10440048e+002 1.22237076e+002 - 1.27956673e+002 1.10439873e+002 1.22247978e+002 1.27978851e+002 - 1.10441010e+002 1.22244820e+002 1.28017487e+002 1.10405624e+002 - 1.22235390e+002 1.28011932e+002 1.10418655e+002 1.22231247e+002 - 1.28046692e+002 1.10429291e+002 1.22258171e+002 1.28080704e+002 - 1.10448761e+002 1.22258484e+002 1.28124329e+002 1.10427116e+002 - 1.22247467e+002 1.28126053e+002 1.10414696e+002 1.22234390e+002 - 1.28136780e+002 1.10410049e+002 1.22249313e+002 1.28155624e+002 - 1.10433960e+002 1.22261742e+002 1.28198090e+002 1.10400604e+002 - 1.22247643e+002 1.28199814e+002 1.10433037e+002 1.22254883e+002 - 1.28256271e+002 1.10434311e+002 1.22264877e+002 1.28282608e+002 - 1.10426498e+002 1.22256264e+002 1.28300018e+002 1.10403976e+002 - 1.22247726e+002 1.28293579e+002 1.10425247e+002 1.22257172e+002 - 1.28322403e+002 1.10439072e+002 1.22283882e+002 1.28351303e+002 - 1.10485214e+002 1.22320564e+002 1.28414124e+002 1.10448898e+002 - 1.22309326e+002 1.28399979e+002 1.10448914e+002 1.22294365e+002 - 1.28411819e+002 1.10431419e+002 1.22289383e+002 1.28407440e+002 - 1.10424637e+002 1.22272209e+002 1.28417648e+002 1.10393761e+002 - 1.22260345e+002 1.28404831e+002 1.10391365e+002 1.22257607e+002 - 1.28428970e+002 1.10397095e+002 1.22268974e+002 1.28444885e+002 - 1.10391937e+002 1.22263344e+002 1.28451553e+002 1.10391251e+002 - 1.22276794e+002 1.28465302e+002 1.10432755e+002 1.22285095e+002 - 1.28501587e+002 1.10415283e+002 1.22287956e+002 1.28489609e+002 - 1.10425110e+002 1.22295296e+002 1.28503479e+002 1.10414772e+002 - 1.22299385e+002 1.28496078e+002 1.10434875e+002 1.22304367e+002 - 1.28516754e+002 1.10436752e+002 1.22316444e+002 1.28516724e+002 - 1.10438263e+002 1.22306641e+002 1.28512589e+002 1.10397598e+002 - 1.22283485e+002 1.28475464e+002 1.10417755e+002 1.22281837e+002 - 1.28471466e+002 1.10412636e+002 1.22281227e+002 1.28460587e+002 - 1.10435036e+002 1.22285118e+002 1.28475296e+002 1.10420837e+002 - 1.22276138e+002 1.28450500e+002 1.10426170e+002 1.22278137e+002 - 1.28446930e+002 1.10430290e+002 1.22288055e+002 1.28440582e+002 - 1.10427467e+002 1.22278687e+002 1.28435089e+002 1.10406166e+002 - 1.22272171e+002 1.28412140e+002 1.10416077e+002 1.22255188e+002 - 1.28402298e+002 1.10404701e+002 1.22249489e+002 1.28376511e+002 - 1.10400642e+002 1.22244293e+002 1.28368469e+002 1.10384918e+002 - 1.22241821e+002 1.28351349e+002 1.10377365e+002 1.22222580e+002 - 1.28336182e+002 1.10377502e+002 1.22236580e+002 1.28324707e+002 - 1.10366112e+002 1.22211815e+002 1.28296967e+002 1.10336052e+002 - 1.22200996e+002 1.28265686e+002 1.10352852e+002 1.22195816e+002 - 1.28257065e+002 1.10346245e+002 1.22203468e+002 1.28234604e+002 - 1.10341171e+002 1.22165047e+002 1.28195587e+002 1.10332405e+002 - 1.22168343e+002 1.28163483e+002 1.10332840e+002 1.22167862e+002 - 1.28150558e+002 1.10335732e+002 1.22178757e+002 1.28124329e+002 - 1.10345871e+002 1.22180267e+002 1.28113297e+002 1.10357262e+002 - 1.22200508e+002 1.28110641e+002 1.10380661e+002 1.22194664e+002 - 1.28110077e+002 1.10375931e+002 1.22201111e+002 1.28082153e+002 - 1.10400948e+002 1.22218132e+002 1.28076675e+002 1.10398781e+002 - 1.22230446e+002 1.28055817e+002 1.10415833e+002 1.22233406e+002 - 1.28049438e+002 1.10401703e+002 1.22219421e+002 1.28006622e+002 - 1.10402351e+002 1.22196152e+002 1.27956963e+002 1.10366661e+002 - 1.22179878e+002 1.27897079e+002 1.10377724e+002 1.22169151e+002 - 1.27869408e+002 1.10401566e+002 1.22206871e+002 1.27870506e+002 - 1.10418365e+002 1.22209251e+002 1.27852966e+002 1.10386635e+002 - 1.22190529e+002 1.27791122e+002 1.10375916e+002 1.22169914e+002 - 1.27751923e+002 1.10383972e+002 1.22180283e+002 1.27722466e+002 - 1.10391953e+002 1.22176620e+002 1.27697876e+002 1.10399559e+002 - 1.22190979e+002 1.27680824e+002 1.10442131e+002 1.22205719e+002 - 1.27674736e+002 1.10457939e+002 1.22226608e+002 1.27654884e+002 - 1.10465759e+002 1.22222687e+002 1.27614326e+002 1.10446999e+002 - 1.22211624e+002 1.27554939e+002 1.10476898e+002 1.22220146e+002 - 1.27556763e+002 1.10491508e+002 1.22233368e+002 1.27522682e+002 - 1.10520050e+002 1.22241112e+002 1.27491989e+002 1.10528206e+002 - 1.22264877e+002 1.27467033e+002 1.10550468e+002 1.22259430e+002 - 1.27449791e+002 1.10542740e+002 1.22263367e+002 1.27419861e+002 - 1.10558647e+002 1.22258156e+002 1.27393150e+002 1.10540268e+002 - 1.22256287e+002 1.27348442e+002 1.10588722e+002 1.22294685e+002 - 1.27359482e+002 1.10600410e+002 1.22309883e+002 1.27336975e+002 - 1.10585251e+002 1.22282860e+002 1.27281700e+002 1.10571564e+002 - 1.22271759e+002 1.27236717e+002 1.10618248e+002 1.22287041e+002 - 1.27237717e+002 1.10658585e+002 1.22327896e+002 1.27231209e+002 - 1.10673996e+002 1.22334076e+002 1.27199425e+002 1.10662903e+002 - 1.22336937e+002 1.27156715e+002 1.10696602e+002 1.22342468e+002 - 1.27147102e+002 1.10717514e+002 1.22369270e+002 1.27125946e+002 - 1.10734901e+002 1.22369118e+002 1.27082687e+002 1.10736847e+002 - 1.22388443e+002 1.27046631e+002 1.10749001e+002 1.22376846e+002 - 1.27019264e+002 1.10740257e+002 1.22371277e+002 1.26970047e+002 - 1.10752357e+002 1.22354012e+002 1.26928963e+002 1.10741272e+002 - 1.22347702e+002 1.26883064e+002 1.10748276e+002 1.22340843e+002 - 1.26846252e+002 1.10754723e+002 1.22351807e+002 1.26808945e+002 - 1.10760429e+002 1.22339874e+002 1.26764549e+002 1.10768394e+002 - 1.22356483e+002 1.26735962e+002 1.10800903e+002 1.22353737e+002 - 1.26707817e+002 1.10834290e+002 1.22387703e+002 1.26689308e+002 - 1.10878517e+002 1.22415726e+002 1.26681335e+002 1.10877174e+002 - 1.22424995e+002 1.26637802e+002 1.10888687e+002 1.22422386e+002 - 1.26614334e+002 1.10934593e+002 1.22464005e+002 1.26602097e+002 - 1.10945122e+002 1.22440704e+002 1.26529915e+002 1.10941925e+002 - 1.22443428e+002 1.26475204e+002 1.10985695e+002 1.22463081e+002 - 1.26468834e+002 1.10989868e+002 1.22468964e+002 1.26435539e+002 - 1.11018280e+002 1.22469887e+002 1.26405586e+002 1.11037628e+002 - 1.22489120e+002 1.26378265e+002 1.11068634e+002 1.22506004e+002 - 1.26351166e+002 1.11077126e+002 1.22514648e+002 1.26313095e+002 - 1.11075790e+002 1.22493607e+002 1.26253517e+002 1.11080353e+002 - 1.22493431e+002 1.26210503e+002 1.11116089e+002 1.22487976e+002 - 1.26174789e+002 1.11116127e+002 1.22487236e+002 1.26123535e+002 - 1.11153381e+002 1.22500038e+002 1.26099655e+002 1.11161316e+002 - 1.22513924e+002 1.26062286e+002 1.11195915e+002 1.22521767e+002 - 1.26043671e+002 1.11225731e+002 1.22545494e+002 1.26017296e+002 - 1.11282112e+002 1.22574043e+002 1.25990341e+002 1.11299500e+002 - 1.22597038e+002 1.25957375e+002 1.11332092e+002 1.22591064e+002 - 1.25931374e+002 1.11353203e+002 1.22615692e+002 1.25912735e+002 - 1.11404732e+002 1.22623398e+002 1.25900352e+002 1.11414543e+002 - 1.22633904e+002 1.25857353e+002 1.11471184e+002 1.22662666e+002 - 1.25850121e+002 1.11532402e+002 1.22711479e+002 1.25852753e+002 - 1.11528381e+002 1.22673431e+002 1.25785721e+002 1.11554420e+002 - 1.22688538e+002 1.25761154e+002 1.11621307e+002 1.22693764e+002 - 1.25744240e+002 1.11650566e+002 1.22703262e+002 1.25715195e+002 - 1.11677917e+002 1.22692360e+002 1.25676590e+002 1.11655586e+002 - 1.22671982e+002 1.25610054e+002 1.11624054e+002 1.22586769e+002 - 1.25512894e+002 1.11526054e+002 1.22477608e+002 1.25364899e+002 - 1.11484146e+002 1.22465057e+002 1.25404655e+002 1.11566391e+002 - 1.22592819e+002 1.25549522e+002 1.11617256e+002 1.22661469e+002 - 1.25653000e+002 1.11607216e+002 1.22679924e+002 1.25691475e+002 - 1.11589157e+002 1.22677475e+002 1.25732132e+002 1.11557686e+002 - 1.22682243e+002 1.25760262e+002 1.11528839e+002 1.22675537e+002 - 1.25795845e+002 1.11498642e+002 1.22673653e+002 1.25820320e+002 - 1.11514107e+002 1.22700531e+002 1.25893608e+002 1.11476517e+002 - 1.22698509e+002 1.25913635e+002 1.11469398e+002 1.22688087e+002 - 1.25969040e+002 1.11452034e+002 1.22691940e+002 1.26009697e+002 - 1.11406242e+002 1.22666626e+002 1.26027100e+002 1.11362015e+002 - 1.22649986e+002 1.26039345e+002 1.11341499e+002 1.22644554e+002 - 1.26068825e+002 1.11316734e+002 1.22642273e+002 1.26098183e+002 - 1.11269699e+002 1.22618530e+002 1.26140945e+002 1.11207756e+002 - 1.22600418e+002 1.26149597e+002 1.11213287e+002 1.22599487e+002 - 1.26193420e+002 1.11184639e+002 1.22593727e+002 1.26215477e+002 - 1.11155518e+002 1.22563004e+002 1.26239975e+002 1.11110146e+002 - 1.22542603e+002 1.26248871e+002 1.11084854e+002 1.22534393e+002 - 1.26291504e+002 1.11046432e+002 1.22516525e+002 1.26313187e+002 - 1.11030891e+002 1.22512291e+002 1.26350487e+002 1.10993629e+002 - 1.22494881e+002 1.26362465e+002 1.10968964e+002 1.22462585e+002 - 1.26399994e+002 1.10946945e+002 1.22459114e+002 1.26421783e+002 - 1.10918594e+002 1.22442528e+002 1.26451469e+002 1.10893234e+002 - 1.22434113e+002 1.26461586e+002 1.10886864e+002 1.22426018e+002 - 1.26503777e+002 1.10884056e+002 1.22437180e+002 1.26547562e+002 - 1.10848885e+002 1.22409645e+002 1.26581413e+002 1.10787994e+002 - 1.22379395e+002 1.26584412e+002 1.10783966e+002 1.22363678e+002 - 1.26609665e+002 1.10748230e+002 1.22347038e+002 1.26619171e+002 - 1.10709122e+002 1.22299545e+002 1.26637543e+002 1.10679825e+002 - 1.22288010e+002 1.26660767e+002 1.10696312e+002 1.22307129e+002 - 1.26734955e+002 1.10686646e+002 1.22318466e+002 1.26769958e+002 - 1.10676567e+002 1.22314072e+002 1.26810074e+002 1.10672096e+002 - 1.22326683e+002 1.26858154e+002 1.10675629e+002 1.22313507e+002 - 1.26909142e+002 1.10642365e+002 1.22297012e+002 1.26918297e+002 - 1.10624237e+002 1.22290604e+002 1.26951767e+002 1.10565697e+002 - 1.22253349e+002 1.26939865e+002 1.10559311e+002 1.22242508e+002 - 1.26974121e+002 1.10560059e+002 1.22257095e+002 1.27011101e+002 - 1.10535095e+002 1.22238426e+002 1.27048889e+002 1.10461441e+002 - 1.22187248e+002 1.27031334e+002 1.10453369e+002 1.22170578e+002 - 1.27047806e+002 1.10444542e+002 1.22172249e+002 1.27080864e+002 - 1.10470444e+002 1.22191254e+002 1.27149376e+002 1.10480919e+002 - 1.22219505e+002 1.27199417e+002 1.10465599e+002 1.22202682e+002 - 1.27229774e+002 1.10453407e+002 1.22203209e+002 1.27251419e+002 - 1.10461716e+002 1.22210602e+002 1.27297852e+002 1.10406715e+002 - 1.22168152e+002 1.27284416e+002 1.10418304e+002 1.22158051e+002 - 1.27338104e+002 1.10414703e+002 1.22167290e+002 1.27377930e+002 - 1.10412445e+002 1.22171684e+002 1.27419289e+002 1.10411133e+002 - 1.22191483e+002 1.27453835e+002 1.10426132e+002 1.22198212e+002 - 1.27507645e+002 1.10414566e+002 1.22196960e+002 1.27522408e+002 - 1.10399948e+002 1.22174850e+002 1.27559853e+002 1.10350304e+002 - 1.22147835e+002 1.27554466e+002 1.10348801e+002 1.22129997e+002 - 1.27570930e+002 1.10332443e+002 1.22124702e+002 1.27585342e+002 - 1.10337364e+002 1.22118248e+002 1.27628647e+002 1.10351936e+002 - 1.22144272e+002 1.27677216e+002 1.10339272e+002 1.22135010e+002 - 1.27704453e+002 1.10342911e+002 1.22148033e+002 1.27742508e+002 - 1.10355034e+002 1.22152107e+002 1.27788269e+002 1.10326050e+002 - 1.22136253e+002 1.27795761e+002 1.10341049e+002 1.22135773e+002 - 1.27847572e+002 1.10334084e+002 1.22138092e+002 1.27877373e+002 - 1.10298660e+002 1.22103783e+002 1.27879410e+002 1.10286385e+002 - 1.22121155e+002 1.27898018e+002 1.10273209e+002 1.22100479e+002 - 1.27912590e+002 1.10280838e+002 1.22121132e+002 1.27943199e+002 - 1.10280067e+002 1.22115891e+002 1.27982628e+002 1.10241386e+002 - 1.22105247e+002 1.27980278e+002 1.10254768e+002 1.22102798e+002 - 1.28014511e+002 1.10251595e+002 1.22111015e+002 1.28036652e+002 - 1.10280281e+002 1.22126564e+002 1.28084213e+002 1.10256836e+002 - 1.22114342e+002 1.28084915e+002 1.10245773e+002 1.22103371e+002 - 1.28100601e+002 1.10254379e+002 1.22126282e+002 1.28127686e+002 - 1.10266266e+002 1.22133682e+002 1.28168060e+002 1.10241440e+002 - 1.22120735e+002 1.28164673e+002 1.10266830e+002 1.22123322e+002 - 1.28220016e+002 1.10285515e+002 1.22156303e+002 1.28267670e+002 - 1.10307930e+002 1.22170029e+002 1.28309036e+002 1.10282814e+002 - 1.22160095e+002 1.28301025e+002 1.10286720e+002 1.22149208e+002 - 1.28318848e+002 1.10301575e+002 1.22175606e+002 1.28342590e+002 - 1.10326439e+002 1.22195351e+002 1.28379883e+002 1.10292877e+002 - 1.22182251e+002 1.28376343e+002 1.10292816e+002 1.22166893e+002 - 1.28384766e+002 1.10284325e+002 1.22177704e+002 1.28393524e+002 - 1.10266151e+002 1.22142815e+002 1.28392761e+002 1.10254730e+002 - 1.22148170e+002 1.28398529e+002 1.10255424e+002 1.22150322e+002 - 1.28419800e+002 1.10225868e+002 1.22132164e+002 1.28408966e+002 - 1.10218170e+002 1.22117775e+002 1.28407639e+002 1.10218246e+002 - 1.22135735e+002 1.28425766e+002 1.10245407e+002 1.22135994e+002 - 1.28455872e+002 1.10252930e+002 1.22155205e+002 1.28466492e+002 - 1.10250130e+002 1.22148636e+002 1.28468719e+002 1.10240692e+002 - 1.22155823e+002 1.28462158e+002 1.10266869e+002 1.22168617e+002 - 1.28497574e+002 1.10275131e+002 1.22180054e+002 1.28487778e+002 - 1.10263641e+002 1.22162292e+002 1.28471909e+002 1.10214760e+002 - 1.22131073e+002 1.28428619e+002 1.10245033e+002 1.22133606e+002 - 1.28435684e+002 1.10235558e+002 1.22144638e+002 1.28426682e+002 - 1.10256279e+002 1.22135170e+002 1.28430817e+002 1.10243111e+002 - 1.22129478e+002 1.28409195e+002 1.10241928e+002 1.22120682e+002 - 1.28394974e+002 1.10245697e+002 1.22141563e+002 1.28395966e+002 - 1.10230484e+002 1.22114281e+002 1.28380524e+002 1.10225533e+002 - 1.22127975e+002 1.28370667e+002 1.10240593e+002 1.22114105e+002 - 1.28362732e+002 1.10244148e+002 1.22125328e+002 1.28356873e+002 - 1.10226830e+002 1.22103737e+002 1.28331100e+002 1.10198303e+002 - 1.22088379e+002 1.28306824e+002 1.10191650e+002 1.22073677e+002 - 1.28298370e+002 1.10193459e+002 1.22080948e+002 1.28284836e+002 - 1.10190987e+002 1.22072617e+002 1.28264481e+002 1.10168358e+002 - 1.22065056e+002 1.28236572e+002 1.10192009e+002 1.22066582e+002 - 1.28240448e+002 1.10200203e+002 1.22081505e+002 1.28222076e+002 - 1.10185562e+002 1.22047066e+002 1.28175201e+002 1.10173737e+002 - 1.22047653e+002 1.28141129e+002 1.10178696e+002 1.22047966e+002 - 1.28131638e+002 1.10168358e+002 1.22046326e+002 1.28097351e+002 - 1.10178436e+002 1.22044502e+002 1.28087143e+002 1.10199501e+002 - 1.22081642e+002 1.28096878e+002 1.10230377e+002 1.22080498e+002 - 1.28090225e+002 1.10217476e+002 1.22076462e+002 1.28058456e+002 - 1.10238258e+002 1.22095284e+002 1.28051224e+002 1.10233261e+002 - 1.22098579e+002 1.28031326e+002 1.10245163e+002 1.22094757e+002 - 1.28011505e+002 1.10220207e+002 1.22069580e+002 1.27952217e+002 - 1.10226250e+002 1.22056053e+002 1.27912300e+002 1.10209480e+002 - 1.22051605e+002 1.27870979e+002 1.10232895e+002 1.22061340e+002 - 1.27862076e+002 1.10235207e+002 1.22076149e+002 1.27837761e+002 - 1.10260010e+002 1.22081497e+002 1.27825371e+002 1.10238655e+002 - 1.22073502e+002 1.27777863e+002 1.10217735e+002 1.22042915e+002 - 1.27721840e+002 1.10239868e+002 1.22070320e+002 1.27708565e+002 - 1.10260948e+002 1.22079231e+002 1.27693649e+002 1.10255440e+002 - 1.22086090e+002 1.27665001e+002 1.10273094e+002 1.22070213e+002 - 1.27639290e+002 1.10298462e+002 1.22110420e+002 1.27631935e+002 - 1.10325050e+002 1.22117065e+002 1.27607170e+002 1.10292366e+002 - 1.22088539e+002 1.27540268e+002 1.10320877e+002 1.22099190e+002 - 1.27530914e+002 1.10338997e+002 1.22116089e+002 1.27501602e+002 - 1.10392441e+002 1.22152130e+002 1.27495735e+002 1.10384850e+002 - 1.22158096e+002 1.27454185e+002 1.10405876e+002 1.22155678e+002 - 1.27448067e+002 1.10393524e+002 1.22158447e+002 1.27406288e+002 - 1.10400948e+002 1.22143578e+002 1.27367302e+002 1.10382362e+002 - 1.22136978e+002 1.27320480e+002 1.10404114e+002 1.22151817e+002 - 1.27309837e+002 1.10420204e+002 1.22169876e+002 1.27292496e+002 - 1.10418625e+002 1.22152184e+002 1.27246185e+002 1.10408859e+002 - 1.22142448e+002 1.27202011e+002 1.10466835e+002 1.22171066e+002 - 1.27210754e+002 1.10505211e+002 1.22211349e+002 1.27210991e+002 - 1.10504776e+002 1.22198837e+002 1.27163460e+002 1.10501114e+002 - 1.22207291e+002 1.27116943e+002 1.10527214e+002 1.22209465e+002 - 1.27105553e+002 1.10556328e+002 1.22239235e+002 1.27079521e+002 - 1.10573074e+002 1.22243271e+002 1.27039452e+002 1.10574539e+002 - 1.22261566e+002 1.27009354e+002 1.10600800e+002 1.22258781e+002 - 1.26990166e+002 1.10593727e+002 1.22260567e+002 1.26946587e+002 - 1.10601021e+002 1.22236794e+002 1.26900627e+002 1.10586739e+002 - 1.22225960e+002 1.26842407e+002 1.10605804e+002 1.22232216e+002 - 1.26818451e+002 1.10615875e+002 1.22252899e+002 1.26787643e+002 - 1.10628761e+002 1.22241608e+002 1.26750877e+002 1.10641502e+002 - 1.22261978e+002 1.26721176e+002 1.10660110e+002 1.22247147e+002 - 1.26678978e+002 1.10717316e+002 1.22303741e+002 1.26694611e+002 - 1.10753571e+002 1.22321526e+002 1.26670647e+002 1.10745644e+002 - 1.22328308e+002 1.26622528e+002 1.10758789e+002 1.22321991e+002 - 1.26596588e+002 1.10798859e+002 1.22360062e+002 1.26573135e+002 - 1.10819534e+002 1.22346542e+002 1.26514626e+002 1.10820015e+002 - 1.22360306e+002 1.26474876e+002 1.10844589e+002 1.22357765e+002 - 1.26449501e+002 1.10854469e+002 1.22369804e+002 1.26412361e+002 - 1.10884644e+002 1.22373131e+002 1.26384811e+002 1.10912941e+002 - 1.22403778e+002 1.26367821e+002 1.10946884e+002 1.22422661e+002 - 1.26344643e+002 1.10959007e+002 1.22428780e+002 1.26308052e+002 - 1.10956512e+002 1.22400665e+002 1.26239189e+002 1.10966225e+002 - 1.22412743e+002 1.26206520e+002 1.10994080e+002 1.22394470e+002 - 1.26156876e+002 1.10984871e+002 1.22391472e+002 1.26098381e+002 - 1.11009674e+002 1.22392395e+002 1.26063789e+002 1.11018044e+002 - 1.22409409e+002 1.26026321e+002 1.11081108e+002 1.22446609e+002 - 1.26038933e+002 1.11122185e+002 1.22478386e+002 1.26024025e+002 - 1.11168045e+002 1.22499809e+002 1.25987534e+002 1.11183380e+002 - 1.22519348e+002 1.25954002e+002 1.11223198e+002 1.22516014e+002 - 1.25937202e+002 1.11261238e+002 1.22554276e+002 1.25926163e+002 - 1.11320930e+002 1.22578468e+002 1.25922577e+002 1.11334808e+002 - 1.22584763e+002 1.25881020e+002 1.11400322e+002 1.22620537e+002 - 1.25875214e+002 1.11454399e+002 1.22669830e+002 1.25878235e+002 - 1.11435387e+002 1.22617981e+002 1.25798058e+002 1.11486893e+002 - 1.22661102e+002 1.25801826e+002 1.11552292e+002 1.22659431e+002 - 1.25778549e+002 1.11565010e+002 1.22660507e+002 1.25738495e+002 - 1.11575600e+002 1.22630257e+002 1.25684563e+002 1.11550957e+002 - 1.22597733e+002 1.25599823e+002 1.11547112e+002 1.22543732e+002 - 1.25537140e+002 1.11441170e+002 1.22420372e+002 1.25370247e+002 - 1.11392929e+002 1.22408844e+002 1.25400108e+002 1.11469032e+002 - 1.22530724e+002 1.25535370e+002 1.11525368e+002 1.22606262e+002 - 1.25643448e+002 1.11523819e+002 1.22627274e+002 1.25693665e+002 - 1.11525017e+002 1.22645828e+002 1.25751335e+002 1.11479607e+002 - 1.22632614e+002 1.25767647e+002 1.11456635e+002 1.22634888e+002 - 1.25810768e+002 1.11424339e+002 1.22630432e+002 1.25835960e+002 - 1.11417145e+002 1.22637512e+002 1.25879410e+002 1.11368889e+002 - 1.22623413e+002 1.25895493e+002 1.11346153e+002 1.22595940e+002 - 1.25939087e+002 1.11327347e+002 1.22605492e+002 1.25975922e+002 - 1.11281494e+002 1.22568535e+002 1.25995079e+002 1.11243347e+002 - 1.22568375e+002 1.26014336e+002 1.11214775e+002 1.22547096e+002 - 1.26038589e+002 1.11183907e+002 1.22547928e+002 1.26064560e+002 - 1.11145355e+002 1.22526505e+002 1.26112320e+002 1.11089844e+002 - 1.22513504e+002 1.26122147e+002 1.11084106e+002 1.22504295e+002 - 1.26157181e+002 1.11042145e+002 1.22481171e+002 1.26160454e+002 - 1.11017410e+002 1.22463974e+002 1.26202049e+002 1.10971664e+002 - 1.22438965e+002 1.26205971e+002 1.10946373e+002 1.22428368e+002 - 1.26250206e+002 1.10909851e+002 1.22412552e+002 1.26266525e+002 - 1.10898514e+002 1.22407036e+002 1.26312149e+002 1.10857475e+002 - 1.22386215e+002 1.26323677e+002 1.10847511e+002 1.22367508e+002 - 1.26365913e+002 1.10821594e+002 1.22360703e+002 1.26391541e+002 - 1.10805336e+002 1.22355721e+002 1.26428093e+002 1.10774445e+002 - 1.22347015e+002 1.26444344e+002 1.10752098e+002 1.22322563e+002 - 1.26467285e+002 1.10753136e+002 1.22339073e+002 1.26511978e+002 - 1.10714211e+002 1.22311859e+002 1.26555206e+002 1.10647110e+002 - 1.22274704e+002 1.26543465e+002 1.10624504e+002 1.22241096e+002 - 1.26555092e+002 1.10590912e+002 1.22225403e+002 1.26569038e+002 - 1.10570602e+002 1.22190094e+002 1.26597679e+002 1.10535034e+002 - 1.22177391e+002 1.26615837e+002 1.10536308e+002 1.22178833e+002 - 1.26675278e+002 1.10535973e+002 1.22197723e+002 1.26723251e+002 - 1.10532150e+002 1.22193657e+002 1.26766457e+002 1.10519135e+002 - 1.22199577e+002 1.26809235e+002 1.10519501e+002 1.22184227e+002 - 1.26848633e+002 1.10499252e+002 1.22182892e+002 1.26879845e+002 - 1.10481796e+002 1.22175110e+002 1.26913574e+002 1.10422783e+002 - 1.22143150e+002 1.26905495e+002 1.10409950e+002 1.22124733e+002 - 1.26919456e+002 1.10386261e+002 1.22116684e+002 1.26942101e+002 - 1.10370110e+002 1.22108566e+002 1.26990768e+002 1.10318909e+002 - 1.22076027e+002 1.26990616e+002 1.10310112e+002 1.22062836e+002 - 1.27014297e+002 1.10295662e+002 1.22051460e+002 1.27035713e+002 - 1.10309212e+002 1.22056992e+002 1.27090462e+002 1.10334221e+002 - 1.22098694e+002 1.27158165e+002 1.10323952e+002 1.22091911e+002 - 1.27194160e+002 1.10330086e+002 1.22109520e+002 1.27233063e+002 - 1.10321014e+002 1.22104622e+002 1.27268990e+002 1.10279419e+002 - 1.22077133e+002 1.27272751e+002 1.10279831e+002 1.22048302e+002 - 1.27309731e+002 1.10264832e+002 1.22047478e+002 1.27340897e+002 - 1.10242241e+002 1.22031517e+002 1.27364090e+002 1.10235229e+002 - 1.22044464e+002 1.27394875e+002 1.10250107e+002 1.22047913e+002 - 1.27443756e+002 1.10228699e+002 1.22046524e+002 1.27458702e+002 - 1.10207222e+002 1.22016380e+002 1.27485191e+002 1.10163239e+002 - 1.21992790e+002 1.27480324e+002 1.10157455e+002 1.21971161e+002 - 1.27495087e+002 1.10172813e+002 1.21991676e+002 1.27540833e+002 - 1.10172867e+002 1.21984642e+002 1.27576836e+002 1.10173553e+002 - 1.21998093e+002 1.27618362e+002 1.10179749e+002 1.22003189e+002 - 1.27660194e+002 1.10178337e+002 1.22006210e+002 1.27683640e+002 - 1.10193909e+002 1.22015839e+002 1.27733444e+002 1.10164520e+002 - 1.22006859e+002 1.27752174e+002 1.10185127e+002 1.21998909e+002 - 1.27798683e+002 1.10167770e+002 1.21998947e+002 1.27821434e+002 - 1.10143837e+002 1.21974007e+002 1.27829865e+002 1.10112785e+002 - 1.21966553e+002 1.27831650e+002 1.10110161e+002 1.21957932e+002 - 1.27858337e+002 1.10129776e+002 1.21997719e+002 1.27907143e+002 - 1.10118111e+002 1.21981285e+002 1.27932060e+002 1.10082245e+002 - 1.21972870e+002 1.27933495e+002 1.10105988e+002 1.21984520e+002 - 1.27979744e+002 1.10104324e+002 1.21992584e+002 1.28002762e+002 - 1.10113029e+002 1.21985680e+002 1.28030563e+002 1.10085205e+002 - 1.21972321e+002 1.28028793e+002 1.10077805e+002 1.21965500e+002 - 1.28051407e+002 1.10095345e+002 1.21991524e+002 1.28086670e+002 - 1.10099930e+002 1.21992638e+002 1.28109100e+002 1.10092262e+002 - 1.22004623e+002 1.28138550e+002 1.10118599e+002 1.22006363e+002 - 1.28192688e+002 1.10145660e+002 1.22043228e+002 1.28241211e+002 - 1.10151543e+002 1.22041222e+002 1.28266830e+002 1.10139084e+002 - 1.22045639e+002 1.28274399e+002 1.10134872e+002 1.22025108e+002 - 1.28278763e+002 1.10161186e+002 1.22062851e+002 1.28310715e+002 - 1.10177788e+002 1.22074829e+002 1.28352570e+002 1.10127869e+002 - 1.22048714e+002 1.28322662e+002 1.10121590e+002 1.22028633e+002 - 1.28327042e+002 1.10108109e+002 1.22028427e+002 1.28334061e+002 - 1.10096519e+002 1.22004028e+002 1.28340332e+002 1.10085060e+002 - 1.22005249e+002 1.28348358e+002 1.10074455e+002 1.21997307e+002 - 1.28361221e+002 1.10055382e+002 1.21988739e+002 1.28351547e+002 - 1.10046364e+002 1.21976616e+002 1.28349152e+002 1.10035789e+002 - 1.21982536e+002 1.28360367e+002 1.10064598e+002 1.21988838e+002 - 1.28395599e+002 1.10078659e+002 1.22011070e+002 1.28416000e+002 - 1.10087601e+002 1.22015770e+002 1.28422348e+002 1.10088516e+002 - 1.22030792e+002 1.28430679e+002 1.10115417e+002 1.22052399e+002 - 1.28457169e+002 1.10110168e+002 1.22056641e+002 1.28450516e+002 - 1.10102188e+002 1.22033989e+002 1.28431198e+002 1.10052048e+002 - 1.22000145e+002 1.28382858e+002 1.10054710e+002 1.21984436e+002 - 1.28374374e+002 1.10074493e+002 1.22011497e+002 1.28384445e+002 - 1.10089127e+002 1.22008110e+002 1.28389709e+002 1.10085205e+002 - 1.22010483e+002 1.28376282e+002 1.10086952e+002 1.22002457e+002 - 1.28368469e+002 1.10087357e+002 1.22013168e+002 1.28361938e+002 - 1.10072380e+002 1.21989166e+002 1.28342117e+002 1.10068443e+002 - 1.22001465e+002 1.28338730e+002 1.10075432e+002 1.21985641e+002 - 1.28326157e+002 1.10060829e+002 1.21977798e+002 1.28304779e+002 - 1.10045517e+002 1.21955696e+002 1.28274841e+002 1.10022598e+002 - 1.21944916e+002 1.28251526e+002 1.10000908e+002 1.21909515e+002 - 1.28227142e+002 1.10014275e+002 1.21937050e+002 1.28233154e+002 - 1.10042358e+002 1.21951454e+002 1.28239319e+002 1.10012283e+002 - 1.21936852e+002 1.28200867e+002 1.10038185e+002 1.21940147e+002 - 1.28202057e+002 1.10034355e+002 1.21953873e+002 1.28182175e+002 - 1.10031227e+002 1.21928009e+002 1.28148575e+002 1.10012650e+002 - 1.21924286e+002 1.28104660e+002 1.10034843e+002 1.21930634e+002 - 1.28109558e+002 1.10045219e+002 1.21952576e+002 1.28095764e+002 - 1.10037910e+002 1.21934128e+002 1.28066895e+002 1.10047432e+002 - 1.21955261e+002 1.28059143e+002 1.10078461e+002 1.21962654e+002 - 1.28068497e+002 1.10083633e+002 1.21971092e+002 1.28047623e+002 - 1.10110008e+002 1.21992203e+002 1.28043060e+002 1.10089455e+002 - 1.21988976e+002 1.28001526e+002 1.10075615e+002 1.21960205e+002 - 1.27960571e+002 1.10059616e+002 1.21947578e+002 1.27909584e+002 - 1.10080101e+002 1.21939720e+002 1.27880882e+002 1.10051628e+002 - 1.21924103e+002 1.27822899e+002 1.10065628e+002 1.21920219e+002 - 1.27803429e+002 1.10061440e+002 1.21930496e+002 1.27777527e+002 - 1.10106010e+002 1.21957191e+002 1.27782768e+002 1.10079536e+002 - 1.21937424e+002 1.27720543e+002 1.10078087e+002 1.21933990e+002 - 1.27689819e+002 1.10078087e+002 1.21941086e+002 1.27660385e+002 - 1.10088501e+002 1.21938324e+002 1.27638664e+002 1.10088989e+002 - 1.21947403e+002 1.27613449e+002 1.10128639e+002 1.21962425e+002 - 1.27609367e+002 1.10144714e+002 1.21987465e+002 1.27590935e+002 - 1.10171753e+002 1.21997070e+002 1.27574989e+002 1.10147865e+002 - 1.21976204e+002 1.27513245e+002 1.10168777e+002 1.21978867e+002 - 1.27495461e+002 1.10205124e+002 1.22014084e+002 1.27483643e+002 - 1.10242760e+002 1.22036224e+002 1.27463440e+002 1.10217812e+002 - 1.22022133e+002 1.27411163e+002 1.10246712e+002 1.22030525e+002 - 1.27404938e+002 1.10240044e+002 1.22034973e+002 1.27369072e+002 - 1.10261749e+002 1.22040230e+002 1.27348465e+002 1.10252106e+002 - 1.22039246e+002 1.27313446e+002 1.10264946e+002 1.22044090e+002 - 1.27283974e+002 1.10268974e+002 1.22052582e+002 1.27246239e+002 - 1.10281387e+002 1.22048622e+002 1.27219421e+002 1.10264954e+002 - 1.22036346e+002 1.27177284e+002 1.10319244e+002 1.22051949e+002 - 1.27178520e+002 1.10343811e+002 1.22083992e+002 1.27159218e+002 - 1.10354187e+002 1.22083084e+002 1.27126617e+002 1.10354507e+002 - 1.22093269e+002 1.27081161e+002 1.10388092e+002 1.22098892e+002 - 1.27070694e+002 1.10405067e+002 1.22120735e+002 1.27040512e+002 - 1.10440742e+002 1.22143776e+002 1.27021263e+002 1.10441719e+002 - 1.22161705e+002 1.26992767e+002 1.10450470e+002 1.22146271e+002 - 1.26957237e+002 1.10438171e+002 1.22132622e+002 1.26898880e+002 - 1.10462616e+002 1.22132774e+002 1.26870651e+002 1.10460930e+002 - 1.22134270e+002 1.26829666e+002 1.10475174e+002 1.22136803e+002 - 1.26791435e+002 1.10475403e+002 1.22137558e+002 1.26747925e+002 - 1.10491608e+002 1.22138367e+002 1.26714668e+002 1.10515930e+002 - 1.22169876e+002 1.26700722e+002 1.10552803e+002 1.22176109e+002 - 1.26676689e+002 1.10591309e+002 1.22212425e+002 1.26668724e+002 - 1.10618904e+002 1.22222977e+002 1.26641426e+002 1.10610588e+002 - 1.22223930e+002 1.26591667e+002 1.10628098e+002 1.22224464e+002 - 1.26565109e+002 1.10654312e+002 1.22249168e+002 1.26534149e+002 - 1.10692856e+002 1.22258667e+002 1.26498466e+002 1.10689545e+002 - 1.22264252e+002 1.26451195e+002 1.10713760e+002 1.22262253e+002 - 1.26421913e+002 1.10737572e+002 1.22292191e+002 1.26400780e+002 - 1.10777611e+002 1.22296371e+002 1.26376266e+002 1.10802818e+002 - 1.22324257e+002 1.26355026e+002 1.10826591e+002 1.22329094e+002 - 1.26320343e+002 1.10825294e+002 1.22328056e+002 1.26264778e+002 - 1.10838943e+002 1.22323524e+002 1.26231789e+002 1.10845367e+002 - 1.22322800e+002 1.26180222e+002 1.10863785e+002 1.22301109e+002 - 1.26127556e+002 1.10874672e+002 1.22313210e+002 1.26083992e+002 - 1.10908730e+002 1.22333717e+002 1.26054260e+002 1.10901199e+002 - 1.22330795e+002 1.26004906e+002 1.10954224e+002 1.22355621e+002 - 1.26007355e+002 1.11006165e+002 1.22404274e+002 1.26001572e+002 - 1.11050667e+002 1.22417435e+002 1.25962372e+002 1.11065666e+002 - 1.22435768e+002 1.25931221e+002 1.11114502e+002 1.22446548e+002 - 1.25922394e+002 1.11141846e+002 1.22470436e+002 1.25898529e+002 - 1.11199303e+002 1.22485588e+002 1.25890900e+002 1.11215660e+002 - 1.22498589e+002 1.25845985e+002 1.11270889e+002 1.22524414e+002 - 1.25835136e+002 1.11328125e+002 1.22578163e+002 1.25840317e+002 - 1.11332603e+002 1.22547432e+002 1.25781670e+002 1.11383682e+002 - 1.22582436e+002 1.25785080e+002 1.11454109e+002 1.22602333e+002 - 1.25765785e+002 1.11480232e+002 1.22611122e+002 1.25732513e+002 - 1.11494362e+002 1.22581566e+002 1.25683800e+002 1.11461349e+002 - 1.22534019e+002 1.25591957e+002 1.11432228e+002 1.22455200e+002 - 1.25503059e+002 1.11330750e+002 1.22345375e+002 1.25343498e+002 - 1.11263092e+002 1.22333778e+002 1.25374039e+002 1.11342377e+002 - 1.22458313e+002 1.25521271e+002 1.11381348e+002 1.22509605e+002 - 1.25607079e+002 1.11384598e+002 1.22545349e+002 1.25663033e+002 - 1.11385574e+002 1.22563202e+002 1.25721741e+002 1.11336967e+002 - 1.22545120e+002 1.25729218e+002 1.11336319e+002 1.22566139e+002 - 1.25798203e+002 1.11296730e+002 1.22557014e+002 1.25812569e+002 - 1.11274574e+002 1.22551765e+002 1.25851433e+002 1.11216751e+002 - 1.22522919e+002 1.25856316e+002 1.11189400e+002 1.22492332e+002 - 1.25897255e+002 1.11179062e+002 1.22511642e+002 1.25945694e+002 - 1.11134628e+002 1.22475807e+002 1.25960457e+002 1.11102638e+002 - 1.22482765e+002 1.25988205e+002 1.11067238e+002 1.22451454e+002 - 1.26009987e+002 1.11045204e+002 1.22451866e+002 1.26036560e+002 - 1.10995850e+002 1.22429039e+002 1.26074303e+002 1.10935921e+002 - 1.22406174e+002 1.26087517e+002 1.10923119e+002 1.22397896e+002 - 1.26117950e+002 1.10905022e+002 1.22393158e+002 1.26140694e+002 - 1.10867393e+002 1.22362465e+002 1.26168327e+002 1.10823212e+002 - 1.22340080e+002 1.26170891e+002 1.10788551e+002 1.22314957e+002 - 1.26206322e+002 1.10734612e+002 1.22286781e+002 1.26206970e+002 - 1.10730309e+002 1.22288582e+002 1.26260818e+002 1.10694237e+002 - 1.22269150e+002 1.26273972e+002 1.10674904e+002 1.22244247e+002 - 1.26312241e+002 1.10659485e+002 1.22252373e+002 1.26349327e+002 - 1.10653442e+002 1.22256897e+002 1.26403130e+002 1.10619629e+002 - 1.22243774e+002 1.26414803e+002 1.10592094e+002 1.22213127e+002 - 1.26430214e+002 1.10578720e+002 1.22220207e+002 1.26465073e+002 - 1.10551620e+002 1.22199112e+002 1.26510567e+002 1.10472588e+002 - 1.22148384e+002 1.26495430e+002 1.10451897e+002 1.22120369e+002 - 1.26509018e+002 1.10442284e+002 1.22124352e+002 1.26539780e+002 - 1.10405602e+002 1.22081535e+002 1.26562508e+002 1.10387794e+002 - 1.22079185e+002 1.26597618e+002 1.10391518e+002 1.22087967e+002 - 1.26660110e+002 1.10392952e+002 1.22105270e+002 1.26708138e+002 - 1.10397186e+002 1.22113312e+002 1.26765900e+002 1.10365723e+002 - 1.22094193e+002 1.26780708e+002 1.10349327e+002 1.22060127e+002 - 1.26811356e+002 1.10312164e+002 1.22045868e+002 1.26824310e+002 - 1.10302269e+002 1.22049049e+002 1.26865318e+002 1.10245399e+002 - 1.22013718e+002 1.26847298e+002 1.10234955e+002 1.21999367e+002 - 1.26880005e+002 1.10211426e+002 1.21994247e+002 1.26896492e+002 - 1.10192474e+002 1.21977417e+002 1.26943787e+002 1.10129089e+002 - 1.21941071e+002 1.26934547e+002 1.10133514e+002 1.21929085e+002 - 1.26960609e+002 1.10132713e+002 1.21946541e+002 1.27006226e+002 - 1.10135811e+002 1.21938599e+002 1.27051590e+002 1.10142357e+002 - 1.21954910e+002 1.27097633e+002 1.10140297e+002 1.21962814e+002 - 1.27146561e+002 1.10136383e+002 1.21974693e+002 1.27182907e+002 - 1.10137421e+002 1.21970673e+002 1.27219688e+002 1.10114990e+002 - 1.21965378e+002 1.27244560e+002 1.10114540e+002 1.21939377e+002 - 1.27284004e+002 1.10110046e+002 1.21946968e+002 1.27324867e+002 - 1.10081009e+002 1.21923561e+002 1.27339462e+002 1.10052185e+002 - 1.21914421e+002 1.27351204e+002 1.10069237e+002 1.21921730e+002 - 1.27404869e+002 1.10049225e+002 1.21912163e+002 1.27413879e+002 - 1.10022713e+002 1.21884163e+002 1.27436462e+002 1.09993393e+002 - 1.21874672e+002 1.27444901e+002 1.09977165e+002 1.21842003e+002 - 1.27459007e+002 1.09981667e+002 1.21858398e+002 1.27493134e+002 - 1.09971626e+002 1.21833061e+002 1.27516563e+002 1.09984146e+002 - 1.21852692e+002 1.27567642e+002 1.09985962e+002 1.21856323e+002 - 1.27611290e+002 1.09979752e+002 1.21854889e+002 1.27629448e+002 - 1.10009850e+002 1.21882072e+002 1.27698311e+002 1.09995117e+002 - 1.21883522e+002 1.27723297e+002 1.09990303e+002 1.21853355e+002 - 1.27749329e+002 1.09956940e+002 1.21835747e+002 1.27750198e+002 - 1.09950294e+002 1.21833519e+002 1.27775513e+002 1.09932823e+002 - 1.21829399e+002 1.27782623e+002 1.09958145e+002 1.21852592e+002 - 1.27839378e+002 1.09994751e+002 1.21908501e+002 1.27905457e+002 - 1.09965240e+002 1.21871025e+002 1.27911064e+002 1.09913452e+002 - 1.21846855e+002 1.27902802e+002 1.09931763e+002 1.21855652e+002 - 1.27941223e+002 1.09933960e+002 1.21870438e+002 1.27967537e+002 - 1.09939064e+002 1.21856125e+002 1.27999222e+002 1.09907104e+002 - 1.21842285e+002 1.27987000e+002 1.09901237e+002 1.21831894e+002 - 1.28008865e+002 1.09910706e+002 1.21857864e+002 1.28042023e+002 - 1.09924263e+002 1.21865280e+002 1.28078705e+002 1.09912575e+002 - 1.21865730e+002 1.28098572e+002 1.09928185e+002 1.21859062e+002 - 1.28133606e+002 1.09937416e+002 1.21884499e+002 1.28173370e+002 - 1.09948219e+002 1.21889969e+002 1.28206055e+002 1.09955078e+002 - 1.21911339e+002 1.28230438e+002 1.09966217e+002 1.21909462e+002 - 1.28252075e+002 1.09988220e+002 1.21937325e+002 1.28282257e+002 - 1.09991943e+002 1.21936455e+002 1.28309448e+002 1.09929390e+002 - 1.21898560e+002 1.28273666e+002 1.09925789e+002 1.21886520e+002 - 1.28282822e+002 1.09909828e+002 1.21882011e+002 1.28282654e+002 - 1.09916786e+002 1.21874992e+002 1.28306595e+002 1.09892586e+002 - 1.21864777e+002 1.28302139e+002 1.09880058e+002 1.21848305e+002 - 1.28311020e+002 1.09868851e+002 1.21853203e+002 1.28307892e+002 - 1.09870026e+002 1.21850952e+002 1.28319061e+002 1.09852455e+002 - 1.21844582e+002 1.28310837e+002 1.09883881e+002 1.21856537e+002 - 1.28349304e+002 1.09882942e+002 1.21865677e+002 1.28356155e+002 - 1.09908752e+002 1.21888954e+002 1.28383774e+002 1.09888763e+002 - 1.21885208e+002 1.28376923e+002 1.09908043e+002 1.21889656e+002 - 1.28392014e+002 1.09933418e+002 1.21913757e+002 1.28404861e+002 - 1.09905411e+002 1.21880867e+002 1.28374237e+002 1.09873550e+002 - 1.21863777e+002 1.28345673e+002 1.09877220e+002 1.21856865e+002 - 1.28339615e+002 1.09890198e+002 1.21876854e+002 1.28345932e+002 - 1.09913177e+002 1.21879837e+002 1.28361465e+002 1.09895302e+002 - 1.21875206e+002 1.28340118e+002 1.09918022e+002 1.21886909e+002 - 1.28351959e+002 1.09902969e+002 1.21883400e+002 1.28326111e+002 - 1.09891083e+002 1.21866493e+002 1.28315079e+002 1.09878136e+002 - 1.21857086e+002 1.28293350e+002 1.09888969e+002 1.21845497e+002 - 1.28289810e+002 1.09877930e+002 1.21845398e+002 1.28275864e+002 - 1.09874634e+002 1.21835991e+002 1.28257034e+002 1.09862984e+002 - 1.21834457e+002 1.28243179e+002 1.09865707e+002 1.21828178e+002 - 1.28246246e+002 1.09877808e+002 1.21841652e+002 1.28238800e+002 - 1.09880569e+002 1.21833885e+002 1.28212234e+002 1.09843552e+002 - 1.21817383e+002 1.28176346e+002 1.09871223e+002 1.21829048e+002 - 1.28183151e+002 1.09872261e+002 1.21841492e+002 1.28162781e+002 - 1.09884193e+002 1.21835732e+002 1.28146820e+002 1.09851006e+002 - 1.21812866e+002 1.28093384e+002 1.09857742e+002 1.21818161e+002 - 1.28084396e+002 1.09873497e+002 1.21841911e+002 1.28078171e+002 - 1.09874634e+002 1.21823532e+002 1.28050797e+002 1.09877556e+002 - 1.21838638e+002 1.28035568e+002 1.09924057e+002 1.21856552e+002 - 1.28055878e+002 1.09921730e+002 1.21868866e+002 1.28032364e+002 - 1.09941223e+002 1.21885201e+002 1.28021759e+002 1.09908615e+002 - 1.21861847e+002 1.27959633e+002 1.09891380e+002 1.21827461e+002 - 1.27919624e+002 1.09884727e+002 1.21818794e+002 1.27870415e+002 - 1.09910103e+002 1.21821129e+002 1.27840347e+002 1.09875549e+002 - 1.21799316e+002 1.27783020e+002 1.09870674e+002 1.21777580e+002 - 1.27750725e+002 1.09873375e+002 1.21785912e+002 1.27721214e+002 - 1.09921257e+002 1.21812477e+002 1.27729568e+002 1.09891693e+002 - 1.21805550e+002 1.27675171e+002 1.09906784e+002 1.21805962e+002 - 1.27656647e+002 1.09911652e+002 1.21818398e+002 1.27630035e+002 - 1.09914360e+002 1.21810593e+002 1.27598488e+002 1.09904984e+002 - 1.21808983e+002 1.27562920e+002 1.09942734e+002 1.21822067e+002 - 1.27558411e+002 1.09952469e+002 1.21839851e+002 1.27534897e+002 - 1.09987595e+002 1.21859688e+002 1.27520851e+002 1.09983574e+002 - 1.21871750e+002 1.27491997e+002 1.09992729e+002 1.21861458e+002 - 1.27458931e+002 1.10024063e+002 1.21883377e+002 1.27446388e+002 - 1.10044083e+002 1.21885445e+002 1.27406250e+002 1.10035126e+002 - 1.21892563e+002 1.27367584e+002 1.10068275e+002 1.21909378e+002 - 1.27365288e+002 1.10066483e+002 1.21915382e+002 1.27333656e+002 - 1.10081688e+002 1.21914383e+002 1.27313995e+002 1.10092125e+002 - 1.21937866e+002 1.27290146e+002 1.10097816e+002 1.21929749e+002 - 1.27250580e+002 1.10102570e+002 1.21939926e+002 1.27219101e+002 - 1.10122444e+002 1.21944519e+002 1.27197258e+002 1.10116402e+002 - 1.21938484e+002 1.27154808e+002 1.10166473e+002 1.21959778e+002 - 1.27161575e+002 1.10180244e+002 1.21976479e+002 1.27131805e+002 - 1.10175385e+002 1.21952812e+002 1.27079109e+002 1.10183495e+002 - 1.21968498e+002 1.27040489e+002 1.10216736e+002 1.21978622e+002 - 1.27034531e+002 1.10258514e+002 1.22020340e+002 1.27025551e+002 - 1.10272888e+002 1.22023300e+002 1.26986824e+002 1.10277054e+002 - 1.22045715e+002 1.26957901e+002 1.10294189e+002 1.22042908e+002 - 1.26937675e+002 1.10296143e+002 1.22045677e+002 1.26895439e+002 - 1.10322380e+002 1.22042618e+002 1.26864922e+002 1.10329636e+002 - 1.22055527e+002 1.26829987e+002 1.10339188e+002 1.22048347e+002 - 1.26783394e+002 1.10343895e+002 1.22060638e+002 1.26749352e+002 - 1.10367790e+002 1.22065224e+002 1.26719200e+002 1.10386520e+002 - 1.22091614e+002 1.26702805e+002 1.10412697e+002 1.22085365e+002 - 1.26662956e+002 1.10434128e+002 1.22106331e+002 1.26639374e+002 - 1.10457764e+002 1.22121094e+002 1.26613060e+002 1.10457764e+002 - 1.22128342e+002 1.26568825e+002 1.10477310e+002 1.22124527e+002 - 1.26543442e+002 1.10507675e+002 1.22150032e+002 1.26514862e+002 - 1.10558197e+002 1.22175842e+002 1.26489342e+002 1.10549362e+002 - 1.22183426e+002 1.26448166e+002 1.10579880e+002 1.22180557e+002 - 1.26420891e+002 1.10601212e+002 1.22209442e+002 1.26396683e+002 - 1.10648079e+002 1.22223068e+002 1.26377266e+002 1.10646935e+002 - 1.22226952e+002 1.26327911e+002 1.10668938e+002 1.22227173e+002 - 1.26286613e+002 1.10684036e+002 1.22243736e+002 1.26251701e+002 - 1.10711395e+002 1.22247093e+002 1.26217682e+002 1.10715118e+002 - 1.22251236e+002 1.26172798e+002 1.10721779e+002 1.22215210e+002 - 1.26106277e+002 1.10741272e+002 1.22238777e+002 1.26071304e+002 - 1.10773056e+002 1.22248764e+002 1.26040619e+002 1.10769318e+002 - 1.22252174e+002 1.25988945e+002 1.10802917e+002 1.22263016e+002 - 1.25973984e+002 1.10857239e+002 1.22306366e+002 1.25969902e+002 - 1.10905174e+002 1.22322525e+002 1.25931709e+002 1.10920273e+002 - 1.22339897e+002 1.25893791e+002 1.10969261e+002 1.22347954e+002 - 1.25884476e+002 1.10990494e+002 1.22365059e+002 1.25859528e+002 - 1.11043617e+002 1.22385017e+002 1.25846809e+002 1.11067215e+002 - 1.22404099e+002 1.25813194e+002 1.11121826e+002 1.22423698e+002 - 1.25796959e+002 1.11186806e+002 1.22483650e+002 1.25802551e+002 - 1.11221207e+002 1.22479134e+002 1.25775467e+002 1.11277008e+002 - 1.22525291e+002 1.25775803e+002 1.11342819e+002 1.22534042e+002 - 1.25757179e+002 1.11350540e+002 1.22522545e+002 1.25707375e+002 - 1.11379173e+002 1.22514923e+002 1.25672043e+002 1.11348930e+002 - 1.22477257e+002 1.25589920e+002 1.11316063e+002 1.22392838e+002 - 1.25491547e+002 1.11228691e+002 1.22292625e+002 1.25345070e+002 - 1.11155472e+002 1.22255196e+002 1.25351990e+002 1.11217911e+002 - 1.22360580e+002 1.25473686e+002 1.11262894e+002 1.22420570e+002 - 1.25567039e+002 1.11278091e+002 1.22468239e+002 1.25636002e+002 - 1.11282814e+002 1.22487900e+002 1.25699860e+002 1.11240181e+002 - 1.22483337e+002 1.25717819e+002 1.11228966e+002 1.22486877e+002 - 1.25775841e+002 1.11181183e+002 1.22471741e+002 1.25781532e+002 - 1.11164047e+002 1.22469551e+002 1.25829254e+002 1.11121338e+002 - 1.22457802e+002 1.25848312e+002 1.11092438e+002 1.22426231e+002 - 1.25884552e+002 1.11067848e+002 1.22426483e+002 1.25918243e+002 - 1.11016357e+002 1.22392212e+002 1.25933884e+002 1.10986748e+002 - 1.22393059e+002 1.25959412e+002 1.10958862e+002 1.22366882e+002 - 1.25982864e+002 1.10932808e+002 1.22373253e+002 1.26021355e+002 - 1.10888000e+002 1.22353157e+002 1.26066910e+002 1.10814476e+002 - 1.22314972e+002 1.26053337e+002 1.10790077e+002 1.22289268e+002 - 1.26071678e+002 1.10765549e+002 1.22280151e+002 1.26091652e+002 - 1.10727150e+002 1.22245697e+002 1.26117523e+002 1.10697433e+002 - 1.22239822e+002 1.26135658e+002 1.10663269e+002 1.22220940e+002 - 1.26169441e+002 1.10618996e+002 1.22197075e+002 1.26174698e+002 - 1.10611412e+002 1.22195618e+002 1.26227898e+002 1.10578720e+002 - 1.22178070e+002 1.26242912e+002 1.10549858e+002 1.22144150e+002 - 1.26269386e+002 1.10513664e+002 1.22132607e+002 1.26291756e+002 - 1.10510956e+002 1.22132423e+002 1.26343948e+002 1.10485428e+002 - 1.22134781e+002 1.26369308e+002 1.10463898e+002 1.22108818e+002 - 1.26392952e+002 1.10435387e+002 1.22099762e+002 1.26415405e+002 - 1.10407585e+002 1.22081894e+002 1.26464058e+002 1.10348755e+002 - 1.22048149e+002 1.26464264e+002 1.10334457e+002 1.22026535e+002 - 1.26480431e+002 1.10298378e+002 1.22004044e+002 1.26491959e+002 - 1.10264458e+002 1.21963478e+002 1.26515778e+002 1.10254578e+002 - 1.21972893e+002 1.26555550e+002 1.10264153e+002 1.21990623e+002 - 1.26630737e+002 1.10254501e+002 1.21994896e+002 1.26664757e+002 - 1.10274483e+002 1.22014809e+002 1.26738396e+002 1.10237366e+002 - 1.21984482e+002 1.26747467e+002 1.10197289e+002 1.21935455e+002 - 1.26753609e+002 1.10167336e+002 1.21931107e+002 1.26775116e+002 - 1.10155807e+002 1.21918854e+002 1.26809158e+002 1.10090393e+002 - 1.21880264e+002 1.26789665e+002 1.10090286e+002 1.21882004e+002 - 1.26831573e+002 1.10090630e+002 1.21899208e+002 1.26874313e+002 - 1.10069397e+002 1.21880127e+002 1.26921593e+002 1.10005577e+002 - 1.21830894e+002 1.26901276e+002 1.09999062e+002 1.21818321e+002 - 1.26924988e+002 1.10009949e+002 1.21839043e+002 1.26974319e+002 - 1.10012474e+002 1.21832375e+002 1.27020477e+002 1.09996300e+002 - 1.21836143e+002 1.27050316e+002 1.09990517e+002 1.21834908e+002 - 1.27093559e+002 1.09986343e+002 1.21845535e+002 1.27126869e+002 - 1.10017677e+002 1.21873161e+002 1.27198181e+002 1.09976990e+002 - 1.21844337e+002 1.27204689e+002 1.09968002e+002 1.21817108e+002 - 1.27245789e+002 1.09972809e+002 1.21829437e+002 1.27291496e+002 - 1.09968239e+002 1.21832794e+002 1.27335419e+002 1.09942848e+002 - 1.21826004e+002 1.27348045e+002 1.09949303e+002 1.21824867e+002 - 1.27385780e+002 1.09935127e+002 1.21829346e+002 1.27410995e+002 - 1.09907471e+002 1.21792374e+002 1.27427521e+002 1.09875397e+002 - 1.21779945e+002 1.27436188e+002 1.09861099e+002 1.21746925e+002 - 1.27444794e+002 1.09861511e+002 1.21755318e+002 1.27481110e+002 - 1.09841278e+002 1.21719498e+002 1.27492134e+002 1.09847000e+002 - 1.21741913e+002 1.27538383e+002 1.09850037e+002 1.21734085e+002 - 1.27577446e+002 1.09854477e+002 1.21751480e+002 1.27614700e+002 - 1.09879379e+002 1.21772911e+002 1.27673546e+002 1.09835388e+002 - 1.21744553e+002 1.27672150e+002 1.09833847e+002 1.21722534e+002 - 1.27700424e+002 1.09813477e+002 1.21715637e+002 1.27711838e+002 - 1.09803360e+002 1.21706062e+002 1.27741531e+002 1.09789261e+002 - 1.21708183e+002 1.27752388e+002 1.09826942e+002 1.21744499e+002 - 1.27819138e+002 1.09842056e+002 1.21773773e+002 1.27859367e+002 - 1.09823517e+002 1.21755890e+002 1.27882019e+002 1.09788475e+002 - 1.21735634e+002 1.27883003e+002 1.09780632e+002 1.21724098e+002 - 1.27896980e+002 1.09774651e+002 1.21727440e+002 1.27917183e+002 - 1.09784454e+002 1.21727806e+002 1.27954628e+002 1.09755547e+002 - 1.21707008e+002 1.27946175e+002 1.09768906e+002 1.21723755e+002 - 1.27983177e+002 1.09784241e+002 1.21755569e+002 1.28023636e+002 - 1.09805786e+002 1.21768814e+002 1.28062836e+002 1.09779823e+002 - 1.21757118e+002 1.28075851e+002 1.09778297e+002 1.21729317e+002 - 1.28091110e+002 1.09774330e+002 1.21735596e+002 1.28118484e+002 - 1.09784035e+002 1.21737694e+002 1.28145645e+002 1.09778671e+002 - 1.21751793e+002 1.28158310e+002 1.09792732e+002 1.21757202e+002 - 1.28188629e+002 1.09819672e+002 1.21792236e+002 1.28225937e+002 - 1.09826591e+002 1.21799217e+002 1.28257217e+002 1.09787254e+002 - 1.21782532e+002 1.28243835e+002 1.09758781e+002 1.21746559e+002 - 1.28232132e+002 1.09752411e+002 1.21752769e+002 1.28238480e+002 - 1.09733414e+002 1.21713120e+002 1.28234238e+002 1.09708298e+002 - 1.21702728e+002 1.28226837e+002 1.09716232e+002 1.21709084e+002 - 1.28254166e+002 1.09703896e+002 1.21711403e+002 1.28251862e+002 - 1.09708549e+002 1.21714706e+002 1.28267548e+002 1.09700333e+002 - 1.21712044e+002 1.28270172e+002 1.09724312e+002 1.21721069e+002 - 1.28302078e+002 1.09731476e+002 1.21742638e+002 1.28318588e+002 - 1.09737946e+002 1.21736588e+002 1.28316559e+002 1.09709801e+002 - 1.21724785e+002 1.28298248e+002 1.09731888e+002 1.21737206e+002 - 1.28324875e+002 1.09766373e+002 1.21776550e+002 1.28355194e+002 - 1.09751534e+002 1.21750786e+002 1.28331512e+002 1.09734489e+002 - 1.21751633e+002 1.28318298e+002 1.09746544e+002 1.21749825e+002 - 1.28321518e+002 1.09740936e+002 1.21747284e+002 1.28311874e+002 - 1.09748924e+002 1.21740402e+002 1.28310013e+002 1.09733093e+002 - 1.21730812e+002 1.28289719e+002 1.09768593e+002 1.21754005e+002 - 1.28316086e+002 1.09763573e+002 1.21761398e+002 1.28305771e+002 - 1.09744339e+002 1.21736046e+002 1.28282211e+002 1.09711975e+002 - 1.21711571e+002 1.28244858e+002 1.09736084e+002 1.21715675e+002 - 1.28255737e+002 1.09724098e+002 1.21710442e+002 1.28238052e+002 - 1.09725533e+002 1.21710045e+002 1.28225449e+002 1.09728447e+002 - 1.21723259e+002 1.28227814e+002 1.09713387e+002 1.21701515e+002 - 1.28208817e+002 1.09708191e+002 1.21703323e+002 1.28193924e+002 - 1.09706764e+002 1.21689453e+002 1.28164169e+002 1.09689819e+002 - 1.21687637e+002 1.28134186e+002 1.09699623e+002 1.21686531e+002 - 1.28126083e+002 1.09709465e+002 1.21704178e+002 1.28114838e+002 - 1.09741692e+002 1.21725182e+002 1.28120346e+002 1.09711311e+002 - 1.21700157e+002 1.28066681e+002 1.09714531e+002 1.21698845e+002 - 1.28052948e+002 1.09715622e+002 1.21705490e+002 1.28028778e+002 - 1.09717453e+002 1.21694748e+002 1.28010605e+002 1.09732140e+002 - 1.21715950e+002 1.28004288e+002 1.09769142e+002 1.21732277e+002 - 1.28013718e+002 1.09766586e+002 1.21738235e+002 1.27983864e+002 - 1.09787506e+002 1.21757889e+002 1.27975571e+002 1.09774292e+002 - 1.21752098e+002 1.27934105e+002 1.09748337e+002 1.21712746e+002 - 1.27884056e+002 1.09742645e+002 1.21700241e+002 1.27830826e+002 - 1.09755333e+002 1.21697304e+002 1.27798317e+002 1.09723572e+002 - 1.21670883e+002 1.27737976e+002 1.09722038e+002 1.21653519e+002 - 1.27709114e+002 1.09734276e+002 1.21669281e+002 1.27690308e+002 - 1.09761162e+002 1.21679176e+002 1.27681915e+002 1.09740433e+002 - 1.21673454e+002 1.27631088e+002 1.09732094e+002 1.21654182e+002 - 1.27591194e+002 1.09758629e+002 1.21691536e+002 1.27582863e+002 - 1.09761841e+002 1.21675842e+002 1.27547974e+002 1.09738411e+002 - 1.21665726e+002 1.27497917e+002 1.09780350e+002 1.21685982e+002 - 1.27503464e+002 1.09796059e+002 1.21703964e+002 1.27482193e+002 - 1.09836685e+002 1.21733299e+002 1.27474068e+002 1.09844498e+002 - 1.21757126e+002 1.27458916e+002 1.09869713e+002 1.21758965e+002 - 1.27442947e+002 1.09891235e+002 1.21779320e+002 1.27422325e+002 - 1.09902321e+002 1.21773262e+002 1.27372498e+002 1.09919334e+002 - 1.21800316e+002 1.27356445e+002 1.09948959e+002 1.21815987e+002 - 1.27359573e+002 1.09944214e+002 1.21817909e+002 1.27318596e+002 - 1.09958870e+002 1.21814049e+002 1.27290123e+002 1.09949959e+002 - 1.21818512e+002 1.27249283e+002 1.09941010e+002 1.21795105e+002 - 1.27196381e+002 1.09954903e+002 1.21813042e+002 1.27168884e+002 - 1.09978119e+002 1.21818085e+002 1.27149185e+002 1.09973320e+002 - 1.21820381e+002 1.27116913e+002 1.10030045e+002 1.21842384e+002 - 1.27122551e+002 1.10037460e+002 1.21851715e+002 1.27090118e+002 - 1.10046501e+002 1.21848816e+002 1.27046127e+002 1.10042892e+002 - 1.21851242e+002 1.27001038e+002 1.10070992e+002 1.21860336e+002 - 1.26987183e+002 1.10109100e+002 1.21899513e+002 1.26984398e+002 - 1.10134621e+002 1.21913307e+002 1.26955872e+002 1.10144264e+002 - 1.21940239e+002 1.26935608e+002 1.10166031e+002 1.21935280e+002 - 1.26906967e+002 1.10164558e+002 1.21938240e+002 1.26868958e+002 - 1.10181465e+002 1.21930931e+002 1.26827591e+002 1.10178200e+002 - 1.21931656e+002 1.26779137e+002 1.10204361e+002 1.21941124e+002 - 1.26751572e+002 1.10233475e+002 1.21976456e+002 1.26737022e+002 - 1.10247223e+002 1.21975540e+002 1.26700111e+002 1.10256790e+002 - 1.21991501e+002 1.26676605e+002 1.10283936e+002 1.21980164e+002 - 1.26629745e+002 1.10303673e+002 1.22004303e+002 1.26603668e+002 - 1.10330482e+002 1.22012192e+002 1.26576431e+002 1.10329758e+002 - 1.22023460e+002 1.26529922e+002 1.10355988e+002 1.22032692e+002 - 1.26521530e+002 1.10381187e+002 1.22057793e+002 1.26492661e+002 - 1.10435799e+002 1.22086914e+002 1.26470764e+002 1.10440331e+002 - 1.22093445e+002 1.26426094e+002 1.10475784e+002 1.22110191e+002 - 1.26411972e+002 1.10508545e+002 1.22140762e+002 1.26397461e+002 - 1.10544762e+002 1.22145912e+002 1.26366150e+002 1.10538696e+002 - 1.22141762e+002 1.26308228e+002 1.10574844e+002 1.22160324e+002 - 1.26286583e+002 1.10605743e+002 1.22194618e+002 1.26267799e+002 - 1.10598442e+002 1.22160133e+002 1.26193733e+002 1.10600464e+002 - 1.22164795e+002 1.26147141e+002 1.10615295e+002 1.22139801e+002 - 1.26088493e+002 1.10641937e+002 1.22164421e+002 1.26059067e+002 - 1.10672058e+002 1.22175507e+002 1.26026535e+002 1.10659706e+002 - 1.22175346e+002 1.25969650e+002 1.10695663e+002 1.22180367e+002 - 1.25950569e+002 1.10732758e+002 1.22213875e+002 1.25930313e+002 - 1.10805786e+002 1.22249390e+002 1.25914864e+002 1.10818375e+002 - 1.22261490e+002 1.25875786e+002 1.10836525e+002 1.22243500e+002 - 1.25833214e+002 1.10878731e+002 1.22283226e+002 1.25828552e+002 - 1.10944557e+002 1.22309624e+002 1.25828125e+002 1.10984871e+002 - 1.22345314e+002 1.25811768e+002 1.11044159e+002 1.22374352e+002 - 1.25799156e+002 1.11094963e+002 1.22415749e+002 1.25789429e+002 - 1.11123100e+002 1.22405785e+002 1.25755348e+002 1.11176262e+002 - 1.22447327e+002 1.25755043e+002 1.11233406e+002 1.22448685e+002 - 1.25730019e+002 1.11249672e+002 1.22446999e+002 1.25686630e+002 - 1.11271660e+002 1.22424431e+002 1.25636169e+002 1.11257240e+002 - 1.22405472e+002 1.25568176e+002 1.11228561e+002 1.22333313e+002 - 1.25481094e+002 1.11157028e+002 1.22239029e+002 1.25345695e+002 - 1.11042824e+002 1.22182526e+002 1.25332596e+002 1.11114532e+002 - 1.22298386e+002 1.25467781e+002 1.11167732e+002 1.22364136e+002 - 1.25572609e+002 1.11173164e+002 1.22398964e+002 1.25627548e+002 - 1.11168983e+002 1.22413589e+002 1.25685760e+002 1.11145500e+002 - 1.22428879e+002 1.25723328e+002 1.11114365e+002 1.22414566e+002 - 1.25763527e+002 1.11048340e+002 1.22384315e+002 1.25758133e+002 - 1.11032516e+002 1.22387329e+002 1.25806221e+002 1.10990685e+002 - 1.22369232e+002 1.25823334e+002 1.10967117e+002 1.22343430e+002 - 1.25864418e+002 1.10952614e+002 1.22350739e+002 1.25910255e+002 - 1.10916298e+002 1.22329109e+002 1.25946144e+002 1.10864471e+002 - 1.22314194e+002 1.25952904e+002 1.10829575e+002 1.22278854e+002 - 1.25963493e+002 1.10799492e+002 1.22281998e+002 1.25995766e+002 - 1.10758568e+002 1.22263977e+002 1.26043671e+002 1.10693100e+002 - 1.22240097e+002 1.26052414e+002 1.10690331e+002 1.22233765e+002 - 1.26088181e+002 1.10650917e+002 1.22205666e+002 1.26084610e+002 - 1.10615372e+002 1.22170502e+002 1.26105835e+002 1.10578583e+002 - 1.22157402e+002 1.26123573e+002 1.10557365e+002 1.22147034e+002 - 1.26166473e+002 1.10509430e+002 1.22126282e+002 1.26175797e+002 - 1.10496185e+002 1.22116959e+002 1.26215759e+002 1.10448685e+002 - 1.22084290e+002 1.26226830e+002 1.10433823e+002 1.22069321e+002 - 1.26267204e+002 1.10396782e+002 1.22052559e+002 1.26289032e+002 - 1.10359703e+002 1.22027946e+002 1.26318542e+002 1.10333054e+002 - 1.22025597e+002 1.26339348e+002 1.10336487e+002 1.22021889e+002 - 1.26380051e+002 1.10302460e+002 1.22000015e+002 1.26387604e+002 - 1.10258812e+002 1.21971443e+002 1.26426559e+002 1.10199928e+002 - 1.21943909e+002 1.26433990e+002 1.10181206e+002 1.21915337e+002 - 1.26444916e+002 1.10141022e+002 1.21891220e+002 1.26453445e+002 - 1.10130005e+002 1.21878807e+002 1.26505814e+002 1.10122795e+002 - 1.21881813e+002 1.26548187e+002 1.10120476e+002 1.21881493e+002 - 1.26605370e+002 1.10113266e+002 1.21891830e+002 1.26645111e+002 - 1.10121323e+002 1.21902031e+002 1.26707436e+002 1.10084747e+002 - 1.21873459e+002 1.26718819e+002 1.10063164e+002 1.21839180e+002 - 1.26739433e+002 1.10027145e+002 1.21827110e+002 1.26756805e+002 - 1.10000473e+002 1.21803810e+002 1.26775391e+002 1.09972809e+002 - 1.21794571e+002 1.26794868e+002 1.09956146e+002 1.21776688e+002 - 1.26812508e+002 1.09950241e+002 1.21782440e+002 1.26846375e+002 - 1.09935547e+002 1.21772163e+002 1.26896729e+002 1.09878746e+002 - 1.21733864e+002 1.26891037e+002 1.09882477e+002 1.21728065e+002 - 1.26926392e+002 1.09887436e+002 1.21740616e+002 1.26973137e+002 - 1.09835724e+002 1.21691147e+002 1.26968636e+002 1.09845535e+002 - 1.21717705e+002 1.27017982e+002 1.09847557e+002 1.21724297e+002 - 1.27077011e+002 1.09846573e+002 1.21744873e+002 1.27118538e+002 - 1.09867096e+002 1.21760162e+002 1.27180061e+002 1.09853592e+002 - 1.21757065e+002 1.27209457e+002 1.09857513e+002 1.21743256e+002 - 1.27262093e+002 1.09847977e+002 1.21750946e+002 1.27302010e+002 - 1.09846352e+002 1.21738968e+002 1.27341309e+002 1.09803612e+002 - 1.21721100e+002 1.27339775e+002 1.09804260e+002 1.21709732e+002 - 1.27368950e+002 1.09780258e+002 1.21700912e+002 1.27379997e+002 - 1.09762436e+002 1.21672516e+002 1.27405266e+002 1.09718857e+002 - 1.21655693e+002 1.27414185e+002 1.09720963e+002 1.21644379e+002 - 1.27441635e+002 1.09720512e+002 1.21650597e+002 1.27474228e+002 - 1.09710052e+002 1.21625946e+002 1.27500839e+002 1.09701157e+002 - 1.21625557e+002 1.27524857e+002 1.09705917e+002 1.21626884e+002 - 1.27562698e+002 1.09694962e+002 1.21628220e+002 1.27588249e+002 - 1.09711700e+002 1.21644394e+002 1.27639175e+002 1.09692566e+002 - 1.21637527e+002 1.27655159e+002 1.09704681e+002 1.21627106e+002 - 1.27699348e+002 1.09709785e+002 1.21637360e+002 1.27735252e+002 - 1.09684875e+002 1.21617668e+002 1.27750565e+002 1.09669136e+002 - 1.21623665e+002 1.27760681e+002 1.09666451e+002 1.21623352e+002 - 1.27797295e+002 1.09689621e+002 1.21653831e+002 1.27832375e+002 - 1.09686821e+002 1.21647293e+002 1.27869476e+002 1.09635353e+002 - 1.21616669e+002 1.27856743e+002 1.09622375e+002 1.21595627e+002 - 1.27869881e+002 1.09610100e+002 1.21597038e+002 1.27885864e+002 - 1.09609116e+002 1.21585983e+002 1.27906860e+002 1.09594589e+002 - 1.21587906e+002 1.27922272e+002 1.09604630e+002 1.21594337e+002 - 1.27953651e+002 1.09602173e+002 1.21607605e+002 1.27978439e+002 - 1.09630424e+002 1.21625237e+002 1.28027054e+002 1.09620232e+002 - 1.21627022e+002 1.28050049e+002 1.09595993e+002 1.21582375e+002 - 1.28048660e+002 1.09590248e+002 1.21586472e+002 1.28069031e+002 - 1.09610153e+002 1.21603027e+002 1.28103439e+002 1.09603569e+002 - 1.21616547e+002 1.28124237e+002 1.09617332e+002 1.21621536e+002 - 1.28149414e+002 1.09619331e+002 1.21631264e+002 1.28160126e+002 - 1.09628448e+002 1.21642342e+002 1.28202881e+002 1.09595802e+002 - 1.21630608e+002 1.28196899e+002 1.09585365e+002 1.21615158e+002 - 1.28201950e+002 1.09593933e+002 1.21627411e+002 1.28220215e+002 - 1.09572952e+002 1.21593239e+002 1.28212753e+002 1.09547371e+002 - 1.21577614e+002 1.28203384e+002 1.09566452e+002 1.21592506e+002 - 1.28235931e+002 1.09560783e+002 1.21605751e+002 1.28247559e+002 - 1.09548569e+002 1.21587173e+002 1.28239761e+002 1.09526482e+002 - 1.21573456e+002 1.28228333e+002 1.09558723e+002 1.21593330e+002 - 1.28270081e+002 1.09580841e+002 1.21621025e+002 1.28298767e+002 - 1.09566963e+002 1.21602219e+002 1.28284073e+002 1.09540215e+002 - 1.21592415e+002 1.28266312e+002 1.09570099e+002 1.21607117e+002 - 1.28300705e+002 1.09609055e+002 1.21650963e+002 1.28323959e+002 - 1.09604698e+002 1.21644417e+002 1.28323685e+002 1.09581490e+002 - 1.21632919e+002 1.28300629e+002 1.09595856e+002 1.21637634e+002 - 1.28316528e+002 1.09576073e+002 1.21622253e+002 1.28297394e+002 - 1.09559158e+002 1.21583611e+002 1.28267044e+002 1.09556778e+002 - 1.21592041e+002 1.28257278e+002 1.09585510e+002 1.21607773e+002 - 1.28277451e+002 1.09569511e+002 1.21610458e+002 1.28257004e+002 - 1.09548096e+002 1.21572708e+002 1.28228195e+002 1.09538834e+002 - 1.21581238e+002 1.28219650e+002 1.09543976e+002 1.21565765e+002 - 1.28206665e+002 1.09541977e+002 1.21567513e+002 1.28195770e+002 - 1.09547424e+002 1.21563080e+002 1.28186478e+002 1.09536423e+002 - 1.21567673e+002 1.28171234e+002 1.09513451e+002 1.21536156e+002 - 1.28152878e+002 1.09549057e+002 1.21581650e+002 1.28170761e+002 - 1.09554268e+002 1.21577850e+002 1.28145309e+002 1.09517723e+002 - 1.21557373e+002 1.28101089e+002 1.09559074e+002 1.21584457e+002 - 1.28124542e+002 1.09572273e+002 1.21609276e+002 1.28118729e+002 - 1.09590866e+002 1.21613510e+002 1.28107422e+002 1.09565170e+002 - 1.21597176e+002 1.28062225e+002 1.09563232e+002 1.21586143e+002 - 1.28039383e+002 1.09568642e+002 1.21604218e+002 1.28025375e+002 - 1.09575523e+002 1.21595573e+002 1.28005524e+002 1.09545860e+002 - 1.21575302e+002 1.27957611e+002 1.09596390e+002 1.21602333e+002 - 1.27973938e+002 1.09605530e+002 1.21619102e+002 1.27960274e+002 - 1.09621780e+002 1.21624146e+002 1.27937592e+002 1.09593491e+002 - 1.21603882e+002 1.27884727e+002 1.09583504e+002 1.21582199e+002 - 1.27841759e+002 1.09567390e+002 1.21563606e+002 1.27787292e+002 - 1.09582352e+002 1.21559357e+002 1.27756210e+002 1.09553627e+002 - 1.21545357e+002 1.27702957e+002 1.09545708e+002 1.21515823e+002 - 1.27661293e+002 1.09555641e+002 1.21533218e+002 1.27646057e+002 - 1.09582077e+002 1.21545258e+002 1.27639442e+002 1.09564568e+002 - 1.21538490e+002 1.27592682e+002 1.09586571e+002 1.21546417e+002 - 1.27575897e+002 1.09585091e+002 1.21556076e+002 1.27546745e+002 - 1.09605118e+002 1.21563553e+002 1.27528679e+002 1.09574081e+002 - 1.21536804e+002 1.27468147e+002 1.09624374e+002 1.21556412e+002 - 1.27465096e+002 1.09632042e+002 1.21570770e+002 1.27436485e+002 - 1.09666649e+002 1.21600044e+002 1.27433403e+002 1.09664413e+002 - 1.21608322e+002 1.27402740e+002 1.09690315e+002 1.21616592e+002 - 1.27399071e+002 1.09719063e+002 1.21640549e+002 1.27378227e+002 - 1.09755135e+002 1.21660477e+002 1.27352753e+002 1.09757294e+002 - 1.21673607e+002 1.27320892e+002 1.09776588e+002 1.21679985e+002 - 1.27308914e+002 1.09771782e+002 1.21677101e+002 1.27271484e+002 - 1.09785706e+002 1.21679962e+002 1.27249199e+002 1.09772491e+002 - 1.21673851e+002 1.27199638e+002 1.09778999e+002 1.21668083e+002 - 1.27163559e+002 1.09808006e+002 1.21706688e+002 1.27156433e+002 - 1.09820396e+002 1.21697121e+002 1.27123985e+002 1.09845062e+002 - 1.21722610e+002 1.27109245e+002 1.09882141e+002 1.21732628e+002 - 1.27096100e+002 1.09905220e+002 1.21753532e+002 1.27078438e+002 - 1.09897217e+002 1.21729843e+002 1.27022774e+002 1.09881805e+002 - 1.21724396e+002 1.26965378e+002 1.09935555e+002 1.21760201e+002 - 1.26976181e+002 1.09970421e+002 1.21799316e+002 1.26965866e+002 - 1.09988869e+002 1.21804047e+002 1.26929871e+002 1.09989281e+002 - 1.21821144e+002 1.26900467e+002 1.10010612e+002 1.21828026e+002 - 1.26884277e+002 1.10017715e+002 1.21834244e+002 1.26851860e+002 - 1.10020020e+002 1.21807884e+002 1.26794388e+002 1.10035637e+002 - 1.21828987e+002 1.26763474e+002 1.10067085e+002 1.21843071e+002 - 1.26742455e+002 1.10073494e+002 1.21866089e+002 1.26704529e+002 - 1.10093140e+002 1.21862167e+002 1.26672531e+002 1.10088654e+002 - 1.21859436e+002 1.26627899e+002 1.10111084e+002 1.21844170e+002 - 1.26584335e+002 1.10130989e+002 1.21873268e+002 1.26557365e+002 - 1.10163620e+002 1.21888084e+002 1.26531052e+002 1.10169693e+002 - 1.21904457e+002 1.26496803e+002 1.10194221e+002 1.21914261e+002 - 1.26485367e+002 1.10242912e+002 1.21958092e+002 1.26475349e+002 - 1.10294289e+002 1.21978348e+002 1.26447029e+002 1.10307327e+002 - 1.22002388e+002 1.26415169e+002 1.10358345e+002 1.22028717e+002 - 1.26418640e+002 1.10366379e+002 1.22040543e+002 1.26381737e+002 - 1.10388443e+002 1.22034714e+002 1.26335045e+002 1.10404694e+002 - 1.22050186e+002 1.26296379e+002 1.10445618e+002 1.22065521e+002 - 1.26267853e+002 1.10465446e+002 1.22095116e+002 1.26239693e+002 - 1.10478249e+002 1.22083130e+002 1.26189972e+002 1.10474411e+002 - 1.22073074e+002 1.26133377e+002 1.10503998e+002 1.22066879e+002 - 1.26087120e+002 1.10511795e+002 1.22073830e+002 1.26044571e+002 - 1.10550819e+002 1.22090637e+002 1.26015495e+002 1.10542854e+002 - 1.22089996e+002 1.25961807e+002 1.10585899e+002 1.22104507e+002 - 1.25948570e+002 1.10642685e+002 1.22154289e+002 1.25947792e+002 - 1.10705490e+002 1.22179695e+002 1.25919960e+002 1.10716156e+002 - 1.22190880e+002 1.25878410e+002 1.10743858e+002 1.22190842e+002 - 1.25852081e+002 1.10785545e+002 1.22228584e+002 1.25845116e+002 - 1.10838646e+002 1.22243698e+002 1.25826553e+002 1.10882164e+002 - 1.22279488e+002 1.25811668e+002 1.10948120e+002 1.22310760e+002 - 1.25806900e+002 1.11003685e+002 1.22359627e+002 1.25804413e+002 - 1.11039551e+002 1.22360580e+002 1.25774963e+002 1.11088379e+002 - 1.22392914e+002 1.25768845e+002 1.11127930e+002 1.22380157e+002 - 1.25723289e+002 1.11131805e+002 1.22369560e+002 1.25670319e+002 - 1.11142296e+002 1.22337509e+002 1.25612122e+002 1.11152557e+002 - 1.22332787e+002 1.25560120e+002 1.11139893e+002 1.22281776e+002 - 1.25490089e+002 1.11076927e+002 1.22200737e+002 1.25367859e+002 - 1.10919121e+002 1.22089935e+002 1.25293076e+002 1.11006813e+002 - 1.22221466e+002 1.25443680e+002 1.11063751e+002 1.22294304e+002 - 1.25544434e+002 1.11062157e+002 1.22319725e+002 1.25599953e+002 - 1.11048607e+002 1.22328453e+002 1.25647766e+002 1.11023254e+002 - 1.22333389e+002 1.25684608e+002 1.10987885e+002 1.22321701e+002 - 1.25723572e+002 1.10925674e+002 1.22294823e+002 1.25719551e+002 - 1.10914886e+002 1.22300667e+002 1.25775650e+002 1.10852646e+002 - 1.22265839e+002 1.25776337e+002 1.10835434e+002 1.22239960e+002 - 1.25820000e+002 1.10814690e+002 1.22251900e+002 1.25870003e+002 - 1.10779121e+002 1.22231667e+002 1.25897316e+002 1.10728722e+002 - 1.22211067e+002 1.25907181e+002 1.10699684e+002 1.22186951e+002 - 1.25927261e+002 1.10671562e+002 1.22187195e+002 1.25958000e+002 - 1.10616722e+002 1.22155289e+002 1.26001320e+002 1.10567352e+002 - 1.22147209e+002 1.26017792e+002 1.10563210e+002 1.22130920e+002 - 1.26049850e+002 1.10512268e+002 1.22097755e+002 1.26040710e+002 - 1.10469566e+002 1.22058243e+002 1.26050575e+002 1.10439056e+002 - 1.22050621e+002 1.26072182e+002 1.10414871e+002 1.22035713e+002 - 1.26114082e+002 1.10365562e+002 1.22010071e+002 1.26114914e+002 - 1.10361168e+002 1.22009621e+002 1.26171204e+002 1.10293190e+002 - 1.21966972e+002 1.26161797e+002 1.10279381e+002 1.21937874e+002 - 1.26209145e+002 1.10256325e+002 1.21936989e+002 1.26236382e+002 - 1.10216438e+002 1.21909500e+002 1.26261719e+002 1.10167023e+002 - 1.21886124e+002 1.26264503e+002 1.10155045e+002 1.21870377e+002 - 1.26296616e+002 1.10147789e+002 1.21886047e+002 1.26346245e+002 - 1.10140572e+002 1.21881966e+002 1.26413269e+002 1.10059990e+002 - 1.21834785e+002 1.26391350e+002 1.10027222e+002 1.21790306e+002 - 1.26393173e+002 1.09987610e+002 1.21766556e+002 1.26404152e+002 - 1.09995003e+002 1.21769066e+002 1.26469147e+002 1.09977852e+002 - 1.21767792e+002 1.26502663e+002 1.09968422e+002 1.21760521e+002 - 1.26560089e+002 1.09972084e+002 1.21786011e+002 1.26603271e+002 - 1.09951180e+002 1.21756989e+002 1.26632820e+002 1.09900986e+002 - 1.21719086e+002 1.26638390e+002 1.09891357e+002 1.21695244e+002 - 1.26676865e+002 1.09886734e+002 1.21705460e+002 1.26719391e+002 - 1.09866005e+002 1.21691376e+002 1.26747612e+002 1.09831787e+002 - 1.21683098e+002 1.26759628e+002 1.09826942e+002 1.21670044e+002 - 1.26791779e+002 1.09800095e+002 1.21658379e+002 1.26804665e+002 - 1.09783195e+002 1.21643555e+002 1.26846603e+002 1.09722412e+002 - 1.21606216e+002 1.26836075e+002 1.09718452e+002 1.21591217e+002 - 1.26867805e+002 1.09711708e+002 1.21599106e+002 1.26900925e+002 - 1.09698906e+002 1.21580193e+002 1.26937317e+002 1.09691551e+002 - 1.21594292e+002 1.26978165e+002 1.09700745e+002 1.21607399e+002 - 1.27044655e+002 1.09700966e+002 1.21627846e+002 1.27082848e+002 - 1.09730019e+002 1.21651596e+002 1.27157478e+002 1.09702644e+002 - 1.21638313e+002 1.27177139e+002 1.09693626e+002 1.21605492e+002 - 1.27209541e+002 1.09682663e+002 1.21604370e+002 1.27249954e+002 - 1.09682861e+002 1.21606949e+002 1.27294182e+002 1.09642464e+002 - 1.21586197e+002 1.27293755e+002 1.09629669e+002 1.21558762e+002 - 1.27311066e+002 1.09600159e+002 1.21543282e+002 1.27312302e+002 - 1.09596992e+002 1.21538086e+002 1.27360291e+002 1.09558212e+002 - 1.21518883e+002 1.27370895e+002 1.09571739e+002 1.21516411e+002 - 1.27405869e+002 1.09559937e+002 1.21513985e+002 1.27428841e+002 - 1.09546837e+002 1.21490456e+002 1.27451996e+002 1.09537071e+002 - 1.21487022e+002 1.27473328e+002 1.09528236e+002 1.21477959e+002 - 1.27500816e+002 1.09534874e+002 1.21498100e+002 1.27542038e+002 - 1.09547195e+002 1.21502701e+002 1.27589706e+002 1.09523605e+002 - 1.21498711e+002 1.27601875e+002 1.09535248e+002 1.21482056e+002 - 1.27647316e+002 1.09535645e+002 1.21491585e+002 1.27681976e+002 - 1.09508080e+002 1.21469475e+002 1.27688484e+002 1.09525192e+002 - 1.21500923e+002 1.27736572e+002 1.09523109e+002 1.21494514e+002 - 1.27755898e+002 1.09519119e+002 1.21506546e+002 1.27787102e+002 - 1.09532471e+002 1.21510139e+002 1.27829956e+002 1.09490158e+002 - 1.21496094e+002 1.27831924e+002 1.09474823e+002 1.21473434e+002 - 1.27838493e+002 1.09455902e+002 1.21466194e+002 1.27850113e+002 - 1.09467781e+002 1.21468544e+002 1.27884300e+002 1.09445961e+002 - 1.21464005e+002 1.27894157e+002 1.09434059e+002 1.21454689e+002 - 1.27908203e+002 1.09445351e+002 1.21477882e+002 1.27940353e+002 - 1.09458931e+002 1.21482376e+002 1.27972458e+002 1.09434372e+002 - 1.21470886e+002 1.27978607e+002 1.09439781e+002 1.21447823e+002 - 1.28008987e+002 1.09433647e+002 1.21455788e+002 1.28030426e+002 - 1.09454384e+002 1.21469978e+002 1.28072098e+002 1.09445076e+002 - 1.21481140e+002 1.28083466e+002 1.09441681e+002 1.21474037e+002 - 1.28096085e+002 1.09442665e+002 1.21478981e+002 1.28113525e+002 - 1.09455582e+002 1.21489594e+002 1.28146606e+002 1.09420891e+002 - 1.21481712e+002 1.28138916e+002 1.09415230e+002 1.21466080e+002 - 1.28146454e+002 1.09398293e+002 1.21463409e+002 1.28143448e+002 - 1.09395195e+002 1.21442802e+002 1.28152542e+002 1.09383774e+002 - 1.21446060e+002 1.28162888e+002 1.09386742e+002 1.21441612e+002 - 1.28175934e+002 1.09376587e+002 1.21446373e+002 1.28171127e+002 - 1.09361206e+002 1.21423058e+002 1.28167435e+002 1.09339615e+002 - 1.21417023e+002 1.28162933e+002 1.09375404e+002 1.21433411e+002 - 1.28202881e+002 1.09375900e+002 1.21445602e+002 1.28214783e+002 - 1.09364075e+002 1.21424980e+002 1.28201645e+002 1.09384010e+002 - 1.21459877e+002 1.28225616e+002 1.09399544e+002 1.21466415e+002 - 1.28247772e+002 1.09406960e+002 1.21481476e+002 1.28253372e+002 - 1.09415253e+002 1.21477997e+002 1.28253708e+002 1.09387459e+002 - 1.21469643e+002 1.28237442e+002 1.09405716e+002 1.21476730e+002 - 1.28248077e+002 1.09383995e+002 1.21458015e+002 1.28226913e+002 - 1.09389488e+002 1.21447182e+002 1.28227173e+002 1.09404327e+002 - 1.21470261e+002 1.28233612e+002 1.09414169e+002 1.21471588e+002 - 1.28232803e+002 1.09394249e+002 1.21456627e+002 1.28200882e+002 - 1.09364525e+002 1.21422318e+002 1.28167877e+002 1.09354233e+002 - 1.21425179e+002 1.28152466e+002 1.09353012e+002 1.21398079e+002 - 1.28134369e+002 1.09366951e+002 1.21418938e+002 1.28141479e+002 - 1.09380684e+002 1.21432297e+002 1.28148956e+002 1.09375244e+002 - 1.21437607e+002 1.28135284e+002 1.09350128e+002 1.21403801e+002 - 1.28106674e+002 1.09350838e+002 1.21417961e+002 1.28096603e+002 - 1.09357780e+002 1.21413979e+002 1.28081955e+002 1.09338524e+002 - 1.21410858e+002 1.28051666e+002 1.09390656e+002 1.21449280e+002 - 1.28076111e+002 1.09392990e+002 1.21465729e+002 1.28067017e+002 - 1.09407150e+002 1.21460083e+002 1.28048599e+002 1.09379036e+002 - 1.21448906e+002 1.28002396e+002 1.09392303e+002 1.21453766e+002 - 1.27995743e+002 1.09393288e+002 1.21464767e+002 1.27974220e+002 - 1.09379990e+002 1.21433708e+002 1.27932472e+002 1.09374878e+002 - 1.21435005e+002 1.27908195e+002 1.09424332e+002 1.21460884e+002 - 1.27924568e+002 1.09417343e+002 1.21461975e+002 1.27889977e+002 - 1.09422089e+002 1.21452766e+002 1.27857063e+002 1.09394951e+002 - 1.21442726e+002 1.27800545e+002 1.09392365e+002 1.21425293e+002 - 1.27775154e+002 1.09371384e+002 1.21404312e+002 1.27720863e+002 - 1.09394890e+002 1.21413193e+002 1.27694267e+002 1.09385582e+002 - 1.21411583e+002 1.27658920e+002 1.09383919e+002 1.21394943e+002 - 1.27624931e+002 1.09380783e+002 1.21398170e+002 1.27593529e+002 - 1.09413284e+002 1.21413040e+002 1.27588974e+002 1.09410385e+002 - 1.21415192e+002 1.27556107e+002 1.09416290e+002 1.21406319e+002 - 1.27516068e+002 1.09423187e+002 1.21418213e+002 1.27490486e+002 - 1.09424622e+002 1.21406670e+002 1.27452873e+002 1.09401283e+002 - 1.21394974e+002 1.27404106e+002 1.09469627e+002 1.21432289e+002 - 1.27421089e+002 1.09470566e+002 1.21436317e+002 1.27389091e+002 - 1.09486900e+002 1.21452065e+002 1.27371483e+002 1.09491348e+002 - 1.21464745e+002 1.27341812e+002 1.09507217e+002 1.21462669e+002 - 1.27323250e+002 1.09518234e+002 1.21472572e+002 1.27294693e+002 - 1.09561546e+002 1.21499352e+002 1.27273224e+002 1.09560982e+002 - 1.21506821e+002 1.27236931e+002 1.09584038e+002 1.21510452e+002 - 1.27226814e+002 1.09594002e+002 1.21524117e+002 1.27198257e+002 - 1.09616287e+002 1.21528709e+002 1.27182755e+002 1.09596031e+002 - 1.21522095e+002 1.27136482e+002 1.09612061e+002 1.21523956e+002 - 1.27105453e+002 1.09636353e+002 1.21556412e+002 1.27090240e+002 - 1.09639076e+002 1.21538651e+002 1.27050163e+002 1.09668945e+002 - 1.21575630e+002 1.27048203e+002 1.09713768e+002 1.21591827e+002 - 1.27036186e+002 1.09732117e+002 1.21610748e+002 1.27012833e+002 - 1.09744156e+002 1.21608475e+002 1.26972672e+002 1.09740631e+002 - 1.21619102e+002 1.26932869e+002 1.09775116e+002 1.21631630e+002 - 1.26922966e+002 1.09790352e+002 1.21647079e+002 1.26890999e+002 - 1.09817352e+002 1.21664024e+002 1.26860886e+002 1.09823822e+002 - 1.21687714e+002 1.26840530e+002 1.09849945e+002 1.21696159e+002 - 1.26830238e+002 1.09849136e+002 1.21698814e+002 1.26789078e+002 - 1.09868713e+002 1.21694450e+002 1.26752632e+002 1.09868553e+002 - 1.21694420e+002 1.26704781e+002 1.09886200e+002 1.21704391e+002 - 1.26675179e+002 1.09919495e+002 1.21740219e+002 1.26657051e+002 - 1.09938942e+002 1.21740479e+002 1.26624352e+002 1.09929787e+002 - 1.21735046e+002 1.26574783e+002 1.09938705e+002 1.21704376e+002 - 1.26511391e+002 1.09960754e+002 1.21733536e+002 1.26484131e+002 - 1.09999458e+002 1.21757393e+002 1.26468742e+002 1.10007416e+002 - 1.21777145e+002 1.26443031e+002 1.10034187e+002 1.21783768e+002 - 1.26425537e+002 1.10076698e+002 1.21823402e+002 1.26411011e+002 - 1.10135963e+002 1.21853691e+002 1.26390877e+002 1.10150398e+002 - 1.21882729e+002 1.26363350e+002 1.10177711e+002 1.21890045e+002 - 1.26343048e+002 1.10208359e+002 1.21917168e+002 1.26321167e+002 - 1.10225365e+002 1.21906517e+002 1.26270149e+002 1.10227112e+002 - 1.21907639e+002 1.26216560e+002 1.10261208e+002 1.21919601e+002 - 1.26184814e+002 1.10292091e+002 1.21957443e+002 1.26167191e+002 - 1.10315796e+002 1.21954399e+002 1.26122238e+002 1.10335739e+002 - 1.21972267e+002 1.26089989e+002 1.10372055e+002 1.21964951e+002 - 1.26054672e+002 1.10380165e+002 1.21974678e+002 1.26007843e+002 - 1.10406548e+002 1.21980614e+002 1.25968185e+002 1.10403145e+002 - 1.21981163e+002 1.25912979e+002 1.10450447e+002 1.22007477e+002 - 1.25914261e+002 1.10493050e+002 1.22039497e+002 1.25895714e+002 - 1.10552719e+002 1.22066399e+002 1.25862709e+002 1.10576683e+002 - 1.22093559e+002 1.25836967e+002 1.10631470e+002 1.22109146e+002 - 1.25833061e+002 1.10655113e+002 1.22129349e+002 1.25803673e+002 - 1.10698349e+002 1.22137466e+002 1.25782928e+002 1.10749924e+002 - 1.22187325e+002 1.25774437e+002 1.10816093e+002 1.22218323e+002 - 1.25767044e+002 1.10880455e+002 1.22264351e+002 1.25773689e+002 - 1.10913811e+002 1.22261581e+002 1.25736412e+002 1.10947006e+002 - 1.22286034e+002 1.25720604e+002 1.10977203e+002 1.22260307e+002 - 1.25664131e+002 1.10997215e+002 1.22266426e+002 1.25622917e+002 - 1.11034630e+002 1.22262802e+002 1.25590729e+002 1.11031342e+002 - 1.22254898e+002 1.25529854e+002 1.11036591e+002 1.22205742e+002 - 1.25469193e+002 1.10975670e+002 1.22135460e+002 1.25349251e+002 - 1.10845802e+002 1.22049721e+002 1.25312233e+002 1.10925041e+002 - 1.22172112e+002 1.25451775e+002 1.10961510e+002 1.22220871e+002 - 1.25536354e+002 1.10969223e+002 1.22257683e+002 1.25599213e+002 - 1.10943489e+002 1.22249191e+002 1.25637177e+002 1.10904198e+002 - 1.22245346e+002 1.25659920e+002 1.10874458e+002 1.22241463e+002 - 1.25711884e+002 1.10825943e+002 1.22224068e+002 1.25720055e+002 - 1.10791641e+002 1.22205795e+002 1.25755531e+002 1.10737137e+002 - 1.22182053e+002 1.25759026e+002 1.10714760e+002 1.22155548e+002 - 1.25806732e+002 1.10699944e+002 1.22167305e+002 1.25857811e+002 - 1.10670326e+002 1.22154388e+002 1.25892921e+002 1.10620567e+002 - 1.22134567e+002 1.25902649e+002 1.10578979e+002 1.22100525e+002 - 1.25919533e+002 1.10527550e+002 1.22076073e+002 1.25919449e+002 - 1.10476074e+002 1.22045425e+002 1.25960686e+002 1.10426109e+002 - 1.22031204e+002 1.25977028e+002 1.10422234e+002 1.22026169e+002 - 1.26014374e+002 1.10388603e+002 1.22005501e+002 1.26027924e+002 - 1.10330246e+002 1.21944443e+002 1.26011040e+002 1.10302750e+002 - 1.21939873e+002 1.26037888e+002 1.10269714e+002 1.21915672e+002 - 1.26066383e+002 1.10224190e+002 1.21894356e+002 1.26079613e+002 - 1.10220085e+002 1.21896729e+002 1.26133224e+002 1.10161865e+002 - 1.21857872e+002 1.26129601e+002 1.10141479e+002 1.21828491e+002 - 1.26174400e+002 1.10120399e+002 1.21833580e+002 1.26211601e+002 - 1.10083267e+002 1.21810776e+002 1.26246445e+002 1.10013962e+002 - 1.21762024e+002 1.26225342e+002 1.10001656e+002 1.21753693e+002 - 1.26264153e+002 1.10014885e+002 1.21782028e+002 1.26326050e+002 - 1.09986412e+002 1.21763023e+002 1.26380890e+002 1.09900116e+002 - 1.21704361e+002 1.26351463e+002 1.09867516e+002 1.21662300e+002 - 1.26354225e+002 1.09845963e+002 1.21651283e+002 1.26377304e+002 - 1.09848099e+002 1.21651489e+002 1.26444466e+002 1.09822044e+002 - 1.21644157e+002 1.26470596e+002 1.09813927e+002 1.21636322e+002 - 1.26523766e+002 1.09795273e+002 1.21632454e+002 1.26552269e+002 - 1.09800667e+002 1.21637398e+002 1.26611176e+002 1.09752975e+002 - 1.21604202e+002 1.26614746e+002 1.09726433e+002 1.21558899e+002 - 1.26628960e+002 1.09725014e+002 1.21573761e+002 1.26674171e+002 - 1.09708824e+002 1.21560219e+002 1.26703377e+002 1.09689415e+002 - 1.21567841e+002 1.26735886e+002 1.09671494e+002 1.21542297e+002 - 1.26752937e+002 1.09653114e+002 1.21540047e+002 1.26773582e+002 - 1.09643738e+002 1.21534607e+002 1.26830238e+002 1.09585800e+002 - 1.21502411e+002 1.26832291e+002 1.09572739e+002 1.21479668e+002 - 1.26850845e+002 1.09571739e+002 1.21487732e+002 1.26890938e+002 - 1.09562660e+002 1.21472527e+002 1.26932281e+002 1.09546822e+002 - 1.21479691e+002 1.26963371e+002 1.09556923e+002 1.21486824e+002 - 1.27024773e+002 1.09547569e+002 1.21494293e+002 1.27055374e+002 - 1.09543274e+002 1.21488884e+002 1.27097656e+002 1.09534111e+002 - 1.21494431e+002 1.27139061e+002 1.09515800e+002 1.21448059e+002 - 1.27165184e+002 1.09517662e+002 1.21463608e+002 1.27211166e+002 - 1.09506248e+002 1.21451653e+002 1.27248848e+002 1.09473549e+002 - 1.21434021e+002 1.27251854e+002 1.09477196e+002 1.21431198e+002 - 1.27284622e+002 1.09454269e+002 1.21416885e+002 1.27292755e+002 - 1.09448547e+002 1.21409920e+002 1.27333595e+002 1.09408508e+002 - 1.21392059e+002 1.27350281e+002 1.09409584e+002 1.21374939e+002 - 1.27376915e+002 1.09412155e+002 1.21385033e+002 1.27410675e+002 - 1.09408897e+002 1.21374542e+002 1.27446342e+002 1.09383347e+002 - 1.21365120e+002 1.27458267e+002 1.09364975e+002 1.21336334e+002 - 1.27470940e+002 1.09376717e+002 1.21364738e+002 1.27516930e+002 - 1.09380989e+002 1.21367180e+002 1.27557037e+002 1.09357872e+002 - 1.21356606e+002 1.27571960e+002 1.09381607e+002 1.21357689e+002 - 1.27628311e+002 1.09376381e+002 1.21361450e+002 1.27657639e+002 - 1.09344322e+002 1.21325684e+002 1.27651230e+002 1.09342796e+002 - 1.21345726e+002 1.27690468e+002 1.09354538e+002 1.21347816e+002 - 1.27725761e+002 1.09353500e+002 1.21360687e+002 1.27752190e+002 - 1.09367500e+002 1.21372490e+002 1.27799622e+002 1.09317032e+002 - 1.21349564e+002 1.27789413e+002 1.09308540e+002 1.21334290e+002 - 1.27807549e+002 1.09304268e+002 1.21341141e+002 1.27824944e+002 - 1.09322853e+002 1.21350372e+002 1.27877388e+002 1.09291496e+002 - 1.21334229e+002 1.27878967e+002 1.09278694e+002 1.21322113e+002 - 1.27893845e+002 1.09280067e+002 1.21334885e+002 1.27919823e+002 - 1.09303185e+002 1.21350525e+002 1.27958862e+002 1.09276817e+002 - 1.21337914e+002 1.27959122e+002 1.09274406e+002 1.21312057e+002 - 1.27974213e+002 1.09277184e+002 1.21328453e+002 1.28012375e+002 - 1.09291206e+002 1.21338287e+002 1.28041443e+002 1.09287987e+002 - 1.21345604e+002 1.28060577e+002 1.09277054e+002 1.21330429e+002 - 1.28065720e+002 1.09273994e+002 1.21337021e+002 1.28071762e+002 - 1.09272911e+002 1.21334488e+002 1.28094894e+002 1.09244698e+002 - 1.21325874e+002 1.28094971e+002 1.09244583e+002 1.21323395e+002 - 1.28106552e+002 1.09230751e+002 1.21318062e+002 1.28105957e+002 - 1.09221619e+002 1.21296524e+002 1.28108978e+002 1.09205795e+002 - 1.21299767e+002 1.28105499e+002 1.09204338e+002 1.21284767e+002 - 1.28125015e+002 1.09204498e+002 1.21299034e+002 1.28128784e+002 - 1.09186638e+002 1.21278954e+002 1.28124741e+002 1.09171165e+002 - 1.21273392e+002 1.28119354e+002 1.09206856e+002 1.21285881e+002 - 1.28164825e+002 1.09210518e+002 1.21299622e+002 1.28179642e+002 - 1.09202827e+002 1.21281258e+002 1.28165970e+002 1.09209808e+002 - 1.21307274e+002 1.28182663e+002 1.09218658e+002 1.21306053e+002 - 1.28188019e+002 1.09234505e+002 1.21333900e+002 1.28208054e+002 - 1.09239799e+002 1.21327332e+002 1.28213928e+002 1.09223366e+002 - 1.21331154e+002 1.28210648e+002 1.09240616e+002 1.21336845e+002 - 1.28227509e+002 1.09227310e+002 1.21327660e+002 1.28211227e+002 - 1.09236420e+002 1.21320885e+002 1.28210281e+002 1.09239265e+002 - 1.21333138e+002 1.28206390e+002 1.09232124e+002 1.21318604e+002 - 1.28185822e+002 1.09236084e+002 1.21325668e+002 1.28178589e+002 - 1.09224113e+002 1.21309059e+002 1.28159088e+002 1.09182480e+002 - 1.21277863e+002 1.28118210e+002 1.09205536e+002 1.21275681e+002 - 1.28119629e+002 1.09214279e+002 1.21292175e+002 1.28122269e+002 - 1.09228935e+002 1.21305855e+002 1.28128601e+002 1.09209229e+002 - 1.21302231e+002 1.28104858e+002 1.09214973e+002 1.21296051e+002 - 1.28100616e+002 1.09205482e+002 1.21297096e+002 1.28079254e+002 - 1.09179222e+002 1.21263229e+002 1.28030777e+002 1.09163010e+002 - 1.21267700e+002 1.28010406e+002 1.09195534e+002 1.21286858e+002 - 1.28022614e+002 1.09220985e+002 1.21322327e+002 1.28032486e+002 - 1.09240250e+002 1.21323334e+002 1.28021561e+002 1.09213402e+002 - 1.21306061e+002 1.27971451e+002 1.09226952e+002 1.21312172e+002 - 1.27963844e+002 1.09238892e+002 1.21337311e+002 1.27959694e+002 - 1.09234993e+002 1.21320915e+002 1.27925156e+002 1.09234604e+002 - 1.21327858e+002 1.27899925e+002 1.09274910e+002 1.21335136e+002 - 1.27902138e+002 1.09265816e+002 1.21337708e+002 1.27864868e+002 - 1.09262070e+002 1.21329758e+002 1.27827057e+002 1.09226418e+002 - 1.21304482e+002 1.27773369e+002 1.09194435e+002 1.21258217e+002 - 1.27715233e+002 1.09194435e+002 1.21251373e+002 1.27662193e+002 - 1.09211441e+002 1.21255447e+002 1.27635956e+002 1.09209190e+002 - 1.21269997e+002 1.27615364e+002 1.09218483e+002 1.21263565e+002 - 1.27588402e+002 1.09216423e+002 1.21264099e+002 1.27560699e+002 - 1.09250717e+002 1.21277802e+002 1.27553856e+002 1.09247559e+002 - 1.21279541e+002 1.27517441e+002 1.09253693e+002 1.21274544e+002 - 1.27485794e+002 1.09263504e+002 1.21283325e+002 1.27455330e+002 - 1.09260796e+002 1.21269409e+002 1.27420105e+002 1.09252556e+002 - 1.21269806e+002 1.27378029e+002 1.09309013e+002 1.21289551e+002 - 1.27381241e+002 1.09322723e+002 1.21312592e+002 1.27366936e+002 - 1.09329048e+002 1.21320602e+002 1.27338867e+002 1.09330841e+002 - 1.21328705e+002 1.27311501e+002 1.09351517e+002 1.21332863e+002 - 1.27302345e+002 1.09362724e+002 1.21347076e+002 1.27270523e+002 - 1.09384171e+002 1.21347679e+002 1.27222572e+002 1.09381226e+002 - 1.21356659e+002 1.27185631e+002 1.09425156e+002 1.21375198e+002 - 1.27193268e+002 1.09418327e+002 1.21375214e+002 1.27148285e+002 - 1.09445381e+002 1.21379669e+002 1.27133713e+002 1.09430664e+002 - 1.21379150e+002 1.27088570e+002 1.09466682e+002 1.21399567e+002 - 1.27078598e+002 1.09481682e+002 1.21418900e+002 1.27057030e+002 - 1.09473679e+002 1.21400139e+002 1.27004852e+002 1.09486092e+002 - 1.21413628e+002 1.26984001e+002 1.09531410e+002 1.21422668e+002 - 1.26970436e+002 1.09549133e+002 1.21454201e+002 1.26951729e+002 - 1.09574898e+002 1.21463234e+002 1.26926437e+002 1.09575569e+002 - 1.21477646e+002 1.26892845e+002 1.09603783e+002 1.21489471e+002 - 1.26878593e+002 1.09638603e+002 1.21527138e+002 1.26858650e+002 - 1.09656326e+002 1.21532272e+002 1.26816551e+002 1.09662315e+002 - 1.21551842e+002 1.26794563e+002 1.09702057e+002 1.21570801e+002 - 1.26792526e+002 1.09708328e+002 1.21579811e+002 1.26762238e+002 - 1.09726944e+002 1.21577003e+002 1.26725822e+002 1.09729904e+002 - 1.21591057e+002 1.26685425e+002 1.09760788e+002 1.21611595e+002 - 1.26669060e+002 1.09792061e+002 1.21648666e+002 1.26650665e+002 - 1.09800789e+002 1.21638939e+002 1.26609406e+002 1.09776939e+002 - 1.21618942e+002 1.26539284e+002 1.09821358e+002 1.21621597e+002 - 1.26503326e+002 1.09852310e+002 1.21655067e+002 1.26490387e+002 - 1.09863235e+002 1.21648941e+002 1.26443558e+002 1.09850044e+002 - 1.21651489e+002 1.26397301e+002 1.09894356e+002 1.21677238e+002 - 1.26403168e+002 1.09931572e+002 1.21709167e+002 1.26374458e+002 - 1.09971550e+002 1.21721336e+002 1.26336937e+002 1.10007790e+002 - 1.21768494e+002 1.26328972e+002 1.10043472e+002 1.21784180e+002 - 1.26320244e+002 1.10062714e+002 1.21804237e+002 1.26290009e+002 - 1.10088844e+002 1.21798790e+002 1.26245476e+002 1.10085442e+002 - 1.21799400e+002 1.26190285e+002 1.10124908e+002 1.21817070e+002 - 1.26158691e+002 1.10165268e+002 1.21857147e+002 1.26145088e+002 - 1.10191544e+002 1.21856827e+002 1.26110680e+002 1.10216698e+002 - 1.21881561e+002 1.26082558e+002 1.10237267e+002 1.21866791e+002 - 1.26033325e+002 1.10257202e+002 1.21883751e+002 1.25999496e+002 - 1.10279442e+002 1.21889946e+002 1.25952629e+002 1.10279968e+002 - 1.21897598e+002 1.25908081e+002 1.10338425e+002 1.21926659e+002 - 1.25910706e+002 1.10374977e+002 1.21961662e+002 1.25888786e+002 - 1.10425072e+002 1.21979340e+002 1.25854439e+002 1.10461205e+002 - 1.22013535e+002 1.25835274e+002 1.10494896e+002 1.22012184e+002 - 1.25809944e+002 1.10525078e+002 1.22034737e+002 1.25783897e+002 - 1.10574432e+002 1.22049149e+002 1.25768806e+002 1.10610893e+002 - 1.22083115e+002 1.25746788e+002 1.10697845e+002 1.22137192e+002 - 1.25756668e+002 1.10746201e+002 1.22168861e+002 1.25742332e+002 - 1.10788254e+002 1.22171204e+002 1.25716652e+002 1.10822708e+002 - 1.22189796e+002 1.25690979e+002 1.10853928e+002 1.22166191e+002 - 1.25643349e+002 1.10884941e+002 1.22183739e+002 1.25613075e+002 - 1.10932076e+002 1.22185547e+002 1.25585060e+002 1.10914337e+002 - 1.22162193e+002 1.25511627e+002 1.10922546e+002 1.22120461e+002 - 1.25454231e+002 1.10869217e+002 1.22053894e+002 1.25337799e+002 - 1.10781784e+002 1.22001495e+002 1.25326485e+002 1.10842163e+002 - 1.22107742e+002 1.25444191e+002 1.10877007e+002 1.22158371e+002 - 1.25528923e+002 1.10886238e+002 1.22197815e+002 1.25592903e+002 - 1.10866966e+002 1.22195778e+002 1.25641861e+002 1.10811241e+002 - 1.22182266e+002 1.25654411e+002 1.10789063e+002 1.22179482e+002 - 1.25705612e+002 1.10747704e+002 1.22174957e+002 1.25728531e+002 - 1.10719978e+002 1.22166931e+002 1.25762764e+002 1.10653564e+002 - 1.22135429e+002 1.25768486e+002 1.10634819e+002 1.22112167e+002 - 1.25822449e+002 1.10596939e+002 1.22100616e+002 1.25843750e+002 - 1.10558174e+002 1.22073837e+002 1.25870392e+002 1.10509407e+002 - 1.22056267e+002 1.25878708e+002 1.10498993e+002 1.22045052e+002 - 1.25920479e+002 1.10458351e+002 1.22030167e+002 1.25935204e+002 - 1.10411331e+002 1.22001808e+002 1.25979340e+002 1.10330971e+002 - 1.21964066e+002 1.25964989e+002 1.10319641e+002 1.21943146e+002 - 1.25993401e+002 1.10281029e+002 1.21924553e+002 1.26002457e+002 - 1.10224777e+002 1.21860634e+002 1.25990669e+002 1.10188812e+002 - 1.21849091e+002 1.26003784e+002 1.10145180e+002 1.21823875e+002 - 1.26030952e+002 1.10089767e+002 1.21782677e+002 1.26026871e+002 - 1.10089203e+002 1.21790771e+002 1.26084129e+002 1.10044220e+002 - 1.21764618e+002 1.26096123e+002 1.10030457e+002 1.21748039e+002 - 1.26156738e+002 1.09995262e+002 1.21734123e+002 1.26176659e+002 - 1.09943359e+002 1.21692711e+002 1.26195534e+002 1.09889038e+002 - 1.21661667e+002 1.26191681e+002 1.09896004e+002 1.21665962e+002 - 1.26243874e+002 1.09865921e+002 1.21662460e+002 1.26279617e+002 - 1.09845390e+002 1.21649590e+002 1.26339287e+002 1.09773575e+002 - 1.21602180e+002 1.26320816e+002 1.09765762e+002 1.21581688e+002 - 1.26353065e+002 1.09738014e+002 1.21567039e+002 1.26372993e+002 - 1.09728432e+002 1.21557487e+002 1.26430283e+002 1.09696648e+002 - 1.21541275e+002 1.26449783e+002 1.09677231e+002 1.21524490e+002 - 1.26487724e+002 1.09666939e+002 1.21530334e+002 1.26525726e+002 - 1.09682259e+002 1.21548943e+002 1.26587349e+002 1.09641602e+002 - 1.21521919e+002 1.26600128e+002 1.09618156e+002 1.21474434e+002 - 1.26623993e+002 1.09589684e+002 1.21465706e+002 1.26642113e+002 - 1.09573059e+002 1.21449135e+002 1.26673042e+002 1.09556549e+002 - 1.21456390e+002 1.26698822e+002 1.09547997e+002 1.21448349e+002 - 1.26731293e+002 1.09531761e+002 1.21446548e+002 1.26763176e+002 - 1.09519333e+002 1.21432785e+002 1.26816216e+002 1.09448975e+002 - 1.21388016e+002 1.26800491e+002 1.09446075e+002 1.21366798e+002 - 1.26823761e+002 1.09424812e+002 1.21363899e+002 1.26849785e+002 - 1.09432480e+002 1.21371140e+002 1.26911537e+002 1.09422813e+002 - 1.21375061e+002 1.26945198e+002 1.09409744e+002 1.21365974e+002 - 1.26983559e+002 1.09390778e+002 1.21357391e+002 1.27010689e+002 - 1.09398743e+002 1.21365746e+002 1.27063988e+002 1.09389091e+002 - 1.21367867e+002 1.27098907e+002 1.09372086e+002 1.21327003e+002 - 1.27134796e+002 1.09363327e+002 1.21330353e+002 1.27171555e+002 - 1.09352852e+002 1.21317329e+002 1.27202164e+002 1.09323448e+002 - 1.21304901e+002 1.27205513e+002 1.09338913e+002 1.21313560e+002 - 1.27256401e+002 1.09316978e+002 1.21302216e+002 1.27266357e+002 - 1.09305283e+002 1.21283508e+002 1.27308830e+002 1.09278229e+002 - 1.21281212e+002 1.27323318e+002 1.09274872e+002 1.21255913e+002 - 1.27347755e+002 1.09259163e+002 1.21260834e+002 1.27369209e+002 - 1.09260956e+002 1.21241646e+002 1.27407997e+002 1.09249367e+002 - 1.21248039e+002 1.27437935e+002 1.09240402e+002 1.21239937e+002 - 1.27461700e+002 1.09235947e+002 1.21240814e+002 1.27482620e+002 - 1.09252556e+002 1.21253677e+002 1.27530998e+002 1.09213074e+002 - 1.21233070e+002 1.27530449e+002 1.09243790e+002 1.21239159e+002 - 1.27601738e+002 1.09255348e+002 1.21268738e+002 1.27649391e+002 - 1.09233948e+002 1.21246758e+002 1.27662148e+002 1.09212440e+002 - 1.21235992e+002 1.27662369e+002 1.09218246e+002 1.21238602e+002 - 1.27703934e+002 1.09227440e+002 1.21255135e+002 1.27731743e+002 - 1.09239700e+002 1.21268784e+002 1.27780823e+002 1.09183090e+002 - 1.21236641e+002 1.27765099e+002 1.09198631e+002 1.21240387e+002 - 1.27806252e+002 1.09194778e+002 1.21256424e+002 1.27835960e+002 - 1.09215637e+002 1.21264252e+002 1.27883583e+002 1.09168816e+002 - 1.21237579e+002 1.27868492e+002 1.09144592e+002 1.21208878e+002 - 1.27870979e+002 1.09151817e+002 1.21230644e+002 1.27910843e+002 - 1.09145950e+002 1.21215134e+002 1.27921074e+002 1.09120964e+002 - 1.21206833e+002 1.27919586e+002 1.09120834e+002 1.21178070e+002 - 1.27941513e+002 1.09136131e+002 1.21208191e+002 1.27981865e+002 - 1.09131088e+002 1.21199074e+002 1.27999710e+002 1.09139442e+002 - 1.21220192e+002 1.28024765e+002 1.09145317e+002 1.21220741e+002 - 1.28048111e+002 1.09133148e+002 1.21222031e+002 1.28048706e+002 - 1.09134224e+002 1.21220505e+002 1.28074432e+002 1.09091385e+002 - 1.21203018e+002 1.28057251e+002 1.09103638e+002 1.21201225e+002 - 1.28076233e+002 1.09097008e+002 1.21207764e+002 1.28078659e+002 - 1.09093140e+002 1.21187782e+002 1.28092087e+002 1.09055283e+002 - 1.21165855e+002 1.28070160e+002 1.09060844e+002 1.21164719e+002 - 1.28086075e+002 1.09053749e+002 1.21170822e+002 1.28088470e+002 - 1.09038177e+002 1.21148148e+002 1.28087997e+002 1.09035904e+002 - 1.21157776e+002 1.28096466e+002 1.09058914e+002 1.21154465e+002 - 1.28123856e+002 1.09067535e+002 1.21168823e+002 1.28139893e+002 - 1.09079247e+002 1.21179977e+002 1.28155273e+002 1.09056946e+002 - 1.21174873e+002 1.28142868e+002 1.09065926e+002 1.21175858e+002 - 1.28154465e+002 1.09088715e+002 1.21207481e+002 1.28171722e+002 - 1.09102379e+002 1.21216682e+002 1.28192917e+002 1.09103928e+002 - 1.21230934e+002 1.28198059e+002 1.09113853e+002 1.21228996e+002 - 1.28205734e+002 1.09103523e+002 1.21226837e+002 1.28195648e+002 - 1.09107162e+002 1.21212021e+002 1.28191055e+002 1.09101265e+002 - 1.21212959e+002 1.28175552e+002 1.09098267e+002 1.21206306e+002 - 1.28163284e+002 1.09104240e+002 1.21219307e+002 1.28158340e+002 - 1.09107849e+002 1.21216331e+002 1.28158234e+002 1.09083817e+002 - 1.21202431e+002 1.28126984e+002 1.09079788e+002 1.21171387e+002 - 1.28112671e+002 1.09087204e+002 1.21192245e+002 1.28111938e+002 - 1.09097717e+002 1.21201485e+002 1.28111618e+002 1.09071678e+002 - 1.21190094e+002 1.28076904e+002 1.09078346e+002 1.21187431e+002 - 1.28084579e+002 1.09065201e+002 1.21194702e+002 1.28056671e+002 - 1.09039986e+002 1.21150696e+002 1.28005875e+002 1.09021912e+002 - 1.21154518e+002 1.27979202e+002 1.09069099e+002 1.21183426e+002 - 1.28000046e+002 1.09079033e+002 1.21204353e+002 1.27999512e+002 - 1.09116066e+002 1.21219040e+002 1.28009476e+002 1.09074142e+002 - 1.21189995e+002 1.27943047e+002 1.09103592e+002 1.21215187e+002 - 1.27957352e+002 1.09113190e+002 1.21235214e+002 1.27948723e+002 - 1.09109123e+002 1.21222816e+002 1.27910919e+002 1.09068542e+002 - 1.21195206e+002 1.27851059e+002 1.09108475e+002 1.21206863e+002 - 1.27850975e+002 1.09131767e+002 1.21236725e+002 1.27842545e+002 - 1.09125832e+002 1.21220078e+002 1.27806740e+002 1.09082657e+002 - 1.21186287e+002 1.27731606e+002 1.09070969e+002 1.21162605e+002 - 1.27694473e+002 1.09090767e+002 1.21179794e+002 1.27671921e+002 - 1.09100754e+002 1.21176407e+002 1.27642815e+002 1.09092621e+002 - 1.21183701e+002 1.27610054e+002 1.09088753e+002 1.21162033e+002 - 1.27568382e+002 1.09100807e+002 1.21173897e+002 1.27551193e+002 - 1.09120537e+002 1.21176857e+002 1.27537544e+002 1.09112534e+002 - 1.21170891e+002 1.27494263e+002 1.09113464e+002 1.21163010e+002 - 1.27454582e+002 1.09148994e+002 1.21197273e+002 1.27448242e+002 - 1.09139740e+002 1.21173561e+002 1.27397614e+002 1.09135147e+002 - 1.21179329e+002 1.27362694e+002 1.09167053e+002 1.21178993e+002 - 1.27347794e+002 1.09180229e+002 1.21206505e+002 1.27332458e+002 - 1.09197067e+002 1.21206520e+002 1.27312775e+002 1.09195602e+002 - 1.21221725e+002 1.27280418e+002 1.09220642e+002 1.21229820e+002 - 1.27279991e+002 1.09208603e+002 1.21218781e+002 1.27230988e+002 - 1.09222321e+002 1.21211716e+002 1.27177048e+002 1.09233330e+002 - 1.21230209e+002 1.27147926e+002 1.09275795e+002 1.21249016e+002 - 1.27143394e+002 1.09280579e+002 1.21265602e+002 1.27117615e+002 - 1.09307838e+002 1.21267982e+002 1.27097008e+002 1.09297775e+002 - 1.21271599e+002 1.27057434e+002 1.09315720e+002 1.21273766e+002 - 1.27035019e+002 1.09346268e+002 1.21308922e+002 1.27019920e+002 - 1.09335678e+002 1.21286209e+002 1.26969376e+002 1.09334602e+002 - 1.21293663e+002 1.26934082e+002 1.09380165e+002 1.21300560e+002 - 1.26919197e+002 1.09399284e+002 1.21327293e+002 1.26898392e+002 - 1.09428307e+002 1.21345840e+002 1.26880379e+002 1.09456833e+002 - 1.21390945e+002 1.26872253e+002 1.09478035e+002 1.21395409e+002 - 1.26848564e+002 1.09498291e+002 1.21413551e+002 1.26823410e+002 - 1.09515503e+002 1.21420647e+002 1.26784081e+002 1.09514328e+002 - 1.21436172e+002 1.26738663e+002 1.09550667e+002 1.21449036e+002 - 1.26736351e+002 1.09571960e+002 1.21477486e+002 1.26719643e+002 - 1.09595192e+002 1.21478172e+002 1.26698524e+002 1.09605896e+002 - 1.21496689e+002 1.26661758e+002 1.09636002e+002 1.21516731e+002 - 1.26639862e+002 1.09662865e+002 1.21549133e+002 1.26612305e+002 - 1.09665588e+002 1.21537003e+002 1.26572174e+002 1.09662552e+002 - 1.21533844e+002 1.26522392e+002 1.09703766e+002 1.21532059e+002 - 1.26489166e+002 1.09726883e+002 1.21562256e+002 1.26460724e+002 - 1.09748940e+002 1.21565392e+002 1.26429329e+002 1.09738701e+002 - 1.21566360e+002 1.26379517e+002 1.09768242e+002 1.21578903e+002 - 1.26366699e+002 1.09795410e+002 1.21599258e+002 1.26332245e+002 - 1.09832626e+002 1.21613686e+002 1.26289917e+002 1.09872040e+002 - 1.21664047e+002 1.26286987e+002 1.09917000e+002 1.21680832e+002 - 1.26282104e+002 1.09947784e+002 1.21713867e+002 1.26259872e+002 - 1.09976067e+002 1.21716362e+002 1.26226768e+002 1.09981323e+002 - 1.21721558e+002 1.26179573e+002 1.10029305e+002 1.21756126e+002 - 1.26156494e+002 1.10078613e+002 1.21804810e+002 1.26158325e+002 - 1.10084908e+002 1.21779953e+002 1.26097031e+002 1.10097343e+002 - 1.21797791e+002 1.26055412e+002 1.10114845e+002 1.21769325e+002 - 1.26004356e+002 1.10136520e+002 1.21792557e+002 1.25968697e+002 - 1.10173103e+002 1.21812889e+002 1.25943474e+002 1.10172241e+002 - 1.21823677e+002 1.25896118e+002 1.10230537e+002 1.21859398e+002 - 1.25904396e+002 1.10286209e+002 1.21907112e+002 1.25896339e+002 - 1.10329308e+002 1.21920990e+002 1.25852081e+002 1.10366341e+002 - 1.21948593e+002 1.25828178e+002 1.10398384e+002 1.21944160e+002 - 1.25794006e+002 1.10431030e+002 1.21976379e+002 1.25778236e+002 - 1.10482979e+002 1.21988525e+002 1.25762329e+002 1.10515450e+002 - 1.22013733e+002 1.25735588e+002 1.10589188e+002 1.22054405e+002 - 1.25734642e+002 1.10642685e+002 1.22092522e+002 1.25726486e+002 - 1.10680443e+002 1.22094604e+002 1.25692574e+002 1.10716354e+002 - 1.22121681e+002 1.25679703e+002 1.10771904e+002 1.22113991e+002 - 1.25643623e+002 1.10810760e+002 1.22142014e+002 1.25626427e+002 - 1.10860313e+002 1.22144226e+002 1.25598877e+002 1.10839058e+002 - 1.22115700e+002 1.25517487e+002 1.10841202e+002 1.22064659e+002 - 1.25455521e+002 1.10773354e+002 1.21989441e+002 1.25328461e+002 - 1.10676353e+002 1.21943199e+002 1.25313522e+002 1.10727150e+002 - 1.22038170e+002 1.25421860e+002 1.10763367e+002 1.22079910e+002 - 1.25503860e+002 1.10767387e+002 1.22126381e+002 1.25568703e+002 - 1.10749260e+002 1.22124565e+002 1.25618668e+002 1.10705864e+002 - 1.22123703e+002 1.25640862e+002 1.10684326e+002 1.22122833e+002 - 1.25701897e+002 1.10627052e+002 1.22104599e+002 1.25706253e+002 - 1.10609505e+002 1.22099854e+002 1.25754921e+002 1.10549072e+002 - 1.22070831e+002 1.25756882e+002 1.10515503e+002 1.22033699e+002 - 1.25797058e+002 1.10464088e+002 1.22013771e+002 1.25809929e+002 - 1.10417381e+002 1.21981514e+002 1.25829361e+002 1.10369896e+002 - 1.21962563e+002 1.25833649e+002 1.10367325e+002 1.21961319e+002 - 1.25890396e+002 1.10317245e+002 1.21938675e+002 1.25895294e+002 - 1.10272438e+002 1.21908554e+002 1.25934143e+002 1.10183029e+002 - 1.21857140e+002 1.25911804e+002 1.10175552e+002 1.21846558e+002 - 1.25949509e+002 1.10134735e+002 1.21822456e+002 1.25947617e+002 - 1.10098495e+002 1.21781265e+002 1.25968277e+002 1.10051590e+002 - 1.21758652e+002 1.25970383e+002 1.10022499e+002 1.21738182e+002 - 1.26012299e+002 1.09958206e+002 1.21695122e+002 1.25997612e+002 - 1.09955437e+002 1.21695313e+002 1.26051514e+002 1.09895630e+002 - 1.21660988e+002 1.26059395e+002 1.09891243e+002 1.21648323e+002 - 1.26118378e+002 1.09850449e+002 1.21633690e+002 1.26143768e+002 - 1.09791374e+002 1.21585022e+002 1.26150223e+002 1.09754959e+002 - 1.21575943e+002 1.26167641e+002 1.09741806e+002 1.21552948e+002 - 1.26202415e+002 1.09706055e+002 1.21545258e+002 1.26229164e+002 - 1.09696251e+002 1.21550255e+002 1.26303421e+002 1.09633881e+002 - 1.21515839e+002 1.26304466e+002 1.09632446e+002 1.21500877e+002 - 1.26344246e+002 1.09597740e+002 1.21473877e+002 1.26349068e+002 - 1.09601433e+002 1.21470650e+002 1.26417641e+002 1.09571564e+002 - 1.21456749e+002 1.26434647e+002 1.09545311e+002 1.21438034e+002 - 1.26472267e+002 1.09520721e+002 1.21429367e+002 1.26487793e+002 - 1.09511192e+002 1.21415215e+002 1.26528603e+002 1.09458412e+002 - 1.21378609e+002 1.26525558e+002 1.09462990e+002 1.21367729e+002 - 1.26579483e+002 1.09429993e+002 1.21348297e+002 1.26593956e+002 - 1.09398956e+002 1.21322227e+002 1.26621132e+002 1.09362717e+002 - 1.21312584e+002 1.26628258e+002 1.09379486e+002 1.21325035e+002 - 1.26681213e+002 1.09362366e+002 1.21325920e+002 1.26712624e+002 - 1.09370071e+002 1.21322258e+002 1.26783844e+002 1.09298340e+002 - 1.21280746e+002 1.26770828e+002 1.09284241e+002 1.21252449e+002 - 1.26786476e+002 1.09268173e+002 1.21250893e+002 1.26810486e+002 - 1.09271439e+002 1.21246407e+002 1.26867104e+002 1.09262497e+002 - 1.21254013e+002 1.26903786e+002 1.09235809e+002 1.21230568e+002 - 1.26931885e+002 1.09221619e+002 1.21229721e+002 1.26959595e+002 - 1.09224144e+002 1.21222275e+002 1.26999374e+002 1.09208778e+002 - 1.21224953e+002 1.27039650e+002 1.09213799e+002 1.21206993e+002 - 1.27087990e+002 1.09198494e+002 1.21207069e+002 1.27124283e+002 - 1.09185440e+002 1.21186836e+002 1.27153122e+002 1.09145828e+002 - 1.21161942e+002 1.27151299e+002 1.09167053e+002 1.21176292e+002 - 1.27204247e+002 1.09154129e+002 1.21171211e+002 1.27216599e+002 - 1.09149399e+002 1.21158073e+002 1.27268044e+002 1.09110107e+002 - 1.21146820e+002 1.27279129e+002 1.09127266e+002 1.21145088e+002 - 1.27321968e+002 1.09104385e+002 1.21140450e+002 1.27337639e+002 - 1.09108047e+002 1.21131912e+002 1.27381226e+002 1.09105690e+002 - 1.21144196e+002 1.27422386e+002 1.09115204e+002 1.21149055e+002 - 1.27461563e+002 1.09096237e+002 1.21140289e+002 1.27468048e+002 - 1.09083771e+002 1.21123718e+002 1.27489113e+002 1.09051361e+002 - 1.21105423e+002 1.27498093e+002 1.09093246e+002 1.21127899e+002 - 1.27567070e+002 1.09100380e+002 1.21144073e+002 1.27612213e+002 - 1.09084084e+002 1.21134109e+002 1.27632881e+002 1.09056786e+002 - 1.21128891e+002 1.27638763e+002 1.09064751e+002 1.21123169e+002 - 1.27666916e+002 1.09070282e+002 1.21138382e+002 1.27696190e+002 - 1.09074730e+002 1.21141754e+002 1.27742630e+002 1.09024948e+002 - 1.21121445e+002 1.27737160e+002 1.09039047e+002 1.21130760e+002 - 1.27774544e+002 1.09030357e+002 1.21134880e+002 1.27792824e+002 - 1.09032692e+002 1.21125755e+002 1.27831100e+002 1.09020317e+002 - 1.21127876e+002 1.27849152e+002 1.09001595e+002 1.21110527e+002 - 1.27857407e+002 1.08975853e+002 1.21092857e+002 1.27858368e+002 - 1.08961472e+002 1.21073936e+002 1.27862221e+002 1.08943275e+002 - 1.21063644e+002 1.27869141e+002 1.08958122e+002 1.21056953e+002 - 1.27907707e+002 1.08968399e+002 1.21076660e+002 1.27943413e+002 - 1.08978340e+002 1.21078011e+002 1.27970573e+002 1.08971313e+002 - 1.21089439e+002 1.27982964e+002 1.08977638e+002 1.21087624e+002 - 1.28003769e+002 1.08980812e+002 1.21104439e+002 1.28013596e+002 - 1.08959373e+002 1.21080757e+002 1.28021255e+002 1.08921295e+002 - 1.21071777e+002 1.28014267e+002 1.08930756e+002 1.21063011e+002 - 1.28027359e+002 1.08925186e+002 1.21071388e+002 1.28030624e+002 - 1.08932686e+002 1.21063438e+002 1.28051956e+002 1.08895866e+002 - 1.21043488e+002 1.28034958e+002 1.08889648e+002 1.21029854e+002 - 1.28045364e+002 1.08882828e+002 1.21032928e+002 1.28043701e+002 - 1.08867828e+002 1.21015442e+002 1.28042831e+002 1.08880157e+002 - 1.21034859e+002 1.28064148e+002 1.08913490e+002 1.21036774e+002 - 1.28101410e+002 1.08926941e+002 1.21064873e+002 1.28125366e+002 - 1.08942657e+002 1.21081429e+002 1.28141525e+002 1.08929070e+002 - 1.21081406e+002 1.28136169e+002 1.08930649e+002 1.21077110e+002 - 1.28142624e+002 1.08944687e+002 1.21096733e+002 1.28143814e+002 - 1.08955002e+002 1.21097450e+002 1.28163849e+002 1.08944893e+002 - 1.21117500e+002 1.28169617e+002 1.08953773e+002 1.21105972e+002 - 1.28169662e+002 1.08944061e+002 1.21108223e+002 1.28162231e+002 - 1.08937950e+002 1.21079361e+002 1.28146179e+002 1.08931259e+002 - 1.21085442e+002 1.28134720e+002 1.08926773e+002 1.21073723e+002 - 1.28121078e+002 1.08924431e+002 1.21080681e+002 1.28109192e+002 - 1.08931198e+002 1.21074875e+002 1.28105621e+002 1.08920044e+002 - 1.21080528e+002 1.28090820e+002 1.08923965e+002 1.21061234e+002 - 1.28083466e+002 1.08924980e+002 1.21067131e+002 1.28073029e+002 - 1.08919754e+002 1.21062988e+002 1.28056458e+002 1.08896675e+002 - 1.21057831e+002 1.28027649e+002 1.08895630e+002 1.21046936e+002 - 1.28017136e+002 1.08899414e+002 1.21055267e+002 1.28000839e+002 - 1.08893654e+002 1.21043541e+002 1.27980881e+002 1.08885353e+002 - 1.21055305e+002 1.27960922e+002 1.08923470e+002 1.21075272e+002 - 1.27985939e+002 1.08931419e+002 1.21097755e+002 1.27974297e+002 - 1.08962105e+002 1.21100128e+002 1.27980080e+002 1.08936028e+002 - 1.21092995e+002 1.27932198e+002 1.08953636e+002 1.21106400e+002 - 1.27935104e+002 1.08952316e+002 1.21116386e+002 1.27911682e+002 - 1.08938004e+002 1.21088089e+002 1.27869377e+002 1.08918381e+002 - 1.21081955e+002 1.27824532e+002 1.08948944e+002 1.21082207e+002 - 1.27818398e+002 1.08954597e+002 1.21096077e+002 1.27790512e+002 - 1.08945374e+002 1.21083008e+002 1.27755043e+002 1.08922226e+002 - 1.21066795e+002 1.27690659e+002 1.08927849e+002 1.21054855e+002 - 1.27672119e+002 1.08956932e+002 1.21084030e+002 1.27656761e+002 - 1.08940048e+002 1.21053284e+002 1.27597824e+002 1.08919067e+002 - 1.21054771e+002 1.27557854e+002 1.08918930e+002 1.21033539e+002 - 1.27528938e+002 1.08942863e+002 1.21061684e+002 1.27517097e+002 - 1.08950890e+002 1.21048126e+002 1.27486755e+002 1.08948555e+002 - 1.21049332e+002 1.27450401e+002 1.08953560e+002 1.21041695e+002 - 1.27417526e+002 1.08985748e+002 1.21071526e+002 1.27407990e+002 - 1.08996323e+002 1.21070450e+002 1.27376129e+002 1.08999756e+002 - 1.21075798e+002 1.27341988e+002 1.09009438e+002 1.21056717e+002 - 1.27309067e+002 1.09007599e+002 1.21070740e+002 1.27285278e+002 - 1.09033394e+002 1.21084114e+002 1.27266479e+002 1.09030884e+002 - 1.21094757e+002 1.27239014e+002 1.09054825e+002 1.21109116e+002 - 1.27238167e+002 1.09064003e+002 1.21114563e+002 1.27200943e+002 - 1.09075493e+002 1.21105698e+002 1.27150002e+002 1.09052223e+002 - 1.21097481e+002 1.27085983e+002 1.09102875e+002 1.21118309e+002 - 1.27096161e+002 1.09100105e+002 1.21126213e+002 1.27062401e+002 - 1.09128189e+002 1.21131851e+002 1.27043907e+002 1.09129105e+002 - 1.21148636e+002 1.27015297e+002 1.09151024e+002 1.21154518e+002 - 1.26989830e+002 1.09162613e+002 1.21171738e+002 1.26961998e+002 - 1.09174416e+002 1.21166481e+002 1.26930489e+002 1.09193321e+002 - 1.21189941e+002 1.26913254e+002 1.09228477e+002 1.21196373e+002 - 1.26889359e+002 1.09239975e+002 1.21211411e+002 1.26862907e+002 - 1.09272011e+002 1.21236305e+002 1.26841530e+002 1.09294075e+002 - 1.21273018e+002 1.26827393e+002 1.09319969e+002 1.21279724e+002 - 1.26810822e+002 1.09344795e+002 1.21299568e+002 1.26781349e+002 - 1.09349777e+002 1.21295860e+002 1.26722313e+002 1.09366760e+002 - 1.21331718e+002 1.26706352e+002 1.09396683e+002 1.21340210e+002 - 1.26692902e+002 1.09409546e+002 1.21356567e+002 1.26667953e+002 - 1.09437035e+002 1.21359268e+002 1.26647385e+002 1.09455566e+002 - 1.21383583e+002 1.26625412e+002 1.09467148e+002 1.21389503e+002 - 1.26583527e+002 1.09467194e+002 1.21390465e+002 1.26533463e+002 - 1.09489464e+002 1.21395569e+002 1.26500778e+002 1.09491783e+002 - 1.21402542e+002 1.26456322e+002 1.09545998e+002 1.21423355e+002 - 1.26436485e+002 1.09568512e+002 1.21443787e+002 1.26406639e+002 - 1.09603424e+002 1.21463936e+002 1.26382172e+002 1.09593643e+002 - 1.21465393e+002 1.26336090e+002 1.09604820e+002 1.21460861e+002 - 1.26308601e+002 1.09647522e+002 1.21495193e+002 1.26286736e+002 - 1.09681412e+002 1.21502457e+002 1.26241203e+002 1.09711159e+002 - 1.21545944e+002 1.26227066e+002 1.09769409e+002 1.21578903e+002 - 1.26235634e+002 1.09803810e+002 1.21618752e+002 1.26227402e+002 - 1.09840591e+002 1.21621178e+002 1.26194542e+002 1.09845512e+002 - 1.21633492e+002 1.26146660e+002 1.09887749e+002 1.21655685e+002 - 1.26126198e+002 1.09922531e+002 1.21693489e+002 1.26099617e+002 - 1.09946236e+002 1.21691811e+002 1.26067482e+002 1.09951767e+002 - 1.21695618e+002 1.26019363e+002 1.09988380e+002 1.21686478e+002 - 1.25982376e+002 1.09994354e+002 1.21700226e+002 1.25932648e+002 - 1.10041962e+002 1.21732971e+002 1.25918770e+002 1.10051453e+002 - 1.21746628e+002 1.25882469e+002 1.10094414e+002 1.21767029e+002 - 1.25878105e+002 1.10149872e+002 1.21813965e+002 1.25861732e+002 - 1.10207321e+002 1.21835594e+002 1.25826843e+002 1.10233795e+002 - 1.21869247e+002 1.25801491e+002 1.10270752e+002 1.21868652e+002 - 1.25776100e+002 1.10317818e+002 1.21914124e+002 1.25770805e+002 - 1.10375771e+002 1.21928574e+002 1.25759514e+002 1.10405243e+002 - 1.21954208e+002 1.25730591e+002 1.10472031e+002 1.21989380e+002 - 1.25724022e+002 1.10534332e+002 1.22034462e+002 1.25718788e+002 - 1.10564331e+002 1.22026672e+002 1.25678513e+002 1.10602119e+002 - 1.22053223e+002 1.25663902e+002 1.10675217e+002 1.22067970e+002 - 1.25652374e+002 1.10714149e+002 1.22094032e+002 1.25626808e+002 - 1.10738762e+002 1.22073654e+002 1.25575211e+002 1.10707779e+002 - 1.22035889e+002 1.25488998e+002 1.10717552e+002 1.21994377e+002 - 1.25427147e+002 1.10646683e+002 1.21905281e+002 1.25288422e+002 - 1.10575775e+002 1.21877129e+002 1.25279488e+002 1.10626236e+002 - 1.21959877e+002 1.25387794e+002 1.10670311e+002 1.22016357e+002 - 1.25481560e+002 1.10672333e+002 1.22045654e+002 1.25539795e+002 - 1.10639641e+002 1.22034615e+002 1.25574059e+002 1.10593857e+002 - 1.22035759e+002 1.25599876e+002 1.10553291e+002 1.22012680e+002 - 1.25640236e+002 1.10487640e+002 1.21991798e+002 1.25640923e+002 - 1.10481522e+002 1.21993927e+002 1.25694298e+002 1.10420441e+002 - 1.21965927e+002 1.25701004e+002 1.10366501e+002 1.21914009e+002 - 1.25723610e+002 1.10343872e+002 1.21921524e+002 1.25764565e+002 - 1.10309105e+002 1.21892464e+002 1.25789040e+002 1.10255829e+002 - 1.21869675e+002 1.25791458e+002 1.10233345e+002 1.21853554e+002 - 1.25828979e+002 1.10177574e+002 1.21825089e+002 1.25831429e+002 - 1.10120888e+002 1.21784576e+002 1.25865143e+002 1.10059891e+002 - 1.21754089e+002 1.25857239e+002 1.10057892e+002 1.21745651e+002 - 1.25899216e+002 1.10000832e+002 1.21715401e+002 1.25891609e+002 - 1.09986160e+002 1.21690147e+002 1.25922920e+002 1.09941589e+002 - 1.21665947e+002 1.25935608e+002 1.09897850e+002 1.21637810e+002 - 1.25960434e+002 1.09833084e+002 1.21598320e+002 1.25950478e+002 - 1.09839241e+002 1.21606255e+002 1.26015305e+002 1.09777840e+002 - 1.21571098e+002 1.26019051e+002 1.09729706e+002 1.21521370e+002 - 1.26036324e+002 1.09716690e+002 1.21529060e+002 1.26085678e+002 - 1.09691101e+002 1.21510780e+002 1.26128517e+002 1.09649582e+002 - 1.21490372e+002 1.26144142e+002 1.09619621e+002 1.21457001e+002 - 1.26162849e+002 1.09583992e+002 1.21446724e+002 1.26182640e+002 - 1.09570786e+002 1.21450409e+002 1.26259636e+002 1.09515465e+002 - 1.21426033e+002 1.26271797e+002 1.09491920e+002 1.21392426e+002 - 1.26292145e+002 1.09466599e+002 1.21367592e+002 1.26304367e+002 - 1.09464096e+002 1.21360291e+002 1.26362778e+002 1.09435326e+002 - 1.21346504e+002 1.26385445e+002 1.09424110e+002 1.21334290e+002 - 1.26433723e+002 1.09390488e+002 1.21321823e+002 1.26441086e+002 - 1.09383125e+002 1.21309700e+002 1.26486206e+002 1.09333794e+002 - 1.21277641e+002 1.26489822e+002 1.09316055e+002 1.21245430e+002 - 1.26523346e+002 1.09277031e+002 1.21224991e+002 1.26531952e+002 - 1.09252892e+002 1.21197365e+002 1.26555252e+002 1.09214447e+002 - 1.21186539e+002 1.26568451e+002 1.09222916e+002 1.21195099e+002 - 1.26620255e+002 1.09202827e+002 1.21191315e+002 1.26643661e+002 - 1.09209404e+002 1.21194763e+002 1.26717819e+002 1.09159698e+002 - 1.21165192e+002 1.26719994e+002 1.09148750e+002 1.21141090e+002 - 1.26749016e+002 1.09126732e+002 1.21133133e+002 1.26765602e+002 - 1.09121086e+002 1.21111366e+002 1.26807411e+002 1.09105438e+002 - 1.21120468e+002 1.26842339e+002 1.09103592e+002 1.21116684e+002 - 1.26893410e+002 1.09108681e+002 1.21135330e+002 1.26934235e+002 - 1.09104752e+002 1.21128441e+002 1.26976631e+002 1.09081497e+002 - 1.21119125e+002 1.26997688e+002 1.09072678e+002 1.21090996e+002 - 1.27034294e+002 1.09056244e+002 1.21078148e+002 1.27063988e+002 - 1.09061516e+002 1.21077248e+002 1.27110558e+002 1.09033867e+002 - 1.21069267e+002 1.27125992e+002 1.09025032e+002 1.21054153e+002 - 1.27151947e+002 1.09025452e+002 1.21065109e+002 1.27187866e+002 - 1.09013718e+002 1.21042465e+002 1.27225677e+002 1.08991592e+002 - 1.21045326e+002 1.27252396e+002 1.09003357e+002 1.21046822e+002 - 1.27301132e+002 1.08994392e+002 1.21048584e+002 1.27322281e+002 - 1.08986473e+002 1.21034660e+002 1.27361427e+002 1.08963539e+002 - 1.21022011e+002 1.27375954e+002 1.08960922e+002 1.21012222e+002 - 1.27402794e+002 1.08949219e+002 1.21015144e+002 1.27424660e+002 - 1.08953476e+002 1.21006790e+002 1.27455154e+002 1.08926529e+002 - 1.20991516e+002 1.27465958e+002 1.08944649e+002 1.20999779e+002 - 1.27516899e+002 1.08962753e+002 1.21028328e+002 1.27567429e+002 - 1.08958260e+002 1.21026283e+002 1.27597862e+002 1.08945374e+002 - 1.21038544e+002 1.27616402e+002 1.08930534e+002 1.21011070e+002 - 1.27626999e+002 1.08940201e+002 1.21034721e+002 1.27661034e+002 - 1.08925774e+002 1.21017616e+002 1.27697113e+002 1.08890869e+002 - 1.21012321e+002 1.27702843e+002 1.08902489e+002 1.21015350e+002 - 1.27738174e+002 1.08887321e+002 1.21010307e+002 1.27745804e+002 - 1.08895332e+002 1.21004486e+002 1.27784592e+002 1.08877136e+002 - 1.21001564e+002 1.27797081e+002 1.08872124e+002 1.20992485e+002 - 1.27817276e+002 1.08840393e+002 1.20976227e+002 1.27816628e+002 - 1.08830734e+002 1.20952301e+002 1.27826591e+002 1.08803940e+002 - 1.20936073e+002 1.27825386e+002 1.08821175e+002 1.20934181e+002 - 1.27860115e+002 1.08816223e+002 1.20941956e+002 1.27886337e+002 - 1.08818039e+002 1.20935478e+002 1.27903625e+002 1.08799454e+002 - 1.20931244e+002 1.27904060e+002 1.08826378e+002 1.20956207e+002 - 1.27941803e+002 1.08836281e+002 1.20978752e+002 1.27965752e+002 - 1.08813263e+002 1.20956161e+002 1.27972260e+002 1.08783356e+002 - 1.20953339e+002 1.27970238e+002 1.08783432e+002 1.20936226e+002 - 1.27980766e+002 1.08782791e+002 1.20948692e+002 1.27990417e+002 - 1.08781197e+002 1.20932243e+002 1.28002090e+002 1.08742317e+002 - 1.20906319e+002 1.27976730e+002 1.08724785e+002 1.20889641e+002 - 1.27978790e+002 1.08728546e+002 1.20899597e+002 1.27987137e+002 - 1.08743645e+002 1.20903015e+002 1.28007645e+002 1.08757767e+002 - 1.20928749e+002 1.28040558e+002 1.08790451e+002 1.20938103e+002 - 1.28076187e+002 1.08792389e+002 1.20948654e+002 1.28088760e+002 - 1.08792885e+002 1.20943016e+002 1.28089615e+002 1.08777962e+002 - 1.20952446e+002 1.28081329e+002 1.08792236e+002 1.20961319e+002 - 1.28098663e+002 1.08795998e+002 1.20976265e+002 1.28098236e+002 - 1.08787766e+002 1.20961304e+002 1.28098251e+002 1.08793823e+002 - 1.20985931e+002 1.28111084e+002 1.08799431e+002 1.20979683e+002 - 1.28114136e+002 1.08786102e+002 1.20970795e+002 1.28098267e+002 - 1.08773605e+002 1.20936066e+002 1.28072952e+002 1.08769341e+002 - 1.20942223e+002 1.28060471e+002 1.08779968e+002 1.20946281e+002 - 1.28068008e+002 1.08785866e+002 1.20965546e+002 1.28063522e+002 - 1.08781822e+002 1.20949448e+002 1.28048706e+002 1.08780258e+002 - 1.20964111e+002 1.28047806e+002 1.08782272e+002 1.20939857e+002 - 1.28034805e+002 1.08779472e+002 1.20947594e+002 1.28024002e+002 - 1.08780823e+002 1.20937035e+002 1.28007645e+002 1.08772766e+002 - 1.20952110e+002 1.27990654e+002 1.08757118e+002 1.20929642e+002 - 1.27968224e+002 1.08737396e+002 1.20921028e+002 1.27931549e+002 - 1.08754593e+002 1.20926849e+002 1.27936752e+002 1.08745842e+002 - 1.20938911e+002 1.27915215e+002 1.08760849e+002 1.20933891e+002 - 1.27913437e+002 1.08788849e+002 1.20972740e+002 1.27922592e+002 - 1.08805939e+002 1.20970917e+002 1.27914574e+002 1.08793594e+002 - 1.20964386e+002 1.27882645e+002 1.08802666e+002 1.20973717e+002 - 1.27871941e+002 1.08800751e+002 1.20985596e+002 1.27844162e+002 - 1.08789085e+002 1.20960403e+002 1.27811592e+002 1.08799576e+002 - 1.20983192e+002 1.27798828e+002 1.08824997e+002 1.20978661e+002 - 1.27782524e+002 1.08817459e+002 1.20986130e+002 1.27746452e+002 - 1.08797356e+002 1.20950615e+002 1.27686234e+002 1.08765610e+002 - 1.20930679e+002 1.27629189e+002 1.08785370e+002 1.20933655e+002 - 1.27617943e+002 1.08784531e+002 1.20940186e+002 1.27574371e+002 - 1.08773300e+002 1.20910721e+002 1.27521172e+002 1.08762985e+002 - 1.20915894e+002 1.27492073e+002 1.08793198e+002 1.20924950e+002 - 1.27487640e+002 1.08791550e+002 1.20931145e+002 1.27457504e+002 - 1.08798431e+002 1.20909676e+002 1.27427536e+002 1.08785339e+002 - 1.20905907e+002 1.27381950e+002 1.08795235e+002 1.20900398e+002 - 1.27349655e+002 1.08811768e+002 1.20920029e+002 1.27327385e+002 - 1.08829666e+002 1.20922928e+002 1.27300652e+002 1.08833298e+002 - 1.20935760e+002 1.27269066e+002 1.08846008e+002 1.20917854e+002 - 1.27234886e+002 1.08845825e+002 1.20931770e+002 1.27208298e+002 - 1.08877708e+002 1.20953445e+002 1.27207283e+002 1.08876457e+002 - 1.20970230e+002 1.27181129e+002 1.08886353e+002 1.20961342e+002 - 1.27158127e+002 1.08906517e+002 1.20988426e+002 1.27140007e+002 - 1.08907234e+002 1.20963173e+002 1.27077141e+002 1.08900101e+002 - 1.20971481e+002 1.27037971e+002 1.08955597e+002 1.20998756e+002 - 1.27046783e+002 1.08945618e+002 1.20993027e+002 1.26998146e+002 - 1.08947357e+002 1.20976830e+002 1.26950806e+002 1.08967476e+002 - 1.21011406e+002 1.26939903e+002 1.08985847e+002 1.21014915e+002 - 1.26916214e+002 1.08985649e+002 1.21019836e+002 1.26876236e+002 - 1.09012070e+002 1.21030876e+002 1.26858177e+002 1.09031754e+002 - 1.21054405e+002 1.26842964e+002 1.09070061e+002 1.21060448e+002 - 1.26819427e+002 1.09095306e+002 1.21095253e+002 1.26802628e+002 - 1.09124680e+002 1.21115509e+002 1.26783745e+002 1.09137085e+002 - 1.21141441e+002 1.26756447e+002 1.09158813e+002 1.21144325e+002 - 1.26737389e+002 1.09200127e+002 1.21188622e+002 1.26723915e+002 - 1.09219643e+002 1.21191444e+002 1.26680679e+002 1.09226776e+002 - 1.21212250e+002 1.26646729e+002 1.09271599e+002 1.21241051e+002 - 1.26647408e+002 1.09281479e+002 1.21254822e+002 1.26623627e+002 - 1.09299698e+002 1.21249306e+002 1.26590744e+002 1.09281517e+002 - 1.21241295e+002 1.26530998e+002 1.09289604e+002 1.21235191e+002 - 1.26486137e+002 1.09310425e+002 1.21256744e+002 1.26458519e+002 - 1.09349152e+002 1.21279747e+002 1.26439857e+002 1.09328873e+002 - 1.21266678e+002 1.26374420e+002 1.09376778e+002 1.21281784e+002 - 1.26346603e+002 1.09406616e+002 1.21320374e+002 1.26327408e+002 - 1.09448349e+002 1.21338806e+002 1.26309502e+002 1.09411362e+002 - 1.21311806e+002 1.26232613e+002 1.09443367e+002 1.21325562e+002 - 1.26219223e+002 1.09499031e+002 1.21381073e+002 1.26223244e+002 - 1.09534019e+002 1.21382843e+002 1.26176987e+002 1.09560608e+002 - 1.21423859e+002 1.26151932e+002 1.09607933e+002 1.21444313e+002 - 1.26151733e+002 1.09656837e+002 1.21496727e+002 1.26154808e+002 - 1.09698349e+002 1.21507996e+002 1.26129807e+002 1.09704750e+002 - 1.21516800e+002 1.26086891e+002 1.09746880e+002 1.21544762e+002 - 1.26063065e+002 1.09789261e+002 1.21587570e+002 1.26048843e+002 - 1.09824219e+002 1.21592430e+002 1.26017006e+002 1.09827782e+002 - 1.21596558e+002 1.25970322e+002 1.09867317e+002 1.21597214e+002 - 1.25936569e+002 1.09870651e+002 1.21603767e+002 1.25886940e+002 - 1.09922470e+002 1.21634079e+002 1.25879883e+002 1.09928223e+002 - 1.21650146e+002 1.25837517e+002 1.09968315e+002 1.21669868e+002 - 1.25832573e+002 1.10026787e+002 1.21724571e+002 1.25830399e+002 - 1.10084854e+002 1.21749275e+002 1.25788902e+002 1.10115189e+002 - 1.21773163e+002 1.25756996e+002 1.10155540e+002 1.21781128e+002 - 1.25738037e+002 1.10198616e+002 1.21819496e+002 1.25726822e+002 - 1.10263092e+002 1.21845276e+002 1.25719406e+002 1.10289482e+002 - 1.21868523e+002 1.25693214e+002 1.10359871e+002 1.21904068e+002 - 1.25691574e+002 1.10406448e+002 1.21937073e+002 1.25667572e+002 - 1.10440758e+002 1.21931503e+002 1.25625679e+002 1.10484619e+002 - 1.21962280e+002 1.25615585e+002 1.10553757e+002 1.21976868e+002 - 1.25600723e+002 1.10599113e+002 1.22011398e+002 1.25585701e+002 - 1.10624451e+002 1.21987640e+002 1.25536095e+002 1.10594688e+002 - 1.21945145e+002 1.25446228e+002 1.10591019e+002 1.21893890e+002 - 1.25374519e+002 1.10519058e+002 1.21807159e+002 1.25238167e+002 - 1.10469757e+002 1.21790359e+002 1.25238503e+002 1.10515900e+002 - 1.21875908e+002 1.25343460e+002 1.10564941e+002 1.21937279e+002 - 1.25446625e+002 1.10568527e+002 1.21974388e+002 1.25508492e+002 - 1.10552834e+002 1.21979965e+002 1.25562958e+002 1.10516129e+002 - 1.21982262e+002 1.25589310e+002 1.10463089e+002 1.21956635e+002 - 1.25620308e+002 1.10394852e+002 1.21918121e+002 1.25614250e+002 - 1.10376457e+002 1.21916695e+002 1.25657684e+002 1.10295792e+002 - 1.21869461e+002 1.25646347e+002 1.10251045e+002 1.21829521e+002 - 1.25678474e+002 1.10225182e+002 1.21830910e+002 1.25714760e+002 - 1.10189087e+002 1.21808754e+002 1.25739487e+002 1.10134315e+002 - 1.21781693e+002 1.25745056e+002 1.10092560e+002 1.21743927e+002 - 1.25754967e+002 1.10029716e+002 1.21701241e+002 1.25738708e+002 - 1.09999886e+002 1.21681244e+002 1.25802025e+002 1.09933784e+002 - 1.21655418e+002 1.25802315e+002 1.09940125e+002 1.21661453e+002 - 1.25857826e+002 1.09894821e+002 1.21633064e+002 1.25858803e+002 - 1.09874237e+002 1.21607712e+002 1.25891891e+002 1.09833939e+002 - 1.21589096e+002 1.25902420e+002 1.09780869e+002 1.21554962e+002 - 1.25926460e+002 1.09713867e+002 1.21506119e+002 1.25909355e+002 - 1.09695122e+002 1.21492996e+002 1.25950653e+002 1.09661018e+002 - 1.21479057e+002 1.25974922e+002 1.09618233e+002 1.21435768e+002 - 1.26003281e+002 1.09615898e+002 1.21459236e+002 1.26068886e+002 - 1.09580666e+002 1.21421455e+002 1.26096069e+002 1.09536308e+002 - 1.21405350e+002 1.26106239e+002 1.09501015e+002 1.21364906e+002 - 1.26119972e+002 1.09456604e+002 1.21349724e+002 1.26132111e+002 - 1.09430016e+002 1.21333527e+002 1.26195641e+002 1.09367264e+002 - 1.21307022e+002 1.26205261e+002 1.09359520e+002 1.21282196e+002 - 1.26240211e+002 1.09338188e+002 1.21269051e+002 1.26261299e+002 - 1.09327858e+002 1.21244957e+002 1.26302399e+002 1.09288521e+002 - 1.21225563e+002 1.26316948e+002 1.09280327e+002 1.21218590e+002 - 1.26366478e+002 1.09242500e+002 1.21202705e+002 1.26372047e+002 - 1.09234985e+002 1.21191010e+002 1.26418251e+002 1.09212639e+002 - 1.21176743e+002 1.26444702e+002 1.09192719e+002 1.21150703e+002 - 1.26481323e+002 1.09157227e+002 1.21134056e+002 1.26495895e+002 - 1.09134575e+002 1.21107147e+002 1.26525093e+002 1.09091339e+002 - 1.21091949e+002 1.26528900e+002 1.09093071e+002 1.21094193e+002 - 1.26576683e+002 1.09058022e+002 1.21070541e+002 1.26583168e+002 - 1.09056229e+002 1.21064293e+002 1.26653610e+002 1.09002769e+002 - 1.21038132e+002 1.26653839e+002 1.08990044e+002 1.21010056e+002 - 1.26674919e+002 1.08987854e+002 1.21020737e+002 1.26709473e+002 - 1.08978416e+002 1.21002556e+002 1.26749779e+002 1.08946419e+002 - 1.20985970e+002 1.26767532e+002 1.08928612e+002 1.20967987e+002 - 1.26804886e+002 1.08946411e+002 1.21000244e+002 1.26859886e+002 - 1.08968636e+002 1.21012733e+002 1.26921806e+002 1.08949341e+002 - 1.21007645e+002 1.26947517e+002 1.08923317e+002 1.20962524e+002 - 1.26965630e+002 1.08902733e+002 1.20949142e+002 1.26992538e+002 - 1.08930733e+002 1.20970192e+002 1.27066711e+002 1.08899971e+002 - 1.20952660e+002 1.27080414e+002 1.08900040e+002 1.20946838e+002 - 1.27111931e+002 1.08897705e+002 1.20953484e+002 1.27142433e+002 - 1.08888908e+002 1.20933281e+002 1.27191238e+002 1.08850121e+002 - 1.20924072e+002 1.27211243e+002 1.08856789e+002 1.20924500e+002 - 1.27247948e+002 1.08850044e+002 1.20929741e+002 1.27273239e+002 - 1.08847595e+002 1.20912819e+002 1.27308250e+002 1.08827644e+002 - 1.20908524e+002 1.27323952e+002 1.08810181e+002 1.20885773e+002 - 1.27343201e+002 1.08815750e+002 1.20899582e+002 1.27372147e+002 - 1.08806862e+002 1.20881477e+002 1.27393440e+002 1.08789665e+002 - 1.20877678e+002 1.27412224e+002 1.08814827e+002 1.20887634e+002 - 1.27471992e+002 1.08813370e+002 1.20899445e+002 1.27506409e+002 - 1.08813980e+002 1.20908836e+002 1.27543526e+002 1.08798515e+002 - 1.20913857e+002 1.27558548e+002 1.08784294e+002 1.20898201e+002 - 1.27575134e+002 1.08803047e+002 1.20924896e+002 1.27615723e+002 - 1.08804848e+002 1.20926094e+002 1.27661972e+002 1.08763275e+002 - 1.20911522e+002 1.27667877e+002 1.08774529e+002 1.20906265e+002 - 1.27694763e+002 1.08752350e+002 1.20897987e+002 1.27704590e+002 - 1.08767143e+002 1.20898399e+002 1.27745018e+002 1.08747063e+002 - 1.20893402e+002 1.27754349e+002 1.08735863e+002 1.20875870e+002 - 1.27771332e+002 1.08710335e+002 1.20863190e+002 1.27769547e+002 - 1.08695862e+002 1.20835594e+002 1.27775215e+002 1.08666573e+002 - 1.20823318e+002 1.27775177e+002 1.08684372e+002 1.20819580e+002 - 1.27818077e+002 1.08683762e+002 1.20827248e+002 1.27839195e+002 - 1.08685410e+002 1.20819855e+002 1.27856781e+002 1.08681190e+002 - 1.20837944e+002 1.27870369e+002 1.08709908e+002 1.20852112e+002 - 1.27910515e+002 1.08702469e+002 1.20856987e+002 1.27905586e+002 - 1.08676300e+002 1.20834480e+002 1.27909882e+002 1.08631622e+002 - 1.20822983e+002 1.27905037e+002 1.08636604e+002 1.20812737e+002 - 1.27919830e+002 1.08623550e+002 1.20811501e+002 1.27923096e+002 - 1.08638824e+002 1.20809288e+002 1.27954086e+002 1.08602013e+002 - 1.20791809e+002 1.27935158e+002 1.08575371e+002 1.20759727e+002 - 1.27925804e+002 1.08576447e+002 1.20772072e+002 1.27934929e+002 - 1.08601234e+002 1.20780907e+002 1.27958000e+002 1.08592041e+002 - 1.20789536e+002 1.27971039e+002 1.08621590e+002 1.20793198e+002 - 1.28004669e+002 1.08631058e+002 1.20815788e+002 1.28023193e+002 - 1.08628593e+002 1.20812874e+002 1.28023376e+002 1.08605392e+002 - 1.20810242e+002 1.28002701e+002 1.08629333e+002 1.20829460e+002 - 1.28028976e+002 1.08643082e+002 1.20847672e+002 1.28035782e+002 - 1.08648605e+002 1.20842110e+002 1.28044083e+002 1.08635017e+002 - 1.20852753e+002 1.28044846e+002 1.08630554e+002 1.20834053e+002 - 1.28034012e+002 1.08619644e+002 1.20830620e+002 1.28023804e+002 - 1.08622681e+002 1.20814285e+002 1.28008163e+002 1.08618523e+002 - 1.20815575e+002 1.28000916e+002 1.08632057e+002 1.20820183e+002 - 1.28003021e+002 1.08630547e+002 1.20828659e+002 1.27995880e+002 - 1.08622665e+002 1.20818481e+002 1.27987648e+002 1.08640221e+002 - 1.20840752e+002 1.27994644e+002 1.08624847e+002 1.20806557e+002 - 1.27961311e+002 1.08626114e+002 1.20817581e+002 1.27957733e+002 - 1.08631584e+002 1.20813072e+002 1.27939079e+002 1.08612236e+002 - 1.20812325e+002 1.27912704e+002 1.08592331e+002 1.20794258e+002 - 1.27891022e+002 1.08591484e+002 1.20791733e+002 1.27864784e+002 - 1.08594582e+002 1.20781853e+002 1.27849358e+002 1.08589622e+002 - 1.20797081e+002 1.27840706e+002 1.08604042e+002 1.20793793e+002 - 1.27835251e+002 1.08633179e+002 1.20831635e+002 1.27847649e+002 - 1.08644035e+002 1.20823227e+002 1.27834274e+002 1.08641037e+002 - 1.20837425e+002 1.27816925e+002 1.08669426e+002 1.20861809e+002 - 1.27824486e+002 1.08648293e+002 1.20850807e+002 1.27781883e+002 - 1.08626961e+002 1.20818810e+002 1.27734589e+002 1.08624512e+002 - 1.20829109e+002 1.27707687e+002 1.08650253e+002 1.20827377e+002 - 1.27689980e+002 1.08636337e+002 1.20827415e+002 1.27650169e+002 - 1.08619606e+002 1.20790237e+002 1.27594704e+002 1.08597961e+002 - 1.20777748e+002 1.27542488e+002 1.08608955e+002 1.20783905e+002 - 1.27523842e+002 1.08618347e+002 1.20785080e+002 1.27485405e+002 - 1.08610588e+002 1.20768982e+002 1.27439301e+002 1.08591118e+002 - 1.20769562e+002 1.27404388e+002 1.08615021e+002 1.20771378e+002 - 1.27391853e+002 1.08620941e+002 1.20780968e+002 1.27368889e+002 - 1.08614960e+002 1.20750031e+002 1.27325150e+002 1.08601875e+002 - 1.20739220e+002 1.27277168e+002 1.08619408e+002 1.20748909e+002 - 1.27260719e+002 1.08637749e+002 1.20771202e+002 1.27236107e+002 - 1.08667511e+002 1.20786713e+002 1.27228798e+002 1.08659630e+002 - 1.20788673e+002 1.27189262e+002 1.08693825e+002 1.20790817e+002 - 1.27169746e+002 1.08706650e+002 1.20812378e+002 1.27151443e+002 - 1.08727654e+002 1.20826012e+002 1.27139633e+002 1.08737785e+002 - 1.20854050e+002 1.27127945e+002 1.08764572e+002 1.20866714e+002 - 1.27121002e+002 1.08777222e+002 1.20881302e+002 1.27089828e+002 - 1.08767807e+002 1.20847107e+002 1.27019402e+002 1.08754944e+002 - 1.20847733e+002 1.26977104e+002 1.08789589e+002 1.20857269e+002 - 1.26971687e+002 1.08791527e+002 1.20875107e+002 1.26942200e+002 - 1.08794533e+002 1.20853165e+002 1.26896301e+002 1.08813126e+002 - 1.20886162e+002 1.26880241e+002 1.08837509e+002 1.20896385e+002 - 1.26864510e+002 1.08846970e+002 1.20912910e+002 1.26828506e+002 - 1.08882713e+002 1.20924088e+002 1.26818253e+002 1.08892372e+002 - 1.20940033e+002 1.26789474e+002 1.08929558e+002 1.20945129e+002 - 1.26762642e+002 1.08956764e+002 1.20988853e+002 1.26752357e+002 - 1.08974541e+002 1.20993561e+002 1.26719864e+002 1.08989616e+002 - 1.21022484e+002 1.26699348e+002 1.09007164e+002 1.21024307e+002 - 1.26676720e+002 1.09043022e+002 1.21061775e+002 1.26661034e+002 - 1.09075867e+002 1.21077621e+002 1.26621857e+002 1.09077728e+002 - 1.21088722e+002 1.26585716e+002 1.09101677e+002 1.21095741e+002 - 1.26567154e+002 1.09108025e+002 1.21112526e+002 1.26534187e+002 - 1.09142540e+002 1.21125175e+002 1.26517647e+002 1.09121620e+002 - 1.21107910e+002 1.26451187e+002 1.09147583e+002 1.21120811e+002 - 1.26420685e+002 1.09163811e+002 1.21145096e+002 1.26392616e+002 - 1.09184540e+002 1.21143997e+002 1.26352760e+002 1.09171440e+002 - 1.21133598e+002 1.26293732e+002 1.09218834e+002 1.21151146e+002 - 1.26271324e+002 1.09249153e+002 1.21184959e+002 1.26248573e+002 - 1.09303757e+002 1.21221519e+002 1.26244270e+002 1.09266693e+002 - 1.21190895e+002 1.26164848e+002 1.09310486e+002 1.21213310e+002 - 1.26160599e+002 1.09363289e+002 1.21266487e+002 1.26160263e+002 - 1.09398361e+002 1.21272980e+002 1.26110222e+002 1.09420364e+002 - 1.21308609e+002 1.26088852e+002 1.09459579e+002 1.21320663e+002 - 1.26084648e+002 1.09498390e+002 1.21362823e+002 1.26078560e+002 - 1.09560486e+002 1.21398621e+002 1.26075394e+002 1.09558548e+002 - 1.21397079e+002 1.26015991e+002 1.09600395e+002 1.21421082e+002 - 1.25991142e+002 1.09657196e+002 1.21478516e+002 1.25989021e+002 - 1.09679649e+002 1.21473526e+002 1.25947571e+002 1.09702553e+002 - 1.21494377e+002 1.25918449e+002 1.09729393e+002 1.21485901e+002 - 1.25872849e+002 1.09738823e+002 1.21500999e+002 1.25836967e+002 - 1.09788155e+002 1.21529060e+002 1.25822083e+002 1.09816078e+002 - 1.21563095e+002 1.25805000e+002 1.09865105e+002 1.21591354e+002 - 1.25808823e+002 1.09937714e+002 1.21659645e+002 1.25807648e+002 - 1.09970490e+002 1.21660225e+002 1.25746544e+002 1.10003784e+002 - 1.21696686e+002 1.25722488e+002 1.10027481e+002 1.21690224e+002 - 1.25689857e+002 1.10083687e+002 1.21738617e+002 1.25688454e+002 - 1.10139122e+002 1.21750244e+002 1.25663994e+002 1.10168297e+002 - 1.21771255e+002 1.25636856e+002 1.10247795e+002 1.21814026e+002 - 1.25640724e+002 1.10295349e+002 1.21853943e+002 1.25629875e+002 - 1.10320358e+002 1.21838425e+002 1.25576683e+002 1.10383537e+002 - 1.21890442e+002 1.25582001e+002 1.10444313e+002 1.21900475e+002 - 1.25562271e+002 1.10482094e+002 1.21927032e+002 1.25538467e+002 - 1.10517029e+002 1.21910278e+002 1.25499901e+002 1.10502678e+002 - 1.21883263e+002 1.25429108e+002 1.10486801e+002 1.21821472e+002 - 1.25340164e+002 1.10418877e+002 1.21734299e+002 1.25209732e+002 - 1.10376114e+002 1.21703613e+002 1.25213280e+002 1.10432419e+002 - 1.21815788e+002 1.25330429e+002 1.10476387e+002 1.21875008e+002 - 1.25431076e+002 1.10490112e+002 1.21930046e+002 1.25510406e+002 - 1.10474564e+002 1.21929619e+002 1.25562958e+002 1.10418007e+002 - 1.21915497e+002 1.25580193e+002 1.10365974e+002 1.21884483e+002 - 1.25597923e+002 1.10290169e+002 1.21849632e+002 1.25594582e+002 - 1.10272736e+002 1.21841927e+002 1.25641708e+002 1.10203087e+002 - 1.21809906e+002 1.25638138e+002 1.10160751e+002 1.21761314e+002 - 1.25666687e+002 1.10122574e+002 1.21753281e+002 1.25692917e+002 - 1.10096924e+002 1.21737305e+002 1.25722664e+002 1.10043945e+002 - 1.21714981e+002 1.25730820e+002 1.10001884e+002 1.21668655e+002 - 1.25736488e+002 1.09941177e+002 1.21636337e+002 1.25733330e+002 - 1.09902985e+002 1.21615982e+002 1.25783272e+002 1.09838371e+002 - 1.21582062e+002 1.25790604e+002 1.09836647e+002 1.21583694e+002 - 1.25835594e+002 1.09797371e+002 1.21566414e+002 1.25841537e+002 - 1.09772301e+002 1.21530396e+002 1.25871017e+002 1.09707298e+002 - 1.21488449e+002 1.25864532e+002 1.09665741e+002 1.21459946e+002 - 1.25889519e+002 1.09607430e+002 1.21426193e+002 1.25894302e+002 - 1.09595757e+002 1.21419746e+002 1.25937103e+002 1.09536896e+002 - 1.21394173e+002 1.25946770e+002 1.09529716e+002 1.21374985e+002 - 1.26006302e+002 1.09506226e+002 1.21376747e+002 1.26055923e+002 - 1.09467148e+002 1.21343719e+002 1.26070160e+002 1.09424568e+002 - 1.21329819e+002 1.26084930e+002 1.09390968e+002 1.21282310e+002 - 1.26100502e+002 1.09332565e+002 1.21249405e+002 1.26100891e+002 - 1.09314186e+002 1.21243469e+002 1.26168129e+002 1.09233521e+002 - 1.21193863e+002 1.26155640e+002 1.09236443e+002 1.21178680e+002 - 1.26201729e+002 1.09219307e+002 1.21177567e+002 1.26237640e+002 - 1.09208565e+002 1.21148834e+002 1.26275192e+002 1.09161964e+002 - 1.21121567e+002 1.26284485e+002 1.09146317e+002 1.21107971e+002 - 1.26323677e+002 1.09114616e+002 1.21094818e+002 1.26342407e+002 - 1.09128304e+002 1.21102211e+002 1.26397949e+002 1.09105286e+002 - 1.21105659e+002 1.26430794e+002 1.09082024e+002 1.21061371e+002 - 1.26466194e+002 1.09048416e+002 1.21048050e+002 1.26485245e+002 - 1.09045105e+002 1.21048302e+002 1.26532738e+002 1.08995949e+002 - 1.21029053e+002 1.26534981e+002 1.08968422e+002 1.20988350e+002 - 1.26545998e+002 1.08939499e+002 1.20974838e+002 1.26563957e+002 - 1.08933380e+002 1.20961792e+002 1.26622238e+002 1.08870926e+002 - 1.20925949e+002 1.26619370e+002 1.08852470e+002 1.20895851e+002 - 1.26633980e+002 1.08857437e+002 1.20912651e+002 1.26677277e+002 - 1.08867233e+002 1.20905380e+002 1.26731544e+002 1.08825043e+002 - 1.20883652e+002 1.26739494e+002 1.08806351e+002 1.20869377e+002 - 1.26774590e+002 1.08802376e+002 1.20873573e+002 1.26813789e+002 - 1.08832634e+002 1.20893578e+002 1.26878334e+002 1.08800064e+002 - 1.20888618e+002 1.26901337e+002 1.08786453e+002 1.20841438e+002 - 1.26932899e+002 1.08778694e+002 1.20846970e+002 1.26971886e+002 - 1.08785255e+002 1.20853600e+002 1.27024277e+002 1.08754059e+002 - 1.20836578e+002 1.27037849e+002 1.08758789e+002 1.20822281e+002 - 1.27074806e+002 1.08761940e+002 1.20833481e+002 1.27112595e+002 - 1.08743469e+002 1.20818909e+002 1.27149315e+002 1.08708473e+002 - 1.20809265e+002 1.27169403e+002 1.08722260e+002 1.20814751e+002 - 1.27215385e+002 1.08719116e+002 1.20825142e+002 1.27239769e+002 - 1.08720192e+002 1.20804337e+002 1.27280289e+002 1.08700882e+002 - 1.20800850e+002 1.27296890e+002 1.08672073e+002 1.20771461e+002 - 1.27305573e+002 1.08677986e+002 1.20783203e+002 1.27332779e+002 - 1.08668427e+002 1.20761147e+002 1.27350525e+002 1.08649078e+002 - 1.20763985e+002 1.27373146e+002 1.08687210e+002 1.20772224e+002 - 1.27448700e+002 1.08686806e+002 1.20790337e+002 1.27479126e+002 - 1.08670059e+002 1.20781418e+002 1.27497803e+002 1.08670593e+002 - 1.20811516e+002 1.27534386e+002 1.08661102e+002 1.20795494e+002 - 1.27549538e+002 1.08664299e+002 1.20813026e+002 1.27581802e+002 - 1.08652367e+002 1.20799042e+002 1.27615921e+002 1.08613335e+002 - 1.20782303e+002 1.27620934e+002 1.08634079e+002 1.20787186e+002 - 1.27660568e+002 1.08615318e+002 1.20787415e+002 1.27672607e+002 - 1.08633255e+002 1.20777855e+002 1.27713982e+002 1.08603905e+002 - 1.20761200e+002 1.27710434e+002 1.08578743e+002 1.20741142e+002 - 1.27718277e+002 1.08551552e+002 1.20723022e+002 1.27712799e+002 - 1.08555336e+002 1.20720573e+002 1.27742096e+002 1.08511292e+002 - 1.20695557e+002 1.27731140e+002 1.08542236e+002 1.20687202e+002 - 1.27774979e+002 1.08554413e+002 1.20713356e+002 1.27815681e+002 - 1.08535698e+002 1.20689262e+002 1.27808136e+002 1.08542000e+002 - 1.20719208e+002 1.27835175e+002 1.08579102e+002 1.20734238e+002 - 1.27879272e+002 1.08570549e+002 1.20748482e+002 1.27884041e+002 - 1.08553627e+002 1.20734573e+002 1.27898842e+002 1.08513680e+002 - 1.20717850e+002 1.27883644e+002 1.08505524e+002 1.20697830e+002 - 1.27888435e+002 1.08488708e+002 1.20695007e+002 1.27888527e+002 - 1.08500587e+002 1.20690804e+002 1.27915436e+002 1.08466461e+002 - 1.20675865e+002 1.27901588e+002 1.08445602e+002 1.20648926e+002 - 1.27899452e+002 1.08449173e+002 1.20660988e+002 1.27912056e+002 - 1.08461540e+002 1.20663551e+002 1.27933334e+002 1.08440796e+002 - 1.20654892e+002 1.27921471e+002 1.08475838e+002 1.20660652e+002 - 1.27964767e+002 1.08489914e+002 1.20693283e+002 1.27992577e+002 - 1.08491608e+002 1.20695847e+002 1.27992958e+002 1.08463425e+002 - 1.20689873e+002 1.27971237e+002 1.08489761e+002 1.20710129e+002 - 1.28000702e+002 1.08520683e+002 1.20744461e+002 1.28023407e+002 - 1.08516502e+002 1.20734734e+002 1.28021057e+002 1.08506493e+002 - 1.20741325e+002 1.28022110e+002 1.08487740e+002 1.20707108e+002 - 1.27994354e+002 1.08479332e+002 1.20712891e+002 1.27983627e+002 - 1.08509865e+002 1.20717796e+002 1.28002228e+002 1.08493034e+002 - 1.20709259e+002 1.27981224e+002 1.08490532e+002 1.20696457e+002 - 1.27972664e+002 1.08493721e+002 1.20705551e+002 1.27958298e+002 - 1.08499451e+002 1.20708771e+002 1.27961708e+002 1.08484856e+002 - 1.20710129e+002 1.27942192e+002 1.08494522e+002 1.20682922e+002 - 1.27931213e+002 1.08463234e+002 1.20662552e+002 1.27889626e+002 - 1.08469292e+002 1.20662476e+002 1.27871437e+002 1.08452293e+002 - 1.20672379e+002 1.27848389e+002 1.08441353e+002 1.20648514e+002 - 1.27834900e+002 1.08465645e+002 1.20679008e+002 1.27839035e+002 - 1.08445351e+002 1.20645630e+002 1.27796959e+002 1.08445404e+002 - 1.20663536e+002 1.27787346e+002 1.08469193e+002 1.20677162e+002 - 1.27799217e+002 1.08488739e+002 1.20702049e+002 1.27802826e+002 - 1.08519371e+002 1.20708824e+002 1.27805351e+002 1.08516296e+002 - 1.20726227e+002 1.27788727e+002 1.08526405e+002 1.20730049e+002 - 1.27775963e+002 1.08517723e+002 1.20735458e+002 1.27743210e+002 - 1.08496429e+002 1.20699127e+002 1.27693001e+002 1.08470863e+002 - 1.20688492e+002 1.27642296e+002 1.08503433e+002 1.20692299e+002 - 1.27638725e+002 1.08504227e+002 1.20705162e+002 1.27613052e+002 - 1.08498726e+002 1.20695961e+002 1.27571716e+002 1.08467682e+002 - 1.20675201e+002 1.27505547e+002 1.08467178e+002 1.20651321e+002 - 1.27477646e+002 1.08473679e+002 1.20660477e+002 1.27441956e+002 - 1.08472923e+002 1.20644539e+002 1.27397064e+002 1.08450607e+002 - 1.20639572e+002 1.27350838e+002 1.08449173e+002 1.20622147e+002 - 1.27324715e+002 1.08455589e+002 1.20632774e+002 1.27295326e+002 - 1.08462784e+002 1.20612274e+002 1.27268692e+002 1.08435783e+002 - 1.20592499e+002 1.27201927e+002 1.08445686e+002 1.20595802e+002 - 1.27177475e+002 1.08479248e+002 1.20636276e+002 1.27174202e+002 - 1.08498306e+002 1.20638710e+002 1.27162186e+002 1.08501076e+002 - 1.20656891e+002 1.27129578e+002 1.08561684e+002 1.20679886e+002 - 1.27143890e+002 1.08574173e+002 1.20703552e+002 1.27122162e+002 - 1.08596741e+002 1.20717079e+002 1.27109848e+002 1.08602234e+002 - 1.20740417e+002 1.27083832e+002 1.08629219e+002 1.20745598e+002 - 1.27081657e+002 1.08645103e+002 1.20764709e+002 1.27052353e+002 - 1.08634430e+002 1.20737610e+002 1.26987000e+002 1.08619583e+002 - 1.20729393e+002 1.26939636e+002 1.08645493e+002 1.20744659e+002 - 1.26926041e+002 1.08671448e+002 1.20780067e+002 1.26916283e+002 - 1.08683746e+002 1.20771202e+002 1.26884666e+002 1.08691826e+002 - 1.20791656e+002 1.26852943e+002 1.08721359e+002 1.20803375e+002 - 1.26838470e+002 1.08732117e+002 1.20824104e+002 1.26807037e+002 - 1.08754219e+002 1.20832184e+002 1.26789665e+002 1.08767593e+002 - 1.20845650e+002 1.26757896e+002 1.08787018e+002 1.20829834e+002 - 1.26718964e+002 1.08830803e+002 1.20876259e+002 1.26715965e+002 - 1.08862732e+002 1.20906113e+002 1.26703690e+002 1.08862457e+002 - 1.20916145e+002 1.26656258e+002 1.08880753e+002 1.20916672e+002 - 1.26637894e+002 1.08906471e+002 1.20944717e+002 1.26612541e+002 - 1.08918121e+002 1.20943260e+002 1.26558136e+002 1.08924339e+002 - 1.20959442e+002 1.26525154e+002 1.08951294e+002 1.20965401e+002 - 1.26513466e+002 1.08959885e+002 1.20983917e+002 1.26479599e+002 - 1.08991364e+002 1.20988007e+002 1.26455292e+002 1.08984863e+002 - 1.20993713e+002 1.26403763e+002 1.08994926e+002 1.20997368e+002 - 1.26367325e+002 1.09024124e+002 1.21032387e+002 1.26343262e+002 - 1.09063599e+002 1.21049461e+002 1.26325859e+002 1.09035278e+002 - 1.21029755e+002 1.26251007e+002 1.09084496e+002 1.21042656e+002 - 1.26233383e+002 1.09121964e+002 1.21080055e+002 1.26213875e+002 - 1.09168495e+002 1.21121429e+002 1.26210167e+002 1.09132439e+002 - 1.21089188e+002 1.26116104e+002 1.09181595e+002 1.21105110e+002 - 1.26115707e+002 1.09229912e+002 1.21156914e+002 1.26109100e+002 - 1.09282776e+002 1.21183327e+002 1.26081207e+002 1.09290329e+002 - 1.21208824e+002 1.26050499e+002 1.09321205e+002 1.21216194e+002 - 1.26034416e+002 1.09346626e+002 1.21239349e+002 1.26008438e+002 - 1.09427681e+002 1.21285454e+002 1.26028893e+002 1.09445137e+002 - 1.21308983e+002 1.25979843e+002 1.09490746e+002 1.21334816e+002 - 1.25962769e+002 1.09542412e+002 1.21387154e+002 1.25954147e+002 - 1.09571648e+002 1.21399040e+002 1.25927216e+002 1.09591194e+002 - 1.21418358e+002 1.25892723e+002 1.09616371e+002 1.21398842e+002 - 1.25851860e+002 1.09626785e+002 1.21409409e+002 1.25803154e+002 - 1.09649742e+002 1.21419289e+002 1.25768311e+002 1.09680725e+002 - 1.21462395e+002 1.25753899e+002 1.09750435e+002 1.21498924e+002 - 1.25777084e+002 1.09802513e+002 1.21549652e+002 1.25761848e+002 - 1.09860260e+002 1.21573395e+002 1.25718781e+002 1.09884476e+002 - 1.21595337e+002 1.25677513e+002 1.09924042e+002 1.21611511e+002 - 1.25663887e+002 1.09984123e+002 1.21663887e+002 1.25659966e+002 - 1.10045616e+002 1.21680351e+002 1.25654533e+002 1.10058266e+002 - 1.21686607e+002 1.25605293e+002 1.10136795e+002 1.21734795e+002 - 1.25613174e+002 1.10184563e+002 1.21770241e+002 1.25598763e+002 - 1.10204796e+002 1.21753021e+002 1.25549217e+002 1.10250832e+002 - 1.21794678e+002 1.25536842e+002 1.10319916e+002 1.21799377e+002 - 1.25520683e+002 1.10360008e+002 1.21819618e+002 1.25489090e+002 - 1.10411507e+002 1.21835159e+002 1.25471703e+002 1.10390327e+002 - 1.21805573e+002 1.25389450e+002 1.10393547e+002 1.21750832e+002 - 1.25331970e+002 1.10317406e+002 1.21665771e+002 1.25191910e+002 - 1.10267632e+002 1.21648201e+002 1.25229736e+002 1.10313408e+002 - 1.21747574e+002 1.25339890e+002 1.10337555e+002 1.21797226e+002 - 1.25427628e+002 1.10347252e+002 1.21843658e+002 1.25499031e+002 - 1.10316246e+002 1.21833084e+002 1.25538620e+002 1.10277321e+002 - 1.21836220e+002 1.25570099e+002 1.10228348e+002 1.21806381e+002 - 1.25599052e+002 1.10162926e+002 1.21777649e+002 1.25599648e+002 - 1.10152794e+002 1.21782944e+002 1.25657494e+002 1.10075844e+002 - 1.21736420e+002 1.25646606e+002 1.10042618e+002 1.21688629e+002 - 1.25679237e+002 1.10002235e+002 1.21681725e+002 1.25703453e+002 - 1.09963142e+002 1.21663025e+002 1.25724983e+002 1.09926598e+002 - 1.21654510e+002 1.25747200e+002 1.09880493e+002 1.21603882e+002 - 1.25752335e+002 1.09809761e+002 1.21560036e+002 1.25740471e+002 - 1.09771805e+002 1.21537849e+002 1.25794823e+002 1.09707077e+002 - 1.21513611e+002 1.25803375e+002 1.09702118e+002 1.21505745e+002 - 1.25841606e+002 1.09643959e+002 1.21469551e+002 1.25834869e+002 - 1.09609627e+002 1.21422256e+002 1.25860512e+002 1.09550056e+002 - 1.21390099e+002 1.25861160e+002 1.09510483e+002 1.21361023e+002 - 1.25884476e+002 1.09450981e+002 1.21334229e+002 1.25889809e+002 - 1.09453842e+002 1.21334328e+002 1.25947258e+002 1.09389618e+002 - 1.21298874e+002 1.25950241e+002 1.09362724e+002 1.21260605e+002 - 1.25990852e+002 1.09328186e+002 1.21254089e+002 1.26028046e+002 - 1.09300858e+002 1.21231567e+002 1.26055084e+002 1.09274849e+002 - 1.21231010e+002 1.26083755e+002 1.09227875e+002 1.21170326e+002 - 1.26088943e+002 1.09189621e+002 1.21152176e+002 1.26103203e+002 - 1.09172798e+002 1.21149147e+002 1.26163483e+002 1.09085579e+002 - 1.21094292e+002 1.26152184e+002 1.09067810e+002 1.21058937e+002 - 1.26180710e+002 1.09054611e+002 1.21062752e+002 1.26222443e+002 - 1.09043495e+002 1.21034935e+002 1.26259438e+002 1.09000992e+002 - 1.21014069e+002 1.26276169e+002 1.08982933e+002 1.21002502e+002 - 1.26323479e+002 1.08954361e+002 1.20988701e+002 1.26343773e+002 - 1.08946854e+002 1.20980721e+002 1.26386559e+002 1.08916100e+002 - 1.20971046e+002 1.26406502e+002 1.08894157e+002 1.20924400e+002 - 1.26433929e+002 1.08875656e+002 1.20927147e+002 1.26472740e+002 - 1.08874825e+002 1.20933266e+002 1.26521095e+002 1.08839569e+002 - 1.20918976e+002 1.26532425e+002 1.08812607e+002 1.20870476e+002 - 1.26542549e+002 1.08773239e+002 1.20848297e+002 1.26547188e+002 - 1.08756065e+002 1.20843925e+002 1.26601669e+002 1.08703003e+002 - 1.20813637e+002 1.26608604e+002 1.08688232e+002 1.20786423e+002 - 1.26623802e+002 1.08677628e+002 1.20781090e+002 1.26651237e+002 - 1.08677902e+002 1.20764885e+002 1.26694466e+002 1.08658447e+002 - 1.20763222e+002 1.26726158e+002 1.08639389e+002 1.20743790e+002 - 1.26760666e+002 1.08665428e+002 1.20787453e+002 1.26830162e+002 - 1.08661354e+002 1.20779503e+002 1.26874397e+002 1.08609543e+002 - 1.20748047e+002 1.26869064e+002 1.08598427e+002 1.20709473e+002 - 1.26918076e+002 1.08603134e+002 1.20723167e+002 1.26974884e+002 - 1.08598763e+002 1.20718185e+002 1.27008812e+002 1.08569489e+002 - 1.20706062e+002 1.27025887e+002 1.08563942e+002 1.20680222e+002 - 1.27051216e+002 1.08552101e+002 1.20676971e+002 1.27075066e+002 - 1.08553215e+002 1.20684364e+002 1.27128021e+002 1.08522858e+002 - 1.20683716e+002 1.27150398e+002 1.08554764e+002 1.20695786e+002 - 1.27210030e+002 1.08550270e+002 1.20705795e+002 1.27234009e+002 - 1.08533218e+002 1.20667908e+002 1.27254242e+002 1.08510956e+002 - 1.20660851e+002 1.27264603e+002 1.08495041e+002 1.20640419e+002 - 1.27282852e+002 1.08482040e+002 1.20640030e+002 1.27301895e+002 - 1.08472061e+002 1.20611313e+002 1.27313873e+002 1.08466148e+002 - 1.20628418e+002 1.27353935e+002 1.08478600e+002 1.20615608e+002 - 1.27400566e+002 1.08491158e+002 1.20644058e+002 1.27449211e+002 - 1.08499916e+002 1.20666809e+002 1.27497665e+002 1.08476738e+002 - 1.20666451e+002 1.27505775e+002 1.08457718e+002 1.20640205e+002 - 1.27507172e+002 1.08466370e+002 1.20658394e+002 1.27542931e+002 - 1.08473412e+002 1.20667732e+002 1.27600914e+002 1.08437897e+002 - 1.20653572e+002 1.27609383e+002 1.08443863e+002 1.20647400e+002 - 1.27635040e+002 1.08426979e+002 1.20647964e+002 1.27654167e+002 - 1.08422562e+002 1.20623215e+002 1.27675285e+002 1.08393814e+002 - 1.20613731e+002 1.27681740e+002 1.08382500e+002 1.20597771e+002 - 1.27699394e+002 1.08345703e+002 1.20573341e+002 1.27687607e+002 - 1.08343460e+002 1.20558907e+002 1.27699188e+002 1.08322762e+002 - 1.20556633e+002 1.27710815e+002 1.08348930e+002 1.20545616e+002 - 1.27751640e+002 1.08371292e+002 1.20578087e+002 1.27794609e+002 - 1.08375427e+002 1.20576782e+002 1.27812843e+002 1.08372658e+002 - 1.20588783e+002 1.27823349e+002 1.08415764e+002 1.20613892e+002 - 1.27878998e+002 1.08400314e+002 1.20617943e+002 1.27876945e+002 - 1.08382507e+002 1.20602592e+002 1.27884163e+002 1.08348900e+002 - 1.20597649e+002 1.27881668e+002 1.08332619e+002 1.20572548e+002 - 1.27879547e+002 1.08308205e+002 1.20562729e+002 1.27868767e+002 - 1.08308502e+002 1.20541496e+002 1.27882370e+002 1.08266251e+002 - 1.20521591e+002 1.27865219e+002 1.08248405e+002 1.20504135e+002 - 1.27870155e+002 1.08282776e+002 1.20543999e+002 1.27915901e+002 - 1.08270523e+002 1.20518967e+002 1.27907242e+002 1.08244209e+002 - 1.20502472e+002 1.27898026e+002 1.08289070e+002 1.20519547e+002 - 1.27946548e+002 1.08300507e+002 1.20550491e+002 1.27975105e+002 - 1.08282501e+002 1.20536674e+002 1.27961006e+002 1.08273422e+002 - 1.20548264e+002 1.27959801e+002 1.08284851e+002 1.20549591e+002 - 1.27974098e+002 1.08312973e+002 1.20582787e+002 1.27995575e+002 - 1.08338448e+002 1.20603676e+002 1.28012131e+002 1.08313812e+002 - 1.20594513e+002 1.27999771e+002 1.08304520e+002 1.20572243e+002 - 1.27978867e+002 1.08311249e+002 1.20588829e+002 1.27979958e+002 - 1.08330208e+002 1.20579391e+002 1.27988869e+002 1.08322899e+002 - 1.20581001e+002 1.27976135e+002 1.08327950e+002 1.20580925e+002 - 1.27975693e+002 1.08339127e+002 1.20606155e+002 1.27971428e+002 - 1.08337204e+002 1.20592392e+002 1.27970963e+002 1.08308441e+002 - 1.20580376e+002 1.27932297e+002 1.08320915e+002 1.20557495e+002 - 1.27931427e+002 1.08296875e+002 1.20540688e+002 1.27886688e+002 - 1.08292740e+002 1.20531235e+002 1.27857178e+002 1.08268204e+002 - 1.20528885e+002 1.27820152e+002 1.08276871e+002 1.20515274e+002 - 1.27818535e+002 1.08293144e+002 1.20541771e+002 1.27813904e+002 - 1.08282852e+002 1.20520714e+002 1.27792473e+002 1.08257248e+002 - 1.20519142e+002 1.27761650e+002 1.08277252e+002 1.20520744e+002 - 1.27762093e+002 1.08301949e+002 1.20559731e+002 1.27769646e+002 - 1.08322113e+002 1.20558098e+002 1.27759056e+002 1.08330696e+002 - 1.20578041e+002 1.27748489e+002 1.08370430e+002 1.20614647e+002 - 1.27764503e+002 1.08352989e+002 1.20604568e+002 1.27722267e+002 - 1.08326584e+002 1.20569588e+002 1.27671249e+002 1.08300858e+002 - 1.20561684e+002 1.27626892e+002 1.08330406e+002 1.20560921e+002 - 1.27622177e+002 1.08326584e+002 1.20569672e+002 1.27591644e+002 - 1.08319801e+002 1.20564743e+002 1.27549446e+002 1.08285484e+002 - 1.20546928e+002 1.27490051e+002 1.08298363e+002 1.20537331e+002 - 1.27473877e+002 1.08290565e+002 1.20521927e+002 1.27417854e+002 - 1.08282135e+002 1.20502983e+002 1.27369423e+002 1.08262604e+002 - 1.20493553e+002 1.27315460e+002 1.08252525e+002 1.20463097e+002 - 1.27278557e+002 1.08269165e+002 1.20489883e+002 1.27262108e+002 - 1.08280052e+002 1.20465057e+002 1.27230141e+002 1.08275970e+002 - 1.20479141e+002 1.27197639e+002 1.08289505e+002 1.20487938e+002 - 1.27181572e+002 1.08286934e+002 1.20493690e+002 1.27137825e+002 - 1.08294304e+002 1.20485687e+002 1.27112442e+002 1.08312958e+002 - 1.20522469e+002 1.27102379e+002 1.08357643e+002 1.20522865e+002 - 1.27099396e+002 1.08383232e+002 1.20556763e+002 1.27087219e+002 - 1.08414307e+002 1.20582161e+002 1.27084610e+002 1.08429039e+002 - 1.20609970e+002 1.27062889e+002 1.08459267e+002 1.20616646e+002 - 1.27058243e+002 1.08451881e+002 1.20620186e+002 1.27011124e+002 - 1.08462059e+002 1.20616470e+002 1.26969276e+002 1.08442429e+002 - 1.20617279e+002 1.26922691e+002 1.08465607e+002 1.20623497e+002 - 1.26909096e+002 1.08480896e+002 1.20648315e+002 1.26885864e+002 - 1.08522972e+002 1.20666733e+002 1.26882607e+002 1.08528511e+002 - 1.20682358e+002 1.26844711e+002 1.08542427e+002 1.20686630e+002 - 1.26818604e+002 1.08557816e+002 1.20701950e+002 1.26791885e+002 - 1.08572639e+002 1.20700516e+002 1.26758041e+002 1.08578766e+002 - 1.20712143e+002 1.26722923e+002 1.08614670e+002 1.20707085e+002 - 1.26701355e+002 1.08661957e+002 1.20764931e+002 1.26704315e+002 - 1.08699768e+002 1.20790443e+002 1.26689369e+002 1.08693214e+002 - 1.20793678e+002 1.26640114e+002 1.08707947e+002 1.20788437e+002 - 1.26617134e+002 1.08718903e+002 1.20803032e+002 1.26572937e+002 - 1.08728546e+002 1.20793221e+002 1.26517029e+002 1.08737587e+002 - 1.20811691e+002 1.26485817e+002 1.08753281e+002 1.20807709e+002 - 1.26464127e+002 1.08764862e+002 1.20835304e+002 1.26436234e+002 - 1.08808472e+002 1.20858170e+002 1.26433929e+002 1.08803810e+002 - 1.20863342e+002 1.26374481e+002 1.08827255e+002 1.20884262e+002 - 1.26350006e+002 1.08848312e+002 1.20906425e+002 1.26317841e+002 - 1.08872116e+002 1.20917358e+002 1.26287483e+002 1.08870529e+002 - 1.20923965e+002 1.26236908e+002 1.08887047e+002 1.20900162e+002 - 1.26187126e+002 1.08951340e+002 1.20968445e+002 1.26197594e+002 - 1.09001007e+002 1.21011543e+002 1.26188713e+002 1.08973648e+002 - 1.20982674e+002 1.26109734e+002 1.09019318e+002 1.20995995e+002 - 1.26106735e+002 1.09071968e+002 1.21049721e+002 1.26092903e+002 - 1.09099243e+002 1.21057663e+002 1.26048668e+002 1.09120148e+002 - 1.21095345e+002 1.26028259e+002 1.09166679e+002 1.21112244e+002 - 1.26020737e+002 1.09195732e+002 1.21144325e+002 1.26001793e+002 - 1.09252754e+002 1.21166077e+002 1.25987579e+002 1.09271713e+002 - 1.21191010e+002 1.25947556e+002 1.09335754e+002 1.21243835e+002 - 1.25952454e+002 1.09368195e+002 1.21276154e+002 1.25927048e+002 - 1.09403450e+002 1.21286484e+002 1.25901184e+002 1.09409958e+002 - 1.21296188e+002 1.25855057e+002 1.09466049e+002 1.21304031e+002 - 1.25840393e+002 1.09488251e+002 1.21325287e+002 1.25803947e+002 - 1.09506561e+002 1.21329865e+002 1.25758644e+002 1.09559776e+002 - 1.21389824e+002 1.25765633e+002 1.09596992e+002 1.21398605e+002 - 1.25754082e+002 1.09669533e+002 1.21462944e+002 1.25755142e+002 - 1.09720863e+002 1.21486015e+002 1.25717827e+002 1.09735397e+002 - 1.21502220e+002 1.25670624e+002 1.09782349e+002 1.21515572e+002 - 1.25660629e+002 1.09841988e+002 1.21574905e+002 1.25665680e+002 - 1.09910889e+002 1.21605537e+002 1.25663445e+002 1.09932793e+002 - 1.21629555e+002 1.25627213e+002 1.09992043e+002 1.21648567e+002 - 1.25609177e+002 1.10041931e+002 1.21683418e+002 1.25595139e+002 - 1.10106339e+002 1.21711929e+002 1.25585236e+002 1.10140320e+002 - 1.21740303e+002 1.25562744e+002 1.10191132e+002 1.21722122e+002 - 1.25525894e+002 1.10225929e+002 1.21744698e+002 1.25493805e+002 - 1.10287148e+002 1.21766098e+002 1.25485619e+002 1.10279556e+002 - 1.21750717e+002 1.25415802e+002 1.10263618e+002 1.21678673e+002 - 1.25336777e+002 1.10206848e+002 1.21614456e+002 1.25213364e+002 - 1.10124794e+002 1.21567039e+002 1.25189224e+002 1.10174416e+002 - 1.21659676e+002 1.25297226e+002 1.10206200e+002 1.21704788e+002 - 1.25384071e+002 1.10204475e+002 1.21742020e+002 1.25446785e+002 - 1.10162712e+002 1.21720100e+002 1.25475609e+002 1.10119186e+002 - 1.21719139e+002 1.25503700e+002 1.10084198e+002 1.21711967e+002 - 1.25557114e+002 1.10037041e+002 1.21692863e+002 1.25571526e+002 - 1.10022339e+002 1.21686005e+002 1.25622330e+002 1.09944733e+002 - 1.21638924e+002 1.25613121e+002 1.09895508e+002 1.21589890e+002 - 1.25626686e+002 1.09853920e+002 1.21577080e+002 1.25655411e+002 - 1.09814903e+002 1.21547821e+002 1.25675331e+002 1.09774391e+002 - 1.21536415e+002 1.25696701e+002 1.09738373e+002 1.21512260e+002 - 1.25712456e+002 1.09649429e+002 1.21453102e+002 1.25691956e+002 - 1.09618111e+002 1.21427826e+002 1.25748779e+002 1.09551018e+002 - 1.21397209e+002 1.25743118e+002 1.09520119e+002 1.21358742e+002 - 1.25761726e+002 1.09490273e+002 1.21350410e+002 1.25782829e+002 - 1.09451263e+002 1.21306335e+002 1.25805710e+002 1.09381622e+002 - 1.21264168e+002 1.25799820e+002 1.09341263e+002 1.21235352e+002 - 1.25826942e+002 1.09285263e+002 1.21207443e+002 1.25829102e+002 - 1.09277359e+002 1.21205383e+002 1.25883499e+002 1.09229599e+002 - 1.21178757e+002 1.25904068e+002 1.09201248e+002 1.21142204e+002 - 1.25946472e+002 1.09157616e+002 1.21129059e+002 1.25968201e+002 - 1.09135201e+002 1.21106544e+002 1.26004593e+002 1.09095169e+002 - 1.21089760e+002 1.26025513e+002 1.09060677e+002 1.21047928e+002 - 1.26031517e+002 1.09008186e+002 1.21017563e+002 1.26038498e+002 - 1.08990631e+002 1.21001640e+002 1.26102165e+002 1.08916496e+002 - 1.20958008e+002 1.26091240e+002 1.08871460e+002 1.20905479e+002 - 1.26096344e+002 1.08868637e+002 1.20912048e+002 1.26142929e+002 - 1.08861732e+002 1.20907928e+002 1.26202812e+002 1.08830635e+002 - 1.20889732e+002 1.26219872e+002 1.08806763e+002 1.20864395e+002 - 1.26265007e+002 1.08783669e+002 1.20859032e+002 1.26286110e+002 - 1.08771271e+002 1.20842308e+002 1.26322975e+002 1.08727982e+002 - 1.20815857e+002 1.26331581e+002 1.08729065e+002 1.20809303e+002 - 1.26388008e+002 1.08699371e+002 1.20798386e+002 1.26416443e+002 - 1.08686607e+002 1.20784164e+002 1.26453735e+002 1.08660416e+002 - 1.20774437e+002 1.26466499e+002 1.08637276e+002 1.20736969e+002 - 1.26481834e+002 1.08594513e+002 1.20714790e+002 1.26490784e+002 - 1.08569435e+002 1.20691559e+002 1.26533501e+002 1.08519188e+002 - 1.20663666e+002 1.26537407e+002 1.08517563e+002 1.20651314e+002 - 1.26573570e+002 1.08515312e+002 1.20654411e+002 1.26609268e+002 - 1.08506584e+002 1.20631844e+002 1.26649826e+002 1.08491821e+002 - 1.20633705e+002 1.26680298e+002 1.08476921e+002 1.20621811e+002 - 1.26723190e+002 1.08482368e+002 1.20639374e+002 1.26771034e+002 - 1.08472267e+002 1.20627693e+002 1.26806633e+002 1.08440147e+002 - 1.20613083e+002 1.26825470e+002 1.08439369e+002 1.20591003e+002 - 1.26877556e+002 1.08432541e+002 1.20594284e+002 1.26920670e+002 - 1.08429329e+002 1.20591194e+002 1.26968651e+002 1.08420471e+002 - 1.20593826e+002 1.27002007e+002 1.08403366e+002 1.20559105e+002 - 1.27016617e+002 1.08383858e+002 1.20553528e+002 1.27031029e+002 - 1.08384117e+002 1.20548744e+002 1.27084557e+002 1.08355721e+002 - 1.20547867e+002 1.27101593e+002 1.08371056e+002 1.20554100e+002 - 1.27139572e+002 1.08359695e+002 1.20549828e+002 1.27163986e+002 - 1.08348503e+002 1.20527946e+002 1.27193581e+002 1.08328522e+002 - 1.20513123e+002 1.27207069e+002 1.08301193e+002 1.20482491e+002 - 1.27210793e+002 1.08291489e+002 1.20484154e+002 1.27229378e+002 - 1.08284447e+002 1.20465904e+002 1.27256325e+002 1.08286095e+002 - 1.20484360e+002 1.27296227e+002 1.08309326e+002 1.20485077e+002 - 1.27349800e+002 1.08309036e+002 1.20510887e+002 1.27398399e+002 - 1.08313408e+002 1.20508179e+002 1.27429390e+002 1.08305382e+002 - 1.20528236e+002 1.27453598e+002 1.08283722e+002 1.20502075e+002 - 1.27461075e+002 1.08285934e+002 1.20519272e+002 1.27487968e+002 - 1.08295815e+002 1.20528084e+002 1.27550430e+002 1.08290977e+002 - 1.20541252e+002 1.27589935e+002 1.08271133e+002 1.20510979e+002 - 1.27587036e+002 1.08245605e+002 1.20493843e+002 1.27593147e+002 - 1.08222389e+002 1.20463158e+002 1.27601471e+002 1.08204659e+002 - 1.20456474e+002 1.27613060e+002 1.08172340e+002 1.20421333e+002 - 1.27607880e+002 1.08156601e+002 1.20417549e+002 1.27623764e+002 - 1.08168800e+002 1.20427055e+002 1.27658913e+002 1.08146721e+002 - 1.20411179e+002 1.27666924e+002 1.08155228e+002 1.20391335e+002 - 1.27689835e+002 1.08164795e+002 1.20409317e+002 1.27719879e+002 - 1.08185310e+002 1.20420647e+002 1.27749992e+002 1.08171150e+002 - 1.20417633e+002 1.27749603e+002 1.08191246e+002 1.20429276e+002 - 1.27782433e+002 1.08194283e+002 1.20451157e+002 1.27806366e+002 - 1.08181801e+002 1.20438164e+002 1.27811333e+002 1.08141617e+002 - 1.20426514e+002 1.27802979e+002 1.08153954e+002 1.20424721e+002 - 1.27824448e+002 1.08124161e+002 1.20412605e+002 1.27818962e+002 - 1.08119438e+002 1.20395607e+002 1.27821945e+002 1.08076286e+002 - 1.20367310e+002 1.27802040e+002 1.08069519e+002 1.20357742e+002 - 1.27816643e+002 1.08062042e+002 1.20363609e+002 1.27820984e+002 - 1.08066795e+002 1.20352699e+002 1.27833115e+002 1.08052521e+002 - 1.20348785e+002 1.27834610e+002 1.08089561e+002 1.20362328e+002 - 1.27880043e+002 1.08096771e+002 1.20391960e+002 1.27906258e+002 - 1.08078934e+002 1.20374329e+002 1.27894516e+002 1.08068504e+002 - 1.20381966e+002 1.27891396e+002 1.08097672e+002 1.20397179e+002 - 1.27917114e+002 1.08101524e+002 1.20412712e+002 1.27915703e+002 - 1.08129829e+002 1.20431221e+002 1.27938477e+002 1.08100639e+002 - 1.20420181e+002 1.27918312e+002 1.08108231e+002 1.20410545e+002 - 1.27919319e+002 1.08119888e+002 1.20427765e+002 1.27919037e+002 - 1.08148148e+002 1.20431839e+002 1.27933624e+002 1.08139259e+002 - 1.20435585e+002 1.27916458e+002 1.08140266e+002 1.20432014e+002 - 1.27908104e+002 1.08140533e+002 1.20444138e+002 1.27903458e+002 - 1.08159790e+002 1.20452179e+002 1.27920219e+002 1.08136986e+002 - 1.20439026e+002 1.27888908e+002 1.08148720e+002 1.20422218e+002 - 1.27879921e+002 1.08123360e+002 1.20402924e+002 1.27839081e+002 - 1.08127441e+002 1.20392273e+002 1.27816429e+002 1.08113106e+002 - 1.20395485e+002 1.27791840e+002 1.08119110e+002 1.20392174e+002 - 1.27785522e+002 1.08120544e+002 1.20406975e+002 1.27771294e+002 - 1.08097717e+002 1.20366249e+002 1.27732071e+002 1.08071358e+002 - 1.20362686e+002 1.27702171e+002 1.08111656e+002 1.20388329e+002 - 1.27717407e+002 1.08131363e+002 1.20418922e+002 1.27719666e+002 - 1.08134186e+002 1.20405510e+002 1.27695091e+002 1.08149620e+002 - 1.20431221e+002 1.27688271e+002 1.08169304e+002 1.20447021e+002 - 1.27684464e+002 1.08174110e+002 1.20463058e+002 1.27665268e+002 - 1.08163681e+002 1.20444862e+002 1.27629265e+002 1.08134163e+002 - 1.20431122e+002 1.27582726e+002 1.08158859e+002 1.20433571e+002 - 1.27574013e+002 1.08149384e+002 1.20427467e+002 1.27531776e+002 - 1.08128632e+002 1.20405083e+002 1.27481956e+002 1.08095062e+002 - 1.20388176e+002 1.27424187e+002 1.08094246e+002 1.20376221e+002 - 1.27396027e+002 1.08081856e+002 1.20354004e+002 1.27327774e+002 - 1.08090988e+002 1.20338593e+002 1.27299004e+002 1.08075241e+002 - 1.20335663e+002 1.27255768e+002 1.08059280e+002 1.20299660e+002 - 1.27203484e+002 1.08083282e+002 1.20330582e+002 1.27199028e+002 - 1.08092133e+002 1.20323509e+002 1.27171051e+002 1.08098717e+002 - 1.20332291e+002 1.27137535e+002 1.08119614e+002 1.20353691e+002 - 1.27126671e+002 1.08111633e+002 1.20355553e+002 1.27084595e+002 - 1.08122620e+002 1.20351234e+002 1.27060791e+002 1.08133308e+002 - 1.20370132e+002 1.27044373e+002 1.08164894e+002 1.20369621e+002 - 1.27023529e+002 1.08174515e+002 1.20389290e+002 1.27006393e+002 - 1.08219604e+002 1.20419350e+002 1.27006744e+002 1.08234818e+002 - 1.20446274e+002 1.26990768e+002 1.08268311e+002 1.20463882e+002 - 1.26982140e+002 1.08275192e+002 1.20479889e+002 1.26947311e+002 - 1.08289207e+002 1.20483055e+002 1.26909378e+002 1.08277657e+002 - 1.20490059e+002 1.26868408e+002 1.08292976e+002 1.20486160e+002 - 1.26846474e+002 1.08304153e+002 1.20509117e+002 1.26819237e+002 - 1.08325333e+002 1.20507904e+002 1.26796646e+002 1.08356804e+002 - 1.20554512e+002 1.26793121e+002 1.08398331e+002 1.20577850e+002 - 1.26785767e+002 1.08399422e+002 1.20591164e+002 1.26747078e+002 - 1.08399940e+002 1.20566803e+002 1.26697083e+002 1.08401695e+002 - 1.20573219e+002 1.26664192e+002 1.08439507e+002 1.20574493e+002 - 1.26641983e+002 1.08471153e+002 1.20611656e+002 1.26628387e+002 - 1.08514305e+002 1.20638863e+002 1.26623192e+002 1.08511894e+002 - 1.20650398e+002 1.26579865e+002 1.08530800e+002 1.20653137e+002 - 1.26556343e+002 1.08531502e+002 1.20650864e+002 1.26504311e+002 - 1.08546982e+002 1.20643990e+002 1.26457794e+002 1.08547546e+002 - 1.20658195e+002 1.26411743e+002 1.08569427e+002 1.20666374e+002 - 1.26398384e+002 1.08603249e+002 1.20706673e+002 1.26396210e+002 - 1.08632942e+002 1.20720070e+002 1.26367134e+002 1.08624115e+002 - 1.20730690e+002 1.26320755e+002 1.08662766e+002 1.20755203e+002 - 1.26302597e+002 1.08692017e+002 1.20793930e+002 1.26281975e+002 - 1.08693726e+002 1.20781532e+002 1.26224304e+002 1.08713493e+002 - 1.20804955e+002 1.26196091e+002 1.08736595e+002 1.20794670e+002 - 1.26148758e+002 1.08776611e+002 1.20836914e+002 1.26137245e+002 - 1.08834183e+002 1.20877953e+002 1.26129677e+002 1.08827263e+002 - 1.20868896e+002 1.26070183e+002 1.08854195e+002 1.20880928e+002 - 1.26047966e+002 1.08914185e+002 1.20939560e+002 1.26047569e+002 - 1.08940086e+002 1.20937935e+002 1.26001381e+002 1.08967262e+002 - 1.20982697e+002 1.25981926e+002 1.09013000e+002 1.20996307e+002 - 1.25972061e+002 1.09030556e+002 1.21019547e+002 1.25941277e+002 - 1.09093246e+002 1.21045952e+002 1.25927597e+002 1.09118622e+002 - 1.21084579e+002 1.25902260e+002 1.09172653e+002 1.21118370e+002 - 1.25886398e+002 1.09181519e+002 1.21130577e+002 1.25845436e+002 - 1.09224007e+002 1.21145973e+002 1.25822098e+002 1.09246574e+002 - 1.21173386e+002 1.25799820e+002 1.09304581e+002 1.21189568e+002 - 1.25773315e+002 1.09321014e+002 1.21210548e+002 1.25739632e+002 - 1.09348244e+002 1.21207275e+002 1.25696671e+002 1.09391838e+002 - 1.21257858e+002 1.25696747e+002 1.09430817e+002 1.21277893e+002 - 1.25685959e+002 1.09500443e+002 1.21342354e+002 1.25690407e+002 - 1.09570549e+002 1.21374214e+002 1.25670219e+002 1.09587448e+002 - 1.21395348e+002 1.25629921e+002 1.09642220e+002 1.21415092e+002 - 1.25616470e+002 1.09699867e+002 1.21468788e+002 1.25618584e+002 - 1.09756584e+002 1.21494408e+002 1.25606483e+002 1.09795631e+002 - 1.21528450e+002 1.25591835e+002 1.09839882e+002 1.21538589e+002 - 1.25563606e+002 1.09895103e+002 1.21578194e+002 1.25547493e+002 - 1.09964844e+002 1.21613411e+002 1.25545921e+002 1.10023651e+002 - 1.21657570e+002 1.25549393e+002 1.10068718e+002 1.21649139e+002 - 1.25503471e+002 1.10083870e+002 1.21643532e+002 1.25450836e+002 - 1.10136299e+002 1.21648178e+002 1.25427208e+002 1.10141907e+002 - 1.21654358e+002 1.25380547e+002 1.10131126e+002 1.21592354e+002 - 1.25300346e+002 1.10064285e+002 1.21509804e+002 1.25169357e+002 - 1.10017105e+002 1.21491943e+002 1.25148857e+002 1.10060539e+002 - 1.21577957e+002 1.25256210e+002 1.10095497e+002 1.21624199e+002 - 1.25347328e+002 1.10089561e+002 1.21653137e+002 1.25400391e+002 - 1.10054482e+002 1.21632927e+002 1.25436249e+002 1.10003807e+002 - 1.21629097e+002 1.25459976e+002 1.09979767e+002 1.21629028e+002 - 1.25517624e+002 1.09916962e+002 1.21602852e+002 1.25522194e+002 - 1.09880692e+002 1.21578491e+002 1.25551682e+002 1.09817627e+002 - 1.21541313e+002 1.25552132e+002 1.09775093e+002 1.21499176e+002 - 1.25580017e+002 1.09727531e+002 1.21480919e+002 1.25599670e+002 - 1.09676979e+002 1.21440651e+002 1.25609474e+002 1.09619179e+002 - 1.21414352e+002 1.25615448e+002 1.09579994e+002 1.21388885e+002 - 1.25633553e+002 1.09515526e+002 1.21346725e+002 1.25620590e+002 - 1.09480759e+002 1.21316368e+002 1.25680946e+002 1.09415764e+002 - 1.21292305e+002 1.25680840e+002 1.09385529e+002 1.21253265e+002 - 1.25697769e+002 1.09355698e+002 1.21242744e+002 1.25721054e+002 - 1.09321281e+002 1.21202583e+002 1.25746429e+002 1.09254288e+002 - 1.21160507e+002 1.25741280e+002 1.09199852e+002 1.21120605e+002 - 1.25758965e+002 1.09159126e+002 1.21102425e+002 1.25773628e+002 - 1.09135437e+002 1.21086090e+002 1.25819885e+002 1.09106758e+002 - 1.21083366e+002 1.25859940e+002 1.09071632e+002 1.21042152e+002 - 1.25892647e+002 1.09019005e+002 1.21014633e+002 1.25906807e+002 - 1.09002968e+002 1.20999641e+002 1.25953804e+002 1.08961655e+002 - 1.20991875e+002 1.25967987e+002 1.08926163e+002 1.20948700e+002 - 1.25986137e+002 1.08878853e+002 1.20913422e+002 1.25987083e+002 - 1.08834450e+002 1.20876678e+002 1.26025261e+002 1.08757004e+002 - 1.20832123e+002 1.26021042e+002 1.08738037e+002 1.20795303e+002 - 1.26043266e+002 1.08720551e+002 1.20791420e+002 1.26074257e+002 - 1.08729607e+002 1.20788445e+002 1.26138298e+002 1.08685043e+002 - 1.20763748e+002 1.26148262e+002 1.08659134e+002 1.20744766e+002 - 1.26188850e+002 1.08638824e+002 1.20738281e+002 1.26220543e+002 - 1.08628609e+002 1.20730537e+002 1.26263092e+002 1.08578140e+002 - 1.20691551e+002 1.26262505e+002 1.08555191e+002 1.20662712e+002 - 1.26295204e+002 1.08532486e+002 1.20660828e+002 1.26329247e+002 - 1.08532021e+002 1.20658058e+002 1.26377129e+002 1.08495567e+002 - 1.20639931e+002 1.26391541e+002 1.08478394e+002 1.20614807e+002 - 1.26414459e+002 1.08434662e+002 1.20585335e+002 1.26413391e+002 - 1.08425285e+002 1.20577492e+002 1.26475342e+002 1.08386147e+002 - 1.20561905e+002 1.26494919e+002 1.08369507e+002 1.20531708e+002 - 1.26516365e+002 1.08362076e+002 1.20526215e+002 1.26544815e+002 - 1.08370583e+002 1.20521889e+002 1.26600464e+002 1.08362175e+002 - 1.20533096e+002 1.26640526e+002 1.08342621e+002 1.20510201e+002 - 1.26674416e+002 1.08323410e+002 1.20505585e+002 1.26700783e+002 - 1.08326172e+002 1.20501823e+002 1.26746651e+002 1.08303528e+002 - 1.20495926e+002 1.26774879e+002 1.08308929e+002 1.20485886e+002 - 1.26834358e+002 1.08283798e+002 1.20475594e+002 1.26859329e+002 - 1.08301445e+002 1.20489082e+002 1.26924301e+002 1.08278915e+002 - 1.20479317e+002 1.26939629e+002 1.08283890e+002 1.20471291e+002 - 1.26983665e+002 1.08270508e+002 1.20464958e+002 1.26998665e+002 - 1.08250504e+002 1.20441238e+002 1.27030655e+002 1.08214424e+002 - 1.20428902e+002 1.27043243e+002 1.08214622e+002 1.20417877e+002 - 1.27065536e+002 1.08210068e+002 1.20426590e+002 1.27097946e+002 - 1.08216522e+002 1.20416473e+002 1.27137886e+002 1.08179794e+002 - 1.20387863e+002 1.27137337e+002 1.08154564e+002 1.20358887e+002 - 1.27145325e+002 1.08156815e+002 1.20368431e+002 1.27173080e+002 - 1.08148895e+002 1.20352974e+002 1.27196281e+002 1.08136520e+002 - 1.20353767e+002 1.27223930e+002 1.08165504e+002 1.20366943e+002 - 1.27295181e+002 1.08181892e+002 1.20399826e+002 1.27347908e+002 - 1.08185860e+002 1.20400093e+002 1.27387680e+002 1.08164482e+002 - 1.20401573e+002 1.27398521e+002 1.08146751e+002 1.20377739e+002 - 1.27404289e+002 1.08156151e+002 1.20407867e+002 1.27442619e+002 - 1.08144028e+002 1.20389572e+002 1.27475525e+002 1.08121033e+002 - 1.20392944e+002 1.27500443e+002 1.08100227e+002 1.20356781e+002 - 1.27500854e+002 1.08074043e+002 1.20345825e+002 1.27508499e+002 - 1.08049988e+002 1.20312805e+002 1.27515137e+002 1.08016502e+002 - 1.20291161e+002 1.27516167e+002 1.08016731e+002 1.20277138e+002 - 1.27537918e+002 1.08003227e+002 1.20279366e+002 1.27546898e+002 - 1.08003006e+002 1.20280762e+002 1.27576546e+002 1.07975220e+002 - 1.20263687e+002 1.27581856e+002 1.08017441e+002 1.20273590e+002 - 1.27633659e+002 1.08006561e+002 1.20272194e+002 1.27643402e+002 - 1.08019974e+002 1.20271172e+002 1.27663307e+002 1.08007240e+002 - 1.20278152e+002 1.27673325e+002 1.08002815e+002 1.20268425e+002 - 1.27686661e+002 1.08005417e+002 1.20284897e+002 1.27703506e+002 - 1.08016357e+002 1.20285316e+002 1.27732666e+002 1.07990768e+002 - 1.20294601e+002 1.27737465e+002 1.08000298e+002 1.20295509e+002 - 1.27764259e+002 1.07974884e+002 1.20285622e+002 1.27755981e+002 - 1.07968185e+002 1.20263412e+002 1.27762100e+002 1.07943596e+002 - 1.20248352e+002 1.27754272e+002 1.07920990e+002 1.20228233e+002 - 1.27751328e+002 1.07908295e+002 1.20227371e+002 1.27751976e+002 - 1.07898560e+002 1.20205933e+002 1.27752159e+002 1.07898613e+002 - 1.20217232e+002 1.27766190e+002 1.07947067e+002 1.20251411e+002 - 1.27827805e+002 1.07952400e+002 1.20272522e+002 1.27848083e+002 - 1.07923981e+002 1.20242668e+002 1.27823837e+002 1.07910164e+002 - 1.20251640e+002 1.27813828e+002 1.07940041e+002 1.20264763e+002 - 1.27839195e+002 1.07960060e+002 1.20291862e+002 1.27854485e+002 - 1.07974472e+002 1.20297035e+002 1.27866432e+002 1.07934319e+002 - 1.20276581e+002 1.27834946e+002 1.07941711e+002 1.20265785e+002 - 1.27833015e+002 1.07949593e+002 1.20279137e+002 1.27833466e+002 - 1.07985435e+002 1.20289368e+002 1.27851662e+002 1.07958420e+002 - 1.20280327e+002 1.27827705e+002 1.07971535e+002 1.20285309e+002 - 1.27831955e+002 1.07955475e+002 1.20278816e+002 1.27806023e+002 - 1.07969727e+002 1.20284042e+002 1.27810745e+002 1.07960632e+002 - 1.20284286e+002 1.27802139e+002 1.07986496e+002 1.20275269e+002 - 1.27801414e+002 1.07981728e+002 1.20282333e+002 1.27780586e+002 - 1.07984222e+002 1.20268959e+002 1.27763435e+002 1.07987770e+002 - 1.20290230e+002 1.27750488e+002 1.07990005e+002 1.20282883e+002 - 1.27748413e+002 1.07985970e+002 1.20283569e+002 1.27723312e+002 - 1.07967491e+002 1.20252998e+002 1.27683998e+002 1.07930046e+002 - 1.20241959e+002 1.27645523e+002 1.07964500e+002 1.20262924e+002 - 1.27656433e+002 1.07984795e+002 1.20292191e+002 1.27657089e+002 - 1.07985497e+002 1.20276779e+002 1.27627014e+002 1.07993454e+002 - 1.20298218e+002 1.27624191e+002 1.07997772e+002 1.20302292e+002 - 1.27604980e+002 1.08006752e+002 1.20319824e+002 1.27588013e+002 - 1.08007751e+002 1.20317444e+002 1.27571205e+002 1.08004463e+002 - 1.20320229e+002 1.27545601e+002 1.08004631e+002 1.20296257e+002 - 1.27507072e+002 1.07996025e+002 1.20295052e+002 1.27469734e+002 - 1.07946869e+002 1.20245804e+002 1.27390228e+002 1.07927948e+002 - 1.20238777e+002 1.27341011e+002 1.07925560e+002 1.20219681e+002 - 1.27306381e+002 1.07937050e+002 1.20230034e+002 1.27272034e+002 - 1.07949364e+002 1.20211426e+002 1.27232758e+002 1.07935501e+002 - 1.20216042e+002 1.27190735e+002 1.07923828e+002 1.20182526e+002 - 1.27144875e+002 1.07919083e+002 1.20186325e+002 1.27116592e+002 - 1.07942200e+002 1.20191757e+002 1.27098824e+002 1.07950462e+002 - 1.20214485e+002 1.27075119e+002 1.07955223e+002 1.20208549e+002 - 1.27042671e+002 1.07968872e+002 1.20229897e+002 1.27018158e+002 - 1.07968346e+002 1.20218407e+002 1.26986259e+002 1.07979362e+002 - 1.20238548e+002 1.26966606e+002 1.08016518e+002 1.20239861e+002 - 1.26957352e+002 1.08038895e+002 1.20270432e+002 1.26938690e+002 - 1.08066299e+002 1.20279938e+002 1.26924591e+002 1.08061142e+002 - 1.20295609e+002 1.26890594e+002 1.08093208e+002 1.20313904e+002 - 1.26886452e+002 1.08129501e+002 1.20351662e+002 1.26875061e+002 - 1.08158089e+002 1.20366898e+002 1.26845253e+002 1.08147652e+002 - 1.20380661e+002 1.26809937e+002 1.08162231e+002 1.20375999e+002 - 1.26790741e+002 1.08194931e+002 1.20415977e+002 1.26779510e+002 - 1.08199989e+002 1.20406181e+002 1.26749504e+002 1.08237053e+002 - 1.20449234e+002 1.26752045e+002 1.08255264e+002 1.20455276e+002 - 1.26722397e+002 1.08244957e+002 1.20455017e+002 1.26673943e+002 - 1.08252350e+002 1.20445686e+002 1.26632149e+002 1.08248055e+002 - 1.20439331e+002 1.26591835e+002 1.08290192e+002 1.20447884e+002 - 1.26572899e+002 1.08326622e+002 1.20491356e+002 1.26562531e+002 - 1.08359482e+002 1.20508202e+002 1.26546761e+002 1.08347694e+002 - 1.20512360e+002 1.26500137e+002 1.08362961e+002 1.20509491e+002 - 1.26476051e+002 1.08395332e+002 1.20545380e+002 1.26451347e+002 - 1.08416191e+002 1.20544907e+002 1.26402115e+002 1.08408325e+002 - 1.20546478e+002 1.26351814e+002 1.08429657e+002 1.20555176e+002 - 1.26338715e+002 1.08454742e+002 1.20587494e+002 1.26319016e+002 - 1.08475983e+002 1.20591637e+002 1.26292694e+002 1.08476639e+002 - 1.20606354e+002 1.26248993e+002 1.08519234e+002 1.20636497e+002 - 1.26238014e+002 1.08560448e+002 1.20687263e+002 1.26228966e+002 - 1.08569412e+002 1.20680634e+002 1.26179871e+002 1.08583237e+002 - 1.20703476e+002 1.26147377e+002 1.08625397e+002 1.20704872e+002 - 1.26113571e+002 1.08665939e+002 1.20751846e+002 1.26097649e+002 - 1.08709595e+002 1.20775276e+002 1.26074852e+002 1.08711395e+002 - 1.20781380e+002 1.26027199e+002 1.08722290e+002 1.20772751e+002 - 1.25985451e+002 1.08783134e+002 1.20830307e+002 1.25990608e+002 - 1.08824944e+002 1.20848091e+002 1.25955460e+002 1.08834412e+002 - 1.20868362e+002 1.25922218e+002 1.08865685e+002 1.20877655e+002 - 1.25895966e+002 1.08883339e+002 1.20896973e+002 1.25865669e+002 - 1.08934715e+002 1.20909813e+002 1.25843193e+002 1.08973854e+002 - 1.20960793e+002 1.25824928e+002 1.09043495e+002 1.21013741e+002 - 1.25830574e+002 1.09049561e+002 1.21022072e+002 1.25782471e+002 - 1.09073654e+002 1.21021271e+002 1.25743034e+002 1.09114479e+002 - 1.21066017e+002 1.25737633e+002 1.09187164e+002 1.21094009e+002 - 1.25727432e+002 1.09217094e+002 1.21125282e+002 1.25702209e+002 - 1.09227402e+002 1.21105782e+002 1.25642326e+002 1.09264595e+002 - 1.21149696e+002 1.25636902e+002 1.09318192e+002 1.21185097e+002 - 1.25639572e+002 1.09378464e+002 1.21238129e+002 1.25633858e+002 - 1.09448402e+002 1.21273605e+002 1.25605980e+002 1.09478638e+002 - 1.21309532e+002 1.25584885e+002 1.09522881e+002 1.21316551e+002 - 1.25564056e+002 1.09578621e+002 1.21369667e+002 1.25567825e+002 - 1.09633743e+002 1.21392975e+002 1.25553528e+002 1.09684563e+002 - 1.21440788e+002 1.25550011e+002 1.09748276e+002 1.21466927e+002 - 1.25530525e+002 1.09786018e+002 1.21497574e+002 1.25502335e+002 - 1.09838943e+002 1.21511391e+002 1.25487389e+002 1.09913239e+002 - 1.21578041e+002 1.25504959e+002 1.09966431e+002 1.21572418e+002 - 1.25466660e+002 1.10006668e+002 1.21597588e+002 1.25444382e+002 - 1.10040871e+002 1.21586533e+002 1.25399635e+002 1.10049637e+002 - 1.21585060e+002 1.25348862e+002 1.10056023e+002 1.21548317e+002 - 1.25294830e+002 1.09968987e+002 1.21441750e+002 1.25137497e+002 - 1.09937256e+002 1.21434357e+002 1.25140244e+002 1.09982048e+002 - 1.21525452e+002 1.25251389e+002 1.10005226e+002 1.21560204e+002 - 1.25325577e+002 1.09997826e+002 1.21588165e+002 1.25381538e+002 - 1.09972847e+002 1.21581596e+002 1.25430176e+002 1.09916786e+002 - 1.21566528e+002 1.25444107e+002 1.09877296e+002 1.21552727e+002 - 1.25488884e+002 1.09811058e+002 1.21519928e+002 1.25486649e+002 - 1.09778664e+002 1.21496262e+002 1.25515289e+002 1.09700356e+002 - 1.21453041e+002 1.25513527e+002 1.09666962e+002 1.21418724e+002 - 1.25544174e+002 1.09651054e+002 1.21429077e+002 1.25595413e+002 - 1.09569405e+002 1.21365135e+002 1.25577660e+002 1.09506287e+002 - 1.21331741e+002 1.25574036e+002 1.09451431e+002 1.21284081e+002 - 1.25573662e+002 1.09408173e+002 1.21260620e+002 1.25586273e+002 - 1.09370567e+002 1.21238579e+002 1.25646805e+002 1.09296501e+002 - 1.21200432e+002 1.25642464e+002 1.09265343e+002 1.21156166e+002 - 1.25647881e+002 1.09221169e+002 1.21135818e+002 1.25659042e+002 - 1.09187996e+002 1.21104195e+002 1.25694122e+002 1.09119087e+002 - 1.21057289e+002 1.25688843e+002 1.09068558e+002 1.21016655e+002 - 1.25710098e+002 1.09049026e+002 1.21018188e+002 1.25746788e+002 - 1.09033463e+002 1.21009743e+002 1.25801804e+002 1.08984825e+002 - 1.20988564e+002 1.25819000e+002 1.08949158e+002 1.20946304e+002 - 1.25863007e+002 1.08911842e+002 1.20928833e+002 1.25879059e+002 - 1.08882988e+002 1.20915443e+002 1.25921707e+002 1.08847794e+002 - 1.20901466e+002 1.25943146e+002 1.08811783e+002 1.20861084e+002 - 1.25957336e+002 1.08773293e+002 1.20837654e+002 1.25970634e+002 - 1.08723869e+002 1.20794380e+002 1.26010101e+002 1.08652176e+002 - 1.20755005e+002 1.26002892e+002 1.08608017e+002 1.20694595e+002 - 1.25997658e+002 1.08599533e+002 1.20697128e+002 1.26035088e+002 - 1.08626389e+002 1.20708168e+002 1.26116302e+002 1.08576195e+002 - 1.20677589e+002 1.26120316e+002 1.08534134e+002 1.20641373e+002 - 1.26145081e+002 1.08520844e+002 1.20645851e+002 1.26180595e+002 - 1.08520042e+002 1.20643242e+002 1.26234184e+002 1.08459030e+002 - 1.20607376e+002 1.26232208e+002 1.08435387e+002 1.20565941e+002 - 1.26259476e+002 1.08420052e+002 1.20572495e+002 1.26303322e+002 - 1.08394707e+002 1.20547920e+002 1.26329521e+002 1.08352608e+002 - 1.20524963e+002 1.26333305e+002 1.08341408e+002 1.20498459e+002 - 1.26360405e+002 1.08314842e+002 1.20491791e+002 1.26385208e+002 - 1.08299683e+002 1.20477882e+002 1.26445206e+002 1.08267265e+002 - 1.20468254e+002 1.26468094e+002 1.08244164e+002 1.20425652e+002 - 1.26477936e+002 1.08226692e+002 1.20415367e+002 1.26496643e+002 - 1.08233673e+002 1.20411491e+002 1.26556564e+002 1.08217819e+002 - 1.20414612e+002 1.26592056e+002 1.08185753e+002 1.20385681e+002 - 1.26615936e+002 1.08185013e+002 1.20399429e+002 1.26658218e+002 - 1.08193947e+002 1.20398552e+002 1.26707687e+002 1.08159348e+002 - 1.20377396e+002 1.26721703e+002 1.08164093e+002 1.20365456e+002 - 1.26780746e+002 1.08158562e+002 1.20373039e+002 1.26830101e+002 - 1.08158028e+002 1.20362000e+002 1.26868881e+002 1.08145203e+002 - 1.20368469e+002 1.26896317e+002 1.08154816e+002 1.20361000e+002 - 1.26942047e+002 1.08151169e+002 1.20366417e+002 1.26973648e+002 - 1.08133698e+002 1.20348015e+002 1.27004303e+002 1.08085991e+002 - 1.20325607e+002 1.27000488e+002 1.08090652e+002 1.20315529e+002 - 1.27028809e+002 1.08078026e+002 1.20315918e+002 1.27050255e+002 - 1.08093422e+002 1.20310898e+002 1.27100128e+002 1.08048630e+002 - 1.20282799e+002 1.27096924e+002 1.08027718e+002 1.20258209e+002 - 1.27108734e+002 1.08043083e+002 1.20276878e+002 1.27149414e+002 - 1.08035835e+002 1.20260529e+002 1.27171654e+002 1.07994263e+002 - 1.20239197e+002 1.27170708e+002 1.08021751e+002 1.20242744e+002 - 1.27240150e+002 1.08021225e+002 1.20258308e+002 1.27275124e+002 - 1.08029991e+002 1.20268799e+002 1.27316818e+002 1.08004051e+002 - 1.20262154e+002 1.27320518e+002 1.07983208e+002 1.20238861e+002 - 1.27328873e+002 1.07993355e+002 1.20261391e+002 1.27371147e+002 - 1.07987335e+002 1.20255798e+002 1.27413383e+002 1.07951218e+002 - 1.20244080e+002 1.27415855e+002 1.07947266e+002 1.20226784e+002 - 1.27439499e+002 1.07949356e+002 1.20241310e+002 1.27468895e+002 - 1.07945419e+002 1.20221390e+002 1.27496208e+002 1.07903336e+002 - 1.20190620e+002 1.27480988e+002 1.07882805e+002 1.20169014e+002 - 1.27496582e+002 1.07875450e+002 1.20172462e+002 1.27508331e+002 - 1.07873398e+002 1.20164131e+002 1.27534309e+002 1.07839867e+002 - 1.20144676e+002 1.27528030e+002 1.07890205e+002 1.20157822e+002 - 1.27593445e+002 1.07887825e+002 1.20168488e+002 1.27615234e+002 - 1.07884911e+002 1.20158997e+002 1.27628059e+002 1.07876991e+002 - 1.20172501e+002 1.27632874e+002 1.07852882e+002 1.20138275e+002 - 1.27629234e+002 1.07850410e+002 1.20146774e+002 1.27643776e+002 - 1.07844261e+002 1.20140778e+002 1.27663269e+002 1.07824783e+002 - 1.20144775e+002 1.27665237e+002 1.07838432e+002 1.20148857e+002 - 1.27696785e+002 1.07823395e+002 1.20148033e+002 1.27696701e+002 - 1.07819145e+002 1.20134872e+002 1.27713074e+002 1.07801353e+002 - 1.20128349e+002 1.27712723e+002 1.07775185e+002 1.20101746e+002 - 1.27698326e+002 1.07782005e+002 1.20123421e+002 1.27716606e+002 - 1.07780891e+002 1.20108116e+002 1.27721443e+002 1.07782471e+002 - 1.20126991e+002 1.27745583e+002 1.07820671e+002 1.20145638e+002 - 1.27796486e+002 1.07808998e+002 1.20155785e+002 1.27797035e+002 - 1.07791763e+002 1.20133385e+002 1.27779610e+002 1.07798393e+002 - 1.20158051e+002 1.27786102e+002 1.07817322e+002 1.20163979e+002 - 1.27810837e+002 1.07821655e+002 1.20171509e+002 1.27805466e+002 - 1.07830475e+002 1.20174286e+002 1.27817726e+002 1.07787613e+002 - 1.20147057e+002 1.27779465e+002 1.07790802e+002 1.20129852e+002 - 1.27776848e+002 1.07806038e+002 1.20156448e+002 1.27790474e+002 - 1.07859276e+002 1.20187096e+002 1.27823013e+002 1.07839592e+002 - 1.20175606e+002 1.27794250e+002 1.07828255e+002 1.20160645e+002 - 1.27782784e+002 1.07822060e+002 1.20169334e+002 1.27769897e+002 - 1.07846260e+002 1.20179527e+002 1.27786652e+002 1.07830177e+002 - 1.20175117e+002 1.27763100e+002 1.07846107e+002 1.20157509e+002 - 1.27751190e+002 1.07848907e+002 1.20168587e+002 1.27741875e+002 - 1.07840019e+002 1.20140625e+002 1.27705017e+002 1.07849457e+002 - 1.20172523e+002 1.27700974e+002 1.07848923e+002 1.20160446e+002 - 1.27699059e+002 1.07849983e+002 1.20167137e+002 1.27684799e+002 - 1.07859001e+002 1.20168129e+002 1.27669640e+002 1.07825813e+002 - 1.20155235e+002 1.27624687e+002 1.07834557e+002 1.20144745e+002 - 1.27613960e+002 1.07854218e+002 1.20176216e+002 1.27611404e+002 - 1.07867203e+002 1.20179001e+002 1.27600990e+002 1.07880714e+002 - 1.20209038e+002 1.27604424e+002 1.07881729e+002 1.20204002e+002 - 1.27579285e+002 1.07865028e+002 1.20199463e+002 1.27537682e+002 - 1.07869514e+002 1.20192078e+002 1.27522682e+002 1.07846649e+002 - 1.20186600e+002 1.27483307e+002 1.07874100e+002 1.20185135e+002 - 1.27470497e+002 1.07850105e+002 1.20167343e+002 1.27417564e+002 - 1.07790497e+002 1.20102936e+002 1.27315269e+002 1.07785126e+002 - 1.20113998e+002 1.27281105e+002 1.07790276e+002 1.20100716e+002 - 1.27259514e+002 1.07786331e+002 1.20090149e+002 1.27207855e+002 - 1.07786057e+002 1.20074501e+002 1.27157219e+002 1.07786179e+002 - 1.20085777e+002 1.27130981e+002 1.07793922e+002 1.20070999e+002 - 1.27103539e+002 1.07795555e+002 1.20084564e+002 1.27079491e+002 - 1.07821808e+002 1.20094795e+002 1.27070107e+002 1.07819931e+002 - 1.20103722e+002 1.27035866e+002 1.07821892e+002 1.20103745e+002 - 1.26999672e+002 1.07820450e+002 1.20107254e+002 1.26959145e+002 - 1.07837067e+002 1.20112656e+002 1.26944221e+002 1.07854866e+002 - 1.20130936e+002 1.26929611e+002 1.07893768e+002 1.20139503e+002 - 1.26916458e+002 1.07908554e+002 1.20165428e+002 1.26900101e+002 - 1.07916733e+002 1.20152657e+002 1.26858803e+002 1.07903870e+002 - 1.20157562e+002 1.26814629e+002 1.07942551e+002 1.20186111e+002 - 1.26815079e+002 1.07975815e+002 1.20214912e+002 1.26802055e+002 - 1.08001205e+002 1.20228668e+002 1.26771378e+002 1.08005287e+002 - 1.20251953e+002 1.26743004e+002 1.08028778e+002 1.20258629e+002 - 1.26728523e+002 1.08056885e+002 1.20297981e+002 1.26724609e+002 - 1.08082817e+002 1.20307152e+002 1.26707298e+002 1.08097847e+002 - 1.20332436e+002 1.26692467e+002 1.08105515e+002 1.20330727e+002 - 1.26656914e+002 1.08096443e+002 1.20324150e+002 1.26601349e+002 - 1.08104263e+002 1.20317688e+002 1.26562943e+002 1.08090797e+002 - 1.20305092e+002 1.26515526e+002 1.08154045e+002 1.20336960e+002 - 1.26526115e+002 1.08196243e+002 1.20389923e+002 1.26529739e+002 - 1.08223167e+002 1.20400848e+002 1.26501289e+002 1.08212753e+002 - 1.20405113e+002 1.26455917e+002 1.08245010e+002 1.20417236e+002 - 1.26442780e+002 1.08290054e+002 1.20466751e+002 1.26434425e+002 - 1.08311577e+002 1.20465118e+002 1.26384834e+002 1.08307724e+002 - 1.20474861e+002 1.26343269e+002 1.08342232e+002 1.20487686e+002 - 1.26329735e+002 1.08341347e+002 1.20500664e+002 1.26293152e+002 - 1.08353127e+002 1.20492081e+002 1.26253799e+002 1.08354607e+002 - 1.20513397e+002 1.26218872e+002 1.08382912e+002 1.20531593e+002 - 1.26186890e+002 1.08426132e+002 1.20581558e+002 1.26177162e+002 - 1.08474884e+002 1.20611176e+002 1.26164375e+002 1.08473549e+002 - 1.20612572e+002 1.26113441e+002 1.08520081e+002 1.20622986e+002 - 1.26088928e+002 1.08555611e+002 1.20666550e+002 1.26066246e+002 - 1.08594032e+002 1.20687363e+002 1.26039673e+002 1.08603180e+002 - 1.20701904e+002 1.25993454e+002 1.08622475e+002 1.20691887e+002 - 1.25956474e+002 1.08682297e+002 1.20751755e+002 1.25962006e+002 - 1.08709488e+002 1.20764259e+002 1.25923752e+002 1.08711159e+002 - 1.20781876e+002 1.25877182e+002 1.08752159e+002 1.20791206e+002 - 1.25863075e+002 1.08790459e+002 1.20831261e+002 1.25845535e+002 - 1.08823944e+002 1.20833481e+002 1.25809845e+002 1.08846626e+002 - 1.20859108e+002 1.25776535e+002 1.08926849e+002 1.20921638e+002 - 1.25790939e+002 1.08955559e+002 1.20954208e+002 1.25758476e+002 - 1.08972237e+002 1.20945053e+002 1.25715767e+002 1.09004677e+002 - 1.20980873e+002 1.25697807e+002 1.09078064e+002 1.21009781e+002 - 1.25699905e+002 1.09105240e+002 1.21033165e+002 1.25665138e+002 - 1.09119202e+002 1.21025429e+002 1.25611511e+002 1.09150444e+002 - 1.21066231e+002 1.25594551e+002 1.09213516e+002 1.21102448e+002 - 1.25602982e+002 1.09273094e+002 1.21155914e+002 1.25593582e+002 - 1.09351364e+002 1.21201912e+002 1.25582855e+002 1.09392113e+002 - 1.21250618e+002 1.25570335e+002 1.09433502e+002 1.21253548e+002 - 1.25544449e+002 1.09487030e+002 1.21307037e+002 1.25542862e+002 - 1.09542953e+002 1.21323448e+002 1.25528877e+002 1.09583374e+002 - 1.21361137e+002 1.25506805e+002 1.09654053e+002 1.21400040e+002 - 1.25499313e+002 1.09704376e+002 1.21434784e+002 1.25486252e+002 - 1.09756157e+002 1.21449646e+002 1.25465836e+002 1.09807625e+002 - 1.21492271e+002 1.25459129e+002 1.09869400e+002 1.21499664e+002 - 1.25438736e+002 1.09925674e+002 1.21536865e+002 1.25428017e+002 - 1.09957085e+002 1.21524155e+002 1.25383049e+002 1.09947044e+002 - 1.21508507e+002 1.25319267e+002 1.09954803e+002 1.21472191e+002 - 1.25261780e+002 1.09868805e+002 1.21371925e+002 1.25108398e+002 - 1.09809723e+002 1.21343880e+002 1.25109749e+002 1.09872627e+002 - 1.21445473e+002 1.25238426e+002 1.09922539e+002 1.21507378e+002 - 1.25334015e+002 1.09905746e+002 1.21529259e+002 1.25388069e+002 - 1.09870964e+002 1.21510315e+002 1.25421860e+002 1.09802917e+002 - 1.21482056e+002 1.25423721e+002 1.09750298e+002 1.21449455e+002 - 1.25455193e+002 1.09678131e+002 1.21412315e+002 1.25447975e+002 - 1.09645729e+002 1.21395134e+002 1.25483330e+002 1.09564957e+002 - 1.21343140e+002 1.25465660e+002 1.09521545e+002 1.21296837e+002 - 1.25488998e+002 1.09496971e+002 1.21303413e+002 1.25534431e+002 - 1.09456879e+002 1.21276093e+002 1.25557449e+002 1.09382271e+002 - 1.21234467e+002 1.25547523e+002 1.09318977e+002 1.21180367e+002 - 1.25541924e+002 1.09283211e+002 1.21160973e+002 1.25557373e+002 - 1.09238243e+002 1.21132607e+002 1.25610603e+002 1.09152046e+002 - 1.21079971e+002 1.25594193e+002 1.09126709e+002 1.21048737e+002 - 1.25613091e+002 1.09078377e+002 1.21026840e+002 1.25625412e+002 - 1.09045158e+002 1.20985443e+002 1.25650764e+002 1.08993805e+002 - 1.20961594e+002 1.25667328e+002 1.08955360e+002 1.20934013e+002 - 1.25703133e+002 1.08931519e+002 1.20931343e+002 1.25734612e+002 - 1.08897888e+002 1.20909889e+002 1.25777878e+002 1.08828903e+002 - 1.20863838e+002 1.25775574e+002 1.08790428e+002 1.20817711e+002 - 1.25815491e+002 1.08764946e+002 1.20814812e+002 1.25851219e+002 - 1.08737320e+002 1.20799011e+002 1.25891968e+002 1.08697083e+002 - 1.20778160e+002 1.25904137e+002 1.08647278e+002 1.20727829e+002 - 1.25907295e+002 1.08621056e+002 1.20710106e+002 1.25929245e+002 - 1.08586700e+002 1.20682648e+002 1.25979813e+002 1.08525604e+002 - 1.20655296e+002 1.25986725e+002 1.08489365e+002 1.20601105e+002 - 1.25988129e+002 1.08470665e+002 1.20594414e+002 1.26015892e+002 - 1.08471130e+002 1.20584381e+002 1.26064041e+002 1.08431190e+002 - 1.20563492e+002 1.26081657e+002 1.08394470e+002 1.20531670e+002 - 1.26111519e+002 1.08366173e+002 1.20513184e+002 1.26127907e+002 - 1.08371620e+002 1.20517845e+002 1.26188377e+002 1.08324913e+002 - 1.20492516e+002 1.26198219e+002 1.08301384e+002 1.20460510e+002 - 1.26234131e+002 1.08271774e+002 1.20447472e+002 1.26257286e+002 - 1.08240089e+002 1.20416489e+002 1.26277946e+002 1.08187538e+002 - 1.20388237e+002 1.26273132e+002 1.08168427e+002 1.20356613e+002 - 1.26297302e+002 1.08161011e+002 1.20359886e+002 1.26334930e+002 - 1.08160950e+002 1.20364868e+002 1.26408951e+002 1.08106270e+002 - 1.20334328e+002 1.26417694e+002 1.08091995e+002 1.20304993e+002 - 1.26439598e+002 1.08072479e+002 1.20292099e+002 1.26464020e+002 - 1.08075562e+002 1.20284309e+002 1.26517059e+002 1.08052483e+002 - 1.20276886e+002 1.26542801e+002 1.08032578e+002 1.20255447e+002 - 1.26580177e+002 1.08013298e+002 1.20251823e+002 1.26601509e+002 - 1.08014641e+002 1.20246628e+002 1.26649055e+002 1.07985512e+002 - 1.20232544e+002 1.26670860e+002 1.07989830e+002 1.20221413e+002 - 1.26728806e+002 1.07992104e+002 1.20229584e+002 1.26777061e+002 - 1.07995972e+002 1.20226921e+002 1.26820961e+002 1.07985222e+002 - 1.20229286e+002 1.26853294e+002 1.07997971e+002 1.20227272e+002 - 1.26899452e+002 1.07989304e+002 1.20237801e+002 1.26920555e+002 - 1.07973221e+002 1.20211334e+002 1.26953117e+002 1.07923828e+002 - 1.20188248e+002 1.26954567e+002 1.07928322e+002 1.20172775e+002 - 1.26979126e+002 1.07917000e+002 1.20177353e+002 1.27004021e+002 - 1.07925575e+002 1.20164658e+002 1.27043343e+002 1.07893158e+002 - 1.20150627e+002 1.27052513e+002 1.07874435e+002 1.20125305e+002 - 1.27066025e+002 1.07870316e+002 1.20131638e+002 1.27094147e+002 - 1.07854256e+002 1.20104195e+002 1.27106491e+002 1.07830536e+002 - 1.20100052e+002 1.27126472e+002 1.07836319e+002 1.20078346e+002 - 1.27165344e+002 1.07831802e+002 1.20087112e+002 1.27191933e+002 - 1.07825745e+002 1.20089500e+002 1.27228935e+002 1.07796120e+002 - 1.20081993e+002 1.27228249e+002 1.07804665e+002 1.20085365e+002 - 1.27266617e+002 1.07813416e+002 1.20109467e+002 1.27301460e+002 - 1.07812927e+002 1.20106010e+002 1.27350304e+002 1.07778549e+002 - 1.20090019e+002 1.27362267e+002 1.07774666e+002 1.20074463e+002 - 1.27375053e+002 1.07776489e+002 1.20092194e+002 1.27409164e+002 - 1.07801018e+002 1.20100479e+002 1.27461388e+002 1.07757095e+002 - 1.20062035e+002 1.27444801e+002 1.07726257e+002 1.20027115e+002 - 1.27446404e+002 1.07721252e+002 1.20031601e+002 1.27463676e+002 - 1.07726891e+002 1.20041405e+002 1.27502823e+002 1.07681046e+002 - 1.20011459e+002 1.27493759e+002 1.07705513e+002 1.19995110e+002 - 1.27531151e+002 1.07715965e+002 1.20018913e+002 1.27558861e+002 - 1.07727570e+002 1.20026939e+002 1.27584587e+002 1.07712257e+002 - 1.20031128e+002 1.27593582e+002 1.07689865e+002 1.19998917e+002 - 1.27591293e+002 1.07692879e+002 1.20017487e+002 1.27608955e+002 - 1.07711082e+002 1.20031036e+002 1.27649918e+002 1.07688026e+002 - 1.20030724e+002 1.27651726e+002 1.07684624e+002 1.20018402e+002 - 1.27659058e+002 1.07647881e+002 1.19999481e+002 1.27642838e+002 - 1.07655846e+002 1.19990486e+002 1.27666374e+002 1.07644653e+002 - 1.19998779e+002 1.27677002e+002 1.07620956e+002 1.19971565e+002 - 1.27666893e+002 1.07624039e+002 1.19988556e+002 1.27682640e+002 - 1.07641747e+002 1.19998482e+002 1.27711235e+002 1.07617920e+002 - 1.19991898e+002 1.27705017e+002 1.07638687e+002 1.19985741e+002 - 1.27731720e+002 1.07652634e+002 1.20020035e+002 1.27757866e+002 - 1.07645630e+002 1.20013596e+002 1.27752312e+002 1.07624687e+002 - 1.20007874e+002 1.27729782e+002 1.07648666e+002 1.20020111e+002 - 1.27757591e+002 1.07657410e+002 1.20033676e+002 1.27754211e+002 - 1.07660667e+002 1.20023193e+002 1.27760376e+002 1.07625374e+002 - 1.20005638e+002 1.27734474e+002 1.07627045e+002 1.19988266e+002 - 1.27728310e+002 1.07645004e+002 1.20017174e+002 1.27741623e+002 - 1.07691666e+002 1.20044861e+002 1.27772865e+002 1.07678474e+002 - 1.20035347e+002 1.27756310e+002 1.07663139e+002 1.20018112e+002 - 1.27735252e+002 1.07660530e+002 1.20025093e+002 1.27722786e+002 - 1.07686203e+002 1.20037567e+002 1.27734703e+002 1.07673080e+002 - 1.20031715e+002 1.27715607e+002 1.07686958e+002 1.20014839e+002 - 1.27706467e+002 1.07674294e+002 1.20009468e+002 1.27675232e+002 - 1.07666611e+002 1.19997520e+002 1.27650520e+002 1.07654724e+002 - 1.19998520e+002 1.27627525e+002 1.07655571e+002 1.19987915e+002 - 1.27615814e+002 1.07676041e+002 1.20012215e+002 1.27613960e+002 - 1.07674477e+002 1.20006958e+002 1.27597878e+002 1.07681488e+002 - 1.20034897e+002 1.27597519e+002 1.07687004e+002 1.20019577e+002 - 1.27583015e+002 1.07697807e+002 1.20047546e+002 1.27576836e+002 - 1.07692879e+002 1.20029427e+002 1.27547607e+002 1.07720703e+002 - 1.20073814e+002 1.27559608e+002 1.07717155e+002 1.20066978e+002 - 1.27536209e+002 1.07709846e+002 1.20073921e+002 1.27507507e+002 - 1.07684059e+002 1.20033127e+002 1.27460144e+002 1.07673882e+002 - 1.20038635e+002 1.27430641e+002 1.07721626e+002 1.20050621e+002 - 1.27433151e+002 1.07696938e+002 1.20036346e+002 1.27379501e+002 - 1.07651703e+002 1.19986168e+002 1.27294815e+002 1.07642555e+002 - 1.19989113e+002 1.27253540e+002 1.07637726e+002 1.19972603e+002 - 1.27218849e+002 1.07627098e+002 1.19954262e+002 1.27159637e+002 - 1.07625786e+002 1.19932503e+002 1.27114471e+002 1.07610489e+002 - 1.19933563e+002 1.27074791e+002 1.07634064e+002 1.19932465e+002 - 1.27059158e+002 1.07645195e+002 1.19965233e+002 1.27047180e+002 - 1.07664078e+002 1.19966446e+002 1.27027908e+002 1.07659271e+002 - 1.19974205e+002 1.26988869e+002 1.07673889e+002 1.19979576e+002 - 1.26968399e+002 1.07646355e+002 1.19959969e+002 1.26903694e+002 - 1.07672554e+002 1.19969322e+002 1.26887428e+002 1.07678253e+002 - 1.19984833e+002 1.26865829e+002 1.07723557e+002 1.19996506e+002 - 1.26868065e+002 1.07745316e+002 1.20027077e+002 1.26852692e+002 - 1.07770142e+002 1.20037132e+002 1.26828194e+002 1.07736252e+002 - 1.20026466e+002 1.26766548e+002 1.07775490e+002 1.20044014e+002 - 1.26763672e+002 1.07794174e+002 1.20066467e+002 1.26736298e+002 - 1.07825096e+002 1.20078781e+002 1.26703789e+002 1.07817162e+002 - 1.20090134e+002 1.26664352e+002 1.07847244e+002 1.20103661e+002 - 1.26655396e+002 1.07875710e+002 1.20144684e+002 1.26650627e+002 - 1.07922638e+002 1.20166504e+002 1.26653099e+002 1.07927147e+002 - 1.20186684e+002 1.26623215e+002 1.07926697e+002 1.20168251e+002 - 1.26578781e+002 1.07928246e+002 1.20184174e+002 1.26541702e+002 - 1.07930672e+002 1.20161232e+002 1.26499329e+002 1.07933441e+002 - 1.20173546e+002 1.26466835e+002 1.08011597e+002 1.20222778e+002 - 1.26491348e+002 1.08042854e+002 1.20260567e+002 1.26484451e+002 - 1.08055031e+002 1.20262352e+002 1.26445801e+002 1.08064461e+002 - 1.20292091e+002 1.26416183e+002 1.08111481e+002 1.20319252e+002 - 1.26420624e+002 1.08151131e+002 1.20357330e+002 1.26404640e+002 - 1.08182716e+002 1.20367348e+002 1.26366028e+002 1.08149918e+002 - 1.20350121e+002 1.26297203e+002 1.08180832e+002 1.20361923e+002 - 1.26285088e+002 1.08204597e+002 1.20391983e+002 1.26267319e+002 - 1.08205467e+002 1.20382996e+002 1.26217064e+002 1.08202271e+002 - 1.20393784e+002 1.26169220e+002 1.08223816e+002 1.20407272e+002 - 1.26139030e+002 1.08258522e+002 1.20450371e+002 1.26119339e+002 - 1.08312012e+002 1.20483063e+002 1.26112320e+002 1.08307915e+002 - 1.20481117e+002 1.26055046e+002 1.08362427e+002 1.20495529e+002 - 1.26028008e+002 1.08407135e+002 1.20539261e+002 1.26018158e+002 - 1.08421684e+002 1.20539154e+002 1.25966949e+002 1.08442940e+002 - 1.20563965e+002 1.25938316e+002 1.08479332e+002 1.20580597e+002 - 1.25921730e+002 1.08538620e+002 1.20640160e+002 1.25916496e+002 - 1.08570923e+002 1.20653908e+002 1.25878609e+002 1.08594002e+002 - 1.20687225e+002 1.25852081e+002 1.08614799e+002 1.20681000e+002 - 1.25821236e+002 1.08628082e+002 1.20700325e+002 1.25786469e+002 - 1.08674377e+002 1.20717751e+002 1.25762314e+002 1.08715118e+002 - 1.20758148e+002 1.25742096e+002 1.08769859e+002 1.20794258e+002 - 1.25732353e+002 1.08789604e+002 1.20815346e+002 1.25696373e+002 - 1.08832664e+002 1.20834579e+002 1.25676918e+002 1.08860558e+002 - 1.20868073e+002 1.25655464e+002 1.08914688e+002 1.20874596e+002 - 1.25634209e+002 1.08937065e+002 1.20894226e+002 1.25600258e+002 - 1.08987343e+002 1.20927322e+002 1.25580238e+002 1.09014771e+002 - 1.20957504e+002 1.25553978e+002 1.09091125e+002 1.21010620e+002 - 1.25572090e+002 1.09151772e+002 1.21066917e+002 1.25567627e+002 - 1.09217682e+002 1.21102547e+002 1.25543839e+002 1.09254288e+002 - 1.21147148e+002 1.25533508e+002 1.09301598e+002 1.21150993e+002 - 1.25505501e+002 1.09349075e+002 1.21199036e+002 1.25502464e+002 - 1.09417015e+002 1.21226952e+002 1.25492699e+002 1.09454460e+002 - 1.21261932e+002 1.25470695e+002 1.09531113e+002 1.21309525e+002 - 1.25468719e+002 1.09592606e+002 1.21355118e+002 1.25461327e+002 - 1.09644569e+002 1.21370392e+002 1.25442505e+002 1.09689255e+002 - 1.21405800e+002 1.25431602e+002 1.09768021e+002 1.21424156e+002 - 1.25421150e+002 1.09819633e+002 1.21457352e+002 1.25405342e+002 - 1.09856789e+002 1.21451653e+002 1.25366638e+002 1.09846237e+002 - 1.21437408e+002 1.25309914e+002 1.09829727e+002 1.21375237e+002 - 1.25227699e+002 1.09759552e+002 1.21290565e+002 1.25088524e+002 - 1.09701767e+002 1.21267876e+002 1.25088318e+002 1.09783821e+002 - 1.21387764e+002 1.25227165e+002 1.09818153e+002 1.21436111e+002 - 1.25315582e+002 1.09798653e+002 1.21448723e+002 1.25356125e+002 - 1.09760239e+002 1.21432823e+002 1.25394127e+002 1.09700691e+002 - 1.21413116e+002 1.25407837e+002 1.09661102e+002 1.21392632e+002 - 1.25451172e+002 1.09574150e+002 1.21339897e+002 1.25424248e+002 - 1.09531662e+002 1.21306801e+002 1.25446388e+002 1.09440346e+002 - 1.21243523e+002 1.25429878e+002 1.09395363e+002 1.21197701e+002 - 1.25451996e+002 1.09362587e+002 1.21199272e+002 1.25491699e+002 - 1.09342285e+002 1.21188309e+002 1.25529663e+002 1.09262833e+002 - 1.21145599e+002 1.25514664e+002 1.09209404e+002 1.21098854e+002 - 1.25515427e+002 1.09164322e+002 1.21069878e+002 1.25525307e+002 - 1.09124969e+002 1.21049271e+002 1.25586800e+002 1.09046829e+002 - 1.20998779e+002 1.25570129e+002 1.09003456e+002 1.20956032e+002 - 1.25575623e+002 1.08943550e+002 1.20916443e+002 1.25573822e+002 - 1.08904137e+002 1.20875679e+002 1.25602333e+002 1.08849236e+002 - 1.20850533e+002 1.25618973e+002 1.08817528e+002 1.20826103e+002 - 1.25655907e+002 1.08796272e+002 1.20826279e+002 1.25694588e+002 - 1.08747528e+002 1.20786713e+002 1.25719017e+002 1.08686867e+002 - 1.20743973e+002 1.25726944e+002 1.08663925e+002 1.20718933e+002 - 1.25782707e+002 1.08627350e+002 1.20701912e+002 1.25811531e+002 - 1.08614563e+002 1.20695320e+002 1.25857773e+002 1.08575195e+002 - 1.20679550e+002 1.25875275e+002 1.08526192e+002 1.20631088e+002 - 1.25876320e+002 1.08487564e+002 1.20605850e+002 1.25895554e+002 - 1.08459702e+002 1.20580437e+002 1.25943932e+002 1.08406235e+002 - 1.20551910e+002 1.25951317e+002 1.08377739e+002 1.20513512e+002 - 1.25968811e+002 1.08342255e+002 1.20495453e+002 1.25981514e+002 - 1.08333145e+002 1.20473900e+002 1.26022125e+002 1.08311546e+002 - 1.20466568e+002 1.26052811e+002 1.08274422e+002 1.20432175e+002 - 1.26076279e+002 1.08239899e+002 1.20413055e+002 1.26090691e+002 - 1.08234756e+002 1.20407822e+002 1.26141869e+002 1.08190872e+002 - 1.20380859e+002 1.26154259e+002 1.08158279e+002 1.20334877e+002 - 1.26174965e+002 1.08113693e+002 1.20307365e+002 1.26183319e+002 - 1.08090950e+002 1.20289391e+002 1.26219505e+002 1.08050339e+002 - 1.20275894e+002 1.26227898e+002 1.08041306e+002 1.20252014e+002 - 1.26262482e+002 1.08019600e+002 1.20240822e+002 1.26287811e+002 - 1.08009834e+002 1.20239532e+002 1.26355858e+002 1.07955009e+002 - 1.20200607e+002 1.26360291e+002 1.07949829e+002 1.20181648e+002 - 1.26393761e+002 1.07938454e+002 1.20181404e+002 1.26425880e+002 - 1.07936462e+002 1.20170921e+002 1.26480286e+002 1.07919678e+002 - 1.20170700e+002 1.26514915e+002 1.07887062e+002 1.20142029e+002 - 1.26539528e+002 1.07864655e+002 1.20133774e+002 1.26561623e+002 - 1.07869080e+002 1.20131660e+002 1.26607552e+002 1.07832886e+002 - 1.20111664e+002 1.26629799e+002 1.07828278e+002 1.20087250e+002 - 1.26673958e+002 1.07830864e+002 1.20092407e+002 1.26716034e+002 - 1.07823532e+002 1.20083466e+002 1.26758583e+002 1.07820274e+002 - 1.20087128e+002 1.26784805e+002 1.07821693e+002 1.20079170e+002 - 1.26822548e+002 1.07831665e+002 1.20103287e+002 1.26867889e+002 - 1.07807182e+002 1.20066780e+002 1.26888016e+002 1.07767357e+002 - 1.20055832e+002 1.26896767e+002 1.07749977e+002 1.20022018e+002 - 1.26904610e+002 1.07747314e+002 1.20031067e+002 1.26936005e+002 - 1.07756203e+002 1.20020401e+002 1.26977646e+002 1.07720863e+002 - 1.19996971e+002 1.26980667e+002 1.07703827e+002 1.19973656e+002 - 1.26997864e+002 1.07698997e+002 1.19984444e+002 1.27026283e+002 - 1.07693810e+002 1.19972389e+002 1.27054436e+002 1.07656181e+002 - 1.19946678e+002 1.27054619e+002 1.07648514e+002 1.19915092e+002 - 1.27080765e+002 1.07638275e+002 1.19923859e+002 1.27105835e+002 - 1.07633354e+002 1.19917603e+002 1.27141228e+002 1.07618172e+002 - 1.19923309e+002 1.27155746e+002 1.07648682e+002 1.19950836e+002 - 1.27217339e+002 1.07660583e+002 1.19979752e+002 1.27255539e+002 - 1.07643547e+002 1.19959305e+002 1.27285934e+002 1.07611435e+002 - 1.19946213e+002 1.27297073e+002 1.07619141e+002 1.19940025e+002 - 1.27325066e+002 1.07623100e+002 1.19952438e+002 1.27352287e+002 - 1.07630310e+002 1.19944359e+002 1.27389359e+002 1.07603256e+002 - 1.19924538e+002 1.27394203e+002 1.07573624e+002 1.19896889e+002 - 1.27396698e+002 1.07562904e+002 1.19893242e+002 1.27406578e+002 - 1.07566269e+002 1.19890938e+002 1.27436951e+002 1.07520111e+002 - 1.19860283e+002 1.27428818e+002 1.07546150e+002 1.19854851e+002 - 1.27472939e+002 1.07547760e+002 1.19867439e+002 1.27493088e+002 - 1.07568054e+002 1.19885712e+002 1.27542015e+002 1.07546333e+002 - 1.19888718e+002 1.27542465e+002 1.07533592e+002 1.19866379e+002 - 1.27547188e+002 1.07544098e+002 1.19890732e+002 1.27569305e+002 - 1.07557022e+002 1.19901031e+002 1.27605385e+002 1.07529877e+002 - 1.19895859e+002 1.27607422e+002 1.07529900e+002 1.19884285e+002 - 1.27614090e+002 1.07487526e+002 1.19862206e+002 1.27588249e+002 - 1.07479568e+002 1.19834320e+002 1.27601212e+002 1.07462273e+002 - 1.19832848e+002 1.27600311e+002 1.07443291e+002 1.19811478e+002 - 1.27596207e+002 1.07459511e+002 1.19839203e+002 1.27622581e+002 - 1.07469414e+002 1.19845497e+002 1.27641975e+002 1.07444267e+002 - 1.19837952e+002 1.27635330e+002 1.07452232e+002 1.19825874e+002 - 1.27647354e+002 1.07455132e+002 1.19840652e+002 1.27663391e+002 - 1.07445786e+002 1.19824715e+002 1.27650940e+002 1.07433235e+002 - 1.19831093e+002 1.27640999e+002 1.07458054e+002 1.19846619e+002 - 1.27669273e+002 1.07453819e+002 1.19850693e+002 1.27661430e+002 - 1.07473816e+002 1.19850990e+002 1.27680168e+002 1.07452980e+002 - 1.19845146e+002 1.27666862e+002 1.07465897e+002 1.19841835e+002 - 1.27668724e+002 1.07471016e+002 1.19855400e+002 1.27669746e+002 - 1.07512550e+002 1.19878075e+002 1.27698425e+002 1.07493332e+002 - 1.19874229e+002 1.27674545e+002 1.07507057e+002 1.19878616e+002 - 1.27681290e+002 1.07507584e+002 1.19893028e+002 1.27672234e+002 - 1.07522804e+002 1.19893738e+002 1.27671349e+002 1.07518326e+002 - 1.19906380e+002 1.27662033e+002 1.07543053e+002 1.19899170e+002 - 1.27661804e+002 1.07529739e+002 1.19881874e+002 1.27630959e+002 - 1.07503937e+002 1.19852165e+002 1.27590157e+002 1.07464211e+002 - 1.19830109e+002 1.27539520e+002 1.07474373e+002 1.19822792e+002 - 1.27535919e+002 1.07496590e+002 1.19860832e+002 1.27543205e+002 - 1.07504669e+002 1.19861382e+002 1.27532463e+002 1.07510567e+002 - 1.19883087e+002 1.27530289e+002 1.07527130e+002 1.19886055e+002 - 1.27524620e+002 1.07519920e+002 1.19892937e+002 1.27500587e+002 - 1.07511490e+002 1.19872208e+002 1.27467293e+002 1.07542702e+002 - 1.19914032e+002 1.27480133e+002 1.07573021e+002 1.19940506e+002 - 1.27486588e+002 1.07535431e+002 1.19913246e+002 1.27426407e+002 - 1.07507278e+002 1.19878937e+002 1.27385849e+002 1.07499962e+002 - 1.19882263e+002 1.27359879e+002 1.07561958e+002 1.19909927e+002 - 1.27376541e+002 1.07529015e+002 1.19886642e+002 1.27313721e+002 - 1.07505585e+002 1.19861267e+002 1.27248123e+002 1.07487526e+002 - 1.19850937e+002 1.27197983e+002 1.07505898e+002 1.19853226e+002 - 1.27180481e+002 1.07468956e+002 1.19812279e+002 1.27103455e+002 - 1.07462395e+002 1.19794151e+002 1.27051964e+002 1.07464325e+002 - 1.19808533e+002 1.27027084e+002 1.07494591e+002 1.19822853e+002 - 1.27022049e+002 1.07514915e+002 1.19858383e+002 1.27018021e+002 - 1.07528503e+002 1.19850006e+002 1.26990044e+002 1.07494743e+002 - 1.19835205e+002 1.26928726e+002 1.07522194e+002 1.19851578e+002 - 1.26919037e+002 1.07513687e+002 1.19850632e+002 1.26868553e+002 - 1.07516472e+002 1.19835182e+002 1.26831787e+002 1.07523346e+002 - 1.19850700e+002 1.26811783e+002 1.07555077e+002 1.19855087e+002 - 1.26797905e+002 1.07582291e+002 1.19891205e+002 1.26786171e+002 - 1.07613899e+002 1.19907974e+002 1.26776276e+002 1.07580490e+002 - 1.19889809e+002 1.26711472e+002 1.07607887e+002 1.19905617e+002 - 1.26701385e+002 1.07625999e+002 1.19921875e+002 1.26662643e+002 - 1.07653526e+002 1.19929932e+002 1.26625526e+002 1.07658058e+002 - 1.19951775e+002 1.26596954e+002 1.07679390e+002 1.19960014e+002 - 1.26586624e+002 1.07704437e+002 1.19992233e+002 1.26575836e+002 - 1.07746788e+002 1.20021484e+002 1.26575920e+002 1.07755104e+002 - 1.20035873e+002 1.26545937e+002 1.07756409e+002 1.20024071e+002 - 1.26502586e+002 1.07790024e+002 1.20069801e+002 1.26497871e+002 - 1.07799538e+002 1.20060226e+002 1.26459656e+002 1.07810631e+002 - 1.20079193e+002 1.26442741e+002 1.07863983e+002 1.20106972e+002 - 1.26439758e+002 1.07875069e+002 1.20119942e+002 1.26407547e+002 - 1.07874825e+002 1.20111038e+002 1.26359497e+002 1.07892609e+002 - 1.20144638e+002 1.26340775e+002 1.07944138e+002 1.20180069e+002 - 1.26347115e+002 1.07991142e+002 1.20226982e+002 1.26336250e+002 - 1.08019966e+002 1.20232368e+002 1.26298264e+002 1.08015396e+002 - 1.20241295e+002 1.26256012e+002 1.08022797e+002 1.20228523e+002 - 1.26214867e+002 1.08035500e+002 1.20254463e+002 1.26194847e+002 - 1.08046852e+002 1.20255508e+002 1.26150444e+002 1.08041267e+002 - 1.20258919e+002 1.26101479e+002 1.08075043e+002 1.20286522e+002 - 1.26083458e+002 1.08106438e+002 1.20325607e+002 1.26058365e+002 - 1.08151222e+002 1.20349358e+002 1.26045944e+002 1.08147026e+002 - 1.20344666e+002 1.25984146e+002 1.08192734e+002 1.20351845e+002 - 1.25953278e+002 1.08223595e+002 1.20387337e+002 1.25928123e+002 - 1.08258736e+002 1.20406998e+002 1.25897331e+002 1.08270599e+002 - 1.20424530e+002 1.25861122e+002 1.08327721e+002 1.20458023e+002 - 1.25856056e+002 1.08381409e+002 1.20513214e+002 1.25849533e+002 - 1.08428581e+002 1.20536949e+002 1.25818726e+002 1.08455978e+002 - 1.20580475e+002 1.25803223e+002 1.08471756e+002 1.20573204e+002 - 1.25766861e+002 1.08488274e+002 1.20595436e+002 1.25732651e+002 - 1.08543274e+002 1.20623985e+002 1.25715866e+002 1.08574249e+002 - 1.20653946e+002 1.25694427e+002 1.08623413e+002 1.20682159e+002 - 1.25673523e+002 1.08648018e+002 1.20702202e+002 1.25640572e+002 - 1.08693588e+002 1.20725754e+002 1.25626038e+002 1.08715706e+002 - 1.20749786e+002 1.25593719e+002 1.08771889e+002 1.20762794e+002 - 1.25571159e+002 1.08793396e+002 1.20784775e+002 1.25536606e+002 - 1.08864258e+002 1.20836876e+002 1.25542061e+002 1.08907669e+002 - 1.20884949e+002 1.25534737e+002 1.08967262e+002 1.20923035e+002 - 1.25539543e+002 1.09024948e+002 1.20974113e+002 1.25529762e+002 - 1.09092400e+002 1.21008263e+002 1.25508606e+002 1.09135857e+002 - 1.21052505e+002 1.25493523e+002 1.09177048e+002 1.21054634e+002 - 1.25461700e+002 1.09225403e+002 1.21099617e+002 1.25455177e+002 - 1.09297859e+002 1.21140961e+002 1.25455902e+002 1.09355125e+002 - 1.21185760e+002 1.25450607e+002 1.09425774e+002 1.21229500e+002 - 1.25444252e+002 1.09476471e+002 1.21268272e+002 1.25424622e+002 - 1.09519272e+002 1.21276451e+002 1.25393860e+002 1.09582840e+002 - 1.21325020e+002 1.25403564e+002 1.09662651e+002 1.21349213e+002 - 1.25394188e+002 1.09698746e+002 1.21368584e+002 1.25367271e+002 - 1.09737938e+002 1.21361076e+002 1.25328636e+002 1.09730278e+002 - 1.21351410e+002 1.25273918e+002 1.09727524e+002 1.21298668e+002 - 1.25204269e+002 1.09653679e+002 1.21209267e+002 1.25065399e+002 - 1.09572289e+002 1.21186882e+002 1.25060013e+002 1.09648842e+002 - 1.21306053e+002 1.25206032e+002 1.09674782e+002 1.21343689e+002 - 1.25286858e+002 1.09657234e+002 1.21358643e+002 1.25329231e+002 - 1.09619507e+002 1.21338768e+002 1.25361488e+002 1.09561050e+002 - 1.21318916e+002 1.25372131e+002 1.09520157e+002 1.21296944e+002 - 1.25414505e+002 1.09440369e+002 1.21249901e+002 1.25397919e+002 - 1.09371033e+002 1.21189819e+002 1.25394897e+002 1.09285164e+002 - 1.21135078e+002 1.25374443e+002 1.09261879e+002 1.21112679e+002 - 1.25427391e+002 1.09226318e+002 1.21105461e+002 1.25459290e+002 - 1.09198044e+002 1.21086853e+002 1.25493980e+002 1.09134499e+002 - 1.21056694e+002 1.25493469e+002 1.09074699e+002 1.21004326e+002 - 1.25494621e+002 1.09020874e+002 1.20967323e+002 1.25493080e+002 - 1.08981140e+002 1.20945168e+002 1.25537781e+002 1.08896088e+002 - 1.20896912e+002 1.25531624e+002 1.08857689e+002 1.20853661e+002 - 1.25543022e+002 1.08804176e+002 1.20824028e+002 1.25544838e+002 - 1.08774986e+002 1.20791435e+002 1.25581001e+002 1.08719025e+002 - 1.20763649e+002 1.25594994e+002 1.08666809e+002 1.20725281e+002 - 1.25623940e+002 1.08638000e+002 1.20718597e+002 1.25658180e+002 - 1.08613274e+002 1.20690926e+002 1.25695038e+002 1.08530571e+002 - 1.20638046e+002 1.25681671e+002 1.08497917e+002 1.20600006e+002 - 1.25726112e+002 1.08461899e+002 1.20580513e+002 1.25759377e+002 - 1.08452133e+002 1.20578362e+002 1.25814667e+002 1.08422997e+002 - 1.20572784e+002 1.25842438e+002 1.08374001e+002 1.20525017e+002 - 1.25843964e+002 1.08340401e+002 1.20494713e+002 1.25856216e+002 - 1.08315071e+002 1.20475319e+002 1.25908096e+002 1.08258598e+002 - 1.20443565e+002 1.25912750e+002 1.08220047e+002 1.20395180e+002 - 1.25918106e+002 1.08187737e+002 1.20379646e+002 1.25938103e+002 - 1.08180107e+002 1.20363564e+002 1.25984764e+002 1.08147499e+002 - 1.20345604e+002 1.26005219e+002 1.08110573e+002 1.20308823e+002 - 1.26027481e+002 1.08071465e+002 1.20287170e+002 1.26039551e+002 - 1.08073914e+002 1.20282585e+002 1.26089043e+002 1.08028770e+002 - 1.20250938e+002 1.26099518e+002 1.07986122e+002 1.20197174e+002 - 1.26113052e+002 1.07964775e+002 1.20195053e+002 1.26149719e+002 - 1.07946259e+002 1.20182251e+002 1.26191757e+002 1.07914436e+002 - 1.20172981e+002 1.26203560e+002 1.07905594e+002 1.20145706e+002 - 1.26235260e+002 1.07870239e+002 1.20128304e+002 1.26244438e+002 - 1.07849983e+002 1.20112640e+002 1.26308128e+002 1.07781334e+002 - 1.20070328e+002 1.26303680e+002 1.07789185e+002 1.20066032e+002 - 1.26349075e+002 1.07776215e+002 1.20063148e+002 1.26386292e+002 - 1.07777725e+002 1.20053207e+002 1.26436127e+002 1.07772888e+002 - 1.20062538e+002 1.26486450e+002 1.07723320e+002 1.20023979e+002 - 1.26502190e+002 1.07704437e+002 1.20014343e+002 1.26524178e+002 - 1.07705513e+002 1.20011635e+002 1.26573784e+002 1.07669807e+002 - 1.19985641e+002 1.26585335e+002 1.07678650e+002 1.19976151e+002 - 1.26644157e+002 1.07669830e+002 1.19982185e+002 1.26689354e+002 - 1.07651100e+002 1.19948090e+002 1.26702621e+002 1.07639038e+002 - 1.19954659e+002 1.26734451e+002 1.07661041e+002 1.19960754e+002 - 1.26785179e+002 1.07647438e+002 1.19960419e+002 1.26802330e+002 - 1.07647301e+002 1.19952850e+002 1.26855217e+002 1.07605171e+002 - 1.19933228e+002 1.26860184e+002 1.07590683e+002 1.19907997e+002 - 1.26872925e+002 1.07571022e+002 1.19897697e+002 1.26890259e+002 - 1.07567589e+002 1.19872757e+002 1.26917397e+002 1.07538078e+002 - 1.19855873e+002 1.26926514e+002 1.07522018e+002 1.19831184e+002 - 1.26947067e+002 1.07503448e+002 1.19830849e+002 1.26960869e+002 - 1.07496452e+002 1.19820206e+002 1.26992393e+002 1.07458664e+002 - 1.19792656e+002 1.26992805e+002 1.07473076e+002 1.19786552e+002 - 1.27035156e+002 1.07459213e+002 1.19783478e+002 1.27054298e+002 - 1.07442863e+002 1.19771202e+002 1.27078751e+002 1.07433266e+002 - 1.19778366e+002 1.27099747e+002 1.07452843e+002 1.19794464e+002 - 1.27150024e+002 1.07472862e+002 1.19827385e+002 1.27195755e+002 - 1.07461777e+002 1.19815933e+002 1.27234680e+002 1.07443451e+002 - 1.19818382e+002 1.27257179e+002 1.07463333e+002 1.19815674e+002 - 1.27289886e+002 1.07444061e+002 1.19814438e+002 1.27303261e+002 - 1.07450119e+002 1.19796974e+002 1.27334503e+002 1.07425331e+002 - 1.19778778e+002 1.27337616e+002 1.07389603e+002 1.19735031e+002 - 1.27332970e+002 1.07380470e+002 1.19744591e+002 1.27351028e+002 - 1.07394394e+002 1.19748337e+002 1.27389755e+002 1.07354500e+002 - 1.19725128e+002 1.27383064e+002 1.07381546e+002 1.19724091e+002 - 1.27435616e+002 1.07386429e+002 1.19741600e+002 1.27464973e+002 - 1.07396744e+002 1.19751633e+002 1.27496284e+002 1.07368050e+002 - 1.19750320e+002 1.27497604e+002 1.07366310e+002 1.19740967e+002 - 1.27512917e+002 1.07360565e+002 1.19740105e+002 1.27511444e+002 - 1.07354233e+002 1.19740768e+002 1.27537834e+002 1.07333481e+002 - 1.19743629e+002 1.27547371e+002 1.07342148e+002 1.19744865e+002 - 1.27559677e+002 1.07324303e+002 1.19734711e+002 1.27555878e+002 - 1.07315071e+002 1.19701637e+002 1.27555130e+002 1.07293091e+002 - 1.19700836e+002 1.27552185e+002 1.07292229e+002 1.19696022e+002 - 1.27570488e+002 1.07273621e+002 1.19692047e+002 1.27567833e+002 - 1.07278313e+002 1.19687836e+002 1.27577820e+002 1.07288078e+002 - 1.19711456e+002 1.27603844e+002 1.07314407e+002 1.19721596e+002 - 1.27642326e+002 1.07298035e+002 1.19717278e+002 1.27634117e+002 - 1.07277901e+002 1.19693413e+002 1.27608727e+002 1.07267151e+002 - 1.19698692e+002 1.27600471e+002 1.07296013e+002 1.19710991e+002 - 1.27623627e+002 1.07302078e+002 1.19720482e+002 1.27624207e+002 - 1.07287933e+002 1.19697105e+002 1.27614502e+002 1.07285507e+002 - 1.19711319e+002 1.27625443e+002 1.07289833e+002 1.19706100e+002 - 1.27621628e+002 1.07284134e+002 1.19706062e+002 1.27605911e+002 - 1.07304588e+002 1.19712601e+002 1.27616936e+002 1.07302254e+002 - 1.19715553e+002 1.27611305e+002 1.07321716e+002 1.19731049e+002 - 1.27619896e+002 1.07318291e+002 1.19734543e+002 1.27603096e+002 - 1.07325172e+002 1.19734108e+002 1.27599197e+002 1.07318077e+002 - 1.19740356e+002 1.27579018e+002 1.07334961e+002 1.19721420e+002 - 1.27575348e+002 1.07318527e+002 1.19712578e+002 1.27542625e+002 - 1.07313843e+002 1.19701317e+002 1.27521294e+002 1.07285187e+002 - 1.19687637e+002 1.27479439e+002 1.07301048e+002 1.19684853e+002 - 1.27484627e+002 1.07331520e+002 1.19726479e+002 1.27495422e+002 - 1.07326332e+002 1.19712166e+002 1.27468735e+002 1.07316856e+002 - 1.19726265e+002 1.27459053e+002 1.07332382e+002 1.19729263e+002 - 1.27452873e+002 1.07328156e+002 1.19737579e+002 1.27436424e+002 - 1.07336235e+002 1.19730553e+002 1.27411674e+002 1.07354935e+002 - 1.19762337e+002 1.27413483e+002 1.07384010e+002 1.19784386e+002 - 1.27423622e+002 1.07362000e+002 1.19775261e+002 1.27382126e+002 - 1.07336411e+002 1.19743355e+002 1.27336365e+002 1.07321915e+002 - 1.19738266e+002 1.27301147e+002 1.07379128e+002 1.19762421e+002 - 1.27315681e+002 1.07341095e+002 1.19734123e+002 1.27244362e+002 - 1.07327332e+002 1.19712280e+002 1.27187149e+002 1.07288368e+002 - 1.19690277e+002 1.27124924e+002 1.07303627e+002 1.19686813e+002 - 1.27105553e+002 1.07294975e+002 1.19680733e+002 1.27058357e+002 - 1.07280212e+002 1.19648888e+002 1.26990295e+002 1.07286270e+002 - 1.19676552e+002 1.26977455e+002 1.07316605e+002 1.19687164e+002 - 1.26964081e+002 1.07309891e+002 1.19694336e+002 1.26932358e+002 - 1.07341736e+002 1.19708336e+002 1.26928925e+002 1.07322861e+002 - 1.19704590e+002 1.26879356e+002 1.07332314e+002 1.19705513e+002 - 1.26852448e+002 1.07328392e+002 1.19701416e+002 1.26806213e+002 - 1.07320107e+002 1.19679993e+002 1.26758942e+002 1.07304169e+002 - 1.19675888e+002 1.26721024e+002 1.07352821e+002 1.19690475e+002 - 1.26722862e+002 1.07377525e+002 1.19726105e+002 1.26714081e+002 - 1.07407036e+002 1.19747635e+002 1.26698296e+002 1.07397980e+002 - 1.19755089e+002 1.26657211e+002 1.07409111e+002 1.19746689e+002 - 1.26626549e+002 1.07421776e+002 1.19758598e+002 1.26582924e+002 - 1.07464172e+002 1.19784210e+002 1.26560402e+002 1.07475311e+002 - 1.19810387e+002 1.26539246e+002 1.07513611e+002 1.19841949e+002 - 1.26539291e+002 1.07530701e+002 1.19866455e+002 1.26522392e+002 - 1.07562309e+002 1.19874184e+002 1.26507683e+002 1.07572922e+002 - 1.19900520e+002 1.26488785e+002 1.07584015e+002 1.19891541e+002 - 1.26446564e+002 1.07612602e+002 1.19931458e+002 1.26434441e+002 - 1.07617058e+002 1.19926971e+002 1.26399704e+002 1.07625160e+002 - 1.19939598e+002 1.26368988e+002 1.07683258e+002 1.19962517e+002 - 1.26369301e+002 1.07701981e+002 1.19993546e+002 1.26348419e+002 - 1.07721115e+002 1.20002831e+002 1.26321053e+002 1.07714844e+002 - 1.20015350e+002 1.26279953e+002 1.07767242e+002 1.20052635e+002 - 1.26289406e+002 1.07837593e+002 1.20118019e+002 1.26302742e+002 - 1.07881104e+002 1.20139465e+002 1.26270874e+002 1.07885162e+002 - 1.20156662e+002 1.26239067e+002 1.07887070e+002 1.20146072e+002 - 1.26197418e+002 1.07893806e+002 1.20158699e+002 1.26159592e+002 - 1.07908394e+002 1.20156715e+002 1.26126381e+002 1.07898064e+002 - 1.20161545e+002 1.26071503e+002 1.07941849e+002 1.20192329e+002 - 1.26053535e+002 1.07973518e+002 1.20231659e+002 1.26033531e+002 - 1.07996887e+002 1.20235275e+002 1.25999199e+002 1.08000969e+002 - 1.20241119e+002 1.25950058e+002 1.08041344e+002 1.20247902e+002 - 1.25917221e+002 1.08052963e+002 1.20260368e+002 1.25868576e+002 - 1.08098267e+002 1.20292923e+002 1.25854607e+002 1.08110329e+002 - 1.20311760e+002 1.25813805e+002 1.08165497e+002 1.20346573e+002 - 1.25813255e+002 1.08209892e+002 1.20389114e+002 1.25792038e+002 - 1.08259262e+002 1.20413712e+002 1.25761574e+002 1.08293404e+002 - 1.20462967e+002 1.25752357e+002 1.08322540e+002 1.20464096e+002 - 1.25720551e+002 1.08358032e+002 1.20506371e+002 1.25707115e+002 - 1.08412834e+002 1.20539864e+002 1.25697701e+002 1.08416901e+002 - 1.20535339e+002 1.25641762e+002 1.08455055e+002 1.20561920e+002 - 1.25615021e+002 1.08496117e+002 1.20602058e+002 1.25596199e+002 - 1.08546051e+002 1.20621902e+002 1.25579430e+002 1.08579681e+002 - 1.20660652e+002 1.25558876e+002 1.08632957e+002 1.20675064e+002 - 1.25541481e+002 1.08648750e+002 1.20693886e+002 1.25504349e+002 - 1.08703888e+002 1.20726295e+002 1.25491783e+002 1.08757317e+002 - 1.20786110e+002 1.25491287e+002 1.08817162e+002 1.20820358e+002 - 1.25492859e+002 1.08887352e+002 1.20882004e+002 1.25491699e+002 - 1.08959122e+002 1.20918869e+002 1.25476700e+002 1.09015007e+002 - 1.20979088e+002 1.25478745e+002 1.09054070e+002 1.20982521e+002 - 1.25448700e+002 1.09091713e+002 1.21012482e+002 1.25432213e+002 - 1.09167946e+002 1.21048500e+002 1.25425697e+002 1.09215538e+002 - 1.21093857e+002 1.25413170e+002 1.09279907e+002 1.21130882e+002 - 1.25396858e+002 1.09324547e+002 1.21165863e+002 1.25375702e+002 - 1.09389755e+002 1.21186821e+002 1.25365311e+002 1.09448326e+002 - 1.21235001e+002 1.25366859e+002 1.09518951e+002 1.21247414e+002 - 1.25347954e+002 1.09544266e+002 1.21261215e+002 1.25314095e+002 - 1.09614960e+002 1.21283157e+002 1.25298813e+002 1.09619629e+002 - 1.21287308e+002 1.25259438e+002 1.09615135e+002 1.21239799e+002 - 1.25194145e+002 1.09556061e+002 1.21155952e+002 1.25061790e+002 - 1.09487549e+002 1.21125725e+002 1.25057869e+002 1.09559723e+002 - 1.21232132e+002 1.25192070e+002 1.09578308e+002 1.21268257e+002 - 1.25266777e+002 1.09548935e+002 1.21277878e+002 1.25303772e+002 - 1.09500641e+002 1.21252953e+002 1.25323212e+002 1.09457695e+002 - 1.21243057e+002 1.25349167e+002 1.09402527e+002 1.21205345e+002 - 1.25378487e+002 1.09345184e+002 1.21178604e+002 1.25380997e+002 - 1.09281464e+002 1.21120232e+002 1.25383545e+002 1.09187828e+002 - 1.21056656e+002 1.25357819e+002 1.09168716e+002 1.21045174e+002 - 1.25411598e+002 1.09143837e+002 1.21046890e+002 1.25454391e+002 - 1.09098381e+002 1.21014694e+002 1.25481483e+002 1.09031792e+002 - 1.20969879e+002 1.25472038e+002 1.08956535e+002 1.20899147e+002 - 1.25450745e+002 1.08893478e+002 1.20867554e+002 1.25445724e+002 - 1.08848907e+002 1.20840729e+002 1.25494308e+002 1.08765533e+002 - 1.20785042e+002 1.25477295e+002 1.08721428e+002 1.20747452e+002 - 1.25490265e+002 1.08681358e+002 1.20723495e+002 1.25505348e+002 - 1.08663780e+002 1.20705864e+002 1.25552315e+002 1.08595177e+002 - 1.20662498e+002 1.25556267e+002 1.08539040e+002 1.20614098e+002 - 1.25575356e+002 1.08495819e+002 1.20594650e+002 1.25596214e+002 - 1.08453255e+002 1.20559311e+002 1.25625473e+002 1.08390373e+002 - 1.20513863e+002 1.25623032e+002 1.08357498e+002 1.20479378e+002 - 1.25666504e+002 1.08328209e+002 1.20463547e+002 1.25706261e+002 - 1.08317146e+002 1.20459137e+002 1.25762192e+002 1.08261223e+002 - 1.20429825e+002 1.25762154e+002 1.08228027e+002 1.20387589e+002 - 1.25774414e+002 1.08216286e+002 1.20392471e+002 1.25818726e+002 - 1.08186516e+002 1.20361137e+002 1.25863457e+002 1.08116417e+002 - 1.20313179e+002 1.25848831e+002 1.08090401e+002 1.20277298e+002 - 1.25864822e+002 1.08046867e+002 1.20249939e+002 1.25876923e+002 - 1.08026108e+002 1.20218246e+002 1.25903275e+002 1.07990593e+002 - 1.20200569e+002 1.25924965e+002 1.07958969e+002 1.20173096e+002 - 1.25962021e+002 1.07943970e+002 1.20171272e+002 1.25996178e+002 - 1.07940651e+002 1.20167580e+002 1.26045746e+002 1.07872246e+002 - 1.20112206e+002 1.26032707e+002 1.07841827e+002 1.20069565e+002 - 1.26054123e+002 1.07831512e+002 1.20079544e+002 1.26096512e+002 - 1.07802528e+002 1.20053467e+002 1.26130219e+002 1.07764961e+002 - 1.20035362e+002 1.26145752e+002 1.07764435e+002 1.20021271e+002 - 1.26183144e+002 1.07758156e+002 1.20032761e+002 1.26225540e+002 - 1.07702614e+002 1.19979271e+002 1.26249092e+002 1.07663055e+002 - 1.19959755e+002 1.26269737e+002 1.07673996e+002 1.19964409e+002 - 1.26320656e+002 1.07644257e+002 1.19942635e+002 1.26338776e+002 - 1.07641586e+002 1.19935478e+002 1.26396088e+002 1.07628586e+002 - 1.19941284e+002 1.26438011e+002 1.07606270e+002 1.19923073e+002 - 1.26477112e+002 1.07572319e+002 1.19914093e+002 1.26495499e+002 - 1.07582336e+002 1.19909340e+002 1.26549347e+002 1.07550453e+002 - 1.19883972e+002 1.26563393e+002 1.07545624e+002 1.19863655e+002 - 1.26611191e+002 1.07541649e+002 1.19865486e+002 1.26655022e+002 - 1.07498528e+002 1.19817505e+002 1.26649551e+002 1.07515862e+002 - 1.19845398e+002 1.26696190e+002 1.07527702e+002 1.19844307e+002 - 1.26744270e+002 1.07498650e+002 1.19828239e+002 1.26755760e+002 - 1.07497063e+002 1.19820152e+002 1.26804237e+002 1.07442101e+002 - 1.19786926e+002 1.26794136e+002 1.07444016e+002 1.19778206e+002 - 1.26820488e+002 1.07453545e+002 1.19790855e+002 1.26864922e+002 - 1.07448257e+002 1.19766464e+002 1.26889252e+002 1.07427246e+002 - 1.19753044e+002 1.26901489e+002 1.07377861e+002 1.19705933e+002 - 1.26897552e+002 1.07357872e+002 1.19697792e+002 1.26914124e+002 - 1.07340469e+002 1.19679970e+002 1.26929008e+002 1.07331108e+002 - 1.19685776e+002 1.26959923e+002 1.07330292e+002 1.19661697e+002 - 1.26996391e+002 1.07338707e+002 1.19685165e+002 1.27035492e+002 - 1.07330666e+002 1.19672951e+002 1.27059967e+002 1.07302902e+002 - 1.19662735e+002 1.27063202e+002 1.07304779e+002 1.19659142e+002 - 1.27098396e+002 1.07358894e+002 1.19726227e+002 1.27180435e+002 - 1.07340599e+002 1.19710060e+002 1.27208221e+002 1.07293442e+002 - 1.19685081e+002 1.27203140e+002 1.07316467e+002 1.19686653e+002 - 1.27244476e+002 1.07300468e+002 1.19678688e+002 1.27256653e+002 - 1.07311859e+002 1.19670319e+002 1.27290672e+002 1.07289131e+002 - 1.19651237e+002 1.27296349e+002 1.07277832e+002 1.19639709e+002 - 1.27312073e+002 1.07266388e+002 1.19639320e+002 1.27327583e+002 - 1.07262619e+002 1.19623711e+002 1.27348114e+002 1.07222191e+002 - 1.19595749e+002 1.27336876e+002 1.07246292e+002 1.19605064e+002 - 1.27396996e+002 1.07256577e+002 1.19625496e+002 1.27434525e+002 - 1.07271873e+002 1.19643082e+002 1.27477272e+002 1.07263054e+002 - 1.19652245e+002 1.27491890e+002 1.07251953e+002 1.19639107e+002 - 1.27502205e+002 1.07229759e+002 1.19630707e+002 1.27495308e+002 - 1.07235207e+002 1.19632889e+002 1.27521431e+002 1.07188164e+002 - 1.19614594e+002 1.27499741e+002 1.07202995e+002 1.19609421e+002 - 1.27516891e+002 1.07197556e+002 1.19620323e+002 1.27527252e+002 - 1.07186127e+002 1.19587341e+002 1.27526596e+002 1.07157890e+002 - 1.19578148e+002 1.27517784e+002 1.07153290e+002 1.19568062e+002 - 1.27527863e+002 1.07129974e+002 1.19557259e+002 1.27515991e+002 - 1.07142868e+002 1.19562965e+002 1.27540718e+002 1.07152931e+002 - 1.19585495e+002 1.27569939e+002 1.07192009e+002 1.19611473e+002 - 1.27620346e+002 1.07186562e+002 1.19612183e+002 1.27611755e+002 - 1.07171326e+002 1.19590843e+002 1.27594170e+002 1.07151581e+002 - 1.19586594e+002 1.27576523e+002 1.07156448e+002 1.19580940e+002 - 1.27581726e+002 1.07173386e+002 1.19609337e+002 1.27597267e+002 - 1.07164444e+002 1.19582901e+002 1.27587875e+002 1.07146034e+002 - 1.19582870e+002 1.27577332e+002 1.07155952e+002 1.19579124e+002 - 1.27581367e+002 1.07146072e+002 1.19575790e+002 1.27563606e+002 - 1.07157951e+002 1.19571556e+002 1.27562019e+002 1.07157478e+002 - 1.19581375e+002 1.27548126e+002 1.07185287e+002 1.19600258e+002 - 1.27574295e+002 1.07184975e+002 1.19617325e+002 1.27565292e+002 - 1.07200188e+002 1.19619972e+002 1.27561874e+002 1.07185753e+002 - 1.19615883e+002 1.27542038e+002 1.07189499e+002 1.19593353e+002 - 1.27524147e+002 1.07197662e+002 1.19605812e+002 1.27510529e+002 - 1.07201500e+002 1.19598595e+002 1.27499992e+002 1.07174507e+002 - 1.19588715e+002 1.27462364e+002 1.07167641e+002 1.19570984e+002 - 1.27448227e+002 1.07192497e+002 1.19600456e+002 1.27449898e+002 - 1.07200508e+002 1.19597336e+002 1.27441895e+002 1.07205032e+002 - 1.19627197e+002 1.27441048e+002 1.07216858e+002 1.19626381e+002 - 1.27433365e+002 1.07216812e+002 1.19635284e+002 1.27410812e+002 - 1.07206367e+002 1.19614067e+002 1.27381798e+002 1.07213600e+002 - 1.19631927e+002 1.27368851e+002 1.07217422e+002 1.19630432e+002 - 1.27352386e+002 1.07215698e+002 1.19640793e+002 1.27327873e+002 - 1.07212753e+002 1.19627632e+002 1.27300934e+002 1.07198586e+002 - 1.19626633e+002 1.27270401e+002 1.07231087e+002 1.19627434e+002 - 1.27257248e+002 1.07193771e+002 1.19598099e+002 1.27186867e+002 - 1.07188171e+002 1.19587242e+002 1.27141579e+002 1.07163071e+002 - 1.19573143e+002 1.27088882e+002 1.07167267e+002 1.19569511e+002 - 1.27066223e+002 1.07168678e+002 1.19568497e+002 1.27022652e+002 - 1.07161400e+002 1.19547745e+002 1.26967590e+002 1.07165390e+002 - 1.19569847e+002 1.26945656e+002 1.07171753e+002 1.19564240e+002 - 1.26917549e+002 1.07171204e+002 1.19569099e+002 1.26889572e+002 - 1.07206390e+002 1.19590889e+002 1.26887527e+002 1.07198860e+002 - 1.19589966e+002 1.26850021e+002 1.07197266e+002 1.19578354e+002 - 1.26806465e+002 1.07208206e+002 1.19600319e+002 1.26778900e+002 - 1.07192947e+002 1.19565590e+002 1.26725075e+002 1.07183205e+002 - 1.19559547e+002 1.26681335e+002 1.07232857e+002 1.19591164e+002 - 1.26697525e+002 1.07222702e+002 1.19586029e+002 1.26651825e+002 - 1.07262169e+002 1.19617455e+002 1.26641708e+002 1.07257126e+002 - 1.19633888e+002 1.26607368e+002 1.07250916e+002 1.19605568e+002 - 1.26558701e+002 1.07287880e+002 1.19648201e+002 1.26548798e+002 - 1.07316185e+002 1.19653473e+002 1.26511078e+002 1.07330353e+002 - 1.19684479e+002 1.26485893e+002 1.07353348e+002 1.19695572e+002 - 1.26473801e+002 1.07371658e+002 1.19722443e+002 1.26456192e+002 - 1.07425957e+002 1.19754517e+002 1.26462799e+002 1.07448563e+002 - 1.19792442e+002 1.26448586e+002 1.07463669e+002 1.19798813e+002 - 1.26419426e+002 1.07484543e+002 1.19823067e+002 1.26392380e+002 - 1.07505333e+002 1.19826729e+002 1.26371773e+002 1.07492607e+002 - 1.19823044e+002 1.26324791e+002 1.07541489e+002 1.19845055e+002 - 1.26318947e+002 1.07584122e+002 1.19894173e+002 1.26316795e+002 - 1.07612473e+002 1.19913910e+002 1.26299126e+002 1.07586151e+002 - 1.19905663e+002 1.26238281e+002 1.07652451e+002 1.19954773e+002 - 1.26261986e+002 1.07704948e+002 1.20008232e+002 1.26257584e+002 - 1.07743668e+002 1.20024742e+002 1.26224678e+002 1.07746117e+002 - 1.20034523e+002 1.26183052e+002 1.07762177e+002 1.20042244e+002 - 1.26156326e+002 1.07771317e+002 1.20052361e+002 1.26118225e+002 - 1.07781197e+002 1.20047836e+002 1.26074615e+002 1.07765648e+002 - 1.20045135e+002 1.26016182e+002 1.07829552e+002 1.20094353e+002 - 1.26021324e+002 1.07840240e+002 1.20115372e+002 1.25985420e+002 - 1.07867363e+002 1.20118469e+002 1.25951088e+002 1.07892128e+002 - 1.20145859e+002 1.25926277e+002 1.07918907e+002 1.20141563e+002 - 1.25879196e+002 1.07935417e+002 1.20158524e+002 1.25841377e+002 - 1.07977707e+002 1.20195702e+002 1.25821159e+002 1.07994041e+002 - 1.20220116e+002 1.25788193e+002 1.08049736e+002 1.20251335e+002 - 1.25785606e+002 1.08086006e+002 1.20293213e+002 1.25761467e+002 - 1.08134262e+002 1.20316544e+002 1.25731232e+002 1.08162323e+002 - 1.20354721e+002 1.25706451e+002 1.08191711e+002 1.20359627e+002 - 1.25673347e+002 1.08224876e+002 1.20393372e+002 1.25657097e+002 - 1.08278320e+002 1.20416985e+002 1.25642410e+002 1.08263069e+002 - 1.20404938e+002 1.25571686e+002 1.08320763e+002 1.20442451e+002 - 1.25560188e+002 1.08374619e+002 1.20498528e+002 1.25554924e+002 - 1.08402168e+002 1.20500160e+002 1.25515953e+002 1.08440765e+002 - 1.20539772e+002 1.25503586e+002 1.08512001e+002 1.20580162e+002 - 1.25498802e+002 1.08558098e+002 1.20627159e+002 1.25493408e+002 - 1.08588112e+002 1.20638123e+002 1.25451843e+002 1.08633942e+002 - 1.20686882e+002 1.25444603e+002 1.08687492e+002 1.20717712e+002 - 1.25437157e+002 1.08774536e+002 1.20799339e+002 1.25461136e+002 - 1.08869194e+002 1.20860695e+002 1.25468666e+002 1.08908951e+002 - 1.20899536e+002 1.25450951e+002 1.08939766e+002 1.20889915e+002 - 1.25412483e+002 1.08993240e+002 1.20935638e+002 1.25408035e+002 - 1.09078865e+002 1.20988014e+002 1.25417229e+002 1.09081947e+002 - 1.20992737e+002 1.25356995e+002 1.09164696e+002 1.21043129e+002 - 1.25357048e+002 1.09225677e+002 1.21088211e+002 1.25350899e+002 - 1.09280029e+002 1.21103645e+002 1.25333008e+002 1.09335449e+002 - 1.21149933e+002 1.25330978e+002 1.09409760e+002 1.21166931e+002 - 1.25314163e+002 1.09441803e+002 1.21186012e+002 1.25285873e+002 - 1.09510445e+002 1.21212196e+002 1.25275322e+002 1.09504539e+002 - 1.21200409e+002 1.25217995e+002 1.09493095e+002 1.21143372e+002 - 1.25143341e+002 1.09450508e+002 1.21084106e+002 1.25034554e+002 - 1.09383171e+002 1.21057381e+002 1.25045876e+002 1.09453308e+002 - 1.21163879e+002 1.25177361e+002 1.09479233e+002 1.21207932e+002 - 1.25267502e+002 1.09453110e+002 1.21216736e+002 1.25305481e+002 - 1.09415718e+002 1.21196648e+002 1.25336929e+002 1.09347679e+002 - 1.21167854e+002 1.25343422e+002 1.09291779e+002 1.21128189e+002 - 1.25365562e+002 1.09227203e+002 1.21099411e+002 1.25366783e+002 - 1.09182655e+002 1.21059624e+002 1.25388115e+002 1.09100281e+002 - 1.21005135e+002 1.25371071e+002 1.09065147e+002 1.20977600e+002 - 1.25410156e+002 1.09048340e+002 1.20984329e+002 1.25456429e+002 - 1.08980774e+002 1.20925072e+002 1.25462090e+002 1.08901657e+002 - 1.20878769e+002 1.25446030e+002 1.08843979e+002 1.20822105e+002 - 1.25439308e+002 1.08773438e+002 1.20771698e+002 1.25424072e+002 - 1.08736900e+002 1.20762260e+002 1.25478798e+002 1.08645660e+002 - 1.20706047e+002 1.25463821e+002 1.08612846e+002 1.20676552e+002 - 1.25480705e+002 1.08549217e+002 1.20633636e+002 1.25480644e+002 - 1.08518547e+002 1.20598061e+002 1.25512917e+002 1.08468643e+002 - 1.20569984e+002 1.25531937e+002 1.08421509e+002 1.20526886e+002 - 1.25559723e+002 1.08357033e+002 1.20490829e+002 1.25566727e+002 - 1.08341606e+002 1.20481705e+002 1.25615562e+002 1.08296509e+002 - 1.20451317e+002 1.25637863e+002 1.08251602e+002 1.20397194e+002 - 1.25667465e+002 1.08207458e+002 1.20372826e+002 1.25682877e+002 - 1.08174751e+002 1.20344429e+002 1.25719254e+002 1.08143730e+002 - 1.20338211e+002 1.25748474e+002 1.08104141e+002 1.20293365e+002 - 1.25752121e+002 1.08079437e+002 1.20281487e+002 1.25779884e+002 - 1.08079437e+002 1.20278297e+002 1.25847733e+002 1.07996361e+002 - 1.20220726e+002 1.25828476e+002 1.07976395e+002 1.20195061e+002 - 1.25852570e+002 1.07933197e+002 1.20154198e+002 1.25853409e+002 - 1.07908264e+002 1.20128471e+002 1.25892372e+002 1.07857803e+002 - 1.20105431e+002 1.25904396e+002 1.07806633e+002 1.20052528e+002 - 1.25913940e+002 1.07779472e+002 1.20037674e+002 1.25936279e+002 - 1.07777458e+002 1.20027931e+002 1.25988907e+002 1.07733017e+002 - 1.20000381e+002 1.25997063e+002 1.07713509e+002 1.19969704e+002 - 1.26035675e+002 1.07682632e+002 1.19956108e+002 1.26055046e+002 - 1.07667572e+002 1.19943268e+002 1.26099442e+002 1.07640289e+002 - 1.19939812e+002 1.26124657e+002 1.07651024e+002 1.19941154e+002 - 1.26180305e+002 1.07640839e+002 1.19940163e+002 1.26211792e+002 - 1.07598389e+002 1.19903130e+002 1.26247780e+002 1.07539406e+002 - 1.19861519e+002 1.26252777e+002 1.07520836e+002 1.19838280e+002 - 1.26278976e+002 1.07501976e+002 1.19825089e+002 1.26307388e+002 - 1.07478317e+002 1.19803085e+002 1.26344421e+002 1.07455803e+002 - 1.19800713e+002 1.26380699e+002 1.07436134e+002 1.19786209e+002 - 1.26423225e+002 1.07418999e+002 1.19788483e+002 1.26460602e+002 - 1.07423096e+002 1.19781754e+002 1.26505424e+002 1.07399254e+002 - 1.19770653e+002 1.26527657e+002 1.07403854e+002 1.19751480e+002 - 1.26584076e+002 1.07392937e+002 1.19745285e+002 1.26614540e+002 - 1.07377350e+002 1.19725204e+002 1.26638504e+002 1.07377335e+002 - 1.19730659e+002 1.26668648e+002 1.07359314e+002 1.19705498e+002 - 1.26687943e+002 1.07328270e+002 1.19682442e+002 1.26693565e+002 - 1.07332680e+002 1.19682747e+002 1.26755219e+002 1.07265137e+002 - 1.19636925e+002 1.26731842e+002 1.07261642e+002 1.19624435e+002 - 1.26752975e+002 1.07272369e+002 1.19640648e+002 1.26796608e+002 - 1.07263214e+002 1.19609985e+002 1.26818298e+002 1.07256836e+002 - 1.19614632e+002 1.26851921e+002 1.07233528e+002 1.19590729e+002 - 1.26875702e+002 1.07195145e+002 1.19565575e+002 1.26867767e+002 - 1.07168266e+002 1.19532570e+002 1.26874786e+002 1.07169601e+002 - 1.19551491e+002 1.26915115e+002 1.07188576e+002 1.19548851e+002 - 1.26967262e+002 1.07190155e+002 1.19564262e+002 1.27001831e+002 - 1.07168457e+002 1.19543282e+002 1.27024315e+002 1.07139328e+002 - 1.19532372e+002 1.27026276e+002 1.07150719e+002 1.19534805e+002 - 1.27069458e+002 1.07177620e+002 1.19569122e+002 1.27120003e+002 - 1.07167465e+002 1.19554001e+002 1.27156532e+002 1.07118446e+002 - 1.19530067e+002 1.27151123e+002 1.07123123e+002 1.19519470e+002 - 1.27179970e+002 1.07135574e+002 1.19534042e+002 1.27210793e+002 - 1.07146896e+002 1.19528831e+002 1.27247696e+002 1.07125206e+002 - 1.19522156e+002 1.27248306e+002 1.07111069e+002 1.19491180e+002 - 1.27260170e+002 1.07101189e+002 1.19494629e+002 1.27278633e+002 - 1.07093887e+002 1.19481987e+002 1.27298309e+002 1.07065308e+002 - 1.19464134e+002 1.27301125e+002 1.07101616e+002 1.19484100e+002 - 1.27366776e+002 1.07120323e+002 1.19515236e+002 1.27413605e+002 - 1.07122131e+002 1.19519569e+002 1.27441895e+002 1.07088852e+002 - 1.19507713e+002 1.27432755e+002 1.07071365e+002 1.19485336e+002 - 1.27437363e+002 1.07066208e+002 1.19491928e+002 1.27443459e+002 - 1.07069672e+002 1.19493568e+002 1.27466248e+002 1.07044815e+002 - 1.19493706e+002 1.27474304e+002 1.07049690e+002 1.19485832e+002 - 1.27483444e+002 1.07056740e+002 1.19502243e+002 1.27501999e+002 - 1.07057014e+002 1.19483849e+002 1.27510956e+002 1.07007912e+002 - 1.19453430e+002 1.27481247e+002 1.06995613e+002 1.19432533e+002 - 1.27485184e+002 1.06989044e+002 1.19449417e+002 1.27498405e+002 - 1.06994598e+002 1.19447121e+002 1.27509834e+002 1.06993576e+002 - 1.19451782e+002 1.27520798e+002 1.07039734e+002 1.19476608e+002 - 1.27571289e+002 1.07024948e+002 1.19470085e+002 1.27560097e+002 - 1.07010262e+002 1.19448135e+002 1.27545921e+002 1.06984756e+002 - 1.19438400e+002 1.27518990e+002 1.06984955e+002 1.19427025e+002 - 1.27519936e+002 1.06987579e+002 1.19433868e+002 1.27512817e+002 - 1.06996750e+002 1.19432999e+002 1.27527855e+002 1.06957474e+002 - 1.19417419e+002 1.27499519e+002 1.06972748e+002 1.19412888e+002 - 1.27506874e+002 1.06993011e+002 1.19441475e+002 1.27517151e+002 - 1.06991081e+002 1.19422104e+002 1.27508194e+002 1.06981186e+002 - 1.19427963e+002 1.27491371e+002 1.07011948e+002 1.19449059e+002 - 1.27513069e+002 1.07028259e+002 1.19478439e+002 1.27517487e+002 - 1.07024994e+002 1.19463791e+002 1.27501701e+002 1.07006561e+002 - 1.19457512e+002 1.27473831e+002 1.07002327e+002 1.19428986e+002 - 1.27449028e+002 1.07031494e+002 1.19468864e+002 1.27464325e+002 - 1.07043976e+002 1.19467216e+002 1.27458069e+002 1.07018280e+002 - 1.19456978e+002 1.27424347e+002 1.07017204e+002 1.19441139e+002 - 1.27406464e+002 1.07039597e+002 1.19470848e+002 1.27406693e+002 - 1.07038620e+002 1.19470551e+002 1.27392975e+002 1.07044289e+002 - 1.19492165e+002 1.27393898e+002 1.07069153e+002 1.19504257e+002 - 1.27391380e+002 1.07055222e+002 1.19504219e+002 1.27368774e+002 - 1.07055084e+002 1.19482063e+002 1.27340424e+002 1.07055595e+002 - 1.19502945e+002 1.27325249e+002 1.07064682e+002 1.19494850e+002 - 1.27310562e+002 1.07043320e+002 1.19489861e+002 1.27266876e+002 - 1.07051910e+002 1.19487793e+002 1.27253494e+002 1.07029091e+002 - 1.19479904e+002 1.27212166e+002 1.07044678e+002 1.19462784e+002 - 1.27187317e+002 1.07042282e+002 1.19467056e+002 1.27147285e+002 - 1.07032104e+002 1.19453140e+002 1.27104393e+002 1.07027573e+002 - 1.19464607e+002 1.27077538e+002 1.07035172e+002 1.19455772e+002 - 1.27050323e+002 1.07017204e+002 1.19446548e+002 1.26991882e+002 - 1.07020073e+002 1.19443459e+002 1.26947754e+002 1.07016243e+002 - 1.19456039e+002 1.26918556e+002 1.07017014e+002 1.19432312e+002 - 1.26878899e+002 1.07019142e+002 1.19440987e+002 1.26848763e+002 - 1.07025383e+002 1.19435944e+002 1.26821960e+002 1.07023750e+002 - 1.19446533e+002 1.26789291e+002 1.07016327e+002 1.19424294e+002 - 1.26732567e+002 1.07029732e+002 1.19442551e+002 1.26710365e+002 - 1.07052475e+002 1.19449905e+002 1.26692642e+002 1.07037437e+002 - 1.19440979e+002 1.26642960e+002 1.07081833e+002 1.19458313e+002 - 1.26644485e+002 1.07078362e+002 1.19467087e+002 1.26616470e+002 - 1.07100319e+002 1.19483612e+002 1.26591461e+002 1.07093285e+002 - 1.19498024e+002 1.26555664e+002 1.07095795e+002 1.19478546e+002 - 1.26513306e+002 1.07129326e+002 1.19524574e+002 1.26509094e+002 - 1.07162560e+002 1.19532257e+002 1.26472176e+002 1.07150459e+002 - 1.19536224e+002 1.26429832e+002 1.07187584e+002 1.19558868e+002 - 1.26420799e+002 1.07204536e+002 1.19588341e+002 1.26400093e+002 - 1.07265190e+002 1.19626945e+002 1.26419106e+002 1.07273941e+002 - 1.19649437e+002 1.26391212e+002 1.07288017e+002 1.19651947e+002 - 1.26355850e+002 1.07329445e+002 1.19697670e+002 1.26351479e+002 - 1.07347488e+002 1.19702888e+002 1.26320328e+002 1.07362175e+002 - 1.19724266e+002 1.26298927e+002 1.07399490e+002 1.19731476e+002 - 1.26281517e+002 1.07441803e+002 1.19783165e+002 1.26277359e+002 - 1.07477737e+002 1.19807892e+002 1.26271347e+002 1.07447701e+002 - 1.19796928e+002 1.26206367e+002 1.07473816e+002 1.19803833e+002 - 1.26181366e+002 1.07534180e+002 1.19865105e+002 1.26184830e+002 - 1.07590103e+002 1.19902840e+002 1.26171913e+002 1.07619881e+002 - 1.19947350e+002 1.26168655e+002 1.07637672e+002 1.19949585e+002 - 1.26140572e+002 1.07617119e+002 1.19935173e+002 1.26078575e+002 - 1.07646217e+002 1.19941109e+002 1.26046219e+002 1.07646706e+002 - 1.19947914e+002 1.25997932e+002 1.07663689e+002 1.19961067e+002 - 1.25966843e+002 1.07681709e+002 1.19990341e+002 1.25935631e+002 - 1.07710983e+002 1.19998833e+002 1.25904869e+002 1.07756126e+002 - 1.20045563e+002 1.25896370e+002 1.07782715e+002 1.20035820e+002 - 1.25850922e+002 1.07812042e+002 1.20069466e+002 1.25819214e+002 - 1.07843399e+002 1.20091911e+002 1.25794273e+002 1.07850380e+002 - 1.20102776e+002 1.25754280e+002 1.07893356e+002 1.20126091e+002 - 1.25739960e+002 1.07962669e+002 1.20198036e+002 1.25741554e+002 - 1.08009964e+002 1.20221130e+002 1.25707237e+002 1.08014481e+002 - 1.20242630e+002 1.25659180e+002 1.08039833e+002 1.20235901e+002 - 1.25627037e+002 1.08080948e+002 1.20280510e+002 1.25615112e+002 - 1.08129677e+002 1.20296585e+002 1.25589935e+002 1.08123810e+002 - 1.20293686e+002 1.25535011e+002 1.08172142e+002 1.20323959e+002 - 1.25516037e+002 1.08223755e+002 1.20382507e+002 1.25511246e+002 - 1.08259819e+002 1.20386940e+002 1.25477524e+002 1.08315468e+002 - 1.20454041e+002 1.25483757e+002 1.08390930e+002 1.20497604e+002 - 1.25486778e+002 1.08428215e+002 1.20533852e+002 1.25466499e+002 - 1.08472328e+002 1.20553764e+002 1.25437386e+002 1.08500816e+002 - 1.20589920e+002 1.25415558e+002 1.08560272e+002 1.20625450e+002 - 1.25418251e+002 1.08641907e+002 1.20702126e+002 1.25434601e+002 - 1.08744980e+002 1.20771812e+002 1.25443588e+002 1.08782379e+002 - 1.20807831e+002 1.25422997e+002 1.08799370e+002 1.20795280e+002 - 1.25383232e+002 1.08856766e+002 1.20839989e+002 1.25372719e+002 - 1.08911064e+002 1.20858437e+002 1.25350861e+002 1.08932961e+002 - 1.20878105e+002 1.25312485e+002 1.09031883e+002 1.20940384e+002 - 1.25326035e+002 1.09087204e+002 1.20991798e+002 1.25320930e+002 - 1.09160164e+002 1.21021614e+002 1.25319008e+002 1.09225990e+002 - 1.21074875e+002 1.25317780e+002 1.09302444e+002 1.21101662e+002 - 1.25311478e+002 1.09337341e+002 1.21120644e+002 1.25276207e+002 - 1.09399757e+002 1.21141525e+002 1.25269089e+002 1.09366074e+002 - 1.21102371e+002 1.25178596e+002 1.09359222e+002 1.21051155e+002 - 1.25104515e+002 1.09304634e+002 1.20974915e+002 1.24983795e+002 - 1.09258171e+002 1.20958870e+002 1.24999718e+002 1.09317184e+002 - 1.21060425e+002 1.25125534e+002 1.09350914e+002 1.21106773e+002 - 1.25219025e+002 1.09319054e+002 1.21113625e+002 1.25254623e+002 - 1.09276703e+002 1.21089661e+002 1.25283325e+002 1.09210381e+002 - 1.21062096e+002 1.25295563e+002 1.09178268e+002 1.21048012e+002 - 1.25339478e+002 1.09107033e+002 1.21008461e+002 1.25334618e+002 - 1.09058746e+002 1.20970573e+002 1.25349976e+002 1.08964676e+002 - 1.20905167e+002 1.25326233e+002 1.08948219e+002 1.20881676e+002 - 1.25380486e+002 1.08908707e+002 1.20865829e+002 1.25406029e+002 - 1.08829887e+002 1.20806068e+002 1.25403450e+002 1.08769981e+002 - 1.20775620e+002 1.25402740e+002 1.08707764e+002 1.20714493e+002 - 1.25393700e+002 1.08638054e+002 1.20666870e+002 1.25381363e+002 - 1.08587173e+002 1.20638100e+002 1.25424034e+002 1.08486725e+002 - 1.20580864e+002 1.25395721e+002 1.08456032e+002 1.20548096e+002 - 1.25416840e+002 1.08425797e+002 1.20538322e+002 1.25446274e+002 - 1.08389168e+002 1.20498726e+002 1.25475304e+002 1.08326775e+002 - 1.20458374e+002 1.25482971e+002 1.08268639e+002 1.20409996e+002 - 1.25499405e+002 1.08240814e+002 1.20399803e+002 1.25530975e+002 - 1.08224014e+002 1.20386940e+002 1.25580963e+002 1.08157867e+002 - 1.20340446e+002 1.25585503e+002 1.08120583e+002 1.20287781e+002 - 1.25618546e+002 1.08079994e+002 1.20269669e+002 1.25647568e+002 - 1.08043541e+002 1.20239532e+002 1.25678093e+002 1.08000908e+002 - 1.20217407e+002 1.25690651e+002 1.07978806e+002 1.20186546e+002 - 1.25712082e+002 1.07938477e+002 1.20160683e+002 1.25723190e+002 - 1.07911827e+002 1.20140366e+002 1.25775711e+002 1.07850647e+002 - 1.20100273e+002 1.25776085e+002 1.07824791e+002 1.20063110e+002 - 1.25790787e+002 1.07778824e+002 1.20034782e+002 1.25796867e+002 - 1.07758156e+002 1.20007057e+002 1.25835945e+002 1.07713844e+002 - 1.19980461e+002 1.25853928e+002 1.07685242e+002 1.19951027e+002 - 1.25883827e+002 1.07638985e+002 1.19919075e+002 1.25888237e+002 - 1.07624062e+002 1.19904594e+002 1.25934959e+002 1.07589607e+002 - 1.19882614e+002 1.25949532e+002 1.07584213e+002 1.19862343e+002 - 1.25996201e+002 1.07562279e+002 1.19858124e+002 1.26032867e+002 - 1.07544769e+002 1.19848129e+002 1.26070732e+002 1.07506699e+002 - 1.19822533e+002 1.26081932e+002 1.07497581e+002 1.19813972e+002 - 1.26124855e+002 1.07473175e+002 1.19797516e+002 1.26152557e+002 - 1.07439804e+002 1.19769562e+002 1.26195122e+002 1.07389938e+002 - 1.19738792e+002 1.26207436e+002 1.07376404e+002 1.19715775e+002 - 1.26230499e+002 1.07365799e+002 1.19723946e+002 1.26268250e+002 - 1.07324722e+002 1.19676262e+002 1.26289459e+002 1.07299568e+002 - 1.19674667e+002 1.26329697e+002 1.07277626e+002 1.19657616e+002 - 1.26365036e+002 1.07264877e+002 1.19658440e+002 1.26396606e+002 - 1.07244659e+002 1.19626511e+002 1.26426392e+002 1.07239342e+002 - 1.19632614e+002 1.26470345e+002 1.07243362e+002 1.19614555e+002 - 1.26524696e+002 1.07238525e+002 1.19613182e+002 1.26563446e+002 - 1.07229836e+002 1.19597145e+002 1.26582054e+002 1.07204323e+002 - 1.19577103e+002 1.26596153e+002 1.07193306e+002 1.19553528e+002 - 1.26624680e+002 1.07173271e+002 1.19547653e+002 1.26634880e+002 - 1.07155914e+002 1.19528358e+002 1.26676819e+002 1.07080933e+002 - 1.19473244e+002 1.26645035e+002 1.07093475e+002 1.19473358e+002 - 1.26677330e+002 1.07086555e+002 1.19478790e+002 1.26707550e+002 - 1.07066124e+002 1.19434158e+002 1.26723610e+002 1.07064224e+002 - 1.19437683e+002 1.26756584e+002 1.07054161e+002 1.19434280e+002 - 1.26793198e+002 1.07026848e+002 1.19422096e+002 1.26803429e+002 - 1.07023697e+002 1.19408020e+002 1.26831779e+002 1.07007141e+002 - 1.19405319e+002 1.26850525e+002 1.07027718e+002 1.19408630e+002 - 1.26909927e+002 1.07005554e+002 1.19400223e+002 1.26920731e+002 - 1.06999031e+002 1.19390137e+002 1.26952576e+002 1.06977112e+002 - 1.19388161e+002 1.26965157e+002 1.06978905e+002 1.19384789e+002 - 1.26996735e+002 1.06972145e+002 1.19388176e+002 1.27021187e+002 - 1.06983635e+002 1.19396477e+002 1.27082512e+002 1.06950829e+002 - 1.19382195e+002 1.27085419e+002 1.06955795e+002 1.19367081e+002 - 1.27109009e+002 1.06964561e+002 1.19386490e+002 1.27143517e+002 - 1.06968895e+002 1.19369858e+002 1.27171715e+002 1.06961052e+002 - 1.19376297e+002 1.27192535e+002 1.06924011e+002 1.19338272e+002 - 1.27183693e+002 1.06898689e+002 1.19319473e+002 1.27179008e+002 - 1.06906128e+002 1.19315163e+002 1.27210739e+002 1.06897224e+002 - 1.19325073e+002 1.27239227e+002 1.06937462e+002 1.19343979e+002 - 1.27304878e+002 1.06938164e+002 1.19358604e+002 1.27335854e+002 - 1.06922752e+002 1.19345116e+002 1.27345558e+002 1.06894714e+002 - 1.19334923e+002 1.27342682e+002 1.06877296e+002 1.19313057e+002 - 1.27343643e+002 1.06866417e+002 1.19314583e+002 1.27350677e+002 - 1.06875008e+002 1.19320412e+002 1.27383835e+002 1.06861610e+002 - 1.19336899e+002 1.27391953e+002 1.06895241e+002 1.19354195e+002 - 1.27429893e+002 1.06899551e+002 1.19365547e+002 1.27445663e+002 - 1.06895836e+002 1.19343407e+002 1.27454842e+002 1.06873276e+002 - 1.19332199e+002 1.27445656e+002 1.06856339e+002 1.19318825e+002 - 1.27456917e+002 1.06831024e+002 1.19304474e+002 1.27435036e+002 - 1.06834373e+002 1.19299644e+002 1.27449524e+002 1.06837143e+002 - 1.19317001e+002 1.27466324e+002 1.06883972e+002 1.19337280e+002 - 1.27510498e+002 1.06864769e+002 1.19323685e+002 1.27496719e+002 - 1.06835716e+002 1.19293327e+002 1.27470993e+002 1.06821754e+002 - 1.19293327e+002 1.27457893e+002 1.06857697e+002 1.19313927e+002 - 1.27490715e+002 1.06855675e+002 1.19314194e+002 1.27482498e+002 - 1.06838745e+002 1.19293671e+002 1.27466248e+002 1.06805313e+002 - 1.19272995e+002 1.27439369e+002 1.06826050e+002 1.19279160e+002 - 1.27452347e+002 1.06818863e+002 1.19285530e+002 1.27443634e+002 - 1.06828476e+002 1.19278053e+002 1.27448380e+002 1.06813866e+002 - 1.19276741e+002 1.27427757e+002 1.06835808e+002 1.19295784e+002 - 1.27441483e+002 1.06857063e+002 1.19326927e+002 1.27447777e+002 - 1.06853653e+002 1.19320000e+002 1.27432976e+002 1.06837021e+002 - 1.19312294e+002 1.27409210e+002 1.06855988e+002 1.19300705e+002 - 1.27405174e+002 1.06858025e+002 1.19313881e+002 1.27391991e+002 - 1.06860512e+002 1.19307014e+002 1.27376389e+002 1.06824677e+002 - 1.19284332e+002 1.27330612e+002 1.06840767e+002 1.19280525e+002 - 1.27331169e+002 1.06876144e+002 1.19321602e+002 1.27350288e+002 - 1.06858337e+002 1.19303802e+002 1.27310242e+002 1.06871025e+002 - 1.19335999e+002 1.27313477e+002 1.06901382e+002 1.19353867e+002 - 1.27325577e+002 1.06887825e+002 1.19348961e+002 1.27294495e+002 - 1.06873550e+002 1.19323997e+002 1.27260948e+002 1.06864479e+002 - 1.19325073e+002 1.27235573e+002 1.06863655e+002 1.19320099e+002 - 1.27212776e+002 1.06845184e+002 1.19312767e+002 1.27171143e+002 - 1.06865265e+002 1.19323357e+002 1.27163864e+002 1.06851730e+002 - 1.19313507e+002 1.27127571e+002 1.06869453e+002 1.19303627e+002 - 1.27105873e+002 1.06874634e+002 1.19316055e+002 1.27086182e+002 - 1.06860771e+002 1.19309593e+002 1.27038216e+002 1.06874649e+002 - 1.19328590e+002 1.27024300e+002 1.06869492e+002 1.19314079e+002 - 1.26992920e+002 1.06847931e+002 1.19297668e+002 1.26927803e+002 - 1.06856186e+002 1.19293587e+002 1.26885551e+002 1.06859283e+002 - 1.19318077e+002 1.26860046e+002 1.06865517e+002 1.19303436e+002 - 1.26830215e+002 1.06858452e+002 1.19303299e+002 1.26790749e+002 - 1.06865990e+002 1.19292526e+002 1.26761726e+002 1.06838715e+002 - 1.19274902e+002 1.26695412e+002 1.06841988e+002 1.19266060e+002 - 1.26658058e+002 1.06867966e+002 1.19301514e+002 1.26643776e+002 - 1.06888596e+002 1.19310921e+002 1.26626900e+002 1.06867142e+002 - 1.19296021e+002 1.26570702e+002 1.06909462e+002 1.19309387e+002 - 1.26574112e+002 1.06895943e+002 1.19304710e+002 1.26526726e+002 - 1.06928551e+002 1.19329155e+002 1.26515961e+002 1.06929871e+002 - 1.19351234e+002 1.26488548e+002 1.06937225e+002 1.19338760e+002 - 1.26456970e+002 1.06959541e+002 1.19371880e+002 1.26436211e+002 - 1.07000694e+002 1.19397369e+002 1.26417290e+002 1.06995300e+002 - 1.19405159e+002 1.26374382e+002 1.07020378e+002 1.19419281e+002 - 1.26359619e+002 1.07042953e+002 1.19454124e+002 1.26342224e+002 - 1.07112694e+002 1.19498314e+002 1.26367271e+002 1.07118561e+002 - 1.19516647e+002 1.26331596e+002 1.07133369e+002 1.19517532e+002 - 1.26297585e+002 1.07152664e+002 1.19544510e+002 1.26272545e+002 - 1.07179222e+002 1.19558708e+002 1.26247475e+002 1.07198242e+002 - 1.19585495e+002 1.26226341e+002 1.07250015e+002 1.19608261e+002 - 1.26224457e+002 1.07275970e+002 1.19637894e+002 1.26209282e+002 - 1.07282585e+002 1.19638885e+002 1.26166969e+002 1.07278664e+002 - 1.19643845e+002 1.26119453e+002 1.07333794e+002 1.19683128e+002 - 1.26127419e+002 1.07410843e+002 1.19765167e+002 1.26150970e+002 - 1.07462570e+002 1.19797676e+002 1.26135574e+002 1.07486954e+002 - 1.19838226e+002 1.26125633e+002 1.07522865e+002 1.19857910e+002 - 1.26112869e+002 1.07496704e+002 1.19838654e+002 1.26041595e+002 - 1.07499466e+002 1.19821495e+002 1.25989769e+002 1.07495216e+002 - 1.19820633e+002 1.25940712e+002 1.07515877e+002 1.19828888e+002 - 1.25904610e+002 1.07526413e+002 1.19850632e+002 1.25869514e+002 - 1.07566277e+002 1.19873955e+002 1.25845627e+002 1.07594681e+002 - 1.19908615e+002 1.25821861e+002 1.07624054e+002 1.19904327e+002 - 1.25778923e+002 1.07643044e+002 1.19930107e+002 1.25744354e+002 - 1.07694862e+002 1.19965370e+002 1.25733818e+002 1.07726006e+002 - 1.20006165e+002 1.25708977e+002 1.07764969e+002 1.20022110e+002 - 1.25697960e+002 1.07799362e+002 1.20061440e+002 1.25671707e+002 - 1.07843201e+002 1.20080933e+002 1.25630081e+002 1.07873100e+002 - 1.20123718e+002 1.25610687e+002 1.07907707e+002 1.20130974e+002 - 1.25587326e+002 1.07928383e+002 1.20153587e+002 1.25552521e+002 - 1.07973747e+002 1.20166351e+002 1.25530609e+002 1.07995148e+002 - 1.20198799e+002 1.25502037e+002 1.08045105e+002 1.20223801e+002 - 1.25483231e+002 1.08090302e+002 1.20271904e+002 1.25466080e+002 - 1.08124306e+002 1.20284019e+002 1.25433990e+002 1.08169418e+002 - 1.20336258e+002 1.25431625e+002 1.08247932e+002 1.20376312e+002 - 1.25430824e+002 1.08279938e+002 1.20411232e+002 1.25404930e+002 - 1.08329697e+002 1.20442848e+002 1.25384293e+002 1.08361214e+002 - 1.20479370e+002 1.25364487e+002 1.08423332e+002 1.20512459e+002 - 1.25362793e+002 1.08502861e+002 1.20587410e+002 1.25376129e+002 - 1.08567902e+002 1.20622124e+002 1.25354774e+002 1.08622200e+002 - 1.20677338e+002 1.25351036e+002 1.08654770e+002 1.20673065e+002 - 1.25320175e+002 1.08703728e+002 1.20722595e+002 1.25310959e+002 - 1.08776863e+002 1.20750923e+002 1.25303604e+002 1.08809006e+002 - 1.20783852e+002 1.25275681e+002 1.08895630e+002 1.20837151e+002 - 1.25282761e+002 1.08962715e+002 1.20900261e+002 1.25286224e+002 - 1.09018692e+002 1.20914948e+002 1.25263771e+002 1.09085121e+002 - 1.20973228e+002 1.25268990e+002 1.09183853e+002 1.21020508e+002 - 1.25278404e+002 1.09222084e+002 1.21041718e+002 1.25253616e+002 - 1.09275970e+002 1.21049988e+002 1.25228600e+002 1.09253418e+002 - 1.21025093e+002 1.25152222e+002 1.09254112e+002 1.20974167e+002 - 1.25082497e+002 1.09186554e+002 1.20894875e+002 1.24950493e+002 - 1.09136986e+002 1.20858345e+002 1.24962776e+002 1.09182152e+002 - 1.20946732e+002 1.25078575e+002 1.09209282e+002 1.20990738e+002 - 1.25170715e+002 1.09193092e+002 1.21012321e+002 1.25220642e+002 - 1.09155418e+002 1.20994186e+002 1.25256859e+002 1.09083946e+002 - 1.20962326e+002 1.25261154e+002 1.09042099e+002 1.20940498e+002 - 1.25301720e+002 1.08969933e+002 1.20900612e+002 1.25291527e+002 - 1.08908401e+002 1.20848396e+002 1.25297073e+002 1.08821159e+002 - 1.20787750e+002 1.25274406e+002 1.08786194e+002 1.20742928e+002 - 1.25315598e+002 1.08743469e+002 1.20726341e+002 1.25341446e+002 - 1.08685356e+002 1.20685219e+002 1.25355637e+002 1.08627220e+002 - 1.20652931e+002 1.25356049e+002 1.08560295e+002 1.20589218e+002 - 1.25339386e+002 1.08490150e+002 1.20545517e+002 1.25328407e+002 - 1.08442368e+002 1.20517769e+002 1.25372566e+002 1.08344009e+002 - 1.20457741e+002 1.25350586e+002 1.08323540e+002 1.20436104e+002 - 1.25380508e+002 1.08290466e+002 1.20424316e+002 1.25413940e+002 - 1.08259911e+002 1.20395531e+002 1.25448898e+002 1.08187088e+002 - 1.20343292e+002 1.25441208e+002 1.08131165e+002 1.20296570e+002 - 1.25468231e+002 1.08088516e+002 1.20278297e+002 1.25489052e+002 - 1.08066513e+002 1.20254387e+002 1.25529228e+002 1.08022476e+002 - 1.20224075e+002 1.25551491e+002 1.07986908e+002 1.20176147e+002 - 1.25583389e+002 1.07955383e+002 1.20164551e+002 1.25623512e+002 - 1.07929085e+002 1.20144882e+002 1.25659622e+002 1.07870529e+002 - 1.20106735e+002 1.25660210e+002 1.07840042e+002 1.20066879e+002 - 1.25674858e+002 1.07798195e+002 1.20042328e+002 1.25685684e+002 - 1.07771317e+002 1.20019722e+002 1.25733986e+002 1.07712593e+002 - 1.19986343e+002 1.25742348e+002 1.07672035e+002 1.19932976e+002 - 1.25744308e+002 1.07636703e+002 1.19915268e+002 1.25763603e+002 - 1.07614059e+002 1.19885483e+002 1.25802917e+002 1.07579750e+002 - 1.19870338e+002 1.25824554e+002 1.07547195e+002 1.19840759e+002 - 1.25862572e+002 1.07490120e+002 1.19804398e+002 1.25853653e+002 - 1.07490211e+002 1.19792282e+002 1.25907272e+002 1.07460213e+002 - 1.19771027e+002 1.25926849e+002 1.07450745e+002 1.19748871e+002 - 1.25971825e+002 1.07424759e+002 1.19739876e+002 1.25998947e+002 - 1.07389137e+002 1.19701561e+002 1.26019569e+002 1.07371590e+002 - 1.19706650e+002 1.26053864e+002 1.07348923e+002 1.19680595e+002 - 1.26077042e+002 1.07320107e+002 1.19661263e+002 1.26099358e+002 - 1.07290306e+002 1.19634964e+002 1.26150360e+002 1.07254814e+002 - 1.19620163e+002 1.26181030e+002 1.07236656e+002 1.19594414e+002 - 1.26200043e+002 1.07218773e+002 1.19594490e+002 1.26239082e+002 - 1.07203674e+002 1.19569435e+002 1.26278816e+002 1.07153618e+002 - 1.19543457e+002 1.26290817e+002 1.07127892e+002 1.19523178e+002 - 1.26323311e+002 1.07108299e+002 1.19515457e+002 1.26345840e+002 - 1.07086639e+002 1.19485062e+002 1.26372604e+002 1.07053185e+002 - 1.19467842e+002 1.26391617e+002 1.07058929e+002 1.19443909e+002 - 1.26440384e+002 1.07062141e+002 1.19452904e+002 1.26491264e+002 - 1.07074951e+002 1.19453651e+002 1.26536942e+002 1.07030029e+002 - 1.19419708e+002 1.26528915e+002 1.07018188e+002 1.19398842e+002 - 1.26551353e+002 1.06997475e+002 1.19385529e+002 1.26560936e+002 - 1.06981598e+002 1.19363625e+002 1.26598473e+002 1.06905869e+002 - 1.19320190e+002 1.26576233e+002 1.06899796e+002 1.19301140e+002 - 1.26598503e+002 1.06913383e+002 1.19318291e+002 1.26637405e+002 - 1.06899452e+002 1.19285782e+002 1.26665199e+002 1.06890282e+002 - 1.19281258e+002 1.26695686e+002 1.06890579e+002 1.19287689e+002 - 1.26738235e+002 1.06861771e+002 1.19271454e+002 1.26745407e+002 - 1.06855492e+002 1.19257759e+002 1.26767906e+002 1.06845200e+002 - 1.19264061e+002 1.26799606e+002 1.06866943e+002 1.19257996e+002 - 1.26853043e+002 1.06823441e+002 1.19233719e+002 1.26851456e+002 - 1.06812355e+002 1.19230255e+002 1.26883438e+002 1.06798294e+002 - 1.19225464e+002 1.26901772e+002 1.06814560e+002 1.19233192e+002 - 1.26945351e+002 1.06804085e+002 1.19238121e+002 1.26961670e+002 - 1.06817787e+002 1.19241371e+002 1.27023476e+002 1.06780060e+002 - 1.19221367e+002 1.27024963e+002 1.06762924e+002 1.19189117e+002 - 1.27030106e+002 1.06780235e+002 1.19214920e+002 1.27076103e+002 - 1.06791893e+002 1.19216721e+002 1.27115639e+002 1.06781929e+002 - 1.19224022e+002 1.27133423e+002 1.06760048e+002 1.19189117e+002 - 1.27137688e+002 1.06721802e+002 1.19167000e+002 1.27124962e+002 - 1.06729317e+002 1.19165314e+002 1.27151794e+002 1.06719574e+002 - 1.19166374e+002 1.27177673e+002 1.06754829e+002 1.19180641e+002 - 1.27235207e+002 1.06759811e+002 1.19196739e+002 1.27265846e+002 - 1.06736046e+002 1.19172272e+002 1.27265709e+002 1.06715919e+002 - 1.19174866e+002 1.27272621e+002 1.06715919e+002 1.19166443e+002 - 1.27293205e+002 1.06703430e+002 1.19166214e+002 1.27294853e+002 - 1.06708534e+002 1.19167465e+002 1.27325378e+002 1.06695396e+002 - 1.19179642e+002 1.27343681e+002 1.06711235e+002 1.19187859e+002 - 1.27363266e+002 1.06736732e+002 1.19218170e+002 1.27394501e+002 - 1.06732613e+002 1.19194504e+002 1.27398125e+002 1.06721214e+002 - 1.19196747e+002 1.27403831e+002 1.06704491e+002 1.19179726e+002 - 1.27410583e+002 1.06692711e+002 1.19176003e+002 1.27408760e+002 - 1.06690155e+002 1.19165131e+002 1.27415169e+002 1.06686066e+002 - 1.19168747e+002 1.27418152e+002 1.06708061e+002 1.19171806e+002 - 1.27445007e+002 1.06695099e+002 1.19159904e+002 1.27428642e+002 - 1.06674042e+002 1.19137978e+002 1.27412056e+002 1.06652809e+002 - 1.19127052e+002 1.27386536e+002 1.06681313e+002 1.19142326e+002 - 1.27421738e+002 1.06662643e+002 1.19131020e+002 1.27396545e+002 - 1.06664452e+002 1.19122780e+002 1.27390968e+002 1.06630356e+002 - 1.19104500e+002 1.27368637e+002 1.06649536e+002 1.19110115e+002 - 1.27376915e+002 1.06643394e+002 1.19109367e+002 1.27369621e+002 - 1.06676514e+002 1.19128349e+002 1.27396446e+002 1.06665359e+002 - 1.19135307e+002 1.27383934e+002 1.06684982e+002 1.19154137e+002 - 1.27397858e+002 1.06713821e+002 1.19190109e+002 1.27416458e+002 - 1.06708595e+002 1.19180740e+002 1.27395210e+002 1.06681145e+002 - 1.19167839e+002 1.27358971e+002 1.06691116e+002 1.19144798e+002 - 1.27345345e+002 1.06701607e+002 1.19160332e+002 1.27339035e+002 - 1.06712494e+002 1.19166977e+002 1.27337654e+002 1.06678123e+002 - 1.19145195e+002 1.27291046e+002 1.06683998e+002 1.19140427e+002 - 1.27293045e+002 1.06711510e+002 1.19170639e+002 1.27286926e+002 - 1.06699455e+002 1.19152328e+002 1.27250435e+002 1.06701653e+002 - 1.19183060e+002 1.27253082e+002 1.06723434e+002 1.19186882e+002 - 1.27258553e+002 1.06729889e+002 1.19206566e+002 1.27244934e+002 - 1.06702675e+002 1.19163055e+002 1.27198906e+002 1.06683517e+002 - 1.19152313e+002 1.27153870e+002 1.06684982e+002 1.19148659e+002 - 1.27137886e+002 1.06685753e+002 1.19160248e+002 1.27114906e+002 - 1.06697105e+002 1.19164642e+002 1.27106277e+002 1.06698860e+002 - 1.19177101e+002 1.27080986e+002 1.06729965e+002 1.19177551e+002 - 1.27073303e+002 1.06721825e+002 1.19181854e+002 1.27041122e+002 - 1.06706062e+002 1.19167305e+002 1.26996452e+002 1.06683632e+002 - 1.19162231e+002 1.26950195e+002 1.06690788e+002 1.19155685e+002 - 1.26939514e+002 1.06688492e+002 1.19154053e+002 1.26887802e+002 - 1.06700333e+002 1.19151901e+002 1.26840546e+002 1.06698868e+002 - 1.19172012e+002 1.26810822e+002 1.06695244e+002 1.19143150e+002 - 1.26767273e+002 1.06687920e+002 1.19143250e+002 1.26728508e+002 - 1.06713554e+002 1.19146469e+002 1.26716553e+002 1.06678062e+002 - 1.19121140e+002 1.26640625e+002 1.06674538e+002 1.19107903e+002 - 1.26595169e+002 1.06711647e+002 1.19156052e+002 1.26598038e+002 - 1.06730850e+002 1.19163216e+002 1.26579018e+002 1.06722359e+002 - 1.19166786e+002 1.26538666e+002 1.06747528e+002 1.19160469e+002 - 1.26514252e+002 1.06736633e+002 1.19163795e+002 1.26475037e+002 - 1.06757080e+002 1.19175247e+002 1.26451012e+002 1.06764160e+002 - 1.19199150e+002 1.26424370e+002 1.06782883e+002 1.19200562e+002 - 1.26408264e+002 1.06821358e+002 1.19246376e+002 1.26396935e+002 - 1.06866531e+002 1.19277924e+002 1.26383110e+002 1.06865494e+002 - 1.19294289e+002 1.26358597e+002 1.06887611e+002 1.19303513e+002 - 1.26334694e+002 1.06893692e+002 1.19322746e+002 1.26302299e+002 - 1.06949753e+002 1.19352135e+002 1.26307617e+002 1.06951416e+002 - 1.19367722e+002 1.26272163e+002 1.06975594e+002 1.19383591e+002 - 1.26245735e+002 1.06980461e+002 1.19396591e+002 1.26210442e+002 - 1.07005112e+002 1.19403313e+002 1.26179871e+002 1.07026443e+002 - 1.19434372e+002 1.26160736e+002 1.07083168e+002 1.19459259e+002 - 1.26158401e+002 1.07115700e+002 1.19501572e+002 1.26150963e+002 - 1.07143127e+002 1.19512390e+002 1.26120262e+002 1.07141739e+002 - 1.19523590e+002 1.26084381e+002 1.07180031e+002 1.19547371e+002 - 1.26073631e+002 1.07243233e+002 1.19611443e+002 1.26081306e+002 - 1.07311127e+002 1.19663040e+002 1.26079201e+002 1.07333504e+002 - 1.19705795e+002 1.26070923e+002 1.07374214e+002 1.19729492e+002 - 1.26068413e+002 1.07359352e+002 1.19719963e+002 1.26007988e+002 - 1.07360313e+002 1.19697433e+002 1.25953125e+002 1.07339195e+002 - 1.19687775e+002 1.25890457e+002 1.07371254e+002 1.19704758e+002 - 1.25860161e+002 1.07382568e+002 1.19724670e+002 1.25824432e+002 - 1.07427155e+002 1.19752808e+002 1.25808708e+002 1.07449196e+002 - 1.19779053e+002 1.25779800e+002 1.07487541e+002 1.19782249e+002 - 1.25743919e+002 1.07504059e+002 1.19808083e+002 1.25704941e+002 - 1.07547806e+002 1.19838486e+002 1.25685699e+002 1.07586296e+002 - 1.19888428e+002 1.25671432e+002 1.07624313e+002 1.19903503e+002 - 1.25655609e+002 1.07644211e+002 1.19926537e+002 1.25609856e+002 - 1.07691605e+002 1.19945938e+002 1.25579247e+002 1.07718277e+002 - 1.19985695e+002 1.25554138e+002 1.07774292e+002 1.20012383e+002 - 1.25555649e+002 1.07782257e+002 1.20025940e+002 1.25511429e+002 - 1.07821144e+002 1.20042091e+002 1.25485031e+002 1.07861244e+002 - 1.20088936e+002 1.25474991e+002 1.07909294e+002 1.20114563e+002 - 1.25452087e+002 1.07934418e+002 1.20146210e+002 1.25423523e+002 - 1.07974091e+002 1.20159996e+002 1.25396561e+002 1.08019875e+002 - 1.20207069e+002 1.25382149e+002 1.08091888e+002 1.20238075e+002 - 1.25379341e+002 1.08140221e+002 1.20291740e+002 1.25365715e+002 - 1.08189934e+002 1.20323395e+002 1.25345718e+002 1.08224892e+002 - 1.20368416e+002 1.25326874e+002 1.08285088e+002 1.20403847e+002 - 1.25328674e+002 1.08352745e+002 1.20465233e+002 1.25322075e+002 - 1.08404015e+002 1.20486572e+002 1.25283516e+002 1.08465996e+002 - 1.20551399e+002 1.25295677e+002 1.08532211e+002 1.20577393e+002 - 1.25293617e+002 1.08585411e+002 1.20629181e+002 1.25291603e+002 - 1.08668289e+002 1.20674339e+002 1.25300674e+002 1.08692963e+002 - 1.20699402e+002 1.25262604e+002 1.08775864e+002 1.20743378e+002 - 1.25265717e+002 1.08830589e+002 1.20793709e+002 1.25253052e+002 - 1.08887947e+002 1.20806267e+002 1.25234283e+002 1.08954712e+002 - 1.20863693e+002 1.25233734e+002 1.09048302e+002 1.20906738e+002 - 1.25236366e+002 1.09095306e+002 1.20936089e+002 1.25214478e+002 - 1.09139008e+002 1.20941345e+002 1.25189110e+002 1.09145050e+002 - 1.20936302e+002 1.25128876e+002 1.09144089e+002 1.20888695e+002 - 1.25055771e+002 1.09066772e+002 1.20796394e+002 1.24917435e+002 - 1.09055855e+002 1.20791542e+002 1.24951065e+002 1.09099846e+002 - 1.20885513e+002 1.25068535e+002 1.09131149e+002 1.20936539e+002 - 1.25166267e+002 1.09115967e+002 1.20960831e+002 1.25218971e+002 - 1.09087578e+002 1.20948524e+002 1.25269073e+002 1.09018982e+002 - 1.20917740e+002 1.25269272e+002 1.08940788e+002 1.20859337e+002 - 1.25272346e+002 1.08873116e+002 1.20828445e+002 1.25272232e+002 - 1.08805626e+002 1.20769279e+002 1.25270447e+002 1.08712883e+002 - 1.20702614e+002 1.25248459e+002 1.08685234e+002 1.20669655e+002 - 1.25295151e+002 1.08627907e+002 1.20644638e+002 1.25310753e+002 - 1.08579231e+002 1.20602852e+002 1.25334068e+002 1.08525345e+002 - 1.20573570e+002 1.25334778e+002 1.08484138e+002 1.20532722e+002 - 1.25347481e+002 1.08392899e+002 1.20469437e+002 1.25316360e+002 - 1.08345352e+002 1.20445435e+002 1.25363640e+002 1.08239418e+002 - 1.20377800e+002 1.25329834e+002 1.08212448e+002 1.20342346e+002 - 1.25352798e+002 1.08181564e+002 1.20337212e+002 1.25390999e+002 - 1.08153534e+002 1.20308113e+002 1.25424744e+002 1.08093147e+002 - 1.20269905e+002 1.25431503e+002 1.08037827e+002 1.20227188e+002 - 1.25457230e+002 1.07984009e+002 1.20189957e+002 1.25465012e+002 - 1.07954041e+002 1.20155975e+002 1.25498856e+002 1.07922729e+002 - 1.20149010e+002 1.25538940e+002 1.07913925e+002 1.20115898e+002 - 1.25594307e+002 1.07879967e+002 1.20103325e+002 1.25627289e+002 - 1.07822235e+002 1.20057579e+002 1.25635429e+002 1.07764450e+002 - 1.20017380e+002 1.25632057e+002 1.07743782e+002 1.19992264e+002 - 1.25661682e+002 1.07729980e+002 1.19993500e+002 1.25699745e+002 - 1.07695847e+002 1.19965347e+002 1.25748711e+002 1.07595329e+002 - 1.19896790e+002 1.25719254e+002 1.07564903e+002 1.19853127e+002 - 1.25735359e+002 1.07528740e+002 1.19830200e+002 1.25749748e+002 - 1.07494194e+002 1.19783928e+002 1.25775726e+002 1.07449150e+002 - 1.19761032e+002 1.25795334e+002 1.07438744e+002 1.19753807e+002 - 1.25842651e+002 1.07392899e+002 1.19723320e+002 1.25851707e+002 - 1.07382698e+002 1.19707748e+002 1.25890770e+002 1.07333176e+002 - 1.19674973e+002 1.25894928e+002 1.07335037e+002 1.19650360e+002 - 1.25948105e+002 1.07301048e+002 1.19638519e+002 1.25968788e+002 - 1.07272720e+002 1.19610771e+002 1.25996689e+002 1.07251518e+002 - 1.19608238e+002 1.26023460e+002 1.07218719e+002 1.19567833e+002 - 1.26038063e+002 1.07201561e+002 1.19561668e+002 1.26072533e+002 - 1.07194977e+002 1.19559044e+002 1.26146149e+002 1.07144913e+002 - 1.19532921e+002 1.26160164e+002 1.07127190e+002 1.19507416e+002 - 1.26186653e+002 1.07114265e+002 1.19509117e+002 1.26219574e+002 - 1.07106819e+002 1.19487587e+002 1.26270584e+002 1.07042778e+002 - 1.19455360e+002 1.26265381e+002 1.07026573e+002 1.19439056e+002 - 1.26307419e+002 1.07000748e+002 1.19426430e+002 1.26328987e+002 - 1.06980637e+002 1.19397903e+002 1.26354424e+002 1.06912910e+002 - 1.19341171e+002 1.26337540e+002 1.06919609e+002 1.19315025e+002 - 1.26392212e+002 1.06930199e+002 1.19333626e+002 1.26445091e+002 - 1.06929535e+002 1.19323112e+002 1.26471863e+002 1.06901146e+002 - 1.19308357e+002 1.26486244e+002 1.06893082e+002 1.19286667e+002 - 1.26511780e+002 1.06874458e+002 1.19273865e+002 1.26520744e+002 - 1.06834480e+002 1.19227821e+002 1.26541412e+002 1.06777382e+002 - 1.19195061e+002 1.26532021e+002 1.06770432e+002 1.19180000e+002 - 1.26552902e+002 1.06763474e+002 1.19182724e+002 1.26580017e+002 - 1.06766907e+002 1.19164856e+002 1.26620483e+002 1.06760216e+002 - 1.19173386e+002 1.26655922e+002 1.06752457e+002 1.19159492e+002 - 1.26689240e+002 1.06726883e+002 1.19149796e+002 1.26697937e+002 - 1.06718987e+002 1.19133720e+002 1.26722763e+002 1.06693085e+002 - 1.19121864e+002 1.26740433e+002 1.06707825e+002 1.19119347e+002 - 1.26792473e+002 1.06690491e+002 1.19118530e+002 1.26814781e+002 - 1.06678612e+002 1.19110703e+002 1.26845139e+002 1.06664513e+002 - 1.19105034e+002 1.26860039e+002 1.06678391e+002 1.19114677e+002 - 1.26905998e+002 1.06680595e+002 1.19123589e+002 1.26943871e+002 - 1.06674103e+002 1.19106232e+002 1.26973549e+002 1.06656456e+002 - 1.19113800e+002 1.27001694e+002 1.06648476e+002 1.19082840e+002 - 1.27008049e+002 1.06647141e+002 1.19103172e+002 1.27036316e+002 - 1.06672180e+002 1.19112053e+002 1.27085884e+002 1.06631104e+002 - 1.19087410e+002 1.27083221e+002 1.06607590e+002 1.19062836e+002 - 1.27090942e+002 1.06599434e+002 1.19068413e+002 1.27103966e+002 - 1.06600021e+002 1.19061813e+002 1.27130104e+002 1.06583351e+002 - 1.19054703e+002 1.27145164e+002 1.06601707e+002 1.19046600e+002 - 1.27182579e+002 1.06616959e+002 1.19071236e+002 1.27221657e+002 - 1.06613693e+002 1.19070290e+002 1.27240463e+002 1.06587105e+002 - 1.19064873e+002 1.27242203e+002 1.06569351e+002 1.19038170e+002 - 1.27242989e+002 1.06559006e+002 1.19039169e+002 1.27248718e+002 - 1.06575630e+002 1.19050293e+002 1.27294456e+002 1.06549706e+002 - 1.19054756e+002 1.27295967e+002 1.06561806e+002 1.19045837e+002 - 1.27303398e+002 1.06580925e+002 1.19071373e+002 1.27328049e+002 - 1.06584732e+002 1.19059959e+002 1.27343636e+002 1.06557213e+002 - 1.19040268e+002 1.27331558e+002 1.06529198e+002 1.19015152e+002 - 1.27327209e+002 1.06549095e+002 1.19043449e+002 1.27356209e+002 - 1.06564743e+002 1.19053383e+002 1.27378143e+002 1.06541611e+002 - 1.19043663e+002 1.27378265e+002 1.06560608e+002 1.19032761e+002 - 1.27393501e+002 1.06530495e+002 1.19010231e+002 1.27362541e+002 - 1.06530220e+002 1.19006271e+002 1.27363419e+002 1.06504211e+002 - 1.18996597e+002 1.27342850e+002 1.06534554e+002 1.19010208e+002 - 1.27372673e+002 1.06533722e+002 1.19009560e+002 1.27358673e+002 - 1.06537514e+002 1.19008934e+002 1.27364952e+002 1.06512329e+002 - 1.18995361e+002 1.27340500e+002 1.06520584e+002 1.18991127e+002 - 1.27338753e+002 1.06529823e+002 1.19014076e+002 1.27345833e+002 - 1.06558487e+002 1.19020737e+002 1.27373497e+002 1.06552917e+002 - 1.19030151e+002 1.27363327e+002 1.06579063e+002 1.19055428e+002 - 1.27383034e+002 1.06586746e+002 1.19079170e+002 1.27381760e+002 - 1.06585396e+002 1.19069466e+002 1.27368347e+002 1.06541901e+002 - 1.19039993e+002 1.27315010e+002 1.06540176e+002 1.19006447e+002 - 1.27290916e+002 1.06545181e+002 1.19018997e+002 1.27274994e+002 - 1.06560570e+002 1.19020645e+002 1.27275955e+002 1.06554840e+002 - 1.19034500e+002 1.27260384e+002 1.06555000e+002 1.19019165e+002 - 1.27255066e+002 1.06563721e+002 1.19036369e+002 1.27243027e+002 - 1.06559097e+002 1.19030273e+002 1.27216866e+002 1.06546722e+002 - 1.19043137e+002 1.27195396e+002 1.06576828e+002 1.19054153e+002 - 1.27206070e+002 1.06594261e+002 1.19088097e+002 1.27208321e+002 - 1.06568024e+002 1.19041191e+002 1.27157257e+002 1.06563843e+002 - 1.19047363e+002 1.27133400e+002 1.06574654e+002 1.19053444e+002 - 1.27126923e+002 1.06570114e+002 1.19062721e+002 1.27093674e+002 - 1.06571632e+002 1.19053093e+002 1.27070206e+002 1.06568039e+002 - 1.19060272e+002 1.27050591e+002 1.06622566e+002 1.19084679e+002 - 1.27067108e+002 1.06621239e+002 1.19104897e+002 1.27039146e+002 - 1.06616119e+002 1.19090668e+002 1.27002769e+002 1.06570313e+002 - 1.19061188e+002 1.26937668e+002 1.06577843e+002 1.19053726e+002 - 1.26918297e+002 1.06573807e+002 1.19063805e+002 1.26872253e+002 - 1.06579887e+002 1.19049362e+002 1.26822472e+002 1.06569939e+002 - 1.19054092e+002 1.26773544e+002 1.06570885e+002 1.19030678e+002 - 1.26737289e+002 1.06568077e+002 1.19036232e+002 1.26701546e+002 - 1.06584000e+002 1.19028931e+002 1.26677818e+002 1.06559624e+002 - 1.19017403e+002 1.26611855e+002 1.06550980e+002 1.19007149e+002 - 1.26571503e+002 1.06592293e+002 1.19049484e+002 1.26572525e+002 - 1.06602417e+002 1.19049530e+002 1.26543976e+002 1.06588058e+002 - 1.19046371e+002 1.26500740e+002 1.06615883e+002 1.19047562e+002 - 1.26486618e+002 1.06618889e+002 1.19064545e+002 1.26448425e+002 - 1.06629356e+002 1.19065842e+002 1.26417480e+002 1.06649490e+002 - 1.19097511e+002 1.26397194e+002 1.06667709e+002 1.19101158e+002 - 1.26385262e+002 1.06701866e+002 1.19147644e+002 1.26376892e+002 - 1.06745201e+002 1.19175758e+002 1.26362656e+002 1.06756027e+002 - 1.19200386e+002 1.26333633e+002 1.06780159e+002 1.19212746e+002 - 1.26315170e+002 1.06791420e+002 1.19232292e+002 1.26294678e+002 - 1.06821510e+002 1.19244003e+002 1.26277222e+002 1.06820648e+002 - 1.19253532e+002 1.26238319e+002 1.06848381e+002 1.19271957e+002 - 1.26213875e+002 1.06872711e+002 1.19305786e+002 1.26188072e+002 - 1.06857086e+002 1.19272545e+002 1.26123108e+002 1.06874443e+002 - 1.19301529e+002 1.26097206e+002 1.06938217e+002 1.19331093e+002 - 1.26104141e+002 1.06982811e+002 1.19382454e+002 1.26099632e+002 - 1.07030357e+002 1.19411842e+002 1.26088768e+002 1.07038887e+002 - 1.19432198e+002 1.26059807e+002 1.07069580e+002 1.19454689e+002 - 1.26048752e+002 1.07108398e+002 1.19497826e+002 1.26030342e+002 - 1.07142227e+002 1.19517021e+002 1.25996552e+002 1.07178734e+002 - 1.19563454e+002 1.25987000e+002 1.07233383e+002 1.19599167e+002 - 1.26011177e+002 1.07227585e+002 1.19607162e+002 1.25963104e+002 - 1.07217155e+002 1.19570297e+002 1.25895042e+002 1.07208595e+002 - 1.19576065e+002 1.25842712e+002 1.07262817e+002 1.19614792e+002 - 1.25840355e+002 1.07286499e+002 1.19642242e+002 1.25805733e+002 - 1.07320450e+002 1.19664200e+002 1.25782623e+002 1.07367424e+002 - 1.19713905e+002 1.25778534e+002 1.07401703e+002 1.19714630e+002 - 1.25743317e+002 1.07426254e+002 1.19751228e+002 1.25711945e+002 - 1.07446297e+002 1.19755730e+002 1.25668571e+002 1.07443291e+002 - 1.19764046e+002 1.25609276e+002 1.07482567e+002 1.19781357e+002 - 1.25597015e+002 1.07535683e+002 1.19832123e+002 1.25584663e+002 - 1.07568199e+002 1.19840378e+002 1.25540016e+002 1.07588387e+002 - 1.19875244e+002 1.25507607e+002 1.07628456e+002 1.19888420e+002 - 1.25490936e+002 1.07670410e+002 1.19933105e+002 1.25484962e+002 - 1.07713135e+002 1.19954536e+002 1.25465111e+002 1.07739708e+002 - 1.19988655e+002 1.25438484e+002 1.07791214e+002 1.20021835e+002 - 1.25423935e+002 1.07832161e+002 1.20062813e+002 1.25406364e+002 - 1.07864960e+002 1.20075600e+002 1.25373932e+002 1.07902206e+002 - 1.20114014e+002 1.25352478e+002 1.07967926e+002 1.20136055e+002 - 1.25337662e+002 1.08013519e+002 1.20187607e+002 1.25322838e+002 - 1.08063553e+002 1.20216660e+002 1.25302086e+002 1.08105812e+002 - 1.20270195e+002 1.25288246e+002 1.08185516e+002 1.20325943e+002 - 1.25312164e+002 1.08237305e+002 1.20372330e+002 1.25292969e+002 - 1.08321136e+002 1.20427040e+002 1.25287071e+002 1.08396133e+002 - 1.20501572e+002 1.25304932e+002 1.08448647e+002 1.20519905e+002 - 1.25292679e+002 1.08498550e+002 1.20566261e+002 1.25288597e+002 - 1.08558525e+002 1.20589790e+002 1.25272362e+002 1.08594582e+002 - 1.20623451e+002 1.25247398e+002 1.08668922e+002 1.20665573e+002 - 1.25240692e+002 1.08727646e+002 1.20712204e+002 1.25230110e+002 - 1.08784966e+002 1.20733749e+002 1.25209152e+002 1.08864044e+002 - 1.20802444e+002 1.25221794e+002 1.08947571e+002 1.20833229e+002 - 1.25217232e+002 1.08985260e+002 1.20854759e+002 1.25180878e+002 - 1.09037422e+002 1.20861534e+002 1.25157990e+002 1.09039223e+002 - 1.20858131e+002 1.25096245e+002 1.09033775e+002 1.20799713e+002 - 1.25024338e+002 1.08968452e+002 1.20726479e+002 1.24888908e+002 - 1.08928795e+002 1.20700630e+002 1.24910980e+002 1.08994049e+002 - 1.20815514e+002 1.25049774e+002 1.09016335e+002 1.20863594e+002 - 1.25144661e+002 1.08994652e+002 1.20879814e+002 1.25190872e+002 - 1.08961258e+002 1.20859184e+002 1.25228622e+002 1.08898140e+002 - 1.20837906e+002 1.25241585e+002 1.08827652e+002 1.20785904e+002 - 1.25250328e+002 1.08752197e+002 1.20744736e+002 1.25242111e+002 - 1.08687218e+002 1.20686806e+002 1.25246056e+002 1.08602448e+002 - 1.20628334e+002 1.25231773e+002 1.08550591e+002 1.20572411e+002 - 1.25259331e+002 1.08502640e+002 1.20555908e+002 1.25285126e+002 - 1.08450569e+002 1.20510262e+002 1.25303993e+002 1.08401802e+002 - 1.20488609e+002 1.25312202e+002 1.08345367e+002 1.20438530e+002 - 1.25311684e+002 1.08262230e+002 1.20376190e+002 1.25285561e+002 - 1.08221718e+002 1.20357765e+002 1.25334557e+002 1.08129601e+002 - 1.20305389e+002 1.25320694e+002 1.08082062e+002 1.20257507e+002 - 1.25329567e+002 1.08053032e+002 1.20256668e+002 1.25362953e+002 - 1.08015732e+002 1.20208778e+002 1.25391525e+002 1.07961044e+002 - 1.20175934e+002 1.25406525e+002 1.07900551e+002 1.20124939e+002 - 1.25421761e+002 1.07844872e+002 1.20088608e+002 1.25429230e+002 - 1.07813866e+002 1.20051445e+002 1.25458206e+002 1.07795471e+002 - 1.20055153e+002 1.25510803e+002 1.07800102e+002 1.20043449e+002 - 1.25581863e+002 1.07749146e+002 1.20015305e+002 1.25594482e+002 - 1.07707314e+002 1.19969719e+002 1.25614662e+002 1.07655037e+002 - 1.19944839e+002 1.25617943e+002 1.07621841e+002 1.19908073e+002 - 1.25634567e+002 1.07607079e+002 1.19902321e+002 1.25671448e+002 - 1.07581764e+002 1.19881737e+002 1.25730545e+002 1.07460625e+002 - 1.19797226e+002 1.25681725e+002 1.07421608e+002 1.19747070e+002 - 1.25689919e+002 1.07400055e+002 1.19741264e+002 1.25728607e+002 - 1.07364502e+002 1.19699692e+002 1.25760628e+002 1.07300919e+002 - 1.19650887e+002 1.25748749e+002 1.07276344e+002 1.19629631e+002 - 1.25788078e+002 1.07234642e+002 1.19605301e+002 1.25799057e+002 - 1.07229881e+002 1.19594185e+002 1.25844193e+002 1.07196602e+002 - 1.19575478e+002 1.25865509e+002 1.07190674e+002 1.19540871e+002 - 1.25906570e+002 1.07173210e+002 1.19542160e+002 1.25940674e+002 - 1.07135597e+002 1.19502670e+002 1.25961708e+002 1.07101677e+002 - 1.19489456e+002 1.25976929e+002 1.07085030e+002 1.19463005e+002 - 1.26009338e+002 1.07083946e+002 1.19478653e+002 1.26054138e+002 - 1.07056282e+002 1.19446419e+002 1.26102829e+002 1.06994278e+002 - 1.19419350e+002 1.26110458e+002 1.06998222e+002 1.19413101e+002 - 1.26161087e+002 1.06980423e+002 1.19407845e+002 1.26190262e+002 - 1.06977043e+002 1.19391670e+002 1.26241425e+002 1.06915657e+002 - 1.19355751e+002 1.26231461e+002 1.06900307e+002 1.19340103e+002 - 1.26283379e+002 1.06887848e+002 1.19336571e+002 1.26306740e+002 - 1.06864296e+002 1.19306198e+002 1.26330055e+002 1.06812202e+002 - 1.19263542e+002 1.26328735e+002 1.06807243e+002 1.19228645e+002 - 1.26371193e+002 1.06788963e+002 1.19223190e+002 1.26398247e+002 - 1.06769356e+002 1.19197823e+002 1.26419960e+002 1.06761497e+002 - 1.19197113e+002 1.26442696e+002 1.06741516e+002 1.19161148e+002 - 1.26452324e+002 1.06720062e+002 1.19144188e+002 1.26463448e+002 - 1.06690392e+002 1.19112061e+002 1.26497292e+002 1.06629395e+002 - 1.19083328e+002 1.26493721e+002 1.06624847e+002 1.19059853e+002 - 1.26512917e+002 1.06620628e+002 1.19074173e+002 1.26543701e+002 - 1.06619026e+002 1.19047020e+002 1.26578606e+002 1.06602333e+002 - 1.19043579e+002 1.26600845e+002 1.06600494e+002 1.19043488e+002 - 1.26646408e+002 1.06583260e+002 1.19033714e+002 1.26655602e+002 - 1.06567703e+002 1.19009804e+002 1.26673904e+002 1.06537155e+002 - 1.18994606e+002 1.26681961e+002 1.06552162e+002 1.18996056e+002 - 1.26746040e+002 1.06528297e+002 1.18984940e+002 1.26762802e+002 - 1.06527390e+002 1.18984833e+002 1.26801643e+002 1.06510056e+002 - 1.18990700e+002 1.26817078e+002 1.06517761e+002 1.18983154e+002 - 1.26853203e+002 1.06535904e+002 1.19007919e+002 1.26901176e+002 - 1.06512054e+002 1.18974014e+002 1.26921707e+002 1.06494331e+002 - 1.18982170e+002 1.26949883e+002 1.06497475e+002 1.18967773e+002 - 1.26969711e+002 1.06500450e+002 1.18985977e+002 1.26997360e+002 - 1.06525490e+002 1.18993073e+002 1.27044434e+002 1.06488762e+002 - 1.18978447e+002 1.27046120e+002 1.06464958e+002 1.18952126e+002 - 1.27057648e+002 1.06458878e+002 1.18961136e+002 1.27075851e+002 - 1.06468353e+002 1.18966820e+002 1.27110970e+002 1.06428818e+002 - 1.18931541e+002 1.27099007e+002 1.06452858e+002 1.18921852e+002 - 1.27134865e+002 1.06456650e+002 1.18939224e+002 1.27162125e+002 - 1.06441513e+002 1.18918350e+002 1.27169518e+002 1.06421936e+002 - 1.18925537e+002 1.27179459e+002 1.06410034e+002 1.18909775e+002 - 1.27192535e+002 1.06412857e+002 1.18926819e+002 1.27213379e+002 - 1.06413033e+002 1.18918732e+002 1.27234360e+002 1.06390091e+002 - 1.18918678e+002 1.27240891e+002 1.06405647e+002 1.18921104e+002 - 1.27253952e+002 1.06405800e+002 1.18927681e+002 1.27263123e+002 - 1.06407745e+002 1.18907516e+002 1.27273102e+002 1.06404350e+002 - 1.18920151e+002 1.27284523e+002 1.06380234e+002 1.18896111e+002 - 1.27280907e+002 1.06371826e+002 1.18902519e+002 1.27288582e+002 - 1.06394173e+002 1.18913383e+002 1.27315956e+002 1.06403587e+002 - 1.18932266e+002 1.27343536e+002 1.06414330e+002 1.18918091e+002 - 1.27356384e+002 1.06381683e+002 1.18898132e+002 1.27328583e+002 - 1.06381859e+002 1.18884422e+002 1.27318405e+002 1.06358589e+002 - 1.18879417e+002 1.27303482e+002 1.06367844e+002 1.18872398e+002 - 1.27315849e+002 1.06395798e+002 1.18901085e+002 1.27326416e+002 - 1.06407463e+002 1.18904030e+002 1.27337616e+002 1.06370216e+002 - 1.18885010e+002 1.27308617e+002 1.06376137e+002 1.18875183e+002 - 1.27300201e+002 1.06378998e+002 1.18890366e+002 1.27302681e+002 - 1.06400917e+002 1.18892525e+002 1.27319496e+002 1.06409698e+002 - 1.18917305e+002 1.27324425e+002 1.06438393e+002 1.18941391e+002 - 1.27350365e+002 1.06426483e+002 1.18939743e+002 1.27321167e+002 - 1.06432175e+002 1.18935463e+002 1.27316673e+002 1.06398308e+002 - 1.18913979e+002 1.27273964e+002 1.06400406e+002 1.18882622e+002 - 1.27253326e+002 1.06408310e+002 1.18896500e+002 1.27238777e+002 - 1.06413567e+002 1.18899544e+002 1.27231857e+002 1.06399445e+002 - 1.18903214e+002 1.27209320e+002 1.06404404e+002 1.18891914e+002 - 1.27209793e+002 1.06397278e+002 1.18896614e+002 1.27182472e+002 - 1.06392761e+002 1.18894539e+002 1.27156120e+002 1.06375404e+002 - 1.18902779e+002 1.27131577e+002 1.06412071e+002 1.18919899e+002 - 1.27149048e+002 1.06434647e+002 1.18958366e+002 1.27157280e+002 - 1.06432533e+002 1.18935173e+002 1.27131264e+002 1.06413879e+002 - 1.18926949e+002 1.27093498e+002 1.06418015e+002 1.18926979e+002 - 1.27077225e+002 1.06402428e+002 1.18920502e+002 1.27039101e+002 - 1.06413139e+002 1.18922447e+002 1.27020676e+002 1.06411491e+002 - 1.18935623e+002 1.26997452e+002 1.06467667e+002 1.18961815e+002 - 1.27019341e+002 1.06465584e+002 1.18970291e+002 1.26990593e+002 - 1.06465492e+002 1.18971840e+002 1.26965576e+002 1.06441452e+002 - 1.18962700e+002 1.26917496e+002 1.06437683e+002 1.18947800e+002 - 1.26885590e+002 1.06446838e+002 1.18959229e+002 1.26850121e+002 - 1.06439865e+002 1.18929939e+002 1.26779533e+002 1.06405159e+002 - 1.18912521e+002 1.26714317e+002 1.06417999e+002 1.18896545e+002 - 1.26691727e+002 1.06423248e+002 1.18908615e+002 1.26661728e+002 - 1.06435974e+002 1.18902054e+002 1.26636307e+002 1.06427864e+002 - 1.18912224e+002 1.26600334e+002 1.06423355e+002 1.18898659e+002 - 1.26555527e+002 1.06444962e+002 1.18928009e+002 1.26537994e+002 - 1.06429764e+002 1.18900085e+002 1.26481995e+002 1.06414665e+002 - 1.18906364e+002 1.26443680e+002 1.06441582e+002 1.18903992e+002 - 1.26419891e+002 1.06459038e+002 1.18931458e+002 1.26398819e+002 - 1.06501472e+002 1.18970016e+002 1.26403778e+002 1.06499077e+002 - 1.18979813e+002 1.26363892e+002 1.06514191e+002 1.18985878e+002 - 1.26344933e+002 1.06553673e+002 1.19028137e+002 1.26333969e+002 - 1.06609550e+002 1.19067955e+002 1.26325684e+002 1.06621689e+002 - 1.19105392e+002 1.26308563e+002 1.06640556e+002 1.19101822e+002 - 1.26287247e+002 1.06632568e+002 1.19107758e+002 1.26245995e+002 - 1.06643494e+002 1.19096481e+002 1.26209755e+002 1.06661377e+002 - 1.19127815e+002 1.26184128e+002 1.06694763e+002 1.19150368e+002 - 1.26166946e+002 1.06705315e+002 1.19170624e+002 1.26132965e+002 - 1.06704666e+002 1.19154823e+002 1.26076729e+002 1.06740257e+002 - 1.19200180e+002 1.26073807e+002 1.06819031e+002 1.19244171e+002 - 1.26090378e+002 1.06843552e+002 1.19277237e+002 1.26064438e+002 - 1.06875244e+002 1.19287720e+002 1.26037361e+002 1.06889221e+002 - 1.19310646e+002 1.26007294e+002 1.06920578e+002 1.19327652e+002 - 1.25998871e+002 1.06949593e+002 1.19357376e+002 1.25970100e+002 - 1.06989716e+002 1.19386055e+002 1.25934959e+002 1.07019150e+002 - 1.19436005e+002 1.25937744e+002 1.07060074e+002 1.19452812e+002 - 1.25930084e+002 1.07057343e+002 1.19464058e+002 1.25888214e+002 - 1.07051651e+002 1.19436218e+002 1.25829338e+002 1.07052948e+002 - 1.19448685e+002 1.25784103e+002 1.07111603e+002 1.19491531e+002 - 1.25783417e+002 1.07126404e+002 1.19517570e+002 1.25744408e+002 - 1.07193092e+002 1.19566002e+002 1.25746315e+002 1.07227890e+002 - 1.19609734e+002 1.25729607e+002 1.07257111e+002 1.19603127e+002 - 1.25693039e+002 1.07281487e+002 1.19634750e+002 1.25664314e+002 - 1.07319328e+002 1.19657951e+002 1.25630424e+002 1.07309975e+002 - 1.19653305e+002 1.25569328e+002 1.07338310e+002 1.19664810e+002 - 1.25547195e+002 1.07400093e+002 1.19721169e+002 1.25540894e+002 - 1.07417923e+002 1.19725204e+002 1.25484520e+002 1.07441681e+002 - 1.19757515e+002 1.25461273e+002 1.07501190e+002 1.19792694e+002 - 1.25466347e+002 1.07533447e+002 1.19834190e+002 1.25448624e+002 - 1.07564514e+002 1.19841476e+002 1.25418228e+002 1.07590073e+002 - 1.19875130e+002 1.25390862e+002 1.07655273e+002 1.19919540e+002 - 1.25392036e+002 1.07701019e+002 1.19965675e+002 1.25378387e+002 - 1.07722176e+002 1.19964615e+002 1.25324364e+002 1.07777252e+002 - 1.20019234e+002 1.25325439e+002 1.07837242e+002 1.20040466e+002 - 1.25301949e+002 1.07863068e+002 1.20068428e+002 1.25264015e+002 - 1.07921806e+002 1.20109489e+002 1.25254013e+002 1.07968109e+002 - 1.20165543e+002 1.25243477e+002 1.08043159e+002 1.20219406e+002 - 1.25260086e+002 1.08112946e+002 1.20280327e+002 1.25254974e+002 - 1.08212204e+002 1.20346230e+002 1.25264420e+002 1.08279305e+002 - 1.20413887e+002 1.25270439e+002 1.08307991e+002 1.20412567e+002 - 1.25237869e+002 1.08346558e+002 1.20449860e+002 1.25217873e+002 - 1.08435234e+002 1.20501869e+002 1.25240891e+002 1.08496483e+002 - 1.20560646e+002 1.25236809e+002 1.08571060e+002 1.20602554e+002 - 1.25232773e+002 1.08603004e+002 1.20629295e+002 1.25197632e+002 - 1.08662956e+002 1.20653908e+002 1.25182564e+002 1.08731567e+002 - 1.20711197e+002 1.25180092e+002 1.08818237e+002 1.20736633e+002 - 1.25169090e+002 1.08877647e+002 1.20783806e+002 1.25160622e+002 - 1.08922363e+002 1.20784676e+002 1.25125717e+002 1.08924774e+002 - 1.20780479e+002 1.25063828e+002 1.08920280e+002 1.20723259e+002 - 1.24991631e+002 1.08855743e+002 1.20647278e+002 1.24856712e+002 - 1.08815056e+002 1.20614220e+002 1.24870163e+002 1.08868980e+002 - 1.20714592e+002 1.24993126e+002 1.08903687e+002 1.20769714e+002 - 1.25094269e+002 1.08880165e+002 1.20781219e+002 1.25139122e+002 - 1.08855026e+002 1.20773872e+002 1.25188301e+002 1.08790237e+002 - 1.20755013e+002 1.25199898e+002 1.08733711e+002 1.20712242e+002 - 1.25225594e+002 1.08646767e+002 1.20661987e+002 1.25197594e+002 - 1.08587189e+002 1.20610100e+002 1.25212898e+002 1.08509583e+002 - 1.20558823e+002 1.25208870e+002 1.08449463e+002 1.20498459e+002 - 1.25230927e+002 1.08399132e+002 1.20469887e+002 1.25252182e+002 - 1.08337715e+002 1.20421898e+002 1.25262146e+002 1.08281937e+002 - 1.20392494e+002 1.25269890e+002 1.08228760e+002 1.20347824e+002 - 1.25272621e+002 1.08149574e+002 1.20294136e+002 1.25251068e+002 - 1.08105103e+002 1.20264702e+002 1.25299675e+002 1.08029022e+002 - 1.20228584e+002 1.25292625e+002 1.07973907e+002 1.20177864e+002 - 1.25302399e+002 1.07937851e+002 1.20153893e+002 1.25318581e+002 - 1.07905930e+002 1.20117645e+002 1.25349113e+002 1.07832535e+002 - 1.20066032e+002 1.25351013e+002 1.07767784e+002 1.20010620e+002 - 1.25363380e+002 1.07718513e+002 1.19981209e+002 1.25372070e+002 - 1.07694611e+002 1.19953209e+002 1.25413048e+002 1.07663193e+002 - 1.19941696e+002 1.25442192e+002 1.07670357e+002 1.19937546e+002 - 1.25522743e+002 1.07621826e+002 1.19906555e+002 1.25533012e+002 - 1.07594780e+002 1.19879555e+002 1.25576393e+002 1.07556625e+002 - 1.19865341e+002 1.25586761e+002 1.07505295e+002 1.19809563e+002 - 1.25589859e+002 1.07481430e+002 1.19806046e+002 1.25623177e+002 - 1.07441269e+002 1.19766731e+002 1.25668449e+002 1.07322723e+002 - 1.19675362e+002 1.25620705e+002 1.07291443e+002 1.19633804e+002 - 1.25636742e+002 1.07275482e+002 1.19633202e+002 1.25685097e+002 - 1.07233307e+002 1.19586418e+002 1.25702240e+002 1.07158890e+002 - 1.19531380e+002 1.25687843e+002 1.07124382e+002 1.19496689e+002 - 1.25716957e+002 1.07098564e+002 1.19487534e+002 1.25741592e+002 - 1.07087189e+002 1.19466194e+002 1.25779800e+002 1.07057793e+002 - 1.19450142e+002 1.25798859e+002 1.07064758e+002 1.19438431e+002 - 1.25859528e+002 1.07030144e+002 1.19415878e+002 1.25876419e+002 - 1.06992752e+002 1.19382179e+002 1.25894417e+002 1.06952850e+002 - 1.19360062e+002 1.25907784e+002 1.06941772e+002 1.19341927e+002 - 1.25945862e+002 1.06926735e+002 1.19343155e+002 1.25979736e+002 - 1.06925087e+002 1.19338417e+002 1.26054482e+002 1.06857178e+002 - 1.19299347e+002 1.26054596e+002 1.06863457e+002 1.19296410e+002 - 1.26102142e+002 1.06844635e+002 1.19291290e+002 1.26129974e+002 - 1.06839500e+002 1.19275749e+002 1.26173454e+002 1.06787491e+002 - 1.19242271e+002 1.26179283e+002 1.06772926e+002 1.19223984e+002 - 1.26223305e+002 1.06734352e+002 1.19201073e+002 1.26228111e+002 - 1.06715782e+002 1.19165817e+002 1.26254692e+002 1.06673607e+002 - 1.19134430e+002 1.26262833e+002 1.06652901e+002 1.19090408e+002 - 1.26291656e+002 1.06646477e+002 1.19102226e+002 1.26330856e+002 - 1.06649338e+002 1.19089134e+002 1.26368027e+002 1.06624809e+002 - 1.19074883e+002 1.26378738e+002 1.06602592e+002 1.19034874e+002 - 1.26385094e+002 1.06577141e+002 1.19018211e+002 1.26398956e+002 - 1.06544998e+002 1.18981110e+002 1.26429352e+002 1.06482430e+002 - 1.18947266e+002 1.26420601e+002 1.06470528e+002 1.18921402e+002 - 1.26435173e+002 1.06466827e+002 1.18925194e+002 1.26468857e+002 - 1.06474495e+002 1.18919289e+002 1.26516464e+002 1.06458054e+002 - 1.18916382e+002 1.26535820e+002 1.06444740e+002 1.18903755e+002 - 1.26570389e+002 1.06427650e+002 1.18897263e+002 1.26583649e+002 - 1.06420113e+002 1.18875916e+002 1.26603874e+002 1.06389389e+002 - 1.18863426e+002 1.26624031e+002 1.06388763e+002 1.18846291e+002 - 1.26662102e+002 1.06385109e+002 1.18860672e+002 1.26702232e+002 - 1.06389664e+002 1.18858070e+002 1.26744621e+002 1.06367981e+002 - 1.18859535e+002 1.26758682e+002 1.06364212e+002 1.18843781e+002 - 1.26776115e+002 1.06377663e+002 1.18863388e+002 1.26820999e+002 - 1.06371758e+002 1.18846703e+002 1.26862839e+002 1.06361542e+002 - 1.18872330e+002 1.26896820e+002 1.06369041e+002 1.18860291e+002 - 1.26925713e+002 1.06358109e+002 1.18859497e+002 1.26934059e+002 - 1.06377098e+002 1.18869202e+002 1.26980003e+002 1.06357018e+002 - 1.18862915e+002 1.26995392e+002 1.06322746e+002 1.18828598e+002 - 1.26997772e+002 1.06322922e+002 1.18845398e+002 1.27025375e+002 - 1.06318657e+002 1.18829399e+002 1.27040962e+002 1.06278038e+002 - 1.18798752e+002 1.27030853e+002 1.06295311e+002 1.18788361e+002 - 1.27061668e+002 1.06298660e+002 1.18799698e+002 1.27087166e+002 - 1.06287346e+002 1.18783424e+002 1.27103294e+002 1.06258011e+002 - 1.18778992e+002 1.27103592e+002 1.06237663e+002 1.18754318e+002 - 1.27096397e+002 1.06252548e+002 1.18779778e+002 1.27131577e+002 - 1.06264481e+002 1.18782524e+002 1.27175850e+002 1.06243286e+002 - 1.18795876e+002 1.27180542e+002 1.06260994e+002 1.18791893e+002 - 1.27192322e+002 1.06256706e+002 1.18797264e+002 1.27200302e+002 - 1.06242546e+002 1.18757828e+002 1.27188797e+002 1.06241577e+002 - 1.18776123e+002 1.27204552e+002 1.06203918e+002 1.18729950e+002 - 1.27183716e+002 1.06190582e+002 1.18728752e+002 1.27179031e+002 - 1.06216309e+002 1.18748360e+002 1.27218788e+002 1.06217697e+002 - 1.18760735e+002 1.27238632e+002 1.06236305e+002 1.18753189e+002 - 1.27256165e+002 1.06226326e+002 1.18749641e+002 1.27253189e+002 - 1.06224213e+002 1.18735985e+002 1.27242828e+002 1.06207077e+002 - 1.18738304e+002 1.27233345e+002 1.06218071e+002 1.18735321e+002 - 1.27243866e+002 1.06225899e+002 1.18746437e+002 1.27239891e+002 - 1.06234055e+002 1.18740417e+002 1.27244141e+002 1.06216461e+002 - 1.18745537e+002 1.27236954e+002 1.06213562e+002 1.18728249e+002 - 1.27227028e+002 1.06200722e+002 1.18727425e+002 1.27208809e+002 - 1.06224754e+002 1.18732086e+002 1.27220146e+002 1.06225853e+002 - 1.18742462e+002 1.27214798e+002 1.06247856e+002 1.18764435e+002 - 1.27234283e+002 1.06238075e+002 1.18767380e+002 1.27213600e+002 - 1.06253952e+002 1.18770447e+002 1.27211517e+002 1.06235779e+002 - 1.18764557e+002 1.27187790e+002 1.06233284e+002 1.18727318e+002 - 1.27160202e+002 1.06242989e+002 1.18741516e+002 1.27154984e+002 - 1.06254745e+002 1.18749542e+002 1.27155060e+002 1.06243599e+002 - 1.18753693e+002 1.27130943e+002 1.06253952e+002 1.18757523e+002 - 1.27147202e+002 1.06246094e+002 1.18764503e+002 1.27117516e+002 - 1.06233597e+002 1.18747635e+002 1.27079750e+002 1.06226387e+002 - 1.18767616e+002 1.27070984e+002 1.06259331e+002 1.18783974e+002 - 1.27080734e+002 1.06272911e+002 1.18805367e+002 1.27073654e+002 - 1.06290291e+002 1.18800926e+002 1.27068970e+002 1.06265976e+002 - 1.18792496e+002 1.27030518e+002 1.06262505e+002 1.18783989e+002 - 1.27001434e+002 1.06239403e+002 1.18773407e+002 1.26953156e+002 - 1.06259216e+002 1.18780029e+002 1.26947495e+002 1.06233444e+002 - 1.18766777e+002 1.26902458e+002 1.06277977e+002 1.18785172e+002 - 1.26908440e+002 1.06273056e+002 1.18796249e+002 1.26877144e+002 - 1.06271446e+002 1.18787209e+002 1.26847290e+002 1.06271996e+002 - 1.18806458e+002 1.26827408e+002 1.06281227e+002 1.18804718e+002 - 1.26806976e+002 1.06281441e+002 1.18803223e+002 1.26763947e+002 - 1.06277641e+002 1.18780678e+002 1.26700348e+002 1.06254822e+002 - 1.18778046e+002 1.26647865e+002 1.06257568e+002 1.18754242e+002 - 1.26611526e+002 1.06260010e+002 1.18768631e+002 1.26581207e+002 - 1.06266586e+002 1.18752541e+002 1.26552246e+002 1.06286194e+002 - 1.18781891e+002 1.26539291e+002 1.06286423e+002 1.18772446e+002 - 1.26505569e+002 1.06283951e+002 1.18780365e+002 1.26461174e+002 - 1.06271835e+002 1.18759720e+002 1.26409698e+002 1.06254059e+002 - 1.18759422e+002 1.26363403e+002 1.06276482e+002 1.18757721e+002 - 1.26342499e+002 1.06303482e+002 1.18799538e+002 1.26328972e+002 - 1.06338562e+002 1.18821442e+002 1.26322853e+002 1.06347443e+002 - 1.18845406e+002 1.26294350e+002 1.06366798e+002 1.18856110e+002 - 1.26277321e+002 1.06406052e+002 1.18903931e+002 1.26267189e+002 - 1.06447495e+002 1.18930695e+002 1.26248466e+002 1.06470802e+002 - 1.18969116e+002 1.26234535e+002 1.06506905e+002 1.18990135e+002 - 1.26228897e+002 1.06491547e+002 1.18981445e+002 1.26183067e+002 - 1.06499039e+002 1.18965820e+002 1.26141556e+002 1.06522270e+002 - 1.18999916e+002 1.26123070e+002 1.06564201e+002 1.19042244e+002 - 1.26118416e+002 1.06563858e+002 1.19046623e+002 1.26071144e+002 - 1.06578743e+002 1.19043037e+002 1.26037590e+002 1.06602036e+002 - 1.19077133e+002 1.26021843e+002 1.06663750e+002 1.19104805e+002 - 1.26014374e+002 1.06702194e+002 1.19150444e+002 1.26003746e+002 - 1.06736076e+002 1.19160797e+002 1.25970985e+002 1.06743568e+002 - 1.19179306e+002 1.25933685e+002 1.06772179e+002 1.19195847e+002 - 1.25926689e+002 1.06804047e+002 1.19229881e+002 1.25899666e+002 - 1.06853432e+002 1.19260887e+002 1.25879944e+002 1.06850418e+002 - 1.19278534e+002 1.25841827e+002 1.06876419e+002 1.19291466e+002 - 1.25823494e+002 1.06910851e+002 1.19335022e+002 1.25822472e+002 - 1.06932007e+002 1.19336975e+002 1.25782761e+002 1.06951935e+002 - 1.19367378e+002 1.25757004e+002 1.07011284e+002 1.19410416e+002 - 1.25760590e+002 1.07030243e+002 1.19436447e+002 1.25722702e+002 - 1.07067680e+002 1.19456375e+002 1.25697845e+002 1.07100891e+002 - 1.19500946e+002 1.25677025e+002 1.07144600e+002 1.19512497e+002 - 1.25654823e+002 1.07167931e+002 1.19538216e+002 1.25618080e+002 - 1.07212410e+002 1.19560143e+002 1.25589272e+002 1.07218781e+002 - 1.19577530e+002 1.25551544e+002 1.07249626e+002 1.19592125e+002 - 1.25530159e+002 1.07282677e+002 1.19623863e+002 1.25495705e+002 - 1.07314644e+002 1.19637810e+002 1.25453682e+002 1.07342033e+002 - 1.19675423e+002 1.25435562e+002 1.07397598e+002 1.19712875e+002 - 1.25438995e+002 1.07426384e+002 1.19742767e+002 1.25418129e+002 - 1.07441521e+002 1.19733559e+002 1.25362206e+002 1.07479111e+002 - 1.19780365e+002 1.25348488e+002 1.07558189e+002 1.19841423e+002 - 1.25362190e+002 1.07605476e+002 1.19890305e+002 1.25351814e+002 - 1.07605545e+002 1.19862808e+002 1.25278168e+002 1.07643379e+002 - 1.19906418e+002 1.25258850e+002 1.07711922e+002 1.19933830e+002 - 1.25240929e+002 1.07751213e+002 1.19980095e+002 1.25215202e+002 - 1.07802155e+002 1.20007988e+002 1.25197067e+002 1.07850029e+002 - 1.20063210e+002 1.25190720e+002 1.07916557e+002 1.20114174e+002 - 1.25198288e+002 1.07992943e+002 1.20182999e+002 1.25203819e+002 - 1.08060364e+002 1.20215385e+002 1.25178986e+002 1.08128426e+002 - 1.20290527e+002 1.25189949e+002 1.08191811e+002 1.20317612e+002 - 1.25188873e+002 1.08218544e+002 1.20345726e+002 1.25158386e+002 - 1.08316010e+002 1.20404457e+002 1.25176071e+002 1.08383636e+002 - 1.20474274e+002 1.25192909e+002 1.08459076e+002 1.20513428e+002 - 1.25190163e+002 1.08523804e+002 1.20571518e+002 1.25183632e+002 - 1.08561668e+002 1.20572533e+002 1.25144867e+002 1.08627907e+002 - 1.20628670e+002 1.25138481e+002 1.08719650e+002 1.20666237e+002 - 1.25135651e+002 1.08779274e+002 1.20708969e+002 1.25121559e+002 - 1.08833389e+002 1.20716187e+002 1.25091476e+002 1.08816711e+002 - 1.20686165e+002 1.25008247e+002 1.08813141e+002 1.20641296e+002 - 1.24943787e+002 1.08749802e+002 1.20562988e+002 1.24812752e+002 - 1.08719475e+002 1.20536804e+002 1.24829826e+002 1.08764610e+002 - 1.20627373e+002 1.24944298e+002 1.08801003e+002 1.20691277e+002 - 1.25056503e+002 1.08789360e+002 1.20713852e+002 1.25111954e+002 - 1.08761375e+002 1.20705345e+002 1.25160400e+002 1.08702034e+002 - 1.20686325e+002 1.25167183e+002 1.08646782e+002 1.20654869e+002 - 1.25204170e+002 1.08546394e+002 1.20586456e+002 1.25165909e+002 - 1.08493980e+002 1.20534470e+002 1.25178856e+002 1.08396034e+002 - 1.20463181e+002 1.25161613e+002 1.08359543e+002 1.20428215e+002 - 1.25200340e+002 1.08306465e+002 1.20395943e+002 1.25225365e+002 - 1.08253029e+002 1.20357513e+002 1.25247383e+002 1.08165672e+002 - 1.20304626e+002 1.25226112e+002 1.08117500e+002 1.20255844e+002 - 1.25226776e+002 1.08032669e+002 1.20198288e+002 1.25200172e+002 - 1.07994240e+002 1.20180031e+002 1.25258560e+002 1.07924751e+002 - 1.20149544e+002 1.25258148e+002 1.07865158e+002 1.20087410e+002 - 1.25259811e+002 1.07825493e+002 1.20070244e+002 1.25277695e+002 - 1.07779999e+002 1.20023643e+002 1.25302383e+002 1.07719910e+002 - 1.19980087e+002 1.25307381e+002 1.07660454e+002 1.19925400e+002 - 1.25324310e+002 1.07600372e+002 1.19884422e+002 1.25323723e+002 - 1.07585739e+002 1.19866661e+002 1.25372498e+002 1.07548355e+002 - 1.19843185e+002 1.25394974e+002 1.07537094e+002 1.19822044e+002 - 1.25453941e+002 1.07507622e+002 1.19813385e+002 1.25487099e+002 - 1.07469582e+002 1.19770988e+002 1.25513390e+002 1.07427383e+002 - 1.19756439e+002 1.25530289e+002 1.07373528e+002 1.19699654e+002 - 1.25520523e+002 1.07341858e+002 1.19682617e+002 1.25545059e+002 - 1.07310959e+002 1.19657104e+002 1.25608604e+002 1.07194626e+002 - 1.19575714e+002 1.25568619e+002 1.07148994e+002 1.19518356e+002 - 1.25570572e+002 1.07131958e+002 1.19513046e+002 1.25608864e+002 - 1.07105751e+002 1.19478004e+002 1.25647118e+002 1.07034180e+002 - 1.19429085e+002 1.25638023e+002 1.06997437e+002 1.19390511e+002 - 1.25663666e+002 1.06986641e+002 1.19398064e+002 1.25707161e+002 - 1.06979301e+002 1.19375488e+002 1.25740730e+002 1.06948792e+002 - 1.19360298e+002 1.25764526e+002 1.06941307e+002 1.19336433e+002 - 1.25816566e+002 1.06888031e+002 1.19290237e+002 1.25811981e+002 - 1.06848145e+002 1.19256447e+002 1.25831512e+002 1.06824631e+002 - 1.19254158e+002 1.25860825e+002 1.06815163e+002 1.19234215e+002 - 1.25886154e+002 1.06792999e+002 1.19224510e+002 1.25918983e+002 - 1.06791687e+002 1.19224289e+002 1.25996040e+002 1.06726982e+002 - 1.19188179e+002 1.25996216e+002 1.06711311e+002 1.19159981e+002 - 1.26024376e+002 1.06687782e+002 1.19154922e+002 1.26049751e+002 - 1.06689339e+002 1.19140953e+002 1.26098808e+002 1.06645081e+002 - 1.19112015e+002 1.26109375e+002 1.06633568e+002 1.19097267e+002 - 1.26158775e+002 1.06603584e+002 1.19079659e+002 1.26167717e+002 - 1.06564117e+002 1.19031136e+002 1.26175735e+002 1.06537254e+002 - 1.19005562e+002 1.26190964e+002 1.06523094e+002 1.18978546e+002 - 1.26238319e+002 1.06516174e+002 1.18981544e+002 1.26269966e+002 - 1.06501534e+002 1.18951576e+002 1.26291542e+002 1.06475685e+002 - 1.18942169e+002 1.26304771e+002 1.06463898e+002 1.18910698e+002 - 1.26327026e+002 1.06419838e+002 1.18874016e+002 1.26316948e+002 - 1.06413918e+002 1.18858086e+002 1.26364380e+002 1.06339920e+002 - 1.18811829e+002 1.26349213e+002 1.06325287e+002 1.18787872e+002 - 1.26370300e+002 1.06323189e+002 1.18795265e+002 1.26403564e+002 - 1.06327721e+002 1.18791321e+002 1.26456902e+002 1.06313568e+002 - 1.18788872e+002 1.26480133e+002 1.06290367e+002 1.18767044e+002 - 1.26494087e+002 1.06259117e+002 1.18747620e+002 1.26497009e+002 - 1.06276451e+002 1.18751053e+002 1.26540352e+002 1.06249542e+002 - 1.18733818e+002 1.26555817e+002 1.06256058e+002 1.18726563e+002 - 1.26603836e+002 1.06250504e+002 1.18737503e+002 1.26642502e+002 - 1.06246719e+002 1.18734245e+002 1.26673630e+002 1.06223427e+002 - 1.18732086e+002 1.26689140e+002 1.06212814e+002 1.18712914e+002 - 1.26707527e+002 1.06232147e+002 1.18734947e+002 1.26749786e+002 - 1.06235863e+002 1.18738228e+002 1.26804466e+002 1.06211128e+002 - 1.18736145e+002 1.26824516e+002 1.06224037e+002 1.18735092e+002 - 1.26860825e+002 1.06221481e+002 1.18752670e+002 1.26883942e+002 - 1.06227638e+002 1.18736031e+002 1.26912750e+002 1.06184914e+002 - 1.18720657e+002 1.26910278e+002 1.06164566e+002 1.18692375e+002 - 1.26915596e+002 1.06150620e+002 1.18692657e+002 1.26928650e+002 - 1.06165054e+002 1.18696442e+002 1.26967262e+002 1.06142548e+002 - 1.18677994e+002 1.26964142e+002 1.06145699e+002 1.18659950e+002 - 1.26995316e+002 1.06141075e+002 1.18666473e+002 1.27013023e+002 - 1.06126900e+002 1.18649063e+002 1.27025528e+002 1.06101677e+002 - 1.18644180e+002 1.27021339e+002 1.06083931e+002 1.18622849e+002 - 1.27029030e+002 1.06089600e+002 1.18636162e+002 1.27050186e+002 - 1.06098900e+002 1.18632904e+002 1.27079399e+002 1.06070183e+002 - 1.18634537e+002 1.27079048e+002 1.06080498e+002 1.18629967e+002 - 1.27094986e+002 1.06084381e+002 1.18638710e+002 1.27106316e+002 - 1.06092697e+002 1.18624825e+002 1.27117226e+002 1.06082741e+002 - 1.18635063e+002 1.27128792e+002 1.06049660e+002 1.18599770e+002 - 1.27112183e+002 1.06029678e+002 1.18580872e+002 1.27096649e+002 - 1.06075439e+002 1.18620201e+002 1.27154198e+002 1.06083481e+002 - 1.18636894e+002 1.27180496e+002 1.06098518e+002 1.18624161e+002 - 1.27198952e+002 1.06089409e+002 1.18633324e+002 1.27195747e+002 - 1.06099525e+002 1.18630455e+002 1.27201988e+002 1.06080956e+002 - 1.18630501e+002 1.27185150e+002 1.06086853e+002 1.18618835e+002 - 1.27181396e+002 1.06083328e+002 1.18617287e+002 1.27169518e+002 - 1.06075638e+002 1.18594276e+002 1.27156891e+002 1.06055496e+002 - 1.18602417e+002 1.27152435e+002 1.06058731e+002 1.18590279e+002 - 1.27143066e+002 1.06059288e+002 1.18599648e+002 1.27138519e+002 - 1.06080910e+002 1.18605415e+002 1.27153381e+002 1.06076859e+002 - 1.18610008e+002 1.27146423e+002 1.06062325e+002 1.18591629e+002 - 1.27122688e+002 1.06052673e+002 1.18591637e+002 1.27095551e+002 - 1.06061813e+002 1.18592041e+002 1.27094162e+002 1.06060623e+002 - 1.18600594e+002 1.27085495e+002 1.06079224e+002 1.18583260e+002 - 1.27077942e+002 1.06074005e+002 1.18588966e+002 1.27057320e+002 - 1.06097092e+002 1.18601707e+002 1.27067711e+002 1.06090584e+002 - 1.18617027e+002 1.27059441e+002 1.06116837e+002 1.18633537e+002 - 1.27082382e+002 1.06101402e+002 1.18635086e+002 1.27043480e+002 - 1.06098732e+002 1.18621071e+002 1.27012726e+002 1.06072052e+002 - 1.18622002e+002 1.26984550e+002 1.06106094e+002 1.18639557e+002 - 1.27003433e+002 1.06106995e+002 1.18653023e+002 1.26989243e+002 - 1.06106438e+002 1.18632462e+002 1.26958832e+002 1.06100388e+002 - 1.18645065e+002 1.26940315e+002 1.06097168e+002 1.18633591e+002 - 1.26914436e+002 1.06081169e+002 1.18627106e+002 1.26870827e+002 - 1.06090073e+002 1.18623383e+002 1.26849434e+002 1.06060951e+002 - 1.18605850e+002 1.26798080e+002 1.06105370e+002 1.18628914e+002 - 1.26809998e+002 1.06130501e+002 1.18665359e+002 1.26804199e+002 - 1.06121223e+002 1.18652817e+002 1.26766937e+002 1.06109428e+002 - 1.18658424e+002 1.26732994e+002 1.06129128e+002 1.18665443e+002 - 1.26728523e+002 1.06131508e+002 1.18665718e+002 1.26683472e+002 - 1.06108810e+002 1.18626259e+002 1.26600708e+002 1.06101479e+002 - 1.18634949e+002 1.26566696e+002 1.06085350e+002 1.18603165e+002 - 1.26516647e+002 1.06068398e+002 1.18587891e+002 1.26469460e+002 - 1.06086075e+002 1.18589577e+002 1.26452156e+002 1.06110519e+002 - 1.18625832e+002 1.26444283e+002 1.06107498e+002 1.18617729e+002 - 1.26406853e+002 1.06097321e+002 1.18621536e+002 1.26361565e+002 - 1.06078720e+002 1.18594414e+002 1.26301048e+002 1.06062614e+002 - 1.18592690e+002 1.26257675e+002 1.06123116e+002 1.18627655e+002 - 1.26265808e+002 1.06148895e+002 1.18662384e+002 1.26256851e+002 - 1.06179871e+002 1.18685867e+002 1.26246033e+002 1.06195290e+002 - 1.18717072e+002 1.26229012e+002 1.06213226e+002 1.18722679e+002 - 1.26203102e+002 1.06246353e+002 1.18763031e+002 1.26182358e+002 - 1.06297249e+002 1.18794914e+002 1.26170700e+002 1.06303406e+002 - 1.18815887e+002 1.26136307e+002 1.06334473e+002 1.18834877e+002 - 1.26133476e+002 1.06333763e+002 1.18842812e+002 1.26096382e+002 - 1.06390251e+002 1.18873634e+002 1.26106590e+002 1.06387566e+002 - 1.18888634e+002 1.26066574e+002 1.06399643e+002 1.18893150e+002 - 1.26027924e+002 1.06421333e+002 1.18920029e+002 1.26006966e+002 - 1.06447685e+002 1.18932365e+002 1.25980042e+002 1.06462387e+002 - 1.18959366e+002 1.25952339e+002 1.06506607e+002 1.18965523e+002 - 1.25932671e+002 1.06540977e+002 1.19005714e+002 1.25916214e+002 - 1.06590202e+002 1.19038406e+002 1.25904434e+002 1.06600113e+002 - 1.19059128e+002 1.25873138e+002 1.06624702e+002 1.19067284e+002 - 1.25852905e+002 1.06676254e+002 1.19114334e+002 1.25845909e+002 - 1.06698616e+002 1.19128822e+002 1.25800163e+002 1.06685181e+002 - 1.19133759e+002 1.25752350e+002 1.06708549e+002 1.19136070e+002 - 1.25730682e+002 1.06746735e+002 1.19185768e+002 1.25729591e+002 - 1.06801636e+002 1.19224503e+002 1.25724197e+002 1.06843178e+002 - 1.19278877e+002 1.25718094e+002 1.06905746e+002 1.19325996e+002 - 1.25726196e+002 1.06931770e+002 1.19360077e+002 1.25691689e+002 - 1.06936653e+002 1.19344940e+002 1.25637253e+002 1.06966110e+002 - 1.19379654e+002 1.25613586e+002 1.07020050e+002 1.19400604e+002 - 1.25596703e+002 1.07045631e+002 1.19433197e+002 1.25564728e+002 - 1.07095222e+002 1.19461494e+002 1.25541725e+002 1.07087280e+002 - 1.19459557e+002 1.25484581e+002 1.07118248e+002 1.19473396e+002 - 1.25464706e+002 1.07160133e+002 1.19524399e+002 1.25441956e+002 - 1.07209190e+002 1.19549477e+002 1.25416176e+002 1.07231918e+002 - 1.19585609e+002 1.25388542e+002 1.07285248e+002 1.19620186e+002 - 1.25395409e+002 1.07313522e+002 1.19654335e+002 1.25370049e+002 - 1.07338409e+002 1.19653969e+002 1.25326851e+002 1.07382072e+002 - 1.19704071e+002 1.25315704e+002 1.07447823e+002 1.19747963e+002 - 1.25315567e+002 1.07484390e+002 1.19789543e+002 1.25292046e+002 - 1.07497894e+002 1.19778282e+002 1.25232658e+002 1.07526505e+002 - 1.19809769e+002 1.25204010e+002 1.07589584e+002 1.19830498e+002 - 1.25178307e+002 1.07644928e+002 1.19893753e+002 1.25168793e+002 - 1.07692764e+002 1.19916382e+002 1.25143440e+002 1.07727066e+002 - 1.19963135e+002 1.25133736e+002 1.07791214e+002 1.20006340e+002 - 1.25137344e+002 1.07876205e+002 1.20083275e+002 1.25145653e+002 - 1.07929008e+002 1.20106873e+002 1.25106735e+002 1.07999672e+002 - 1.20188446e+002 1.25122894e+002 1.08065125e+002 1.20218742e+002 - 1.25125618e+002 1.08095673e+002 1.20246017e+002 1.25106026e+002 - 1.08183067e+002 1.20296822e+002 1.25115837e+002 1.08259224e+002 - 1.20373917e+002 1.25131592e+002 1.08340645e+002 1.20417900e+002 - 1.25129700e+002 1.08418526e+002 1.20485260e+002 1.25138443e+002 - 1.08479210e+002 1.20513000e+002 1.25125298e+002 1.08525963e+002 - 1.20541023e+002 1.25095993e+002 1.08614685e+002 1.20576195e+002 - 1.25082886e+002 1.08662231e+002 1.20613144e+002 1.25060791e+002 - 1.08709259e+002 1.20612694e+002 1.25026871e+002 1.08698784e+002 - 1.20593941e+002 1.24952873e+002 1.08714996e+002 1.20564903e+002 - 1.24904869e+002 1.08655807e+002 1.20476906e+002 1.24771294e+002 - 1.08630783e+002 1.20454178e+002 1.24807472e+002 1.08663986e+002 - 1.20554863e+002 1.24915222e+002 1.08681664e+002 1.20592278e+002 - 1.25004005e+002 1.08696152e+002 1.20648262e+002 1.25090302e+002 - 1.08659859e+002 1.20621185e+002 1.25123749e+002 1.08577042e+002 - 1.20580704e+002 1.25118927e+002 1.08536690e+002 1.20561104e+002 - 1.25153107e+002 1.08451019e+002 1.20509689e+002 1.25138161e+002 - 1.08384705e+002 1.20445976e+002 1.25144318e+002 1.08281654e+002 - 1.20371529e+002 1.25113731e+002 1.08258049e+002 1.20335373e+002 - 1.25165817e+002 1.08192017e+002 1.20298309e+002 1.25179230e+002 - 1.08108536e+002 1.20236099e+002 1.25170242e+002 1.08029053e+002 - 1.20187836e+002 1.25158401e+002 1.07993965e+002 1.20155510e+002 - 1.25176186e+002 1.07916908e+002 1.20101448e+002 1.25165718e+002 - 1.07858360e+002 1.20067406e+002 1.25198524e+002 1.07789116e+002 - 1.20034485e+002 1.25203636e+002 1.07750000e+002 1.19991859e+002 - 1.25217461e+002 1.07711159e+002 1.19977226e+002 1.25241348e+002 - 1.07669510e+002 1.19923996e+002 1.25258598e+002 1.07615158e+002 - 1.19891937e+002 1.25273087e+002 1.07558708e+002 1.19845444e+002 - 1.25292931e+002 1.07512253e+002 1.19818520e+002 1.25311996e+002 - 1.07505745e+002 1.19807877e+002 1.25359291e+002 1.07450623e+002 - 1.19770203e+002 1.25367744e+002 1.07427383e+002 1.19726280e+002 - 1.25414429e+002 1.07394798e+002 1.19715912e+002 1.25448853e+002 - 1.07333717e+002 1.19663437e+002 1.25453171e+002 1.07315735e+002 - 1.19671791e+002 1.25495033e+002 1.07276558e+002 1.19612579e+002 - 1.25497078e+002 1.07218948e+002 1.19576889e+002 1.25504463e+002 - 1.07187126e+002 1.19558746e+002 1.25563217e+002 1.07093307e+002 - 1.19481750e+002 1.25540703e+002 1.07041092e+002 1.19420181e+002 - 1.25540779e+002 1.07006340e+002 1.19406471e+002 1.25563248e+002 - 1.06988380e+002 1.19376648e+002 1.25612450e+002 1.06909561e+002 - 1.19316849e+002 1.25590683e+002 1.06880203e+002 1.19290161e+002 - 1.25626228e+002 1.06864067e+002 1.19293549e+002 1.25662476e+002 - 1.06882576e+002 1.19299355e+002 1.25732750e+002 1.06824989e+002 - 1.19257797e+002 1.25726456e+002 1.06815041e+002 1.19219505e+002 - 1.25765724e+002 1.06784363e+002 1.19204239e+002 1.25793724e+002 - 1.06742332e+002 1.19166626e+002 1.25801941e+002 1.06694847e+002 - 1.19139580e+002 1.25805588e+002 1.06686546e+002 1.19116806e+002 - 1.25835083e+002 1.06676880e+002 1.19123001e+002 1.25880058e+002 - 1.06642906e+002 1.19097191e+002 1.25925415e+002 1.06597946e+002 - 1.19075233e+002 1.25947983e+002 1.06591042e+002 1.19056541e+002 - 1.25984360e+002 1.06564476e+002 1.19047585e+002 1.25998810e+002 - 1.06542633e+002 1.18999794e+002 1.26023384e+002 1.06510551e+002 - 1.18989815e+002 1.26051147e+002 1.06487251e+002 1.18966034e+002 - 1.26080757e+002 1.06472847e+002 1.18957741e+002 1.26118317e+002 - 1.06446983e+002 1.18919640e+002 1.26135101e+002 1.06390427e+002 - 1.18873718e+002 1.26126884e+002 1.06403214e+002 1.18866890e+002 - 1.26192299e+002 1.06394012e+002 1.18867264e+002 1.26229050e+002 - 1.06371857e+002 1.18844070e+002 1.26252640e+002 1.06330070e+002 - 1.18814171e+002 1.26244148e+002 1.06330780e+002 1.18786285e+002 - 1.26272995e+002 1.06305313e+002 1.18765221e+002 1.26285149e+002 - 1.06274521e+002 1.18731262e+002 1.26311287e+002 1.06201759e+002 - 1.18690460e+002 1.26295280e+002 1.06180840e+002 1.18652992e+002 - 1.26311264e+002 1.06171349e+002 1.18657318e+002 1.26339127e+002 - 1.06178360e+002 1.18648895e+002 1.26385872e+002 1.06160210e+002 - 1.18646812e+002 1.26405243e+002 1.06165939e+002 1.18653206e+002 - 1.26453392e+002 1.06152779e+002 1.18645477e+002 1.26469994e+002 - 1.06148285e+002 1.18636284e+002 1.26496170e+002 1.06131973e+002 - 1.18640106e+002 1.26527153e+002 1.06166321e+002 1.18645187e+002 - 1.26601120e+002 1.06145752e+002 1.18644669e+002 1.26628036e+002 - 1.06138466e+002 1.18635925e+002 1.26647568e+002 1.06106400e+002 - 1.18632385e+002 1.26654877e+002 1.06089676e+002 1.18592354e+002 - 1.26658493e+002 1.06110527e+002 1.18620026e+002 1.26704208e+002 - 1.06115250e+002 1.18628708e+002 1.26762878e+002 1.06076820e+002 - 1.18617874e+002 1.26769295e+002 1.06078087e+002 1.18604713e+002 - 1.26794548e+002 1.06083641e+002 1.18630066e+002 1.26829025e+002 - 1.06088051e+002 1.18612656e+002 1.26859726e+002 1.06041832e+002 - 1.18584579e+002 1.26843880e+002 1.06011459e+002 1.18555138e+002 - 1.26848137e+002 1.06005013e+002 1.18561302e+002 1.26868805e+002 - 1.06007721e+002 1.18550491e+002 1.26888298e+002 1.05977699e+002 - 1.18539932e+002 1.26889084e+002 1.05996147e+002 1.18521294e+002 - 1.26927475e+002 1.05998642e+002 1.18534554e+002 1.26957535e+002 - 1.05993835e+002 1.18532944e+002 1.26978531e+002 1.05975266e+002 - 1.18534927e+002 1.26984413e+002 1.05960518e+002 1.18511322e+002 - 1.26986771e+002 1.05948364e+002 1.18502769e+002 1.26988831e+002 - 1.05936455e+002 1.18484871e+002 1.27004494e+002 1.05919151e+002 - 1.18486961e+002 1.27011513e+002 1.05912498e+002 1.18471832e+002 - 1.27009827e+002 1.05928322e+002 1.18498535e+002 1.27033195e+002 - 1.05944054e+002 1.18490654e+002 1.27055069e+002 1.05926300e+002 - 1.18489120e+002 1.27053185e+002 1.05907829e+002 1.18461067e+002 - 1.27047852e+002 1.05924103e+002 1.18485924e+002 1.27072433e+002 - 1.05953438e+002 1.18505615e+002 1.27115295e+002 1.05939674e+002 - 1.18506302e+002 1.27118553e+002 1.05946503e+002 1.18483650e+002 - 1.27136261e+002 1.05978340e+002 1.18521591e+002 1.27167542e+002 - 1.05975479e+002 1.18518066e+002 1.27164345e+002 1.05954124e+002 - 1.18509979e+002 1.27141060e+002 1.05959755e+002 1.18495911e+002 - 1.27140396e+002 1.05947121e+002 1.18487724e+002 1.27116402e+002 - 1.05943008e+002 1.18479301e+002 1.27114677e+002 1.05908890e+002 - 1.18463432e+002 1.27086281e+002 1.05921005e+002 1.18459648e+002 - 1.27087143e+002 1.05926247e+002 1.18472275e+002 1.27089020e+002 - 1.05926323e+002 1.18449883e+002 1.27081726e+002 1.05921494e+002 - 1.18460999e+002 1.27072418e+002 1.05911758e+002 1.18445473e+002 - 1.27050903e+002 1.05908913e+002 1.18462166e+002 1.27041161e+002 - 1.05916458e+002 1.18455116e+002 1.27035400e+002 1.05923111e+002 - 1.18479179e+002 1.27029945e+002 1.05954620e+002 1.18470123e+002 - 1.27033180e+002 1.05941071e+002 1.18467628e+002 1.27011078e+002 - 1.05947906e+002 1.18468353e+002 1.27007744e+002 1.05950966e+002 - 1.18490044e+002 1.27004105e+002 1.05985367e+002 1.18507530e+002 - 1.27030891e+002 1.05970970e+002 1.18502144e+002 1.26993042e+002 - 1.05957069e+002 1.18490883e+002 1.26962029e+002 1.05934753e+002 - 1.18486862e+002 1.26926178e+002 1.05955238e+002 1.18488060e+002 - 1.26929298e+002 1.05972343e+002 1.18519379e+002 1.26930222e+002 - 1.05966652e+002 1.18497025e+002 1.26901413e+002 1.05959183e+002 - 1.18502747e+002 1.26872360e+002 1.05962326e+002 1.18502159e+002 - 1.26850922e+002 1.05956558e+002 1.18508980e+002 1.26818497e+002 - 1.05942474e+002 1.18483887e+002 1.26783142e+002 1.05896873e+002 - 1.18454323e+002 1.26708336e+002 1.05956696e+002 1.18480431e+002 - 1.26735588e+002 1.05983025e+002 1.18521614e+002 1.26733902e+002 - 1.05993172e+002 1.18535027e+002 1.26718132e+002 1.05979164e+002 - 1.18539574e+002 1.26675896e+002 1.06002716e+002 1.18543671e+002 - 1.26676567e+002 1.05992287e+002 1.18534126e+002 1.26619110e+002 - 1.05980934e+002 1.18512947e+002 1.26557686e+002 1.05956497e+002 - 1.18506775e+002 1.26511230e+002 1.05951591e+002 1.18482910e+002 - 1.26466812e+002 1.05944366e+002 1.18485870e+002 1.26429718e+002 - 1.05951065e+002 1.18472595e+002 1.26398048e+002 1.05946770e+002 - 1.18480087e+002 1.26362526e+002 1.05949226e+002 1.18478371e+002 - 1.26334290e+002 1.05951324e+002 1.18494179e+002 1.26297012e+002 - 1.05937340e+002 1.18462753e+002 1.26247917e+002 1.05921989e+002 - 1.18465927e+002 1.26199936e+002 1.05981033e+002 1.18493469e+002 - 1.26213127e+002 1.06029907e+002 1.18551765e+002 1.26221054e+002 - 1.06045425e+002 1.18569061e+002 1.26193382e+002 1.06045105e+002 - 1.18588120e+002 1.26162994e+002 1.06067581e+002 1.18591553e+002 - 1.26146210e+002 1.06132111e+002 1.18659538e+002 1.26151337e+002 - 1.06161850e+002 1.18676796e+002 1.26115982e+002 1.06163879e+002 - 1.18696144e+002 1.26079659e+002 1.06193329e+002 1.18710495e+002 - 1.26069481e+002 1.06207993e+002 1.18733818e+002 1.26049080e+002 - 1.06261658e+002 1.18761269e+002 1.26054787e+002 1.06245224e+002 - 1.18758026e+002 1.25999039e+002 1.06254372e+002 1.18760483e+002 - 1.25966812e+002 1.06297508e+002 1.18809464e+002 1.25958687e+002 - 1.06295349e+002 1.18796730e+002 1.25913925e+002 1.06317139e+002 - 1.18826523e+002 1.25891785e+002 1.06357140e+002 1.18832169e+002 - 1.25870255e+002 1.06377327e+002 1.18855400e+002 1.25833336e+002 - 1.06439980e+002 1.18905479e+002 1.25835709e+002 1.06457840e+002 - 1.18931175e+002 1.25805977e+002 1.06492508e+002 1.18940781e+002 - 1.25801849e+002 1.06515633e+002 1.18970383e+002 1.25764732e+002 - 1.06562317e+002 1.19005440e+002 1.25745514e+002 1.06549744e+002 - 1.19007233e+002 1.25689507e+002 1.06586937e+002 1.19029289e+002 - 1.25689056e+002 1.06630470e+002 1.19087952e+002 1.25687592e+002 - 1.06671394e+002 1.19108154e+002 1.25671783e+002 1.06707924e+002 - 1.19158546e+002 1.25655708e+002 1.06754852e+002 1.19191666e+002 - 1.25645805e+002 1.06774788e+002 1.19219505e+002 1.25610291e+002 - 1.06808578e+002 1.19234840e+002 1.25586349e+002 1.06827827e+002 - 1.19261665e+002 1.25545326e+002 1.06893280e+002 1.19284210e+002 - 1.25542625e+002 1.06920555e+002 1.19316078e+002 1.25512367e+002 - 1.06963638e+002 1.19350800e+002 1.25485153e+002 1.06986130e+002 - 1.19377296e+002 1.25451118e+002 1.07016678e+002 1.19392159e+002 - 1.25441559e+002 1.07050522e+002 1.19423019e+002 1.25409309e+002 - 1.07078987e+002 1.19441040e+002 1.25364487e+002 1.07106125e+002 - 1.19484146e+002 1.25340446e+002 1.07159874e+002 1.19511665e+002 - 1.25343132e+002 1.07198204e+002 1.19554787e+002 1.25324776e+002 - 1.07212997e+002 1.19543907e+002 1.25280502e+002 1.07259720e+002 - 1.19600029e+002 1.25267387e+002 1.07298973e+002 1.19619987e+002 - 1.25239952e+002 1.07329720e+002 1.19650414e+002 1.25214417e+002 - 1.07368309e+002 1.19665520e+002 1.25181953e+002 1.07396820e+002 - 1.19704887e+002 1.25150360e+002 1.07449234e+002 1.19705002e+002 - 1.25107750e+002 1.07523827e+002 1.19785477e+002 1.25114067e+002 - 1.07575958e+002 1.19820633e+002 1.25103889e+002 1.07607513e+002 - 1.19860008e+002 1.25080513e+002 1.07678902e+002 1.19908691e+002 - 1.25096405e+002 1.07763397e+002 1.19984634e+002 1.25104752e+002 - 1.07824493e+002 1.20020470e+002 1.25068161e+002 1.07877472e+002 - 1.20082420e+002 1.25067993e+002 1.07928726e+002 1.20104362e+002 - 1.25065239e+002 1.07996452e+002 1.20168388e+002 1.25066200e+002 - 1.08072456e+002 1.20209724e+002 1.25081673e+002 1.08140732e+002 - 1.20273018e+002 1.25076027e+002 1.08212914e+002 1.20310593e+002 - 1.25071693e+002 1.08289772e+002 1.20381905e+002 1.25078110e+002 - 1.08364426e+002 1.20414551e+002 1.25075890e+002 1.08408112e+002 - 1.20446457e+002 1.25044090e+002 1.08485489e+002 1.20465279e+002 - 1.25028183e+002 1.08542786e+002 1.20505791e+002 1.25008850e+002 - 1.08590622e+002 1.20517448e+002 1.24976219e+002 1.08588745e+002 - 1.20505272e+002 1.24912888e+002 1.08614059e+002 1.20473869e+002 - 1.24873436e+002 1.08554192e+002 1.20401779e+002 1.24737076e+002 - 1.08509796e+002 1.20381096e+002 1.24808670e+002 1.08549698e+002 - 1.20486221e+002 1.24924812e+002 1.08555817e+002 1.20513474e+002 - 1.24996086e+002 1.08560608e+002 1.20556450e+002 1.25069633e+002 - 1.08514404e+002 1.20521103e+002 1.25104774e+002 1.08427681e+002 - 1.20473885e+002 1.25089378e+002 1.08376930e+002 1.20441589e+002 - 1.25114639e+002 1.08279678e+002 1.20383408e+002 1.25090202e+002 - 1.08242935e+002 1.20349625e+002 1.25122795e+002 1.08148438e+002 - 1.20284042e+002 1.25097542e+002 1.08092422e+002 1.20221817e+002 - 1.25128563e+002 1.08044716e+002 1.20202484e+002 1.25155479e+002 - 1.07960518e+002 1.20130264e+002 1.25142044e+002 1.07869263e+002 - 1.20067993e+002 1.25121620e+002 1.07845551e+002 1.20045647e+002 - 1.25155617e+002 1.07760567e+002 1.19985031e+002 1.25136909e+002 - 1.07683456e+002 1.19930046e+002 1.25152916e+002 1.07625572e+002 - 1.19909950e+002 1.25167839e+002 1.07597763e+002 1.19868210e+002 - 1.25185364e+002 1.07563995e+002 1.19867073e+002 1.25215088e+002 - 1.07516464e+002 1.19810768e+002 1.25231659e+002 1.07467766e+002 - 1.19784698e+002 1.25245262e+002 1.07410355e+002 1.19741837e+002 - 1.25266777e+002 1.07363609e+002 1.19715324e+002 1.25280975e+002 - 1.07339386e+002 1.19692101e+002 1.25324409e+002 1.07286842e+002 - 1.19656418e+002 1.25330109e+002 1.07281448e+002 1.19629219e+002 - 1.25396011e+002 1.07251328e+002 1.19620201e+002 1.25435959e+002 - 1.07209900e+002 1.19579590e+002 1.25463348e+002 1.07178055e+002 - 1.19570862e+002 1.25484207e+002 1.07145172e+002 1.19521103e+002 - 1.25502335e+002 1.07098358e+002 1.19494827e+002 1.25509903e+002 - 1.07048599e+002 1.19452454e+002 1.25546272e+002 1.06947571e+002 - 1.19377998e+002 1.25524971e+002 1.06900833e+002 1.19319054e+002 - 1.25525894e+002 1.06854965e+002 1.19289963e+002 1.25538780e+002 - 1.06829376e+002 1.19247864e+002 1.25579781e+002 1.06744476e+002 - 1.19193291e+002 1.25563797e+002 1.06728989e+002 1.19176491e+002 - 1.25604149e+002 1.06699059e+002 1.19165779e+002 1.25635216e+002 - 1.06709351e+002 1.19163704e+002 1.25697586e+002 1.06646576e+002 - 1.19122429e+002 1.25691368e+002 1.06643448e+002 1.19095818e+002 - 1.25744095e+002 1.06605644e+002 1.19072502e+002 1.25753258e+002 - 1.06569801e+002 1.19038094e+002 1.25765015e+002 1.06538704e+002 - 1.19024681e+002 1.25782730e+002 1.06531769e+002 1.19005058e+002 - 1.25812233e+002 1.06507179e+002 1.18991898e+002 1.25840508e+002 - 1.06468292e+002 1.18958282e+002 1.25878906e+002 1.06422432e+002 - 1.18932518e+002 1.25904793e+002 1.06415588e+002 1.18917305e+002 - 1.25938225e+002 1.06382896e+002 1.18896347e+002 1.25950218e+002 - 1.06372040e+002 1.18862267e+002 1.25985474e+002 1.06328056e+002 - 1.18836937e+002 1.25999397e+002 1.06297264e+002 1.18812561e+002 - 1.26024063e+002 1.06269821e+002 1.18791771e+002 1.26043098e+002 - 1.06244858e+002 1.18756638e+002 1.26063103e+002 1.06185310e+002 - 1.18709793e+002 1.26065865e+002 1.06183914e+002 1.18684303e+002 - 1.26108963e+002 1.06188423e+002 1.18705849e+002 1.26166672e+002 - 1.06169136e+002 1.18674812e+002 1.26181732e+002 1.06134293e+002 - 1.18652672e+002 1.26183517e+002 1.06119423e+002 1.18618164e+002 - 1.26203911e+002 1.06102402e+002 1.18606674e+002 1.26221359e+002 - 1.06089310e+002 1.18591515e+002 1.26273300e+002 1.06019203e+002 - 1.18549149e+002 1.26255051e+002 1.05992523e+002 1.18506226e+002 - 1.26260796e+002 1.05988876e+002 1.18513550e+002 1.26292366e+002 - 1.06005150e+002 1.18503159e+002 1.26341225e+002 1.05987831e+002 - 1.18503960e+002 1.26366226e+002 1.05982422e+002 1.18500183e+002 - 1.26404518e+002 1.05981247e+002 1.18514412e+002 1.26433990e+002 - 1.05985619e+002 1.18507927e+002 1.26472229e+002 1.05948082e+002 - 1.18484222e+002 1.26471741e+002 1.05988564e+002 1.18499969e+002 - 1.26557053e+002 1.05953003e+002 1.18482864e+002 1.26567719e+002 - 1.05946808e+002 1.18477852e+002 1.26596130e+002 1.05910248e+002 - 1.18464890e+002 1.26591835e+002 1.05909561e+002 1.18449829e+002 - 1.26615227e+002 1.05919205e+002 1.18473923e+002 1.26654900e+002 - 1.05908424e+002 1.18464096e+002 1.26695175e+002 1.05874855e+002 - 1.18452652e+002 1.26703682e+002 1.05896301e+002 1.18466225e+002 - 1.26751511e+002 1.05895538e+002 1.18474785e+002 1.26773338e+002 - 1.05905556e+002 1.18461205e+002 1.26805214e+002 1.05846207e+002 - 1.18417923e+002 1.26773468e+002 1.05847832e+002 1.18417198e+002 - 1.26814941e+002 1.05844383e+002 1.18431770e+002 1.26839279e+002 - 1.05826561e+002 1.18410057e+002 1.26849724e+002 1.05789726e+002 - 1.18383980e+002 1.26844254e+002 1.05783653e+002 1.18344727e+002 - 1.26860390e+002 1.05809319e+002 1.18381531e+002 1.26910164e+002 - 1.05804657e+002 1.18383575e+002 1.26933144e+002 1.05799675e+002 - 1.18395569e+002 1.26953468e+002 1.05801552e+002 1.18375336e+002 - 1.26965652e+002 1.05774986e+002 1.18359863e+002 1.26950592e+002 - 1.05748100e+002 1.18330750e+002 1.26957436e+002 1.05708176e+002 - 1.18310730e+002 1.26938179e+002 1.05726120e+002 1.18317413e+002 - 1.26966515e+002 1.05739571e+002 1.18343254e+002 1.26982178e+002 - 1.05740372e+002 1.18314293e+002 1.26992004e+002 1.05748489e+002 - 1.18341766e+002 1.27012749e+002 1.05756004e+002 1.18344635e+002 - 1.27038376e+002 1.05752594e+002 1.18351372e+002 1.27044380e+002 - 1.05781021e+002 1.18363037e+002 1.27082924e+002 1.05776138e+002 - 1.18379082e+002 1.27091927e+002 1.05771729e+002 1.18344177e+002 - 1.27101540e+002 1.05788162e+002 1.18373123e+002 1.27126816e+002 - 1.05783707e+002 1.18363632e+002 1.27116844e+002 1.05759514e+002 - 1.18358315e+002 1.27093613e+002 1.05750397e+002 1.18323334e+002 - 1.27079788e+002 1.05759727e+002 1.18336555e+002 1.27076393e+002 - 1.05765068e+002 1.18335770e+002 1.27076912e+002 1.05750031e+002 - 1.18334358e+002 1.27065651e+002 1.05716667e+002 1.18286156e+002 - 1.27022064e+002 1.05743103e+002 1.18314270e+002 1.27039627e+002 - 1.05748238e+002 1.18298470e+002 1.27034279e+002 1.05700790e+002 - 1.18269844e+002 1.26986511e+002 1.05718536e+002 1.18285133e+002 - 1.27000923e+002 1.05718277e+002 1.18302002e+002 1.26991493e+002 - 1.05733147e+002 1.18310081e+002 1.26993378e+002 1.05733063e+002 - 1.18329849e+002 1.26995430e+002 1.05764046e+002 1.18328552e+002 - 1.27001610e+002 1.05788010e+002 1.18356453e+002 1.27014694e+002 - 1.05798668e+002 1.18362572e+002 1.27006554e+002 1.05783127e+002 - 1.18358742e+002 1.26983086e+002 1.05820045e+002 1.18365456e+002 - 1.27003319e+002 1.05808495e+002 1.18370155e+002 1.26971458e+002 - 1.05786850e+002 1.18343102e+002 1.26925514e+002 1.05745140e+002 - 1.18325615e+002 1.26870842e+002 1.05785713e+002 1.18341232e+002 - 1.26890388e+002 1.05795654e+002 1.18364960e+002 1.26879593e+002 - 1.05777069e+002 1.18333351e+002 1.26846489e+002 1.05765572e+002 - 1.18338417e+002 1.26812454e+002 1.05786964e+002 1.18355927e+002 - 1.26811684e+002 1.05781006e+002 1.18362732e+002 1.26779564e+002 - 1.05760323e+002 1.18335495e+002 1.26741005e+002 1.05719315e+002 - 1.18312233e+002 1.26671906e+002 1.05782494e+002 1.18340454e+002 - 1.26702744e+002 1.05820496e+002 1.18400352e+002 1.26716515e+002 - 1.05784592e+002 1.18364494e+002 1.26648621e+002 1.05771393e+002 - 1.18369789e+002 1.26614159e+002 1.05788864e+002 1.18369965e+002 - 1.26604393e+002 1.05790283e+002 1.18378319e+002 1.26562286e+002 - 1.05785835e+002 1.18358711e+002 1.26508118e+002 1.05757828e+002 - 1.18344948e+002 1.26452545e+002 1.05747246e+002 1.18321709e+002 - 1.26412773e+002 1.05752029e+002 1.18335472e+002 1.26385208e+002 - 1.05758865e+002 1.18328514e+002 1.26359055e+002 1.05754158e+002 - 1.18338791e+002 1.26315269e+002 1.05767570e+002 1.18339943e+002 - 1.26290596e+002 1.05758888e+002 1.18335197e+002 1.26237991e+002 - 1.05790863e+002 1.18351791e+002 1.26230278e+002 1.05775345e+002 - 1.18353218e+002 1.26181190e+002 1.05826454e+002 1.18368477e+002 - 1.26190536e+002 1.05870186e+002 1.18426041e+002 1.26197891e+002 - 1.05878708e+002 1.18435242e+002 1.26162064e+002 1.05854904e+002 - 1.18430244e+002 1.26101715e+002 1.05903358e+002 1.18459572e+002 - 1.26122513e+002 1.05955948e+002 1.18516418e+002 1.26116440e+002 - 1.05978142e+002 1.18527473e+002 1.26074913e+002 1.05989151e+002 - 1.18559319e+002 1.26051491e+002 1.06028503e+002 1.18585609e+002 - 1.26052689e+002 1.06050476e+002 1.18616501e+002 1.26031204e+002 - 1.06091011e+002 1.18631180e+002 1.26025383e+002 1.06079330e+002 - 1.18635727e+002 1.25972694e+002 1.06089447e+002 1.18636909e+002 - 1.25934784e+002 1.06110428e+002 1.18666496e+002 1.25915871e+002 - 1.06123283e+002 1.18665672e+002 1.25882767e+002 1.06135368e+002 - 1.18687935e+002 1.25848137e+002 1.06170425e+002 1.18683640e+002 - 1.25816376e+002 1.06206017e+002 1.18723930e+002 1.25797104e+002 - 1.06264137e+002 1.18769714e+002 1.25790253e+002 1.06286194e+002 - 1.18800697e+002 1.25766685e+002 1.06313492e+002 1.18803444e+002 - 1.25751839e+002 1.06337570e+002 1.18827065e+002 1.25722702e+002 - 1.06369484e+002 1.18857620e+002 1.25693512e+002 1.06354309e+002 - 1.18861717e+002 1.25636017e+002 1.06418098e+002 1.18905998e+002 - 1.25656761e+002 1.06465782e+002 1.18959145e+002 1.25651901e+002 - 1.06506218e+002 1.18978508e+002 1.25634178e+002 1.06527702e+002 - 1.19008194e+002 1.25604095e+002 1.06585884e+002 1.19062996e+002 - 1.25603271e+002 1.06618752e+002 1.19104218e+002 1.25578766e+002 - 1.06669685e+002 1.19135330e+002 1.25562706e+002 1.06689194e+002 - 1.19165504e+002 1.25526253e+002 1.06754196e+002 1.19185837e+002 - 1.25517128e+002 1.06774727e+002 1.19214508e+002 1.25482666e+002 - 1.06826302e+002 1.19258965e+002 1.25477875e+002 1.06837502e+002 - 1.19273216e+002 1.25435699e+002 1.06874969e+002 1.19287529e+002 - 1.25423935e+002 1.06934120e+002 1.19351532e+002 1.25423347e+002 - 1.06957031e+002 1.19356544e+002 1.25370811e+002 1.06980110e+002 - 1.19388077e+002 1.25346504e+002 1.07007889e+002 1.19401604e+002 - 1.25320114e+002 1.07031967e+002 1.19431076e+002 1.25294441e+002 - 1.07051575e+002 1.19421410e+002 1.25252228e+002 1.07076065e+002 - 1.19455330e+002 1.25215485e+002 1.07144325e+002 1.19508904e+002 - 1.25220284e+002 1.07188332e+002 1.19555145e+002 1.25202126e+002 - 1.07217484e+002 1.19565628e+002 1.25166718e+002 1.07276016e+002 - 1.19627632e+002 1.25158890e+002 1.07320465e+002 1.19622414e+002 - 1.25112259e+002 1.07370872e+002 1.19678375e+002 1.25100838e+002 - 1.07429253e+002 1.19721733e+002 1.25083199e+002 1.07446587e+002 - 1.19748695e+002 1.25049042e+002 1.07529510e+002 1.19805710e+002 - 1.25075836e+002 1.07607750e+002 1.19880814e+002 1.25080063e+002 - 1.07676338e+002 1.19920403e+002 1.25044441e+002 1.07753098e+002 - 1.20000717e+002 1.25061989e+002 1.07799339e+002 1.20014191e+002 - 1.25054169e+002 1.07864372e+002 1.20081802e+002 1.25056747e+002 - 1.07933060e+002 1.20114250e+002 1.25055710e+002 1.07986618e+002 - 1.20159058e+002 1.25042198e+002 1.08073479e+002 1.20219406e+002 - 1.25049965e+002 1.08148026e+002 1.20291351e+002 1.25055679e+002 - 1.08236252e+002 1.20334549e+002 1.25064774e+002 1.08288116e+002 - 1.20375473e+002 1.25047424e+002 1.08368286e+002 1.20393097e+002 - 1.25034279e+002 1.08425392e+002 1.20430275e+002 1.25013794e+002 - 1.08474953e+002 1.20446457e+002 1.24983894e+002 1.08470413e+002 - 1.20437889e+002 1.24913139e+002 1.08507332e+002 1.20410431e+002 - 1.24878204e+002 1.08449600e+002 1.20343727e+002 1.24750450e+002 - 1.08350273e+002 1.20280823e+002 1.24742805e+002 1.08412880e+002 - 1.20386017e+002 1.24878471e+002 1.08411545e+002 1.20401985e+002 - 1.24937538e+002 1.08401039e+002 1.20428230e+002 1.24997398e+002 - 1.08358704e+002 1.20404762e+002 1.25035690e+002 1.08303741e+002 - 1.20382072e+002 1.25049866e+002 1.08240990e+002 1.20345924e+002 - 1.25077438e+002 1.08143364e+002 1.20279572e+002 1.25044258e+002 - 1.08085541e+002 1.20233376e+002 1.25057495e+002 1.07982285e+002 - 1.20158646e+002 1.25027580e+002 1.07947639e+002 1.20120071e+002 - 1.25073143e+002 1.07885826e+002 1.20081665e+002 1.25088593e+002 - 1.07803650e+002 1.20011497e+002 1.25078850e+002 1.07727234e+002 - 1.19963173e+002 1.25074364e+002 1.07691330e+002 1.19934036e+002 - 1.25097580e+002 1.07625725e+002 1.19889633e+002 1.25093719e+002 - 1.07541847e+002 1.19819878e+002 1.25103340e+002 1.07480865e+002 - 1.19794418e+002 1.25114952e+002 1.07454941e+002 1.19763672e+002 - 1.25144691e+002 1.07415619e+002 1.19743523e+002 1.25155968e+002 - 1.07383507e+002 1.19711777e+002 1.25183495e+002 1.07322426e+002 - 1.19675026e+002 1.25192368e+002 1.07276184e+002 1.19637550e+002 - 1.25222321e+002 1.07222389e+002 1.19608421e+002 1.25234268e+002 - 1.07178291e+002 1.19567589e+002 1.25256599e+002 1.07127602e+002 - 1.19531548e+002 1.25268974e+002 1.07121323e+002 1.19508575e+002 - 1.25328850e+002 1.07096344e+002 1.19490860e+002 1.25370094e+002 - 1.07075325e+002 1.19476891e+002 1.25419464e+002 1.07041283e+002 - 1.19461861e+002 1.25445892e+002 1.07000946e+002 1.19412781e+002 - 1.25451706e+002 1.06936890e+002 1.19367409e+002 1.25447289e+002 - 1.06885986e+002 1.19320259e+002 1.25490860e+002 1.06796234e+002 - 1.19268349e+002 1.25478722e+002 1.06764046e+002 1.19221962e+002 - 1.25494148e+002 1.06702782e+002 1.19174118e+002 1.25488716e+002 - 1.06676605e+002 1.19136955e+002 1.25524994e+002 1.06615906e+002 - 1.19093422e+002 1.25526878e+002 1.06590790e+002 1.19072136e+002 - 1.25570724e+002 1.06546631e+002 1.19043915e+002 1.25581268e+002 - 1.06535980e+002 1.19029678e+002 1.25632690e+002 1.06484787e+002 - 1.18991714e+002 1.25636665e+002 1.06464073e+002 1.18955116e+002 - 1.25667786e+002 1.06445724e+002 1.18943779e+002 1.25696220e+002 - 1.06417389e+002 1.18919426e+002 1.25720978e+002 1.06378838e+002 - 1.18896950e+002 1.25724937e+002 1.06342957e+002 1.18858368e+002 - 1.25733315e+002 1.06327599e+002 1.18848503e+002 1.25766586e+002 - 1.06302803e+002 1.18820404e+002 1.25816124e+002 1.06219955e+002 - 1.18764793e+002 1.25804604e+002 1.06212975e+002 1.18747459e+002 - 1.25840942e+002 1.06209663e+002 1.18750519e+002 1.25884377e+002 - 1.06186584e+002 1.18713318e+002 1.25902512e+002 1.06145012e+002 - 1.18686752e+002 1.25917099e+002 1.06117722e+002 1.18657753e+002 - 1.25946411e+002 1.06090134e+002 1.18642906e+002 1.25971672e+002 - 1.06053741e+002 1.18594414e+002 1.25975319e+002 1.06001617e+002 - 1.18553123e+002 1.25982391e+002 1.06020721e+002 1.18549004e+002 - 1.26050522e+002 1.05998909e+002 1.18546394e+002 1.26084206e+002 - 1.05974190e+002 1.18511772e+002 1.26100121e+002 1.05954834e+002 - 1.18504204e+002 1.26116226e+002 1.05955025e+002 1.18489517e+002 - 1.26147652e+002 1.05919556e+002 1.18469025e+002 1.26153641e+002 - 1.05884209e+002 1.18422882e+002 1.26179382e+002 1.05818848e+002 - 1.18386139e+002 1.26170738e+002 1.05814789e+002 1.18356590e+002 - 1.26189621e+002 1.05825775e+002 1.18380547e+002 1.26234619e+002 - 1.05839287e+002 1.18371101e+002 1.26281654e+002 1.05822884e+002 - 1.18374252e+002 1.26307938e+002 1.05805183e+002 1.18355278e+002 - 1.26333305e+002 1.05788162e+002 1.18351921e+002 1.26347832e+002 - 1.05793045e+002 1.18344627e+002 1.26383247e+002 1.05753319e+002 - 1.18321976e+002 1.26387794e+002 1.05776314e+002 1.18320961e+002 - 1.26454048e+002 1.05751869e+002 1.18318253e+002 1.26469978e+002 - 1.05765259e+002 1.18325066e+002 1.26513802e+002 1.05763107e+002 - 1.18341141e+002 1.26550484e+002 1.05745537e+002 1.18321533e+002 - 1.26557251e+002 1.05729637e+002 1.18314781e+002 1.26573189e+002 - 1.05732872e+002 1.18309334e+002 1.26618011e+002 1.05685432e+002 - 1.18288956e+002 1.26617485e+002 1.05720726e+002 1.18314156e+002 - 1.26678841e+002 1.05715378e+002 1.18321747e+002 1.26697296e+002 - 1.05720184e+002 1.18308823e+002 1.26725647e+002 1.05687653e+002 - 1.18288025e+002 1.26720505e+002 1.05681999e+002 1.18281357e+002 - 1.26754631e+002 1.05679558e+002 1.18293785e+002 1.26773132e+002 - 1.05664597e+002 1.18268570e+002 1.26787544e+002 1.05614159e+002 - 1.18237396e+002 1.26774940e+002 1.05618919e+002 1.18211250e+002 - 1.26801918e+002 1.05629478e+002 1.18240196e+002 1.26842117e+002 - 1.05631126e+002 1.18232307e+002 1.26867043e+002 1.05590378e+002 - 1.18214996e+002 1.26855850e+002 1.05620689e+002 1.18221092e+002 - 1.26892357e+002 1.05595985e+002 1.18200546e+002 1.26874451e+002 - 1.05568878e+002 1.18169914e+002 1.26881584e+002 1.05546455e+002 - 1.18177689e+002 1.26888885e+002 1.05568001e+002 1.18183662e+002 - 1.26910820e+002 1.05559669e+002 1.18187691e+002 1.26914597e+002 - 1.05570724e+002 1.18177231e+002 1.26932808e+002 1.05583359e+002 - 1.18203857e+002 1.26968338e+002 1.05605644e+002 1.18223488e+002 - 1.27004456e+002 1.05616455e+002 1.18236412e+002 1.27016296e+002 - 1.05608162e+002 1.18220604e+002 1.27017082e+002 1.05601883e+002 - 1.18233788e+002 1.27042892e+002 1.05607101e+002 1.18212959e+002 - 1.27056023e+002 1.05610962e+002 1.18223396e+002 1.27063461e+002 - 1.05600655e+002 1.18203964e+002 1.27046120e+002 1.05577339e+002 - 1.18201073e+002 1.27029495e+002 1.05578293e+002 1.18187622e+002 - 1.27022461e+002 1.05581772e+002 1.18193954e+002 1.27016121e+002 - 1.05580566e+002 1.18174660e+002 1.27004242e+002 1.05568573e+002 - 1.18181808e+002 1.26995201e+002 1.05557281e+002 1.18153152e+002 - 1.26970009e+002 1.05562645e+002 1.18161621e+002 1.26972374e+002 - 1.05570396e+002 1.18152611e+002 1.26970360e+002 1.05534805e+002 - 1.18130196e+002 1.26935303e+002 1.05563202e+002 1.18159981e+002 - 1.26961510e+002 1.05557076e+002 1.18172630e+002 1.26950340e+002 - 1.05563477e+002 1.18173294e+002 1.26945694e+002 1.05567139e+002 - 1.18192589e+002 1.26944359e+002 1.05583595e+002 1.18188141e+002 - 1.26943848e+002 1.05602585e+002 1.18212349e+002 1.26947159e+002 - 1.05636459e+002 1.18229652e+002 1.26961220e+002 1.05623138e+002 - 1.18225471e+002 1.26935181e+002 1.05631981e+002 1.18218781e+002 - 1.26933296e+002 1.05634338e+002 1.18221817e+002 1.26907242e+002 - 1.05621490e+002 1.18196922e+002 1.26867981e+002 1.05594711e+002 - 1.18196114e+002 1.26827591e+002 1.05612419e+002 1.18201332e+002 - 1.26827080e+002 1.05616577e+002 1.18216156e+002 1.26810593e+002 - 1.05598770e+002 1.18182785e+002 1.26769966e+002 1.05579689e+002 - 1.18176254e+002 1.26734215e+002 1.05574646e+002 1.18170288e+002 - 1.26713074e+002 1.05575668e+002 1.18189728e+002 1.26688721e+002 - 1.05569862e+002 1.18174469e+002 1.26657356e+002 1.05537941e+002 - 1.18159012e+002 1.26609955e+002 1.05599121e+002 1.18192101e+002 - 1.26626602e+002 1.05624802e+002 1.18233238e+002 1.26632233e+002 - 1.05613556e+002 1.18220612e+002 1.26589920e+002 1.05580864e+002 - 1.18208122e+002 1.26536507e+002 1.05600555e+002 1.18212288e+002 - 1.26526726e+002 1.05602982e+002 1.18221939e+002 1.26484779e+002 - 1.05597061e+002 1.18197021e+002 1.26430603e+002 1.05578392e+002 - 1.18197357e+002 1.26385422e+002 1.05564766e+002 1.18169899e+002 - 1.26343849e+002 1.05566261e+002 1.18184395e+002 1.26316582e+002 - 1.05570999e+002 1.18171669e+002 1.26280640e+002 1.05575996e+002 - 1.18187111e+002 1.26248573e+002 1.05590851e+002 1.18191643e+002 - 1.26215752e+002 1.05611946e+002 1.18222740e+002 1.26197395e+002 - 1.05631126e+002 1.18227333e+002 1.26176537e+002 1.05642967e+002 - 1.18246918e+002 1.26157990e+002 1.05680511e+002 1.18254959e+002 - 1.26147476e+002 1.05689003e+002 1.18274940e+002 1.26128067e+002 - 1.05690536e+002 1.18274277e+002 1.26086533e+002 1.05705803e+002 - 1.18305573e+002 1.26065361e+002 1.05755119e+002 1.18345551e+002 - 1.26080040e+002 1.05791481e+002 1.18387711e+002 1.26063240e+002 - 1.05811928e+002 1.18394165e+002 1.26021004e+002 1.05819160e+002 - 1.18428139e+002 1.25996613e+002 1.05878166e+002 1.18464439e+002 - 1.26009773e+002 1.05897926e+002 1.18492691e+002 1.25987846e+002 - 1.05913246e+002 1.18491646e+002 1.25956261e+002 1.05898788e+002 - 1.18490158e+002 1.25902786e+002 1.05900085e+002 1.18480400e+002 - 1.25856224e+002 1.05911224e+002 1.18501869e+002 1.25825493e+002 - 1.05941956e+002 1.18511452e+002 1.25805153e+002 1.05954819e+002 - 1.18534775e+002 1.25774841e+002 1.05984047e+002 1.18528946e+002 - 1.25735764e+002 1.06026985e+002 1.18571442e+002 1.25717102e+002 - 1.06078636e+002 1.18608536e+002 1.25715172e+002 1.06099915e+002 - 1.18642120e+002 1.25686455e+002 1.06128014e+002 1.18644875e+002 - 1.25665848e+002 1.06163773e+002 1.18695534e+002 1.25653259e+002 - 1.06177643e+002 1.18697617e+002 1.25603271e+002 1.06183479e+002 - 1.18722931e+002 1.25564697e+002 1.06249130e+002 1.18764809e+002 - 1.25575256e+002 1.06269539e+002 1.18792732e+002 1.25556137e+002 - 1.06296059e+002 1.18799126e+002 1.25520370e+002 1.06335228e+002 - 1.18844307e+002 1.25506599e+002 1.06397491e+002 1.18902115e+002 - 1.25509018e+002 1.06447388e+002 1.18960480e+002 1.25498489e+002 - 1.06504822e+002 1.19003426e+002 1.25492958e+002 1.06518532e+002 - 1.19027191e+002 1.25457626e+002 1.06595787e+002 1.19065491e+002 - 1.25453308e+002 1.06611984e+002 1.19088676e+002 1.25418442e+002 - 1.06636887e+002 1.19095253e+002 1.25382820e+002 1.06648094e+002 - 1.19115227e+002 1.25346718e+002 1.06692390e+002 1.19145294e+002 - 1.25340622e+002 1.06768333e+002 1.19223190e+002 1.25356537e+002 - 1.06814285e+002 1.19245964e+002 1.25326439e+002 1.06819160e+002 - 1.19270760e+002 1.25286545e+002 1.06858177e+002 1.19287529e+002 - 1.25272186e+002 1.06884514e+002 1.19313240e+002 1.25250183e+002 - 1.06902245e+002 1.19309158e+002 1.25196205e+002 1.06941437e+002 - 1.19357300e+002 1.25181534e+002 1.06994598e+002 1.19395569e+002 - 1.25171326e+002 1.07020042e+002 1.19427101e+002 1.25133011e+002 - 1.07076286e+002 1.19457748e+002 1.25121796e+002 1.07142929e+002 - 1.19525826e+002 1.25127693e+002 1.07174713e+002 1.19511513e+002 - 1.25069672e+002 1.07221046e+002 1.19562088e+002 1.25049316e+002 - 1.07301270e+002 1.19621124e+002 1.25055031e+002 1.07307701e+002 - 1.19641953e+002 1.25012581e+002 1.07370560e+002 1.19688454e+002 - 1.25018089e+002 1.07444687e+002 1.19757210e+002 1.25018219e+002 - 1.07526390e+002 1.19806404e+002 1.24992287e+002 1.07603790e+002 - 1.19884300e+002 1.25011086e+002 1.07664810e+002 1.19913834e+002 - 1.25010162e+002 1.07727783e+002 1.19975754e+002 1.25014946e+002 - 1.07798019e+002 1.20011917e+002 1.25012100e+002 1.07863182e+002 - 1.20075089e+002 1.25009499e+002 1.07967766e+002 1.20152290e+002 - 1.25038597e+002 1.08041405e+002 1.20218765e+002 1.25046051e+002 - 1.08115654e+002 1.20250076e+002 1.25035339e+002 1.08167030e+002 - 1.20282944e+002 1.25019302e+002 1.08252701e+002 1.20313492e+002 - 1.25009201e+002 1.08301895e+002 1.20349724e+002 1.24982971e+002 - 1.08360153e+002 1.20363327e+002 1.24957397e+002 1.08364166e+002 - 1.20354332e+002 1.24892120e+002 1.08370247e+002 1.20312073e+002 - 1.24827362e+002 1.08331032e+002 1.20256035e+002 1.24715271e+002 - 1.08224930e+002 1.20177643e+002 1.24686272e+002 1.08286270e+002 - 1.20281921e+002 1.24814651e+002 1.08302254e+002 1.20313194e+002 - 1.24889687e+002 1.08297234e+002 1.20342728e+002 1.24950638e+002 - 1.08257751e+002 1.20319748e+002 1.24983589e+002 1.08182442e+002 - 1.20287041e+002 1.24993729e+002 1.08126091e+002 1.20250648e+002 - 1.25021675e+002 1.08059532e+002 1.20213501e+002 1.25016502e+002 - 1.07966476e+002 1.20131981e+002 1.25002754e+002 1.07889381e+002 - 1.20083015e+002 1.24997749e+002 1.07824219e+002 1.20018951e+002 - 1.25010109e+002 1.07778725e+002 1.20003723e+002 1.25045616e+002 - 1.07714378e+002 1.19949165e+002 1.25054169e+002 1.07642807e+002 - 1.19907005e+002 1.25048836e+002 1.07590172e+002 1.19857162e+002 - 1.25063324e+002 1.07497902e+002 1.19784462e+002 1.25029396e+002 - 1.07439857e+002 1.19740639e+002 1.25063522e+002 1.07351158e+002 - 1.19691864e+002 1.25053650e+002 1.07322464e+002 1.19652824e+002 - 1.25073639e+002 1.07279366e+002 1.19632027e+002 1.25082756e+002 - 1.07249977e+002 1.19601357e+002 1.25118675e+002 1.07196640e+002 - 1.19570435e+002 1.25127426e+002 1.07167801e+002 1.19555969e+002 - 1.25181358e+002 1.07108307e+002 1.19519852e+002 1.25183952e+002 - 1.07059875e+002 1.19467438e+002 1.25198761e+002 1.06996323e+002 - 1.19418320e+002 1.25200211e+002 1.06989769e+002 1.19390625e+002 - 1.25257889e+002 1.06957420e+002 1.19377075e+002 1.25288147e+002 - 1.06945068e+002 1.19363449e+002 1.25346046e+002 1.06904259e+002 - 1.19346947e+002 1.25363449e+002 1.06861137e+002 1.19301270e+002 - 1.25382111e+002 1.06802460e+002 1.19254356e+002 1.25374832e+002 - 1.06748276e+002 1.19209160e+002 1.25414406e+002 1.06664047e+002 - 1.19151993e+002 1.25409813e+002 1.06634850e+002 1.19113228e+002 - 1.25435562e+002 1.06563507e+002 1.19053429e+002 1.25421349e+002 - 1.06527725e+002 1.19008743e+002 1.25448402e+002 1.06479118e+002 - 1.18980721e+002 1.25463333e+002 1.06444565e+002 1.18944603e+002 - 1.25495270e+002 1.06415253e+002 1.18929543e+002 1.25516747e+002 - 1.06392548e+002 1.18909126e+002 1.25561737e+002 1.06337959e+002 - 1.18865700e+002 1.25565468e+002 1.06292442e+002 1.18801537e+002 - 1.25568550e+002 1.06270264e+002 1.18793365e+002 1.25596352e+002 - 1.06258484e+002 1.18780464e+002 1.25636017e+002 1.06226189e+002 - 1.18763420e+002 1.25643135e+002 1.06177757e+002 1.18705986e+002 - 1.25633743e+002 1.06149879e+002 1.18687813e+002 1.25657455e+002 - 1.06120987e+002 1.18659187e+002 1.25707939e+002 1.06062241e+002 - 1.18621750e+002 1.25717140e+002 1.06058563e+002 1.18608398e+002 - 1.25756180e+002 1.06052132e+002 1.18608521e+002 1.25790848e+002 - 1.06034111e+002 1.18578110e+002 1.25823181e+002 1.06002167e+002 - 1.18560928e+002 1.25842468e+002 1.05969482e+002 1.18524940e+002 - 1.25865944e+002 1.05929031e+002 1.18495926e+002 1.25872986e+002 - 1.05902756e+002 1.18456696e+002 1.25897568e+002 1.05879456e+002 - 1.18447754e+002 1.25931236e+002 1.05896072e+002 1.18443901e+002 - 1.25996529e+002 1.05850029e+002 1.18409554e+002 1.26004845e+002 - 1.05813354e+002 1.18366035e+002 1.26006592e+002 1.05795891e+002 - 1.18362183e+002 1.26028168e+002 1.05814735e+002 1.18366417e+002 - 1.26077789e+002 1.05787277e+002 1.18352745e+002 1.26093361e+002 - 1.05748962e+002 1.18307625e+002 1.26112297e+002 1.05679802e+002 - 1.18262703e+002 1.26097557e+002 1.05673950e+002 1.18237373e+002 - 1.26116516e+002 1.05686981e+002 1.18260902e+002 1.26162308e+002 - 1.05705986e+002 1.18264847e+002 1.26217262e+002 1.05689766e+002 - 1.18256729e+002 1.26239265e+002 1.05674156e+002 1.18242943e+002 - 1.26269302e+002 1.05634125e+002 1.18222527e+002 1.26270103e+002 - 1.05645813e+002 1.18219292e+002 1.26308502e+002 1.05608360e+002 - 1.18203133e+002 1.26324348e+002 1.05623085e+002 1.18200455e+002 - 1.26378242e+002 1.05610046e+002 1.18202843e+002 1.26404793e+002 - 1.05617439e+002 1.18205132e+002 1.26443764e+002 1.05599686e+002 - 1.18198669e+002 1.26458626e+002 1.05597351e+002 1.18188942e+002 - 1.26478996e+002 1.05586220e+002 1.18183372e+002 1.26494148e+002 - 1.05589706e+002 1.18181000e+002 1.26540764e+002 1.05527962e+002 - 1.18146729e+002 1.26524071e+002 1.05548058e+002 1.18153099e+002 - 1.26568619e+002 1.05541801e+002 1.18158508e+002 1.26592819e+002 - 1.05553375e+002 1.18149406e+002 1.26622452e+002 1.05526878e+002 - 1.18135544e+002 1.26627235e+002 1.05535881e+002 1.18145866e+002 - 1.26670982e+002 1.05539078e+002 1.18168587e+002 1.26697876e+002 - 1.05518707e+002 1.18137665e+002 1.26707291e+002 1.05457527e+002 - 1.18091942e+002 1.26677788e+002 1.05480431e+002 1.18083664e+002 - 1.26727867e+002 1.05482079e+002 1.18103958e+002 1.26757256e+002 - 1.05471252e+002 1.18084213e+002 1.26767433e+002 1.05424255e+002 - 1.18054405e+002 1.26742630e+002 1.05455368e+002 1.18068588e+002 - 1.26790939e+002 1.05434181e+002 1.18054642e+002 1.26784256e+002 - 1.05424309e+002 1.18038193e+002 1.26805634e+002 1.05418449e+002 - 1.18064285e+002 1.26831512e+002 1.05438858e+002 1.18070641e+002 - 1.26849182e+002 1.05434822e+002 1.18075447e+002 1.26856339e+002 - 1.05439293e+002 1.18067566e+002 1.26878792e+002 1.05441353e+002 - 1.18077293e+002 1.26898216e+002 1.05450394e+002 1.18080742e+002 - 1.26916138e+002 1.05450630e+002 1.18083466e+002 1.26925056e+002 - 1.05449196e+002 1.18077843e+002 1.26936279e+002 1.05439857e+002 - 1.18082619e+002 1.26946373e+002 1.05466019e+002 1.18085472e+002 - 1.26980614e+002 1.05447372e+002 1.18073959e+002 1.26973335e+002 - 1.05427238e+002 1.18046249e+002 1.26948730e+002 1.05407272e+002 - 1.18039253e+002 1.26931610e+002 1.05413239e+002 1.18031059e+002 - 1.26932007e+002 1.05417252e+002 1.18038857e+002 1.26925751e+002 - 1.05414726e+002 1.18024864e+002 1.26911713e+002 1.05394524e+002 - 1.18026955e+002 1.26897964e+002 1.05403229e+002 1.18017639e+002 - 1.26890610e+002 1.05432976e+002 1.18051010e+002 1.26919586e+002 - 1.05440651e+002 1.18038757e+002 1.26917313e+002 1.05401077e+002 - 1.18026993e+002 1.26884567e+002 1.05407181e+002 1.18025421e+002 - 1.26885201e+002 1.05396469e+002 1.18027916e+002 1.26864494e+002 - 1.05410507e+002 1.18038452e+002 1.26874550e+002 1.05417259e+002 - 1.18055664e+002 1.26871414e+002 1.05444878e+002 1.18057861e+002 - 1.26875626e+002 1.05441978e+002 1.18057800e+002 1.26849770e+002 - 1.05461349e+002 1.18066803e+002 1.26854805e+002 1.05453644e+002 - 1.18070503e+002 1.26836250e+002 1.05448723e+002 1.18045547e+002 - 1.26816139e+002 1.05441551e+002 1.18042999e+002 1.26789749e+002 - 1.05442749e+002 1.18026428e+002 1.26760612e+002 1.05442703e+002 - 1.18054642e+002 1.26752296e+002 1.05455200e+002 1.18055054e+002 - 1.26741974e+002 1.05433426e+002 1.18045090e+002 1.26703278e+002 - 1.05421288e+002 1.18022682e+002 1.26665306e+002 1.05402901e+002 - 1.18017197e+002 1.26630684e+002 1.05400963e+002 1.18011192e+002 - 1.26607391e+002 1.05405884e+002 1.18033310e+002 1.26593056e+002 - 1.05395805e+002 1.18017197e+002 1.26564407e+002 1.05369308e+002 - 1.18007256e+002 1.26518837e+002 1.05414253e+002 1.18023033e+002 - 1.26518364e+002 1.05436546e+002 1.18062706e+002 1.26513992e+002 - 1.05454407e+002 1.18078171e+002 1.26508759e+002 1.05446449e+002 - 1.18084854e+002 1.26474617e+002 1.05449684e+002 1.18082977e+002 - 1.26454803e+002 1.05448860e+002 1.18083801e+002 1.26409271e+002 - 1.05430138e+002 1.18048920e+002 1.26347229e+002 1.05429062e+002 - 1.18068779e+002 1.26319778e+002 1.05421883e+002 1.18047508e+002 - 1.26280167e+002 1.05408119e+002 1.18042290e+002 1.26235329e+002 - 1.05415749e+002 1.18038864e+002 1.26199730e+002 1.05392937e+002 - 1.18026131e+002 1.26144218e+002 1.05425316e+002 1.18044701e+002 - 1.26128403e+002 1.05446960e+002 1.18066727e+002 1.26103500e+002 - 1.05476059e+002 1.18082138e+002 1.26090279e+002 1.05498093e+002 - 1.18119904e+002 1.26087639e+002 1.05532944e+002 1.18127510e+002 - 1.26076302e+002 1.05539574e+002 1.18151642e+002 1.26053482e+002 - 1.05552864e+002 1.18159729e+002 1.26027687e+002 1.05549706e+002 - 1.18176239e+002 1.25990433e+002 1.05581436e+002 1.18197685e+002 - 1.25988480e+002 1.05620728e+002 1.18239014e+002 1.25966393e+002 - 1.05657791e+002 1.18266769e+002 1.25949295e+002 1.05656609e+002 - 1.18281960e+002 1.25916534e+002 1.05730431e+002 1.18329666e+002 - 1.25934570e+002 1.05734772e+002 1.18345001e+002 1.25898163e+002 - 1.05780083e+002 1.18374527e+002 1.25902351e+002 1.05775826e+002 - 1.18381470e+002 1.25854904e+002 1.05762260e+002 1.18355469e+002 - 1.25796844e+002 1.05779922e+002 1.18385117e+002 1.25770744e+002 - 1.05798866e+002 1.18384949e+002 1.25734375e+002 1.05799255e+002 - 1.18393272e+002 1.25694351e+002 1.05840141e+002 1.18392159e+002 - 1.25654640e+002 1.05876282e+002 1.18436752e+002 1.25633896e+002 - 1.05933304e+002 1.18474358e+002 1.25628609e+002 1.05948914e+002 - 1.18509216e+002 1.25601669e+002 1.05980263e+002 1.18517021e+002 - 1.25579208e+002 1.06021347e+002 1.18563950e+002 1.25571327e+002 - 1.06043365e+002 1.18576515e+002 1.25528091e+002 1.06061966e+002 - 1.18616341e+002 1.25511932e+002 1.06136971e+002 1.18664070e+002 - 1.25526756e+002 1.06149620e+002 1.18687714e+002 1.25495232e+002 - 1.06157600e+002 1.18674904e+002 1.25444054e+002 1.06173149e+002 - 1.18705208e+002 1.25410172e+002 1.06248505e+002 1.18772598e+002 - 1.25426079e+002 1.06278427e+002 1.18810013e+002 1.25399330e+002 - 1.06342896e+002 1.18859360e+002 1.25401558e+002 1.06384331e+002 - 1.18903214e+002 1.25388428e+002 1.06443863e+002 1.18936096e+002 - 1.25375801e+002 1.06453194e+002 1.18950485e+002 1.25334244e+002 - 1.06494270e+002 1.18971794e+002 1.25310287e+002 1.06516785e+002 - 1.19004860e+002 1.25285324e+002 1.06565178e+002 1.19046364e+002 - 1.25289970e+002 1.06629921e+002 1.19102898e+002 1.25292931e+002 - 1.06671722e+002 1.19128845e+002 1.25251801e+002 1.06698570e+002 - 1.19171646e+002 1.25229698e+002 1.06723885e+002 1.19174820e+002 - 1.25200996e+002 1.06760635e+002 1.19217293e+002 1.25189438e+002 - 1.06780060e+002 1.19208641e+002 1.25143005e+002 1.06812004e+002 - 1.19244370e+002 1.25114807e+002 1.06875443e+002 1.19296646e+002 - 1.25112732e+002 1.06907906e+002 1.19330849e+002 1.25080345e+002 - 1.06940834e+002 1.19344398e+002 1.25052261e+002 1.06992279e+002 - 1.19399574e+002 1.25044365e+002 1.07037933e+002 1.19397850e+002 - 1.24999260e+002 1.07089912e+002 1.19455841e+002 1.24989853e+002 - 1.07153954e+002 1.19496651e+002 1.24983910e+002 1.07203911e+002 - 1.19553612e+002 1.24969460e+002 1.07265862e+002 1.19600868e+002 - 1.24979279e+002 1.07338684e+002 1.19671890e+002 1.24976227e+002 - 1.07408058e+002 1.19708694e+002 1.24936104e+002 1.07482704e+002 - 1.19787323e+002 1.24953300e+002 1.07542915e+002 1.19815521e+002 - 1.24952278e+002 1.07589897e+002 1.19858162e+002 1.24940613e+002 - 1.07671410e+002 1.19907089e+002 1.24945030e+002 1.07739708e+002 - 1.19970779e+002 1.24947845e+002 1.07858414e+002 1.20058823e+002 - 1.24982475e+002 1.07923531e+002 1.20119659e+002 1.24984238e+002 - 1.08004356e+002 1.20157875e+002 1.24981903e+002 1.08074425e+002 - 1.20214836e+002 1.24990868e+002 1.08134377e+002 1.20219109e+002 - 1.24957176e+002 1.08177048e+002 1.20246582e+002 1.24915436e+002 - 1.08255676e+002 1.20275040e+002 1.24903259e+002 1.08276695e+002 - 1.20282372e+002 1.24854942e+002 1.08261703e+002 1.20229370e+002 - 1.24775986e+002 1.08196030e+002 1.20141624e+002 1.24633316e+002 - 1.08143242e+002 1.20112328e+002 1.24664803e+002 1.08207260e+002 - 1.20223511e+002 1.24795860e+002 1.08220795e+002 1.20249268e+002 - 1.24872696e+002 1.08201515e+002 1.20263718e+002 1.24915886e+002 - 1.08157936e+002 1.20237923e+002 1.24947678e+002 1.08081535e+002 - 1.20198196e+002 1.24948280e+002 1.08016296e+002 1.20163170e+002 - 1.24977692e+002 1.07940338e+002 1.20120705e+002 1.24971359e+002 - 1.07878891e+002 1.20064621e+002 1.24982300e+002 1.07802078e+002 - 1.20024796e+002 1.24982872e+002 1.07754944e+002 1.19971222e+002 - 1.25014069e+002 1.07720161e+002 1.19962830e+002 1.25048141e+002 - 1.07642784e+002 1.19895515e+002 1.25049286e+002 1.07560707e+002 - 1.19841652e+002 1.25030640e+002 1.07491631e+002 1.19782654e+002 - 1.25031364e+002 1.07418503e+002 1.19728828e+002 1.25016609e+002 - 1.07359695e+002 1.19682671e+002 1.25056580e+002 1.07260742e+002 - 1.19620438e+002 1.25024895e+002 1.07221703e+002 1.19571983e+002 - 1.25036339e+002 1.07170464e+002 1.19542145e+002 1.25041519e+002 - 1.07127151e+002 1.19498451e+002 1.25061531e+002 1.07076141e+002 - 1.19479843e+002 1.25079460e+002 1.07041542e+002 1.19454193e+002 - 1.25126366e+002 1.06990654e+002 1.19421043e+002 1.25130478e+002 - 1.06949463e+002 1.19380356e+002 1.25158676e+002 1.06867989e+002 - 1.19315666e+002 1.25135262e+002 1.06851006e+002 1.19270523e+002 - 1.25179596e+002 1.06810242e+002 1.19245209e+002 1.25209991e+002 - 1.06808884e+002 1.19243454e+002 1.25268723e+002 1.06761391e+002 - 1.19224396e+002 1.25281143e+002 1.06711884e+002 1.19165955e+002 - 1.25290878e+002 1.06664429e+002 1.19134880e+002 1.25306717e+002 - 1.06627724e+002 1.19110344e+002 1.25360168e+002 1.06542900e+002 - 1.19056999e+002 1.25354424e+002 1.06520592e+002 1.19020638e+002 - 1.25391037e+002 1.06464371e+002 1.18976646e+002 1.25390854e+002 - 1.06430725e+002 1.18937935e+002 1.25422249e+002 1.06364639e+002 - 1.18883438e+002 1.25422813e+002 1.06332512e+002 1.18849144e+002 - 1.25458305e+002 1.06299599e+002 1.18837524e+002 1.25478157e+002 - 1.06284599e+002 1.18817162e+002 1.25524658e+002 1.06216270e+002 - 1.18760521e+002 1.25514290e+002 1.06181107e+002 1.18704788e+002 - 1.25530502e+002 1.06146362e+002 1.18685089e+002 1.25547661e+002 - 1.06135193e+002 1.18677437e+002 1.25584961e+002 1.06092049e+002 - 1.18650337e+002 1.25584351e+002 1.06043503e+002 1.18585396e+002 - 1.25574188e+002 1.06015656e+002 1.18571373e+002 1.25599426e+002 - 1.06001083e+002 1.18552933e+002 1.25667274e+002 1.05947838e+002 - 1.18525185e+002 1.25675484e+002 1.05941460e+002 1.18509361e+002 - 1.25714417e+002 1.05926796e+002 1.18500038e+002 1.25741241e+002 - 1.05898277e+002 1.18456413e+002 1.25763687e+002 1.05885345e+002 - 1.18458923e+002 1.25799629e+002 1.05846207e+002 1.18417969e+002 - 1.25815193e+002 1.05798599e+002 1.18380280e+002 1.25815506e+002 - 1.05770599e+002 1.18345772e+002 1.25842293e+002 1.05740440e+002 - 1.18324158e+002 1.25865341e+002 1.05741928e+002 1.18300278e+002 - 1.25919724e+002 1.05711105e+002 1.18278313e+002 1.25931732e+002 - 1.05680214e+002 1.18245270e+002 1.25947784e+002 1.05671120e+002 - 1.18254196e+002 1.25983383e+002 1.05667412e+002 1.18237961e+002 - 1.26013512e+002 1.05626900e+002 1.18203133e+002 1.26004204e+002 - 1.05633415e+002 1.18207268e+002 1.26069267e+002 1.05559830e+002 - 1.18155685e+002 1.26049065e+002 1.05543320e+002 1.18122353e+002 - 1.26056648e+002 1.05548271e+002 1.18140663e+002 1.26098747e+002 - 1.05562645e+002 1.18146141e+002 1.26157944e+002 1.05555038e+002 - 1.18141251e+002 1.26180916e+002 1.05566879e+002 1.18163254e+002 - 1.26243027e+002 1.05532318e+002 1.18136375e+002 1.26244270e+002 - 1.05519218e+002 1.18111549e+002 1.26261955e+002 1.05475945e+002 - 1.18092842e+002 1.26269554e+002 1.05483337e+002 1.18072136e+002 - 1.26310280e+002 1.05456703e+002 1.18065933e+002 1.26334465e+002 - 1.05464966e+002 1.18069801e+002 1.26367889e+002 1.05462975e+002 - 1.18081207e+002 1.26392876e+002 1.05464760e+002 1.18069580e+002 - 1.26420860e+002 1.05469231e+002 1.18076759e+002 1.26452858e+002 - 1.05453857e+002 1.18056389e+002 1.26481018e+002 1.05408798e+002 - 1.18039452e+002 1.26482468e+002 1.05407883e+002 1.18017815e+002 - 1.26498566e+002 1.05396584e+002 1.18020699e+002 1.26514793e+002 - 1.05409096e+002 1.18017899e+002 1.26559914e+002 1.05387451e+002 - 1.18012505e+002 1.26566917e+002 1.05383568e+002 1.18010284e+002 - 1.26596207e+002 1.05412788e+002 1.18050903e+002 1.26652962e+002 - 1.05400589e+002 1.18034424e+002 1.26667824e+002 1.05343544e+002 - 1.17995567e+002 1.26640350e+002 1.05352783e+002 1.17976059e+002 - 1.26680916e+002 1.05352859e+002 1.17987663e+002 1.26704826e+002 - 1.05339249e+002 1.17968880e+002 1.26710701e+002 1.05313698e+002 - 1.17955231e+002 1.26707367e+002 1.05310608e+002 1.17936661e+002 - 1.26716095e+002 1.05310387e+002 1.17940155e+002 1.26732368e+002 - 1.05288605e+002 1.17918091e+002 1.26741760e+002 1.05256699e+002 - 1.17911957e+002 1.26739738e+002 1.05299309e+002 1.17940544e+002 - 1.26789742e+002 1.05305328e+002 1.17960403e+002 1.26808372e+002 - 1.05307228e+002 1.17946037e+002 1.26825081e+002 1.05293312e+002 - 1.17939499e+002 1.26828506e+002 1.05294540e+002 1.17934784e+002 - 1.26840042e+002 1.05302467e+002 1.17951149e+002 1.26861450e+002 - 1.05290367e+002 1.17935738e+002 1.26857292e+002 1.05288506e+002 - 1.17947311e+002 1.26875763e+002 1.05307999e+002 1.17937447e+002 - 1.26898506e+002 1.05314247e+002 1.17953842e+002 1.26912064e+002 - 1.05308403e+002 1.17936028e+002 1.26904694e+002 1.05273972e+002 - 1.17923584e+002 1.26877045e+002 1.05282021e+002 1.17911133e+002 - 1.26880257e+002 1.05285080e+002 1.17921852e+002 1.26876022e+002 - 1.05299744e+002 1.17927284e+002 1.26881378e+002 1.05285187e+002 - 1.17933487e+002 1.26863220e+002 1.05286781e+002 1.17915802e+002 - 1.26853867e+002 1.05305313e+002 1.17941391e+002 1.26866081e+002 - 1.05292168e+002 1.17915390e+002 1.26849968e+002 1.05265274e+002 - 1.17903816e+002 1.26828392e+002 1.05265625e+002 1.17902626e+002 - 1.26827003e+002 1.05260971e+002 1.17913666e+002 1.26812546e+002 - 1.05265442e+002 1.17904381e+002 1.26798843e+002 1.05267326e+002 - 1.17919273e+002 1.26795685e+002 1.05288116e+002 1.17909775e+002 - 1.26791214e+002 1.05286072e+002 1.17914581e+002 1.26773842e+002 - 1.05298920e+002 1.17920876e+002 1.26775726e+002 1.05300819e+002 - 1.17931465e+002 1.26761963e+002 1.05303963e+002 1.17917900e+002 - 1.26754974e+002 1.05296051e+002 1.17909721e+002 1.26722473e+002 - 1.05288979e+002 1.17889893e+002 1.26691490e+002 1.05284805e+002 - 1.17909836e+002 1.26677605e+002 1.05310669e+002 1.17918762e+002 - 1.26682640e+002 1.05287842e+002 1.17915390e+002 1.26642097e+002 - 1.05282173e+002 1.17891380e+002 1.26607903e+002 1.05262962e+002 - 1.17891251e+002 1.26569862e+002 1.05269112e+002 1.17893990e+002 - 1.26554268e+002 1.05275291e+002 1.17920486e+002 1.26547485e+002 - 1.05268524e+002 1.17910507e+002 1.26517227e+002 1.05243607e+002 - 1.17903091e+002 1.26476990e+002 1.05265327e+002 1.17889740e+002 - 1.26455093e+002 1.05279915e+002 1.17913971e+002 1.26442429e+002 - 1.05321335e+002 1.17956467e+002 1.26453743e+002 1.05332726e+002 - 1.17993187e+002 1.26446342e+002 1.05313255e+002 1.17956352e+002 - 1.26407814e+002 1.05306839e+002 1.17948448e+002 1.26347404e+002 - 1.05296623e+002 1.17925011e+002 1.26292580e+002 1.05275429e+002 - 1.17927170e+002 1.26243073e+002 1.05291618e+002 1.17931839e+002 - 1.26228279e+002 1.05292198e+002 1.17946739e+002 1.26204422e+002 - 1.05296410e+002 1.17927742e+002 1.26162720e+002 1.05277504e+002 - 1.17918655e+002 1.26102142e+002 1.05311531e+002 1.17938545e+002 - 1.26089600e+002 1.05322250e+002 1.17960403e+002 1.26064598e+002 - 1.05339844e+002 1.17963676e+002 1.26034119e+002 1.05338310e+002 - 1.17976227e+002 1.26005028e+002 1.05377777e+002 1.17989700e+002 - 1.26003616e+002 1.05419495e+002 1.18049393e+002 1.26013985e+002 - 1.05449860e+002 1.18073784e+002 1.25998222e+002 1.05421059e+002 - 1.18065758e+002 1.25937866e+002 1.05455299e+002 1.18087532e+002 - 1.25938217e+002 1.05491432e+002 1.18132843e+002 1.25923027e+002 - 1.05512810e+002 1.18137840e+002 1.25883057e+002 1.05518280e+002 - 1.18161018e+002 1.25849236e+002 1.05575996e+002 1.18188828e+002 - 1.25857140e+002 1.05580849e+002 1.18207001e+002 1.25823555e+002 - 1.05617371e+002 1.18225159e+002 1.25812477e+002 1.05622116e+002 - 1.18242958e+002 1.25777412e+002 1.05623550e+002 1.18234566e+002 - 1.25731628e+002 1.05667473e+002 1.18282021e+002 1.25725197e+002 - 1.05682533e+002 1.18282936e+002 1.25690720e+002 1.05686966e+002 - 1.18291000e+002 1.25643471e+002 1.05726295e+002 1.18290527e+002 - 1.25613670e+002 1.05751656e+002 1.18322708e+002 1.25576729e+002 - 1.05812752e+002 1.18372490e+002 1.25577255e+002 1.05836220e+002 - 1.18407806e+002 1.25553566e+002 1.05865982e+002 1.18418335e+002 - 1.25537682e+002 1.05924324e+002 1.18482849e+002 1.25548111e+002 - 1.05944893e+002 1.18489159e+002 1.25504761e+002 1.05955208e+002 - 1.18519302e+002 1.25469284e+002 1.06019073e+002 1.18560417e+002 - 1.25476524e+002 1.06045486e+002 1.18596420e+002 1.25454231e+002 - 1.06071701e+002 1.18600677e+002 1.25418213e+002 1.06082771e+002 - 1.18627518e+002 1.25383110e+002 1.06133049e+002 1.18668533e+002 - 1.25378525e+002 1.06162796e+002 1.18713127e+002 1.25355423e+002 - 1.06206459e+002 1.18741936e+002 1.25339584e+002 1.06245705e+002 - 1.18791443e+002 1.25327133e+002 1.06310974e+002 1.18818878e+002 - 1.25318306e+002 1.06342880e+002 1.18854858e+002 1.25291405e+002 - 1.06389328e+002 1.18889496e+002 1.25274818e+002 1.06412582e+002 - 1.18919029e+002 1.25247299e+002 1.06452553e+002 1.18946953e+002 - 1.25244408e+002 1.06509041e+002 1.19003372e+002 1.25239868e+002 - 1.06567924e+002 1.19046211e+002 1.25223206e+002 1.06589767e+002 - 1.19083366e+002 1.25196266e+002 1.06609589e+002 1.19083069e+002 - 1.25159286e+002 1.06632217e+002 1.19110100e+002 1.25129417e+002 - 1.06649498e+002 1.19096100e+002 1.25079048e+002 1.06696159e+002 - 1.19150856e+002 1.25068771e+002 1.06765587e+002 1.19204895e+002 - 1.25069382e+002 1.06808632e+002 1.19254059e+002 1.25051910e+002 - 1.06843102e+002 1.19265472e+002 1.25015869e+002 1.06879318e+002 - 1.19300880e+002 1.24988945e+002 1.06942986e+002 1.19324005e+002 - 1.24972633e+002 1.06974205e+002 1.19355583e+002 1.24939835e+002 - 1.07052437e+002 1.19414726e+002 1.24945145e+002 1.07094406e+002 - 1.19465767e+002 1.24929474e+002 1.07158272e+002 1.19508705e+002 - 1.24936790e+002 1.07225891e+002 1.19576065e+002 1.24929848e+002 - 1.07303543e+002 1.19625160e+002 1.24906242e+002 1.07383385e+002 - 1.19706909e+002 1.24915474e+002 1.07454254e+002 1.19744713e+002 - 1.24926178e+002 1.07507256e+002 1.19799377e+002 1.24923294e+002 - 1.07587898e+002 1.19844780e+002 1.24930023e+002 1.07651901e+002 - 1.19908226e+002 1.24925125e+002 1.07739311e+002 1.19967484e+002 - 1.24934158e+002 1.07826843e+002 1.20039917e+002 1.24942772e+002 - 1.07902412e+002 1.20077782e+002 1.24943871e+002 1.07980049e+002 - 1.20140915e+002 1.24952789e+002 1.08042404e+002 1.20147110e+002 - 1.24919731e+002 1.08079926e+002 1.20159271e+002 1.24878868e+002 - 1.08160210e+002 1.20197678e+002 1.24868439e+002 1.08177109e+002 - 1.20209717e+002 1.24816177e+002 1.08169891e+002 1.20149132e+002 - 1.24739273e+002 1.08086258e+002 1.20053467e+002 1.24582603e+002 - 1.08014481e+002 1.20008583e+002 1.24617508e+002 1.08086464e+002 - 1.20122131e+002 1.24755692e+002 1.08096695e+002 1.20151077e+002 - 1.24834984e+002 1.08086655e+002 1.20175133e+002 1.24885925e+002 - 1.08050652e+002 1.20157501e+002 1.24927887e+002 1.07967636e+002 - 1.20108681e+002 1.24921303e+002 1.07898003e+002 1.20062988e+002 - 1.24943260e+002 1.07826477e+002 1.20030464e+002 1.24947922e+002 - 1.07781281e+002 1.19993683e+002 1.24974335e+002 1.07685867e+002 - 1.19929947e+002 1.24953079e+002 1.07634956e+002 1.19874718e+002 - 1.24989494e+002 1.07577454e+002 1.19847542e+002 1.25005478e+002 - 1.07510193e+002 1.19794655e+002 1.25013481e+002 1.07437935e+002 - 1.19746658e+002 1.25003471e+002 1.07377998e+002 1.19689751e+002 - 1.25002068e+002 1.07301231e+002 1.19632843e+002 1.24983620e+002 - 1.07257637e+002 1.19601715e+002 1.25026688e+002 1.07165192e+002 - 1.19544846e+002 1.25012985e+002 1.07126404e+002 1.19494865e+002 - 1.25023827e+002 1.07074875e+002 1.19470596e+002 1.25036148e+002 - 1.07017563e+002 1.19416496e+002 1.25043030e+002 1.06952187e+002 - 1.19370605e+002 1.25040260e+002 1.06898178e+002 1.19329552e+002 - 1.25067757e+002 1.06844452e+002 1.19297142e+002 1.25071655e+002 - 1.06836067e+002 1.19287392e+002 1.25127457e+002 1.06767517e+002 - 1.19230690e+002 1.25120583e+002 1.06734177e+002 1.19172470e+002 - 1.25149956e+002 1.06693947e+002 1.19147972e+002 1.25175995e+002 - 1.06663193e+002 1.19121422e+002 1.25214462e+002 1.06620262e+002 - 1.19102676e+002 1.25230202e+002 1.06579163e+002 1.19061287e+002 - 1.25251030e+002 1.06538750e+002 1.19037010e+002 1.25271950e+002 - 1.06476357e+002 1.18982246e+002 1.25300919e+002 1.06397346e+002 - 1.18931351e+002 1.25307404e+002 1.06385765e+002 1.18906898e+002 - 1.25348244e+002 1.06337448e+002 1.18874756e+002 1.25365891e+002 - 1.06304245e+002 1.18834602e+002 1.25400528e+002 1.06249977e+002 - 1.18792953e+002 1.25403030e+002 1.06211266e+002 1.18753952e+002 - 1.25434135e+002 1.06163635e+002 1.18722534e+002 1.25440346e+002 - 1.06130310e+002 1.18691673e+002 1.25469215e+002 1.06061661e+002 - 1.18628502e+002 1.25455521e+002 1.06047112e+002 1.18595863e+002 - 1.25493195e+002 1.06016953e+002 1.18581474e+002 1.25514252e+002 - 1.06002968e+002 1.18569099e+002 1.25551826e+002 1.05950912e+002 - 1.18530235e+002 1.25544235e+002 1.05902931e+002 1.18470459e+002 - 1.25536560e+002 1.05854538e+002 1.18436142e+002 1.25541550e+002 - 1.05872025e+002 1.18449371e+002 1.25635445e+002 1.05814240e+002 - 1.18416275e+002 1.25644508e+002 1.05804008e+002 1.18396965e+002 - 1.25677589e+002 1.05789909e+002 1.18383949e+002 1.25705986e+002 - 1.05765472e+002 1.18344536e+002 1.25731216e+002 1.05748749e+002 - 1.18345428e+002 1.25761589e+002 1.05728706e+002 1.18320702e+002 - 1.25798027e+002 1.05680557e+002 1.18285789e+002 1.25801125e+002 - 1.05638985e+002 1.18231033e+002 1.25805786e+002 1.05599274e+002 - 1.18208252e+002 1.25823097e+002 1.05600243e+002 1.18179451e+002 - 1.25876434e+002 1.05553711e+002 1.18149651e+002 1.25875534e+002 - 1.05531609e+002 1.18121841e+002 1.25902176e+002 1.05521492e+002 - 1.18124916e+002 1.25929970e+002 1.05507332e+002 1.18094757e+002 - 1.25946419e+002 1.05477371e+002 1.18077217e+002 1.25954048e+002 - 1.05460358e+002 1.18053894e+002 1.25996376e+002 1.05397507e+002 - 1.18012466e+002 1.25982651e+002 1.05399078e+002 1.17996109e+002 - 1.26008751e+002 1.05408386e+002 1.18021385e+002 1.26054436e+002 - 1.05416473e+002 1.18018639e+002 1.26103836e+002 1.05406898e+002 - 1.18022530e+002 1.26136635e+002 1.05408722e+002 1.18027206e+002 - 1.26182671e+002 1.05382217e+002 1.18011665e+002 1.26193733e+002 - 1.05355743e+002 1.17972313e+002 1.26197815e+002 1.05316544e+002 - 1.17953667e+002 1.26208221e+002 1.05318230e+002 1.17935585e+002 - 1.26251083e+002 1.05299706e+002 1.17933090e+002 1.26275406e+002 - 1.05303978e+002 1.17928757e+002 1.26305367e+002 1.05306099e+002 - 1.17940842e+002 1.26341309e+002 1.05294273e+002 1.17917900e+002 - 1.26348656e+002 1.05288719e+002 1.17920914e+002 1.26371773e+002 - 1.05299072e+002 1.17918091e+002 1.26419563e+002 1.05259468e+002 - 1.17900734e+002 1.26430679e+002 1.05244743e+002 1.17875351e+002 - 1.26445313e+002 1.05233841e+002 1.17877853e+002 1.26459137e+002 - 1.05249565e+002 1.17875153e+002 1.26500877e+002 1.05228706e+002 - 1.17864761e+002 1.26510918e+002 1.05212746e+002 1.17856918e+002 - 1.26529251e+002 1.05253883e+002 1.17913872e+002 1.26599762e+002 - 1.05249100e+002 1.17896782e+002 1.26615639e+002 1.05210602e+002 - 1.17883057e+002 1.26614235e+002 1.05229446e+002 1.17872169e+002 - 1.26656998e+002 1.05226326e+002 1.17878014e+002 1.26680916e+002 - 1.05208267e+002 1.17856018e+002 1.26684563e+002 1.05178978e+002 - 1.17837402e+002 1.26674866e+002 1.05147057e+002 1.17784538e+002 - 1.26658188e+002 1.05137596e+002 1.17782402e+002 1.26659996e+002 - 1.05142540e+002 1.17789268e+002 1.26697800e+002 1.05104446e+002 - 1.17781837e+002 1.26692543e+002 1.05147110e+002 1.17802361e+002 - 1.26735680e+002 1.05148560e+002 1.17825325e+002 1.26754974e+002 - 1.05158089e+002 1.17810287e+002 1.26778702e+002 1.05138428e+002 - 1.17804482e+002 1.26772141e+002 1.05152794e+002 1.17812660e+002 - 1.26806221e+002 1.05166916e+002 1.17835701e+002 1.26832054e+002 - 1.05166344e+002 1.17833321e+002 1.26834061e+002 1.05157921e+002 - 1.17837379e+002 1.26844643e+002 1.05184814e+002 1.17829582e+002 - 1.26868889e+002 1.05159569e+002 1.17820602e+002 1.26853790e+002 - 1.05166542e+002 1.17819069e+002 1.26867920e+002 1.05137253e+002 - 1.17802269e+002 1.26846298e+002 1.05136322e+002 1.17791359e+002 - 1.26845528e+002 1.05144623e+002 1.17801697e+002 1.26842064e+002 - 1.05162407e+002 1.17811386e+002 1.26842705e+002 1.05139664e+002 - 1.17805656e+002 1.26824593e+002 1.05137619e+002 1.17788498e+002 - 1.26811867e+002 1.05139839e+002 1.17797127e+002 1.26803726e+002 - 1.05139816e+002 1.17781075e+002 1.26801231e+002 1.05122047e+002 - 1.17783463e+002 1.26779739e+002 1.05122566e+002 1.17774918e+002 - 1.26772789e+002 1.05103386e+002 1.17768005e+002 1.26747925e+002 - 1.05113892e+002 1.17768524e+002 1.26746002e+002 1.05114952e+002 - 1.17780640e+002 1.26740387e+002 1.05121460e+002 1.17755859e+002 - 1.26725632e+002 1.05137840e+002 1.17778282e+002 1.26724960e+002 - 1.05145561e+002 1.17779419e+002 1.26714897e+002 1.05138741e+002 - 1.17783653e+002 1.26698608e+002 1.05155075e+002 1.17780365e+002 - 1.26706787e+002 1.05143539e+002 1.17774361e+002 1.26669289e+002 - 1.05134056e+002 1.17750259e+002 1.26636665e+002 1.05106644e+002 - 1.17743523e+002 1.26601563e+002 1.05115440e+002 1.17738419e+002 - 1.26586662e+002 1.05095894e+002 1.17739838e+002 1.26552780e+002 - 1.05110069e+002 1.17735672e+002 1.26536873e+002 1.05089134e+002 - 1.17732048e+002 1.26503464e+002 1.05105736e+002 1.17747559e+002 - 1.26499367e+002 1.05102234e+002 1.17763840e+002 1.26477760e+002 - 1.05095795e+002 1.17754089e+002 1.26450775e+002 1.05071991e+002 - 1.17742386e+002 1.26404739e+002 1.05085213e+002 1.17732224e+002 - 1.26383644e+002 1.05098465e+002 1.17755898e+002 1.26374092e+002 - 1.05146286e+002 1.17797035e+002 1.26388054e+002 1.05142235e+002 - 1.17816307e+002 1.26361443e+002 1.05155464e+002 1.17812675e+002 - 1.26349457e+002 1.05141411e+002 1.17803009e+002 1.26292191e+002 - 1.05146561e+002 1.17791969e+002 1.26248009e+002 1.05134918e+002 - 1.17798973e+002 1.26206398e+002 1.05165756e+002 1.17817421e+002 - 1.26208420e+002 1.05175049e+002 1.17844444e+002 1.26188759e+002 - 1.05177528e+002 1.17828125e+002 1.26143776e+002 1.05172607e+002 - 1.17824409e+002 1.26098892e+002 1.05188805e+002 1.17836739e+002 - 1.26074951e+002 1.05195724e+002 1.17849602e+002 1.26043816e+002 - 1.05217522e+002 1.17858978e+002 1.26017815e+002 1.05204056e+002 - 1.17864090e+002 1.25969940e+002 1.05226410e+002 1.17858459e+002 - 1.25953415e+002 1.05269371e+002 1.17920074e+002 1.25959419e+002 - 1.05269974e+002 1.17915596e+002 1.25917786e+002 1.05252922e+002 - 1.17917145e+002 1.25863312e+002 1.05295738e+002 1.17948914e+002 - 1.25872299e+002 1.05332100e+002 1.17990349e+002 1.25862457e+002 - 1.05355484e+002 1.17996941e+002 1.25821800e+002 1.05359413e+002 - 1.18015312e+002 1.25790771e+002 1.05426727e+002 1.18059189e+002 - 1.25804825e+002 1.05428711e+002 1.18067177e+002 1.25769081e+002 - 1.05433983e+002 1.18058708e+002 1.25727661e+002 1.05445740e+002 - 1.18081093e+002 1.25697960e+002 1.05469406e+002 1.18095551e+002 - 1.25668289e+002 1.05533707e+002 1.18163689e+002 1.25682220e+002 - 1.05547340e+002 1.18165901e+002 1.25643608e+002 1.05555161e+002 - 1.18175140e+002 1.25602661e+002 1.05606689e+002 1.18192368e+002 - 1.25580956e+002 1.05626381e+002 1.18219193e+002 1.25545624e+002 - 1.05660950e+002 1.18235077e+002 1.25521683e+002 1.05684883e+002 - 1.18274429e+002 1.25495247e+002 1.05726692e+002 1.18298607e+002 - 1.25488472e+002 1.05769905e+002 1.18350082e+002 1.25476852e+002 - 1.05806183e+002 1.18370056e+002 1.25442245e+002 1.05823280e+002 - 1.18403748e+002 1.25426910e+002 1.05873795e+002 1.18435379e+002 - 1.25423019e+002 1.05892738e+002 1.18466469e+002 1.25394035e+002 - 1.05929298e+002 1.18478195e+002 1.25372940e+002 1.05939537e+002 - 1.18505226e+002 1.25336678e+002 1.05974838e+002 1.18532028e+002 - 1.25319351e+002 1.06020760e+002 1.18586769e+002 1.25308075e+002 - 1.06073006e+002 1.18621925e+002 1.25295341e+002 1.06106094e+002 - 1.18672089e+002 1.25280426e+002 1.06177505e+002 1.18699966e+002 - 1.25271164e+002 1.06207382e+002 1.18738464e+002 1.25250343e+002 - 1.06229843e+002 1.18743301e+002 1.25206398e+002 1.06256561e+002 - 1.18779755e+002 1.25184677e+002 1.06297386e+002 1.18810112e+002 - 1.25181519e+002 1.06364273e+002 1.18882133e+002 1.25186577e+002 - 1.06430687e+002 1.18931053e+002 1.25177109e+002 1.06460503e+002 - 1.18977173e+002 1.25159523e+002 1.06492569e+002 1.18987755e+002 - 1.25134399e+002 1.06502274e+002 1.19006348e+002 1.25095947e+002 - 1.06535667e+002 1.19004013e+002 1.25053635e+002 1.06564491e+002 - 1.19041039e+002 1.25023262e+002 1.06623497e+002 1.19086716e+002 - 1.25020813e+002 1.06666786e+002 1.19138512e+002 1.25004578e+002 - 1.06700592e+002 1.19145409e+002 1.24961090e+002 1.06750687e+002 - 1.19201996e+002 1.24953148e+002 1.06818611e+002 1.19225899e+002 - 1.24935059e+002 1.06842316e+002 1.19247032e+002 1.24898300e+002 - 1.06906227e+002 1.19291412e+002 1.24884590e+002 1.06950043e+002 - 1.19343979e+002 1.24869949e+002 1.07021736e+002 1.19394981e+002 - 1.24883118e+002 1.07084053e+002 1.19458588e+002 1.24867195e+002 - 1.07184303e+002 1.19527863e+002 1.24869255e+002 1.07254990e+002 - 1.19606941e+002 1.24881615e+002 1.07335625e+002 1.19654648e+002 - 1.24891830e+002 1.07414757e+002 1.19732971e+002 1.24913689e+002 - 1.07501076e+002 1.19779259e+002 1.24924156e+002 1.07547485e+002 - 1.19820358e+002 1.24902451e+002 1.07624962e+002 1.19872261e+002 - 1.24899536e+002 1.07699554e+002 1.19933754e+002 1.24899803e+002 - 1.07775978e+002 1.19970482e+002 1.24896294e+002 1.07843552e+002 - 1.20029739e+002 1.24902519e+002 1.07907715e+002 1.20034882e+002 - 1.24870926e+002 1.07961197e+002 1.20070999e+002 1.24845039e+002 - 1.08040710e+002 1.20097656e+002 1.24828674e+002 1.08057343e+002 - 1.20105118e+002 1.24775047e+002 1.08064384e+002 1.20061859e+002 - 1.24707474e+002 1.07998695e+002 1.19983948e+002 1.24570610e+002 - 1.07873421e+002 1.19890045e+002 1.24548218e+002 1.07934914e+002 - 1.19994637e+002 1.24678749e+002 1.07966286e+002 1.20041389e+002 - 1.24774117e+002 1.07955124e+002 1.20072502e+002 1.24834763e+002 - 1.07933708e+002 1.20061302e+002 1.24884811e+002 1.07861809e+002 - 1.20025696e+002 1.24895355e+002 1.07794609e+002 1.19989113e+002 - 1.24917137e+002 1.07721703e+002 1.19942009e+002 1.24915573e+002 - 1.07665413e+002 1.19902153e+002 1.24936569e+002 1.07575386e+002 - 1.19843048e+002 1.24924019e+002 1.07536964e+002 1.19804695e+002 - 1.24968513e+002 1.07463051e+002 1.19755737e+002 1.24969559e+002 - 1.07393738e+002 1.19697914e+002 1.24972244e+002 1.07319817e+002 - 1.19654236e+002 1.24957962e+002 1.07260559e+002 1.19593239e+002 - 1.24957138e+002 1.07183525e+002 1.19538399e+002 1.24938461e+002 - 1.07126328e+002 1.19490067e+002 1.24969727e+002 1.07065483e+002 - 1.19463104e+002 1.24983482e+002 1.07024109e+002 1.19413475e+002 - 1.24992516e+002 1.06965851e+002 1.19379005e+002 1.24996971e+002 - 1.06910339e+002 1.19327057e+002 1.25005463e+002 1.06860168e+002 - 1.19302292e+002 1.25031166e+002 1.06791946e+002 1.19241081e+002 - 1.25034477e+002 1.06720490e+002 1.19191544e+002 1.25026848e+002 - 1.06694786e+002 1.19165878e+002 1.25063675e+002 1.06627831e+002 - 1.19113136e+002 1.25060768e+002 1.06590981e+002 1.19057755e+002 - 1.25084503e+002 1.06558083e+002 1.19035896e+002 1.25113876e+002 - 1.06518021e+002 1.18996109e+002 1.25146278e+002 1.06470467e+002 - 1.18972969e+002 1.25160576e+002 1.06442787e+002 1.18945854e+002 - 1.25194954e+002 1.06390724e+002 1.18907310e+002 1.25201996e+002 - 1.06332977e+002 1.18860291e+002 1.25242935e+002 1.06263000e+002 - 1.18816147e+002 1.25254387e+002 1.06231094e+002 1.18779190e+002 - 1.25277428e+002 1.06191055e+002 1.18749084e+002 1.25296562e+002 - 1.06155968e+002 1.18708305e+002 1.25336525e+002 1.06102226e+002 - 1.18671013e+002 1.25340576e+002 1.06051987e+002 1.18618553e+002 - 1.25357719e+002 1.05984894e+002 1.18566521e+002 1.25343262e+002 - 1.05965950e+002 1.18541862e+002 1.25382408e+002 1.05903809e+002 - 1.18495575e+002 1.25377014e+002 1.05891708e+002 1.18464294e+002 - 1.25417290e+002 1.05881241e+002 1.18468315e+002 1.25458153e+002 - 1.05834770e+002 1.18419121e+002 1.25466194e+002 1.05784706e+002 - 1.18385376e+002 1.25459152e+002 1.05765686e+002 1.18352707e+002 - 1.25478882e+002 1.05714005e+002 1.18316673e+002 1.25484390e+002 - 1.05700890e+002 1.18302711e+002 1.25549957e+002 1.05657143e+002 - 1.18279022e+002 1.25570999e+002 1.05649551e+002 1.18266563e+002 - 1.25606667e+002 1.05644958e+002 1.18260468e+002 1.25645195e+002 - 1.05607529e+002 1.18208054e+002 1.25655098e+002 1.05588081e+002 - 1.18202393e+002 1.25687454e+002 1.05579140e+002 1.18186211e+002 - 1.25727692e+002 1.05541840e+002 1.18165886e+002 1.25740570e+002 - 1.05515038e+002 1.18130875e+002 1.25763390e+002 1.05461510e+002 - 1.18093208e+002 1.25767471e+002 1.05454628e+002 1.18054665e+002 - 1.25807808e+002 1.05403625e+002 1.18011757e+002 1.25806374e+002 - 1.05394257e+002 1.18005569e+002 1.25846672e+002 1.05365761e+002 - 1.17989838e+002 1.25861961e+002 1.05337784e+002 1.17945480e+002 - 1.25864769e+002 1.05304588e+002 1.17921989e+002 1.25866180e+002 - 1.05286659e+002 1.17894836e+002 1.25898468e+002 1.05245972e+002 - 1.17880753e+002 1.25915733e+002 1.05260818e+002 1.17879662e+002 - 1.25947380e+002 1.05247032e+002 1.17878754e+002 1.25974167e+002 - 1.05257805e+002 1.17873909e+002 1.26022141e+002 1.05245995e+002 - 1.17882164e+002 1.26057571e+002 1.05231369e+002 1.17872032e+002 - 1.26093697e+002 1.05217522e+002 1.17866638e+002 1.26112717e+002 - 1.05208992e+002 1.17848053e+002 1.26143402e+002 1.05179016e+002 - 1.17835419e+002 1.26158554e+002 1.05177628e+002 1.17814171e+002 - 1.26196533e+002 1.05166443e+002 1.17816620e+002 1.26225906e+002 - 1.05183777e+002 1.17827675e+002 1.26279266e+002 1.05157623e+002 - 1.17821831e+002 1.26286819e+002 1.05162392e+002 1.17805130e+002 - 1.26307144e+002 1.05166580e+002 1.17814072e+002 1.26335190e+002 - 1.05156815e+002 1.17788109e+002 1.26366852e+002 1.05099586e+002 - 1.17754875e+002 1.26355774e+002 1.05102699e+002 1.17748947e+002 - 1.26383713e+002 1.05099037e+002 1.17756485e+002 1.26412331e+002 - 1.05104309e+002 1.17748535e+002 1.26441010e+002 1.05067154e+002 - 1.17726463e+002 1.26438698e+002 1.05050995e+002 1.17709755e+002 - 1.26460403e+002 1.05073639e+002 1.17743523e+002 1.26503288e+002 - 1.05066406e+002 1.17732780e+002 1.26525421e+002 1.05042625e+002 - 1.17723328e+002 1.26533150e+002 1.05058487e+002 1.17721222e+002 - 1.26586227e+002 1.05066818e+002 1.17741188e+002 1.26615776e+002 - 1.05057312e+002 1.17725006e+002 1.26631973e+002 1.05017448e+002 - 1.17697556e+002 1.26609314e+002 1.04993202e+002 1.17651344e+002 - 1.26590797e+002 1.04976868e+002 1.17646889e+002 1.26595306e+002 - 1.04963028e+002 1.17631592e+002 1.26610512e+002 1.04960106e+002 - 1.17654228e+002 1.26636566e+002 1.04978386e+002 1.17653008e+002 - 1.26658699e+002 1.04999222e+002 1.17683678e+002 1.26693192e+002 - 1.05022202e+002 1.17686699e+002 1.26733093e+002 1.05013756e+002 - 1.17688148e+002 1.26737640e+002 1.05010300e+002 1.17681496e+002 - 1.26751251e+002 1.05006088e+002 1.17688034e+002 1.26750702e+002 - 1.05008011e+002 1.17685265e+002 1.26763947e+002 1.04978188e+002 - 1.17672714e+002 1.26750061e+002 1.05006149e+002 1.17669876e+002 - 1.26778137e+002 1.04984154e+002 1.17660347e+002 1.26772003e+002 - 1.04975540e+002 1.17648285e+002 1.26769722e+002 1.04964584e+002 - 1.17653130e+002 1.26766563e+002 1.04988213e+002 1.17660889e+002 - 1.26785080e+002 1.04984779e+002 1.17663422e+002 1.26772789e+002 - 1.04997856e+002 1.17662071e+002 1.26773964e+002 1.04966385e+002 - 1.17650208e+002 1.26739563e+002 1.04959946e+002 1.17627182e+002 - 1.26725189e+002 1.04958534e+002 1.17635651e+002 1.26712181e+002 - 1.04978554e+002 1.17634850e+002 1.26729370e+002 1.04958855e+002 - 1.17635139e+002 1.26703407e+002 1.04952538e+002 1.17622932e+002 - 1.26683640e+002 1.04928520e+002 1.17605209e+002 1.26649315e+002 - 1.04958443e+002 1.17625397e+002 1.26669563e+002 1.04963417e+002 - 1.17642120e+002 1.26672569e+002 1.04982368e+002 1.17631302e+002 - 1.26671013e+002 1.04977402e+002 1.17632690e+002 1.26658997e+002 - 1.04971893e+002 1.17623985e+002 1.26626648e+002 1.04962067e+002 - 1.17620811e+002 1.26615013e+002 1.04976028e+002 1.17609772e+002 - 1.26612625e+002 1.04956955e+002 1.17598953e+002 1.26571541e+002 - 1.04964615e+002 1.17588829e+002 1.26552727e+002 1.04940025e+002 - 1.17586044e+002 1.26518723e+002 1.04940361e+002 1.17573601e+002 - 1.26496681e+002 1.04948288e+002 1.17599457e+002 1.26491600e+002 - 1.04960419e+002 1.17599869e+002 1.26477364e+002 1.04946945e+002 - 1.17610359e+002 1.26445702e+002 1.04955620e+002 1.17613396e+002 - 1.26438873e+002 1.04951965e+002 1.17625298e+002 1.26415215e+002 - 1.04916618e+002 1.17586082e+002 1.26360054e+002 1.04890640e+002 - 1.17576828e+002 1.26320114e+002 1.04930008e+002 1.17585670e+002 - 1.26319717e+002 1.04938538e+002 1.17610512e+002 1.26304916e+002 - 1.04969360e+002 1.17633965e+002 1.26298088e+002 1.04966248e+002 - 1.17652756e+002 1.26274300e+002 1.04997635e+002 1.17671730e+002 - 1.26280853e+002 1.04978363e+002 1.17657440e+002 1.26223579e+002 - 1.04972404e+002 1.17640297e+002 1.26165680e+002 1.04983299e+002 - 1.17669365e+002 1.26144615e+002 1.05016815e+002 1.17688324e+002 - 1.26149750e+002 1.05029854e+002 1.17711388e+002 1.26129768e+002 - 1.05047035e+002 1.17706474e+002 1.26097580e+002 1.05017914e+002 - 1.17687935e+002 1.26037697e+002 1.05036850e+002 1.17691299e+002 - 1.26004929e+002 1.05046814e+002 1.17711365e+002 1.25972534e+002 - 1.05062912e+002 1.17721458e+002 1.25947769e+002 1.05061050e+002 - 1.17734329e+002 1.25920708e+002 1.05089211e+002 1.17740829e+002 - 1.25905121e+002 1.05141701e+002 1.17807404e+002 1.25916245e+002 - 1.05136818e+002 1.17802711e+002 1.25869507e+002 1.05113243e+002 - 1.17794800e+002 1.25813652e+002 1.05144852e+002 1.17807930e+002 - 1.25804428e+002 1.05179558e+002 1.17850739e+002 1.25789627e+002 - 1.05204880e+002 1.17862656e+002 1.25757805e+002 1.05201462e+002 - 1.17874184e+002 1.25712898e+002 1.05250977e+002 1.17900146e+002 - 1.25714348e+002 1.05271187e+002 1.17932106e+002 1.25698944e+002 - 1.05285973e+002 1.17929626e+002 1.25662903e+002 1.05295502e+002 - 1.17946930e+002 1.25625023e+002 1.05310448e+002 1.17948479e+002 - 1.25589287e+002 1.05376900e+002 1.18022942e+002 1.25605385e+002 - 1.05399117e+002 1.18029762e+002 1.25573059e+002 1.05400787e+002 - 1.18037544e+002 1.25523270e+002 1.05456848e+002 1.18059265e+002 - 1.25514488e+002 1.05485779e+002 1.18092255e+002 1.25490913e+002 - 1.05514397e+002 1.18109352e+002 1.25453918e+002 1.05541512e+002 - 1.18150902e+002 1.25424232e+002 1.05594589e+002 1.18183571e+002 - 1.25437088e+002 1.05635567e+002 1.18234688e+002 1.25424255e+002 - 1.05663788e+002 1.18248672e+002 1.25387207e+002 1.05686058e+002 - 1.18287750e+002 1.25366478e+002 1.05734375e+002 1.18315041e+002 - 1.25363426e+002 1.05759277e+002 1.18345909e+002 1.25336937e+002 - 1.05785454e+002 1.18349831e+002 1.25304756e+002 1.05801102e+002 - 1.18387390e+002 1.25275917e+002 1.05837143e+002 1.18411331e+002 - 1.25254662e+002 1.05878906e+002 1.18465256e+002 1.25240288e+002 - 1.05910088e+002 1.18481735e+002 1.25212288e+002 1.05948502e+002 - 1.18525635e+002 1.25200584e+002 1.06038849e+002 1.18583221e+002 - 1.25216515e+002 1.06070633e+002 1.18619026e+002 1.25192894e+002 - 1.06088226e+002 1.18623138e+002 1.25145378e+002 1.06125717e+002 - 1.18676636e+002 1.25135208e+002 1.06167725e+002 1.18703423e+002 - 1.25129082e+002 1.06212479e+002 1.18752243e+002 1.25114838e+002 - 1.06275978e+002 1.18797066e+002 1.25099007e+002 1.06325432e+002 - 1.18862404e+002 1.25104301e+002 1.06361473e+002 1.18874496e+002 - 1.25081375e+002 1.06363647e+002 1.18888634e+002 1.25033676e+002 - 1.06412270e+002 1.18904816e+002 1.25010246e+002 1.06450592e+002 - 1.18946968e+002 1.24987335e+002 1.06494743e+002 1.18975861e+002 - 1.24964241e+002 1.06518661e+002 1.19009209e+002 1.24930893e+002 - 1.06562218e+002 1.19034760e+002 1.24904396e+002 1.06607727e+002 - 1.19083275e+002 1.24887238e+002 1.06687630e+002 1.19118706e+002 - 1.24878906e+002 1.06733597e+002 1.19163818e+002 1.24858734e+002 - 1.06795692e+002 1.19207115e+002 1.24847321e+002 1.06838028e+002 - 1.19256531e+002 1.24831238e+002 1.06910126e+002 1.19306770e+002 - 1.24841377e+002 1.06979691e+002 1.19375427e+002 1.24836067e+002 - 1.07080223e+002 1.19446335e+002 1.24831848e+002 1.07146858e+002 - 1.19518730e+002 1.24844673e+002 1.07225525e+002 1.19564842e+002 - 1.24854767e+002 1.07307152e+002 1.19644714e+002 1.24870728e+002 - 1.07385231e+002 1.19685516e+002 1.24874413e+002 1.07439354e+002 - 1.19734924e+002 1.24859688e+002 1.07515839e+002 1.19781258e+002 - 1.24854340e+002 1.07589493e+002 1.19846779e+002 1.24856018e+002 - 1.07656799e+002 1.19875320e+002 1.24838135e+002 1.07705750e+002 - 1.19910683e+002 1.24823944e+002 1.07789886e+002 1.19942757e+002 - 1.24819237e+002 1.07853500e+002 1.19991386e+002 1.24807693e+002 - 1.07923866e+002 1.20011307e+002 1.24785019e+002 1.07941635e+002 - 1.20017952e+002 1.24726379e+002 1.07970718e+002 1.19991371e+002 - 1.24678436e+002 1.07906677e+002 1.19917580e+002 1.24540138e+002 - 1.07767570e+002 1.19820496e+002 1.24523232e+002 1.07807243e+002 - 1.19908691e+002 1.24643456e+002 1.07824020e+002 1.19938995e+002 - 1.24721909e+002 1.07821320e+002 1.19977684e+002 1.24792732e+002 - 1.07787239e+002 1.19959129e+002 1.24836685e+002 1.07727509e+002 - 1.19937721e+002 1.24852516e+002 1.07674278e+002 1.19907341e+002 - 1.24887512e+002 1.07587456e+002 1.19851974e+002 1.24878166e+002 - 1.07522133e+002 1.19797150e+002 1.24883591e+002 1.07439148e+002 - 1.19745171e+002 1.24877922e+002 1.07390602e+002 1.19697571e+002 - 1.24915871e+002 1.07333519e+002 1.19667030e+002 1.24932396e+002 - 1.07259392e+002 1.19601654e+002 1.24929398e+002 1.07183128e+002 - 1.19548637e+002 1.24910629e+002 1.07119545e+002 1.19486160e+002 - 1.24907120e+002 1.07040756e+002 1.19428329e+002 1.24892708e+002 - 1.07002892e+002 1.19399292e+002 1.24935417e+002 1.06917244e+002 - 1.19346649e+002 1.24922264e+002 1.06890236e+002 1.19314667e+002 - 1.24953339e+002 1.06847336e+002 1.19296371e+002 1.24969452e+002 - 1.06784653e+002 1.19235878e+002 1.24973282e+002 1.06744240e+002 - 1.19220924e+002 1.25004341e+002 1.06666771e+002 1.19153839e+002 - 1.25005180e+002 1.06583183e+002 1.19083878e+002 1.24977417e+002 - 1.06541473e+002 1.19046097e+002 1.25005638e+002 1.06486588e+002 - 1.19004677e+002 1.25009949e+002 1.06443230e+002 1.18938873e+002 - 1.25030617e+002 1.06399216e+002 1.18905479e+002 1.25052513e+002 - 1.06356522e+002 1.18872948e+002 1.25081856e+002 1.06317719e+002 - 1.18852501e+002 1.25103302e+002 1.06311134e+002 1.18847252e+002 - 1.25156067e+002 1.06260132e+002 1.18808228e+002 1.25163948e+002 - 1.06188950e+002 1.18748657e+002 1.25192657e+002 1.06137253e+002 - 1.18725243e+002 1.25224556e+002 1.06093636e+002 1.18670143e+002 - 1.25236183e+002 1.06049011e+002 1.18648163e+002 1.25259796e+002 - 1.06016357e+002 1.18605247e+002 1.25295448e+002 1.05958191e+002 - 1.18567696e+002 1.25301109e+002 1.05902718e+002 1.18504707e+002 - 1.25307465e+002 1.05841423e+002 1.18459175e+002 1.25294724e+002 - 1.05793007e+002 1.18410103e+002 1.25307617e+002 1.05741440e+002 - 1.18371353e+002 1.25305893e+002 1.05734673e+002 1.18343628e+002 - 1.25352486e+002 1.05727257e+002 1.18346436e+002 1.25395836e+002 - 1.05686653e+002 1.18307411e+002 1.25413185e+002 1.05636177e+002 - 1.18271805e+002 1.25407364e+002 1.05615356e+002 1.18234352e+002 - 1.25428627e+002 1.05586060e+002 1.18217964e+002 1.25450760e+002 - 1.05575905e+002 1.18206467e+002 1.25518761e+002 1.05498573e+002 - 1.18156982e+002 1.25514038e+002 1.05491394e+002 1.18132782e+002 - 1.25541389e+002 1.05486328e+002 1.18136902e+002 1.25581680e+002 - 1.05455429e+002 1.18088737e+002 1.25601486e+002 1.05423935e+002 - 1.18067245e+002 1.25616257e+002 1.05387489e+002 1.18030716e+002 - 1.25638039e+002 1.05362923e+002 1.18023094e+002 1.25657631e+002 - 1.05336548e+002 1.17989326e+002 1.25689865e+002 1.05301178e+002 - 1.17956154e+002 1.25699821e+002 1.05294884e+002 1.17930580e+002 - 1.25747452e+002 1.05253014e+002 1.17900681e+002 1.25756783e+002 - 1.05246864e+002 1.17889603e+002 1.25795456e+002 1.05212349e+002 - 1.17869049e+002 1.25807457e+002 1.05167229e+002 1.17808418e+002 - 1.25788391e+002 1.05145058e+002 1.17787498e+002 1.25803566e+002 - 1.05133568e+002 1.17769661e+002 1.25844299e+002 1.05107880e+002 - 1.17780617e+002 1.25878181e+002 1.05105995e+002 1.17759895e+002 - 1.25896919e+002 1.05082497e+002 1.17747269e+002 1.25913567e+002 - 1.05094048e+002 1.17746346e+002 1.25968590e+002 1.05068657e+002 - 1.17736870e+002 1.25986732e+002 1.05061974e+002 1.17734711e+002 - 1.26025200e+002 1.05064873e+002 1.17750839e+002 1.26069893e+002 - 1.05060890e+002 1.17738205e+002 1.26102562e+002 1.05033852e+002 - 1.17720284e+002 1.26118187e+002 1.05026817e+002 1.17691048e+002 - 1.26142731e+002 1.05033577e+002 1.17705208e+002 1.26189034e+002 - 1.05026619e+002 1.17701698e+002 1.26225906e+002 1.04991211e+002 - 1.17682678e+002 1.26222168e+002 1.04998291e+002 1.17675575e+002 - 1.26250397e+002 1.05009499e+002 1.17686775e+002 1.26283035e+002 - 1.05000801e+002 1.17667656e+002 1.26316505e+002 1.04923027e+002 - 1.17613655e+002 1.26284554e+002 1.04920105e+002 1.17601341e+002 - 1.26309128e+002 1.04909637e+002 1.17600677e+002 1.26332680e+002 - 1.04923927e+002 1.17603340e+002 1.26371918e+002 1.04873558e+002 - 1.17568108e+002 1.26354233e+002 1.04865791e+002 1.17554199e+002 - 1.26377403e+002 1.04865082e+002 1.17565575e+002 1.26412422e+002 - 1.04867401e+002 1.17568657e+002 1.26442596e+002 1.04861534e+002 - 1.17574615e+002 1.26474167e+002 1.04896278e+002 1.17586815e+002 - 1.26533569e+002 1.04884048e+002 1.17588463e+002 1.26549934e+002 - 1.04886124e+002 1.17585594e+002 1.26571648e+002 1.04843224e+002 - 1.17558792e+002 1.26554581e+002 1.04827972e+002 1.17520119e+002 - 1.26549019e+002 1.04812012e+002 1.17514473e+002 1.26537704e+002 - 1.04798126e+002 1.17494476e+002 1.26552521e+002 1.04785301e+002 - 1.17507240e+002 1.26565971e+002 1.04809341e+002 1.17516731e+002 - 1.26595276e+002 1.04822891e+002 1.17540421e+002 1.26626091e+002 - 1.04826180e+002 1.17520714e+002 1.26643349e+002 1.04804497e+002 - 1.17511261e+002 1.26641113e+002 1.04802002e+002 1.17503403e+002 - 1.26648178e+002 1.04807503e+002 1.17515083e+002 1.26663589e+002 - 1.04812988e+002 1.17521751e+002 1.26680504e+002 1.04763573e+002 - 1.17482834e+002 1.26645073e+002 1.04781067e+002 1.17469635e+002 - 1.26664452e+002 1.04777145e+002 1.17482803e+002 1.26677101e+002 - 1.04794006e+002 1.17500854e+002 1.26699661e+002 1.04778580e+002 - 1.17498009e+002 1.26693993e+002 1.04782082e+002 1.17488396e+002 - 1.26698608e+002 1.04785500e+002 1.17489677e+002 1.26680367e+002 - 1.04810692e+002 1.17504471e+002 1.26693901e+002 1.04766609e+002 - 1.17477318e+002 1.26660179e+002 1.04782433e+002 1.17483398e+002 - 1.26655663e+002 1.04778496e+002 1.17487579e+002 1.26649368e+002 - 1.04810875e+002 1.17501892e+002 1.26665642e+002 1.04789848e+002 - 1.17496010e+002 1.26641251e+002 1.04786934e+002 1.17479675e+002 - 1.26623543e+002 1.04746971e+002 1.17456276e+002 1.26569679e+002 - 1.04769257e+002 1.17461967e+002 1.26581177e+002 1.04793480e+002 - 1.17495140e+002 1.26600212e+002 1.04814339e+002 1.17489677e+002 - 1.26604424e+002 1.04806610e+002 1.17487885e+002 1.26584991e+002 - 1.04818169e+002 1.17489708e+002 1.26585014e+002 1.04812691e+002 - 1.17498344e+002 1.26567230e+002 1.04812492e+002 1.17475990e+002 - 1.26548996e+002 1.04799835e+002 1.17466377e+002 1.26512253e+002 - 1.04809494e+002 1.17459099e+002 1.26489761e+002 1.04787041e+002 - 1.17464127e+002 1.26462067e+002 1.04806335e+002 1.17468971e+002 - 1.26463524e+002 1.04812599e+002 1.17491791e+002 1.26456841e+002 - 1.04806358e+002 1.17475479e+002 1.26421852e+002 1.04791542e+002 - 1.17478592e+002 1.26393562e+002 1.04825081e+002 1.17510689e+002 - 1.26413818e+002 1.04800591e+002 1.17510399e+002 1.26374443e+002 - 1.04765106e+002 1.17463669e+002 1.26312653e+002 1.04757553e+002 - 1.17467361e+002 1.26282761e+002 1.04786873e+002 1.17475784e+002 - 1.26281212e+002 1.04792404e+002 1.17495224e+002 1.26264679e+002 - 1.04811951e+002 1.17509674e+002 1.26248741e+002 1.04791870e+002 - 1.17508766e+002 1.26208603e+002 1.04812180e+002 1.17522087e+002 - 1.26209541e+002 1.04808731e+002 1.17517502e+002 1.26159210e+002 - 1.04806419e+002 1.17501945e+002 1.26108597e+002 1.04799629e+002 - 1.17520355e+002 1.26073616e+002 1.04802673e+002 1.17503242e+002 - 1.26046127e+002 1.04837967e+002 1.17550224e+002 1.26046455e+002 - 1.04888184e+002 1.17579910e+002 1.26044846e+002 1.04862877e+002 - 1.17562180e+002 1.25983353e+002 1.04869476e+002 1.17558044e+002 - 1.25941261e+002 1.04889595e+002 1.17586502e+002 1.25919724e+002 - 1.04892738e+002 1.17578926e+002 1.25882904e+002 1.04906906e+002 - 1.17609756e+002 1.25862984e+002 1.04934288e+002 1.17612030e+002 - 1.25843674e+002 1.04952675e+002 1.17650375e+002 1.25832703e+002 - 1.04943123e+002 1.17636398e+002 1.25782173e+002 1.04937111e+002 - 1.17646935e+002 1.25734001e+002 1.04971260e+002 1.17670151e+002 - 1.25734985e+002 1.05011032e+002 1.17708771e+002 1.25722534e+002 - 1.05041458e+002 1.17729416e+002 1.25692116e+002 1.05062027e+002 - 1.17764381e+002 1.25683960e+002 1.05101563e+002 1.17783035e+002 - 1.25666985e+002 1.05116234e+002 1.17808212e+002 1.25647408e+002 - 1.05135597e+002 1.17809250e+002 1.25617882e+002 1.05132851e+002 - 1.17815697e+002 1.25566933e+002 1.05161209e+002 1.17825310e+002 - 1.25535820e+002 1.05215347e+002 1.17890762e+002 1.25538429e+002 - 1.05252579e+002 1.17909462e+002 1.25521698e+002 1.05250427e+002 - 1.17917694e+002 1.25467720e+002 1.05292412e+002 1.17926430e+002 - 1.25443977e+002 1.05345375e+002 1.17991295e+002 1.25444267e+002 - 1.05370796e+002 1.17999367e+002 1.25406097e+002 1.05383705e+002 - 1.18027168e+002 1.25372116e+002 1.05439957e+002 1.18061943e+002 - 1.25378136e+002 1.05478134e+002 1.18107277e+002 1.25363441e+002 - 1.05508369e+002 1.18122543e+002 1.25323662e+002 1.05536369e+002 - 1.18164513e+002 1.25312088e+002 1.05595139e+002 1.18204369e+002 - 1.25313606e+002 1.05604507e+002 1.18223862e+002 1.25279228e+002 - 1.05624535e+002 1.18219902e+002 1.25238281e+002 1.05656570e+002 - 1.18272964e+002 1.25226936e+002 1.05706146e+002 1.18312233e+002 - 1.25218163e+002 1.05742966e+002 1.18358498e+002 1.25201515e+002 - 1.05783791e+002 1.18377831e+002 1.25176544e+002 1.05805649e+002 - 1.18408257e+002 1.25144829e+002 1.05876297e+002 1.18449615e+002 - 1.25147484e+002 1.05909836e+002 1.18489853e+002 1.25125534e+002 - 1.05954674e+002 1.18518631e+002 1.25101768e+002 1.05987427e+002 - 1.18572922e+002 1.25094620e+002 1.06033203e+002 1.18605263e+002 - 1.25091690e+002 1.06082771e+002 1.18648552e+002 1.25069885e+002 - 1.06132622e+002 1.18688988e+002 1.25052383e+002 1.06189842e+002 - 1.18755699e+002 1.25059341e+002 1.06209717e+002 1.18761520e+002 - 1.25028458e+002 1.06227333e+002 1.18782005e+002 1.24993462e+002 - 1.06263702e+002 1.18796730e+002 1.24956772e+002 1.06296173e+002 - 1.18833817e+002 1.24929344e+002 1.06336037e+002 1.18856201e+002 - 1.24896713e+002 1.06384247e+002 1.18917282e+002 1.24895592e+002 - 1.06435600e+002 1.18940521e+002 1.24873337e+002 1.06479485e+002 - 1.18993195e+002 1.24857391e+002 1.06564377e+002 1.19033485e+002 - 1.24853691e+002 1.06608162e+002 1.19081017e+002 1.24832436e+002 - 1.06680710e+002 1.19128471e+002 1.24824295e+002 1.06725868e+002 - 1.19184021e+002 1.24806137e+002 1.06795815e+002 1.19231071e+002 - 1.24817871e+002 1.06869125e+002 1.19302116e+002 1.24814201e+002 - 1.06969582e+002 1.19369667e+002 1.24810242e+002 1.07029289e+002 - 1.19434158e+002 1.24811028e+002 1.07095169e+002 1.19477829e+002 - 1.24818146e+002 1.07173409e+002 1.19555901e+002 1.24830765e+002 - 1.07231270e+002 1.19570549e+002 1.24811577e+002 1.07307938e+002 - 1.19645638e+002 1.24818848e+002 1.07404976e+002 1.19719559e+002 - 1.24840233e+002 1.07481247e+002 1.19779968e+002 1.24843803e+002 - 1.07541489e+002 1.19797188e+002 1.24818550e+002 1.07594452e+002 - 1.19846222e+002 1.24808884e+002 1.07671883e+002 1.19867500e+002 - 1.24790352e+002 1.07739235e+002 1.19918953e+002 1.24781708e+002 - 1.07829536e+002 1.19958778e+002 1.24775375e+002 1.07845711e+002 - 1.19963715e+002 1.24721024e+002 1.07875862e+002 1.19941017e+002 - 1.24668701e+002 1.07819313e+002 1.19870285e+002 1.24539444e+002 - 1.07680275e+002 1.19757042e+002 1.24502312e+002 1.07740143e+002 - 1.19862770e+002 1.24636650e+002 1.07740753e+002 1.19882423e+002 - 1.24707802e+002 1.07730019e+002 1.19902908e+002 1.24765747e+002 - 1.07680099e+002 1.19875732e+002 1.24800781e+002 1.07611359e+002 - 1.19843246e+002 1.24803802e+002 1.07565216e+002 1.19816750e+002 - 1.24845940e+002 1.07491234e+002 1.19772949e+002 1.24845123e+002 - 1.07436012e+002 1.19730453e+002 1.24864006e+002 1.07330292e+002 - 1.19649849e+002 1.24835617e+002 1.07271088e+002 1.19595337e+002 - 1.24867706e+002 1.07221756e+002 1.19572845e+002 1.24889786e+002 - 1.07155441e+002 1.19510178e+002 1.24889847e+002 1.07072426e+002 - 1.19449684e+002 1.24862343e+002 1.07004662e+002 1.19385780e+002 - 1.24857216e+002 1.06937500e+002 1.19338966e+002 1.24850548e+002 - 1.06900238e+002 1.19316879e+002 1.24905045e+002 1.06794197e+002 - 1.19240570e+002 1.24866005e+002 1.06746002e+002 1.19189018e+002 - 1.24877243e+002 1.06729668e+002 1.19193581e+002 1.24916122e+002 - 1.06672279e+002 1.19135178e+002 1.24930847e+002 1.06631065e+002 - 1.19122681e+002 1.24962616e+002 1.06566101e+002 1.19065758e+002 - 1.24966003e+002 1.06477219e+002 1.18989792e+002 1.24944122e+002 - 1.06447258e+002 1.18963799e+002 1.24978081e+002 1.06375328e+002 - 1.18901840e+002 1.24972481e+002 1.06327080e+002 1.18838638e+002 - 1.24983047e+002 1.06276268e+002 1.18798538e+002 1.24996910e+002 - 1.06238663e+002 1.18766418e+002 1.25032402e+002 1.06189812e+002 - 1.18741013e+002 1.25051964e+002 1.06178391e+002 1.18725929e+002 - 1.25095749e+002 1.06125404e+002 1.18691536e+002 1.25111969e+002 - 1.06089836e+002 1.18662498e+002 1.25171555e+002 1.06015427e+002 - 1.18619873e+002 1.25181831e+002 1.05963989e+002 1.18561378e+002 - 1.25187622e+002 1.05915733e+002 1.18529182e+002 1.25200165e+002 - 1.05892982e+002 1.18495338e+002 1.25240402e+002 1.05831146e+002 - 1.18449844e+002 1.25246399e+002 1.05767967e+002 1.18384842e+002 - 1.25241211e+002 1.05725342e+002 1.18353752e+002 1.25251793e+002 - 1.05699966e+002 1.18326256e+002 1.25280281e+002 1.05637550e+002 - 1.18272034e+002 1.25275459e+002 1.05622627e+002 1.18245804e+002 - 1.25310638e+002 1.05599594e+002 1.18230621e+002 1.25339699e+002 - 1.05574982e+002 1.18204994e+002 1.25372978e+002 1.05527603e+002 - 1.18168709e+002 1.25369125e+002 1.05514526e+002 1.18146309e+002 - 1.25399170e+002 1.05483864e+002 1.18125275e+002 1.25421150e+002 - 1.05446251e+002 1.18088013e+002 1.25464485e+002 1.05365410e+002 - 1.18032799e+002 1.25451874e+002 1.05362938e+002 1.18021942e+002 - 1.25490074e+002 1.05363602e+002 1.18020470e+002 1.25531021e+002 - 1.05325783e+002 1.17964149e+002 1.25542816e+002 1.05290817e+002 - 1.17944901e+002 1.25551895e+002 1.05255661e+002 1.17909286e+002 - 1.25576859e+002 1.05235077e+002 1.17903740e+002 1.25598389e+002 - 1.05206520e+002 1.17867615e+002 1.25632042e+002 1.05162292e+002 - 1.17833031e+002 1.25642410e+002 1.05164169e+002 1.17812035e+002 - 1.25692741e+002 1.05123032e+002 1.17781143e+002 1.25701279e+002 - 1.05101929e+002 1.17756798e+002 1.25727234e+002 1.05079994e+002 - 1.17746132e+002 1.25744377e+002 1.05050949e+002 1.17696991e+002 - 1.25746117e+002 1.05008698e+002 1.17663223e+002 1.25742943e+002 - 1.04975388e+002 1.17629700e+002 1.25762627e+002 1.04966797e+002 - 1.17643700e+002 1.25808945e+002 1.04966240e+002 1.17631104e+002 - 1.25830490e+002 1.04964325e+002 1.17645676e+002 1.25866158e+002 - 1.04956718e+002 1.17623268e+002 1.25907318e+002 1.04924011e+002 - 1.17608826e+002 1.25924225e+002 1.04929169e+002 1.17616714e+002 - 1.25972221e+002 1.04946320e+002 1.17639267e+002 1.26020813e+002 - 1.04945007e+002 1.17632515e+002 1.26063202e+002 1.04902878e+002 - 1.17600578e+002 1.26065315e+002 1.04903709e+002 1.17581932e+002 - 1.26104164e+002 1.04893242e+002 1.17578384e+002 1.26128639e+002 - 1.04866852e+002 1.17552238e+002 1.26144577e+002 1.04847145e+002 - 1.17550110e+002 1.26159630e+002 1.04857788e+002 1.17544258e+002 - 1.26190300e+002 1.04867561e+002 1.17549164e+002 1.26219200e+002 - 1.04853142e+002 1.17529419e+002 1.26244850e+002 1.04803101e+002 - 1.17498421e+002 1.26236046e+002 1.04790184e+002 1.17475906e+002 - 1.26250008e+002 1.04757195e+002 1.17454597e+002 1.26253204e+002 - 1.04767319e+002 1.17455498e+002 1.26293045e+002 1.04737503e+002 - 1.17442245e+002 1.26297501e+002 1.04720657e+002 1.17417473e+002 - 1.26317085e+002 1.04720749e+002 1.17433609e+002 1.26351379e+002 - 1.04736519e+002 1.17441185e+002 1.26395912e+002 1.04723160e+002 - 1.17442673e+002 1.26414940e+002 1.04749092e+002 1.17450455e+002 - 1.26472267e+002 1.04730118e+002 1.17447060e+002 1.26479836e+002 - 1.04737953e+002 1.17449226e+002 1.26511856e+002 1.04686737e+002 - 1.17406769e+002 1.26474213e+002 1.04685150e+002 1.17387253e+002 - 1.26481842e+002 1.04675209e+002 1.17383492e+002 1.26483368e+002 - 1.04674049e+002 1.17387413e+002 1.26507484e+002 1.04634842e+002 - 1.17364204e+002 1.26493523e+002 1.04644386e+002 1.17358223e+002 - 1.26511505e+002 1.04653770e+002 1.17380432e+002 1.26539383e+002 - 1.04665359e+002 1.17362144e+002 1.26560059e+002 1.04661842e+002 - 1.17377869e+002 1.26574677e+002 1.04656258e+002 1.17364792e+002 - 1.26583344e+002 1.04646149e+002 1.17364532e+002 1.26581879e+002 - 1.04656769e+002 1.17368805e+002 1.26605156e+002 1.04633881e+002 - 1.17358391e+002 1.26597229e+002 1.04647499e+002 1.17349457e+002 - 1.26614922e+002 1.04643707e+002 1.17354630e+002 1.26621864e+002 - 1.04656212e+002 1.17364685e+002 1.26639374e+002 1.04641998e+002 - 1.17368202e+002 1.26634232e+002 1.04625572e+002 1.17337906e+002 - 1.26616386e+002 1.04609970e+002 1.17328117e+002 1.26586334e+002 - 1.04646179e+002 1.17346848e+002 1.26615646e+002 1.04624008e+002 - 1.17343689e+002 1.26597176e+002 1.04647552e+002 1.17355392e+002 - 1.26604408e+002 1.04657471e+002 1.17375420e+002 1.26611351e+002 - 1.04679688e+002 1.17380959e+002 1.26619743e+002 1.04647858e+002 - 1.17370575e+002 1.26582169e+002 1.04632996e+002 1.17340141e+002 - 1.26553116e+002 1.04610466e+002 1.17325966e+002 1.26517014e+002 - 1.04623955e+002 1.17323181e+002 1.26515915e+002 1.04644577e+002 - 1.17351532e+002 1.26528687e+002 1.04638008e+002 1.17318649e+002 - 1.26507912e+002 1.04632576e+002 1.17321594e+002 1.26492172e+002 - 1.04673607e+002 1.17355705e+002 1.26514343e+002 1.04664726e+002 - 1.17357628e+002 1.26496765e+002 1.04666130e+002 1.17340919e+002 - 1.26480011e+002 1.04662285e+002 1.17332298e+002 1.26445564e+002 - 1.04661484e+002 1.17331299e+002 1.26424156e+002 1.04649605e+002 - 1.17334770e+002 1.26404091e+002 1.04675110e+002 1.17346420e+002 - 1.26405228e+002 1.04688667e+002 1.17374298e+002 1.26402702e+002 - 1.04674103e+002 1.17351753e+002 1.26365860e+002 1.04652130e+002 - 1.17346222e+002 1.26331032e+002 1.04674164e+002 1.17369339e+002 - 1.26336418e+002 1.04660095e+002 1.17374496e+002 1.26310280e+002 - 1.04652626e+002 1.17358765e+002 1.26279091e+002 1.04632370e+002 - 1.17352257e+002 1.26238342e+002 1.04654747e+002 1.17351532e+002 - 1.26223969e+002 1.04673805e+002 1.17387039e+002 1.26225502e+002 - 1.04675728e+002 1.17383713e+002 1.26193268e+002 1.04641014e+002 - 1.17366592e+002 1.26136436e+002 1.04639885e+002 1.17358215e+002 - 1.26110710e+002 1.04672493e+002 1.17398750e+002 1.26107315e+002 - 1.04673241e+002 1.17386314e+002 1.26060944e+002 1.04666901e+002 - 1.17398315e+002 1.26030579e+002 1.04658493e+002 1.17374374e+002 - 1.25981026e+002 1.04696068e+002 1.17419357e+002 1.25991539e+002 - 1.04723068e+002 1.17431999e+002 1.25968010e+002 1.04705872e+002 - 1.17419548e+002 1.25910629e+002 1.04724358e+002 1.17429382e+002 - 1.25877869e+002 1.04741753e+002 1.17449928e+002 1.25848259e+002 - 1.04753220e+002 1.17448242e+002 1.25824654e+002 1.04778267e+002 - 1.17488831e+002 1.25812866e+002 1.04804596e+002 1.17492577e+002 - 1.25794525e+002 1.04797867e+002 1.17502808e+002 1.25752525e+002 - 1.04817268e+002 1.17513519e+002 1.25725937e+002 1.04808632e+002 - 1.17523697e+002 1.25682587e+002 1.04842186e+002 1.17545006e+002 - 1.25674393e+002 1.04861382e+002 1.17566925e+002 1.25646133e+002 - 1.04902481e+002 1.17603455e+002 1.25635307e+002 1.04940796e+002 - 1.17656769e+002 1.25634727e+002 1.04955360e+002 1.17644798e+002 - 1.25602821e+002 1.04976967e+002 1.17676270e+002 1.25588211e+002 - 1.05013855e+002 1.17695259e+002 1.25568016e+002 1.04996956e+002 - 1.17683220e+002 1.25499191e+002 1.05049210e+002 1.17722359e+002 - 1.25497917e+002 1.05098755e+002 1.17781090e+002 1.25491234e+002 - 1.05118622e+002 1.17784836e+002 1.25451912e+002 1.05134430e+002 - 1.17806381e+002 1.25417641e+002 1.05191879e+002 1.17833931e+002 - 1.25408714e+002 1.05244392e+002 1.17895226e+002 1.25410896e+002 - 1.05276070e+002 1.17915855e+002 1.25378838e+002 1.05275169e+002 - 1.17925560e+002 1.25329758e+002 1.05320229e+002 1.17956596e+002 - 1.25332253e+002 1.05355820e+002 1.18000816e+002 1.25318703e+002 - 1.05375816e+002 1.17999931e+002 1.25268066e+002 1.05422112e+002 - 1.18058189e+002 1.25260956e+002 1.05466377e+002 1.18085251e+002 - 1.25252678e+002 1.05484177e+002 1.18110901e+002 1.25218773e+002 - 1.05498154e+002 1.18112953e+002 1.25183403e+002 1.05536591e+002 - 1.18159882e+002 1.25175697e+002 1.05580338e+002 1.18192406e+002 - 1.25156937e+002 1.05606514e+002 1.18230309e+002 1.25129951e+002 - 1.05651314e+002 1.18260231e+002 1.25114853e+002 1.05681862e+002 - 1.18288139e+002 1.25086731e+002 1.05772041e+002 1.18357826e+002 - 1.25108345e+002 1.05803986e+002 1.18390533e+002 1.25081238e+002 - 1.05848396e+002 1.18424156e+002 1.25065475e+002 1.05867874e+002 - 1.18462143e+002 1.25041710e+002 1.05914482e+002 1.18494873e+002 - 1.25035454e+002 1.05964813e+002 1.18551559e+002 1.25026413e+002 - 1.06036263e+002 1.18603844e+002 1.25019463e+002 1.06067596e+002 - 1.18647598e+002 1.25005501e+002 1.06095718e+002 1.18660614e+002 - 1.24979126e+002 1.06123329e+002 1.18693230e+002 1.24957321e+002 - 1.06156425e+002 1.18704887e+002 1.24922653e+002 1.06181915e+002 - 1.18731735e+002 1.24882767e+002 1.06218567e+002 1.18751564e+002 - 1.24852539e+002 1.06260071e+002 1.18800789e+002 1.24836494e+002 - 1.06315521e+002 1.18837349e+002 1.24820282e+002 1.06365021e+002 - 1.18888718e+002 1.24807175e+002 1.06467270e+002 1.18951263e+002 - 1.24818924e+002 1.06522614e+002 1.19015755e+002 1.24809006e+002 - 1.06598099e+002 1.19067039e+002 1.24807121e+002 1.06635254e+002 - 1.19111465e+002 1.24780655e+002 1.06700142e+002 1.19153351e+002 - 1.24779770e+002 1.06766968e+002 1.19217880e+002 1.24773674e+002 - 1.06867844e+002 1.19284882e+002 1.24778137e+002 1.06915634e+002 - 1.19338104e+002 1.24758179e+002 1.06990051e+002 1.19389427e+002 - 1.24770493e+002 1.07064270e+002 1.19461868e+002 1.24786102e+002 - 1.07130310e+002 1.19497116e+002 1.24776039e+002 1.07201988e+002 - 1.19564491e+002 1.24777313e+002 1.07308510e+002 1.19635437e+002 - 1.24805634e+002 1.07371193e+002 1.19684364e+002 1.24789375e+002 - 1.07460922e+002 1.19740379e+002 1.24800491e+002 1.07493431e+002 - 1.19757736e+002 1.24772339e+002 1.07575844e+002 1.19787033e+002 - 1.24753258e+002 1.07642075e+002 1.19837044e+002 1.24736908e+002 - 1.07736694e+002 1.19882851e+002 1.24737732e+002 1.07770355e+002 - 1.19898849e+002 1.24695534e+002 1.07784470e+002 1.19873734e+002 - 1.24638252e+002 1.07753586e+002 1.19826897e+002 1.24540474e+002 - 1.07562683e+002 1.19670380e+002 1.24468971e+002 1.07624786e+002 - 1.19773537e+002 1.24607056e+002 1.07655281e+002 1.19822540e+002 - 1.24707314e+002 1.07629349e+002 1.19831123e+002 1.24754478e+002 - 1.07574219e+002 1.19798073e+002 1.24776123e+002 1.07511505e+002 - 1.19772377e+002 1.24790337e+002 1.07462288e+002 1.19746140e+002 - 1.24833626e+002 1.07381943e+002 1.19694595e+002 1.24820198e+002 - 1.07322060e+002 1.19647461e+002 1.24838928e+002 1.07209503e+002 - 1.19559883e+002 1.24801804e+002 1.07133324e+002 1.19485359e+002 - 1.24808144e+002 1.07104897e+002 1.19474709e+002 1.24851219e+002 - 1.07045082e+002 1.19426239e+002 1.24855667e+002 1.06975395e+002 - 1.19383232e+002 1.24848595e+002 1.06906769e+002 1.19317429e+002 - 1.24842941e+002 1.06836731e+002 1.19267685e+002 1.24835045e+002 - 1.06778458e+002 1.19220032e+002 1.24861511e+002 1.06682648e+002 - 1.19166512e+002 1.24844788e+002 1.06631996e+002 1.19108177e+002 - 1.24851334e+002 1.06579437e+002 1.19073509e+002 1.24863159e+002 - 1.06538750e+002 1.19032387e+002 1.24888870e+002 1.06496788e+002 - 1.19014519e+002 1.24912148e+002 1.06423386e+002 1.18945015e+002 - 1.24916206e+002 1.06379532e+002 1.18921776e+002 1.24933578e+002 - 1.06347450e+002 1.18882874e+002 1.24962143e+002 1.06267174e+002 - 1.18815338e+002 1.24941971e+002 1.06184288e+002 1.18719223e+002 - 1.24933319e+002 1.06142441e+002 1.18685974e+002 1.24961319e+002 - 1.06112305e+002 1.18668259e+002 1.25005028e+002 1.06067146e+002 - 1.18646011e+002 1.25020439e+002 1.06046791e+002 1.18617592e+002 - 1.25061615e+002 1.05986717e+002 1.18577789e+002 1.25066895e+002 - 1.05931694e+002 1.18535202e+002 1.25106087e+002 1.05856461e+002 - 1.18489655e+002 1.25114792e+002 1.05795082e+002 1.18419144e+002 - 1.25111122e+002 1.05767342e+002 1.18405624e+002 1.25146339e+002 - 1.05727356e+002 1.18357086e+002 1.25165520e+002 1.05670357e+002 - 1.18314217e+002 1.25176514e+002 1.05623100e+002 1.18261848e+002 - 1.25185791e+002 1.05583710e+002 1.18240608e+002 1.25200836e+002 - 1.05551041e+002 1.18198807e+002 1.25225754e+002 1.05507004e+002 - 1.18164925e+002 1.25234879e+002 1.05498672e+002 1.18140816e+002 - 1.25280075e+002 1.05464691e+002 1.18112152e+002 1.25292015e+002 - 1.05460983e+002 1.18108154e+002 1.25345215e+002 1.05423218e+002 - 1.18084335e+002 1.25355698e+002 1.05378174e+002 1.18027588e+002 - 1.25357185e+002 1.05337570e+002 1.18000229e+002 1.25365952e+002 - 1.05316238e+002 1.17976311e+002 1.25415863e+002 1.05219254e+002 - 1.17908875e+002 1.25397186e+002 1.05204994e+002 1.17883018e+002 - 1.25424919e+002 1.05211327e+002 1.17894211e+002 1.25470703e+002 - 1.05177681e+002 1.17839851e+002 1.25490036e+002 1.05120224e+002 - 1.17790535e+002 1.25475899e+002 1.05089851e+002 1.17762680e+002 - 1.25502777e+002 1.05081680e+002 1.17769112e+002 1.25543678e+002 - 1.05058861e+002 1.17736359e+002 1.25566628e+002 1.05003624e+002 - 1.17693130e+002 1.25573364e+002 1.04984894e+002 1.17657143e+002 - 1.25604820e+002 1.04950562e+002 1.17623955e+002 1.25619591e+002 - 1.04933495e+002 1.17601532e+002 1.25650887e+002 1.04917542e+002 - 1.17600128e+002 1.25675102e+002 1.04884399e+002 1.17558456e+002 - 1.25677689e+002 1.04833572e+002 1.17515678e+002 1.25665726e+002 - 1.04816597e+002 1.17492455e+002 1.25701218e+002 1.04784889e+002 - 1.17484962e+002 1.25721687e+002 1.04800575e+002 1.17495178e+002 - 1.25770515e+002 1.04826111e+002 1.17530891e+002 1.25831551e+002 - 1.04792908e+002 1.17484909e+002 1.25842155e+002 1.04763161e+002 - 1.17471001e+002 1.25854279e+002 1.04764984e+002 1.17475266e+002 - 1.25909569e+002 1.04755554e+002 1.17475784e+002 1.25933235e+002 - 1.04758904e+002 1.17470848e+002 1.25974342e+002 1.04726158e+002 - 1.17445061e+002 1.25987419e+002 1.04743492e+002 1.17440834e+002 - 1.26041550e+002 1.04739693e+002 1.17443970e+002 1.26070122e+002 - 1.04703514e+002 1.17410774e+002 1.26077515e+002 1.04707756e+002 - 1.17427971e+002 1.26116943e+002 1.04704590e+002 1.17404411e+002 - 1.26135437e+002 1.04724602e+002 1.17428772e+002 1.26171944e+002 - 1.04711731e+002 1.17403519e+002 1.26195259e+002 1.04661461e+002 - 1.17376236e+002 1.26185287e+002 1.04630951e+002 1.17337929e+002 - 1.26182739e+002 1.04602333e+002 1.17311508e+002 1.26178596e+002 - 1.04618149e+002 1.17322586e+002 1.26228951e+002 1.04594009e+002 - 1.17311790e+002 1.26243164e+002 1.04558624e+002 1.17272293e+002 - 1.26247322e+002 1.04572083e+002 1.17304626e+002 1.26295700e+002 - 1.04576340e+002 1.17299026e+002 1.26329674e+002 1.04554390e+002 - 1.17295143e+002 1.26347542e+002 1.04576492e+002 1.17294960e+002 - 1.26395424e+002 1.04581841e+002 1.17307999e+002 1.26428070e+002 - 1.04585136e+002 1.17307983e+002 1.26449936e+002 1.04544571e+002 - 1.17281883e+002 1.26432091e+002 1.04546410e+002 1.17262016e+002 - 1.26436333e+002 1.04526894e+002 1.17246979e+002 1.26420929e+002 - 1.04508141e+002 1.17226196e+002 1.26429932e+002 1.04464943e+002 - 1.17207085e+002 1.26417175e+002 1.04452515e+002 1.17179504e+002 - 1.26414619e+002 1.04450516e+002 1.17193039e+002 1.26435036e+002 - 1.04474800e+002 1.17195114e+002 1.26474174e+002 1.04490372e+002 - 1.17220428e+002 1.26501793e+002 1.04493706e+002 1.17217163e+002 - 1.26515076e+002 1.04466827e+002 1.17199898e+002 1.26503540e+002 - 1.04448036e+002 1.17179741e+002 1.26502350e+002 1.04433350e+002 - 1.17170685e+002 1.26494431e+002 1.04477577e+002 1.17186623e+002 - 1.26540428e+002 1.04467506e+002 1.17194099e+002 1.26540413e+002 - 1.04467140e+002 1.17192749e+002 1.26549759e+002 1.04455078e+002 - 1.17197021e+002 1.26542915e+002 1.04453247e+002 1.17180801e+002 - 1.26542725e+002 1.04441124e+002 1.17169563e+002 1.26512466e+002 - 1.04453186e+002 1.17170860e+002 1.26514000e+002 1.04443428e+002 - 1.17179161e+002 1.26511292e+002 1.04456398e+002 1.17183533e+002 - 1.26514961e+002 1.04466759e+002 1.17204239e+002 1.26521225e+002 - 1.04480072e+002 1.17191315e+002 1.26522133e+002 1.04463486e+002 - 1.17195175e+002 1.26497696e+002 1.04451378e+002 1.17174591e+002 - 1.26471695e+002 1.04446884e+002 1.17178238e+002 1.26459404e+002 - 1.04432877e+002 1.17155174e+002 1.26428741e+002 1.04435364e+002 - 1.17167450e+002 1.26427773e+002 1.04443192e+002 1.17150925e+002 - 1.26419266e+002 1.04445427e+002 1.17157234e+002 1.26403931e+002 - 1.04468086e+002 1.17168839e+002 1.26408386e+002 1.04458916e+002 - 1.17169098e+002 1.26384758e+002 1.04472580e+002 1.17167747e+002 - 1.26384483e+002 1.04482681e+002 1.17180428e+002 1.26364838e+002 - 1.04490822e+002 1.17180016e+002 1.26348732e+002 1.04496819e+002 - 1.17208771e+002 1.26349739e+002 1.04520531e+002 1.17215431e+002 - 1.26343994e+002 1.04529480e+002 1.17236977e+002 1.26335480e+002 - 1.04534813e+002 1.17231979e+002 1.26322128e+002 1.04499954e+002 - 1.17216591e+002 1.26278244e+002 1.04494194e+002 1.17207466e+002 - 1.26257248e+002 1.04476273e+002 1.17206642e+002 1.26222466e+002 - 1.04468529e+002 1.17199181e+002 1.26192558e+002 1.04452927e+002 - 1.17198631e+002 1.26163208e+002 1.04470276e+002 1.17188278e+002 - 1.26143478e+002 1.04479927e+002 1.17213196e+002 1.26127129e+002 - 1.04478203e+002 1.17209824e+002 1.26092361e+002 1.04429253e+002 - 1.17180428e+002 1.26025314e+002 1.04460617e+002 1.17205818e+002 - 1.26034065e+002 1.04505623e+002 1.17254768e+002 1.26034042e+002 - 1.04510986e+002 1.17250038e+002 1.25992691e+002 1.04485672e+002 - 1.17246140e+002 1.25943886e+002 1.04490311e+002 1.17232315e+002 - 1.25911827e+002 1.04521133e+002 1.17271179e+002 1.25911568e+002 - 1.04559143e+002 1.17287712e+002 1.25906967e+002 1.04525978e+002 - 1.17262726e+002 1.25824333e+002 1.04560509e+002 1.17278595e+002 - 1.25808350e+002 1.04578499e+002 1.17311584e+002 1.25790886e+002 - 1.04609993e+002 1.17325356e+002 1.25772530e+002 1.04606308e+002 - 1.17335197e+002 1.25742966e+002 1.04654160e+002 1.17359421e+002 - 1.25732414e+002 1.04639618e+002 1.17360199e+002 1.25690865e+002 - 1.04649681e+002 1.17367577e+002 1.25651299e+002 1.04650223e+002 - 1.17387939e+002 1.25621681e+002 1.04675140e+002 1.17397018e+002 - 1.25608307e+002 1.04715324e+002 1.17444633e+002 1.25600021e+002 - 1.04776138e+002 1.17494461e+002 1.25600609e+002 1.04777596e+002 - 1.17512924e+002 1.25567825e+002 1.04815620e+002 1.17529083e+002 - 1.25558426e+002 1.04827904e+002 1.17550041e+002 1.25534348e+002 - 1.04846130e+002 1.17551773e+002 1.25497040e+002 1.04858238e+002 - 1.17570442e+002 1.25463470e+002 1.04884262e+002 1.17576836e+002 - 1.25422836e+002 1.04942780e+002 1.17642578e+002 1.25426109e+002 - 1.04980698e+002 1.17666328e+002 1.25401009e+002 1.04987526e+002 - 1.17676186e+002 1.25360992e+002 1.05042465e+002 1.17706223e+002 - 1.25346527e+002 1.05078148e+002 1.17751167e+002 1.25336464e+002 - 1.05109467e+002 1.17770111e+002 1.25304771e+002 1.05109070e+002 - 1.17780205e+002 1.25255379e+002 1.05165428e+002 1.17826096e+002 - 1.25280502e+002 1.05211227e+002 1.17875038e+002 1.25267754e+002 - 1.05237640e+002 1.17883270e+002 1.25216064e+002 1.05261192e+002 - 1.17923637e+002 1.25197914e+002 1.05304916e+002 1.17942970e+002 - 1.25180367e+002 1.05350037e+002 1.17994186e+002 1.25177673e+002 - 1.05388351e+002 1.18017136e+002 1.25160828e+002 1.05382965e+002 - 1.18029640e+002 1.25108887e+002 1.05416260e+002 1.18051254e+002 - 1.25084023e+002 1.05455750e+002 1.18102409e+002 1.25063438e+002 - 1.05487572e+002 1.18111351e+002 1.25035889e+002 1.05548492e+002 - 1.18179764e+002 1.25041534e+002 1.05620026e+002 1.18224190e+002 - 1.25043709e+002 1.05666458e+002 1.18279121e+002 1.25033066e+002 - 1.05702141e+002 1.18307884e+002 1.25012344e+002 1.05729843e+002 - 1.18348274e+002 1.24988945e+002 1.05772202e+002 1.18379868e+002 - 1.24983650e+002 1.05834457e+002 1.18445595e+002 1.24979973e+002 - 1.05893890e+002 1.18482216e+002 1.24957497e+002 1.05933739e+002 - 1.18539658e+002 1.24957733e+002 1.05951073e+002 1.18539246e+002 - 1.24923691e+002 1.05968437e+002 1.18560333e+002 1.24892029e+002 - 1.06012321e+002 1.18575554e+002 1.24862694e+002 1.06033997e+002 - 1.18609657e+002 1.24828842e+002 1.06103760e+002 1.18663185e+002 - 1.24827866e+002 1.06144112e+002 1.18712677e+002 1.24811302e+002 - 1.06194603e+002 1.18742729e+002 1.24783432e+002 1.06244072e+002 - 1.18791466e+002 1.24765633e+002 1.06329208e+002 1.18840401e+002 - 1.24761314e+002 1.06400276e+002 1.18908226e+002 1.24770866e+002 - 1.06487808e+002 1.18980194e+002 1.24771217e+002 1.06497002e+002 - 1.18996109e+002 1.24726906e+002 1.06567642e+002 1.19043724e+002 - 1.24729515e+002 1.06644455e+002 1.19116158e+002 1.24728447e+002 - 1.06733727e+002 1.19178589e+002 1.24720360e+002 1.06792274e+002 - 1.19246765e+002 1.24725159e+002 1.06874985e+002 1.19298492e+002 - 1.24737694e+002 1.06958580e+002 1.19381615e+002 1.24767860e+002 - 1.07016731e+002 1.19407516e+002 1.24747017e+002 1.07070183e+002 - 1.19458275e+002 1.24734200e+002 1.07169930e+002 1.19522163e+002 - 1.24748650e+002 1.07250420e+002 1.19594437e+002 1.24758568e+002 - 1.07315559e+002 1.19615227e+002 1.24738510e+002 1.07365761e+002 - 1.19656754e+002 1.24721260e+002 1.07467033e+002 1.19705414e+002 - 1.24719452e+002 1.07519569e+002 1.19737679e+002 1.24702766e+002 - 1.07613510e+002 1.19782951e+002 1.24691948e+002 1.07637390e+002 - 1.19791168e+002 1.24647179e+002 1.07681252e+002 1.19793907e+002 - 1.24617744e+002 1.07646591e+002 1.19742905e+002 1.24509430e+002 - 1.07446526e+002 1.19579903e+002 1.24426704e+002 1.07495522e+002 - 1.19674553e+002 1.24552963e+002 1.07519997e+002 1.19722595e+002 - 1.24644882e+002 1.07503326e+002 1.19735443e+002 1.24699806e+002 - 1.07473511e+002 1.19718758e+002 1.24749062e+002 1.07397446e+002 - 1.19689339e+002 1.24752235e+002 1.07346176e+002 1.19659325e+002 - 1.24788200e+002 1.07249489e+002 1.19587517e+002 1.24764923e+002 - 1.07184090e+002 1.19527451e+002 1.24765297e+002 1.07091499e+002 - 1.19465530e+002 1.24753960e+002 1.07027405e+002 1.19395653e+002 - 1.24764709e+002 1.06988541e+002 1.19383064e+002 1.24805145e+002 - 1.06934570e+002 1.19342720e+002 1.24826805e+002 1.06877068e+002 - 1.19311096e+002 1.24826569e+002 1.06804558e+002 1.19239250e+002 - 1.24817139e+002 1.06712730e+002 1.19168488e+002 1.24790863e+002 - 1.06651222e+002 1.19124763e+002 1.24825356e+002 1.06553551e+002 - 1.19056099e+002 1.24793968e+002 1.06496902e+002 1.18995209e+002 - 1.24794220e+002 1.06432961e+002 1.18952835e+002 1.24797241e+002 - 1.06392258e+002 1.18912033e+002 1.24821259e+002 1.06350273e+002 - 1.18892189e+002 1.24850754e+002 1.06281761e+002 1.18827988e+002 - 1.24853569e+002 1.06255074e+002 1.18817329e+002 1.24883202e+002 - 1.06217232e+002 1.18776222e+002 1.24915123e+002 1.06132271e+002 - 1.18702621e+002 1.24897224e+002 1.06055817e+002 1.18614494e+002 - 1.24889458e+002 1.06010338e+002 1.18582596e+002 1.24912926e+002 - 1.05983475e+002 1.18566551e+002 1.24964317e+002 1.05935562e+002 - 1.18539795e+002 1.24980316e+002 1.05907066e+002 1.18504944e+002 - 1.25011086e+002 1.05862305e+002 1.18473534e+002 1.25032570e+002 - 1.05789452e+002 1.18415634e+002 1.25061417e+002 1.05695610e+002 - 1.18355881e+002 1.25051826e+002 1.05655205e+002 1.18299904e+002 - 1.25054062e+002 1.05613586e+002 1.18273766e+002 1.25076218e+002 - 1.05580650e+002 1.18230347e+002 1.25108337e+002 1.05520958e+002 - 1.18185455e+002 1.25102699e+002 1.05460625e+002 1.18117920e+002 - 1.25111435e+002 1.05432198e+002 1.18105072e+002 1.25131676e+002 - 1.05426941e+002 1.18090111e+002 1.25180244e+002 1.05360916e+002 - 1.18041817e+002 1.25172554e+002 1.05354919e+002 1.18009491e+002 - 1.25217522e+002 1.05315315e+002 1.17984192e+002 1.25230499e+002 - 1.05299156e+002 1.17962112e+002 1.25266151e+002 1.05265610e+002 - 1.17940170e+002 1.25273880e+002 1.05234451e+002 1.17898933e+002 - 1.25288124e+002 1.05179146e+002 1.17856262e+002 1.25286484e+002 - 1.05135445e+002 1.17820763e+002 1.25325935e+002 1.05075920e+002 - 1.17790482e+002 1.25333977e+002 1.05053398e+002 1.17751503e+002 - 1.25352127e+002 1.05025269e+002 1.17723969e+002 1.25365501e+002 - 1.04980186e+002 1.17655739e+002 1.25368774e+002 1.04931679e+002 - 1.17622635e+002 1.25370232e+002 1.04891853e+002 1.17583717e+002 - 1.25390190e+002 1.04898224e+002 1.17602974e+002 1.25437401e+002 - 1.04903107e+002 1.17597084e+002 1.25493668e+002 1.04858749e+002 - 1.17568336e+002 1.25512077e+002 1.04815071e+002 1.17501770e+002 - 1.25523430e+002 1.04751816e+002 1.17444122e+002 1.25502701e+002 - 1.04732399e+002 1.17424019e+002 1.25533211e+002 1.04714508e+002 - 1.17421844e+002 1.25553329e+002 1.04694313e+002 1.17385986e+002 - 1.25574074e+002 1.04674019e+002 1.17374397e+002 1.25590904e+002 - 1.04643761e+002 1.17342514e+002 1.25618134e+002 1.04615540e+002 - 1.17349045e+002 1.25647507e+002 1.04628120e+002 1.17345772e+002 - 1.25682037e+002 1.04646500e+002 1.17373550e+002 1.25745140e+002 - 1.04634750e+002 1.17348969e+002 1.25770592e+002 1.04601288e+002 - 1.17333336e+002 1.25785042e+002 1.04599335e+002 1.17329514e+002 - 1.25832062e+002 1.04589676e+002 1.17330948e+002 1.25858063e+002 - 1.04586731e+002 1.17316589e+002 1.25894478e+002 1.04548126e+002 - 1.17291435e+002 1.25901199e+002 1.04558754e+002 1.17265610e+002 - 1.25941803e+002 1.04539597e+002 1.17264122e+002 1.25963539e+002 - 1.04540222e+002 1.17259163e+002 1.26003380e+002 1.04543449e+002 - 1.17281044e+002 1.26038383e+002 1.04532829e+002 1.17250153e+002 - 1.26048355e+002 1.04522736e+002 1.17240082e+002 1.26056007e+002 - 1.04518074e+002 1.17225487e+002 1.26089729e+002 1.04476555e+002 - 1.17204353e+002 1.26088356e+002 1.04467232e+002 1.17184196e+002 - 1.26102982e+002 1.04433411e+002 1.17162308e+002 1.26100243e+002 - 1.04454605e+002 1.17170532e+002 1.26147377e+002 1.04444168e+002 - 1.17172394e+002 1.26173416e+002 1.04427383e+002 1.17152863e+002 - 1.26198112e+002 1.04414536e+002 1.17156784e+002 1.26219460e+002 - 1.04424332e+002 1.17160370e+002 1.26263603e+002 1.04405350e+002 - 1.17159370e+002 1.26284813e+002 1.04436874e+002 1.17165627e+002 - 1.26340523e+002 1.04440582e+002 1.17179176e+002 1.26369507e+002 - 1.04445244e+002 1.17181763e+002 1.26394951e+002 1.04386185e+002 - 1.17131294e+002 1.26348068e+002 1.04377899e+002 1.17100334e+002 - 1.26348251e+002 1.04358124e+002 1.17086372e+002 1.26335045e+002 - 1.04340652e+002 1.17071411e+002 1.26344658e+002 1.04293472e+002 - 1.17046783e+002 1.26325897e+002 1.04293289e+002 1.17033173e+002 - 1.26339439e+002 1.04300880e+002 1.17051964e+002 1.26367889e+002 - 1.04332336e+002 1.17061897e+002 1.26409660e+002 1.04332153e+002 - 1.17067505e+002 1.26425735e+002 1.04307823e+002 1.17048820e+002 - 1.26422089e+002 1.04293816e+002 1.17039825e+002 1.26416466e+002 - 1.04274696e+002 1.17014389e+002 1.26413147e+002 1.04267700e+002 - 1.17018921e+002 1.26418968e+002 1.04295494e+002 1.17018845e+002 - 1.26451233e+002 1.04301682e+002 1.17037964e+002 1.26460030e+002 - 1.04297737e+002 1.17036819e+002 1.26462875e+002 1.04279976e+002 - 1.17040863e+002 1.26459602e+002 1.04272308e+002 1.17020561e+002 - 1.26449287e+002 1.04261154e+002 1.17008369e+002 1.26421364e+002 - 1.04278473e+002 1.17009033e+002 1.26428619e+002 1.04270370e+002 - 1.17019112e+002 1.26423012e+002 1.04279915e+002 1.17018059e+002 - 1.26426155e+002 1.04272575e+002 1.17021881e+002 1.26418327e+002 - 1.04293213e+002 1.17025314e+002 1.26429878e+002 1.04281891e+002 - 1.17024193e+002 1.26412842e+002 1.04285675e+002 1.17024628e+002 - 1.26405937e+002 1.04278214e+002 1.17026978e+002 1.26383331e+002 - 1.04249481e+002 1.16986725e+002 1.26338524e+002 1.04251640e+002 - 1.16997780e+002 1.26338173e+002 1.04266685e+002 1.16986374e+002 - 1.26329445e+002 1.04257629e+002 1.16991119e+002 1.26317970e+002 - 1.04270889e+002 1.16986649e+002 1.26305428e+002 1.04285950e+002 - 1.17015175e+002 1.26299850e+002 1.04311249e+002 1.17029999e+002 - 1.26308487e+002 1.04333824e+002 1.17044701e+002 1.26303673e+002 - 1.04362450e+002 1.17065544e+002 1.26303467e+002 1.04378052e+002 - 1.17102730e+002 1.26306839e+002 1.04380486e+002 1.17096741e+002 - 1.26292641e+002 1.04377655e+002 1.17101906e+002 1.26271301e+002 - 1.04395409e+002 1.17103256e+002 1.26266281e+002 1.04340767e+002 - 1.17071762e+002 1.26210808e+002 1.04319092e+002 1.17051964e+002 - 1.26170967e+002 1.04297409e+002 1.17041611e+002 1.26127190e+002 - 1.04278046e+002 1.17020622e+002 1.26086433e+002 1.04279175e+002 - 1.17040390e+002 1.26066689e+002 1.04311386e+002 1.17043610e+002 - 1.26064949e+002 1.04327492e+002 1.17075386e+002 1.26055420e+002 - 1.04331886e+002 1.17081902e+002 1.26028069e+002 1.04281158e+002 - 1.17045395e+002 1.25956497e+002 1.04300865e+002 1.17055054e+002 - 1.25954712e+002 1.04339973e+002 1.17101784e+002 1.25953392e+002 - 1.04365631e+002 1.17116699e+002 1.25937813e+002 1.04350304e+002 - 1.17130409e+002 1.25898636e+002 1.04346939e+002 1.17105156e+002 - 1.25862274e+002 1.04368263e+002 1.17140427e+002 1.25851921e+002 - 1.04408226e+002 1.17158005e+002 1.25842903e+002 1.04388206e+002 - 1.17145172e+002 1.25781021e+002 1.04424019e+002 1.17167984e+002 - 1.25764153e+002 1.04448135e+002 1.17196060e+002 1.25740005e+002 - 1.04459358e+002 1.17195564e+002 1.25712921e+002 1.04449852e+002 - 1.17198784e+002 1.25670448e+002 1.04479965e+002 1.17197273e+002 - 1.25650406e+002 1.04462105e+002 1.17197121e+002 1.25594002e+002 - 1.04491379e+002 1.17226433e+002 1.25583817e+002 1.04511452e+002 - 1.17263260e+002 1.25568504e+002 1.04536438e+002 1.17279022e+002 - 1.25558449e+002 1.04567833e+002 1.17318199e+002 1.25539291e+002 - 1.04610283e+002 1.17346489e+002 1.25524132e+002 1.04616951e+002 - 1.17368393e+002 1.25492256e+002 1.04665970e+002 1.17402870e+002 - 1.25503365e+002 1.04673523e+002 1.17414825e+002 1.25464058e+002 - 1.04694862e+002 1.17413887e+002 1.25426247e+002 1.04704231e+002 - 1.17432983e+002 1.25391342e+002 1.04724220e+002 1.17439827e+002 - 1.25347893e+002 1.04772987e+002 1.17492004e+002 1.25339951e+002 - 1.04819946e+002 1.17520226e+002 1.25328720e+002 1.04847473e+002 - 1.17557846e+002 1.25305016e+002 1.04904465e+002 1.17586128e+002 - 1.25294815e+002 1.04941162e+002 1.17634674e+002 1.25278831e+002 - 1.04960594e+002 1.17643494e+002 1.25244209e+002 1.04955658e+002 - 1.17656067e+002 1.25194931e+002 1.05022125e+002 1.17704132e+002 - 1.25221069e+002 1.05053879e+002 1.17737282e+002 1.25193443e+002 - 1.05063324e+002 1.17729240e+002 1.25125191e+002 1.05109184e+002 - 1.17792358e+002 1.25126732e+002 1.05149208e+002 1.17808952e+002 - 1.25112457e+002 1.05179008e+002 1.17844170e+002 1.25084404e+002 - 1.05238564e+002 1.17887367e+002 1.25086830e+002 1.05239052e+002 - 1.17903702e+002 1.25041748e+002 1.05271233e+002 1.17932304e+002 - 1.25019928e+002 1.05305992e+002 1.17966194e+002 1.24993118e+002 - 1.05344803e+002 1.17992561e+002 1.24972847e+002 1.05380531e+002 - 1.18034370e+002 1.24954536e+002 1.05457115e+002 1.18079041e+002 - 1.24959610e+002 1.05502983e+002 1.18135094e+002 1.24953415e+002 - 1.05551003e+002 1.18174316e+002 1.24936829e+002 1.05583359e+002 - 1.18222076e+002 1.24921631e+002 1.05646507e+002 1.18270485e+002 - 1.24933792e+002 1.05723221e+002 1.18354713e+002 1.24946510e+002 - 1.05773972e+002 1.18384575e+002 1.24918823e+002 1.05812752e+002 - 1.18438850e+002 1.24912399e+002 1.05840874e+002 1.18448509e+002 - 1.24886826e+002 1.05860199e+002 1.18474144e+002 1.24864204e+002 - 1.05899277e+002 1.18490143e+002 1.24826942e+002 1.05909927e+002 - 1.18503716e+002 1.24775726e+002 1.05974083e+002 1.18554550e+002 - 1.24768494e+002 1.06013794e+002 1.18605835e+002 1.24752274e+002 - 1.06071304e+002 1.18643715e+002 1.24735062e+002 1.06117523e+002 - 1.18689285e+002 1.24717613e+002 1.06209854e+002 1.18738777e+002 - 1.24718338e+002 1.06273903e+002 1.18808083e+002 1.24715179e+002 - 1.06365372e+002 1.18881264e+002 1.24729515e+002 1.06379150e+002 - 1.18901421e+002 1.24680946e+002 1.06451958e+002 1.18944366e+002 - 1.24681671e+002 1.06517761e+002 1.19010445e+002 1.24671432e+002 - 1.06603859e+002 1.19076912e+002 1.24664040e+002 1.06665596e+002 - 1.19141815e+002 1.24664513e+002 1.06747360e+002 1.19195274e+002 - 1.24684174e+002 1.06844353e+002 1.19292038e+002 1.24721214e+002 - 1.06902046e+002 1.19315689e+002 1.24700066e+002 1.06949562e+002 - 1.19360802e+002 1.24682037e+002 1.07028328e+002 1.19404320e+002 - 1.24681114e+002 1.07108444e+002 1.19477119e+002 1.24683350e+002 - 1.07179878e+002 1.19502411e+002 1.24669449e+002 1.07252815e+002 - 1.19568298e+002 1.24677750e+002 1.07327255e+002 1.19589279e+002 - 1.24654427e+002 1.07379974e+002 1.19624947e+002 1.24628807e+002 - 1.07481110e+002 1.19668930e+002 1.24627113e+002 1.07514374e+002 - 1.19700562e+002 1.24596825e+002 1.07555786e+002 1.19692245e+002 - 1.24558548e+002 1.07504974e+002 1.19627197e+002 1.24436996e+002 - 1.07328293e+002 1.19477272e+002 1.24382172e+002 1.07390549e+002 - 1.19591530e+002 1.24520309e+002 1.07411903e+002 1.19631317e+002 - 1.24617622e+002 1.07403252e+002 1.19653885e+002 1.24673096e+002 - 1.07359756e+002 1.19632126e+002 1.24717255e+002 1.07288048e+002 - 1.19590927e+002 1.24722702e+002 1.07209877e+002 1.19538536e+002 - 1.24729805e+002 1.07126678e+002 1.19482117e+002 1.24723763e+002 - 1.07062691e+002 1.19429062e+002 1.24733650e+002 1.06968811e+002 - 1.19357986e+002 1.24712570e+002 1.06904991e+002 1.19294136e+002 - 1.24731163e+002 1.06874512e+002 1.19289436e+002 1.24775414e+002 - 1.06815300e+002 1.19243767e+002 1.24788467e+002 1.06748276e+002 - 1.19199600e+002 1.24782036e+002 1.06683685e+002 1.19134583e+002 - 1.24777145e+002 1.06603531e+002 1.19080154e+002 1.24764809e+002 - 1.06547646e+002 1.19042313e+002 1.24807022e+002 1.06437782e+002 - 1.18968735e+002 1.24774635e+002 1.06389717e+002 1.18916695e+002 - 1.24784378e+002 1.06318443e+002 1.18860016e+002 1.24774239e+002 - 1.06270287e+002 1.18810242e+002 1.24794434e+002 1.06215073e+002 - 1.18776505e+002 1.24804596e+002 1.06147186e+002 1.18715240e+002 - 1.24812889e+002 1.06091026e+002 1.18669403e+002 1.24816673e+002 - 1.06080048e+002 1.18659462e+002 1.24870674e+002 1.05986877e+002 - 1.18578201e+002 1.24842537e+002 1.05917068e+002 1.18489243e+002 - 1.24843552e+002 1.05878777e+002 1.18465637e+002 1.24875069e+002 - 1.05841141e+002 1.18441711e+002 1.24915123e+002 1.05785912e+002 - 1.18408554e+002 1.24926353e+002 1.05755127e+002 1.18373589e+002 - 1.24955811e+002 1.05708733e+002 1.18342979e+002 1.24975433e+002 - 1.05656860e+002 1.18303612e+002 1.25019363e+002 1.05559669e+002 - 1.18236366e+002 1.25000031e+002 1.05517525e+002 1.18184258e+002 - 1.25002831e+002 1.05468651e+002 1.18145454e+002 1.25018990e+002 - 1.05439880e+002 1.18101685e+002 1.25051361e+002 1.05376747e+002 - 1.18053955e+002 1.25047890e+002 1.05310959e+002 1.17984390e+002 - 1.25044640e+002 1.05289101e+002 1.17971855e+002 1.25074318e+002 - 1.05269089e+002 1.17946892e+002 1.25110382e+002 1.05212952e+002 - 1.17900803e+002 1.25113678e+002 1.05170174e+002 1.17838211e+002 - 1.25122421e+002 1.05148682e+002 1.17827370e+002 1.25151093e+002 - 1.05132736e+002 1.17813072e+002 1.25186790e+002 1.05108940e+002 - 1.17799385e+002 1.25209915e+002 1.05066170e+002 1.17746201e+002 - 1.25209106e+002 1.05031860e+002 1.17722282e+002 1.25224678e+002 - 1.04992859e+002 1.17682320e+002 1.25267090e+002 1.04939674e+002 - 1.17665833e+002 1.25287048e+002 1.04909927e+002 1.17621010e+002 - 1.25301460e+002 1.04858475e+002 1.17576462e+002 1.25288879e+002 - 1.04817123e+002 1.17513824e+002 1.25299507e+002 1.04762947e+002 - 1.17473335e+002 1.25297577e+002 1.04740730e+002 1.17438278e+002 - 1.25329308e+002 1.04712570e+002 1.17427475e+002 1.25348114e+002 - 1.04695175e+002 1.17403519e+002 1.25381836e+002 1.04680603e+002 - 1.17402077e+002 1.25422699e+002 1.04662117e+002 1.17360397e+002 - 1.25462410e+002 1.04601425e+002 1.17315880e+002 1.25457741e+002 - 1.04583847e+002 1.17289825e+002 1.25479462e+002 1.04540993e+002 - 1.17263237e+002 1.25481079e+002 1.04532249e+002 1.17238861e+002 - 1.25502190e+002 1.04522453e+002 1.17241234e+002 1.25531960e+002 - 1.04502274e+002 1.17216240e+002 1.25574036e+002 1.04472641e+002 - 1.17213570e+002 1.25595062e+002 1.04469345e+002 1.17199387e+002 - 1.25623550e+002 1.04480827e+002 1.17226372e+002 1.25678787e+002 - 1.04462616e+002 1.17196335e+002 1.25703156e+002 1.04424858e+002 - 1.17170410e+002 1.25712784e+002 1.04415779e+002 1.17158020e+002 - 1.25750122e+002 1.04405495e+002 1.17164925e+002 1.25782570e+002 - 1.04405457e+002 1.17153397e+002 1.25820450e+002 1.04386108e+002 - 1.17139297e+002 1.25837318e+002 1.04358498e+002 1.17083229e+002 - 1.25840805e+002 1.04347641e+002 1.17076019e+002 1.25869843e+002 - 1.04360199e+002 1.17085213e+002 1.25921257e+002 1.04391846e+002 - 1.17133179e+002 1.25984123e+002 1.04372154e+002 1.17102455e+002 - 1.25987518e+002 1.04341690e+002 1.17076836e+002 1.25969315e+002 - 1.04342125e+002 1.17060921e+002 1.26002335e+002 1.04298920e+002 - 1.17044273e+002 1.26001198e+002 1.04291153e+002 1.17021347e+002 - 1.26023849e+002 1.04263885e+002 1.17002472e+002 1.26025345e+002 - 1.04290268e+002 1.17014542e+002 1.26074776e+002 1.04282700e+002 - 1.17016983e+002 1.26098282e+002 1.04277412e+002 1.17012276e+002 - 1.26139748e+002 1.04273346e+002 1.17018272e+002 1.26167953e+002 - 1.04273521e+002 1.17020111e+002 1.26204773e+002 1.04257362e+002 - 1.17016426e+002 1.26220993e+002 1.04270638e+002 1.17007843e+002 - 1.26262772e+002 1.04289719e+002 1.17037109e+002 1.26304245e+002 - 1.04297356e+002 1.17036667e+002 1.26329781e+002 1.04246231e+002 - 1.16997292e+002 1.26294106e+002 1.04222061e+002 1.16947365e+002 - 1.26281006e+002 1.04200806e+002 1.16936272e+002 1.26271034e+002 - 1.04200821e+002 1.16938255e+002 1.26292328e+002 1.04155228e+002 - 1.16912521e+002 1.26275360e+002 1.04132950e+002 1.16877716e+002 - 1.26270828e+002 1.04112366e+002 1.16870110e+002 1.26267654e+002 - 1.04148308e+002 1.16887283e+002 1.26324776e+002 1.04156204e+002 - 1.16903854e+002 1.26350067e+002 1.04152382e+002 1.16900566e+002 - 1.26365875e+002 1.04128716e+002 1.16887840e+002 1.26346169e+002 - 1.04135216e+002 1.16880310e+002 1.26361267e+002 1.04103828e+002 - 1.16867027e+002 1.26349915e+002 1.04118912e+002 1.16852264e+002 - 1.26366837e+002 1.04116203e+002 1.16861427e+002 1.26370636e+002 - 1.04119652e+002 1.16860641e+002 1.26374954e+002 1.04108803e+002 - 1.16870697e+002 1.26372559e+002 1.04087784e+002 1.16844597e+002 - 1.26357956e+002 1.04104156e+002 1.16864235e+002 1.26354973e+002 - 1.04110428e+002 1.16849442e+002 1.26353447e+002 1.04098587e+002 - 1.16858406e+002 1.26349754e+002 1.04109001e+002 1.16858803e+002 - 1.26358559e+002 1.04102531e+002 1.16858368e+002 1.26341911e+002 - 1.04119347e+002 1.16854424e+002 1.26358696e+002 1.04113876e+002 - 1.16862564e+002 1.26345016e+002 1.04110107e+002 1.16850822e+002 - 1.26327957e+002 1.04090004e+002 1.16846405e+002 1.26296539e+002 - 1.04092873e+002 1.16835777e+002 1.26285400e+002 1.04090790e+002 - 1.16850304e+002 1.26274147e+002 1.04104439e+002 1.16837601e+002 - 1.26267654e+002 1.04094467e+002 1.16838051e+002 1.26250969e+002 - 1.04114182e+002 1.16845055e+002 1.26240318e+002 1.04115295e+002 - 1.16856956e+002 1.26228600e+002 1.04158020e+002 1.16886078e+002 - 1.26253014e+002 1.04195496e+002 1.16926186e+002 1.26252129e+002 - 1.04228142e+002 1.16942482e+002 1.26252953e+002 1.04226364e+002 - 1.16965530e+002 1.26250992e+002 1.04235786e+002 1.16961037e+002 - 1.26242149e+002 1.04239861e+002 1.16977760e+002 1.26234406e+002 - 1.04252502e+002 1.16979424e+002 1.26226456e+002 1.04213150e+002 - 1.16956169e+002 1.26177338e+002 1.04187386e+002 1.16929466e+002 - 1.26136009e+002 1.04161186e+002 1.16910210e+002 1.26074554e+002 - 1.04136971e+002 1.16883781e+002 1.26031532e+002 1.04129967e+002 - 1.16895836e+002 1.26006577e+002 1.04155060e+002 1.16900032e+002 - 1.26002335e+002 1.04160042e+002 1.16917351e+002 1.25974297e+002 - 1.04171692e+002 1.16928406e+002 1.25956490e+002 1.04137024e+002 - 1.16912186e+002 1.25899292e+002 1.04161491e+002 1.16920624e+002 - 1.25897041e+002 1.04191544e+002 1.16959999e+002 1.25891785e+002 - 1.04205612e+002 1.16967720e+002 1.25863785e+002 1.04181374e+002 - 1.16967720e+002 1.25821747e+002 1.04177666e+002 1.16946617e+002 - 1.25782967e+002 1.04218925e+002 1.16997879e+002 1.25787415e+002 - 1.04251450e+002 1.17015640e+002 1.25780861e+002 1.04227776e+002 - 1.16999191e+002 1.25714745e+002 1.04285019e+002 1.17041588e+002 - 1.25716644e+002 1.04273842e+002 1.17038353e+002 1.25664192e+002 - 1.04275543e+002 1.17016541e+002 1.25616585e+002 1.04277718e+002 - 1.17030701e+002 1.25586761e+002 1.04288254e+002 1.17017525e+002 - 1.25547600e+002 1.04281898e+002 1.17021149e+002 1.25496193e+002 - 1.04318390e+002 1.17060097e+002 1.25496567e+002 1.04343689e+002 - 1.17104919e+002 1.25491661e+002 1.04398102e+002 1.17147942e+002 - 1.25509819e+002 1.04434311e+002 1.17192337e+002 1.25498177e+002 - 1.04452599e+002 1.17194191e+002 1.25454468e+002 1.04465775e+002 - 1.17229790e+002 1.25435547e+002 1.04500488e+002 1.17246124e+002 - 1.25421349e+002 1.04521629e+002 1.17272568e+002 1.25399956e+002 - 1.04559875e+002 1.17289772e+002 1.25379921e+002 1.04572556e+002 - 1.17311722e+002 1.25352097e+002 1.04592667e+002 1.17319046e+002 - 1.25309814e+002 1.04610031e+002 1.17340469e+002 1.25268639e+002 - 1.04663116e+002 1.17373940e+002 1.25256615e+002 1.04689835e+002 - 1.17418182e+002 1.25240387e+002 1.04743195e+002 1.17440216e+002 - 1.25224602e+002 1.04779594e+002 1.17483437e+002 1.25211739e+002 - 1.04799141e+002 1.17493668e+002 1.25177559e+002 1.04800285e+002 - 1.17513649e+002 1.25131538e+002 1.04866364e+002 1.17561539e+002 - 1.25158623e+002 1.04884460e+002 1.17584358e+002 1.25114975e+002 - 1.04909386e+002 1.17591339e+002 1.25059319e+002 1.04957191e+002 - 1.17658241e+002 1.25069885e+002 1.04998367e+002 1.17675949e+002 - 1.25050652e+002 1.05025932e+002 1.17707832e+002 1.25028061e+002 - 1.05071365e+002 1.17738319e+002 1.25016495e+002 1.05092911e+002 - 1.17769165e+002 1.24990356e+002 1.05140465e+002 1.17812088e+002 - 1.24979828e+002 1.05182442e+002 1.17866028e+002 1.24969475e+002 - 1.05205521e+002 1.17864723e+002 1.24924118e+002 1.05234367e+002 - 1.17900406e+002 1.24897362e+002 1.05306625e+002 1.17938484e+002 - 1.24898560e+002 1.05349747e+002 1.17996696e+002 1.24890945e+002 - 1.05410233e+002 1.18044113e+002 1.24883049e+002 1.05436661e+002 - 1.18088875e+002 1.24864868e+002 1.05503593e+002 1.18148178e+002 - 1.24878983e+002 1.05586830e+002 1.18233253e+002 1.24889549e+002 - 1.05629883e+002 1.18253647e+002 1.24849709e+002 1.05667671e+002 - 1.18305939e+002 1.24846939e+002 1.05681458e+002 1.18302711e+002 - 1.24814087e+002 1.05720108e+002 1.18349197e+002 1.24801437e+002 - 1.05750687e+002 1.18354988e+002 1.24762352e+002 1.05784851e+002 - 1.18392929e+002 1.24730804e+002 1.05856178e+002 1.18452576e+002 - 1.24738007e+002 1.05878754e+002 1.18483612e+002 1.24698212e+002 - 1.05946190e+002 1.18528236e+002 1.24691879e+002 1.05987831e+002 - 1.18574455e+002 1.24664001e+002 1.06062477e+002 1.18612755e+002 - 1.24654358e+002 1.06120605e+002 1.18670105e+002 1.24640564e+002 - 1.06202934e+002 1.18735458e+002 1.24643974e+002 1.06240562e+002 - 1.18777145e+002 1.24618553e+002 1.06324364e+002 1.18836540e+002 - 1.24634445e+002 1.06397095e+002 1.18908348e+002 1.24633865e+002 - 1.06485611e+002 1.18969971e+002 1.24622467e+002 1.06534966e+002 - 1.19027817e+002 1.24611588e+002 1.06627556e+002 1.19091118e+002 - 1.24640785e+002 1.06714005e+002 1.19180214e+002 1.24672546e+002 - 1.06795593e+002 1.19222549e+002 1.24667938e+002 1.06845795e+002 - 1.19269707e+002 1.24653877e+002 1.06908089e+002 1.19303780e+002 - 1.24637489e+002 1.06979050e+002 1.19366547e+002 1.24633308e+002 - 1.07059578e+002 1.19406921e+002 1.24632446e+002 1.07129997e+002 - 1.19466751e+002 1.24630058e+002 1.07207169e+002 1.19487488e+002 - 1.24606689e+002 1.07271812e+002 1.19531548e+002 1.24593781e+002 - 1.07358170e+002 1.19568245e+002 1.24586548e+002 1.07406448e+002 - 1.19608887e+002 1.24564804e+002 1.07449760e+002 1.19602867e+002 - 1.24532906e+002 1.07401878e+002 1.19540337e+002 1.24405540e+002 - 1.07260170e+002 1.19429176e+002 1.24373444e+002 1.07316521e+002 - 1.19536674e+002 1.24503532e+002 1.07342094e+002 1.19581436e+002 - 1.24606514e+002 1.07318832e+002 1.19593910e+002 1.24654221e+002 - 1.07281174e+002 1.19569557e+002 1.24700722e+002 1.07175636e+002 - 1.19502174e+002 1.24671333e+002 1.07097916e+002 1.19446846e+002 - 1.24686211e+002 1.07027435e+002 1.19402687e+002 1.24683685e+002 - 1.06973480e+002 1.19360176e+002 1.24705811e+002 1.06878571e+002 - 1.19296921e+002 1.24694176e+002 1.06813431e+002 1.19218079e+002 - 1.24703430e+002 1.06774673e+002 1.19212036e+002 1.24739769e+002 - 1.06709122e+002 1.19152603e+002 1.24743752e+002 1.06638870e+002 - 1.19109604e+002 1.24742271e+002 1.06579781e+002 1.19050507e+002 - 1.24740494e+002 1.06497437e+002 1.18992722e+002 1.24730202e+002 - 1.06438858e+002 1.18949677e+002 1.24771240e+002 1.06325211e+002 - 1.18879974e+002 1.24739967e+002 1.06274521e+002 1.18817322e+002 - 1.24744141e+002 1.06232468e+002 1.18793808e+002 1.24764809e+002 - 1.06163811e+002 1.18727913e+002 1.24764801e+002 1.06095016e+002 - 1.18674965e+002 1.24761948e+002 1.06026344e+002 1.18613281e+002 - 1.24777145e+002 1.05993538e+002 1.18589432e+002 1.24793907e+002 - 1.05961243e+002 1.18560791e+002 1.24831512e+002 1.05871399e+002 - 1.18484299e+002 1.24803909e+002 1.05827400e+002 1.18419319e+002 - 1.24833260e+002 1.05773766e+002 1.18382545e+002 1.24849754e+002 - 1.05728432e+002 1.18347771e+002 1.24877785e+002 1.05670219e+002 - 1.18309860e+002 1.24883141e+002 1.05641045e+002 1.18282112e+002 - 1.24922844e+002 1.05583282e+002 1.18239174e+002 1.24923668e+002 - 1.05534294e+002 1.18199844e+002 1.24966942e+002 1.05446335e+002 - 1.18143944e+002 1.24964500e+002 1.05415405e+002 1.18095238e+002 - 1.24979942e+002 1.05343277e+002 1.18041466e+002 1.24968651e+002 - 1.05326180e+002 1.18002754e+002 1.25010475e+002 1.05268074e+002 - 1.17959175e+002 1.25009415e+002 1.05220001e+002 1.17907204e+002 - 1.25028381e+002 1.05168915e+002 1.17873444e+002 1.25034027e+002 - 1.05139381e+002 1.17834328e+002 1.25059364e+002 1.05069626e+002 - 1.17769440e+002 1.25047562e+002 1.05044662e+002 1.17733337e+002 - 1.25079712e+002 1.05041893e+002 1.17742386e+002 1.25125458e+002 - 1.05034859e+002 1.17728638e+002 1.25170616e+002 1.04993172e+002 - 1.17700790e+002 1.25170052e+002 1.04930107e+002 1.17629852e+002 - 1.25157928e+002 1.04918015e+002 1.17634689e+002 1.25200439e+002 - 1.04882851e+002 1.17591209e+002 1.25232147e+002 1.04808617e+002 - 1.17550323e+002 1.25232697e+002 1.04790413e+002 1.17516846e+002 - 1.25254166e+002 1.04750534e+002 1.17488983e+002 1.25264091e+002 - 1.04699150e+002 1.17407433e+002 1.25256210e+002 1.04645065e+002 - 1.17367577e+002 1.25254402e+002 1.04615593e+002 1.17336609e+002 - 1.25283012e+002 1.04585434e+002 1.17314842e+002 1.25289291e+002 - 1.04565033e+002 1.17283356e+002 1.25327995e+002 1.04523399e+002 - 1.17260193e+002 1.25345802e+002 1.04530579e+002 1.17247368e+002 - 1.25407852e+002 1.04491745e+002 1.17215981e+002 1.25422325e+002 - 1.04467468e+002 1.17187294e+002 1.25440765e+002 1.04430611e+002 - 1.17164528e+002 1.25449425e+002 1.04412315e+002 1.17134064e+002 - 1.25467705e+002 1.04395409e+002 1.17130562e+002 1.25490685e+002 - 1.04390411e+002 1.17129181e+002 1.25547806e+002 1.04351044e+002 - 1.17116722e+002 1.25562149e+002 1.04343414e+002 1.17090683e+002 - 1.25581764e+002 1.04339272e+002 1.17100189e+002 1.25619118e+002 - 1.04340042e+002 1.17088631e+002 1.25669250e+002 1.04299355e+002 - 1.17061195e+002 1.25673386e+002 1.04270287e+002 1.17035759e+002 - 1.25696190e+002 1.04282341e+002 1.17056404e+002 1.25745819e+002 - 1.04282784e+002 1.17051346e+002 1.25782921e+002 1.04245064e+002 - 1.17015778e+002 1.25785614e+002 1.04236946e+002 1.16969208e+002 - 1.25807961e+002 1.04246574e+002 1.16993904e+002 1.25855042e+002 - 1.04263153e+002 1.17006287e+002 1.25905846e+002 1.04269722e+002 - 1.17025757e+002 1.25943436e+002 1.04257957e+002 1.17001610e+002 - 1.25950806e+002 1.04223900e+002 1.16978111e+002 1.25941124e+002 - 1.04214783e+002 1.16960541e+002 1.25969460e+002 1.04185059e+002 - 1.16946938e+002 1.25978653e+002 1.04163376e+002 1.16903618e+002 - 1.25968826e+002 1.04166649e+002 1.16921860e+002 1.26001747e+002 - 1.04181618e+002 1.16916382e+002 1.26046730e+002 1.04149818e+002 - 1.16895836e+002 1.26048668e+002 1.04140602e+002 1.16888428e+002 - 1.26089043e+002 1.04156631e+002 1.16916252e+002 1.26132813e+002 - 1.04152481e+002 1.16906250e+002 1.26163361e+002 1.04131622e+002 - 1.16908989e+002 1.26177307e+002 1.04142151e+002 1.16890976e+002 - 1.26214027e+002 1.04152672e+002 1.16909248e+002 1.26244408e+002 - 1.04155029e+002 1.16904800e+002 1.26263893e+002 1.04104988e+002 - 1.16865585e+002 1.26225304e+002 1.04072380e+002 1.16810410e+002 - 1.26211418e+002 1.04055038e+002 1.16796074e+002 1.26198090e+002 - 1.04070465e+002 1.16812737e+002 1.26237701e+002 1.04026268e+002 - 1.16795624e+002 1.26234558e+002 1.04007980e+002 1.16762840e+002 - 1.26224503e+002 1.04000969e+002 1.16769936e+002 1.26241165e+002 - 1.04020393e+002 1.16769150e+002 1.26273582e+002 1.04010246e+002 - 1.16774094e+002 1.26286446e+002 1.04022163e+002 1.16780975e+002 - 1.26313400e+002 1.04011505e+002 1.16782135e+002 1.26308250e+002 - 1.04015678e+002 1.16772209e+002 1.26323204e+002 1.03988678e+002 - 1.16762291e+002 1.26313675e+002 1.03982773e+002 1.16726974e+002 - 1.26306740e+002 1.03968063e+002 1.16728600e+002 1.26299698e+002 - 1.03985153e+002 1.16735008e+002 1.26316658e+002 1.03975723e+002 - 1.16750359e+002 1.26309090e+002 1.03952621e+002 1.16722702e+002 - 1.26299950e+002 1.03980980e+002 1.16747597e+002 1.26313187e+002 - 1.03959679e+002 1.16716263e+002 1.26288994e+002 1.03955688e+002 - 1.16724655e+002 1.26290146e+002 1.03968262e+002 1.16727699e+002 - 1.26296700e+002 1.03946434e+002 1.16717346e+002 1.26277328e+002 - 1.03974014e+002 1.16719574e+002 1.26293526e+002 1.03956512e+002 - 1.16709877e+002 1.26273659e+002 1.03943329e+002 1.16693123e+002 - 1.26251190e+002 1.03931839e+002 1.16690186e+002 1.26222778e+002 - 1.03921280e+002 1.16671440e+002 1.26196419e+002 1.03935707e+002 - 1.16705681e+002 1.26207474e+002 1.03951721e+002 1.16695343e+002 - 1.26207382e+002 1.03964645e+002 1.16722031e+002 1.26206085e+002 - 1.03992645e+002 1.16731819e+002 1.26202309e+002 1.03989998e+002 - 1.16737755e+002 1.26180634e+002 1.04024628e+002 1.16757645e+002 - 1.26191650e+002 1.04057144e+002 1.16798225e+002 1.26198814e+002 - 1.04079132e+002 1.16807327e+002 1.26191772e+002 1.04065475e+002 - 1.16818420e+002 1.26172890e+002 1.04100868e+002 1.16834106e+002 - 1.26184090e+002 1.04101776e+002 1.16852875e+002 1.26176689e+002 - 1.04112961e+002 1.16849487e+002 1.26166458e+002 1.04077545e+002 - 1.16829193e+002 1.26117737e+002 1.04052429e+002 1.16805443e+002 - 1.26073944e+002 1.04042107e+002 1.16808311e+002 1.26042267e+002 - 1.04038193e+002 1.16792679e+002 1.26010612e+002 1.04019890e+002 - 1.16794479e+002 1.25975342e+002 1.04037277e+002 1.16787521e+002 - 1.25958359e+002 1.04053444e+002 1.16818581e+002 1.25948853e+002 - 1.04050049e+002 1.16816383e+002 1.25906410e+002 1.04024078e+002 - 1.16800850e+002 1.25856003e+002 1.04047272e+002 1.16812637e+002 - 1.25851730e+002 1.04059258e+002 1.16840561e+002 1.25834785e+002 - 1.04082588e+002 1.16856537e+002 1.25819611e+002 1.04048401e+002 - 1.16847557e+002 1.25764610e+002 1.04060608e+002 1.16845306e+002 - 1.25740959e+002 1.04076836e+002 1.16874695e+002 1.25727943e+002 - 1.04100906e+002 1.16879616e+002 1.25710396e+002 1.04087646e+002 - 1.16873009e+002 1.25657120e+002 1.04125092e+002 1.16900307e+002 - 1.25640602e+002 1.04142677e+002 1.16919189e+002 1.25616119e+002 - 1.04149368e+002 1.16908661e+002 1.25573997e+002 1.04133507e+002 - 1.16906860e+002 1.25525383e+002 1.04179367e+002 1.16921402e+002 - 1.25514618e+002 1.04181541e+002 1.16941956e+002 1.25480545e+002 - 1.04219589e+002 1.16976135e+002 1.25477859e+002 1.04231010e+002 - 1.17007843e+002 1.25456841e+002 1.04270081e+002 1.17030647e+002 - 1.25458527e+002 1.04294502e+002 1.17069717e+002 1.25439186e+002 - 1.04310257e+002 1.17069679e+002 1.25393211e+002 1.04334969e+002 - 1.17107178e+002 1.25377853e+002 1.04365723e+002 1.17122925e+002 - 1.25358116e+002 1.04400757e+002 1.17170395e+002 1.25355087e+002 - 1.04438805e+002 1.17177841e+002 1.25330658e+002 1.04441025e+002 - 1.17193260e+002 1.25292870e+002 1.04466629e+002 1.17204750e+002 - 1.25256409e+002 1.04491714e+002 1.17235985e+002 1.25228424e+002 - 1.04550339e+002 1.17274467e+002 1.25223145e+002 1.04569626e+002 - 1.17309204e+002 1.25194817e+002 1.04615440e+002 1.17321220e+002 - 1.25174583e+002 1.04633392e+002 1.17351730e+002 1.25142113e+002 - 1.04658577e+002 1.17369431e+002 1.25113640e+002 1.04660110e+002 - 1.17389610e+002 1.25077454e+002 1.04715935e+002 1.17426338e+002 - 1.25083885e+002 1.04741905e+002 1.17454987e+002 1.25052963e+002 - 1.04779732e+002 1.17481262e+002 1.25018265e+002 1.04819771e+002 - 1.17534180e+002 1.25003944e+002 1.04875740e+002 1.17567322e+002 - 1.25000748e+002 1.04899788e+002 1.17597084e+002 1.24978020e+002 - 1.04929382e+002 1.17610268e+002 1.24951538e+002 1.04951424e+002 - 1.17647926e+002 1.24924690e+002 1.04997345e+002 1.17686874e+002 - 1.24913612e+002 1.05074974e+002 1.17771751e+002 1.24930962e+002 - 1.05095222e+002 1.17771988e+002 1.24881538e+002 1.05134857e+002 - 1.17819527e+002 1.24868988e+002 1.05197350e+002 1.17847092e+002 - 1.24860023e+002 1.05227074e+002 1.17893227e+002 1.24835945e+002 - 1.05288368e+002 1.17938980e+002 1.24828552e+002 1.05310387e+002 - 1.17979019e+002 1.24805397e+002 1.05367317e+002 1.18018883e+002 - 1.24806450e+002 1.05461075e+002 1.18119606e+002 1.24833626e+002 - 1.05518806e+002 1.18158707e+002 1.24810532e+002 1.05546967e+002 - 1.18202827e+002 1.24797668e+002 1.05556664e+002 1.18188133e+002 - 1.24752747e+002 1.05577942e+002 1.18228531e+002 1.24728981e+002 - 1.05634338e+002 1.18250061e+002 1.24707329e+002 1.05681610e+002 - 1.18309631e+002 1.24695389e+002 1.05746773e+002 1.18364830e+002 - 1.24693710e+002 1.05803337e+002 1.18426117e+002 1.24688332e+002 - 1.05854553e+002 1.18460999e+002 1.24665298e+002 1.05897179e+002 - 1.18502182e+002 1.24641258e+002 1.05956505e+002 1.18523727e+002 - 1.24611351e+002 1.06014702e+002 1.18578636e+002 1.24595703e+002 - 1.06101151e+002 1.18648735e+002 1.24608917e+002 1.06126839e+002 - 1.18680504e+002 1.24570808e+002 1.06215622e+002 1.18744164e+002 - 1.24595093e+002 1.06291130e+002 1.18823814e+002 1.24597939e+002 - 1.06376373e+002 1.18883438e+002 1.24582153e+002 1.06425056e+002 - 1.18934479e+002 1.24567200e+002 1.06508682e+002 1.18987175e+002 - 1.24589279e+002 1.06593475e+002 1.19076736e+002 1.24614159e+002 - 1.06678154e+002 1.19121094e+002 1.24616585e+002 1.06723244e+002 - 1.19163391e+002 1.24592705e+002 1.06784065e+002 1.19198647e+002 - 1.24576195e+002 1.06858696e+002 1.19263435e+002 1.24573219e+002 - 1.06950027e+002 1.19321114e+002 1.24583588e+002 1.07018250e+002 - 1.19377113e+002 1.24580605e+002 1.07108917e+002 1.19403824e+002 - 1.24571388e+002 1.07178955e+002 1.19455391e+002 1.24559212e+002 - 1.07259171e+002 1.19488930e+002 1.24548859e+002 1.07308563e+002 - 1.19534706e+002 1.24529503e+002 1.07348679e+002 1.19522552e+002 - 1.24494080e+002 1.07293076e+002 1.19455391e+002 1.24364937e+002 - 1.07177193e+002 1.19381607e+002 1.24361702e+002 1.07225540e+002 - 1.19481728e+002 1.24490799e+002 1.07248917e+002 1.19513412e+002 - 1.24581978e+002 1.07198997e+002 1.19501984e+002 1.24607628e+002 - 1.07166382e+002 1.19482712e+002 1.24654724e+002 1.07062874e+002 - 1.19413116e+002 1.24629707e+002 1.07002357e+002 1.19375648e+002 - 1.24660965e+002 1.06936127e+002 1.19341766e+002 1.24665100e+002 - 1.06852440e+002 1.19272858e+002 1.24664589e+002 1.06754410e+002 - 1.19204865e+002 1.24640083e+002 1.06696762e+002 1.19142097e+002 - 1.24666290e+002 1.06650841e+002 1.19119934e+002 1.24694809e+002 - 1.06592964e+002 1.19069893e+002 1.24707497e+002 1.06506966e+002 - 1.19010208e+002 1.24690140e+002 1.06444572e+002 1.18946854e+002 - 1.24689804e+002 1.06380173e+002 1.18907341e+002 1.24690704e+002 - 1.06297684e+002 1.18844849e+002 1.24712761e+002 1.06179459e+002 - 1.18772675e+002 1.24678101e+002 1.06131248e+002 1.18712357e+002 - 1.24683350e+002 1.06082268e+002 1.18682892e+002 1.24702240e+002 - 1.06022949e+002 1.18614830e+002 1.24710022e+002 1.05980911e+002 - 1.18591515e+002 1.24739395e+002 1.05894028e+002 1.18512772e+002 - 1.24730850e+002 1.05844551e+002 1.18472610e+002 1.24740448e+002 - 1.05817635e+002 1.18448593e+002 1.24776764e+002 1.05734161e+002 - 1.18374313e+002 1.24754021e+002 1.05688988e+002 1.18312317e+002 - 1.24779007e+002 1.05640411e+002 1.18277763e+002 1.24797020e+002 - 1.05593513e+002 1.18236664e+002 1.24823891e+002 1.05526787e+002 - 1.18198685e+002 1.24815666e+002 1.05498726e+002 1.18164139e+002 - 1.24852577e+002 1.05446053e+002 1.18123154e+002 1.24857811e+002 - 1.05392372e+002 1.18089493e+002 1.24913811e+002 1.05312042e+002 - 1.18041153e+002 1.24910164e+002 1.05266365e+002 1.17978561e+002 - 1.24912750e+002 1.05208755e+002 1.17931702e+002 1.24913635e+002 - 1.05181824e+002 1.17888878e+002 1.24944374e+002 1.05138588e+002 - 1.17856361e+002 1.24964363e+002 1.05091637e+002 1.17811378e+002 - 1.24984848e+002 1.05040970e+002 1.17772949e+002 1.24991341e+002 - 1.04995438e+002 1.17716797e+002 1.25000931e+002 1.04909698e+002 - 1.17644478e+002 1.24970734e+002 1.04893906e+002 1.17608276e+002 - 1.25012497e+002 1.04876244e+002 1.17603752e+002 1.25047363e+002 - 1.04857552e+002 1.17581444e+002 1.25082298e+002 1.04814278e+002 - 1.17558281e+002 1.25086845e+002 1.04778931e+002 1.17512535e+002 - 1.25094513e+002 1.04757576e+002 1.17499283e+002 1.25124023e+002 - 1.04723450e+002 1.17462555e+002 1.25165108e+002 1.04636536e+002 - 1.17406570e+002 1.25146477e+002 1.04617432e+002 1.17376709e+002 - 1.25166206e+002 1.04601372e+002 1.17366341e+002 1.25201050e+002 - 1.04546028e+002 1.17284927e+002 1.25194717e+002 1.04507370e+002 - 1.17259216e+002 1.25199112e+002 1.04467995e+002 1.17216782e+002 - 1.25223289e+002 1.04437798e+002 1.17199318e+002 1.25235222e+002 - 1.04429924e+002 1.17181061e+002 1.25281502e+002 1.04369400e+002 - 1.17142670e+002 1.25285698e+002 1.04366783e+002 1.17110725e+002 - 1.25333229e+002 1.04325798e+002 1.17081001e+002 1.25346695e+002 - 1.04317604e+002 1.17066292e+002 1.25384758e+002 1.04296890e+002 - 1.17061119e+002 1.25409409e+002 1.04278358e+002 1.17027977e+002 - 1.25425293e+002 1.04259956e+002 1.17023590e+002 1.25447723e+002 - 1.04266685e+002 1.17026077e+002 1.25515137e+002 1.04209198e+002 - 1.17000755e+002 1.25516624e+002 1.04211739e+002 1.16986755e+002 - 1.25543190e+002 1.04205002e+002 1.16994659e+002 1.25576706e+002 - 1.04208801e+002 1.16980354e+002 1.25630524e+002 1.04132317e+002 - 1.16921486e+002 1.25603508e+002 1.04103004e+002 1.16891190e+002 - 1.25626511e+002 1.04117477e+002 1.16910919e+002 1.25671707e+002 - 1.04096863e+002 1.16887444e+002 1.25697609e+002 1.04068352e+002 - 1.16863930e+002 1.25701996e+002 1.04068550e+002 1.16829758e+002 - 1.25733429e+002 1.04076813e+002 1.16846268e+002 1.25777771e+002 - 1.04106804e+002 1.16869537e+002 1.25841827e+002 1.04097366e+002 - 1.16874863e+002 1.25865410e+002 1.04079842e+002 1.16846764e+002 - 1.25872475e+002 1.04045982e+002 1.16821014e+002 1.25858826e+002 - 1.04040657e+002 1.16810997e+002 1.25895264e+002 1.04022263e+002 - 1.16810577e+002 1.25917297e+002 1.04015938e+002 1.16785812e+002 - 1.25924774e+002 1.04028214e+002 1.16809464e+002 1.25961693e+002 - 1.04019638e+002 1.16781662e+002 1.25981285e+002 1.03992126e+002 - 1.16763191e+002 1.25987785e+002 1.03979294e+002 1.16748306e+002 - 1.26018158e+002 1.03978783e+002 1.16759781e+002 1.26050926e+002 - 1.03967880e+002 1.16749916e+002 1.26074593e+002 1.03957542e+002 - 1.16755951e+002 1.26098381e+002 1.03979500e+002 1.16743889e+002 - 1.26139969e+002 1.03973793e+002 1.16755699e+002 1.26151596e+002 - 1.03987167e+002 1.16759644e+002 1.26180756e+002 1.03927940e+002 - 1.16711365e+002 1.26140358e+002 1.03922913e+002 1.16686600e+002 - 1.26147675e+002 1.03906250e+002 1.16671143e+002 1.26140343e+002 - 1.03898979e+002 1.16660690e+002 1.26156082e+002 1.03870293e+002 - 1.16662910e+002 1.26161148e+002 1.03885201e+002 1.16658936e+002 - 1.26184067e+002 1.03876686e+002 1.16659988e+002 1.26199188e+002 - 1.03872887e+002 1.16640739e+002 1.26216583e+002 1.03844772e+002 - 1.16629189e+002 1.26211456e+002 1.03871788e+002 1.16648102e+002 - 1.26247971e+002 1.03864235e+002 1.16652481e+002 1.26250603e+002 - 1.03862808e+002 1.16638145e+002 1.26251678e+002 1.03843803e+002 - 1.16635536e+002 1.26253967e+002 1.03843559e+002 1.16611855e+002 - 1.26256004e+002 1.03832497e+002 1.16617599e+002 1.26253693e+002 - 1.03817505e+002 1.16592148e+002 1.26236481e+002 1.03795944e+002 - 1.16596207e+002 1.26218384e+002 1.03816406e+002 1.16604462e+002 - 1.26245895e+002 1.03852386e+002 1.16639305e+002 1.26271408e+002 - 1.03827240e+002 1.16591026e+002 1.26236221e+002 1.03805267e+002 - 1.16595169e+002 1.26228622e+002 1.03826591e+002 1.16600868e+002 - 1.26237518e+002 1.03814392e+002 1.16602028e+002 1.26229828e+002 - 1.03816910e+002 1.16584496e+002 1.26225975e+002 1.03790627e+002 - 1.16569145e+002 1.26196930e+002 1.03771263e+002 1.16537148e+002 - 1.26164169e+002 1.03779549e+002 1.16559807e+002 1.26161476e+002 - 1.03780922e+002 1.16553383e+002 1.26147789e+002 1.03775253e+002 - 1.16560326e+002 1.26131813e+002 1.03801872e+002 1.16569458e+002 - 1.26142982e+002 1.03801208e+002 1.16572968e+002 1.26129616e+002 - 1.03820358e+002 1.16578636e+002 1.26111404e+002 1.03827896e+002 - 1.16599327e+002 1.26104790e+002 1.03837669e+002 1.16599991e+002 - 1.26098679e+002 1.03855972e+002 1.16614380e+002 1.26085670e+002 - 1.03870186e+002 1.16616364e+002 1.26065926e+002 1.03886856e+002 - 1.16660309e+002 1.26079964e+002 1.03916672e+002 1.16673286e+002 - 1.26094398e+002 1.03933876e+002 1.16703308e+002 1.26093246e+002 - 1.03938446e+002 1.16697006e+002 1.26081161e+002 1.03913467e+002 - 1.16688026e+002 1.26039459e+002 1.03898148e+002 1.16669441e+002 - 1.26008690e+002 1.03905045e+002 1.16690735e+002 1.25994316e+002 - 1.03896164e+002 1.16673935e+002 1.25952950e+002 1.03854195e+002 - 1.16644989e+002 1.25890709e+002 1.03870590e+002 1.16633049e+002 - 1.25875809e+002 1.03893456e+002 1.16675797e+002 1.25864929e+002 - 1.03892693e+002 1.16674408e+002 1.25832924e+002 1.03876198e+002 - 1.16675583e+002 1.25792084e+002 1.03905205e+002 1.16689682e+002 - 1.25792221e+002 1.03920807e+002 1.16711731e+002 1.25763550e+002 - 1.03932076e+002 1.16731758e+002 1.25746056e+002 1.03912781e+002 - 1.16743912e+002 1.25720940e+002 1.03926956e+002 1.16735321e+002 - 1.25697884e+002 1.03924385e+002 1.16749184e+002 1.25666740e+002 - 1.03929146e+002 1.16731407e+002 1.25622765e+002 1.03926544e+002 - 1.16740005e+002 1.25578880e+002 1.03974487e+002 1.16780365e+002 - 1.25580826e+002 1.03988831e+002 1.16795601e+002 1.25550468e+002 - 1.04000183e+002 1.16789894e+002 1.25513741e+002 1.03970062e+002 - 1.16766678e+002 1.25444290e+002 1.04029732e+002 1.16795448e+002 - 1.25450813e+002 1.04043060e+002 1.16828537e+002 1.25432938e+002 - 1.04046791e+002 1.16830978e+002 1.25392151e+002 1.04072807e+002 - 1.16874977e+002 1.25381195e+002 1.04134460e+002 1.16921272e+002 - 1.25412842e+002 1.04142899e+002 1.16942001e+002 1.25371979e+002 - 1.04166367e+002 1.16952232e+002 1.25332184e+002 1.04183540e+002 - 1.16991173e+002 1.25315681e+002 1.04207542e+002 1.16992943e+002 - 1.25290932e+002 1.04239616e+002 1.17037781e+002 1.25279251e+002 - 1.04267952e+002 1.17032936e+002 1.25249680e+002 1.04289528e+002 - 1.17068726e+002 1.25223007e+002 1.04332130e+002 1.17098122e+002 - 1.25210419e+002 1.04357620e+002 1.17134880e+002 1.25179878e+002 - 1.04414612e+002 1.17166664e+002 1.25170105e+002 1.04416534e+002 - 1.17177887e+002 1.25128265e+002 1.04455261e+002 1.17182251e+002 - 1.25097748e+002 1.04478058e+002 1.17225609e+002 1.25074165e+002 - 1.04496986e+002 1.17232407e+002 1.25035828e+002 1.04501030e+002 - 1.17252907e+002 1.25003365e+002 1.04542473e+002 1.17283997e+002 - 1.25002556e+002 1.04591125e+002 1.17334938e+002 1.24991165e+002 - 1.04633278e+002 1.17363571e+002 1.24955246e+002 1.04658943e+002 - 1.17401634e+002 1.24929085e+002 1.04705353e+002 1.17431633e+002 - 1.24921608e+002 1.04735649e+002 1.17472572e+002 1.24908302e+002 - 1.04775986e+002 1.17483765e+002 1.24882469e+002 1.04792068e+002 - 1.17515923e+002 1.24846436e+002 1.04839066e+002 1.17562286e+002 - 1.24841888e+002 1.04938553e+002 1.17660515e+002 1.24873077e+002 - 1.04960388e+002 1.17663010e+002 1.24827629e+002 1.05009262e+002 - 1.17718369e+002 1.24826767e+002 1.05067871e+002 1.17745720e+002 - 1.24812531e+002 1.05105484e+002 1.17792282e+002 1.24796906e+002 - 1.05157684e+002 1.17832779e+002 1.24780899e+002 1.05185196e+002 - 1.17878365e+002 1.24757416e+002 1.05245628e+002 1.17920563e+002 - 1.24760918e+002 1.05330154e+002 1.18005814e+002 1.24773354e+002 - 1.05394432e+002 1.18055054e+002 1.24755997e+002 1.05421448e+002 - 1.18104149e+002 1.24735947e+002 1.05415276e+002 1.18079605e+002 - 1.24687119e+002 1.05452194e+002 1.18128235e+002 1.24676018e+002 - 1.05508881e+002 1.18159431e+002 1.24657692e+002 1.05550415e+002 - 1.18207161e+002 1.24635139e+002 1.05604416e+002 1.18249641e+002 - 1.24625839e+002 1.05658356e+002 1.18307762e+002 1.24610336e+002 - 1.05712158e+002 1.18337570e+002 1.24588730e+002 1.05740791e+002 - 1.18370079e+002 1.24551376e+002 1.05806732e+002 1.18389847e+002 - 1.24530670e+002 1.05877296e+002 1.18465492e+002 1.24528503e+002 - 1.05967308e+002 1.18538940e+002 1.24545670e+002 1.05984718e+002 - 1.18566872e+002 1.24505524e+002 1.06066345e+002 1.18626854e+002 - 1.24523743e+002 1.06155640e+002 1.18716774e+002 1.24533333e+002 - 1.06252640e+002 1.18786240e+002 1.24536194e+002 1.06317245e+002 - 1.18856659e+002 1.24534729e+002 1.06412041e+002 1.18919853e+002 - 1.24558189e+002 1.06478806e+002 1.18986893e+002 1.24568253e+002 - 1.06559669e+002 1.19026093e+002 1.24564240e+002 1.06607002e+002 - 1.19074127e+002 1.24542503e+002 1.06683884e+002 1.19125992e+002 - 1.24540718e+002 1.06749321e+002 1.19180389e+002 1.24533287e+002 - 1.06843147e+002 1.19242119e+002 1.24549080e+002 1.06908867e+002 - 1.19290298e+002 1.24539001e+002 1.07000717e+002 1.19325806e+002 - 1.24535728e+002 1.07058929e+002 1.19364571e+002 1.24508804e+002 - 1.07149147e+002 1.19407372e+002 1.24508003e+002 1.07182487e+002 - 1.19435173e+002 1.24471039e+002 1.07216110e+002 1.19421394e+002 - 1.24431343e+002 1.07174957e+002 1.19364906e+002 1.24313431e+002 - 1.07063484e+002 1.19287750e+002 1.24303406e+002 1.07119896e+002 - 1.19390427e+002 1.24436859e+002 1.07137344e+002 1.19420769e+002 - 1.24530861e+002 1.07102776e+002 1.19418320e+002 1.24567513e+002 - 1.07050735e+002 1.19379173e+002 1.24592682e+002 1.06961433e+002 - 1.19333473e+002 1.24581825e+002 1.06906258e+002 1.19296730e+002 - 1.24616486e+002 1.06848831e+002 1.19277901e+002 1.24638977e+002 - 1.06780167e+002 1.19218643e+002 1.24646545e+002 1.06679321e+002 - 1.19151207e+002 1.24629745e+002 1.06593750e+002 1.19062935e+002 - 1.24623154e+002 1.06539787e+002 1.19027267e+002 1.24639061e+002 - 1.06471924e+002 1.18969955e+002 1.24645966e+002 1.06382454e+002 - 1.18901566e+002 1.24623375e+002 1.06316231e+002 1.18840286e+002 - 1.24618095e+002 1.06233765e+002 1.18785973e+002 1.24609650e+002 - 1.06167969e+002 1.18740936e+002 1.24651451e+002 1.06056854e+002 - 1.18666237e+002 1.24618446e+002 1.06000015e+002 1.18595482e+002 - 1.24623375e+002 1.05919518e+002 1.18537148e+002 1.24609291e+002 - 1.05896851e+002 1.18503410e+002 1.24649368e+002 1.05871185e+002 - 1.18502182e+002 1.24700378e+002 1.05782982e+002 1.18418396e+002 - 1.24683434e+002 1.05705627e+002 1.18354233e+002 1.24660995e+002 - 1.05692078e+002 1.18335884e+002 1.24713417e+002 1.05596336e+002 - 1.18255661e+002 1.24681862e+002 1.05550667e+002 1.18190765e+002 - 1.24698647e+002 1.05517471e+002 1.18177727e+002 1.24737083e+002 - 1.05481392e+002 1.18144882e+002 1.24770302e+002 1.05414978e+002 - 1.18098679e+002 1.24767883e+002 1.05367332e+002 1.18047310e+002 - 1.24782379e+002 1.05324699e+002 1.18024307e+002 1.24799881e+002 - 1.05275742e+002 1.17986412e+002 1.24852379e+002 1.05183205e+002 - 1.17924400e+002 1.24842293e+002 1.05137619e+002 1.17861244e+002 - 1.24847076e+002 1.05082993e+002 1.17826721e+002 1.24857353e+002 - 1.05059990e+002 1.17786499e+002 1.24888451e+002 1.05006035e+002 - 1.17745132e+002 1.24896889e+002 1.04957657e+002 1.17695404e+002 - 1.24918633e+002 1.04907700e+002 1.17660225e+002 1.24921883e+002 - 1.04859169e+002 1.17601776e+002 1.24930870e+002 1.04785912e+002 - 1.17538086e+002 1.24912453e+002 1.04765282e+002 1.17497932e+002 - 1.24945244e+002 1.04736420e+002 1.17486534e+002 1.24979599e+002 - 1.04716560e+002 1.17470001e+002 1.25010452e+002 1.04676346e+002 - 1.17446617e+002 1.25021400e+002 1.04641144e+002 1.17401314e+002 - 1.25035423e+002 1.04587891e+002 1.17358490e+002 1.25029068e+002 - 1.04554771e+002 1.17316040e+002 1.25062462e+002 1.04476311e+002 - 1.17259987e+002 1.25052483e+002 1.04462570e+002 1.17236862e+002 - 1.25078636e+002 1.04448730e+002 1.17226982e+002 1.25106209e+002 - 1.04402267e+002 1.17159142e+002 1.25113007e+002 1.04369820e+002 - 1.17136368e+002 1.25129265e+002 1.04336456e+002 1.17099823e+002 - 1.25158966e+002 1.04297302e+002 1.17073425e+002 1.25161674e+002 - 1.04296974e+002 1.17061523e+002 1.25216660e+002 1.04244881e+002 - 1.17027000e+002 1.25221565e+002 1.04231865e+002 1.16988052e+002 - 1.25260147e+002 1.04199883e+002 1.16966408e+002 1.25280167e+002 - 1.04178772e+002 1.16936897e+002 1.25309090e+002 1.04167809e+002 - 1.16943390e+002 1.25345879e+002 1.04158615e+002 1.16926971e+002 - 1.25375465e+002 1.04127670e+002 1.16907059e+002 1.25385056e+002 - 1.04104912e+002 1.16882744e+002 1.25426384e+002 1.04063988e+002 - 1.16865623e+002 1.25435310e+002 1.04069038e+002 1.16854408e+002 - 1.25470032e+002 1.04049522e+002 1.16844131e+002 1.25491058e+002 - 1.04054108e+002 1.16838478e+002 1.25543663e+002 1.04013390e+002 - 1.16818504e+002 1.25553406e+002 1.03980881e+002 1.16779655e+002 - 1.25572571e+002 1.03954407e+002 1.16768951e+002 1.25581726e+002 - 1.03935799e+002 1.16736504e+002 1.25603218e+002 1.03919182e+002 - 1.16729889e+002 1.25624329e+002 1.03921158e+002 1.16698456e+002 - 1.25657944e+002 1.03927063e+002 1.16707977e+002 1.25702827e+002 - 1.03947456e+002 1.16724869e+002 1.25757271e+002 1.03924408e+002 - 1.16712852e+002 1.25764847e+002 1.03928780e+002 1.16708290e+002 - 1.25794273e+002 1.03885513e+002 1.16671791e+002 1.25770020e+002 - 1.03874130e+002 1.16650757e+002 1.25799614e+002 1.03857986e+002 - 1.16663399e+002 1.25825165e+002 1.03883774e+002 1.16669365e+002 - 1.25871086e+002 1.03876320e+002 1.16667740e+002 1.25880791e+002 - 1.03878944e+002 1.16646500e+002 1.25906708e+002 1.03852577e+002 - 1.16637085e+002 1.25918968e+002 1.03854538e+002 1.16636307e+002 - 1.25959412e+002 1.03834320e+002 1.16627701e+002 1.25973045e+002 - 1.03813309e+002 1.16601028e+002 1.25985558e+002 1.03804871e+002 - 1.16607620e+002 1.26014420e+002 1.03821030e+002 1.16601242e+002 - 1.26050026e+002 1.03813339e+002 1.16610107e+002 1.26066551e+002 - 1.03830475e+002 1.16612267e+002 1.26095001e+002 1.03773781e+002 - 1.16569382e+002 1.26051323e+002 1.03776787e+002 1.16558540e+002 - 1.26072266e+002 1.03765503e+002 1.16546242e+002 1.26071716e+002 - 1.03761398e+002 1.16537170e+002 1.26085243e+002 1.03742081e+002 - 1.16540123e+002 1.26101906e+002 1.03759247e+002 1.16541229e+002 - 1.26126671e+002 1.03730835e+002 1.16524185e+002 1.26120499e+002 - 1.03705551e+002 1.16475159e+002 1.26109436e+002 1.03685951e+002 - 1.16475380e+002 1.26114006e+002 1.03708923e+002 1.16496010e+002 - 1.26150909e+002 1.03672623e+002 1.16465492e+002 1.26123894e+002 - 1.03692535e+002 1.16477852e+002 1.26154091e+002 1.03679642e+002 - 1.16474304e+002 1.26149002e+002 1.03680244e+002 1.16459259e+002 - 1.26162109e+002 1.03692108e+002 1.16482239e+002 1.26177071e+002 - 1.03671776e+002 1.16457756e+002 1.26160126e+002 1.03646873e+002 - 1.16449318e+002 1.26140106e+002 1.03690132e+002 1.16494690e+002 - 1.26191307e+002 1.03725914e+002 1.16528954e+002 1.26218170e+002 - 1.03703697e+002 1.16483147e+002 1.26187027e+002 1.03666687e+002 - 1.16465714e+002 1.26159515e+002 1.03672363e+002 1.16456894e+002 - 1.26148300e+002 1.03652832e+002 1.16448517e+002 1.26133636e+002 - 1.03652931e+002 1.16435852e+002 1.26136124e+002 1.03641396e+002 - 1.16429451e+002 1.26114433e+002 1.03614517e+002 1.16398727e+002 - 1.26081596e+002 1.03618866e+002 1.16416885e+002 1.26068069e+002 - 1.03651085e+002 1.16433434e+002 1.26083168e+002 1.03629013e+002 - 1.16426064e+002 1.26056854e+002 1.03671738e+002 1.16446754e+002 - 1.26079185e+002 1.03646042e+002 1.16426300e+002 1.26041382e+002 - 1.03682198e+002 1.16446945e+002 1.26043671e+002 1.03674095e+002 - 1.16455399e+002 1.26020264e+002 1.03690033e+002 1.16453629e+002 - 1.26018044e+002 1.03689110e+002 1.16459831e+002 1.25991089e+002 - 1.03720390e+002 1.16477219e+002 1.25992882e+002 1.03718895e+002 - 1.16505966e+002 1.25985237e+002 1.03745285e+002 1.16509773e+002 - 1.25990791e+002 1.03763229e+002 1.16543068e+002 1.25991905e+002 - 1.03760040e+002 1.16530846e+002 1.25979126e+002 1.03743454e+002 - 1.16528198e+002 1.25941010e+002 1.03740013e+002 1.16515259e+002 - 1.25912117e+002 1.03750923e+002 1.16546967e+002 1.25906059e+002 - 1.03745483e+002 1.16526825e+002 1.25866531e+002 1.03714638e+002 - 1.16510399e+002 1.25815254e+002 1.03723625e+002 1.16502396e+002 - 1.25798782e+002 1.03746445e+002 1.16537865e+002 1.25785141e+002 - 1.03760757e+002 1.16543991e+002 1.25762741e+002 1.03742409e+002 - 1.16543228e+002 1.25713417e+002 1.03757698e+002 1.16552345e+002 - 1.25706261e+002 1.03775200e+002 1.16579987e+002 1.25684807e+002 - 1.03771767e+002 1.16581696e+002 1.25655174e+002 1.03779297e+002 - 1.16619324e+002 1.25648827e+002 1.03779053e+002 1.16601837e+002 - 1.25610603e+002 1.03760223e+002 1.16596672e+002 1.25563110e+002 - 1.03778435e+002 1.16600945e+002 1.25539154e+002 1.03771538e+002 - 1.16601387e+002 1.25494148e+002 1.03825714e+002 1.16646072e+002 - 1.25500114e+002 1.03862305e+002 1.16683243e+002 1.25489426e+002 - 1.03868645e+002 1.16672447e+002 1.25452110e+002 1.03843193e+002 - 1.16659210e+002 1.25390862e+002 1.03878075e+002 1.16662209e+002 - 1.25369560e+002 1.03887932e+002 1.16686790e+002 1.25345528e+002 - 1.03889229e+002 1.16686447e+002 1.25302048e+002 1.03910957e+002 - 1.16726974e+002 1.25290497e+002 1.03981163e+002 1.16781876e+002 - 1.25322998e+002 1.04005310e+002 1.16812424e+002 1.25300247e+002 - 1.04038834e+002 1.16839523e+002 1.25274521e+002 1.04064011e+002 - 1.16888580e+002 1.25265076e+002 1.04095848e+002 1.16895996e+002 - 1.25245636e+002 1.04109230e+002 1.16917816e+002 1.25214813e+002 - 1.04116547e+002 1.16905251e+002 1.25164383e+002 1.04133553e+002 - 1.16926605e+002 1.25131149e+002 1.04163345e+002 1.16938423e+002 - 1.25103004e+002 1.04192039e+002 1.16982132e+002 1.25082092e+002 - 1.04256271e+002 1.17022354e+002 1.25080124e+002 1.04268509e+002 - 1.17047493e+002 1.25044395e+002 1.04306961e+002 1.17057610e+002 - 1.25019104e+002 1.04339844e+002 1.17105194e+002 1.25001671e+002 - 1.04341545e+002 1.17092171e+002 1.24945923e+002 1.04363365e+002 - 1.17130455e+002 1.24932068e+002 1.04399513e+002 1.17153397e+002 - 1.24924599e+002 1.04448700e+002 1.17206841e+002 1.24913696e+002 - 1.04474808e+002 1.17228096e+002 1.24867790e+002 1.04498627e+002 - 1.17264061e+002 1.24836296e+002 1.04566788e+002 1.17310371e+002 - 1.24849792e+002 1.04585266e+002 1.17330841e+002 1.24812881e+002 - 1.04623970e+002 1.17350319e+002 1.24795120e+002 1.04636513e+002 - 1.17373672e+002 1.24752747e+002 1.04685570e+002 1.17413910e+002 - 1.24746338e+002 1.04772911e+002 1.17511894e+002 1.24772713e+002 - 1.04819283e+002 1.17535454e+002 1.24748604e+002 1.04867416e+002 - 1.17591988e+002 1.24743553e+002 1.04936897e+002 1.17634384e+002 - 1.24736984e+002 1.04967949e+002 1.17671478e+002 1.24709770e+002 - 1.05023186e+002 1.17709183e+002 1.24701241e+002 1.05053169e+002 - 1.17757164e+002 1.24681900e+002 1.05115562e+002 1.17802437e+002 - 1.24688629e+002 1.05184723e+002 1.17879677e+002 1.24689613e+002 - 1.05260170e+002 1.17939705e+002 1.24684357e+002 1.05291542e+002 - 1.17990448e+002 1.24667221e+002 1.05299980e+002 1.17975937e+002 - 1.24623779e+002 1.05319702e+002 1.18005363e+002 1.24593918e+002 - 1.05376709e+002 1.18042564e+002 1.24582764e+002 1.05414528e+002 - 1.18084229e+002 1.24556114e+002 1.05463768e+002 1.18120827e+002 - 1.24531647e+002 1.05502571e+002 1.18163826e+002 1.24509071e+002 - 1.05563843e+002 1.18208786e+002 1.24492447e+002 1.05608185e+002 - 1.18249290e+002 1.24475998e+002 1.05688591e+002 1.18287827e+002 - 1.24464233e+002 1.05745041e+002 1.18347801e+002 1.24453697e+002 - 1.05815437e+002 1.18402061e+002 1.24450470e+002 1.05843910e+002 - 1.18443359e+002 1.24424171e+002 1.05922592e+002 1.18505043e+002 - 1.24442719e+002 1.06028503e+002 1.18601257e+002 1.24464935e+002 - 1.06127129e+002 1.18677673e+002 1.24464783e+002 1.06189423e+002 - 1.18737617e+002 1.24455826e+002 1.06292130e+002 1.18808441e+002 - 1.24489937e+002 1.06346443e+002 1.18865860e+002 1.24485329e+002 - 1.06437019e+002 1.18916794e+002 1.24487679e+002 1.06502701e+002 - 1.18978233e+002 1.24488312e+002 1.06566261e+002 1.19014465e+002 - 1.24471512e+002 1.06635864e+002 1.19080994e+002 1.24469917e+002 - 1.06719574e+002 1.19128250e+002 1.24472603e+002 1.06789948e+002 - 1.19188171e+002 1.24472389e+002 1.06889359e+002 1.19227699e+002 - 1.24471718e+002 1.06954445e+002 1.19274666e+002 1.24455742e+002 - 1.07054832e+002 1.19327332e+002 1.24463371e+002 1.07092621e+002 - 1.19358780e+002 1.24435608e+002 1.07114967e+002 1.19341782e+002 - 1.24386169e+002 1.07064697e+002 1.19275650e+002 1.24262619e+002 - 1.06969910e+002 1.19207199e+002 1.24257469e+002 1.07018562e+002 - 1.19303131e+002 1.24387314e+002 1.07024223e+002 1.19325279e+002 - 1.24467110e+002 1.06999573e+002 1.19341942e+002 1.24517921e+002 - 1.06956284e+002 1.19311546e+002 1.24555664e+002 1.06865028e+002 - 1.19259567e+002 1.24545509e+002 1.06797195e+002 1.19207954e+002 - 1.24562370e+002 1.06737999e+002 1.19185219e+002 1.24582115e+002 - 1.06683334e+002 1.19139442e+002 1.24600670e+002 1.06571098e+002 - 1.19061638e+002 1.24570351e+002 1.06478844e+002 1.18970970e+002 - 1.24564209e+002 1.06412132e+002 1.18923035e+002 1.24571365e+002 - 1.06337585e+002 1.18860153e+002 1.24568642e+002 1.06259781e+002 - 1.18802795e+002 1.24559509e+002 1.06186096e+002 1.18735199e+002 - 1.24553543e+002 1.06119812e+002 1.18691345e+002 1.24551666e+002 - 1.06036537e+002 1.18622551e+002 1.24569313e+002 1.05924675e+002 - 1.18553299e+002 1.24548347e+002 1.05865341e+002 1.18486557e+002 - 1.24549210e+002 1.05799255e+002 1.18435555e+002 1.24547432e+002 - 1.05788109e+002 1.18416832e+002 1.24604958e+002 1.05753944e+002 - 1.18401871e+002 1.24639603e+002 1.05662140e+002 1.18313889e+002 - 1.24620216e+002 1.05588753e+002 1.18253807e+002 1.24599709e+002 - 1.05558418e+002 1.18219589e+002 1.24637238e+002 1.05458710e+002 - 1.18136406e+002 1.24596664e+002 1.05407486e+002 1.18071777e+002 - 1.24616554e+002 1.05390099e+002 1.18066132e+002 1.24668823e+002 - 1.05340118e+002 1.18017860e+002 1.24692261e+002 1.05274742e+002 - 1.17978638e+002 1.24684822e+002 1.05216942e+002 1.17914368e+002 - 1.24684883e+002 1.05163330e+002 1.17878242e+002 1.24696259e+002 - 1.05133644e+002 1.17857010e+002 1.24765160e+002 1.05037399e+002 - 1.17794128e+002 1.24757507e+002 1.04983261e+002 1.17730988e+002 - 1.24756905e+002 1.04926933e+002 1.17684555e+002 1.24759163e+002 - 1.04899857e+002 1.17648651e+002 1.24798119e+002 1.04860481e+002 - 1.17625519e+002 1.24818634e+002 1.04823730e+002 1.17581963e+002 - 1.24847557e+002 1.04768204e+002 1.17540123e+002 1.24849220e+002 - 1.04709694e+002 1.17471382e+002 1.24840416e+002 1.04663216e+002 - 1.17439598e+002 1.24853104e+002 1.04615982e+002 1.17378235e+002 - 1.24866753e+002 1.04588554e+002 1.17363373e+002 1.24893181e+002 - 1.04566620e+002 1.17343880e+002 1.24930634e+002 1.04523232e+002 - 1.17313919e+002 1.24938553e+002 1.04511284e+002 1.17295868e+002 - 1.24972420e+002 1.04453201e+002 1.17245316e+002 1.24957825e+002 - 1.04407799e+002 1.17187004e+002 1.24977715e+002 1.04326096e+002 - 1.17126839e+002 1.24961060e+002 1.04319481e+002 1.17107277e+002 - 1.24991280e+002 1.04309013e+002 1.17104782e+002 1.25030594e+002 - 1.04276016e+002 1.17051880e+002 1.25050316e+002 1.04245354e+002 - 1.17031212e+002 1.25067795e+002 1.04220284e+002 1.17008354e+002 - 1.25108856e+002 1.04183655e+002 1.16978806e+002 1.25119247e+002 - 1.04173286e+002 1.16956406e+002 1.25161514e+002 1.04124741e+002 - 1.16923698e+002 1.25166229e+002 1.04106613e+002 1.16884148e+002 - 1.25202202e+002 1.04058205e+002 1.16840714e+002 1.25209557e+002 - 1.04029556e+002 1.16808243e+002 1.25230713e+002 1.04036453e+002 - 1.16830498e+002 1.25280151e+002 1.04010567e+002 1.16790268e+002 - 1.25289017e+002 1.03987495e+002 1.16778351e+002 1.25304367e+002 - 1.03967812e+002 1.16757561e+002 1.25348640e+002 1.03924202e+002 - 1.16742760e+002 1.25368347e+002 1.03919281e+002 1.16720604e+002 - 1.25388206e+002 1.03904999e+002 1.16719322e+002 1.25415726e+002 - 1.03892403e+002 1.16694054e+002 1.25455040e+002 1.03881042e+002 - 1.16700989e+002 1.25488686e+002 1.03837753e+002 1.16650162e+002 - 1.25497154e+002 1.03826660e+002 1.16652222e+002 1.25518410e+002 - 1.03830650e+002 1.16644577e+002 1.25564056e+002 1.03793617e+002 - 1.16613365e+002 1.25562019e+002 1.03795372e+002 1.16592827e+002 - 1.25606255e+002 1.03790703e+002 1.16591934e+002 1.25633484e+002 - 1.03798347e+002 1.16593475e+002 1.25675140e+002 1.03781685e+002 - 1.16585503e+002 1.25688858e+002 1.03759499e+002 1.16546616e+002 - 1.25682159e+002 1.03744179e+002 1.16541885e+002 1.25684837e+002 - 1.03732185e+002 1.16525635e+002 1.25719063e+002 1.03713737e+002 - 1.16528770e+002 1.25737534e+002 1.03753952e+002 1.16549385e+002 - 1.25797829e+002 1.03750908e+002 1.16555321e+002 1.25819458e+002 - 1.03749237e+002 1.16532043e+002 1.25845062e+002 1.03713356e+002 - 1.16507614e+002 1.25841164e+002 1.03707649e+002 1.16496010e+002 - 1.25877235e+002 1.03684036e+002 1.16486122e+002 1.25882607e+002 - 1.03669212e+002 1.16462532e+002 1.25896538e+002 1.03650589e+002 - 1.16458244e+002 1.25907104e+002 1.03670685e+002 1.16458923e+002 - 1.25953339e+002 1.03682785e+002 1.16482315e+002 1.25988708e+002 - 1.03701088e+002 1.16492500e+002 1.26019806e+002 1.03647209e+002 - 1.16453400e+002 1.25989059e+002 1.03623344e+002 1.16409431e+002 - 1.25982391e+002 1.03629433e+002 1.16413826e+002 1.25993126e+002 - 1.03653214e+002 1.16432281e+002 1.26034813e+002 1.03599167e+002 - 1.16405510e+002 1.26014824e+002 1.03608635e+002 1.16403145e+002 - 1.26040588e+002 1.03599106e+002 1.16405098e+002 1.26050827e+002 - 1.03578339e+002 1.16366058e+002 1.26045631e+002 1.03550262e+002 - 1.16351746e+002 1.26038498e+002 1.03552155e+002 1.16349724e+002 - 1.26060669e+002 1.03532387e+002 1.16331413e+002 1.26038559e+002 - 1.03541962e+002 1.16333511e+002 1.26053551e+002 1.03527260e+002 - 1.16339203e+002 1.26065125e+002 1.03539940e+002 1.16326126e+002 - 1.26082649e+002 1.03542213e+002 1.16345009e+002 1.26094002e+002 - 1.03521233e+002 1.16317139e+002 1.26070648e+002 1.03503838e+002 - 1.16318626e+002 1.26062042e+002 1.03525566e+002 1.16334496e+002 - 1.26094307e+002 1.03550049e+002 1.16360382e+002 1.26100777e+002 - 1.03543022e+002 1.16334137e+002 1.26091278e+002 1.03493889e+002 - 1.16305138e+002 1.26052063e+002 1.03478104e+002 1.16275391e+002 - 1.26020264e+002 1.03469872e+002 1.16278244e+002 1.26019127e+002 - 1.03482758e+002 1.16265923e+002 1.26018364e+002 1.03483177e+002 - 1.16285316e+002 1.26012825e+002 1.03467369e+002 1.16261803e+002 - 1.25992516e+002 1.03497917e+002 1.16308472e+002 1.26013634e+002 - 1.03513969e+002 1.16311516e+002 1.26008575e+002 1.03488693e+002 - 1.16300751e+002 1.25981827e+002 1.03529564e+002 1.16315300e+002 - 1.25997864e+002 1.03512054e+002 1.16307884e+002 1.25968025e+002 - 1.03544930e+002 1.16325706e+002 1.25970459e+002 1.03532166e+002 - 1.16326454e+002 1.25944496e+002 1.03548508e+002 1.16322121e+002 - 1.25945747e+002 1.03549408e+002 1.16326218e+002 1.25909203e+002 - 1.03591362e+002 1.16362450e+002 1.25926376e+002 1.03592621e+002 - 1.16386185e+002 1.25920959e+002 1.03598640e+002 1.16375450e+002 - 1.25905556e+002 1.03603531e+002 1.16393845e+002 1.25898605e+002 - 1.03612343e+002 1.16394058e+002 1.25894745e+002 1.03599548e+002 - 1.16392471e+002 1.25863037e+002 1.03595490e+002 1.16382675e+002 - 1.25838493e+002 1.03589111e+002 1.16395531e+002 1.25807632e+002 - 1.03592926e+002 1.16388794e+002 1.25783447e+002 1.03580635e+002 - 1.16392990e+002 1.25754143e+002 1.03588539e+002 1.16377823e+002 - 1.25724197e+002 1.03607635e+002 1.16411964e+002 1.25709625e+002 - 1.03631889e+002 1.16434967e+002 1.25701241e+002 1.03614891e+002 - 1.16431717e+002 1.25655075e+002 1.03634758e+002 1.16438217e+002 - 1.25639198e+002 1.03645187e+002 1.16458206e+002 1.25614624e+002 - 1.03656136e+002 1.16476830e+002 1.25592804e+002 1.03655807e+002 - 1.16509659e+002 1.25579964e+002 1.03638451e+002 1.16477257e+002 - 1.25532211e+002 1.03614281e+002 1.16467262e+002 1.25483467e+002 - 1.03631432e+002 1.16465492e+002 1.25460175e+002 1.03632805e+002 - 1.16479378e+002 1.25420601e+002 1.03677063e+002 1.16514809e+002 - 1.25419647e+002 1.03706665e+002 1.16547523e+002 1.25403412e+002 - 1.03717087e+002 1.16544540e+002 1.25366577e+002 1.03732254e+002 - 1.16564674e+002 1.25345802e+002 1.03756935e+002 1.16560028e+002 - 1.25314445e+002 1.03760971e+002 1.16575279e+002 1.25281601e+002 - 1.03779022e+002 1.16592850e+002 1.25257309e+002 1.03807236e+002 - 1.16642967e+002 1.25251991e+002 1.03855362e+002 1.16673515e+002 - 1.25255997e+002 1.03875595e+002 1.16698463e+002 1.25224678e+002 - 1.03918884e+002 1.16737457e+002 1.25207672e+002 1.03926201e+002 - 1.16761169e+002 1.25183319e+002 1.03958015e+002 1.16772934e+002 - 1.25168495e+002 1.03980156e+002 1.16804390e+002 1.25150169e+002 - 1.04020302e+002 1.16816322e+002 1.25126930e+002 1.04026566e+002 - 1.16827774e+002 1.25082169e+002 1.04043152e+002 1.16830833e+002 - 1.25037659e+002 1.04053291e+002 1.16849976e+002 1.25000885e+002 - 1.04097260e+002 1.16877762e+002 1.24986557e+002 1.04123726e+002 - 1.16917114e+002 1.24962334e+002 1.04169662e+002 1.16931068e+002 - 1.24936363e+002 1.04180473e+002 1.16949539e+002 1.24899971e+002 - 1.04209503e+002 1.16969444e+002 1.24869431e+002 1.04224686e+002 - 1.17008110e+002 1.24847046e+002 1.04261406e+002 1.17030022e+002 - 1.24844200e+002 1.04314056e+002 1.17084023e+002 1.24834419e+002 - 1.04331284e+002 1.17092506e+002 1.24775078e+002 1.04354523e+002 - 1.17134331e+002 1.24754280e+002 1.04411667e+002 1.17169800e+002 - 1.24757942e+002 1.04439270e+002 1.17201195e+002 1.24733879e+002 - 1.04491829e+002 1.17232742e+002 1.24714745e+002 1.04502686e+002 - 1.17253593e+002 1.24675995e+002 1.04537277e+002 1.17277100e+002 - 1.24653297e+002 1.04605331e+002 1.17353943e+002 1.24657745e+002 - 1.04666908e+002 1.17398201e+002 1.24651947e+002 1.04710243e+002 - 1.17454254e+002 1.24644455e+002 1.04791107e+002 1.17503258e+002 - 1.24651337e+002 1.04811729e+002 1.17528397e+002 1.24608238e+002 - 1.04885544e+002 1.17589066e+002 1.24620804e+002 1.04919693e+002 - 1.17637543e+002 1.24607506e+002 1.04984741e+002 1.17687340e+002 - 1.24611900e+002 1.05052673e+002 1.17757797e+002 1.24611389e+002 - 1.05106606e+002 1.17801056e+002 1.24584572e+002 1.05142761e+002 - 1.17858421e+002 1.24574150e+002 1.05166054e+002 1.17865166e+002 - 1.24552277e+002 1.05185913e+002 1.17889008e+002 1.24519669e+002 - 1.05234070e+002 1.17917953e+002 1.24492371e+002 1.05262413e+002 - 1.17956993e+002 1.24461349e+002 1.05310661e+002 1.17986076e+002 - 1.24439331e+002 1.05362122e+002 1.18042038e+002 1.24422745e+002 - 1.05433258e+002 1.18088371e+002 1.24424011e+002 1.05468651e+002 - 1.18122925e+002 1.24387779e+002 1.05553749e+002 1.18166016e+002 - 1.24380775e+002 1.05613930e+002 1.18231514e+002 1.24374725e+002 - 1.05680901e+002 1.18285431e+002 1.24374969e+002 1.05735931e+002 - 1.18346260e+002 1.24366859e+002 1.05822792e+002 1.18418648e+002 - 1.24398880e+002 1.05909225e+002 1.18498009e+002 1.24402031e+002 - 1.05999161e+002 1.18554100e+002 1.24380844e+002 1.06060539e+002 - 1.18620552e+002 1.24377411e+002 1.06148056e+002 1.18675323e+002 - 1.24395546e+002 1.06214401e+002 1.18737480e+002 1.24397148e+002 - 1.06306686e+002 1.18794014e+002 1.24409012e+002 1.06382797e+002 - 1.18872192e+002 1.24419037e+002 1.06451416e+002 1.18912956e+002 - 1.24404861e+002 1.06514488e+002 1.18969643e+002 1.24393433e+002 - 1.06600685e+002 1.19022369e+002 1.24397209e+002 1.06685722e+002 - 1.19095932e+002 1.24408821e+002 1.06781418e+002 1.19136116e+002 - 1.24408424e+002 1.06852715e+002 1.19192413e+002 1.24401703e+002 - 1.06949303e+002 1.19241386e+002 1.24412216e+002 1.07001045e+002 - 1.19280426e+002 1.24398232e+002 1.07016029e+002 1.19264076e+002 - 1.24343018e+002 1.06960968e+002 1.19190758e+002 1.24214264e+002 - 1.06881905e+002 1.19123817e+002 1.24231369e+002 1.06903885e+002 - 1.19209778e+002 1.24335999e+002 1.06912384e+002 1.19230141e+002 - 1.24417389e+002 1.06882187e+002 1.19240746e+002 1.24465660e+002 - 1.06846413e+002 1.19215134e+002 1.24503563e+002 1.06772865e+002 - 1.19180679e+002 1.24510765e+002 1.06708008e+002 1.19138641e+002 - 1.24532288e+002 1.06624840e+002 1.19087151e+002 1.24526016e+002 - 1.06579475e+002 1.19055275e+002 1.24558548e+002 1.06479744e+002 - 1.18991440e+002 1.24542961e+002 1.06404099e+002 1.18901443e+002 - 1.24548218e+002 1.06315109e+002 1.18844872e+002 1.24539619e+002 - 1.06232422e+002 1.18775696e+002 1.24525040e+002 1.06167404e+002 - 1.18735947e+002 1.24528450e+002 1.06094505e+002 1.18657913e+002 - 1.24522957e+002 1.06027634e+002 1.18616219e+002 1.24525940e+002 - 1.05940063e+002 1.18552475e+002 1.24538078e+002 1.05814598e+002 - 1.18460373e+002 1.24500130e+002 1.05734497e+002 1.18371704e+002 - 1.24481079e+002 1.05690216e+002 1.18343391e+002 1.24499466e+002 - 1.05690437e+002 1.18333687e+002 1.24574821e+002 1.05650978e+002 - 1.18318810e+002 1.24605591e+002 1.05542824e+002 1.18213486e+002 - 1.24568275e+002 1.05464432e+002 1.18153725e+002 1.24551544e+002 - 1.05419670e+002 1.18100952e+002 1.24565720e+002 1.05331238e+002 - 1.18034393e+002 1.24543739e+002 1.05302429e+002 1.17978859e+002 - 1.24579269e+002 1.05275169e+002 1.17973862e+002 1.24623489e+002 - 1.05223938e+002 1.17922501e+002 1.24636337e+002 1.05149048e+002 - 1.17866585e+002 1.24622543e+002 1.05090607e+002 1.17795006e+002 - 1.24620407e+002 1.05027855e+002 1.17750504e+002 1.24623131e+002 - 1.04980637e+002 1.17720833e+002 1.24676979e+002 1.04902107e+002 - 1.17674210e+002 1.24687843e+002 1.04835716e+002 1.17594498e+002 - 1.24673393e+002 1.04808853e+002 1.17586258e+002 1.24712845e+002 - 1.04786324e+002 1.17546890e+002 1.24747749e+002 1.04734314e+002 - 1.17511597e+002 1.24759163e+002 1.04681206e+002 1.17457321e+002 - 1.24771019e+002 1.04644554e+002 1.17430023e+002 1.24786240e+002 - 1.04598862e+002 1.17381393e+002 1.24799538e+002 1.04541191e+002 - 1.17338547e+002 1.24803085e+002 1.04488586e+002 1.17259567e+002 - 1.24810493e+002 1.04480537e+002 1.17263977e+002 1.24851715e+002 - 1.04447830e+002 1.17239258e+002 1.24875923e+002 1.04392494e+002 - 1.17204781e+002 1.24875237e+002 1.04382103e+002 1.17178413e+002 - 1.24910088e+002 1.04328964e+002 1.17132805e+002 1.24906479e+002 - 1.04281273e+002 1.17078354e+002 1.24923004e+002 1.04206017e+002 - 1.17018570e+002 1.24904144e+002 1.04201218e+002 1.17000778e+002 - 1.24941811e+002 1.04201759e+002 1.17012955e+002 1.24992355e+002 - 1.04171799e+002 1.16958229e+002 1.25009003e+002 1.04122978e+002 - 1.16919151e+002 1.25012459e+002 1.04094452e+002 1.16893333e+002 - 1.25046051e+002 1.04067535e+002 1.16875504e+002 1.25070541e+002 - 1.04059189e+002 1.16857208e+002 1.25105934e+002 1.04000771e+002 - 1.16812286e+002 1.25106300e+002 1.03987411e+002 1.16767624e+002 - 1.25151947e+002 1.03950996e+002 1.16744225e+002 1.25168480e+002 - 1.03910522e+002 1.16703163e+002 1.25177917e+002 1.03872467e+002 - 1.16679970e+002 1.25182129e+002 1.03860397e+002 1.16642639e+002 - 1.25206223e+002 1.03870651e+002 1.16661514e+002 1.25251778e+002 - 1.03849121e+002 1.16644478e+002 1.25294350e+002 1.03809181e+002 - 1.16632202e+002 1.25312759e+002 1.03813004e+002 1.16624535e+002 - 1.25345879e+002 1.03803650e+002 1.16627731e+002 1.25378601e+002 - 1.03784210e+002 1.16591515e+002 1.25406563e+002 1.03752022e+002 - 1.16573181e+002 1.25413544e+002 1.03719490e+002 1.16549240e+002 - 1.25438133e+002 1.03706100e+002 1.16536690e+002 1.25451172e+002 - 1.03702034e+002 1.16517944e+002 1.25487099e+002 1.03676689e+002 - 1.16511322e+002 1.25505409e+002 1.03670685e+002 1.16470222e+002 - 1.25532310e+002 1.03665253e+002 1.16470924e+002 1.25574623e+002 - 1.03651970e+002 1.16458321e+002 1.25596031e+002 1.03643501e+002 - 1.16463966e+002 1.25611916e+002 1.03617294e+002 1.16412476e+002 - 1.25601570e+002 1.03601982e+002 1.16397148e+002 1.25602257e+002 - 1.03609329e+002 1.16404747e+002 1.25653503e+002 1.03579781e+002 - 1.16398766e+002 1.25667809e+002 1.03608711e+002 1.16412399e+002 - 1.25717583e+002 1.03610718e+002 1.16420197e+002 1.25742355e+002 - 1.03597244e+002 1.16384666e+002 1.25758514e+002 1.03560226e+002 - 1.16355576e+002 1.25746468e+002 1.03545372e+002 1.16332802e+002 - 1.25771416e+002 1.03531990e+002 1.16339180e+002 1.25792236e+002 - 1.03522255e+002 1.16315186e+002 1.25807159e+002 1.03486984e+002 - 1.16297844e+002 1.25802979e+002 1.03531410e+002 1.16316254e+002 - 1.25880066e+002 1.03552666e+002 1.16351616e+002 1.25922829e+002 - 1.03565605e+002 1.16365646e+002 1.25946419e+002 1.03531197e+002 - 1.16345695e+002 1.25937607e+002 1.03508270e+002 1.16297691e+002 - 1.25931412e+002 1.03503960e+002 1.16300056e+002 1.25936256e+002 - 1.03511909e+002 1.16302437e+002 1.25958633e+002 1.03448624e+002 - 1.16258492e+002 1.25923904e+002 1.03447075e+002 1.16244431e+002 - 1.25941437e+002 1.03464478e+002 1.16269730e+002 1.25979492e+002 - 1.03463547e+002 1.16247253e+002 1.25994316e+002 1.03428391e+002 - 1.16226555e+002 1.25981873e+002 1.03401283e+002 1.16199921e+002 - 1.25967529e+002 1.03389252e+002 1.16195488e+002 1.25964577e+002 - 1.03412025e+002 1.16205612e+002 1.25992805e+002 1.03394318e+002 - 1.16205078e+002 1.25988754e+002 1.03417740e+002 1.16206978e+002 - 1.26027008e+002 1.03424240e+002 1.16222633e+002 1.26034813e+002 - 1.03394806e+002 1.16195625e+002 1.26010674e+002 1.03389595e+002 - 1.16214142e+002 1.26012283e+002 1.03419037e+002 1.16226173e+002 - 1.26045532e+002 1.03430595e+002 1.16245941e+002 1.26052086e+002 - 1.03428368e+002 1.16231155e+002 1.26044647e+002 1.03384094e+002 - 1.16208702e+002 1.26008942e+002 1.03357559e+002 1.16162094e+002 - 1.25972321e+002 1.03343636e+002 1.16157631e+002 1.25953499e+002 - 1.03374832e+002 1.16167152e+002 1.25977333e+002 1.03386597e+002 - 1.16194389e+002 1.25981339e+002 1.03360863e+002 1.16165749e+002 - 1.25952538e+002 1.03369408e+002 1.16182564e+002 1.25944901e+002 - 1.03390343e+002 1.16193863e+002 1.25950745e+002 1.03380363e+002 - 1.16203865e+002 1.25935333e+002 1.03407700e+002 1.16204292e+002 - 1.25948547e+002 1.03408035e+002 1.16208900e+002 1.25934418e+002 - 1.03415428e+002 1.16210709e+002 1.25917107e+002 1.03406502e+002 - 1.16214783e+002 1.25894341e+002 1.03425163e+002 1.16205574e+002 - 1.25888252e+002 1.03455803e+002 1.16241035e+002 1.25889900e+002 - 1.03476135e+002 1.16255280e+002 1.25892105e+002 1.03473740e+002 - 1.16276436e+002 1.25879196e+002 1.03475250e+002 1.16265022e+002 - 1.25856865e+002 1.03464729e+002 1.16270004e+002 1.25838181e+002 - 1.03482018e+002 1.16267570e+002 1.25829155e+002 1.03487465e+002 - 1.16291809e+002 1.25819664e+002 1.03486809e+002 1.16287376e+002 - 1.25791412e+002 1.03467728e+002 1.16284531e+002 1.25750290e+002 - 1.03449135e+002 1.16256409e+002 1.25700142e+002 1.03442055e+002 - 1.16263535e+002 1.25670471e+002 1.03452415e+002 1.16243713e+002 - 1.25646721e+002 1.03460960e+002 1.16268517e+002 1.25628136e+002 - 1.03487938e+002 1.16294960e+002 1.25624214e+002 1.03468193e+002 - 1.16289177e+002 1.25569580e+002 1.03482155e+002 1.16293297e+002 - 1.25559700e+002 1.03506439e+002 1.16320610e+002 1.25533760e+002 - 1.03527489e+002 1.16345459e+002 1.25524506e+002 1.03520531e+002 - 1.16367691e+002 1.25503326e+002 1.03514282e+002 1.16356155e+002 - 1.25471191e+002 1.03509567e+002 1.16368126e+002 1.25442680e+002 - 1.03518631e+002 1.16357811e+002 1.25405449e+002 1.03514221e+002 - 1.16365532e+002 1.25367500e+002 1.03552055e+002 1.16391106e+002 - 1.25354095e+002 1.03562477e+002 1.16415657e+002 1.25319504e+002 - 1.03584747e+002 1.16422340e+002 1.25299362e+002 1.03618172e+002 - 1.16465225e+002 1.25293266e+002 1.03667633e+002 1.16475204e+002 - 1.25290855e+002 1.03666870e+002 1.16486946e+002 1.25255562e+002 - 1.03659843e+002 1.16487595e+002 1.25201027e+002 1.03678436e+002 - 1.16531326e+002 1.25188187e+002 1.03727028e+002 1.16551376e+002 - 1.25191711e+002 1.03762939e+002 1.16597023e+002 1.25174477e+002 - 1.03800308e+002 1.16622887e+002 1.25153328e+002 1.03800911e+002 - 1.16646004e+002 1.25114990e+002 1.03841003e+002 1.16664536e+002 - 1.25111031e+002 1.03858856e+002 1.16690811e+002 1.25088692e+002 - 1.03895584e+002 1.16697205e+002 1.25065598e+002 1.03914352e+002 - 1.16726524e+002 1.25034081e+002 1.03945137e+002 1.16746048e+002 - 1.25009003e+002 1.03951088e+002 1.16757751e+002 1.24964226e+002 - 1.03982857e+002 1.16773018e+002 1.24934578e+002 1.04007690e+002 - 1.16806442e+002 1.24903885e+002 1.04054527e+002 1.16824623e+002 - 1.24886162e+002 1.04086716e+002 1.16866226e+002 1.24862724e+002 - 1.04096970e+002 1.16872284e+002 1.24823303e+002 1.04106796e+002 - 1.16899544e+002 1.24784904e+002 1.04155724e+002 1.16932213e+002 - 1.24807358e+002 1.04201866e+002 1.16981422e+002 1.24793571e+002 - 1.04227234e+002 1.17000290e+002 1.24729439e+002 1.04250389e+002 - 1.17039078e+002 1.24704887e+002 1.04293037e+002 1.17063545e+002 - 1.24699654e+002 1.04319984e+002 1.17101395e+002 1.24673767e+002 - 1.04383400e+002 1.17130348e+002 1.24669395e+002 1.04395859e+002 - 1.17151093e+002 1.24626602e+002 1.04429649e+002 1.17178513e+002 - 1.24597252e+002 1.04483543e+002 1.17244293e+002 1.24594490e+002 - 1.04549141e+002 1.17291977e+002 1.24595940e+002 1.04588379e+002 - 1.17345810e+002 1.24577293e+002 1.04670219e+002 1.17389435e+002 - 1.24587372e+002 1.04717827e+002 1.17440475e+002 1.24566765e+002 - 1.04777946e+002 1.17497833e+002 1.24571548e+002 1.04799042e+002 - 1.17532455e+002 1.24539787e+002 1.04856262e+002 1.17565712e+002 - 1.24541161e+002 1.04932755e+002 1.17643837e+002 1.24545059e+002 - 1.04979462e+002 1.17683090e+002 1.24517395e+002 1.05004616e+002 - 1.17729935e+002 1.24494667e+002 1.05048775e+002 1.17756172e+002 - 1.24491432e+002 1.05083717e+002 1.17799950e+002 1.24469002e+002 - 1.05136383e+002 1.17833145e+002 1.24462601e+002 1.05164696e+002 - 1.17865753e+002 1.24418716e+002 1.05217117e+002 1.17905815e+002 - 1.24407471e+002 1.05272423e+002 1.17972656e+002 1.24394684e+002 - 1.05337021e+002 1.18005470e+002 1.24384079e+002 1.05371742e+002 - 1.18045410e+002 1.24354645e+002 1.05467308e+002 1.18087959e+002 - 1.24356522e+002 1.05528809e+002 1.18155846e+002 1.24347969e+002 - 1.05588745e+002 1.18202682e+002 1.24337151e+002 1.05628784e+002 - 1.18257584e+002 1.24318695e+002 1.05702217e+002 1.18305725e+002 - 1.24332558e+002 1.05810226e+002 1.18407982e+002 1.24356255e+002 - 1.05891716e+002 1.18457375e+002 1.24329269e+002 1.05977417e+002 - 1.18541656e+002 1.24341187e+002 1.06046486e+002 1.18585129e+002 - 1.24350311e+002 1.06110207e+002 1.18649673e+002 1.24344170e+002 - 1.06216660e+002 1.18714661e+002 1.24370560e+002 1.06274078e+002 - 1.18771339e+002 1.24358284e+002 1.06341255e+002 1.18813103e+002 - 1.24345642e+002 1.06397995e+002 1.18862953e+002 1.24326271e+002 - 1.06508652e+002 1.18943306e+002 1.24353363e+002 1.06597427e+002 - 1.19023956e+002 1.24369286e+002 1.06692787e+002 1.19054527e+002 - 1.24370682e+002 1.06763062e+002 1.19108833e+002 1.24364128e+002 - 1.06837395e+002 1.19151764e+002 1.24354523e+002 1.06889183e+002 - 1.19195702e+002 1.24336136e+002 1.06918755e+002 1.19169647e+002 - 1.24294525e+002 1.06862061e+002 1.19112099e+002 1.24168816e+002 - 1.06738510e+002 1.19024429e+002 1.24197556e+002 1.06758568e+002 - 1.19105370e+002 1.24302147e+002 1.06775764e+002 1.19140038e+002 - 1.24382195e+002 1.06733315e+002 1.19132896e+002 1.24414719e+002 - 1.06701576e+002 1.19111923e+002 1.24463371e+002 1.06624771e+002 - 1.19071190e+002 1.24467903e+002 1.06543510e+002 1.19012619e+002 - 1.24469521e+002 1.06484161e+002 1.18981506e+002 1.24485352e+002 - 1.06434631e+002 1.18949722e+002 1.24515846e+002 1.06340797e+002 - 1.18896172e+002 1.24505936e+002 1.06280075e+002 1.18818047e+002 - 1.24530640e+002 1.06208069e+002 1.18777031e+002 1.24532410e+002 - 1.06127342e+002 1.18704750e+002 1.24528511e+002 1.06036446e+002 - 1.18647560e+002 1.24502960e+002 1.05964973e+002 1.18572655e+002 - 1.24492645e+002 1.05885345e+002 1.18515167e+002 1.24485901e+002 - 1.05792572e+002 1.18439865e+002 1.24495132e+002 1.05670181e+002 - 1.18354477e+002 1.24460152e+002 1.05602531e+002 1.18280022e+002 - 1.24454208e+002 1.05563591e+002 1.18259827e+002 1.24481293e+002 - 1.05547134e+002 1.18226257e+002 1.24530449e+002 1.05489250e+002 - 1.18195938e+002 1.24545845e+002 1.05408592e+002 1.18118622e+002 - 1.24540131e+002 1.05324997e+002 1.18050919e+002 1.24525276e+002 - 1.05271629e+002 1.17992821e+002 1.24529678e+002 1.05179245e+002 - 1.17925560e+002 1.24505508e+002 1.05148659e+002 1.17868134e+002 - 1.24537804e+002 1.05114861e+002 1.17854721e+002 1.24570747e+002 - 1.05074226e+002 1.17815132e+002 1.24595139e+002 1.05021172e+002 - 1.17778290e+002 1.24606880e+002 1.04956131e+002 1.17700653e+002 - 1.24592842e+002 1.04885300e+002 1.17643837e+002 1.24586700e+002 - 1.04835327e+002 1.17613655e+002 1.24642624e+002 1.04737991e+002 - 1.17544022e+002 1.24624672e+002 1.04673782e+002 1.17468948e+002 - 1.24623253e+002 1.04641800e+002 1.17450844e+002 1.24646667e+002 - 1.04604866e+002 1.17396652e+002 1.24674339e+002 1.04551971e+002 - 1.17361259e+002 1.24687683e+002 1.04527725e+002 1.17337868e+002 - 1.24722961e+002 1.04477020e+002 1.17301453e+002 1.24731789e+002 - 1.04433525e+002 1.17253181e+002 1.24749390e+002 1.04353180e+002 - 1.17192291e+002 1.24729065e+002 1.04349022e+002 1.17161415e+002 - 1.24786102e+002 1.04310234e+002 1.17136429e+002 1.24800888e+002 - 1.04264008e+002 1.17095627e+002 1.24812492e+002 1.04225838e+002 - 1.17075806e+002 1.24826202e+002 1.04208443e+002 1.17039429e+002 - 1.24860786e+002 1.04179596e+002 1.17016685e+002 1.24877785e+002 - 1.04170700e+002 1.17001526e+002 1.24922729e+002 1.04085251e+002 - 1.16930389e+002 1.24895653e+002 1.04062515e+002 1.16890854e+002 - 1.24914085e+002 1.04046692e+002 1.16887154e+002 1.24945496e+002 - 1.03994148e+002 1.16818192e+002 1.24947533e+002 1.03958458e+002 - 1.16793365e+002 1.24962906e+002 1.03938217e+002 1.16772209e+002 - 1.25003891e+002 1.03901505e+002 1.16740837e+002 1.25014671e+002 - 1.03894348e+002 1.16721191e+002 1.25051910e+002 1.03841682e+002 - 1.16681007e+002 1.25049614e+002 1.03819359e+002 1.16632584e+002 - 1.25090324e+002 1.03786453e+002 1.16606613e+002 1.25118500e+002 - 1.03757065e+002 1.16576126e+002 1.25140343e+002 1.03726715e+002 - 1.16565750e+002 1.25158401e+002 1.03714050e+002 1.16528046e+002 - 1.25171204e+002 1.03703362e+002 1.16526321e+002 1.25196701e+002 - 1.03714828e+002 1.16542442e+002 1.25273193e+002 1.03654854e+002 - 1.16505180e+002 1.25264832e+002 1.03654747e+002 1.16489944e+002 - 1.25297096e+002 1.03642303e+002 1.16493050e+002 1.25318779e+002 - 1.03635811e+002 1.16466904e+002 1.25354446e+002 1.03585213e+002 - 1.16431786e+002 1.25345741e+002 1.03572403e+002 1.16422302e+002 - 1.25377068e+002 1.03538010e+002 1.16394630e+002 1.25373955e+002 - 1.03522903e+002 1.16372322e+002 1.25398666e+002 1.03502258e+002 - 1.16363197e+002 1.25422821e+002 1.03510094e+002 1.16336006e+002 - 1.25471680e+002 1.03486992e+002 1.16323296e+002 1.25488800e+002 - 1.03478302e+002 1.16312653e+002 1.25521217e+002 1.03456711e+002 - 1.16306419e+002 1.25530472e+002 1.03469162e+002 1.16291321e+002 - 1.25556778e+002 1.03443130e+002 1.16274887e+002 1.25553230e+002 - 1.03449829e+002 1.16269966e+002 1.25592606e+002 1.03421791e+002 - 1.16262001e+002 1.25606819e+002 1.03442886e+002 1.16266396e+002 - 1.25645828e+002 1.03447670e+002 1.16285057e+002 1.25683784e+002 - 1.03431633e+002 1.16241844e+002 1.25694366e+002 1.03383789e+002 - 1.16203804e+002 1.25676064e+002 1.03377846e+002 1.16195885e+002 - 1.25710197e+002 1.03370956e+002 1.16202576e+002 1.25734299e+002 - 1.03375023e+002 1.16193474e+002 1.25761963e+002 1.03317314e+002 - 1.16151741e+002 1.25739960e+002 1.03347397e+002 1.16150276e+002 - 1.25794350e+002 1.03383339e+002 1.16204849e+002 1.25855782e+002 - 1.03390450e+002 1.16207222e+002 1.25883354e+002 1.03346230e+002 - 1.16183060e+002 1.25868004e+002 1.03325386e+002 1.16139664e+002 - 1.25862671e+002 1.03319214e+002 1.16140846e+002 1.25861000e+002 - 1.03352074e+002 1.16165924e+002 1.25908081e+002 1.03297386e+002 - 1.16128662e+002 1.25884262e+002 1.03298462e+002 1.16116730e+002 - 1.25903687e+002 1.03298286e+002 1.16122353e+002 1.25920433e+002 - 1.03300285e+002 1.16107292e+002 1.25942047e+002 1.03271378e+002 - 1.16096237e+002 1.25936508e+002 1.03250023e+002 1.16069038e+002 - 1.25922508e+002 1.03225845e+002 1.16049728e+002 1.25909790e+002 - 1.03254486e+002 1.16070259e+002 1.25940414e+002 1.03247032e+002 - 1.16086769e+002 1.25952354e+002 1.03264679e+002 1.16075294e+002 - 1.25980042e+002 1.03252159e+002 1.16079979e+002 1.25971626e+002 - 1.03216995e+002 1.16046768e+002 1.25945122e+002 1.03221817e+002 - 1.16068604e+002 1.25959930e+002 1.03241135e+002 1.16069366e+002 - 1.25977890e+002 1.03271385e+002 1.16106827e+002 1.26003242e+002 - 1.03253372e+002 1.16086273e+002 1.25983261e+002 1.03200607e+002 - 1.16055626e+002 1.25945549e+002 1.03201942e+002 1.16037239e+002 - 1.25931358e+002 1.03180511e+002 1.16027489e+002 1.25907532e+002 - 1.03217262e+002 1.16034294e+002 1.25931122e+002 1.03214325e+002 - 1.16050095e+002 1.25916039e+002 1.03212662e+002 1.16045288e+002 - 1.25907082e+002 1.03203339e+002 1.16045395e+002 1.25885139e+002 - 1.03218666e+002 1.16046974e+002 1.25889946e+002 1.03200806e+002 - 1.16047295e+002 1.25868393e+002 1.03257820e+002 1.16075645e+002 - 1.25908257e+002 1.03269608e+002 1.16097015e+002 1.25912399e+002 - 1.03258751e+002 1.16085014e+002 1.25878510e+002 1.03245483e+002 - 1.16089806e+002 1.25850746e+002 1.03280685e+002 1.16089783e+002 - 1.25866158e+002 1.03299850e+002 1.16119003e+002 1.25863312e+002 - 1.03327782e+002 1.16135338e+002 1.25864929e+002 1.03317627e+002 - 1.16143097e+002 1.25846062e+002 1.03293152e+002 1.16106308e+002 - 1.25795654e+002 1.03278831e+002 1.16107239e+002 1.25768806e+002 - 1.03293289e+002 1.16100494e+002 1.25755943e+002 1.03301254e+002 - 1.16126587e+002 1.25733055e+002 1.03305573e+002 1.16127251e+002 - 1.25714905e+002 1.03295830e+002 1.16131584e+002 1.25679237e+002 - 1.03279449e+002 1.16104858e+002 1.25635292e+002 1.03272774e+002 - 1.16118866e+002 1.25604698e+002 1.03311798e+002 1.16124878e+002 - 1.25606857e+002 1.03317856e+002 1.16138527e+002 1.25583076e+002 - 1.03318024e+002 1.16142487e+002 1.25548981e+002 1.03284653e+002 - 1.16122513e+002 1.25488747e+002 1.03327576e+002 1.16146927e+002 - 1.25503212e+002 1.03332779e+002 1.16166565e+002 1.25468506e+002 - 1.03378899e+002 1.16214745e+002 1.25486877e+002 1.03373482e+002 - 1.16240646e+002 1.25466148e+002 1.03356110e+002 1.16211899e+002 - 1.25415520e+002 1.03344391e+002 1.16222015e+002 1.25372803e+002 - 1.03379715e+002 1.16237282e+002 1.25368126e+002 1.03361465e+002 - 1.16231613e+002 1.25307739e+002 1.03395393e+002 1.16258354e+002 - 1.25297585e+002 1.03416634e+002 1.16287987e+002 1.25275536e+002 - 1.03443871e+002 1.16303802e+002 1.25259308e+002 1.03448143e+002 - 1.16317726e+002 1.25225853e+002 1.03497154e+002 1.16328903e+002 - 1.25220444e+002 1.03504868e+002 1.16354179e+002 1.25193359e+002 - 1.03483109e+002 1.16343224e+002 1.25132362e+002 1.03505844e+002 - 1.16385948e+002 1.25121025e+002 1.03583595e+002 1.16441284e+002 - 1.25159348e+002 1.03599548e+002 1.16463654e+002 1.25118011e+002 - 1.03643028e+002 1.16498611e+002 1.25106415e+002 1.03629158e+002 - 1.16500519e+002 1.25053772e+002 1.03688171e+002 1.16545891e+002 - 1.25070168e+002 1.03691872e+002 1.16554222e+002 1.25027542e+002 - 1.03740265e+002 1.16572243e+002 1.25021049e+002 1.03764969e+002 - 1.16601730e+002 1.24992104e+002 1.03787399e+002 1.16620560e+002 - 1.24959732e+002 1.03814751e+002 1.16651482e+002 1.24932297e+002 - 1.03867622e+002 1.16687241e+002 1.24929573e+002 1.03854889e+002 - 1.16684479e+002 1.24861145e+002 1.03896133e+002 1.16692871e+002 - 1.24834435e+002 1.03936783e+002 1.16740303e+002 1.24822998e+002 - 1.03960121e+002 1.16766228e+002 1.24796165e+002 1.03954697e+002 - 1.16774017e+002 1.24745575e+002 1.03988800e+002 1.16791321e+002 - 1.24742767e+002 1.04029648e+002 1.16838486e+002 1.24717133e+002 - 1.04074547e+002 1.16877937e+002 1.24692924e+002 1.04066185e+002 - 1.16885078e+002 1.24630508e+002 1.04114037e+002 1.16925209e+002 - 1.24628822e+002 1.04157608e+002 1.16966805e+002 1.24617279e+002 - 1.04220070e+002 1.16994980e+002 1.24605545e+002 1.04235176e+002 - 1.17023384e+002 1.24563782e+002 1.04264023e+002 1.17045685e+002 - 1.24536034e+002 1.04327072e+002 1.17125473e+002 1.24543289e+002 - 1.04380432e+002 1.17162804e+002 1.24534386e+002 1.04414139e+002 - 1.17204330e+002 1.24508522e+002 1.04492867e+002 1.17241142e+002 - 1.24511589e+002 1.04547249e+002 1.17310005e+002 1.24509041e+002 - 1.04605713e+002 1.17362732e+002 1.24505959e+002 1.04636185e+002 - 1.17397865e+002 1.24474747e+002 1.04701118e+002 1.17439690e+002 - 1.24486374e+002 1.04760986e+002 1.17510475e+002 1.24480118e+002 - 1.04816933e+002 1.17552773e+002 1.24457855e+002 1.04838394e+002 - 1.17593109e+002 1.24431587e+002 1.04867142e+002 1.17610237e+002 - 1.24411484e+002 1.04919807e+002 1.17670044e+002 1.24416702e+002 - 1.04980034e+002 1.17710464e+002 1.24407150e+002 1.05013382e+002 - 1.17755653e+002 1.24380470e+002 1.05066093e+002 1.17795441e+002 - 1.24366898e+002 1.05122223e+002 1.17856850e+002 1.24358406e+002 - 1.05165352e+002 1.17876564e+002 1.24324524e+002 1.05223465e+002 - 1.17941544e+002 1.24314095e+002 1.05295647e+002 1.17964737e+002 - 1.24296684e+002 1.05361664e+002 1.18029472e+002 1.24288544e+002 - 1.05434647e+002 1.18090622e+002 1.24285881e+002 1.05491257e+002 - 1.18152237e+002 1.24276489e+002 1.05572510e+002 1.18210510e+002 - 1.24297272e+002 1.05658806e+002 1.18290192e+002 1.24298882e+002 - 1.05742165e+002 1.18344315e+002 1.24280655e+002 1.05817612e+002 - 1.18419807e+002 1.24281639e+002 1.05896103e+002 1.18473518e+002 - 1.24297523e+002 1.05963051e+002 1.18539963e+002 1.24291702e+002 - 1.06061829e+002 1.18596222e+002 1.24311386e+002 1.06132164e+002 - 1.18666092e+002 1.24306831e+002 1.06201576e+002 1.18710640e+002 - 1.24293915e+002 1.06272820e+002 1.18776192e+002 1.24288208e+002 - 1.06390648e+002 1.18863403e+002 1.24326157e+002 1.06475052e+002 - 1.18938599e+002 1.24333420e+002 1.06581299e+002 1.18979538e+002 - 1.24349304e+002 1.06641075e+002 1.19019638e+002 1.24334991e+002 - 1.06712120e+002 1.19061310e+002 1.24321205e+002 1.06766846e+002 - 1.19110992e+002 1.24309776e+002 1.06791023e+002 1.19081032e+002 - 1.24260384e+002 1.06724571e+002 1.19007423e+002 1.24119995e+002 - 1.06588516e+002 1.18927635e+002 1.24128242e+002 1.06651024e+002 - 1.19032959e+002 1.24268364e+002 1.06661850e+002 1.19062233e+002 - 1.24353401e+002 1.06631004e+002 1.19062737e+002 1.24394814e+002 - 1.06590118e+002 1.19040405e+002 1.24439896e+002 1.06501358e+002 - 1.18986900e+002 1.24425232e+002 1.06424896e+002 1.18920349e+002 - 1.24434799e+002 1.06348099e+002 1.18885208e+002 1.24429794e+002 - 1.06289291e+002 1.18841049e+002 1.24447128e+002 1.06195740e+002 - 1.18775970e+002 1.24443230e+002 1.06136391e+002 1.18715698e+002 - 1.24463257e+002 1.06064301e+002 1.18667816e+002 1.24472565e+002 - 1.05975563e+002 1.18590042e+002 1.24462036e+002 1.05891792e+002 - 1.18530220e+002 1.24449211e+002 1.05823082e+002 1.18467049e+002 - 1.24435699e+002 1.05717163e+002 1.18389526e+002 1.24400383e+002 - 1.05644707e+002 1.18329353e+002 1.24426468e+002 1.05537781e+002 - 1.18256882e+002 1.24401825e+002 1.05458786e+002 1.18171249e+002 - 1.24386818e+002 1.05409195e+002 1.18131424e+002 1.24402679e+002 - 1.05390785e+002 1.18107368e+002 1.24456779e+002 1.05330116e+002 - 1.18062096e+002 1.24461540e+002 1.05248428e+002 1.17984795e+002 - 1.24462608e+002 1.05156029e+002 1.17916008e+002 1.24441605e+002 - 1.05123840e+002 1.17882126e+002 1.24472290e+002 1.05030304e+002 - 1.17806145e+002 1.24446861e+002 1.04998634e+002 1.17760132e+002 - 1.24483192e+002 1.04968948e+002 1.17741676e+002 1.24514923e+002 - 1.04911072e+002 1.17687027e+002 1.24531410e+002 1.04860229e+002 - 1.17648033e+002 1.24535957e+002 1.04802498e+002 1.17582321e+002 - 1.24533623e+002 1.04719177e+002 1.17520844e+002 1.24511055e+002 - 1.04657730e+002 1.17467552e+002 1.24553642e+002 1.04574509e+002 - 1.17416496e+002 1.24551208e+002 1.04539566e+002 1.17362221e+002 - 1.24572357e+002 1.04483330e+002 1.17318298e+002 1.24575180e+002 - 1.04447968e+002 1.17272789e+002 1.24605515e+002 1.04395103e+002 - 1.17238449e+002 1.24609589e+002 1.04370483e+002 1.17211494e+002 - 1.24660683e+002 1.04323601e+002 1.17180061e+002 1.24664330e+002 - 1.04286652e+002 1.17138954e+002 1.24694550e+002 1.04212524e+002 - 1.17081543e+002 1.24682182e+002 1.04173332e+002 1.17024963e+002 - 1.24702415e+002 1.04125557e+002 1.16992271e+002 1.24707024e+002 - 1.04089462e+002 1.16950974e+002 1.24725456e+002 1.04055649e+002 - 1.16932175e+002 1.24751945e+002 1.04025978e+002 1.16894348e+002 - 1.24770294e+002 1.03996094e+002 1.16864052e+002 1.24780731e+002 - 1.03991798e+002 1.16852386e+002 1.24839355e+002 1.03922325e+002 - 1.16797012e+002 1.24824867e+002 1.03899231e+002 1.16760010e+002 - 1.24843452e+002 1.03867599e+002 1.16737442e+002 1.24860909e+002 - 1.03826981e+002 1.16682816e+002 1.24871849e+002 1.03787819e+002 - 1.16656044e+002 1.24885315e+002 1.03764793e+002 1.16626556e+002 - 1.24922714e+002 1.03741203e+002 1.16610191e+002 1.24943726e+002 - 1.03747627e+002 1.16602798e+002 1.24996574e+002 1.03670158e+002 - 1.16537697e+002 1.24974617e+002 1.03656769e+002 1.16501434e+002 - 1.25020515e+002 1.03638390e+002 1.16490829e+002 1.25063675e+002 - 1.03631500e+002 1.16484459e+002 1.25106308e+002 1.03586258e+002 - 1.16460129e+002 1.25111221e+002 1.03568405e+002 1.16417320e+002 - 1.25119415e+002 1.03572334e+002 1.16430832e+002 1.25160126e+002 - 1.03545235e+002 1.16401772e+002 1.25187859e+002 1.03489326e+002 - 1.16370392e+002 1.25180779e+002 1.03492340e+002 1.16356461e+002 - 1.25220245e+002 1.03487450e+002 1.16359489e+002 1.25253876e+002 - 1.03487503e+002 1.16347145e+002 1.25292229e+002 1.03447968e+002 - 1.16323708e+002 1.25290092e+002 1.03399803e+002 1.16275734e+002 - 1.25288986e+002 1.03378571e+002 1.16267860e+002 1.25298958e+002 - 1.03369164e+002 1.16240196e+002 1.25323479e+002 1.03345909e+002 - 1.16234360e+002 1.25352539e+002 1.03339951e+002 1.16191376e+002 - 1.25380997e+002 1.03327362e+002 1.16192604e+002 1.25410873e+002 - 1.03308434e+002 1.16162727e+002 1.25428741e+002 1.03276588e+002 - 1.16154724e+002 1.25434814e+002 1.03283279e+002 1.16141159e+002 - 1.25464607e+002 1.03289925e+002 1.16153336e+002 1.25492393e+002 - 1.03312202e+002 1.16155350e+002 1.25550621e+002 1.03256569e+002 - 1.16124878e+002 1.25537094e+002 1.03276749e+002 1.16126823e+002 - 1.25572395e+002 1.03290092e+002 1.16153351e+002 1.25613235e+002 - 1.03274170e+002 1.16116982e+002 1.25627922e+002 1.03249306e+002 - 1.16099548e+002 1.25636581e+002 1.03223763e+002 1.16069000e+002 - 1.25640465e+002 1.03194031e+002 1.16052765e+002 1.25647964e+002 - 1.03199966e+002 1.16042885e+002 1.25683372e+002 1.03158035e+002 - 1.16016823e+002 1.25673721e+002 1.03196609e+002 1.16027565e+002 - 1.25731163e+002 1.03215309e+002 1.16068253e+002 1.25781174e+002 - 1.03220032e+002 1.16054428e+002 1.25802879e+002 1.03186775e+002 - 1.16048279e+002 1.25804321e+002 1.03181953e+002 1.16028275e+002 - 1.25813828e+002 1.03181786e+002 1.16035896e+002 1.25816605e+002 - 1.03192917e+002 1.16035179e+002 1.25848808e+002 1.03147675e+002 - 1.16007835e+002 1.25831551e+002 1.03130844e+002 1.15975784e+002 - 1.25825432e+002 1.03115814e+002 1.15970581e+002 1.25827530e+002 - 1.03125343e+002 1.15959579e+002 1.25857391e+002 1.03097633e+002 - 1.15948624e+002 1.25853546e+002 1.03109482e+002 1.15956375e+002 - 1.25878204e+002 1.03077209e+002 1.15925621e+002 1.25844810e+002 - 1.03076775e+002 1.15926231e+002 1.25859123e+002 1.03072823e+002 - 1.15933678e+002 1.25869591e+002 1.03089142e+002 1.15929893e+002 - 1.25888786e+002 1.03058205e+002 1.15912010e+002 1.25865860e+002 - 1.03040550e+002 1.15891663e+002 1.25864006e+002 1.03059128e+002 - 1.15931305e+002 1.25890419e+002 1.03065514e+002 1.15922974e+002 - 1.25892586e+002 1.03095779e+002 1.15966347e+002 1.25924927e+002 - 1.03078316e+002 1.15940865e+002 1.25902664e+002 1.03028244e+002 - 1.15912796e+002 1.25864334e+002 1.03024231e+002 1.15891373e+002 - 1.25850906e+002 1.03037735e+002 1.15909943e+002 1.25853783e+002 - 1.03086807e+002 1.15938271e+002 1.25885513e+002 1.03068642e+002 - 1.15933464e+002 1.25862419e+002 1.03049026e+002 1.15909569e+002 - 1.25834549e+002 1.03050224e+002 1.15920883e+002 1.25827164e+002 - 1.03084099e+002 1.15938904e+002 1.25850670e+002 1.03048676e+002 - 1.15917366e+002 1.25808746e+002 1.03093384e+002 1.15938293e+002 - 1.25839027e+002 1.03109528e+002 1.15964119e+002 1.25843811e+002 - 1.03101456e+002 1.15944763e+002 1.25812981e+002 1.03094696e+002 - 1.15957741e+002 1.25794044e+002 1.03108856e+002 1.15957993e+002 - 1.25796944e+002 1.03117706e+002 1.15976120e+002 1.25781097e+002 - 1.03147827e+002 1.15981804e+002 1.25784492e+002 1.03138512e+002 - 1.15998375e+002 1.25765213e+002 1.03124763e+002 1.15967804e+002 - 1.25731331e+002 1.03108620e+002 1.15959053e+002 1.25690239e+002 - 1.03121437e+002 1.15963387e+002 1.25677391e+002 1.03110588e+002 - 1.15968018e+002 1.25643974e+002 1.03131889e+002 1.15983101e+002 - 1.25629723e+002 1.03128845e+002 1.15994453e+002 1.25601334e+002 - 1.03120224e+002 1.15976013e+002 1.25562981e+002 1.03103981e+002 - 1.15977623e+002 1.25529503e+002 1.03139549e+002 1.15981903e+002 - 1.25522804e+002 1.03135452e+002 1.15984039e+002 1.25492661e+002 - 1.03156494e+002 1.16000938e+002 1.25476952e+002 1.03132797e+002 - 1.15987328e+002 1.25424782e+002 1.03130394e+002 1.15978760e+002 - 1.25399231e+002 1.03147057e+002 1.16009552e+002 1.25381134e+002 - 1.03178391e+002 1.16038414e+002 1.25376526e+002 1.03198341e+002 - 1.16085449e+002 1.25375565e+002 1.03189278e+002 1.16069077e+002 - 1.25332954e+002 1.03167305e+002 1.16064255e+002 1.25282288e+002 - 1.03210526e+002 1.16088158e+002 1.25273781e+002 1.03222214e+002 - 1.16117241e+002 1.25254379e+002 1.03258102e+002 1.16151611e+002 - 1.25246025e+002 1.03260651e+002 1.16159309e+002 1.25206284e+002 - 1.03291603e+002 1.16177841e+002 1.25189636e+002 1.03280174e+002 - 1.16173477e+002 1.25151344e+002 1.03330193e+002 1.16195511e+002 - 1.25145462e+002 1.03329681e+002 1.16209808e+002 1.25108894e+002 - 1.03336555e+002 1.16212830e+002 1.25073120e+002 1.03351730e+002 - 1.16247238e+002 1.25052597e+002 1.03410973e+002 1.16301186e+002 - 1.25076591e+002 1.03444817e+002 1.16337242e+002 1.25049149e+002 - 1.03460274e+002 1.16342766e+002 1.25010414e+002 1.03462219e+002 - 1.16364845e+002 1.24978752e+002 1.03514839e+002 1.16393303e+002 - 1.24983063e+002 1.03537346e+002 1.16424500e+002 1.24961922e+002 - 1.03577133e+002 1.16432854e+002 1.24943085e+002 1.03577614e+002 - 1.16447304e+002 1.24893433e+002 1.03614967e+002 1.16474045e+002 - 1.24878380e+002 1.03647598e+002 1.16508736e+002 1.24858597e+002 - 1.03681679e+002 1.16526497e+002 1.24829117e+002 1.03693230e+002 - 1.16548439e+002 1.24793198e+002 1.03737228e+002 1.16564735e+002 - 1.24761612e+002 1.03770866e+002 1.16614670e+002 1.24746506e+002 - 1.03798386e+002 1.16628143e+002 1.24720016e+002 1.03796860e+002 - 1.16643692e+002 1.24673241e+002 1.03832405e+002 1.16663010e+002 - 1.24667908e+002 1.03857521e+002 1.16702682e+002 1.24637077e+002 - 1.03907417e+002 1.16743774e+002 1.24613808e+002 1.03917679e+002 - 1.16771919e+002 1.24575798e+002 1.03955864e+002 1.16798111e+002 - 1.24557137e+002 1.03985313e+002 1.16822113e+002 1.24530212e+002 - 1.04050743e+002 1.16863136e+002 1.24523941e+002 1.04092430e+002 - 1.16913231e+002 1.24503937e+002 1.04133728e+002 1.16943962e+002 - 1.24490547e+002 1.04176308e+002 1.16996696e+002 1.24475800e+002 - 1.04246300e+002 1.17058601e+002 1.24483231e+002 1.04286903e+002 - 1.17106842e+002 1.24468491e+002 1.04344376e+002 1.17132317e+002 - 1.24454529e+002 1.04388779e+002 1.17185493e+002 1.24438530e+002 - 1.04461502e+002 1.17242119e+002 1.24448814e+002 1.04495247e+002 - 1.17290512e+002 1.24430527e+002 1.04554489e+002 1.17335136e+002 - 1.24428116e+002 1.04615913e+002 1.17400276e+002 1.24422562e+002 - 1.04666382e+002 1.17440552e+002 1.24395088e+002 1.04686241e+002 - 1.17480125e+002 1.24369644e+002 1.04726273e+002 1.17499725e+002 - 1.24356720e+002 1.04768440e+002 1.17554031e+002 1.24350586e+002 - 1.04833122e+002 1.17603363e+002 1.24351334e+002 1.04876244e+002 - 1.17652519e+002 1.24334038e+002 1.04927895e+002 1.17689964e+002 - 1.24314232e+002 1.04976913e+002 1.17748558e+002 1.24300812e+002 - 1.05025909e+002 1.17765381e+002 1.24270370e+002 1.05079681e+002 - 1.17826340e+002 1.24260445e+002 1.05143372e+002 1.17849365e+002 - 1.24231712e+002 1.05208977e+002 1.17916420e+002 1.24228363e+002 - 1.05285782e+002 1.17970009e+002 1.24219368e+002 1.05346169e+002 - 1.18037369e+002 1.24216545e+002 1.05427475e+002 1.18101837e+002 - 1.24231949e+002 1.05496117e+002 1.18163506e+002 1.24215736e+002 - 1.05587120e+002 1.18218178e+002 1.24202820e+002 1.05655411e+002 - 1.18295082e+002 1.24199554e+002 1.05748238e+002 1.18356750e+002 - 1.24222244e+002 1.05842873e+002 1.18455849e+002 1.24255074e+002 - 1.05918365e+002 1.18490356e+002 1.24243271e+002 1.05971146e+002 - 1.18540794e+002 1.24229034e+002 1.06054993e+002 1.18595047e+002 - 1.24221092e+002 1.06147484e+002 1.18678848e+002 1.24236855e+002 - 1.06276726e+002 1.18773460e+002 1.24276855e+002 1.06370178e+002 - 1.18858284e+002 1.24305016e+002 1.06470131e+002 1.18906479e+002 - 1.24311546e+002 1.06536789e+002 1.18953506e+002 1.24303108e+002 - 1.06596085e+002 1.18969193e+002 1.24277977e+002 1.06613907e+002 - 1.18982086e+002 1.24231712e+002 1.06646004e+002 1.18968269e+002 - 1.24191330e+002 1.06609497e+002 1.18918106e+002 1.24076759e+002 - 1.06492035e+002 1.18854385e+002 1.24084007e+002 1.06558594e+002 - 1.18968224e+002 1.24229370e+002 1.06574158e+002 1.18996971e+002 - 1.24315186e+002 1.06538925e+002 1.18995361e+002 1.24357796e+002 - 1.06478294e+002 1.18949585e+002 1.24377304e+002 1.06393723e+002 - 1.18898537e+002 1.24371780e+002 1.06313934e+002 1.18839302e+002 - 1.24377205e+002 1.06234428e+002 1.18791679e+002 1.24370407e+002 - 1.06175774e+002 1.18744148e+002 1.24388351e+002 1.06063576e+002 - 1.18664070e+002 1.24357147e+002 1.05996559e+002 1.18592400e+002 - 1.24379539e+002 1.05934204e+002 1.18556572e+002 1.24390839e+002 - 1.05850929e+002 1.18478752e+002 1.24386154e+002 1.05750244e+002 - 1.18414841e+002 1.24355423e+002 1.05693123e+002 1.18357918e+002 - 1.24360420e+002 1.05583397e+002 1.18273666e+002 1.24319931e+002 - 1.05526062e+002 1.18221924e+002 1.24361504e+002 1.05439240e+002 - 1.18172905e+002 1.24354919e+002 1.05368370e+002 1.18099571e+002 - 1.24346329e+002 1.05311218e+002 1.18048737e+002 1.24348663e+002 - 1.05266464e+002 1.17999664e+002 1.24379112e+002 1.05199760e+002 - 1.17952194e+002 1.24380035e+002 1.05122017e+002 1.17876968e+002 - 1.24385597e+002 1.05031349e+002 1.17805290e+002 1.24365990e+002 - 1.04993103e+002 1.17765327e+002 1.24389305e+002 1.04904404e+002 - 1.17695816e+002 1.24373146e+002 1.04873611e+002 1.17646889e+002 - 1.24414276e+002 1.04824944e+002 1.17616066e+002 1.24437874e+002 - 1.04771690e+002 1.17561142e+002 1.24451057e+002 1.04706596e+002 - 1.17513184e+002 1.24442520e+002 1.04666138e+002 1.17467201e+002 - 1.24456390e+002 1.04611275e+002 1.17431320e+002 1.24464622e+002 - 1.04535385e+002 1.17365341e+002 1.24489899e+002 1.04444344e+002 - 1.17302467e+002 1.24477875e+002 1.04431541e+002 1.17272789e+002 - 1.24517876e+002 1.04382294e+002 1.17238747e+002 1.24531670e+002 - 1.04347786e+002 1.17184731e+002 1.24552238e+002 1.04275459e+002 - 1.17126427e+002 1.24544838e+002 1.04238922e+002 1.17088387e+002 - 1.24577072e+002 1.04208801e+002 1.17079689e+002 1.24608681e+002 - 1.04178596e+002 1.17044472e+002 1.24636116e+002 1.04119736e+002 - 1.17003036e+002 1.24643074e+002 1.04055626e+002 1.16924805e+002 - 1.24637329e+002 1.04017448e+002 1.16892036e+002 1.24650574e+002 - 1.03976517e+002 1.16849075e+002 1.24674194e+002 1.03928223e+002 - 1.16823486e+002 1.24681885e+002 1.03899933e+002 1.16784424e+002 - 1.24702690e+002 1.03875183e+002 1.16765663e+002 1.24724335e+002 - 1.03858940e+002 1.16736519e+002 1.24763664e+002 1.03793266e+002 - 1.16690269e+002 1.24761627e+002 1.03750153e+002 1.16633125e+002 - 1.24759674e+002 1.03704826e+002 1.16595787e+002 1.24755379e+002 - 1.03689423e+002 1.16559967e+002 1.24794067e+002 1.03657166e+002 - 1.16545082e+002 1.24815849e+002 1.03642197e+002 1.16525200e+002 - 1.24859940e+002 1.03614006e+002 1.16512619e+002 1.24878494e+002 - 1.03611282e+002 1.16488358e+002 1.24926559e+002 1.03533989e+002 - 1.16418556e+002 1.24898979e+002 1.03539322e+002 1.16399597e+002 - 1.24955933e+002 1.03508629e+002 1.16386986e+002 1.24987244e+002 - 1.03504158e+002 1.16378532e+002 1.25036560e+002 1.03456985e+002 - 1.16345108e+002 1.25029022e+002 1.03427399e+002 1.16295860e+002 - 1.25026749e+002 1.03421387e+002 1.16297684e+002 1.25055237e+002 - 1.03392822e+002 1.16263596e+002 1.25088905e+002 1.03347900e+002 - 1.16244019e+002 1.25090652e+002 1.03359886e+002 1.16240517e+002 - 1.25140465e+002 1.03351997e+002 1.16246979e+002 1.25170303e+002 - 1.03346809e+002 1.16227806e+002 1.25208878e+002 1.03301476e+002 - 1.16196861e+002 1.25203957e+002 1.03258461e+002 1.16147827e+002 - 1.25202126e+002 1.03233986e+002 1.16139397e+002 1.25208992e+002 - 1.03246346e+002 1.16136551e+002 1.25259949e+002 1.03235016e+002 - 1.16136063e+002 1.25293015e+002 1.03207352e+002 1.16076691e+002 - 1.25309814e+002 1.03171883e+002 1.16052132e+002 1.25313026e+002 - 1.03142609e+002 1.16014626e+002 1.25322250e+002 1.03117973e+002 - 1.16005035e+002 1.25335327e+002 1.03115936e+002 1.15993698e+002 - 1.25359505e+002 1.03118744e+002 1.15999680e+002 1.25384109e+002 - 1.03137085e+002 1.15998627e+002 1.25441803e+002 1.03115242e+002 - 1.15998215e+002 1.25453545e+002 1.03142029e+002 1.16003937e+002 - 1.25498177e+002 1.03124306e+002 1.15996445e+002 1.25506393e+002 - 1.03123589e+002 1.15975014e+002 1.25529701e+002 1.03094322e+002 - 1.15960846e+002 1.25538177e+002 1.03071350e+002 1.15931801e+002 - 1.25549797e+002 1.03042702e+002 1.15911484e+002 1.25552628e+002 - 1.03025215e+002 1.15885468e+002 1.25568977e+002 1.02993103e+002 - 1.15867050e+002 1.25571365e+002 1.03034782e+002 1.15879951e+002 - 1.25631783e+002 1.03042198e+002 1.15906860e+002 1.25666924e+002 - 1.03051994e+002 1.15903801e+002 1.25697395e+002 1.03007713e+002 - 1.15887032e+002 1.25679123e+002 1.03018028e+002 1.15883095e+002 - 1.25706352e+002 1.03025795e+002 1.15893410e+002 1.25715721e+002 - 1.03061569e+002 1.15921638e+002 1.25772179e+002 1.03024231e+002 - 1.15906586e+002 1.25761711e+002 1.03015945e+002 1.15877525e+002 - 1.25768669e+002 1.02995293e+002 1.15864197e+002 1.25763176e+002 - 1.03005493e+002 1.15854431e+002 1.25792564e+002 1.02954369e+002 - 1.15818253e+002 1.25757515e+002 1.02952034e+002 1.15812332e+002 - 1.25775177e+002 1.02934967e+002 1.15801231e+002 1.25761604e+002 - 1.02934547e+002 1.15802498e+002 1.25773804e+002 1.02926758e+002 - 1.15797607e+002 1.25772728e+002 1.02930382e+002 1.15781685e+002 - 1.25779587e+002 1.02903091e+002 1.15765213e+002 1.25760330e+002 - 1.02909828e+002 1.15775383e+002 1.25773956e+002 1.02914658e+002 - 1.15797348e+002 1.25794846e+002 1.02930717e+002 1.15799637e+002 - 1.25813576e+002 1.02937988e+002 1.15818527e+002 1.25816238e+002 - 1.02941048e+002 1.15813232e+002 1.25815643e+002 1.02901794e+002 - 1.15798714e+002 1.25788376e+002 1.02897346e+002 1.15774879e+002 - 1.25774330e+002 1.02894707e+002 1.15779793e+002 1.25770081e+002 - 1.02907372e+002 1.15770714e+002 1.25762924e+002 1.02908897e+002 - 1.15786972e+002 1.25757904e+002 1.02898857e+002 1.15767250e+002 - 1.25735435e+002 1.02922356e+002 1.15803467e+002 1.25753784e+002 - 1.02917320e+002 1.15778419e+002 1.25738785e+002 1.02895279e+002 - 1.15771545e+002 1.25710899e+002 1.02950500e+002 1.15799934e+002 - 1.25743546e+002 1.02947998e+002 1.15811661e+002 1.25737938e+002 - 1.02937164e+002 1.15794952e+002 1.25700096e+002 1.02950020e+002 - 1.15823662e+002 1.25702469e+002 1.02967102e+002 1.15823410e+002 - 1.25703407e+002 1.02987556e+002 1.15849960e+002 1.25702927e+002 - 1.02953201e+002 1.15800430e+002 1.25639801e+002 1.02966896e+002 - 1.15837822e+002 1.25646111e+002 1.02986916e+002 1.15840134e+002 - 1.25644150e+002 1.02954384e+002 1.15823524e+002 1.25594818e+002 - 1.02974586e+002 1.15826172e+002 1.25586548e+002 1.02968430e+002 - 1.15836227e+002 1.25558601e+002 1.02970352e+002 1.15833656e+002 - 1.25529778e+002 1.02945488e+002 1.15818954e+002 1.25477402e+002 - 1.02935608e+002 1.15807549e+002 1.25434502e+002 1.02937553e+002 - 1.15823227e+002 1.25417130e+002 1.02979393e+002 1.15835999e+002 - 1.25414642e+002 1.02987251e+002 1.15852135e+002 1.25394775e+002 - 1.02994362e+002 1.15849503e+002 1.25367035e+002 1.02962387e+002 - 1.15838860e+002 1.25316399e+002 1.02981384e+002 1.15849548e+002 - 1.25305740e+002 1.02993759e+002 1.15869347e+002 1.25284271e+002 - 1.03004288e+002 1.15872932e+002 1.25253616e+002 1.03006927e+002 - 1.15912270e+002 1.25244576e+002 1.03038589e+002 1.15929764e+002 - 1.25236481e+002 1.03050262e+002 1.15958954e+002 1.25218681e+002 - 1.03081444e+002 1.15972565e+002 1.25195839e+002 1.03076820e+002 - 1.15986038e+002 1.25159592e+002 1.03125336e+002 1.16029884e+002 - 1.25169113e+002 1.03137527e+002 1.16048546e+002 1.25134964e+002 - 1.03145706e+002 1.16042412e+002 1.25098892e+002 1.03129799e+002 - 1.16038544e+002 1.25048454e+002 1.03188705e+002 1.16067505e+002 - 1.25054771e+002 1.03193298e+002 1.16089294e+002 1.25021774e+002 - 1.03210121e+002 1.16100632e+002 1.25000473e+002 1.03218307e+002 - 1.16128548e+002 1.24973206e+002 1.03294167e+002 1.16199654e+002 - 1.25012413e+002 1.03334564e+002 1.16240967e+002 1.25000542e+002 - 1.03349686e+002 1.16249802e+002 1.24956322e+002 1.03358009e+002 - 1.16271492e+002 1.24932671e+002 1.03399261e+002 1.16288826e+002 - 1.24928497e+002 1.03408646e+002 1.16310822e+002 1.24889755e+002 - 1.03439529e+002 1.16313293e+002 1.24859612e+002 1.03445625e+002 - 1.16329201e+002 1.24818665e+002 1.03487068e+002 1.16350082e+002 - 1.24798317e+002 1.03517303e+002 1.16391159e+002 1.24777939e+002 - 1.03551559e+002 1.16408676e+002 1.24743652e+002 1.03584473e+002 - 1.16455986e+002 1.24735672e+002 1.03625023e+002 1.16468452e+002 - 1.24705276e+002 1.03646965e+002 1.16504906e+002 1.24676018e+002 - 1.03666374e+002 1.16514648e+002 1.24647766e+002 1.03661766e+002 - 1.16530434e+002 1.24604965e+002 1.03688583e+002 1.16543381e+002 - 1.24585236e+002 1.03738731e+002 1.16603638e+002 1.24576355e+002 - 1.03766800e+002 1.16621674e+002 1.24531532e+002 1.03784668e+002 - 1.16658661e+002 1.24500610e+002 1.03831169e+002 1.16685028e+002 - 1.24492096e+002 1.03860756e+002 1.16716660e+002 1.24467384e+002 - 1.03899338e+002 1.16731087e+002 1.24432884e+002 1.03920418e+002 - 1.16764870e+002 1.24397758e+002 1.03990814e+002 1.16819290e+002 - 1.24398933e+002 1.04050873e+002 1.16890038e+002 1.24404648e+002 - 1.04101868e+002 1.16927315e+002 1.24401367e+002 1.04163284e+002 - 1.17000404e+002 1.24404854e+002 1.04239113e+002 1.17047646e+002 - 1.24406364e+002 1.04285553e+002 1.17104591e+002 1.24394974e+002 - 1.04365135e+002 1.17166977e+002 1.24411354e+002 1.04389336e+002 - 1.17210709e+002 1.24384583e+002 1.04455574e+002 1.17259125e+002 - 1.24392410e+002 1.04497681e+002 1.17304047e+002 1.24364624e+002 - 1.04558105e+002 1.17353294e+002 1.24345856e+002 1.04594162e+002 - 1.17413986e+002 1.24341949e+002 1.04636253e+002 1.17437538e+002 - 1.24327675e+002 1.04679703e+002 1.17487343e+002 1.24314758e+002 - 1.04727882e+002 1.17512962e+002 1.24295761e+002 1.04767990e+002 - 1.17563179e+002 1.24280861e+002 1.04846443e+002 1.17626602e+002 - 1.24285484e+002 1.04895836e+002 1.17681679e+002 1.24271721e+002 - 1.04933868e+002 1.17691360e+002 1.24232422e+002 1.04973106e+002 - 1.17737968e+002 1.24208328e+002 1.05050507e+002 1.17774773e+002 - 1.24190773e+002 1.05106445e+002 1.17834229e+002 1.24176949e+002 - 1.05172882e+002 1.17875992e+002 1.24158165e+002 1.05214432e+002 - 1.17927483e+002 1.24138443e+002 1.05304314e+002 1.18001274e+002 - 1.24166443e+002 1.05377808e+002 1.18063347e+002 1.24155540e+002 - 1.05462021e+002 1.18113129e+002 1.24131737e+002 1.05532959e+002 - 1.18197121e+002 1.24136368e+002 1.05624390e+002 1.18257309e+002 - 1.24157265e+002 1.05722038e+002 1.18355782e+002 1.24189087e+002 - 1.05790222e+002 1.18387848e+002 1.24172150e+002 1.05838875e+002 - 1.18437943e+002 1.24155594e+002 1.05934875e+002 1.18504478e+002 - 1.24156090e+002 1.06034698e+002 1.18594574e+002 1.24184990e+002 - 1.06137184e+002 1.18659561e+002 1.24194557e+002 1.06236839e+002 - 1.18746162e+002 1.24228096e+002 1.06349915e+002 1.18804031e+002 - 1.24247192e+002 1.06417953e+002 1.18855774e+002 1.24239037e+002 - 1.06481880e+002 1.18871933e+002 1.24213936e+002 1.06484848e+002 - 1.18864868e+002 1.24149887e+002 1.06509880e+002 1.18851563e+002 - 1.24104965e+002 1.06493210e+002 1.18821594e+002 1.24016129e+002 - 1.06438057e+002 1.18815895e+002 1.24076263e+002 1.06467583e+002 - 1.18894653e+002 1.24194092e+002 1.06476524e+002 1.18916870e+002 - 1.24272507e+002 1.06442802e+002 1.18917458e+002 1.24311646e+002 - 1.06394585e+002 1.18882263e+002 1.24345482e+002 1.06316643e+002 - 1.18842560e+002 1.24348625e+002 1.06244843e+002 1.18788582e+002 - 1.24354897e+002 1.06159775e+002 1.18732498e+002 1.24344330e+002 - 1.06075623e+002 1.18659752e+002 1.24339859e+002 1.05946541e+002 - 1.18564262e+002 1.24291008e+002 1.05872673e+002 1.18480354e+002 - 1.24304146e+002 1.05820847e+002 1.18451691e+002 1.24322250e+002 - 1.05763184e+002 1.18405647e+002 1.24347054e+002 1.05678589e+002 - 1.18357140e+002 1.24332939e+002 1.05597725e+002 1.18275826e+002 - 1.24313957e+002 1.05501213e+002 1.18201172e+002 1.24287537e+002 - 1.05452591e+002 1.18164131e+002 1.24333801e+002 1.05343071e+002 - 1.18092117e+002 1.24305107e+002 1.05268883e+002 1.18007057e+002 - 1.24290939e+002 1.05223190e+002 1.17976746e+002 1.24309822e+002 - 1.05181038e+002 1.17927559e+002 1.24343544e+002 1.05104645e+002 - 1.17867508e+002 1.24342308e+002 1.05028519e+002 1.17799934e+002 - 1.24344894e+002 1.04941269e+002 1.17733131e+002 1.24325874e+002 - 1.04897850e+002 1.17684906e+002 1.24347893e+002 1.04787140e+002 - 1.17597534e+002 1.24318901e+002 1.04736702e+002 1.17526245e+002 - 1.24337852e+002 1.04716171e+002 1.17519203e+002 1.24380432e+002 - 1.04656563e+002 1.17456909e+002 1.24394623e+002 1.04582779e+002 - 1.17407654e+002 1.24380035e+002 1.04539116e+002 1.17351135e+002 - 1.24391479e+002 1.04501450e+002 1.17331360e+002 1.24418427e+002 - 1.04425896e+002 1.17267906e+002 1.24437096e+002 1.04349388e+002 - 1.17229591e+002 1.24442307e+002 1.04349876e+002 1.17203751e+002 - 1.24493668e+002 1.04286171e+002 1.17153961e+002 1.24484207e+002 - 1.04243195e+002 1.17089607e+002 1.24501038e+002 1.04154854e+002 - 1.17013588e+002 1.24477051e+002 1.04123291e+002 1.16985718e+002 - 1.24519112e+002 1.04099197e+002 1.16983719e+002 1.24553352e+002 - 1.04074715e+002 1.16955681e+002 1.24591377e+002 1.04018936e+002 - 1.16911919e+002 1.24597214e+002 1.03958984e+002 1.16835480e+002 - 1.24601822e+002 1.03916603e+002 1.16807327e+002 1.24610390e+002 - 1.03880142e+002 1.16770248e+002 1.24635056e+002 1.03829895e+002 - 1.16740150e+002 1.24647820e+002 1.03812828e+002 1.16706108e+002 - 1.24670059e+002 1.03762756e+002 1.16669044e+002 1.24672134e+002 - 1.03730064e+002 1.16623123e+002 1.24697144e+002 1.03673515e+002 - 1.16590111e+002 1.24702728e+002 1.03649567e+002 1.16543610e+002 - 1.24719826e+002 1.03601570e+002 1.16507301e+002 1.24716026e+002 - 1.03587105e+002 1.16468971e+002 1.24752647e+002 1.03549355e+002 - 1.16444962e+002 1.24771370e+002 1.03543526e+002 1.16437088e+002 - 1.24825905e+002 1.03497269e+002 1.16404068e+002 1.24828362e+002 - 1.03478645e+002 1.16372849e+002 1.24853851e+002 1.03398804e+002 - 1.16302841e+002 1.24826340e+002 1.03406021e+002 1.16285988e+002 - 1.24885666e+002 1.03397308e+002 1.16297066e+002 1.24932808e+002 - 1.03390427e+002 1.16283279e+002 1.24983910e+002 1.03338394e+002 - 1.16247551e+002 1.24971970e+002 1.03305374e+002 1.16192253e+002 - 1.24966187e+002 1.03300858e+002 1.16201172e+002 1.24998672e+002 - 1.03286644e+002 1.16172958e+002 1.25037186e+002 1.03239502e+002 - 1.16150963e+002 1.25044945e+002 1.03233856e+002 1.16124039e+002 - 1.25064850e+002 1.03211235e+002 1.16114525e+002 1.25087181e+002 - 1.03207573e+002 1.16094505e+002 1.25120125e+002 1.03181732e+002 - 1.16088181e+002 1.25137222e+002 1.03138794e+002 1.16044823e+002 - 1.25137047e+002 1.03118813e+002 1.16030411e+002 1.25147675e+002 - 1.03125397e+002 1.16022232e+002 1.25195129e+002 1.03126427e+002 - 1.16037582e+002 1.25239891e+002 1.03099098e+002 1.15975952e+002 - 1.25253792e+002 1.03041138e+002 1.15930542e+002 1.25242950e+002 - 1.03024857e+002 1.15909485e+002 1.25262756e+002 1.03004807e+002 - 1.15906036e+002 1.25277794e+002 1.02999619e+002 1.15883049e+002 - 1.25306877e+002 1.02980774e+002 1.15873428e+002 1.25306679e+002 - 1.02999008e+002 1.15874527e+002 1.25361641e+002 1.03000923e+002 - 1.15896973e+002 1.25402931e+002 1.03019264e+002 1.15893288e+002 - 1.25436607e+002 1.02989014e+002 1.15868423e+002 1.25425499e+002 - 1.03003128e+002 1.15866348e+002 1.25469879e+002 1.02956360e+002 - 1.15834755e+002 1.25463249e+002 1.02946075e+002 1.15815498e+002 - 1.25490372e+002 1.02932991e+002 1.15807480e+002 1.25497681e+002 - 1.02917358e+002 1.15785088e+002 1.25520386e+002 1.02889465e+002 - 1.15776482e+002 1.25525139e+002 1.02932831e+002 1.15786537e+002 - 1.25588699e+002 1.02948311e+002 1.15820381e+002 1.25627090e+002 - 1.02943733e+002 1.15812309e+002 1.25644974e+002 1.02914612e+002 - 1.15801498e+002 1.25643959e+002 1.02916603e+002 1.15785851e+002 - 1.25659531e+002 1.02934410e+002 1.15811249e+002 1.25690269e+002 - 1.02958672e+002 1.15824997e+002 1.25729240e+002 1.02906860e+002 - 1.15800735e+002 1.25706818e+002 1.02906067e+002 1.15774567e+002 - 1.25714294e+002 1.02910698e+002 1.15788292e+002 1.25738586e+002 - 1.02916107e+002 1.15778053e+002 1.25762329e+002 1.02840973e+002 - 1.15716599e+002 1.25703644e+002 1.02834618e+002 1.15711113e+002 - 1.25716629e+002 1.02847610e+002 1.15726479e+002 1.25730316e+002 - 1.02841484e+002 1.15712723e+002 1.25734230e+002 1.02800522e+002 - 1.15680969e+002 1.25703056e+002 1.02809982e+002 1.15669868e+002 - 1.25718079e+002 1.02783485e+002 1.15656128e+002 1.25695412e+002 - 1.02786133e+002 1.15660721e+002 1.25710182e+002 1.02786171e+002 - 1.15677185e+002 1.25722748e+002 1.02827042e+002 1.15703186e+002 - 1.25763062e+002 1.02807930e+002 1.15697861e+002 1.25745178e+002 - 1.02806313e+002 1.15690720e+002 1.25740181e+002 1.02778648e+002 - 1.15689163e+002 1.25725288e+002 1.02782478e+002 1.15670387e+002 - 1.25715279e+002 1.02769905e+002 1.15671150e+002 1.25702209e+002 - 1.02760452e+002 1.15637154e+002 1.25675980e+002 1.02774475e+002 - 1.15658722e+002 1.25677513e+002 1.02777954e+002 1.15667183e+002 - 1.25680435e+002 1.02808853e+002 1.15698837e+002 1.25696922e+002 - 1.02796822e+002 1.15672836e+002 1.25678986e+002 1.02773857e+002 - 1.15665642e+002 1.25650955e+002 1.02791710e+002 1.15647522e+002 - 1.25649590e+002 1.02805229e+002 1.15673759e+002 1.25652092e+002 - 1.02805771e+002 1.15669899e+002 1.25627548e+002 1.02813477e+002 - 1.15694633e+002 1.25629707e+002 1.02833694e+002 1.15697914e+002 - 1.25636429e+002 1.02844986e+002 1.15717133e+002 1.25622307e+002 - 1.02838020e+002 1.15696114e+002 1.25585571e+002 1.02839279e+002 - 1.15718292e+002 1.25576859e+002 1.02845490e+002 1.15710953e+002 - 1.25563660e+002 1.02829262e+002 1.15707153e+002 1.25532997e+002 - 1.02838135e+002 1.15697037e+002 1.25515953e+002 1.02832039e+002 - 1.15709389e+002 1.25482933e+002 1.02825348e+002 1.15699104e+002 - 1.25445442e+002 1.02792259e+002 1.15683426e+002 1.25387619e+002 - 1.02800064e+002 1.15683838e+002 1.25368301e+002 1.02813408e+002 - 1.15714752e+002 1.25356361e+002 1.02843269e+002 1.15712624e+002 - 1.25346481e+002 1.02846634e+002 1.15725601e+002 1.25319092e+002 - 1.02860741e+002 1.15736626e+002 1.25297615e+002 1.02843094e+002 - 1.15730408e+002 1.25257126e+002 1.02877785e+002 1.15758087e+002 - 1.25262054e+002 1.02883537e+002 1.15768051e+002 1.25230087e+002 - 1.02875175e+002 1.15762543e+002 1.25185074e+002 1.02870514e+002 - 1.15787323e+002 1.25161301e+002 1.02904694e+002 1.15808525e+002 - 1.25157150e+002 1.02921944e+002 1.15839760e+002 1.25140167e+002 - 1.02946777e+002 1.15846542e+002 1.25115517e+002 1.02931747e+002 - 1.15843735e+002 1.25066185e+002 1.02992271e+002 1.15901054e+002 - 1.25089737e+002 1.03034370e+002 1.15953308e+002 1.25086227e+002 - 1.03047211e+002 1.15953194e+002 1.25052887e+002 1.03012756e+002 - 1.15939842e+002 1.24994354e+002 1.03049660e+002 1.15941681e+002 - 1.24978294e+002 1.03066277e+002 1.15975014e+002 1.24959923e+002 - 1.03095062e+002 1.15995354e+002 1.24942886e+002 1.03118858e+002 - 1.16045837e+002 1.24933556e+002 1.03181786e+002 1.16093651e+002 - 1.24956284e+002 1.03213257e+002 1.16134453e+002 1.24938187e+002 - 1.03244377e+002 1.16152634e+002 1.24913498e+002 1.03246498e+002 - 1.16174057e+002 1.24882156e+002 1.03287910e+002 1.16189278e+002 - 1.24873596e+002 1.03300255e+002 1.16209610e+002 1.24839340e+002 - 1.03336304e+002 1.16223785e+002 1.24819923e+002 1.03348854e+002 - 1.16239845e+002 1.24784958e+002 1.03370781e+002 1.16253723e+002 - 1.24747215e+002 1.03416023e+002 1.16310478e+002 1.24733490e+002 - 1.03452614e+002 1.16328186e+002 1.24709450e+002 1.03476410e+002 - 1.16362610e+002 1.24686096e+002 1.03519165e+002 1.16376808e+002 - 1.24660652e+002 1.03519409e+002 1.16390007e+002 1.24610588e+002 - 1.03540794e+002 1.16404236e+002 1.24579681e+002 1.03546791e+002 - 1.16431793e+002 1.24547546e+002 1.03572891e+002 1.16439262e+002 - 1.24534882e+002 1.03611481e+002 1.16488831e+002 1.24511101e+002 - 1.03657021e+002 1.16535736e+002 1.24497017e+002 1.03682312e+002 - 1.16578445e+002 1.24465836e+002 1.03716537e+002 1.16586227e+002 - 1.24443466e+002 1.03755592e+002 1.16635422e+002 1.24428566e+002 - 1.03804672e+002 1.16660461e+002 1.24398369e+002 1.03820869e+002 - 1.16686996e+002 1.24360619e+002 1.03872025e+002 1.16716545e+002 - 1.24345253e+002 1.03949318e+002 1.16807076e+002 1.24363510e+002 - 1.03993172e+002 1.16836464e+002 1.24345467e+002 1.04024567e+002 - 1.16878204e+002 1.24329681e+002 1.04116447e+002 1.16936195e+002 - 1.24339111e+002 1.04170410e+002 1.17003777e+002 1.24341957e+002 - 1.04251091e+002 1.17075096e+002 1.24356880e+002 1.04278961e+002 - 1.17117371e+002 1.24335518e+002 1.04347168e+002 1.17166664e+002 - 1.24348930e+002 1.04409821e+002 1.17232040e+002 1.24335754e+002 - 1.04469810e+002 1.17286751e+002 1.24315544e+002 1.04511848e+002 - 1.17346100e+002 1.24313126e+002 1.04553940e+002 1.17371674e+002 - 1.24301170e+002 1.04592781e+002 1.17422577e+002 1.24291557e+002 - 1.04627945e+002 1.17433594e+002 1.24258095e+002 1.04667366e+002 - 1.17478851e+002 1.24235954e+002 1.04737816e+002 1.17537636e+002 - 1.24235504e+002 1.04807953e+002 1.17607300e+002 1.24237526e+002 - 1.04864395e+002 1.17640556e+002 1.24222801e+002 1.04900284e+002 - 1.17683578e+002 1.24194565e+002 1.04998131e+002 1.17733482e+002 - 1.24195816e+002 1.05052071e+002 1.17793579e+002 1.24176582e+002 - 1.05087029e+002 1.17809692e+002 1.24133583e+002 1.05118622e+002 - 1.17849007e+002 1.24100067e+002 1.05205704e+002 1.17915077e+002 - 1.24116486e+002 1.05276566e+002 1.17979599e+002 1.24106361e+002 - 1.05380936e+002 1.18046951e+002 1.24104309e+002 1.05445938e+002 - 1.18124748e+002 1.24104874e+002 1.05542938e+002 1.18189682e+002 - 1.24131004e+002 1.05625786e+002 1.18275574e+002 1.24149399e+002 - 1.05691162e+002 1.18309921e+002 1.24134796e+002 1.05764633e+002 - 1.18376900e+002 1.24132545e+002 1.05854080e+002 1.18436981e+002 - 1.24130264e+002 1.05936630e+002 1.18508575e+002 1.24133514e+002 - 1.06007622e+002 1.18550697e+002 1.24123833e+002 1.06107681e+002 - 1.18634460e+002 1.24151878e+002 1.06230225e+002 1.18698204e+002 - 1.24176987e+002 1.06287132e+002 1.18736458e+002 1.24155754e+002 - 1.06380836e+002 1.18789520e+002 1.24163124e+002 1.06397072e+002 - 1.18793633e+002 1.24109695e+002 1.06409920e+002 1.18761597e+002 - 1.24057693e+002 1.06390175e+002 1.18736816e+002 1.23958168e+002 - 1.06335510e+002 1.18736984e+002 1.24045670e+002 1.06373543e+002 - 1.18820564e+002 1.24165695e+002 1.06381447e+002 1.18839600e+002 - 1.24234634e+002 1.06343658e+002 1.18837761e+002 1.24282509e+002 - 1.06279915e+002 1.18787521e+002 1.24301346e+002 1.06190498e+002 - 1.18734322e+002 1.24289368e+002 1.06126068e+002 1.18690361e+002 - 1.24309029e+002 1.06038399e+002 1.18630356e+002 1.24291733e+002 - 1.05949814e+002 1.18560204e+002 1.24288834e+002 1.05849831e+002 - 1.18483414e+002 1.24262856e+002 1.05768944e+002 1.18394928e+002 - 1.24266129e+002 1.05700806e+002 1.18348335e+002 1.24269638e+002 - 1.05654793e+002 1.18319809e+002 1.24304390e+002 1.05575745e+002 - 1.18270081e+002 1.24294952e+002 1.05476143e+002 1.18173729e+002 - 1.24259911e+002 1.05375175e+002 1.18096031e+002 1.24225990e+002 - 1.05324081e+002 1.18052269e+002 1.24271957e+002 1.05220108e+002 - 1.17984055e+002 1.24250565e+002 1.05150116e+002 1.17901558e+002 - 1.24245232e+002 1.05095657e+002 1.17866989e+002 1.24261169e+002 - 1.05054153e+002 1.17818329e+002 1.24285500e+002 1.04974289e+002 - 1.17753075e+002 1.24279503e+002 1.04894653e+002 1.17685143e+002 - 1.24284973e+002 1.04804794e+002 1.17615654e+002 1.24267403e+002 - 1.04753838e+002 1.17564911e+002 1.24285881e+002 1.04645294e+002 - 1.17472397e+002 1.24244621e+002 1.04602890e+002 1.17414398e+002 - 1.24282578e+002 1.04568466e+002 1.17389336e+002 1.24313286e+002 - 1.04500740e+002 1.17322647e+002 1.24317146e+002 1.04444702e+002 - 1.17283066e+002 1.24315666e+002 1.04392418e+002 1.17224663e+002 - 1.24323814e+002 1.04353584e+002 1.17200760e+002 1.24349792e+002 - 1.04282852e+002 1.17143524e+002 1.24370583e+002 1.04205070e+002 - 1.17100159e+002 1.24376305e+002 1.04195686e+002 1.17066116e+002 - 1.24413345e+002 1.04129761e+002 1.17010796e+002 1.24403763e+002 - 1.04088539e+002 1.16954071e+002 1.24423973e+002 1.04024696e+002 - 1.16903305e+002 1.24429581e+002 1.03993019e+002 1.16871117e+002 - 1.24463562e+002 1.03932907e+002 1.16828697e+002 1.24457039e+002 - 1.03914536e+002 1.16805618e+002 1.24502434e+002 1.03852768e+002 - 1.16762657e+002 1.24504761e+002 1.03814217e+002 1.16703506e+002 - 1.24525253e+002 1.03776878e+002 1.16682518e+002 1.24550255e+002 - 1.03745209e+002 1.16648582e+002 1.24581268e+002 1.03689041e+002 - 1.16613281e+002 1.24580406e+002 1.03675140e+002 1.16584503e+002 - 1.24609436e+002 1.03614159e+002 1.16530464e+002 1.24587410e+002 - 1.03577187e+002 1.16484184e+002 1.24617935e+002 1.03540146e+002 - 1.16472794e+002 1.24648026e+002 1.03517746e+002 1.16428452e+002 - 1.24660927e+002 1.03486969e+002 1.16406380e+002 1.24678802e+002 - 1.03475021e+002 1.16374458e+002 1.24715767e+002 1.03442795e+002 - 1.16352783e+002 1.24738358e+002 1.03400467e+002 1.16314606e+002 - 1.24759712e+002 1.03343735e+002 1.16268616e+002 1.24754570e+002 - 1.03313377e+002 1.16226097e+002 1.24771019e+002 1.03259148e+002 - 1.16184296e+002 1.24764984e+002 1.03263374e+002 1.16162331e+002 - 1.24825768e+002 1.03237778e+002 1.16153038e+002 1.24848457e+002 - 1.03214691e+002 1.16130730e+002 1.24882065e+002 1.03164551e+002 - 1.16093132e+002 1.24872787e+002 1.03165108e+002 1.16075485e+002 - 1.24903618e+002 1.03156403e+002 1.16075256e+002 1.24922951e+002 - 1.03126579e+002 1.16033768e+002 1.24949867e+002 1.03092598e+002 - 1.16018684e+002 1.24966949e+002 1.03083061e+002 1.15988464e+002 - 1.24990303e+002 1.03056702e+002 1.15975060e+002 1.25001694e+002 - 1.03044327e+002 1.15949371e+002 1.25023399e+002 1.03037514e+002 - 1.15954208e+002 1.25062004e+002 1.03003639e+002 1.15918961e+002 - 1.25075401e+002 1.02967705e+002 1.15887444e+002 1.25071815e+002 - 1.02979965e+002 1.15887817e+002 1.25120377e+002 1.02957939e+002 - 1.15879761e+002 1.25147148e+002 1.02945145e+002 1.15834999e+002 - 1.25179680e+002 1.02908699e+002 1.15806442e+002 1.25182404e+002 - 1.02896255e+002 1.15794563e+002 1.25213242e+002 1.02871330e+002 - 1.15785133e+002 1.25223305e+002 1.02867149e+002 1.15764229e+002 - 1.25248734e+002 1.02839325e+002 1.15736092e+002 1.25236206e+002 - 1.02857819e+002 1.15743324e+002 1.25291992e+002 1.02855629e+002 - 1.15760582e+002 1.25329994e+002 1.02876228e+002 1.15758606e+002 - 1.25367798e+002 1.02857628e+002 1.15752899e+002 1.25373878e+002 - 1.02870697e+002 1.15743347e+002 1.25414230e+002 1.02838402e+002 - 1.15725853e+002 1.25417328e+002 1.02817055e+002 1.15687523e+002 - 1.25425598e+002 1.02801697e+002 1.15687347e+002 1.25441757e+002 - 1.02785713e+002 1.15670464e+002 1.25459389e+002 1.02761566e+002 - 1.15662407e+002 1.25467606e+002 1.02792114e+002 1.15656898e+002 - 1.25517982e+002 1.02795319e+002 1.15677383e+002 1.25546837e+002 - 1.02781631e+002 1.15660721e+002 1.25556175e+002 1.02769348e+002 - 1.15665146e+002 1.25563156e+002 1.02760895e+002 1.15638916e+002 - 1.25575134e+002 1.02790840e+002 1.15668762e+002 1.25607277e+002 - 1.02796249e+002 1.15675049e+002 1.25640686e+002 1.02748154e+002 - 1.15645752e+002 1.25620743e+002 1.02749947e+002 1.15633751e+002 - 1.25640846e+002 1.02758209e+002 1.15646652e+002 1.25666077e+002 - 1.02751358e+002 1.15618698e+002 1.25673073e+002 1.02689415e+002 - 1.15580231e+002 1.25631760e+002 1.02692711e+002 1.15577698e+002 - 1.25646660e+002 1.02699120e+002 1.15594025e+002 1.25667236e+002 - 1.02686592e+002 1.15571632e+002 1.25656021e+002 1.02650093e+002 - 1.15551445e+002 1.25631485e+002 1.02679375e+002 1.15549110e+002 - 1.25659180e+002 1.02662827e+002 1.15550461e+002 1.25648170e+002 - 1.02663826e+002 1.15544769e+002 1.25661316e+002 1.02655846e+002 - 1.15564285e+002 1.25663719e+002 1.02659508e+002 1.15552063e+002 - 1.25673080e+002 1.02657501e+002 1.15563110e+002 1.25664818e+002 - 1.02659027e+002 1.15559540e+002 1.25670158e+002 1.02647736e+002 - 1.15569283e+002 1.25669327e+002 1.02643875e+002 1.15544975e+002 - 1.25666138e+002 1.02621620e+002 1.15530540e+002 1.25630531e+002 - 1.02623337e+002 1.15508598e+002 1.25612839e+002 1.02615608e+002 - 1.15511169e+002 1.25599739e+002 1.02623413e+002 1.15515877e+002 - 1.25600822e+002 1.02627769e+002 1.15526749e+002 1.25596230e+002 - 1.02629585e+002 1.15517555e+002 1.25587296e+002 1.02599937e+002 - 1.15500542e+002 1.25556953e+002 1.02635132e+002 1.15504929e+002 - 1.25574059e+002 1.02650650e+002 1.15529457e+002 1.25579826e+002 - 1.02655083e+002 1.15536423e+002 1.25566101e+002 1.02641014e+002 - 1.15533340e+002 1.25537491e+002 1.02637306e+002 1.15515953e+002 - 1.25519661e+002 1.02672050e+002 1.15560242e+002 1.25522041e+002 - 1.02694443e+002 1.15569771e+002 1.25518661e+002 1.02655296e+002 - 1.15555710e+002 1.25472038e+002 1.02677895e+002 1.15554916e+002 - 1.25468330e+002 1.02667267e+002 1.15556442e+002 1.25442802e+002 - 1.02682137e+002 1.15558357e+002 1.25435364e+002 1.02682365e+002 - 1.15568855e+002 1.25406952e+002 1.02682533e+002 1.15572716e+002 - 1.25385941e+002 1.02661949e+002 1.15565132e+002 1.25336563e+002 - 1.02671463e+002 1.15568497e+002 1.25315620e+002 1.02667503e+002 - 1.15583946e+002 1.25290527e+002 1.02697807e+002 1.15578224e+002 - 1.25272835e+002 1.02697258e+002 1.15587936e+002 1.25245087e+002 - 1.02720459e+002 1.15604248e+002 1.25233223e+002 1.02714104e+002 - 1.15621262e+002 1.25207794e+002 1.02719200e+002 1.15612030e+002 - 1.25184425e+002 1.02747063e+002 1.15645638e+002 1.25166008e+002 - 1.02761818e+002 1.15658752e+002 1.25142113e+002 1.02757622e+002 - 1.15678421e+002 1.25110748e+002 1.02776192e+002 1.15682114e+002 - 1.25098991e+002 1.02786423e+002 1.15714401e+002 1.25082733e+002 - 1.02791832e+002 1.15698029e+002 1.25033951e+002 1.02821526e+002 - 1.15739952e+002 1.25027733e+002 1.02851341e+002 1.15771782e+002 - 1.25021439e+002 1.02884193e+002 1.15812988e+002 1.25014580e+002 - 1.02908905e+002 1.15829704e+002 1.24993462e+002 1.02881615e+002 - 1.15812057e+002 1.24933647e+002 1.02924263e+002 1.15828659e+002 - 1.24929123e+002 1.02953262e+002 1.15874817e+002 1.24931694e+002 - 1.02951591e+002 1.15872169e+002 1.24878990e+002 1.02980865e+002 - 1.15925385e+002 1.24873909e+002 1.03024994e+002 1.15949760e+002 - 1.24884399e+002 1.03065506e+002 1.15996231e+002 1.24872124e+002 - 1.03099701e+002 1.16026680e+002 1.24843712e+002 1.03107826e+002 - 1.16053253e+002 1.24823204e+002 1.03163841e+002 1.16085251e+002 - 1.24831146e+002 1.03171654e+002 1.16100212e+002 1.24793961e+002 - 1.03203247e+002 1.16103371e+002 1.24759193e+002 1.03211853e+002 - 1.16119408e+002 1.24718781e+002 1.03231384e+002 1.16132202e+002 - 1.24686493e+002 1.03273750e+002 1.16179939e+002 1.24664368e+002 - 1.03305923e+002 1.16190491e+002 1.24642525e+002 1.03322006e+002 - 1.16225494e+002 1.24610527e+002 1.03365387e+002 1.16236320e+002 - 1.24587288e+002 1.03364212e+002 1.16254158e+002 1.24530884e+002 - 1.03393578e+002 1.16274063e+002 1.24506920e+002 1.03411453e+002 - 1.16309059e+002 1.24486252e+002 1.03441170e+002 1.16326805e+002 - 1.24477531e+002 1.03469162e+002 1.16360909e+002 1.24449234e+002 - 1.03528854e+002 1.16417206e+002 1.24435120e+002 1.03530556e+002 - 1.16439789e+002 1.24391426e+002 1.03557144e+002 1.16446182e+002 - 1.24360970e+002 1.03626472e+002 1.16528793e+002 1.24379524e+002 - 1.03682594e+002 1.16556755e+002 1.24360779e+002 1.03682953e+002 - 1.16562561e+002 1.24297462e+002 1.03746582e+002 1.16611809e+002 - 1.24294624e+002 1.03822899e+002 1.16693954e+002 1.24315468e+002 - 1.03872948e+002 1.16731522e+002 1.24299713e+002 1.03901337e+002 - 1.16765030e+002 1.24277893e+002 1.03991043e+002 1.16825249e+002 - 1.24293312e+002 1.04031853e+002 1.16878662e+002 1.24280136e+002 - 1.04104401e+002 1.16941216e+002 1.24284248e+002 1.04133415e+002 - 1.16989388e+002 1.24263367e+002 1.04195229e+002 1.17034897e+002 - 1.24268684e+002 1.04281670e+002 1.17128471e+002 1.24284439e+002 - 1.04354179e+002 1.17184631e+002 1.24275253e+002 1.04376633e+002 - 1.17230415e+002 1.24249977e+002 1.04428055e+002 1.17262314e+002 - 1.24250015e+002 1.04465843e+002 1.17315567e+002 1.24239014e+002 - 1.04529083e+002 1.17353355e+002 1.24228935e+002 1.04556572e+002 - 1.17389420e+002 1.24193832e+002 1.04621223e+002 1.17436691e+002 - 1.24186012e+002 1.04672218e+002 1.17487885e+002 1.24174538e+002 - 1.04761627e+002 1.17555908e+002 1.24188301e+002 1.04806458e+002 - 1.17607811e+002 1.24170601e+002 1.04880554e+002 1.17633614e+002 - 1.24145264e+002 1.04935181e+002 1.17688377e+002 1.24128716e+002 - 1.04983582e+002 1.17721107e+002 1.24099380e+002 1.05005974e+002 - 1.17748795e+002 1.24059029e+002 1.05090439e+002 1.17813286e+002 - 1.24074142e+002 1.05159546e+002 1.17877762e+002 1.24055893e+002 - 1.05254211e+002 1.17941246e+002 1.24049553e+002 1.05326355e+002 - 1.18023033e+002 1.24056671e+002 1.05418312e+002 1.18077606e+002 - 1.24076714e+002 1.05485939e+002 1.18150856e+002 1.24085068e+002 - 1.05575752e+002 1.18206215e+002 1.24093384e+002 1.05664299e+002 - 1.18295692e+002 1.24106621e+002 1.05750099e+002 1.18353867e+002 - 1.24101494e+002 1.05842773e+002 1.18437080e+002 1.24113480e+002 - 1.05929718e+002 1.18484589e+002 1.24109917e+002 1.06022072e+002 - 1.18568512e+002 1.24129654e+002 1.06118477e+002 1.18600845e+002 - 1.24133560e+002 1.06169380e+002 1.18634811e+002 1.24107338e+002 - 1.06264938e+002 1.18686066e+002 1.24116341e+002 1.06299721e+002 - 1.18716164e+002 1.24080757e+002 1.06323738e+002 1.18690025e+002 - 1.24026237e+002 1.06301880e+002 1.18664200e+002 1.23933395e+002 - 1.06226097e+002 1.18649658e+002 1.23991676e+002 1.06263565e+002 - 1.18729073e+002 1.24110741e+002 1.06264954e+002 1.18748024e+002 - 1.24183678e+002 1.06242500e+002 1.18756516e+002 1.24239723e+002 - 1.06187714e+002 1.18717171e+002 1.24265656e+002 1.06087624e+002 - 1.18652321e+002 1.24242783e+002 1.06004066e+002 1.18586708e+002 - 1.24243835e+002 1.05911011e+002 1.18525711e+002 1.24223167e+002 - 1.05835747e+002 1.18462868e+002 1.24227226e+002 1.05743340e+002 - 1.18402763e+002 1.24217110e+002 1.05661942e+002 1.18306801e+002 - 1.24212715e+002 1.05576103e+002 1.18247215e+002 1.24212440e+002 - 1.05520309e+002 1.18205093e+002 1.24229362e+002 1.05444466e+002 - 1.18155914e+002 1.24223488e+002 1.05351074e+002 1.18064293e+002 - 1.24198891e+002 1.05253937e+002 1.17991882e+002 1.24166382e+002 - 1.05193680e+002 1.17939934e+002 1.24200150e+002 1.05091484e+002 - 1.17873634e+002 1.24186775e+002 1.05039780e+002 1.17812202e+002 - 1.24194778e+002 1.04985268e+002 1.17772926e+002 1.24211937e+002 - 1.04921768e+002 1.17706818e+002 1.24224014e+002 1.04843987e+002 - 1.17650970e+002 1.24215126e+002 1.04748901e+002 1.17558769e+002 - 1.24205132e+002 1.04660980e+002 1.17490494e+002 1.24184067e+002 - 1.04612579e+002 1.17444221e+002 1.24204483e+002 1.04524696e+002 - 1.17371567e+002 1.24194328e+002 1.04488281e+002 1.17313217e+002 - 1.24226067e+002 1.04431290e+002 1.17268295e+002 1.24239113e+002 - 1.04375038e+002 1.17212372e+002 1.24253952e+002 1.04321365e+002 - 1.17176277e+002 1.24259773e+002 1.04293747e+002 1.17143860e+002 - 1.24292213e+002 1.04235565e+002 1.17105965e+002 1.24302818e+002 - 1.04170151e+002 1.17046974e+002 1.24325546e+002 1.04080933e+002 - 1.16992332e+002 1.24317703e+002 1.04057602e+002 1.16952156e+002 - 1.24348190e+002 1.04004311e+002 1.16902626e+002 1.24345764e+002 - 1.03965363e+002 1.16851067e+002 1.24373802e+002 1.03914757e+002 - 1.16809425e+002 1.24384956e+002 1.03887535e+002 1.16779564e+002 - 1.24422836e+002 1.03828354e+002 1.16743683e+002 1.24425659e+002 - 1.03798141e+002 1.16709068e+002 1.24452431e+002 1.03740234e+002 - 1.16663460e+002 1.24457649e+002 1.03692551e+002 1.16592789e+002 - 1.24473091e+002 1.03643196e+002 1.16560326e+002 1.24489151e+002 - 1.03599297e+002 1.16521599e+002 1.24510757e+002 1.03558182e+002 - 1.16493736e+002 1.24514061e+002 1.03535416e+002 1.16456062e+002 - 1.24532372e+002 1.03475517e+002 1.16406807e+002 1.24521019e+002 - 1.03448441e+002 1.16371117e+002 1.24559822e+002 1.03403061e+002 - 1.16345947e+002 1.24575897e+002 1.03374062e+002 1.16304886e+002 - 1.24586113e+002 1.03356575e+002 1.16292587e+002 1.24620605e+002 - 1.03350197e+002 1.16266335e+002 1.24661270e+002 1.03295090e+002 - 1.16228157e+002 1.24663216e+002 1.03249229e+002 1.16178055e+002 - 1.24679123e+002 1.03196983e+002 1.16133629e+002 1.24673355e+002 - 1.03164795e+002 1.16095528e+002 1.24691505e+002 1.03114319e+002 - 1.16051727e+002 1.24690239e+002 1.03110298e+002 1.16020981e+002 - 1.24734550e+002 1.03087021e+002 1.16015678e+002 1.24769005e+002 - 1.03082153e+002 1.16006981e+002 1.24810257e+002 1.03024956e+002 - 1.15971588e+002 1.24801102e+002 1.03026779e+002 1.15948586e+002 - 1.24829628e+002 1.03005730e+002 1.15937744e+002 1.24837509e+002 - 1.02990761e+002 1.15907661e+002 1.24877060e+002 1.02944786e+002 - 1.15882912e+002 1.24882088e+002 1.02938103e+002 1.15859726e+002 - 1.24906693e+002 1.02916718e+002 1.15843323e+002 1.24926254e+002 - 1.02903366e+002 1.15817467e+002 1.24951630e+002 1.02862137e+002 - 1.15792793e+002 1.24951706e+002 1.02854897e+002 1.15774979e+002 - 1.24986145e+002 1.02798927e+002 1.15731094e+002 1.24970108e+002 - 1.02801247e+002 1.15719620e+002 1.25012657e+002 1.02779030e+002 - 1.15708893e+002 1.25039185e+002 1.02778030e+002 1.15676262e+002 - 1.25075661e+002 1.02752426e+002 1.15656738e+002 1.25093163e+002 - 1.02761719e+002 1.15663872e+002 1.25144165e+002 1.02743874e+002 - 1.15663109e+002 1.25164749e+002 1.02733040e+002 1.15632622e+002 - 1.25178085e+002 1.02688133e+002 1.15598167e+002 1.25156677e+002 - 1.02685051e+002 1.15580437e+002 1.25185303e+002 1.02673370e+002 - 1.15582184e+002 1.25211777e+002 1.02706100e+002 1.15595329e+002 - 1.25258224e+002 1.02705368e+002 1.15604210e+002 1.25281715e+002 - 1.02734856e+002 1.15615562e+002 1.25341995e+002 1.02704796e+002 - 1.15595398e+002 1.25345284e+002 1.02668480e+002 1.15557991e+002 - 1.25341988e+002 1.02658676e+002 1.15553123e+002 1.25354912e+002 - 1.02632805e+002 1.15522583e+002 1.25364777e+002 1.02587463e+002 - 1.15493904e+002 1.25352776e+002 1.02626495e+002 1.15504562e+002 - 1.25411285e+002 1.02623466e+002 1.15511856e+002 1.25436150e+002 - 1.02612442e+002 1.15502731e+002 1.25449249e+002 1.02601044e+002 - 1.15504578e+002 1.25461998e+002 1.02606026e+002 1.15490700e+002 - 1.25480171e+002 1.02630722e+002 1.15521515e+002 1.25509071e+002 - 1.02642441e+002 1.15525307e+002 1.25537727e+002 1.02591988e+002 - 1.15499695e+002 1.25527626e+002 1.02597305e+002 1.15487656e+002 - 1.25549355e+002 1.02570732e+002 1.15471458e+002 1.25546783e+002 - 1.02569420e+002 1.15458496e+002 1.25560799e+002 1.02551048e+002 - 1.15455811e+002 1.25562012e+002 1.02565392e+002 1.15459480e+002 - 1.25587288e+002 1.02551064e+002 1.15455612e+002 1.25584160e+002 - 1.02544174e+002 1.15445221e+002 1.25581078e+002 1.02498535e+002 - 1.15415512e+002 1.25554390e+002 1.02526962e+002 1.15411949e+002 - 1.25577011e+002 1.02535400e+002 1.15433228e+002 1.25587936e+002 - 1.02528244e+002 1.15423401e+002 1.25589699e+002 1.02490913e+002 - 1.15409012e+002 1.25567802e+002 1.02487999e+002 1.15395042e+002 - 1.25567719e+002 1.02511147e+002 1.15428421e+002 1.25592079e+002 - 1.02507912e+002 1.15419746e+002 1.25584702e+002 1.02494049e+002 - 1.15423668e+002 1.25579826e+002 1.02498566e+002 1.15412148e+002 - 1.25581650e+002 1.02486877e+002 1.15403511e+002 1.25562622e+002 - 1.02487549e+002 1.15385750e+002 1.25546349e+002 1.02476654e+002 - 1.15388237e+002 1.25535095e+002 1.02475388e+002 1.15372627e+002 - 1.25514091e+002 1.02476723e+002 1.15388458e+002 1.25507149e+002 - 1.02459900e+002 1.15356377e+002 1.25486923e+002 1.02437614e+002 - 1.15340668e+002 1.25463684e+002 1.02473373e+002 1.15350632e+002 - 1.25482658e+002 1.02479141e+002 1.15371086e+002 1.25477570e+002 - 1.02485199e+002 1.15368904e+002 1.25463211e+002 1.02486931e+002 - 1.15384521e+002 1.25450676e+002 1.02492325e+002 1.15378502e+002 - 1.25440834e+002 1.02494850e+002 1.15390144e+002 1.25419235e+002 - 1.02504631e+002 1.15387375e+002 1.25400208e+002 1.02475479e+002 - 1.15386864e+002 1.25363876e+002 1.02488548e+002 1.15384216e+002 - 1.25351791e+002 1.02473824e+002 1.15377716e+002 1.25319168e+002 - 1.02504349e+002 1.15393127e+002 1.25325661e+002 1.02519180e+002 - 1.15419891e+002 1.25314720e+002 1.02524910e+002 1.15422577e+002 - 1.25299911e+002 1.02519524e+002 1.15441933e+002 1.25264343e+002 - 1.02509933e+002 1.15421257e+002 1.25223053e+002 1.02513145e+002 - 1.15441338e+002 1.25202774e+002 1.02538780e+002 1.15433884e+002 - 1.25185623e+002 1.02525078e+002 1.15429123e+002 1.25141975e+002 - 1.02544609e+002 1.15443069e+002 1.25129601e+002 1.02547112e+002 - 1.15467712e+002 1.25112297e+002 1.02559776e+002 1.15461739e+002 - 1.25089378e+002 1.02601700e+002 1.15512871e+002 1.25093712e+002 - 1.02631760e+002 1.15538422e+002 1.25079514e+002 1.02634346e+002 - 1.15565788e+002 1.25052162e+002 1.02651741e+002 1.15575600e+002 - 1.25040047e+002 1.02656776e+002 1.15588852e+002 1.25016808e+002 - 1.02675301e+002 1.15592575e+002 1.24988731e+002 1.02712494e+002 - 1.15640869e+002 1.24990120e+002 1.02718735e+002 1.15645927e+002 - 1.24957069e+002 1.02756683e+002 1.15694427e+002 1.24955635e+002 - 1.02773262e+002 1.15702461e+002 1.24926552e+002 1.02737206e+002 - 1.15681015e+002 1.24861450e+002 1.02782082e+002 1.15701210e+002 - 1.24858650e+002 1.02805061e+002 1.15740700e+002 1.24848610e+002 - 1.02828377e+002 1.15758324e+002 1.24824730e+002 1.02843750e+002 - 1.15799248e+002 1.24808472e+002 1.02869507e+002 1.15809273e+002 - 1.24793488e+002 1.02905930e+002 1.15855331e+002 1.24784340e+002 - 1.02962166e+002 1.15903816e+002 1.24781517e+002 1.02990852e+002 - 1.15953094e+002 1.24777237e+002 1.03031029e+002 1.15974586e+002 - 1.24766418e+002 1.03046608e+002 1.15985367e+002 1.24729439e+002 - 1.03067825e+002 1.15987610e+002 1.24695450e+002 1.03080841e+002 - 1.16007591e+002 1.24656471e+002 1.03112442e+002 1.16025406e+002 - 1.24631447e+002 1.03147537e+002 1.16064117e+002 1.24608452e+002 - 1.03170357e+002 1.16078491e+002 1.24575157e+002 1.03191689e+002 - 1.16112198e+002 1.24548523e+002 1.03207993e+002 1.16103279e+002 - 1.24498817e+002 1.03225296e+002 1.16131569e+002 1.24463997e+002 - 1.03272552e+002 1.16171318e+002 1.24454094e+002 1.03286705e+002 - 1.16205574e+002 1.24424736e+002 1.03324509e+002 1.16230263e+002 - 1.24429001e+002 1.03374413e+002 1.16284042e+002 1.24419197e+002 - 1.03416405e+002 1.16322319e+002 1.24389755e+002 1.03404419e+002 - 1.16332634e+002 1.24333488e+002 1.03428017e+002 1.16344139e+002 - 1.24301147e+002 1.03496323e+002 1.16416069e+002 1.24314697e+002 - 1.03542580e+002 1.16441963e+002 1.24291420e+002 1.03565781e+002 - 1.16469063e+002 1.24249481e+002 1.03632698e+002 1.16514755e+002 - 1.24249069e+002 1.03690842e+002 1.16581833e+002 1.24240738e+002 - 1.03751373e+002 1.16631462e+002 1.24248482e+002 1.03788445e+002 - 1.16672302e+002 1.24230934e+002 1.03859818e+002 1.16713554e+002 - 1.24226776e+002 1.03895966e+002 1.16761932e+002 1.24207169e+002 - 1.03945183e+002 1.16801582e+002 1.24193420e+002 1.03982811e+002 - 1.16862450e+002 1.24183800e+002 1.04038979e+002 1.16900902e+002 - 1.24179596e+002 1.04127449e+002 1.16997040e+002 1.24198799e+002 - 1.04212402e+002 1.17066078e+002 1.24200752e+002 1.04233559e+002 - 1.17110054e+002 1.24174400e+002 1.04299080e+002 1.17155899e+002 - 1.24186348e+002 1.04347473e+002 1.17217567e+002 1.24182030e+002 - 1.04415565e+002 1.17260437e+002 1.24183640e+002 1.04459106e+002 - 1.17311745e+002 1.24159409e+002 1.04528160e+002 1.17363205e+002 - 1.24157448e+002 1.04550041e+002 1.17386398e+002 1.24116280e+002 - 1.04611206e+002 1.17421097e+002 1.24097366e+002 1.04670624e+002 - 1.17483200e+002 1.24091187e+002 1.04753830e+002 1.17525314e+002 - 1.24076416e+002 1.04813179e+002 1.17586082e+002 1.24068169e+002 - 1.04884048e+002 1.17644104e+002 1.24062523e+002 1.04921852e+002 - 1.17682953e+002 1.24032700e+002 1.05006638e+002 1.17746262e+002 - 1.24052750e+002 1.05067947e+002 1.17803505e+002 1.24031006e+002 - 1.05159470e+002 1.17863853e+002 1.24015327e+002 1.05228760e+002 - 1.17939186e+002 1.24017044e+002 1.05290504e+002 1.17975388e+002 - 1.24015144e+002 1.05367920e+002 1.18051094e+002 1.24024048e+002 - 1.05463692e+002 1.18111374e+002 1.24043655e+002 1.05527901e+002 - 1.18175278e+002 1.24031006e+002 1.05643372e+002 1.18259552e+002 - 1.24054298e+002 1.05746513e+002 1.18357788e+002 1.24079239e+002 - 1.05828178e+002 1.18406219e+002 1.24069756e+002 1.05914948e+002 - 1.18474922e+002 1.24082283e+002 1.06018990e+002 1.18520889e+002 - 1.24090797e+002 1.06097305e+002 1.18579491e+002 1.24093475e+002 - 1.06167625e+002 1.18612816e+002 1.24077660e+002 1.06202873e+002 - 1.18630516e+002 1.24036774e+002 1.06220543e+002 1.18604378e+002 - 1.23981598e+002 1.06169685e+002 1.18551163e+002 1.23854340e+002 - 1.06107635e+002 1.18562180e+002 1.23947678e+002 1.06142738e+002 - 1.18641693e+002 1.24065758e+002 1.06146545e+002 1.18666954e+002 - 1.24138496e+002 1.06114380e+002 1.18657990e+002 1.24179741e+002 - 1.06053879e+002 1.18617531e+002 1.24202896e+002 1.05954620e+002 - 1.18550941e+002 1.24179420e+002 1.05879601e+002 1.18498337e+002 - 1.24194405e+002 1.05793068e+002 1.18441704e+002 1.24179321e+002 - 1.05714439e+002 1.18372253e+002 1.24183289e+002 1.05605438e+002 - 1.18286682e+002 1.24147324e+002 1.05541153e+002 1.18221275e+002 - 1.24169518e+002 1.05477196e+002 1.18178726e+002 1.24178284e+002 - 1.05395897e+002 1.18110016e+002 1.24180107e+002 1.05317230e+002 - 1.18058327e+002 1.24168770e+002 1.05234840e+002 1.17980255e+002 - 1.24146957e+002 1.05133469e+002 1.17898506e+002 1.24111519e+002 - 1.05050919e+002 1.17829124e+002 1.24135674e+002 1.04953461e+002 - 1.17765617e+002 1.24119202e+002 1.04898125e+002 1.17704926e+002 - 1.24131149e+002 1.04839714e+002 1.17660675e+002 1.24142853e+002 - 1.04781693e+002 1.17602242e+002 1.24158875e+002 1.04692451e+002 - 1.17533676e+002 1.24145988e+002 1.04599342e+002 1.17446571e+002 - 1.24136772e+002 1.04502647e+002 1.17365372e+002 1.24107063e+002 - 1.04477348e+002 1.17338303e+002 1.24153366e+002 1.04395287e+002 - 1.17271530e+002 1.24137032e+002 1.04333244e+002 1.17187981e+002 - 1.24148674e+002 1.04289047e+002 1.17155769e+002 1.24174400e+002 - 1.04233040e+002 1.17102875e+002 1.24188751e+002 1.04196106e+002 - 1.17082718e+002 1.24218971e+002 1.04162277e+002 1.17040031e+002 - 1.24243149e+002 1.04105995e+002 1.16996544e+002 1.24248795e+002 - 1.04033951e+002 1.16941017e+002 1.24273880e+002 1.03941010e+002 - 1.16881523e+002 1.24267929e+002 1.03904640e+002 1.16829681e+002 - 1.24283546e+002 1.03846024e+002 1.16780540e+002 1.24287369e+002 - 1.03809189e+002 1.16722031e+002 1.24306816e+002 1.03759506e+002 - 1.16690109e+002 1.24315880e+002 1.03744148e+002 1.16672798e+002 - 1.24366661e+002 1.03708534e+002 1.16651657e+002 1.24386253e+002 - 1.03658226e+002 1.16601913e+002 1.24398392e+002 1.03575401e+002 - 1.16528458e+002 1.24377525e+002 1.03527992e+002 1.16461319e+002 - 1.24398743e+002 1.03488472e+002 1.16431358e+002 1.24414543e+002 - 1.03444000e+002 1.16390396e+002 1.24432961e+002 1.03405800e+002 - 1.16370926e+002 1.24448013e+002 1.03387451e+002 1.16336456e+002 - 1.24470589e+002 1.03357117e+002 1.16311279e+002 1.24483414e+002 - 1.03312294e+002 1.16262390e+002 1.24499001e+002 1.03245262e+002 - 1.16216820e+002 1.24499527e+002 1.03229408e+002 1.16185593e+002 - 1.24523209e+002 1.03187386e+002 1.16151703e+002 1.24531395e+002 - 1.03168289e+002 1.16113823e+002 1.24560257e+002 1.03119858e+002 - 1.16085098e+002 1.24572525e+002 1.03085892e+002 1.16041603e+002 - 1.24598465e+002 1.03049431e+002 1.16016609e+002 1.24609512e+002 - 1.03027100e+002 1.15977699e+002 1.24633308e+002 1.02963257e+002 - 1.15926422e+002 1.24617897e+002 1.02942940e+002 1.15884682e+002 - 1.24649490e+002 1.02927223e+002 1.15880783e+002 1.24685257e+002 - 1.02907661e+002 1.15858582e+002 1.24717712e+002 1.02872879e+002 - 1.15838814e+002 1.24720764e+002 1.02869896e+002 1.15816528e+002 - 1.24744179e+002 1.02862152e+002 1.15814186e+002 1.24763573e+002 - 1.02861465e+002 1.15796585e+002 1.24813614e+002 1.02804604e+002 - 1.15763657e+002 1.24816826e+002 1.02819344e+002 1.15765862e+002 - 1.24866264e+002 1.02792671e+002 1.15746933e+002 1.24883530e+002 - 1.02757874e+002 1.15702576e+002 1.24885788e+002 1.02714905e+002 - 1.15672478e+002 1.24888458e+002 1.02695663e+002 1.15646820e+002 - 1.24916435e+002 1.02675812e+002 1.15631050e+002 1.24930786e+002 - 1.02651787e+002 1.15594307e+002 1.24945732e+002 1.02624039e+002 - 1.15577698e+002 1.24968948e+002 1.02605560e+002 1.15528954e+002 - 1.24989044e+002 1.02593338e+002 1.15521828e+002 1.25011436e+002 - 1.02615509e+002 1.15537308e+002 1.25073128e+002 1.02581871e+002 - 1.15519043e+002 1.25076691e+002 1.02562187e+002 1.15483009e+002 - 1.25078461e+002 1.02542694e+002 1.15469383e+002 1.25090378e+002 - 1.02549019e+002 1.15461281e+002 1.25129166e+002 1.02521530e+002 - 1.15456284e+002 1.25140442e+002 1.02545357e+002 1.15456512e+002 - 1.25177032e+002 1.02537895e+002 1.15460533e+002 1.25195480e+002 - 1.02567825e+002 1.15468674e+002 1.25250755e+002 1.02529533e+002 - 1.15446556e+002 1.25246620e+002 1.02483742e+002 1.15393364e+002 - 1.25233070e+002 1.02462990e+002 1.15379982e+002 1.25244682e+002 - 1.02449577e+002 1.15363541e+002 1.25261009e+002 1.02418579e+002 - 1.15353775e+002 1.25262268e+002 1.02454636e+002 1.15353020e+002 - 1.25318405e+002 1.02459106e+002 1.15373459e+002 1.25353645e+002 - 1.02454552e+002 1.15363068e+002 1.25369743e+002 1.02426361e+002 - 1.15350807e+002 1.25363251e+002 1.02434364e+002 1.15338402e+002 - 1.25382050e+002 1.02454300e+002 1.15364716e+002 1.25415314e+002 - 1.02473946e+002 1.15375069e+002 1.25452560e+002 1.02433395e+002 - 1.15357635e+002 1.25448799e+002 1.02450127e+002 1.15367462e+002 - 1.25492096e+002 1.02417244e+002 1.15345795e+002 1.25477951e+002 - 1.02416893e+002 1.15330353e+002 1.25490685e+002 1.02400444e+002 - 1.15330299e+002 1.25499687e+002 1.02383995e+002 1.15308746e+002 - 1.25494072e+002 1.02364403e+002 1.15303284e+002 1.25485443e+002 - 1.02375977e+002 1.15307693e+002 1.25501877e+002 1.02316895e+002 - 1.15264557e+002 1.25455345e+002 1.02335594e+002 1.15254410e+002 - 1.25475052e+002 1.02350243e+002 1.15277550e+002 1.25493622e+002 - 1.02345222e+002 1.15271637e+002 1.25491257e+002 1.02305946e+002 - 1.15251709e+002 1.25463974e+002 1.02309448e+002 1.15239410e+002 - 1.25472824e+002 1.02328819e+002 1.15267197e+002 1.25485756e+002 - 1.02332016e+002 1.15268059e+002 1.25486374e+002 1.02309158e+002 - 1.15266724e+002 1.25478882e+002 1.02313766e+002 1.15252670e+002 - 1.25477859e+002 1.02321495e+002 1.15266411e+002 1.25479462e+002 - 1.02315376e+002 1.15234985e+002 1.25458878e+002 1.02297554e+002 - 1.15231331e+002 1.25429901e+002 1.02292130e+002 1.15212135e+002 - 1.25415070e+002 1.02295349e+002 1.15230278e+002 1.25414658e+002 - 1.02295151e+002 1.15212753e+002 1.25402992e+002 1.02287071e+002 - 1.15210999e+002 1.25389290e+002 1.02317413e+002 1.15220459e+002 - 1.25412209e+002 1.02311119e+002 1.15226105e+002 1.25391350e+002 - 1.02323975e+002 1.15229851e+002 1.25383682e+002 1.02314201e+002 - 1.15243576e+002 1.25363136e+002 1.02311913e+002 1.15223412e+002 - 1.25346130e+002 1.02293015e+002 1.15216103e+002 1.25304771e+002 - 1.02298080e+002 1.15207413e+002 1.25278580e+002 1.02273338e+002 - 1.15206688e+002 1.25250458e+002 1.02289902e+002 1.15210793e+002 - 1.25242226e+002 1.02270576e+002 1.15199684e+002 1.25202621e+002 - 1.02312675e+002 1.15230255e+002 1.25220169e+002 1.02317123e+002 - 1.15254433e+002 1.25202858e+002 1.02318077e+002 1.15250374e+002 - 1.25177032e+002 1.02323441e+002 1.15272713e+002 1.25157280e+002 - 1.02343315e+002 1.15279335e+002 1.25141968e+002 1.02339394e+002 - 1.15287476e+002 1.25113731e+002 1.02361786e+002 1.15282921e+002 - 1.25096909e+002 1.02373947e+002 1.15301888e+002 1.25078461e+002 - 1.02386520e+002 1.15312393e+002 1.25058952e+002 1.02384361e+002 - 1.15323517e+002 1.25028648e+002 1.02389267e+002 1.15317909e+002 - 1.25008217e+002 1.02442360e+002 1.15375824e+002 1.25017815e+002 - 1.02470901e+002 1.15403061e+002 1.24998581e+002 1.02461197e+002 - 1.15419128e+002 1.24968964e+002 1.02484169e+002 1.15426201e+002 - 1.24959457e+002 1.02494293e+002 1.15451889e+002 1.24939575e+002 - 1.02514450e+002 1.15451103e+002 1.24919647e+002 1.02536423e+002 - 1.15493416e+002 1.24905418e+002 1.02553322e+002 1.15503792e+002 - 1.24881889e+002 1.02593521e+002 1.15549438e+002 1.24877693e+002 - 1.02605072e+002 1.15556656e+002 1.24840828e+002 1.02595566e+002 - 1.15562622e+002 1.24805489e+002 1.02631958e+002 1.15569221e+002 - 1.24795235e+002 1.02648827e+002 1.15604034e+002 1.24774925e+002 - 1.02654541e+002 1.15612442e+002 1.24736732e+002 1.02682205e+002 - 1.15663506e+002 1.24735672e+002 1.02724678e+002 1.15690361e+002 - 1.24748291e+002 1.02778481e+002 1.15750008e+002 1.24739349e+002 - 1.02807968e+002 1.15772522e+002 1.24713181e+002 1.02837021e+002 - 1.15822487e+002 1.24706062e+002 1.02862206e+002 1.15831070e+002 - 1.24683723e+002 1.02866829e+002 1.15838509e+002 1.24643272e+002 - 1.02906151e+002 1.15851761e+002 1.24612808e+002 1.02936485e+002 - 1.15892174e+002 1.24592239e+002 1.02961266e+002 1.15906288e+002 - 1.24565865e+002 1.02987083e+002 1.15937309e+002 1.24531219e+002 - 1.03027084e+002 1.15963684e+002 1.24511345e+002 1.03038841e+002 - 1.15990532e+002 1.24473473e+002 1.03055344e+002 1.15979584e+002 - 1.24424408e+002 1.03073288e+002 1.16009430e+002 1.24392311e+002 - 1.03124146e+002 1.16053337e+002 1.24382149e+002 1.03142403e+002 - 1.16089035e+002 1.24360817e+002 1.03186493e+002 1.16122375e+002 - 1.24367035e+002 1.03228508e+002 1.16170868e+002 1.24350273e+002 - 1.03271362e+002 1.16207527e+002 1.24317757e+002 1.03279190e+002 - 1.16232361e+002 1.24278267e+002 1.03307724e+002 1.16249687e+002 - 1.24255913e+002 1.03368172e+002 1.16316460e+002 1.24261459e+002 - 1.03414818e+002 1.16341080e+002 1.24238029e+002 1.03433037e+002 - 1.16367950e+002 1.24195168e+002 1.03501091e+002 1.16413689e+002 - 1.24195480e+002 1.03535645e+002 1.16456825e+002 1.24169281e+002 - 1.03593552e+002 1.16500237e+002 1.24163231e+002 1.03626617e+002 - 1.16543655e+002 1.24145485e+002 1.03697884e+002 1.16589012e+002 - 1.24145363e+002 1.03743416e+002 1.16646187e+002 1.24132462e+002 - 1.03803329e+002 1.16696869e+002 1.24130714e+002 1.03855942e+002 - 1.16766891e+002 1.24134583e+002 1.03922539e+002 1.16816780e+002 - 1.24143990e+002 1.03990219e+002 1.16890251e+002 1.24143677e+002 - 1.04045700e+002 1.16928177e+002 1.24118675e+002 1.04102402e+002 - 1.17003700e+002 1.24122124e+002 1.04165108e+002 1.17043900e+002 - 1.24127876e+002 1.04209656e+002 1.17107964e+002 1.24120407e+002 - 1.04270874e+002 1.17142624e+002 1.24108421e+002 1.04299850e+002 - 1.17178467e+002 1.24071854e+002 1.04376671e+002 1.17234055e+002 - 1.24075180e+002 1.04404495e+002 1.17263458e+002 1.24042366e+002 - 1.04465454e+002 1.17306061e+002 1.24028915e+002 1.04530106e+002 - 1.17375885e+002 1.24030266e+002 1.04638672e+002 1.17435104e+002 - 1.24037636e+002 1.04693687e+002 1.17495323e+002 1.24027794e+002 - 1.04747940e+002 1.17533226e+002 1.23997025e+002 1.04780441e+002 - 1.17569046e+002 1.23963326e+002 1.04877739e+002 1.17644875e+002 - 1.23995125e+002 1.04964577e+002 1.17721107e+002 1.23994438e+002 - 1.05040970e+002 1.17769241e+002 1.23965668e+002 1.05098557e+002 - 1.17836143e+002 1.23959984e+002 1.05170563e+002 1.17878853e+002 - 1.23962952e+002 1.05255646e+002 1.17963623e+002 1.23986984e+002 - 1.05345230e+002 1.18025352e+002 1.23998672e+002 1.05430054e+002 - 1.18107796e+002 1.24006927e+002 1.05519722e+002 1.18171074e+002 - 1.24005829e+002 1.05615456e+002 1.18257195e+002 1.24023048e+002 - 1.05708923e+002 1.18309525e+002 1.24025383e+002 1.05798241e+002 - 1.18392281e+002 1.24047852e+002 1.05906944e+002 1.18444107e+002 - 1.24057068e+002 1.05977753e+002 1.18497261e+002 1.24049538e+002 - 1.06047615e+002 1.18521751e+002 1.24028122e+002 1.06062561e+002 - 1.18527397e+002 1.23977592e+002 1.06082779e+002 1.18502632e+002 - 1.23914551e+002 1.06048477e+002 1.18460533e+002 1.23808632e+002 - 1.06032692e+002 1.18505356e+002 1.23926796e+002 1.06064362e+002 - 1.18578987e+002 1.24033501e+002 1.06078270e+002 1.18604317e+002 - 1.24118889e+002 1.06043030e+002 1.18600914e+002 1.24155350e+002 - 1.05981850e+002 1.18557793e+002 1.24181656e+002 1.05879669e+002 - 1.18491631e+002 1.24156227e+002 1.05789986e+002 1.18417351e+002 - 1.24151733e+002 1.05686096e+002 1.18346497e+002 1.24122719e+002 - 1.05620079e+002 1.18286308e+002 1.24133286e+002 1.05518135e+002 - 1.18207405e+002 1.24110779e+002 1.05455429e+002 1.18146111e+002 - 1.24137436e+002 1.05387093e+002 1.18102699e+002 1.24145691e+002 - 1.05327492e+002 1.18054230e+002 1.24161522e+002 1.05251015e+002 - 1.18005585e+002 1.24151398e+002 1.05169479e+002 1.17929695e+002 - 1.24137024e+002 1.05059929e+002 1.17844833e+002 1.24101051e+002 - 1.04956085e+002 1.17750916e+002 1.24096558e+002 1.04862244e+002 - 1.17692749e+002 1.24089874e+002 1.04807259e+002 1.17628395e+002 - 1.24095085e+002 1.04743149e+002 1.17581757e+002 1.24101830e+002 - 1.04682297e+002 1.17515457e+002 1.24115005e+002 1.04587234e+002 - 1.17438591e+002 1.24096596e+002 1.04488594e+002 1.17343063e+002 - 1.24078926e+002 1.04401535e+002 1.17272781e+002 1.24061478e+002 - 1.04378830e+002 1.17250710e+002 1.24111755e+002 1.04287689e+002 - 1.17170319e+002 1.24090652e+002 1.04241844e+002 1.17105110e+002 - 1.24112228e+002 1.04213081e+002 1.17088783e+002 1.24158791e+002 - 1.04161354e+002 1.17035110e+002 1.24174950e+002 1.04115028e+002 - 1.17007034e+002 1.24195015e+002 1.04070969e+002 1.16960350e+002 - 1.24213997e+002 1.04011642e+002 1.16917244e+002 1.24222343e+002 - 1.03937958e+002 1.16859581e+002 1.24246758e+002 1.03834816e+002 - 1.16787781e+002 1.24223351e+002 1.03810249e+002 1.16747345e+002 - 1.24251564e+002 1.03754387e+002 1.16699265e+002 1.24249031e+002 - 1.03718262e+002 1.16649780e+002 1.24276154e+002 1.03663239e+002 - 1.16607788e+002 1.24283348e+002 1.03628960e+002 1.16573189e+002 - 1.24318176e+002 1.03578239e+002 1.16535004e+002 1.24319878e+002 - 1.03522873e+002 1.16477165e+002 1.24323540e+002 1.03429344e+002 - 1.16389511e+002 1.24288170e+002 1.03410629e+002 1.16355789e+002 - 1.24339897e+002 1.03383476e+002 1.16339920e+002 1.24371841e+002 - 1.03354141e+002 1.16309181e+002 1.24404175e+002 1.03286827e+002 - 1.16260155e+002 1.24388390e+002 1.03269714e+002 1.16227219e+002 - 1.24413902e+002 1.03236359e+002 1.16203140e+002 1.24426109e+002 - 1.03203384e+002 1.16169121e+002 1.24456863e+002 1.03125610e+002 - 1.16105217e+002 1.24438766e+002 1.03106056e+002 1.16074837e+002 - 1.24462448e+002 1.03072083e+002 1.16045700e+002 1.24469170e+002 - 1.03040565e+002 1.15997307e+002 1.24494133e+002 1.03011246e+002 - 1.15978798e+002 1.24517021e+002 1.02954117e+002 1.15915504e+002 - 1.24521782e+002 1.02915298e+002 1.15898155e+002 1.24541748e+002 - 1.02901581e+002 1.15868530e+002 1.24568161e+002 1.02833244e+002 - 1.15805069e+002 1.24550270e+002 1.02841988e+002 1.15796089e+002 - 1.24611290e+002 1.02846230e+002 1.15805817e+002 1.24659332e+002 - 1.02816002e+002 1.15772598e+002 1.24681198e+002 1.02772049e+002 - 1.15744133e+002 1.24677414e+002 1.02761131e+002 1.15715424e+002 - 1.24689690e+002 1.02785896e+002 1.15738266e+002 1.24742393e+002 - 1.02739014e+002 1.15681114e+002 1.24753410e+002 1.02694862e+002 - 1.15655617e+002 1.24759232e+002 1.02710518e+002 1.15659653e+002 - 1.24806770e+002 1.02665611e+002 1.15620010e+002 1.24802811e+002 - 1.02644058e+002 1.15591835e+002 1.24824989e+002 1.02598656e+002 - 1.15559662e+002 1.24830353e+002 1.02575890e+002 1.15532219e+002 - 1.24854256e+002 1.02568878e+002 1.15537064e+002 1.24883018e+002 - 1.02555862e+002 1.15510597e+002 1.24918686e+002 1.02499153e+002 - 1.15464630e+002 1.24906235e+002 1.02468323e+002 1.15399315e+002 - 1.24907906e+002 1.02444618e+002 1.15380753e+002 1.24921577e+002 - 1.02456551e+002 1.15383324e+002 1.24969276e+002 1.02416283e+002 - 1.15355736e+002 1.24962067e+002 1.02401253e+002 1.15332275e+002 - 1.24975655e+002 1.02406677e+002 1.15337418e+002 1.25006126e+002 - 1.02402428e+002 1.15325356e+002 1.25047554e+002 1.02397102e+002 - 1.15336617e+002 1.25077591e+002 1.02421516e+002 1.15341026e+002 - 1.25113831e+002 1.02404518e+002 1.15330299e+002 1.25122299e+002 - 1.02396561e+002 1.15303520e+002 1.25140564e+002 1.02362350e+002 - 1.15285774e+002 1.25138680e+002 1.02325546e+002 1.15238083e+002 - 1.25133484e+002 1.02333122e+002 1.15259712e+002 1.25171867e+002 - 1.02319283e+002 1.15244614e+002 1.25189201e+002 1.02296196e+002 - 1.15232101e+002 1.25194756e+002 1.02321533e+002 1.15228645e+002 - 1.25244011e+002 1.02324348e+002 1.15249535e+002 1.25286461e+002 - 1.02305458e+002 1.15219841e+002 1.25277283e+002 1.02286133e+002 - 1.15217377e+002 1.25280266e+002 1.02291916e+002 1.15203415e+002 - 1.25299301e+002 1.02321762e+002 1.15240494e+002 1.25340485e+002 - 1.02328918e+002 1.15239105e+002 1.25373856e+002 1.02292717e+002 - 1.15225410e+002 1.25367584e+002 1.02308640e+002 1.15235085e+002 - 1.25403168e+002 1.02305496e+002 1.15239159e+002 1.25423088e+002 - 1.02307899e+002 1.15229492e+002 1.25440659e+002 1.02267250e+002 - 1.15203392e+002 1.25414230e+002 1.02249367e+002 1.15179337e+002 - 1.25413254e+002 1.02235626e+002 1.15184509e+002 1.25413528e+002 - 1.02242981e+002 1.15184341e+002 1.25429565e+002 1.02193916e+002 - 1.15149040e+002 1.25392128e+002 1.02202667e+002 1.15130959e+002 - 1.25400482e+002 1.02209564e+002 1.15152100e+002 1.25417961e+002 - 1.02208672e+002 1.15140633e+002 1.25418465e+002 1.02174484e+002 - 1.15124153e+002 1.25389725e+002 1.02180641e+002 1.15117455e+002 - 1.25401955e+002 1.02192474e+002 1.15140671e+002 1.25413940e+002 - 1.02203445e+002 1.15138237e+002 1.25416565e+002 1.02171417e+002 - 1.15128258e+002 1.25392853e+002 1.02184441e+002 1.15123634e+002 - 1.25404343e+002 1.02190140e+002 1.15137665e+002 1.25402344e+002 - 1.02176010e+002 1.15098862e+002 1.25375801e+002 1.02153885e+002 - 1.15088234e+002 1.25343010e+002 1.02141052e+002 1.15066437e+002 - 1.25322151e+002 1.02160599e+002 1.15097427e+002 1.25335381e+002 - 1.02158081e+002 1.15076332e+002 1.25317368e+002 1.02128075e+002 - 1.15058945e+002 1.25287186e+002 1.02177856e+002 1.15088707e+002 - 1.25323517e+002 1.02173248e+002 1.15096786e+002 1.25313622e+002 - 1.02181282e+002 1.15090271e+002 1.25295441e+002 1.02157150e+002 - 1.15092293e+002 1.25262856e+002 1.02140022e+002 1.15060036e+002 - 1.25234947e+002 1.02154068e+002 1.15083214e+002 1.25225594e+002 - 1.02149078e+002 1.15074356e+002 1.25198288e+002 1.02120483e+002 - 1.15067253e+002 1.25162796e+002 1.02152817e+002 1.15080605e+002 - 1.25164383e+002 1.02129700e+002 1.15072388e+002 1.25117752e+002 - 1.02167709e+002 1.15096802e+002 1.25134209e+002 1.02164597e+002 - 1.15104446e+002 1.25107132e+002 1.02184456e+002 1.15122803e+002 - 1.25107246e+002 1.02194077e+002 1.15147102e+002 1.25080307e+002 - 1.02218544e+002 1.15161331e+002 1.25082222e+002 1.02224220e+002 - 1.15179428e+002 1.25061829e+002 1.02250587e+002 1.15180000e+002 - 1.25043816e+002 1.02281708e+002 1.15220398e+002 1.25042397e+002 - 1.02275162e+002 1.15204750e+002 1.25008904e+002 1.02243378e+002 - 1.15189575e+002 1.24952652e+002 1.02263489e+002 1.15202965e+002 - 1.24945343e+002 1.02330338e+002 1.15275551e+002 1.24974472e+002 - 1.02357544e+002 1.15300415e+002 1.24957497e+002 1.02348907e+002 - 1.15316139e+002 1.24921265e+002 1.02358833e+002 1.15307167e+002 - 1.24896118e+002 1.02367836e+002 1.15327827e+002 1.24875107e+002 - 1.02379944e+002 1.15324432e+002 1.24845695e+002 1.02401863e+002 - 1.15356537e+002 1.24825470e+002 1.02433914e+002 1.15377632e+002 - 1.24814964e+002 1.02463478e+002 1.15422478e+002 1.24805672e+002 - 1.02486130e+002 1.15435066e+002 1.24780457e+002 1.02475060e+002 - 1.15443787e+002 1.24745949e+002 1.02503769e+002 1.15446915e+002 - 1.24727394e+002 1.02523514e+002 1.15475983e+002 1.24703804e+002 - 1.02523491e+002 1.15479561e+002 1.24662552e+002 1.02549164e+002 - 1.15532661e+002 1.24653313e+002 1.02578362e+002 1.15553261e+002 - 1.24655449e+002 1.02615120e+002 1.15597122e+002 1.24644020e+002 - 1.02675354e+002 1.15643913e+002 1.24637566e+002 1.02698669e+002 - 1.15686714e+002 1.24627075e+002 1.02692474e+002 1.15664207e+002 - 1.24572807e+002 1.02707611e+002 1.15692085e+002 1.24542740e+002 - 1.02758377e+002 1.15716782e+002 1.24533157e+002 1.02799988e+002 - 1.15765282e+002 1.24521881e+002 1.02842682e+002 1.15797783e+002 - 1.24504845e+002 1.02871712e+002 1.15838936e+002 1.24475937e+002 - 1.02906815e+002 1.15855049e+002 1.24450569e+002 1.02914574e+002 - 1.15869972e+002 1.24402840e+002 1.02950363e+002 1.15885452e+002 - 1.24374893e+002 1.02985672e+002 1.15932266e+002 1.24363464e+002 - 1.03018684e+002 1.15957840e+002 1.24334503e+002 1.03022285e+002 - 1.15983551e+002 1.24306229e+002 1.03074966e+002 1.16018646e+002 - 1.24304115e+002 1.03101555e+002 1.16053787e+002 1.24279114e+002 - 1.03136002e+002 1.16081314e+002 1.24236328e+002 1.03137436e+002 - 1.16101044e+002 1.24197617e+002 1.03180130e+002 1.16128769e+002 - 1.24183388e+002 1.03245964e+002 1.16202179e+002 1.24198517e+002 - 1.03298729e+002 1.16238411e+002 1.24180603e+002 1.03319870e+002 - 1.16263474e+002 1.24139641e+002 1.03383522e+002 1.16310295e+002 - 1.24134300e+002 1.03427414e+002 1.16361771e+002 1.24117874e+002 - 1.03485184e+002 1.16406128e+002 1.24117851e+002 1.03499420e+002 - 1.16430870e+002 1.24083755e+002 1.03564140e+002 1.16470375e+002 - 1.24067146e+002 1.03631935e+002 1.16545990e+002 1.24079384e+002 - 1.03724777e+002 1.16627907e+002 1.24111633e+002 1.03759735e+002 - 1.16677406e+002 1.24096710e+002 1.03824318e+002 1.16732170e+002 - 1.24103401e+002 1.03894547e+002 1.16801231e+002 1.24108658e+002 - 1.03948486e+002 1.16843048e+002 1.24078072e+002 1.03984840e+002 - 1.16891052e+002 1.24054718e+002 1.04027893e+002 1.16915703e+002 - 1.24038063e+002 1.04071274e+002 1.16969246e+002 1.24027969e+002 - 1.04160133e+002 1.17036179e+002 1.24050652e+002 1.04180290e+002 - 1.17062111e+002 1.24002792e+002 1.04239395e+002 1.17101761e+002 - 1.23988457e+002 1.04304924e+002 1.17176079e+002 1.23989227e+002 - 1.04370262e+002 1.17217117e+002 1.23980247e+002 1.04422104e+002 - 1.17277061e+002 1.23968788e+002 1.04505600e+002 1.17317276e+002 - 1.23957649e+002 1.04581085e+002 1.17395920e+002 1.23957413e+002 - 1.04644745e+002 1.17441666e+002 1.23946831e+002 1.04682198e+002 - 1.17476868e+002 1.23913673e+002 1.04770653e+002 1.17544640e+002 - 1.23933266e+002 1.04869202e+002 1.17637657e+002 1.23952950e+002 - 1.04937988e+002 1.17684067e+002 1.23920128e+002 1.04979683e+002 - 1.17732910e+002 1.23894653e+002 1.05064995e+002 1.17784859e+002 - 1.23914047e+002 1.05138588e+002 1.17855873e+002 1.23923065e+002 - 1.05223076e+002 1.17916626e+002 1.23926559e+002 1.05320686e+002 - 1.18009781e+002 1.23953972e+002 1.05431602e+002 1.18095978e+002 - 1.23971573e+002 1.05525642e+002 1.18181885e+002 1.23992439e+002 - 1.05631943e+002 1.18248451e+002 1.24007675e+002 1.05720909e+002 - 1.18326859e+002 1.24023499e+002 1.05814850e+002 1.18367340e+002 - 1.24023651e+002 1.05891846e+002 1.18426788e+002 1.24023323e+002 - 1.05962578e+002 1.18453651e+002 1.24002632e+002 1.05979675e+002 - 1.18458611e+002 1.23944458e+002 1.05997849e+002 1.18431000e+002 - 1.23889595e+002 1.05943985e+002 1.18366745e+002 1.23761612e+002 - 1.05920906e+002 1.18413116e+002 1.23879967e+002 1.05954201e+002 - 1.18486023e+002 1.23990265e+002 1.05955406e+002 1.18505005e+002 - 1.24061012e+002 1.05913109e+002 1.18488670e+002 1.24088661e+002 - 1.05872009e+002 1.18469215e+002 1.24129799e+002 1.05777184e+002 - 1.18406319e+002 1.24120583e+002 1.05675140e+002 1.18325684e+002 - 1.24104240e+002 1.05571495e+002 1.18250084e+002 1.24070190e+002 - 1.05497643e+002 1.18190201e+002 1.24081619e+002 1.05400429e+002 - 1.18114861e+002 1.24066818e+002 1.05333580e+002 1.18050720e+002 - 1.24080872e+002 1.05286469e+002 1.18026703e+002 1.24110771e+002 - 1.05191246e+002 1.17939308e+002 1.24099953e+002 1.05113564e+002 - 1.17896271e+002 1.24092834e+002 1.05050087e+002 1.17828094e+002 - 1.24091949e+002 1.04953270e+002 1.17757309e+002 1.24067848e+002 - 1.04847755e+002 1.17665848e+002 1.24068268e+002 1.04737717e+002 - 1.17588242e+002 1.24040886e+002 1.04669342e+002 1.17511383e+002 - 1.24031364e+002 1.04613235e+002 1.17477844e+002 1.24047264e+002 - 1.04558273e+002 1.17416100e+002 1.24068558e+002 1.04474976e+002 - 1.17349548e+002 1.24056755e+002 1.04371109e+002 1.17246590e+002 - 1.24034935e+002 1.04287018e+002 1.17175682e+002 1.24021362e+002 - 1.04251930e+002 1.17149040e+002 1.24063087e+002 1.04166931e+002 - 1.17072800e+002 1.24051338e+002 1.04116226e+002 1.16997879e+002 - 1.24065338e+002 1.04094734e+002 1.16992561e+002 1.24114868e+002 - 1.04045296e+002 1.16939758e+002 1.24139542e+002 1.03991714e+002 - 1.16906136e+002 1.24153267e+002 1.03939987e+002 1.16848625e+002 - 1.24161186e+002 1.03883385e+002 1.16810364e+002 1.24170738e+002 - 1.03818031e+002 1.16758408e+002 1.24199875e+002 1.03730949e+002 - 1.16699463e+002 1.24195091e+002 1.03689583e+002 1.16646301e+002 - 1.24209641e+002 1.03638962e+002 1.16606575e+002 1.24215698e+002 - 1.03574379e+002 1.16524963e+002 1.24212830e+002 1.03504837e+002 - 1.16473267e+002 1.24204346e+002 1.03494278e+002 1.16455750e+002 - 1.24264732e+002 1.03436813e+002 1.16419579e+002 1.24260033e+002 - 1.03391991e+002 1.16363571e+002 1.24266090e+002 1.03323158e+002 - 1.16302528e+002 1.24253525e+002 1.03291321e+002 1.16252686e+002 - 1.24287636e+002 1.03255836e+002 1.16230026e+002 1.24315666e+002 - 1.03229912e+002 1.16208359e+002 1.24355034e+002 1.03158638e+002 - 1.16152977e+002 1.24335938e+002 1.03145355e+002 1.16122688e+002 - 1.24359352e+002 1.03091637e+002 1.16082680e+002 1.24349586e+002 - 1.03060745e+002 1.16042747e+002 1.24381706e+002 1.02968109e+002 - 1.15970741e+002 1.24348717e+002 1.02948204e+002 1.15934685e+002 - 1.24373070e+002 1.02947617e+002 1.15940804e+002 1.24417725e+002 - 1.02920731e+002 1.15897255e+002 1.24445511e+002 1.02876144e+002 - 1.15870819e+002 1.24458626e+002 1.02833542e+002 1.15819527e+002 - 1.24476784e+002 1.02803085e+002 1.15802795e+002 1.24501266e+002 - 1.02780205e+002 1.15763695e+002 1.24524963e+002 1.02709366e+002 - 1.15699265e+002 1.24501099e+002 1.02708405e+002 1.15676300e+002 - 1.24548149e+002 1.02725876e+002 1.15704834e+002 1.24620514e+002 - 1.02686661e+002 1.15656914e+002 1.24622375e+002 1.02649796e+002 - 1.15632721e+002 1.24616997e+002 1.02638680e+002 1.15604996e+002 - 1.24633858e+002 1.02628555e+002 1.15593399e+002 1.24649162e+002 - 1.02613663e+002 1.15574181e+002 1.24691612e+002 1.02548225e+002 - 1.15530479e+002 1.24684982e+002 1.02535896e+002 1.15502396e+002 - 1.24703056e+002 1.02513855e+002 1.15495445e+002 1.24730545e+002 - 1.02498108e+002 1.15465302e+002 1.24756790e+002 1.02455711e+002 - 1.15438126e+002 1.24761154e+002 1.02433723e+002 1.15407082e+002 - 1.24787056e+002 1.02411774e+002 1.15399475e+002 1.24805534e+002 - 1.02385178e+002 1.15362343e+002 1.24819420e+002 1.02342720e+002 - 1.15328667e+002 1.24822021e+002 1.02317604e+002 1.15266632e+002 - 1.24829453e+002 1.02288719e+002 1.15246460e+002 1.24844551e+002 - 1.02282005e+002 1.15231949e+002 1.24867691e+002 1.02267334e+002 - 1.15234047e+002 1.24887627e+002 1.02249161e+002 1.15197121e+002 - 1.24898216e+002 1.02243584e+002 1.15193237e+002 1.24916557e+002 - 1.02227058e+002 1.15166016e+002 1.24943985e+002 1.02207512e+002 - 1.15165947e+002 1.24969711e+002 1.02219788e+002 1.15163864e+002 - 1.25004356e+002 1.02214096e+002 1.15157822e+002 1.25019638e+002 - 1.02225349e+002 1.15148987e+002 1.25055298e+002 1.02185097e+002 - 1.15118919e+002 1.25044708e+002 1.02126427e+002 1.15057022e+002 - 1.25020401e+002 1.02147400e+002 1.15097191e+002 1.25074402e+002 - 1.02161346e+002 1.15094986e+002 1.25109734e+002 1.02131836e+002 - 1.15080681e+002 1.25109184e+002 1.02154129e+002 1.15078880e+002 - 1.25155968e+002 1.02152435e+002 1.15092819e+002 1.25185028e+002 - 1.02149223e+002 1.15084496e+002 1.25201859e+002 1.02127052e+002 - 1.15078827e+002 1.25201637e+002 1.02126900e+002 1.15059296e+002 - 1.25209343e+002 1.02173798e+002 1.15113731e+002 1.25268517e+002 - 1.02199127e+002 1.15130646e+002 1.25319832e+002 1.02144264e+002 - 1.15095901e+002 1.25293556e+002 1.02155998e+002 1.15095436e+002 - 1.25328896e+002 1.02169716e+002 1.15119293e+002 1.25362389e+002 - 1.02153915e+002 1.15095192e+002 1.25361252e+002 1.02103233e+002 - 1.15059372e+002 1.25325523e+002 1.02071785e+002 1.15020920e+002 - 1.25308006e+002 1.02060318e+002 1.15021240e+002 1.25304993e+002 - 1.02053055e+002 1.15012413e+002 1.25314644e+002 1.02045761e+002 - 1.15018768e+002 1.25315399e+002 1.02058357e+002 1.15005142e+002 - 1.25329369e+002 1.02066544e+002 1.15020966e+002 1.25348717e+002 - 1.02079323e+002 1.15026711e+002 1.25359795e+002 1.02063255e+002 - 1.15026093e+002 1.25347343e+002 1.02056488e+002 1.15010231e+002 - 1.25358658e+002 1.02085258e+002 1.15043221e+002 1.25375069e+002 - 1.02065422e+002 1.15011902e+002 1.25343567e+002 1.02028908e+002 - 1.14997726e+002 1.25321663e+002 1.02034737e+002 1.14991997e+002 - 1.25326675e+002 1.02022667e+002 1.14977249e+002 1.25303558e+002 - 1.02006714e+002 1.14943718e+002 1.25274910e+002 1.01997025e+002 - 1.14941902e+002 1.25255226e+002 1.01975258e+002 1.14911835e+002 - 1.25221771e+002 1.01993912e+002 1.14946449e+002 1.25233757e+002 - 1.02013939e+002 1.14951859e+002 1.25250427e+002 1.01997581e+002 - 1.14941902e+002 1.25225342e+002 1.02026520e+002 1.14943878e+002 - 1.25238907e+002 1.02038353e+002 1.14978973e+002 1.25248558e+002 - 1.02033981e+002 1.14969467e+002 1.25223106e+002 1.01996620e+002 - 1.14947800e+002 1.25175858e+002 1.01985680e+002 1.14924957e+002 - 1.25146072e+002 1.01988548e+002 1.14932877e+002 1.25126869e+002 - 1.01997902e+002 1.14936180e+002 1.25108299e+002 1.01975983e+002 - 1.14942474e+002 1.25092827e+002 1.01982513e+002 1.14929314e+002 - 1.25069809e+002 1.01980515e+002 1.14938835e+002 1.25050339e+002 - 1.02019890e+002 1.14964806e+002 1.25059555e+002 1.02015678e+002 - 1.14978531e+002 1.25033417e+002 1.02027962e+002 1.14986740e+002 - 1.25016396e+002 1.02033562e+002 1.15005592e+002 1.24995010e+002 - 1.02051666e+002 1.15009705e+002 1.24990791e+002 1.02064697e+002 - 1.15036201e+002 1.24978401e+002 1.02098412e+002 1.15042198e+002 - 1.24969063e+002 1.02111000e+002 1.15070190e+002 1.24953972e+002 - 1.02111053e+002 1.15061531e+002 1.24922989e+002 1.02093575e+002 - 1.15060547e+002 1.24882942e+002 1.02110611e+002 1.15071884e+002 - 1.24876297e+002 1.02155838e+002 1.15119888e+002 1.24876457e+002 - 1.02191376e+002 1.15144516e+002 1.24865784e+002 1.02170799e+002 - 1.15145004e+002 1.24822258e+002 1.02181908e+002 1.15146515e+002 - 1.24795647e+002 1.02203476e+002 1.15179787e+002 1.24787292e+002 - 1.02219467e+002 1.15172279e+002 1.24756859e+002 1.02228073e+002 - 1.15195389e+002 1.24728157e+002 1.02271637e+002 1.15227379e+002 - 1.24728531e+002 1.02308350e+002 1.15280319e+002 1.24721626e+002 - 1.02324966e+002 1.15284416e+002 1.24698723e+002 1.02305969e+002 - 1.15277832e+002 1.24642456e+002 1.02340904e+002 1.15294136e+002 - 1.24631546e+002 1.02349945e+002 1.15323296e+002 1.24603020e+002 - 1.02357452e+002 1.15326256e+002 1.24565506e+002 1.02359703e+002 - 1.15351471e+002 1.24541252e+002 1.02397842e+002 1.15384476e+002 - 1.24551018e+002 1.02451294e+002 1.15444420e+002 1.24555054e+002 - 1.02508125e+002 1.15491043e+002 1.24547607e+002 1.02515259e+002 - 1.15516579e+002 1.24518684e+002 1.02532181e+002 1.15521263e+002 - 1.24486450e+002 1.02559837e+002 1.15560066e+002 1.24469643e+002 - 1.02601112e+002 1.15574089e+002 1.24446030e+002 1.02640236e+002 - 1.15623405e+002 1.24436470e+002 1.02683556e+002 1.15658203e+002 - 1.24421211e+002 1.02712814e+002 1.15699242e+002 1.24393448e+002 - 1.02756096e+002 1.15721420e+002 1.24374916e+002 1.02743172e+002 - 1.15719360e+002 1.24315529e+002 1.02778389e+002 1.15730194e+002 - 1.24288284e+002 1.02835220e+002 1.15804718e+002 1.24288071e+002 - 1.02888885e+002 1.15845795e+002 1.24280579e+002 1.02872368e+002 - 1.15847954e+002 1.24222214e+002 1.02928017e+002 1.15887489e+002 - 1.24234428e+002 1.02961266e+002 1.15936798e+002 1.24210381e+002 - 1.03004196e+002 1.15960548e+002 1.24169739e+002 1.02998871e+002 - 1.15975426e+002 1.24125839e+002 1.03044685e+002 1.16014877e+002 - 1.24120071e+002 1.03114716e+002 1.16091728e+002 1.24138153e+002 - 1.03159859e+002 1.16117821e+002 1.24118164e+002 1.03192017e+002 - 1.16158730e+002 1.24088165e+002 1.03257790e+002 1.16208084e+002 - 1.24082230e+002 1.03286087e+002 1.16244743e+002 1.24053635e+002 - 1.03325211e+002 1.16268753e+002 1.24033279e+002 1.03360054e+002 - 1.16310890e+002 1.24013596e+002 1.03441635e+002 1.16366791e+002 - 1.24018303e+002 1.03497116e+002 1.16433495e+002 1.24021851e+002 - 1.03569435e+002 1.16493248e+002 1.24034554e+002 1.03615067e+002 - 1.16556198e+002 1.24030731e+002 1.03695946e+002 1.16621971e+002 - 1.24054970e+002 1.03769257e+002 1.16698402e+002 1.24054230e+002 - 1.03807297e+002 1.16716484e+002 1.24008812e+002 1.03842636e+002 - 1.16766602e+002 1.23985794e+002 1.03899780e+002 1.16801422e+002 - 1.23976051e+002 1.03954948e+002 1.16860916e+002 1.23974953e+002 - 1.04025299e+002 1.16908249e+002 1.23970276e+002 1.04060600e+002 - 1.16948059e+002 1.23941109e+002 1.04111961e+002 1.16986816e+002 - 1.23920708e+002 1.04156311e+002 1.17045273e+002 1.23906776e+002 - 1.04243286e+002 1.17109978e+002 1.23920006e+002 1.04299248e+002 - 1.17173904e+002 1.23915794e+002 1.04392921e+002 1.17223534e+002 - 1.23914711e+002 1.04475250e+002 1.17308731e+002 1.23924377e+002 - 1.04528595e+002 1.17345100e+002 1.23904770e+002 1.04588959e+002 - 1.17409431e+002 1.23895889e+002 1.04674713e+002 1.17470657e+002 - 1.23909294e+002 1.04757042e+002 1.17541824e+002 1.23903419e+002 - 1.04838150e+002 1.17602341e+002 1.23882362e+002 1.04889496e+002 - 1.17660965e+002 1.23876411e+002 1.04955658e+002 1.17693596e+002 - 1.23871765e+002 1.05012657e+002 1.17748894e+002 1.23865402e+002 - 1.05121407e+002 1.17826775e+002 1.23891167e+002 1.05225563e+002 - 1.17934914e+002 1.23920708e+002 1.05324097e+002 1.18003372e+002 - 1.23931892e+002 1.05408569e+002 1.18085548e+002 1.23943497e+002 - 1.05511925e+002 1.18155861e+002 1.23966240e+002 1.05592949e+002 - 1.18230103e+002 1.23972031e+002 1.05682922e+002 1.18264565e+002 - 1.23964493e+002 1.05772675e+002 1.18343643e+002 1.23978455e+002 - 1.05846298e+002 1.18368271e+002 1.23960503e+002 1.05855698e+002 - 1.18370316e+002 1.23901863e+002 1.05849365e+002 1.18320000e+002 - 1.23822716e+002 1.05824692e+002 1.18279236e+002 1.23717979e+002 - 1.05806221e+002 1.18312996e+002 1.23820961e+002 1.05838142e+002 - 1.18379868e+002 1.23925835e+002 1.05829109e+002 1.18387787e+002 - 1.23989532e+002 1.05789063e+002 1.18388435e+002 1.24026245e+002 - 1.05754967e+002 1.18370781e+002 1.24073044e+002 1.05667900e+002 - 1.18323967e+002 1.24070496e+002 1.05558762e+002 1.18238396e+002 - 1.24053299e+002 1.05446297e+002 1.18150879e+002 1.24005554e+002 - 1.05386406e+002 1.18098724e+002 1.24027443e+002 1.05301727e+002 - 1.18042549e+002 1.24022972e+002 1.05229645e+002 1.17972977e+002 - 1.24044395e+002 1.05179245e+002 1.17946053e+002 1.24064651e+002 - 1.05083870e+002 1.17855309e+002 1.24047478e+002 1.04992241e+002 - 1.17790131e+002 1.24030640e+002 1.04921227e+002 1.17726456e+002 - 1.24027023e+002 1.04825279e+002 1.17644928e+002 1.24000694e+002 - 1.04717751e+002 1.17559875e+002 1.24001579e+002 1.04584488e+002 - 1.17459686e+002 1.23954376e+002 1.04508072e+002 1.17377380e+002 - 1.23939384e+002 1.04453461e+002 1.17337067e+002 1.23954048e+002 - 1.04387611e+002 1.17266800e+002 1.23958420e+002 1.04331093e+002 - 1.17227730e+002 1.23974228e+002 1.04239975e+002 1.17138115e+002 - 1.23965065e+002 1.04157196e+002 1.17070702e+002 1.23951256e+002 - 1.04124313e+002 1.17032700e+002 1.23996460e+002 1.04039627e+002 - 1.16963684e+002 1.23982346e+002 1.03990799e+002 1.16890816e+002 - 1.24003929e+002 1.03943001e+002 1.16857643e+002 1.24024788e+002 - 1.03905457e+002 1.16819702e+002 1.24060989e+002 1.03845184e+002 - 1.16782463e+002 1.24075829e+002 1.03797623e+002 1.16729401e+002 - 1.24083603e+002 1.03719414e+002 1.16664482e+002 1.24071533e+002 - 1.03666481e+002 1.16623909e+002 1.24116638e+002 1.03577957e+002 - 1.16564560e+002 1.24104614e+002 1.03545731e+002 1.16520325e+002 - 1.24127052e+002 1.03479919e+002 1.16462090e+002 1.24123329e+002 - 1.03424629e+002 1.16392952e+002 1.24127792e+002 1.03377853e+002 - 1.16362495e+002 1.24149231e+002 1.03336250e+002 1.16322594e+002 - 1.24172485e+002 1.03283646e+002 1.16280899e+002 1.24172813e+002 - 1.03259674e+002 1.16251900e+002 1.24208405e+002 1.03193420e+002 - 1.16197685e+002 1.24199341e+002 1.03162140e+002 1.16139763e+002 - 1.24224312e+002 1.03119095e+002 1.16102142e+002 1.24235016e+002 - 1.03082230e+002 1.16071114e+002 1.24263718e+002 1.03028938e+002 - 1.16036743e+002 1.24259384e+002 1.02988701e+002 1.15980980e+002 - 1.24264664e+002 1.02932983e+002 1.15931938e+002 1.24257225e+002 - 1.02919357e+002 1.15917191e+002 1.24308151e+002 1.02838234e+002 - 1.15859566e+002 1.24289757e+002 1.02828262e+002 1.15833328e+002 - 1.24324837e+002 1.02820313e+002 1.15834068e+002 1.24360268e+002 - 1.02797478e+002 1.15793793e+002 1.24390587e+002 1.02754616e+002 - 1.15761230e+002 1.24398460e+002 1.02704987e+002 1.15709251e+002 - 1.24416718e+002 1.02677155e+002 1.15691383e+002 1.24434525e+002 - 1.02643036e+002 1.15641991e+002 1.24449669e+002 1.02576630e+002 - 1.15588242e+002 1.24441452e+002 1.02572540e+002 1.15558853e+002 - 1.24478905e+002 1.02566452e+002 1.15563835e+002 1.24521271e+002 - 1.02546967e+002 1.15534866e+002 1.24545525e+002 1.02510246e+002 - 1.15512131e+002 1.24542747e+002 1.02492783e+002 1.15476288e+002 - 1.24547783e+002 1.02463959e+002 1.15447220e+002 1.24548920e+002 - 1.02443970e+002 1.15419342e+002 1.24593178e+002 1.02412117e+002 - 1.15407166e+002 1.24609375e+002 1.02401482e+002 1.15380753e+002 - 1.24630981e+002 1.02389236e+002 1.15379807e+002 1.24661888e+002 - 1.02371574e+002 1.15354828e+002 1.24694115e+002 1.02325386e+002 - 1.15322060e+002 1.24690567e+002 1.02284126e+002 1.15278038e+002 - 1.24706039e+002 1.02265480e+002 1.15266296e+002 1.24722809e+002 - 1.02229500e+002 1.15223259e+002 1.24735489e+002 1.02190651e+002 - 1.15191078e+002 1.24743332e+002 1.02191277e+002 1.15157417e+002 - 1.24770920e+002 1.02154472e+002 1.15127861e+002 1.24774399e+002 - 1.02155121e+002 1.15119881e+002 1.24809174e+002 1.02132271e+002 - 1.15112495e+002 1.24820946e+002 1.02108932e+002 1.15069725e+002 - 1.24822609e+002 1.02067856e+002 1.15030708e+002 1.24808357e+002 - 1.02046997e+002 1.15003571e+002 1.24838043e+002 1.02027817e+002 - 1.15007797e+002 1.24863411e+002 1.02028549e+002 1.14986298e+002 - 1.24883965e+002 1.02053833e+002 1.15015411e+002 1.24926422e+002 - 1.02074097e+002 1.15015625e+002 1.24971649e+002 1.02032883e+002 - 1.14983253e+002 1.24958771e+002 1.01989258e+002 1.14939156e+002 - 1.24950356e+002 1.02008072e+002 1.14965057e+002 1.24998032e+002 - 1.02012947e+002 1.14964409e+002 1.25019318e+002 1.01963745e+002 - 1.14928406e+002 1.25005852e+002 1.01983582e+002 1.14915100e+002 - 1.25045029e+002 1.01987991e+002 1.14933884e+002 1.25080200e+002 - 1.01993446e+002 1.14938980e+002 1.25104897e+002 1.02000977e+002 - 1.14970016e+002 1.25138107e+002 1.02008743e+002 1.14957375e+002 - 1.25157288e+002 1.02008118e+002 1.14956116e+002 1.25166954e+002 - 1.02035995e+002 1.14982208e+002 1.25231110e+002 1.01996948e+002 - 1.14967445e+002 1.25221703e+002 1.01989899e+002 1.14943954e+002 - 1.25225014e+002 1.01973228e+002 1.14944977e+002 1.25237907e+002 - 1.02002800e+002 1.14952042e+002 1.25275124e+002 1.01955254e+002 - 1.14924347e+002 1.25242661e+002 1.01934868e+002 1.14900993e+002 - 1.25236343e+002 1.01912132e+002 1.14893326e+002 1.25228722e+002 - 1.01892143e+002 1.14863411e+002 1.25216270e+002 1.01904442e+002 - 1.14892311e+002 1.25240875e+002 1.01917099e+002 1.14877708e+002 - 1.25256851e+002 1.01932289e+002 1.14898972e+002 1.25282997e+002 - 1.01940643e+002 1.14900581e+002 1.25293694e+002 1.01926346e+002 - 1.14903015e+002 1.25281555e+002 1.01921158e+002 1.14881187e+002 - 1.25284523e+002 1.01930206e+002 1.14901627e+002 1.25292877e+002 - 1.01923309e+002 1.14882561e+002 1.25279755e+002 1.01885345e+002 - 1.14868309e+002 1.25246712e+002 1.01881371e+002 1.14849785e+002 - 1.25243538e+002 1.01853996e+002 1.14829903e+002 1.25218834e+002 - 1.01855164e+002 1.14804741e+002 1.25198074e+002 1.01842674e+002 - 1.14806725e+002 1.25176796e+002 1.01822815e+002 1.14779648e+002 - 1.25145691e+002 1.01841812e+002 1.14809097e+002 1.25150948e+002 - 1.01852448e+002 1.14808716e+002 1.25156242e+002 1.01855659e+002 - 1.14821838e+002 1.25157249e+002 1.01876846e+002 1.14818893e+002 - 1.25164185e+002 1.01879288e+002 1.14834801e+002 1.25160187e+002 - 1.01868507e+002 1.14823410e+002 1.25128914e+002 1.01857903e+002 - 1.14824722e+002 1.25105385e+002 1.01847717e+002 1.14805489e+002 - 1.25076561e+002 1.01835091e+002 1.14800346e+002 1.25042931e+002 - 1.01853912e+002 1.14818329e+002 1.25046242e+002 1.01843605e+002 - 1.14828423e+002 1.25023788e+002 1.01840195e+002 1.14806412e+002 - 1.24994766e+002 1.01840904e+002 1.14813606e+002 1.24971207e+002 - 1.01885567e+002 1.14836334e+002 1.24979004e+002 1.01867050e+002 - 1.14840134e+002 1.24948708e+002 1.01883026e+002 1.14857384e+002 - 1.24938828e+002 1.01883812e+002 1.14868217e+002 1.24910568e+002 - 1.01883575e+002 1.14855705e+002 1.24884613e+002 1.01892334e+002 - 1.14876129e+002 1.24866531e+002 1.01922798e+002 1.14877701e+002 - 1.24860985e+002 1.01942390e+002 1.14910866e+002 1.24854317e+002 - 1.01941864e+002 1.14912895e+002 1.24827126e+002 1.01930038e+002 - 1.14913879e+002 1.24792824e+002 1.01956573e+002 1.14928391e+002 - 1.24786812e+002 1.01995537e+002 1.14971863e+002 1.24788376e+002 - 1.02026421e+002 1.14994370e+002 1.24772476e+002 1.02021858e+002 - 1.15010567e+002 1.24740036e+002 1.02043884e+002 1.15019386e+002 - 1.24731651e+002 1.02064262e+002 1.15049591e+002 1.24716278e+002 - 1.02069305e+002 1.15038338e+002 1.24678627e+002 1.02076401e+002 - 1.15054810e+002 1.24645744e+002 1.02108894e+002 1.15081375e+002 - 1.24628334e+002 1.02149788e+002 1.15127800e+002 1.24628799e+002 - 1.02139702e+002 1.15108231e+002 1.24578308e+002 1.02142471e+002 - 1.15125900e+002 1.24545097e+002 1.02167023e+002 1.15128937e+002 - 1.24524155e+002 1.02191849e+002 1.15172356e+002 1.24509644e+002 - 1.02215714e+002 1.15200989e+002 1.24493195e+002 1.02226112e+002 - 1.15228867e+002 1.24470543e+002 1.02284798e+002 1.15279518e+002 - 1.24501526e+002 1.02309204e+002 1.15311607e+002 1.24474602e+002 - 1.02329422e+002 1.15329735e+002 1.24432785e+002 1.02346954e+002 - 1.15364830e+002 1.24415443e+002 1.02386353e+002 1.15390099e+002 - 1.24409271e+002 1.02413368e+002 1.15424515e+002 1.24388519e+002 - 1.02461136e+002 1.15448845e+002 1.24374428e+002 1.02511932e+002 - 1.15516205e+002 1.24373177e+002 1.02550377e+002 1.15538246e+002 - 1.24349266e+002 1.02562553e+002 1.15562965e+002 1.24308548e+002 - 1.02596535e+002 1.15582695e+002 1.24283485e+002 1.02591026e+002 - 1.15585564e+002 1.24232849e+002 1.02624092e+002 1.15590309e+002 - 1.24192307e+002 1.02687767e+002 1.15666893e+002 1.24207344e+002 - 1.02741867e+002 1.15712502e+002 1.24199989e+002 1.02738068e+002 - 1.15728897e+002 1.24150642e+002 1.02786606e+002 1.15761581e+002 - 1.24158875e+002 1.02824455e+002 1.15808426e+002 1.24133621e+002 - 1.02873421e+002 1.15847893e+002 1.24110893e+002 1.02878151e+002 - 1.15874451e+002 1.24068871e+002 1.02946167e+002 1.15930191e+002 - 1.24084305e+002 1.03002922e+002 1.15997154e+002 1.24089661e+002 - 1.03048500e+002 1.16021553e+002 1.24066101e+002 1.03058067e+002 - 1.16044640e+002 1.24018631e+002 1.03107010e+002 1.16069740e+002 - 1.24002556e+002 1.03163895e+002 1.16137337e+002 1.24000542e+002 - 1.03209335e+002 1.16170647e+002 1.23983299e+002 1.03225403e+002 - 1.16195908e+002 1.23948029e+002 1.03305534e+002 1.16246498e+002 - 1.23950516e+002 1.03359573e+002 1.16313438e+002 1.23951942e+002 - 1.03408516e+002 1.16355492e+002 1.23942139e+002 1.03477013e+002 - 1.16436806e+002 1.23961021e+002 1.03560371e+002 1.16505554e+002 - 1.23987869e+002 1.03633514e+002 1.16584572e+002 1.23988907e+002 - 1.03653908e+002 1.16585045e+002 1.23915001e+002 1.03687012e+002 - 1.16628952e+002 1.23889824e+002 1.03748878e+002 1.16667343e+002 - 1.23888184e+002 1.03804398e+002 1.16729240e+002 1.23885246e+002 - 1.03888573e+002 1.16786911e+002 1.23897560e+002 1.03929955e+002 - 1.16832047e+002 1.23868256e+002 1.03968483e+002 1.16864052e+002 - 1.23836380e+002 1.04036285e+002 1.16940720e+002 1.23843452e+002 - 1.04132324e+002 1.17021133e+002 1.23870949e+002 1.04182678e+002 - 1.17079315e+002 1.23861374e+002 1.04268387e+002 1.17119705e+002 - 1.23850670e+002 1.04337349e+002 1.17197594e+002 1.23854462e+002 - 1.04408371e+002 1.17245026e+002 1.23847748e+002 1.04469963e+002 - 1.17310860e+002 1.23834732e+002 1.04547150e+002 1.17363960e+002 - 1.23839531e+002 1.04626999e+002 1.17438576e+002 1.23841980e+002 - 1.04702789e+002 1.17485893e+002 1.23813980e+002 1.04761909e+002 - 1.17548630e+002 1.23805450e+002 1.04835892e+002 1.17591240e+002 - 1.23811646e+002 1.04907387e+002 1.17662071e+002 1.23819710e+002 - 1.05015602e+002 1.17740601e+002 1.23841675e+002 1.05115067e+002 - 1.17839996e+002 1.23869667e+002 1.05227562e+002 1.17932014e+002 - 1.23897903e+002 1.05321465e+002 1.18021133e+002 1.23911026e+002 - 1.05410332e+002 1.18077805e+002 1.23918983e+002 1.05494019e+002 - 1.18154915e+002 1.23935966e+002 1.05592529e+002 1.18199532e+002 - 1.23940300e+002 1.05680626e+002 1.18272919e+002 1.23953888e+002 - 1.05720284e+002 1.18271919e+002 1.23902336e+002 1.05726982e+002 - 1.18272926e+002 1.23841812e+002 1.05734352e+002 1.18233788e+002 - 1.23773216e+002 1.05701775e+002 1.18178925e+002 1.23663727e+002 - 1.05699753e+002 1.18207176e+002 1.23770027e+002 1.05734901e+002 - 1.18287788e+002 1.23883873e+002 1.05728104e+002 1.18297844e+002 - 1.23947121e+002 1.05698158e+002 1.18301979e+002 1.23992401e+002 - 1.05647766e+002 1.18273575e+002 1.24031189e+002 1.05566673e+002 - 1.18231094e+002 1.24032806e+002 1.05460297e+002 1.18145355e+002 - 1.24019653e+002 1.05360588e+002 1.18075073e+002 1.23983513e+002 - 1.05282913e+002 1.18010582e+002 1.23990379e+002 1.05194618e+002 - 1.17948959e+002 1.23982101e+002 1.05127876e+002 1.17881645e+002 - 1.24001503e+002 1.05061188e+002 1.17843010e+002 1.24017067e+002 - 1.04964447e+002 1.17748283e+002 1.23993088e+002 1.04870888e+002 - 1.17683342e+002 1.23976364e+002 1.04797676e+002 1.17610336e+002 - 1.23966461e+002 1.04703690e+002 1.17535088e+002 1.23941376e+002 - 1.04610344e+002 1.17466576e+002 1.23957497e+002 1.04479729e+002 - 1.17368141e+002 1.23910126e+002 1.04393166e+002 1.17268547e+002 - 1.23884712e+002 1.04334694e+002 1.17226448e+002 1.23891205e+002 - 1.04281326e+002 1.17163269e+002 1.23911064e+002 1.04215569e+002 - 1.17116348e+002 1.23920715e+002 1.04116455e+002 1.17021118e+002 - 1.23906853e+002 1.04047325e+002 1.16965073e+002 1.23904518e+002 - 1.04001831e+002 1.16920502e+002 1.23930519e+002 1.03931564e+002 - 1.16860504e+002 1.23934830e+002 1.03881691e+002 1.16794952e+002 - 1.23961380e+002 1.03831604e+002 1.16758537e+002 1.23979904e+002 - 1.03791870e+002 1.16715721e+002 1.24015045e+002 1.03731819e+002 - 1.16680206e+002 1.24031044e+002 1.03670036e+002 1.16612671e+002 - 1.24025970e+002 1.03610580e+002 1.16567345e+002 1.24026222e+002 - 1.03540382e+002 1.16509689e+002 1.24052612e+002 1.03433838e+002 - 1.16431557e+002 1.24025757e+002 1.03412163e+002 1.16394501e+002 - 1.24059952e+002 1.03350822e+002 1.16344887e+002 1.24057457e+002 - 1.03303192e+002 1.16282166e+002 1.24071152e+002 1.03252106e+002 - 1.16244614e+002 1.24086090e+002 1.03210091e+002 1.16206299e+002 - 1.24112541e+002 1.03167442e+002 1.16172981e+002 1.24118004e+002 - 1.03131088e+002 1.16134300e+002 1.24143951e+002 1.03075485e+002 - 1.16090446e+002 1.24145515e+002 1.03039207e+002 1.16023842e+002 - 1.24163109e+002 1.02992882e+002 1.15987724e+002 1.24176613e+002 - 1.02956841e+002 1.15948608e+002 1.24204033e+002 1.02886940e+002 - 1.15898285e+002 1.24183876e+002 1.02851814e+002 1.15853447e+002 - 1.24197464e+002 1.02798584e+002 1.15804420e+002 1.24180931e+002 - 1.02770088e+002 1.15772224e+002 1.24230537e+002 1.02707237e+002 - 1.15735519e+002 1.24224701e+002 1.02682831e+002 1.15692467e+002 - 1.24243225e+002 1.02662453e+002 1.15678429e+002 1.24267952e+002 - 1.02625687e+002 1.15629028e+002 1.24283684e+002 1.02587059e+002 - 1.15603004e+002 1.24298958e+002 1.02561104e+002 1.15569160e+002 - 1.24333382e+002 1.02525681e+002 1.15546005e+002 1.24351921e+002 - 1.02498802e+002 1.15508911e+002 1.24376465e+002 1.02436096e+002 - 1.15449219e+002 1.24365234e+002 1.02431610e+002 1.15422081e+002 - 1.24404411e+002 1.02426949e+002 1.15425247e+002 1.24442863e+002 - 1.02425034e+002 1.15418816e+002 1.24481270e+002 1.02371590e+002 - 1.15377182e+002 1.24465645e+002 1.02350952e+002 1.15338379e+002 - 1.24471756e+002 1.02331238e+002 1.15325943e+002 1.24477386e+002 - 1.02298508e+002 1.15279846e+002 1.24506958e+002 1.02248505e+002 - 1.15255081e+002 1.24515099e+002 1.02240692e+002 1.15228577e+002 - 1.24536255e+002 1.02227547e+002 1.15229340e+002 1.24572372e+002 - 1.02210358e+002 1.15195587e+002 1.24601700e+002 1.02188660e+002 - 1.15190628e+002 1.24624741e+002 1.02134987e+002 1.15135742e+002 - 1.24623901e+002 1.02131561e+002 1.15141960e+002 1.24656296e+002 - 1.02113564e+002 1.15114471e+002 1.24689713e+002 1.02069046e+002 - 1.15080002e+002 1.24685631e+002 1.02058876e+002 1.15033882e+002 - 1.24709045e+002 1.02026527e+002 1.15007172e+002 1.24713997e+002 - 1.02014839e+002 1.14987747e+002 1.24736687e+002 1.01988876e+002 - 1.14972290e+002 1.24744232e+002 1.01963951e+002 1.14932678e+002 - 1.24747665e+002 1.01921440e+002 1.14892212e+002 1.24734528e+002 - 1.01905647e+002 1.14873077e+002 1.24761948e+002 1.01899948e+002 - 1.14887939e+002 1.24807861e+002 1.01894592e+002 1.14863564e+002 - 1.24815804e+002 1.01896721e+002 1.14861786e+002 1.24839294e+002 - 1.01900841e+002 1.14841919e+002 1.24863434e+002 1.01843010e+002 - 1.14793365e+002 1.24842278e+002 1.01844704e+002 1.14794724e+002 - 1.24873734e+002 1.01859085e+002 1.14819450e+002 1.24906868e+002 - 1.01858154e+002 1.14809509e+002 1.24932434e+002 1.01814049e+002 - 1.14779793e+002 1.24923882e+002 1.01816025e+002 1.14752899e+002 - 1.24946030e+002 1.01831421e+002 1.14780449e+002 1.24990540e+002 - 1.01843925e+002 1.14796822e+002 1.25022652e+002 1.01839951e+002 - 1.14812622e+002 1.25038826e+002 1.01854645e+002 1.14805977e+002 - 1.25067986e+002 1.01849113e+002 1.14806961e+002 1.25072708e+002 - 1.01843681e+002 1.14788994e+002 1.25103165e+002 1.01811256e+002 - 1.14786797e+002 1.25114578e+002 1.01820953e+002 1.14777252e+002 - 1.25132263e+002 1.01798363e+002 1.14769325e+002 1.25126358e+002 - 1.01826218e+002 1.14773354e+002 1.25167122e+002 1.01789162e+002 - 1.14754784e+002 1.25145187e+002 1.01776138e+002 1.14738403e+002 - 1.25142105e+002 1.01756981e+002 1.14729645e+002 1.25134338e+002 - 1.01760208e+002 1.14726921e+002 1.25147514e+002 1.01772583e+002 - 1.14754852e+002 1.25178757e+002 1.01776085e+002 1.14728989e+002 - 1.25179985e+002 1.01784798e+002 1.14748108e+002 1.25195702e+002 - 1.01801048e+002 1.14766151e+002 1.25223068e+002 1.01771317e+002 - 1.14748383e+002 1.25195206e+002 1.01778252e+002 1.14744781e+002 - 1.25212318e+002 1.01778503e+002 1.14750977e+002 1.25203499e+002 - 1.01767220e+002 1.14730095e+002 1.25188309e+002 1.01725494e+002 - 1.14713165e+002 1.25162910e+002 1.01723907e+002 1.14693802e+002 - 1.25152519e+002 1.01698669e+002 1.14678223e+002 1.25127029e+002 - 1.01706383e+002 1.14663773e+002 1.25120049e+002 1.01697441e+002 - 1.14665329e+002 1.25104950e+002 1.01678223e+002 1.14637405e+002 - 1.25072495e+002 1.01680244e+002 1.14650269e+002 1.25062111e+002 - 1.01685852e+002 1.14645172e+002 1.25062973e+002 1.01690506e+002 - 1.14662621e+002 1.25065376e+002 1.01716385e+002 1.14663559e+002 - 1.25074867e+002 1.01702637e+002 1.14663460e+002 1.25052811e+002 - 1.01691490e+002 1.14647835e+002 1.25019218e+002 1.01685936e+002 - 1.14666832e+002 1.25004166e+002 1.01717545e+002 1.14677856e+002 - 1.25012985e+002 1.01722244e+002 1.14695854e+002 1.24996109e+002 - 1.01734749e+002 1.14702187e+002 1.24987373e+002 1.01706108e+002 - 1.14691818e+002 1.24945992e+002 1.01716454e+002 1.14689148e+002 - 1.24932610e+002 1.01713768e+002 1.14694107e+002 1.24912804e+002 - 1.01740746e+002 1.14698601e+002 1.24903221e+002 1.01714615e+002 - 1.14689384e+002 1.24846214e+002 1.01744179e+002 1.14717010e+002 - 1.24859322e+002 1.01734711e+002 1.14721504e+002 1.24828499e+002 - 1.01734558e+002 1.14708954e+002 1.24796318e+002 1.01742546e+002 - 1.14734528e+002 1.24786690e+002 1.01787827e+002 1.14747185e+002 - 1.24790634e+002 1.01796669e+002 1.14765839e+002 1.24777351e+002 - 1.01805466e+002 1.14775581e+002 1.24758766e+002 1.01797623e+002 - 1.14787560e+002 1.24729057e+002 1.01818291e+002 1.14795700e+002 - 1.24718964e+002 1.01862671e+002 1.14842545e+002 1.24723709e+002 - 1.01880859e+002 1.14853363e+002 1.24695320e+002 1.01869286e+002 - 1.14865784e+002 1.24661926e+002 1.01869263e+002 1.14850151e+002 - 1.24634315e+002 1.01897766e+002 1.14893120e+002 1.24621407e+002 - 1.01912315e+002 1.14887703e+002 1.24589760e+002 1.01922234e+002 - 1.14914215e+002 1.24563568e+002 1.01963158e+002 1.14939133e+002 - 1.24552864e+002 1.01989029e+002 1.14970551e+002 1.24531960e+002 - 1.01989594e+002 1.14959373e+002 1.24493195e+002 1.01992874e+002 - 1.14983353e+002 1.24467232e+002 1.02035095e+002 1.15003273e+002 - 1.24460884e+002 1.02076851e+002 1.15063339e+002 1.24468132e+002 - 1.02109261e+002 1.15092728e+002 1.24451080e+002 1.02113083e+002 - 1.15121574e+002 1.24424744e+002 1.02151741e+002 1.15145378e+002 - 1.24431404e+002 1.02174484e+002 1.15175278e+002 1.24393799e+002 - 1.02190071e+002 1.15186783e+002 1.24353912e+002 1.02205200e+002 - 1.15225845e+002 1.24336624e+002 1.02248192e+002 1.15256416e+002 - 1.24332008e+002 1.02292747e+002 1.15311157e+002 1.24326126e+002 - 1.02344437e+002 1.15338226e+002 1.24326698e+002 1.02369041e+002 - 1.15375534e+002 1.24299683e+002 1.02398209e+002 1.15389832e+002 - 1.24269974e+002 1.02422691e+002 1.15424591e+002 1.24237457e+002 - 1.02454704e+002 1.15439926e+002 1.24208481e+002 1.02469147e+002 - 1.15464943e+002 1.24177994e+002 1.02505295e+002 1.15477280e+002 - 1.24142937e+002 1.02566460e+002 1.15544106e+002 1.24148010e+002 - 1.02614609e+002 1.15587540e+002 1.24138817e+002 1.02616730e+002 - 1.15612358e+002 1.24099205e+002 1.02662834e+002 1.15643738e+002 - 1.24094635e+002 1.02703697e+002 1.15690269e+002 1.24071640e+002 - 1.02740150e+002 1.15721603e+002 1.24038437e+002 1.02759979e+002 - 1.15764053e+002 1.24018089e+002 1.02825165e+002 1.15811935e+002 - 1.24024208e+002 1.02893883e+002 1.15887177e+002 1.24041183e+002 - 1.02950157e+002 1.15932388e+002 1.24041695e+002 1.02938957e+002 - 1.15931267e+002 1.23969360e+002 1.02978249e+002 1.15946724e+002 - 1.23942108e+002 1.03017693e+002 1.16002228e+002 1.23929695e+002 - 1.03074051e+002 1.16037941e+002 1.23918404e+002 1.03090263e+002 - 1.16066277e+002 1.23883324e+002 1.03165298e+002 1.16117828e+002 - 1.23886513e+002 1.03210930e+002 1.16173294e+002 1.23877068e+002 - 1.03268112e+002 1.16224945e+002 1.23874069e+002 1.03326530e+002 - 1.16301331e+002 1.23884628e+002 1.03399506e+002 1.16355431e+002 - 1.23894295e+002 1.03480522e+002 1.16443497e+002 1.23905296e+002 - 1.03537857e+002 1.16482513e+002 1.23859459e+002 1.03563225e+002 - 1.16521080e+002 1.23830063e+002 1.03621696e+002 1.16550377e+002 - 1.23814598e+002 1.03663879e+002 1.16594833e+002 1.23800812e+002 - 1.03754799e+002 1.16661995e+002 1.23820534e+002 1.03801956e+002 - 1.16712868e+002 1.23799713e+002 1.03848167e+002 1.16750443e+002 - 1.23778236e+002 1.03924118e+002 1.16838051e+002 1.23790085e+002 - 1.04000397e+002 1.16899208e+002 1.23798691e+002 1.04054855e+002 - 1.16959900e+002 1.23790985e+002 1.04157402e+002 1.17019073e+002 - 1.23809578e+002 1.04217827e+002 1.17084885e+002 1.23799194e+002 - 1.04299103e+002 1.17154663e+002 1.23808044e+002 1.04371719e+002 - 1.17227547e+002 1.23805435e+002 1.04430458e+002 1.17261513e+002 - 1.23788589e+002 1.04507858e+002 1.17332138e+002 1.23779045e+002 - 1.04591240e+002 1.17385826e+002 1.23765381e+002 1.04632126e+002 - 1.17432861e+002 1.23739822e+002 1.04720993e+002 1.17487335e+002 - 1.23755394e+002 1.04797478e+002 1.17559990e+002 1.23766907e+002 - 1.04899948e+002 1.17628983e+002 1.23788300e+002 1.04986084e+002 - 1.17717476e+002 1.23803314e+002 1.05116325e+002 1.17830635e+002 - 1.23843712e+002 1.05213188e+002 1.17920853e+002 1.23869202e+002 - 1.05316238e+002 1.17998581e+002 1.23891518e+002 1.05405762e+002 - 1.18085434e+002 1.23922020e+002 1.05492180e+002 1.18120354e+002 - 1.23906265e+002 1.05552612e+002 1.18167542e+002 1.23896103e+002 - 1.05620689e+002 1.18190590e+002 1.23870872e+002 1.05621811e+002 - 1.18182602e+002 1.23804138e+002 1.05626572e+002 1.18143372e+002 - 1.23733376e+002 1.05601456e+002 1.18101395e+002 1.23633644e+002 - 1.05615494e+002 1.18133446e+002 1.23738861e+002 1.05643181e+002 - 1.18214195e+002 1.23851082e+002 1.05653725e+002 1.18235573e+002 - 1.23923553e+002 1.05603096e+002 1.18219780e+002 1.23950874e+002 - 1.05552849e+002 1.18191231e+002 1.23985733e+002 1.05469742e+002 - 1.18146408e+002 1.23980614e+002 1.05370308e+002 1.18073296e+002 - 1.23976082e+002 1.05266464e+002 1.17992798e+002 1.23942299e+002 - 1.05199364e+002 1.17937523e+002 1.23957794e+002 1.05105324e+002 - 1.17877228e+002 1.23946945e+002 1.05031792e+002 1.17799500e+002 - 1.23963165e+002 1.04965790e+002 1.17759163e+002 1.23972198e+002 - 1.04881187e+002 1.17681877e+002 1.23964615e+002 1.04775795e+002 - 1.17599304e+002 1.23928047e+002 1.04702721e+002 1.17525047e+002 - 1.23922188e+002 1.04603058e+002 1.17451401e+002 1.23898125e+002 - 1.04522644e+002 1.17389145e+002 1.23922089e+002 1.04386864e+002 - 1.17289291e+002 1.23872597e+002 1.04291061e+002 1.17175591e+002 - 1.23838371e+002 1.04214203e+002 1.17117523e+002 1.23823753e+002 - 1.04174660e+002 1.17066628e+002 1.23853638e+002 1.04102371e+002 - 1.17013702e+002 1.23858185e+002 1.04013023e+002 1.16929489e+002 - 1.23849281e+002 1.03958878e+002 1.16893501e+002 1.23864128e+002 - 1.03907494e+002 1.16836739e+002 1.23888634e+002 1.03830200e+002 - 1.16776207e+002 1.23885513e+002 1.03793877e+002 1.16714066e+002 - 1.23925423e+002 1.03738464e+002 1.16673416e+002 1.23934990e+002 - 1.03702644e+002 1.16638145e+002 1.23983551e+002 1.03622238e+002 - 1.16583641e+002 1.23969147e+002 1.03565971e+002 1.16517715e+002 - 1.23974434e+002 1.03518211e+002 1.16488670e+002 1.23989990e+002 - 1.03447357e+002 1.16427376e+002 1.24018364e+002 1.03343369e+002 - 1.16354614e+002 1.23985031e+002 1.03318634e+002 1.16306076e+002 - 1.24011551e+002 1.03251152e+002 1.16251648e+002 1.24006279e+002 - 1.03210159e+002 1.16195015e+002 1.24030533e+002 1.03137886e+002 - 1.16139137e+002 1.24017128e+002 1.03117485e+002 1.16119606e+002 - 1.24069092e+002 1.03075783e+002 1.16091179e+002 1.24079597e+002 - 1.03015503e+002 1.16028625e+002 1.24083717e+002 1.02956497e+002 - 1.15983727e+002 1.24085442e+002 1.02930901e+002 1.15922882e+002 - 1.24114243e+002 1.02895485e+002 1.15900795e+002 1.24134995e+002 - 1.02856483e+002 1.15857582e+002 1.24155380e+002 1.02770332e+002 - 1.15784363e+002 1.24120224e+002 1.02743317e+002 1.15747917e+002 - 1.24138123e+002 1.02698242e+002 1.15714577e+002 1.24139771e+002 - 1.02666924e+002 1.15677711e+002 1.24180878e+002 1.02611649e+002 - 1.15647720e+002 1.24192207e+002 1.02582680e+002 1.15599854e+002 - 1.24195457e+002 1.02548210e+002 1.15576584e+002 1.24213501e+002 - 1.02513947e+002 1.15524513e+002 1.24224953e+002 1.02456558e+002 - 1.15475815e+002 1.24224487e+002 1.02459709e+002 1.15476189e+002 - 1.24288498e+002 1.02426399e+002 1.15456421e+002 1.24306389e+002 - 1.02385582e+002 1.15404480e+002 1.24316055e+002 1.02334770e+002 - 1.15363159e+002 1.24318527e+002 1.02340240e+002 1.15337479e+002 - 1.24365471e+002 1.02327950e+002 1.15332695e+002 1.24398407e+002 - 1.02314590e+002 1.15314705e+002 1.24426331e+002 1.02250458e+002 - 1.15269508e+002 1.24401779e+002 1.02230644e+002 1.15226418e+002 - 1.24410332e+002 1.02229797e+002 1.15233566e+002 1.24435349e+002 - 1.02197586e+002 1.15193649e+002 1.24465767e+002 1.02141769e+002 - 1.15156380e+002 1.24464157e+002 1.02134178e+002 1.15130966e+002 - 1.24489571e+002 1.02103462e+002 1.15110748e+002 1.24497002e+002 - 1.02082245e+002 1.15078857e+002 1.24527428e+002 1.02055183e+002 - 1.15064651e+002 1.24549141e+002 1.02024033e+002 1.15038475e+002 - 1.24566704e+002 1.02019295e+002 1.15041489e+002 1.24596848e+002 - 1.01992798e+002 1.14999664e+002 1.24614037e+002 1.01929626e+002 - 1.14946159e+002 1.24595543e+002 1.01940002e+002 1.14918953e+002 - 1.24638367e+002 1.01913086e+002 1.14901016e+002 1.24650299e+002 - 1.01885262e+002 1.14862938e+002 1.24661217e+002 1.01861481e+002 - 1.14848152e+002 1.24665741e+002 1.01836983e+002 1.14811737e+002 - 1.24674171e+002 1.01806152e+002 1.14782600e+002 1.24674393e+002 - 1.01800323e+002 1.14773735e+002 1.24714104e+002 1.01775208e+002 - 1.14771797e+002 1.24735451e+002 1.01765251e+002 1.14741608e+002 - 1.24743416e+002 1.01753517e+002 1.14729507e+002 1.24753456e+002 - 1.01741875e+002 1.14692772e+002 1.24766685e+002 1.01690269e+002 - 1.14641861e+002 1.24740685e+002 1.01699837e+002 1.14655937e+002 - 1.24782196e+002 1.01713669e+002 1.14678970e+002 1.24821907e+002 - 1.01716316e+002 1.14674606e+002 1.24847435e+002 1.01700073e+002 - 1.14666969e+002 1.24858337e+002 1.01706924e+002 1.14644112e+002 - 1.24884735e+002 1.01715179e+002 1.14664604e+002 1.24926613e+002 - 1.01718307e+002 1.14672089e+002 1.24944382e+002 1.01682121e+002 - 1.14657814e+002 1.24931595e+002 1.01692307e+002 1.14651779e+002 - 1.24963081e+002 1.01709808e+002 1.14671799e+002 1.24997139e+002 - 1.01712952e+002 1.14669441e+002 1.25029915e+002 1.01671272e+002 - 1.14646347e+002 1.25027794e+002 1.01683167e+002 1.14642540e+002 - 1.25046951e+002 1.01668365e+002 1.14641586e+002 1.25051102e+002 - 1.01658707e+002 1.14609680e+002 1.25055458e+002 1.01646690e+002 - 1.14611641e+002 1.25058296e+002 1.01631432e+002 1.14594437e+002 - 1.25059013e+002 1.01600967e+002 1.14572388e+002 1.25034729e+002 - 1.01626961e+002 1.14590996e+002 1.25069046e+002 1.01615158e+002 - 1.14601341e+002 1.25077126e+002 1.01631355e+002 1.14584457e+002 - 1.25091103e+002 1.01666870e+002 1.14633995e+002 1.25134171e+002 - 1.01681808e+002 1.14650497e+002 1.25157288e+002 1.01637520e+002 - 1.14617790e+002 1.25117111e+002 1.01638092e+002 1.14606812e+002 - 1.25129990e+002 1.01636009e+002 1.14613655e+002 1.25120071e+002 - 1.01632072e+002 1.14601143e+002 1.25116730e+002 1.01588249e+002 - 1.14580162e+002 1.25083435e+002 1.01585739e+002 1.14566330e+002 - 1.25080688e+002 1.01569626e+002 1.14550674e+002 1.25054207e+002 - 1.01576324e+002 1.14539108e+002 1.25057671e+002 1.01576714e+002 - 1.14554543e+002 1.25050400e+002 1.01569298e+002 1.14539436e+002 - 1.25032150e+002 1.01567894e+002 1.14549347e+002 1.25020729e+002 - 1.01551147e+002 1.14519814e+002 1.24990891e+002 1.01538216e+002 - 1.14518906e+002 1.24975616e+002 1.01569229e+002 1.14522545e+002 - 1.24994690e+002 1.01577469e+002 1.14543739e+002 1.24987732e+002 - 1.01591942e+002 1.14556458e+002 1.24980873e+002 1.01580879e+002 - 1.14568718e+002 1.24958298e+002 1.01597832e+002 1.14565948e+002 - 1.24954773e+002 1.01604416e+002 1.14586838e+002 1.24937355e+002 - 1.01618248e+002 1.14598442e+002 1.24934952e+002 1.01610451e+002 - 1.14615227e+002 1.24919044e+002 1.01630424e+002 1.14602623e+002 - 1.24901245e+002 1.01619690e+002 1.14603577e+002 1.24870705e+002 - 1.01621178e+002 1.14587151e+002 1.24842216e+002 1.01587013e+002 - 1.14568909e+002 1.24781258e+002 1.01614311e+002 1.14594009e+002 - 1.24787086e+002 1.01618355e+002 1.14612640e+002 1.24764000e+002 - 1.01611313e+002 1.14593307e+002 1.24725647e+002 1.01622116e+002 - 1.14622520e+002 1.24716179e+002 1.01664474e+002 1.14633659e+002 - 1.24730164e+002 1.01663940e+002 1.14647621e+002 1.24703064e+002 - 1.01685799e+002 1.14662407e+002 1.24696251e+002 1.01667984e+002 - 1.14659782e+002 1.24651848e+002 1.01683014e+002 1.14666328e+002 - 1.24642334e+002 1.01739006e+002 1.14730782e+002 1.24664711e+002 - 1.01781464e+002 1.14763176e+002 1.24658348e+002 1.01768394e+002 - 1.14772606e+002 1.24625938e+002 1.01760071e+002 1.14744980e+002 - 1.24573013e+002 1.01765778e+002 1.14765404e+002 1.24548706e+002 - 1.01778587e+002 1.14758545e+002 1.24516678e+002 1.01791443e+002 - 1.14782402e+002 1.24484802e+002 1.01830872e+002 1.14816269e+002 - 1.24476425e+002 1.01861801e+002 1.14855080e+002 1.24466347e+002 - 1.01866371e+002 1.14848289e+002 1.24428268e+002 1.01878052e+002 - 1.14880157e+002 1.24411560e+002 1.01942207e+002 1.14917175e+002 - 1.24420425e+002 1.01974625e+002 1.14971603e+002 1.24424408e+002 - 1.01986313e+002 1.14978760e+002 1.24385780e+002 1.01986259e+002 - 1.14997765e+002 1.24354149e+002 1.02015694e+002 1.15017746e+002 - 1.24346420e+002 1.02043335e+002 1.15054886e+002 1.24325172e+002 - 1.02094528e+002 1.15095665e+002 1.24312370e+002 1.02104584e+002 - 1.15127113e+002 1.24282448e+002 1.02134834e+002 1.15137039e+002 - 1.24270409e+002 1.02145714e+002 1.15163101e+002 1.24237717e+002 - 1.02198730e+002 1.15189331e+002 1.24229134e+002 1.02228386e+002 - 1.15237984e+002 1.24214203e+002 1.02284370e+002 1.15279022e+002 - 1.24206009e+002 1.02314461e+002 1.15322968e+002 1.24186127e+002 - 1.02329475e+002 1.15324219e+002 1.24144516e+002 1.02361366e+002 - 1.15370316e+002 1.24124397e+002 1.02393791e+002 1.15369141e+002 - 1.24086678e+002 1.02454872e+002 1.15437149e+002 1.24087563e+002 - 1.02500862e+002 1.15478828e+002 1.24076614e+002 1.02513100e+002 - 1.15518669e+002 1.24046265e+002 1.02555458e+002 1.15544151e+002 - 1.24042358e+002 1.02584496e+002 1.15580109e+002 1.24009590e+002 - 1.02635345e+002 1.15629105e+002 1.23992691e+002 1.02652275e+002 - 1.15666908e+002 1.23954361e+002 1.02715042e+002 1.15711349e+002 - 1.23967766e+002 1.02767517e+002 1.15780174e+002 1.23974655e+002 - 1.02825722e+002 1.15811722e+002 1.23966537e+002 1.02835365e+002 - 1.15834503e+002 1.23924774e+002 1.02868843e+002 1.15853363e+002 - 1.23893456e+002 1.02919334e+002 1.15911629e+002 1.23885651e+002 - 1.02949020e+002 1.15925308e+002 1.23852539e+002 1.02979485e+002 - 1.15964874e+002 1.23829254e+002 1.03066795e+002 1.16026138e+002 - 1.23846344e+002 1.03118080e+002 1.16095688e+002 1.23848145e+002 - 1.03184547e+002 1.16158096e+002 1.23855438e+002 1.03202621e+002 - 1.16196587e+002 1.23821068e+002 1.03270737e+002 1.16241791e+002 - 1.23828163e+002 1.03347496e+002 1.16329155e+002 1.23831245e+002 - 1.03409714e+002 1.16364822e+002 1.23793068e+002 1.03441177e+002 - 1.16409004e+002 1.23760712e+002 1.03502968e+002 1.16444885e+002 - 1.23752747e+002 1.03561142e+002 1.16507378e+002 1.23749001e+002 - 1.03627266e+002 1.16552383e+002 1.23747528e+002 1.03691399e+002 - 1.16617500e+002 1.23742851e+002 1.03744164e+002 1.16660149e+002 - 1.23719742e+002 1.03822617e+002 1.16749367e+002 1.23740196e+002 - 1.03893593e+002 1.16797424e+002 1.23741516e+002 1.03940117e+002 - 1.16860992e+002 1.23732002e+002 1.04062965e+002 1.16938957e+002 - 1.23762474e+002 1.04114922e+002 1.17002274e+002 1.23754417e+002 - 1.04198898e+002 1.17063698e+002 1.23757393e+002 1.04259407e+002 - 1.17133446e+002 1.23754768e+002 1.04337227e+002 1.17188766e+002 - 1.23755241e+002 1.04405388e+002 1.17249275e+002 1.23737968e+002 - 1.04487877e+002 1.17301003e+002 1.23710556e+002 1.04536636e+002 - 1.17349037e+002 1.23693024e+002 1.04639442e+002 1.17413628e+002 - 1.23723824e+002 1.04718994e+002 1.17492874e+002 1.23733376e+002 - 1.04824974e+002 1.17569946e+002 1.23757713e+002 1.04919601e+002 - 1.17666054e+002 1.23782379e+002 1.05026505e+002 1.17756302e+002 - 1.23805260e+002 1.05115562e+002 1.17843567e+002 1.23824982e+002 - 1.05205818e+002 1.17905273e+002 1.23832062e+002 1.05291626e+002 - 1.17987404e+002 1.23853058e+002 1.05378662e+002 1.18016800e+002 - 1.23845825e+002 1.05450096e+002 1.18081818e+002 1.23847694e+002 - 1.05526085e+002 1.18108841e+002 1.23825577e+002 1.05545959e+002 - 1.18125191e+002 1.23779259e+002 1.05571198e+002 1.18107483e+002 - 1.23737694e+002 1.05533623e+002 1.18059402e+002 1.23625000e+002 - 1.05512390e+002 1.18061661e+002 1.23695694e+002 1.05548592e+002 - 1.18145096e+002 1.23810516e+002 1.05542847e+002 1.18150406e+002 - 1.23871727e+002 1.05502838e+002 1.18148331e+002 1.23908989e+002 - 1.05458847e+002 1.18119568e+002 1.23949944e+002 1.05372444e+002 - 1.18073914e+002 1.23941185e+002 1.05277466e+002 1.18003113e+002 - 1.23940788e+002 1.05173660e+002 1.17932343e+002 1.23911575e+002 - 1.05103622e+002 1.17868851e+002 1.23922295e+002 1.04988754e+002 - 1.17782288e+002 1.23885338e+002 1.04930359e+002 1.17721710e+002 - 1.23916359e+002 1.04855385e+002 1.17671539e+002 1.23920403e+002 - 1.04775185e+002 1.17601089e+002 1.23913551e+002 1.04662292e+002 - 1.17515030e+002 1.23875687e+002 1.04579018e+002 1.17427650e+002 - 1.23859047e+002 1.04504265e+002 1.17378258e+002 1.23858475e+002 - 1.04430084e+002 1.17327126e+002 1.23891754e+002 1.04303490e+002 - 1.17230217e+002 1.23851768e+002 1.04195694e+002 1.17100220e+002 - 1.23796478e+002 1.04102318e+002 1.17028114e+002 1.23770470e+002 - 1.04059921e+002 1.16969559e+002 1.23796066e+002 1.04001526e+002 - 1.16932426e+002 1.23810806e+002 1.03920868e+002 1.16862816e+002 - 1.23821274e+002 1.03860466e+002 1.16812439e+002 1.23823906e+002 - 1.03815475e+002 1.16760605e+002 1.23850540e+002 1.03739632e+002 - 1.16704285e+002 1.23850082e+002 1.03701210e+002 1.16644661e+002 - 1.23885277e+002 1.03631691e+002 1.16586266e+002 1.23887932e+002 - 1.03600456e+002 1.16557320e+002 1.23935158e+002 1.03504005e+002 - 1.16482773e+002 1.23904297e+002 1.03452957e+002 1.16423668e+002 - 1.23918373e+002 1.03408119e+002 1.16399025e+002 1.23936630e+002 - 1.03329369e+002 1.16329491e+002 1.23953354e+002 1.03234818e+002 - 1.16259705e+002 1.23932129e+002 1.03180870e+002 1.16187447e+002 - 1.23932457e+002 1.03133247e+002 1.16152023e+002 1.23944221e+002 - 1.03084824e+002 1.16088120e+002 1.23958893e+002 1.03009865e+002 - 1.16030197e+002 1.23952049e+002 1.02974815e+002 1.15995369e+002 - 1.23984245e+002 1.02949707e+002 1.15983665e+002 1.24018539e+002 - 1.02898949e+002 1.15928345e+002 1.24019554e+002 1.02819000e+002 - 1.15859116e+002 1.23997238e+002 1.02788361e+002 1.15805054e+002 - 1.24032516e+002 1.02764229e+002 1.15783974e+002 1.24062012e+002 - 1.02735039e+002 1.15756424e+002 1.24093910e+002 1.02659874e+002 - 1.15699913e+002 1.24066322e+002 1.02644630e+002 1.15674438e+002 - 1.24095772e+002 1.02585114e+002 1.15623009e+002 1.24083305e+002 - 1.02545197e+002 1.15577995e+002 1.24121460e+002 1.02483841e+002 - 1.15539757e+002 1.24126816e+002 1.02456650e+002 1.15500130e+002 - 1.24136322e+002 1.02418968e+002 1.15464424e+002 1.24142464e+002 - 1.02399040e+002 1.15429146e+002 1.24172211e+002 1.02370872e+002 - 1.15411552e+002 1.24198578e+002 1.02344810e+002 1.15383926e+002 - 1.24232895e+002 1.02306435e+002 1.15358322e+002 1.24245461e+002 - 1.02258110e+002 1.15299744e+002 1.24248291e+002 1.02222649e+002 - 1.15276764e+002 1.24266716e+002 1.02220741e+002 1.15233376e+002 - 1.24307228e+002 1.02198669e+002 1.15222076e+002 1.24335823e+002 - 1.02191490e+002 1.15211357e+002 1.24373077e+002 1.02132378e+002 - 1.15167908e+002 1.24344208e+002 1.02091698e+002 1.15112862e+002 - 1.24336174e+002 1.02074020e+002 1.15098900e+002 1.24349464e+002 - 1.02057648e+002 1.15071648e+002 1.24395607e+002 1.01986000e+002 - 1.15026825e+002 1.24376549e+002 1.01984566e+002 1.15000549e+002 - 1.24401939e+002 1.01959167e+002 1.14992142e+002 1.24419563e+002 - 1.01961334e+002 1.14975571e+002 1.24464500e+002 1.01914459e+002 - 1.14947365e+002 1.24471581e+002 1.01900589e+002 1.14932625e+002 - 1.24509232e+002 1.01879173e+002 1.14914253e+002 1.24517807e+002 - 1.01861076e+002 1.14880486e+002 1.24539818e+002 1.01815056e+002 - 1.14844444e+002 1.24535561e+002 1.01811432e+002 1.14805092e+002 - 1.24562973e+002 1.01785439e+002 1.14783371e+002 1.24573486e+002 - 1.01768028e+002 1.14758698e+002 1.24595490e+002 1.01753990e+002 - 1.14757462e+002 1.24613052e+002 1.01742676e+002 1.14733109e+002 - 1.24636826e+002 1.01712631e+002 1.14708290e+002 1.24635605e+002 - 1.01690636e+002 1.14679321e+002 1.24659866e+002 1.01647713e+002 - 1.14656761e+002 1.24664391e+002 1.01624214e+002 1.14610291e+002 - 1.24659927e+002 1.01599022e+002 1.14597778e+002 1.24660355e+002 - 1.01612816e+002 1.14582634e+002 1.24691811e+002 1.01583481e+002 - 1.14568420e+002 1.24700134e+002 1.01577057e+002 1.14556854e+002 - 1.24729118e+002 1.01570747e+002 1.14557831e+002 1.24746506e+002 - 1.01579025e+002 1.14552933e+002 1.24774338e+002 1.01559952e+002 - 1.14545227e+002 1.24784828e+002 1.01554550e+002 1.14507614e+002 - 1.24800179e+002 1.01546295e+002 1.14510757e+002 1.24817947e+002 - 1.01571243e+002 1.14540207e+002 1.24860710e+002 1.01547401e+002 - 1.14534035e+002 1.24860237e+002 1.01542664e+002 1.14516693e+002 - 1.24873360e+002 1.01549484e+002 1.14520752e+002 1.24891182e+002 - 1.01548912e+002 1.14522064e+002 1.24929199e+002 1.01488083e+002 - 1.14485931e+002 1.24903946e+002 1.01503174e+002 1.14478043e+002 - 1.24935120e+002 1.01491707e+002 1.14474640e+002 1.24937157e+002 - 1.01497940e+002 1.14465752e+002 1.24953217e+002 1.01487083e+002 - 1.14467163e+002 1.24961060e+002 1.01481316e+002 1.14454170e+002 - 1.24966011e+002 1.01456085e+002 1.14438736e+002 1.24946648e+002 - 1.01465820e+002 1.14441498e+002 1.24974419e+002 1.01452385e+002 - 1.14440659e+002 1.24971535e+002 1.01458519e+002 1.14425415e+002 - 1.24985512e+002 1.01497391e+002 1.14474869e+002 1.25033493e+002 - 1.01513947e+002 1.14497398e+002 1.25057007e+002 1.01496880e+002 - 1.14498009e+002 1.25049866e+002 1.01501793e+002 1.14484886e+002 - 1.25058304e+002 1.01502083e+002 1.14496986e+002 1.25057129e+002 - 1.01482483e+002 1.14470947e+002 1.25039612e+002 1.01435303e+002 - 1.14450203e+002 1.25004265e+002 1.01433731e+002 1.14429482e+002 - 1.24995987e+002 1.01423576e+002 1.14432732e+002 1.24983223e+002 - 1.01453430e+002 1.14437737e+002 1.24997650e+002 1.01411354e+002 - 1.14408852e+002 1.24953964e+002 1.01419662e+002 1.14408142e+002 - 1.24946007e+002 1.01422707e+002 1.14422729e+002 1.24947182e+002 - 1.01416039e+002 1.14404709e+002 1.24929260e+002 1.01406235e+002 - 1.14409081e+002 1.24916595e+002 1.01438911e+002 1.14411179e+002 - 1.24927048e+002 1.01449028e+002 1.14435715e+002 1.24925903e+002 - 1.01473366e+002 1.14459106e+002 1.24926765e+002 1.01446754e+002 - 1.14451424e+002 1.24888924e+002 1.01442802e+002 1.14435402e+002 - 1.24866417e+002 1.01459518e+002 1.14460457e+002 1.24857079e+002 - 1.01468369e+002 1.14464149e+002 1.24850784e+002 1.01454109e+002 - 1.14474457e+002 1.24824921e+002 1.01479050e+002 1.14472145e+002 - 1.24818214e+002 1.01484291e+002 1.14489281e+002 1.24802086e+002 - 1.01486710e+002 1.14470871e+002 1.24772018e+002 1.01467148e+002 - 1.14464325e+002 1.24725296e+002 1.01477539e+002 1.14475807e+002 - 1.24709938e+002 1.01472069e+002 1.14483955e+002 1.24679642e+002 - 1.01487801e+002 1.14490379e+002 1.24661041e+002 1.01497353e+002 - 1.14512260e+002 1.24652512e+002 1.01519608e+002 1.14498199e+002 - 1.24637985e+002 1.01537880e+002 1.14534851e+002 1.24632942e+002 - 1.01553139e+002 1.14543343e+002 1.24626610e+002 1.01544250e+002 - 1.14550339e+002 1.24592102e+002 1.01556503e+002 1.14553322e+002 - 1.24581375e+002 1.01605217e+002 1.14614929e+002 1.24589119e+002 - 1.01647835e+002 1.14651405e+002 1.24591797e+002 1.01636688e+002 - 1.14660301e+002 1.24556213e+002 1.01626549e+002 1.14633797e+002 - 1.24509689e+002 1.01631638e+002 1.14650284e+002 1.24470879e+002 - 1.01658455e+002 1.14656761e+002 1.24457504e+002 1.01667053e+002 - 1.14680740e+002 1.24430542e+002 1.01688293e+002 1.14694489e+002 - 1.24404236e+002 1.01726364e+002 1.14739578e+002 1.24394295e+002 - 1.01752243e+002 1.14756294e+002 1.24378838e+002 1.01766510e+002 - 1.14785858e+002 1.24363548e+002 1.01825256e+002 1.14819794e+002 - 1.24372566e+002 1.01856033e+002 1.14867188e+002 1.24362488e+002 - 1.01846817e+002 1.14856010e+002 1.24311195e+002 1.01840965e+002 - 1.14865746e+002 1.24271881e+002 1.01872231e+002 1.14889374e+002 - 1.24266640e+002 1.01925713e+002 1.14949524e+002 1.24261719e+002 - 1.01983627e+002 1.14999115e+002 1.24259956e+002 1.01985977e+002 - 1.15025688e+002 1.24227272e+002 1.02026321e+002 1.15042885e+002 - 1.24219841e+002 1.02028580e+002 1.15062096e+002 1.24176071e+002 - 1.02072159e+002 1.15084198e+002 1.24166679e+002 1.02094254e+002 - 1.15116966e+002 1.24141632e+002 1.02162819e+002 1.15179665e+002 - 1.24153084e+002 1.02181747e+002 1.15212654e+002 1.24119308e+002 - 1.02218636e+002 1.15233437e+002 1.24101105e+002 1.02247971e+002 - 1.15278587e+002 1.24076401e+002 1.02301323e+002 1.15296692e+002 - 1.24057793e+002 1.02328873e+002 1.15338882e+002 1.24034790e+002 - 1.02366646e+002 1.15369026e+002 1.24006851e+002 1.02382805e+002 - 1.15409088e+002 1.23980972e+002 1.02428162e+002 1.15439598e+002 - 1.23981636e+002 1.02465874e+002 1.15484344e+002 1.23957481e+002 - 1.02531960e+002 1.15542343e+002 1.23945831e+002 1.02534256e+002 - 1.15568420e+002 1.23898987e+002 1.02574455e+002 1.15596710e+002 - 1.23896667e+002 1.02624214e+002 1.15654289e+002 1.23895462e+002 - 1.02682159e+002 1.15697311e+002 1.23889534e+002 1.02729187e+002 - 1.15755539e+002 1.23880592e+002 1.02756149e+002 1.15767014e+002 - 1.23845490e+002 1.02792442e+002 1.15811310e+002 1.23825981e+002 - 1.02821434e+002 1.15822342e+002 1.23794220e+002 1.02867523e+002 - 1.15876755e+002 1.23785362e+002 1.02932968e+002 1.15919952e+002 - 1.23780968e+002 1.02990547e+002 1.15993256e+002 1.23782906e+002 - 1.03059784e+002 1.16056503e+002 1.23794044e+002 1.03074738e+002 - 1.16090981e+002 1.23759155e+002 1.03113113e+002 1.16112823e+002 - 1.23736389e+002 1.03212502e+002 1.16212433e+002 1.23758888e+002 - 1.03284332e+002 1.16258606e+002 1.23727005e+002 1.03335144e+002 - 1.16328690e+002 1.23712067e+002 1.03402588e+002 1.16362549e+002 - 1.23708633e+002 1.03464142e+002 1.16436302e+002 1.23711044e+002 - 1.03519600e+002 1.16463516e+002 1.23696236e+002 1.03571922e+002 - 1.16521797e+002 1.23681984e+002 1.03643692e+002 1.16577972e+002 - 1.23678474e+002 1.03698250e+002 1.16642769e+002 1.23672829e+002 - 1.03767570e+002 1.16696930e+002 1.23676605e+002 1.03801559e+002 - 1.16744423e+002 1.23652214e+002 1.03917076e+002 1.16817505e+002 - 1.23682434e+002 1.03989586e+002 1.16897896e+002 1.23692078e+002 - 1.04057785e+002 1.16953934e+002 1.23678886e+002 1.04138451e+002 - 1.17043549e+002 1.23693512e+002 1.04212509e+002 1.17095917e+002 - 1.23694351e+002 1.04279411e+002 1.17148331e+002 1.23676064e+002 - 1.04358856e+002 1.17191238e+002 1.23641647e+002 1.04424561e+002 - 1.17264610e+002 1.23645592e+002 1.04529129e+002 1.17325470e+002 - 1.23669968e+002 1.04611725e+002 1.17408432e+002 1.23684669e+002 - 1.04721214e+002 1.17484375e+002 1.23710762e+002 1.04805397e+002 - 1.17573494e+002 1.23727821e+002 1.04911301e+002 1.17666359e+002 - 1.23745949e+002 1.05008873e+002 1.17756554e+002 1.23767929e+002 - 1.05086716e+002 1.17804771e+002 1.23772278e+002 1.05154037e+002 - 1.17869209e+002 1.23768379e+002 1.05256859e+002 1.17917053e+002 - 1.23780510e+002 1.05349525e+002 1.18000961e+002 1.23797279e+002 - 1.05413994e+002 1.18028763e+002 1.23778282e+002 1.05439278e+002 - 1.18047684e+002 1.23738235e+002 1.05482956e+002 1.18052780e+002 - 1.23709038e+002 1.05452316e+002 1.18008331e+002 1.23602646e+002 - 1.05386429e+002 1.17958405e+002 1.23623161e+002 1.05450661e+002 - 1.18063622e+002 1.23760353e+002 1.05460533e+002 1.18085815e+002 - 1.23832970e+002 1.05426018e+002 1.18087601e+002 1.23876854e+002 - 1.05356804e+002 1.18032860e+002 1.23891243e+002 1.05259369e+002 - 1.17971443e+002 1.23874962e+002 1.05165855e+002 1.17903282e+002 - 1.23876457e+002 1.05071228e+002 1.17842659e+002 1.23851692e+002 - 1.04983849e+002 1.17765091e+002 1.23851456e+002 1.04895088e+002 - 1.17706818e+002 1.23845558e+002 1.04824913e+002 1.17628853e+002 - 1.23856354e+002 1.04744766e+002 1.17576477e+002 1.23859795e+002 - 1.04669624e+002 1.17509438e+002 1.23859024e+002 1.04563332e+002 - 1.17429962e+002 1.23821198e+002 1.04452888e+002 1.17324028e+002 - 1.23782669e+002 1.04381218e+002 1.17277649e+002 1.23780746e+002 - 1.04305534e+002 1.17213867e+002 1.23811813e+002 1.04175613e+002 - 1.17111839e+002 1.23763374e+002 1.04093559e+002 1.17007423e+002 - 1.23735939e+002 1.04003838e+002 1.16937370e+002 1.23709808e+002 - 1.03941017e+002 1.16868782e+002 1.23723549e+002 1.03885475e+002 - 1.16828896e+002 1.23736298e+002 1.03819473e+002 1.16768654e+002 - 1.23755844e+002 1.03758110e+002 1.16722771e+002 1.23759041e+002 - 1.03708443e+002 1.16665916e+002 1.23782234e+002 1.03643280e+002 - 1.16615341e+002 1.23796219e+002 1.03585197e+002 1.16537872e+002 - 1.23809418e+002 1.03524185e+002 1.16486259e+002 1.23817474e+002 - 1.03478867e+002 1.16439728e+002 1.23855751e+002 1.03389908e+002 - 1.16374207e+002 1.23833893e+002 1.03342926e+002 1.16325981e+002 - 1.23852493e+002 1.03291748e+002 1.16289001e+002 1.23863083e+002 - 1.03214081e+002 1.16221863e+002 1.23875969e+002 1.03117393e+002 - 1.16148338e+002 1.23854202e+002 1.03056831e+002 1.16069450e+002 - 1.23846924e+002 1.03011734e+002 1.16037827e+002 1.23865883e+002 - 1.02956841e+002 1.15969643e+002 1.23875374e+002 1.02896393e+002 - 1.15927628e+002 1.23880692e+002 1.02870323e+002 1.15900978e+002 - 1.23924126e+002 1.02827271e+002 1.15870682e+002 1.23933891e+002 - 1.02773155e+002 1.15809822e+002 1.23937103e+002 1.02697151e+002 - 1.15746872e+002 1.23920631e+002 1.02652214e+002 1.15679733e+002 - 1.23935600e+002 1.02623444e+002 1.15659653e+002 1.23959480e+002 - 1.02596664e+002 1.15627144e+002 1.23999619e+002 1.02530235e+002 - 1.15583595e+002 1.23985336e+002 1.02533081e+002 1.15570122e+002 - 1.24028259e+002 1.02480621e+002 1.15529778e+002 1.24026031e+002 - 1.02423233e+002 1.15469460e+002 1.24044952e+002 1.02365509e+002 - 1.15434731e+002 1.24047974e+002 1.02323502e+002 1.15378654e+002 - 1.24049202e+002 1.02296959e+002 1.15358376e+002 1.24063461e+002 - 1.02299255e+002 1.15339851e+002 1.24122398e+002 1.02258308e+002 - 1.15313065e+002 1.24134407e+002 1.02204277e+002 1.15248451e+002 - 1.24144936e+002 1.02184868e+002 1.15245415e+002 1.24171364e+002 - 1.02143219e+002 1.15194832e+002 1.24179367e+002 1.02116020e+002 - 1.15169670e+002 1.24207443e+002 1.02106285e+002 1.15132996e+002 - 1.24239143e+002 1.02081627e+002 1.15114723e+002 1.24261681e+002 - 1.02060074e+002 1.15088181e+002 1.24284462e+002 1.01997765e+002 - 1.15036804e+002 1.24256798e+002 1.01974472e+002 1.15000076e+002 - 1.24260796e+002 1.01943054e+002 1.14977081e+002 1.24267204e+002 - 1.01932304e+002 1.14955116e+002 1.24318954e+002 1.01858620e+002 - 1.14905426e+002 1.24300537e+002 1.01848869e+002 1.14877373e+002 - 1.24320244e+002 1.01832809e+002 1.14868584e+002 1.24342804e+002 - 1.01841919e+002 1.14867645e+002 1.24397011e+002 1.01785957e+002 - 1.14827507e+002 1.24395134e+002 1.01780243e+002 1.14814995e+002 - 1.24432838e+002 1.01743988e+002 1.14786255e+002 1.24431450e+002 - 1.01715652e+002 1.14737625e+002 1.24436531e+002 1.01674225e+002 - 1.14705055e+002 1.24439629e+002 1.01673058e+002 1.14672951e+002 - 1.24468269e+002 1.01623772e+002 1.14634499e+002 1.24460838e+002 - 1.01616562e+002 1.14611053e+002 1.24484505e+002 1.01602455e+002 - 1.14614601e+002 1.24511589e+002 1.01593544e+002 1.14593719e+002 - 1.24527412e+002 1.01571907e+002 1.14578522e+002 1.24535706e+002 - 1.01553406e+002 1.14546013e+002 1.24565231e+002 1.01503853e+002 - 1.14523911e+002 1.24564217e+002 1.01523834e+002 1.14526184e+002 - 1.24605316e+002 1.01488197e+002 1.14493523e+002 1.24596291e+002 - 1.01478180e+002 1.14460846e+002 1.24607239e+002 1.01466644e+002 - 1.14460320e+002 1.24629021e+002 1.01475708e+002 1.14464279e+002 - 1.24671059e+002 1.01472900e+002 1.14465599e+002 1.24689354e+002 - 1.01459885e+002 1.14446754e+002 1.24705902e+002 1.01444557e+002 - 1.14441856e+002 1.24716164e+002 1.01437538e+002 1.14399185e+002 - 1.24732552e+002 1.01423668e+002 1.14399513e+002 1.24742821e+002 - 1.01437630e+002 1.14409126e+002 1.24773468e+002 1.01423576e+002 - 1.14418121e+002 1.24784851e+002 1.01414719e+002 1.14394630e+002 - 1.24791283e+002 1.01409798e+002 1.14395599e+002 1.24801651e+002 - 1.01390442e+002 1.14369278e+002 1.24813690e+002 1.01363541e+002 - 1.14369835e+002 1.24831100e+002 1.01388008e+002 1.14368202e+002 - 1.24858185e+002 1.01367058e+002 1.14357140e+002 1.24857529e+002 - 1.01385315e+002 1.14354576e+002 1.24885712e+002 1.01370239e+002 - 1.14357376e+002 1.24892891e+002 1.01348274e+002 1.14326889e+002 - 1.24879677e+002 1.01330261e+002 1.14323128e+002 1.24875885e+002 - 1.01355057e+002 1.14330482e+002 1.24903557e+002 1.01320862e+002 - 1.14312279e+002 1.24891411e+002 1.01327065e+002 1.14292732e+002 - 1.24896553e+002 1.01337433e+002 1.14323891e+002 1.24923851e+002 - 1.01357018e+002 1.14340080e+002 1.24953590e+002 1.01332870e+002 - 1.14336403e+002 1.24939560e+002 1.01339684e+002 1.14335335e+002 - 1.24954834e+002 1.01335213e+002 1.14336884e+002 1.24949654e+002 - 1.01330429e+002 1.14323830e+002 1.24940598e+002 1.01293190e+002 - 1.14317413e+002 1.24922966e+002 1.01304810e+002 1.14308121e+002 - 1.24919991e+002 1.01302612e+002 1.14319511e+002 1.24912537e+002 - 1.01346367e+002 1.14343178e+002 1.24952087e+002 1.01307076e+002 - 1.14315102e+002 1.24903648e+002 1.01283760e+002 1.14278381e+002 - 1.24870575e+002 1.01287178e+002 1.14297577e+002 1.24865028e+002 - 1.01278244e+002 1.14279984e+002 1.24851494e+002 1.01272293e+002 - 1.14283775e+002 1.24840515e+002 1.01314240e+002 1.14297951e+002 - 1.24859062e+002 1.01298416e+002 1.14294891e+002 1.24828590e+002 - 1.01323555e+002 1.14314415e+002 1.24835594e+002 1.01282310e+002 - 1.14297752e+002 1.24784821e+002 1.01289574e+002 1.14294380e+002 - 1.24771141e+002 1.01312164e+002 1.14331657e+002 1.24760864e+002 - 1.01322823e+002 1.14326874e+002 1.24755653e+002 1.01296867e+002 - 1.14327164e+002 1.24720352e+002 1.01321098e+002 1.14325104e+002 - 1.24710197e+002 1.01328270e+002 1.14338326e+002 1.24698509e+002 - 1.01347878e+002 1.14344757e+002 1.24680946e+002 1.01346184e+002 - 1.14351707e+002 1.24647179e+002 1.01356781e+002 1.14355591e+002 - 1.24635490e+002 1.01352173e+002 1.14365501e+002 1.24599586e+002 - 1.01343987e+002 1.14349159e+002 1.24565483e+002 1.01338120e+002 - 1.14359688e+002 1.24543137e+002 1.01344765e+002 1.14339027e+002 - 1.24519035e+002 1.01367905e+002 1.14373932e+002 1.24515213e+002 - 1.01395874e+002 1.14393105e+002 1.24518234e+002 1.01389931e+002 - 1.14404915e+002 1.24490295e+002 1.01419518e+002 1.14436012e+002 - 1.24496994e+002 1.01453911e+002 1.14470612e+002 1.24488884e+002 - 1.01492744e+002 1.14502815e+002 1.24482346e+002 1.01476669e+002 - 1.14514427e+002 1.24447334e+002 1.01478745e+002 1.14495758e+002 - 1.24406441e+002 1.01486069e+002 1.14514107e+002 1.24380989e+002 - 1.01520943e+002 1.14529556e+002 1.24368599e+002 1.01538368e+002 - 1.14563950e+002 1.24350716e+002 1.01561218e+002 1.14580879e+002 - 1.24320938e+002 1.01599777e+002 1.14625244e+002 1.24319252e+002 - 1.01631180e+002 1.14646751e+002 1.24303680e+002 1.01638649e+002 - 1.14667557e+002 1.24275604e+002 1.01671356e+002 1.14676346e+002 - 1.24262856e+002 1.01704178e+002 1.14720291e+002 1.24252716e+002 - 1.01701118e+002 1.14717796e+002 1.24208954e+002 1.01688103e+002 - 1.14725113e+002 1.24163445e+002 1.01727943e+002 1.14754715e+002 - 1.24171486e+002 1.01788254e+002 1.14824486e+002 1.24179695e+002 - 1.01832817e+002 1.14857254e+002 1.24157387e+002 1.01846336e+002 - 1.14894051e+002 1.24134995e+002 1.01884499e+002 1.14913292e+002 - 1.24121208e+002 1.01910149e+002 1.14945297e+002 1.24100777e+002 - 1.01940132e+002 1.14959061e+002 1.24078659e+002 1.01953865e+002 - 1.14987778e+002 1.24047150e+002 1.02005920e+002 1.15027023e+002 - 1.24042282e+002 1.02021744e+002 1.15057571e+002 1.24001244e+002 - 1.02076591e+002 1.15104095e+002 1.24003693e+002 1.02122353e+002 - 1.15159630e+002 1.24003006e+002 1.02172943e+002 1.15185883e+002 - 1.23974121e+002 1.02212563e+002 1.15236938e+002 1.23960365e+002 - 1.02238068e+002 1.15251709e+002 1.23923004e+002 1.02250710e+002 - 1.15280518e+002 1.23892952e+002 1.02311012e+002 1.15330971e+002 - 1.23909592e+002 1.02349800e+002 1.15384178e+002 1.23895950e+002 - 1.02414047e+002 1.15443481e+002 1.23878632e+002 1.02426598e+002 - 1.15476906e+002 1.23840569e+002 1.02485252e+002 1.15524361e+002 - 1.23852280e+002 1.02503189e+002 1.15548225e+002 1.23818871e+002 - 1.02559166e+002 1.15583359e+002 1.23809204e+002 1.02629196e+002 - 1.15669106e+002 1.23832489e+002 1.02649933e+002 1.15669579e+002 - 1.23783180e+002 1.02664925e+002 1.15696663e+002 1.23748589e+002 - 1.02695763e+002 1.15710068e+002 1.23715576e+002 1.02738129e+002 - 1.15763763e+002 1.23702263e+002 1.02824455e+002 1.15819717e+002 - 1.23717018e+002 1.02873291e+002 1.15893051e+002 1.23716301e+002 - 1.02941658e+002 1.15951309e+002 1.23721100e+002 1.02948860e+002 - 1.15974228e+002 1.23676178e+002 1.03001373e+002 1.16016472e+002 - 1.23669411e+002 1.03078598e+002 1.16094963e+002 1.23669250e+002 - 1.03179535e+002 1.16167435e+002 1.23670982e+002 1.03223404e+002 - 1.16230957e+002 1.23649742e+002 1.03283226e+002 1.16261276e+002 - 1.23636765e+002 1.03345490e+002 1.16331139e+002 1.23638237e+002 - 1.03409271e+002 1.16371452e+002 1.23630219e+002 1.03453262e+002 - 1.16420578e+002 1.23611473e+002 1.03519745e+002 1.16471848e+002 - 1.23601845e+002 1.03570618e+002 1.16525574e+002 1.23582840e+002 - 1.03636894e+002 1.16576889e+002 1.23583534e+002 1.03683090e+002 - 1.16633934e+002 1.23577057e+002 1.03790634e+002 1.16707733e+002 - 1.23603058e+002 1.03863823e+002 1.16788536e+002 1.23607590e+002 - 1.03942863e+002 1.16851852e+002 1.23612022e+002 1.04008598e+002 - 1.16923111e+002 1.23611038e+002 1.04085075e+002 1.16980309e+002 - 1.23616142e+002 1.04162544e+002 1.17051216e+002 1.23612221e+002 - 1.04247108e+002 1.17097916e+002 1.23579430e+002 1.04341125e+002 - 1.17189606e+002 1.23597649e+002 1.04431358e+002 1.17245216e+002 - 1.23610611e+002 1.04506470e+002 1.17317772e+002 1.23617378e+002 - 1.04613754e+002 1.17388512e+002 1.23641075e+002 1.04702538e+002 - 1.17481941e+002 1.23662880e+002 1.04814125e+002 1.17579338e+002 - 1.23691177e+002 1.04906456e+002 1.17663857e+002 1.23706085e+002 - 1.04994232e+002 1.17725082e+002 1.23719429e+002 1.05060364e+002 - 1.17787186e+002 1.23719048e+002 1.05155724e+002 1.17831596e+002 - 1.23714851e+002 1.05246620e+002 1.17912819e+002 1.23735039e+002 - 1.05319427e+002 1.17940872e+002 1.23717880e+002 1.05329544e+002 - 1.17954659e+002 1.23668922e+002 1.05363739e+002 1.17952423e+002 - 1.23632721e+002 1.05355919e+002 1.17924973e+002 1.23549217e+002 - 1.05298233e+002 1.17882813e+002 1.23575333e+002 1.05343079e+002 - 1.17970306e+002 1.23695000e+002 1.05344292e+002 1.17987038e+002 - 1.23768234e+002 1.05316727e+002 1.17996323e+002 1.23810928e+002 - 1.05255760e+002 1.17945961e+002 1.23832123e+002 1.05142311e+002 - 1.17871910e+002 1.23804710e+002 1.05035919e+002 1.17785202e+002 - 1.23790100e+002 1.04953812e+002 1.17737793e+002 1.23778610e+002 - 1.04884102e+002 1.17676735e+002 1.23792320e+002 1.04792717e+002 - 1.17614090e+002 1.23783470e+002 1.04720901e+002 1.17535316e+002 - 1.23790962e+002 1.04626068e+002 1.17467178e+002 1.23783928e+002 - 1.04548927e+002 1.17402908e+002 1.23784164e+002 1.04440987e+002 - 1.17322510e+002 1.23744225e+002 1.04339935e+002 1.17223450e+002 - 1.23703140e+002 1.04261871e+002 1.17168388e+002 1.23701241e+002 - 1.04184769e+002 1.17098351e+002 1.23733887e+002 1.04047211e+002 - 1.16997078e+002 1.23676262e+002 1.03974098e+002 1.16911469e+002 - 1.23666771e+002 1.03888016e+002 1.16839287e+002 1.23645081e+002 - 1.03828186e+002 1.16773544e+002 1.23653839e+002 1.03769951e+002 - 1.16728661e+002 1.23668724e+002 1.03710457e+002 1.16673721e+002 - 1.23692398e+002 1.03646805e+002 1.16622711e+002 1.23691628e+002 - 1.03603584e+002 1.16567932e+002 1.23719162e+002 1.03531479e+002 - 1.16512924e+002 1.23724770e+002 1.03467293e+002 1.16429100e+002 - 1.23732567e+002 1.03420410e+002 1.16394829e+002 1.23757065e+002 - 1.03356613e+002 1.16327202e+002 1.23765533e+002 1.03285088e+002 - 1.16282494e+002 1.23766449e+002 1.03232773e+002 1.16226036e+002 - 1.23775803e+002 1.03174904e+002 1.16186119e+002 1.23781441e+002 - 1.03093582e+002 1.16105705e+002 1.23795372e+002 1.02996185e+002 - 1.16041573e+002 1.23779037e+002 1.02944527e+002 1.15971664e+002 - 1.23780861e+002 1.02895935e+002 1.15936211e+002 1.23792969e+002 - 1.02840515e+002 1.15867722e+002 1.23805107e+002 1.02775169e+002 - 1.15814667e+002 1.23805000e+002 1.02748337e+002 1.15796478e+002 - 1.23854630e+002 1.02691521e+002 1.15747940e+002 1.23846886e+002 - 1.02637550e+002 1.15688698e+002 1.23846245e+002 1.02579575e+002 - 1.15642754e+002 1.23844612e+002 1.02538055e+002 1.15583092e+002 - 1.23867844e+002 1.02494217e+002 1.15542557e+002 1.23876335e+002 - 1.02442169e+002 1.15488518e+002 1.23884903e+002 1.02378075e+002 - 1.15439934e+002 1.23877930e+002 1.02375359e+002 1.15426201e+002 - 1.23915260e+002 1.02338379e+002 1.15401062e+002 1.23926712e+002 - 1.02292908e+002 1.15349434e+002 1.23957130e+002 1.02228653e+002 - 1.15313980e+002 1.23955032e+002 1.02190002e+002 1.15260490e+002 - 1.23954849e+002 1.02160934e+002 1.15234215e+002 1.23976341e+002 - 1.02164993e+002 1.15222939e+002 1.24029678e+002 1.02117874e+002 - 1.15187767e+002 1.24033318e+002 1.02077782e+002 1.15137939e+002 - 1.24060577e+002 1.02042992e+002 1.15113136e+002 1.24072067e+002 - 1.02011070e+002 1.15070923e+002 1.24093086e+002 1.01975426e+002 - 1.15039162e+002 1.24110466e+002 1.01977989e+002 1.15011024e+002 - 1.24158890e+002 1.01954010e+002 1.14992142e+002 1.24179230e+002 - 1.01925201e+002 1.14958405e+002 1.24187500e+002 1.01873871e+002 - 1.14920959e+002 1.24171814e+002 1.01851700e+002 1.14884895e+002 - 1.24179382e+002 1.01832054e+002 1.14876091e+002 1.24193756e+002 - 1.01796654e+002 1.14833954e+002 1.24224831e+002 1.01730057e+002 - 1.14792656e+002 1.24217384e+002 1.01712288e+002 1.14754128e+002 - 1.24237717e+002 1.01696564e+002 1.14750351e+002 1.24261978e+002 - 1.01705032e+002 1.14744934e+002 1.24311577e+002 1.01660095e+002 - 1.14707619e+002 1.24312660e+002 1.01617249e+002 1.14659439e+002 - 1.24315681e+002 1.01588501e+002 1.14642578e+002 1.24322411e+002 - 1.01571640e+002 1.14603462e+002 1.24342560e+002 1.01519279e+002 - 1.14557358e+002 1.24323639e+002 1.01519814e+002 1.14522934e+002 - 1.24354385e+002 1.01477806e+002 1.14498085e+002 1.24360893e+002 - 1.01486137e+002 1.14490562e+002 1.24399681e+002 1.01451981e+002 - 1.14474907e+002 1.24401939e+002 1.01456932e+002 1.14468361e+002 - 1.24437271e+002 1.01429848e+002 1.14445244e+002 1.24437500e+002 - 1.01408882e+002 1.14407791e+002 1.24458702e+002 1.01371513e+002 - 1.14400047e+002 1.24474228e+002 1.01406967e+002 1.14413033e+002 - 1.24529160e+002 1.01393677e+002 1.14413010e+002 1.24545914e+002 - 1.01355850e+002 1.14350891e+002 1.24529228e+002 1.01324181e+002 - 1.14330139e+002 1.24528412e+002 1.01327736e+002 1.14329086e+002 - 1.24569824e+002 1.01319878e+002 1.14334259e+002 1.24593781e+002 - 1.01316948e+002 1.14316711e+002 1.24615181e+002 1.01300980e+002 - 1.14315735e+002 1.24627182e+002 1.01331551e+002 1.14308846e+002 - 1.24677528e+002 1.01317093e+002 1.14311729e+002 1.24691551e+002 - 1.01300278e+002 1.14287613e+002 1.24691505e+002 1.01295113e+002 - 1.14301987e+002 1.24703354e+002 1.01271210e+002 1.14265923e+002 - 1.24700279e+002 1.01279274e+002 1.14279732e+002 1.24720634e+002 - 1.01263084e+002 1.14256470e+002 1.24737862e+002 1.01240730e+002 - 1.14257118e+002 1.24750435e+002 1.01265427e+002 1.14259399e+002 - 1.24785828e+002 1.01258438e+002 1.14261047e+002 1.24795158e+002 - 1.01274925e+002 1.14257317e+002 1.24818413e+002 1.01244949e+002 - 1.14242279e+002 1.24807213e+002 1.01220978e+002 1.14213165e+002 - 1.24802292e+002 1.01209648e+002 1.14204399e+002 1.24793793e+002 - 1.01210274e+002 1.14204277e+002 1.24809593e+002 1.01204399e+002 - 1.14203888e+002 1.24817665e+002 1.01217857e+002 1.14194984e+002 - 1.24840919e+002 1.01212471e+002 1.14203278e+002 1.24846321e+002 - 1.01203835e+002 1.14193336e+002 1.24846436e+002 1.01190689e+002 - 1.14200020e+002 1.24843948e+002 1.01217064e+002 1.14214645e+002 - 1.24877846e+002 1.01208359e+002 1.14218201e+002 1.24864296e+002 - 1.01207481e+002 1.14205750e+002 1.24864716e+002 1.01173653e+002 - 1.14200470e+002 1.24842354e+002 1.01171234e+002 1.14186455e+002 - 1.24836235e+002 1.01174446e+002 1.14202904e+002 1.24838509e+002 - 1.01217033e+002 1.14222870e+002 1.24877296e+002 1.01201797e+002 - 1.14226891e+002 1.24856087e+002 1.01177834e+002 1.14191811e+002 - 1.24817001e+002 1.01155838e+002 1.14181183e+002 1.24785507e+002 - 1.01180786e+002 1.14187950e+002 1.24799507e+002 1.01174301e+002 - 1.14192986e+002 1.24787277e+002 1.01206123e+002 1.14195259e+002 - 1.24795410e+002 1.01197906e+002 1.14205048e+002 1.24780212e+002 - 1.01192802e+002 1.14186371e+002 1.24749748e+002 1.01155746e+002 - 1.14177086e+002 1.24706017e+002 1.01148453e+002 1.14163979e+002 - 1.24681602e+002 1.01182152e+002 1.14204903e+002 1.24680023e+002 - 1.01195084e+002 1.14208336e+002 1.24668983e+002 1.01190117e+002 - 1.14227058e+002 1.24656387e+002 1.01204712e+002 1.14220413e+002 - 1.24642586e+002 1.01191383e+002 1.14219254e+002 1.24609528e+002 - 1.01202919e+002 1.14206902e+002 1.24587372e+002 1.01209328e+002 - 1.14223183e+002 1.24565353e+002 1.01226402e+002 1.14236961e+002 - 1.24547348e+002 1.01222153e+002 1.14253960e+002 1.24521881e+002 - 1.01227791e+002 1.14243118e+002 1.24494865e+002 1.01222923e+002 - 1.14250725e+002 1.24469528e+002 1.01225296e+002 1.14220688e+002 - 1.24442108e+002 1.01235710e+002 1.14250473e+002 1.24434563e+002 - 1.01240189e+002 1.14250435e+002 1.24412231e+002 1.01268593e+002 - 1.14300285e+002 1.24419861e+002 1.01286736e+002 1.14310089e+002 - 1.24414742e+002 1.01312904e+002 1.14343887e+002 1.24393250e+002 - 1.01344215e+002 1.14367264e+002 1.24378716e+002 1.01329689e+002 - 1.14384560e+002 1.24349365e+002 1.01359833e+002 1.14389656e+002 - 1.24340782e+002 1.01367805e+002 1.14410225e+002 1.24315781e+002 - 1.01401520e+002 1.14419876e+002 1.24299294e+002 1.01410942e+002 - 1.14446846e+002 1.24274521e+002 1.01458282e+002 1.14482101e+002 - 1.24269188e+002 1.01497162e+002 1.14535500e+002 1.24263481e+002 - 1.01522850e+002 1.14551888e+002 1.24249191e+002 1.01500763e+002 - 1.14539680e+002 1.24188721e+002 1.01528465e+002 1.14545326e+002 - 1.24162888e+002 1.01552689e+002 1.14582634e+002 1.24147499e+002 - 1.01579178e+002 1.14607056e+002 1.24133446e+002 1.01576782e+002 - 1.14630722e+002 1.24101326e+002 1.01621536e+002 1.14661484e+002 - 1.24108185e+002 1.01675926e+002 1.14719231e+002 1.24104424e+002 - 1.01686401e+002 1.14726624e+002 1.24057144e+002 1.01713585e+002 - 1.14775818e+002 1.24052444e+002 1.01784996e+002 1.14827873e+002 - 1.24067543e+002 1.01797104e+002 1.14850899e+002 1.24038895e+002 - 1.01816345e+002 1.14849335e+002 1.24000717e+002 1.01822289e+002 - 1.14871696e+002 1.23966835e+002 1.01879532e+002 1.14916542e+002 - 1.23962982e+002 1.01910439e+002 1.14970139e+002 1.23946259e+002 - 1.01950081e+002 1.14991898e+002 1.23926315e+002 1.01984344e+002 - 1.15034241e+002 1.23908142e+002 1.02056007e+002 1.15078491e+002 - 1.23905167e+002 1.02089996e+002 1.15127235e+002 1.23885109e+002 - 1.02127609e+002 1.15153801e+002 1.23863983e+002 1.02142845e+002 - 1.15191139e+002 1.23835770e+002 1.02184052e+002 1.15216965e+002 - 1.23829590e+002 1.02237465e+002 1.15278221e+002 1.23822044e+002 - 1.02288750e+002 1.15327156e+002 1.23798119e+002 1.02323730e+002 - 1.15387886e+002 1.23790337e+002 1.02350357e+002 1.15400620e+002 - 1.23765999e+002 1.02379906e+002 1.15443550e+002 1.23748199e+002 - 1.02447685e+002 1.15490540e+002 1.23751556e+002 1.02498970e+002 - 1.15554611e+002 1.23750023e+002 1.02525627e+002 1.15566063e+002 - 1.23717117e+002 1.02537209e+002 1.15586006e+002 1.23665077e+002 - 1.02588081e+002 1.15620071e+002 1.23652626e+002 1.02626289e+002 - 1.15665955e+002 1.23638252e+002 1.02700356e+002 1.15715271e+002 - 1.23639938e+002 1.02745377e+002 1.15769890e+002 1.23624512e+002 - 1.02812439e+002 1.15827972e+002 1.23630806e+002 1.02841934e+002 - 1.15879372e+002 1.23613297e+002 1.02888275e+002 1.15913956e+002 - 1.23597862e+002 1.02959877e+002 1.15984604e+002 1.23594376e+002 - 1.03061806e+002 1.16062218e+002 1.23593201e+002 1.03107384e+002 - 1.16126373e+002 1.23580017e+002 1.03170509e+002 1.16163300e+002 - 1.23572098e+002 1.03219826e+002 1.16221413e+002 1.23562569e+002 - 1.03281609e+002 1.16258827e+002 1.23549179e+002 1.03312431e+002 - 1.16298805e+002 1.23516769e+002 1.03381378e+002 1.16344101e+002 - 1.23505569e+002 1.03448524e+002 1.16421906e+002 1.23511230e+002 - 1.03519318e+002 1.16474854e+002 1.23508453e+002 1.03570854e+002 - 1.16533417e+002 1.23508095e+002 1.03681709e+002 1.16609932e+002 - 1.23538132e+002 1.03744278e+002 1.16683990e+002 1.23538101e+002 - 1.03835983e+002 1.16747398e+002 1.23547943e+002 1.03894188e+002 - 1.16823463e+002 1.23545937e+002 1.03978088e+002 1.16879524e+002 - 1.23553925e+002 1.04056366e+002 1.16957138e+002 1.23544250e+002 - 1.04135185e+002 1.16998428e+002 1.23506020e+002 1.04221039e+002 - 1.17084473e+002 1.23521507e+002 1.04320549e+002 1.17150574e+002 - 1.23543564e+002 1.04407074e+002 1.17233765e+002 1.23564255e+002 - 1.04501266e+002 1.17293060e+002 1.23574860e+002 1.04579926e+002 - 1.17374260e+002 1.23581123e+002 1.04688911e+002 1.17466515e+002 - 1.23602585e+002 1.04789848e+002 1.17563538e+002 1.23627312e+002 - 1.04872597e+002 1.17621719e+002 1.23627983e+002 1.04937836e+002 - 1.17674423e+002 1.23628235e+002 1.05045448e+002 1.17731071e+002 - 1.23638840e+002 1.05124779e+002 1.17810150e+002 1.23655235e+002 - 1.05223175e+002 1.17862305e+002 1.23664040e+002 1.05258934e+002 - 1.17902954e+002 1.23637672e+002 1.05267334e+002 1.17872154e+002 - 1.23572784e+002 1.05252838e+002 1.17836037e+002 1.23480659e+002 - 1.05219383e+002 1.17797714e+002 1.23539101e+002 1.05254387e+002 - 1.17885468e+002 1.23647850e+002 1.05256020e+002 1.17909637e+002 - 1.23720436e+002 1.05218681e+002 1.17905930e+002 1.23760750e+002 - 1.05158089e+002 1.17850723e+002 1.23776253e+002 1.05053703e+002 - 1.17791580e+002 1.23756966e+002 1.04973930e+002 1.17728424e+002 - 1.23759605e+002 1.04862816e+002 1.17652908e+002 1.23727417e+002 - 1.04819267e+002 1.17615150e+002 1.23761314e+002 1.04706726e+002 - 1.17538345e+002 1.23734337e+002 1.04649597e+002 1.17467873e+002 - 1.23758087e+002 1.04568626e+002 1.17414101e+002 1.23763763e+002 - 1.04466255e+002 1.17328064e+002 1.23736488e+002 1.04365479e+002 - 1.17255066e+002 1.23705078e+002 1.04282288e+002 1.17167725e+002 - 1.23687370e+002 1.04194481e+002 1.17094650e+002 1.23669769e+002 - 1.04091393e+002 1.17014389e+002 1.23671982e+002 1.03957222e+002 - 1.16910332e+002 1.23632515e+002 1.03886391e+002 1.16828957e+002 - 1.23615898e+002 1.03803543e+002 1.16763977e+002 1.23599762e+002 - 1.03733406e+002 1.16682526e+002 1.23601585e+002 1.03682137e+002 - 1.16650497e+002 1.23619629e+002 1.03628052e+002 1.16603073e+002 - 1.23643448e+002 1.03555283e+002 1.16538300e+002 1.23645607e+002 - 1.03508522e+002 1.16477852e+002 1.23663788e+002 1.03430023e+002 - 1.16423943e+002 1.23663704e+002 1.03381714e+002 1.16344803e+002 - 1.23691025e+002 1.03352867e+002 1.16328789e+002 1.23729416e+002 - 1.03269600e+002 1.16249008e+002 1.23714691e+002 1.03176201e+002 - 1.16180748e+002 1.23695198e+002 1.03116364e+002 1.16110115e+002 - 1.23695961e+002 1.03074455e+002 1.16082336e+002 1.23720177e+002 - 1.03007034e+002 1.16024139e+002 1.23739792e+002 1.02915031e+002 - 1.15960411e+002 1.23736008e+002 1.02875481e+002 1.15906349e+002 - 1.23748535e+002 1.02833405e+002 1.15879883e+002 1.23765236e+002 - 1.02790146e+002 1.15818916e+002 1.23790848e+002 1.02710228e+002 - 1.15758636e+002 1.23780243e+002 1.02655350e+002 1.15706635e+002 - 1.23795692e+002 1.02600006e+002 1.15661476e+002 1.23789963e+002 - 1.02564682e+002 1.15616287e+002 1.23806412e+002 1.02508598e+002 - 1.15576775e+002 1.23812965e+002 1.02477966e+002 1.15516045e+002 - 1.23842949e+002 1.02417213e+002 1.15466209e+002 1.23839989e+002 - 1.02349625e+002 1.15406029e+002 1.23837517e+002 1.02294006e+002 - 1.15362358e+002 1.23828239e+002 1.02285835e+002 1.15339500e+002 - 1.23866165e+002 1.02243553e+002 1.15307259e+002 1.23869080e+002 - 1.02187836e+002 1.15258202e+002 1.23892830e+002 1.02135284e+002 - 1.15219513e+002 1.23894188e+002 1.02104195e+002 1.15174438e+002 - 1.23904495e+002 1.02070839e+002 1.15149002e+002 1.23920296e+002 - 1.02058517e+002 1.15115997e+002 1.23961884e+002 1.02000587e+002 - 1.15065140e+002 1.23950012e+002 1.01994980e+002 1.15058350e+002 - 1.24009750e+002 1.01964676e+002 1.15033096e+002 1.24027267e+002 - 1.01932533e+002 1.14994545e+002 1.24051338e+002 1.01854919e+002 - 1.14922188e+002 1.24021912e+002 1.01870186e+002 1.14899017e+002 - 1.24080559e+002 1.01858200e+002 1.14894875e+002 1.24121773e+002 - 1.01814774e+002 1.14854599e+002 1.24119064e+002 1.01754692e+002 - 1.14811951e+002 1.24101181e+002 1.01756752e+002 1.14790482e+002 - 1.24127403e+002 1.01747818e+002 1.14792877e+002 1.24159622e+002 - 1.01711098e+002 1.14753151e+002 1.24188110e+002 1.01630562e+002 - 1.14693832e+002 1.24167358e+002 1.01616776e+002 1.14665604e+002 - 1.24181694e+002 1.01600426e+002 1.14655037e+002 1.24207634e+002 - 1.01594803e+002 1.14631065e+002 1.24243134e+002 1.01538460e+002 - 1.14584976e+002 1.24231911e+002 1.01504227e+002 1.14544426e+002 - 1.24236267e+002 1.01501160e+002 1.14555344e+002 1.24266579e+002 - 1.01467888e+002 1.14507202e+002 1.24274918e+002 1.01411102e+002 - 1.14453339e+002 1.24250854e+002 1.01417419e+002 1.14424400e+002 - 1.24294212e+002 1.01399231e+002 1.14417534e+002 1.24317520e+002 - 1.01376732e+002 1.14392456e+002 1.24333565e+002 1.01328888e+002 - 1.14357048e+002 1.24320030e+002 1.01343773e+002 1.14351479e+002 - 1.24354950e+002 1.01317238e+002 1.14341774e+002 1.24368935e+002 - 1.01292526e+002 1.14300804e+002 1.24386253e+002 1.01256973e+002 - 1.14286560e+002 1.24396599e+002 1.01281517e+002 1.14293556e+002 - 1.24440857e+002 1.01268173e+002 1.14288300e+002 1.24456894e+002 - 1.01255203e+002 1.14251236e+002 1.24467506e+002 1.01220375e+002 - 1.14235352e+002 1.24474014e+002 1.01214378e+002 1.14225769e+002 - 1.24497581e+002 1.01186401e+002 1.14203514e+002 1.24498032e+002 - 1.01180992e+002 1.14187057e+002 1.24521255e+002 1.01167671e+002 - 1.14189804e+002 1.24536880e+002 1.01197609e+002 1.14181351e+002 - 1.24587135e+002 1.01200264e+002 1.14193359e+002 1.24612473e+002 - 1.01184502e+002 1.14177727e+002 1.24619156e+002 1.01152107e+002 - 1.14169983e+002 1.24609299e+002 1.01146889e+002 1.14139557e+002 - 1.24618210e+002 1.01164711e+002 1.14172302e+002 1.24654610e+002 - 1.01144966e+002 1.14148514e+002 1.24664352e+002 1.01112755e+002 - 1.14132195e+002 1.24658806e+002 1.01126122e+002 1.14126495e+002 - 1.24690765e+002 1.01138588e+002 1.14145821e+002 1.24710709e+002 - 1.01142899e+002 1.14128769e+002 1.24727821e+002 1.01118195e+002 - 1.14118439e+002 1.24721466e+002 1.01124825e+002 1.14115395e+002 - 1.24745064e+002 1.01098007e+002 1.14100098e+002 1.24725044e+002 - 1.01093559e+002 1.14084526e+002 1.24726830e+002 1.01089638e+002 - 1.14090714e+002 1.24736923e+002 1.01146477e+002 1.14119232e+002 - 1.24798653e+002 1.01130096e+002 1.14115433e+002 1.24792389e+002 - 1.01099663e+002 1.14086800e+002 1.24774078e+002 1.01075668e+002 - 1.14085922e+002 1.24764801e+002 1.01102409e+002 1.14088860e+002 - 1.24799805e+002 1.01095581e+002 1.14097488e+002 1.24789215e+002 - 1.01111610e+002 1.14111038e+002 1.24810768e+002 1.01079811e+002 - 1.14107689e+002 1.24788910e+002 1.01067856e+002 1.14088654e+002 - 1.24774773e+002 1.01065521e+002 1.14094139e+002 1.24769997e+002 - 1.01098961e+002 1.14112282e+002 1.24793518e+002 1.01089836e+002 - 1.14110336e+002 1.24777802e+002 1.01079674e+002 1.14099968e+002 - 1.24761162e+002 1.01081291e+002 1.14103996e+002 1.24752159e+002 - 1.01088409e+002 1.14104431e+002 1.24750572e+002 1.01061897e+002 - 1.14089310e+002 1.24720566e+002 1.01087257e+002 1.14081337e+002 - 1.24725349e+002 1.01104271e+002 1.14105164e+002 1.24728455e+002 - 1.01085991e+002 1.14089157e+002 1.24686493e+002 1.01042831e+002 - 1.14064201e+002 1.24624924e+002 1.01029366e+002 1.14035767e+002 - 1.24594643e+002 1.01054367e+002 1.14070847e+002 1.24592606e+002 - 1.01084808e+002 1.14099373e+002 1.24605621e+002 1.01080132e+002 - 1.14109840e+002 1.24584602e+002 1.01084663e+002 1.14099594e+002 - 1.24568161e+002 1.01082512e+002 1.14108551e+002 1.24537804e+002 - 1.01114410e+002 1.14113533e+002 1.24536118e+002 1.01118477e+002 - 1.14126900e+002 1.24508247e+002 1.01133430e+002 1.14144684e+002 - 1.24490173e+002 1.01118881e+002 1.14140533e+002 1.24448135e+002 - 1.01122192e+002 1.14137215e+002 1.24429581e+002 1.01108307e+002 - 1.14136139e+002 1.24391823e+002 1.01108994e+002 1.14107117e+002 - 1.24363998e+002 1.01138298e+002 1.14146988e+002 1.24372116e+002 - 1.01144089e+002 1.14157997e+002 1.24357796e+002 1.01163666e+002 - 1.14204727e+002 1.24360970e+002 1.01160446e+002 1.14185928e+002 - 1.24332428e+002 1.01194939e+002 1.14231216e+002 1.24327797e+002 - 1.01228004e+002 1.14259026e+002 1.24309189e+002 1.01231819e+002 - 1.14280708e+002 1.24285332e+002 1.01247467e+002 1.14285767e+002 - 1.24269508e+002 1.01270752e+002 1.14316597e+002 1.24252251e+002 - 1.01286285e+002 1.14310966e+002 1.24231270e+002 1.01303062e+002 - 1.14343460e+002 1.24205635e+002 1.01356766e+002 1.14390732e+002 - 1.24218384e+002 1.01393112e+002 1.14436714e+002 1.24204094e+002 - 1.01423042e+002 1.14458229e+002 1.24192291e+002 1.01389656e+002 - 1.14439735e+002 1.24123543e+002 1.01428993e+002 1.14447533e+002 - 1.24106712e+002 1.01478745e+002 1.14511696e+002 1.24115349e+002 - 1.01493645e+002 1.14530006e+002 1.24085915e+002 1.01479256e+002 - 1.14535248e+002 1.24038071e+002 1.01525635e+002 1.14568192e+002 - 1.24049339e+002 1.01562935e+002 1.14611656e+002 1.24037773e+002 - 1.01598091e+002 1.14635468e+002 1.24010185e+002 1.01592453e+002 - 1.14653625e+002 1.23964424e+002 1.01658630e+002 1.14704529e+002 - 1.23987434e+002 1.01668602e+002 1.14723129e+002 1.23951080e+002 - 1.01708054e+002 1.14746498e+002 1.23945946e+002 1.01728592e+002 - 1.14779274e+002 1.23911713e+002 1.01769302e+002 1.14818169e+002 - 1.23899734e+002 1.01785408e+002 1.14846054e+002 1.23860573e+002 - 1.01828819e+002 1.14873291e+002 1.23847206e+002 1.01849213e+002 - 1.14909172e+002 1.23815376e+002 1.01935608e+002 1.14961800e+002 - 1.23832024e+002 1.01981781e+002 1.15015472e+002 1.23823341e+002 - 1.02026428e+002 1.15061356e+002 1.23808472e+002 1.02040642e+002 - 1.15092216e+002 1.23777496e+002 1.02095314e+002 1.15132416e+002 - 1.23783058e+002 1.02150047e+002 1.15198120e+002 1.23776772e+002 - 1.02184731e+002 1.15229416e+002 1.23739967e+002 1.02204956e+002 - 1.15267471e+002 1.23716537e+002 1.02219925e+002 1.15275452e+002 - 1.23683006e+002 1.02267944e+002 1.15337341e+002 1.23683418e+002 - 1.02326981e+002 1.15378593e+002 1.23681145e+002 1.02386536e+002 - 1.15449051e+002 1.23681221e+002 1.02423172e+002 1.15476494e+002 - 1.23658554e+002 1.02466217e+002 1.15520691e+002 1.23640984e+002 - 1.02509422e+002 1.15549187e+002 1.23619919e+002 1.02532402e+002 - 1.15580482e+002 1.23583427e+002 1.02621124e+002 1.15639496e+002 - 1.23598785e+002 1.02652061e+002 1.15678734e+002 1.23568253e+002 - 1.02708366e+002 1.15734940e+002 1.23562904e+002 1.02766701e+002 - 1.15812523e+002 1.23569138e+002 1.02798302e+002 1.15827820e+002 - 1.23546547e+002 1.02888519e+002 1.15923492e+002 1.23560997e+002 - 1.02964493e+002 1.15975449e+002 1.23546394e+002 1.03025856e+002 - 1.16053581e+002 1.23541199e+002 1.03081314e+002 1.16085709e+002 - 1.23529572e+002 1.03123672e+002 1.16140236e+002 1.23511375e+002 - 1.03180244e+002 1.16163979e+002 1.23494003e+002 1.03220695e+002 - 1.16208885e+002 1.23468979e+002 1.03315788e+002 1.16286591e+002 - 1.23484726e+002 1.03376465e+002 1.16348373e+002 1.23474899e+002 - 1.03415672e+002 1.16372246e+002 1.23447159e+002 1.03472107e+002 - 1.16448929e+002 1.23450333e+002 1.03589912e+002 1.16521774e+002 - 1.23484627e+002 1.03666229e+002 1.16605148e+002 1.23497543e+002 - 1.03737747e+002 1.16668083e+002 1.23496429e+002 1.03799675e+002 - 1.16736526e+002 1.23489464e+002 1.03893417e+002 1.16810135e+002 - 1.23516914e+002 1.03993217e+002 1.16905724e+002 1.23521690e+002 - 1.04064812e+002 1.16941681e+002 1.23485611e+002 1.04136757e+002 - 1.17015587e+002 1.23482430e+002 1.04237587e+002 1.17091293e+002 - 1.23515610e+002 1.04312416e+002 1.17160217e+002 1.23519936e+002 - 1.04417496e+002 1.17223587e+002 1.23529625e+002 1.04480904e+002 - 1.17288452e+002 1.23522652e+002 1.04601196e+002 1.17387558e+002 - 1.23553429e+002 1.04710541e+002 1.17492393e+002 1.23589417e+002 - 1.04779381e+002 1.17529381e+002 1.23579651e+002 1.04852798e+002 - 1.17596512e+002 1.23575935e+002 1.04968185e+002 1.17657776e+002 - 1.23601692e+002 1.05044289e+002 1.17724480e+002 1.23599884e+002 - 1.05140953e+002 1.17793114e+002 1.23616295e+002 1.05168755e+002 - 1.17820953e+002 1.23577866e+002 1.05196510e+002 1.17801247e+002 - 1.23536369e+002 1.05160507e+002 1.17758324e+002 1.23427208e+002 - 1.05120872e+002 1.17719421e+002 1.23507523e+002 1.05125999e+002 - 1.17785759e+002 1.23593552e+002 1.05140854e+002 1.17816910e+002 - 1.23677429e+002 1.05107246e+002 1.17820251e+002 1.23720528e+002 - 1.05035164e+002 1.17753105e+002 1.23734459e+002 1.04949440e+002 - 1.17710602e+002 1.23723320e+002 1.04861084e+002 1.17639069e+002 - 1.23722710e+002 1.04777374e+002 1.17586533e+002 1.23715508e+002 - 1.04705650e+002 1.17520912e+002 1.23725044e+002 1.04604645e+002 - 1.17454597e+002 1.23700729e+002 1.04558556e+002 1.17397850e+002 - 1.23738060e+002 1.04459579e+002 1.17329399e+002 1.23723274e+002 - 1.04366974e+002 1.17251511e+002 1.23706924e+002 1.04249260e+002 - 1.17171249e+002 1.23666908e+002 1.04161247e+002 1.17067619e+002 - 1.23637413e+002 1.04082657e+002 1.17014626e+002 1.23633820e+002 - 1.04000580e+002 1.16956352e+002 1.23657234e+002 1.03864578e+002 - 1.16847519e+002 1.23614182e+002 1.03796532e+002 1.16767242e+002 - 1.23605705e+002 1.03711060e+002 1.16699303e+002 1.23582748e+002 - 1.03634201e+002 1.16609337e+002 1.23578354e+002 1.03537506e+002 - 1.16531494e+002 1.23554802e+002 1.03471024e+002 1.16464966e+002 - 1.23564041e+002 1.03423042e+002 1.16430008e+002 1.23594040e+002 - 1.03361488e+002 1.16356102e+002 1.23592529e+002 1.03278900e+002 - 1.16293686e+002 1.23587608e+002 1.03229248e+002 1.16220055e+002 - 1.23610474e+002 1.03183304e+002 1.16189201e+002 1.23640587e+002 - 1.03106285e+002 1.16118568e+002 1.23639763e+002 1.03007851e+002 - 1.16046974e+002 1.23608437e+002 1.02980896e+002 1.16004372e+002 - 1.23640152e+002 1.02927483e+002 1.15964409e+002 1.23648239e+002 - 1.02850014e+002 1.15895409e+002 1.23662880e+002 1.02771439e+002 - 1.15840797e+002 1.23660690e+002 1.02729408e+002 1.15785263e+002 - 1.23680550e+002 1.02670708e+002 1.15740952e+002 1.23680313e+002 - 1.02639526e+002 1.15692322e+002 1.23716057e+002 1.02561157e+002 - 1.15633064e+002 1.23701790e+002 1.02497589e+002 1.15565323e+002 - 1.23704292e+002 1.02439163e+002 1.15519180e+002 1.23699959e+002 - 1.02412613e+002 1.15482948e+002 1.23727646e+002 1.02349693e+002 - 1.15437592e+002 1.23722145e+002 1.02305946e+002 1.15361717e+002 - 1.23739655e+002 1.02246605e+002 1.15312454e+002 1.23738686e+002 - 1.02197929e+002 1.15267059e+002 1.23750473e+002 1.02165131e+002 - 1.15252884e+002 1.23770988e+002 1.02137199e+002 1.15207336e+002 - 1.23787163e+002 1.02082863e+002 1.15167847e+002 1.23781044e+002 - 1.02045235e+002 1.15130257e+002 1.23814392e+002 1.02014206e+002 - 1.15116356e+002 1.23843559e+002 1.01991837e+002 1.15083450e+002 - 1.23867302e+002 1.01939865e+002 1.15037170e+002 1.23858521e+002 - 1.01911827e+002 1.14989296e+002 1.23880394e+002 1.01841232e+002 - 1.14928444e+002 1.23864731e+002 1.01806023e+002 1.14884895e+002 - 1.23883888e+002 1.01801544e+002 1.14888802e+002 1.23931358e+002 - 1.01787025e+002 1.14862816e+002 1.23973396e+002 1.01736519e+002 - 1.14827942e+002 1.23974342e+002 1.01722260e+002 1.14770706e+002 - 1.24004593e+002 1.01701881e+002 1.14761444e+002 1.24035637e+002 - 1.01660027e+002 1.14724953e+002 1.24045288e+002 1.01605560e+002 - 1.14681145e+002 1.24033516e+002 1.01606712e+002 1.14661873e+002 - 1.24071144e+002 1.01569710e+002 1.14636894e+002 1.24068481e+002 - 1.01541832e+002 1.14608856e+002 1.24112976e+002 1.01475288e+002 - 1.14567123e+002 1.24099670e+002 1.01471237e+002 1.14549088e+002 - 1.24134369e+002 1.01455154e+002 1.14537712e+002 1.24148087e+002 - 1.01423195e+002 1.14483597e+002 1.24153168e+002 1.01401260e+002 - 1.14474693e+002 1.24171051e+002 1.01379066e+002 1.14441406e+002 - 1.24185349e+002 1.01367668e+002 1.14436966e+002 1.24208992e+002 - 1.01329956e+002 1.14384041e+002 1.24205505e+002 1.01242935e+002 - 1.14313393e+002 1.24164185e+002 1.01258232e+002 1.14291222e+002 - 1.24222557e+002 1.01263710e+002 1.14300598e+002 1.24271576e+002 - 1.01230171e+002 1.14278107e+002 1.24277107e+002 1.01181366e+002 - 1.14242676e+002 1.24263458e+002 1.01168884e+002 1.14208984e+002 - 1.24269974e+002 1.01166420e+002 1.14203667e+002 1.24292305e+002 - 1.01116745e+002 1.14151909e+002 1.24286980e+002 1.01098198e+002 - 1.14146492e+002 1.24305290e+002 1.01118034e+002 1.14145439e+002 - 1.24352989e+002 1.01103447e+002 1.14143021e+002 1.24368607e+002 - 1.01060211e+002 1.14085236e+002 1.24357628e+002 1.01024139e+002 - 1.14055489e+002 1.24352028e+002 1.01011040e+002 1.14040924e+002 - 1.24370659e+002 1.01016716e+002 1.14060791e+002 1.24405113e+002 - 1.01035080e+002 1.14059196e+002 1.24442566e+002 1.01002159e+002 - 1.14046455e+002 1.24451462e+002 1.01033569e+002 1.14043098e+002 - 1.24503059e+002 1.01028122e+002 1.14055061e+002 1.24528915e+002 - 1.01007935e+002 1.14032509e+002 1.24528099e+002 1.00974236e+002 - 1.14015633e+002 1.24519684e+002 1.00985970e+002 1.14008408e+002 - 1.24546425e+002 1.01007050e+002 1.14040787e+002 1.24580994e+002 - 1.00989876e+002 1.14014786e+002 1.24587883e+002 1.00967880e+002 - 1.14014137e+002 1.24597176e+002 1.00979103e+002 1.14008408e+002 - 1.24622375e+002 1.00951843e+002 1.13989670e+002 1.24610977e+002 - 1.00977234e+002 1.13987900e+002 1.24654350e+002 1.00946274e+002 - 1.13968330e+002 1.24635269e+002 1.00941872e+002 1.13955940e+002 - 1.24644318e+002 1.00936371e+002 1.13958397e+002 1.24644142e+002 - 1.00962051e+002 1.13973862e+002 1.24674019e+002 1.00959152e+002 - 1.13984100e+002 1.24675003e+002 1.00988426e+002 1.13982193e+002 - 1.24710938e+002 1.00942352e+002 1.13940140e+002 1.24674469e+002 - 1.00931015e+002 1.13938347e+002 1.24679054e+002 1.00909416e+002 - 1.13926582e+002 1.24666290e+002 1.00913826e+002 1.13919373e+002 - 1.24683273e+002 1.00932716e+002 1.13947998e+002 1.24698280e+002 - 1.00953583e+002 1.13969429e+002 1.24726158e+002 1.00915451e+002 - 1.13960373e+002 1.24702431e+002 1.00909706e+002 1.13941719e+002 - 1.24688141e+002 1.00915993e+002 1.13957352e+002 1.24684410e+002 - 1.00927933e+002 1.13949867e+002 1.24692963e+002 1.00923347e+002 - 1.13961372e+002 1.24682724e+002 1.00924316e+002 1.13959709e+002 - 1.24680687e+002 1.00922607e+002 1.13972740e+002 1.24674721e+002 - 1.00933052e+002 1.13967529e+002 1.24674721e+002 1.00895096e+002 - 1.13945213e+002 1.24629333e+002 1.00916779e+002 1.13932426e+002 - 1.24634117e+002 1.00909676e+002 1.13932213e+002 1.24610786e+002 - 1.00908615e+002 1.13930573e+002 1.24582573e+002 1.00883720e+002 - 1.13925880e+002 1.24549034e+002 1.00888222e+002 1.13914742e+002 - 1.24530075e+002 1.00893616e+002 1.13930473e+002 1.24511719e+002 - 1.00923935e+002 1.13954277e+002 1.24518311e+002 1.00894661e+002 - 1.13945610e+002 1.24477173e+002 1.00916840e+002 1.13950897e+002 - 1.24471725e+002 1.00944878e+002 1.13985428e+002 1.24474098e+002 - 1.00979889e+002 1.14001801e+002 1.24474678e+002 1.00978554e+002 - 1.14006355e+002 1.24441277e+002 1.00983971e+002 1.14011215e+002 - 1.24418129e+002 1.00971046e+002 1.14014221e+002 1.24375313e+002 - 1.00961830e+002 1.13993271e+002 1.24342133e+002 1.00956932e+002 - 1.14003296e+002 1.24313858e+002 1.00980766e+002 1.13994080e+002 - 1.24305916e+002 1.01004425e+002 1.14037231e+002 1.24312210e+002 - 1.01019119e+002 1.14056358e+002 1.24304665e+002 1.01022491e+002 - 1.14087044e+002 1.24289169e+002 1.01013641e+002 1.14061821e+002 - 1.24258484e+002 1.01039093e+002 1.14094025e+002 1.24247978e+002 - 1.01063980e+002 1.14111496e+002 1.24220268e+002 1.01066910e+002 - 1.14136414e+002 1.24193344e+002 1.01075493e+002 1.14132988e+002 - 1.24169800e+002 1.01094292e+002 1.14159882e+002 1.24148636e+002 - 1.01118004e+002 1.14161201e+002 1.24137955e+002 1.01119415e+002 - 1.14174294e+002 1.24093559e+002 1.01154083e+002 1.14206200e+002 - 1.24085358e+002 1.01208336e+002 1.14273613e+002 1.24099419e+002 - 1.01243996e+002 1.14299950e+002 1.24095695e+002 1.01245354e+002 - 1.14324020e+002 1.24065575e+002 1.01269470e+002 1.14318871e+002 - 1.24029518e+002 1.01315506e+002 1.14375420e+002 1.24030403e+002 - 1.01336723e+002 1.14392876e+002 1.24007698e+002 1.01324844e+002 - 1.14398972e+002 1.23954987e+002 1.01372498e+002 1.14423203e+002 - 1.23966835e+002 1.01413902e+002 1.14477142e+002 1.23951675e+002 - 1.01427666e+002 1.14486946e+002 1.23912590e+002 1.01436508e+002 - 1.14512505e+002 1.23878616e+002 1.01492416e+002 1.14561440e+002 - 1.23901123e+002 1.01484489e+002 1.14568733e+002 1.23854599e+002 - 1.01525482e+002 1.14589462e+002 1.23845726e+002 1.01563866e+002 - 1.14644012e+002 1.23831551e+002 1.01612610e+002 1.14689034e+002 - 1.23832275e+002 1.01640884e+002 1.14729263e+002 1.23802261e+002 - 1.01670517e+002 1.14737801e+002 1.23771027e+002 1.01686790e+002 - 1.14771782e+002 1.23738235e+002 1.01762672e+002 1.14814568e+002 - 1.23746750e+002 1.01822777e+002 1.14876640e+002 1.23742409e+002 - 1.01875229e+002 1.14933388e+002 1.23736588e+002 1.01882423e+002 - 1.14958160e+002 1.23695724e+002 1.01926132e+002 1.14986038e+002 - 1.23695297e+002 1.01996986e+002 1.15064819e+002 1.23700493e+002 - 1.02042641e+002 1.15105766e+002 1.23678040e+002 1.02036530e+002 - 1.15123634e+002 1.23628555e+002 1.02057098e+002 1.15133202e+002 - 1.23606575e+002 1.02117050e+002 1.15207237e+002 1.23611412e+002 - 1.02161423e+002 1.15233688e+002 1.23599220e+002 1.02212288e+002 - 1.15298065e+002 1.23593819e+002 1.02278275e+002 1.15356773e+002 - 1.23603958e+002 1.02329735e+002 1.15413757e+002 1.23589409e+002 - 1.02359947e+002 1.15432533e+002 1.23559731e+002 1.02402924e+002 - 1.15488831e+002 1.23540512e+002 1.02458420e+002 1.15507866e+002 - 1.23521034e+002 1.02493767e+002 1.15549225e+002 1.23490562e+002 - 1.02547424e+002 1.15600632e+002 1.23480896e+002 1.02596275e+002 - 1.15667618e+002 1.23473091e+002 1.02672325e+002 1.15726204e+002 - 1.23493782e+002 1.02748718e+002 1.15807800e+002 1.23498405e+002 - 1.02809441e+002 1.15850334e+002 1.23471100e+002 1.02886703e+002 - 1.15944763e+002 1.23485611e+002 1.02947830e+002 1.15986641e+002 - 1.23484741e+002 1.02971489e+002 1.16015289e+002 1.23439384e+002 - 1.03039291e+002 1.16049484e+002 1.23440842e+002 1.03070892e+002 - 1.16088333e+002 1.23408020e+002 1.03161613e+002 1.16158348e+002 - 1.23422493e+002 1.03244003e+002 1.16248802e+002 1.23433647e+002 - 1.03294853e+002 1.16284355e+002 1.23412018e+002 1.03359161e+002 - 1.16361221e+002 1.23418503e+002 1.03452034e+002 1.16415558e+002 - 1.23430786e+002 1.03528000e+002 1.16491829e+002 1.23432884e+002 - 1.03606041e+002 1.16562363e+002 1.23432526e+002 1.03677208e+002 - 1.16645027e+002 1.23440590e+002 1.03763222e+002 1.16710106e+002 - 1.23457268e+002 1.03863266e+002 1.16802719e+002 1.23470787e+002 - 1.03939651e+002 1.16857521e+002 1.23446609e+002 1.04026115e+002 - 1.16946350e+002 1.23461311e+002 1.04097763e+002 1.16990372e+002 - 1.23462761e+002 1.04168961e+002 1.17051094e+002 1.23460228e+002 - 1.04286118e+002 1.17129982e+002 1.23488449e+002 1.04359016e+002 - 1.17194572e+002 1.23477737e+002 1.04476135e+002 1.17288475e+002 - 1.23507355e+002 1.04589249e+002 1.17396057e+002 1.23541847e+002 - 1.04670723e+002 1.17448181e+002 1.23537918e+002 1.04734550e+002 - 1.17505669e+002 1.23534607e+002 1.04846207e+002 1.17559731e+002 - 1.23549629e+002 1.04955544e+002 1.17657692e+002 1.23574036e+002 - 1.05023109e+002 1.17700378e+002 1.23565254e+002 1.05058899e+002 - 1.17741348e+002 1.23539192e+002 1.05073151e+002 1.17701416e+002 - 1.23483803e+002 1.05009262e+002 1.17631790e+002 1.23343544e+002 - 1.04981445e+002 1.17630676e+002 1.23435608e+002 1.05007721e+002 - 1.17697563e+002 1.23539993e+002 1.05020874e+002 1.17724991e+002 - 1.23625336e+002 1.04971443e+002 1.17709084e+002 1.23653725e+002 - 1.04913162e+002 1.17663345e+002 1.23673592e+002 1.04825905e+002 - 1.17611595e+002 1.23668533e+002 1.04739120e+002 1.17539589e+002 - 1.23664497e+002 1.04647659e+002 1.17479591e+002 1.23648079e+002 - 1.04572777e+002 1.17420158e+002 1.23651337e+002 1.04497932e+002 - 1.17374847e+002 1.23657455e+002 1.04425064e+002 1.17292725e+002 - 1.23668587e+002 1.04343399e+002 1.17239609e+002 1.23669586e+002 - 1.04250282e+002 1.17161781e+002 1.23658905e+002 1.04143196e+002 - 1.17079544e+002 1.23623825e+002 1.04048737e+002 1.16990486e+002 - 1.23593292e+002 1.03944099e+002 1.16903702e+002 1.23560448e+002 - 1.03862404e+002 1.16836243e+002 1.23590057e+002 1.03723228e+002 - 1.16729172e+002 1.23538338e+002 1.03654129e+002 1.16654633e+002 - 1.23531494e+002 1.03582054e+002 1.16595833e+002 1.23524139e+002 - 1.03511734e+002 1.16516891e+002 1.23526161e+002 1.03411560e+002 - 1.16429771e+002 1.23488022e+002 1.03338074e+002 1.16357002e+002 - 1.23497414e+002 1.03287315e+002 1.16319420e+002 1.23517982e+002 - 1.03237915e+002 1.16262115e+002 1.23544907e+002 1.03161934e+002 - 1.16201080e+002 1.23537155e+002 1.03103073e+002 1.16116348e+002 - 1.23553986e+002 1.03031212e+002 1.16063957e+002 1.23554054e+002 - 1.02962151e+002 1.15993721e+002 1.23559525e+002 1.02881844e+002 - 1.15939156e+002 1.23548103e+002 1.02818222e+002 1.15876762e+002 - 1.23545586e+002 1.02761780e+002 1.15834953e+002 1.23548920e+002 - 1.02691032e+002 1.15756058e+002 1.23565491e+002 1.02618805e+002 - 1.15719246e+002 1.23573021e+002 1.02579491e+002 1.15663620e+002 - 1.23594269e+002 1.02525833e+002 1.15621208e+002 1.23602730e+002 - 1.02475304e+002 1.15559677e+002 1.23620689e+002 1.02395546e+002 - 1.15488594e+002 1.23607201e+002 1.02353897e+002 1.15447891e+002 - 1.23627884e+002 1.02314186e+002 1.15418282e+002 1.23636101e+002 - 1.02270485e+002 1.15371284e+002 1.23646141e+002 1.02188866e+002 - 1.15296005e+002 1.23628082e+002 1.02160294e+002 1.15241768e+002 - 1.23656693e+002 1.02091408e+002 1.15184822e+002 1.23648643e+002 - 1.02056580e+002 1.15147781e+002 1.23671768e+002 1.02032097e+002 - 1.15142517e+002 1.23704315e+002 1.01991753e+002 1.15098114e+002 - 1.23710312e+002 1.01942513e+002 1.15056709e+002 1.23705978e+002 - 1.01900398e+002 1.15008644e+002 1.23736557e+002 1.01843811e+002 - 1.14972099e+002 1.23741203e+002 1.01821121e+002 1.14928917e+002 - 1.23757706e+002 1.01791733e+002 1.14911140e+002 1.23773743e+002 - 1.01754990e+002 1.14853943e+002 1.23786263e+002 1.01693619e+002 - 1.14800331e+002 1.23775513e+002 1.01656654e+002 1.14759323e+002 - 1.23804611e+002 1.01622498e+002 1.14732430e+002 1.23812805e+002 - 1.01631302e+002 1.14727646e+002 1.23873688e+002 1.01578178e+002 - 1.14680519e+002 1.23873283e+002 1.01559280e+002 1.14634872e+002 - 1.23908005e+002 1.01516151e+002 1.14600143e+002 1.23918373e+002 - 1.01499542e+002 1.14582596e+002 1.23954376e+002 1.01442924e+002 - 1.14545341e+002 1.23945992e+002 1.01421997e+002 1.14509613e+002 - 1.23959358e+002 1.01376968e+002 1.14474068e+002 1.23957886e+002 - 1.01327271e+002 1.14417854e+002 1.23975479e+002 1.01287056e+002 - 1.14405220e+002 1.23991219e+002 1.01292595e+002 1.14395355e+002 - 1.24026260e+002 1.01261620e+002 1.14372749e+002 1.24025696e+002 - 1.01251427e+002 1.14335571e+002 1.24049454e+002 1.01233620e+002 - 1.14330421e+002 1.24073929e+002 1.01194672e+002 1.14278931e+002 - 1.24073524e+002 1.01179504e+002 1.14275177e+002 1.24090691e+002 - 1.01144043e+002 1.14223732e+002 1.24093857e+002 1.01080833e+002 - 1.14176048e+002 1.24080620e+002 1.01096024e+002 1.14160477e+002 - 1.24136208e+002 1.01095856e+002 1.14168137e+002 1.24174774e+002 - 1.01077957e+002 1.14147377e+002 1.24198349e+002 1.01036812e+002 - 1.14122002e+002 1.24195251e+002 1.01037247e+002 1.14103134e+002 - 1.24216560e+002 1.01009857e+002 1.14078056e+002 1.24206482e+002 - 1.00969566e+002 1.14024178e+002 1.24210007e+002 1.00931900e+002 - 1.14007820e+002 1.24218636e+002 1.00957733e+002 1.14014122e+002 - 1.24263428e+002 1.00927628e+002 1.13986374e+002 1.24258087e+002 - 1.00909012e+002 1.13956276e+002 1.24271271e+002 1.00871017e+002 - 1.13930275e+002 1.24268547e+002 1.00857758e+002 1.13913780e+002 - 1.24292252e+002 1.00856880e+002 1.13921585e+002 1.24315392e+002 - 1.00855537e+002 1.13909935e+002 1.24341469e+002 1.00840691e+002 - 1.13906425e+002 1.24361656e+002 1.00876862e+002 1.13920631e+002 - 1.24423096e+002 1.00872551e+002 1.13928726e+002 1.24447365e+002 - 1.00884506e+002 1.13931900e+002 1.24483826e+002 1.00841499e+002 - 1.13918015e+002 1.24469528e+002 1.00819878e+002 1.13882492e+002 - 1.24462540e+002 1.00817108e+002 1.13888077e+002 1.24469078e+002 - 1.00842186e+002 1.13896332e+002 1.24514015e+002 1.00819458e+002 - 1.13894386e+002 1.24527336e+002 1.00839241e+002 1.13897171e+002 - 1.24556061e+002 1.00800529e+002 1.13866371e+002 1.24534058e+002 - 1.00805702e+002 1.13846779e+002 1.24558647e+002 1.00806969e+002 - 1.13861778e+002 1.24572769e+002 1.00799683e+002 1.13842194e+002 - 1.24573082e+002 1.00796341e+002 1.13844719e+002 1.24569740e+002 - 1.00809067e+002 1.13842278e+002 1.24589722e+002 1.00788300e+002 - 1.13837372e+002 1.24583778e+002 1.00806923e+002 1.13824234e+002 - 1.24597427e+002 1.00782974e+002 1.13811081e+002 1.24588661e+002 - 1.00766251e+002 1.13788216e+002 1.24580917e+002 1.00762085e+002 - 1.13805489e+002 1.24588905e+002 1.00782616e+002 1.13812798e+002 - 1.24617897e+002 1.00767456e+002 1.13805717e+002 1.24600372e+002 - 1.00775848e+002 1.13815628e+002 1.24618446e+002 1.00766953e+002 - 1.13837364e+002 1.24618217e+002 1.00770172e+002 1.13825974e+002 - 1.24606369e+002 1.00771317e+002 1.13839394e+002 1.24611664e+002 - 1.00777359e+002 1.13827492e+002 1.24609436e+002 1.00767067e+002 - 1.13828972e+002 1.24601387e+002 1.00751701e+002 1.13810074e+002 - 1.24577591e+002 1.00744377e+002 1.13820389e+002 1.24561180e+002 - 1.00756332e+002 1.13815002e+002 1.24567917e+002 1.00728188e+002 - 1.13806580e+002 1.24536278e+002 1.00758369e+002 1.13803017e+002 - 1.24541542e+002 1.00738869e+002 1.13793640e+002 1.24505745e+002 - 1.00747604e+002 1.13788818e+002 1.24485031e+002 1.00734245e+002 - 1.13798149e+002 1.24465446e+002 1.00752579e+002 1.13805992e+002 - 1.24468590e+002 1.00749229e+002 1.13810959e+002 1.24435364e+002 - 1.00771751e+002 1.13823563e+002 1.24432678e+002 1.00749825e+002 - 1.13824799e+002 1.24399872e+002 1.00775780e+002 1.13832367e+002 - 1.24404091e+002 1.00800453e+002 1.13866486e+002 1.24398720e+002 - 1.00818047e+002 1.13863152e+002 1.24383171e+002 1.00823463e+002 - 1.13879608e+002 1.24356369e+002 1.00829071e+002 1.13874352e+002 - 1.24328911e+002 1.00831367e+002 1.13889412e+002 1.24301117e+002 - 1.00833374e+002 1.13884705e+002 1.24277916e+002 1.00816116e+002 - 1.13882530e+002 1.24237152e+002 1.00827553e+002 1.13872375e+002 - 1.24217911e+002 1.00847366e+002 1.13909386e+002 1.24216049e+002 - 1.00866287e+002 1.13922684e+002 1.24209679e+002 1.00850357e+002 - 1.13931725e+002 1.24184639e+002 1.00843231e+002 1.13920197e+002 - 1.24164085e+002 1.00856842e+002 1.13945160e+002 1.24138092e+002 - 1.00910614e+002 1.13984818e+002 1.24137146e+002 1.00902184e+002 - 1.14000298e+002 1.24109207e+002 1.00904610e+002 1.13986809e+002 - 1.24069130e+002 1.00901550e+002 1.13992210e+002 1.24034836e+002 - 1.00918846e+002 1.13984161e+002 1.24006798e+002 1.00946617e+002 - 1.14032295e+002 1.24001335e+002 1.00995972e+002 1.14072144e+002 - 1.24001869e+002 1.01044746e+002 1.14135986e+002 1.24009483e+002 - 1.01080139e+002 1.14167084e+002 1.24009613e+002 1.01084534e+002 - 1.14189438e+002 1.23979111e+002 1.01115257e+002 1.14192085e+002 - 1.23952110e+002 1.01135132e+002 1.14225258e+002 1.23927063e+002 - 1.01178345e+002 1.14261223e+002 1.23917221e+002 1.01168037e+002 - 1.14263893e+002 1.23874672e+002 1.01225075e+002 1.14308807e+002 - 1.23886398e+002 1.01254585e+002 1.14347221e+002 1.23862495e+002 - 1.01266052e+002 1.14348083e+002 1.23813530e+002 1.01274124e+002 - 1.14381454e+002 1.23793793e+002 1.01329353e+002 1.14424011e+002 - 1.23805038e+002 1.01339981e+002 1.14449043e+002 1.23781433e+002 - 1.01368469e+002 1.14460716e+002 1.23756866e+002 1.01427490e+002 - 1.14532318e+002 1.23769028e+002 1.01466629e+002 1.14567696e+002 - 1.23757607e+002 1.01495377e+002 1.14604950e+002 1.23727371e+002 - 1.01513412e+002 1.14608772e+002 1.23684731e+002 1.01555359e+002 - 1.14662155e+002 1.23678123e+002 1.01601944e+002 1.14678841e+002 - 1.23653389e+002 1.01659698e+002 1.14744347e+002 1.23659866e+002 - 1.01699074e+002 1.14776154e+002 1.23635139e+002 1.01715599e+002 - 1.14815598e+002 1.23605545e+002 1.01763695e+002 1.14851059e+002 - 1.23605453e+002 1.01826233e+002 1.14929802e+002 1.23608261e+002 - 1.01875854e+002 1.14965485e+002 1.23585625e+002 1.01887589e+002 - 1.15002937e+002 1.23555428e+002 1.01931450e+002 1.15034393e+002 - 1.23551750e+002 1.01975845e+002 1.15091103e+002 1.23545456e+002 - 1.02008110e+002 1.15108093e+002 1.23516113e+002 1.02051880e+002 - 1.15162750e+002 1.23505905e+002 1.02109093e+002 1.15222809e+002 - 1.23506111e+002 1.02169807e+002 1.15290520e+002 1.23506668e+002 - 1.02225792e+002 1.15330696e+002 1.23499977e+002 1.02251015e+002 - 1.15363419e+002 1.23467583e+002 1.02294380e+002 1.15376991e+002 - 1.23429802e+002 1.02361092e+002 1.15453125e+002 1.23434250e+002 - 1.02425652e+002 1.15503418e+002 1.23423843e+002 1.02459953e+002 - 1.15559517e+002 1.23411079e+002 1.02525940e+002 1.15615402e+002 - 1.23415169e+002 1.02600082e+002 1.15681892e+002 1.23417053e+002 - 1.02666611e+002 1.15738007e+002 1.23400352e+002 1.02736504e+002 - 1.15828522e+002 1.23416306e+002 1.02798325e+002 1.15868881e+002 - 1.23408821e+002 1.02842186e+002 1.15916962e+002 1.23390251e+002 - 1.02898804e+002 1.15946823e+002 1.23376701e+002 1.02926270e+002 - 1.15976563e+002 1.23337914e+002 1.03010986e+002 1.16039780e+002 - 1.23344727e+002 1.03076782e+002 1.16109680e+002 1.23343071e+002 - 1.03145294e+002 1.16156883e+002 1.23338364e+002 1.03228203e+002 - 1.16251350e+002 1.23357445e+002 1.03309280e+002 1.16303375e+002 - 1.23357071e+002 1.03394623e+002 1.16395470e+002 1.23371391e+002 - 1.03475937e+002 1.16456139e+002 1.23365845e+002 1.03570862e+002 - 1.16563896e+002 1.23400780e+002 1.03657867e+002 1.16634476e+002 - 1.23421623e+002 1.03730484e+002 1.16702164e+002 1.23411453e+002 - 1.03815102e+002 1.16759995e+002 1.23390579e+002 1.03894768e+002 - 1.16852463e+002 1.23409309e+002 1.03961403e+002 1.16893608e+002 - 1.23401688e+002 1.04035362e+002 1.16957687e+002 1.23399681e+002 - 1.04152802e+002 1.17037132e+002 1.23428566e+002 1.04244713e+002 - 1.17117958e+002 1.23440056e+002 1.04363922e+002 1.17206375e+002 - 1.23466629e+002 1.04476479e+002 1.17311646e+002 1.23502274e+002 - 1.04559410e+002 1.17370102e+002 1.23499527e+002 1.04648026e+002 - 1.17443039e+002 1.23512253e+002 1.04753914e+002 1.17497314e+002 - 1.23521721e+002 1.04823303e+002 1.17560394e+002 1.23514450e+002 - 1.04897949e+002 1.17600792e+002 1.23503334e+002 1.04956436e+002 - 1.17659126e+002 1.23497231e+002 1.04968475e+002 1.17633110e+002 - 1.23441765e+002 1.04913025e+002 1.17563866e+002 1.23313499e+002 - 1.04862717e+002 1.17536789e+002 1.23358406e+002 1.04901482e+002 - 1.17610985e+002 1.23474335e+002 1.04910126e+002 1.17636047e+002 - 1.23558876e+002 1.04858032e+002 1.17614830e+002 1.23582161e+002 - 1.04800797e+002 1.17571243e+002 1.23606064e+002 1.04706650e+002 - 1.17512611e+002 1.23596649e+002 1.04617966e+002 1.17438492e+002 - 1.23590454e+002 1.04525085e+002 1.17379707e+002 1.23571609e+002 - 1.04451942e+002 1.17313805e+002 1.23578453e+002 1.04370270e+002 - 1.17264160e+002 1.23576096e+002 1.04303299e+002 1.17202614e+002 - 1.23599670e+002 1.04237953e+002 1.17157867e+002 1.23610153e+002 - 1.04131554e+002 1.17063972e+002 1.23586533e+002 1.04013443e+002 - 1.16968903e+002 1.23537918e+002 1.03923752e+002 1.16882645e+002 - 1.23513039e+002 1.03823837e+002 1.16795586e+002 1.23479805e+002 - 1.03742615e+002 1.16724640e+002 1.23510826e+002 1.03611328e+002 - 1.16631035e+002 1.23468529e+002 1.03559685e+002 1.16569183e+002 - 1.23478218e+002 1.03501801e+002 1.16525246e+002 1.23475258e+002 - 1.03420578e+002 1.16432533e+002 1.23469353e+002 1.03309052e+002 - 1.16337669e+002 1.23427254e+002 1.03229164e+002 1.16261002e+002 - 1.23432060e+002 1.03161484e+002 1.16199982e+002 1.23427963e+002 - 1.03118523e+002 1.16156075e+002 1.23459923e+002 1.03039902e+002 - 1.16091118e+002 1.23455879e+002 1.02979813e+002 1.16013268e+002 - 1.23474449e+002 1.02923622e+002 1.15970726e+002 1.23483719e+002 - 1.02862259e+002 1.15912544e+002 1.23502586e+002 1.02763954e+002 - 1.15842369e+002 1.23477234e+002 1.02694145e+002 1.15773842e+002 - 1.23463699e+002 1.02619827e+002 1.15708328e+002 1.23452522e+002 - 1.02557716e+002 1.15645660e+002 1.23479568e+002 1.02494698e+002 - 1.15608398e+002 1.23493904e+002 1.02446213e+002 1.15551170e+002 - 1.23506783e+002 1.02379745e+002 1.15491974e+002 1.23498901e+002 - 1.02335732e+002 1.15437576e+002 1.23523758e+002 1.02274513e+002 - 1.15385948e+002 1.23526726e+002 1.02218697e+002 1.15331650e+002 - 1.23536217e+002 1.02179153e+002 1.15303802e+002 1.23546806e+002 - 1.02151733e+002 1.15266609e+002 1.23569916e+002 1.02062309e+002 - 1.15188904e+002 1.23542511e+002 1.02017426e+002 1.15117767e+002 - 1.23555885e+002 1.01966408e+002 1.15077545e+002 1.23563530e+002 - 1.01955093e+002 1.15060455e+002 1.23611610e+002 1.01916794e+002 - 1.15044235e+002 1.23622231e+002 1.01880661e+002 1.14997993e+002 - 1.23633316e+002 1.01822281e+002 1.14952095e+002 1.23624252e+002 - 1.01792145e+002 1.14910591e+002 1.23662888e+002 1.01725693e+002 - 1.14866020e+002 1.23660957e+002 1.01695030e+002 1.14815582e+002 - 1.23663193e+002 1.01661446e+002 1.14788422e+002 1.23675842e+002 - 1.01627579e+002 1.14734566e+002 1.23691391e+002 1.01579521e+002 - 1.14697128e+002 1.23694748e+002 1.01537064e+002 1.14649017e+002 - 1.23714455e+002 1.01497383e+002 1.14619621e+002 1.23719398e+002 - 1.01479874e+002 1.14586487e+002 1.23752037e+002 1.01423668e+002 - 1.14533287e+002 1.23753731e+002 1.01408699e+002 1.14498642e+002 - 1.23791748e+002 1.01371597e+002 1.14468750e+002 1.23813042e+002 - 1.01359314e+002 1.14452866e+002 1.23851196e+002 1.01294746e+002 - 1.14404167e+002 1.23833794e+002 1.01264778e+002 1.14361633e+002 - 1.23845848e+002 1.01232971e+002 1.14337334e+002 1.23853844e+002 - 1.01191086e+002 1.14292480e+002 1.23879379e+002 1.01138954e+002 - 1.14272751e+002 1.23887688e+002 1.01157295e+002 1.14268143e+002 - 1.23932182e+002 1.01135506e+002 1.14255539e+002 1.23944199e+002 - 1.01122101e+002 1.14223892e+002 1.23969833e+002 1.01100548e+002 - 1.14212753e+002 1.23983070e+002 1.01078751e+002 1.14178810e+002 - 1.23998474e+002 1.01046364e+002 1.14155136e+002 1.24003517e+002 - 1.01008797e+002 1.14108055e+002 1.24003418e+002 1.00963402e+002 - 1.14068588e+002 1.24009514e+002 1.00982803e+002 1.14062141e+002 - 1.24066956e+002 1.00957977e+002 1.14047066e+002 1.24086250e+002 - 1.00950005e+002 1.14029396e+002 1.24113525e+002 1.00910660e+002 - 1.14007133e+002 1.24107811e+002 1.00886261e+002 1.13968628e+002 - 1.24110008e+002 1.00868088e+002 1.13947998e+002 1.24113426e+002 - 1.00834488e+002 1.13901527e+002 1.24119675e+002 1.00790565e+002 - 1.13877785e+002 1.24122833e+002 1.00806633e+002 1.13869980e+002 - 1.24164757e+002 1.00786736e+002 1.13862747e+002 1.24169701e+002 - 1.00768829e+002 1.13830933e+002 1.24187599e+002 1.00736267e+002 - 1.13808372e+002 1.24183105e+002 1.00721336e+002 1.13789215e+002 - 1.24205757e+002 1.00709145e+002 1.13788605e+002 1.24217369e+002 - 1.00715515e+002 1.13788681e+002 1.24253174e+002 1.00698479e+002 - 1.13782059e+002 1.24261879e+002 1.00726196e+002 1.13783363e+002 - 1.24310837e+002 1.00731781e+002 1.13806252e+002 1.24349579e+002 - 1.00744484e+002 1.13810547e+002 1.24380089e+002 1.00704185e+002 - 1.13790176e+002 1.24370529e+002 1.00691025e+002 1.13770981e+002 - 1.24373253e+002 1.00693497e+002 1.13775368e+002 1.24394386e+002 - 1.00718422e+002 1.13788193e+002 1.24434837e+002 1.00692329e+002 - 1.13790192e+002 1.24441345e+002 1.00709084e+002 1.13782860e+002 - 1.24468071e+002 1.00703110e+002 1.13784561e+002 1.24478310e+002 - 1.00697800e+002 1.13756012e+002 1.24490822e+002 1.00672745e+002 - 1.13743858e+002 1.24478905e+002 1.00654701e+002 1.13711861e+002 - 1.24475334e+002 1.00669495e+002 1.13734657e+002 1.24491859e+002 - 1.00707832e+002 1.13757133e+002 1.24533607e+002 1.00695465e+002 - 1.13757919e+002 1.24536667e+002 1.00697723e+002 1.13734741e+002 - 1.24535416e+002 1.00676559e+002 1.13723312e+002 1.24522659e+002 - 1.00653610e+002 1.13695068e+002 1.24511757e+002 1.00638054e+002 - 1.13696289e+002 1.24508507e+002 1.00644501e+002 1.13694092e+002 - 1.24525154e+002 1.00628754e+002 1.13684921e+002 1.24506920e+002 - 1.00626091e+002 1.13683563e+002 1.24514824e+002 1.00626648e+002 - 1.13709991e+002 1.24523506e+002 1.00631836e+002 1.13699852e+002 - 1.24516525e+002 1.00628204e+002 1.13707939e+002 1.24504898e+002 - 1.00633362e+002 1.13694878e+002 1.24501877e+002 1.00618904e+002 - 1.13695877e+002 1.24490822e+002 1.00612022e+002 1.13684578e+002 - 1.24479149e+002 1.00617760e+002 1.13706451e+002 1.24479660e+002 - 1.00619240e+002 1.13694069e+002 1.24471504e+002 1.00605629e+002 - 1.13693108e+002 1.24452660e+002 1.00616905e+002 1.13672760e+002 - 1.24432915e+002 1.00600723e+002 1.13664307e+002 1.24402275e+002 - 1.00631592e+002 1.13687363e+002 1.24412544e+002 1.00628777e+002 - 1.13705246e+002 1.24392960e+002 1.00608910e+002 1.13676117e+002 - 1.24365448e+002 1.00612221e+002 1.13684448e+002 1.24342285e+002 - 1.00643219e+002 1.13703156e+002 1.24339302e+002 1.00633461e+002 - 1.13726486e+002 1.24325859e+002 1.00654839e+002 1.13731606e+002 - 1.24323235e+002 1.00672691e+002 1.13756393e+002 1.24314285e+002 - 1.00692261e+002 1.13757111e+002 1.24299782e+002 1.00712051e+002 - 1.13785759e+002 1.24291756e+002 1.00711319e+002 1.13777191e+002 - 1.24255898e+002 1.00717270e+002 1.13798805e+002 1.24232269e+002 - 1.00711662e+002 1.13780563e+002 1.24202309e+002 1.00673325e+002 - 1.13758057e+002 1.24142487e+002 1.00692398e+002 1.13748344e+002 - 1.24118721e+002 1.00730011e+002 1.13797844e+002 1.24134613e+002 - 1.00750832e+002 1.13822861e+002 1.24131462e+002 1.00728737e+002 - 1.13815620e+002 1.24092163e+002 1.00730659e+002 1.13813568e+002 - 1.24082436e+002 1.00738014e+002 1.13831482e+002 1.24058601e+002 - 1.00775223e+002 1.13862663e+002 1.24048241e+002 1.00756073e+002 - 1.13870979e+002 1.24004143e+002 1.00786049e+002 1.13878746e+002 - 1.23993149e+002 1.00803421e+002 1.13904922e+002 1.23982552e+002 - 1.00824928e+002 1.13908333e+002 1.23963203e+002 1.00835579e+002 - 1.13933601e+002 1.23934952e+002 1.00868988e+002 1.13967644e+002 - 1.23919243e+002 1.00907059e+002 1.14018257e+002 1.23919792e+002 - 1.00946098e+002 1.14047546e+002 1.23919678e+002 1.00959656e+002 - 1.14077515e+002 1.23897598e+002 1.00981499e+002 1.14075821e+002 - 1.23866493e+002 1.00995468e+002 1.14106041e+002 1.23838646e+002 - 1.01039894e+002 1.14134903e+002 1.23827774e+002 1.01047600e+002 - 1.14159508e+002 1.23795006e+002 1.01084663e+002 1.14184593e+002 - 1.23795883e+002 1.01124504e+002 1.14229805e+002 1.23774292e+002 - 1.01151466e+002 1.14247421e+002 1.23742958e+002 1.01146408e+002 - 1.14269432e+002 1.23706078e+002 1.01203217e+002 1.14308693e+002 - 1.23718430e+002 1.01242805e+002 1.14363670e+002 1.23725105e+002 - 1.01258842e+002 1.14360687e+002 1.23692123e+002 1.01293869e+002 - 1.14406807e+002 1.23678314e+002 1.01356483e+002 1.14466965e+002 - 1.23685883e+002 1.01374245e+002 1.14496521e+002 1.23647865e+002 - 1.01418243e+002 1.14525986e+002 1.23629158e+002 1.01440460e+002 - 1.14564545e+002 1.23605667e+002 1.01487389e+002 1.14582367e+002 - 1.23584358e+002 1.01534119e+002 1.14637619e+002 1.23577591e+002 - 1.01586311e+002 1.14677422e+002 1.23569160e+002 1.01593521e+002 - 1.14707939e+002 1.23529175e+002 1.01622589e+002 1.14723938e+002 - 1.23508591e+002 1.01696320e+002 1.14807030e+002 1.23516975e+002 - 1.01750992e+002 1.14856430e+002 1.23502510e+002 1.01749489e+002 - 1.14881035e+002 1.23467140e+002 1.01796822e+002 1.14919739e+002 - 1.23463646e+002 1.01836647e+002 1.14964622e+002 1.23451370e+002 - 1.01860008e+002 1.14967484e+002 1.23413330e+002 1.01907066e+002 - 1.15036667e+002 1.23414268e+002 1.01975197e+002 1.15094780e+002 - 1.23416817e+002 1.02023392e+002 1.15156097e+002 1.23407295e+002 - 1.02089058e+002 1.15210007e+002 1.23406052e+002 1.02136581e+002 - 1.15265884e+002 1.23398842e+002 1.02187828e+002 1.15287529e+002 - 1.23369804e+002 1.02254402e+002 1.15358864e+002 1.23371559e+002 - 1.02341583e+002 1.15432343e+002 1.23385254e+002 1.02349846e+002 - 1.15458931e+002 1.23344315e+002 1.02411659e+002 1.15509521e+002 - 1.23347038e+002 1.02492729e+002 1.15592911e+002 1.23359108e+002 - 1.02567490e+002 1.15653816e+002 1.23348206e+002 1.02644775e+002 - 1.15751801e+002 1.23368309e+002 1.02699829e+002 1.15782578e+002 - 1.23351646e+002 1.02736755e+002 1.15825500e+002 1.23329544e+002 - 1.02781738e+002 1.15846718e+002 1.23304054e+002 1.02818085e+002 - 1.15885757e+002 1.23273506e+002 1.02887222e+002 1.15942795e+002 - 1.23272423e+002 1.02967018e+002 1.16023552e+002 1.23281403e+002 - 1.03034874e+002 1.16065742e+002 1.23273361e+002 1.03120010e+002 - 1.16164825e+002 1.23298698e+002 1.03208023e+002 1.16223396e+002 - 1.23301353e+002 1.03276337e+002 1.16298691e+002 1.23299995e+002 - 1.03373985e+002 1.16373634e+002 1.23315468e+002 1.03465065e+002 - 1.16472694e+002 1.23343147e+002 1.03539398e+002 1.16532501e+002 - 1.23353798e+002 1.03618698e+002 1.16609795e+002 1.23346840e+002 - 1.03708405e+002 1.16671028e+002 1.23330444e+002 1.03797188e+002 - 1.16772636e+002 1.23354523e+002 1.03870201e+002 1.16818321e+002 - 1.23351784e+002 1.03942451e+002 1.16880211e+002 1.23355034e+002 - 1.04059639e+002 1.16963013e+002 1.23382355e+002 1.04146790e+002 - 1.17039680e+002 1.23389740e+002 1.04262451e+002 1.17130493e+002 - 1.23421227e+002 1.04378677e+002 1.17242729e+002 1.23456802e+002 - 1.04462761e+002 1.17294273e+002 1.23449875e+002 1.04557808e+002 - 1.17381203e+002 1.23474228e+002 1.04673111e+002 1.17440666e+002 - 1.23488861e+002 1.04729523e+002 1.17490471e+002 1.23462898e+002 - 1.04813461e+002 1.17528786e+002 1.23464882e+002 1.04851593e+002 - 1.17571381e+002 1.23436707e+002 1.04883202e+002 1.17564796e+002 - 1.23393051e+002 1.04832680e+002 1.17499107e+002 1.23272362e+002 - 1.04781319e+002 1.17465790e+002 1.23317314e+002 1.04799797e+002 - 1.17525322e+002 1.23418816e+002 1.04795868e+002 1.17538513e+002 - 1.23484314e+002 1.04762009e+002 1.17537590e+002 1.23525917e+002 - 1.04699188e+002 1.17484314e+002 1.23547981e+002 1.04605515e+002 - 1.17425568e+002 1.23531746e+002 1.04509552e+002 1.17353577e+002 - 1.23534348e+002 1.04421585e+002 1.17293007e+002 1.23513367e+002 - 1.04364906e+002 1.17252174e+002 1.23539612e+002 1.04258064e+002 - 1.17174072e+002 1.23512543e+002 1.04198715e+002 1.17106979e+002 - 1.23540192e+002 1.04134850e+002 1.17067215e+002 1.23555489e+002 - 1.04014214e+002 1.16962990e+002 1.23506569e+002 1.03890930e+002 - 1.16859734e+002 1.23448807e+002 1.03812553e+002 1.16779793e+002 - 1.23436119e+002 1.03724503e+002 1.16712013e+002 1.23420113e+002 - 1.03629311e+002 1.16627495e+002 1.23436668e+002 1.03504021e+002 - 1.16536751e+002 1.23395149e+002 1.03463387e+002 1.16484657e+002 - 1.23413155e+002 1.03418625e+002 1.16450691e+002 1.23432365e+002 - 1.03319946e+002 1.16346024e+002 1.23407898e+002 1.03212334e+002 - 1.16254311e+002 1.23367836e+002 1.03135231e+002 1.16173752e+002 - 1.23366623e+002 1.03062744e+002 1.16116882e+002 1.23368980e+002 - 1.03005814e+002 1.16054840e+002 1.23385841e+002 1.02922134e+002 - 1.15990463e+002 1.23380013e+002 1.02861008e+002 1.15901619e+002 - 1.23391991e+002 1.02795013e+002 1.15854271e+002 1.23403473e+002 - 1.02751251e+002 1.15812935e+002 1.23429451e+002 1.02657898e+002 - 1.15747604e+002 1.23408585e+002 1.02609077e+002 1.15700912e+002 - 1.23420471e+002 1.02540527e+002 1.15645485e+002 1.23423645e+002 - 1.02476242e+002 1.15579445e+002 1.23442207e+002 1.02379562e+002 - 1.15510933e+002 1.23421196e+002 1.02320869e+002 1.15442833e+002 - 1.23423737e+002 1.02266838e+002 1.15401344e+002 1.23427994e+002 - 1.02220734e+002 1.15338844e+002 1.23455681e+002 1.02154541e+002 - 1.15283371e+002 1.23451660e+002 1.02107040e+002 1.15239891e+002 - 1.23469856e+002 1.02065102e+002 1.15206238e+002 1.23480743e+002 - 1.02039757e+002 1.15167450e+002 1.23499435e+002 1.01969086e+002 - 1.15103485e+002 1.23487328e+002 1.01914925e+002 1.15026466e+002 - 1.23494995e+002 1.01892784e+002 1.15017273e+002 1.23535370e+002 - 1.01867546e+002 1.14992844e+002 1.23566353e+002 1.01795975e+002 - 1.14937019e+002 1.23542175e+002 1.01770195e+002 1.14901619e+002 - 1.23561043e+002 1.01726746e+002 1.14865196e+002 1.23566887e+002 - 1.01695572e+002 1.14827156e+002 1.23602356e+002 1.01608658e+002 - 1.14759529e+002 1.23586014e+002 1.01576057e+002 1.14708893e+002 - 1.23585838e+002 1.01548782e+002 1.14695755e+002 1.23607368e+002 - 1.01523239e+002 1.14646286e+002 1.23631096e+002 1.01476425e+002 - 1.14607620e+002 1.23632332e+002 1.01417999e+002 1.14543640e+002 - 1.23638329e+002 1.01418205e+002 1.14547325e+002 1.23679459e+002 - 1.01363762e+002 1.14480751e+002 1.23675125e+002 1.01308075e+002 - 1.14429443e+002 1.23676155e+002 1.01281555e+002 1.14372711e+002 - 1.23702438e+002 1.01255730e+002 1.14362404e+002 1.23739555e+002 - 1.01237358e+002 1.14336678e+002 1.23771439e+002 1.01182251e+002 - 1.14301575e+002 1.23757256e+002 1.01155670e+002 1.14267609e+002 - 1.23782532e+002 1.01129822e+002 1.14250313e+002 1.23796432e+002 - 1.01082260e+002 1.14198380e+002 1.23810707e+002 1.01025124e+002 - 1.14171692e+002 1.23816788e+002 1.01041061e+002 1.14169144e+002 - 1.23857964e+002 1.01046944e+002 1.14176361e+002 1.23896149e+002 - 1.01013039e+002 1.14125313e+002 1.23903633e+002 1.00994720e+002 - 1.14120255e+002 1.23927483e+002 1.00969437e+002 1.14087273e+002 - 1.23942886e+002 1.00951096e+002 1.14071487e+002 1.23952904e+002 - 1.00923462e+002 1.14034943e+002 1.23965340e+002 1.00868683e+002 - 1.13994270e+002 1.23964752e+002 1.00866371e+002 1.13948975e+002 - 1.23998810e+002 1.00824638e+002 1.13925766e+002 1.23998108e+002 - 1.00817467e+002 1.13914429e+002 1.24029327e+002 1.00780556e+002 - 1.13883293e+002 1.24025536e+002 1.00759644e+002 1.13846916e+002 - 1.24027008e+002 1.00742432e+002 1.13832642e+002 1.24031639e+002 - 1.00694664e+002 1.13771530e+002 1.24030518e+002 1.00666779e+002 - 1.13762741e+002 1.24043083e+002 1.00675522e+002 1.13753166e+002 - 1.24079437e+002 1.00659218e+002 1.13755249e+002 1.24093773e+002 - 1.00655319e+002 1.13726921e+002 1.24119797e+002 1.00617142e+002 - 1.13707291e+002 1.24122475e+002 1.00601875e+002 1.13687859e+002 - 1.24135712e+002 1.00593689e+002 1.13690331e+002 1.24152855e+002 - 1.00598503e+002 1.13680840e+002 1.24180389e+002 1.00574966e+002 - 1.13673607e+002 1.24187378e+002 1.00598076e+002 1.13668205e+002 - 1.24236977e+002 1.00631760e+002 1.13715309e+002 1.24293488e+002 - 1.00626999e+002 1.13709503e+002 1.24313522e+002 1.00592720e+002 - 1.13696663e+002 1.24304291e+002 1.00585915e+002 1.13673584e+002 - 1.24315834e+002 1.00582916e+002 1.13673019e+002 1.24321617e+002 - 1.00596657e+002 1.13676369e+002 1.24357292e+002 1.00571640e+002 - 1.13676010e+002 1.24365738e+002 1.00602318e+002 1.13688560e+002 - 1.24406410e+002 1.00585602e+002 1.13684036e+002 1.24413193e+002 - 1.00585876e+002 1.13659683e+002 1.24421410e+002 1.00565109e+002 - 1.13650558e+002 1.24420685e+002 1.00547516e+002 1.13614487e+002 - 1.24405853e+002 1.00554047e+002 1.13632439e+002 1.24419502e+002 - 1.00576576e+002 1.13644753e+002 1.24446526e+002 1.00551064e+002 - 1.13624931e+002 1.24434433e+002 1.00566521e+002 1.13611618e+002 - 1.24449959e+002 1.00570915e+002 1.13627777e+002 1.24467468e+002 - 1.00551056e+002 1.13602249e+002 1.24457741e+002 1.00525551e+002 - 1.13594604e+002 1.24435646e+002 1.00514832e+002 1.13572350e+002 - 1.24439598e+002 1.00507217e+002 1.13571854e+002 1.24421097e+002 - 1.00508041e+002 1.13572174e+002 1.24432739e+002 1.00482201e+002 - 1.13576065e+002 1.24417068e+002 1.00492744e+002 1.13563858e+002 - 1.24410645e+002 1.00506836e+002 1.13592468e+002 1.24419075e+002 - 1.00512550e+002 1.13577919e+002 1.24424744e+002 1.00484085e+002 - 1.13567444e+002 1.24391426e+002 1.00469696e+002 1.13549385e+002 - 1.24378601e+002 1.00511139e+002 1.13603989e+002 1.24410080e+002 - 1.00495689e+002 1.13581604e+002 1.24390091e+002 1.00460739e+002 - 1.13556969e+002 1.24346428e+002 1.00485237e+002 1.13556740e+002 - 1.24344780e+002 1.00482155e+002 1.13559036e+002 1.24321388e+002 - 1.00522453e+002 1.13583229e+002 1.24340744e+002 1.00490585e+002 - 1.13581642e+002 1.24301254e+002 1.00472473e+002 1.13545677e+002 - 1.24265755e+002 1.00485245e+002 1.13568909e+002 1.24249428e+002 - 1.00511658e+002 1.13586861e+002 1.24249756e+002 1.00496567e+002 - 1.13602341e+002 1.24222794e+002 1.00535973e+002 1.13623703e+002 - 1.24240822e+002 1.00552513e+002 1.13655479e+002 1.24232285e+002 - 1.00582581e+002 1.13668976e+002 1.24240051e+002 1.00582924e+002 - 1.13673660e+002 1.24204796e+002 1.00595268e+002 1.13674332e+002 - 1.24183525e+002 1.00617142e+002 1.13712776e+002 1.24178246e+002 - 1.00609520e+002 1.13692421e+002 1.24146347e+002 1.00587387e+002 - 1.13685913e+002 1.24096985e+002 1.00607658e+002 1.13676895e+002 - 1.24075638e+002 1.00638344e+002 1.13717216e+002 1.24075249e+002 - 1.00665855e+002 1.13740158e+002 1.24082756e+002 1.00650986e+002 - 1.13747147e+002 1.24052383e+002 1.00634163e+002 1.13724724e+002 - 1.24019699e+002 1.00627258e+002 1.13725990e+002 1.23984123e+002 - 1.00670120e+002 1.13769257e+002 1.23989738e+002 1.00649864e+002 - 1.13779739e+002 1.23945610e+002 1.00672897e+002 1.13783096e+002 - 1.23933945e+002 1.00695534e+002 1.13815704e+002 1.23919945e+002 - 1.00701759e+002 1.13800407e+002 1.23884315e+002 1.00702522e+002 - 1.13818550e+002 1.23849968e+002 1.00732788e+002 1.13848663e+002 - 1.23837082e+002 1.00785645e+002 1.13909760e+002 1.23849785e+002 - 1.00803856e+002 1.13921486e+002 1.23826401e+002 1.00823990e+002 - 1.13954132e+002 1.23813263e+002 1.00838058e+002 1.13942940e+002 - 1.23774178e+002 1.00870979e+002 1.13987747e+002 1.23757004e+002 - 1.00902512e+002 1.14012665e+002 1.23735039e+002 1.00903976e+002 - 1.14034279e+002 1.23703125e+002 1.00953781e+002 1.14066055e+002 - 1.23709213e+002 1.00999878e+002 1.14118477e+002 1.23696121e+002 - 1.01028923e+002 1.14137733e+002 1.23662117e+002 1.01026962e+002 - 1.14164978e+002 1.23632690e+002 1.01087669e+002 1.14208374e+002 - 1.23652649e+002 1.01136993e+002 1.14269653e+002 1.23662399e+002 - 1.01164093e+002 1.14276497e+002 1.23640320e+002 1.01184456e+002 - 1.14314453e+002 1.23618942e+002 1.01260262e+002 1.14383965e+002 - 1.23638023e+002 1.01295479e+002 1.14430305e+002 1.23613274e+002 - 1.01331497e+002 1.14455124e+002 1.23594475e+002 1.01332733e+002 - 1.14472618e+002 1.23549606e+002 1.01382820e+002 1.14488358e+002 - 1.23525490e+002 1.01451225e+002 1.14565544e+002 1.23538963e+002 - 1.01491150e+002 1.14600243e+002 1.23520996e+002 1.01493385e+002 - 1.14622604e+002 1.23471664e+002 1.01521851e+002 1.14638939e+002 - 1.23455414e+002 1.01605553e+002 1.14732018e+002 1.23481583e+002 - 1.01656120e+002 1.14775391e+002 1.23456032e+002 1.01643112e+002 - 1.14789680e+002 1.23399582e+002 1.01689079e+002 1.14819351e+002 - 1.23392761e+002 1.01726448e+002 1.14869621e+002 1.23384506e+002 - 1.01760040e+002 1.14883705e+002 1.23360382e+002 1.01797348e+002 - 1.14941406e+002 1.23351646e+002 1.01856171e+002 1.14996651e+002 - 1.23356430e+002 1.01910782e+002 1.15060524e+002 1.23352913e+002 - 1.01988312e+002 1.15128548e+002 1.23365196e+002 1.02025108e+002 - 1.15173508e+002 1.23341721e+002 1.02092644e+002 1.15204964e+002 - 1.23320511e+002 1.02156029e+002 1.15270065e+002 1.23314697e+002 - 1.02244804e+002 1.15349869e+002 1.23338470e+002 1.02270432e+002 - 1.15392982e+002 1.23313873e+002 1.02325172e+002 1.15437012e+002 - 1.23309624e+002 1.02402031e+002 1.15517700e+002 1.23310783e+002 - 1.02486786e+002 1.15588501e+002 1.23310234e+002 1.02543732e+002 - 1.15667007e+002 1.23309784e+002 1.02593010e+002 1.15689285e+002 - 1.23289604e+002 1.02626358e+002 1.15734154e+002 1.23265877e+002 - 1.02677933e+002 1.15755524e+002 1.23242271e+002 1.02705795e+002 - 1.15788445e+002 1.23203781e+002 1.02790207e+002 1.15857346e+002 - 1.23218285e+002 1.02862717e+002 1.15937019e+002 1.23223488e+002 - 1.02943047e+002 1.15995705e+002 1.23229698e+002 1.03015648e+002 - 1.16085159e+002 1.23244011e+002 1.03123505e+002 1.16147316e+002 - 1.23263451e+002 1.03179817e+002 1.16210548e+002 1.23243576e+002 - 1.03287582e+002 1.16301476e+002 1.23271523e+002 1.03372765e+002 - 1.16398392e+002 1.23298683e+002 1.03450928e+002 1.16455551e+002 - 1.23312935e+002 1.03526764e+002 1.16532043e+002 1.23303108e+002 - 1.03609436e+002 1.16585739e+002 1.23279625e+002 1.03687256e+002 - 1.16678329e+002 1.23289558e+002 1.03783554e+002 1.16743599e+002 - 1.23316078e+002 1.03850281e+002 1.16807892e+002 1.23310715e+002 - 1.03958252e+002 1.16877487e+002 1.23334541e+002 1.04043015e+002 - 1.16963295e+002 1.23341347e+002 1.04157021e+002 1.17046623e+002 - 1.23361855e+002 1.04266518e+002 1.17154335e+002 1.23390411e+002 - 1.04350700e+002 1.17201904e+002 1.23387657e+002 1.04458084e+002 - 1.17303528e+002 1.23424294e+002 1.04574165e+002 1.17362434e+002 - 1.23440552e+002 1.04646400e+002 1.17425865e+002 1.23432213e+002 - 1.04733505e+002 1.17469971e+002 1.23428070e+002 1.04761330e+002 - 1.17501068e+002 1.23387466e+002 1.04781021e+002 1.17473373e+002 - 1.23334618e+002 1.04751671e+002 1.17438126e+002 1.23233994e+002 - 1.04657242e+002 1.17351784e+002 1.23253441e+002 1.04686478e+002 - 1.17422668e+002 1.23357628e+002 1.04689278e+002 1.17436157e+002 - 1.23431587e+002 1.04647728e+002 1.17432243e+002 1.23467278e+002 - 1.04586922e+002 1.17383255e+002 1.23494141e+002 1.04486214e+002 - 1.17321243e+002 1.23478371e+002 1.04402763e+002 1.17256393e+002 - 1.23483452e+002 1.04309219e+002 1.17194626e+002 1.23462410e+002 - 1.04248306e+002 1.17152100e+002 1.23485451e+002 1.04152275e+002 - 1.17083961e+002 1.23468765e+002 1.04069443e+002 1.16989983e+002 - 1.23474960e+002 1.03996964e+002 1.16947037e+002 1.23483337e+002 - 1.03883156e+002 1.16839897e+002 1.23435944e+002 1.03793037e+002 - 1.16769539e+002 1.23413177e+002 1.03707344e+002 1.16685814e+002 - 1.23387794e+002 1.03621452e+002 1.16618690e+002 1.23374229e+002 - 1.03521027e+002 1.16527168e+002 1.23381332e+002 1.03389854e+002 - 1.16434708e+002 1.23341148e+002 1.03342056e+002 1.16366371e+002 - 1.23344582e+002 1.03274239e+002 1.16321732e+002 1.23340836e+002 - 1.03199738e+002 1.16239487e+002 1.23340385e+002 1.03092438e+002 - 1.16145706e+002 1.23309502e+002 1.03015472e+002 1.16063042e+002 - 1.23309235e+002 1.02938667e+002 1.16004547e+002 1.23303589e+002 - 1.02891640e+002 1.15955193e+002 1.23330727e+002 1.02796890e+002 - 1.15877548e+002 1.23313759e+002 1.02727844e+002 1.15785271e+002 - 1.23318817e+002 1.02667908e+002 1.15741211e+002 1.23332291e+002 - 1.02624626e+002 1.15700165e+002 1.23364014e+002 1.02534477e+002 - 1.15632545e+002 1.23333679e+002 1.02488159e+002 1.15587029e+002 - 1.23354431e+002 1.02432076e+002 1.15547989e+002 1.23358543e+002 - 1.02356483e+002 1.15476463e+002 1.23380325e+002 1.02238686e+002 - 1.15388794e+002 1.23342216e+002 1.02196388e+002 1.15336159e+002 - 1.23356186e+002 1.02140572e+002 1.15291588e+002 1.23362877e+002 - 1.02093330e+002 1.15223549e+002 1.23375069e+002 1.02021271e+002 - 1.15171471e+002 1.23374626e+002 1.01993790e+002 1.15139702e+002 - 1.23410881e+002 1.01928162e+002 1.15082214e+002 1.23394051e+002 - 1.01906082e+002 1.15048721e+002 1.23425568e+002 1.01849556e+002 - 1.15007881e+002 1.23424110e+002 1.01821640e+002 1.14949074e+002 - 1.23460724e+002 1.01769966e+002 1.14908112e+002 1.23465485e+002 - 1.01731697e+002 1.14869080e+002 1.23489761e+002 1.01653221e+002 - 1.14811539e+002 1.23457886e+002 1.01626640e+002 1.14772797e+002 - 1.23478996e+002 1.01597061e+002 1.14752365e+002 1.23492493e+002 - 1.01560097e+002 1.14710655e+002 1.23528366e+002 1.01476868e+002 - 1.14648460e+002 1.23505905e+002 1.01443710e+002 1.14593437e+002 - 1.23512405e+002 1.01415276e+002 1.14568321e+002 1.23523529e+002 - 1.01389557e+002 1.14522247e+002 1.23554367e+002 1.01312561e+002 - 1.14459755e+002 1.23521881e+002 1.01279198e+002 1.14420067e+002 - 1.23550484e+002 1.01286568e+002 1.14432121e+002 1.23603378e+002 - 1.01234459e+002 1.14369751e+002 1.23605743e+002 1.01176811e+002 - 1.14311600e+002 1.23604332e+002 1.01157791e+002 1.14257828e+002 - 1.23634140e+002 1.01131561e+002 1.14243530e+002 1.23656944e+002 - 1.01103180e+002 1.14214195e+002 1.23685173e+002 1.01064865e+002 - 1.14198692e+002 1.23701134e+002 1.01042702e+002 1.14158531e+002 - 1.23717155e+002 1.01019501e+002 1.14152588e+002 1.23740448e+002 - 1.00965431e+002 1.14096046e+002 1.23752831e+002 1.00901245e+002 - 1.14062515e+002 1.23744377e+002 1.00915176e+002 1.14048904e+002 - 1.23784378e+002 1.00904320e+002 1.14053627e+002 1.23814735e+002 - 1.00892250e+002 1.14021454e+002 1.23842499e+002 1.00873016e+002 - 1.14010826e+002 1.23859375e+002 1.00841888e+002 1.13972054e+002 - 1.23875282e+002 1.00825615e+002 1.13963905e+002 1.23895218e+002 - 1.00794769e+002 1.13923141e+002 1.23897766e+002 1.00746025e+002 - 1.13884155e+002 1.23893379e+002 1.00735504e+002 1.13835602e+002 - 1.23926926e+002 1.00711418e+002 1.13821053e+002 1.23942757e+002 - 1.00681839e+002 1.13778893e+002 1.23950066e+002 1.00636383e+002 - 1.13752586e+002 1.23936829e+002 1.00633415e+002 1.13732353e+002 - 1.23956688e+002 1.00608711e+002 1.13708450e+002 1.23960419e+002 - 1.00557022e+002 1.13644150e+002 1.23951988e+002 1.00532990e+002 - 1.13641823e+002 1.23969398e+002 1.00523003e+002 1.13620674e+002 - 1.23993454e+002 1.00527855e+002 1.13634995e+002 1.24027573e+002 - 1.00527397e+002 1.13614502e+002 1.24054695e+002 1.00485207e+002 - 1.13583130e+002 1.24042084e+002 1.00458755e+002 1.13556526e+002 - 1.24053337e+002 1.00480774e+002 1.13583031e+002 1.24097054e+002 - 1.00477669e+002 1.13572166e+002 1.24118790e+002 1.00445000e+002 - 1.13550774e+002 1.24113991e+002 1.00470795e+002 1.13549950e+002 - 1.24158104e+002 1.00490753e+002 1.13583992e+002 1.24206558e+002 - 1.00487915e+002 1.13581955e+002 1.24235153e+002 1.00471481e+002 - 1.13581253e+002 1.24235153e+002 1.00467804e+002 1.13561699e+002 - 1.24247360e+002 1.00448578e+002 1.13548584e+002 1.24240990e+002 - 1.00464760e+002 1.13556206e+002 1.24276978e+002 1.00438141e+002 - 1.13551262e+002 1.24284607e+002 1.00453804e+002 1.13548340e+002 - 1.24313446e+002 1.00425156e+002 1.13531242e+002 1.24302567e+002 - 1.00437256e+002 1.13519127e+002 1.24328659e+002 1.00423836e+002 - 1.13517105e+002 1.24329659e+002 1.00401230e+002 1.13488976e+002 - 1.24317734e+002 1.00415154e+002 1.13506538e+002 1.24338684e+002 - 1.00414101e+002 1.13493835e+002 1.24339096e+002 1.00391968e+002 - 1.13480682e+002 1.24328224e+002 1.00418686e+002 1.13474876e+002 - 1.24358444e+002 1.00411018e+002 1.13480576e+002 1.24358070e+002 - 1.00402542e+002 1.13463936e+002 1.24358643e+002 1.00368172e+002 - 1.13449425e+002 1.24338715e+002 1.00378532e+002 1.13441208e+002 - 1.24353798e+002 1.00380211e+002 1.13453270e+002 1.24348351e+002 - 1.00374199e+002 1.13449974e+002 1.24342255e+002 1.00335922e+002 - 1.13429832e+002 1.24317207e+002 1.00356651e+002 1.13435616e+002 - 1.24325623e+002 1.00379128e+002 1.13467300e+002 1.24349174e+002 - 1.00361374e+002 1.13434029e+002 1.24322815e+002 1.00329987e+002 - 1.13422699e+002 1.24294891e+002 1.00343689e+002 1.13431068e+002 - 1.24301231e+002 1.00361000e+002 1.13464287e+002 1.24315857e+002 - 1.00351753e+002 1.13448799e+002 1.24298447e+002 1.00297913e+002 - 1.13406151e+002 1.24236717e+002 1.00340820e+002 1.13416695e+002 - 1.24255562e+002 1.00353233e+002 1.13442772e+002 1.24254211e+002 - 1.00360458e+002 1.13441849e+002 1.24236542e+002 1.00342796e+002 - 1.13440773e+002 1.24206558e+002 1.00359337e+002 1.13447083e+002 - 1.24211304e+002 1.00351959e+002 1.13455658e+002 1.24176422e+002 - 1.00350166e+002 1.13437828e+002 1.24142929e+002 1.00348106e+002 - 1.13460480e+002 1.24126381e+002 1.00392448e+002 1.13487953e+002 - 1.24148758e+002 1.00427910e+002 1.13545204e+002 1.24164299e+002 - 1.00458755e+002 1.13549522e+002 1.24162872e+002 1.00443756e+002 - 1.13547813e+002 1.24124733e+002 1.00451591e+002 1.13549622e+002 - 1.24103149e+002 1.00478691e+002 1.13588387e+002 1.24095757e+002 - 1.00482185e+002 1.13581696e+002 1.24072456e+002 1.00462433e+002 - 1.13573952e+002 1.24025047e+002 1.00485550e+002 1.13568916e+002 - 1.24006714e+002 1.00523178e+002 1.13610741e+002 1.24012238e+002 - 1.00544495e+002 1.13627655e+002 1.24005974e+002 1.00522202e+002 - 1.13627487e+002 1.23970833e+002 1.00512596e+002 1.13610054e+002 - 1.23952927e+002 1.00515388e+002 1.13620094e+002 1.23916695e+002 - 1.00536385e+002 1.13645775e+002 1.23903412e+002 1.00513191e+002 - 1.13648170e+002 1.23865967e+002 1.00543251e+002 1.13666641e+002 - 1.23861633e+002 1.00561317e+002 1.13700371e+002 1.23850281e+002 - 1.00570534e+002 1.13688072e+002 1.23819481e+002 1.00555786e+002 - 1.13685852e+002 1.23766968e+002 1.00603806e+002 1.13732620e+002 - 1.23768578e+002 1.00672539e+002 1.13810463e+002 1.23791969e+002 - 1.00697495e+002 1.13825424e+002 1.23776596e+002 1.00691841e+002 - 1.13835785e+002 1.23736252e+002 1.00706558e+002 1.13823326e+002 - 1.23698929e+002 1.00722534e+002 1.13852768e+002 1.23670181e+002 - 1.00763290e+002 1.13886940e+002 1.23657867e+002 1.00757545e+002 - 1.13901749e+002 1.23616653e+002 1.00818787e+002 1.13949493e+002 - 1.23638313e+002 1.00865784e+002 1.14005035e+002 1.23623741e+002 - 1.00896568e+002 1.14029495e+002 1.23597603e+002 1.00902969e+002 - 1.14056763e+002 1.23568428e+002 1.00963226e+002 1.14100632e+002 - 1.23585426e+002 1.00995369e+002 1.14151260e+002 1.23585236e+002 - 1.01042343e+002 1.14175514e+002 1.23584213e+002 1.01046043e+002 - 1.14190254e+002 1.23538780e+002 1.01121346e+002 1.14264862e+002 - 1.23560196e+002 1.01163818e+002 1.14317596e+002 1.23547295e+002 - 1.01198051e+002 1.14342110e+002 1.23523941e+002 1.01202080e+002 - 1.14359337e+002 1.23477180e+002 1.01262535e+002 1.14387085e+002 - 1.23467819e+002 1.01327881e+002 1.14466499e+002 1.23480354e+002 - 1.01371223e+002 1.14500710e+002 1.23461845e+002 1.01379356e+002 - 1.14526299e+002 1.23425179e+002 1.01424217e+002 1.14555107e+002 - 1.23417061e+002 1.01488663e+002 1.14632797e+002 1.23418098e+002 - 1.01529167e+002 1.14661163e+002 1.23385719e+002 1.01527420e+002 - 1.14685646e+002 1.23345627e+002 1.01586189e+002 1.14726364e+002 - 1.23349854e+002 1.01616219e+002 1.14769714e+002 1.23335014e+002 - 1.01638466e+002 1.14776855e+002 1.23301056e+002 1.01693832e+002 - 1.14849548e+002 1.23308029e+002 1.01739464e+002 1.14898216e+002 - 1.23301155e+002 1.01809204e+002 1.14982178e+002 1.23310196e+002 - 1.01860397e+002 1.15015289e+002 1.23292168e+002 1.01892937e+002 - 1.15054535e+002 1.23265442e+002 1.01956329e+002 1.15080963e+002 - 1.23246529e+002 1.02022980e+002 1.15154587e+002 1.23244606e+002 - 1.02108276e+002 1.15234772e+002 1.23261078e+002 1.02167984e+002 - 1.15307632e+002 1.23261215e+002 1.02213730e+002 1.15339653e+002 - 1.23251465e+002 1.02272530e+002 1.15408226e+002 1.23242958e+002 - 1.02354553e+002 1.15471283e+002 1.23232719e+002 1.02386765e+002 - 1.15523140e+002 1.23209381e+002 1.02447754e+002 1.15561417e+002 - 1.23207184e+002 1.02495720e+002 1.15614601e+002 1.23193130e+002 - 1.02561203e+002 1.15658653e+002 1.23182350e+002 1.02587746e+002 - 1.15688660e+002 1.23146889e+002 1.02655571e+002 1.15743721e+002 - 1.23138680e+002 1.02743187e+002 1.15833725e+002 1.23166458e+002 - 1.02823318e+002 1.15899406e+002 1.23173798e+002 1.02902878e+002 - 1.15983482e+002 1.23192207e+002 1.03029251e+002 1.16070511e+002 - 1.23228134e+002 1.03089409e+002 1.16134232e+002 1.23214760e+002 - 1.03183701e+002 1.16213806e+002 1.23230133e+002 1.03252892e+002 - 1.16291862e+002 1.23233566e+002 1.03349419e+002 1.16368355e+002 - 1.23264420e+002 1.03410492e+002 1.16418182e+002 1.23237816e+002 - 1.03488037e+002 1.16481323e+002 1.23214577e+002 1.03562546e+002 - 1.16565063e+002 1.23220169e+002 1.03648216e+002 1.16630028e+002 - 1.23235901e+002 1.03729332e+002 1.16708145e+002 1.23246170e+002 - 1.03849808e+002 1.16795105e+002 1.23288795e+002 1.03924698e+002 - 1.16867050e+002 1.23289268e+002 1.04037659e+002 1.16954170e+002 - 1.23308624e+002 1.04138931e+002 1.17053879e+002 1.23334648e+002 - 1.04240997e+002 1.17118942e+002 1.23348412e+002 1.04339439e+002 - 1.17208221e+002 1.23367599e+002 1.04459862e+002 1.17270340e+002 - 1.23383835e+002 1.04534348e+002 1.17337120e+002 1.23379250e+002 - 1.04627159e+002 1.17387321e+002 1.23384483e+002 1.04665947e+002 - 1.17421318e+002 1.23351059e+002 1.04674141e+002 1.17383087e+002 - 1.23279892e+002 1.04647514e+002 1.17350037e+002 1.23179291e+002 - 1.04553902e+002 1.17268219e+002 1.23195854e+002 1.04591347e+002 - 1.17345314e+002 1.23307068e+002 1.04578972e+002 1.17340393e+002 - 1.23362991e+002 1.04545319e+002 1.17340195e+002 1.23409149e+002 - 1.04479668e+002 1.17291725e+002 1.23427406e+002 1.04374672e+002 - 1.17227486e+002 1.23411934e+002 1.04296700e+002 1.17169220e+002 - 1.23424667e+002 1.04207977e+002 1.17108749e+002 1.23410355e+002 - 1.04132294e+002 1.17047997e+002 1.23417450e+002 1.04040268e+002 - 1.16984192e+002 1.23406921e+002 1.03956215e+002 1.16897621e+002 - 1.23406822e+002 1.03874771e+002 1.16838127e+002 1.23406326e+002 - 1.03777451e+002 1.16749405e+002 1.23377991e+002 1.03681885e+002 - 1.16676598e+002 1.23347618e+002 1.03590607e+002 1.16576935e+002 - 1.23311470e+002 1.03492592e+002 1.16504265e+002 1.23282951e+002 - 1.03390274e+002 1.16412186e+002 1.23290390e+002 1.03264397e+002 - 1.16315498e+002 1.23249901e+002 1.03210686e+002 1.16250557e+002 - 1.23253822e+002 1.03143433e+002 1.16196182e+002 1.23254486e+002 - 1.03076157e+002 1.16124710e+002 1.23258972e+002 1.02978745e+002 - 1.16044563e+002 1.23237289e+002 1.02893913e+002 1.15957825e+002 - 1.23230110e+002 1.02822128e+002 1.15898735e+002 1.23232605e+002 - 1.02777451e+002 1.15853325e+002 1.23266724e+002 1.02695862e+002 - 1.15788780e+002 1.23258362e+002 1.02625870e+002 1.15699249e+002 - 1.23263252e+002 1.02560951e+002 1.15653084e+002 1.23269165e+002 - 1.02516335e+002 1.15609261e+002 1.23298195e+002 1.02433083e+002 - 1.15548714e+002 1.23284447e+002 1.02408928e+002 1.15520988e+002 - 1.23316483e+002 1.02327133e+002 1.15460167e+002 1.23301842e+002 - 1.02239624e+002 1.15375580e+002 1.23306854e+002 1.02129364e+002 - 1.15295692e+002 1.23278641e+002 1.02071114e+002 1.15227547e+002 - 1.23280998e+002 1.02022507e+002 1.15185959e+002 1.23289680e+002 - 1.01981972e+002 1.15127510e+002 1.23317070e+002 1.01912125e+002 - 1.15073883e+002 1.23309998e+002 1.01887642e+002 1.15044983e+002 - 1.23347618e+002 1.01821838e+002 1.14987152e+002 1.23333366e+002 - 1.01771477e+002 1.14927979e+002 1.23334915e+002 1.01723785e+002 - 1.14888786e+002 1.23349228e+002 1.01671768e+002 1.14816864e+002 - 1.23358131e+002 1.01613998e+002 1.14769440e+002 1.23361191e+002 - 1.01590805e+002 1.14743172e+002 1.23398880e+002 1.01541649e+002 - 1.14711754e+002 1.23397591e+002 1.01500519e+002 1.14662132e+002 - 1.23399567e+002 1.01469643e+002 1.14637657e+002 1.23412956e+002 - 1.01421379e+002 1.14584358e+002 1.23439034e+002 1.01340614e+002 - 1.14526131e+002 1.23426529e+002 1.01305511e+002 1.14477974e+002 - 1.23428093e+002 1.01285042e+002 1.14458084e+002 1.23451172e+002 - 1.01249039e+002 1.14399445e+002 1.23458237e+002 1.01171417e+002 - 1.14329865e+002 1.23430351e+002 1.01146080e+002 1.14299255e+002 - 1.23465317e+002 1.01139687e+002 1.14301697e+002 1.23506157e+002 - 1.01115677e+002 1.14260391e+002 1.23529373e+002 1.01062752e+002 - 1.14212593e+002 1.23536469e+002 1.01039009e+002 1.14157646e+002 - 1.23559456e+002 1.01016647e+002 1.14136787e+002 1.23592644e+002 - 1.00979790e+002 1.14101196e+002 1.23613571e+002 1.00944687e+002 - 1.14084648e+002 1.23627411e+002 1.00903511e+002 1.14028610e+002 - 1.23624809e+002 1.00877136e+002 1.14019470e+002 1.23646706e+002 - 1.00862999e+002 1.14006729e+002 1.23695557e+002 1.00809036e+002 - 1.13979729e+002 1.23697922e+002 1.00792206e+002 1.13946899e+002 - 1.23716415e+002 1.00777321e+002 1.13934349e+002 1.23739723e+002 - 1.00774574e+002 1.13914368e+002 1.23769531e+002 1.00736107e+002 - 1.13880783e+002 1.23769691e+002 1.00695747e+002 1.13835663e+002 - 1.23772789e+002 1.00675247e+002 1.13828667e+002 1.23783951e+002 - 1.00639297e+002 1.13788353e+002 1.23793983e+002 1.00599213e+002 - 1.13750549e+002 1.23795731e+002 1.00614670e+002 1.13728523e+002 - 1.23847832e+002 1.00584976e+002 1.13709717e+002 1.23863716e+002 - 1.00547142e+002 1.13661034e+002 1.23860573e+002 1.00484375e+002 - 1.13615379e+002 1.23830147e+002 1.00480431e+002 1.13590919e+002 - 1.23856865e+002 1.00456749e+002 1.13563957e+002 1.23852768e+002 - 1.00441490e+002 1.13546280e+002 1.23888298e+002 1.00408989e+002 - 1.13531593e+002 1.23899628e+002 1.00387596e+002 1.13495087e+002 - 1.23902458e+002 1.00377930e+002 1.13493408e+002 1.23923615e+002 - 1.00376770e+002 1.13475693e+002 1.23949089e+002 1.00340126e+002 - 1.13454323e+002 1.23951241e+002 1.00310600e+002 1.13418190e+002 - 1.23950577e+002 1.00311592e+002 1.13428711e+002 1.23977280e+002 - 1.00316269e+002 1.13419876e+002 1.23999832e+002 1.00298195e+002 - 1.13422562e+002 1.24016716e+002 1.00333832e+002 1.13424362e+002 - 1.24071381e+002 1.00358459e+002 1.13466377e+002 1.24126358e+002 - 1.00369133e+002 1.13472809e+002 1.24158813e+002 1.00356781e+002 - 1.13479286e+002 1.24169304e+002 1.00360664e+002 1.13467049e+002 - 1.24186203e+002 1.00336685e+002 1.13447128e+002 1.24175484e+002 - 1.00317932e+002 1.13417458e+002 1.24176186e+002 1.00288765e+002 - 1.13406013e+002 1.24174522e+002 1.00307861e+002 1.13409027e+002 - 1.24211006e+002 1.00300385e+002 1.13416656e+002 1.24231056e+002 - 1.00316284e+002 1.13410637e+002 1.24251678e+002 1.00298950e+002 - 1.13405014e+002 1.24254539e+002 1.00281296e+002 1.13380951e+002 - 1.24241676e+002 1.00302025e+002 1.13406906e+002 1.24265053e+002 - 1.00297417e+002 1.13388748e+002 1.24268898e+002 1.00249199e+002 - 1.13348129e+002 1.24228111e+002 1.00268616e+002 1.13336853e+002 - 1.24249893e+002 1.00262375e+002 1.13338791e+002 1.24254654e+002 - 1.00246170e+002 1.13317421e+002 1.24246361e+002 1.00214645e+002 - 1.13297600e+002 1.24226326e+002 1.00240631e+002 1.13314041e+002 - 1.24255753e+002 1.00242409e+002 1.13331787e+002 1.24261429e+002 - 1.00236977e+002 1.13321434e+002 1.24252251e+002 1.00205177e+002 - 1.13316360e+002 1.24232674e+002 1.00217346e+002 1.13310875e+002 - 1.24237854e+002 1.00224884e+002 1.13329071e+002 1.24244370e+002 - 1.00212715e+002 1.13300301e+002 1.24219894e+002 1.00193916e+002 - 1.13295090e+002 1.24199722e+002 1.00190979e+002 1.13285011e+002 - 1.24193184e+002 1.00200996e+002 1.13307022e+002 1.24193344e+002 - 1.00183670e+002 1.13284302e+002 1.24169525e+002 1.00148720e+002 - 1.13266518e+002 1.24125282e+002 1.00190910e+002 1.13279510e+002 - 1.24149109e+002 1.00207413e+002 1.13306923e+002 1.24153145e+002 - 1.00191505e+002 1.13290749e+002 1.24114677e+002 1.00180885e+002 - 1.13293457e+002 1.24093338e+002 1.00200516e+002 1.13305595e+002 - 1.24101204e+002 1.00210373e+002 1.13324951e+002 1.24078888e+002 - 1.00238060e+002 1.13342026e+002 1.24077026e+002 1.00239723e+002 - 1.13365440e+002 1.24066887e+002 1.00276321e+002 1.13389305e+002 - 1.24072014e+002 1.00314926e+002 1.13441620e+002 1.24093498e+002 - 1.00339478e+002 1.13447716e+002 1.24085892e+002 1.00324692e+002 - 1.13450966e+002 1.24050659e+002 1.00349228e+002 1.13461494e+002 - 1.24046555e+002 1.00363686e+002 1.13489243e+002 1.24032867e+002 - 1.00362106e+002 1.13475677e+002 1.23998383e+002 1.00352631e+002 - 1.13474365e+002 1.23961128e+002 1.00394638e+002 1.13487144e+002 - 1.23959229e+002 1.00408913e+002 1.13508759e+002 1.23945847e+002 - 1.00427849e+002 1.13521538e+002 1.23932381e+002 1.00392830e+002 - 1.13511795e+002 1.23884003e+002 1.00381683e+002 1.13488380e+002 - 1.23858521e+002 1.00371811e+002 1.13492348e+002 1.23819511e+002 - 1.00400658e+002 1.13516968e+002 1.23816811e+002 1.00394806e+002 - 1.13541092e+002 1.23788216e+002 1.00410728e+002 1.13548248e+002 - 1.23773941e+002 1.00425323e+002 1.13578674e+002 1.23761177e+002 - 1.00440613e+002 1.13576721e+002 1.23733528e+002 1.00437790e+002 - 1.13589264e+002 1.23695358e+002 1.00491791e+002 1.13638428e+002 - 1.23704636e+002 1.00532684e+002 1.13687935e+002 1.23701279e+002 - 1.00564781e+002 1.13707054e+002 1.23692741e+002 1.00566849e+002 - 1.13726761e+002 1.23665237e+002 1.00593719e+002 1.13724228e+002 - 1.23634155e+002 1.00610779e+002 1.13752686e+002 1.23600494e+002 - 1.00620605e+002 1.13760315e+002 1.23564316e+002 1.00637917e+002 - 1.13797134e+002 1.23549591e+002 1.00690994e+002 1.13839050e+002 - 1.23565376e+002 1.00741074e+002 1.13896553e+002 1.23557434e+002 - 1.00778061e+002 1.13925903e+002 1.23529526e+002 1.00790993e+002 - 1.13958786e+002 1.23504936e+002 1.00836311e+002 1.13988800e+002 - 1.23510429e+002 1.00865700e+002 1.14029488e+002 1.23504562e+002 - 1.00931450e+002 1.14074097e+002 1.23518547e+002 1.00938507e+002 - 1.14102371e+002 1.23476646e+002 1.01002853e+002 1.14155312e+002 - 1.23487885e+002 1.01056396e+002 1.14221298e+002 1.23482552e+002 - 1.01089928e+002 1.14246803e+002 1.23458626e+002 1.01112915e+002 - 1.14281990e+002 1.23430130e+002 1.01152061e+002 1.14296478e+002 - 1.23404388e+002 1.01207024e+002 1.14356903e+002 1.23407387e+002 - 1.01241272e+002 1.14380188e+002 1.23379272e+002 1.01265900e+002 - 1.14426697e+002 1.23353683e+002 1.01310249e+002 1.14459595e+002 - 1.23351997e+002 1.01369949e+002 1.14529564e+002 1.23351196e+002 - 1.01411659e+002 1.14562614e+002 1.23317955e+002 1.01414688e+002 - 1.14587242e+002 1.23279243e+002 1.01482506e+002 1.14643250e+002 - 1.23293343e+002 1.01529808e+002 1.14698799e+002 1.23299332e+002 - 1.01550690e+002 1.14709450e+002 1.23262878e+002 1.01588318e+002 - 1.14762856e+002 1.23251999e+002 1.01649948e+002 1.14823914e+002 - 1.23252487e+002 1.01708672e+002 1.14893799e+002 1.23254639e+002 - 1.01764519e+002 1.14931679e+002 1.23247169e+002 1.01780502e+002 - 1.14959091e+002 1.23202637e+002 1.01851013e+002 1.14992058e+002 - 1.23185104e+002 1.01902245e+002 1.15055962e+002 1.23181976e+002 - 1.01991920e+002 1.15133965e+002 1.23196365e+002 1.02039764e+002 - 1.15197067e+002 1.23185539e+002 1.02077812e+002 1.15222725e+002 - 1.23171349e+002 1.02145523e+002 1.15298157e+002 1.23164307e+002 - 1.02237495e+002 1.15370735e+002 1.23163544e+002 1.02282143e+002 - 1.15426620e+002 1.23148911e+002 1.02346672e+002 1.15477615e+002 - 1.23153580e+002 1.02381599e+002 1.15519577e+002 1.23126488e+002 - 1.02447685e+002 1.15562035e+002 1.23118500e+002 1.02481491e+002 - 1.15605522e+002 1.23087418e+002 1.02545654e+002 1.15646324e+002 - 1.23077209e+002 1.02614403e+002 1.15720070e+002 1.23082405e+002 - 1.02681778e+002 1.15772018e+002 1.23083092e+002 1.02766968e+002 - 1.15862724e+002 1.23104622e+002 1.02890076e+002 1.15946999e+002 - 1.23130798e+002 1.02954842e+002 1.16017082e+002 1.23126854e+002 - 1.03047745e+002 1.16091133e+002 1.23137932e+002 1.03127510e+002 - 1.16176300e+002 1.23148972e+002 1.03235214e+002 1.16260468e+002 - 1.23192802e+002 1.03297249e+002 1.16325401e+002 1.23173576e+002 - 1.03363266e+002 1.16371025e+002 1.23138443e+002 1.03440437e+002 - 1.16461044e+002 1.23148537e+002 1.03530807e+002 1.16533562e+002 - 1.23170898e+002 1.03611847e+002 1.16612030e+002 1.23186249e+002 - 1.03731316e+002 1.16702423e+002 1.23222816e+002 1.03818695e+002 - 1.16784096e+002 1.23231461e+002 1.03929413e+002 1.16861977e+002 - 1.23250107e+002 1.04020866e+002 1.16951843e+002 1.23265343e+002 - 1.04115891e+002 1.17012764e+002 1.23266304e+002 1.04223518e+002 - 1.17112984e+002 1.23302505e+002 1.04353027e+002 1.17193840e+002 - 1.23335915e+002 1.04437683e+002 1.17268044e+002 1.23339699e+002 - 1.04527252e+002 1.17306236e+002 1.23336197e+002 1.04551468e+002 - 1.17326004e+002 1.23288109e+002 1.04573120e+002 1.17303215e+002 - 1.23231697e+002 1.04529121e+002 1.17249962e+002 1.23113701e+002 - 1.04458061e+002 1.17198532e+002 1.23154701e+002 1.04488358e+002 - 1.17266312e+002 1.23262520e+002 1.04480972e+002 1.17274101e+002 - 1.23322311e+002 1.04440559e+002 1.17260567e+002 1.23357742e+002 - 1.04358063e+002 1.17198906e+002 1.23363876e+002 1.04265015e+002 - 1.17138512e+002 1.23358543e+002 1.04195740e+002 1.17093391e+002 - 1.23379387e+002 1.04112549e+002 1.17042053e+002 1.23370392e+002 - 1.04030899e+002 1.16973114e+002 1.23376762e+002 1.03930267e+002 - 1.16901070e+002 1.23356758e+002 1.03858818e+002 1.16818817e+002 - 1.23374786e+002 1.03780891e+002 1.16769226e+002 1.23370544e+002 - 1.03690544e+002 1.16689537e+002 1.23346527e+002 1.03587051e+002 - 1.16606209e+002 1.23307037e+002 1.03487213e+002 1.16503654e+002 - 1.23265266e+002 1.03400299e+002 1.16431221e+002 1.23243484e+002 - 1.03295494e+002 1.16340515e+002 1.23249443e+002 1.03165253e+002 - 1.16246475e+002 1.23204994e+002 1.03106720e+002 1.16175705e+002 - 1.23205345e+002 1.03025818e+002 1.16103821e+002 1.23189110e+002 - 1.02960968e+002 1.16034798e+002 1.23194191e+002 1.02869736e+002 - 1.15959579e+002 1.23179855e+002 1.02778488e+002 1.15868050e+002 - 1.23170738e+002 1.02694397e+002 1.15805489e+002 1.23159309e+002 - 1.02675224e+002 1.15779739e+002 1.23221596e+002 1.02607880e+002 - 1.15732483e+002 1.23224464e+002 1.02532265e+002 1.15641266e+002 - 1.23230225e+002 1.02456177e+002 1.15578171e+002 1.23224037e+002 - 1.02400764e+002 1.15531906e+002 1.23244949e+002 1.02332825e+002 - 1.15476990e+002 1.23239265e+002 1.02295631e+002 1.15432091e+002 - 1.23254974e+002 1.02205650e+002 1.15357513e+002 1.23226479e+002 - 1.02118217e+002 1.15274315e+002 1.23238029e+002 1.02022491e+002 - 1.15213806e+002 1.23231285e+002 1.01978088e+002 1.15150490e+002 - 1.23237656e+002 1.01932968e+002 1.15120956e+002 1.23257294e+002 - 1.01885796e+002 1.15061218e+002 1.23273682e+002 1.01823997e+002 - 1.15009720e+002 1.23279251e+002 1.01751793e+002 1.14933052e+002 - 1.23269875e+002 1.01703285e+002 1.14890152e+002 1.23270134e+002 - 1.01648720e+002 1.14826149e+002 1.23270737e+002 1.01571404e+002 - 1.14760872e+002 1.23255112e+002 1.01533447e+002 1.14705269e+002 - 1.23280014e+002 1.01504662e+002 1.14688538e+002 1.23310585e+002 - 1.01472893e+002 1.14651970e+002 1.23342781e+002 1.01410606e+002 - 1.14609558e+002 1.23327797e+002 1.01380508e+002 1.14564247e+002 - 1.23340721e+002 1.01349655e+002 1.14541229e+002 1.23356972e+002 - 1.01293732e+002 1.14485909e+002 1.23377350e+002 1.01209778e+002 - 1.14422302e+002 1.23355934e+002 1.01193771e+002 1.14392929e+002 - 1.23377975e+002 1.01166611e+002 1.14371788e+002 1.23395630e+002 - 1.01130280e+002 1.14311340e+002 1.23402962e+002 1.01044716e+002 - 1.14238884e+002 1.23366386e+002 1.01016441e+002 1.14196083e+002 - 1.23401001e+002 1.01000984e+002 1.14191566e+002 1.23433334e+002 - 1.00979362e+002 1.14152573e+002 1.23464272e+002 1.00936226e+002 - 1.14114609e+002 1.23472725e+002 1.00914886e+002 1.14059395e+002 - 1.23495880e+002 1.00877625e+002 1.14024963e+002 1.23512375e+002 - 1.00848518e+002 1.13991867e+002 1.23541527e+002 1.00783661e+002 - 1.13947121e+002 1.23523827e+002 1.00763191e+002 1.13911133e+002 - 1.23547310e+002 1.00749397e+002 1.13909744e+002 1.23572334e+002 - 1.00737190e+002 1.13903175e+002 1.23631157e+002 1.00667427e+002 - 1.13853844e+002 1.23616608e+002 1.00638672e+002 1.13814568e+002 - 1.23615417e+002 1.00625458e+002 1.13804924e+002 1.23642494e+002 - 1.00617180e+002 1.13780739e+002 1.23670296e+002 1.00564384e+002 - 1.13738998e+002 1.23657448e+002 1.00535423e+002 1.13708267e+002 - 1.23672409e+002 1.00511658e+002 1.13689941e+002 1.23683258e+002 - 1.00488747e+002 1.13655914e+002 1.23701004e+002 1.00461433e+002 - 1.13639526e+002 1.23717201e+002 1.00477516e+002 1.13619484e+002 - 1.23773811e+002 1.00456039e+002 1.13604164e+002 1.23791489e+002 - 1.00415413e+002 1.13558891e+002 1.23788063e+002 1.00362595e+002 - 1.13511681e+002 1.23765823e+002 1.00342789e+002 1.13473328e+002 - 1.23779312e+002 1.00331940e+002 1.13462425e+002 1.23785301e+002 - 1.00306709e+002 1.13435226e+002 1.23811195e+002 1.00269226e+002 - 1.13423416e+002 1.23814964e+002 1.00247849e+002 1.13379166e+002 - 1.23813637e+002 1.00229668e+002 1.13374611e+002 1.23828430e+002 - 1.00230476e+002 1.13352654e+002 1.23860695e+002 1.00200394e+002 - 1.13336983e+002 1.23867142e+002 1.00190819e+002 1.13320633e+002 - 1.23887047e+002 1.00178024e+002 1.13316124e+002 1.23893417e+002 - 1.00184647e+002 1.13314209e+002 1.23923164e+002 1.00167976e+002 - 1.13311462e+002 1.23940887e+002 1.00214424e+002 1.13325356e+002 - 1.24003601e+002 1.00217720e+002 1.13344032e+002 1.24035591e+002 - 1.00223083e+002 1.13349205e+002 1.24067245e+002 1.00204193e+002 - 1.13349716e+002 1.24075714e+002 1.00220566e+002 1.13347206e+002 - 1.24097931e+002 1.00203255e+002 1.13329124e+002 1.24089485e+002 - 1.00195442e+002 1.13311005e+002 1.24107910e+002 1.00132759e+002 - 1.13268005e+002 1.24074455e+002 1.00155060e+002 1.13277412e+002 - 1.24115288e+002 1.00165443e+002 1.13296669e+002 1.24141068e+002 - 1.00159599e+002 1.13273712e+002 1.24151405e+002 1.00139206e+002 - 1.13265984e+002 1.24143578e+002 1.00130203e+002 1.13254654e+002 - 1.24149719e+002 1.00145920e+002 1.13271423e+002 1.24161659e+002 - 1.00165230e+002 1.13274986e+002 1.24189644e+002 1.00116768e+002 - 1.13231674e+002 1.24152359e+002 1.00133797e+002 1.13225319e+002 - 1.24171761e+002 1.00126289e+002 1.13227455e+002 1.24174713e+002 - 1.00126823e+002 1.13224846e+002 1.24187820e+002 1.00083282e+002 - 1.13200844e+002 1.24158142e+002 1.00108932e+002 1.13213104e+002 - 1.24189835e+002 1.00106148e+002 1.13218666e+002 1.24176949e+002 - 1.00110725e+002 1.13214966e+002 1.24182457e+002 1.00056366e+002 - 1.13190140e+002 1.24142754e+002 1.00067444e+002 1.13186089e+002 - 1.24142654e+002 1.00054375e+002 1.13183960e+002 1.24129463e+002 - 1.00039413e+002 1.13157669e+002 1.24106544e+002 1.00040237e+002 - 1.13170219e+002 1.24111465e+002 1.00024719e+002 1.13141167e+002 - 1.24080498e+002 1.00046219e+002 1.13176277e+002 1.24088249e+002 - 1.00029709e+002 1.13157921e+002 1.24070557e+002 1.00007065e+002 - 1.13145004e+002 1.24036797e+002 1.00045692e+002 1.13158356e+002 - 1.24055733e+002 1.00063454e+002 1.13184753e+002 1.24061302e+002 - 1.00064514e+002 1.13180786e+002 1.24042557e+002 1.00051270e+002 - 1.13190178e+002 1.24016869e+002 1.00040527e+002 1.13168861e+002 - 1.23998199e+002 1.00050468e+002 1.13190125e+002 1.23980263e+002 - 1.00089798e+002 1.13215729e+002 1.23980537e+002 1.00108276e+002 - 1.13262756e+002 1.23996788e+002 1.00153175e+002 1.13294006e+002 - 1.24015755e+002 1.00174995e+002 1.13325165e+002 1.24015167e+002 - 1.00198875e+002 1.13331337e+002 1.24001930e+002 1.00184303e+002 - 1.13328537e+002 1.23962715e+002 1.00234154e+002 1.13374504e+002 - 1.23985481e+002 1.00250549e+002 1.13398346e+002 1.23965462e+002 - 1.00249237e+002 1.13385574e+002 1.23940521e+002 1.00235100e+002 - 1.13379242e+002 1.23901512e+002 1.00258057e+002 1.13371147e+002 - 1.23879578e+002 1.00259331e+002 1.13385345e+002 1.23850441e+002 - 1.00275368e+002 1.13397209e+002 1.23841301e+002 1.00271576e+002 - 1.13414948e+002 1.23825356e+002 1.00270889e+002 1.13402336e+002 - 1.23811058e+002 1.00239571e+002 1.13385033e+002 1.23747841e+002 - 1.00265076e+002 1.13408676e+002 1.23730301e+002 1.00260605e+002 - 1.13434479e+002 1.23715714e+002 1.00259918e+002 1.13423615e+002 - 1.23684494e+002 1.00289917e+002 1.13463074e+002 1.23680725e+002 - 1.00306023e+002 1.13462929e+002 1.23651527e+002 1.00312439e+002 - 1.13489738e+002 1.23623779e+002 1.00362068e+002 1.13527016e+002 - 1.23626236e+002 1.00379303e+002 1.13556244e+002 1.23602783e+002 - 1.00400757e+002 1.13568771e+002 1.23580528e+002 1.00419731e+002 - 1.13603615e+002 1.23569199e+002 1.00460457e+002 1.13611504e+002 - 1.23555092e+002 1.00500320e+002 1.13662331e+002 1.23549232e+002 - 1.00508797e+002 1.13673447e+002 1.23511612e+002 1.00500481e+002 - 1.13676384e+002 1.23464607e+002 1.00551239e+002 1.13719856e+002 - 1.23478012e+002 1.00619690e+002 1.13797943e+002 1.23494110e+002 - 1.00646553e+002 1.13816963e+002 1.23461823e+002 1.00663025e+002 - 1.13853470e+002 1.23438995e+002 1.00703835e+002 1.13882721e+002 - 1.23439819e+002 1.00719383e+002 1.13910728e+002 1.23421761e+002 - 1.00786598e+002 1.13956230e+002 1.23431961e+002 1.00797226e+002 - 1.13981804e+002 1.23396111e+002 1.00869743e+002 1.14050156e+002 - 1.23404167e+002 1.00930138e+002 1.14123138e+002 1.23414932e+002 - 1.00991318e+002 1.14172592e+002 1.23417603e+002 1.00993164e+002 - 1.14180733e+002 1.23371529e+002 1.01025352e+002 1.14185890e+002 - 1.23332214e+002 1.01070129e+002 1.14242165e+002 1.23328796e+002 - 1.01117355e+002 1.14285889e+002 1.23314774e+002 1.01145973e+002 - 1.14328514e+002 1.23288254e+002 1.01171021e+002 1.14345657e+002 - 1.23268677e+002 1.01241104e+002 1.14424049e+002 1.23282814e+002 - 1.01265083e+002 1.14439896e+002 1.23232857e+002 1.01278908e+002 - 1.14477699e+002 1.23204742e+002 1.01345879e+002 1.14527443e+002 - 1.23220978e+002 1.01383804e+002 1.14580132e+002 1.23213715e+002 - 1.01425186e+002 1.14601013e+002 1.23193230e+002 1.01466797e+002 - 1.14669205e+002 1.23188057e+002 1.01532639e+002 1.14722717e+002 - 1.23192459e+002 1.01589699e+002 1.14795883e+002 1.23194290e+002 - 1.01659485e+002 1.14846962e+002 1.23195816e+002 1.01664063e+002 - 1.14865295e+002 1.23145386e+002 1.01718895e+002 1.14888939e+002 - 1.23119370e+002 1.01763519e+002 1.14940483e+002 1.23097343e+002 - 1.01848038e+002 1.15015587e+002 1.23108032e+002 1.01887131e+002 - 1.15078705e+002 1.23099777e+002 1.01934586e+002 1.15111633e+002 - 1.23095222e+002 1.02023079e+002 1.15202217e+002 1.23102859e+002 - 1.02101501e+002 1.15261833e+002 1.23085106e+002 1.02135574e+002 - 1.15315811e+002 1.23065697e+002 1.02209167e+002 1.15368103e+002 - 1.23073441e+002 1.02253761e+002 1.15422714e+002 1.23065201e+002 - 1.02331116e+002 1.15476852e+002 1.23067108e+002 1.02375214e+002 - 1.15527710e+002 1.23047005e+002 1.02437645e+002 1.15562149e+002 - 1.23031891e+002 1.02513672e+002 1.15644386e+002 1.23044426e+002 - 1.02580688e+002 1.15693932e+002 1.23036896e+002 1.02656769e+002 - 1.15778175e+002 1.23046165e+002 1.02764717e+002 1.15845955e+002 - 1.23063171e+002 1.02828331e+002 1.15916077e+002 1.23049973e+002 - 1.02903893e+002 1.15975060e+002 1.23045143e+002 1.02982239e+002 - 1.16063583e+002 1.23063820e+002 1.03083252e+002 1.16141121e+002 - 1.23098343e+002 1.03172325e+002 1.16225037e+002 1.23099495e+002 - 1.03255661e+002 1.16295235e+002 1.23084244e+002 1.03320930e+002 - 1.16375320e+002 1.23083405e+002 1.03414772e+002 1.16442398e+002 - 1.23110168e+002 1.03489655e+002 1.16524147e+002 1.23121956e+002 - 1.03600868e+002 1.16602249e+002 1.23147713e+002 1.03703987e+002 - 1.16704094e+002 1.23172165e+002 1.03805405e+002 1.16775009e+002 - 1.23185722e+002 1.03913521e+002 1.16877480e+002 1.23213615e+002 - 1.03992134e+002 1.16926247e+002 1.23203911e+002 1.04102890e+002 - 1.17032257e+002 1.23246979e+002 1.04241631e+002 1.17112549e+002 - 1.23281349e+002 1.04318382e+002 1.17176781e+002 1.23279106e+002 - 1.04412506e+002 1.17221741e+002 1.23279137e+002 1.04429779e+002 - 1.17238808e+002 1.23224892e+002 1.04472359e+002 1.17229889e+002 - 1.23186127e+002 1.04419769e+002 1.17170311e+002 1.23060890e+002 - 1.04386543e+002 1.17141685e+002 1.23116852e+002 1.04428360e+002 - 1.17218040e+002 1.23234596e+002 1.04416168e+002 1.17217751e+002 - 1.23288246e+002 1.04367989e+002 1.17196899e+002 1.23316170e+002 - 1.04286728e+002 1.17133408e+002 1.23328857e+002 1.04179260e+002 - 1.17067093e+002 1.23304420e+002 1.04117683e+002 1.17020012e+002 - 1.23334801e+002 1.04029831e+002 1.16969269e+002 1.23326431e+002 - 1.03917336e+002 1.16867088e+002 1.23301559e+002 1.03828697e+002 - 1.16807228e+002 1.23294548e+002 1.03744461e+002 1.16720406e+002 - 1.23301765e+002 1.03677231e+002 1.16671303e+002 1.23305405e+002 - 1.03595154e+002 1.16599716e+002 1.23288628e+002 1.03513420e+002 - 1.16540062e+002 1.23270035e+002 1.03404572e+002 1.16421829e+002 - 1.23212547e+002 1.03295044e+002 1.16329628e+002 1.23174400e+002 - 1.03189163e+002 1.16237411e+002 1.23176468e+002 1.03076286e+002 - 1.16154221e+002 1.23149719e+002 1.03031677e+002 1.16103073e+002 - 1.23160507e+002 1.02956139e+002 1.16038506e+002 1.23154869e+002 - 1.02860634e+002 1.15939590e+002 1.23130104e+002 1.02764656e+002 - 1.15861328e+002 1.23104240e+002 1.02683815e+002 1.15782440e+002 - 1.23108383e+002 1.02597168e+002 1.15714073e+002 1.23094444e+002 - 1.02551872e+002 1.15664406e+002 1.23127205e+002 1.02485374e+002 - 1.15615738e+002 1.23137794e+002 1.02431854e+002 1.15542931e+002 - 1.23162056e+002 1.02366585e+002 1.15496696e+002 1.23169861e+002 - 1.02282433e+002 1.15415947e+002 1.23158028e+002 1.02226585e+002 - 1.15376282e+002 1.23162468e+002 1.02185959e+002 1.15327400e+002 - 1.23182556e+002 1.02116669e+002 1.15279686e+002 1.23176987e+002 - 1.02055840e+002 1.15226547e+002 1.23216522e+002 1.01953232e+002 - 1.15147850e+002 1.23190819e+002 1.01897423e+002 1.15081673e+002 - 1.23192604e+002 1.01852615e+002 1.15043800e+002 1.23204742e+002 - 1.01808647e+002 1.14984978e+002 1.23227097e+002 1.01733131e+002 - 1.14920486e+002 1.23218819e+002 1.01670349e+002 1.14851601e+002 - 1.23218224e+002 1.01629860e+002 1.14824486e+002 1.23236305e+002 - 1.01586655e+002 1.14774483e+002 1.23246048e+002 1.01503838e+002 - 1.14697617e+002 1.23223328e+002 1.01454933e+002 1.14627464e+002 - 1.23234505e+002 1.01417786e+002 1.14606659e+002 1.23265213e+002 - 1.01392403e+002 1.14581596e+002 1.23303741e+002 1.01337029e+002 - 1.14543503e+002 1.23301956e+002 1.01316856e+002 1.14507660e+002 - 1.23315392e+002 1.01273697e+002 1.14470757e+002 1.23322327e+002 - 1.01202393e+002 1.14405693e+002 1.23326622e+002 1.01138649e+002 - 1.14361610e+002 1.23327744e+002 1.01101120e+002 1.14311104e+002 - 1.23325409e+002 1.01068855e+002 1.14279617e+002 1.23336960e+002 - 1.01014389e+002 1.14204102e+002 1.23333076e+002 1.00944832e+002 - 1.14140808e+002 1.23309212e+002 1.00912460e+002 1.14104301e+002 - 1.23342079e+002 1.00895096e+002 1.14094688e+002 1.23372665e+002 - 1.00881714e+002 1.14064301e+002 1.23406090e+002 1.00838623e+002 - 1.14024612e+002 1.23411591e+002 1.00815636e+002 1.13969902e+002 - 1.23438332e+002 1.00796272e+002 1.13957138e+002 1.23473465e+002 - 1.00761658e+002 1.13911629e+002 1.23491997e+002 1.00705864e+002 - 1.13870430e+002 1.23481880e+002 1.00672012e+002 1.13829117e+002 - 1.23493355e+002 1.00648849e+002 1.13815842e+002 1.23515671e+002 - 1.00629280e+002 1.13792755e+002 1.23556335e+002 1.00553001e+002 - 1.13742607e+002 1.23538567e+002 1.00516373e+002 1.13695053e+002 - 1.23535660e+002 1.00520782e+002 1.13705055e+002 1.23577202e+002 - 1.00489807e+002 1.13662117e+002 1.23584961e+002 1.00453423e+002 - 1.13639557e+002 1.23589394e+002 1.00436417e+002 1.13618286e+002 - 1.23609451e+002 1.00405769e+002 1.13601074e+002 1.23620941e+002 - 1.00380768e+002 1.13556305e+002 1.23629494e+002 1.00358276e+002 - 1.13543251e+002 1.23654495e+002 1.00367928e+002 1.13521034e+002 - 1.23697556e+002 1.00377350e+002 1.13532104e+002 1.23745468e+002 - 1.00325592e+002 1.13469086e+002 1.23734947e+002 1.00260429e+002 - 1.13414909e+002 1.23700157e+002 1.00239487e+002 1.13373970e+002 - 1.23700996e+002 1.00252007e+002 1.13386024e+002 1.23739342e+002 - 1.00215851e+002 1.13346100e+002 1.23753174e+002 1.00167595e+002 - 1.13317772e+002 1.23745155e+002 1.00148773e+002 1.13284630e+002 - 1.23750275e+002 1.00136749e+002 1.13284355e+002 1.23769432e+002 - 1.00134964e+002 1.13260147e+002 1.23796371e+002 1.00107597e+002 - 1.13250923e+002 1.23802490e+002 1.00114006e+002 1.13250046e+002 - 1.23840637e+002 1.00102180e+002 1.13243637e+002 1.23855225e+002 - 1.00105476e+002 1.13241089e+002 1.23877884e+002 1.00083344e+002 - 1.13224007e+002 1.23882294e+002 1.00103233e+002 1.13218399e+002 - 1.23920883e+002 1.00105370e+002 1.13232727e+002 1.23952087e+002 - 1.00112152e+002 1.13242226e+002 1.23990318e+002 1.00102455e+002 - 1.13247398e+002 1.23997559e+002 1.00102158e+002 1.13230217e+002 - 1.24010139e+002 1.00089424e+002 1.13221733e+002 1.24014359e+002 - 1.00079552e+002 1.13204102e+002 1.24030220e+002 1.00019295e+002 - 1.13158951e+002 1.23999069e+002 1.00036964e+002 1.13158180e+002 - 1.24027794e+002 1.00047180e+002 1.13176590e+002 1.24053108e+002 - 1.00023262e+002 1.13137527e+002 1.24049072e+002 1.00008591e+002 - 1.13140358e+002 1.24048927e+002 1.00002808e+002 1.13122566e+002 - 1.24047302e+002 1.00024071e+002 1.13155853e+002 1.24081932e+002 - 1.00037170e+002 1.13153198e+002 1.24098442e+002 9.99946518e+001 - 1.13119652e+002 1.24071014e+002 1.00037659e+002 1.13133301e+002 - 1.24115799e+002 1.00038910e+002 1.13151596e+002 1.24128914e+002 - 1.00033836e+002 1.13144714e+002 1.24133270e+002 9.99850616e+001 - 1.13111122e+002 1.24097145e+002 1.00006493e+002 1.13117233e+002 - 1.24121162e+002 9.99838638e+001 1.13107613e+002 1.24096634e+002 - 9.99833145e+001 1.13098381e+002 1.24098045e+002 9.99223709e+001 - 1.13059235e+002 1.24042618e+002 9.99435730e+001 1.13070824e+002 - 1.24057594e+002 9.99444962e+001 1.13080513e+002 1.24050621e+002 - 9.99265900e+001 1.13051201e+002 1.24028183e+002 9.99195480e+001 - 1.13054161e+002 1.24020561e+002 9.99064636e+001 1.13030548e+002 - 1.23993935e+002 9.99186859e+001 1.13050629e+002 1.23997421e+002 - 9.99332657e+001 1.13055450e+002 1.24000694e+002 9.99173660e+001 - 1.13054390e+002 1.23977791e+002 9.99457169e+001 1.13057938e+002 - 1.23985237e+002 9.99539337e+001 1.13080772e+002 1.23988754e+002 - 9.99521866e+001 1.13074471e+002 1.23971809e+002 9.99441147e+001 - 1.13091087e+002 1.23949043e+002 9.99342728e+001 1.13070770e+002 - 1.23928032e+002 9.99412231e+001 1.13085556e+002 1.23904984e+002 - 9.99660645e+001 1.13101059e+002 1.23901138e+002 9.99841843e+001 - 1.13146629e+002 1.23908875e+002 1.00022247e+002 1.13170853e+002 - 1.23921089e+002 1.00043449e+002 1.13199066e+002 1.23916595e+002 - 1.00050964e+002 1.13186279e+002 1.23890869e+002 1.00065346e+002 - 1.13213539e+002 1.23877235e+002 1.00114182e+002 1.13248459e+002 - 1.23892067e+002 1.00120033e+002 1.13276001e+002 1.23871086e+002 - 1.00124924e+002 1.13266670e+002 1.23848259e+002 1.00111008e+002 - 1.13257462e+002 1.23816238e+002 1.00127472e+002 1.13247551e+002 - 1.23789970e+002 1.00133377e+002 1.13262085e+002 1.23767242e+002 - 1.00161797e+002 1.13287399e+002 1.23763496e+002 1.00159592e+002 - 1.13306145e+002 1.23748589e+002 1.00173729e+002 1.13309029e+002 - 1.23745850e+002 1.00169670e+002 1.13317848e+002 1.23715988e+002 - 1.00177460e+002 1.13328911e+002 1.23686279e+002 1.00156273e+002 - 1.13336029e+002 1.23649063e+002 1.00170792e+002 1.13339417e+002 - 1.23620827e+002 1.00202728e+002 1.13382164e+002 1.23618492e+002 - 1.00223816e+002 1.13384850e+002 1.23601212e+002 1.00232147e+002 - 1.13408913e+002 1.23568504e+002 1.00267677e+002 1.13439461e+002 - 1.23565193e+002 1.00289566e+002 1.13466301e+002 1.23538139e+002 - 1.00313011e+002 1.13484444e+002 1.23523354e+002 1.00326065e+002 - 1.13508232e+002 1.23498962e+002 1.00377884e+002 1.13536949e+002 - 1.23502411e+002 1.00410004e+002 1.13578468e+002 1.23490257e+002 - 1.00426987e+002 1.13590561e+002 1.23467529e+002 1.00416313e+002 - 1.13601410e+002 1.23424011e+002 1.00461067e+002 1.13634460e+002 - 1.23425209e+002 1.00514458e+002 1.13693916e+002 1.23433334e+002 - 1.00541817e+002 1.13719620e+002 1.23400627e+002 1.00552338e+002 - 1.13743050e+002 1.23366486e+002 1.00579361e+002 1.13760544e+002 - 1.23356331e+002 1.00631020e+002 1.13821373e+002 1.23369659e+002 - 1.00685005e+002 1.13852547e+002 1.23365524e+002 1.00703979e+002 - 1.13891701e+002 1.23334618e+002 1.00760178e+002 1.13937881e+002 - 1.23330856e+002 1.00812653e+002 1.14007095e+002 1.23333313e+002 - 1.00872185e+002 1.14047157e+002 1.23332703e+002 1.00879288e+002 - 1.14071945e+002 1.23295822e+002 1.00912292e+002 1.14075981e+002 - 1.23254211e+002 1.00966148e+002 1.14145393e+002 1.23258743e+002 - 1.01012489e+002 1.14179611e+002 1.23240227e+002 1.01042953e+002 - 1.14231789e+002 1.23223129e+002 1.01093491e+002 1.14269318e+002 - 1.23228874e+002 1.01154327e+002 1.14346344e+002 1.23232620e+002 - 1.01188416e+002 1.14369164e+002 1.23192909e+002 1.01203987e+002 - 1.14406570e+002 1.23164383e+002 1.01255646e+002 1.14442871e+002 - 1.23161484e+002 1.01289597e+002 1.14488853e+002 1.23148224e+002 - 1.01324295e+002 1.14504906e+002 1.23124115e+002 1.01344482e+002 - 1.14550674e+002 1.23104523e+002 1.01408615e+002 1.14603134e+002 - 1.23105499e+002 1.01467018e+002 1.14680290e+002 1.23108536e+002 - 1.01544769e+002 1.14739235e+002 1.23121994e+002 1.01570808e+002 - 1.14770744e+002 1.23088913e+002 1.01624100e+002 1.14795959e+002 - 1.23055016e+002 1.01679131e+002 1.14864822e+002 1.23049812e+002 - 1.01746628e+002 1.14919510e+002 1.23046349e+002 1.01764908e+002 - 1.14965347e+002 1.23012794e+002 1.01832115e+002 1.15018944e+002 - 1.23029327e+002 1.01907715e+002 1.15095749e+002 1.23033180e+002 - 1.01986252e+002 1.15155807e+002 1.23016914e+002 1.02033569e+002 - 1.15220673e+002 1.23003319e+002 1.02102806e+002 1.15276764e+002 - 1.23012535e+002 1.02171867e+002 1.15346344e+002 1.23025772e+002 - 1.02243576e+002 1.15395264e+002 1.23016518e+002 1.02269012e+002 - 1.15429199e+002 1.22985298e+002 1.02337776e+002 1.15474083e+002 - 1.22976105e+002 1.02426704e+002 1.15568680e+002 1.22999931e+002 - 1.02496796e+002 1.15615524e+002 1.22990730e+002 1.02575310e+002 - 1.15701096e+002 1.22995827e+002 1.02670227e+002 1.15764191e+002 - 1.23002419e+002 1.02745491e+002 1.15838745e+002 1.23005798e+002 - 1.02817726e+002 1.15891762e+002 1.22996307e+002 1.02880486e+002 - 1.15966080e+002 1.22999344e+002 1.02974739e+002 1.16038353e+002 - 1.23019043e+002 1.03067780e+002 1.16129593e+002 1.23034035e+002 - 1.03152992e+002 1.16200340e+002 1.23025398e+002 1.03219894e+002 - 1.16284157e+002 1.23028534e+002 1.03333817e+002 1.16371925e+002 - 1.23070320e+002 1.03412384e+002 1.16453041e+002 1.23078148e+002 - 1.03529251e+002 1.16536758e+002 1.23109421e+002 1.03623627e+002 - 1.16631538e+002 1.23125481e+002 1.03730087e+002 1.16710640e+002 - 1.23140518e+002 1.03833687e+002 1.16809486e+002 1.23169540e+002 - 1.03916969e+002 1.16860268e+002 1.23167953e+002 1.04017036e+002 - 1.16951668e+002 1.23196075e+002 1.04137093e+002 1.17030235e+002 - 1.23219345e+002 1.04220016e+002 1.17095016e+002 1.23227425e+002 - 1.04321587e+002 1.17148926e+002 1.23227402e+002 1.04332893e+002 - 1.17152428e+002 1.23167953e+002 1.04362900e+002 1.17139709e+002 - 1.23114052e+002 1.04318413e+002 1.17084091e+002 1.22995926e+002 - 1.04293686e+002 1.17058914e+002 1.23068741e+002 1.04331734e+002 - 1.17140175e+002 1.23186348e+002 1.04319824e+002 1.17139503e+002 - 1.23241753e+002 1.04251129e+002 1.17098816e+002 1.23248093e+002 - 1.04185204e+002 1.17048882e+002 1.23276215e+002 1.04091774e+002 - 1.16990250e+002 1.23266960e+002 1.04005699e+002 1.16930603e+002 - 1.23277542e+002 1.03919220e+002 1.16869858e+002 1.23265678e+002 - 1.03810875e+002 1.16779068e+002 1.23248901e+002 1.03709320e+002 - 1.16705971e+002 1.23231171e+002 1.03620888e+002 1.16613701e+002 - 1.23231544e+002 1.03572433e+002 1.16587875e+002 1.23258270e+002 - 1.03476677e+002 1.16501884e+002 1.23236008e+002 1.03373672e+002 - 1.16417236e+002 1.23188095e+002 1.03291229e+002 1.16326675e+002 - 1.23163361e+002 1.03183838e+002 1.16231155e+002 1.23107544e+002 - 1.03087715e+002 1.16150017e+002 1.23121544e+002 1.02978043e+002 - 1.16075760e+002 1.23103798e+002 1.02916954e+002 1.15998627e+002 - 1.23098740e+002 1.02840279e+002 1.15942139e+002 1.23086617e+002 - 1.02762665e+002 1.15855209e+002 1.23080170e+002 1.02666695e+002 - 1.15783722e+002 1.23056030e+002 1.02578415e+002 1.15695557e+002 - 1.23052338e+002 1.02514336e+002 1.15645485e+002 1.23058830e+002 - 1.02443649e+002 1.15571831e+002 1.23070618e+002 1.02359558e+002 - 1.15506653e+002 1.23056931e+002 1.02315643e+002 1.15443672e+002 - 1.23093361e+002 1.02245178e+002 1.15385590e+002 1.23094070e+002 - 1.02189316e+002 1.15336243e+002 1.23114555e+002 1.02109985e+002 - 1.15278557e+002 1.23100601e+002 1.02066803e+002 1.15229340e+002 - 1.23113869e+002 1.02000374e+002 1.15175354e+002 1.23107811e+002 - 1.01926361e+002 1.15108879e+002 1.23126389e+002 1.01807144e+002 - 1.15013863e+002 1.23088516e+002 1.01757317e+002 1.14953033e+002 - 1.23092384e+002 1.01717712e+002 1.14918999e+002 1.23116249e+002 - 1.01677719e+002 1.14866013e+002 1.23140503e+002 1.01588844e+002 - 1.14792580e+002 1.23118439e+002 1.01550522e+002 1.14748505e+002 - 1.23149361e+002 1.01519333e+002 1.14734108e+002 1.23170502e+002 - 1.01472649e+002 1.14678085e+002 1.23183655e+002 1.01395317e+002 - 1.14608879e+002 1.23171486e+002 1.01333298e+002 1.14532715e+002 - 1.23174911e+002 1.01291893e+002 1.14491867e+002 1.23196152e+002 - 1.01291824e+002 1.14497437e+002 1.23258461e+002 1.01232178e+002 - 1.14455482e+002 1.23244774e+002 1.01205521e+002 1.14414886e+002 - 1.23261330e+002 1.01143272e+002 1.14363106e+002 1.23251289e+002 - 1.01100891e+002 1.14319633e+002 1.23284584e+002 1.01005531e+002 - 1.14244476e+002 1.23247665e+002 1.00980026e+002 1.14206421e+002 - 1.23261093e+002 1.00958565e+002 1.14183891e+002 1.23280174e+002 - 1.00897697e+002 1.14098946e+002 1.23266624e+002 1.00833427e+002 - 1.14044357e+002 1.23257538e+002 1.00782265e+002 1.13994141e+002 - 1.23271912e+002 1.00754829e+002 1.13972710e+002 1.23290619e+002 - 1.00750122e+002 1.13952095e+002 1.23336700e+002 1.00706856e+002 - 1.13913551e+002 1.23343407e+002 1.00671463e+002 1.13847336e+002 - 1.23358994e+002 1.00654419e+002 1.13832542e+002 1.23386818e+002 - 1.00622932e+002 1.13795158e+002 1.23405548e+002 1.00569649e+002 - 1.13749977e+002 1.23402451e+002 1.00544617e+002 1.13713539e+002 - 1.23412643e+002 1.00535164e+002 1.13720406e+002 1.23445526e+002 - 1.00492462e+002 1.13673286e+002 1.23462585e+002 1.00442680e+002 - 1.13652008e+002 1.23479073e+002 1.00416313e+002 1.13609093e+002 - 1.23483429e+002 1.00388412e+002 1.13587402e+002 1.23497879e+002 - 1.00360847e+002 1.13550461e+002 1.23504120e+002 1.00313744e+002 - 1.13519577e+002 1.23500404e+002 1.00300919e+002 1.13499794e+002 - 1.23528076e+002 1.00291252e+002 1.13497971e+002 1.23559982e+002 - 1.00248833e+002 1.13445328e+002 1.23554886e+002 1.00216545e+002 - 1.13415985e+002 1.23561798e+002 1.00207954e+002 1.13378677e+002 - 1.23593239e+002 1.00215416e+002 1.13383263e+002 1.23640823e+002 - 1.00184959e+002 1.13344223e+002 1.23640213e+002 1.00127983e+002 - 1.13291222e+002 1.23611465e+002 1.00135895e+002 1.13278648e+002 - 1.23644928e+002 1.00130348e+002 1.13278542e+002 1.23661438e+002 - 1.00072563e+002 1.13213615e+002 1.23650986e+002 1.00016670e+002 - 1.13181595e+002 1.23642311e+002 1.00004044e+002 1.13153435e+002 - 1.23651688e+002 1.00016258e+002 1.13172127e+002 1.23691673e+002 - 1.00034805e+002 1.13175980e+002 1.23741020e+002 1.00017296e+002 - 1.13171402e+002 1.23751846e+002 9.99930801e+001 1.13130676e+002 - 1.23758804e+002 9.99731598e+001 1.13127960e+002 1.23773987e+002 - 9.99901581e+001 1.13131783e+002 1.23817223e+002 9.99655075e+001 - 1.13118103e+002 1.23816360e+002 9.99573593e+001 1.13085670e+002 - 1.23825554e+002 9.99664536e+001 1.13102783e+002 1.23863045e+002 - 9.99764404e+001 1.13104263e+002 1.23891235e+002 9.99545822e+001 - 1.13102806e+002 1.23892731e+002 9.99571686e+001 1.13089066e+002 - 1.23905785e+002 9.99423294e+001 1.13084351e+002 1.23903580e+002 - 9.99295273e+001 1.13062515e+002 1.23920868e+002 9.98769226e+001 - 1.13030281e+002 1.23897079e+002 9.98748474e+001 1.13017273e+002 - 1.23916573e+002 9.98834000e+001 1.13032555e+002 1.23936432e+002 - 9.98909454e+001 1.13021782e+002 1.23960518e+002 9.98729782e+001 - 1.13016586e+002 1.23953926e+002 9.98790436e+001 1.13011948e+002 - 1.23975266e+002 9.98772736e+001 1.13018379e+002 1.23976219e+002 - 9.98635101e+001 1.12988235e+002 1.23970993e+002 9.98599167e+001 - 1.12993279e+002 1.23982140e+002 9.98910599e+001 1.13004570e+002 - 1.24020355e+002 9.98802261e+001 1.13003105e+002 1.24017303e+002 - 9.98623810e+001 1.12986458e+002 1.24012733e+002 9.98388596e+001 - 1.12979042e+002 1.23999649e+002 9.98434753e+001 1.12974846e+002 - 1.24013680e+002 9.98523102e+001 1.12995682e+002 1.24015358e+002 - 9.98459854e+001 1.12977135e+002 1.24009453e+002 9.98066635e+001 - 1.12955505e+002 1.23975533e+002 9.97883759e+001 1.12926582e+002 - 1.23952866e+002 9.98025665e+001 1.12951096e+002 1.23956459e+002 - 9.97870026e+001 1.12924370e+002 1.23937119e+002 9.97521667e+001 - 1.12901688e+002 1.23897575e+002 9.97555008e+001 1.12887077e+002 - 1.23886772e+002 9.97640839e+001 1.12907707e+002 1.23884323e+002 - 9.97812805e+001 1.12914406e+002 1.23898575e+002 9.97989426e+001 - 1.12948235e+002 1.23904854e+002 9.98159790e+001 1.12946594e+002 - 1.23902634e+002 9.98283920e+001 1.12965080e+002 1.23905357e+002 - 9.98253937e+001 1.12967682e+002 1.23888687e+002 9.98270645e+001 - 1.12991554e+002 1.23883354e+002 9.98404312e+001 1.12992508e+002 - 1.23878319e+002 9.98484039e+001 1.13010017e+002 1.23862923e+002 - 9.98673401e+001 1.13014122e+002 1.23850845e+002 9.98553009e+001 - 1.13025414e+002 1.23831474e+002 9.98886642e+001 1.13047417e+002 - 1.23837746e+002 9.99088364e+001 1.13074829e+002 1.23830765e+002 - 9.99275589e+001 1.13076729e+002 1.23815811e+002 9.99163437e+001 - 1.13077103e+002 1.23778435e+002 9.99438553e+001 1.13093414e+002 - 1.23772743e+002 9.99770813e+001 1.13143028e+002 1.23779480e+002 - 9.99926605e+001 1.13144264e+002 1.23764000e+002 1.00000854e+002 - 1.13157082e+002 1.23744675e+002 1.00010956e+002 1.13144302e+002 - 1.23716553e+002 1.00001198e+002 1.13143478e+002 1.23682274e+002 - 1.00018547e+002 1.13157883e+002 1.23669983e+002 9.99958725e+001 - 1.13158920e+002 1.23635262e+002 1.00038109e+002 1.13187157e+002 - 1.23658768e+002 1.00059250e+002 1.13218338e+002 1.23648003e+002 - 1.00070427e+002 1.13228676e+002 1.23622948e+002 1.00040405e+002 - 1.13234962e+002 1.23577293e+002 1.00034355e+002 1.13217255e+002 - 1.23534546e+002 1.00053986e+002 1.13242203e+002 1.23514053e+002 - 1.00078484e+002 1.13258751e+002 1.23501587e+002 1.00089264e+002 - 1.13282692e+002 1.23474808e+002 1.00114105e+002 1.13296791e+002 - 1.23452217e+002 1.00135963e+002 1.13327324e+002 1.23432434e+002 - 1.00172539e+002 1.13353737e+002 1.23420998e+002 1.00195961e+002 - 1.13392464e+002 1.23414391e+002 1.00251747e+002 1.13422005e+002 - 1.23416756e+002 1.00290520e+002 1.13467834e+002 1.23413467e+002 - 1.00315887e+002 1.13492897e+002 1.23398567e+002 1.00296402e+002 - 1.13489952e+002 1.23349747e+002 1.00351563e+002 1.13531967e+002 - 1.23363335e+002 1.00364304e+002 1.13558403e+002 1.23331657e+002 - 1.00407677e+002 1.13592575e+002 1.23316116e+002 1.00403717e+002 - 1.13612679e+002 1.23279411e+002 1.00445946e+002 1.13638695e+002 - 1.23275780e+002 1.00474968e+002 1.13680344e+002 1.23266113e+002 - 1.00554100e+002 1.13737961e+002 1.23284401e+002 1.00558510e+002 - 1.13755760e+002 1.23239166e+002 1.00602791e+002 1.13789581e+002 - 1.23222069e+002 1.00656403e+002 1.13862099e+002 1.23227249e+002 - 1.00727501e+002 1.13917091e+002 1.23239876e+002 1.00733505e+002 - 1.13936974e+002 1.23193321e+002 1.00762634e+002 1.13941231e+002 - 1.23155556e+002 1.00828331e+002 1.14019356e+002 1.23167480e+002 - 1.00885674e+002 1.14063339e+002 1.23162048e+002 1.00911934e+002 - 1.14113274e+002 1.23138817e+002 1.00978424e+002 1.14168060e+002 - 1.23160126e+002 1.01046707e+002 1.14246498e+002 1.23170380e+002 - 1.01069901e+002 1.14265182e+002 1.23120644e+002 1.01068871e+002 - 1.14290070e+002 1.23084641e+002 1.01151962e+002 1.14353340e+002 - 1.23110733e+002 1.01163918e+002 1.14374100e+002 1.23073425e+002 - 1.01212082e+002 1.14405632e+002 1.23059113e+002 1.01233162e+002 - 1.14443817e+002 1.23034225e+002 1.01287025e+002 1.14491623e+002 - 1.23024788e+002 1.01366959e+002 1.14591484e+002 1.23044975e+002 - 1.01450096e+002 1.14656052e+002 1.23064812e+002 1.01476112e+002 - 1.14686386e+002 1.23028084e+002 1.01512184e+002 1.14699051e+002 - 1.22987144e+002 1.01552254e+002 1.14752892e+002 1.22966484e+002 - 1.01617928e+002 1.14811401e+002 1.22968307e+002 1.01662140e+002 - 1.14872719e+002 1.22963974e+002 1.01696289e+002 1.14899155e+002 - 1.22942459e+002 1.01783066e+002 1.14987114e+002 1.22958771e+002 - 1.01849548e+002 1.15039452e+002 1.22934677e+002 1.01895302e+002 - 1.15097771e+002 1.22918495e+002 1.01971107e+002 1.15155449e+002 - 1.22934120e+002 1.02016327e+002 1.15207047e+002 1.22922913e+002 - 1.02091141e+002 1.15262276e+002 1.22925377e+002 1.02159836e+002 - 1.15333412e+002 1.22932365e+002 1.02239441e+002 1.15392708e+002 - 1.22935226e+002 1.02294167e+002 1.15455894e+002 1.22919868e+002 - 1.02382469e+002 1.15518005e+002 1.22928070e+002 1.02456711e+002 - 1.15595757e+002 1.22931694e+002 1.02551033e+002 1.15655655e+002 - 1.22932381e+002 1.02619759e+002 1.15727150e+002 1.22929146e+002 - 1.02702309e+002 1.15793152e+002 1.22932045e+002 1.02760178e+002 - 1.15863785e+002 1.22931870e+002 1.02883820e+002 1.15970917e+002 - 1.22989067e+002 1.02960724e+002 1.16044250e+002 1.22980476e+002 - 1.03026245e+002 1.16091606e+002 1.22945442e+002 1.03112267e+002 - 1.16192848e+002 1.22971107e+002 1.03203339e+002 1.16256157e+002 - 1.22986160e+002 1.03289017e+002 1.16347473e+002 1.23007286e+002 - 1.03445007e+002 1.16472382e+002 1.23079674e+002 1.03518471e+002 - 1.16546082e+002 1.23077873e+002 1.03625282e+002 1.16621223e+002 - 1.23088829e+002 1.03743385e+002 1.16737656e+002 1.23134636e+002 - 1.03814224e+002 1.16773521e+002 1.23117973e+002 1.03904526e+002 - 1.16857391e+002 1.23138329e+002 1.04030220e+002 1.16932388e+002 - 1.23165184e+002 1.04142960e+002 1.17029686e+002 1.23196190e+002 - 1.04216309e+002 1.17062149e+002 1.23178223e+002 1.04240562e+002 - 1.17076271e+002 1.23124908e+002 1.04279121e+002 1.17069313e+002 - 1.23081856e+002 1.04237228e+002 1.17024582e+002 1.22974792e+002 - 1.04181740e+002 1.16964668e+002 1.23001167e+002 1.04244415e+002 - 1.17068176e+002 1.23139206e+002 1.04213188e+002 1.17049171e+002 - 1.23179977e+002 1.04139458e+002 1.17000313e+002 1.23180977e+002 - 1.04074066e+002 1.16955757e+002 1.23205421e+002 1.03971725e+002 - 1.16892525e+002 1.23194107e+002 1.03902809e+002 1.16844719e+002 - 1.23214172e+002 1.03800003e+002 1.16771713e+002 1.23192841e+002 - 1.03676239e+002 1.16666328e+002 1.23158676e+002 1.03559288e+002 - 1.16576378e+002 1.23125031e+002 1.03503181e+002 1.16513618e+002 - 1.23160164e+002 1.03441940e+002 1.16477318e+002 1.23178253e+002 - 1.03343498e+002 1.16389786e+002 1.23148575e+002 1.03244179e+002 - 1.16308380e+002 1.23109673e+002 1.03171501e+002 1.16228256e+002 - 1.23087349e+002 1.03061890e+002 1.16133789e+002 1.23044220e+002 - 1.02945480e+002 1.16025139e+002 1.23032906e+002 1.02854752e+002 - 1.15969482e+002 1.23029083e+002 1.02814445e+002 1.15916992e+002 - 1.23042091e+002 1.02733917e+002 1.15850487e+002 1.23025986e+002 - 1.02654991e+002 1.15764679e+002 1.23016220e+002 1.02560432e+002 - 1.15691429e+002 1.22996307e+002 1.02485382e+002 1.15622421e+002 - 1.23002930e+002 1.02419418e+002 1.15569305e+002 1.23007874e+002 - 1.02357887e+002 1.15502144e+002 1.23021461e+002 1.02261711e+002 - 1.15418335e+002 1.23003204e+002 1.02208229e+002 1.15349792e+002 - 1.23031479e+002 1.02126778e+002 1.15292595e+002 1.23025284e+002 - 1.02068748e+002 1.15239708e+002 1.23042366e+002 1.02000473e+002 - 1.15191261e+002 1.23041847e+002 1.01941833e+002 1.15123688e+002 - 1.23040642e+002 1.01887665e+002 1.15083153e+002 1.23046066e+002 - 1.01788902e+002 1.14988876e+002 1.23041222e+002 1.01675949e+002 - 1.14903412e+002 1.23002518e+002 1.01639130e+002 1.14850563e+002 - 1.23018005e+002 1.01583603e+002 1.14805351e+002 1.23024086e+002 - 1.01544418e+002 1.14748856e+002 1.23053299e+002 1.01450691e+002 - 1.14672340e+002 1.23023209e+002 1.01416054e+002 1.14633110e+002 - 1.23058678e+002 1.01358757e+002 1.14591499e+002 1.23059731e+002 - 1.01334145e+002 1.14556389e+002 1.23088722e+002 1.01262085e+002 - 1.14496246e+002 1.23089027e+002 1.01219604e+002 1.14424850e+002 - 1.23102341e+002 1.01186554e+002 1.14406166e+002 1.23138580e+002 - 1.01156166e+002 1.14375099e+002 1.23163467e+002 1.01078209e+002 - 1.14317688e+002 1.23137878e+002 1.01042542e+002 1.14264198e+002 - 1.23146698e+002 1.00990242e+002 1.14222496e+002 1.23144623e+002 - 1.00957520e+002 1.14192253e+002 1.23191933e+002 1.00893608e+002 - 1.14150978e+002 1.23187561e+002 1.00874252e+002 1.14112610e+002 - 1.23208565e+002 1.00822884e+002 1.14067436e+002 1.23202232e+002 - 1.00779793e+002 1.14008331e+002 1.23208618e+002 1.00710289e+002 - 1.13942856e+002 1.23192169e+002 1.00670471e+002 1.13899757e+002 - 1.23218704e+002 1.00634323e+002 1.13865059e+002 1.23224266e+002 - 1.00611519e+002 1.13832207e+002 1.23255302e+002 1.00575508e+002 - 1.13804131e+002 1.23265228e+002 1.00544022e+002 1.13737175e+002 - 1.23280098e+002 1.00512550e+002 1.13711372e+002 1.23296051e+002 - 1.00488541e+002 1.13677605e+002 1.23324348e+002 1.00451157e+002 - 1.13652603e+002 1.23327835e+002 1.00422684e+002 1.13612465e+002 - 1.23338608e+002 1.00388954e+002 1.13588425e+002 1.23347092e+002 - 1.00337715e+002 1.13527596e+002 1.23351463e+002 1.00293503e+002 - 1.13513702e+002 1.23364601e+002 1.00266762e+002 1.13474304e+002 - 1.23377304e+002 1.00239182e+002 1.13454498e+002 1.23389404e+002 - 1.00219963e+002 1.13422829e+002 1.23409447e+002 1.00177025e+002 - 1.13396561e+002 1.23417366e+002 1.00164253e+002 1.13384895e+002 - 1.23449112e+002 1.00150246e+002 1.13375954e+002 1.23463531e+002 - 1.00105400e+002 1.13316589e+002 1.23459740e+002 1.00054893e+002 - 1.13271530e+002 1.23451180e+002 1.00049057e+002 1.13227631e+002 - 1.23488724e+002 1.00051460e+002 1.13234024e+002 1.23519836e+002 - 1.00045189e+002 1.13210617e+002 1.23544785e+002 1.00004143e+002 - 1.13182274e+002 1.23536865e+002 9.99941483e+001 1.13153206e+002 - 1.23551178e+002 9.99898605e+001 1.13150177e+002 1.23573006e+002 - 9.99432602e+001 1.13104568e+002 1.23575607e+002 9.98855362e+001 - 1.13070007e+002 1.23560196e+002 9.98921509e+001 1.13058823e+002 - 1.23582016e+002 9.98891373e+001 1.13061790e+002 1.23610115e+002 - 9.99000244e+001 1.13048943e+002 1.23650261e+002 9.98646317e+001 - 1.13029137e+002 1.23643547e+002 9.98356934e+001 1.12996002e+002 - 1.23655670e+002 9.98193970e+001 1.12987671e+002 1.23662666e+002 - 9.98254929e+001 1.12983093e+002 1.23689079e+002 9.98161850e+001 - 1.12983139e+002 1.23712906e+002 9.98310242e+001 1.12965965e+002 - 1.23740456e+002 9.97994461e+001 1.12943787e+002 1.23730690e+002 - 9.98150711e+001 1.12959572e+002 1.23771729e+002 9.97908249e+001 - 1.12948631e+002 1.23761612e+002 9.97914276e+001 1.12936020e+002 - 1.23774063e+002 9.97897720e+001 1.12943504e+002 1.23789391e+002 - 9.97908020e+001 1.12936668e+002 1.23823120e+002 9.97420731e+001 - 1.12910858e+002 1.23805412e+002 9.97423859e+001 1.12898682e+002 - 1.23819000e+002 9.97456436e+001 1.12903000e+002 1.23840614e+002 - 9.97629318e+001 1.12902367e+002 1.23867256e+002 9.97372665e+001 - 1.12889702e+002 1.23858711e+002 9.97224731e+001 1.12869583e+002 - 1.23855293e+002 9.97230682e+001 1.12880142e+002 1.23864815e+002 - 9.97265472e+001 1.12868843e+002 1.23875572e+002 9.97334976e+001 - 1.12881470e+002 1.23896141e+002 9.97407837e+001 1.12867592e+002 - 1.23911774e+002 9.97278061e+001 1.12869621e+002 1.23917923e+002 - 9.97132950e+001 1.12856682e+002 1.23910774e+002 9.96886215e+001 - 1.12847923e+002 1.23892006e+002 9.96917877e+001 1.12835487e+002 - 1.23901550e+002 9.96854782e+001 1.12835609e+002 1.23884514e+002 - 9.96885605e+001 1.12830780e+002 1.23890083e+002 9.96479950e+001 - 1.12810257e+002 1.23859627e+002 9.96387100e+001 1.12786003e+002 - 1.23843376e+002 9.96383972e+001 1.12800606e+002 1.23839630e+002 - 9.96318741e+001 1.12783806e+002 1.23830849e+002 9.96182404e+001 - 1.12777412e+002 1.23802414e+002 9.96274948e+001 1.12771561e+002 - 1.23797165e+002 9.96449966e+001 1.12812370e+002 1.23810379e+002 - 9.96758194e+001 1.12823013e+002 1.23834930e+002 9.96722031e+001 - 1.12840210e+002 1.23830589e+002 9.97050552e+001 1.12844543e+002 - 1.23841278e+002 9.96900253e+001 1.12846916e+002 1.23817047e+002 - 9.97048645e+001 1.12861122e+002 1.23811691e+002 9.97001114e+001 - 1.12876785e+002 1.23792557e+002 9.97294540e+001 1.12893906e+002 - 1.23807419e+002 9.97296143e+001 1.12903328e+002 1.23779396e+002 - 9.97275772e+001 1.12890114e+002 1.23757645e+002 9.97238998e+001 - 1.12902550e+002 1.23745026e+002 9.97739563e+001 1.12943466e+002 - 1.23775078e+002 9.97841644e+001 1.12964081e+002 1.23757339e+002 - 9.97976685e+001 1.12959396e+002 1.23737671e+002 9.97778702e+001 - 1.12946060e+002 1.23687508e+002 9.98315811e+001 1.12995026e+002 - 1.23712791e+002 9.98404846e+001 1.13014870e+002 1.23685570e+002 - 9.98669662e+001 1.13027489e+002 1.23683273e+002 9.98799820e+001 - 1.13058006e+002 1.23673668e+002 9.98851166e+001 1.13031059e+002 - 1.23643570e+002 9.98580399e+001 1.13018921e+002 1.23586861e+002 - 9.98451691e+001 1.13000702e+002 1.23550064e+002 9.98513107e+001 - 1.13028076e+002 1.23535393e+002 9.99015503e+001 1.13066124e+002 - 1.23566544e+002 9.99386292e+001 1.13115555e+002 1.23573883e+002 - 9.99538956e+001 1.13125633e+002 1.23551331e+002 9.99246597e+001 - 1.13127533e+002 1.23500664e+002 9.99147644e+001 1.13106537e+002 - 1.23451942e+002 9.99338303e+001 1.13140694e+002 1.23442917e+002 - 9.99472122e+001 1.13139046e+002 1.23412521e+002 9.99767914e+001 - 1.13181007e+002 1.23401154e+002 1.00014923e+002 1.13210518e+002 - 1.23393196e+002 1.00036629e+002 1.13242355e+002 1.23368744e+002 - 1.00060089e+002 1.13254807e+002 1.23348640e+002 1.00079231e+002 - 1.13289009e+002 1.23334343e+002 1.00156113e+002 1.13336517e+002 - 1.23366463e+002 1.00174004e+002 1.13366875e+002 1.23342285e+002 - 1.00209702e+002 1.13392342e+002 1.23333641e+002 1.00179916e+002 - 1.13382599e+002 1.23271324e+002 1.00233803e+002 1.13426476e+002 - 1.23295052e+002 1.00245605e+002 1.13446083e+002 1.23258774e+002 - 1.00279907e+002 1.13480484e+002 1.23239052e+002 1.00296402e+002 - 1.13520485e+002 1.23217087e+002 1.00334999e+002 1.13544792e+002 - 1.23212067e+002 1.00354141e+002 1.13569359e+002 1.23187889e+002 - 1.00414177e+002 1.13613487e+002 1.23194618e+002 1.00423157e+002 - 1.13637367e+002 1.23153191e+002 1.00478836e+002 1.13685638e+002 - 1.23150444e+002 1.00545639e+002 1.13763275e+002 1.23162148e+002 - 1.00606537e+002 1.13813255e+002 1.23159737e+002 1.00625092e+002 - 1.13837914e+002 1.23126778e+002 1.00649902e+002 1.13842720e+002 - 1.23087364e+002 1.00704880e+002 1.13908936e+002 1.23084991e+002 - 1.00760895e+002 1.13957550e+002 1.23082985e+002 1.00762268e+002 - 1.13981232e+002 1.23037697e+002 1.00827042e+002 1.14034515e+002 - 1.23056808e+002 1.00881210e+002 1.14101105e+002 1.23057602e+002 - 1.00918144e+002 1.14130692e+002 1.23025475e+002 1.00931084e+002 - 1.14166451e+002 1.22994263e+002 1.00988159e+002 1.14200745e+002 - 1.22992302e+002 1.01033699e+002 1.14255219e+002 1.22988403e+002 - 1.01078514e+002 1.14290497e+002 1.22971169e+002 1.01096275e+002 - 1.14325539e+002 1.22935776e+002 1.01168449e+002 1.14389030e+002 - 1.22947891e+002 1.01256798e+002 1.14490067e+002 1.22978630e+002 - 1.01333626e+002 1.14554123e+002 1.22990875e+002 1.01339851e+002 - 1.14576790e+002 1.22945755e+002 1.01383644e+002 1.14588226e+002 - 1.22911514e+002 1.01425674e+002 1.14639481e+002 1.22890404e+002 - 1.01468987e+002 1.14674232e+002 1.22869789e+002 1.01531563e+002 - 1.14758011e+002 1.22876060e+002 1.01576668e+002 1.14791351e+002 - 1.22873360e+002 1.01629372e+002 1.14849236e+002 1.22849678e+002 - 1.01691399e+002 1.14893425e+002 1.22829124e+002 1.01753700e+002 - 1.14979233e+002 1.22832237e+002 1.01842812e+002 1.15043274e+002 - 1.22856323e+002 1.01887123e+002 1.15097847e+002 1.22848648e+002 - 1.01974998e+002 1.15154312e+002 1.22855652e+002 1.02043816e+002 - 1.15231552e+002 1.22861397e+002 1.02121689e+002 1.15289803e+002 - 1.22858513e+002 1.02192673e+002 1.15364632e+002 1.22864395e+002 - 1.02277245e+002 1.15428032e+002 1.22864639e+002 1.02338951e+002 - 1.15491104e+002 1.22856178e+002 1.02438438e+002 1.15553543e+002 - 1.22865707e+002 1.02517021e+002 1.15643166e+002 1.22874138e+002 - 1.02584854e+002 1.15700478e+002 1.22861122e+002 1.02629532e+002 - 1.15751175e+002 1.22848343e+002 1.02743317e+002 1.15845169e+002 - 1.22892296e+002 1.02819740e+002 1.15918884e+002 1.22887337e+002 - 1.02912796e+002 1.15998451e+002 1.22882027e+002 1.02982841e+002 - 1.16082191e+002 1.22882591e+002 1.03073685e+002 1.16145706e+002 - 1.22898140e+002 1.03165298e+002 1.16238823e+002 1.22930023e+002 - 1.03308685e+002 1.16350296e+002 1.22991791e+002 1.03410828e+002 - 1.16455048e+002 1.23014030e+002 1.03524979e+002 1.16536636e+002 - 1.23033249e+002 1.03617119e+002 1.16629219e+002 1.23052063e+002 - 1.03712502e+002 1.16696632e+002 1.23066322e+002 1.03793411e+002 - 1.16763870e+002 1.23080620e+002 1.03911270e+002 1.16831779e+002 - 1.23091934e+002 1.04003647e+002 1.16912331e+002 1.23101463e+002 - 1.04112396e+002 1.16980919e+002 1.23116791e+002 1.04134354e+002 - 1.16995995e+002 1.23067795e+002 1.04170952e+002 1.16985344e+002 - 1.23021965e+002 1.04143021e+002 1.16947372e+002 1.22924728e+002 - 1.04102959e+002 1.16888603e+002 1.22961868e+002 1.04131042e+002 - 1.16960030e+002 1.23069580e+002 1.04101212e+002 1.16944588e+002 - 1.23110741e+002 1.04040115e+002 1.16918274e+002 1.23129860e+002 - 1.03967728e+002 1.16858795e+002 1.23144226e+002 1.03877029e+002 - 1.16805840e+002 1.23141075e+002 1.03819000e+002 1.16774467e+002 - 1.23182289e+002 1.03698059e+002 1.16687660e+002 1.23143875e+002 - 1.03581520e+002 1.16582954e+002 1.23119698e+002 1.03443802e+002 - 1.16477478e+002 1.23061539e+002 1.03389153e+002 1.16419380e+002 - 1.23096481e+002 1.03334068e+002 1.16382568e+002 1.23113876e+002 - 1.03243820e+002 1.16301140e+002 1.23097229e+002 1.03133492e+002 - 1.16206566e+002 1.23044975e+002 1.03057579e+002 1.16122414e+002 - 1.23021301e+002 1.02960548e+002 1.16040115e+002 1.22993401e+002 - 1.02856064e+002 1.15944199e+002 1.22988457e+002 1.02759476e+002 - 1.15877541e+002 1.22976875e+002 1.02708916e+002 1.15814529e+002 - 1.22979500e+002 1.02628891e+002 1.15751266e+002 1.22961067e+002 - 1.02572540e+002 1.15688751e+002 1.22977318e+002 1.02462433e+002 - 1.15600555e+002 1.22938652e+002 1.02387672e+002 1.15528343e+002 - 1.22949753e+002 1.02317116e+002 1.15475739e+002 1.22950142e+002 - 1.02268005e+002 1.15415771e+002 1.22980072e+002 1.02167473e+002 - 1.15336594e+002 1.22959969e+002 1.02104324e+002 1.15259048e+002 - 1.22975067e+002 1.02026184e+002 1.15200890e+002 1.22975754e+002 - 1.01944603e+002 1.15119270e+002 1.22963867e+002 1.01882813e+002 - 1.15078369e+002 1.22966125e+002 1.01823448e+002 1.15014549e+002 - 1.22971397e+002 1.01764977e+002 1.14963409e+002 1.22966690e+002 - 1.01661705e+002 1.14870308e+002 1.22953247e+002 1.01565773e+002 - 1.14798187e+002 1.22937866e+002 1.01519356e+002 1.14739853e+002 - 1.22937637e+002 1.01478592e+002 1.14708145e+002 1.22959328e+002 - 1.01418961e+002 1.14640953e+002 1.22968651e+002 1.01343384e+002 - 1.14571167e+002 1.22960983e+002 1.01291252e+002 1.14522285e+002 - 1.22980263e+002 1.01227097e+002 1.14471336e+002 1.22971817e+002 - 1.01213585e+002 1.14445618e+002 1.23013771e+002 1.01168152e+002 - 1.14411911e+002 1.23033073e+002 1.01128151e+002 1.14347321e+002 - 1.23060165e+002 1.01075768e+002 1.14303062e+002 1.23069305e+002 - 1.01030670e+002 1.14256363e+002 1.23091797e+002 1.00973618e+002 - 1.14218002e+002 1.23083206e+002 1.00924713e+002 1.14147202e+002 - 1.23070465e+002 1.00864006e+002 1.14098732e+002 1.23060364e+002 - 1.00835701e+002 1.14071983e+002 1.23111931e+002 1.00789467e+002 - 1.14046822e+002 1.23128761e+002 1.00766487e+002 1.14007195e+002 - 1.23144897e+002 1.00713493e+002 1.13965271e+002 1.23138878e+002 - 1.00671730e+002 1.13902649e+002 1.23145988e+002 1.00598602e+002 - 1.13840935e+002 1.23129288e+002 1.00542892e+002 1.13779015e+002 - 1.23142075e+002 1.00503685e+002 1.13748642e+002 1.23150948e+002 - 1.00484497e+002 1.13710625e+002 1.23176537e+002 1.00439087e+002 - 1.13671150e+002 1.23182724e+002 1.00422905e+002 1.13621185e+002 - 1.23209740e+002 1.00391747e+002 1.13591484e+002 1.23223801e+002 - 1.00365067e+002 1.13563873e+002 1.23247978e+002 1.00323769e+002 - 1.13532150e+002 1.23252579e+002 1.00297340e+002 1.13494011e+002 - 1.23259781e+002 1.00266335e+002 1.13472717e+002 1.23263489e+002 - 1.00228668e+002 1.13430122e+002 1.23285660e+002 1.00157005e+002 - 1.13384735e+002 1.23277267e+002 1.00131889e+002 1.13345306e+002 - 1.23284157e+002 1.00135651e+002 1.13361122e+002 1.23327484e+002 - 1.00113007e+002 1.13329872e+002 1.23354050e+002 1.00058426e+002 - 1.13284187e+002 1.23342171e+002 1.00034897e+002 1.13255829e+002 - 1.23363724e+002 1.00005409e+002 1.13238129e+002 1.23367561e+002 - 9.99814911e+001 1.13202240e+002 1.23387566e+002 9.99389648e+001 - 1.13163223e+002 1.23384766e+002 9.99395142e+001 1.13129608e+002 - 1.23422287e+002 9.99437180e+001 1.13131294e+002 1.23460846e+002 - 9.99530334e+001 1.13130676e+002 1.23499153e+002 9.98971252e+001 - 1.13080910e+002 1.23474037e+002 9.98774567e+001 1.13043282e+002 - 1.23477806e+002 9.98737564e+001 1.13042763e+002 1.23498352e+002 - 9.98361969e+001 1.13003487e+002 1.23509819e+002 9.97754822e+001 - 1.12968269e+002 1.23495552e+002 9.97672272e+001 1.12941315e+002 - 1.23502525e+002 9.97609253e+001 1.12937370e+002 1.23522530e+002 - 9.97746506e+001 1.12933861e+002 1.23566414e+002 9.97448120e+001 - 1.12913803e+002 1.23568710e+002 9.97251434e+001 1.12887985e+002 - 1.23580902e+002 9.97178040e+001 1.12882965e+002 1.23591354e+002 - 9.97201691e+001 1.12874077e+002 1.23614021e+002 9.97162247e+001 - 1.12879585e+002 1.23642868e+002 9.97199936e+001 1.12850807e+002 - 1.23661942e+002 9.96977463e+001 1.12844414e+002 1.23668045e+002 - 9.97134781e+001 1.12852119e+002 1.23699821e+002 9.96670380e+001 - 1.12824211e+002 1.23672318e+002 9.96694260e+001 1.12814758e+002 - 1.23688042e+002 9.96658020e+001 1.12814117e+002 1.23696274e+002 - 9.96883316e+001 1.12832542e+002 1.23748947e+002 9.96281662e+001 - 1.12796684e+002 1.23726891e+002 9.96334763e+001 1.12783134e+002 - 1.23748039e+002 9.96155548e+001 1.12776276e+002 1.23744644e+002 - 9.96295624e+001 1.12772629e+002 1.23773041e+002 9.96020050e+001 - 1.12758171e+002 1.23761253e+002 9.95759659e+001 1.12727295e+002 - 1.23748474e+002 9.95753860e+001 1.12733841e+002 1.23748940e+002 - 9.95914612e+001 1.12738228e+002 1.23772964e+002 9.96061707e+001 - 1.12764137e+002 1.23812141e+002 9.96314087e+001 1.12762413e+002 - 1.23842926e+002 9.95988922e+001 1.12737991e+002 1.23833847e+002 - 9.95932922e+001 1.12736443e+002 1.23831009e+002 9.95699081e+001 - 1.12729660e+002 1.23815430e+002 9.95669556e+001 1.12718506e+002 - 1.23814812e+002 9.95613556e+001 1.12715996e+002 1.23796066e+002 - 9.95380478e+001 1.12685364e+002 1.23778107e+002 9.95236969e+001 - 1.12689697e+002 1.23773254e+002 9.95058823e+001 1.12659485e+002 - 1.23746567e+002 9.95007477e+001 1.12667076e+002 1.23734573e+002 - 9.95128098e+001 1.12667480e+002 1.23740784e+002 9.95178680e+001 - 1.12679527e+002 1.23738708e+002 9.95014420e+001 1.12653000e+002 - 1.23709587e+002 9.95322418e+001 1.12694641e+002 1.23735039e+002 - 9.95333557e+001 1.12691742e+002 1.23731277e+002 9.95412750e+001 - 1.12720032e+002 1.23738449e+002 9.95742188e+001 1.12731445e+002 - 1.23762337e+002 9.95785675e+001 1.12740883e+002 1.23756065e+002 - 9.95691605e+001 1.12733330e+002 1.23721664e+002 9.95717926e+001 - 1.12754349e+002 1.23707100e+002 9.95825653e+001 1.12753822e+002 - 1.23707298e+002 9.95647888e+001 1.12738785e+002 1.23657669e+002 - 9.96025238e+001 1.12763542e+002 1.23670609e+002 9.95810928e+001 - 1.12769630e+002 1.23651199e+002 9.96181030e+001 1.12787331e+002 - 1.23660294e+002 9.96351318e+001 1.12822739e+002 1.23661491e+002 - 9.96724167e+001 1.12836723e+002 1.23662537e+002 9.96657104e+001 - 1.12837311e+002 1.23624496e+002 9.97070084e+001 1.12870720e+002 - 1.23633942e+002 9.97081070e+001 1.12889290e+002 1.23607216e+002 - 9.97408371e+001 1.12903938e+002 1.23604530e+002 9.97588806e+001 - 1.12937317e+002 1.23602882e+002 9.97705765e+001 1.12921097e+002 - 1.23576134e+002 9.97602234e+001 1.12925880e+002 1.23541901e+002 - 9.97626953e+001 1.12928825e+002 1.23514114e+002 9.97595520e+001 - 1.12942551e+002 1.23491455e+002 9.97879944e+001 1.12960999e+002 - 1.23501877e+002 9.98143234e+001 1.13000664e+002 1.23496857e+002 - 9.98243256e+001 1.13010475e+002 1.23467781e+002 9.98105011e+001 - 1.13029968e+002 1.23434135e+002 9.98124924e+001 1.13014175e+002 - 1.23394432e+002 9.98256760e+001 1.13039162e+002 1.23377876e+002 - 9.98446198e+001 1.13037125e+002 1.23344406e+002 9.98650208e+001 - 1.13075806e+002 1.23327599e+002 9.99095612e+001 1.13115608e+002 - 1.23333740e+002 9.99453201e+001 1.13159988e+002 1.23322273e+002 - 9.99762573e+001 1.13176941e+002 1.23311050e+002 9.99911194e+001 - 1.13206085e+002 1.23290092e+002 1.00054756e+002 1.13236694e+002 - 1.23307541e+002 1.00060402e+002 1.13259178e+002 1.23276131e+002 - 1.00091347e+002 1.13281654e+002 1.23262230e+002 1.00080017e+002 - 1.13287827e+002 1.23216545e+002 1.00139168e+002 1.13329712e+002 - 1.23240700e+002 1.00157608e+002 1.13362328e+002 1.23210815e+002 - 1.00193420e+002 1.13393417e+002 1.23188126e+002 1.00205078e+002 - 1.13428200e+002 1.23165665e+002 1.00250221e+002 1.13460457e+002 - 1.23168076e+002 1.00258354e+002 1.13478889e+002 1.23133850e+002 - 1.00284164e+002 1.13489128e+002 1.23107635e+002 1.00280388e+002 - 1.13500816e+002 1.23059990e+002 1.00337158e+002 1.13548820e+002 - 1.23055603e+002 1.00421852e+002 1.13646187e+002 1.23082306e+002 - 1.00485107e+002 1.13696640e+002 1.23083328e+002 1.00500481e+002 - 1.13721901e+002 1.23044907e+002 1.00540222e+002 1.13737305e+002 - 1.23016014e+002 1.00574989e+002 1.13780975e+002 1.23000229e+002 - 1.00620857e+002 1.13818726e+002 1.22988403e+002 1.00618622e+002 - 1.13844681e+002 1.22938690e+002 1.00682388e+002 1.13895470e+002 - 1.22958344e+002 1.00740044e+002 1.13967842e+002 1.22953461e+002 - 1.00773392e+002 1.13993355e+002 1.22919876e+002 1.00813744e+002 - 1.14057686e+002 1.22916512e+002 1.00868858e+002 1.14093239e+002 - 1.22915382e+002 1.00920776e+002 1.14151146e+002 1.22920364e+002 - 1.00991989e+002 1.14205322e+002 1.22928986e+002 1.01001602e+002 - 1.14229904e+002 1.22883415e+002 1.01061523e+002 1.14288216e+002 - 1.22885208e+002 1.01123856e+002 1.14364006e+002 1.22886421e+002 - 1.01207237e+002 1.14430717e+002 1.22903458e+002 1.01198730e+002 - 1.14437302e+002 1.22843948e+002 1.01244514e+002 1.14452652e+002 - 1.22816040e+002 1.01285583e+002 1.14511322e+002 1.22800217e+002 - 1.01354141e+002 1.14564758e+002 1.22795807e+002 1.01405190e+002 - 1.14633911e+002 1.22796127e+002 1.01475098e+002 1.14695755e+002 - 1.22814453e+002 1.01522263e+002 1.14743568e+002 1.22784515e+002 - 1.01579117e+002 1.14786087e+002 1.22755096e+002 1.01637398e+002 - 1.14862816e+002 1.22759987e+002 1.01719437e+002 1.14925758e+002 - 1.22780098e+002 1.01783997e+002 1.14995056e+002 1.22790451e+002 - 1.01871407e+002 1.15059059e+002 1.22795441e+002 1.01931519e+002 - 1.15128433e+002 1.22794708e+002 1.01993134e+002 1.15168556e+002 - 1.22778412e+002 1.02091866e+002 1.15271179e+002 1.22814301e+002 - 1.02171288e+002 1.15328354e+002 1.22803497e+002 1.02217682e+002 - 1.15381691e+002 1.22780571e+002 1.02317467e+002 1.15440964e+002 - 1.22786392e+002 1.02408226e+002 1.15536011e+002 1.22806992e+002 - 1.02481979e+002 1.15606422e+002 1.22805710e+002 1.02532051e+002 - 1.15666718e+002 1.22792244e+002 1.02631889e+002 1.15746292e+002 - 1.22826538e+002 1.02719826e+002 1.15832092e+002 1.22828415e+002 - 1.02816170e+002 1.15906639e+002 1.22828712e+002 1.02892838e+002 - 1.16000900e+002 1.22846107e+002 1.02964684e+002 1.16043846e+002 - 1.22835243e+002 1.03043137e+002 1.16122940e+002 1.22847610e+002 - 1.03180984e+002 1.16226379e+002 1.22903679e+002 1.03299820e+002 - 1.16345100e+002 1.22942848e+002 1.03410431e+002 1.16430321e+002 - 1.22964203e+002 1.03504738e+002 1.16520538e+002 1.22985718e+002 - 1.03618103e+002 1.16606049e+002 1.23016953e+002 1.03719864e+002 - 1.16701363e+002 1.23052200e+002 1.03830544e+002 1.16763916e+002 - 1.23062759e+002 1.03901871e+002 1.16821693e+002 1.23049210e+002 - 1.03992592e+002 1.16873306e+002 1.23046593e+002 1.04049736e+002 - 1.16922958e+002 1.23027382e+002 1.04070793e+002 1.16898430e+002 - 1.22972404e+002 1.04041023e+002 1.16858047e+002 1.22873283e+002 - 1.04056915e+002 1.16853165e+002 1.22949951e+002 1.04060593e+002 - 1.16899765e+002 1.23029495e+002 1.04038605e+002 1.16894722e+002 - 1.23083443e+002 1.03974419e+002 1.16866821e+002 1.23095070e+002 - 1.03893440e+002 1.16799194e+002 1.23102638e+002 1.03802834e+002 - 1.16751656e+002 1.23107956e+002 1.03741745e+002 1.16711777e+002 - 1.23141830e+002 1.03618805e+002 1.16621269e+002 1.23101837e+002 - 1.03519958e+002 1.16540199e+002 1.23097183e+002 1.03387535e+002 - 1.16439285e+002 1.23047073e+002 1.03327232e+002 1.16370598e+002 - 1.23068657e+002 1.03252785e+002 1.16318550e+002 1.23069420e+002 - 1.03162071e+002 1.16232117e+002 1.23052231e+002 1.03028893e+002 - 1.16120926e+002 1.22981964e+002 1.02960350e+002 1.16039330e+002 - 1.22967751e+002 1.02885162e+002 1.15979568e+002 1.22960739e+002 - 1.02818024e+002 1.15919464e+002 1.22996559e+002 1.02695160e+002 - 1.15827194e+002 1.22955658e+002 1.02603889e+002 1.15720428e+002 - 1.22917542e+002 1.02538101e+002 1.15671341e+002 1.22908417e+002 - 1.02473053e+002 1.15605934e+002 1.22916885e+002 1.02373085e+002 - 1.15523148e+002 1.22889694e+002 1.02294968e+002 1.15446884e+002 - 1.22894806e+002 1.02219254e+002 1.15390457e+002 1.22898834e+002 - 1.02179482e+002 1.15339729e+002 1.22926552e+002 1.02081657e+002 - 1.15267769e+002 1.22910439e+002 1.02014961e+002 1.15185654e+002 - 1.22927620e+002 1.01932968e+002 1.15121765e+002 1.22918533e+002 - 1.01853798e+002 1.15045395e+002 1.22917107e+002 1.01773750e+002 - 1.14987549e+002 1.22893692e+002 1.01708366e+002 1.14912315e+002 - 1.22887108e+002 1.01653885e+002 1.14867287e+002 1.22894264e+002 - 1.01578239e+002 1.14800346e+002 1.22907379e+002 1.01480370e+002 - 1.14730911e+002 1.22885300e+002 1.01431023e+002 1.14666641e+002 - 1.22889435e+002 1.01403473e+002 1.14651703e+002 1.22922501e+002 - 1.01345184e+002 1.14570656e+002 1.22928596e+002 1.01283241e+002 - 1.14527794e+002 1.22938538e+002 1.01219391e+002 1.14464500e+002 - 1.22948616e+002 1.01162338e+002 1.14419556e+002 1.22943695e+002 - 1.01120277e+002 1.14374069e+002 1.22966064e+002 1.01057877e+002 - 1.14320694e+002 1.22966576e+002 1.01030060e+002 1.14256638e+002 - 1.23001541e+002 1.00974380e+002 1.14210556e+002 1.23003494e+002 - 1.00942726e+002 1.14172844e+002 1.23029030e+002 1.00893738e+002 - 1.14142982e+002 1.23037025e+002 1.00838821e+002 1.14074142e+002 - 1.23021576e+002 1.00774727e+002 1.14017944e+002 1.23007378e+002 - 1.00756393e+002 1.13999352e+002 1.23068382e+002 1.00700348e+002 - 1.13962563e+002 1.23078110e+002 1.00672180e+002 1.13916824e+002 - 1.23085205e+002 1.00629066e+002 1.13888176e+002 1.23094467e+002 - 1.00560402e+002 1.13799034e+002 1.23079086e+002 1.00488144e+002 - 1.13747231e+002 1.23064812e+002 1.00435745e+002 1.13687424e+002 - 1.23076439e+002 1.00407021e+002 1.13664520e+002 1.23093819e+002 - 1.00383293e+002 1.13625175e+002 1.23123703e+002 1.00332176e+002 - 1.13582802e+002 1.23120811e+002 1.00320801e+002 1.13532310e+002 - 1.23150703e+002 1.00292740e+002 1.13511642e+002 1.23174248e+002 - 1.00245827e+002 1.13456520e+002 1.23171875e+002 1.00205116e+002 - 1.13428108e+002 1.23167320e+002 1.00190956e+002 1.13399010e+002 - 1.23188309e+002 1.00161316e+002 1.13380302e+002 1.23201347e+002 - 1.00121490e+002 1.13330162e+002 1.23217484e+002 1.00038826e+002 - 1.13275002e+002 1.23187347e+002 1.00025482e+002 1.13242874e+002 - 1.23208618e+002 1.00008698e+002 1.13243927e+002 1.23242485e+002 - 1.00006180e+002 1.13230225e+002 1.23282715e+002 9.99556961e+001 - 1.13196396e+002 1.23278931e+002 9.99256516e+001 1.13163910e+002 - 1.23302483e+002 9.98946381e+001 1.13137222e+002 1.23297958e+002 - 9.98813171e+001 1.13115433e+002 1.23328308e+002 9.98575821e+001 - 1.13097382e+002 1.23346069e+002 9.98541412e+001 1.13052628e+002 - 1.23373383e+002 9.98498459e+001 1.13050842e+002 1.23406639e+002 - 9.98505859e+001 1.13037537e+002 1.23434464e+002 9.98062973e+001 - 1.13005844e+002 1.23418976e+002 9.97996521e+001 1.12974396e+002 - 1.23429665e+002 9.97780075e+001 1.12962257e+002 1.23442856e+002 - 9.97326660e+001 1.12908867e+002 1.23439247e+002 9.96698074e+001 - 1.12870651e+002 1.23421196e+002 9.96706924e+001 1.12846748e+002 - 1.23438759e+002 9.96618271e+001 1.12852982e+002 1.23457611e+002 - 9.96603088e+001 1.12828308e+002 1.23484375e+002 9.96387405e+001 - 1.12817078e+002 1.23494041e+002 9.96121521e+001 1.12782639e+002 - 1.23501549e+002 9.96110153e+001 1.12785446e+002 1.23517960e+002 - 9.96143799e+001 1.12776680e+002 1.23544495e+002 9.95986710e+001 - 1.12767426e+002 1.23549904e+002 9.96007690e+001 1.12740250e+002 - 1.23569511e+002 9.96206131e+001 1.12769882e+002 1.23611526e+002 - 9.96219711e+001 1.12767433e+002 1.23634193e+002 9.95787201e+001 - 1.12740524e+002 1.23608475e+002 9.95581284e+001 1.12707214e+002 - 1.23602257e+002 9.95569458e+001 1.12712463e+002 1.23611488e+002 - 9.95592651e+001 1.12704720e+002 1.23643486e+002 9.95106277e+001 - 1.12684738e+002 1.23631607e+002 9.95059967e+001 1.12659859e+002 - 1.23639389e+002 9.94954834e+001 1.12663483e+002 1.23644295e+002 - 9.95263748e+001 1.12668152e+002 1.23690117e+002 9.95181885e+001 - 1.12678940e+002 1.23704689e+002 9.94994659e+001 1.12656113e+002 - 1.23695831e+002 9.94958649e+001 1.12660423e+002 1.23699333e+002 - 9.95063553e+001 1.12663719e+002 1.23722763e+002 9.94888840e+001 - 1.12656235e+002 1.23729782e+002 9.95119705e+001 1.12651520e+002 - 1.23760490e+002 9.95032349e+001 1.12653801e+002 1.23765511e+002 - 9.94975128e+001 1.12642448e+002 1.23767509e+002 9.94753799e+001 - 1.12642700e+002 1.23751045e+002 9.94904633e+001 1.12649620e+002 - 1.23768044e+002 9.94871521e+001 1.12652382e+002 1.23756714e+002 - 9.94426880e+001 1.12599091e+002 1.23708511e+002 9.94212570e+001 - 1.12597069e+002 1.23694870e+002 9.93998413e+001 1.12561913e+002 - 1.23668938e+002 9.93907776e+001 1.12561676e+002 1.23658928e+002 - 9.94203644e+001 1.12574272e+002 1.23677574e+002 9.94076767e+001 - 1.12574661e+002 1.23660255e+002 9.93957901e+001 1.12557953e+002 - 1.23638115e+002 9.94193802e+001 1.12592743e+002 1.23653297e+002 - 9.94221497e+001 1.12591270e+002 1.23656967e+002 9.94326172e+001 - 1.12619423e+002 1.23666336e+002 9.94604797e+001 1.12625206e+002 - 1.23679153e+002 9.94743958e+001 1.12649147e+002 1.23677017e+002 - 9.94815521e+001 1.12652428e+002 1.23667725e+002 9.94885559e+001 - 1.12677544e+002 1.23656654e+002 9.95022507e+001 1.12677429e+002 - 1.23654938e+002 9.94823456e+001 1.12670128e+002 1.23614975e+002 - 9.95004044e+001 1.12671097e+002 1.23609978e+002 9.94942169e+001 - 1.12682213e+002 1.23595291e+002 9.95217972e+001 1.12699463e+002 - 1.23602806e+002 9.95403824e+001 1.12726463e+002 1.23597000e+002 - 9.95741730e+001 1.12739899e+002 1.23597786e+002 9.95789261e+001 - 1.12755211e+002 1.23575005e+002 9.95895233e+001 1.12766960e+002 - 1.23564705e+002 9.95991821e+001 1.12793388e+002 1.23544838e+002 - 9.96363983e+001 1.12814453e+002 1.23553467e+002 9.96241531e+001 - 1.12814842e+002 1.23517761e+002 9.96339951e+001 1.12801826e+002 - 1.23493546e+002 9.96397552e+001 1.12825058e+002 1.23469765e+002 - 9.96557541e+001 1.12837822e+002 1.23454742e+002 9.96529770e+001 - 1.12846817e+002 1.23435074e+002 9.96761093e+001 1.12862747e+002 - 1.23433250e+002 9.97174530e+001 1.12917412e+002 1.23445877e+002 - 9.97423477e+001 1.12942337e+002 1.23426659e+002 9.97318115e+001 - 1.12958710e+002 1.23391876e+002 9.97462006e+001 1.12955101e+002 - 1.23364777e+002 9.97370377e+001 1.12963234e+002 1.23324799e+002 - 9.97745743e+001 1.12976120e+002 1.23312660e+002 9.97849426e+001 - 1.13004684e+002 1.23284058e+002 9.98155975e+001 1.13027260e+002 - 1.23269714e+002 9.98467178e+001 1.13068413e+002 1.23260468e+002 - 9.98829117e+001 1.13093651e+002 1.23251106e+002 9.99047699e+001 - 1.13128654e+002 1.23238304e+002 9.99373627e+001 1.13135750e+002 - 1.23230408e+002 9.99456406e+001 1.13154121e+002 1.23198380e+002 - 9.99893723e+001 1.13188599e+002 1.23205429e+002 9.99975052e+001 - 1.13209549e+002 1.23177322e+002 1.00044434e+002 1.13248062e+002 - 1.23192657e+002 1.00079033e+002 1.13285141e+002 1.23171577e+002 - 1.00119240e+002 1.13329575e+002 1.23158485e+002 1.00122414e+002 - 1.13357201e+002 1.23124016e+002 1.00161110e+002 1.13377357e+002 - 1.23114616e+002 1.00165344e+002 1.13393288e+002 1.23077309e+002 - 1.00174820e+002 1.13383087e+002 1.23034210e+002 1.00182411e+002 - 1.13408104e+002 1.22995033e+002 1.00251251e+002 1.13474815e+002 - 1.23006386e+002 1.00309052e+002 1.13544899e+002 1.23006180e+002 - 1.00364677e+002 1.13586555e+002 1.23000229e+002 1.00383118e+002 - 1.13617661e+002 1.22968445e+002 1.00454742e+002 1.13661697e+002 - 1.22970169e+002 1.00496704e+002 1.13712875e+002 1.22955734e+002 - 1.00530602e+002 1.13742119e+002 1.22934166e+002 1.00513969e+002 - 1.13753189e+002 1.22876892e+002 1.00589661e+002 1.13818863e+002 - 1.22906326e+002 1.00630226e+002 1.13871193e+002 1.22884613e+002 - 1.00677628e+002 1.13910820e+002 1.22860687e+002 1.00722015e+002 - 1.13986649e+002 1.22865295e+002 1.00768837e+002 1.14007744e+002 - 1.22853790e+002 1.00808968e+002 1.14058357e+002 1.22846222e+002 - 1.00883163e+002 1.14115273e+002 1.22853050e+002 1.00927490e+002 - 1.14171509e+002 1.22851303e+002 1.00981827e+002 1.14222244e+002 - 1.22845123e+002 1.01041618e+002 1.14291046e+002 1.22841728e+002 - 1.01079384e+002 1.14316971e+002 1.22816612e+002 1.01086464e+002 - 1.14337128e+002 1.22770653e+002 1.01146286e+002 1.14368828e+002 - 1.22761574e+002 1.01205879e+002 1.14444534e+002 1.22764748e+002 - 1.01274574e+002 1.14500931e+002 1.22760666e+002 1.01308868e+002 - 1.14550987e+002 1.22744499e+002 1.01381897e+002 1.14610771e+002 - 1.22761147e+002 1.01424568e+002 1.14658615e+002 1.22731964e+002 - 1.01488869e+002 1.14710442e+002 1.22708099e+002 1.01554955e+002 - 1.14796089e+002 1.22718842e+002 1.01642189e+002 1.14860901e+002 - 1.22743416e+002 1.01705429e+002 1.14935905e+002 1.22757851e+002 - 1.01784805e+002 1.14988983e+002 1.22754028e+002 1.01838676e+002 - 1.15048233e+002 1.22745987e+002 1.01913948e+002 1.15107689e+002 - 1.22743240e+002 1.02007927e+002 1.15203278e+002 1.22768608e+002 - 1.02071198e+002 1.15245476e+002 1.22745224e+002 1.02113297e+002 - 1.15293549e+002 1.22722862e+002 1.02220604e+002 1.15358299e+002 - 1.22730927e+002 1.02310303e+002 1.15457672e+002 1.22749786e+002 - 1.02402794e+002 1.15537399e+002 1.22765099e+002 1.02448456e+002 - 1.15599754e+002 1.22750534e+002 1.02548904e+002 1.15679871e+002 - 1.22781303e+002 1.02625221e+002 1.15757225e+002 1.22778870e+002 - 1.02720421e+002 1.15833313e+002 1.22775085e+002 1.02805840e+002 - 1.15924194e+002 1.22787338e+002 1.02879791e+002 1.15969482e+002 - 1.22787354e+002 1.02960861e+002 1.16049683e+002 1.22799591e+002 - 1.03103142e+002 1.16158630e+002 1.22858948e+002 1.03211365e+002 - 1.16267845e+002 1.22892326e+002 1.03313049e+002 1.16340805e+002 - 1.22903542e+002 1.03417114e+002 1.16441261e+002 1.22928894e+002 - 1.03515526e+002 1.16515266e+002 1.22949539e+002 1.03623001e+002 - 1.16620583e+002 1.22992798e+002 1.03735733e+002 1.16681778e+002 - 1.23007187e+002 1.03814476e+002 1.16747017e+002 1.22999504e+002 - 1.03917305e+002 1.16807617e+002 1.23009476e+002 1.03965271e+002 - 1.16856224e+002 1.22983322e+002 1.04000320e+002 1.16846077e+002 - 1.22940735e+002 1.03970314e+002 1.16801819e+002 1.22831337e+002 - 1.03983192e+002 1.16796501e+002 1.22918907e+002 1.03989281e+002 - 1.16850563e+002 1.22999817e+002 1.03971291e+002 1.16848892e+002 - 1.23056152e+002 1.03917107e+002 1.16827873e+002 1.23078682e+002 - 1.03830765e+002 1.16755775e+002 1.23084831e+002 1.03718681e+002 - 1.16684967e+002 1.23068268e+002 1.03648354e+002 1.16641907e+002 - 1.23095108e+002 1.03545975e+002 1.16570419e+002 1.23076271e+002 - 1.03452141e+002 1.16495575e+002 1.23074463e+002 1.03330025e+002 - 1.16405281e+002 1.23036560e+002 1.03242867e+002 1.16307762e+002 - 1.23031342e+002 1.03162392e+002 1.16249687e+002 1.23023636e+002 - 1.03071220e+002 1.16160606e+002 1.23003853e+002 1.02937065e+002 - 1.16048607e+002 1.22936043e+002 1.02870613e+002 1.15977051e+002 - 1.22929871e+002 1.02778481e+002 1.15898079e+002 1.22897751e+002 - 1.02698547e+002 1.15822014e+002 1.22919304e+002 1.02577888e+002 - 1.15731735e+002 1.22881615e+002 1.02506081e+002 1.15647896e+002 - 1.22862404e+002 1.02449081e+002 1.15604889e+002 1.22869011e+002 - 1.02367683e+002 1.15514404e+002 1.22852478e+002 1.02266876e+002 - 1.15436966e+002 1.22832100e+002 1.02184082e+002 1.15353050e+002 - 1.22829315e+002 1.02120056e+002 1.15311676e+002 1.22844948e+002 - 1.02063103e+002 1.15247185e+002 1.22853119e+002 1.01953964e+002 - 1.15163689e+002 1.22828453e+002 1.01895836e+002 1.15090172e+002 - 1.22851616e+002 1.01844398e+002 1.15054153e+002 1.22869652e+002 - 1.01752968e+002 1.14963562e+002 1.22853462e+002 1.01633751e+002 - 1.14867561e+002 1.22798203e+002 1.01589600e+002 1.14818230e+002 - 1.22815735e+002 1.01541435e+002 1.14782639e+002 1.22829926e+002 - 1.01491676e+002 1.14735519e+002 1.22864342e+002 1.01393715e+002 - 1.14670250e+002 1.22842751e+002 1.01351921e+002 1.14606262e+002 - 1.22853951e+002 1.01301048e+002 1.14571106e+002 1.22866989e+002 - 1.01256104e+002 1.14506691e+002 1.22893715e+002 1.01181190e+002 - 1.14451477e+002 1.22886063e+002 1.01115280e+002 1.14383125e+002 - 1.22894051e+002 1.01065720e+002 1.14345520e+002 1.22895477e+002 - 1.01022041e+002 1.14294647e+002 1.22910698e+002 1.00948677e+002 - 1.14231613e+002 1.22901871e+002 1.00941994e+002 1.14191162e+002 - 1.22951828e+002 1.00887367e+002 1.14145081e+002 1.22956924e+002 - 1.00849037e+002 1.14097137e+002 1.22975403e+002 1.00779869e+002 - 1.14049408e+002 1.22957970e+002 1.00737289e+002 1.13987289e+002 - 1.22953148e+002 1.00671211e+002 1.13933807e+002 1.22938934e+002 - 1.00628685e+002 1.13889290e+002 1.22976776e+002 1.00554062e+002 - 1.13837509e+002 1.22969147e+002 1.00528336e+002 1.13791443e+002 - 1.22983398e+002 1.00506905e+002 1.13783981e+002 1.23011848e+002 - 1.00428917e+002 1.13692680e+002 1.22996475e+002 1.00375923e+002 - 1.13655724e+002 1.22999260e+002 1.00340790e+002 1.13615486e+002 - 1.23029602e+002 1.00303230e+002 1.13588676e+002 1.23036926e+002 - 1.00248039e+002 1.13515152e+002 1.23031906e+002 1.00186630e+002 - 1.13460106e+002 1.23021538e+002 1.00167358e+002 1.13409348e+002 - 1.23044052e+002 1.00137848e+002 1.13381989e+002 1.23064819e+002 - 1.00099976e+002 1.13334732e+002 1.23070992e+002 1.00068001e+002 - 1.13313202e+002 1.23081856e+002 1.00051140e+002 1.13281342e+002 - 1.23097466e+002 1.00017151e+002 1.13259628e+002 1.23093170e+002 - 9.99822235e+001 1.13211594e+002 1.23122917e+002 9.98838577e+001 - 1.13143944e+002 1.23082428e+002 9.98659668e+001 1.13105255e+002 - 1.23085663e+002 9.98660889e+001 1.13125084e+002 1.23136269e+002 - 9.98787842e+001 1.13122650e+002 1.23193604e+002 9.98530426e+001 - 1.13109146e+002 1.23208740e+002 9.98109436e+001 1.13065201e+002 - 1.23223640e+002 9.97675858e+001 1.13033646e+002 1.23215302e+002 - 9.98030243e+001 1.13058418e+002 1.23286705e+002 9.97633438e+001 - 1.13024704e+002 1.23290894e+002 9.97546539e+001 1.12976456e+002 - 1.23316353e+002 9.97450485e+001 1.12969116e+002 1.23338875e+002 - 9.97218399e+001 1.12930504e+002 1.23341896e+002 9.96912537e+001 - 1.12911446e+002 1.23344032e+002 9.96793823e+001 1.12872978e+002 - 1.23351570e+002 9.96743546e+001 1.12871063e+002 1.23371483e+002 - 9.96284180e+001 1.12823425e+002 1.23371155e+002 9.95670242e+001 - 1.12787704e+002 1.23349113e+002 9.95671463e+001 1.12769409e+002 - 1.23374901e+002 9.95531616e+001 1.12766747e+002 1.23393951e+002 - 9.95444641e+001 1.12737785e+002 1.23409348e+002 9.95136490e+001 - 1.12705742e+002 1.23409462e+002 9.94981995e+001 1.12682167e+002 - 1.23417488e+002 9.94919739e+001 1.12681549e+002 1.23426270e+002 - 9.95031281e+001 1.12677315e+002 1.23458488e+002 9.94953461e+001 - 1.12675842e+002 1.23472702e+002 9.94932480e+001 1.12638588e+002 - 1.23497002e+002 9.95173035e+001 1.12672188e+002 1.23535957e+002 - 9.94838333e+001 1.12637901e+002 1.23518135e+002 9.94616165e+001 - 1.12635330e+002 1.23515060e+002 9.94560242e+001 1.12618607e+002 - 1.23525627e+002 9.94423904e+001 1.12605019e+002 1.23525818e+002 - 9.94505920e+001 1.12605881e+002 1.23552666e+002 9.94035339e+001 - 1.12583328e+002 1.23535568e+002 9.93869553e+001 1.12546539e+002 - 1.23539230e+002 9.93884430e+001 1.12563850e+002 1.23560661e+002 - 9.94138870e+001 1.12570030e+002 1.23605553e+002 9.94011765e+001 - 1.12574890e+002 1.23618408e+002 9.93907242e+001 1.12563919e+002 - 1.23621368e+002 9.93882370e+001 1.12569641e+002 1.23632645e+002 - 9.93923340e+001 1.12562584e+002 1.23650223e+002 9.93559036e+001 - 1.12538948e+002 1.23629295e+002 9.93686676e+001 1.12518387e+002 - 1.23653900e+002 9.93765335e+001 1.12543053e+002 1.23674919e+002 - 9.93659515e+001 1.12526207e+002 1.23671333e+002 9.93503571e+001 - 1.12532715e+002 1.23658493e+002 9.93568344e+001 1.12533638e+002 - 1.23675369e+002 9.93550186e+001 1.12534889e+002 1.23660378e+002 - 9.93262253e+001 1.12494682e+002 1.23624298e+002 9.92911606e+001 - 1.12478203e+002 1.23592316e+002 9.92876434e+001 1.12466064e+002 - 1.23588310e+002 9.92981644e+001 1.12487129e+002 1.23594437e+002 - 9.93085098e+001 1.12483757e+002 1.23600945e+002 9.92949448e+001 - 1.12482307e+002 1.23586334e+002 9.92854385e+001 1.12468246e+002 - 1.23570259e+002 9.92796631e+001 1.12473976e+002 1.23556313e+002 - 9.93052368e+001 1.12492012e+002 1.23577354e+002 9.93037872e+001 - 1.12513954e+002 1.23572411e+002 9.93295288e+001 1.12509987e+002 - 1.23579826e+002 9.93617401e+001 1.12559502e+002 1.23605591e+002 - 9.93927155e+001 1.12577644e+002 1.23610725e+002 9.94043274e+001 - 1.12609695e+002 1.23608101e+002 9.93899231e+001 1.12580971e+002 - 1.23576057e+002 9.93844910e+001 1.12580978e+002 1.23546219e+002 - 9.93981705e+001 1.12573990e+002 1.23538063e+002 9.93725891e+001 - 1.12577637e+002 1.23509857e+002 9.93970261e+001 1.12585716e+002 - 1.23512939e+002 9.94149246e+001 1.12612991e+002 1.23512642e+002 - 9.94340973e+001 1.12619392e+002 1.23508659e+002 9.94326019e+001 - 1.12635345e+002 1.23481682e+002 9.94555283e+001 1.12650269e+002 - 1.23475624e+002 9.94660873e+001 1.12680000e+002 1.23461647e+002 - 9.94809036e+001 1.12680450e+002 1.23453979e+002 9.94827347e+001 - 1.12696915e+002 1.23430374e+002 9.95042496e+001 1.12691895e+002 - 1.23415550e+002 9.95223007e+001 1.12723648e+002 1.23405815e+002 - 9.95296402e+001 1.12726509e+002 1.23383209e+002 9.95287170e+001 - 1.12746864e+002 1.23360603e+002 9.95635910e+001 1.12766663e+002 - 1.23369804e+002 9.95980072e+001 1.12815742e+002 1.23367485e+002 - 9.96531677e+001 1.12862465e+002 1.23376190e+002 9.96312332e+001 - 1.12869392e+002 1.23330544e+002 9.96286316e+001 1.12849350e+002 - 1.23286018e+002 9.96145630e+001 1.12849838e+002 1.23238106e+002 - 9.96445084e+001 1.12857918e+002 1.23219994e+002 9.96704254e+001 - 1.12902336e+002 1.23208153e+002 9.97129288e+001 1.12934395e+002 - 1.23204124e+002 9.97452698e+001 1.12980415e+002 1.23193695e+002 - 9.97699280e+001 1.13001099e+002 1.23181992e+002 9.97649689e+001 - 1.13017960e+002 1.23151894e+002 9.98164978e+001 1.13032616e+002 - 1.23153442e+002 9.98445969e+001 1.13072762e+002 1.23148621e+002 - 9.98767166e+001 1.13094200e+002 1.23136955e+002 9.98785324e+001 - 1.13113274e+002 1.23109093e+002 9.99283295e+001 1.13152550e+002 - 1.23123032e+002 9.99675446e+001 1.13197067e+002 1.23107208e+002 - 1.00018456e+002 1.13245590e+002 1.23095497e+002 1.00025253e+002 - 1.13280540e+002 1.23068771e+002 1.00031670e+002 1.13270576e+002 - 1.23025505e+002 1.00048897e+002 1.13305374e+002 1.23003563e+002 - 1.00081703e+002 1.13313751e+002 1.22978951e+002 1.00090759e+002 - 1.13339828e+002 1.22942101e+002 1.00142044e+002 1.13388145e+002 - 1.22939201e+002 1.00189468e+002 1.13450417e+002 1.22931580e+002 - 1.00276283e+002 1.13517349e+002 1.22956200e+002 1.00284370e+002 - 1.13543350e+002 1.22914421e+002 1.00358849e+002 1.13593521e+002 - 1.22918404e+002 1.00425049e+002 1.13670097e+002 1.22932243e+002 - 1.00458214e+002 1.13695404e+002 1.22900047e+002 1.00456352e+002 - 1.13724213e+002 1.22860924e+002 1.00502838e+002 1.13765617e+002 - 1.22870415e+002 1.00527519e+002 1.13793053e+002 1.22831863e+002 - 1.00570717e+002 1.13833038e+002 1.22800255e+002 1.00600975e+002 - 1.13885078e+002 1.22791512e+002 1.00650703e+002 1.13910660e+002 - 1.22777985e+002 1.00692123e+002 1.13962807e+002 1.22773560e+002 - 1.00755547e+002 1.14004494e+002 1.22771553e+002 1.00782921e+002 - 1.14048019e+002 1.22749550e+002 1.00870010e+002 1.14126961e+002 - 1.22774666e+002 1.00925323e+002 1.14195007e+002 1.22769028e+002 - 1.00969437e+002 1.14230225e+002 1.22755196e+002 1.00993599e+002 - 1.14263931e+002 1.22726929e+002 1.01032753e+002 1.14278168e+002 - 1.22689156e+002 1.01104584e+002 1.14359734e+002 1.22706177e+002 - 1.01168709e+002 1.14413559e+002 1.22702065e+002 1.01197784e+002 - 1.14462807e+002 1.22675613e+002 1.01259575e+002 1.14510162e+002 - 1.22683037e+002 1.01325562e+002 1.14578400e+002 1.22678116e+002 - 1.01395805e+002 1.14631584e+002 1.22655373e+002 1.01445999e+002 - 1.14709976e+002 1.22653236e+002 1.01549690e+002 1.14790977e+002 - 1.22695808e+002 1.01616173e+002 1.14870468e+002 1.22709785e+002 - 1.01686935e+002 1.14919548e+002 1.22705322e+002 1.01748169e+002 - 1.14990250e+002 1.22704277e+002 1.01825447e+002 1.15041939e+002 - 1.22705841e+002 1.01898071e+002 1.15120201e+002 1.22704910e+002 - 1.01983780e+002 1.15182137e+002 1.22703293e+002 1.02041939e+002 - 1.15245430e+002 1.22691574e+002 1.02138504e+002 1.15299553e+002 - 1.22693161e+002 1.02216408e+002 1.15381279e+002 1.22693390e+002 - 1.02294899e+002 1.15451149e+002 1.22699341e+002 1.02343025e+002 - 1.15512161e+002 1.22680458e+002 1.02456841e+002 1.15610458e+002 - 1.22731575e+002 1.02540726e+002 1.15691307e+002 1.22731003e+002 - 1.02621498e+002 1.15749519e+002 1.22710022e+002 1.02706680e+002 - 1.15854797e+002 1.22732666e+002 1.02788635e+002 1.15902168e+002 - 1.22736870e+002 1.02887344e+002 1.16002838e+002 1.22766060e+002 - 1.03013969e+002 1.16097534e+002 1.22806511e+002 1.03091705e+002 - 1.16169632e+002 1.22810493e+002 1.03200859e+002 1.16254433e+002 - 1.22833611e+002 1.03339508e+002 1.16387611e+002 1.22897285e+002 - 1.03439812e+002 1.16468384e+002 1.22923523e+002 1.03539307e+002 - 1.16561188e+002 1.22950600e+002 1.03642342e+002 1.16609970e+002 - 1.22951790e+002 1.03727402e+002 1.16688049e+002 1.22957756e+002 - 1.03831078e+002 1.16748497e+002 1.22961494e+002 1.03869987e+002 - 1.16784027e+002 1.22930122e+002 1.03898643e+002 1.16764091e+002 - 1.22885376e+002 1.03863205e+002 1.16723305e+002 1.22772705e+002 - 1.03903893e+002 1.16731323e+002 1.22856239e+002 1.03923431e+002 - 1.16795174e+002 1.22964149e+002 1.03894066e+002 1.16779617e+002 - 1.23010376e+002 1.03840210e+002 1.16767662e+002 1.23035797e+002 - 1.03767052e+002 1.16704308e+002 1.23051384e+002 1.03653397e+002 - 1.16633835e+002 1.23029633e+002 1.03561737e+002 1.16565689e+002 - 1.23040344e+002 1.03451385e+002 1.16489418e+002 1.23017494e+002 - 1.03351730e+002 1.16410851e+002 1.23011909e+002 1.03234543e+002 - 1.16317574e+002 1.22973846e+002 1.03145187e+002 1.16222038e+002 - 1.22964775e+002 1.03064362e+002 1.16166664e+002 1.22960480e+002 - 1.02958321e+002 1.16065918e+002 1.22926834e+002 1.02851601e+002 - 1.15981056e+002 1.22883163e+002 1.02782692e+002 1.15907761e+002 - 1.22875198e+002 1.02673248e+002 1.15813286e+002 1.22829323e+002 - 1.02584625e+002 1.15728600e+002 1.22848770e+002 1.02475990e+002 - 1.15645538e+002 1.22815788e+002 1.02416374e+002 1.15572601e+002 - 1.22807655e+002 1.02350922e+002 1.15521950e+002 1.22804573e+002 - 1.02245613e+002 1.15412086e+002 1.22768494e+002 1.02159645e+002 - 1.15341904e+002 1.22757080e+002 1.02096832e+002 1.15280670e+002 - 1.22785141e+002 1.02027275e+002 1.15228683e+002 1.22780754e+002 - 1.01947166e+002 1.15147255e+002 1.22781784e+002 1.01855576e+002 - 1.15068024e+002 1.22761375e+002 1.01790871e+002 1.14998039e+002 - 1.22773201e+002 1.01727211e+002 1.14955780e+002 1.22791245e+002 - 1.01647690e+002 1.14870628e+002 1.22777985e+002 1.01562592e+002 - 1.14811607e+002 1.22755844e+002 1.01521820e+002 1.14764076e+002 - 1.22781532e+002 1.01461960e+002 1.14718384e+002 1.22780594e+002 - 1.01410294e+002 1.14666756e+002 1.22816048e+002 1.01319786e+002 - 1.14604622e+002 1.22799400e+002 1.01267937e+002 1.14537659e+002 - 1.22804100e+002 1.01211838e+002 1.14492279e+002 1.22813065e+002 - 1.01172287e+002 1.14439087e+002 1.22842636e+002 1.01090698e+002 - 1.14370636e+002 1.22828087e+002 1.01020630e+002 1.14298889e+002 - 1.22831459e+002 1.00959305e+002 1.14250275e+002 1.22826141e+002 - 1.00933548e+002 1.14215981e+002 1.22856674e+002 1.00869698e+002 - 1.14158203e+002 1.22853264e+002 1.00833008e+002 1.14096802e+002 - 1.22877991e+002 1.00785446e+002 1.14055290e+002 1.22884773e+002 - 1.00731201e+002 1.13991249e+002 1.22886909e+002 1.00664330e+002 - 1.13942200e+002 1.22871101e+002 1.00623367e+002 1.13889938e+002 - 1.22866203e+002 1.00566887e+002 1.13840385e+002 1.22862648e+002 - 1.00521942e+002 1.13788902e+002 1.22900475e+002 1.00439049e+002 - 1.13731293e+002 1.22879829e+002 1.00423019e+002 1.13693764e+002 - 1.22907417e+002 1.00393120e+002 1.13676872e+002 1.22928474e+002 - 1.00342323e+002 1.13612030e+002 1.22934845e+002 1.00296013e+002 - 1.13587128e+002 1.22951317e+002 1.00249069e+002 1.13532562e+002 - 1.22966072e+002 1.00205620e+002 1.13505562e+002 1.22973129e+002 - 1.00160057e+002 1.13439964e+002 1.22975281e+002 1.00075409e+002 - 1.13361320e+002 1.22939896e+002 1.00032867e+002 1.13288177e+002 - 1.22945984e+002 9.99904175e+001 1.13246971e+002 1.22949150e+002 - 9.99577560e+001 1.13208961e+002 1.22958618e+002 9.99351196e+001 - 1.13194275e+002 1.22975616e+002 9.99274292e+001 1.13175278e+002 - 1.23001991e+002 9.98926773e+001 1.13138596e+002 1.23003792e+002 - 9.98400116e+001 1.13079628e+002 1.23009697e+002 9.97714310e+001 - 1.13038925e+002 1.22994171e+002 9.97639847e+001 1.13015724e+002 - 1.23020561e+002 9.97568741e+001 1.13023537e+002 1.23057716e+002 - 9.97668228e+001 1.13022713e+002 1.23113228e+002 9.97559280e+001 - 1.13026672e+002 1.23149467e+002 9.97179184e+001 1.12987122e+002 - 1.23157173e+002 9.96789246e+001 1.12960175e+002 1.23158165e+002 - 9.97019501e+001 1.12967056e+002 1.23224899e+002 9.96479416e+001 - 1.12925720e+002 1.23209015e+002 9.96248474e+001 1.12867393e+002 - 1.23222733e+002 9.96140747e+001 1.12854691e+002 1.23247017e+002 - 9.96079330e+001 1.12837059e+002 1.23266563e+002 9.95627365e+001 - 1.12793076e+002 1.23240013e+002 9.95466309e+001 1.12763954e+002 - 1.23253937e+002 9.95517960e+001 1.12765900e+002 1.23277557e+002 - 9.95162048e+001 1.12725235e+002 1.23280777e+002 9.94666519e+001 - 1.12698128e+002 1.23280663e+002 9.94696426e+001 1.12682411e+002 - 1.23302544e+002 9.94472504e+001 1.12667328e+002 1.23309036e+002 - 9.94431000e+001 1.12645935e+002 1.23334854e+002 9.94163513e+001 - 1.12625763e+002 1.23342529e+002 9.94105835e+001 1.12602013e+002 - 1.23353561e+002 9.93774109e+001 1.12571243e+002 1.23339500e+002 - 9.93893051e+001 1.12565643e+002 1.23364723e+002 9.93733673e+001 - 1.12565536e+002 1.23378235e+002 9.93767624e+001 1.12533165e+002 - 1.23397057e+002 9.94063644e+001 1.12576363e+002 1.23447433e+002 - 9.93779373e+001 1.12536957e+002 1.23433472e+002 9.93385468e+001 - 1.12522797e+002 1.23422943e+002 9.93431473e+001 1.12514130e+002 - 1.23441032e+002 9.93356171e+001 1.12512184e+002 1.23445015e+002 - 9.93367996e+001 1.12501625e+002 1.23466248e+002 9.92927551e+001 - 1.12477600e+002 1.23449524e+002 9.92602234e+001 1.12423515e+002 - 1.23427505e+002 9.92507477e+001 1.12428192e+002 1.23448074e+002 - 9.92713318e+001 1.12428497e+002 1.23485603e+002 9.92616882e+001 - 1.12440956e+002 1.23498390e+002 9.92689133e+001 1.12440338e+002 - 1.23525406e+002 9.92591095e+001 1.12443359e+002 1.23525330e+002 - 9.92518616e+001 1.12430603e+002 1.23532150e+002 9.92295837e+001 - 1.12421341e+002 1.23535843e+002 9.92557831e+001 1.12415344e+002 - 1.23564865e+002 9.92586212e+001 1.12428947e+002 1.23582230e+002 - 9.92359848e+001 1.12404266e+002 1.23567604e+002 9.92155762e+001 - 1.12407700e+002 1.23555534e+002 9.92076569e+001 1.12394791e+002 - 1.23551468e+002 9.92119446e+001 1.12401711e+002 1.23546074e+002 - 9.92109070e+001 1.12388206e+002 1.23531075e+002 9.91909180e+001 - 1.12384209e+002 1.23519119e+002 9.91924820e+001 1.12376968e+002 - 1.23518700e+002 9.92065201e+001 1.12400436e+002 1.23526573e+002 - 9.92010651e+001 1.12385735e+002 1.23523079e+002 9.91725159e+001 - 1.12368622e+002 1.23490936e+002 9.91611481e+001 1.12354286e+002 - 1.23473488e+002 9.91772919e+001 1.12385338e+002 1.23483620e+002 - 9.91911011e+001 1.12390831e+002 1.23492447e+002 9.91806870e+001 - 1.12395149e+002 1.23476700e+002 9.91984940e+001 1.12389496e+002 - 1.23478943e+002 9.92283783e+001 1.12428909e+002 1.23494316e+002 - 9.92619629e+001 1.12452682e+002 1.23507607e+002 9.92679596e+001 - 1.12480507e+002 1.23499290e+002 9.92731018e+001 1.12475853e+002 - 1.23488777e+002 9.92602539e+001 1.12471741e+002 1.23446350e+002 - 9.92630234e+001 1.12446190e+002 1.23428680e+002 9.92347260e+001 - 1.12449829e+002 1.23406921e+002 9.92519073e+001 1.12446953e+002 - 1.23397507e+002 9.92743988e+001 1.12482330e+002 1.23408798e+002 - 9.93070984e+001 1.12501892e+002 1.23408173e+002 9.93033524e+001 - 1.12513817e+002 1.23391449e+002 9.93112030e+001 1.12524155e+002 - 1.23377838e+002 9.93108215e+001 1.12537292e+002 1.23349091e+002 - 9.93388824e+001 1.12559540e+002 1.23358482e+002 9.93444977e+001 - 1.12576500e+002 1.23340858e+002 9.93826370e+001 1.12588799e+002 - 1.23332527e+002 9.93911209e+001 1.12611763e+002 1.23318039e+002 - 9.94095917e+001 1.12623489e+002 1.23301071e+002 9.94179535e+001 - 1.12651390e+002 1.23289429e+002 9.94728317e+001 1.12692863e+002 - 1.23317146e+002 9.94852295e+001 1.12708588e+002 1.23284973e+002 - 9.95081024e+001 1.12726608e+002 1.23266075e+002 9.94843369e+001 - 1.12729355e+002 1.23216057e+002 9.94860306e+001 1.12715561e+002 - 1.23179268e+002 9.94855042e+001 1.12728523e+002 1.23142326e+002 - 9.95119476e+001 1.12726875e+002 1.23117462e+002 9.95468903e+001 - 1.12780235e+002 1.23114204e+002 9.96114655e+001 1.12843819e+002 - 1.23132133e+002 9.96343536e+001 1.12882530e+002 1.23118774e+002 - 9.96493073e+001 1.12887886e+002 1.23089485e+002 9.96552963e+001 - 1.12915176e+002 1.23074692e+002 9.97113953e+001 1.12939766e+002 - 1.23083694e+002 9.97180176e+001 1.12961296e+002 1.23062965e+002 - 9.97505035e+001 1.12980095e+002 1.23046928e+002 9.97431946e+001 - 1.12994751e+002 1.23006874e+002 9.97962646e+001 1.13033585e+002 - 1.23025269e+002 9.98349915e+001 1.13075081e+002 1.23007248e+002 - 9.99071884e+001 1.13139313e+002 1.23019814e+002 9.99270401e+001 - 1.13190277e+002 1.22999306e+002 9.99620209e+001 1.13207100e+002 - 1.22985092e+002 9.99596252e+001 1.13224083e+002 1.22945221e+002 - 9.99868698e+001 1.13229591e+002 1.22918343e+002 9.99992828e+001 - 1.13264145e+002 1.22883354e+002 1.00046562e+002 1.13307907e+002 - 1.22876556e+002 1.00084679e+002 1.13357697e+002 1.22858894e+002 - 1.00149918e+002 1.13411461e+002 1.22866066e+002 1.00164474e+002 - 1.13441734e+002 1.22832909e+002 1.00230759e+002 1.13483299e+002 - 1.22826714e+002 1.00305481e+002 1.13570839e+002 1.22844551e+002 - 1.00354950e+002 1.13610428e+002 1.22835098e+002 1.00366615e+002 - 1.13653130e+002 1.22810066e+002 1.00405273e+002 1.13680168e+002 - 1.22800392e+002 1.00434181e+002 1.13721443e+002 1.22777245e+002 - 1.00448708e+002 1.13720558e+002 1.22717987e+002 1.00469177e+002 - 1.13763313e+002 1.22689240e+002 1.00539970e+002 1.13814804e+002 - 1.22702438e+002 1.00562866e+002 1.13842278e+002 1.22679146e+002 - 1.00647469e+002 1.13908394e+002 1.22699577e+002 1.00689949e+002 - 1.13970802e+002 1.22688393e+002 1.00740723e+002 1.14009613e+002 - 1.22675179e+002 1.00802902e+002 1.14089340e+002 1.22685318e+002 - 1.00869606e+002 1.14140450e+002 1.22685745e+002 1.00908607e+002 - 1.14190300e+002 1.22675026e+002 1.00949417e+002 1.14205986e+002 - 1.22641472e+002 1.00992783e+002 1.14260887e+002 1.22627319e+002 - 1.01061066e+002 1.14317688e+002 1.22625214e+002 1.01116638e+002 - 1.14391533e+002 1.22632607e+002 1.01176346e+002 1.14436905e+002 - 1.22638138e+002 1.01238449e+002 1.14509300e+002 1.22627457e+002 - 1.01303604e+002 1.14550697e+002 1.22596764e+002 1.01349785e+002 - 1.14625893e+002 1.22593018e+002 1.01444695e+002 1.14697624e+002 - 1.22622292e+002 1.01520782e+002 1.14787094e+002 1.22644447e+002 - 1.01587990e+002 1.14833237e+002 1.22639664e+002 1.01656944e+002 - 1.14913605e+002 1.22650017e+002 1.01746170e+002 1.14974670e+002 - 1.22656380e+002 1.01811249e+002 1.15052742e+002 1.22651123e+002 - 1.01892906e+002 1.15108414e+002 1.22644470e+002 1.01942009e+002 - 1.15160057e+002 1.22627510e+002 1.02044464e+002 1.15222198e+002 - 1.22623116e+002 1.02119408e+002 1.15304634e+002 1.22628410e+002 - 1.02193855e+002 1.15361221e+002 1.22623024e+002 1.02255951e+002 - 1.15442146e+002 1.22630333e+002 1.02381882e+002 1.15548286e+002 - 1.22682259e+002 1.02450142e+002 1.15620209e+002 1.22669395e+002 - 1.02520401e+002 1.15667465e+002 1.22643547e+002 1.02595413e+002 - 1.15750343e+002 1.22649437e+002 1.02691292e+002 1.15817207e+002 - 1.22667534e+002 1.02797562e+002 1.15918427e+002 1.22697754e+002 - 1.02920311e+002 1.16013474e+002 1.22743256e+002 1.03010948e+002 - 1.16102333e+002 1.22762276e+002 1.03133568e+002 1.16200928e+002 - 1.22794197e+002 1.03247673e+002 1.16311119e+002 1.22839630e+002 - 1.03361404e+002 1.16400887e+002 1.22872971e+002 1.03459145e+002 - 1.16491089e+002 1.22901733e+002 1.03540024e+002 1.16526558e+002 - 1.22891220e+002 1.03640511e+002 1.16612907e+002 1.22901558e+002 - 1.03737816e+002 1.16665894e+002 1.22901787e+002 1.03769402e+002 - 1.16691559e+002 1.22861717e+002 1.03800156e+002 1.16682388e+002 - 1.22818420e+002 1.03794357e+002 1.16662537e+002 1.22734161e+002 - 1.03798851e+002 1.16643852e+002 1.22786003e+002 1.03821243e+002 - 1.16708519e+002 1.22895462e+002 1.03793877e+002 1.16696304e+002 - 1.22945404e+002 1.03736870e+002 1.16673424e+002 1.22963341e+002 - 1.03661636e+002 1.16615974e+002 1.22980774e+002 1.03559158e+002 - 1.16550797e+002 1.22964050e+002 1.03452782e+002 1.16473099e+002 - 1.22964500e+002 1.03336678e+002 1.16390892e+002 1.22930336e+002 - 1.03238594e+002 1.16305161e+002 1.22925621e+002 1.03118042e+002 - 1.16208450e+002 1.22891090e+002 1.03034248e+002 1.16127922e+002 - 1.22889748e+002 1.02972290e+002 1.16085312e+002 1.22902237e+002 - 1.02856918e+002 1.15975060e+002 1.22861382e+002 1.02768463e+002 - 1.15907562e+002 1.22834824e+002 1.02685478e+002 1.15825607e+002 - 1.22814735e+002 1.02580444e+002 1.15736282e+002 1.22772217e+002 - 1.02493881e+002 1.15655212e+002 1.22788040e+002 1.02380119e+002 - 1.15568909e+002 1.22755539e+002 1.02318810e+002 1.15492111e+002 - 1.22744156e+002 1.02240715e+002 1.15427277e+002 1.22726440e+002 - 1.02132965e+002 1.15316475e+002 1.22696198e+002 1.02070786e+002 - 1.15266006e+002 1.22702255e+002 1.02001808e+002 1.15200020e+002 - 1.22721077e+002 1.01921913e+002 1.15137352e+002 1.22703453e+002 - 1.01848595e+002 1.15059723e+002 1.22707214e+002 1.01746384e+002 - 1.14977119e+002 1.22683479e+002 1.01657303e+002 1.14878410e+002 - 1.22674965e+002 1.01603157e+002 1.14842804e+002 1.22697372e+002 - 1.01534256e+002 1.14776878e+002 1.22701950e+002 1.01474068e+002 - 1.14739075e+002 1.22705841e+002 1.01444603e+002 1.14699684e+002 - 1.22735077e+002 1.01386787e+002 1.14654015e+002 1.22734787e+002 - 1.01305969e+002 1.14572891e+002 1.22739754e+002 1.01205910e+002 - 1.14501068e+002 1.22718292e+002 1.01134621e+002 1.14416748e+002 - 1.22699333e+002 1.01068130e+002 1.14362831e+002 1.22699409e+002 - 1.01028336e+002 1.14299866e+002 1.22734360e+002 1.00947159e+002 - 1.14241165e+002 1.22723549e+002 1.00881180e+002 1.14169693e+002 - 1.22728607e+002 1.00831032e+002 1.14129753e+002 1.22728920e+002 - 1.00800621e+002 1.14096321e+002 1.22763535e+002 1.00738060e+002 - 1.14037018e+002 1.22755058e+002 1.00717911e+002 1.13993591e+002 - 1.22796539e+002 1.00679260e+002 1.13961113e+002 1.22807236e+002 - 1.00628899e+002 1.13895920e+002 1.22811226e+002 1.00568817e+002 - 1.13858017e+002 1.22794403e+002 1.00547325e+002 1.13824394e+002 - 1.22815903e+002 1.00479012e+002 1.13760445e+002 1.22793510e+002 - 1.00422829e+002 1.13697639e+002 1.22830284e+002 1.00343292e+002 - 1.13646599e+002 1.22821770e+002 1.00322243e+002 1.13611832e+002 - 1.22836708e+002 1.00291618e+002 1.13587677e+002 1.22857513e+002 - 1.00251892e+002 1.13532051e+002 1.22867516e+002 1.00189796e+002 - 1.13485359e+002 1.22867714e+002 1.00136543e+002 1.13429459e+002 - 1.22880730e+002 1.00085144e+002 1.13392677e+002 1.22884911e+002 - 1.00036263e+002 1.13337692e+002 1.22887756e+002 9.99503479e+001 - 1.13255356e+002 1.22848656e+002 9.99264679e+001 1.13191788e+002 - 1.22868904e+002 9.98676910e+001 1.13142433e+002 1.22858597e+002 - 9.98321075e+001 1.13096321e+002 1.22864792e+002 9.98079453e+001 - 1.13081810e+002 1.22876846e+002 9.98143692e+001 1.13073982e+002 - 1.22915337e+002 9.97715225e+001 1.13032257e+002 1.22906494e+002 - 9.97347336e+001 1.12987038e+002 1.22924713e+002 9.96718216e+001 - 1.12950447e+002 1.22921577e+002 9.96797028e+001 1.12948982e+002 - 1.22960732e+002 9.96536713e+001 1.12930702e+002 1.22975464e+002 - 9.96451797e+001 1.12912239e+002 1.23019554e+002 9.96107712e+001 - 1.12893700e+002 1.23032318e+002 9.95867004e+001 1.12864525e+002 - 1.23055954e+002 9.95754318e+001 1.12862511e+002 1.23078323e+002 - 9.95889664e+001 1.12856956e+002 1.23129402e+002 9.95297699e+001 - 1.12814903e+002 1.23119484e+002 9.95048447e+001 1.12757782e+002 - 1.23129936e+002 9.94976044e+001 1.12758423e+002 1.23157890e+002 - 9.94990616e+001 1.12742172e+002 1.23183479e+002 9.94236908e+001 - 1.12673721e+002 1.23135094e+002 9.94271622e+001 1.12655678e+002 - 1.23158936e+002 9.94178238e+001 1.12645264e+002 1.23168175e+002 - 9.94122391e+001 1.12632706e+002 1.23208092e+002 9.93734131e+001 - 1.12616524e+002 1.23210999e+002 9.93753128e+001 1.12601540e+002 - 1.23242546e+002 9.93471222e+001 1.12582977e+002 1.23241058e+002 - 9.93574066e+001 1.12564705e+002 1.23276794e+002 9.93212357e+001 - 1.12538498e+002 1.23273483e+002 9.93022308e+001 1.12505272e+002 - 1.23274544e+002 9.92664490e+001 1.12472458e+002 1.23252403e+002 - 9.92721252e+001 1.12458221e+002 1.23278839e+002 9.92753067e+001 - 1.12478928e+002 1.23312347e+002 9.92981567e+001 1.12471703e+002 - 1.23347267e+002 9.92947693e+001 1.12479538e+002 1.23371941e+002 - 9.92509003e+001 1.12425819e+002 1.23343452e+002 9.91947861e+001 - 1.12390091e+002 1.23311020e+002 9.92150040e+001 1.12401161e+002 - 1.23344315e+002 9.92170410e+001 1.12406441e+002 1.23354881e+002 - 9.92181549e+001 1.12391602e+002 1.23371490e+002 9.91671829e+001 - 1.12360970e+002 1.23352234e+002 9.91474304e+001 1.12327187e+002 - 1.23347176e+002 9.91207352e+001 1.12307167e+002 1.23340324e+002 - 9.91310349e+001 1.12296463e+002 1.23368668e+002 9.91232758e+001 - 1.12304909e+002 1.23383705e+002 9.91340637e+001 1.12316101e+002 - 1.23417603e+002 9.91236267e+001 1.12319717e+002 1.23422997e+002 - 9.91271133e+001 1.12309914e+002 1.23436943e+002 9.91285324e+001 - 1.12334579e+002 1.23457451e+002 9.91482697e+001 1.12317284e+002 - 1.23485435e+002 9.91335754e+001 1.12315773e+002 1.23484528e+002 - 9.90983276e+001 1.12273697e+002 1.23453827e+002 9.90814896e+001 - 1.12279518e+002 1.23450081e+002 9.90814285e+001 1.12272636e+002 - 1.23453392e+002 9.91027603e+001 1.12300789e+002 1.23462700e+002 - 9.90918732e+001 1.12276459e+002 1.23446022e+002 9.90696869e+001 - 1.12276360e+002 1.23429840e+002 9.90526886e+001 1.12248436e+002 - 1.23410294e+002 9.90718536e+001 1.12276382e+002 1.23429901e+002 - 9.90872803e+001 1.12286812e+002 1.23441216e+002 9.90446320e+001 - 1.12260338e+002 1.23394508e+002 9.90262070e+001 1.12236458e+002 - 1.23374512e+002 9.90524063e+001 1.12272697e+002 1.23392387e+002 - 9.90736618e+001 1.12288437e+002 1.23404579e+002 9.90768814e+001 - 1.12302284e+002 1.23400528e+002 9.90861664e+001 1.12286652e+002 - 1.23388641e+002 9.90954666e+001 1.12307602e+002 1.23392624e+002 - 9.91292114e+001 1.12334206e+002 1.23404526e+002 9.91418686e+001 - 1.12365990e+002 1.23399719e+002 9.91534958e+001 1.12362228e+002 - 1.23395271e+002 9.91498566e+001 1.12363380e+002 1.23361603e+002 - 9.91417313e+001 1.12338593e+002 1.23330627e+002 9.91268005e+001 - 1.12342552e+002 1.23314323e+002 9.91345673e+001 1.12342003e+002 - 1.23310921e+002 9.91652527e+001 1.12388657e+002 1.23331680e+002 - 9.92102127e+001 1.12418564e+002 1.23350502e+002 9.91931839e+001 - 1.12423012e+002 1.23315933e+002 9.92105484e+001 1.12432732e+002 - 1.23311462e+002 9.92091141e+001 1.12446182e+002 1.23283936e+002 - 9.92354126e+001 1.12463364e+002 1.23286682e+002 9.92387085e+001 - 1.12483109e+002 1.23266441e+002 9.92712173e+001 1.12492340e+002 - 1.23258270e+002 9.92720871e+001 1.12503326e+002 1.23235077e+002 - 9.92709503e+001 1.12496681e+002 1.23198303e+002 9.92771759e+001 - 1.12521461e+002 1.23182419e+002 9.93472443e+001 1.12577606e+002 - 1.23220566e+002 9.93649521e+001 1.12602608e+002 1.23193069e+002 - 9.94048843e+001 1.12628227e+002 1.23188232e+002 9.93862839e+001 - 1.12639343e+002 1.23145149e+002 9.94006729e+001 1.12629486e+002 - 1.23115379e+002 9.93950882e+001 1.12639977e+002 1.23072868e+002 - 9.94228668e+001 1.12645638e+002 1.23052483e+002 9.94423828e+001 - 1.12688637e+002 1.23038956e+002 9.94996643e+001 1.12739403e+002 - 1.23050476e+002 9.95175934e+001 1.12773705e+002 1.23028694e+002 - 9.95317917e+001 1.12779411e+002 1.23002495e+002 9.95431976e+001 - 1.12810799e+002 1.22991005e+002 9.96075745e+001 1.12843666e+002 - 1.23013657e+002 9.95950089e+001 1.12845467e+002 1.22967651e+002 - 9.96251297e+001 1.12862610e+002 1.22954697e+002 9.96221313e+001 - 1.12880608e+002 1.22919380e+002 9.96755371e+001 1.12922020e+002 - 1.22931679e+002 9.97244492e+001 1.12978722e+002 1.22926285e+002 - 9.97690506e+001 1.13015076e+002 1.22908440e+002 9.97812576e+001 - 1.13057472e+002 1.22884476e+002 9.98397522e+001 1.13097145e+002 - 1.22892776e+002 9.98581314e+001 1.13133141e+002 1.22872238e+002 - 9.98851624e+001 1.13140770e+002 1.22844376e+002 9.98850479e+001 - 1.13164848e+002 1.22800827e+002 9.99397659e+001 1.13212021e+002 - 1.22794846e+002 9.99610214e+001 1.13251373e+002 1.22770531e+002 - 1.00012154e+002 1.13294609e+002 1.22764069e+002 1.00035431e+002 - 1.13326797e+002 1.22737709e+002 1.00112495e+002 1.13376221e+002 - 1.22742752e+002 1.00167389e+002 1.13453033e+002 1.22749611e+002 - 1.00228447e+002 1.13506439e+002 1.22750412e+002 1.00250191e+002 - 1.13552834e+002 1.22731575e+002 1.00310890e+002 1.13604347e+002 - 1.22751282e+002 1.00350204e+002 1.13657341e+002 1.22731041e+002 - 1.00376480e+002 1.13661636e+002 1.22679886e+002 1.00372047e+002 - 1.13674095e+002 1.22628761e+002 1.00436363e+002 1.13721588e+002 - 1.22637527e+002 1.00491852e+002 1.13777618e+002 1.22636429e+002 - 1.00548576e+002 1.13819824e+002 1.22631378e+002 1.00569489e+002 - 1.13858002e+002 1.22598358e+002 1.00624611e+002 1.13907883e+002 - 1.22591492e+002 1.00668983e+002 1.13964966e+002 1.22577103e+002 - 1.00729790e+002 1.14012161e+002 1.22578651e+002 1.00779678e+002 - 1.14077293e+002 1.22574844e+002 1.00846069e+002 1.14112434e+002 - 1.22568436e+002 1.00889000e+002 1.14168686e+002 1.22552063e+002 - 1.00953308e+002 1.14217789e+002 1.22547585e+002 1.00992943e+002 - 1.14275948e+002 1.22536392e+002 1.01046700e+002 1.14312454e+002 - 1.22534470e+002 1.01120346e+002 1.14389923e+002 1.22536407e+002 - 1.01214256e+002 1.14470360e+002 1.22542252e+002 1.01269333e+002 - 1.14562447e+002 1.22544083e+002 1.01365768e+002 1.14634796e+002 - 1.22575859e+002 1.01446594e+002 1.14723450e+002 1.22599724e+002 - 1.01518021e+002 1.14772430e+002 1.22596878e+002 1.01556541e+002 - 1.14824982e+002 1.22570801e+002 1.01628815e+002 1.14882019e+002 - 1.22569435e+002 1.01704025e+002 1.14958839e+002 1.22572723e+002 - 1.01775917e+002 1.15004906e+002 1.22560455e+002 1.01845360e+002 - 1.15076035e+002 1.22556999e+002 1.01956558e+002 1.15149490e+002 - 1.22571411e+002 1.02021774e+002 1.15218430e+002 1.22558525e+002 - 1.02101707e+002 1.15283607e+002 1.22557564e+002 1.02190147e+002 - 1.15390099e+002 1.22586708e+002 1.02300972e+002 1.15480911e+002 - 1.22626694e+002 1.02368332e+002 1.15549309e+002 1.22611359e+002 - 1.02463104e+002 1.15615654e+002 1.22609085e+002 1.02514824e+002 - 1.15686958e+002 1.22597649e+002 1.02615814e+002 1.15752586e+002 - 1.22617294e+002 1.02700027e+002 1.15840286e+002 1.22633888e+002 - 1.02826813e+002 1.15931824e+002 1.22677101e+002 1.02914543e+002 - 1.16020309e+002 1.22694138e+002 1.03032410e+002 1.16115707e+002 - 1.22730637e+002 1.03117508e+002 1.16195457e+002 1.22738808e+002 - 1.03226883e+002 1.16277237e+002 1.22767494e+002 1.03339966e+002 - 1.16388596e+002 1.22816101e+002 1.03459984e+002 1.16454086e+002 - 1.22835121e+002 1.03545029e+002 1.16536209e+002 1.22841278e+002 - 1.03656227e+002 1.16603554e+002 1.22854591e+002 1.03686188e+002 - 1.16624779e+002 1.22810852e+002 1.03712448e+002 1.16609932e+002 - 1.22764946e+002 1.03711571e+002 1.16587418e+002 1.22676514e+002 - 1.03739769e+002 1.16578926e+002 1.22760399e+002 1.03735497e+002 - 1.16634239e+002 1.22836380e+002 1.03720512e+002 1.16638329e+002 - 1.22896912e+002 1.03674911e+002 1.16625031e+002 1.22929749e+002 - 1.03602196e+002 1.16563934e+002 1.22946617e+002 1.03485977e+002 - 1.16490128e+002 1.22921364e+002 1.03396515e+002 1.16421333e+002 - 1.22926025e+002 1.03285118e+002 1.16345612e+002 1.22903786e+002 - 1.03164307e+002 1.16235199e+002 1.22867462e+002 1.03021935e+002 - 1.16128906e+002 1.22814804e+002 1.02955460e+002 1.16048767e+002 - 1.22834358e+002 1.02901871e+002 1.16017647e+002 1.22857597e+002 - 1.02796066e+002 1.15927307e+002 1.22825256e+002 1.02690483e+002 - 1.15841087e+002 1.22782089e+002 1.02626366e+002 1.15771469e+002 - 1.22780632e+002 1.02522797e+002 1.15678719e+002 1.22739082e+002 - 1.02428566e+002 1.15603302e+002 1.22749535e+002 1.02301994e+002 - 1.15498100e+002 1.22701355e+002 1.02226730e+002 1.15409988e+002 - 1.22685120e+002 1.02159508e+002 1.15359688e+002 1.22674019e+002 - 1.02067207e+002 1.15255196e+002 1.22652870e+002 1.01984528e+002 - 1.15195648e+002 1.22641273e+002 1.01922218e+002 1.15129044e+002 - 1.22657196e+002 1.01861244e+002 1.15082054e+002 1.22671394e+002 - 1.01781799e+002 1.14997765e+002 1.22664574e+002 1.01669106e+002 - 1.14910660e+002 1.22633331e+002 1.01608597e+002 1.14828819e+002 - 1.22646378e+002 1.01547974e+002 1.14791367e+002 1.22665176e+002 - 1.01459961e+002 1.14705894e+002 1.22646301e+002 1.01394409e+002 - 1.14666428e+002 1.22647507e+002 1.01388947e+002 1.14640282e+002 - 1.22690651e+002 1.01309280e+002 1.14569870e+002 1.22669312e+002 - 1.01232964e+002 1.14506149e+002 1.22686020e+002 1.01153725e+002 - 1.14448730e+002 1.22685944e+002 1.01064240e+002 1.14343697e+002 - 1.22653122e+002 1.01002518e+002 1.14301003e+002 1.22658005e+002 - 1.00921730e+002 1.14201202e+002 1.22649551e+002 1.00859970e+002 - 1.14156693e+002 1.22654449e+002 1.00815018e+002 1.14105957e+002 - 1.22682281e+002 1.00770782e+002 1.14074486e+002 1.22698196e+002 - 1.00723877e+002 1.14015411e+002 1.22704414e+002 1.00658249e+002 - 1.13964119e+002 1.22698608e+002 1.00644867e+002 1.13921173e+002 - 1.22737747e+002 1.00590378e+002 1.13878838e+002 1.22742027e+002 - 1.00562309e+002 1.13846092e+002 1.22762726e+002 1.00489708e+002 - 1.13793091e+002 1.22737823e+002 1.00471436e+002 1.13745720e+002 - 1.22759300e+002 1.00403526e+002 1.13689636e+002 1.22741768e+002 - 1.00359886e+002 1.13642075e+002 1.22779480e+002 1.00258003e+002 - 1.13565125e+002 1.22753456e+002 1.00234879e+002 1.13523720e+002 - 1.22766747e+002 1.00202133e+002 1.13504776e+002 1.22787125e+002 - 1.00162819e+002 1.13447418e+002 1.22800789e+002 1.00080231e+002 - 1.13381889e+002 1.22783844e+002 1.00037422e+002 1.13339027e+002 - 1.22799637e+002 1.00016617e+002 1.13323914e+002 1.22827141e+002 - 9.99606094e+001 1.13255669e+002 1.22817986e+002 9.98775635e+001 - 1.13180573e+002 1.22787872e+002 9.98706360e+001 1.13144234e+002 - 1.22829590e+002 9.98100739e+001 1.13079903e+002 1.22810455e+002 - 9.97741089e+001 1.13036591e+002 1.22816216e+002 9.97297897e+001 - 1.13007202e+002 1.22808182e+002 9.97245178e+001 1.12972412e+002 - 1.22832359e+002 9.96862869e+001 1.12942841e+002 1.22829926e+002 - 9.96442566e+001 1.12907455e+002 1.22857063e+002 9.95809174e+001 - 1.12863495e+002 1.22844337e+002 9.95833511e+001 1.12856392e+002 - 1.22885658e+002 9.95658112e+001 1.12846413e+002 1.22909225e+002 - 9.95464783e+001 1.12812508e+002 1.22932816e+002 9.95134659e+001 - 1.12791977e+002 1.22946854e+002 9.95071335e+001 1.12782722e+002 - 1.22985931e+002 9.95051804e+001 1.12790863e+002 1.23021858e+002 - 9.94735870e+001 1.12748589e+002 1.23031837e+002 9.94287949e+001 - 1.12713089e+002 1.23034500e+002 9.94173126e+001 1.12668488e+002 - 1.23057556e+002 9.94144440e+001 1.12667099e+002 1.23092461e+002 - 9.93808517e+001 1.12621567e+002 1.23081093e+002 9.93285828e+001 - 1.12579323e+002 1.23056068e+002 9.93423233e+001 1.12572014e+002 - 1.23095108e+002 9.93266754e+001 1.12552155e+002 1.23097931e+002 - 9.92910461e+001 1.12513702e+002 1.23108833e+002 9.92667542e+001 - 1.12510834e+002 1.23119064e+002 9.92729416e+001 1.12504204e+002 - 1.23156601e+002 9.92760773e+001 1.12511368e+002 1.23184265e+002 - 9.92586060e+001 1.12465973e+002 1.23197624e+002 9.92138062e+001 - 1.12427086e+002 1.23173225e+002 9.91897125e+001 1.12393753e+002 - 1.23181717e+002 9.91820450e+001 1.12390602e+002 1.23189362e+002 - 9.91693497e+001 1.12360130e+002 1.23193596e+002 9.91638260e+001 - 1.12362328e+002 1.23207031e+002 9.91805191e+001 1.12349564e+002 - 1.23248955e+002 9.91972733e+001 1.12379501e+002 1.23291664e+002 - 9.91832352e+001 1.12368935e+002 1.23292442e+002 9.91248169e+001 - 1.12333183e+002 1.23261421e+002 9.91299515e+001 1.12317734e+002 - 1.23276253e+002 9.91558685e+001 1.12339088e+002 1.23307892e+002 - 9.91427689e+001 1.12317993e+002 1.23313034e+002 9.90862503e+001 - 1.12286247e+002 1.23287247e+002 9.90657959e+001 1.12246513e+002 - 1.23285568e+002 9.90492630e+001 1.12237144e+002 1.23286774e+002 - 9.90500641e+001 1.12220909e+002 1.23311272e+002 9.90369949e+001 - 1.12216713e+002 1.23310425e+002 9.90167389e+001 1.12195831e+002 - 1.23311432e+002 9.89884872e+001 1.12177986e+002 1.23301445e+002 - 9.90424347e+001 1.12229599e+002 1.23369835e+002 9.90327148e+001 - 1.12235435e+002 1.23377998e+002 9.90116348e+001 1.12180656e+002 - 1.23362961e+002 9.90189362e+001 1.12191063e+002 1.23378326e+002 - 9.90156860e+001 1.12190376e+002 1.23381699e+002 9.89806671e+001 - 1.12180870e+002 1.23365997e+002 9.89893417e+001 1.12178246e+002 - 1.23375092e+002 9.90102386e+001 1.12211044e+002 1.23389336e+002 - 9.90262680e+001 1.12216805e+002 1.23396324e+002 9.90064621e+001 - 1.12212204e+002 1.23380188e+002 9.89874649e+001 1.12185806e+002 - 1.23359482e+002 9.90013657e+001 1.12219872e+002 1.23377129e+002 - 9.90029831e+001 1.12204376e+002 1.23370453e+002 9.89827194e+001 - 1.12202065e+002 1.23352051e+002 9.89517822e+001 1.12164772e+002 - 1.23317741e+002 9.89554901e+001 1.12183708e+002 1.23305504e+002 - 9.89854431e+001 1.12193520e+002 1.23323189e+002 9.89782486e+001 - 1.12206589e+002 1.23310852e+002 9.90111771e+001 1.12208130e+002 - 1.23334412e+002 9.90392914e+001 1.12244949e+002 1.23345245e+002 - 9.90583878e+001 1.12263710e+002 1.23344696e+002 9.90592880e+001 - 1.12280052e+002 1.23333328e+002 9.90627594e+001 1.12267853e+002 - 1.23320213e+002 9.90600281e+001 1.12270599e+002 1.23290520e+002 - 9.90734253e+001 1.12271378e+002 1.23283974e+002 9.90671921e+001 - 1.12284889e+002 1.23269875e+002 9.90781708e+001 1.12291405e+002 - 1.23268837e+002 9.91199722e+001 1.12346855e+002 1.23298424e+002 - 9.91544037e+001 1.12363419e+002 1.23313461e+002 9.91407166e+001 - 1.12368225e+002 1.23279617e+002 9.91544113e+001 1.12382500e+002 - 1.23268211e+002 9.91580429e+001 1.12397499e+002 1.23248352e+002 - 9.91434097e+001 1.12375229e+002 1.23208794e+002 9.91597900e+001 - 1.12405266e+002 1.23201889e+002 9.91930618e+001 1.12406662e+002 - 1.23195480e+002 9.91796494e+001 1.12405495e+002 1.23154816e+002 - 9.91888885e+001 1.12419853e+002 1.23137794e+002 9.91967545e+001 - 1.12444695e+002 1.23114182e+002 9.92535248e+001 1.12488327e+002 - 1.23144859e+002 9.92623901e+001 1.12500656e+002 1.23114365e+002 - 9.93127823e+001 1.12542351e+002 1.23113930e+002 9.93075180e+001 - 1.12556442e+002 1.23075012e+002 9.93506088e+001 1.12583725e+002 - 1.23082733e+002 9.93488541e+001 1.12589264e+002 1.23038521e+002 - 9.93624268e+001 1.12582283e+002 1.23011070e+002 9.93758316e+001 - 1.12610703e+002 1.22983459e+002 9.94144592e+001 1.12659348e+002 - 1.22991455e+002 9.94335327e+001 1.12688072e+002 1.22966797e+002 - 9.94314575e+001 1.12680992e+002 1.22930206e+002 9.94531097e+001 - 1.12723450e+002 1.22919518e+002 9.95110779e+001 1.12750137e+002 - 1.22944199e+002 9.95167084e+001 1.12765640e+002 1.22904984e+002 - 9.95474777e+001 1.12797058e+002 1.22895279e+002 9.95409164e+001 - 1.12801842e+002 1.22851494e+002 9.95790558e+001 1.12824493e+002 - 1.22855064e+002 9.96541901e+001 1.12908058e+002 1.22871277e+002 - 9.97064972e+001 1.12956017e+002 1.22860023e+002 9.97211151e+001 - 1.12991920e+002 1.22832062e+002 9.97433777e+001 1.13002121e+002 - 1.22816109e+002 9.97652435e+001 1.13037788e+002 1.22798454e+002 - 9.98022537e+001 1.13052277e+002 1.22778519e+002 9.98045578e+001 - 1.13072624e+002 1.22731911e+002 9.98366852e+001 1.13113297e+002 - 1.22717361e+002 9.98671265e+001 1.13162949e+002 1.22696587e+002 - 9.99304886e+001 1.13211533e+002 1.22706940e+002 9.99573593e+001 - 1.13259674e+002 1.22686928e+002 1.00023636e+002 1.13294060e+002 - 1.22685104e+002 1.00066704e+002 1.13353004e+002 1.22676125e+002 - 1.00117294e+002 1.13406006e+002 1.22667938e+002 1.00132751e+002 - 1.13443123e+002 1.22639610e+002 1.00210121e+002 1.13505539e+002 - 1.22673241e+002 1.00265831e+002 1.13571075e+002 1.22667770e+002 - 1.00290398e+002 1.13583168e+002 1.22620354e+002 1.00296654e+002 - 1.13603111e+002 1.22575554e+002 1.00344460e+002 1.13632736e+002 - 1.22572472e+002 1.00398766e+002 1.13697342e+002 1.22575928e+002 - 1.00453735e+002 1.13726128e+002 1.22560760e+002 1.00473541e+002 - 1.13767410e+002 1.22529251e+002 1.00522545e+002 1.13809212e+002 - 1.22510666e+002 1.00572746e+002 1.13874992e+002 1.22503372e+002 - 1.00632065e+002 1.13919662e+002 1.22502220e+002 1.00688080e+002 - 1.13991035e+002 1.22502083e+002 1.00760979e+002 1.14025215e+002 - 1.22503319e+002 1.00812920e+002 1.14083313e+002 1.22484940e+002 - 1.00860405e+002 1.14128098e+002 1.22468193e+002 1.00901558e+002 - 1.14183632e+002 1.22458313e+002 1.00968704e+002 1.14235764e+002 - 1.22474152e+002 1.01044250e+002 1.14317894e+002 1.22475586e+002 - 1.01155464e+002 1.14419556e+002 1.22496689e+002 1.01233299e+002 - 1.14518303e+002 1.22518021e+002 1.01309555e+002 1.14578819e+002 - 1.22536156e+002 1.01382446e+002 1.14660439e+002 1.22550453e+002 - 1.01441414e+002 1.14698677e+002 1.22538193e+002 1.01488029e+002 - 1.14752251e+002 1.22517860e+002 1.01561562e+002 1.14816017e+002 - 1.22517670e+002 1.01640022e+002 1.14897606e+002 1.22528000e+002 - 1.01710045e+002 1.14942619e+002 1.22511024e+002 1.01768730e+002 - 1.15010529e+002 1.22494171e+002 1.01900360e+002 1.15094986e+002 - 1.22528862e+002 1.01969147e+002 1.15165588e+002 1.22523605e+002 - 1.02049355e+002 1.15242393e+002 1.22527115e+002 1.02111748e+002 - 1.15316925e+002 1.22521034e+002 1.02210396e+002 1.15393814e+002 - 1.22558731e+002 1.02301186e+002 1.15478493e+002 1.22564705e+002 - 1.02376534e+002 1.15539597e+002 1.22545219e+002 1.02461472e+002 - 1.15628517e+002 1.22561905e+002 1.02561310e+002 1.15711639e+002 - 1.22592255e+002 1.02640282e+002 1.15789284e+002 1.22598984e+002 - 1.02749748e+002 1.15860764e+002 1.22624977e+002 1.02833405e+002 - 1.15946602e+002 1.22636703e+002 1.02971390e+002 1.16057571e+002 - 1.22685608e+002 1.03053078e+002 1.16135941e+002 1.22697334e+002 - 1.03154259e+002 1.16216492e+002 1.22725182e+002 1.03257568e+002 - 1.16311958e+002 1.22754456e+002 1.03369225e+002 1.16367455e+002 - 1.22769928e+002 1.03470062e+002 1.16456024e+002 1.22787827e+002 - 1.03577202e+002 1.16534828e+002 1.22800629e+002 1.03612099e+002 - 1.16564514e+002 1.22758766e+002 1.03632256e+002 1.16529358e+002 - 1.22708908e+002 1.03626877e+002 1.16517357e+002 1.22621399e+002 - 1.03634048e+002 1.16513855e+002 1.22713692e+002 1.03641045e+002 - 1.16564011e+002 1.22799904e+002 1.03632126e+002 1.16575554e+002 - 1.22862518e+002 1.03593697e+002 1.16570892e+002 1.22905281e+002 - 1.03509483e+002 1.16497696e+002 1.22904709e+002 1.03369377e+002 - 1.16399086e+002 1.22853119e+002 1.03271233e+002 1.16322449e+002 - 1.22850418e+002 1.03162498e+002 1.16245178e+002 1.22830284e+002 - 1.03064301e+002 1.16158821e+002 1.22814140e+002 1.02925644e+002 - 1.16050041e+002 1.22761124e+002 1.02863426e+002 1.15976227e+002 - 1.22786964e+002 1.02773277e+002 1.15912354e+002 1.22777550e+002 - 1.02678741e+002 1.15834351e+002 1.22751923e+002 1.02570892e+002 - 1.15751877e+002 1.22718788e+002 1.02497948e+002 1.15662720e+002 - 1.22701607e+002 1.02410614e+002 1.15592621e+002 1.22680862e+002 - 1.02319672e+002 1.15513206e+002 1.22686882e+002 1.02211769e+002 - 1.15423874e+002 1.22656319e+002 1.02134079e+002 1.15337646e+002 - 1.22634865e+002 1.02039452e+002 1.15268959e+002 1.22609390e+002 - 1.01957657e+002 1.15171829e+002 1.22596840e+002 1.01880356e+002 - 1.15109192e+002 1.22586159e+002 1.01807396e+002 1.15035332e+002 - 1.22594841e+002 1.01736267e+002 1.14980484e+002 1.22593254e+002 - 1.01662666e+002 1.14905937e+002 1.22594330e+002 1.01545540e+002 - 1.14813271e+002 1.22563393e+002 1.01488190e+002 1.14733208e+002 - 1.22581535e+002 1.01433960e+002 1.14706352e+002 1.22607979e+002 - 1.01378464e+002 1.14641617e+002 1.22613495e+002 1.01305748e+002 - 1.14595306e+002 1.22605820e+002 1.01290298e+002 1.14559486e+002 - 1.22634239e+002 1.01208878e+002 1.14485817e+002 1.22606018e+002 - 1.01131355e+002 1.14416161e+002 1.22626114e+002 1.01024048e+002 - 1.14335991e+002 1.22604080e+002 1.00963448e+002 1.14263046e+002 - 1.22598732e+002 1.00900536e+002 1.14215004e+002 1.22604195e+002 - 1.00818504e+002 1.14118317e+002 1.22595825e+002 1.00742950e+002 - 1.14056389e+002 1.22588493e+002 1.00691849e+002 1.14002220e+002 - 1.22603905e+002 1.00670006e+002 1.13996368e+002 1.22644020e+002 - 1.00601318e+002 1.13915314e+002 1.22629753e+002 1.00542099e+002 - 1.13871620e+002 1.22630135e+002 1.00528748e+002 1.13826248e+002 - 1.22668098e+002 1.00461571e+002 1.13770134e+002 1.22664848e+002 - 1.00445236e+002 1.13756737e+002 1.22696373e+002 1.00363480e+002 - 1.13685783e+002 1.22661751e+002 1.00331558e+002 1.13632896e+002 - 1.22673294e+002 1.00266518e+002 1.13575485e+002 1.22662766e+002 - 1.00227119e+002 1.13533104e+002 1.22696968e+002 1.00140320e+002 - 1.13466248e+002 1.22680733e+002 1.00114639e+002 1.13431152e+002 - 1.22703003e+002 1.00081268e+002 1.13406532e+002 1.22717140e+002 - 1.00040886e+002 1.13345474e+002 1.22731300e+002 9.99662170e+001 - 1.13287697e+002 1.22714569e+002 9.99057388e+001 1.13222473e+002 - 1.22710434e+002 9.98823471e+001 1.13205811e+002 1.22731277e+002 - 9.98445740e+001 1.13152061e+002 1.22742928e+002 9.97741776e+001 - 1.13093353e+002 1.22722923e+002 9.97770081e+001 1.13056763e+002 - 1.22770302e+002 9.97049408e+001 1.12989784e+002 1.22744041e+002 - 9.96696167e+001 1.12950378e+002 1.22751648e+002 9.96207199e+001 - 1.12913956e+002 1.22746826e+002 9.96017685e+001 1.12873711e+002 - 1.22750107e+002 9.95687408e+001 1.12843689e+002 1.22756241e+002 - 9.95076752e+001 1.12787766e+002 1.22762474e+002 9.94644928e+001 - 1.12771706e+002 1.22775223e+002 9.94854050e+001 1.12775452e+002 - 1.22832184e+002 9.94484177e+001 1.12752426e+002 1.22838577e+002 - 9.94436951e+001 1.12727745e+002 1.22875259e+002 9.93966751e+001 - 1.12691147e+002 1.22868378e+002 9.93666840e+001 1.12661736e+002 - 1.22893570e+002 9.93679428e+001 1.12670898e+002 1.22932808e+002 - 9.93404007e+001 1.12627861e+002 1.22943611e+002 9.92789383e+001 - 1.12577431e+002 1.22926697e+002 9.92772446e+001 1.12540802e+002 - 1.22961182e+002 9.92645569e+001 1.12533073e+002 1.22984993e+002 - 9.92530365e+001 1.12514603e+002 1.22999680e+002 9.91918411e+001 - 1.12466934e+002 1.22968826e+002 9.91940460e+001 1.12442642e+002 - 1.22993515e+002 9.91968689e+001 1.12442734e+002 1.23017952e+002 - 9.91547852e+001 1.12400520e+002 1.23016968e+002 9.91222687e+001 - 1.12382912e+002 1.23024513e+002 9.91446533e+001 1.12391800e+002 - 1.23073639e+002 9.91370316e+001 1.12391937e+002 1.23086777e+002 - 9.91290054e+001 1.12354462e+002 1.23105972e+002 9.90779037e+001 - 1.12304955e+002 1.23084618e+002 9.90442886e+001 1.12261856e+002 - 1.23081734e+002 9.90384750e+001 1.12258278e+002 1.23089798e+002 - 9.90221024e+001 1.12231926e+002 1.23097191e+002 9.90241547e+001 - 1.12247299e+002 1.23112404e+002 9.90581589e+001 1.12247086e+002 - 1.23168541e+002 9.90687332e+001 1.12273247e+002 1.23210564e+002 - 9.90631027e+001 1.12270592e+002 1.23224388e+002 9.90407791e+001 - 1.12265442e+002 1.23221817e+002 9.90338745e+001 1.12241913e+002 - 1.23224365e+002 9.90394440e+001 1.12246788e+002 1.23235992e+002 - 9.90289917e+001 1.12228188e+002 1.23242546e+002 9.89592667e+001 - 1.12174042e+002 1.23197655e+002 9.89423065e+001 1.12145706e+002 - 1.23203995e+002 9.89510345e+001 1.12164635e+002 1.23238739e+002 - 9.89400711e+001 1.12127098e+002 1.23240959e+002 9.89180984e+001 - 1.12120224e+002 1.23245956e+002 9.88910446e+001 1.12089432e+002 - 1.23239952e+002 9.88873901e+001 1.12095551e+002 1.23245323e+002 - 9.89007111e+001 1.12102806e+002 1.23271400e+002 9.88769150e+001 - 1.12091019e+002 1.23260880e+002 9.88860931e+001 1.12063774e+002 - 1.23272781e+002 9.88880005e+001 1.12079063e+002 1.23280128e+002 - 9.89024200e+001 1.12099159e+002 1.23306244e+002 9.88611450e+001 - 1.12089828e+002 1.23278587e+002 9.88808975e+001 1.12087646e+002 - 1.23302681e+002 9.88950577e+001 1.12116867e+002 1.23314011e+002 - 9.89132538e+001 1.12130890e+002 1.23333328e+002 9.88809280e+001 - 1.12118103e+002 1.23313446e+002 9.88901138e+001 1.12111656e+002 - 1.23310471e+002 9.88911591e+001 1.12123970e+002 1.23312569e+002 - 9.88869858e+001 1.12101807e+002 1.23297363e+002 9.88408432e+001 - 1.12071198e+002 1.23246483e+002 9.88234863e+001 1.12051079e+002 - 1.23226013e+002 9.88215332e+001 1.12061745e+002 1.23213402e+002 - 9.88759689e+001 1.12101921e+002 1.23257034e+002 9.88604813e+001 - 1.12098846e+002 1.23230469e+002 9.89018555e+001 1.12116882e+002 - 1.23257622e+002 9.89203110e+001 1.12143517e+002 1.23267899e+002 - 9.89342499e+001 1.12151459e+002 1.23258224e+002 9.89064026e+001 - 1.12146873e+002 1.23227676e+002 9.89281006e+001 1.12150635e+002 - 1.23230675e+002 9.89155273e+001 1.12147087e+002 1.23192497e+002 - 9.89361038e+001 1.12160393e+002 1.23196754e+002 9.89321060e+001 - 1.12177711e+002 1.23184860e+002 9.89681473e+001 1.12208717e+002 - 1.23204971e+002 9.90045929e+001 1.12256790e+002 1.23220833e+002 - 9.90331802e+001 1.12264793e+002 1.23231911e+002 9.90085220e+001 - 1.12252769e+002 1.23188057e+002 9.90251694e+001 1.12277344e+002 - 1.23190208e+002 9.90381622e+001 1.12299950e+002 1.23175697e+002 - 9.90422287e+001 1.12291306e+002 1.23148499e+002 9.90303116e+001 - 1.12294205e+002 1.23118462e+002 9.90684204e+001 1.12303268e+002 - 1.23119537e+002 9.90566788e+001 1.12306984e+002 1.23081696e+002 - 9.90381699e+001 1.12292953e+002 1.23040321e+002 9.90441513e+001 - 1.12312004e+002 1.23008423e+002 9.90798035e+001 1.12331383e+002 - 1.23021347e+002 9.91197968e+001 1.12378151e+002 1.23012436e+002 - 9.91763306e+001 1.12423912e+002 1.23017540e+002 9.91732101e+001 - 1.12435379e+002 1.22980423e+002 9.91896515e+001 1.12442909e+002 - 1.22958984e+002 9.92376251e+001 1.12498009e+002 1.22969696e+002 - 9.92661438e+001 1.12501091e+002 1.22953911e+002 9.92597427e+001 - 1.12512367e+002 1.22912224e+002 9.92666779e+001 1.12527184e+002 - 1.22890518e+002 9.92903900e+001 1.12564285e+002 1.22877846e+002 - 9.93033218e+001 1.12572685e+002 1.22859886e+002 9.93196487e+001 - 1.12608521e+002 1.22847618e+002 9.93698425e+001 1.12633018e+002 - 1.22853462e+002 9.93996353e+001 1.12668411e+002 1.22840355e+002 - 9.94419327e+001 1.12708031e+002 1.22830147e+002 9.94568481e+001 - 1.12740173e+002 1.22811745e+002 9.94977341e+001 1.12759094e+002 - 1.22802734e+002 9.95760345e+001 1.12844864e+002 1.22830475e+002 - 9.96270981e+001 1.12893158e+002 1.22821472e+002 9.96121826e+001 - 1.12900238e+002 1.22766243e+002 9.96395111e+001 1.12913551e+002 - 1.22751183e+002 9.96542664e+001 1.12943748e+002 1.22725418e+002 - 9.96798096e+001 1.12950371e+002 1.22699532e+002 9.96829758e+001 - 1.12967232e+002 1.22655319e+002 9.97446823e+001 1.13035629e+002 - 1.22667297e+002 9.97728348e+001 1.13082909e+002 1.22652214e+002 - 9.98362808e+001 1.13140160e+002 1.22670891e+002 9.98428574e+001 - 1.13166275e+002 1.22624550e+002 9.99027710e+001 1.13192108e+002 - 1.22622292e+002 9.99340897e+001 1.13237099e+002 1.22596535e+002 - 9.99715042e+001 1.13279732e+002 1.22578430e+002 1.00006523e+002 - 1.13342964e+002 1.22570084e+002 1.00079781e+002 1.13398613e+002 - 1.22598000e+002 1.00130737e+002 1.13458717e+002 1.22587669e+002 - 1.00161873e+002 1.13476891e+002 1.22544182e+002 1.00168205e+002 - 1.13501732e+002 1.22499489e+002 1.00216202e+002 1.13533310e+002 - 1.22495903e+002 1.00263565e+002 1.13586113e+002 1.22488747e+002 - 1.00326057e+002 1.13623993e+002 1.22488174e+002 1.00358002e+002 - 1.13672501e+002 1.22460808e+002 1.00406403e+002 1.13716171e+002 - 1.22452209e+002 1.00463203e+002 1.13784035e+002 1.22449959e+002 - 1.00518814e+002 1.13823257e+002 1.22437080e+002 1.00540283e+002 - 1.13862801e+002 1.22402687e+002 1.00629227e+002 1.13913200e+002 - 1.22421135e+002 1.00691681e+002 1.13977821e+002 1.22409096e+002 - 1.00751564e+002 1.14042122e+002 1.22403160e+002 1.00791504e+002 - 1.14100449e+002 1.22389725e+002 1.00865387e+002 1.14152084e+002 - 1.22408348e+002 1.00965942e+002 1.14262001e+002 1.22439980e+002 - 1.01069099e+002 1.14349846e+002 1.22451904e+002 1.01144676e+002 - 1.14447678e+002 1.22481506e+002 1.01235573e+002 1.14520485e+002 - 1.22507095e+002 1.01294968e+002 1.14589874e+002 1.22509827e+002 - 1.01343575e+002 1.14612503e+002 1.22482582e+002 1.01398499e+002 - 1.14673851e+002 1.22472023e+002 1.01457237e+002 1.14719757e+002 - 1.22456367e+002 1.01551750e+002 1.14820587e+002 1.22474388e+002 - 1.01612404e+002 1.14860565e+002 1.22453896e+002 1.01676247e+002 - 1.14928917e+002 1.22447960e+002 1.01788574e+002 1.14999763e+002 - 1.22464035e+002 1.01879478e+002 1.15097427e+002 1.22479660e+002 - 1.01955940e+002 1.15169899e+002 1.22476219e+002 1.02005302e+002 - 1.15229553e+002 1.22463036e+002 1.02102943e+002 1.15300774e+002 - 1.22496628e+002 1.02195702e+002 1.15393669e+002 1.22509201e+002 - 1.02272423e+002 1.15449066e+002 1.22490456e+002 1.02378136e+002 - 1.15562210e+002 1.22524437e+002 1.02467484e+002 1.15635643e+002 - 1.22547432e+002 1.02543831e+002 1.15711639e+002 1.22548744e+002 - 1.02665184e+002 1.15799408e+002 1.22588997e+002 1.02767288e+002 - 1.15901245e+002 1.22613007e+002 1.02874222e+002 1.15983353e+002 - 1.22640762e+002 1.02958801e+002 1.16066582e+002 1.22649040e+002 - 1.03036407e+002 1.16110985e+002 1.22646881e+002 1.03141342e+002 - 1.16212456e+002 1.22679413e+002 1.03281715e+002 1.16299316e+002 - 1.22731453e+002 1.03385681e+002 1.16393105e+002 1.22749237e+002 - 1.03468330e+002 1.16443596e+002 1.22741966e+002 1.03503456e+002 - 1.16479324e+002 1.22707321e+002 1.03552254e+002 1.16463142e+002 - 1.22673126e+002 1.03537491e+002 1.16444550e+002 1.22585693e+002 - 1.03497910e+002 1.16416931e+002 1.22628731e+002 1.03522636e+002 - 1.16481827e+002 1.22730949e+002 1.03515862e+002 1.16488319e+002 - 1.22798927e+002 1.03459396e+002 1.16465637e+002 1.22813553e+002 - 1.03374443e+002 1.16399414e+002 1.22826637e+002 1.03257782e+002 - 1.16315666e+002 1.22793343e+002 1.03142357e+002 1.16224998e+002 - 1.22776184e+002 1.03031761e+002 1.16142784e+002 1.22737312e+002 - 1.02940811e+002 1.16059723e+002 1.22735672e+002 1.02826218e+002 - 1.15974777e+002 1.22703880e+002 1.02759605e+002 1.15899765e+002 - 1.22720673e+002 1.02691757e+002 1.15855331e+002 1.22729851e+002 - 1.02589012e+002 1.15763893e+002 1.22708519e+002 1.02482330e+002 - 1.15679382e+002 1.22671494e+002 1.02384666e+002 1.15578400e+002 - 1.22642395e+002 1.02288986e+002 1.15494690e+002 1.22615135e+002 - 1.02211975e+002 1.15418457e+002 1.22631027e+002 1.02076996e+002 - 1.15322304e+002 1.22576309e+002 1.01999992e+002 1.15230377e+002 - 1.22557358e+002 1.01922241e+002 1.15170097e+002 1.22537979e+002 - 1.01851578e+002 1.15099487e+002 1.22547195e+002 1.01758118e+002 - 1.15019455e+002 1.22522942e+002 1.01672668e+002 1.14931328e+002 - 1.22511642e+002 1.01601761e+002 1.14875099e+002 1.22512802e+002 - 1.01531029e+002 1.14799934e+002 1.22520409e+002 1.01420380e+002 - 1.14706520e+002 1.22489197e+002 1.01355003e+002 1.14639969e+002 - 1.22506355e+002 1.01305984e+002 1.14604721e+002 1.22521179e+002 - 1.01268356e+002 1.14557617e+002 1.22552536e+002 1.01203125e+002 - 1.14506172e+002 1.22542213e+002 1.01160103e+002 1.14453499e+002 - 1.22551476e+002 1.01073906e+002 1.14378204e+002 1.22520370e+002 - 1.00994209e+002 1.14300865e+002 1.22531609e+002 1.00889427e+002 - 1.14223320e+002 1.22511505e+002 1.00824081e+002 1.14147194e+002 - 1.22498665e+002 1.00762703e+002 1.14097221e+002 1.22510704e+002 - 1.00680214e+002 1.14005234e+002 1.22504562e+002 1.00615234e+002 - 1.13955818e+002 1.22507767e+002 1.00570030e+002 1.13908798e+002 - 1.22531296e+002 1.00526443e+002 1.13872879e+002 1.22544807e+002 - 1.00464447e+002 1.13809052e+002 1.22539162e+002 1.00406509e+002 - 1.13758858e+002 1.22539330e+002 1.00380470e+002 1.13711311e+002 - 1.22572495e+002 1.00324509e+002 1.13665428e+002 1.22567886e+002 - 1.00288696e+002 1.13619850e+002 1.22588745e+002 1.00228233e+002 - 1.13575836e+002 1.22582359e+002 1.00195351e+002 1.13526329e+002 - 1.22587730e+002 1.00134621e+002 1.13474014e+002 1.22578926e+002 - 1.00089279e+002 1.13421524e+002 1.22610840e+002 9.99987946e+001 - 1.13354004e+002 1.22595787e+002 9.99677277e+001 1.13308189e+002 - 1.22601768e+002 9.99312439e+001 1.13282318e+002 1.22610985e+002 - 9.99073181e+001 1.13240227e+002 1.22648788e+002 9.98485031e+001 - 1.13192474e+002 1.22641960e+002 9.97975616e+001 1.13135635e+002 - 1.22650124e+002 9.97509613e+001 1.13098793e+002 1.22646339e+002 - 9.97140427e+001 1.13050217e+002 1.22659607e+002 9.96515045e+001 - 1.12989258e+002 1.22640259e+002 9.96411133e+001 1.12946472e+002 - 1.22677185e+002 9.95757294e+001 1.12883102e+002 1.22654060e+002 - 9.95397186e+001 1.12836372e+002 1.22665077e+002 9.94791565e+001 - 1.12789452e+002 1.22645569e+002 9.94647293e+001 1.12756897e+002 - 1.22661743e+002 9.94266129e+001 1.12735489e+002 1.22663223e+002 - 9.93983231e+001 1.12702019e+002 1.22702263e+002 9.93224411e+001 - 1.12659637e+002 1.22688843e+002 9.93402557e+001 1.12651344e+002 - 1.22730080e+002 9.93234406e+001 1.12643425e+002 1.22757050e+002 - 9.93262253e+001 1.12637177e+002 1.22806046e+002 9.92885284e+001 - 1.12610268e+002 1.22810059e+002 9.92428665e+001 1.12560898e+002 - 1.22820717e+002 9.92166824e+001 1.12543556e+002 1.22827003e+002 - 9.92024841e+001 1.12507874e+002 1.22852066e+002 9.91469955e+001 - 1.12466095e+002 1.22844551e+002 9.91463013e+001 1.12433525e+002 - 1.22877556e+002 9.91208572e+001 1.12412636e+002 1.22880638e+002 - 9.91216125e+001 1.12400459e+002 1.22912537e+002 9.90611420e+001 - 1.12355385e+002 1.22888710e+002 9.90050278e+001 1.12285789e+002 - 1.22852753e+002 9.90211258e+001 1.12296806e+002 1.22886826e+002 - 9.89847565e+001 1.12256874e+002 1.22897903e+002 9.89710846e+001 - 1.12259796e+002 1.22926147e+002 9.90128174e+001 1.12282776e+002 - 1.22985695e+002 9.89931870e+001 1.12269539e+002 1.22991989e+002 - 9.89683151e+001 1.12222359e+002 1.22994003e+002 9.89222641e+001 - 1.12179947e+002 1.22973083e+002 9.89005585e+001 1.12139496e+002 - 1.22987717e+002 9.88746490e+001 1.12123611e+002 1.22972893e+002 - 9.88799744e+001 1.12116142e+002 1.22997093e+002 9.88728104e+001 - 1.12117638e+002 1.23011368e+002 9.88737793e+001 1.12089417e+002 - 1.23035103e+002 9.88871689e+001 1.12118942e+002 1.23076851e+002 - 9.89025955e+001 1.12133263e+002 1.23107994e+002 9.88823700e+001 - 1.12129707e+002 1.23105049e+002 9.88777084e+001 1.12113319e+002 - 1.23120193e+002 9.88669815e+001 1.12107376e+002 1.23113701e+002 - 9.88718948e+001 1.12095535e+002 1.23131012e+002 9.88201370e+001 - 1.12064789e+002 1.23112602e+002 9.88200836e+001 1.12049919e+002 - 1.23130615e+002 9.88255005e+001 1.12061005e+002 1.23159286e+002 - 9.88034210e+001 1.12017822e+002 1.23154243e+002 9.87695084e+001 - 1.11996925e+002 1.23141350e+002 9.87561111e+001 1.11986473e+002 - 1.23151566e+002 9.87511292e+001 1.11989296e+002 1.23154678e+002 - 9.87445297e+001 1.11973320e+002 1.23158325e+002 9.87311554e+001 - 1.11971527e+002 1.23159065e+002 9.87418976e+001 1.11957214e+002 - 1.23174820e+002 9.87418900e+001 1.11968491e+002 1.23186584e+002 - 9.87515182e+001 1.11972313e+002 1.23196281e+002 9.87006149e+001 - 1.11949791e+002 1.23162170e+002 9.87046585e+001 1.11945000e+002 - 1.23182152e+002 9.87445068e+001 1.11994217e+002 1.23210640e+002 - 9.87603607e+001 1.11996902e+002 1.23227875e+002 9.87152023e+001 - 1.11977371e+002 1.23194740e+002 9.86957169e+001 1.11947495e+002 - 1.23169106e+002 9.87074585e+001 1.11966888e+002 1.23179878e+002 - 9.87236023e+001 1.11966919e+002 1.23178505e+002 9.86877975e+001 - 1.11944786e+002 1.23142067e+002 9.86705399e+001 1.11918045e+002 - 1.23117577e+002 9.86981354e+001 1.11963280e+002 1.23137535e+002 - 9.87577438e+001 1.12009903e+002 1.23179916e+002 9.87488708e+001 - 1.12009300e+002 1.23166481e+002 9.87662735e+001 1.12005302e+002 - 1.23171822e+002 9.87619171e+001 1.12010025e+002 1.23152420e+002 - 9.87595367e+001 1.12000061e+002 1.23141716e+002 9.87506638e+001 - 1.12013824e+002 1.23123970e+002 9.87666473e+001 1.12016380e+002 - 1.23126953e+002 9.87610855e+001 1.12020805e+002 1.23096680e+002 - 9.87710190e+001 1.12019020e+002 1.23088600e+002 9.87740097e+001 - 1.12054337e+002 1.23085403e+002 9.88196030e+001 1.12080788e+002 - 1.23100868e+002 9.88631592e+001 1.12137314e+002 1.23131126e+002 - 9.88910217e+001 1.12152649e+002 1.23135910e+002 9.88693466e+001 - 1.12143219e+002 1.23096893e+002 9.88784256e+001 1.12150589e+002 - 1.23087975e+002 9.89103317e+001 1.12198555e+002 1.23095093e+002 - 9.89010468e+001 1.12178749e+002 1.23053329e+002 9.88911972e+001 - 1.12180748e+002 1.23026749e+002 9.89239655e+001 1.12183578e+002 - 1.23017380e+002 9.89189529e+001 1.12194733e+002 1.22989143e+002 - 9.89350739e+001 1.12209953e+002 1.22972870e+002 9.89277039e+001 - 1.12219894e+002 1.22942894e+002 9.89376068e+001 1.12216690e+002 - 1.22921356e+002 9.89475479e+001 1.12238297e+002 1.22890503e+002 - 9.90152512e+001 1.12286873e+002 1.22894966e+002 9.90294952e+001 - 1.12322777e+002 1.22882462e+002 9.90503311e+001 1.12329185e+002 - 1.22868515e+002 9.90568848e+001 1.12343773e+002 1.22831863e+002 - 9.91029358e+001 1.12367348e+002 1.22841972e+002 9.91235733e+001 - 1.12404968e+002 1.22828888e+002 9.91465225e+001 1.12431343e+002 - 1.22821922e+002 9.91428986e+001 1.12445129e+002 1.22788185e+002 - 9.91514282e+001 1.12449387e+002 1.22758125e+002 9.91835861e+001 - 1.12497704e+002 1.22763969e+002 9.92524033e+001 1.12537643e+002 - 1.22784966e+002 9.92774506e+001 1.12575035e+002 1.22772774e+002 - 9.93168106e+001 1.12603027e+002 1.22751572e+002 9.93184662e+001 - 1.12623177e+002 1.22717804e+002 9.93622208e+001 1.12652351e+002 - 1.22722198e+002 9.94440613e+001 1.12741096e+002 1.22744400e+002 - 9.95033264e+001 1.12792213e+002 1.22744003e+002 9.94832764e+001 - 1.12791992e+002 1.22685669e+002 9.95181274e+001 1.12817856e+002 - 1.22680489e+002 9.95303955e+001 1.12843056e+002 1.22645332e+002 - 9.95675049e+001 1.12859390e+002 1.22630630e+002 9.95666199e+001 - 1.12874847e+002 1.22584801e+002 9.95985260e+001 1.12913940e+002 - 1.22573868e+002 9.96307144e+001 1.12959801e+002 1.22557724e+002 - 9.96895676e+001 1.13015350e+002 1.22569565e+002 9.97097244e+001 - 1.13053123e+002 1.22550491e+002 9.97503891e+001 1.13064552e+002 - 1.22523476e+002 9.97852936e+001 1.13116142e+002 1.22500671e+002 - 9.98227310e+001 1.13150322e+002 1.22479454e+002 9.98575592e+001 - 1.13214569e+002 1.22472466e+002 9.99253540e+001 1.13271675e+002 - 1.22493553e+002 9.99729538e+001 1.13327385e+002 1.22479156e+002 - 1.00002014e+002 1.13344299e+002 1.22433899e+002 1.00019661e+002 - 1.13382713e+002 1.22407509e+002 1.00086411e+002 1.13434891e+002 - 1.22418602e+002 1.00123787e+002 1.13475441e+002 1.22404564e+002 - 1.00186661e+002 1.13514915e+002 1.22399429e+002 1.00193703e+002 - 1.13537086e+002 1.22350563e+002 1.00249893e+002 1.13587448e+002 - 1.22347580e+002 1.00306374e+002 1.13650780e+002 1.22344391e+002 - 1.00368889e+002 1.13699997e+002 1.22339409e+002 1.00397530e+002 - 1.13740623e+002 1.22319054e+002 1.00487755e+002 1.13796982e+002 - 1.22317215e+002 1.00545120e+002 1.13863213e+002 1.22312607e+002 - 1.00628166e+002 1.13938591e+002 1.22321411e+002 1.00665939e+002 - 1.13992393e+002 1.22306190e+002 1.00739861e+002 1.14054428e+002 - 1.22325737e+002 1.00833618e+002 1.14158005e+002 1.22352287e+002 - 1.00924271e+002 1.14228531e+002 1.22353310e+002 1.00985321e+002 - 1.14314026e+002 1.22365913e+002 1.01077354e+002 1.14377472e+002 - 1.22392227e+002 1.01131355e+002 1.14439613e+002 1.22387115e+002 - 1.01199402e+002 1.14484184e+002 1.22384209e+002 1.01272202e+002 - 1.14569328e+002 1.22390816e+002 1.01330368e+002 1.14611481e+002 - 1.22373451e+002 1.01432808e+002 1.14724792e+002 1.22404152e+002 - 1.01511353e+002 1.14777443e+002 1.22395523e+002 1.01558472e+002 - 1.14833763e+002 1.22378899e+002 1.01664299e+002 1.14904327e+002 - 1.22382973e+002 1.01733376e+002 1.14979179e+002 1.22374275e+002 - 1.01829292e+002 1.15061020e+002 1.22394173e+002 1.01896500e+002 - 1.15138748e+002 1.22400841e+002 1.01980293e+002 1.15205315e+002 - 1.22419052e+002 1.02062424e+002 1.15283180e+002 1.22416267e+002 - 1.02183052e+002 1.15380356e+002 1.22443253e+002 1.02265442e+002 - 1.15479828e+002 1.22464828e+002 1.02365578e+002 1.15553162e+002 - 1.22487297e+002 1.02434723e+002 1.15623459e+002 1.22489388e+002 - 1.02557259e+002 1.15717598e+002 1.22525093e+002 1.02664963e+002 - 1.15833000e+002 1.22562881e+002 1.02762672e+002 1.15899895e+002 - 1.22579468e+002 1.02857346e+002 1.15990524e+002 1.22596489e+002 - 1.02949409e+002 1.16051552e+002 1.22607414e+002 1.03050186e+002 - 1.16143730e+002 1.22634064e+002 1.03193214e+002 1.16236549e+002 - 1.22677597e+002 1.03278419e+002 1.16317551e+002 1.22685394e+002 - 1.03369278e+002 1.16369087e+002 1.22691002e+002 1.03427032e+002 - 1.16418930e+002 1.22674294e+002 1.03448120e+002 1.16397652e+002 - 1.22618843e+002 1.03441429e+002 1.16374725e+002 1.22536995e+002 - 1.03391281e+002 1.16340157e+002 1.22554611e+002 1.03412987e+002 - 1.16395912e+002 1.22655586e+002 1.03399094e+002 1.16388138e+002 - 1.22709145e+002 1.03362083e+002 1.16385185e+002 1.22748123e+002 - 1.03279869e+002 1.16322510e+002 1.22760048e+002 1.03187492e+002 - 1.16259041e+002 1.22749512e+002 1.03073738e+002 1.16168083e+002 - 1.22727158e+002 1.02946175e+002 1.16071686e+002 1.22678986e+002 - 1.02867577e+002 1.15999489e+002 1.22687477e+002 1.02754417e+002 - 1.15913818e+002 1.22655319e+002 1.02664085e+002 1.15815132e+002 - 1.22647316e+002 1.02607224e+002 1.15784714e+002 1.22673943e+002 - 1.02507637e+002 1.15695564e+002 1.22653351e+002 1.02396980e+002 - 1.15607300e+002 1.22609985e+002 1.02300705e+002 1.15510834e+002 - 1.22582329e+002 1.02214310e+002 1.15441025e+002 1.22561691e+002 - 1.02123924e+002 1.15351440e+002 1.22575706e+002 1.01981323e+002 - 1.15241081e+002 1.22511314e+002 1.01902969e+002 1.15151848e+002 - 1.22497627e+002 1.01821518e+002 1.15086021e+002 1.22473709e+002 - 1.01752831e+002 1.15012711e+002 1.22479805e+002 1.01649719e+002 - 1.14927216e+002 1.22446709e+002 1.01565781e+002 1.14840744e+002 - 1.22442169e+002 1.01491676e+002 1.14787895e+002 1.22437729e+002 - 1.01415771e+002 1.14700623e+002 1.22433037e+002 1.01320076e+002 - 1.14623878e+002 1.22417641e+002 1.01284462e+002 1.14577110e+002 - 1.22461296e+002 1.01222466e+002 1.14524582e+002 1.22461685e+002 - 1.01155495e+002 1.14455376e+002 1.22462883e+002 1.01066673e+002 - 1.14386963e+002 1.22430336e+002 1.01020164e+002 1.14331062e+002 - 1.22441841e+002 1.00962708e+002 1.14283905e+002 1.22441551e+002 - 1.00881889e+002 1.14202881e+002 1.22448349e+002 1.00765511e+002 - 1.14118294e+002 1.22411865e+002 1.00730820e+002 1.14064568e+002 - 1.22428551e+002 1.00669357e+002 1.14013863e+002 1.22432114e+002 - 1.00619141e+002 1.13954750e+002 1.22463348e+002 1.00537804e+002 - 1.13893761e+002 1.22455444e+002 1.00492615e+002 1.13846725e+002 - 1.22480629e+002 1.00433739e+002 1.13798935e+002 1.22473389e+002 - 1.00385956e+002 1.13745247e+002 1.22481102e+002 1.00316284e+002 - 1.13684303e+002 1.22474808e+002 1.00291100e+002 1.13633125e+002 - 1.22498985e+002 1.00218842e+002 1.13572388e+002 1.22489037e+002 - 1.00179329e+002 1.13521111e+002 1.22503960e+002 1.00128120e+002 - 1.13489204e+002 1.22503746e+002 1.00092102e+002 1.13441437e+002 - 1.22513641e+002 1.00036407e+002 1.13392479e+002 1.22508095e+002 - 9.99998093e+001 1.13348541e+002 1.22542603e+002 9.98970718e+001 - 1.13270302e+002 1.22514015e+002 9.98447342e+001 1.13203476e+002 - 1.22500336e+002 9.98075867e+001 1.13172081e+002 1.22513741e+002 - 9.97938004e+001 1.13136948e+002 1.22549980e+002 9.97485275e+001 - 1.13111198e+002 1.22561897e+002 9.96834106e+001 1.13044960e+002 - 1.22562042e+002 9.96257477e+001 1.12990692e+002 1.22544708e+002 - 9.95663528e+001 1.12919250e+002 1.22532059e+002 9.95197678e+001 - 1.12875427e+002 1.22535034e+002 9.94999542e+001 1.12824409e+002 - 1.22561272e+002 9.94514389e+001 1.12778404e+002 1.22561180e+002 - 9.94094315e+001 1.12728798e+002 1.22564232e+002 9.93691177e+001 - 1.12701088e+002 1.22557434e+002 9.93600159e+001 1.12678520e+002 - 1.22584862e+002 9.93311996e+001 1.12653030e+002 1.22589684e+002 - 9.92988129e+001 1.12616165e+002 1.22623901e+002 9.92167740e+001 - 1.12556267e+002 1.22599823e+002 9.92320938e+001 1.12550522e+002 - 1.22646645e+002 9.92183380e+001 1.12543541e+002 1.22673592e+002 - 9.92185593e+001 1.12531479e+002 1.22719627e+002 9.91707764e+001 - 1.12499954e+002 1.22715576e+002 9.91302490e+001 1.12457581e+002 - 1.22733398e+002 9.90925598e+001 1.12427330e+002 1.22732437e+002 - 9.90821228e+001 1.12407600e+002 1.22763206e+002 9.90197144e+001 - 1.12346992e+002 1.22738770e+002 9.90107040e+001 1.12309967e+002 - 1.22756950e+002 9.89923782e+001 1.12295319e+002 1.22771317e+002 - 9.89902191e+001 1.12283440e+002 1.22804436e+002 9.89467850e+001 - 1.12255905e+002 1.22795670e+002 9.88995209e+001 1.12185982e+002 - 1.22763863e+002 9.88966141e+001 1.12186516e+002 1.22787148e+002 - 9.88721466e+001 1.12150078e+002 1.22801537e+002 9.88477478e+001 - 1.12152321e+002 1.22821854e+002 9.88642654e+001 1.12148300e+002 - 1.22861992e+002 9.88358688e+001 1.12125122e+002 1.22859688e+002 - 9.88185425e+001 1.12088104e+002 1.22872025e+002 9.87963638e+001 - 1.12066597e+002 1.22875992e+002 9.87948914e+001 1.12050713e+002 - 1.22900200e+002 9.87639694e+001 1.12023415e+002 1.22883598e+002 - 9.87593307e+001 1.12001411e+002 1.22897461e+002 9.87519455e+001 - 1.12002350e+002 1.22910912e+002 9.87531357e+001 1.11975212e+002 - 1.22929649e+002 9.87578354e+001 1.11993317e+002 1.22963043e+002 - 9.87604294e+001 1.11996826e+002 1.22982719e+002 9.87454300e+001 - 1.12001045e+002 1.22987190e+002 9.87461090e+001 1.11985764e+002 - 1.22999809e+002 9.87253036e+001 1.11968292e+002 1.22984360e+002 - 9.87079239e+001 1.11942139e+002 1.22989326e+002 9.86689453e+001 - 1.11925026e+002 1.22987045e+002 9.86673965e+001 1.11909821e+002 - 1.23000740e+002 9.86667099e+001 1.11912964e+002 1.23016563e+002 - 9.86773224e+001 1.11901825e+002 1.23044418e+002 9.86557007e+001 - 1.11899750e+002 1.23046486e+002 9.86506119e+001 1.11889297e+002 - 1.23060577e+002 9.86425400e+001 1.11894493e+002 1.23068268e+002 - 9.86387177e+001 1.11881279e+002 1.23071182e+002 9.86138000e+001 - 1.11869583e+002 1.23062378e+002 9.86341934e+001 1.11857941e+002 - 1.23079834e+002 9.86268234e+001 1.11866219e+002 1.23081459e+002 - 9.86270752e+001 1.11862495e+002 1.23092026e+002 9.85824585e+001 - 1.11838593e+002 1.23058319e+002 9.85979080e+001 1.11848434e+002 - 1.23086075e+002 9.86320267e+001 1.11892494e+002 1.23116463e+002 - 9.86312714e+001 1.11883141e+002 1.23123184e+002 9.85921707e+001 - 1.11869041e+002 1.23094719e+002 9.85649338e+001 1.11826141e+002 - 1.23058502e+002 9.85952072e+001 1.11867081e+002 1.23082672e+002 - 9.86098099e+001 1.11859665e+002 1.23090584e+002 9.85777359e+001 - 1.11849846e+002 1.23065498e+002 9.85555801e+001 1.11817841e+002 - 1.23025620e+002 9.85881119e+001 1.11867729e+002 1.23049461e+002 - 9.86305542e+001 1.11894684e+002 1.23077721e+002 9.86332397e+001 - 1.11909378e+002 1.23080162e+002 9.86369019e+001 1.11890839e+002 - 1.23064247e+002 9.86058273e+001 1.11868469e+002 1.23028107e+002 - 9.86119843e+001 1.11866554e+002 1.23020935e+002 9.86138535e+001 - 1.11887589e+002 1.23016533e+002 9.86210480e+001 1.11889908e+002 - 1.23015778e+002 9.86398087e+001 1.11909256e+002 1.23001579e+002 - 9.86644669e+001 1.11928177e+002 1.23011620e+002 9.86542053e+001 - 1.11940712e+002 1.22990128e+002 9.86768875e+001 1.11945801e+002 - 1.22985931e+002 9.87167816e+001 1.11995918e+002 1.23005417e+002 - 9.87649536e+001 1.12034317e+002 1.23035751e+002 9.87547836e+001 - 1.12039063e+002 1.23002907e+002 9.87585602e+001 1.12033981e+002 - 1.22986031e+002 9.87642136e+001 1.12056786e+002 1.22969986e+002 - 9.87659302e+001 1.12045517e+002 1.22942650e+002 9.87621002e+001 - 1.12058868e+002 1.22915924e+002 9.87921524e+001 1.12063400e+002 - 1.22915268e+002 9.88014526e+001 1.12085457e+002 1.22889656e+002 - 9.88350754e+001 1.12112282e+002 1.22887222e+002 9.88167191e+001 - 1.12114754e+002 1.22847298e+002 9.88263931e+001 1.12114494e+002 - 1.22829987e+002 9.88407288e+001 1.12136078e+002 1.22799500e+002 - 9.88933640e+001 1.12174728e+002 1.22799301e+002 9.89129333e+001 - 1.12221634e+002 1.22791512e+002 9.89341888e+001 1.12225128e+002 - 1.22772774e+002 9.89266968e+001 1.12222786e+002 1.22733459e+002 - 9.89412537e+001 1.12220810e+002 1.22698067e+002 9.89740143e+001 - 1.12271660e+002 1.22699959e+002 9.89786682e+001 1.12276161e+002 - 1.22677139e+002 9.89896622e+001 1.12303993e+002 1.22655556e+002 - 9.90153885e+001 1.12320465e+002 1.22638451e+002 9.90473328e+001 - 1.12373497e+002 1.22648262e+002 9.91102600e+001 1.12407753e+002 - 1.22663330e+002 9.91360016e+001 1.12449722e+002 1.22655960e+002 - 9.91706924e+001 1.12465912e+002 1.22632202e+002 9.91677017e+001 - 1.12480064e+002 1.22599548e+002 9.92090302e+001 1.12508224e+002 - 1.22593018e+002 9.92953644e+001 1.12599724e+002 1.22619576e+002 - 9.93640594e+001 1.12666855e+002 1.22625748e+002 9.93543015e+001 - 1.12681915e+002 1.22584938e+002 9.94036331e+001 1.12712158e+002 - 1.22585884e+002 9.94121017e+001 1.12732231e+002 1.22550232e+002 - 9.94489670e+001 1.12749405e+002 1.22536880e+002 9.94477768e+001 - 1.12767189e+002 1.22492210e+002 9.94809189e+001 1.12802353e+002 - 1.22475670e+002 9.95257950e+001 1.12872353e+002 1.22474609e+002 - 9.95700989e+001 1.12912354e+002 1.22471786e+002 9.95926514e+001 - 1.12948471e+002 1.22455116e+002 9.96313095e+001 1.12959236e+002 - 1.22421783e+002 9.96750641e+001 1.13023354e+002 1.22423119e+002 - 9.97054825e+001 1.13053879e+002 1.22392921e+002 9.97352982e+001 - 1.13106567e+002 1.22377251e+002 9.98094025e+001 1.13170197e+002 - 1.22407394e+002 9.98414688e+001 1.13209221e+002 1.22380325e+002 - 9.98925476e+001 1.13248886e+002 1.22348473e+002 9.99232712e+001 - 1.13299774e+002 1.22329521e+002 9.99988937e+001 1.13360359e+002 - 1.22352722e+002 1.00029465e+002 1.13400032e+002 1.22337135e+002 - 1.00081474e+002 1.13426926e+002 1.22319366e+002 1.00089073e+002 - 1.13454071e+002 1.22277214e+002 1.00146423e+002 1.13500694e+002 - 1.22273109e+002 1.00204453e+002 1.13569717e+002 1.22265862e+002 - 1.00261902e+002 1.13604996e+002 1.22257385e+002 1.00315002e+002 - 1.13668976e+002 1.22249756e+002 1.00382233e+002 1.13699150e+002 - 1.22231293e+002 1.00424980e+002 1.13758461e+002 1.22217781e+002 - 1.00536064e+002 1.13855667e+002 1.22256210e+002 1.00595444e+002 - 1.13936371e+002 1.22266647e+002 1.00667717e+002 1.13998863e+002 - 1.22280922e+002 1.00736107e+002 1.14070610e+002 1.22276588e+002 - 1.00826027e+002 1.14140747e+002 1.22276031e+002 1.00869522e+002 - 1.14205925e+002 1.22264679e+002 1.00950500e+002 1.14261971e+002 - 1.22286461e+002 1.01007095e+002 1.14328316e+002 1.22287598e+002 - 1.01092125e+002 1.14396317e+002 1.22304642e+002 1.01171219e+002 - 1.14480164e+002 1.22319786e+002 1.01242867e+002 1.14541847e+002 - 1.22313286e+002 1.01336281e+002 1.14644814e+002 1.22334816e+002 - 1.01412399e+002 1.14699760e+002 1.22330307e+002 1.01449066e+002 - 1.14743332e+002 1.22295624e+002 1.01549942e+002 1.14802605e+002 - 1.22291306e+002 1.01632225e+002 1.14893684e+002 1.22302544e+002 - 1.01725975e+002 1.14968704e+002 1.22316071e+002 1.01784554e+002 - 1.15040466e+002 1.22312172e+002 1.01886093e+002 1.15128532e+002 - 1.22354523e+002 1.01966522e+002 1.15198784e+002 1.22349983e+002 - 1.02085121e+002 1.15300705e+002 1.22375816e+002 1.02175865e+002 - 1.15407639e+002 1.22409485e+002 1.02260689e+002 1.15465248e+002 - 1.22416298e+002 1.02325241e+002 1.15533737e+002 1.22415802e+002 - 1.02463127e+002 1.15642838e+002 1.22466743e+002 1.02570236e+002 - 1.15747086e+002 1.22499512e+002 1.02649910e+002 1.15803703e+002 - 1.22492897e+002 1.02756248e+002 1.15907272e+002 1.22527885e+002 - 1.02852875e+002 1.15972565e+002 1.22540504e+002 1.02961060e+002 - 1.16072800e+002 1.22576904e+002 1.03109200e+002 1.16166176e+002 - 1.22622536e+002 1.03191643e+002 1.16245026e+002 1.22627922e+002 - 1.03306061e+002 1.16318535e+002 1.22650322e+002 1.03363075e+002 - 1.16370842e+002 1.22634262e+002 1.03384010e+002 1.16351845e+002 - 1.22578751e+002 1.03373375e+002 1.16322983e+002 1.22492233e+002 - 1.03336205e+002 1.16289749e+002 1.22527649e+002 1.03344475e+002 - 1.16338043e+002 1.22611900e+002 1.03326782e+002 1.16335960e+002 - 1.22669762e+002 1.03291695e+002 1.16331528e+002 1.22710793e+002 - 1.03214447e+002 1.16270180e+002 1.22726479e+002 1.03120178e+002 - 1.16209808e+002 1.22713516e+002 1.03005325e+002 1.16116631e+002 - 1.22693413e+002 1.02895027e+002 1.16033043e+002 1.22654732e+002 - 1.02825829e+002 1.15974823e+002 1.22665977e+002 1.02702171e+002 - 1.15878090e+002 1.22626297e+002 1.02604630e+002 1.15771271e+002 - 1.22617104e+002 1.02518959e+002 1.15709679e+002 1.22616631e+002 - 1.02429771e+002 1.15631638e+002 1.22604416e+002 1.02314751e+002 - 1.15545891e+002 1.22558319e+002 1.02229530e+002 1.15450851e+002 - 1.22534096e+002 1.02133759e+002 1.15370201e+002 1.22512024e+002 - 1.02023338e+002 1.15267220e+002 1.22503471e+002 1.01883835e+002 - 1.15159981e+002 1.22452545e+002 1.01801201e+002 1.15061592e+002 - 1.22423424e+002 1.01712578e+002 1.14992767e+002 1.22397903e+002 - 1.01636444e+002 1.14908737e+002 1.22394958e+002 1.01554077e+002 - 1.14844154e+002 1.22381645e+002 1.01486580e+002 1.14778191e+002 - 1.22392113e+002 1.01428078e+002 1.14734779e+002 1.22405052e+002 - 1.01353592e+002 1.14660469e+002 1.22411934e+002 1.01237587e+002 - 1.14557014e+002 1.22367157e+002 1.01188194e+002 1.14485054e+002 - 1.22387138e+002 1.01157318e+002 1.14472130e+002 1.22422180e+002 - 1.01085670e+002 1.14393555e+002 1.22417213e+002 1.00989510e+002 - 1.14328125e+002 1.22378174e+002 1.00926147e+002 1.14248009e+002 - 1.22379272e+002 1.00872421e+002 1.14204788e+002 1.22379112e+002 - 1.00784653e+002 1.14116631e+002 1.22383156e+002 1.00665924e+002 - 1.14028175e+002 1.22337952e+002 1.00643845e+002 1.13991806e+002 - 1.22366493e+002 1.00591316e+002 1.13952682e+002 1.22388214e+002 - 1.00545120e+002 1.13890640e+002 1.22411308e+002 1.00459099e+002 - 1.13823364e+002 1.22394981e+002 1.00405685e+002 1.13773354e+002 - 1.22414238e+002 1.00335098e+002 1.13717606e+002 1.22399292e+002 - 1.00318649e+002 1.13689560e+002 1.22434570e+002 1.00246330e+002 - 1.13629211e+002 1.22423729e+002 1.00207489e+002 1.13558205e+002 - 1.22441650e+002 1.00147003e+002 1.13507286e+002 1.22442841e+002 - 1.00105217e+002 1.13459808e+002 1.22452316e+002 1.00047112e+002 - 1.13419792e+002 1.22449120e+002 1.00015175e+002 1.13372307e+002 - 1.22467766e+002 9.99385757e+001 1.13308517e+002 1.22442177e+002 - 9.98926697e+001 1.13258614e+002 1.22467072e+002 9.98147812e+001 - 1.13202415e+002 1.22448082e+002 9.97479706e+001 1.13119156e+002 - 1.22427856e+002 9.97217407e+001 1.13101097e+002 1.22446739e+002 - 9.97222748e+001 1.13085159e+002 1.22506859e+002 9.96612701e+001 - 1.13037140e+002 1.22499840e+002 9.95851364e+001 1.12955727e+002 - 1.22482307e+002 9.95218430e+001 1.12895554e+002 1.22464645e+002 - 9.94882507e+001 1.12848076e+002 1.22479309e+002 9.94207993e+001 - 1.12789513e+002 1.22459389e+002 9.93915100e+001 1.12724373e+002 - 1.22483765e+002 9.93501816e+001 1.12693825e+002 1.22487396e+002 - 9.92889862e+001 1.12621307e+002 1.22469963e+002 9.92803116e+001 - 1.12628677e+002 1.22499367e+002 9.92655563e+001 1.12597740e+002 - 1.22520119e+002 9.92543335e+001 1.12591461e+002 1.22546692e+002 - 9.92305069e+001 1.12560135e+002 1.22580490e+002 9.91449814e+001 - 1.12498421e+002 1.22549606e+002 9.91534271e+001 1.12483482e+002 - 1.22596512e+002 9.91245422e+001 1.12466087e+002 1.22607216e+002 - 9.91204376e+001 1.12441444e+002 1.22648201e+002 9.90676498e+001 - 1.12407555e+002 1.22641235e+002 9.90379639e+001 1.12376793e+002 - 1.22664864e+002 9.90028458e+001 1.12350815e+002 1.22668846e+002 - 9.89813080e+001 1.12316200e+002 1.22684120e+002 9.89167175e+001 - 1.12256561e+002 1.22655045e+002 9.89214783e+001 1.12227341e+002 - 1.22688675e+002 9.89226303e+001 1.12235893e+002 1.22723511e+002 - 9.88988342e+001 1.12204300e+002 1.22739204e+002 9.88577499e+001 - 1.12178848e+002 1.22721474e+002 9.88334732e+001 1.12138962e+002 - 1.22725243e+002 9.88164978e+001 1.12119514e+002 1.22726479e+002 - 9.87943420e+001 1.12081772e+002 1.22746185e+002 9.87679825e+001 - 1.12082397e+002 1.22767670e+002 9.87818527e+001 1.12074959e+002 - 1.22798157e+002 9.87633896e+001 1.12065376e+002 1.22811844e+002 - 9.87399292e+001 1.12014938e+002 1.22815590e+002 9.87018890e+001 - 1.11982948e+002 1.22800301e+002 9.87062988e+001 1.11974884e+002 - 1.22833618e+002 9.86758423e+001 1.11947220e+002 1.22820297e+002 - 9.86902924e+001 1.11943222e+002 1.22853012e+002 9.86788177e+001 - 1.11943039e+002 1.22859344e+002 9.86925964e+001 1.11921860e+002 - 1.22889259e+002 9.86844788e+001 1.11930214e+002 1.22903519e+002 - 9.86790314e+001 1.11926140e+002 1.22918228e+002 9.86224442e+001 - 1.11884254e+002 1.22873756e+002 9.86138458e+001 1.11860878e+002 - 1.22887032e+002 9.86085205e+001 1.11862846e+002 1.22891869e+002 - 9.86022491e+001 1.11845024e+002 1.22904404e+002 9.85614166e+001 - 1.11829628e+002 1.22895554e+002 9.85620956e+001 1.11813393e+002 - 1.22912659e+002 9.85520248e+001 1.11813118e+002 1.22924042e+002 - 9.85766449e+001 1.11814377e+002 1.22962402e+002 9.85414505e+001 - 1.11798782e+002 1.22948166e+002 9.85354156e+001 1.11787552e+002 - 1.22962769e+002 9.85417480e+001 1.11802338e+002 1.22981125e+002 - 9.85309677e+001 1.11785194e+002 1.22981995e+002 9.85016022e+001 - 1.11773041e+002 1.22973183e+002 9.85051041e+001 1.11740570e+002 - 1.22979477e+002 9.85082321e+001 1.11757820e+002 1.22986397e+002 - 9.84996109e+001 1.11740326e+002 1.22979088e+002 9.84795227e+001 - 1.11743561e+002 1.22968796e+002 9.85180435e+001 1.11770607e+002 - 1.23022758e+002 9.85313873e+001 1.11796646e+002 1.23036522e+002 - 9.85155411e+001 1.11775063e+002 1.23025047e+002 9.84708481e+001 - 1.11755608e+002 1.22989616e+002 9.84590988e+001 1.11730682e+002 - 1.22969337e+002 9.84528580e+001 1.11735649e+002 1.22966377e+002 - 9.84612885e+001 1.11724411e+002 1.22969246e+002 9.84459305e+001 - 1.11723900e+002 1.22950989e+002 9.84243698e+001 1.11709290e+002 - 1.22925652e+002 9.84544830e+001 1.11746490e+002 1.22936966e+002 - 9.84893341e+001 1.11769096e+002 1.22963737e+002 9.84942551e+001 - 1.11789528e+002 1.22960228e+002 9.85121078e+001 1.11773766e+002 - 1.22962990e+002 9.85084000e+001 1.11779915e+002 1.22953552e+002 - 9.85111313e+001 1.11779289e+002 1.22938911e+002 9.85079346e+001 - 1.11798706e+002 1.22938011e+002 9.84992981e+001 1.11776428e+002 - 1.22916924e+002 9.85441208e+001 1.11825722e+002 1.22933403e+002 - 9.85613632e+001 1.11833740e+002 1.22931618e+002 9.85565643e+001 - 1.11846237e+002 1.22913010e+002 9.85794830e+001 1.11849625e+002 - 1.22909737e+002 9.86195679e+001 1.11908730e+002 1.22934464e+002 - 9.86634674e+001 1.11936569e+002 1.22952209e+002 9.86497650e+001 - 1.11940201e+002 1.22916794e+002 9.86336136e+001 1.11920631e+002 - 1.22878220e+002 9.86483536e+001 1.11943840e+002 1.22866776e+002 - 9.86449738e+001 1.11931236e+002 1.22840637e+002 9.86534195e+001 - 1.11959312e+002 1.22827530e+002 9.86753006e+001 1.11948395e+002 - 1.22808655e+002 9.86881943e+001 1.11981201e+002 1.22797729e+002 - 9.87187576e+001 1.12005478e+002 1.22791023e+002 9.87030411e+001 - 1.12020119e+002 1.22754753e+002 9.87310104e+001 1.12024605e+002 - 1.22747078e+002 9.87595978e+001 1.12066551e+002 1.22732979e+002 - 9.87986603e+001 1.12095627e+002 1.22726067e+002 9.87993622e+001 - 1.12120842e+002 1.22700615e+002 9.88249283e+001 1.12133842e+002 - 1.22689941e+002 9.88335648e+001 1.12158470e+002 1.22657784e+002 - 9.88346100e+001 1.12129143e+002 1.22617905e+002 9.88490753e+001 - 1.12160126e+002 1.22602104e+002 9.88638535e+001 1.12173302e+002 - 1.22586998e+002 9.88981705e+001 1.12226418e+002 1.22593842e+002 - 9.89434814e+001 1.12265541e+002 1.22596359e+002 9.89556427e+001 - 1.12295677e+002 1.22579239e+002 9.90159836e+001 1.12318207e+002 - 1.22582886e+002 9.90379257e+001 1.12354088e+002 1.22581787e+002 - 9.90478973e+001 1.12354172e+002 1.22540253e+002 9.90486221e+001 - 1.12371811e+002 1.22501823e+002 9.91046829e+001 1.12415268e+002 - 1.22515198e+002 9.91884079e+001 1.12503242e+002 1.22539063e+002 - 9.92518158e+001 1.12565048e+002 1.22534546e+002 9.92462234e+001 - 1.12585617e+002 1.22498787e+002 9.93087158e+001 1.12621346e+002 - 1.22507683e+002 9.93288422e+001 1.12661522e+002 1.22497337e+002 - 9.93515549e+001 1.12665779e+002 1.22461662e+002 9.93572388e+001 - 1.12688560e+002 1.22424332e+002 9.93846741e+001 1.12721962e+002 - 1.22411293e+002 9.94198685e+001 1.12776176e+002 1.22394844e+002 - 9.94732132e+001 1.12826111e+002 1.22399979e+002 9.95105667e+001 - 1.12877983e+002 1.22397881e+002 9.95583801e+001 1.12899277e+002 - 1.22379372e+002 9.96118851e+001 1.12969666e+002 1.22381706e+002 - 9.96376572e+001 1.12994614e+002 1.22345543e+002 9.96638565e+001 - 1.13048866e+002 1.22333305e+002 9.97316818e+001 1.13103432e+002 - 1.22357506e+002 9.97725372e+001 1.13151901e+002 1.22336212e+002 - 9.98055038e+001 1.13176003e+002 1.22288696e+002 9.98159180e+001 - 1.13211319e+002 1.22254562e+002 9.98857193e+001 1.13260826e+002 - 1.22268959e+002 9.99288254e+001 1.13310570e+002 1.22263092e+002 - 9.99905396e+001 1.13350403e+002 1.22259872e+002 1.00023346e+002 - 1.13401718e+002 1.22239525e+002 1.00069237e+002 1.13436249e+002 - 1.22220467e+002 1.00129204e+002 1.13505714e+002 1.22219170e+002 - 1.00186256e+002 1.13543213e+002 1.22204285e+002 1.00242966e+002 - 1.13609322e+002 1.22200310e+002 1.00309128e+002 1.13641090e+002 - 1.22186798e+002 1.00371689e+002 1.13710838e+002 1.22184402e+002 - 1.00467079e+002 1.13800331e+002 1.22210190e+002 1.00525650e+002 - 1.13882286e+002 1.22217392e+002 1.00589264e+002 1.13923248e+002 - 1.22224350e+002 1.00667809e+002 1.14012810e+002 1.22228310e+002 - 1.00766312e+002 1.14094437e+002 1.22241959e+002 1.00797104e+002 - 1.14143311e+002 1.22218819e+002 1.00866493e+002 1.14187355e+002 - 1.22218605e+002 1.00914436e+002 1.14249634e+002 1.22217087e+002 - 1.01016739e+002 1.14329163e+002 1.22248146e+002 1.01098038e+002 - 1.14416107e+002 1.22266197e+002 1.01181000e+002 1.14489304e+002 - 1.22276642e+002 1.01256706e+002 1.14576477e+002 1.22281288e+002 - 1.01328560e+002 1.14629341e+002 1.22277039e+002 1.01369263e+002 - 1.14678719e+002 1.22241776e+002 1.01471413e+002 1.14735603e+002 - 1.22244705e+002 1.01542442e+002 1.14812523e+002 1.22241852e+002 - 1.01620743e+002 1.14874512e+002 1.22240662e+002 1.01698677e+002 - 1.14962021e+002 1.22254509e+002 1.01802231e+002 1.15049919e+002 - 1.22292175e+002 1.01879784e+002 1.15127937e+002 1.22295227e+002 - 1.02003166e+002 1.15239067e+002 1.22326256e+002 1.02100563e+002 - 1.15347511e+002 1.22364815e+002 1.02198105e+002 1.15418182e+002 - 1.22385895e+002 1.02264282e+002 1.15489540e+002 1.22388641e+002 - 1.02397141e+002 1.15593323e+002 1.22438965e+002 1.02487534e+002 - 1.15680557e+002 1.22447784e+002 1.02583939e+002 1.15758446e+002 - 1.22463394e+002 1.02686218e+002 1.15853188e+002 1.22491783e+002 - 1.02802719e+002 1.15936569e+002 1.22514999e+002 1.02897957e+002 - 1.16023979e+002 1.22543945e+002 1.03045059e+002 1.16119316e+002 - 1.22588631e+002 1.03135246e+002 1.16200592e+002 1.22598221e+002 - 1.03248169e+002 1.16270241e+002 1.22614807e+002 1.03267357e+002 - 1.16287727e+002 1.22563179e+002 1.03304970e+002 1.16283745e+002 - 1.22524742e+002 1.03278152e+002 1.16241096e+002 1.22422562e+002 - 1.03269020e+002 1.16225845e+002 1.22496964e+002 1.03267311e+002 - 1.16277161e+002 1.22579277e+002 1.03250633e+002 1.16274811e+002 - 1.22636665e+002 1.03197510e+002 1.16253006e+002 1.22657082e+002 - 1.03119759e+002 1.16192329e+002 1.22671516e+002 1.03020538e+002 - 1.16124924e+002 1.22651253e+002 1.02923485e+002 1.16042664e+002 - 1.22644020e+002 1.02821434e+002 1.15971939e+002 1.22618080e+002 - 1.02741562e+002 1.15901962e+002 1.22616928e+002 1.02623924e+002 - 1.15818344e+002 1.22583733e+002 1.02533684e+002 1.15712105e+002 - 1.22581451e+002 1.02436111e+002 1.15639030e+002 1.22566200e+002 - 1.02342781e+002 1.15559662e+002 1.22546768e+002 1.02236191e+002 - 1.15473503e+002 1.22511055e+002 1.02148415e+002 1.15379570e+002 - 1.22485275e+002 1.02054367e+002 1.15303764e+002 1.22459808e+002 - 1.01940178e+002 1.15191200e+002 1.22447807e+002 1.01797691e+002 - 1.15086281e+002 1.22395370e+002 1.01701843e+002 1.14978004e+002 - 1.22359413e+002 1.01629028e+002 1.14919273e+002 1.22350327e+002 - 1.01549591e+002 1.14837463e+002 1.22341667e+002 1.01469612e+002 - 1.14770836e+002 1.22333511e+002 1.01405762e+002 1.14704659e+002 - 1.22344170e+002 1.01329803e+002 1.14644073e+002 1.22337471e+002 - 1.01271324e+002 1.14583359e+002 1.22357941e+002 1.01156586e+002 - 1.14488930e+002 1.22315109e+002 1.01094032e+002 1.14401634e+002 - 1.22324959e+002 1.01046455e+002 1.14374168e+002 1.22346306e+002 - 1.00994766e+002 1.14324883e+002 1.22365898e+002 1.00924911e+002 - 1.14271492e+002 1.22356392e+002 1.00860909e+002 1.14195122e+002 - 1.22346405e+002 1.00771782e+002 1.14120590e+002 1.22311195e+002 - 1.00671318e+002 1.14018761e+002 1.22303154e+002 1.00580536e+002 - 1.13955154e+002 1.22285973e+002 1.00545059e+002 1.13903740e+002 - 1.22305351e+002 1.00482376e+002 1.13856346e+002 1.22309174e+002 - 1.00414734e+002 1.13771469e+002 1.22314209e+002 1.00357544e+002 - 1.13730736e+002 1.22322861e+002 1.00299881e+002 1.13680664e+002 - 1.22344002e+002 1.00241310e+002 1.13631599e+002 1.22333214e+002 - 1.00201233e+002 1.13581871e+002 1.22353233e+002 1.00140717e+002 - 1.13534935e+002 1.22354660e+002 1.00092613e+002 1.13456558e+002 - 1.22366524e+002 1.00036346e+002 1.13411461e+002 1.22368896e+002 - 1.00019211e+002 1.13390793e+002 1.22407822e+002 9.99499664e+001 - 1.13332870e+002 1.22389488e+002 9.98949890e+001 1.13266846e+002 - 1.22383453e+002 9.98253479e+001 1.13209045e+002 1.22362473e+002 - 9.97850876e+001 1.13165871e+002 1.22392975e+002 9.97085037e+001 - 1.13113823e+002 1.22383209e+002 9.96681442e+001 1.13053947e+002 - 1.22385391e+002 9.96135788e+001 1.13012222e+002 1.22376648e+002 - 9.96054153e+001 1.12979530e+002 1.22423019e+002 9.95528870e+001 - 1.12939941e+002 1.22422295e+002 9.94646835e+001 1.12851097e+002 - 1.22400856e+002 9.94207153e+001 1.12807091e+002 1.22398758e+002 - 9.93991852e+001 1.12770782e+002 1.22429161e+002 9.93212814e+001 - 1.12700188e+002 1.22396866e+002 9.92811279e+001 1.12628578e+002 - 1.22410454e+002 9.92555313e+001 1.12606445e+002 1.22429489e+002 - 9.91942215e+001 1.12540932e+002 1.22414467e+002 9.91442795e+001 - 1.12505249e+002 1.22410797e+002 9.91247940e+001 1.12466347e+002 - 1.22423042e+002 9.91401978e+001 1.12488892e+002 1.22467682e+002 - 9.91109085e+001 1.12450752e+002 1.22499390e+002 9.90392685e+001 - 1.12397285e+002 1.22481544e+002 9.90340424e+001 1.12371239e+002 - 1.22505119e+002 9.90105896e+001 1.12362946e+002 1.22528038e+002 - 9.90046463e+001 1.12342300e+002 1.22567642e+002 9.89629593e+001 - 1.12314415e+002 1.22572548e+002 9.89426575e+001 1.12289406e+002 - 1.22601830e+002 9.89060059e+001 1.12264786e+002 1.22602104e+002 - 9.88889923e+001 1.12231865e+002 1.22620728e+002 9.88371506e+001 - 1.12192635e+002 1.22609276e+002 9.88147736e+001 1.12141617e+002 - 1.22622925e+002 9.88172760e+001 1.12145851e+002 1.22654335e+002 - 9.87794876e+001 1.12108597e+002 1.22650429e+002 9.87576675e+001 - 1.12094872e+002 1.22654007e+002 9.87441940e+001 1.12065025e+002 - 1.22669456e+002 9.87234726e+001 1.12039429e+002 1.22663429e+002 - 9.86934204e+001 1.11993408e+002 1.22672829e+002 9.86885757e+001 - 1.12016373e+002 1.22720200e+002 9.86991882e+001 1.12004158e+002 - 1.22746887e+002 9.86742172e+001 1.11989197e+002 1.22758751e+002 - 9.86515121e+001 1.11947662e+002 1.22764145e+002 9.86153564e+001 - 1.11907654e+002 1.22744827e+002 9.86154251e+001 1.11891769e+002 - 1.22773148e+002 9.85763168e+001 1.11857750e+002 1.22747009e+002 - 9.85949478e+001 1.11858154e+002 1.22789299e+002 9.85786819e+001 - 1.11852898e+002 1.22791100e+002 9.85990067e+001 1.11844337e+002 - 1.22830185e+002 9.85668335e+001 1.11828407e+002 1.22820892e+002 - 9.85648880e+001 1.11823547e+002 1.22840179e+002 9.85310287e+001 - 1.11803963e+002 1.22821960e+002 9.85093307e+001 1.11769821e+002 - 1.22819893e+002 9.84947357e+001 1.11762680e+002 1.22814774e+002 - 9.84995651e+001 1.11750374e+002 1.22832382e+002 9.84447479e+001 - 1.11722176e+002 1.22816872e+002 9.84575729e+001 1.11717018e+002 - 1.22838188e+002 9.84723434e+001 1.11738739e+002 1.22869225e+002 - 9.84761200e+001 1.11723091e+002 1.22888634e+002 9.84285965e+001 - 1.11690506e+002 1.22859276e+002 9.84231491e+001 1.11684471e+002 - 1.22879768e+002 9.84251175e+001 1.11695702e+002 1.22887718e+002 - 9.84130173e+001 1.11683327e+002 1.22896400e+002 9.83773727e+001 - 1.11656647e+002 1.22877594e+002 9.83767853e+001 1.11625565e+002 - 1.22873848e+002 9.83785019e+001 1.11640839e+002 1.22888062e+002 - 9.83832169e+001 1.11640923e+002 1.22894966e+002 9.83943481e+001 - 1.11665894e+002 1.22909676e+002 9.84119797e+001 1.11680801e+002 - 1.22942261e+002 9.83946915e+001 1.11672432e+002 1.22923599e+002 - 9.83845367e+001 1.11650169e+002 1.22914261e+002 9.83646164e+001 - 1.11657158e+002 1.22909302e+002 9.83636551e+001 1.11642189e+002 - 1.22901421e+002 9.83573608e+001 1.11652756e+002 1.22895653e+002 - 9.83356857e+001 1.11618156e+002 1.22866943e+002 9.83248901e+001 - 1.11624390e+002 1.22854698e+002 9.83084717e+001 1.11600273e+002 - 1.22831848e+002 9.83316193e+001 1.11641953e+002 1.22844795e+002 - 9.83832932e+001 1.11676605e+002 1.22881264e+002 9.83641129e+001 - 1.11675835e+002 1.22865044e+002 9.83760834e+001 1.11654778e+002 - 1.22855263e+002 9.83924103e+001 1.11679253e+002 1.22865753e+002 - 9.84076996e+001 1.11689232e+002 1.22863197e+002 9.83975220e+001 - 1.11699707e+002 1.22849693e+002 9.84024277e+001 1.11687111e+002 - 1.22845848e+002 9.84248657e+001 1.11717384e+002 1.22842026e+002 - 9.84528885e+001 1.11732040e+002 1.22850891e+002 9.84615021e+001 - 1.11766975e+002 1.22853203e+002 9.84875488e+001 1.11768120e+002 - 1.22846100e+002 9.85044937e+001 1.11800743e+002 1.22843887e+002 - 9.85325546e+001 1.11813232e+002 1.22848610e+002 9.85211716e+001 - 1.11819115e+002 1.22819481e+002 9.85125809e+001 1.11810425e+002 - 1.22787476e+002 9.85552216e+001 1.11856804e+002 1.22798325e+002 - 9.85683365e+001 1.11857452e+002 1.22785240e+002 9.85453186e+001 - 1.11859924e+002 1.22746628e+002 9.85575943e+001 1.11840073e+002 - 1.22720802e+002 9.85607758e+001 1.11864044e+002 1.22694763e+002 - 9.86084061e+001 1.11905388e+002 1.22705048e+002 9.86003494e+001 - 1.11921730e+002 1.22670509e+002 9.86296234e+001 1.11934380e+002 - 1.22666969e+002 9.86420670e+001 1.11953568e+002 1.22638924e+002 - 9.86764679e+001 1.11983887e+002 1.22631821e+002 9.86694260e+001 - 1.12006546e+002 1.22603310e+002 9.86755600e+001 1.11992371e+002 - 1.22573685e+002 9.87120895e+001 1.12043175e+002 1.22569962e+002 - 9.87332230e+001 1.12039078e+002 1.22552231e+002 9.87417831e+001 - 1.12065491e+002 1.22525955e+002 9.87596893e+001 1.12088318e+002 - 1.22523178e+002 9.87985001e+001 1.12135941e+002 1.22523117e+002 - 9.88121109e+001 1.12144753e+002 1.22495338e+002 9.88339844e+001 - 1.12182068e+002 1.22485664e+002 9.88940582e+001 1.12210754e+002 - 1.22502884e+002 9.89099503e+001 1.12237717e+002 1.22478493e+002 - 9.89424820e+001 1.12256805e+002 1.22461632e+002 9.89632874e+001 - 1.12292885e+002 1.22435982e+002 9.89974518e+001 1.12308029e+002 - 1.22431396e+002 9.90669327e+001 1.12386810e+002 1.22439919e+002 - 9.91209641e+001 1.12437637e+002 1.22431252e+002 9.91310272e+001 - 1.12471535e+002 1.22406471e+002 9.92065964e+001 1.12529503e+002 - 1.22439377e+002 9.92278214e+001 1.12564880e+002 1.22422897e+002 - 9.92360535e+001 1.12561096e+002 1.22380882e+002 9.92612686e+001 - 1.12606567e+002 1.22360054e+002 9.92930679e+001 1.12647568e+002 - 1.22351089e+002 9.93346786e+001 1.12704918e+002 1.22346176e+002 - 9.93769073e+001 1.12740639e+002 1.22336761e+002 9.93873901e+001 - 1.12770248e+002 1.22307877e+002 9.94617004e+001 1.12815216e+002 - 1.22315315e+002 9.95149078e+001 1.12880180e+002 1.22314133e+002 - 9.95547867e+001 1.12923683e+002 1.22295723e+002 9.95522232e+001 - 1.12945686e+002 1.22254974e+002 9.96180801e+001 1.13002533e+002 - 1.22276352e+002 9.96740494e+001 1.13066277e+002 1.22269135e+002 - 9.97104721e+001 1.13089577e+002 1.22222725e+002 9.97109985e+001 - 1.13106728e+002 1.22172737e+002 9.97795029e+001 1.13162140e+002 - 1.22196564e+002 9.98403244e+001 1.13233986e+002 1.22207405e+002 - 9.99055099e+001 1.13282806e+002 1.22208214e+002 9.99424515e+001 - 1.13333443e+002 1.22192459e+002 9.99948196e+001 1.13374062e+002 - 1.22175949e+002 1.00038841e+002 1.13429459e+002 1.22166191e+002 - 1.00084587e+002 1.13452484e+002 1.22141190e+002 1.00168236e+002 - 1.13542931e+002 1.22157463e+002 1.00252350e+002 1.13592957e+002 - 1.22160538e+002 1.00303391e+002 1.13654366e+002 1.22150459e+002 - 1.00378578e+002 1.13724228e+002 1.22157211e+002 1.00424583e+002 - 1.13788017e+002 1.22151657e+002 1.00488091e+002 1.13835503e+002 - 1.22153564e+002 1.00569901e+002 1.13924446e+002 1.22163445e+002 - 1.00666191e+002 1.14005386e+002 1.22173950e+002 1.00723389e+002 - 1.14082336e+002 1.22172409e+002 1.00795921e+002 1.14127968e+002 - 1.22185410e+002 1.00842125e+002 1.14190765e+002 1.22176582e+002 - 1.00934883e+002 1.14256104e+002 1.22194794e+002 1.00998817e+002 - 1.14337654e+002 1.22202499e+002 1.01084023e+002 1.14410614e+002 - 1.22213547e+002 1.01172852e+002 1.14504112e+002 1.22239662e+002 - 1.01235634e+002 1.14547188e+002 1.22221313e+002 1.01285645e+002 - 1.14605232e+002 1.22199303e+002 1.01387115e+002 1.14663330e+002 - 1.22199997e+002 1.01449814e+002 1.14732544e+002 1.22187988e+002 - 1.01561493e+002 1.14819527e+002 1.22211784e+002 1.01630829e+002 - 1.14901093e+002 1.22225037e+002 1.01718620e+002 1.14974747e+002 - 1.22251190e+002 1.01792862e+002 1.15049355e+002 1.22247482e+002 - 1.01917282e+002 1.15161469e+002 1.22277176e+002 1.01983421e+002 - 1.15245529e+002 1.22279510e+002 1.02090096e+002 1.15319786e+002 - 1.22312859e+002 1.02173073e+002 1.15407341e+002 1.22330902e+002 - 1.02305016e+002 1.15515381e+002 1.22383392e+002 1.02402397e+002 - 1.15612877e+002 1.22400650e+002 1.02522789e+002 1.15714401e+002 - 1.22439140e+002 1.02627571e+002 1.15807350e+002 1.22467621e+002 - 1.02723106e+002 1.15878227e+002 1.22475525e+002 1.02826439e+002 - 1.15965607e+002 1.22507622e+002 1.02970116e+002 1.16054779e+002 - 1.22546623e+002 1.03075020e+002 1.16146255e+002 1.22570671e+002 - 1.03169060e+002 1.16204178e+002 1.22569702e+002 1.03193878e+002 - 1.16223923e+002 1.22520782e+002 1.03227997e+002 1.16208786e+002 - 1.22477867e+002 1.03189934e+002 1.16162743e+002 1.22363373e+002 - 1.03188797e+002 1.16159279e+002 1.22442101e+002 1.03184517e+002 - 1.16199921e+002 1.22520805e+002 1.03165039e+002 1.16196846e+002 - 1.22576370e+002 1.03113510e+002 1.16180023e+002 1.22601006e+002 - 1.03055275e+002 1.16142120e+002 1.22631645e+002 1.02936096e+002 - 1.16061424e+002 1.22597275e+002 1.02826462e+002 1.15968330e+002 - 1.22572807e+002 1.02723091e+002 1.15892662e+002 1.22538750e+002 - 1.02653900e+002 1.15825722e+002 1.22552094e+002 1.02528549e+002 - 1.15730049e+002 1.22511787e+002 1.02437019e+002 1.15631172e+002 - 1.22511230e+002 1.02352074e+002 1.15568542e+002 1.22505447e+002 - 1.02250565e+002 1.15471832e+002 1.22477112e+002 1.02173935e+002 - 1.15419342e+002 1.22466995e+002 1.02083687e+002 1.15328735e+002 - 1.22438683e+002 1.01958626e+002 1.15220703e+002 1.22386551e+002 - 1.01851913e+002 1.15117455e+002 1.22381905e+002 1.01704788e+002 - 1.15003021e+002 1.22321976e+002 1.01606659e+002 1.14892845e+002 - 1.22285011e+002 1.01541420e+002 1.14845108e+002 1.22280602e+002 - 1.01453918e+002 1.14752541e+002 1.22268814e+002 1.01372498e+002 - 1.14685852e+002 1.22253601e+002 1.01317650e+002 1.14634605e+002 - 1.22288307e+002 1.01237946e+002 1.14566093e+002 1.22269020e+002 - 1.01172630e+002 1.14502243e+002 1.22278389e+002 1.01077469e+002 - 1.14420982e+002 1.22257294e+002 1.01032333e+002 1.14359200e+002 - 1.22282860e+002 1.00954697e+002 1.14295418e+002 1.22275780e+002 - 1.00886086e+002 1.14231812e+002 1.22281174e+002 1.00818733e+002 - 1.14181900e+002 1.22275192e+002 1.00773186e+002 1.14121086e+002 - 1.22284386e+002 1.00692429e+002 1.14056213e+002 1.22260918e+002 - 1.00594498e+002 1.13960358e+002 1.22254173e+002 1.00512169e+002 - 1.13900719e+002 1.22241158e+002 1.00447029e+002 1.13823051e+002 - 1.22239510e+002 1.00376488e+002 1.13761192e+002 1.22226486e+002 - 1.00321930e+002 1.13689194e+002 1.22246010e+002 1.00255127e+002 - 1.13645714e+002 1.22251289e+002 1.00195198e+002 1.13584991e+002 - 1.22263855e+002 1.00125443e+002 1.13529091e+002 1.22248726e+002 - 1.00074829e+002 1.13468246e+002 1.22251137e+002 1.00000626e+002 - 1.13411346e+002 1.22245369e+002 9.99627686e+001 1.13339714e+002 - 1.22260254e+002 9.99070816e+001 1.13295242e+002 1.22268677e+002 - 9.98903046e+001 1.13277359e+002 1.22309708e+002 9.98129501e+001 - 1.13210495e+002 1.22288521e+002 9.97518692e+001 1.13135887e+002 - 1.22267387e+002 9.96792526e+001 1.13076233e+002 1.22246468e+002 - 9.96542664e+001 1.13054726e+002 1.22293365e+002 9.95813370e+001 - 1.12999763e+002 1.22282982e+002 9.95610580e+001 1.12964447e+002 - 1.22304504e+002 9.95191650e+001 1.12930809e+002 1.22315041e+002 - 9.94898529e+001 1.12876274e+002 1.22330742e+002 9.94186783e+001 - 1.12821396e+002 1.22319305e+002 9.93436356e+001 1.12737274e+002 - 1.22302902e+002 9.93120651e+001 1.12710915e+002 1.22315468e+002 - 9.92872009e+001 1.12669235e+002 1.22340668e+002 9.92071533e+001 - 1.12598305e+002 1.22314766e+002 9.91644592e+001 1.12526497e+002 - 1.22321640e+002 9.91411133e+001 1.12504623e+002 1.22347054e+002 - 9.91097565e+001 1.12468674e+002 1.22364372e+002 9.90496902e+001 - 1.12424698e+002 1.22333649e+002 9.90277481e+001 1.12383102e+002 - 1.22354836e+002 9.90290146e+001 1.12393761e+002 1.22392586e+002 - 9.90211792e+001 1.12373657e+002 1.22437607e+002 9.89585114e+001 - 1.12335945e+002 1.22434822e+002 9.89350815e+001 1.12285866e+002 - 1.22435860e+002 9.89186020e+001 1.12283813e+002 1.22466431e+002 - 9.89142914e+001 1.12261856e+002 1.22505142e+002 9.88633728e+001 - 1.12228050e+002 1.22501549e+002 9.88453140e+001 1.12204987e+002 - 1.22532898e+002 9.87940292e+001 1.12160812e+002 1.22515434e+002 - 9.87911072e+001 1.12147423e+002 1.22546661e+002 9.87397537e+001 - 1.12109413e+002 1.22537750e+002 9.87294388e+001 1.12063553e+002 - 1.22552925e+002 9.87273026e+001 1.12072197e+002 1.22585785e+002 - 9.86803818e+001 1.12017731e+002 1.22575493e+002 9.86602936e+001 - 1.12012199e+002 1.22582962e+002 9.86560669e+001 1.11989159e+002 - 1.22603821e+002 9.86183624e+001 1.11947937e+002 1.22585609e+002 - 9.86117325e+001 1.11928925e+002 1.22620140e+002 9.85993805e+001 - 1.11942101e+002 1.22653900e+002 9.85910645e+001 1.11910744e+002 - 1.22661057e+002 9.85623474e+001 1.11896378e+002 1.22674118e+002 - 9.85513306e+001 1.11857826e+002 1.22685219e+002 9.85158386e+001 - 1.11824234e+002 1.22675064e+002 9.85034332e+001 1.11797935e+002 - 1.22685204e+002 9.84779053e+001 1.11773071e+002 1.22673019e+002 - 9.84944153e+001 1.11775902e+002 1.22712379e+002 9.84700928e+001 - 1.11754547e+002 1.22706421e+002 9.84772491e+001 1.11733276e+002 - 1.22730263e+002 9.84397049e+001 1.11708778e+002 1.22711342e+002 - 9.84257126e+001 1.11694237e+002 1.22718475e+002 9.83928299e+001 - 1.11682510e+002 1.22708519e+002 9.83913116e+001 1.11666893e+002 - 1.22723160e+002 9.83943863e+001 1.11674149e+002 1.22735725e+002 - 9.84005356e+001 1.11663315e+002 1.22755943e+002 9.83455734e+001 - 1.11632759e+002 1.22732925e+002 9.83656387e+001 1.11635818e+002 - 1.22766296e+002 9.83562393e+001 1.11636955e+002 1.22771751e+002 - 9.83590775e+001 1.11618309e+002 1.22784882e+002 9.83154449e+001 - 1.11593880e+002 1.22764908e+002 9.83016357e+001 1.11576088e+002 - 1.22770454e+002 9.83102264e+001 1.11597702e+002 1.22794395e+002 - 9.82776031e+001 1.11559753e+002 1.22776863e+002 9.82599792e+001 - 1.11553520e+002 1.22773941e+002 9.82627029e+001 1.11525696e+002 - 1.22788300e+002 9.82583618e+001 1.11521286e+002 1.22775398e+002 - 9.82951889e+001 1.11560646e+002 1.22821892e+002 9.82781525e+001 - 1.11561821e+002 1.22806824e+002 9.82852478e+001 1.11558098e+002 - 1.22827888e+002 9.82754364e+001 1.11557602e+002 1.22811478e+002 - 9.82502365e+001 1.11521271e+002 1.22793755e+002 9.82495499e+001 - 1.11555077e+002 1.22807770e+002 9.82763824e+001 1.11571861e+002 - 1.22827065e+002 9.82673416e+001 1.11573547e+002 1.22815559e+002 - 9.82569962e+001 1.11556931e+002 1.22805649e+002 9.82224121e+001 - 1.11539658e+002 1.22773140e+002 9.82194901e+001 1.11526718e+002 - 1.22756432e+002 9.82265396e+001 1.11549706e+002 1.22756477e+002 - 9.82662811e+001 1.11573273e+002 1.22783417e+002 9.82558441e+001 - 1.11575996e+002 1.22769333e+002 9.82834244e+001 1.11574852e+002 - 1.22780960e+002 9.82934570e+001 1.11597229e+002 1.22784218e+002 - 9.83023987e+001 1.11599167e+002 1.22785927e+002 9.82879410e+001 - 1.11600609e+002 1.22759811e+002 9.83134689e+001 1.11611931e+002 - 1.22770241e+002 9.83244629e+001 1.11631622e+002 1.22760239e+002 - 9.83530273e+001 1.11649559e+002 1.22766548e+002 9.83797379e+001 - 1.11696777e+002 1.22785736e+002 9.83820801e+001 1.11681313e+002 - 1.22765823e+002 9.83925858e+001 1.11693916e+002 1.22753441e+002 - 9.84058990e+001 1.11695686e+002 1.22740318e+002 9.83949966e+001 - 1.11705780e+002 1.22710945e+002 9.83879852e+001 1.11695702e+002 - 1.22684746e+002 9.84088364e+001 1.11723434e+002 1.22675140e+002 - 9.84488449e+001 1.11755394e+002 1.22684929e+002 9.84402390e+001 - 1.11760864e+002 1.22655731e+002 9.84387589e+001 1.11739120e+002 - 1.22620193e+002 9.84411392e+001 1.11755348e+002 1.22595116e+002 - 9.84785919e+001 1.11786453e+002 1.22592941e+002 9.84854050e+001 - 1.11813133e+002 1.22570236e+002 9.85097046e+001 1.11830681e+002 - 1.22563293e+002 9.85108795e+001 1.11836037e+002 1.22524139e+002 - 9.85526123e+001 1.11872940e+002 1.22532585e+002 9.85745850e+001 - 1.11918137e+002 1.22531357e+002 9.85746765e+001 1.11908768e+002 - 1.22498543e+002 9.86015854e+001 1.11948547e+002 1.22493210e+002 - 9.86317368e+001 1.11952652e+002 1.22471367e+002 9.86290131e+001 - 1.11969414e+002 1.22441467e+002 9.86460800e+001 1.11982628e+002 - 1.22422493e+002 9.86517487e+001 1.12002548e+002 1.22391983e+002 - 9.86664658e+001 1.12011703e+002 1.22367294e+002 9.87048492e+001 - 1.12061478e+002 1.22371864e+002 9.87732544e+001 1.12099609e+002 - 1.22392532e+002 9.87861557e+001 1.12116966e+002 1.22367035e+002 - 9.88162231e+001 1.12136902e+002 1.22350540e+002 9.88604126e+001 - 1.12199501e+002 1.22350540e+002 9.89033127e+001 1.12223129e+002 - 1.22348679e+002 9.89719849e+001 1.12295120e+002 1.22361099e+002 - 9.90031662e+001 1.12325699e+002 1.22329117e+002 9.90255737e+001 - 1.12367226e+002 1.22319939e+002 9.90760727e+001 1.12409027e+002 - 1.22330315e+002 9.90932770e+001 1.12441322e+002 1.22309273e+002 - 9.91138458e+001 1.12448402e+002 1.22281441e+002 9.91253204e+001 - 1.12485519e+002 1.22254097e+002 9.91844559e+001 1.12546112e+002 - 1.22260307e+002 9.92091370e+001 1.12596916e+002 1.22247131e+002 - 9.92445374e+001 1.12624283e+002 1.22238235e+002 9.92500076e+001 - 1.12642113e+002 1.22196388e+002 9.93235779e+001 1.12694031e+002 - 1.22205940e+002 9.93982468e+001 1.12776405e+002 1.22222466e+002 - 9.94290466e+001 1.12807159e+002 1.22199165e+002 9.94376526e+001 - 1.12838387e+002 1.22166252e+002 9.94673233e+001 1.12862259e+002 - 1.22150818e+002 9.95274124e+001 1.12929916e+002 1.22147110e+002 - 9.95754166e+001 1.12965729e+002 1.22108154e+002 9.95996017e+001 - 1.13010918e+002 1.22088974e+002 9.96604309e+001 1.13057083e+002 - 1.22094429e+002 9.97262573e+001 1.13135139e+002 1.22113953e+002 - 9.98088074e+001 1.13204353e+002 1.22136971e+002 9.98505859e+001 - 1.13258835e+002 1.22121910e+002 9.98995972e+001 1.13295242e+002 - 1.22105675e+002 9.99257660e+001 1.13329758e+002 1.22069290e+002 - 9.99907379e+001 1.13376366e+002 1.22069359e+002 1.00059601e+002 - 1.13449577e+002 1.22079674e+002 1.00139015e+002 1.13495224e+002 - 1.22075996e+002 1.00192024e+002 1.13555603e+002 1.22064407e+002 - 1.00276199e+002 1.13635330e+002 1.22075089e+002 1.00324066e+002 - 1.13697617e+002 1.22075363e+002 1.00413452e+002 1.13772766e+002 - 1.22103485e+002 1.00475594e+002 1.13841179e+002 1.22093781e+002 - 1.00559944e+002 1.13906960e+002 1.22086189e+002 1.00637787e+002 - 1.14003181e+002 1.22109169e+002 1.00727898e+002 1.14072571e+002 - 1.22136360e+002 1.00760597e+002 1.14116669e+002 1.22115585e+002 - 1.00843307e+002 1.14179626e+002 1.22123604e+002 1.00907318e+002 - 1.14254517e+002 1.22127640e+002 1.00990540e+002 1.14318756e+002 - 1.22146561e+002 1.01067978e+002 1.14408577e+002 1.22161270e+002 - 1.01131317e+002 1.14455048e+002 1.22144173e+002 1.01190430e+002 - 1.14521149e+002 1.22137970e+002 1.01286804e+002 1.14573090e+002 - 1.22131676e+002 1.01343193e+002 1.14633820e+002 1.22116150e+002 - 1.01447250e+002 1.14717972e+002 1.22132332e+002 1.01526817e+002 - 1.14807541e+002 1.22151367e+002 1.01625435e+002 1.14888100e+002 - 1.22184341e+002 1.01710884e+002 1.14980995e+002 1.22191444e+002 - 1.01812927e+002 1.15067123e+002 1.22203979e+002 1.01888954e+002 - 1.15158958e+002 1.22215126e+002 1.01997734e+002 1.15245361e+002 - 1.22256073e+002 1.02084923e+002 1.15338043e+002 1.22277641e+002 - 1.02207024e+002 1.15427040e+002 1.22314484e+002 1.02323936e+002 - 1.15546837e+002 1.22356865e+002 1.02452415e+002 1.15651428e+002 - 1.22397041e+002 1.02551086e+002 1.15746262e+002 1.22417374e+002 - 1.02661011e+002 1.15827271e+002 1.22442467e+002 1.02754951e+002 - 1.15912956e+002 1.22463219e+002 1.02877365e+002 1.15976723e+002 - 1.22480347e+002 1.02989555e+002 1.16071800e+002 1.22511131e+002 - 1.03082970e+002 1.16124725e+002 1.22506943e+002 1.03124115e+002 - 1.16157494e+002 1.22475708e+002 1.03153976e+002 1.16146584e+002 - 1.22430450e+002 1.03106911e+002 1.16087662e+002 1.22304993e+002 - 1.03084343e+002 1.16083038e+002 1.22376022e+002 1.03095856e+002 - 1.16137550e+002 1.22470711e+002 1.03066872e+002 1.16125725e+002 - 1.22518471e+002 1.03025627e+002 1.16114899e+002 1.22549202e+002 - 1.02940147e+002 1.16048584e+002 1.22551712e+002 1.02831070e+002 - 1.15971588e+002 1.22516846e+002 1.02717827e+002 1.15877861e+002 - 1.22489494e+002 1.02628387e+002 1.15813019e+002 1.22472054e+002 - 1.02550232e+002 1.15747154e+002 1.22479691e+002 1.02431587e+002 - 1.15657486e+002 1.22444916e+002 1.02350830e+002 1.15564461e+002 - 1.22452003e+002 1.02260269e+002 1.15498184e+002 1.22446251e+002 - 1.02144035e+002 1.15388908e+002 1.22403999e+002 1.02059677e+002 - 1.15319160e+002 1.22377998e+002 1.01972939e+002 1.15228165e+002 - 1.22354820e+002 1.01871368e+002 1.15147079e+002 1.22321335e+002 - 1.01767525e+002 1.15054764e+002 1.22326355e+002 1.01621445e+002 - 1.14939545e+002 1.22267937e+002 1.01530304e+002 1.14838524e+002 - 1.22233841e+002 1.01456154e+002 1.14780838e+002 1.22229797e+002 - 1.01368965e+002 1.14693169e+002 1.22219185e+002 1.01286407e+002 - 1.14628075e+002 1.22205055e+002 1.01223503e+002 1.14565445e+002 - 1.22226700e+002 1.01149055e+002 1.14502693e+002 1.22217255e+002 - 1.01086021e+002 1.14439339e+002 1.22227287e+002 1.00971954e+002 - 1.14342049e+002 1.22182587e+002 1.00932373e+002 1.14281319e+002 - 1.22213188e+002 1.00846642e+002 1.14207710e+002 1.22197403e+002 - 1.00769791e+002 1.14138077e+002 1.22197479e+002 1.00702698e+002 - 1.14091827e+002 1.22191017e+002 1.00676025e+002 1.14055801e+002 - 1.22224266e+002 1.00604080e+002 1.13993652e+002 1.22209587e+002 - 1.00499184e+002 1.13882782e+002 1.22193939e+002 1.00384628e+002 - 1.13799622e+002 1.22159164e+002 1.00341125e+002 1.13741287e+002 - 1.22170723e+002 1.00276047e+002 1.13687950e+002 1.22164444e+002 - 1.00213470e+002 1.13610878e+002 1.22172684e+002 1.00141296e+002 - 1.13558693e+002 1.22173096e+002 1.00050095e+002 1.13470634e+002 - 1.22157646e+002 9.99973450e+001 1.13429497e+002 1.22162117e+002 - 9.99539032e+001 1.13371185e+002 1.22169754e+002 9.98835983e+001 - 1.13311325e+002 1.22168190e+002 9.98464432e+001 1.13251442e+002 - 1.22189636e+002 9.97837296e+001 1.13199715e+002 1.22189293e+002 - 9.97545700e+001 1.13164612e+002 1.22213852e+002 9.96930923e+001 - 1.13115166e+002 1.22202835e+002 9.96425476e+001 1.13054276e+002 - 1.22198212e+002 9.95809631e+001 1.13000946e+002 1.22186287e+002 - 9.95311356e+001 1.12949646e+002 1.22203621e+002 9.94337082e+001 - 1.12879410e+002 1.22168739e+002 9.94128876e+001 1.12842964e+002 - 1.22190758e+002 9.93858490e+001 1.12814819e+002 1.22210091e+002 - 9.93562241e+001 1.12763588e+002 1.22231979e+002 9.93081360e+001 - 1.12727333e+002 1.22239990e+002 9.92460403e+001 1.12655815e+002 - 1.22238098e+002 9.92220535e+001 1.12636131e+002 1.22256172e+002 - 9.91881943e+001 1.12589439e+002 1.22274445e+002 9.91018600e+001 - 1.12518288e+002 1.22253387e+002 9.90499802e+001 1.12426460e+002 - 1.22243271e+002 9.90167465e+001 1.12400192e+002 1.22261009e+002 - 9.89914246e+001 1.12373093e+002 1.22284775e+002 9.89447861e+001 - 1.12344101e+002 1.22278290e+002 9.89329147e+001 1.12310204e+002 - 1.22295586e+002 9.89255829e+001 1.12311378e+002 1.22326286e+002 - 9.88977737e+001 1.12272728e+002 1.22349472e+002 9.88449783e+001 - 1.12241737e+002 1.22348427e+002 9.88042755e+001 1.12183807e+002 - 1.22345116e+002 9.87974014e+001 1.12182983e+002 1.22376526e+002 - 9.87862167e+001 1.12156815e+002 1.22413277e+002 9.87345200e+001 - 1.12121613e+002 1.22403099e+002 9.87204437e+001 1.12103165e+002 - 1.22438728e+002 9.86967926e+001 1.12090729e+002 1.22451797e+002 - 9.86902390e+001 1.12072121e+002 1.22474083e+002 9.86298370e+001 - 1.12023705e+002 1.22455978e+002 9.86173782e+001 1.11973946e+002 - 1.22466629e+002 9.86079407e+001 1.11977333e+002 1.22497414e+002 - 9.85826874e+001 1.11938301e+002 1.22493645e+002 9.85539856e+001 - 1.11924255e+002 1.22500160e+002 9.85424728e+001 1.11898003e+002 - 1.22510880e+002 9.85074387e+001 1.11863487e+002 1.22501938e+002 - 9.84936295e+001 1.11835510e+002 1.22529922e+002 9.84732971e+001 - 1.11835335e+002 1.22558319e+002 9.84657593e+001 1.11810944e+002 - 1.22575508e+002 9.84407425e+001 1.11792862e+002 1.22577454e+002 - 9.84337463e+001 1.11763863e+002 1.22594749e+002 9.83975830e+001 - 1.11728897e+002 1.22586624e+002 9.83837662e+001 1.11699272e+002 - 1.22591026e+002 9.83637466e+001 1.11677902e+002 1.22588135e+002 - 9.83513031e+001 1.11648567e+002 1.22600006e+002 9.83314285e+001 - 1.11641136e+002 1.22599007e+002 9.83558578e+001 1.11630997e+002 - 1.22634727e+002 9.83384247e+001 1.11631012e+002 1.22636101e+002 - 9.83092880e+001 1.11600441e+002 1.22631615e+002 9.82697830e+001 - 1.11580254e+002 1.22613586e+002 9.82644424e+001 1.11555916e+002 - 1.22624046e+002 9.83010941e+001 1.11596542e+002 1.22670883e+002 - 9.82835159e+001 1.11564957e+002 1.22673302e+002 9.82153168e+001 - 1.11518250e+002 1.22629005e+002 9.82262573e+001 1.11516541e+002 - 1.22648529e+002 9.81971130e+001 1.11498993e+002 1.22635353e+002 - 9.81996307e+001 1.11480110e+002 1.22643135e+002 9.81916428e+001 - 1.11487656e+002 1.22653984e+002 9.81814270e+001 1.11475838e+002 - 1.22670235e+002 9.81694260e+001 1.11479309e+002 1.22673355e+002 - 9.81520081e+001 1.11451752e+002 1.22668297e+002 9.81277542e+001 - 1.11440643e+002 1.22666962e+002 9.81411819e+001 1.11418251e+002 - 1.22682297e+002 9.81281738e+001 1.11419128e+002 1.22681725e+002 - 9.81771851e+001 1.11461227e+002 1.22724380e+002 9.81557083e+001 - 1.11458565e+002 1.22707359e+002 9.81395645e+001 1.11434914e+002 - 1.22703201e+002 9.81456375e+001 1.11448830e+002 1.22702393e+002 - 9.81556549e+001 1.11457283e+002 1.22722397e+002 9.81349182e+001 - 1.11462440e+002 1.22723434e+002 9.81430893e+001 1.11463326e+002 - 1.22719200e+002 9.81471863e+001 1.11479759e+002 1.22720612e+002 - 9.81530075e+001 1.11471893e+002 1.22718513e+002 9.81162567e+001 - 1.11456734e+002 1.22687508e+002 9.81104584e+001 1.11441223e+002 - 1.22674263e+002 9.81202545e+001 1.11457932e+002 1.22667801e+002 - 9.81196594e+001 1.11445267e+002 1.22657867e+002 9.81314087e+001 - 1.11472954e+002 1.22664909e+002 9.81686096e+001 1.11482185e+002 - 1.22691925e+002 9.81641464e+001 1.11486618e+002 1.22682770e+002 - 9.81731949e+001 1.11491272e+002 1.22680511e+002 9.81522141e+001 - 1.11488586e+002 1.22649887e+002 9.81815414e+001 1.11500015e+002 - 1.22669434e+002 9.82113953e+001 1.11539444e+002 1.22670647e+002 - 9.82513351e+001 1.11571411e+002 1.22689629e+002 9.82654495e+001 - 1.11609703e+002 1.22705376e+002 9.82479553e+001 1.11569489e+002 - 1.22656944e+002 9.82436371e+001 1.11577248e+002 1.22632820e+002 - 9.82759933e+001 1.11594490e+002 1.22642960e+002 9.82664795e+001 - 1.11594177e+002 1.22602806e+002 9.82565842e+001 1.11585915e+002 - 1.22578133e+002 9.82629700e+001 1.11607193e+002 1.22560059e+002 - 9.83159256e+001 1.11645256e+002 1.22584213e+002 9.83078613e+001 - 1.11658806e+002 1.22552315e+002 9.83293533e+001 1.11645561e+002 - 1.22530022e+002 9.83276215e+001 1.11659874e+002 1.22500885e+002 - 9.83452911e+001 1.11675545e+002 1.22484268e+002 9.83505936e+001 - 1.11701744e+002 1.22463699e+002 9.83923874e+001 1.11735275e+002 - 1.22478630e+002 9.83937302e+001 1.11744690e+002 1.22440491e+002 - 9.84253235e+001 1.11768906e+002 1.22433350e+002 9.84365845e+001 - 1.11805038e+002 1.22421959e+002 9.84717941e+001 1.11828590e+002 - 1.22425552e+002 9.84976120e+001 1.11864220e+002 1.22411842e+002 - 9.85229874e+001 1.11866646e+002 1.22394310e+002 9.85200043e+001 - 1.11883652e+002 1.22356842e+002 9.85558167e+001 1.11918274e+002 - 1.22361839e+002 9.85504608e+001 1.11926292e+002 1.22321823e+002 - 9.85665131e+001 1.11930595e+002 1.22292641e+002 9.85913086e+001 - 1.11970100e+002 1.22283470e+002 9.86557388e+001 1.11998634e+002 - 1.22297050e+002 9.86707230e+001 1.12021751e+002 1.22266815e+002 - 9.86923599e+001 1.12029747e+002 1.22246155e+002 9.87370453e+001 - 1.12094948e+002 1.22248657e+002 9.87762146e+001 1.12116295e+002 - 1.22246017e+002 9.88595200e+001 1.12204124e+002 1.22268974e+002 - 9.88960419e+001 1.12227119e+002 1.22248955e+002 9.89000931e+001 - 1.12264755e+002 1.22224304e+002 9.89539948e+001 1.12302132e+002 - 1.22240677e+002 9.89524231e+001 1.12318871e+002 1.22198685e+002 - 9.89707870e+001 1.12323875e+002 1.22162094e+002 9.89960785e+001 - 1.12379440e+002 1.22154739e+002 9.90605927e+001 1.12444794e+002 - 1.22174408e+002 9.90619583e+001 1.12470657e+002 1.22132195e+002 - 9.91251831e+001 1.12524635e+002 1.22142799e+002 9.91388702e+001 - 1.12558479e+002 1.22120148e+002 9.92116547e+001 1.12599960e+002 - 1.22123932e+002 9.92822723e+001 1.12685509e+002 1.22147835e+002 - 9.93121185e+001 1.12712700e+002 1.22118950e+002 9.93247452e+001 - 1.12746567e+002 1.22084953e+002 9.93505173e+001 1.12762215e+002 - 1.22063499e+002 9.93989410e+001 1.12825249e+002 1.22046974e+002 - 9.94603577e+001 1.12870171e+002 1.22021187e+002 9.94997711e+001 - 1.12936035e+002 1.22017326e+002 9.95572128e+001 1.12981667e+002 - 1.22027771e+002 9.96067581e+001 1.13040771e+002 1.22028305e+002 - 9.96893387e+001 1.13106613e+002 1.22048859e+002 9.97207947e+001 - 1.13152138e+002 1.22024933e+002 9.97950287e+001 1.13212715e+002 - 1.22033989e+002 9.98267059e+001 1.13253380e+002 1.22007309e+002 - 9.98943024e+001 1.13305283e+002 1.22002739e+002 9.99567642e+001 - 1.13381210e+002 1.22008064e+002 1.00040413e+002 1.13424088e+002 - 1.22007477e+002 1.00096298e+002 1.13488129e+002 1.22007248e+002 - 1.00162575e+002 1.13546616e+002 1.22003319e+002 1.00208008e+002 - 1.13610016e+002 1.21993515e+002 1.00325974e+002 1.13714325e+002 - 1.22052635e+002 1.00385582e+002 1.13771759e+002 1.22035461e+002 - 1.00470314e+002 1.13843842e+002 1.22030167e+002 1.00557846e+002 - 1.13948288e+002 1.22061272e+002 1.00649780e+002 1.14019943e+002 - 1.22092407e+002 1.00686485e+002 1.14064102e+002 1.22073006e+002 - 1.00754517e+002 1.14113937e+002 1.22074249e+002 1.00808449e+002 - 1.14175163e+002 1.22066124e+002 1.00892097e+002 1.14244141e+002 - 1.22083733e+002 1.00980698e+002 1.14337219e+002 1.22104034e+002 - 1.01060326e+002 1.14403030e+002 1.22105873e+002 1.01111832e+002 - 1.14455681e+002 1.22091408e+002 1.01185173e+002 1.14496147e+002 - 1.22073616e+002 1.01251976e+002 1.14568054e+002 1.22066696e+002 - 1.01336739e+002 1.14632797e+002 1.22065048e+002 1.01407990e+002 - 1.14714462e+002 1.22077713e+002 1.01507118e+002 1.14798309e+002 - 1.22109459e+002 1.01596825e+002 1.14892448e+002 1.22124527e+002 - 1.01704201e+002 1.14979553e+002 1.22135124e+002 1.01790970e+002 - 1.15084938e+002 1.22155304e+002 1.01904472e+002 1.15171257e+002 - 1.22198128e+002 1.01990799e+002 1.15263489e+002 1.22219048e+002 - 1.02117844e+002 1.15357002e+002 1.22257774e+002 1.02231789e+002 - 1.15477638e+002 1.22299149e+002 1.02330338e+002 1.15552635e+002 - 1.22310974e+002 1.02445656e+002 1.15662224e+002 1.22349663e+002 - 1.02568802e+002 1.15750488e+002 1.22387314e+002 1.02661217e+002 - 1.15833412e+002 1.22402313e+002 1.02778984e+002 1.15896606e+002 - 1.22421661e+002 1.02888283e+002 1.15993942e+002 1.22442268e+002 - 1.02983910e+002 1.16049278e+002 1.22445061e+002 1.03015694e+002 - 1.16068100e+002 1.22397621e+002 1.03052719e+002 1.16057350e+002 - 1.22357216e+002 1.03014404e+002 1.16010468e+002 1.22245895e+002 - 1.03019089e+002 1.16026329e+002 1.22329018e+002 1.03026207e+002 - 1.16073570e+002 1.22416611e+002 1.03005539e+002 1.16070610e+002 - 1.22472336e+002 1.02963577e+002 1.16064865e+002 1.22504021e+002 - 1.02874565e+002 1.15989090e+002 1.22500275e+002 1.02746544e+002 - 1.15891525e+002 1.22450394e+002 1.02656570e+002 1.15816971e+002 - 1.22445099e+002 1.02571434e+002 1.15763977e+002 1.22432152e+002 - 1.02484550e+002 1.15683815e+002 1.22426682e+002 1.02370987e+002 - 1.15597443e+002 1.22399414e+002 1.02279076e+002 1.15499794e+002 - 1.22391464e+002 1.02182053e+002 1.15424561e+002 1.22374352e+002 - 1.02091370e+002 1.15330223e+002 1.22357704e+002 1.01975800e+002 - 1.15242516e+002 1.22315979e+002 1.01891617e+002 1.15150192e+002 - 1.22288483e+002 1.01803680e+002 1.15082512e+002 1.22271935e+002 - 1.01711906e+002 1.15002121e+002 1.22285019e+002 1.01563911e+002 - 1.14881844e+002 1.22219978e+002 1.01486221e+002 1.14795609e+002 - 1.22205284e+002 1.01405502e+002 1.14731781e+002 1.22193253e+002 - 1.01304459e+002 1.14628029e+002 1.22162094e+002 1.01220413e+002 - 1.14566811e+002 1.22154350e+002 1.01169083e+002 1.14511711e+002 - 1.22180740e+002 1.01080475e+002 1.14440445e+002 1.22157372e+002 - 1.01011871e+002 1.14368752e+002 1.22162086e+002 1.00916107e+002 - 1.14284874e+002 1.22136734e+002 1.00845840e+002 1.14202538e+002 - 1.22138206e+002 1.00770233e+002 1.14140045e+002 1.22136131e+002 - 1.00717934e+002 1.14091728e+002 1.22159325e+002 1.00641029e+002 - 1.14032433e+002 1.22144028e+002 1.00600502e+002 1.13983589e+002 - 1.22162537e+002 1.00523766e+002 1.13918297e+002 1.22147125e+002 - 1.00427490e+002 1.13823738e+002 1.22144989e+002 1.00326775e+002 - 1.13749168e+002 1.22124153e+002 1.00286148e+002 1.13698135e+002 - 1.22134331e+002 1.00220261e+002 1.13645920e+002 1.22131027e+002 - 1.00151276e+002 1.13561714e+002 1.22131615e+002 1.00077660e+002 - 1.13505623e+002 1.22130951e+002 9.99972000e+001 1.13423866e+002 - 1.22122681e+002 9.99341660e+001 1.13374092e+002 1.22121017e+002 - 9.98819733e+001 1.13309944e+002 1.22126244e+002 9.98029785e+001 - 1.13238853e+002 1.22106773e+002 9.97520981e+001 1.13164833e+002 - 1.22119736e+002 9.97196426e+001 1.13140785e+002 1.22145073e+002 - 9.96904297e+001 1.13106224e+002 1.22170166e+002 9.96196747e+001 - 1.13054001e+002 1.22153992e+002 9.95755920e+001 1.12992004e+002 - 1.22152855e+002 9.95391617e+001 1.12965057e+002 1.22157852e+002 - 9.94809494e+001 1.12907257e+002 1.22167831e+002 9.93966446e+001 - 1.12842232e+002 1.22144089e+002 9.93628082e+001 1.12793037e+002 - 1.22154701e+002 9.93209763e+001 1.12753235e+002 1.22160332e+002 - 9.92850189e+001 1.12696739e+002 1.22175346e+002 9.92417526e+001 - 1.12656876e+002 1.22181030e+002 9.91876144e+001 1.12601273e+002 - 1.22190308e+002 9.91557465e+001 1.12576462e+002 1.22208801e+002 - 9.91172104e+001 1.12527489e+002 1.22222855e+002 9.90548019e+001 - 1.12469643e+002 1.22215233e+002 9.90005417e+001 1.12392166e+002 - 1.22214989e+002 9.89674149e+001 1.12361343e+002 1.22227638e+002 - 9.89111099e+001 1.12300163e+002 1.22224113e+002 9.88441467e+001 - 1.12244965e+002 1.22190422e+002 9.88472977e+001 1.12230812e+002 - 1.22230705e+002 9.88328781e+001 1.12231636e+002 1.22256813e+002 - 9.88069382e+001 1.12192062e+002 1.22280823e+002 9.87480621e+001 - 1.12156296e+002 1.22270897e+002 9.87067337e+001 1.12098671e+002 - 1.22261452e+002 9.87010574e+001 1.12096535e+002 1.22293861e+002 - 9.86891251e+001 1.12070457e+002 1.22326569e+002 9.86521606e+001 - 1.12043045e+002 1.22327980e+002 9.86234055e+001 1.12004646e+002 - 1.22348785e+002 9.86090546e+001 1.12006439e+002 1.22364296e+002 - 9.86116333e+001 1.11993576e+002 1.22407600e+002 9.85415192e+001 - 1.11936218e+002 1.22369034e+002 9.85318680e+001 1.11894409e+002 - 1.22390411e+002 9.85241013e+001 1.11894592e+002 1.22420326e+002 - 9.85060501e+001 1.11869682e+002 1.22433022e+002 9.84793549e+001 - 1.11853058e+002 1.22435181e+002 9.84670639e+001 1.11829353e+002 - 1.22451248e+002 9.84503174e+001 1.11815590e+002 1.22458977e+002 - 9.84115677e+001 1.11764290e+002 1.22469582e+002 9.83772125e+001 - 1.11752197e+002 1.22478722e+002 9.83935089e+001 1.11742119e+002 - 1.22508354e+002 9.83671188e+001 1.11724640e+002 1.22512276e+002 - 9.83440399e+001 1.11679489e+002 1.22514427e+002 9.83004684e+001 - 1.11639465e+002 1.22499886e+002 9.83102188e+001 1.11632782e+002 - 1.22531708e+002 9.82987213e+001 1.11620796e+002 1.22535355e+002 - 9.82862930e+001 1.11593491e+002 1.22541862e+002 9.82435532e+001 - 1.11553146e+002 1.22520943e+002 9.82538681e+001 1.11541466e+002 - 1.22545547e+002 9.82709503e+001 1.11566429e+002 1.22584496e+002 - 9.82192383e+001 1.11515831e+002 1.22551437e+002 9.81686249e+001 - 1.11481583e+002 1.22519882e+002 9.81940384e+001 1.11491486e+002 - 1.22560486e+002 9.82390976e+001 1.11537086e+002 1.22610687e+002 - 9.81954193e+001 1.11483269e+002 1.22591156e+002 9.81148987e+001 - 1.11422562e+002 1.22539154e+002 9.81319885e+001 1.11423370e+002 - 1.22561058e+002 9.80983658e+001 1.11397575e+002 1.22536652e+002 - 9.81109009e+001 1.11390343e+002 1.22559723e+002 9.80888672e+001 - 1.11388107e+002 1.22555214e+002 9.80958710e+001 1.11391716e+002 - 1.22588455e+002 9.80904007e+001 1.11403107e+002 1.22601273e+002 - 9.80620346e+001 1.11370071e+002 1.22587646e+002 9.80349350e+001 - 1.11345505e+002 1.22581764e+002 9.80644302e+001 1.11349915e+002 - 1.22613998e+002 9.80750351e+001 1.11366859e+002 1.22630478e+002 - 9.80856857e+001 1.11364418e+002 1.22632790e+002 9.80556488e+001 - 1.11358597e+002 1.22611610e+002 9.80497513e+001 1.11342064e+002 - 1.22608429e+002 9.80753708e+001 1.11379486e+002 1.22637962e+002 - 9.80918350e+001 1.11389244e+002 1.22654968e+002 9.80483551e+001 - 1.11374405e+002 1.22631042e+002 9.80520172e+001 1.11370270e+002 - 1.22628181e+002 9.80621262e+001 1.11394638e+002 1.22635887e+002 - 9.80675049e+001 1.11391617e+002 1.22630432e+002 9.80547562e+001 - 1.11394791e+002 1.22623123e+002 9.80645523e+001 1.11393425e+002 - 1.22622749e+002 9.80653381e+001 1.11403641e+002 1.22609161e+002 - 9.80511627e+001 1.11378952e+002 1.22586830e+002 9.80600052e+001 - 1.11397835e+002 1.22598671e+002 9.80663071e+001 1.11376305e+002 - 1.22591217e+002 9.80702286e+001 1.11393700e+002 1.22589470e+002 - 9.80790939e+001 1.11398758e+002 1.22588898e+002 9.80794449e+001 - 1.11409065e+002 1.22579140e+002 9.81018372e+001 1.11418976e+002 - 1.22586723e+002 9.81143570e+001 1.11443657e+002 1.22585861e+002 - 9.81326294e+001 1.11458488e+002 1.22586472e+002 9.81402435e+001 - 1.11490341e+002 1.22587059e+002 9.81648178e+001 1.11496796e+002 - 1.22585899e+002 9.81517334e+001 1.11487282e+002 1.22554947e+002 - 9.81952515e+001 1.11514038e+002 1.22564804e+002 9.81760406e+001 - 1.11508507e+002 1.22519981e+002 9.82072220e+001 1.11535431e+002 - 1.22526627e+002 9.82090302e+001 1.11554878e+002 1.22511787e+002 - 9.82221756e+001 1.11558800e+002 1.22500114e+002 9.82201462e+001 - 1.11576683e+002 1.22476250e+002 9.82207031e+001 1.11543251e+002 - 1.22434471e+002 9.82475739e+001 1.11588097e+002 1.22431984e+002 - 9.82878571e+001 1.11621284e+002 1.22436195e+002 9.82723312e+001 - 1.11621529e+002 1.22389160e+002 9.83006287e+001 1.11641586e+002 - 1.22391586e+002 9.82997742e+001 1.11651619e+002 1.22358940e+002 - 9.83301926e+001 1.11679268e+002 1.22347336e+002 9.83555603e+001 - 1.11727493e+002 1.22350250e+002 9.83688889e+001 1.11730606e+002 - 1.22328941e+002 9.83922119e+001 1.11759819e+002 1.22318275e+002 - 9.84260178e+001 1.11774704e+002 1.22309952e+002 9.84351273e+001 - 1.11799469e+002 1.22282227e+002 9.84716339e+001 1.11835739e+002 - 1.22286057e+002 9.84739456e+001 1.11845901e+002 1.22249138e+002 - 9.84997101e+001 1.11865845e+002 1.22229485e+002 9.85408173e+001 - 1.11916512e+002 1.22234802e+002 9.86026154e+001 1.11950722e+002 - 1.22245979e+002 9.86281815e+001 1.11977592e+002 1.22234131e+002 - 9.86267700e+001 1.11966850e+002 1.22186501e+002 9.86647491e+001 - 1.12023003e+002 1.22186264e+002 9.87065735e+001 1.12051224e+002 - 1.22186882e+002 9.87453384e+001 1.12089905e+002 1.22167114e+002 - 9.88105011e+001 1.12152847e+002 1.22177719e+002 9.88105698e+001 - 1.12169945e+002 1.22142723e+002 9.88594818e+001 1.12208496e+002 - 1.22154251e+002 9.88739624e+001 1.12243080e+002 1.22132164e+002 - 9.88918915e+001 1.12248322e+002 1.22097778e+002 9.89186325e+001 - 1.12302551e+002 1.22083168e+002 9.89862366e+001 1.12375908e+002 - 1.22112488e+002 9.89930420e+001 1.12404671e+002 1.22072639e+002 - 9.90315628e+001 1.12436974e+002 1.22073029e+002 9.90672684e+001 - 1.12485168e+002 1.22063438e+002 9.91545563e+001 1.12550911e+002 - 1.22082481e+002 9.91917419e+001 1.12599464e+002 1.22067856e+002 - 9.92365494e+001 1.12641167e+002 1.22051750e+002 9.92459412e+001 - 1.12674385e+002 1.22016365e+002 9.92786179e+001 1.12698250e+002 - 1.22003738e+002 9.93342514e+001 1.12767464e+002 1.22000191e+002 - 9.93974991e+001 1.12816414e+002 1.21978951e+002 9.94394531e+001 - 1.12881569e+002 1.21972229e+002 9.94913177e+001 1.12917053e+002 - 1.21970192e+002 9.95133591e+001 1.12949684e+002 1.21943596e+002 - 9.95894775e+001 1.13010338e+002 1.21956955e+002 9.96531448e+001 - 1.13089439e+002 1.21967339e+002 9.97314911e+001 1.13153793e+002 - 1.21981636e+002 9.97599869e+001 1.13195847e+002 1.21951714e+002 - 9.98381805e+001 1.13257965e+002 1.21965828e+002 9.98862762e+001 - 1.13312653e+002 1.21952438e+002 9.99658737e+001 1.13362244e+002 - 1.21957146e+002 1.00033989e+002 1.13434967e+002 1.21965477e+002 - 1.00105759e+002 1.13492401e+002 1.21957947e+002 1.00141335e+002 - 1.13544052e+002 1.21938675e+002 1.00242477e+002 1.13630600e+002 - 1.21980225e+002 1.00311028e+002 1.13706764e+002 1.21978661e+002 - 1.00386765e+002 1.13767387e+002 1.21965698e+002 1.00457443e+002 - 1.13852600e+002 1.21975952e+002 1.00548729e+002 1.13922630e+002 - 1.22009987e+002 1.00610939e+002 1.13997765e+002 1.22018929e+002 - 1.00690956e+002 1.14056709e+002 1.22033585e+002 1.00749290e+002 - 1.14124298e+002 1.22028419e+002 1.00833733e+002 1.14188179e+002 - 1.22041306e+002 1.00920441e+002 1.14284103e+002 1.22059830e+002 - 1.01011757e+002 1.14348579e+002 1.22067703e+002 1.01042099e+002 - 1.14392754e+002 1.22039108e+002 1.01109459e+002 1.14427071e+002 - 1.22011055e+002 1.01181000e+002 1.14504715e+002 1.22019112e+002 - 1.01264610e+002 1.14567169e+002 1.22015778e+002 1.01333717e+002 - 1.14649696e+002 1.22023438e+002 1.01449623e+002 1.14745056e+002 - 1.22076096e+002 1.01538795e+002 1.14838570e+002 1.22086464e+002 - 1.01645241e+002 1.14924904e+002 1.22092308e+002 1.01737244e+002 - 1.15030739e+002 1.22119247e+002 1.01837708e+002 1.15107750e+002 - 1.22151566e+002 1.01928581e+002 1.15202232e+002 1.22171623e+002 - 1.02071129e+002 1.15316826e+002 1.22233681e+002 1.02181923e+002 - 1.15434464e+002 1.22267311e+002 1.02292839e+002 1.15510651e+002 - 1.22285637e+002 1.02397125e+002 1.15614403e+002 1.22317429e+002 - 1.02495087e+002 1.15680969e+002 1.22330582e+002 1.02590286e+002 - 1.15764725e+002 1.22352623e+002 1.02713676e+002 1.15833450e+002 - 1.22371346e+002 1.02812126e+002 1.15920952e+002 1.22387169e+002 - 1.02926193e+002 1.15987816e+002 1.22404076e+002 1.02973145e+002 - 1.16034142e+002 1.22378922e+002 1.03009239e+002 1.16015434e+002 - 1.22331703e+002 1.02948097e+002 1.15944313e+002 1.22191658e+002 - 1.02915688e+002 1.15937508e+002 1.22258217e+002 1.02939049e+002 - 1.16001640e+002 1.22361977e+002 1.02934822e+002 1.16007721e+002 - 1.22427177e+002 1.02878029e+002 1.15985367e+002 1.22442268e+002 - 1.02790604e+002 1.15912216e+002 1.22442543e+002 1.02675568e+002 - 1.15828758e+002 1.22408806e+002 1.02579803e+002 1.15749794e+002 - 1.22395782e+002 1.02473816e+002 1.15674973e+002 1.22367683e+002 - 1.02396500e+002 1.15608025e+002 1.22365074e+002 1.02290665e+002 - 1.15523735e+002 1.22340782e+002 1.02190025e+002 1.15422287e+002 - 1.22330917e+002 1.02094383e+002 1.15345459e+002 1.22312080e+002 - 1.01998405e+002 1.15256332e+002 1.22294151e+002 1.01897217e+002 - 1.15169594e+002 1.22257881e+002 1.01802704e+002 1.15071037e+002 - 1.22225464e+002 1.01728920e+002 1.15014122e+002 1.22222992e+002 - 1.01612953e+002 1.14907997e+002 1.22206146e+002 1.01485176e+002 - 1.14812347e+002 1.22163208e+002 1.01404533e+002 1.14727112e+002 - 1.22147697e+002 1.01305283e+002 1.14644951e+002 1.22113739e+002 - 1.01201187e+002 1.14536034e+002 1.22085167e+002 1.01113564e+002 - 1.14470306e+002 1.22072639e+002 1.01048424e+002 1.14406601e+002 - 1.22091660e+002 1.00952148e+002 1.14326050e+002 1.22060753e+002 - 1.00891411e+002 1.14260635e+002 1.22070564e+002 1.00802383e+002 - 1.14186256e+002 1.22048439e+002 1.00753868e+002 1.14123749e+002 - 1.22075111e+002 1.00681557e+002 1.14068222e+002 1.22073967e+002 - 1.00617348e+002 1.14003548e+002 1.22083557e+002 1.00541626e+002 - 1.13949234e+002 1.22070694e+002 1.00494843e+002 1.13888664e+002 - 1.22083717e+002 1.00434662e+002 1.13840843e+002 1.22082878e+002 - 1.00319046e+002 1.13732506e+002 1.22072556e+002 1.00215096e+002 - 1.13658195e+002 1.22049896e+002 1.00175514e+002 1.13608086e+002 - 1.22057907e+002 1.00135559e+002 1.13578735e+002 1.22081070e+002 - 1.00066254e+002 1.13498222e+002 1.22082527e+002 9.99568863e+001 - 1.13408714e+002 1.22048950e+002 9.98816071e+001 1.13330910e+002 - 1.22044731e+002 9.98162537e+001 1.13273125e+002 1.22034576e+002 - 9.97604599e+001 1.13206200e+002 1.22042969e+002 9.96942139e+001 - 1.13148392e+002 1.22031975e+002 9.96595154e+001 1.13090294e+002 - 1.22051620e+002 9.96033554e+001 1.13039742e+002 1.22057152e+002 - 9.95608902e+001 1.12992393e+002 1.22070015e+002 9.94893112e+001 - 1.12931725e+002 1.22049286e+002 9.94612274e+001 1.12888077e+002 - 1.22064407e+002 9.94418411e+001 1.12879807e+002 1.22092247e+002 - 9.93755493e+001 1.12810356e+002 1.22094521e+002 9.92798462e+001 - 1.12736526e+002 1.22051331e+002 9.92398300e+001 1.12683578e+002 - 1.22056480e+002 9.92230377e+001 1.12669250e+002 1.22091049e+002 - 9.91945648e+001 1.12618187e+002 1.22107971e+002 9.91464081e+001 - 1.12572815e+002 1.22113441e+002 9.90865784e+001 1.12509644e+002 - 1.22112282e+002 9.90390320e+001 1.12465584e+002 1.22108246e+002 - 9.90058365e+001 1.12424072e+002 1.22131439e+002 9.89311447e+001 - 1.12363243e+002 1.22118935e+002 9.88896561e+001 1.12292122e+002 - 1.22123154e+002 9.88554230e+001 1.12264442e+002 1.22141014e+002 - 9.88258286e+001 1.12226814e+002 1.22159187e+002 9.87607422e+001 - 1.12177422e+002 1.22139656e+002 9.87303085e+001 1.12127823e+002 - 1.22136940e+002 9.86987000e+001 1.12107063e+002 1.22141212e+002 - 9.86771545e+001 1.12071671e+002 1.22172234e+002 9.86035309e+001 - 1.12026909e+002 1.22148880e+002 9.86054535e+001 1.12007301e+002 - 1.22180107e+002 9.86106033e+001 1.12018684e+002 1.22226234e+002 - 9.85840683e+001 1.11972672e+002 1.22241264e+002 9.85538788e+001 - 1.11953888e+002 1.22251999e+002 9.85406265e+001 1.11935555e+002 - 1.22285309e+002 9.84922791e+001 1.11898239e+002 1.22270775e+002 - 9.84782104e+001 1.11869652e+002 1.22284775e+002 9.84340210e+001 - 1.11837769e+002 1.22281799e+002 9.84090805e+001 1.11789215e+002 - 1.22290680e+002 9.84026184e+001 1.11784332e+002 1.22320366e+002 - 9.84086151e+001 1.11780174e+002 1.22351532e+002 9.83760223e+001 - 1.11759781e+002 1.22355644e+002 9.83529129e+001 1.11726883e+002 - 1.22356316e+002 9.83384705e+001 1.11713997e+002 1.22366661e+002 - 9.83221817e+001 1.11689293e+002 1.22400414e+002 9.82646713e+001 - 1.11649796e+002 1.22380669e+002 9.82599716e+001 1.11623825e+002 - 1.22399590e+002 9.82270050e+001 1.11594734e+002 1.22396271e+002 - 9.81775513e+001 1.11524483e+002 1.22371307e+002 9.81561584e+001 - 1.11510872e+002 1.22372665e+002 9.81526794e+001 1.11487724e+002 - 1.22392227e+002 9.81353607e+001 1.11471741e+002 1.22399139e+002 - 9.81537018e+001 1.11465172e+002 1.22425934e+002 9.80955887e+001 - 1.11421860e+002 1.22393158e+002 9.81162109e+001 1.11414192e+002 - 1.22424606e+002 9.81304474e+001 1.11438438e+002 1.22457291e+002 - 9.81023407e+001 1.11410988e+002 1.22448799e+002 9.80404816e+001 - 1.11364075e+002 1.22409454e+002 9.80395889e+001 1.11346085e+002 - 1.22420837e+002 9.80740204e+001 1.11379654e+002 1.22458138e+002 - 9.80705109e+001 1.11371269e+002 1.22480171e+002 9.79875488e+001 - 1.11303131e+002 1.22419113e+002 9.79953766e+001 1.11291954e+002 - 1.22436432e+002 9.79645081e+001 1.11274597e+002 1.22421463e+002 - 9.79803085e+001 1.11273170e+002 1.22443092e+002 9.79556732e+001 - 1.11271248e+002 1.22442444e+002 9.79638977e+001 1.11270454e+002 - 1.22470840e+002 9.79595490e+001 1.11285675e+002 1.22489395e+002 - 9.79600525e+001 1.11272911e+002 1.22498711e+002 9.79326172e+001 - 1.11258125e+002 1.22488358e+002 9.79611206e+001 1.11261673e+002 - 1.22524612e+002 9.79587936e+001 1.11264618e+002 1.22527840e+002 - 9.79650421e+001 1.11254517e+002 1.22530861e+002 9.79242554e+001 - 1.11236816e+002 1.22497017e+002 9.79322205e+001 1.11237679e+002 - 1.22511604e+002 9.79715118e+001 1.11286964e+002 1.22551315e+002 - 9.79775467e+001 1.11287636e+002 1.22560143e+002 9.79469223e+001 - 1.11282616e+002 1.22541824e+002 9.79504929e+001 1.11276558e+002 - 1.22539726e+002 9.79793091e+001 1.11316132e+002 1.22561928e+002 - 9.79674530e+001 1.11294121e+002 1.22538155e+002 9.79363556e+001 - 1.11280632e+002 1.22509033e+002 9.79505844e+001 1.11283325e+002 - 1.22516861e+002 9.79517899e+001 1.11293633e+002 1.22502548e+002 - 9.79640045e+001 1.11296768e+002 1.22512764e+002 9.79182434e+001 - 1.11266167e+002 1.22469414e+002 9.79284134e+001 1.11248268e+002 - 1.22466721e+002 9.79291534e+001 1.11260483e+002 1.22467346e+002 - 9.79601593e+001 1.11286324e+002 1.22482727e+002 9.79637299e+001 - 1.11306534e+002 1.22482681e+002 9.80002365e+001 1.11322830e+002 - 1.22501534e+002 9.80220032e+001 1.11364578e+002 1.22509338e+002 - 9.80410156e+001 1.11377640e+002 1.22514191e+002 9.80319366e+001 - 1.11396446e+002 1.22501671e+002 9.80479279e+001 1.11391815e+002 - 1.22486237e+002 9.80233765e+001 1.11374771e+002 1.22445061e+002 - 9.80520477e+001 1.11387047e+002 1.22439293e+002 9.80571671e+001 - 1.11395561e+002 1.22420074e+002 9.80814743e+001 1.11421242e+002 - 1.22421646e+002 9.80829849e+001 1.11443306e+002 1.22406273e+002 - 9.81029129e+001 1.11448524e+002 1.22400192e+002 9.81178360e+001 - 1.11479485e+002 1.22386993e+002 9.81111526e+001 1.11444664e+002 - 1.22343567e+002 9.81163177e+001 1.11462875e+002 1.22314957e+002 - 9.81545868e+001 1.11492950e+002 1.22317940e+002 9.81449585e+001 - 1.11502205e+002 1.22281250e+002 9.81771164e+001 1.11522224e+002 - 1.22281723e+002 9.81926193e+001 1.11545479e+002 1.22259766e+002 - 9.82021713e+001 1.11552132e+002 1.22232216e+002 9.82156448e+001 - 1.11591049e+002 1.22222382e+002 9.82450180e+001 1.11606392e+002 - 1.22218956e+002 9.82591248e+001 1.11635216e+002 1.22199333e+002 - 9.83082199e+001 1.11666916e+002 1.22210754e+002 9.83424072e+001 - 1.11713486e+002 1.22214821e+002 9.83795547e+001 1.11750076e+002 - 1.22210129e+002 9.83819504e+001 1.11760864e+002 1.22170525e+002 - 9.84008331e+001 1.11771271e+002 1.22145447e+002 9.84253845e+001 - 1.11806152e+002 1.22136330e+002 9.84957962e+001 1.11848190e+002 - 1.22155754e+002 9.85078125e+001 1.11866982e+002 1.22127502e+002 - 9.85438080e+001 1.11888115e+002 1.22116547e+002 9.85357513e+001 - 1.11903137e+002 1.22070366e+002 9.85854568e+001 1.11937515e+002 - 1.22074036e+002 9.86208038e+001 1.11973114e+002 1.22059952e+002 - 9.86785126e+001 1.12027023e+002 1.22064323e+002 9.86805038e+001 - 1.12056419e+002 1.22032661e+002 9.87362366e+001 1.12098045e+002 - 1.22047516e+002 9.87622147e+001 1.12140648e+002 1.22040504e+002 - 9.87916946e+001 1.12161453e+002 1.22020836e+002 9.88053741e+001 - 1.12192535e+002 1.21987701e+002 9.88639832e+001 1.12266190e+002 - 1.22011673e+002 9.88898773e+001 1.12314888e+002 1.21999809e+002 - 9.89244080e+001 1.12341789e+002 1.21983086e+002 9.89643021e+001 - 1.12401909e+002 1.21988014e+002 9.90260620e+001 1.12436424e+002 - 1.21986816e+002 9.90600433e+001 1.12484207e+002 1.21965851e+002 - 9.91188660e+001 1.12538048e+002 1.21967407e+002 9.91537476e+001 - 1.12594742e+002 1.21954346e+002 9.91943512e+001 1.12625687e+002 - 1.21945946e+002 9.92371979e+001 1.12677994e+002 1.21924561e+002 - 9.92988052e+001 1.12729195e+002 1.21903244e+002 9.93143616e+001 - 1.12762405e+002 1.21867767e+002 9.93766479e+001 1.12810211e+002 - 1.21878319e+002 9.94219971e+001 1.12868256e+002 1.21877556e+002 - 9.94936218e+001 1.12923546e+002 1.21886658e+002 9.95433884e+001 - 1.12989487e+002 1.21878983e+002 9.96275635e+001 1.13062767e+002 - 1.21901581e+002 9.96871185e+001 1.13135078e+002 1.21901482e+002 - 9.97439194e+001 1.13171883e+002 1.21894875e+002 9.97599945e+001 - 1.13196571e+002 1.21849709e+002 9.98618240e+001 1.13260086e+002 - 1.21866318e+002 9.99259186e+001 1.13331947e+002 1.21871201e+002 - 9.99885712e+001 1.13387436e+002 1.21864258e+002 1.00037361e+002 - 1.13452103e+002 1.21862457e+002 1.00140167e+002 1.13539566e+002 - 1.21904945e+002 1.00203339e+002 1.13610115e+002 1.21903206e+002 - 1.00267990e+002 1.13657288e+002 1.21872948e+002 1.00329910e+002 - 1.13740013e+002 1.21882889e+002 1.00440796e+002 1.13830330e+002 - 1.21932404e+002 1.00529877e+002 1.13932785e+002 1.21973267e+002 - 1.00614838e+002 1.13990280e+002 1.21979164e+002 1.00650879e+002 - 1.14027908e+002 1.21959320e+002 1.00732468e+002 1.14102570e+002 - 1.21965347e+002 1.00801056e+002 1.14181435e+002 1.21969223e+002 - 1.00894783e+002 1.14252548e+002 1.21981010e+002 1.00929657e+002 - 1.14291199e+002 1.21954521e+002 1.01012772e+002 1.14345001e+002 - 1.21952400e+002 1.01087807e+002 1.14422523e+002 1.21955208e+002 - 1.01174606e+002 1.14495438e+002 1.21964073e+002 1.01249504e+002 - 1.14587929e+002 1.21977615e+002 1.01367538e+002 1.14683029e+002 - 1.22023758e+002 1.01449028e+002 1.14761154e+002 1.22025597e+002 - 1.01567619e+002 1.14864212e+002 1.22044876e+002 1.01637428e+002 - 1.14940842e+002 1.22050133e+002 1.01744858e+002 1.15028725e+002 - 1.22083595e+002 1.01838928e+002 1.15125046e+002 1.22114014e+002 - 1.01961784e+002 1.15214844e+002 1.22144600e+002 1.02066795e+002 - 1.15321991e+002 1.22180351e+002 1.02201103e+002 1.15429070e+002 - 1.22224411e+002 1.02310104e+002 1.15541931e+002 1.22260956e+002 - 1.02404320e+002 1.15601349e+002 1.22268539e+002 1.02506859e+002 - 1.15688072e+002 1.22293388e+002 1.02628510e+002 1.15762955e+002 - 1.22310600e+002 1.02719170e+002 1.15839813e+002 1.22324226e+002 - 1.02817047e+002 1.15894058e+002 1.22326355e+002 1.02858910e+002 - 1.15929070e+002 1.22295425e+002 1.02896950e+002 1.15923386e+002 - 1.22258209e+002 1.02872704e+002 1.15884232e+002 1.22157562e+002 - 1.02835739e+002 1.15864136e+002 1.22201057e+002 1.02852104e+002 - 1.15925972e+002 1.22297585e+002 1.02832741e+002 1.15920776e+002 - 1.22351151e+002 1.02776031e+002 1.15891922e+002 1.22364960e+002 - 1.02680954e+002 1.15813835e+002 1.22361992e+002 1.02571648e+002 - 1.15738167e+002 1.22330933e+002 1.02466881e+002 1.15647438e+002 - 1.22308235e+002 1.02356125e+002 1.15565926e+002 1.22273422e+002 - 1.02287071e+002 1.15505455e+002 1.22281639e+002 1.02182747e+002 - 1.15427895e+002 1.22256020e+002 1.02072746e+002 1.15312569e+002 - 1.22232666e+002 1.01976196e+002 1.15234024e+002 1.22212036e+002 - 1.01892494e+002 1.15159790e+002 1.22207466e+002 1.01794868e+002 - 1.15080627e+002 1.22176773e+002 1.01693123e+002 1.14977623e+002 - 1.22139130e+002 1.01614105e+002 1.14908485e+002 1.22126251e+002 - 1.01516693e+002 1.14816902e+002 1.22128937e+002 1.01378021e+002 - 1.14716072e+002 1.22082733e+002 1.01298546e+002 1.14623245e+002 - 1.22060562e+002 1.01193726e+002 1.14543991e+002 1.22025833e+002 - 1.01113022e+002 1.14454483e+002 1.22016129e+002 1.01021439e+002 - 1.14383087e+002 1.22000320e+002 1.00928696e+002 1.14295654e+002 - 1.21989952e+002 1.00859756e+002 1.14246490e+002 1.21988342e+002 - 1.00803230e+002 1.14187340e+002 1.22003204e+002 1.00693604e+002 - 1.14093605e+002 1.21968269e+002 1.00637215e+002 1.14019020e+002 - 1.21981514e+002 1.00563881e+002 1.13957649e+002 1.21981514e+002 - 1.00496605e+002 1.13897690e+002 1.21989143e+002 1.00434509e+002 - 1.13854935e+002 1.21988869e+002 1.00369797e+002 1.13773705e+002 - 1.21985733e+002 1.00288147e+002 1.13703896e+002 1.21964264e+002 - 1.00213455e+002 1.13634819e+002 1.21990227e+002 1.00109406e+002 - 1.13564224e+002 1.21966621e+002 1.00054474e+002 1.13496094e+002 - 1.21967560e+002 9.99893417e+001 1.13445457e+002 1.21962189e+002 - 9.99252167e+001 1.13370239e+002 1.21969521e+002 9.98332825e+001 - 1.13296394e+002 1.21947731e+002 9.97636948e+001 1.13225418e+002 - 1.21952614e+002 9.97169952e+001 1.13187027e+002 1.21957695e+002 - 9.96636658e+001 1.13126450e+002 1.21967407e+002 9.96007996e+001 - 1.13070412e+002 1.21964500e+002 9.95602722e+001 1.12998474e+002 - 1.21977249e+002 9.95000229e+001 1.12950485e+002 1.21976112e+002 - 9.94614182e+001 1.12904610e+002 1.21999756e+002 9.94006500e+001 - 1.12860138e+002 1.21989189e+002 9.93948059e+001 1.12837151e+002 - 1.22023369e+002 9.93280945e+001 1.12778625e+002 1.22003654e+002 - 9.92621384e+001 1.12708977e+002 1.22002663e+002 9.91681747e+001 - 1.12637863e+002 1.21969955e+002 9.91206665e+001 1.12576775e+002 - 1.21959366e+002 9.90913086e+001 1.12546791e+002 1.21979561e+002 - 9.90666275e+001 1.12499542e+002 1.22005554e+002 9.90099258e+001 - 1.12447266e+002 1.21998596e+002 9.89435349e+001 1.12377495e+002 - 1.21989540e+002 9.89113693e+001 1.12351616e+002 1.22000618e+002 - 9.88975830e+001 1.12330170e+002 1.22042618e+002 9.88348160e+001 - 1.12279381e+002 1.22043800e+002 9.87831268e+001 1.12195679e+002 - 1.22040009e+002 9.87341690e+001 1.12156693e+002 1.22040932e+002 - 9.87017517e+001 1.12120613e+002 1.22061913e+002 9.86398392e+001 - 1.12073105e+002 1.22040283e+002 9.86297760e+001 1.12047920e+002 - 1.22065636e+002 9.86071243e+001 1.12025085e+002 1.22070526e+002 - 9.85670929e+001 1.11982239e+002 1.22087914e+002 9.84842682e+001 - 1.11917847e+002 1.22053185e+002 9.84939728e+001 1.11911713e+002 - 1.22094460e+002 9.85037613e+001 1.11926666e+002 1.22139915e+002 - 9.84891891e+001 1.11892349e+002 1.22163780e+002 9.84476395e+001 - 1.11859200e+002 1.22159660e+002 9.84259796e+001 1.11829552e+002 - 1.22188843e+002 9.83815842e+001 1.11792023e+002 1.22171127e+002 - 9.83849716e+001 1.11787743e+002 1.22208862e+002 9.83334274e+001 - 1.11748001e+002 1.22198326e+002 9.83261566e+001 1.11710571e+002 - 1.22226875e+002 9.83091888e+001 1.11699326e+002 1.22243698e+002 - 9.83144226e+001 1.11701920e+002 1.22286842e+002 9.82718201e+001 - 1.11667778e+002 1.22269623e+002 9.82372513e+001 1.11627029e+002 - 1.22266174e+002 9.82306061e+001 1.11616875e+002 1.22275169e+002 - 9.82321548e+001 1.11614990e+002 1.22332016e+002 9.81949997e+001 - 1.11592705e+002 1.22330688e+002 9.81511154e+001 1.11532524e+002 - 1.22315231e+002 9.81066742e+001 1.11491165e+002 1.22290405e+002 - 9.80811768e+001 1.11444466e+002 1.22289429e+002 9.80498734e+001 - 1.11412720e+002 1.22284599e+002 9.80167770e+001 1.11367516e+002 - 1.22278763e+002 9.80151749e+001 1.11369812e+002 1.22299782e+002 - 9.80249100e+001 1.11358208e+002 1.22326347e+002 9.79949341e+001 - 1.11337914e+002 1.22319893e+002 9.80174408e+001 1.11328239e+002 - 1.22349060e+002 9.79951477e+001 1.11316986e+002 1.22346344e+002 - 9.79807129e+001 1.11301109e+002 1.22351471e+002 9.79328766e+001 - 1.11267616e+002 1.22316895e+002 9.79399872e+001 1.11255142e+002 - 1.22335579e+002 9.79446793e+001 1.11258987e+002 1.22344040e+002 - 9.79319382e+001 1.11244263e+002 1.22359291e+002 9.78874741e+001 - 1.11215149e+002 1.22340546e+002 9.78826752e+001 1.11196533e+002 - 1.22336075e+002 9.78729935e+001 1.11198639e+002 1.22345131e+002 - 9.78745270e+001 1.11179970e+002 1.22350700e+002 9.78513718e+001 - 1.11174751e+002 1.22351807e+002 9.78262253e+001 1.11151237e+002 - 1.22357994e+002 9.78099136e+001 1.11145966e+002 1.22351501e+002 - 9.78094482e+001 1.11141869e+002 1.22372864e+002 9.77969513e+001 - 1.11141319e+002 1.22375229e+002 9.78574142e+001 1.11168198e+002 - 1.22435646e+002 9.78783951e+001 1.11197517e+002 1.22459290e+002 - 9.78699036e+001 1.11181480e+002 1.22455132e+002 9.78427200e+001 - 1.11170105e+002 1.22431229e+002 9.78385849e+001 1.11153297e+002 - 1.22433586e+002 9.78673477e+001 1.11191109e+002 1.22459724e+002 - 9.78774643e+001 1.11194649e+002 1.22471375e+002 9.78464279e+001 - 1.11191277e+002 1.22451180e+002 9.78368607e+001 1.11178070e+002 - 1.22436859e+002 9.78329544e+001 1.11186356e+002 1.22428131e+002 - 9.78417664e+001 1.11180206e+002 1.22423630e+002 9.78084717e+001 - 1.11161400e+002 1.22388512e+002 9.78221130e+001 1.11165733e+002 - 1.22399391e+002 9.78255692e+001 1.11185013e+002 1.22393326e+002 - 9.78289261e+001 1.11176598e+002 1.22391136e+002 9.78099670e+001 - 1.11170067e+002 1.22375648e+002 9.78370438e+001 1.11163910e+002 - 1.22393059e+002 9.78383636e+001 1.11175423e+002 1.22392090e+002 - 9.78367767e+001 1.11169983e+002 1.22370956e+002 9.78316956e+001 - 1.11179321e+002 1.22356606e+002 9.78870392e+001 1.11225433e+002 - 1.22402588e+002 9.79361038e+001 1.11282417e+002 1.22435547e+002 - 9.79421997e+001 1.11294403e+002 1.22436310e+002 9.79201202e+001 - 1.11299278e+002 1.22408920e+002 9.79161987e+001 1.11276184e+002 - 1.22377388e+002 9.78878632e+001 1.11254753e+002 1.22325172e+002 - 9.79046783e+001 1.11247299e+002 1.22309090e+002 9.79161301e+001 - 1.11272659e+002 1.22297569e+002 9.79363861e+001 1.11292046e+002 - 1.22300095e+002 9.79495621e+001 1.11315659e+002 1.22286133e+002 - 9.79955826e+001 1.11356949e+002 1.22310844e+002 9.80091934e+001 - 1.11384407e+002 1.22303291e+002 9.80015869e+001 1.11344162e+002 - 1.22249977e+002 9.80007248e+001 1.11357246e+002 1.22223564e+002 - 9.80261078e+001 1.11374420e+002 1.22206017e+002 9.80321732e+001 - 1.11399193e+002 1.22183113e+002 9.80510178e+001 1.11404800e+002 - 1.22171753e+002 9.80560303e+001 1.11417465e+002 1.22137131e+002 - 9.80827484e+001 1.11448479e+002 1.22132027e+002 9.80892792e+001 - 1.11474426e+002 1.22114204e+002 9.81245117e+001 1.11493523e+002 - 1.22109581e+002 9.81467438e+001 1.11530502e+002 1.22099892e+002 - 9.81858521e+001 1.11549408e+002 1.22100266e+002 9.82037506e+001 - 1.11581657e+002 1.22087997e+002 9.82416153e+001 1.11619804e+002 - 1.22088898e+002 9.82820435e+001 1.11674347e+002 1.22088516e+002 - 9.83180389e+001 1.11691818e+002 1.22079262e+002 9.83286667e+001 - 1.11720955e+002 1.22058418e+002 9.83705978e+001 1.11731056e+002 - 1.22048241e+002 9.83781433e+001 1.11750626e+002 1.22018387e+002 - 9.84162827e+001 1.11778076e+002 1.22008186e+002 9.84290009e+001 - 1.11807175e+002 1.21981438e+002 9.84618607e+001 1.11825996e+002 - 1.21971329e+002 9.85064240e+001 1.11871613e+002 1.21961601e+002 - 9.85507431e+001 1.11915024e+002 1.21954521e+002 9.85766754e+001 - 1.11963943e+002 1.21945229e+002 9.86358566e+001 1.12012550e+002 - 1.21963242e+002 9.86556244e+001 1.12054924e+002 1.21950012e+002 - 9.86943893e+001 1.12078415e+002 1.21938965e+002 9.87047348e+001 - 1.12107712e+002 1.21910774e+002 9.87669983e+001 1.12177650e+002 - 1.21927238e+002 9.87874298e+001 1.12223206e+002 1.21916306e+002 - 9.88343887e+001 1.12263969e+002 1.21914169e+002 9.88678741e+001 - 1.12315613e+002 1.21910049e+002 9.89253159e+001 1.12350578e+002 - 1.21904739e+002 9.89712677e+001 1.12409622e+002 1.21898811e+002 - 9.90155334e+001 1.12449310e+002 1.21883377e+002 9.90448914e+001 - 1.12503777e+002 1.21865364e+002 9.90873489e+001 1.12538185e+002 - 1.21862343e+002 9.91456451e+001 1.12594879e+002 1.21847496e+002 - 9.91825943e+001 1.12621696e+002 1.21806679e+002 9.91840210e+001 - 1.12644951e+002 1.21759552e+002 9.92578354e+001 1.12705833e+002 - 1.21781868e+002 9.93087387e+001 1.12764549e+002 1.21782021e+002 - 9.93926086e+001 1.12834290e+002 1.21804810e+002 9.94442368e+001 - 1.12898117e+002 1.21797867e+002 9.95321503e+001 1.12983627e+002 - 1.21829323e+002 9.95930862e+001 1.13051567e+002 1.21827492e+002 - 9.96564484e+001 1.13096275e+002 1.21823555e+002 9.96927109e+001 - 1.13152122e+002 1.21805374e+002 9.97820892e+001 1.13198990e+002 - 1.21817619e+002 9.98440552e+001 1.13266357e+002 1.21814415e+002 - 9.99040527e+001 1.13313385e+002 1.21807243e+002 9.99558716e+001 - 1.13387184e+002 1.21804237e+002 1.00051575e+002 1.13465515e+002 - 1.21844261e+002 1.00109848e+002 1.13528732e+002 1.21837479e+002 - 1.00185501e+002 1.13597321e+002 1.21829063e+002 1.00249664e+002 - 1.13681381e+002 1.21835533e+002 1.00355286e+002 1.13762840e+002 - 1.21876404e+002 1.00432411e+002 1.13849251e+002 1.21900322e+002 - 1.00502930e+002 1.13894295e+002 1.21901810e+002 1.00540688e+002 - 1.13937531e+002 1.21877121e+002 1.00636383e+002 1.14020569e+002 - 1.21900482e+002 1.00704399e+002 1.14092316e+002 1.21900360e+002 - 1.00790024e+002 1.14162987e+002 1.21902618e+002 1.00836105e+002 - 1.14220589e+002 1.21889122e+002 1.00918312e+002 1.14263771e+002 - 1.21883385e+002 1.00985153e+002 1.14337807e+002 1.21883286e+002 - 1.01070602e+002 1.14409317e+002 1.21891029e+002 1.01166023e+002 - 1.14515221e+002 1.21926346e+002 1.01276176e+002 1.14608971e+002 - 1.21969574e+002 1.01359558e+002 1.14686264e+002 1.21972496e+002 - 1.01474014e+002 1.14778069e+002 1.21979126e+002 1.01528824e+002 - 1.14846992e+002 1.21968300e+002 1.01641434e+002 1.14936935e+002 - 1.22005280e+002 1.01731834e+002 1.15028641e+002 1.22026894e+002 - 1.01862953e+002 1.15135674e+002 1.22077911e+002 1.01971413e+002 - 1.15240395e+002 1.22107796e+002 1.02101219e+002 1.15346786e+002 - 1.22152489e+002 1.02207672e+002 1.15446854e+002 1.22180916e+002 - 1.02295624e+002 1.15506142e+002 1.22181839e+002 1.02409904e+002 - 1.15609146e+002 1.22221901e+002 1.02545822e+002 1.15694870e+002 - 1.22255951e+002 1.02636353e+002 1.15775658e+002 1.22264206e+002 - 1.02740128e+002 1.15833862e+002 1.22283737e+002 1.02778008e+002 - 1.15865936e+002 1.22247215e+002 1.02831123e+002 1.15869392e+002 - 1.22219971e+002 1.02778893e+002 1.15805305e+002 1.22094147e+002 - 1.02751732e+002 1.15786545e+002 1.22137360e+002 1.02758209e+002 - 1.15838699e+002 1.22228638e+002 1.02751785e+002 1.15836754e+002 - 1.22292091e+002 1.02710052e+002 1.15824089e+002 1.22322372e+002 - 1.02616989e+002 1.15746109e+002 1.22313721e+002 1.02505280e+002 - 1.15670036e+002 1.22283539e+002 1.02394485e+002 1.15578125e+002 - 1.22258835e+002 1.02302551e+002 1.15511993e+002 1.22241135e+002 - 1.02197563e+002 1.15418510e+002 1.22211815e+002 1.02086952e+002 - 1.15339081e+002 1.22184723e+002 1.01986931e+002 1.15231941e+002 - 1.22173073e+002 1.01910439e+002 1.15173714e+002 1.22165855e+002 - 1.01824280e+002 1.15088966e+002 1.22156113e+002 1.01720085e+002 - 1.15008827e+002 1.22121346e+002 1.01610130e+002 1.14889778e+002 - 1.22065742e+002 1.01519768e+002 1.14818604e+002 1.22047516e+002 - 1.01407333e+002 1.14708900e+002 1.22038010e+002 1.01282509e+002 - 1.14618149e+002 1.22003265e+002 1.01208458e+002 1.14534737e+002 - 1.21984024e+002 1.01116577e+002 1.14464417e+002 1.21961830e+002 - 1.01020729e+002 1.14363792e+002 1.21940735e+002 1.00926880e+002 - 1.14287437e+002 1.21923500e+002 1.00831032e+002 1.14197884e+002 - 1.21907150e+002 1.00745224e+002 1.14130196e+002 1.21893143e+002 - 1.00709183e+002 1.14093781e+002 1.21928444e+002 1.00598564e+002 - 1.14002312e+002 1.21891495e+002 1.00523209e+002 1.13906471e+002 - 1.21893066e+002 1.00453369e+002 1.13847740e+002 1.21890633e+002 - 1.00397675e+002 1.13793999e+002 1.21909317e+002 1.00326881e+002 - 1.13737343e+002 1.21905426e+002 1.00249321e+002 1.13653450e+002 - 1.21889755e+002 1.00162231e+002 1.13579857e+002 1.21865776e+002 - 1.00080811e+002 1.13507126e+002 1.21876617e+002 9.99994125e+001 - 1.13455956e+002 1.21880379e+002 9.99426193e+001 1.13390991e+002 - 1.21875359e+002 9.98940353e+001 1.13357719e+002 1.21890572e+002 - 9.98264313e+001 1.13270103e+002 1.21888885e+002 9.97542725e+001 - 1.13215164e+002 1.21884850e+002 9.96862488e+001 1.13148224e+002 - 1.21890266e+002 9.96147919e+001 1.13085098e+002 1.21873085e+002 - 9.95827484e+001 1.13046043e+002 1.21894577e+002 9.95053406e+001 - 1.12975021e+002 1.21882378e+002 9.94553452e+001 1.12897507e+002 - 1.21892319e+002 9.94102478e+001 1.12861473e+002 1.21907127e+002 - 9.93828430e+001 1.12827682e+002 1.21935089e+002 9.93318634e+001 - 1.12788940e+002 1.21931778e+002 9.92877579e+001 1.12726387e+002 - 1.21929619e+002 9.92192230e+001 1.12667236e+002 1.21899147e+002 - 9.91608734e+001 1.12609428e+002 1.21918167e+002 9.90655441e+001 - 1.12534973e+002 1.21881142e+002 9.90213089e+001 1.12470955e+002 - 1.21875435e+002 9.89664383e+001 1.12423927e+002 1.21872200e+002 - 9.89545975e+001 1.12383476e+002 1.21907204e+002 9.88922653e+001 - 1.12330673e+002 1.21895874e+002 9.88251648e+001 1.12257027e+002 - 1.21884109e+002 9.87854691e+001 1.12228668e+002 1.21893532e+002 - 9.87878418e+001 1.12221069e+002 1.21946068e+002 9.87427979e+001 - 1.12189911e+002 1.21957909e+002 9.86980133e+001 1.12111710e+002 - 1.21963051e+002 9.86545944e+001 1.12079575e+002 1.21975494e+002 - 9.86013794e+001 1.12024361e+002 1.21975563e+002 9.85380249e+001 - 1.11976654e+002 1.21958633e+002 9.85170135e+001 1.11937355e+002 - 1.21968063e+002 9.84934464e+001 1.11923630e+002 1.21974815e+002 - 9.84714355e+001 1.11889549e+002 1.22001457e+002 9.84058685e+001 - 1.11841393e+002 1.21984756e+002 9.84099426e+001 1.11825485e+002 - 1.22016327e+002 9.83861847e+001 1.11810837e+002 1.22036957e+002 - 9.83697510e+001 1.11768997e+002 1.22056778e+002 9.83416977e+001 - 1.11753563e+002 1.22071899e+002 9.83293915e+001 1.11730507e+002 - 1.22100075e+002 9.83085632e+001 1.11715195e+002 1.22108109e+002 - 9.82997818e+001 1.11700523e+002 1.22132370e+002 9.82413788e+001 - 1.11657585e+002 1.22117615e+002 9.82390137e+001 1.11613777e+002 - 1.22145164e+002 9.82120667e+001 1.11593895e+002 1.22154739e+002 - 9.82005539e+001 1.11587746e+002 1.22187210e+002 9.81796875e+001 - 1.11583405e+002 1.22197716e+002 9.81610413e+001 1.11553795e+002 - 1.22204231e+002 9.81476669e+001 1.11537209e+002 1.22207878e+002 - 9.81398087e+001 1.11519524e+002 1.22247505e+002 9.81023788e+001 - 1.11500313e+002 1.22251755e+002 9.80638580e+001 1.11440331e+002 - 1.22233696e+002 9.80282898e+001 1.11414291e+002 1.22230095e+002 - 9.79991913e+001 1.11364143e+002 1.22222977e+002 9.79654541e+001 - 1.11334442e+002 1.22214912e+002 9.79222336e+001 1.11283104e+002 - 1.22203934e+002 9.79110947e+001 1.11272575e+002 1.22212715e+002 - 9.79181595e+001 1.11261208e+002 1.22238960e+002 9.78765106e+001 - 1.11223198e+002 1.22216461e+002 9.78840485e+001 1.11201027e+002 - 1.22235832e+002 9.78755341e+001 1.11195404e+002 1.22246445e+002 - 9.78663483e+001 1.11187340e+002 1.22254387e+002 9.78315048e+001 - 1.11163300e+002 1.22227913e+002 9.78328247e+001 1.11145912e+002 - 1.22239922e+002 9.78253632e+001 1.11140083e+002 1.22234314e+002 - 9.78206863e+001 1.11133461e+002 1.22260521e+002 9.77945023e+001 - 1.11132278e+002 1.22265526e+002 9.77945404e+001 1.11114517e+002 - 1.22273659e+002 9.77783737e+001 1.11108353e+002 1.22272423e+002 - 9.77827530e+001 1.11094353e+002 1.22281158e+002 9.77538681e+001 - 1.11085197e+002 1.22270996e+002 9.77081833e+001 1.11040215e+002 - 1.22254646e+002 9.76881180e+001 1.11035332e+002 1.22246796e+002 - 9.77243652e+001 1.11058334e+002 1.22298759e+002 9.77340088e+001 - 1.11078049e+002 1.22326332e+002 9.77721558e+001 1.11086205e+002 - 1.22363663e+002 9.77776566e+001 1.11103851e+002 1.22374641e+002 - 9.77804871e+001 1.11103844e+002 1.22378975e+002 9.77551575e+001 - 1.11093163e+002 1.22362747e+002 9.77444992e+001 1.11069962e+002 - 1.22356697e+002 9.77551270e+001 1.11087746e+002 1.22362625e+002 - 9.77690659e+001 1.11094711e+002 1.22374802e+002 9.77439575e+001 - 1.11089767e+002 1.22356567e+002 9.77492905e+001 1.11085144e+002 - 1.22357002e+002 9.77126007e+001 1.11064255e+002 1.22317108e+002 - 9.77234726e+001 1.11061592e+002 1.22324196e+002 9.77037735e+001 - 1.11057419e+002 1.22297050e+002 9.77261505e+001 1.11076851e+002 - 1.22312447e+002 9.77303391e+001 1.11089104e+002 1.22306702e+002 - 9.77373505e+001 1.11082100e+002 1.22305717e+002 9.77138596e+001 - 1.11073730e+002 1.22286835e+002 9.77344513e+001 1.11063118e+002 - 1.22295570e+002 9.77458801e+001 1.11086266e+002 1.22303551e+002 - 9.77465057e+001 1.11080673e+002 1.22291115e+002 9.77397766e+001 - 1.11087990e+002 1.22276291e+002 9.77795715e+001 1.11108437e+002 - 1.22301971e+002 9.78130493e+001 1.11159790e+002 1.22320328e+002 - 9.78360214e+001 1.11181770e+002 1.22338287e+002 9.78150635e+001 - 1.11187874e+002 1.22318604e+002 9.78141708e+001 1.11173592e+002 - 1.22290726e+002 9.77781296e+001 1.11141907e+002 1.22225487e+002 - 9.77763290e+001 1.11114944e+002 1.22187912e+002 9.77838593e+001 - 1.11140198e+002 1.22174309e+002 9.78147278e+001 1.11168922e+002 - 1.22190186e+002 9.78548355e+001 1.11218750e+002 1.22201485e+002 - 9.78943710e+001 1.11252739e+002 1.22217171e+002 9.79047775e+001 - 1.11278107e+002 1.22206558e+002 9.79173660e+001 1.11262146e+002 - 1.22177734e+002 9.79198761e+001 1.11270828e+002 1.22147209e+002 - 9.79292603e+001 1.11273911e+002 1.22118538e+002 9.79221268e+001 - 1.11286224e+002 1.22084267e+002 9.79405136e+001 1.11293503e+002 - 1.22077972e+002 9.79644699e+001 1.11325348e+002 1.22058075e+002 - 9.79988251e+001 1.11359581e+002 1.22052895e+002 9.79967194e+001 - 1.11383385e+002 1.22033028e+002 9.80214691e+001 1.11393204e+002 - 1.22020721e+002 9.80386429e+001 1.11424835e+002 1.22010109e+002 - 9.80743103e+001 1.11442581e+002 1.22007851e+002 9.80791016e+001 - 1.11461143e+002 1.21976799e+002 9.81326675e+001 1.11507111e+002 - 1.21990150e+002 9.81647034e+001 1.11554680e+002 1.21982712e+002 - 9.82193832e+001 1.11600838e+002 1.21993675e+002 9.82361069e+001 - 1.11630608e+002 1.21977730e+002 9.82803726e+001 1.11645233e+002 - 1.21975716e+002 9.82800674e+001 1.11654884e+002 1.21933479e+002 - 9.83118134e+001 1.11677994e+002 1.21917755e+002 9.83247070e+001 - 1.11707443e+002 1.21889008e+002 9.83528976e+001 1.11723137e+002 - 1.21875122e+002 9.84018326e+001 1.11775581e+002 1.21870163e+002 - 9.84471512e+001 1.11818680e+002 1.21858986e+002 9.84755173e+001 - 1.11873627e+002 1.21853699e+002 9.85314102e+001 1.11919312e+002 - 1.21866493e+002 9.85502090e+001 1.11951729e+002 1.21852402e+002 - 9.85848541e+001 1.11970337e+002 1.21841515e+002 9.86139679e+001 - 1.12024536e+002 1.21827499e+002 9.86683273e+001 1.12080002e+002 - 1.21844246e+002 9.86964645e+001 1.12132477e+002 1.21830864e+002 - 9.87448120e+001 1.12180374e+002 1.21839378e+002 9.87603378e+001 - 1.12212326e+002 1.21825417e+002 9.88428268e+001 1.12266632e+002 - 1.21835205e+002 9.89031677e+001 1.12338631e+002 1.21842789e+002 - 9.89330139e+001 1.12371719e+002 1.21816208e+002 9.89338760e+001 - 1.12388878e+002 1.21772224e+002 9.89915619e+001 1.12432495e+002 - 1.21773972e+002 9.90576935e+001 1.12512543e+002 1.21776436e+002 - 9.91044540e+001 1.12548439e+002 1.21749588e+002 9.91189728e+001 - 1.12579506e+002 1.21714355e+002 9.91797714e+001 1.12625900e+002 - 1.21721611e+002 9.92205124e+001 1.12679108e+002 1.21715393e+002 - 9.92899933e+001 1.12732445e+002 1.21716103e+002 9.93358917e+001 - 1.12790619e+002 1.21708908e+002 9.94246979e+001 1.12877846e+002 - 1.21738785e+002 9.95071335e+001 1.12968292e+002 1.21756317e+002 - 9.95631332e+001 1.13008751e+002 1.21751572e+002 9.96131897e+001 - 1.13075378e+002 1.21751907e+002 9.96976929e+001 1.13118401e+002 - 1.21753891e+002 9.97711105e+001 1.13200439e+002 1.21767792e+002 - 9.98371887e+001 1.13257614e+002 1.21768028e+002 9.98730545e+001 - 1.13306709e+002 1.21746162e+002 9.99546356e+001 1.13368416e+002 - 1.21770462e+002 1.00038292e+002 1.13466560e+002 1.21784264e+002 - 1.00126457e+002 1.13542854e+002 1.21788475e+002 1.00192436e+002 - 1.13630478e+002 1.21808434e+002 1.00299683e+002 1.13712524e+002 - 1.21848396e+002 1.00360931e+002 1.13784485e+002 1.21860657e+002 - 1.00430344e+002 1.13827957e+002 1.21855797e+002 1.00467148e+002 - 1.13874489e+002 1.21828888e+002 1.00555069e+002 1.13944023e+002 - 1.21836052e+002 1.00616768e+002 1.14010490e+002 1.21834023e+002 - 1.00696068e+002 1.14073654e+002 1.21833649e+002 1.00742012e+002 - 1.14135887e+002 1.21822884e+002 1.00838661e+002 1.14189194e+002 - 1.21830200e+002 1.00897255e+002 1.14259422e+002 1.21820358e+002 - 1.00974808e+002 1.14320480e+002 1.21822182e+002 1.01060120e+002 - 1.14414162e+002 1.21841599e+002 1.01172035e+002 1.14512192e+002 - 1.21891632e+002 1.01266098e+002 1.14600601e+002 1.21900085e+002 - 1.01379494e+002 1.14692909e+002 1.21911972e+002 1.01450943e+002 - 1.14777077e+002 1.21915474e+002 1.01563446e+002 1.14862953e+002 - 1.21958580e+002 1.01659950e+002 1.14958336e+002 1.21985695e+002 - 1.01798996e+002 1.15070999e+002 1.22042267e+002 1.01903831e+002 - 1.15176430e+002 1.22071838e+002 1.02043060e+002 1.15287354e+002 - 1.22115929e+002 1.02132065e+002 1.15372238e+002 1.22133308e+002 - 1.02228149e+002 1.15441986e+002 1.22139580e+002 1.02332481e+002 - 1.15536713e+002 1.22166039e+002 1.02451874e+002 1.15599602e+002 - 1.22188644e+002 1.02539322e+002 1.15680840e+002 1.22195724e+002 - 1.02656731e+002 1.15757698e+002 1.22222450e+002 1.02721024e+002 - 1.15817734e+002 1.22220093e+002 1.02770790e+002 1.15818314e+002 - 1.22196526e+002 1.02719627e+002 1.15754936e+002 1.22069069e+002 - 1.02674576e+002 1.15707405e+002 1.22077614e+002 1.02676201e+002 - 1.15754623e+002 1.22157509e+002 1.02683296e+002 1.15770676e+002 - 1.22236954e+002 1.02638908e+002 1.15762703e+002 1.22271423e+002 - 1.02541298e+002 1.15675797e+002 1.22260857e+002 1.02435204e+002 - 1.15603004e+002 1.22232666e+002 1.02332367e+002 1.15520576e+002 - 1.22213333e+002 1.02223938e+002 1.15439003e+002 1.22180031e+002 - 1.02134430e+002 1.15364609e+002 1.22170090e+002 1.02012001e+002 - 1.15271225e+002 1.22131165e+002 1.01936745e+002 1.15181320e+002 - 1.22140266e+002 1.01860031e+002 1.15129471e+002 1.22141663e+002 - 1.01760818e+002 1.15034256e+002 1.22109154e+002 1.01649162e+002 - 1.14946289e+002 1.22064644e+002 1.01543823e+002 1.14830116e+002 - 1.22018791e+002 1.01461411e+002 1.14759529e+002 1.22003555e+002 - 1.01348648e+002 1.14660675e+002 1.22001640e+002 1.01218208e+002 - 1.14561440e+002 1.21957909e+002 1.01126251e+002 1.14456772e+002 - 1.21917480e+002 1.01028755e+002 1.14378731e+002 1.21892090e+002 - 1.00951225e+002 1.14294746e+002 1.21883759e+002 1.00850113e+002 - 1.14220215e+002 1.21861694e+002 1.00755180e+002 1.14127625e+002 - 1.21849831e+002 1.00684334e+002 1.14077942e+002 1.21851753e+002 - 1.00640610e+002 1.14033554e+002 1.21880363e+002 1.00520233e+002 - 1.13931664e+002 1.21836769e+002 1.00445671e+002 1.13832153e+002 - 1.21835777e+002 1.00374557e+002 1.13778015e+002 1.21837143e+002 - 1.00325027e+002 1.13729530e+002 1.21858986e+002 1.00223427e+002 - 1.13647583e+002 1.21820709e+002 1.00159500e+002 1.13571075e+002 - 1.21817863e+002 1.00075981e+002 1.13498520e+002 1.21800079e+002 - 9.99940796e+001 1.13425186e+002 1.21808456e+002 9.99077377e+001 - 1.13374298e+002 1.21808067e+002 9.98740158e+001 1.13327187e+002 - 1.21820183e+002 9.98241959e+001 1.13290146e+002 1.21833305e+002 - 9.97595444e+001 1.13205933e+002 1.21839264e+002 9.96780701e+001 - 1.13145454e+002 1.21828354e+002 9.96119156e+001 1.13074944e+002 - 1.21831200e+002 9.95547180e+001 1.13030983e+002 1.21825676e+002 - 9.94998322e+001 1.12971649e+002 1.21834084e+002 9.94356232e+001 - 1.12914330e+002 1.21827736e+002 9.94048843e+001 1.12852806e+002 - 1.21853561e+002 9.93531876e+001 1.12813507e+002 1.21861359e+002 - 9.93128128e+001 1.12769409e+002 1.21878944e+002 9.92636261e+001 - 1.12727386e+002 1.21873718e+002 9.92033844e+001 1.12652992e+002 - 1.21858925e+002 9.91485519e+001 1.12606529e+002 1.21840454e+002 - 9.91177292e+001 1.12574989e+002 1.21884300e+002 9.90055237e+001 - 1.12484596e+002 1.21836266e+002 9.89470673e+001 1.12404091e+002 - 1.21815361e+002 9.88884125e+001 1.12352112e+002 1.21801773e+002 - 9.88723450e+001 1.12312073e+002 1.21837044e+002 9.88060303e+001 - 1.12257561e+002 1.21824638e+002 9.87555771e+001 1.12194069e+002 - 1.21827515e+002 9.87125931e+001 1.12163513e+002 1.21829247e+002 - 9.87273102e+001 1.12165749e+002 1.21895287e+002 9.86777191e+001 - 1.12131355e+002 1.21898987e+002 9.86335983e+001 1.12057648e+002 - 1.21910278e+002 9.85895462e+001 1.12024666e+002 1.21918053e+002 - 9.85446625e+001 1.11969398e+002 1.21926048e+002 9.84773560e+001 - 1.11921074e+002 1.21902122e+002 9.84719772e+001 1.11893555e+002 - 1.21929436e+002 9.84444733e+001 1.11875938e+002 1.21932831e+002 - 9.84099655e+001 1.11834297e+002 1.21944122e+002 9.83296280e+001 - 1.11773033e+002 1.21918144e+002 9.83293533e+001 1.11744553e+002 - 1.21939720e+002 9.83104935e+001 1.11738838e+002 1.21966263e+002 - 9.83082657e+001 1.11713898e+002 1.22003891e+002 9.82739410e+001 - 1.11687874e+002 1.22008713e+002 9.82466507e+001 1.11653679e+002 - 1.22017349e+002 9.82344284e+001 1.11651001e+002 1.22040504e+002 - 9.82321701e+001 1.11632835e+002 1.22069290e+002 9.81802902e+001 - 1.11597366e+002 1.22058662e+002 9.81806183e+001 1.11554031e+002 - 1.22087204e+002 9.81514816e+001 1.11537308e+002 1.22106636e+002 - 9.81351166e+001 1.11524422e+002 1.22127777e+002 9.80901337e+001 - 1.11492325e+002 1.22119682e+002 9.80874863e+001 1.11479027e+002 - 1.22140266e+002 9.80675583e+001 1.11466026e+002 1.22144463e+002 - 9.80488586e+001 1.11436073e+002 1.22163704e+002 9.80150986e+001 - 1.11423424e+002 1.22175209e+002 9.79715958e+001 1.11356812e+002 - 1.22154419e+002 9.79227600e+001 1.11319420e+002 1.22131599e+002 - 9.79040146e+001 1.11277596e+002 1.22140587e+002 9.78979034e+001 - 1.11275246e+002 1.22162224e+002 9.78609695e+001 1.11234787e+002 - 1.22157234e+002 9.78487320e+001 1.11218025e+002 1.22163841e+002 - 9.78630295e+001 1.11216698e+002 1.22195313e+002 9.78161392e+001 - 1.11180008e+002 1.22172112e+002 9.77883377e+001 1.11107735e+002 - 1.22153465e+002 9.77973557e+001 1.11127167e+002 1.22175735e+002 - 9.77796783e+001 1.11104118e+002 1.22171776e+002 9.77289810e+001 - 1.11070892e+002 1.22135323e+002 9.77294312e+001 1.11051910e+002 - 1.22144897e+002 9.77349243e+001 1.11060402e+002 1.22163033e+002 - 9.77417374e+001 1.11062088e+002 1.22190308e+002 9.77124939e+001 - 1.11060127e+002 1.22192558e+002 9.77140961e+001 1.11045235e+002 - 1.22206604e+002 9.77050781e+001 1.11048866e+002 1.22215446e+002 - 9.77037964e+001 1.11027237e+002 1.22219780e+002 9.76771851e+001 - 1.11017082e+002 1.22210602e+002 9.76469193e+001 1.10984322e+002 - 1.22201370e+002 9.76347122e+001 1.10985771e+002 1.22200859e+002 - 9.76509247e+001 1.10993744e+002 1.22231094e+002 9.76598511e+001 - 1.11016022e+002 1.22260040e+002 9.76830597e+001 1.11008080e+002 - 1.22284737e+002 9.76710052e+001 1.11006454e+002 1.22283546e+002 - 9.76870422e+001 1.11016747e+002 1.22296722e+002 9.76765518e+001 - 1.11025490e+002 1.22297112e+002 9.76644821e+001 1.11003296e+002 - 1.22290115e+002 9.76664200e+001 1.11006065e+002 1.22281334e+002 - 9.76783752e+001 1.11012260e+002 1.22292480e+002 9.76501923e+001 - 1.11005844e+002 1.22273521e+002 9.76569290e+001 1.10998398e+002 - 1.22272659e+002 9.76298904e+001 1.10982887e+002 1.22241898e+002 - 9.76663513e+001 1.11005981e+002 1.22268036e+002 9.76367493e+001 - 1.10994087e+002 1.22234795e+002 9.76530380e+001 1.11003494e+002 - 1.22240959e+002 9.76585083e+001 1.11019966e+002 1.22237679e+002 - 9.76665802e+001 1.11015038e+002 1.22237816e+002 9.76495514e+001 - 1.11013535e+002 1.22227028e+002 9.76689682e+001 1.11002609e+002 - 1.22231018e+002 9.76656189e+001 1.11008301e+002 1.22224304e+002 - 9.76766815e+001 1.11015083e+002 1.22224167e+002 9.76745605e+001 - 1.11027100e+002 1.22213463e+002 9.76927490e+001 1.11028656e+002 - 1.22215271e+002 9.77259064e+001 1.11072098e+002 1.22237717e+002 - 9.77504807e+001 1.11103493e+002 1.22259483e+002 9.77293930e+001 - 1.11104950e+002 1.22233696e+002 9.77310867e+001 1.11089691e+002 - 1.22203484e+002 9.76998596e+001 1.11064278e+002 1.22150360e+002 - 9.77102356e+001 1.11055359e+002 1.22127899e+002 9.77187042e+001 - 1.11076462e+002 1.22120522e+002 9.77791824e+001 1.11136284e+002 - 1.22162819e+002 9.78003769e+001 1.11169182e+002 1.22154480e+002 - 9.78160019e+001 1.11177460e+002 1.22151489e+002 9.78071823e+001 - 1.11185394e+002 1.22117409e+002 9.78119354e+001 1.11160042e+002 - 1.22084740e+002 9.78138809e+001 1.11174835e+002 1.22055634e+002 - 9.78129883e+001 1.11165749e+002 1.22023224e+002 9.78125076e+001 - 1.11185829e+002 1.21987679e+002 9.78563614e+001 1.11212852e+002 - 1.22001068e+002 9.78814697e+001 1.11254494e+002 1.21986755e+002 - 9.79272308e+001 1.11295052e+002 1.21991035e+002 9.79308777e+001 - 1.11322052e+002 1.21974640e+002 9.79481354e+001 1.11327423e+002 - 1.21956131e+002 9.79618835e+001 1.11352303e+002 1.21936676e+002 - 9.80001221e+001 1.11371132e+002 1.21937149e+002 9.80071564e+001 - 1.11394760e+002 1.21914711e+002 9.80572662e+001 1.11442993e+002 - 1.21923317e+002 9.80807800e+001 1.11475716e+002 1.21906693e+002 - 9.81241226e+001 1.11512566e+002 1.21905540e+002 9.81326447e+001 - 1.11532761e+002 1.21881355e+002 9.81738052e+001 1.11539894e+002 - 1.21873474e+002 9.82008057e+001 1.11586227e+002 1.21858139e+002 - 9.82279587e+001 1.11603020e+002 1.21842690e+002 9.82245941e+001 - 1.11623978e+002 1.21801285e+002 9.82629700e+001 1.11646973e+002 - 1.21799591e+002 9.83063049e+001 1.11697540e+002 1.21787399e+002 - 9.83590851e+001 1.11746902e+002 1.21781746e+002 9.83761063e+001 - 1.11789886e+002 1.21767403e+002 9.84493942e+001 1.11841805e+002 - 1.21789963e+002 9.84900742e+001 1.11908546e+002 1.21800499e+002 - 9.85223160e+001 1.11920311e+002 1.21781479e+002 9.85271835e+001 - 1.11946320e+002 1.21749847e+002 9.85859680e+001 1.12003860e+002 - 1.21760658e+002 9.86341248e+001 1.12073143e+002 1.21774696e+002 - 9.86744308e+001 1.12120667e+002 1.21778793e+002 9.87019958e+001 - 1.12155510e+002 1.21765045e+002 9.87774963e+001 1.12211220e+002 - 1.21779922e+002 9.88170929e+001 1.12263496e+002 1.21770126e+002 - 9.88479156e+001 1.12294891e+002 1.21747162e+002 9.88529663e+001 - 1.12317596e+002 1.21703316e+002 9.89192657e+001 1.12373337e+002 - 1.21720184e+002 9.89792175e+001 1.12441284e+002 1.21714302e+002 - 9.90299606e+001 1.12479340e+002 1.21689827e+002 9.90435028e+001 - 1.12511658e+002 1.21647728e+002 9.91193695e+001 1.12575645e+002 - 1.21674515e+002 9.91666260e+001 1.12634605e+002 1.21674026e+002 - 9.92228546e+001 1.12669678e+002 1.21666222e+002 9.92514801e+001 - 1.12717567e+002 1.21642769e+002 9.93224106e+001 1.12786797e+002 - 1.21652863e+002 9.94008560e+001 1.12873299e+002 1.21670319e+002 - 9.94750900e+001 1.12934212e+002 1.21683456e+002 9.95365295e+001 - 1.13011314e+002 1.21691750e+002 9.96190643e+001 1.13056694e+002 - 1.21703102e+002 9.96910324e+001 1.13139145e+002 1.21722122e+002 - 9.97874298e+001 1.13221245e+002 1.21744904e+002 9.98056870e+001 - 1.13256615e+002 1.21703568e+002 9.98852463e+001 1.13316185e+002 - 1.21724632e+002 9.99520569e+001 1.13393906e+002 1.21721497e+002 - 1.00038055e+002 1.13467087e+002 1.21725021e+002 1.00109627e+002 - 1.13558968e+002 1.21746399e+002 1.00224960e+002 1.13646584e+002 - 1.21797775e+002 1.00301880e+002 1.13735176e+002 1.21817207e+002 - 1.00365982e+002 1.13774345e+002 1.21807945e+002 1.00397041e+002 - 1.13813408e+002 1.21780670e+002 1.00483620e+002 1.13886620e+002 - 1.21787010e+002 1.00563286e+002 1.13975731e+002 1.21801071e+002 - 1.00635750e+002 1.14027611e+002 1.21799149e+002 1.00671761e+002 - 1.14077614e+002 1.21776031e+002 1.00785416e+002 1.14148849e+002 - 1.21804199e+002 1.00856247e+002 1.14220284e+002 1.21798462e+002 - 1.00902283e+002 1.14257202e+002 1.21771049e+002 1.00968765e+002 - 1.14330772e+002 1.21769165e+002 1.01088753e+002 1.14431442e+002 - 1.21829399e+002 1.01194710e+002 1.14535286e+002 1.21851555e+002 - 1.01317429e+002 1.14639282e+002 1.21872108e+002 1.01392944e+002 - 1.14724998e+002 1.21879379e+002 1.01496742e+002 1.14800842e+002 - 1.21914185e+002 1.01588982e+002 1.14891403e+002 1.21932304e+002 - 1.01726707e+002 1.14999916e+002 1.21985008e+002 1.01838760e+002 - 1.15117218e+002 1.22026360e+002 1.01973900e+002 1.15225868e+002 - 1.22068703e+002 1.02055550e+002 1.15303787e+002 1.22077400e+002 - 1.02168816e+002 1.15391167e+002 1.22104584e+002 1.02268097e+002 - 1.15482101e+002 1.22125702e+002 1.02383675e+002 1.15536674e+002 - 1.22141174e+002 1.02471664e+002 1.15618500e+002 1.22148636e+002 - 1.02577904e+002 1.15690231e+002 1.22167969e+002 1.02641579e+002 - 1.15745422e+002 1.22163445e+002 1.02700905e+002 1.15749542e+002 - 1.22148506e+002 1.02645081e+002 1.15693108e+002 1.22015518e+002 - 1.02582520e+002 1.15633034e+002 1.22005249e+002 1.02595306e+002 - 1.15686615e+002 1.22096046e+002 1.02599419e+002 1.15699448e+002 - 1.22173027e+002 1.02556709e+002 1.15688362e+002 1.22206619e+002 - 1.02455200e+002 1.15601799e+002 1.22194107e+002 1.02350281e+002 - 1.15528954e+002 1.22167419e+002 1.02248390e+002 1.15448639e+002 - 1.22155525e+002 1.02128777e+002 1.15358376e+002 1.22103233e+002 - 1.02050560e+002 1.15293732e+002 1.22108521e+002 1.01942596e+002 - 1.15214531e+002 1.22081558e+002 1.01874908e+002 1.15140526e+002 - 1.22098351e+002 1.01775414e+002 1.15061821e+002 1.22075684e+002 - 1.01668930e+002 1.14962074e+002 1.22039597e+002 1.01544701e+002 - 1.14860840e+002 1.21985771e+002 1.01448608e+002 1.14753975e+002 - 1.21944710e+002 1.01368202e+002 1.14692390e+002 1.21935715e+002 - 1.01279572e+002 1.14606209e+002 1.21949936e+002 1.01142067e+002 - 1.14497368e+002 1.21899323e+002 1.01048599e+002 1.14395828e+002 - 1.21864769e+002 1.00946312e+002 1.14317833e+002 1.21835472e+002 - 1.00854752e+002 1.14222725e+002 1.21818787e+002 1.00774033e+002 - 1.14159027e+002 1.21809929e+002 1.00698807e+002 1.14095940e+002 - 1.21824165e+002 1.00624870e+002 1.14038689e+002 1.21815247e+002 - 1.00549072e+002 1.13959808e+002 1.21815277e+002 1.00445923e+002 - 1.13869232e+002 1.21787498e+002 1.00367020e+002 1.13776169e+002 - 1.21787750e+002 1.00299370e+002 1.13721619e+002 1.21789848e+002 - 1.00234695e+002 1.13656235e+002 1.21791008e+002 1.00125153e+002 - 1.13567757e+002 1.21750671e+002 1.00055305e+002 1.13483818e+002 - 1.21739944e+002 9.99815826e+001 1.13421913e+002 1.21726357e+002 - 9.99028702e+001 1.13345673e+002 1.21745613e+002 9.97969513e+001 - 1.13281578e+002 1.21718872e+002 9.97698898e+001 1.13234360e+002 - 1.21740417e+002 9.97318802e+001 1.13216927e+002 1.21763756e+002 - 9.96653290e+001 1.13132690e+002 1.21765030e+002 9.96048126e+001 - 1.13088921e+002 1.21771736e+002 9.95287399e+001 1.13012741e+002 - 1.21768806e+002 9.94668884e+001 1.12960510e+002 1.21761482e+002 - 9.94117203e+001 1.12904739e+002 1.21763947e+002 9.93356171e+001 - 1.12835365e+002 1.21750359e+002 9.93078766e+001 1.12776825e+002 - 1.21778046e+002 9.92625198e+001 1.12739861e+002 1.21789124e+002 - 9.92254105e+001 1.12700920e+002 1.21804169e+002 9.91501236e+001 - 1.12635384e+002 1.21777260e+002 9.91093979e+001 1.12580933e+002 - 1.21777138e+002 9.90593796e+001 1.12541954e+002 1.21770157e+002 - 9.89984055e+001 1.12473183e+002 1.21782715e+002 9.88877563e+001 - 1.12383072e+002 1.21732201e+002 9.88501663e+001 1.12324104e+002 - 1.21731941e+002 9.88076477e+001 1.12288399e+002 1.21736847e+002 - 9.87857666e+001 1.12241600e+002 1.21762459e+002 9.87533493e+001 - 1.12223007e+002 1.21781502e+002 9.87096939e+001 1.12165924e+002 - 1.21793129e+002 9.86513596e+001 1.12117180e+002 1.21779968e+002 - 9.86475067e+001 1.12103882e+002 1.21828316e+002 9.85830994e+001 - 1.12052361e+002 1.21818062e+002 9.85518875e+001 1.11992531e+002 - 1.21841698e+002 9.85095825e+001 1.11956474e+002 1.21849266e+002 - 9.84789505e+001 1.11918922e+002 1.21868927e+002 9.84246063e+001 - 1.11884827e+002 1.21860748e+002 9.84130630e+001 1.11853455e+002 - 1.21886894e+002 9.83923569e+001 1.11838470e+002 1.21890465e+002 - 9.83747559e+001 1.11810974e+002 1.21925385e+002 9.82695313e+001 - 1.11726524e+002 1.21869698e+002 9.82595749e+001 1.11694290e+002 - 1.21893288e+002 9.82472153e+001 1.11687134e+002 1.21909302e+002 - 9.82351532e+001 1.11654472e+002 1.21937241e+002 9.81961212e+001 - 1.11630722e+002 1.21942497e+002 9.81786041e+001 1.11602844e+002 - 1.21963951e+002 9.81590347e+001 1.11587883e+002 1.21970856e+002 - 9.81577377e+001 1.11571838e+002 1.21997574e+002 9.81106339e+001 - 1.11541367e+002 1.21995720e+002 9.80849762e+001 1.11477448e+002 - 1.22000465e+002 9.80674057e+001 1.11472939e+002 1.22031265e+002 - 9.80500107e+001 1.11457634e+002 1.22058105e+002 9.79814148e+001 - 1.11406654e+002 1.22028389e+002 9.79770279e+001 1.11389801e+002 - 1.22050201e+002 9.79765472e+001 1.11390465e+002 1.22068733e+002 - 9.79386749e+001 1.11342285e+002 1.22071007e+002 9.78925323e+001 - 1.11315788e+002 1.22065308e+002 9.78650360e+001 1.11267929e+002 - 1.22060242e+002 9.77991409e+001 1.11213554e+002 1.22016937e+002 - 9.77893524e+001 1.11178825e+002 1.22031578e+002 9.77769623e+001 - 1.11175026e+002 1.22049309e+002 9.77720795e+001 1.11164238e+002 - 1.22083359e+002 9.77606964e+001 1.11156967e+002 1.22091049e+002 - 9.77509308e+001 1.11130379e+002 1.22095207e+002 9.77056274e+001 - 1.11087868e+002 1.22071106e+002 9.76802139e+001 1.11024277e+002 - 1.22057243e+002 9.76836166e+001 1.11041107e+002 1.22076210e+002 - 9.76703568e+001 1.11018127e+002 1.22082680e+002 9.76290817e+001 - 1.10995903e+002 1.22056526e+002 9.76421890e+001 1.10991554e+002 - 1.22078026e+002 9.76428680e+001 1.10994812e+002 1.22087540e+002 - 9.76408997e+001 1.10986649e+002 1.22111229e+002 9.75806351e+001 - 1.10955360e+002 1.22082359e+002 9.75876923e+001 1.10939606e+002 - 1.22095741e+002 9.75892792e+001 1.10953918e+002 1.22115822e+002 - 9.75912018e+001 1.10937080e+002 1.22125366e+002 9.75599670e+001 - 1.10922417e+002 1.22112282e+002 9.75552521e+001 1.10919846e+002 - 1.22128662e+002 9.75448837e+001 1.10919258e+002 1.22132225e+002 - 9.75486832e+001 1.10912003e+002 1.22146835e+002 9.75449677e+001 - 1.10922729e+002 1.22160484e+002 9.75712509e+001 1.10919670e+002 - 1.22190193e+002 9.75785599e+001 1.10942291e+002 1.22204559e+002 - 9.75796814e+001 1.10933655e+002 1.22210487e+002 9.75575638e+001 - 1.10930908e+002 1.22192841e+002 9.75530167e+001 1.10916138e+002 - 1.22189743e+002 9.75568161e+001 1.10925339e+002 1.22187248e+002 - 9.75645752e+001 1.10921547e+002 1.22191978e+002 9.75355377e+001 - 1.10912178e+002 1.22166145e+002 9.75428772e+001 1.10905411e+002 - 1.22163445e+002 9.75316162e+001 1.10906158e+002 1.22154892e+002 - 9.75647278e+001 1.10924789e+002 1.22181107e+002 9.75340805e+001 - 1.10904900e+002 1.22144447e+002 9.75391159e+001 1.10907478e+002 - 1.22143959e+002 9.75443039e+001 1.10922745e+002 1.22136581e+002 - 9.75663986e+001 1.10939064e+002 1.22153915e+002 9.75719299e+001 - 1.10950745e+002 1.22157814e+002 9.75885162e+001 1.10938370e+002 - 1.22163956e+002 9.75702667e+001 1.10931084e+002 1.22137169e+002 - 9.75781631e+001 1.10929909e+002 1.22130508e+002 9.75915680e+001 - 1.10960686e+002 1.22131737e+002 9.76066437e+001 1.10960609e+002 - 1.22135246e+002 9.76568604e+001 1.11022377e+002 1.22174500e+002 - 9.76686172e+001 1.11030823e+002 1.22178146e+002 9.76554413e+001 - 1.11043808e+002 1.22158623e+002 9.76619263e+001 1.11028206e+002 - 1.22136497e+002 9.76524887e+001 1.11027222e+002 1.22105049e+002 - 9.76741867e+001 1.11035217e+002 1.22098930e+002 9.76716156e+001 - 1.11045830e+002 1.22079269e+002 9.76767426e+001 1.11048775e+002 - 1.22065483e+002 9.76852341e+001 1.11069572e+002 1.22058426e+002 - 9.77011566e+001 1.11081726e+002 1.22046837e+002 9.77175674e+001 - 1.11113319e+002 1.22038712e+002 9.77277832e+001 1.11085495e+002 - 1.22010399e+002 9.77070007e+001 1.11080872e+002 1.21957603e+002 - 9.77379990e+001 1.11107079e+002 1.21952415e+002 9.77336273e+001 - 1.11124931e+002 1.21923424e+002 9.77478104e+001 1.11128502e+002 - 1.21905365e+002 9.77679291e+001 1.11154297e+002 1.21881554e+002 - 9.78240891e+001 1.11205498e+002 1.21899323e+002 9.78336411e+001 - 1.11243675e+002 1.21891396e+002 9.78606873e+001 1.11254250e+002 - 1.21878754e+002 9.78691483e+001 1.11282066e+002 1.21859749e+002 - 9.79166870e+001 1.11309227e+002 1.21866356e+002 9.79354553e+001 - 1.11337639e+002 1.21846855e+002 9.79517288e+001 1.11352303e+002 - 1.21827164e+002 9.79954376e+001 1.11409172e+002 1.21837296e+002 - 9.80173721e+001 1.11424423e+002 1.21813179e+002 9.80374985e+001 - 1.11458740e+002 1.21798950e+002 9.80907059e+001 1.11478546e+002 - 1.21798904e+002 9.80937119e+001 1.11491875e+002 1.21765617e+002 - 9.81354523e+001 1.11535011e+002 1.21756454e+002 9.81521912e+001 - 1.11571930e+002 1.21733086e+002 9.81983795e+001 1.11601578e+002 - 1.21745735e+002 9.82284546e+001 1.11644875e+002 1.21725891e+002 - 9.82730637e+001 1.11682373e+002 1.21709785e+002 9.82954330e+001 - 1.11730743e+002 1.21698944e+002 9.83669662e+001 1.11779213e+002 - 1.21726418e+002 9.84046173e+001 1.11840729e+002 1.21733559e+002 - 9.84644241e+001 1.11875648e+002 1.21735825e+002 9.84820251e+001 - 1.11917175e+002 1.21717873e+002 9.85246735e+001 1.11955513e+002 - 1.21712204e+002 9.85785065e+001 1.12031006e+002 1.21731262e+002 - 9.86269760e+001 1.12074165e+002 1.21743279e+002 9.86259613e+001 - 1.12097023e+002 1.21707634e+002 9.86957626e+001 1.12138924e+002 - 1.21713020e+002 9.87311325e+001 1.12194557e+002 1.21703140e+002 - 9.87619171e+001 1.12216011e+002 1.21674866e+002 9.87650146e+001 - 1.12247810e+002 1.21636360e+002 9.88375931e+001 1.12312065e+002 - 1.21664261e+002 9.89041672e+001 1.12388367e+002 1.21667297e+002 - 9.89699631e+001 1.12442398e+002 1.21649963e+002 9.89814606e+001 - 1.12470085e+002 1.21611496e+002 9.90438995e+001 1.12518112e+002 - 1.21622536e+002 9.90962143e+001 1.12586380e+002 1.21631142e+002 - 9.91417694e+001 1.12604645e+002 1.21608299e+002 9.91678314e+001 - 1.12648758e+002 1.21577919e+002 9.92435379e+001 1.12725266e+002 - 1.21598694e+002 9.93265152e+001 1.12818306e+002 1.21623840e+002 - 9.93885880e+001 1.12867744e+002 1.21624901e+002 9.94438171e+001 - 1.12938843e+002 1.21627243e+002 9.95244751e+001 1.12984039e+002 - 1.21640297e+002 9.95867538e+001 1.13052498e+002 1.21638687e+002 - 9.96721725e+001 1.13126381e+002 1.21660019e+002 9.97058716e+001 - 1.13180008e+002 1.21635201e+002 9.97949753e+001 1.13250610e+002 - 1.21667587e+002 9.98836441e+001 1.13339813e+002 1.21677589e+002 - 9.99530487e+001 1.13391068e+002 1.21660751e+002 1.00003639e+002 - 1.13467720e+002 1.21664116e+002 1.00116997e+002 1.13555794e+002 - 1.21708084e+002 1.00171761e+002 1.13618912e+002 1.21705513e+002 - 1.00251068e+002 1.13671051e+002 1.21714638e+002 1.00297089e+002 - 1.13726074e+002 1.21696869e+002 1.00377808e+002 1.13795921e+002 - 1.21702736e+002 1.00463188e+002 1.13891411e+002 1.21723343e+002 - 1.00546051e+002 1.13959221e+002 1.21733727e+002 1.00592117e+002 - 1.14016472e+002 1.21724716e+002 1.00699356e+002 1.14086609e+002 - 1.21744102e+002 1.00765625e+002 1.14158417e+002 1.21735970e+002 - 1.00829628e+002 1.14197845e+002 1.21722336e+002 1.00895088e+002 - 1.14275452e+002 1.21728378e+002 1.00998573e+002 1.14363022e+002 - 1.21766655e+002 1.01110069e+002 1.14474403e+002 1.21802223e+002 - 1.01247231e+002 1.14580055e+002 1.21831047e+002 1.01318726e+002 - 1.14669838e+002 1.21830650e+002 1.01415672e+002 1.14737717e+002 - 1.21856895e+002 1.01503578e+002 1.14824600e+002 1.21874596e+002 - 1.01633629e+002 1.14922684e+002 1.21912560e+002 1.01729988e+002 - 1.15020294e+002 1.21941170e+002 1.01876038e+002 1.15143570e+002 - 1.22000069e+002 1.01964066e+002 1.15232475e+002 1.22012123e+002 - 1.02065727e+002 1.15304787e+002 1.22031555e+002 1.02188545e+002 - 1.15420258e+002 1.22078484e+002 1.02299538e+002 1.15476479e+002 - 1.22086876e+002 1.02389992e+002 1.15554031e+002 1.22096085e+002 - 1.02499466e+002 1.15623543e+002 1.22112953e+002 1.02541962e+002 - 1.15659248e+002 1.22083771e+002 1.02607780e+002 1.15677048e+002 - 1.22078308e+002 1.02574913e+002 1.15633575e+002 1.21968987e+002 - 1.02531792e+002 1.15592834e+002 1.21973892e+002 1.02541893e+002 - 1.15639244e+002 1.22056526e+002 1.02520882e+002 1.15625679e+002 - 1.22106544e+002 1.02461517e+002 1.15599365e+002 1.22127007e+002 - 1.02369202e+002 1.15518089e+002 1.22124268e+002 1.02259041e+002 - 1.15446022e+002 1.22090012e+002 1.02147751e+002 1.15352142e+002 - 1.22068405e+002 1.02029846e+002 1.15270332e+002 1.22025299e+002 - 1.01950333e+002 1.15201889e+002 1.22021973e+002 1.01859497e+002 - 1.15145256e+002 1.22016457e+002 1.01796928e+002 1.15072845e+002 - 1.22042053e+002 1.01699089e+002 1.14999573e+002 1.22019112e+002 - 1.01593552e+002 1.14892982e+002 1.21980270e+002 1.01458046e+002 - 1.14784538e+002 1.21913422e+002 1.01371300e+002 1.14690071e+002 - 1.21884811e+002 1.01268082e+002 1.14603935e+002 1.21855286e+002 - 1.01164886e+002 1.14501907e+002 1.21852303e+002 1.01044846e+002 - 1.14421768e+002 1.21822395e+002 1.00960663e+002 1.14325188e+002 - 1.21792458e+002 1.00867134e+002 1.14250282e+002 1.21771965e+002 - 1.00776428e+002 1.14157234e+002 1.21762558e+002 1.00682877e+002 - 1.14085114e+002 1.21742531e+002 1.00616806e+002 1.14029610e+002 - 1.21767159e+002 1.00548248e+002 1.13973923e+002 1.21759224e+002 - 1.00466354e+002 1.13887367e+002 1.21753471e+002 1.00370728e+002 - 1.13808571e+002 1.21728653e+002 1.00285286e+002 1.13700188e+002 - 1.21719925e+002 1.00198830e+002 1.13642365e+002 1.21705498e+002 - 1.00116867e+002 1.13555046e+002 1.21694496e+002 1.00033127e+002 - 1.13482887e+002 1.21671265e+002 9.99779053e+001 1.13420181e+002 - 1.21673805e+002 9.99048233e+001 1.13360458e+002 1.21662323e+002 - 9.98247223e+001 1.13282402e+002 1.21679138e+002 9.97118835e+001 - 1.13206322e+002 1.21652061e+002 9.96739731e+001 1.13154160e+002 - 1.21660042e+002 9.96430588e+001 1.13130554e+002 1.21684471e+002 - 9.95777283e+001 1.13060242e+002 1.21693375e+002 9.95163422e+001 - 1.13002113e+002 1.21691360e+002 9.94385986e+001 1.12927979e+002 - 1.21691833e+002 9.93696671e+001 1.12876114e+002 1.21675293e+002 - 9.93315125e+001 1.12832199e+002 1.21699516e+002 9.92377090e+001 - 1.12749664e+002 1.21666161e+002 9.92007523e+001 1.12687210e+002 - 1.21687241e+002 9.91608887e+001 1.12653687e+002 1.21698814e+002 - 9.91184692e+001 1.12603523e+002 1.21707764e+002 9.90507050e+001 - 1.12553978e+002 1.21693260e+002 9.90067368e+001 1.12491859e+002 - 1.21691048e+002 9.89480972e+001 1.12441544e+002 1.21672920e+002 - 9.89059601e+001 1.12388756e+002 1.21701332e+002 9.88155975e+001 - 1.12320358e+002 1.21670967e+002 9.87825775e+001 1.12268394e+002 - 1.21674393e+002 9.87236404e+001 1.12205070e+002 1.21654419e+002 - 9.87058029e+001 1.12166245e+002 1.21688278e+002 9.86669922e+001 - 1.12145432e+002 1.21709518e+002 9.86306000e+001 1.12096611e+002 - 1.21725716e+002 9.85686417e+001 1.12049530e+002 1.21706062e+002 - 9.85541611e+001 1.12020020e+002 1.21743515e+002 9.84930344e+001 - 1.11973099e+002 1.21740715e+002 9.84596863e+001 1.11904999e+002 - 1.21755470e+002 9.84161301e+001 1.11878487e+002 1.21768127e+002 - 9.83915405e+001 1.11834114e+002 1.21788200e+002 9.83626251e+001 - 1.11823807e+002 1.21801910e+002 9.83271790e+001 1.11776077e+002 - 1.21810158e+002 9.82873611e+001 1.11741058e+002 1.21796692e+002 - 9.82676773e+001 1.11709541e+002 1.21825653e+002 9.81841736e+001 - 1.11651031e+002 1.21795166e+002 9.81457367e+001 1.11586060e+002 - 1.21784615e+002 9.81308899e+001 1.11585350e+002 1.21810303e+002 - 9.81217575e+001 1.11556465e+002 1.21839951e+002 9.80745926e+001 - 1.11517929e+002 1.21827187e+002 9.80840149e+001 1.11516426e+002 - 1.21875336e+002 9.80586853e+001 1.11500664e+002 1.21881523e+002 - 9.80402451e+001 1.11462616e+002 1.21889946e+002 9.79785004e+001 - 1.11414185e+002 1.21873520e+002 9.79659348e+001 1.11375168e+002 - 1.21894638e+002 9.79458466e+001 1.11363815e+002 1.21918541e+002 - 9.79208374e+001 1.11336716e+002 1.21938423e+002 9.78648529e+001 - 1.11301460e+002 1.21920090e+002 9.78557053e+001 1.11283379e+002 - 1.21941048e+002 9.78510361e+001 1.11277023e+002 1.21956184e+002 - 9.78394852e+001 1.11252090e+002 1.21983406e+002 9.77803345e+001 - 1.11218445e+002 1.21964874e+002 9.77595291e+001 1.11173943e+002 - 1.21958778e+002 9.76780472e+001 1.11103455e+002 1.21907227e+002 - 9.76771469e+001 1.11078491e+002 1.21926224e+002 9.76516571e+001 - 1.11066124e+002 1.21937813e+002 9.76692734e+001 1.11076569e+002 - 1.21981834e+002 9.76450424e+001 1.11057755e+002 1.21981819e+002 - 9.76386795e+001 1.11036377e+002 1.21992897e+002 9.76076050e+001 - 1.11011063e+002 1.21984207e+002 9.75928726e+001 1.10958549e+002 - 1.21974731e+002 9.75917511e+001 1.10962822e+002 1.21994774e+002 - 9.75844498e+001 1.10945076e+002 1.22005463e+002 9.75423660e+001 - 1.10921448e+002 1.21987617e+002 9.75447998e+001 1.10905136e+002 - 1.21990280e+002 9.75602417e+001 1.10925217e+002 1.22017242e+002 - 9.75541763e+001 1.10914604e+002 1.22038994e+002 9.74898224e+001 - 1.10876862e+002 1.22007423e+002 9.74872055e+001 1.10856331e+002 - 1.22014168e+002 9.74842529e+001 1.10867905e+002 1.22029953e+002 - 9.74849014e+001 1.10845139e+002 1.22033005e+002 9.74366989e+001 - 1.10816078e+002 1.22004227e+002 9.74385529e+001 1.10812859e+002 - 1.22022499e+002 9.74268570e+001 1.10813683e+002 1.22019653e+002 - 9.74544067e+001 1.10836182e+002 1.22057915e+002 9.74533768e+001 - 1.10846573e+002 1.22074326e+002 9.74634399e+001 1.10829781e+002 - 1.22091759e+002 9.74708633e+001 1.10849075e+002 1.22112488e+002 - 9.74827957e+001 1.10855156e+002 1.22122971e+002 9.74412460e+001 - 1.10832573e+002 1.22089096e+002 9.74495773e+001 1.10824669e+002 - 1.22098869e+002 9.74513779e+001 1.10835770e+002 1.22085114e+002 - 9.74802856e+001 1.10854492e+002 1.22114288e+002 9.74745941e+001 - 1.10866096e+002 1.22112389e+002 9.74717331e+001 1.10849686e+002 - 1.22098701e+002 9.74395370e+001 1.10827271e+002 1.22066307e+002 - 9.74512405e+001 1.10820908e+002 1.22070442e+002 9.74124069e+001 - 1.10796555e+002 1.22028496e+002 9.74262772e+001 1.10807335e+002 - 1.22038658e+002 9.74315643e+001 1.10826645e+002 1.22035950e+002 - 9.74622803e+001 1.10844711e+002 1.22063751e+002 9.74456253e+001 - 1.10839691e+002 1.22037071e+002 9.74593353e+001 1.10824684e+002 - 1.22040970e+002 9.74382782e+001 1.10815765e+002 1.22006500e+002 - 9.74671860e+001 1.10834846e+002 1.22027145e+002 9.74671936e+001 - 1.10851593e+002 1.22016113e+002 9.74849472e+001 1.10858292e+002 - 1.22016068e+002 9.75292358e+001 1.10906761e+002 1.22043938e+002 - 9.75494461e+001 1.10918495e+002 1.22053055e+002 9.75493698e+001 - 1.10939766e+002 1.22053322e+002 9.75520706e+001 1.10921494e+002 - 1.22024399e+002 9.75574722e+001 1.10942238e+002 1.22009888e+002 - 9.75831528e+001 1.10944115e+002 1.22005089e+002 9.75761566e+001 - 1.10959396e+002 1.21984497e+002 9.75761795e+001 1.10956291e+002 - 1.21971466e+002 9.75661545e+001 1.10963730e+002 1.21939171e+002 - 9.75809937e+001 1.10968979e+002 1.21922226e+002 9.75762711e+001 - 1.10979019e+002 1.21901306e+002 9.76177139e+001 1.10989449e+002 - 1.21903381e+002 9.76186829e+001 1.11009048e+002 1.21879204e+002 - 9.76537628e+001 1.11035927e+002 1.21877945e+002 9.76611481e+001 - 1.11065140e+002 1.21861481e+002 9.76774063e+001 1.11072632e+002 - 1.21849205e+002 9.77007294e+001 1.11099922e+002 1.21825928e+002 - 9.77553711e+001 1.11145149e+002 1.21837791e+002 9.77336197e+001 - 1.11153854e+002 1.21793945e+002 9.77690964e+001 1.11174950e+002 - 1.21794106e+002 9.77943726e+001 1.11208061e+002 1.21785774e+002 - 9.78154373e+001 1.11214806e+002 1.21764717e+002 9.78257523e+001 - 1.11236984e+002 1.21741806e+002 9.78423691e+001 1.11247307e+002 - 1.21725754e+002 9.78844147e+001 1.11301544e+002 1.21725754e+002 - 9.79295578e+001 1.11343849e+002 1.21728142e+002 9.79643250e+001 - 1.11388359e+002 1.21734947e+002 9.80164566e+001 1.11412560e+002 - 1.21733498e+002 9.80052185e+001 1.11418900e+002 1.21684471e+002 - 9.80533676e+001 1.11458641e+002 1.21686646e+002 9.80751953e+001 - 1.11507561e+002 1.21671165e+002 9.81151657e+001 1.11538246e+002 - 1.21677910e+002 9.81233902e+001 1.11557228e+002 1.21634392e+002 - 9.82012100e+001 1.11626450e+002 1.21654198e+002 9.82322617e+001 - 1.11682648e+002 1.21651253e+002 9.82921219e+001 1.11726227e+002 - 1.21675415e+002 9.83274994e+001 1.11776543e+002 1.21665695e+002 - 9.83908920e+001 1.11816055e+002 1.21673363e+002 9.84189377e+001 - 1.11863388e+002 1.21659058e+002 9.84567871e+001 1.11893936e+002 - 1.21659157e+002 9.84888458e+001 1.11953430e+002 1.21650589e+002 - 9.85178833e+001 1.11976791e+002 1.21639313e+002 9.85458679e+001 - 1.12023140e+002 1.21635040e+002 9.85987167e+001 1.12054237e+002 - 1.21625175e+002 9.86445313e+001 1.12115021e+002 1.21624039e+002 - 9.86770477e+001 1.12141754e+002 1.21605377e+002 9.86972885e+001 - 1.12187668e+002 1.21577332e+002 9.87785645e+001 1.12262558e+002 - 1.21613846e+002 9.88492889e+001 1.12345596e+002 1.21620430e+002 - 9.89164734e+001 1.12399582e+002 1.21612457e+002 9.89216690e+001 - 1.12421455e+002 1.21565742e+002 9.89679794e+001 1.12454834e+002 - 1.21559372e+002 9.90183563e+001 1.12519463e+002 1.21564377e+002 - 9.90840912e+001 1.12564049e+002 1.21563766e+002 9.90810623e+001 - 1.12576385e+002 1.21511292e+002 9.91743851e+001 1.12666382e+002 - 1.21542313e+002 9.92424393e+001 1.12746231e+002 1.21551117e+002 - 9.92960663e+001 1.12792336e+002 1.21549652e+002 9.93483047e+001 - 1.12854019e+002 1.21550568e+002 9.94225769e+001 1.12901390e+002 - 1.21552704e+002 9.94809570e+001 1.12963120e+002 1.21549889e+002 - 9.95595093e+001 1.13025078e+002 1.21561584e+002 9.95867844e+001 - 1.13070320e+002 1.21537743e+002 9.96949387e+001 1.13166573e+002 - 1.21585823e+002 9.97783203e+001 1.13253204e+002 1.21596886e+002 - 9.98779602e+001 1.13328575e+002 1.21605629e+002 9.99400406e+001 - 1.13412010e+002 1.21611298e+002 1.00022575e+002 1.13469223e+002 - 1.21624252e+002 1.00084671e+002 1.13535950e+002 1.21629166e+002 - 1.00150497e+002 1.13577446e+002 1.21624283e+002 1.00202011e+002 - 1.13644463e+002 1.21617401e+002 1.00300491e+002 1.13727089e+002 - 1.21635925e+002 1.00376366e+002 1.13814445e+002 1.21652870e+002 - 1.00461708e+002 1.13884567e+002 1.21666748e+002 1.00535248e+002 - 1.13972664e+002 1.21684006e+002 1.00628540e+002 1.14023590e+002 - 1.21683907e+002 1.00700249e+002 1.14097771e+002 1.21684242e+002 - 1.00787743e+002 1.14164177e+002 1.21693550e+002 1.00838829e+002 - 1.14234177e+002 1.21688828e+002 1.00925529e+002 1.14307884e+002 - 1.21715828e+002 1.01027618e+002 1.14397812e+002 1.21734772e+002 - 1.01149208e+002 1.14498932e+002 1.21754555e+002 1.01227409e+002 - 1.14588676e+002 1.21767929e+002 1.01351997e+002 1.14684639e+002 - 1.21818962e+002 1.01445381e+002 1.14783707e+002 1.21846695e+002 - 1.01571404e+002 1.14868782e+002 1.21876106e+002 1.01646927e+002 - 1.14947945e+002 1.21876244e+002 1.01774834e+002 1.15057922e+002 - 1.21918808e+002 1.01866714e+002 1.15146957e+002 1.21937912e+002 - 1.01990211e+002 1.15241417e+002 1.21974808e+002 1.02089767e+002 - 1.15331635e+002 1.21999756e+002 1.02212379e+002 1.15402382e+002 - 1.22024094e+002 1.02319176e+002 1.15497047e+002 1.22049622e+002 - 1.02430748e+002 1.15559906e+002 1.22061462e+002 1.02475243e+002 - 1.15600601e+002 1.22041260e+002 1.02539574e+002 1.15620636e+002 - 1.22027092e+002 1.02508682e+002 1.15579895e+002 1.21922073e+002 - 1.02455009e+002 1.15530052e+002 1.21910179e+002 1.02470078e+002 - 1.15577461e+002 1.22002678e+002 1.02445107e+002 1.15566505e+002 - 1.22058044e+002 1.02377480e+002 1.15529968e+002 1.22065712e+002 - 1.02301094e+002 1.15460556e+002 1.22072464e+002 1.02182999e+002 - 1.15383118e+002 1.22037895e+002 1.02074020e+002 1.15290001e+002 - 1.22012741e+002 1.01949821e+002 1.15201828e+002 1.21956024e+002 - 1.01852524e+002 1.15118805e+002 1.21944321e+002 1.01748215e+002 - 1.15040848e+002 1.21918045e+002 1.01708046e+002 1.14995079e+002 - 1.21963676e+002 1.01606483e+002 1.14914276e+002 1.21941399e+002 - 1.01504364e+002 1.14813431e+002 1.21911850e+002 1.01380272e+002 - 1.14716194e+002 1.21847069e+002 1.01270233e+002 1.14602852e+002 - 1.21798141e+002 1.01174965e+002 1.14525681e+002 1.21776520e+002 - 1.01093857e+002 1.14454048e+002 1.21797676e+002 1.00974648e+002 - 1.14361343e+002 1.21769241e+002 1.00877281e+002 1.14260323e+002 - 1.21736832e+002 1.00784286e+002 1.14186478e+002 1.21714966e+002 - 1.00705902e+002 1.14099487e+002 1.21718262e+002 1.00599319e+002 - 1.14016182e+002 1.21683380e+002 1.00523163e+002 1.13947601e+002 - 1.21691963e+002 1.00439529e+002 1.13872002e+002 1.21669357e+002 - 1.00353821e+002 1.13784332e+002 1.21658470e+002 1.00260803e+002 - 1.13709206e+002 1.21635750e+002 1.00166908e+002 1.13598656e+002 - 1.21618416e+002 1.00086128e+002 1.13531013e+002 1.21605606e+002 - 1.00014053e+002 1.13458931e+002 1.21607155e+002 9.99561005e+001 - 1.13418121e+002 1.21604195e+002 9.98771286e+001 1.13328773e+002 - 1.21587791e+002 9.98124390e+001 1.13277718e+002 1.21584984e+002 - 9.97213516e+001 1.13191612e+002 1.21590332e+002 9.96377182e+001 - 1.13135254e+002 1.21585045e+002 9.96051636e+001 1.13090126e+002 - 1.21598160e+002 9.95570831e+001 1.13052940e+002 1.21608185e+002 - 9.94907990e+001 1.12973526e+002 1.21611885e+002 9.94134598e+001 - 1.12913727e+002 1.21603355e+002 9.93449402e+001 1.12844254e+002 - 1.21614082e+002 9.92803802e+001 1.12794510e+002 1.21601807e+002 - 9.92235489e+001 1.12737335e+002 1.21608788e+002 9.91333389e+001 - 1.12656639e+002 1.21577126e+002 9.90938721e+001 1.12592606e+002 - 1.21603439e+002 9.90490799e+001 1.12557678e+002 1.21609566e+002 - 9.90019379e+001 1.12500351e+002 1.21616196e+002 9.89609756e+001 - 1.12476967e+002 1.21621513e+002 9.89074936e+001 1.12410995e+002 - 1.21614342e+002 9.88405685e+001 1.12345406e+002 1.21586929e+002 - 9.88041840e+001 1.12293602e+002 1.21618294e+002 9.87101135e+001 - 1.12219925e+002 1.21583214e+002 9.86765518e+001 1.12166435e+002 - 1.21582077e+002 9.86329880e+001 1.12127480e+002 1.21580986e+002 - 9.86253204e+001 1.12099556e+002 1.21618713e+002 9.85680008e+001 - 1.12055283e+002 1.21617989e+002 9.85237579e+001 1.12003922e+002 - 1.21630333e+002 9.84714737e+001 1.11964378e+002 1.21625359e+002 - 9.84431915e+001 1.11918213e+002 1.21646767e+002 9.84034576e+001 - 1.11888885e+002 1.21665924e+002 9.83752899e+001 1.11831543e+002 - 1.21687813e+002 9.83111572e+001 1.11777977e+002 1.21677353e+002 - 9.82767487e+001 1.11730934e+002 1.21691803e+002 9.82552643e+001 - 1.11722839e+002 1.21710754e+002 9.82371902e+001 1.11684914e+002 - 1.21726845e+002 9.81886292e+001 1.11650879e+002 1.21707237e+002 - 9.81642609e+001 1.11615265e+002 1.21740227e+002 9.80719299e+001 - 1.11554314e+002 1.21703590e+002 9.80412140e+001 1.11501617e+002 - 1.21702164e+002 9.80138779e+001 1.11482933e+002 1.21714264e+002 - 9.80275803e+001 1.11471283e+002 1.21760796e+002 9.79853592e+001 - 1.11435898e+002 1.21754631e+002 9.79648132e+001 1.11410423e+002 - 1.21774971e+002 9.79310532e+001 1.11384270e+002 1.21775299e+002 - 9.79238586e+001 1.11361458e+002 1.21793205e+002 9.78860321e+001 - 1.11335403e+002 1.21789276e+002 9.78639984e+001 1.11292343e+002 - 1.21818520e+002 9.78170013e+001 1.11261818e+002 1.21819046e+002 - 9.77903824e+001 1.11229652e+002 1.21826973e+002 9.77507324e+001 - 1.11205963e+002 1.21824356e+002 9.77294998e+001 1.11174011e+002 - 1.21826027e+002 9.77119370e+001 1.11153358e+002 1.21829773e+002 - 9.77133408e+001 1.11141518e+002 1.21868439e+002 9.76638184e+001 - 1.11115280e+002 1.21860710e+002 9.76256485e+001 1.11057259e+002 - 1.21840675e+002 9.75784683e+001 1.11016655e+002 1.21816238e+002 - 9.75575790e+001 1.10979279e+002 1.21826591e+002 9.75457458e+001 - 1.10971046e+002 1.21837540e+002 9.75628586e+001 1.10979492e+002 - 1.21885475e+002 9.75478287e+001 1.10972733e+002 1.21894852e+002 - 9.75410538e+001 1.10949043e+002 1.21900818e+002 9.75188599e+001 - 1.10934219e+002 1.21902573e+002 9.75182037e+001 1.10893967e+002 - 1.21914619e+002 9.75067902e+001 1.10889236e+002 1.21919167e+002 - 9.74473572e+001 1.10827431e+002 1.21885963e+002 9.74079208e+001 - 1.10800781e+002 1.21863083e+002 9.74165726e+001 1.10786766e+002 - 1.21879738e+002 9.74216156e+001 1.10798981e+002 1.21889030e+002 - 9.74448013e+001 1.10824196e+002 1.21944633e+002 9.73976212e+001 - 1.10802864e+002 1.21932320e+002 9.73775253e+001 1.10767387e+002 - 1.21923363e+002 9.73842087e+001 1.10789940e+002 1.21946465e+002 - 9.73661728e+001 1.10749054e+002 1.21931343e+002 9.73279114e+001 - 1.10723152e+002 1.21906769e+002 9.73284760e+001 1.10721977e+002 - 1.21923622e+002 9.73551636e+001 1.10761230e+002 1.21958282e+002 - 9.73681107e+001 1.10756943e+002 1.21978615e+002 9.73688965e+001 - 1.10774467e+002 1.21993263e+002 9.74039536e+001 1.10780945e+002 - 1.22033264e+002 9.73983078e+001 1.10791229e+002 1.22041260e+002 - 9.74011536e+001 1.10786064e+002 1.22048798e+002 9.73541031e+001 - 1.10760101e+002 1.22011757e+002 9.73516388e+001 1.10751022e+002 - 1.22012161e+002 9.73325729e+001 1.10734962e+002 1.21980186e+002 - 9.73943558e+001 1.10780289e+002 1.22033279e+002 9.73921051e+001 - 1.10794395e+002 1.22032928e+002 9.73813400e+001 1.10769684e+002 - 1.22015427e+002 9.73461533e+001 1.10743279e+002 1.21974617e+002 - 9.73395309e+001 1.10721230e+002 1.21963753e+002 9.73182068e+001 - 1.10717827e+002 1.21941620e+002 9.73213043e+001 1.10712135e+002 - 1.21942169e+002 9.73162079e+001 1.10723091e+002 1.21929497e+002 - 9.73364563e+001 1.10731415e+002 1.21936401e+002 9.73315735e+001 - 1.10748512e+002 1.21941597e+002 9.73587189e+001 1.10747215e+002 - 1.21953873e+002 9.73488693e+001 1.10747643e+002 1.21937416e+002 - 9.73726959e+001 1.10757492e+002 1.21945808e+002 9.73597870e+001 - 1.10764122e+002 1.21918434e+002 9.73862991e+001 1.10770691e+002 - 1.21925934e+002 9.74330826e+001 1.10823334e+002 1.21954582e+002 - 9.74616776e+001 1.10841194e+002 1.21973694e+002 9.74582748e+001 - 1.10861298e+002 1.21965622e+002 9.74517593e+001 1.10835701e+002 - 1.21931847e+002 9.74395523e+001 1.10836555e+002 1.21905769e+002 - 9.74609146e+001 1.10834213e+002 1.21896187e+002 9.74542007e+001 - 1.10840096e+002 1.21865593e+002 9.74623413e+001 1.10852417e+002 - 1.21857750e+002 9.74802551e+001 1.10895515e+002 1.21860680e+002 - 9.74936447e+001 1.10897850e+002 1.21848770e+002 9.74763565e+001 - 1.10890747e+002 1.21808044e+002 9.74952469e+001 1.10885330e+002 - 1.21793510e+002 9.75312958e+001 1.10936607e+002 1.21805359e+002 - 9.75604630e+001 1.10953339e+002 1.21797043e+002 9.75567627e+001 - 1.10976059e+002 1.21769592e+002 9.75903702e+001 1.10994026e+002 - 1.21773262e+002 9.76125793e+001 1.11021889e+002 1.21746162e+002 - 9.76723099e+001 1.11075294e+002 1.21760361e+002 9.76536484e+001 - 1.11077003e+002 1.21723297e+002 9.76976166e+001 1.11108398e+002 - 1.21731041e+002 9.77185135e+001 1.11141342e+002 1.21720314e+002 - 9.77180557e+001 1.11123833e+002 1.21680672e+002 9.77244415e+001 - 1.11142982e+002 1.21649475e+002 9.77523422e+001 1.11170776e+002 - 1.21635292e+002 9.77705688e+001 1.11197090e+002 1.21614929e+002 - 9.78355408e+001 1.11258224e+002 1.21639557e+002 9.78752365e+001 - 1.11314621e+002 1.21653625e+002 9.79254150e+001 1.11332817e+002 - 1.21645729e+002 9.79261093e+001 1.11356010e+002 1.21613396e+002 - 9.79546890e+001 1.11375183e+002 1.21595673e+002 9.79627838e+001 - 1.11408104e+002 1.21575066e+002 9.79776688e+001 1.11413719e+002 - 1.21553139e+002 9.80298157e+001 1.11477402e+002 1.21550140e+002 - 9.81007614e+001 1.11541191e+002 1.21570198e+002 9.81225128e+001 - 1.11581131e+002 1.21555534e+002 9.81754684e+001 1.11624855e+002 - 1.21570686e+002 9.82265472e+001 1.11692230e+002 1.21579948e+002 - 9.82925491e+001 1.11734581e+002 1.21593826e+002 9.83205795e+001 - 1.11782349e+002 1.21578941e+002 9.83637161e+001 1.11819229e+002 - 1.21577438e+002 9.83939056e+001 1.11866859e+002 1.21566017e+002 - 9.84560623e+001 1.11919098e+002 1.21575478e+002 9.84662704e+001 - 1.11953094e+002 1.21557045e+002 9.85132675e+001 1.11978493e+002 - 1.21550888e+002 9.85468826e+001 1.12028908e+002 1.21536842e+002 - 9.85983887e+001 1.12073547e+002 1.21534294e+002 9.86102448e+001 - 1.12113548e+002 1.21503372e+002 9.86811066e+001 1.12174118e+002 - 1.21532791e+002 9.87506027e+001 1.12255562e+002 1.21533478e+002 - 9.88058243e+001 1.12298264e+002 1.21506783e+002 9.88063965e+001 - 1.12324524e+002 1.21460838e+002 9.88462677e+001 1.12351288e+002 - 1.21453255e+002 9.89126434e+001 1.12423378e+002 1.21469551e+002 - 9.89677505e+001 1.12458679e+002 1.21460846e+002 9.89958725e+001 - 1.12501328e+002 1.21435898e+002 9.90780716e+001 1.12576012e+002 - 1.21454506e+002 9.91256332e+001 1.12641922e+002 1.21446075e+002 - 9.92044144e+001 1.12707268e+002 1.21461197e+002 9.92658157e+001 - 1.12780960e+002 1.21476631e+002 9.93378830e+001 1.12821762e+002 - 1.21478783e+002 9.93830261e+001 1.12873863e+002 1.21471176e+002 - 9.94372482e+001 1.12914551e+002 1.21457291e+002 9.94785843e+001 - 1.12970024e+002 1.21448158e+002 9.95827103e+001 1.13058769e+002 - 1.21493729e+002 9.96702576e+001 1.13151260e+002 1.21505547e+002 - 9.97816849e+001 1.13244766e+002 1.21520607e+002 9.98519592e+001 - 1.13330826e+002 1.21533630e+002 9.99179230e+001 1.13377892e+002 - 1.21542435e+002 9.99864731e+001 1.13455795e+002 1.21553711e+002 - 1.00053978e+002 1.13494240e+002 1.21547928e+002 1.00118034e+002 - 1.13571114e+002 1.21550369e+002 1.00193604e+002 1.13634247e+002 - 1.21552452e+002 1.00281418e+002 1.13737465e+002 1.21573830e+002 - 1.00386421e+002 1.13820061e+002 1.21611374e+002 1.00465164e+002 - 1.13911507e+002 1.21630417e+002 1.00555443e+002 1.13966034e+002 - 1.21633705e+002 1.00619759e+002 1.14035202e+002 1.21623398e+002 - 1.00710716e+002 1.14106056e+002 1.21642220e+002 1.00767212e+002 - 1.14177773e+002 1.21638458e+002 1.00846764e+002 1.14238808e+002 - 1.21659294e+002 1.00941216e+002 1.14331436e+002 1.21676773e+002 - 1.01085258e+002 1.14449341e+002 1.21704971e+002 1.01154541e+002 - 1.14533203e+002 1.21714127e+002 1.01268188e+002 1.14617249e+002 - 1.21754128e+002 1.01363266e+002 1.14713684e+002 1.21783440e+002 - 1.01471916e+002 1.14789055e+002 1.21803146e+002 1.01550865e+002 - 1.14866699e+002 1.21799667e+002 1.01684189e+002 1.14977684e+002 - 1.21850891e+002 1.01780457e+002 1.15074234e+002 1.21869064e+002 - 1.01892380e+002 1.15153008e+002 1.21901581e+002 1.01991562e+002 - 1.15249039e+002 1.21929756e+002 1.02133987e+002 1.15336380e+002 - 1.21969162e+002 1.02241714e+002 1.15433617e+002 1.21994087e+002 - 1.02369766e+002 1.15509773e+002 1.22025520e+002 1.02423477e+002 - 1.15557816e+002 1.22007347e+002 1.02470894e+002 1.15562965e+002 - 1.21982162e+002 1.02428642e+002 1.15504517e+002 1.21862404e+002 - 1.02409096e+002 1.15462044e+002 1.21865181e+002 1.02388260e+002 - 1.15501572e+002 1.21930298e+002 1.02364555e+002 1.15490204e+002 - 1.21980858e+002 1.02332985e+002 1.15490265e+002 1.22029503e+002 - 1.02252136e+002 1.15415657e+002 1.22032341e+002 1.02126099e+002 - 1.15332611e+002 1.21992897e+002 1.02009758e+002 1.15234558e+002 - 1.21957817e+002 1.01892776e+002 1.15149986e+002 1.21917709e+002 - 1.01791321e+002 1.15057625e+002 1.21888321e+002 1.01680229e+002 - 1.14983940e+002 1.21858498e+002 1.01634972e+002 1.14924995e+002 - 1.21897484e+002 1.01538956e+002 1.14847412e+002 1.21879364e+002 - 1.01426300e+002 1.14745018e+002 1.21842064e+002 1.01310753e+002 - 1.14658028e+002 1.21793129e+002 1.01222099e+002 1.14551270e+002 - 1.21755753e+002 1.01127388e+002 1.14475403e+002 1.21738106e+002 - 1.01048340e+002 1.14405502e+002 1.21749535e+002 1.00918823e+002 - 1.14311531e+002 1.21712868e+002 1.00843803e+002 1.14231705e+002 - 1.21700882e+002 1.00731758e+002 1.14140137e+002 1.21660576e+002 - 1.00641357e+002 1.14039299e+002 1.21652176e+002 1.00538887e+002 - 1.13956352e+002 1.21623840e+002 1.00457146e+002 1.13881058e+002 - 1.21625748e+002 1.00381317e+002 1.13821564e+002 1.21616821e+002 - 1.00323967e+002 1.13759010e+002 1.21630554e+002 1.00197456e+002 - 1.13651543e+002 1.21582336e+002 1.00103760e+002 1.13531578e+002 - 1.21552338e+002 1.00029022e+002 1.13475693e+002 1.21554535e+002 - 9.99720306e+001 1.13421104e+002 1.21566528e+002 9.98870163e+001 - 1.13358124e+002 1.21541252e+002 9.98069458e+001 1.13261620e+002 - 1.21518410e+002 9.97516556e+001 1.13216225e+002 1.21521904e+002 - 9.96733246e+001 1.13149338e+002 1.21533867e+002 9.95854416e+001 - 1.13086769e+002 1.21530334e+002 9.95576935e+001 1.13047096e+002 - 1.21552574e+002 9.94941177e+001 1.12996254e+002 1.21546783e+002 - 9.94340897e+001 1.12917885e+002 1.21551254e+002 9.93340149e+001 - 1.12831551e+002 1.21525604e+002 9.92649918e+001 1.12763702e+002 - 1.21531174e+002 9.92116089e+001 1.12725540e+002 1.21540863e+002 - 9.91523819e+001 1.12662468e+002 1.21534004e+002 9.90706711e+001 - 1.12597939e+002 1.21514351e+002 9.90221634e+001 1.12520485e+002 - 1.21524231e+002 9.89770126e+001 1.12485382e+002 1.21541039e+002 - 9.89409866e+001 1.12446327e+002 1.21559410e+002 9.88888397e+001 - 1.12409142e+002 1.21553276e+002 9.88480988e+001 1.12348877e+002 - 1.21554100e+002 9.87898102e+001 1.12289909e+002 1.21537292e+002 - 9.87331085e+001 1.12226639e+002 1.21541428e+002 9.86306534e+001 - 1.12136787e+002 1.21503250e+002 9.86191635e+001 1.12108177e+002 - 1.21528076e+002 9.85846176e+001 1.12080254e+002 1.21530525e+002 - 9.85695572e+001 1.12043045e+002 1.21570648e+002 9.85180206e+001 - 1.12007690e+002 1.21565437e+002 9.84558792e+001 1.11941292e+002 - 1.21563507e+002 9.84028091e+001 1.11890350e+002 1.21548508e+002 - 9.83825378e+001 1.11852386e+002 1.21579300e+002 9.83093872e+001 - 1.11795708e+002 1.21564629e+002 9.82742920e+001 1.11730606e+002 - 1.21584282e+002 9.82323608e+001 1.11689819e+002 1.21596062e+002 - 9.81831970e+001 1.11642525e+002 1.21592026e+002 9.81544800e+001 - 1.11620445e+002 1.21608597e+002 9.81579971e+001 1.11604805e+002 - 1.21636147e+002 9.81397934e+001 1.11597054e+002 1.21658707e+002 - 9.80798264e+001 1.11534737e+002 1.21649979e+002 9.80084000e+001 - 1.11485382e+002 1.21630196e+002 9.79827042e+001 1.11443207e+002 - 1.21636940e+002 9.79579849e+001 1.11422440e+002 1.21643517e+002 - 9.79757843e+001 1.11412544e+002 1.21700592e+002 9.79330444e+001 - 1.11387070e+002 1.21698944e+002 9.79041672e+001 1.11347008e+002 - 1.21700356e+002 9.78516159e+001 1.11300224e+002 1.21681824e+002 - 9.78366318e+001 1.11275047e+002 1.21698540e+002 9.77974319e+001 - 1.11246063e+002 1.21694923e+002 9.77821121e+001 1.11210732e+002 - 1.21726830e+002 9.77426300e+001 1.11183228e+002 1.21731972e+002 - 9.77004700e+001 1.11146729e+002 1.21727493e+002 9.76646652e+001 - 1.11128204e+002 1.21729393e+002 9.76348801e+001 1.11075195e+002 - 1.21720909e+002 9.76118622e+001 1.11053734e+002 1.21721794e+002 - 9.75897217e+001 1.11023392e+002 1.21738983e+002 9.75558167e+001 - 1.11007675e+002 1.21743690e+002 9.75251236e+001 1.10959984e+002 - 1.21735970e+002 9.75120544e+001 1.10957260e+002 1.21743752e+002 - 9.74984283e+001 1.10913025e+002 1.21749886e+002 9.74496765e+001 - 1.10872864e+002 1.21729042e+002 9.74630432e+001 1.10884354e+002 - 1.21780342e+002 9.74554367e+001 1.10881943e+002 1.21787964e+002 - 9.74706116e+001 1.10885056e+002 1.21827148e+002 9.74284286e+001 - 1.10847710e+002 1.21810356e+002 9.74200058e+001 1.10799706e+002 - 1.21808792e+002 9.74139252e+001 1.10807838e+002 1.21825340e+002 - 9.73825455e+001 1.10766945e+002 1.21809654e+002 9.73297272e+001 - 1.10724503e+002 1.21772713e+002 9.73412018e+001 1.10713585e+002 - 1.21797379e+002 9.73265228e+001 1.10704994e+002 1.21787888e+002 - 9.73394928e+001 1.10725357e+002 1.21832710e+002 9.73242950e+001 - 1.10737228e+002 1.21852875e+002 9.73084335e+001 1.10703758e+002 - 1.21848969e+002 9.73091812e+001 1.10726334e+002 1.21870361e+002 - 9.73008270e+001 1.10688606e+002 1.21863167e+002 9.72726898e+001 - 1.10673820e+002 1.21846375e+002 9.72593842e+001 1.10656052e+002 - 1.21844421e+002 9.72812729e+001 1.10688408e+002 1.21875542e+002 - 9.72779922e+001 1.10673035e+002 1.21872162e+002 9.72945709e+001 - 1.10705841e+002 1.21901695e+002 9.73346481e+001 1.10716667e+002 - 1.21954674e+002 9.73259048e+001 1.10720825e+002 1.21955849e+002 - 9.72969513e+001 1.10694611e+002 1.21938026e+002 9.72543411e+001 - 1.10674019e+002 1.21899673e+002 9.72782288e+001 1.10672256e+002 - 1.21926147e+002 9.72655716e+001 1.10665466e+002 1.21895088e+002 - 9.72863922e+001 1.10673035e+002 1.21904770e+002 9.72768097e+001 - 1.10678268e+002 1.21903091e+002 9.72873383e+001 1.10674332e+002 - 1.21903229e+002 9.72843094e+001 1.10680824e+002 1.21899284e+002 - 9.73043289e+001 1.10685760e+002 1.21915207e+002 9.72735443e+001 - 1.10669189e+002 1.21885513e+002 9.72464523e+001 1.10642197e+002 - 1.21848572e+002 9.72497559e+001 1.10652977e+002 1.21844223e+002 - 9.72633743e+001 1.10660080e+002 1.21854973e+002 9.72694778e+001 - 1.10683212e+002 1.21860512e+002 9.72983246e+001 1.10685936e+002 - 1.21880066e+002 9.73041458e+001 1.10696350e+002 1.21875435e+002 - 9.73237305e+001 1.10717484e+002 1.21882553e+002 9.73072586e+001 - 1.10712898e+002 1.21853287e+002 9.73394165e+001 1.10726212e+002 - 1.21873634e+002 9.73954697e+001 1.10784119e+002 1.21900932e+002 - 9.73979568e+001 1.10779099e+002 1.21896179e+002 9.73739929e+001 - 1.10770798e+002 1.21864189e+002 9.73786087e+001 1.10756180e+002 - 1.21839355e+002 9.73794708e+001 1.10766609e+002 1.21821518e+002 - 9.73999557e+001 1.10764061e+002 1.21818512e+002 9.73796616e+001 - 1.10762650e+002 1.21779060e+002 9.73932648e+001 1.10780701e+002 - 1.21778732e+002 9.74275742e+001 1.10832878e+002 1.21795128e+002 - 9.74444199e+001 1.10848709e+002 1.21788788e+002 9.74412613e+001 - 1.10860352e+002 1.21761887e+002 9.74536743e+001 1.10841919e+002 - 1.21741745e+002 9.74672089e+001 1.10866371e+002 1.21727066e+002 - 9.74703751e+001 1.10873161e+002 1.21694145e+002 9.74662247e+001 - 1.10886276e+002 1.21664803e+002 9.75191879e+001 1.10922806e+002 - 1.21682983e+002 9.75460052e+001 1.10958115e+002 1.21671242e+002 - 9.75875015e+001 1.10990219e+002 1.21668312e+002 9.75935059e+001 - 1.11015457e+002 1.21646652e+002 9.76161804e+001 1.11022964e+002 - 1.21636322e+002 9.76418839e+001 1.11063850e+002 1.21629646e+002 - 9.76691742e+001 1.11066521e+002 1.21616066e+002 9.76687241e+001 - 1.11080040e+002 1.21577927e+002 9.76980133e+001 1.11114296e+002 - 1.21576218e+002 9.76989975e+001 1.11126480e+002 1.21541885e+002 - 9.77312088e+001 1.11156906e+002 1.21530174e+002 9.77878036e+001 - 1.11222031e+002 1.21551552e+002 9.78262711e+001 1.11235161e+002 - 1.21538567e+002 9.78464813e+001 1.11265022e+002 1.21518883e+002 - 9.78740005e+001 1.11297974e+002 1.21504135e+002 9.78833084e+001 - 1.11325653e+002 1.21479668e+002 9.79005814e+001 1.11333717e+002 - 1.21461159e+002 9.79834366e+001 1.11424370e+002 1.21494392e+002 - 9.80410538e+001 1.11479210e+002 1.21497673e+002 9.80491028e+001 - 1.11510544e+002 1.21476120e+002 9.80785294e+001 1.11525780e+002 - 1.21465828e+002 9.81443405e+001 1.11606033e+002 1.21485985e+002 - 9.82106400e+001 1.11653351e+002 1.21512001e+002 9.82132797e+001 - 1.11677452e+002 1.21468666e+002 9.82618027e+001 1.11719780e+002 - 1.21466530e+002 9.83101044e+001 1.11787277e+002 1.21473183e+002 - 9.83525925e+001 1.11824196e+002 1.21476456e+002 9.83932953e+001 - 1.11881866e+002 1.21475143e+002 9.84519806e+001 1.11913429e+002 - 1.21480064e+002 9.84753189e+001 1.11949905e+002 1.21451019e+002 - 9.85150528e+001 1.11991310e+002 1.21439606e+002 9.85397720e+001 - 1.12042198e+002 1.21415253e+002 9.85950851e+001 1.12088219e+002 - 1.21434158e+002 9.86809387e+001 1.12182396e+002 1.21456078e+002 - 9.87328949e+001 1.12222008e+002 1.21422142e+002 9.87336578e+001 - 1.12248657e+002 1.21380081e+002 9.87792053e+001 1.12281303e+002 - 1.21380867e+002 9.88455505e+001 1.12359085e+002 1.21394836e+002 - 9.89056320e+001 1.12397339e+002 1.21400963e+002 9.89393845e+001 - 1.12444008e+002 1.21376015e+002 9.90294037e+001 1.12530640e+002 - 1.21408356e+002 9.90778198e+001 1.12592697e+002 1.21396484e+002 - 9.91488876e+001 1.12658058e+002 1.21409416e+002 9.91997833e+001 - 1.12723442e+002 1.21411743e+002 9.92694244e+001 1.12748154e+002 - 1.21410454e+002 9.93127136e+001 1.12799973e+002 1.21391838e+002 - 9.93637238e+001 1.12845001e+002 1.21387863e+002 9.94425278e+001 - 1.12935997e+002 1.21404015e+002 9.95437927e+001 1.13018929e+002 - 1.21451729e+002 9.96360931e+001 1.13113449e+002 1.21467781e+002 - 9.97158508e+001 1.13176735e+002 1.21455788e+002 9.97681808e+001 - 1.13241127e+002 1.21449692e+002 9.98331833e+001 1.13299942e+002 - 1.21458397e+002 9.99011765e+001 1.13370865e+002 1.21465927e+002 - 9.99881210e+001 1.13433090e+002 1.21485710e+002 1.00045120e+002 - 1.13497070e+002 1.21475388e+002 1.00136826e+002 1.13580757e+002 - 1.21495514e+002 1.00238495e+002 1.13691597e+002 1.21529076e+002 - 1.00300926e+002 1.13746979e+002 1.21535439e+002 1.00380142e+002 - 1.13830956e+002 1.21547905e+002 1.00465294e+002 1.13877945e+002 - 1.21544884e+002 1.00542732e+002 1.13953880e+002 1.21548546e+002 - 1.00629044e+002 1.14035568e+002 1.21556961e+002 1.00683632e+002 - 1.14100769e+002 1.21554512e+002 1.00789406e+002 1.14181419e+002 - 1.21600044e+002 1.00897354e+002 1.14290634e+002 1.21635101e+002 - 1.01053253e+002 1.14419159e+002 1.21682549e+002 1.01100502e+002 - 1.14475731e+002 1.21659714e+002 1.01220001e+002 1.14574478e+002 - 1.21711517e+002 1.01297546e+002 1.14653481e+002 1.21715050e+002 - 1.01402924e+002 1.14718803e+002 1.21733810e+002 1.01485344e+002 - 1.14801743e+002 1.21739098e+002 1.01620850e+002 1.14919289e+002 - 1.21796402e+002 1.01750099e+002 1.15039955e+002 1.21842049e+002 - 1.01866272e+002 1.15131470e+002 1.21882225e+002 1.01970367e+002 - 1.15226028e+002 1.21907524e+002 1.02105598e+002 1.15305763e+002 - 1.21948738e+002 1.02229324e+002 1.15419205e+002 1.21991142e+002 - 1.02322624e+002 1.15479614e+002 1.21994926e+002 1.02350128e+002 - 1.15496323e+002 1.21940399e+002 1.02402100e+002 1.15492104e+002 - 1.21922523e+002 1.02335274e+002 1.15420769e+002 1.21777832e+002 - 1.02333870e+002 1.15409286e+002 1.21829689e+002 1.02309525e+002 - 1.15440796e+002 1.21883186e+002 1.02284576e+002 1.15430595e+002 - 1.21933167e+002 1.02241837e+002 1.15417885e+002 1.21963341e+002 - 1.02167610e+002 1.15350281e+002 1.21975731e+002 1.02070511e+002 - 1.15292313e+002 1.21962418e+002 1.01929390e+002 1.15175468e+002 - 1.21912849e+002 1.01815697e+002 1.15094963e+002 1.21876320e+002 - 1.01714607e+002 1.15002060e+002 1.21845009e+002 1.01591904e+002 - 1.14913681e+002 1.21803314e+002 1.01537453e+002 1.14844940e+002 - 1.21835091e+002 1.01445633e+002 1.14775520e+002 1.21815239e+002 - 1.01335152e+002 1.14679047e+002 1.21778755e+002 1.01215073e+002 - 1.14582184e+002 1.21724533e+002 1.01124878e+002 1.14480286e+002 - 1.21694321e+002 1.01033371e+002 1.14397263e+002 1.21666451e+002 - 1.00942604e+002 1.14320358e+002 1.21673431e+002 1.00815041e+002 - 1.14224205e+002 1.21631157e+002 1.00745667e+002 1.14149590e+002 - 1.21624283e+002 1.00650192e+002 1.14076431e+002 1.21600281e+002 - 1.00558006e+002 1.13974632e+002 1.21585793e+002 1.00457481e+002 - 1.13896393e+002 1.21565643e+002 1.00372871e+002 1.13820175e+002 - 1.21558884e+002 1.00297577e+002 1.13758957e+002 1.21551430e+002 - 1.00239815e+002 1.13697388e+002 1.21567314e+002 1.00105827e+002 - 1.13576859e+002 1.21505074e+002 1.00017555e+002 1.13459946e+002 - 1.21487648e+002 9.99457397e+001 1.13404518e+002 1.21486908e+002 - 9.98749771e+001 1.13340973e+002 1.21486290e+002 9.98083115e+001 - 1.13292709e+002 1.21474594e+002 9.97339020e+001 1.13202179e+002 - 1.21457611e+002 9.96631851e+001 1.13147476e+002 1.21451180e+002 - 9.96062622e+001 1.13092331e+002 1.21484451e+002 9.94733200e+001 - 1.12989059e+002 1.21438843e+002 9.94377747e+001 1.12942276e+002 - 1.21452827e+002 9.93823853e+001 1.12904137e+002 1.21461258e+002 - 9.93082733e+001 1.12814629e+002 1.21453918e+002 9.92399292e+001 - 1.12763252e+002 1.21454628e+002 9.91860504e+001 1.12703018e+002 - 1.21470329e+002 9.91245880e+001 1.12656303e+002 1.21468338e+002 - 9.90640411e+001 1.12584312e+002 1.21464409e+002 9.89689331e+001 - 1.12506752e+002 1.21434349e+002 9.89429398e+001 1.12451477e+002 - 1.21462135e+002 9.89002838e+001 1.12418167e+002 1.21475586e+002 - 9.88640823e+001 1.12383461e+002 1.21494583e+002 9.88075790e+001 - 1.12344238e+002 1.21487732e+002 9.87708206e+001 1.12281120e+002 - 1.21489098e+002 9.87053299e+001 1.12217148e+002 1.21472450e+002 - 9.86383820e+001 1.12146439e+002 1.21468178e+002 9.85564880e+001 - 1.12082909e+002 1.21451820e+002 9.85434799e+001 1.12052513e+002 - 1.21473412e+002 9.85016174e+001 1.12024361e+002 1.21476349e+002 - 9.84684143e+001 1.11967163e+002 1.21496468e+002 9.84256516e+001 - 1.11936745e+002 1.21504272e+002 9.83697968e+001 1.11875175e+002 - 1.21497330e+002 9.83076782e+001 1.11816765e+002 1.21483688e+002 - 9.82579880e+001 1.11758133e+002 1.21485199e+002 9.82093124e+001 - 1.11716354e+002 1.21488510e+002 9.81709671e+001 1.11642334e+002 - 1.21497589e+002 9.81196289e+001 1.11601151e+002 1.21502434e+002 - 9.80853882e+001 1.11566643e+002 1.21511986e+002 9.80452652e+001 - 1.11534172e+002 1.21513962e+002 9.80315933e+001 1.11503075e+002 - 1.21534218e+002 9.80095901e+001 1.11484779e+002 1.21544434e+002 - 9.79944611e+001 1.11460106e+002 1.21578331e+002 9.79245224e+001 - 1.11411270e+002 1.21557968e+002 9.78940964e+001 1.11358009e+002 - 1.21552376e+002 9.78423615e+001 1.11318466e+002 1.21540260e+002 - 9.78722458e+001 1.11319221e+002 1.21607704e+002 9.78418655e+001 - 1.11300797e+002 1.21610596e+002 9.78097687e+001 1.11264404e+002 - 1.21621490e+002 9.77834091e+001 1.11244179e+002 1.21628296e+002 - 9.77504425e+001 1.11193298e+002 1.21621292e+002 9.76950989e+001 - 1.11158875e+002 1.21605392e+002 9.76833420e+001 1.11120911e+002 - 1.21635048e+002 9.76564102e+001 1.11108574e+002 1.21654556e+002 - 9.76221924e+001 1.11082298e+002 1.21660851e+002 9.75708923e+001 - 1.11050926e+002 1.21649155e+002 9.75289459e+001 1.10991264e+002 - 1.21634018e+002 9.75424805e+001 1.11009140e+002 1.21671570e+002 - 9.75051422e+001 1.10960457e+002 1.21670792e+002 9.74467545e+001 - 1.10911980e+002 1.21642731e+002 9.74448471e+001 1.10899025e+002 - 1.21671730e+002 9.74286194e+001 1.10888596e+002 1.21671677e+002 - 9.74039917e+001 1.10834808e+002 1.21674088e+002 9.73711166e+001 - 1.10807732e+002 1.21662453e+002 9.73615189e+001 1.10800568e+002 - 1.21686020e+002 9.73272324e+001 1.10774506e+002 1.21677788e+002 - 9.73366241e+001 1.10770584e+002 1.21706787e+002 9.73199539e+001 - 1.10765747e+002 1.21719864e+002 9.73189392e+001 1.10725998e+002 - 1.21721809e+002 9.72959824e+001 1.10705193e+002 1.21717041e+002 - 9.72929840e+001 1.10704391e+002 1.21739235e+002 9.72482986e+001 - 1.10670364e+002 1.21706924e+002 9.72393570e+001 1.10636528e+002 - 1.21713257e+002 9.72467651e+001 1.10655334e+002 1.21736008e+002 - 9.72509766e+001 1.10660866e+002 1.21768715e+002 9.72259750e+001 - 1.10661804e+002 1.21778549e+002 9.72246857e+001 1.10649368e+002 - 1.21787628e+002 9.72116165e+001 1.10644981e+002 1.21786026e+002 - 9.71967926e+001 1.10607567e+002 1.21776245e+002 9.71881104e+001 - 1.10610893e+002 1.21779236e+002 9.71897812e+001 1.10608345e+002 - 1.21784943e+002 9.72035828e+001 1.10632942e+002 1.21803726e+002 - 9.72127686e+001 1.10634232e+002 1.21815285e+002 9.71980286e+001 - 1.10633110e+002 1.21816849e+002 9.72355423e+001 1.10638000e+002 - 1.21860886e+002 9.72068710e+001 1.10628548e+002 1.21845573e+002 - 9.71830063e+001 1.10599609e+002 1.21824081e+002 9.71426620e+001 - 1.10583755e+002 1.21797516e+002 9.71715927e+001 1.10590012e+002 - 1.21818413e+002 9.71924667e+001 1.10610855e+002 1.21825378e+002 - 9.72037659e+001 1.10615570e+002 1.21831276e+002 9.71828690e+001 - 1.10605736e+002 1.21811989e+002 9.71821136e+001 1.10593094e+002 - 1.21800064e+002 9.71626358e+001 1.10576111e+002 1.21776497e+002 - 9.71869507e+001 1.10582588e+002 1.21794342e+002 9.71814423e+001 - 1.10594742e+002 1.21787987e+002 9.71466141e+001 1.10552841e+002 - 1.21751373e+002 9.71572113e+001 1.10579193e+002 1.21761063e+002 - 9.71742020e+001 1.10586800e+002 1.21770393e+002 9.71655426e+001 - 1.10586800e+002 1.21759125e+002 9.71979675e+001 1.10592453e+002 - 1.21776909e+002 9.71907806e+001 1.10596138e+002 1.21768707e+002 - 9.71913528e+001 1.10598488e+002 1.21758652e+002 9.71873779e+001 - 1.10609764e+002 1.21744263e+002 9.72378540e+001 1.10642151e+002 - 1.21779236e+002 9.72968979e+001 1.10697601e+002 1.21811050e+002 - 9.73010406e+001 1.10695297e+002 1.21796677e+002 9.72693558e+001 - 1.10676506e+002 1.21755302e+002 9.72837372e+001 1.10672096e+002 - 1.21751343e+002 9.73017426e+001 1.10699982e+002 1.21748222e+002 - 9.73068085e+001 1.10685905e+002 1.21728477e+002 9.72709808e+001 - 1.10667404e+002 1.21681068e+002 9.72894287e+001 1.10692963e+002 - 1.21680420e+002 9.73198318e+001 1.10742767e+002 1.21694969e+002 - 9.73399506e+001 1.10757080e+002 1.21694588e+002 9.73501053e+001 - 1.10786270e+002 1.21677963e+002 9.73978958e+001 1.10801102e+002 - 1.21687775e+002 9.73843460e+001 1.10801613e+002 1.21647018e+002 - 9.73834381e+001 1.10802902e+002 1.21610786e+002 9.73983688e+001 - 1.10839020e+002 1.21602219e+002 9.74313202e+001 1.10856552e+002 - 1.21601479e+002 9.74605865e+001 1.10890724e+002 1.21587257e+002 - 9.74874039e+001 1.10905899e+002 1.21574203e+002 9.74738388e+001 - 1.10912399e+002 1.21536369e+002 9.75106735e+001 1.10935310e+002 - 1.21541290e+002 9.75330429e+001 1.10966141e+002 1.21523216e+002 - 9.75642700e+001 1.10972549e+002 1.21514389e+002 9.75702209e+001 - 1.10993950e+002 1.21490158e+002 9.75653381e+001 1.10989120e+002 - 1.21450119e+002 9.75770035e+001 1.11017746e+002 1.21425720e+002 - 9.76134338e+001 1.11046028e+002 1.21422432e+002 9.76493378e+001 - 1.11104813e+002 1.21430023e+002 9.77072067e+001 1.11131462e+002 - 1.21434273e+002 9.77450027e+001 1.11185951e+002 1.21424347e+002 - 9.77667007e+001 1.11210533e+002 1.21406181e+002 9.77719650e+001 - 1.11226181e+002 1.21375740e+002 9.78300934e+001 1.11269890e+002 - 1.21399803e+002 9.78760452e+001 1.11328796e+002 1.21386368e+002 - 9.78951797e+001 1.11348244e+002 1.21355408e+002 9.79085312e+001 - 1.11386192e+002 1.21339958e+002 9.79649124e+001 1.11428368e+002 - 1.21360779e+002 9.80266113e+001 1.11508698e+002 1.21391434e+002 - 9.80787125e+001 1.11542564e+002 1.21395523e+002 9.80662994e+001 - 1.11546440e+002 1.21338608e+002 9.81376724e+001 1.11623383e+002 - 1.21363571e+002 9.81720963e+001 1.11673370e+002 1.21351524e+002 - 9.82308197e+001 1.11725296e+002 1.21366394e+002 9.82531967e+001 - 1.11766647e+002 1.21347015e+002 9.83103180e+001 1.11790840e+002 - 1.21340294e+002 9.83642654e+001 1.11861298e+002 1.21353867e+002 - 9.84062195e+001 1.11893799e+002 1.21331650e+002 9.84405518e+001 - 1.11950943e+002 1.21320961e+002 9.85010300e+001 1.11995415e+002 - 1.21337296e+002 9.85808411e+001 1.12087479e+002 1.21355270e+002 - 9.86458511e+001 1.12144356e+002 1.21346764e+002 9.86313019e+001 - 1.12151123e+002 1.21287155e+002 9.86891022e+001 1.12197205e+002 - 1.21298546e+002 9.87400818e+001 1.12265472e+002 1.21308525e+002 - 9.87996674e+001 1.12309280e+002 1.21307327e+002 9.88352661e+001 - 1.12356972e+002 1.21293449e+002 9.89207764e+001 1.12437347e+002 - 1.21320290e+002 9.89719925e+001 1.12503586e+002 1.21316002e+002 - 9.90419006e+001 1.12558601e+002 1.21325294e+002 9.90741425e+001 - 1.12605919e+002 1.21304504e+002 9.91567688e+001 1.12647423e+002 - 1.21312645e+002 9.92372208e+001 1.12733665e+002 1.21334610e+002 - 9.92890549e+001 1.12782387e+002 1.21323547e+002 9.93591080e+001 - 1.12865845e+002 1.21341309e+002 9.94419632e+001 1.12931450e+002 - 1.21364151e+002 9.95157852e+001 1.13012772e+002 1.21356369e+002 - 9.96123581e+001 1.13091492e+002 1.21362953e+002 9.96470490e+001 - 1.13139709e+002 1.21337112e+002 9.97060013e+001 1.13183784e+002 - 1.21340942e+002 9.97980576e+001 1.13280067e+002 1.21374298e+002 - 9.98807068e+001 1.13338768e+002 1.21393997e+002 9.99422684e+001 - 1.13410446e+002 1.21391052e+002 1.00026756e+002 1.13490875e+002 - 1.21417259e+002 1.00139847e+002 1.13609230e+002 1.21460732e+002 - 1.00215546e+002 1.13679153e+002 1.21477104e+002 1.00271408e+002 - 1.13746758e+002 1.21465706e+002 1.00371574e+002 1.13799629e+002 - 1.21477623e+002 1.00452850e+002 1.13883446e+002 1.21485329e+002 - 1.00540512e+002 1.13964073e+002 1.21496292e+002 1.00606873e+002 - 1.14040222e+002 1.21500214e+002 1.00722305e+002 1.14133316e+002 - 1.21557198e+002 1.00830429e+002 1.14243256e+002 1.21586868e+002 - 1.00966278e+002 1.14350792e+002 1.21611237e+002 1.01048996e+002 - 1.14436317e+002 1.21624260e+002 1.01114952e+002 1.14485245e+002 - 1.21627243e+002 1.01220993e+002 1.14582809e+002 1.21653488e+002 - 1.01316963e+002 1.14648056e+002 1.21668724e+002 1.01407906e+002 - 1.14730820e+002 1.21677200e+002 1.01541389e+002 1.14848061e+002 - 1.21733353e+002 1.01671310e+002 1.14966492e+002 1.21782944e+002 - 1.01778748e+002 1.15057274e+002 1.21819542e+002 1.01864494e+002 - 1.15137962e+002 1.21827576e+002 1.02011116e+002 1.15222183e+002 - 1.21887497e+002 1.02135796e+002 1.15344536e+002 1.21928787e+002 - 1.02237564e+002 1.15405060e+002 1.21936302e+002 1.02287064e+002 - 1.15449219e+002 1.21910316e+002 1.02323761e+002 1.15428299e+002 - 1.21871277e+002 1.02263618e+002 1.15362572e+002 1.21727440e+002 - 1.02214615e+002 1.15331612e+002 1.21744225e+002 1.02223969e+002 - 1.15382561e+002 1.21834793e+002 1.02217789e+002 1.15387123e+002 - 1.21895065e+002 1.02156555e+002 1.15359398e+002 1.21909828e+002 - 1.02073586e+002 1.15287064e+002 1.21919304e+002 1.01968544e+002 - 1.15218910e+002 1.21898773e+002 1.01833893e+002 1.15105682e+002 - 1.21862061e+002 1.01722336e+002 1.15024963e+002 1.21821915e+002 - 1.01611679e+002 1.14922699e+002 1.21785561e+002 1.01502678e+002 - 1.14840874e+002 1.21749146e+002 1.01437454e+002 1.14767601e+002 - 1.21762177e+002 1.01349426e+002 1.14708351e+002 1.21750786e+002 - 1.01253990e+002 1.14615929e+002 1.21729263e+002 1.01129463e+002 - 1.14519028e+002 1.21673592e+002 1.01010704e+002 1.14393852e+002 - 1.21619926e+002 1.00916405e+002 1.14311501e+002 1.21579628e+002 - 1.00843880e+002 1.14240746e+002 1.21604675e+002 1.00705826e+002 - 1.14141533e+002 1.21552452e+002 1.00634621e+002 1.14062531e+002 - 1.21542336e+002 1.00529442e+002 1.13980232e+002 1.21506744e+002 - 1.00439903e+002 1.13885979e+002 1.21500313e+002 1.00360695e+002 - 1.13823860e+002 1.21497391e+002 1.00281189e+002 1.13748917e+002 - 1.21494026e+002 1.00172379e+002 1.13662567e+002 1.21461723e+002 - 1.00097382e+002 1.13576248e+002 1.21454788e+002 9.99918060e+001 - 1.13484184e+002 1.21419312e+002 9.99216919e+001 1.13394905e+002 - 1.21418747e+002 9.98243866e+001 1.13312202e+002 1.21395828e+002 - 9.97579117e+001 1.13238770e+002 1.21402473e+002 9.97040482e+001 - 1.13207146e+002 1.21402138e+002 9.96313782e+001 1.13124283e+002 - 1.21378273e+002 9.95774155e+001 1.13087532e+002 1.21387741e+002 - 9.95265656e+001 1.13034821e+002 1.21429901e+002 9.93996277e+001 - 1.12932564e+002 1.21381844e+002 9.93334732e+001 1.12861679e+002 - 1.21375984e+002 9.92839355e+001 1.12825394e+002 1.21388367e+002 - 9.92311935e+001 1.12763817e+002 1.21405861e+002 9.91561737e+001 - 1.12701057e+002 1.21400269e+002 9.90820160e+001 1.12622879e+002 - 1.21395348e+002 9.90144958e+001 1.12569794e+002 1.21382584e+002 - 9.89422836e+001 1.12486053e+002 1.21371490e+002 9.88721466e+001 - 1.12426476e+002 1.21360680e+002 9.88402939e+001 1.12368774e+002 - 1.21385818e+002 9.87860336e+001 1.12322342e+002 1.21380974e+002 - 9.87321701e+001 1.12267929e+002 1.21387230e+002 9.86981354e+001 - 1.12251106e+002 1.21402390e+002 9.86659088e+001 1.12206558e+002 - 1.21420860e+002 9.85879745e+001 1.12133705e+002 1.21384483e+002 - 9.85241165e+001 1.12053474e+002 1.21386902e+002 9.84486923e+001 - 1.12001022e+002 1.21382332e+002 9.84461212e+001 1.11987000e+002 - 1.21413353e+002 9.83858337e+001 1.11935768e+002 1.21393135e+002 - 9.83560028e+001 1.11885666e+002 1.21413963e+002 9.83179932e+001 - 1.11859123e+002 1.21432411e+002 9.82708130e+001 1.11805000e+002 - 1.21434761e+002 9.81995163e+001 1.11741707e+002 1.21411407e+002 - 9.81388245e+001 1.11667664e+002 1.21401077e+002 9.80867081e+001 - 1.11621407e+002 1.21403885e+002 9.80528870e+001 1.11551994e+002 - 1.21416428e+002 9.80216751e+001 1.11531464e+002 1.21433258e+002 - 9.79848099e+001 1.11486519e+002 1.21440353e+002 9.79596634e+001 - 1.11475914e+002 1.21461411e+002 9.79345398e+001 1.11436211e+002 - 1.21468353e+002 9.78953552e+001 1.11409363e+002 1.21457741e+002 - 9.78514938e+001 1.11336266e+002 1.21457573e+002 9.77908173e+001 - 1.11297989e+002 1.21446922e+002 9.77788620e+001 1.11266357e+002 - 1.21460625e+002 9.77405472e+001 1.11231209e+002 1.21456741e+002 - 9.77289505e+001 1.11205688e+002 1.21485512e+002 9.76905975e+001 - 1.11172668e+002 1.21485901e+002 9.76585846e+001 1.11131828e+002 - 1.21489174e+002 9.76361618e+001 1.11126816e+002 1.21503830e+002 - 9.76053314e+001 1.11076454e+002 1.21502007e+002 9.75583267e+001 - 1.11041183e+002 1.21495026e+002 9.75636139e+001 1.11023674e+002 - 1.21539391e+002 9.75367966e+001 1.11015930e+002 1.21556625e+002 - 9.75004959e+001 1.10988960e+002 1.21568634e+002 9.74486923e+001 - 1.10953804e+002 1.21550690e+002 9.74131088e+001 1.10904556e+002 - 1.21543747e+002 9.74033051e+001 1.10901772e+002 1.21556648e+002 - 9.73665314e+001 1.10845749e+002 1.21554436e+002 9.73389816e+001 - 1.10835426e+002 1.21564743e+002 9.73261337e+001 1.10804703e+002 - 1.21574379e+002 9.73130798e+001 1.10794762e+002 1.21577988e+002 - 9.72807465e+001 1.10735474e+002 1.21563713e+002 9.72440262e+001 - 1.10705956e+002 1.21551300e+002 9.72305984e+001 1.10694160e+002 - 1.21576317e+002 9.72245483e+001 1.10695915e+002 1.21592453e+002 - 9.72261124e+001 1.10686348e+002 1.21613747e+002 9.72028656e+001 - 1.10670097e+002 1.21614311e+002 9.72076569e+001 1.10639542e+002 - 1.21635887e+002 9.71933975e+001 1.10637215e+002 1.21643021e+002 - 9.71898346e+001 1.10624825e+002 1.21657852e+002 9.71451950e+001 - 1.10596031e+002 1.21633202e+002 9.71445236e+001 1.10581520e+002 - 1.21650200e+002 9.71352768e+001 1.10574997e+002 1.21650627e+002 - 9.71354370e+001 1.10577919e+002 1.21677559e+002 9.71116562e+001 - 1.10578606e+002 1.21689598e+002 9.70896683e+001 1.10548744e+002 - 1.21678650e+002 9.70828400e+001 1.10543365e+002 1.21687538e+002 - 9.71004791e+001 1.10540779e+002 1.21711548e+002 9.70769501e+001 - 1.10531609e+002 1.21692627e+002 9.70738068e+001 1.10520111e+002 - 1.21689392e+002 9.71016922e+001 1.10562088e+002 1.21718475e+002 - 9.71218719e+001 1.10568451e+002 1.21739258e+002 9.71049957e+001 - 1.10564209e+002 1.21738335e+002 9.71309204e+001 1.10562546e+002 - 1.21778511e+002 9.71078262e+001 1.10558113e+002 1.21762146e+002 - 9.70952148e+001 1.10540428e+002 1.21753334e+002 9.70852509e+001 - 1.10546837e+002 1.21757568e+002 9.71056061e+001 1.10549637e+002 - 1.21770256e+002 9.71195602e+001 1.10569817e+002 1.21768578e+002 - 9.71014099e+001 1.10532608e+002 1.21736221e+002 9.70566177e+001 - 1.10507088e+002 1.21702087e+002 9.70553741e+001 1.10490738e+002 - 1.21688980e+002 9.70431442e+001 1.10486275e+002 1.21673378e+002 - 9.70702744e+001 1.10491173e+002 1.21688164e+002 9.70612793e+001 - 1.10504028e+002 1.21683929e+002 9.70389862e+001 1.10471230e+002 - 1.21658096e+002 9.70387344e+001 1.10485519e+002 1.21657379e+002 - 9.70474701e+001 1.10479500e+002 1.21661201e+002 9.70583954e+001 - 1.10504799e+002 1.21672691e+002 9.70932541e+001 1.10514038e+002 - 1.21696945e+002 9.70800552e+001 1.10514038e+002 1.21676598e+002 - 9.70875854e+001 1.10512039e+002 1.21669830e+002 9.70929489e+001 - 1.10540306e+002 1.21670067e+002 9.71253891e+001 1.10559883e+002 - 1.21687950e+002 9.71786575e+001 1.10608070e+002 1.21705261e+002 - 9.71882019e+001 1.10602097e+002 1.21697029e+002 9.71688919e+001 - 1.10609482e+002 1.21676041e+002 9.72028961e+001 1.10619728e+002 - 1.21681000e+002 9.72003708e+001 1.10622894e+002 1.21660614e+002 - 9.71849747e+001 1.10588470e+002 1.21624161e+002 9.71744003e+001 - 1.10597069e+002 1.21600609e+002 9.71948166e+001 1.10619171e+002 - 1.21606964e+002 9.72218018e+001 1.10669250e+002 1.21617989e+002 - 9.72341461e+001 1.10676796e+002 1.21604790e+002 9.72533798e+001 - 1.10713112e+002 1.21603851e+002 9.72988052e+001 1.10729767e+002 - 1.21605690e+002 9.72906799e+001 1.10736504e+002 1.21564964e+002 - 9.72855759e+001 1.10729042e+002 1.21525551e+002 9.73023834e+001 - 1.10769005e+002 1.21520546e+002 9.73232727e+001 1.10778328e+002 - 1.21508141e+002 9.73430252e+001 1.10803574e+002 1.21490723e+002 - 9.73593750e+001 1.10805450e+002 1.21466080e+002 9.73520126e+001 - 1.10819725e+002 1.21439178e+002 9.73825684e+001 1.10825996e+002 - 1.21426117e+002 9.73958511e+001 1.10849297e+002 1.21404861e+002 - 9.74408112e+001 1.10873199e+002 1.21408836e+002 9.74575500e+001 - 1.10908821e+002 1.21392807e+002 9.74550629e+001 1.10895103e+002 - 1.21359718e+002 9.74694748e+001 1.10931526e+002 1.21336487e+002 - 9.74943390e+001 1.10952568e+002 1.21327179e+002 9.75401230e+001 - 1.11019844e+002 1.21344345e+002 9.75904617e+001 1.11039383e+002 - 1.21335884e+002 9.76083450e+001 1.11076378e+002 1.21314827e+002 - 9.76473923e+001 1.11106728e+002 1.21307976e+002 9.76607437e+001 - 1.11141815e+002 1.21288467e+002 9.77248459e+001 1.11190277e+002 - 1.21316277e+002 9.77585373e+001 1.11234062e+002 1.21290276e+002 - 9.77874985e+001 1.11257866e+002 1.21263992e+002 9.77951584e+001 - 1.11297073e+002 1.21249054e+002 9.78379669e+001 1.11327408e+002 - 1.21254997e+002 9.78767395e+001 1.11385834e+002 1.21270248e+002 - 9.79431610e+001 1.11437370e+002 1.21285683e+002 9.79446793e+001 - 1.11456184e+002 1.21246758e+002 9.80105667e+001 1.11520836e+002 - 1.21264702e+002 9.80574646e+001 1.11588013e+002 1.21266228e+002 - 9.81110764e+001 1.11640587e+002 1.21276237e+002 9.81288147e+001 - 1.11665390e+002 1.21251472e+002 9.81859436e+001 1.11692902e+002 - 1.21236275e+002 9.82402573e+001 1.11760605e+002 1.21244293e+002 - 9.82911758e+001 1.11802193e+002 1.21236069e+002 9.83335342e+001 - 1.11868294e+002 1.21238815e+002 9.84012604e+001 1.11923927e+002 - 1.21257996e+002 9.84614792e+001 1.11989685e+002 1.21255257e+002 - 9.85125427e+001 1.12035538e+002 1.21232346e+002 9.85124741e+001 - 1.12055557e+002 1.21191231e+002 9.85710068e+001 1.12105255e+002 - 1.21201286e+002 9.86309967e+001 1.12180946e+002 1.21227348e+002 - 9.86858597e+001 1.12216949e+002 1.21225365e+002 9.87403412e+001 - 1.12290024e+002 1.21229706e+002 9.88122253e+001 1.12349945e+002 - 1.21237473e+002 9.88718033e+001 1.12422447e+002 1.21243080e+002 - 9.89165115e+001 1.12452202e+002 1.21224716e+002 9.89554672e+001 - 1.12504250e+002 1.21211052e+002 9.90510635e+001 1.12564919e+002 - 1.21233383e+002 9.91407318e+001 1.12664894e+002 1.21268272e+002 - 9.92015381e+001 1.12711128e+002 1.21254539e+002 9.92670670e+001 - 1.12795326e+002 1.21267212e+002 9.93344269e+001 1.12851219e+002 - 1.21279686e+002 9.94095154e+001 1.12931885e+002 1.21279076e+002 - 9.95019150e+001 1.12998276e+002 1.21275719e+002 9.95397491e+001 - 1.13057693e+002 1.21257584e+002 9.96003799e+001 1.13092575e+002 - 1.21263443e+002 9.96751633e+001 1.13181313e+002 1.21286369e+002 - 9.97528000e+001 1.13236824e+002 1.21287994e+002 9.98338394e+001 - 1.13325081e+002 1.21310669e+002 9.99198380e+001 1.13401810e+002 - 1.21336525e+002 1.00022865e+002 1.13525742e+002 1.21383957e+002 - 1.00116058e+002 1.13602852e+002 1.21405426e+002 1.00189186e+002 - 1.13688469e+002 1.21419014e+002 1.00280785e+002 1.13742447e+002 - 1.21415131e+002 1.00344521e+002 1.13808975e+002 1.21408081e+002 - 1.00430885e+002 1.13871071e+002 1.21414787e+002 1.00500374e+002 - 1.13956627e+002 1.21427429e+002 1.00606354e+002 1.14044746e+002 - 1.21473862e+002 1.00724731e+002 1.14158943e+002 1.21512054e+002 - 1.00846344e+002 1.14255905e+002 1.21525635e+002 1.00923073e+002 - 1.14339905e+002 1.21533882e+002 1.01022247e+002 1.14408836e+002 - 1.21560493e+002 1.01128510e+002 1.14509712e+002 1.21594810e+002 - 1.01241005e+002 1.14590073e+002 1.21618950e+002 1.01329933e+002 - 1.14680817e+002 1.21635841e+002 1.01469978e+002 1.14793640e+002 - 1.21692810e+002 1.01580620e+002 1.14900032e+002 1.21724854e+002 - 1.01683502e+002 1.14980057e+002 1.21751122e+002 1.01789528e+002 - 1.15079369e+002 1.21788536e+002 1.01925171e+002 1.15166260e+002 - 1.21829178e+002 1.02034164e+002 1.15264435e+002 1.21860718e+002 - 1.02147377e+002 1.15336830e+002 1.21874649e+002 1.02213562e+002 - 1.15390244e+002 1.21866180e+002 1.02251976e+002 1.15383629e+002 - 1.21823532e+002 1.02200180e+002 1.15317848e+002 1.21695099e+002 - 1.02129181e+002 1.15264061e+002 1.21679520e+002 1.02153297e+002 - 1.15328392e+002 1.21782578e+002 1.02142662e+002 1.15330383e+002 - 1.21842690e+002 1.02078239e+002 1.15297951e+002 1.21854218e+002 - 1.01997292e+002 1.15224411e+002 1.21863754e+002 1.01890862e+002 - 1.15151184e+002 1.21838287e+002 1.01756279e+002 1.15044319e+002 - 1.21805672e+002 1.01650063e+002 1.14969444e+002 1.21771011e+002 - 1.01553711e+002 1.14877724e+002 1.21750259e+002 1.01444099e+002 - 1.14795471e+002 1.21715942e+002 1.01375710e+002 1.14723831e+002 - 1.21725845e+002 1.01271164e+002 1.14642426e+002 1.21695320e+002 - 1.01175545e+002 1.14548714e+002 1.21670609e+002 1.01055542e+002 - 1.14455750e+002 1.21618744e+002 1.00945992e+002 1.14345009e+002 - 1.21571121e+002 1.00865623e+002 1.14276764e+002 1.21555809e+002 - 1.00764877e+002 1.14180374e+002 1.21545921e+002 1.00627716e+002 - 1.14077454e+002 1.21498055e+002 1.00552437e+002 1.13995064e+002 - 1.21484604e+002 1.00445679e+002 1.13908684e+002 1.21439453e+002 - 1.00360199e+002 1.13821663e+002 1.21437393e+002 1.00268738e+002 - 1.13742661e+002 1.21417503e+002 1.00184799e+002 1.13665192e+002 - 1.21413254e+002 1.00079407e+002 1.13574852e+002 1.21377220e+002 - 9.99965286e+001 1.13489090e+002 1.21370453e+002 9.98910294e+001 - 1.13398376e+002 1.21334038e+002 9.98345718e+001 1.13322884e+002 - 1.21354858e+002 9.97535858e+001 1.13256355e+002 1.21336098e+002 - 9.96844482e+001 1.13182358e+002 1.21333160e+002 9.96118240e+001 - 1.13126610e+002 1.21316277e+002 9.95342102e+001 1.13041176e+002 - 1.21297447e+002 9.94935913e+001 1.13011299e+002 1.21312744e+002 - 9.94427643e+001 1.12958603e+002 1.21353706e+002 9.93225479e+001 - 1.12872780e+002 1.21316505e+002 9.92558670e+001 1.12793091e+002 - 1.21305199e+002 9.92114029e+001 1.12763374e+002 1.21324074e+002 - 9.91441116e+001 1.12683174e+002 1.21324356e+002 9.90597916e+001 - 1.12612701e+002 1.21312767e+002 9.89932785e+001 1.12544090e+002 - 1.21316895e+002 9.89454422e+001 1.12512154e+002 1.21329666e+002 - 9.88647232e+001 1.12422775e+002 1.21302704e+002 9.87913437e+001 - 1.12357109e+002 1.21289703e+002 9.87502823e+001 1.12293266e+002 - 1.21305031e+002 9.86765671e+001 1.12223991e+002 1.21286156e+002 - 9.86256485e+001 1.12167580e+002 1.21288177e+002 9.85814972e+001 - 1.12142532e+002 1.21295998e+002 9.85509262e+001 1.12100410e+002 - 1.21307663e+002 9.85018463e+001 1.12059845e+002 1.21309639e+002 - 9.84142609e+001 1.11962021e+002 1.21297462e+002 9.83414993e+001 - 1.11914902e+002 1.21295975e+002 9.83314743e+001 1.11889290e+002 - 1.21320763e+002 9.82855301e+001 1.11852249e+002 1.21318192e+002 - 9.82471161e+001 1.11798820e+002 1.21329506e+002 9.81891937e+001 - 1.11750290e+002 1.21321136e+002 9.81350021e+001 1.11691605e+002 - 1.21325737e+002 9.80907211e+001 1.11658646e+002 1.21325394e+002 - 9.80590363e+001 1.11602074e+002 1.21337311e+002 9.80101166e+001 - 1.11564072e+002 1.21341934e+002 9.79674759e+001 1.11491837e+002 - 1.21344582e+002 9.79400711e+001 1.11465736e+002 1.21368248e+002 - 9.79011078e+001 1.11419617e+002 1.21374062e+002 9.78792648e+001 - 1.11409248e+002 1.21390121e+002 9.78563080e+001 1.11377480e+002 - 1.21401237e+002 9.77957230e+001 1.11319069e+002 1.21370232e+002 - 9.77331696e+001 1.11239914e+002 1.21351936e+002 9.76825180e+001 - 1.11207069e+002 1.21341492e+002 9.76820297e+001 1.11185951e+002 - 1.21372467e+002 9.76452866e+001 1.11154335e+002 1.21363037e+002 - 9.76096420e+001 1.11102570e+002 1.21374016e+002 9.75772095e+001 - 1.11080986e+002 1.21380119e+002 9.75682678e+001 1.11065361e+002 - 1.21408524e+002 9.75420914e+001 1.11047806e+002 1.21415329e+002 - 9.75111542e+001 1.11002556e+002 1.21420883e+002 9.74405746e+001 - 1.10951515e+002 1.21394180e+002 9.74580841e+001 1.10940880e+002 - 1.21447372e+002 9.74333420e+001 1.10926476e+002 1.21458740e+002 - 9.74110565e+001 1.10905884e+002 1.21476196e+002 9.73610229e+001 - 1.10874123e+002 1.21467278e+002 9.73200226e+001 1.10821274e+002 - 1.21449387e+002 9.72938538e+001 1.10799339e+002 1.21448448e+002 - 9.72607651e+001 1.10746552e+002 1.21443863e+002 9.72235489e+001 - 1.10729645e+002 1.21446960e+002 9.72199402e+001 1.10703896e+002 - 1.21456573e+002 9.71990051e+001 1.10692375e+002 1.21463493e+002 - 9.71732483e+001 1.10644821e+002 1.21460320e+002 9.71576691e+001 - 1.10637550e+002 1.21468864e+002 9.71333618e+001 1.10606529e+002 - 1.21469337e+002 9.71115189e+001 1.10591019e+002 1.21465607e+002 - 9.71126251e+001 1.10584579e+002 1.21498100e+002 9.70969849e+001 - 1.10580093e+002 1.21509155e+002 9.71257629e+001 1.10576561e+002 - 1.21553200e+002 9.71202164e+001 1.10579407e+002 1.21560944e+002 - 9.70944824e+001 1.10546875e+002 1.21558395e+002 9.70614395e+001 - 1.10532234e+002 1.21552193e+002 9.70715179e+001 1.10529076e+002 - 1.21571182e+002 9.70704956e+001 1.10535469e+002 1.21583847e+002 - 9.70662231e+001 1.10521881e+002 1.21604515e+002 9.70122757e+001 - 1.10497231e+002 1.21592018e+002 9.69979019e+001 1.10470505e+002 - 1.21584938e+002 9.69956436e+001 1.10481293e+002 1.21604576e+002 - 9.70241928e+001 1.10487244e+002 1.21630730e+002 9.70041428e+001 - 1.10481445e+002 1.21620262e+002 9.69996109e+001 1.10462273e+002 - 1.21617126e+002 9.70068512e+001 1.10482681e+002 1.21627571e+002 - 9.70074844e+001 1.10472900e+002 1.21635674e+002 9.70000610e+001 - 1.10474243e+002 1.21641754e+002 9.70262070e+001 1.10468857e+002 - 1.21667870e+002 9.70044861e+001 1.10462624e+002 1.21654884e+002 - 9.70050125e+001 1.10457603e+002 1.21657303e+002 9.70086365e+001 - 1.10484032e+002 1.21676567e+002 9.70289917e+001 1.10487686e+002 - 1.21690201e+002 9.70369873e+001 1.10496880e+002 1.21683167e+002 - 9.70193787e+001 1.10461700e+002 1.21657028e+002 9.69697571e+001 - 1.10434700e+002 1.21609978e+002 9.69691544e+001 1.10413773e+002 - 1.21598434e+002 9.69521790e+001 1.10410736e+002 1.21577293e+002 - 9.69733887e+001 1.10410011e+002 1.21589615e+002 9.69623566e+001 - 1.10411758e+002 1.21575493e+002 9.69583588e+001 1.10406860e+002 - 1.21576141e+002 9.69610291e+001 1.10418152e+002 1.21575180e+002 - 9.69594879e+001 1.10398430e+002 1.21568199e+002 9.69637756e+001 - 1.10420204e+002 1.21575142e+002 9.70121994e+001 1.10443871e+002 - 1.21612587e+002 9.70011902e+001 1.10445702e+002 1.21593803e+002 - 9.70040436e+001 1.10444969e+002 1.21584732e+002 9.70131149e+001 - 1.10472343e+002 1.21585037e+002 9.70624542e+001 1.10503540e+002 - 1.21612633e+002 9.71064682e+001 1.10543304e+002 1.21630943e+002 - 9.71246033e+001 1.10554367e+002 1.21627174e+002 9.71137238e+001 - 1.10566994e+002 1.21606674e+002 9.71289291e+001 1.10559578e+002 - 1.21603020e+002 9.71187820e+001 1.10563034e+002 1.21578255e+002 - 9.71022263e+001 1.10528214e+002 1.21539024e+002 9.70861588e+001 - 1.10527893e+002 1.21510612e+002 9.71237488e+001 1.10559937e+002 - 1.21529846e+002 9.71395569e+001 1.10597069e+002 1.21522545e+002 - 9.71611710e+001 1.10610512e+002 1.21522514e+002 9.71822662e+001 - 1.10652840e+002 1.21521667e+002 9.72242737e+001 1.10672920e+002 - 1.21527977e+002 9.72082062e+001 1.10671486e+002 1.21483742e+002 - 9.72235336e+001 1.10676582e+002 1.21460083e+002 9.72353134e+001 - 1.10712898e+002 1.21443611e+002 9.72558365e+001 1.10726784e+002 - 1.21441406e+002 9.72467575e+001 1.10716270e+002 1.21394257e+002 - 9.72684784e+001 1.10724060e+002 1.21369492e+002 9.72706528e+001 - 1.10750175e+002 1.21349846e+002 9.72850113e+001 1.10740768e+002 - 1.21323761e+002 9.73047638e+001 1.10765121e+002 1.21309601e+002 - 9.73538132e+001 1.10795525e+002 1.21314705e+002 9.73765488e+001 - 1.10833496e+002 1.21305466e+002 9.73737488e+001 1.10829063e+002 - 1.21276917e+002 9.73992310e+001 1.10874725e+002 1.21267723e+002 - 9.74247589e+001 1.10893181e+002 1.21254448e+002 9.74683838e+001 - 1.10956337e+002 1.21272919e+002 9.75305557e+001 1.10990395e+002 - 1.21276276e+002 9.75473099e+001 1.11023048e+002 1.21252541e+002 - 9.75788574e+001 1.11047020e+002 1.21242111e+002 9.76030045e+001 - 1.11097099e+002 1.21236938e+002 9.76407089e+001 1.11125359e+002 - 1.21233727e+002 9.76711502e+001 1.11161026e+002 1.21213913e+002 - 9.76842880e+001 1.11168480e+002 1.21174896e+002 9.77048721e+001 - 1.11222031e+002 1.21171608e+002 9.77559662e+001 1.11254631e+002 - 1.21182312e+002 9.78014908e+001 1.11317657e+002 1.21193901e+002 - 9.78487244e+001 1.11350525e+002 1.21198463e+002 9.78546600e+001 - 1.11379517e+002 1.21165916e+002 9.79058762e+001 1.11430420e+002 - 1.21172447e+002 9.79757385e+001 1.11518753e+002 1.21198250e+002 - 9.80449600e+001 1.11586784e+002 1.21222237e+002 9.80657043e+001 - 1.11615822e+002 1.21197449e+002 9.81277618e+001 1.11650932e+002 - 1.21195999e+002 9.81613693e+001 1.11696686e+002 1.21175934e+002 - 9.82204895e+001 1.11744682e+002 1.21179207e+002 9.82564697e+001 - 1.11802231e+002 1.21163841e+002 9.83171692e+001 1.11848808e+002 - 1.21183563e+002 9.83773575e+001 1.11915703e+002 1.21177719e+002 - 9.84135666e+001 1.11944649e+002 1.21135368e+002 9.84251785e+001 - 1.11981705e+002 1.21111404e+002 9.84942093e+001 1.12040810e+002 - 1.21135109e+002 9.85428696e+001 1.12104637e+002 1.21150444e+002 - 9.86046143e+001 1.12147041e+002 1.21146286e+002 9.86570587e+001 - 1.12218239e+002 1.21159981e+002 9.87364807e+001 1.12280952e+002 - 1.21166855e+002 9.87853317e+001 1.12344498e+002 1.21167480e+002 - 9.88264999e+001 1.12375847e+002 1.21150269e+002 9.88659439e+001 - 1.12429108e+002 1.21137009e+002 9.89614258e+001 1.12488892e+002 - 1.21152718e+002 9.90512466e+001 1.12583626e+002 1.21184029e+002 - 9.91175156e+001 1.12642410e+002 1.21181267e+002 9.91598740e+001 - 1.12702560e+002 1.21173744e+002 9.92319260e+001 1.12763138e+002 - 1.21184151e+002 9.93136063e+001 1.12846367e+002 1.21194519e+002 - 9.94009933e+001 1.12908005e+002 1.21186920e+002 9.94376526e+001 - 1.12961273e+002 1.21166016e+002 9.95392075e+001 1.13043083e+002 - 1.21211922e+002 9.96111221e+001 1.13123634e+002 1.21229645e+002 - 9.96727905e+001 1.13165260e+002 1.21220566e+002 9.97350082e+001 - 1.13245834e+002 1.21234131e+002 9.98244095e+001 1.13328011e+002 - 1.21258881e+002 9.99493256e+001 1.13468719e+002 1.21325600e+002 - 1.00034729e+002 1.13540558e+002 1.21343483e+002 1.00106857e+002 - 1.13620743e+002 1.21353706e+002 1.00199745e+002 1.13674408e+002 - 1.21351135e+002 1.00271088e+002 1.13751549e+002 1.21351662e+002 - 1.00356499e+002 1.13810799e+002 1.21357079e+002 1.00422913e+002 - 1.13891525e+002 1.21369209e+002 1.00531967e+002 1.13985703e+002 - 1.21415131e+002 1.00641243e+002 1.14089043e+002 1.21438858e+002 - 1.00758858e+002 1.14174263e+002 1.21451553e+002 1.00831558e+002 - 1.14258804e+002 1.21459976e+002 1.00938339e+002 1.14336639e+002 - 1.21488426e+002 1.01033501e+002 1.14428459e+002 1.21512535e+002 - 1.01146133e+002 1.14506439e+002 1.21538803e+002 1.01237709e+002 - 1.14602478e+002 1.21560455e+002 1.01393646e+002 1.14728134e+002 - 1.21623322e+002 1.01512421e+002 1.14847679e+002 1.21674515e+002 - 1.01625450e+002 1.14931267e+002 1.21704178e+002 1.01727036e+002 - 1.15025253e+002 1.21739296e+002 1.01844650e+002 1.15096664e+002 - 1.21763550e+002 1.01954926e+002 1.15190475e+002 1.21789597e+002 - 1.02061195e+002 1.15254341e+002 1.21800652e+002 1.02124664e+002 - 1.15310616e+002 1.21789139e+002 1.02162575e+002 1.15303421e+002 - 1.21752983e+002 1.02123093e+002 1.15254791e+002 1.21639381e+002 - 1.02076614e+002 1.15221275e+002 1.21643608e+002 1.02113174e+002 - 1.15302727e+002 1.21757454e+002 1.02094780e+002 1.15298500e+002 - 1.21808578e+002 1.02004654e+002 1.15235626e+002 1.21796570e+002 - 1.01913086e+002 1.15159431e+002 1.21798012e+002 1.01813789e+002 - 1.15091141e+002 1.21783020e+002 1.01689133e+002 1.14992332e+002 - 1.21750549e+002 1.01596260e+002 1.14928314e+002 1.21735588e+002 - 1.01506393e+002 1.14848129e+002 1.21722496e+002 1.01353683e+002 - 1.14725487e+002 1.21645027e+002 1.01297585e+002 1.14653130e+002 - 1.21663116e+002 1.01220947e+002 1.14596321e+002 1.21659676e+002 - 1.01129532e+002 1.14515594e+002 1.21640656e+002 1.01012527e+002 - 1.14424515e+002 1.21591057e+002 1.00910599e+002 1.14316223e+002 - 1.21551430e+002 1.00802284e+002 1.14230026e+002 1.21509514e+002 - 1.00714424e+002 1.14141594e+002 1.21518623e+002 1.00571167e+002 - 1.14031570e+002 1.21455612e+002 1.00494461e+002 1.13950806e+002 - 1.21441177e+002 1.00397911e+002 1.13875954e+002 1.21415237e+002 - 1.00291946e+002 1.13762756e+002 1.21381409e+002 1.00198502e+002 - 1.13688049e+002 1.21365784e+002 1.00120705e+002 1.13611832e+002 - 1.21363808e+002 1.00018768e+002 1.13524719e+002 1.21329689e+002 - 9.99302521e+001 1.13439400e+002 1.21316513e+002 9.98162918e+001 - 1.13337494e+002 1.21273315e+002 9.97609253e+001 1.13257080e+002 - 1.21291412e+002 9.96906052e+001 1.13206825e+002 1.21291100e+002 - 9.96306000e+001 1.13143921e+002 1.21292549e+002 9.95499878e+001 - 1.13081627e+002 1.21271332e+002 9.94769821e+001 1.12994553e+002 - 1.21246841e+002 9.94215317e+001 1.12951347e+002 1.21250679e+002 - 9.93725739e+001 1.12899605e+002 1.21289101e+002 9.92815247e+001 - 1.12840935e+002 1.21275307e+002 9.92255020e+001 1.12767410e+002 - 1.21277367e+002 9.91574707e+001 1.12718147e+002 1.21279312e+002 - 9.90734100e+001 1.12621460e+002 1.21269936e+002 9.89958267e+001 - 1.12559090e+002 1.21259933e+002 9.89493027e+001 1.12510796e+002 - 1.21280663e+002 9.88883667e+001 1.12462166e+002 1.21276863e+002 - 9.88030396e+001 1.12375343e+002 1.21250389e+002 9.87057190e+001 - 1.12284904e+002 1.21216194e+002 9.86826324e+001 1.12227127e+002 - 1.21243195e+002 9.86147461e+001 1.12174026e+002 1.21235100e+002 - 9.85667648e+001 1.12122910e+002 1.21239937e+002 9.85088348e+001 - 1.12079201e+002 1.21230057e+002 9.84657898e+001 1.12018478e+002 - 1.21231331e+002 9.84249725e+001 1.11992783e+002 1.21240875e+002 - 9.83636780e+001 1.11929710e+002 1.21262642e+002 9.82697296e+001 - 1.11856705e+002 1.21236580e+002 9.82520218e+001 1.11826668e+002 - 1.21255249e+002 9.82155609e+001 1.11803040e+002 1.21268570e+002 - 9.81776581e+001 1.11744881e+002 1.21284248e+002 9.81003799e+001 - 1.11675217e+002 1.21250877e+002 9.80382538e+001 1.11607491e+002 - 1.21242661e+002 9.80135040e+001 1.11589111e+002 1.21259483e+002 - 9.80005112e+001 1.11558540e+002 1.21295120e+002 9.79526062e+001 - 1.11520538e+002 1.21299797e+002 9.79279022e+001 1.11459702e+002 - 1.21320526e+002 9.79059067e+001 1.11440285e+002 1.21343719e+002 - 9.78395386e+001 1.11370598e+002 1.21325172e+002 9.77980118e+001 - 1.11345985e+002 1.21319038e+002 9.77791290e+001 1.11312622e+002 - 1.21333313e+002 9.77309036e+001 1.11262634e+002 1.21312698e+002 - 9.76819763e+001 1.11202477e+002 1.21302963e+002 9.76252136e+001 - 1.11164101e+002 1.21297585e+002 9.76213989e+001 1.11138794e+002 - 1.21317078e+002 9.75773010e+001 1.11106972e+002 1.21310547e+002 - 9.75662613e+001 1.11071960e+002 1.21332375e+002 9.75311966e+001 - 1.11046532e+002 1.21340561e+002 9.74907150e+001 1.11001900e+002 - 1.21342018e+002 9.74605789e+001 1.10978645e+002 1.21336365e+002 - 9.74319382e+001 1.10939743e+002 1.21347015e+002 9.73828583e+001 - 1.10905670e+002 1.21336845e+002 9.74075394e+001 1.10899055e+002 - 1.21398140e+002 9.73935394e+001 1.10903336e+002 1.21422333e+002 - 9.73523712e+001 1.10858330e+002 1.21413475e+002 9.72707520e+001 - 1.10798004e+002 1.21375389e+002 9.72562943e+001 1.10768936e+002 - 1.21387825e+002 9.72541199e+001 1.10762466e+002 1.21401642e+002 - 9.72183762e+001 1.10711327e+002 1.21396080e+002 9.71557312e+001 - 1.10670700e+002 1.21372742e+002 9.71572418e+001 1.10646996e+002 - 1.21393700e+002 9.71564331e+001 1.10660149e+002 1.21417786e+002 - 9.71561661e+001 1.10634933e+002 1.21434074e+002 9.71140518e+001 - 1.10608955e+002 1.21422218e+002 9.70814133e+001 1.10573776e+002 - 1.21420937e+002 9.70455246e+001 1.10540314e+002 1.21402512e+002 - 9.70514832e+001 1.10533348e+002 1.21433975e+002 9.70392380e+001 - 1.10532173e+002 1.21448761e+002 9.70711823e+001 1.10527153e+002 - 1.21493446e+002 9.70547714e+001 1.10524429e+002 1.21500984e+002 - 9.70268402e+001 1.10492111e+002 1.21490524e+002 9.69981155e+001 - 1.10484116e+002 1.21485786e+002 9.70041046e+001 1.10471581e+002 - 1.21504654e+002 9.70084686e+001 1.10487717e+002 1.21520805e+002 - 9.69904938e+001 1.10466324e+002 1.21535652e+002 9.69362640e+001 - 1.10433525e+002 1.21511139e+002 9.69062195e+001 1.10386620e+002 - 1.21491898e+002 9.69035492e+001 1.10401604e+002 1.21502823e+002 - 9.69189987e+001 1.10393723e+002 1.21521767e+002 9.69117279e+001 - 1.10400322e+002 1.21523277e+002 9.69114075e+001 1.10400108e+002 - 1.21530273e+002 9.69312592e+001 1.10426208e+002 1.21553398e+002 - 9.69410934e+001 1.10420601e+002 1.21566551e+002 9.69320526e+001 - 1.10427834e+002 1.21577339e+002 9.69451752e+001 1.10405388e+002 - 1.21587807e+002 9.69350204e+001 1.10407150e+002 1.21590927e+002 - 9.69416122e+001 1.10412933e+002 1.21600082e+002 9.69195175e+001 - 1.10405426e+002 1.21584198e+002 9.69295273e+001 1.10401466e+002 - 1.21586044e+002 9.69362335e+001 1.10406288e+002 1.21580803e+002 - 9.69371719e+001 1.10395958e+002 1.21573746e+002 9.68828659e+001 - 1.10363678e+002 1.21525116e+002 9.68758698e+001 1.10333595e+002 - 1.21503235e+002 9.68809814e+001 1.10352364e+002 1.21504280e+002 - 9.69075470e+001 1.10363556e+002 1.21526237e+002 9.68899307e+001 - 1.10359055e+002 1.21509155e+002 9.68830948e+001 1.10349075e+002 - 1.21501022e+002 9.68848190e+001 1.10356544e+002 1.21490723e+002 - 9.69119949e+001 1.10364166e+002 1.21515350e+002 9.69006424e+001 - 1.10369919e+002 1.21506821e+002 9.69368057e+001 1.10374527e+002 - 1.21532196e+002 9.69314194e+001 1.10383224e+002 1.21516647e+002 - 9.69318771e+001 1.10384880e+002 1.21509766e+002 9.69348373e+001 - 1.10407951e+002 1.21501221e+002 9.69803848e+001 1.10432877e+002 - 1.21525475e+002 9.70152512e+001 1.10476097e+002 1.21536743e+002 - 9.70447922e+001 1.10495049e+002 1.21542900e+002 9.70193176e+001 - 1.10488564e+002 1.21509827e+002 9.70368881e+001 1.10485367e+002 - 1.21505180e+002 9.70402756e+001 1.10497185e+002 1.21492645e+002 - 9.70283127e+001 1.10468933e+002 1.21461113e+002 9.70184784e+001 - 1.10473778e+002 1.21441017e+002 9.70509262e+001 1.10502754e+002 - 1.21452667e+002 9.70604095e+001 1.10524460e+002 1.21436142e+002 - 9.70894012e+001 1.10554115e+002 1.21448219e+002 9.70926361e+001 - 1.10579941e+002 1.21437782e+002 9.71318817e+001 1.10588051e+002 - 1.21435135e+002 9.71349258e+001 1.10610619e+002 1.21407700e+002 - 9.71520996e+001 1.10621490e+002 1.21389214e+002 9.71620483e+001 - 1.10657509e+002 1.21375626e+002 9.71911469e+001 1.10673149e+002 - 1.21380196e+002 9.71948242e+001 1.10680428e+002 1.21341995e+002 - 9.72054214e+001 1.10676018e+002 1.21306648e+002 9.71850586e+001 - 1.10676216e+002 1.21263275e+002 9.72182007e+001 1.10685997e+002 - 1.21252625e+002 9.72618332e+001 1.10733253e+002 1.21258072e+002 - 9.72961578e+001 1.10749123e+002 1.21252052e+002 9.72969818e+001 - 1.10770180e+002 1.21225212e+002 9.73296967e+001 1.10796745e+002 - 1.21224464e+002 9.73597794e+001 1.10841309e+002 1.21218658e+002 - 9.73665390e+001 1.10846649e+002 1.21193520e+002 9.73963776e+001 - 1.10899529e+002 1.21199875e+002 9.74514771e+001 1.10917725e+002 - 1.21203598e+002 9.74991760e+001 1.10979202e+002 1.21208076e+002 - 9.75519104e+001 1.11033264e+002 1.21216644e+002 9.75648346e+001 - 1.11069572e+002 1.21199738e+002 9.75904922e+001 1.11079849e+002 - 1.21190941e+002 9.76098633e+001 1.11111649e+002 1.21162407e+002 - 9.76329117e+001 1.11131866e+002 1.21134331e+002 9.76441193e+001 - 1.11167656e+002 1.21116852e+002 9.77113113e+001 1.11221634e+002 - 1.21139641e+002 9.77479172e+001 1.11279869e+002 1.21148331e+002 - 9.77907486e+001 1.11306396e+002 1.21147697e+002 9.77978287e+001 - 1.11330544e+002 1.21114685e+002 9.78379059e+001 1.11381348e+002 - 1.21117401e+002 9.78988113e+001 1.11458557e+002 1.21132721e+002 - 9.79652481e+001 1.11515381e+002 1.21150131e+002 9.79987106e+001 - 1.11563858e+002 1.21144325e+002 9.80678558e+001 1.11607582e+002 - 1.21145447e+002 9.81099854e+001 1.11666840e+002 1.21141937e+002 - 9.81622849e+001 1.11708611e+002 1.21135780e+002 9.82041245e+001 - 1.11767448e+002 1.21129601e+002 9.82784042e+001 1.11824425e+002 - 1.21155167e+002 9.83338013e+001 1.11881409e+002 1.21147285e+002 - 9.83745804e+001 1.11913902e+002 1.21107933e+002 9.83825455e+001 - 1.11950371e+002 1.21074249e+002 9.84432602e+001 1.11995079e+002 - 1.21089714e+002 9.84907074e+001 1.12063026e+002 1.21104034e+002 - 9.85702667e+001 1.12124344e+002 1.21123970e+002 9.86173325e+001 - 1.12183533e+002 1.21121147e+002 9.86961899e+001 1.12253731e+002 - 1.21141975e+002 9.87480240e+001 1.12320908e+002 1.21144035e+002 - 9.87840576e+001 1.12341087e+002 1.21110832e+002 9.88207855e+001 - 1.12394485e+002 1.21097427e+002 9.89124832e+001 1.12445282e+002 - 1.21111206e+002 9.89986572e+001 1.12537842e+002 1.21140427e+002 - 9.90448685e+001 1.12579971e+002 1.21116676e+002 9.90848465e+001 - 1.12636520e+002 1.21103714e+002 9.91746140e+001 1.12713173e+002 - 1.21139328e+002 9.92527771e+001 1.12794800e+002 1.21136780e+002 - 9.93520279e+001 1.12870239e+002 1.21145020e+002 9.93880997e+001 - 1.12930389e+002 1.21131172e+002 9.94915695e+001 1.13002907e+002 - 1.21171112e+002 9.95608368e+001 1.13085747e+002 1.21195030e+002 - 9.96280670e+001 1.13135414e+002 1.21196236e+002 9.96799393e+001 - 1.13205650e+002 1.21197990e+002 9.97784576e+001 1.13292755e+002 - 1.21221825e+002 9.98917465e+001 1.13422729e+002 1.21282158e+002 - 9.99759216e+001 1.13494347e+002 1.21294662e+002 1.00047470e+002 - 1.13575577e+002 1.21305901e+002 1.00137497e+002 1.13621582e+002 - 1.21303406e+002 1.00221764e+002 1.13710037e+002 1.21316841e+002 - 1.00307320e+002 1.13773697e+002 1.21321983e+002 1.00375664e+002 - 1.13852997e+002 1.21331177e+002 1.00495316e+002 1.13954956e+002 - 1.21384018e+002 1.00599648e+002 1.14053848e+002 1.21414452e+002 - 1.00698730e+002 1.14129257e+002 1.21409172e+002 1.00762741e+002 - 1.14199005e+002 1.21402237e+002 1.00887581e+002 1.14292236e+002 - 1.21455299e+002 1.00981323e+002 1.14392143e+002 1.21483299e+002 - 1.01102242e+002 1.14473915e+002 1.21512512e+002 1.01189140e+002 - 1.14567871e+002 1.21524353e+002 1.01337616e+002 1.14684654e+002 - 1.21581902e+002 1.01459290e+002 1.14803154e+002 1.21631866e+002 - 1.01575981e+002 1.14893295e+002 1.21670929e+002 1.01672241e+002 - 1.14986191e+002 1.21694710e+002 1.01799088e+002 1.15062706e+002 - 1.21729179e+002 1.01914093e+002 1.15157722e+002 1.21760597e+002 - 1.02014961e+002 1.15217514e+002 1.21768433e+002 1.02055489e+002 - 1.15249496e+002 1.21730301e+002 1.02089249e+002 1.15238121e+002 - 1.21693962e+002 1.02071060e+002 1.15209686e+002 1.21598320e+002 - 1.02034271e+002 1.15185585e+002 1.21620430e+002 1.02060692e+002 - 1.15260529e+002 1.21727020e+002 1.02023491e+002 1.15237221e+002 - 1.21759636e+002 1.01930939e+002 1.15178291e+002 1.21742912e+002 - 1.01834023e+002 1.15093979e+002 1.21739883e+002 1.01709152e+002 - 1.15009445e+002 1.21702888e+002 1.01608276e+002 1.14927376e+002 - 1.21695885e+002 1.01530014e+002 1.14878189e+002 1.21695724e+002 - 1.01430908e+002 1.14783661e+002 1.21664612e+002 1.01267921e+002 - 1.14649086e+002 1.21578056e+002 1.01213280e+002 1.14583755e+002 - 1.21605492e+002 1.01154602e+002 1.14547585e+002 1.21619514e+002 - 1.01073700e+002 1.14473709e+002 1.21609276e+002 1.00947701e+002 - 1.14371147e+002 1.21550674e+002 1.00854630e+002 1.14271187e+002 - 1.21516861e+002 1.00741302e+002 1.14173813e+002 1.21465866e+002 - 1.00636826e+002 1.14076393e+002 1.21461182e+002 1.00495422e+002 - 1.13971886e+002 1.21401390e+002 1.00410454e+002 1.13876053e+002 - 1.21379761e+002 1.00326340e+002 1.13817314e+002 1.21363098e+002 - 1.00230423e+002 1.13713074e+002 1.21343315e+002 1.00133308e+002 - 1.13637939e+002 1.21319252e+002 1.00052048e+002 1.13559937e+002 - 1.21312836e+002 9.99534073e+001 1.13475975e+002 1.21282471e+002 - 9.98698502e+001 1.13384933e+002 1.21275818e+002 9.97479706e+001 - 1.13281181e+002 1.21225639e+002 9.96795731e+001 1.13187630e+002 - 1.21229172e+002 9.96222305e+001 1.13151100e+002 1.21246353e+002 - 9.95464401e+001 1.13069412e+002 1.21229919e+002 9.94522781e+001 - 1.12992966e+002 1.21188095e+002 9.94169617e+001 1.12945709e+002 - 1.21204491e+002 9.93540726e+001 1.12891846e+002 1.21195679e+002 - 9.92935181e+001 1.12833076e+002 1.21226501e+002 9.92074127e+001 - 1.12775627e+002 1.21218155e+002 9.91441269e+001 1.12696335e+002 - 1.21209564e+002 9.90778580e+001 1.12651970e+002 1.21215836e+002 - 9.90001526e+001 1.12556816e+002 1.21206802e+002 9.89314423e+001 - 1.12503754e+002 1.21205109e+002 9.88704910e+001 1.12436172e+002 - 1.21210915e+002 9.87975235e+001 1.12381325e+002 1.21191383e+002 - 9.87153778e+001 1.12291344e+002 1.21173035e+002 9.86340942e+001 - 1.12225609e+002 1.21154381e+002 9.85935364e+001 1.12153381e+002 - 1.21173874e+002 9.85550842e+001 1.12121025e+002 1.21185387e+002 - 9.84894104e+001 1.12053123e+002 1.21173599e+002 9.84102859e+001 - 1.11989632e+002 1.21144447e+002 9.83802109e+001 1.11941841e+002 - 1.21159744e+002 9.83403320e+001 1.11906525e+002 1.21167030e+002 - 9.82756500e+001 1.11851768e+002 1.21188698e+002 9.81894989e+001 - 1.11792709e+002 1.21177971e+002 9.81638794e+001 1.11751839e+002 - 1.21192528e+002 9.81318817e+001 1.11727859e+002 1.21205284e+002 - 9.80894470e+001 1.11665680e+002 1.21213234e+002 9.80213776e+001 - 1.11611504e+002 1.21191704e+002 9.79919510e+001 1.11571365e+002 - 1.21220528e+002 9.79531708e+001 1.11538422e+002 1.21217842e+002 - 9.79277878e+001 1.11497017e+002 1.21243385e+002 9.78712692e+001 - 1.11448792e+002 1.21233391e+002 9.78511963e+001 1.11386223e+002 - 1.21253151e+002 9.78201904e+001 1.11367203e+002 1.21269089e+002 - 9.77712631e+001 1.11315811e+002 1.21263031e+002 9.77335587e+001 - 1.11298248e+002 1.21266922e+002 9.77157669e+001 1.11254677e+002 - 1.21278191e+002 9.76505432e+001 1.11199692e+002 1.21242088e+002 - 9.76160431e+001 1.11145180e+002 1.21247269e+002 9.75346680e+001 - 1.11084000e+002 1.21214699e+002 9.75215683e+001 1.11052139e+002 - 1.21234116e+002 9.74794464e+001 1.11015610e+002 1.21215424e+002 - 9.74814606e+001 1.10997353e+002 1.21250504e+002 9.74423370e+001 - 1.10969040e+002 1.21253639e+002 9.74149475e+001 1.10937630e+002 - 1.21269371e+002 9.73789215e+001 1.10916374e+002 1.21270462e+002 - 9.73782578e+001 1.10902649e+002 1.21307091e+002 9.73273010e+001 - 1.10864861e+002 1.21294846e+002 9.73407974e+001 1.10846786e+002 - 1.21337273e+002 9.73175278e+001 1.10839493e+002 1.21359879e+002 - 9.72901001e+001 1.10807037e+002 1.21361679e+002 9.72266006e+001 - 1.10756195e+002 1.21328255e+002 9.72140350e+001 1.10729294e+002 - 1.21343605e+002 9.72021637e+001 1.10721725e+002 1.21347603e+002 - 9.71668396e+001 1.10671150e+002 1.21347626e+002 9.71257782e+001 - 1.10645393e+002 1.21344238e+002 9.71340485e+001 1.10634384e+002 - 1.21367905e+002 9.71252136e+001 1.10640228e+002 1.21384743e+002 - 9.71190567e+001 1.10611275e+002 1.21404015e+002 9.70636826e+001 - 1.10564796e+002 1.21369270e+002 9.70382919e+001 1.10533051e+002 - 1.21373505e+002 9.70043488e+001 1.10510071e+002 1.21362984e+002 - 9.70000992e+001 1.10495293e+002 1.21383781e+002 9.69782410e+001 - 1.10483253e+002 1.21386749e+002 9.69825439e+001 1.10451149e+002 - 1.21411957e+002 9.69568787e+001 1.10441681e+002 1.21410553e+002 - 9.69389114e+001 1.10421150e+002 1.21407669e+002 9.69108124e+001 - 1.10415527e+002 1.21402489e+002 9.69268036e+001 1.10414932e+002 - 1.21435867e+002 9.68985748e+001 1.10392151e+002 1.21413193e+002 - 9.69080353e+001 1.10395370e+002 1.21448593e+002 9.68555756e+001 - 1.10362167e+002 1.21426727e+002 9.68408051e+001 1.10335052e+002 - 1.21430565e+002 9.68168945e+001 1.10326897e+002 1.21418098e+002 - 9.68345642e+001 1.10324890e+002 1.21440567e+002 9.68285522e+001 - 1.10333191e+002 1.21445786e+002 9.68367996e+001 1.10341446e+002 - 1.21464104e+002 9.68541260e+001 1.10352562e+002 1.21476349e+002 - 9.68693390e+001 1.10356583e+002 1.21500427e+002 9.68559570e+001 - 1.10357918e+002 1.21504517e+002 9.68751831e+001 1.10349442e+002 - 1.21524338e+002 9.68523331e+001 1.10343262e+002 1.21511826e+002 - 9.68628159e+001 1.10347221e+002 1.21519691e+002 9.68374634e+001 - 1.10341248e+002 1.21501389e+002 9.68443069e+001 1.10326515e+002 - 1.21504021e+002 9.68446884e+001 1.10337738e+002 1.21492508e+002 - 9.68336487e+001 1.10308113e+002 1.21476410e+002 9.67966156e+001 - 1.10289009e+002 1.21440445e+002 9.67998581e+001 1.10274834e+002 - 1.21433731e+002 9.68048248e+001 1.10294617e+002 1.21432114e+002 - 9.68125229e+001 1.10284775e+002 1.21437119e+002 9.67993164e+001 - 1.10282005e+002 1.21419014e+002 9.67973328e+001 1.10270660e+002 - 1.21413750e+002 9.68182678e+001 1.10299240e+002 1.21425690e+002 - 9.68397980e+001 1.10307045e+002 1.21445427e+002 9.68234634e+001 - 1.10307938e+002 1.21430191e+002 9.68422852e+001 1.10296364e+002 - 1.21442177e+002 9.68438263e+001 1.10312027e+002 1.21435585e+002 - 9.68387299e+001 1.10309341e+002 1.21418945e+002 9.68396759e+001 - 1.10318794e+002 1.21413513e+002 9.68719025e+001 1.10333603e+002 - 1.21424606e+002 9.69031906e+001 1.10367500e+002 1.21425240e+002 - 9.69361649e+001 1.10391541e+002 1.21438393e+002 9.69268036e+001 - 1.10410851e+002 1.21422470e+002 9.69434814e+001 1.10402008e+002 - 1.21414352e+002 9.69584961e+001 1.10435204e+002 1.21417999e+002 - 9.69554520e+001 1.10409897e+002 1.21390648e+002 9.69704361e+001 - 1.10441460e+002 1.21395172e+002 9.69787292e+001 1.10447136e+002 - 1.21384346e+002 9.69974747e+001 1.10476646e+002 1.21380562e+002 - 9.70222855e+001 1.10497307e+002 1.21380699e+002 9.70226440e+001 - 1.10516754e+002 1.21367111e+002 9.70726547e+001 1.10539803e+002 - 1.21375404e+002 9.70691452e+001 1.10551544e+002 1.21346786e+002 - 9.70677414e+001 1.10545265e+002 1.21309914e+002 9.70676727e+001 - 1.10569511e+002 1.21281288e+002 9.71117325e+001 1.10600746e+002 - 1.21301041e+002 9.71316605e+001 1.10626678e+002 1.21282333e+002 - 9.71556015e+001 1.10630684e+002 1.21259079e+002 9.71375809e+001 - 1.10629807e+002 1.21212875e+002 9.71609497e+001 1.10637367e+002 - 1.21195099e+002 9.72016144e+001 1.10681725e+002 1.21201622e+002 - 9.72420959e+001 1.10706001e+002 1.21202911e+002 9.72224503e+001 - 1.10707718e+002 1.21151131e+002 9.72593842e+001 1.10738670e+002 - 1.21153877e+002 9.73066101e+001 1.10807060e+002 1.21174309e+002 - 9.73286133e+001 1.10819427e+002 1.21156853e+002 9.73474350e+001 - 1.10854256e+002 1.21143051e+002 9.74098129e+001 1.10890732e+002 - 1.21156029e+002 9.74324799e+001 1.10927277e+002 1.21144836e+002 - 9.74828491e+001 1.10973244e+002 1.21152405e+002 9.74916611e+001 - 1.11004684e+002 1.21133286e+002 9.75261383e+001 1.11024963e+002 - 1.21134682e+002 9.75482483e+001 1.11059296e+002 1.21111656e+002 - 9.75581894e+001 1.11070747e+002 1.21071175e+002 9.75571899e+001 - 1.11100616e+002 1.21043449e+002 9.76196594e+001 1.11144814e+002 - 1.21069740e+002 9.76598740e+001 1.11197182e+002 1.21071541e+002 - 9.77136383e+001 1.11235695e+002 1.21082008e+002 9.77049408e+001 - 1.11248596e+002 1.21032341e+002 9.77557602e+001 1.11307945e+002 - 1.21042831e+002 9.78033218e+001 1.11374809e+002 1.21053741e+002 - 9.78909454e+001 1.11457344e+002 1.21090385e+002 9.79068375e+001 - 1.11486900e+002 1.21064362e+002 9.79796066e+001 1.11533089e+002 - 1.21078934e+002 9.80316925e+001 1.11594795e+002 1.21082741e+002 - 9.80758972e+001 1.11634682e+002 1.21061897e+002 9.81089325e+001 - 1.11684402e+002 1.21051682e+002 9.81823349e+001 1.11738434e+002 - 1.21071213e+002 9.82437057e+001 1.11806549e+002 1.21070580e+002 - 9.83026581e+001 1.11853607e+002 1.21047989e+002 9.83145752e+001 - 1.11893921e+002 1.21020134e+002 9.83799744e+001 1.11943901e+002 - 1.21035385e+002 9.84508438e+001 1.12027649e+002 1.21069366e+002 - 9.85105133e+001 1.12072281e+002 1.21074127e+002 9.85408554e+001 - 1.12115280e+002 1.21053772e+002 9.86190948e+001 1.12181007e+002 - 1.21074188e+002 9.86833496e+001 1.12265068e+002 1.21088028e+002 - 9.87210922e+001 1.12286873e+002 1.21061028e+002 9.87528229e+001 - 1.12333717e+002 1.21044861e+002 9.88392487e+001 1.12378891e+002 - 1.21048912e+002 9.89329529e+001 1.12485367e+002 1.21082977e+002 - 9.89704895e+001 1.12511497e+002 1.21055801e+002 9.89902878e+001 - 1.12551559e+002 1.21026108e+002 9.91038437e+001 1.12648880e+002 - 1.21085655e+002 9.91766663e+001 1.12724991e+002 1.21079483e+002 - 9.92662811e+001 1.12796059e+002 1.21074127e+002 9.93329468e+001 - 1.12879097e+002 1.21089500e+002 9.94229050e+001 1.12949074e+002 - 1.21122391e+002 9.94876022e+001 1.13025352e+002 1.21139999e+002 - 9.95490341e+001 1.13069061e+002 1.21136131e+002 9.95983276e+001 - 1.13141411e+002 1.21136368e+002 9.96796646e+001 1.13212814e+002 - 1.21147507e+002 9.97851105e+001 1.13323280e+002 1.21188385e+002 - 9.98719559e+001 1.13404991e+002 1.21214706e+002 9.99537125e+001 - 1.13494972e+002 1.21233070e+002 1.00040314e+002 1.13542053e+002 - 1.21228256e+002 1.00141388e+002 1.13649391e+002 1.21256081e+002 - 1.00227135e+002 1.13708305e+002 1.21263344e+002 1.00314095e+002 - 1.13798347e+002 1.21282822e+002 1.00436386e+002 1.13905060e+002 - 1.21345940e+002 1.00523750e+002 1.13992210e+002 1.21355797e+002 - 1.00633392e+002 1.14065331e+002 1.21352600e+002 1.00711319e+002 - 1.14155998e+002 1.21366547e+002 1.00846016e+002 1.14266708e+002 - 1.21430237e+002 1.00941933e+002 1.14363380e+002 1.21455429e+002 - 1.01056534e+002 1.14441788e+002 1.21482750e+002 1.01150780e+002 - 1.14532005e+002 1.21499977e+002 1.01291885e+002 1.14654129e+002 - 1.21556999e+002 1.01421730e+002 1.14774734e+002 1.21608101e+002 - 1.01521294e+002 1.14846954e+002 1.21628769e+002 1.01622482e+002 - 1.14943565e+002 1.21655380e+002 1.01737724e+002 1.15002838e+002 - 1.21679924e+002 1.01834076e+002 1.15085609e+002 1.21691551e+002 - 1.01938629e+002 1.15148476e+002 1.21706772e+002 1.01987518e+002 - 1.15193161e+002 1.21682312e+002 1.02033226e+002 1.15184616e+002 - 1.21653175e+002 1.01998497e+002 1.15141586e+002 1.21541138e+002 - 1.01982658e+002 1.15149330e+002 1.21587158e+002 1.01989899e+002 - 1.15199844e+002 1.21671677e+002 1.01930008e+002 1.15158592e+002 - 1.21680923e+002 1.01844246e+002 1.15106842e+002 1.21675354e+002 - 1.01763481e+002 1.15044456e+002 1.21684044e+002 1.01652725e+002 - 1.14968842e+002 1.21664284e+002 1.01553619e+002 1.14887230e+002 - 1.21654434e+002 1.01466064e+002 1.14827782e+002 1.21642555e+002 - 1.01371605e+002 1.14742149e+002 1.21622017e+002 1.01234352e+002 - 1.14630577e+002 1.21561081e+002 1.01141396e+002 1.14524872e+002 - 1.21545395e+002 1.01071785e+002 1.14474777e+002 1.21549568e+002 - 1.00959892e+002 1.14378296e+002 1.21518349e+002 1.00840370e+002 - 1.14274376e+002 1.21459274e+002 1.00763359e+002 1.14193176e+002 - 1.21441505e+002 1.00666481e+002 1.14112961e+002 1.21407112e+002 - 1.00544769e+002 1.13999878e+002 1.21387787e+002 1.00408058e+002 - 1.13897217e+002 1.21336159e+002 1.00338371e+002 1.13822624e+002 - 1.21324997e+002 1.00248512e+002 1.13753860e+002 1.21307777e+002 - 1.00166702e+002 1.13666977e+002 1.21294762e+002 1.00059586e+002 - 1.13580811e+002 1.21257484e+002 9.99720535e+001 1.13492676e+002 - 1.21246208e+002 9.98728333e+001 1.13411339e+002 1.21218559e+002 - 9.98018799e+001 1.13332169e+002 1.21229210e+002 9.96898193e+001 - 1.13235611e+002 1.21183899e+002 9.96137161e+001 1.13139023e+002 - 1.21173248e+002 9.95398788e+001 1.13081535e+002 1.21176697e+002 - 9.94690857e+001 1.13008644e+002 1.21169304e+002 9.93683319e+001 - 1.12924583e+002 1.21118561e+002 9.93333588e+001 1.12878174e+002 - 1.21135429e+002 9.92797241e+001 1.12834587e+002 1.21138405e+002 - 9.92189636e+001 1.12779091e+002 1.21163879e+002 9.91431961e+001 - 1.12725822e+002 1.21163666e+002 9.90802841e+001 1.12651520e+002 - 1.21156937e+002 9.89977112e+001 1.12580109e+002 1.21141685e+002 - 9.89292068e+001 1.12503403e+002 1.21144775e+002 9.88543701e+001 - 1.12442604e+002 1.21136154e+002 9.87737122e+001 1.12359131e+002 - 1.21120422e+002 9.87001801e+001 1.12290405e+002 1.21099854e+002 - 9.86351624e+001 1.12225716e+002 1.21093681e+002 9.85419769e+001 - 1.12139008e+002 1.21061714e+002 9.85092392e+001 1.12078804e+002 - 1.21089973e+002 9.84896393e+001 1.12074104e+002 1.21133209e+002 - 9.84246979e+001 1.11998337e+002 1.21114761e+002 9.83447418e+001 - 1.11934044e+002 1.21081329e+002 9.83003159e+001 1.11871681e+002 - 1.21084564e+002 9.82318878e+001 1.11814644e+002 1.21069618e+002 - 9.81703568e+001 1.11755447e+002 1.21089371e+002 9.80958099e+001 - 1.11709724e+002 1.21090546e+002 9.81011124e+001 1.11697227e+002 - 1.21134636e+002 9.80625839e+001 1.11670265e+002 1.21147293e+002 - 9.80071945e+001 1.11594269e+002 1.21137016e+002 9.79432297e+001 - 1.11543228e+002 1.21126404e+002 9.79038162e+001 1.11493958e+002 - 1.21137421e+002 9.78512268e+001 1.11447189e+002 1.21126480e+002 - 9.78538284e+001 1.11431480e+002 1.21175194e+002 9.78073044e+001 - 1.11393997e+002 1.21179466e+002 9.77787018e+001 1.11333015e+002 - 1.21190208e+002 9.77329330e+001 1.11291695e+002 1.21188683e+002 - 9.76879959e+001 1.11245438e+002 1.21186745e+002 9.76253052e+001 - 1.11198753e+002 1.21163956e+002 9.76140289e+001 1.11166145e+002 - 1.21181519e+002 9.75684738e+001 1.11131851e+002 1.21162506e+002 - 9.75246811e+001 1.11069023e+002 1.21162056e+002 9.74455948e+001 - 1.11004959e+002 1.21128403e+002 9.74087677e+001 1.10947655e+002 - 1.21113449e+002 9.73943329e+001 1.10941765e+002 1.21137955e+002 - 9.74018555e+001 1.10928825e+002 1.21171326e+002 9.73660965e+001 - 1.10902596e+002 1.21176598e+002 9.73234558e+001 1.10857040e+002 - 1.21173126e+002 9.73060989e+001 1.10853447e+002 1.21197052e+002 - 9.73006897e+001 1.10838470e+002 1.21229980e+002 9.72410812e+001 - 1.10788689e+002 1.21210464e+002 9.72458878e+001 1.10763939e+002 - 1.21247429e+002 9.72264175e+001 1.10752373e+002 1.21263214e+002 - 9.72165451e+001 1.10738686e+002 1.21289131e+002 9.71689987e+001 - 1.10708450e+002 1.21271683e+002 9.71509705e+001 1.10675407e+002 - 1.21271530e+002 9.71445084e+001 1.10669159e+002 1.21282448e+002 - 9.71082840e+001 1.10616196e+002 1.21284630e+002 9.70695801e+001 - 1.10597740e+002 1.21280678e+002 9.70581970e+001 1.10565292e+002 - 1.21286919e+002 9.70346985e+001 1.10559738e+002 1.21288719e+002 - 9.70289688e+001 1.10539856e+002 1.21305473e+002 9.69916840e+001 - 1.10510857e+002 1.21298172e+002 9.69743958e+001 1.10484680e+002 - 1.21308075e+002 9.69256210e+001 1.10444664e+002 1.21282288e+002 - 9.69249039e+001 1.10430466e+002 1.21303215e+002 9.68896790e+001 - 1.10410919e+002 1.21297783e+002 9.68928833e+001 1.10379715e+002 - 1.21318138e+002 9.68695450e+001 1.10370506e+002 1.21323738e+002 - 9.68485489e+001 1.10347466e+002 1.21317017e+002 9.68113251e+001 - 1.10331429e+002 1.21303101e+002 9.68210907e+001 1.10326012e+002 - 1.21325943e+002 9.67982788e+001 1.10310654e+002 1.21308662e+002 - 9.68170013e+001 1.10316582e+002 1.21351768e+002 9.67650604e+001 - 1.10285965e+002 1.21333527e+002 9.67491302e+001 1.10260712e+002 - 1.21333740e+002 9.67373581e+001 1.10257576e+002 1.21327766e+002 - 9.67437134e+001 1.10251144e+002 1.21342957e+002 9.67415085e+001 - 1.10264465e+002 1.21352646e+002 9.67631760e+001 1.10278267e+002 - 1.21381317e+002 9.67471085e+001 1.10269562e+002 1.21373116e+002 - 9.67513962e+001 1.10260185e+002 1.21384682e+002 9.67522964e+001 - 1.10267715e+002 1.21392509e+002 9.67761841e+001 1.10262917e+002 - 1.21421921e+002 9.67505112e+001 1.10249878e+002 1.21402367e+002 - 9.67427444e+001 1.10242088e+002 1.21401886e+002 9.67497482e+001 - 1.10265244e+002 1.21409393e+002 9.67556610e+001 1.10255287e+002 - 1.21412651e+002 9.67558365e+001 1.10259270e+002 1.21397491e+002 - 9.67678757e+001 1.10258850e+002 1.21403625e+002 9.67234497e+001 - 1.10228416e+002 1.21360405e+002 9.67194214e+001 1.10214149e+002 - 1.21345406e+002 9.67209091e+001 1.10228287e+002 1.21349113e+002 - 9.67176361e+001 1.10207382e+002 1.21343018e+002 9.67096634e+001 - 1.10212563e+002 1.21330551e+002 9.67264099e+001 1.10220711e+002 - 1.21348251e+002 9.67264481e+001 1.10231209e+002 1.21341278e+002 - 9.67308044e+001 1.10217812e+002 1.21340019e+002 9.67003021e+001 - 1.10200500e+002 1.21307159e+002 9.67327499e+001 1.10202248e+002 - 1.21326958e+002 9.67448730e+001 1.10230675e+002 1.21339233e+002 - 9.67530289e+001 1.10231995e+002 1.21331444e+002 9.67525787e+001 - 1.10254875e+002 1.21326973e+002 9.68035202e+001 1.10280563e+002 - 1.21353821e+002 9.68310242e+001 1.10311516e+002 1.21353394e+002 - 9.68427963e+001 1.10318832e+002 1.21344681e+002 9.68344650e+001 - 1.10331123e+002 1.21330666e+002 9.68493195e+001 1.10326385e+002 - 1.21318001e+002 9.68500977e+001 1.10339775e+002 1.21310051e+002 - 9.68551407e+001 1.10331642e+002 1.21296486e+002 9.68698273e+001 - 1.10360443e+002 1.21300629e+002 9.68818436e+001 1.10365479e+002 - 1.21281799e+002 9.68985977e+001 1.10391930e+002 1.21278168e+002 - 9.69266815e+001 1.10412582e+002 1.21280273e+002 9.69376602e+001 - 1.10444595e+002 1.21270332e+002 9.69702072e+001 1.10451485e+002 - 1.21269272e+002 9.70068436e+001 1.10501076e+002 1.21280624e+002 - 9.70276260e+001 1.10522362e+002 1.21265877e+002 9.69981537e+001 - 1.10509544e+002 1.21212799e+002 9.70171204e+001 1.10512833e+002 - 1.21204681e+002 9.70408783e+001 1.10540031e+002 1.21187149e+002 - 9.70484085e+001 1.10539719e+002 1.21149483e+002 9.70489807e+001 - 1.10559052e+002 1.21128716e+002 9.70703430e+001 1.10559372e+002 - 1.21100540e+002 9.70855408e+001 1.10581093e+002 1.21082268e+002 - 9.71394882e+001 1.10618309e+002 1.21088821e+002 9.71363220e+001 - 1.10630959e+002 1.21051598e+002 9.71715775e+001 1.10669586e+002 - 1.21064911e+002 9.72084885e+001 1.10721886e+002 1.21071625e+002 - 9.72346878e+001 1.10738770e+002 1.21060486e+002 9.72604599e+001 - 1.10781021e+002 1.21055695e+002 9.73448944e+001 1.10839020e+002 - 1.21086815e+002 9.73504105e+001 1.10859467e+002 1.21064095e+002 - 9.73800430e+001 1.10886116e+002 1.21047401e+002 9.74045563e+001 - 1.10931786e+002 1.21043854e+002 9.74430847e+001 1.10963020e+002 - 1.21060379e+002 9.74667587e+001 1.10995911e+002 1.21033615e+002 - 9.74792480e+001 1.11008255e+002 1.20999969e+002 9.74870987e+001 - 1.11044373e+002 1.20979874e+002 9.75277863e+001 1.11070198e+002 - 1.20983345e+002 9.75750275e+001 1.11129532e+002 1.20989563e+002 - 9.76103439e+001 1.11149597e+002 1.20979515e+002 9.76122513e+001 - 1.11170540e+002 1.20946114e+002 9.76622849e+001 1.11226929e+002 - 1.20951721e+002 9.77224121e+001 1.11303520e+002 1.20978111e+002 - 9.78031921e+001 1.11377388e+002 1.21012604e+002 9.78253860e+001 - 1.11416916e+002 1.20990715e+002 9.78990021e+001 1.11467484e+002 - 1.21000603e+002 9.79406204e+001 1.11520035e+002 1.20995888e+002 - 9.79754028e+001 1.11544998e+002 1.20969681e+002 9.80014420e+001 - 1.11586365e+002 1.20953209e+002 9.80768280e+001 1.11648254e+002 - 1.20980347e+002 9.81407166e+001 1.11721581e+002 1.20976463e+002 - 9.82074127e+001 1.11772903e+002 1.20966682e+002 9.82428360e+001 - 1.11825195e+002 1.20955933e+002 9.83086777e+001 1.11882042e+002 - 1.20970322e+002 9.83762207e+001 1.11963722e+002 1.20997070e+002 - 9.84580002e+001 1.12024612e+002 1.21019722e+002 9.84789200e+001 - 1.12064728e+002 1.20995636e+002 9.85423508e+001 1.12122162e+002 - 1.21004066e+002 9.86050949e+001 1.12195892e+002 1.21018860e+002 - 9.86453857e+001 1.12223953e+002 1.20992661e+002 9.86766052e+001 - 1.12274323e+002 1.20975578e+002 9.87632904e+001 1.12322418e+002 - 1.20983536e+002 9.88435593e+001 1.12408241e+002 1.21001068e+002 - 9.88887253e+001 1.12446144e+002 1.20980499e+002 9.89206314e+001 - 1.12490166e+002 1.20966515e+002 9.90340576e+001 1.12590096e+002 - 1.21017517e+002 9.91052017e+001 1.12664429e+002 1.21017700e+002 - 9.91959839e+001 1.12738876e+002 1.21016655e+002 9.92473602e+001 - 1.12810051e+002 1.21019577e+002 9.93463516e+001 1.12893356e+002 - 1.21063362e+002 9.94267349e+001 1.12981155e+002 1.21094620e+002 - 9.94952621e+001 1.13030434e+002 1.21091812e+002 9.95472183e+001 - 1.13101860e+002 1.21093407e+002 9.96150131e+001 1.13155510e+002 - 1.21088562e+002 9.97038498e+001 1.13260559e+002 1.21119537e+002 - 9.97937622e+001 1.13338654e+002 1.21141098e+002 9.98854446e+001 - 1.13438652e+002 1.21171265e+002 9.99795303e+001 1.13494896e+002 - 1.21179352e+002 1.00092003e+002 1.13609245e+002 1.21218491e+002 - 1.00185455e+002 1.13684212e+002 1.21236053e+002 1.00250488e+002 - 1.13753487e+002 1.21240036e+002 1.00357872e+002 1.13844254e+002 - 1.21281372e+002 1.00462708e+002 1.13941467e+002 1.21304329e+002 - 1.00575722e+002 1.14024704e+002 1.21306541e+002 1.00672897e+002 - 1.14130669e+002 1.21338585e+002 1.00807228e+002 1.14236862e+002 - 1.21397209e+002 1.00889694e+002 1.14322609e+002 1.21420113e+002 - 1.00990219e+002 1.14387375e+002 1.21431664e+002 1.01090660e+002 - 1.14488152e+002 1.21452316e+002 1.01232460e+002 1.14603813e+002 - 1.21505196e+002 1.01329315e+002 1.14694130e+002 1.21531731e+002 - 1.01433380e+002 1.14773560e+002 1.21553551e+002 1.01536583e+002 - 1.14864265e+002 1.21580864e+002 1.01668617e+002 1.14950844e+002 - 1.21620438e+002 1.01756966e+002 1.15019867e+002 1.21632301e+002 - 1.01863831e+002 1.15084709e+002 1.21649376e+002 1.01925880e+002 - 1.15140411e+002 1.21633789e+002 1.01968719e+002 1.15133690e+002 - 1.21601906e+002 1.01925232e+002 1.15076630e+002 1.21485764e+002 - 1.01899261e+002 1.15084137e+002 1.21519966e+002 1.01919067e+002 - 1.15150375e+002 1.21624596e+002 1.01870094e+002 1.15117966e+002 - 1.21644264e+002 1.01780266e+002 1.15064270e+002 1.21630829e+002 - 1.01706726e+002 1.15008080e+002 1.21648041e+002 1.01599106e+002 - 1.14934662e+002 1.21627312e+002 1.01492065e+002 1.14847580e+002 - 1.21611214e+002 1.01401321e+002 1.14787079e+002 1.21590652e+002 - 1.01303162e+002 1.14697487e+002 1.21571045e+002 1.01179230e+002 - 1.14596840e+002 1.21522751e+002 1.01083313e+002 1.14489105e+002 - 1.21504234e+002 1.00992607e+002 1.14420052e+002 1.21491005e+002 - 1.00892448e+002 1.14327538e+002 1.21467789e+002 1.00784988e+002 - 1.14235474e+002 1.21425293e+002 1.00703957e+002 1.14149178e+002 - 1.21400650e+002 1.00605652e+002 1.14068489e+002 1.21369469e+002 - 1.00484749e+002 1.13960426e+002 1.21354546e+002 1.00352699e+002 - 1.13865448e+002 1.21307838e+002 1.00286591e+002 1.13793327e+002 - 1.21297256e+002 1.00179985e+002 1.13710754e+002 1.21256798e+002 - 1.00096382e+002 1.13620018e+002 1.21245941e+002 9.99815903e+001 - 1.13526833e+002 1.21200745e+002 9.98995819e+001 1.13440521e+002 - 1.21193741e+002 9.98227615e+001 1.13384712e+002 1.21184288e+002 - 9.97164383e+001 1.13266907e+002 1.21150581e+002 9.96198654e+001 - 1.13188042e+002 1.21124054e+002 9.95443344e+001 1.13093391e+002 - 1.21122559e+002 9.94687958e+001 1.13030357e+002 1.21115974e+002 - 9.94139099e+001 1.12978333e+002 1.21126266e+002 9.93157043e+001 - 1.12897652e+002 1.21088852e+002 9.92530060e+001 1.12819603e+002 - 1.21077911e+002 9.92008209e+001 1.12777611e+002 1.21077286e+002 - 9.91358643e+001 1.12716599e+002 1.21100067e+002 9.90510101e+001 - 1.12656265e+002 1.21094841e+002 9.89827194e+001 1.12578506e+002 - 1.21079796e+002 9.88940887e+001 1.12498421e+002 1.21052994e+002 - 9.88137741e+001 1.12408287e+002 1.21044540e+002 9.87368393e+001 - 1.12347710e+002 1.21032303e+002 9.86661072e+001 1.12267105e+002 - 1.21025017e+002 9.86054764e+001 1.12221100e+002 1.21017174e+002 - 9.85480423e+001 1.12160400e+002 1.21023132e+002 9.84625854e+001 - 1.12078888e+002 1.20990700e+002 9.84302368e+001 1.12018158e+002 - 1.21019112e+002 9.84109116e+001 1.12010628e+002 1.21059700e+002 - 9.83463135e+001 1.11941628e+002 1.21052406e+002 9.82664795e+001 - 1.11877769e+002 1.21014717e+002 9.82080917e+001 1.11808708e+002 - 1.21005913e+002 9.81524353e+001 1.11764900e+002 1.21007439e+002 - 9.80751724e+001 1.11680717e+002 1.21010086e+002 9.80138474e+001 - 1.11644150e+002 1.21018791e+002 9.79998627e+001 1.11613976e+002 - 1.21041969e+002 9.79690781e+001 1.11590523e+002 1.21062622e+002 - 9.79140930e+001 1.11514328e+002 1.21058838e+002 9.78675842e+001 - 1.11485107e+002 1.21056870e+002 9.78195877e+001 1.11425598e+002 - 1.21058578e+002 9.77660751e+001 1.11380676e+002 1.21044777e+002 - 9.77617264e+001 1.11361656e+002 1.21090057e+002 9.76959839e+001 - 1.11309380e+002 1.21069664e+002 9.76689682e+001 1.11245522e+002 - 1.21084953e+002 9.76338043e+001 1.11208679e+002 1.21090599e+002 - 9.75956268e+001 1.11169540e+002 1.21094406e+002 9.75211563e+001 - 1.11113083e+002 1.21067184e+002 9.75179825e+001 1.11095512e+002 - 1.21090950e+002 9.74756699e+001 1.11051949e+002 1.21076683e+002 - 9.74466705e+001 1.11009102e+002 1.21093094e+002 9.73636780e+001 - 1.10944832e+002 1.21048225e+002 9.73446198e+001 1.10909332e+002 - 1.21062233e+002 9.73185043e+001 1.10891174e+002 1.21069458e+002 - 9.73125153e+001 1.10864609e+002 1.21093880e+002 9.72806244e+001 - 1.10843452e+002 1.21100815e+002 9.72476959e+001 1.10798904e+002 - 1.21107559e+002 9.72208633e+001 1.10784966e+002 1.21116074e+002 - 9.72109909e+001 1.10767357e+002 1.21142036e+002 9.71557541e+001 - 1.10726875e+002 1.21129837e+002 9.71455688e+001 1.10686493e+002 - 1.21151993e+002 9.71418762e+001 1.10694160e+002 1.21186546e+002 - 9.71346436e+001 1.10687347e+002 1.21214058e+002 9.70624161e+001 - 1.10632156e+002 1.21171425e+002 9.70698700e+001 1.10615562e+002 - 1.21196465e+002 9.70331650e+001 1.10574310e+002 1.21171837e+002 - 9.70183487e+001 1.10549286e+002 1.21197662e+002 9.69762497e+001 - 1.10526779e+002 1.21193291e+002 9.69671555e+001 1.10496857e+002 - 1.21196228e+002 9.69438858e+001 1.10485519e+002 1.21194176e+002 - 9.69333038e+001 1.10461090e+002 1.21214188e+002 9.69093704e+001 - 1.10447861e+002 1.21214844e+002 9.68846741e+001 1.10419930e+002 - 1.21221252e+002 9.68491821e+001 1.10390694e+002 1.21208069e+002 - 9.68533554e+001 1.10381798e+002 1.21228912e+002 9.68007965e+001 - 1.10343582e+002 1.21207481e+002 9.68031921e+001 1.10313339e+002 - 1.21233665e+002 9.67722855e+001 1.10300797e+002 1.21230659e+002 - 9.67505035e+001 1.10273544e+002 1.21225410e+002 9.67331772e+001 - 1.10278831e+002 1.21225548e+002 9.67339706e+001 1.10266068e+002 - 1.21237511e+002 9.67051086e+001 1.10240089e+002 1.21221092e+002 - 9.67208252e+001 1.10244102e+002 1.21257904e+002 9.66800003e+001 - 1.10225632e+002 1.21243057e+002 9.66769028e+001 1.10206856e+002 - 1.21251503e+002 9.66738129e+001 1.10218323e+002 1.21265541e+002 - 9.66795883e+001 1.10202423e+002 1.21277641e+002 9.66511383e+001 - 1.10194893e+002 1.21264091e+002 9.66582413e+001 1.10187241e+002 - 1.21273018e+002 9.66396255e+001 1.10178734e+002 1.21262688e+002 - 9.66483078e+001 1.10179947e+002 1.21282669e+002 9.66510468e+001 - 1.10193680e+002 1.21301956e+002 9.66676254e+001 1.10184563e+002 - 1.21322525e+002 9.66376266e+001 1.10167343e+002 1.21293266e+002 - 9.66334305e+001 1.10161888e+002 1.21291840e+002 9.66327438e+001 - 1.10176003e+002 1.21296059e+002 9.66436157e+001 1.10170128e+002 - 1.21300606e+002 9.66527634e+001 1.10179886e+002 1.21293991e+002 - 9.66883163e+001 1.10199303e+002 1.21320450e+002 9.66245575e+001 - 1.10159966e+002 1.21264893e+002 9.66135864e+001 1.10132912e+002 - 1.21241096e+002 9.66135483e+001 1.10144417e+002 1.21238785e+002 - 9.66356201e+001 1.10151535e+002 1.21258118e+002 9.66429138e+001 - 1.10172867e+002 1.21268227e+002 9.66492462e+001 1.10175323e+002 - 1.21271446e+002 9.66605835e+001 1.10191750e+002 1.21275345e+002 - 9.66433105e+001 1.10152061e+002 1.21253975e+002 9.66020584e+001 - 1.10123848e+002 1.21219078e+002 9.66318512e+001 1.10125420e+002 - 1.21228981e+002 9.66554108e+001 1.10166367e+002 1.21250130e+002 - 9.66776657e+001 1.10186188e+002 1.21261414e+002 9.67067566e+001 - 1.10232307e+002 1.21279198e+002 9.67503052e+001 1.10252594e+002 - 1.21305840e+002 9.67675247e+001 1.10272835e+002 1.21295700e+002 - 9.67756653e+001 1.10269737e+002 1.21283844e+002 9.67383194e+001 - 1.10259972e+002 1.21243858e+002 9.67385635e+001 1.10244202e+002 - 1.21223976e+002 9.67464523e+001 1.10266792e+002 1.21219368e+002 - 9.67513351e+001 1.10257187e+002 1.21205231e+002 9.67629013e+001 - 1.10278328e+002 1.21196136e+002 9.67901611e+001 1.10297577e+002 - 1.21199501e+002 9.68208466e+001 1.10342972e+002 1.21204254e+002 - 9.68581238e+001 1.10369133e+002 1.21214935e+002 9.68575058e+001 - 1.10392990e+002 1.21200058e+002 9.68877029e+001 1.10394135e+002 - 1.21192078e+002 9.69240723e+001 1.10444153e+002 1.21200546e+002 - 9.69419250e+001 1.10458092e+002 1.21187775e+002 9.69330826e+001 - 1.10462135e+002 1.21153191e+002 9.69392700e+001 1.10454796e+002 - 1.21134605e+002 9.69468460e+001 1.10464058e+002 1.21101852e+002 - 9.69535141e+001 1.10458862e+002 1.21058281e+002 9.69652023e+001 - 1.10493858e+002 1.21040871e+002 9.69995499e+001 1.10506500e+002 - 1.21037125e+002 9.70147705e+001 1.10536011e+002 1.21016418e+002 - 9.70621948e+001 1.10564148e+002 1.21024155e+002 9.70747452e+001 - 1.10594566e+002 1.21000359e+002 9.71190796e+001 1.10636826e+002 - 1.21010696e+002 9.71282654e+001 1.10659424e+002 1.20989555e+002 - 9.71373138e+001 1.10663307e+002 1.20965149e+002 9.71654663e+001 - 1.10705879e+002 1.20962730e+002 9.72558899e+001 1.10766388e+002 - 1.21002480e+002 9.72708969e+001 1.10801239e+002 1.20988953e+002 - 9.72950058e+001 1.10824257e+002 1.20974106e+002 9.73204346e+001 - 1.10876862e+002 1.20972305e+002 9.73638153e+001 1.10905510e+002 - 1.20984291e+002 9.73895187e+001 1.10941628e+002 1.20965614e+002 - 9.74045639e+001 1.10954124e+002 1.20934387e+002 9.74189835e+001 - 1.10998940e+002 1.20923874e+002 9.74434738e+001 1.11008636e+002 - 1.20908928e+002 9.74642792e+001 1.11045807e+002 1.20898582e+002 - 9.74871826e+001 1.11047752e+002 1.20867264e+002 9.75187836e+001 - 1.11100433e+002 1.20867111e+002 9.75757523e+001 1.11153008e+002 - 1.20876030e+002 9.76317520e+001 1.11226440e+002 1.20886208e+002 - 9.77118683e+001 1.11304680e+002 1.20924759e+002 9.77363281e+001 - 1.11346085e+002 1.20914246e+002 9.78078918e+001 1.11389740e+002 - 1.20921677e+002 9.78647842e+001 1.11458382e+002 1.20926384e+002 - 9.78807678e+001 1.11469254e+002 1.20892319e+002 9.78737488e+001 - 1.11480698e+002 1.20835358e+002 9.79518967e+001 1.11543953e+002 - 1.20867714e+002 9.80187607e+001 1.11614212e+002 1.20869324e+002 - 9.80957108e+001 1.11676918e+002 1.20864594e+002 9.81171646e+001 - 1.11719154e+002 1.20835617e+002 9.82039261e+001 1.11791954e+002 - 1.20869438e+002 9.82781143e+001 1.11885490e+002 1.20906364e+002 - 9.83546906e+001 1.11936958e+002 1.20920792e+002 9.83926697e+001 - 1.11995552e+002 1.20912361e+002 9.84549408e+001 1.12054970e+002 - 1.20924423e+002 9.85149384e+001 1.12124786e+002 1.20930092e+002 - 9.85520096e+001 1.12148216e+002 1.20909691e+002 9.85945206e+001 - 1.12210747e+002 1.20901634e+002 9.87023697e+001 1.12277908e+002 - 1.20933517e+002 9.87628632e+001 1.12354225e+002 1.20929619e+002 - 9.88270111e+001 1.12409660e+002 1.20936226e+002 9.88720856e+001 - 1.12469208e+002 1.20927917e+002 9.89639969e+001 1.12541092e+002 - 1.20965324e+002 9.90189362e+001 1.12592972e+002 1.20939262e+002 - 9.91002426e+001 1.12662560e+002 1.20935699e+002 9.91491394e+001 - 1.12734489e+002 1.20930328e+002 9.92664719e+001 1.12831131e+002 - 1.20992035e+002 9.93634033e+001 1.12932663e+002 1.21034386e+002 - 9.94376907e+001 1.12990707e+002 1.21045135e+002 9.94767609e+001 - 1.13042259e+002 1.21030914e+002 9.95655136e+001 1.13117744e+002 - 1.21049599e+002 9.96440048e+001 1.13218300e+002 1.21068520e+002 - 9.97343674e+001 1.13293259e+002 1.21085663e+002 9.98163071e+001 - 1.13385750e+002 1.21107803e+002 9.99296188e+001 1.13456345e+002 - 1.21135933e+002 1.00031128e+002 1.13570206e+002 1.21171410e+002 - 1.00152351e+002 1.13664009e+002 1.21215744e+002 1.00207573e+002 - 1.13731483e+002 1.21208801e+002 1.00291496e+002 1.13798080e+002 - 1.21232132e+002 1.00400368e+002 1.13899155e+002 1.21260803e+002 - 1.00516586e+002 1.13985535e+002 1.21261292e+002 1.00603615e+002 - 1.14078766e+002 1.21281227e+002 1.00725830e+002 1.14179527e+002 - 1.21332062e+002 1.00822586e+002 1.14270042e+002 1.21358627e+002 - 1.00926010e+002 1.14345123e+002 1.21380470e+002 1.01012054e+002 - 1.14430382e+002 1.21394821e+002 1.01160858e+002 1.14550621e+002 - 1.21459389e+002 1.01267632e+002 1.14653831e+002 1.21487671e+002 - 1.01350540e+002 1.14710205e+002 1.21494217e+002 1.01454880e+002 - 1.14805603e+002 1.21520767e+002 1.01583748e+002 1.14880661e+002 - 1.21556870e+002 1.01692932e+002 1.14973213e+002 1.21583122e+002 - 1.01816902e+002 1.15056740e+002 1.21621460e+002 1.01877357e+002 - 1.15114532e+002 1.21607468e+002 1.01908409e+002 1.15094803e+002 - 1.21563820e+002 1.01858459e+002 1.15027649e+002 1.21439339e+002 - 1.01849289e+002 1.15040253e+002 1.21485977e+002 1.01874695e+002 - 1.15105766e+002 1.21581528e+002 1.01822586e+002 1.15069374e+002 - 1.21605042e+002 1.01752769e+002 1.15037926e+002 1.21618927e+002 - 1.01680748e+002 1.14986404e+002 1.21632042e+002 1.01556549e+002 - 1.14898331e+002 1.21589333e+002 1.01462067e+002 1.14818115e+002 - 1.21585175e+002 1.01352516e+002 1.14740265e+002 1.21549095e+002 - 1.01260139e+002 1.14655693e+002 1.21531143e+002 1.01125862e+002 - 1.14553070e+002 1.21476555e+002 1.01029266e+002 1.14441696e+002 - 1.21454575e+002 1.00950333e+002 1.14381180e+002 1.21449097e+002 - 1.00880814e+002 1.14313690e+002 1.21453201e+002 1.00758804e+002 - 1.14221672e+002 1.21407234e+002 1.00658249e+002 1.14107315e+002 - 1.21358803e+002 1.00566338e+002 1.14038490e+002 1.21337982e+002 - 1.00445290e+002 1.13933998e+002 1.21325180e+002 1.00322182e+002 - 1.13844879e+002 1.21287331e+002 1.00249283e+002 1.13768433e+002 - 1.21272247e+002 1.00171806e+002 1.13703720e+002 1.21253296e+002 - 1.00055023e+002 1.13586464e+002 1.21210304e+002 9.99429092e+001 - 1.13490837e+002 1.21162941e+002 9.98437042e+001 1.13389442e+002 - 1.21143646e+002 9.97625046e+001 1.13322983e+002 1.21121994e+002 - 9.96698685e+001 1.13226868e+002 1.21105782e+002 9.95841370e+001 - 1.13156067e+002 1.21088165e+002 9.95036392e+001 1.13059380e+002 - 1.21085503e+002 9.94363785e+001 1.13000885e+002 1.21086174e+002 - 9.93580856e+001 1.12925529e+002 1.21073105e+002 9.92733459e+001 - 1.12856895e+002 1.21049232e+002 9.92026367e+001 1.12776169e+002 - 1.21030029e+002 9.91518555e+001 1.12735779e+002 1.21027191e+002 - 9.90559769e+001 1.12643547e+002 1.21028107e+002 9.89801102e+001 - 1.12593369e+002 1.21023895e+002 9.89100647e+001 1.12505760e+002 - 1.21003174e+002 9.88400955e+001 1.12449814e+002 1.20997398e+002 - 9.87654114e+001 1.12364754e+002 1.20992935e+002 9.86876984e+001 - 1.12298912e+002 1.20974319e+002 9.86243134e+001 1.12233620e+002 - 1.20980309e+002 9.85671844e+001 1.12185028e+002 1.20975563e+002 - 9.85040054e+001 1.12122009e+002 1.20971703e+002 9.84212799e+001 - 1.12041649e+002 1.20943542e+002 9.83815308e+001 1.11972710e+002 - 1.20963165e+002 9.83255005e+001 1.11927574e+002 1.20961380e+002 - 9.82725143e+001 1.11872803e+002 1.20967949e+002 9.81880875e+001 - 1.11801903e+002 1.20936638e+002 9.81473999e+001 1.11744453e+002 - 1.20938988e+002 9.80966568e+001 1.11708313e+002 1.20943542e+002 - 9.80195465e+001 1.11632408e+002 1.20956360e+002 9.79658966e+001 - 1.11600273e+002 1.20962555e+002 9.79335327e+001 1.11551460e+002 - 1.20978790e+002 9.79046707e+001 1.11525642e+002 1.20989594e+002 - 9.78581009e+001 1.11463051e+002 1.20991966e+002 9.78160706e+001 - 1.11434204e+002 1.20998093e+002 9.77869644e+001 1.11391800e+002 - 1.21010696e+002 9.77379150e+001 1.11357185e+002 1.21008598e+002 - 9.76874542e+001 1.11294067e+002 1.21000557e+002 9.76340256e+001 - 1.11246033e+002 1.20997581e+002 9.76083832e+001 1.11184296e+002 - 1.21007622e+002 9.75668488e+001 1.11150673e+002 1.21008720e+002 - 9.75250473e+001 1.11102638e+002 1.21015282e+002 9.74519958e+001 - 1.11044357e+002 1.20979973e+002 9.74630432e+001 1.11043396e+002 - 1.21027519e+002 9.74061203e+001 1.10993454e+002 1.20991447e+002 - 9.73774643e+001 1.10948723e+002 1.21013557e+002 9.73038940e+001 - 1.10892319e+002 1.20983574e+002 9.72964020e+001 1.10868492e+002 - 1.21006401e+002 9.73016891e+001 1.10875397e+002 1.21039955e+002 - 9.72832565e+001 1.10840683e+002 1.21055618e+002 9.72337189e+001 - 1.10797470e+002 1.21037720e+002 9.72070160e+001 1.10762688e+002 - 1.21052284e+002 9.71887512e+001 1.10754372e+002 1.21068993e+002 - 9.71535110e+001 1.10707916e+002 1.21070625e+002 9.71177902e+001 - 1.10688034e+002 1.21072075e+002 9.71001892e+001 1.10641998e+002 - 1.21088089e+002 9.70829391e+001 1.10635033e+002 1.21110657e+002 - 9.70641937e+001 1.10616447e+002 1.21127525e+002 9.69996643e+001 - 1.10564972e+002 1.21091232e+002 9.70205078e+001 1.10568153e+002 - 1.21128342e+002 9.69790344e+001 1.10528503e+002 1.21110626e+002 - 9.69481506e+001 1.10482391e+002 1.21112328e+002 9.69213715e+001 - 1.10477234e+002 1.21122292e+002 9.69184647e+001 1.10457016e+002 - 1.21137878e+002 9.69060135e+001 1.10453018e+002 1.21148666e+002 - 9.68572922e+001 1.10389694e+002 1.21128914e+002 9.68093948e+001 - 1.10356720e+002 1.21106087e+002 9.68150482e+001 1.10357872e+002 - 1.21138245e+002 9.67871399e+001 1.10339516e+002 1.21130096e+002 - 9.68044891e+001 1.10343147e+002 1.21174057e+002 9.67665024e+001 - 1.10309029e+002 1.21163742e+002 9.67630005e+001 1.10280342e+002 - 1.21179428e+002 9.67116013e+001 1.10242638e+002 1.21155487e+002 - 9.66854095e+001 1.10214622e+002 1.21147774e+002 9.66783752e+001 - 1.10226593e+002 1.21159264e+002 9.66873398e+001 1.10218399e+002 - 1.21174210e+002 9.66880112e+001 1.10229050e+002 1.21185577e+002 - 9.66808014e+001 1.10204948e+002 1.21195755e+002 9.66284409e+001 - 1.10169182e+002 1.21167587e+002 9.66320190e+001 1.10161652e+002 - 1.21185799e+002 9.66308823e+001 1.10174141e+002 1.21203629e+002 - 9.66322861e+001 1.10153984e+002 1.21206390e+002 9.66106720e+001 - 1.10150986e+002 1.21201035e+002 9.66170731e+001 1.10142502e+002 - 1.21217644e+002 9.66039963e+001 1.10142677e+002 1.21211578e+002 - 9.66125565e+001 1.10148949e+002 1.21234383e+002 9.65924301e+001 - 1.10136024e+002 1.21223190e+002 9.66033707e+001 1.10122673e+002 - 1.21238724e+002 9.65810776e+001 1.10111282e+002 1.21221039e+002 - 9.65794373e+001 1.10105591e+002 1.21221329e+002 9.65758286e+001 - 1.10124306e+002 1.21223450e+002 9.65999603e+001 1.10136009e+002 - 1.21243706e+002 9.66082306e+001 1.10137459e+002 1.21231148e+002 - 9.66166611e+001 1.10134926e+002 1.21240189e+002 9.65864792e+001 - 1.10121246e+002 1.21216194e+002 9.65777969e+001 1.10106247e+002 - 1.21196350e+002 9.65638351e+001 1.10102715e+002 1.21180389e+002 - 9.65859451e+001 1.10113907e+002 1.21200249e+002 9.65912094e+001 - 1.10131966e+002 1.21205505e+002 9.66066589e+001 1.10138573e+002 - 1.21220428e+002 9.66075134e+001 1.10144775e+002 1.21217384e+002 - 9.66026840e+001 1.10122169e+002 1.21206879e+002 9.65673752e+001 - 1.10091927e+002 1.21172585e+002 9.65825272e+001 1.10086990e+002 - 1.21171715e+002 9.66039124e+001 1.10126244e+002 1.21193092e+002 - 9.66392746e+001 1.10157089e+002 1.21213844e+002 9.66383514e+001 - 1.10165245e+002 1.21202255e+002 9.66602097e+001 1.10166710e+002 - 1.21210922e+002 9.66750488e+001 1.10193130e+002 1.21202072e+002 - 9.66809387e+001 1.10186951e+002 1.21184425e+002 9.66544571e+001 - 1.10182640e+002 1.21152145e+002 9.66656265e+001 1.10180061e+002 - 1.21140106e+002 9.67048721e+001 1.10228661e+002 1.21162842e+002 - 9.66990738e+001 1.10210289e+002 1.21144661e+002 9.66916962e+001 - 1.10214317e+002 1.21119431e+002 9.67354813e+001 1.10255524e+002 - 1.21136818e+002 9.67691422e+001 1.10301712e+002 1.21149529e+002 - 9.67973404e+001 1.10314545e+002 1.21146881e+002 9.68115845e+001 - 1.10348663e+002 1.21143723e+002 9.68302536e+001 1.10342972e+002 - 1.21122620e+002 9.68474655e+001 1.10373344e+002 1.21115173e+002 - 9.68459167e+001 1.10359184e+002 1.21086754e+002 9.68358612e+001 - 1.10363441e+002 1.21048752e+002 9.68549271e+001 1.10368233e+002 - 1.21043839e+002 9.68696899e+001 1.10390503e+002 1.21016418e+002 - 9.68855133e+001 1.10395523e+002 1.20983757e+002 9.68823013e+001 - 1.10416405e+002 1.20949501e+002 9.69172821e+001 1.10432487e+002 - 1.20944229e+002 9.69470139e+001 1.10472305e+002 1.20941261e+002 - 9.69982910e+001 1.10506538e+002 1.20951202e+002 9.70173950e+001 - 1.10546059e+002 1.20936501e+002 9.70581360e+001 1.10580833e+002 - 1.20948799e+002 9.70647125e+001 1.10603188e+002 1.20917084e+002 - 9.70799713e+001 1.10609978e+002 1.20893028e+002 9.70904083e+001 - 1.10636528e+002 1.20876091e+002 9.71612930e+001 1.10683273e+002 - 1.20899536e+002 9.71965103e+001 1.10736389e+002 1.20907013e+002 - 9.72479858e+001 1.10785843e+002 1.20916222e+002 9.72708740e+001 - 1.10833160e+002 1.20913109e+002 9.73072281e+001 1.10859528e+002 - 1.20919952e+002 9.73347855e+001 1.10900238e+002 1.20911102e+002 - 9.73559418e+001 1.10916298e+002 1.20876930e+002 9.73511200e+001 - 1.10933609e+002 1.20848328e+002 9.73796616e+001 1.10949867e+002 - 1.20840813e+002 9.74162674e+001 1.10999672e+002 1.20841461e+002 - 9.74439697e+001 1.11010803e+002 1.20823341e+002 9.74529266e+001 - 1.11036476e+002 1.20784592e+002 9.75155792e+001 1.11099159e+002 - 1.20804619e+002 9.75845642e+001 1.11185318e+002 1.20827751e+002 - 9.76417236e+001 1.11236458e+002 1.20841301e+002 9.76676712e+001 - 1.11275772e+002 1.20830559e+002 9.77320251e+001 1.11313049e+002 - 1.20827888e+002 9.77853622e+001 1.11381126e+002 1.20838661e+002 - 9.78331223e+001 1.11417694e+002 1.20829948e+002 9.78162460e+001 - 1.11420792e+002 1.20769630e+002 9.78899460e+001 1.11483070e+002 - 1.20793472e+002 9.79689560e+001 1.11565155e+002 1.20811943e+002 - 9.80223465e+001 1.11609520e+002 1.20788788e+002 9.80357056e+001 - 1.11641884e+002 1.20750122e+002 9.81116333e+001 1.11698563e+002 - 1.20771713e+002 9.81910172e+001 1.11792862e+002 1.20809952e+002 - 9.82851486e+001 1.11869080e+002 1.20841911e+002 9.83189850e+001 - 1.11917061e+002 1.20826378e+002 9.83923874e+001 1.11989632e+002 - 1.20851517e+002 9.84330063e+001 1.12046707e+002 1.20839386e+002 - 9.84871597e+001 1.12090942e+002 1.20837257e+002 9.85433960e+001 - 1.12160538e+002 1.20848740e+002 9.86401901e+001 1.12224396e+002 - 1.20859909e+002 9.86955185e+001 1.12291473e+002 1.20858887e+002 - 9.87678223e+001 1.12351456e+002 1.20869209e+002 9.88215866e+001 - 1.12420937e+002 1.20871307e+002 9.88954163e+001 1.12472908e+002 - 1.20890083e+002 9.89701004e+001 1.12557640e+002 1.20894951e+002 - 9.90493240e+001 1.12613441e+002 1.20881500e+002 9.91272507e+001 - 1.12709343e+002 1.20903328e+002 9.92289429e+001 1.12796356e+002 - 1.20947769e+002 9.93212738e+001 1.12892021e+002 1.20986252e+002 - 9.94077148e+001 1.12957741e+002 1.21004776e+002 9.94339828e+001 - 1.13002556e+002 1.20982521e+002 9.95109100e+001 1.13064789e+002 - 1.20987640e+002 9.96031342e+001 1.13172401e+002 1.21016266e+002 - 9.96836624e+001 1.13240341e+002 1.21023170e+002 9.97553558e+001 - 1.13324051e+002 1.21038918e+002 9.98776932e+001 1.13413811e+002 - 1.21080994e+002 9.99971008e+001 1.13531006e+002 1.21132385e+002 - 1.00102425e+002 1.13624268e+002 1.21166191e+002 1.00155182e+002 - 1.13681641e+002 1.21153000e+002 1.00234810e+002 1.13736137e+002 - 1.21168961e+002 1.00339546e+002 1.13837601e+002 1.21193817e+002 - 1.00472481e+002 1.13943138e+002 1.21214745e+002 1.00541603e+002 - 1.14020920e+002 1.21212723e+002 1.00658722e+002 1.14112862e+002 - 1.21259834e+002 1.00763298e+002 1.14217812e+002 1.21298546e+002 - 1.00889603e+002 1.14316238e+002 1.21348297e+002 1.00957344e+002 - 1.14376869e+002 1.21344490e+002 1.01106064e+002 1.14500168e+002 - 1.21406235e+002 1.01236786e+002 1.14630310e+002 1.21462723e+002 - 1.01328278e+002 1.14687248e+002 1.21471802e+002 1.01415733e+002 - 1.14762482e+002 1.21493477e+002 1.01528198e+002 1.14827583e+002 - 1.21504768e+002 1.01607323e+002 1.14894699e+002 1.21509689e+002 - 1.01727348e+002 1.14973297e+002 1.21541512e+002 1.01806908e+002 - 1.15046661e+002 1.21548218e+002 1.01842621e+002 1.15041939e+002 - 1.21512863e+002 1.01793915e+002 1.14974327e+002 1.21388451e+002 - 1.01784760e+002 1.14980606e+002 1.21430489e+002 1.01788605e+002 - 1.15028328e+002 1.21512764e+002 1.01756599e+002 1.15015945e+002 - 1.21559532e+002 1.01703445e+002 1.15000740e+002 1.21581215e+002 - 1.01609108e+002 1.14927681e+002 1.21579025e+002 1.01501892e+002 - 1.14846230e+002 1.21548782e+002 1.01402679e+002 1.14771538e+002 - 1.21543121e+002 1.01285507e+002 1.14681740e+002 1.21494293e+002 - 1.01160484e+002 1.14570839e+002 1.21444611e+002 1.01026772e+002 - 1.14459946e+002 1.21384819e+002 1.00962463e+002 1.14386009e+002 - 1.21400902e+002 1.00900238e+002 1.14339928e+002 1.21412270e+002 - 1.00820541e+002 1.14268166e+002 1.21409569e+002 1.00701965e+002 - 1.14174477e+002 1.21364571e+002 1.00568298e+002 1.14035614e+002 - 1.21287758e+002 1.00489258e+002 1.13973808e+002 1.21272430e+002 - 1.00363754e+002 1.13865234e+002 1.21262276e+002 1.00249146e+002 - 1.13786980e+002 1.21228722e+002 1.00179359e+002 1.13709465e+002 - 1.21219528e+002 1.00098007e+002 1.13638077e+002 1.21193268e+002 - 9.99852371e+001 1.13524780e+002 1.21149834e+002 9.98810196e+001 - 1.13438034e+002 1.21112137e+002 9.97711945e+001 1.13329247e+002 - 1.21081093e+002 9.96806488e+001 1.13255981e+002 1.21054459e+002 - 9.95968094e+001 1.13162804e+002 1.21034920e+002 9.95258484e+001 - 1.13105949e+002 1.21036781e+002 9.94514618e+001 1.13014137e+002 - 1.21039154e+002 9.93685989e+001 1.12945564e+002 1.21027367e+002 - 9.92882004e+001 1.12861092e+002 1.21011482e+002 9.91949844e+001 - 1.12786972e+002 1.20976952e+002 9.91471252e+001 1.12726425e+002 - 1.20977074e+002 9.90825882e+001 1.12676353e+002 1.20970917e+002 - 9.89817200e+001 1.12581306e+002 1.20962914e+002 9.88818436e+001 - 1.12506310e+002 1.20936211e+002 9.88197861e+001 1.12432877e+002 - 1.20923050e+002 9.87569962e+001 1.12373032e+002 1.20920166e+002 - 9.86680222e+001 1.12276543e+002 1.20904190e+002 9.85871277e+001 - 1.12208832e+002 1.20886406e+002 9.85448685e+001 1.12162491e+002 - 1.20906456e+002 9.84936752e+001 1.12122475e+002 1.20908813e+002 - 9.84459839e+001 1.12069221e+002 1.20907326e+002 9.83532181e+001 - 1.11981728e+002 1.20877357e+002 9.83080978e+001 1.11911316e+002 - 1.20890633e+002 9.82390366e+001 1.11849121e+002 1.20878944e+002 - 9.81799698e+001 1.11785446e+002 1.20873573e+002 9.81182175e+001 - 1.11739250e+002 1.20861229e+002 9.80878143e+001 1.11701073e+002 - 1.20882713e+002 9.80355148e+001 1.11662369e+002 1.20884834e+002 - 9.79679947e+001 1.11591393e+002 1.20908951e+002 9.78951187e+001 - 1.11540901e+002 1.20895798e+002 9.78689728e+001 1.11498268e+002 - 1.20904182e+002 9.78160400e+001 1.11449013e+002 1.20895927e+002 - 9.77773666e+001 1.11397476e+002 1.20910934e+002 9.77429047e+001 - 1.11371361e+002 1.20918579e+002 9.77112274e+001 1.11328049e+002 - 1.20937935e+002 9.76451263e+001 1.11273621e+002 1.20911987e+002 - 9.75935898e+001 1.11209045e+002 1.20900024e+002 9.75311966e+001 - 1.11148735e+002 1.20881340e+002 9.75178299e+001 1.11108849e+002 - 1.20910934e+002 9.74706039e+001 1.11059441e+002 1.20906715e+002 - 9.74162827e+001 1.11001945e+002 1.20894524e+002 9.73573456e+001 - 1.10955566e+002 1.20879204e+002 9.73473053e+001 1.10930634e+002 - 1.20897148e+002 9.73226776e+001 1.10914925e+002 1.20902344e+002 - 9.72855759e+001 1.10866653e+002 1.20918114e+002 9.72261429e+001 - 1.10820923e+002 1.20900269e+002 9.72186127e+001 1.10798256e+002 - 1.20919632e+002 9.72089767e+001 1.10794151e+002 1.20945290e+002 - 9.72114792e+001 1.10775375e+002 1.20978889e+002 9.71453171e+001 - 1.10722511e+002 1.20950798e+002 9.71229858e+001 1.10693901e+002 - 1.20969505e+002 9.71148071e+001 1.10694412e+002 1.20990662e+002 - 9.70891647e+001 1.10656746e+002 1.20998032e+002 9.70534973e+001 - 1.10635002e+002 1.21003975e+002 9.70218430e+001 1.10576599e+002 - 1.21008774e+002 9.69929276e+001 1.10566284e+002 1.21018600e+002 - 9.69666061e+001 1.10523766e+002 1.21019836e+002 9.69431229e+001 - 1.10514603e+002 1.21022324e+002 9.69421997e+001 1.10492584e+002 - 1.21038445e+002 9.69273071e+001 1.10481842e+002 1.21046684e+002 - 9.68896713e+001 1.10438225e+002 1.21047150e+002 9.68622513e+001 - 1.10429146e+002 1.21056480e+002 9.68381348e+001 1.10392441e+002 - 1.21048424e+002 9.68104935e+001 1.10370918e+002 1.21049660e+002 - 9.67708588e+001 1.10318153e+002 1.21028893e+002 9.67325592e+001 - 1.10288818e+002 1.21018463e+002 9.67307739e+001 1.10286682e+002 - 1.21046478e+002 9.67123566e+001 1.10281380e+002 1.21050507e+002 - 9.66880341e+001 1.10238678e+002 1.21052841e+002 9.66685257e+001 - 1.10225563e+002 1.21055740e+002 9.66708221e+001 1.10205070e+002 - 1.21085503e+002 9.66527100e+001 1.10195259e+002 1.21086189e+002 - 9.66334686e+001 1.10166908e+002 1.21082565e+002 9.65892487e+001 - 1.10147949e+002 1.21060013e+002 9.66097794e+001 1.10158066e+002 - 1.21096527e+002 9.66169586e+001 1.10171478e+002 1.21109108e+002 - 9.66218033e+001 1.10157013e+002 1.21125793e+002 9.65578156e+001 - 1.10106300e+002 1.21079147e+002 9.65407639e+001 1.10076500e+002 - 1.21078880e+002 9.65479965e+001 1.10089928e+002 1.21097939e+002 - 9.65459747e+001 1.10070511e+002 1.21104538e+002 9.65258942e+001 - 1.10060829e+002 1.21099205e+002 9.65339203e+001 1.10065636e+002 - 1.21119759e+002 9.65392761e+001 1.10081459e+002 1.21131332e+002 - 9.65335999e+001 1.10068420e+002 1.21134293e+002 9.65128250e+001 - 1.10058296e+002 1.21125107e+002 9.65193405e+001 1.10040970e+002 - 1.21133232e+002 9.64965439e+001 1.10035011e+002 1.21128113e+002 - 9.65020905e+001 1.10035904e+002 1.21137108e+002 9.64948349e+001 - 1.10049149e+002 1.21132607e+002 9.65325623e+001 1.10068512e+002 - 1.21162308e+002 9.65563736e+001 1.10100853e+002 1.21180756e+002 - 9.65602341e+001 1.10083397e+002 1.21170441e+002 9.65144272e+001 - 1.10060570e+002 1.21138153e+002 9.65051880e+001 1.10043266e+002 - 1.21117874e+002 9.65080490e+001 1.10058022e+002 1.21122543e+002 - 9.65099945e+001 1.10047928e+002 1.21123032e+002 9.65238953e+001 - 1.10075851e+002 1.21138565e+002 9.65311127e+001 1.10075714e+002 - 1.21144814e+002 9.65202789e+001 1.10071815e+002 1.21130165e+002 - 9.65461731e+001 1.10073341e+002 1.21146645e+002 9.65249481e+001 - 1.10063377e+002 1.21122971e+002 9.65285797e+001 1.10048889e+002 - 1.21113739e+002 9.65288315e+001 1.10062531e+002 1.21117851e+002 - 9.65511093e+001 1.10077087e+002 1.21124863e+002 9.65380325e+001 - 1.10082657e+002 1.21110229e+002 9.65806885e+001 1.10101906e+002 - 1.21130409e+002 9.66062241e+001 1.10133263e+002 1.21130951e+002 - 9.65889816e+001 1.10110130e+002 1.21091034e+002 9.65616226e+001 - 1.10106148e+002 1.21058578e+002 9.65991516e+001 1.10119087e+002 - 1.21072426e+002 9.66291962e+001 1.10163223e+002 1.21087303e+002 - 9.66190567e+001 1.10144257e+002 1.21059227e+002 9.66067963e+001 - 1.10140953e+002 1.21031853e+002 9.66436844e+001 1.10173050e+002 - 1.21047562e+002 9.66592255e+001 1.10202225e+002 1.21035538e+002 - 9.66769333e+001 1.10206673e+002 1.21026833e+002 9.67067108e+001 - 1.10257576e+002 1.21037033e+002 9.67557755e+001 1.10284111e+002 - 1.21053207e+002 9.67747116e+001 1.10315056e+002 1.21047935e+002 - 9.67657776e+001 1.10294678e+002 1.21005951e+002 9.67421875e+001 - 1.10288300e+002 1.20960930e+002 9.67615662e+001 1.10288498e+002 - 1.20951874e+002 9.67603378e+001 1.10287186e+002 1.20909523e+002 - 9.67926865e+001 1.10314987e+002 1.20892303e+002 9.68251572e+001 - 1.10375565e+002 1.20895927e+002 9.68619385e+001 1.10392799e+002 - 1.20894104e+002 9.68895035e+001 1.10432304e+002 1.20888161e+002 - 9.69225845e+001 1.10447365e+002 1.20882050e+002 9.69057693e+001 - 1.10447762e+002 1.20833710e+002 9.69456329e+001 1.10483803e+002 - 1.20837456e+002 9.69653244e+001 1.10516068e+002 1.20819244e+002 - 9.70015945e+001 1.10546539e+002 1.20820358e+002 9.70165405e+001 - 1.10576012e+002 1.20807892e+002 9.70447998e+001 1.10578560e+002 - 1.20781990e+002 9.70949783e+001 1.10645210e+002 1.20807533e+002 - 9.71435776e+001 1.10692154e+002 1.20815239e+002 9.71626892e+001 - 1.10735374e+002 1.20805168e+002 9.71964569e+001 1.10763809e+002 - 1.20808418e+002 9.72499847e+001 1.10823357e+002 1.20817398e+002 - 9.72620087e+001 1.10833710e+002 1.20782967e+002 9.72524719e+001 - 1.10847023e+002 1.20746422e+002 9.73150635e+001 1.10897400e+002 - 1.20772964e+002 9.73478699e+001 1.10934921e+002 1.20765846e+002 - 9.73686295e+001 1.10943924e+002 1.20737373e+002 9.73698502e+001 - 1.10961143e+002 1.20695137e+002 9.74389954e+001 1.11023651e+002 - 1.20713692e+002 9.75073547e+001 1.11111107e+002 1.20740257e+002 - 9.75583649e+001 1.11153557e+002 1.20749237e+002 9.75758896e+001 - 1.11187462e+002 1.20728325e+002 9.76511841e+001 1.11237228e+002 - 1.20744415e+002 9.76868439e+001 1.11290085e+002 1.20736046e+002 - 9.77440567e+001 1.11332954e+002 1.20739639e+002 9.77697067e+001 - 1.11374817e+002 1.20721550e+002 9.78288040e+001 1.11425362e+002 - 1.20734581e+002 9.78859024e+001 1.11485657e+002 1.20731361e+002 - 9.79444962e+001 1.11532341e+002 1.20710510e+002 9.79713669e+001 - 1.11574745e+002 1.20685333e+002 9.80434875e+001 1.11632294e+002 - 1.20707375e+002 9.81082077e+001 1.11708015e+002 1.20723480e+002 - 9.81894684e+001 1.11774208e+002 1.20746437e+002 9.82452164e+001 - 1.11846115e+002 1.20759689e+002 9.83187943e+001 1.11917976e+002 - 1.20778023e+002 9.83613052e+001 1.11982353e+002 1.20765541e+002 - 9.84030075e+001 1.12009438e+002 1.20752495e+002 9.84687500e+001 - 1.12087433e+002 1.20762947e+002 9.85476685e+001 1.12140610e+002 - 1.20770638e+002 9.86082535e+001 1.12210709e+002 1.20766617e+002 - 9.86961441e+001 1.12286697e+002 1.20788795e+002 9.87386322e+001 - 1.12342300e+002 1.20780083e+002 9.88271179e+001 1.12414124e+002 - 1.20816635e+002 9.88912964e+001 1.12482712e+002 1.20808479e+002 - 9.89932556e+001 1.12568390e+002 1.20820457e+002 9.90544662e+001 - 1.12645683e+002 1.20827827e+002 9.91638641e+001 1.12736176e+002 - 1.20879463e+002 9.92369080e+001 1.12810669e+002 1.20898849e+002 - 9.93144226e+001 1.12872704e+002 1.20915436e+002 9.93742828e+001 - 1.12945602e+002 1.20919281e+002 9.94298248e+001 1.12990242e+002 - 1.20904701e+002 9.95170135e+001 1.13093315e+002 1.20931770e+002 - 9.96154251e+001 1.13177315e+002 1.20956421e+002 9.96879730e+001 - 1.13263962e+002 1.20972015e+002 9.98019104e+001 1.13342400e+002 - 1.21006172e+002 9.99068604e+001 1.13448418e+002 1.21039055e+002 - 1.00012947e+002 1.13537468e+002 1.21069664e+002 1.00052345e+002 - 1.13592995e+002 1.21059525e+002 1.00165535e+002 1.13683861e+002 - 1.21104370e+002 1.00278877e+002 1.13786255e+002 1.21136269e+002 - 1.00392929e+002 1.13875214e+002 1.21138802e+002 1.00456604e+002 - 1.13947411e+002 1.21134071e+002 1.00564453e+002 1.14024254e+002 - 1.21169464e+002 1.00661278e+002 1.14122925e+002 1.21201561e+002 - 1.00806389e+002 1.14236969e+002 1.21268776e+002 1.00914040e+002 - 1.14344246e+002 1.21303177e+002 1.01043724e+002 1.14445641e+002 - 1.21350372e+002 1.01163063e+002 1.14561600e+002 1.21400162e+002 - 1.01243523e+002 1.14603226e+002 1.21401375e+002 1.01354866e+002 - 1.14708420e+002 1.21441101e+002 1.01478210e+002 1.14783974e+002 - 1.21469429e+002 1.01564888e+002 1.14854309e+002 1.21475899e+002 - 1.01660660e+002 1.14915138e+002 1.21484329e+002 1.01704430e+002 - 1.14955353e+002 1.21456955e+002 1.01761749e+002 1.14969742e+002 - 1.21443054e+002 1.01735779e+002 1.14927193e+002 1.21344528e+002 - 1.01705383e+002 1.14917015e+002 1.21369568e+002 1.01702881e+002 - 1.14959641e+002 1.21451035e+002 1.01666824e+002 1.14934082e+002 - 1.21480408e+002 1.01624199e+002 1.14927155e+002 1.21514359e+002 - 1.01536064e+002 1.14860054e+002 1.21522003e+002 1.01434479e+002 - 1.14796547e+002 1.21498154e+002 1.01349037e+002 1.14728500e+002 - 1.21501823e+002 1.01232590e+002 1.14644661e+002 1.21455986e+002 - 1.01112892e+002 1.14534187e+002 1.21410332e+002 1.00980675e+002 - 1.14430267e+002 1.21351288e+002 1.00900993e+002 1.14337242e+002 - 1.21348152e+002 1.00830521e+002 1.14286186e+002 1.21351051e+002 - 1.00731369e+002 1.14193596e+002 1.21331917e+002 1.00613197e+002 - 1.14102928e+002 1.21287407e+002 1.00497009e+002 1.13979416e+002 - 1.21230255e+002 1.00425003e+002 1.13921471e+002 1.21221619e+002 - 1.00306831e+002 1.13826035e+002 1.21218521e+002 1.00195480e+002 - 1.13746933e+002 1.21189697e+002 1.00117561e+002 1.13661247e+002 - 1.21168213e+002 1.00016457e+002 1.13580444e+002 1.21131035e+002 - 9.99160690e+001 1.13470192e+002 1.21095757e+002 9.98110046e+001 - 1.13384987e+002 1.21052345e+002 9.96964111e+001 1.13268318e+002 - 1.21011444e+002 9.95852737e+001 1.13168617e+002 1.20960594e+002 - 9.95339050e+001 1.13111763e+002 1.20980171e+002 9.94648361e+001 - 1.13058830e+002 1.20982933e+002 9.93929062e+001 1.12966133e+002 - 1.20982796e+002 9.93110886e+001 1.12897079e+002 1.20974739e+002 - 9.92236633e+001 1.12807259e+002 1.20951660e+002 9.91090164e+001 - 1.12710564e+002 1.20893387e+002 9.90356369e+001 1.12630135e+002 - 1.20871910e+002 9.89858170e+001 1.12592049e+002 1.20881462e+002 - 9.89043045e+001 1.12520638e+002 1.20895500e+002 9.88015518e+001 - 1.12446045e+002 1.20869301e+002 9.87097015e+001 1.12336693e+002 - 1.20826363e+002 9.86471939e+001 1.12275299e+002 1.20817383e+002 - 9.85765533e+001 1.12194458e+002 1.20818535e+002 9.85066452e+001 - 1.12139862e+002 1.20810402e+002 9.84452438e+001 1.12074341e+002 - 1.20817169e+002 9.83993835e+001 1.12042000e+002 1.20823914e+002 - 9.83522110e+001 1.11986870e+002 1.20824150e+002 9.82513885e+001 - 1.11901085e+002 1.20786774e+002 9.82018509e+001 1.11819023e+002 - 1.20795013e+002 9.81392212e+001 1.11765038e+002 1.20785828e+002 - 9.81057281e+001 1.11728447e+002 1.20804207e+002 9.80436478e+001 - 1.11682816e+002 1.20793221e+002 9.80275345e+001 1.11652863e+002 - 1.20822281e+002 9.79851608e+001 1.11623726e+002 1.20834167e+002 - 9.79242325e+001 1.11564362e+002 1.20857635e+002 9.78300400e+001 - 1.11492249e+002 1.20831635e+002 9.78042221e+001 1.11447815e+002 - 1.20842926e+002 9.77523193e+001 1.11399895e+002 1.20834915e+002 - 9.77327881e+001 1.11365654e+002 1.20867485e+002 9.76936111e+001 - 1.11333519e+002 1.20867302e+002 9.76285019e+001 1.11258224e+002 - 1.20851013e+002 9.75436935e+001 1.11180748e+002 1.20802612e+002 - 9.74967499e+001 1.11123596e+002 1.20798141e+002 9.74315262e+001 - 1.11067261e+002 1.20776306e+002 9.74338379e+001 1.11034203e+002 - 1.20819092e+002 9.73877487e+001 1.10991806e+002 1.20813477e+002 - 9.73380966e+001 1.10944984e+002 1.20819641e+002 9.72880859e+001 - 1.10903488e+002 1.20806519e+002 9.72885361e+001 1.10888222e+002 - 1.20837952e+002 9.72251129e+001 1.10828926e+002 1.20801361e+002 - 9.71951675e+001 1.10787689e+002 1.20820091e+002 9.71268082e+001 - 1.10744545e+002 1.20806160e+002 9.71507492e+001 1.10744728e+002 - 1.20849495e+002 9.71346054e+001 1.10733826e+002 1.20867615e+002 - 9.70988312e+001 1.10685020e+002 1.20870636e+002 9.70694962e+001 - 1.10662704e+002 1.20872421e+002 9.70712280e+001 1.10660973e+002 - 1.20915497e+002 9.70448685e+001 1.10637131e+002 1.20918602e+002 - 9.70177994e+001 1.10599190e+002 1.20924248e+002 9.69653549e+001 - 1.10564705e+002 1.20914268e+002 9.69645996e+001 1.10533798e+002 - 1.20946800e+002 9.69365234e+001 1.10518509e+002 1.20951813e+002 - 9.68980637e+001 1.10471092e+002 1.20941559e+002 9.68767700e+001 - 1.10466743e+002 1.20951736e+002 9.68784561e+001 1.10437332e+002 - 1.20966660e+002 9.68528366e+001 1.10419525e+002 1.20964539e+002 - 9.68261871e+001 1.10383286e+002 1.20976662e+002 9.67907639e+001 - 1.10373108e+002 1.20981537e+002 9.67672653e+001 1.10333817e+002 - 1.20971703e+002 9.67281570e+001 1.10307343e+002 1.20961342e+002 - 9.66933670e+001 1.10255142e+002 1.20949448e+002 9.66744156e+001 - 1.10249771e+002 1.20957695e+002 9.66576767e+001 1.10230278e+002 - 1.20970947e+002 9.66294937e+001 1.10210930e+002 1.20964172e+002 - 9.66185837e+001 1.10190361e+002 1.20976616e+002 9.65899506e+001 - 1.10167480e+002 1.20975677e+002 9.66072464e+001 1.10150246e+002 - 1.21011559e+002 9.65764694e+001 1.10130867e+002 1.21007576e+002 - 9.65408401e+001 1.10094025e+002 1.20986046e+002 9.65204010e+001 - 1.10093575e+002 1.20984085e+002 9.65302505e+001 1.10090767e+002 - 1.21010368e+002 9.65358887e+001 1.10094727e+002 1.21020485e+002 - 9.65397720e+001 1.10085617e+002 1.21036270e+002 9.64954681e+001 - 1.10062004e+002 1.21013504e+002 9.64759521e+001 1.10023865e+002 - 1.21004616e+002 9.64439926e+001 1.09996086e+002 1.20981544e+002 - 9.64598083e+001 1.09985710e+002 1.20998795e+002 9.64744492e+001 - 1.10018692e+002 1.21032028e+002 9.64847412e+001 1.10027534e+002 - 1.21058723e+002 9.64597626e+001 1.10011513e+002 1.21039017e+002 - 9.64508972e+001 1.09994873e+002 1.21039185e+002 9.64349976e+001 - 1.09996361e+002 1.21040253e+002 9.64474640e+001 1.09983315e+002 - 1.21060677e+002 9.64201508e+001 1.09972084e+002 1.21044479e+002 - 9.64277725e+001 1.09977356e+002 1.21057899e+002 9.64187622e+001 - 1.09991417e+002 1.21047585e+002 9.64585114e+001 1.10010712e+002 - 1.21084167e+002 9.64536896e+001 1.10009003e+002 1.21070694e+002 - 9.64630051e+001 1.10006989e+002 1.21073586e+002 9.64416809e+001 - 1.10001396e+002 1.21058304e+002 9.64234467e+001 1.09973846e+002 - 1.21032654e+002 9.64258270e+001 1.09992653e+002 1.21041618e+002 - 9.64445267e+001 1.09995163e+002 1.21060364e+002 9.64345169e+001 - 1.10000687e+002 1.21047150e+002 9.64445190e+001 1.10007477e+002 - 1.21063309e+002 9.64367371e+001 1.10003235e+002 1.21046989e+002 - 9.64454956e+001 1.09996361e+002 1.21045387e+002 9.64409561e+001 - 1.10001411e+002 1.21045105e+002 9.64586029e+001 1.09996834e+002 - 1.21051567e+002 9.64764786e+001 1.10026733e+002 1.21067184e+002 - 9.64813919e+001 1.10021690e+002 1.21054482e+002 9.64726105e+001 - 1.10036003e+002 1.21043655e+002 9.65100937e+001 1.10051323e+002 - 1.21060852e+002 9.65317612e+001 1.10073982e+002 1.21056107e+002 - 9.65255508e+001 1.10056343e+002 1.21024422e+002 9.64957962e+001 - 1.10053360e+002 1.20988304e+002 9.65183182e+001 1.10064453e+002 - 1.20990662e+002 9.65430679e+001 1.10089989e+002 1.20991325e+002 - 9.65407715e+001 1.10072502e+002 1.20976280e+002 9.65191956e+001 - 1.10070709e+002 1.20942970e+002 9.65727539e+001 1.10117950e+002 - 1.20976341e+002 9.65629578e+001 1.10120338e+002 1.20940346e+002 - 9.66065979e+001 1.10155128e+002 1.20952072e+002 9.66303864e+001 - 1.10193672e+002 1.20960495e+002 9.66664734e+001 1.10208359e+002 - 1.20963226e+002 9.66814270e+001 1.10236496e+002 1.20955399e+002 - 9.66859970e+001 1.10235466e+002 1.20931396e+002 9.66918488e+001 - 1.10254700e+002 1.20914833e+002 9.67127380e+001 1.10258850e+002 - 1.20906837e+002 9.66997986e+001 1.10242210e+002 1.20851593e+002 - 9.67073517e+001 1.10248596e+002 1.20817162e+002 9.67306213e+001 - 1.10293320e+002 1.20810600e+002 9.67916183e+001 1.10341835e+002 - 1.20838303e+002 9.68266068e+001 1.10389229e+002 1.20842926e+002 - 9.68518066e+001 1.10402458e+002 1.20821945e+002 9.68333435e+001 - 1.10397675e+002 1.20774483e+002 9.68482895e+001 1.10406700e+002 - 1.20750282e+002 9.68532944e+001 1.10425484e+002 1.20716690e+002 - 9.68849030e+001 1.10450470e+002 1.20711143e+002 9.68961563e+001 - 1.10474754e+002 1.20693832e+002 9.69532166e+001 1.10505051e+002 - 1.20706001e+002 9.69786148e+001 1.10543190e+002 1.20694168e+002 - 9.70436401e+001 1.10609680e+002 1.20720184e+002 9.70418930e+001 - 1.10633545e+002 1.20688873e+002 9.70840530e+001 1.10665100e+002 - 1.20698418e+002 9.71223907e+001 1.10709801e+002 1.20689903e+002 - 9.71604843e+001 1.10738289e+002 1.20679825e+002 9.71643677e+001 - 1.10774254e+002 1.20659119e+002 9.72274323e+001 1.10822388e+002 - 1.20686592e+002 9.72545166e+001 1.10863693e+002 1.20678047e+002 - 9.72908325e+001 1.10877586e+002 1.20659256e+002 9.73025742e+001 - 1.10908058e+002 1.20635178e+002 9.73703766e+001 1.10966515e+002 - 1.20646164e+002 9.74208221e+001 1.11034126e+002 1.20656609e+002 - 9.74770355e+001 1.11079178e+002 1.20663010e+002 9.75061798e+001 - 1.11135849e+002 1.20659531e+002 9.75707779e+001 1.11163422e+002 - 1.20664635e+002 9.75976563e+001 1.11211403e+002 1.20645004e+002 - 9.76632919e+001 1.11267242e+002 1.20662262e+002 9.76939316e+001 - 1.11309952e+002 1.20647415e+002 9.77768936e+001 1.11387108e+002 - 1.20688736e+002 9.78178024e+001 1.11422798e+002 1.20663948e+002 - 9.78792725e+001 1.11471703e+002 1.20646301e+002 9.79066467e+001 - 1.11514481e+002 1.20622925e+002 9.79761581e+001 1.11565567e+002 - 1.20639046e+002 9.80457077e+001 1.11655487e+002 1.20667397e+002 - 9.81354523e+001 1.11729973e+002 1.20698021e+002 9.81892166e+001 - 1.11802643e+002 1.20704735e+002 9.82671738e+001 1.11882957e+002 - 1.20724419e+002 9.82929688e+001 1.11920197e+002 1.20699532e+002 - 9.83216019e+001 1.11937241e+002 1.20669617e+002 9.83909912e+001 - 1.12025261e+002 1.20685089e+002 9.85037003e+001 1.12106529e+002 - 1.20723129e+002 9.85643845e+001 1.12176575e+002 1.20724617e+002 - 9.86336746e+001 1.12235886e+002 1.20726967e+002 9.86759949e+001 - 1.12288673e+002 1.20713928e+002 9.87430573e+001 1.12344208e+002 - 1.20730942e+002 9.88029327e+001 1.12402679e+002 1.20721550e+002 - 9.88942566e+001 1.12480438e+002 1.20733597e+002 9.89631729e+001 - 1.12570740e+002 1.20747223e+002 9.90645294e+001 1.12648254e+002 - 1.20786278e+002 9.91357498e+001 1.12729324e+002 1.20805443e+002 - 9.92211685e+001 1.12789238e+002 1.20819992e+002 9.93047943e+001 - 1.12889229e+002 1.20852951e+002 9.93864288e+001 1.12963631e+002 - 1.20865440e+002 9.94469681e+001 1.13033318e+002 1.20864395e+002 - 9.95420227e+001 1.13113670e+002 1.20887260e+002 9.96067734e+001 - 1.13198196e+002 1.20901344e+002 9.97285461e+001 1.13276848e+002 - 1.20933189e+002 9.98051529e+001 1.13359711e+002 1.20945015e+002 - 9.98999710e+001 1.13440750e+002 1.20968460e+002 9.99813766e+001 - 1.13529213e+002 1.20989937e+002 1.00122070e+002 1.13649231e+002 - 1.21070953e+002 1.00229660e+002 1.13744759e+002 1.21090645e+002 - 1.00318764e+002 1.13813606e+002 1.21068115e+002 1.00399826e+002 - 1.13898308e+002 1.21076645e+002 1.00495064e+002 1.13971001e+002 - 1.21103012e+002 1.00589485e+002 1.14065063e+002 1.21136391e+002 - 1.00722115e+002 1.14167046e+002 1.21190132e+002 1.00838402e+002 - 1.14275009e+002 1.21231743e+002 1.00967255e+002 1.14381905e+002 - 1.21290627e+002 1.01060242e+002 1.14467789e+002 1.21312798e+002 - 1.01158821e+002 1.14533623e+002 1.21326607e+002 1.01263039e+002 - 1.14625992e+002 1.21361412e+002 1.01394646e+002 1.14708817e+002 - 1.21399918e+002 1.01481735e+002 1.14784157e+002 1.21411514e+002 - 1.01579918e+002 1.14849678e+002 1.21425453e+002 1.01618286e+002 - 1.14884392e+002 1.21387474e+002 1.01681274e+002 1.14897484e+002 - 1.21371841e+002 1.01656868e+002 1.14860626e+002 1.21284096e+002 - 1.01652611e+002 1.14867775e+002 1.21325882e+002 1.01649788e+002 - 1.14908035e+002 1.21401329e+002 1.01617905e+002 1.14885315e+002 - 1.21440331e+002 1.01567070e+002 1.14871529e+002 1.21463905e+002 - 1.01473923e+002 1.14791428e+002 1.21457977e+002 1.01370277e+002 - 1.14728508e+002 1.21442543e+002 1.01283455e+002 1.14660088e+002 - 1.21439919e+002 1.01172966e+002 1.14584457e+002 1.21401367e+002 - 1.01071938e+002 1.14492500e+002 1.21374390e+002 1.00943268e+002 - 1.14399719e+002 1.21326248e+002 1.00848656e+002 1.14286400e+002 - 1.21301270e+002 1.00778801e+002 1.14232765e+002 1.21305115e+002 - 1.00665100e+002 1.14132980e+002 1.21276176e+002 1.00547081e+002 - 1.14042175e+002 1.21221931e+002 1.00450706e+002 1.13942528e+002 - 1.21192741e+002 1.00356949e+002 1.13860565e+002 1.21166138e+002 - 1.00236923e+002 1.13757530e+002 1.21157700e+002 1.00125984e+002 - 1.13680405e+002 1.21129501e+002 1.00052628e+002 1.13604195e+002 - 1.21106369e+002 9.99580688e+001 1.13526184e+002 1.21075211e+002 - 9.98567963e+001 1.13417145e+002 1.21039909e+002 9.97421112e+001 - 1.13326630e+002 1.20990524e+002 9.96442795e+001 1.13224747e+002 - 1.20962112e+002 9.95349121e+001 1.13122063e+002 1.20913956e+002 - 9.94651184e+001 1.13048508e+002 1.20909637e+002 9.93965225e+001 - 1.12991043e+002 1.20907654e+002 9.93336639e+001 1.12906036e+002 - 1.20920418e+002 9.92694397e+001 1.12854218e+002 1.20930969e+002 - 9.91646042e+001 1.12743492e+002 1.20879562e+002 9.90570984e+001 - 1.12655754e+002 1.20834496e+002 9.89844208e+001 1.12575310e+002 - 1.20819481e+002 9.89013824e+001 1.12503654e+002 1.20791443e+002 - 9.88293152e+001 1.12446854e+002 1.20817894e+002 9.87333832e+001 - 1.12378380e+002 1.20798767e+002 9.86612396e+001 1.12290657e+002 - 1.20780220e+002 9.85787277e+001 1.12212341e+002 1.20745903e+002 - 9.85045547e+001 1.12131912e+002 1.20748260e+002 9.84363861e+001 - 1.12074471e+002 1.20746147e+002 9.83852463e+001 1.12020531e+002 - 1.20761169e+002 9.83292618e+001 1.11976120e+002 1.20754364e+002 - 9.82861786e+001 1.11931076e+002 1.20763344e+002 9.81954117e+001 - 1.11845680e+002 1.20730598e+002 9.81494217e+001 1.11769745e+002 - 1.20736511e+002 9.80899887e+001 1.11722031e+002 1.20733788e+002 - 9.80499802e+001 1.11675758e+002 1.20744148e+002 9.79953690e+001 - 1.11636330e+002 1.20736099e+002 9.79623337e+001 1.11596443e+002 - 1.20752472e+002 9.79267654e+001 1.11571152e+002 1.20770866e+002 - 9.78633652e+001 1.11504898e+002 1.20785553e+002 9.77802429e+001 - 1.11443916e+002 1.20772575e+002 9.77262497e+001 1.11375832e+002 - 1.20757866e+002 9.76607361e+001 1.11311302e+002 1.20735695e+002 - 9.76297531e+001 1.11260887e+002 1.20750595e+002 9.75774078e+001 - 1.11221771e+002 1.20746452e+002 9.75277710e+001 1.11157516e+002 - 1.20738792e+002 9.74772034e+001 1.11114555e+002 1.20723358e+002 - 9.74247589e+001 1.11045609e+002 1.20709557e+002 9.73848038e+001 - 1.11013260e+002 1.20710594e+002 9.73802567e+001 1.10974945e+002 - 1.20752533e+002 9.73370361e+001 1.10941689e+002 1.20746437e+002 - 9.72970657e+001 1.10896576e+002 1.20756355e+002 9.72323456e+001 - 1.10848648e+002 1.20737968e+002 9.72095337e+001 1.10813217e+002 - 1.20747421e+002 9.71596832e+001 1.10762337e+002 1.20727707e+002 - 9.71164398e+001 1.10713745e+002 1.20729752e+002 9.70579834e+001 - 1.10679390e+002 1.20725853e+002 9.70754471e+001 1.10677979e+002 - 1.20768539e+002 9.70745468e+001 1.10684784e+002 1.20796631e+002 - 9.70494232e+001 1.10639824e+002 1.20809494e+002 9.70118484e+001 - 1.10610939e+002 1.20811951e+002 9.69951248e+001 1.10589195e+002 - 1.20828400e+002 9.69598923e+001 1.10557724e+002 1.20822441e+002 - 9.69208679e+001 1.10510391e+002 1.20813866e+002 9.68848267e+001 - 1.10490509e+002 1.20820404e+002 9.68900070e+001 1.10464035e+002 - 1.20856712e+002 9.68656769e+001 1.10444977e+002 1.20865379e+002 - 9.68453903e+001 1.10422760e+002 1.20876190e+002 9.68025894e+001 - 1.10393341e+002 1.20856613e+002 9.67873917e+001 1.10351540e+002 - 1.20858994e+002 9.67818680e+001 1.10350311e+002 1.20872635e+002 - 9.67402420e+001 1.10307266e+002 1.20875710e+002 9.67083435e+001 - 1.10298691e+002 1.20885612e+002 9.66841431e+001 1.10263359e+002 - 1.20885132e+002 9.66677017e+001 1.10252480e+002 1.20890594e+002 - 9.66516037e+001 1.10220505e+002 1.20895500e+002 9.66328354e+001 - 1.10213356e+002 1.20904755e+002 9.66118011e+001 1.10191170e+002 - 1.20910500e+002 9.65886917e+001 1.10171875e+002 1.20910446e+002 - 9.65827408e+001 1.10159378e+002 1.20930519e+002 9.65332108e+001 - 1.10113434e+002 1.20911461e+002 9.65257111e+001 1.10070610e+002 - 1.20914223e+002 9.64941101e+001 1.10049103e+002 1.20905029e+002 - 9.64602814e+001 1.10016029e+002 1.20896103e+002 9.64675446e+001 - 1.10039124e+002 1.20918015e+002 9.64909821e+001 1.10051064e+002 - 1.20955505e+002 9.64677200e+001 1.10032059e+002 1.20935150e+002 - 9.64649658e+001 1.10014397e+002 1.20943619e+002 9.64263916e+001 - 1.09994614e+002 1.20929367e+002 9.64253540e+001 1.09970413e+002 - 1.20935555e+002 9.64025421e+001 1.09952843e+002 1.20921974e+002 - 9.64246063e+001 1.09958588e+002 1.20948593e+002 9.64271851e+001 - 1.09968529e+002 1.20959328e+002 9.64193268e+001 1.09959831e+002 - 1.20975281e+002 9.64108963e+001 1.09961533e+002 1.20970146e+002 - 9.64036942e+001 1.09950264e+002 1.20976616e+002 9.63775635e+001 - 1.09940414e+002 1.20968544e+002 9.63862457e+001 1.09923691e+002 - 1.20982224e+002 9.63646927e+001 1.09918121e+002 1.20974304e+002 - 9.63794250e+001 1.09931000e+002 1.20991539e+002 9.63611374e+001 - 1.09931061e+002 1.20978516e+002 9.63538284e+001 1.09913361e+002 - 1.20970131e+002 9.63654556e+001 1.09922394e+002 1.20961967e+002 - 9.63840561e+001 1.09932396e+002 1.20978897e+002 9.63818207e+001 - 1.09945396e+002 1.20982910e+002 9.63771515e+001 1.09936790e+002 - 1.20979424e+002 9.63775711e+001 1.09945869e+002 1.20980888e+002 - 9.63856125e+001 1.09936867e+002 1.20989761e+002 9.63742981e+001 - 1.09941185e+002 1.20980301e+002 9.63791504e+001 1.09941277e+002 - 1.20986633e+002 9.63663025e+001 1.09937752e+002 1.20975456e+002 - 9.63741226e+001 1.09927376e+002 1.20966888e+002 9.63839645e+001 - 1.09946861e+002 1.20974602e+002 9.64064636e+001 1.09947617e+002 - 1.20989891e+002 9.64206696e+001 1.09976242e+002 1.21003143e+002 - 9.64215240e+001 1.09969696e+002 1.20987389e+002 9.64105835e+001 - 1.09974579e+002 1.20971382e+002 9.64566803e+001 1.10003021e+002 - 1.20996384e+002 9.64635849e+001 1.10011398e+002 1.20974976e+002 - 9.64588623e+001 1.09998085e+002 1.20944260e+002 9.64137497e+001 - 1.09973358e+002 1.20888206e+002 9.64529419e+001 1.09995811e+002 - 1.20906113e+002 9.64786987e+001 1.10032501e+002 1.20919640e+002 - 9.64756012e+001 1.10014923e+002 1.20892166e+002 9.64462509e+001 - 1.09999084e+002 1.20858345e+002 9.64961853e+001 1.10039337e+002 - 1.20879791e+002 9.65028992e+001 1.10059608e+002 1.20866600e+002 - 9.65164948e+001 1.10068138e+002 1.20853539e+002 9.65394363e+001 - 1.10106636e+002 1.20859596e+002 9.65935974e+001 1.10135399e+002 - 1.20882538e+002 9.65881271e+001 1.10144043e+002 1.20851807e+002 - 9.65798416e+001 1.10132736e+002 1.20820381e+002 9.65953522e+001 - 1.10165108e+002 1.20809677e+002 9.66347122e+001 1.10187263e+002 - 1.20826050e+002 9.66501770e+001 1.10202698e+002 1.20799011e+002 - 9.66548767e+001 1.10205658e+002 1.20764061e+002 9.66535950e+001 - 1.10230850e+002 1.20734344e+002 9.67038727e+001 1.10267891e+002 - 1.20751816e+002 9.67380905e+001 1.10310326e+002 1.20756462e+002 - 9.67676392e+001 1.10325584e+002 1.20744553e+002 9.67537766e+001 - 1.10328369e+002 1.20696297e+002 9.67751083e+001 1.10342812e+002 - 1.20682434e+002 9.67878036e+001 1.10368935e+002 1.20659592e+002 - 9.67991333e+001 1.10375191e+002 1.20637024e+002 9.68193359e+001 - 1.10406776e+002 1.20620926e+002 9.68991089e+001 1.10456528e+002 - 1.20644829e+002 9.69101028e+001 1.10484322e+002 1.20625374e+002 - 9.69802094e+001 1.10550255e+002 1.20653259e+002 9.69740143e+001 - 1.10566345e+002 1.20617767e+002 9.70191345e+001 1.10599579e+002 - 1.20625534e+002 9.70659332e+001 1.10651527e+002 1.20625107e+002 - 9.71017609e+001 1.10684334e+002 1.20613060e+002 9.71208572e+001 - 1.10726463e+002 1.20605087e+002 9.71689148e+001 1.10765701e+002 - 1.20616882e+002 9.72122116e+001 1.10823898e+002 1.20630043e+002 - 9.72555237e+001 1.10845551e+002 1.20620911e+002 9.72883987e+001 - 1.10898178e+002 1.20609940e+002 9.73238297e+001 1.10923019e+002 - 1.20594536e+002 9.73663940e+001 1.10978317e+002 1.20584106e+002 - 9.74032822e+001 1.11013283e+002 1.20580925e+002 9.74432068e+001 - 1.11069450e+002 1.20583710e+002 9.75157089e+001 1.11112320e+002 - 1.20596924e+002 9.75524673e+001 1.11164001e+002 1.20594376e+002 - 9.75808563e+001 1.11186005e+002 1.20571297e+002 9.76206970e+001 - 1.11243416e+002 1.20571411e+002 9.77075806e+001 1.11308853e+002 - 1.20607887e+002 9.77547836e+001 1.11357933e+002 1.20589767e+002 - 9.78173294e+001 1.11407204e+002 1.20573929e+002 9.78455048e+001 - 1.11454781e+002 1.20556747e+002 9.79015121e+001 1.11494247e+002 - 1.20564911e+002 9.80009308e+001 1.11611755e+002 1.20617516e+002 - 9.80830841e+001 1.11683060e+002 1.20638245e+002 9.81195145e+001 - 1.11741135e+002 1.20628960e+002 9.81899872e+001 1.11797493e+002 - 1.20639259e+002 9.82397614e+001 1.11869995e+002 1.20636734e+002 - 9.82951584e+001 1.11912918e+002 1.20637337e+002 9.83382187e+001 - 1.11973335e+002 1.20626656e+002 9.84403076e+001 1.12042320e+002 - 1.20648529e+002 9.85307312e+001 1.12140747e+002 1.20678337e+002 - 9.86035614e+001 1.12205162e+002 1.20687599e+002 9.86172791e+001 - 1.12234512e+002 1.20650261e+002 9.86788635e+001 1.12275635e+002 - 1.20662415e+002 9.87372437e+001 1.12343620e+002 1.20652000e+002 - 9.88335953e+001 1.12419632e+002 1.20661461e+002 9.88950653e+001 - 1.12505653e+002 1.20681000e+002 9.89822693e+001 1.12566719e+002 - 1.20701614e+002 9.90571976e+001 1.12646683e+002 1.20723953e+002 - 9.91434937e+001 1.12715294e+002 1.20742592e+002 9.92183075e+001 - 1.12802788e+002 1.20756737e+002 9.93033905e+001 1.12881920e+002 - 1.20780106e+002 9.93645096e+001 1.12956192e+002 1.20779846e+002 - 9.94428406e+001 1.13021553e+002 1.20787727e+002 9.95285263e+001 - 1.13116409e+002 1.20815483e+002 9.96584167e+001 1.13203773e+002 - 1.20858032e+002 9.97313004e+001 1.13278595e+002 1.20865791e+002 - 9.98279495e+001 1.13363045e+002 1.20890053e+002 9.99246750e+001 - 1.13468475e+002 1.20934265e+002 1.00042915e+002 1.13565109e+002 - 1.20989891e+002 1.00149216e+002 1.13669098e+002 1.21006172e+002 - 1.00270744e+002 1.13761490e+002 1.21020027e+002 1.00352264e+002 - 1.13852150e+002 1.21033623e+002 1.00469513e+002 1.13934784e+002 - 1.21071762e+002 1.00561310e+002 1.14026703e+002 1.21100929e+002 - 1.00673058e+002 1.14104080e+002 1.21133072e+002 1.00760422e+002 - 1.14197983e+002 1.21159019e+002 1.00892136e+002 1.14302139e+002 - 1.21210854e+002 1.00990822e+002 1.14392090e+002 1.21242363e+002 - 1.01095276e+002 1.14464699e+002 1.21262306e+002 1.01194366e+002 - 1.14560654e+002 1.21302658e+002 1.01330864e+002 1.14645164e+002 - 1.21340858e+002 1.01415016e+002 1.14716995e+002 1.21346840e+002 - 1.01528084e+002 1.14796097e+002 1.21369858e+002 1.01571655e+002 - 1.14836815e+002 1.21352386e+002 1.01638748e+002 1.14859314e+002 - 1.21340591e+002 1.01614914e+002 1.14817001e+002 1.21240982e+002 - 1.01604454e+002 1.14822365e+002 1.21286148e+002 1.01596779e+002 - 1.14860893e+002 1.21352486e+002 1.01579926e+002 1.14854271e+002 - 1.21408623e+002 1.01528053e+002 1.14836090e+002 1.21433037e+002 - 1.01428650e+002 1.14753716e+002 1.21424141e+002 1.01332352e+002 - 1.14695557e+002 1.21411018e+002 1.01229355e+002 1.14614677e+002 - 1.21397720e+002 1.01105141e+002 1.14520462e+002 1.21342270e+002 - 1.01005493e+002 1.14433205e+002 1.21318626e+002 1.00882202e+002 - 1.14342712e+002 1.21271011e+002 1.00805595e+002 1.14258804e+002 - 1.21269836e+002 1.00731094e+002 1.14198021e+002 1.21268562e+002 - 1.00603600e+002 1.14080742e+002 1.21216057e+002 1.00483963e+002 - 1.13987900e+002 1.21171112e+002 1.00414284e+002 1.13910919e+002 - 1.21158539e+002 1.00314140e+002 1.13829803e+002 1.21129723e+002 - 1.00196312e+002 1.13730309e+002 1.21121857e+002 1.00060349e+002 - 1.13626892e+002 1.21072426e+002 9.99773407e+001 1.13545700e+002 - 1.21042740e+002 9.99029007e+001 1.13482300e+002 1.21027580e+002 - 9.98147202e+001 1.13384499e+002 1.21002777e+002 9.96952591e+001 - 1.13277420e+002 1.20940399e+002 9.95877686e+001 1.13179871e+002 - 1.20911034e+002 9.94946136e+001 1.13091515e+002 1.20873573e+002 - 9.94081116e+001 1.13001312e+002 1.20849632e+002 9.93254700e+001 - 1.12931023e+002 1.20840042e+002 9.92762146e+001 1.12860077e+002 - 1.20863831e+002 9.91921997e+001 1.12789001e+002 1.20846771e+002 - 9.90787888e+001 1.12670914e+002 1.20797852e+002 9.89785614e+001 - 1.12588188e+002 1.20756691e+002 9.89344635e+001 1.12528015e+002 - 1.20762497e+002 9.88557053e+001 1.12469719e+002 1.20738953e+002 - 9.87627335e+001 1.12385544e+002 1.20747597e+002 9.86524734e+001 - 1.12305359e+002 1.20711769e+002 9.85951996e+001 1.12229401e+002 - 1.20706413e+002 9.85311127e+001 1.12175049e+002 1.20696304e+002 - 9.84720154e+001 1.12099693e+002 1.20706314e+002 9.83876114e+001 - 1.12030342e+002 1.20693314e+002 9.83203583e+001 1.11963882e+002 - 1.20691971e+002 9.82820435e+001 1.11938042e+002 1.20701180e+002 - 9.82425156e+001 1.11892693e+002 1.20717789e+002 9.81590195e+001 - 1.11818367e+002 1.20689011e+002 9.81203384e+001 1.11751366e+002 - 1.20701225e+002 9.80533447e+001 1.11698311e+002 1.20691864e+002 - 9.79976273e+001 1.11635559e+002 1.20685341e+002 9.79430618e+001 - 1.11596550e+002 1.20682205e+002 9.79199448e+001 1.11560211e+002 - 1.20709808e+002 9.78751755e+001 1.11525215e+002 1.20709923e+002 - 9.78096390e+001 1.11459351e+002 1.20723671e+002 9.77244644e+001 - 1.11392731e+002 1.20703148e+002 9.76868210e+001 1.11338966e+002 - 1.20710335e+002 9.76252441e+001 1.11285110e+002 1.20689186e+002 - 9.75978775e+001 1.11236496e+002 1.20717751e+002 9.75275345e+001 - 1.11173462e+002 1.20686417e+002 9.74684067e+001 1.11107140e+002 - 1.20672951e+002 9.74265518e+001 1.11064354e+002 1.20658119e+002 - 9.73791809e+001 1.11003922e+002 1.20655922e+002 9.73155518e+001 - 1.10951118e+002 1.20636063e+002 9.73050308e+001 1.10902702e+002 - 1.20659393e+002 9.72864532e+001 1.10897057e+002 1.20682419e+002 - 9.72429199e+001 1.10850113e+002 1.20691185e+002 9.71961670e+001 - 1.10815643e+002 1.20682594e+002 9.71454849e+001 1.10749954e+002 - 1.20667892e+002 9.70975571e+001 1.10713249e+002 1.20651100e+002 - 9.70817337e+001 1.10689430e+002 1.20687325e+002 9.70213394e+001 - 1.10654190e+002 1.20677383e+002 9.70184097e+001 1.10630371e+002 - 1.20700600e+002 9.70108032e+001 1.10631531e+002 1.20726456e+002 - 9.69980545e+001 1.10594917e+002 1.20747612e+002 9.69390945e+001 - 1.10547523e+002 1.20721375e+002 9.69275742e+001 1.10528549e+002 - 1.20747726e+002 9.68852463e+001 1.10494324e+002 1.20733772e+002 - 9.68689499e+001 1.10465622e+002 1.20751282e+002 9.68505936e+001 - 1.10465370e+002 1.20771690e+002 9.68657761e+001 1.10442940e+002 - 1.20815598e+002 9.68352203e+001 1.10423401e+002 1.20810677e+002 - 9.68135223e+001 1.10393951e+002 1.20817612e+002 9.67619476e+001 - 1.10352463e+002 1.20790207e+002 9.67680206e+001 1.10336075e+002 - 1.20816788e+002 9.67504425e+001 1.10328125e+002 1.20824638e+002 - 9.66735153e+001 1.10251244e+002 1.20797165e+002 9.66440887e+001 - 1.10244911e+002 1.20808693e+002 9.66553497e+001 1.10240303e+002 - 1.20843674e+002 9.66486969e+001 1.10242714e+002 1.20854538e+002 - 9.66356354e+001 1.10210228e+002 1.20865891e+002 9.65997238e+001 - 1.10192711e+002 1.20860107e+002 9.65645599e+001 1.10148697e+002 - 1.20853676e+002 9.65423203e+001 1.10132660e+002 1.20851463e+002 - 9.65518799e+001 1.10132729e+002 1.20886108e+002 9.64894562e+001 - 1.10081673e+002 1.20847969e+002 9.64848785e+001 1.10042030e+002 - 1.20861755e+002 9.64669724e+001 1.10030067e+002 1.20863358e+002 - 9.64354095e+001 1.10000832e+002 1.20851616e+002 9.64458618e+001 - 1.10030106e+002 1.20879402e+002 9.64619446e+001 1.10026512e+002 - 1.20910187e+002 9.64362793e+001 1.10008202e+002 1.20888268e+002 - 9.64394760e+001 1.10000038e+002 1.20905769e+002 9.63751297e+001 - 1.09953217e+002 1.20865494e+002 9.63719330e+001 1.09923264e+002 - 1.20864906e+002 9.63848419e+001 1.09948105e+002 1.20886810e+002 - 9.64068680e+001 1.09942787e+002 1.20912621e+002 9.63726501e+001 - 1.09924530e+002 1.20890793e+002 9.63365555e+001 1.09891319e+002 - 1.20877327e+002 9.63519897e+001 1.09916122e+002 1.20893211e+002 - 9.63627548e+001 1.09921753e+002 1.20918465e+002 9.63209839e+001 - 1.09898499e+002 1.20892265e+002 9.63322906e+001 1.09875587e+002 - 1.20908142e+002 9.63127289e+001 1.09877785e+002 1.20901733e+002 - 9.63402939e+001 1.09902420e+002 1.20933357e+002 9.62931747e+001 - 1.09871513e+002 1.20889778e+002 9.62892838e+001 1.09846771e+002 - 1.20882263e+002 9.63194351e+001 1.09882782e+002 1.20904541e+002 - 9.63438339e+001 1.09902611e+002 1.20926422e+002 9.63156662e+001 - 1.09894455e+002 1.20909241e+002 9.63268204e+001 1.09892067e+002 - 1.20918854e+002 9.63207016e+001 1.09901749e+002 1.20917168e+002 - 9.63346100e+001 1.09896812e+002 1.20931328e+002 9.63102112e+001 - 1.09887589e+002 1.20907478e+002 9.63109436e+001 1.09880905e+002 - 1.20907639e+002 9.63208237e+001 1.09902084e+002 1.20916916e+002 - 9.63178635e+001 1.09882492e+002 1.20904320e+002 9.63344879e+001 - 1.09915062e+002 1.20923813e+002 9.63653564e+001 1.09917007e+002 - 1.20939598e+002 9.63750534e+001 1.09944633e+002 1.20946442e+002 - 9.63842163e+001 1.09941841e+002 1.20940170e+002 9.63684845e+001 - 1.09940636e+002 1.20913521e+002 9.63933182e+001 1.09948029e+002 - 1.20924210e+002 9.64057159e+001 1.09969002e+002 1.20908653e+002 - 9.64071808e+001 1.09951294e+002 1.20880699e+002 9.63775635e+001 - 1.09945549e+002 1.20840912e+002 9.64015198e+001 1.09949303e+002 - 1.20843246e+002 9.64202118e+001 1.09984787e+002 1.20847694e+002 - 9.64266205e+001 1.09970612e+002 1.20831047e+002 9.63849869e+001 - 1.09946083e+002 1.20777573e+002 9.64199066e+001 1.09970001e+002 - 1.20790443e+002 9.64662552e+001 1.10036186e+002 1.20814461e+002 - 9.64753494e+001 1.10041672e+002 1.20805595e+002 9.64759827e+001 - 1.10053673e+002 1.20783806e+002 9.65222244e+001 1.10077560e+002 - 1.20802338e+002 9.65222855e+001 1.10095062e+002 1.20781532e+002 - 9.65406265e+001 1.10104477e+002 1.20770576e+002 9.65510330e+001 - 1.10131836e+002 1.20755287e+002 9.65976563e+001 1.10163651e+002 - 1.20780540e+002 9.66195145e+001 1.10190300e+002 1.20763184e+002 - 9.66263657e+001 1.10195518e+002 1.20730453e+002 9.66177521e+001 - 1.10209770e+002 1.20702148e+002 9.66489944e+001 1.10225304e+002 - 1.20690910e+002 9.66848526e+001 1.10279579e+002 1.20704971e+002 - 9.67183228e+001 1.10290970e+002 1.20699951e+002 9.67080307e+001 - 1.10302193e+002 1.20657104e+002 9.67150421e+001 1.10301895e+002 - 1.20626106e+002 9.67171707e+001 1.10318291e+002 1.20596947e+002 - 9.67544327e+001 1.10342796e+002 1.20594421e+002 9.67755890e+001 - 1.10382111e+002 1.20583496e+002 9.68389740e+001 1.10408035e+002 - 1.20590469e+002 9.68649750e+001 1.10449348e+002 1.20575432e+002 - 9.69159775e+001 1.10496521e+002 1.20587006e+002 9.69241562e+001 - 1.10526306e+002 1.20563675e+002 9.69502106e+001 1.10539284e+002 - 1.20551239e+002 9.70073318e+001 1.10602364e+002 1.20554695e+002 - 9.70467072e+001 1.10635368e+002 1.20553322e+002 9.70563736e+001 - 1.10672035e+002 1.20534782e+002 9.71129913e+001 1.10712059e+002 - 1.20550865e+002 9.71580811e+001 1.10777786e+002 1.20563843e+002 - 9.72088776e+001 1.10804451e+002 1.20564056e+002 9.72417603e+001 - 1.10856567e+002 1.20556831e+002 9.72831879e+001 1.10890320e+002 - 1.20548729e+002 9.73146820e+001 1.10937080e+002 1.20535812e+002 - 9.73460693e+001 1.10967827e+002 1.20520668e+002 9.73854294e+001 - 1.11022728e+002 1.20526588e+002 9.74744949e+001 1.11082695e+002 - 1.20553978e+002 9.74961624e+001 1.11113373e+002 1.20531097e+002 - 9.75355759e+001 1.11152786e+002 1.20522881e+002 9.75659103e+001 - 1.11193855e+002 1.20511635e+002 9.76509018e+001 1.11263535e+002 - 1.20553474e+002 9.77290878e+001 1.11342575e+002 1.20560966e+002 - 9.77778625e+001 1.11373169e+002 1.20526176e+002 9.77824173e+001 - 1.11398247e+002 1.20492355e+002 9.78414917e+001 1.11442505e+002 - 1.20497253e+002 9.79554672e+001 1.11571815e+002 1.20565666e+002 - 9.80590363e+001 1.11667450e+002 1.20611633e+002 9.80992813e+001 - 1.11723877e+002 1.20606079e+002 9.81520462e+001 1.11771721e+002 - 1.20602028e+002 9.82150726e+001 1.11851585e+002 1.20608284e+002 - 9.82679291e+001 1.11894257e+002 1.20602119e+002 9.82826920e+001 - 1.11925827e+002 1.20562157e+002 9.83822556e+001 1.11992752e+002 - 1.20584137e+002 9.84564590e+001 1.12077438e+002 1.20601494e+002 - 9.85399094e+001 1.12147736e+002 1.20612808e+002 9.85632553e+001 - 1.12187553e+002 1.20588615e+002 9.86321182e+001 1.12235497e+002 - 1.20607635e+002 9.87146759e+001 1.12323013e+002 1.20620667e+002 - 9.87867508e+001 1.12382561e+002 1.20617302e+002 9.88617554e+001 - 1.12475479e+002 1.20637749e+002 9.89451447e+001 1.12535301e+002 - 1.20656929e+002 9.90193024e+001 1.12619949e+002 1.20683380e+002 - 9.91048126e+001 1.12684303e+002 1.20700752e+002 9.91628113e+001 - 1.12758698e+002 1.20704041e+002 9.92603455e+001 1.12846062e+002 - 1.20732384e+002 9.93356247e+001 1.12933632e+002 1.20749481e+002 - 9.94124527e+001 1.13000359e+002 1.20757225e+002 9.94833755e+001 - 1.13078255e+002 1.20771027e+002 9.96260452e+001 1.13172218e+002 - 1.20823418e+002 9.96979752e+001 1.13259148e+002 1.20834023e+002 - 9.97840271e+001 1.13322479e+002 1.20843384e+002 9.98801270e+001 - 1.13427094e+002 1.20881500e+002 1.00005493e+002 1.13529655e+002 - 1.20947968e+002 1.00096420e+002 1.13619736e+002 1.20957809e+002 - 1.00235489e+002 1.13731232e+002 1.20987267e+002 1.00311577e+002 - 1.13816368e+002 1.20991287e+002 1.00426872e+002 1.13896935e+002 - 1.21034035e+002 1.00523102e+002 1.13992058e+002 1.21059738e+002 - 1.00625778e+002 1.14064217e+002 1.21088814e+002 1.00707108e+002 - 1.14144753e+002 1.21102737e+002 1.00834473e+002 1.14246910e+002 - 1.21150047e+002 1.00943245e+002 1.14349594e+002 1.21192978e+002 - 1.01051529e+002 1.14422775e+002 1.21221962e+002 1.01162910e+002 - 1.14529732e+002 1.21264603e+002 1.01299187e+002 1.14608757e+002 - 1.21308289e+002 1.01382156e+002 1.14685524e+002 1.21315903e+002 - 1.01485748e+002 1.14752174e+002 1.21331337e+002 1.01531616e+002 - 1.14799507e+002 1.21306129e+002 1.01578987e+002 1.14798149e+002 - 1.21279274e+002 1.01560455e+002 1.14770096e+002 1.21184189e+002 - 1.01537354e+002 1.14772896e+002 1.21228096e+002 1.01533134e+002 - 1.14810936e+002 1.21300941e+002 1.01515678e+002 1.14805939e+002 - 1.21354897e+002 1.01456024e+002 1.14778801e+002 1.21372665e+002 - 1.01367584e+002 1.14711449e+002 1.21372681e+002 1.01265732e+002 - 1.14642029e+002 1.21355057e+002 1.01141159e+002 1.14542915e+002 - 1.21323158e+002 1.01006645e+002 1.14438713e+002 1.21257843e+002 - 1.00921898e+002 1.14369080e+002 1.21248169e+002 1.00817375e+002 - 1.14293648e+002 1.21219681e+002 1.00747833e+002 1.14216812e+002 - 1.21223564e+002 1.00670654e+002 1.14157631e+002 1.21224167e+002 - 1.00563797e+002 1.14057770e+002 1.21190559e+002 1.00439789e+002 - 1.13958611e+002 1.21134972e+002 1.00354523e+002 1.13866936e+002 - 1.21111145e+002 1.00266838e+002 1.13802795e+002 1.21094482e+002 - 1.00134338e+002 1.13678757e+002 1.21065971e+002 9.99887085e+001 - 1.13577347e+002 1.21007271e+002 9.99206238e+001 1.13501480e+002 - 1.20995087e+002 9.98297577e+001 1.13431679e+002 1.20963249e+002 - 9.97375183e+001 1.13322166e+002 1.20929420e+002 9.96297379e+001 - 1.13239319e+002 1.20886696e+002 9.95419159e+001 1.13142990e+002 - 1.20863464e+002 9.94474945e+001 1.13062576e+002 1.20827286e+002 - 9.93629913e+001 1.12976273e+002 1.20807732e+002 9.92690277e+001 - 1.12887978e+002 1.20778511e+002 9.92119446e+001 1.12806374e+002 - 1.20789734e+002 9.91304016e+001 1.12744194e+002 1.20785149e+002 - 9.90367737e+001 1.12643997e+002 1.20752731e+002 9.89430313e+001 - 1.12569054e+002 1.20719810e+002 9.88864212e+001 1.12499916e+002 - 1.20717026e+002 9.87924957e+001 1.12415619e+002 1.20674805e+002 - 9.87141266e+001 1.12341988e+002 1.20689255e+002 9.86113281e+001 - 1.12271751e+002 1.20667168e+002 9.85634460e+001 1.12206474e+002 - 1.20667168e+002 9.84987106e+001 1.12154823e+002 1.20663086e+002 - 9.84180450e+001 1.12065552e+002 1.20651649e+002 9.83460312e+001 - 1.12005096e+002 1.20640434e+002 9.82784271e+001 1.11938942e+002 - 1.20642647e+002 9.82421494e+001 1.11915123e+002 1.20657532e+002 - 9.82056351e+001 1.11868668e+002 1.20669434e+002 9.81265106e+001 - 1.11802277e+002 1.20647400e+002 9.80701828e+001 1.11718018e+002 - 1.20648148e+002 9.80067978e+001 1.11662254e+002 1.20641960e+002 - 9.79523392e+001 1.11601265e+002 1.20635086e+002 9.78848267e+001 - 1.11548607e+002 1.20618027e+002 9.78759384e+001 1.11525154e+002 - 1.20645981e+002 9.78171234e+001 1.11478600e+002 1.20641205e+002 - 9.77450943e+001 1.11403168e+002 1.20642632e+002 9.76505661e+001 - 1.11335045e+002 1.20615494e+002 9.76187973e+001 1.11287483e+002 - 1.20625534e+002 9.75756226e+001 1.11247993e+002 1.20626732e+002 - 9.75447617e+001 1.11199188e+002 1.20648254e+002 9.74776001e+001 - 1.11140869e+002 1.20627159e+002 9.74057770e+001 1.11059731e+002 - 1.20600044e+002 9.73598251e+001 1.11015999e+002 1.20586754e+002 - 9.73173447e+001 1.10958748e+002 1.20581635e+002 9.72474747e+001 - 1.10896202e+002 1.20549339e+002 9.72270126e+001 1.10838356e+002 - 1.20570511e+002 9.72244720e+001 1.10842117e+002 1.20611961e+002 - 9.71641159e+001 1.10776749e+002 1.20595047e+002 9.71229095e+001 - 1.10753487e+002 1.20598694e+002 9.70946350e+001 1.10711060e+002 - 1.20605049e+002 9.70531082e+001 1.10675446e+002 1.20597382e+002 - 9.70235825e+001 1.10647972e+002 1.20619965e+002 9.69634933e+001 - 1.10612190e+002 1.20611099e+002 9.69557114e+001 1.10581894e+002 - 1.20629242e+002 9.69604263e+001 1.10598038e+002 1.20666397e+002 - 9.69479065e+001 1.10561111e+002 1.20682457e+002 9.69118195e+001 - 1.10530548e+002 1.20680923e+002 9.68697357e+001 1.10485168e+002 - 1.20675964e+002 9.68186493e+001 1.10443428e+002 1.20657692e+002 - 9.68097687e+001 1.10427254e+002 1.20677773e+002 9.67884827e+001 - 1.10416801e+002 1.20694298e+002 9.68085709e+001 1.10404991e+002 - 1.20740494e+002 9.67848816e+001 1.10389656e+002 1.20747612e+002 - 9.67352142e+001 1.10330070e+002 1.20721138e+002 9.67000809e+001 - 1.10308380e+002 1.20712830e+002 9.67044144e+001 1.10287796e+002 - 1.20738068e+002 9.66733627e+001 1.10270203e+002 1.20733360e+002 - 9.66159592e+001 1.10209419e+002 1.20724495e+002 9.65904846e+001 - 1.10213425e+002 1.20742363e+002 9.66048889e+001 1.10207092e+002 - 1.20770752e+002 9.65833282e+001 1.10192924e+002 1.20772774e+002 - 9.65822525e+001 1.10175476e+002 1.20795670e+002 9.65400162e+001 - 1.10145874e+002 1.20782127e+002 9.65034409e+001 1.10100456e+002 - 1.20779503e+002 9.64763260e+001 1.10082062e+002 1.20772003e+002 - 9.64843979e+001 1.10077179e+002 1.20804512e+002 9.64362793e+001 - 1.10047768e+002 1.20783836e+002 9.64236603e+001 1.09997498e+002 - 1.20789635e+002 9.64203796e+001 1.10005707e+002 1.20808441e+002 - 9.64095764e+001 1.09990494e+002 1.20805695e+002 9.64091492e+001 - 1.10004395e+002 1.20823715e+002 9.63962097e+001 1.09976456e+002 - 1.20822708e+002 9.63967972e+001 1.09976952e+002 1.20820435e+002 - 9.64118423e+001 1.09982536e+002 1.20862320e+002 9.63337402e+001 - 1.09926102e+002 1.20805382e+002 9.63273849e+001 1.09900223e+002 - 1.20812653e+002 9.63408661e+001 1.09920822e+002 1.20827599e+002 - 9.63305435e+001 1.09888138e+002 1.20824913e+002 9.62868652e+001 - 1.09857750e+002 1.20797417e+002 9.62792282e+001 1.09845802e+002 - 1.20802284e+002 9.62703247e+001 1.09847572e+002 1.20794792e+002 - 9.62826080e+001 1.09851318e+002 1.20818558e+002 9.62557755e+001 - 1.09840706e+002 1.20807808e+002 9.62706680e+001 1.09830704e+002 - 1.20826263e+002 9.62546921e+001 1.09831772e+002 1.20829163e+002 - 9.62521667e+001 1.09823410e+002 1.20823975e+002 9.62218933e+001 - 1.09812828e+002 1.20801834e+002 9.62268906e+001 1.09804115e+002 - 1.20806694e+002 9.62639084e+001 1.09841965e+002 1.20830360e+002 - 9.62826920e+001 1.09858330e+002 1.20852242e+002 9.62418747e+001 - 1.09841042e+002 1.20825691e+002 9.62617416e+001 1.09842339e+002 - 1.20842278e+002 9.62498779e+001 1.09842804e+002 1.20837257e+002 - 9.62798843e+001 1.09854164e+002 1.20866798e+002 9.62750015e+001 - 1.09866905e+002 1.20862846e+002 9.62519913e+001 1.09845116e+002 - 1.20845108e+002 9.62591629e+001 1.09857712e+002 1.20846947e+002 - 9.62674789e+001 1.09855789e+002 1.20847359e+002 9.62610855e+001 - 1.09865791e+002 1.20843102e+002 9.63048859e+001 1.09872536e+002 - 1.20865044e+002 9.63128967e+001 1.09893570e+002 1.20869926e+002 - 9.63214798e+001 1.09894157e+002 1.20863808e+002 9.63255234e+001 - 1.09913376e+002 1.20856911e+002 9.63576355e+001 1.09930748e+002 - 1.20877304e+002 9.63612976e+001 1.09933693e+002 1.20849815e+002 - 9.63711395e+001 1.09928535e+002 1.20826492e+002 9.63492203e+001 - 1.09933380e+002 1.20799088e+002 9.63677750e+001 1.09936119e+002 - 1.20802734e+002 9.63694153e+001 1.09952789e+002 1.20789337e+002 - 9.63938065e+001 1.09958549e+002 1.20786125e+002 9.63769150e+001 - 1.09957848e+002 1.20763260e+002 9.63790817e+001 1.09957321e+002 - 1.20742012e+002 9.64013977e+001 1.09986748e+002 1.20737518e+002 - 9.64125671e+001 1.09992363e+002 1.20731400e+002 9.64102249e+001 - 1.10008690e+002 1.20711197e+002 9.64453278e+001 1.10019745e+002 - 1.20713226e+002 9.64747696e+001 1.10064827e+002 1.20723061e+002 - 9.64979324e+001 1.10081657e+002 1.20715050e+002 9.64947815e+001 - 1.10094849e+002 1.20689972e+002 9.65351410e+001 1.10124458e+002 - 1.20709358e+002 9.65499191e+001 1.10144753e+002 1.20688362e+002 - 9.65564804e+001 1.10145386e+002 1.20650574e+002 9.65417938e+001 - 1.10160675e+002 1.20620750e+002 9.65900269e+001 1.10187912e+002 - 1.20635666e+002 9.66281738e+001 1.10245857e+002 1.20645355e+002 - 9.66817474e+001 1.10275467e+002 1.20658142e+002 9.66730881e+001 - 1.10286011e+002 1.20625946e+002 9.66762390e+001 1.10289948e+002 - 1.20592003e+002 9.66714630e+001 1.10292305e+002 1.20548668e+002 - 9.67133026e+001 1.10326302e+002 1.20554237e+002 9.67103424e+001 - 1.10338791e+002 1.20517067e+002 9.67724380e+001 1.10365753e+002 - 1.20525101e+002 9.68092880e+001 1.10419655e+002 1.20526703e+002 - 9.68591766e+001 1.10455322e+002 1.20523331e+002 9.68667068e+001 - 1.10482544e+002 1.20494339e+002 9.69014969e+001 1.10502678e+002 - 1.20494370e+002 9.69538269e+001 1.10560173e+002 1.20500801e+002 - 9.70085220e+001 1.10609367e+002 1.20505157e+002 9.70173340e+001 - 1.10647072e+002 1.20487511e+002 9.70861816e+001 1.10703468e+002 - 1.20518555e+002 9.71134033e+001 1.10746613e+002 1.20519753e+002 - 9.71569977e+001 1.10771744e+002 1.20508705e+002 9.71776123e+001 - 1.10808350e+002 1.20489792e+002 9.72414551e+001 1.10871628e+002 - 1.20505882e+002 9.72692947e+001 1.10912079e+002 1.20487831e+002 - 9.73007431e+001 1.10947517e+002 1.20480850e+002 9.73341293e+001 - 1.10992371e+002 1.20474663e+002 9.74045105e+001 1.11036530e+002 - 1.20492668e+002 9.74645309e+001 1.11098755e+002 1.20501534e+002 - 9.75083008e+001 1.11137657e+002 1.20491997e+002 9.75358887e+001 - 1.11181892e+002 1.20477844e+002 9.76059647e+001 1.11231598e+002 - 1.20500175e+002 9.76689758e+001 1.11299110e+002 1.20499390e+002 - 9.77249527e+001 1.11339760e+002 1.20471077e+002 9.77377243e+001 - 1.11375870e+002 1.20442436e+002 9.78257751e+001 1.11443306e+002 - 1.20476730e+002 9.79136276e+001 1.11551186e+002 1.20524628e+002 - 9.80049744e+001 1.11627037e+002 1.20552315e+002 9.80443878e+001 - 1.11683189e+002 1.20542732e+002 9.81100006e+001 1.11743073e+002 - 1.20548141e+002 9.81816177e+001 1.11828178e+002 1.20568733e+002 - 9.82246017e+001 1.11867271e+002 1.20552361e+002 9.82765579e+001 - 1.11931747e+002 1.20557930e+002 9.83593140e+001 1.11982262e+002 - 1.20560440e+002 9.83896484e+001 1.12024429e+002 1.20529533e+002 - 9.84675522e+001 1.12090576e+002 1.20541008e+002 9.85182495e+001 - 1.12153992e+002 1.20546021e+002 9.85863342e+001 1.12210732e+002 - 1.20563980e+002 9.86530228e+001 1.12279434e+002 1.20562096e+002 - 9.87326202e+001 1.12340088e+002 1.20559982e+002 9.88184891e+001 - 1.12445740e+002 1.20592979e+002 9.89138260e+001 1.12513695e+002 - 1.20625175e+002 9.89880829e+001 1.12598755e+002 1.20647728e+002 - 9.90614090e+001 1.12657333e+002 1.20652458e+002 9.91120377e+001 - 1.12720482e+002 1.20646042e+002 9.92140274e+001 1.12815002e+002 - 1.20682533e+002 9.92726746e+001 1.12885612e+002 1.20687790e+002 - 9.93488998e+001 1.12953064e+002 1.20696892e+002 9.94225769e+001 - 1.13034058e+002 1.20715736e+002 9.95585251e+001 1.13125809e+002 - 1.20759766e+002 9.96462936e+001 1.13219490e+002 1.20788048e+002 - 9.97370987e+001 1.13287727e+002 1.20806541e+002 9.98329468e+001 - 1.13400810e+002 1.20839462e+002 9.99542313e+001 1.13499191e+002 - 1.20902054e+002 1.00056427e+002 1.13593781e+002 1.20921349e+002 - 1.00191360e+002 1.13690910e+002 1.20940575e+002 1.00269646e+002 - 1.13786491e+002 1.20951797e+002 1.00378616e+002 1.13856071e+002 - 1.20984154e+002 1.00469070e+002 1.13945122e+002 1.21005524e+002 - 1.00595825e+002 1.14044350e+002 1.21058014e+002 1.00689285e+002 - 1.14140373e+002 1.21091606e+002 1.00802849e+002 1.14230316e+002 - 1.21123245e+002 1.00888916e+002 1.14310928e+002 1.21135803e+002 - 1.00989510e+002 1.14374336e+002 1.21159325e+002 1.01108330e+002 - 1.14484909e+002 1.21208092e+002 1.01235764e+002 1.14558090e+002 - 1.21243607e+002 1.01334892e+002 1.14644524e+002 1.21265526e+002 - 1.01440147e+002 1.14717232e+002 1.21281059e+002 1.01486153e+002 - 1.14759285e+002 1.21257149e+002 1.01525513e+002 1.14756264e+002 - 1.21225700e+002 1.01519089e+002 1.14743034e+002 1.21150368e+002 - 1.01479462e+002 1.14728165e+002 1.21182152e+002 1.01474266e+002 - 1.14765640e+002 1.21248779e+002 1.01467049e+002 1.14766014e+002 - 1.21308884e+002 1.01394753e+002 1.14725266e+002 1.21310974e+002 - 1.01308487e+002 1.14657898e+002 1.21319855e+002 1.01206223e+002 - 1.14594810e+002 1.21300629e+002 1.01086807e+002 1.14490639e+002 - 1.21274689e+002 1.00936264e+002 1.14379257e+002 1.21195930e+002 - 1.00846886e+002 1.14301491e+002 1.21184952e+002 1.00761543e+002 - 1.14241539e+002 1.21172173e+002 1.00674088e+002 1.14150764e+002 - 1.21156784e+002 1.00595627e+002 1.14093803e+002 1.21154976e+002 - 1.00503189e+002 1.14004471e+002 1.21140068e+002 1.00363914e+002 - 1.13893394e+002 1.21070938e+002 1.00262489e+002 1.13790070e+002 - 1.21027359e+002 1.00176819e+002 1.13720131e+002 1.21009270e+002 - 1.00046326e+002 1.13609619e+002 1.20987701e+002 9.99215775e+001 - 1.13516914e+002 1.20943207e+002 9.98486252e+001 1.13441833e+002 - 1.20921165e+002 9.97418518e+001 1.13352493e+002 1.20876068e+002 - 9.96518860e+001 1.13250908e+002 1.20847816e+002 9.95451126e+001 - 1.13161224e+002 1.20799812e+002 9.94628448e+001 1.13080849e+002 - 1.20787178e+002 9.93919373e+001 1.13015610e+002 1.20773026e+002 - 9.93153687e+001 1.12931175e+002 1.20760551e+002 9.92248764e+001 - 1.12855141e+002 1.20732727e+002 9.91369247e+001 1.12742073e+002 - 1.20716316e+002 9.90499268e+001 1.12676445e+002 1.20698296e+002 - 9.89669876e+001 1.12583992e+002 1.20682884e+002 9.88843994e+001 - 1.12526367e+002 1.20662041e+002 9.88129578e+001 1.12441132e+002 - 1.20637123e+002 9.87417374e+001 1.12380753e+002 1.20627159e+002 - 9.86670227e+001 1.12303894e+002 1.20640419e+002 9.85674896e+001 - 1.12235336e+002 1.20619804e+002 9.84994812e+001 1.12156830e+002 - 1.20601715e+002 9.84254532e+001 1.12091667e+002 1.20587708e+002 - 9.83628998e+001 1.12017197e+002 1.20588554e+002 9.82890930e+001 - 1.11958786e+002 1.20581261e+002 9.82456741e+001 1.11914673e+002 - 1.20606789e+002 9.81784973e+001 1.11860100e+002 1.20585335e+002 - 9.81229782e+001 1.11793823e+002 1.20586754e+002 9.80657501e+001 - 1.11745415e+002 1.20581474e+002 9.80100327e+001 1.11663292e+002 - 1.20582962e+002 9.79483109e+001 1.11611382e+002 1.20573257e+002 - 9.78998032e+001 1.11559364e+002 1.20582100e+002 9.78277512e+001 - 1.11500893e+002 1.20555199e+002 9.77940140e+001 1.11458168e+002 - 1.20567986e+002 9.77259293e+001 1.11400742e+002 1.20543793e+002 - 9.76534042e+001 1.11323318e+002 1.20553276e+002 9.75814514e+001 - 1.11269798e+002 1.20540550e+002 9.75529022e+001 1.11230186e+002 - 1.20552437e+002 9.74923935e+001 1.11173103e+002 1.20535576e+002 - 9.74460526e+001 1.11106422e+002 1.20534492e+002 9.73781891e+001 - 1.11046982e+002 1.20512497e+002 9.73387146e+001 1.10994431e+002 - 1.20523788e+002 9.72967072e+001 1.10957802e+002 1.20510178e+002 - 9.72717285e+001 1.10919060e+002 1.20527359e+002 9.71734009e+001 - 1.10828178e+002 1.20469688e+002 9.71326752e+001 1.10753349e+002 - 1.20463760e+002 9.71156998e+001 1.10741158e+002 1.20489296e+002 - 9.70752716e+001 1.10698051e+002 1.20502258e+002 9.70306931e+001 - 1.10667953e+002 1.20499336e+002 9.70145111e+001 1.10638367e+002 - 1.20512238e+002 9.69894409e+001 1.10624649e+002 1.20521606e+002 - 9.69513626e+001 1.10588333e+002 1.20542320e+002 9.68959351e+001 - 1.10554230e+002 1.20533340e+002 9.68816223e+001 1.10522774e+002 - 1.20547905e+002 9.68702316e+001 1.10515617e+002 1.20571312e+002 - 9.68780441e+001 1.10503578e+002 1.20610794e+002 9.68478012e+001 - 1.10480331e+002 1.20610550e+002 9.68021393e+001 1.10426559e+002 - 1.20598236e+002 9.67664185e+001 1.10401909e+002 1.20586273e+002 - 9.67534714e+001 1.10373360e+002 1.20606140e+002 9.66906967e+001 - 1.10320908e+002 1.20582596e+002 9.67050781e+001 1.10311378e+002 - 1.20622139e+002 9.66853638e+001 1.10298050e+002 1.20631157e+002 - 9.66717529e+001 1.10277542e+002 1.20643494e+002 9.66426468e+001 - 1.10258102e+002 1.20642921e+002 9.66379242e+001 1.10243164e+002 - 1.20660805e+002 9.66126709e+001 1.10223267e+002 1.20660789e+002 - 9.65784607e+001 1.10181984e+002 1.20671379e+002 9.65085602e+001 - 1.10139580e+002 1.20647812e+002 9.65291824e+001 1.10142433e+002 - 1.20683868e+002 9.64970779e+001 1.10121361e+002 1.20671143e+002 - 9.65044861e+001 1.10110794e+002 1.20710396e+002 9.64525299e+001 - 1.10067024e+002 1.20681137e+002 9.64197540e+001 1.10030403e+002 - 1.20680023e+002 9.63827667e+001 1.09998924e+002 1.20665985e+002 - 9.63769608e+001 1.09983627e+002 1.20689964e+002 9.63581085e+001 - 1.09975807e+002 1.20699432e+002 9.63750534e+001 1.09966202e+002 - 1.20727676e+002 9.63752441e+001 1.09974457e+002 1.20743805e+002 - 9.63639679e+001 1.09954315e+002 1.20749496e+002 9.63325119e+001 - 1.09940323e+002 1.20734283e+002 9.63201370e+001 1.09915352e+002 - 1.20735023e+002 9.63174438e+001 1.09914009e+002 1.20734062e+002 - 9.63187256e+001 1.09908844e+002 1.20764359e+002 9.62478104e+001 - 1.09856140e+002 1.20722183e+002 9.62488327e+001 1.09835022e+002 - 1.20720398e+002 9.62278366e+001 1.09820320e+002 1.20706299e+002 - 9.62237320e+001 1.09792702e+002 1.20705177e+002 9.62162704e+001 - 1.09802567e+002 1.20714890e+002 9.62280121e+001 1.09811317e+002 - 1.20739258e+002 9.62113953e+001 1.09804337e+002 1.20723785e+002 - 9.62214355e+001 1.09808060e+002 1.20746284e+002 9.61967697e+001 - 1.09797119e+002 1.20734459e+002 9.62097092e+001 1.09786140e+002 - 1.20753792e+002 9.61914902e+001 1.09781334e+002 1.20749123e+002 - 9.61746368e+001 1.09756210e+002 1.20734200e+002 9.61556854e+001 - 1.09760330e+002 1.20719620e+002 9.61690598e+001 1.09754044e+002 - 1.20732788e+002 9.61774139e+001 1.09770058e+002 1.20730812e+002 - 9.61968460e+001 1.09775917e+002 1.20753571e+002 9.61671371e+001 - 1.09778549e+002 1.20739853e+002 9.61936951e+001 1.09783653e+002 - 1.20763649e+002 9.61800842e+001 1.09781036e+002 1.20749847e+002 - 9.61941986e+001 1.09776077e+002 1.20765091e+002 9.61855392e+001 - 1.09791878e+002 1.20766167e+002 9.61807251e+001 1.09779510e+002 - 1.20763718e+002 9.61915894e+001 1.09806252e+002 1.20765594e+002 - 9.61892929e+001 1.09788254e+002 1.20757874e+002 9.61900787e+001 - 1.09807251e+002 1.20760323e+002 9.62308884e+001 1.09816849e+002 - 1.20780144e+002 9.62422485e+001 1.09838654e+002 1.20786148e+002 - 9.62421494e+001 1.09828178e+002 1.20769638e+002 9.62238541e+001 - 1.09823807e+002 1.20741669e+002 9.62696457e+001 1.09856644e+002 - 1.20777832e+002 9.62913742e+001 1.09880157e+002 1.20774223e+002 - 9.62775116e+001 1.09845848e+002 1.20725990e+002 9.62742462e+001 - 1.09867004e+002 1.20714256e+002 9.62895126e+001 1.09869629e+002 - 1.20714981e+002 9.63053970e+001 1.09898827e+002 1.20713776e+002 - 9.63107681e+001 1.09888901e+002 1.20692848e+002 9.63026352e+001 - 1.09888802e+002 1.20671394e+002 9.63123856e+001 1.09898804e+002 - 1.20660454e+002 9.63382187e+001 1.09938164e+002 1.20664871e+002 - 9.63462372e+001 1.09938377e+002 1.20653572e+002 9.63458633e+001 - 1.09957314e+002 1.20638458e+002 9.63835602e+001 1.09970970e+002 - 1.20644241e+002 9.64234314e+001 1.10026375e+002 1.20657402e+002 - 9.64471970e+001 1.10041924e+002 1.20651772e+002 9.64437408e+001 - 1.10056870e+002 1.20631256e+002 9.64636383e+001 1.10065491e+002 - 1.20622139e+002 9.64858322e+001 1.10096207e+002 1.20615570e+002 - 9.64923706e+001 1.10099609e+002 1.20587059e+002 9.64719238e+001 - 1.10108299e+002 1.20546692e+002 9.65130157e+001 1.10130951e+002 - 1.20553413e+002 9.65551071e+001 1.10184967e+002 1.20568298e+002 - 9.65984344e+001 1.10209671e+002 1.20577515e+002 9.65766068e+001 - 1.10205925e+002 1.20526871e+002 9.65949173e+001 1.10219574e+002 - 1.20512138e+002 9.65954590e+001 1.10237122e+002 1.20478745e+002 - 9.66275024e+001 1.10259659e+002 1.20471901e+002 9.66579514e+001 - 1.10302162e+002 1.20468292e+002 9.67210007e+001 1.10335678e+002 - 1.20472488e+002 9.67511978e+001 1.10375969e+002 1.20464157e+002 - 9.68090210e+001 1.10419518e+002 1.20471001e+002 9.68142090e+001 - 1.10439644e+002 1.20439438e+002 9.68679352e+001 1.10476784e+002 - 1.20452995e+002 9.68957748e+001 1.10509796e+002 1.20431900e+002 - 9.69569626e+001 1.10567070e+002 1.20449242e+002 9.69692917e+001 - 1.10607544e+002 1.20430161e+002 9.70098267e+001 1.10637169e+002 - 1.20431046e+002 9.70334091e+001 1.10674080e+002 1.20423859e+002 - 9.70816650e+001 1.10701218e+002 1.20421196e+002 9.71094894e+001 - 1.10750847e+002 1.20416313e+002 9.71740494e+001 1.10815605e+002 - 1.20431808e+002 9.72175751e+001 1.10874947e+002 1.20433037e+002 - 9.72498322e+001 1.10905731e+002 1.20429565e+002 9.72793198e+001 - 1.10945908e+002 1.20415100e+002 9.73547974e+001 1.10998123e+002 - 1.20439819e+002 9.74010086e+001 1.11056534e+002 1.20437820e+002 - 9.74217758e+001 1.11067413e+002 1.20402977e+002 9.74627533e+001 - 1.11121223e+002 1.20397591e+002 9.75221176e+001 1.11166245e+002 - 1.20414528e+002 9.75822754e+001 1.11229279e+002 1.20414001e+002 - 9.76499481e+001 1.11280678e+002 1.20396706e+002 9.76816101e+001 - 1.11331909e+002 1.20382767e+002 9.77716751e+001 1.11403908e+002 - 1.20422630e+002 9.78718872e+001 1.11520660e+002 1.20479301e+002 - 9.79395142e+001 1.11570190e+002 1.20489693e+002 9.79764252e+001 - 1.11627838e+002 1.20475433e+002 9.80416489e+001 1.11687943e+002 - 1.20486946e+002 9.81290665e+001 1.11786530e+002 1.20512703e+002 - 9.81812592e+001 1.11831917e+002 1.20510124e+002 9.82215195e+001 - 1.11882545e+002 1.20498596e+002 9.83130493e+001 1.11946312e+002 - 1.20512001e+002 9.83558731e+001 1.12004585e+002 1.20502472e+002 - 9.84297485e+001 1.12061516e+002 1.20512077e+002 9.84733810e+001 - 1.12129433e+002 1.20510880e+002 9.85366135e+001 1.12176422e+002 - 1.20520691e+002 9.86134872e+001 1.12252930e+002 1.20526611e+002 - 9.86931839e+001 1.12307953e+002 1.20513809e+002 9.87604599e+001 - 1.12398010e+002 1.20530899e+002 9.88594589e+001 1.12470329e+002 - 1.20569763e+002 9.89101791e+001 1.12537872e+002 1.20569160e+002 - 9.89815521e+001 1.12586678e+002 1.20567764e+002 9.90488052e+001 - 1.12667603e+002 1.20580338e+002 9.91494522e+001 1.12760056e+002 - 1.20614059e+002 9.92087250e+001 1.12835487e+002 1.20619202e+002 - 9.93026047e+001 1.12914391e+002 1.20648811e+002 9.93722382e+001 - 1.12991653e+002 1.20661804e+002 9.95202866e+001 1.13098099e+002 - 1.20721474e+002 9.95995255e+001 1.13184067e+002 1.20741669e+002 - 9.96918488e+001 1.13253815e+002 1.20758812e+002 9.97595978e+001 - 1.13333633e+002 1.20764709e+002 9.98915787e+001 1.13446480e+002 - 1.20841286e+002 1.00004288e+002 1.13548210e+002 1.20867180e+002 - 1.00115181e+002 1.13624016e+002 1.20862556e+002 1.00208725e+002 - 1.13731071e+002 1.20889267e+002 1.00303764e+002 1.13788696e+002 - 1.20906418e+002 1.00400970e+002 1.13887062e+002 1.20940773e+002 - 1.00537109e+002 1.13993393e+002 1.21000305e+002 1.00631302e+002 - 1.14085144e+002 1.21027977e+002 1.00732605e+002 1.14168274e+002 - 1.21049385e+002 1.00828186e+002 1.14255470e+002 1.21076027e+002 - 1.00933372e+002 1.14324203e+002 1.21095047e+002 1.01047562e+002 - 1.14428848e+002 1.21147156e+002 1.01198029e+002 1.14527634e+002 - 1.21201874e+002 1.01305908e+002 1.14622032e+002 1.21232384e+002 - 1.01409454e+002 1.14684586e+002 1.21241608e+002 1.01464661e+002 - 1.14735863e+002 1.21230759e+002 1.01516731e+002 1.14751068e+002 - 1.21212990e+002 1.01490189e+002 1.14718445e+002 1.21117188e+002 - 1.01421890e+002 1.14675819e+002 1.21126213e+002 1.01424408e+002 - 1.14720955e+002 1.21213188e+002 1.01407616e+002 1.14712265e+002 - 1.21259621e+002 1.01347244e+002 1.14683014e+002 1.21273857e+002 - 1.01247437e+002 1.14602348e+002 1.21267815e+002 1.01147255e+002 - 1.14544975e+002 1.21249054e+002 1.01029823e+002 1.14447243e+002 - 1.21221687e+002 1.00894058e+002 1.14342216e+002 1.21158646e+002 - 1.00802185e+002 1.14258926e+002 1.21140251e+002 1.00688904e+002 - 1.14179321e+002 1.21105156e+002 1.00583832e+002 1.14060997e+002 - 1.21070915e+002 1.00506363e+002 1.14009682e+002 1.21072617e+002 - 1.00408813e+002 1.13916092e+002 1.21052605e+002 1.00296860e+002 - 1.13831551e+002 1.21009270e+002 1.00192032e+002 1.13723686e+002 - 1.20967148e+002 1.00088669e+002 1.13638657e+002 1.20923309e+002 - 9.99694824e+001 1.13533173e+002 1.20912239e+002 9.98533325e+001 - 1.13455574e+002 1.20873611e+002 9.97715149e+001 1.13370972e+002 - 1.20849602e+002 9.96912155e+001 1.13310242e+002 1.20821754e+002 - 9.96105728e+001 1.13217285e+002 1.20802620e+002 9.95045395e+001 - 1.13125870e+002 1.20758179e+002 9.94033890e+001 1.13027122e+002 - 1.20729050e+002 9.93442535e+001 1.12976196e+002 1.20722458e+002 - 9.92646408e+001 1.12890511e+002 1.20701302e+002 9.91885910e+001 - 1.12828102e+002 1.20701515e+002 9.90938416e+001 1.12713783e+002 - 1.20678436e+002 9.89984741e+001 1.12637970e+002 1.20648163e+002 - 9.89018555e+001 1.12535782e+002 1.20627045e+002 9.88212967e+001 - 1.12474525e+002 1.20604294e+002 9.87487411e+001 1.12388847e+002 - 1.20580574e+002 9.86832809e+001 1.12331032e+002 1.20570595e+002 - 9.86076355e+001 1.12256393e+002 1.20583122e+002 9.85088577e+001 - 1.12184731e+002 1.20562042e+002 9.84505844e+001 1.12116089e+002 - 1.20558884e+002 9.84044418e+001 1.12081726e+002 1.20566628e+002 - 9.83336182e+001 1.11997040e+002 1.20563065e+002 9.82603836e+001 - 1.11940880e+002 1.20550705e+002 9.82040482e+001 1.11879829e+002 - 1.20564774e+002 9.81196213e+001 1.11808662e+002 1.20529907e+002 - 9.80647888e+001 1.11745293e+002 1.20523262e+002 9.80147781e+001 - 1.11707306e+002 1.20528786e+002 9.79699249e+001 1.11637245e+002 - 1.20542297e+002 9.79083099e+001 1.11584541e+002 1.20534592e+002 - 9.78636169e+001 1.11532639e+002 1.20541672e+002 9.77705460e+001 - 1.11454155e+002 1.20498566e+002 9.77243118e+001 1.11394104e+002 - 1.20499809e+002 9.76777496e+001 1.11357399e+002 1.20493141e+002 - 9.76399841e+001 1.11306870e+002 1.20526115e+002 9.75432816e+001 - 1.11238968e+002 1.20498276e+002 9.75158081e+001 1.11199150e+002 - 1.20512573e+002 9.74465942e+001 1.11137886e+002 1.20481178e+002 - 9.73877945e+001 1.11057770e+002 1.20471725e+002 9.73180847e+001 - 1.10994827e+002 1.20440369e+002 9.72887039e+001 1.10947624e+002 - 1.20457100e+002 9.72489548e+001 1.10915352e+002 1.20451340e+002 - 9.72016296e+001 1.10859192e+002 1.20446983e+002 9.71285934e+001 - 1.10795181e+002 1.20418358e+002 9.70861435e+001 1.10714607e+002 - 1.20408920e+002 9.70311050e+001 1.10669327e+002 1.20399803e+002 - 9.70027084e+001 1.10634506e+002 1.20423981e+002 9.69529343e+001 - 1.10599136e+002 1.20415962e+002 9.69605408e+001 1.10592934e+002 - 1.20459457e+002 9.69321442e+001 1.10574738e+002 1.20459686e+002 - 9.68888168e+001 1.10534111e+002 1.20472710e+002 9.68480911e+001 - 1.10520050e+002 1.20479767e+002 9.68287430e+001 1.10481468e+002 - 1.20489281e+002 9.67900391e+001 1.10449013e+002 1.20482880e+002 - 9.67969589e+001 1.10430008e+002 1.20519691e+002 9.67646103e+001 - 1.10401581e+002 1.20513237e+002 9.67183456e+001 1.10352654e+002 - 1.20511810e+002 9.66900177e+001 1.10333282e+002 1.20507057e+002 - 9.66611557e+001 1.10292564e+002 1.20506218e+002 9.66098709e+001 - 1.10252083e+002 1.20495743e+002 9.66321106e+001 1.10242363e+002 - 1.20539864e+002 9.66291962e+001 1.10253479e+002 1.20568420e+002 - 9.66120529e+001 1.10224503e+002 1.20578613e+002 9.65874557e+001 - 1.10214622e+002 1.20579727e+002 9.65725403e+001 1.10183853e+002 - 1.20591354e+002 9.65358505e+001 1.10155281e+002 1.20578926e+002 - 9.65184479e+001 1.10134560e+002 1.20604179e+002 9.64634476e+001 - 1.10107437e+002 1.20594337e+002 9.64765549e+001 1.10103394e+002 - 1.20626083e+002 9.64502411e+001 1.10084023e+002 1.20618805e+002 - 9.64554214e+001 1.10068695e+002 1.20648575e+002 9.63977203e+001 - 1.10024536e+002 1.20620178e+002 9.63577347e+001 1.09977615e+002 - 1.20614517e+002 9.63519745e+001 1.09980278e+002 1.20630768e+002 - 9.63432465e+001 1.09964043e+002 1.20650284e+002 9.63161392e+001 - 1.09947182e+002 1.20646294e+002 9.63499908e+001 1.09947884e+002 - 1.20694656e+002 9.63257980e+001 1.09938179e+002 1.20691437e+002 - 9.63032837e+001 1.09905106e+002 1.20682732e+002 9.62545929e+001 - 1.09876198e+002 1.20649391e+002 9.62676010e+001 1.09870926e+002 - 1.20672607e+002 9.62475510e+001 1.09858772e+002 1.20662910e+002 - 9.62426071e+001 1.09840881e+002 1.20677498e+002 9.61823959e+001 - 1.09806236e+002 1.20651550e+002 9.61840515e+001 1.09782669e+002 - 1.20655807e+002 9.61549225e+001 1.09762215e+002 1.20629990e+002 - 9.61728439e+001 1.09759270e+002 1.20657295e+002 9.61599503e+001 - 1.09762642e+002 1.20658043e+002 9.61665878e+001 1.09764076e+002 - 1.20678963e+002 9.61537476e+001 1.09759079e+002 1.20669594e+002 - 9.61395035e+001 1.09741829e+002 1.20659592e+002 9.61233521e+001 - 1.09734688e+002 1.20654137e+002 9.61348114e+001 1.09720688e+002 - 1.20669792e+002 9.61193390e+001 1.09718742e+002 1.20668785e+002 - 9.61104584e+001 1.09700760e+002 1.20662949e+002 9.60844116e+001 - 1.09694939e+002 1.20640335e+002 9.61036758e+001 1.09699432e+002 - 1.20650063e+002 9.61048279e+001 1.09709099e+002 1.20655922e+002 - 9.61037979e+001 1.09695534e+002 1.20654167e+002 9.60954666e+001 - 1.09714920e+002 1.20659714e+002 9.61310654e+001 1.09733200e+002 - 1.20698166e+002 9.61028061e+001 1.09718193e+002 1.20672058e+002 - 9.61160736e+001 1.09719315e+002 1.20688202e+002 9.61127319e+001 - 1.09729218e+002 1.20685844e+002 9.61214600e+001 1.09733154e+002 - 1.20691422e+002 9.61211472e+001 1.09745140e+002 1.20690628e+002 - 9.61195145e+001 1.09726181e+002 1.20676453e+002 9.61234894e+001 - 1.09743134e+002 1.20685005e+002 9.61672211e+001 1.09761917e+002 - 1.20711334e+002 9.61609192e+001 1.09769569e+002 1.20697021e+002 - 9.61657562e+001 1.09757957e+002 1.20681648e+002 9.61462555e+001 - 1.09759575e+002 1.20656670e+002 9.61789322e+001 1.09776527e+002 - 1.20671890e+002 9.61924896e+001 1.09789413e+002 1.20659752e+002 - 9.62046204e+001 1.09784195e+002 1.20640999e+002 9.61991196e+001 - 1.09807159e+002 1.20633026e+002 9.62134857e+001 1.09806549e+002 - 1.20636185e+002 9.62480087e+001 1.09849098e+002 1.20647224e+002 - 9.62569656e+001 1.09844475e+002 1.20637276e+002 9.62424164e+001 - 1.09845390e+002 1.20605354e+002 9.62515640e+001 1.09851631e+002 - 1.20600685e+002 9.62750244e+001 1.09889137e+002 1.20603668e+002 - 9.62935791e+001 1.09898064e+002 1.20598534e+002 9.62826080e+001 - 1.09902748e+002 1.20572319e+002 9.63105316e+001 1.09909904e+002 - 1.20570084e+002 9.63264160e+001 1.09939438e+002 1.20559242e+002 - 9.63728943e+001 1.09980064e+002 1.20574280e+002 9.63712616e+001 - 1.09997673e+002 1.20550293e+002 9.63880234e+001 1.10003815e+002 - 1.20546616e+002 9.64157410e+001 1.10039398e+002 1.20538864e+002 - 9.64175339e+001 1.10038177e+002 1.20501274e+002 9.64077988e+001 - 1.10058884e+002 1.20473137e+002 9.64396057e+001 1.10070984e+002 - 1.20481575e+002 9.64834213e+001 1.10123550e+002 1.20496574e+002 - 9.65211868e+001 1.10147659e+002 1.20502319e+002 9.65146103e+001 - 1.10162346e+002 1.20472237e+002 9.65260544e+001 1.10168159e+002 - 1.20447662e+002 9.65254745e+001 1.10177261e+002 1.20411568e+002 - 9.65539780e+001 1.10197029e+002 1.20399887e+002 9.66048813e+001 - 1.10259377e+002 1.20416054e+002 9.66924210e+001 1.10311691e+002 - 1.20445045e+002 9.67146378e+001 1.10350418e+002 1.20424316e+002 - 9.67439423e+001 1.10364601e+002 1.20407234e+002 9.67657089e+001 - 1.10402420e+002 1.20383553e+002 9.68014069e+001 1.10422539e+002 - 1.20382332e+002 9.68281403e+001 1.10455330e+002 1.20358231e+002 - 9.68940506e+001 1.10515877e+002 1.20372375e+002 9.69113083e+001 - 1.10564880e+002 1.20365112e+002 9.69455719e+001 1.10577942e+002 - 1.20360809e+002 9.69665833e+001 1.10619232e+002 1.20350784e+002 - 9.70434036e+001 1.10677818e+002 1.20378799e+002 9.70585480e+001 - 1.10704895e+002 1.20361000e+002 9.71055756e+001 1.10751823e+002 - 1.20357094e+002 9.71535568e+001 1.10819603e+002 1.20370155e+002 - 9.72041931e+001 1.10870667e+002 1.20379272e+002 9.72337952e+001 - 1.10912453e+002 1.20371025e+002 9.73101273e+001 1.10962532e+002 - 1.20390808e+002 9.73273621e+001 1.10992157e+002 1.20362259e+002 - 9.73826218e+001 1.11033295e+002 1.20357376e+002 9.74132004e+001 - 1.11083221e+002 1.20350807e+002 9.74613419e+001 1.11119667e+002 - 1.20356613e+002 9.75191116e+001 1.11176003e+002 1.20341072e+002 - 9.75901947e+001 1.11236305e+002 1.20338211e+002 9.76417542e+001 - 1.11307327e+002 1.20345016e+002 9.77237549e+001 1.11367714e+002 - 1.20373039e+002 9.77953339e+001 1.11458618e+002 1.20410095e+002 - 9.78744888e+001 1.11518547e+002 1.20431458e+002 9.79150238e+001 - 1.11573563e+002 1.20418747e+002 9.79866180e+001 1.11643288e+002 - 1.20433083e+002 9.80677795e+001 1.11740013e+002 1.20464981e+002 - 9.81169586e+001 1.11777687e+002 1.20451416e+002 9.81544876e+001 - 1.11826828e+002 1.20436905e+002 9.82459717e+001 1.11889160e+002 - 1.20449898e+002 9.83084717e+001 1.11965302e+002 1.20455162e+002 - 9.83934937e+001 1.12042610e+002 1.20479790e+002 9.84242859e+001 - 1.12093285e+002 1.20466255e+002 9.84913177e+001 1.12140068e+002 - 1.20477371e+002 9.85801926e+001 1.12234795e+002 1.20500275e+002 - 9.86549072e+001 1.12284264e+002 1.20478981e+002 9.87056885e+001 - 1.12357574e+002 1.20478104e+002 9.87886887e+001 1.12416222e+002 - 1.20501022e+002 9.88365097e+001 1.12476837e+002 1.20498039e+002 - 9.89171448e+001 1.12533051e+002 1.20506355e+002 9.89960938e+001 - 1.12627411e+002 1.20530693e+002 9.90824356e+001 1.12701393e+002 - 1.20549370e+002 9.91752777e+001 1.12807777e+002 1.20586296e+002 - 9.92491989e+001 1.12865723e+002 1.20593651e+002 9.93153687e+001 - 1.12941338e+002 1.20609474e+002 9.94505920e+001 1.13040703e+002 - 1.20658531e+002 9.95469971e+001 1.13143044e+002 1.20694298e+002 - 9.96290359e+001 1.13207962e+002 1.20700554e+002 9.97071152e+001 - 1.13286697e+002 1.20713226e+002 9.98191681e+001 1.13381142e+002 - 1.20762856e+002 9.99470367e+001 1.13497505e+002 1.20809517e+002 - 1.00057060e+002 1.13574738e+002 1.20808914e+002 1.00163254e+002 - 1.13688133e+002 1.20851280e+002 1.00256866e+002 1.13758598e+002 - 1.20871162e+002 1.00335922e+002 1.13832230e+002 1.20884270e+002 - 1.00465279e+002 1.13930054e+002 1.20932716e+002 1.00544815e+002 - 1.14011749e+002 1.20950699e+002 1.00664856e+002 1.14106400e+002 - 1.20987595e+002 1.00769264e+002 1.14206596e+002 1.21022324e+002 - 1.00878761e+002 1.14284676e+002 1.21055283e+002 1.00973549e+002 - 1.14365219e+002 1.21081146e+002 1.01127731e+002 1.14461365e+002 - 1.21135208e+002 1.01225227e+002 1.14545639e+002 1.21154251e+002 - 1.01335060e+002 1.14614914e+002 1.21177605e+002 1.01416931e+002 - 1.14694557e+002 1.21186760e+002 1.01472961e+002 1.14715607e+002 - 1.21177719e+002 1.01438591e+002 1.14671097e+002 1.21074051e+002 - 1.01399574e+002 1.14627007e+002 1.21092773e+002 1.01389900e+002 - 1.14678940e+002 1.21175049e+002 1.01351234e+002 1.14658463e+002 - 1.21202408e+002 1.01293777e+002 1.14633400e+002 1.21217285e+002 - 1.01211800e+002 1.14564613e+002 1.21215858e+002 1.01114532e+002 - 1.14503128e+002 1.21203979e+002 1.01011513e+002 1.14422592e+002 - 1.21191658e+002 1.00875427e+002 1.14322594e+002 1.21131149e+002 - 1.00770554e+002 1.14227867e+002 1.21094269e+002 1.00626030e+002 - 1.14114059e+002 1.21026993e+002 1.00553734e+002 1.14018646e+002 - 1.21027939e+002 1.00477837e+002 1.13967964e+002 1.21030380e+002 - 1.00372856e+002 1.13883179e+002 1.21004311e+002 1.00255081e+002 - 1.13794502e+002 1.20956779e+002 1.00174843e+002 1.13694832e+002 - 1.20936554e+002 1.00056274e+002 1.13607521e+002 1.20891167e+002 - 9.99419556e+001 1.13510544e+002 1.20869301e+002 9.98049927e+001 - 1.13404556e+002 1.20816551e+002 9.97150650e+001 1.13311928e+002 - 1.20778854e+002 9.96502762e+001 1.13271767e+002 1.20774414e+002 - 9.95629044e+001 1.13162727e+002 1.20742691e+002 9.94828644e+001 - 1.13104843e+002 1.20722847e+002 9.93857727e+001 1.13007828e+002 - 1.20693535e+002 9.92980652e+001 1.12933182e+002 1.20664558e+002 - 9.92449188e+001 1.12870743e+002 1.20665611e+002 9.91577301e+001 - 1.12797012e+002 1.20647751e+002 9.90595856e+001 1.12676323e+002 - 1.20623497e+002 9.89667435e+001 1.12601875e+002 1.20606026e+002 - 9.88755493e+001 1.12515503e+002 1.20578964e+002 9.88088531e+001 - 1.12465775e+002 1.20576218e+002 9.87504044e+001 1.12391304e+002 - 1.20567528e+002 9.86661987e+001 1.12312126e+002 1.20539040e+002 - 9.85908203e+001 1.12244415e+002 1.20550537e+002 9.85046310e+001 - 1.12188286e+002 1.20546341e+002 9.84546585e+001 1.12127235e+002 - 1.20546844e+002 9.84100113e+001 1.12090164e+002 1.20551590e+002 - 9.83178711e+001 1.11981842e+002 1.20526459e+002 9.82275772e+001 - 1.11904808e+002 1.20495514e+002 9.81586075e+001 1.11839333e+002 - 1.20495987e+002 9.80930862e+001 1.11785110e+002 1.20477470e+002 - 9.80259552e+001 1.11703392e+002 1.20464218e+002 9.79586411e+001 - 1.11652802e+002 1.20456497e+002 9.79388962e+001 1.11604706e+002 - 1.20491173e+002 9.78985291e+001 1.11571625e+002 1.20507805e+002 - 9.78434830e+001 1.11512581e+002 1.20499924e+002 9.77456055e+001 - 1.11435341e+002 1.20451721e+002 9.77122650e+001 1.11380424e+002 - 1.20460693e+002 9.76779709e+001 1.11350067e+002 1.20470604e+002 - 9.76192093e+001 1.11290596e+002 1.20481064e+002 9.75279617e+001 - 1.11220711e+002 1.20458733e+002 9.74898682e+001 1.11166634e+002 - 1.20453728e+002 9.74333572e+001 1.11118530e+002 1.20440643e+002 - 9.73702393e+001 1.11030960e+002 1.20423691e+002 9.72892609e+001 - 1.10955711e+002 1.20379433e+002 9.72504807e+001 1.10906349e+002 - 1.20388298e+002 9.72215195e+001 1.10883331e+002 1.20396927e+002 - 9.71364594e+001 1.10791801e+002 1.20361237e+002 9.70930634e+001 - 1.10759003e+002 1.20361092e+002 9.70506668e+001 1.10673271e+002 - 1.20355240e+002 9.69948807e+001 1.10623215e+002 1.20345474e+002 - 9.69786530e+001 1.10606445e+002 1.20372925e+002 9.69268570e+001 - 1.10569641e+002 1.20362061e+002 9.69161911e+001 1.10542130e+002 - 1.20382652e+002 9.68774033e+001 1.10515388e+002 1.20378494e+002 - 9.68388443e+001 1.10483696e+002 1.20397133e+002 9.68037186e+001 - 1.10472382e+002 1.20409760e+002 9.67878265e+001 1.10435951e+002 - 1.20416985e+002 9.67595367e+001 1.10419289e+002 1.20424065e+002 - 9.67536697e+001 1.10382034e+002 1.20446136e+002 9.67044754e+001 - 1.10338364e+002 1.20429626e+002 9.66691895e+001 1.10302696e+002 - 1.20426682e+002 9.66539307e+001 1.10290916e+002 1.20437744e+002 - 9.66098709e+001 1.10232460e+002 1.20424706e+002 9.65793762e+001 - 1.10211365e+002 1.20421219e+002 9.65859909e+001 1.10188690e+002 - 1.20461624e+002 9.65757523e+001 1.10186790e+002 1.20474060e+002 - 9.65698166e+001 1.10182793e+002 1.20502106e+002 9.65503387e+001 - 1.10181282e+002 1.20512360e+002 9.65302582e+001 1.10143951e+002 - 1.20516861e+002 9.65055084e+001 1.10118225e+002 1.20516907e+002 - 9.64681091e+001 1.10087257e+002 1.20531982e+002 9.64464264e+001 - 1.10080894e+002 1.20546432e+002 9.64583740e+001 1.10083107e+002 - 1.20577454e+002 9.64303589e+001 1.10066246e+002 1.20566254e+002 - 9.64271240e+001 1.10043419e+002 1.20594826e+002 9.63897095e+001 - 1.10014656e+002 1.20585571e+002 9.63668518e+001 1.09989342e+002 - 1.20586479e+002 9.63378906e+001 1.09963806e+002 1.20584900e+002 - 9.63322296e+001 1.09949005e+002 1.20600922e+002 9.63067322e+001 - 1.09942009e+002 1.20605530e+002 9.63321228e+001 1.09933121e+002 - 1.20652382e+002 9.63190689e+001 1.09930183e+002 1.20654381e+002 - 9.62622681e+001 1.09871529e+002 1.20610474e+002 9.62111969e+001 - 1.09836121e+002 1.20574905e+002 9.62137375e+001 1.09815331e+002 - 1.20590469e+002 9.62204971e+001 1.09829506e+002 1.20606590e+002 - 9.62252426e+001 1.09828415e+002 1.20635239e+002 9.61590805e+001 - 1.09784508e+002 1.20597420e+002 9.61443558e+001 1.09751549e+002 - 1.20590668e+002 9.61125565e+001 1.09725845e+002 1.20560944e+002 - 9.61419601e+001 1.09732964e+002 1.20602814e+002 9.61257172e+001 - 1.09732132e+002 1.20597237e+002 9.61048889e+001 1.09708473e+002 - 1.20591354e+002 9.60953827e+001 1.09709274e+002 1.20587433e+002 - 9.61070251e+001 1.09711937e+002 1.20605392e+002 9.60769806e+001 - 1.09693642e+002 1.20584572e+002 9.60633469e+001 1.09648582e+002 - 1.20574707e+002 9.60520477e+001 1.09654366e+002 1.20577805e+002 - 9.60571747e+001 1.09657570e+002 1.20586510e+002 9.60303116e+001 - 1.09651154e+002 1.20557823e+002 9.60852051e+001 1.09682686e+002 - 1.20609573e+002 9.60799408e+001 1.09681534e+002 1.20597237e+002 - 9.60712662e+001 1.09675003e+002 1.20591354e+002 9.60493011e+001 - 1.09667915e+002 1.20581024e+002 9.60809097e+001 1.09695465e+002 - 1.20622673e+002 9.60614700e+001 1.09685799e+002 1.20606888e+002 - 9.60869217e+001 1.09687454e+002 1.20623413e+002 9.60689774e+001 - 1.09685150e+002 1.20609734e+002 9.60912323e+001 1.09697525e+002 - 1.20630470e+002 9.60759201e+001 1.09698158e+002 1.20608971e+002 - 9.60642700e+001 1.09666687e+002 1.20582939e+002 9.60722580e+001 - 1.09691666e+002 1.20587982e+002 9.61123810e+001 1.09702805e+002 - 1.20622040e+002 9.61225739e+001 1.09720314e+002 1.20618851e+002 - 9.61356735e+001 1.09732277e+002 1.20613960e+002 9.61024399e+001 - 1.09721672e+002 1.20575279e+002 9.61197662e+001 1.09711723e+002 - 1.20573257e+002 9.61627808e+001 1.09758453e+002 1.20591690e+002 - 9.61909027e+001 1.09777466e+002 1.20596275e+002 9.61650162e+001 - 1.09775192e+002 1.20569107e+002 9.61847763e+001 1.09785690e+002 - 1.20572182e+002 9.62065201e+001 1.09815605e+002 1.20581863e+002 - 9.62353363e+001 1.09821785e+002 1.20588196e+002 9.61833878e+001 - 1.09788765e+002 1.20522339e+002 9.61988907e+001 1.09800713e+002 - 1.20519234e+002 9.62231445e+001 1.09840981e+002 1.20528732e+002 - 9.62283554e+001 1.09841827e+002 1.20512276e+002 9.62350693e+001 - 1.09863533e+002 1.20494415e+002 9.62640533e+001 1.09867943e+002 - 1.20492546e+002 9.62773743e+001 1.09892570e+002 1.20477997e+002 - 9.63111801e+001 1.09929733e+002 1.20479195e+002 9.63169632e+001 - 1.09950806e+002 1.20463135e+002 9.63573456e+001 1.09976242e+002 - 1.20482025e+002 9.63787613e+001 1.10004608e+002 1.20474648e+002 - 9.63914337e+001 1.10014008e+002 1.20439713e+002 9.63849335e+001 - 1.10035042e+002 1.20423096e+002 9.64183731e+001 1.10055832e+002 - 1.20435768e+002 9.64418716e+001 1.10089600e+002 1.20427742e+002 - 9.64781876e+001 1.10103317e+002 1.20433731e+002 9.64726715e+001 - 1.10118866e+002 1.20401726e+002 9.64771576e+001 1.10124306e+002 - 1.20375450e+002 9.64864426e+001 1.10149101e+002 1.20347778e+002 - 9.65265045e+001 1.10176926e+002 1.20350975e+002 9.65724640e+001 - 1.10231499e+002 1.20356201e+002 9.66436539e+001 1.10265091e+002 - 1.20377495e+002 9.66741257e+001 1.10309654e+002 1.20359039e+002 - 9.67016602e+001 1.10328285e+002 1.20341583e+002 9.67300873e+001 - 1.10368721e+002 1.20326805e+002 9.67762375e+001 1.10393547e+002 - 1.20330650e+002 9.68057327e+001 1.10435074e+002 1.20313446e+002 - 9.68430405e+001 1.10473442e+002 1.20298622e+002 9.68988266e+001 - 1.10549667e+002 1.20323112e+002 9.69232712e+001 1.10566658e+002 - 1.20317276e+002 9.69509583e+001 1.10604759e+002 1.20307922e+002 - 9.70115128e+001 1.10644699e+002 1.20325142e+002 9.70555954e+001 - 1.10707153e+002 1.20334023e+002 9.70788651e+001 1.10730797e+002 - 1.20313744e+002 9.71227341e+001 1.10786179e+002 1.20317375e+002 - 9.71985779e+001 1.10863182e+002 1.20348221e+002 9.72181473e+001 - 1.10893967e+002 1.20327530e+002 9.72755737e+001 1.10928551e+002 - 1.20339607e+002 9.73212738e+001 1.10980690e+002 1.20334984e+002 - 9.73889465e+001 1.11050079e+002 1.20350533e+002 9.74170303e+001 - 1.11091789e+002 1.20332664e+002 9.74615021e+001 1.11109398e+002 - 1.20330505e+002 9.74978333e+001 1.11150200e+002 1.20299347e+002 - 9.75766449e+001 1.11220749e+002 1.20305374e+002 9.76195755e+001 - 1.11281830e+002 1.20302689e+002 9.76610565e+001 1.11311867e+002 - 1.20301865e+002 9.77498703e+001 1.11414703e+002 1.20342377e+002 - 9.78368912e+001 1.11484871e+002 1.20368965e+002 9.78697357e+001 - 1.11527267e+002 1.20351288e+002 9.79518204e+001 1.11609917e+002 - 1.20380966e+002 9.80079651e+001 1.11681900e+002 1.20388725e+002 - 9.80559692e+001 1.11718521e+002 1.20373642e+002 9.81175613e+001 - 1.11793602e+002 1.20378983e+002 9.81895523e+001 1.11834023e+002 - 1.20381256e+002 9.82438202e+001 1.11896469e+002 1.20377846e+002 - 9.83273773e+001 1.11984276e+002 1.20405045e+002 9.83715897e+001 - 1.12038872e+002 1.20397667e+002 9.84335403e+001 1.12083672e+002 - 1.20408760e+002 9.85226974e+001 1.12173363e+002 1.20426888e+002 - 9.86080856e+001 1.12235611e+002 1.20418762e+002 9.86735687e+001 - 1.12319504e+002 1.20425095e+002 9.87187042e+001 1.12349640e+002 - 1.20419449e+002 9.87787399e+001 1.12411171e+002 1.20419899e+002 - 9.88713379e+001 1.12485931e+002 1.20451103e+002 9.89554825e+001 - 1.12575188e+002 1.20472458e+002 9.90405731e+001 1.12660912e+002 - 1.20496613e+002 9.91389923e+001 1.12771721e+002 1.20537498e+002 - 9.92261810e+001 1.12839943e+002 1.20563980e+002 9.92776337e+001 - 1.12906662e+002 1.20559181e+002 9.93992157e+001 1.12983353e+002 - 1.20597763e+002 9.95043945e+001 1.13088982e+002 1.20635078e+002 - 9.95851898e+001 1.13165123e+002 1.20642654e+002 9.96627579e+001 - 1.13252266e+002 1.20665024e+002 9.97827835e+001 1.13337830e+002 - 1.20723022e+002 9.98887634e+001 1.13439125e+002 1.20738518e+002 - 1.00017914e+002 1.13544441e+002 1.20773972e+002 1.00121689e+002 - 1.13648857e+002 1.20796005e+002 1.00222214e+002 1.13722168e+002 - 1.20832344e+002 1.00306282e+002 1.13805901e+002 1.20850555e+002 - 1.00437889e+002 1.13904572e+002 1.20910416e+002 1.00508461e+002 - 1.13974747e+002 1.20909439e+002 1.00642136e+002 1.14088272e+002 - 1.20965973e+002 1.00736382e+002 1.14174538e+002 1.20986130e+002 - 1.00839745e+002 1.14246574e+002 1.21014267e+002 1.00945648e+002 - 1.14339401e+002 1.21044281e+002 1.01080498e+002 1.14406708e+002 - 1.21079033e+002 1.01185867e+002 1.14500572e+002 1.21109680e+002 - 1.01286774e+002 1.14568085e+002 1.21122597e+002 1.01373848e+002 - 1.14655739e+002 1.21140244e+002 1.01446014e+002 1.14675011e+002 - 1.21144135e+002 1.01404404e+002 1.14638557e+002 1.21037010e+002 - 1.01326675e+002 1.14561974e+002 1.21030426e+002 1.01309845e+002 - 1.14602654e+002 1.21097008e+002 1.01297478e+002 1.14605209e+002 - 1.21154030e+002 1.01237816e+002 1.14585892e+002 1.21170288e+002 - 1.01141495e+002 1.14502853e+002 1.21157585e+002 1.01038651e+002 - 1.14438896e+002 1.21135872e+002 1.00929398e+002 1.14351807e+002 - 1.21113655e+002 1.00803421e+002 1.14256744e+002 1.21062302e+002 - 1.00700569e+002 1.14168732e+002 1.21031342e+002 1.00558411e+002 - 1.14048492e+002 1.20959229e+002 1.00489471e+002 1.13967583e+002 - 1.20963463e+002 1.00397102e+002 1.13903610e+002 1.20957367e+002 - 1.00295151e+002 1.13814293e+002 1.20932030e+002 1.00205032e+002 - 1.13753036e+002 1.20914810e+002 1.00112877e+002 1.13655479e+002 - 1.20880791e+002 9.99916687e+001 1.13555222e+002 1.20824043e+002 - 9.98621674e+001 1.13440926e+002 1.20786888e+002 9.97324295e+001 - 1.13350304e+002 1.20743599e+002 9.96610947e+001 1.13270264e+002 - 1.20719482e+002 9.95865402e+001 1.13216263e+002 1.20710945e+002 - 9.95283585e+001 1.13136475e+002 1.20708908e+002 9.94212570e+001 - 1.13048332e+002 1.20665176e+002 9.93147659e+001 1.12947449e+002 - 1.20624062e+002 9.92160645e+001 1.12860863e+002 1.20583794e+002 - 9.91725388e+001 1.12807678e+002 1.20599846e+002 9.90884857e+001 - 1.12742485e+002 1.20581497e+002 9.90026169e+001 1.12631363e+002 - 1.20565590e+002 9.89183121e+001 1.12563820e+002 1.20552689e+002 - 9.88380203e+001 1.12486015e+002 1.20537201e+002 9.87637100e+001 - 1.12427971e+002 1.20528137e+002 9.86952744e+001 1.12347878e+002 - 1.20513527e+002 9.86199493e+001 1.12280678e+002 1.20494888e+002 - 9.85494537e+001 1.12213516e+002 1.20509903e+002 9.84707184e+001 - 1.12158913e+002 1.20500908e+002 9.84091110e+001 1.12084824e+002 - 1.20484711e+002 9.83430252e+001 1.12028221e+002 1.20470726e+002 - 9.82632370e+001 1.11928223e+002 1.20449020e+002 9.81669769e+001 - 1.11855370e+002 1.20418137e+002 9.81070328e+001 1.11793983e+002 - 1.20430374e+002 9.80467453e+001 1.11745956e+002 1.20423607e+002 - 9.79713135e+001 1.11663956e+002 1.20401649e+002 9.78894882e+001 - 1.11601913e+002 1.20379356e+002 9.78843079e+001 1.11560646e+002 - 1.20426117e+002 9.78261642e+001 1.11516861e+002 1.20423309e+002 - 9.77758713e+001 1.11462524e+002 1.20422806e+002 9.76921082e+001 - 1.11388191e+002 1.20379822e+002 9.76381683e+001 1.11312965e+002 - 1.20365250e+002 9.75961609e+001 1.11275375e+002 1.20371925e+002 - 9.75466537e+001 1.11233032e+002 1.20397568e+002 9.74466858e+001 - 1.11147377e+002 1.20360260e+002 9.74005508e+001 1.11096786e+002 - 1.20350861e+002 9.73540268e+001 1.11047157e+002 1.20342377e+002 - 9.72970428e+001 1.10963646e+002 1.20328644e+002 9.72322235e+001 - 1.10906960e+002 1.20311211e+002 9.71824493e+001 1.10854691e+002 - 1.20311195e+002 9.71258240e+001 1.10801239e+002 1.20293701e+002 - 9.70912933e+001 1.10754250e+002 1.20296524e+002 9.70091629e+001 - 1.10684944e+002 1.20264290e+002 9.69848785e+001 1.10624031e+002 - 1.20278412e+002 9.69402161e+001 1.10585686e+002 1.20284744e+002 - 9.68986053e+001 1.10545425e+002 1.20285057e+002 9.68619843e+001 - 1.10519623e+002 1.20284531e+002 9.68537674e+001 1.10498245e+002 - 1.20311310e+002 9.68170090e+001 1.10468323e+002 1.20300484e+002 - 9.68085022e+001 1.10460579e+002 1.20341019e+002 9.67471085e+001 - 1.10412262e+002 1.20323250e+002 9.67290039e+001 1.10387779e+002 - 1.20337807e+002 9.67048416e+001 1.10371719e+002 1.20343842e+002 - 9.66855316e+001 1.10329132e+002 1.20364349e+002 9.66244507e+001 - 1.10273598e+002 1.20330650e+002 9.65977936e+001 1.10239563e+002 - 1.20333015e+002 9.65892410e+001 1.10232895e+002 1.20349586e+002 - 9.65653687e+001 1.10200111e+002 1.20353622e+002 9.65144424e+001 - 1.10155479e+002 1.20336586e+002 9.65241852e+001 1.10127243e+002 - 1.20367157e+002 9.65035934e+001 1.10123558e+002 1.20384041e+002 - 9.64798813e+001 1.10098732e+002 1.20385437e+002 9.64656067e+001 - 1.10106064e+002 1.20404396e+002 9.64618378e+001 1.10082512e+002 - 1.20425003e+002 9.64388046e+001 1.10063538e+002 1.20428368e+002 - 9.64205475e+001 1.10048927e+002 1.20454506e+002 9.63698425e+001 - 1.10023552e+002 1.20446709e+002 9.63792343e+001 1.10019615e+002 - 1.20471291e+002 9.63541794e+001 1.10005539e+002 1.20468887e+002 - 9.63479614e+001 1.09976631e+002 1.20489105e+002 9.62937469e+001 - 1.09934273e+002 1.20465958e+002 9.62893524e+001 1.09926224e+002 - 1.20492882e+002 9.62656097e+001 1.09911942e+002 1.20493156e+002 - 9.62606735e+001 1.09902359e+002 1.20517311e+002 9.62324753e+001 - 1.09889122e+002 1.20515884e+002 9.62657318e+001 1.09886078e+002 - 1.20571175e+002 9.62484436e+001 1.09884766e+002 1.20578705e+002 - 9.62031708e+001 1.09831223e+002 1.20543243e+002 9.61418915e+001 - 1.09788704e+002 1.20500557e+002 9.61494675e+001 1.09772919e+002 - 1.20514862e+002 9.61603775e+001 1.09796867e+002 1.20529846e+002 - 9.61633606e+001 1.09791046e+002 1.20556793e+002 9.60811005e+001 - 1.09732468e+002 1.20502380e+002 9.60768204e+001 1.09707161e+002 - 1.20502159e+002 9.60579605e+001 1.09701271e+002 1.20496925e+002 - 9.60813828e+001 1.09699409e+002 1.20530830e+002 9.60573730e+001 - 1.09690529e+002 1.20519997e+002 9.60249100e+001 1.09657661e+002 - 1.20506477e+002 9.60179443e+001 1.09661934e+002 1.20509079e+002 - 9.60476456e+001 1.09679703e+002 1.20546455e+002 9.59968643e+001 - 1.09645561e+002 1.20516296e+002 9.59976044e+001 1.09607552e+002 - 1.20514748e+002 9.59854660e+001 1.09616470e+002 1.20513397e+002 - 9.59934769e+001 1.09619629e+002 1.20515831e+002 9.59808884e+001 - 1.09620506e+002 1.20494743e+002 9.60242233e+001 1.09641914e+002 - 1.20531204e+002 9.60280914e+001 1.09650612e+002 1.20527626e+002 - 9.60263901e+001 1.09651329e+002 1.20530647e+002 9.59977798e+001 - 1.09646233e+002 1.20517929e+002 9.60236053e+001 1.09658424e+002 - 1.20548393e+002 9.60119247e+001 1.09655327e+002 1.20539665e+002 - 9.60108719e+001 1.09632645e+002 1.20531723e+002 9.60049210e+001 - 1.09636925e+002 1.20520096e+002 9.60340195e+001 1.09662239e+002 - 1.20549355e+002 9.59997559e+001 1.09632782e+002 1.20506569e+002 - 9.59824753e+001 1.09603844e+002 1.20482155e+002 9.59965591e+001 - 1.09631317e+002 1.20493202e+002 9.60372391e+001 1.09636490e+002 - 1.20513458e+002 9.60632629e+001 1.09669426e+002 1.20528435e+002 - 9.60741501e+001 1.09682823e+002 1.20525459e+002 9.60700073e+001 - 1.09698158e+002 1.20514999e+002 9.60800629e+001 1.09689667e+002 - 1.20508842e+002 9.60971298e+001 1.09715195e+002 1.20499748e+002 - 9.61160355e+001 1.09722778e+002 1.20496902e+002 9.61146851e+001 - 1.09746925e+002 1.20492706e+002 9.61290512e+001 1.09752045e+002 - 1.20497925e+002 9.61266708e+001 1.09756271e+002 1.20487495e+002 - 9.61549683e+001 1.09772194e+002 1.20494827e+002 9.61227036e+001 - 1.09753181e+002 1.20446251e+002 9.61412888e+001 1.09767082e+002 - 1.20450005e+002 9.61583710e+001 1.09796944e+002 1.20443710e+002 - 9.61606522e+001 1.09791489e+002 1.20422722e+002 9.61768188e+001 - 1.09826439e+002 1.20418732e+002 9.62132874e+001 1.09832840e+002 - 1.20421867e+002 9.62320557e+001 1.09865280e+002 1.20415062e+002 - 9.62174988e+001 1.09857536e+002 1.20369240e+002 9.62162552e+001 - 1.09870041e+002 1.20343475e+002 9.62507782e+001 1.09890831e+002 - 1.20357880e+002 9.62920685e+001 1.09937355e+002 1.20361984e+002 - 9.63186874e+001 1.09959892e+002 1.20358887e+002 9.63122025e+001 - 1.09974770e+002 1.20333748e+002 9.63569641e+001 1.10009453e+002 - 1.20357903e+002 9.63712006e+001 1.10041862e+002 1.20349388e+002 - 9.64151917e+001 1.10064789e+002 1.20350761e+002 9.63903580e+001 - 1.10055832e+002 1.20298386e+002 9.64037018e+001 1.10068832e+002 - 1.20278763e+002 9.64198761e+001 1.10094452e+002 1.20255424e+002 - 9.64528198e+001 1.10114204e+002 1.20253662e+002 9.64742889e+001 - 1.10150833e+002 1.20245018e+002 9.65459976e+001 1.10185524e+002 - 1.20266975e+002 9.65900269e+001 1.10243362e+002 1.20273071e+002 - 9.66193542e+001 1.10274223e+002 1.20255547e+002 9.66626740e+001 - 1.10326546e+002 1.20257729e+002 9.66935806e+001 1.10334869e+002 - 1.20245766e+002 9.67155228e+001 1.10364723e+002 1.20214149e+002 - 9.67669601e+001 1.10420166e+002 1.20214622e+002 9.68080139e+001 - 1.10479973e+002 1.20225311e+002 9.68594742e+001 1.10528625e+002 - 1.20251686e+002 9.68702240e+001 1.10550880e+002 1.20223900e+002 - 9.69174347e+001 1.10576309e+002 1.20231094e+002 9.69830093e+001 - 1.10654091e+002 1.20251778e+002 9.70088120e+001 1.10674347e+002 - 1.20240501e+002 9.70372772e+001 1.10715630e+002 1.20219551e+002 - 9.71250381e+001 1.10801491e+002 1.20268906e+002 9.71217728e+001 - 1.10814880e+002 1.20224899e+002 9.71847534e+001 1.10853928e+002 - 1.20244728e+002 9.72593765e+001 1.10938454e+002 1.20264328e+002 - 9.73261871e+001 1.10999413e+002 1.20274330e+002 9.73680496e+001 - 1.11057220e+002 1.20273628e+002 9.74200134e+001 1.11086716e+002 - 1.20278214e+002 9.74677200e+001 1.11137512e+002 1.20263664e+002 - 9.75239563e+001 1.11179825e+002 1.20246567e+002 9.75471649e+001 - 1.11217285e+002 1.20222351e+002 9.75935364e+001 1.11256653e+002 - 1.20223328e+002 9.76680679e+001 1.11345169e+002 1.20249580e+002 - 9.77659302e+001 1.11425507e+002 1.20290886e+002 9.78079681e+001 - 1.11483192e+002 1.20280571e+002 9.78850403e+001 1.11558250e+002 - 1.20307701e+002 9.79336319e+001 1.11620506e+002 1.20302994e+002 - 9.79825821e+001 1.11654648e+002 1.20298866e+002 9.80538177e+001 - 1.11743507e+002 1.20321159e+002 9.81380692e+001 1.11799141e+002 - 1.20336533e+002 9.82160492e+001 1.11884979e+002 1.20348038e+002 - 9.82661514e+001 1.11942841e+002 1.20346252e+002 9.82934036e+001 - 1.11977547e+002 1.20323273e+002 9.83501663e+001 1.12009354e+002 - 1.20326729e+002 9.84123611e+001 1.12078262e+002 1.20320686e+002 - 9.85201797e+001 1.12162560e+002 1.20342552e+002 9.85742798e+001 - 1.12226379e+002 1.20328926e+002 9.86425171e+001 1.12280640e+002 - 1.20346252e+002 9.87010498e+001 1.12351166e+002 1.20347946e+002 - 9.88101349e+001 1.12428093e+002 1.20392097e+002 9.88881760e+001 - 1.12514893e+002 1.20403160e+002 9.89749527e+001 1.12596153e+002 - 1.20434120e+002 9.90902786e+001 1.12728531e+002 1.20494453e+002 - 9.91672211e+001 1.12796463e+002 1.20511116e+002 9.92240829e+001 - 1.12858719e+002 1.20504982e+002 9.93362122e+001 1.12929138e+002 - 1.20534393e+002 9.94407349e+001 1.13034996e+002 1.20569923e+002 - 9.95292816e+001 1.13114616e+002 1.20597961e+002 9.95952911e+001 - 1.13192139e+002 1.20605942e+002 9.97029190e+001 1.13276413e+002 - 1.20652237e+002 9.98095398e+001 1.13380852e+002 1.20679863e+002 - 9.99300003e+001 1.13473877e+002 1.20695549e+002 1.00031036e+002 - 1.13580360e+002 1.20729599e+002 1.00158890e+002 1.13681328e+002 - 1.20792168e+002 1.00244026e+002 1.13760010e+002 1.20804306e+002 - 1.00344788e+002 1.13832413e+002 1.20832436e+002 1.00439087e+002 - 1.13916298e+002 1.20853813e+002 1.00556122e+002 1.14016899e+002 - 1.20889381e+002 1.00691971e+002 1.14144165e+002 1.20952148e+002 - 1.00792046e+002 1.14205811e+002 1.20976250e+002 1.00893242e+002 - 1.14297005e+002 1.21001938e+002 1.01014923e+002 1.14358299e+002 - 1.21026070e+002 1.01107292e+002 1.14436089e+002 1.21040291e+002 - 1.01237473e+002 1.14533211e+002 1.21084740e+002 1.01310036e+002 - 1.14600067e+002 1.21088959e+002 1.01391846e+002 1.14632111e+002 - 1.21103027e+002 1.01360039e+002 1.14595543e+002 1.20997368e+002 - 1.01258308e+002 1.14526680e+002 1.20978188e+002 1.01239433e+002 - 1.14552498e+002 1.21044891e+002 1.01199623e+002 1.14531052e+002 - 1.21078232e+002 1.01145935e+002 1.14510406e+002 1.21096542e+002 - 1.01052399e+002 1.14430885e+002 1.21084091e+002 1.00944710e+002 - 1.14361084e+002 1.21054604e+002 1.00845337e+002 1.14279869e+002 - 1.21040482e+002 1.00710114e+002 1.14177116e+002 1.20978050e+002 - 1.00599037e+002 1.14077843e+002 1.20939796e+002 1.00464386e+002 - 1.13967453e+002 1.20876083e+002 1.00360023e+002 1.13856728e+002 - 1.20849846e+002 1.00283943e+002 1.13801979e+002 1.20847008e+002 - 1.00207169e+002 1.13744331e+002 1.20859062e+002 1.00119667e+002 - 1.13684410e+002 1.20846184e+002 1.00016640e+002 1.13585930e+002 - 1.20804184e+002 9.99077682e+001 1.13494797e+002 1.20760399e+002 - 9.97868805e+001 1.13378807e+002 1.20725868e+002 9.96337967e+001 - 1.13269791e+002 1.20655548e+002 9.95472031e+001 1.13173744e+002 - 1.20625282e+002 9.94674072e+001 1.13112518e+002 1.20602303e+002 - 9.94046936e+001 1.13038467e+002 1.20599930e+002 9.93234482e+001 - 1.12971771e+002 1.20575989e+002 9.92433319e+001 1.12890465e+002 - 1.20567787e+002 9.91563263e+001 1.12816528e+002 1.20531456e+002 - 9.91072159e+001 1.12761719e+002 1.20543549e+002 9.90317001e+001 - 1.12699951e+002 1.20536575e+002 9.89495316e+001 1.12603210e+002 - 1.20521820e+002 9.88552551e+001 1.12521896e+002 1.20497551e+002 - 9.87693329e+001 1.12441559e+002 1.20484566e+002 9.87118912e+001 - 1.12393265e+002 1.20485909e+002 9.86198425e+001 1.12298386e+002 - 1.20449135e+002 9.85545349e+001 1.12236183e+002 1.20434525e+002 - 9.84871902e+001 1.12168205e+002 1.20454262e+002 9.83800125e+001 - 1.12091125e+002 1.20414902e+002 9.83021469e+001 1.11995537e+002 - 1.20382607e+002 9.82497940e+001 1.11954918e+002 1.20378899e+002 - 9.81966171e+001 1.11888313e+002 1.20391251e+002 9.81192169e+001 - 1.11828217e+002 1.20379822e+002 9.80514832e+001 1.11758270e+002 - 1.20381744e+002 9.79645386e+001 1.11682999e+002 1.20350975e+002 - 9.79041595e+001 1.11615158e+002 1.20350319e+002 9.78461761e+001 - 1.11576324e+002 1.20344269e+002 9.78035202e+001 1.11509209e+002 - 1.20356613e+002 9.77328415e+001 1.11440536e+002 1.20329613e+002 - 9.76801682e+001 1.11381401e+002 1.20333710e+002 9.75949478e+001 - 1.11309265e+002 1.20293015e+002 9.75432892e+001 1.11248238e+002 - 1.20278488e+002 9.74904251e+001 1.11203613e+002 1.20269348e+002 - 9.74341812e+001 1.11146500e+002 1.20295601e+002 9.73568878e+001 - 1.11088432e+002 1.20277863e+002 9.73321991e+001 1.11043396e+002 - 1.20282570e+002 9.72692871e+001 1.10983101e+002 1.20261902e+002 - 9.72116928e+001 1.10899193e+002 1.20242958e+002 9.71605911e+001 - 1.10859573e+002 1.20237114e+002 9.71186752e+001 1.10805878e+002 - 1.20247307e+002 9.70703201e+001 1.10764824e+002 1.20238800e+002 - 9.70243530e+001 1.10704079e+002 1.20231781e+002 9.69377213e+001 - 1.10629784e+002 1.20193741e+002 9.69147797e+001 1.10579315e+002 - 1.20214722e+002 9.68588257e+001 1.10537094e+002 1.20206490e+002 - 9.68186035e+001 1.10486351e+002 1.20208504e+002 9.67798843e+001 - 1.10458893e+002 1.20203796e+002 9.67766266e+001 1.10448929e+002 - 1.20232491e+002 9.67502365e+001 1.10427132e+002 1.20231544e+002 - 9.67234879e+001 1.10391525e+002 1.20254074e+002 9.66849365e+001 - 1.10376228e+002 1.20263588e+002 9.66565323e+001 1.10332169e+002 - 1.20268356e+002 9.66193085e+001 1.10303185e+002 1.20260643e+002 - 9.66043549e+001 1.10270775e+002 1.20280724e+002 9.65717545e+001 - 1.10241760e+002 1.20273445e+002 9.65281143e+001 1.10192184e+002 - 1.20262527e+002 9.65188904e+001 1.10185654e+002 1.20278603e+002 - 9.64978867e+001 1.10147675e+002 1.20284317e+002 9.64693298e+001 - 1.10125122e+002 1.20285004e+002 9.64822235e+001 1.10111008e+002 - 1.20325706e+002 9.64613876e+001 1.10101807e+002 1.20337296e+002 - 9.64217834e+001 1.10050987e+002 1.20320251e+002 9.63786545e+001 - 1.10030373e+002 1.20309906e+002 9.63687210e+001 1.10009300e+002 - 1.20328568e+002 9.63564606e+001 1.10002258e+002 1.20341240e+002 - 9.63386459e+001 1.09975983e+002 1.20366058e+002 9.62820969e+001 - 1.09954803e+002 1.20357216e+002 9.62805634e+001 1.09937340e+002 - 1.20375252e+002 9.62531357e+001 1.09917236e+002 1.20365524e+002 - 9.62586975e+001 1.09910667e+002 1.20406898e+002 9.61920547e+001 - 1.09858551e+002 1.20363899e+002 9.61902084e+001 1.09846626e+002 - 1.20391289e+002 9.61724396e+001 1.09846977e+002 1.20404747e+002 - 9.62009430e+001 1.09861023e+002 1.20454628e+002 9.61709976e+001 - 1.09855263e+002 1.20463768e+002 9.61892548e+001 1.09838631e+002 - 1.20501434e+002 9.61541824e+001 1.09818527e+002 1.20489136e+002 - 9.61392059e+001 1.09789749e+002 1.20483299e+002 9.60585861e+001 - 1.09724770e+002 1.20419998e+002 9.60499496e+001 1.09701920e+002 - 1.20419762e+002 9.60787125e+001 1.09735413e+002 1.20451332e+002 - 9.60763321e+001 1.09730858e+002 1.20470139e+002 9.60075073e+001 - 1.09696335e+002 1.20433548e+002 9.60131836e+001 1.09674355e+002 - 1.20449982e+002 9.59982910e+001 1.09668625e+002 1.20440605e+002 - 9.60143890e+001 1.09665886e+002 1.20469078e+002 9.60025177e+001 - 1.09669014e+002 1.20471802e+002 9.59695892e+001 1.09633217e+002 - 1.20458649e+002 9.59766235e+001 1.09650917e+002 1.20475105e+002 - 9.59971924e+001 1.09658745e+002 1.20507614e+002 9.59469223e+001 - 1.09618057e+002 1.20472435e+002 9.59264069e+001 1.09570038e+002 - 1.20449409e+002 9.59315796e+001 1.09588295e+002 1.20464478e+002 - 9.59374313e+001 1.09587021e+002 1.20462944e+002 9.59362946e+001 - 1.09602486e+002 1.20460533e+002 9.59634399e+001 1.09611763e+002 - 1.20477333e+002 9.59694672e+001 1.09622444e+002 1.20469360e+002 - 9.59655533e+001 1.09616013e+002 1.20470650e+002 9.59530716e+001 - 1.09626450e+002 1.20478828e+002 9.59794159e+001 1.09641960e+002 - 1.20503769e+002 9.59614487e+001 1.09626648e+002 1.20486374e+002 - 9.59569778e+001 1.09601944e+002 1.20474525e+002 9.59552917e+001 - 1.09613976e+002 1.20469849e+002 9.59757690e+001 1.09622139e+002 - 1.20478455e+002 9.59561615e+001 1.09608704e+002 1.20454613e+002 - 9.59556580e+001 1.09600311e+002 1.20449585e+002 9.59600601e+001 - 1.09616486e+002 1.20451614e+002 9.59719162e+001 1.09589981e+002 - 1.20444153e+002 9.59858398e+001 1.09617233e+002 1.20443474e+002 - 9.60095978e+001 1.09632172e+002 1.20453064e+002 9.60087433e+001 - 1.09654015e+002 1.20438545e+002 9.60269547e+001 1.09658783e+002 - 1.20448883e+002 9.60383987e+001 1.09679329e+002 1.20434586e+002 - 9.60457764e+001 1.09674583e+002 1.20419983e+002 9.60407715e+001 - 1.09698212e+002 1.20420395e+002 9.60485001e+001 1.09692574e+002 - 1.20422356e+002 9.60517044e+001 1.09706749e+002 1.20412201e+002 - 9.60504990e+001 1.09691963e+002 1.20396469e+002 9.60345764e+001 - 1.09689552e+002 1.20365211e+002 9.60548706e+001 1.09700409e+002 - 1.20366211e+002 9.60579758e+001 1.09724808e+002 1.20345627e+002 - 9.60835342e+001 1.09744240e+002 1.20344826e+002 9.61090164e+001 - 1.09782967e+002 1.20353249e+002 9.61334610e+001 1.09779160e+002 - 1.20341667e+002 9.61604385e+001 1.09830063e+002 1.20350548e+002 - 9.61647644e+001 1.09823784e+002 1.20317825e+002 9.61618347e+001 - 1.09839058e+002 1.20292572e+002 9.61907501e+001 1.09855942e+002 - 1.20299683e+002 9.62079468e+001 1.09883316e+002 1.20287292e+002 - 9.62494202e+001 1.09921852e+002 1.20294151e+002 9.62256012e+001 - 1.09918625e+002 1.20255196e+002 9.62939835e+001 1.09971283e+002 - 1.20296257e+002 9.63344498e+001 1.10019455e+002 1.20311981e+002 - 9.63569489e+001 1.10029907e+002 1.20296120e+002 9.63372650e+001 - 1.10026314e+002 1.20242447e+002 9.63353043e+001 1.10019981e+002 - 1.20206841e+002 9.63385239e+001 1.10033501e+002 1.20175766e+002 - 9.63619843e+001 1.10046204e+002 1.20161560e+002 9.63932419e+001 - 1.10090515e+002 1.20167839e+002 9.64660263e+001 1.10136887e+002 - 1.20190720e+002 9.64988480e+001 1.10182877e+002 1.20183685e+002 - 9.65412445e+001 1.10213905e+002 1.20179375e+002 9.65817413e+001 - 1.10268761e+002 1.20180275e+002 9.66298904e+001 1.10307541e+002 - 1.20187347e+002 9.66417389e+001 1.10323067e+002 1.20149467e+002 - 9.66977158e+001 1.10377342e+002 1.20154739e+002 9.67169952e+001 - 1.10420753e+002 1.20152100e+002 9.67597122e+001 1.10449585e+002 - 1.20161995e+002 9.67820129e+001 1.10485077e+002 1.20147255e+002 - 9.68454514e+001 1.10525902e+002 1.20166641e+002 9.68895187e+001 - 1.10581993e+002 1.20169746e+002 9.69256668e+001 1.10616348e+002 - 1.20163506e+002 9.69603043e+001 1.10667404e+002 1.20154648e+002 - 9.70420380e+001 1.10739388e+002 1.20192230e+002 9.70505753e+001 - 1.10762749e+002 1.20163589e+002 9.71174850e+001 1.10799728e+002 - 1.20172409e+002 9.71798553e+001 1.10884232e+002 1.20194511e+002 - 9.72547684e+001 1.10944199e+002 1.20211571e+002 9.72774200e+001 - 1.10989059e+002 1.20195801e+002 9.73227921e+001 1.11014809e+002 - 1.20187523e+002 9.73885040e+001 1.11081123e+002 1.20193588e+002 - 9.74497986e+001 1.11127632e+002 1.20179001e+002 9.74876404e+001 - 1.11181610e+002 1.20170113e+002 9.75386200e+001 1.11221558e+002 - 1.20173897e+002 9.76019516e+001 1.11300476e+002 1.20189957e+002 - 9.77055130e+001 1.11387558e+002 1.20230934e+002 9.77627258e+001 - 1.11463676e+002 1.20246620e+002 9.78215408e+001 1.11516602e+002 - 1.20249451e+002 9.78710938e+001 1.11579117e+002 1.20250160e+002 - 9.79282455e+001 1.11625404e+002 1.20255074e+002 9.79795609e+001 - 1.11689590e+002 1.20259384e+002 9.80654526e+001 1.11747719e+002 - 1.20269943e+002 9.81196442e+001 1.11811996e+002 1.20268684e+002 - 9.81879883e+001 1.11872292e+002 1.20270805e+002 9.82214050e+001 - 1.11927849e+002 1.20262894e+002 9.82728882e+001 1.11959496e+002 - 1.20255096e+002 9.83427429e+001 1.12029312e+002 1.20260315e+002 - 9.84286957e+001 1.12086617e+002 1.20257393e+002 9.84773407e+001 - 1.12154068e+002 1.20258392e+002 9.85590057e+001 1.12216064e+002 - 1.20276855e+002 9.86479187e+001 1.12307602e+002 1.20315269e+002 - 9.87513809e+001 1.12395210e+002 1.20346573e+002 9.88134842e+001 - 1.12464851e+002 1.20350525e+002 9.89126282e+001 1.12555183e+002 - 1.20384705e+002 9.90276718e+001 1.12678658e+002 1.20443527e+002 - 9.91089783e+001 1.12751923e+002 1.20463257e+002 9.91725769e+001 - 1.12823097e+002 1.20470627e+002 9.92607880e+001 1.12872726e+002 - 1.20471359e+002 9.93518829e+001 1.12967979e+002 1.20497887e+002 - 9.94628143e+001 1.13060959e+002 1.20536240e+002 9.95416412e+001 - 1.13152000e+002 1.20563606e+002 9.96298676e+001 1.13225029e+002 - 1.20601494e+002 9.97419281e+001 1.13332512e+002 1.20630867e+002 - 9.98646088e+001 1.13427498e+002 1.20642677e+002 9.99522324e+001 - 1.13522583e+002 1.20671364e+002 1.00057716e+002 1.13602463e+002 - 1.20709747e+002 1.00158363e+002 1.13698524e+002 1.20745598e+002 - 1.00288048e+002 1.13791290e+002 1.20792480e+002 1.00368774e+002 - 1.13868866e+002 1.20800690e+002 1.00495033e+002 1.13967201e+002 - 1.20842339e+002 1.00605766e+002 1.14070801e+002 1.20880516e+002 - 1.00715134e+002 1.14146217e+002 1.20910927e+002 1.00821213e+002 - 1.14239006e+002 1.20944466e+002 1.00952667e+002 1.14319832e+002 - 1.20980209e+002 1.01046829e+002 1.14398621e+002 1.21000702e+002 - 1.01176331e+002 1.14481071e+002 1.21037170e+002 1.01227257e+002 - 1.14529617e+002 1.21018761e+002 1.01301369e+002 1.14563484e+002 - 1.21021957e+002 1.01279037e+002 1.14529602e+002 1.20924911e+002 - 1.01205719e+002 1.14479752e+002 1.20927750e+002 1.01197479e+002 - 1.14515419e+002 1.20996918e+002 1.01148949e+002 1.14480263e+002 - 1.21019264e+002 1.01090919e+002 1.14456146e+002 1.21036324e+002 - 1.00990097e+002 1.14369774e+002 1.21016113e+002 1.00878098e+002 - 1.14295883e+002 1.20985779e+002 1.00764221e+002 1.14200729e+002 - 1.20957893e+002 1.00626717e+002 1.14092789e+002 1.20885956e+002 - 1.00525955e+002 1.14007507e+002 1.20862633e+002 1.00417999e+002 - 1.13916115e+002 1.20821541e+002 1.00316292e+002 1.13814308e+002 - 1.20802887e+002 1.00250801e+002 1.13768227e+002 1.20807579e+002 - 1.00168343e+002 1.13699738e+002 1.20811111e+002 1.00058357e+002 - 1.13620461e+002 1.20769768e+002 9.99405518e+001 1.13506676e+002 - 1.20714806e+002 9.98296661e+001 1.13421326e+002 1.20677078e+002 - 9.97144165e+001 1.13315460e+002 1.20654770e+002 9.95636826e+001 - 1.13203438e+002 1.20586243e+002 9.94948654e+001 1.13126732e+002 - 1.20568825e+002 9.94274902e+001 1.13080040e+002 1.20565689e+002 - 9.93545990e+001 1.12995682e+002 1.20552185e+002 9.92828903e+001 - 1.12940018e+002 1.20542419e+002 9.91966324e+001 1.12853584e+002 - 1.20524025e+002 9.91015320e+001 1.12772018e+002 1.20482124e+002 - 9.90434647e+001 1.12711586e+002 1.20488235e+002 9.89752045e+001 - 1.12653862e+002 1.20484100e+002 9.88993607e+001 1.12564445e+002 - 1.20473885e+002 9.88026505e+001 1.12480675e+002 1.20444351e+002 - 9.87356339e+001 1.12415085e+002 1.20445633e+002 9.86689072e+001 - 1.12361542e+002 1.20434158e+002 9.85747833e+001 1.12256126e+002 - 1.20399155e+002 9.85033188e+001 1.12197067e+002 1.20381859e+002 - 9.84215164e+001 1.12106667e+002 1.20381882e+002 9.83122787e+001 - 1.12025635e+002 1.20342789e+002 9.82537155e+001 1.11950447e+002 - 1.20324257e+002 9.81655960e+001 1.11873611e+002 1.20289780e+002 - 9.81117706e+001 1.11808121e+002 1.20295959e+002 9.80430450e+001 - 1.11757980e+002 1.20299644e+002 9.79715424e+001 1.11684746e+002 - 1.20297310e+002 9.79036865e+001 1.11626823e+002 1.20283112e+002 - 9.78409805e+001 1.11561623e+002 1.20281509e+002 9.77802582e+001 - 1.11512009e+002 1.20277489e+002 9.77396088e+001 1.11450150e+002 - 1.20291229e+002 9.76791916e+001 1.11399582e+002 1.20278198e+002 - 9.76349945e+001 1.11346153e+002 1.20278130e+002 9.75469131e+001 - 1.11273125e+002 1.20238235e+002 9.74889755e+001 1.11203613e+002 - 1.20213745e+002 9.74586411e+001 1.11183807e+002 1.20229897e+002 - 9.73966904e+001 1.11114021e+002 1.20239296e+002 9.73056870e+001 - 1.11050690e+002 1.20217934e+002 9.72726974e+001 1.10996590e+002 - 1.20215508e+002 9.72087250e+001 1.10929024e+002 1.20188072e+002 - 9.71734695e+001 1.10873123e+002 1.20195236e+002 9.71219864e+001 - 1.10827431e+002 1.20188606e+002 9.70849304e+001 1.10779686e+002 - 1.20204590e+002 9.70357819e+001 1.10739136e+002 1.20194588e+002 - 9.69726639e+001 1.10668350e+002 1.20174210e+002 9.68890991e+001 - 1.10591492e+002 1.20137177e+002 9.68688431e+001 1.10540230e+002 - 1.20156158e+002 9.68172684e+001 1.10500481e+002 1.20146706e+002 - 9.67729034e+001 1.10447655e+002 1.20142960e+002 9.67326126e+001 - 1.10419273e+002 1.20142860e+002 9.67255096e+001 1.10400772e+002 - 1.20159500e+002 9.67086334e+001 1.10387070e+002 1.20172546e+002 - 9.66900864e+001 1.10358955e+002 1.20204666e+002 9.66511917e+001 - 1.10352997e+002 1.20221405e+002 9.66167374e+001 1.10296402e+002 - 1.20206757e+002 9.65690918e+001 1.10257675e+002 1.20194588e+002 - 9.65515594e+001 1.10221436e+002 1.20206718e+002 9.65117188e+001 - 1.10187454e+002 1.20196449e+002 9.65035858e+001 1.10166672e+002 - 1.20221405e+002 9.64841843e+001 1.10160126e+002 1.20228149e+002 - 9.64683685e+001 1.10129028e+002 1.20243172e+002 9.64385834e+001 - 1.10108887e+002 1.20249489e+002 9.64255371e+001 1.10064217e+002 - 1.20252541e+002 9.63968582e+001 1.10046669e+002 1.20259628e+002 - 9.63630371e+001 1.09998848e+002 1.20251999e+002 9.63363800e+001 - 1.09989182e+002 1.20254509e+002 9.63333511e+001 1.09976379e+002 - 1.20277115e+002 9.63184128e+001 1.09967514e+002 1.20287880e+002 - 9.62774124e+001 1.09926651e+002 1.20300415e+002 9.61912460e+001 - 1.09865807e+002 1.20255859e+002 9.61904907e+001 1.09851341e+002 - 1.20270935e+002 9.61832047e+001 1.09856262e+002 1.20288483e+002 - 9.61893997e+001 1.09845390e+002 1.20321312e+002 9.61282654e+001 - 1.09799629e+002 1.20295311e+002 9.61121368e+001 1.09787201e+002 - 1.20307091e+002 9.61194305e+001 1.09801216e+002 1.20336189e+002 - 9.61385422e+001 1.09807762e+002 1.20381081e+002 9.61131287e+001 - 1.09800369e+002 1.20387741e+002 9.61153412e+001 1.09773819e+002 - 1.20417152e+002 9.60948715e+001 1.09767693e+002 1.20414948e+002 - 9.60786667e+001 1.09738083e+002 1.20404625e+002 9.60128021e+001 - 1.09689308e+002 1.20357651e+002 9.59844513e+001 1.09646866e+002 - 1.20341682e+002 9.60048218e+001 1.09677139e+002 1.20368492e+002 - 9.59864197e+001 1.09656013e+002 1.20376137e+002 9.59464340e+001 - 1.09637138e+002 1.20358139e+002 9.59354248e+001 1.09604759e+002 - 1.20346252e+002 9.59352798e+001 1.09621788e+002 1.20365036e+002 - 9.59780502e+001 1.09642807e+002 1.20417389e+002 9.59491653e+001 - 1.09633209e+002 1.20405823e+002 9.59185333e+001 1.09593117e+002 - 1.20384315e+002 9.59142227e+001 1.09602257e+002 1.20396767e+002 - 9.58960876e+001 1.09574875e+002 1.20392532e+002 9.58810730e+001 - 1.09570366e+002 1.20390610e+002 9.59011383e+001 1.09558327e+002 - 1.20413727e+002 9.58864746e+001 1.09560135e+002 1.20410530e+002 - 9.58997498e+001 1.09556168e+002 1.20411095e+002 9.58976669e+001 - 1.09571747e+002 1.20408623e+002 9.59242706e+001 1.09581345e+002 - 1.20420410e+002 9.59379959e+001 1.09601807e+002 1.20424133e+002 - 9.59452515e+001 1.09595291e+002 1.20430275e+002 9.59111404e+001 - 1.09589073e+002 1.20411720e+002 9.59356689e+001 1.09599213e+002 - 1.20440643e+002 9.59153214e+001 1.09584061e+002 1.20424530e+002 - 9.59188004e+001 1.09568878e+002 1.20413277e+002 9.59141541e+001 - 1.09575409e+002 1.20412491e+002 9.59242401e+001 1.09580231e+002 - 1.20422081e+002 9.59186478e+001 1.09584778e+002 1.20405495e+002 - 9.59184265e+001 1.09571938e+002 1.20396042e+002 9.58864746e+001 - 1.09550354e+002 1.20363823e+002 9.59178619e+001 1.09548996e+002 - 1.20371117e+002 9.59358521e+001 1.09576744e+002 1.20377396e+002 - 9.59442749e+001 1.09577492e+002 1.20367371e+002 9.59455643e+001 - 1.09597023e+002 1.20357376e+002 9.59710388e+001 1.09613113e+002 - 1.20377411e+002 9.59866638e+001 1.09635139e+002 1.20367172e+002 - 9.59973145e+001 1.09638451e+002 1.20355743e+002 9.59956055e+001 - 1.09660385e+002 1.20359978e+002 9.60276260e+001 1.09679825e+002 - 1.20381294e+002 9.60088882e+001 1.09678680e+002 1.20355270e+002 - 9.60175858e+001 1.09663963e+002 1.20344231e+002 9.59856644e+001 - 1.09647934e+002 1.20300171e+002 9.60057220e+001 1.09657784e+002 - 1.20298943e+002 9.60179672e+001 1.09688820e+002 1.20293945e+002 - 9.60352936e+001 1.09692116e+002 1.20279587e+002 9.60530319e+001 - 1.09733467e+002 1.20281570e+002 9.60745163e+001 1.09729156e+002 - 1.20266121e+002 9.61020050e+001 1.09778824e+002 1.20272179e+002 - 9.61142502e+001 1.09776512e+002 1.20251961e+002 9.61324005e+001 - 1.09811768e+002 1.20247963e+002 9.61567535e+001 1.09829811e+002 - 1.20249428e+002 9.61661377e+001 1.09840942e+002 1.20227875e+002 - 9.61932755e+001 1.09865570e+002 1.20228348e+002 9.61860733e+001 - 1.09881630e+002 1.20207977e+002 9.62406769e+001 1.09916939e+002 - 1.20226196e+002 9.62884445e+001 1.09976006e+002 1.20248993e+002 - 9.63094254e+001 1.09981186e+002 1.20229156e+002 9.62797394e+001 - 1.09973885e+002 1.20173409e+002 9.62781754e+001 1.09963379e+002 - 1.20136467e+002 9.62745667e+001 1.09974754e+002 1.20100861e+002 - 9.63334198e+001 1.10016830e+002 1.20117569e+002 9.63697968e+001 - 1.10075165e+002 1.20129662e+002 9.64239273e+001 1.10099884e+002 - 1.20134346e+002 9.64467926e+001 1.10136208e+002 1.20114349e+002 - 9.64966736e+001 1.10173637e+002 1.20112366e+002 9.65340271e+001 - 1.10230515e+002 1.20120247e+002 9.65783920e+001 1.10261368e+002 - 1.20122108e+002 9.66138992e+001 1.10303032e+002 1.20107132e+002 - 9.66397934e+001 1.10330132e+002 1.20090782e+002 9.66382599e+001 - 1.10352753e+002 1.20065308e+002 9.67075958e+001 1.10404266e+002 - 1.20093979e+002 9.67287674e+001 1.10440605e+002 1.20084724e+002 - 9.67872925e+001 1.10477013e+002 1.20100151e+002 9.68126755e+001 - 1.10516762e+002 1.20081581e+002 9.68617783e+001 1.10562088e+002 - 1.20090744e+002 9.69038849e+001 1.10618446e+002 1.20082558e+002 - 9.69879379e+001 1.10688034e+002 1.20124550e+002 9.70165710e+001 - 1.10731377e+002 1.20120560e+002 9.70737915e+001 1.10772804e+002 - 1.20120979e+002 9.71248245e+001 1.10835274e+002 1.20129875e+002 - 9.71771469e+001 1.10874725e+002 1.20126251e+002 9.72059097e+001 - 1.10928909e+002 1.20116089e+002 9.72613754e+001 1.10965126e+002 - 1.20120506e+002 9.73392181e+001 1.11045959e+002 1.20132248e+002 - 9.74025345e+001 1.11086143e+002 1.20115387e+002 9.74399033e+001 - 1.11143402e+002 1.20111153e+002 9.75032425e+001 1.11194771e+002 - 1.20122566e+002 9.75660400e+001 1.11268867e+002 1.20141602e+002 - 9.76659317e+001 1.11359833e+002 1.20181664e+002 9.77061310e+001 - 1.11410500e+002 1.20172997e+002 9.77431259e+001 1.11441429e+002 - 1.20158096e+002 9.78035126e+001 1.11516899e+002 1.20172508e+002 - 9.78719101e+001 1.11571190e+002 1.20187370e+002 9.79246674e+001 - 1.11638931e+002 1.20195038e+002 9.80214157e+001 1.11706787e+002 - 1.20214409e+002 9.80766068e+001 1.11777863e+002 1.20217842e+002 - 9.81500092e+001 1.11837883e+002 1.20230057e+002 9.81773224e+001 - 1.11883728e+002 1.20210091e+002 9.82233505e+001 1.11910591e+002 - 1.20200134e+002 9.82916183e+001 1.11981827e+002 1.20203590e+002 - 9.83917160e+001 1.12053513e+002 1.20212975e+002 9.84534836e+001 - 1.12138000e+002 1.20222649e+002 9.85295639e+001 1.12193245e+002 - 1.20245895e+002 9.86267471e+001 1.12294540e+002 1.20281586e+002 - 9.87133102e+001 1.12362907e+002 1.20302017e+002 9.87763367e+001 - 1.12436028e+002 1.20314804e+002 9.88546143e+001 1.12507339e+002 - 1.20330154e+002 9.89586945e+001 1.12624680e+002 1.20377998e+002 - 9.90507889e+001 1.12699547e+002 1.20408669e+002 9.91274261e+001 - 1.12786217e+002 1.20430000e+002 9.92078857e+001 1.12831718e+002 - 1.20424721e+002 9.92733841e+001 1.12903000e+002 1.20424446e+002 - 9.93900604e+001 1.12995438e+002 1.20465691e+002 9.94727707e+001 - 1.13086121e+002 1.20490585e+002 9.95844727e+001 1.13185654e+002 - 1.20545944e+002 9.96886139e+001 1.13274338e+002 1.20565079e+002 - 9.97833710e+001 1.13350777e+002 1.20568764e+002 9.98817978e+001 - 1.13460815e+002 1.20598122e+002 1.00007706e+002 1.13549759e+002 - 1.20653336e+002 1.00103348e+002 1.13649086e+002 1.20685165e+002 - 1.00227837e+002 1.13736427e+002 1.20726929e+002 1.00312584e+002 - 1.13817604e+002 1.20742104e+002 1.00430237e+002 1.13903053e+002 - 1.20772179e+002 1.00530365e+002 1.13996025e+002 1.20802696e+002 - 1.00649956e+002 1.14085037e+002 1.20841248e+002 1.00775772e+002 - 1.14197166e+002 1.20896286e+002 1.00917023e+002 1.14286530e+002 - 1.20944908e+002 1.01017334e+002 1.14374031e+002 1.20967163e+002 - 1.01118774e+002 1.14427986e+002 1.20977203e+002 1.01166855e+002 - 1.14469833e+002 1.20953758e+002 1.01222717e+002 1.14485344e+002 - 1.20941399e+002 1.01233704e+002 1.14484749e+002 1.20878838e+002 - 1.01177185e+002 1.14453110e+002 1.20896439e+002 1.01169357e+002 - 1.14491364e+002 1.20967636e+002 1.01119781e+002 1.14454796e+002 - 1.20983658e+002 1.01042130e+002 1.14406670e+002 1.20977348e+002 - 1.00951622e+002 1.14331184e+002 1.20966850e+002 1.00844978e+002 - 1.14257790e+002 1.20936562e+002 1.00731346e+002 1.14167686e+002 - 1.20912788e+002 1.00601044e+002 1.14068451e+002 1.20851868e+002 - 1.00496559e+002 1.13979218e+002 1.20821693e+002 1.00388519e+002 - 1.13893387e+002 1.20781555e+002 1.00305389e+002 1.13795860e+002 - 1.20779617e+002 1.00223526e+002 1.13739998e+002 1.20769440e+002 - 1.00114937e+002 1.13645187e+002 1.20746933e+002 1.00003502e+002 - 1.13566635e+002 1.20704872e+002 9.99034958e+001 1.13471260e+002 - 1.20673775e+002 9.98081818e+001 1.13403244e+002 1.20647751e+002 - 9.96963196e+001 1.13306419e+002 1.20631218e+002 9.95451126e+001 - 1.13194397e+002 1.20566040e+002 9.94836960e+001 1.13126396e+002 - 1.20558556e+002 9.94053802e+001 1.13061768e+002 1.20537292e+002 - 9.93273163e+001 1.12975800e+002 1.20522591e+002 9.92409058e+001 - 1.12905586e+002 1.20495567e+002 9.91548004e+001 1.12822662e+002 - 1.20482155e+002 9.90697632e+001 1.12749680e+002 1.20445908e+002 - 9.90051193e+001 1.12681923e+002 1.20448036e+002 9.89181366e+001 - 1.12611206e+002 1.20426781e+002 9.88557358e+001 1.12526558e+002 - 1.20429115e+002 9.87709274e+001 1.12457741e+002 1.20403160e+002 - 9.87167816e+001 1.12401970e+002 1.20420433e+002 9.86251068e+001 - 1.12322639e+002 1.20380630e+002 9.85617981e+001 1.12248512e+002 - 1.20374710e+002 9.84899750e+001 1.12183632e+002 1.20353333e+002 - 9.83882065e+001 1.12083961e+002 1.20341484e+002 9.82768021e+001 - 1.12000237e+002 1.20293938e+002 9.82204895e+001 1.11929100e+002 - 1.20281624e+002 9.81437454e+001 1.11856827e+002 1.20253601e+002 - 9.80693359e+001 1.11769836e+002 1.20242599e+002 9.80028229e+001 - 1.11721275e+002 1.20243744e+002 9.79322968e+001 1.11649567e+002 - 1.20244118e+002 9.78882675e+001 1.11618050e+002 1.20251740e+002 - 9.78331070e+001 1.11556763e+002 1.20262703e+002 9.77504883e+001 - 1.11490540e+002 1.20236885e+002 9.76998291e+001 1.11415565e+002 - 1.20244972e+002 9.76500092e+001 1.11375679e+002 1.20234543e+002 - 9.76140213e+001 1.11334358e+002 1.20245857e+002 9.75465851e+001 - 1.11279152e+002 1.20214668e+002 9.74783478e+001 1.11197357e+002 - 1.20191116e+002 9.74257431e+001 1.11152245e+002 1.20185135e+002 - 9.73811111e+001 1.11106277e+002 1.20217346e+002 9.72877502e+001 - 1.11038803e+002 1.20182610e+002 9.72486420e+001 1.10977104e+002 - 1.20179039e+002 9.71845474e+001 1.10912567e+002 1.20144974e+002 - 9.71675034e+001 1.10868752e+002 1.20172668e+002 9.71169434e+001 - 1.10827271e+002 1.20165901e+002 9.70506439e+001 1.10754257e+002 - 1.20159821e+002 9.70121231e+001 1.10716629e+002 1.20156609e+002 - 9.69584656e+001 1.10657944e+002 1.20148041e+002 9.68638611e+001 - 1.10576447e+002 1.20100174e+002 9.68307495e+001 1.10515793e+002 - 1.20110641e+002 9.68197937e+001 1.10508644e+002 1.20134766e+002 - 9.67663727e+001 1.10450409e+002 1.20111252e+002 9.67114868e+001 - 1.10401093e+002 1.20097069e+002 9.66927032e+001 1.10371330e+002 - 1.20105072e+002 9.66830673e+001 1.10364754e+002 1.20123619e+002 - 9.66388474e+001 1.10316193e+002 1.20131798e+002 9.65901947e+001 - 1.10300133e+002 1.20140511e+002 9.65657120e+001 1.10257622e+002 - 1.20138481e+002 9.65228882e+001 1.10219658e+002 1.20125839e+002 - 9.65155182e+001 1.10190613e+002 1.20152382e+002 9.64828033e+001 - 1.10172043e+002 1.20153816e+002 9.64634171e+001 1.10136551e+002 - 1.20166374e+002 9.64498367e+001 1.10130028e+002 1.20174706e+002 - 9.64197693e+001 1.10083145e+002 1.20173424e+002 9.63743286e+001 - 1.10049400e+002 1.20165543e+002 9.63706284e+001 1.10015594e+002 - 1.20183372e+002 9.63441010e+001 1.09997787e+002 1.20187897e+002 - 9.63398819e+001 1.09984573e+002 1.20211647e+002 9.63204041e+001 - 1.09981216e+002 1.20219490e+002 9.63002090e+001 1.09949356e+002 - 1.20227882e+002 9.62777634e+001 1.09931671e+002 1.20234451e+002 - 9.62473145e+001 1.09905647e+002 1.20255836e+002 9.61610107e+001 - 1.09842026e+002 1.20213608e+002 9.61575394e+001 1.09823082e+002 - 1.20225647e+002 9.61601486e+001 1.09841232e+002 1.20245293e+002 - 9.61657944e+001 1.09825981e+002 1.20278053e+002 9.61053314e+001 - 1.09789215e+002 1.20250816e+002 9.60868912e+001 1.09768898e+002 - 1.20266747e+002 9.60800323e+001 1.09772118e+002 1.20282486e+002 - 9.60767899e+001 1.09758682e+002 1.20297256e+002 9.60448608e+001 - 1.09743134e+002 1.20300491e+002 9.60612946e+001 1.09724907e+002 - 1.20341293e+002 9.60537567e+001 1.09735535e+002 1.20358017e+002 - 9.60286255e+001 1.09703171e+002 1.20342529e+002 9.59784317e+001 - 1.09669647e+002 1.20312393e+002 9.59572296e+001 1.09631798e+002 - 1.20297920e+002 9.59607162e+001 1.09638702e+002 1.20306190e+002 - 9.59425278e+001 1.09620216e+002 1.20312485e+002 9.59007111e+001 - 1.09602631e+002 1.20294670e+002 9.59050293e+001 1.09591980e+002 - 1.20308746e+002 9.59030075e+001 1.09603233e+002 1.20318237e+002 - 9.59361343e+001 1.09616287e+002 1.20355690e+002 9.59043579e+001 - 1.09598740e+002 1.20343475e+002 9.58656998e+001 1.09550758e+002 - 1.20312508e+002 9.58638611e+001 1.09564560e+002 1.20322334e+002 - 9.58715515e+001 1.09558777e+002 1.20345100e+002 9.58433609e+001 - 1.09543098e+002 1.20334534e+002 9.58596573e+001 1.09527313e+002 - 1.20352806e+002 9.58631897e+001 1.09541374e+002 1.20362434e+002 - 9.58608551e+001 1.09528992e+002 1.20352219e+002 9.58532333e+001 - 1.09538177e+002 1.20341278e+002 9.58934479e+001 1.09558334e+002 - 1.20373276e+002 9.59130249e+001 1.09581490e+002 1.20379173e+002 - 9.59128494e+001 1.09569443e+002 1.20383003e+002 9.58701553e+001 - 1.09550072e+002 1.20346825e+002 9.58879242e+001 1.09544846e+002 - 1.20364082e+002 9.58668289e+001 1.09537254e+002 1.20344238e+002 - 9.58696671e+001 1.09526993e+002 1.20346062e+002 9.58745422e+001 - 1.09542274e+002 1.20349686e+002 9.58780212e+001 1.09540237e+002 - 1.20356430e+002 9.58817215e+001 1.09557587e+002 1.20349495e+002 - 9.58843765e+001 1.09547974e+002 1.20347198e+002 9.58616638e+001 - 1.09536209e+002 1.20316269e+002 9.58897629e+001 1.09527687e+002 - 1.20318527e+002 9.59112778e+001 1.09553444e+002 1.20328346e+002 - 9.58942413e+001 1.09539116e+002 1.20296661e+002 9.58953857e+001 - 1.09555801e+002 1.20291130e+002 9.59135056e+001 1.09562706e+002 - 1.20300133e+002 9.59363556e+001 1.09591759e+002 1.20302101e+002 - 9.59517517e+001 1.09596924e+002 1.20301781e+002 9.59354095e+001 - 1.09609528e+002 1.20281937e+002 9.59638977e+001 1.09622131e+002 - 1.20302765e+002 9.59666061e+001 1.09644211e+002 1.20293861e+002 - 9.59758987e+001 1.09635651e+002 1.20287254e+002 9.59526596e+001 - 1.09626236e+002 1.20248688e+002 9.59800415e+001 1.09645859e+002 - 1.20254158e+002 9.59879150e+001 1.09668251e+002 1.20242172e+002 - 9.60082321e+001 1.09674995e+002 1.20230583e+002 9.60251083e+001 - 1.09714943e+002 1.20235939e+002 9.60502243e+001 1.09709862e+002 - 1.20225189e+002 9.60631256e+001 1.09744446e+002 1.20220154e+002 - 9.60804291e+001 1.09756279e+002 1.20205963e+002 9.60935440e+001 - 1.09784546e+002 1.20198540e+002 9.61307068e+001 1.09805702e+002 - 1.20213448e+002 9.61548233e+001 1.09838982e+002 1.20204254e+002 - 9.61771088e+001 1.09853783e+002 1.20196426e+002 9.61676178e+001 - 1.09870651e+002 1.20173073e+002 9.62178116e+001 1.09899803e+002 - 1.20184723e+002 9.62444687e+001 1.09939590e+002 1.20186195e+002 - 9.62628326e+001 1.09936790e+002 1.20161484e+002 9.62533951e+001 - 1.09945808e+002 1.20122742e+002 9.62483139e+001 1.09934944e+002 - 1.20086052e+002 9.62685928e+001 1.09967316e+002 1.20072563e+002 - 9.63201370e+001 1.10007393e+002 1.20086365e+002 9.63406906e+001 - 1.10053085e+002 1.20080734e+002 9.63769836e+001 1.10056145e+002 - 1.20065155e+002 9.63962631e+001 1.10088493e+002 1.20045639e+002 - 9.64575806e+001 1.10145401e+002 1.20054367e+002 9.64836044e+001 - 1.10191635e+002 1.20043228e+002 9.65129623e+001 1.10203949e+002 - 1.20039131e+002 9.65572891e+001 1.10256241e+002 1.20038803e+002 - 9.66036606e+001 1.10302643e+002 1.20034523e+002 9.66023178e+001 - 1.10331680e+002 1.20015038e+002 9.66789398e+001 1.10387741e+002 - 1.20056625e+002 9.67180099e+001 1.10444656e+002 1.20074173e+002 - 9.67799149e+001 1.10477814e+002 1.20081894e+002 9.67889633e+001 - 1.10504486e+002 1.20049133e+002 9.68295364e+001 1.10539696e+002 - 1.20043701e+002 9.68623276e+001 1.10581055e+002 1.20026718e+002 - 9.69464264e+001 1.10657608e+002 1.20069107e+002 9.69893341e+001 - 1.10713158e+002 1.20076210e+002 9.70650711e+001 1.10762505e+002 - 1.20099838e+002 9.71030960e+001 1.10814728e+002 1.20095627e+002 - 9.71676559e+001 1.10869293e+002 1.20099602e+002 9.71852646e+001 - 1.10905434e+002 1.20077568e+002 9.72539520e+001 1.10962944e+002 - 1.20100166e+002 9.73239288e+001 1.11033104e+002 1.20101662e+002 - 9.73806686e+001 1.11073891e+002 1.20082481e+002 9.74318542e+001 - 1.11147453e+002 1.20087234e+002 9.74981842e+001 1.11197693e+002 - 1.20100853e+002 9.75704193e+001 1.11283691e+002 1.20134521e+002 - 9.76454391e+001 1.11347267e+002 1.20148682e+002 9.76837311e+001 - 1.11396065e+002 1.20139954e+002 9.77274704e+001 1.11432053e+002 - 1.20131699e+002 9.77695847e+001 1.11486732e+002 1.20124840e+002 - 9.78221588e+001 1.11528244e+002 1.20125069e+002 9.78974152e+001 - 1.11619942e+002 1.20155197e+002 9.79933395e+001 1.11684486e+002 - 1.20185120e+002 9.80582199e+001 1.11759979e+002 1.20189995e+002 - 9.81214828e+001 1.11812706e+002 1.20193077e+002 9.81527328e+001 - 1.11863533e+002 1.20175346e+002 9.82081833e+001 1.11903702e+002 - 1.20182373e+002 9.82906952e+001 1.11984253e+002 1.20194237e+002 - 9.83630600e+001 1.12035469e+002 1.20179237e+002 9.84369049e+001 - 1.12129982e+002 1.20196289e+002 9.85382690e+001 1.12204910e+002 - 1.20240685e+002 9.86205826e+001 1.12302238e+002 1.20271980e+002 - 9.87057571e+001 1.12366325e+002 1.20292984e+002 9.87706833e+001 - 1.12443977e+002 1.20300896e+002 9.88451157e+001 1.12506050e+002 - 1.20315620e+002 9.89294434e+001 1.12606522e+002 1.20345886e+002 - 9.90267792e+001 1.12684601e+002 1.20381004e+002 9.91040344e+001 - 1.12774681e+002 1.20407982e+002 9.91732712e+001 1.12800392e+002 - 1.20389725e+002 9.92350693e+001 1.12864349e+002 1.20379143e+002 - 9.93444901e+001 1.12957191e+002 1.20415062e+002 9.94397812e+001 - 1.13058769e+002 1.20456802e+002 9.95336685e+001 1.13137871e+002 - 1.20496429e+002 9.96369019e+001 1.13235046e+002 1.20517822e+002 - 9.97626038e+001 1.13333336e+002 1.20539673e+002 9.98535538e+001 - 1.13436836e+002 1.20565201e+002 9.99648438e+001 1.13514519e+002 - 1.20601807e+002 1.00092484e+002 1.13634949e+002 1.20665260e+002 - 1.00227913e+002 1.13743187e+002 1.20720924e+002 1.00323387e+002 - 1.13839470e+002 1.20748856e+002 1.00423103e+002 1.13907784e+002 - 1.20762650e+002 1.00511871e+002 1.13983353e+002 1.20778679e+002 - 1.00619133e+002 1.14057846e+002 1.20806244e+002 1.00739250e+002 - 1.14169395e+002 1.20859024e+002 1.00898705e+002 1.14267952e+002 - 1.20920639e+002 1.00992310e+002 1.14352165e+002 1.20934486e+002 - 1.01098366e+002 1.14415070e+002 1.20950989e+002 1.01117767e+002 - 1.14425987e+002 1.20900894e+002 1.01163818e+002 1.14426949e+002 - 1.20879143e+002 1.01166245e+002 1.14426109e+002 1.20811150e+002 - 1.01146896e+002 1.14422363e+002 1.20858025e+002 1.01139656e+002 - 1.14459991e+002 1.20929085e+002 1.01082649e+002 1.14412834e+002 - 1.20939514e+002 1.01007263e+002 1.14375732e+002 1.20939621e+002 - 1.00928131e+002 1.14305672e+002 1.20942673e+002 1.00811272e+002 - 1.14221123e+002 1.20894539e+002 1.00690956e+002 1.14122200e+002 - 1.20862617e+002 1.00556999e+002 1.14021103e+002 1.20797180e+002 - 1.00469032e+002 1.13939819e+002 1.20784592e+002 1.00340912e+002 - 1.13845352e+002 1.20735298e+002 1.00266716e+002 1.13756546e+002 - 1.20731789e+002 1.00196449e+002 1.13709656e+002 1.20738571e+002 - 1.00078125e+002 1.13605782e+002 1.20700554e+002 9.99645920e+001 - 1.13532936e+002 1.20661964e+002 9.98861313e+001 1.13458191e+002 - 1.20647873e+002 9.97747192e+001 1.13378014e+002 1.20613457e+002 - 9.96811371e+001 1.13292831e+002 1.20616692e+002 9.95375748e+001 - 1.13185555e+002 1.20553802e+002 9.94556580e+001 1.13097137e+002 - 1.20532608e+002 9.93729401e+001 1.13031555e+002 1.20502396e+002 - 9.92860413e+001 1.12937431e+002 1.20485847e+002 9.92028198e+001 - 1.12869766e+002 1.20456001e+002 9.91239853e+001 1.12796524e+002 - 1.20446846e+002 9.90501404e+001 1.12732864e+002 1.20424667e+002 - 9.89575882e+001 1.12640793e+002 1.20401962e+002 9.88669205e+001 - 1.12568108e+002 1.20371918e+002 9.88058853e+001 1.12485191e+002 - 1.20375336e+002 9.87160568e+001 1.12404243e+002 1.20345238e+002 - 9.86754379e+001 1.12361984e+002 1.20368515e+002 9.85824814e+001 - 1.12282532e+002 1.20326492e+002 9.85054779e+001 1.12191376e+002 - 1.20304115e+002 9.84259644e+001 1.12123413e+002 1.20277161e+002 - 9.83499527e+001 1.12050537e+002 1.20287468e+002 9.82372742e+001 - 1.11969238e+002 1.20242073e+002 9.81854019e+001 1.11897804e+002 - 1.20234879e+002 9.81261978e+001 1.11848511e+002 1.20226669e+002 - 9.80467377e+001 1.11746895e+002 1.20202560e+002 9.79748993e+001 - 1.11696625e+002 1.20203194e+002 9.78951111e+001 1.11616707e+002 - 1.20195404e+002 9.78477783e+001 1.11577599e+002 1.20195900e+002 - 9.77950211e+001 1.11519798e+002 1.20203346e+002 9.76908264e+001 - 1.11429359e+002 1.20159019e+002 9.76507416e+001 1.11362183e+002 - 1.20165955e+002 9.75985870e+001 1.11325523e+002 1.20165817e+002 - 9.75671539e+001 1.11290474e+002 1.20181374e+002 9.75014572e+001 - 1.11235504e+002 1.20156990e+002 9.74542923e+001 1.11168983e+002 - 1.20147285e+002 9.73990860e+001 1.11127747e+002 1.20140205e+002 - 9.73298569e+001 1.11057610e+002 1.20149429e+002 9.72460861e+001 - 1.11001785e+002 1.20123779e+002 9.72285385e+001 1.10958984e+002 - 1.20141609e+002 9.71705399e+001 1.10899979e+002 1.20116837e+002 - 9.71351624e+001 1.10834839e+002 1.20122665e+002 9.70858383e+001 - 1.10796310e+002 1.20121902e+002 9.70292969e+001 1.10735077e+002 - 1.20121330e+002 9.69892502e+001 1.10707016e+002 1.20110939e+002 - 9.69334106e+001 1.10642052e+002 1.20101303e+002 9.68328552e+001 - 1.10553505e+002 1.20045364e+002 9.68139572e+001 1.10502235e+002 - 1.20069206e+002 9.67898026e+001 1.10486305e+002 1.20079994e+002 - 9.67507324e+001 1.10437546e+002 1.20084549e+002 9.66930084e+001 - 1.10390068e+002 1.20060196e+002 9.66571350e+001 1.10332481e+002 - 1.20041443e+002 9.66455383e+001 1.10332291e+002 1.20064522e+002 - 9.65975647e+001 1.10274559e+002 1.20062584e+002 9.65576324e+001 - 1.10265121e+002 1.20083954e+002 9.65379868e+001 1.10236603e+002 - 1.20096481e+002 9.65036774e+001 1.10204720e+002 1.20086510e+002 - 9.64725494e+001 1.10148750e+002 1.20087624e+002 9.64524078e+001 - 1.10143837e+002 1.20099648e+002 9.64240646e+001 1.10103539e+002 - 1.20106567e+002 9.63754654e+001 1.10057434e+002 1.20083817e+002 - 9.63524551e+001 1.10023598e+002 1.20091782e+002 9.63091583e+001 - 1.10001083e+002 1.20086685e+002 9.63195724e+001 1.09975517e+002 - 1.20123795e+002 9.63046799e+001 1.09964005e+002 1.20135040e+002 - 9.63000107e+001 1.09956734e+002 1.20161392e+002 9.62735901e+001 - 1.09946335e+002 1.20166817e+002 9.62295761e+001 1.09887764e+002 - 1.20152237e+002 9.62115326e+001 1.09878944e+002 1.20158546e+002 - 9.61940918e+001 1.09853889e+002 1.20186844e+002 9.61110992e+001 - 1.09798080e+002 1.20143211e+002 9.61164322e+001 1.09781311e+002 - 1.20166229e+002 9.61207962e+001 1.09803673e+002 1.20197235e+002 - 9.61115341e+001 1.09780136e+002 1.20213799e+002 9.60642014e+001 - 1.09746826e+002 1.20190430e+002 9.60478210e+001 1.09732643e+002 - 1.20208702e+002 9.60158310e+001 1.09711723e+002 1.20203255e+002 - 9.60276260e+001 1.09716743e+002 1.20235229e+002 9.60066910e+001 - 1.09713997e+002 1.20248077e+002 9.60236588e+001 1.09703552e+002 - 1.20288742e+002 9.60078735e+001 1.09703453e+002 1.20297935e+002 - 9.59857712e+001 1.09674019e+002 1.20287643e+002 9.59322891e+001 - 1.09631699e+002 1.20248344e+002 9.59106369e+001 1.09595703e+002 - 1.20233719e+002 9.59153061e+001 1.09601219e+002 1.20242706e+002 - 9.59171524e+001 1.09596016e+002 1.20264160e+002 9.58866653e+001 - 1.09585159e+002 1.20252502e+002 9.58683701e+001 1.09557297e+002 - 1.20244492e+002 9.58597794e+001 1.09562607e+002 1.20250015e+002 - 9.58819733e+001 1.09566582e+002 1.20282669e+002 9.58514252e+001 - 1.09548096e+002 1.20263130e+002 9.58348465e+001 1.09530159e+002 - 1.20264679e+002 9.58147583e+001 1.09519623e+002 1.20255081e+002 - 9.58253250e+001 1.09522629e+002 1.20281784e+002 9.57825089e+001 - 1.09491425e+002 1.20249016e+002 9.58006744e+001 1.09472893e+002 - 1.20270508e+002 9.58093338e+001 1.09492424e+002 1.20283760e+002 - 9.58146591e+001 1.09492950e+002 1.20288017e+002 9.58104477e+001 - 1.09504814e+002 1.20279663e+002 9.58356018e+001 1.09502609e+002 - 1.20295433e+002 9.58477097e+001 1.09521118e+002 1.20298607e+002 - 9.58209839e+001 1.09482895e+002 1.20267097e+002 9.57959595e+001 - 1.09473114e+002 1.20253662e+002 9.58122787e+001 1.09473618e+002 - 1.20265022e+002 9.58172760e+001 1.09495941e+002 1.20278984e+002 - 9.58426514e+001 1.09493782e+002 1.20299446e+002 9.58443069e+001 - 1.09516212e+002 1.20292900e+002 9.58560181e+001 1.09520309e+002 - 1.20306648e+002 9.58284149e+001 1.09504547e+002 1.20274033e+002 - 9.58514175e+001 1.09517776e+002 1.20285583e+002 9.58338776e+001 - 1.09510933e+002 1.20265190e+002 9.58626404e+001 1.09510330e+002 - 1.20270798e+002 9.58830643e+001 1.09541412e+002 1.20281021e+002 - 9.58685150e+001 1.09523430e+002 1.20251747e+002 9.58685150e+001 - 1.09537766e+002 1.20241158e+002 9.58907394e+001 1.09550819e+002 - 1.20255119e+002 9.59078445e+001 1.09572174e+002 1.20255356e+002 - 9.59204865e+001 1.09578629e+002 1.20252846e+002 9.58809967e+001 - 1.09567215e+002 1.20212471e+002 9.59077148e+001 1.09576218e+002 - 1.20220192e+002 9.58950882e+001 1.09574921e+002 1.20198349e+002 - 9.59176025e+001 1.09576805e+002 1.20199463e+002 9.59068756e+001 - 1.09580482e+002 1.20170784e+002 9.59392395e+001 1.09602783e+002 - 1.20180939e+002 9.59492188e+001 1.09631012e+002 1.20173561e+002 - 9.59786453e+001 1.09645035e+002 1.20171158e+002 9.59606018e+001 - 1.09651588e+002 1.20141800e+002 9.59916153e+001 1.09652679e+002 - 1.20144936e+002 9.60273666e+001 1.09708740e+002 1.20158386e+002 - 9.60431747e+001 1.09720352e+002 1.20152138e+002 9.60489731e+001 - 1.09742004e+002 1.20139465e+002 9.61062775e+001 1.09792046e+002 - 1.20184074e+002 9.61410065e+001 1.09830040e+002 1.20182701e+002 - 9.61516190e+001 1.09827003e+002 1.20155090e+002 9.61363602e+001 - 1.09836494e+002 1.20120766e+002 9.61728516e+001 1.09858414e+002 - 1.20118637e+002 9.61853714e+001 1.09887749e+002 1.20110794e+002 - 9.62133179e+001 1.09893707e+002 1.20095718e+002 9.61966476e+001 - 1.09892021e+002 1.20047874e+002 9.61860962e+001 1.09879669e+002 - 1.20004150e+002 9.62315216e+001 1.09927841e+002 1.20004166e+002 - 9.62731094e+001 1.09966278e+002 1.20018791e+002 9.62897797e+001 - 1.09998100e+002 1.20004440e+002 9.63281479e+001 1.10013123e+002 - 1.19996399e+002 9.63335190e+001 1.10036224e+002 1.19962814e+002 - 9.64028473e+001 1.10093834e+002 1.19976212e+002 9.64400635e+001 - 1.10149384e+002 1.19979599e+002 9.64794922e+001 1.10174301e+002 - 1.19984879e+002 9.65071259e+001 1.10213936e+002 1.19968071e+002 - 9.65635529e+001 1.10266991e+002 1.19979645e+002 9.65867004e+001 - 1.10315201e+002 1.19982933e+002 9.66520386e+001 1.10365997e+002 - 1.20015366e+002 9.66724243e+001 1.10402527e+002 1.20005676e+002 - 9.67230606e+001 1.10432365e+002 1.20008774e+002 9.67540970e+001 - 1.10473549e+002 1.19998955e+002 9.68154221e+001 1.10528206e+002 - 1.20007187e+002 9.68455887e+001 1.10572922e+002 1.19996758e+002 - 9.69091187e+001 1.10624138e+002 1.20011703e+002 9.69562302e+001 - 1.10681610e+002 1.20020424e+002 9.70143356e+001 1.10716934e+002 - 1.20027351e+002 9.70640717e+001 1.10782173e+002 1.20031487e+002 - 9.71284485e+001 1.10839447e+002 1.20049049e+002 9.71298294e+001 - 1.10855354e+002 1.20007133e+002 9.72013550e+001 1.10911507e+002 - 1.20032326e+002 9.72811127e+001 1.10999321e+002 1.20046661e+002 - 9.73524246e+001 1.11048706e+002 1.20035675e+002 9.73879242e+001 - 1.11109962e+002 1.20027626e+002 9.74634018e+001 1.11173439e+002 - 1.20057861e+002 9.75301208e+001 1.11251869e+002 1.20076149e+002 - 9.76069489e+001 1.11311752e+002 1.20097313e+002 9.76579514e+001 - 1.11378677e+002 1.20097687e+002 9.77097473e+001 1.11420036e+002 - 1.20091507e+002 9.77495880e+001 1.11469460e+002 1.20088188e+002 - 9.77814713e+001 1.11492050e+002 1.20066757e+002 9.78445816e+001 - 1.11565109e+002 1.20083168e+002 9.79388885e+001 1.11635490e+002 - 1.20116364e+002 9.79935989e+001 1.11706528e+002 1.20122719e+002 - 9.80660858e+001 1.11764786e+002 1.20129425e+002 9.81267319e+001 - 1.11841377e+002 1.20144859e+002 9.81956635e+001 1.11889877e+002 - 1.20158485e+002 9.82727966e+001 1.11964417e+002 1.20164642e+002 - 9.83375702e+001 1.12010452e+002 1.20145332e+002 9.83948364e+001 - 1.12087257e+002 1.20149292e+002 9.85154037e+001 1.12188850e+002 - 1.20211922e+002 9.85950851e+001 1.12278397e+002 1.20243469e+002 - 9.86999435e+001 1.12365494e+002 1.20284180e+002 9.87558823e+001 - 1.12432693e+002 1.20286621e+002 9.88250809e+001 1.12490540e+002 - 1.20289513e+002 9.89078979e+001 1.12587273e+002 1.20320137e+002 - 9.90100327e+001 1.12679756e+002 1.20369308e+002 9.90877838e+001 - 1.12765839e+002 1.20391563e+002 9.91613693e+001 1.12797607e+002 - 1.20379318e+002 9.92164307e+001 1.12857239e+002 1.20367218e+002 - 9.93132248e+001 1.12928604e+002 1.20387238e+002 9.94075317e+001 - 1.13031197e+002 1.20420547e+002 9.94998169e+001 1.13107735e+002 - 1.20457512e+002 9.96029053e+001 1.13209824e+002 1.20476646e+002 - 9.97457657e+001 1.13320229e+002 1.20514626e+002 9.98343430e+001 - 1.13422180e+002 1.20542061e+002 9.99363327e+001 1.13488319e+002 - 1.20571609e+002 1.00059761e+002 1.13610504e+002 1.20632027e+002 - 1.00200089e+002 1.13716568e+002 1.20689827e+002 1.00298615e+002 - 1.13813271e+002 1.20716927e+002 1.00405212e+002 1.13893112e+002 - 1.20740883e+002 1.00503067e+002 1.13979767e+002 1.20766617e+002 - 1.00597771e+002 1.14042236e+002 1.20780167e+002 1.00708534e+002 - 1.14139595e+002 1.20822151e+002 1.00867020e+002 1.14241043e+002 - 1.20885071e+002 1.00966911e+002 1.14327805e+002 1.20908463e+002 - 1.01067192e+002 1.14386299e+002 1.20920731e+002 1.01083374e+002 - 1.14396042e+002 1.20869362e+002 1.01133919e+002 1.14394928e+002 - 1.20846230e+002 1.01119026e+002 1.14372276e+002 1.20759575e+002 - 1.01070709e+002 1.14352142e+002 1.20779198e+002 1.01062363e+002 - 1.14387146e+002 1.20840889e+002 1.01019188e+002 1.14351593e+002 - 1.20865753e+002 1.00941216e+002 1.14309776e+002 1.20856522e+002 - 1.00862709e+002 1.14244804e+002 1.20859680e+002 1.00751877e+002 - 1.14172653e+002 1.20829887e+002 1.00659859e+002 1.14091469e+002 - 1.20825661e+002 1.00508316e+002 1.13974289e+002 1.20741356e+002 - 1.00414223e+002 1.13888962e+002 1.20722061e+002 1.00293434e+002 - 1.13796173e+002 1.20676224e+002 1.00223907e+002 1.13718170e+002 - 1.20680046e+002 1.00143379e+002 1.13660820e+002 1.20670197e+002 - 1.00023682e+002 1.13558868e+002 1.20628830e+002 9.99144211e+001 - 1.13483986e+002 1.20593536e+002 9.98254242e+001 1.13404152e+002 - 1.20576813e+002 9.97189178e+001 1.13323479e+002 1.20541496e+002 - 9.96395111e+001 1.13256615e+002 1.20564438e+002 9.95057297e+001 - 1.13157333e+002 1.20512085e+002 9.94010620e+001 1.13051605e+002 - 1.20466476e+002 9.93266754e+001 1.12993805e+002 1.20451920e+002 - 9.92458801e+001 1.12905563e+002 1.20432549e+002 9.91657715e+001 - 1.12845390e+002 1.20408516e+002 9.90797195e+001 1.12759697e+002 - 1.20393295e+002 9.89961243e+001 1.12691559e+002 1.20365707e+002 - 9.89081497e+001 1.12606293e+002 1.20336700e+002 9.88335266e+001 - 1.12540466e+002 1.20330582e+002 9.87708359e+001 1.12457970e+002 - 1.20325508e+002 9.86621628e+001 1.12359085e+002 1.20274879e+002 - 9.86064377e+001 1.12300339e+002 1.20285919e+002 9.85320129e+001 - 1.12236122e+002 1.20262993e+002 9.84608917e+001 1.12156143e+002 - 1.20249054e+002 9.83942108e+001 1.12094147e+002 1.20231834e+002 - 9.82957535e+001 1.12008469e+002 1.20219246e+002 9.81796646e+001 - 1.11913666e+002 1.20169579e+002 9.81282654e+001 1.11850250e+002 - 1.20163422e+002 9.80524216e+001 1.11780373e+002 1.20138588e+002 - 9.79920349e+001 1.11703545e+002 1.20134331e+002 9.79270782e+001 - 1.11660736e+002 1.20142128e+002 9.78641815e+001 1.11588127e+002 - 1.20144058e+002 9.78105240e+001 1.11551620e+002 1.20146225e+002 - 9.77388000e+001 1.11470703e+002 1.20132706e+002 9.76540527e+001 - 1.11399025e+002 1.20101852e+002 9.76040039e+001 1.11327560e+002 - 1.20102608e+002 9.75575562e+001 1.11293259e+002 1.20108833e+002 - 9.75222092e+001 1.11248375e+002 1.20117607e+002 9.74470139e+001 - 1.11186005e+002 1.20085960e+002 9.73935928e+001 1.11113579e+002 - 1.20068954e+002 9.73348083e+001 1.11063843e+002 1.20054596e+002 - 9.72592316e+001 1.10991440e+002 1.20056892e+002 9.71829605e+001 - 1.10939003e+002 1.20043755e+002 9.71545258e+001 1.10889122e+002 - 1.20041252e+002 9.71150742e+001 1.10853760e+002 1.20044960e+002 - 9.70945816e+001 1.10807014e+002 1.20062187e+002 9.70143356e+001 - 1.10736092e+002 1.20029442e+002 9.69722214e+001 1.10688583e+002 - 1.20042900e+002 9.69261551e+001 1.10651169e+002 1.20032249e+002 - 9.68762589e+001 1.10594582e+002 1.20024269e+002 9.67911453e+001 - 1.10521912e+002 1.19984833e+002 9.67617111e+001 1.10469803e+002 - 1.20004265e+002 9.67316132e+001 1.10440742e+002 1.20009369e+002 - 9.66930084e+001 1.10387466e+002 1.20001488e+002 9.66402664e+001 - 1.10345123e+002 1.19979095e+002 9.65980988e+001 1.10283379e+002 - 1.19965599e+002 9.65884552e+001 1.10283752e+002 1.19986938e+002 - 9.65480118e+001 1.10241814e+002 1.20003128e+002 9.64946747e+001 - 1.10210846e+002 1.19995705e+002 9.64666748e+001 1.10170258e+002 - 1.19996506e+002 9.64408035e+001 1.10151031e+002 1.20002113e+002 - 9.64250183e+001 1.10116814e+002 1.20015564e+002 9.64013214e+001 - 1.10093201e+002 1.20025757e+002 9.63581009e+001 1.10046089e+002 - 1.20023895e+002 9.62937164e+001 1.09989105e+002 1.19984703e+002 - 9.62818451e+001 1.09964668e+002 1.20003990e+002 9.62512741e+001 - 1.09943459e+002 1.20005173e+002 9.62620697e+001 1.09923027e+002 - 1.20040421e+002 9.62453156e+001 1.09922218e+002 1.20058739e+002 - 9.62309341e+001 1.09898018e+002 1.20077675e+002 9.61857147e+001 - 1.09870415e+002 1.20065033e+002 9.61439667e+001 1.09815842e+002 - 1.20045853e+002 9.61243515e+001 1.09807320e+002 1.20055481e+002 - 9.60987320e+001 1.09774841e+002 1.20079445e+002 9.60522919e+001 - 1.09753372e+002 1.20071526e+002 9.60681839e+001 1.09753471e+002 - 1.20100998e+002 9.60616379e+001 1.09751389e+002 1.20116325e+002 - 9.60776062e+001 1.09758270e+002 1.20159546e+002 9.60171432e+001 - 1.09716805e+002 1.20126701e+002 9.59979095e+001 1.09698181e+002 - 1.20139816e+002 9.59592667e+001 1.09673828e+002 1.20124603e+002 - 9.59558868e+001 1.09658371e+002 1.20146805e+002 9.59488831e+001 - 1.09670532e+002 1.20167679e+002 9.59540939e+001 1.09641113e+002 - 1.20191765e+002 9.59325714e+001 1.09634094e+002 1.20192642e+002 - 9.59304657e+001 1.09620392e+002 1.20203217e+002 9.58813553e+001 - 1.09586327e+002 1.20167427e+002 9.58695755e+001 1.09558762e+002 - 1.20163559e+002 9.58690567e+001 1.09568802e+002 1.20171036e+002 - 9.58644791e+001 1.09556328e+002 1.20187836e+002 9.58505249e+001 - 1.09562233e+002 1.20193291e+002 9.58465958e+001 1.09547546e+002 - 1.20198387e+002 9.58224335e+001 1.09539040e+002 1.20188683e+002 - 9.58265152e+001 1.09524620e+002 1.20201820e+002 9.58190231e+001 - 1.09532684e+002 1.20209625e+002 9.58246841e+001 1.09524521e+002 - 1.20226013e+002 9.57858200e+001 1.09494286e+002 1.20196960e+002 - 9.57580719e+001 1.09462013e+002 1.20184021e+002 9.57505112e+001 - 1.09459686e+002 1.20185020e+002 9.57557373e+001 1.09438538e+002 - 1.20194412e+002 9.57509842e+001 1.09450325e+002 1.20201492e+002 - 9.57590027e+001 1.09445724e+002 1.20200012e+002 9.57546463e+001 - 1.09457626e+002 1.20199348e+002 9.57537155e+001 1.09434425e+002 - 1.20190170e+002 9.57599182e+001 1.09439957e+002 1.20184212e+002 - 9.57516937e+001 1.09418938e+002 1.20169029e+002 9.57431107e+001 - 1.09427956e+002 1.20178139e+002 9.57661057e+001 1.09435722e+002 - 1.20198021e+002 9.57586746e+001 1.09439857e+002 1.20195168e+002 - 9.57817383e+001 1.09443657e+002 1.20212723e+002 9.57880325e+001 - 1.09463127e+002 1.20216797e+002 9.57902679e+001 1.09466309e+002 - 1.20212700e+002 9.57681961e+001 1.09458344e+002 1.20187294e+002 - 9.57688065e+001 1.09442009e+002 1.20176308e+002 9.57598038e+001 - 1.09448761e+002 1.20163696e+002 9.58063507e+001 1.09460564e+002 - 1.20186775e+002 9.58244095e+001 1.09486725e+002 1.20194786e+002 - 9.58167496e+001 1.09477844e+002 1.20170250e+002 9.58018799e+001 - 1.09480583e+002 1.20151230e+002 9.58210831e+001 1.09488617e+002 - 1.20160782e+002 9.58320007e+001 1.09507561e+002 1.20150291e+002 - 9.58555450e+001 1.09525406e+002 1.20160133e+002 9.58168335e+001 - 1.09513138e+002 1.20120445e+002 9.58422394e+001 1.09517265e+002 - 1.20124825e+002 9.58605423e+001 1.09545746e+002 1.20131973e+002 - 9.58656616e+001 1.09538246e+002 1.20122292e+002 9.58490448e+001 - 1.09531685e+002 1.20084106e+002 9.58635483e+001 1.09538445e+002 - 1.20075539e+002 9.58872986e+001 1.09575958e+002 1.20077774e+002 - 9.58978424e+001 1.09579094e+002 1.20064468e+002 9.58919220e+001 - 1.09591560e+002 1.20046051e+002 9.59398727e+001 1.09611725e+002 - 1.20072563e+002 9.59538498e+001 1.09647682e+002 1.20072624e+002 - 9.59700470e+001 1.09659904e+002 1.20064156e+002 9.60078812e+001 - 1.09709900e+002 1.20081306e+002 9.60623322e+001 1.09750961e+002 - 1.20113647e+002 9.60706253e+001 1.09767593e+002 1.20087578e+002 - 9.60802765e+001 1.09771721e+002 1.20057716e+002 9.60977783e+001 - 1.09815475e+002 1.20067184e+002 9.61208649e+001 1.09823257e+002 - 1.20050606e+002 9.61353531e+001 1.09847473e+002 1.20037498e+002 - 9.61694641e+001 1.09856529e+002 1.20027969e+002 9.61439209e+001 - 1.09845314e+002 1.19965485e+002 9.61409225e+001 1.09834534e+002 - 1.19925896e+002 9.61704407e+001 1.09875450e+002 1.19923836e+002 - 9.62140808e+001 1.09913216e+002 1.19935753e+002 9.62336655e+001 - 1.09952362e+002 1.19927834e+002 9.62766418e+001 1.09963905e+002 - 1.19922211e+002 9.62935181e+001 1.09999100e+002 1.19898796e+002 - 9.63487625e+001 1.10041733e+002 1.19899467e+002 9.63655930e+001 - 1.10079964e+002 1.19884361e+002 9.64306030e+001 1.10133377e+002 - 1.19915855e+002 9.64545441e+001 1.10174339e+002 1.19895485e+002 - 9.65113220e+001 1.10227615e+002 1.19913246e+002 9.65440674e+001 - 1.10282852e+002 1.19923325e+002 9.66077194e+001 1.10329857e+002 - 1.19955261e+002 9.66074829e+001 1.10337723e+002 1.19918716e+002 - 9.66495590e+001 1.10364937e+002 1.19917458e+002 9.67071991e+001 - 1.10439323e+002 1.19941154e+002 9.67750320e+001 1.10499657e+002 - 1.19950073e+002 9.68211212e+001 1.10552917e+002 1.19950264e+002 - 9.68639297e+001 1.10592583e+002 1.19949013e+002 9.69036789e+001 - 1.10642113e+002 1.19953163e+002 9.69653549e+001 1.10674179e+002 - 1.19958046e+002 9.69804535e+001 1.10701782e+002 1.19925545e+002 - 9.70534973e+001 1.10767113e+002 1.19946365e+002 9.70764008e+001 - 1.10815041e+002 1.19938232e+002 9.71533890e+001 1.10871811e+002 - 1.19959618e+002 9.72338638e+001 1.10955788e+002 1.19977402e+002 - 9.73164673e+001 1.11024361e+002 1.19986229e+002 9.73293152e+001 - 1.11058372e+002 1.19952026e+002 9.73868942e+001 1.11112434e+002 - 1.19966507e+002 9.74558182e+001 1.11184753e+002 1.19987892e+002 - 9.75304718e+001 1.11243500e+002 1.20000443e+002 9.75852051e+001 - 1.11311348e+002 1.20004776e+002 9.76256638e+001 1.11340874e+002 - 1.19991302e+002 9.76704865e+001 1.11391594e+002 1.19987816e+002 - 9.77039566e+001 1.11417480e+002 1.19967880e+002 9.77550201e+001 - 1.11480446e+002 1.19978500e+002 9.78620071e+001 1.11559738e+002 - 1.20021759e+002 9.79416580e+001 1.11652824e+002 1.20054581e+002 - 9.80015793e+001 1.11703384e+002 1.20060051e+002 9.80500946e+001 - 1.11770386e+002 1.20059837e+002 9.81399536e+001 1.11839996e+002 - 1.20088776e+002 9.82114410e+001 1.11907158e+002 1.20086899e+002 - 9.82894745e+001 1.11965744e+002 1.20083031e+002 9.83424835e+001 - 1.12042519e+002 1.20086815e+002 9.84693756e+001 1.12152550e+002 - 1.20162918e+002 9.85571823e+001 1.12250931e+002 1.20196129e+002 - 9.86367264e+001 1.12315308e+002 1.20214767e+002 9.86955643e+001 - 1.12387131e+002 1.20219490e+002 9.87686081e+001 1.12448967e+002 - 1.20230667e+002 9.88590164e+001 1.12554527e+002 1.20268349e+002 - 9.89628754e+001 1.12639839e+002 1.20315041e+002 9.90331116e+001 - 1.12715073e+002 1.20329819e+002 9.91144409e+001 1.12756119e+002 - 1.20325836e+002 9.91769485e+001 1.12822449e+002 1.20318291e+002 - 9.92762146e+001 1.12900490e+002 1.20343353e+002 9.93678818e+001 - 1.13002899e+002 1.20378883e+002 9.94693756e+001 1.13086868e+002 - 1.20421883e+002 9.95864487e+001 1.13200630e+002 1.20457947e+002 - 9.96863556e+001 1.13274246e+002 1.20452431e+002 9.97622223e+001 - 1.13354576e+002 1.20460449e+002 9.98855972e+001 1.13442581e+002 - 1.20510124e+002 9.99958954e+001 1.13553604e+002 1.20559906e+002 - 1.00129608e+002 1.13657600e+002 1.20611397e+002 1.00225456e+002 - 1.13744560e+002 1.20638374e+002 1.00343025e+002 1.13836586e+002 - 1.20672577e+002 1.00439163e+002 1.13924744e+002 1.20695442e+002 - 1.00540649e+002 1.13984512e+002 1.20708755e+002 1.00658966e+002 - 1.14098808e+002 1.20768753e+002 1.00801949e+002 1.14184418e+002 - 1.20811829e+002 1.00897186e+002 1.14262535e+002 1.20830338e+002 - 1.01006859e+002 1.14331673e+002 1.20853142e+002 1.01030235e+002 - 1.14345284e+002 1.20808876e+002 1.01079308e+002 1.14351158e+002 - 1.20789597e+002 1.01059700e+002 1.14317314e+002 1.20701416e+002 - 1.01024200e+002 1.14311913e+002 1.20722534e+002 1.01024986e+002 - 1.14358932e+002 1.20803070e+002 1.00986435e+002 1.14339340e+002 - 1.20832909e+002 1.00895920e+002 1.14278648e+002 1.20810944e+002 - 1.00817101e+002 1.14211510e+002 1.20810356e+002 1.00722633e+002 - 1.14152908e+002 1.20795418e+002 1.00617661e+002 1.14068260e+002 - 1.20783989e+002 1.00462227e+002 1.13947235e+002 1.20699493e+002 - 1.00351501e+002 1.13841866e+002 1.20657166e+002 1.00246933e+002 - 1.13766052e+002 1.20623383e+002 1.00177750e+002 1.13685287e+002 - 1.20623047e+002 1.00084396e+002 1.13617058e+002 1.20600883e+002 - 9.99759598e+001 1.13522095e+002 1.20571724e+002 9.98604584e+001 - 1.13442162e+002 1.20532547e+002 9.97700424e+001 1.13354752e+002 - 1.20502983e+002 9.96653824e+001 1.13277283e+002 1.20470024e+002 - 9.95642319e+001 1.13197144e+002 1.20479645e+002 9.94394913e+001 - 1.13109528e+002 1.20443398e+002 9.93516922e+001 1.13016830e+002 - 1.20407372e+002 9.92580261e+001 1.12938339e+002 1.20377357e+002 - 9.91955338e+001 1.12872688e+002 1.20377838e+002 9.91232910e+001 - 1.12812782e+002 1.20365456e+002 9.90210190e+001 1.12721725e+002 - 1.20329491e+002 9.89307251e+001 1.12643677e+002 1.20293427e+002 - 9.88640518e+001 1.12574188e+002 1.20286743e+002 9.87831650e+001 - 1.12510109e+002 1.20272621e+002 9.87371292e+001 1.12437134e+002 - 1.20284370e+002 9.86486435e+001 1.12361107e+002 1.20257484e+002 - 9.85537872e+001 1.12258476e+002 1.20223114e+002 9.84878387e+001 - 1.12207458e+002 1.20211571e+002 9.84081726e+001 1.12117378e+002 - 1.20186470e+002 9.83370895e+001 1.12052864e+002 1.20165581e+002 - 9.82352295e+001 1.11957939e+002 1.20150856e+002 9.81558762e+001 - 1.11906967e+002 1.20137627e+002 9.80802994e+001 1.11814606e+002 - 1.20107719e+002 9.79905472e+001 1.11741035e+002 1.20070244e+002 - 9.79359283e+001 1.11675606e+002 1.20076973e+002 9.78764343e+001 - 1.11622154e+002 1.20081596e+002 9.78113403e+001 1.11555267e+002 - 1.20084274e+002 9.77731705e+001 1.11530128e+002 1.20099388e+002 - 9.76977386e+001 1.11449440e+002 1.20078598e+002 9.76376572e+001 - 1.11401672e+002 1.20070778e+002 9.75863037e+001 1.11323631e+002 - 1.20070969e+002 9.75166397e+001 1.11265945e+002 1.20051582e+002 - 9.74673309e+001 1.11207298e+002 1.20050583e+002 9.73990936e+001 - 1.11144493e+002 1.20019836e+002 9.73414536e+001 1.11072906e+002 - 1.20004890e+002 9.72770538e+001 1.11019104e+002 1.19979874e+002 - 9.72172546e+001 1.10963959e+002 1.20002106e+002 9.71295547e+001 - 1.10898117e+002 1.19968567e+002 9.70868683e+001 1.10838348e+002 - 1.19960518e+002 9.70556946e+001 1.10811119e+002 1.19969521e+002 - 9.70171890e+001 1.10748474e+002 1.19978386e+002 9.69327698e+001 - 1.10676483e+002 1.19940361e+002 9.69015732e+001 1.10640526e+002 - 1.19960739e+002 9.68615494e+001 1.10615334e+002 1.19960152e+002 - 9.68129425e+001 1.10555054e+002 1.19959007e+002 9.67535782e+001 - 1.10506676e+002 1.19939873e+002 9.67119827e+001 1.10438309e+002 - 1.19940369e+002 9.66599731e+001 1.10391663e+002 1.19920700e+002 - 9.66250610e+001 1.10343094e+002 1.19918968e+002 9.65877380e+001 - 1.10310966e+002 1.19915260e+002 9.65762405e+001 1.10288147e+002 - 1.19932938e+002 9.65515366e+001 1.10265915e+002 1.19932320e+002 - 9.65211105e+001 1.10231308e+002 1.19958328e+002 9.64428406e+001 - 1.10179611e+002 1.19931480e+002 9.64174500e+001 1.10135201e+002 - 1.19929260e+002 9.63739319e+001 1.10102478e+002 1.19914284e+002 - 9.63338470e+001 1.10038353e+002 1.19907417e+002 9.63077774e+001 - 1.10019501e+002 1.19913658e+002 9.62822876e+001 1.09985725e+002 - 1.19926270e+002 9.62240829e+001 1.09933449e+002 1.19891777e+002 - 9.62139969e+001 1.09910332e+002 1.19913834e+002 9.61818161e+001 - 1.09894905e+002 1.19920242e+002 9.62054749e+001 1.09889526e+002 - 1.19973152e+002 9.61909256e+001 1.09884041e+002 1.19993599e+002 - 9.61727448e+001 1.09862686e+002 1.20000328e+002 9.61080017e+001 - 1.09815125e+002 1.19966095e+002 9.60780792e+001 1.09771034e+002 - 1.19963249e+002 9.60792923e+001 1.09775803e+002 1.19988350e+002 - 9.60234985e+001 1.09720963e+002 1.19977936e+002 9.59899063e+001 - 1.09711807e+002 1.19987442e+002 9.59953156e+001 1.09697807e+002 - 1.20014832e+002 9.59793167e+001 1.09697998e+002 1.20014778e+002 - 9.59866333e+001 1.09685196e+002 1.20046974e+002 9.59179688e+001 - 1.09636078e+002 1.20005188e+002 9.59131241e+001 1.09630882e+002 - 1.20032410e+002 9.59015121e+001 1.09636902e+002 1.20043480e+002 - 9.58796158e+001 1.09603180e+002 1.20046097e+002 9.58773193e+001 - 1.09616806e+002 1.20073410e+002 9.58877411e+001 1.09593658e+002 - 1.20106682e+002 9.58609238e+001 1.09579796e+002 1.20098587e+002 - 9.58636093e+001 1.09573349e+002 1.20112366e+002 9.58211899e+001 - 1.09543900e+002 1.20091423e+002 9.58066711e+001 1.09508698e+002 - 1.20079735e+002 9.58210526e+001 1.09530914e+002 1.20101128e+002 - 9.58178558e+001 1.09523560e+002 1.20112312e+002 9.57914276e+001 - 1.09525551e+002 1.20112465e+002 9.58204269e+001 1.09538620e+002 - 1.20152168e+002 9.57940750e+001 1.09520210e+002 1.20139938e+002 - 9.57690582e+001 1.09478539e+002 1.20124802e+002 9.57517395e+001 - 1.09474960e+002 1.20115288e+002 9.57620010e+001 1.09481018e+002 - 1.20143539e+002 9.57229843e+001 1.09455383e+002 1.20115608e+002 - 9.57138214e+001 1.09431519e+002 1.20114914e+002 9.57012634e+001 - 1.09434700e+002 1.20110680e+002 9.57142258e+001 1.09414268e+002 - 1.20126038e+002 9.57226028e+001 1.09434250e+002 1.20144333e+002 - 9.57090836e+001 1.09413696e+002 1.20130981e+002 9.56886826e+001 - 1.09408401e+002 1.20111687e+002 9.56903992e+001 1.09393341e+002 - 1.20108292e+002 9.56894913e+001 1.09387047e+002 1.20094933e+002 - 9.56962662e+001 1.09378860e+002 1.20095940e+002 9.56972198e+001 - 1.09397705e+002 1.20106880e+002 9.57113876e+001 1.09402420e+002 - 1.20115921e+002 9.57003937e+001 1.09400894e+002 1.20106857e+002 - 9.57334290e+001 1.09411469e+002 1.20132660e+002 9.57145386e+001 - 1.09413460e+002 1.20116745e+002 9.57302399e+001 1.09421402e+002 - 1.20128029e+002 9.57202377e+001 1.09421303e+002 1.20108734e+002 - 9.57255096e+001 1.09418617e+002 1.20111214e+002 9.57111969e+001 - 1.09413643e+002 1.20090797e+002 9.57653427e+001 1.09436722e+002 - 1.20122314e+002 9.57755051e+001 1.09458267e+002 1.20121780e+002 - 9.57667389e+001 1.09448997e+002 1.20099228e+002 9.57523727e+001 - 1.09454407e+002 1.20072937e+002 9.57755966e+001 1.09460953e+002 - 1.20089958e+002 9.57734528e+001 1.09470795e+002 1.20073822e+002 - 9.57814407e+001 1.09474030e+002 1.20067581e+002 9.57648926e+001 - 1.09480759e+002 1.20049210e+002 9.57924957e+001 1.09487663e+002 - 1.20052696e+002 9.58093948e+001 1.09514130e+002 1.20058823e+002 - 9.58128281e+001 1.09504288e+002 1.20041519e+002 9.58143616e+001 - 1.09512993e+002 1.20021988e+002 9.58209152e+001 1.09511719e+002 - 1.19999718e+002 9.58351822e+001 1.09540649e+002 1.19999344e+002 - 9.58453293e+001 1.09541313e+002 1.19984970e+002 9.58411484e+001 - 1.09555313e+002 1.19969978e+002 9.58786316e+001 1.09570412e+002 - 1.19982857e+002 9.58921738e+001 1.09597328e+002 1.19981987e+002 - 9.59056854e+001 1.09614174e+002 1.19976967e+002 9.59300156e+001 - 1.09650131e+002 1.19982857e+002 9.59807816e+001 1.09688171e+002 - 1.20015419e+002 9.59955902e+001 1.09704994e+002 1.19995369e+002 - 9.60267334e+001 1.09727509e+002 1.19982445e+002 9.60288391e+001 - 1.09753784e+002 1.19967049e+002 9.60612259e+001 1.09777084e+002 - 1.19970978e+002 9.60758133e+001 1.09802254e+002 1.19956444e+002 - 9.61111298e+001 1.09816803e+002 1.19952736e+002 9.61025391e+001 - 1.09820610e+002 1.19908302e+002 9.61163635e+001 1.09826004e+002 - 1.19884323e+002 9.61290588e+001 1.09849098e+002 1.19864265e+002 - 9.61487503e+001 1.09866745e+002 1.19850494e+002 9.61686096e+001 - 1.09903336e+002 1.19846931e+002 9.62171097e+001 1.09921890e+002 - 1.19841995e+002 9.62612076e+001 1.09979179e+002 1.19847580e+002 - 9.63158722e+001 1.10023453e+002 1.19853554e+002 9.63248367e+001 - 1.10054260e+002 1.19825951e+002 9.63746719e+001 1.10090927e+002 - 1.19841888e+002 9.64113770e+001 1.10139366e+002 1.19835808e+002 - 9.64680710e+001 1.10186493e+002 1.19842484e+002 9.64965744e+001 - 1.10247795e+002 1.19855949e+002 9.65497742e+001 1.10283890e+002 - 1.19870872e+002 9.65492401e+001 1.10297440e+002 1.19839989e+002 - 9.65983124e+001 1.10327133e+002 1.19844917e+002 9.66363449e+001 - 1.10383247e+002 1.19846741e+002 9.67095108e+001 1.10443939e+002 - 1.19866852e+002 9.67533112e+001 1.10503479e+002 1.19870300e+002 - 9.68296280e+001 1.10570351e+002 1.19899834e+002 9.68709412e+001 - 1.10627022e+002 1.19902496e+002 9.69043808e+001 1.10638725e+002 - 1.19882515e+002 9.69198303e+001 1.10659271e+002 1.19855949e+002 - 9.69913406e+001 1.10724274e+002 1.19882034e+002 9.70216980e+001 - 1.10768425e+002 1.19869545e+002 9.71064606e+001 1.10841095e+002 - 1.19909088e+002 9.71789551e+001 1.10913750e+002 1.19916496e+002 - 9.72509918e+001 1.10973000e+002 1.19908524e+002 9.72716141e+001 - 1.11018921e+002 1.19885521e+002 9.73181458e+001 1.11061745e+002 - 1.19892540e+002 9.73872528e+001 1.11138275e+002 1.19915092e+002 - 9.74618683e+001 1.11196228e+002 1.19930458e+002 9.75317993e+001 - 1.11277504e+002 1.19945503e+002 9.75823898e+001 1.11314514e+002 - 1.19935738e+002 9.75955276e+001 1.11334930e+002 1.19899506e+002 - 9.76610260e+001 1.11385323e+002 1.19912819e+002 9.76962891e+001 - 1.11438301e+002 1.19915779e+002 9.78050842e+001 1.11518524e+002 - 1.19955872e+002 9.78746719e+001 1.11604973e+002 1.19978874e+002 - 9.79442749e+001 1.11661720e+002 1.19985870e+002 9.79908371e+001 - 1.11726921e+002 1.19989937e+002 9.80748825e+001 1.11794609e+002 - 1.20021698e+002 9.81653214e+001 1.11874763e+002 1.20034195e+002 - 9.82295990e+001 1.11926956e+002 1.20023148e+002 9.82967987e+001 - 1.12012459e+002 1.20037270e+002 9.84094391e+001 1.12107529e+002 - 1.20100052e+002 9.84900665e+001 1.12206810e+002 1.20130089e+002 - 9.85821228e+001 1.12282356e+002 1.20161995e+002 9.86387482e+001 - 1.12352989e+002 1.20166817e+002 9.87086639e+001 1.12407677e+002 - 1.20176178e+002 9.87902603e+001 1.12499557e+002 1.20205254e+002 - 9.88893585e+001 1.12578186e+002 1.20237785e+002 9.89584351e+001 - 1.12656738e+002 1.20251900e+002 9.90520020e+001 1.12706413e+002 - 1.20263000e+002 9.91279373e+001 1.12791687e+002 1.20274925e+002 - 9.92277069e+001 1.12867035e+002 1.20297905e+002 9.93162766e+001 - 1.12974037e+002 1.20325630e+002 9.94179611e+001 1.13048744e+002 - 1.20368416e+002 9.95294952e+001 1.13161942e+002 1.20402000e+002 - 9.96392136e+001 1.13241127e+002 1.20404594e+002 9.97250366e+001 - 1.13334641e+002 1.20424545e+002 9.98329544e+001 1.13415009e+002 - 1.20463905e+002 9.99604263e+001 1.13532860e+002 1.20526825e+002 - 1.00083893e+002 1.13622116e+002 1.20565605e+002 1.00170677e+002 - 1.13709480e+002 1.20586708e+002 1.00295494e+002 1.13804405e+002 - 1.20624062e+002 1.00414452e+002 1.13909142e+002 1.20664749e+002 - 1.00510826e+002 1.13972160e+002 1.20681984e+002 1.00613731e+002 - 1.14070610e+002 1.20720734e+002 1.00744751e+002 1.14140823e+002 - 1.20751442e+002 1.00834351e+002 1.14217804e+002 1.20768166e+002 - 1.00945824e+002 1.14289284e+002 1.20796082e+002 1.00980179e+002 - 1.14315010e+002 1.20759048e+002 1.01025139e+002 1.14313629e+002 - 1.20730888e+002 1.01011269e+002 1.14285828e+002 1.20650612e+002 - 1.00975128e+002 1.14267097e+002 1.20661438e+002 1.00986511e+002 - 1.14318756e+002 1.20747246e+002 1.00962891e+002 1.14313927e+002 - 1.20794678e+002 1.00880714e+002 1.14259323e+002 1.20781357e+002 - 1.00804016e+002 1.14195320e+002 1.20787552e+002 1.00690948e+002 - 1.14116982e+002 1.20750305e+002 1.00565277e+002 1.14014572e+002 - 1.20714355e+002 1.00434959e+002 1.13911095e+002 1.20650764e+002 - 1.00329071e+002 1.13816177e+002 1.20619339e+002 1.00218056e+002 - 1.13728561e+002 1.20582436e+002 1.00142456e+002 1.13648697e+002 - 1.20584381e+002 1.00062660e+002 1.13590439e+002 1.20563644e+002 - 9.99571075e+001 1.13499153e+002 1.20536690e+002 9.98400803e+001 - 1.13415421e+002 1.20489273e+002 9.97455215e+001 1.13330887e+002 - 1.20460121e+002 9.96579819e+001 1.13269440e+002 1.20441673e+002 - 9.95489426e+001 1.13175766e+002 1.20442612e+002 9.94286346e+001 - 1.13095261e+002 1.20406006e+002 9.93549652e+001 1.13015434e+002 - 1.20389389e+002 9.92391357e+001 1.12920624e+002 1.20332611e+002 - 9.91629257e+001 1.12838318e+002 1.20322395e+002 9.90725708e+001 - 1.12766701e+002 1.20292923e+002 9.89724731e+001 1.12667252e+002 - 1.20260994e+002 9.88936691e+001 1.12607323e+002 1.20232864e+002 - 9.88452759e+001 1.12556175e+002 1.20253052e+002 9.87455444e+001 - 1.12467697e+002 1.20213531e+002 9.86907043e+001 1.12399712e+002 - 1.20221901e+002 9.86181488e+001 1.12329887e+002 1.20205566e+002 - 9.85417328e+001 1.12248436e+002 1.20188492e+002 9.84499588e+001 - 1.12172318e+002 1.20153511e+002 9.83902664e+001 1.12097908e+002 - 1.20140800e+002 9.83169022e+001 1.12039009e+002 1.20129135e+002 - 9.82155609e+001 1.11942329e+002 1.20110992e+002 9.81182022e+001 - 1.11869102e+002 1.20078285e+002 9.80670547e+001 1.11802155e+002 - 1.20067345e+002 9.79907761e+001 1.11741196e+002 1.20046936e+002 - 9.79258499e+001 1.11662041e+002 1.20043449e+002 9.78431931e+001 - 1.11592804e+002 1.20025223e+002 9.77951813e+001 1.11544739e+002 - 1.20040131e+002 9.77705078e+001 1.11531166e+002 1.20071228e+002 - 9.77257996e+001 1.11477875e+002 1.20080505e+002 9.76365509e+001 - 1.11397499e+002 1.20045662e+002 9.75778503e+001 1.11317345e+002 - 1.20037971e+002 9.75058823e+001 1.11253326e+002 1.20012634e+002 - 9.74750443e+001 1.11210907e+002 1.20032715e+002 9.73895721e+001 - 1.11141197e+002 1.19994850e+002 9.73327560e+001 1.11062813e+002 - 1.19974380e+002 9.72766418e+001 1.11018921e+002 1.19960777e+002 - 9.72035980e+001 1.10943298e+002 1.19957130e+002 9.71237640e+001 - 1.10892693e+002 1.19935997e+002 9.70948486e+001 1.10853691e+002 - 1.19950874e+002 9.70535965e+001 1.10809059e+002 1.19943428e+002 - 9.70092621e+001 1.10745132e+002 1.19945732e+002 9.69329071e+001 - 1.10682228e+002 1.19914032e+002 9.68844833e+001 1.10632309e+002 - 1.19924088e+002 9.68493805e+001 1.10609818e+002 1.19930382e+002 - 9.68098984e+001 1.10553665e+002 1.19930679e+002 9.67333450e+001 - 1.10490921e+002 1.19895386e+002 9.66982346e+001 1.10428772e+002 - 1.19902008e+002 9.66415863e+001 1.10377968e+002 1.19880638e+002 - 9.66207123e+001 1.10343384e+002 1.19893867e+002 9.65800629e+001 - 1.10307365e+002 1.19885536e+002 9.65784607e+001 1.10288506e+002 - 1.19909027e+002 9.65466690e+001 1.10266830e+002 1.19905167e+002 - 9.65049362e+001 1.10221695e+002 1.19921562e+002 9.64181442e+001 - 1.10157814e+002 1.19884384e+002 9.64185181e+001 1.10142090e+002 - 1.19900757e+002 9.63694458e+001 1.10089264e+002 1.19882240e+002 - 9.63202362e+001 1.10026894e+002 1.19860954e+002 9.62701263e+001 - 1.09981239e+002 1.19841560e+002 9.62394714e+001 1.09936081e+002 - 1.19847672e+002 9.61908875e+001 1.09899803e+002 1.19828964e+002 - 9.61954498e+001 1.09895927e+002 1.19870934e+002 9.61705246e+001 - 1.09879173e+002 1.19880554e+002 9.62000580e+001 1.09881615e+002 - 1.19938576e+002 9.61817398e+001 1.09880630e+002 1.19954643e+002 - 9.61695480e+001 1.09862556e+002 1.19969421e+002 9.61037827e+001 - 1.09814240e+002 1.19934326e+002 9.60605545e+001 1.09758415e+002 - 1.19921280e+002 9.60642853e+001 1.09771339e+002 1.19946320e+002 - 9.60248642e+001 1.09724037e+002 1.19947815e+002 9.59724121e+001 - 1.09696396e+002 1.19936699e+002 9.59638214e+001 1.09679611e+002 - 1.19955269e+002 9.59519958e+001 1.09670258e+002 1.19958458e+002 - 9.59450226e+001 1.09650154e+002 1.19973869e+002 9.58986206e+001 - 1.09620255e+002 1.19954422e+002 9.58929443e+001 1.09611801e+002 - 1.19977890e+002 9.59005280e+001 1.09640976e+002 1.20010811e+002 - 9.58955688e+001 1.09617744e+002 1.20021774e+002 9.58711319e+001 - 1.09608543e+002 1.20032661e+002 9.58816071e+001 1.09589584e+002 - 1.20058792e+002 9.58332138e+001 1.09547958e+002 1.20029228e+002 - 9.58472595e+001 1.09549545e+002 1.20055992e+002 9.58119659e+001 - 1.09531090e+002 1.20041626e+002 9.58006439e+001 1.09502701e+002 - 1.20038857e+002 9.58088989e+001 1.09523407e+002 1.20054840e+002 - 9.58026657e+001 1.09512543e+002 1.20068245e+002 9.57591324e+001 - 1.09493294e+002 1.20049675e+002 9.57824097e+001 1.09507568e+002 - 1.20083366e+002 9.57651825e+001 1.09494698e+002 1.20075684e+002 - 9.57371597e+001 1.09443344e+002 1.20051994e+002 9.57016449e+001 - 1.09423836e+002 1.20031090e+002 9.57263412e+001 1.09443108e+002 - 1.20066757e+002 9.57019730e+001 1.09429901e+002 1.20054367e+002 - 9.56909714e+001 1.09410934e+002 1.20058800e+002 9.56984177e+001 - 1.09427383e+002 1.20082443e+002 9.56791840e+001 1.09378349e+002 - 1.20058075e+002 9.56966248e+001 1.09402664e+002 1.20077675e+002 - 9.56768188e+001 1.09381073e+002 1.20062157e+002 9.56560898e+001 - 1.09371231e+002 1.20045341e+002 9.56547623e+001 1.09352821e+002 - 1.20036583e+002 9.56373520e+001 1.09333580e+002 1.20004448e+002 - 9.56560211e+001 1.09336967e+002 1.20019989e+002 9.56791229e+001 - 1.09380936e+002 1.20049698e+002 9.56983185e+001 1.09386330e+002 - 1.20066910e+002 9.56829529e+001 1.09384109e+002 1.20056915e+002 - 9.57138748e+001 1.09399223e+002 1.20082726e+002 9.56964417e+001 - 1.09395332e+002 1.20062988e+002 9.57204437e+001 1.09408470e+002 - 1.20079109e+002 9.57327271e+001 1.09436264e+002 1.20087402e+002 - 9.57298737e+001 1.09422859e+002 1.20075050e+002 9.57072372e+001 - 1.09408699e+002 1.20050911e+002 9.57450714e+001 1.09421623e+002 - 1.20064819e+002 9.57631912e+001 1.09451881e+002 1.20077545e+002 - 9.57730713e+001 1.09456329e+002 1.20069191e+002 9.57578659e+001 - 1.09459465e+002 1.20051331e+002 9.57706604e+001 1.09459404e+002 - 1.20052719e+002 9.57823639e+001 1.09486687e+002 1.20046211e+002 - 9.57933655e+001 1.09483109e+002 1.20039467e+002 9.57571869e+001 - 1.09470245e+002 1.20007309e+002 9.57832489e+001 1.09481232e+002 - 1.20010010e+002 9.58120422e+001 1.09519699e+002 1.20024132e+002 - 9.58009415e+001 1.09488136e+002 1.19989525e+002 9.57989655e+001 - 1.09500389e+002 1.19968292e+002 9.58168488e+001 1.09506248e+002 - 1.19959625e+002 9.58301315e+001 1.09535629e+002 1.19951462e+002 - 9.58569717e+001 1.09555542e+002 1.19959091e+002 9.58510437e+001 - 1.09569389e+002 1.19949638e+002 9.58771896e+001 1.09578728e+002 - 1.19950150e+002 9.58914490e+001 1.09603630e+002 1.19953323e+002 - 9.59044266e+001 1.09613136e+002 1.19944016e+002 9.59110031e+001 - 1.09632278e+002 1.19932892e+002 9.59582214e+001 1.09665565e+002 - 1.19957420e+002 9.59964676e+001 1.09713829e+002 1.19966309e+002 - 9.60449448e+001 1.09748451e+002 1.19968605e+002 9.60164032e+001 - 1.09743904e+002 1.19922287e+002 9.60515366e+001 1.09767761e+002 - 1.19926262e+002 9.60550461e+001 1.09787918e+002 1.19908066e+002 - 9.61034927e+001 1.09813469e+002 1.19915428e+002 9.61096802e+001 - 1.09828529e+002 1.19887154e+002 9.61082764e+001 1.09817963e+002 - 1.19846870e+002 9.61093521e+001 1.09829803e+002 1.19812004e+002 - 9.61342468e+001 1.09849945e+002 1.19808945e+002 9.61347580e+001 - 1.09871529e+002 1.19783440e+002 9.61884079e+001 1.09892693e+002 - 1.19782051e+002 9.62303619e+001 1.09948143e+002 1.19788757e+002 - 9.62902832e+001 1.09997490e+002 1.19801796e+002 9.62922974e+001 - 1.10023163e+002 1.19768280e+002 9.63350525e+001 1.10052490e+002 - 1.19776497e+002 9.63724823e+001 1.10101227e+002 1.19767555e+002 - 9.64296570e+001 1.10148735e+002 1.19775925e+002 9.64442978e+001 - 1.10191818e+002 1.19772087e+002 9.65121155e+001 1.10242088e+002 - 1.19800934e+002 9.65355835e+001 1.10279732e+002 1.19795357e+002 - 9.65724411e+001 1.10300659e+002 1.19790596e+002 9.66027145e+001 - 1.10341835e+002 1.19778595e+002 9.66837311e+001 1.10417465e+002 - 1.19814789e+002 9.67466812e+001 1.10495422e+002 1.19836128e+002 - 9.68201218e+001 1.10559662e+002 1.19860054e+002 9.68639069e+001 - 1.10615623e+002 1.19871368e+002 9.68980026e+001 1.10631432e+002 - 1.19853760e+002 9.69303741e+001 1.10670250e+002 1.19842751e+002 - 9.69904175e+001 1.10718727e+002 1.19848221e+002 9.70091248e+001 - 1.10752113e+002 1.19827789e+002 9.70894699e+001 1.10820923e+002 - 1.19866051e+002 9.71784058e+001 1.10917336e+002 1.19891853e+002 - 9.72398911e+001 1.10971222e+002 1.19883621e+002 9.72733459e+001 - 1.11025887e+002 1.19875168e+002 9.73193512e+001 1.11061089e+002 - 1.19874344e+002 9.73769836e+001 1.11131592e+002 1.19887367e+002 - 9.74538269e+001 1.11193344e+002 1.19908478e+002 9.75044556e+001 - 1.11253654e+002 1.19905350e+002 9.75600586e+001 1.11291656e+002 - 1.19900955e+002 9.76197128e+001 1.11364479e+002 1.19915184e+002 - 9.76684036e+001 1.11397049e+002 1.19903542e+002 9.76973038e+001 - 1.11434753e+002 1.19889030e+002 9.78027573e+001 1.11522682e+002 - 1.19940422e+002 9.78779602e+001 1.11608978e+002 1.19966011e+002 - 9.79437408e+001 1.11661133e+002 1.19966957e+002 9.79889526e+001 - 1.11719093e+002 1.19964661e+002 9.80746460e+001 1.11789719e+002 - 1.19994522e+002 9.81451111e+001 1.11861290e+002 1.20000145e+002 - 9.82234802e+001 1.11919350e+002 1.19996269e+002 9.82871094e+001 - 1.12008919e+002 1.20018303e+002 9.83918991e+001 1.12101830e+002 - 1.20065605e+002 9.84478760e+001 1.12167122e+002 1.20072891e+002 - 9.85678940e+001 1.12270714e+002 1.20136383e+002 9.86285553e+001 - 1.12341064e+002 1.20141762e+002 9.86872406e+001 1.12387642e+002 - 1.20139687e+002 9.87775192e+001 1.12488129e+002 1.20177567e+002 - 9.88763428e+001 1.12565285e+002 1.20210823e+002 9.89355698e+001 - 1.12633232e+002 1.20217743e+002 9.90262146e+001 1.12687508e+002 - 1.20222565e+002 9.91106415e+001 1.12769821e+002 1.20242355e+002 - 9.91877670e+001 1.12830841e+002 1.20249741e+002 9.92822266e+001 - 1.12931984e+002 1.20280396e+002 9.93969269e+001 1.13026527e+002 - 1.20332474e+002 9.95089264e+001 1.13139183e+002 1.20365257e+002 - 9.96208649e+001 1.13219688e+002 1.20371017e+002 9.96992950e+001 - 1.13307808e+002 1.20389671e+002 9.98187561e+001 1.13397362e+002 - 1.20441429e+002 9.99473343e+001 1.13519226e+002 1.20507164e+002 - 1.00048195e+002 1.13588654e+002 1.20524162e+002 1.00118195e+002 - 1.13658226e+002 1.20525650e+002 1.00246368e+002 1.13753700e+002 - 1.20567299e+002 1.00362221e+002 1.13866608e+002 1.20609825e+002 - 1.00481697e+002 1.13948174e+002 1.20647163e+002 1.00618553e+002 - 1.14071884e+002 1.20712952e+002 1.00723991e+002 1.14121063e+002 - 1.20722336e+002 1.00809792e+002 1.14198273e+002 1.20737511e+002 - 1.00919235e+002 1.14264572e+002 1.20768532e+002 1.00959610e+002 - 1.14299492e+002 1.20736717e+002 1.01002953e+002 1.14299599e+002 - 1.20708885e+002 1.00983215e+002 1.14265381e+002 1.20618675e+002 - 1.00953331e+002 1.14244255e+002 1.20633301e+002 1.00962227e+002 - 1.14295158e+002 1.20714539e+002 1.00939003e+002 1.14282654e+002 - 1.20760338e+002 1.00847610e+002 1.14223412e+002 1.20742119e+002 - 1.00767204e+002 1.14159103e+002 1.20742439e+002 1.00662880e+002 - 1.14091492e+002 1.20717903e+002 1.00534904e+002 1.13984489e+002 - 1.20682129e+002 1.00397354e+002 1.13878334e+002 1.20610794e+002 - 1.00292488e+002 1.13784836e+002 1.20576645e+002 1.00182457e+002 - 1.13694527e+002 1.20534508e+002 1.00098381e+002 1.13608498e+002 - 1.20525665e+002 1.00034081e+002 1.13566170e+002 1.20529686e+002 - 9.99076157e+001 1.13458221e+002 1.20475380e+002 9.98123550e+001 - 1.13385895e+002 1.20448586e+002 9.97229309e+001 1.13308929e+002 - 1.20425339e+002 9.96306229e+001 1.13240257e+002 1.20404114e+002 - 9.95123367e+001 1.13143280e+002 1.20392296e+002 9.94027176e+001 - 1.13068733e+002 1.20369843e+002 9.93194122e+001 1.12985748e+002 - 1.20339684e+002 9.92259064e+001 1.12908020e+002 1.20302719e+002 - 9.91256027e+001 1.12803314e+002 1.20272766e+002 9.90180817e+001 - 1.12714699e+002 1.20229797e+002 9.89226303e+001 1.12618462e+002 - 1.20193863e+002 9.88593140e+001 1.12570625e+002 1.20184845e+002 - 9.88000031e+001 1.12512444e+002 1.20193077e+002 9.87210693e+001 - 1.12445305e+002 1.20172119e+002 9.86358948e+001 1.12343475e+002 - 1.20154762e+002 9.85653305e+001 1.12284302e+002 1.20140549e+002 - 9.85029449e+001 1.12217491e+002 1.20136604e+002 9.84231339e+001 - 1.12152397e+002 1.20109642e+002 9.83382416e+001 1.12055885e+002 - 1.20082344e+002 9.82645111e+001 1.11984154e+002 1.20055031e+002 - 9.81641846e+001 1.11897156e+002 1.20043274e+002 9.80871582e+001 - 1.11839783e+002 1.20029930e+002 9.80309219e+001 1.11771507e+002 - 1.20017380e+002 9.79498138e+001 1.11701431e+002 1.19991440e+002 - 9.78946915e+001 1.11636093e+002 1.19994125e+002 9.78123703e+001 - 1.11571960e+002 1.19975029e+002 9.77645416e+001 1.11518852e+002 - 1.19991821e+002 9.77157440e+001 1.11482635e+002 1.19998116e+002 - 9.76659470e+001 1.11419739e+002 1.20005676e+002 9.76208649e+001 - 1.11383797e+002 1.20010643e+002 9.75519409e+001 1.11294441e+002 - 1.19996094e+002 9.74667587e+001 1.11220284e+002 1.19962029e+002 - 9.74006653e+001 1.11142204e+002 1.19940948e+002 9.73377151e+001 - 1.11095161e+002 1.19924301e+002 9.73023148e+001 1.11040176e+002 - 1.19931152e+002 9.72346191e+001 1.10982574e+002 1.19903931e+002 - 9.71676178e+001 1.10917450e+002 1.19905876e+002 9.71035843e+001 - 1.10883339e+002 1.19903252e+002 9.70559692e+001 1.10819412e+002 - 1.19890678e+002 9.70010147e+001 1.10764626e+002 1.19872185e+002 - 9.69649963e+001 1.10711052e+002 1.19882835e+002 9.68888092e+001 - 1.10644096e+002 1.19851418e+002 9.68354492e+001 1.10595314e+002 - 1.19856888e+002 9.68159637e+001 1.10584923e+002 1.19877251e+002 - 9.67614594e+001 1.10524010e+002 1.19867859e+002 9.66664886e+001 - 1.10434090e+002 1.19810455e+002 9.66362534e+001 1.10379639e+002 - 1.19820015e+002 9.66130600e+001 1.10356232e+002 1.19833870e+002 - 9.65711060e+001 1.10302132e+002 1.19826950e+002 9.65220184e+001 - 1.10263283e+002 1.19807655e+002 9.65320206e+001 1.10256615e+002 - 1.19848976e+002 9.64970932e+001 1.10227501e+002 1.19838951e+002 - 9.64593582e+001 1.10186974e+002 1.19852486e+002 9.64076538e+001 - 1.10153778e+002 1.19845360e+002 9.63789825e+001 1.10107834e+002 - 1.19841377e+002 9.63214111e+001 1.10053459e+002 1.19812836e+002 - 9.62761383e+001 1.09989670e+002 1.19795242e+002 9.62278976e+001 - 1.09941635e+002 1.19780167e+002 9.62087402e+001 1.09917725e+002 - 1.19794182e+002 9.61667023e+001 1.09890419e+002 1.19785675e+002 - 9.61431274e+001 1.09847450e+002 1.19789131e+002 9.61344681e+001 - 1.09848434e+002 1.19817322e+002 9.61456375e+001 1.09834908e+002 - 1.19854889e+002 9.61592102e+001 1.09861137e+002 1.19905975e+002 - 9.61291046e+001 1.09827332e+002 1.19902458e+002 9.60835419e+001 - 1.09800064e+002 1.19892868e+002 9.60195923e+001 1.09726357e+002 - 1.19854301e+002 9.60116196e+001 1.09724861e+002 1.19868286e+002 - 9.59910812e+001 1.09699356e+002 1.19888382e+002 9.59347839e+001 - 1.09665962e+002 1.19872612e+002 9.59233170e+001 1.09641586e+002 - 1.19881973e+002 9.59064865e+001 1.09632607e+002 1.19881561e+002 - 9.58920898e+001 1.09597778e+002 1.19884048e+002 9.58838882e+001 - 1.09605881e+002 1.19899918e+002 9.58722305e+001 1.09597702e+002 - 1.19924324e+002 9.58645248e+001 1.09602158e+002 1.19933487e+002 - 9.58442764e+001 1.09572464e+002 1.19939247e+002 9.58173752e+001 - 1.09554001e+002 1.19941399e+002 9.58379364e+001 1.09553993e+002 - 1.19985214e+002 9.58113708e+001 1.09533958e+002 1.19977188e+002 - 9.57882767e+001 1.09501686e+002 1.19973289e+002 9.57675323e+001 - 1.09494408e+002 1.19964912e+002 9.57581787e+001 1.09467155e+002 - 1.19971581e+002 9.57556610e+001 1.09466423e+002 1.19974251e+002 - 9.57466278e+001 1.09462128e+002 1.19987175e+002 9.57296906e+001 - 1.09471519e+002 1.19991028e+002 9.57477570e+001 1.09479469e+002 - 1.20024429e+002 9.57180405e+001 1.09457382e+002 1.20004425e+002 - 9.56924133e+001 1.09405876e+002 1.19980682e+002 9.56684113e+001 - 1.09393448e+002 1.19967285e+002 9.56777344e+001 1.09393211e+002 - 1.19990288e+002 9.56549072e+001 1.09387527e+002 1.19979233e+002 - 9.56399307e+001 1.09366348e+002 1.19979362e+002 9.56460190e+001 - 1.09376305e+002 1.19995132e+002 9.56464310e+001 1.09348015e+002 - 1.19997566e+002 9.56362152e+001 1.09343880e+002 1.19990776e+002 - 9.56139450e+001 1.09321556e+002 1.19965546e+002 9.55979919e+001 - 1.09320389e+002 1.19950104e+002 9.55990982e+001 1.09301994e+002 - 1.19947968e+002 9.55974960e+001 1.09294540e+002 1.19926437e+002 - 9.56427612e+001 1.09331047e+002 1.19978287e+002 9.56299515e+001 - 1.09343262e+002 1.19981262e+002 9.56607361e+001 1.09355186e+002 - 1.20000107e+002 9.56729431e+001 1.09377563e+002 1.20011284e+002 - 9.56940689e+001 1.09386917e+002 1.20027458e+002 9.56610718e+001 - 1.09371529e+002 1.19999069e+002 9.56691971e+001 1.09369781e+002 - 1.19996109e+002 9.57003937e+001 1.09411736e+002 1.20024696e+002 - 9.57068253e+001 1.09405205e+002 1.20025482e+002 9.57008286e+001 - 1.09408470e+002 1.20011559e+002 9.57266464e+001 1.09412796e+002 - 1.20024597e+002 9.57234344e+001 1.09420502e+002 1.20015205e+002 - 9.57380676e+001 1.09427658e+002 1.20016937e+002 9.57190475e+001 - 1.09429993e+002 1.19993683e+002 9.57208786e+001 1.09414665e+002 - 1.19981071e+002 9.57115707e+001 1.09423035e+002 1.19957382e+002 - 9.57465210e+001 1.09443626e+002 1.19971519e+002 9.57070160e+001 - 1.09427116e+002 1.19929718e+002 9.57271347e+001 1.09433861e+002 - 1.19934464e+002 9.57293549e+001 1.09442329e+002 1.19918327e+002 - 9.57563019e+001 1.09453445e+002 1.19917503e+002 9.57480316e+001 - 1.09458618e+002 1.19885994e+002 9.57417984e+001 1.09442680e+002 - 1.19852798e+002 9.57729721e+001 1.09493050e+002 1.19868950e+002 - 9.58213654e+001 1.09529640e+002 1.19894875e+002 9.58260422e+001 - 1.09551491e+002 1.19888535e+002 9.58491898e+001 1.09555466e+002 - 1.19887970e+002 9.58454285e+001 1.09567955e+002 1.19876945e+002 - 9.58465424e+001 1.09563759e+002 1.19854187e+002 9.58517685e+001 - 1.09588432e+002 1.19843597e+002 9.59105835e+001 1.09623192e+002 - 1.19884460e+002 9.59456253e+001 1.09663040e+002 1.19884186e+002 - 9.59852219e+001 1.09694138e+002 1.19883026e+002 9.59781342e+001 - 1.09719704e+002 1.19865463e+002 9.60026245e+001 1.09729515e+002 - 1.19860779e+002 9.60165024e+001 1.09755180e+002 1.19848694e+002 - 9.60628128e+001 1.09781731e+002 1.19853653e+002 9.60494919e+001 - 1.09782394e+002 1.19807816e+002 9.60745087e+001 1.09794907e+002 - 1.19791748e+002 9.60837936e+001 1.09819824e+002 1.19769112e+002 - 9.61092606e+001 1.09829353e+002 1.19755180e+002 9.61014404e+001 - 1.09840714e+002 1.19724144e+002 9.61675110e+001 1.09878548e+002 - 1.19742180e+002 9.62097321e+001 1.09931969e+002 1.19743553e+002 - 9.62354431e+001 1.09942223e+002 1.19717110e+002 9.62413254e+001 - 1.09969673e+002 1.19695511e+002 9.62928848e+001 1.10009003e+002 - 1.19717461e+002 9.63421097e+001 1.10068497e+002 1.19714531e+002 - 9.64089584e+001 1.10128845e+002 1.19731773e+002 9.64098892e+001 - 1.10157242e+002 1.19706108e+002 9.64722290e+001 1.10203148e+002 - 1.19736443e+002 9.64907913e+001 1.10237579e+002 1.19724129e+002 - 9.65367661e+001 1.10266479e+002 1.19730461e+002 9.65583649e+001 - 1.10300484e+002 1.19711327e+002 9.66428680e+001 1.10378563e+002 - 1.19749184e+002 9.66916199e+001 1.10447716e+002 1.19760834e+002 - 9.67780914e+001 1.10522736e+002 1.19800751e+002 9.68038177e+001 - 1.10564995e+002 1.19798737e+002 9.68623734e+001 1.10600708e+002 - 1.19801270e+002 9.69049225e+001 1.10653763e+002 1.19803322e+002 - 9.69627838e+001 1.10695488e+002 1.19808990e+002 9.69768066e+001 - 1.10722191e+002 1.19771317e+002 9.70543900e+001 1.10783546e+002 - 1.19804321e+002 9.71235428e+001 1.10864555e+002 1.19818054e+002 - 9.72080536e+001 1.10942848e+002 1.19832993e+002 9.72201843e+001 - 1.10979103e+002 1.19805161e+002 9.72529907e+001 1.11002693e+002 - 1.19794556e+002 9.73229141e+001 1.11082588e+002 1.19823730e+002 - 9.74079056e+001 1.11156990e+002 1.19855560e+002 9.74568100e+001 - 1.11215477e+002 1.19846756e+002 9.75128098e+001 1.11249641e+002 - 1.19845596e+002 9.75650253e+001 1.11320152e+002 1.19848534e+002 - 9.76125946e+001 1.11352402e+002 1.19847069e+002 9.76611099e+001 - 1.11407013e+002 1.19848640e+002 9.77613525e+001 1.11486382e+002 - 1.19889854e+002 9.78160324e+001 1.11555069e+002 1.19894913e+002 - 9.78906784e+001 1.11618073e+002 1.19906090e+002 9.79405518e+001 - 1.11681366e+002 1.19905045e+002 9.80229721e+001 1.11743195e+002 - 1.19933228e+002 9.81093521e+001 1.11826981e+002 1.19949715e+002 - 9.82127686e+001 1.11919487e+002 1.19977753e+002 9.82551651e+001 - 1.11991547e+002 1.19975304e+002 9.83529434e+001 1.12074280e+002 - 1.20023773e+002 9.84267883e+001 1.12155968e+002 1.20046089e+002 - 9.85322189e+001 1.12242699e+002 1.20091812e+002 9.85796585e+001 - 1.12298851e+002 1.20084915e+002 9.86365814e+001 1.12342598e+002 - 1.20081467e+002 9.87280655e+001 1.12448792e+002 1.20121445e+002 - 9.88302917e+001 1.12525810e+002 1.20155525e+002 9.88981247e+001 - 1.12595840e+002 1.20169548e+002 9.89850693e+001 1.12646912e+002 - 1.20172607e+002 9.90597687e+001 1.12723389e+002 1.20183701e+002 - 9.91469498e+001 1.12793976e+002 1.20194962e+002 9.92401199e+001 - 1.12891098e+002 1.20229996e+002 9.93447495e+001 1.12984413e+002 - 1.20277390e+002 9.94668503e+001 1.13095551e+002 1.20319191e+002 - 9.95772400e+001 1.13184402e+002 1.20326469e+002 9.96604385e+001 - 1.13274139e+002 1.20347603e+002 9.97750626e+001 1.13355011e+002 - 1.20401741e+002 9.98963776e+001 1.13471581e+002 1.20453804e+002 - 1.00023460e+002 1.13572479e+002 1.20503181e+002 1.00088959e+002 - 1.13631012e+002 1.20497360e+002 1.00189713e+002 1.13707703e+002 - 1.20517067e+002 1.00333710e+002 1.13841957e+002 1.20583298e+002 - 1.00439880e+002 1.13913200e+002 1.20610298e+002 1.00559219e+002 - 1.14026039e+002 1.20660851e+002 1.00679703e+002 1.14082199e+002 - 1.20689636e+002 1.00761444e+002 1.14154884e+002 1.20690201e+002 - 1.00877968e+002 1.14230675e+002 1.20727104e+002 1.00925156e+002 - 1.14276299e+002 1.20707863e+002 1.00977013e+002 1.14281044e+002 - 1.20688805e+002 1.00963280e+002 1.14253220e+002 1.20605400e+002 - 1.00908646e+002 1.14197304e+002 1.20578079e+002 1.00913010e+002 - 1.14246651e+002 1.20657402e+002 1.00868568e+002 1.14219238e+002 - 1.20684082e+002 1.00784340e+002 1.14168411e+002 1.20670616e+002 - 1.00714706e+002 1.14116005e+002 1.20688148e+002 1.00613396e+002 - 1.14049751e+002 1.20663521e+002 1.00505348e+002 1.13960449e+002 - 1.20646355e+002 1.00353294e+002 1.13839882e+002 1.20560158e+002 - 1.00265831e+002 1.13767296e+002 1.20546082e+002 1.00147591e+002 - 1.13673622e+002 1.20498611e+002 1.00060799e+002 1.13577446e+002 - 1.20483803e+002 9.99938660e+001 1.13538185e+002 1.20482079e+002 - 9.98791962e+001 1.13435089e+002 1.20445290e+002 9.97722168e+001 - 1.13357552e+002 1.20403976e+002 9.96756210e+001 1.13265678e+002 - 1.20369789e+002 9.95780945e+001 1.13189789e+002 1.20342918e+002 - 9.94639053e+001 1.13101341e+002 1.20342033e+002 9.93330383e+001 - 1.13009193e+002 1.20291336e+002 9.92546158e+001 1.12928574e+002 - 1.20271072e+002 9.91502914e+001 1.12844139e+002 1.20222961e+002 - 9.90714798e+001 1.12752777e+002 1.20208923e+002 9.89773331e+001 - 1.12678467e+002 1.20175423e+002 9.88798065e+001 1.12585037e+002 - 1.20148445e+002 9.88088684e+001 1.12532303e+002 1.20131935e+002 - 9.87606201e+001 1.12481949e+002 1.20140991e+002 9.86710892e+001 - 1.12406044e+002 1.20114029e+002 9.85906830e+001 1.12300987e+002 - 1.20093346e+002 9.85050735e+001 1.12237572e+002 1.20075462e+002 - 9.84557953e+001 1.12184570e+002 1.20082565e+002 9.83637695e+001 - 1.12106514e+002 1.20039146e+002 9.82905655e+001 1.12018234e+002 - 1.20024330e+002 9.82004166e+001 1.11931786e+002 1.19978935e+002 - 9.81098785e+001 1.11842964e+002 1.19969231e+002 9.80340652e+001 - 1.11794701e+002 1.19964027e+002 9.79837036e+001 1.11724960e+002 - 1.19953659e+002 9.79082642e+001 1.11668365e+002 1.19933243e+002 - 9.78554535e+001 1.11598999e+002 1.19941910e+002 9.77907944e+001 - 1.11552841e+002 1.19935677e+002 9.77275467e+001 1.11489380e+002 - 1.19945007e+002 9.76635284e+001 1.11434105e+002 1.19930367e+002 - 9.76392822e+001 1.11398544e+002 1.19959305e+002 9.75650101e+001 - 1.11339897e+002 1.19944344e+002 9.75037994e+001 1.11247238e+002 - 1.19929535e+002 9.74198608e+001 1.11177536e+002 1.19902702e+002 - 9.73653641e+001 1.11116867e+002 1.19893936e+002 9.72895813e+001 - 1.11059334e+002 1.19865479e+002 9.72656784e+001 1.11019257e+002 - 1.19879166e+002 9.71972733e+001 1.10956215e+002 1.19857048e+002 - 9.71373825e+001 1.10900650e+002 1.19868324e+002 9.70508118e+001 - 1.10840843e+002 1.19838875e+002 9.70212860e+001 1.10793663e+002 - 1.19841362e+002 9.69624176e+001 1.10739258e+002 1.19821556e+002 - 9.69260559e+001 1.10679192e+002 1.19827797e+002 9.68643799e+001 - 1.10632271e+002 1.19815346e+002 9.68127670e+001 1.10580284e+002 - 1.19816200e+002 9.67627182e+001 1.10545189e+002 1.19808907e+002 - 9.66933212e+001 1.10465057e+002 1.19784279e+002 9.65937042e+001 - 1.10377953e+002 1.19735321e+002 9.65854950e+001 1.10341576e+002 - 1.19759087e+002 9.65458984e+001 1.10301918e+002 1.19755325e+002 - 9.65025558e+001 1.10248581e+002 1.19744591e+002 9.64717484e+001 - 1.10226852e+002 1.19740814e+002 9.64676819e+001 1.10204521e+002 - 1.19772049e+002 9.64434204e+001 1.10184013e+002 1.19773560e+002 - 9.64112244e+001 1.10152695e+002 1.19789970e+002 9.63638000e+001 - 1.10130989e+002 1.19792946e+002 9.63319931e+001 1.10071342e+002 - 1.19779953e+002 9.62796555e+001 1.10031990e+002 1.19758102e+002 - 9.62236938e+001 1.09948822e+002 1.19734848e+002 9.61874924e+001 - 1.09917374e+002 1.19723915e+002 9.61618805e+001 1.09884056e+002 - 1.19737709e+002 9.61110077e+001 1.09844055e+002 1.19711845e+002 - 9.61040802e+001 1.09826057e+002 1.19740593e+002 9.60624390e+001 - 1.09794731e+002 1.19734245e+002 9.60771713e+001 1.09778801e+002 - 1.19771950e+002 9.60828400e+001 1.09801437e+002 1.19811211e+002 - 9.60528717e+001 1.09773643e+002 1.19812828e+002 9.60014267e+001 - 1.09737900e+002 1.19790245e+002 9.59644852e+001 1.09691788e+002 - 1.19789223e+002 9.59562378e+001 1.09685661e+002 1.19797989e+002 - 9.59131622e+001 1.09637466e+002 1.19797592e+002 9.58581314e+001 - 1.09605591e+002 1.19783287e+002 9.58543701e+001 1.09586449e+002 - 1.19796974e+002 9.58303299e+001 1.09568954e+002 1.19785698e+002 - 9.58158951e+001 1.09535622e+002 1.19791069e+002 9.58139420e+001 - 1.09556877e+002 1.19817909e+002 9.57973862e+001 1.09534355e+002 - 1.19826698e+002 9.57900848e+001 1.09541901e+002 1.19841614e+002 - 9.57955627e+001 1.09530548e+002 1.19868111e+002 9.57643890e+001 - 1.09515816e+002 1.19865143e+002 9.57791138e+001 1.09498932e+002 - 1.19897957e+002 9.57623672e+001 1.09490059e+002 1.19906616e+002 - 9.57420654e+001 1.09465675e+002 1.19906380e+002 9.57200470e+001 - 1.09458382e+002 1.19900085e+002 9.57199326e+001 1.09438858e+002 - 1.19909172e+002 9.56890488e+001 1.09415451e+002 1.19889557e+002 - 9.56950607e+001 1.09424225e+002 1.19916069e+002 9.56751404e+001 - 1.09428879e+002 1.19921066e+002 9.56897125e+001 1.09430542e+002 - 1.19943092e+002 9.56734695e+001 1.09421112e+002 1.19945663e+002 - 9.56416092e+001 1.09365814e+002 1.19913857e+002 9.56245499e+001 - 1.09361900e+002 1.19905701e+002 9.56337585e+001 1.09364052e+002 - 1.19928154e+002 9.56038742e+001 1.09345703e+002 1.19911263e+002 - 9.55946732e+001 1.09328819e+002 1.19906166e+002 9.55905838e+001 - 1.09339050e+002 1.19923309e+002 9.56001663e+001 1.09310852e+002 - 1.19928307e+002 9.55690613e+001 1.09294792e+002 1.19909676e+002 - 9.55504990e+001 1.09268341e+002 1.19885231e+002 9.55342407e+001 - 1.09270363e+002 1.19866066e+002 9.55695877e+001 1.09284164e+002 - 1.19892693e+002 9.55936050e+001 1.09306931e+002 1.19906204e+002 - 9.56186829e+001 1.09330109e+002 1.19937813e+002 9.56204605e+001 - 1.09350311e+002 1.19948441e+002 9.56288147e+001 1.09346756e+002 - 1.19956543e+002 9.56338043e+001 1.09356323e+002 1.19950874e+002 - 9.56469421e+001 1.09354446e+002 1.19961723e+002 9.56175766e+001 - 1.09337585e+002 1.19930580e+002 9.56550674e+001 1.09370331e+002 - 1.19964935e+002 9.56729889e+001 1.09399506e+002 1.19978065e+002 - 9.56829224e+001 1.09395134e+002 1.19980988e+002 9.56747360e+001 - 1.09404129e+002 1.19974281e+002 9.56713028e+001 1.09376900e+002 - 1.19962204e+002 9.56577072e+001 1.09367897e+002 1.19925507e+002 - 9.56567001e+001 1.09364799e+002 1.19917168e+002 9.56587677e+001 - 1.09384735e+002 1.19917442e+002 9.56673279e+001 1.09381989e+002 - 1.19914459e+002 9.56720505e+001 1.09388214e+002 1.19898781e+002 - 9.56620407e+001 1.09372330e+002 1.19871132e+002 9.56533432e+001 - 1.09388443e+002 1.19860069e+002 9.56661453e+001 1.09389214e+002 - 1.19854172e+002 9.56501541e+001 1.09379051e+002 1.19821091e+002 - 9.56553574e+001 1.09367233e+002 1.19799500e+002 9.56675339e+001 - 1.09392151e+002 1.19792694e+002 9.56971970e+001 1.09417427e+002 - 1.19793030e+002 9.57086334e+001 1.09444267e+002 1.19786499e+002 - 9.57411880e+001 1.09472076e+002 1.19799652e+002 9.57508469e+001 - 1.09498169e+002 1.19799889e+002 9.57654724e+001 1.09488953e+002 - 1.19790932e+002 9.57759247e+001 1.09514305e+002 1.19785736e+002 - 9.57796631e+001 1.09509094e+002 1.19761795e+002 9.57787476e+001 - 1.09529800e+002 1.19753563e+002 9.58336716e+001 1.09570923e+002 - 1.19791794e+002 9.58786240e+001 1.09620079e+002 1.19804619e+002 - 9.58952560e+001 1.09625488e+002 1.19778023e+002 9.58843689e+001 - 1.09637337e+002 1.19755363e+002 9.59206314e+001 1.09663612e+002 - 1.19761032e+002 9.59526062e+001 1.09706978e+002 1.19763420e+002 - 9.59978714e+001 1.09736099e+002 1.19775063e+002 9.60066833e+001 - 1.09758957e+002 1.19748535e+002 9.60174179e+001 1.09761528e+002 - 1.19727501e+002 9.60244827e+001 1.09776947e+002 1.19700516e+002 - 9.60560989e+001 1.09799942e+002 1.19693146e+002 9.60658264e+001 - 1.09822273e+002 1.19672981e+002 9.61275024e+001 1.09849861e+002 - 1.19689201e+002 9.61415329e+001 1.09872749e+002 1.19664063e+002 - 9.61898727e+001 1.09914627e+002 1.19659554e+002 9.62066727e+001 - 1.09949257e+002 1.19648949e+002 9.62391205e+001 1.09969124e+002 - 1.19648102e+002 9.62940063e+001 1.10027321e+002 1.19650383e+002 - 9.63510742e+001 1.10084793e+002 1.19659401e+002 9.63655243e+001 - 1.10123650e+002 1.19650383e+002 9.64166718e+001 1.10167259e+002 - 1.19665199e+002 9.64478378e+001 1.10208641e+002 1.19669914e+002 - 9.64929657e+001 1.10236969e+002 1.19666847e+002 9.65175323e+001 - 1.10274643e+002 1.19655045e+002 9.65889664e+001 1.10341698e+002 - 1.19683502e+002 9.66257629e+001 1.10391518e+002 1.19679008e+002 - 9.67090683e+001 1.10470978e+002 1.19722473e+002 9.67456284e+001 - 1.10523941e+002 1.19724808e+002 9.68189468e+001 1.10566116e+002 - 1.19748245e+002 9.68612671e+001 1.10616211e+002 1.19747025e+002 - 9.69231415e+001 1.10664429e+002 1.19756042e+002 9.69239044e+001 - 1.10683090e+002 1.19712105e+002 9.69934464e+001 1.10732254e+002 - 1.19730934e+002 9.70624390e+001 1.10806099e+002 1.19737595e+002 - 9.71366272e+001 1.10882057e+002 1.19748886e+002 9.71603851e+001 - 1.10929100e+002 1.19735718e+002 9.72064667e+001 1.10964851e+002 - 1.19736397e+002 9.72706299e+001 1.11038185e+002 1.19761963e+002 - 9.73430328e+001 1.11098457e+002 1.19782341e+002 9.73809814e+001 - 1.11148735e+002 1.19770630e+002 9.74369049e+001 1.11188385e+002 - 1.19765877e+002 9.74950714e+001 1.11259483e+002 1.19776161e+002 - 9.75712128e+001 1.11321144e+002 1.19798973e+002 9.76211319e+001 - 1.11386559e+002 1.19806534e+002 9.77026749e+001 1.11434662e+002 - 1.19822220e+002 9.77720108e+001 1.11518074e+002 1.19842575e+002 - 9.78283768e+001 1.11563797e+002 1.19839729e+002 9.78822632e+001 - 1.11631119e+002 1.19845299e+002 9.79625244e+001 1.11694351e+002 - 1.19866951e+002 9.80594101e+001 1.11792763e+002 1.19898071e+002 - 9.81541595e+001 1.11874741e+002 1.19919106e+002 9.82347794e+001 - 1.11979645e+002 1.19954445e+002 9.83075562e+001 1.12036491e+002 - 1.19971596e+002 9.83899231e+001 1.12130630e+002 1.20007996e+002 - 9.84789352e+001 1.12202087e+002 1.20033310e+002 9.85243378e+001 - 1.12254578e+002 1.20026566e+002 9.86094284e+001 1.12323257e+002 - 1.20047882e+002 9.86966629e+001 1.12421181e+002 1.20075699e+002 - 9.87882385e+001 1.12489304e+002 1.20097656e+002 9.88510056e+001 - 1.12557190e+002 1.20109558e+002 9.89467316e+001 1.12609383e+002 - 1.20126350e+002 9.90371017e+001 1.12704956e+002 1.20155334e+002 - 9.91235046e+001 1.12779327e+002 1.20165619e+002 9.91991119e+001 - 1.12860550e+002 1.20187157e+002 9.92960968e+001 1.12940292e+002 - 1.20224075e+002 9.94174042e+001 1.13048981e+002 1.20262726e+002 - 9.95381012e+001 1.13141335e+002 1.20283485e+002 9.96194534e+001 - 1.13233574e+002 1.20305450e+002 9.97327423e+001 1.13318459e+002 - 1.20357094e+002 9.98553619e+001 1.13443169e+002 1.20421356e+002 - 9.99798279e+001 1.13537186e+002 1.20470123e+002 1.00053406e+002 - 1.13615288e+002 1.20474922e+002 1.00169937e+002 1.13703842e+002 - 1.20507843e+002 1.00276581e+002 1.13799118e+002 1.20539124e+002 - 1.00383293e+002 1.13870430e+002 1.20564468e+002 1.00492455e+002 - 1.13972939e+002 1.20602577e+002 1.00619164e+002 1.14044350e+002 - 1.20636284e+002 1.00703148e+002 1.14110962e+002 1.20643814e+002 - 1.00821487e+002 1.14192940e+002 1.20675117e+002 1.00875092e+002 - 1.14236832e+002 1.20663109e+002 1.00931015e+002 1.14250336e+002 - 1.20650795e+002 1.00922241e+002 1.14217041e+002 1.20566902e+002 - 1.00877609e+002 1.14155136e+002 1.20531456e+002 1.00868782e+002 - 1.14190575e+002 1.20594261e+002 1.00827141e+002 1.14164841e+002 - 1.20623634e+002 1.00743378e+002 1.14116669e+002 1.20618202e+002 - 1.00666100e+002 1.14055290e+002 1.20621223e+002 1.00562859e+002 - 1.13990555e+002 1.20597145e+002 1.00462410e+002 1.13911491e+002 - 1.20588791e+002 1.00316460e+002 1.13796982e+002 1.20512901e+002 - 1.00229439e+002 1.13723167e+002 1.20501732e+002 1.00117043e+002 - 1.13641663e+002 1.20462006e+002 1.00016373e+002 1.13525368e+002 - 1.20424377e+002 9.99378510e+001 1.13472366e+002 1.20408356e+002 - 9.98320389e+001 1.13379280e+002 1.20378151e+002 9.97159195e+001 - 1.13292747e+002 1.20323822e+002 9.96270676e+001 1.13210548e+002 - 1.20308060e+002 9.95347672e+001 1.13144653e+002 1.20288742e+002 - 9.94287033e+001 1.13056725e+002 1.20293213e+002 9.92972183e+001 - 1.12965866e+002 1.20238388e+002 9.92093887e+001 1.12882866e+002 - 1.20213188e+002 9.91082993e+001 1.12797119e+002 1.20169128e+002 - 9.90540924e+001 1.12731194e+002 1.20176117e+002 9.89583664e+001 - 1.12653389e+002 1.20142899e+002 9.88649597e+001 1.12556931e+002 - 1.20119118e+002 9.87693405e+001 1.12479034e+002 1.20072578e+002 - 9.87267532e+001 1.12438133e+002 1.20097855e+002 9.86347885e+001 - 1.12368698e+002 1.20066856e+002 9.85603027e+001 1.12274445e+002 - 1.20054504e+002 9.84779053e+001 1.12204071e+002 1.20027802e+002 - 9.84129333e+001 1.12140961e+002 1.20021896e+002 9.83361969e+001 - 1.12074821e+002 1.19996521e+002 9.82634506e+001 1.11986374e+002 - 1.19975914e+002 9.81714096e+001 1.11904823e+002 1.19938721e+002 - 9.80773315e+001 1.11811134e+002 1.19920441e+002 9.79814606e+001 - 1.11737823e+002 1.19894775e+002 9.79453659e+001 1.11685875e+002 - 1.19903328e+002 9.78698959e+001 1.11616287e+002 1.19874130e+002 - 9.78128967e+001 1.11551605e+002 1.19875732e+002 9.77637711e+001 - 1.11518623e+002 1.19887596e+002 9.76921921e+001 1.11446617e+002 - 1.19886696e+002 9.76144104e+001 1.11380638e+002 1.19861282e+002 - 9.75676270e+001 1.11329124e+002 1.19870384e+002 9.74740448e+001 - 1.11245171e+002 1.19832130e+002 9.74216156e+001 1.11173515e+002 - 1.19838280e+002 9.73787613e+001 1.11137199e+002 1.19846680e+002 - 9.73208847e+001 1.11072556e+002 1.19834702e+002 9.72454224e+001 - 1.11010811e+002 1.19802269e+002 9.72180176e+001 1.10973137e+002 - 1.19817986e+002 9.71687927e+001 1.10936394e+002 1.19808495e+002 - 9.70979385e+001 1.10861038e+002 1.19804382e+002 9.70309601e+001 - 1.10822586e+002 1.19802582e+002 9.70051727e+001 1.10774544e+002 - 1.19802971e+002 9.69421921e+001 1.10719925e+002 1.19779205e+002 - 9.68959808e+001 1.10655235e+002 1.19778893e+002 9.68456879e+001 - 1.10609375e+002 1.19765190e+002 9.67810440e+001 1.10547409e+002 - 1.19756180e+002 9.67383347e+001 1.10515030e+002 1.19753395e+002 - 9.66700745e+001 1.10440056e+002 1.19730164e+002 9.65828018e+001 - 1.10363319e+002 1.19689697e+002 9.65668182e+001 1.10314758e+002 - 1.19712708e+002 9.65301514e+001 1.10280228e+002 1.19710968e+002 - 9.64870224e+001 1.10232819e+002 1.19707161e+002 9.64387054e+001 - 1.10190811e+002 1.19686256e+002 9.64279175e+001 1.10171188e+002 - 1.19707344e+002 9.63909073e+001 1.10137360e+002 1.19696579e+002 - 9.63578186e+001 1.10099083e+002 1.19708794e+002 9.63067932e+001 - 1.10070717e+002 1.19702797e+002 9.62765961e+001 1.10017265e+002 - 1.19699081e+002 9.62195892e+001 1.09970123e+002 1.19672951e+002 - 9.61618423e+001 1.09886063e+002 1.19641884e+002 9.61279221e+001 - 1.09866730e+002 1.19647789e+002 9.61135101e+001 1.09839005e+002 - 1.19668533e+002 9.60724335e+001 1.09808731e+002 1.19654694e+002 - 9.60533676e+001 1.09773331e+002 1.19666245e+002 9.59968491e+001 - 1.09733093e+002 1.19643120e+002 9.60166016e+001 1.09719925e+002 - 1.19685532e+002 9.60234680e+001 1.09740829e+002 1.19725044e+002 - 9.59975433e+001 1.09717506e+002 1.19737579e+002 9.59557648e+001 - 1.09697922e+002 1.19725754e+002 9.59482269e+001 1.09675514e+002 - 1.19744064e+002 9.59298706e+001 1.09666611e+002 1.19745872e+002 - 9.58574677e+001 1.09580742e+002 1.19713982e+002 9.58302765e+001 - 1.09575783e+002 1.19729576e+002 9.58219757e+001 1.09548843e+002 - 1.19730934e+002 9.57948990e+001 1.09532272e+002 1.19724518e+002 - 9.57822037e+001 1.09504822e+002 1.19733513e+002 9.57759018e+001 - 1.09512901e+002 1.19750771e+002 9.57389603e+001 1.09475914e+002 - 1.19740929e+002 9.57309723e+001 1.09476547e+002 1.19747658e+002 - 9.57476273e+001 1.09482445e+002 1.19790359e+002 9.57237549e+001 - 1.09471687e+002 1.19800186e+002 9.57365799e+001 1.09458481e+002 - 1.19828751e+002 9.57235489e+001 1.09454895e+002 1.19841934e+002 - 9.57292252e+001 1.09448112e+002 1.19864342e+002 9.56985855e+001 - 1.09438110e+002 1.19853241e+002 9.56989670e+001 1.09419304e+002 - 1.19862778e+002 9.56765442e+001 1.09396156e+002 1.19837639e+002 - 9.56588974e+001 1.09380722e+002 1.19842758e+002 9.56249390e+001 - 1.09372658e+002 1.19835220e+002 9.56469116e+001 1.09381813e+002 - 1.19873596e+002 9.56278992e+001 1.09373665e+002 1.19867516e+002 - 9.56086578e+001 1.09330833e+002 1.19848793e+002 9.55869675e+001 - 1.09322075e+002 1.19840660e+002 9.55849609e+001 1.09316620e+002 - 1.19855408e+002 9.55578918e+001 1.09300087e+002 1.19833519e+002 - 9.55735092e+001 1.09305191e+002 1.19858986e+002 9.55715408e+001 - 1.09311272e+002 1.19871361e+002 9.55577393e+001 1.09265892e+002 - 1.19856110e+002 9.55318298e+001 1.09251938e+002 1.19836693e+002 - 9.55457306e+001 1.09262733e+002 1.19849754e+002 9.55416718e+001 - 1.09273087e+002 1.19840225e+002 9.55708008e+001 1.09285995e+002 - 1.19867104e+002 9.55922089e+001 1.09312660e+002 1.19876007e+002 - 9.56108932e+001 1.09328606e+002 1.19897034e+002 9.55829926e+001 - 1.09322624e+002 1.19883263e+002 9.55988388e+001 1.09322586e+002 - 1.19896461e+002 9.55964279e+001 1.09327820e+002 1.19885132e+002 - 9.56151276e+001 1.09321381e+002 1.19899193e+002 9.55714417e+001 - 1.09292366e+002 1.19850403e+002 9.56017685e+001 1.09318909e+002 - 1.19877403e+002 9.56227875e+001 1.09348091e+002 1.19887634e+002 - 9.56231384e+001 1.09337852e+002 1.19891640e+002 9.56170349e+001 - 1.09346428e+002 1.19888191e+002 9.56554718e+001 1.09355911e+002 - 1.19909340e+002 9.56439514e+001 1.09358383e+002 1.19893486e+002 - 9.56263275e+001 1.09343094e+002 1.19865227e+002 9.56194992e+001 - 1.09344460e+002 1.19850639e+002 9.56297684e+001 1.09343170e+002 - 1.19849640e+002 9.56357956e+001 1.09351425e+002 1.19829338e+002 - 9.56569901e+001 1.09367012e+002 1.19835396e+002 9.56171951e+001 - 1.09353073e+002 1.19792877e+002 9.56310730e+001 1.09347565e+002 - 1.19788185e+002 9.56259003e+001 1.09351585e+002 1.19766708e+002 - 9.56354980e+001 1.09349762e+002 1.19753128e+002 9.56473160e+001 - 1.09378860e+002 1.19751007e+002 9.56764374e+001 1.09401207e+002 - 1.19756477e+002 9.56687698e+001 1.09413383e+002 1.19728455e+002 - 9.56785965e+001 1.09417313e+002 1.19713326e+002 9.56881409e+001 - 1.09441071e+002 1.19713051e+002 9.57002487e+001 1.09424957e+002 - 1.19698738e+002 9.57339325e+001 1.09470093e+002 1.19719032e+002 - 9.57545929e+001 1.09492310e+002 1.19719849e+002 9.57621765e+001 - 1.09515465e+002 1.19708656e+002 9.58044510e+001 1.09547844e+002 - 1.19733398e+002 9.58277435e+001 1.09574745e+002 1.19726204e+002 - 9.58375549e+001 1.09582428e+002 1.19702354e+002 9.58521576e+001 - 1.09616875e+002 1.19698357e+002 9.58694305e+001 1.09622620e+002 - 1.19684418e+002 9.59100189e+001 1.09671318e+002 1.19701691e+002 - 9.59774704e+001 1.09727547e+002 1.19734474e+002 9.59888077e+001 - 1.09748428e+002 1.19711868e+002 9.59867020e+001 1.09740143e+002 - 1.19673615e+002 9.59949875e+001 1.09757294e+002 1.19647514e+002 - 9.60150223e+001 1.09765961e+002 1.19636322e+002 9.60367355e+001 - 1.09800804e+002 1.19634087e+002 9.60979004e+001 1.09828903e+002 - 1.19646988e+002 9.61230087e+001 1.09861282e+002 1.19625961e+002 - 9.61478806e+001 1.09878944e+002 1.19601578e+002 9.61670303e+001 - 1.09917358e+002 1.19585518e+002 9.62160492e+001 1.09944176e+002 - 1.19601372e+002 9.62751694e+001 1.10017647e+002 1.19613083e+002 - 9.63164139e+001 1.10052063e+002 1.19604294e+002 9.63324432e+001 - 1.10096909e+002 1.19597099e+002 9.63814621e+001 1.10131203e+002 - 1.19612473e+002 9.64177322e+001 1.10180435e+002 1.19612358e+002 - 9.64586029e+001 1.10199852e+002 1.19609726e+002 9.64978485e+001 - 1.10256561e+002 1.19610771e+002 9.65472717e+001 1.10296211e+002 - 1.19620079e+002 9.65979843e+001 1.10360519e+002 1.19633064e+002 - 9.66690063e+001 1.10430382e+002 1.19663200e+002 9.67120209e+001 - 1.10486015e+002 1.19674873e+002 9.67909470e+001 1.10535873e+002 - 1.19699081e+002 9.68242645e+001 1.10572441e+002 1.19687454e+002 - 9.68818588e+001 1.10623070e+002 1.19693710e+002 9.68991013e+001 - 1.10654526e+002 1.19667473e+002 9.69776764e+001 1.10709465e+002 - 1.19688477e+002 9.70478287e+001 1.10790710e+002 1.19703461e+002 - 9.70724258e+001 1.10812744e+002 1.19665657e+002 9.71048126e+001 - 1.10872101e+002 1.19665337e+002 9.71638641e+001 1.10919350e+002 - 1.19676651e+002 9.72170334e+001 1.10986221e+002 1.19697365e+002 - 9.73042679e+001 1.11050575e+002 1.19719139e+002 9.73265610e+001 - 1.11089188e+002 1.19694283e+002 9.73973236e+001 1.11150688e+002 - 1.19714912e+002 9.74577866e+001 1.11223679e+002 1.19725143e+002 - 9.75290222e+001 1.11274323e+002 1.19740730e+002 9.75784683e+001 - 1.11338226e+002 1.19748810e+002 9.76545563e+001 1.11389969e+002 - 1.19765846e+002 9.77309494e+001 1.11478111e+002 1.19791473e+002 - 9.77963486e+001 1.11530991e+002 1.19797417e+002 9.78444138e+001 - 1.11596832e+002 1.19799385e+002 9.79286041e+001 1.11662354e+002 - 1.19824425e+002 9.80298080e+001 1.11764038e+002 1.19855362e+002 - 9.81229401e+001 1.11844337e+002 1.19872948e+002 9.81948166e+001 - 1.11941788e+002 1.19898125e+002 9.82656860e+001 1.11995331e+002 - 1.19919182e+002 9.83402252e+001 1.12080902e+002 1.19949623e+002 - 9.84254837e+001 1.12140709e+002 1.19963326e+002 9.84747696e+001 - 1.12205788e+002 1.19965408e+002 9.85702209e+001 1.12283356e+002 - 1.19991714e+002 9.86552429e+001 1.12377838e+002 1.20019066e+002 - 9.87583694e+001 1.12455986e+002 1.20051308e+002 9.88345413e+001 - 1.12538231e+002 1.20079659e+002 9.89296188e+001 1.12593033e+002 - 1.20094193e+002 9.90106506e+001 1.12678764e+002 1.20118187e+002 - 9.90929718e+001 1.12746666e+002 1.20122452e+002 9.91648560e+001 - 1.12825699e+002 1.20135521e+002 9.92721252e+001 1.12905136e+002 - 1.20185112e+002 9.93924026e+001 1.13017624e+002 1.20228683e+002 - 9.95037613e+001 1.13103439e+002 1.20243866e+002 9.95985413e+001 - 1.13214806e+002 1.20284348e+002 9.96991272e+001 1.13283638e+002 - 1.20320114e+002 9.98107452e+001 1.13400520e+002 1.20375084e+002 - 9.99359131e+001 1.13492462e+002 1.20421196e+002 1.00017769e+002 - 1.13576614e+002 1.20442261e+002 1.00157211e+002 1.13692032e+002 - 1.20496803e+002 1.00266167e+002 1.13792862e+002 1.20532845e+002 - 1.00346573e+002 1.13840271e+002 1.20535255e+002 1.00439201e+002 - 1.13920647e+002 1.20554733e+002 1.00583473e+002 1.14006233e+002 - 1.20602470e+002 1.00685608e+002 1.14094604e+002 1.20628571e+002 - 1.00793282e+002 1.14162926e+002 1.20649986e+002 1.00836823e+002 - 1.14202789e+002 1.20631729e+002 1.00911682e+002 1.14230141e+002 - 1.20634323e+002 1.00895889e+002 1.14194145e+002 1.20540436e+002 - 1.00861305e+002 1.14137352e+002 1.20495155e+002 1.00858780e+002 - 1.14177002e+002 1.20565666e+002 1.00829910e+002 1.14164864e+002 - 1.20608612e+002 1.00742424e+002 1.14116516e+002 1.20598038e+002 - 1.00645393e+002 1.14038101e+002 1.20586884e+002 1.00531044e+002 - 1.13965073e+002 1.20552940e+002 1.00430458e+002 1.13887238e+002 - 1.20544724e+002 1.00301987e+002 1.13784531e+002 1.20480804e+002 - 1.00227844e+002 1.13719406e+002 1.20478233e+002 1.00113358e+002 - 1.13639877e+002 1.20441948e+002 1.00017395e+002 1.13529617e+002 - 1.20414742e+002 9.99117966e+001 1.13448593e+002 1.20369408e+002 - 9.98155365e+001 1.13365242e+002 1.20349564e+002 9.96905060e+001 - 1.13267746e+002 1.20285034e+002 9.96014557e+001 1.13179062e+002 - 1.20265678e+002 9.94925919e+001 1.13104095e+002 1.20232483e+002 - 9.93932648e+001 1.13025414e+002 1.20236542e+002 9.92416153e+001 - 1.12918053e+002 1.20172050e+002 9.91731339e+001 1.12841484e+002 - 1.20155388e+002 9.90904694e+001 1.12781136e+002 1.20136940e+002 - 9.90271301e+001 1.12702393e+002 1.20135216e+002 9.89432373e+001 - 1.12638168e+002 1.20114548e+002 9.88600922e+001 1.12563225e+002 - 1.20099876e+002 9.87682648e+001 1.12483170e+002 1.20059425e+002 - 9.87106094e+001 1.12422852e+002 1.20058029e+002 9.86262894e+001 - 1.12363106e+002 1.20040970e+002 9.85283279e+001 1.12243866e+002 - 1.20001381e+002 9.84492874e+001 1.12176788e+002 1.19979851e+002 - 9.83794861e+001 1.12109520e+002 1.19968880e+002 9.83281021e+001 - 1.12074715e+002 1.19971092e+002 9.82612228e+001 1.11989967e+002 - 1.19954445e+002 9.81594391e+001 1.11897270e+002 1.19902267e+002 - 9.80682297e+001 1.11802994e+002 1.19890388e+002 9.79675140e+001 - 1.11723434e+002 1.19854736e+002 9.79178543e+001 1.11660133e+002 - 1.19846420e+002 9.78338547e+001 1.11590660e+002 1.19821457e+002 - 9.77870560e+001 1.11525246e+002 1.19832466e+002 9.77330399e+001 - 1.11490265e+002 1.19840248e+002 9.76643677e+001 1.11421486e+002 - 1.19840034e+002 9.76158218e+001 1.11380638e+002 1.19841560e+002 - 9.75382843e+001 1.11306465e+002 1.19824631e+002 9.74535217e+001 - 1.11227539e+002 1.19797478e+002 9.74159164e+001 1.11166161e+002 - 1.19818054e+002 9.73586884e+001 1.11124573e+002 1.19809242e+002 - 9.72981186e+001 1.11057083e+002 1.19791443e+002 9.72233658e+001 - 1.10995224e+002 1.19764030e+002 9.71845474e+001 1.10944351e+002 - 1.19761658e+002 9.71417770e+001 1.10910156e+002 1.19764656e+002 - 9.70733109e+001 1.10843491e+002 1.19765144e+002 9.70021439e+001 - 1.10799980e+002 1.19749619e+002 9.69624634e+001 1.10737038e+002 - 1.19737541e+002 9.69227219e+001 1.10702072e+002 1.19732864e+002 - 9.68829956e+001 1.10644409e+002 1.19739677e+002 9.68295975e+001 - 1.10600235e+002 1.19727242e+002 9.67602463e+001 1.10533524e+002 - 1.19712616e+002 9.67156677e+001 1.10496506e+002 1.19707695e+002 - 9.66704712e+001 1.10437813e+002 1.19705498e+002 9.65796738e+001 - 1.10358833e+002 1.19657913e+002 9.65749588e+001 1.10316757e+002 - 1.19686012e+002 9.65256729e+001 1.10281914e+002 1.19685776e+002 - 9.64976120e+001 1.10245522e+002 1.19689850e+002 9.64272232e+001 - 1.10192543e+002 1.19654060e+002 9.64023361e+001 1.10152718e+002 - 1.19658081e+002 9.63652878e+001 1.10118767e+002 1.19645729e+002 - 9.63395081e+001 1.10089790e+002 1.19669243e+002 9.62793274e+001 - 1.10049149e+002 1.19652000e+002 9.62423553e+001 1.09990715e+002 - 1.19635101e+002 9.62018051e+001 1.09955414e+002 1.19627258e+002 - 9.61614456e+001 1.09895401e+002 1.19622688e+002 9.61079178e+001 - 1.09849998e+002 1.19600006e+002 9.60724182e+001 1.09808884e+002 - 1.19599533e+002 9.60490952e+001 1.09794212e+002 1.19611137e+002 - 9.60121994e+001 1.09739624e+002 1.19601967e+002 9.59763565e+001 - 1.09722488e+002 1.19603455e+002 9.60217514e+001 1.09731705e+002 - 1.19667885e+002 9.59982147e+001 1.09724770e+002 1.19677109e+002 - 9.59462814e+001 1.09671974e+002 1.19656708e+002 9.58927994e+001 - 1.09639877e+002 1.19636459e+002 9.58888702e+001 1.09622269e+002 - 1.19663750e+002 9.58822403e+001 1.09621956e+002 1.19677109e+002 - 9.58477249e+001 1.09580345e+002 1.19686440e+002 9.58145294e+001 - 1.09565384e+002 1.19686989e+002 9.58114548e+001 1.09538116e+002 - 1.19690796e+002 9.57882538e+001 1.09535133e+002 1.19692284e+002 - 9.57824020e+001 1.09501411e+002 1.19698730e+002 9.57372208e+001 - 1.09478546e+002 1.19686089e+002 9.57169342e+001 1.09457664e+002 - 1.19693855e+002 9.57047195e+001 1.09454872e+002 1.19700241e+002 - 9.57179489e+001 1.09452637e+002 1.19731041e+002 9.57071609e+001 - 1.09458412e+002 1.19751343e+002 9.57340088e+001 1.09458801e+002 - 1.19800262e+002 9.57224808e+001 1.09461014e+002 1.19816307e+002 - 9.57096710e+001 1.09435165e+002 1.19823563e+002 9.56779633e+001 - 1.09423271e+002 1.19807457e+002 9.56717682e+001 1.09402390e+002 - 1.19811127e+002 9.56678696e+001 1.09402283e+002 1.19809082e+002 - 9.56583481e+001 1.09383270e+002 1.19818810e+002 9.56162109e+001 - 1.09370056e+002 1.19799591e+002 9.56148376e+001 1.09346779e+002 - 1.19804382e+002 9.55995712e+001 1.09347870e+002 1.19806984e+002 - 9.55781631e+001 1.09301659e+002 1.19795631e+002 9.55682144e+001 - 1.09309052e+002 1.19799911e+002 9.55576172e+001 1.09294701e+002 - 1.19801910e+002 9.55275574e+001 1.09274185e+002 1.19776871e+002 - 9.55264740e+001 1.09262970e+002 1.19788284e+002 9.55072632e+001 - 1.09259369e+002 1.19774635e+002 9.55195847e+001 1.09236221e+002 - 1.19789810e+002 9.55236282e+001 1.09258522e+002 1.19801620e+002 - 9.55360565e+001 1.09259262e+002 1.19808739e+002 9.55283813e+001 - 1.09268562e+002 1.19801826e+002 9.55589142e+001 1.09281166e+002 - 1.19827141e+002 9.55665741e+001 1.09294350e+002 1.19826485e+002 - 9.55930252e+001 1.09314072e+002 1.19852692e+002 9.55679321e+001 - 1.09314812e+002 1.19837341e+002 9.55712280e+001 1.09302872e+002 - 1.19835419e+002 9.55986252e+001 1.09338478e+002 1.19860985e+002 - 9.55894165e+001 1.09306641e+002 1.19848289e+002 9.55462036e+001 - 1.09271896e+002 1.19796638e+002 9.55689926e+001 1.09293205e+002 - 1.19812485e+002 9.55991821e+001 1.09330910e+002 1.19838165e+002 - 9.55919342e+001 1.09312988e+002 1.19829300e+002 9.55803299e+001 - 1.09321655e+002 1.19825485e+002 9.56387787e+001 1.09354027e+002 - 1.19869438e+002 9.56360931e+001 1.09359634e+002 1.19859833e+002 - 9.56214905e+001 1.09339699e+002 1.19832680e+002 9.56011887e+001 - 1.09335449e+002 1.19798599e+002 9.55998611e+001 1.09320168e+002 - 1.19791145e+002 9.56043015e+001 1.09328407e+002 1.19770874e+002 - 9.56330109e+001 1.09348213e+002 1.19780632e+002 9.55764236e+001 - 1.09313133e+002 1.19721581e+002 9.56041870e+001 1.09329346e+002 - 1.19732063e+002 9.56256561e+001 1.09359558e+002 1.19737968e+002 - 9.56364212e+001 1.09358322e+002 1.19730003e+002 9.56210098e+001 - 1.09356812e+002 1.19701851e+002 9.56378479e+001 1.09375977e+002 - 1.19694908e+002 9.56826782e+001 1.09432762e+002 1.19717072e+002 - 9.56888580e+001 1.09437622e+002 1.19704773e+002 9.56793671e+001 - 1.09440186e+002 1.19683891e+002 9.57104950e+001 1.09443619e+002 - 1.19686287e+002 9.57260513e+001 1.09474228e+002 1.19680183e+002 - 9.57421341e+001 1.09481995e+002 1.19674690e+002 9.57422256e+001 - 1.09509583e+002 1.19663651e+002 9.57774277e+001 1.09531372e+002 - 1.19683983e+002 9.57805252e+001 1.09536682e+002 1.19651237e+002 - 9.58170929e+001 1.09572472e+002 1.19660103e+002 9.58323517e+001 - 1.09611450e+002 1.19658127e+002 9.58617783e+001 1.09621964e+002 - 1.19656792e+002 9.59082565e+001 1.09689270e+002 1.19684258e+002 - 9.59748993e+001 1.09730034e+002 1.19707855e+002 9.59702911e+001 - 1.09740372e+002 1.19667892e+002 9.59841156e+001 1.09753006e+002 - 1.19653831e+002 9.59888000e+001 1.09762398e+002 1.19626236e+002 - 9.59994812e+001 1.09761154e+002 1.19600235e+002 9.60296249e+001 - 1.09806870e+002 1.19602943e+002 9.60799942e+001 1.09825096e+002 - 1.19607376e+002 9.61356125e+001 1.09889214e+002 1.19619080e+002 - 9.61719208e+001 1.09918625e+002 1.19608086e+002 9.61705551e+001 - 1.09932411e+002 1.19573830e+002 9.61854935e+001 1.09933449e+002 - 1.19556633e+002 9.62610168e+001 1.10018044e+002 1.19582901e+002 - 9.63126297e+001 1.10062042e+002 1.19579910e+002 9.63211136e+001 - 1.10097519e+002 1.19569260e+002 9.63855515e+001 1.10143318e+002 - 1.19596375e+002 9.63958969e+001 1.10168808e+002 1.19576431e+002 - 9.64377518e+001 1.10185539e+002 1.19569847e+002 9.64854660e+001 - 1.10253578e+002 1.19584846e+002 9.65286407e+001 1.10288933e+002 - 1.19586433e+002 9.65733719e+001 1.10343506e+002 1.19593163e+002 - 9.66365204e+001 1.10399834e+002 1.19611237e+002 9.66625214e+001 - 1.10442955e+002 1.19610161e+002 9.67318344e+001 1.10478798e+002 - 1.19620750e+002 9.67636490e+001 1.10517815e+002 1.19608673e+002 - 9.68177185e+001 1.10562363e+002 1.19608063e+002 9.68574905e+001 - 1.10620041e+002 1.19607048e+002 9.69419632e+001 1.10687622e+002 - 1.19636200e+002 9.69932022e+001 1.10745277e+002 1.19633224e+002 - 9.70434341e+001 1.10786613e+002 1.19616470e+002 9.70578995e+001 - 1.10829201e+002 1.19597496e+002 9.71230087e+001 1.10877533e+002 - 1.19619904e+002 9.71823730e+001 1.10950165e+002 1.19634613e+002 - 9.72498627e+001 1.11002754e+002 1.19647629e+002 9.73023453e+001 - 1.11062614e+002 1.19650421e+002 9.73713760e+001 1.11128502e+002 - 1.19669121e+002 9.74223938e+001 1.11194344e+002 1.19672340e+002 - 9.74844666e+001 1.11241104e+002 1.19685379e+002 9.75387878e+001 - 1.11309814e+002 1.19699081e+002 9.76479111e+001 1.11390869e+002 - 1.19748009e+002 9.77199097e+001 1.11472008e+002 1.19767975e+002 - 9.77686234e+001 1.11514427e+002 1.19758575e+002 9.78159943e+001 - 1.11571877e+002 1.19752655e+002 9.78952866e+001 1.11632362e+002 - 1.19776306e+002 9.79837799e+001 1.11725021e+002 1.19804573e+002 - 9.80870285e+001 1.11808708e+002 1.19820442e+002 9.81597595e+001 - 1.11907417e+002 1.19851212e+002 9.82432480e+001 1.11967552e+002 - 1.19875427e+002 9.83066330e+001 1.12047180e+002 1.19887383e+002 - 9.83985138e+001 1.12115097e+002 1.19921577e+002 9.84598389e+001 - 1.12192635e+002 1.19929970e+002 9.85569229e+001 1.12270576e+002 - 1.19958031e+002 9.86421280e+001 1.12362953e+002 1.19983772e+002 - 9.87375793e+001 1.12435715e+002 1.20015701e+002 9.88027573e+001 - 1.12509186e+002 1.20026443e+002 9.89102783e+001 1.12581268e+002 - 1.20060783e+002 9.89962463e+001 1.12667351e+002 1.20082680e+002 - 9.90831604e+001 1.12734940e+002 1.20095863e+002 9.91427460e+001 - 1.12807152e+002 1.20102623e+002 9.92657318e+001 1.12902710e+002 - 1.20164833e+002 9.93818817e+001 1.13007668e+002 1.20206390e+002 - 9.94778595e+001 1.13083183e+002 1.20211960e+002 9.95680008e+001 - 1.13184334e+002 1.20245819e+002 9.96918106e+001 1.13281746e+002 - 1.20309471e+002 9.98073807e+001 1.13407631e+002 1.20370033e+002 - 9.99183884e+001 1.13485931e+002 1.20407768e+002 1.00001556e+002 - 1.13564644e+002 1.20418121e+002 1.00123573e+002 1.13667381e+002 - 1.20459900e+002 1.00242134e+002 1.13774940e+002 1.20510567e+002 - 1.00339447e+002 1.13838882e+002 1.20526291e+002 1.00418877e+002 - 1.13908806e+002 1.20533470e+002 1.00538986e+002 1.13972000e+002 - 1.20561882e+002 1.00643425e+002 1.14063889e+002 1.20590393e+002 - 1.00764496e+002 1.14136978e+002 1.20619514e+002 1.00813744e+002 - 1.14181595e+002 1.20603882e+002 1.00890305e+002 1.14208923e+002 - 1.20604500e+002 1.00869537e+002 1.14179626e+002 1.20514389e+002 - 1.00826057e+002 1.14108536e+002 1.20444473e+002 1.00813332e+002 - 1.14143204e+002 1.20502449e+002 1.00795349e+002 1.14138977e+002 - 1.20554314e+002 1.00736832e+002 1.14118988e+002 1.20571556e+002 - 1.00643456e+002 1.14039825e+002 1.20563919e+002 1.00522247e+002 - 1.13957275e+002 1.20526299e+002 1.00407700e+002 1.13865356e+002 - 1.20498322e+002 1.00296852e+002 1.13783783e+002 1.20457397e+002 - 1.00224251e+002 1.13723763e+002 1.20456650e+002 1.00113884e+002 - 1.13640663e+002 1.20418121e+002 9.99998627e+001 1.13522125e+002 - 1.20376312e+002 9.98870163e+001 1.13431908e+002 1.20327644e+002 - 9.97809601e+001 1.13341499e+002 1.20299370e+002 9.96762619e+001 - 1.13267891e+002 1.20257431e+002 9.95784454e+001 1.13166656e+002 - 1.20221191e+002 9.94614487e+001 1.13081337e+002 1.20185844e+002 - 9.93713608e+001 1.13011276e+002 1.20201561e+002 9.92454987e+001 - 1.12930550e+002 1.20154724e+002 9.91606827e+001 1.12839172e+002 - 1.20128586e+002 9.90805283e+001 1.12777679e+002 1.20100861e+002 - 9.90196304e+001 1.12705093e+002 1.20110855e+002 9.89264679e+001 - 1.12630310e+002 1.20077087e+002 9.88216858e+001 1.12532066e+002 - 1.20046074e+002 9.87477798e+001 1.12470604e+002 1.20019325e+002 - 9.86810379e+001 1.12406731e+002 1.20014114e+002 9.85945969e+001 - 1.12337914e+002 1.19982971e+002 9.85035934e+001 1.12227325e+002 - 1.19953026e+002 9.84283295e+001 1.12165337e+002 1.19934143e+002 - 9.83700562e+001 1.12106567e+002 1.19931938e+002 9.82955093e+001 - 1.12047432e+002 1.19908989e+002 9.82339706e+001 1.11966919e+002 - 1.19896957e+002 9.81489334e+001 1.11893959e+002 1.19867302e+002 - 9.80721130e+001 1.11807549e+002 1.19867760e+002 9.79583511e+001 - 1.11724335e+002 1.19824501e+002 9.78846207e+001 1.11633766e+002 - 1.19792603e+002 9.78209305e+001 1.11585373e+002 1.19782326e+002 - 9.77700729e+001 1.11517723e+002 1.19795540e+002 9.76819305e+001 - 1.11448303e+002 1.19771286e+002 9.76176834e+001 1.11385086e+002 - 1.19769768e+002 9.75649643e+001 1.11344124e+002 1.19771461e+002 - 9.75200577e+001 1.11296616e+002 1.19782028e+002 9.74372787e+001 - 1.11223885e+002 1.19759033e+002 9.73917542e+001 1.11151459e+002 - 1.19768089e+002 9.73212662e+001 1.11095795e+002 1.19748749e+002 - 9.72782974e+001 1.11044754e+002 1.19749893e+002 9.72143860e+001 - 1.10999771e+002 1.19731186e+002 9.71689224e+001 1.10945549e+002 - 1.19726494e+002 9.71218109e+001 1.10909142e+002 1.19720085e+002 - 9.70420227e+001 1.10828545e+002 1.19715363e+002 9.69644470e+001 - 1.10773979e+002 1.19686256e+002 9.69368668e+001 1.10724411e+002 - 1.19688263e+002 9.68985672e+001 1.10695038e+002 1.19687531e+002 - 9.68463364e+001 1.10622482e+002 1.19676552e+002 9.67838974e+001 - 1.10566879e+002 1.19654922e+002 9.67368240e+001 1.10517715e+002 - 1.19664246e+002 9.66970596e+001 1.10483795e+002 1.19658257e+002 - 9.66438293e+001 1.10419518e+002 1.19651138e+002 9.65468521e+001 - 1.10339073e+002 1.19606415e+002 9.65387726e+001 1.10295776e+002 - 1.19633423e+002 9.65062866e+001 1.10269760e+002 1.19637062e+002 - 9.64806824e+001 1.10236130e+002 1.19651001e+002 9.64205933e+001 - 1.10193306e+002 1.19621651e+002 9.63911057e+001 1.10146149e+002 - 1.19622383e+002 9.63632889e+001 1.10122612e+002 1.19612671e+002 - 9.63294449e+001 1.10085182e+002 1.19628456e+002 9.62647629e+001 - 1.10048340e+002 1.19609322e+002 9.62297058e+001 1.09987160e+002 - 1.19597458e+002 9.61970596e+001 1.09961571e+002 1.19598335e+002 - 9.61371155e+001 1.09878342e+002 1.19572784e+002 9.60733185e+001 - 1.09831085e+002 1.19542847e+002 9.60463257e+001 1.09801613e+002 - 1.19557617e+002 9.60192947e+001 1.09781761e+002 1.19561646e+002 - 9.60000916e+001 1.09751060e+002 1.19570496e+002 9.59601822e+001 - 1.09724808e+002 1.19564735e+002 9.60023651e+001 1.09731506e+002 - 1.19628227e+002 9.59944382e+001 1.09732552e+002 1.19649902e+002 - 9.59586334e+001 1.09694786e+002 1.19644791e+002 9.59017487e+001 - 1.09657257e+002 1.19622612e+002 9.58639221e+001 1.09606667e+002 - 1.19607925e+002 9.58578873e+001 1.09612190e+002 1.19635040e+002 - 9.58298950e+001 1.09573158e+002 1.19644295e+002 9.57794647e+001 - 1.09548355e+002 1.19630302e+002 9.57864685e+001 1.09525276e+002 - 1.19636551e+002 9.57722778e+001 1.09525307e+002 1.19647141e+002 - 9.57607880e+001 1.09491051e+002 1.19648087e+002 9.57100830e+001 - 1.09459663e+002 1.19628006e+002 9.56833954e+001 1.09433365e+002 - 1.19628159e+002 9.56664429e+001 1.09425446e+002 1.19633324e+002 - 9.56813736e+001 1.09426758e+002 1.19669395e+002 9.56689682e+001 - 1.09432076e+002 1.19688141e+002 9.56811295e+001 1.09411598e+002 - 1.19721146e+002 9.56879883e+001 1.09441597e+002 1.19759560e+002 - 9.56823578e+001 1.09421165e+002 1.19759911e+002 9.56589966e+001 - 1.09415894e+002 1.19751991e+002 9.56680527e+001 1.09409264e+002 - 1.19774719e+002 9.56528244e+001 1.09395721e+002 1.19757126e+002 - 9.56339645e+001 1.09370842e+002 1.19762695e+002 9.55840988e+001 - 1.09351448e+002 1.19739281e+002 9.56010513e+001 1.09348328e+002 - 1.19760063e+002 9.55908508e+001 1.09349426e+002 1.19768204e+002 - 9.55512161e+001 1.09286545e+002 1.19742111e+002 9.55506744e+001 - 1.09303856e+002 1.19752045e+002 9.55333786e+001 1.09282539e+002 - 1.19741219e+002 9.54902954e+001 1.09251839e+002 1.19709709e+002 - 9.54902878e+001 1.09236130e+002 1.19709755e+002 9.54826736e+001 - 1.09247643e+002 1.19718964e+002 9.55145798e+001 1.09239990e+002 - 1.19746399e+002 9.55165405e+001 1.09262131e+002 1.19755539e+002 - 9.55123825e+001 1.09251091e+002 1.19752220e+002 9.55117035e+001 - 1.09263458e+002 1.19749435e+002 9.55245361e+001 1.09257996e+002 - 1.19761269e+002 9.55289536e+001 1.09266502e+002 1.19755501e+002 - 9.55526581e+001 1.09284897e+002 1.19777061e+002 9.55382767e+001 - 1.09293777e+002 1.19774689e+002 9.55549698e+001 1.09296638e+002 - 1.19785950e+002 9.55776443e+001 1.09328918e+002 1.19812759e+002 - 9.55749435e+001 1.09307838e+002 1.19808228e+002 9.55474319e+001 - 1.09291565e+002 1.19769539e+002 9.55315475e+001 1.09269409e+002 - 1.19746277e+002 9.55426102e+001 1.09286621e+002 1.19755417e+002 - 9.55623627e+001 1.09298210e+002 1.19772346e+002 9.55562592e+001 - 1.09312996e+002 1.19763710e+002 9.55890198e+001 1.09314384e+002 - 1.19784813e+002 9.56029510e+001 1.09335487e+002 1.19788620e+002 - 9.56068039e+001 1.09332390e+002 1.19782631e+002 9.55994186e+001 - 1.09344910e+002 1.19762772e+002 9.56036606e+001 1.09332253e+002 - 1.19755463e+002 9.56001282e+001 1.09335526e+002 1.19733574e+002 - 9.56227112e+001 1.09341545e+002 1.19729652e+002 9.55773468e+001 - 1.09324112e+002 1.19681885e+002 9.56100464e+001 1.09341194e+002 - 1.19700638e+002 9.56201706e+001 1.09366974e+002 1.19703629e+002 - 9.56281815e+001 1.09361076e+002 1.19690041e+002 9.56086121e+001 - 1.09360626e+002 1.19660126e+002 9.56246567e+001 1.09376640e+002 - 1.19656776e+002 9.56621628e+001 1.09435051e+002 1.19679985e+002 - 9.56819000e+001 1.09440567e+002 1.19678612e+002 9.56708221e+001 - 1.09447090e+002 1.19653496e+002 9.56893463e+001 1.09436447e+002 - 1.19641357e+002 9.57082443e+001 1.09470032e+002 1.19643379e+002 - 9.57323685e+001 1.09491585e+002 1.19636711e+002 9.57176514e+001 - 1.09494446e+002 1.19611847e+002 9.57475815e+001 1.09519646e+002 - 1.19624725e+002 9.57782516e+001 1.09554230e+002 1.19628845e+002 - 9.58016891e+001 1.09570335e+002 1.19613571e+002 9.58178329e+001 - 1.09610916e+002 1.19610085e+002 9.58616104e+001 1.09638016e+002 - 1.19626930e+002 9.58909225e+001 1.09679726e+002 1.19628708e+002 - 9.59376297e+001 1.09706528e+002 1.19641769e+002 9.59405060e+001 - 1.09724457e+002 1.19618401e+002 9.59736023e+001 1.09755409e+002 - 1.19619850e+002 9.59868088e+001 1.09770317e+002 1.19594551e+002 - 9.60088882e+001 1.09785309e+002 1.19588768e+002 9.60194626e+001 - 1.09814430e+002 1.19566277e+002 9.60729599e+001 1.09833183e+002 - 1.19577438e+002 9.61136932e+001 1.09886185e+002 1.19576363e+002 - 9.61511230e+001 1.09917450e+002 1.19565750e+002 9.61468277e+001 - 1.09931557e+002 1.19532219e+002 9.61879044e+001 1.09960785e+002 - 1.19548393e+002 9.62396088e+001 1.10016029e+002 1.19552162e+002 - 9.62842102e+001 1.10055008e+002 1.19538589e+002 9.63020706e+001 - 1.10098297e+002 1.19529480e+002 9.63745728e+001 1.10152145e+002 - 1.19567200e+002 9.63889160e+001 1.10182297e+002 1.19552040e+002 - 9.64354553e+001 1.10198891e+002 1.19551735e+002 9.64701614e+001 - 1.10250771e+002 1.19551552e+002 9.65241318e+001 1.10300575e+002 - 1.19565002e+002 9.65743027e+001 1.10362801e+002 1.19573044e+002 - 9.66324768e+001 1.10409203e+002 1.19588127e+002 9.66424255e+001 - 1.10433426e+002 1.19565178e+002 9.66975174e+001 1.10457306e+002 - 1.19563164e+002 9.67411499e+001 1.10511032e+002 1.19566902e+002 - 9.67865601e+001 1.10543205e+002 1.19555176e+002 9.68365250e+001 - 1.10616425e+002 1.19565865e+002 9.69021683e+001 1.10665375e+002 - 1.19584457e+002 9.69549637e+001 1.10724426e+002 1.19579475e+002 - 9.70149841e+001 1.10770905e+002 1.19567261e+002 9.70102768e+001 - 1.10791901e+002 1.19527763e+002 9.70735092e+001 1.10832672e+002 - 1.19543175e+002 9.71400223e+001 1.10912239e+002 1.19569206e+002 - 9.72233658e+001 1.10974068e+002 1.19589928e+002 9.72763290e+001 - 1.11046494e+002 1.19603363e+002 9.73415680e+001 1.11109749e+002 - 1.19615929e+002 9.73989716e+001 1.11184143e+002 1.19634285e+002 - 9.74550323e+001 1.11225594e+002 1.19643166e+002 9.75119553e+001 - 1.11297150e+002 1.19660988e+002 9.76339340e+001 1.11389366e+002 - 1.19716141e+002 9.77084503e+001 1.11475250e+002 1.19739502e+002 - 9.77670364e+001 1.11518997e+002 1.19737656e+002 9.78007736e+001 - 1.11576149e+002 1.19726807e+002 9.78816833e+001 1.11633247e+002 - 1.19749649e+002 9.79657822e+001 1.11723152e+002 1.19769379e+002 - 9.80826569e+001 1.11819237e+002 1.19804047e+002 9.81394196e+001 - 1.11897102e+002 1.19813347e+002 9.82264175e+001 1.11963142e+002 - 1.19845833e+002 9.82947464e+001 1.12038536e+002 1.19856720e+002 - 9.83926773e+001 1.12110283e+002 1.19889481e+002 9.84330597e+001 - 1.12166084e+002 1.19880661e+002 9.85244064e+001 1.12243629e+002 - 1.19906479e+002 9.86345215e+001 1.12357208e+002 1.19958221e+002 - 9.87080078e+001 1.12416222e+002 1.19970718e+002 9.87695770e+001 - 1.12488205e+002 1.19984444e+002 9.88767700e+001 1.12556679e+002 - 1.20006134e+002 9.89519653e+001 1.12636078e+002 1.20025795e+002 - 9.90373917e+001 1.12696999e+002 1.20031662e+002 9.91197128e+001 - 1.12784821e+002 1.20058990e+002 9.92375336e+001 1.12879906e+002 - 1.20114090e+002 9.93308868e+001 1.12966454e+002 1.20140579e+002 - 9.94486313e+001 1.13060692e+002 1.20169228e+002 9.95214996e+001 - 1.13150314e+002 1.20191353e+002 9.96363449e+001 1.13238983e+002 - 1.20244133e+002 9.97580872e+001 1.13365326e+002 1.20312744e+002 - 9.98865433e+001 1.13457130e+002 1.20358002e+002 9.99862137e+001 - 1.13561264e+002 1.20391899e+002 1.00094589e+002 1.13641403e+002 - 1.20422279e+002 1.00203026e+002 1.13747314e+002 1.20457878e+002 - 1.00310509e+002 1.13820976e+002 1.20488060e+002 1.00395172e+002 - 1.13895943e+002 1.20503693e+002 1.00506836e+002 1.13951523e+002 - 1.20521645e+002 1.00603745e+002 1.14032829e+002 1.20537788e+002 - 1.00729919e+002 1.14117241e+002 1.20581062e+002 1.00778770e+002 - 1.14155998e+002 1.20557472e+002 1.00863861e+002 1.14196060e+002 - 1.20574471e+002 1.00857643e+002 1.14178574e+002 1.20496704e+002 - 1.00780106e+002 1.14068390e+002 1.20380157e+002 1.00773163e+002 - 1.14104683e+002 1.20451378e+002 1.00744530e+002 1.14099350e+002 - 1.20496437e+002 1.00699814e+002 1.14085526e+002 1.20520103e+002 - 1.00625328e+002 1.14028885e+002 1.20532822e+002 1.00497581e+002 - 1.13943130e+002 1.20488350e+002 1.00383545e+002 1.13849739e+002 - 1.20462685e+002 1.00277893e+002 1.13771919e+002 1.20425865e+002 - 1.00193779e+002 1.13700409e+002 1.20414665e+002 1.00062180e+002 - 1.13593658e+002 1.20353073e+002 9.99579926e+001 1.13482948e+002 - 1.20317444e+002 9.98692703e+001 1.13415131e+002 1.20290840e+002 - 9.97664566e+001 1.13328613e+002 1.20261757e+002 9.96513519e+001 - 1.13244553e+002 1.20217857e+002 9.95601196e+001 1.13150726e+002 - 1.20186409e+002 9.94503708e+001 1.13075943e+002 1.20156761e+002 - 9.93469086e+001 1.12992966e+002 1.20153816e+002 9.92303772e+001 - 1.12922447e+002 1.20126289e+002 9.91618500e+001 1.12843239e+002 - 1.20108902e+002 9.90690613e+001 1.12766975e+002 1.20075523e+002 - 9.90013657e+001 1.12686295e+002 1.20068588e+002 9.88968430e+001 - 1.12600929e+002 1.20030617e+002 9.87954407e+001 1.12506264e+002 - 1.20003464e+002 9.87200775e+001 1.12446968e+002 1.19973595e+002 - 9.86601181e+001 1.12389870e+002 1.19973732e+002 9.85852814e+001 - 1.12327072e+002 1.19958168e+002 9.84877243e+001 1.12216438e+002 - 1.19920555e+002 9.83955383e+001 1.12133278e+002 1.19880638e+002 - 9.83283997e+001 1.12063980e+002 1.19873322e+002 9.82488022e+001 - 1.11997292e+002 1.19841423e+002 9.81908569e+001 1.11930199e+002 - 1.19837578e+002 9.81287613e+001 1.11873367e+002 1.19820244e+002 - 9.80349808e+001 1.11778099e+002 1.19813797e+002 9.79419632e+001 - 1.11709953e+002 1.19788322e+002 9.78501053e+001 1.11601875e+002 - 1.19738022e+002 9.77653046e+001 1.11532364e+002 1.19705284e+002 - 9.77167358e+001 1.11473892e+002 1.19725006e+002 9.76542664e+001 - 1.11428993e+002 1.19729103e+002 9.76090240e+001 1.11384064e+002 - 1.19749985e+002 9.75404663e+001 1.11323555e+002 1.19729935e+002 - 9.74729462e+001 1.11247536e+002 1.19715790e+002 9.74065933e+001 - 1.11196846e+002 1.19712395e+002 9.73607864e+001 1.11129517e+002 - 1.19719513e+002 9.72931671e+001 1.11073517e+002 1.19699928e+002 - 9.72370605e+001 1.11010353e+002 1.19690208e+002 9.71777191e+001 - 1.10966949e+002 1.19673889e+002 9.71447296e+001 1.10927727e+002 - 1.19679924e+002 9.70787888e+001 1.10875351e+002 1.19655029e+002 - 9.70016708e+001 1.10792572e+002 1.19644638e+002 9.69329453e+001 - 1.10747963e+002 1.19631729e+002 9.69073410e+001 1.10706192e+002 - 1.19639305e+002 9.68616104e+001 1.10663551e+002 1.19620827e+002 - 9.68209839e+001 1.10601234e+002 1.19627647e+002 9.67561951e+001 - 1.10544601e+002 1.19609924e+002 9.67178879e+001 1.10498726e+002 - 1.19619453e+002 9.66637955e+001 1.10453606e+002 1.19600983e+002 - 9.65986252e+001 1.10377739e+002 1.19581436e+002 9.65054016e+001 - 1.10296364e+002 1.19541283e+002 9.64984512e+001 1.10263794e+002 - 1.19572243e+002 9.64668274e+001 1.10234779e+002 1.19575531e+002 - 9.64289169e+001 1.10189384e+002 1.19578430e+002 9.63991318e+001 - 1.10171204e+002 1.19577530e+002 9.63855820e+001 1.10147736e+002 - 1.19596260e+002 9.63414841e+001 1.10110611e+002 1.19574066e+002 - 9.62831497e+001 1.10043869e+002 1.19564087e+002 9.62140121e+001 - 1.10008202e+002 1.19545029e+002 9.61867523e+001 1.09951141e+002 - 1.19536140e+002 9.61501007e+001 1.09923477e+002 1.19529572e+002 - 9.61000366e+001 1.09858414e+002 1.19517136e+002 9.60484390e+001 - 1.09815765e+002 1.19501396e+002 9.60183792e+001 1.09785614e+002 - 1.19510529e+002 9.59870071e+001 1.09761787e+002 1.19506256e+002 - 9.59925079e+001 1.09753120e+002 1.19545578e+002 9.59332733e+001 - 1.09705376e+002 1.19518021e+002 9.59542999e+001 1.09697334e+002 - 1.19566475e+002 9.59512711e+001 1.09708115e+002 1.19593315e+002 - 9.59094849e+001 1.09659584e+002 1.19581985e+002 9.58638000e+001 - 1.09627258e+002 1.19564018e+002 9.58282776e+001 1.09584641e+002 - 1.19563461e+002 9.58288651e+001 1.09590370e+002 1.19581947e+002 - 9.57787476e+001 1.09530273e+002 1.19567490e+002 9.57344894e+001 - 1.09503227e+002 1.19554985e+002 9.57274704e+001 1.09475700e+002 - 1.19559219e+002 9.57174225e+001 1.09470978e+002 1.19563179e+002 - 9.57002335e+001 1.09435989e+002 1.19566315e+002 9.56802902e+001 - 1.09431137e+002 1.19573883e+002 9.56479492e+001 1.09397270e+002 - 1.19567383e+002 9.56277847e+001 1.09386284e+002 1.19564674e+002 - 9.56414032e+001 1.09388794e+002 1.19600418e+002 9.56372528e+001 - 1.09397430e+002 1.19630981e+002 9.56493378e+001 1.09393364e+002 - 1.19666557e+002 9.56539078e+001 1.09410423e+002 1.19693748e+002 - 9.56696472e+001 1.09413231e+002 1.19725182e+002 9.56362839e+001 - 1.09393341e+002 1.19707062e+002 9.56295853e+001 1.09369461e+002 - 1.19700867e+002 9.56253891e+001 1.09376793e+002 1.19708855e+002 - 9.55939407e+001 1.09335114e+002 1.19692749e+002 9.55481949e+001 - 1.09317329e+002 1.19678986e+002 9.55690079e+001 1.09321518e+002 - 1.19702988e+002 9.55589371e+001 1.09325264e+002 1.19709503e+002 - 9.55333023e+001 1.09275291e+002 1.19692047e+002 9.55252533e+001 - 1.09281792e+002 1.19698853e+002 9.54977417e+001 1.09254112e+002 - 1.19681885e+002 9.54600754e+001 1.09225266e+002 1.19645874e+002 - 9.54737015e+001 1.09230713e+002 1.19672928e+002 9.54685135e+001 - 1.09235222e+002 1.19677040e+002 9.54775314e+001 1.09214203e+002 - 1.19679611e+002 9.54710846e+001 1.09224380e+002 1.19682243e+002 - 9.55016251e+001 1.09243401e+002 1.19711830e+002 9.55029221e+001 - 1.09264908e+002 1.19716263e+002 9.55349197e+001 1.09278679e+002 - 1.19745613e+002 9.55197372e+001 1.09269211e+002 1.19715248e+002 - 9.55139160e+001 1.09255615e+002 1.19709381e+002 9.55094528e+001 - 1.09279213e+002 1.19713837e+002 9.55265045e+001 1.09271889e+002 - 1.19726479e+002 9.55276260e+001 1.09282089e+002 1.19729301e+002 - 9.55357590e+001 1.09273361e+002 1.19728523e+002 9.55176697e+001 - 1.09264969e+002 1.19708946e+002 9.55194702e+001 1.09259094e+002 - 1.19710732e+002 9.55273056e+001 1.09279030e+002 1.19706688e+002 - 9.55455475e+001 1.09288849e+002 1.19726044e+002 9.55520020e+001 - 1.09307678e+002 1.19736160e+002 9.55486450e+001 1.09285324e+002 - 1.19716148e+002 9.55555954e+001 1.09297188e+002 1.19706436e+002 - 9.55577164e+001 1.09289703e+002 1.19702728e+002 9.55625534e+001 - 1.09313148e+002 1.19698532e+002 9.55713272e+001 1.09307663e+002 - 1.19694130e+002 9.55772247e+001 1.09318283e+002 1.19675613e+002 - 9.55957413e+001 1.09322052e+002 1.19676689e+002 9.55645905e+001 - 1.09318306e+002 1.19645378e+002 9.56059799e+001 1.09343735e+002 - 1.19665123e+002 9.56009903e+001 1.09349365e+002 1.19651848e+002 - 9.56027145e+001 1.09338188e+002 1.19638748e+002 9.56098480e+001 - 1.09364990e+002 1.19633789e+002 9.56159210e+001 1.09373482e+002 - 1.19630806e+002 9.56210403e+001 1.09395660e+002 1.19615105e+002 - 9.56605377e+001 1.09426559e+002 1.19638863e+002 9.56580048e+001 - 1.09439896e+002 1.19625298e+002 9.56696777e+001 1.09430031e+002 - 1.19608574e+002 9.56796036e+001 1.09452019e+002 1.19592751e+002 - 9.56944122e+001 1.09463387e+002 1.19583275e+002 9.56870422e+001 - 1.09477272e+002 1.19564087e+002 9.57200851e+001 1.09496147e+002 - 1.19577080e+002 9.57313232e+001 1.09523697e+002 1.19560539e+002 - 9.57680435e+001 1.09545227e+002 1.19557861e+002 9.57676315e+001 - 1.09573822e+002 1.19542824e+002 9.58097458e+001 1.09599373e+002 - 1.19556038e+002 9.58520660e+001 1.09646431e+002 1.19563530e+002 - 9.59023590e+001 1.09680153e+002 1.19582123e+002 9.58980408e+001 - 1.09686592e+002 1.19549927e+002 9.59297409e+001 1.09714493e+002 - 1.19553360e+002 9.59584579e+001 1.09753822e+002 1.19548119e+002 - 9.59739990e+001 1.09757469e+002 1.19528923e+002 9.60037766e+001 - 1.09806389e+002 1.19534615e+002 9.60482178e+001 1.09812645e+002 - 1.19525536e+002 9.60703888e+001 1.09852432e+002 1.19513863e+002 - 9.60966263e+001 1.09875786e+002 1.19501106e+002 9.61019516e+001 - 1.09900276e+002 1.19472610e+002 9.61431656e+001 1.09927155e+002 - 1.19483315e+002 9.61744995e+001 1.09967461e+002 1.19474648e+002 - 9.62321396e+001 1.10014946e+002 1.19472198e+002 9.62558670e+001 - 1.10063225e+002 1.19476120e+002 9.63366241e+001 1.10123169e+002 - 1.19514946e+002 9.63460617e+001 1.10147797e+002 1.19494606e+002 - 9.63944244e+001 1.10171379e+002 1.19497154e+002 9.64354630e+001 - 1.10224701e+002 1.19503647e+002 9.64991455e+001 1.10281601e+002 - 1.19525635e+002 9.65345230e+001 1.10325424e+002 1.19520203e+002 - 9.65971909e+001 1.10382286e+002 1.19538986e+002 9.66244278e+001 - 1.10419724e+002 1.19532318e+002 9.66719971e+001 1.10441116e+002 - 1.19519966e+002 9.67162247e+001 1.10500313e+002 1.19522713e+002 - 9.67616577e+001 1.10532509e+002 1.19510338e+002 9.68033371e+001 - 1.10595581e+002 1.19514671e+002 9.68698883e+001 1.10647453e+002 - 1.19540283e+002 9.69173050e+001 1.10693275e+002 1.19518959e+002 - 9.69870453e+001 1.10750237e+002 1.19523140e+002 9.70025253e+001 - 1.10788101e+002 1.19502037e+002 9.70424118e+001 1.10811317e+002 - 1.19497665e+002 9.71018600e+001 1.10880569e+002 1.19506119e+002 - 9.71856995e+001 1.10943077e+002 1.19535378e+002 9.72463074e+001 - 1.11025650e+002 1.19557793e+002 9.73118515e+001 1.11087334e+002 - 1.19575066e+002 9.73602066e+001 1.11152237e+002 1.19578812e+002 - 9.74244537e+001 1.11201492e+002 1.19595886e+002 9.74856415e+001 - 1.11273338e+002 1.19619179e+002 9.76153412e+001 1.11376427e+002 - 1.19680435e+002 9.76734009e+001 1.11452148e+002 1.19690636e+002 - 9.77437820e+001 1.11504211e+002 1.19697731e+002 9.77772293e+001 - 1.11554779e+002 1.19688240e+002 9.78478165e+001 1.11611488e+002 - 1.19709183e+002 9.79523926e+001 1.11710236e+002 1.19745026e+002 - 9.80575256e+001 1.11803528e+002 1.19766953e+002 9.81107712e+001 - 1.11873901e+002 1.19770500e+002 9.81992035e+001 1.11935394e+002 - 1.19799110e+002 9.82757187e+001 1.12016357e+002 1.19820396e+002 - 9.83681793e+001 1.12081825e+002 1.19843636e+002 9.84341202e+001 - 1.12162148e+002 1.19861542e+002 9.85227509e+001 1.12242081e+002 - 1.19884735e+002 9.86174774e+001 1.12348457e+002 1.19930290e+002 - 9.86749268e+001 1.12385323e+002 1.19918938e+002 9.87336578e+001 - 1.12455231e+002 1.19932953e+002 9.88312912e+001 1.12515167e+002 - 1.19950562e+002 9.89090881e+001 1.12599716e+002 1.19968674e+002 - 9.90134201e+001 1.12680443e+002 1.19997360e+002 9.90769272e+001 - 1.12746704e+002 1.20003365e+002 9.91827927e+001 1.12827553e+002 - 1.20050812e+002 9.92640076e+001 1.12908630e+002 1.20064934e+002 - 9.93949890e+001 1.13017494e+002 1.20110588e+002 9.94736176e+001 - 1.13112556e+002 1.20136490e+002 9.95939407e+001 1.13205559e+002 - 1.20195114e+002 9.97188721e+001 1.13330933e+002 1.20264313e+002 - 9.98271713e+001 1.13408592e+002 1.20289452e+002 9.99222870e+001 - 1.13500420e+002 1.20324432e+002 1.00042229e+002 1.13598480e+002 - 1.20358780e+002 1.00137993e+002 1.13689384e+002 1.20386589e+002 - 1.00237343e+002 1.13752953e+002 1.20403198e+002 1.00349258e+002 - 1.13849648e+002 1.20440369e+002 1.00464722e+002 1.13917709e+002 - 1.20469673e+002 1.00565773e+002 1.14002037e+002 1.20498589e+002 - 1.00682541e+002 1.14075981e+002 1.20526489e+002 1.00738441e+002 - 1.14116547e+002 1.20513176e+002 1.00804832e+002 1.14145782e+002 - 1.20514099e+002 1.00807976e+002 1.14133919e+002 1.20443199e+002 - 1.00741608e+002 1.14033035e+002 1.20334534e+002 1.00730354e+002 - 1.14063789e+002 1.20400253e+002 1.00721703e+002 1.14078064e+002 - 1.20465591e+002 1.00668861e+002 1.14062752e+002 1.20486176e+002 - 1.00612091e+002 1.14021881e+002 1.20512672e+002 1.00479935e+002 - 1.13929199e+002 1.20461296e+002 1.00364540e+002 1.13836212e+002 - 1.20437233e+002 1.00263329e+002 1.13758446e+002 1.20398926e+002 - 1.00157585e+002 1.13667854e+002 1.20368805e+002 1.00030510e+002 - 1.13566734e+002 1.20309944e+002 9.99553375e+001 1.13487907e+002 - 1.20302856e+002 9.98816376e+001 1.13430244e+002 1.20292679e+002 - 9.97795334e+001 1.13341286e+002 1.20269432e+002 9.96621628e+001 - 1.13256805e+002 1.20219078e+002 9.95563583e+001 1.13160942e+002 - 1.20182549e+002 9.94663086e+001 1.13099258e+002 1.20160645e+002 - 9.93359070e+001 1.12986336e+002 1.20131332e+002 9.92133789e+001 - 1.12899178e+002 1.20089745e+002 9.91533890e+001 1.12840569e+002 - 1.20083191e+002 9.90432587e+001 1.12739548e+002 1.20023918e+002 - 9.89534149e+001 1.12644249e+002 1.20004303e+002 9.88429565e+001 - 1.12551193e+002 1.19961830e+002 9.87576370e+001 1.12466873e+002 - 1.19943245e+002 9.86925430e+001 1.12414482e+002 1.19929420e+002 - 9.86428604e+001 1.12369583e+002 1.19939857e+002 9.85452118e+001 - 1.12285637e+002 1.19903793e+002 9.84478455e+001 1.12171104e+002 - 1.19864655e+002 9.83621292e+001 1.12099548e+002 1.19832817e+002 - 9.83006668e+001 1.12038162e+002 1.19831635e+002 9.82188568e+001 - 1.11971977e+002 1.19799759e+002 9.81652145e+001 1.11904549e+002 - 1.19793465e+002 9.80930176e+001 1.11841545e+002 1.19773422e+002 - 9.79968948e+001 1.11734924e+002 1.19756615e+002 9.78969498e+001 - 1.11671158e+002 1.19729797e+002 9.78367844e+001 1.11593155e+002 - 1.19713837e+002 9.77389755e+001 1.11508148e+002 1.19675339e+002 - 9.76964417e+001 1.11452950e+002 1.19693832e+002 9.76285019e+001 - 1.11407578e+002 1.19689079e+002 9.75738983e+001 1.11346169e+002 - 1.19697495e+002 9.75155945e+001 1.11305992e+002 1.19691734e+002 - 9.74305954e+001 1.11215935e+002 1.19667023e+002 9.73644562e+001 - 1.11160599e+002 1.19654442e+002 9.73190842e+001 1.11097305e+002 - 1.19663177e+002 9.72507172e+001 1.11039871e+002 1.19645851e+002 - 9.71965485e+001 1.10976944e+002 1.19636597e+002 9.71437149e+001 - 1.10941841e+002 1.19624886e+002 9.71139755e+001 1.10898315e+002 - 1.19631042e+002 9.70464478e+001 1.10846924e+002 1.19601006e+002 - 9.69765625e+001 1.10773720e+002 1.19596909e+002 9.69137421e+001 - 1.10735077e+002 1.19591080e+002 9.68776093e+001 1.10677444e+002 - 1.19586197e+002 9.68375244e+001 1.10640778e+002 1.19581520e+002 - 9.68026810e+001 1.10579521e+002 1.19587532e+002 9.67443085e+001 - 1.10532333e+002 1.19574608e+002 9.66956863e+001 1.10480286e+002 - 1.19576630e+002 9.66288834e+001 1.10424110e+002 1.19548332e+002 - 9.65874939e+001 1.10373207e+002 1.19551315e+002 9.64997482e+001 - 1.10297104e+002 1.19513336e+002 9.64947586e+001 1.10260506e+002 - 1.19546783e+002 9.64636917e+001 1.10236641e+002 1.19557587e+002 - 9.64157562e+001 1.10181190e+002 1.19545319e+002 9.63695450e+001 - 1.10149284e+002 1.19536667e+002 9.63326111e+001 1.10097458e+002 - 1.19523376e+002 9.62884140e+001 1.10056129e+002 1.19502396e+002 - 9.62583237e+001 1.10024353e+002 1.19520142e+002 9.61821671e+001 - 1.09973549e+002 1.19494415e+002 9.61632080e+001 1.09936256e+002 - 1.19499886e+002 9.61308823e+001 1.09913177e+002 1.19496574e+002 - 9.60906754e+001 1.09856354e+002 1.19492355e+002 9.60466385e+001 - 1.09821358e+002 1.19483017e+002 9.60258026e+001 1.09795036e+002 - 1.19504105e+002 9.59853745e+001 1.09760864e+002 1.19487122e+002 - 9.59559708e+001 1.09716789e+002 1.19493553e+002 9.59211807e+001 - 1.09688652e+002 1.19487106e+002 9.59220734e+001 1.09668297e+002 - 1.19516594e+002 9.59112549e+001 1.09669632e+002 1.19539513e+002 - 9.58517609e+001 1.09608177e+002 1.19514198e+002 9.58250732e+001 - 1.09601776e+002 1.19512184e+002 9.58099594e+001 1.09571915e+002 - 1.19526695e+002 9.57956314e+001 1.09556679e+002 1.19522888e+002 - 9.57527847e+001 1.09512550e+002 1.19523750e+002 9.56862488e+001 - 1.09466797e+002 1.19491493e+002 9.56905060e+001 1.09445206e+002 - 1.19505928e+002 9.56847076e+001 1.09447838e+002 1.19514557e+002 - 9.56795883e+001 1.09421501e+002 1.19524841e+002 9.56529312e+001 - 1.09406563e+002 1.19520927e+002 9.55993729e+001 1.09348694e+002 - 1.19496399e+002 9.55804367e+001 1.09342712e+002 1.19505234e+002 - 9.55985489e+001 1.09346153e+002 1.19539825e+002 9.56002045e+001 - 1.09371857e+002 1.19571793e+002 9.56176071e+001 1.09362015e+002 - 1.19614891e+002 9.56222305e+001 1.09385391e+002 1.19645592e+002 - 9.56408386e+001 1.09385208e+002 1.19669540e+002 9.55770721e+001 - 1.09339638e+002 1.19626106e+002 9.55725403e+001 1.09313263e+002 - 1.19620811e+002 9.55995560e+001 1.09351540e+002 1.19652298e+002 - 9.55774689e+001 1.09318878e+002 1.19646538e+002 9.55304489e+001 - 1.09308754e+002 1.19636551e+002 9.55513382e+001 1.09309753e+002 - 1.19666931e+002 9.55403519e+001 1.09312675e+002 1.19665375e+002 - 9.55136490e+001 1.09264107e+002 1.19648064e+002 9.55038910e+001 - 1.09275108e+002 1.19653519e+002 9.54929581e+001 1.09253319e+002 - 1.19651169e+002 9.54435959e+001 1.09218819e+002 1.19607178e+002 - 9.54486160e+001 1.09204437e+002 1.19618713e+002 9.54236221e+001 - 1.09193405e+002 1.19600769e+002 9.54482574e+001 1.09193169e+002 - 1.19624496e+002 9.54641800e+001 1.09216751e+002 1.19652519e+002 - 9.55013809e+001 1.09250870e+002 1.19680244e+002 9.54893112e+001 - 1.09257439e+002 1.19678398e+002 9.55129089e+001 1.09262123e+002 - 1.19697533e+002 9.54848022e+001 1.09239204e+002 1.19655403e+002 - 9.54716949e+001 1.09220970e+002 1.19643364e+002 9.54678345e+001 - 1.09237679e+002 1.19653908e+002 9.54939804e+001 1.09250854e+002 - 1.19673256e+002 9.54853134e+001 1.09248772e+002 1.19661537e+002 - 9.54837036e+001 1.09230484e+002 1.19655258e+002 9.54577713e+001 - 1.09218544e+002 1.19637001e+002 9.54540176e+001 1.09197891e+002 - 1.19620850e+002 9.54780045e+001 1.09237907e+002 1.19639359e+002 - 9.55084686e+001 1.09255875e+002 1.19662598e+002 9.55059586e+001 - 1.09268555e+002 1.19663734e+002 9.55144272e+001 1.09254791e+002 - 1.19659874e+002 9.55299759e+001 1.09282974e+002 1.19668098e+002 - 9.55429611e+001 1.09288208e+002 1.19669556e+002 9.55466232e+001 - 1.09303596e+002 1.19658051e+002 9.55611954e+001 1.09303009e+002 - 1.19661537e+002 9.55552292e+001 1.09299095e+002 1.19631500e+002 - 9.55917892e+001 1.09323479e+002 1.19647827e+002 9.55805969e+001 - 1.09344116e+002 1.19643257e+002 9.56320190e+001 1.09380409e+002 - 1.19676537e+002 9.56062088e+001 1.09364426e+002 1.19638237e+002 - 9.56044312e+001 1.09350815e+002 1.19621376e+002 9.55933075e+001 - 1.09355087e+002 1.19599159e+002 9.56002884e+001 1.09363480e+002 - 1.19591263e+002 9.56272049e+001 1.09405853e+002 1.19604843e+002 - 9.56429901e+001 1.09415070e+002 1.19607323e+002 9.56424103e+001 - 1.09432777e+002 1.19598274e+002 9.56481705e+001 1.09413155e+002 - 1.19568047e+002 9.56487656e+001 1.09428246e+002 1.19552628e+002 - 9.56704712e+001 1.09443214e+002 1.19549393e+002 9.56717453e+001 - 1.09468819e+002 1.19538315e+002 9.57072296e+001 1.09492821e+002 - 1.19548019e+002 9.57280807e+001 1.09521423e+002 1.19541489e+002 - 9.57404327e+001 1.09531212e+002 1.19516533e+002 9.57339783e+001 - 1.09545509e+002 1.19491005e+002 9.57669449e+001 1.09560745e+002 - 1.19497597e+002 9.57994156e+001 1.09605919e+002 1.19499199e+002 - 9.58477783e+001 1.09631287e+002 1.19516510e+002 9.58574448e+001 - 1.09649178e+002 1.19492882e+002 9.58831787e+001 1.09670906e+002 - 1.19486137e+002 9.59021606e+001 1.09698349e+002 1.19469124e+002 - 9.59471054e+001 1.09734749e+002 1.19484589e+002 9.59674988e+001 - 1.09770554e+002 1.19478554e+002 9.60183792e+001 1.09792923e+002 - 1.19478554e+002 9.60602798e+001 1.09852592e+002 1.19484985e+002 - 9.60857544e+001 1.09874733e+002 1.19475418e+002 9.60904999e+001 - 1.09894714e+002 1.19448944e+002 9.61057053e+001 1.09900536e+002 - 1.19432297e+002 9.61482925e+001 1.09953613e+002 1.19434868e+002 - 9.61971741e+001 1.09988411e+002 1.19423256e+002 9.62241669e+001 - 1.10042374e+002 1.19425331e+002 9.62899170e+001 1.10091187e+002 - 1.19459938e+002 9.63102188e+001 1.10118729e+002 1.19447037e+002 - 9.63651810e+001 1.10156502e+002 1.19460075e+002 9.64179688e+001 - 1.10213417e+002 1.19470215e+002 9.64643250e+001 1.10250679e+002 - 1.19473488e+002 9.65091629e+001 1.10307732e+002 1.19477928e+002 - 9.65779114e+001 1.10364700e+002 1.19501434e+002 9.66054993e+001 - 1.10408699e+002 1.19495316e+002 9.66811905e+001 1.10452599e+002 - 1.19510017e+002 9.67214432e+001 1.10509621e+002 1.19515694e+002 - 9.67704926e+001 1.10548683e+002 1.19507401e+002 9.68094330e+001 - 1.10606316e+002 1.19506889e+002 9.68660812e+001 1.10644745e+002 - 1.19519669e+002 9.69024811e+001 1.10684288e+002 1.19487099e+002 - 9.69566422e+001 1.10730103e+002 1.19480942e+002 9.69830856e+001 - 1.10781586e+002 1.19466675e+002 9.70317917e+001 1.10807045e+002 - 1.19468826e+002 9.70811081e+001 1.10866348e+002 1.19479317e+002 - 9.71482773e+001 1.10916985e+002 1.19490959e+002 9.72041550e+001 - 1.10988472e+002 1.19504883e+002 9.72698441e+001 1.11054474e+002 - 1.19520531e+002 9.73449097e+001 1.11137726e+002 1.19550339e+002 - 9.74146576e+001 1.11201591e+002 1.19575157e+002 9.74514313e+001 - 1.11250267e+002 1.19571854e+002 9.75580063e+001 1.11324181e+002 - 1.19605949e+002 9.76384583e+001 1.11419113e+002 1.19639519e+002 - 9.77240372e+001 1.11491051e+002 1.19668922e+002 9.77554779e+001 - 1.11534561e+002 1.19653694e+002 9.78204422e+001 1.11588097e+002 - 1.19671791e+002 9.79194183e+001 1.11679939e+002 1.19698441e+002 - 9.80385742e+001 1.11778984e+002 1.19733337e+002 9.80712128e+001 - 1.11832016e+002 1.19715576e+002 9.81521149e+001 1.11890945e+002 - 1.19736908e+002 9.82318573e+001 1.11972702e+002 1.19764259e+002 - 9.83462677e+001 1.12062576e+002 1.19815269e+002 9.84256516e+001 - 1.12151314e+002 1.19838593e+002 9.85125427e+001 1.12230247e+002 - 1.19863503e+002 9.85931625e+001 1.12328697e+002 1.19889557e+002 - 9.86618958e+001 1.12380005e+002 1.19904869e+002 9.87310944e+001 - 1.12458046e+002 1.19918854e+002 9.88147736e+001 1.12505814e+002 - 1.19923889e+002 9.88819656e+001 1.12580544e+002 1.19935478e+002 - 9.89783173e+001 1.12651245e+002 1.19951927e+002 9.90415192e+001 - 1.12716621e+002 1.19957657e+002 9.91517029e+001 1.12805527e+002 - 1.20009995e+002 9.92451630e+001 1.12894234e+002 1.20035545e+002 - 9.93659897e+001 1.12995712e+002 1.20072701e+002 9.94519272e+001 - 1.13099121e+002 1.20113762e+002 9.95812531e+001 1.13202202e+002 - 1.20177109e+002 9.96935501e+001 1.13313866e+002 1.20233955e+002 - 9.97964783e+001 1.13380829e+002 1.20251709e+002 9.98880386e+001 - 1.13473244e+002 1.20277473e+002 1.00012962e+002 1.13568855e+002 - 1.20320847e+002 1.00115273e+002 1.13664383e+002 1.20350494e+002 - 1.00203033e+002 1.13715820e+002 1.20350021e+002 1.00296585e+002 - 1.13798035e+002 1.20379547e+002 1.00424904e+002 1.13871895e+002 - 1.20416100e+002 1.00531006e+002 1.13965630e+002 1.20451668e+002 - 1.00645386e+002 1.14037117e+002 1.20480293e+002 1.00682419e+002 - 1.14065125e+002 1.20451904e+002 1.00758064e+002 1.14101494e+002 - 1.20460274e+002 1.00754211e+002 1.14084785e+002 1.20386726e+002 - 1.00751289e+002 1.14022980e+002 1.20327377e+002 1.00728172e+002 - 1.14069221e+002 1.20384613e+002 1.00716339e+002 1.14078590e+002 - 1.20446281e+002 1.00647110e+002 1.14041122e+002 1.20444023e+002 - 1.00572739e+002 1.13977905e+002 1.20448082e+002 1.00455536e+002 - 1.13904526e+002 1.20414505e+002 1.00357658e+002 1.13824425e+002 - 1.20401627e+002 1.00244118e+002 1.13740311e+002 1.20356140e+002 - 1.00154297e+002 1.13658813e+002 1.20336357e+002 1.00037659e+002 - 1.13573326e+002 1.20290977e+002 9.99829025e+001 1.13498558e+002 - 1.20303963e+002 9.98790588e+001 1.13425461e+002 1.20271370e+002 - 9.97791443e+001 1.13343758e+002 1.20244629e+002 9.96679077e+001 - 1.13260124e+002 1.20200310e+002 9.95586014e+001 1.13150116e+002 - 1.20153267e+002 9.94730911e+001 1.13088646e+002 1.20134834e+002 - 9.93478241e+001 1.12990318e+002 1.20107880e+002 9.92065735e+001 - 1.12887054e+002 1.20050385e+002 9.91406937e+001 1.12817116e+002 - 1.20032974e+002 9.90375061e+001 1.12731590e+002 1.19987366e+002 - 9.89664230e+001 1.12643684e+002 1.19978271e+002 9.88617554e+001 - 1.12560066e+002 1.19942429e+002 9.87701645e+001 1.12473343e+002 - 1.19918190e+002 9.86967239e+001 1.12411438e+002 1.19902130e+002 - 9.86413803e+001 1.12362816e+002 1.19902969e+002 9.85427399e+001 - 1.12279472e+002 1.19868248e+002 9.84599152e+001 1.12169952e+002 - 1.19842651e+002 9.83874435e+001 1.12110748e+002 1.19831146e+002 - 9.83209152e+001 1.12053978e+002 1.19821892e+002 9.82181168e+001 - 1.11967865e+002 1.19764267e+002 9.81612778e+001 1.11879608e+002 - 1.19744247e+002 9.81069336e+001 1.11838837e+002 1.19750381e+002 - 9.80253601e+001 1.11761253e+002 1.19751732e+002 9.79224777e+001 - 1.11686775e+002 1.19720123e+002 9.78445663e+001 1.11600662e+002 - 1.19687462e+002 9.77510147e+001 1.11521019e+002 1.19650475e+002 - 9.77225876e+001 1.11472404e+002 1.19682518e+002 9.76355667e+001 - 1.11405663e+002 1.19665222e+002 9.75519791e+001 1.11323524e+002 - 1.19646614e+002 9.74933624e+001 1.11275970e+002 1.19639549e+002 - 9.74307480e+001 1.11206688e+002 1.19633377e+002 9.73495026e+001 - 1.11149986e+002 1.19610588e+002 9.73101196e+001 1.11080101e+002 - 1.19616653e+002 9.72473831e+001 1.11030304e+002 1.19610046e+002 - 9.71719589e+001 1.10950233e+002 1.19575607e+002 9.71385651e+001 - 1.10935448e+002 1.19582474e+002 9.71323471e+001 1.10909477e+002 - 1.19609627e+002 9.70487900e+001 1.10836708e+002 1.19565315e+002 - 9.70080643e+001 1.10796196e+002 1.19587479e+002 9.69244461e+001 - 1.10738487e+002 1.19563576e+002 9.68827744e+001 1.10674767e+002 - 1.19548615e+002 9.68593826e+001 1.10654289e+002 1.19559242e+002 - 9.68201675e+001 1.10584526e+002 1.19557304e+002 9.67575912e+001 - 1.10538445e+002 1.19546677e+002 9.66888199e+001 1.10470818e+002 - 1.19526039e+002 9.66297073e+001 1.10425720e+002 1.19509018e+002 - 9.65937424e+001 1.10372246e+002 1.19522331e+002 9.65171814e+001 - 1.10309761e+002 1.19489845e+002 9.64905930e+001 1.10248360e+002 - 1.19503334e+002 9.64806137e+001 1.10248932e+002 1.19536865e+002 - 9.64366837e+001 1.10203751e+002 1.19530258e+002 9.63807755e+001 - 1.10161758e+002 1.19505180e+002 9.63514786e+001 1.10112022e+002 - 1.19496773e+002 9.63124542e+001 1.10082298e+002 1.19491280e+002 - 9.62705154e+001 1.10037560e+002 1.19491920e+002 9.61859055e+001 - 1.09977905e+002 1.19460007e+002 9.61635971e+001 1.09937492e+002 - 1.19457474e+002 9.61393738e+001 1.09920441e+002 1.19462646e+002 - 9.61206741e+001 1.09882439e+002 1.19478821e+002 9.60659866e+001 - 1.09837418e+002 1.19459572e+002 9.60376587e+001 1.09805611e+002 - 1.19470314e+002 9.60003586e+001 1.09776611e+002 1.19462135e+002 - 9.59625626e+001 1.09718788e+002 1.19456909e+002 9.59286118e+001 - 1.09701332e+002 1.19459557e+002 9.59408188e+001 1.09681885e+002 - 1.19496826e+002 9.59231949e+001 1.09677582e+002 1.19509163e+002 - 9.58715897e+001 1.09626228e+002 1.19482452e+002 9.58391495e+001 - 1.09613075e+002 1.19481476e+002 9.58234253e+001 1.09573845e+002 - 1.19491631e+002 9.58140106e+001 1.09574196e+002 1.19502556e+002 - 9.57776413e+001 1.09536736e+002 1.19508125e+002 9.57124252e+001 - 1.09488373e+002 1.19475281e+002 9.57043152e+001 1.09457794e+002 - 1.19478783e+002 9.56887970e+001 1.09449333e+002 1.19474281e+002 - 9.56851730e+001 1.09421898e+002 1.19490707e+002 9.56570282e+001 - 1.09399910e+002 1.19482979e+002 9.56221771e+001 1.09366112e+002 - 1.19476654e+002 9.56174469e+001 1.09372391e+002 1.19496429e+002 - 9.56225281e+001 1.09366203e+002 1.19518692e+002 9.56243896e+001 - 1.09385773e+002 1.19547607e+002 9.56334763e+001 1.09366112e+002 - 1.19580711e+002 9.56361465e+001 1.09386719e+002 1.19604294e+002 - 9.56335297e+001 1.09382195e+002 1.19618401e+002 9.55720367e+001 - 1.09334145e+002 1.19570282e+002 9.55647964e+001 1.09306458e+002 - 1.19569000e+002 9.55921173e+001 1.09338211e+002 1.19599632e+002 - 9.55906296e+001 1.09342323e+002 1.19620964e+002 9.55584564e+001 - 1.09329124e+002 1.19611961e+002 9.55491104e+001 1.09311760e+002 - 1.19618767e+002 9.55647202e+001 1.09342636e+002 1.19649048e+002 - 9.55305786e+001 1.09285088e+002 1.19621925e+002 9.55111542e+001 - 1.09279739e+002 1.19618088e+002 9.55051804e+001 1.09269379e+002 - 1.19616417e+002 9.54685974e+001 1.09237633e+002 1.19582436e+002 - 9.54790497e+001 1.09235657e+002 1.19599167e+002 9.54538803e+001 - 1.09220131e+002 1.19576454e+002 9.54714355e+001 1.09205368e+002 - 1.19586441e+002 9.54833374e+001 1.09229774e+002 1.19609062e+002 - 9.54834824e+001 1.09234756e+002 1.19613823e+002 9.54881439e+001 - 1.09257439e+002 1.19622910e+002 9.54941177e+001 1.09238319e+002 - 1.19622421e+002 9.55036850e+001 1.09255241e+002 1.19619789e+002 - 9.54986343e+001 1.09244598e+002 1.19615593e+002 9.54802475e+001 - 1.09245300e+002 1.19610512e+002 9.54707413e+001 1.09227753e+002 - 1.19595062e+002 9.54745026e+001 1.09241264e+002 1.19601517e+002 - 9.54719315e+001 1.09213417e+002 1.19600510e+002 9.54759979e+001 - 1.09222321e+002 1.19596359e+002 9.54612045e+001 1.09203674e+002 - 1.19580215e+002 9.54836349e+001 1.09236679e+002 1.19599335e+002 - 9.54975128e+001 1.09245560e+002 1.19609261e+002 9.54836273e+001 - 1.09247833e+002 1.19589806e+002 9.55118408e+001 1.09239349e+002 - 1.19604378e+002 9.55333405e+001 1.09272423e+002 1.19616653e+002 - 9.55462036e+001 1.09290222e+002 1.19618652e+002 9.55440521e+001 - 1.09303741e+002 1.19605225e+002 9.55777740e+001 1.09317047e+002 - 1.19631081e+002 9.55718842e+001 1.09321030e+002 1.19602020e+002 - 9.55905533e+001 1.09332306e+002 1.19602913e+002 9.55892563e+001 - 1.09352287e+002 1.19605652e+002 9.56300049e+001 1.09383720e+002 - 1.19629166e+002 9.56096573e+001 1.09373329e+002 1.19593872e+002 - 9.56274109e+001 1.09366714e+002 1.19592560e+002 9.56191330e+001 - 1.09376640e+002 1.19575577e+002 9.56155624e+001 1.09379486e+002 - 1.19561180e+002 9.56384811e+001 1.09420959e+002 1.19574043e+002 - 9.56535568e+001 1.09419800e+002 1.19576767e+002 9.56426315e+001 - 1.09430054e+002 1.19552452e+002 9.56628113e+001 1.09420326e+002 - 1.19545456e+002 9.56660919e+001 1.09435585e+002 1.19526451e+002 - 9.56868439e+001 1.09459267e+002 1.19525787e+002 9.56830978e+001 - 1.09475464e+002 1.19501312e+002 9.57057648e+001 1.09477058e+002 - 1.19497337e+002 9.57387695e+001 1.09526489e+002 1.19502998e+002 - 9.57614670e+001 1.09547501e+002 1.19491692e+002 9.57686005e+001 - 1.09576660e+002 1.19483788e+002 9.58018494e+001 1.09594452e+002 - 1.19489136e+002 9.58071289e+001 1.09607964e+002 1.19463684e+002 - 9.58397369e+001 1.09613640e+002 1.19460274e+002 9.58554459e+001 - 1.09636475e+002 1.19439743e+002 9.58731537e+001 1.09658150e+002 - 1.19431160e+002 9.59079819e+001 1.09698982e+002 1.19429550e+002 - 9.59592514e+001 1.09741508e+002 1.19452652e+002 9.59921341e+001 - 1.09796135e+002 1.19453064e+002 9.60570374e+001 1.09828354e+002 - 1.19474274e+002 9.60898819e+001 1.09876358e+002 1.19471863e+002 - 9.60951843e+001 1.09880959e+002 1.19438431e+002 9.60995941e+001 - 1.09899948e+002 1.19410294e+002 9.61226578e+001 1.09907928e+002 - 1.19403122e+002 9.61588821e+001 1.09952126e+002 1.19392296e+002 - 9.62126312e+001 1.10000511e+002 1.19398216e+002 9.62278442e+001 - 1.10042358e+002 1.19385475e+002 9.62766495e+001 1.10071556e+002 - 1.19399055e+002 9.63210831e+001 1.10122871e+002 1.19411407e+002 - 9.63890457e+001 1.10163559e+002 1.19433174e+002 9.64309235e+001 - 1.10222359e+002 1.19435646e+002 9.64815369e+001 1.10262558e+002 - 1.19447273e+002 9.65223846e+001 1.10316010e+002 1.19444298e+002 - 9.65713577e+001 1.10354301e+002 1.19452843e+002 9.66257172e+001 - 1.10426071e+002 1.19465805e+002 9.67054214e+001 1.10471642e+002 - 1.19496292e+002 9.67432480e+001 1.10522446e+002 1.19486244e+002 - 9.67754745e+001 1.10557480e+002 1.19473709e+002 9.67923813e+001 - 1.10591370e+002 1.19446869e+002 9.68304214e+001 1.10604721e+002 - 1.19444389e+002 9.68794937e+001 1.10658371e+002 1.19425377e+002 - 9.69375687e+001 1.10712685e+002 1.19425743e+002 9.70016785e+001 - 1.10791489e+002 1.19443977e+002 9.70445251e+001 1.10819664e+002 - 1.19446693e+002 9.70982742e+001 1.10880569e+002 1.19455513e+002 - 9.71691437e+001 1.10928841e+002 1.19468353e+002 9.72391586e+001 - 1.11015930e+002 1.19498573e+002 9.72976456e+001 1.11076691e+002 - 1.19513184e+002 9.73538284e+001 1.11141846e+002 1.19518143e+002 - 9.74267883e+001 1.11207970e+002 1.19548767e+002 9.74645233e+001 - 1.11259087e+002 1.19539925e+002 9.75399933e+001 1.11298973e+002 - 1.19553825e+002 9.76332397e+001 1.11400833e+002 1.19592514e+002 - 9.77270813e+001 1.11493912e+002 1.19634125e+002 9.77600708e+001 - 1.11537682e+002 1.19621277e+002 9.78397141e+001 1.11595993e+002 - 1.19657066e+002 9.79226227e+001 1.11677551e+002 1.19666344e+002 - 9.80301056e+001 1.11769081e+002 1.19691612e+002 9.80720596e+001 - 1.11826172e+002 1.19681442e+002 9.81611633e+001 1.11889664e+002 - 1.19715912e+002 9.82436142e+001 1.11977478e+002 1.19743088e+002 - 9.83525085e+001 1.12059929e+002 1.19792007e+002 9.84147034e+001 - 1.12130493e+002 1.19801575e+002 9.85011444e+001 1.12216766e+002 - 1.19827995e+002 9.85657501e+001 1.12293144e+002 1.19838524e+002 - 9.86444550e+001 1.12359093e+002 1.19856926e+002 9.87118301e+001 - 1.12438484e+002 1.19869583e+002 9.88225708e+001 1.12511978e+002 - 1.19909302e+002 9.89034805e+001 1.12600929e+002 1.19928444e+002 - 9.89798737e+001 1.12663841e+002 1.19923439e+002 9.90374069e+001 - 1.12719017e+002 1.19925461e+002 9.91613541e+001 1.12806412e+002 - 1.19993835e+002 9.92571182e+001 1.12899879e+002 1.20022408e+002 - 9.93781815e+001 1.13008316e+002 1.20061211e+002 9.94502563e+001 - 1.13096046e+002 1.20077919e+002 9.95763779e+001 1.13199593e+002 - 1.20153618e+002 9.97025604e+001 1.13319023e+002 1.20209267e+002 - 9.98034210e+001 1.13380966e+002 1.20231346e+002 9.98957672e+001 - 1.13471916e+002 1.20250748e+002 1.00011322e+002 1.13564232e+002 - 1.20285057e+002 1.00112961e+002 1.13653076e+002 1.20312332e+002 - 1.00199425e+002 1.13701073e+002 1.20324448e+002 1.00311592e+002 - 1.13806953e+002 1.20362373e+002 1.00438805e+002 1.13881310e+002 - 1.20407196e+002 1.00538406e+002 1.13960609e+002 1.20431984e+002 - 1.00621414e+002 1.14013763e+002 1.20432320e+002 1.00649513e+002 - 1.14036942e+002 1.20396233e+002 1.00719673e+002 1.14050987e+002 - 1.20396408e+002 1.00727898e+002 1.14048203e+002 1.20330612e+002 - 1.00686607e+002 1.13977348e+002 1.20272743e+002 1.00672180e+002 - 1.14021980e+002 1.20326256e+002 1.00677063e+002 1.14044411e+002 - 1.20393883e+002 1.00618690e+002 1.14023094e+002 1.20401741e+002 - 1.00511070e+002 1.13927589e+002 1.20375687e+002 1.00399536e+002 - 1.13858208e+002 1.20346680e+002 1.00314827e+002 1.13793137e+002 - 1.20349586e+002 1.00210724e+002 1.13718384e+002 1.20318985e+002 - 1.00113052e+002 1.13628441e+002 1.20288277e+002 9.99965515e+001 - 1.13549438e+002 1.20240669e+002 9.99399719e+001 1.13474655e+002 - 1.20253311e+002 9.98633499e+001 1.13428459e+002 1.20245895e+002 - 9.97447433e+001 1.13320480e+002 1.20198013e+002 9.96421432e+001 - 1.13251045e+002 1.20164726e+002 9.95572662e+001 1.13154556e+002 - 1.20126068e+002 9.94645233e+001 1.13085144e+002 1.20099686e+002 - 9.93088913e+001 1.12962746e+002 1.20048676e+002 9.91680603e+001 - 1.12851334e+002 1.19981895e+002 9.91268997e+001 1.12803253e+002 - 1.19986252e+002 9.90241318e+001 1.12721428e+002 1.19946754e+002 - 9.89552841e+001 1.12632072e+002 1.19937576e+002 9.88764572e+001 - 1.12573486e+002 1.19918465e+002 9.87682114e+001 1.12475624e+002 - 1.19887733e+002 9.86693039e+001 1.12390320e+002 1.19843307e+002 - 9.86002426e+001 1.12316399e+002 1.19833229e+002 9.85113373e+001 - 1.12247337e+002 1.19811005e+002 9.84488983e+001 1.12164635e+002 - 1.19807915e+002 9.83825302e+001 1.12110008e+002 1.19800385e+002 - 9.83108902e+001 1.12040970e+002 1.19786964e+002 9.81860962e+001 - 1.11934097e+002 1.19706825e+002 9.81240768e+001 1.11845627e+002 - 1.19679947e+002 9.80565796e+001 1.11791237e+002 1.19668060e+002 - 9.79981689e+001 1.11739861e+002 1.19698105e+002 9.78759079e+001 - 1.11636856e+002 1.19643517e+002 9.78165054e+001 1.11567421e+002 - 1.19630676e+002 9.77350464e+001 1.11501175e+002 1.19600082e+002 - 9.77005692e+001 1.11452644e+002 1.19630989e+002 9.76070862e+001 - 1.11380051e+002 1.19599884e+002 9.75247345e+001 1.11294815e+002 - 1.19585243e+002 9.74650879e+001 1.11253990e+002 1.19580200e+002 - 9.73940201e+001 1.11177948e+002 1.19562157e+002 9.73218079e+001 - 1.11124573e+002 1.19551117e+002 9.72439423e+001 1.11021080e+002 - 1.19528625e+002 9.72071381e+001 1.10997551e+002 1.19545006e+002 - 9.71456451e+001 1.10938377e+002 1.19522942e+002 9.71171646e+001 - 1.10922928e+002 1.19525101e+002 9.70847702e+001 1.10865669e+002 - 1.19527786e+002 9.70303726e+001 1.10820297e+002 1.19511360e+002 - 9.69795837e+001 1.10768044e+002 1.19521492e+002 9.68996506e+001 - 1.10712997e+002 1.19498222e+002 9.68529053e+001 1.10640709e+002 - 1.19486336e+002 9.68104172e+001 1.10606010e+002 1.19476547e+002 - 9.67870789e+001 1.10558701e+002 1.19493164e+002 9.67104568e+001 - 1.10496666e+002 1.19462807e+002 9.66578140e+001 1.10444794e+002 - 1.19461098e+002 9.66079407e+001 1.10405716e+002 1.19451065e+002 - 9.65661316e+001 1.10351089e+002 1.19449883e+002 9.65108795e+001 - 1.10306480e+002 1.19447311e+002 9.64859467e+001 1.10254753e+002 - 1.19459908e+002 9.64483871e+001 1.10224808e+002 1.19460045e+002 - 9.63939285e+001 1.10177460e+002 1.19449432e+002 9.63510895e+001 - 1.10149933e+002 1.19441750e+002 9.63077087e+001 1.10083969e+002 - 1.19419159e+002 9.63015823e+001 1.10087280e+002 1.19447098e+002 - 9.62597275e+001 1.10039970e+002 1.19447487e+002 9.61771851e+001 - 1.09971535e+002 1.19408180e+002 9.61667938e+001 1.09943275e+002 - 1.19418221e+002 9.61430664e+001 1.09930672e+002 1.19425438e+002 - 9.61134491e+001 1.09878036e+002 1.19430008e+002 9.60581589e+001 - 1.09834534e+002 1.19405998e+002 9.60365372e+001 1.09811783e+002 - 1.19428154e+002 9.60137939e+001 1.09799767e+002 1.19436432e+002 - 9.59797211e+001 1.09749985e+002 1.19426277e+002 9.59234848e+001 - 1.09711296e+002 1.19408058e+002 9.59242020e+001 1.09676102e+002 - 1.19430908e+002 9.58890152e+001 1.09650154e+002 1.19430565e+002 - 9.58649216e+001 1.09626526e+002 1.19434349e+002 9.58341980e+001 - 1.09614372e+002 1.19433472e+002 9.57917328e+001 1.09557365e+002 - 1.19415321e+002 9.57940140e+001 1.09564407e+002 1.19443451e+002 - 9.57433472e+001 1.09523430e+002 1.19443314e+002 9.56937408e+001 - 1.09492798e+002 1.19431320e+002 9.56978378e+001 1.09477501e+002 - 1.19445633e+002 9.56770706e+001 1.09465775e+002 1.19447159e+002 - 9.56356659e+001 1.09394470e+002 1.19423805e+002 9.55992508e+001 - 1.09364914e+002 1.19403358e+002 9.56005783e+001 1.09359978e+002 - 1.19422859e+002 9.56049500e+001 1.09373604e+002 1.19444183e+002 - 9.56056137e+001 1.09365662e+002 1.19462730e+002 9.55997467e+001 - 1.09368011e+002 1.19485435e+002 9.56200790e+001 1.09360527e+002 - 1.19524223e+002 9.55889893e+001 1.09350288e+002 1.19518867e+002 - 9.55926971e+001 1.09351089e+002 1.19537262e+002 9.55603409e+001 - 1.09332970e+002 1.19516754e+002 9.55543289e+001 1.09311798e+002 - 1.19523979e+002 9.55750732e+001 1.09338661e+002 1.19547607e+002 - 9.55642624e+001 1.09328957e+002 1.19557968e+002 9.55303879e+001 - 1.09320679e+002 1.19549774e+002 9.55204697e+001 1.09292305e+002 - 1.19544609e+002 9.55170288e+001 1.09309387e+002 1.19560654e+002 - 9.55065765e+001 1.09277344e+002 1.19565598e+002 9.54961853e+001 - 1.09285858e+002 1.19566772e+002 9.54827576e+001 1.09266052e+002 - 1.19556831e+002 9.54351578e+001 1.09228615e+002 1.19514885e+002 - 9.54505539e+001 1.09227478e+002 1.19531097e+002 9.54282074e+001 - 1.09214050e+002 1.19516518e+002 9.54323959e+001 1.09183975e+002 - 1.19515907e+002 9.54615860e+001 1.09221992e+002 1.19544853e+002 - 9.54718170e+001 1.09236282e+002 1.19559029e+002 9.54753265e+001 - 1.09253181e+002 1.19558411e+002 9.54745560e+001 1.09234718e+002 - 1.19554237e+002 9.54843521e+001 1.09249420e+002 1.19557358e+002 - 9.55005035e+001 1.09256683e+002 1.19571167e+002 9.54539795e+001 - 1.09234741e+002 1.19538139e+002 9.54384384e+001 1.09203850e+002 - 1.19520844e+002 9.54239731e+001 1.09199066e+002 1.19506371e+002 - 9.54313049e+001 1.09175896e+002 1.19504684e+002 9.54137268e+001 - 1.09171288e+002 1.19489655e+002 9.54248657e+001 1.09177025e+002 - 1.19502586e+002 9.54352646e+001 1.09200066e+002 1.19500847e+002 - 9.54593048e+001 1.09213524e+002 1.19520020e+002 9.54318466e+001 - 1.09201263e+002 1.19491272e+002 9.54656143e+001 1.09202522e+002 - 1.19513557e+002 9.54901352e+001 1.09238907e+002 1.19530571e+002 - 9.54984131e+001 1.09253624e+002 1.19529381e+002 9.54912415e+001 - 1.09263107e+002 1.19512787e+002 9.55369339e+001 1.09291267e+002 - 1.19548004e+002 9.55551453e+001 1.09317055e+002 1.19546516e+002 - 9.55807724e+001 1.09336388e+002 1.19561806e+002 9.55720673e+001 - 1.09355461e+002 1.19551277e+002 9.55826569e+001 1.09350212e+002 - 1.19546097e+002 9.55818710e+001 1.09366646e+002 1.19531631e+002 - 9.56102524e+001 1.09374207e+002 1.19536865e+002 9.55898285e+001 - 1.09364952e+002 1.19502472e+002 9.55811081e+001 1.09358994e+002 - 1.19486732e+002 9.55912476e+001 1.09382149e+002 1.19482101e+002 - 9.55872955e+001 1.09374329e+002 1.19471313e+002 9.55980453e+001 - 1.09401466e+002 1.19469925e+002 9.56453629e+001 1.09416229e+002 - 1.19487549e+002 9.56398392e+001 1.09420509e+002 1.19463097e+002 - 9.56525879e+001 1.09436661e+002 1.19449181e+002 9.56375122e+001 - 1.09433067e+002 1.19415047e+002 9.56926422e+001 1.09473564e+002 - 1.19448555e+002 9.57324066e+001 1.09526215e+002 1.19456749e+002 - 9.57550812e+001 1.09541801e+002 1.19441238e+002 9.57410278e+001 - 1.09548073e+002 1.19406082e+002 9.57905273e+001 1.09585709e+002 - 1.19432747e+002 9.58301773e+001 1.09635391e+002 1.19441940e+002 - 9.58495102e+001 1.09631943e+002 1.19431084e+002 9.58384018e+001 - 1.09629837e+002 1.19384232e+002 9.58749084e+001 1.09669334e+002 - 1.19393036e+002 9.59092026e+001 1.09713829e+002 1.19393921e+002 - 9.59527283e+001 1.09745888e+002 1.19403824e+002 9.59786987e+001 - 1.09788925e+002 1.19398430e+002 9.60500641e+001 1.09823792e+002 - 1.19421410e+002 9.60765610e+001 1.09866684e+002 1.19417702e+002 - 9.60850372e+001 1.09875336e+002 1.19387291e+002 9.60918427e+001 - 1.09899666e+002 1.19363686e+002 9.60891266e+001 1.09878609e+002 - 1.19332901e+002 9.61210632e+001 1.09919983e+002 1.19314865e+002 - 9.61769409e+001 1.09973419e+002 1.19320389e+002 9.62145691e+001 - 1.10028030e+002 1.19326408e+002 9.62709808e+001 1.10061852e+002 - 1.19338585e+002 9.63083649e+001 1.10119614e+002 1.19353447e+002 - 9.63827362e+001 1.10164635e+002 1.19380745e+002 9.64017181e+001 - 1.10196030e+002 1.19359039e+002 9.64602737e+001 1.10240875e+002 - 1.19372841e+002 9.65095062e+001 1.10303383e+002 1.19381042e+002 - 9.65530472e+001 1.10337860e+002 1.19385475e+002 9.65920715e+001 - 1.10397713e+002 1.19384102e+002 9.66697922e+001 1.10443329e+002 - 1.19410843e+002 9.66984482e+001 1.10488655e+002 1.19401741e+002 - 9.67410583e+001 1.10534012e+002 1.19400436e+002 9.67561874e+001 - 1.10568939e+002 1.19378136e+002 9.67725220e+001 1.10564880e+002 - 1.19353310e+002 9.68036499e+001 1.10597511e+002 1.19327240e+002 - 9.68671494e+001 1.10646317e+002 1.19318962e+002 9.69239655e+001 - 1.10714645e+002 1.19333221e+002 9.69966431e+001 1.10769531e+002 - 1.19359138e+002 9.70512238e+001 1.10836174e+002 1.19368729e+002 - 9.71348038e+001 1.10898506e+002 1.19403313e+002 9.71933289e+001 - 1.10970085e+002 1.19410927e+002 9.72577591e+001 1.11028595e+002 - 1.19425690e+002 9.73055344e+001 1.11096451e+002 1.19426941e+002 - 9.73821716e+001 1.11162903e+002 1.19456490e+002 9.74129791e+001 - 1.11212456e+002 1.19447922e+002 9.74980698e+001 1.11265442e+002 - 1.19475235e+002 9.75825653e+001 1.11357368e+002 1.19508987e+002 - 9.76913147e+001 1.11460251e+002 1.19567627e+002 9.77153702e+001 - 1.11497147e+002 1.19547844e+002 9.77970276e+001 1.11557449e+002 - 1.19575043e+002 9.78853302e+001 1.11646782e+002 1.19598282e+002 - 9.79825439e+001 1.11732491e+002 1.19616493e+002 9.80448456e+001 - 1.11809898e+002 1.19629715e+002 9.81278229e+001 1.11868843e+002 - 1.19659004e+002 9.81911545e+001 1.11939957e+002 1.19666344e+002 - 9.82941589e+001 1.12014000e+002 1.19707306e+002 9.83805008e+001 - 1.12105942e+002 1.19740692e+002 9.84681396e+001 1.12187668e+002 - 1.19770424e+002 9.85403519e+001 1.12275581e+002 1.19790733e+002 - 9.86279373e+001 1.12352318e+002 1.19818321e+002 9.87004623e+001 - 1.12438972e+002 1.19838753e+002 9.88004303e+001 1.12495697e+002 - 1.19864502e+002 9.88795700e+001 1.12582268e+002 1.19886497e+002 - 9.89584503e+001 1.12647522e+002 1.19890755e+002 9.90285339e+001 - 1.12715393e+002 1.19901222e+002 9.91365738e+001 1.12791954e+002 - 1.19950623e+002 9.92522049e+001 1.12908722e+002 1.20001266e+002 - 9.93612747e+001 1.12998741e+002 1.20026352e+002 9.94246597e+001 - 1.13072456e+002 1.20031013e+002 9.95375824e+001 1.13159119e+002 - 1.20084641e+002 9.96639328e+001 1.13283432e+002 1.20145683e+002 - 9.97872772e+001 1.13361908e+002 1.20186745e+002 9.98818436e+001 - 1.13452263e+002 1.20205193e+002 9.99997864e+001 1.13546204e+002 - 1.20245155e+002 1.00106621e+002 1.13645470e+002 1.20279060e+002 - 1.00199509e+002 1.13702187e+002 1.20302177e+002 1.00285820e+002 - 1.13777588e+002 1.20318253e+002 1.00392311e+002 1.13824799e+002 - 1.20333725e+002 1.00489182e+002 1.13909760e+002 1.20360161e+002 - 1.00592995e+002 1.13986176e+002 1.20381508e+002 1.00641876e+002 - 1.14036888e+002 1.20372276e+002 1.00686447e+002 1.14022255e+002 - 1.20340385e+002 1.00677696e+002 1.14007484e+002 1.20261391e+002 - 1.00649742e+002 1.13975838e+002 1.20242767e+002 1.00651184e+002 - 1.14017830e+002 1.20315376e+002 1.00623436e+002 1.14008064e+002 - 1.20343864e+002 1.00577248e+002 1.13990219e+002 1.20358681e+002 - 1.00464783e+002 1.13899254e+002 1.20330589e+002 1.00367401e+002 - 1.13841042e+002 1.20305603e+002 1.00280182e+002 1.13779663e+002 - 1.20318192e+002 1.00169357e+002 1.13698441e+002 1.20275337e+002 - 1.00079132e+002 1.13614616e+002 1.20259682e+002 9.99800415e+001 - 1.13545250e+002 1.20227219e+002 9.99057007e+001 1.13464600e+002 - 1.20223366e+002 9.98124237e+001 1.13391426e+002 1.20191467e+002 - 9.97119675e+001 1.13302498e+002 1.20167488e+002 9.96188736e+001 - 1.13236275e+002 1.20128860e+002 9.95255814e+001 1.13143471e+002 - 1.20095192e+002 9.94149628e+001 1.13056252e+002 1.20044464e+002 - 9.92889557e+001 1.12950516e+002 1.20022644e+002 9.91600647e+001 - 1.12856682e+002 1.19963013e+002 9.90873566e+001 1.12778862e+002 - 1.19944695e+002 9.90062256e+001 1.12713661e+002 1.19919968e+002 - 9.89250565e+001 1.12621132e+002 1.19903908e+002 9.88242264e+001 - 1.12542580e+002 1.19861404e+002 9.87216721e+001 1.12439949e+002 - 1.19835342e+002 9.86210938e+001 1.12355423e+002 1.19787476e+002 - 9.85652237e+001 1.12297691e+002 1.19795364e+002 9.84794159e+001 - 1.12225029e+002 1.19770523e+002 9.84167328e+001 1.12140442e+002 - 1.19768990e+002 9.83439789e+001 1.12092300e+002 1.19763344e+002 - 9.82694931e+001 1.12012703e+002 1.19738754e+002 9.81573944e+001 - 1.11915840e+002 1.19677086e+002 9.81008301e+001 1.11846901e+002 - 1.19655807e+002 9.80195999e+001 1.11768906e+002 1.19624474e+002 - 9.79518585e+001 1.11701836e+002 1.19636765e+002 9.78403702e+001 - 1.11620056e+002 1.19597961e+002 9.77838287e+001 1.11550049e+002 - 1.19583374e+002 9.76935196e+001 1.11473854e+002 1.19551155e+002 - 9.76630173e+001 1.11432304e+002 1.19578415e+002 9.75717316e+001 - 1.11360657e+002 1.19554771e+002 9.74889069e+001 1.11277504e+002 - 1.19545822e+002 9.74224777e+001 1.11227425e+002 1.19528435e+002 - 9.73715973e+001 1.11168808e+002 1.19532753e+002 9.72920990e+001 - 1.11112785e+002 1.19515648e+002 9.72392349e+001 1.11040215e+002 - 1.19515472e+002 9.71655579e+001 1.10977547e+002 1.19487083e+002 - 9.71127090e+001 1.10915871e+002 1.19479080e+002 9.70570679e+001 - 1.10878395e+002 1.19457764e+002 9.70162354e+001 1.10816727e+002 - 1.19444122e+002 9.69875336e+001 1.10790016e+002 1.19447357e+002 - 9.69305115e+001 1.10731377e+002 1.19461967e+002 9.68577271e+001 - 1.10680779e+002 1.19441376e+002 9.68178329e+001 1.10625153e+002 - 1.19437439e+002 9.67787476e+001 1.10589073e+002 1.19431923e+002 - 9.67559738e+001 1.10545326e+002 1.19451241e+002 9.66900330e+001 - 1.10500038e+002 1.19432281e+002 9.66431198e+001 1.10444855e+002 - 1.19434258e+002 9.65987778e+001 1.10413399e+002 1.19427841e+002 - 9.65674744e+001 1.10374008e+002 1.19445808e+002 9.64896851e+001 - 1.10306084e+002 1.19406136e+002 9.64526749e+001 1.10237320e+002 - 1.19408730e+002 9.64237671e+001 1.10223404e+002 1.19417923e+002 - 9.63684540e+001 1.10168579e+002 1.19411514e+002 9.63350220e+001 - 1.10150131e+002 1.19408180e+002 9.62949219e+001 1.10098381e+002 - 1.19391937e+002 9.62767029e+001 1.10086983e+002 1.19403183e+002 - 9.62433395e+001 1.10037354e+002 1.19412399e+002 9.61704407e+001 - 1.09987617e+002 1.19389236e+002 9.61428146e+001 1.09944138e+002 - 1.19386375e+002 9.61158905e+001 1.09922028e+002 1.19387497e+002 - 9.60843124e+001 1.09872101e+002 1.19384850e+002 9.60259323e+001 - 1.09826843e+002 1.19359428e+002 9.60087128e+001 1.09807022e+002 - 1.19383369e+002 9.59718094e+001 1.09775505e+002 1.19371964e+002 - 9.59589081e+001 1.09750923e+002 1.19393784e+002 9.59155350e+001 - 1.09720741e+002 1.19383629e+002 9.59029312e+001 1.09682037e+002 - 1.19394318e+002 9.58771133e+001 1.09667313e+002 1.19403664e+002 - 9.58442612e+001 1.09627563e+002 1.19399231e+002 9.58072357e+001 - 1.09608994e+002 1.19391899e+002 9.57921982e+001 1.09575745e+002 - 1.19399414e+002 9.57811356e+001 1.09576355e+002 1.19415703e+002 - 9.57200699e+001 1.09518799e+002 1.19410202e+002 9.56846085e+001 - 1.09508659e+002 1.19415398e+002 9.56755295e+001 1.09481308e+002 - 1.19420830e+002 9.56443481e+001 1.09457756e+002 1.19410057e+002 - 9.56068039e+001 1.09390213e+002 1.19382828e+002 9.55674210e+001 - 1.09360703e+002 1.19355881e+002 9.55538788e+001 1.09337341e+002 - 1.19370232e+002 9.55515289e+001 1.09347832e+002 1.19380653e+002 - 9.55735092e+001 1.09347382e+002 1.19415215e+002 9.55681076e+001 - 1.09352013e+002 1.19438843e+002 9.55711060e+001 1.09336639e+002 - 1.19460808e+002 9.55458755e+001 1.09330269e+002 1.19457024e+002 - 9.55523911e+001 1.09326561e+002 1.19477180e+002 9.55226212e+001 - 1.09317329e+002 1.19463417e+002 9.55318222e+001 1.09315208e+002 - 1.19487694e+002 9.55303421e+001 1.09327194e+002 1.19490616e+002 - 9.55275192e+001 1.09313484e+002 1.19508202e+002 9.54818344e+001 - 1.09300087e+002 1.19494789e+002 9.54705734e+001 1.09274406e+002 - 1.19485451e+002 9.54534912e+001 1.09270027e+002 1.19484039e+002 - 9.54571686e+001 1.09257538e+002 1.19503922e+002 9.54481201e+001 - 1.09263557e+002 1.19502235e+002 9.54332352e+001 1.09242065e+002 - 1.19498459e+002 9.54075546e+001 1.09223839e+002 1.19476723e+002 - 9.54325943e+001 1.09234207e+002 1.19499435e+002 9.54147186e+001 - 1.09228691e+002 1.19490356e+002 9.54224396e+001 1.09199554e+002 - 1.19485847e+002 9.54224243e+001 1.09215126e+002 1.19489655e+002 - 9.54367752e+001 1.09217377e+002 1.19503571e+002 9.54451828e+001 - 1.09249535e+002 1.19513847e+002 9.54574356e+001 1.09247383e+002 - 1.19521278e+002 9.54668961e+001 1.09258636e+002 1.19516884e+002 - 9.54546051e+001 1.09232895e+002 1.19510712e+002 9.54040146e+001 - 1.09213898e+002 1.19478790e+002 9.54057999e+001 1.09197044e+002 - 1.19473633e+002 9.54200134e+001 1.09216461e+002 1.19485962e+002 - 9.54089279e+001 1.09179718e+002 1.19471336e+002 9.53893509e+001 - 1.09169189e+002 1.19451820e+002 9.53856506e+001 1.09160416e+002 - 1.19443810e+002 9.53882904e+001 1.09173927e+002 1.19443001e+002 - 9.54105377e+001 1.09183495e+002 1.19454941e+002 9.53877106e+001 - 1.09177185e+002 1.19437508e+002 9.54378204e+001 1.09199104e+002 - 1.19464867e+002 9.54474258e+001 1.09224091e+002 1.19470573e+002 - 9.54755630e+001 1.09245483e+002 1.19481026e+002 9.54751053e+001 - 1.09271477e+002 1.19489929e+002 9.54913406e+001 1.09274345e+002 - 1.19491730e+002 9.54889069e+001 1.09287422e+002 1.19473000e+002 - 9.55093155e+001 1.09293190e+002 1.19474655e+002 9.55130920e+001 - 1.09327682e+002 1.19484726e+002 9.55458755e+001 1.09351891e+002 - 1.19502373e+002 9.55375290e+001 1.09349991e+002 1.19472900e+002 - 9.55716629e+001 1.09366875e+002 1.19483849e+002 9.55629120e+001 - 1.09370087e+002 1.19463615e+002 9.55601654e+001 1.09365097e+002 - 1.19446373e+002 9.55605621e+001 1.09382835e+002 1.19441925e+002 - 9.55681458e+001 1.09372116e+002 1.19430763e+002 9.55557632e+001 - 1.09375008e+002 1.19413918e+002 9.55924301e+001 1.09386971e+002 - 1.19422119e+002 9.55916061e+001 1.09398109e+002 1.19404861e+002 - 9.56150818e+001 1.09416405e+002 1.19399490e+002 9.56258011e+001 - 1.09437294e+002 1.19388939e+002 9.56628952e+001 1.09467384e+002 - 1.19403610e+002 9.56945801e+001 1.09501579e+002 1.19394730e+002 - 9.57406616e+001 1.09537079e+002 1.19402710e+002 9.57266617e+001 - 1.09549896e+002 1.19372101e+002 9.57460327e+001 1.09555717e+002 - 1.19364609e+002 9.57838669e+001 1.09603043e+002 1.19377609e+002 - 9.58179550e+001 1.09621758e+002 1.19378998e+002 9.57996368e+001 - 1.09617546e+002 1.19330956e+002 9.58301544e+001 1.09643196e+002 - 1.19330406e+002 9.58709259e+001 1.09694939e+002 1.19336525e+002 - 9.59087677e+001 1.09725197e+002 1.19343842e+002 9.59384766e+001 - 1.09771217e+002 1.19348534e+002 9.60057831e+001 1.09807083e+002 - 1.19362801e+002 9.60197754e+001 1.09833809e+002 1.19346039e+002 - 9.60475082e+001 1.09848694e+002 1.19333496e+002 9.60620193e+001 - 1.09889786e+002 1.19324799e+002 9.60722504e+001 1.09885155e+002 - 1.19300056e+002 9.61004791e+001 1.09915749e+002 1.19277565e+002 - 9.61297455e+001 1.09939079e+002 1.19259956e+002 9.61562881e+001 - 1.09991432e+002 1.19258682e+002 9.62149963e+001 1.10028618e+002 - 1.19274979e+002 9.62693863e+001 1.10088402e+002 1.19295807e+002 - 9.63282700e+001 1.10132538e+002 1.19311295e+002 9.63582993e+001 - 1.10168808e+002 1.19295700e+002 9.64159164e+001 1.10217499e+002 - 1.19313644e+002 9.64573288e+001 1.10266876e+002 1.19308746e+002 - 9.65065079e+001 1.10309387e+002 1.19312035e+002 9.65416946e+001 - 1.10358421e+002 1.19313995e+002 9.66267242e+001 1.10420822e+002 - 1.19348175e+002 9.66624527e+001 1.10476852e+002 1.19346535e+002 - 9.67044449e+001 1.10510147e+002 1.19343513e+002 9.67234650e+001 - 1.10553696e+002 1.19334389e+002 9.67665787e+001 1.10582779e+002 - 1.19336533e+002 9.68132172e+001 1.10627953e+002 1.19326645e+002 - 9.68728409e+001 1.10672569e+002 1.19315269e+002 9.69079742e+001 - 1.10716309e+002 1.19304779e+002 9.69702530e+001 1.10767311e+002 - 1.19321701e+002 9.70330887e+001 1.10837807e+002 1.19340172e+002 - 9.71044693e+001 1.10889923e+002 1.19363586e+002 9.71411285e+001 - 1.10943962e+002 1.19354332e+002 9.72215347e+001 1.11015961e+002 - 1.19377007e+002 9.72930145e+001 1.11098068e+002 1.19403198e+002 - 9.73370209e+001 1.11133850e+002 1.19399651e+002 9.73916855e+001 - 1.11209419e+002 1.19422707e+002 9.74869690e+001 1.11277985e+002 - 1.19455963e+002 9.75674973e+001 1.11365654e+002 1.19492790e+002 - 9.76496353e+001 1.11436798e+002 1.19521500e+002 9.76884918e+001 - 1.11487167e+002 1.19518517e+002 9.77615051e+001 1.11545204e+002 - 1.19534851e+002 9.78426971e+001 1.11630844e+002 1.19554932e+002 - 9.79520340e+001 1.11715454e+002 1.19580215e+002 9.80032883e+001 - 1.11790154e+002 1.19588867e+002 9.80835114e+001 1.11846375e+002 - 1.19606514e+002 9.81644897e+001 1.11925415e+002 1.19642067e+002 - 9.82591171e+001 1.11993706e+002 1.19669777e+002 9.83444061e+001 - 1.12090881e+002 1.19702141e+002 9.84269333e+001 1.12166893e+002 - 1.19727180e+002 9.84994812e+001 1.12258202e+002 1.19751892e+002 - 9.86000366e+001 1.12343971e+002 1.19794380e+002 9.86725388e+001 - 1.12425346e+002 1.19818130e+002 9.87651749e+001 1.12484108e+002 - 1.19830612e+002 9.88284225e+001 1.12557526e+002 1.19836601e+002 - 9.89162674e+001 1.12621880e+002 1.19850441e+002 9.90020142e+001 - 1.12708824e+002 1.19876770e+002 9.91178894e+001 1.12797531e+002 - 1.19932800e+002 9.92073746e+001 1.12885765e+002 1.19952164e+002 - 9.93171921e+001 1.12967255e+002 1.19977379e+002 9.93848724e+001 - 1.13045273e+002 1.19990776e+002 9.94958954e+001 1.13126762e+002 - 1.20037781e+002 9.96068878e+001 1.13237144e+002 1.20090874e+002 - 9.97340012e+001 1.13326950e+002 1.20134384e+002 9.98318863e+001 - 1.13415421e+002 1.20164856e+002 9.99426575e+001 1.13504639e+002 - 1.20187805e+002 1.00052231e+002 1.13602928e+002 1.20225090e+002 - 1.00169205e+002 1.13680618e+002 1.20263237e+002 1.00252022e+002 - 1.13746147e+002 1.20282883e+002 1.00358101e+002 1.13802132e+002 - 1.20294785e+002 1.00447861e+002 1.13884544e+002 1.20316292e+002 - 1.00578850e+002 1.13975868e+002 1.20365318e+002 1.00623894e+002 - 1.14020668e+002 1.20351570e+002 1.00672974e+002 1.14023430e+002 - 1.20329079e+002 1.00653358e+002 1.13991447e+002 1.20236549e+002 - 1.00652908e+002 1.13980782e+002 1.20231453e+002 1.00660698e+002 - 1.14027466e+002 1.20312630e+002 1.00632515e+002 1.14011711e+002 - 1.20335327e+002 1.00569107e+002 1.13987808e+002 1.20341347e+002 - 1.00479218e+002 1.13913841e+002 1.20328354e+002 1.00364098e+002 - 1.13838219e+002 1.20293388e+002 1.00263077e+002 1.13758705e+002 - 1.20280960e+002 1.00144058e+002 1.13666901e+002 1.20235329e+002 - 1.00059631e+002 1.13595772e+002 1.20221207e+002 9.99514771e+001 - 1.13516975e+002 1.20187599e+002 9.98843231e+001 1.13448540e+002 - 1.20190720e+002 9.98170471e+001 1.13401169e+002 1.20183052e+002 - 9.97307358e+001 1.13325974e+002 1.20166237e+002 9.96242142e+001 - 1.13247414e+002 1.20125580e+002 9.95085602e+001 1.13131744e+002 - 1.20062920e+002 9.94039307e+001 1.13054024e+002 1.20018684e+002 - 9.93130035e+001 1.12968849e+002 1.20030617e+002 9.91670761e+001 - 1.12861984e+002 1.19964134e+002 9.90952988e+001 1.12781639e+002 - 1.19938484e+002 9.90025024e+001 1.12708313e+002 1.19901031e+002 - 9.88927078e+001 1.12591812e+002 1.19860146e+002 9.87989426e+001 - 1.12514427e+002 1.19824280e+002 9.86982727e+001 1.12419014e+002 - 1.19796387e+002 9.86066818e+001 1.12343132e+002 1.19756653e+002 - 9.85575943e+001 1.12290024e+002 1.19770874e+002 9.84533081e+001 - 1.12202354e+002 1.19723145e+002 9.83655243e+001 1.12098518e+002 - 1.19706535e+002 9.83154449e+001 1.12065300e+002 1.19709023e+002 - 9.82368088e+001 1.11980919e+002 1.19685951e+002 9.81494446e+001 - 1.11907448e+002 1.19648415e+002 9.80783081e+001 1.11827942e+002 - 1.19617119e+002 9.80034561e+001 1.11755806e+002 1.19590378e+002 - 9.79330292e+001 1.11687233e+002 1.19597313e+002 9.77990646e+001 - 1.11587646e+002 1.19540863e+002 9.77405014e+001 1.11508583e+002 - 1.19519806e+002 9.76617508e+001 1.11449677e+002 1.19500900e+002 - 9.76269760e+001 1.11398659e+002 1.19523155e+002 9.75476379e+001 - 1.11345108e+002 1.19508606e+002 9.74813080e+001 1.11274460e+002 - 1.19511948e+002 9.74032898e+001 1.11208420e+002 1.19479843e+002 - 9.73485794e+001 1.11148010e+002 1.19481987e+002 9.72714920e+001 - 1.11087227e+002 1.19463409e+002 9.72186890e+001 1.11017120e+002 - 1.19465378e+002 9.71438980e+001 1.10951157e+002 1.19440536e+002 - 9.71064529e+001 1.10909958e+002 1.19442253e+002 9.70477524e+001 - 1.10862350e+002 1.19413200e+002 9.69962082e+001 1.10790527e+002 - 1.19391724e+002 9.69444885e+001 1.10750565e+002 1.19379570e+002 - 9.69134216e+001 1.10717308e+002 1.19422272e+002 9.68425598e+001 - 1.10670784e+002 1.19405525e+002 9.67968521e+001 1.10604469e+002 - 1.19389038e+002 9.67620697e+001 1.10570824e+002 1.19388199e+002 - 9.67381210e+001 1.10534721e+002 1.19410965e+002 9.66951370e+001 - 1.10508430e+002 1.19408615e+002 9.66605377e+001 1.10467209e+002 - 1.19420174e+002 9.66050797e+001 1.10424095e+002 1.19407143e+002 - 9.65573578e+001 1.10367264e+002 1.19402672e+002 9.64799423e+001 - 1.10297249e+002 1.19370354e+002 9.64393768e+001 1.10223732e+002 - 1.19362038e+002 9.63927841e+001 1.10194046e+002 1.19358704e+002 - 9.63531265e+001 1.10144928e+002 1.19362045e+002 9.63177795e+001 - 1.10128181e+002 1.19354927e+002 9.62916565e+001 1.10092834e+002 - 1.19357117e+002 9.62541656e+001 1.10064285e+002 1.19345863e+002 - 9.62028503e+001 1.10001198e+002 1.19349411e+002 9.61359711e+001 - 1.09956802e+002 1.19321724e+002 9.61306763e+001 1.09927864e+002 - 1.19341682e+002 9.60909729e+001 1.09901649e+002 1.19335175e+002 - 9.60600281e+001 1.09851456e+002 1.19332016e+002 9.60143661e+001 - 1.09812843e+002 1.19316643e+002 9.59975052e+001 1.09792686e+002 - 1.19337883e+002 9.59705963e+001 1.09777161e+002 1.19337112e+002 - 9.59503937e+001 1.09751335e+002 1.19350685e+002 9.59085159e+001 - 1.09718529e+002 1.19349709e+002 9.59058228e+001 1.09685783e+002 - 1.19369614e+002 9.58868561e+001 1.09677589e+002 1.19383179e+002 - 9.58459549e+001 1.09632957e+002 1.19372330e+002 9.57868576e+001 - 1.09588837e+002 1.19337372e+002 9.57841110e+001 1.09576248e+002 - 1.19365555e+002 9.57565994e+001 1.09559662e+002 1.19365532e+002 - 9.57062225e+001 1.09511406e+002 1.19368645e+002 9.56698837e+001 - 1.09497879e+002 1.19371964e+002 9.56529160e+001 1.09458244e+002 - 1.19370476e+002 9.56241455e+001 1.09435738e+002 1.19353485e+002 - 9.55918655e+001 1.09383896e+002 1.19345123e+002 9.55760651e+001 - 1.09376762e+002 1.19345215e+002 9.55559921e+001 1.09350777e+002 - 1.19345253e+002 9.55474319e+001 1.09348839e+002 1.19354790e+002 - 9.55582581e+001 1.09345116e+002 1.19378044e+002 9.55509567e+001 - 1.09349953e+002 1.19402374e+002 9.55477295e+001 1.09319717e+002 - 1.19416908e+002 9.55094833e+001 1.09296303e+002 1.19393517e+002 - 9.55031128e+001 1.09280304e+002 1.19404984e+002 9.54928818e+001 - 1.09292503e+002 1.19414703e+002 9.55196457e+001 1.09309700e+002 - 1.19454399e+002 9.55165329e+001 1.09316719e+002 1.19458527e+002 - 9.55261383e+001 1.09327263e+002 1.19495667e+002 9.54567719e+001 - 1.09285507e+002 1.19453056e+002 9.54383698e+001 1.09254166e+002 - 1.19440468e+002 9.54145432e+001 1.09240425e+002 1.19419899e+002 - 9.54377289e+001 1.09244621e+002 1.19459885e+002 9.54200058e+001 - 1.09247047e+002 1.19450607e+002 9.54198151e+001 1.09235947e+002 - 1.19459183e+002 9.54098206e+001 1.09232910e+002 1.19441811e+002 - 9.54318390e+001 1.09237778e+002 1.19462196e+002 9.54163284e+001 - 1.09235153e+002 1.19459557e+002 9.54447021e+001 1.09232185e+002 - 1.19480553e+002 9.54429474e+001 1.09237976e+002 1.19477928e+002 - 9.54400253e+001 1.09230736e+002 1.19477020e+002 9.54468765e+001 - 1.09249603e+002 1.19480255e+002 9.54411469e+001 1.09234222e+002 - 1.19472435e+002 9.54450760e+001 1.09243050e+002 1.19466927e+002 - 9.54269409e+001 1.09217682e+002 1.19456100e+002 9.53892136e+001 - 1.09202477e+002 1.19427841e+002 9.54081726e+001 1.09202423e+002 - 1.19437782e+002 9.54130936e+001 1.09217674e+002 1.19448105e+002 - 9.53993988e+001 1.09175659e+002 1.19427803e+002 9.53691025e+001 - 1.09155518e+002 1.19399788e+002 9.53586807e+001 1.09139618e+002 - 1.19393181e+002 9.53620148e+001 1.09156952e+002 1.19387711e+002 - 9.53712463e+001 1.09146896e+002 1.19388847e+002 9.53626938e+001 - 1.09155418e+002 1.19382668e+002 9.54220276e+001 1.09183228e+002 - 1.19424339e+002 9.54218826e+001 1.09201302e+002 1.19417435e+002 - 9.54348755e+001 1.09209564e+002 1.19417061e+002 9.54398193e+001 - 1.09241364e+002 1.19421082e+002 9.54625168e+001 1.09256950e+002 - 1.19436096e+002 9.54685898e+001 1.09272247e+002 1.19419586e+002 - 9.54949875e+001 1.09289619e+002 1.19439400e+002 9.54677353e+001 - 1.09293106e+002 1.19413002e+002 9.55087662e+001 1.09314468e+002 - 1.19432259e+002 9.55011520e+001 1.09316856e+002 1.19405647e+002 - 9.55514984e+001 1.09353539e+002 1.19428650e+002 9.55520935e+001 - 1.09362663e+002 1.19418846e+002 9.55435410e+001 1.09352699e+002 - 1.19397606e+002 9.55538406e+001 1.09370461e+002 1.19395058e+002 - 9.55652924e+001 1.09373932e+002 1.19395645e+002 9.55601425e+001 - 1.09377174e+002 1.19377625e+002 9.55798035e+001 1.09376579e+002 - 1.19377197e+002 9.55824890e+001 1.09388443e+002 1.19359329e+002 - 9.56104736e+001 1.09411270e+002 1.19363258e+002 9.56254120e+001 - 1.09445114e+002 1.19357819e+002 9.56464310e+001 1.09456284e+002 - 1.19359077e+002 9.56737518e+001 1.09484154e+002 1.19348885e+002 - 9.57221527e+001 1.09527390e+002 1.19357430e+002 9.57043991e+001 - 1.09533371e+002 1.19320984e+002 9.57366943e+001 1.09554688e+002 - 1.19327896e+002 9.57540665e+001 1.09580757e+002 1.19318092e+002 - 9.58025055e+001 1.09606453e+002 1.19334160e+002 9.58088913e+001 - 1.09626678e+002 1.19312683e+002 9.58270721e+001 1.09641624e+002 - 1.19299309e+002 9.58601303e+001 1.09683846e+002 1.19298721e+002 - 9.58881302e+001 1.09703102e+002 1.19295670e+002 9.59145737e+001 - 1.09749123e+002 1.19294983e+002 9.59783173e+001 1.09782143e+002 - 1.19313408e+002 9.60002365e+001 1.09823486e+002 1.19301964e+002 - 9.60393524e+001 1.09848511e+002 1.19301094e+002 9.60627747e+001 - 1.09889984e+002 1.19298119e+002 9.60484009e+001 1.09865204e+002 - 1.19253586e+002 9.60764999e+001 1.09894768e+002 1.19230392e+002 - 9.61191711e+001 1.09932396e+002 1.19229568e+002 9.61349640e+001 - 1.09971062e+002 1.19214943e+002 9.61964264e+001 1.10011986e+002 - 1.19232666e+002 9.62511215e+001 1.10074707e+002 1.19256691e+002 - 9.63037109e+001 1.10107422e+002 1.19256905e+002 9.63363571e+001 - 1.10151047e+002 1.19252846e+002 9.64053116e+001 1.10210915e+002 - 1.19275703e+002 9.64382706e+001 1.10249718e+002 1.19262985e+002 - 9.64624863e+001 1.10270622e+002 1.19243919e+002 9.65075836e+001 - 1.10326340e+002 1.19245232e+002 9.65974655e+001 1.10392792e+002 - 1.19285828e+002 9.66388626e+001 1.10449326e+002 1.19291840e+002 - 9.66982727e+001 1.10501549e+002 1.19306335e+002 9.67175293e+001 - 1.10543274e+002 1.19292099e+002 9.67633743e+001 1.10580780e+002 - 1.19302414e+002 9.68069305e+001 1.10625290e+002 1.19296707e+002 - 9.68903961e+001 1.10694687e+002 1.19307899e+002 9.69068146e+001 - 1.10728630e+002 1.19284195e+002 9.69597092e+001 1.10757828e+002 - 1.19290527e+002 9.70279465e+001 1.10836349e+002 1.19317314e+002 - 9.70874557e+001 1.10881630e+002 1.19326530e+002 9.71418686e+001 - 1.10950508e+002 1.19334152e+002 9.72091370e+001 1.11010551e+002 - 1.19342766e+002 9.72759628e+001 1.11091866e+002 1.19371414e+002 - 9.73302536e+001 1.11130081e+002 1.19372765e+002 9.73725128e+001 - 1.11192993e+002 1.19386017e+002 9.74567490e+001 1.11254181e+002 - 1.19410927e+002 9.75529251e+001 1.11356224e+002 1.19465645e+002 - 9.76460571e+001 1.11437447e+002 1.19504097e+002 9.76837158e+001 - 1.11491951e+002 1.19500572e+002 9.77570724e+001 1.11547096e+002 - 1.19521179e+002 9.78511887e+001 1.11643127e+002 1.19549713e+002 - 9.79537888e+001 1.11727821e+002 1.19574234e+002 9.80086136e+001 - 1.11801239e+002 1.19579140e+002 9.80816498e+001 1.11846962e+002 - 1.19593803e+002 9.81570969e+001 1.11929413e+002 1.19620399e+002 - 9.82410965e+001 1.11989548e+002 1.19638222e+002 9.83290482e+001 - 1.12086990e+002 1.19674538e+002 9.84173431e+001 1.12165421e+002 - 1.19705757e+002 9.84858551e+001 1.12247673e+002 1.19722923e+002 - 9.85601273e+001 1.12310738e+002 1.19743423e+002 9.86358566e+001 - 1.12393387e+002 1.19774551e+002 9.87371750e+001 1.12462715e+002 - 1.19790482e+002 9.88178864e+001 1.12549171e+002 1.19810425e+002 - 9.89001007e+001 1.12606133e+002 1.19822464e+002 9.89911728e+001 - 1.12703979e+002 1.19859673e+002 9.90951080e+001 1.12780113e+002 - 1.19900047e+002 9.91713791e+001 1.12848297e+002 1.19908447e+002 - 9.92983322e+001 1.12949570e+002 1.19940834e+002 9.93772507e+001 - 1.13038353e+002 1.19971619e+002 9.94799728e+001 1.13110458e+002 - 1.20013702e+002 9.95984955e+001 1.13223671e+002 1.20064095e+002 - 9.97240219e+001 1.13312767e+002 1.20106758e+002 9.98000565e+001 - 1.13389030e+002 1.20116814e+002 9.99241409e+001 1.13486145e+002 - 1.20159843e+002 1.00030739e+002 1.13581093e+002 1.20195923e+002 - 1.00143593e+002 1.13655075e+002 1.20230492e+002 1.00249947e+002 - 1.13751488e+002 1.20273781e+002 1.00352066e+002 1.13805977e+002 - 1.20282623e+002 1.00456375e+002 1.13901192e+002 1.20318764e+002 - 1.00560684e+002 1.13963387e+002 1.20336235e+002 1.00599777e+002 - 1.13994476e+002 1.20312035e+002 1.00652138e+002 1.14014359e+002 - 1.20308945e+002 1.00649788e+002 1.13988701e+002 1.20227348e+002 - 1.00660477e+002 1.13989525e+002 1.20228569e+002 1.00663185e+002 - 1.14037140e+002 1.20300453e+002 1.00637207e+002 1.14024727e+002 - 1.20332291e+002 1.00588318e+002 1.14006531e+002 1.20349152e+002 - 1.00495178e+002 1.13931847e+002 1.20335350e+002 1.00373413e+002 - 1.13846855e+002 1.20292023e+002 1.00268646e+002 1.13765289e+002 - 1.20275490e+002 1.00161316e+002 1.13691940e+002 1.20237335e+002 - 1.00065529e+002 1.13603813e+002 1.20212273e+002 9.99477768e+001 - 1.13515594e+002 1.20166718e+002 9.98842239e+001 1.13446053e+002 - 1.20175934e+002 9.98245239e+001 1.13414093e+002 1.20178581e+002 - 9.97314453e+001 1.13328300e+002 1.20151855e+002 9.96175919e+001 - 1.13242867e+002 1.20101051e+002 9.95050430e+001 1.13131027e+002 - 1.20043541e+002 9.94081345e+001 1.13056770e+002 1.20014503e+002 - 9.93235321e+001 1.12986801e+002 1.20034508e+002 9.91711807e+001 - 1.12875389e+002 1.19955780e+002 9.91003876e+001 1.12794449e+002 - 1.19933151e+002 9.89907227e+001 1.12708092e+002 1.19884171e+002 - 9.88811493e+001 1.12585915e+002 1.19840660e+002 9.87976227e+001 - 1.12519775e+002 1.19816986e+002 9.86889343e+001 1.12415131e+002 - 1.19777992e+002 9.86263199e+001 1.12365219e+002 1.19759521e+002 - 9.85646973e+001 1.12307091e+002 1.19760750e+002 9.84483948e+001 - 1.12204826e+002 1.19704575e+002 9.83682175e+001 1.12098862e+002 - 1.19688904e+002 9.83267899e+001 1.12076332e+002 1.19698875e+002 - 9.82480850e+001 1.11993767e+002 1.19677284e+002 9.81532593e+001 - 1.11917786e+002 1.19631264e+002 9.80811234e+001 1.11831467e+002 - 1.19602806e+002 9.79953232e+001 1.11754112e+002 1.19564323e+002 - 9.79285126e+001 1.11685059e+002 1.19576469e+002 9.78040771e+001 - 1.11588646e+002 1.19515900e+002 9.77252197e+001 1.11496346e+002 - 1.19484138e+002 9.76358109e+001 1.11424995e+002 1.19448509e+002 - 9.76009903e+001 1.11378929e+002 1.19475693e+002 9.75218353e+001 - 1.11322227e+002 1.19460320e+002 9.74617004e+001 1.11256889e+002 - 1.19464928e+002 9.73979492e+001 1.11204422e+002 1.19449959e+002 - 9.73428955e+001 1.11148064e+002 1.19453812e+002 9.72528610e+001 - 1.11069298e+002 1.19417473e+002 9.72188644e+001 1.11010414e+002 - 1.19431419e+002 9.71533813e+001 1.10964752e+002 1.19419220e+002 - 9.71256561e+001 1.10931488e+002 1.19429024e+002 9.70588303e+001 - 1.10877968e+002 1.19394745e+002 9.70315170e+001 1.10833374e+002 - 1.19400673e+002 9.69936981e+001 1.10800201e+002 1.19406769e+002 - 9.69196472e+001 1.10728745e+002 1.19402863e+002 9.68439026e+001 - 1.10673645e+002 1.19383865e+002 9.68038483e+001 1.10612152e+002 - 1.19372124e+002 9.67413177e+001 1.10558449e+002 1.19343025e+002 - 9.67203445e+001 1.10516151e+002 1.19362473e+002 9.66928406e+001 - 1.10505188e+002 1.19379883e+002 9.66649475e+001 1.10478470e+002 - 1.19402664e+002 9.66307831e+001 1.10450577e+002 1.19402184e+002 - 9.65547333e+001 1.10367210e+002 1.19370552e+002 9.64806519e+001 - 1.10308212e+002 1.19341309e+002 9.64428406e+001 1.10234261e+002 - 1.19345779e+002 9.63840790e+001 1.10183144e+002 1.19316292e+002 - 9.63168259e+001 1.10115501e+002 1.19290627e+002 9.62809067e+001 - 1.10094376e+002 1.19288445e+002 9.62762070e+001 1.10074677e+002 - 1.19307060e+002 9.62341614e+001 1.10042656e+002 1.19290588e+002 - 9.61876984e+001 1.09980515e+002 1.19294563e+002 9.61032486e+001 - 1.09926491e+002 1.19258705e+002 9.60896759e+001 1.09891647e+002 - 1.19269897e+002 9.60764236e+001 1.09891319e+002 1.19286331e+002 - 9.60418396e+001 1.09840202e+002 1.19279160e+002 9.59926987e+001 - 1.09801178e+002 1.19265175e+002 9.59839172e+001 1.09793861e+002 - 1.19293808e+002 9.59512253e+001 1.09769043e+002 1.19290253e+002 - 9.59429321e+001 1.09748489e+002 1.19316391e+002 9.59207458e+001 - 1.09733330e+002 1.19324829e+002 9.59150772e+001 1.09698410e+002 - 1.19345230e+002 9.59006500e+001 1.09698235e+002 1.19370644e+002 - 9.58693771e+001 1.09662842e+002 1.19365959e+002 9.57945404e+001 - 1.09606277e+002 1.19323410e+002 9.57560883e+001 1.09557777e+002 - 1.19309982e+002 9.57481461e+001 1.09552757e+002 1.19323807e+002 - 9.57165909e+001 1.09525764e+002 1.19347374e+002 9.56553879e+001 - 1.09489372e+002 1.19333786e+002 9.56503220e+001 1.09457817e+002 - 1.19335823e+002 9.56140976e+001 1.09434875e+002 1.19317711e+002 - 9.55838547e+001 1.09384468e+002 1.19309570e+002 9.55549850e+001 - 1.09363014e+002 1.19298866e+002 9.55405273e+001 1.09343246e+002 - 1.19307259e+002 9.55480576e+001 1.09357010e+002 1.19326210e+002 - 9.55657730e+001 1.09361992e+002 1.19360291e+002 9.55328979e+001 - 1.09338539e+002 1.19350174e+002 9.55336838e+001 1.09307541e+002 - 1.19371330e+002 9.55239105e+001 1.09312950e+002 1.19380470e+002 - 9.55098877e+001 1.09291229e+002 1.19384407e+002 9.55091171e+001 - 1.09314537e+002 1.19402771e+002 9.55137863e+001 1.09307602e+002 - 1.19420471e+002 9.55244293e+001 1.09333626e+002 1.19441711e+002 - 9.55208817e+001 1.09327919e+002 1.19463409e+002 9.54716721e+001 - 1.09312645e+002 1.19445946e+002 9.54373398e+001 1.09265663e+002 - 1.19416939e+002 9.54105225e+001 1.09250130e+002 1.19397568e+002 - 9.54220734e+001 1.09240440e+002 1.19418449e+002 9.54188690e+001 - 1.09248497e+002 1.19416237e+002 9.54239502e+001 1.09241585e+002 - 1.19423866e+002 9.54260941e+001 1.09257599e+002 1.19425987e+002 - 9.54143219e+001 1.09235207e+002 1.19420235e+002 9.54191818e+001 - 1.09247559e+002 1.19432320e+002 9.54547958e+001 1.09244621e+002 - 1.19457550e+002 9.54372482e+001 1.09237152e+002 1.19443787e+002 - 9.54416428e+001 1.09240211e+002 1.19445313e+002 9.54617386e+001 - 1.09274094e+002 1.19461258e+002 9.54451141e+001 1.09243500e+002 - 1.19443474e+002 9.54653473e+001 1.09270752e+002 1.19453163e+002 - 9.54373016e+001 1.09237541e+002 1.19431252e+002 9.54048386e+001 - 1.09227028e+002 1.19410904e+002 9.54187088e+001 1.09216835e+002 - 1.19420547e+002 9.54143295e+001 1.09226776e+002 1.19419968e+002 - 9.54153976e+001 1.09198318e+002 1.19415161e+002 9.53839951e+001 - 1.09179718e+002 1.19386551e+002 9.53603287e+001 1.09153221e+002 - 1.19360428e+002 9.53617020e+001 1.09163795e+002 1.19358124e+002 - 9.53796997e+001 1.09170044e+002 1.19368881e+002 9.53788681e+001 - 1.09181381e+002 1.19364861e+002 9.54194565e+001 1.09191597e+002 - 1.19390732e+002 9.54228210e+001 1.09207047e+002 1.19389488e+002 - 9.54314575e+001 1.09209343e+002 1.19377213e+002 9.54286880e+001 - 1.09232643e+002 1.19378723e+002 9.54649734e+001 1.09262245e+002 - 1.19408295e+002 9.54731979e+001 1.09277130e+002 1.19390999e+002 - 9.54920959e+001 1.09294762e+002 1.19398651e+002 9.54621048e+001 - 1.09300873e+002 1.19374786e+002 9.55050735e+001 1.09321915e+002 - 1.19391998e+002 9.54986801e+001 1.09326599e+002 1.19371590e+002 - 9.55072250e+001 1.09317429e+002 1.19360176e+002 9.55044098e+001 - 1.09326538e+002 1.19340805e+002 9.55192108e+001 1.09331543e+002 - 1.19339516e+002 9.55391464e+001 1.09361794e+002 1.19349014e+002 - 9.55521317e+001 1.09362015e+002 1.19344215e+002 9.55505295e+001 - 1.09377480e+002 1.19338356e+002 9.55997086e+001 1.09399445e+002 - 1.19358315e+002 9.56131516e+001 1.09425232e+002 1.19362396e+002 - 9.56197128e+001 1.09424431e+002 1.19339119e+002 9.56081696e+001 - 1.09433212e+002 1.19310020e+002 9.56426086e+001 1.09456757e+002 - 1.19325447e+002 9.56701126e+001 1.09482994e+002 1.19311295e+002 - 9.56839523e+001 1.09489815e+002 1.19280121e+002 9.56668549e+001 - 1.09499680e+002 1.19249077e+002 9.57091141e+001 1.09520073e+002 - 1.19262543e+002 9.57388840e+001 1.09566315e+002 1.19274216e+002 - 9.57931824e+001 1.09600563e+002 1.19294548e+002 9.57887802e+001 - 1.09609428e+002 1.19263786e+002 9.58285141e+001 1.09645073e+002 - 1.19267059e+002 9.58593369e+001 1.09687386e+002 1.19268936e+002 - 9.58840561e+001 1.09703743e+002 1.19262337e+002 9.59127502e+001 - 1.09749001e+002 1.19262238e+002 9.59549255e+001 1.09753174e+002 - 1.19253258e+002 9.59758606e+001 1.09793350e+002 1.19245132e+002 - 9.60265884e+001 1.09833633e+002 1.19254532e+002 9.60444794e+001 - 1.09875000e+002 1.19251137e+002 9.60459366e+001 1.09862572e+002 - 1.19224434e+002 9.60751343e+001 1.09901360e+002 1.19206337e+002 - 9.61320343e+001 1.09946709e+002 1.19214081e+002 9.61382675e+001 - 1.09980728e+002 1.19194939e+002 9.61792831e+001 1.09997849e+002 - 1.19190407e+002 9.62305679e+001 1.10066849e+002 1.19210640e+002 - 9.63031158e+001 1.10113831e+002 1.19236542e+002 9.63328476e+001 - 1.10159340e+002 1.19225014e+002 9.63927917e+001 1.10204697e+002 - 1.19239212e+002 9.64316635e+001 1.10253693e+002 1.19234604e+002 - 9.64673386e+001 1.10276672e+002 1.19221542e+002 9.65070343e+001 - 1.10337814e+002 1.19230743e+002 9.66002960e+001 1.10399284e+002 - 1.19265846e+002 9.66521683e+001 1.10467117e+002 1.19277840e+002 - 9.67158356e+001 1.10528305e+002 1.19300392e+002 9.67384872e+001 - 1.10567726e+002 1.19286278e+002 9.67652664e+001 1.10584015e+002 - 1.19279335e+002 9.68203888e+001 1.10639427e+002 1.19283394e+002 - 9.68964539e+001 1.10703842e+002 1.19294662e+002 9.69298248e+001 - 1.10762062e+002 1.19288330e+002 9.69699554e+001 1.10783020e+002 - 1.19283134e+002 9.70170288e+001 1.10844193e+002 1.19291824e+002 - 9.70929947e+001 1.10895706e+002 1.19310783e+002 9.71440277e+001 - 1.10961060e+002 1.19322197e+002 9.72102737e+001 1.11021202e+002 - 1.19330727e+002 9.72777100e+001 1.11096008e+002 1.19350533e+002 - 9.73051071e+001 1.11118256e+002 1.19329926e+002 9.73478699e+001 - 1.11173477e+002 1.19337898e+002 9.74310455e+001 1.11233910e+002 - 1.19367790e+002 9.75302200e+001 1.11336555e+002 1.19424294e+002 - 9.76461487e+001 1.11442970e+002 1.19487099e+002 9.76628189e+001 - 1.11477577e+002 1.19463158e+002 9.77222443e+001 1.11517563e+002 - 1.19468590e+002 9.78337860e+001 1.11628647e+002 1.19514107e+002 - 9.79295044e+001 1.11713219e+002 1.19529182e+002 9.79878845e+001 - 1.11788017e+002 1.19540657e+002 9.80704727e+001 1.11842613e+002 - 1.19563118e+002 9.81375961e+001 1.11913338e+002 1.19583000e+002 - 9.82357025e+001 1.11990570e+002 1.19620163e+002 9.82966614e+001 - 1.12064529e+002 1.19632599e+002 9.83783340e+001 1.12137787e+002 - 1.19651787e+002 9.84652481e+001 1.12234138e+002 1.19687653e+002 - 9.85643768e+001 1.12315552e+002 1.19732224e+002 9.86259918e+001 - 1.12386505e+002 1.19746834e+002 9.87428818e+001 1.12467781e+002 - 1.19777733e+002 9.88507996e+001 1.12579605e+002 1.19830124e+002 - 9.89198456e+001 1.12632324e+002 1.19830032e+002 9.89793167e+001 - 1.12697029e+002 1.19834206e+002 9.90886917e+001 1.12772217e+002 - 1.19879791e+002 9.91687241e+001 1.12845215e+002 1.19894127e+002 - 9.92902069e+001 1.12943375e+002 1.19920143e+002 9.93626556e+001 - 1.13031311e+002 1.19947189e+002 9.94639816e+001 1.13092262e+002 - 1.19977997e+002 9.95696869e+001 1.13195221e+002 1.20022507e+002 - 9.97060165e+001 1.13297989e+002 1.20082581e+002 9.98025970e+001 - 1.13392357e+002 1.20106781e+002 9.99261780e+001 1.13494873e+002 - 1.20153114e+002 1.00032928e+002 1.13593460e+002 1.20194138e+002 - 1.00138191e+002 1.13657959e+002 1.20217781e+002 1.00232773e+002 - 1.13742348e+002 1.20247467e+002 1.00345520e+002 1.13792450e+002 - 1.20263863e+002 1.00445335e+002 1.13891548e+002 1.20291801e+002 - 1.00547501e+002 1.13949409e+002 1.20305984e+002 1.00575188e+002 - 1.13973946e+002 1.20282448e+002 1.00633514e+002 1.13988274e+002 - 1.20273506e+002 1.00631355e+002 1.13973351e+002 1.20198021e+002 - 1.00659233e+002 1.13983864e+002 1.20213226e+002 1.00664268e+002 - 1.14044144e+002 1.20297073e+002 1.00643021e+002 1.14034630e+002 - 1.20330605e+002 1.00596260e+002 1.14013802e+002 1.20345703e+002 - 1.00509140e+002 1.13939690e+002 1.20338120e+002 1.00390816e+002 - 1.13864136e+002 1.20300041e+002 1.00275505e+002 1.13772835e+002 - 1.20266975e+002 1.00168060e+002 1.13693405e+002 1.20228386e+002 - 1.00043076e+002 1.13579720e+002 1.20176994e+002 9.99201355e+001 - 1.13487228e+002 1.20127251e+002 9.98561554e+001 1.13416885e+002 - 1.20135841e+002 9.97810822e+001 1.13363129e+002 1.20119133e+002 - 9.96956329e+001 1.13286125e+002 1.20105568e+002 9.95953140e+001 - 1.13219139e+002 1.20061951e+002 9.94902496e+001 1.13107079e+002 - 1.20010880e+002 9.93976059e+001 1.13043663e+002 1.19993546e+002 - 9.92951584e+001 1.12960869e+002 1.19991173e+002 9.91589050e+001 - 1.12862709e+002 1.19935417e+002 9.90752182e+001 1.12770897e+002 - 1.19899208e+002 9.89635620e+001 1.12685196e+002 1.19849228e+002 - 9.88680496e+001 1.12574524e+002 1.19808731e+002 9.87909012e+001 - 1.12506409e+002 1.19788750e+002 9.86954575e+001 1.12420425e+002 - 1.19760750e+002 9.86102753e+001 1.12345200e+002 1.19723305e+002 - 9.85627289e+001 1.12294868e+002 1.19732201e+002 9.84358673e+001 - 1.12186401e+002 1.19671318e+002 9.83391724e+001 1.12067497e+002 - 1.19636200e+002 9.82876511e+001 1.12026665e+002 1.19634315e+002 - 9.82263031e+001 1.11965118e+002 1.19625534e+002 9.81326447e+001 - 1.11893524e+002 1.19584068e+002 9.80814285e+001 1.11825592e+002 - 1.19572067e+002 9.80048218e+001 1.11762924e+002 1.19545784e+002 - 9.79025803e+001 1.11664207e+002 1.19524536e+002 9.77863846e+001 - 1.11573364e+002 1.19474960e+002 9.77026215e+001 1.11479149e+002 - 1.19445526e+002 9.76294022e+001 1.11418602e+002 1.19418869e+002 - 9.76030655e+001 1.11388245e+002 1.19460983e+002 9.75079346e+001 - 1.11312851e+002 1.19426254e+002 9.74413910e+001 1.11242905e+002 - 1.19419472e+002 9.73872299e+001 1.11198364e+002 1.19408478e+002 - 9.73465042e+001 1.11149773e+002 1.19423805e+002 9.72616653e+001 - 1.11082146e+002 1.19395645e+002 9.72277374e+001 1.11023186e+002 - 1.19408356e+002 9.71711884e+001 1.10976967e+002 1.19404732e+002 - 9.71247635e+001 1.10931686e+002 1.19395828e+002 9.70300674e+001 - 1.10851433e+002 1.19344055e+002 9.70100250e+001 1.10809868e+002 - 1.19346085e+002 9.69733963e+001 1.10783630e+002 1.19358604e+002 - 9.69099350e+001 1.10720650e+002 1.19367760e+002 9.68230896e+001 - 1.10650642e+002 1.19337082e+002 9.67803726e+001 1.10595070e+002 - 1.19332741e+002 9.67302780e+001 1.10551529e+002 1.19312454e+002 - 9.66980972e+001 1.10502716e+002 1.19314217e+002 9.66749268e+001 - 1.10495773e+002 1.19335869e+002 9.66415558e+001 1.10457069e+002 - 1.19352905e+002 9.65940857e+001 1.10424324e+002 1.19343689e+002 - 9.65553284e+001 1.10372658e+002 1.19345886e+002 9.64712524e+001 - 1.10297279e+002 1.19304703e+002 9.64343414e+001 1.10228142e+002 - 1.19299347e+002 9.63853760e+001 1.10191872e+002 1.19292587e+002 - 9.63209305e+001 1.10121002e+002 1.19262115e+002 9.62485962e+001 - 1.10065659e+002 1.19222015e+002 9.62507858e+001 1.10047668e+002 - 1.19246193e+002 9.62352600e+001 1.10044655e+002 1.19257355e+002 - 9.61846390e+001 1.09984047e+002 1.19257805e+002 9.61208344e+001 - 1.09948082e+002 1.19241074e+002 9.61027145e+001 1.09904320e+002 - 1.19238388e+002 9.60800629e+001 1.09895355e+002 1.19252571e+002 - 9.60617676e+001 1.09865791e+002 1.19266388e+002 9.60080261e+001 - 1.09823669e+002 1.19246552e+002 9.59772110e+001 1.09787201e+002 - 1.19253632e+002 9.59420013e+001 1.09762749e+002 1.19249252e+002 - 9.59364243e+001 1.09740471e+002 1.19271606e+002 9.59164276e+001 - 1.09729370e+002 1.19289436e+002 9.59059296e+001 1.09689407e+002 - 1.19302216e+002 9.58997116e+001 1.09696571e+002 1.19330353e+002 - 9.58522797e+001 1.09649620e+002 1.19317802e+002 9.57968979e+001 - 1.09606964e+002 1.19287491e+002 9.57582550e+001 1.09559723e+002 - 1.19283218e+002 9.57657089e+001 1.09575348e+002 1.19312218e+002 - 9.57322006e+001 1.09540443e+002 1.19326042e+002 9.56615219e+001 - 1.09497040e+002 1.19299828e+002 9.56524582e+001 1.09466225e+002 - 1.19300720e+002 9.56272354e+001 1.09451286e+002 1.19298370e+002 - 9.56135788e+001 1.09415993e+002 1.19306328e+002 9.55890961e+001 - 1.09409485e+002 1.19298935e+002 9.55665588e+001 1.09377304e+002 - 1.19291061e+002 9.55624084e+001 1.09378685e+002 1.19303543e+002 - 9.55651321e+001 1.09369400e+002 1.19326057e+002 9.55123367e+001 - 1.09325508e+002 1.19294060e+002 9.55147095e+001 1.09290756e+002 - 1.19314690e+002 9.55301514e+001 1.09323990e+002 1.19352859e+002 - 9.55215302e+001 1.09309303e+002 1.19358330e+002 9.55046234e+001 - 1.09308502e+002 1.19361237e+002 9.54952927e+001 1.09287422e+002 - 1.19362251e+002 9.55075912e+001 1.09321938e+002 1.19391846e+002 - 9.55137405e+001 1.09328026e+002 1.19421707e+002 9.54587936e+001 - 1.09308800e+002 1.19397469e+002 9.54141846e+001 1.09246384e+002 - 1.19360100e+002 9.53919144e+001 1.09237358e+002 1.19348198e+002 - 9.54201965e+001 1.09245132e+002 1.19375374e+002 9.54091873e+001 - 1.09244652e+002 1.19368515e+002 9.54101105e+001 1.09230598e+002 - 1.19373428e+002 9.54189682e+001 1.09250816e+002 1.19382614e+002 - 9.54260864e+001 1.09248711e+002 1.19390038e+002 9.54153976e+001 - 1.09245934e+002 1.19391319e+002 9.54457016e+001 1.09242775e+002 - 1.19417511e+002 9.54372025e+001 1.09241402e+002 1.19405319e+002 - 9.54588089e+001 1.09260124e+002 1.19425339e+002 9.54605789e+001 - 1.09278557e+002 1.19422180e+002 9.54579086e+001 1.09262360e+002 - 1.19422905e+002 9.54778442e+001 1.09288811e+002 1.19431885e+002 - 9.54592285e+001 1.09262558e+002 1.19419449e+002 9.54042816e+001 - 1.09224792e+002 1.19377808e+002 9.54071579e+001 1.09206558e+002 - 1.19370850e+002 9.54115295e+001 1.09223907e+002 1.19377319e+002 - 9.54117203e+001 1.09205750e+002 1.19374886e+002 9.53703918e+001 - 1.09178246e+002 1.19336922e+002 9.53490753e+001 1.09147202e+002 - 1.19315117e+002 9.53584976e+001 1.09159874e+002 1.19316338e+002 - 9.53814621e+001 1.09171104e+002 1.19331238e+002 9.53584442e+001 - 1.09165031e+002 1.19305710e+002 9.53884430e+001 1.09164818e+002 - 1.19322769e+002 9.54212799e+001 1.09209152e+002 1.19347672e+002 - 9.54074860e+001 1.09196205e+002 1.19319588e+002 9.53955154e+001 - 1.09204559e+002 1.19303864e+002 9.54442444e+001 1.09241562e+002 - 1.19343987e+002 9.54762421e+001 1.09288330e+002 1.19354057e+002 - 9.54792404e+001 1.09294266e+002 1.19352898e+002 9.54696198e+001 - 1.09304390e+002 1.19342056e+002 9.54898224e+001 1.09310036e+002 - 1.19345062e+002 9.55027618e+001 1.09335793e+002 1.19339485e+002 - 9.54967194e+001 1.09307327e+002 1.19314240e+002 9.55006943e+001 - 1.09324051e+002 1.19302925e+002 9.55203705e+001 1.09334465e+002 - 1.19300819e+002 9.55496750e+001 1.09374916e+002 1.19315567e+002 - 9.55589523e+001 1.09374405e+002 1.19316788e+002 9.55484695e+001 - 1.09380661e+002 1.19299004e+002 9.55850677e+001 1.09384636e+002 - 1.19313271e+002 9.56100006e+001 1.09422134e+002 1.19318260e+002 - 9.56197205e+001 1.09424644e+002 1.19302826e+002 9.55987396e+001 - 1.09423447e+002 1.19262573e+002 9.56259842e+001 1.09436661e+002 - 1.19269722e+002 9.56427307e+001 1.09460068e+002 1.19250763e+002 - 9.56790848e+001 1.09485214e+002 1.19238228e+002 9.56559525e+001 - 1.09484428e+002 1.19199745e+002 9.56992340e+001 1.09511055e+002 - 1.19215721e+002 9.57273026e+001 1.09552315e+002 1.19223427e+002 - 9.57748260e+001 1.09579506e+002 1.19240486e+002 9.57728958e+001 - 1.09593391e+002 1.19207962e+002 9.57913895e+001 1.09604469e+002 - 1.19192894e+002 9.58274307e+001 1.09654335e+002 1.19200546e+002 - 9.58828583e+001 1.09704514e+002 1.19230820e+002 9.59093475e+001 - 1.09740555e+002 1.19226112e+002 9.59570847e+001 1.09751595e+002 - 1.19220016e+002 9.59642105e+001 1.09775429e+002 1.19203957e+002 - 9.60146255e+001 1.09822182e+002 1.19215332e+002 9.60468597e+001 - 1.09876137e+002 1.19228073e+002 9.60754318e+001 1.09887039e+002 - 1.19221939e+002 9.60952911e+001 1.09923027e+002 1.19201561e+002 - 9.61236191e+001 1.09942085e+002 1.19178490e+002 9.61228790e+001 - 1.09969887e+002 1.19150139e+002 9.61595459e+001 1.09982735e+002 - 1.19143326e+002 9.62081680e+001 1.10045753e+002 1.19164963e+002 - 9.63031998e+001 1.10120300e+002 1.19209846e+002 9.63287506e+001 - 1.10148010e+002 1.19191864e+002 9.63706894e+001 1.10186699e+002 - 1.19184685e+002 9.64138870e+001 1.10236778e+002 1.19183464e+002 - 9.64808731e+001 1.10295624e+002 1.19204727e+002 9.65054092e+001 - 1.10332932e+002 1.19192741e+002 9.65928955e+001 1.10391838e+002 - 1.19228592e+002 9.66329956e+001 1.10445290e+002 1.19233154e+002 - 9.66795807e+001 1.10487549e+002 1.19229141e+002 9.67056580e+001 - 1.10534622e+002 1.19219444e+002 9.67751007e+001 1.10587502e+002 - 1.19256523e+002 9.68214722e+001 1.10648346e+002 1.19258102e+002 - 9.68941193e+001 1.10709335e+002 1.19268394e+002 9.69186554e+001 - 1.10754311e+002 1.19254448e+002 9.69694061e+001 1.10781784e+002 - 1.19254646e+002 9.70099182e+001 1.10837959e+002 1.19262489e+002 - 9.70904388e+001 1.10895844e+002 1.19282631e+002 9.71466675e+001 - 1.10970284e+002 1.19298508e+002 9.72107468e+001 1.11027107e+002 - 1.19309593e+002 9.72670288e+001 1.11090927e+002 1.19319809e+002 - 9.73047104e+001 1.11120850e+002 1.19309708e+002 9.73519135e+001 - 1.11182381e+002 1.19322212e+002 9.74538116e+001 1.11255966e+002 - 1.19369820e+002 9.75218887e+001 1.11339165e+002 1.19392670e+002 - 9.76243744e+001 1.11423340e+002 1.19441154e+002 9.76623688e+001 - 1.11477837e+002 1.19437477e+002 9.77272110e+001 1.11528168e+002 - 1.19456924e+002 9.78174362e+001 1.11614861e+002 1.19477989e+002 - 9.79052505e+001 1.11689209e+002 1.19486725e+002 9.79838409e+001 - 1.11781601e+002 1.19512726e+002 9.80551376e+001 1.11827309e+002 - 1.19526283e+002 9.81224289e+001 1.11909279e+002 1.19551239e+002 - 9.82195587e+001 1.11982239e+002 1.19582535e+002 9.82689972e+001 - 1.12044647e+002 1.19583771e+002 9.83346405e+001 1.12095963e+002 - 1.19590355e+002 9.84360733e+001 1.12201828e+002 1.19639755e+002 - 9.85524750e+001 1.12304871e+002 1.19694382e+002 9.86227264e+001 - 1.12386818e+002 1.19722755e+002 9.87322922e+001 1.12454170e+002 - 1.19750221e+002 9.88227615e+001 1.12555656e+002 1.19784317e+002 - 9.89036865e+001 1.12619675e+002 1.19793129e+002 9.89760513e+001 - 1.12687759e+002 1.19809151e+002 9.90697250e+001 1.12760521e+002 - 1.19845184e+002 9.91599731e+001 1.12840622e+002 1.19866577e+002 - 9.92803650e+001 1.12933273e+002 1.19896423e+002 9.93450546e+001 - 1.13008469e+002 1.19908989e+002 9.94513092e+001 1.13076805e+002 - 1.19954132e+002 9.95561066e+001 1.13183708e+002 1.20004387e+002 - 9.96873245e+001 1.13280182e+002 1.20057106e+002 9.97597809e+001 - 1.13347534e+002 1.20059212e+002 9.98845825e+001 1.13449211e+002 - 1.20105774e+002 1.00006737e+002 1.13566956e+002 1.20154625e+002 - 1.00121246e+002 1.13638268e+002 1.20189491e+002 1.00207359e+002 - 1.13718796e+002 1.20211975e+002 1.00321297e+002 1.13780716e+002 - 1.20240234e+002 1.00450241e+002 1.13892197e+002 1.20288078e+002 - 1.00543625e+002 1.13948318e+002 1.20301620e+002 1.00579041e+002 - 1.13974800e+002 1.20275528e+002 1.00638710e+002 1.13983940e+002 - 1.20263550e+002 1.00618042e+002 1.13959450e+002 1.20181786e+002 - 1.00603554e+002 1.13940353e+002 1.20154678e+002 1.00625603e+002 - 1.14008705e+002 1.20247589e+002 1.00615501e+002 1.14011688e+002 - 1.20291885e+002 1.00552902e+002 1.13981117e+002 1.20295036e+002 - 1.00478424e+002 1.13917427e+002 1.20298470e+002 1.00374588e+002 - 1.13852936e+002 1.20269356e+002 1.00270912e+002 1.13773041e+002 - 1.20256859e+002 1.00137840e+002 1.13668793e+002 1.20191071e+002 - 1.00014595e+002 1.13554420e+002 1.20137817e+002 9.98973694e+001 - 1.13470444e+002 1.20089546e+002 9.98285980e+001 1.13394768e+002 - 1.20090683e+002 9.97336502e+001 1.13321892e+002 1.20064842e+002 - 9.96373138e+001 1.13235748e+002 1.20034508e+002 9.95418472e+001 - 1.13164162e+002 1.20001892e+002 9.94493484e+001 1.13074081e+002 - 1.19961830e+002 9.93626251e+001 1.13009201e+002 1.19937340e+002 - 9.92807236e+001 1.12944397e+002 1.19959053e+002 9.91475067e+001 - 1.12853806e+002 1.19910034e+002 9.90411301e+001 1.12745430e+002 - 1.19854187e+002 9.89458694e+001 1.12669365e+002 1.19813210e+002 - 9.88645172e+001 1.12570915e+002 1.19790642e+002 9.87528000e+001 - 1.12478485e+002 1.19734108e+002 9.86797714e+001 1.12406639e+002 - 1.19722183e+002 9.85804367e+001 1.12319183e+002 1.19670517e+002 - 9.85224762e+001 1.12260361e+002 1.19672638e+002 9.84207230e+001 - 1.12170517e+002 1.19630219e+002 9.83188171e+001 1.12046608e+002 - 1.19585106e+002 9.82494507e+001 1.11996056e+002 1.19572922e+002 - 9.81948624e+001 1.11946556e+002 1.19573730e+002 9.81203995e+001 - 1.11888771e+002 1.19547791e+002 9.80598526e+001 1.11808533e+002 - 1.19527397e+002 9.79751968e+001 1.11741570e+002 1.19493828e+002 - 9.78660431e+001 1.11635216e+002 1.19463997e+002 9.77504425e+001 - 1.11548157e+002 1.19423630e+002 9.76713486e+001 1.11460487e+002 - 1.19390533e+002 9.76170883e+001 1.11416145e+002 1.19387901e+002 - 9.75766068e+001 1.11369659e+002 1.19409966e+002 9.74923782e+001 - 1.11305031e+002 1.19385452e+002 9.74222946e+001 1.11230247e+002 - 1.19370140e+002 9.73622589e+001 1.11182358e+002 1.19361862e+002 - 9.73151703e+001 1.11127205e+002 1.19363724e+002 9.72419662e+001 - 1.11067299e+002 1.19351418e+002 9.72047348e+001 1.11012146e+002 - 1.19360626e+002 9.71395569e+001 1.10956947e+002 1.19340683e+002 - 9.70894775e+001 1.10904388e+002 1.19333054e+002 9.70172806e+001 - 1.10847290e+002 1.19303337e+002 9.69958801e+001 1.10805351e+002 - 1.19313370e+002 9.69508438e+001 1.10772308e+002 1.19309898e+002 - 9.69127960e+001 1.10725334e+002 1.19342865e+002 9.68039017e+001 - 1.10637016e+002 1.19291313e+002 9.67634354e+001 1.10583855e+002 - 1.19286919e+002 9.67274475e+001 1.10559441e+002 1.19290886e+002 - 9.66919708e+001 1.10510429e+002 1.19291023e+002 9.66627426e+001 - 1.10489677e+002 1.19297966e+002 9.66122055e+001 1.10434166e+002 - 1.19293327e+002 9.65799942e+001 1.10414360e+002 1.19299278e+002 - 9.65157166e+001 1.10342094e+002 1.19280647e+002 9.64619370e+001 - 1.10299736e+002 1.19276665e+002 9.64029083e+001 1.10208496e+002 - 1.19247475e+002 9.63624954e+001 1.10173790e+002 1.19241730e+002 - 9.63195724e+001 1.10128601e+002 1.19231216e+002 9.62554626e+001 - 1.10073692e+002 1.19193039e+002 9.62388687e+001 1.10048302e+002 - 1.19205170e+002 9.62142410e+001 1.10025452e+002 1.19202034e+002 - 9.61853943e+001 1.09991028e+002 1.19221725e+002 9.61090469e+001 - 1.09935242e+002 1.19186859e+002 9.60841064e+001 1.09896263e+002 - 1.19182465e+002 9.60608292e+001 1.09884377e+002 1.19195526e+002 - 9.60454025e+001 1.09855614e+002 1.19211189e+002 9.59973831e+001 - 1.09821159e+002 1.19204277e+002 9.59705734e+001 1.09791702e+002 - 1.19217957e+002 9.59147873e+001 1.09740318e+002 1.19186050e+002 - 9.59251862e+001 1.09728210e+002 1.19217964e+002 9.58772964e+001 - 1.09699905e+002 1.19215523e+002 9.58900146e+001 1.09684433e+002 - 1.19252884e+002 9.58776016e+001 1.09675278e+002 1.19271591e+002 - 9.58510284e+001 1.09652512e+002 1.19278290e+002 9.58105927e+001 - 1.09629974e+002 1.19273170e+002 9.57612305e+001 1.09571411e+002 - 1.19246529e+002 9.57491913e+001 1.09567329e+002 1.19260445e+002 - 9.57073898e+001 1.09526756e+002 1.19269135e+002 9.56312027e+001 - 1.09480843e+002 1.19236588e+002 9.56141281e+001 1.09441856e+002 - 1.19234306e+002 9.56113129e+001 1.09442284e+002 1.19245842e+002 - 9.55904007e+001 1.09408775e+002 1.19241730e+002 9.55815811e+001 - 1.09404617e+002 1.19252625e+002 9.55624771e+001 1.09379784e+002 - 1.19252411e+002 9.55401382e+001 1.09369194e+002 1.19244629e+002 - 9.55347824e+001 1.09344421e+002 1.19255684e+002 9.55046844e+001 - 1.09327782e+002 1.19251709e+002 9.55075531e+001 1.09296478e+002 - 1.19269958e+002 9.55090942e+001 1.09313972e+002 1.19299789e+002 - 9.55307312e+001 1.09327209e+002 1.19334747e+002 9.55258713e+001 - 1.09342323e+002 1.19351349e+002 9.54962616e+001 1.09300949e+002 - 1.19333214e+002 9.54879150e+001 1.09310440e+002 1.19333084e+002 - 9.54980621e+001 1.09320869e+002 1.19368706e+002 9.54568405e+001 - 1.09309967e+002 1.19353996e+002 9.54369278e+001 1.09274857e+002 - 1.19339607e+002 9.53974762e+001 1.09245346e+002 1.19309593e+002 - 9.54057541e+001 1.09234718e+002 1.19315628e+002 9.54010544e+001 - 1.09245186e+002 1.19321060e+002 9.53915863e+001 1.09225937e+002 - 1.19317978e+002 9.54076309e+001 1.09247093e+002 1.19329132e+002 - 9.54065704e+001 1.09232300e+002 1.19330528e+002 9.54052200e+001 - 1.09242554e+002 1.19343140e+002 9.54335251e+001 1.09242424e+002 - 1.19367317e+002 9.54240112e+001 1.09240898e+002 1.19351685e+002 - 9.54501953e+001 1.09259598e+002 1.19374313e+002 9.54370728e+001 - 1.09262192e+002 1.19359505e+002 9.54339371e+001 1.09246468e+002 - 1.19357506e+002 9.54515228e+001 1.09272575e+002 1.19368095e+002 - 9.54578400e+001 1.09268463e+002 1.19378296e+002 9.54085770e+001 - 1.09234558e+002 1.19336571e+002 9.53942413e+001 1.09207710e+002 - 1.19318741e+002 9.53872986e+001 1.09210701e+002 1.19315865e+002 - 9.53991241e+001 1.09201477e+002 1.19327904e+002 9.53610306e+001 - 1.09174049e+002 1.19288063e+002 9.53677673e+001 1.09171730e+002 - 1.19296944e+002 9.53634872e+001 1.09177200e+002 1.19281525e+002 - 9.53881454e+001 1.09190498e+002 1.19300789e+002 9.53597107e+001 - 1.09175476e+002 1.19272469e+002 9.53858490e+001 1.09167358e+002 - 1.19274841e+002 9.54076233e+001 1.09196495e+002 1.19291260e+002 - 9.54239044e+001 1.09214790e+002 1.19292778e+002 9.54162598e+001 - 1.09227379e+002 1.19278839e+002 9.54506531e+001 1.09248459e+002 - 1.19299446e+002 9.54672241e+001 1.09285614e+002 1.19310493e+002 - 9.54809723e+001 1.09296341e+002 1.19311844e+002 9.54765549e+001 - 1.09315498e+002 1.19311707e+002 9.54972534e+001 1.09327858e+002 - 1.19316231e+002 9.54981918e+001 1.09336990e+002 1.19306633e+002 - 9.54968796e+001 1.09317955e+002 1.19278099e+002 9.55017624e+001 - 1.09333954e+002 1.19269524e+002 9.55257950e+001 1.09350014e+002 - 1.19277878e+002 9.55430984e+001 1.09376915e+002 1.19278198e+002 - 9.55656128e+001 1.09385818e+002 1.19281494e+002 9.55683899e+001 - 1.09400284e+002 1.19280258e+002 9.55822983e+001 1.09386978e+002 - 1.19265434e+002 9.55835037e+001 1.09401489e+002 1.19261627e+002 - 9.55812607e+001 1.09398460e+002 1.19232269e+002 9.55589828e+001 - 1.09392212e+002 1.19188507e+002 9.55900421e+001 1.09410187e+002 - 1.19197899e+002 9.56260681e+001 1.09447266e+002 1.19188942e+002 - 9.56665802e+001 1.09477013e+002 1.19187683e+002 9.56486969e+001 - 1.09482819e+002 1.19156425e+002 9.56857071e+001 1.09511940e+002 - 1.19166443e+002 9.56943665e+001 1.09526314e+002 1.19155724e+002 - 9.57378159e+001 1.09549095e+002 1.19163841e+002 9.57356644e+001 - 1.09556168e+002 1.19135040e+002 9.57549133e+001 1.09572647e+002 - 1.19121353e+002 9.57981949e+001 1.09628159e+002 1.19130859e+002 - 9.58700562e+001 1.09692451e+002 1.19174843e+002 9.58894577e+001 - 1.09726097e+002 1.19168404e+002 9.59387894e+001 1.09740196e+002 - 1.19169998e+002 9.59432602e+001 1.09758568e+002 1.19143463e+002 - 9.59955063e+001 1.09806335e+002 1.19168449e+002 9.60339203e+001 - 1.09867615e+002 1.19180840e+002 9.60652618e+001 1.09877884e+002 - 1.19176582e+002 9.60872574e+001 1.09913734e+002 1.19157524e+002 - 9.61230087e+001 1.09949432e+002 1.19146858e+002 9.61079483e+001 - 1.09957336e+002 1.19103432e+002 9.61549377e+001 1.09986732e+002 - 1.19113747e+002 9.61881866e+001 1.10033478e+002 1.19117973e+002 - 9.62585373e+001 1.10082558e+002 1.19134743e+002 9.62977142e+001 - 1.10132317e+002 1.19134254e+002 9.63523560e+001 1.10172653e+002 - 1.19139427e+002 9.64007568e+001 1.10227211e+002 1.19137802e+002 - 9.64573059e+001 1.10278870e+002 1.19154251e+002 9.65118713e+001 - 1.10347389e+002 1.19174957e+002 9.65812912e+001 1.10388756e+002 - 1.19187721e+002 9.66013870e+001 1.10420380e+002 1.19167580e+002 - 9.66607513e+001 1.10476578e+002 1.19183762e+002 9.66986084e+001 - 1.10535896e+002 1.19186409e+002 9.67622299e+001 1.10582993e+002 - 1.19215569e+002 9.68166885e+001 1.10646233e+002 1.19219200e+002 - 9.68838043e+001 1.10702232e+002 1.19234276e+002 9.69041214e+001 - 1.10743904e+002 1.19217407e+002 9.69413910e+001 1.10762589e+002 - 1.19209274e+002 9.69865112e+001 1.10817116e+002 1.19213394e+002 - 9.70627441e+001 1.10875763e+002 1.19232269e+002 9.71249695e+001 - 1.10957710e+002 1.19252113e+002 9.71891022e+001 1.11007774e+002 - 1.19268349e+002 9.72386246e+001 1.11069298e+002 1.19267563e+002 - 9.72969818e+001 1.11118217e+002 1.19272789e+002 9.73492584e+001 - 1.11185501e+002 1.19291687e+002 9.74465561e+001 1.11255424e+002 - 1.19335251e+002 9.75154114e+001 1.11334877e+002 1.19363647e+002 - 9.76161652e+001 1.11424347e+002 1.19406021e+002 9.76586838e+001 - 1.11478859e+002 1.19406174e+002 9.77266083e+001 1.11539703e+002 - 1.19437981e+002 9.77980347e+001 1.11602051e+002 1.19435646e+002 - 9.78992157e+001 1.11688629e+002 1.19455803e+002 9.79642944e+001 - 1.11770760e+002 1.19473000e+002 9.80644302e+001 1.11851097e+002 - 1.19521202e+002 9.81259003e+001 1.11922058e+002 1.19537872e+002 - 9.82199783e+001 1.11995827e+002 1.19567078e+002 9.82703857e+001 - 1.12056099e+002 1.19567970e+002 9.83408051e+001 1.12109001e+002 - 1.19575142e+002 9.84291916e+001 1.12205048e+002 1.19611275e+002 - 9.85207596e+001 1.12283264e+002 1.19649490e+002 9.86012650e+001 - 1.12368622e+002 1.19684929e+002 9.87111664e+001 1.12446663e+002 - 1.19713028e+002 9.87856064e+001 1.12520851e+002 1.19733795e+002 - 9.88670654e+001 1.12590546e+002 1.19746033e+002 9.89399033e+001 - 1.12659485e+002 1.19758614e+002 9.90494461e+001 1.12743980e+002 - 1.19803894e+002 9.91458893e+001 1.12833290e+002 1.19833778e+002 - 9.92732239e+001 1.12928848e+002 1.19868271e+002 9.93340683e+001 - 1.12998077e+002 1.19878479e+002 9.94287567e+001 1.13064117e+002 - 1.19912560e+002 9.95419846e+001 1.13179962e+002 1.19971642e+002 - 9.96685638e+001 1.13266281e+002 1.20019890e+002 9.97503204e+001 - 1.13342247e+002 1.20032921e+002 9.98698502e+001 1.13441124e+002 - 1.20078545e+002 9.99979172e+001 1.13562561e+002 1.20137527e+002 - 1.00107544e+002 1.13636642e+002 1.20169724e+002 1.00182014e+002 - 1.13703743e+002 1.20182625e+002 1.00301453e+002 1.13761177e+002 - 1.20204544e+002 1.00429108e+002 1.13880257e+002 1.20265816e+002 - 1.00524284e+002 1.13935822e+002 1.20276962e+002 1.00552071e+002 - 1.13954201e+002 1.20240410e+002 1.00618134e+002 1.13975357e+002 - 1.20237053e+002 1.00599762e+002 1.13943901e+002 1.20150421e+002 - 1.00580673e+002 1.13935883e+002 1.20126167e+002 1.00598946e+002 - 1.13997238e+002 1.20210434e+002 1.00585114e+002 1.13996925e+002 - 1.20256508e+002 1.00518326e+002 1.13964386e+002 1.20255119e+002 - 1.00440567e+002 1.13902016e+002 1.20252739e+002 1.00332451e+002 - 1.13833015e+002 1.20225075e+002 1.00251015e+002 1.13765312e+002 - 1.20227211e+002 1.00111824e+002 1.13657501e+002 1.20147766e+002 - 9.99925690e+001 1.13548996e+002 1.20109451e+002 9.98829575e+001 - 1.13474869e+002 1.20075233e+002 9.98084412e+001 1.13392853e+002 - 1.20071678e+002 9.97167969e+001 1.13325089e+002 1.20045715e+002 - 9.96220779e+001 1.13235413e+002 1.20014076e+002 9.95160675e+001 - 1.13150612e+002 1.19962753e+002 9.94236069e+001 1.13060822e+002 - 1.19921104e+002 9.93454514e+001 1.13009003e+002 1.19911949e+002 - 9.92405014e+001 1.12914543e+002 1.19905617e+002 9.91049347e+001 - 1.12827072e+002 1.19848976e+002 9.90254440e+001 1.12740524e+002 - 1.19815674e+002 9.89242020e+001 1.12660736e+002 1.19773323e+002 - 9.88372803e+001 1.12559135e+002 1.19744797e+002 9.87537155e+001 - 1.12489342e+002 1.19712708e+002 9.86602020e+001 1.12400818e+002 - 1.19684830e+002 9.85631485e+001 1.12309654e+002 1.19634262e+002 - 9.85115738e+001 1.12262421e+002 1.19644653e+002 9.84213409e+001 - 1.12185242e+002 1.19611160e+002 9.83362961e+001 1.12083961e+002 - 1.19591003e+002 9.82428055e+001 1.12002998e+002 1.19550354e+002 - 9.81914291e+001 1.11953217e+002 1.19550262e+002 9.81038208e+001 - 1.11881256e+002 1.19511589e+002 9.80208817e+001 1.11787346e+002 - 1.19468742e+002 9.79376678e+001 1.11714218e+002 1.19433548e+002 - 9.78325958e+001 1.11612625e+002 1.19409828e+002 9.77211227e+001 - 1.11529549e+002 1.19365585e+002 9.76519699e+001 1.11459732e+002 - 1.19351418e+002 9.76002502e+001 1.11423286e+002 1.19351021e+002 - 9.75652008e+001 1.11374756e+002 1.19376862e+002 9.74760590e+001 - 1.11306259e+002 1.19348434e+002 9.74046249e+001 1.11227287e+002 - 1.19335411e+002 9.73463898e+001 1.11181023e+002 1.19319687e+002 - 9.72843704e+001 1.11114304e+002 1.19308388e+002 9.72197723e+001 - 1.11056908e+002 1.19295921e+002 9.71946564e+001 1.11011963e+002 - 1.19312592e+002 9.71340179e+001 1.10967674e+002 1.19307632e+002 - 9.71013412e+001 1.10930038e+002 1.19316826e+002 9.70234985e+001 - 1.10864868e+002 1.19276985e+002 9.70021133e+001 1.10828102e+002 - 1.19290779e+002 9.69524384e+001 1.10784096e+002 1.19285408e+002 - 9.69092255e+001 1.10731567e+002 1.19312355e+002 9.68089294e+001 - 1.10657837e+002 1.19274254e+002 9.67670212e+001 1.10600845e+002 - 1.19264702e+002 9.67086105e+001 1.10557030e+002 1.19245644e+002 - 9.66810226e+001 1.10510429e+002 1.19252190e+002 9.66365128e+001 - 1.10481056e+002 1.19253624e+002 9.65883026e+001 1.10428017e+002 - 1.19253395e+002 9.65690994e+001 1.10417763e+002 1.19260788e+002 - 9.65187836e+001 1.10355270e+002 1.19256981e+002 9.64510727e+001 - 1.10306343e+002 1.19237801e+002 9.63823624e+001 1.10205460e+002 - 1.19202545e+002 9.63282318e+001 1.10157265e+002 1.19181702e+002 - 9.62988663e+001 1.10126503e+002 1.19187897e+002 9.62602844e+001 - 1.10099831e+002 1.19178070e+002 9.62511063e+001 1.10077591e+002 - 1.19191803e+002 9.62317276e+001 1.10061905e+002 1.19193192e+002 - 9.61714249e+001 1.09994240e+002 1.19178116e+002 9.60693512e+001 - 1.09913513e+002 1.19115875e+002 9.60567780e+001 1.09883400e+002 - 1.19124649e+002 9.60235901e+001 1.09862213e+002 1.19129463e+002 - 9.60101395e+001 1.09837173e+002 1.19145630e+002 9.59966736e+001 - 1.09837517e+002 1.19168076e+002 9.59581833e+001 1.09797859e+002 - 1.19172447e+002 9.59088745e+001 1.09751236e+002 1.19146919e+002 - 9.58994141e+001 1.09724762e+002 1.19163506e+002 9.58486176e+001 - 1.09686157e+002 1.19154778e+002 9.58617096e+001 1.09665939e+002 - 1.19187607e+002 9.58557587e+001 1.09670486e+002 1.19214729e+002 - 9.58340607e+001 1.09650887e+002 1.19230415e+002 9.57947769e+001 - 1.09624588e+002 1.19223648e+002 9.57621231e+001 1.09582375e+002 - 1.19218033e+002 9.57445374e+001 1.09576897e+002 1.19224739e+002 - 9.57035141e+001 1.09544937e+002 1.19237465e+002 9.56375504e+001 - 1.09498840e+002 1.19205894e+002 9.56213989e+001 1.09465225e+002 - 1.19201698e+002 9.56071320e+001 1.09456482e+002 1.19206505e+002 - 9.55916367e+001 1.09425758e+002 1.19211960e+002 9.55789261e+001 - 1.09421959e+002 1.19216820e+002 9.55465775e+001 1.09380341e+002 - 1.19199547e+002 9.55247116e+001 1.09369598e+002 1.19196152e+002 - 9.55123825e+001 1.09342598e+002 1.19197586e+002 9.54974976e+001 - 1.09341324e+002 1.19210175e+002 9.54895706e+001 1.09305206e+002 - 1.19225601e+002 9.54921646e+001 1.09315132e+002 1.19243942e+002 - 9.55030365e+001 1.09325539e+002 1.19275803e+002 9.54829407e+001 - 1.09322037e+002 1.19274017e+002 9.54738922e+001 1.09302467e+002 - 1.19273628e+002 9.54586563e+001 1.09293213e+002 1.19262337e+002 - 9.54624023e+001 1.09298271e+002 1.19284935e+002 9.54347610e+001 - 1.09295250e+002 1.19282532e+002 9.54207001e+001 1.09270851e+002 - 1.19275078e+002 9.53850555e+001 1.09247543e+002 1.19252251e+002 - 9.53952637e+001 1.09237564e+002 1.19260612e+002 9.53919601e+001 - 1.09250008e+002 1.19273758e+002 9.53866196e+001 1.09233833e+002 - 1.19273529e+002 9.53947144e+001 1.09245399e+002 1.19282150e+002 - 9.53984985e+001 1.09236290e+002 1.19287033e+002 9.53879318e+001 - 1.09242577e+002 1.19286606e+002 9.53983688e+001 1.09224144e+002 - 1.19292648e+002 9.53891678e+001 1.09220741e+002 1.19278915e+002 - 9.53906631e+001 1.09217537e+002 1.19274582e+002 9.53929520e+001 - 1.09235054e+002 1.19279076e+002 9.53883896e+001 1.09222366e+002 - 1.19276764e+002 9.54145813e+001 1.09252563e+002 1.19293877e+002 - 9.54211578e+001 1.09243408e+002 1.19300629e+002 9.53942947e+001 - 1.09239029e+002 1.19293610e+002 9.53986893e+001 1.09228401e+002 - 1.19287170e+002 9.53822250e+001 1.09221443e+002 1.19274155e+002 - 9.53695755e+001 1.09187302e+002 1.19261528e+002 9.53330536e+001 - 1.09160439e+002 1.19223175e+002 9.53343658e+001 1.09156067e+002 - 1.19221527e+002 9.53397217e+001 1.09170341e+002 1.19220917e+002 - 9.53517151e+001 1.09171440e+002 1.19228371e+002 9.53283005e+001 - 1.09158127e+002 1.19204376e+002 9.53517990e+001 1.09156967e+002 - 1.19207176e+002 9.53856964e+001 1.09197014e+002 1.19230545e+002 - 9.54244766e+001 1.09229614e+002 1.19252258e+002 9.54360123e+001 - 1.09265457e+002 1.19259941e+002 9.54566498e+001 1.09267952e+002 - 1.19267136e+002 9.54499283e+001 1.09277840e+002 1.19250290e+002 - 9.54817810e+001 1.09310036e+002 1.19270905e+002 9.54738464e+001 - 1.09333527e+002 1.19272728e+002 9.54892883e+001 1.09330681e+002 - 1.19266747e+002 9.54720306e+001 1.09326950e+002 1.19241432e+002 - 9.54845047e+001 1.09316605e+002 1.19234749e+002 9.54997101e+001 - 1.09346077e+002 1.19232964e+002 9.55320663e+001 1.09365974e+002 - 1.19247513e+002 9.55366669e+001 1.09382423e+002 1.19229210e+002 - 9.55782623e+001 1.09409325e+002 1.19260040e+002 9.55584106e+001 - 1.09407425e+002 1.19232330e+002 9.55750351e+001 1.09395027e+002 - 1.19231392e+002 9.55892105e+001 1.09423836e+002 1.19221626e+002 - 9.55872650e+001 1.09412704e+002 1.19191429e+002 9.55704727e+001 - 1.09412109e+002 1.19158974e+002 9.55946503e+001 1.09426804e+002 - 1.19160408e+002 9.56335373e+001 1.09471794e+002 1.19163902e+002 - 9.56677475e+001 1.09492111e+002 1.19157211e+002 9.56431427e+001 - 1.09489601e+002 1.19114189e+002 9.56775208e+001 1.09508682e+002 - 1.19124176e+002 9.56821060e+001 1.09527069e+002 1.19110817e+002 - 9.57176437e+001 1.09545586e+002 1.19109718e+002 9.57185898e+001 - 1.09561722e+002 1.19082932e+002 9.57626343e+001 1.09596642e+002 - 1.19102150e+002 9.58184738e+001 1.09663857e+002 1.19124855e+002 - 9.58834457e+001 1.09717606e+002 1.19156021e+002 9.58766098e+001 - 1.09718506e+002 1.19122681e+002 9.59319382e+001 1.09745651e+002 - 1.19131706e+002 9.59616165e+001 1.09786613e+002 1.19126991e+002 - 9.60115128e+001 1.09835358e+002 1.19147034e+002 9.60419998e+001 - 1.09885910e+002 1.19151505e+002 9.60647430e+001 1.09886223e+002 - 1.19138664e+002 9.60745239e+001 1.09910080e+002 1.19106285e+002 - 9.61178055e+001 1.09954666e+002 1.19104942e+002 9.61155319e+001 - 1.09981750e+002 1.19083000e+002 9.61512299e+001 1.10002731e+002 - 1.19088188e+002 9.61750336e+001 1.10038513e+002 1.19077995e+002 - 9.62472839e+001 1.10087257e+002 1.19100128e+002 9.62743912e+001 - 1.10127319e+002 1.19090088e+002 9.63425140e+001 1.10184364e+002 - 1.19107979e+002 9.63776779e+001 1.10224579e+002 1.19097641e+002 - 9.64506302e+001 1.10283691e+002 1.19121628e+002 9.65056686e+001 - 1.10354134e+002 1.19144524e+002 9.65770950e+001 1.10397995e+002 - 1.19163017e+002 9.65839310e+001 1.10417854e+002 1.19126366e+002 - 9.66396561e+001 1.10469009e+002 1.19138580e+002 9.66643600e+001 - 1.10514687e+002 1.19127586e+002 9.67303467e+001 1.10565254e+002 - 1.19158508e+002 9.67938080e+001 1.10630333e+002 1.19169678e+002 - 9.68633118e+001 1.10693741e+002 1.19183174e+002 9.68765335e+001 - 1.10724846e+002 1.19155586e+002 9.69097977e+001 1.10746887e+002 - 1.19152351e+002 9.69549561e+001 1.10801590e+002 1.19156883e+002 - 9.70495071e+001 1.10880669e+002 1.19198700e+002 9.70869446e+001 - 1.10933372e+002 1.19190781e+002 9.71604156e+001 1.10992416e+002 - 1.19209511e+002 9.72218399e+001 1.11067932e+002 1.19226898e+002 - 9.72753372e+001 1.11110199e+002 1.19231377e+002 9.73271484e+001 - 1.11179337e+002 1.19253944e+002 9.74319916e+001 1.11255524e+002 - 1.19297722e+002 9.75046463e+001 1.11341713e+002 1.19328720e+002 - 9.75914230e+001 1.11417580e+002 1.19360466e+002 9.76509018e+001 - 1.11481743e+002 1.19374985e+002 9.77289124e+001 1.11544800e+002 - 1.19404808e+002 9.77928543e+001 1.11611900e+002 1.19409508e+002 - 9.78835373e+001 1.11686333e+002 1.19421036e+002 9.79523087e+001 - 1.11767120e+002 1.19438156e+002 9.80490799e+001 1.11852135e+002 - 1.19489830e+002 9.81093063e+001 1.11917038e+002 1.19501595e+002 - 9.81904755e+001 1.11979965e+002 1.19520920e+002 9.82436066e+001 - 1.12040924e+002 1.19528572e+002 9.83279648e+001 1.12108353e+002 - 1.19541824e+002 9.84135818e+001 1.12203163e+002 1.19580147e+002 - 9.85104599e+001 1.12282364e+002 1.19623047e+002 9.85936813e+001 - 1.12378967e+002 1.19658516e+002 9.86988754e+001 1.12445526e+002 - 1.19686089e+002 9.87798233e+001 1.12532204e+002 1.19704964e+002 - 9.88570328e+001 1.12590683e+002 1.19710930e+002 9.89264908e+001 - 1.12659637e+002 1.19730202e+002 9.90210724e+001 1.12730843e+002 - 1.19763229e+002 9.91323853e+001 1.12828484e+002 1.19801445e+002 - 9.92606812e+001 1.12929565e+002 1.19845108e+002 9.93042450e+001 - 1.12981163e+002 1.19831749e+002 9.94068146e+001 1.13055649e+002 - 1.19879578e+002 9.95035858e+001 1.13148911e+002 1.19925209e+002 - 9.96451797e+001 1.13259750e+002 1.19984169e+002 9.97361908e+001 - 1.13341148e+002 1.20009270e+002 9.98391037e+001 1.13421043e+002 - 1.20041939e+002 9.99653091e+001 1.13541733e+002 1.20097404e+002 - 1.00096458e+002 1.13634834e+002 1.20151978e+002 1.00176544e+002 - 1.13713852e+002 1.20175385e+002 1.00284554e+002 1.13760834e+002 - 1.20190453e+002 1.00415764e+002 1.13879295e+002 1.20244270e+002 - 1.00510658e+002 1.13934196e+002 1.20254761e+002 1.00528854e+002 - 1.13944138e+002 1.20210114e+002 1.00582764e+002 1.13951958e+002 - 1.20200981e+002 1.00575157e+002 1.13928604e+002 1.20118462e+002 - 1.00596840e+002 1.13960464e+002 1.20128059e+002 1.00596642e+002 - 1.14002571e+002 1.20200958e+002 1.00570534e+002 1.13984123e+002 - 1.20228020e+002 1.00502228e+002 1.13945923e+002 1.20225372e+002 - 1.00425896e+002 1.13881958e+002 1.20221214e+002 1.00328537e+002 - 1.13827942e+002 1.20204269e+002 1.00233841e+002 1.13745094e+002 - 1.20192719e+002 1.00110527e+002 1.13658096e+002 1.20141502e+002 - 9.99989548e+001 1.13558731e+002 1.20099701e+002 9.98876419e+001 - 1.13471558e+002 1.20059486e+002 9.98043137e+001 1.13386848e+002 - 1.20051483e+002 9.97269363e+001 1.13335442e+002 1.20039955e+002 - 9.96398392e+001 1.13257790e+002 1.20018539e+002 9.95264893e+001 - 1.13165924e+002 1.19952164e+002 9.94499893e+001 1.13093018e+002 - 1.19936790e+002 9.93500290e+001 1.13016808e+002 1.19897545e+002 - 9.92215347e+001 1.12903534e+002 1.19865517e+002 9.90877304e+001 - 1.12812584e+002 1.19808258e+002 9.90031357e+001 1.12720680e+002 - 1.19776543e+002 9.89216614e+001 1.12653992e+002 1.19747459e+002 - 9.88306961e+001 1.12552948e+002 1.19714439e+002 9.87467194e+001 - 1.12486282e+002 1.19684082e+002 9.86640167e+001 1.12400482e+002 - 1.19662285e+002 9.85995636e+001 1.12349068e+002 1.19643829e+002 - 9.85344162e+001 1.12282616e+002 1.19639282e+002 9.84457779e+001 - 1.12209572e+002 1.19609573e+002 9.83523712e+001 1.12098862e+002 - 1.19576195e+002 9.82778625e+001 1.12039528e+002 1.19557373e+002 - 9.81966171e+001 1.11954529e+002 1.19528175e+002 9.81081161e+001 - 1.11887810e+002 1.19490997e+002 9.80416946e+001 1.11812279e+002 - 1.19464256e+002 9.79436798e+001 1.11726082e+002 1.19413841e+002 - 9.78394165e+001 1.11623230e+002 1.19391060e+002 9.77317047e+001 - 1.11543175e+002 1.19350731e+002 9.76598816e+001 1.11465752e+002 - 1.19329918e+002 9.75988159e+001 1.11421089e+002 1.19326195e+002 - 9.75731888e+001 1.11390305e+002 1.19359077e+002 9.74880219e+001 - 1.11318909e+002 1.19328369e+002 9.74113693e+001 1.11236061e+002 - 1.19312630e+002 9.73437119e+001 1.11181198e+002 1.19287041e+002 - 9.72827377e+001 1.11112823e+002 1.19276192e+002 9.72188416e+001 - 1.11058922e+002 1.19262192e+002 9.71960297e+001 1.11018433e+002 - 1.19287727e+002 9.71650848e+001 1.10999832e+002 1.19306335e+002 - 9.71352997e+001 1.10966431e+002 1.19319000e+002 9.70557709e+001 - 1.10896919e+002 1.19276917e+002 9.70189972e+001 1.10849197e+002 - 1.19271568e+002 9.69444504e+001 1.10782036e+002 1.19242844e+002 - 9.69121704e+001 1.10736740e+002 1.19279510e+002 9.68408661e+001 - 1.10686783e+002 1.19265839e+002 9.67788620e+001 1.10620232e+002 - 1.19244080e+002 9.67333755e+001 1.10582825e+002 1.19237000e+002 - 9.67038956e+001 1.10535561e+002 1.19240044e+002 9.66302032e+001 - 1.10474930e+002 1.19209015e+002 9.65935669e+001 1.10433250e+002 - 1.19220329e+002 9.65591736e+001 1.10409737e+002 1.19225746e+002 - 9.65365524e+001 1.10375664e+002 1.19242722e+002 9.64707031e+001 - 1.10320679e+002 1.19218513e+002 9.64067230e+001 1.10233406e+002 - 1.19194077e+002 9.63397598e+001 1.10173416e+002 1.19167114e+002 - 9.63125229e+001 1.10142342e+002 1.19169746e+002 9.62675018e+001 - 1.10110497e+002 1.19160019e+002 9.62542801e+001 1.10077377e+002 - 1.19159561e+002 9.62338181e+001 1.10068672e+002 1.19161217e+002 - 9.61810455e+001 1.10008636e+002 1.19154510e+002 9.60908279e+001 - 1.09934807e+002 1.19100288e+002 9.60743256e+001 1.09902100e+002 - 1.19106544e+002 9.60670090e+001 1.09904533e+002 1.19130188e+002 - 9.60427322e+001 1.09872437e+002 1.19138374e+002 9.60151978e+001 - 1.09855415e+002 1.19146767e+002 9.59806747e+001 1.09817879e+002 - 1.19154327e+002 9.59423065e+001 1.09787178e+002 1.19148605e+002 - 9.59014969e+001 1.09727722e+002 1.19136917e+002 9.58594360e+001 - 1.09694313e+002 1.19121071e+002 9.58807297e+001 1.09686493e+002 - 1.19169510e+002 9.58652039e+001 1.09684219e+002 1.19185936e+002 - 9.58422012e+001 1.09659706e+002 1.19198624e+002 9.57826309e+001 - 1.09614326e+002 1.19168571e+002 9.57701950e+001 1.09595703e+002 - 1.19185326e+002 9.57529373e+001 1.09590958e+002 1.19190765e+002 - 9.57052994e+001 1.09549942e+002 1.19194267e+002 9.56687012e+001 - 1.09534248e+002 1.19194992e+002 9.56570129e+001 1.09507050e+002 - 1.19200668e+002 9.56428833e+001 1.09497604e+002 1.19200821e+002 - 9.56212616e+001 1.09459167e+002 1.19195679e+002 9.55964508e+001 - 1.09433678e+002 1.19188217e+002 9.55809021e+001 1.09412048e+002 - 1.19189445e+002 9.55520554e+001 1.09398285e+002 1.19177490e+002 - 9.55365829e+001 1.09372932e+002 1.19184433e+002 9.55187073e+001 - 1.09366371e+002 1.19188667e+002 9.55168076e+001 1.09335304e+002 - 1.19200272e+002 9.55235062e+001 1.09350502e+002 1.19230995e+002 - 9.55158691e+001 1.09343971e+002 1.19243858e+002 9.54767456e+001 - 1.09319389e+002 1.19220924e+002 9.54820328e+001 1.09311440e+002 - 1.19236725e+002 9.54755630e+001 1.09317734e+002 1.19235977e+002 - 9.54566498e+001 1.09288971e+002 1.19233955e+002 9.54453735e+001 - 1.09299026e+002 1.19238434e+002 9.54246597e+001 1.09267464e+002 - 1.19223175e+002 9.54296417e+001 1.09285072e+002 1.19239922e+002 - 9.54398422e+001 1.09282722e+002 1.19259315e+002 9.54297485e+001 - 1.09284065e+002 1.19263176e+002 9.54063797e+001 1.09248398e+002 - 1.19240334e+002 9.54005966e+001 1.09254601e+002 1.19238190e+002 - 9.54243164e+001 1.09267952e+002 1.19272232e+002 9.53895874e+001 - 1.09244110e+002 1.19244865e+002 9.53905411e+001 1.09217957e+002 - 1.19239700e+002 9.53934784e+001 1.09231163e+002 1.19246552e+002 - 9.54121628e+001 1.09238457e+002 1.19252113e+002 9.54215622e+001 - 1.09267227e+002 1.19262703e+002 9.54019852e+001 1.09232933e+002 - 1.19244453e+002 9.54184875e+001 1.09259506e+002 1.19256981e+002 - 9.54306564e+001 1.09255875e+002 1.19273102e+002 9.54086685e+001 - 1.09252190e+002 1.19264511e+002 9.53936615e+001 1.09227036e+002 - 1.19244766e+002 9.53867569e+001 1.09227379e+002 1.19238510e+002 - 9.54008789e+001 1.09218163e+002 1.19242821e+002 9.53579559e+001 - 1.09188171e+002 1.19199532e+002 9.53563614e+001 1.09182167e+002 - 1.19203621e+002 9.53451920e+001 1.09176483e+002 1.19180237e+002 - 9.53437119e+001 1.09166321e+002 1.19175247e+002 9.53286591e+001 - 1.09156288e+002 1.19153923e+002 9.53551025e+001 1.09156906e+002 - 1.19164040e+002 9.53879089e+001 1.09198166e+002 1.19188286e+002 - 9.54332733e+001 1.09239929e+002 1.19219368e+002 9.54521332e+001 - 1.09278366e+002 1.19231308e+002 9.54926758e+001 1.09304367e+002 - 1.19256111e+002 9.54866180e+001 1.09315971e+002 1.19240433e+002 - 9.55072098e+001 1.09329086e+002 1.19250900e+002 9.54734116e+001 - 1.09331055e+002 1.19221703e+002 9.54939194e+001 1.09336624e+002 - 1.19221062e+002 9.54905472e+001 1.09343559e+002 1.19211777e+002 - 9.55130081e+001 1.09344284e+002 1.19211800e+002 9.55185013e+001 - 1.09362007e+002 1.19204239e+002 9.55734482e+001 1.09401817e+002 - 1.19240372e+002 9.55852356e+001 1.09431450e+002 1.19234062e+002 - 9.56040955e+001 1.09438194e+002 1.19239799e+002 9.55723343e+001 - 1.09417618e+002 1.19207237e+002 9.55994644e+001 1.09426270e+002 - 1.19211998e+002 9.56092987e+001 1.09446236e+002 1.19200706e+002 - 9.56189651e+001 1.09443207e+002 1.19179131e+002 9.56028519e+001 - 1.09445076e+002 1.19148453e+002 9.56181564e+001 1.09449402e+002 - 1.19137665e+002 9.56518173e+001 1.09479462e+002 1.19135704e+002 - 9.56845398e+001 1.09506058e+002 1.19131645e+002 9.56700363e+001 - 1.09510529e+002 1.19098412e+002 9.56875763e+001 1.09518921e+002 - 1.19099373e+002 9.57191086e+001 1.09561798e+002 1.19105095e+002 - 9.57368851e+001 1.09559097e+002 1.19086365e+002 9.57282257e+001 - 1.09565346e+002 1.19047127e+002 9.57808151e+001 1.09612137e+002 - 1.19074814e+002 9.58238144e+001 1.09668159e+002 1.19080620e+002 - 9.58827133e+001 1.09711258e+002 1.19112389e+002 9.58844604e+001 - 1.09723610e+002 1.19087112e+002 9.59554977e+001 1.09766457e+002 - 1.19107582e+002 9.59807281e+001 1.09807175e+002 1.19105782e+002 - 9.60264130e+001 1.09851357e+002 1.19114311e+002 9.60455246e+001 - 1.09883354e+002 1.19107521e+002 9.60708389e+001 1.09891510e+002 - 1.19098991e+002 9.61113815e+001 1.09940910e+002 1.19099411e+002 - 9.61516266e+001 1.09984352e+002 1.19098587e+002 9.61410446e+001 - 1.10002274e+002 1.19066803e+002 9.61753311e+001 1.10024147e+002 - 1.19070648e+002 9.62144165e+001 1.10072090e+002 1.19080666e+002 - 9.62898331e+001 1.10128456e+002 1.19101974e+002 9.63148270e+001 - 1.10161575e+002 1.19089020e+002 9.63483582e+001 1.10189514e+002 - 1.19078522e+002 9.63905334e+001 1.10237419e+002 1.19076118e+002 - 9.64695053e+001 1.10300713e+002 1.19106659e+002 9.65263596e+001 - 1.10370773e+002 1.19131325e+002 9.65931473e+001 1.10412537e+002 - 1.19138466e+002 9.66107483e+001 1.10442169e+002 1.19116570e+002 - 9.66652679e+001 1.10488205e+002 1.19124275e+002 9.66952286e+001 - 1.10540314e+002 1.19119843e+002 9.67463913e+001 1.10579643e+002 - 1.19135902e+002 9.68192596e+001 1.10653992e+002 1.19155014e+002 - 9.68785706e+001 1.10701248e+002 1.19153412e+002 9.69042816e+001 - 1.10742798e+002 1.19149178e+002 9.69441376e+001 1.10769547e+002 - 1.19144783e+002 9.69885941e+001 1.10831276e+002 1.19152763e+002 - 9.70649872e+001 1.10892006e+002 1.19175896e+002 9.71059494e+001 - 1.10945526e+002 1.19168983e+002 9.71744308e+001 1.11005417e+002 - 1.19191994e+002 9.72425232e+001 1.11084122e+002 1.19214149e+002 - 9.73123779e+001 1.11142746e+002 1.19235924e+002 9.73462906e+001 - 1.11189651e+002 1.19233231e+002 9.74302597e+001 1.11245598e+002 - 1.19254845e+002 9.75224762e+001 1.11348831e+002 1.19302269e+002 - 9.76041336e+001 1.11417557e+002 1.19335350e+002 9.76507721e+001 - 1.11478676e+002 1.19334465e+002 9.77201080e+001 1.11531487e+002 - 1.19358887e+002 9.77882919e+001 1.11601509e+002 1.19364174e+002 - 9.78908615e+001 1.11686424e+002 1.19395035e+002 9.79481354e+001 - 1.11765312e+002 1.19411804e+002 9.80467072e+001 1.11842201e+002 - 1.19457100e+002 9.81169205e+001 1.11926331e+002 1.19480766e+002 - 9.82134933e+001 1.12002136e+002 1.19516594e+002 9.82606049e+001 - 1.12062370e+002 1.19516685e+002 9.83252563e+001 1.12104378e+002 - 1.19518181e+002 9.84063721e+001 1.12197906e+002 1.19548470e+002 - 9.85076675e+001 1.12277924e+002 1.19591454e+002 9.86105042e+001 - 1.12390190e+002 1.19649422e+002 9.87098618e+001 1.12454346e+002 - 1.19667343e+002 9.88013382e+001 1.12539047e+002 1.19692207e+002 - 9.88798523e+001 1.12601753e+002 1.19704475e+002 9.89454956e+001 - 1.12675247e+002 1.19719147e+002 9.90366745e+001 1.12736488e+002 - 1.19751991e+002 9.91399689e+001 1.12832329e+002 1.19781815e+002 - 9.92392883e+001 1.12904861e+002 1.19793991e+002 9.93100586e+001 - 1.12983986e+002 1.19810143e+002 9.94306183e+001 1.13071487e+002 - 1.19884186e+002 9.95297928e+001 1.13167549e+002 1.19929207e+002 - 9.96616058e+001 1.13267502e+002 1.19981560e+002 9.97278519e+001 - 1.13329636e+002 1.19988991e+002 9.98588715e+001 1.13434700e+002 - 1.20036896e+002 9.99745102e+001 1.13547836e+002 1.20090469e+002 - 1.00090363e+002 1.13631920e+002 1.20131172e+002 1.00185097e+002 - 1.13715210e+002 1.20164566e+002 1.00294594e+002 1.13771271e+002 - 1.20180588e+002 1.00408333e+002 1.13876076e+002 1.20225121e+002 - 1.00507263e+002 1.13929573e+002 1.20236641e+002 1.00529106e+002 - 1.13938782e+002 1.20193626e+002 1.00583336e+002 1.13951431e+002 - 1.20184128e+002 1.00596382e+002 1.13943687e+002 1.20121132e+002 - 1.00581535e+002 1.13941292e+002 1.20098640e+002 1.00576805e+002 - 1.13986397e+002 1.20170982e+002 1.00556770e+002 1.13973335e+002 - 1.20198723e+002 1.00484039e+002 1.13928024e+002 1.20194717e+002 - 1.00396530e+002 1.13858315e+002 1.20190727e+002 1.00296570e+002 - 1.13794861e+002 1.20162010e+002 1.00199348e+002 1.13713196e+002 - 1.20152855e+002 1.00098915e+002 1.13651657e+002 1.20119835e+002 - 9.99974365e+001 1.13564186e+002 1.20090286e+002 9.98769684e+001 - 1.13471359e+002 1.20042641e+002 9.98171387e+001 1.13408928e+002 - 1.20055244e+002 9.97186356e+001 1.13333984e+002 1.20018173e+002 - 9.96096725e+001 1.13232079e+002 1.19972626e+002 9.95149307e+001 - 1.13159203e+002 1.19930107e+002 9.94432755e+001 1.13089684e+002 - 1.19912460e+002 9.93240814e+001 1.12991280e+002 1.19857712e+002 - 9.92106400e+001 1.12894348e+002 1.19835815e+002 9.90824890e+001 - 1.12803955e+002 1.19778183e+002 9.90090256e+001 1.12730370e+002 - 1.19756973e+002 9.89189377e+001 1.12653961e+002 1.19719749e+002 - 9.88242950e+001 1.12554169e+002 1.19689560e+002 9.87373810e+001 - 1.12475349e+002 1.19657555e+002 9.86645660e+001 1.12400131e+002 - 1.19636108e+002 9.85917282e+001 1.12352150e+002 1.19613129e+002 - 9.85374756e+001 1.12289124e+002 1.19622520e+002 9.84336090e+001 - 1.12197441e+002 1.19574852e+002 9.83520050e+001 1.12102592e+002 - 1.19551079e+002 9.82760391e+001 1.12043999e+002 1.19538216e+002 - 9.81987839e+001 1.11964203e+002 1.19515594e+002 9.81197205e+001 - 1.11907074e+002 1.19483177e+002 9.80430069e+001 1.11821075e+002 - 1.19448792e+002 9.79536209e+001 1.11739746e+002 1.19406105e+002 - 9.78507004e+001 1.11645432e+002 1.19385704e+002 9.77300262e+001 - 1.11542068e+002 1.19322632e+002 9.76549911e+001 1.11468086e+002 - 1.19304642e+002 9.76128845e+001 1.11438095e+002 1.19312965e+002 - 9.75650177e+001 1.11384087e+002 1.19334122e+002 9.74911423e+001 - 1.11326439e+002 1.19307411e+002 9.74378281e+001 1.11271973e+002 - 1.19314705e+002 9.73570557e+001 1.11200241e+002 1.19278564e+002 - 9.72871628e+001 1.11119392e+002 1.19252739e+002 9.72455673e+001 - 1.11085098e+002 1.19264259e+002 9.72363052e+001 1.11059296e+002 - 1.19301651e+002 9.71862640e+001 1.11017578e+002 1.19294998e+002 - 9.71263885e+001 1.10955513e+002 1.19277473e+002 9.70364151e+001 - 1.10881592e+002 1.19229019e+002 9.69804459e+001 1.10812622e+002 - 1.19211258e+002 9.69410019e+001 1.10779846e+002 1.19214592e+002 - 9.68984070e+001 1.10733131e+002 1.19235336e+002 9.68068466e+001 - 1.10655235e+002 1.19195450e+002 9.67690277e+001 1.10611214e+002 - 1.19197723e+002 9.67293243e+001 1.10578484e+002 1.19195351e+002 - 9.66738586e+001 1.10514030e+002 1.19183708e+002 9.66184692e+001 - 1.10467705e+002 1.19167999e+002 9.65813751e+001 1.10420540e+002 - 1.19176003e+002 9.65336304e+001 1.10385841e+002 1.19164825e+002 - 9.65145950e+001 1.10356575e+002 1.19184898e+002 9.64645157e+001 - 1.10318268e+002 1.19183746e+002 9.64428101e+001 1.10270012e+002 - 1.19198975e+002 9.63837967e+001 1.10220398e+002 1.19177094e+002 - 9.63325424e+001 1.10169159e+002 1.19159843e+002 9.62868652e+001 - 1.10134399e+002 1.19147209e+002 9.62860031e+001 1.10116837e+002 - 1.19163765e+002 9.62446289e+001 1.10087639e+002 1.19150444e+002 - 9.61935349e+001 1.10023766e+002 1.19130135e+002 9.60997620e+001 - 1.09947960e+002 1.19072990e+002 9.60865555e+001 1.09920792e+002 - 1.19079834e+002 9.60491943e+001 1.09894554e+002 1.19076721e+002 - 9.60432510e+001 1.09877930e+002 1.19105133e+002 9.60110703e+001 - 1.09856216e+002 1.19108177e+002 9.59717255e+001 1.09807571e+002 - 1.19108154e+002 9.59161453e+001 1.09763077e+002 1.19085876e+002 - 9.58954239e+001 1.09725609e+002 1.19094231e+002 9.58609161e+001 - 1.09697433e+002 1.19092735e+002 9.58906403e+001 1.09702278e+002 - 1.19145035e+002 9.58412704e+001 1.09659622e+002 1.19122726e+002 - 9.58093262e+001 1.09625275e+002 1.19125153e+002 9.57744446e+001 - 1.09610718e+002 1.19117836e+002 9.57783356e+001 1.09604218e+002 - 1.19150238e+002 9.57667389e+001 1.09604118e+002 1.19163315e+002 - 9.57098694e+001 1.09551292e+002 1.19157509e+002 9.56416855e+001 - 1.09509842e+002 1.19130157e+002 9.56562271e+001 1.09510330e+002 - 1.19154663e+002 9.56436081e+001 1.09499840e+002 1.19158386e+002 - 9.56331177e+001 1.09465950e+002 1.19166000e+002 9.55750732e+001 - 1.09422325e+002 1.19128540e+002 9.55559769e+001 1.09393837e+002 - 1.19126678e+002 9.55597076e+001 1.09407326e+002 1.19149490e+002 - 9.55436478e+001 1.09380989e+002 1.19151413e+002 9.55074844e+001 - 1.09355957e+002 1.19137589e+002 9.55120544e+001 1.09337425e+002 - 1.19159470e+002 9.55137634e+001 1.09347855e+002 1.19175072e+002 - 9.55275497e+001 1.09355125e+002 1.19206604e+002 9.54829788e+001 - 1.09329796e+002 1.19181389e+002 9.54659653e+001 1.09302773e+002 - 1.19171722e+002 9.54844055e+001 1.09321838e+002 1.19194351e+002 - 9.54758224e+001 1.09302956e+002 1.19196075e+002 9.54240265e+001 - 1.09274261e+002 1.19169151e+002 9.54271851e+001 1.09272072e+002 - 1.19181091e+002 9.54373856e+001 1.09291832e+002 1.19200134e+002 - 9.54681854e+001 1.09306030e+002 1.19239189e+002 9.54325943e+001 - 1.09288498e+002 1.19208374e+002 9.54016495e+001 1.09248566e+002 - 1.19191315e+002 9.54154358e+001 1.09269302e+002 1.19212959e+002 - 9.54080505e+001 1.09253761e+002 1.19211311e+002 9.53686905e+001 - 1.09219284e+002 1.19180603e+002 9.53668671e+001 1.09196358e+002 - 1.19175247e+002 9.53825912e+001 1.09226303e+002 1.19194275e+002 - 9.53974075e+001 1.09232246e+002 1.19203140e+002 9.53920746e+001 - 1.09243103e+002 1.19197639e+002 9.54078979e+001 1.09250206e+002 - 1.19223640e+002 9.54401627e+001 1.09286774e+002 1.19243019e+002 - 9.54693298e+001 1.09298409e+002 1.19275406e+002 9.54282837e+001 - 1.09278267e+002 1.19242218e+002 9.54239578e+001 1.09263596e+002 - 1.19238983e+002 9.54259491e+001 1.09270172e+002 1.19232964e+002 - 9.54282227e+001 1.09256012e+002 1.19232582e+002 9.53872604e+001 - 1.09223495e+002 1.19185974e+002 9.53762817e+001 1.09202789e+002 - 1.19175484e+002 9.53710098e+001 1.09209358e+002 1.19164276e+002 - 9.53670883e+001 1.09192596e+002 1.19160355e+002 9.53427734e+001 - 1.09174149e+002 1.19127823e+002 9.53863068e+001 1.09183403e+002 - 1.19151718e+002 9.54051361e+001 1.09221222e+002 1.19162254e+002 - 9.54388504e+001 1.09254242e+002 1.19185196e+002 9.54529724e+001 - 1.09286995e+002 1.19191780e+002 9.54938202e+001 1.09313324e+002 - 1.19221489e+002 9.54850693e+001 1.09315033e+002 1.19194778e+002 - 9.55310516e+001 1.09355225e+002 1.19225777e+002 9.54937134e+001 - 1.09344559e+002 1.19187981e+002 9.54776535e+001 1.09321106e+002 - 1.19160423e+002 9.54923401e+001 1.09344841e+002 1.19165680e+002 - 9.55035477e+001 1.09335602e+002 1.19156364e+002 9.55143127e+001 - 1.09357208e+002 1.19152306e+002 9.55503311e+001 1.09380264e+002 - 1.19175896e+002 9.55829239e+001 1.09428841e+002 1.19195061e+002 - 9.55809097e+001 1.09417381e+002 1.19179527e+002 9.55820389e+001 - 1.09428017e+002 1.19173317e+002 9.55990906e+001 1.09419266e+002 - 1.19167938e+002 9.56016617e+001 1.09434700e+002 1.19153549e+002 - 9.56267242e+001 1.09451782e+002 1.19149895e+002 9.56231232e+001 - 1.09462387e+002 1.19122070e+002 9.56501770e+001 1.09473991e+002 - 1.19118622e+002 9.56857071e+001 1.09511803e+002 1.19122704e+002 - 9.57107773e+001 1.09525879e+002 1.19110527e+002 9.56891479e+001 - 1.09521172e+002 1.19073914e+002 9.57017136e+001 1.09522858e+002 - 1.19063721e+002 9.57380676e+001 1.09574432e+002 1.19076797e+002 - 9.57583847e+001 1.09583115e+002 1.19067131e+002 9.57492294e+001 - 1.09592178e+002 1.19032822e+002 9.57801743e+001 1.09607590e+002 - 1.19026604e+002 9.58288727e+001 1.09668137e+002 1.19049736e+002 - 9.58795166e+001 1.09705292e+002 1.19062332e+002 9.58887405e+001 - 1.09720512e+002 1.19044174e+002 9.59832764e+001 1.09793213e+002 - 1.19088448e+002 9.60091782e+001 1.09832664e+002 1.19088463e+002 - 9.60348206e+001 1.09855164e+002 1.19080307e+002 9.60408859e+001 - 1.09879181e+002 1.19062950e+002 9.60686874e+001 1.09891197e+002 - 1.19056015e+002 9.61141357e+001 1.09947159e+002 1.19060524e+002 - 9.61751251e+001 1.10003578e+002 1.19076508e+002 9.61647568e+001 - 1.10019295e+002 1.19042252e+002 9.61853485e+001 1.10038109e+002 - 1.19040367e+002 9.62317352e+001 1.10087189e+002 1.19051743e+002 - 9.62933273e+001 1.10128654e+002 1.19062981e+002 9.63232422e+001 - 1.10171417e+002 1.19058098e+002 9.63699646e+001 1.10205032e+002 - 1.19057716e+002 9.64138718e+001 1.10262604e+002 1.19065781e+002 - 9.64985809e+001 1.10333130e+002 1.19104874e+002 9.65219574e+001 - 1.10368187e+002 1.19089523e+002 9.65873489e+001 1.10411659e+002 - 1.19097855e+002 9.66260605e+001 1.10461449e+002 1.19093620e+002 - 9.66789474e+001 1.10503899e+002 1.19097649e+002 9.67194366e+001 - 1.10565109e+002 1.19105331e+002 9.67626572e+001 1.10590530e+002 - 1.19111115e+002 9.68042831e+001 1.10633881e+002 1.19099785e+002 - 9.68500443e+001 1.10671844e+002 1.19088425e+002 9.68878784e+001 - 1.10725739e+002 1.19091118e+002 9.69324265e+001 1.10760582e+002 - 1.19096039e+002 9.69781113e+001 1.10814995e+002 1.19102188e+002 - 9.70684814e+001 1.10891937e+002 1.19139839e+002 9.71085052e+001 - 1.10944832e+002 1.19138237e+002 9.71850586e+001 1.11014175e+002 - 1.19159706e+002 9.72305374e+001 1.11074104e+002 1.19162666e+002 - 9.73052368e+001 1.11130913e+002 1.19187866e+002 9.73592987e+001 - 1.11200180e+002 1.19204720e+002 9.74524536e+001 1.11259735e+002 - 1.19238014e+002 9.75154266e+001 1.11335205e+002 1.19255936e+002 - 9.76012497e+001 1.11412521e+002 1.19291527e+002 9.76582336e+001 - 1.11477684e+002 1.19301819e+002 9.77261353e+001 1.11537010e+002 - 1.19327354e+002 9.77918243e+001 1.11604385e+002 1.19340927e+002 - 9.78932571e+001 1.11681549e+002 1.19359314e+002 9.79335327e+001 - 1.11750488e+002 1.19368942e+002 9.80248413e+001 1.11826042e+002 - 1.19409866e+002 9.80906601e+001 1.11897919e+002 1.19434624e+002 - 9.81886063e+001 1.11979004e+002 1.19472527e+002 9.82309265e+001 - 1.12027046e+002 1.19459747e+002 9.82989578e+001 1.12076141e+002 - 1.19461395e+002 9.83841934e+001 1.12176323e+002 1.19502007e+002 - 9.84941025e+001 1.12263809e+002 1.19550575e+002 9.85764771e+001 - 1.12345360e+002 1.19580635e+002 9.86916122e+001 1.12429321e+002 - 1.19619438e+002 9.87962799e+001 1.12534302e+002 1.19665733e+002 - 9.89018784e+001 1.12618088e+002 1.19699478e+002 9.89368134e+001 - 1.12662834e+002 1.19680717e+002 9.90276794e+001 1.12724449e+002 - 1.19713005e+002 9.91166229e+001 1.12811356e+002 1.19735107e+002 - 9.92038803e+001 1.12865196e+002 1.19737778e+002 9.92860489e+001 - 1.12961693e+002 1.19773415e+002 9.93879623e+001 1.13030769e+002 - 1.19818130e+002 9.95060425e+001 1.13147018e+002 1.19887482e+002 - 9.96170349e+001 1.13219696e+002 1.19916359e+002 9.96828232e+001 - 1.13290787e+002 1.19922401e+002 9.98120346e+001 1.13388405e+002 - 1.19977104e+002 9.99296570e+001 1.13506996e+002 1.20034698e+002 - 1.00046272e+002 1.13587891e+002 1.20071999e+002 1.00159172e+002 - 1.13687599e+002 1.20122353e+002 1.00278450e+002 1.13754570e+002 - 1.20145660e+002 1.00368088e+002 1.13831169e+002 1.20165154e+002 - 1.00456612e+002 1.13871071e+002 1.20163864e+002 1.00504143e+002 - 1.13913277e+002 1.20153488e+002 1.00580482e+002 1.13943192e+002 - 1.20161331e+002 1.00557594e+002 1.13902161e+002 1.20057289e+002 - 1.00549332e+002 1.13918526e+002 1.20065048e+002 1.00554138e+002 - 1.13968529e+002 1.20138351e+002 1.00533676e+002 1.13955528e+002 - 1.20180275e+002 1.00457169e+002 1.13913551e+002 1.20170387e+002 - 1.00359894e+002 1.13832481e+002 1.20152451e+002 1.00265144e+002 - 1.13771469e+002 1.20125916e+002 1.00181763e+002 1.13710587e+002 - 1.20132294e+002 1.00071716e+002 1.13639427e+002 1.20087563e+002 - 9.99895859e+001 1.13560112e+002 1.20081245e+002 9.98703232e+001 - 1.13482010e+002 1.20034988e+002 9.97894821e+001 1.13398750e+002 - 1.20022018e+002 9.97139740e+001 1.13338593e+002 1.20008896e+002 - 9.96125641e+001 1.13249619e+002 1.19973541e+002 9.94917984e+001 - 1.13151039e+002 1.19902306e+002 9.94086990e+001 1.13068352e+002 - 1.19869957e+002 9.93124619e+001 1.12987839e+002 1.19830948e+002 - 9.92079468e+001 1.12898155e+002 1.19814438e+002 9.90831223e+001 - 1.12809525e+002 1.19763618e+002 9.90035629e+001 1.12728386e+002 - 1.19737160e+002 9.89047623e+001 1.12650558e+002 1.19697227e+002 - 9.88161545e+001 1.12552872e+002 1.19664024e+002 9.87238846e+001 - 1.12476974e+002 1.19629402e+002 9.86414566e+001 1.12396713e+002 - 1.19610298e+002 9.85885544e+001 1.12353127e+002 1.19599731e+002 - 9.85098648e+001 1.12274887e+002 1.19579536e+002 9.83986282e+001 - 1.12178024e+002 1.19524666e+002 9.83158340e+001 1.12082176e+002 - 1.19513763e+002 9.82445145e+001 1.12021645e+002 1.19488609e+002 - 9.81744385e+001 1.11957596e+002 1.19477417e+002 9.80909805e+001 - 1.11888428e+002 1.19439095e+002 9.80319061e+001 1.11818886e+002 - 1.19426750e+002 9.79448395e+001 1.11740250e+002 1.19387260e+002 - 9.78310242e+001 1.11628372e+002 1.19346466e+002 9.77060776e+001 - 1.11528564e+002 1.19284645e+002 9.76429443e+001 1.11460228e+002 - 1.19274612e+002 9.76097107e+001 1.11446762e+002 1.19296867e+002 - 9.75492554e+001 1.11375931e+002 1.19292709e+002 9.74750366e+001 - 1.11321396e+002 1.19272232e+002 9.74185867e+001 1.11258438e+002 - 1.19275475e+002 9.73405762e+001 1.11191574e+002 1.19241020e+002 - 9.72864456e+001 1.11127785e+002 1.19234840e+002 9.72302170e+001 - 1.11081123e+002 1.19224762e+002 9.72074432e+001 1.11035713e+002 - 1.19249680e+002 9.71679306e+001 1.11007889e+002 1.19256111e+002 - 9.71002350e+001 1.10941528e+002 1.19232140e+002 9.70079117e+001 - 1.10862770e+002 1.19180153e+002 9.69562988e+001 1.10798508e+002 - 1.19162704e+002 9.69308853e+001 1.10778252e+002 1.19177567e+002 - 9.68831406e+001 1.10718353e+002 1.19195625e+002 9.67918549e+001 - 1.10652916e+002 1.19164001e+002 9.67499161e+001 1.10600609e+002 - 1.19150589e+002 9.66934357e+001 1.10557510e+002 1.19138451e+002 - 9.66453094e+001 1.10487762e+002 1.19124641e+002 9.66027908e+001 - 1.10459114e+002 1.19125511e+002 9.65803070e+001 1.10432625e+002 - 1.19156364e+002 9.65281372e+001 1.10385422e+002 1.19134705e+002 - 9.64945602e+001 1.10346008e+002 1.19142845e+002 9.64336319e+001 - 1.10298714e+002 1.19126350e+002 9.64157791e+001 1.10256416e+002 - 1.19149170e+002 9.63697052e+001 1.10220482e+002 1.19139290e+002 - 9.63213730e+001 1.10169434e+002 1.19131447e+002 9.62601395e+001 - 1.10124084e+002 1.19104073e+002 9.62560501e+001 1.10097198e+002 - 1.19118080e+002 9.62260590e+001 1.10072571e+002 1.19102112e+002 - 9.61672821e+001 1.10004395e+002 1.19077034e+002 9.60812836e+001 - 1.09935242e+002 1.19026802e+002 9.60632324e+001 1.09906479e+002 - 1.19033264e+002 9.60316620e+001 1.09888863e+002 1.19033539e+002 - 9.60091324e+001 1.09848450e+002 1.19042465e+002 9.59799728e+001 - 1.09835899e+002 1.19050758e+002 9.59549637e+001 1.09804947e+002 - 1.19065681e+002 9.59177856e+001 1.09772278e+002 1.19062073e+002 - 9.58851624e+001 1.09725372e+002 1.19062950e+002 9.58369751e+001 - 1.09690231e+002 1.19051079e+002 9.58576813e+001 1.09676331e+002 - 1.19089935e+002 9.58098373e+001 1.09639511e+002 1.19062508e+002 - 9.58084793e+001 1.09638298e+002 1.19091805e+002 9.57628174e+001 - 1.09610268e+002 1.19079971e+002 9.57524719e+001 1.09589348e+002 - 1.19099747e+002 9.57543030e+001 1.09602463e+002 1.19120110e+002 - 9.57134628e+001 1.09564995e+002 1.19130913e+002 9.56581573e+001 - 1.09538940e+002 1.19109428e+002 9.56620789e+001 1.09520462e+002 - 1.19127548e+002 9.56311722e+001 1.09504234e+002 1.19116257e+002 - 9.56096649e+001 1.09459641e+002 1.19107292e+002 9.55706558e+001 - 1.09428596e+002 1.19091171e+002 9.55429764e+001 1.09393425e+002 - 1.19084801e+002 9.55193787e+001 1.09375839e+002 1.19074135e+002 - 9.55228958e+001 1.09366264e+002 1.19090248e+002 9.54947052e+001 - 1.09349716e+002 1.19089722e+002 9.55050659e+001 1.09335777e+002 - 1.19115623e+002 9.55036469e+001 1.09340721e+002 1.19126740e+002 - 9.55079575e+001 1.09343559e+002 1.19153992e+002 9.54874878e+001 - 1.09344185e+002 1.19148468e+002 9.54808578e+001 1.09323387e+002 - 1.19152893e+002 9.54923401e+001 1.09338387e+002 1.19164391e+002 - 9.54973526e+001 1.09334969e+002 1.19189232e+002 9.54388885e+001 - 1.09298561e+002 1.19152863e+002 9.54410324e+001 1.09295502e+002 - 1.19163139e+002 9.54356613e+001 1.09298721e+002 1.19161316e+002 - 9.54630508e+001 1.09312897e+002 1.19202110e+002 9.54287109e+001 - 1.09291130e+002 1.19175743e+002 9.54045563e+001 1.09261642e+002 - 1.19166550e+002 9.54117889e+001 1.09275558e+002 1.19175980e+002 - 9.53857727e+001 1.09235184e+002 1.19155540e+002 9.53611679e+001 - 1.09230408e+002 1.19144798e+002 9.53710175e+001 1.09211716e+002 - 1.19152000e+002 9.53828049e+001 1.09235817e+002 1.19168938e+002 - 9.53984299e+001 1.09248833e+002 1.19173248e+002 9.54019547e+001 - 1.09267555e+002 1.19182983e+002 9.54304199e+001 1.09284103e+002 - 1.19213097e+002 9.54406357e+001 1.09292542e+002 1.19213020e+002 - 9.54681015e+001 1.09308540e+002 1.19239761e+002 9.54512482e+001 - 1.09311661e+002 1.19232727e+002 9.54314880e+001 1.09278915e+002 - 1.19209938e+002 9.54105835e+001 1.09261635e+002 1.19186607e+002 - 9.54189987e+001 1.09253326e+002 1.19187073e+002 9.53991013e+001 - 1.09247108e+002 1.19168175e+002 9.53820343e+001 1.09225838e+002 - 1.19151855e+002 9.53790207e+001 1.09226967e+002 1.19139503e+002 - 9.53661804e+001 1.09203400e+002 1.19128273e+002 9.53406296e+001 - 1.09190384e+002 1.19097626e+002 9.53845444e+001 1.09200386e+002 - 1.19125374e+002 9.54094086e+001 1.09230125e+002 1.19136620e+002 - 9.54204025e+001 1.09245094e+002 1.19133347e+002 9.54561844e+001 - 1.09296524e+002 1.19159805e+002 9.54734726e+001 1.09305283e+002 - 1.19167839e+002 9.54798889e+001 1.09317131e+002 1.19153351e+002 - 9.55206528e+001 1.09359322e+002 1.19179840e+002 9.54875107e+001 - 1.09349792e+002 1.19146156e+002 9.54837036e+001 1.09332153e+002 - 1.19124580e+002 9.54861984e+001 1.09344559e+002 1.19125824e+002 - 9.55057602e+001 1.09339111e+002 1.19120453e+002 9.55292435e+001 - 1.09375145e+002 1.19131798e+002 9.55416565e+001 1.09381271e+002 - 1.19138680e+002 9.55513992e+001 1.09401184e+002 1.19132484e+002 - 9.55735016e+001 1.09415131e+002 1.19140167e+002 9.55720673e+001 - 1.09426117e+002 1.19135132e+002 9.55911942e+001 1.09418465e+002 - 1.19127747e+002 9.55951004e+001 1.09436874e+002 1.19117233e+002 - 9.56132584e+001 1.09443558e+002 1.19105545e+002 9.56117172e+001 - 1.09454346e+002 1.19076782e+002 9.56424103e+001 1.09469955e+002 - 1.19081589e+002 9.56811905e+001 1.09513130e+002 1.19083130e+002 - 9.57017975e+001 1.09519707e+002 1.19064133e+002 9.56673431e+001 - 1.09511169e+002 1.19020699e+002 9.56923370e+001 1.09517647e+002 - 1.19020500e+002 9.57233276e+001 1.09567276e+002 1.19030678e+002 - 9.57326202e+001 1.09561844e+002 1.19008148e+002 9.57542877e+001 - 1.09598701e+002 1.19002815e+002 9.58040009e+001 1.09642288e+002 - 1.19020859e+002 9.58359833e+001 1.09685387e+002 1.19020706e+002 - 9.58737259e+001 1.09708763e+002 1.19024193e+002 9.58920822e+001 - 1.09739975e+002 1.19020325e+002 9.59697418e+001 1.09783867e+002 - 1.19049431e+002 9.59970779e+001 1.09821457e+002 1.19043175e+002 - 9.60108109e+001 1.09834587e+002 1.19029327e+002 9.60235519e+001 - 1.09866791e+002 1.19014877e+002 9.60674286e+001 1.09903137e+002 - 1.19030174e+002 9.61132965e+001 1.09954529e+002 1.19033447e+002 - 9.61817856e+001 1.10014648e+002 1.19048775e+002 9.61796799e+001 - 1.10046059e+002 1.19030090e+002 9.62041092e+001 1.10055519e+002 - 1.19020149e+002 9.62281494e+001 1.10091713e+002 1.19014725e+002 - 9.62825546e+001 1.10127342e+002 1.19027565e+002 9.63204727e+001 - 1.10172150e+002 1.19026443e+002 9.63754044e+001 1.10216911e+002 - 1.19035599e+002 9.64236069e+001 1.10272873e+002 1.19048035e+002 - 9.64722366e+001 1.10314095e+002 1.19049835e+002 9.65176620e+001 - 1.10373047e+002 1.19056740e+002 9.66052017e+001 1.10434166e+002 - 1.19089523e+002 9.66229782e+001 1.10461090e+002 1.19065918e+002 - 9.66798553e+001 1.10510406e+002 1.19068901e+002 9.67080154e+001 - 1.10551392e+002 1.19062347e+002 9.67498322e+001 1.10589035e+002 - 1.19077393e+002 9.67966232e+001 1.10627251e+002 1.19066170e+002 - 9.68572388e+001 1.10677704e+002 1.19063858e+002 9.68811417e+001 - 1.10724434e+002 1.19053070e+002 9.69193192e+001 1.10748077e+002 - 1.19054764e+002 9.69710159e+001 1.10816292e+002 1.19071114e+002 - 9.70502167e+001 1.10878654e+002 1.19093567e+002 9.70990448e+001 - 1.10943764e+002 1.19100784e+002 9.71642151e+001 1.10996178e+002 - 1.19111900e+002 9.72358627e+001 1.11079422e+002 1.19139824e+002 - 9.73096924e+001 1.11136452e+002 1.19164925e+002 9.73810654e+001 - 1.11220886e+002 1.19195999e+002 9.74910431e+001 1.11298363e+002 - 1.19242920e+002 9.75332031e+001 1.11349701e+002 1.19240959e+002 - 9.75906143e+001 1.11400208e+002 1.19249352e+002 9.76547089e+001 - 1.11476105e+002 1.19265602e+002 9.77190247e+001 1.11523880e+002 - 1.19285583e+002 9.78014221e+001 1.11613037e+002 1.19317764e+002 - 9.78791962e+001 1.11682022e+002 1.19325897e+002 9.79215469e+001 - 1.11746819e+002 1.19335045e+002 9.80097809e+001 1.11815445e+002 - 1.19373863e+002 9.80790253e+001 1.11889122e+002 1.19399963e+002 - 9.81807251e+001 1.11971039e+002 1.19437042e+002 9.82227936e+001 - 1.12026871e+002 1.19434158e+002 9.82836761e+001 1.12073944e+002 - 1.19433296e+002 9.83621826e+001 1.12157005e+002 1.19456650e+002 - 9.84609680e+001 1.12231049e+002 1.19494003e+002 9.85536804e+001 - 1.12330246e+002 1.19538139e+002 9.86675797e+001 1.12410522e+002 - 1.19580872e+002 9.87696533e+001 1.12516998e+002 1.19620461e+002 - 9.88810120e+001 1.12607254e+002 1.19660698e+002 9.89214096e+001 - 1.12651192e+002 1.19651138e+002 9.89984131e+001 1.12704956e+002 - 1.19672874e+002 9.90647507e+001 1.12760468e+002 1.19670204e+002 - 9.91706467e+001 1.12839722e+002 1.19690063e+002 9.92624893e+001 - 1.12945488e+002 1.19735062e+002 9.93701324e+001 1.13023766e+002 - 1.19788101e+002 9.94900513e+001 1.13143204e+002 1.19856300e+002 - 9.95803604e+001 1.13196442e+002 1.19869049e+002 9.96600113e+001 - 1.13277596e+002 1.19893875e+002 9.97739105e+001 1.13360718e+002 - 1.19930870e+002 9.98824844e+001 1.13465736e+002 1.19975311e+002 - 9.99923859e+001 1.13540703e+002 1.20010506e+002 1.00111809e+002 - 1.13653900e+002 1.20070488e+002 1.00254692e+002 1.13741127e+002 - 1.20122864e+002 1.00345589e+002 1.13810150e+002 1.20133408e+002 - 1.00428467e+002 1.13851860e+002 1.20128212e+002 1.00479637e+002 - 1.13885818e+002 1.20112793e+002 1.00553322e+002 1.13919197e+002 - 1.20125153e+002 1.00539444e+002 1.13889954e+002 1.20031998e+002 - 1.00538521e+002 1.13902473e+002 1.20045212e+002 1.00523323e+002 - 1.13926170e+002 1.20094154e+002 1.00508835e+002 1.13928551e+002 - 1.20139977e+002 1.00446518e+002 1.13897308e+002 1.20142563e+002 - 1.00369301e+002 1.13833878e+002 1.20142624e+002 1.00259979e+002 - 1.13761314e+002 1.20103706e+002 1.00164314e+002 1.13691055e+002 - 1.20104881e+002 1.00062523e+002 1.13619583e+002 1.20064056e+002 - 9.99844513e+001 1.13555870e+002 1.20061096e+002 9.98709106e+001 - 1.13472672e+002 1.20019562e+002 9.97849503e+001 1.13380829e+002 - 1.19999153e+002 9.97086334e+001 1.13328812e+002 1.19989479e+002 - 9.96158066e+001 1.13245476e+002 1.19957558e+002 9.95044327e+001 - 1.13156555e+002 1.19898346e+002 9.94154129e+001 1.13064606e+002 - 1.19861443e+002 9.93218231e+001 1.12993828e+002 1.19826187e+002 - 9.92284088e+001 1.12907509e+002 1.19813583e+002 9.91197128e+001 - 1.12836136e+002 1.19777382e+002 9.90114136e+001 1.12728706e+002 - 1.19723091e+002 9.89100418e+001 1.12647682e+002 1.19679558e+002 - 9.88229599e+001 1.12551605e+002 1.19651062e+002 9.87247620e+001 - 1.12468285e+002 1.19608902e+002 9.86351318e+001 1.12380913e+002 - 1.19579872e+002 9.85752106e+001 1.12337166e+002 1.19567085e+002 - 9.85212021e+001 1.12278755e+002 1.19567108e+002 9.84166336e+001 - 1.12189735e+002 1.19524223e+002 9.83402786e+001 1.12096519e+002 - 1.19512375e+002 9.82635727e+001 1.12038429e+002 1.19492729e+002 - 9.82034302e+001 1.11979904e+002 1.19482674e+002 9.81208115e+001 - 1.11915741e+002 1.19446518e+002 9.80267105e+001 1.11812172e+002 - 1.19395805e+002 9.79533768e+001 1.11743805e+002 1.19370544e+002 - 9.78483582e+001 1.11639565e+002 1.19338730e+002 9.77545776e+001 - 1.11571701e+002 1.19313042e+002 9.76784973e+001 1.11492996e+002 - 1.19286469e+002 9.76065063e+001 1.11436066e+002 1.19263817e+002 - 9.75265884e+001 1.11344536e+002 1.19238945e+002 9.74485931e+001 - 1.11283653e+002 1.19217209e+002 9.74141083e+001 1.11251534e+002 - 1.19240273e+002 9.73583755e+001 1.11205772e+002 1.19228096e+002 - 9.72934418e+001 1.11126907e+002 1.19211098e+002 9.72339096e+001 - 1.11082222e+002 1.19200996e+002 9.72063599e+001 1.11030006e+002 - 1.19217827e+002 9.71745682e+001 1.11002037e+002 1.19223923e+002 - 9.71224136e+001 1.10956184e+002 1.19222076e+002 9.70335007e+001 - 1.10879082e+002 1.19165329e+002 9.69803238e+001 1.10808449e+002 - 1.19147896e+002 9.69322891e+001 1.10770729e+002 1.19143936e+002 - 9.68792267e+001 1.10707916e+002 1.19154823e+002 9.68079605e+001 - 1.10662880e+002 1.19143410e+002 9.67577820e+001 1.10599861e+002 - 1.19125214e+002 9.67092743e+001 1.10561012e+002 1.19112587e+002 - 9.66589966e+001 1.10493561e+002 1.19099174e+002 9.66193771e+001 - 1.10470306e+002 1.19106995e+002 9.65901718e+001 1.10428719e+002 - 1.19120209e+002 9.65425568e+001 1.10395973e+002 1.19113228e+002 - 9.65198593e+001 1.10366440e+002 1.19132309e+002 9.64391251e+001 - 1.10297897e+002 1.19099251e+002 9.64069290e+001 1.10241264e+002 - 1.19101547e+002 9.63570251e+001 1.10202248e+002 1.19090286e+002 - 9.63186798e+001 1.10160385e+002 1.19090622e+002 9.62523422e+001 - 1.10106453e+002 1.19051704e+002 9.62326355e+001 1.10067299e+002 - 1.19049545e+002 9.62060699e+001 1.10049850e+002 1.19045326e+002 - 9.61634903e+001 1.09997948e+002 1.19035507e+002 9.61023941e+001 - 1.09952469e+002 1.19005013e+002 9.60813293e+001 1.09916512e+002 - 1.19008858e+002 9.60677414e+001 1.09908791e+002 1.19019699e+002 - 9.60242004e+001 1.09855316e+002 1.19014549e+002 9.59738388e+001 - 1.09823982e+002 1.19004478e+002 9.59537125e+001 1.09801849e+002 - 1.19026978e+002 9.59264755e+001 1.09779808e+002 1.19031578e+002 - 9.59078217e+001 1.09747879e+002 1.19043327e+002 9.58592300e+001 - 1.09709000e+002 1.19031998e+002 9.58640137e+001 1.09680298e+002 - 1.19051132e+002 9.58196335e+001 1.09647354e+002 1.19035255e+002 - 9.58129959e+001 1.09638474e+002 1.19057678e+002 9.57724457e+001 - 1.09611938e+002 1.19045746e+002 9.57475510e+001 1.09578079e+002 - 1.19041992e+002 9.57511520e+001 1.09598076e+002 1.19076843e+002 - 9.57172241e+001 1.09563629e+002 1.19084366e+002 9.56780701e+001 - 1.09550659e+002 1.19088188e+002 9.56679153e+001 1.09530128e+002 - 1.19090546e+002 9.56413040e+001 1.09508598e+002 1.19073914e+002 - 9.56106949e+001 1.09456993e+002 1.19062569e+002 9.55726471e+001 - 1.09428520e+002 1.19046646e+002 9.55689545e+001 1.09407272e+002 - 1.19063286e+002 9.55227432e+001 1.09371834e+002 1.19033020e+002 - 9.55089493e+001 1.09347389e+002 1.19036369e+002 9.54969101e+001 - 1.09343018e+002 1.19046898e+002 9.55276337e+001 1.09349838e+002 - 1.19086426e+002 9.55186920e+001 1.09348740e+002 1.19089462e+002 - 9.54928284e+001 1.09325836e+002 1.19087227e+002 9.54595947e+001 - 1.09305481e+002 1.19065079e+002 9.54874649e+001 1.09318634e+002 - 1.19106133e+002 9.54710770e+001 1.09314934e+002 1.19101135e+002 - 9.54799576e+001 1.09315956e+002 1.19123962e+002 9.54533081e+001 - 1.09311523e+002 1.19125267e+002 9.54686584e+001 1.09316406e+002 - 1.19139885e+002 9.54416504e+001 1.09297546e+002 1.19119957e+002 - 9.54742661e+001 1.09318130e+002 1.19166130e+002 9.54461823e+001 - 1.09300407e+002 1.19147919e+002 9.54148102e+001 1.09263618e+002 - 1.19133743e+002 9.53932343e+001 1.09250168e+002 1.19115784e+002 - 9.53792953e+001 1.09229103e+002 1.19101608e+002 9.53865280e+001 - 1.09247498e+002 1.19125015e+002 9.54140320e+001 1.09248444e+002 - 1.19147659e+002 9.54310455e+001 1.09277443e+002 1.19164352e+002 - 9.54292908e+001 1.09270515e+002 1.19155426e+002 9.54169693e+001 - 1.09277405e+002 1.19149567e+002 9.54451447e+001 1.09290359e+002 - 1.19179337e+002 9.54568100e+001 1.09304420e+002 1.19178963e+002 - 9.54871063e+001 1.09320183e+002 1.19205940e+002 9.54553299e+001 - 1.09313797e+002 1.19189667e+002 9.54456100e+001 1.09283150e+002 - 1.19177765e+002 9.54210892e+001 1.09272995e+002 1.19147270e+002 - 9.54424667e+001 1.09268288e+002 1.19158562e+002 9.54161148e+001 - 1.09256798e+002 1.19136169e+002 9.53996735e+001 1.09236778e+002 - 1.19117683e+002 9.53775482e+001 1.09230339e+002 1.19096687e+002 - 9.53625641e+001 1.09194740e+002 1.19073563e+002 9.53584061e+001 - 1.09202408e+002 1.19071854e+002 9.54074860e+001 1.09214050e+002 - 1.19096466e+002 9.54242477e+001 1.09239349e+002 1.19102745e+002 - 9.54326477e+001 1.09249947e+002 1.19096428e+002 9.54398041e+001 - 1.09274399e+002 1.19098763e+002 9.54624863e+001 1.09281815e+002 - 1.19107033e+002 9.54934082e+001 1.09325272e+002 1.19119293e+002 - 9.55236053e+001 1.09353699e+002 1.19133583e+002 9.54928360e+001 - 1.09344543e+002 1.19106743e+002 9.54997406e+001 1.09340096e+002 - 1.19096390e+002 9.55082626e+001 1.09351990e+002 1.19091843e+002 - 9.55121765e+001 1.09337135e+002 1.19082581e+002 9.55381775e+001 - 1.09367447e+002 1.19088699e+002 9.55570831e+001 1.09384857e+002 - 1.19099838e+002 9.55561371e+001 1.09394722e+002 1.19091354e+002 - 9.55948410e+001 1.09420715e+002 1.19114601e+002 9.55751266e+001 - 1.09419975e+002 1.19088173e+002 9.55927505e+001 1.09415855e+002 - 1.19084724e+002 9.55872116e+001 1.09415703e+002 1.19064285e+002 - 9.55957108e+001 1.09420914e+002 1.19038246e+002 9.56180878e+001 - 1.09456558e+002 1.19038322e+002 9.56458359e+001 1.09466797e+002 - 1.19041969e+002 9.56721497e+001 1.09495232e+002 1.19027153e+002 - 9.57045898e+001 1.09520981e+002 1.19024345e+002 9.56880798e+001 - 1.09524994e+002 1.18992409e+002 9.57092667e+001 1.09531540e+002 - 1.18983994e+002 9.57293625e+001 1.09570450e+002 1.18988861e+002 - 9.57657623e+001 1.09588158e+002 1.18994331e+002 9.57770462e+001 - 1.09613808e+002 1.18973305e+002 9.58373413e+001 1.09667778e+002 - 1.19007408e+002 9.58551636e+001 1.09698723e+002 1.18989265e+002 - 9.58852615e+001 1.09714119e+002 1.18986679e+002 9.59097137e+001 - 1.09752357e+002 1.18986794e+002 9.59713364e+001 1.09778397e+002 - 1.19009422e+002 9.59991760e+001 1.09816330e+002 1.18999992e+002 - 9.60184708e+001 1.09832214e+002 1.18992310e+002 9.60340500e+001 - 1.09867134e+002 1.18982895e+002 9.60876160e+001 1.09907768e+002 - 1.19009048e+002 9.61331940e+001 1.09964058e+002 1.19009995e+002 - 9.61895142e+001 1.10020027e+002 1.19022919e+002 9.62052460e+001 - 1.10057297e+002 1.19012390e+002 9.62623901e+001 1.10100029e+002 - 1.19033699e+002 9.62708740e+001 1.10118004e+002 1.19016663e+002 - 9.63095932e+001 1.10141716e+002 1.19011932e+002 9.63180313e+001 - 1.10157562e+002 1.18984879e+002 9.63741150e+001 1.10206596e+002 - 1.18997520e+002 9.64292450e+001 1.10269455e+002 1.19006897e+002 - 9.64704437e+001 1.10297928e+002 1.19005898e+002 9.65193710e+001 - 1.10358536e+002 1.19017548e+002 9.66248169e+001 1.10435486e+002 - 1.19065834e+002 9.66575241e+001 1.10482758e+002 1.19057091e+002 - 9.67035599e+001 1.10520683e+002 1.19054558e+002 9.67249222e+001 - 1.10555725e+002 1.19043686e+002 9.67827454e+001 1.10602806e+002 - 1.19069641e+002 9.68196640e+001 1.10644897e+002 1.19054855e+002 - 9.68677979e+001 1.10679581e+002 1.19033676e+002 9.68809280e+001 - 1.10711487e+002 1.19014877e+002 9.69429550e+001 1.10762550e+002 - 1.19041191e+002 9.70059509e+001 1.10837234e+002 1.19065254e+002 - 9.70888214e+001 1.10903900e+002 1.19094894e+002 9.71250839e+001 - 1.10950943e+002 1.19090271e+002 9.71975784e+001 1.11013084e+002 - 1.19104622e+002 9.72606888e+001 1.11083160e+002 1.19127388e+002 - 9.73294830e+001 1.11141518e+002 1.19144875e+002 9.73827972e+001 - 1.11207695e+002 1.19164825e+002 9.74972153e+001 1.11292084e+002 - 1.19214012e+002 9.75551147e+001 1.11353477e+002 1.19223022e+002 - 9.76021042e+001 1.11392105e+002 1.19220551e+002 9.76539383e+001 - 1.11466423e+002 1.19234039e+002 9.77240372e+001 1.11517212e+002 - 1.19262238e+002 9.78010330e+001 1.11605667e+002 1.19283981e+002 - 9.78886490e+001 1.11680214e+002 1.19301132e+002 9.79502106e+001 - 1.11766464e+002 1.19325584e+002 9.80271912e+001 1.11821358e+002 - 1.19352470e+002 9.80957718e+001 1.11897728e+002 1.19373512e+002 - 9.81910019e+001 1.11965569e+002 1.19411255e+002 9.82463531e+001 - 1.12035217e+002 1.19422478e+002 9.83054123e+001 1.12082733e+002 - 1.19422356e+002 9.83685989e+001 1.12149414e+002 1.19430588e+002 - 9.84521790e+001 1.12220032e+002 1.19457748e+002 9.85421448e+001 - 1.12307617e+002 1.19494354e+002 9.86512909e+001 1.12382698e+002 - 1.19530594e+002 9.87242508e+001 1.12460762e+002 1.19550537e+002 - 9.88387985e+001 1.12559227e+002 1.19602852e+002 9.89001694e+001 - 1.12624245e+002 1.19609245e+002 9.89798203e+001 1.12681580e+002 - 1.19633087e+002 9.90528793e+001 1.12743843e+002 1.19639984e+002 - 9.91741028e+001 1.12836823e+002 1.19668579e+002 9.92671356e+001 - 1.12946945e+002 1.19721405e+002 9.93826675e+001 1.13031487e+002 - 1.19772873e+002 9.95085907e+001 1.13155998e+002 1.19846756e+002 - 9.95996323e+001 1.13207123e+002 1.19862640e+002 9.96733246e+001 - 1.13278397e+002 1.19885521e+002 9.97886124e+001 1.13360695e+002 - 1.19920280e+002 9.98963852e+001 1.13461937e+002 1.19965660e+002 - 1.00007767e+002 1.13550346e+002 1.20009674e+002 1.00131592e+002 - 1.13665466e+002 1.20069443e+002 1.00262321e+002 1.13732368e+002 - 1.20103836e+002 1.00336121e+002 1.13791191e+002 1.20100029e+002 - 1.00435982e+002 1.13843018e+002 1.20112663e+002 1.00482811e+002 - 1.13875961e+002 1.20093544e+002 1.00542160e+002 1.13887650e+002 - 1.20083855e+002 1.00530083e+002 1.13863022e+002 1.20002617e+002 - 1.00547829e+002 1.13912605e+002 1.20042313e+002 1.00536598e+002 - 1.13945175e+002 1.20100800e+002 1.00511147e+002 1.13929939e+002 - 1.20129578e+002 1.00462837e+002 1.13915611e+002 1.20144547e+002 - 1.00385696e+002 1.13853767e+002 1.20148216e+002 1.00252869e+002 - 1.13760040e+002 1.20093483e+002 1.00173927e+002 1.13701500e+002 - 1.20097763e+002 1.00082298e+002 1.13640656e+002 1.20072052e+002 - 9.99711380e+001 1.13545639e+002 1.20031174e+002 9.98509827e+001 - 1.13457367e+002 1.19985031e+002 9.97694778e+001 1.13369385e+002 - 1.19970673e+002 9.96941605e+001 1.13318832e+002 1.19954857e+002 - 9.96246414e+001 1.13256577e+002 1.19948776e+002 9.95278091e+001 - 1.13185028e+002 1.19905212e+002 9.94457169e+001 1.13097984e+002 - 1.19872871e+002 9.93606415e+001 1.13032196e+002 1.19839828e+002 - 9.92539597e+001 1.12935310e+002 1.19814987e+002 9.91173096e+001 - 1.12833664e+002 1.19750847e+002 9.90177917e+001 1.12733727e+002 - 1.19712654e+002 9.89090652e+001 1.12646996e+002 1.19657928e+002 - 9.88221130e+001 1.12550148e+002 1.19627022e+002 9.87203217e+001 - 1.12464134e+002 1.19577103e+002 9.86405334e+001 1.12394348e+002 - 1.19561432e+002 9.85803146e+001 1.12343437e+002 1.19550026e+002 - 9.85096359e+001 1.12273758e+002 1.19539551e+002 9.84176331e+001 - 1.12197906e+002 1.19511673e+002 9.83558960e+001 1.12117317e+002 - 1.19507164e+002 9.82721558e+001 1.12052612e+002 1.19479065e+002 - 9.81987534e+001 1.11980980e+002 1.19461197e+002 9.81150360e+001 - 1.11917587e+002 1.19424690e+002 9.80380859e+001 1.11822472e+002 - 1.19392570e+002 9.79618759e+001 1.11756935e+002 1.19358849e+002 - 9.78798065e+001 1.11669060e+002 1.19348625e+002 9.77804413e+001 - 1.11599815e+002 1.19316338e+002 9.77049026e+001 1.11512596e+002 - 1.19282211e+002 9.76274643e+001 1.11455643e+002 1.19260063e+002 - 9.75837402e+001 1.11403816e+002 1.19271240e+002 9.74777145e+001 - 1.11314926e+002 1.19219238e+002 9.74386826e+001 1.11277473e+002 - 1.19236465e+002 9.73782501e+001 1.11229027e+002 1.19217934e+002 - 9.73221359e+001 1.11161888e+002 1.19212822e+002 9.72633133e+001 - 1.11115257e+002 1.19201019e+002 9.72233429e+001 1.11045158e+002 - 1.19205467e+002 9.71752548e+001 1.11010490e+002 1.19198860e+002 - 9.71256027e+001 1.10962723e+002 1.19196251e+002 9.70562363e+001 - 1.10906555e+002 1.19165276e+002 9.70286636e+001 1.10860298e+002 - 1.19168053e+002 9.69671631e+001 1.10804977e+002 1.19142273e+002 - 9.69016190e+001 1.10735786e+002 1.19143799e+002 9.68267670e+001 - 1.10685562e+002 1.19123505e+002 9.67819595e+001 1.10621407e+002 - 1.19111702e+002 9.67402725e+001 1.10594742e+002 1.19106705e+002 - 9.67035675e+001 1.10538895e+002 1.19110390e+002 9.66431122e+001 - 1.10489723e+002 1.19089569e+002 9.66174622e+001 1.10457901e+002 - 1.19113274e+002 9.65761642e+001 1.10429054e+002 1.19104446e+002 - 9.65280304e+001 1.10377426e+002 1.19107956e+002 9.64522400e+001 - 1.10317711e+002 1.19079659e+002 9.64171219e+001 1.10252914e+002 - 1.19077759e+002 9.63516922e+001 1.10198189e+002 1.19047264e+002 - 9.63220139e+001 1.10165535e+002 1.19058197e+002 9.62572861e+001 - 1.10118904e+002 1.19027481e+002 9.62286835e+001 1.10066002e+002 - 1.19017685e+002 9.62243271e+001 1.10069695e+002 1.19027481e+002 - 9.62008743e+001 1.10032478e+002 1.19034958e+002 9.61317062e+001 - 1.09985558e+002 1.19004997e+002 9.61162186e+001 1.09949593e+002 - 1.19005089e+002 9.60969315e+001 1.09947159e+002 1.19020920e+002 - 9.60506058e+001 1.09883781e+002 1.19004036e+002 9.60020447e+001 - 1.09849632e+002 1.18993507e+002 9.59889603e+001 1.09836296e+002 - 1.19020508e+002 9.59460449e+001 1.09802139e+002 1.19010071e+002 - 9.59422913e+001 1.09784393e+002 1.19043350e+002 9.59085007e+001 - 1.09763863e+002 1.19044739e+002 9.58958969e+001 1.09717590e+002 - 1.19049805e+002 9.58534927e+001 1.09684845e+002 1.19033287e+002 - 9.58439026e+001 1.09674042e+002 1.19053696e+002 9.58127213e+001 - 1.09659485e+002 1.19045197e+002 9.57920456e+001 1.09632133e+002 - 1.19056915e+002 9.57788162e+001 1.09626587e+002 1.19064507e+002 - 9.57352371e+001 1.09587311e+002 1.19063759e+002 9.56937561e+001 - 1.09574371e+002 1.19055725e+002 9.56948929e+001 1.09551994e+002 - 1.19073700e+002 9.56554718e+001 1.09530960e+002 1.19052696e+002 - 9.56262360e+001 1.09477913e+002 1.19043076e+002 9.55930786e+001 - 1.09452209e+002 1.19026680e+002 9.55896606e+001 1.09444328e+002 - 1.19044212e+002 9.55671692e+001 1.09419540e+002 1.19035362e+002 - 9.55645599e+001 1.09400703e+002 1.19042641e+002 9.55401382e+001 - 1.09387657e+002 1.19039856e+002 9.55541534e+001 1.09375175e+002 - 1.19061981e+002 9.55287170e+001 1.09367783e+002 1.19055855e+002 - 9.55269852e+001 1.09359032e+002 1.19071564e+002 9.54791183e+001 - 1.09330185e+002 1.19039993e+002 9.55178604e+001 1.09355850e+002 - 1.19093666e+002 9.55153580e+001 1.09362862e+002 1.19100021e+002 - 9.55152130e+001 1.09352524e+002 1.19115387e+002 9.54840393e+001 - 1.09349037e+002 1.19110794e+002 9.54787369e+001 1.09324814e+002 - 1.19105011e+002 9.54800797e+001 1.09344055e+002 1.19124901e+002 - 9.54955673e+001 1.09345009e+002 1.19148727e+002 9.54629822e+001 - 1.09327049e+002 1.19129509e+002 9.54278793e+001 1.09282150e+002 - 1.19108704e+002 9.54102020e+001 1.09277969e+002 1.19099739e+002 - 9.54173126e+001 1.09265282e+002 1.19102982e+002 9.54182053e+001 - 1.09285896e+002 1.19114761e+002 9.54575729e+001 1.09294899e+002 - 1.19147331e+002 9.54580460e+001 1.09308792e+002 1.19147728e+002 - 9.54541855e+001 1.09297241e+002 1.19137016e+002 9.54570160e+001 - 1.09314659e+002 1.19139664e+002 9.54816284e+001 1.09329292e+002 - 1.19170532e+002 9.54857330e+001 1.09331322e+002 1.19162903e+002 - 9.55131912e+001 1.09355263e+002 1.19191788e+002 9.54662704e+001 - 1.09332191e+002 1.19159698e+002 9.54639206e+001 1.09307114e+002 - 1.19153625e+002 9.54595642e+001 1.09313194e+002 1.19144508e+002 - 9.54702377e+001 1.09310303e+002 1.19147522e+002 9.54350662e+001 - 1.09282776e+002 1.19111404e+002 9.54343796e+001 1.09279701e+002 - 1.19113914e+002 9.54117813e+001 1.09264893e+002 1.19086273e+002 - 9.53928909e+001 1.09230560e+002 1.19064560e+002 9.53961182e+001 - 1.09244835e+002 1.19061974e+002 9.54499359e+001 1.09262466e+002 - 1.19096725e+002 9.54598999e+001 1.09284439e+002 1.19094627e+002 - 9.54506378e+001 1.09270103e+002 1.19074448e+002 9.54511642e+001 - 1.09289833e+002 1.19070976e+002 9.54927368e+001 1.09311653e+002 - 1.19094543e+002 9.55200653e+001 1.09353371e+002 1.19104332e+002 - 9.55417328e+001 1.09372345e+002 1.19111374e+002 9.55265656e+001 - 1.09381149e+002 1.19096367e+002 9.55294189e+001 1.09363678e+002 - 1.19080780e+002 9.55445480e+001 1.09389717e+002 1.19084068e+002 - 9.55330963e+001 1.09358093e+002 1.19055580e+002 9.55527267e+001 - 1.09387932e+002 1.19063248e+002 9.55688553e+001 1.09397484e+002 - 1.19071442e+002 9.55941162e+001 1.09429764e+002 1.19079315e+002 - 9.56196976e+001 1.09446625e+002 1.19097076e+002 9.55772629e+001 - 1.09422882e+002 1.19052307e+002 9.56078796e+001 1.09428329e+002 - 1.19064018e+002 9.56134262e+001 1.09451187e+002 1.19051384e+002 - 9.56282730e+001 1.09451233e+002 1.19026741e+002 9.56224136e+001 - 1.09461075e+002 1.18998970e+002 9.56526871e+001 1.09474892e+002 - 1.19003601e+002 9.56977768e+001 1.09520569e+002 1.19010895e+002 - 9.57193451e+001 1.09538971e+002 1.18996147e+002 9.57246857e+001 - 1.09568230e+002 1.18989326e+002 9.57606964e+001 1.09584091e+002 - 1.18998207e+002 9.57865295e+001 1.09636719e+002 1.19006950e+002 - 9.58154678e+001 1.09641121e+002 1.19004799e+002 9.58262253e+001 - 1.09664627e+002 1.18983833e+002 9.58817978e+001 1.09713005e+002 - 1.19005775e+002 9.59037933e+001 1.09749176e+002 1.18996780e+002 - 9.59390564e+001 1.09772476e+002 1.18999794e+002 9.59707642e+001 - 1.09818237e+002 1.19013245e+002 9.60165176e+001 1.09823746e+002 - 1.19011284e+002 9.60165939e+001 1.09839554e+002 1.18983704e+002 - 9.60520859e+001 1.09869179e+002 1.18989304e+002 9.60670929e+001 - 1.09901978e+002 1.18975914e+002 9.61129074e+001 1.09940323e+002 - 1.19002304e+002 9.61681519e+001 1.10001534e+002 1.19012817e+002 - 9.62369232e+001 1.10062561e+002 1.19032883e+002 9.62367249e+001 - 1.10086678e+002 1.19011154e+002 9.62836227e+001 1.10111954e+002 - 1.19021698e+002 9.62976990e+001 1.10144066e+002 1.19009567e+002 - 9.63504791e+001 1.10176048e+002 1.19018173e+002 9.63635406e+001 - 1.10203064e+002 1.18993088e+002 9.63987503e+001 1.10228439e+002 - 1.18986938e+002 9.64540253e+001 1.10291557e+002 1.19000343e+002 - 9.64979935e+001 1.10322830e+002 1.18998528e+002 9.65361862e+001 - 1.10377724e+002 1.19003510e+002 9.66340714e+001 1.10441223e+002 - 1.19039581e+002 9.66881866e+001 1.10510017e+002 1.19058578e+002 - 9.67446823e+001 1.10551254e+002 1.19067009e+002 9.67563477e+001 - 1.10587090e+002 1.19046898e+002 9.67997894e+001 1.10618492e+002 - 1.19058800e+002 9.68638611e+001 1.10688034e+002 1.19070923e+002 - 9.68969421e+001 1.10709923e+002 1.19037567e+002 9.69127884e+001 - 1.10743492e+002 1.19013313e+002 9.69732513e+001 1.10784042e+002 - 1.19036835e+002 9.70196228e+001 1.10847847e+002 1.19044785e+002 - 9.71235886e+001 1.10932732e+002 1.19101135e+002 9.71668472e+001 - 1.10984810e+002 1.19098579e+002 9.72376862e+001 1.11045944e+002 - 1.19115776e+002 9.72969055e+001 1.11116776e+002 1.19132843e+002 - 9.73416367e+001 1.11148834e+002 1.19130333e+002 9.73949661e+001 - 1.11219994e+002 1.19146721e+002 9.74929276e+001 1.11283386e+002 - 1.19180649e+002 9.75570068e+001 1.11355240e+002 1.19199211e+002 - 9.76200333e+001 1.11402771e+002 1.19207611e+002 9.76707230e+001 - 1.11473541e+002 1.19217346e+002 9.77573395e+001 1.11540352e+002 - 1.19260925e+002 9.78515320e+001 1.11647209e+002 1.19299255e+002 - 9.79259033e+001 1.11714668e+002 1.19308533e+002 9.79678574e+001 - 1.11783920e+002 1.19314056e+002 9.80495758e+001 1.11839882e+002 - 1.19346863e+002 9.81199875e+001 1.11922920e+002 1.19376587e+002 - 9.82052002e+001 1.11986938e+002 1.19405144e+002 9.82399979e+001 - 1.12030571e+002 1.19391937e+002 9.83211441e+001 1.12098907e+002 - 1.19410713e+002 9.83815994e+001 1.12168182e+002 1.19421921e+002 - 9.84889679e+001 1.12249107e+002 1.19463478e+002 9.85481186e+001 - 1.12318207e+002 1.19479233e+002 9.86616440e+001 1.12385338e+002 - 1.19513924e+002 9.87279892e+001 1.12460152e+002 1.19529259e+002 - 9.88265610e+001 1.12546272e+002 1.19563141e+002 9.88976059e+001 - 1.12624207e+002 1.19586296e+002 9.89974899e+001 1.12698662e+002 - 1.19633667e+002 9.90838470e+001 1.12782509e+002 1.19653732e+002 - 9.91840744e+001 1.12854866e+002 1.19660202e+002 9.92746658e+001 - 1.12952431e+002 1.19703659e+002 9.93857193e+001 1.13026039e+002 - 1.19751854e+002 9.94960327e+001 1.13143219e+002 1.19820190e+002 - 9.96224136e+001 1.13229042e+002 1.19875221e+002 9.97045059e+001 - 1.13312912e+002 1.19900742e+002 9.98370514e+001 1.13412895e+002 - 1.19955772e+002 9.99322128e+001 1.13506172e+002 1.19988419e+002 - 1.00036484e+002 1.13576797e+002 1.20019562e+002 1.00142830e+002 - 1.13676247e+002 1.20067795e+002 1.00256683e+002 1.13725998e+002 - 1.20080856e+002 1.00340286e+002 1.13796608e+002 1.20089523e+002 - 1.00426773e+002 1.13829544e+002 1.20088699e+002 1.00489449e+002 - 1.13876022e+002 1.20081879e+002 1.00528473e+002 1.13868423e+002 - 1.20050285e+002 1.00516281e+002 1.13843040e+002 1.19968605e+002 - 1.00516548e+002 1.13883446e+002 1.19998795e+002 1.00511147e+002 - 1.13924080e+002 1.20055679e+002 1.00497704e+002 1.13919449e+002 - 1.20101952e+002 1.00438133e+002 1.13895218e+002 1.20099800e+002 - 1.00372307e+002 1.13849022e+002 1.20120247e+002 1.00262886e+002 - 1.13779724e+002 1.20083313e+002 1.00168289e+002 1.13703568e+002 - 1.20073776e+002 1.00061844e+002 1.13628738e+002 1.20033310e+002 - 9.99738617e+001 1.13554367e+002 1.20017464e+002 9.98470078e+001 - 1.13460541e+002 1.19957153e+002 9.97742538e+001 1.13376541e+002 - 1.19945419e+002 9.97057571e+001 1.13333046e+002 1.19937775e+002 - 9.96234589e+001 1.13261124e+002 1.19921555e+002 9.95344391e+001 - 1.13196556e+002 1.19883034e+002 9.94492645e+001 1.13101158e+002 - 1.19849678e+002 9.93529968e+001 1.13026451e+002 1.19804810e+002 - 9.92442474e+001 1.12928352e+002 1.19780518e+002 9.90917282e+001 - 1.12818825e+002 1.19703178e+002 9.90104752e+001 1.12734657e+002 - 1.19674728e+002 9.89134750e+001 1.12657784e+002 1.19635437e+002 - 9.88313141e+001 1.12569077e+002 1.19612846e+002 9.87212906e+001 - 1.12481056e+002 1.19558670e+002 9.86566010e+001 1.12421951e+002 - 1.19555496e+002 9.85744781e+001 1.12349396e+002 1.19522636e+002 - 9.85017700e+001 1.12278473e+002 1.19507477e+002 9.84138336e+001 - 1.12209709e+002 1.19483528e+002 9.83614960e+001 1.12133217e+002 - 1.19489822e+002 9.82746201e+001 1.12063911e+002 1.19455452e+002 - 9.82095490e+001 1.12000458e+002 1.19444557e+002 9.81138229e+001 - 1.11925819e+002 1.19400940e+002 9.80411606e+001 1.11834778e+002 - 1.19368034e+002 9.79739304e+001 1.11772743e+002 1.19345650e+002 - 9.78689575e+001 1.11666618e+002 1.19313820e+002 9.77662659e+001 - 1.11594955e+002 1.19275719e+002 9.77286758e+001 1.11548264e+002 - 1.19279358e+002 9.76449127e+001 1.11481209e+002 1.19250252e+002 - 9.75989838e+001 1.11419762e+002 1.19256142e+002 9.74931870e+001 - 1.11335907e+002 1.19203644e+002 9.74426346e+001 1.11284302e+002 - 1.19208725e+002 9.73987122e+001 1.11249031e+002 1.19206314e+002 - 9.73324432e+001 1.11175751e+002 1.19188446e+002 9.72829819e+001 - 1.11142159e+002 1.19188080e+002 9.72555542e+001 1.11088982e+002 - 1.19204895e+002 9.72054596e+001 1.11049255e+002 1.19199196e+002 - 9.71571350e+001 1.10996101e+002 1.19194351e+002 9.70817032e+001 - 1.10932747e+002 1.19148117e+002 9.70348511e+001 1.10871239e+002 - 1.19139740e+002 9.69827957e+001 1.10830093e+002 1.19124275e+002 - 9.69541245e+001 1.10794350e+002 1.19156212e+002 9.68565903e+001 - 1.10721436e+002 1.19117996e+002 9.68011322e+001 1.10653000e+002 - 1.19096313e+002 9.67693253e+001 1.10626923e+002 1.19099060e+002 - 9.67432785e+001 1.10579659e+002 1.19109077e+002 9.66743393e+001 - 1.10527367e+002 1.19081627e+002 9.66445923e+001 1.10497231e+002 - 1.19103661e+002 9.65963821e+001 1.10459488e+002 1.19091347e+002 - 9.65471878e+001 1.10404144e+002 1.19089951e+002 9.64798584e+001 - 1.10354988e+002 1.19067978e+002 9.64433289e+001 1.10288460e+002 - 1.19066620e+002 9.63816376e+001 1.10242378e+002 1.19048874e+002 - 9.63455811e+001 1.10201416e+002 1.19041718e+002 9.62808151e+001 - 1.10149857e+002 1.19008095e+002 9.62563248e+001 1.10101166e+002 - 1.19006859e+002 9.62368622e+001 1.10090118e+002 1.19002953e+002 - 9.62229614e+001 1.10063255e+002 1.19025154e+002 9.61688232e+001 - 1.10025970e+002 1.19003784e+002 9.61568832e+001 1.09999237e+002 - 1.19013931e+002 9.61211395e+001 1.09973572e+002 1.18999641e+002 - 9.60881805e+001 1.09924942e+002 1.19002151e+002 9.60254288e+001 - 1.09882927e+002 1.18974365e+002 9.60305176e+001 1.09884567e+002 - 1.19021698e+002 9.59963379e+001 1.09863770e+002 1.19020821e+002 - 9.59613113e+001 1.09812340e+002 1.19017822e+002 9.59308167e+001 - 1.09797279e+002 1.19021950e+002 9.59118500e+001 1.09743034e+002 - 1.19026726e+002 9.58751526e+001 1.09719475e+002 1.19016754e+002 - 9.58594742e+001 1.09702171e+002 1.19031662e+002 9.58160324e+001 - 1.09677780e+002 1.19018837e+002 9.57978516e+001 1.09651726e+002 - 1.19025871e+002 9.58020630e+001 1.09665268e+002 1.19050636e+002 - 9.57785416e+001 1.09640114e+002 1.19065269e+002 9.57277298e+001 - 1.09619820e+002 1.19049019e+002 9.57321320e+001 1.09599640e+002 - 1.19063919e+002 9.56892471e+001 1.09572998e+002 1.19043541e+002 - 9.56487579e+001 1.09507607e+002 1.19024307e+002 9.56061325e+001 - 1.09476089e+002 1.18997902e+002 9.56076279e+001 1.09467216e+002 - 1.19013916e+002 9.56135406e+001 1.09470490e+002 1.19029404e+002 - 9.56113358e+001 1.09457939e+002 1.19042381e+002 9.55794678e+001 - 1.09435539e+002 1.19029480e+002 9.55703888e+001 1.09393013e+002 - 1.19027245e+002 9.55807037e+001 1.09418877e+002 1.19054878e+002 - 9.55708771e+001 1.09406937e+002 1.19062347e+002 9.55329742e+001 - 1.09387794e+002 1.19045013e+002 9.55550232e+001 1.09399384e+002 - 1.19084167e+002 9.55476074e+001 1.09403000e+002 1.19086922e+002 - 9.55371475e+001 1.09385696e+002 1.19093582e+002 9.54996872e+001 - 1.09374466e+002 1.19080643e+002 9.54823074e+001 1.09340752e+002 - 1.19070251e+002 9.54816742e+001 1.09356422e+002 1.19079643e+002 - 9.54939728e+001 1.09356308e+002 1.19103775e+002 9.54690018e+001 - 1.09343872e+002 1.19092873e+002 9.54429169e+001 1.09309975e+002 - 1.19077217e+002 9.54275055e+001 1.09305466e+002 1.19069641e+002 - 9.54460068e+001 1.09308441e+002 1.19085548e+002 9.54458542e+001 - 1.09320053e+002 1.19090149e+002 9.54683456e+001 1.09313957e+002 - 1.19113625e+002 9.54576492e+001 1.09311798e+002 1.19096603e+002 - 9.54728165e+001 1.09315681e+002 1.19096779e+002 9.54933472e+001 - 1.09357056e+002 1.19115601e+002 9.55036163e+001 1.09358582e+002 - 1.19139565e+002 9.55002213e+001 1.09361252e+002 1.19130608e+002 - 9.55157700e+001 1.09367523e+002 1.19142136e+002 9.54843369e+001 - 1.09357048e+002 1.19121880e+002 9.54977798e+001 1.09354988e+002 - 1.19133316e+002 9.54843903e+001 1.09350662e+002 1.19117111e+002 - 9.54777298e+001 1.09329147e+002 1.19112198e+002 9.54519882e+001 - 1.09314384e+002 1.19085304e+002 9.54414597e+001 1.09303917e+002 - 1.19082092e+002 9.54185257e+001 1.09285698e+002 1.19042625e+002 - 9.54132309e+001 1.09269424e+002 1.19040619e+002 9.54106216e+001 - 1.09273972e+002 1.19034958e+002 9.54694977e+001 1.09294502e+002 - 1.19073860e+002 9.54926300e+001 1.09328300e+002 1.19079269e+002 - 9.54988251e+001 1.09327164e+002 1.19073601e+002 9.54838562e+001 - 1.09331696e+002 1.19052177e+002 9.55339279e+001 1.09368797e+002 - 1.19089233e+002 9.55296707e+001 1.09373047e+002 1.19068901e+002 - 9.55419617e+001 1.09380249e+002 1.19064392e+002 9.55344849e+001 - 1.09397110e+002 1.19054115e+002 9.55425491e+001 1.09382133e+002 - 1.19043114e+002 9.55521088e+001 1.09404701e+002 1.19046188e+002 - 9.55480576e+001 1.09378326e+002 1.19025742e+002 9.55544128e+001 - 1.09392067e+002 1.19019775e+002 9.55675735e+001 1.09404274e+002 - 1.19021324e+002 9.55982437e+001 1.09440880e+002 1.19040367e+002 - 9.56224442e+001 1.09459892e+002 1.19053314e+002 9.55892715e+001 - 1.09441795e+002 1.19018524e+002 9.56333923e+001 1.09454254e+002 - 1.19037285e+002 9.56388245e+001 1.09473686e+002 1.19026855e+002 - 9.56536789e+001 1.09483604e+002 1.19010643e+002 9.56536179e+001 - 1.09497116e+002 1.18978973e+002 9.56822739e+001 1.09512543e+002 - 1.18986969e+002 9.57363968e+001 1.09568840e+002 1.19004662e+002 - 9.57639923e+001 1.09594193e+002 1.18997147e+002 9.57592392e+001 - 1.09609627e+002 1.18982796e+002 9.57804642e+001 1.09621902e+002 - 1.18976715e+002 9.58249588e+001 1.09674240e+002 1.18994110e+002 - 9.58616486e+001 1.09688515e+002 1.19004135e+002 9.58653259e+001 - 1.09710251e+002 1.18980911e+002 9.58890533e+001 1.09730507e+002 - 1.18971901e+002 9.59146500e+001 1.09766800e+002 1.18964798e+002 - 9.59593506e+001 1.09802505e+002 1.18980537e+002 9.59839249e+001 - 1.09839691e+002 1.18979172e+002 9.60288010e+001 1.09850594e+002 - 1.18987068e+002 9.60188751e+001 1.09852036e+002 1.18948212e+002 - 9.60684891e+001 1.09893410e+002 1.18958092e+002 9.60978317e+001 - 1.09941711e+002 1.18970581e+002 9.61427155e+001 1.09975571e+002 - 1.18989349e+002 9.62020035e+001 1.10044243e+002 1.19009499e+002 - 9.62621078e+001 1.10095047e+002 1.19024841e+002 9.62767868e+001 - 1.10135338e+002 1.19008522e+002 9.63169937e+001 1.10149323e+002 - 1.19011391e+002 9.63325424e+001 1.10180832e+002 1.18993294e+002 - 9.63857574e+001 1.10217789e+002 1.19015244e+002 9.64106903e+001 - 1.10258385e+002 119. 9.64483261e+001 1.10281876e+002 1.18993950e+002 - 9.65039368e+001 1.10347359e+002 1.19008286e+002 9.65314636e+001 - 1.10361320e+002 1.18985558e+002 9.65627518e+001 1.10405113e+002 - 1.18979782e+002 9.66479416e+001 1.10456245e+002 1.19008507e+002 - 9.67083054e+001 1.10530548e+002 1.19035431e+002 9.67574921e+001 - 1.10572960e+002 1.19042992e+002 9.67792664e+001 1.10609238e+002 - 1.19031441e+002 9.68143921e+001 1.10636238e+002 1.19036880e+002 - 9.68799973e+001 1.10701645e+002 1.19045761e+002 9.69375916e+001 - 1.10753021e+002 1.19044510e+002 9.69541779e+001 1.10790825e+002 - 1.19021706e+002 9.70144577e+001 1.10828690e+002 1.19036659e+002 - 9.70405655e+001 1.10870293e+002 1.19032196e+002 9.71238861e+001 - 1.10929039e+002 1.19056351e+002 9.71783752e+001 1.10997963e+002 - 1.19073898e+002 9.72431717e+001 1.11056671e+002 1.19089844e+002 - 9.72972946e+001 1.11116318e+002 1.19100037e+002 9.73616333e+001 - 1.11171341e+002 1.19115784e+002 9.74157562e+001 1.11241287e+002 - 1.19132408e+002 9.75182877e+001 1.11309616e+002 1.19175865e+002 - 9.75711823e+001 1.11373459e+002 1.19187645e+002 9.76344604e+001 - 1.11423325e+002 1.19193115e+002 9.76720505e+001 1.11483047e+002 - 1.19191978e+002 9.77593918e+001 1.11557899e+002 1.19239464e+002 - 9.78505096e+001 1.11662865e+002 1.19279549e+002 9.79418869e+001 - 1.11739174e+002 1.19301788e+002 9.79651184e+001 1.11786957e+002 - 1.19287613e+002 9.80434875e+001 1.11839767e+002 1.19312492e+002 - 9.81121979e+001 1.11926712e+002 1.19347626e+002 9.82125092e+001 - 1.12003693e+002 1.19387978e+002 9.82305679e+001 1.12027084e+002 - 1.19352554e+002 9.83102417e+001 1.12094040e+002 1.19374466e+002 - 9.83946686e+001 1.12182205e+002 1.19407043e+002 9.84947281e+001 - 1.12262062e+002 1.19446869e+002 9.85699387e+001 1.12347672e+002 - 1.19476631e+002 9.86773758e+001 1.12412506e+002 1.19504410e+002 - 9.87416840e+001 1.12479538e+002 1.19513489e+002 9.88182373e+001 - 1.12539093e+002 1.19531029e+002 9.89104767e+001 1.12642227e+002 - 1.19580635e+002 9.90051727e+001 1.12718918e+002 1.19620674e+002 - 9.91084366e+001 1.12812172e+002 1.19657326e+002 9.92177887e+001 - 1.12894318e+002 1.19671394e+002 9.92862778e+001 1.12966003e+002 - 1.19686455e+002 9.94114685e+001 1.13056274e+002 1.19751045e+002 - 9.95240021e+001 1.13173706e+002 1.19817955e+002 9.96399765e+001 - 1.13253716e+002 1.19866554e+002 9.97050018e+001 1.13317612e+002 - 1.19879562e+002 9.98500137e+001 1.13435402e+002 1.19945183e+002 - 9.99428253e+001 1.13520927e+002 1.19980507e+002 1.00024055e+002 - 1.13568665e+002 1.19988640e+002 1.00120338e+002 1.13659187e+002 - 1.20019341e+002 1.00212212e+002 1.13692108e+002 1.20017090e+002 - 1.00311325e+002 1.13765251e+002 1.20033615e+002 1.00413185e+002 - 1.13820648e+002 1.20054306e+002 1.00469200e+002 1.13865311e+002 - 1.20038681e+002 1.00523140e+002 1.13864395e+002 1.20026505e+002 - 1.00512367e+002 1.13843193e+002 1.19943497e+002 1.00476463e+002 - 1.13855247e+002 1.19949799e+002 1.00494987e+002 1.13914543e+002 - 1.20033951e+002 1.00476715e+002 1.13910172e+002 1.20074509e+002 - 1.00413765e+002 1.13870552e+002 1.20068588e+002 1.00330635e+002 - 1.13813370e+002 1.20067505e+002 1.00247261e+002 1.13764839e+002 - 1.20059837e+002 1.00146210e+002 1.13681137e+002 1.20039467e+002 - 1.00006699e+002 1.13574409e+002 1.19962151e+002 9.99184113e+001 - 1.13501793e+002 1.19941498e+002 9.98156281e+001 1.13424446e+002 - 1.19907028e+002 9.97496338e+001 1.13359146e+002 1.19907486e+002 - 9.96666718e+001 1.13297943e+002 1.19883926e+002 9.95947952e+001 - 1.13228531e+002 1.19872673e+002 9.94984589e+001 1.13164040e+002 - 1.19832603e+002 9.94195709e+001 1.13083252e+002 1.19803497e+002 - 9.93129120e+001 1.12989784e+002 1.19743797e+002 9.92050095e+001 - 1.12891472e+002 1.19723640e+002 9.90730743e+001 1.12804062e+002 - 1.19667816e+002 9.89991837e+001 1.12721649e+002 1.19642021e+002 - 9.89030609e+001 1.12654724e+002 1.19608337e+002 9.88332748e+001 - 1.12576439e+002 1.19598061e+002 9.87230759e+001 1.12490852e+002 - 1.19547066e+002 9.86397324e+001 1.12411888e+002 1.19522812e+002 - 9.85698547e+001 1.12356483e+002 1.19502319e+002 9.84990540e+001 - 1.12280945e+002 1.19491272e+002 9.84302750e+001 1.12231102e+002 - 1.19481491e+002 9.83610229e+001 1.12141533e+002 1.19472549e+002 - 9.82752914e+001 1.12071999e+002 1.19436005e+002 9.81996613e+001 - 1.11993416e+002 1.19418945e+002 9.80890808e+001 1.11898232e+002 - 1.19356781e+002 9.80080795e+001 1.11811569e+002 1.19319885e+002 - 9.79471512e+001 1.11759605e+002 1.19303764e+002 9.78848419e+001 - 1.11689880e+002 1.19312668e+002 9.77760925e+001 1.11614212e+002 - 1.19269699e+002 9.77121124e+001 1.11539421e+002 1.19249916e+002 - 9.76274109e+001 1.11460030e+002 1.19204620e+002 9.75824966e+001 - 1.11410660e+002 1.19215469e+002 9.75010452e+001 1.11346031e+002 - 1.19185722e+002 9.74435349e+001 1.11287346e+002 1.19182838e+002 - 9.74043045e+001 1.11264160e+002 1.19189667e+002 9.73427582e+001 - 1.11192520e+002 1.19171898e+002 9.72919312e+001 1.11152748e+002 - 1.19172546e+002 9.72611771e+001 1.11098969e+002 1.19183975e+002 - 9.71984940e+001 1.11045593e+002 1.19163170e+002 9.71587677e+001 - 1.10999260e+002 1.19162827e+002 9.70947342e+001 1.10948380e+002 - 1.19134918e+002 9.70329208e+001 1.10880630e+002 1.19114761e+002 - 9.69835739e+001 1.10831154e+002 1.19097214e+002 9.69492798e+001 - 1.10797806e+002 1.19125664e+002 9.68501358e+001 1.10723984e+002 - 1.19084030e+002 9.68002701e+001 1.10657272e+002 1.19057861e+002 - 9.67696686e+001 1.10634392e+002 1.19064644e+002 9.67418060e+001 - 1.10580978e+002 1.19070816e+002 9.66815186e+001 1.10538406e+002 - 1.19053932e+002 9.66527176e+001 1.10502686e+002 1.19074837e+002 - 9.66021194e+001 1.10464035e+002 1.19063423e+002 9.65569687e+001 - 1.10417206e+002 1.19066055e+002 9.64821472e+001 1.10351089e+002 - 1.19034401e+002 9.64519196e+001 1.10297966e+002 1.19040718e+002 - 9.64149857e+001 1.10279701e+002 1.19045227e+002 9.63920822e+001 - 1.10246086e+002 1.19052505e+002 9.63260117e+001 1.10191711e+002 - 1.19020706e+002 9.62994919e+001 1.10148209e+002 1.19017067e+002 - 9.62625809e+001 1.10119537e+002 1.19004051e+002 9.62333450e+001 - 1.10073479e+002 1.19001678e+002 9.61824112e+001 1.10054420e+002 - 1.18997803e+002 9.61708832e+001 1.10017235e+002 1.18999352e+002 - 9.61487656e+001 1.10000725e+002 1.19002380e+002 9.61084976e+001 - 1.09948479e+002 1.18992508e+002 9.60597916e+001 1.09918449e+002 - 1.18976974e+002 9.60275650e+001 1.09883530e+002 1.18986664e+002 - 9.60091400e+001 1.09876099e+002 1.18995781e+002 9.59763794e+001 - 1.09831329e+002 1.19001579e+002 9.59392166e+001 1.09800919e+002 - 1.18995361e+002 9.59129181e+001 1.09757530e+002 1.18995934e+002 - 9.58784561e+001 1.09732094e+002 1.18989052e+002 9.58769073e+001 - 1.09721176e+002 1.19017426e+002 9.58291931e+001 1.09700867e+002 - 1.19001999e+002 9.58188248e+001 1.09684273e+002 1.19017212e+002 - 9.57990189e+001 1.09671448e+002 1.19017738e+002 9.57630081e+001 - 1.09629669e+002 1.19015450e+002 9.57196655e+001 1.09612839e+002 - 1.19005798e+002 9.57097092e+001 1.09586235e+002 1.19008873e+002 - 9.56867523e+001 1.09572922e+002 1.19004547e+002 9.56643677e+001 - 1.09526566e+002 1.18997383e+002 9.56229706e+001 1.09493805e+002 - 1.18974266e+002 9.56211624e+001 1.09480621e+002 1.18991074e+002 - 9.56070175e+001 1.09467758e+002 1.18984734e+002 9.56104965e+001 - 1.09457169e+002 1.19002991e+002 9.55803604e+001 1.09434097e+002 - 1.18990402e+002 9.55686035e+001 1.09393852e+002 1.18983917e+002 - 9.55849152e+001 1.09425034e+002 1.19021675e+002 9.55778809e+001 - 1.09418350e+002 1.19035530e+002 9.55394897e+001 1.09395561e+002 - 1.19013214e+002 9.55523911e+001 1.09410370e+002 1.19044785e+002 - 9.55473022e+001 1.09411095e+002 1.19050659e+002 9.55330963e+001 - 1.09387253e+002 1.19056618e+002 9.55162506e+001 1.09401932e+002 - 1.19064919e+002 9.54891815e+001 1.09358017e+002 1.19044342e+002 - 9.54642181e+001 1.09350754e+002 1.19036407e+002 9.54956360e+001 - 1.09365227e+002 1.19075562e+002 9.54632721e+001 1.09344521e+002 - 1.19051010e+002 9.54411011e+001 1.09319771e+002 1.19041092e+002 - 9.54502258e+001 1.09339211e+002 1.19055489e+002 9.54539871e+001 - 1.09324989e+002 1.19054291e+002 9.54472427e+001 1.09326164e+002 - 1.19051323e+002 9.54527054e+001 1.09303909e+002 1.19051048e+002 - 9.54479065e+001 1.09304222e+002 1.19045563e+002 9.54795609e+001 - 1.09322617e+002 1.19063797e+002 9.54849243e+001 1.09349266e+002 - 1.19072487e+002 9.54838715e+001 1.09342758e+002 1.19078407e+002 - 9.54830399e+001 1.09344933e+002 1.19069366e+002 9.54897690e+001 - 1.09346519e+002 1.19083603e+002 9.54727554e+001 1.09358910e+002 - 1.19076096e+002 9.54919968e+001 1.09358566e+002 1.19094131e+002 - 9.54654388e+001 1.09339409e+002 1.19067680e+002 9.54741745e+001 - 1.09332443e+002 1.19069603e+002 9.54456635e+001 1.09317833e+002 - 1.19045685e+002 9.54425125e+001 1.09308586e+002 1.19039894e+002 - 9.54065475e+001 1.09283302e+002 1.19002289e+002 9.54168243e+001 - 1.09273270e+002 1.19002174e+002 9.54151917e+001 1.09285027e+002 - 1.18999718e+002 9.54692307e+001 1.09302834e+002 1.19033485e+002 - 9.54824829e+001 1.09328323e+002 1.19036369e+002 9.54956055e+001 - 1.09332283e+002 1.19028725e+002 9.54862518e+001 1.09337227e+002 - 1.19012756e+002 9.55325470e+001 1.09376427e+002 1.19048210e+002 - 9.55477219e+001 1.09397247e+002 1.19043953e+002 9.55634613e+001 - 1.09404678e+002 1.19042931e+002 9.55422592e+001 1.09407547e+002 - 1.19025215e+002 9.55644989e+001 1.09409538e+002 1.19027130e+002 - 9.55681915e+001 1.09420441e+002 1.19017410e+002 9.55711670e+001 - 1.09403419e+002 1.19006546e+002 9.55671005e+001 1.09404800e+002 - 1.18993370e+002 9.55811539e+001 1.09410995e+002 1.18998558e+002 - 9.56127319e+001 1.09460068e+002 1.19021324e+002 9.56287842e+001 - 1.09466972e+002 1.19022446e+002 9.56269989e+001 1.09485352e+002 - 1.19022530e+002 9.56496582e+001 1.09480484e+002 1.19018837e+002 - 9.56622543e+001 1.09505608e+002 1.19009880e+002 9.56787491e+001 - 1.09507607e+002 1.18989677e+002 9.56880569e+001 1.09533463e+002 - 1.18977623e+002 9.57084045e+001 1.09545425e+002 1.18973312e+002 - 9.57601318e+001 1.09597916e+002 1.18991470e+002 9.57869873e+001 - 1.09618660e+002 1.18980911e+002 9.57812042e+001 1.09638412e+002 - 1.18960991e+002 9.58006439e+001 1.09643425e+002 1.18956528e+002 - 9.58332214e+001 1.09686211e+002 1.18971916e+002 9.58619156e+001 - 1.09693001e+002 1.18967705e+002 9.58615112e+001 1.09707077e+002 - 1.18937851e+002 9.58894730e+001 1.09727959e+002 1.18935753e+002 - 9.58976669e+001 1.09753120e+002 1.18919800e+002 9.59460602e+001 - 1.09790100e+002 1.18935127e+002 9.59681091e+001 1.09821548e+002 - 1.18932350e+002 9.60129623e+001 1.09834236e+002 1.18935989e+002 - 9.60309067e+001 1.09868607e+002 1.18927696e+002 9.60642853e+001 - 1.09889076e+002 1.18930420e+002 9.61087418e+001 1.09951866e+002 - 1.18952621e+002 9.61628494e+001 1.10001831e+002 1.18983078e+002 - 9.62272339e+001 1.10076050e+002 1.19002251e+002 9.62864227e+001 - 1.10116005e+002 1.19008957e+002 9.62804031e+001 1.10136986e+002 - 1.18978050e+002 9.63362656e+001 1.10173752e+002 1.18996803e+002 - 9.63632889e+001 1.10212440e+002 1.18990990e+002 9.64144516e+001 - 1.10246750e+002 1.19006294e+002 9.64312057e+001 1.10274033e+002 - 1.18986794e+002 9.64595871e+001 1.10288857e+002 1.18970932e+002 - 9.64965210e+001 1.10335541e+002 1.18963249e+002 9.65400543e+001 - 1.10363327e+002 1.18961792e+002 9.65624313e+001 1.10400093e+002 - 1.18950111e+002 9.66346741e+001 1.10442444e+002 1.18969322e+002 - 9.66798553e+001 1.10504486e+002 1.18983620e+002 9.67306290e+001 - 1.10538742e+002 1.18986153e+002 9.67428970e+001 1.10581093e+002 - 1.18973579e+002 9.68086929e+001 1.10635826e+002 1.19004211e+002 - 9.68763657e+001 1.10708252e+002 1.19020248e+002 9.69410934e+001 - 1.10759743e+002 1.19019287e+002 9.69791718e+001 1.10816040e+002 - 1.19019508e+002 9.70262222e+001 1.10846901e+002 1.19023636e+002 - 9.70559540e+001 1.10884239e+002 1.19014267e+002 9.71089249e+001 - 1.10915535e+002 1.19013092e+002 9.71715927e+001 1.10991264e+002 - 1.19044403e+002 9.72428436e+001 1.11056862e+002 1.19067932e+002 - 9.72881241e+001 1.11113556e+002 1.19069519e+002 9.73685913e+001 - 1.11177910e+002 1.19095329e+002 9.74168091e+001 1.11237617e+002 - 1.19110138e+002 9.75111465e+001 1.11307968e+002 1.19145737e+002 - 9.75553055e+001 1.11364304e+002 1.19150879e+002 9.76312485e+001 - 1.11421425e+002 1.19169662e+002 9.76695862e+001 1.11480110e+002 - 1.19170448e+002 9.77543869e+001 1.11554466e+002 1.19210938e+002 - 9.78490067e+001 1.11658546e+002 1.19250824e+002 9.79347763e+001 - 1.11731407e+002 1.19272453e+002 9.79781418e+001 1.11801117e+002 - 1.19277191e+002 9.80536575e+001 1.11854927e+002 1.19303741e+002 - 9.81102448e+001 1.11923378e+002 1.19320450e+002 9.81890182e+001 - 1.11982063e+002 1.19338997e+002 9.82248611e+001 1.12027222e+002 - 1.19323547e+002 9.82955093e+001 1.12084198e+002 1.19339417e+002 - 9.83802567e+001 1.12173378e+002 1.19372475e+002 9.84894333e+001 - 1.12258827e+002 1.19414452e+002 9.85832672e+001 1.12352425e+002 - 1.19466568e+002 9.86803589e+001 1.12413834e+002 1.19489830e+002 - 9.87399979e+001 1.12479362e+002 1.19490196e+002 9.88109894e+001 - 1.12528458e+002 1.19499214e+002 9.89055252e+001 1.12638229e+002 - 1.19553413e+002 9.90002747e+001 1.12714088e+002 1.19598755e+002 - 9.90999756e+001 1.12803139e+002 1.19629753e+002 9.92076111e+001 - 1.12884842e+002 1.19644753e+002 9.92838898e+001 1.12966652e+002 - 1.19668205e+002 9.94199905e+001 1.13069061e+002 1.19744537e+002 - 9.95206375e+001 1.13172356e+002 1.19798264e+002 9.96288376e+001 - 1.13242126e+002 1.19838791e+002 9.97112045e+001 1.13324982e+002 - 1.19869133e+002 9.98206940e+001 1.13408226e+002 1.19905777e+002 - 9.99027481e+001 1.13482712e+002 1.19923378e+002 9.99919815e+001 - 1.13545036e+002 1.19943253e+002 1.00092094e+002 1.13631836e+002 - 1.19979111e+002 1.00195663e+002 1.13677528e+002 1.19983559e+002 - 1.00283203e+002 1.13741348e+002 1.19992577e+002 1.00384407e+002 - 1.13791451e+002 1.20007469e+002 1.00432426e+002 1.13823776e+002 - 1.19984383e+002 1.00502228e+002 1.13845955e+002 1.19985214e+002 - 1.00498665e+002 1.13829094e+002 1.19909012e+002 1.00435646e+002 - 1.13813881e+002 1.19904129e+002 1.00463036e+002 1.13881905e+002 - 1.19999191e+002 1.00447906e+002 1.13879059e+002 1.20036110e+002 - 1.00393318e+002 1.13854134e+002 1.20040443e+002 1.00316895e+002 - 1.13795639e+002 1.20042152e+002 1.00210899e+002 1.13729225e+002 - 1.20013733e+002 1.00109505e+002 1.13651108e+002 1.19993362e+002 - 9.99823914e+001 1.13553017e+002 1.19922363e+002 9.98829803e+001 - 1.13465416e+002 1.19893990e+002 9.97861252e+001 1.13393440e+002 - 1.19861618e+002 9.97156982e+001 1.13318268e+002 1.19853340e+002 - 9.96544037e+001 1.13280029e+002 1.19845749e+002 9.95843277e+001 - 1.13217590e+002 1.19836769e+002 9.94873428e+001 1.13147804e+002 - 1.19798241e+002 9.94045563e+001 1.13062790e+002 1.19759697e+002 - 9.92989426e+001 1.12978104e+002 1.19716751e+002 9.92132645e+001 - 1.12899902e+002 1.19716316e+002 9.90997086e+001 1.12831177e+002 - 1.19681541e+002 9.90178528e+001 1.12748901e+002 1.19654320e+002 - 9.89030151e+001 1.12659332e+002 1.19596001e+002 9.88133850e+001 - 1.12562469e+002 1.19565277e+002 9.87148514e+001 1.12491440e+002 - 1.19527351e+002 9.86271057e+001 1.12404892e+002 1.19503456e+002 - 9.85732498e+001 1.12365005e+002 1.19499222e+002 9.85236816e+001 - 1.12311928e+002 1.19500244e+002 9.84406281e+001 1.12244225e+002 - 1.19482162e+002 9.83535080e+001 1.12138199e+002 1.19450005e+002 - 9.82668533e+001 1.12066048e+002 1.19419495e+002 9.81993484e+001 - 1.11991692e+002 1.19404045e+002 9.80892639e+001 1.11901276e+002 - 1.19343163e+002 9.80236359e+001 1.11826859e+002 1.19318748e+002 - 9.79496078e+001 1.11759720e+002 1.19283707e+002 9.78864594e+001 - 1.11693954e+002 1.19294426e+002 9.77830734e+001 1.11624931e+002 - 1.19262474e+002 9.77187195e+001 1.11542603e+002 1.19234169e+002 - 9.76305771e+001 1.11476463e+002 1.19196503e+002 9.76004715e+001 - 1.11435616e+002 1.19221268e+002 9.75261536e+001 1.11375107e+002 - 1.19189796e+002 9.74716949e+001 1.11321968e+002 1.19190331e+002 - 9.74283600e+001 1.11286964e+002 1.19184395e+002 9.73576202e+001 - 1.11211708e+002 1.19163116e+002 9.72752914e+001 1.11140472e+002 - 1.19129311e+002 9.72392960e+001 1.11079613e+002 1.19139679e+002 - 9.71852493e+001 1.11038422e+002 1.19124779e+002 9.71660233e+001 - 1.11004944e+002 1.19141838e+002 9.70999298e+001 1.10958763e+002 - 1.19119110e+002 9.70752792e+001 1.10920456e+002 1.19121490e+002 - 9.70185242e+001 1.10873215e+002 1.19100624e+002 9.69376526e+001 - 1.10787041e+002 1.19085175e+002 9.68591003e+001 1.10726944e+002 - 1.19057404e+002 9.68282700e+001 1.10683090e+002 1.19055290e+002 - 9.67862701e+001 1.10653091e+002 1.19048309e+002 9.67503738e+001 - 1.10592010e+002 1.19049522e+002 9.67015305e+001 1.10559624e+002 - 1.19041275e+002 9.66523285e+001 1.10504234e+002 1.19042053e+002 - 9.66063995e+001 1.10472694e+002 1.19034470e+002 9.65499878e+001 - 1.10410522e+002 1.19023994e+002 9.64867554e+001 1.10365417e+002 - 1.19013268e+002 9.64685822e+001 1.10330818e+002 1.19038979e+002 - 9.64296341e+001 1.10302124e+002 1.19034248e+002 9.63983536e+001 - 1.10265976e+002 1.19039093e+002 9.63313751e+001 1.10205132e+002 - 1.18999832e+002 9.63157959e+001 1.10174591e+002 1.19008095e+002 - 9.62934723e+001 1.10154167e+002 1.19004822e+002 9.62635803e+001 - 1.10105186e+002 1.19016167e+002 9.62077560e+001 1.10075943e+002 - 1.18993484e+002 9.61890488e+001 1.10038277e+002 1.18989365e+002 - 9.61617508e+001 1.10024475e+002 1.18992813e+002 9.61220932e+001 - 1.09961845e+002 1.18975128e+002 9.60855408e+001 1.09940254e+002 - 1.18969131e+002 9.60393600e+001 1.09896240e+002 1.18968979e+002 - 9.60067749e+001 1.09873337e+002 1.18964684e+002 9.59720840e+001 - 1.09826981e+002 1.18966057e+002 9.59394913e+001 1.09809349e+002 - 1.18963837e+002 9.59274673e+001 1.09773544e+002 1.18976578e+002 - 9.58939362e+001 1.09753433e+002 1.18977234e+002 9.58950653e+001 - 1.09753487e+002 1.19011246e+002 9.58610840e+001 1.09740860e+002 - 1.19011543e+002 9.58430099e+001 1.09720940e+002 1.19019539e+002 - 9.58173370e+001 1.09692642e+002 1.19007645e+002 9.57749710e+001 - 1.09639465e+002 1.18994560e+002 9.57106781e+001 1.09600800e+002 - 1.18964287e+002 9.56907272e+001 1.09569427e+002 1.18961174e+002 - 9.56815948e+001 1.09565956e+002 1.18969566e+002 9.56642227e+001 - 1.09525276e+002 1.18968857e+002 9.56550293e+001 1.09518173e+002 - 1.18972404e+002 9.56394119e+001 1.09494843e+002 1.18978210e+002 - 9.56069260e+001 1.09462013e+002 1.18948448e+002 9.56189804e+001 - 1.09465294e+002 1.18985817e+002 9.56088867e+001 1.09463814e+002 - 1.18990013e+002 9.55860291e+001 1.09409325e+002 1.18970428e+002 - 9.55822830e+001 1.09422821e+002 1.18986153e+002 9.55812531e+001 - 1.09422920e+002 1.19004921e+002 9.55517044e+001 1.09417702e+002 - 1.18999557e+002 9.55662537e+001 1.09419388e+002 1.19031273e+002 - 9.55726013e+001 1.09440842e+002 1.19047325e+002 9.55573883e+001 - 1.09421921e+002 1.19050941e+002 9.55306473e+001 1.09419411e+002 - 1.19051521e+002 9.55248718e+001 1.09402328e+002 1.19051979e+002 - 9.55112228e+001 1.09402756e+002 1.19056465e+002 9.55222931e+001 - 1.09405479e+002 1.19075676e+002 9.54796829e+001 1.09376114e+002 - 1.19039406e+002 9.54681549e+001 1.09350166e+002 1.19036819e+002 - 9.54684448e+001 1.09365227e+002 1.19038422e+002 9.54601822e+001 - 1.09336075e+002 1.19025581e+002 9.54424286e+001 1.09325661e+002 - 1.19011330e+002 9.54550171e+001 1.09307869e+002 1.19013451e+002 - 9.54496765e+001 1.09310837e+002 1.19011154e+002 9.54717560e+001 - 1.09323639e+002 1.19022530e+002 9.54758453e+001 1.09347740e+002 - 1.19033508e+002 9.54677429e+001 1.09327507e+002 1.19022797e+002 - 9.54583893e+001 1.09328697e+002 1.19008812e+002 9.54821930e+001 - 1.09345428e+002 1.19036057e+002 9.54671707e+001 1.09357933e+002 - 1.19037170e+002 9.54721603e+001 1.09349243e+002 1.19040726e+002 - 9.54598465e+001 1.09343422e+002 1.19025917e+002 9.54826736e+001 - 1.09347740e+002 1.19051285e+002 9.54596329e+001 1.09340897e+002 - 1.19027229e+002 9.54681931e+001 1.09343468e+002 1.19040840e+002 - 9.54325256e+001 1.09318245e+002 1.18996834e+002 9.54495621e+001 - 1.09325600e+002 1.19008331e+002 9.54489594e+001 1.09329346e+002 - 1.19001953e+002 9.54759750e+001 1.09317291e+002 1.19006424e+002 - 9.54805450e+001 1.09332504e+002 1.19000931e+002 9.55113297e+001 - 1.09355438e+002 1.19015701e+002 9.55151978e+001 1.09371910e+002 - 1.19005836e+002 9.55391235e+001 1.09385979e+002 1.19022835e+002 - 9.55526886e+001 1.09405777e+002 1.19010094e+002 9.55681458e+001 - 1.09404625e+002 1.19010468e+002 9.55528107e+001 1.09415794e+002 - 1.18992714e+002 9.55854645e+001 1.09432129e+002 1.19010384e+002 - 9.55732803e+001 1.09429008e+002 1.18992409e+002 9.55762100e+001 - 1.09408272e+002 1.18976265e+002 9.55804062e+001 1.09428207e+002 - 1.18980431e+002 9.55977402e+001 1.09433441e+002 1.18980293e+002 - 9.56142578e+001 1.09464882e+002 1.18987106e+002 9.56356583e+001 - 1.09476685e+002 1.19001762e+002 9.56232452e+001 1.09480171e+002 - 1.18985596e+002 9.56509781e+001 1.09482269e+002 1.18981911e+002 - 9.56633759e+001 1.09506546e+002 1.18973366e+002 9.56988449e+001 - 1.09539978e+002 1.18984665e+002 9.57078094e+001 1.09561584e+002 - 1.18973892e+002 9.57490921e+001 1.09582642e+002 1.18986855e+002 - 9.57881546e+001 1.09631256e+002 1.18986603e+002 9.58169937e+001 - 1.09651764e+002 1.18983978e+002 9.58113251e+001 1.09666962e+002 - 1.18959366e+002 9.58132782e+001 1.09655945e+002 1.18941559e+002 - 9.58554077e+001 1.09710358e+002 1.18961227e+002 9.58900223e+001 - 1.09724976e+002 1.18968582e+002 9.58909225e+001 1.09738297e+002 - 1.18938812e+002 9.59104614e+001 1.09751549e+002 1.18926842e+002 - 9.59086227e+001 1.09757118e+002 1.18892677e+002 9.59368286e+001 - 1.09779564e+002 1.18892776e+002 9.59667435e+001 1.09819290e+002 - 1.18898460e+002 9.60383606e+001 1.09859711e+002 1.18924500e+002 - 9.60664368e+001 1.09903336e+002 1.18933311e+002 9.61014786e+001 - 1.09924881e+002 1.18932976e+002 9.61207352e+001 1.09963242e+002 - 1.18932861e+002 9.61793823e+001 1.10014618e+002 1.18967056e+002 - 9.62415771e+001 1.10084160e+002 1.18982033e+002 9.63033066e+001 - 1.10134613e+002 1.18991348e+002 9.63004761e+001 1.10157478e+002 - 1.18967445e+002 9.63407288e+001 1.10184769e+002 1.18974548e+002 - 9.63440247e+001 1.10199966e+002 1.18944901e+002 9.64281616e+001 - 1.10259285e+002 1.18985115e+002 9.64459763e+001 1.10291344e+002 - 1.18965385e+002 9.64549637e+001 1.10284050e+002 1.18933105e+002 - 9.64859161e+001 1.10325974e+002 1.18924576e+002 9.65432892e+001 - 1.10362419e+002 1.18932007e+002 9.65908890e+001 1.10418243e+002 - 1.18941223e+002 9.66553650e+001 1.10461227e+002 1.18958565e+002 - 9.66946487e+001 1.10517303e+002 1.18969017e+002 9.67305832e+001 - 1.10543777e+002 1.18964958e+002 9.67645493e+001 1.10594292e+002 - 1.18964012e+002 9.68307571e+001 1.10656570e+002 1.18998817e+002 - 9.68769455e+001 1.10709564e+002 1.18992996e+002 9.69242096e+001 - 1.10741394e+002 1.18978973e+002 9.69565353e+001 1.10790535e+002 - 1.18973175e+002 9.70272903e+001 1.10848709e+002 1.18997421e+002 - 9.70670471e+001 1.10901772e+002 1.19002327e+002 9.71217651e+001 - 1.10934204e+002 1.19004364e+002 9.71709824e+001 1.10998352e+002 - 1.19020424e+002 9.72510452e+001 1.11061440e+002 1.19048447e+002 - 9.73068466e+001 1.11128952e+002 1.19061249e+002 9.73793945e+001 - 1.11185692e+002 1.19078148e+002 9.74191895e+001 1.11238342e+002 - 1.19090836e+002 9.75196915e+001 1.11311287e+002 1.19135818e+002 - 9.75753098e+001 1.11382538e+002 1.19149933e+002 9.76442642e+001 - 1.11435516e+002 1.19165344e+002 9.76837692e+001 1.11500793e+002 - 1.19169701e+002 9.77801666e+001 1.11573601e+002 1.19212662e+002 - 9.78754120e+001 1.11679443e+002 1.19261093e+002 9.79609680e+001 - 1.11755119e+002 1.19276543e+002 9.80027771e+001 1.11822876e+002 - 1.19279961e+002 9.80874863e+001 1.11885590e+002 1.19314140e+002 - 9.81459961e+001 1.11966064e+002 1.19335159e+002 9.82188644e+001 - 1.12011902e+002 1.19341339e+002 9.82585373e+001 1.12064491e+002 - 1.19335800e+002 9.83344879e+001 1.12124535e+002 1.19355415e+002 - 9.84015503e+001 1.12196510e+002 1.19368179e+002 9.85159149e+001 - 1.12280571e+002 1.19416573e+002 9.86027756e+001 1.12369720e+002 - 1.19454636e+002 9.87054443e+001 1.12442108e+002 1.19487587e+002 - 9.87560806e+001 1.12493462e+002 1.19484489e+002 9.88355484e+001 - 1.12558311e+002 1.19502960e+002 9.89192429e+001 1.12644821e+002 - 1.19544609e+002 9.90085297e+001 1.12714050e+002 1.19583534e+002 - 9.91008377e+001 1.12803764e+002 1.19609184e+002 9.92113113e+001 - 1.12879745e+002 1.19628006e+002 9.93078461e+001 1.12989372e+002 - 1.19675865e+002 9.94351807e+001 1.13089989e+002 1.19744041e+002 - 9.95352783e+001 1.13185020e+002 1.19794792e+002 9.96450348e+001 - 1.13267197e+002 1.19840736e+002 9.97262573e+001 1.13341042e+002 - 1.19867661e+002 9.98181763e+001 1.13404381e+002 1.19884521e+002 - 9.99006119e+001 1.13485954e+002 1.19906815e+002 9.99928894e+001 - 1.13545006e+002 1.19926575e+002 1.00089523e+002 1.13626915e+002 - 1.19962135e+002 1.00201263e+002 1.13681076e+002 1.19972557e+002 - 1.00285225e+002 1.13748550e+002 1.19980110e+002 1.00390968e+002 - 1.13796684e+002 1.19996223e+002 1.00419571e+002 1.13810135e+002 - 1.19955307e+002 1.00476944e+002 1.13819504e+002 1.19943497e+002 - 1.00470741e+002 1.13798172e+002 1.19862106e+002 1.00477974e+002 - 1.13826149e+002 1.19916634e+002 1.00465881e+002 1.13870705e+002 - 1.19972328e+002 1.00451279e+002 1.13873642e+002 1.20012703e+002 - 1.00400002e+002 1.13855957e+002 1.20021858e+002 1.00326454e+002 - 1.13791512e+002 1.20020149e+002 1.00194870e+002 1.13700874e+002 - 1.19964790e+002 1.00114357e+002 1.13644173e+002 1.19963737e+002 - 1.00000412e+002 1.13557343e+002 1.19914444e+002 9.99055405e+001 - 1.13474617e+002 1.19884285e+002 9.98116226e+001 1.13414719e+002 - 1.19850014e+002 9.97533264e+001 1.13342247e+002 1.19856125e+002 - 9.96921844e+001 1.13307770e+002 1.19855148e+002 9.95985565e+001 - 1.13225746e+002 1.19816299e+002 9.95001221e+001 1.13150185e+002 - 1.19771278e+002 9.94302979e+001 1.13070435e+002 1.19752518e+002 - 9.93324203e+001 1.12993958e+002 1.19714119e+002 9.92435455e+001 - 1.12932045e+002 1.19718239e+002 9.91385651e+001 1.12860962e+002 - 1.19685463e+002 9.90688553e+001 1.12788704e+002 1.19664726e+002 - 9.89612274e+001 1.12710960e+002 1.19623360e+002 9.88617020e+001 - 1.12598389e+002 1.19582397e+002 9.87545929e+001 1.12516090e+002 - 1.19532730e+002 9.86522522e+001 1.12424423e+002 1.19498695e+002 - 9.85901260e+001 1.12380028e+002 1.19485214e+002 9.85694809e+001 - 1.12354126e+002 1.19518654e+002 9.84851837e+001 1.12290718e+002 - 1.19492371e+002 9.84090424e+001 1.12184669e+002 1.19466927e+002 - 9.83216629e+001 1.12111511e+002 1.19430550e+002 9.82348709e+001 - 1.12027260e+002 1.19398643e+002 9.81155701e+001 1.11926979e+002 - 1.19328529e+002 9.80501785e+001 1.11838554e+002 1.19298584e+002 - 9.79859848e+001 1.11782585e+002 1.19279625e+002 9.78951187e+001 - 1.11703156e+002 1.19265099e+002 9.78032913e+001 1.11637131e+002 - 1.19230721e+002 9.77562943e+001 1.11574234e+002 1.19229836e+002 - 9.76691055e+001 1.11504211e+002 1.19188133e+002 9.76228409e+001 - 1.11443367e+002 1.19192131e+002 9.75417709e+001 1.11381424e+002 - 1.19162003e+002 9.75075760e+001 1.11344597e+002 1.19174629e+002 - 9.74886322e+001 1.11339111e+002 1.19201370e+002 9.74270325e+001 - 1.11266914e+002 1.19180504e+002 9.73228455e+001 1.11179756e+002 - 1.19128014e+002 9.72823029e+001 1.11104927e+002 1.19134705e+002 - 9.72409134e+001 1.11080772e+002 1.19139252e+002 9.72069855e+001 - 1.11048157e+002 1.19141975e+002 9.71203384e+001 1.10973358e+002 - 1.19086563e+002 9.70869522e+001 1.10920860e+002 1.19082077e+002 - 9.70438080e+001 1.10884689e+002 1.19080284e+002 9.69720306e+001 - 1.10814064e+002 1.19067070e+002 9.68966522e+001 1.10757721e+002 - 1.19042480e+002 9.68809509e+001 1.10730545e+002 1.19057388e+002 - 9.68342209e+001 1.10689346e+002 1.19040779e+002 9.67930145e+001 - 1.10626526e+002 1.19040054e+002 9.67508392e+001 1.10595444e+002 - 1.19033813e+002 9.67070618e+001 1.10548256e+002 1.19041176e+002 - 9.66665039e+001 1.10527550e+002 1.19048462e+002 9.66078033e+001 - 1.10462166e+002 1.19036186e+002 9.65267334e+001 1.10401184e+002 - 1.19002625e+002 9.65277023e+001 1.10373619e+002 1.19039116e+002 - 9.64932556e+001 1.10354210e+002 1.19046059e+002 9.64479980e+001 - 1.10305229e+002 1.19026466e+002 9.63621292e+001 1.10235397e+002 - 1.18975327e+002 9.63718872e+001 1.10220184e+002 1.19004623e+002 - 9.63474197e+001 1.10197792e+002 1.19003204e+002 9.62989426e+001 - 1.10146301e+002 1.18992485e+002 9.62523880e+001 1.10116768e+002 - 1.18986389e+002 9.62321701e+001 1.10084923e+002 1.18987740e+002 - 9.62110596e+001 1.10072952e+002 1.18990135e+002 9.61862335e+001 - 1.10025986e+002 1.18999252e+002 9.61343918e+001 1.09987518e+002 - 1.18980545e+002 9.61125259e+001 1.09965240e+002 1.18993736e+002 - 9.60660095e+001 1.09924179e+002 1.18975052e+002 9.60257034e+001 - 1.09867218e+002 1.18962502e+002 9.59842148e+001 1.09848846e+002 - 1.18956009e+002 9.59708786e+001 1.09803436e+002 1.18966507e+002 - 9.59525604e+001 1.09794533e+002 1.18979675e+002 9.59299469e+001 - 1.09777939e+002 1.18985069e+002 9.58926392e+001 1.09764435e+002 - 1.18984245e+002 9.58790436e+001 1.09737823e+002 1.18998718e+002 - 9.58676910e+001 1.09729607e+002 1.19000130e+002 9.58075027e+001 - 1.09669525e+002 1.18973206e+002 9.57271347e+001 1.09605865e+002 - 1.18928421e+002 9.57284927e+001 1.09595856e+002 1.18940086e+002 - 9.57458496e+001 1.09620506e+002 1.18966972e+002 9.57196960e+001 - 1.09567055e+002 1.18958595e+002 9.56968613e+001 1.09548859e+002 - 1.18948997e+002 9.56773453e+001 1.09520050e+002 1.18948441e+002 - 9.56588058e+001 1.09502510e+002 1.18944481e+002 9.56756058e+001 - 1.09509155e+002 1.18975792e+002 9.56528320e+001 1.09503487e+002 - 1.18976524e+002 9.56262817e+001 1.09442642e+002 1.18961815e+002 - 9.56282654e+001 1.09462914e+002 1.18977501e+002 9.56308823e+001 - 1.09471428e+002 1.19002579e+002 9.55974503e+001 1.09461838e+002 - 1.18991089e+002 9.56288986e+001 1.09477608e+002 1.19035347e+002 - 9.56122360e+001 1.09472031e+002 1.19028091e+002 9.55890884e+001 - 1.09447624e+002 1.19019562e+002 9.55544434e+001 1.09436508e+002 - 1.19012955e+002 9.55729675e+001 1.09444618e+002 1.19042114e+002 - 9.55485764e+001 1.09439331e+002 1.19036110e+002 9.55705185e+001 - 1.09444328e+002 1.19066879e+002 9.55304565e+001 1.09419861e+002 - 1.19039284e+002 9.55230865e+001 1.09399055e+002 1.19034225e+002 - 9.55268402e+001 1.09414032e+002 1.19039146e+002 9.55085678e+001 - 1.09384460e+002 1.19017876e+002 9.54768295e+001 1.09363838e+002 - 1.18987518e+002 9.54939346e+001 1.09340210e+002 1.18994522e+002 - 9.54828796e+001 1.09334663e+002 1.18985451e+002 9.54944687e+001 - 1.09347145e+002 1.18996155e+002 9.55083389e+001 1.09373459e+002 - 1.18997803e+002 9.55075150e+001 1.09354912e+002 1.19000282e+002 - 9.55129852e+001 1.09367500e+002 1.19000069e+002 9.55312347e+001 - 1.09389381e+002 1.19025658e+002 9.55253754e+001 1.09402840e+002 - 1.19033745e+002 9.55265884e+001 1.09394714e+002 1.19036171e+002 - 9.55098267e+001 1.09389931e+002 1.19018646e+002 9.55307312e+001 - 1.09391365e+002 1.19034096e+002 9.55140839e+001 1.09385895e+002 - 1.19021744e+002 9.55136185e+001 1.09381996e+002 1.19024307e+002 - 9.55177002e+001 1.09398499e+002 1.19020782e+002 9.55208969e+001 - 1.09386497e+002 1.19016953e+002 9.55046692e+001 1.09379250e+002 - 1.18997765e+002 9.55376663e+001 1.09377075e+002 1.19013641e+002 - 9.55500488e+001 1.09393547e+002 1.19009911e+002 9.55670929e+001 - 1.09411072e+002 1.19010880e+002 9.55548248e+001 1.09413971e+002 - 1.18986107e+002 9.55779266e+001 1.09414742e+002 1.18999832e+002 - 9.55881042e+001 1.09430916e+002 1.18991310e+002 9.56054840e+001 - 1.09435608e+002 1.18990875e+002 9.55925293e+001 1.09445267e+002 - 1.18975189e+002 9.56085739e+001 1.09444656e+002 1.18975662e+002 - 9.56178436e+001 1.09463173e+002 1.18972694e+002 9.56307449e+001 - 1.09457481e+002 1.18980682e+002 9.56292038e+001 1.09466187e+002 - 1.18973816e+002 9.56345596e+001 1.09471626e+002 1.18968956e+002 - 9.56454620e+001 1.09492271e+002 1.18964607e+002 9.56825714e+001 - 1.09522873e+002 1.18996086e+002 9.56658859e+001 1.09521156e+002 - 1.18966896e+002 9.56949921e+001 1.09517776e+002 1.18973854e+002 - 9.57145462e+001 1.09552353e+002 1.18968704e+002 9.57569351e+001 - 1.09591759e+002 1.18983734e+002 9.57652969e+001 1.09613708e+002 - 1.18971031e+002 9.58072586e+001 1.09636765e+002 1.18990959e+002 - 9.58282852e+001 1.09667000e+002 1.18974106e+002 9.58478775e+001 - 1.09685150e+002 1.18969521e+002 9.58389816e+001 1.09695465e+002 - 1.18943443e+002 9.58516998e+001 1.09688057e+002 1.18931488e+002 - 9.58938522e+001 1.09742584e+002 1.18948860e+002 9.59200974e+001 - 1.09743355e+002 1.18945839e+002 9.59107437e+001 1.09749359e+002 - 1.18900330e+002 9.59342194e+001 1.09766411e+002 1.18894211e+002 - 9.59671631e+001 1.09809944e+002 1.18897057e+002 9.60107422e+001 - 1.09841827e+002 1.18911819e+002 9.60285110e+001 1.09873001e+002 - 1.18898895e+002 9.60849686e+001 1.09893959e+002 1.18919106e+002 - 9.61074219e+001 1.09932793e+002 1.18919556e+002 9.61374512e+001 - 1.09959755e+002 1.18919754e+002 9.61533051e+001 1.09992477e+002 - 1.18907852e+002 9.62253952e+001 1.10047737e+002 1.18953842e+002 - 9.62730408e+001 1.10103615e+002 1.18958313e+002 9.63421097e+001 - 1.10171204e+002 1.18977875e+002 9.63442383e+001 1.10193810e+002 - 1.18956230e+002 9.63920212e+001 1.10228302e+002 1.18962700e+002 - 9.64171753e+001 1.10261993e+002 1.18957626e+002 9.64820786e+001 - 1.10305466e+002 1.18987411e+002 9.64659653e+001 1.10293579e+002 - 1.18936371e+002 9.64771423e+001 1.10293892e+002 1.18907112e+002 - 9.65538025e+001 1.10381477e+002 1.18942307e+002 9.65957413e+001 - 1.10413971e+002 1.18947853e+002 9.66398621e+001 1.10468803e+002 - 1.18948700e+002 9.67141876e+001 1.10514687e+002 1.18981644e+002 - 9.67498550e+001 1.10561195e+002 1.18986526e+002 9.67794342e+001 - 1.10595428e+002 1.18970192e+002 9.68077087e+001 1.10639626e+002 - 1.18969460e+002 9.68798370e+001 1.10696213e+002 1.19001915e+002 - 9.69231796e+001 1.10749237e+002 1.18995117e+002 9.69799957e+001 - 1.10793190e+002 1.18995285e+002 9.70036316e+001 1.10833908e+002 - 1.18976425e+002 9.70530930e+001 1.10866035e+002 1.18987854e+002 - 9.71089478e+001 1.10931084e+002 1.19002029e+002 9.71766129e+001 - 1.10975174e+002 1.19023132e+002 9.72277756e+001 1.11044670e+002 - 1.19032333e+002 9.72834320e+001 1.11089127e+002 1.19037254e+002 - 9.73316193e+001 1.11143066e+002 1.19043922e+002 9.74073257e+001 - 1.11207787e+002 1.19074265e+002 9.74482193e+001 1.11265503e+002 - 1.19078392e+002 9.75381317e+001 1.11319260e+002 1.19116371e+002 - 9.75839005e+001 1.11383499e+002 1.19123878e+002 9.76766586e+001 - 1.11468323e+002 1.19159111e+002 9.77340317e+001 1.11539940e+002 - 1.19174797e+002 9.78099060e+001 1.11596245e+002 1.19209274e+002 - 9.79029312e+001 1.11698547e+002 1.19244484e+002 9.80026398e+001 - 1.11786407e+002 1.19269882e+002 9.80446091e+001 1.11848251e+002 - 1.19274765e+002 9.81265945e+001 1.11921257e+002 1.19313622e+002 - 9.81892471e+001 1.11992104e+002 1.19327171e+002 9.82545547e+001 - 1.12035843e+002 1.19336975e+002 9.82964401e+001 1.12088905e+002 - 1.19331024e+002 9.83678284e+001 1.12147873e+002 1.19348160e+002 - 9.84507751e+001 1.12227890e+002 1.19371094e+002 9.85352020e+001 - 1.12290268e+002 1.19398727e+002 9.86246033e+001 1.12388107e+002 - 1.19431625e+002 9.87348328e+001 1.12451950e+002 1.19471535e+002 - 9.87828369e+001 1.12505104e+002 1.19470589e+002 9.88517761e+001 - 1.12569832e+002 1.19481613e+002 9.89234772e+001 1.12642616e+002 - 1.19506264e+002 9.90183105e+001 1.12711723e+002 1.19555359e+002 - 9.91152191e+001 1.12800644e+002 1.19577927e+002 9.92327881e+001 - 1.12891273e+002 1.19611320e+002 9.93356857e+001 1.13006203e+002 - 1.19664711e+002 9.94421082e+001 1.13082451e+002 1.19718102e+002 - 9.95500336e+001 1.13190529e+002 1.19772575e+002 9.96610870e+001 - 1.13269318e+002 1.19828697e+002 9.97420044e+001 1.13348297e+002 - 1.19845306e+002 9.98314209e+001 1.13415009e+002 1.19870857e+002 - 9.99249268e+001 1.13497917e+002 1.19895699e+002 1.00022980e+002 - 1.13561050e+002 1.19920830e+002 1.00113152e+002 1.13647156e+002 - 1.19944115e+002 1.00238823e+002 1.13699898e+002 1.19974815e+002 - 1.00324455e+002 1.13768387e+002 1.19987518e+002 1.00402557e+002 - 1.13808975e+002 1.19983780e+002 1.00428909e+002 1.13821098e+002 - 1.19936516e+002 1.00494385e+002 1.13825470e+002 1.19930229e+002 - 1.00477074e+002 1.13801903e+002 1.19842583e+002 1.00470764e+002 - 1.13815857e+002 1.19877182e+002 1.00461082e+002 1.13866356e+002 - 1.19932617e+002 1.00441444e+002 1.13861885e+002 1.19969635e+002 - 1.00387108e+002 1.13840630e+002 1.19978973e+002 1.00318199e+002 - 1.13783623e+002 1.19979286e+002 1.00198196e+002 1.13701645e+002 - 1.19935051e+002 1.00106819e+002 1.13630898e+002 1.19920868e+002 - 1.00007011e+002 1.13562302e+002 1.19890930e+002 9.99196091e+001 - 1.13484604e+002 1.19863800e+002 9.97968750e+001 1.13402481e+002 - 1.19807564e+002 9.97458878e+001 1.13332222e+002 1.19814400e+002 - 9.96726074e+001 1.13285561e+002 1.19804993e+002 9.95726776e+001 - 1.13196655e+002 1.19759827e+002 9.95000916e+001 1.13147102e+002 - 1.19738029e+002 9.94193649e+001 1.13061317e+002 1.19703911e+002 - 9.93126678e+001 1.12971199e+002 1.19657143e+002 9.92355652e+001 - 1.12918022e+002 1.19672241e+002 9.91279068e+001 1.12843567e+002 - 1.19638657e+002 9.90648422e+001 1.12779800e+002 1.19627853e+002 - 9.89477386e+001 1.12693939e+002 1.19572243e+002 9.88589706e+001 - 1.12591034e+002 1.19538048e+002 9.87492065e+001 1.12508560e+002 - 1.19493866e+002 9.86509094e+001 1.12417702e+002 1.19456612e+002 - 9.85888290e+001 1.12371994e+002 1.19446495e+002 9.85737076e+001 - 1.12352989e+002 1.19483360e+002 9.84748001e+001 1.12273224e+002 - 1.19437508e+002 9.84186096e+001 1.12187531e+002 1.19432922e+002 - 9.83176575e+001 1.12108215e+002 1.19391144e+002 9.82444077e+001 - 1.12028671e+002 1.19361862e+002 9.81352386e+001 1.11936882e+002 - 1.19302490e+002 9.80694275e+001 1.11852448e+002 1.19273666e+002 - 9.80111771e+001 1.11801033e+002 1.19258720e+002 9.79297256e+001 - 1.11729111e+002 1.19243881e+002 9.78396225e+001 1.11665703e+002 - 1.19211533e+002 9.77736282e+001 1.11590286e+002 1.19191093e+002 - 9.76864624e+001 1.11516441e+002 1.19146523e+002 9.76404266e+001 - 1.11454262e+002 1.19153702e+002 9.75597992e+001 1.11391342e+002 - 1.19120720e+002 9.74976654e+001 1.11329475e+002 1.19108391e+002 - 9.74650726e+001 1.11309418e+002 1.19130997e+002 9.74279938e+001 - 1.11269417e+002 1.19135857e+002 9.73561707e+001 1.11212502e+002 - 1.19110207e+002 9.73078156e+001 1.11131256e+002 1.19106705e+002 - 9.72460709e+001 1.11088951e+002 1.19098305e+002 9.72163391e+001 - 1.11054077e+002 1.19102257e+002 9.71378098e+001 1.10999046e+002 - 1.19058899e+002 9.71056976e+001 1.10938065e+002 1.19051834e+002 - 9.70606766e+001 1.10904282e+002 1.19044960e+002 9.69764175e+001 - 1.10824471e+002 1.19015411e+002 9.69072952e+001 1.10768837e+002 - 1.18993820e+002 9.69019547e+001 1.10751884e+002 1.19019272e+002 - 9.68446426e+001 1.10702354e+002 1.18996704e+002 9.67958374e+001 - 1.10627625e+002 1.18987679e+002 9.67522507e+001 1.10604446e+002 - 1.18987465e+002 9.67012100e+001 1.10551056e+002 1.18985291e+002 - 9.66750336e+001 1.10536293e+002 1.19001999e+002 9.66096039e+001 - 1.10464149e+002 1.18982361e+002 9.65397568e+001 1.10417191e+002 - 1.18960464e+002 9.65472336e+001 1.10395233e+002 1.18999214e+002 - 9.64774246e+001 1.10336838e+002 1.18966545e+002 9.64296036e+001 - 1.10295326e+002 1.18959969e+002 9.63831635e+001 1.10256187e+002 - 1.18935303e+002 9.63836517e+001 1.10241814e+002 1.18958107e+002 - 9.63624573e+001 1.10226654e+002 1.18964035e+002 9.62889328e+001 - 1.10146713e+002 1.18934822e+002 9.62368317e+001 1.10113792e+002 - 1.18925072e+002 9.62260208e+001 1.10089340e+002 1.18937683e+002 - 9.62280426e+001 1.10095886e+002 1.18964195e+002 9.62132416e+001 - 1.10060341e+002 1.18977760e+002 9.61593246e+001 1.10018654e+002 - 1.18958382e+002 9.61331406e+001 1.09985237e+002 1.18961998e+002 - 9.60860062e+001 1.09935555e+002 1.18936836e+002 9.60361176e+001 - 1.09876144e+002 1.18915497e+002 9.59907532e+001 1.09846939e+002 - 1.18899673e+002 9.59732437e+001 1.09794960e+002 1.18906052e+002 - 9.59413452e+001 1.09779274e+002 1.18907112e+002 9.59296570e+001 - 1.09772354e+002 1.18925621e+002 9.58996429e+001 1.09768593e+002 - 1.18925468e+002 9.58808823e+001 1.09739220e+002 1.18939644e+002 - 9.58766403e+001 1.09741646e+002 1.18947403e+002 9.58415985e+001 - 1.09705841e+002 1.18949272e+002 9.57922745e+001 1.09672058e+002 - 1.18924469e+002 9.57954254e+001 1.09657349e+002 1.18936661e+002 - 9.57981491e+001 1.09669075e+002 1.18948929e+002 9.57748947e+001 - 1.09615845e+002 1.18937386e+002 9.56967163e+001 1.09542747e+002 - 1.18881516e+002 9.56679764e+001 1.09505623e+002 1.18871597e+002 - 9.56894302e+001 1.09538033e+002 1.18910614e+002 9.56940994e+001 - 1.09529404e+002 1.18933617e+002 9.56645050e+001 1.09515526e+002 - 1.18928093e+002 9.56665268e+001 1.09487389e+002 1.18942307e+002 - 9.56508102e+001 1.09487350e+002 1.18945503e+002 9.56620178e+001 - 1.09507721e+002 1.18983795e+002 9.56334686e+001 1.09498001e+002 - 1.18968910e+002 9.56425247e+001 1.09498001e+002 1.18991737e+002 - 9.56319122e+001 1.09495705e+002 1.18984718e+002 9.56056290e+001 - 1.09465981e+002 1.18974388e+002 9.55637512e+001 1.09451385e+002 - 1.18963821e+002 9.55631943e+001 1.09441643e+002 1.18970940e+002 - 9.55465164e+001 1.09444725e+002 1.18972832e+002 9.55905685e+001 - 1.09467743e+002 1.19030350e+002 9.55597153e+001 1.09450089e+002 - 1.19011528e+002 9.55442963e+001 1.09428566e+002 1.19001862e+002 - 9.55378036e+001 1.09431938e+002 1.18990616e+002 9.55201416e+001 - 1.09400696e+002 1.18969147e+002 9.54906845e+001 1.09385231e+002 - 1.18943993e+002 9.55212708e+001 1.09372528e+002 1.18969048e+002 - 9.55359650e+001 1.09396698e+002 1.18979561e+002 9.55389938e+001 - 1.09395500e+002 1.18976761e+002 9.55408554e+001 1.09411224e+002 - 1.18977623e+002 9.55485992e+001 1.09398605e+002 1.18977348e+002 - 9.55514679e+001 1.09410034e+002 1.18978088e+002 9.55712204e+001 - 1.09421860e+002 1.18998604e+002 9.55438995e+001 1.09425957e+002 - 1.18989601e+002 9.55571747e+001 1.09431839e+002 1.19008507e+002 - 9.55389786e+001 1.09419411e+002 1.18990265e+002 9.55680008e+001 - 1.09424408e+002 1.19007347e+002 9.55500565e+001 1.09415115e+002 - 1.18985245e+002 9.55257339e+001 1.09389618e+002 1.18968369e+002 - 9.55450134e+001 1.09418350e+002 1.18980247e+002 9.55397491e+001 - 1.09400208e+002 1.18970444e+002 9.55259933e+001 1.09402267e+002 - 1.18958717e+002 9.55652008e+001 1.09409744e+002 1.18981880e+002 - 9.55961456e+001 1.09443581e+002 1.18995171e+002 9.55825195e+001 - 1.09430206e+002 1.18968323e+002 9.55664444e+001 1.09429428e+002 - 1.18942223e+002 9.55830078e+001 1.09419151e+002 1.18950562e+002 - 9.55925140e+001 1.09439705e+002 1.18938896e+002 9.56047745e+001 - 1.09444588e+002 1.18935814e+002 9.55963135e+001 1.09458351e+002 - 1.18923073e+002 9.56235123e+001 1.09473717e+002 1.18941032e+002 - 9.56241074e+001 1.09483589e+002 1.18933449e+002 9.56426773e+001 - 1.09479225e+002 1.18934837e+002 9.56380615e+001 1.09485092e+002 - 1.18922173e+002 9.56514435e+001 1.09493797e+002 1.18932007e+002 - 9.56849365e+001 1.09533943e+002 1.18945007e+002 9.57182083e+001 - 1.09556404e+002 1.18966095e+002 9.56923065e+001 1.09549057e+002 - 1.18928558e+002 9.57257309e+001 1.09551666e+002 1.18944839e+002 - 9.57516251e+001 1.09589958e+002 1.18949738e+002 9.57659760e+001 - 1.09609894e+002 1.18940834e+002 9.57568893e+001 1.09616684e+002 - 1.18910797e+002 9.58112106e+001 1.09653976e+002 1.18943230e+002 - 9.58460846e+001 1.09691742e+002 1.18944977e+002 9.58699112e+001 - 1.09709198e+002 1.18938049e+002 9.58649368e+001 1.09726433e+002 - 1.18914772e+002 9.58716736e+001 1.09712257e+002 1.18895325e+002 - 9.59034805e+001 1.09755966e+002 1.18900131e+002 9.59339981e+001 - 1.09755394e+002 1.18894600e+002 9.59238892e+001 1.09758133e+002 - 1.18857185e+002 9.59562454e+001 1.09785805e+002 1.18856956e+002 - 9.60080261e+001 1.09844238e+002 1.18875694e+002 9.60384293e+001 - 1.09869194e+002 1.18879227e+002 9.60480576e+001 1.09894653e+002 - 1.18859879e+002 9.60875626e+001 1.09903061e+002 1.18871048e+002 - 9.61367493e+001 1.09969597e+002 1.18892624e+002 9.61813049e+001 - 1.10010284e+002 1.18909935e+002 9.61876907e+001 1.10035980e+002 - 1.18889145e+002 9.62465897e+001 1.10078476e+002 1.18925407e+002 - 9.62929840e+001 1.10131943e+002 1.18926674e+002 9.63523102e+001 - 1.10185066e+002 1.18937050e+002 9.63725815e+001 1.10223221e+002 - 1.18926224e+002 9.64127731e+001 1.10251167e+002 1.18925087e+002 - 9.64287415e+001 1.10275558e+002 1.18916580e+002 9.64921722e+001 - 1.10312950e+002 1.18941757e+002 9.64976196e+001 1.10333817e+002 - 1.18919167e+002 9.65294495e+001 1.10360603e+002 1.18914360e+002 - 9.65655060e+001 1.10407379e+002 1.18915817e+002 9.66046066e+001 - 1.10432724e+002 1.18921524e+002 9.66404495e+001 1.10477425e+002 - 1.18916855e+002 9.67209549e+001 1.10527855e+002 1.18953407e+002 - 9.67696609e+001 1.10586235e+002 1.18960976e+002 9.68109894e+001 - 1.10630981e+002 1.18967545e+002 9.68357849e+001 1.10680763e+002 - 1.18957932e+002 9.68850784e+001 1.10710197e+002 1.18973778e+002 - 9.69371643e+001 1.10765564e+002 1.18970558e+002 9.69958420e+001 - 1.10815079e+002 1.18971008e+002 9.70247040e+001 1.10861046e+002 - 1.18964310e+002 9.70874481e+001 1.10901688e+002 1.18982430e+002 - 9.71246185e+001 1.10952538e+002 1.18980858e+002 9.72097855e+001 - 1.11013847e+002 1.19018410e+002 9.72365799e+001 1.11059319e+002 - 1.19009598e+002 9.72978592e+001 1.11110931e+002 1.19019302e+002 - 9.73747482e+001 1.11191933e+002 1.19050697e+002 9.74201279e+001 - 1.11227341e+002 1.19057373e+002 9.74671707e+001 1.11286797e+002 - 1.19058876e+002 9.75439682e+001 1.11332954e+002 1.19084961e+002 - 9.75949326e+001 1.11393929e+002 1.19092010e+002 9.76908188e+001 - 1.11483406e+002 1.19136993e+002 9.77572861e+001 1.11568169e+002 - 1.19163445e+002 9.78357010e+001 1.11623955e+002 1.19194542e+002 - 9.79190369e+001 1.11714508e+002 1.19220192e+002 9.80014954e+001 - 1.11779961e+002 1.19220078e+002 9.80528870e+001 1.11850296e+002 - 1.19226410e+002 9.81446991e+001 1.11928574e+002 1.19282837e+002 - 9.82019348e+001 1.11998528e+002 1.19299782e+002 9.82793732e+001 - 1.12051476e+002 1.19320534e+002 9.83367233e+001 1.12115318e+002 - 1.19327034e+002 9.84062805e+001 1.12173103e+002 1.19337158e+002 - 9.84702225e+001 1.12240181e+002 1.19346153e+002 9.85468140e+001 - 1.12289169e+002 1.19364456e+002 9.86165466e+001 1.12371346e+002 - 1.19383240e+002 9.87324677e+001 1.12439735e+002 1.19428314e+002 - 9.87724686e+001 1.12489761e+002 1.19411888e+002 9.88436279e+001 - 1.12554047e+002 1.19432098e+002 9.89154358e+001 1.12628410e+002 - 1.19457870e+002 9.90166321e+001 1.12698349e+002 1.19510498e+002 - 9.91259842e+001 1.12806137e+002 1.19553772e+002 9.92579269e+001 - 1.12909668e+002 1.19597755e+002 9.93287048e+001 1.12989983e+002 - 1.19617966e+002 9.94291382e+001 1.13065117e+002 1.19671028e+002 - 9.95411377e+001 1.13181435e+002 1.19732971e+002 9.96534424e+001 - 1.13256630e+002 1.19786438e+002 9.97235260e+001 1.13325905e+002 - 1.19794693e+002 9.98212738e+001 1.13400436e+002 1.19825226e+002 - 9.99215622e+001 1.13496132e+002 1.19860672e+002 1.00025856e+002 - 1.13560623e+002 1.19894714e+002 1.00098969e+002 1.13623970e+002 - 1.19897446e+002 1.00230377e+002 1.13686714e+002 1.19934189e+002 - 1.00296181e+002 1.13731018e+002 1.19921143e+002 1.00368759e+002 - 1.13766922e+002 1.19910561e+002 1.00413490e+002 1.13801765e+002 - 1.19892143e+002 1.00489334e+002 1.13827721e+002 1.19901619e+002 - 1.00465729e+002 1.13792412e+002 1.19804710e+002 1.00463104e+002 - 1.13834579e+002 1.19856720e+002 1.00455734e+002 1.13876801e+002 - 1.19920761e+002 1.00427444e+002 1.13859917e+002 1.19944977e+002 - 1.00378189e+002 1.13839188e+002 1.19960030e+002 1.00298988e+002 - 1.13775192e+002 1.19954308e+002 1.00185570e+002 1.13704567e+002 - 1.19916855e+002 1.00108147e+002 1.13642014e+002 1.19917267e+002 - 9.99950256e+001 1.13565559e+002 1.19870461e+002 9.99014130e+001 - 1.13481262e+002 1.19842209e+002 9.97858429e+001 1.13397812e+002 - 1.19785599e+002 9.97047272e+001 1.13309105e+002 1.19769852e+002 - 9.96429596e+001 1.13272301e+002 1.19764221e+002 9.95605774e+001 - 1.13193420e+002 1.19745621e+002 9.94862442e+001 1.13143890e+002 - 1.19718346e+002 9.94047928e+001 1.13065277e+002 1.19687286e+002 - 9.93110886e+001 1.12984779e+002 1.19643867e+002 9.92143936e+001 - 1.12898857e+002 1.19635490e+002 9.90986099e+001 1.12820847e+002 - 1.19592735e+002 9.90302200e+001 1.12758041e+002 1.19584358e+002 - 9.89426498e+001 1.12693840e+002 1.19552551e+002 9.88498154e+001 - 1.12596428e+002 1.19521904e+002 9.87338028e+001 1.12499657e+002 - 1.19458176e+002 9.86606216e+001 1.12434761e+002 1.19449844e+002 - 9.86049728e+001 1.12402580e+002 1.19449921e+002 9.85455856e+001 - 1.12340927e+002 1.19445709e+002 9.84700241e+001 1.12279259e+002 - 1.19425552e+002 9.84112244e+001 1.12201599e+002 1.19419235e+002 - 9.83090515e+001 1.12111984e+002 1.19365295e+002 9.82324524e+001 - 1.12024887e+002 1.19333847e+002 9.81292419e+001 1.11941513e+002 - 1.19280563e+002 9.80764465e+001 1.11874413e+002 1.19263565e+002 - 9.80230255e+001 1.11837410e+002 1.19252800e+002 9.79595032e+001 - 1.11768311e+002 1.19252357e+002 9.78667221e+001 1.11706619e+002 - 1.19223236e+002 9.78082504e+001 1.11634804e+002 1.19204880e+002 - 9.77035294e+001 1.11543541e+002 1.19141014e+002 9.76367264e+001 - 1.11463226e+002 1.19124840e+002 9.75751038e+001 1.11420738e+002 - 1.19111488e+002 9.75165329e+001 1.11362053e+002 1.19112602e+002 - 9.74550400e+001 1.11315086e+002 1.19092506e+002 9.74197235e+001 - 1.11273308e+002 1.19108482e+002 9.73587952e+001 1.11221596e+002 - 1.19096642e+002 9.73114853e+001 1.11153831e+002 1.19091408e+002 - 9.72555008e+001 1.11108826e+002 1.19079735e+002 9.72251358e+001 - 1.11078255e+002 1.19092873e+002 9.71435623e+001 1.11011162e+002 - 1.19043541e+002 9.70973358e+001 1.10955490e+002 1.19026146e+002 - 9.70391617e+001 1.10901352e+002 1.18998718e+002 9.69810944e+001 - 1.10837631e+002 1.18998009e+002 9.69078369e+001 1.10786354e+002 - 1.18974998e+002 9.68876648e+001 1.10752800e+002 1.18980156e+002 - 9.68363266e+001 1.10705956e+002 1.18959167e+002 9.67726669e+001 - 1.10626602e+002 1.18942780e+002 9.67356186e+001 1.10598373e+002 - 1.18943481e+002 9.66860199e+001 1.10549782e+002 1.18947037e+002 - 9.66615448e+001 1.10535446e+002 1.18959717e+002 9.66043854e+001 - 1.10475586e+002 1.18951126e+002 9.65262680e+001 1.10412598e+002 - 1.18920135e+002 9.65230331e+001 1.10383400e+002 1.18945694e+002 - 9.64707336e+001 1.10347580e+002 1.18932404e+002 9.64264603e+001 - 1.10301323e+002 1.18920387e+002 9.63920898e+001 1.10278328e+002 - 1.18910500e+002 9.63789291e+001 1.10255280e+002 1.18923134e+002 - 9.63202667e+001 1.10205681e+002 1.18895340e+002 9.62878876e+001 - 1.10154503e+002 1.18904488e+002 9.62304993e+001 1.10125008e+002 - 1.18894188e+002 9.62420425e+001 1.10119614e+002 1.18932068e+002 - 9.62197571e+001 1.10105598e+002 1.18931328e+002 9.62036896e+001 - 1.10064011e+002 1.18944191e+002 9.61556549e+001 1.10027184e+002 - 1.18922585e+002 9.61130676e+001 1.09976616e+002 1.18917656e+002 - 9.60567474e+001 1.09924629e+002 1.18878578e+002 9.60291290e+001 - 1.09879692e+002 1.18879028e+002 9.59905167e+001 1.09855766e+002 - 1.18869522e+002 9.59868317e+001 1.09828926e+002 1.18890839e+002 - 9.59318008e+001 1.09792976e+002 1.18862106e+002 9.59367142e+001 - 1.09789436e+002 1.18900620e+002 9.59187317e+001 1.09798859e+002 - 1.18918564e+002 9.58820496e+001 1.09751610e+002 1.18903557e+002 - 9.58588333e+001 1.09739296e+002 1.18903442e+002 9.58396988e+001 - 1.09710938e+002 1.18915779e+002 9.57900620e+001 1.09687195e+002 - 1.18898994e+002 9.58025284e+001 1.09678078e+002 1.18910835e+002 - 9.57946701e+001 1.09674133e+002 1.18913460e+002 9.57660217e+001 - 1.09621841e+002 1.18892448e+002 9.57060471e+001 1.09573921e+002 - 1.18857605e+002 9.56955185e+001 1.09553329e+002 1.18871269e+002 - 9.57110672e+001 1.09576096e+002 1.18903694e+002 9.57021103e+001 - 1.09556915e+002 1.18915253e+002 9.56397934e+001 1.09510452e+002 - 1.18879936e+002 9.56342850e+001 1.09479958e+002 1.18887253e+002 - 9.56358032e+001 1.09499619e+002 1.18910957e+002 9.56479721e+001 - 1.09506737e+002 1.18943703e+002 9.56204300e+001 1.09501854e+002 - 1.18933243e+002 9.56192932e+001 1.09491859e+002 1.18939285e+002 - 9.55993042e+001 1.09478958e+002 1.18923050e+002 9.55920486e+001 - 1.09468330e+002 1.18925873e+002 9.55741730e+001 1.09475227e+002 - 1.18938263e+002 9.55703812e+001 1.09462250e+002 1.18946312e+002 - 9.55578079e+001 1.09469727e+002 1.18954117e+002 9.55912704e+001 - 1.09483582e+002 1.18997719e+002 9.55625458e+001 1.09471130e+002 - 1.18984283e+002 9.55561371e+001 1.09456627e+002 1.18979210e+002 - 9.55472641e+001 1.09451584e+002 1.18967567e+002 9.55233536e+001 - 1.09417252e+002 1.18942032e+002 9.55021896e+001 1.09408463e+002 - 1.18926346e+002 9.55294952e+001 1.09404861e+002 1.18945839e+002 - 9.55564194e+001 1.09435722e+002 1.18971390e+002 9.55711365e+001 - 1.09439034e+002 1.18978096e+002 9.55629501e+001 1.09445244e+002 - 1.18970566e+002 9.55808868e+001 1.09451675e+002 1.18991310e+002 - 9.55784454e+001 1.09458107e+002 1.18978012e+002 9.55628510e+001 - 1.09433838e+002 1.18964134e+002 9.55444946e+001 1.09444069e+002 - 1.18954018e+002 9.55531464e+001 1.09442368e+002 1.18970406e+002 - 9.55506134e+001 1.09443840e+002 1.18963989e+002 9.55644684e+001 - 1.09436020e+002 1.18968933e+002 9.55443420e+001 1.09431816e+002 - 1.18947342e+002 9.55458832e+001 1.09424606e+002 1.18948853e+002 - 9.55322800e+001 1.09427055e+002 1.18935791e+002 9.55304794e+001 - 1.09410545e+002 1.18933441e+002 9.55332489e+001 1.09426308e+002 - 1.18934738e+002 9.55709305e+001 1.09433891e+002 1.18949814e+002 - 9.55919189e+001 1.09463020e+002 1.18967308e+002 9.55881042e+001 - 1.09449173e+002 1.18946030e+002 9.55716705e+001 1.09449608e+002 - 1.18923660e+002 9.55746460e+001 1.09433235e+002 1.18915108e+002 - 9.55961685e+001 1.09463310e+002 1.18916267e+002 9.56252975e+001 - 1.09483131e+002 1.18926521e+002 9.56089401e+001 1.09488617e+002 - 1.18907585e+002 9.56529617e+001 1.09521324e+002 1.18940155e+002 - 9.56639633e+001 1.09544640e+002 1.18946144e+002 9.56602936e+001 - 1.09516151e+002 1.18922752e+002 9.56531754e+001 1.09524445e+002 - 1.18910622e+002 9.56765366e+001 1.09538971e+002 1.18924911e+002 - 9.57098312e+001 1.09579720e+002 1.18941681e+002 9.57271957e+001 - 1.09585587e+002 1.18944077e+002 9.57052841e+001 1.09572861e+002 - 1.18917007e+002 9.57313995e+001 1.09578522e+002 1.18917519e+002 - 9.57466965e+001 1.09611191e+002 1.18920654e+002 9.57817230e+001 - 1.09637238e+002 1.18933891e+002 9.57888260e+001 1.09663887e+002 - 1.18922287e+002 9.58200912e+001 1.09682671e+002 1.18931328e+002 - 9.58328476e+001 1.09706192e+002 1.18910622e+002 9.58753052e+001 - 1.09728432e+002 1.18912460e+002 9.58524246e+001 1.09726662e+002 - 1.18875267e+002 9.58581390e+001 1.09713684e+002 1.18858406e+002 - 9.59051361e+001 1.09771721e+002 1.18882149e+002 9.59486923e+001 - 1.09788139e+002 1.18887154e+002 9.59340820e+001 1.09784409e+002 - 1.18838654e+002 9.59907227e+001 1.09836761e+002 1.18867622e+002 - 9.60085220e+001 1.09865608e+002 1.18849144e+002 9.60438995e+001 - 1.09889694e+002 1.18857407e+002 9.60783844e+001 1.09933517e+002 - 1.18869171e+002 9.61181793e+001 1.09951195e+002 1.18870598e+002 - 9.61421280e+001 1.09991028e+002 1.18869659e+002 9.61733627e+001 - 1.10016571e+002 1.18875732e+002 9.61840668e+001 1.10047157e+002 - 1.18863052e+002 9.62403488e+001 1.10093300e+002 1.18896751e+002 - 9.62920685e+001 1.10144104e+002 1.18901779e+002 9.63403702e+001 - 1.10189789e+002 1.18895485e+002 9.63585129e+001 1.10230011e+002 - 1.18889755e+002 9.64014359e+001 1.10251701e+002 1.18892250e+002 - 9.64179459e+001 1.10280640e+002 1.18880653e+002 9.64720993e+001 - 1.10316132e+002 1.18897896e+002 9.64956818e+001 1.10352684e+002 - 1.18890068e+002 9.65366592e+001 1.10383049e+002 1.18900566e+002 - 9.65767899e+001 1.10434799e+002 1.18909508e+002 9.66220016e+001 - 1.10466156e+002 1.18915466e+002 9.66745682e+001 1.10527878e+002 - 1.18933975e+002 9.67354889e+001 1.10560020e+002 1.18945992e+002 - 9.67658005e+001 1.10598877e+002 1.18939957e+002 9.68175125e+001 - 1.10650917e+002 1.18958031e+002 9.68619232e+001 1.10717979e+002 - 1.18966385e+002 9.69068756e+001 1.10750473e+002 1.18980263e+002 - 9.69615097e+001 1.10802132e+002 1.18980675e+002 9.70192947e+001 - 1.10846001e+002 1.18974442e+002 9.70440598e+001 1.10889221e+002 - 1.18966782e+002 9.71008224e+001 1.10935135e+002 1.18986420e+002 - 9.71395187e+001 1.10983025e+002 1.18984970e+002 9.72061462e+001 - 1.11026321e+002 1.18999191e+002 9.72458038e+001 1.11086609e+002 - 1.19002167e+002 9.73006592e+001 1.11124138e+002 1.19009087e+002 - 9.73693466e+001 1.11212395e+002 1.19034401e+002 9.74438553e+001 - 1.11259850e+002 1.19059334e+002 9.74794540e+001 1.11314934e+002 - 1.19063049e+002 9.75434189e+001 1.11349365e+002 1.19066010e+002 - 9.76019974e+001 1.11416756e+002 1.19080833e+002 9.77049484e+001 - 1.11509186e+002 1.19135155e+002 9.77513199e+001 1.11572189e+002 - 1.19143646e+002 9.78312454e+001 1.11629608e+002 1.19172874e+002 - 9.78997879e+001 1.11706055e+002 1.19180878e+002 9.80071411e+001 - 1.11794022e+002 1.19206589e+002 9.80512466e+001 1.11863426e+002 - 1.19216591e+002 9.81349411e+001 1.11932472e+002 1.19261139e+002 - 9.82004166e+001 1.12002655e+002 1.19282974e+002 9.82698822e+001 - 1.12051689e+002 1.19294632e+002 9.83125458e+001 1.12101433e+002 - 1.19290665e+002 9.83877869e+001 1.12164047e+002 1.19305077e+002 - 9.84537582e+001 1.12231773e+002 1.19315788e+002 9.85231628e+001 - 1.12278854e+002 1.19325394e+002 9.85832901e+001 1.12343147e+002 - 1.19332825e+002 9.87112274e+001 1.12435310e+002 1.19386391e+002 - 9.87490082e+001 1.12480560e+002 1.19379234e+002 9.88329239e+001 - 1.12542458e+002 1.19402985e+002 9.89061356e+001 1.12624008e+002 - 1.19430870e+002 9.90365067e+001 1.12730171e+002 1.19513046e+002 - 9.91443100e+001 1.12832718e+002 1.19560867e+002 9.92611542e+001 - 1.12920937e+002 1.19588242e+002 9.93176804e+001 1.12990181e+002 - 1.19598831e+002 9.94048004e+001 1.13055374e+002 1.19638206e+002 - 9.95214996e+001 1.13166519e+002 1.19702950e+002 9.96267929e+001 - 1.13245651e+002 1.19745514e+002 9.97003937e+001 1.13318108e+002 - 1.19764984e+002 9.97972336e+001 1.13388206e+002 1.19788063e+002 - 9.99076385e+001 1.13493835e+002 1.19838600e+002 1.00013107e+002 - 1.13555969e+002 1.19863991e+002 1.00094460e+002 1.13623352e+002 - 1.19886780e+002 1.00220093e+002 1.13692505e+002 1.19908165e+002 - 1.00282372e+002 1.13739861e+002 1.19905281e+002 1.00371422e+002 - 1.13774452e+002 1.19904503e+002 1.00416313e+002 1.13814491e+002 - 1.19889114e+002 1.00495659e+002 1.13855820e+002 1.19901123e+002 - 1.00478798e+002 1.13822273e+002 1.19821091e+002 1.00432442e+002 - 1.13805786e+002 1.19808655e+002 1.00441277e+002 1.13863564e+002 - 1.19890320e+002 1.00403679e+002 1.13833763e+002 1.19911407e+002 - 1.00346802e+002 1.13809402e+002 1.19917816e+002 1.00275047e+002 - 1.13756096e+002 1.19920403e+002 1.00178955e+002 1.13697426e+002 - 1.19898521e+002 1.00091919e+002 1.13625641e+002 1.19890594e+002 - 9.99825821e+001 1.13553261e+002 1.19838692e+002 9.98873825e+001 - 1.13467819e+002 1.19810791e+002 9.97740097e+001 1.13383064e+002 - 1.19760635e+002 9.96906815e+001 1.13296806e+002 1.19737221e+002 - 9.96400223e+001 1.13265007e+002 1.19748459e+002 9.95531311e+001 - 1.13190002e+002 1.19723129e+002 9.94859238e+001 1.13139610e+002 - 1.19696991e+002 9.94095459e+001 1.13067863e+002 1.19668472e+002 - 9.93150406e+001 1.12992767e+002 1.19627945e+002 9.92302780e+001 - 1.12919785e+002 1.19630089e+002 9.91054459e+001 1.12833588e+002 - 1.19577637e+002 9.90369644e+001 1.12761780e+002 1.19562950e+002 - 9.89471207e+001 1.12694687e+002 1.19532166e+002 9.88607101e+001 - 1.12605812e+002 1.19508163e+002 9.87567444e+001 1.12521347e+002 - 1.19458687e+002 9.87006531e+001 1.12478447e+002 1.19467430e+002 - 9.86458435e+001 1.12443283e+002 1.19461967e+002 9.85573273e+001 - 1.12352654e+002 1.19428688e+002 9.84781647e+001 1.12287170e+002 - 1.19404861e+002 9.84425201e+001 1.12234619e+002 1.19419647e+002 - 9.83441086e+001 1.12143555e+002 1.19370613e+002 9.82582932e+001 - 1.12050087e+002 1.19333473e+002 9.81507111e+001 1.11968369e+002 - 1.19275856e+002 9.80930786e+001 1.11896942e+002 1.19255394e+002 - 9.80461502e+001 1.11861786e+002 1.19248062e+002 9.79576416e+001 - 1.11773529e+002 1.19227211e+002 9.78774567e+001 1.11723938e+002 - 1.19209526e+002 9.78296432e+001 1.11661171e+002 1.19199646e+002 - 9.77455978e+001 1.11585640e+002 1.19153839e+002 9.76655731e+001 - 1.11491837e+002 1.19126961e+002 9.76045456e+001 1.11446114e+002 - 1.19106232e+002 9.75489426e+001 1.11396095e+002 1.19115860e+002 - 9.74863052e+001 1.11346016e+002 1.19092598e+002 9.74428177e+001 - 1.11293617e+002 1.19100723e+002 9.73782578e+001 1.11239326e+002 - 1.19080940e+002 9.73231277e+001 1.11166061e+002 1.19074051e+002 - 9.72664642e+001 1.11122238e+002 1.19055252e+002 9.72349167e+001 - 1.11087929e+002 1.19064217e+002 9.71781387e+001 1.11045097e+002 - 1.19037292e+002 9.71053543e+001 1.10962959e+002 1.18995834e+002 - 9.70430145e+001 1.10905983e+002 1.18972443e+002 9.69972916e+001 - 1.10856766e+002 1.18983940e+002 9.69304504e+001 1.10810555e+002 - 1.18959526e+002 9.68995438e+001 1.10766350e+002 1.18956482e+002 - 9.68525848e+001 1.10727310e+002 1.18946938e+002 9.67934265e+001 - 1.10647629e+002 1.18926247e+002 9.67551575e+001 1.10620285e+002 - 1.18926033e+002 9.67189407e+001 1.10579895e+002 1.18941948e+002 - 9.66678925e+001 1.10547745e+002 1.18934464e+002 9.66346207e+001 - 1.10505638e+002 1.18942841e+002 9.65602264e+001 1.10444244e+002 - 1.18910110e+002 9.65185394e+001 1.10380051e+002 1.18903870e+002 - 9.64774017e+001 1.10352798e+002 1.18897484e+002 9.64641266e+001 - 1.10331131e+002 1.18914810e+002 9.64091644e+001 1.10294662e+002 - 1.18884697e+002 9.63811264e+001 1.10253731e+002 1.18886345e+002 - 9.63283081e+001 1.10209259e+002 1.18859718e+002 9.62857132e+001 - 1.10152710e+002 1.18863731e+002 9.62329865e+001 1.10131027e+002 - 1.18858246e+002 9.62420502e+001 1.10121140e+002 1.18893913e+002 - 9.62256699e+001 1.10107674e+002 1.18903145e+002 9.62069092e+001 - 1.10067734e+002 1.18904900e+002 9.61689835e+001 1.10045258e+002 - 1.18897736e+002 9.61208725e+001 1.09986732e+002 1.18884094e+002 - 9.60481796e+001 1.09921768e+002 1.18832840e+002 9.60411911e+001 - 1.09891960e+002 1.18850441e+002 9.59989853e+001 1.09862236e+002 - 1.18840935e+002 9.59962692e+001 1.09838295e+002 1.18862556e+002 - 9.59629974e+001 1.09820869e+002 1.18862892e+002 9.59581299e+001 - 1.09810074e+002 1.18884171e+002 9.59343872e+001 1.09811035e+002 - 1.18891205e+002 9.59026337e+001 1.09772919e+002 1.18885506e+002 - 9.58843002e+001 1.09765312e+002 1.18887405e+002 9.58462219e+001 - 1.09718315e+002 1.18885483e+002 9.57940140e+001 1.09687843e+002 - 1.18855614e+002 9.57964401e+001 1.09667122e+002 1.18866554e+002 - 9.57782135e+001 1.09658310e+002 1.18860603e+002 9.57739639e+001 - 1.09634644e+002 1.18870499e+002 9.57500610e+001 1.09622444e+002 - 1.18863976e+002 9.57074356e+001 1.09570442e+002 1.18844398e+002 - 9.56942749e+001 1.09563507e+002 1.18844398e+002 9.56954193e+001 - 1.09550659e+002 1.18864525e+002 9.56571274e+001 1.09527367e+002 - 1.18853935e+002 9.56470261e+001 1.09494934e+002 1.18862076e+002 - 9.56397858e+001 1.09508034e+002 1.18875595e+002 9.56539841e+001 - 1.09510666e+002 1.18904488e+002 9.56316528e+001 1.09507057e+002 - 1.18901222e+002 9.56077805e+001 1.09475761e+002 1.18885857e+002 - 9.56053085e+001 1.09484367e+002 1.18884331e+002 9.55975723e+001 - 1.09467506e+002 1.18889343e+002 9.55661850e+001 1.09467621e+002 - 1.18882401e+002 9.55974808e+001 1.09484039e+002 1.18922066e+002 - 9.55823822e+001 1.09485657e+002 1.18928497e+002 9.55993881e+001 - 1.09487206e+002 1.18954521e+002 9.55693588e+001 1.09478645e+002 - 1.18943802e+002 9.55854568e+001 1.09480743e+002 1.18966248e+002 - 9.55655289e+001 1.09469467e+002 1.18939957e+002 9.55547943e+001 - 1.09445625e+002 1.18924347e+002 9.55335999e+001 1.09431931e+002 - 1.18908112e+002 9.55377502e+001 1.09404915e+002 1.18901917e+002 - 9.55451126e+001 1.09423248e+002 1.18914604e+002 9.55974731e+001 - 1.09464325e+002 1.18962585e+002 9.55926590e+001 1.09472519e+002 - 1.18959007e+002 9.55860977e+001 1.09455528e+002 1.18950508e+002 - 9.55827484e+001 1.09460449e+002 1.18938545e+002 9.55846634e+001 - 1.09461952e+002 1.18946899e+002 9.55511322e+001 1.09456406e+002 - 1.18930321e+002 9.55628891e+001 1.09451538e+002 1.18938049e+002 - 9.55546646e+001 1.09448265e+002 1.18928917e+002 9.55929413e+001 - 1.09465370e+002 1.18957466e+002 9.55567169e+001 1.09445976e+002 - 1.18920830e+002 9.55643463e+001 1.09446564e+002 1.18929306e+002 - 9.55673904e+001 1.09461174e+002 1.18923386e+002 9.55575714e+001 - 1.09442017e+002 1.18915756e+002 9.55611191e+001 1.09460213e+002 - 1.18921654e+002 9.55969467e+001 1.09462776e+002 1.18939781e+002 - 9.56131439e+001 1.09489151e+002 1.18946342e+002 9.56163483e+001 - 1.09479271e+002 1.18931290e+002 9.56095352e+001 1.09491348e+002 - 1.18916092e+002 9.56217651e+001 1.09485855e+002 1.18917305e+002 - 9.56369171e+001 1.09510796e+002 1.18913055e+002 9.56628952e+001 - 1.09529251e+002 1.18929428e+002 9.56385803e+001 1.09530327e+002 - 1.18905144e+002 9.56517563e+001 1.09528816e+002 1.18909164e+002 - 9.56658630e+001 1.09547371e+002 1.18907364e+002 9.56730957e+001 - 1.09534996e+002 1.18897957e+002 9.56820068e+001 1.09557991e+002 - 1.18897781e+002 9.57182770e+001 1.09581055e+002 1.18917831e+002 - 9.57323532e+001 1.09605606e+002 1.18922401e+002 9.57434845e+001 - 1.09605171e+002 1.18920151e+002 9.57410355e+001 1.09622345e+002 - 1.18914108e+002 9.57697678e+001 1.09620354e+002 1.18917305e+002 - 9.57647858e+001 1.09636215e+002 1.18899330e+002 9.58078461e+001 - 1.09668335e+002 1.18916641e+002 9.58112869e+001 1.09693726e+002 - 1.18908577e+002 9.58256683e+001 1.09692589e+002 1.18895714e+002 - 9.58410263e+001 1.09712433e+002 1.18876877e+002 9.58738556e+001 - 1.09737984e+002 1.18879700e+002 9.58735886e+001 1.09753525e+002 - 1.18860840e+002 9.58849106e+001 1.09746101e+002 1.18843597e+002 - 9.59202881e+001 1.09785477e+002 1.18856834e+002 9.59562073e+001 - 1.09801865e+002 1.18856056e+002 9.59506302e+001 1.09806587e+002 - 1.18822952e+002 9.60008926e+001 1.09853432e+002 1.18845245e+002 - 9.60072021e+001 1.09868141e+002 1.18815674e+002 9.60580368e+001 - 1.09904434e+002 1.18833733e+002 9.61003952e+001 1.09965027e+002 - 1.18858635e+002 9.61502991e+001 1.09987770e+002 1.18871544e+002 - 9.61764603e+001 1.10029808e+002 1.18869957e+002 9.62096024e+001 - 1.10052963e+002 1.18869637e+002 9.62173691e+001 1.10075912e+002 - 1.18856895e+002 9.62607956e+001 1.10112953e+002 1.18883034e+002 - 9.63082123e+001 1.10159973e+002 1.18884422e+002 9.63352280e+001 - 1.10184090e+002 1.18862419e+002 9.63661652e+001 1.10240768e+002 - 1.18867622e+002 9.64283752e+001 1.10281776e+002 1.18893204e+002 - 9.64658508e+001 1.10325752e+002 1.18896973e+002 9.65128098e+001 - 1.10352936e+002 1.18903168e+002 9.65372391e+001 1.10393387e+002 - 1.18900009e+002 9.65717850e+001 1.10415970e+002 1.18898468e+002 - 9.66159897e+001 1.10473892e+002 1.18913658e+002 9.66623230e+001 - 1.10508530e+002 1.18922798e+002 9.66993179e+001 1.10555382e+002 - 1.18926537e+002 9.67776413e+001 1.10603363e+002 1.18956619e+002 - 9.68009186e+001 1.10635841e+002 1.18939499e+002 9.68595428e+001 - 1.10685585e+002 1.18957916e+002 9.68979568e+001 1.10746918e+002 - 1.18972015e+002 9.69324265e+001 1.10771896e+002 1.18970268e+002 - 9.69639130e+001 1.10809044e+002 1.18952461e+002 9.70177994e+001 - 1.10838448e+002 1.18944901e+002 9.70351791e+001 1.10878624e+002 - 1.18927368e+002 9.71087494e+001 1.10932373e+002 1.18957664e+002 - 9.71618729e+001 1.10996040e+002 1.18975952e+002 9.72325134e+001 - 1.11046318e+002 1.18995110e+002 9.72698746e+001 1.11100853e+002 - 1.18988602e+002 9.73233795e+001 1.11144051e+002 1.18999382e+002 - 9.73995819e+001 1.11235046e+002 1.19033089e+002 9.74560013e+001 - 1.11276581e+002 1.19042549e+002 9.75079803e+001 1.11342102e+002 - 1.19058678e+002 9.75807419e+001 1.11384369e+002 1.19070541e+002 - 9.76471024e+001 1.11458679e+002 1.19095467e+002 9.77201385e+001 - 1.11517036e+002 1.19112663e+002 9.77817612e+001 1.11597588e+002 - 1.19136208e+002 9.78663406e+001 1.11667778e+002 1.19178787e+002 - 9.79273758e+001 1.11738373e+002 1.19183914e+002 9.80169907e+001 - 1.11804504e+002 1.19194313e+002 9.80609207e+001 1.11875259e+002 - 1.19200905e+002 9.81347122e+001 1.11927650e+002 1.19231506e+002 - 9.82044830e+001 1.12003883e+002 1.19265289e+002 9.82723007e+001 - 1.12053261e+002 1.19276375e+002 9.82980499e+001 1.12093376e+002 - 1.19257416e+002 9.83896637e+001 1.12167023e+002 1.19287567e+002 - 9.84621277e+001 1.12241791e+002 1.19300720e+002 9.85156708e+001 - 1.12274574e+002 1.19300789e+002 9.85835876e+001 1.12343674e+002 - 1.19314507e+002 9.87062225e+001 1.12436401e+002 1.19364784e+002 - 9.87709961e+001 1.12504677e+002 1.19378456e+002 9.88407211e+001 - 1.12552757e+002 1.19386780e+002 9.89395218e+001 1.12662292e+002 - 1.19440392e+002 9.90466156e+001 1.12746681e+002 1.19505966e+002 - 9.91384583e+001 1.12829643e+002 1.19531296e+002 9.92507095e+001 - 1.12913452e+002 1.19559082e+002 9.93043060e+001 1.12982193e+002 - 1.19568176e+002 9.93919983e+001 1.13041290e+002 1.19600929e+002 - 9.94837265e+001 1.13133018e+002 1.19642433e+002 9.96240540e+001 - 1.13239418e+002 1.19724228e+002 9.96989059e+001 1.13315521e+002 - 1.19742638e+002 9.98044586e+001 1.13395836e+002 1.19778694e+002 - 9.99155731e+001 1.13502815e+002 1.19828636e+002 1.00022415e+002 - 1.13569801e+002 1.19851166e+002 1.00091171e+002 1.13628929e+002 - 1.19865288e+002 1.00212723e+002 1.13680481e+002 1.19884712e+002 - 1.00300125e+002 1.13758904e+002 1.19903221e+002 1.00396385e+002 - 1.13803802e+002 1.19914345e+002 1.00415451e+002 1.13818581e+002 - 1.19881561e+002 1.00492012e+002 1.13855743e+002 1.19887260e+002 - 1.00473175e+002 1.13824722e+002 1.19803520e+002 1.00427948e+002 - 1.13796646e+002 1.19794815e+002 1.00435768e+002 1.13859802e+002 - 1.19876877e+002 1.00415192e+002 1.13852921e+002 1.19911888e+002 - 1.00352028e+002 1.13814728e+002 1.19910599e+002 1.00277847e+002 - 1.13757721e+002 1.19910812e+002 1.00176361e+002 1.13693932e+002 - 1.19881012e+002 1.00097687e+002 1.13635330e+002 1.19877129e+002 - 1.00004257e+002 1.13572365e+002 1.19846771e+002 9.99122467e+001 - 1.13491722e+002 1.19815285e+002 9.97917023e+001 1.13402908e+002 - 1.19758690e+002 9.97149887e+001 1.13317856e+002 1.19740166e+002 - 9.96587982e+001 1.13287537e+002 1.19747826e+002 9.95832291e+001 - 1.13222755e+002 1.19730537e+002 9.94965973e+001 1.13156693e+002 - 1.19690651e+002 9.94099731e+001 1.13067215e+002 1.19653168e+002 - 9.92969208e+001 1.12974350e+002 1.19589058e+002 9.92313690e+001 - 1.12921181e+002 1.19611237e+002 9.91165085e+001 1.12843452e+002 - 1.19565926e+002 9.90451660e+001 1.12768272e+002 1.19543358e+002 - 9.89703369e+001 1.12715782e+002 1.19526962e+002 9.88848648e+001 - 1.12625114e+002 1.19503006e+002 9.87734299e+001 1.12534401e+002 - 1.19447372e+002 9.87098694e+001 1.12485268e+002 1.19457100e+002 - 9.86648941e+001 1.12458580e+002 1.19456528e+002 9.85822601e+001 - 1.12374298e+002 1.19431938e+002 9.84902039e+001 1.12301849e+002 - 1.19392105e+002 9.84336700e+001 1.12226379e+002 1.19388634e+002 - 9.83580246e+001 1.12157555e+002 1.19360901e+002 9.82758636e+001 - 1.12073372e+002 1.19326904e+002 9.81962738e+001 1.12008965e+002 - 1.19287544e+002 9.81330948e+001 1.11940788e+002 1.19267296e+002 - 9.80877686e+001 1.11901802e+002 1.19261742e+002 9.79944153e+001 - 1.11817917e+002 1.19239738e+002 9.79232025e+001 1.11775116e+002 - 1.19228584e+002 9.78456345e+001 1.11681015e+002 1.19187355e+002 - 9.77651215e+001 1.11609383e+002 1.19150780e+002 9.77041702e+001 - 1.11533585e+002 1.19133156e+002 9.76147537e+001 1.11465126e+002 - 1.19090569e+002 9.75644760e+001 1.11413536e+002 1.19101883e+002 - 9.75138931e+001 1.11376793e+002 1.19091393e+002 9.74692230e+001 - 1.11324623e+002 1.19089325e+002 9.73959961e+001 1.11256462e+002 - 1.19064644e+002 9.73443985e+001 1.11186493e+002 1.19058548e+002 - 9.72927475e+001 1.11144737e+002 1.19043991e+002 9.72798615e+001 - 1.11133560e+002 1.19072189e+002 9.72211533e+001 1.11090164e+002 - 1.19044205e+002 9.71515427e+001 1.11008789e+002 1.19006973e+002 - 9.70995331e+001 1.10962196e+002 1.18989548e+002 9.70485458e+001 - 1.10907196e+002 1.18999557e+002 9.69727020e+001 1.10861412e+002 - 1.18973228e+002 9.69471054e+001 1.10820358e+002 1.18976479e+002 - 9.69031677e+001 1.10776962e+002 1.18960190e+002 9.68486404e+001 - 1.10704208e+002 1.18945282e+002 9.68056488e+001 1.10672188e+002 - 1.18940979e+002 9.67539749e+001 1.10622627e+002 1.18941681e+002 - 9.66890182e+001 1.10564110e+002 1.18910133e+002 9.66495209e+001 - 1.10521774e+002 1.18917900e+002 9.65928116e+001 1.10481323e+002 - 1.18902664e+002 9.65596161e+001 1.10421539e+002 1.18902390e+002 - 9.65239639e+001 1.10397682e+002 1.18905243e+002 9.65053101e+001 - 1.10378723e+002 1.18914131e+002 9.64409180e+001 1.10328484e+002 - 1.18879066e+002 9.64112015e+001 1.10286148e+002 1.18878967e+002 - 9.63666306e+001 1.10248711e+002 1.18862801e+002 9.63064194e+001 - 1.10181870e+002 1.18852203e+002 9.62425613e+001 1.10143494e+002 - 1.18829872e+002 9.62522278e+001 1.10130928e+002 1.18866653e+002 - 9.62254791e+001 1.10111656e+002 1.18860893e+002 9.62207642e+001 - 1.10082436e+002 1.18880409e+002 9.61724243e+001 1.10045357e+002 - 1.18860458e+002 9.61455383e+001 1.10014023e+002 1.18867859e+002 - 9.60880432e+001 1.09964027e+002 1.18833244e+002 9.60762787e+001 - 1.09935822e+002 1.18843719e+002 9.60251312e+001 1.09894493e+002 - 1.18824265e+002 9.60294952e+001 1.09868866e+002 1.18854111e+002 - 9.60026474e+001 1.09858040e+002 1.18854309e+002 9.59682159e+001 - 1.09820213e+002 1.18851540e+002 9.59377213e+001 1.09808495e+002 - 1.18843369e+002 9.59231644e+001 1.09792114e+002 1.18858055e+002 - 9.59024353e+001 1.09780075e+002 1.18857986e+002 9.58623047e+001 - 1.09734055e+002 1.18854111e+002 9.57967377e+001 1.09690926e+002 - 1.18822166e+002 9.57985535e+001 1.09671059e+002 1.18824402e+002 - 9.57765503e+001 1.09660980e+002 1.18820992e+002 9.57912979e+001 - 1.09643547e+002 1.18843559e+002 9.57563553e+001 1.09628159e+002 - 1.18825653e+002 9.57241211e+001 1.09590294e+002 1.18815384e+002 - 9.57161865e+001 1.09588356e+002 1.18824013e+002 9.57140503e+001 - 1.09576462e+002 1.18841232e+002 9.56846390e+001 1.09560371e+002 - 1.18839935e+002 9.56608047e+001 1.09514030e+002 1.18837837e+002 - 9.56579056e+001 1.09527130e+002 1.18856987e+002 9.56745224e+001 - 1.09534256e+002 1.18884323e+002 9.56417236e+001 1.09526344e+002 - 1.18865280e+002 9.56285095e+001 1.09498108e+002 1.18863403e+002 - 9.56336594e+001 1.09509933e+002 1.18862289e+002 9.56400070e+001 - 1.09512383e+002 1.18887070e+002 9.56080627e+001 1.09507271e+002 - 1.18877953e+002 9.56277542e+001 1.09517197e+002 1.18905540e+002 - 9.56296997e+001 1.09537643e+002 1.18926147e+002 9.56198578e+001 - 1.09509842e+002 1.18932014e+002 9.55885086e+001 1.09493858e+002 - 1.18915306e+002 9.55878754e+001 1.09480736e+002 1.18916481e+002 - 9.55613403e+001 1.09464508e+002 1.18891365e+002 9.55614395e+001 - 1.09451645e+002 1.18889168e+002 9.55585480e+001 1.09458275e+002 - 1.18889793e+002 9.55718613e+001 1.09438133e+002 1.18889481e+002 - 9.55913925e+001 1.09460754e+002 1.18913094e+002 9.56330490e+001 - 1.09496819e+002 1.18953445e+002 9.56156616e+001 1.09500015e+002 - 1.18939331e+002 9.56137543e+001 1.09484955e+002 1.18935760e+002 - 9.56125488e+001 1.09491997e+002 1.18927330e+002 9.56212387e+001 - 1.09502304e+002 1.18941742e+002 9.55811005e+001 1.09489838e+002 - 1.18919418e+002 9.55930939e+001 1.09483009e+002 1.18927345e+002 - 9.55964279e+001 1.09494286e+002 1.18932777e+002 9.56322250e+001 - 1.09511276e+002 1.18960190e+002 9.56143341e+001 1.09508194e+002 - 1.18943352e+002 9.55907745e+001 1.09476151e+002 1.18918678e+002 - 9.55991211e+001 1.09498878e+002 1.18917992e+002 9.55879593e+001 - 1.09477974e+002 1.18902206e+002 9.55785980e+001 1.09486717e+002 - 1.18894798e+002 9.56382751e+001 1.09509796e+002 1.18936958e+002 - 9.56470871e+001 1.09529488e+002 1.18941833e+002 9.56574402e+001 - 1.09524620e+002 1.18931793e+002 9.56512451e+001 1.09541039e+002 - 1.18925026e+002 9.56771317e+001 1.09548019e+002 1.18934776e+002 - 9.56984482e+001 1.09575485e+002 1.18939697e+002 9.56859360e+001 - 1.09555077e+002 1.18913971e+002 9.56627274e+001 1.09568703e+002 - 1.18899773e+002 9.56870499e+001 1.09568329e+002 1.18905762e+002 - 9.57083206e+001 1.09601059e+002 1.18913361e+002 9.57157288e+001 - 1.09584663e+002 1.18898811e+002 9.57060699e+001 1.09586288e+002 - 1.18881165e+002 9.57204437e+001 1.09599190e+002 1.18888420e+002 - 9.57463837e+001 1.09633820e+002 1.18892342e+002 9.57601395e+001 - 1.09633766e+002 1.18893242e+002 9.57551575e+001 1.09646217e+002 - 1.18887047e+002 9.58106613e+001 1.09671120e+002 1.18919930e+002 - 9.58172989e+001 1.09688217e+002 1.18905975e+002 9.58441925e+001 - 1.09716721e+002 1.18913704e+002 9.58279648e+001 1.09714073e+002 - 1.18877129e+002 9.58444977e+001 1.09721336e+002 1.18877487e+002 - 9.58806458e+001 1.09760315e+002 1.18883835e+002 9.59179611e+001 - 1.09784409e+002 1.18878403e+002 9.59008331e+001 1.09783821e+002 - 1.18845772e+002 9.59232254e+001 1.09781937e+002 1.18839714e+002 - 9.59525452e+001 1.09824669e+002 1.18849442e+002 9.59972992e+001 - 1.09849396e+002 1.18862152e+002 9.60014801e+001 1.09865082e+002 - 1.18836601e+002 9.60434418e+001 1.09903946e+002 1.18848541e+002 - 9.60576782e+001 1.09927292e+002 1.18829346e+002 9.61174469e+001 - 1.09976654e+002 1.18858322e+002 9.61427002e+001 1.10014305e+002 - 1.18865326e+002 9.61781693e+001 1.10020477e+002 1.18859367e+002 - 9.62112961e+001 1.10062950e+002 1.18872856e+002 9.62323456e+001 - 1.10077141e+002 1.18860382e+002 9.62276688e+001 1.10092911e+002 - 1.18840202e+002 9.62976532e+001 1.10148140e+002 1.18879074e+002 - 9.63394165e+001 1.10194122e+002 1.18880974e+002 9.63752594e+001 - 1.10220848e+002 1.18866699e+002 9.63946152e+001 1.10267776e+002 - 1.18862694e+002 9.64586334e+001 1.10319756e+002 1.18893929e+002 - 9.65148468e+001 1.10379448e+002 1.18914719e+002 9.65524063e+001 - 1.10396851e+002 1.18912430e+002 9.65588379e+001 1.10419891e+002 - 1.18894363e+002 9.66029663e+001 1.10458313e+002 1.18904205e+002 - 9.66657867e+001 1.10518364e+002 1.18926735e+002 9.67180176e+001 - 1.10559471e+002 1.18942757e+002 9.67493744e+001 1.10608528e+002 - 1.18943878e+002 9.68113785e+001 1.10631958e+002 1.18949226e+002 - 9.68463440e+001 1.10678940e+002 1.18953148e+002 9.69007492e+001 - 1.10728745e+002 1.18964821e+002 9.69315414e+001 1.10774857e+002 - 1.18964996e+002 9.69558868e+001 1.10788063e+002 1.18956078e+002 - 9.69910965e+001 1.10821251e+002 1.18941010e+002 9.70525360e+001 - 1.10874138e+002 1.18941757e+002 9.70774231e+001 1.10916901e+002 - 1.18930618e+002 9.71444626e+001 1.10961868e+002 1.18954994e+002 - 9.71845016e+001 1.11015198e+002 1.18954956e+002 9.72660980e+001 - 1.11081238e+002 1.18994621e+002 9.72984390e+001 1.11129883e+002 - 1.18990601e+002 9.73426056e+001 1.11165787e+002 1.18988350e+002 - 9.74184494e+001 1.11252327e+002 1.19021194e+002 9.74689865e+001 - 1.11293770e+002 1.19022820e+002 9.75149307e+001 1.11351067e+002 - 1.19037910e+002 9.76001816e+001 1.11401268e+002 1.19062462e+002 - 9.76604691e+001 1.11469307e+002 1.19078011e+002 9.77411270e+001 - 1.11537460e+002 1.19097488e+002 9.78065948e+001 1.11620117e+002 - 1.19131798e+002 9.79047012e+001 1.11702469e+002 1.19185806e+002 - 9.79729233e+001 1.11772781e+002 1.19194588e+002 9.80372772e+001 - 1.11833313e+002 1.19194511e+002 9.80876694e+001 1.11905182e+002 - 1.19206566e+002 9.81497726e+001 1.11944374e+002 1.19222191e+002 - 9.82132721e+001 1.12020241e+002 1.19250328e+002 9.82854309e+001 - 1.12069084e+002 1.19264503e+002 9.83085175e+001 1.12099968e+002 - 1.19243019e+002 9.83803558e+001 1.12159805e+002 1.19255936e+002 - 9.84727478e+001 1.12248161e+002 1.19289040e+002 9.85398254e+001 - 1.12301613e+002 1.19303802e+002 9.86151657e+001 1.12382477e+002 - 1.19324448e+002 9.87373047e+001 1.12468544e+002 1.19374191e+002 - 9.88281860e+001 1.12559273e+002 1.19410706e+002 9.88860855e+001 - 1.12602890e+002 1.19408691e+002 9.89463501e+001 1.12671646e+002 - 1.19429298e+002 9.90445633e+001 1.12744682e+002 1.19479065e+002 - 9.91361313e+001 1.12831825e+002 1.19508743e+002 9.92645493e+001 - 1.12936920e+002 1.19557793e+002 9.93177338e+001 1.12998466e+002 - 1.19565590e+002 9.94019394e+001 1.13051804e+002 1.19591354e+002 - 9.94886856e+001 1.13140785e+002 1.19633591e+002 9.96299667e+001 - 1.13247246e+002 1.19711533e+002 9.97112350e+001 1.13331009e+002 - 1.19733757e+002 9.98197174e+001 1.13416183e+002 1.19777496e+002 - 9.99223099e+001 1.13513878e+002 1.19816658e+002 1.00026833e+002 - 1.13574539e+002 1.19843338e+002 1.00109726e+002 1.13640640e+002 - 1.19862946e+002 1.00213188e+002 1.13687538e+002 1.19873123e+002 - 1.00313278e+002 1.13771622e+002 1.19899208e+002 1.00399315e+002 - 1.13812325e+002 1.19905952e+002 1.00436020e+002 1.13848061e+002 - 1.19884163e+002 1.00504097e+002 1.13862038e+002 1.19884438e+002 - 1.00479416e+002 1.13834015e+002 1.19794914e+002 1.00433456e+002 - 1.13799423e+002 1.19785049e+002 1.00431000e+002 1.13845856e+002 - 1.19846344e+002 1.00418495e+002 1.13843491e+002 1.19890602e+002 - 1.00369438e+002 1.13830254e+002 1.19905380e+002 1.00313011e+002 - 1.13790726e+002 1.19921997e+002 1.00204193e+002 1.13718391e+002 - 1.19885323e+002 1.00112984e+002 1.13642822e+002 1.19870544e+002 - 1.00028847e+002 1.13588272e+002 1.19845383e+002 9.99292908e+001 - 1.13501205e+002 1.19812378e+002 9.98198318e+001 1.13426338e+002 - 1.19763733e+002 9.97645264e+001 1.13360123e+002 1.19769539e+002 - 9.97043304e+001 1.13328049e+002 1.19773361e+002 9.96105423e+001 - 1.13242340e+002 1.19738693e+002 9.95182190e+001 1.13176285e+002 - 1.19697403e+002 9.94427032e+001 1.13095314e+002 1.19665413e+002 - 9.93485107e+001 1.13020447e+002 1.19618416e+002 9.92555466e+001 - 1.12938744e+002 1.19610535e+002 9.91512146e+001 1.12868935e+002 - 1.19572922e+002 9.90562210e+001 1.12773605e+002 1.19525970e+002 - 9.89889374e+001 1.12727684e+002 1.19512215e+002 9.89010315e+001 - 1.12637840e+002 1.19489632e+002 9.88000183e+001 1.12556091e+002 - 1.19449272e+002 9.87355423e+001 1.12505775e+002 1.19452942e+002 - 9.86798630e+001 1.12466385e+002 1.19445396e+002 9.86032791e+001 - 1.12390991e+002 1.19422920e+002 9.85139160e+001 1.12323128e+002 - 1.19388702e+002 9.84534531e+001 1.12237633e+002 1.19378983e+002 - 9.83714142e+001 1.12168823e+002 1.19345741e+002 9.82995758e+001 - 1.12090866e+002 1.19325684e+002 9.82240448e+001 1.12034233e+002 - 1.19290230e+002 9.81694107e+001 1.11972046e+002 1.19274582e+002 - 9.81066208e+001 1.11924980e+002 1.19254623e+002 9.80369568e+001 - 1.11857338e+002 1.19252724e+002 9.79560318e+001 1.11807472e+002 - 1.19231758e+002 9.78758545e+001 1.11704330e+002 1.19190704e+002 - 9.77958755e+001 1.11640175e+002 1.19152443e+002 9.77462311e+001 - 1.11578522e+002 1.19152153e+002 9.76508713e+001 1.11495659e+002 - 1.19101128e+002 9.76008606e+001 1.11447891e+002 1.19103012e+002 - 9.75539932e+001 1.11411087e+002 1.19092522e+002 9.75111389e+001 - 1.11354950e+002 1.19095108e+002 9.74365845e+001 1.11288498e+002 - 1.19064621e+002 9.73811417e+001 1.11212982e+002 1.19057625e+002 - 9.73341293e+001 1.11178688e+002 1.19050468e+002 9.73157272e+001 - 1.11160698e+002 1.19068054e+002 9.72535400e+001 1.11120651e+002 - 1.19041893e+002 9.71975098e+001 1.11047295e+002 1.19016899e+002 - 9.71379929e+001 1.10991669e+002 1.18988953e+002 9.70893021e+001 - 1.10942299e+002 1.19003647e+002 9.70220261e+001 1.10898468e+002 - 1.18984840e+002 9.70169067e+001 1.10879410e+002 1.19005852e+002 - 9.69717178e+001 1.10848862e+002 1.18998802e+002 9.69174957e+001 - 1.10770920e+002 1.18978851e+002 9.68484650e+001 1.10714798e+002 - 1.18952797e+002 9.67969742e+001 1.10661491e+002 1.18940880e+002 - 9.67357254e+001 1.10610939e+002 1.18918777e+002 9.66768036e+001 - 1.10543343e+002 1.18899994e+002 9.66167221e+001 1.10500343e+002 - 1.18878563e+002 9.65989914e+001 1.10459831e+002 1.18898720e+002 - 9.65640411e+001 1.10438545e+002 1.18897850e+002 9.65364990e+001 - 1.10409576e+002 1.18902092e+002 9.64897461e+001 1.10382721e+002 - 1.18890053e+002 9.64639282e+001 1.10343094e+002 1.18888252e+002 - 9.64134369e+001 1.10298676e+002 1.18863380e+002 9.63596802e+001 - 1.10229828e+002 1.18855782e+002 9.63012695e+001 1.10200813e+002 - 1.18845581e+002 9.63014526e+001 1.10181190e+002 1.18866302e+002 - 9.62720184e+001 1.10155144e+002 1.18856232e+002 9.62623062e+001 - 1.10120888e+002 1.18867989e+002 9.62203445e+001 1.10084099e+002 - 1.18850899e+002 9.61899719e+001 1.10051201e+002 1.18858543e+002 - 9.61391754e+001 1.10007156e+002 1.18834976e+002 9.61324692e+001 - 1.09980652e+002 1.18852936e+002 9.60907516e+001 1.09951790e+002 - 1.18840248e+002 9.60744095e+001 1.09907578e+002 1.18843124e+002 - 9.60285568e+001 1.09875847e+002 1.18827934e+002 9.59953461e+001 - 1.09845787e+002 1.18815323e+002 9.59735794e+001 1.09841667e+002 - 1.18826111e+002 9.59648895e+001 1.09824203e+002 1.18836105e+002 - 9.59496536e+001 1.09812866e+002 1.18841972e+002 9.58999329e+001 - 1.09764534e+002 1.18829575e+002 9.58440247e+001 1.09729790e+002 - 1.18805595e+002 9.58459854e+001 1.09710922e+002 1.18813446e+002 - 9.58294144e+001 1.09708534e+002 1.18824165e+002 9.58128967e+001 - 1.09671135e+002 1.18821754e+002 9.57743759e+001 1.09649231e+002 - 1.18803642e+002 9.57655182e+001 1.09635826e+002 1.18814438e+002 - 9.57642593e+001 1.09637856e+002 1.18829346e+002 9.57657013e+001 - 1.09628723e+002 1.18846245e+002 9.57316513e+001 1.09611465e+002 - 1.18834953e+002 9.57069244e+001 1.09555130e+002 1.18827751e+002 - 9.57060318e+001 1.09569939e+002 1.18848221e+002 9.57203064e+001 - 1.09577782e+002 1.18874603e+002 9.56996918e+001 1.09580765e+002 - 1.18873383e+002 9.56940308e+001 1.09564270e+002 1.18874405e+002 - 9.56925125e+001 1.09568665e+002 1.18876877e+002 9.56634369e+001 - 1.09538414e+002 1.18853012e+002 9.56577530e+001 1.09555168e+002 - 1.18874245e+002 9.56742096e+001 1.09560944e+002 1.18898674e+002 - 9.56837387e+001 1.09585510e+002 1.18924385e+002 9.56892166e+001 - 1.09572372e+002 1.18945602e+002 9.56502838e+001 1.09549629e+002 - 1.18917145e+002 9.56351700e+001 1.09520981e+002 1.18902405e+002 - 9.56005249e+001 1.09497040e+002 1.18870308e+002 9.56010742e+001 - 1.09485619e+002 1.18867264e+002 9.56041870e+001 1.09496819e+002 - 1.18872330e+002 9.56287231e+001 1.09488464e+002 1.18889343e+002 - 9.56534042e+001 1.09523582e+002 1.18919762e+002 9.56702652e+001 - 1.09537033e+002 1.18938164e+002 9.56588745e+001 1.09538994e+002 - 1.18930229e+002 9.56669998e+001 1.09540955e+002 1.18939682e+002 - 9.56728516e+001 1.09553368e+002 1.18937759e+002 9.56657867e+001 - 1.09541550e+002 1.18935989e+002 9.56281281e+001 1.09529327e+002 - 1.18917641e+002 9.56405029e+001 1.09531876e+002 1.18933899e+002 - 9.56498566e+001 1.09551041e+002 1.18939949e+002 9.56718216e+001 - 1.09552406e+002 1.18954796e+002 9.56526947e+001 1.09544502e+002 - 1.18933273e+002 9.56474304e+001 1.09529060e+002 1.18926933e+002 - 9.56418076e+001 1.09539688e+002 1.18911407e+002 9.56588058e+001 - 1.09546684e+002 1.18920029e+002 9.56409302e+001 1.09542168e+002 - 1.18904968e+002 9.57022476e+001 1.09575523e+002 1.18957878e+002 - 9.57113571e+001 1.09594292e+002 1.18958801e+002 9.57032166e+001 - 1.09577522e+002 1.18935013e+002 9.57040253e+001 1.09589973e+002 - 1.18927719e+002 9.57011871e+001 1.09574501e+002 1.18908836e+002 - 9.57309113e+001 1.09615982e+002 1.18924820e+002 9.57472458e+001 - 1.09618759e+002 1.18929115e+002 9.57128677e+001 1.09617218e+002 - 1.18901917e+002 9.57553253e+001 1.09636169e+002 1.18927269e+002 - 9.57725296e+001 1.09665375e+002 1.18929382e+002 9.57652512e+001 - 1.09637505e+002 1.18906860e+002 9.57517776e+001 1.09634552e+002 - 1.18879112e+002 9.57677536e+001 1.09642212e+002 1.18882248e+002 - 9.58081436e+001 1.09696938e+002 1.18904900e+002 9.58124008e+001 - 1.09684013e+002 1.18894150e+002 9.58226471e+001 1.09713272e+002 - 1.18900291e+002 9.58757629e+001 1.09733528e+002 1.18928230e+002 - 9.58774567e+001 1.09751495e+002 1.18918068e+002 9.58819199e+001 - 1.09750336e+002 1.18900482e+002 9.58871078e+001 1.09771606e+002 - 1.18886017e+002 9.59134598e+001 1.09787216e+002 1.18890900e+002 - 9.59498291e+001 1.09825882e+002 1.18894287e+002 9.59841614e+001 - 1.09854095e+002 1.18898643e+002 9.59695663e+001 1.09850510e+002 - 1.18866898e+002 9.59663849e+001 1.09826591e+002 1.18837212e+002 - 9.59969788e+001 1.09866592e+002 1.18846672e+002 9.60480270e+001 - 1.09901474e+002 1.18862328e+002 9.60324402e+001 1.09895729e+002 - 1.18823502e+002 9.60780029e+001 1.09939217e+002 1.18839928e+002 - 9.61038284e+001 1.09972061e+002 1.18836029e+002 9.61701736e+001 - 1.10021767e+002 1.18865814e+002 9.61830597e+001 1.10058228e+002 - 1.18860542e+002 9.62090683e+001 1.10044243e+002 1.18848526e+002 - 9.62507248e+001 1.10098892e+002 1.18862282e+002 9.62758408e+001 - 1.10114021e+002 1.18857010e+002 9.62865219e+001 1.10145523e+002 - 1.18849182e+002 9.63470154e+001 1.10195709e+002 1.18887543e+002 - 9.63996048e+001 1.10254051e+002 1.18895164e+002 9.64317474e+001 - 1.10285423e+002 1.18890244e+002 9.64414291e+001 1.10318367e+002 - 1.18873306e+002 9.65146637e+001 1.10371323e+002 1.18912407e+002 - 9.65663223e+001 1.10434013e+002 1.18929665e+002 9.66145096e+001 - 1.10458939e+002 1.18937920e+002 9.66283035e+001 1.10481735e+002 - 1.18923615e+002 9.66656265e+001 1.10510117e+002 1.18925148e+002 - 9.67318497e+001 1.10582153e+002 1.18953972e+002 9.67876740e+001 - 1.10627922e+002 1.18970055e+002 9.68017044e+001 1.10648544e+002 - 1.18948425e+002 9.68492813e+001 1.10658371e+002 1.18946037e+002 - 9.69080048e+001 1.10728256e+002 1.18966148e+002 9.69485168e+001 - 1.10761101e+002 1.18965599e+002 9.69655533e+001 1.10800430e+002 - 1.18950050e+002 9.70120316e+001 1.10829727e+002 1.18963463e+002 - 9.70347061e+001 1.10857040e+002 1.18938583e+002 9.70948563e+001 - 1.10905762e+002 1.18938095e+002 9.71131363e+001 1.10948196e+002 - 1.18924171e+002 9.71748047e+001 1.10987282e+002 1.18943283e+002 - 9.72048721e+001 1.11034363e+002 1.18940155e+002 9.72785797e+001 - 1.11088943e+002 1.18967407e+002 9.73313980e+001 1.11155968e+002 - 1.18980812e+002 9.73696671e+001 1.11192619e+002 1.18975716e+002 - 9.74298782e+001 1.11262161e+002 1.18988068e+002 9.74757767e+001 - 1.11295753e+002 1.18994720e+002 9.75341797e+001 1.11361771e+002 - 1.19016098e+002 9.76361160e+001 1.11427124e+002 1.19057350e+002 - 9.77100830e+001 1.11516388e+002 1.19091797e+002 9.77757416e+001 - 1.11572029e+002 1.19103600e+002 9.78234863e+001 1.11633545e+002 - 1.19112862e+002 9.79156799e+001 1.11709099e+002 1.19158119e+002 - 9.79823761e+001 1.11782860e+002 1.19169373e+002 9.80601044e+001 - 1.11851280e+002 1.19181763e+002 9.81133575e+001 1.11925957e+002 - 1.19203445e+002 9.81727524e+001 1.11961670e+002 1.19214806e+002 - 9.82333755e+001 1.12034393e+002 1.19238113e+002 9.83088455e+001 - 1.12083145e+002 1.19257797e+002 9.83476105e+001 1.12132454e+002 - 1.19247581e+002 9.84067383e+001 1.12180237e+002 1.19248589e+002 - 9.85006714e+001 1.12271751e+002 1.19285118e+002 9.85790939e+001 - 1.12331947e+002 1.19315277e+002 9.86454086e+001 1.12410088e+002 - 1.19333199e+002 9.87436600e+001 1.12469345e+002 1.19350121e+002 - 9.88376541e+001 1.12573486e+002 1.19403526e+002 9.89241791e+001 - 1.12641541e+002 1.19428947e+002 9.89857178e+001 1.12708855e+002 - 1.19446297e+002 9.90647430e+001 1.12765015e+002 1.19477097e+002 - 9.91590347e+001 1.12857201e+002 1.19508888e+002 9.92716675e+001 - 1.12943466e+002 1.19541313e+002 9.93452835e+001 1.13018181e+002 - 1.19563263e+002 9.94380341e+001 1.13083534e+002 1.19607300e+002 - 9.95255432e+001 1.13178970e+002 1.19652344e+002 9.96534882e+001 - 1.13266991e+002 1.19708084e+002 9.97388916e+001 1.13356186e+002 - 1.19739105e+002 9.98502502e+001 1.13441811e+002 1.19782631e+002 - 9.99396362e+001 1.13523811e+002 1.19810265e+002 1.00045837e+002 - 1.13582733e+002 1.19838814e+002 1.00124146e+002 1.13647781e+002 - 1.19850929e+002 1.00227684e+002 1.13695854e+002 1.19864403e+002 - 1.00325562e+002 1.13781570e+002 1.19896301e+002 1.00417290e+002 - 1.13831589e+002 1.19908012e+002 1.00449982e+002 1.13855392e+002 - 1.19878914e+002 1.00521866e+002 1.13877724e+002 1.19887871e+002 - 1.00494469e+002 1.13838036e+002 1.19791893e+002 1.00445717e+002 - 1.13815140e+002 1.19784729e+002 1.00447472e+002 1.13863014e+002 - 1.19847733e+002 1.00429672e+002 1.13861153e+002 1.19886734e+002 - 1.00378044e+002 1.13839897e+002 1.19897850e+002 1.00312653e+002 - 1.13789040e+002 1.19904251e+002 1.00213371e+002 1.13723892e+002 - 1.19872894e+002 1.00119812e+002 1.13649147e+002 1.19856522e+002 - 1.00018303e+002 1.13574753e+002 1.19810303e+002 9.99422531e+001 - 1.13512672e+002 1.19795692e+002 9.98372116e+001 1.13441231e+002 - 1.19748734e+002 9.97673492e+001 1.13362503e+002 1.19746147e+002 - 9.96981125e+001 1.13317513e+002 1.19740067e+002 9.96276169e+001 - 1.13256393e+002 1.19723442e+002 9.95319595e+001 1.13187714e+002 - 1.19688942e+002 9.94621201e+001 1.13116241e+002 1.19663284e+002 - 9.93769684e+001 1.13046333e+002 1.19624893e+002 9.92825470e+001 - 1.12969414e+002 1.19614647e+002 9.91632843e+001 1.12885406e+002 - 1.19563103e+002 9.90864868e+001 1.12807411e+002 1.19534363e+002 - 9.90056610e+001 1.12746391e+002 1.19509537e+002 9.89180374e+001 - 1.12652878e+002 1.19478493e+002 9.88312759e+001 1.12585503e+002 - 1.19452095e+002 9.87626801e+001 1.12532959e+002 1.19447929e+002 - 9.87000961e+001 1.12485497e+002 1.19433708e+002 9.86223145e+001 - 1.12415558e+002 1.19409866e+002 9.85156326e+001 1.12324768e+002 - 1.19360085e+002 9.84490967e+001 1.12235687e+002 1.19346878e+002 - 9.83687363e+001 1.12167458e+002 1.19317490e+002 9.83042450e+001 - 1.12099945e+002 1.19301193e+002 9.82172623e+001 1.12027252e+002 - 1.19257454e+002 9.81786041e+001 1.11982605e+002 1.19255257e+002 - 9.81109009e+001 1.11928963e+002 1.19232407e+002 9.80598373e+001 - 1.11884567e+002 1.19254395e+002 9.79640503e+001 1.11810509e+002 - 1.19213959e+002 9.78962860e+001 1.11730255e+002 1.19183174e+002 - 9.78115234e+001 1.11651688e+002 1.19137779e+002 9.77558441e+001 - 1.11585289e+002 1.19125511e+002 9.76706467e+001 1.11522408e+002 - 1.19088776e+002 9.76267929e+001 1.11471077e+002 1.19093857e+002 - 9.75802841e+001 1.11433830e+002 1.19085403e+002 9.75522766e+001 - 1.11391289e+002 1.19094170e+002 9.74870148e+001 1.11336769e+002 - 1.19076622e+002 9.74415588e+001 1.11270111e+002 1.19074921e+002 - 9.73877487e+001 1.11238205e+002 1.19061569e+002 9.73448334e+001 - 1.11192970e+002 1.19060600e+002 9.72964401e+001 1.11163376e+002 - 1.19053406e+002 9.72156372e+001 1.11069725e+002 1.18997871e+002 - 9.71400299e+001 1.11000549e+002 1.18951637e+002 9.70950470e+001 - 1.10947098e+002 1.18963562e+002 9.70543976e+001 1.10933556e+002 - 1.18972862e+002 9.70333099e+001 1.10899536e+002 1.18985367e+002 - 9.69927444e+001 1.10867516e+002 1.18976265e+002 9.69348145e+001 - 1.10796486e+002 1.18956078e+002 9.68859787e+001 1.10759354e+002 - 1.18950066e+002 9.68228836e+001 1.10691353e+002 1.18931007e+002 - 9.67667084e+001 1.10646393e+002 1.18904152e+002 9.67259979e+001 - 1.10598961e+002 1.18905739e+002 9.66558304e+001 1.10537796e+002 - 1.18875664e+002 9.66310577e+001 1.10495132e+002 1.18883110e+002 - 9.65799103e+001 1.10453346e+002 1.18863167e+002 9.65704269e+001 - 1.10446213e+002 1.18892952e+002 9.65265808e+001 1.10417641e+002 - 1.18878075e+002 9.65021133e+001 1.10382996e+002 1.18885986e+002 - 9.64509583e+001 1.10343483e+002 1.18861229e+002 9.64316635e+001 - 1.10314087e+002 1.18885757e+002 9.63831100e+001 1.10289757e+002 - 1.18880913e+002 9.63638763e+001 1.10250732e+002 1.18882988e+002 - 9.63247452e+001 1.10212387e+002 1.18867073e+002 9.63168030e+001 - 1.10181328e+002 1.18879066e+002 9.62783966e+001 1.10152870e+002 - 1.18869797e+002 9.62283020e+001 1.10092461e+002 1.18849541e+002 - 9.61882858e+001 1.10056618e+002 1.18834854e+002 9.61784821e+001 - 1.10035851e+002 1.18846779e+002 9.61418533e+001 1.10006813e+002 - 1.18842972e+002 9.61097641e+001 1.09946320e+002 1.18830162e+002 - 9.60412140e+001 1.09888420e+002 1.18792290e+002 9.60186768e+001 - 1.09866394e+002 1.18797729e+002 9.59846802e+001 1.09859215e+002 - 1.18789093e+002 9.59673996e+001 1.09825531e+002 1.18791260e+002 - 9.59477768e+001 1.09811447e+002 1.18790405e+002 9.59277191e+001 - 1.09790787e+002 1.18809189e+002 9.58652649e+001 1.09754768e+002 - 1.18784325e+002 9.58667374e+001 1.09736313e+002 1.18793671e+002 - 9.58556442e+001 1.09734512e+002 1.18799599e+002 9.58249054e+001 - 1.09688133e+002 1.18786812e+002 9.58031235e+001 1.09685013e+002 - 1.18786011e+002 9.58051834e+001 1.09681038e+002 1.18808662e+002 - 9.57904739e+001 1.09673767e+002 1.18805321e+002 9.57815857e+001 - 1.09655350e+002 1.18820183e+002 9.57588196e+001 1.09646881e+002 - 1.18823227e+002 9.57394028e+001 1.09598801e+002 1.18818382e+002 - 9.57396164e+001 1.09611542e+002 1.18839615e+002 9.57509079e+001 - 1.09617683e+002 1.18860535e+002 9.57482605e+001 1.09635406e+002 - 1.18868950e+002 9.57361984e+001 1.09612373e+002 1.18871033e+002 - 9.57241516e+001 1.09608307e+002 1.18858543e+002 9.57040405e+001 - 1.09588806e+002 1.18847595e+002 9.56819611e+001 1.09589149e+002 - 1.18853485e+002 9.57081985e+001 1.09599327e+002 1.18879791e+002 - 9.57123642e+001 1.09621452e+002 1.18910561e+002 9.57318497e+001 - 1.09624542e+002 1.18940247e+002 9.56994019e+001 1.09597443e+002 - 1.18910835e+002 9.56789398e+001 1.09567192e+002 1.18895645e+002 - 9.56421738e+001 1.09537041e+002 1.18857361e+002 9.56515732e+001 - 1.09539169e+002 1.18867638e+002 9.56507645e+001 1.09547020e+002 - 1.18871307e+002 9.56573639e+001 1.09527618e+002 1.18869934e+002 - 9.56548843e+001 1.09537491e+002 1.18875870e+002 9.56767273e+001 - 1.09551308e+002 1.18896248e+002 9.56996994e+001 1.09587463e+002 - 1.18920303e+002 9.57128754e+001 1.09591431e+002 1.18934761e+002 - 9.56962204e+001 1.09589310e+002 1.18911049e+002 9.56806183e+001 - 1.09566177e+002 1.18907036e+002 9.56525116e+001 1.09561272e+002 - 1.18898361e+002 9.56528931e+001 1.09552605e+002 1.18900322e+002 - 9.56635818e+001 1.09566864e+002 1.18908287e+002 9.56853256e+001 - 1.09567642e+002 1.18922897e+002 9.56853333e+001 1.09582237e+002 - 1.18922752e+002 9.56909103e+001 1.09582275e+002 1.18928528e+002 - 9.56893387e+001 1.09592346e+002 1.18914917e+002 9.56872253e+001 - 1.09581444e+002 1.18910507e+002 9.56678925e+001 1.09575356e+002 - 1.18888878e+002 9.57165833e+001 1.09596603e+002 1.18926399e+002 - 9.57206802e+001 1.09611160e+002 1.18926109e+002 9.57226486e+001 - 1.09611504e+002 1.18917542e+002 9.57122650e+001 1.09610130e+002 - 1.18896446e+002 9.57158661e+001 1.09596153e+002 1.18884621e+002 - 9.57565613e+001 1.09651077e+002 1.18908165e+002 9.57571106e+001 - 1.09642311e+002 1.18902802e+002 9.57303238e+001 1.09640312e+002 - 1.18878502e+002 9.57612152e+001 1.09655350e+002 1.18898895e+002 - 9.57824249e+001 1.09682076e+002 1.18904015e+002 9.57817001e+001 - 1.09666847e+002 1.18886467e+002 9.57826843e+001 1.09672249e+002 - 1.18865967e+002 9.58092804e+001 1.09689270e+002 1.18873932e+002 - 9.58375854e+001 1.09733841e+002 1.18888893e+002 9.58361206e+001 - 1.09721985e+002 1.18874893e+002 9.58551712e+001 1.09752686e+002 - 1.18883171e+002 9.58844070e+001 1.09752533e+002 1.18892189e+002 - 9.59009171e+001 1.09781250e+002 1.18896301e+002 9.59139328e+001 - 1.09786079e+002 1.18878998e+002 9.59183350e+001 1.09808823e+002 - 1.18869919e+002 9.59364853e+001 1.09814819e+002 1.18864288e+002 - 9.59640350e+001 1.09845535e+002 1.18859978e+002 9.60039597e+001 - 1.09866455e+002 1.18867615e+002 9.60068436e+001 1.09885490e+002 - 1.18851952e+002 9.60217438e+001 1.09889046e+002 1.18847343e+002 - 9.60557938e+001 1.09931694e+002 1.18865150e+002 9.60897598e+001 - 1.09946457e+002 1.18858681e+002 9.61001434e+001 1.09976753e+002 - 1.18850044e+002 9.61336670e+001 1.10003716e+002 1.18859703e+002 - 9.61506882e+001 1.10033127e+002 1.18844711e+002 9.61834793e+001 - 1.10048103e+002 1.18845581e+002 9.62134399e+001 1.10085709e+002 - 1.18843948e+002 9.62382584e+001 1.10077255e+002 1.18831306e+002 - 9.62870102e+001 1.10138046e+002 1.18859932e+002 9.63195953e+001 - 1.10163475e+002 1.18860596e+002 9.63231812e+001 1.10195007e+002 - 1.18852913e+002 9.63872681e+001 1.10247917e+002 1.18889427e+002 - 9.64406815e+001 1.10305893e+002 1.18904900e+002 9.65043869e+001 - 1.10363739e+002 1.18923424e+002 9.64996948e+001 1.10383232e+002 - 1.18900703e+002 9.65533600e+001 1.10422798e+002 1.18916489e+002 - 9.65891876e+001 1.10462540e+002 1.18918762e+002 9.66491165e+001 - 1.10504097e+002 1.18937614e+002 9.66542435e+001 1.10514702e+002 - 1.18910812e+002 9.67126846e+001 1.10564323e+002 1.18936111e+002 - 9.67670593e+001 1.10621582e+002 1.18952423e+002 9.68200607e+001 - 1.10666954e+002 1.18965782e+002 9.68413315e+001 1.10693214e+002 - 1.18952759e+002 9.68757095e+001 1.10696846e+002 1.18933464e+002 - 9.69404907e+001 1.10765884e+002 1.18962715e+002 9.69807739e+001 - 1.10795731e+002 1.18959114e+002 9.70012283e+001 1.10836624e+002 - 1.18951935e+002 9.70578156e+001 1.10882439e+002 1.18972794e+002 - 9.70739822e+001 1.10901352e+002 1.18941673e+002 9.71304016e+001 - 1.10946350e+002 1.18932777e+002 9.71318512e+001 1.10965942e+002 - 1.18903831e+002 9.71939850e+001 1.11013222e+002 1.18929291e+002 - 9.72450638e+001 1.11073891e+002 1.18947113e+002 9.72923355e+001 - 1.11108025e+002 1.18941032e+002 9.73448257e+001 1.11181885e+002 - 1.18961502e+002 9.74079437e+001 1.11229042e+002 1.18975227e+002 - 9.74565125e+001 1.11290680e+002 1.18987274e+002 9.74966583e+001 - 1.11322495e+002 1.18982544e+002 9.75208588e+001 1.11355087e+002 - 1.18964363e+002 9.76278000e+001 1.11426781e+002 1.19013451e+002 - 9.77199173e+001 1.11532211e+002 1.19068245e+002 9.77923126e+001 - 1.11589409e+002 1.19088295e+002 9.78184509e+001 1.11632645e+002 - 1.19081276e+002 9.78994827e+001 1.11702660e+002 1.19112900e+002 - 9.79844742e+001 1.11789925e+002 1.19142860e+002 9.80716171e+001 - 1.11860985e+002 1.19166100e+002 9.81235199e+001 1.11935448e+002 - 1.19181313e+002 9.81772766e+001 1.11975174e+002 1.19193275e+002 - 9.82485199e+001 1.12050179e+002 1.19223190e+002 9.83243942e+001 - 1.12097275e+002 1.19242798e+002 9.83845367e+001 1.12166985e+002 - 1.19257133e+002 9.84596634e+001 1.12232063e+002 1.19278137e+002 - 9.85289841e+001 1.12305779e+002 1.19292999e+002 9.86059570e+001 - 1.12359009e+002 1.19309822e+002 9.86478882e+001 1.12417107e+002 - 1.19312431e+002 9.87525330e+001 1.12485054e+002 1.19340378e+002 - 9.88319550e+001 1.12571213e+002 1.19374878e+002 9.89220276e+001 - 1.12640892e+002 1.19398018e+002 9.89783096e+001 1.12705032e+002 - 1.19413536e+002 9.90676804e+001 1.12767296e+002 1.19448669e+002 - 9.91706924e+001 1.12867630e+002 1.19495628e+002 9.92699203e+001 - 1.12946121e+002 1.19517380e+002 9.93342056e+001 1.13014061e+002 - 1.19539497e+002 9.94383011e+001 1.13091026e+002 1.19593536e+002 - 9.95376511e+001 1.13189949e+002 1.19646576e+002 9.96494370e+001 - 1.13269653e+002 1.19687180e+002 9.97568893e+001 1.13375107e+002 - 1.19736259e+002 9.98565063e+001 1.13447189e+002 1.19766670e+002 - 9.99365997e+001 1.13520012e+002 1.19781258e+002 1.00030022e+002 - 1.13571327e+002 1.19804771e+002 1.00100449e+002 1.13631660e+002 - 1.19809364e+002 1.00208023e+002 1.13679504e+002 1.19826164e+002 - 1.00325974e+002 1.13788231e+002 1.19878593e+002 1.00419632e+002 - 1.13838837e+002 1.19890770e+002 1.00449875e+002 1.13856392e+002 - 1.19858505e+002 1.00519531e+002 1.13881020e+002 1.19871780e+002 - 1.00496017e+002 1.13843468e+002 1.19776230e+002 1.00434494e+002 - 1.13807739e+002 1.19749748e+002 1.00456947e+002 1.13876335e+002 - 1.19837601e+002 1.00447769e+002 1.13885826e+002 1.19882408e+002 - 1.00369820e+002 1.13838371e+002 1.19867142e+002 1.00311783e+002 - 1.13798447e+002 1.19879250e+002 1.00221008e+002 1.13742226e+002 - 1.19853088e+002 1.00129166e+002 1.13663467e+002 1.19833908e+002 - 1.00026360e+002 1.13586624e+002 1.19782814e+002 9.99622574e+001 - 1.13535072e+002 1.19783913e+002 9.98657150e+001 1.13466248e+002 - 1.19748268e+002 9.97879562e+001 1.13385513e+002 1.19740494e+002 - 9.97122879e+001 1.13333992e+002 1.19724190e+002 9.96451721e+001 - 1.13282768e+002 1.19720062e+002 9.95492783e+001 1.13213669e+002 - 1.19675591e+002 9.94697571e+001 1.13127060e+002 1.19643990e+002 - 9.93821487e+001 1.13057007e+002 1.19600952e+002 9.92906342e+001 - 1.12983017e+002 1.19601372e+002 9.91939468e+001 1.12920906e+002 - 1.19567024e+002 9.91213379e+001 1.12843178e+002 1.19541000e+002 - 9.90278473e+001 1.12770493e+002 1.19498398e+002 9.89397964e+001 - 1.12682137e+002 1.19471474e+002 9.88528442e+001 1.12619324e+002 - 1.19445457e+002 9.87775040e+001 1.12554581e+002 1.19432556e+002 - 9.87192383e+001 1.12505600e+002 1.19420296e+002 9.86528473e+001 - 1.12442261e+002 1.19405846e+002 9.85375137e+001 1.12351799e+002 - 1.19351349e+002 9.84756317e+001 1.12268478e+002 1.19340965e+002 - 9.84107285e+001 1.12219185e+002 1.19334999e+002 9.83461380e+001 - 1.12151749e+002 1.19318977e+002 9.82643585e+001 1.12092003e+002 - 1.19284492e+002 9.82174988e+001 1.12033081e+002 1.19272118e+002 - 9.81554489e+001 1.11987175e+002 1.19252609e+002 9.80979919e+001 - 1.11930977e+002 1.19266983e+002 9.80007477e+001 1.11855804e+002 - 1.19221878e+002 9.79529037e+001 1.11791191e+002 1.19211334e+002 - 9.78511887e+001 1.11698059e+002 1.19146172e+002 9.78005981e+001 - 1.11638229e+002 1.19139954e+002 9.77340851e+001 1.11589462e+002 - 1.19115639e+002 9.76774368e+001 1.11526978e+002 1.19104546e+002 - 9.76135864e+001 1.11473915e+002 1.19079971e+002 9.75722809e+001 - 1.11423347e+002 1.19079094e+002 9.74994965e+001 1.11365486e+002 - 1.19053314e+002 9.74648056e+001 1.11303207e+002 1.19059334e+002 - 9.74049835e+001 1.11257690e+002 1.19047874e+002 9.73452759e+001 - 1.11197868e+002 1.19025764e+002 9.72974930e+001 1.11169106e+002 - 1.19011559e+002 9.72380219e+001 1.11096573e+002 1.18985214e+002 - 9.71658325e+001 1.11035690e+002 1.18940506e+002 9.71136780e+001 - 1.10974518e+002 1.18943909e+002 9.70920181e+001 1.10977890e+002 - 1.18972832e+002 9.70599670e+001 1.10931435e+002 1.18972588e+002 - 9.70050430e+001 1.10889427e+002 1.18947800e+002 9.69419174e+001 - 1.10811470e+002 1.18926819e+002 9.69055634e+001 1.10789574e+002 - 1.18927673e+002 9.68709106e+001 1.10751038e+002 1.18939095e+002 - 9.68200073e+001 1.10705917e+002 1.18921150e+002 9.67821960e+001 - 1.10664925e+002 1.18916801e+002 9.67163467e+001 1.10607994e+002 - 1.18887634e+002 9.66904755e+001 1.10568115e+002 1.18899048e+002 - 9.66177750e+001 1.10503822e+002 1.18865067e+002 9.65835953e+001 - 1.10471519e+002 1.18868263e+002 9.65416718e+001 1.10446587e+002 - 1.18859604e+002 9.65268097e+001 1.10422539e+002 1.18869987e+002 - 9.64976959e+001 1.10398155e+002 1.18867653e+002 9.64637070e+001 - 1.10354851e+002 1.18876442e+002 9.64282150e+001 1.10341225e+002 - 1.18880066e+002 9.64138489e+001 1.10312325e+002 1.18887230e+002 - 9.63684387e+001 1.10273598e+002 1.18863480e+002 9.63325958e+001 - 1.10212128e+002 1.18850868e+002 9.63034439e+001 1.10193382e+002 - 1.18849518e+002 9.62607803e+001 1.10141731e+002 1.18842621e+002 - 9.62193985e+001 1.10109100e+002 1.18826836e+002 9.62052536e+001 - 1.10080399e+002 1.18840836e+002 9.61618271e+001 1.10041809e+002 - 1.18823929e+002 9.61516495e+001 1.10001472e+002 1.18833229e+002 - 9.60763702e+001 1.09934181e+002 1.18777893e+002 9.60448532e+001 - 1.09902710e+002 1.18771248e+002 9.60037308e+001 1.09879631e+002 - 1.18756264e+002 9.59937439e+001 1.09856781e+002 1.18764145e+002 - 9.59781342e+001 1.09847336e+002 1.18773338e+002 9.59472809e+001 - 1.09812866e+002 1.18781792e+002 9.59059372e+001 1.09799507e+002 - 1.18772087e+002 9.58866425e+001 1.09765182e+002 1.18768661e+002 - 9.58687439e+001 1.09756554e+002 1.18769440e+002 9.58520813e+001 - 1.09725685e+002 1.18770866e+002 9.58231659e+001 1.09712532e+002 - 1.18760071e+002 9.58155518e+001 1.09699921e+002 1.18772835e+002 - 9.58031845e+001 1.09696350e+002 1.18774757e+002 9.58075256e+001 - 1.09696548e+002 1.18801643e+002 9.57782822e+001 1.09683525e+002 - 1.18807068e+002 9.57866287e+001 1.09668472e+002 1.18823929e+002 - 9.57816925e+001 1.09672470e+002 1.18842400e+002 9.57743454e+001 - 1.09668571e+002 1.18848557e+002 9.57517700e+001 1.09656326e+002 - 1.18834770e+002 9.57537994e+001 1.09649605e+002 1.18847679e+002 - 9.57494888e+001 1.09651413e+002 1.18841499e+002 9.57427063e+001 - 1.09642464e+002 1.18849464e+002 9.57145844e+001 1.09641052e+002 - 1.18842545e+002 9.57341461e+001 1.09644699e+002 1.18869774e+002 - 9.57369537e+001 1.09657623e+002 1.18883736e+002 9.57749481e+001 - 1.09675102e+002 1.18932564e+002 9.57407684e+001 1.09648407e+002 - 1.18903152e+002 9.57240372e+001 1.09631447e+002 1.18896774e+002 - 9.56903152e+001 1.09604057e+002 1.18859207e+002 9.56846390e+001 - 1.09583916e+002 1.18852837e+002 9.56762238e+001 1.09586449e+002 - 1.18843643e+002 9.56630783e+001 1.09549187e+002 1.18833015e+002 - 9.56656952e+001 1.09562057e+002 1.18836563e+002 9.57016373e+001 - 1.09594604e+002 1.18874916e+002 9.57064438e+001 1.09621895e+002 - 1.18886246e+002 9.57303314e+001 1.09623291e+002 1.18904457e+002 - 9.57191696e+001 1.09622719e+002 1.18893753e+002 9.57027588e+001 - 1.09602974e+002 1.18885468e+002 9.57004166e+001 1.09627510e+002 - 1.18904488e+002 9.56854324e+001 1.09597992e+002 1.18890152e+002 - 9.56861115e+001 1.09602432e+002 1.18887947e+002 9.57107773e+001 - 1.09609116e+002 1.18904663e+002 9.57113419e+001 1.09621315e+002 - 1.18900818e+002 9.57335129e+001 1.09632797e+002 1.18924210e+002 - 9.57283249e+001 1.09638237e+002 1.18909477e+002 9.57129745e+001 - 1.09614784e+002 1.18886086e+002 9.56970367e+001 1.09621567e+002 - 1.18875732e+002 9.57291794e+001 1.09627747e+002 1.18898598e+002 - 9.57484436e+001 1.09653938e+002 1.18914207e+002 9.57618866e+001 - 1.09665062e+002 1.18913605e+002 9.57575226e+001 1.09670059e+002 - 1.18897835e+002 9.57783813e+001 1.09676918e+002 1.18905754e+002 - 9.57943954e+001 1.09699699e+002 1.18906326e+002 9.58048630e+001 - 1.09704781e+002 1.18906326e+002 9.57884445e+001 1.09710571e+002 - 1.18892754e+002 9.57986603e+001 1.09707466e+002 1.18892151e+002 - 9.58208084e+001 1.09738182e+002 1.18904251e+002 9.58436432e+001 - 1.09737701e+002 1.18901108e+002 9.58367767e+001 1.09741745e+002 - 1.18880066e+002 9.58579865e+001 1.09759781e+002 1.18883034e+002 - 9.58677673e+001 1.09782272e+002 1.18877045e+002 9.58982697e+001 - 1.09800705e+002 1.18885124e+002 9.59153824e+001 1.09825790e+002 - 1.18897057e+002 9.59445724e+001 1.09824409e+002 1.18898895e+002 - 9.59518051e+001 1.09848595e+002 1.18892555e+002 9.59706879e+001 - 1.09859810e+002 1.18889557e+002 9.59765091e+001 1.09877945e+002 - 1.18881439e+002 9.59887772e+001 1.09879791e+002 1.18868973e+002 - 9.60162888e+001 1.09907707e+002 1.18863655e+002 9.60309525e+001 - 1.09909653e+002 1.18849976e+002 9.60357056e+001 1.09936615e+002 - 1.18842636e+002 9.60690536e+001 1.09952156e+002 1.18851212e+002 - 9.60943527e+001 1.09987343e+002 1.18862320e+002 9.61289444e+001 - 1.10004868e+002 1.18865288e+002 9.61348419e+001 1.10026375e+002 - 1.18845192e+002 9.61804886e+001 1.10063713e+002 1.18865623e+002 - 9.61880112e+001 1.10082436e+002 1.18843437e+002 9.62095108e+001 - 1.10092499e+002 1.18830856e+002 9.62259674e+001 1.10118004e+002 - 1.18827858e+002 9.62674026e+001 1.10121788e+002 1.18823227e+002 - 9.63100052e+001 1.10172241e+002 1.18836800e+002 9.63333054e+001 - 1.10191460e+002 1.18837105e+002 9.63608170e+001 1.10244827e+002 - 1.18846107e+002 9.64291840e+001 1.10303505e+002 1.18888268e+002 - 9.64902039e+001 1.10373253e+002 1.18917702e+002 9.65292740e+001 - 1.10405304e+002 1.18911659e+002 9.65317001e+001 1.10431892e+002 - 1.18891418e+002 9.65910873e+001 1.10477776e+002 1.18918015e+002 - 9.66318207e+001 1.10526382e+002 1.18930794e+002 9.66880188e+001 - 1.10559578e+002 1.18944321e+002 9.66741867e+001 1.10549500e+002 - 1.18894737e+002 9.67237396e+001 1.10586899e+002 1.18908264e+002 - 9.67796936e+001 1.10649666e+002 1.18927521e+002 9.68405914e+001 - 1.10700546e+002 1.18947502e+002 9.68751526e+001 1.10747314e+002 - 1.18949341e+002 9.69373474e+001 1.10773056e+002 1.18957695e+002 - 9.69817657e+001 1.10822510e+002 1.18966698e+002 9.70020752e+001 - 1.10844437e+002 1.18949036e+002 9.70272141e+001 1.10879593e+002 - 1.18940918e+002 9.70818405e+001 1.10920319e+002 1.18962273e+002 - 9.71369553e+001 1.10980713e+002 1.18968498e+002 9.71815491e+001 - 1.11004066e+002 1.18949211e+002 9.71742096e+001 1.11025848e+002 - 1.18918877e+002 9.72294617e+001 1.11063591e+002 1.18930077e+002 - 9.72611389e+001 1.11111671e+002 1.18929733e+002 9.73202667e+001 - 1.11154572e+002 1.18941048e+002 9.73782578e+001 1.11222992e+002 - 1.18958656e+002 9.74290161e+001 1.11267929e+002 1.18967072e+002 - 9.74841156e+001 1.11332794e+002 1.18981796e+002 9.75475464e+001 - 1.11384995e+002 1.19004196e+002 9.75769653e+001 1.11424423e+002 - 1.18998444e+002 9.76779251e+001 1.11497795e+002 1.19039467e+002 - 9.77532501e+001 1.11582695e+002 1.19077919e+002 9.78265686e+001 - 1.11639442e+002 1.19091148e+002 9.78671494e+001 1.11691216e+002 - 1.19093903e+002 9.79331207e+001 1.11742355e+002 1.19113998e+002 - 9.80073166e+001 1.11817711e+002 1.19131599e+002 9.81027832e+001 - 1.11900200e+002 1.19165329e+002 9.81390457e+001 1.11952652e+002 - 1.19164238e+002 9.81927185e+001 1.11995804e+002 1.19179100e+002 - 9.82648621e+001 1.12073135e+002 1.19205544e+002 9.83208466e+001 - 1.12107323e+002 1.19206215e+002 9.83853683e+001 1.12177948e+002 - 1.19226509e+002 9.84676666e+001 1.12241737e+002 1.19253983e+002 - 9.85498276e+001 1.12335602e+002 1.19283974e+002 9.86223602e+001 - 1.12393364e+002 1.19306274e+002 9.86713409e+001 1.12446632e+002 - 1.19307602e+002 9.87702637e+001 1.12513954e+002 1.19339493e+002 - 9.88343658e+001 1.12585762e+002 1.19352295e+002 9.89229660e+001 - 1.12653618e+002 1.19379234e+002 9.89802094e+001 1.12717697e+002 - 1.19394455e+002 9.90679855e+001 1.12778778e+002 1.19427017e+002 - 9.91789703e+001 1.12881271e+002 1.19482925e+002 9.92692642e+001 - 1.12949173e+002 1.19491959e+002 9.93290482e+001 1.13016548e+002 - 1.19504059e+002 9.94395905e+001 1.13099098e+002 1.19571518e+002 - 9.95500031e+001 1.13215202e+002 1.19632027e+002 9.96552811e+001 - 1.13283592e+002 1.19670776e+002 9.97394180e+001 1.13366989e+002 - 1.19694374e+002 9.98563538e+001 1.13452614e+002 1.19740601e+002 - 9.99554520e+001 1.13545074e+002 1.19775925e+002 1.00022583e+002 - 1.13572853e+002 1.19765465e+002 1.00098816e+002 1.13637077e+002 - 1.19789398e+002 1.00219742e+002 1.13700813e+002 1.19821205e+002 - 1.00318848e+002 1.13789429e+002 1.19853165e+002 1.00413681e+002 - 1.13843689e+002 1.19871437e+002 1.00446335e+002 1.13869980e+002 - 1.19841896e+002 1.00518211e+002 1.13898140e+002 1.19852043e+002 - 1.00505226e+002 1.13872192e+002 1.19774834e+002 1.00431213e+002 - 1.13804352e+002 1.19719673e+002 1.00453766e+002 1.13869705e+002 - 1.19804283e+002 1.00443748e+002 1.13868149e+002 1.19847992e+002 - 1.00388458e+002 1.13845879e+002 1.19850693e+002 1.00339081e+002 - 1.13817215e+002 1.19871231e+002 1.00226891e+002 1.13740715e+002 - 1.19828812e+002 1.00158951e+002 1.13681229e+002 1.19831711e+002 - 1.00077950e+002 1.13629524e+002 1.19800034e+002 9.99776840e+001 - 1.13542496e+002 1.19765640e+002 9.98831177e+001 1.13477066e+002 - 1.19738106e+002 9.98238907e+001 1.13419128e+002 1.19744415e+002 - 9.97645035e+001 1.13380249e+002 1.19740944e+002 9.96765747e+001 - 1.13301674e+002 1.19716301e+002 9.95825348e+001 1.13239166e+002 - 1.19679436e+002 9.95026093e+001 1.13158081e+002 1.19645340e+002 - 9.94336548e+001 1.13104469e+002 1.19631226e+002 9.93318100e+001 - 1.13020927e+002 1.19607079e+002 9.92165756e+001 1.12938728e+002 - 1.19566200e+002 9.91515045e+001 1.12869446e+002 1.19545242e+002 - 9.90514755e+001 1.12792511e+002 1.19498360e+002 9.89779968e+001 - 1.12707993e+002 1.19479279e+002 9.88868942e+001 1.12646149e+002 - 1.19447044e+002 9.88116302e+001 1.12580429e+002 1.19434410e+002 - 9.87574997e+001 1.12548058e+002 1.19431183e+002 9.86991653e+001 - 1.12486320e+002 1.19424492e+002 9.85950012e+001 1.12400093e+002 - 1.19378410e+002 9.85351105e+001 1.12320267e+002 1.19370605e+002 - 9.84651871e+001 1.12271400e+002 1.19357368e+002 9.84056320e+001 - 1.12206520e+002 1.19349670e+002 9.83285141e+001 1.12145500e+002 - 1.19308685e+002 9.82647095e+001 1.12076515e+002 1.19283707e+002 - 9.82064209e+001 1.12025391e+002 1.19264801e+002 9.81372833e+001 - 1.11959557e+002 1.19263199e+002 9.80466690e+001 1.11888428e+002 - 1.19225845e+002 9.79904556e+001 1.11820961e+002 1.19211998e+002 - 9.79204483e+001 1.11758194e+002 1.19174995e+002 9.78656464e+001 - 1.11693207e+002 1.19165649e+002 9.77973557e+001 1.11642410e+002 - 1.19139664e+002 9.77285156e+001 1.11572311e+002 1.19116173e+002 - 9.76626968e+001 1.11518448e+002 1.19088539e+002 9.76223221e+001 - 1.11469955e+002 1.19092979e+002 9.75433044e+001 1.11397713e+002 - 1.19058525e+002 9.75010681e+001 1.11338440e+002 1.19055779e+002 - 9.74555435e+001 1.11304268e+002 1.19052628e+002 9.73967743e+001 - 1.11236305e+002 1.19038605e+002 9.73288345e+001 1.11194771e+002 - 1.19005348e+002 9.73029556e+001 1.11155434e+002 1.19007996e+002 - 9.72380066e+001 1.11100571e+002 1.18970367e+002 9.71847839e+001 - 1.11036652e+002 1.18967308e+002 9.71483536e+001 1.11027039e+002 - 1.18981033e+002 9.71172791e+001 1.10986923e+002 1.18983894e+002 - 9.70588684e+001 1.10935257e+002 1.18954659e+002 9.70009766e+001 - 1.10863823e+002 1.18938545e+002 9.69585953e+001 1.10834564e+002 - 1.18933800e+002 9.69275360e+001 1.10801003e+002 1.18942970e+002 - 9.68941422e+001 1.10774826e+002 1.18942818e+002 9.68301926e+001 - 1.10705132e+002 1.18912048e+002 9.67663727e+001 1.10651817e+002 - 1.18886757e+002 9.67461319e+001 1.10613976e+002 1.18908798e+002 - 9.66904068e+001 1.10570778e+002 1.18883751e+002 9.66329422e+001 - 1.10510406e+002 1.18867676e+002 9.65873260e+001 1.10486176e+002 - 1.18858711e+002 9.65615463e+001 1.10451683e+002 1.18861717e+002 - 9.65320358e+001 1.10431206e+002 1.18852440e+002 9.65114670e+001 - 1.10403755e+002 1.18876343e+002 9.64637299e+001 1.10375320e+002 - 1.18861481e+002 9.64689560e+001 1.10362427e+002 1.18890350e+002 - 9.64484787e+001 1.10346497e+002 1.18892128e+002 9.64131317e+001 - 1.10291367e+002 1.18882561e+002 9.63713379e+001 1.10259583e+002 - 1.18871719e+002 9.63082886e+001 1.10191635e+002 1.18840126e+002 - 9.62745056e+001 1.10160728e+002 1.18831184e+002 9.62621384e+001 - 1.10127258e+002 1.18844582e+002 9.62130432e+001 1.10086693e+002 - 1.18821869e+002 9.62063446e+001 1.10058769e+002 1.18832970e+002 - 9.61566696e+001 1.10019478e+002 1.18812248e+002 9.61316071e+001 - 1.09987358e+002 1.18807541e+002 9.60843353e+001 1.09956833e+002 - 1.18788109e+002 9.60586700e+001 1.09926949e+002 1.18785126e+002 - 9.60399704e+001 1.09908165e+002 1.18783287e+002 9.59910812e+001 - 1.09859100e+002 1.18771889e+002 9.59457550e+001 1.09837906e+002 - 1.18768829e+002 9.59159088e+001 1.09795143e+002 1.18748108e+002 - 9.59053726e+001 1.09792397e+002 1.18754280e+002 9.59024811e+001 - 1.09774475e+002 1.18770866e+002 9.58853607e+001 1.09766846e+002 - 1.18773308e+002 9.58721466e+001 1.09748886e+002 1.18778305e+002 - 9.58627090e+001 1.09753433e+002 1.18784889e+002 9.58782196e+001 - 1.09763313e+002 1.18821442e+002 9.58488464e+001 1.09750351e+002 - 1.18819069e+002 9.58492661e+001 1.09732338e+002 1.18842133e+002 - 9.58496017e+001 1.09742035e+002 1.18857597e+002 9.58388748e+001 - 1.09728821e+002 1.18863106e+002 9.58026505e+001 1.09709160e+002 - 1.18840851e+002 9.58030014e+001 1.09701118e+002 1.18851753e+002 - 9.58002014e+001 1.09705391e+002 1.18846947e+002 9.57954254e+001 - 1.09698425e+002 1.18855934e+002 9.57560196e+001 1.09680351e+002 - 1.18841774e+002 9.57943573e+001 1.09706375e+002 1.18889656e+002 - 9.58089142e+001 1.09728905e+002 1.18916931e+002 9.58442154e+001 - 1.09743446e+002 1.18954445e+002 9.58131409e+001 1.09729042e+002 - 1.18931320e+002 9.57925491e+001 1.09696251e+002 1.18915443e+002 - 9.57768555e+001 1.09693604e+002 1.18897270e+002 9.57546844e+001 - 1.09654327e+002 1.18870537e+002 9.57478104e+001 1.09651299e+002 - 1.18869408e+002 9.57446594e+001 1.09628685e+002 1.18859810e+002 - 9.57533264e+001 1.09651405e+002 1.18874916e+002 9.57877502e+001 - 1.09680473e+002 1.18908623e+002 9.57725449e+001 1.09686157e+002 - 1.18905678e+002 9.57779007e+001 1.09677231e+002 1.18907272e+002 - 9.57641907e+001 1.09674278e+002 1.18890266e+002 9.57543335e+001 - 1.09655838e+002 1.18891502e+002 9.57358017e+001 1.09663132e+002 - 1.18892128e+002 9.57367859e+001 1.09649414e+002 1.18893990e+002 - 9.57305908e+001 1.09649406e+002 1.18882523e+002 9.57669449e+001 - 1.09667572e+002 1.18916489e+002 9.57565079e+001 1.09666199e+002 - 1.18903557e+002 9.57593079e+001 1.09662392e+002 1.18898285e+002 - 9.57433853e+001 1.09660469e+002 1.18874741e+002 9.57494507e+001 - 1.09656822e+002 1.18878212e+002 9.57273254e+001 1.09648926e+002 - 1.18860504e+002 9.57790909e+001 1.09677216e+002 1.18897163e+002 - 9.57845001e+001 1.09696884e+002 1.18899895e+002 9.57837219e+001 - 1.09684593e+002 1.18883858e+002 9.57941666e+001 1.09716095e+002 - 1.18890877e+002 9.58328476e+001 1.09736526e+002 1.18912758e+002 - 9.58492432e+001 1.09760864e+002 1.18909821e+002 9.58675919e+001 - 1.09770653e+002 1.18920876e+002 9.58570404e+001 1.09775642e+002 - 1.18912682e+002 9.58728561e+001 1.09785156e+002 1.18917244e+002 - 9.59024582e+001 1.09824860e+002 1.18935036e+002 9.59128494e+001 - 1.09812477e+002 1.18921326e+002 9.59135818e+001 1.09824585e+002 - 1.18904694e+002 9.59323883e+001 1.09832771e+002 1.18899834e+002 - 9.59374008e+001 1.09849045e+002 1.18895073e+002 9.59655380e+001 - 1.09868690e+002 1.18901840e+002 9.59828720e+001 1.09893120e+002 - 1.18909126e+002 9.59957275e+001 1.09881065e+002 1.18895523e+002 - 9.60174789e+001 1.09914841e+002 1.18905251e+002 9.60415268e+001 - 1.09925980e+002 1.18905724e+002 9.60372238e+001 1.09934990e+002 - 1.18885780e+002 9.60731277e+001 1.09960449e+002 1.18897346e+002 - 9.61002808e+001 1.09986908e+002 1.18895927e+002 9.60941238e+001 - 1.09973122e+002 1.18862770e+002 9.60845718e+001 1.09984352e+002 - 1.18846344e+002 9.61183319e+001 1.09999687e+002 1.18851974e+002 - 9.61440887e+001 1.10037598e+002 1.18864700e+002 9.61880798e+001 - 1.10064766e+002 1.18874832e+002 9.61918564e+001 1.10084869e+002 - 1.18858894e+002 9.62179413e+001 1.10102005e+002 1.18856163e+002 - 9.62288513e+001 1.10123344e+002 1.18839302e+002 9.62615509e+001 - 1.10145775e+002 1.18841789e+002 9.62709808e+001 1.10167336e+002 - 1.18826790e+002 9.63159561e+001 1.10173386e+002 1.18823105e+002 - 9.63509979e+001 1.10221458e+002 1.18832260e+002 9.63839188e+001 - 1.10240814e+002 1.18838997e+002 9.64025421e+001 1.10281906e+002 - 1.18843658e+002 9.64740067e+001 1.10349838e+002 1.18890190e+002 - 9.65521698e+001 1.10432640e+002 1.18935448e+002 9.65810242e+001 - 1.10460938e+002 1.18923798e+002 9.65837097e+001 1.10482185e+002 - 1.18903595e+002 9.66405563e+001 1.10525215e+002 1.18928253e+002 - 9.66739120e+001 1.10567894e+002 1.18927605e+002 9.67535858e+001 - 1.10619995e+002 1.18963890e+002 9.67420502e+001 1.10616333e+002 - 1.18920403e+002 9.67781296e+001 1.10641563e+002 1.18919914e+002 - 9.68312759e+001 1.10706314e+002 1.18939087e+002 9.69047852e+001 - 1.10757034e+002 1.18964836e+002 9.69310532e+001 1.10799484e+002 - 1.18967361e+002 9.69914703e+001 1.10830978e+002 1.18972816e+002 - 9.70373383e+001 1.10884727e+002 1.18979660e+002 9.70633316e+001 - 1.10901627e+002 1.18969086e+002 9.70680161e+001 1.10931114e+002 - 1.18944580e+002 9.71072006e+001 1.10951729e+002 1.18950287e+002 - 9.71560516e+001 1.11003807e+002 1.18949074e+002 9.72042465e+001 - 1.11038963e+002 1.18938309e+002 9.72278671e+001 1.11080162e+002 - 1.18931541e+002 9.72812958e+001 1.11120110e+002 1.18945091e+002 - 9.73261032e+001 1.11176437e+002 1.18952522e+002 9.73885269e+001 - 1.11220573e+002 1.18966835e+002 9.74265137e+001 1.11277870e+002 - 1.18975174e+002 9.74991531e+001 1.11337692e+002 1.19000069e+002 - 9.75497055e+001 1.11403358e+002 1.19011147e+002 9.75943298e+001 - 1.11428879e+002 1.19011467e+002 9.76308594e+001 1.11475967e+002 - 1.19012352e+002 9.77413025e+001 1.11562538e+002 1.19067879e+002 - 9.78108597e+001 1.11640686e+002 1.19094452e+002 9.78646317e+001 - 1.11678207e+002 1.19093216e+002 9.79186859e+001 1.11742493e+002 - 1.19107193e+002 9.79951019e+001 1.11801430e+002 1.19140564e+002 - 9.80509338e+001 1.11855408e+002 1.19138191e+002 9.81314468e+001 - 1.11919281e+002 1.19155075e+002 9.81740417e+001 1.11979988e+002 - 1.19161072e+002 9.82536316e+001 1.12044617e+002 1.19197807e+002 - 9.83063889e+001 1.12108727e+002 1.19216171e+002 9.83709259e+001 - 1.12150970e+002 1.19223541e+002 9.84383163e+001 1.12229103e+002 - 1.19249664e+002 9.85206299e+001 1.12291245e+002 1.19275566e+002 - 9.86038132e+001 1.12390678e+002 1.19313293e+002 9.86694641e+001 - 1.12434166e+002 1.19327652e+002 9.87100754e+001 1.12483543e+002 - 1.19319359e+002 9.88132553e+001 1.12556503e+002 1.19355476e+002 - 9.88667603e+001 1.12617538e+002 1.19358665e+002 9.89534683e+001 - 1.12680412e+002 1.19380356e+002 9.90284729e+001 1.12760857e+002 - 1.19409531e+002 9.90969467e+001 1.12805817e+002 1.19430550e+002 - 9.91859970e+001 1.12889709e+002 1.19457901e+002 9.92907333e+001 - 1.12963570e+002 1.19488281e+002 9.93519974e+001 1.13033928e+002 - 1.19506439e+002 9.94539490e+001 1.13109352e+002 1.19556099e+002 - 9.95713043e+001 1.13226532e+002 1.19623672e+002 9.96771164e+001 - 1.13298676e+002 1.19665611e+002 9.97419968e+001 1.13364006e+002 - 1.19672791e+002 9.98627625e+001 1.13451797e+002 1.19717476e+002 - 9.99645844e+001 1.13549232e+002 1.19762123e+002 1.00042419e+002 - 1.13585190e+002 1.19763062e+002 1.00151192e+002 1.13687950e+002 - 1.19821091e+002 1.00261368e+002 1.13745354e+002 1.19840446e+002 - 1.00357971e+002 1.13826462e+002 1.19864075e+002 1.00439880e+002 - 1.13867294e+002 1.19870995e+002 1.00472641e+002 1.13892738e+002 - 1.19844162e+002 1.00533707e+002 1.13908768e+002 1.19842346e+002 - 1.00524185e+002 1.13883194e+002 1.19771278e+002 1.00421982e+002 - 1.13786041e+002 1.19679474e+002 1.00437843e+002 1.13842819e+002 - 1.19760201e+002 1.00443954e+002 1.13865646e+002 1.19821655e+002 - 1.00397560e+002 1.13850327e+002 1.19832146e+002 1.00343575e+002 - 1.13809837e+002 1.19848953e+002 1.00214157e+002 1.13721138e+002 - 1.19788673e+002 1.00141869e+002 1.13658676e+002 1.19786163e+002 - 1.00060623e+002 1.13605911e+002 1.19758827e+002 9.99762268e+001 - 1.13539124e+002 1.19739021e+002 9.98851166e+001 1.13473282e+002 - 1.19707306e+002 9.98258667e+001 1.13415009e+002 1.19721184e+002 - 9.97662277e+001 1.13381737e+002 1.19716728e+002 9.96851730e+001 - 1.13308952e+002 1.19697609e+002 9.95852051e+001 1.13234436e+002 - 1.19654953e+002 9.95054169e+001 1.13153084e+002 1.19629059e+002 - 9.94382248e+001 1.13103920e+002 1.19610397e+002 9.93345718e+001 - 1.13014565e+002 1.19586983e+002 9.92003479e+001 1.12915726e+002 - 1.19516647e+002 9.91358871e+001 1.12848923e+002 1.19502686e+002 - 9.90595932e+001 1.12792152e+002 1.19476547e+002 9.89986801e+001 - 1.12732002e+002 1.19477905e+002 9.89189758e+001 1.12678352e+002 - 1.19452400e+002 9.88322220e+001 1.12596039e+002 1.19424393e+002 - 9.87704697e+001 1.12554916e+002 1.19415588e+002 9.87156906e+001 - 1.12496231e+002 1.19410683e+002 9.86364822e+001 1.12435425e+002 - 1.19381683e+002 9.85691681e+001 1.12356308e+002 1.19375824e+002 - 9.84920731e+001 1.12288712e+002 1.19346985e+002 9.84360352e+001 - 1.12233673e+002 1.19340492e+002 9.83832474e+001 1.12201599e+002 - 1.19335983e+002 9.83179245e+001 1.12122551e+002 1.19305588e+002 - 9.82363052e+001 1.12056671e+002 1.19264374e+002 9.81370392e+001 - 1.11955978e+002 1.19229919e+002 9.80579987e+001 1.11898964e+002 - 1.19211800e+002 9.80079269e+001 1.11834396e+002 1.19194275e+002 - 9.79498672e+001 1.11782349e+002 1.19165977e+002 9.78950043e+001 - 1.11720856e+002 1.19155334e+002 9.78145676e+001 1.11655388e+002 - 1.19121468e+002 9.77517014e+001 1.11586342e+002 1.19102364e+002 - 9.76974182e+001 1.11545448e+002 1.19084442e+002 9.76458511e+001 - 1.11485832e+002 1.19081833e+002 9.75840454e+001 1.11429657e+002 - 1.19060448e+002 9.75243683e+001 1.11353691e+002 1.19047935e+002 - 9.74790726e+001 1.11320091e+002 1.19046326e+002 9.74427795e+001 - 1.11278740e+002 1.19041153e+002 9.73732300e+001 1.11229591e+002 - 1.19006989e+002 9.73323212e+001 1.11179436e+002 1.18998322e+002 - 9.72820816e+001 1.11140434e+002 1.18978500e+002 9.72388077e+001 - 1.11088478e+002 1.18982430e+002 9.71949921e+001 1.11067139e+002 - 1.18984695e+002 9.71377716e+001 1.11002998e+002 1.18956802e+002 - 9.70921783e+001 1.10969528e+002 1.18948761e+002 9.70449219e+001 - 1.10908394e+002 1.18934929e+002 9.70001602e+001 1.10873024e+002 - 1.18931740e+002 9.69672775e+001 1.10843231e+002 1.18938507e+002 - 9.69239197e+001 1.10803764e+002 1.18924957e+002 9.68864288e+001 - 1.10758209e+002 1.18917465e+002 9.68105469e+001 1.10696548e+002 - 1.18884995e+002 9.67710648e+001 1.10639542e+002 1.18881340e+002 - 9.67192459e+001 1.10600922e+002 1.18868874e+002 9.66729584e+001 - 1.10554413e+002 1.18864403e+002 9.66573334e+001 1.10551033e+002 - 1.18882408e+002 9.66334000e+001 1.10520744e+002 1.18876350e+002 - 9.65807037e+001 1.10476250e+002 1.18855286e+002 9.65486832e+001 - 1.10439857e+002 1.18863701e+002 9.64993591e+001 1.10409340e+002 - 1.18845795e+002 9.64902039e+001 1.10387695e+002 1.18863930e+002 - 9.64642639e+001 1.10361855e+002 1.18862442e+002 9.64355011e+001 - 1.10313515e+002 1.18861496e+002 9.64031906e+001 1.10289421e+002 - 1.18856407e+002 9.63509445e+001 1.10236084e+002 1.18841934e+002 - 9.63138275e+001 1.10208084e+002 1.18829544e+002 9.63020325e+001 - 1.10174553e+002 1.18844574e+002 9.62181854e+001 1.10095474e+002 - 1.18780128e+002 9.62077866e+001 1.10065376e+002 1.18796951e+002 - 9.61922073e+001 1.10059105e+002 1.18801247e+002 9.61511612e+001 - 1.10010574e+002 1.18786697e+002 9.61180878e+001 1.09996552e+002 - 1.18782387e+002 9.60970840e+001 1.09959183e+002 1.18774124e+002 - 9.60653915e+001 1.09937927e+002 1.18761307e+002 9.60491409e+001 - 1.09919617e+002 1.18785515e+002 9.59766617e+001 1.09870689e+002 - 1.18746208e+002 9.59613647e+001 1.09837318e+002 1.18748161e+002 - 9.59422302e+001 1.09829102e+002 1.18744965e+002 9.59411697e+001 - 1.09810417e+002 1.18760612e+002 9.59428177e+001 1.09822380e+002 - 1.18779221e+002 9.59385452e+001 1.09806976e+002 1.18791519e+002 - 9.59071426e+001 1.09796043e+002 1.18781815e+002 9.58943329e+001 - 1.09781746e+002 1.18795891e+002 9.58896561e+001 1.09790535e+002 - 1.18811874e+002 9.58924637e+001 1.09777878e+002 1.18833267e+002 - 9.58787384e+001 1.09774979e+002 1.18839188e+002 9.58765717e+001 - 1.09774643e+002 1.18851860e+002 9.58507919e+001 1.09770996e+002 - 1.18844421e+002 9.58586044e+001 1.09759079e+002 1.18854713e+002 - 9.58449554e+001 1.09758606e+002 1.18847443e+002 9.58438339e+001 - 1.09753769e+002 1.18864929e+002 9.58072128e+001 1.09743683e+002 - 1.18850487e+002 9.58202820e+001 1.09738220e+002 1.18871086e+002 - 9.58280182e+001 1.09751389e+002 1.18886383e+002 9.58516998e+001 - 1.09755608e+002 1.18911186e+002 9.58269577e+001 1.09744995e+002 - 1.18894302e+002 9.58334351e+001 1.09739998e+002 1.18907913e+002 - 9.58196869e+001 1.09736160e+002 1.18895264e+002 9.58058701e+001 - 1.09710709e+002 1.18878899e+002 9.58003311e+001 1.09712013e+002 - 1.18881096e+002 9.58074875e+001 1.09696014e+002 1.18884224e+002 - 9.58013153e+001 1.09698593e+002 1.18877365e+002 9.58058395e+001 - 1.09701668e+002 1.18883011e+002 9.58018112e+001 1.09721413e+002 - 1.18888504e+002 9.57917557e+001 1.09696808e+002 1.18881927e+002 - 9.57926102e+001 1.09702003e+002 1.18874390e+002 9.57771454e+001 - 1.09690590e+002 1.18871025e+002 9.57507019e+001 1.09682739e+002 - 1.18863007e+002 9.57686234e+001 1.09685455e+002 1.18882835e+002 - 9.57717514e+001 1.09696350e+002 1.18887169e+002 9.57914124e+001 - 1.09698448e+002 1.18900055e+002 9.57857895e+001 1.09703903e+002 - 1.18892448e+002 9.57636032e+001 1.09668434e+002 1.18864265e+002 - 9.57726898e+001 1.09689331e+002 1.18861938e+002 9.57973938e+001 - 1.09700386e+002 1.18877930e+002 9.57832489e+001 1.09702309e+002 - 1.18866562e+002 9.58189850e+001 1.09721352e+002 1.18888184e+002 - 9.58364410e+001 1.09750290e+002 1.18898422e+002 9.58401031e+001 - 1.09747963e+002 1.18892342e+002 9.58268204e+001 1.09748589e+002 - 1.18868622e+002 9.58446579e+001 1.09754898e+002 1.18875252e+002 - 9.58722687e+001 1.09787415e+002 1.18882011e+002 9.58848648e+001 - 1.09794296e+002 1.18890717e+002 9.58875504e+001 1.09817726e+002 - 1.18895950e+002 9.59098663e+001 1.09826889e+002 1.18908722e+002 - 9.59217377e+001 1.09849945e+002 1.18914467e+002 9.59486465e+001 - 1.09856392e+002 1.18916115e+002 9.59340134e+001 1.09846733e+002 - 1.18876419e+002 9.59514084e+001 1.09856232e+002 1.18873520e+002 - 9.59677124e+001 1.09885727e+002 1.18873009e+002 9.60066147e+001 - 1.09910744e+002 1.18888756e+002 9.60021667e+001 1.09917374e+002 - 1.18879715e+002 9.60237045e+001 1.09907417e+002 1.18873222e+002 - 9.60346146e+001 1.09932892e+002 1.18873596e+002 9.60690536e+001 - 1.09959175e+002 1.18886673e+002 9.60949097e+001 1.10001846e+002 - 1.18895271e+002 9.61466675e+001 1.10038063e+002 1.18930244e+002 - 9.61691742e+001 1.10059883e+002 1.18921135e+002 9.61463165e+001 - 1.10023315e+002 1.18868248e+002 9.61172028e+001 1.10015854e+002 - 1.18826210e+002 9.61524658e+001 1.10036240e+002 1.18837624e+002 - 9.61933212e+001 1.10084373e+002 1.18862343e+002 9.62190628e+001 - 1.10094437e+002 1.18855621e+002 9.62384567e+001 1.10137749e+002 - 1.18854126e+002 9.62738953e+001 1.10163048e+002 1.18859970e+002 - 9.62809830e+001 1.10182159e+002 1.18840424e+002 9.63076935e+001 - 1.10200417e+002 1.18839027e+002 9.63109894e+001 1.10206421e+002 - 1.18815697e+002 9.63526993e+001 1.10217262e+002 1.18819977e+002 - 9.63943481e+001 1.10265007e+002 1.18836067e+002 9.64272995e+001 - 1.10285049e+002 1.18841698e+002 9.64048309e+001 1.10285011e+002 - 1.18800789e+002 9.64783173e+001 1.10353363e+002 1.18853897e+002 - 9.65520096e+001 1.10433228e+002 1.18897919e+002 9.65974731e+001 - 1.10479958e+002 1.18901428e+002 9.66147461e+001 1.10514206e+002 - 1.18893875e+002 9.66576996e+001 1.10539833e+002 1.18904915e+002 - 9.66870041e+001 1.10575035e+002 1.18899445e+002 9.67440414e+001 - 1.10613098e+002 1.18916695e+002 9.67697449e+001 1.10647972e+002 - 1.18911369e+002 9.68099976e+001 1.10673271e+002 1.18909576e+002 - 9.68443069e+001 1.10718040e+002 1.18908859e+002 9.69318008e+001 - 1.10796661e+002 1.18960938e+002 9.69735641e+001 1.10844002e+002 - 1.18965698e+002 9.70455551e+001 1.10889885e+002 1.18985870e+002 - 9.70737534e+001 1.10924881e+002 1.18973129e+002 9.71056442e+001 - 1.10950531e+002 1.18967484e+002 9.70908585e+001 1.10953217e+002 - 1.18925301e+002 9.71473389e+001 1.10997849e+002 1.18951912e+002 - 9.72126694e+001 1.11065041e+002 1.18967010e+002 9.72445297e+001 - 1.11083870e+002 1.18940933e+002 9.72557220e+001 1.11114532e+002 - 1.18921852e+002 9.73176498e+001 1.11172325e+002 1.18954086e+002 - 9.73632050e+001 1.11226082e+002 1.18964149e+002 9.74284744e+001 - 1.11274147e+002 1.18982323e+002 9.74779129e+001 1.11337151e+002 - 1.18994194e+002 9.75363617e+001 1.11383064e+002 1.19008087e+002 - 9.75595551e+001 1.11417114e+002 1.18992645e+002 9.76288986e+001 - 1.11471794e+002 1.19018250e+002 9.76824722e+001 1.11531487e+002 - 1.19033371e+002 9.77738113e+001 1.11599800e+002 1.19068115e+002 - 9.78433838e+001 1.11678101e+002 1.19095116e+002 9.79159470e+001 - 1.11733742e+002 1.19114037e+002 9.79473343e+001 1.11771965e+002 - 1.19103798e+002 9.80175858e+001 1.11820396e+002 1.19129311e+002 - 9.80761795e+001 1.11881119e+002 1.19132248e+002 9.81679688e+001 - 1.11949333e+002 1.19152451e+002 9.81838303e+001 1.11985733e+002 - 1.19143837e+002 9.82609940e+001 1.12048416e+002 1.19176743e+002 - 9.83175354e+001 1.12115944e+002 1.19196159e+002 9.83992767e+001 - 1.12178299e+002 1.19224884e+002 9.84660568e+001 1.12249855e+002 - 1.19245430e+002 9.85400848e+001 1.12309425e+002 1.19265587e+002 - 9.86174088e+001 1.12396576e+002 1.19296730e+002 9.86771164e+001 - 1.12436989e+002 1.19301918e+002 9.87323608e+001 1.12505661e+002 - 1.19316513e+002 9.88394089e+001 1.12582832e+002 1.19355446e+002 - 9.88826447e+001 1.12631088e+002 1.19350525e+002 9.89568481e+001 - 1.12679764e+002 1.19356064e+002 9.90442581e+001 1.12771698e+002 - 1.19399925e+002 9.91281662e+001 1.12832840e+002 1.19430687e+002 - 9.92096634e+001 1.12906494e+002 1.19455399e+002 9.93074646e+001 - 1.12976868e+002 1.19470291e+002 9.93759842e+001 1.13046593e+002 - 1.19501198e+002 9.94602203e+001 1.13107101e+002 1.19531479e+002 - 9.95520325e+001 1.13197929e+002 1.19576637e+002 9.96995544e+001 - 1.13314209e+002 1.19653732e+002 9.97717361e+001 1.13384758e+002 - 1.19670715e+002 9.98678055e+001 1.13445190e+002 1.19692421e+002 - 9.99477081e+001 1.13521721e+002 1.19716728e+002 1.00046165e+002 - 1.13583916e+002 1.19745872e+002 1.00160767e+002 1.13688797e+002 - 1.19797386e+002 1.00256271e+002 1.13734390e+002 1.19804207e+002 - 1.00357155e+002 1.13821373e+002 1.19837616e+002 1.00455841e+002 - 1.13875229e+002 1.19863525e+002 1.00481674e+002 1.13893562e+002 - 1.19826065e+002 1.00535866e+002 1.13903778e+002 1.19816620e+002 - 1.00512802e+002 1.13860443e+002 1.19726120e+002 1.00442116e+002 - 1.13805054e+002 1.19682320e+002 1.00462448e+002 1.13870392e+002 - 1.19767990e+002 1.00457161e+002 1.13881805e+002 1.19816658e+002 - 1.00399590e+002 1.13847000e+002 1.19811775e+002 1.00320641e+002 - 1.13791374e+002 1.19812973e+002 1.00203789e+002 1.13714096e+002 - 1.19761101e+002 1.00112099e+002 1.13638657e+002 1.19745735e+002 - 1.00044922e+002 1.13592171e+002 1.19726082e+002 9.99894333e+001 - 1.13555618e+002 1.19739159e+002 9.98878403e+001 1.13481033e+002 - 1.19692024e+002 9.98197937e+001 1.13411621e+002 1.19695183e+002 - 9.97678375e+001 1.13379440e+002 1.19700317e+002 9.96936188e+001 - 1.13326164e+002 1.19691002e+002 9.96064453e+001 1.13259834e+002 - 1.19653847e+002 9.95373688e+001 1.13190025e+002 1.19636887e+002 - 9.94472198e+001 1.13121040e+002 1.19598457e+002 9.93334961e+001 - 1.13017906e+002 1.19567535e+002 9.92123413e+001 1.12936630e+002 - 1.19510429e+002 9.91444931e+001 1.12864632e+002 1.19489632e+002 - 9.90774078e+001 1.12819626e+002 1.19475746e+002 9.90089035e+001 - 1.12748344e+002 1.19470474e+002 9.89259872e+001 1.12691132e+002 - 1.19446861e+002 9.88233490e+001 1.12594505e+002 1.19403435e+002 - 9.87502136e+001 1.12543793e+002 1.19379257e+002 9.87100754e+001 - 1.12500206e+002 1.19390099e+002 9.86366959e+001 1.12444977e+002 - 1.19368240e+002 9.85709457e+001 1.12359200e+002 1.19355179e+002 - 9.84883118e+001 1.12290070e+002 1.19324112e+002 9.84466705e+001 - 1.12252243e+002 1.19334213e+002 9.83854141e+001 1.12209717e+002 - 1.19317200e+002 9.83397217e+001 1.12151970e+002 1.19308563e+002 - 9.82770157e+001 1.12100510e+002 1.19281685e+002 9.81809387e+001 - 1.12000008e+002 1.19249916e+002 9.80818176e+001 1.11927505e+002 - 1.19203728e+002 9.80192413e+001 1.11847809e+002 1.19178001e+002 - 9.79706879e+001 1.11810837e+002 1.19163780e+002 9.79292526e+001 - 1.11753662e+002 1.19165779e+002 9.78531494e+001 1.11693115e+002 - 1.19132210e+002 9.77681274e+001 1.11609154e+002 1.19094307e+002 - 9.77328568e+001 1.11582001e+002 1.19092972e+002 9.76953888e+001 - 1.11538391e+002 1.19101212e+002 9.76216202e+001 1.11476929e+002 - 1.19075195e+002 9.75668335e+001 1.11404243e+002 1.19066490e+002 - 9.75024872e+001 1.11352715e+002 1.19041641e+002 9.74616013e+001 - 1.11305954e+002 1.19042519e+002 9.74083862e+001 1.11272850e+002 - 1.19017525e+002 9.73794937e+001 1.11227776e+002 1.19018524e+002 - 9.73081284e+001 1.11166283e+002 1.18973480e+002 9.72431793e+001 - 1.11098343e+002 1.18956596e+002 9.71996155e+001 1.11082184e+002 - 1.18960556e+002 9.71526871e+001 1.11025047e+002 1.18940010e+002 - 9.71066208e+001 1.10985901e+002 1.18924896e+002 9.70710983e+001 - 1.10938828e+002 1.18929916e+002 9.70365067e+001 1.10919411e+002 - 1.18927948e+002 9.69945068e+001 1.10870926e+002 1.18926292e+002 - 9.69560776e+001 1.10840508e+002 1.18918037e+002 9.69077911e+001 - 1.10786781e+002 1.18903580e+002 9.68494644e+001 1.10743408e+002 - 1.18887604e+002 9.68128967e+001 1.10688133e+002 1.18885422e+002 - 9.67568207e+001 1.10644135e+002 1.18865677e+002 9.67195358e+001 - 1.10601982e+002 1.18871223e+002 9.66754837e+001 1.10582954e+002 - 1.18861519e+002 9.66625977e+001 1.10552742e+002 1.18875359e+002 - 9.66293640e+001 1.10529167e+002 1.18862144e+002 9.66053467e+001 - 1.10501190e+002 1.18881035e+002 9.65365906e+001 1.10453995e+002 - 1.18851715e+002 9.65154800e+001 1.10417389e+002 1.18853661e+002 - 9.64608307e+001 1.10370171e+002 1.18823517e+002 9.64347305e+001 - 1.10321793e+002 1.18823013e+002 9.64193649e+001 1.10319855e+002 - 1.18840202e+002 9.63827209e+001 1.10278732e+002 1.18842171e+002 - 9.63376694e+001 1.10236832e+002 1.18823006e+002 9.62977295e+001 - 1.10180710e+002 1.18808975e+002 9.62332840e+001 1.10128830e+002 - 1.18768524e+002 9.62246857e+001 1.10095459e+002 1.18780830e+002 - 9.62013016e+001 1.10081261e+002 1.18775894e+002 9.61811371e+001 - 1.10057693e+002 1.18785461e+002 9.61468277e+001 1.10037849e+002 - 1.18773300e+002 9.61125336e+001 1.09991615e+002 1.18759995e+002 - 9.60988312e+001 1.09976852e+002 1.18758141e+002 9.60894623e+001 - 1.09972244e+002 1.18796089e+002 9.60248947e+001 1.09932144e+002 - 1.18763672e+002 9.60010910e+001 1.09893494e+002 1.18749481e+002 - 9.59687119e+001 1.09866592e+002 1.18738853e+002 9.59810791e+001 - 1.09856453e+002 1.18763794e+002 9.59687119e+001 1.09854134e+002 - 1.18768799e+002 9.59443283e+001 1.09823959e+002 1.18766167e+002 - 9.59311829e+001 1.09826942e+002 1.18767662e+002 9.59226913e+001 - 1.09816368e+002 1.18776695e+002 9.58889999e+001 1.09802940e+002 - 1.18775620e+002 9.58934250e+001 1.09787468e+002 1.18796555e+002 - 9.58981781e+001 1.09809547e+002 1.18827652e+002 9.59064636e+001 - 1.09812233e+002 1.18847595e+002 9.58943939e+001 1.09821869e+002 - 1.18848541e+002 9.58998032e+001 1.09814407e+002 1.18864380e+002 - 9.58866653e+001 1.09802078e+002 1.18849678e+002 9.58752899e+001 - 1.09793526e+002 1.18860031e+002 9.58410568e+001 1.09779938e+002 - 1.18847565e+002 9.58495636e+001 1.09775230e+002 1.18865402e+002 - 9.58687744e+001 1.09802750e+002 1.18891342e+002 9.58811340e+001 - 1.09796570e+002 1.18909401e+002 9.58387680e+001 1.09767967e+002 - 1.18873756e+002 9.58373947e+001 1.09763390e+002 1.18879738e+002 - 9.58397598e+001 1.09768372e+002 1.18881912e+002 9.58197937e+001 - 1.09738060e+002 1.18861046e+002 9.58314133e+001 1.09757233e+002 - 1.18880135e+002 9.58210068e+001 1.09719711e+002 1.18861389e+002 - 9.58102722e+001 1.09721802e+002 1.18856308e+002 9.58044357e+001 - 1.09717369e+002 1.18853912e+002 9.58115921e+001 1.09745941e+002 - 1.18871346e+002 9.58209915e+001 1.09738945e+002 1.18873795e+002 - 9.58457947e+001 1.09768799e+002 1.18890320e+002 9.58324966e+001 - 1.09753685e+002 1.18893204e+002 9.57880554e+001 1.09734238e+002 - 1.18867676e+002 9.58085785e+001 1.09737823e+002 1.18888756e+002 - 9.58137436e+001 1.09747528e+002 1.18897232e+002 9.58236008e+001 - 1.09736488e+002 1.18900742e+002 9.58158722e+001 1.09741180e+002 - 1.18888977e+002 9.58105927e+001 1.09728256e+002 1.18879478e+002 - 9.58240204e+001 1.09752121e+002 1.18881653e+002 9.58221207e+001 - 1.09737297e+002 1.18872505e+002 9.58333282e+001 1.09764923e+002 - 1.18876579e+002 9.58600616e+001 1.09767723e+002 1.18890541e+002 - 9.58764191e+001 1.09797035e+002 1.18897324e+002 9.58852081e+001 - 1.09803535e+002 1.18895271e+002 9.58593369e+001 1.09789352e+002 - 1.18857780e+002 9.58704758e+001 1.09788399e+002 1.18859657e+002 - 9.58830643e+001 1.09802612e+002 1.18852089e+002 9.59344254e+001 - 1.09842781e+002 1.18890930e+002 9.59053574e+001 1.09841492e+002 - 1.18871147e+002 9.59330826e+001 1.09858215e+002 1.18893089e+002 - 9.59510345e+001 1.09888710e+002 1.18899841e+002 9.59682999e+001 - 1.09883713e+002 1.18891525e+002 9.59566116e+001 1.09883125e+002 - 1.18865799e+002 9.59785843e+001 1.09895554e+002 1.18861305e+002 - 9.59883499e+001 1.09913200e+002 1.18850243e+002 9.60500565e+001 - 1.09963158e+002 1.18895622e+002 9.60492935e+001 1.09973297e+002 - 1.18887817e+002 9.60596008e+001 1.09955864e+002 1.18872681e+002 - 9.60773163e+001 1.09984772e+002 1.18877594e+002 9.60999603e+001 - 1.10000221e+002 1.18877663e+002 9.61160812e+001 1.10035599e+002 - 1.18884262e+002 9.61712265e+001 1.10075912e+002 1.18917305e+002 - 9.61972504e+001 1.10097031e+002 1.18910233e+002 9.62131882e+001 - 1.10102051e+002 1.18895264e+002 9.61846542e+001 1.10091972e+002 - 1.18857658e+002 9.62131653e+001 1.10100342e+002 1.18860229e+002 - 9.62484589e+001 1.10151245e+002 1.18876266e+002 9.62901993e+001 - 1.10179680e+002 1.18887398e+002 9.62947083e+001 1.10200348e+002 - 1.18869858e+002 9.63174438e+001 1.10218185e+002 1.18861015e+002 - 9.63228607e+001 1.10233124e+002 1.18846085e+002 9.63570709e+001 - 1.10250053e+002 1.18841652e+002 9.63620300e+001 1.10267387e+002 - 1.18826874e+002 9.64175415e+001 1.10283173e+002 1.18849106e+002 - 9.64387589e+001 1.10317947e+002 1.18841072e+002 9.64600449e+001 - 1.10330345e+002 1.18833946e+002 9.64642715e+001 1.10354507e+002 - 1.18822578e+002 9.65338898e+001 1.10418465e+002 1.18874947e+002 - 9.65799713e+001 1.10469910e+002 1.18890350e+002 9.66249008e+001 - 1.10511795e+002 1.18892288e+002 9.66260071e+001 1.10527855e+002 - 1.18870834e+002 9.66895981e+001 1.10578857e+002 1.18900085e+002 - 9.67209320e+001 1.10618599e+002 1.18901321e+002 9.67912903e+001 - 1.10667061e+002 1.18933830e+002 9.68191452e+001 1.10700783e+002 - 1.18926758e+002 9.68427582e+001 1.10711075e+002 1.18910545e+002 - 9.68828278e+001 1.10760017e+002 1.18910751e+002 9.69739761e+001 - 1.10837196e+002 1.18965446e+002 9.70229187e+001 1.10904671e+002 - 1.18986229e+002 9.70742950e+001 1.10919098e+002 1.18979187e+002 - 9.70967865e+001 1.10957275e+002 1.18964134e+002 9.71436157e+001 - 1.11000175e+002 1.18969360e+002 9.71342697e+001 1.11012123e+002 - 1.18937370e+002 9.71811676e+001 1.11045181e+002 1.18958954e+002 - 9.72530212e+001 1.11114380e+002 1.18978325e+002 9.72909164e+001 - 1.11140396e+002 1.18954956e+002 9.73004990e+001 1.11173714e+002 - 1.18943604e+002 9.73474045e+001 1.11208870e+002 1.18949036e+002 - 9.73848648e+001 1.11258102e+002 1.18959938e+002 9.74627457e+001 - 1.11314987e+002 1.18987503e+002 9.75030136e+001 1.11368362e+002 - 1.18994019e+002 9.75515594e+001 1.11408203e+002 1.18995880e+002 - 9.76123886e+001 1.11480438e+002 1.19018547e+002 9.76683578e+001 - 1.11522095e+002 1.19031136e+002 9.77277603e+001 1.11587822e+002 - 1.19055466e+002 9.78204727e+001 1.11655510e+002 1.19096741e+002 - 9.78730621e+001 1.11713371e+002 1.19104057e+002 9.79261475e+001 - 1.11751648e+002 1.19103226e+002 9.79655991e+001 1.11798965e+002 - 1.19095894e+002 9.80470963e+001 1.11857292e+002 1.19137444e+002 - 9.81104431e+001 1.11920044e+002 1.19143608e+002 9.81753082e+001 - 1.11968704e+002 1.19143738e+002 9.82040176e+001 1.12013084e+002 - 1.19139061e+002 9.82828140e+001 1.12077141e+002 1.19176567e+002 - 9.83272171e+001 1.12132813e+002 1.19188133e+002 9.84084702e+001 - 1.12186203e+002 1.19212189e+002 9.84718475e+001 1.12261299e+002 - 1.19236862e+002 9.85534210e+001 1.12332886e+002 1.19261604e+002 - 9.86345367e+001 1.12416168e+002 1.19296432e+002 9.86900558e+001 - 1.12458229e+002 1.19300018e+002 9.87474060e+001 1.12527069e+002 - 1.19316414e+002 9.88593597e+001 1.12607979e+002 1.19364723e+002 - 9.88884430e+001 1.12639893e+002 1.19341965e+002 9.89853973e+001 - 1.12712639e+002 1.19366653e+002 9.90621033e+001 1.12793159e+002 - 1.19395966e+002 9.91440201e+001 1.12846817e+002 1.19426918e+002 - 9.92359314e+001 1.12932098e+002 1.19467361e+002 9.93221588e+001 - 1.12990158e+002 1.19462631e+002 9.93948059e+001 1.13066017e+002 - 1.19491959e+002 9.94760132e+001 1.13119118e+002 1.19519341e+002 - 9.95577316e+001 1.13200638e+002 1.19551163e+002 9.96745529e+001 - 1.13289474e+002 1.19608772e+002 9.97652740e+001 1.13382515e+002 - 1.19644043e+002 9.98753662e+001 1.13458542e+002 1.19682678e+002 - 9.99610367e+001 1.13532791e+002 1.19706985e+002 1.00058517e+002 - 1.13591896e+002 1.19731110e+002 1.00140503e+002 1.13667053e+002 - 1.19756630e+002 1.00249962e+002 1.13725937e+002 1.19777298e+002 - 1.00339912e+002 1.13802971e+002 1.19801422e+002 1.00434402e+002 - 1.13859192e+002 1.19820572e+002 1.00464226e+002 1.13877502e+002 - 1.19786888e+002 1.00508453e+002 1.13874962e+002 1.19769218e+002 - 1.00483841e+002 1.13833717e+002 1.19681656e+002 1.00487404e+002 - 1.13838707e+002 1.19696106e+002 1.00516708e+002 1.13908897e+002 - 1.19791092e+002 1.00493240e+002 1.13898628e+002 1.19823875e+002 - 1.00437065e+002 1.13874954e+002 1.19828476e+002 1.00347473e+002 - 1.13800148e+002 1.19808838e+002 1.00216728e+002 1.13712547e+002 - 1.19751442e+002 1.00126076e+002 1.13640854e+002 1.19733574e+002 - 1.00053879e+002 1.13592194e+002 1.19714462e+002 1.00008659e+002 - 1.13560989e+002 1.19728127e+002 9.99151764e+001 1.13493446e+002 - 1.19691864e+002 9.98522186e+001 1.13427208e+002 1.19699104e+002 - 9.97922668e+001 1.13388542e+002 1.19691086e+002 9.97077713e+001 - 1.13317146e+002 1.19669380e+002 9.96370163e+001 1.13272461e+002 - 1.19649284e+002 9.95701370e+001 1.13207886e+002 1.19629181e+002 - 9.94767303e+001 1.13131416e+002 1.19587608e+002 9.93703995e+001 - 1.13045456e+002 1.19573029e+002 9.92461700e+001 1.12960098e+002 - 1.19517830e+002 9.91704941e+001 1.12877197e+002 1.19488335e+002 - 9.91056061e+001 1.12840332e+002 1.19483940e+002 9.90401001e+001 - 1.12771606e+002 1.19472870e+002 9.89456787e+001 1.12700775e+002 - 1.19436996e+002 9.88547974e+001 1.12615677e+002 1.19406555e+002 - 9.87963028e+001 1.12579224e+002 1.19390846e+002 9.87348557e+001 - 1.12513931e+002 1.19378998e+002 9.86625748e+001 1.12458664e+002 - 1.19366348e+002 9.86148376e+001 1.12393288e+002 1.19361862e+002 - 9.85227661e+001 1.12309776e+002 1.19321251e+002 9.84830246e+001 - 1.12275757e+002 1.19336273e+002 9.84093170e+001 1.12217285e+002 - 1.19303680e+002 9.83614426e+001 1.12153687e+002 1.19286270e+002 - 9.82998810e+001 1.12107513e+002 1.19267998e+002 9.82144852e+001 - 1.12026909e+002 1.19243729e+002 9.81038208e+001 1.11938919e+002 - 1.19185356e+002 9.80567551e+001 1.11871529e+002 1.19166138e+002 - 9.79724350e+001 1.11802063e+002 1.19121590e+002 9.79498672e+001 - 1.11764366e+002 1.19140305e+002 9.78869019e+001 1.11716072e+002 - 1.19118858e+002 9.78256226e+001 1.11658394e+002 1.19113762e+002 - 9.77746124e+001 1.11608208e+002 1.19092056e+002 9.77359619e+001 - 1.11569344e+002 1.19099014e+002 9.76670761e+001 1.11509346e+002 - 1.19080009e+002 9.76260529e+001 1.11445602e+002 1.19079430e+002 - 9.75704575e+001 1.11405243e+002 1.19071663e+002 9.75473785e+001 - 1.11380287e+002 1.19083069e+002 9.74895630e+001 1.11338638e+002 - 1.19058212e+002 9.74455185e+001 1.11284462e+002 1.19041718e+002 - 9.73540878e+001 1.11207817e+002 1.18978027e+002 9.73132477e+001 - 1.11156265e+002 1.18980469e+002 9.72532349e+001 1.11124260e+002 - 1.18965523e+002 9.72267151e+001 1.11084648e+002 1.18963173e+002 - 9.71668015e+001 1.11033951e+002 1.18937439e+002 9.71253510e+001 - 1.10976120e+002 1.18924721e+002 9.70767746e+001 1.10942551e+002 - 1.18917053e+002 9.70415115e+001 1.10909767e+002 1.18921638e+002 - 9.70153885e+001 1.10890282e+002 1.18924301e+002 9.69555283e+001 - 1.10823112e+002 1.18898849e+002 9.69006424e+001 1.10783623e+002 - 1.18885056e+002 9.68747559e+001 1.10735741e+002 1.18895172e+002 - 9.68231964e+001 1.10691101e+002 1.18875191e+002 9.67998199e+001 - 1.10668350e+002 1.18888634e+002 9.67524643e+001 1.10644768e+002 - 1.18890488e+002 9.67501297e+001 1.10627846e+002 1.18913536e+002 - 9.67161789e+001 1.10600800e+002 1.18901047e+002 9.66664505e+001 - 1.10550148e+002 1.18894028e+002 9.65933685e+001 1.10498566e+002 - 1.18861839e+002 9.65698013e+001 1.10459114e+002 1.18855988e+002 - 9.65190735e+001 1.10416718e+002 1.18836456e+002 9.64853745e+001 - 1.10365463e+002 1.18830711e+002 9.64734726e+001 1.10363815e+002 - 1.18846947e+002 9.64473877e+001 1.10337227e+002 1.18865288e+002 - 9.63886032e+001 1.10282112e+002 1.18825172e+002 9.63521118e+001 - 1.10235229e+002 1.18810143e+002 9.63015900e+001 1.10192680e+002 - 1.18789505e+002 9.62885132e+001 1.10153267e+002 1.18801498e+002 - 9.62590256e+001 1.10135376e+002 1.18789207e+002 9.62603455e+001 - 1.10130775e+002 1.18820168e+002 9.62183990e+001 1.10107887e+002 - 1.18804108e+002 9.61785583e+001 1.10056396e+002 1.18781593e+002 - 9.61760864e+001 1.10061218e+002 1.18798149e+002 9.61474380e+001 - 1.10030869e+002 1.18804031e+002 9.60740662e+001 1.09979454e+002 - 1.18761475e+002 9.60665970e+001 1.09949631e+002 1.18760620e+002 - 9.60499420e+001 1.09946045e+002 1.18763855e+002 9.60468597e+001 - 1.09921356e+002 1.18775299e+002 9.60460205e+001 1.09928322e+002 - 1.18790421e+002 9.60206909e+001 1.09903381e+002 1.18795044e+002 - 9.59974976e+001 1.09889099e+002 1.18783852e+002 9.59685211e+001 - 1.09853783e+002 1.18777191e+002 9.59442902e+001 1.09849182e+002 - 1.18774437e+002 9.59670029e+001 1.09850594e+002 1.18813049e+002 - 9.59685364e+001 1.09867943e+002 1.18834053e+002 9.59648819e+001 - 1.09866943e+002 1.18845360e+002 9.59503326e+001 1.09867157e+002 - 1.18851852e+002 9.59699402e+001 1.09870140e+002 1.18867447e+002 - 9.59663849e+001 1.09871536e+002 1.18869911e+002 9.59538803e+001 - 1.09860703e+002 1.18884232e+002 9.59249649e+001 1.09851456e+002 - 1.18877991e+002 9.59283981e+001 1.09842476e+002 1.18891075e+002 - 9.59211731e+001 1.09849472e+002 1.18894676e+002 9.59367065e+001 - 1.09843201e+002 1.18909714e+002 9.59194870e+001 1.09841576e+002 - 1.18901360e+002 9.59280014e+001 1.09846336e+002 1.18922112e+002 - 9.58996429e+001 1.09823257e+002 1.18892792e+002 9.58935928e+001 - 1.09801254e+002 1.18879761e+002 9.58885727e+001 1.09809105e+002 - 1.18886841e+002 9.59010925e+001 1.09800957e+002 1.18898232e+002 - 9.58957596e+001 1.09806038e+002 1.18893852e+002 9.58771744e+001 - 1.09785553e+002 1.18877251e+002 9.58816605e+001 1.09806435e+002 - 1.18882889e+002 9.58936996e+001 1.09807114e+002 1.18898918e+002 - 9.59021683e+001 1.09816780e+002 1.18903618e+002 9.59194641e+001 - 1.09831177e+002 1.18930931e+002 9.58798218e+001 1.09814980e+002 - 1.18901131e+002 9.58806229e+001 1.09804527e+002 1.18912346e+002 - 9.58817215e+001 1.09807388e+002 1.18907616e+002 9.58859787e+001 - 1.09796120e+002 1.18914360e+002 9.58712463e+001 1.09796318e+002 - 1.18898346e+002 9.58792191e+001 1.09792183e+002 1.18899399e+002 - 9.58695679e+001 1.09789688e+002 1.18873085e+002 9.58900223e+001 - 1.09790985e+002 1.18885094e+002 9.58999863e+001 1.09814079e+002 - 1.18889282e+002 9.59268494e+001 1.09823647e+002 1.18902657e+002 - 9.59284058e+001 1.09835922e+002 1.18897675e+002 9.59351273e+001 - 1.09837723e+002 1.18890465e+002 9.59391632e+001 1.09857964e+002 - 1.18877594e+002 9.59428482e+001 1.09850281e+002 1.18878914e+002 - 9.59535828e+001 1.09864067e+002 1.18870811e+002 9.59860001e+001 - 1.09888458e+002 1.18896225e+002 9.59805756e+001 1.09905617e+002 - 1.18897247e+002 9.60054474e+001 1.09918137e+002 1.18906189e+002 - 9.60221252e+001 1.09946121e+002 1.18910988e+002 9.60447083e+001 - 1.09948006e+002 1.18914253e+002 9.60379181e+001 1.09951118e+002 - 1.18892212e+002 9.60607758e+001 1.09964478e+002 1.18889229e+002 - 9.60740967e+001 1.09988220e+002 1.18882820e+002 9.60979233e+001 - 1.10003029e+002 1.18889427e+002 9.61045380e+001 1.10015007e+002 - 1.18889526e+002 9.61371765e+001 1.10025177e+002 1.18904793e+002 - 9.61682739e+001 1.10062164e+002 1.18916267e+002 9.61742477e+001 - 1.10063042e+002 1.18896301e+002 9.61755066e+001 1.10084969e+002 - 1.18888229e+002 9.62422867e+001 1.10133324e+002 1.18934105e+002 - 9.62478256e+001 1.10141029e+002 1.18908539e+002 9.62769089e+001 - 1.10154305e+002 1.18900192e+002 9.62506180e+001 1.10148102e+002 - 1.18862328e+002 9.62931976e+001 1.10177498e+002 1.18883499e+002 - 9.63358459e+001 1.10229362e+002 1.18906891e+002 9.63712463e+001 - 1.10247597e+002 1.18907074e+002 9.63748779e+001 1.10265778e+002 - 1.18889244e+002 9.63899307e+001 1.10276970e+002 1.18879013e+002 - 9.63987885e+001 1.10292496e+002 1.18863762e+002 9.64033890e+001 - 1.10285889e+002 1.18829857e+002 9.64140701e+001 1.10306229e+002 - 1.18822243e+002 9.64718475e+001 1.10326927e+002 1.18841888e+002 - 9.65169067e+001 1.10380737e+002 1.18859894e+002 9.65258408e+001 - 1.10387207e+002 1.18847832e+002 9.65347824e+001 1.10412933e+002 - 1.18839874e+002 9.65976105e+001 1.10464149e+002 1.18878075e+002 - 9.66291428e+001 1.10511192e+002 1.18883339e+002 9.66729431e+001 - 1.10542511e+002 1.18887718e+002 9.66693115e+001 1.10558304e+002 - 1.18862389e+002 9.67414627e+001 1.10606995e+002 1.18894615e+002 - 9.68142624e+001 1.10692726e+002 1.18935371e+002 9.68537674e+001 - 1.10711334e+002 1.18940369e+002 9.68788757e+001 1.10747963e+002 - 1.18931679e+002 9.69217834e+001 1.10776077e+002 1.18932915e+002 - 9.69558182e+001 1.10820099e+002 1.18932152e+002 9.70375748e+001 - 1.10889275e+002 1.18975052e+002 9.70673141e+001 1.10928123e+002 - 1.18969872e+002 9.71059189e+001 1.10937202e+002 1.18955109e+002 - 9.71278229e+001 1.10968651e+002 1.18943596e+002 9.71847687e+001 - 1.11032120e+002 1.18965759e+002 9.71846848e+001 1.11044846e+002 - 1.18938919e+002 9.72494583e+001 1.11095863e+002 1.18972588e+002 - 9.72963562e+001 1.11152596e+002 1.18976501e+002 9.73380814e+001 - 1.11177299e+002 1.18965210e+002 9.73504639e+001 1.11207909e+002 - 1.18947678e+002 9.74078140e+001 1.11257927e+002 1.18970718e+002 - 9.74304657e+001 1.11290337e+002 1.18959145e+002 9.75243225e+001 - 1.11371696e+002 1.19009346e+002 9.75721436e+001 1.11429543e+002 - 1.19021660e+002 9.76232910e+001 1.11471977e+002 1.19023499e+002 - 9.76965027e+001 1.11558449e+002 1.19061447e+002 9.77375107e+001 - 1.11585342e+002 1.19063499e+002 9.77901077e+001 1.11643150e+002 - 1.19075935e+002 9.78711395e+001 1.11693901e+002 1.19102425e+002 - 9.79105835e+001 1.11735054e+002 1.19103745e+002 9.79531174e+001 - 1.11763153e+002 1.19090508e+002 9.79987564e+001 1.11819672e+002 - 1.19090622e+002 9.80800247e+001 1.11880730e+002 1.19135979e+002 - 9.81461258e+001 1.11946785e+002 1.19147934e+002 9.82035446e+001 - 1.11985825e+002 1.19135002e+002 9.82298126e+001 1.12033218e+002 - 1.19126640e+002 9.83185654e+001 1.12102196e+002 1.19172997e+002 - 9.83669968e+001 1.12157005e+002 1.19191216e+002 9.84591141e+001 - 1.12227440e+002 1.19232277e+002 9.85096207e+001 1.12288445e+002 - 1.19239601e+002 9.85830841e+001 1.12352654e+002 1.19262093e+002 - 9.86681442e+001 1.12444633e+002 1.19299042e+002 9.87394104e+001 - 1.12500092e+002 1.19321136e+002 9.87720337e+001 1.12541367e+002 - 1.19313484e+002 9.88759079e+001 1.12601509e+002 1.19345367e+002 - 9.89207611e+001 1.12653931e+002 1.19342682e+002 9.90354233e+001 - 1.12744881e+002 1.19387589e+002 9.91166687e+001 1.12830154e+002 - 1.19419998e+002 9.92050018e+001 1.12886902e+002 1.19450432e+002 - 9.92727280e+001 1.12951157e+002 1.19461456e+002 9.93650436e+001 - 1.13012825e+002 1.19471870e+002 9.94433746e+001 1.13099709e+002 - 1.19507370e+002 9.95474625e+001 1.13175415e+002 1.19557571e+002 - 9.95995331e+001 1.13227455e+002 1.19565735e+002 9.96920242e+001 - 1.13288872e+002 1.19588943e+002 9.97832184e+001 1.13372681e+002 - 1.19618179e+002 9.98908234e+001 1.13458305e+002 1.19663483e+002 - 9.99721832e+001 1.13532600e+002 1.19688316e+002 1.00091858e+002 - 1.13612175e+002 1.19738167e+002 1.00166641e+002 1.13682289e+002 - 1.19757751e+002 1.00275887e+002 1.13736343e+002 1.19777306e+002 - 1.00355019e+002 1.13805077e+002 1.19787323e+002 1.00450226e+002 - 1.13858078e+002 1.19801262e+002 1.00472923e+002 1.13869820e+002 - 1.19764168e+002 1.00519234e+002 1.13865532e+002 1.19743225e+002 - 1.00500870e+002 1.13838333e+002 1.19663513e+002 1.00506531e+002 - 1.13853920e+002 1.19697914e+002 1.00534760e+002 1.13927254e+002 - 1.19783691e+002 1.00527473e+002 1.13933395e+002 1.19835854e+002 - 1.00481735e+002 1.13918289e+002 1.19846123e+002 1.00383278e+002 - 1.13833679e+002 1.19823143e+002 1.00252625e+002 1.13739975e+002 - 1.19759415e+002 1.00170334e+002 1.13678658e+002 1.19753990e+002 - 1.00090935e+002 1.13628975e+002 1.19726570e+002 1.00027077e+002 - 1.13575874e+002 1.19726776e+002 9.99235001e+001 1.13501778e+002 - 1.19683540e+002 9.98733597e+001 1.13446030e+002 1.19694695e+002 - 9.98110428e+001 1.13408661e+002 1.19689201e+002 9.97403946e+001 - 1.13350082e+002 1.19672531e+002 9.96606064e+001 1.13295555e+002 - 1.19648834e+002 9.95943604e+001 1.13228630e+002 1.19632477e+002 - 9.95060425e+001 1.13162277e+002 1.19593513e+002 9.94163818e+001 - 1.13086159e+002 1.19592766e+002 9.92807922e+001 1.12992805e+002 - 1.19527634e+002 9.92170868e+001 1.12925354e+002 1.19512901e+002 - 9.91629944e+001 1.12894882e+002 1.19515312e+002 9.90951614e+001 - 1.12826508e+002 1.19511124e+002 9.90035172e+001 1.12758331e+002 - 1.19474434e+002 9.89258881e+001 1.12692345e+002 1.19454117e+002 - 9.88450317e+001 1.12623421e+002 1.19415184e+002 9.87930069e+001 - 1.12569153e+002 1.19414497e+002 9.87072144e+001 1.12501129e+002 - 1.19377609e+002 9.86359024e+001 1.12410301e+002 1.19353348e+002 - 9.85542526e+001 1.12341873e+002 1.19322823e+002 9.85189362e+001 - 1.12305992e+002 1.19334290e+002 9.84355545e+001 1.12240219e+002 - 1.19294273e+002 9.83816681e+001 1.12178787e+002 1.19281975e+002 - 9.83174820e+001 1.12121712e+002 1.19252960e+002 9.82409058e+001 - 1.12048370e+002 1.19235847e+002 9.81515732e+001 1.11988235e+002 - 1.19202232e+002 9.81081924e+001 1.11920525e+002 1.19183022e+002 - 9.80538635e+001 1.11879982e+002 1.19169327e+002 9.79888077e+001 - 1.11798393e+002 1.19148430e+002 9.79082947e+001 1.11731033e+002 - 1.19106834e+002 9.78870850e+001 1.11712639e+002 1.19134705e+002 - 9.78276672e+001 1.11660118e+002 1.19113579e+002 9.77782898e+001 - 1.11601952e+002 1.19108604e+002 9.77071762e+001 1.11551086e+002 - 1.19080696e+002 9.76665802e+001 1.11485184e+002 1.19085541e+002 - 9.76214294e+001 1.11454094e+002 1.19082802e+002 9.76028442e+001 - 1.11434090e+002 1.19103134e+002 9.75518112e+001 1.11402496e+002 - 1.19083427e+002 9.75190887e+001 1.11361183e+002 1.19079544e+002 - 9.74336548e+001 1.11282356e+002 1.19021332e+002 9.73880386e+001 - 1.11225555e+002 1.19016068e+002 9.73271713e+001 1.11193123e+002 - 1.19000381e+002 9.73063278e+001 1.11160614e+002 1.19005775e+002 - 9.72617340e+001 1.11128967e+002 1.18990479e+002 9.72124481e+001 - 1.11064102e+002 1.18976639e+002 9.71470795e+001 1.11014000e+002 - 1.18945763e+002 9.70941010e+001 1.10959137e+002 1.18938171e+002 - 9.70712662e+001 1.10949471e+002 1.18945541e+002 9.70368042e+001 - 1.10903801e+002 1.18938911e+002 9.69723969e+001 1.10851334e+002 - 1.18914406e+002 9.69576721e+001 1.10816017e+002 1.18930252e+002 - 9.69069977e+001 1.10774628e+002 1.18916252e+002 9.68925476e+001 - 1.10756317e+002 1.18941368e+002 9.68401794e+001 1.10724274e+002 - 1.18925026e+002 9.68431015e+001 1.10714760e+002 1.18958015e+002 - 9.68130188e+001 1.10694626e+002 1.18954056e+002 9.67557373e+001 - 1.10636406e+002 1.18941742e+002 9.66788635e+001 1.10584038e+002 - 1.18909111e+002 9.66474762e+001 1.10534599e+002 1.18894897e+002 - 9.65942917e+001 1.10495911e+002 1.18870224e+002 9.65783844e+001 - 1.10456169e+002 1.18878288e+002 9.65446701e+001 1.10439423e+002 - 1.18880135e+002 9.65193329e+001 1.10414856e+002 1.18897186e+002 - 9.64583282e+001 1.10356773e+002 1.18855896e+002 9.64111099e+001 - 1.10293320e+002 1.18832458e+002 9.63633270e+001 1.10263580e+002 - 1.18814682e+002 9.63576126e+001 1.10226913e+002 1.18827400e+002 - 9.63306503e+001 1.10212303e+002 1.18824677e+002 9.63227768e+001 - 1.10195694e+002 1.18838036e+002 9.62826157e+001 1.10177574e+002 - 1.18823715e+002 9.62665482e+001 1.10149437e+002 1.18828857e+002 - 9.62575989e+001 1.10144966e+002 1.18837051e+002 9.62145691e+001 - 1.10100594e+002 1.18825836e+002 9.61432343e+001 1.10057266e+002 - 1.18785721e+002 9.61225128e+001 1.10018929e+002 1.18778046e+002 - 9.61299515e+001 1.10032280e+002 1.18796066e+002 9.61266174e+001 - 1.10007088e+002 1.18813850e+002 9.61109619e+001 1.10001747e+002 - 1.18819481e+002 9.60931549e+001 1.09978493e+002 1.18823090e+002 - 9.60576172e+001 1.09950867e+002 1.18800270e+002 9.60449600e+001 - 1.09937981e+002 1.18807129e+002 9.60258636e+001 1.09931862e+002 - 1.18806755e+002 9.60313950e+001 1.09910431e+002 1.18828209e+002 - 9.60357513e+001 1.09933922e+002 1.18848816e+002 9.60289383e+001 - 1.09923195e+002 1.18858437e+002 9.59980774e+001 1.09910027e+002 - 1.18839561e+002 9.60303192e+001 1.09926186e+002 1.18882263e+002 - 9.60184097e+001 1.09920418e+002 1.18876289e+002 9.60191422e+001 - 1.09920593e+002 1.18898537e+002 9.59873734e+001 1.09914085e+002 - 1.18893051e+002 9.59949646e+001 1.09900734e+002 1.18906830e+002 - 9.59774475e+001 1.09899902e+002 1.18902367e+002 9.59806061e+001 - 1.09887024e+002 1.18906891e+002 9.59648590e+001 1.09884361e+002 - 1.18899094e+002 9.59729080e+001 1.09890221e+002 1.18917053e+002 - 9.59666824e+001 1.09890434e+002 1.18907700e+002 9.59527893e+001 - 1.09869080e+002 1.18898720e+002 9.59294739e+001 1.09861710e+002 - 1.18886246e+002 9.59692230e+001 1.09872047e+002 1.18917542e+002 - 9.59667740e+001 1.09880272e+002 1.18920815e+002 9.59552612e+001 - 1.09864334e+002 1.18909615e+002 9.59428787e+001 1.09872276e+002 - 1.18905006e+002 9.59685059e+001 1.09879646e+002 1.18926193e+002 - 9.59869308e+001 1.09905182e+002 1.18943192e+002 9.60123215e+001 - 1.09924141e+002 1.18973518e+002 9.59638062e+001 1.09900337e+002 - 1.18945816e+002 9.59694824e+001 1.09893333e+002 1.18951401e+002 - 9.59605942e+001 1.09892746e+002 1.18946007e+002 9.59760437e+001 - 1.09888283e+002 1.18956680e+002 9.59394760e+001 1.09863731e+002 - 1.18926445e+002 9.59279099e+001 1.09846214e+002 1.18903816e+002 - 9.59255066e+001 1.09845398e+002 1.18886497e+002 9.59586029e+001 - 1.09862335e+002 1.18909485e+002 9.59602661e+001 1.09874435e+002 - 1.18909386e+002 9.59960327e+001 1.09885941e+002 1.18923798e+002 - 9.59616165e+001 1.09870056e+002 1.18890976e+002 9.59841003e+001 - 1.09889236e+002 1.18894958e+002 9.59942703e+001 1.09917496e+002 - 1.18900734e+002 9.59991913e+001 1.09907318e+002 1.18900185e+002 - 9.60346909e+001 1.09948418e+002 1.18914734e+002 9.60606155e+001 - 1.09966881e+002 1.18929802e+002 9.60650864e+001 1.10000687e+002 - 1.18942505e+002 9.60698929e+001 1.09981728e+002 1.18928482e+002 - 9.60848236e+001 1.10012421e+002 1.18935791e+002 9.61408615e+001 - 1.10046181e+002 1.18966812e+002 9.61368866e+001 1.10052109e+002 - 1.18943329e+002 9.61365814e+001 1.10042923e+002 1.18918106e+002 - 9.61539230e+001 1.10071594e+002 1.18919113e+002 9.61565170e+001 - 1.10068611e+002 1.18910286e+002 9.61606979e+001 1.10077965e+002 - 1.18903618e+002 9.62102890e+001 1.10097992e+002 1.18928543e+002 - 9.62254257e+001 1.10128616e+002 1.18935501e+002 9.62452011e+001 - 1.10140144e+002 1.18935028e+002 9.62567291e+001 1.10167816e+002 - 1.18928467e+002 9.63079300e+001 1.10206093e+002 1.18955582e+002 - 9.63137360e+001 1.10211807e+002 1.18931320e+002 9.63377991e+001 - 1.10217720e+002 1.18922958e+002 9.63200531e+001 1.10220284e+002 - 1.18892204e+002 9.63551178e+001 1.10235321e+002 1.18900879e+002 - 9.63910522e+001 1.10287544e+002 1.18914734e+002 9.64239426e+001 - 1.10299133e+002 1.18914116e+002 9.64100952e+001 1.10301613e+002 - 1.18878075e+002 9.64502411e+001 1.10338638e+002 1.18895424e+002 - 9.64779663e+001 1.10373383e+002 1.18892525e+002 9.64695663e+001 - 1.10344460e+002 1.18847618e+002 9.64728928e+001 1.10362526e+002 - 1.18834679e+002 9.65377808e+001 1.10396400e+002 1.18864754e+002 - 9.65833969e+001 1.10453110e+002 1.18890129e+002 9.66009216e+001 - 1.10462723e+002 1.18877541e+002 9.66006699e+001 1.10480835e+002 - 1.18855644e+002 9.66447144e+001 1.10517334e+002 1.18884285e+002 - 9.66945343e+001 1.10575508e+002 1.18903793e+002 9.67524109e+001 - 1.10621292e+002 1.18917168e+002 9.67582474e+001 1.10643425e+002 - 1.18903206e+002 9.68309708e+001 1.10694366e+002 1.18935173e+002 - 9.68989944e+001 1.10769981e+002 1.18972015e+002 9.69425201e+001 - 1.10794235e+002 1.18973076e+002 9.69593430e+001 1.10821213e+002 - 1.18962036e+002 9.70179062e+001 1.10868889e+002 1.18979134e+002 - 9.70397568e+001 1.10899017e+002 1.18972252e+002 9.71071548e+001 - 1.10944664e+002 1.18989792e+002 9.71058807e+001 1.10963394e+002 - 1.18961403e+002 9.71419983e+001 1.10971062e+002 1.18948036e+002 - 9.71792908e+001 1.11022141e+002 1.18947365e+002 9.72339172e+001 - 1.11072609e+002 1.18972862e+002 9.72411118e+001 1.11103615e+002 - 1.18956894e+002 9.73109131e+001 1.11153809e+002 1.18997231e+002 - 9.73522568e+001 1.11207024e+002 1.18995796e+002 9.74122620e+001 - 1.11249062e+002 1.19004738e+002 9.74275055e+001 1.11288147e+002 - 1.18990311e+002 9.74866714e+001 1.11332619e+002 1.19013977e+002 - 9.75167007e+001 1.11376228e+002 1.19010078e+002 9.76026535e+001 - 1.11440231e+002 1.19049606e+002 9.76382141e+001 1.11494110e+002 - 1.19053017e+002 9.76836700e+001 1.11529503e+002 1.19059326e+002 - 9.77637329e+001 1.11619629e+002 1.19089157e+002 9.78115921e+001 - 1.11657051e+002 1.19099373e+002 9.78437881e+001 1.11698486e+002 - 1.19099823e+002 9.79069748e+001 1.11725998e+002 1.19106781e+002 - 9.79695282e+001 1.11792526e+002 1.19127289e+002 9.80230408e+001 - 1.11830864e+002 1.19127609e+002 9.80767975e+001 1.11896454e+002 - 1.19142952e+002 9.81610565e+001 1.11960686e+002 1.19182487e+002 - 9.82129669e+001 1.12014359e+002 1.19180138e+002 9.82619324e+001 - 1.12045921e+002 1.19164253e+002 9.82838135e+001 1.12089516e+002 - 1.19154915e+002 9.83675919e+001 1.12150215e+002 1.19192894e+002 - 9.84265137e+001 1.12219559e+002 1.19220863e+002 9.85204544e+001 - 1.12291458e+002 1.19262474e+002 9.85740433e+001 1.12356598e+002 - 1.19276474e+002 9.86242981e+001 1.12395241e+002 1.19274994e+002 - 9.87103806e+001 1.12485268e+002 1.19318428e+002 9.87820969e+001 - 1.12539093e+002 1.19339806e+002 9.88344269e+001 1.12602211e+002 - 1.19356140e+002 9.89478607e+001 1.12670029e+002 1.19389290e+002 - 9.90144882e+001 1.12739014e+002 1.19398804e+002 9.90825043e+001 - 1.12786705e+002 1.19407486e+002 9.91331635e+001 1.12843788e+002 - 1.19410820e+002 9.92403946e+001 1.12919632e+002 1.19460510e+002 - 9.93204422e+001 1.12993355e+002 1.19482826e+002 9.93953247e+001 - 1.13041771e+002 1.19471352e+002 9.94657288e+001 1.13122002e+002 - 1.19504990e+002 9.95795135e+001 1.13203751e+002 1.19562767e+002 - 9.96482544e+001 1.13273834e+002 1.19588577e+002 9.97159576e+001 - 1.13301964e+002 1.19582298e+002 9.97932739e+001 1.13382477e+002 - 1.19605530e+002 9.98935471e+001 1.13455887e+002 1.19640869e+002 - 1.00004150e+002 1.13554504e+002 1.19690315e+002 1.00100273e+002 - 1.13623077e+002 1.19719856e+002 1.00180313e+002 1.13691902e+002 - 1.19744377e+002 1.00265739e+002 1.13723488e+002 1.19741127e+002 - 1.00340988e+002 1.13787994e+002 1.19756493e+002 1.00451256e+002 - 1.13851509e+002 1.19776306e+002 1.00492035e+002 1.13884705e+002 - 1.19753616e+002 1.00531044e+002 1.13873940e+002 1.19731659e+002 - 1.00509102e+002 1.13839409e+002 1.19643890e+002 1.00505325e+002 - 1.13860939e+002 1.19678185e+002 1.00530907e+002 1.13927330e+002 - 1.19763123e+002 1.00537483e+002 1.13945366e+002 1.19823387e+002 - 1.00465981e+002 1.13910133e+002 1.19813339e+002 1.00380875e+002 - 1.13837463e+002 1.19798515e+002 1.00278267e+002 1.13772980e+002 - 1.19763519e+002 1.00192543e+002 1.13708313e+002 1.19756302e+002 - 1.00106636e+002 1.13647400e+002 1.19719948e+002 1.00069389e+002 - 1.13618172e+002 1.19742867e+002 9.99646759e+001 1.13543091e+002 - 1.19696571e+002 9.98941269e+001 1.13471344e+002 1.19693481e+002 - 9.98418503e+001 1.13441132e+002 1.19689453e+002 9.97643280e+001 - 1.13374023e+002 1.19673164e+002 9.96818237e+001 1.13320992e+002 - 1.19644302e+002 9.96094742e+001 1.13244049e+002 1.19621460e+002 - 9.95292282e+001 1.13183868e+002 1.19587944e+002 9.94333496e+001 - 1.13102921e+002 1.19582947e+002 9.93148346e+001 1.13033066e+002 - 1.19532959e+002 9.92579727e+001 1.12971054e+002 1.19529861e+002 - 9.91922531e+001 1.12931770e+002 1.19515259e+002 9.91297684e+001 - 1.12864601e+002 1.19512764e+002 9.90447006e+001 1.12802254e+002 - 1.19479164e+002 9.89613342e+001 1.12725975e+002 1.19449707e+002 - 9.88768997e+001 1.12654442e+002 1.19408730e+002 9.88233490e+001 - 1.12600800e+002 1.19405624e+002 9.87182846e+001 1.12509880e+002 - 1.19343689e+002 9.86446533e+001 1.12416107e+002 1.19314514e+002 - 9.85753098e+001 1.12363029e+002 1.19299057e+002 9.85449219e+001 - 1.12333946e+002 1.19316765e+002 9.84763641e+001 1.12276657e+002 - 1.19293861e+002 9.84254303e+001 1.12220146e+002 1.19280907e+002 - 9.83860016e+001 1.12195557e+002 1.19280098e+002 9.82775116e+001 - 1.12088341e+002 1.19233650e+002 9.81786423e+001 1.12013725e+002 - 1.19183311e+002 9.81376419e+001 1.11951332e+002 1.19168022e+002 - 9.81029739e+001 1.11927612e+002 1.19175354e+002 9.80497894e+001 - 1.11856842e+002 1.19161484e+002 9.79686279e+001 1.11793915e+002 - 1.19121483e+002 9.79414825e+001 1.11764061e+002 1.19145256e+002 - 9.78881302e+001 1.11724525e+002 1.19132431e+002 9.78385086e+001 - 1.11667076e+002 1.19123306e+002 9.77440948e+001 1.11587090e+002 - 1.19077431e+002 9.77072906e+001 1.11521111e+002 1.19085678e+002 - 9.76717758e+001 1.11505836e+002 1.19094269e+002 9.76563263e+001 - 1.11492638e+002 1.19112839e+002 9.75949326e+001 1.11445480e+002 - 1.19080521e+002 9.75588150e+001 1.11405319e+002 1.19076530e+002 - 9.75013428e+001 1.11354385e+002 1.19048271e+002 9.74438324e+001 - 1.11290871e+002 1.19038231e+002 9.73834152e+001 1.11252869e+002 - 1.19014862e+002 9.73490906e+001 1.11208397e+002 1.19006126e+002 - 9.73065796e+001 1.11173378e+002 1.18989113e+002 9.72651443e+001 - 1.11114243e+002 1.18982559e+002 9.71952744e+001 1.11067596e+002 - 1.18953949e+002 9.71458588e+001 1.11011574e+002 1.18944107e+002 - 9.71192398e+001 1.10997688e+002 1.18945328e+002 9.70965500e+001 - 1.10961823e+002 1.18951782e+002 9.70193176e+001 1.10906219e+002 - 1.18915665e+002 9.70092926e+001 1.10872528e+002 1.18940918e+002 - 9.69804001e+001 1.10854019e+002 1.18950134e+002 9.69673309e+001 - 1.10836281e+002 1.18976524e+002 9.69153824e+001 1.10799316e+002 - 1.18955742e+002 9.68930969e+001 1.10762939e+002 1.18961205e+002 - 9.68492432e+001 1.10733177e+002 1.18947403e+002 9.68065414e+001 - 1.10687012e+002 1.18950111e+002 9.67305984e+001 1.10638550e+002 - 1.18912292e+002 9.66942444e+001 1.10575050e+002 1.18886810e+002 - 9.66684494e+001 1.10572540e+002 1.18891731e+002 9.66451492e+001 - 1.10527992e+002 1.18897163e+002 9.66023483e+001 1.10501816e+002 - 1.18893852e+002 9.65652161e+001 1.10465637e+002 1.18890442e+002 - 9.65360565e+001 1.10442909e+002 1.18886833e+002 9.64842072e+001 - 1.10374321e+002 1.18856232e+002 9.64477310e+001 1.10351624e+002 - 1.18847946e+002 9.64577713e+001 1.10334419e+002 1.18879417e+002 - 9.64238358e+001 1.10316505e+002 1.18873306e+002 9.64117355e+001 - 1.10296326e+002 1.18879898e+002 9.63806152e+001 1.10286621e+002 - 1.18874191e+002 9.63603668e+001 1.10256577e+002 1.18880524e+002 - 9.63353882e+001 1.10230698e+002 1.18866997e+002 9.62886047e+001 - 1.10183754e+002 1.18854851e+002 9.62433548e+001 1.10168129e+002 - 1.18835007e+002 9.62105560e+001 1.10114204e+002 1.18816223e+002 - 9.61953354e+001 1.10104424e+002 1.18817284e+002 9.62098846e+001 - 1.10098145e+002 1.18846458e+002 9.61970825e+001 1.10098030e+002 - 1.18854889e+002 9.61610489e+001 1.10062553e+002 1.18848526e+002 - 9.61352081e+001 1.10044884e+002 1.18828285e+002 9.61252213e+001 - 1.10032021e+002 1.18840714e+002 9.61069412e+001 1.10024910e+002 - 1.18839584e+002 9.61030045e+001 1.09986732e+002 1.18846329e+002 - 9.61063232e+001 1.10005943e+002 1.18865555e+002 9.61050797e+001 - 1.10006104e+002 1.18876877e+002 9.60895081e+001 1.10008675e+002 - 1.18876389e+002 9.61102448e+001 1.10013313e+002 1.18907974e+002 - 9.61072769e+001 1.10017242e+002 1.18912735e+002 9.61002579e+001 - 1.10004066e+002 1.18922325e+002 9.60462036e+001 1.09974167e+002 - 1.18895859e+002 9.60535278e+001 1.09962654e+002 1.18908852e+002 - 9.60485916e+001 1.09978264e+002 1.18920578e+002 9.60377808e+001 - 1.09944176e+002 1.18907211e+002 9.60086060e+001 1.09935547e+002 - 1.18886879e+002 9.60022888e+001 1.09929237e+002 1.18891212e+002 - 9.60166931e+001 1.09949265e+002 1.18902092e+002 9.60143356e+001 - 1.09936890e+002 1.18904266e+002 9.60021439e+001 1.09937729e+002 - 1.18900032e+002 9.60330734e+001 1.09936020e+002 1.18926407e+002 - 9.60328674e+001 1.09946175e+002 1.18929893e+002 9.60145111e+001 - 1.09931709e+002 1.18917656e+002 9.59919815e+001 1.09923767e+002 - 1.18896622e+002 9.60153503e+001 1.09933670e+002 1.18919228e+002 - 9.60566864e+001 1.09987587e+002 1.18961861e+002 9.60729599e+001 - 1.09991493e+002 1.18981743e+002 9.60157166e+001 1.09963402e+002 - 1.18943916e+002 9.60348206e+001 1.09962547e+002 1.18959175e+002 - 9.60204544e+001 1.09965019e+002 1.18947937e+002 9.60522232e+001 - 1.09972183e+002 1.18978424e+002 9.60192719e+001 1.09945419e+002 - 1.18937424e+002 9.60217590e+001 1.09942627e+002 1.18941185e+002 - 9.60191879e+001 1.09944557e+002 1.18931290e+002 9.60360031e+001 - 1.09949066e+002 1.18942909e+002 9.60231171e+001 1.09947098e+002 - 1.18924644e+002 9.60621033e+001 1.09963181e+002 1.18949760e+002 - 9.60542679e+001 1.09971634e+002 1.18938332e+002 9.60705490e+001 - 1.09986496e+002 1.18946053e+002 9.60665283e+001 1.09999863e+002 - 1.18932304e+002 9.60758591e+001 1.09986450e+002 1.18931717e+002 - 9.61027145e+001 1.10023560e+002 1.18943390e+002 9.61407318e+001 - 1.10054382e+002 1.18969154e+002 9.61359100e+001 1.10082336e+002 - 1.18966248e+002 9.61487961e+001 1.10068962e+002 1.18962852e+002 - 9.61571655e+001 1.10095123e+002 1.18955566e+002 9.61920395e+001 - 1.10107948e+002 1.18973015e+002 9.61852264e+001 1.10112122e+002 - 1.18944206e+002 9.61866684e+001 1.10105789e+002 1.18923248e+002 - 9.61986313e+001 1.10127991e+002 1.18919304e+002 9.62229538e+001 - 1.10138985e+002 1.18930069e+002 9.62081757e+001 1.10141243e+002 - 1.18904366e+002 9.62594223e+001 1.10156456e+002 1.18939896e+002 - 9.62844925e+001 1.10198013e+002 1.18948677e+002 9.63389359e+001 - 1.10243752e+002 1.18982193e+002 9.63412323e+001 1.10263557e+002 - 1.18969955e+002 9.63689423e+001 1.10271240e+002 1.18976028e+002 - 9.63882599e+001 1.10295967e+002 1.18959442e+002 9.64048309e+001 - 1.10296761e+002 1.18944702e+002 9.63933411e+001 1.10302483e+002 - 1.18920227e+002 9.64171677e+001 1.10306808e+002 1.18920128e+002 - 9.64369431e+001 1.10333305e+002 1.18913956e+002 9.64752960e+001 - 1.10356384e+002 1.18921562e+002 9.64671860e+001 1.10364288e+002 - 1.18891190e+002 9.65145950e+001 1.10405739e+002 1.18913399e+002 - 9.65425186e+001 1.10448563e+002 1.18909447e+002 9.65590897e+001 - 1.10442558e+002 1.18890228e+002 9.65628357e+001 1.10458290e+002 - 1.18875267e+002 9.66292114e+001 1.10490135e+002 1.18909302e+002 - 9.66558380e+001 1.10528526e+002 1.18909851e+002 9.66716766e+001 - 1.10540550e+002 1.18900955e+002 9.66728363e+001 1.10558472e+002 - 1.18884148e+002 9.67108841e+001 1.10581032e+002 1.18894989e+002 - 9.67683334e+001 1.10644173e+002 1.18923462e+002 9.68019028e+001 - 1.10677094e+002 1.18920090e+002 9.68108368e+001 1.10700806e+002 - 1.18902222e+002 9.68813324e+001 1.10746117e+002 1.18930557e+002 - 9.69591980e+001 1.10838486e+002 1.18987587e+002 9.70162354e+001 - 1.10868729e+002 1.18997902e+002 9.70259705e+001 1.10889221e+002 - 1.18974327e+002 9.70698013e+001 1.10925575e+002 1.18984154e+002 - 9.70869064e+001 1.10946693e+002 1.18963089e+002 9.71402283e+001 - 1.10983315e+002 1.18983643e+002 9.71530991e+001 1.11008690e+002 - 1.18964226e+002 9.71901779e+001 1.11014610e+002 1.18952423e+002 - 9.72261658e+001 1.11064537e+002 1.18952248e+002 9.72997437e+001 - 1.11134750e+002 1.18987389e+002 9.72984924e+001 1.11157982e+002 - 1.18964371e+002 9.73482666e+001 1.11197670e+002 1.18989166e+002 - 9.74012604e+001 1.11254776e+002 1.19001442e+002 9.74507828e+001 - 1.11287720e+002 1.18998466e+002 9.74751740e+001 1.11334869e+002 - 1.18995171e+002 9.75424881e+001 1.11389168e+002 1.19024902e+002 - 9.75731430e+001 1.11431839e+002 1.19021507e+002 9.76498184e+001 - 1.11486191e+002 1.19047333e+002 9.76777573e+001 1.11531364e+002 - 1.19049782e+002 9.77365723e+001 1.11583328e+002 1.19057152e+002 - 9.78179092e+001 1.11674561e+002 1.19101662e+002 9.78674240e+001 - 1.11707199e+002 1.19110840e+002 9.78816452e+001 1.11740234e+002 - 1.19101059e+002 9.79528732e+001 1.11774452e+002 1.19117210e+002 - 9.80182571e+001 1.11842216e+002 1.19137276e+002 9.80842361e+001 - 1.11891373e+002 1.19148643e+002 9.81388321e+001 1.11960449e+002 - 1.19168709e+002 9.82290115e+001 1.12030861e+002 1.19211525e+002 - 9.82758789e+001 1.12080948e+002 1.19205406e+002 9.83244171e+001 - 1.12117416e+002 1.19189980e+002 9.83471756e+001 1.12159988e+002 - 1.19178894e+002 9.84203644e+001 1.12211143e+002 1.19209938e+002 - 9.84724350e+001 1.12272423e+002 1.19228699e+002 9.85461960e+001 - 1.12320602e+002 1.19250511e+002 9.85968781e+001 1.12382790e+002 - 1.19264137e+002 9.86650467e+001 1.12439735e+002 1.19279922e+002 - 9.87608948e+001 1.12543755e+002 1.19331253e+002 9.88319016e+001 - 1.12594933e+002 1.19349159e+002 9.88740463e+001 1.12645523e+002 - 1.19356819e+002 9.89777679e+001 1.12702957e+002 1.19390160e+002 - 9.90469437e+001 1.12772865e+002 1.19407768e+002 9.90931625e+001 - 1.12800354e+002 1.19389786e+002 9.91596985e+001 1.12869484e+002 - 1.19405869e+002 9.92613602e+001 1.12943436e+002 1.19453918e+002 - 9.93386307e+001 1.13012428e+002 1.19475357e+002 9.94027481e+001 - 1.13052803e+002 1.19454041e+002 9.94624557e+001 1.13122200e+002 - 1.19469048e+002 9.95766220e+001 1.13203773e+002 1.19533417e+002 - 9.96737671e+001 1.13301636e+002 1.19583023e+002 9.97484741e+001 - 1.13340736e+002 1.19591812e+002 9.98007431e+001 1.13390083e+002 - 1.19585373e+002 9.99042282e+001 1.13472633e+002 1.19625557e+002 - 1.00035614e+002 1.13591522e+002 1.19693436e+002 1.00124710e+002 - 1.13644051e+002 1.19714874e+002 1.00193459e+002 1.13709129e+002 - 1.19723083e+002 1.00282166e+002 1.13738113e+002 1.19727562e+002 - 1.00373108e+002 1.13818390e+002 1.19755051e+002 1.00451698e+002 - 1.13854294e+002 1.19753395e+002 1.00496468e+002 1.13890060e+002 - 1.19734261e+002 1.00545708e+002 1.13885101e+002 1.19720444e+002 - 1.00516159e+002 1.13845390e+002 1.19624710e+002 1.00491707e+002 - 1.13855156e+002 1.19647789e+002 1.00528587e+002 1.13935585e+002 - 1.19750298e+002 1.00528076e+002 1.13935921e+002 1.19796249e+002 - 1.00479813e+002 1.13921135e+002 1.19806129e+002 1.00390388e+002 - 1.13848351e+002 1.19788460e+002 1.00298492e+002 1.13794746e+002 - 1.19766556e+002 1.00210777e+002 1.13728264e+002 1.19758385e+002 - 1.00128082e+002 1.13669579e+002 1.19719833e+002 1.00061798e+002 - 1.13617340e+002 1.19722031e+002 9.99736481e+001 1.13553055e+002 - 1.19692558e+002 9.99210739e+001 1.13504562e+002 1.19704712e+002 - 9.98747177e+001 1.13480339e+002 1.19708908e+002 9.98035049e+001 - 1.13413872e+002 1.19693550e+002 9.97154083e+001 1.13350258e+002 - 1.19655533e+002 9.96380234e+001 1.13275925e+002 1.19629028e+002 - 9.95522537e+001 1.13211159e+002 1.19595413e+002 9.94567490e+001 - 1.13130905e+002 1.19589020e+002 9.93480988e+001 1.13063606e+002 - 1.19547920e+002 9.92892151e+001 1.13001434e+002 1.19536362e+002 - 9.92307129e+001 1.12963531e+002 1.19530617e+002 9.91550293e+001 - 1.12889198e+002 1.19512764e+002 9.90669250e+001 1.12819603e+002 - 1.19473572e+002 9.89757538e+001 1.12739799e+002 1.19443123e+002 - 9.89031143e+001 1.12683762e+002 1.19407631e+002 9.88376236e+001 - 1.12612206e+002 1.19393654e+002 9.87367554e+001 1.12519577e+002 - 1.19331551e+002 9.86623383e+001 1.12437462e+002 1.19308525e+002 - 9.85965881e+001 1.12384514e+002 1.19292061e+002 9.85430145e+001 - 1.12324692e+002 1.19283257e+002 9.84816895e+001 1.12287788e+002 - 1.19268837e+002 9.84268112e+001 1.12225266e+002 1.19247429e+002 - 9.83920746e+001 1.12198883e+002 1.19252464e+002 9.83012848e+001 - 1.12110046e+002 1.19227997e+002 9.82040863e+001 1.12039673e+002 - 1.19182640e+002 9.81698303e+001 1.11985184e+002 1.19176071e+002 - 9.81325302e+001 1.11954987e+002 1.19174149e+002 9.80829620e+001 - 1.11890594e+002 1.19168526e+002 9.80101395e+001 1.11830368e+002 - 1.19133759e+002 9.79872589e+001 1.11806000e+002 1.19158432e+002 - 9.79312439e+001 1.11764778e+002 1.19144485e+002 9.78972321e+001 - 1.11722275e+002 1.19153404e+002 9.78108063e+001 1.11648209e+002 - 1.19116997e+002 9.77604218e+001 1.11579781e+002 1.19109131e+002 - 9.77126617e+001 1.11550018e+002 1.19101936e+002 9.76953125e+001 - 1.11532028e+002 1.19124100e+002 9.76152496e+001 1.11469460e+002 - 1.19075119e+002 9.75782089e+001 1.11426819e+002 1.19073700e+002 - 9.75246582e+001 1.11385048e+002 1.19046509e+002 9.74757919e+001 - 1.11325737e+002 1.19043541e+002 9.74167099e+001 1.11292145e+002 - 1.19027664e+002 9.73918457e+001 1.11251556e+002 1.19016739e+002 - 9.73401489e+001 1.11205101e+002 1.18994812e+002 9.72952576e+001 - 1.11145592e+002 1.18985107e+002 9.72393417e+001 1.11104568e+002 - 1.18961327e+002 9.71779404e+001 1.11045647e+002 1.18942581e+002 - 9.71366272e+001 1.11018295e+002 1.18927773e+002 9.71102371e+001 - 1.10981453e+002 1.18940132e+002 9.70589828e+001 1.10944885e+002 - 1.18930290e+002 9.70263977e+001 1.10889572e+002 1.18928772e+002 - 9.69858704e+001 1.10860878e+002 1.18919281e+002 9.69770813e+001 - 1.10843842e+002 1.18953979e+002 9.69371796e+001 1.10819412e+002 - 1.18947205e+002 9.68997955e+001 1.10774551e+002 1.18938660e+002 - 9.68647308e+001 1.10749550e+002 1.18927132e+002 9.68182602e+001 - 1.10701683e+002 1.18927780e+002 9.67599869e+001 1.10667366e+002 - 1.18903130e+002 9.67427902e+001 1.10634445e+002 1.18902458e+002 - 9.67176285e+001 1.10617012e+002 1.18904015e+002 9.66877289e+001 - 1.10573265e+002 1.18903114e+002 9.66642227e+001 1.10566902e+002 - 1.18916031e+002 9.66193466e+001 1.10521347e+002 1.18910797e+002 - 9.65816422e+001 1.10489166e+002 1.18893913e+002 9.65536957e+001 - 1.10450424e+002 1.18890541e+002 9.65092468e+001 1.10417664e+002 - 1.18874153e+002 9.65080261e+001 1.10393814e+002 1.18892105e+002 - 9.64824982e+001 1.10378578e+002 1.18889008e+002 9.64784775e+001 - 1.10369621e+002 1.18911499e+002 9.64288864e+001 1.10342171e+002 - 1.18884132e+002 9.64166412e+001 1.10317696e+002 1.18893524e+002 - 9.63817139e+001 1.10294365e+002 1.18877319e+002 9.63542404e+001 - 1.10255966e+002 1.18879280e+002 9.63080292e+001 1.10233093e+002 - 1.18867928e+002 9.62745209e+001 1.10180344e+002 1.18840721e+002 - 9.62618332e+001 1.10174690e+002 1.18838676e+002 9.62681656e+001 - 1.10160416e+002 1.18861732e+002 9.62483368e+001 1.10153992e+002 - 1.18865051e+002 9.62355499e+001 1.10137497e+002 1.18876762e+002 - 9.62135925e+001 1.10127518e+002 1.18869522e+002 9.61980896e+001 - 1.10107933e+002 1.18871185e+002 9.61698990e+001 1.10092613e+002 - 1.18864265e+002 9.61837463e+001 1.10080376e+002 1.18887741e+002 - 9.61883240e+001 1.10095337e+002 1.18910011e+002 9.61787643e+001 - 1.10082481e+002 1.18916603e+002 9.61405716e+001 1.10064659e+002 - 1.18888290e+002 9.61416931e+001 1.10050735e+002 1.18904915e+002 - 9.61438751e+001 1.10055069e+002 1.18907860e+002 9.61421356e+001 - 1.10048500e+002 1.18924950e+002 9.60758667e+001 1.10005630e+002 - 1.18886444e+002 9.60696793e+001 1.09981575e+002 1.18882507e+002 - 9.60665741e+001 1.09995224e+002 1.18892815e+002 9.60733719e+001 - 1.09985336e+002 1.18900795e+002 9.60511780e+001 1.09982590e+002 - 1.18887596e+002 9.60526352e+001 1.09980850e+002 1.18895851e+002 - 9.60387115e+001 1.09978470e+002 1.18879128e+002 9.60473709e+001 - 1.09975220e+002 1.18887154e+002 9.60317307e+001 1.09968048e+002 - 1.18882774e+002 9.60511475e+001 1.09959747e+002 1.18896622e+002 - 9.60577621e+001 1.09983971e+002 1.18912712e+002 9.60649261e+001 - 1.09981529e+002 1.18921425e+002 9.60578156e+001 1.09994202e+002 - 1.18921204e+002 9.60594864e+001 1.09984695e+002 1.18923721e+002 - 9.60855026e+001 1.10022560e+002 1.18951134e+002 9.61133652e+001 - 1.10039459e+002 1.18980782e+002 9.60710754e+001 1.10021317e+002 - 1.18956841e+002 9.60791855e+001 1.10010338e+002 1.18959114e+002 - 9.60742569e+001 1.10015358e+002 1.18959091e+002 9.61071701e+001 - 1.10028694e+002 1.18983467e+002 9.60983734e+001 1.10032478e+002 - 1.18975304e+002 9.61209259e+001 1.10042259e+002 1.19000328e+002 - 9.61035919e+001 1.10030235e+002 1.18974899e+002 9.61009140e+001 - 1.10011589e+002 1.18962776e+002 9.60829086e+001 1.10012497e+002 - 1.18945580e+002 9.61156235e+001 1.10022766e+002 1.18971405e+002 - 9.61251068e+001 1.10047279e+002 1.18968155e+002 9.61275787e+001 - 1.10038574e+002 1.18962997e+002 9.61116867e+001 1.10043068e+002 - 1.18945030e+002 9.61162491e+001 1.10035439e+002 1.18942635e+002 - 9.61552429e+001 1.10084816e+002 1.18963165e+002 9.61992416e+001 - 1.10119736e+002 1.18990135e+002 9.62047577e+001 1.10152618e+002 - 1.19002014e+002 9.62109680e+001 1.10141327e+002 1.18994156e+002 - 9.62127686e+001 1.10154869e+002 1.18975876e+002 9.62264709e+001 - 1.10149872e+002 1.18967369e+002 9.62187119e+001 1.10154221e+002 - 1.18944145e+002 9.62561569e+001 1.10177933e+002 1.18962791e+002 - 9.62604370e+001 1.10192696e+002 1.18946640e+002 9.62706909e+001 - 1.10190186e+002 1.18938835e+002 9.62576294e+001 1.10188988e+002 - 1.18918175e+002 9.62997055e+001 1.10200737e+002 1.18939919e+002 - 9.63270721e+001 1.10243622e+002 1.18949463e+002 9.63819199e+001 - 1.10286636e+002 1.18988213e+002 9.63719101e+001 1.10293839e+002 - 1.18964752e+002 9.63981705e+001 1.10308380e+002 1.18967285e+002 - 9.64122009e+001 1.10319458e+002 1.18944626e+002 9.64422989e+001 - 1.10333008e+002 1.18944153e+002 9.64320374e+001 1.10340950e+002 - 1.18920128e+002 9.64456406e+001 1.10333466e+002 1.18906876e+002 - 9.64713593e+001 1.10369797e+002 1.18913971e+002 9.65117569e+001 - 1.10398308e+002 1.18926407e+002 9.65066147e+001 1.10405014e+002 - 1.18896049e+002 9.65230255e+001 1.10416992e+002 1.18880737e+002 - 9.65572510e+001 1.10461449e+002 1.18881897e+002 9.65923843e+001 - 1.10481972e+002 1.18890625e+002 9.66053238e+001 1.10497490e+002 - 1.18878304e+002 9.66602173e+001 1.10526642e+002 1.18900581e+002 - 9.66775284e+001 1.10559059e+002 1.18893974e+002 9.67131271e+001 - 1.10580940e+002 1.18898994e+002 9.67265015e+001 1.10613091e+002 - 1.18897110e+002 9.67547150e+001 1.10629036e+002 1.18902359e+002 - 9.68119888e+001 1.10688522e+002 1.18920792e+002 9.68435059e+001 - 1.10711670e+002 1.18913506e+002 9.68623047e+001 1.10750473e+002 - 1.18913467e+002 9.69234619e+001 1.10796547e+002 1.18936737e+002 - 9.70063095e+001 1.10884354e+002 1.18989342e+002 9.70570679e+001 - 1.10909805e+002 1.18992912e+002 9.70777206e+001 1.10945496e+002 - 1.18987411e+002 9.71074295e+001 1.10956253e+002 1.18976563e+002 - 9.71461639e+001 1.11003342e+002 1.18983284e+002 9.71701279e+001 - 1.11013763e+002 1.18966499e+002 9.71906128e+001 1.11041496e+002 - 1.18962074e+002 9.72461014e+001 1.11075653e+002 1.18968773e+002 - 9.72857361e+001 1.11128418e+002 1.18980072e+002 9.73602295e+001 - 1.11196503e+002 1.19017426e+002 9.73508682e+001 1.11204689e+002 - 1.18981369e+002 9.74057007e+001 1.11251259e+002 1.19009659e+002 - 9.74563904e+001 1.11304947e+002 1.19020821e+002 9.75067520e+001 - 1.11337105e+002 1.19017937e+002 9.75368652e+001 1.11393600e+002 - 1.19024521e+002 9.76027222e+001 1.11446365e+002 1.19052780e+002 - 9.76426773e+001 1.11498543e+002 1.19058861e+002 9.77031174e+001 - 1.11543251e+002 1.19070854e+002 9.77253494e+001 1.11578781e+002 - 1.19059326e+002 9.77788849e+001 1.11622177e+002 1.19070641e+002 - 9.78391876e+001 1.11699936e+002 1.19091118e+002 9.78825302e+001 - 1.11728081e+002 1.19095528e+002 9.79034576e+001 1.11756111e+002 - 1.19090874e+002 9.79807739e+001 1.11803413e+002 1.19109131e+002 - 9.80380707e+001 1.11866234e+002 1.19127487e+002 9.81013794e+001 - 1.11913239e+002 1.19141609e+002 9.81521988e+001 1.11974236e+002 - 1.19153351e+002 9.82412643e+001 1.12049927e+002 1.19200806e+002 - 9.83001022e+001 1.12112434e+002 1.19202141e+002 9.83660202e+001 - 1.12159538e+002 1.19200897e+002 9.83903580e+001 1.12210342e+002 - 1.19196938e+002 9.84668961e+001 1.12261139e+002 1.19230507e+002 - 9.85327301e+001 1.12329987e+002 1.19262337e+002 9.86041031e+001 - 1.12385071e+002 1.19283234e+002 9.86419678e+001 1.12431679e+002 - 1.19285431e+002 9.87067719e+001 1.12483559e+002 1.19296356e+002 - 9.87918777e+001 1.12573898e+002 1.19338181e+002 9.88785629e+001 - 1.12639305e+002 1.19366707e+002 9.89173050e+001 1.12683723e+002 - 1.19370277e+002 9.90037537e+001 1.12727936e+002 1.19389153e+002 - 9.90638351e+001 1.12792572e+002 1.19398453e+002 9.91430511e+001 - 1.12849762e+002 1.19417526e+002 9.92060852e+001 1.12916077e+002 - 1.19434418e+002 9.92945480e+001 1.12984299e+002 1.19470451e+002 - 9.93674240e+001 1.13041924e+002 1.19480988e+002 9.94321747e+001 - 1.13082848e+002 1.19465782e+002 9.94931641e+001 1.13153648e+002 - 1.19480339e+002 9.96134720e+001 1.13240494e+002 1.19547783e+002 - 9.96924973e+001 1.13317688e+002 1.19580925e+002 9.97905121e+001 - 1.13384613e+002 1.19610413e+002 9.98391953e+001 1.13429771e+002 - 1.19604362e+002 9.99291000e+001 1.13486183e+002 1.19617668e+002 - 1.00030212e+002 1.13583054e+002 1.19661079e+002 1.00130585e+002 - 1.13650246e+002 1.19701088e+002 1.00221947e+002 1.13727760e+002 - 1.19731201e+002 1.00309273e+002 1.13762405e+002 1.19736404e+002 - 1.00387589e+002 1.13825249e+002 1.19744202e+002 1.00463425e+002 - 1.13855644e+002 1.19738403e+002 1.00489632e+002 1.13873924e+002 - 1.19704498e+002 1.00538933e+002 1.13878059e+002 1.19687241e+002 - 1.00519615e+002 1.13839622e+002 1.19601608e+002 1.00517395e+002 - 1.13882507e+002 1.19662773e+002 1.00541458e+002 1.13947174e+002 - 1.19747307e+002 1.00538002e+002 1.13950256e+002 1.19797340e+002 - 1.00513374e+002 1.13956429e+002 1.19831734e+002 1.00431419e+002 - 1.13895905e+002 1.19824188e+002 1.00322655e+002 1.13820053e+002 - 1.19775772e+002 1.00225731e+002 1.13741707e+002 1.19752846e+002 - 1.00147987e+002 1.13692307e+002 1.19732010e+002 1.00090683e+002 - 1.13645683e+002 1.19735031e+002 9.99975052e+001 1.13582596e+002 - 1.19706284e+002 9.99343719e+001 1.13516830e+002 1.19701675e+002 - 9.98809814e+001 1.13491348e+002 1.19701462e+002 9.98258591e+001 - 1.13433929e+002 1.19697792e+002 9.97300262e+001 1.13366905e+002 - 1.19653671e+002 9.96547089e+001 1.13291267e+002 1.19628693e+002 - 9.95647964e+001 1.13220261e+002 1.19581673e+002 9.94981613e+001 - 1.13167198e+002 1.19609375e+002 9.94034424e+001 1.13111633e+002 - 1.19582420e+002 9.93293076e+001 1.13040939e+002 1.19558693e+002 - 9.92711639e+001 1.13003296e+002 1.19546570e+002 9.91875610e+001 - 1.12917976e+002 1.19518097e+002 9.91043625e+001 1.12855072e+002 - 1.19487610e+002 9.90311813e+001 1.12788666e+002 1.19472038e+002 - 9.89552994e+001 1.12725388e+002 1.19428986e+002 9.89029465e+001 - 1.12670387e+002 1.19426025e+002 9.88010864e+001 1.12583450e+002 - 1.19369728e+002 9.87357178e+001 1.12502228e+002 1.19349014e+002 - 9.86620789e+001 1.12446167e+002 1.19323433e+002 9.85916977e+001 - 1.12376320e+002 1.19306038e+002 9.85349960e+001 1.12338676e+002 - 1.19292221e+002 9.84912872e+001 1.12290009e+002 1.19289436e+002 - 9.84291687e+001 1.12237930e+002 1.19270493e+002 9.83677826e+001 - 1.12175087e+002 1.19269348e+002 9.82631531e+001 1.12094650e+002 - 1.19218681e+002 9.82294693e+001 1.12043694e+002 1.19215729e+002 - 9.81699295e+001 1.11991295e+002 1.19188507e+002 9.81383820e+001 - 1.11940369e+002 1.19193542e+002 9.80657654e+001 1.11884178e+002 - 1.19166168e+002 9.80151367e+001 1.11828339e+002 1.19164375e+002 - 9.79742889e+001 1.11801201e+002 1.19161491e+002 9.79480667e+001 - 1.11767876e+002 1.19180748e+002 9.78622971e+001 1.11696327e+002 - 1.19139389e+002 9.78284912e+001 1.11652206e+002 1.19151077e+002 - 9.77595444e+001 1.11599251e+002 1.19129326e+002 9.77249146e+001 - 1.11561462e+002 1.19133095e+002 9.76655273e+001 1.11521347e+002 - 1.19103775e+002 9.76077423e+001 1.11461655e+002 1.19073402e+002 - 9.75691833e+001 1.11428459e+002 1.19064659e+002 9.75159531e+001 - 1.11373482e+002 1.19059784e+002 9.74650269e+001 1.11343719e+002 - 1.19049309e+002 9.74353180e+001 1.11305679e+002 1.19043777e+002 - 9.73784409e+001 1.11247536e+002 1.19009529e+002 9.73464508e+001 - 1.11202438e+002 1.19011742e+002 9.72931366e+001 1.11165558e+002 - 1.18993782e+002 9.72202377e+001 1.11088745e+002 1.18958229e+002 - 9.71818161e+001 1.11063324e+002 1.18944870e+002 9.71641617e+001 - 1.11041176e+002 1.18963753e+002 9.71202545e+001 1.11008636e+002 - 1.18960640e+002 9.70778046e+001 1.10942352e+002 1.18950584e+002 - 9.70347061e+001 1.10911026e+002 1.18943108e+002 9.70126953e+001 - 1.10878944e+002 1.18955421e+002 9.69643631e+001 1.10852654e+002 - 1.18944702e+002 9.69474564e+001 1.10823555e+002 1.18956459e+002 - 9.69091110e+001 1.10794289e+002 1.18937325e+002 9.68701553e+001 - 1.10752808e+002 1.18943520e+002 9.68025513e+001 1.10709023e+002 - 1.18913857e+002 9.68010483e+001 1.10692764e+002 1.18928741e+002 - 9.67589874e+001 1.10665062e+002 1.18914856e+002 9.67444382e+001 - 1.10634407e+002 1.18924400e+002 9.67218018e+001 1.10625488e+002 - 1.18939018e+002 9.66791763e+001 1.10582840e+002 1.18936974e+002 - 9.66357346e+001 1.10544327e+002 1.18913399e+002 9.66238022e+001 - 1.10519722e+002 1.18927231e+002 9.65861969e+001 1.10494347e+002 - 1.18913857e+002 9.65529175e+001 1.10437027e+002 1.18903214e+002 - 9.65293884e+001 1.10422775e+002 1.18899582e+002 9.65378494e+001 - 1.10424797e+002 1.18932892e+002 9.65046158e+001 1.10417664e+002 - 1.18924812e+002 9.64646530e+001 1.10371582e+002 1.18907776e+002 - 9.64412918e+001 1.10358208e+002 1.18906830e+002 9.64153595e+001 - 1.10320656e+002 1.18910286e+002 9.63769913e+001 1.10302643e+002 - 1.18900047e+002 9.63454208e+001 1.10260925e+002 1.18887047e+002 - 9.63309097e+001 1.10248306e+002 1.18880363e+002 9.63251495e+001 - 1.10226067e+002 1.18890594e+002 9.63043976e+001 1.10218849e+002 - 1.18891426e+002 9.63087921e+001 1.10219048e+002 1.18916954e+002 - 9.62938156e+001 1.10217827e+002 1.18925369e+002 9.62726517e+001 - 1.10186676e+002 1.18910622e+002 9.62553406e+001 1.10179848e+002 - 1.18920113e+002 9.62589417e+001 1.10156326e+002 1.18930481e+002 - 9.62482986e+001 1.10159378e+002 1.18940460e+002 9.62312469e+001 - 1.10141708e+002 1.18936859e+002 9.61984634e+001 1.10124260e+002 - 1.18917953e+002 9.61816406e+001 1.10096161e+002 1.18914810e+002 - 9.61866837e+001 1.10103577e+002 1.18920700e+002 9.61875916e+001 - 1.10097282e+002 1.18937614e+002 9.61371078e+001 1.10069931e+002 - 1.18906555e+002 9.61352768e+001 1.10051239e+002 1.18905724e+002 - 9.61250687e+001 1.10055809e+002 1.18913895e+002 9.61550903e+001 - 1.10070595e+002 1.18946930e+002 9.61309814e+001 1.10061729e+002 - 1.18929367e+002 9.61260986e+001 1.10048950e+002 1.18926811e+002 - 9.61003418e+001 1.10041100e+002 1.18903564e+002 9.61128616e+001 - 1.10040039e+002 1.18917213e+002 9.60988541e+001 1.10040108e+002 - 1.18909111e+002 9.61192932e+001 1.10032066e+002 1.18929092e+002 - 9.61144409e+001 1.10041222e+002 1.18932640e+002 9.61114349e+001 - 1.10033989e+002 1.18932899e+002 9.61001892e+001 1.10042206e+002 - 1.18926880e+002 9.61015244e+001 1.10032608e+002 1.18932579e+002 - 9.61225586e+001 1.10058922e+002 1.18947273e+002 9.61501083e+001 - 1.10075928e+002 1.18977798e+002 9.61313858e+001 1.10082558e+002 - 1.18980774e+002 9.61307602e+001 1.10063690e+002 1.18969505e+002 - 9.61211853e+001 1.10063499e+002 1.18962227e+002 9.61631470e+001 - 1.10082397e+002 1.18998268e+002 9.61568069e+001 1.10089867e+002 - 1.18991287e+002 9.61734924e+001 1.10094498e+002 1.19011017e+002 - 9.61778946e+001 1.10105888e+002 1.19011642e+002 9.61828537e+001 - 1.10102226e+002 1.19012627e+002 9.61510773e+001 1.10084106e+002 - 1.18983444e+002 9.61688538e+001 1.10083992e+002 1.18986519e+002 - 9.61788712e+001 1.10109810e+002 1.18994698e+002 9.61877365e+001 - 1.10106422e+002 1.18990303e+002 9.61834106e+001 1.10119202e+002 - 1.18983307e+002 9.62046585e+001 1.10119354e+002 1.18983406e+002 - 9.62282104e+001 1.10153069e+002 1.18994858e+002 9.62593842e+001 - 1.10179955e+002 1.19019913e+002 9.62393417e+001 1.10192619e+002 - 1.19004166e+002 9.62756424e+001 1.10206245e+002 1.19018425e+002 - 9.62869720e+001 1.10228874e+002 1.19021538e+002 9.62833633e+001 - 1.10213356e+002 1.18991547e+002 9.62839737e+001 1.10221405e+002 - 1.18977737e+002 9.63047867e+001 1.10229485e+002 1.18977615e+002 - 9.63175125e+001 1.10250320e+002 1.18969406e+002 9.63267365e+001 - 1.10248886e+002 1.18960602e+002 9.63128738e+001 1.10249443e+002 - 1.18942032e+002 9.63618927e+001 1.10268654e+002 1.18963837e+002 - 9.63759918e+001 1.10293381e+002 1.18969406e+002 9.64362564e+001 - 1.10340034e+002 1.19008018e+002 9.64260559e+001 1.10345840e+002 - 1.18979233e+002 9.64450912e+001 1.10351639e+002 1.18978783e+002 - 9.64561920e+001 1.10361458e+002 1.18957329e+002 9.64818039e+001 - 1.10368835e+002 1.18954132e+002 9.64691696e+001 1.10380676e+002 - 1.18929108e+002 9.65122528e+001 1.10398972e+002 1.18942169e+002 - 9.65387955e+001 1.10430183e+002 1.18943245e+002 9.65774994e+001 - 1.10459351e+002 1.18955544e+002 9.65596161e+001 1.10458603e+002 - 1.18914719e+002 9.65737076e+001 1.10463737e+002 1.18892036e+002 - 9.65970459e+001 1.10496696e+002 1.18893677e+002 9.66368561e+001 - 1.10521286e+002 1.18897110e+002 9.66516876e+001 1.10543961e+002 - 1.18888145e+002 9.67111893e+001 1.10575287e+002 1.18905579e+002 - 9.67398071e+001 1.10616333e+002 1.18917702e+002 9.67676239e+001 - 1.10634094e+002 1.18916634e+002 9.67873459e+001 1.10669762e+002 - 1.18922859e+002 9.68355331e+001 1.10706474e+002 1.18944557e+002 - 9.68793182e+001 1.10757507e+002 1.18949677e+002 9.69068756e+001 - 1.10772743e+002 1.18936813e+002 9.69177170e+001 1.10810547e+002 - 1.18930016e+002 9.69920959e+001 1.10867119e+002 1.18969048e+002 - 9.70579300e+001 1.10935410e+002 1.19002525e+002 9.70924301e+001 - 1.10951668e+002 1.18993347e+002 9.71067429e+001 1.10975449e+002 - 1.18976204e+002 9.71482162e+001 1.11003754e+002 1.18981148e+002 - 9.71640625e+001 1.11027496e+002 1.18961227e+002 9.72193909e+001 - 1.11063667e+002 1.18981148e+002 9.72499542e+001 1.11102867e+002 - 1.18986542e+002 9.72859116e+001 1.11112671e+002 1.18974030e+002 - 9.73275299e+001 1.11165207e+002 1.18984520e+002 9.73796234e+001 - 1.11213181e+002 1.19002617e+002 9.73940430e+001 1.11250618e+002 - 1.18993622e+002 9.74608917e+001 1.11306732e+002 1.19033325e+002 - 9.75101624e+001 1.11357300e+002 1.19045212e+002 9.75683670e+001 - 1.11398163e+002 1.19053116e+002 9.75977936e+001 1.11445953e+002 - 1.19054527e+002 9.76630707e+001 1.11502052e+002 1.19082741e+002 - 9.77021255e+001 1.11553291e+002 1.19087952e+002 9.77573700e+001 - 1.11594421e+002 1.19101151e+002 9.77841797e+001 1.11629021e+002 - 1.19085091e+002 9.78151321e+001 1.11656174e+002 1.19076797e+002 - 9.78725510e+001 1.11729706e+002 1.19097076e+002 9.79215775e+001 - 1.11762589e+002 1.19101608e+002 9.79312286e+001 1.11781021e+002 - 1.19085754e+002 9.80290375e+001 1.11852371e+002 1.19128975e+002 - 9.81019135e+001 1.11926651e+002 1.19160561e+002 9.81736221e+001 - 1.11982155e+002 1.19186272e+002 9.82073059e+001 1.12033821e+002 - 1.19187248e+002 9.82480621e+001 1.12057930e+002 1.19183060e+002 - 9.83202591e+001 1.12132736e+002 1.19199295e+002 9.83896103e+001 - 1.12183357e+002 1.19195900e+002 9.84508743e+001 1.12266464e+002 - 1.19227119e+002 9.85295181e+001 1.12324425e+002 1.19272278e+002 - 9.85764465e+001 1.12379303e+002 1.19282730e+002 9.86517410e+001 - 1.12425446e+002 1.19309410e+002 9.86850662e+001 1.12467957e+002 - 1.19298569e+002 9.87382736e+001 1.12507683e+002 1.19298279e+002 - 9.88077316e+001 1.12587761e+002 1.19332573e+002 9.88911896e+001 - 1.12657646e+002 1.19368790e+002 9.89613647e+001 1.12727608e+002 - 1.19394196e+002 9.90450134e+001 1.12769585e+002 1.19407059e+002 - 9.91089630e+001 1.12841530e+002 1.19423729e+002 9.91815948e+001 - 1.12890610e+002 1.19437302e+002 9.92609787e+001 1.12973099e+002 - 1.19469475e+002 9.93415833e+001 1.13029274e+002 1.19500946e+002 - 9.93960114e+001 1.13074722e+002 1.19491707e+002 9.94563217e+001 - 1.13104965e+002 1.19465477e+002 9.95314255e+001 1.13186005e+002 - 1.19495651e+002 9.96306915e+001 1.13256927e+002 1.19543358e+002 - 9.97045593e+001 1.13330383e+002 1.19569412e+002 9.98099289e+001 - 1.13402382e+002 1.19605911e+002 9.98746567e+001 1.13462418e+002 - 1.19614670e+002 9.99728775e+001 1.13531250e+002 1.19644318e+002 - 1.00067932e+002 1.13619156e+002 1.19680946e+002 1.00147690e+002 - 1.13666389e+002 1.19700638e+002 1.00257950e+002 1.13759598e+002 - 1.19746613e+002 1.00343292e+002 1.13795998e+002 1.19747620e+002 - 1.00399315e+002 1.13839546e+002 1.19736168e+002 1.00478271e+002 - 1.13869690e+002 1.19743149e+002 1.00517891e+002 1.13894783e+002 - 1.19716789e+002 1.00554970e+002 1.13885330e+002 1.19687050e+002 - 1.00541679e+002 1.13855217e+002 1.19605675e+002 1.00591888e+002 - 1.13930313e+002 1.19705727e+002 1.00610687e+002 1.14008179e+002 - 1.19788246e+002 1.00605736e+002 1.14012650e+002 1.19832916e+002 - 1.00564232e+002 1.14011330e+002 1.19853653e+002 1.00511070e+002 - 1.13963249e+002 1.19871735e+002 1.00409882e+002 1.13903450e+002 - 1.19837112e+002 1.00316177e+002 1.13824837e+002 1.19811317e+002 - 1.00227135e+002 1.13767403e+002 1.19777443e+002 1.00162025e+002 - 1.13704323e+002 1.19765877e+002 1.00055504e+002 1.13636757e+002 - 1.19725906e+002 1.00029778e+002 1.13591637e+002 1.19755836e+002 - 9.99490051e+001 1.13542854e+002 1.19735107e+002 9.98832626e+001 - 1.13492386e+002 1.19722206e+002 9.97966995e+001 1.13430031e+002 - 1.19683609e+002 9.97317352e+001 1.13354103e+002 1.19666100e+002 - 9.96454926e+001 1.13291748e+002 1.19635864e+002 9.95713196e+001 - 1.13240768e+002 1.19648354e+002 9.94765472e+001 1.13182571e+002 - 1.19620163e+002 9.94092941e+001 1.13111534e+002 1.19592964e+002 - 9.93447800e+001 1.13067238e+002 1.19576180e+002 9.92706146e+001 - 1.12983536e+002 1.19560020e+002 9.91913300e+001 1.12926994e+002 - 1.19529045e+002 9.91112823e+001 1.12852333e+002 1.19498535e+002 - 9.90502777e+001 1.12816414e+002 1.19487122e+002 9.89976425e+001 - 1.12758667e+002 1.19479614e+002 9.88983536e+001 1.12679329e+002 - 1.19421860e+002 9.88450012e+001 1.12594292e+002 1.19406212e+002 - 9.87655640e+001 1.12531487e+002 1.19375862e+002 9.86766815e+001 - 1.12444183e+002 1.19342545e+002 9.86166992e+001 1.12414268e+002 - 1.19326965e+002 9.85751572e+001 1.12357101e+002 1.19322609e+002 - 9.85298080e+001 1.12319611e+002 1.19317505e+002 9.84391174e+001 - 1.12243279e+002 1.19298241e+002 9.83529739e+001 1.12175537e+002 - 1.19257828e+002 9.83093643e+001 1.12110138e+002 1.19245979e+002 - 9.82432938e+001 1.12053391e+002 1.19212685e+002 9.82277985e+001 - 1.12012215e+002 1.19236366e+002 9.81584702e+001 1.11961868e+002 - 1.19210999e+002 9.80960999e+001 1.11896645e+002 1.19194405e+002 - 9.80390549e+001 1.11853142e+002 1.19179031e+002 9.79986649e+001 - 1.11806389e+002 1.19178406e+002 9.79293671e+001 1.11758430e+002 - 1.19162392e+002 9.79089508e+001 1.11719467e+002 1.19185196e+002 - 9.78375397e+001 1.11667725e+002 1.19156097e+002 9.78013687e+001 - 1.11627327e+002 1.19155998e+002 9.77359009e+001 1.11584915e+002 - 1.19123306e+002 9.76916809e+001 1.11524910e+002 1.19110039e+002 - 9.76629562e+001 1.11515366e+002 1.19102699e+002 9.76151886e+001 - 1.11466034e+002 1.19101151e+002 9.75440063e+001 1.11416183e+002 - 1.19074013e+002 9.74989166e+001 1.11358368e+002 1.19055801e+002 - 9.74576874e+001 1.11323189e+002 1.19039528e+002 9.74269638e+001 - 1.11274406e+002 1.19042213e+002 9.73720093e+001 1.11234184e+002 - 1.19015190e+002 9.73069382e+001 1.11163757e+002 1.18987724e+002 - 9.72918015e+001 1.11171707e+002 1.19010384e+002 9.72561569e+001 - 1.11121811e+002 1.19003342e+002 9.71910706e+001 1.11071060e+002 - 1.18977364e+002 9.71681671e+001 1.11018883e+002 1.18987450e+002 - 9.71456070e+001 1.11001831e+002 1.18994736e+002 9.71122437e+001 - 1.10969490e+002 1.18997917e+002 9.70487823e+001 1.10926315e+002 - 1.18971527e+002 9.70475082e+001 1.10906631e+002 1.18999725e+002 - 9.70195465e+001 1.10896065e+002 1.18993294e+002 9.69656296e+001 - 1.10838509e+002 1.18978920e+002 9.68926315e+001 1.10782097e+002 - 1.18941673e+002 9.68750305e+001 1.10756607e+002 1.18939819e+002 - 9.68659592e+001 1.10758766e+002 1.18960037e+002 9.68677826e+001 - 1.10741371e+002 1.18992210e+002 9.68180771e+001 1.10707603e+002 - 1.18973419e+002 9.67811584e+001 1.10675606e+002 1.18975266e+002 - 9.67436676e+001 1.10644348e+002 1.18956734e+002 9.67172470e+001 - 1.10605042e+002 1.18950089e+002 9.66664200e+001 1.10568451e+002 - 1.18933464e+002 9.66466904e+001 1.10517448e+002 1.18932915e+002 - 9.66220932e+001 1.10499168e+002 1.18930328e+002 9.66097794e+001 - 1.10488373e+002 1.18936150e+002 9.65706558e+001 1.10473442e+002 - 1.18929604e+002 9.65520325e+001 1.10436874e+002 1.18925713e+002 - 9.65419922e+001 1.10439606e+002 1.18934822e+002 9.65045547e+001 - 1.10396782e+002 1.18931366e+002 9.64980545e+001 1.10409538e+002 - 1.18956390e+002 9.64674606e+001 1.10367752e+002 1.18945168e+002 - 9.64440308e+001 1.10357445e+002 1.18936363e+002 9.64366150e+001 - 1.10325272e+002 1.18944504e+002 9.64053650e+001 1.10313377e+002 - 1.18933601e+002 9.64041443e+001 1.10310890e+002 1.18952057e+002 - 9.64033432e+001 1.10322289e+002 1.18973518e+002 9.63944855e+001 - 1.10298309e+002 1.18970619e+002 9.63698425e+001 1.10288506e+002 - 1.18962677e+002 9.63876572e+001 1.10268898e+002 1.18995285e+002 - 9.63634644e+001 1.10259537e+002 1.18991035e+002 9.63519974e+001 - 1.10247955e+002 1.18986588e+002 9.63197098e+001 1.10237556e+002 - 1.18973175e+002 9.63075562e+001 1.10204224e+002 1.18971939e+002 - 9.63002167e+001 1.10205200e+002 1.18967422e+002 9.62956696e+001 - 1.10199615e+002 1.18977684e+002 9.62550659e+001 1.10182259e+002 - 1.18960915e+002 9.62483749e+001 1.10163124e+002 1.18958603e+002 - 9.62251511e+001 1.10151222e+002 1.18945251e+002 9.62671356e+001 - 1.10170540e+002 1.18989204e+002 9.62470016e+001 1.10166260e+002 - 1.18974899e+002 9.62288284e+001 1.10150658e+002 1.18968430e+002 - 9.62456741e+001 1.10174423e+002 1.18976974e+002 9.62431793e+001 - 1.10162170e+002 1.18977272e+002 9.62163620e+001 1.10149963e+002 - 1.18955284e+002 9.62365112e+001 1.10137756e+002 1.18976524e+002 - 9.62089005e+001 1.10121071e+002 1.18955780e+002 9.61984863e+001 - 1.10115776e+002 1.18950676e+002 9.61856766e+001 1.10117943e+002 - 1.18942307e+002 9.61994629e+001 1.10113907e+002 1.18960243e+002 - 9.62043152e+001 1.10121223e+002 1.18960190e+002 9.62332153e+001 - 1.10152794e+002 1.18995773e+002 9.62115707e+001 1.10150375e+002 - 1.18987740e+002 9.62163010e+001 1.10141205e+002 1.18991463e+002 - 9.62244949e+001 1.10151070e+002 1.18992622e+002 9.62607727e+001 - 1.10169739e+002 1.19025009e+002 9.62512512e+001 1.10173203e+002 - 1.19019775e+002 9.62596359e+001 1.10175949e+002 1.19028053e+002 - 9.62788391e+001 1.10205482e+002 1.19043785e+002 9.62770004e+001 - 1.10187698e+002 1.19039841e+002 9.62508163e+001 1.10176422e+002 - 1.19017776e+002 9.62823486e+001 1.10182457e+002 1.19036697e+002 - 9.63115768e+001 1.10224632e+002 1.19059952e+002 9.63167343e+001 - 1.10230988e+002 1.19056328e+002 9.62967682e+001 1.10227112e+002 - 1.19024742e+002 9.63167114e+001 1.10222656e+002 1.19032822e+002 - 9.63146515e+001 1.10230148e+002 1.19018303e+002 9.63406677e+001 - 1.10253593e+002 1.19039833e+002 9.63234634e+001 1.10267876e+002 - 1.19026131e+002 9.63558731e+001 1.10281250e+002 1.19043274e+002 - 9.63904648e+001 1.10331192e+002 1.19061523e+002 9.63956223e+001 - 1.10308891e+002 1.19044579e+002 9.63913956e+001 1.10318016e+002 - 1.19020638e+002 9.64013596e+001 1.10322388e+002 1.19015175e+002 - 9.64092712e+001 1.10337837e+002 1.19006058e+002 9.64264526e+001 - 1.10345673e+002 1.19007698e+002 9.64264679e+001 1.10360870e+002 - 1.18995544e+002 9.64759140e+001 1.10373909e+002 1.19027077e+002 - 9.64829178e+001 1.10394890e+002 1.19015388e+002 9.65133591e+001 - 1.10418213e+002 1.19022293e+002 9.65059967e+001 1.10416840e+002 - 1.18999741e+002 9.65311508e+001 1.10421837e+002 1.19006271e+002 - 9.65528793e+001 1.10445389e+002 1.18993736e+002 9.66064148e+001 - 1.10486969e+002 1.19020363e+002 9.65710602e+001 1.10468704e+002 - 1.18966850e+002 9.66287994e+001 1.10505699e+002 1.18999207e+002 - 9.66418228e+001 1.10530563e+002 1.18988892e+002 9.66643219e+001 - 1.10536385e+002 1.18984528e+002 9.66588364e+001 1.10543953e+002 - 1.18954445e+002 9.66890945e+001 1.10567245e+002 1.18951675e+002 - 9.67144318e+001 1.10604111e+002 1.18944992e+002 9.67373047e+001 - 1.10615074e+002 1.18936539e+002 9.67555389e+001 1.10646622e+002 - 1.18931366e+002 9.68192673e+001 1.10670120e+002 1.18956108e+002 - 9.68480530e+001 1.10710709e+002 1.18961578e+002 9.68730240e+001 - 1.10734253e+002 1.18958351e+002 9.68781357e+001 1.10750748e+002 - 1.18946053e+002 9.69325409e+001 1.10788864e+002 1.18981117e+002 - 9.69828796e+001 1.10839417e+002 1.18989639e+002 9.70121307e+001 - 1.10869682e+002 1.18981583e+002 9.70149841e+001 1.10890961e+002 - 1.18961037e+002 9.70756836e+001 1.10937927e+002 1.18993362e+002 - 9.71201477e+001 1.10991920e+002 1.19006874e+002 9.71614838e+001 - 1.11006401e+002 1.19007034e+002 9.71887054e+001 1.11047218e+002 - 1.18996666e+002 9.72300034e+001 1.11083549e+002 1.19010544e+002 - 9.72630463e+001 1.11121262e+002 1.19002815e+002 9.73002930e+001 - 1.11141403e+002 1.19011147e+002 9.73091736e+001 1.11160248e+002 - 1.18985901e+002 9.73519516e+001 1.11171379e+002 1.18988106e+002 - 9.73972321e+001 1.11227676e+002 1.18999680e+002 9.74547043e+001 - 1.11286972e+002 1.19026917e+002 9.74723816e+001 1.11323563e+002 - 1.19023132e+002 9.75384674e+001 1.11377052e+002 1.19064384e+002 - 9.75985794e+001 1.11438782e+002 1.19081879e+002 9.76655960e+001 - 1.11492096e+002 1.19102509e+002 9.76870728e+001 1.11529274e+002 - 1.19092033e+002 9.77497864e+001 1.11578896e+002 1.19116158e+002 - 9.77999802e+001 1.11643646e+002 1.19132797e+002 9.78356628e+001 - 1.11659508e+002 1.19127785e+002 9.78475113e+001 1.11685738e+002 - 1.19098717e+002 9.78860168e+001 1.11716629e+002 1.19093918e+002 - 9.79453278e+001 1.11788582e+002 1.19115036e+002 9.79937134e+001 - 1.11828728e+002 1.19128059e+002 9.80381775e+001 1.11885162e+002 - 1.19140640e+002 9.81349182e+001 1.11940178e+002 1.19181190e+002 - 9.82068024e+001 1.12018196e+002 1.19214333e+002 9.82664719e+001 - 1.12075333e+002 1.19231644e+002 9.82873917e+001 1.12105125e+002 - 1.19212013e+002 9.83275223e+001 1.12123459e+002 1.19209862e+002 - 9.84099045e+001 1.12210472e+002 1.19230568e+002 9.84958649e+001 - 1.12272453e+002 1.19245743e+002 9.85378189e+001 1.12336319e+002 - 1.19258408e+002 9.85909958e+001 1.12376808e+002 1.19279747e+002 - 9.86452713e+001 1.12437752e+002 1.19300331e+002 9.87387314e+001 - 1.12504662e+002 1.19344376e+002 9.87751770e+001 1.12540695e+002 - 1.19340347e+002 9.88096008e+001 1.12571556e+002 1.19332054e+002 - 9.88795090e+001 1.12650917e+002 1.19360275e+002 9.89482193e+001 - 1.12697510e+002 1.19377235e+002 9.90138855e+001 1.12776527e+002 - 1.19399590e+002 9.91144562e+001 1.12831375e+002 1.19438454e+002 - 9.91759796e+001 1.12892250e+002 1.19445724e+002 9.92431259e+001 - 1.12949005e+002 1.19458282e+002 9.93040085e+001 1.13012672e+002 - 1.19471901e+002 9.93878708e+001 1.13062843e+002 1.19504082e+002 - 9.94531097e+001 1.13119652e+002 1.19507141e+002 9.95470047e+001 - 1.13185532e+002 1.19517830e+002 9.96328125e+001 1.13275223e+002 - 1.19555969e+002 9.97028198e+001 1.13313217e+002 1.19577118e+002 - 9.97882538e+001 1.13400711e+002 1.19609962e+002 9.98906555e+001 - 1.13468445e+002 1.19652206e+002 9.99440079e+001 1.13518250e+002 - 1.19646774e+002 1.00032982e+002 1.13582481e+002 1.19672203e+002 - 1.00126534e+002 1.13671661e+002 1.19705475e+002 1.00202873e+002 - 1.13715073e+002 1.19723747e+002 1.00300468e+002 1.13798622e+002 - 1.19756874e+002 1.00405945e+002 1.13846588e+002 1.19781082e+002 - 1.00472824e+002 1.13895897e+002 1.19772278e+002 1.00541237e+002 - 1.13920822e+002 1.19765907e+002 1.00572548e+002 1.13938545e+002 - 1.19733246e+002 1.00610077e+002 1.13925880e+002 1.19708595e+002 - 1.00587311e+002 1.13896309e+002 1.19617905e+002 1.00617279e+002 - 1.13949547e+002 1.19688278e+002 1.00620743e+002 1.14017159e+002 - 1.19763893e+002 1.00609016e+002 1.14015152e+002 1.19801163e+002 - 1.00585373e+002 1.14026886e+002 1.19840012e+002 1.00529526e+002 - 1.13970955e+002 1.19849670e+002 1.00434090e+002 1.13915550e+002 - 1.19821991e+002 1.00352539e+002 1.13853722e+002 1.19805328e+002 - 1.00264969e+002 1.13792938e+002 1.19774109e+002 1.00207428e+002 - 1.13739578e+002 1.19763611e+002 1.00085793e+002 1.13655426e+002 - 1.19704514e+002 1.00044273e+002 1.13601379e+002 1.19720772e+002 - 9.99880600e+001 1.13579620e+002 1.19728516e+002 9.99141388e+001 - 1.13516731e+002 1.19712715e+002 9.98471222e+001 1.13478348e+002 - 1.19695007e+002 9.97839050e+001 1.13409950e+002 1.19675797e+002 - 9.97160568e+001 1.13360657e+002 1.19663849e+002 9.96314087e+001 - 1.13298790e+002 1.19664825e+002 9.95278168e+001 1.13228020e+002 - 1.19624519e+002 9.94701233e+001 1.13158989e+002 1.19604187e+002 - 9.93914871e+001 1.13097557e+002 1.19566925e+002 9.93347244e+001 - 1.13034279e+002 1.19565498e+002 9.92674103e+001 1.12987122e+002 - 1.19546509e+002 9.91656723e+001 1.12896072e+002 1.19502617e+002 - 9.91003342e+001 1.12849846e+002 1.19484665e+002 9.90466156e+001 - 1.12799843e+002 1.19475555e+002 9.89622574e+001 1.12735840e+002 - 1.19434608e+002 9.89106140e+001 1.12652779e+002 1.19426430e+002 - 9.88436432e+001 1.12602165e+002 1.19403770e+002 9.87640839e+001 - 1.12530052e+002 1.19365486e+002 9.87023697e+001 1.12485428e+002 - 1.19350044e+002 9.86609116e+001 1.12432770e+002 1.19340881e+002 - 9.85818710e+001 1.12365654e+002 1.19306976e+002 9.84953308e+001 - 1.12283180e+002 1.19287682e+002 9.84218826e+001 1.12234444e+002 - 1.19265877e+002 9.83674927e+001 1.12165123e+002 1.19239876e+002 - 9.83234024e+001 1.12134048e+002 1.19237900e+002 9.82901230e+001 - 1.12071945e+002 1.19238899e+002 9.82115173e+001 1.12008400e+002 - 1.19203445e+002 9.81488266e+001 1.11941574e+002 1.19189545e+002 - 9.81046982e+001 1.11908371e+002 1.19181686e+002 9.80564804e+001 - 1.11855545e+002 1.19178780e+002 9.79918976e+001 1.11812431e+002 - 1.19162292e+002 9.79502563e+001 1.11746857e+002 1.19165550e+002 - 9.78698730e+001 1.11687057e+002 1.19127548e+002 9.78537445e+001 - 1.11674393e+002 1.19143974e+002 9.77996674e+001 1.11642609e+002 - 1.19122765e+002 9.77612534e+001 1.11591522e+002 1.19111366e+002 - 9.77224808e+001 1.11566429e+002 1.19098038e+002 9.76880875e+001 - 1.11535362e+002 1.19111351e+002 9.76203232e+001 1.11488503e+002 - 1.19090332e+002 9.75789948e+001 1.11432068e+002 1.19071922e+002 - 9.75363388e+001 1.11400871e+002 1.19053078e+002 9.75096207e+001 - 1.11354858e+002 1.19059509e+002 9.74574509e+001 1.11316872e+002 - 1.19042274e+002 9.74019470e+001 1.11260635e+002 1.19025993e+002 - 9.73672638e+001 1.11236778e+002 1.19020645e+002 9.73429642e+001 - 1.11200630e+002 1.19028625e+002 9.72674408e+001 1.11141304e+002 - 1.18983406e+002 9.72531662e+001 1.11096695e+002 1.19002350e+002 - 9.72263718e+001 1.11081322e+002 1.19007896e+002 9.71932144e+001 - 1.11046005e+002 1.19004723e+002 9.71266327e+001 1.11001556e+002 - 1.18978874e+002 9.70948257e+001 1.10951294e+002 1.18971680e+002 - 9.70701370e+001 1.10938118e+002 1.18976166e+002 9.70159683e+001 - 1.10881218e+002 1.18964371e+002 9.69674683e+001 1.10850685e+002 - 1.18949440e+002 9.69418869e+001 1.10810822e+002 1.18946815e+002 - 9.69267197e+001 1.10813416e+002 1.18956230e+002 9.69170609e+001 - 1.10787628e+002 1.18972443e+002 9.68900528e+001 1.10775475e+002 - 1.18976387e+002 9.68276520e+001 1.10715210e+002 1.18946892e+002 - 9.67784882e+001 1.10676903e+002 1.18923409e+002 9.67708359e+001 - 1.10656013e+002 1.18937248e+002 9.67370377e+001 1.10634354e+002 - 1.18929893e+002 9.67183533e+001 1.10582741e+002 1.18931152e+002 - 9.67033920e+001 1.10576660e+002 1.18940681e+002 9.66786957e+001 - 1.10548897e+002 1.18934029e+002 9.66463699e+001 1.10533012e+002 - 1.18920624e+002 9.66445313e+001 1.10513802e+002 1.18932678e+002 - 9.66249161e+001 1.10507156e+002 1.18936600e+002 9.65981979e+001 - 1.10476990e+002 1.18950935e+002 9.65648651e+001 1.10468971e+002 - 1.18948387e+002 9.65528564e+001 1.10450264e+002 1.18964264e+002 - 9.65342560e+001 1.10444542e+002 1.18963799e+002 9.65298462e+001 - 1.10421898e+002 1.18974106e+002 9.65075378e+001 1.10407776e+002 - 1.18964775e+002 9.64979630e+001 1.10403801e+002 1.18974518e+002 - 9.64921188e+001 1.10411560e+002 1.18990204e+002 9.64852829e+001 - 1.10388245e+002 1.18990288e+002 9.64779129e+001 1.10398560e+002 - 1.18997856e+002 9.64820404e+001 1.10360756e+002 1.19007858e+002 - 9.64600601e+001 1.10351227e+002 1.19005722e+002 9.64434204e+001 - 1.10335838e+002 1.18998009e+002 9.64057617e+001 1.10315437e+002 - 1.18972992e+002 9.64073486e+001 1.10296516e+002 1.18985504e+002 - 9.63831253e+001 1.10279129e+002 1.18968292e+002 9.63543472e+001 - 1.10254730e+002 1.18960251e+002 9.63290329e+001 1.10250191e+002 - 1.18954681e+002 9.63438644e+001 1.10246635e+002 1.18974190e+002 - 9.63391418e+001 1.10255287e+002 1.18977890e+002 9.63592377e+001 - 1.10256439e+002 1.19008873e+002 9.63190231e+001 1.10238876e+002 - 1.18976486e+002 9.63154449e+001 1.10233231e+002 1.18978584e+002 - 9.63126678e+001 1.10239182e+002 1.18971878e+002 9.63248978e+001 - 1.10239555e+002 1.18983994e+002 9.62986679e+001 1.10228813e+002 - 1.18962036e+002 9.63124237e+001 1.10216522e+002 1.18981033e+002 - 9.63073730e+001 1.10221611e+002 1.18984856e+002 9.63044281e+001 - 1.10214188e+002 1.18979675e+002 9.62698669e+001 1.10201538e+002 - 1.18955055e+002 9.62922058e+001 1.10201073e+002 1.18978699e+002 - 9.62902679e+001 1.10206223e+002 1.18975517e+002 9.63011627e+001 - 1.10218636e+002 1.18993935e+002 9.62769394e+001 1.10211006e+002 - 1.18979820e+002 9.62971725e+001 1.10217125e+002 1.18998878e+002 - 9.62969131e+001 1.10223717e+002 1.18992332e+002 9.63085327e+001 - 1.10215813e+002 1.19000977e+002 9.63044739e+001 1.10225677e+002 - 1.18994186e+002 9.63401184e+001 1.10255074e+002 1.19029686e+002 - 9.63332748e+001 1.10261574e+002 1.19028038e+002 9.63369904e+001 - 1.10249603e+002 1.19027176e+002 9.63207626e+001 1.10254204e+002 - 1.19012230e+002 9.63490143e+001 1.10250481e+002 1.19028206e+002 - 9.63913269e+001 1.10302048e+002 1.19060448e+002 9.64141312e+001 - 1.10320114e+002 1.19068939e+002 9.63863754e+001 1.10308563e+002 - 1.19031525e+002 9.63913803e+001 1.10299698e+002 1.19039627e+002 - 9.64160385e+001 1.10327835e+002 1.19050308e+002 9.64455185e+001 - 1.10362427e+002 1.19074234e+002 9.64330902e+001 1.10375641e+002 - 1.19061646e+002 9.64504395e+001 1.10376076e+002 1.19071373e+002 - 9.64710541e+001 1.10409225e+002 1.19070618e+002 9.64917221e+001 - 1.10408737e+002 1.19072227e+002 9.64813004e+001 1.10402977e+002 - 1.19039070e+002 9.64926147e+001 1.10411171e+002 1.19043053e+002 - 9.64941711e+001 1.10420860e+002 1.19028801e+002 9.65239334e+001 - 1.10445015e+002 1.19050819e+002 9.65225906e+001 1.10456902e+002 - 1.19036057e+002 9.65553131e+001 1.10449173e+002 1.19042313e+002 - 9.65716705e+001 1.10472481e+002 1.19036308e+002 9.65772476e+001 - 1.10467148e+002 1.19019348e+002 9.65928726e+001 1.10499115e+002 - 1.19015205e+002 9.66176376e+001 1.10502289e+002 1.19023109e+002 - 9.66366577e+001 1.10523666e+002 1.19012932e+002 9.66894836e+001 - 1.10566566e+002 1.19036469e+002 9.66600723e+001 1.10557304e+002 - 1.18992485e+002 9.67080460e+001 1.10579178e+002 1.19015526e+002 - 9.67359009e+001 1.10625999e+002 1.19023705e+002 9.67581100e+001 - 1.10625328e+002 1.19011734e+002 9.67549667e+001 1.10635918e+002 - 1.18987564e+002 9.67787170e+001 1.10660606e+002 1.18985481e+002 - 9.68070374e+001 1.10692276e+002 1.18985817e+002 9.68329391e+001 - 1.10705589e+002 1.18975250e+002 9.68400116e+001 1.10723564e+002 - 1.18952362e+002 9.69194946e+001 1.10758179e+002 1.18993874e+002 - 9.69561157e+001 1.10810966e+002 1.19003685e+002 9.69717636e+001 - 1.10820351e+002 1.18985664e+002 9.69688416e+001 1.10836159e+002 - 1.18962662e+002 9.70220337e+001 1.10874290e+002 1.18997627e+002 - 9.70566254e+001 1.10914703e+002 1.18998917e+002 9.70810013e+001 - 1.10929749e+002 1.18980400e+002 9.70896072e+001 1.10958076e+002 - 1.18961853e+002 9.71287842e+001 1.10977203e+002 1.18968231e+002 - 9.71700974e+001 1.11025589e+002 1.18978302e+002 9.72282028e+001 - 1.11061928e+002 1.19001129e+002 9.72614441e+001 1.11106827e+002 - 1.18999344e+002 9.73087234e+001 1.11150162e+002 1.19023445e+002 - 9.73301010e+001 1.11182457e+002 1.19013351e+002 9.73885574e+001 - 1.11228188e+002 1.19041245e+002 9.73984528e+001 1.11247597e+002 - 1.19016235e+002 9.74359818e+001 1.11255287e+002 1.19016960e+002 - 9.74815979e+001 1.11314575e+002 1.19025681e+002 9.75410843e+001 - 1.11369560e+002 1.19053581e+002 9.75513916e+001 1.11398849e+002 - 1.19041367e+002 9.76200790e+001 1.11453110e+002 1.19085213e+002 - 9.76625977e+001 1.11496292e+002 1.19082603e+002 9.77182846e+001 - 1.11546059e+002 1.19090462e+002 9.77488708e+001 1.11586952e+002 - 1.19091019e+002 9.78163223e+001 1.11638893e+002 1.19123207e+002 - 9.78689957e+001 1.11703835e+002 1.19137367e+002 9.79008942e+001 - 1.11705154e+002 1.19125481e+002 9.79242859e+001 1.11749138e+002 - 1.19106422e+002 9.79863129e+001 1.11809662e+002 1.19133316e+002 - 9.80170441e+001 1.11852592e+002 1.19130470e+002 9.80758896e+001 - 1.11905006e+002 1.19154274e+002 9.81236267e+001 1.11967567e+002 - 1.19167191e+002 9.82016144e+001 1.12008354e+002 1.19196159e+002 - 9.82617416e+001 1.12070343e+002 1.19211014e+002 9.83073578e+001 - 1.12106201e+002 1.19210838e+002 9.83327484e+001 1.12141167e+002 - 1.19196152e+002 9.83993759e+001 1.12178383e+002 1.19212875e+002 - 9.84715424e+001 1.12258347e+002 1.19230865e+002 9.85518951e+001 - 1.12320496e+002 1.19245102e+002 9.85901718e+001 1.12375595e+002 - 1.19249802e+002 9.86636200e+001 1.12431427e+002 1.19294075e+002 - 9.87198029e+001 1.12502304e+002 1.19314339e+002 9.87856064e+001 - 1.12540543e+002 1.19337418e+002 9.88058167e+001 1.12568008e+002 - 1.19315964e+002 9.88715210e+001 1.12631760e+002 1.19339554e+002 - 9.89425125e+001 1.12703629e+002 1.19368370e+002 9.90131760e+001 - 1.12760017e+002 1.19393517e+002 9.90451279e+001 1.12794434e+002 - 1.19379684e+002 9.91471710e+001 1.12857758e+002 1.19421692e+002 - 9.92112656e+001 1.12920433e+002 1.19431961e+002 9.93061066e+001 - 1.13008965e+002 1.19479118e+002 9.93532410e+001 1.13054962e+002 - 1.19476036e+002 9.94095688e+001 1.13076393e+002 1.19479515e+002 - 9.94894638e+001 1.13142067e+002 1.19496323e+002 9.95792007e+001 - 1.13214676e+002 1.19509323e+002 9.96514282e+001 1.13280846e+002 - 1.19523628e+002 9.97228699e+001 1.13324951e+002 1.19543396e+002 - 9.98132706e+001 1.13418266e+002 1.19586609e+002 9.99204178e+001 - 1.13483917e+002 1.19631905e+002 9.99734344e+001 1.13544617e+002 - 1.19632149e+002 1.00053528e+002 1.13601990e+002 1.19653847e+002 - 1.00131645e+002 1.13671150e+002 1.19675636e+002 1.00220490e+002 - 1.13725723e+002 1.19701714e+002 1.00317009e+002 1.13814178e+002 - 1.19741379e+002 1.00441437e+002 1.13872620e+002 1.19782913e+002 - 1.00504463e+002 1.13918961e+002 1.19771927e+002 1.00570068e+002 - 1.13947769e+002 1.19761658e+002 1.00584969e+002 1.13955139e+002 - 1.19715714e+002 1.00622375e+002 1.13935562e+002 1.19688499e+002 - 1.00580841e+002 1.13881096e+002 1.19572433e+002 1.00613449e+002 - 1.13973434e+002 1.19673676e+002 1.00614189e+002 1.14016350e+002 - 1.19746071e+002 1.00606850e+002 1.14019447e+002 1.19795830e+002 - 1.00592842e+002 1.14036102e+002 1.19842735e+002 1.00516396e+002 - 1.13978729e+002 1.19829597e+002 1.00437225e+002 1.13932083e+002 - 1.19812538e+002 1.00337082e+002 1.13843796e+002 1.19778305e+002 - 1.00264740e+002 1.13797089e+002 1.19755150e+002 1.00209846e+002 - 1.13753052e+002 1.19761681e+002 1.00113945e+002 1.13682991e+002 - 1.19723557e+002 1.00056648e+002 1.13633736e+002 1.19721870e+002 - 9.99928284e+001 1.13593468e+002 1.19711693e+002 9.99398804e+001 - 1.13546585e+002 1.19724854e+002 9.98709564e+001 1.13506813e+002 - 1.19707336e+002 9.98078232e+001 1.13444717e+002 1.19687080e+002 - 9.97295990e+001 1.13390945e+002 1.19663597e+002 9.96533890e+001 - 1.13326675e+002 1.19671730e+002 9.95544510e+001 1.13260376e+002 - 1.19631256e+002 9.94973221e+001 1.13196594e+002 1.19615334e+002 - 9.94095230e+001 1.13125557e+002 1.19568710e+002 9.93434372e+001 - 1.13051979e+002 1.19551300e+002 9.92920380e+001 1.13015633e+002 - 1.19549217e+002 9.92004852e+001 1.12934387e+002 1.19517410e+002 - 9.91315842e+001 1.12883759e+002 1.19485649e+002 9.90737915e+001 - 1.12834328e+002 1.19483665e+002 9.89867477e+001 1.12763527e+002 - 1.19438103e+002 9.89309998e+001 1.12686684e+002 1.19420845e+002 - 9.88640137e+001 1.12633980e+002 1.19395370e+002 9.88123779e+001 - 1.12580635e+002 1.19388359e+002 9.87387695e+001 1.12526733e+002 - 1.19352219e+002 9.86816025e+001 1.12464958e+002 1.19338860e+002 - 9.85986404e+001 1.12393051e+002 1.19290253e+002 9.85416183e+001 - 1.12338203e+002 1.19307808e+002 9.84565964e+001 1.12278221e+002 - 1.19277611e+002 9.84076767e+001 1.12214912e+002 1.19261200e+002 - 9.83731918e+001 1.12186653e+002 1.19255943e+002 9.83381882e+001 - 1.12133614e+002 1.19257332e+002 9.82616806e+001 1.12060921e+002 - 1.19223152e+002 9.81948242e+001 1.11997353e+002 1.19208664e+002 - 9.81600952e+001 1.11973946e+002 1.19211060e+002 9.81218414e+001 - 1.11934334e+002 1.19224861e+002 9.80632706e+001 1.11885979e+002 - 1.19212471e+002 9.80143280e+001 1.11825218e+002 1.19207886e+002 - 9.79327011e+001 1.11756172e+002 1.19164627e+002 9.79106903e+001 - 1.11732430e+002 1.19173347e+002 9.78517532e+001 1.11696487e+002 - 1.19146797e+002 9.77852707e+001 1.11628647e+002 1.19106392e+002 - 9.77508774e+001 1.11609108e+002 1.19096039e+002 9.77235794e+001 - 1.11570206e+002 1.19110756e+002 9.76530533e+001 1.11533783e+002 - 1.19090935e+002 9.76194458e+001 1.11485329e+002 1.19080215e+002 - 9.75836182e+001 1.11448692e+002 1.19066177e+002 9.75678177e+001 - 1.11422775e+002 1.19084137e+002 9.75042725e+001 1.11369522e+002 - 1.19054268e+002 9.74425354e+001 1.11309662e+002 1.19041039e+002 - 9.73943405e+001 1.11271263e+002 1.19018700e+002 9.73727646e+001 - 1.11240601e+002 1.19021271e+002 9.73271255e+001 1.11201401e+002 - 1.19007111e+002 9.72973938e+001 1.11155792e+002 1.19013527e+002 - 9.72568893e+001 1.11121902e+002 1.19009407e+002 9.72256775e+001 - 1.11089890e+002 1.19010719e+002 9.71670609e+001 1.11044395e+002 - 1.18985840e+002 9.71470566e+001 1.11015244e+002 1.18990067e+002 - 9.71081543e+001 1.10985870e+002 1.18973930e+002 9.70772934e+001 - 1.10950569e+002 1.18992424e+002 9.70042877e+001 1.10903183e+002 - 1.18966072e+002 9.69757156e+001 1.10859276e+002 1.18954231e+002 - 9.69728394e+001 1.10865868e+002 1.18970695e+002 9.69801102e+001 - 1.10858688e+002 1.19001343e+002 9.69429932e+001 1.10837196e+002 - 1.18990326e+002 9.68836288e+001 1.10774315e+002 1.18965775e+002 - 9.68420486e+001 1.10747231e+002 1.18955254e+002 9.68171005e+001 - 1.10708176e+002 1.18950233e+002 9.67813492e+001 1.10683502e+002 - 1.18940247e+002 9.67801361e+001 1.10660423e+002 1.18957603e+002 - 9.67789688e+001 1.10663643e+002 1.18974564e+002 9.67436295e+001 - 1.10622215e+002 1.18963463e+002 9.67052155e+001 1.10602745e+002 - 1.18945740e+002 9.67021484e+001 1.10590248e+002 1.18955566e+002 - 9.66959457e+001 1.10587196e+002 1.18972145e+002 9.66833954e+001 - 1.10569237e+002 1.18995018e+002 9.66404495e+001 1.10557228e+002 - 1.18990898e+002 9.66120834e+001 1.10522842e+002 1.18989441e+002 - 9.65746536e+001 1.10496407e+002 1.18972092e+002 9.65881653e+001 - 1.10490189e+002 1.18996323e+002 9.65884933e+001 1.10510269e+002 - 1.19018211e+002 9.65779190e+001 1.10495583e+002 1.19023460e+002 - 9.65523911e+001 1.10481056e+002 1.19009148e+002 9.65478210e+001 - 1.10459938e+002 1.19014351e+002 9.65508804e+001 1.10474030e+002 - 1.19035835e+002 9.65436859e+001 1.10435699e+002 1.19034096e+002 - 9.65298462e+001 1.10430206e+002 1.19022667e+002 9.65063705e+001 - 1.10396851e+002 1.19013031e+002 9.64807739e+001 1.10390366e+002 - 1.19005173e+002 9.64901428e+001 1.10385521e+002 1.19018578e+002 - 9.64486237e+001 1.10351692e+002 1.18984146e+002 9.64125824e+001 - 1.10318695e+002 1.18978577e+002 9.64090195e+001 1.10341164e+002 - 1.18995872e+002 9.64299469e+001 1.10341400e+002 1.19018723e+002 - 9.64234161e+001 1.10350174e+002 1.19027451e+002 9.64166870e+001 - 1.10330307e+002 1.19025345e+002 9.63987808e+001 1.10328911e+002 - 1.19013527e+002 9.63884048e+001 1.10310837e+002 1.19002663e+002 - 9.63676529e+001 1.10305267e+002 1.18982346e+002 9.63730774e+001 - 1.10298927e+002 1.18992012e+002 9.63700333e+001 1.10309418e+002 - 1.18994308e+002 9.63709030e+001 1.10286720e+002 1.18994934e+002 - 9.63735504e+001 1.10302185e+002 1.19008011e+002 9.63697815e+001 - 1.10290184e+002 1.18999466e+002 9.63437881e+001 1.10279968e+002 - 1.18979973e+002 9.63453064e+001 1.10264931e+002 1.18980087e+002 - 9.63488083e+001 1.10272324e+002 1.18982544e+002 9.63768997e+001 - 1.10297760e+002 1.19025078e+002 9.63621826e+001 1.10309875e+002 - 1.19021370e+002 9.63776855e+001 1.10312149e+002 1.19039871e+002 - 9.63810043e+001 1.10317581e+002 1.19039940e+002 9.63456802e+001 - 1.10272087e+002 1.18998978e+002 9.63305588e+001 1.10270714e+002 - 1.18988205e+002 9.63566895e+001 1.10289932e+002 1.19016449e+002 - 9.63708649e+001 1.10316582e+002 1.19026093e+002 9.63822632e+001 - 1.10316681e+002 1.19031151e+002 9.63864059e+001 1.10329544e+002 - 1.19038330e+002 9.64087982e+001 1.10333458e+002 1.19050522e+002 - 9.64229279e+001 1.10353516e+002 1.19055443e+002 9.64439468e+001 - 1.10364937e+002 1.19064148e+002 9.64272003e+001 1.10359756e+002 - 1.19040642e+002 9.64494705e+001 1.10369499e+002 1.19054016e+002 - 9.64668884e+001 1.10397812e+002 1.19056129e+002 9.64961472e+001 - 1.10416779e+002 1.19085724e+002 9.64650726e+001 1.10414642e+002 - 1.19056213e+002 9.64916687e+001 1.10425674e+002 1.19067169e+002 - 9.65289001e+001 1.10479973e+002 1.19095642e+002 9.65508804e+001 - 1.10474716e+002 1.19089607e+002 9.65355988e+001 1.10476799e+002 - 1.19066864e+002 9.65580521e+001 1.10488998e+002 1.19080681e+002 - 9.65599136e+001 1.10501938e+002 1.19068916e+002 9.65807953e+001 - 1.10517166e+002 1.19075859e+002 9.65957260e+001 1.10539764e+002 - 1.19074783e+002 9.66256790e+001 1.10540680e+002 1.19081604e+002 - 9.66400223e+001 1.10560150e+002 1.19075882e+002 9.66507339e+001 - 1.10551682e+002 1.19067978e+002 9.66493912e+001 1.10570480e+002 - 1.19050995e+002 9.66740189e+001 1.10579147e+002 1.19055664e+002 - 9.66863861e+001 1.10593559e+002 1.19035721e+002 9.67362061e+001 - 1.10625305e+002 1.19046165e+002 9.67349243e+001 1.10642334e+002 - 1.19031090e+002 9.67547302e+001 1.10644722e+002 1.19026215e+002 - 9.67912369e+001 1.10690941e+002 1.19038185e+002 9.68096619e+001 - 1.10694901e+002 1.19028275e+002 9.68193970e+001 1.10713936e+002 - 1.19017624e+002 9.68459167e+001 1.10734901e+002 1.19020721e+002 - 9.68488846e+001 1.10750504e+002 1.19001366e+002 9.68912354e+001 - 1.10770660e+002 1.19003616e+002 9.68999939e+001 1.10786469e+002 - 1.18989372e+002 9.69680557e+001 1.10824921e+002 1.19006371e+002 - 9.70212326e+001 1.10890610e+002 1.19035835e+002 9.70406952e+001 - 1.10904526e+002 1.19026093e+002 9.70335312e+001 1.10913025e+002 - 1.18993988e+002 9.70822449e+001 1.10946793e+002 1.19023781e+002 - 9.71267471e+001 1.10998024e+002 1.19030525e+002 9.71787109e+001 - 1.11035202e+002 1.19036873e+002 9.71654282e+001 1.11040398e+002 - 1.19001953e+002 9.71866455e+001 1.11043243e+002 1.18993347e+002 - 9.72080383e+001 1.11071022e+002 1.18989235e+002 9.72770615e+001 - 1.11120224e+002 1.19017647e+002 9.72971344e+001 1.11152100e+002 - 1.19011719e+002 9.73228607e+001 1.11176064e+002 1.19007645e+002 - 9.73781357e+001 1.11242851e+002 1.19032990e+002 9.74386063e+001 - 1.11291229e+002 1.19061958e+002 9.74395752e+001 1.11301910e+002 - 1.19036209e+002 9.74862595e+001 1.11320107e+002 1.19033684e+002 - 9.75367966e+001 1.11383873e+002 1.19056862e+002 9.76059418e+001 - 1.11440262e+002 1.19089050e+002 9.76229553e+001 1.11477264e+002 - 1.19091919e+002 9.76734772e+001 1.11520576e+002 1.19110428e+002 - 9.77162628e+001 1.11570488e+002 1.19114510e+002 9.77802124e+001 - 1.11618561e+002 1.19127663e+002 9.78113022e+001 1.11662857e+002 - 1.19131462e+002 9.78724670e+001 1.11704430e+002 1.19152580e+002 - 9.79098511e+001 1.11747078e+002 1.19152786e+002 9.79586258e+001 - 1.11778923e+002 1.19150307e+002 9.80096130e+001 1.11846176e+002 - 1.19171188e+002 9.80769577e+001 1.11905594e+002 1.19204346e+002 - 9.80908203e+001 1.11931259e+002 1.19180267e+002 9.81549988e+001 - 1.11988998e+002 1.19206055e+002 9.81945572e+001 1.12046829e+002 - 1.19220215e+002 9.82718506e+001 1.12087456e+002 1.19236191e+002 - 9.83168335e+001 1.12143570e+002 1.19242798e+002 9.83570023e+001 - 1.12155167e+002 1.19222542e+002 9.83850632e+001 1.12197632e+002 - 1.19215744e+002 9.84483643e+001 1.12242004e+002 1.19237808e+002 - 9.85139542e+001 1.12302071e+002 1.19242523e+002 9.85822525e+001 - 1.12350975e+002 1.19238686e+002 9.86317596e+001 1.12421051e+002 - 1.19265526e+002 9.87187958e+001 1.12493362e+002 1.19320709e+002 - 9.87664871e+001 1.12547638e+002 1.19334938e+002 9.88277740e+001 - 1.12589745e+002 1.19352180e+002 9.88711548e+001 1.12645912e+002 - 1.19361885e+002 9.89235611e+001 1.12686539e+002 1.19368965e+002 - 9.89772568e+001 1.12748718e+002 1.19385300e+002 9.90506058e+001 - 1.12801430e+002 1.19405800e+002 9.90882950e+001 1.12841904e+002 - 1.19403976e+002 9.91757507e+001 1.12897865e+002 1.19433319e+002 - 9.92401581e+001 1.12960686e+002 1.19443123e+002 9.93366928e+001 - 1.13032021e+002 1.19481415e+002 9.93666992e+001 1.13073929e+002 - 1.19474472e+002 9.94246292e+001 1.13101471e+002 1.19477058e+002 - 9.95071335e+001 1.13170059e+002 1.19493378e+002 9.96163788e+001 - 1.13254204e+002 1.19523628e+002 9.96736298e+001 1.13316101e+002 - 1.19532829e+002 9.97554626e+001 1.13366364e+002 1.19558891e+002 - 9.98408203e+001 1.13453682e+002 1.19600647e+002 9.99174423e+001 - 1.13496635e+002 1.19611893e+002 9.99681320e+001 1.13546661e+002 - 1.19618279e+002 1.00066513e+002 1.13620369e+002 1.19651749e+002 - 1.00142532e+002 1.13691902e+002 1.19674828e+002 1.00225494e+002 - 1.13737015e+002 1.19694748e+002 1.00327454e+002 1.13826973e+002 - 1.19739357e+002 1.00444832e+002 1.13891396e+002 1.19764778e+002 - 1.00498932e+002 1.13929680e+002 1.19753067e+002 1.00557014e+002 - 1.13936920e+002 1.19736084e+002 1.00593758e+002 1.13967293e+002 - 1.19710030e+002 1.00621201e+002 1.13943825e+002 1.19666710e+002 - 1.00602188e+002 1.13904976e+002 1.19580750e+002 1.00614479e+002 - 1.13972412e+002 1.19661552e+002 1.00635162e+002 1.14033173e+002 - 1.19746521e+002 1.00632866e+002 1.14044525e+002 1.19798592e+002 - 1.00603653e+002 1.14046791e+002 1.19834007e+002 1.00545227e+002 - 1.14002213e+002 1.19836388e+002 1.00461800e+002 1.13952766e+002 - 1.19815971e+002 1.00365669e+002 1.13870758e+002 1.19788986e+002 - 1.00281876e+002 1.13820137e+002 1.19761993e+002 1.00231903e+002 - 1.13773216e+002 1.19764610e+002 1.00130966e+002 1.13703011e+002 - 1.19716522e+002 1.00065269e+002 1.13639488e+002 1.19715523e+002 - 1.00021492e+002 1.13614410e+002 1.19719200e+002 9.99633865e+001 - 1.13564438e+002 1.19723343e+002 9.98944092e+001 1.13525856e+002 - 1.19705826e+002 9.98259583e+001 1.13456322e+002 1.19681183e+002 - 9.97376251e+001 1.13393219e+002 1.19645889e+002 9.96703568e+001 - 1.13335167e+002 1.19661491e+002 9.95657120e+001 1.13271690e+002 - 1.19619125e+002 9.95234604e+001 1.13218323e+002 1.19613823e+002 - 9.94342880e+001 1.13138100e+002 1.19567245e+002 9.93560715e+001 - 1.13058784e+002 1.19538849e+002 9.92955704e+001 1.13019371e+002 - 1.19529884e+002 9.92230835e+001 1.12952065e+002 1.19512047e+002 - 9.91630859e+001 1.12913506e+002 1.19496803e+002 9.91073761e+001 - 1.12858704e+002 1.19488136e+002 9.90086136e+001 1.12776726e+002 - 1.19429047e+002 9.89487457e+001 1.12701843e+002 1.19413948e+002 - 9.88819580e+001 1.12643784e+002 1.19386192e+002 9.88323059e+001 - 1.12589050e+002 1.19377762e+002 9.87545319e+001 1.12530800e+002 - 1.19329613e+002 9.87219009e+001 1.12496262e+002 1.19345139e+002 - 9.86651611e+001 1.12455406e+002 1.19327339e+002 9.86064758e+001 - 1.12400558e+002 1.19344162e+002 9.85012207e+001 1.12319069e+002 - 1.19290741e+002 9.84586411e+001 1.12261688e+002 1.19271706e+002 - 9.84269562e+001 1.12234673e+002 1.19274963e+002 9.83985825e+001 - 1.12192650e+002 1.19285278e+002 9.83181305e+001 1.12116158e+002 - 1.19248154e+002 9.82692413e+001 1.12067459e+002 1.19246864e+002 - 9.82379150e+001 1.12051018e+002 1.19257332e+002 9.81883392e+001 - 1.11995354e+002 1.19251945e+002 9.81035233e+001 1.11926964e+002 - 1.19217140e+002 9.80712967e+001 1.11881927e+002 1.19228256e+002 - 9.80074463e+001 1.11832954e+002 1.19202171e+002 9.79624557e+001 - 1.11786797e+002 1.19191940e+002 9.78975220e+001 1.11746880e+002 - 1.19161171e+002 9.78404694e+001 1.11684937e+002 1.19129951e+002 - 9.77902451e+001 1.11647011e+002 1.19103668e+002 9.77547455e+001 - 1.11608070e+002 1.19118904e+002 9.76949768e+001 1.11574783e+002 - 1.19096031e+002 9.76726456e+001 1.11532921e+002 1.19089409e+002 - 9.76276398e+001 1.11495735e+002 1.19072525e+002 9.75893478e+001 - 1.11448761e+002 1.19068756e+002 9.75441895e+001 1.11412758e+002 - 1.19059784e+002 9.74845581e+001 1.11352440e+002 1.19048035e+002 - 9.74505997e+001 1.11325874e+002 1.19037781e+002 9.74164047e+001 - 1.11283653e+002 1.19032784e+002 9.73710938e+001 1.11250755e+002 - 1.19020508e+002 9.73467026e+001 1.11202011e+002 1.19029503e+002 - 9.73249435e+001 1.11192299e+002 1.19040421e+002 9.72789612e+001 - 1.11138397e+002 1.19024521e+002 9.72492523e+001 1.11124023e+002 - 1.19023499e+002 9.72246475e+001 1.11091225e+002 1.19029938e+002 - 9.71652374e+001 1.11041847e+002 1.18996582e+002 9.71244965e+001 - 1.10989380e+002 1.19001213e+002 9.70616531e+001 1.10954376e+002 - 1.18982254e+002 9.70448151e+001 1.10924355e+002 1.18981636e+002 - 9.70275497e+001 1.10918259e+002 1.18985580e+002 9.70078201e+001 - 1.10884216e+002 1.18989326e+002 9.69750443e+001 1.10866867e+002 - 1.18986977e+002 9.69474945e+001 1.10834396e+002 1.18991028e+002 - 9.69200363e+001 1.10822525e+002 1.18986931e+002 9.68969574e+001 - 1.10782593e+002 1.18988777e+002 9.68542099e+001 1.10761765e+002 - 1.18973839e+002 9.68359375e+001 1.10719856e+002 1.18977226e+002 - 9.68293533e+001 1.10718491e+002 1.18987755e+002 9.68301086e+001 - 1.10706581e+002 1.19009834e+002 9.68010788e+001 1.10693748e+002 - 1.18998421e+002 9.67906799e+001 1.10676842e+002 1.19011032e+002 - 9.67991791e+001 1.10691139e+002 1.19036308e+002 9.67456207e+001 - 1.10634941e+002 1.19020622e+002 9.66891403e+001 1.10605766e+002 - 1.19003952e+002 9.66811295e+001 1.10585373e+002 1.19008919e+002 - 9.66525955e+001 1.10570976e+002 1.19004051e+002 9.66401443e+001 - 1.10544151e+002 1.19007950e+002 9.66558914e+001 1.10576385e+002 - 1.19041412e+002 9.66441269e+001 1.10559296e+002 1.19047798e+002 - 9.66211548e+001 1.10544922e+002 1.19029991e+002 9.66189270e+001 - 1.10532112e+002 1.19040817e+002 9.66105347e+001 1.10533997e+002 - 1.19048187e+002 9.66068039e+001 1.10496468e+002 1.19047546e+002 - 9.65909805e+001 1.10490150e+002 1.19036743e+002 9.65733490e+001 - 1.10460091e+002 1.19032249e+002 9.65470200e+001 1.10456779e+002 - 1.19019821e+002 9.65484390e+001 1.10448128e+002 1.19028564e+002 - 9.65353546e+001 1.10444595e+002 1.19029289e+002 9.65208511e+001 - 1.10422440e+002 1.19033646e+002 9.64997711e+001 1.10428406e+002 - 1.19038078e+002 9.65043488e+001 1.10412949e+002 1.19045975e+002 - 9.64939423e+001 1.10419762e+002 1.19047798e+002 9.64942245e+001 - 1.10403740e+002 1.19052666e+002 9.64779434e+001 1.10396408e+002 - 1.19040108e+002 9.64801178e+001 1.10399734e+002 1.19050957e+002 - 9.64890747e+001 1.10420448e+002 1.19054619e+002 9.64816589e+001 - 1.10400520e+002 1.19046852e+002 9.64548416e+001 1.10384575e+002 - 1.19029854e+002 9.64636002e+001 1.10374229e+002 1.19038094e+002 - 9.64716263e+001 1.10397781e+002 1.19055428e+002 9.64483643e+001 - 1.10360802e+002 1.19027039e+002 9.64342499e+001 1.10367699e+002 - 1.19019714e+002 9.64365845e+001 1.10353798e+002 1.19023346e+002 - 9.64639969e+001 1.10389992e+002 1.19052292e+002 9.64809341e+001 - 1.10404449e+002 1.19083138e+002 9.64525452e+001 1.10398369e+002 - 1.19065323e+002 9.64428482e+001 1.10375603e+002 1.19053169e+002 - 9.64563446e+001 1.10390152e+002 1.19066093e+002 9.64562149e+001 - 1.10376419e+002 1.19058952e+002 9.64284363e+001 1.10367401e+002 - 1.19035759e+002 9.64396973e+001 1.10369095e+002 1.19048126e+002 - 9.64514236e+001 1.10394852e+002 1.19057175e+002 9.64726944e+001 - 1.10403191e+002 1.19075638e+002 9.64815750e+001 1.10427719e+002 - 1.19087852e+002 9.65129700e+001 1.10433052e+002 1.19106621e+002 - 9.65010910e+001 1.10433167e+002 1.19087761e+002 9.65054474e+001 - 1.10425423e+002 1.19078156e+002 9.64995422e+001 1.10432739e+002 - 1.19064392e+002 9.65195007e+001 1.10442284e+002 1.19076225e+002 - 9.65368958e+001 1.10465538e+002 1.19083328e+002 9.65535965e+001 - 1.10471542e+002 1.19098289e+002 9.65153198e+001 1.10461914e+002 - 1.19064629e+002 9.65384674e+001 1.10476089e+002 1.19074471e+002 - 9.65770645e+001 1.10523872e+002 1.19105492e+002 9.65958099e+001 - 1.10521881e+002 1.19099678e+002 9.65990753e+001 1.10539589e+002 - 1.19093742e+002 9.66313705e+001 1.10567390e+002 1.19115128e+002 - 9.66336975e+001 1.10581215e+002 1.19105545e+002 9.66705780e+001 - 1.10606606e+002 1.19125061e+002 9.66750488e+001 1.10620148e+002 - 1.19122665e+002 9.66982727e+001 1.10616425e+002 1.19119522e+002 - 9.66896820e+001 1.10610741e+002 1.19093369e+002 9.67103271e+001 - 1.10614052e+002 1.19088783e+002 9.67110977e+001 1.10631035e+002 - 1.19074539e+002 9.67414856e+001 1.10654541e+002 1.19083961e+002 - 9.67675629e+001 1.10680954e+002 1.19080971e+002 9.68176193e+001 - 1.10711174e+002 1.19093819e+002 9.68182144e+001 1.10731316e+002 - 1.19077682e+002 9.68319244e+001 1.10725197e+002 1.19066483e+002 - 9.68695221e+001 1.10768456e+002 1.19077019e+002 9.68908386e+001 - 1.10776604e+002 1.19075737e+002 9.68938675e+001 1.10796211e+002 - 1.19057663e+002 9.69252396e+001 1.10816750e+002 1.19062096e+002 - 9.69276581e+001 1.10827454e+002 1.19038269e+002 9.69576874e+001 - 1.10838570e+002 1.19032974e+002 9.69688873e+001 1.10858116e+002 - 1.19023643e+002 9.70318298e+001 1.10891495e+002 1.19034599e+002 - 9.70586395e+001 1.10923355e+002 1.19033745e+002 9.70997467e+001 - 1.10954330e+002 1.19037231e+002 9.71174927e+001 1.10992294e+002 - 1.19043617e+002 9.71565323e+001 1.11020355e+002 1.19058548e+002 - 9.71901321e+001 1.11059715e+002 1.19062386e+002 9.72203751e+001 - 1.11074966e+002 1.19046036e+002 9.72112045e+001 1.11084480e+002 - 1.19014580e+002 9.72612457e+001 1.11114716e+002 1.19032921e+002 - 9.72825851e+001 1.11139854e+002 1.19025131e+002 9.73395767e+001 - 1.11176735e+002 1.19043839e+002 9.73599167e+001 1.11213699e+002 - 1.19041267e+002 9.73819046e+001 1.11227463e+002 1.19035835e+002 - 9.74530258e+001 1.11311638e+002 1.19075294e+002 9.75053253e+001 - 1.11359955e+002 1.19098488e+002 9.75160599e+001 1.11373657e+002 - 1.19079094e+002 9.75768967e+001 1.11408798e+002 1.19093147e+002 - 9.76232910e+001 1.11468620e+002 1.19106232e+002 9.76726456e+001 - 1.11505646e+002 1.19119308e+002 9.76886215e+001 1.11547935e+002 - 1.19120193e+002 9.77315445e+001 1.11587410e+002 1.19138275e+002 - 9.77787018e+001 1.11636292e+002 1.19147972e+002 9.78569794e+001 - 1.11690041e+002 1.19165550e+002 9.78776169e+001 1.11728432e+002 - 1.19161430e+002 9.79327240e+001 1.11759346e+002 1.19174683e+002 - 9.79750137e+001 1.11808899e+002 1.19183487e+002 9.80161972e+001 - 1.11841309e+002 1.19180504e+002 9.80732346e+001 1.11908333e+002 - 1.19206268e+002 9.81435471e+001 1.11974632e+002 1.19235489e+002 - 9.81891022e+001 1.12035728e+002 1.19249504e+002 9.82395096e+001 - 1.12076027e+002 1.19259514e+002 9.82700043e+001 1.12110046e+002 - 1.19256546e+002 9.83441696e+001 1.12158791e+002 1.19278465e+002 - 9.83670654e+001 1.12190361e+002 1.19261154e+002 9.84112396e+001 - 1.12209381e+002 1.19250526e+002 9.84476776e+001 1.12260452e+002 - 1.19255287e+002 9.85277252e+001 1.12323456e+002 1.19293800e+002 - 9.85890808e+001 1.12381035e+002 1.19295647e+002 9.86475449e+001 - 1.12412163e+002 1.19283997e+002 9.86976547e+001 1.12485481e+002 - 1.19304062e+002 9.87804031e+001 1.12554993e+002 1.19352905e+002 - 9.88223801e+001 1.12606018e+002 1.19371941e+002 9.88942413e+001 - 1.12656036e+002 1.19392281e+002 9.89191589e+001 1.12693115e+002 - 1.19381119e+002 9.89696045e+001 1.12728195e+002 1.19384514e+002 - 9.90274734e+001 1.12793274e+002 1.19398750e+002 9.90994873e+001 - 1.12851547e+002 1.19425987e+002 9.91561813e+001 1.12912178e+002 - 1.19447533e+002 9.92411270e+001 1.12961784e+002 1.19460869e+002 - 9.92722092e+001 1.12995018e+002 1.19449821e+002 9.93634872e+001 - 1.13058884e+002 1.19480629e+002 9.94074097e+001 1.13109749e+002 - 1.19479568e+002 9.94563141e+001 1.13132256e+002 1.19481903e+002 - 9.95281677e+001 1.13199203e+002 1.19493652e+002 9.96427078e+001 - 1.13277634e+002 1.19526199e+002 9.97146149e+001 1.13354317e+002 - 1.19547829e+002 9.98027878e+001 1.13413239e+002 1.19580627e+002 - 9.98839874e+001 1.13490524e+002 1.19615265e+002 9.99471512e+001 - 1.13520462e+002 1.19615532e+002 9.99982605e+001 1.13576172e+002 - 1.19623970e+002 1.00097237e+002 1.13649246e+002 1.19660751e+002 - 1.00177780e+002 1.13719872e+002 1.19683105e+002 1.00270721e+002 - 1.13778252e+002 1.19711052e+002 1.00358963e+002 1.13859100e+002 - 1.19751045e+002 1.00461227e+002 1.13904465e+002 1.19761375e+002 - 1.00530952e+002 1.13959526e+002 1.19768280e+002 1.00589355e+002 - 1.13966858e+002 1.19744698e+002 1.00610809e+002 1.13980965e+002 - 1.19702614e+002 1.00643555e+002 1.13964249e+002 1.19669060e+002 - 1.00625008e+002 1.13931160e+002 1.19585205e+002 1.00646103e+002 - 1.13996407e+002 1.19668457e+002 1.00659088e+002 1.14053055e+002 - 1.19747444e+002 1.00663506e+002 1.14074585e+002 1.19813110e+002 - 1.00628769e+002 1.14068810e+002 1.19834564e+002 1.00553673e+002 - 1.14006119e+002 1.19825928e+002 1.00471657e+002 1.13961823e+002 - 1.19806778e+002 1.00395668e+002 1.13899651e+002 1.19800964e+002 - 1.00312790e+002 1.13848648e+002 1.19768417e+002 1.00257454e+002 - 1.13801529e+002 1.19769112e+002 1.00169449e+002 1.13743530e+002 - 1.19736443e+002 1.00117287e+002 1.13680855e+002 1.19740463e+002 - 1.00062828e+002 1.13657265e+002 1.19741150e+002 9.99935074e+001 - 1.13593109e+002 1.19727516e+002 9.99200592e+001 1.13547600e+002 - 1.19707298e+002 9.98485184e+001 1.13468346e+002 1.19675926e+002 - 9.97662048e+001 1.13411690e+002 1.19645432e+002 9.96971741e+001 - 1.13361847e+002 1.19659042e+002 9.95859909e+001 1.13293198e+002 - 1.19618729e+002 9.95650330e+001 1.13252106e+002 1.19632599e+002 - 9.94960938e+001 1.13203552e+002 1.19600594e+002 9.94166794e+001 - 1.13117142e+002 1.19575302e+002 9.93299713e+001 1.13053574e+002 - 1.19535812e+002 9.92438812e+001 1.12974258e+002 1.19502907e+002 - 9.91950150e+001 1.12940254e+002 1.19500984e+002 9.91487808e+001 - 1.12893684e+002 1.19501930e+002 9.90611572e+001 1.12827278e+002 - 1.19452019e+002 9.89876404e+001 1.12733978e+002 1.19423454e+002 - 9.89187241e+001 1.12669640e+002 1.19387611e+002 9.88716583e+001 - 1.12625290e+002 1.19385437e+002 9.88125687e+001 1.12586777e+002 - 1.19364395e+002 9.87810822e+001 1.12545311e+002 1.19366280e+002 - 9.87246170e+001 1.12507683e+002 1.19353142e+002 9.86487427e+001 - 1.12440208e+002 1.19348312e+002 9.85570679e+001 1.12379456e+002 - 1.19306763e+002 9.85229950e+001 1.12329208e+002 1.19303154e+002 - 9.84820633e+001 1.12293190e+002 1.19295883e+002 9.84403992e+001 - 1.12232697e+002 1.19290161e+002 9.83648453e+001 1.12169609e+002 - 1.19259903e+002 9.83348541e+001 1.12141754e+002 1.19281708e+002 - 9.83122787e+001 1.12130531e+002 1.19299896e+002 9.82656250e+001 - 1.12079041e+002 1.19298546e+002 9.81596985e+001 1.11990944e+002 - 1.19243279e+002 9.81478577e+001 1.11956825e+002 1.19270706e+002 - 9.80926666e+001 1.11917351e+002 1.19252602e+002 9.80480423e+001 - 1.11878143e+002 1.19238960e+002 9.79740677e+001 1.11823845e+002 - 1.19195740e+002 9.79288025e+001 1.11772217e+002 1.19180031e+002 - 9.78792038e+001 1.11734428e+002 1.19157921e+002 9.78205566e+001 - 1.11671822e+002 1.19145660e+002 9.77602463e+001 1.11639915e+002 - 1.19124016e+002 9.77208633e+001 1.11582558e+002 1.19103859e+002 - 9.76616287e+001 1.11535683e+002 1.19073875e+002 9.76367722e+001 - 1.11499504e+002 1.19080147e+002 9.75860901e+001 1.11465309e+002 - 1.19066917e+002 9.75509949e+001 1.11418617e+002 1.19073074e+002 - 9.75357513e+001 1.11415932e+002 1.19084900e+002 9.75098495e+001 - 1.11377441e+002 1.19085136e+002 9.74427490e+001 1.11324539e+002 - 1.19054115e+002 9.74246521e+001 1.11279381e+002 1.19056190e+002 - 9.74154816e+001 1.11278259e+002 1.19082863e+002 9.73765411e+001 - 1.11236343e+002 1.19085762e+002 9.73305969e+001 1.11204323e+002 - 1.19065308e+002 9.72970428e+001 1.11162453e+002 1.19064659e+002 - 9.72747879e+001 1.11144188e+002 1.19063034e+002 9.72322998e+001 - 1.11099556e+002 1.19072327e+002 9.71634598e+001 1.11062927e+002 - 1.19044785e+002 9.71428452e+001 1.11029884e+002 1.19045387e+002 - 9.71224289e+001 1.11018372e+002 1.19041382e+002 9.70994110e+001 - 1.10975609e+002 1.19041412e+002 9.70570374e+001 1.10947945e+002 - 1.19027840e+002 9.70087814e+001 1.10897850e+002 1.19009735e+002 - 9.69820175e+001 1.10888153e+002 1.19014763e+002 9.69789429e+001 - 1.10876282e+002 1.19035881e+002 9.69426880e+001 1.10854942e+002 - 1.19031212e+002 9.69357986e+001 1.10817924e+002 1.19036636e+002 - 9.69217682e+001 1.10813614e+002 1.19047737e+002 9.69065170e+001 - 1.10787880e+002 1.19049500e+002 9.68513412e+001 1.10748238e+002 - 1.19020950e+002 9.68597946e+001 1.10740669e+002 1.19034386e+002 - 9.68492432e+001 1.10736153e+002 1.19042213e+002 9.68041000e+001 - 1.10695190e+002 1.19042549e+002 9.67367706e+001 1.10655540e+002 - 1.19011482e+002 9.67442780e+001 1.10648857e+002 1.19031685e+002 - 9.67390137e+001 1.10661835e+002 1.19050148e+002 9.67397156e+001 - 1.10640648e+002 1.19059761e+002 9.67369995e+001 1.10650444e+002 - 1.19076912e+002 9.67324905e+001 1.10648544e+002 1.19092232e+002 - 9.67126999e+001 1.10636543e+002 1.19084526e+002 9.66895981e+001 - 1.10601250e+002 1.19068405e+002 9.66776505e+001 1.10596901e+002 - 1.19071449e+002 9.66838074e+001 1.10575882e+002 1.19081993e+002 - 9.66481628e+001 1.10548622e+002 1.19056839e+002 9.66407547e+001 - 1.10536606e+002 1.19058235e+002 9.66219788e+001 1.10531815e+002 - 1.19050369e+002 9.66139221e+001 1.10507271e+002 1.19048798e+002 - 9.65996552e+001 1.10502686e+002 1.19045776e+002 9.65867920e+001 - 1.10482445e+002 1.19047897e+002 9.65662231e+001 1.10490097e+002 - 1.19053017e+002 9.65504303e+001 1.10459938e+002 1.19043098e+002 - 9.65580292e+001 1.10478050e+002 1.19056351e+002 9.65880661e+001 - 1.10497704e+002 1.19099472e+002 9.65440521e+001 1.10464371e+002 - 1.19059425e+002 9.65528259e+001 1.10467819e+002 1.19069794e+002 - 9.65689316e+001 1.10499443e+002 1.19088760e+002 9.65525360e+001 - 1.10470734e+002 1.19070328e+002 9.65245667e+001 1.10456642e+002 - 1.19053291e+002 9.65493011e+001 1.10459702e+002 1.19082130e+002 - 9.65517044e+001 1.10478012e+002 1.19086662e+002 9.65268707e+001 - 1.10445152e+002 1.19060951e+002 9.65177155e+001 1.10447838e+002 - 1.19056328e+002 9.65463943e+001 1.10465195e+002 1.19083839e+002 - 9.65701294e+001 1.10492264e+002 1.19107422e+002 9.65699005e+001 - 1.10490036e+002 1.19113785e+002 9.65364227e+001 1.10483757e+002 - 1.19098312e+002 9.65330276e+001 1.10466522e+002 1.19094879e+002 - 9.65326691e+001 1.10472580e+002 1.19090759e+002 9.65348206e+001 - 1.10453621e+002 1.19090210e+002 9.65349579e+001 1.10468697e+002 - 1.19088425e+002 9.65558395e+001 1.10491913e+002 1.19118629e+002 - 9.65611496e+001 1.10505371e+002 1.19121895e+002 9.65855255e+001 - 1.10516098e+002 1.19140717e+002 9.65782471e+001 1.10520813e+002 - 1.19134628e+002 9.66024780e+001 1.10517174e+002 1.19144188e+002 - 9.65984497e+001 1.10526901e+002 1.19137039e+002 9.65871353e+001 - 1.10507072e+002 1.19105408e+002 9.65708694e+001 1.10505310e+002 - 1.19084717e+002 9.65825653e+001 1.10502686e+002 1.19097527e+002 - 9.66079788e+001 1.10534882e+002 1.19105522e+002 9.66330872e+001 - 1.10550819e+002 1.19128197e+002 9.66116562e+001 1.10561150e+002 - 1.19114601e+002 9.66314240e+001 1.10567688e+002 1.19120392e+002 - 9.66584625e+001 1.10604187e+002 1.19135208e+002 9.66971359e+001 - 1.10628334e+002 1.19160042e+002 9.66923370e+001 1.10635742e+002 - 1.19140030e+002 9.67066422e+001 1.10642670e+002 1.19144646e+002 - 9.67131424e+001 1.10662209e+002 1.19140038e+002 9.67481613e+001 - 1.10684158e+002 1.19155922e+002 9.67530060e+001 1.10700569e+002 - 1.19153641e+002 9.67948914e+001 1.10707489e+002 1.19173042e+002 - 9.67798157e+001 1.10698700e+002 1.19141998e+002 9.67902451e+001 - 1.10700745e+002 1.19131248e+002 9.67928162e+001 1.10720337e+002 - 1.19118668e+002 9.68240585e+001 1.10733940e+002 1.19128059e+002 - 9.68615646e+001 1.10770981e+002 1.19129486e+002 9.69001999e+001 - 1.10802704e+002 1.19130997e+002 9.68875275e+001 1.10807724e+002 - 1.19103363e+002 9.68983078e+001 1.10797157e+002 1.19091408e+002 - 9.69452591e+001 1.10850410e+002 1.19115211e+002 9.69942017e+001 - 1.10884438e+002 1.19135780e+002 9.69950027e+001 1.10895493e+002 - 1.19121628e+002 9.70140915e+001 1.10907555e+002 1.19116150e+002 - 9.70184479e+001 1.10922508e+002 1.19092781e+002 9.70378418e+001 - 1.10921944e+002 1.19081932e+002 9.70540314e+001 1.10951744e+002 - 1.19067841e+002 9.71234512e+001 1.10978180e+002 1.19086151e+002 - 9.71284790e+001 1.10995354e+002 1.19060715e+002 9.71700287e+001 - 1.11027885e+002 1.19073639e+002 9.71951752e+001 1.11072098e+002 - 1.19081917e+002 9.72345657e+001 1.11095436e+002 1.19098740e+002 - 9.72611160e+001 1.11126831e+002 1.19091431e+002 9.72900314e+001 - 1.11142769e+002 1.19078644e+002 9.72912445e+001 1.11166809e+002 - 1.19058365e+002 9.73402176e+001 1.11191414e+002 1.19078819e+002 - 9.73679962e+001 1.11227356e+002 1.19080093e+002 9.74180222e+001 - 1.11251633e+002 1.19084785e+002 9.74354935e+001 1.11282265e+002 - 1.19076683e+002 9.74629517e+001 1.11305359e+002 1.19080658e+002 - 9.75050583e+001 1.11368034e+002 1.19096878e+002 9.75717316e+001 - 1.11423859e+002 1.19128914e+002 9.75851517e+001 1.11449425e+002 - 1.19118622e+002 9.76450424e+001 1.11477798e+002 1.19128738e+002 - 9.76720657e+001 1.11519501e+002 1.19123901e+002 9.77012482e+001 - 1.11540382e+002 1.19120979e+002 9.77198257e+001 1.11585625e+002 - 1.19118355e+002 9.77777634e+001 1.11629684e+002 1.19147308e+002 - 9.78456497e+001 1.11698761e+002 1.19174568e+002 9.79110489e+001 - 1.11744934e+002 1.19184258e+002 9.79427261e+001 1.11789719e+002 - 1.19190491e+002 9.80000153e+001 1.11823257e+002 1.19205055e+002 - 9.80516510e+001 1.11888000e+002 1.19223686e+002 9.80778580e+001 - 1.11900375e+002 1.19212585e+002 9.81093979e+001 1.11947746e+002 - 1.19210838e+002 9.81814194e+001 1.12010498e+002 1.19247131e+002 - 9.82357635e+001 1.12079712e+002 1.19267181e+002 9.82798767e+001 - 1.12112198e+002 1.19271370e+002 9.83075104e+001 1.12152420e+002 - 1.19268112e+002 9.83841782e+001 1.12195534e+002 1.19285233e+002 - 9.84145813e+001 1.12231750e+002 1.19277939e+002 9.84737320e+001 - 1.12273247e+002 1.19287315e+002 9.85364227e+001 1.12349045e+002 - 1.19311432e+002 9.86311493e+001 1.12421661e+002 1.19359550e+002 - 9.86694946e+001 1.12454773e+002 1.19344505e+002 9.87211304e+001 - 1.12483322e+002 1.19327591e+002 9.87634811e+001 1.12548309e+002 - 1.19344467e+002 9.88485641e+001 1.12612564e+002 1.19388603e+002 - 9.89048767e+001 1.12685295e+002 1.19418846e+002 9.89773102e+001 - 1.12732468e+002 1.19439079e+002 9.89880600e+001 1.12759560e+002 - 1.19423790e+002 9.90287781e+001 1.12786896e+002 1.19412453e+002 - 9.90806122e+001 1.12845901e+002 1.19422966e+002 9.91391296e+001 - 1.12886726e+002 1.19435959e+002 9.91785355e+001 1.12933113e+002 - 1.19438438e+002 9.92869339e+001 1.13003395e+002 1.19484512e+002 - 9.93280792e+001 1.13046257e+002 1.19474846e+002 9.94124527e+001 - 1.13109360e+002 1.19500221e+002 9.94378204e+001 1.13148087e+002 - 1.19485962e+002 9.95271988e+001 1.13204376e+002 1.19520103e+002 - 9.95886765e+001 1.13254669e+002 1.19524277e+002 9.96754761e+001 - 1.13310532e+002 1.19529930e+002 9.97489243e+001 1.13390541e+002 - 1.19552498e+002 9.98483124e+001 1.13454994e+002 1.19593674e+002 - 9.99164124e+001 1.13532837e+002 1.19622215e+002 1.00000160e+002 - 1.13577713e+002 1.19648048e+002 1.00062912e+002 1.13639679e+002 - 1.19664909e+002 1.00143517e+002 1.13697479e+002 1.19687286e+002 - 1.00212669e+002 1.13755722e+002 1.19697632e+002 1.00319679e+002 - 1.13827721e+002 1.19737160e+002 1.00409447e+002 1.13906525e+002 - 1.19773911e+002 1.00503128e+002 1.13940758e+002 1.19776306e+002 - 1.00570435e+002 1.13989983e+002 1.19778465e+002 1.00636703e+002 - 1.14018456e+002 1.19767006e+002 1.00629677e+002 1.14001602e+002 - 1.19698891e+002 1.00673225e+002 1.13991173e+002 1.19675461e+002 - 1.00651642e+002 1.13957077e+002 1.19589394e+002 1.00687340e+002 - 1.14022217e+002 1.19682297e+002 1.00686378e+002 1.14066399e+002 - 1.19745796e+002 1.00693985e+002 1.14086357e+002 1.19813538e+002 - 1.00647102e+002 1.14074593e+002 1.19821106e+002 1.00580963e+002 - 1.14017281e+002 1.19822113e+002 1.00479668e+002 1.13951920e+002 - 1.19786087e+002 1.00400795e+002 1.13897606e+002 1.19780632e+002 - 1.00331627e+002 1.13850159e+002 1.19754181e+002 1.00292831e+002 - 1.13823662e+002 1.19772209e+002 1.00217789e+002 1.13779549e+002 - 1.19752045e+002 1.00176987e+002 1.13734856e+002 1.19775246e+002 - 1.00122734e+002 1.13700500e+002 1.19770027e+002 1.00050385e+002 - 1.13636230e+002 1.19753891e+002 9.99803162e+001 1.13588989e+002 - 1.19731735e+002 9.99004211e+001 1.13510361e+002 1.19698502e+002 - 9.98268509e+001 1.13463387e+002 1.19675575e+002 9.97519913e+001 - 1.13404877e+002 1.19682045e+002 9.96513062e+001 1.13342484e+002 - 1.19648186e+002 9.96197510e+001 1.13298225e+002 1.19648674e+002 - 9.95561905e+001 1.13260147e+002 1.19635811e+002 9.94861755e+001 - 1.13183617e+002 1.19613792e+002 9.93953247e+001 1.13113037e+002 - 1.19568321e+002 9.93007050e+001 1.13025986e+002 1.19529633e+002 - 9.92475357e+001 1.12985413e+002 1.19515610e+002 9.91907196e+001 - 1.12934883e+002 1.19511337e+002 9.91017609e+001 1.12855942e+002 - 1.19456902e+002 9.90437012e+001 1.12777374e+002 1.19436272e+002 - 9.89841003e+001 1.12728745e+002 1.19416565e+002 9.89374847e+001 - 1.12679390e+002 1.19414352e+002 9.88646622e+001 1.12629387e+002 - 1.19376938e+002 9.88266830e+001 1.12588539e+002 1.19372986e+002 - 9.87677383e+001 1.12537582e+002 1.19355705e+002 9.87024841e+001 - 1.12483658e+002 1.19356018e+002 9.86264114e+001 1.12436012e+002 - 1.19337021e+002 9.85872955e+001 1.12385445e+002 1.19326828e+002 - 9.85451813e+001 1.12356895e+002 1.19317879e+002 9.85041809e+001 - 1.12291710e+002 1.19311821e+002 9.84451599e+001 1.12245903e+002 - 1.19296898e+002 9.84074554e+001 1.12208130e+002 1.19311119e+002 - 9.83788300e+001 1.12187874e+002 1.19325020e+002 9.83260956e+001 - 1.12132851e+002 1.19318787e+002 9.82436142e+001 1.12065666e+002 - 1.19281219e+002 9.82288132e+001 1.12027145e+002 1.19304916e+002 - 9.81854095e+001 1.12010452e+002 1.19305710e+002 9.81326447e+001 - 1.11958427e+002 1.19284294e+002 9.80638962e+001 1.11908356e+002 - 1.19242935e+002 9.80206223e+001 1.11862526e+002 1.19229530e+002 - 9.79638901e+001 1.11815445e+002 1.19197334e+002 9.78933411e+001 - 1.11744797e+002 1.19174370e+002 9.78263626e+001 1.11697014e+002 - 1.19139191e+002 9.77989120e+001 1.11657646e+002 1.19138290e+002 - 9.77455978e+001 1.11613327e+002 1.19111862e+002 9.77107544e+001 - 1.11565773e+002 1.19108665e+002 9.76731949e+001 1.11546196e+002 - 1.19107544e+002 9.76392517e+001 1.11504814e+002 1.19113304e+002 - 9.76090698e+001 1.11486870e+002 1.19113197e+002 9.75886536e+001 - 1.11457390e+002 1.19112015e+002 9.75290146e+001 1.11407227e+002 - 1.19094902e+002 9.75060349e+001 1.11359398e+002 1.19099098e+002 - 9.74728546e+001 1.11333229e+002 1.19093231e+002 9.74615402e+001 - 1.11315811e+002 1.19117737e+002 9.74219284e+001 1.11292267e+002 - 1.19107567e+002 9.73878479e+001 1.11246750e+002 1.19103523e+002 - 9.73622437e+001 1.11229698e+002 1.19105721e+002 9.73169327e+001 - 1.11187363e+002 1.19112000e+002 9.72547379e+001 1.11146629e+002 - 1.19088409e+002 9.72333374e+001 1.11111671e+002 1.19085403e+002 - 9.71878281e+001 1.11080559e+002 1.19064110e+002 9.71570282e+001 - 1.11030258e+002 1.19055992e+002 9.71121979e+001 1.10996353e+002 - 1.19035118e+002 9.70906143e+001 1.10972260e+002 1.19046173e+002 - 9.70849686e+001 1.10980118e+002 1.19066628e+002 9.70741196e+001 - 1.10963005e+002 1.19082802e+002 9.70230179e+001 1.10932373e+002 - 1.19059738e+002 9.70296478e+001 1.10906120e+002 1.19080971e+002 - 9.70305557e+001 1.10909340e+002 1.19102020e+002 9.69938278e+001 - 1.10864960e+002 1.19085037e+002 9.69400253e+001 1.10822731e+002 - 1.19052643e+002 9.69488068e+001 1.10821800e+002 1.19079041e+002 - 9.69380264e+001 1.10821495e+002 1.19081017e+002 9.69222946e+001 - 1.10805298e+002 1.19103973e+002 9.68359680e+001 1.10740730e+002 - 1.19052528e+002 9.68380814e+001 1.10736076e+002 1.19073647e+002 - 9.68200073e+001 1.10728806e+002 1.19072990e+002 9.68121796e+001 - 1.10706200e+002 1.19081841e+002 9.68083725e+001 1.10719391e+002 - 1.19098991e+002 9.68191452e+001 1.10723877e+002 1.19125877e+002 - 9.68159332e+001 1.10730743e+002 1.19134216e+002 9.67948532e+001 - 1.10693466e+002 1.19114815e+002 9.67700043e+001 1.10687561e+002 - 1.19113739e+002 9.67690811e+001 1.10656921e+002 1.19120285e+002 - 9.67198105e+001 1.10622429e+002 1.19078873e+002 9.67031403e+001 - 1.10599251e+002 1.19070305e+002 9.66790085e+001 1.10585129e+002 - 1.19058212e+002 9.66854324e+001 1.10570168e+002 1.19068825e+002 - 9.66744537e+001 1.10567764e+002 1.19060913e+002 9.66745682e+001 - 1.10563507e+002 1.19080566e+002 9.66654587e+001 1.10573959e+002 - 1.19090363e+002 9.66666870e+001 1.10565765e+002 1.19100449e+002 - 9.66613159e+001 1.10579803e+002 1.19110840e+002 9.66839828e+001 - 1.10584778e+002 1.19137939e+002 9.66455994e+001 1.10562744e+002 - 1.19106285e+002 9.66449966e+001 1.10550156e+002 1.19103806e+002 - 9.66526489e+001 1.10571541e+002 1.19110115e+002 9.66324615e+001 - 1.10541824e+002 1.19094742e+002 9.66044159e+001 1.10528503e+002 - 1.19076431e+002 9.66307068e+001 1.10530449e+002 1.19099800e+002 - 9.66482086e+001 1.10564156e+002 1.19121544e+002 9.66503906e+001 - 1.10560608e+002 1.19127502e+002 9.66312561e+001 1.10556923e+002 - 1.19108757e+002 9.66528549e+001 1.10561096e+002 1.19127853e+002 - 9.66694565e+001 1.10584953e+002 1.19143669e+002 9.66614532e+001 - 1.10580254e+002 1.19150856e+002 9.66028442e+001 1.10545174e+002 - 1.19107147e+002 9.66191559e+001 1.10541588e+002 1.19118759e+002 - 9.66249542e+001 1.10560837e+002 1.19124786e+002 9.66369400e+001 - 1.10555428e+002 1.19133430e+002 9.66195679e+001 1.10547882e+002 - 1.19121559e+002 9.66301651e+001 1.10559052e+002 1.19136482e+002 - 9.66417923e+001 1.10576256e+002 1.19143272e+002 9.66757813e+001 - 1.10597816e+002 1.19172272e+002 9.66726761e+001 1.10609657e+002 - 1.19170212e+002 9.66944962e+001 1.10601585e+002 1.19181778e+002 - 9.66821823e+001 1.10600708e+002 1.19161758e+002 9.66593628e+001 - 1.10575745e+002 1.19131035e+002 9.66544647e+001 1.10586678e+002 - 1.19121956e+002 9.66798401e+001 1.10597237e+002 1.19139565e+002 - 9.67065582e+001 1.10631569e+002 1.19152077e+002 9.67416077e+001 - 1.10661255e+002 1.19178040e+002 9.67264481e+001 1.10671944e+002 - 1.19169846e+002 9.67459564e+001 1.10670395e+002 1.19167740e+002 - 9.67711868e+001 1.10711746e+002 1.19189728e+002 9.68221588e+001 - 1.10747231e+002 1.19226807e+002 9.68020859e+001 1.10738434e+002 - 1.19195938e+002 9.67884979e+001 1.10717133e+002 1.19168365e+002 - 9.68115005e+001 1.10746689e+002 1.19177467e+002 9.68571243e+001 - 1.10783043e+002 1.19208153e+002 9.68599167e+001 1.10802429e+002 - 1.19211060e+002 9.69194565e+001 1.10821907e+002 1.19239784e+002 - 9.69091263e+001 1.10822495e+002 1.19217819e+002 9.69169159e+001 - 1.10822647e+002 1.19208679e+002 9.69003677e+001 1.10820259e+002 - 1.19172958e+002 9.69295731e+001 1.10831451e+002 1.19177681e+002 - 9.69603729e+001 1.10864174e+002 1.19172699e+002 9.69743652e+001 - 1.10869553e+002 1.19152740e+002 9.69805908e+001 1.10891556e+002 - 1.19141014e+002 9.70051422e+001 1.10891182e+002 1.19138618e+002 - 9.70294876e+001 1.10928047e+002 1.19147331e+002 9.70694885e+001 - 1.10944473e+002 1.19156197e+002 9.70868683e+001 1.10980156e+002 - 1.19154129e+002 9.71103363e+001 1.10990166e+002 1.19158234e+002 - 9.71098785e+001 1.10997841e+002 1.19131783e+002 9.71364136e+001 - 1.11009903e+002 1.19123154e+002 9.71447449e+001 1.11026939e+002 - 1.19110939e+002 9.72039261e+001 1.11054573e+002 1.19128052e+002 - 9.72210770e+001 1.11080040e+002 1.19114197e+002 9.72626953e+001 - 1.11110825e+002 1.19125740e+002 9.72816086e+001 1.11146530e+002 - 1.19121140e+002 9.73176270e+001 1.11170517e+002 1.19136208e+002 - 9.73662796e+001 1.11222473e+002 1.19152588e+002 9.73967209e+001 - 1.11242867e+002 1.19141884e+002 9.73908539e+001 1.11253792e+002 - 1.19110229e+002 9.74342194e+001 1.11271149e+002 1.19126312e+002 - 9.74767227e+001 1.11326340e+002 1.19144371e+002 9.75406799e+001 - 1.11363907e+002 1.19165741e+002 9.75425644e+001 1.11384674e+002 - 1.19143410e+002 9.75731735e+001 1.11414429e+002 1.19152924e+002 - 9.76068192e+001 1.11455994e+002 1.19162041e+002 9.76587601e+001 - 1.11504860e+002 1.19182472e+002 9.76532211e+001 1.11511856e+002 - 1.19151817e+002 9.77092743e+001 1.11538208e+002 1.19152824e+002 - 9.77486649e+001 1.11592133e+002 1.19166077e+002 9.78040161e+001 - 1.11636955e+002 1.19179787e+002 9.78198395e+001 1.11675468e+002 - 1.19175171e+002 9.78881302e+001 1.11730934e+002 1.19217583e+002 - 9.79521179e+001 1.11799530e+002 1.19240494e+002 9.79897003e+001 - 1.11822395e+002 1.19228683e+002 9.80142517e+001 1.11860924e+002 - 1.19220154e+002 9.80755157e+001 1.11896645e+002 1.19243118e+002 - 9.81306915e+001 1.11959488e+002 1.19270935e+002 9.81584396e+001 - 1.11970451e+002 1.19257416e+002 9.81760635e+001 1.12003929e+002 - 1.19245827e+002 9.82533722e+001 1.12077019e+002 1.19280846e+002 - 9.83006134e+001 1.12135391e+002 1.19296898e+002 9.83562088e+001 - 1.12178673e+002 1.19308220e+002 9.83799438e+001 1.12215637e+002 - 1.19299080e+002 9.84682999e+001 1.12267891e+002 1.19334152e+002 - 9.85261536e+001 1.12336555e+002 1.19355354e+002 9.85632401e+001 - 1.12354500e+002 1.19336082e+002 9.86169739e+001 1.12422173e+002 - 1.19357605e+002 9.87146072e+001 1.12501045e+002 1.19415604e+002 - 9.87528076e+001 1.12539772e+002 1.19399315e+002 9.88014221e+001 - 1.12560204e+002 1.19374336e+002 9.88369293e+001 1.12621132e+002 - 1.19385506e+002 9.89369965e+001 1.12694466e+002 1.19443390e+002 - 9.89941864e+001 1.12764000e+002 1.19474648e+002 9.90613251e+001 - 1.12806877e+002 1.19491104e+002 9.90662994e+001 1.12825233e+002 - 1.19459122e+002 9.91088104e+001 1.12850288e+002 1.19454430e+002 - 9.91561508e+001 1.12900848e+002 1.19453056e+002 9.91943436e+001 - 1.12925919e+002 1.19448257e+002 9.92311096e+001 1.12970879e+002 - 1.19454590e+002 9.93338699e+001 1.13041138e+002 1.19492928e+002 - 9.93854675e+001 1.13089752e+002 1.19491943e+002 9.94608688e+001 - 1.13145218e+002 1.19506401e+002 9.95220718e+001 1.13216454e+002 - 1.19533195e+002 9.95957184e+001 1.13254120e+002 1.19549591e+002 - 9.96478195e+001 1.13304062e+002 1.19546021e+002 9.97483521e+001 - 1.13373360e+002 1.19567520e+002 9.98070831e+001 1.13441833e+002 - 1.19582550e+002 9.98862305e+001 1.13486603e+002 1.19608101e+002 - 9.99659729e+001 1.13567360e+002 1.19645081e+002 1.00068611e+002 - 1.13637955e+002 1.19691521e+002 1.00115334e+002 1.13686363e+002 - 1.19689354e+002 1.00198799e+002 1.13737511e+002 1.19712227e+002 - 1.00265152e+002 1.13797684e+002 1.19725159e+002 1.00365921e+002 - 1.13866707e+002 1.19762062e+002 1.00450165e+002 1.13938759e+002 - 1.19783775e+002 1.00543861e+002 1.13971054e+002 1.19786110e+002 - 1.00596619e+002 1.14010490e+002 1.19778893e+002 1.00670082e+002 - 1.14042664e+002 1.19778191e+002 1.00664146e+002 1.14028076e+002 - 1.19708817e+002 1.00699524e+002 1.14008545e+002 1.19678772e+002 - 1.00666901e+002 1.13970367e+002 1.19593086e+002 1.00705208e+002 - 1.14037750e+002 1.19677933e+002 1.00704292e+002 1.14075371e+002 - 1.19738556e+002 1.00688034e+002 1.14081375e+002 1.19781029e+002 - 1.00652977e+002 1.14073357e+002 1.19801872e+002 1.00598831e+002 - 1.14029427e+002 1.19807480e+002 1.00512283e+002 1.13984741e+002 - 1.19788757e+002 1.00439896e+002 1.13931763e+002 1.19787239e+002 - 1.00378410e+002 1.13898781e+002 1.19773987e+002 1.00326324e+002 - 1.13853188e+002 1.19778519e+002 1.00258400e+002 1.13811958e+002 - 1.19767380e+002 1.00223495e+002 1.13776703e+002 1.19786850e+002 - 1.00165886e+002 1.13746246e+002 1.19782143e+002 1.00092705e+002 - 1.13679939e+002 1.19766052e+002 1.00033424e+002 1.13642365e+002 - 1.19755402e+002 9.99474182e+001 1.13551697e+002 1.19712326e+002 - 9.98547821e+001 1.13485031e+002 1.19670418e+002 9.97858963e+001 - 1.13433769e+002 1.19678261e+002 9.96894379e+001 1.13378563e+002 - 1.19649399e+002 9.96524582e+001 1.13335129e+002 1.19655296e+002 - 9.95862885e+001 1.13290474e+002 1.19634079e+002 9.95166397e+001 - 1.13218185e+002 1.19614441e+002 9.94332428e+001 1.13153061e+002 - 1.19574989e+002 9.93667755e+001 1.13091942e+002 1.19565788e+002 - 9.92856979e+001 1.13025162e+002 1.19521713e+002 9.92369003e+001 - 1.12973450e+002 1.19516823e+002 9.91437531e+001 1.12893723e+002 - 1.19465332e+002 9.90788345e+001 1.12813004e+002 1.19438889e+002 - 9.90233765e+001 1.12768997e+002 1.19425415e+002 9.89751282e+001 - 1.12719543e+002 1.19419472e+002 9.89006577e+001 1.12668587e+002 - 1.19381409e+002 9.88771667e+001 1.12638153e+002 1.19389374e+002 - 9.88123474e+001 1.12588287e+002 1.19364159e+002 9.87405243e+001 - 1.12525810e+002 1.19361076e+002 9.86689682e+001 1.12483185e+002 - 1.19344063e+002 9.86449509e+001 1.12448364e+002 1.19347527e+002 - 9.85860062e+001 1.12402405e+002 1.19327766e+002 9.85400162e+001 - 1.12335327e+002 1.19315727e+002 9.84984436e+001 1.12303635e+002 - 1.19316017e+002 9.84463043e+001 1.12248199e+002 1.19315994e+002 - 9.84090805e+001 1.12225815e+002 1.19320847e+002 9.83646469e+001 - 1.12177101e+002 1.19317612e+002 9.83093262e+001 1.12144180e+002 - 1.19308945e+002 9.82951279e+001 1.12105156e+002 1.19336319e+002 - 9.82440109e+001 1.12070038e+002 1.19327805e+002 9.81949387e+001 - 1.12023590e+002 1.19307465e+002 9.81214752e+001 1.11975021e+002 - 1.19268082e+002 9.80717239e+001 1.11917976e+002 1.19237137e+002 - 9.80215073e+001 1.11870445e+002 1.19208862e+002 9.79734344e+001 - 1.11822510e+002 1.19207230e+002 9.78922577e+001 1.11765388e+002 - 1.19170235e+002 9.78642197e+001 1.11729797e+002 1.19157463e+002 - 9.78256683e+001 1.11699120e+002 1.19147659e+002 9.77770004e+001 - 1.11638962e+002 1.19139015e+002 9.77470322e+001 1.11617485e+002 - 1.19139038e+002 9.77039108e+001 1.11574348e+002 1.19134590e+002 - 9.76632080e+001 1.11542862e+002 1.19125229e+002 9.76590042e+001 - 1.11524872e+002 1.19138275e+002 9.76010056e+001 1.11481682e+002 - 1.19116463e+002 9.75790939e+001 1.11434952e+002 1.19123390e+002 - 9.75231628e+001 1.11383621e+002 1.19097069e+002 9.75186920e+001 - 1.11379852e+002 1.19129257e+002 9.74693298e+001 1.11350380e+002 - 1.19112679e+002 9.74397354e+001 1.11301620e+002 1.19109779e+002 - 9.74069748e+001 1.11277557e+002 1.19102310e+002 9.73653412e+001 - 1.11237396e+002 1.19114113e+002 9.72960815e+001 1.11194923e+002 - 1.19088913e+002 9.72767792e+001 1.11166130e+002 1.19088425e+002 - 9.72514954e+001 1.11141281e+002 1.19082291e+002 9.72391281e+001 - 1.11116089e+002 1.19095078e+002 9.71965942e+001 1.11084030e+002 - 1.19079628e+002 9.71847458e+001 1.11072441e+002 1.19101601e+002 - 9.71886520e+001 1.11087364e+002 1.19127411e+002 9.71794968e+001 - 1.11070747e+002 1.19143089e+002 9.71153564e+001 1.11024559e+002 - 1.19108467e+002 9.71150970e+001 1.10993782e+002 1.19123405e+002 - 9.71029587e+001 1.10984848e+002 1.19133347e+002 9.70646515e+001 - 1.10941467e+002 1.19108521e+002 9.70363846e+001 1.10927414e+002 - 1.19104218e+002 9.70423660e+001 1.10915565e+002 1.19121140e+002 - 9.70350113e+001 1.10920258e+002 1.19130547e+002 9.70241852e+001 - 1.10905510e+002 1.19154877e+002 9.69719696e+001 1.10880417e+002 - 1.19137329e+002 9.69768295e+001 1.10875702e+002 1.19165741e+002 - 9.69447250e+001 1.10857628e+002 1.19150795e+002 9.69257813e+001 - 1.10821983e+002 1.19141922e+002 9.69074402e+001 1.10821121e+002 - 1.19145737e+002 9.69042130e+001 1.10809486e+002 1.19163414e+002 - 9.68825226e+001 1.10795662e+002 1.19149841e+002 9.68740616e+001 - 1.10775787e+002 1.19148994e+002 9.68344574e+001 1.10750427e+002 - 1.19127289e+002 9.68401794e+001 1.10726120e+002 1.19139412e+002 - 9.68214340e+001 1.10721016e+002 1.19130707e+002 9.68011093e+001 - 1.10694374e+002 1.19121094e+002 9.67612076e+001 1.10665504e+002 - 1.19090874e+002 9.67453308e+001 1.10627701e+002 1.19073288e+002 - 9.67422409e+001 1.10630112e+002 1.19070717e+002 9.67523880e+001 - 1.10635567e+002 1.19096313e+002 9.67330170e+001 1.10644630e+002 - 1.19106232e+002 9.67393112e+001 1.10635757e+002 1.19118645e+002 - 9.67574158e+001 1.10668640e+002 1.19148956e+002 9.67754517e+001 - 1.10669746e+002 1.19171486e+002 9.67356873e+001 1.10649765e+002 - 1.19143837e+002 9.67211075e+001 1.10628113e+002 1.19128502e+002 - 9.67085724e+001 1.10622551e+002 1.19117470e+002 9.67171021e+001 - 1.10629509e+002 1.19127724e+002 9.66860046e+001 1.10612236e+002 - 1.19111664e+002 9.67097473e+001 1.10616737e+002 1.19134270e+002 - 9.67100830e+001 1.10629570e+002 1.19140991e+002 9.67071686e+001 - 1.10624168e+002 1.19132332e+002 9.67053528e+001 1.10632309e+002 - 1.19131912e+002 9.67321091e+001 1.10643608e+002 1.19153137e+002 - 9.67380524e+001 1.10653687e+002 1.19151703e+002 9.67310410e+001 - 1.10647041e+002 1.19162140e+002 9.66944122e+001 1.10637428e+002 - 1.19145294e+002 9.67023621e+001 1.10631424e+002 1.19146935e+002 - 9.67193527e+001 1.10653336e+002 1.19165955e+002 9.67163849e+001 - 1.10632843e+002 1.19159355e+002 9.67048340e+001 1.10633865e+002 - 1.19145355e+002 9.67176743e+001 1.10645012e+002 1.19164513e+002 - 9.67275848e+001 1.10662178e+002 1.19166878e+002 9.67423630e+001 - 1.10671494e+002 1.19183784e+002 9.67472153e+001 1.10683640e+002 - 1.19188072e+002 9.67797089e+001 1.10694511e+002 1.19211189e+002 - 9.67751770e+001 1.10704170e+002 1.19203690e+002 9.67385330e+001 - 1.10660484e+002 1.19156151e+002 9.67396240e+001 1.10668800e+002 - 1.19149590e+002 9.67627487e+001 1.10683159e+002 1.19168861e+002 - 9.67885208e+001 1.10714172e+002 1.19180336e+002 9.68064041e+001 - 1.10724174e+002 1.19183037e+002 9.68268356e+001 1.10768021e+002 - 1.19207542e+002 9.68410950e+001 1.10770233e+002 1.19208626e+002 - 9.68576889e+001 1.10796623e+002 1.19220451e+002 9.69124680e+001 - 1.10832771e+002 1.19255470e+002 9.68914261e+001 1.10828957e+002 - 1.19232056e+002 9.68694916e+001 1.10794685e+002 1.19191132e+002 - 9.68987045e+001 1.10835701e+002 1.19211784e+002 9.69420853e+001 - 1.10864388e+002 1.19236572e+002 9.69397888e+001 1.10878670e+002 - 1.19233353e+002 9.69695129e+001 1.10874298e+002 1.19240311e+002 - 9.69748230e+001 1.10889671e+002 1.19231071e+002 9.69812012e+001 - 1.10883408e+002 1.19214767e+002 9.69675140e+001 1.10883881e+002 - 1.19183464e+002 9.69984512e+001 1.10903801e+002 1.19192329e+002 - 9.70251236e+001 1.10933357e+002 1.19184433e+002 9.70466309e+001 - 1.10940750e+002 1.19168129e+002 9.70259628e+001 1.10937553e+002 - 1.19132568e+002 9.70868683e+001 1.10976028e+002 1.19173271e+002 - 9.70975189e+001 1.10992607e+002 1.19162354e+002 9.71226654e+001 - 1.10997940e+002 1.19157112e+002 9.71597595e+001 1.11043793e+002 - 1.19176178e+002 9.71975555e+001 1.11074089e+002 1.19192978e+002 - 9.72085419e+001 1.11092941e+002 1.19179451e+002 9.72149582e+001 - 1.11090218e+002 1.19159706e+002 9.72338257e+001 1.11112083e+002 - 1.19151276e+002 9.72849808e+001 1.11137695e+002 1.19160645e+002 - 9.72859726e+001 1.11146164e+002 1.19136040e+002 9.73244171e+001 - 1.11179749e+002 1.19144485e+002 9.73536530e+001 1.11225815e+002 - 1.19151207e+002 9.73789825e+001 1.11236244e+002 1.19158821e+002 - 9.74220123e+001 1.11282562e+002 1.19166092e+002 9.74510345e+001 - 1.11300697e+002 1.19151756e+002 9.74561691e+001 1.11313576e+002 - 1.19134804e+002 9.74899292e+001 1.11332382e+002 1.19144051e+002 - 9.75486603e+001 1.11395721e+002 1.19174309e+002 9.76032715e+001 - 1.11434715e+002 1.19194252e+002 9.75969162e+001 1.11441620e+002 - 1.19161743e+002 9.76005554e+001 1.11440445e+002 1.19142448e+002 - 9.76343307e+001 1.11490189e+002 1.19148079e+002 9.76949158e+001 - 1.11544853e+002 1.19176346e+002 9.77023392e+001 1.11561821e+002 - 1.19158035e+002 9.77881775e+001 1.11613579e+002 1.19189217e+002 - 9.78175278e+001 1.11662804e+002 1.19191093e+002 9.78759766e+001 - 1.11709091e+002 1.19211746e+002 9.78882370e+001 1.11749542e+002 - 1.19208649e+002 9.79530487e+001 1.11803452e+002 1.19250664e+002 - 9.79976501e+001 1.11847534e+002 1.19248474e+002 9.80539856e+001 - 1.11890938e+002 1.19255234e+002 9.80807114e+001 1.11929749e+002 - 1.19252960e+002 9.81341400e+001 1.11960396e+002 1.19274818e+002 - 9.81744690e+001 1.12008156e+002 1.19280151e+002 9.82129211e+001 - 1.12032928e+002 1.19282845e+002 9.82447205e+001 1.12080261e+002 - 1.19280060e+002 9.83156586e+001 1.12137100e+002 1.19306297e+002 - 9.83603058e+001 1.12195633e+002 1.19318726e+002 9.84191437e+001 - 1.12237419e+002 1.19336624e+002 9.84416199e+001 1.12269341e+002 - 1.19326706e+002 9.85167313e+001 1.12317131e+002 1.19346802e+002 - 9.85853195e+001 1.12396111e+002 1.19377060e+002 9.86184616e+001 - 1.12412338e+002 1.19360764e+002 9.86714783e+001 1.12477859e+002 - 1.19380409e+002 9.87465210e+001 1.12533524e+002 1.19414513e+002 - 9.88075104e+001 1.12588760e+002 1.19413712e+002 9.88689728e+001 - 1.12626343e+002 1.19408981e+002 9.88955383e+001 1.12672569e+002 - 1.19409927e+002 9.89713821e+001 1.12730721e+002 1.19447510e+002 - 9.90168762e+001 1.12784195e+002 1.19460213e+002 9.90797195e+001 - 1.12823273e+002 1.19470085e+002 9.90895081e+001 1.12849174e+002 - 1.19452141e+002 9.91541061e+001 1.12889877e+002 1.19464645e+002 - 9.92057419e+001 1.12951454e+002 1.19474609e+002 9.92582932e+001 - 1.12991585e+002 1.19478333e+002 9.93083344e+001 1.13045708e+002 - 1.19496338e+002 9.93887253e+001 1.13091278e+002 1.19515381e+002 - 9.94497375e+001 1.13155022e+002 1.19526886e+002 9.95235214e+001 - 1.13205711e+002 1.19539009e+002 9.95730820e+001 1.13262726e+002 - 1.19550980e+002 9.96536789e+001 1.13317520e+002 1.19581490e+002 - 9.97242279e+001 1.13376656e+002 1.19587265e+002 9.97873383e+001 - 1.13415146e+002 1.19578735e+002 9.98589478e+001 1.13496773e+002 - 1.19606255e+002 9.99265823e+001 1.13533714e+002 1.19627853e+002 - 9.99906845e+001 1.13595322e+002 1.19643791e+002 1.00098511e+002 - 1.13670700e+002 1.19694771e+002 1.00158875e+002 1.13726921e+002 - 1.19709732e+002 1.00250320e+002 1.13793823e+002 1.19731316e+002 - 1.00324440e+002 1.13863823e+002 1.19755562e+002 1.00403717e+002 - 1.13901703e+002 1.19767807e+002 1.00482773e+002 1.13972610e+002 - 1.19794594e+002 1.00578262e+002 1.14009300e+002 1.19798401e+002 - 1.00623116e+002 1.14040573e+002 1.19780457e+002 1.00692368e+002 - 1.14064980e+002 1.19776398e+002 1.00708771e+002 1.14075615e+002 - 1.19736671e+002 1.00739853e+002 1.14054878e+002 1.19701790e+002 - 1.00708206e+002 1.14007957e+002 1.19607285e+002 1.00715981e+002 - 1.14042427e+002 1.19652435e+002 1.00719467e+002 1.14099510e+002 - 1.19722710e+002 1.00722603e+002 1.14111595e+002 1.19778221e+002 - 1.00675880e+002 1.14097237e+002 1.19781380e+002 1.00616241e+002 - 1.14051605e+002 1.19790359e+002 1.00547531e+002 1.14018280e+002 - 1.19784752e+002 1.00499062e+002 1.13989861e+002 1.19810616e+002 - 1.00419891e+002 1.13937981e+002 1.19783699e+002 1.00375595e+002 - 1.13903130e+002 1.19792084e+002 1.00302986e+002 1.13858566e+002 - 1.19775101e+002 1.00259850e+002 1.13810196e+002 1.19787621e+002 - 1.00200340e+002 1.13779686e+002 1.19782089e+002 1.00132805e+002 - 1.13722488e+002 1.19766830e+002 1.00067680e+002 1.13677231e+002 - 1.19746552e+002 1.00000679e+002 1.13606308e+002 1.19720848e+002 - 9.99025650e+001 1.13530800e+002 1.19668159e+002 9.98242111e+001 - 1.13473907e+002 1.19684044e+002 9.97301712e+001 1.13419769e+002 - 1.19652306e+002 9.96822891e+001 1.13364738e+002 1.19644966e+002 - 9.96003952e+001 1.13305573e+002 1.19609451e+002 9.95424881e+001 - 1.13240456e+002 1.19601906e+002 9.94825287e+001 1.13200493e+002 - 1.19582024e+002 9.94176483e+001 1.13145126e+002 1.19579460e+002 - 9.93513565e+001 1.13094154e+002 1.19547905e+002 9.92980347e+001 - 1.13038750e+002 1.19541832e+002 9.92193375e+001 1.12979057e+002 - 1.19507469e+002 9.91485062e+001 1.12885887e+002 1.19475220e+002 - 9.90950546e+001 1.12844604e+002 1.19457352e+002 9.90447311e+001 - 1.12795822e+002 1.19452789e+002 9.89694138e+001 1.12741531e+002 - 1.19413239e+002 9.89512939e+001 1.12712151e+002 1.19421707e+002 - 9.88883362e+001 1.12664131e+002 1.19397964e+002 9.88080673e+001 - 1.12594955e+002 1.19390312e+002 9.87400742e+001 1.12552841e+002 - 1.19369591e+002 9.87117233e+001 1.12517998e+002 1.19373329e+002 - 9.86565475e+001 1.12469757e+002 1.19347374e+002 9.86295395e+001 - 1.12427383e+002 1.19360603e+002 9.85869980e+001 1.12398201e+002 - 1.19361397e+002 9.85315704e+001 1.12344673e+002 1.19361427e+002 - 9.84660950e+001 1.12295982e+002 1.19336472e+002 9.84290619e+001 - 1.12250305e+002 1.19338570e+002 9.83650513e+001 1.12206459e+002 - 1.19319504e+002 9.83501053e+001 1.12173813e+002 1.19348221e+002 - 9.83046570e+001 1.12140274e+002 1.19339996e+002 9.82688370e+001 - 1.12108353e+002 1.19334160e+002 9.81953430e+001 1.12056557e+002 - 1.19290901e+002 9.81404953e+001 1.11994614e+002 1.19260132e+002 - 9.80773163e+001 1.11935509e+002 1.19225113e+002 9.80388107e+001 - 1.11899918e+002 1.19236313e+002 9.79924927e+001 1.11876320e+002 - 1.19228569e+002 9.79597778e+001 1.11828468e+002 1.19210724e+002 - 9.79243164e+001 1.11801270e+002 1.19202332e+002 9.78672562e+001 - 1.11730919e+002 1.19182503e+002 9.78237381e+001 1.11702332e+002 - 1.19172058e+002 9.77835922e+001 1.11666527e+002 1.19172562e+002 - 9.77338638e+001 1.11623055e+002 1.19146744e+002 9.77253647e+001 - 1.11606056e+002 1.19164864e+002 9.76733017e+001 1.11565369e+002 - 1.19141502e+002 9.76674652e+001 1.11530312e+002 1.19164803e+002 - 9.76191101e+001 1.11488190e+002 1.19141685e+002 9.75896530e+001 - 1.11460854e+002 1.19146706e+002 9.75371475e+001 1.11422401e+002 - 1.19130089e+002 9.75107117e+001 1.11380226e+002 1.19125854e+002 - 9.74709930e+001 1.11351761e+002 1.19119270e+002 9.74379425e+001 - 1.11319321e+002 1.19136566e+002 9.73656235e+001 1.11271790e+002 - 1.19101471e+002 9.73479996e+001 1.11241943e+002 1.19108894e+002 - 9.73175507e+001 1.11223053e+002 1.19105972e+002 9.72992859e+001 - 1.11181870e+002 1.19104195e+002 9.72617188e+001 1.11155540e+002 - 1.19091682e+002 9.72416077e+001 1.11130753e+002 1.19102470e+002 - 9.72509918e+001 1.11153854e+002 1.19136993e+002 9.72447891e+001 - 1.11145081e+002 1.19155289e+002 9.71953201e+001 1.11108963e+002 - 1.19133522e+002 9.71794205e+001 1.11064423e+002 1.19129921e+002 - 9.71700974e+001 1.11061752e+002 1.19147354e+002 9.71526718e+001 - 1.11031906e+002 1.19145584e+002 9.71429367e+001 1.11034744e+002 - 1.19156258e+002 9.71325073e+001 1.11012772e+002 1.19160072e+002 - 9.71309357e+001 1.11020027e+002 1.19169586e+002 9.71076279e+001 - 1.10998116e+002 1.19188133e+002 9.70772095e+001 1.10995323e+002 - 1.19187904e+002 9.70997162e+001 1.10998299e+002 1.19225822e+002 - 9.70630035e+001 1.10979477e+002 1.19213600e+002 9.70257874e+001 - 1.10924919e+002 1.19189522e+002 9.69993973e+001 1.10915459e+002 - 1.19184776e+002 9.69885788e+001 1.10905731e+002 1.19195274e+002 - 9.69645767e+001 1.10884102e+002 1.19178505e+002 9.69596252e+001 - 1.10863548e+002 1.19171257e+002 9.69137878e+001 1.10830887e+002 - 1.19146561e+002 9.69244919e+001 1.10809898e+002 1.19163994e+002 - 9.69116364e+001 1.10813095e+002 1.19164291e+002 9.69026489e+001 - 1.10796944e+002 1.19166748e+002 9.68674164e+001 1.10774780e+002 - 1.19139313e+002 9.68672714e+001 1.10754433e+002 1.19137413e+002 - 9.68676605e+001 1.10758453e+002 1.19143913e+002 9.68651886e+001 - 1.10752373e+002 1.19154747e+002 9.68307800e+001 1.10743416e+002 - 1.19141388e+002 9.68446960e+001 1.10743179e+002 1.19160583e+002 - 9.68481827e+001 1.10759743e+002 1.19178139e+002 9.68571243e+001 - 1.10755882e+002 1.19192345e+002 9.68214722e+001 1.10739822e+002 - 1.19169426e+002 9.68140106e+001 1.10719765e+002 1.19162369e+002 - 9.67997665e+001 1.10721268e+002 1.19151115e+002 9.68038254e+001 - 1.10721024e+002 1.19159393e+002 9.67757111e+001 1.10709625e+002 - 1.19143326e+002 9.67928925e+001 1.10707024e+002 1.19161346e+002 - 9.67873459e+001 1.10720444e+002 1.19165276e+002 9.67782898e+001 - 1.10700684e+002 1.19142708e+002 9.67746582e+001 1.10705193e+002 - 1.19140511e+002 9.67993240e+001 1.10714119e+002 1.19160698e+002 - 9.67878113e+001 1.10709435e+002 1.19147316e+002 9.67803650e+001 - 1.10705467e+002 1.19152580e+002 9.67621384e+001 1.10705742e+002 - 1.19144196e+002 9.67739792e+001 1.10704788e+002 1.19149803e+002 - 9.67901840e+001 1.10730080e+002 1.19170532e+002 9.67957535e+001 - 1.10717819e+002 1.19172325e+002 9.67993240e+001 1.10733650e+002 - 1.19180000e+002 9.68242645e+001 1.10755974e+002 1.19204758e+002 - 9.68147583e+001 1.10752739e+002 1.19197037e+002 9.68362274e+001 - 1.10766464e+002 1.19211388e+002 9.68135300e+001 1.10760376e+002 - 1.19191444e+002 9.68621521e+001 1.10782974e+002 1.19231056e+002 - 9.68781967e+001 1.10810730e+002 1.19239670e+002 9.68565216e+001 - 1.10780800e+002 1.19214943e+002 9.68484802e+001 1.10789749e+002 - 1.19200737e+002 9.68645325e+001 1.10800613e+002 1.19220268e+002 - 9.68898621e+001 1.10825356e+002 1.19226746e+002 9.68885040e+001 - 1.10814590e+002 1.19205238e+002 9.68913727e+001 1.10838531e+002 - 1.19207817e+002 9.69246902e+001 1.10855217e+002 1.19224350e+002 - 9.69680405e+001 1.10906822e+002 1.19260254e+002 9.70064774e+001 - 1.10931801e+002 1.19286568e+002 9.69946289e+001 1.10935097e+002 - 1.19271729e+002 9.69892426e+001 1.10923218e+002 1.19247337e+002 - 9.69947510e+001 1.10931587e+002 1.19239075e+002 9.70223770e+001 - 1.10944984e+002 1.19250572e+002 9.70241165e+001 1.10956810e+002 - 1.19247307e+002 9.70557098e+001 1.10958763e+002 1.19256073e+002 - 9.70613098e+001 1.10976578e+002 1.19250641e+002 9.70726013e+001 - 1.10979080e+002 1.19241150e+002 9.70703201e+001 1.10991508e+002 - 1.19221024e+002 9.70833511e+001 1.10989784e+002 1.19214310e+002 - 9.71075287e+001 1.11015495e+002 1.19209435e+002 9.71150436e+001 - 1.11009460e+002 1.19180862e+002 9.71153030e+001 1.11029175e+002 - 1.19166130e+002 9.71655884e+001 1.11051727e+002 1.19193039e+002 - 9.71772385e+001 1.11071854e+002 1.19181190e+002 9.71894989e+001 - 1.11068184e+002 1.19170776e+002 9.72204056e+001 1.11109177e+002 - 1.19180428e+002 9.72581863e+001 1.11137283e+002 1.19193413e+002 - 9.72742844e+001 1.11161049e+002 1.19185036e+002 9.73204193e+001 - 1.11198257e+002 1.19205368e+002 9.73407135e+001 1.11225357e+002 - 1.19204659e+002 9.73776398e+001 1.11232124e+002 1.19200943e+002 - 9.73680420e+001 1.11237366e+002 1.19165741e+002 9.74173660e+001 - 1.11277031e+002 1.19185608e+002 9.74358673e+001 1.11314697e+002 - 1.19187057e+002 9.74487000e+001 1.11314789e+002 1.19179565e+002 - 9.74965973e+001 1.11361580e+002 1.19192032e+002 9.75236969e+001 - 1.11376045e+002 1.19171310e+002 9.75147018e+001 1.11380127e+002 - 1.19142212e+002 9.75666885e+001 1.11412712e+002 1.19164017e+002 - 9.76225433e+001 1.11480370e+002 1.19201569e+002 9.76696777e+001 - 1.11506096e+002 1.19216484e+002 9.76677933e+001 1.11520134e+002 - 1.19188431e+002 9.76668930e+001 1.11508537e+002 1.19165413e+002 - 9.76996002e+001 1.11561485e+002 1.19170807e+002 9.77343826e+001 - 1.11581528e+002 1.19168610e+002 9.77703629e+001 1.11631783e+002 - 1.19180885e+002 9.78630600e+001 1.11699211e+002 1.19224228e+002 - 9.79020767e+001 1.11755943e+002 1.19237190e+002 9.79444427e+001 - 1.11791435e+002 1.19238411e+002 9.79526443e+001 1.11821198e+002 - 1.19231056e+002 9.80107880e+001 1.11867096e+002 1.19262817e+002 - 9.80496750e+001 1.11912506e+002 1.19266113e+002 9.81226349e+001 - 1.11966431e+002 1.19283630e+002 9.81482544e+001 1.12001663e+002 - 1.19284523e+002 9.82075577e+001 1.12036552e+002 1.19304337e+002 - 9.82334213e+001 1.12075066e+002 1.19306190e+002 9.82625198e+001 - 1.12092262e+002 1.19295349e+002 9.83069839e+001 1.12148735e+002 - 1.19300552e+002 9.83810120e+001 1.12207809e+002 1.19332138e+002 - 9.84315414e+001 1.12267105e+002 1.19346016e+002 9.84815979e+001 - 1.12302689e+002 1.19356117e+002 9.84960327e+001 1.12330299e+002 - 1.19342590e+002 9.85731659e+001 1.12372749e+002 1.19359688e+002 - 9.86241531e+001 1.12431114e+002 1.19373291e+002 9.86792908e+001 - 1.12471535e+002 1.19382591e+002 9.87225037e+001 1.12528854e+002 - 1.19386429e+002 9.87812729e+001 1.12569069e+002 1.19411942e+002 - 9.88393021e+001 1.12623528e+002 1.19416222e+002 9.89239426e+001 - 1.12686722e+002 1.19433784e+002 9.89600601e+001 1.12736725e+002 - 1.19434860e+002 9.90064850e+001 1.12767563e+002 1.19446609e+002 - 9.90839005e+001 1.12848061e+002 1.19487000e+002 9.91493988e+001 - 1.12892838e+002 1.19500862e+002 9.91690979e+001 1.12920059e+002 - 1.19485298e+002 9.92253036e+001 1.12964508e+002 1.19492317e+002 - 9.92719574e+001 1.13018410e+002 1.19501747e+002 9.93342590e+001 - 1.13058708e+002 1.19514023e+002 9.93861694e+001 1.13120117e+002 - 1.19523911e+002 9.94608459e+001 1.13163826e+002 1.19543922e+002 - 9.95167999e+001 1.13223022e+002 1.19551804e+002 9.95814972e+001 - 1.13265610e+002 1.19561592e+002 9.96159668e+001 1.13300575e+002 - 1.19547127e+002 9.96857224e+001 1.13351753e+002 1.19577301e+002 - 9.97692566e+001 1.13425537e+002 1.19606850e+002 9.98331223e+001 - 1.13461578e+002 1.19593910e+002 9.98916245e+001 1.13526894e+002 - 1.19604477e+002 9.99733658e+001 1.13579811e+002 1.19638023e+002 - 1.00037796e+002 1.13644760e+002 1.19662750e+002 1.00137596e+002 - 1.13711349e+002 1.19704285e+002 1.00188683e+002 1.13761452e+002 - 1.19703560e+002 1.00276749e+002 1.13821037e+002 1.19730438e+002 - 1.00355713e+002 1.13891373e+002 1.19756027e+002 1.00437973e+002 - 1.13939842e+002 1.19771500e+002 1.00506859e+002 1.13996025e+002 - 1.19788300e+002 1.00601982e+002 1.14033760e+002 1.19793732e+002 - 1.00650787e+002 1.14075081e+002 1.19783905e+002 1.00713722e+002 - 1.14092941e+002 1.19777756e+002 1.00725861e+002 1.14098557e+002 - 1.19726913e+002 1.00749878e+002 1.14074348e+002 1.19693146e+002 - 1.00713608e+002 1.14016747e+002 1.19593803e+002 1.00762833e+002 - 1.14080475e+002 1.19668198e+002 1.00769264e+002 1.14133118e+002 - 1.19729774e+002 1.00760231e+002 1.14138733e+002 1.19776207e+002 - 1.00719231e+002 1.14132843e+002 1.19789261e+002 1.00659447e+002 - 1.14087471e+002 1.19791809e+002 1.00600189e+002 1.14064644e+002 - 1.19796066e+002 1.00564026e+002 1.14040710e+002 1.19831093e+002 - 1.00474304e+002 1.13984039e+002 1.19798752e+002 1.00436081e+002 - 1.13953705e+002 1.19819717e+002 1.00343315e+002 1.13883690e+002 - 1.19775772e+002 1.00289986e+002 1.13830429e+002 1.19778404e+002 - 1.00247475e+002 1.13818314e+002 1.19792778e+002 1.00190819e+002 - 1.13763451e+002 1.19782631e+002 1.00107742e+002 1.13707207e+002 - 1.19743340e+002 1.00045097e+002 1.13640778e+002 1.19723854e+002 - 9.99647751e+001 1.13583519e+002 1.19693298e+002 9.98834076e+001 - 1.13523285e+002 1.19697845e+002 9.97979279e+001 1.13474632e+002 - 1.19679886e+002 9.97302704e+001 1.13403946e+002 1.19657166e+002 - 9.96757660e+001 1.13366905e+002 1.19644432e+002 9.96136093e+001 - 1.13304108e+002 1.19634491e+002 9.95522385e+001 1.13270241e+002 - 1.19623848e+002 9.94970016e+001 1.13211617e+002 1.19616318e+002 - 9.94263153e+001 1.13159294e+002 1.19582962e+002 9.93844070e+001 - 1.13117516e+002 1.19582863e+002 9.93172455e+001 1.13068527e+002 - 1.19564728e+002 9.92602234e+001 1.12992844e+002 1.19547989e+002 - 9.92145081e+001 1.12959473e+002 1.19535362e+002 9.91594086e+001 - 1.12906647e+002 1.19528023e+002 9.91019974e+001 1.12868408e+002 - 1.19504204e+002 9.90715714e+001 1.12828056e+002 1.19503380e+002 - 9.90181961e+001 1.12788963e+002 1.19486145e+002 9.89280930e+001 - 1.12710762e+002 1.19463928e+002 9.88388290e+001 1.12648460e+002 - 1.19422882e+002 9.87905731e+001 1.12586990e+002 1.19405823e+002 - 9.87562408e+001 1.12561028e+002 1.19402260e+002 9.87446747e+001 - 1.12536438e+002 1.19430511e+002 9.86764832e+001 1.12485329e+002 - 1.19408646e+002 9.86300583e+001 1.12438263e+002 1.19416161e+002 - 9.85847855e+001 1.12410225e+002 1.19408592e+002 9.85569458e+001 - 1.12377480e+002 1.19417732e+002 9.84735718e+001 1.12302498e+002 - 1.19372299e+002 9.84441452e+001 1.12263069e+002 1.19393745e+002 - 9.83942719e+001 1.12228905e+002 1.19383133e+002 9.83621216e+001 - 1.12195183e+002 1.19380806e+002 9.82750473e+001 1.12130890e+002 - 1.19323433e+002 9.82089615e+001 1.12057617e+002 1.19282425e+002 - 9.81641998e+001 1.12022476e+002 1.19266708e+002 9.81247177e+001 - 1.11980537e+002 1.19273842e+002 9.80831375e+001 1.11954155e+002 - 1.19263054e+002 9.80498199e+001 1.11909653e+002 1.19255783e+002 - 9.80167236e+001 1.11889328e+002 1.19251434e+002 9.79894257e+001 - 1.11852394e+002 1.19256622e+002 9.79391479e+001 1.11812691e+002 - 1.19238945e+002 9.79192810e+001 1.11784592e+002 1.19257393e+002 - 9.78488388e+001 1.11731728e+002 1.19214172e+002 9.78243713e+001 - 1.11695267e+002 1.19216553e+002 9.77739716e+001 1.11652664e+002 - 1.19198013e+002 9.77534103e+001 1.11612892e+002 1.19203018e+002 - 9.77209473e+001 1.11585487e+002 1.19198746e+002 9.76798325e+001 - 1.11545578e+002 1.19193199e+002 9.76542053e+001 1.11531502e+002 - 1.19197090e+002 9.76221542e+001 1.11489365e+002 1.19191925e+002 - 9.75797882e+001 1.11458717e+002 1.19175095e+002 9.75382919e+001 - 1.11415977e+002 1.19181900e+002 9.74709778e+001 1.11375221e+002 - 1.19157295e+002 9.74449387e+001 1.11337341e+002 1.19155113e+002 - 9.74098969e+001 1.11302834e+002 1.19134682e+002 9.73713150e+001 - 1.11247620e+002 1.19124817e+002 9.73570175e+001 1.11246895e+002 - 1.19140266e+002 9.73333359e+001 1.11214127e+002 1.19140610e+002 - 9.73225250e+001 1.11218887e+002 1.19153999e+002 9.73315125e+001 - 1.11221405e+002 1.19181366e+002 9.72983017e+001 1.11199005e+002 - 1.19180267e+002 9.72924194e+001 1.11163933e+002 1.19185562e+002 - 9.72966385e+001 1.11179276e+002 1.19210953e+002 9.72863922e+001 - 1.11157089e+002 1.19215942e+002 9.72671967e+001 1.11150024e+002 - 1.19221390e+002 9.72351608e+001 1.11109596e+002 1.19204803e+002 - 9.72541962e+001 1.11133453e+002 1.19234177e+002 9.72150040e+001 - 1.11092964e+002 1.19239357e+002 9.71579208e+001 1.11064812e+002 - 1.19216553e+002 9.71613770e+001 1.11057121e+002 1.19236191e+002 - 9.71497650e+001 1.11056274e+002 1.19241394e+002 9.71432877e+001 - 1.11035080e+002 1.19252136e+002 9.71185379e+001 1.11028236e+002 - 1.19246239e+002 9.71026459e+001 1.11006332e+002 1.19250587e+002 - 9.70812073e+001 1.10994942e+002 1.19235329e+002 9.70847855e+001 - 1.10984253e+002 1.19245995e+002 9.70326843e+001 1.10936684e+002 - 1.19209984e+002 9.70346527e+001 1.10915985e+002 1.19216370e+002 - 9.70033493e+001 1.10897156e+002 1.19202568e+002 9.70193481e+001 - 1.10903526e+002 1.19231407e+002 9.70000839e+001 1.10892784e+002 - 1.19218788e+002 9.70020218e+001 1.10877113e+002 1.19219254e+002 - 9.69970932e+001 1.10880592e+002 1.19214272e+002 9.70036316e+001 - 1.10886986e+002 1.19234703e+002 9.69838104e+001 1.10887978e+002 - 1.19230881e+002 9.69635162e+001 1.10858376e+002 1.19221863e+002 - 9.69722214e+001 1.10872414e+002 1.19234818e+002 9.69767075e+001 - 1.10867805e+002 1.19253296e+002 9.69376678e+001 1.10846672e+002 - 1.19225449e+002 9.69330215e+001 1.10834702e+002 1.19224823e+002 - 9.69156418e+001 1.10833572e+002 1.19213509e+002 9.68983841e+001 - 1.10811058e+002 1.19198471e+002 9.68657608e+001 1.10795258e+002 - 1.19176277e+002 9.68697815e+001 1.10781197e+002 1.19178352e+002 - 9.68777542e+001 1.10807373e+002 1.19195091e+002 9.68798904e+001 - 1.10798096e+002 1.19189484e+002 9.68810043e+001 1.10807549e+002 - 1.19183884e+002 9.69137878e+001 1.10828255e+002 1.19214134e+002 - 9.69118958e+001 1.10832359e+002 1.19215317e+002 9.69000931e+001 - 1.10819626e+002 1.19207314e+002 9.68667526e+001 1.10807236e+002 - 1.19186508e+002 9.68953247e+001 1.10817917e+002 1.19208130e+002 - 9.69386673e+001 1.10867195e+002 1.19254700e+002 9.69267426e+001 - 1.10840866e+002 1.19238876e+002 9.69336319e+001 1.10859467e+002 - 1.19250938e+002 9.69445724e+001 1.10864922e+002 1.19260391e+002 - 9.69242401e+001 1.10862701e+002 1.19241013e+002 9.69505157e+001 - 1.10874458e+002 1.19266426e+002 9.69418182e+001 1.10882591e+002 - 1.19259171e+002 9.69845047e+001 1.10904556e+002 1.19289276e+002 - 9.69846573e+001 1.10913963e+002 1.19287613e+002 9.69866638e+001 - 1.10908997e+002 1.19287415e+002 9.69646988e+001 1.10901711e+002 - 1.19261169e+002 9.69800034e+001 1.10906807e+002 1.19270546e+002 - 9.69931717e+001 1.10927299e+002 1.19270584e+002 9.70041428e+001 - 1.10921753e+002 1.19256210e+002 9.70039444e+001 1.10946609e+002 - 1.19263374e+002 9.70471344e+001 1.10967949e+002 1.19282631e+002 - 9.70960388e+001 1.11026321e+002 1.19328468e+002 9.71193542e+001 - 1.11039383e+002 1.19341866e+002 9.70780182e+001 1.11004555e+002 - 1.19286308e+002 9.70994720e+001 1.11017143e+002 1.19295113e+002 - 9.71133347e+001 1.11045219e+002 1.19298355e+002 9.71260834e+001 - 1.11039696e+002 1.19293198e+002 9.71378632e+001 1.11060783e+002 - 1.19296898e+002 9.71700058e+001 1.11068962e+002 1.19308060e+002 - 9.71810379e+001 1.11084442e+002 1.19305763e+002 9.71879425e+001 - 1.11081726e+002 1.19288429e+002 9.71736755e+001 1.11086182e+002 - 1.19260391e+002 9.71820450e+001 1.11081596e+002 1.19257118e+002 - 9.72048264e+001 1.11104362e+002 1.19249428e+002 9.72226028e+001 - 1.11110245e+002 1.19229492e+002 9.72324829e+001 1.11134216e+002 - 1.19224823e+002 9.72677307e+001 1.11151711e+002 1.19233528e+002 - 9.72709351e+001 1.11156021e+002 1.19222473e+002 9.73203888e+001 - 1.11190811e+002 1.19239296e+002 9.73354263e+001 1.11217323e+002 - 1.19235764e+002 9.73543854e+001 1.11229675e+002 1.19234528e+002 - 9.73791199e+001 1.11260185e+002 1.19235489e+002 9.74290009e+001 - 1.11294632e+002 1.19258232e+002 9.74352570e+001 1.11310928e+002 - 1.19242561e+002 9.74783325e+001 1.11337616e+002 1.19255287e+002 - 9.74820709e+001 1.11347122e+002 1.19234474e+002 9.75309906e+001 - 1.11386848e+002 1.19251808e+002 9.75350876e+001 1.11410095e+002 - 1.19239998e+002 9.75693893e+001 1.11430481e+002 1.19250450e+002 - 9.76064911e+001 1.11467697e+002 1.19255798e+002 9.76613083e+001 - 1.11505066e+002 1.19264038e+002 9.76405029e+001 1.11503540e+002 - 1.19225861e+002 9.76863480e+001 1.11527107e+002 1.19240082e+002 - 9.77354355e+001 1.11576088e+002 1.19262627e+002 9.77845764e+001 - 1.11615585e+002 1.19279976e+002 9.77942200e+001 1.11641853e+002 - 1.19268547e+002 9.78089752e+001 1.11642776e+002 1.19252975e+002 - 9.78248749e+001 1.11677528e+002 1.19246239e+002 9.78652344e+001 - 1.11709099e+002 1.19255173e+002 9.78909607e+001 1.11742706e+002 - 1.19252274e+002 9.79521561e+001 1.11784035e+002 1.19264648e+002 - 9.79979477e+001 1.11843094e+002 1.19285194e+002 9.80603714e+001 - 1.11897270e+002 1.19308731e+002 9.80680847e+001 1.11924980e+002 - 1.19302704e+002 9.81282501e+001 1.11971596e+002 1.19339493e+002 - 9.81694717e+001 1.12023140e+002 1.19344292e+002 9.82234344e+001 - 1.12061195e+002 1.19345291e+002 9.82261429e+001 1.12077362e+002 - 1.19325584e+002 9.82877808e+001 1.12117332e+002 1.19344849e+002 - 9.83339920e+001 1.12168442e+002 1.19362251e+002 9.83728256e+001 - 1.12189972e+002 1.19362175e+002 9.84211273e+001 1.12261047e+002 - 1.19378784e+002 9.84851913e+001 1.12301208e+002 1.19395805e+002 - 9.85421906e+001 1.12368576e+002 1.19416901e+002 9.85971222e+001 - 1.12408066e+002 1.19426537e+002 9.86160355e+001 1.12432251e+002 - 1.19414841e+002 9.86759644e+001 1.12473206e+002 1.19418831e+002 - 9.87537766e+001 1.12556831e+002 1.19464096e+002 9.88186569e+001 - 1.12599861e+002 1.19481499e+002 9.88471909e+001 1.12641510e+002 - 1.19474998e+002 9.88914032e+001 1.12668480e+002 1.19480537e+002 - 9.89402313e+001 1.12720963e+002 1.19480843e+002 9.90212097e+001 - 1.12775314e+002 1.19488686e+002 9.90648117e+001 1.12832314e+002 - 1.19500946e+002 9.91089554e+001 1.12856552e+002 1.19507851e+002 - 9.91782227e+001 1.12933861e+002 1.19539101e+002 9.92518997e+001 - 1.12987846e+002 1.19565239e+002 9.92699966e+001 1.13013687e+002 - 1.19547646e+002 9.93277969e+001 1.13055336e+002 1.19551735e+002 - 9.93825150e+001 1.13121353e+002 1.19569450e+002 9.94192429e+001 - 1.13140144e+002 1.19561363e+002 9.94618378e+001 1.13186378e+002 - 1.19564911e+002 9.95542679e+001 1.13244926e+002 1.19595512e+002 - 9.96211624e+001 1.13314186e+002 1.19612633e+002 9.96920090e+001 - 1.13360420e+002 1.19623512e+002 9.97123184e+001 1.13389748e+002 - 1.19610497e+002 9.97734222e+001 1.13425514e+002 1.19625282e+002 - 9.98517456e+001 1.13500839e+002 1.19648788e+002 9.99344788e+001 - 1.13557663e+002 1.19654381e+002 9.99758911e+001 1.13606323e+002 - 1.19656593e+002 1.00044121e+002 1.13651077e+002 1.19679855e+002 - 1.00120590e+002 1.13721138e+002 1.19714218e+002 1.00221344e+002 - 1.13783485e+002 1.19753044e+002 1.00273674e+002 1.13837784e+002 - 1.19758690e+002 1.00351654e+002 1.13880585e+002 1.19767929e+002 - 1.00417793e+002 1.13945076e+002 1.19785538e+002 1.00496002e+002 - 1.13988724e+002 1.19798203e+002 1.00568680e+002 1.14049065e+002 - 1.19819382e+002 1.00658508e+002 1.14085587e+002 1.19824600e+002 - 1.00724533e+002 1.14140472e+002 1.19832184e+002 1.00783348e+002 - 1.14157104e+002 1.19821167e+002 1.00785934e+002 1.14150238e+002 - 1.19765877e+002 1.00793404e+002 1.14110664e+002 1.19710556e+002 - 1.00763123e+002 1.14067635e+002 1.19618042e+002 1.00760521e+002 - 1.14067497e+002 1.19626793e+002 1.00784180e+002 1.14132782e+002 - 1.19705551e+002 1.00789810e+002 1.14153275e+002 1.19759499e+002 - 1.00755104e+002 1.14147919e+002 1.19778984e+002 1.00707664e+002 - 1.14119392e+002 1.19796280e+002 1.00647995e+002 1.14098885e+002 - 1.19800087e+002 1.00582512e+002 1.14051903e+002 1.19814774e+002 - 1.00504364e+002 1.14004433e+002 1.19785088e+002 1.00453094e+002 - 1.13961571e+002 1.19791595e+002 1.00355186e+002 1.13887001e+002 - 1.19746719e+002 1.00303772e+002 1.13835846e+002 1.19747734e+002 - 1.00260742e+002 1.13816002e+002 1.19756439e+002 1.00189163e+002 - 1.13753677e+002 1.19740181e+002 1.00124847e+002 1.13712311e+002 - 1.19717476e+002 1.00055550e+002 1.13643738e+002 1.19691498e+002 - 9.99878311e+001 1.13597900e+002 1.19671631e+002 9.99279861e+001 - 1.13555359e+002 1.19696953e+002 9.98273468e+001 1.13490425e+002 - 1.19660103e+002 9.97839890e+001 1.13440598e+002 1.19656830e+002 - 9.97309189e+001 1.13410553e+002 1.19654121e+002 9.96735458e+001 - 1.13352104e+002 1.19647202e+002 9.96011887e+001 1.13305656e+002 - 1.19625824e+002 9.95439835e+001 1.13248909e+002 1.19621239e+002 - 9.94804230e+001 1.13208908e+002 1.19599846e+002 9.94539337e+001 - 1.13178078e+002 1.19606949e+002 9.94095230e+001 1.13147942e+002 - 1.19607674e+002 9.93411636e+001 1.13069397e+002 1.19584831e+002 - 9.92966919e+001 1.13034096e+002 1.19582596e+002 9.92502670e+001 - 1.12987938e+002 1.19575577e+002 9.91980743e+001 1.12954819e+002 - 1.19553764e+002 9.91512146e+001 1.12896080e+002 1.19534866e+002 - 9.91109390e+001 1.12880272e+002 1.19538437e+002 9.90226822e+001 - 1.12796486e+002 1.19514687e+002 9.89477234e+001 1.12750748e+002 - 1.19487793e+002 9.88947830e+001 1.12685402e+002 1.19466118e+002 - 9.88422928e+001 1.12638641e+002 1.19443497e+002 9.87936859e+001 - 1.12583481e+002 1.19439850e+002 9.87424698e+001 1.12540390e+002 - 1.19423569e+002 9.87051620e+001 1.12505440e+002 1.19437103e+002 - 9.86647415e+001 1.12479187e+002 1.19432770e+002 9.86242142e+001 - 1.12440269e+002 1.19432869e+002 9.85632095e+001 1.12388695e+002 - 1.19410751e+002 9.85294647e+001 1.12335533e+002 1.19417351e+002 - 9.84850006e+001 1.12308815e+002 1.19410881e+002 9.84381866e+001 - 1.12267357e+002 1.19403175e+002 9.83790359e+001 1.12227539e+002 - 1.19379410e+002 9.83223724e+001 1.12162010e+002 1.19344398e+002 - 9.82684021e+001 1.12118675e+002 1.19320946e+002 9.82431107e+001 - 1.12097694e+002 1.19348671e+002 9.81826935e+001 1.12056396e+002 - 1.19319023e+002 9.81486206e+001 1.12004921e+002 1.19298508e+002 - 9.81066971e+001 1.11969574e+002 1.19284683e+002 9.80976563e+001 - 1.11950745e+002 1.19310455e+002 9.80528564e+001 1.11922356e+002 - 1.19301407e+002 9.80022507e+001 1.11864494e+002 1.19288803e+002 - 9.79512405e+001 1.11827118e+002 1.19267921e+002 9.78950958e+001 - 1.11762993e+002 1.19237946e+002 9.78434982e+001 1.11718658e+002 - 1.19212257e+002 9.78137589e+001 1.11668922e+002 1.19209724e+002 - 9.77907867e+001 1.11652824e+002 1.19218506e+002 9.77778244e+001 - 1.11633896e+002 1.19237411e+002 9.77297516e+001 1.11607994e+002 - 1.19219826e+002 9.77003326e+001 1.11558960e+002 1.19213058e+002 - 9.76554108e+001 1.11530151e+002 1.19200737e+002 9.76275101e+001 - 1.11499245e+002 1.19225975e+002 9.75907669e+001 1.11483284e+002 - 1.19223213e+002 9.75516129e+001 1.11436348e+002 1.19209503e+002 - 9.74976273e+001 1.11386894e+002 1.19175835e+002 9.74723587e+001 - 1.11343475e+002 1.19166580e+002 9.74352646e+001 1.11317169e+002 - 1.19155899e+002 9.74149246e+001 1.11292892e+002 1.19165207e+002 - 9.74114914e+001 1.11302162e+002 1.19184059e+002 9.74384460e+001 - 1.11319992e+002 1.19233177e+002 9.73987579e+001 1.11289444e+002 - 1.19221443e+002 9.73813858e+001 1.11248985e+002 1.19223312e+002 - 9.73915176e+001 1.11261070e+002 1.19253021e+002 9.73881989e+001 - 1.11252205e+002 1.19263702e+002 9.73532104e+001 1.11231575e+002 - 1.19243690e+002 9.73386383e+001 1.11205170e+002 1.19243347e+002 - 9.73142776e+001 1.11192513e+002 1.19243568e+002 9.72884445e+001 - 1.11164513e+002 1.19255524e+002 9.72531052e+001 1.11151382e+002 - 1.19250847e+002 9.72465134e+001 1.11129242e+002 1.19263412e+002 - 9.72356186e+001 1.11134064e+002 1.19271545e+002 9.72215881e+001 - 1.11104187e+002 1.19273315e+002 9.72021790e+001 1.11102966e+002 - 1.19272179e+002 9.71778107e+001 1.11076988e+002 1.19263138e+002 - 9.71681824e+001 1.11070358e+002 1.19256195e+002 9.71583405e+001 - 1.11053009e+002 1.19257195e+002 9.71464539e+001 1.11042473e+002 - 1.19260826e+002 9.71392365e+001 1.11012161e+002 1.19256371e+002 - 9.70896530e+001 1.10974998e+002 1.19227509e+002 9.71001434e+001 - 1.10975204e+002 1.19247665e+002 9.70724716e+001 1.10959320e+002 - 1.19228661e+002 9.70775452e+001 1.10949120e+002 1.19236427e+002 - 9.70884094e+001 1.10968040e+002 1.19249863e+002 9.70718002e+001 - 1.10945183e+002 1.19240532e+002 9.70556259e+001 1.10953339e+002 - 1.19244682e+002 9.70522385e+001 1.10936829e+002 1.19244690e+002 - 9.70723877e+001 1.10967438e+002 1.19272942e+002 9.70740662e+001 - 1.10957062e+002 1.19284828e+002 9.70166245e+001 1.10913216e+002 - 1.19236412e+002 9.70076141e+001 1.10898354e+002 1.19239357e+002 - 9.69992218e+001 1.10909180e+002 1.19234474e+002 9.69731522e+001 - 1.10877235e+002 1.19212250e+002 9.69568787e+001 1.10882080e+002 - 1.19213799e+002 9.69581909e+001 1.10870056e+002 1.19215294e+002 - 9.69653778e+001 1.10882553e+002 1.19222847e+002 9.69701538e+001 - 1.10880554e+002 1.19217529e+002 9.69522095e+001 1.10879730e+002 - 1.19198471e+002 9.69758072e+001 1.10883278e+002 1.19214806e+002 - 9.70175552e+001 1.10927086e+002 1.19255592e+002 9.70143661e+001 - 1.10916527e+002 1.19247414e+002 9.69821854e+001 1.10910652e+002 - 1.19224686e+002 9.70022812e+001 1.10912827e+002 1.19243683e+002 - 9.70349808e+001 1.10952576e+002 1.19280739e+002 9.70446396e+001 - 1.10948433e+002 1.19288925e+002 9.70375748e+001 1.10955078e+002 - 1.19288414e+002 9.70607376e+001 1.10972549e+002 1.19310799e+002 - 9.70418091e+001 1.10979233e+002 1.19292786e+002 9.70489273e+001 - 1.10966003e+002 1.19294609e+002 9.70672836e+001 1.10998802e+002 - 1.19320290e+002 9.70769958e+001 1.10992966e+002 1.19320572e+002 - 9.70803909e+001 1.11004272e+002 1.19321770e+002 9.70904236e+001 - 1.11007988e+002 1.19323212e+002 9.70892258e+001 1.11027458e+002 - 1.19325508e+002 9.70992813e+001 1.11027298e+002 1.19331299e+002 - 9.71126556e+001 1.11045944e+002 1.19329041e+002 9.71342468e+001 - 1.11051575e+002 1.19337112e+002 9.71228027e+001 1.11060783e+002 - 1.19318077e+002 9.71665573e+001 1.11087090e+002 1.19345985e+002 - 9.71895752e+001 1.11113342e+002 1.19360428e+002 9.72023621e+001 - 1.11111946e+002 1.19354691e+002 9.71753159e+001 1.11101852e+002 - 1.19320724e+002 9.71987000e+001 1.11109833e+002 1.19327568e+002 - 9.72073059e+001 1.11132118e+002 1.19331100e+002 9.72134933e+001 - 1.11120773e+002 1.19321075e+002 9.72211380e+001 1.11134697e+002 - 1.19316505e+002 9.72857666e+001 1.11176437e+002 1.19362846e+002 - 9.72841492e+001 1.11184891e+002 1.19347191e+002 9.72632980e+001 - 1.11153358e+002 1.19307076e+002 9.72563934e+001 1.11163239e+002 - 1.19288551e+002 9.72748260e+001 1.11166992e+002 1.19289177e+002 - 9.72972794e+001 1.11182442e+002 1.19275330e+002 9.73146667e+001 - 1.11194298e+002 1.19265709e+002 9.73079529e+001 1.11207405e+002 - 1.19241982e+002 9.73466110e+001 1.11224266e+002 1.19255630e+002 - 9.73913956e+001 1.11276711e+002 1.19282455e+002 9.74227753e+001 - 1.11288200e+002 1.19284531e+002 9.74273300e+001 1.11304306e+002 - 1.19272041e+002 9.74536057e+001 1.11322014e+002 1.19272415e+002 - 9.74813461e+001 1.11358849e+002 1.19278702e+002 9.75374069e+001 - 1.11402718e+002 1.19308838e+002 9.75161819e+001 1.11391754e+002 - 1.19267700e+002 9.75712280e+001 1.11421715e+002 1.19291367e+002 - 9.75856705e+001 1.11447929e+002 1.19286057e+002 9.76242142e+001 - 1.11476585e+002 1.19293533e+002 9.76278992e+001 1.11495842e+002 - 1.19282158e+002 9.76569443e+001 1.11510880e+002 1.19286728e+002 - 9.76927338e+001 1.11553307e+002 1.19293846e+002 9.77451706e+001 - 1.11587715e+002 1.19300941e+002 9.77525101e+001 1.11610725e+002 - 1.19287369e+002 9.77807465e+001 1.11610863e+002 1.19283142e+002 - 9.78082504e+001 1.11649368e+002 1.19288376e+002 9.78704224e+001 - 1.11691605e+002 1.19317863e+002 9.78823090e+001 1.11721413e+002 - 1.19310509e+002 9.79035416e+001 1.11738525e+002 1.19300896e+002 - 9.79143600e+001 1.11759071e+002 1.19290337e+002 9.79466705e+001 - 1.11787994e+002 1.19287430e+002 9.79644623e+001 1.11817268e+002 - 1.19281044e+002 9.80417023e+001 1.11872276e+002 1.19312767e+002 - 9.80814285e+001 1.11919884e+002 1.19321808e+002 9.81327438e+001 - 1.11963181e+002 1.19345139e+002 9.81496124e+001 1.12000923e+002 - 1.19337059e+002 9.81916428e+001 1.12029747e+002 1.19357704e+002 - 9.82547760e+001 1.12096725e+002 1.19382240e+002 9.83104782e+001 - 1.12137421e+002 1.19390533e+002 9.83055801e+001 1.12147354e+002 - 1.19359886e+002 9.83602982e+001 1.12180000e+002 1.19374611e+002 - 9.84127502e+001 1.12245461e+002 1.19409515e+002 9.84649887e+001 - 1.12275787e+002 1.19410881e+002 9.84859467e+001 1.12309952e+002 - 1.19394920e+002 9.85363083e+001 1.12344009e+002 1.19398865e+002 - 9.86023407e+001 1.12413406e+002 1.19428192e+002 9.86658630e+001 - 1.12463585e+002 1.19448967e+002 9.87034378e+001 1.12510544e+002 - 1.19454567e+002 9.87766418e+001 1.12559052e+002 1.19479782e+002 - 9.88347778e+001 1.12622627e+002 1.19496864e+002 9.88919830e+001 - 1.12671684e+002 1.19510376e+002 9.89243698e+001 1.12711151e+002 - 1.19504234e+002 9.89726791e+001 1.12745522e+002 1.19521667e+002 - 9.90022278e+001 1.12768074e+002 1.19500351e+002 9.90850449e+001 - 1.12830688e+002 1.19518753e+002 9.91203918e+001 1.12881454e+002 - 1.19516708e+002 9.91827927e+001 1.12928017e+002 1.19540771e+002 - 9.92536774e+001 1.13003944e+002 1.19574242e+002 9.93140564e+001 - 1.13044960e+002 1.19589767e+002 9.93360748e+001 1.13069115e+002 - 1.19564316e+002 9.93840408e+001 1.13101410e+002 1.19564278e+002 - 9.94510880e+001 1.13184372e+002 1.19602356e+002 9.95031815e+001 - 1.13214317e+002 1.19600555e+002 9.95270615e+001 1.13243568e+002 - 1.19590080e+002 9.96320419e+001 1.13311829e+002 1.19628784e+002 - 9.96926041e+001 1.13376404e+002 1.19646591e+002 9.97555618e+001 - 1.13413795e+002 1.19647667e+002 9.97968216e+001 1.13459671e+002 - 1.19648613e+002 9.98386841e+001 1.13478203e+002 1.19642891e+002 - 9.99076996e+001 1.13547165e+002 1.19665649e+002 9.99954758e+001 - 1.13612076e+002 1.19681404e+002 1.00033234e+002 1.13654953e+002 - 1.19675964e+002 1.00106300e+002 1.13693466e+002 1.19696815e+002 - 1.00152847e+002 1.13744835e+002 1.19706436e+002 1.00243202e+002 - 1.13796982e+002 1.19728561e+002 1.00325302e+002 1.13880409e+002 - 1.19768242e+002 1.00400627e+002 1.13928307e+002 1.19779205e+002 - 1.00470802e+002 1.13989525e+002 1.19794426e+002 1.00542892e+002 - 1.14029686e+002 1.19809326e+002 1.00620598e+002 1.14092728e+002 - 1.19835045e+002 1.00699165e+002 1.14122513e+002 1.19832542e+002 - 1.00755722e+002 1.14164825e+002 1.19831856e+002 1.00820282e+002 - 1.14183258e+002 1.19818680e+002 1.00828972e+002 1.14183998e+002 - 1.19777122e+002 1.00853287e+002 1.14165436e+002 1.19739494e+002 - 1.00805573e+002 1.14107162e+002 1.19636765e+002 1.00767357e+002 - 1.14066765e+002 1.19604218e+002 1.00787201e+002 1.14129707e+002 - 1.19682144e+002 1.00798149e+002 1.14152748e+002 1.19744347e+002 - 1.00764046e+002 1.14159592e+002 1.19765816e+002 1.00730179e+002 - 1.14139259e+002 1.19792572e+002 1.00674736e+002 1.14126900e+002 - 1.19802185e+002 1.00613716e+002 1.14085670e+002 1.19815758e+002 - 1.00530296e+002 1.14030647e+002 1.19789047e+002 1.00476334e+002 - 1.13986076e+002 1.19786186e+002 1.00376862e+002 1.13908455e+002 - 1.19740654e+002 1.00329597e+002 1.13859306e+002 1.19749306e+002 - 1.00279358e+002 1.13836075e+002 1.19746262e+002 1.00219612e+002 - 1.13780861e+002 1.19734375e+002 1.00168007e+002 1.13757362e+002 - 1.19729866e+002 1.00096825e+002 1.13683853e+002 1.19698875e+002 - 1.00038200e+002 1.13643410e+002 1.19687263e+002 9.99747543e+001 - 1.13594482e+002 1.19714142e+002 9.98818665e+001 1.13543839e+002 - 1.19685081e+002 9.98598633e+001 1.13522697e+002 1.19705574e+002 - 9.98016357e+001 1.13486633e+002 1.19696793e+002 9.97246475e+001 - 1.13404015e+002 1.19667557e+002 9.96632614e+001 1.13362717e+002 - 1.19650963e+002 9.96038284e+001 1.13313438e+002 1.19649559e+002 - 9.95497284e+001 1.13276947e+002 1.19631653e+002 9.95240097e+001 - 1.13251869e+002 1.19655579e+002 9.94744034e+001 1.13218262e+002 - 1.19641129e+002 9.94142151e+001 1.13138184e+002 1.19626991e+002 - 9.93443069e+001 1.13081848e+002 1.19596512e+002 9.92955322e+001 - 1.13039490e+002 1.19592125e+002 9.92518082e+001 1.13010468e+002 - 1.19581375e+002 9.92096939e+001 1.12963860e+002 1.19568764e+002 - 9.91767654e+001 1.12943039e+002 1.19568314e+002 9.91087418e+001 - 1.12880081e+002 1.19564529e+002 9.90194092e+001 1.12825836e+002 - 1.19530548e+002 9.89769287e+001 1.12769936e+002 1.19513298e+002 - 9.89179001e+001 1.12718132e+002 1.19485863e+002 9.88584442e+001 - 1.12645920e+002 1.19468689e+002 9.88055344e+001 1.12610107e+002 - 1.19452255e+002 9.87927551e+001 1.12596077e+002 1.19490646e+002 - 9.87394104e+001 1.12561226e+002 1.19464783e+002 9.86763458e+001 - 1.12495987e+002 1.19449493e+002 9.86170959e+001 1.12453697e+002 - 1.19432487e+002 9.85918579e+001 1.12406891e+002 1.19446800e+002 - 9.85558395e+001 1.12382065e+002 1.19443573e+002 9.85206299e+001 - 1.12348366e+002 1.19447495e+002 9.84580917e+001 1.12315170e+002 - 1.19423927e+002 9.84024048e+001 1.12252129e+002 1.19397728e+002 - 9.83886795e+001 1.12239029e+002 1.19401512e+002 9.83454514e+001 - 1.12194885e+002 1.19403702e+002 9.82813644e+001 1.12153870e+002 - 1.19380806e+002 9.82279358e+001 1.12088196e+002 1.19345779e+002 - 9.81971512e+001 1.12058006e+002 1.19336975e+002 9.81497345e+001 - 1.12003235e+002 1.19326019e+002 9.81085587e+001 1.11982079e+002 - 1.19319412e+002 9.80603256e+001 1.11933434e+002 1.19317253e+002 - 9.80059891e+001 1.11889473e+002 1.19286926e+002 9.79513855e+001 - 1.11824570e+002 1.19254845e+002 9.78974915e+001 1.11781769e+002 - 1.19231094e+002 9.78924789e+001 1.11749275e+002 1.19255020e+002 - 9.78539124e+001 1.11721550e+002 1.19241821e+002 9.78262558e+001 - 1.11691528e+002 1.19250534e+002 9.77918930e+001 1.11675095e+002 - 1.19248703e+002 9.77542343e+001 1.11622169e+002 1.19234238e+002 - 9.77316360e+001 1.11607208e+002 1.19237022e+002 9.76861954e+001 - 1.11558365e+002 1.19240433e+002 9.76640625e+001 1.11560135e+002 - 1.19258080e+002 9.76313782e+001 1.11513344e+002 1.19243729e+002 - 9.75848999e+001 1.11471634e+002 1.19217667e+002 9.75406342e+001 - 1.11414879e+002 1.19192368e+002 9.75116043e+001 1.11394325e+002 - 1.19184120e+002 9.74871597e+001 1.11369225e+002 1.19191231e+002 - 9.74953156e+001 1.11388069e+002 1.19226349e+002 9.75076828e+001 - 1.11396622e+002 1.19260452e+002 9.74760056e+001 1.11377014e+002 - 1.19257111e+002 9.74758301e+001 1.11349518e+002 1.19270004e+002 - 9.74769058e+001 1.11354263e+002 1.19291199e+002 9.74789658e+001 - 1.11346695e+002 1.19307411e+002 9.74599609e+001 1.11340248e+002 - 1.19304092e+002 9.74453583e+001 1.11318169e+002 1.19309761e+002 - 9.74375381e+001 1.11317947e+002 1.19317513e+002 9.73993073e+001 - 1.11274681e+002 1.19317093e+002 9.73385925e+001 1.11239319e+002 - 1.19292763e+002 9.73236389e+001 1.11210503e+002 1.19294319e+002 - 9.73122482e+001 1.11208946e+002 1.19298096e+002 9.73174820e+001 - 1.11198853e+002 1.19319847e+002 9.72940826e+001 1.11193855e+002 - 1.19318428e+002 9.72694244e+001 1.11168816e+002 1.19307838e+002 - 9.72660675e+001 1.11169777e+002 1.19310822e+002 9.72622986e+001 - 1.11155991e+002 1.19316841e+002 9.72175140e+001 1.11124336e+002 - 1.19285393e+002 9.72238541e+001 1.11099991e+002 1.19296394e+002 - 9.71810455e+001 1.11065941e+002 1.19264977e+002 9.71954803e+001 - 1.11079903e+002 1.19295937e+002 9.71611176e+001 1.11056496e+002 - 1.19269974e+002 9.71667328e+001 1.11046494e+002 1.19276024e+002 - 9.71749496e+001 1.11060005e+002 1.19288628e+002 9.71758423e+001 - 1.11052315e+002 1.19302078e+002 9.71365662e+001 1.11042336e+002 - 1.19285858e+002 9.71331253e+001 1.11024788e+002 1.19286232e+002 - 9.71363220e+001 1.11035912e+002 1.19294846e+002 9.71394272e+001 - 1.11024277e+002 1.19301590e+002 9.71043701e+001 1.11000412e+002 - 1.19278435e+002 9.70879288e+001 1.10984863e+002 1.19274902e+002 - 9.70846558e+001 1.10998222e+002 1.19274605e+002 9.70651550e+001 - 1.10972801e+002 1.19257935e+002 9.70576706e+001 1.10986160e+002 - 1.19266708e+002 9.70871201e+001 1.10994637e+002 1.19295395e+002 - 9.70681305e+001 1.10989967e+002 1.19282249e+002 9.70575790e+001 - 1.10972786e+002 1.19261642e+002 9.70502014e+001 1.10984100e+002 - 1.19249825e+002 9.70786819e+001 1.10990318e+002 1.19273804e+002 - 9.71043015e+001 1.11016197e+002 1.19288139e+002 9.71043854e+001 - 1.11013382e+002 1.19290962e+002 9.70649948e+001 1.10997047e+002 - 1.19267036e+002 9.70860443e+001 1.10998550e+002 1.19278488e+002 - 9.71258621e+001 1.11049316e+002 1.19321938e+002 9.71416168e+001 - 1.11049965e+002 1.19334671e+002 9.71256561e+001 1.11043167e+002 - 1.19321709e+002 9.71422043e+001 1.11059891e+002 1.19341843e+002 - 9.71202240e+001 1.11047768e+002 1.19315414e+002 9.71277924e+001 - 1.11047867e+002 1.19321899e+002 9.71422501e+001 1.11074059e+002 - 1.19343391e+002 9.71787567e+001 1.11091003e+002 1.19367943e+002 - 9.71739502e+001 1.11102890e+002 1.19367966e+002 9.71933823e+001 - 1.11120110e+002 1.19384102e+002 9.71831894e+001 1.11126732e+002 - 1.19375549e+002 9.72031479e+001 1.11136696e+002 1.19391594e+002 - 9.72118683e+001 1.11146614e+002 1.19381859e+002 9.72295532e+001 - 1.11148300e+002 1.19382217e+002 9.72213898e+001 1.11161179e+002 - 1.19369301e+002 9.72549438e+001 1.11182419e+002 1.19393135e+002 - 9.72590485e+001 1.11188515e+002 1.19378258e+002 9.72907944e+001 - 1.11206993e+002 1.19394180e+002 9.72557068e+001 1.11181381e+002 - 1.19356842e+002 9.72742844e+001 1.11190964e+002 1.19357712e+002 - 9.72960052e+001 1.11222435e+002 1.19373154e+002 9.73199539e+001 - 1.11228500e+002 1.19380569e+002 9.73316269e+001 1.11249916e+002 - 1.19380867e+002 9.73660049e+001 1.11258202e+002 1.19396568e+002 - 9.73602371e+001 1.11259026e+002 1.19376312e+002 9.73428497e+001 - 1.11234222e+002 1.19338623e+002 9.73452988e+001 1.11248085e+002 - 1.19327095e+002 9.73674316e+001 1.11260612e+002 1.19334663e+002 - 9.73965607e+001 1.11280014e+002 1.19329681e+002 9.74078674e+001 - 1.11288010e+002 1.19310745e+002 9.73950806e+001 1.11295242e+002 - 1.19285820e+002 9.74282227e+001 1.11307594e+002 1.19296631e+002 - 9.74617386e+001 1.11351738e+002 1.19313278e+002 9.74927826e+001 - 1.11365929e+002 1.19315063e+002 9.75194626e+001 1.11403046e+002 - 1.19317642e+002 9.75444565e+001 1.11421638e+002 1.19322906e+002 - 9.75672684e+001 1.11453369e+002 1.19323845e+002 9.75919342e+001 - 1.11462715e+002 1.19323250e+002 9.76074600e+001 1.11487854e+002 - 1.19316628e+002 9.76623993e+001 1.11512146e+002 1.19337418e+002 - 9.76710281e+001 1.11536270e+002 1.19328094e+002 9.76942673e+001 - 1.11548500e+002 1.19322746e+002 9.77084579e+001 1.11578209e+002 - 1.19316711e+002 9.77336960e+001 1.11587852e+002 1.19320213e+002 - 9.77856827e+001 1.11639000e+002 1.19336258e+002 9.78207855e+001 - 1.11666191e+002 1.19335236e+002 9.78485489e+001 1.11704620e+002 - 1.19338432e+002 9.78809662e+001 1.11719406e+002 1.19347649e+002 - 9.78961105e+001 1.11743942e+002 1.19338867e+002 9.79547119e+001 - 1.11781784e+002 1.19365005e+002 9.79580841e+001 1.11797760e+002 - 1.19343590e+002 9.79794464e+001 1.11815742e+002 1.19341393e+002 - 9.79870834e+001 1.11841278e+002 1.19328880e+002 9.80098801e+001 - 1.11855194e+002 1.19318024e+002 9.80355453e+001 1.11900673e+002 - 1.19326828e+002 9.81219482e+001 1.11949768e+002 1.19360077e+002 - 9.81585083e+001 1.12000114e+002 1.19371101e+002 9.81993790e+001 - 1.12038277e+002 1.19381477e+002 9.82177505e+001 1.12067459e+002 - 1.19375412e+002 9.82796936e+001 1.12117844e+002 1.19417496e+002 - 9.83334198e+001 1.12169373e+002 1.19428764e+002 9.83956680e+001 - 1.12220612e+002 1.19441788e+002 9.83946075e+001 1.12238892e+002 - 1.19419075e+002 9.84486618e+001 1.12273262e+002 1.19435379e+002 - 9.85118408e+001 1.12341339e+002 1.19464470e+002 9.85634384e+001 - 1.12373398e+002 1.19480553e+002 9.85857697e+001 1.12407074e+002 - 1.19466080e+002 9.86164322e+001 1.12425171e+002 1.19450752e+002 - 9.86522751e+001 1.12466957e+002 1.19445999e+002 9.87257385e+001 - 1.12527756e+002 1.19476784e+002 9.87806168e+001 1.12589149e+002 - 1.19500183e+002 9.88400955e+001 1.12621841e+002 1.19509689e+002 - 9.88877792e+001 1.12671036e+002 1.19515457e+002 9.89399719e+001 - 1.12718979e+002 1.19528183e+002 9.89613037e+001 1.12751053e+002 - 1.19516380e+002 9.90191650e+001 1.12794090e+002 1.19535042e+002 - 9.90760498e+001 1.12843407e+002 1.19541512e+002 9.91340637e+001 - 1.12884621e+002 1.19533104e+002 9.91670151e+001 1.12931351e+002 - 1.19535019e+002 9.92309036e+001 1.12979492e+002 1.19559082e+002 - 9.92956009e+001 1.13045792e+002 1.19585068e+002 9.93320465e+001 - 1.13064842e+002 1.19574181e+002 9.93691483e+001 1.13113060e+002 - 1.19577774e+002 9.94248581e+001 1.13148003e+002 1.19581184e+002 - 9.94943085e+001 1.13229393e+002 1.19615471e+002 9.95399780e+001 - 1.13257904e+002 1.19614182e+002 9.95807190e+001 1.13296677e+002 - 1.19614540e+002 9.96790466e+001 1.13353935e+002 1.19645027e+002 - 9.97164459e+001 1.13397209e+002 1.19640846e+002 9.97756424e+001 - 1.13437401e+002 1.19644363e+002 9.98235855e+001 1.13487228e+002 - 1.19653267e+002 9.98801346e+001 1.13520477e+002 1.19660675e+002 - 9.99608002e+001 1.13602036e+002 1.19692482e+002 1.00056755e+002 - 1.13670464e+002 1.19717636e+002 1.00098686e+002 1.13720703e+002 - 1.19717003e+002 1.00140099e+002 1.13734314e+002 1.19706833e+002 - 1.00196350e+002 1.13784119e+002 1.19717690e+002 1.00279114e+002 - 1.13834450e+002 1.19743141e+002 1.00345131e+002 1.13899651e+002 - 1.19764481e+002 1.00419136e+002 1.13943192e+002 1.19770523e+002 - 1.00493744e+002 1.14013824e+002 1.19795357e+002 1.00566925e+002 - 1.14053848e+002 1.19808342e+002 1.00646561e+002 1.14124222e+002 - 1.19837929e+002 1.00715073e+002 1.14140633e+002 1.19829758e+002 - 1.00770805e+002 1.14179314e+002 1.19819160e+002 1.00830635e+002 - 1.14193665e+002 1.19809868e+002 1.00853752e+002 1.14217735e+002 - 1.19786201e+002 1.00873390e+002 1.14183449e+002 1.19738281e+002 - 1.00827957e+002 1.14128044e+002 1.19639420e+002 1.00802406e+002 - 1.14081261e+002 1.19602882e+002 1.00828087e+002 1.14148727e+002 - 1.19682129e+002 1.00859245e+002 1.14195084e+002 1.19762459e+002 - 1.00831406e+002 1.14199966e+002 1.19787148e+002 1.00785988e+002 - 1.14174103e+002 1.19810165e+002 1.00716225e+002 1.14143608e+002 - 1.19802132e+002 1.00647987e+002 1.14098175e+002 1.19805603e+002 - 1.00593933e+002 1.14078201e+002 1.19810005e+002 1.00532043e+002 - 1.14024117e+002 1.19801598e+002 1.00433617e+002 1.13951553e+002 - 1.19757454e+002 1.00404030e+002 1.13914993e+002 1.19778267e+002 - 1.00364326e+002 1.13893532e+002 1.19779869e+002 1.00301590e+002 - 1.13840820e+002 1.19767700e+002 1.00236740e+002 1.13794586e+002 - 1.19744926e+002 1.00170937e+002 1.13731995e+002 1.19726814e+002 - 1.00118774e+002 1.13702682e+002 1.19723534e+002 1.00073372e+002 - 1.13671227e+002 1.19762932e+002 9.99756393e+001 1.13612602e+002 - 1.19731926e+002 9.99245682e+001 1.13561401e+002 1.19721008e+002 - 9.98852615e+001 1.13541977e+002 1.19730827e+002 9.98027878e+001 - 1.13461655e+002 1.19698982e+002 9.97541962e+001 1.13434837e+002 - 1.19698616e+002 9.97014618e+001 1.13388992e+002 1.19694359e+002 - 9.96650162e+001 1.13368965e+002 1.19692474e+002 9.96120911e+001 - 1.13320557e+002 1.19693085e+002 9.95710602e+001 1.13290123e+002 - 1.19689362e+002 9.95139923e+001 1.13218941e+002 1.19674911e+002 - 9.94416656e+001 1.13156372e+002 1.19639305e+002 9.93878632e+001 - 1.13106262e+002 1.19630005e+002 9.93399658e+001 1.13076233e+002 - 1.19618301e+002 9.92984314e+001 1.13026901e+002 1.19607353e+002 - 9.92497253e+001 1.12998024e+002 1.19596184e+002 9.91990204e+001 - 1.12955124e+002 1.19604088e+002 9.91026688e+001 1.12879257e+002 - 1.19555634e+002 9.90732193e+001 1.12838997e+002 1.19557594e+002 - 9.90173264e+001 1.12793884e+002 1.19532242e+002 9.89660645e+001 - 1.12731522e+002 1.19514885e+002 9.89028168e+001 1.12686508e+002 - 1.19490433e+002 9.88834457e+001 1.12658798e+002 1.19516830e+002 - 9.88333359e+001 1.12632957e+002 1.19502373e+002 9.87777100e+001 - 1.12574165e+002 1.19491531e+002 9.87191772e+001 1.12532616e+002 - 1.19476547e+002 9.86823502e+001 1.12473801e+002 1.19476479e+002 - 9.86264572e+001 1.12435165e+002 1.19461708e+002 9.85894699e+001 - 1.12397522e+002 1.19461449e+002 9.85461884e+001 1.12383240e+002 - 1.19454163e+002 9.85105286e+001 1.12339378e+002 1.19442261e+002 - 9.84808426e+001 1.12314827e+002 1.19443596e+002 9.84289627e+001 - 1.12264610e+002 1.19437218e+002 9.83675613e+001 1.12215355e+002 - 1.19408409e+002 9.83196182e+001 1.12154480e+002 1.19378685e+002 - 9.82748566e+001 1.12120552e+002 1.19356964e+002 9.82470169e+001 - 1.12076340e+002 1.19365669e+002 9.82012177e+001 1.12046982e+002 - 1.19353897e+002 9.81720963e+001 1.12024063e+002 1.19363396e+002 - 9.81086349e+001 1.11971596e+002 1.19332016e+002 9.80544052e+001 - 1.11911232e+002 1.19309723e+002 9.79975357e+001 1.11864059e+002 - 1.19275925e+002 9.79915771e+001 1.11837212e+002 1.19302391e+002 - 9.79544830e+001 1.11801628e+002 1.19291351e+002 9.79192276e+001 - 1.11764091e+002 1.19286079e+002 9.78921890e+001 1.11755386e+002 - 1.19290352e+002 9.78501434e+001 1.11694504e+002 1.19267487e+002 - 9.78222198e+001 1.11684998e+002 1.19270248e+002 9.77817230e+001 - 1.11640190e+002 1.19275879e+002 9.77479019e+001 1.11624451e+002 - 1.19274567e+002 9.77204361e+001 1.11587234e+002 1.19265823e+002 - 9.76927643e+001 1.11561523e+002 1.19255455e+002 9.76701355e+001 - 1.11523048e+002 1.19254112e+002 9.76280441e+001 1.11494896e+002 - 1.19232071e+002 9.75952759e+001 1.11454430e+002 1.19232307e+002 - 9.76211014e+001 1.11488487e+002 1.19273628e+002 9.76301117e+001 - 1.11495308e+002 1.19314613e+002 9.75825577e+001 1.11458443e+002 - 1.19295937e+002 9.76040344e+001 1.11452324e+002 1.19330551e+002 - 9.76080551e+001 1.11458542e+002 1.19356102e+002 9.76025772e+001 - 1.11446556e+002 1.19365211e+002 9.75730362e+001 1.11432014e+002 - 1.19354591e+002 9.75701523e+001 1.11417526e+002 1.19363525e+002 - 9.75536346e+001 1.11417755e+002 1.19366547e+002 9.75223465e+001 - 1.11381241e+002 1.19372368e+002 9.74706039e+001 1.11347420e+002 - 1.19353806e+002 9.74482193e+001 1.11310150e+002 1.19346161e+002 - 9.74331741e+001 1.11311653e+002 1.19358192e+002 9.74147110e+001 - 1.11277321e+002 1.19353348e+002 9.73902206e+001 1.11270088e+002 - 1.19345604e+002 9.73849945e+001 1.11263283e+002 1.19352142e+002 - 9.73868027e+001 1.11275772e+002 1.19363869e+002 9.73727264e+001 - 1.11249542e+002 1.19356827e+002 9.73132477e+001 1.11196030e+002 - 1.19311630e+002 9.73336716e+001 1.11190933e+002 1.19338799e+002 - 9.73205414e+001 1.11186081e+002 1.19333908e+002 9.73449631e+001 - 1.11200768e+002 1.19364662e+002 9.73084183e+001 1.11181435e+002 - 1.19341454e+002 9.73102188e+001 1.11171051e+002 1.19349869e+002 - 9.72919846e+001 1.11164612e+002 1.19334000e+002 9.72925644e+001 - 1.11159737e+002 1.19349350e+002 9.72460403e+001 1.11134872e+002 - 1.19323936e+002 9.72558670e+001 1.11132217e+002 1.19339684e+002 - 9.72497406e+001 1.11133247e+002 1.19341202e+002 9.72204666e+001 - 1.11089050e+002 1.19320786e+002 9.71939697e+001 1.11080101e+002 - 1.19309387e+002 9.71923523e+001 1.11075127e+002 1.19310135e+002 - 9.71722336e+001 1.11066376e+002 1.19300682e+002 9.71741409e+001 - 1.11064552e+002 1.19305710e+002 9.71629333e+001 1.11071220e+002 - 1.19305786e+002 9.71912460e+001 1.11083313e+002 1.19337021e+002 - 9.71919632e+001 1.11097023e+002 1.19338493e+002 9.71967010e+001 - 1.11095222e+002 1.19333702e+002 9.71827927e+001 1.11095284e+002 - 1.19318687e+002 9.71809692e+001 1.11077614e+002 1.19306435e+002 - 9.72072220e+001 1.11109894e+002 1.19328979e+002 9.72294235e+001 - 1.11118629e+002 1.19349846e+002 9.72078323e+001 1.11114807e+002 - 1.19337257e+002 9.72370834e+001 1.11128578e+002 1.19356712e+002 - 9.72520294e+001 1.11154655e+002 1.19373741e+002 9.72452011e+001 - 1.11131256e+002 1.19362862e+002 9.72301407e+001 1.11130264e+002 - 1.19355415e+002 9.72584915e+001 1.11156967e+002 1.19387466e+002 - 9.72635193e+001 1.11168579e+002 1.19391586e+002 9.72584610e+001 - 1.11159988e+002 1.19384628e+002 9.72671738e+001 1.11181694e+002 - 1.19392632e+002 9.72921677e+001 1.11185928e+002 1.19414604e+002 - 9.72928085e+001 1.11196182e+002 1.19411514e+002 9.73109436e+001 - 1.11211853e+002 1.19428513e+002 9.72911606e+001 1.11210503e+002 - 1.19405899e+002 9.72935562e+001 1.11202599e+002 1.19403313e+002 - 9.73129883e+001 1.11227905e+002 1.19407646e+002 9.73409271e+001 - 1.11242554e+002 1.19423180e+002 9.73187180e+001 1.11239227e+002 - 1.19400261e+002 9.73540726e+001 1.11255516e+002 1.19415474e+002 - 9.73474045e+001 1.11258865e+002 1.19395645e+002 9.73741455e+001 - 1.11266418e+002 1.19407211e+002 9.73566818e+001 1.11263084e+002 - 1.19383331e+002 9.73952484e+001 1.11291092e+002 1.19410431e+002 - 9.74131165e+001 1.11319443e+002 1.19418457e+002 9.74188614e+001 - 1.11313446e+002 1.19408508e+002 9.74211197e+001 1.11322289e+002 - 1.19407654e+002 9.74660339e+001 1.11338188e+002 1.19431572e+002 - 9.74700470e+001 1.11344284e+002 1.19419395e+002 9.74814758e+001 - 1.11346542e+002 1.19402512e+002 9.74716721e+001 1.11345970e+002 - 1.19381195e+002 9.74906387e+001 1.11358559e+002 1.19385300e+002 - 9.75056229e+001 1.11371437e+002 1.19374649e+002 9.75233002e+001 - 1.11385483e+002 1.19371155e+002 9.75025558e+001 1.11379173e+002 - 1.19332489e+002 9.75466232e+001 1.11402946e+002 1.19357231e+002 - 9.75770645e+001 1.11439896e+002 1.19360359e+002 9.76131210e+001 - 1.11461166e+002 1.19369240e+002 9.76400299e+001 1.11496536e+002 - 1.19373016e+002 9.76546631e+001 1.11508881e+002 1.19360748e+002 - 9.76703415e+001 1.11532249e+002 1.19358536e+002 9.76988907e+001 - 1.11552017e+002 1.19366074e+002 9.77306976e+001 1.11592743e+002 - 1.19380241e+002 9.77860565e+001 1.11619011e+002 1.19397728e+002 - 9.77824020e+001 1.11623604e+002 1.19369019e+002 9.77992172e+001 - 1.11628723e+002 1.19357300e+002 9.78228378e+001 1.11671936e+002 - 1.19367508e+002 9.78587875e+001 1.11688370e+002 1.19378647e+002 - 9.79000626e+001 1.11738678e+002 1.19387390e+002 9.79201202e+001 - 1.11745193e+002 1.19370003e+002 9.79286804e+001 1.11763664e+002 - 1.19356438e+002 9.79713745e+001 1.11788864e+002 1.19372841e+002 - 9.79912109e+001 1.11815079e+002 1.19369720e+002 9.80283279e+001 - 1.11831253e+002 1.19375359e+002 9.80482559e+001 1.11869904e+002 - 1.19376747e+002 9.80815430e+001 1.11901588e+002 1.19389412e+002 - 9.81014023e+001 1.11938156e+002 1.19387192e+002 9.81258011e+001 - 1.11955673e+002 1.19386292e+002 9.81406937e+001 1.11982498e+002 - 1.19382820e+002 9.82154236e+001 1.12025375e+002 1.19405510e+002 - 9.82663040e+001 1.12088829e+002 1.19426140e+002 9.82943268e+001 - 1.12108223e+002 1.19421257e+002 9.83107452e+001 1.12145279e+002 - 1.19417450e+002 9.83784027e+001 1.12193634e+002 1.19456825e+002 - 9.84296036e+001 1.12248749e+002 1.19475006e+002 9.84988785e+001 - 1.12309654e+002 1.19493851e+002 9.85213470e+001 1.12348228e+002 - 1.19495842e+002 9.85719757e+001 1.12378365e+002 1.19504135e+002 - 9.86176300e+001 1.12420738e+002 1.19515762e+002 9.86511154e+001 - 1.12433426e+002 1.19504745e+002 9.86673431e+001 1.12466621e+002 - 1.19492264e+002 9.87100372e+001 1.12496010e+002 1.19489594e+002 - 9.87528229e+001 1.12546127e+002 1.19497200e+002 9.88210068e+001 - 1.12598274e+002 1.19522926e+002 9.88655243e+001 1.12653366e+002 - 1.19538414e+002 9.89279022e+001 1.12684441e+002 1.19544533e+002 - 9.89678345e+001 1.12731346e+002 1.19550323e+002 9.90222092e+001 - 1.12779724e+002 1.19563042e+002 9.90597000e+001 1.12832817e+002 - 1.19570412e+002 9.91152191e+001 1.12868629e+002 1.19585167e+002 - 9.91713409e+001 1.12919975e+002 1.19588707e+002 9.92437668e+001 - 1.12980492e+002 1.19606422e+002 9.92817688e+001 1.13034508e+002 - 1.19602028e+002 9.93204117e+001 1.13054428e+002 1.19606125e+002 - 9.93545151e+001 1.13094872e+002 1.19601089e+002 9.93955154e+001 - 1.13112885e+002 1.19595200e+002 9.94266739e+001 1.13151123e+002 - 1.19589439e+002 9.94965744e+001 1.13206871e+002 1.19617264e+002 - 9.95654602e+001 1.13281120e+002 1.19645630e+002 9.96205368e+001 - 1.13317772e+002 1.19650772e+002 9.96680756e+001 1.13370926e+002 - 1.19664482e+002 9.97371140e+001 1.13396225e+002 1.19669533e+002 - 9.97959747e+001 1.13456818e+002 1.19680733e+002 9.98664322e+001 - 1.13504105e+002 1.19689079e+002 9.99009857e+001 1.13544327e+002 - 1.19684418e+002 9.99448013e+001 1.13569107e+002 1.19682983e+002 - 1.00018417e+002 1.13641914e+002 1.19706635e+002 1.00102592e+002 - 1.13701187e+002 1.19722198e+002 1.00170013e+002 1.13774780e+002 - 1.19747498e+002 1.00225555e+002 1.13795860e+002 1.19751816e+002 - 1.00267723e+002 1.13836327e+002 1.19750984e+002 1.00334595e+002 - 1.13870384e+002 1.19762787e+002 1.00401192e+002 1.13939781e+002 - 1.19776558e+002 1.00478981e+002 1.13989922e+002 1.19793297e+002 - 1.00545349e+002 1.14045250e+002 1.19807190e+002 1.00609795e+002 - 1.14080223e+002 1.19812973e+002 1.00678986e+002 1.14136703e+002 - 1.19835190e+002 1.00761192e+002 1.14167381e+002 1.19839828e+002 - 1.00811646e+002 1.14204613e+002 1.19831993e+002 1.00882759e+002 - 1.14234749e+002 1.19830833e+002 1.00915970e+002 1.14257599e+002 - 1.19810837e+002 1.00929741e+002 1.14224770e+002 1.19764580e+002 - 1.00871346e+002 1.14151985e+002 1.19648697e+002 1.00865211e+002 - 1.14130081e+002 1.19629707e+002 1.00892807e+002 1.14200806e+002 - 1.19713730e+002 1.00899925e+002 1.14225647e+002 1.19772659e+002 - 1.00862213e+002 1.14228569e+002 1.19791359e+002 1.00826118e+002 - 1.14204491e+002 1.19813538e+002 1.00749634e+002 1.14170883e+002 - 1.19806435e+002 1.00700157e+002 1.14145195e+002 1.19828201e+002 - 1.00638687e+002 1.14119705e+002 1.19819084e+002 1.00601593e+002 - 1.14081566e+002 1.19840240e+002 1.00516090e+002 1.14022789e+002 - 1.19802658e+002 1.00465088e+002 1.13963997e+002 1.19800003e+002 - 1.00422333e+002 1.13945961e+002 1.19803696e+002 1.00382484e+002 - 1.13914330e+002 1.19811935e+002 1.00297249e+002 1.13850525e+002 - 1.19770012e+002 1.00235771e+002 1.13793449e+002 1.19755440e+002 - 1.00182907e+002 1.13760864e+002 1.19752144e+002 1.00143135e+002 - 1.13738487e+002 1.19795425e+002 1.00058113e+002 1.13687546e+002 - 1.19778465e+002 1.00013062e+002 1.13644188e+002 1.19771950e+002 - 9.99551010e+001 1.13613243e+002 1.19760201e+002 9.98852615e+001 - 1.13540947e+002 1.19745865e+002 9.98306885e+001 1.13506813e+002 - 1.19735023e+002 9.97748795e+001 1.13459244e+002 1.19730522e+002 - 9.97369003e+001 1.13437202e+002 1.19732346e+002 9.96954346e+001 - 1.13389221e+002 1.19731834e+002 9.96357346e+001 1.13355873e+002 - 1.19713577e+002 9.95750656e+001 1.13267418e+002 1.19695122e+002 - 9.95140839e+001 1.13223099e+002 1.19671631e+002 9.94606552e+001 - 1.13172218e+002 1.19663483e+002 9.94104462e+001 1.13143105e+002 - 1.19643806e+002 9.93774338e+001 1.13098747e+002 1.19641953e+002 - 9.93247375e+001 1.13063065e+002 1.19624168e+002 9.92673950e+001 - 1.13009079e+002 1.19625381e+002 9.91828613e+001 1.12955490e+002 - 1.19592224e+002 9.91535110e+001 1.12912376e+002 1.19594460e+002 - 9.91084366e+001 1.12878098e+002 1.19576706e+002 9.90508270e+001 - 1.12809822e+002 1.19558434e+002 9.89784012e+001 1.12750900e+002 - 1.19520439e+002 9.89462585e+001 1.12724854e+002 1.19532471e+002 - 9.89089966e+001 1.12703148e+002 1.19532791e+002 9.88638153e+001 - 1.12655563e+002 1.19534119e+002 9.88102798e+001 1.12622147e+002 - 1.19523323e+002 9.87794266e+001 1.12564774e+002 1.19530045e+002 - 9.87268219e+001 1.12523773e+002 1.19516411e+002 9.86832275e+001 - 1.12482086e+002 1.19504219e+002 9.86461029e+001 1.12472717e+002 - 1.19499374e+002 9.86195297e+001 1.12433578e+002 1.19505882e+002 - 9.85929489e+001 1.12418419e+002 1.19506294e+002 9.85443268e+001 - 1.12366165e+002 1.19499184e+002 9.84624557e+001 1.12304443e+002 - 1.19455627e+002 9.84141693e+001 1.12239067e+002 1.19424454e+002 - 9.83760529e+001 1.12213875e+002 1.19413849e+002 9.83425598e+001 - 1.12169533e+002 1.19410202e+002 9.82972260e+001 1.12144302e+002 - 1.19399216e+002 9.82602768e+001 1.12113029e+002 1.19408531e+002 - 9.82152863e+001 1.12072281e+002 1.19388809e+002 9.81706467e+001 - 1.12022476e+002 1.19374329e+002 9.81084442e+001 1.11975159e+002 - 1.19339645e+002 9.81120224e+001 1.11949036e+002 1.19371277e+002 - 9.80767975e+001 1.11923920e+002 1.19364494e+002 9.80443268e+001 - 1.11886101e+002 1.19367065e+002 9.80107193e+001 1.11865334e+002 - 1.19357750e+002 9.79604263e+001 1.11798386e+002 1.19326805e+002 - 9.79340744e+001 1.11787071e+002 1.19327805e+002 9.79053268e+001 - 1.11754051e+002 1.19337830e+002 9.78519211e+001 1.11722504e+002 - 1.19325371e+002 9.78342590e+001 1.11684464e+002 1.19318489e+002 - 9.78127670e+001 1.11670097e+002 1.19313904e+002 9.77894211e+001 - 1.11627724e+002 1.19306648e+002 9.77471237e+001 1.11601501e+002 - 1.19291672e+002 9.77181244e+001 1.11566406e+002 1.19291290e+002 - 9.77238617e+001 1.11587837e+002 1.19322426e+002 9.77140350e+001 - 1.11571861e+002 1.19344612e+002 9.76667404e+001 1.11538071e+002 - 1.19326073e+002 9.76893234e+001 1.11526009e+002 1.19365395e+002 - 9.76884079e+001 1.11532722e+002 1.19378571e+002 9.76896973e+001 - 1.11520332e+002 1.19389885e+002 9.76488571e+001 1.11501328e+002 - 1.19368507e+002 9.76457748e+001 1.11486519e+002 1.19383438e+002 - 9.76459351e+001 1.11500481e+002 1.19401176e+002 9.76274643e+001 - 1.11474777e+002 1.19422966e+002 9.75812302e+001 1.11451645e+002 - 1.19411118e+002 9.75612488e+001 1.11422752e+002 1.19409332e+002 - 9.75346222e+001 1.11405777e+002 1.19398155e+002 9.75143967e+001 - 1.11369339e+002 1.19397057e+002 9.75053482e+001 1.11374634e+002 - 1.19401604e+002 9.74905548e+001 1.11367111e+002 1.19406944e+002 - 9.74914856e+001 1.11373604e+002 1.19411514e+002 9.74907761e+001 - 1.11362503e+002 1.19420494e+002 9.74414444e+001 1.11322044e+002 - 1.19383270e+002 9.74485092e+001 1.11298248e+002 1.19395279e+002 - 9.74352493e+001 1.11295631e+002 1.19397133e+002 9.74375381e+001 - 1.11291466e+002 1.19402596e+002 9.74153137e+001 1.11286514e+002 - 1.19391487e+002 9.74194946e+001 1.11278931e+002 1.19402771e+002 - 9.74243164e+001 1.11296494e+002 1.19416801e+002 9.73978882e+001 - 1.11262909e+002 1.19405457e+002 9.73421478e+001 1.11229874e+002 - 1.19371078e+002 9.73547287e+001 1.11223984e+002 1.19387177e+002 - 9.73550339e+001 1.11234261e+002 1.19395630e+002 9.73313675e+001 - 1.11195107e+002 1.19374451e+002 9.72933960e+001 1.11176521e+002 - 1.19350143e+002 9.72942352e+001 1.11171295e+002 1.19358704e+002 - 9.72726974e+001 1.11156303e+002 1.19344566e+002 9.72654877e+001 - 1.11151161e+002 1.19339447e+002 9.72797470e+001 1.11181816e+002 - 1.19360863e+002 9.73216248e+001 1.11208984e+002 1.19409218e+002 - 9.73245316e+001 1.11223831e+002 1.19411354e+002 9.73196640e+001 - 1.11208069e+002 1.19398376e+002 9.73096008e+001 1.11216934e+002 - 1.19389824e+002 9.73093719e+001 1.11198219e+002 1.19383469e+002 - 9.73448563e+001 1.11236633e+002 1.19413162e+002 9.73726578e+001 - 1.11251503e+002 1.19435867e+002 9.73463821e+001 1.11254837e+002 - 1.19423882e+002 9.73500519e+001 1.11233833e+002 1.19416809e+002 - 9.73665924e+001 1.11263779e+002 1.19430847e+002 9.73656158e+001 - 1.11246552e+002 1.19430595e+002 9.73624954e+001 1.11255051e+002 - 1.19427017e+002 9.73833618e+001 1.11275223e+002 1.19450417e+002 - 9.74005890e+001 1.11305305e+002 1.19472061e+002 9.73976898e+001 - 1.11292915e+002 1.19466530e+002 9.73974152e+001 1.11307480e+002 - 1.19469063e+002 9.74193573e+001 1.11304634e+002 1.19480591e+002 - 9.73998566e+001 1.11299896e+002 1.19463028e+002 9.74038315e+001 - 1.11301025e+002 1.19465378e+002 9.73856812e+001 1.11294891e+002 - 1.19440201e+002 9.74012604e+001 1.11300713e+002 1.19455360e+002 - 9.74143448e+001 1.11322739e+002 1.19455276e+002 9.74335785e+001 - 1.11328072e+002 1.19454987e+002 9.74385529e+001 1.11355400e+002 - 1.19463028e+002 9.74700546e+001 1.11363205e+002 1.19473106e+002 - 9.74589920e+001 1.11368561e+002 1.19453590e+002 9.74885330e+001 - 1.11375069e+002 1.19460846e+002 9.74644623e+001 1.11369957e+002 - 1.19435966e+002 9.74829636e+001 1.11375481e+002 1.19444221e+002 - 9.75317993e+001 1.11434975e+002 1.19481102e+002 9.75395737e+001 - 1.11424088e+002 1.19473793e+002 9.75217514e+001 1.11416321e+002 - 1.19446831e+002 9.75597153e+001 1.11417168e+002 1.19461830e+002 - 9.75855637e+001 1.11451813e+002 1.19472435e+002 9.75976028e+001 - 1.11453323e+002 1.19457314e+002 9.75784073e+001 1.11447601e+002 - 1.19429848e+002 9.75946732e+001 1.11441536e+002 1.19425125e+002 - 9.76120377e+001 1.11467850e+002 1.19424919e+002 9.76396637e+001 - 1.11491188e+002 1.19424370e+002 9.76143646e+001 1.11482735e+002 - 1.19389313e+002 9.76655426e+001 1.11514816e+002 1.19416672e+002 - 9.77033157e+001 1.11564529e+002 1.19436203e+002 9.77512054e+001 - 1.11587975e+002 1.19448395e+002 9.77663498e+001 1.11619774e+002 - 1.19439529e+002 9.77896347e+001 1.11633530e+002 1.19444534e+002 - 9.78011398e+001 1.11655914e+002 1.19436531e+002 9.78341980e+001 - 1.11676315e+002 1.19446259e+002 9.78591766e+001 1.11717781e+002 - 1.19453476e+002 9.79154434e+001 1.11734619e+002 1.19477905e+002 - 9.79011307e+001 1.11734825e+002 1.19437057e+002 9.79260254e+001 - 1.11752464e+002 1.19431061e+002 9.79319153e+001 1.11771965e+002 - 1.19412231e+002 9.79757004e+001 1.11799072e+002 1.19437569e+002 - 9.80285797e+001 1.11856018e+002 1.19456223e+002 9.80565872e+001 - 1.11874016e+002 1.19449867e+002 9.80316620e+001 1.11869102e+002 - 1.19411880e+002 9.80875168e+001 1.11891548e+002 1.19438042e+002 - 9.81016159e+001 1.11923569e+002 1.19433746e+002 9.81480865e+001 - 1.11948517e+002 1.19450653e+002 9.81439056e+001 1.11963684e+002 - 1.19425529e+002 9.81797333e+001 1.11998947e+002 1.19445526e+002 - 9.82136459e+001 1.12042900e+002 1.19453300e+002 9.82496567e+001 - 1.12073715e+002 1.19463417e+002 9.82531815e+001 1.12095634e+002 - 1.19447159e+002 9.83248138e+001 1.12130539e+002 1.19469788e+002 - 9.83704529e+001 1.12188026e+002 1.19484222e+002 9.84069138e+001 - 1.12218834e+002 1.19489136e+002 9.84274826e+001 1.12254738e+002 - 1.19487213e+002 9.85004730e+001 1.12306206e+002 1.19532982e+002 - 9.85415039e+001 1.12354462e+002 1.19538452e+002 9.86021271e+001 - 1.12396812e+002 1.19545616e+002 9.86119766e+001 1.12427582e+002 - 1.19536064e+002 9.86701355e+001 1.12463699e+002 1.19556870e+002 - 9.87041702e+001 1.12503426e+002 1.19561470e+002 9.87330093e+001 - 1.12507347e+002 1.19548103e+002 9.87458496e+001 1.12531387e+002 - 1.19527046e+002 9.87966309e+001 1.12572624e+002 1.19534363e+002 - 9.88548813e+001 1.12641685e+002 1.19554176e+002 9.89252090e+001 - 1.12688843e+002 1.19582626e+002 9.89405975e+001 1.12724266e+002 - 1.19565239e+002 9.90072784e+001 1.12752373e+002 1.19578987e+002 - 9.90431061e+001 1.12801308e+002 1.19582001e+002 9.91160049e+001 - 1.12864410e+002 1.19613922e+002 9.91549454e+001 1.12917633e+002 - 1.19619316e+002 9.92128220e+001 1.12957565e+002 1.19644020e+002 - 9.92658157e+001 1.13012947e+002 1.19648109e+002 9.93465271e+001 - 1.13074303e+002 1.19659927e+002 9.93781891e+001 1.13125656e+002 - 1.19656609e+002 9.94185715e+001 1.13142845e+002 1.19663048e+002 - 9.94312286e+001 1.13169968e+002 1.19641304e+002 9.94884109e+001 - 1.13198441e+002 1.19650749e+002 9.95142441e+001 1.13234535e+002 - 1.19644478e+002 9.95702667e+001 1.13272575e+002 1.19653183e+002 - 9.96201553e+001 1.13325203e+002 1.19660179e+002 9.96751556e+001 - 1.13364708e+002 1.19669167e+002 9.97286606e+001 1.13426338e+002 - 1.19690674e+002 9.98076859e+001 1.13462700e+002 1.19704239e+002 - 9.98733826e+001 1.13530975e+002 1.19727394e+002 9.99544144e+001 - 1.13580917e+002 1.19741768e+002 9.99675217e+001 1.13609818e+002 - 1.19720711e+002 1.00008125e+002 1.13623543e+002 1.19714424e+002 - 1.00077187e+002 1.13689896e+002 1.19731140e+002 1.00155457e+002 - 1.13743683e+002 1.19739166e+002 1.00203697e+002 1.13804192e+002 - 1.19746582e+002 1.00279076e+002 1.13840919e+002 1.19772171e+002 - 1.00317215e+002 1.13880135e+002 1.19764084e+002 1.00384972e+002 - 1.13912605e+002 1.19771248e+002 1.00447609e+002 1.13976784e+002 - 1.19792877e+002 1.00508766e+002 1.14013000e+002 1.19791092e+002 - 1.00575317e+002 1.14069763e+002 1.19808578e+002 1.00656586e+002 - 1.14116859e+002 1.19827164e+002 1.00710266e+002 1.14166611e+002 - 1.19840363e+002 1.00796547e+002 1.14193260e+002 1.19841721e+002 - 1.00838074e+002 1.14223785e+002 1.19827011e+002 1.00914024e+002 - 1.14255768e+002 1.19831299e+002 1.00937706e+002 1.14278069e+002 - 1.19802307e+002 1.00956795e+002 1.14245323e+002 1.19761993e+002 - 1.00910194e+002 1.14188950e+002 1.19662598e+002 1.00913322e+002 - 1.14174469e+002 1.19645401e+002 1.00950279e+002 1.14256355e+002 - 1.19734543e+002 1.00956299e+002 1.14280029e+002 1.19793129e+002 - 1.00916969e+002 1.14273376e+002 1.19799866e+002 1.00874893e+002 - 1.14249123e+002 1.19824112e+002 1.00803047e+002 1.14215889e+002 - 1.19814148e+002 1.00747986e+002 1.14193398e+002 1.19838028e+002 - 1.00707367e+002 1.14182747e+002 1.19846397e+002 1.00645248e+002 - 1.14123848e+002 1.19838387e+002 1.00570091e+002 1.14071823e+002 - 1.19812027e+002 1.00534241e+002 1.14029724e+002 1.19828659e+002 - 1.00480171e+002 1.13992371e+002 1.19815498e+002 1.00438889e+002 - 1.13958748e+002 1.19827538e+002 1.00365547e+002 1.13915276e+002 - 1.19796654e+002 1.00303635e+002 1.13859619e+002 1.19781967e+002 - 1.00248352e+002 1.13824135e+002 1.19773773e+002 1.00196007e+002 - 1.13796333e+002 1.19813927e+002 1.00118347e+002 1.13747643e+002 - 1.19796951e+002 1.00077179e+002 1.13703346e+002 1.19793709e+002 - 1.00004807e+002 1.13657623e+002 1.19762444e+002 9.99557343e+001 - 1.13601723e+002 1.19764641e+002 9.98976669e+001 1.13574539e+002 - 1.19751053e+002 9.98521500e+001 1.13535545e+002 1.19759949e+002 - 9.98296204e+001 1.13525986e+002 1.19774689e+002 9.97820663e+001 - 1.13479752e+002 1.19768402e+002 9.97124863e+001 1.13422615e+002 - 1.19740425e+002 9.96549759e+001 1.13341866e+002 1.19718651e+002 - 9.96156616e+001 1.13319542e+002 1.19718552e+002 9.95668106e+001 - 1.13270927e+002 1.19713303e+002 9.95052795e+001 1.13232338e+002 - 1.19683693e+002 9.94702225e+001 1.13187889e+002 1.19678070e+002 - 9.94328232e+001 1.13166397e+002 1.19674355e+002 9.93748703e+001 - 1.13113724e+002 1.19684731e+002 9.92797241e+001 1.13050812e+002 - 1.19640266e+002 9.92406769e+001 1.12994164e+002 1.19622124e+002 - 9.91922913e+001 1.12958427e+002 1.19598785e+002 9.91519775e+001 - 1.12907486e+002 1.19596725e+002 9.91038971e+001 1.12874802e+002 - 1.19590355e+002 9.90538483e+001 1.12828468e+002 1.19587204e+002 - 9.90207977e+001 1.12811455e+002 1.19594612e+002 9.89785309e+001 - 1.12761528e+002 1.19585579e+002 9.89146500e+001 1.12721291e+002 - 1.19572609e+002 9.88886261e+001 1.12669678e+002 1.19588844e+002 - 9.88275986e+001 1.12622902e+002 1.19565498e+002 9.87911758e+001 - 1.12586617e+002 1.19556320e+002 9.87456741e+001 1.12561211e+002 - 1.19543106e+002 9.87158508e+001 1.12521782e+002 1.19547432e+002 - 9.86974335e+001 1.12514641e+002 1.19552048e+002 9.86475220e+001 - 1.12460701e+002 1.19546333e+002 9.85599060e+001 1.12399422e+002 - 1.19500671e+002 9.85291214e+001 1.12352737e+002 1.19481987e+002 - 9.84916000e+001 1.12326935e+002 1.19471825e+002 9.84549255e+001 - 1.12277954e+002 1.19466988e+002 9.83895264e+001 1.12233620e+002 - 1.19438507e+002 9.83646240e+001 1.12213867e+002 1.19459297e+002 - 9.83161697e+001 1.12178047e+002 1.19440704e+002 9.82817535e+001 - 1.12138733e+002 1.19433517e+002 9.82149887e+001 1.12082649e+002 - 1.19399178e+002 9.82223129e+001 1.12063629e+002 1.19429077e+002 - 9.81815567e+001 1.12029556e+002 1.19417870e+002 9.81515656e+001 - 1.11993469e+002 1.19413475e+002 9.81188431e+001 1.11975967e+002 - 1.19405098e+002 9.80776520e+001 1.11916161e+002 1.19395821e+002 - 9.80430679e+001 1.11891563e+002 1.19379486e+002 9.80146027e+001 - 1.11858742e+002 1.19394043e+002 9.79552002e+001 1.11819473e+002 - 1.19367531e+002 9.79368134e+001 1.11786682e+002 1.19357750e+002 - 9.79372864e+001 1.11795998e+002 1.19376434e+002 9.79280167e+001 - 1.11765564e+002 1.19386078e+002 9.78953857e+001 1.11742523e+002 - 1.19371094e+002 9.78603210e+001 1.11706978e+002 1.19374413e+002 - 9.78444901e+001 1.11700737e+002 1.19374710e+002 9.78251724e+001 - 1.11674767e+002 1.19385536e+002 9.77891159e+001 1.11652565e+002 - 1.19375298e+002 9.77890701e+001 1.11624687e+002 1.19395889e+002 - 9.77858963e+001 1.11626862e+002 1.19411003e+002 9.77989349e+001 - 1.11624390e+002 1.19433380e+002 9.77613907e+001 1.11606110e+002 - 1.19414337e+002 9.77564240e+001 1.11588051e+002 1.19427788e+002 - 9.77617950e+001 1.11609703e+002 1.19453369e+002 9.77441101e+001 - 1.11587250e+002 1.19472687e+002 9.77019577e+001 1.11576431e+002 - 1.19470985e+002 9.76799622e+001 1.11534897e+002 1.19463646e+002 - 9.76577988e+001 1.11528229e+002 1.19457626e+002 9.76536331e+001 - 1.11505547e+002 1.19467415e+002 9.76437225e+001 1.11513252e+002 - 1.19475449e+002 9.76305008e+001 1.11496643e+002 1.19477531e+002 - 9.76210251e+001 1.11497231e+002 1.19476532e+002 9.75993576e+001 - 1.11467987e+002 1.19459747e+002 9.75677185e+001 1.11446251e+002 - 1.19445389e+002 9.75777054e+001 1.11423813e+002 1.19457275e+002 - 9.75630646e+001 1.11421104e+002 1.19459412e+002 9.75527496e+001 - 1.11404518e+002 1.19452217e+002 9.75237198e+001 1.11392075e+002 - 1.19438683e+002 9.75364761e+001 1.11394928e+002 1.19455338e+002 - 9.75461426e+001 1.11411636e+002 1.19468391e+002 9.75190430e+001 - 1.11382950e+002 1.19461060e+002 9.74520874e+001 1.11339577e+002 - 1.19416458e+002 9.74734039e+001 1.11341927e+002 1.19438713e+002 - 9.74702606e+001 1.11348244e+002 1.19443497e+002 9.74406433e+001 - 1.11304619e+002 1.19419281e+002 9.74080124e+001 1.11284676e+002 - 1.19391182e+002 9.74161987e+001 1.11292542e+002 1.19411339e+002 - 9.73880615e+001 1.11281013e+002 1.19395447e+002 9.73972549e+001 - 1.11278915e+002 1.19403648e+002 9.73799286e+001 1.11281029e+002 - 1.19399231e+002 9.74247894e+001 1.11306152e+002 1.19439926e+002 - 9.74386597e+001 1.11324898e+002 1.19453400e+002 9.74471436e+001 - 1.11330612e+002 1.19457275e+002 9.74356461e+001 1.11335114e+002 - 1.19447144e+002 9.74396515e+001 1.11324326e+002 1.19449966e+002 - 9.74730225e+001 1.11366661e+002 1.19478531e+002 9.74989166e+001 - 1.11380173e+002 1.19506828e+002 9.74777374e+001 1.11384521e+002 - 1.19493805e+002 9.74752808e+001 1.11360741e+002 1.19481911e+002 - 9.74744949e+001 1.11377953e+002 1.19481651e+002 9.74840851e+001 - 1.11364456e+002 1.19485832e+002 9.74716110e+001 1.11369026e+002 - 1.19478554e+002 9.74793777e+001 1.11376343e+002 1.19489693e+002 - 9.75136948e+001 1.11422997e+002 1.19519958e+002 9.75209961e+001 - 1.11421211e+002 1.19528793e+002 9.75238266e+001 1.11438972e+002 - 1.19533440e+002 9.75573959e+001 1.11444595e+002 1.19561264e+002 - 9.75295181e+001 1.11425133e+002 1.19526039e+002 9.75328598e+001 - 1.11421738e+002 1.19521881e+002 9.75058670e+001 1.11411522e+002 - 1.19495651e+002 9.75175552e+001 1.11413048e+002 1.19506218e+002 - 9.75518570e+001 1.11450974e+002 1.19522865e+002 9.75576401e+001 - 1.11445595e+002 1.19519341e+002 9.75685043e+001 1.11480659e+002 - 1.19521591e+002 9.76079559e+001 1.11498619e+002 1.19541222e+002 - 9.75876312e+001 1.11494370e+002 1.19514008e+002 9.76051254e+001 - 1.11490501e+002 1.19513557e+002 9.76069946e+001 1.11509155e+002 - 1.19507301e+002 9.76180115e+001 1.11502487e+002 1.19502380e+002 - 9.76566010e+001 1.11552330e+002 1.19534813e+002 9.76852951e+001 - 1.11561249e+002 1.19546265e+002 9.76677399e+001 1.11558723e+002 - 1.19526352e+002 9.76986771e+001 1.11548431e+002 1.19525551e+002 - 9.77114716e+001 1.11573166e+002 1.19526047e+002 9.77225723e+001 - 1.11574287e+002 1.19510178e+002 9.77079697e+001 1.11569519e+002 - 1.19478378e+002 9.77200623e+001 1.11560715e+002 1.19480293e+002 - 9.77355270e+001 1.11583138e+002 1.19471024e+002 9.77675400e+001 - 1.11603951e+002 1.19479866e+002 9.77507248e+001 1.11612625e+002 - 1.19450119e+002 9.77903976e+001 1.11626404e+002 1.19465019e+002 - 9.78264999e+001 1.11675560e+002 1.19477478e+002 9.78715363e+001 - 1.11699707e+002 1.19495117e+002 9.78645477e+001 1.11708702e+002 - 1.19471100e+002 9.78901596e+001 1.11723328e+002 1.19478279e+002 - 9.79188995e+001 1.11765160e+002 1.19485489e+002 9.79469833e+001 - 1.11778114e+002 1.19489433e+002 9.79694366e+001 1.11816307e+002 - 1.19497803e+002 9.80327835e+001 1.11845253e+002 1.19527420e+002 - 9.80515060e+001 1.11881927e+002 1.19526634e+002 9.80639954e+001 - 1.11880135e+002 1.19504745e+002 9.80560379e+001 1.11891121e+002 - 1.19477905e+002 9.81076660e+001 1.11927315e+002 1.19501556e+002 - 9.81663895e+001 1.11990295e+002 1.19533592e+002 9.81871185e+001 - 1.12005219e+002 1.19518944e+002 9.81632919e+001 1.11998322e+002 - 1.19476341e+002 9.81966782e+001 1.12007645e+002 1.19481102e+002 - 9.82278061e+001 1.12049362e+002 1.19492790e+002 9.82760010e+001 - 1.12076256e+002 1.19513496e+002 9.82736740e+001 1.12088356e+002 - 1.19493179e+002 9.82947540e+001 1.12106354e+002 1.19491707e+002 - 9.83310242e+001 1.12158157e+002 1.19504456e+002 9.83857269e+001 - 1.12205139e+002 1.19537025e+002 9.83998260e+001 1.12239304e+002 - 1.19535088e+002 9.84540787e+001 1.12259163e+002 1.19543648e+002 - 9.84893188e+001 1.12307343e+002 1.19548492e+002 9.85290680e+001 - 1.12336151e+002 1.19555237e+002 9.85440674e+001 1.12365875e+002 - 1.19544243e+002 9.85910950e+001 1.12394974e+002 1.19569588e+002 - 9.86207733e+001 1.12433067e+002 1.19563042e+002 9.87033081e+001 - 1.12504601e+002 1.19599281e+002 9.87100067e+001 1.12530144e+002 - 1.19578789e+002 9.87554169e+001 1.12548676e+002 1.19589180e+002 - 9.88013840e+001 1.12598755e+002 1.19602158e+002 9.88353882e+001 - 1.12607780e+002 1.19592690e+002 9.88682251e+001 1.12654976e+002 - 1.19593262e+002 9.89208069e+001 1.12688744e+002 1.19603592e+002 - 9.89582672e+001 1.12736168e+002 1.19603104e+002 9.90271454e+001 - 1.12787781e+002 1.19627060e+002 9.90483856e+001 1.12822227e+002 - 1.19617706e+002 9.91183014e+001 1.12863632e+002 1.19635849e+002 - 9.91611328e+001 1.12916161e+002 1.19643295e+002 9.92071533e+001 - 1.12953529e+002 1.19652023e+002 9.92406540e+001 1.13001625e+002 - 1.19655617e+002 9.93133240e+001 1.13059906e+002 1.19693558e+002 - 9.93567886e+001 1.13110161e+002 1.19694069e+002 9.94247818e+001 - 1.13150322e+002 1.19686462e+002 9.94445572e+001 1.13187065e+002 - 1.19674866e+002 9.94992294e+001 1.13214813e+002 1.19686691e+002 - 9.95522079e+001 1.13282402e+002 1.19718277e+002 9.96145248e+001 - 1.13321907e+002 1.19731262e+002 9.96275253e+001 1.13344933e+002 - 1.19717377e+002 9.96669769e+001 1.13369026e+002 1.19710182e+002 - 9.97068100e+001 1.13412651e+002 1.19706848e+002 9.97625961e+001 - 1.13446281e+002 1.19713478e+002 9.98226852e+001 1.13511635e+002 - 1.19745522e+002 9.99206009e+001 1.13567307e+002 1.19774048e+002 - 9.99796448e+001 1.13630325e+002 1.19789360e+002 1.00049789e+002 - 1.13673233e+002 1.19792145e+002 1.00073303e+002 1.13705482e+002 - 1.19777145e+002 1.00114388e+002 1.13728912e+002 1.19774994e+002 - 1.00163651e+002 1.13772942e+002 1.19775658e+002 1.00217072e+002 - 1.13801941e+002 1.19762131e+002 1.00244102e+002 1.13838921e+002 - 1.19748482e+002 1.00306969e+002 1.13871964e+002 1.19764618e+002 - 1.00372269e+002 1.13934509e+002 1.19783104e+002 1.00432793e+002 - 1.13960548e+002 1.19784660e+002 1.00502090e+002 1.14023369e+002 - 1.19807167e+002 1.00567101e+002 1.14057388e+002 1.19805870e+002 - 1.00619255e+002 1.14105782e+002 1.19809990e+002 1.00695427e+002 - 1.14152359e+002 1.19827377e+002 1.00730865e+002 1.14181000e+002 - 1.19822693e+002 1.00827667e+002 1.14219261e+002 1.19837906e+002 - 1.00886314e+002 1.14267967e+002 1.19838142e+002 1.00966675e+002 - 1.14306198e+002 1.19849579e+002 1.00978378e+002 1.14317924e+002 - 1.19807793e+002 1.01001678e+002 1.14290199e+002 1.19776909e+002 - 1.00938530e+002 1.14219284e+002 1.19661926e+002 1.00925583e+002 - 1.14191940e+002 1.19630295e+002 1.00973351e+002 1.14274216e+002 - 1.19728867e+002 1.00974045e+002 1.14290138e+002 1.19785851e+002 - 1.00945526e+002 1.14296364e+002 1.19805756e+002 1.00894814e+002 - 1.14265182e+002 1.19817070e+002 1.00833046e+002 1.14248375e+002 - 1.19823051e+002 1.00769241e+002 1.14211845e+002 1.19831406e+002 - 1.00713745e+002 1.14187965e+002 1.19830681e+002 1.00683907e+002 - 1.14161842e+002 1.19848091e+002 1.00605560e+002 1.14103294e+002 - 1.19818657e+002 1.00557343e+002 1.14055252e+002 1.19822594e+002 - 1.00499199e+002 1.14014786e+002 1.19810013e+002 1.00457756e+002 - 1.13973061e+002 1.19815262e+002 1.00402359e+002 1.13953316e+002 - 1.19805672e+002 1.00351959e+002 1.13909546e+002 1.19800552e+002 - 1.00298149e+002 1.13874115e+002 1.19794945e+002 1.00238937e+002 - 1.13838524e+002 1.19825653e+002 1.00158035e+002 1.13790466e+002 - 1.19810005e+002 1.00111984e+002 1.13736229e+002 1.19798866e+002 - 1.00055840e+002 1.13701736e+002 1.19782204e+002 9.99936676e+001 - 1.13640831e+002 1.19766190e+002 9.99496613e+001 1.13616341e+002 - 1.19764778e+002 9.99052505e+001 1.13579460e+002 1.19775475e+002 - 9.98610992e+001 1.13553673e+002 1.19770248e+002 9.98266220e+001 - 1.13513634e+002 1.19778847e+002 9.97540359e+001 1.13454559e+002 - 1.19744438e+002 9.97092056e+001 1.13396004e+002 1.19741600e+002 - 9.96781235e+001 1.13379379e+002 1.19745239e+002 9.96372375e+001 - 1.13340080e+002 1.19749947e+002 9.95767059e+001 1.13299461e+002 - 1.19724442e+002 9.95386047e+001 1.13251205e+002 1.19711914e+002 - 9.94807205e+001 1.13213341e+002 1.19688789e+002 9.94243164e+001 - 1.13158066e+002 1.19694008e+002 9.93462143e+001 1.13110626e+002 - 1.19667236e+002 9.93143921e+001 1.13061607e+002 1.19652199e+002 - 9.92698669e+001 1.13028358e+002 1.19643196e+002 9.92321930e+001 - 1.12978004e+002 1.19637123e+002 9.91723099e+001 1.12938980e+002 - 1.19615219e+002 9.91388397e+001 1.12903748e+002 1.19628357e+002 - 9.91116028e+001 1.12898232e+002 1.19639259e+002 9.90646362e+001 - 1.12848923e+002 1.19637749e+002 9.89939041e+001 1.12790901e+002 - 1.19608040e+002 9.89661560e+001 1.12746490e+002 1.19625061e+002 - 9.88924942e+001 1.12685463e+002 1.19587646e+002 9.88583450e+001 - 1.12647293e+002 1.19587845e+002 9.88089218e+001 1.12618210e+002 - 1.19569000e+002 9.87889404e+001 1.12594269e+002 1.19576279e+002 - 9.87792130e+001 1.12589973e+002 1.19590462e+002 9.87135773e+001 - 1.12521446e+002 1.19574814e+002 9.86161499e+001 1.12450554e+002 - 1.19515182e+002 9.85983276e+001 1.12414162e+002 1.19509712e+002 - 9.85659561e+001 1.12393288e+002 1.19501160e+002 9.85265656e+001 - 1.12347221e+002 1.19494392e+002 9.84625473e+001 1.12305710e+002 - 1.19469803e+002 9.84338837e+001 1.12275688e+002 1.19483215e+002 - 9.83806992e+001 1.12239456e+002 1.19458237e+002 9.83663254e+001 - 1.12217377e+002 1.19471596e+002 9.83042603e+001 1.12168198e+002 - 1.19445297e+002 9.83014603e+001 1.12143394e+002 1.19466919e+002 - 9.82614517e+001 1.12105316e+002 1.19451530e+002 9.82360687e+001 - 1.12075142e+002 1.19454086e+002 9.82009888e+001 1.12055557e+002 - 1.19446938e+002 9.81640472e+001 1.12001076e+002 1.19431908e+002 - 9.81140060e+001 1.11955261e+002 1.19401398e+002 9.81000748e+001 - 1.11937904e+002 1.19431900e+002 9.80467682e+001 1.11910721e+002 - 1.19416885e+002 9.80361481e+001 1.11882095e+002 1.19414909e+002 - 9.80395050e+001 1.11895470e+002 1.19432121e+002 9.80386124e+001 - 1.11875572e+002 1.19449547e+002 9.80074615e+001 1.11852310e+002 - 1.19439278e+002 9.79754028e+001 1.11819702e+002 1.19440941e+002 - 9.79481659e+001 1.11804253e+002 1.19434929e+002 9.79487000e+001 - 1.11790367e+002 1.19458908e+002 9.79037857e+001 1.11757118e+002 - 1.19445160e+002 9.78868256e+001 1.11723450e+002 1.19450356e+002 - 9.78961334e+001 1.11732964e+002 1.19468590e+002 9.78982925e+001 - 1.11720757e+002 1.19486214e+002 9.78430939e+001 1.11683609e+002 - 1.19452515e+002 9.78481293e+001 1.11680061e+002 1.19473022e+002 - 9.78423843e+001 1.11686333e+002 1.19490479e+002 9.78400497e+001 - 1.11677116e+002 1.19522491e+002 9.77975464e+001 1.11665581e+002 - 1.19513939e+002 9.77842102e+001 1.11637878e+002 1.19517159e+002 - 9.77712555e+001 1.11640152e+002 1.19519844e+002 9.77559509e+001 - 1.11604134e+002 1.19517616e+002 9.77484207e+001 1.11615051e+002 - 1.19523727e+002 9.77440109e+001 1.11605858e+002 1.19535606e+002 - 9.77409973e+001 1.11612350e+002 1.19543449e+002 9.77286301e+001 - 1.11587250e+002 1.19537117e+002 9.77094650e+001 1.11576210e+002 - 1.19529724e+002 9.76974106e+001 1.11543999e+002 1.19524216e+002 - 9.76815567e+001 1.11535858e+002 1.19522102e+002 9.76617432e+001 - 1.11503029e+002 1.19509430e+002 9.76349487e+001 1.11497795e+002 - 1.19496811e+002 9.76338730e+001 1.11487793e+002 1.19501213e+002 - 9.76269836e+001 1.11499321e+002 1.19503319e+002 9.76112823e+001 - 1.11471558e+002 1.19501587e+002 9.75668869e+001 1.11447838e+002 - 1.19478569e+002 9.75858536e+001 1.11448929e+002 1.19498627e+002 - 9.75705719e+001 1.11442360e+002 1.19489273e+002 9.75517654e+001 - 1.11410957e+002 1.19473145e+002 9.75212402e+001 1.11394539e+002 - 1.19450607e+002 9.75213470e+001 1.11390358e+002 1.19464241e+002 - 9.74890823e+001 1.11376640e+002 1.19440926e+002 9.75061951e+001 - 1.11379578e+002 1.19458801e+002 9.74877243e+001 1.11383224e+002 - 1.19454636e+002 9.75148849e+001 1.11390320e+002 1.19478668e+002 - 9.75338211e+001 1.11412048e+002 1.19495041e+002 9.75504379e+001 - 1.11427483e+002 1.19510887e+002 9.75595398e+001 1.11455170e+002 - 1.19527298e+002 9.75890198e+001 1.11466171e+002 1.19553185e+002 - 9.75872040e+001 1.11475914e+002 1.19543961e+002 9.76093369e+001 - 1.11485764e+002 1.19563766e+002 9.76017685e+001 1.11503525e+002 - 1.19569908e+002 9.76089096e+001 1.11495224e+002 1.19570923e+002 - 9.76065445e+001 1.11504349e+002 1.19566589e+002 9.76052856e+001 - 1.11486969e+002 1.19558685e+002 9.75796814e+001 1.11477287e+002 - 1.19536125e+002 9.75972290e+001 1.11488678e+002 1.19553635e+002 - 9.76105652e+001 1.11520332e+002 1.19569298e+002 9.76288376e+001 - 1.11527916e+002 1.19588165e+002 9.76356354e+001 1.11540756e+002 - 1.19592690e+002 9.76646729e+001 1.11550919e+002 1.19614716e+002 - 9.76366425e+001 1.11532135e+002 1.19579910e+002 9.76435318e+001 - 1.11526566e+002 1.19582283e+002 9.76220856e+001 1.11525444e+002 - 1.19560379e+002 9.76371613e+001 1.11528191e+002 1.19572144e+002 - 9.76612549e+001 1.11558601e+002 1.19579163e+002 9.76784058e+001 - 1.11555618e+002 1.19579422e+002 9.76788406e+001 1.11584053e+002 - 1.19582573e+002 9.76999588e+001 1.11582405e+002 1.19580185e+002 - 9.76845474e+001 1.11583839e+002 1.19557724e+002 9.77073669e+001 - 1.11586060e+002 1.19556732e+002 9.77230606e+001 1.11613251e+002 - 1.19565216e+002 9.77382660e+001 1.11612350e+002 1.19570686e+002 - 9.77616882e+001 1.11649445e+002 1.19584396e+002 9.78020096e+001 - 1.11672295e+002 1.19606636e+002 9.78078003e+001 1.11688705e+002 - 1.19607300e+002 9.78073044e+001 1.11661758e+002 1.19584633e+002 - 9.78244324e+001 1.11684227e+002 1.19581421e+002 9.78389740e+001 - 1.11678482e+002 1.19568550e+002 9.78301163e+001 1.11684952e+002 - 1.19547417e+002 9.78616486e+001 1.11698372e+002 1.19561920e+002 - 9.78662033e+001 1.11701347e+002 1.19544731e+002 9.78672180e+001 - 1.11698685e+002 1.19520279e+002 9.78632736e+001 1.11717392e+002 - 1.19506020e+002 9.79047852e+001 1.11738190e+002 1.19524078e+002 - 9.79372025e+001 1.11782120e+002 1.19536903e+002 9.79640198e+001 - 1.11791153e+002 1.19536629e+002 9.79483185e+001 1.11787033e+002 - 1.19505829e+002 9.79756851e+001 1.11807350e+002 1.19515984e+002 - 9.79991684e+001 1.11842194e+002 1.19518517e+002 9.80230637e+001 - 1.11849121e+002 1.19516182e+002 9.80492172e+001 1.11889290e+002 - 1.19523293e+002 9.81151352e+001 1.11925827e+002 1.19555084e+002 - 9.81432724e+001 1.11969177e+002 1.19565529e+002 9.81539459e+001 - 1.11966042e+002 1.19541672e+002 9.81469955e+001 1.11974350e+002 - 1.19517418e+002 9.81889801e+001 1.12008667e+002 1.19535141e+002 - 9.82178497e+001 1.12044945e+002 1.19538040e+002 9.82431793e+001 - 1.12062103e+002 1.19522415e+002 9.82355728e+001 1.12074371e+002 - 1.19506279e+002 9.82689285e+001 1.12081726e+002 1.19508492e+002 - 9.83069153e+001 1.12126984e+002 1.19528336e+002 9.83535461e+001 - 1.12153183e+002 1.19548515e+002 9.83528214e+001 1.12167419e+002 - 1.19526634e+002 9.83806458e+001 1.12186752e+002 1.19531471e+002 - 9.84161682e+001 1.12240631e+002 1.19547066e+002 9.84653320e+001 - 1.12281395e+002 1.19565926e+002 9.85010986e+001 1.12331200e+002 - 1.19585220e+002 9.85420151e+001 1.12344910e+002 1.19582207e+002 - 9.85734940e+001 1.12385818e+002 1.19584595e+002 9.86268768e+001 - 1.12426758e+002 1.19605652e+002 9.86439667e+001 1.12461876e+002 - 1.19601418e+002 9.86715546e+001 1.12481812e+002 1.19608498e+002 - 9.87068253e+001 1.12514580e+002 1.19598732e+002 9.87802277e+001 - 1.12577126e+002 1.19626007e+002 9.87910004e+001 1.12602913e+002 - 1.19613747e+002 9.88529587e+001 1.12638794e+002 1.19634972e+002 - 9.88907547e+001 1.12681999e+002 1.19644043e+002 9.89161987e+001 - 1.12683426e+002 1.19628746e+002 9.89489441e+001 1.12728645e+002 - 1.19629608e+002 9.89913864e+001 1.12760506e+002 1.19632538e+002 - 9.90325241e+001 1.12803253e+002 1.19631630e+002 9.90938950e+001 - 1.12849037e+002 1.19654732e+002 9.91269531e+001 1.12892319e+002 - 1.19655228e+002 9.91830139e+001 1.12930115e+002 1.19656967e+002 - 9.92305756e+001 1.12984749e+002 1.19674217e+002 9.93007050e+001 - 1.13039078e+002 1.19702866e+002 9.93043594e+001 1.13067017e+002 - 1.19683571e+002 9.93740082e+001 1.13119431e+002 1.19715202e+002 - 9.94069214e+001 1.13153969e+002 1.19704086e+002 9.94770355e+001 - 1.13193489e+002 1.19701416e+002 9.94935532e+001 1.13234482e+002 - 1.19686577e+002 9.95413971e+001 1.13257423e+002 1.19697578e+002 - 9.95895157e+001 1.13309845e+002 1.19715935e+002 9.96598816e+001 - 1.13365288e+002 1.19746323e+002 9.96988983e+001 1.13413445e+002 - 1.19755440e+002 9.97462234e+001 1.13441200e+002 1.19752228e+002 - 9.97935562e+001 1.13493721e+002 1.19760658e+002 9.98193130e+001 - 1.13504150e+002 1.19744316e+002 9.98776016e+001 1.13560516e+002 - 1.19767876e+002 9.99673920e+001 1.13612717e+002 1.19789207e+002 - 1.00005585e+002 1.13659225e+002 1.19785149e+002 1.00069916e+002 - 1.13691895e+002 1.19785812e+002 1.00107483e+002 1.13738213e+002 - 1.19784073e+002 1.00165062e+002 1.13776703e+002 1.19798088e+002 - 1.00207535e+002 1.13816330e+002 1.19789612e+002 1.00259399e+002 - 1.13839493e+002 1.19775345e+002 1.00278908e+002 1.13870605e+002 - 1.19754417e+002 1.00330864e+002 1.13892448e+002 1.19761772e+002 - 1.00386177e+002 1.13946190e+002 1.19774300e+002 1.00455383e+002 - 1.13976768e+002 1.19781639e+002 1.00544090e+002 1.14057083e+002 - 1.19824577e+002 1.00614243e+002 1.14098373e+002 1.19828850e+002 - 1.00651581e+002 1.14132706e+002 1.19818886e+002 1.00733238e+002 - 1.14182281e+002 1.19843819e+002 1.00794327e+002 1.14232224e+002 - 1.19855240e+002 1.00872147e+002 1.14265457e+002 1.19857048e+002 - 1.00924667e+002 1.14302452e+002 1.19851280e+002 1.01011894e+002 - 1.14343971e+002 1.19869049e+002 1.01009285e+002 1.14334145e+002 - 1.19810699e+002 1.01018028e+002 1.14310089e+002 1.19779869e+002 - 1.00956955e+002 1.14232422e+002 1.19660942e+002 1.00940567e+002 - 1.14194794e+002 1.19617943e+002 1.00977928e+002 1.14275040e+002 - 1.19711281e+002 1.00989891e+002 1.14298615e+002 1.19769005e+002 - 1.00984863e+002 1.14329010e+002 1.19821381e+002 1.00951057e+002 - 1.14319443e+002 1.19852318e+002 1.00881432e+002 1.14289658e+002 - 1.19849380e+002 1.00811890e+002 1.14247375e+002 1.19851006e+002 - 1.00739075e+002 1.14203224e+002 1.19825638e+002 1.00715263e+002 - 1.14192024e+002 1.19857483e+002 1.00650749e+002 1.14146942e+002 - 1.19836380e+002 1.00593658e+002 1.14085632e+002 1.19833321e+002 - 1.00553757e+002 1.14066292e+002 1.19836128e+002 1.00503693e+002 - 1.14024139e+002 1.19840347e+002 1.00463837e+002 1.14006905e+002 - 1.19844444e+002 1.00396011e+002 1.13944160e+002 1.19819572e+002 - 1.00352402e+002 1.13927719e+002 1.19824974e+002 1.00287582e+002 - 1.13873001e+002 1.19838753e+002 1.00201897e+002 1.13826370e+002 - 1.19818985e+002 1.00176674e+002 1.13799461e+002 1.19833534e+002 - 1.00141571e+002 1.13784981e+002 1.19834816e+002 1.00070587e+002 - 1.13712585e+002 1.19812210e+002 1.00017899e+002 1.13680428e+002 - 1.19803772e+002 9.99552307e+001 1.13623352e+002 1.19797165e+002 - 9.99101715e+001 1.13598038e+002 1.19788010e+002 9.98823013e+001 - 1.13567459e+002 1.19803474e+002 9.98302002e+001 1.13521637e+002 - 1.19784653e+002 9.97818451e+001 1.13465736e+002 1.19783264e+002 - 9.97440033e+001 1.13442230e+002 1.19782043e+002 9.97105103e+001 - 1.13401260e+002 1.19790108e+002 9.96604156e+001 1.13373405e+002 - 1.19772072e+002 9.96204758e+001 1.13333130e+002 1.19760223e+002 - 9.95546875e+001 1.13279930e+002 1.19726318e+002 9.95018005e+001 - 1.13231873e+002 1.19734406e+002 9.94333954e+001 1.13191460e+002 - 1.19717377e+002 9.94053955e+001 1.13145081e+002 1.19711540e+002 - 9.93595505e+001 1.13115158e+002 1.19698021e+002 9.93124313e+001 - 1.13051178e+002 1.19682579e+002 9.92539291e+001 1.13014839e+002 - 1.19663223e+002 9.92232208e+001 1.12982643e+002 1.19678482e+002 - 9.91759186e+001 1.12951607e+002 1.19665337e+002 9.91487122e+001 - 1.12921997e+002 1.19681007e+002 9.90887604e+001 1.12874916e+002 - 1.19660774e+002 9.90655365e+001 1.12835602e+002 1.19679611e+002 - 9.89913177e+001 1.12773308e+002 1.19642616e+002 9.89288559e+001 - 1.12710991e+002 1.19616318e+002 9.88770905e+001 1.12679840e+002 - 1.19590225e+002 9.88568268e+001 1.12646584e+002 1.19597206e+002 - 9.88368530e+001 1.12639267e+002 1.19606102e+002 9.87922516e+001 - 1.12593582e+002 1.19614418e+002 9.86946793e+001 1.12518776e+002 - 1.19550766e+002 9.86887131e+001 1.12499229e+002 1.19564018e+002 - 9.86542435e+001 1.12479286e+002 1.19557167e+002 9.86087418e+001 - 1.12425850e+002 1.19542511e+002 9.85595627e+001 1.12403305e+002 - 1.19528397e+002 9.85417480e+001 1.12379738e+002 1.19552376e+002 - 9.85050507e+001 1.12352974e+002 1.19539459e+002 9.84463577e+001 - 1.12292847e+002 1.19513710e+002 9.83993149e+001 1.12256714e+002 - 1.19496025e+002 9.83929214e+001 1.12228264e+002 1.19519890e+002 - 9.83434219e+001 1.12187813e+002 1.19498177e+002 9.83087616e+001 - 1.12139946e+002 1.19487106e+002 9.82768173e+001 1.12120926e+002 - 1.19480232e+002 9.82572632e+001 1.12084084e+002 1.19474670e+002 - 9.82305145e+001 1.12067749e+002 1.19469704e+002 9.82073212e+001 - 1.12037811e+002 1.19490768e+002 9.81544418e+001 1.12010635e+002 - 1.19476471e+002 9.81625137e+001 1.11997826e+002 1.19498901e+002 - 9.81492310e+001 1.11999496e+002 1.19502312e+002 9.81434326e+001 - 1.11974556e+002 1.19518234e+002 9.81131439e+001 1.11959412e+002 - 1.19511391e+002 9.80774231e+001 1.11919548e+002 1.19501060e+002 - 9.80557327e+001 1.11907768e+002 1.19502556e+002 9.80377655e+001 - 1.11876686e+002 1.19503822e+002 9.79980621e+001 1.11846786e+002 - 1.19494499e+002 9.79883575e+001 1.11809845e+002 1.19497574e+002 - 9.79851227e+001 1.11814568e+002 1.19512199e+002 9.79899216e+001 - 1.11806122e+002 1.19534294e+002 9.79272308e+001 1.11760292e+002 - 1.19489861e+002 9.79216232e+001 1.11747780e+002 1.19505318e+002 - 9.79102402e+001 1.11747581e+002 1.19513336e+002 9.79009399e+001 - 1.11732918e+002 1.19532578e+002 9.78750534e+001 1.11737267e+002 - 1.19544182e+002 9.78673935e+001 1.11717155e+002 1.19551636e+002 - 9.78695297e+001 1.11732346e+002 1.19570793e+002 9.78544235e+001 - 1.11701462e+002 1.19570869e+002 9.78431702e+001 1.11706902e+002 - 1.19577126e+002 9.78463745e+001 1.11699944e+002 1.19584160e+002 - 9.78457642e+001 1.11708504e+002 1.19593262e+002 9.78517227e+001 - 1.11708176e+002 1.19610771e+002 9.78299408e+001 1.11688171e+002 - 1.19600266e+002 9.78021164e+001 1.11639549e+002 1.19575912e+002 - 9.77828827e+001 1.11626678e+002 1.19568420e+002 9.77759018e+001 - 1.11608170e+002 1.19565948e+002 9.77532120e+001 1.11606766e+002 - 1.19563637e+002 9.77537994e+001 1.11598167e+002 1.19574028e+002 - 9.77373047e+001 1.11598511e+002 1.19563950e+002 9.77423477e+001 - 1.11596306e+002 1.19578316e+002 9.77020416e+001 1.11581345e+002 - 1.19567085e+002 9.77229004e+001 1.11585014e+002 1.19588478e+002 - 9.76995392e+001 1.11575996e+002 1.19570236e+002 9.76894302e+001 - 1.11545914e+002 1.19562592e+002 9.76497040e+001 1.11516167e+002 - 1.19531120e+002 9.76359787e+001 1.11502068e+002 1.19526260e+002 - 9.76087418e+001 1.11485519e+002 1.19509499e+002 9.76164246e+001 - 1.11485626e+002 1.19521217e+002 9.76095276e+001 1.11491913e+002 - 1.19526833e+002 9.76492920e+001 1.11517540e+002 1.19567261e+002 - 9.76635284e+001 1.11542000e+002 1.19575432e+002 9.76928864e+001 - 1.11562447e+002 1.19606865e+002 9.77130814e+001 1.11595482e+002 - 1.19632027e+002 9.77303238e+001 1.11601151e+002 1.19644905e+002 - 9.77358093e+001 1.11617111e+002 1.19646629e+002 9.77381058e+001 - 1.11613388e+002 1.19647400e+002 9.77138519e+001 1.11613304e+002 - 1.19634239e+002 9.77419510e+001 1.11627151e+002 1.19658943e+002 - 9.77266083e+001 1.11617462e+002 1.19637833e+002 9.77318573e+001 - 1.11613548e+002 1.19641159e+002 9.77268677e+001 1.11622627e+002 - 1.19634789e+002 9.77257004e+001 1.11613548e+002 1.19636040e+002 - 9.77357178e+001 1.11634979e+002 1.19641479e+002 9.77447891e+001 - 1.11633659e+002 1.19643555e+002 9.77474442e+001 1.11646645e+002 - 1.19654854e+002 9.77692795e+001 1.11642227e+002 1.19662689e+002 - 9.77659225e+001 1.11652374e+002 1.19657669e+002 9.77748032e+001 - 1.11652016e+002 1.19661751e+002 9.77610168e+001 1.11658371e+002 - 1.19650711e+002 9.77574615e+001 1.11637115e+002 1.19635323e+002 - 9.77850494e+001 1.11673996e+002 1.19649223e+002 9.78053894e+001 - 1.11675842e+002 1.19652771e+002 9.77741241e+001 1.11666679e+002 - 1.19619614e+002 9.78082123e+001 1.11681313e+002 1.19630302e+002 - 9.78124847e+001 1.11705215e+002 1.19637573e+002 9.78251877e+001 - 1.11698502e+002 1.19628204e+002 9.78310013e+001 1.11709023e+002 - 1.19624634e+002 9.78623581e+001 1.11733917e+002 1.19644127e+002 - 9.78787994e+001 1.11758621e+002 1.19647339e+002 9.78971481e+001 - 1.11761177e+002 1.19651863e+002 9.79193878e+001 1.11799309e+002 - 1.19671455e+002 9.79387894e+001 1.11785446e+002 1.19665573e+002 - 9.79551544e+001 1.11806412e+002 1.19662300e+002 9.79752121e+001 - 1.11808022e+002 1.19656883e+002 9.79686966e+001 1.11813652e+002 - 1.19637344e+002 9.79758301e+001 1.11801926e+002 1.19631592e+002 - 9.79956512e+001 1.11821388e+002 1.19627983e+002 9.79905624e+001 - 1.11814018e+002 1.19593300e+002 9.80000534e+001 1.11844292e+002 - 1.19592064e+002 9.80536423e+001 1.11878334e+002 1.19621834e+002 - 9.80749359e+001 1.11913139e+002 1.19629196e+002 9.80904160e+001 - 1.11913437e+002 1.19621223e+002 9.80828552e+001 1.11919136e+002 - 1.19597847e+002 9.80924149e+001 1.11911751e+002 1.19590843e+002 - 9.81100540e+001 1.11937721e+002 1.19581177e+002 9.81351242e+001 - 1.11956261e+002 1.19584412e+002 9.81616440e+001 1.11990135e+002 - 1.19593910e+002 9.82145920e+001 1.12015968e+002 1.19611595e+002 - 9.82370987e+001 1.12059631e+002 1.19612122e+002 9.82708588e+001 - 1.12074867e+002 1.19613991e+002 9.82753906e+001 1.12097763e+002 - 1.19598854e+002 9.82970200e+001 1.12097870e+002 1.19591164e+002 - 9.83084183e+001 1.12123924e+002 1.19581985e+002 9.83545990e+001 - 1.12165596e+002 1.19590324e+002 9.83707352e+001 1.12199219e+002 - 1.19595520e+002 9.84052277e+001 1.12214592e+002 1.19602867e+002 - 9.84142151e+001 1.12230904e+002 1.19590126e+002 9.84573975e+001 - 1.12252930e+002 1.19608673e+002 9.84835815e+001 1.12292473e+002 - 1.19609276e+002 9.85030670e+001 1.12305473e+002 1.19607452e+002 - 9.85301895e+001 1.12346443e+002 1.19614655e+002 9.85818558e+001 - 1.12387505e+002 1.19637787e+002 9.86004944e+001 1.12423828e+002 - 1.19643707e+002 9.86532974e+001 1.12450150e+002 1.19650177e+002 - 9.86819305e+001 1.12492928e+002 1.19654846e+002 9.87304077e+001 - 1.12531136e+002 1.19666473e+002 9.87374268e+001 1.12551811e+002 - 1.19653908e+002 9.87670059e+001 1.12568680e+002 1.19660179e+002 - 9.87994690e+001 1.12605049e+002 1.19655006e+002 9.88659515e+001 - 1.12659058e+002 1.19670891e+002 9.88948669e+001 1.12697235e+002 - 1.19671089e+002 9.89483261e+001 1.12731216e+002 1.19689240e+002 - 9.89851227e+001 1.12773567e+002 1.19696121e+002 9.90068817e+001 - 1.12765686e+002 1.19671989e+002 9.90407104e+001 1.12815628e+002 - 1.19677048e+002 9.90915833e+001 1.12845940e+002 1.19681679e+002 - 9.91336441e+001 1.12894768e+002 1.19690063e+002 9.91851044e+001 - 1.12937454e+002 1.19699913e+002 9.92254715e+001 1.12987549e+002 - 1.19716301e+002 9.92817307e+001 1.13012924e+002 1.19713577e+002 - 9.93172302e+001 1.13067184e+002 1.19721268e+002 9.93899612e+001 - 1.13124733e+002 1.19753731e+002 9.94082718e+001 1.13157295e+002 - 1.19747597e+002 9.94515762e+001 1.13192039e+002 1.19759422e+002 - 9.94991684e+001 1.13234138e+002 1.19754700e+002 9.95666733e+001 - 1.13280045e+002 1.19755493e+002 9.95847321e+001 1.13313553e+002 - 1.19740395e+002 9.96177902e+001 1.13326416e+002 1.19742249e+002 - 9.96632690e+001 1.13382797e+002 1.19761749e+002 9.97240448e+001 - 1.13422737e+002 1.19779678e+002 9.97642899e+001 1.13475937e+002 - 1.19790497e+002 9.98263779e+001 1.13519073e+002 1.19802773e+002 - 9.98667526e+001 1.13566132e+002 1.19805717e+002 9.98844604e+001 - 1.13561150e+002 1.19780495e+002 9.99382706e+001 1.13618057e+002 - 1.19801971e+002 1.00032196e+002 1.13670464e+002 1.19829033e+002 - 1.00069756e+002 1.13718971e+002 1.19821770e+002 1.00129776e+002 - 1.13746346e+002 1.19817680e+002 1.00153870e+002 1.13781052e+002 - 1.19805717e+002 1.00206444e+002 1.13815834e+002 1.19813789e+002 - 1.00258781e+002 1.13861511e+002 1.19815933e+002 1.00317413e+002 - 1.13893135e+002 1.19806084e+002 1.00351715e+002 1.13935562e+002 - 1.19803200e+002 1.00395058e+002 1.13954979e+002 1.19800484e+002 - 1.00442772e+002 1.13996437e+002 1.19810242e+002 1.00526100e+002 - 1.14045723e+002 1.19830772e+002 1.00577538e+002 1.14091240e+002 - 1.19832619e+002 1.00644310e+002 1.14126785e+002 1.19836731e+002 - 1.00696686e+002 1.14174088e+002 1.19843498e+002 1.00775406e+002 - 1.14215218e+002 1.19858521e+002 1.00851677e+002 1.14286011e+002 - 1.19893890e+002 1.00911652e+002 1.14294746e+002 1.19873169e+002 - 1.00965645e+002 1.14337914e+002 1.19871643e+002 1.01028061e+002 - 1.14354637e+002 1.19865639e+002 1.01021049e+002 1.14346718e+002 - 1.19811363e+002 1.01043343e+002 1.14328239e+002 1.19780731e+002 - 1.00985588e+002 1.14257324e+002 1.19669891e+002 1.01047516e+002 - 1.14261932e+002 1.19673973e+002 1.01048630e+002 1.14324203e+002 - 1.19733398e+002 1.01053047e+002 1.14342514e+002 1.19788971e+002 - 1.01050140e+002 1.14377556e+002 1.19843201e+002 1.01022217e+002 - 1.14363731e+002 1.19881248e+002 1.00957954e+002 1.14346123e+002 - 1.19886421e+002 1.00903450e+002 1.14319374e+002 1.19897820e+002 - 1.00834419e+002 1.14283539e+002 1.19882263e+002 1.00797874e+002 - 1.14254028e+002 1.19890991e+002 1.00705925e+002 1.14196609e+002 - 1.19856834e+002 1.00658127e+002 1.14122635e+002 1.19857307e+002 - 1.00637093e+002 1.14126724e+002 1.19874680e+002 1.00590317e+002 - 1.14095398e+002 1.19879105e+002 1.00552963e+002 1.14084389e+002 - 1.19890144e+002 1.00489677e+002 1.14013298e+002 1.19865913e+002 - 1.00428398e+002 1.13974709e+002 1.19850464e+002 1.00369537e+002 - 1.13939781e+002 1.19871536e+002 1.00282158e+002 1.13890839e+002 - 1.19854935e+002 1.00272987e+002 1.13877861e+002 1.19876083e+002 - 1.00243431e+002 1.13877159e+002 1.19889755e+002 1.00186722e+002 - 1.13805168e+002 1.19877388e+002 1.00109818e+002 1.13750793e+002 - 1.19845642e+002 1.00051102e+002 1.13696739e+002 1.19834808e+002 - 1.00010658e+002 1.13677147e+002 1.19833122e+002 1.00004417e+002 - 1.13668999e+002 1.19866211e+002 9.99403458e+001 1.13619820e+002 - 1.19840851e+002 9.98959808e+001 1.13550835e+002 1.19834381e+002 - 9.98460007e+001 1.13517693e+002 1.19825485e+002 9.98195038e+001 - 1.13498909e+002 1.19845520e+002 9.97756577e+001 1.13475563e+002 - 1.19833504e+002 9.97322235e+001 1.13419930e+002 1.19814934e+002 - 9.96747360e+001 1.13376831e+002 1.19787148e+002 9.96154861e+001 - 1.13333229e+002 1.19794930e+002 9.95489349e+001 1.13289886e+002 - 1.19773521e+002 9.95408325e+001 1.13264397e+002 1.19788200e+002 - 9.95058975e+001 1.13250008e+002 1.19788269e+002 9.94537735e+001 - 1.13171967e+002 1.19766808e+002 9.93838043e+001 1.13122284e+002 - 1.19739555e+002 9.93259811e+001 1.13062492e+002 1.19721375e+002 - 9.92991486e+001 1.13052879e+002 1.19726845e+002 9.92791748e+001 - 1.13033844e+002 1.19748886e+002 9.91977158e+001 1.12971649e+002 - 1.19709206e+002 9.91872940e+001 1.12929100e+002 1.19735893e+002 - 9.91165848e+001 1.12874687e+002 1.19702492e+002 9.90438385e+001 - 1.12805099e+002 1.19656906e+002 9.90090485e+001 1.12795624e+002 - 1.19657219e+002 9.90048294e+001 1.12769234e+002 1.19674698e+002 - 9.89826126e+001 1.12757195e+002 1.19685753e+002 9.89259186e+001 - 1.12699226e+002 1.19671570e+002 9.88501740e+001 1.12654289e+002 - 1.19639168e+002 9.88319397e+001 1.12623390e+002 1.19642120e+002 - 9.87965240e+001 1.12603447e+002 1.19631599e+002 9.87515259e+001 - 1.12549782e+002 1.19623161e+002 9.87369308e+001 1.12551323e+002 - 1.19638550e+002 9.86950226e+001 1.12512894e+002 1.19637276e+002 - 9.86611862e+001 1.12493286e+002 1.19631729e+002 9.86336823e+001 - 1.12454483e+002 1.19630470e+002 9.85678482e+001 1.12405891e+002 - 1.19597031e+002 9.85644760e+001 1.12371132e+002 1.19617088e+002 - 9.85153961e+001 1.12332230e+002 1.19599236e+002 9.84769363e+001 - 1.12286102e+002 1.19581314e+002 9.84348450e+001 1.12264946e+002 - 1.19562080e+002 9.84217529e+001 1.12225334e+002 1.19560944e+002 - 9.84014664e+001 1.12215790e+002 1.19564674e+002 9.83585892e+001 - 1.12173019e+002 1.19573372e+002 9.83245087e+001 1.12154968e+002 - 1.19571167e+002 9.83324280e+001 1.12150734e+002 1.19597260e+002 - 9.83247223e+001 1.12153618e+002 1.19608177e+002 9.83039322e+001 - 1.12110863e+002 1.19606728e+002 9.82652054e+001 1.12087471e+002 - 1.19594498e+002 9.82337341e+001 1.12062119e+002 1.19596832e+002 - 9.82233276e+001 1.12057495e+002 1.19602470e+002 9.81897278e+001 - 1.12016205e+002 1.19593124e+002 9.81556320e+001 1.11997101e+002 - 1.19587570e+002 9.81410751e+001 1.11943298e+002 1.19587616e+002 - 9.81464996e+001 1.11955742e+002 1.19607201e+002 9.81516113e+001 - 1.11960037e+002 1.19628059e+002 9.80759964e+001 1.11896820e+002 - 1.19572296e+002 9.80657806e+001 1.11871117e+002 1.19576340e+002 - 9.80771332e+001 1.11888077e+002 1.19604591e+002 9.80750656e+001 - 1.11887550e+002 1.19632263e+002 9.80667419e+001 1.11907181e+002 - 1.19657852e+002 9.80238266e+001 1.11856033e+002 1.19631294e+002 - 9.80236435e+001 1.11867355e+002 1.19647804e+002 9.80393982e+001 - 1.11862358e+002 1.19673973e+002 9.80294495e+001 1.11864708e+002 - 1.19674652e+002 9.80190201e+001 1.11852806e+002 1.19680946e+002 - 9.80049820e+001 1.11849747e+002 1.19679024e+002 9.80001450e+001 - 1.11833290e+002 1.19678520e+002 9.79967422e+001 1.11838455e+002 - 1.19679108e+002 9.79892044e+001 1.11796425e+002 1.19679810e+002 - 9.79568787e+001 1.11778351e+002 1.19669365e+002 9.79510117e+001 - 1.11768669e+002 1.19665001e+002 9.79277115e+001 1.11767685e+002 - 1.19658691e+002 9.79328690e+001 1.11756470e+002 1.19673203e+002 - 9.79224777e+001 1.11758820e+002 1.19672676e+002 9.78967972e+001 - 1.11739059e+002 1.19668304e+002 9.78607178e+001 1.11724449e+002 - 1.19649727e+002 9.78633804e+001 1.11711823e+002 1.19665123e+002 - 9.78506546e+001 1.11715019e+002 1.19655632e+002 9.78409500e+001 - 1.11679169e+002 1.19645340e+002 9.78126221e+001 1.11667229e+002 - 1.19626717e+002 9.78135910e+001 1.11664253e+002 1.19633125e+002 - 9.78045807e+001 1.11662056e+002 1.19631966e+002 9.77984695e+001 - 1.11650642e+002 1.19632866e+002 9.77913437e+001 1.11663567e+002 - 1.19637672e+002 9.78267975e+001 1.11667778e+002 1.19671242e+002 - 9.78282471e+001 1.11683174e+002 1.19672943e+002 9.78552551e+001 - 1.11704453e+002 1.19695343e+002 9.78676300e+001 1.11734604e+002 - 1.19712090e+002 9.78888702e+001 1.11736649e+002 1.19734810e+002 - 9.79022903e+001 1.11753876e+002 1.19735199e+002 9.79095535e+001 - 1.11767845e+002 1.19746773e+002 9.78853683e+001 1.11760277e+002 - 1.19729828e+002 9.79086227e+001 1.11781258e+002 1.19754417e+002 - 9.79041901e+001 1.11785004e+002 1.19745773e+002 9.79119644e+001 - 1.11773758e+002 1.19746696e+002 9.79017181e+001 1.11774704e+002 - 1.19737007e+002 9.78971329e+001 1.11769630e+002 1.19738228e+002 - 9.78941803e+001 1.11777512e+002 1.19726402e+002 9.78910065e+001 - 1.11758919e+002 1.19719147e+002 9.78832474e+001 1.11764336e+002 - 1.19710609e+002 9.79224167e+001 1.11772110e+002 1.19739067e+002 - 9.79430771e+001 1.11800453e+002 1.19754753e+002 9.79317398e+001 - 1.11790710e+002 1.19737534e+002 9.79189911e+001 1.11798386e+002 - 1.19728104e+002 9.79327469e+001 1.11792259e+002 1.19735573e+002 - 9.79707489e+001 1.11836357e+002 1.19758415e+002 9.79938660e+001 - 1.11850899e+002 1.19766930e+002 9.79728088e+001 1.11844604e+002 - 1.19734833e+002 9.79809418e+001 1.11834885e+002 1.19730850e+002 - 9.79846191e+001 1.11854355e+002 1.19727028e+002 9.80087662e+001 - 1.11857178e+002 1.19737305e+002 9.79887543e+001 1.11850456e+002 - 1.19709068e+002 9.80199127e+001 1.11867371e+002 1.19719048e+002 - 9.80444870e+001 1.11905609e+002 1.19735130e+002 9.80594025e+001 - 1.11905838e+002 1.19741776e+002 9.80656281e+001 1.11930389e+002 - 1.19742851e+002 9.81069870e+001 1.11932297e+002 1.19752670e+002 - 9.81264496e+001 1.11956825e+002 1.19761261e+002 9.81341476e+001 - 1.11957359e+002 1.19743401e+002 9.81253052e+001 1.11961395e+002 - 1.19728828e+002 9.81425705e+001 1.11951439e+002 1.19724167e+002 - 9.81658478e+001 1.11971748e+002 1.19716629e+002 9.81670990e+001 - 1.11972527e+002 1.19692070e+002 9.81826859e+001 1.12006546e+002 - 1.19697990e+002 9.82024078e+001 1.12010437e+002 1.19701988e+002 - 9.82135620e+001 1.12033966e+002 1.19694267e+002 9.82274399e+001 - 1.12027176e+002 1.19681969e+002 9.82392731e+001 1.12053001e+002 - 1.19686790e+002 9.82610397e+001 1.12063988e+002 1.19692223e+002 - 9.82795258e+001 1.12093636e+002 1.19687805e+002 9.83064575e+001 - 1.12103256e+002 1.19687943e+002 9.83177872e+001 1.12132103e+002 - 1.19680786e+002 9.83686600e+001 1.12141747e+002 1.19693733e+002 - 9.83900452e+001 1.12178246e+002 1.19691772e+002 9.84224243e+001 - 1.12210091e+002 1.19702080e+002 9.84366608e+001 1.12242790e+002 - 1.19693237e+002 9.84542007e+001 1.12242180e+002 1.19690063e+002 - 9.84871902e+001 1.12276649e+002 1.19689674e+002 9.85198135e+001 - 1.12309532e+002 1.19692581e+002 9.85371704e+001 1.12346474e+002 - 1.19690750e+002 9.85579147e+001 1.12351318e+002 1.19688225e+002 - 9.85816422e+001 1.12386848e+002 1.19693237e+002 9.86282883e+001 - 1.12407227e+002 1.19713577e+002 9.86657028e+001 1.12455360e+002 - 1.19723091e+002 9.86675873e+001 1.12450378e+002 1.19699715e+002 - 9.86777039e+001 1.12476303e+002 1.19689796e+002 9.87294922e+001 - 1.12519997e+002 1.19715714e+002 9.87681274e+001 1.12573364e+002 - 1.19732071e+002 9.88326416e+001 1.12602226e+002 1.19761734e+002 - 9.88524399e+001 1.12637604e+002 1.19754631e+002 9.88779144e+001 - 1.12664818e+002 1.19750244e+002 9.88857269e+001 1.12685974e+002 - 1.19741867e+002 9.89172440e+001 1.12699402e+002 1.19747711e+002 - 9.89634018e+001 1.12752075e+002 1.19760651e+002 9.90117493e+001 - 1.12785706e+002 1.19751419e+002 9.90268860e+001 1.12813141e+002 - 1.19738190e+002 9.90777283e+001 1.12845703e+002 1.19753067e+002 - 9.91059418e+001 1.12879250e+002 1.19751053e+002 9.91371078e+001 - 1.12877625e+002 1.19737831e+002 9.91669617e+001 1.12918472e+002 - 1.19739853e+002 9.92162247e+001 1.12953293e+002 1.19743935e+002 - 9.92750168e+001 1.13021629e+002 1.19763893e+002 9.93162231e+001 - 1.13047165e+002 1.19774986e+002 9.93386459e+001 1.13087921e+002 - 1.19765305e+002 9.94029617e+001 1.13113655e+002 1.19781906e+002 - 9.94520416e+001 1.13174179e+002 1.19796364e+002 9.95102081e+001 - 1.13225929e+002 1.19813004e+002 9.95343170e+001 1.13269775e+002 - 1.19812263e+002 9.95845108e+001 1.13294220e+002 1.19835045e+002 - 9.96465225e+001 1.13360062e+002 1.19842537e+002 9.97012024e+001 - 1.13395042e+002 1.19839561e+002 9.97119370e+001 1.13415245e+002 - 1.19811150e+002 9.97313690e+001 1.13422142e+002 1.19804268e+002 - 9.97848129e+001 1.13483307e+002 1.19826866e+002 9.98420181e+001 - 1.13518448e+002 1.19843788e+002 9.98660889e+001 1.13550499e+002 - 1.19835991e+002 9.99182358e+001 1.13592636e+002 1.19848221e+002 - 9.99636993e+001 1.13640793e+002 1.19851151e+002 1.00010956e+002 - 1.13658600e+002 1.19853012e+002 1.00064621e+002 1.13722603e+002 - 1.19863220e+002 1.00154488e+002 1.13766525e+002 1.19897148e+002 - 1.00191162e+002 1.13805939e+002 1.19881828e+002 1.00239326e+002 - 1.13847786e+002 1.19882874e+002 1.00262268e+002 1.13873650e+002 - 1.19860947e+002 1.00314796e+002 1.13899071e+002 1.19874031e+002 - 1.00376106e+002 1.13959274e+002 1.19878326e+002 1.00427734e+002 - 1.13986671e+002 1.19870247e+002 1.00461678e+002 1.14026802e+002 - 1.19866737e+002 1.00487885e+002 1.14026649e+002 1.19853050e+002 - 1.00548203e+002 1.14081947e+002 1.19864616e+002 1.00624207e+002 - 1.14119019e+002 1.19880127e+002 1.00676857e+002 1.14166489e+002 - 1.19878700e+002 1.00721962e+002 1.14186058e+002 1.19870499e+002 - 1.00782829e+002 1.14234734e+002 1.19877914e+002 1.00852791e+002 - 1.14275597e+002 1.19896576e+002 1.00918999e+002 1.14333618e+002 - 1.19905556e+002 1.00984818e+002 1.14337654e+002 1.19901505e+002 - 1.01043892e+002 1.14388397e+002 1.19900482e+002 1.01093658e+002 - 1.14407593e+002 1.19888672e+002 1.01090248e+002 1.14401482e+002 - 1.19835106e+002 1.01122032e+002 1.14378540e+002 1.19812561e+002 - 1.01049332e+002 1.14306419e+002 1.19690186e+002 1.01112976e+002 - 1.14309280e+002 1.19678947e+002 1.01133942e+002 1.14388336e+002 - 1.19762535e+002 1.01133720e+002 1.14403404e+002 1.19806221e+002 - 1.01109413e+002 1.14416336e+002 1.19843422e+002 1.01084373e+002 - 1.14403709e+002 1.19880836e+002 1.01032982e+002 1.14401344e+002 - 1.19897339e+002 1.00986771e+002 1.14382416e+002 1.19922760e+002 - 1.00914558e+002 1.14343826e+002 1.19909065e+002 1.00851959e+002 - 1.14284691e+002 1.19890976e+002 1.00788879e+002 1.14256882e+002 - 1.19885872e+002 1.00750664e+002 1.14197136e+002 1.19891319e+002 - 1.00721771e+002 1.14192764e+002 1.19907066e+002 1.00675957e+002 - 1.14157906e+002 1.19909836e+002 1.00615402e+002 1.14121826e+002 - 1.19894722e+002 1.00570900e+002 1.14073380e+002 1.19890869e+002 - 1.00510567e+002 1.14038841e+002 1.19876564e+002 1.00444908e+002 - 1.13997452e+002 1.19892891e+002 1.00377548e+002 1.13965683e+002 - 1.19884720e+002 1.00356392e+002 1.13939514e+002 1.19903633e+002 - 1.00316879e+002 1.13924583e+002 1.19903221e+002 1.00285332e+002 - 1.13875214e+002 1.19909576e+002 1.00216110e+002 1.13832527e+002 - 1.19885582e+002 1.00167435e+002 1.13788216e+002 1.19875267e+002 - 1.00121071e+002 1.13758148e+002 1.19863815e+002 1.00133896e+002 - 1.13762978e+002 1.19913635e+002 1.00085197e+002 1.13739174e+002 - 1.19902840e+002 1.00039818e+002 1.13667168e+002 1.19900986e+002 - 9.99919357e+001 1.13641953e+002 1.19892151e+002 9.99500885e+001 - 1.13610741e+002 1.19897202e+002 9.99017258e+001 1.13585831e+002 - 1.19884094e+002 9.98445358e+001 1.13518288e+002 1.19853775e+002 - 9.97896957e+001 1.13471230e+002 1.19833778e+002 9.97327194e+001 - 1.13417229e+002 1.19836937e+002 9.96586761e+001 1.13370171e+002 - 1.19804482e+002 9.96504669e+001 1.13351089e+002 1.19830147e+002 - 9.96097336e+001 1.13327301e+002 1.19817360e+002 9.95854645e+001 - 1.13283318e+002 1.19833359e+002 9.95138016e+001 1.13231674e+002 - 1.19801811e+002 9.94589691e+001 1.13180260e+002 1.19787102e+002 - 9.94328537e+001 1.13167809e+002 1.19796768e+002 9.94045715e+001 - 1.13131752e+002 1.19806297e+002 9.93529816e+001 1.13103218e+002 - 1.19787720e+002 9.93307724e+001 1.13044380e+002 1.19797523e+002 - 9.92615433e+001 1.12992432e+002 1.19765572e+002 9.92076797e+001 - 1.12939377e+002 1.19741837e+002 9.91612625e+001 1.12904907e+002 - 1.19719185e+002 9.91501465e+001 1.12884079e+002 1.19735397e+002 - 9.91243973e+001 1.12878510e+002 1.19736435e+002 9.90848465e+001 - 1.12837471e+002 1.19748856e+002 9.90035019e+001 1.12778511e+002 - 1.19706886e+002 9.89638977e+001 1.12730980e+002 1.19686325e+002 - 9.89406052e+001 1.12724113e+002 1.19690590e+002 9.89165421e+001 - 1.12686836e+002 1.19705032e+002 9.88847122e+001 1.12671112e+002 - 1.19705345e+002 9.88684998e+001 1.12654175e+002 1.19721771e+002 - 9.88517532e+001 1.12654755e+002 1.19736595e+002 9.88249359e+001 - 1.12614853e+002 1.19735748e+002 9.87490082e+001 1.12559242e+002 - 1.19690178e+002 9.87215576e+001 1.12494720e+002 1.19686455e+002 - 9.86821442e+001 1.12463837e+002 1.19670341e+002 9.86419373e+001 - 1.12421425e+002 1.19655060e+002 9.86163559e+001 1.12411247e+002 - 1.19641396e+002 9.85910950e+001 1.12366226e+002 1.19634766e+002 - 9.85692825e+001 1.12356163e+002 1.19643181e+002 9.85429306e+001 - 1.12324188e+002 1.19653343e+002 9.84751282e+001 1.12279678e+002 - 1.19624619e+002 9.84830475e+001 1.12275208e+002 1.19654022e+002 - 9.84890671e+001 1.12294518e+002 1.19683357e+002 9.84813004e+001 - 1.12269539e+002 1.19701637e+002 9.84118347e+001 1.12211029e+002 - 1.19661011e+002 9.83843155e+001 1.12184967e+002 1.19660767e+002 - 9.83686676e+001 1.12183182e+002 1.19666710e+002 9.83587952e+001 - 1.12163658e+002 1.19681061e+002 9.83147507e+001 1.12133186e+002 - 1.19657158e+002 9.83373184e+001 1.12115318e+002 1.19695122e+002 - 9.83217087e+001 1.12113518e+002 1.19700905e+002 9.83010254e+001 - 1.12087822e+002 1.19694122e+002 9.82551041e+001 1.12053650e+002 - 1.19667244e+002 9.82676697e+001 1.12051361e+002 1.19692444e+002 - 9.82555771e+001 1.12049500e+002 1.19690964e+002 9.82399597e+001 - 1.12040863e+002 1.19713791e+002 9.82195129e+001 1.12037239e+002 - 1.19719696e+002 9.82018814e+001 1.12007652e+002 1.19711494e+002 - 9.81848297e+001 1.12003761e+002 1.19710640e+002 9.81941452e+001 - 1.11992233e+002 1.19729767e+002 9.82034302e+001 1.12013489e+002 - 1.19755836e+002 9.81947250e+001 1.11999237e+002 1.19762108e+002 - 9.81724777e+001 1.11988609e+002 1.19748100e+002 9.81702042e+001 - 1.11973900e+002 1.19750557e+002 9.81497040e+001 1.11968567e+002 - 1.19746582e+002 9.81730270e+001 1.11955849e+002 1.19777267e+002 - 9.81423187e+001 1.11941704e+002 1.19752365e+002 9.81479416e+001 - 1.11949371e+002 1.19774635e+002 9.81284943e+001 1.11948433e+002 - 1.19766678e+002 9.81179581e+001 1.11926140e+002 1.19772240e+002 - 9.81007309e+001 1.11921219e+002 1.19759033e+002 9.80501785e+001 - 1.11878235e+002 1.19737061e+002 9.80197601e+001 1.11867218e+002 - 1.19731049e+002 9.80294342e+001 1.11866142e+002 1.19748146e+002 - 9.80069580e+001 1.11856102e+002 1.19729630e+002 9.80099258e+001 - 1.11838531e+002 1.19736282e+002 9.79829636e+001 1.11828781e+002 - 1.19714890e+002 9.79822769e+001 1.11816856e+002 1.19724869e+002 - 9.79802094e+001 1.11825455e+002 1.19726318e+002 9.79757462e+001 - 1.11809631e+002 1.19726418e+002 9.79639816e+001 1.11818916e+002 - 1.19722397e+002 9.79936905e+001 1.11815720e+002 1.19750160e+002 - 9.79908676e+001 1.11823112e+002 1.19747299e+002 9.80111389e+001 - 1.11840019e+002 1.19773399e+002 9.80131912e+001 1.11861885e+002 - 1.19777870e+002 9.80558167e+001 1.11893593e+002 1.19820267e+002 - 9.80820389e+001 1.11926193e+002 1.19839661e+002 9.80779266e+001 - 1.11923668e+002 1.19830009e+002 9.80612488e+001 1.11922485e+002 - 1.19815125e+002 9.80857773e+001 1.11934296e+002 1.19835693e+002 - 9.80725174e+001 1.11936218e+002 1.19820679e+002 9.80758743e+001 - 1.11919624e+002 1.19829048e+002 9.80696411e+001 1.11925652e+002 - 1.19815956e+002 9.80596771e+001 1.11911667e+002 1.19808128e+002 - 9.80625153e+001 1.11923172e+002 1.19807243e+002 9.80585251e+001 - 1.11902908e+002 1.19797401e+002 9.80516815e+001 1.11913162e+002 - 1.19794205e+002 9.80875015e+001 1.11908295e+002 1.19814896e+002 - 9.81004562e+001 1.11939064e+002 1.19825737e+002 9.80956192e+001 - 1.11929314e+002 1.19808601e+002 9.80867996e+001 1.11939430e+002 - 1.19803993e+002 9.80971451e+001 1.11930573e+002 1.19807693e+002 - 9.81488266e+001 1.11990997e+002 1.19840561e+002 9.81675415e+001 - 1.12002144e+002 1.19842674e+002 9.81505737e+001 1.12004921e+002 - 1.19826210e+002 9.81623917e+001 1.11995193e+002 1.19817818e+002 - 9.81555328e+001 1.12005768e+002 1.19809364e+002 9.81753769e+001 - 1.11997841e+002 1.19810280e+002 9.81565857e+001 1.11997551e+002 - 1.19790596e+002 9.81798630e+001 1.12013947e+002 1.19802788e+002 - 9.82255859e+001 1.12065887e+002 1.19833916e+002 9.82297974e+001 - 1.12058647e+002 1.19828209e+002 9.82246857e+001 1.12071457e+002 - 1.19813995e+002 9.82687988e+001 1.12072220e+002 1.19834579e+002 - 9.82729568e+001 1.12083359e+002 1.19825348e+002 9.82895203e+001 - 1.12093613e+002 1.19820465e+002 9.83146820e+001 1.12124344e+002 - 1.19833267e+002 9.83366318e+001 1.12125999e+002 1.19837769e+002 - 9.83480835e+001 1.12144676e+002 1.19825340e+002 9.83550491e+001 - 1.12148079e+002 1.19803368e+002 9.83222656e+001 1.12136177e+002 - 1.19760963e+002 9.83487625e+001 1.12139412e+002 1.19761238e+002 - 9.83680191e+001 1.12175598e+002 1.19764267e+002 9.83970718e+001 - 1.12181030e+002 1.19776062e+002 9.84167480e+001 1.12213455e+002 - 1.19777809e+002 9.84264679e+001 1.12215775e+002 1.19774162e+002 - 9.84232941e+001 1.12218002e+002 1.19748497e+002 9.84725723e+001 - 1.12248497e+002 1.19780869e+002 9.84863663e+001 1.12283455e+002 - 1.19776947e+002 9.85290527e+001 1.12287872e+002 1.19785690e+002 - 9.85452728e+001 1.12317436e+002 1.19777420e+002 9.85569305e+001 - 1.12324654e+002 1.19763229e+002 9.85754623e+001 1.12356888e+002 - 1.19754593e+002 9.86237411e+001 1.12384262e+002 1.19781639e+002 - 9.86571732e+001 1.12423309e+002 1.19780693e+002 9.87024994e+001 - 1.12459328e+002 1.19786278e+002 9.86815720e+001 1.12460388e+002 - 1.19749046e+002 9.87172241e+001 1.12484581e+002 1.19764771e+002 - 9.87569199e+001 1.12537048e+002 1.19778671e+002 9.87963486e+001 - 1.12549049e+002 1.19791641e+002 9.88116379e+001 1.12580269e+002 - 1.19780930e+002 9.88371506e+001 1.12598793e+002 1.19783951e+002 - 9.88501358e+001 1.12622620e+002 1.19775719e+002 9.88798828e+001 - 1.12638931e+002 1.19777679e+002 9.89105225e+001 1.12686348e+002 - 1.19778572e+002 9.89836502e+001 1.12725403e+002 1.19820572e+002 - 9.90118027e+001 1.12764603e+002 1.19821915e+002 9.90221024e+001 - 1.12778351e+002 1.19809975e+002 9.90370331e+001 1.12817978e+002 - 1.19812149e+002 9.90594482e+001 1.12818939e+002 1.19812424e+002 - 9.91091156e+001 1.12872742e+002 1.19823364e+002 9.91598587e+001 - 1.12915115e+002 1.19825912e+002 9.91606445e+001 1.12927940e+002 - 1.19798248e+002 9.92151947e+001 1.12960220e+002 1.19816544e+002 - 9.92384949e+001 1.12986923e+002 1.19803543e+002 9.92828751e+001 - 1.13006096e+002 1.19807793e+002 9.93052444e+001 1.13032585e+002 - 1.19791595e+002 9.93484421e+001 1.13064232e+002 1.19799973e+002 - 9.93908539e+001 1.13116470e+002 1.19806282e+002 9.94737549e+001 - 1.13179550e+002 1.19852325e+002 9.94963455e+001 1.13221535e+002 - 1.19846710e+002 9.95563354e+001 1.13242729e+002 1.19860619e+002 - 9.96066589e+001 1.13305161e+002 1.19872086e+002 9.96489639e+001 - 1.13342812e+002 1.19885674e+002 9.96491852e+001 1.13354637e+002 - 1.19852379e+002 9.97153397e+001 1.13406807e+002 1.19893913e+002 - 9.97786789e+001 1.13471306e+002 1.19907188e+002 9.98430099e+001 - 1.13508949e+002 1.19908447e+002 9.98349304e+001 1.13517738e+002 - 1.19869339e+002 9.98797836e+001 1.13545975e+002 1.19885132e+002 - 9.99150009e+001 1.13592262e+002 1.19891418e+002 9.99587860e+001 - 1.13609756e+002 1.19898476e+002 9.99752274e+001 1.13634323e+002 - 1.19874695e+002 1.00042732e+002 1.13692528e+002 1.19906593e+002 - 1.00078651e+002 1.13728836e+002 1.19897209e+002 1.00132851e+002 - 1.13764206e+002 1.19912735e+002 1.00180740e+002 1.13815781e+002 - 1.19915092e+002 1.00262833e+002 1.13848778e+002 1.19931183e+002 - 1.00294662e+002 1.13887589e+002 1.19919250e+002 1.00344223e+002 - 1.13923096e+002 1.19919090e+002 1.00370026e+002 1.13955162e+002 - 1.19902603e+002 1.00409348e+002 1.13968330e+002 1.19900581e+002 - 1.00464996e+002 1.14022270e+002 1.19904526e+002 1.00518791e+002 - 1.14055023e+002 1.19895309e+002 1.00567123e+002 1.14109116e+002 - 1.19903618e+002 1.00616920e+002 1.14133980e+002 1.19912033e+002 - 1.00656525e+002 1.14171196e+002 1.19913185e+002 1.00716606e+002 - 1.14190155e+002 1.19912933e+002 1.00777657e+002 1.14240181e+002 - 1.19916115e+002 1.00830147e+002 1.14264481e+002 1.19907242e+002 - 1.00884705e+002 1.14312538e+002 1.19914871e+002 1.00957939e+002 - 1.14350594e+002 1.19934029e+002 1.01001236e+002 1.14384964e+002 - 1.19925896e+002 1.01048714e+002 1.14373711e+002 1.19899887e+002 - 1.01105217e+002 1.14419403e+002 1.19896065e+002 1.01174072e+002 - 1.14460640e+002 1.19902679e+002 1.01179024e+002 1.14463188e+002 - 1.19861916e+002 1.01186119e+002 1.14415359e+002 1.19817345e+002 - 1.01115936e+002 1.14339844e+002 1.19690453e+002 1.01139771e+002 - 1.14350128e+002 1.19681496e+002 1.01162849e+002 1.14420204e+002 - 1.19762733e+002 1.01179573e+002 1.14446495e+002 1.19830544e+002 - 1.01147812e+002 1.14445557e+002 1.19849976e+002 1.01111229e+002 - 1.14432434e+002 1.19882660e+002 1.01077003e+002 1.14443611e+002 - 1.19914574e+002 1.01027481e+002 1.14424728e+002 1.19944115e+002 - 1.00963684e+002 1.14384315e+002 1.19929756e+002 1.00903053e+002 - 1.14338356e+002 1.19922379e+002 1.00826538e+002 1.14285164e+002 - 1.19892929e+002 1.00804993e+002 1.14258987e+002 1.19925148e+002 - 1.00762268e+002 1.14242004e+002 1.19931870e+002 1.00717491e+002 - 1.14200768e+002 1.19930504e+002 1.00671967e+002 1.14176186e+002 - 1.19927559e+002 1.00627541e+002 1.14133377e+002 1.19919655e+002 - 1.00563850e+002 1.14101181e+002 1.19910797e+002 1.00514946e+002 - 1.14066528e+002 1.19936310e+002 1.00445503e+002 1.14038101e+002 - 1.19928444e+002 1.00406502e+002 1.13987602e+002 1.19927643e+002 - 1.00362137e+002 1.13957748e+002 1.19914810e+002 1.00325157e+002 - 1.13920372e+002 1.19922836e+002 1.00255730e+002 1.13864471e+002 - 1.19887108e+002 1.00222702e+002 1.13837883e+002 1.19900246e+002 - 1.00194496e+002 1.13828491e+002 1.19905251e+002 1.00195168e+002 - 1.13822838e+002 1.19943329e+002 1.00145309e+002 1.13787621e+002 - 1.19924309e+002 1.00106689e+002 1.13739197e+002 1.19930893e+002 - 1.00078461e+002 1.13727745e+002 1.19945282e+002 1.00024773e+002 - 1.13684601e+002 1.19939644e+002 9.99915237e+001 1.13669815e+002 - 1.19941498e+002 9.99371719e+001 1.13611877e+002 1.19911201e+002 - 9.98819962e+001 1.13565033e+002 1.19885422e+002 9.98300018e+001 - 1.13512321e+002 1.19898361e+002 9.97499466e+001 1.13463005e+002 - 1.19864128e+002 9.97254028e+001 1.13423897e+002 1.19873672e+002 - 9.96813889e+001 1.13391365e+002 1.19858856e+002 9.96490479e+001 - 1.13355797e+002 1.19871170e+002 9.95842056e+001 1.13304848e+002 - 1.19837387e+002 9.95504456e+001 1.13265633e+002 1.19847519e+002 - 9.95243530e+001 1.13254005e+002 1.19851425e+002 9.95005264e+001 - 1.13227493e+002 1.19864182e+002 9.94675674e+001 1.13206558e+002 - 1.19864792e+002 9.94236221e+001 1.13146255e+002 1.19852280e+002 - 9.93715820e+001 1.13098022e+002 1.19829033e+002 9.93415985e+001 - 1.13058098e+002 1.19826126e+002 9.92918777e+001 1.13033035e+002 - 1.19806557e+002 9.92712555e+001 1.13000549e+002 1.19809029e+002 - 9.92523880e+001 1.12992035e+002 1.19809341e+002 9.92078934e+001 - 1.12951859e+002 1.19825073e+002 9.91286774e+001 1.12901093e+002 - 1.19778297e+002 9.90940704e+001 1.12863983e+002 1.19777718e+002 - 9.90590057e+001 1.12833885e+002 1.19764198e+002 9.90331650e+001 - 1.12799683e+002 1.19771652e+002 9.89994202e+001 1.12782410e+002 - 1.19770576e+002 9.90094223e+001 1.12788277e+002 1.19819122e+002 - 9.89643173e+001 1.12757095e+002 1.19794205e+002 9.89201508e+001 - 1.12701149e+002 1.19774612e+002 9.88584900e+001 1.12656288e+002 - 1.19744522e+002 9.88064880e+001 1.12581459e+002 1.19721062e+002 - 9.87709579e+001 1.12549881e+002 1.19707649e+002 9.87497025e+001 - 1.12519211e+002 1.19705574e+002 9.87076263e+001 1.12489937e+002 - 1.19688728e+002 9.86957397e+001 1.12470428e+002 1.19695244e+002 - 9.86946411e+001 1.12477661e+002 1.19711906e+002 9.86632614e+001 - 1.12436974e+002 1.19721024e+002 9.85874634e+001 1.12387169e+002 - 1.19690437e+002 9.85893784e+001 1.12381165e+002 1.19712051e+002 - 9.85875168e+001 1.12388641e+002 1.19731911e+002 9.85810242e+001 - 1.12370049e+002 1.19755661e+002 9.85304031e+001 1.12333366e+002 - 1.19734207e+002 9.85058746e+001 1.12301964e+002 1.19734032e+002 - 9.84895935e+001 1.12296913e+002 1.19737579e+002 9.84776001e+001 - 1.12277931e+002 1.19752228e+002 9.84529495e+001 1.12265266e+002 - 1.19747749e+002 9.84318161e+001 1.12219101e+002 1.19747360e+002 - 9.83997498e+001 1.12193459e+002 1.19727692e+002 9.84069443e+001 - 1.12191437e+002 1.19746071e+002 9.83700485e+001 1.12167755e+002 - 1.19730789e+002 9.83853836e+001 1.12176811e+002 1.19763260e+002 - 9.83645020e+001 1.12161888e+002 1.19749321e+002 9.83529282e+001 - 1.12141968e+002 1.19763954e+002 9.83350830e+001 1.12150337e+002 - 1.19779709e+002 9.83209229e+001 1.12122696e+002 1.19774445e+002 - 9.83170013e+001 1.12129181e+002 1.19786385e+002 9.83079834e+001 - 1.12104218e+002 1.19789711e+002 9.83133163e+001 1.12119362e+002 - 1.19808441e+002 9.83030090e+001 1.12099693e+002 1.19808678e+002 - 9.82747498e+001 1.12090225e+002 1.19795441e+002 9.82686081e+001 - 1.12066849e+002 1.19794258e+002 9.82472382e+001 1.12055145e+002 - 1.19790131e+002 9.82592545e+001 1.12046379e+002 1.19808044e+002 - 9.82399063e+001 1.12041725e+002 1.19800964e+002 9.82574158e+001 - 1.12055473e+002 1.19830063e+002 9.82467270e+001 1.12067085e+002 - 1.19836594e+002 9.82211075e+001 1.12030594e+002 1.19823128e+002 - 9.82297668e+001 1.12049019e+002 1.19837799e+002 9.81719055e+001 - 1.11990883e+002 1.19805397e+002 9.81244583e+001 1.11972260e+002 - 1.19787422e+002 9.81371994e+001 1.11972321e+002 1.19806992e+002 - 9.81272736e+001 1.11978004e+002 1.19802444e+002 9.81164932e+001 - 1.11951920e+002 1.19796066e+002 9.80805893e+001 1.11926376e+002 - 1.19765266e+002 9.80936508e+001 1.11928978e+002 1.19784554e+002 - 9.80956650e+001 1.11943291e+002 1.19787872e+002 9.80919800e+001 - 1.11922646e+002 1.19785362e+002 9.80646057e+001 1.11907516e+002 - 1.19769974e+002 9.80867996e+001 1.11909782e+002 1.19792946e+002 - 9.81130447e+001 1.11951294e+002 1.19823227e+002 9.81329498e+001 - 1.11965477e+002 1.19847183e+002 9.81221695e+001 1.11971184e+002 - 1.19839966e+002 9.81577225e+001 1.11994118e+002 1.19871437e+002 - 9.81836166e+001 1.12032394e+002 1.19887070e+002 9.81933823e+001 - 1.12038872e+002 1.19892151e+002 9.81813431e+001 1.12041832e+002 - 1.19884949e+002 9.82086639e+001 1.12059273e+002 1.19909798e+002 - 9.81893997e+001 1.12047066e+002 1.19889595e+002 9.81887741e+001 - 1.12032745e+002 1.19885757e+002 9.81749878e+001 1.12032532e+002 - 1.19873283e+002 9.81888351e+001 1.12033455e+002 1.19887917e+002 - 9.81874237e+001 1.12042473e+002 1.19882263e+002 9.82120743e+001 - 1.12048355e+002 1.19899796e+002 9.81979599e+001 1.12045593e+002 - 1.19886108e+002 9.82159424e+001 1.12042099e+002 1.19892189e+002 - 9.82198715e+001 1.12056557e+002 1.19892738e+002 9.82190247e+001 - 1.12039528e+002 1.19874359e+002 9.82134933e+001 1.12057236e+002 - 1.19874146e+002 9.82185059e+001 1.12053116e+002 1.19876595e+002 - 9.82560196e+001 1.12097282e+002 1.19896675e+002 9.82836227e+001 - 1.12116608e+002 1.19907066e+002 9.82729416e+001 1.12126595e+002 - 1.19892227e+002 9.82691345e+001 1.12102745e+002 1.19879524e+002 - 9.82596664e+001 1.12102928e+002 1.19863068e+002 9.82819290e+001 - 1.12110023e+002 1.19870987e+002 9.82638245e+001 1.12105652e+002 - 1.19853073e+002 9.83000717e+001 1.12137650e+002 1.19880447e+002 - 9.83300095e+001 1.12175339e+002 1.19901695e+002 9.83418274e+001 - 1.12173180e+002 1.19899818e+002 9.83537750e+001 1.12191612e+002 - 1.19901466e+002 9.83740311e+001 1.12183456e+002 1.19898209e+002 - 9.83950272e+001 1.12213875e+002 1.19899796e+002 9.84233856e+001 - 1.12222580e+002 1.19907722e+002 9.84195786e+001 1.12230316e+002 - 1.19894478e+002 9.84493027e+001 1.12246323e+002 1.19912262e+002 - 9.84664307e+001 1.12267166e+002 1.19902893e+002 9.84980469e+001 - 1.12287086e+002 1.19898010e+002 9.84638443e+001 1.12278694e+002 - 1.19857201e+002 9.84672394e+001 1.12262398e+002 1.19842422e+002 - 9.84920731e+001 1.12295753e+002 1.19844849e+002 9.85305252e+001 - 1.12315788e+002 1.19868027e+002 9.85406342e+001 1.12343857e+002 - 1.19864067e+002 9.85487976e+001 1.12338539e+002 1.19852516e+002 - 9.85565567e+001 1.12359299e+002 1.19852402e+002 9.85855026e+001 - 1.12370262e+002 1.19851456e+002 9.86081848e+001 1.12398422e+002 - 1.19857147e+002 9.86485367e+001 1.12414085e+002 1.19864693e+002 - 9.86463623e+001 1.12422287e+002 1.19841484e+002 9.86833801e+001 - 1.12448318e+002 1.19850281e+002 9.86923065e+001 1.12475288e+002 - 1.19836418e+002 9.87314987e+001 1.12500580e+002 1.19849319e+002 - 9.87624435e+001 1.12533340e+002 1.19845360e+002 9.87964096e+001 - 1.12551323e+002 1.19834015e+002 9.88011169e+001 1.12580956e+002 - 1.19828484e+002 9.88359985e+001 1.12599274e+002 1.19840340e+002 - 9.88655853e+001 1.12644524e+002 1.19846657e+002 9.88942261e+001 - 1.12654953e+002 1.19846741e+002 9.89175949e+001 1.12691490e+002 - 1.19846420e+002 9.89509888e+001 1.12712433e+002 1.19853149e+002 - 9.89643326e+001 1.12735664e+002 1.19841461e+002 9.89976578e+001 - 1.12754745e+002 1.19845993e+002 9.90199585e+001 1.12790367e+002 - 1.19845474e+002 9.90855484e+001 1.12832405e+002 1.19873169e+002 - 9.90818481e+001 1.12843018e+002 1.19857483e+002 9.91135788e+001 - 1.12866943e+002 1.19861992e+002 9.91233826e+001 1.12895920e+002 - 1.19856171e+002 9.91647339e+001 1.12928490e+002 1.19882500e+002 - 9.92190247e+001 1.12986847e+002 1.19900169e+002 9.92633362e+001 - 1.13016808e+002 1.19894463e+002 9.92585373e+001 1.13027512e+002 - 1.19863914e+002 9.92941055e+001 1.13040459e+002 1.19857536e+002 - 9.93374329e+001 1.13084213e+002 1.19870575e+002 9.93944168e+001 - 1.13113617e+002 1.19880280e+002 9.94153061e+001 1.13147949e+002 - 1.19869926e+002 9.94602432e+001 1.13175873e+002 1.19874908e+002 - 9.95075073e+001 1.13229294e+002 1.19886162e+002 9.95676117e+001 - 1.13274315e+002 1.19909622e+002 9.95975647e+001 1.13311829e+002 - 1.19911148e+002 9.96455917e+001 1.13335266e+002 1.19912445e+002 - 9.96781387e+001 1.13378426e+002 1.19912270e+002 9.97242203e+001 - 1.13407661e+002 1.19921402e+002 9.97372513e+001 1.13438622e+002 - 1.19910622e+002 9.97877731e+001 1.13478279e+002 1.19928856e+002 - 9.98497543e+001 1.13540146e+002 1.19946564e+002 9.99135895e+001 - 1.13578697e+002 1.19949341e+002 9.99133911e+001 1.13598915e+002 - 1.19919014e+002 9.99629135e+001 1.13623802e+002 1.19932281e+002 - 9.99955063e+001 1.13666618e+002 1.19941185e+002 1.00059593e+002 - 1.13706718e+002 1.19962265e+002 1.00051987e+002 1.13709702e+002 - 1.19929321e+002 1.00104866e+002 1.13743668e+002 1.19931831e+002 - 1.00163918e+002 1.13811821e+002 1.19955208e+002 1.00200966e+002 - 1.13822487e+002 1.19940460e+002 1.00260330e+002 1.13879082e+002 - 1.19960289e+002 1.00328110e+002 1.13911316e+002 1.19962517e+002 - 1.00363647e+002 1.13954414e+002 1.19954758e+002 1.00418961e+002 - 1.13988113e+002 1.19959679e+002 1.00449883e+002 1.14029846e+002 - 1.19957085e+002 1.00480568e+002 1.14040428e+002 1.19947639e+002 - 1.00515823e+002 1.14073135e+002 1.19925781e+002 1.00606049e+002 - 1.14133064e+002 1.19945953e+002 1.00637421e+002 1.14175865e+002 - 1.19948311e+002 1.00681511e+002 1.14189606e+002 1.19951202e+002 - 1.00717232e+002 1.14225395e+002 1.19944206e+002 1.00785896e+002 - 1.14256439e+002 1.19952614e+002 1.00836281e+002 1.14297127e+002 - 1.19951271e+002 1.00881470e+002 1.14311768e+002 1.19935165e+002 - 1.00932632e+002 1.14352730e+002 1.19932899e+002 1.00998833e+002 - 1.14389442e+002 1.19944016e+002 1.01025063e+002 1.14403503e+002 - 1.19924927e+002 1.01091095e+002 1.14416634e+002 1.19909775e+002 - 1.01140594e+002 1.14449654e+002 1.19905563e+002 1.01214622e+002 - 1.14488220e+002 1.19917519e+002 1.01217888e+002 1.14491592e+002 - 1.19872910e+002 1.01221916e+002 1.14457336e+002 1.19824211e+002 - 1.01153168e+002 1.14372482e+002 1.19699303e+002 1.01162064e+002 - 1.14372772e+002 1.19679947e+002 1.01198730e+002 1.14449951e+002 - 1.19772148e+002 1.01234161e+002 1.14498695e+002 1.19855774e+002 - 1.01178062e+002 1.14472656e+002 1.19852829e+002 1.01148254e+002 - 1.14466026e+002 1.19896339e+002 1.01101418e+002 1.14464348e+002 - 1.19912735e+002 1.01050545e+002 1.14436615e+002 1.19935265e+002 - 1.00995987e+002 1.14411690e+002 1.19929146e+002 1.00956108e+002 - 1.14384888e+002 1.19953995e+002 1.00888077e+002 1.14337166e+002 - 1.19927086e+002 1.00854858e+002 1.14304222e+002 1.19950638e+002 - 1.00825523e+002 1.14300423e+002 1.19964287e+002 1.00778664e+002 - 1.14255844e+002 1.19961792e+002 1.00714844e+002 1.14216827e+002 - 1.19937897e+002 1.00685860e+002 1.14188255e+002 1.19949013e+002 - 1.00638542e+002 1.14168495e+002 1.19954025e+002 1.00577614e+002 - 1.14120644e+002 1.19965584e+002 1.00505661e+002 1.14085457e+002 - 1.19954460e+002 1.00465355e+002 1.14034180e+002 1.19946404e+002 - 1.00418442e+002 1.14003250e+002 1.19935677e+002 1.00401596e+002 - 1.13983513e+002 1.19959015e+002 1.00339310e+002 1.13942856e+002 - 1.19940849e+002 1.00310684e+002 1.13910019e+002 1.19951897e+002 - 1.00277695e+002 1.13898590e+002 1.19953468e+002 1.00250504e+002 - 1.13870392e+002 1.19963013e+002 1.00196518e+002 1.13834991e+002 - 1.19947227e+002 1.00170593e+002 1.13796112e+002 1.19962189e+002 - 1.00141136e+002 1.13784782e+002 1.19975998e+002 1.00115562e+002 - 1.13757431e+002 1.19989891e+002 1.00061630e+002 1.13731194e+002 - 1.19972488e+002 1.00012444e+002 1.13672989e+002 1.19950447e+002 - 9.99534836e+001 1.13627838e+002 1.19927742e+002 9.99203796e+001 - 1.13597458e+002 1.19958817e+002 9.98484726e+001 1.13550781e+002 - 1.19925819e+002 9.98061523e+001 1.13499344e+002 1.19912025e+002 - 9.97730942e+001 1.13477638e+002 1.19910027e+002 9.97462082e+001 - 1.13443810e+002 1.19914085e+002 9.96931000e+001 1.13402359e+002 - 1.19902481e+002 9.96745148e+001 1.13379692e+002 1.19926163e+002 - 9.96311722e+001 1.13350578e+002 1.19918068e+002 9.96117630e+001 - 1.13327827e+002 1.19930634e+002 9.95649261e+001 1.13295044e+002 - 1.19918839e+002 9.95286102e+001 1.13237206e+002 1.19910820e+002 - 9.94886551e+001 1.13206245e+002 1.19897064e+002 9.94581680e+001 - 1.13169716e+002 1.19895447e+002 9.93904495e+001 1.13113892e+002 - 1.19853752e+002 9.93733139e+001 1.13089272e+002 1.19861343e+002 - 9.93479462e+001 1.13079201e+002 1.19861267e+002 9.93041687e+001 - 1.13042725e+002 1.19871758e+002 9.92279358e+001 1.12991234e+002 - 1.19837418e+002 9.92054825e+001 1.12952858e+002 1.19833519e+002 - 9.91608582e+001 1.12923759e+002 1.19820282e+002 9.91474762e+001 - 1.12898766e+002 1.19831612e+002 9.91275787e+001 1.12896683e+002 - 1.19843437e+002 9.91298141e+001 1.12893112e+002 1.19880241e+002 - 9.90624771e+001 1.12841621e+002 1.19838562e+002 9.90318604e+001 - 1.12800995e+002 1.19834007e+002 9.89907074e+001 1.12771957e+002 - 1.19824974e+002 9.89548950e+001 1.12714958e+002 1.19818733e+002 - 9.89036789e+001 1.12672173e+002 1.19786758e+002 9.88674088e+001 - 1.12625313e+002 1.19773552e+002 9.88304214e+001 1.12599129e+002 - 1.19750481e+002 9.88197250e+001 1.12576988e+002 1.19759949e+002 - 9.88219223e+001 1.12590126e+002 1.19785248e+002 9.87878799e+001 - 1.12553909e+002 1.19799049e+002 9.87250366e+001 1.12513832e+002 - 1.19776344e+002 9.87238617e+001 1.12501839e+002 1.19794106e+002 - 9.87002258e+001 1.12489754e+002 1.19794426e+002 9.87057037e+001 - 1.12483932e+002 1.19824738e+002 9.86670532e+001 1.12459717e+002 - 1.19810867e+002 9.86388321e+001 1.12421402e+002 1.19814751e+002 - 9.86297913e+001 1.12427994e+002 1.19825073e+002 9.86143036e+001 - 1.12399124e+002 1.19826553e+002 9.85793610e+001 1.12372948e+002 - 1.19815323e+002 9.85645447e+001 1.12339973e+002 1.19817207e+002 - 9.85401917e+001 1.12322556e+002 1.19806557e+002 9.85381317e+001 - 1.12308968e+002 1.19819382e+002 9.85282059e+001 1.12315140e+002 - 1.19826439e+002 9.85447006e+001 1.12328377e+002 1.19859718e+002 - 9.85122986e+001 1.12301476e+002 1.19835304e+002 9.84880829e+001 - 1.12271126e+002 1.19841858e+002 9.84518280e+001 1.12260460e+002 - 1.19836128e+002 9.84365616e+001 1.12229439e+002 1.19828171e+002 - 9.84211044e+001 1.12223671e+002 1.19825737e+002 9.84395523e+001 - 1.12223717e+002 1.19856819e+002 9.84413071e+001 1.12238205e+002 - 1.19876114e+002 9.84154587e+001 1.12208031e+002 1.19869125e+002 - 9.84002991e+001 1.12202087e+002 1.19862167e+002 9.84047928e+001 - 1.12199028e+002 1.19876633e+002 9.83797531e+001 1.12182693e+002 - 1.19875084e+002 9.83589859e+001 1.12139168e+002 1.19855972e+002 - 9.83423004e+001 1.12134827e+002 1.19850632e+002 9.83493423e+001 - 1.12134491e+002 1.19870323e+002 9.83464127e+001 1.12155815e+002 - 1.19882339e+002 9.83285980e+001 1.12131607e+002 1.19876678e+002 - 9.83441391e+001 1.12155952e+002 1.19900734e+002 9.83105927e+001 - 1.12124336e+002 1.19890007e+002 9.82719650e+001 1.12117416e+002 - 1.19880188e+002 9.82880630e+001 1.12119240e+002 1.19899895e+002 - 9.82879105e+001 1.12126472e+002 1.19903641e+002 9.82674408e+001 - 1.12093063e+002 1.19888069e+002 9.82388229e+001 1.12070747e+002 - 1.19859779e+002 9.82344131e+001 1.12053963e+002 1.19860458e+002 - 9.82433167e+001 1.12075882e+002 1.19869774e+002 9.82333984e+001 - 1.12056610e+002 1.19868561e+002 9.82147064e+001 1.12042397e+002 - 1.19856186e+002 9.82192154e+001 1.12031235e+002 1.19865417e+002 - 9.82543945e+001 1.12077339e+002 1.19905479e+002 9.82773819e+001 - 1.12091125e+002 1.19927460e+002 9.82657623e+001 1.12103569e+002 - 1.19924225e+002 9.82871704e+001 1.12119278e+002 1.19944519e+002 - 9.83081894e+001 1.12146950e+002 1.19957085e+002 9.83271942e+001 - 1.12162926e+002 1.19976036e+002 9.83163757e+001 1.12167534e+002 - 1.19966248e+002 9.83511200e+001 1.12192795e+002 1.19995499e+002 - 9.83473969e+001 1.12190826e+002 1.19984329e+002 9.83504562e+001 - 1.12182846e+002 1.19990112e+002 9.83289795e+001 1.12172295e+002 - 1.19969048e+002 9.83403625e+001 1.12169891e+002 1.19976952e+002 - 9.83423996e+001 1.12182671e+002 1.19979836e+002 9.83685837e+001 - 1.12193512e+002 1.19992439e+002 9.83658066e+001 1.12198158e+002 - 1.19995384e+002 9.83824310e+001 1.12198578e+002 1.20002655e+002 - 9.83856430e+001 1.12204109e+002 1.19995544e+002 9.83815918e+001 - 1.12190796e+002 1.19977699e+002 9.83675308e+001 1.12198433e+002 - 1.19960381e+002 9.83807449e+001 1.12198364e+002 1.19981949e+002 - 9.83994522e+001 1.12230240e+002 1.19984840e+002 9.84060822e+001 - 1.12229141e+002 1.19975861e+002 9.83927002e+001 1.12237160e+002 - 1.19962288e+002 9.84075775e+001 1.12231598e+002 1.19966072e+002 - 9.84077988e+001 1.12246574e+002 1.19960487e+002 9.84153137e+001 - 1.12235184e+002 1.19960625e+002 9.84086761e+001 1.12248932e+002 - 1.19955406e+002 9.84375839e+001 1.12265396e+002 1.19972008e+002 - 9.84655228e+001 1.12305321e+002 1.19986008e+002 9.84683075e+001 - 1.12291595e+002 1.19981232e+002 9.84686279e+001 1.12305336e+002 - 1.19977684e+002 9.84915237e+001 1.12298935e+002 1.19976151e+002 - 9.85131226e+001 1.12322227e+002 1.19976242e+002 9.85433578e+001 - 1.12334831e+002 1.19983673e+002 9.85422134e+001 1.12345779e+002 - 1.19971230e+002 9.85817947e+001 1.12372070e+002 1.19996056e+002 - 9.86052933e+001 1.12402794e+002 1.19994698e+002 9.86306839e+001 - 1.12417221e+002 1.19998466e+002 9.86057510e+001 1.12413437e+002 - 1.19958427e+002 9.86189499e+001 1.12407555e+002 1.19945457e+002 - 9.86248322e+001 1.12423660e+002 1.19937660e+002 9.86827393e+001 - 1.12467583e+002 1.19969185e+002 9.86873016e+001 1.12482674e+002 - 1.19962173e+002 9.86866455e+001 1.12470192e+002 1.19949112e+002 - 9.86971207e+001 1.12488876e+002 1.19948738e+002 9.87180786e+001 - 1.12496460e+002 1.19944504e+002 9.87438812e+001 1.12534874e+002 - 1.19959641e+002 9.87853928e+001 1.12553406e+002 1.19967400e+002 - 9.87917862e+001 1.12570930e+002 1.19952538e+002 9.88446121e+001 - 1.12601837e+002 1.19961502e+002 9.88444519e+001 1.12616463e+002 - 1.19944641e+002 9.88604813e+001 1.12617882e+002 1.19935692e+002 - 9.88958740e+001 1.12654922e+002 1.19937561e+002 9.89331894e+001 - 1.12680878e+002 1.19933243e+002 9.89530945e+001 1.12724548e+002 - 1.19932869e+002 9.89779663e+001 1.12732353e+002 1.19935104e+002 - 9.89981003e+001 1.12763290e+002 1.19931931e+002 9.90350876e+001 - 1.12778740e+002 1.19940445e+002 9.90414200e+001 1.12803650e+002 - 1.19929329e+002 9.90781937e+001 1.12827744e+002 1.19935829e+002 - 9.90981140e+001 1.12860390e+002 1.19931656e+002 9.91360626e+001 - 1.12888474e+002 1.19943909e+002 9.91627045e+001 1.12925941e+002 - 1.19947990e+002 9.92153320e+001 1.12954391e+002 1.19956978e+002 - 9.92310333e+001 1.12977158e+002 1.19953545e+002 9.92777634e+001 - 1.13016937e+002 1.19978973e+002 9.92639923e+001 1.13024040e+002 - 1.19949379e+002 9.92873917e+001 1.13035515e+002 1.19953850e+002 - 9.93383942e+001 1.13090553e+002 1.19969131e+002 9.93729248e+001 - 1.13107849e+002 1.19951897e+002 9.93720169e+001 1.13125961e+002 - 1.19927872e+002 9.94220276e+001 1.13152145e+002 1.19936249e+002 - 9.94615707e+001 1.13200356e+002 1.19952721e+002 9.95286255e+001 - 1.13242592e+002 1.19974007e+002 9.95684586e+001 1.13284538e+002 - 1.19977448e+002 9.96040039e+001 1.13299850e+002 1.19969398e+002 - 9.96538315e+001 1.13365875e+002 1.19993362e+002 9.97075653e+001 - 1.13400124e+002 1.20009796e+002 9.96973419e+001 1.13402931e+002 - 1.19972992e+002 9.97384872e+001 1.13416191e+002 1.19964233e+002 - 9.97883911e+001 1.13472717e+002 1.19985046e+002 9.98215179e+001 - 1.13492653e+002 1.19981911e+002 9.98379211e+001 1.13527031e+002 - 1.19975677e+002 9.98698120e+001 1.13544991e+002 1.19973778e+002 - 9.99327850e+001 1.13614655e+002 1.19999756e+002 1.00003876e+002 - 1.13661049e+002 1.20007835e+002 1.00002373e+002 1.13681274e+002 - 1.19983192e+002 1.00057106e+002 1.13707176e+002 1.19994682e+002 - 1.00075119e+002 1.13733864e+002 1.19986015e+002 1.00118698e+002 - 1.13757881e+002 1.19985939e+002 1.00133087e+002 1.13776176e+002 - 1.19969994e+002 1.00197289e+002 1.13824623e+002 1.19988205e+002 - 1.00241821e+002 1.13876091e+002 1.19991364e+002 1.00268997e+002 - 1.13881073e+002 1.19971771e+002 1.00306747e+002 1.13915375e+002 - 1.19969360e+002 1.00376198e+002 1.13946434e+002 1.19970657e+002 - 1.00419044e+002 1.13995033e+002 1.19975105e+002 1.00475975e+002 - 1.14034904e+002 1.19979408e+002 1.00498672e+002 1.14064919e+002 - 1.19967987e+002 1.00532097e+002 1.14087456e+002 1.19965919e+002 - 1.00584557e+002 1.14135101e+002 1.19966362e+002 1.00685051e+002 - 1.14200027e+002 1.19989998e+002 1.00722435e+002 1.14247948e+002 - 1.20001839e+002 1.00757294e+002 1.14256790e+002 1.19991302e+002 - 1.00773140e+002 1.14267097e+002 1.19964409e+002 1.00827988e+002 - 1.14283417e+002 1.19956497e+002 1.00867630e+002 1.14320381e+002 - 1.19954559e+002 1.00928177e+002 1.14349258e+002 1.19952934e+002 - 1.00979462e+002 1.14398727e+002 1.19959503e+002 1.01046227e+002 - 1.14428131e+002 1.19964676e+002 1.01083954e+002 1.14456886e+002 - 1.19958717e+002 1.01139778e+002 1.14464066e+002 1.19934860e+002 - 1.01165245e+002 1.14478691e+002 1.19902206e+002 1.01229660e+002 - 1.14492401e+002 1.19898636e+002 1.01259727e+002 1.14525482e+002 - 1.19885345e+002 1.01257927e+002 1.14486397e+002 1.19830109e+002 - 1.01177856e+002 1.14389557e+002 1.19701286e+002 1.01193657e+002 - 1.14394592e+002 1.19687477e+002 1.01234001e+002 1.14481071e+002 - 1.19782829e+002 1.01278374e+002 1.14535828e+002 1.19876144e+002 - 1.01240967e+002 1.14528580e+002 1.19891380e+002 1.01207680e+002 - 1.14516495e+002 1.19929169e+002 1.01150574e+002 1.14498383e+002 - 1.19936127e+002 1.01092041e+002 1.14473755e+002 1.19955086e+002 - 1.01054916e+002 1.14466072e+002 1.19970558e+002 1.01027832e+002 - 1.14448952e+002 1.19994858e+002 1.00969543e+002 1.14418434e+002 - 1.19983948e+002 1.00917992e+002 1.14362030e+002 1.19985214e+002 - 1.00889969e+002 1.14354027e+002 1.19999916e+002 1.00848572e+002 - 1.14321220e+002 1.20008507e+002 1.00814537e+002 1.14312553e+002 - 1.20013763e+002 1.00765411e+002 1.14263344e+002 1.20003860e+002 - 1.00713684e+002 1.14232979e+002 1.19991165e+002 1.00671265e+002 - 1.14204300e+002 1.20029114e+002 1.00579445e+002 1.14151077e+002 - 1.19995537e+002 1.00541428e+002 1.14104301e+002 1.19995567e+002 - 1.00515480e+002 1.14092827e+002 1.19999458e+002 1.00475723e+002 - 1.14052200e+002 1.20004547e+002 1.00404068e+002 1.13997002e+002 - 1.19969620e+002 1.00384392e+002 1.13983650e+002 1.19993973e+002 - 1.00360085e+002 1.13975800e+002 1.20006264e+002 1.00314056e+002 - 1.13927818e+002 1.19998192e+002 1.00266731e+002 1.13901154e+002 - 1.19987343e+002 1.00258926e+002 1.13877602e+002 1.20018974e+002 - 1.00232674e+002 1.13870552e+002 1.20031761e+002 1.00206764e+002 - 1.13845779e+002 1.20050842e+002 1.00145317e+002 1.13805588e+002 - 1.20022957e+002 1.00105782e+002 1.13757385e+002 1.20011597e+002 - 1.00060661e+002 1.13724976e+002 1.19996185e+002 1.00023430e+002 - 1.13686737e+002 1.20019226e+002 9.99472961e+001 1.13648109e+002 - 1.19999168e+002 9.99337616e+001 1.13621407e+002 1.20007782e+002 - 9.98875275e+001 1.13587738e+002 1.19989891e+002 9.98609390e+001 - 1.13542938e+002 1.19992073e+002 9.98111954e+001 1.13510368e+002 - 1.19980263e+002 9.97919922e+001 1.13491585e+002 1.20009560e+002 - 9.97469864e+001 1.13459839e+002 1.19989525e+002 9.97061844e+001 - 1.13413582e+002 1.19983009e+002 9.96505737e+001 1.13374542e+002 - 1.19964912e+002 9.96468048e+001 1.13342537e+002 1.19988449e+002 - 9.95936737e+001 1.13305649e+002 1.19957718e+002 9.95594635e+001 - 1.13263672e+002 1.19957169e+002 9.94957962e+001 1.13214005e+002 - 1.19917778e+002 9.94650345e+001 1.13173828e+002 1.19905289e+002 - 9.94553757e+001 1.13177628e+002 1.19922440e+002 9.94253845e+001 - 1.13155548e+002 1.19946518e+002 9.93504181e+001 1.13114479e+002 - 1.19918877e+002 9.93309479e+001 1.13079102e+002 1.19918114e+002 - 9.92903976e+001 1.13051498e+002 1.19898872e+002 9.92698212e+001 - 1.13009964e+002 1.19904129e+002 9.92614136e+001 1.13020515e+002 - 1.19930992e+002 9.92509079e+001 1.13008102e+002 1.19952011e+002 - 9.92223587e+001 1.12995392e+002 1.19951660e+002 9.91673279e+001 - 1.12927162e+002 1.19915329e+002 9.91070633e+001 1.12883652e+002 - 1.19892654e+002 9.90960464e+001 1.12845314e+002 1.19904320e+002 - 9.90476074e+001 1.12803688e+002 1.19882439e+002 9.90256805e+001 - 1.12776192e+002 1.19882172e+002 9.89840546e+001 1.12747276e+002 - 1.19859070e+002 9.89754486e+001 1.12720978e+002 1.19871834e+002 - 9.89696121e+001 1.12725677e+002 1.19881752e+002 9.89378433e+001 - 1.12693153e+002 1.19894676e+002 9.88792496e+001 1.12658913e+002 - 1.19878441e+002 9.88668137e+001 1.12630234e+002 1.19883522e+002 - 9.88413239e+001 1.12620293e+002 1.19878281e+002 9.88356857e+001 - 1.12604813e+002 1.19901604e+002 9.88087158e+001 1.12594643e+002 - 1.19902809e+002 9.87794266e+001 1.12556129e+002 1.19899620e+002 - 9.87725677e+001 1.12560028e+002 1.19911087e+002 9.87512817e+001 - 1.12530579e+002 1.19913536e+002 9.87057800e+001 1.12497581e+002 - 1.19888771e+002 9.87129822e+001 1.12472954e+002 1.19908836e+002 - 9.86809311e+001 1.12448051e+002 1.19894676e+002 9.86629028e+001 - 1.12430290e+002 1.19894241e+002 9.86442719e+001 1.12423851e+002 - 1.19889282e+002 9.86751633e+001 1.12446503e+002 1.19932701e+002 - 9.86787415e+001 1.12458344e+002 1.19946289e+002 9.86363678e+001 - 1.12409813e+002 1.19927895e+002 9.85882416e+001 1.12390007e+002 - 1.19914680e+002 9.85816193e+001 1.12365952e+002 1.19921951e+002 - 9.85667496e+001 1.12363457e+002 1.19915894e+002 9.85791321e+001 - 1.12359383e+002 1.19939911e+002 9.85689850e+001 1.12362404e+002 - 1.19953194e+002 9.85600891e+001 1.12346970e+002 1.19958305e+002 - 9.85608749e+001 1.12363205e+002 1.19964027e+002 9.85530548e+001 - 1.12342201e+002 1.19972656e+002 9.85123672e+001 1.12311028e+002 - 1.19945053e+002 9.84930115e+001 1.12265442e+002 1.19936409e+002 - 9.84923172e+001 1.12275658e+002 1.19948677e+002 9.84920502e+001 - 1.12276207e+002 1.19959602e+002 9.84818115e+001 1.12279633e+002 - 1.19963379e+002 9.84826126e+001 1.12275284e+002 1.19973625e+002 - 9.84839783e+001 1.12287071e+002 1.19985191e+002 9.84651260e+001 - 1.12270866e+002 1.19988106e+002 9.84180908e+001 1.12252380e+002 - 1.19968422e+002 9.84362793e+001 1.12255852e+002 1.19985367e+002 - 9.84376144e+001 1.12266693e+002 1.19994370e+002 9.84256439e+001 - 1.12234070e+002 1.19979263e+002 9.83754044e+001 1.12196236e+002 - 1.19932091e+002 9.83617325e+001 1.12174828e+002 1.19924538e+002 - 9.83988266e+001 1.12217262e+002 1.19964890e+002 9.83892899e+001 - 1.12193962e+002 1.19961617e+002 9.83697510e+001 1.12192734e+002 - 1.19957191e+002 9.83787460e+001 1.12179123e+002 1.19960304e+002 - 9.84039230e+001 1.12211403e+002 1.19988724e+002 9.84287186e+001 - 1.12245522e+002 1.20023018e+002 9.84257278e+001 1.12260612e+002 - 1.20023972e+002 9.84518738e+001 1.12274597e+002 1.20050919e+002 - 9.84616699e+001 1.12290222e+002 1.20049507e+002 9.84885712e+001 - 1.12312714e+002 1.20079742e+002 9.84572372e+001 1.12303322e+002 - 1.20053185e+002 9.84914474e+001 1.12319778e+002 1.20077583e+002 - 9.84940643e+001 1.12330833e+002 1.20081718e+002 9.84995422e+001 - 1.12321083e+002 1.20083313e+002 9.84752121e+001 1.12303658e+002 - 1.20061852e+002 9.84780655e+001 1.12303444e+002 1.20063194e+002 - 9.84837646e+001 1.12315964e+002 1.20055450e+002 9.84941025e+001 - 1.12311813e+002 1.20068977e+002 9.85004883e+001 1.12329224e+002 - 1.20076706e+002 9.85349197e+001 1.12333321e+002 1.20091507e+002 - 9.85272293e+001 1.12336975e+002 1.20079361e+002 9.85311966e+001 - 1.12331070e+002 1.20071190e+002 9.85154114e+001 1.12331947e+002 - 1.20058029e+002 9.85301819e+001 1.12334122e+002 1.20070129e+002 - 9.85447693e+001 1.12358307e+002 1.20072662e+002 9.85327682e+001 - 1.12339516e+002 1.20045235e+002 9.85300598e+001 1.12361847e+002 - 1.20047699e+002 9.85585938e+001 1.12375015e+002 1.20062881e+002 - 9.85534592e+001 1.12379616e+002 1.20053543e+002 9.85576630e+001 - 1.12373634e+002 1.20056137e+002 9.85633011e+001 1.12390633e+002 - 1.20061089e+002 9.85634842e+001 1.12388542e+002 1.20058075e+002 - 9.85839920e+001 1.12419777e+002 1.20069954e+002 9.85951843e+001 - 1.12419189e+002 1.20072739e+002 9.86138382e+001 1.12446457e+002 - 1.20082314e+002 9.86414337e+001 1.12440109e+002 1.20079735e+002 - 9.86532135e+001 1.12455658e+002 1.20074814e+002 9.86708755e+001 - 1.12459732e+002 1.20059776e+002 9.86755447e+001 1.12478249e+002 - 1.20056465e+002 9.87074890e+001 1.12494263e+002 1.20082077e+002 - 9.87256393e+001 1.12516014e+002 1.20069878e+002 9.87591858e+001 - 1.12541931e+002 1.20076324e+002 9.87236938e+001 1.12530998e+002 - 1.20039520e+002 9.87462463e+001 1.12532761e+002 1.20032547e+002 - 9.87833252e+001 1.12579445e+002 1.20052910e+002 9.88406372e+001 - 1.12615822e+002 1.20082306e+002 9.88370056e+001 1.12620819e+002 - 1.20070015e+002 9.88323135e+001 1.12612190e+002 1.20052116e+002 - 9.88465881e+001 1.12637856e+002 1.20053482e+002 9.88699417e+001 - 1.12645996e+002 1.20057030e+002 9.88869705e+001 1.12672920e+002 - 1.20056763e+002 9.89341507e+001 1.12693779e+002 1.20074638e+002 - 9.89619904e+001 1.12731979e+002 1.20078117e+002 9.89924011e+001 - 1.12746979e+002 1.20067307e+002 9.89860229e+001 1.12757111e+002 - 1.20040306e+002 9.90129547e+001 1.12765762e+002 1.20046837e+002 - 9.90383759e+001 1.12791412e+002 1.20028427e+002 9.90586319e+001 - 1.12801781e+002 1.20014153e+002 9.90671234e+001 1.12833214e+002 - 1.20007607e+002 9.91207199e+001 1.12864532e+002 1.20029724e+002 - 9.91402206e+001 1.12900078e+002 1.20034912e+002 9.91824341e+001 - 1.12920258e+002 1.20044739e+002 9.91812439e+001 1.12938828e+002 - 1.20029312e+002 9.92072906e+001 1.12952766e+002 1.20021873e+002 - 9.92181473e+001 1.12976410e+002 1.20012344e+002 9.92649231e+001 - 1.13009674e+002 1.20033195e+002 9.92987061e+001 1.13054901e+002 - 1.20046097e+002 9.93488235e+001 1.13078941e+002 1.20055489e+002 - 9.93687973e+001 1.13107414e+002 1.20054741e+002 9.94223251e+001 - 1.13151939e+002 1.20077499e+002 9.94023056e+001 1.13153770e+002 - 1.20043663e+002 9.94365463e+001 1.13174591e+002 1.20055717e+002 - 9.94807587e+001 1.13218697e+002 1.20063110e+002 9.94838486e+001 - 1.13207733e+002 1.20014915e+002 9.94837494e+001 1.13227989e+002 - 1.19998978e+002 9.95356140e+001 1.13254807e+002 1.20012718e+002 - 9.95652695e+001 1.13292236e+002 1.20017036e+002 9.96348419e+001 - 1.13335968e+002 1.20040466e+002 9.96658783e+001 1.13371758e+002 - 1.20040756e+002 9.96953125e+001 1.13385994e+002 1.20030777e+002 - 9.97739792e+001 1.13473892e+002 1.20074364e+002 9.98222809e+001 - 1.13511070e+002 1.20084106e+002 9.98120880e+001 1.13508858e+002 - 1.20048958e+002 9.98406830e+001 1.13505951e+002 1.20030190e+002 - 9.98835678e+001 1.13557007e+002 1.20044548e+002 9.99382858e+001 - 1.13596931e+002 1.20062988e+002 9.99512177e+001 1.13625465e+002 - 1.20056999e+002 9.99924469e+001 1.13658684e+002 1.20067169e+002 - 1.00057678e+002 1.13727432e+002 1.20089737e+002 1.00096504e+002 - 1.13741127e+002 1.20065834e+002 1.00103798e+002 1.13770226e+002 - 1.20049698e+002 1.00130699e+002 1.13774857e+002 1.20033737e+002 - 1.00161362e+002 1.13811386e+002 1.20038132e+002 1.00203300e+002 - 1.13828590e+002 1.20044724e+002 1.00240921e+002 1.13872269e+002 - 1.20046509e+002 1.00303604e+002 1.13920197e+002 1.20061996e+002 - 1.00342705e+002 1.13963409e+002 1.20065781e+002 1.00369949e+002 - 1.13966866e+002 1.20039642e+002 1.00390373e+002 1.13986572e+002 - 1.20018524e+002 1.00466843e+002 1.14028770e+002 1.20030441e+002 - 1.00506996e+002 1.14074623e+002 1.20032440e+002 1.00527740e+002 - 1.14080215e+002 1.20006363e+002 1.00537193e+002 1.14101624e+002 - 1.19976898e+002 1.00583534e+002 1.14128372e+002 1.19988518e+002 - 1.00650009e+002 1.14188431e+002 1.19997620e+002 1.00729660e+002 - 1.14237793e+002 1.20004524e+002 1.00769958e+002 1.14288902e+002 - 1.20015579e+002 1.00821861e+002 1.14307419e+002 1.20024483e+002 - 1.00840126e+002 1.14326378e+002 1.19998016e+002 1.00876717e+002 - 1.14325356e+002 1.19981796e+002 1.00908852e+002 1.14353516e+002 - 1.19964134e+002 1.00970245e+002 1.14389885e+002 1.19969734e+002 - 1.01031212e+002 1.14443420e+002 1.19983994e+002 1.01107277e+002 - 1.14483810e+002 1.19997894e+002 1.01154907e+002 1.14524261e+002 - 1.20005234e+002 1.01201660e+002 1.14519936e+002 1.19971291e+002 - 1.01218369e+002 1.14521675e+002 1.19932915e+002 1.01269310e+002 - 1.14528877e+002 1.19913757e+002 1.01286064e+002 1.14547264e+002 - 1.19886505e+002 1.01271851e+002 1.14490540e+002 1.19825279e+002 - 1.01208084e+002 1.14413200e+002 1.19700653e+002 1.01247459e+002 - 1.14432220e+002 1.19708496e+002 1.01295807e+002 1.14524223e+002 - 1.19815819e+002 1.01333565e+002 1.14572044e+002 1.19899483e+002 - 1.01312508e+002 1.14584129e+002 1.19937721e+002 1.01284866e+002 - 1.14581535e+002 1.19974602e+002 1.01228539e+002 1.14567810e+002 - 1.19984909e+002 1.01171295e+002 1.14530869e+002 1.20000420e+002 - 1.01143349e+002 1.14537857e+002 1.20027901e+002 1.01098557e+002 - 1.14505501e+002 1.20034607e+002 1.01053177e+002 1.14486984e+002 - 1.20037155e+002 1.00998276e+002 1.14433792e+002 1.20041069e+002 - 1.00956261e+002 1.14409164e+002 1.20040321e+002 1.00925026e+002 - 1.14384300e+002 1.20049934e+002 1.00891113e+002 1.14372086e+002 - 1.20055641e+002 1.00857445e+002 1.14340652e+002 1.20061852e+002 - 1.00804001e+002 1.14308815e+002 1.20054832e+002 1.00750725e+002 - 1.14270668e+002 1.20073975e+002 1.00672371e+002 1.14224106e+002 - 1.20046303e+002 1.00652138e+002 1.14194611e+002 1.20060776e+002 - 1.00626694e+002 1.14190018e+002 1.20069527e+002 1.00587547e+002 - 1.14145729e+002 1.20072586e+002 1.00511292e+002 1.14093826e+002 - 1.20035370e+002 1.00488716e+002 1.14070885e+002 1.20057549e+002 - 1.00452530e+002 1.14050102e+002 1.20049683e+002 1.00398560e+002 - 1.13996765e+002 1.20038361e+002 1.00357155e+002 1.13974190e+002 - 1.20039505e+002 1.00359978e+002 1.13964523e+002 1.20088737e+002 - 1.00343330e+002 1.13962807e+002 1.20100624e+002 1.00312187e+002 - 1.13937798e+002 1.20111191e+002 1.00247978e+002 1.13897667e+002 - 1.20082954e+002 1.00211075e+002 1.13850121e+002 1.20077957e+002 - 1.00172859e+002 1.13822914e+002 1.20070740e+002 1.00140800e+002 - 1.13799492e+002 1.20100761e+002 1.00084915e+002 1.13770470e+002 - 1.20091209e+002 1.00072784e+002 1.13737411e+002 1.20099503e+002 - 1.00034935e+002 1.13717072e+002 1.20088699e+002 9.99945602e+001 - 1.13667778e+002 1.20088913e+002 9.99310608e+001 1.13616852e+002 - 1.20059212e+002 9.98965225e+001 1.13578308e+002 1.20067780e+002 - 9.98617172e+001 1.13555290e+002 1.20054680e+002 9.98440094e+001 - 1.13533752e+002 1.20079071e+002 9.97880554e+001 1.13491104e+002 - 1.20052582e+002 9.97654037e+001 1.13443130e+002 1.20061035e+002 - 9.97131653e+001 1.13399834e+002 1.20026764e+002 9.96873093e+001 - 1.13369865e+002 1.20030540e+002 9.96406555e+001 1.13343636e+002 - 1.20005623e+002 9.96060104e+001 1.13297188e+002 1.19996292e+002 - 9.95907669e+001 1.13306084e+002 1.20013756e+002 9.95669937e+001 - 1.13280457e+002 1.20039803e+002 9.95007172e+001 1.13242737e+002 - 1.20013092e+002 9.94817734e+001 1.13215988e+002 1.20013878e+002 - 9.94520264e+001 1.13193558e+002 1.20000046e+002 9.94190598e+001 - 1.13146400e+002 1.19997833e+002 9.93942642e+001 1.13135048e+002 - 1.20002617e+002 9.93842010e+001 1.13125885e+002 1.20027657e+002 - 9.93689270e+001 1.13126633e+002 1.20034035e+002 9.93267059e+001 - 1.13070587e+002 1.20017174e+002 9.92807236e+001 1.13038139e+002 - 1.20004761e+002 9.92767410e+001 1.13009094e+002 1.20022736e+002 - 9.92361603e+001 1.12979469e+002 1.20010872e+002 9.92105255e+001 - 1.12947220e+002 1.20014343e+002 9.91619873e+001 1.12909966e+002 - 1.19979645e+002 9.91380539e+001 1.12867371e+002 1.19971443e+002 - 9.91139984e+001 1.12855797e+002 1.19971794e+002 9.91072693e+001 - 1.12844238e+002 1.20008850e+002 9.90536041e+001 1.12821236e+002 - 1.19990860e+002 9.90245438e+001 1.12774605e+002 1.19979126e+002 - 9.90124969e+001 1.12778503e+002 1.19995918e+002 9.90024948e+001 - 1.12755775e+002 1.20010170e+002 9.89594421e+001 1.12726952e+002 - 1.19989487e+002 9.89411011e+001 1.12707268e+002 1.20001900e+002 - 9.89313812e+001 1.12705818e+002 1.20004677e+002 9.88975372e+001 - 1.12662056e+002 1.19991035e+002 9.88623886e+001 1.12638954e+002 - 1.19978302e+002 9.88625870e+001 1.12609703e+002 1.19993034e+002 - 9.88402023e+001 1.12593643e+002 1.19985817e+002 9.88207474e+001 - 1.12566620e+002 1.19982368e+002 9.87985458e+001 1.12558853e+002 - 1.19977837e+002 9.88217850e+001 1.12576759e+002 1.20013596e+002 - 9.88401413e+001 1.12600937e+002 1.20043213e+002 9.87984238e+001 - 1.12558228e+002 1.20032272e+002 9.87472687e+001 1.12528351e+002 - 1.20009949e+002 9.87506790e+001 1.12517387e+002 1.20014481e+002 - 9.87410278e+001 1.12519188e+002 1.20029427e+002 9.87593460e+001 - 1.12516464e+002 1.20053627e+002 9.87217331e+001 1.12498184e+002 - 1.20034546e+002 9.87221298e+001 1.12489738e+002 1.20047401e+002 - 9.87116165e+001 1.12494110e+002 1.20046776e+002 9.86963577e+001 - 1.12471054e+002 1.20049347e+002 9.86640167e+001 1.12446182e+002 - 1.20029839e+002 9.86541061e+001 1.12408417e+002 1.20029526e+002 - 9.86413193e+001 1.12407288e+002 1.20031441e+002 9.86515961e+001 - 1.12419754e+002 1.20056015e+002 9.86380005e+001 1.12422478e+002 - 1.20054031e+002 9.86449890e+001 1.12417656e+002 1.20069939e+002 - 9.86374969e+001 1.12421898e+002 1.20070175e+002 9.86246719e+001 - 1.12413307e+002 1.20085999e+002 9.85873947e+001 1.12402016e+002 - 1.20063148e+002 9.86100159e+001 1.12408287e+002 1.20089584e+002 - 9.86021652e+001 1.12415756e+002 1.20085762e+002 9.85878372e+001 - 1.12380089e+002 1.20069305e+002 9.85530472e+001 1.12348770e+002 - 1.20035019e+002 9.85381317e+001 1.12328835e+002 1.20029144e+002 - 9.85634613e+001 1.12358032e+002 1.20050011e+002 9.85560303e+001 - 1.12335129e+002 1.20048332e+002 9.85501175e+001 1.12346642e+002 - 1.20056450e+002 9.85709534e+001 1.12349289e+002 1.20082970e+002 - 9.85666733e+001 1.12359947e+002 1.20082420e+002 9.86087341e+001 - 1.12403259e+002 1.20133499e+002 9.86023636e+001 1.12414597e+002 - 1.20126480e+002 9.86135330e+001 1.12413918e+002 1.20137894e+002 - 9.86292114e+001 1.12436600e+002 1.20146706e+002 9.86192932e+001 - 1.12421516e+002 1.20138992e+002 9.86084671e+001 1.12431702e+002 - 1.20125481e+002 9.86402740e+001 1.12445206e+002 1.20159561e+002 - 9.86405029e+001 1.12455048e+002 1.20159607e+002 9.86404190e+001 - 1.12438950e+002 1.20158096e+002 9.86284866e+001 1.12441185e+002 - 1.20146805e+002 9.86403656e+001 1.12443947e+002 1.20156502e+002 - 9.86486740e+001 1.12461990e+002 1.20160286e+002 9.86468735e+001 - 1.12439644e+002 1.20150581e+002 9.86377182e+001 1.12444321e+002 - 1.20140678e+002 9.86745758e+001 1.12450172e+002 1.20165329e+002 - 9.87031784e+001 1.12489326e+002 1.20184639e+002 9.87014008e+001 - 1.12484344e+002 1.20178001e+002 9.86699066e+001 1.12469681e+002 - 1.20143913e+002 9.86671219e+001 1.12450111e+002 1.20138107e+002 - 9.86617813e+001 1.12453476e+002 1.20124992e+002 9.86758957e+001 - 1.12464378e+002 1.20125938e+002 9.86749191e+001 1.12488113e+002 - 1.20128860e+002 9.86883316e+001 1.12485596e+002 1.20126839e+002 - 9.86874619e+001 1.12496292e+002 1.20132332e+002 9.87064438e+001 - 1.12501556e+002 1.20144859e+002 9.87122345e+001 1.12525391e+002 - 1.20150452e+002 9.87180328e+001 1.12527527e+002 1.20156197e+002 - 9.87408905e+001 1.12559013e+002 1.20168724e+002 9.87369843e+001 - 1.12544655e+002 1.20155136e+002 9.87403641e+001 1.12559074e+002 - 1.20146469e+002 9.87862625e+001 1.12569252e+002 1.20164207e+002 - 9.88152161e+001 1.12602539e+002 1.20175766e+002 9.88627777e+001 - 1.12640213e+002 1.20200500e+002 9.88440170e+001 1.12631294e+002 - 1.20162422e+002 9.88554611e+001 1.12624451e+002 1.20162743e+002 - 9.88801422e+001 1.12653191e+002 1.20167526e+002 9.89126587e+001 - 1.12679932e+002 1.20176956e+002 9.88841095e+001 1.12665192e+002 - 1.20135078e+002 9.89168930e+001 1.12679939e+002 1.20148216e+002 - 9.89451981e+001 1.12727699e+002 1.20165306e+002 9.89886780e+001 - 1.12748169e+002 1.20180641e+002 9.89832535e+001 1.12752922e+002 - 1.20162521e+002 9.89881668e+001 1.12750351e+002 1.20155678e+002 - 9.90168686e+001 1.12788429e+002 1.20176216e+002 9.90471573e+001 - 1.12806076e+002 1.20182091e+002 9.90456238e+001 1.12817787e+002 - 1.20168739e+002 9.90809402e+001 1.12824936e+002 1.20167892e+002 - 9.90971756e+001 1.12851372e+002 1.20162605e+002 9.91268005e+001 - 1.12870293e+002 1.20156937e+002 9.91224442e+001 1.12878113e+002 - 1.20127350e+002 9.91803894e+001 1.12919373e+002 1.20161797e+002 - 9.92015839e+001 1.12943825e+002 1.20145088e+002 9.92011032e+001 - 1.12933136e+002 1.20107880e+002 9.92073059e+001 1.12958313e+002 - 1.20096069e+002 9.92615433e+001 1.12994141e+002 1.20121872e+002 - 9.92849274e+001 1.13031487e+002 1.20131310e+002 9.93180313e+001 - 1.13044121e+002 1.20132057e+002 9.93065796e+001 1.13055023e+002 - 1.20110107e+002 9.93335724e+001 1.13068497e+002 1.20104843e+002 - 9.93517151e+001 1.13100708e+002 1.20101685e+002 9.94028473e+001 - 1.13144066e+002 1.20127716e+002 9.94260025e+001 1.13170219e+002 - 1.20126900e+002 9.94717331e+001 1.13183136e+002 1.20127548e+002 - 9.95161667e+001 1.13240807e+002 1.20147835e+002 9.95544052e+001 - 1.13268608e+002 1.20158920e+002 9.95546799e+001 1.13287109e+002 - 1.20139015e+002 9.95861893e+001 1.13298965e+002 1.20150284e+002 - 9.96068420e+001 1.13330620e+002 1.20136093e+002 9.96223145e+001 - 1.13329247e+002 1.20110268e+002 9.96368561e+001 1.13351303e+002 - 1.20095345e+002 9.96768723e+001 1.13370796e+002 1.20106331e+002 - 9.96881409e+001 1.13392395e+002 1.20089371e+002 9.97478409e+001 - 1.13424583e+002 1.20103310e+002 9.97667160e+001 1.13458504e+002 - 1.20095482e+002 9.98148880e+001 1.13493500e+002 1.20103287e+002 - 9.98869247e+001 1.13573555e+002 1.20140816e+002 9.99309464e+001 - 1.13597427e+002 1.20142113e+002 9.99447021e+001 1.13617226e+002 - 1.20132072e+002 9.99675827e+001 1.13606735e+002 1.20107307e+002 - 1.00005264e+002 1.13660896e+002 1.20126625e+002 1.00066879e+002 - 1.13706657e+002 1.20149780e+002 1.00064919e+002 1.13719170e+002 - 1.20122879e+002 1.00103615e+002 1.13749290e+002 1.20141098e+002 - 1.00161819e+002 1.13808601e+002 1.20156784e+002 1.00210945e+002 - 1.13838219e+002 1.20144814e+002 1.00211136e+002 1.13860840e+002 - 1.20116486e+002 1.00233368e+002 1.13858528e+002 1.20102646e+002 - 1.00271698e+002 1.13904625e+002 1.20118874e+002 1.00319221e+002 - 1.13925507e+002 1.20120430e+002 1.00359596e+002 1.13972366e+002 - 1.20124741e+002 1.00409355e+002 1.14004173e+002 1.20128937e+002 - 1.00449944e+002 1.14049690e+002 1.20125328e+002 1.00492668e+002 - 1.14068535e+002 1.20117523e+002 1.00510300e+002 1.14089607e+002 - 1.20100601e+002 1.00572479e+002 1.14112007e+002 1.20098938e+002 - 1.00605568e+002 1.14153450e+002 1.20090698e+002 1.00633461e+002 - 1.14163338e+002 1.20071800e+002 1.00648926e+002 1.14194283e+002 - 1.20056267e+002 1.00691528e+002 1.14214920e+002 1.20061058e+002 - 1.00728287e+002 1.14252548e+002 1.20048309e+002 1.00802200e+002 - 1.14292419e+002 1.20046028e+002 1.00826782e+002 1.14324188e+002 - 1.20034027e+002 1.00884445e+002 1.14354141e+002 1.20055855e+002 - 1.00911804e+002 1.14375237e+002 1.20039291e+002 1.00948151e+002 - 1.14377792e+002 1.20016228e+002 1.00977692e+002 1.14403320e+002 - 1.19999077e+002 1.01042809e+002 1.14444199e+002 1.20009705e+002 - 1.01102898e+002 1.14496658e+002 1.20024796e+002 1.01145615e+002 - 1.14508949e+002 1.20011505e+002 1.01196640e+002 1.14551460e+002 - 1.20009193e+002 1.01248123e+002 1.14549339e+002 1.19984909e+002 - 1.01260223e+002 1.14548172e+002 1.19945877e+002 1.01329567e+002 - 1.14575912e+002 1.19937660e+002 1.01316177e+002 1.14562050e+002 - 1.19878830e+002 1.01306480e+002 1.14502495e+002 1.19819298e+002 - 1.01243484e+002 1.14424103e+002 1.19698631e+002 1.01291656e+002 - 1.14472954e+002 1.19725296e+002 1.01340317e+002 1.14561890e+002 - 1.19829285e+002 1.01376320e+002 1.14610741e+002 1.19917526e+002 - 1.01370056e+002 1.14635246e+002 1.19964821e+002 1.01339340e+002 - 1.14626091e+002 1.20001144e+002 1.01289291e+002 1.14619537e+002 - 1.20016975e+002 1.01248291e+002 1.14605637e+002 1.20054192e+002 - 1.01212524e+002 1.14603287e+002 1.20066734e+002 1.01171097e+002 - 1.14568367e+002 1.20081802e+002 1.01119484e+002 1.14542542e+002 - 1.20070801e+002 1.01059738e+002 1.14476105e+002 1.20065186e+002 - 1.01029099e+002 1.14471497e+002 1.20071449e+002 1.00985497e+002 - 1.14434807e+002 1.20079010e+002 1.00948334e+002 1.14416573e+002 - 1.20077126e+002 1.00927155e+002 1.14397247e+002 1.20095093e+002 - 1.00880898e+002 1.14367424e+002 1.20088623e+002 1.00830460e+002 - 1.14339279e+002 1.20121429e+002 1.00755890e+002 1.14296906e+002 - 1.20096077e+002 1.00729706e+002 1.14259552e+002 1.20097176e+002 - 1.00697502e+002 1.14248459e+002 1.20098724e+002 1.00666000e+002 - 1.14217216e+002 1.20116661e+002 1.00607422e+002 1.14174606e+002 - 1.20085075e+002 1.00563278e+002 1.14135864e+002 1.20091743e+002 - 1.00539268e+002 1.14126038e+002 1.20097115e+002 1.00503632e+002 - 1.14090843e+002 1.20103645e+002 1.00469063e+002 1.14075279e+002 - 1.20106598e+002 1.00449295e+002 1.14048096e+002 1.20131699e+002 - 1.00418282e+002 1.14036865e+002 1.20141251e+002 1.00381584e+002 - 1.13994179e+002 1.20140266e+002 1.00324303e+002 1.13956924e+002 - 1.20121056e+002 1.00294121e+002 1.13925529e+002 1.20121643e+002 - 1.00258629e+002 1.13905334e+002 1.20119095e+002 1.00230042e+002 - 1.13873306e+002 1.20147507e+002 1.00163643e+002 1.13838058e+002 - 1.20126839e+002 1.00140694e+002 1.13806999e+002 1.20127274e+002 - 1.00114967e+002 1.13789894e+002 1.20125992e+002 1.00081238e+002 - 1.13742271e+002 1.20128860e+002 1.00042915e+002 1.13715736e+002 - 1.20122292e+002 9.99970093e+001 1.13665283e+002 1.20119972e+002 - 9.99540634e+001 1.13635841e+002 1.20104408e+002 9.99472733e+001 - 1.13620232e+002 1.20130112e+002 9.99054031e+001 1.13592407e+002 - 1.20118958e+002 9.98805695e+001 1.13555756e+002 1.20127167e+002 - 9.98410034e+001 1.13521408e+002 1.20108994e+002 9.98193512e+001 - 1.13500580e+002 1.20116623e+002 9.97722244e+001 1.13466560e+002 - 1.20088272e+002 9.97474594e+001 1.13434502e+002 1.20087364e+002 - 9.97271881e+001 1.13432182e+002 1.20094215e+002 9.96778717e+001 - 1.13384552e+002 1.20094383e+002 9.96130295e+001 1.13345459e+002 - 1.20074196e+002 9.95991516e+001 1.13322906e+002 1.20079758e+002 - 9.95687790e+001 1.13301125e+002 1.20075447e+002 9.95460052e+001 - 1.13265678e+002 1.20072624e+002 9.95354614e+001 1.13266853e+002 - 1.20088387e+002 9.95131531e+001 1.13240654e+002 1.20096970e+002 - 9.95019150e+001 1.13243423e+002 1.20109665e+002 9.94660797e+001 - 1.13205635e+002 1.20101074e+002 9.94150772e+001 1.13168655e+002 - 1.20083656e+002 9.93986435e+001 1.13124062e+002 1.20090233e+002 - 9.93538437e+001 1.13091980e+002 1.20079369e+002 9.93560104e+001 - 1.13084923e+002 1.20101471e+002 9.93168335e+001 1.13061119e+002 - 1.20091118e+002 9.92765656e+001 1.12997948e+002 1.20057167e+002 - 9.92576218e+001 1.12986153e+002 1.20054092e+002 9.92241058e+001 - 1.12953194e+002 1.20065086e+002 9.91794128e+001 1.12934570e+002 - 1.20064308e+002 9.91651306e+001 1.12902779e+002 1.20063858e+002 - 9.91716080e+001 1.12922607e+002 1.20091698e+002 9.91472702e+001 - 1.12892899e+002 1.20093842e+002 9.91146240e+001 1.12869820e+002 - 1.20082306e+002 9.90902710e+001 1.12845886e+002 1.20086639e+002 - 9.90584412e+001 1.12818993e+002 1.20072151e+002 9.90184097e+001 - 1.12768684e+002 1.20046165e+002 9.89968796e+001 1.12759972e+002 - 1.20043480e+002 9.89878159e+001 1.12723053e+002 1.20049232e+002 - 9.89649429e+001 1.12708000e+002 1.20044975e+002 9.89405441e+001 - 1.12683609e+002 1.20039246e+002 9.89230042e+001 1.12677231e+002 - 1.20040833e+002 9.89591599e+001 1.12703545e+002 1.20088402e+002 - 9.89654312e+001 1.12715958e+002 1.20101128e+002 9.89412155e+001 - 1.12689934e+002 1.20105171e+002 9.88953552e+001 1.12669151e+002 - 1.20091583e+002 9.88911514e+001 1.12645264e+002 1.20094681e+002 - 9.88723145e+001 1.12642387e+002 1.20097038e+002 9.88828201e+001 - 1.12637505e+002 1.20120644e+002 9.88651733e+001 1.12626823e+002 - 1.20112099e+002 9.88767242e+001 1.12634155e+002 1.20141777e+002 - 9.88651505e+001 1.12633995e+002 1.20133873e+002 9.88255768e+001 - 1.12585625e+002 1.20113602e+002 9.88060379e+001 1.12578979e+002 - 1.20113014e+002 9.88021164e+001 1.12554153e+002 1.20120392e+002 - 9.87824860e+001 1.12546661e+002 1.20112587e+002 9.88046722e+001 - 1.12566071e+002 1.20146843e+002 9.87881317e+001 1.12571968e+002 - 1.20147247e+002 9.88080292e+001 1.12578156e+002 1.20176620e+002 - 9.88228683e+001 1.12600365e+002 1.20189232e+002 9.87868958e+001 - 1.12563385e+002 1.20176857e+002 9.87708893e+001 1.12574112e+002 - 1.20182335e+002 9.87770767e+001 1.12566696e+002 1.20194649e+002 - 9.87542725e+001 1.12548637e+002 1.20163406e+002 9.87610550e+001 - 1.12540840e+002 1.20172646e+002 9.87131958e+001 1.12496834e+002 - 1.20122559e+002 9.86993027e+001 1.12477028e+002 1.20113754e+002 - 9.87115860e+001 1.12493614e+002 1.20130074e+002 9.87020569e+001 - 1.12473145e+002 1.20124390e+002 9.87088547e+001 1.12495911e+002 - 1.20143089e+002 9.87357788e+001 1.12503448e+002 1.20175529e+002 - 9.87406769e+001 1.12519363e+002 1.20192665e+002 9.87521896e+001 - 1.12533287e+002 1.20203835e+002 9.87396774e+001 1.12536057e+002 - 1.20196236e+002 9.87624588e+001 1.12547577e+002 1.20218819e+002 - 9.87513123e+001 1.12546066e+002 1.20201347e+002 9.87539520e+001 - 1.12543663e+002 1.20206917e+002 9.87381973e+001 1.12549332e+002 - 1.20201530e+002 9.87542038e+001 1.12553543e+002 1.20214844e+002 - 9.87578888e+001 1.12561775e+002 1.20217766e+002 9.87758636e+001 - 1.12566795e+002 1.20231110e+002 9.87864838e+001 1.12586540e+002 - 1.20245094e+002 9.87807388e+001 1.12569252e+002 1.20236588e+002 - 9.87885284e+001 1.12586525e+002 1.20241737e+002 9.87994080e+001 - 1.12581757e+002 1.20238525e+002 9.87805176e+001 1.12573441e+002 - 1.20221581e+002 9.88075027e+001 1.12573753e+002 1.20235641e+002 - 9.88289566e+001 1.12610725e+002 1.20258896e+002 9.88527069e+001 - 1.12623894e+002 1.20265175e+002 9.88229218e+001 1.12611465e+002 - 1.20230682e+002 9.88035202e+001 1.12578072e+002 1.20209679e+002 - 9.87901535e+001 1.12577126e+002 1.20189842e+002 9.88187103e+001 - 1.12596657e+002 1.20200256e+002 9.88199463e+001 1.12617622e+002 - 1.20204895e+002 9.88416290e+001 1.12625267e+002 1.20225639e+002 - 9.88268509e+001 1.12622543e+002 1.20208839e+002 9.88466187e+001 - 1.12628578e+002 1.20226807e+002 9.88293839e+001 1.12632011e+002 - 1.20214523e+002 9.88625488e+001 1.12662666e+002 1.20245956e+002 - 9.88926392e+001 1.12697701e+002 1.20265038e+002 9.88956680e+001 - 1.12689880e+002 1.20258553e+002 9.88737946e+001 1.12677795e+002 - 1.20228737e+002 9.89201889e+001 1.12684509e+002 1.20237022e+002 - 9.89536133e+001 1.12729080e+002 1.20253448e+002 9.89853439e+001 - 1.12751450e+002 1.20262375e+002 9.89778366e+001 1.12755707e+002 - 1.20243355e+002 9.89991913e+001 1.12763840e+002 1.20249237e+002 - 9.90263977e+001 1.12798492e+002 1.20255981e+002 9.90810242e+001 - 1.12832726e+002 1.20284668e+002 9.90258560e+001 1.12797462e+002 - 1.20223915e+002 9.90540466e+001 1.12816978e+002 1.20232353e+002 - 9.90834503e+001 1.12851189e+002 1.20245331e+002 9.91068878e+001 - 1.12860298e+002 1.20244431e+002 9.90954895e+001 1.12858742e+002 - 1.20223442e+002 9.91149292e+001 1.12864220e+002 1.20225151e+002 - 9.91539764e+001 1.12912056e+002 1.20251266e+002 9.91672134e+001 - 1.12917351e+002 1.20245033e+002 9.91580353e+001 1.12915253e+002 - 1.20223640e+002 9.91854630e+001 1.12917770e+002 1.20220032e+002 - 9.92095642e+001 1.12954926e+002 1.20223473e+002 9.92272949e+001 - 1.12960022e+002 1.20204109e+002 9.92544479e+001 1.13006729e+002 - 1.20210938e+002 9.93074112e+001 1.13039902e+002 1.20238197e+002 - 9.93101044e+001 1.13043709e+002 1.20201149e+002 9.93404770e+001 - 1.13057411e+002 1.20190331e+002 9.93404388e+001 1.13086906e+002 - 1.20181778e+002 9.93735809e+001 1.13097260e+002 1.20188255e+002 - 9.93814621e+001 1.13121460e+002 1.20178268e+002 9.93979950e+001 - 1.13120514e+002 1.20166931e+002 9.93929291e+001 1.13131020e+002 - 1.20144508e+002 9.94227524e+001 1.13149635e+002 1.20146255e+002 - 9.94309921e+001 1.13166397e+002 1.20129959e+002 9.94858475e+001 - 1.13211693e+002 1.20153374e+002 9.95257874e+001 1.13257889e+002 - 1.20172287e+002 9.95775681e+001 1.13281967e+002 1.20184189e+002 - 9.96137390e+001 1.13329620e+002 1.20194206e+002 9.96419144e+001 - 1.13344200e+002 1.20189880e+002 9.96596146e+001 1.13379303e+002 - 1.20193619e+002 9.96768188e+001 1.13381653e+002 1.20188995e+002 - 9.97150497e+001 1.13420464e+002 1.20190704e+002 9.97374344e+001 - 1.13426598e+002 1.20167900e+002 9.97420273e+001 1.13447968e+002 - 1.20149017e+002 9.97766037e+001 1.13464554e+002 1.20153389e+002 - 9.98063126e+001 1.13497597e+002 1.20154091e+002 9.98705673e+001 - 1.13541382e+002 1.20181374e+002 9.98993912e+001 1.13580673e+002 - 1.20177589e+002 9.99388809e+001 1.13604088e+002 1.20179527e+002 - 9.99888153e+001 1.13663330e+002 1.20192688e+002 1.00017593e+002 - 1.13675362e+002 1.20180649e+002 1.00046188e+002 1.13711441e+002 - 1.20186783e+002 1.00088394e+002 1.13723778e+002 1.20187355e+002 - 1.00114502e+002 1.13758698e+002 1.20189392e+002 1.00163643e+002 - 1.13793350e+002 1.20207718e+002 1.00161049e+002 1.13802856e+002 - 1.20180763e+002 1.00187569e+002 1.13818253e+002 1.20177902e+002 - 1.00238907e+002 1.13868591e+002 1.20186523e+002 1.00298302e+002 - 1.13909218e+002 1.20189545e+002 1.00309929e+002 1.13944054e+002 - 1.20175682e+002 1.00350266e+002 1.13962082e+002 1.20179367e+002 - 1.00367096e+002 1.13984924e+002 1.20166931e+002 1.00395538e+002 - 1.13988976e+002 1.20159088e+002 1.00431953e+002 1.14037491e+002 - 1.20162170e+002 1.00485565e+002 1.14070427e+002 1.20165665e+002 - 1.00516472e+002 1.14099625e+002 1.20150154e+002 1.00566193e+002 - 1.14130943e+002 1.20150368e+002 1.00597931e+002 1.14163635e+002 - 1.20150803e+002 1.00658646e+002 1.14190277e+002 1.20146362e+002 - 1.00680138e+002 1.14214745e+002 1.20127762e+002 1.00736153e+002 - 1.14259422e+002 1.20143784e+002 1.00738045e+002 1.14273376e+002 - 1.20112900e+002 1.00765915e+002 1.14280647e+002 1.20097404e+002 - 1.00801468e+002 1.14308434e+002 1.20081039e+002 1.00865570e+002 - 1.14342926e+002 1.20069580e+002 1.00880714e+002 1.14364716e+002 - 1.20051430e+002 1.00929398e+002 1.14390907e+002 1.20060349e+002 - 1.00951225e+002 1.14411926e+002 1.20047546e+002 1.00987839e+002 - 1.14410423e+002 1.20021599e+002 1.01028793e+002 1.14451004e+002 - 1.20018265e+002 1.01098503e+002 1.14492760e+002 1.20034744e+002 - 1.01146004e+002 1.14532402e+002 1.20034126e+002 1.01187073e+002 - 1.14542305e+002 1.20017380e+002 1.01228264e+002 1.14573067e+002 - 1.20010994e+002 1.01310638e+002 1.14601463e+002 1.20019547e+002 - 1.01314003e+002 1.14593758e+002 1.19966263e+002 1.01361572e+002 - 1.14599525e+002 1.19941696e+002 1.01344978e+002 1.14575874e+002 - 1.19881386e+002 1.01338181e+002 1.14524231e+002 1.19817085e+002 - 1.01272995e+002 1.14441338e+002 1.19695808e+002 1.01347221e+002 - 1.14519104e+002 1.19741501e+002 1.01400635e+002 1.14611191e+002 - 1.19852890e+002 1.01423843e+002 1.14647781e+002 1.19923325e+002 - 1.01419373e+002 1.14675407e+002 1.19973076e+002 1.01409393e+002 - 1.14684898e+002 1.20026016e+002 1.01357933e+002 1.14677917e+002 - 1.20046577e+002 1.01310204e+002 1.14660637e+002 1.20073875e+002 - 1.01261925e+002 1.14639130e+002 1.20073265e+002 1.01228104e+002 - 1.14612045e+002 1.20093353e+002 1.01172211e+002 1.14586891e+002 - 1.20084190e+002 1.01125641e+002 1.14533638e+002 1.20083130e+002 - 1.01101997e+002 1.14528496e+002 1.20099152e+002 1.01059914e+002 - 1.14497772e+002 1.20103523e+002 1.01024162e+002 1.14484459e+002 - 1.20105370e+002 1.01006447e+002 1.14463028e+002 1.20123215e+002 - 1.00961388e+002 1.14439148e+002 1.20129074e+002 1.00917793e+002 - 1.14405769e+002 1.20149231e+002 1.00839401e+002 1.14364777e+002 - 1.20123306e+002 1.00800102e+002 1.14321106e+002 1.20117508e+002 - 1.00758568e+002 1.14296776e+002 1.20107056e+002 1.00742378e+002 - 1.14275063e+002 1.20129860e+002 1.00708115e+002 1.14264969e+002 - 1.20134460e+002 1.00653572e+002 1.14218475e+002 1.20128387e+002 - 1.00647438e+002 1.14222900e+002 1.20151718e+002 1.00620193e+002 - 1.14195099e+002 1.20163994e+002 1.00559364e+002 1.14155823e+002 - 1.20141716e+002 1.00547539e+002 1.14130745e+002 1.20177879e+002 - 1.00484047e+002 1.14087570e+002 1.20153191e+002 1.00435379e+002 - 1.14043434e+002 1.20148109e+002 1.00391960e+002 1.14021881e+002 - 1.20140587e+002 1.00372284e+002 1.13987289e+002 1.20149483e+002 - 1.00337784e+002 1.13967613e+002 1.20144646e+002 1.00302841e+002 - 1.13935745e+002 1.20170265e+002 1.00251358e+002 1.13905334e+002 - 1.20161560e+002 1.00214272e+002 1.13864708e+002 1.20149567e+002 - 1.00183556e+002 1.13843315e+002 1.20147011e+002 1.00155182e+002 - 1.13805801e+002 1.20148834e+002 1.00125435e+002 1.13789276e+002 - 1.20149216e+002 1.00105232e+002 1.13763702e+002 1.20172112e+002 - 1.00090317e+002 1.13764565e+002 1.20191490e+002 1.00059036e+002 - 1.13723930e+002 1.20181862e+002 9.99994354e+001 1.13674545e+002 - 1.20157112e+002 9.99896622e+001 1.13650940e+002 1.20173935e+002 - 9.99433594e+001 1.13619133e+002 1.20157898e+002 9.99228134e+001 - 1.13594154e+002 1.20157646e+002 9.98936615e+001 1.13582481e+002 - 1.20148529e+002 9.98709183e+001 1.13551384e+002 1.20150520e+002 - 9.98423386e+001 1.13537811e+002 1.20155609e+002 9.97925873e+001 - 1.13490700e+002 1.20148445e+002 9.97212906e+001 1.13437347e+002 - 1.20116135e+002 9.96960678e+001 1.13406303e+002 1.20112930e+002 - 9.96613693e+001 1.13380600e+002 1.20096817e+002 9.96660690e+001 - 1.13370087e+002 1.20128899e+002 9.96679306e+001 1.13388199e+002 - 1.20153030e+002 9.96533585e+001 1.13370010e+002 1.20172913e+002 - 9.96291504e+001 1.13353928e+002 1.20171776e+002 9.95907669e+001 - 1.13309631e+002 1.20155739e+002 9.95276108e+001 1.13261749e+002 - 1.20126648e+002 9.95270615e+001 1.13233009e+002 1.20151855e+002 - 9.94726486e+001 1.13197769e+002 1.20129646e+002 9.94645233e+001 - 1.13187576e+002 1.20149803e+002 9.94337387e+001 1.13166885e+002 - 1.20144775e+002 9.93987961e+001 1.13112282e+002 1.20117401e+002 - 9.93872986e+001 1.13113632e+002 1.20127815e+002 9.93754349e+001 - 1.13095940e+002 1.20150169e+002 9.93285141e+001 1.13071709e+002 - 1.20142853e+002 9.93215103e+001 1.13050232e+002 1.20150803e+002 - 9.93089752e+001 1.13053291e+002 1.20159462e+002 9.93014984e+001 - 1.13034142e+002 1.20169746e+002 9.92704086e+001 1.13007965e+002 - 1.20155685e+002 9.92336349e+001 1.12974396e+002 1.20152405e+002 - 9.92078400e+001 1.12957863e+002 1.20150520e+002 9.91761856e+001 - 1.12913612e+002 1.20129410e+002 9.91489944e+001 1.12903137e+002 - 1.20122978e+002 9.91365738e+001 1.12863846e+002 1.20128136e+002 - 9.91062393e+001 1.12851273e+002 1.20123207e+002 9.90863266e+001 - 1.12822327e+002 1.20113480e+002 9.90660629e+001 1.12818367e+002 - 1.20113998e+002 9.91066360e+001 1.12843407e+002 1.20166542e+002 - 9.91071396e+001 1.12851288e+002 1.20177620e+002 9.90848618e+001 - 1.12824196e+002 1.20174187e+002 9.90466614e+001 1.12809021e+002 - 1.20166626e+002 9.90384293e+001 1.12786942e+002 1.20176506e+002 - 9.90149231e+001 1.12773819e+002 1.20159607e+002 9.90154877e+001 - 1.12758934e+002 1.20178078e+002 9.90124359e+001 1.12765053e+002 - 1.20187737e+002 9.90149536e+001 1.12761719e+002 1.20205566e+002 - 9.89969559e+001 1.12753197e+002 1.20197823e+002 9.89958801e+001 - 1.12752678e+002 1.20210175e+002 9.89843140e+001 1.12753326e+002 - 1.20216522e+002 9.89835892e+001 1.12731659e+002 1.20231247e+002 - 9.89808044e+001 1.12738426e+002 1.20240257e+002 9.89949570e+001 - 1.12748787e+002 1.20260780e+002 9.89756088e+001 1.12745560e+002 - 1.20257393e+002 9.89939957e+001 1.12749428e+002 1.20278824e+002 - 9.89938965e+001 1.12763565e+002 1.20288353e+002 9.89686127e+001 - 1.12738647e+002 1.20285278e+002 9.89330978e+001 1.12727982e+002 - 1.20267647e+002 9.89377365e+001 1.12709717e+002 1.20267395e+002 - 9.89220581e+001 1.12706291e+002 1.20254944e+002 9.89325485e+001 - 1.12698563e+002 1.20267570e+002 9.88813858e+001 1.12660294e+002 - 1.20217819e+002 9.88770294e+001 1.12640167e+002 1.20217659e+002 - 9.88703537e+001 1.12638718e+002 1.20211700e+002 9.88658066e+001 - 1.12619919e+002 1.20206619e+002 9.88475037e+001 1.12620872e+002 - 1.20205276e+002 9.88744278e+001 1.12625992e+002 1.20231270e+002 - 9.88893127e+001 1.12659607e+002 1.20260582e+002 9.89024048e+001 - 1.12671127e+002 1.20276588e+002 9.88975677e+001 1.12684563e+002 - 1.20275665e+002 9.89165039e+001 1.12689491e+002 1.20296173e+002 - 9.89116440e+001 1.12695313e+002 1.20289101e+002 9.89234467e+001 - 1.12699326e+002 1.20302780e+002 9.89024353e+001 1.12703293e+002 - 1.20289955e+002 9.89195938e+001 1.12701012e+002 1.20303139e+002 - 9.88965302e+001 1.12695313e+002 1.20287277e+002 9.89271393e+001 - 1.12707802e+002 1.20312256e+002 9.89330444e+001 1.12719002e+002 - 1.20314209e+002 9.89281845e+001 1.12707542e+002 1.20310867e+002 - 9.89243927e+001 1.12714310e+002 1.20300903e+002 9.89326782e+001 - 1.12705841e+002 1.20301758e+002 9.89202805e+001 1.12705490e+002 - 1.20288116e+002 9.89604416e+001 1.12718056e+002 1.20308525e+002 - 9.89587479e+001 1.12727173e+002 1.20307602e+002 9.89702148e+001 - 1.12732033e+002 1.20308533e+002 9.89520721e+001 1.12730797e+002 - 1.20289902e+002 9.89407806e+001 1.12704285e+002 1.20276703e+002 - 9.89429779e+001 1.12722923e+002 1.20271767e+002 9.89875488e+001 - 1.12751900e+002 1.20305054e+002 9.89787216e+001 1.12763954e+002 - 1.20296646e+002 9.90013962e+001 1.12770905e+002 1.20314003e+002 - 9.89863358e+001 1.12770058e+002 1.20296959e+002 9.89904938e+001 - 1.12762230e+002 1.20300606e+002 9.89766312e+001 1.12764465e+002 - 1.20284286e+002 9.90131073e+001 1.12795532e+002 1.20324585e+002 - 9.90516052e+001 1.12838623e+002 1.20345467e+002 9.90374908e+001 - 1.12815430e+002 1.20321999e+002 9.90103378e+001 1.12795135e+002 - 1.20287254e+002 9.90758667e+001 1.12823982e+002 1.20321526e+002 - 9.91005554e+001 1.12863289e+002 1.20333923e+002 9.91423264e+001 - 1.12892021e+002 1.20347725e+002 9.91309204e+001 1.12895866e+002 - 1.20327965e+002 9.91660843e+001 1.12916489e+002 1.20347534e+002 - 9.91884079e+001 1.12945335e+002 1.20355095e+002 9.92242508e+001 - 1.12967354e+002 1.20366844e+002 9.91825027e+001 1.12947357e+002 - 1.20319229e+002 9.92048798e+001 1.12954002e+002 1.20317627e+002 - 9.92299652e+001 1.12990356e+002 1.20328056e+002 9.92408142e+001 - 1.12978653e+002 1.20309723e+002 9.92260361e+001 1.12975121e+002 - 1.20284531e+002 9.92463226e+001 1.12985115e+002 1.20287132e+002 - 9.92680054e+001 1.13012749e+002 1.20292786e+002 9.92970657e+001 - 1.13027847e+002 1.20295448e+002 9.93023911e+001 1.13053535e+002 - 1.20295547e+002 9.93392258e+001 1.13060371e+002 1.20297295e+002 - 9.93608932e+001 1.13093018e+002 1.20301094e+002 9.93670654e+001 - 1.13091576e+002 1.20273758e+002 9.93851318e+001 1.13123421e+002 - 1.20272865e+002 9.94212494e+001 1.13146278e+002 1.20286415e+002 - 9.94340286e+001 1.13160774e+002 1.20265572e+002 9.94741516e+001 - 1.13192322e+002 1.20269035e+002 9.94790115e+001 1.13218109e+002 - 1.20261154e+002 9.95037766e+001 1.13223373e+002 1.20259392e+002 - 9.95056686e+001 1.13237335e+002 1.20243721e+002 9.95200958e+001 - 1.13232162e+002 1.20231354e+002 9.95173569e+001 1.13243164e+002 - 1.20203606e+002 9.95460739e+001 1.13264320e+002 1.20204880e+002 - 9.95504456e+001 1.13274788e+002 1.20182541e+002 9.95862732e+001 - 1.13295380e+002 1.20184525e+002 9.96353760e+001 1.13354797e+002 - 1.20214096e+002 9.96882019e+001 1.13385513e+002 1.20228271e+002 - 9.97062302e+001 1.13412498e+002 1.20221779e+002 9.97344894e+001 - 1.13426163e+002 1.20217941e+002 9.97638092e+001 1.13468170e+002 - 1.20226707e+002 9.97825775e+001 1.13471848e+002 1.20231018e+002 - 9.98218613e+001 1.13514832e+002 1.20238213e+002 9.98534241e+001 - 1.13527130e+002 1.20220825e+002 9.98665619e+001 1.13554993e+002 - 1.20208237e+002 9.98913040e+001 1.13568153e+002 1.20204567e+002 - 9.99254761e+001 1.13609016e+002 1.20211037e+002 9.99750366e+001 - 1.13635529e+002 1.20219841e+002 1.00013237e+002 1.13687088e+002 - 1.20235802e+002 1.00050270e+002 1.13709244e+002 1.20231552e+002 - 1.00097404e+002 1.13765129e+002 1.20247963e+002 1.00131516e+002 - 1.13777138e+002 1.20239685e+002 1.00152336e+002 1.13802116e+002 - 1.20236504e+002 1.00194885e+002 1.13822624e+002 1.20234581e+002 - 1.00209541e+002 1.13844353e+002 1.20228943e+002 1.00231346e+002 - 1.13855019e+002 1.20221001e+002 1.00249084e+002 1.13885155e+002 - 1.20212273e+002 1.00292679e+002 1.13909142e+002 1.20228134e+002 - 1.00345673e+002 1.13964058e+002 1.20240051e+002 1.00397995e+002 - 1.14000587e+002 1.20235413e+002 1.00409882e+002 1.14035080e+002 - 1.20224762e+002 1.00445824e+002 1.14047668e+002 1.20226608e+002 - 1.00452721e+002 1.14062531e+002 1.20204720e+002 1.00492386e+002 - 1.14075546e+002 1.20205292e+002 1.00527519e+002 1.14119804e+002 - 1.20211502e+002 1.00574440e+002 1.14144928e+002 1.20205040e+002 - 1.00599174e+002 1.14167549e+002 1.20184273e+002 1.00650719e+002 - 1.14200676e+002 1.20186874e+002 1.00675888e+002 1.14232285e+002 - 1.20172501e+002 1.00730270e+002 1.14249557e+002 1.20168823e+002 - 1.00766502e+002 1.14291824e+002 1.20170563e+002 1.00809441e+002 - 1.14322609e+002 1.20173073e+002 1.00817032e+002 1.14342834e+002 - 1.20149658e+002 1.00849510e+002 1.14350830e+002 1.20139290e+002 - 1.00878410e+002 1.14373833e+002 1.20115639e+002 1.00945229e+002 - 1.14405914e+002 1.20100853e+002 1.00974731e+002 1.14445068e+002 - 1.20091637e+002 1.01011154e+002 1.14460693e+002 1.20095390e+002 - 1.01035820e+002 1.14478477e+002 1.20078743e+002 1.01062317e+002 - 1.14474121e+002 1.20045891e+002 1.01097221e+002 1.14506050e+002 - 1.20039253e+002 1.01162079e+002 1.14549240e+002 1.20054840e+002 - 1.01205788e+002 1.14586937e+002 1.20052483e+002 1.01252380e+002 - 1.14597618e+002 1.20037918e+002 1.01292542e+002 1.14623093e+002 - 1.20024567e+002 1.01346115e+002 1.14626129e+002 1.20008362e+002 - 1.01360558e+002 1.14626678e+002 1.19970146e+002 1.01411888e+002 - 1.14630913e+002 1.19950676e+002 1.01395454e+002 1.14610443e+002 - 1.19883270e+002 1.01397133e+002 1.14561699e+002 1.19824265e+002 - 1.01335876e+002 1.14489365e+002 1.19715851e+002 1.01409134e+002 - 1.14561554e+002 1.19766319e+002 1.01457809e+002 1.14646049e+002 - 1.19866028e+002 1.01483452e+002 1.14687912e+002 1.19941086e+002 - 1.01485870e+002 1.14724449e+002 1.20002151e+002 1.01469498e+002 - 1.14733131e+002 1.20050011e+002 1.01426155e+002 1.14731567e+002 - 1.20074776e+002 1.01387695e+002 1.14712578e+002 1.20107758e+002 - 1.01336380e+002 1.14696136e+002 1.20103745e+002 1.01309792e+002 - 1.14673721e+002 1.20127625e+002 1.01256149e+002 1.14642990e+002 - 1.20111717e+002 1.01212250e+002 1.14599144e+002 1.20122284e+002 - 1.01201340e+002 1.14607559e+002 1.20150627e+002 1.01169006e+002 - 1.14585518e+002 1.20160667e+002 1.01114929e+002 1.14551048e+002 - 1.20146461e+002 1.01104591e+002 1.14539185e+002 1.20175804e+002 - 1.01051811e+002 1.14505615e+002 1.20161423e+002 1.00993141e+002 - 1.14461700e+002 1.20176453e+002 1.00928612e+002 1.14426575e+002 - 1.20159271e+002 1.00898254e+002 1.14388535e+002 1.20159805e+002 - 1.00864479e+002 1.14374207e+002 1.20158501e+002 1.00838791e+002 - 1.14348892e+002 1.20177719e+002 1.00801346e+002 1.14335747e+002 - 1.20175873e+002 1.00768738e+002 1.14308907e+002 1.20185684e+002 - 1.00740425e+002 1.14294029e+002 1.20191521e+002 1.00721893e+002 - 1.14277321e+002 1.20214920e+002 1.00664780e+002 1.14234474e+002 - 1.20194687e+002 1.00648933e+002 1.14211029e+002 1.20225914e+002 - 1.00590485e+002 1.14174919e+002 1.20208977e+002 1.00550430e+002 - 1.14135941e+002 1.20207726e+002 1.00519226e+002 1.14126045e+002 - 1.20217148e+002 1.00508110e+002 1.14102608e+002 1.20234955e+002 - 1.00464218e+002 1.14073380e+002 1.20217728e+002 1.00419945e+002 - 1.14025764e+002 1.20231583e+002 1.00355362e+002 1.13988998e+002 - 1.20211266e+002 1.00330986e+002 1.13961174e+002 1.20212502e+002 - 1.00307785e+002 1.13950005e+002 1.20214935e+002 1.00306725e+002 - 1.13934410e+002 1.20245369e+002 1.00268051e+002 1.13913239e+002 - 1.20244858e+002 1.00233688e+002 1.13871277e+002 1.20245895e+002 - 1.00208389e+002 1.13859077e+002 1.20246414e+002 1.00196762e+002 - 1.13847878e+002 1.20272842e+002 1.00144028e+002 1.13797806e+002 - 1.20242584e+002 1.00125519e+002 1.13764290e+002 1.20251862e+002 - 1.00096733e+002 1.13748505e+002 1.20250252e+002 1.00064415e+002 - 1.13710838e+002 1.20240723e+002 1.00021225e+002 1.13687088e+002 - 1.20219330e+002 9.99984741e+001 1.13659538e+002 1.20223778e+002 - 9.99748306e+001 1.13647644e+002 1.20226746e+002 9.99389038e+001 - 1.13611519e+002 1.20237366e+002 9.98816376e+001 1.13580841e+002 - 1.20217522e+002 9.98476563e+001 1.13537712e+002 1.20202431e+002 - 9.98410187e+001 1.13535988e+002 1.20216469e+002 9.98322678e+001 - 1.13518250e+002 1.20238914e+002 9.98208847e+001 1.13516678e+002 - 1.20244606e+002 9.98011780e+001 1.13489754e+002 1.20256409e+002 - 9.97806396e+001 1.13483932e+002 1.20256218e+002 9.97353363e+001 - 1.13429344e+002 1.20238647e+002 9.96959763e+001 1.13405029e+002 - 1.20231056e+002 9.96825256e+001 1.13373734e+002 1.20248306e+002 - 9.96509476e+001 1.13350990e+002 1.20241783e+002 9.96262512e+001 - 1.13322083e+002 1.20249626e+002 9.95875168e+001 1.13298401e+002 - 1.20235954e+002 9.95585480e+001 1.13256615e+002 1.20219170e+002 - 9.95488663e+001 1.13255806e+002 1.20226212e+002 9.95418701e+001 - 1.13248459e+002 1.20257370e+002 9.94739456e+001 1.13197441e+002 - 1.20222351e+002 9.94694214e+001 1.13179771e+002 1.20233276e+002 - 9.94322281e+001 1.13148727e+002 1.20210487e+002 9.94341888e+001 - 1.13142494e+002 1.20236153e+002 9.94070587e+001 1.13126137e+002 - 1.20229073e+002 9.93970108e+001 1.13114433e+002 1.20248604e+002 - 9.93762512e+001 1.13108627e+002 1.20245781e+002 9.93380508e+001 - 1.13057922e+002 1.20222267e+002 9.93152924e+001 1.13049217e+002 - 1.20223198e+002 9.93082657e+001 1.13027161e+002 1.20232246e+002 - 9.92909241e+001 1.13020866e+002 1.20240936e+002 9.92584305e+001 - 1.12982681e+002 1.20228294e+002 9.92481232e+001 1.12985878e+002 - 1.20232452e+002 9.92530975e+001 1.12979904e+002 1.20249168e+002 - 9.92637558e+001 1.12992767e+002 1.20269897e+002 9.92541962e+001 - 1.12978065e+002 1.20277138e+002 9.92250595e+001 1.12970978e+002 - 1.20277229e+002 9.92120590e+001 1.12944702e+002 1.20276054e+002 - 9.91936264e+001 1.12931671e+002 1.20273209e+002 9.91976852e+001 - 1.12918976e+002 1.20288589e+002 9.91918793e+001 1.12923271e+002 - 1.20297569e+002 9.91899872e+001 1.12919075e+002 1.20309799e+002 - 9.91507797e+001 1.12892097e+002 1.20281975e+002 9.91613388e+001 - 1.12898720e+002 1.20306503e+002 9.91496124e+001 1.12893059e+002 - 1.20311432e+002 9.91563873e+001 1.12884895e+002 1.20332138e+002 - 9.91625214e+001 1.12907021e+002 1.20354996e+002 9.91920547e+001 - 1.12929527e+002 1.20394142e+002 9.91641388e+001 1.12919899e+002 - 1.20377998e+002 9.91593094e+001 1.12897270e+002 1.20377708e+002 - 9.91546249e+001 1.12901787e+002 1.20376801e+002 9.91525116e+001 - 1.12897079e+002 1.20391861e+002 9.91015778e+001 1.12867310e+002 - 1.20359550e+002 9.91189499e+001 1.12871727e+002 1.20374252e+002 - 9.90998917e+001 1.12855095e+002 1.20359612e+002 9.90982819e+001 - 1.12840508e+002 1.20356331e+002 9.90711441e+001 1.12822777e+002 - 1.20336739e+002 9.90509262e+001 1.12796974e+002 1.20318504e+002 - 9.90363617e+001 1.12786530e+002 1.20305511e+002 9.90333176e+001 - 1.12769409e+002 1.20302254e+002 9.90090714e+001 1.12761581e+002 - 1.20295845e+002 9.90275879e+001 1.12766586e+002 1.20313705e+002 - 9.90552979e+001 1.12807823e+002 1.20352921e+002 9.90717773e+001 - 1.12821190e+002 1.20370979e+002 9.90626526e+001 1.12828842e+002 - 1.20367905e+002 9.90814362e+001 1.12835228e+002 1.20385201e+002 - 9.91047287e+001 1.12866219e+002 1.20405045e+002 9.90910568e+001 - 1.12849564e+002 1.20394569e+002 9.90697784e+001 1.12846886e+002 - 1.20389038e+002 9.90736542e+001 1.12841827e+002 1.20388763e+002 - 9.90629959e+001 1.12838234e+002 1.20378220e+002 9.90769119e+001 - 1.12838150e+002 1.20388863e+002 9.90803909e+001 1.12845375e+002 - 1.20387535e+002 9.90853882e+001 1.12839920e+002 1.20389999e+002 - 9.90720062e+001 1.12838570e+002 1.20379456e+002 9.90976715e+001 - 1.12853073e+002 1.20397194e+002 9.90938644e+001 1.12853271e+002 - 1.20384430e+002 9.91005936e+001 1.12837471e+002 1.20379196e+002 - 9.90959778e+001 1.12848396e+002 1.20370171e+002 9.91193695e+001 - 1.12862572e+002 1.20382607e+002 9.90973587e+001 1.12855240e+002 - 1.20364624e+002 9.91082611e+001 1.12851257e+002 1.20372612e+002 - 9.91222382e+001 1.12882004e+002 1.20379044e+002 9.91274719e+001 - 1.12873238e+002 1.20378769e+002 9.91193008e+001 1.12880745e+002 - 1.20370094e+002 9.91425858e+001 1.12891922e+002 1.20388451e+002 - 9.91501007e+001 1.12911705e+002 1.20390976e+002 9.91573563e+001 - 1.12907120e+002 1.20397980e+002 9.91298828e+001 1.12894310e+002 - 1.20362511e+002 9.91669922e+001 1.12919907e+002 1.20396378e+002 - 9.91775589e+001 1.12940178e+002 1.20394173e+002 9.91880417e+001 - 1.12940216e+002 1.20394905e+002 9.91799469e+001 1.12936455e+002 - 1.20373741e+002 9.92445221e+001 1.12979294e+002 1.20421219e+002 - 9.92828293e+001 1.13023865e+002 1.20443153e+002 9.93124847e+001 - 1.13044655e+002 1.20446388e+002 9.93055191e+001 1.13048233e+002 - 1.20434349e+002 9.93232346e+001 1.13050514e+002 1.20439018e+002 - 9.93432922e+001 1.13077644e+002 1.20441093e+002 9.93737411e+001 - 1.13098610e+002 1.20453506e+002 9.93486786e+001 1.13091263e+002 - 1.20416946e+002 9.93645477e+001 1.13094978e+002 1.20414215e+002 - 9.93676376e+001 1.13105568e+002 1.20397766e+002 9.93963089e+001 - 1.13116005e+002 1.20401215e+002 9.94011536e+001 1.13131706e+002 - 1.20392731e+002 9.94142609e+001 1.13132866e+002 1.20388290e+002 - 9.94345398e+001 1.13161751e+002 1.20388573e+002 9.94592972e+001 - 1.13169571e+002 1.20391251e+002 9.94839249e+001 1.13210045e+002 - 1.20408546e+002 9.95043945e+001 1.13211418e+002 1.20397690e+002 - 9.95141525e+001 1.13228500e+002 1.20384666e+002 9.95409164e+001 - 1.13245750e+002 1.20377495e+002 9.95526352e+001 1.13277687e+002 - 1.20369469e+002 9.95834656e+001 1.13289558e+002 1.20376633e+002 - 9.95970764e+001 1.13308456e+002 1.20368256e+002 9.96322403e+001 - 1.13329185e+002 1.20361847e+002 9.96335831e+001 1.13351753e+002 - 1.20350021e+002 9.96545486e+001 1.13354874e+002 1.20350273e+002 - 9.96603394e+001 1.13368515e+002 1.20337883e+002 9.96687317e+001 - 1.13363182e+002 1.20320374e+002 9.96677322e+001 1.13377731e+002 - 1.20291710e+002 9.96852036e+001 1.13380829e+002 1.20281609e+002 - 9.97213058e+001 1.13424423e+002 1.20294785e+002 9.97497482e+001 - 1.13441093e+002 1.20293686e+002 9.97701874e+001 1.13469048e+002 - 1.20294151e+002 9.98319702e+001 1.13505791e+002 1.20309631e+002 - 9.98614273e+001 1.13545929e+002 1.20313271e+002 9.98972321e+001 - 1.13565521e+002 1.20316727e+002 9.99131927e+001 1.13598282e+002 - 1.20313957e+002 9.99055862e+001 1.13573402e+002 1.20288216e+002 - 9.99419022e+001 1.13613724e+002 1.20296135e+002 9.99847260e+001 - 1.13637421e+002 1.20288078e+002 1.00000313e+002 1.13670784e+002 - 1.20283493e+002 1.00045586e+002 1.13703667e+002 1.20294075e+002 - 1.00065430e+002 1.13722153e+002 1.20283180e+002 1.00110336e+002 - 1.13749168e+002 1.20297768e+002 1.00135590e+002 1.13785606e+002 - 1.20295349e+002 1.00168663e+002 1.13806099e+002 1.20292427e+002 - 1.00216591e+002 1.13865021e+002 1.20309433e+002 1.00255806e+002 - 1.13878944e+002 1.20302490e+002 1.00266335e+002 1.13896584e+002 - 1.20292374e+002 1.00302666e+002 1.13912743e+002 1.20292915e+002 - 1.00336182e+002 1.13951385e+002 1.20302200e+002 1.00337128e+002 - 1.13940590e+002 1.20269310e+002 1.00344986e+002 1.13960823e+002 - 1.20253784e+002 1.00394287e+002 1.13988808e+002 1.20272346e+002 - 1.00457970e+002 1.14060783e+002 1.20295898e+002 1.00514984e+002 - 1.14097122e+002 1.20304062e+002 1.00530266e+002 1.14137703e+002 - 1.20296021e+002 1.00558212e+002 1.14150497e+002 1.20293564e+002 - 1.00569786e+002 1.14159302e+002 1.20277702e+002 1.00606232e+002 - 1.14172920e+002 1.20270081e+002 1.00623093e+002 1.14195381e+002 - 1.20251236e+002 1.00669441e+002 1.14218979e+002 1.20246956e+002 - 1.00683258e+002 1.14237572e+002 1.20219620e+002 1.00728027e+002 - 1.14258926e+002 1.20213684e+002 1.00760010e+002 1.14296043e+002 - 1.20214035e+002 1.00824646e+002 1.14321220e+002 1.20214684e+002 - 1.00850822e+002 1.14362968e+002 1.20210701e+002 1.00880768e+002 - 1.14375206e+002 1.20196785e+002 1.00908249e+002 1.14412186e+002 - 1.20190430e+002 1.00944122e+002 1.14425415e+002 1.20184540e+002 - 1.00981842e+002 1.14455811e+002 1.20165932e+002 1.01062668e+002 - 1.14505180e+002 1.20166039e+002 1.01093887e+002 1.14545616e+002 - 1.20165604e+002 1.01128113e+002 1.14557701e+002 1.20163918e+002 - 1.01141808e+002 1.14564659e+002 1.20139763e+002 1.01173866e+002 - 1.14568542e+002 1.20111450e+002 1.01184456e+002 1.14577736e+002 - 1.20084686e+002 1.01250031e+002 1.14617813e+002 1.20095421e+002 - 1.01296219e+002 1.14665977e+002 1.20098877e+002 1.01360611e+002 - 1.14682968e+002 1.20100128e+002 1.01391312e+002 1.14706268e+002 - 1.20083977e+002 1.01424637e+002 1.14688400e+002 1.20045448e+002 - 1.01454178e+002 1.14703133e+002 1.20021812e+002 1.01510933e+002 - 1.14710289e+002 1.20004913e+002 1.01490417e+002 1.14674873e+002 - 1.19935242e+002 1.01478844e+002 1.14625114e+002 1.19868500e+002 - 1.01403671e+002 1.14537697e+002 1.19742439e+002 1.01452652e+002 - 1.14584854e+002 1.19768776e+002 1.01498543e+002 1.14664246e+002 - 1.19868362e+002 1.01528175e+002 1.14712074e+002 1.19949150e+002 - 1.01535988e+002 1.14754097e+002 1.20015503e+002 1.01521187e+002 - 1.14763977e+002 1.20062485e+002 1.01477203e+002 1.14756447e+002 - 1.20078957e+002 1.01429115e+002 1.14728813e+002 1.20100342e+002 - 1.01376526e+002 1.14715149e+002 1.20096855e+002 1.01348282e+002 - 1.14689095e+002 1.20113861e+002 1.01286407e+002 1.14651085e+002 - 1.20101784e+002 1.01259506e+002 1.14619171e+002 1.20118622e+002 - 1.01249886e+002 1.14632301e+002 1.20151093e+002 1.01224937e+002 - 1.14613663e+002 1.20168877e+002 1.01171013e+002 1.14582283e+002 - 1.20152954e+002 1.01158386e+002 1.14563774e+002 1.20175545e+002 - 1.01112503e+002 1.14540558e+002 1.20166237e+002 1.01055244e+002 - 1.14493088e+002 1.20175957e+002 1.00996559e+002 1.14466362e+002 - 1.20163605e+002 1.00969788e+002 1.14438461e+002 1.20175529e+002 - 1.00947701e+002 1.14432419e+002 1.20183960e+002 1.00910515e+002 - 1.14402618e+002 1.20194305e+002 1.00871918e+002 1.14381943e+002 - 1.20190056e+002 1.00857010e+002 1.14373772e+002 1.20218567e+002 - 1.00849861e+002 1.14383575e+002 1.20244896e+002 1.00810081e+002 - 1.14342712e+002 1.20246246e+002 1.00748650e+002 1.14294579e+002 - 1.20219894e+002 1.00718102e+002 1.14254456e+002 1.20235130e+002 - 1.00672050e+002 1.14227318e+002 1.20222488e+002 1.00652206e+002 - 1.14204689e+002 1.20246117e+002 1.00622650e+002 1.14192123e+002 - 1.20245232e+002 1.00606628e+002 1.14172729e+002 1.20262917e+002 - 1.00556206e+002 1.14135239e+002 1.20247314e+002 1.00507431e+002 - 1.14090004e+002 1.20259720e+002 1.00471199e+002 1.14080292e+002 - 1.20267799e+002 1.00459824e+002 1.14059570e+002 1.20278923e+002 - 1.00424904e+002 1.14041359e+002 1.20271606e+002 1.00411278e+002 - 1.14016136e+002 1.20291023e+002 1.00367012e+002 1.13982605e+002 - 1.20280762e+002 1.00358284e+002 1.13971024e+002 1.20310768e+002 - 1.00337051e+002 1.13965073e+002 1.20317726e+002 1.00324760e+002 - 1.13950081e+002 1.20334511e+002 1.00285759e+002 1.13912605e+002 - 1.20320175e+002 1.00252884e+002 1.13866684e+002 1.20311111e+002 - 1.00203911e+002 1.13828819e+002 1.20289528e+002 1.00184319e+002 - 1.13804276e+002 1.20294052e+002 1.00135590e+002 1.13770973e+002 - 1.20273239e+002 1.00129662e+002 1.13755020e+002 1.20284180e+002 - 1.00106415e+002 1.13751785e+002 1.20291763e+002 1.00071953e+002 - 1.13721588e+002 1.20306366e+002 1.00014008e+002 1.13685883e+002 - 1.20282600e+002 9.99873657e+001 1.13646996e+002 1.20273781e+002 - 9.99610138e+001 1.13627914e+002 1.20268471e+002 9.99611511e+001 - 1.13613831e+002 1.20289116e+002 9.99587021e+001 1.13622231e+002 - 1.20311348e+002 9.99325104e+001 1.13598106e+002 1.20321861e+002 - 9.98932800e+001 1.13566833e+002 1.20303291e+002 9.98804703e+001 - 1.13547211e+002 1.20308372e+002 9.98500748e+001 1.13528465e+002 - 1.20311119e+002 9.98452911e+001 1.13503151e+002 1.20333710e+002 - 9.98176193e+001 1.13486366e+002 1.20338524e+002 9.97721405e+001 - 1.13440460e+002 1.20325096e+002 9.97544327e+001 1.13440971e+002 - 1.20330956e+002 9.97436371e+001 1.13412872e+002 1.20329941e+002 - 9.97037277e+001 1.13384026e+002 1.20314667e+002 9.96797409e+001 - 1.13358101e+002 1.20326271e+002 9.96340637e+001 1.13334946e+002 - 1.20311310e+002 9.96225052e+001 1.13304893e+002 1.20312096e+002 - 9.95983505e+001 1.13291168e+002 1.20308395e+002 9.96009293e+001 - 1.13283218e+002 1.20330582e+002 9.95602646e+001 1.13257477e+002 - 1.20314865e+002 9.95494003e+001 1.13237259e+002 1.20328156e+002 - 9.95426025e+001 1.13248726e+002 1.20338509e+002 9.95014267e+001 - 1.13193512e+002 1.20309525e+002 9.94842300e+001 1.13195984e+002 - 1.20318642e+002 9.94527512e+001 1.13148499e+002 1.20307823e+002 - 9.94401550e+001 1.13145317e+002 1.20317627e+002 9.94174271e+001 - 1.13119057e+002 1.20314217e+002 9.93908691e+001 1.13109161e+002 - 1.20306335e+002 9.94043503e+001 1.13109459e+002 1.20329582e+002 - 9.94154739e+001 1.13129959e+002 1.20352272e+002 9.94156952e+001 - 1.13116203e+002 1.20373627e+002 9.93829803e+001 1.13107079e+002 - 1.20363174e+002 9.93786316e+001 1.13090805e+002 1.20373253e+002 - 9.93582382e+001 1.13077003e+002 1.20361725e+002 9.93620224e+001 - 1.13066978e+002 1.20380898e+002 9.93592072e+001 1.13071831e+002 - 1.20387199e+002 9.93588638e+001 1.13069496e+002 1.20405083e+002 - 9.93251953e+001 1.13045380e+002 1.20386467e+002 9.93270493e+001 - 1.13044548e+002 1.20398529e+002 9.92988129e+001 1.13024330e+002 - 1.20389648e+002 9.93371429e+001 1.13049477e+002 1.20441124e+002 - 9.93243408e+001 1.13046204e+002 1.20442329e+002 9.93271790e+001 - 1.13042725e+002 1.20454300e+002 9.92977905e+001 1.13029320e+002 - 1.20430725e+002 9.92908096e+001 1.13009315e+002 1.20432762e+002 - 9.93023834e+001 1.13026024e+002 1.20448708e+002 9.92891388e+001 - 1.13008804e+002 1.20450844e+002 9.92638321e+001 1.13000450e+002 - 1.20441330e+002 9.92809296e+001 1.13006615e+002 1.20454803e+002 - 9.92631760e+001 1.12995651e+002 1.20444588e+002 9.92695007e+001 - 1.12985359e+002 1.20454163e+002 9.92394562e+001 1.12963356e+002 - 1.20424377e+002 9.92178040e+001 1.12943054e+002 1.20417839e+002 - 9.92105865e+001 1.12943001e+002 1.20408844e+002 9.92236404e+001 - 1.12944572e+002 1.20427139e+002 9.91906204e+001 1.12920425e+002 - 1.20399231e+002 9.92021332e+001 1.12916298e+002 1.20413292e+002 - 9.92204437e+001 1.12951241e+002 1.20438057e+002 9.92548523e+001 - 1.12975349e+002 1.20477570e+002 9.92352753e+001 1.12975372e+002 - 1.20461250e+002 9.92392502e+001 1.12972122e+002 1.20465889e+002 - 9.92567825e+001 1.12991829e+002 1.20475105e+002 9.92555771e+001 - 1.12986748e+002 1.20480133e+002 9.92129593e+001 1.12964470e+002 - 1.20444786e+002 9.92112198e+001 1.12953804e+002 1.20439018e+002 - 9.92220459e+001 1.12971886e+002 1.20450356e+002 9.92560577e+001 - 1.12994095e+002 1.20483055e+002 9.92611160e+001 1.13001083e+002 - 1.20483177e+002 9.92568512e+001 1.12985611e+002 1.20481667e+002 - 9.92529602e+001 1.12989258e+002 1.20474197e+002 9.92725372e+001 - 1.12994133e+002 1.20480843e+002 9.92739868e+001 1.13009155e+002 - 1.20487434e+002 9.92744904e+001 1.12990105e+002 1.20470863e+002 - 9.92755890e+001 1.13004883e+002 1.20468391e+002 9.92694931e+001 - 1.12989357e+002 1.20454468e+002 9.92720261e+001 1.13005280e+002 - 1.20455200e+002 9.92920609e+001 1.13014870e+002 1.20476929e+002 - 9.92906723e+001 1.13022118e+002 1.20466103e+002 9.93137436e+001 - 1.13035393e+002 1.20483772e+002 9.92877350e+001 1.13028709e+002 - 1.20466316e+002 9.93062973e+001 1.13030083e+002 1.20472862e+002 - 9.93182678e+001 1.13051918e+002 1.20481178e+002 9.93290787e+001 - 1.13046928e+002 1.20482780e+002 9.93024597e+001 1.13037155e+002 - 1.20454277e+002 9.93237381e+001 1.13045944e+002 1.20467468e+002 - 9.93259354e+001 1.13057671e+002 1.20458900e+002 9.93417511e+001 - 1.13060890e+002 1.20460495e+002 9.93459091e+001 1.13078941e+002 - 1.20460693e+002 9.94066391e+001 1.13116730e+002 1.20488785e+002 - 9.94191284e+001 1.13136360e+002 1.20489243e+002 9.94505539e+001 - 1.13160866e+002 1.20504120e+002 9.94474030e+001 1.13173882e+002 - 1.20493889e+002 9.94647522e+001 1.13170296e+002 1.20502075e+002 - 9.94469528e+001 1.13160042e+002 1.20473320e+002 9.94837036e+001 - 1.13188614e+002 1.20486748e+002 9.94601288e+001 1.13180496e+002 - 1.20451996e+002 9.94882889e+001 1.13193985e+002 1.20459846e+002 - 9.95048752e+001 1.13216866e+002 1.20461769e+002 9.95407562e+001 - 1.13229294e+002 1.20467514e+002 9.95306168e+001 1.13234695e+002 - 1.20445862e+002 9.95667419e+001 1.13256042e+002 1.20460136e+002 - 9.95816422e+001 1.13281815e+002 1.20457397e+002 9.96117706e+001 - 1.13298393e+002 1.20470200e+002 9.96454926e+001 1.13343124e+002 - 1.20486847e+002 9.96661911e+001 1.13340767e+002 1.20476997e+002 - 9.96401672e+001 1.13328110e+002 1.20429901e+002 9.96671524e+001 - 1.13349670e+002 1.20435280e+002 9.96840744e+001 1.13376328e+002 - 1.20423958e+002 9.97189026e+001 1.13396347e+002 1.20432983e+002 - 9.97386627e+001 1.13430054e+002 1.20434631e+002 9.97619476e+001 - 1.13443344e+002 1.20425858e+002 9.97747421e+001 1.13470398e+002 - 1.20422783e+002 9.97684479e+001 1.13451538e+002 1.20398590e+002 - 9.97900162e+001 1.13474640e+002 1.20396378e+002 9.98032074e+001 - 1.13469582e+002 1.20379532e+002 9.97932205e+001 1.13473495e+002 - 1.20349983e+002 9.98077164e+001 1.13473221e+002 1.20335472e+002 - 9.98495483e+001 1.13528702e+002 1.20355042e+002 9.98887253e+001 - 1.13553772e+002 1.20363945e+002 9.99109497e+001 1.13587067e+002 - 1.20367249e+002 9.99456024e+001 1.13593582e+002 1.20353554e+002 - 9.99692230e+001 1.13625893e+002 1.20350487e+002 1.00011131e+002 - 1.13657875e+002 1.20366219e+002 1.00018768e+002 1.13678230e+002 - 1.20354492e+002 1.00035660e+002 1.13677940e+002 1.20343079e+002 - 1.00065308e+002 1.13708679e+002 1.20340485e+002 1.00116707e+002 - 1.13745544e+002 1.20350624e+002 1.00130768e+002 1.13773933e+002 - 1.20339935e+002 1.00176781e+002 1.13816391e+002 1.20360291e+002 - 1.00206535e+002 1.13846611e+002 1.20356865e+002 1.00225777e+002 - 1.13848526e+002 1.20341896e+002 1.00245445e+002 1.13871651e+002 - 1.20339645e+002 1.00285164e+002 1.13900055e+002 1.20342705e+002 - 1.00321182e+002 1.13944801e+002 1.20349174e+002 1.00373482e+002 - 1.13975731e+002 1.20360527e+002 1.00361351e+002 1.13974213e+002 - 1.20325722e+002 1.00402313e+002 1.13986588e+002 1.20318039e+002 - 1.00431389e+002 1.14023514e+002 1.20327942e+002 1.00464066e+002 - 1.14035889e+002 1.20322525e+002 1.00468704e+002 1.14056183e+002 - 1.20305641e+002 1.00511810e+002 1.14088806e+002 1.20323631e+002 - 1.00560661e+002 1.14137573e+002 1.20332298e+002 1.00616203e+002 - 1.14178200e+002 1.20339661e+002 1.00641907e+002 1.14220337e+002 - 1.20345055e+002 1.00676521e+002 1.14236137e+002 1.20338898e+002 - 1.00681534e+002 1.14249176e+002 1.20319092e+002 1.00704727e+002 - 1.14251518e+002 1.20306137e+002 1.00715034e+002 1.14261635e+002 - 1.20280365e+002 1.00766434e+002 1.14290138e+002 1.20283936e+002 - 1.00787590e+002 1.14314026e+002 1.20264015e+002 1.00807869e+002 - 1.14312363e+002 1.20239464e+002 1.00833496e+002 1.14343346e+002 - 1.20230667e+002 1.00910332e+002 1.14385963e+002 1.20247604e+002 - 1.00920326e+002 1.14405022e+002 1.20223335e+002 1.00953110e+002 - 1.14417717e+002 1.20207687e+002 1.00975098e+002 1.14456787e+002 - 1.20199875e+002 1.01038322e+002 1.14492828e+002 1.20221153e+002 - 1.01066437e+002 1.14516167e+002 1.20196701e+002 1.01120361e+002 - 1.14543144e+002 1.20171227e+002 1.01175652e+002 1.14599991e+002 - 1.20185387e+002 1.01227829e+002 1.14626694e+002 1.20205826e+002 - 1.01235847e+002 1.14631401e+002 1.20175507e+002 1.01266388e+002 - 1.14634605e+002 1.20148392e+002 1.01271584e+002 1.14640350e+002 - 1.20114960e+002 1.01311119e+002 1.14655106e+002 1.20106293e+002 - 1.01350571e+002 1.14692558e+002 1.20102188e+002 1.01404091e+002 - 1.14700645e+002 1.20089058e+002 1.01445862e+002 1.14730835e+002 - 1.20087822e+002 1.01495529e+002 1.14730087e+002 1.20059227e+002 - 1.01510811e+002 1.14732895e+002 1.20027016e+002 1.01555710e+002 - 1.14726311e+002 1.20001900e+002 1.01529282e+002 1.14690460e+002 - 1.19930641e+002 1.01510040e+002 1.14629753e+002 1.19854088e+002 - 1.01443489e+002 1.14545067e+002 1.19735649e+002 1.01478737e+002 - 1.14593620e+002 1.19768013e+002 1.01538673e+002 1.14698799e+002 - 1.19880150e+002 1.01576981e+002 1.14746895e+002 1.19964813e+002 - 1.01586136e+002 1.14792236e+002 1.20029877e+002 1.01569878e+002 - 1.14800636e+002 1.20082939e+002 1.01516235e+002 1.14785393e+002 - 1.20087502e+002 1.01447151e+002 1.14737289e+002 1.20082840e+002 - 1.01407150e+002 1.14728470e+002 1.20090149e+002 1.01390480e+002 - 1.14716759e+002 1.20114128e+002 1.01340370e+002 1.14687874e+002 - 1.20111725e+002 1.01319542e+002 1.14666481e+002 1.20137932e+002 - 1.01311378e+002 1.14674324e+002 1.20169739e+002 1.01282379e+002 - 1.14660049e+002 1.20185707e+002 1.01228859e+002 1.14621872e+002 - 1.20168678e+002 1.01223396e+002 1.14613319e+002 1.20196800e+002 - 1.01177513e+002 1.14582146e+002 1.20187309e+002 1.01124161e+002 - 1.14543182e+002 1.20198227e+002 1.01045738e+002 1.14504013e+002 - 1.20170464e+002 1.01035713e+002 1.14485718e+002 1.20191330e+002 - 1.01012001e+002 1.14483482e+002 1.20207092e+002 1.00979538e+002 - 1.14452042e+002 1.20214684e+002 1.00959679e+002 1.14453835e+002 - 1.20231506e+002 1.00951958e+002 1.14447395e+002 1.20266350e+002 - 1.00928123e+002 1.14440750e+002 1.20272896e+002 1.00884193e+002 - 1.14396080e+002 1.20267624e+002 1.00839951e+002 1.14370247e+002 - 1.20265640e+002 1.00819420e+002 1.14338341e+002 1.20282486e+002 - 1.00778679e+002 1.14317421e+002 1.20280701e+002 1.00736710e+002 - 1.14273666e+002 1.20280136e+002 1.00713646e+002 1.14273453e+002 - 1.20284424e+002 1.00709496e+002 1.14254066e+002 1.20312355e+002 - 1.00664543e+002 1.14220970e+002 1.20299271e+002 1.00643272e+002 - 1.14204338e+002 1.20340492e+002 1.00599220e+002 1.14191574e+002 - 1.20341080e+002 1.00573166e+002 1.14155205e+002 1.20343887e+002 - 1.00532181e+002 1.14128319e+002 1.20329094e+002 1.00508698e+002 - 1.14098122e+002 1.20338371e+002 1.00474358e+002 1.14077530e+002 - 1.20340645e+002 1.00458145e+002 1.14060905e+002 1.20364983e+002 - 1.00427910e+002 1.14041466e+002 1.20361885e+002 1.00414803e+002 - 1.14021194e+002 1.20371239e+002 1.00364670e+002 1.13979980e+002 - 1.20351746e+002 1.00352013e+002 1.13947922e+002 1.20358391e+002 - 1.00302803e+002 1.13903137e+002 1.20333229e+002 1.00304352e+002 - 1.13901154e+002 1.20360199e+002 1.00247971e+002 1.13866058e+002 - 1.20333153e+002 1.00243355e+002 1.13850571e+002 1.20344727e+002 - 1.00232018e+002 1.13857170e+002 1.20360962e+002 1.00206329e+002 - 1.13835297e+002 1.20381966e+002 1.00132965e+002 1.13785744e+002 - 1.20349724e+002 1.00098587e+002 1.13740364e+002 1.20331100e+002 - 1.00065643e+002 1.13713814e+002 1.20315193e+002 1.00071785e+002 - 1.13704941e+002 1.20340096e+002 1.00061356e+002 1.13712921e+002 - 1.20359230e+002 1.00031639e+002 1.13680283e+002 1.20360329e+002 - 9.99982224e+001 1.13659798e+002 1.20350670e+002 1.00006500e+002 - 1.13650429e+002 1.20378769e+002 9.99828568e+001 1.13641624e+002 - 1.20388138e+002 9.99697113e+001 1.13608368e+002 1.20400452e+002 - 9.99241180e+001 1.13573997e+002 1.20389763e+002 9.99057922e+001 - 1.13556465e+002 1.20401779e+002 9.98854446e+001 1.13556740e+002 - 1.20404984e+002 9.98871078e+001 1.13540222e+002 1.20424156e+002 - 9.98595734e+001 1.13523369e+002 1.20413094e+002 9.98396072e+001 - 1.13500916e+002 1.20429161e+002 9.97785950e+001 1.13469025e+002 - 1.20402878e+002 9.97794266e+001 1.13451035e+002 1.20413467e+002 - 9.97544937e+001 1.13435043e+002 1.20408623e+002 9.97414093e+001 - 1.13409935e+002 1.20412514e+002 9.97186279e+001 1.13399612e+002 - 1.20408920e+002 9.97102051e+001 1.13389633e+002 1.20429001e+002 - 9.96851883e+001 1.13370514e+002 1.20418724e+002 9.96437302e+001 - 1.13319298e+002 1.20390602e+002 9.96171722e+001 1.13315598e+002 - 1.20394897e+002 9.96051712e+001 1.13283432e+002 1.20400238e+002 - 9.95855026e+001 1.13278969e+002 1.20406410e+002 9.95635681e+001 - 1.13256050e+002 1.20406494e+002 9.95421448e+001 1.13245651e+002 - 1.20400955e+002 9.95441055e+001 1.13234863e+002 1.20409531e+002 - 9.95544128e+001 1.13250046e+002 1.20426338e+002 9.95355530e+001 - 1.13226334e+002 1.20436432e+002 9.95196304e+001 1.13235832e+002 - 1.20443878e+002 9.95278549e+001 1.13224556e+002 1.20458923e+002 - 9.95096512e+001 1.13216354e+002 1.20453819e+002 9.95116959e+001 - 1.13203850e+002 1.20468163e+002 9.95139923e+001 1.13218834e+002 - 1.20482864e+002 9.95243607e+001 1.13222656e+002 1.20509804e+002 - 9.94940414e+001 1.13202003e+002 1.20487076e+002 9.95011444e+001 - 1.13201668e+002 1.20517883e+002 9.94805908e+001 1.13197845e+002 - 1.20511436e+002 9.94866714e+001 1.13180496e+002 1.20525536e+002 - 9.94735184e+001 1.13187119e+002 1.20531609e+002 9.94699860e+001 - 1.13181145e+002 1.20540611e+002 9.94495926e+001 1.13172989e+002 - 1.20523926e+002 9.94475937e+001 1.13154297e+002 1.20525665e+002 - 9.94628296e+001 1.13170303e+002 1.20541046e+002 9.94460678e+001 - 1.13143265e+002 1.20536552e+002 9.94058151e+001 1.13130943e+002 - 1.20516258e+002 9.94331894e+001 1.13141144e+002 1.20539650e+002 - 9.94141693e+001 1.13134239e+002 1.20525864e+002 9.94225006e+001 - 1.13123161e+002 1.20540688e+002 9.93919601e+001 1.13101280e+002 - 1.20521179e+002 9.93619385e+001 1.13064865e+002 1.20501099e+002 - 9.93649139e+001 1.13073532e+002 1.20500748e+002 9.93906479e+001 - 1.13091438e+002 1.20527710e+002 9.93724594e+001 1.13093437e+002 - 1.20521240e+002 9.93741760e+001 1.13071762e+002 1.20522675e+002 - 9.93839340e+001 1.13092316e+002 1.20535782e+002 9.93936539e+001 - 1.13098808e+002 1.20549850e+002 9.93949280e+001 1.13120636e+002 - 1.20553535e+002 9.94102936e+001 1.13119064e+002 1.20564613e+002 - 9.94233246e+001 1.13142197e+002 1.20571671e+002 9.94190598e+001 - 1.13138626e+002 1.20575096e+002 9.93760681e+001 1.13115372e+002 - 1.20543983e+002 9.93868713e+001 1.13112610e+002 1.20551689e+002 - 9.93875504e+001 1.13117195e+002 1.20553360e+002 9.94033432e+001 - 1.13118752e+002 1.20563675e+002 9.94031601e+001 1.13130402e+002 - 1.20563004e+002 9.94146194e+001 1.13134712e+002 1.20576782e+002 - 9.94105988e+001 1.13131432e+002 1.20565041e+002 9.94268646e+001 - 1.13134827e+002 1.20574783e+002 9.94355240e+001 1.13158302e+002 - 1.20582733e+002 9.94654007e+001 1.13166023e+002 1.20592361e+002 - 9.94585800e+001 1.13169510e+002 1.20583351e+002 9.94383469e+001 - 1.13146027e+002 1.20553947e+002 9.94322739e+001 1.13152145e+002 - 1.20549042e+002 9.94401398e+001 1.13146294e+002 1.20555298e+002 - 9.94462738e+001 1.13161789e+002 1.20554459e+002 9.94721451e+001 - 1.13179375e+002 1.20576279e+002 9.94631195e+001 1.13189323e+002 - 1.20571907e+002 9.94757614e+001 1.13183136e+002 1.20569000e+002 - 9.94755249e+001 1.13194847e+002 1.20568298e+002 9.94822388e+001 - 1.13182961e+002 1.20564056e+002 9.94673843e+001 1.13181458e+002 - 1.20547981e+002 9.94704208e+001 1.13175430e+002 1.20539909e+002 - 9.94748611e+001 1.13188019e+002 1.20535316e+002 9.95020218e+001 - 1.13202515e+002 1.20542770e+002 9.94994888e+001 1.13216690e+002 - 1.20532806e+002 9.95419312e+001 1.13235260e+002 1.20549339e+002 - 9.95477753e+001 1.13254219e+002 1.20551254e+002 9.95942001e+001 - 1.13291145e+002 1.20583946e+002 9.95984344e+001 1.13306953e+002 - 1.20582512e+002 9.96088791e+001 1.13305710e+002 1.20585106e+002 - 9.96034241e+001 1.13298187e+002 1.20558037e+002 9.96293106e+001 - 1.13314316e+002 1.20565651e+002 9.96152954e+001 1.13319443e+002 - 1.20543533e+002 9.96550369e+001 1.13340523e+002 1.20554710e+002 - 9.96616058e+001 1.13358063e+002 1.20550606e+002 9.96789093e+001 - 1.13349808e+002 1.20543457e+002 9.96720123e+001 1.13353928e+002 - 1.20514694e+002 9.97052994e+001 1.13377029e+002 1.20531792e+002 - 9.97205353e+001 1.13401131e+002 1.20534615e+002 9.97485504e+001 - 1.13420242e+002 1.20536926e+002 9.97780762e+001 1.13465622e+002 - 1.20556923e+002 9.98019104e+001 1.13459953e+002 1.20551689e+002 - 9.97952652e+001 1.13466934e+002 1.20521538e+002 9.98081741e+001 - 1.13475365e+002 1.20502357e+002 9.98077087e+001 1.13491074e+002 - 1.20480553e+002 9.98406906e+001 1.13502243e+002 1.20492493e+002 - 9.98739624e+001 1.13543594e+002 1.20501762e+002 9.99060822e+001 - 1.13567230e+002 1.20501785e+002 9.99059906e+001 1.13592407e+002 - 1.20490791e+002 9.99217606e+001 1.13581772e+002 1.20489624e+002 - 9.99258575e+001 1.13594185e+002 1.20468689e+002 9.99480743e+001 - 1.13597557e+002 1.20466095e+002 9.99321671e+001 1.13601585e+002 - 1.20427612e+002 9.99408798e+001 1.13592583e+002 1.20407761e+002 - 9.99619980e+001 1.13622307e+002 1.20411041e+002 1.00005142e+002 - 1.13656441e+002 1.20421829e+002 1.00028641e+002 1.13688484e+002 - 1.20421669e+002 1.00078896e+002 1.13708725e+002 1.20431213e+002 - 1.00097618e+002 1.13735016e+002 1.20424942e+002 1.00133705e+002 - 1.13764862e+002 1.20429703e+002 1.00126190e+002 1.13777840e+002 - 1.20404022e+002 1.00163506e+002 1.13791626e+002 1.20409622e+002 - 1.00178978e+002 1.13809540e+002 1.20388916e+002 1.00248016e+002 - 1.13860962e+002 1.20416901e+002 1.00259628e+002 1.13893562e+002 - 1.20410866e+002 1.00295723e+002 1.13916252e+002 1.20419044e+002 - 1.00328598e+002 1.13957588e+002 1.20429153e+002 1.00359848e+002 - 1.13971016e+002 1.20425926e+002 1.00372734e+002 1.13987099e+002 - 1.20409904e+002 1.00402039e+002 1.14003494e+002 1.20404076e+002 - 1.00437744e+002 1.14045395e+002 1.20408821e+002 1.00482079e+002 - 1.14076492e+002 1.20417358e+002 1.00486763e+002 1.14087685e+002 - 1.20397583e+002 1.00508179e+002 1.14076454e+002 1.20372826e+002 - 1.00530441e+002 1.14112625e+002 1.20374054e+002 1.00580612e+002 - 1.14143158e+002 1.20383102e+002 1.00604980e+002 1.14178185e+002 - 1.20383804e+002 1.00649445e+002 1.14209084e+002 1.20396278e+002 - 1.00690773e+002 1.14254982e+002 1.20405800e+002 1.00753448e+002 - 1.14296555e+002 1.20414551e+002 1.00738937e+002 1.14301636e+002 - 1.20386765e+002 1.00765244e+002 1.14309456e+002 1.20374100e+002 - 1.00790833e+002 1.14343727e+002 1.20378372e+002 1.00799126e+002 - 1.14328712e+002 1.20349136e+002 1.00813873e+002 1.14348679e+002 - 1.20331001e+002 1.00851067e+002 1.14362305e+002 1.20318474e+002 - 1.00886284e+002 1.14397240e+002 1.20312546e+002 1.00899857e+002 - 1.14393814e+002 1.20282112e+002 1.00936501e+002 1.14430847e+002 - 1.20283875e+002 1.00992828e+002 1.14453026e+002 1.20283836e+002 - 1.00997856e+002 1.14471107e+002 1.20260406e+002 1.01032295e+002 - 1.14484596e+002 1.20241219e+002 1.01060715e+002 1.14522049e+002 - 1.20240074e+002 1.01116425e+002 1.14558029e+002 1.20250648e+002 - 1.01170258e+002 1.14601303e+002 1.20248466e+002 1.01204063e+002 - 1.14607819e+002 1.20209702e+002 1.01232384e+002 1.14646599e+002 - 1.20201920e+002 1.01293594e+002 1.14676147e+002 1.20228737e+002 - 1.01307709e+002 1.14693253e+002 1.20203568e+002 1.01323257e+002 - 1.14673714e+002 1.20160645e+002 1.01328194e+002 1.14678391e+002 - 1.20127403e+002 1.01368126e+002 1.14692932e+002 1.20115685e+002 - 1.01392014e+002 1.14709618e+002 1.20093307e+002 1.01440575e+002 - 1.14728073e+002 1.20084328e+002 1.01479019e+002 1.14755211e+002 - 1.20077782e+002 1.01530678e+002 1.14753525e+002 1.20054214e+002 - 1.01549866e+002 1.14754951e+002 1.20024757e+002 1.01596031e+002 - 1.14752350e+002 1.20003654e+002 1.01579407e+002 1.14724876e+002 - 1.19941711e+002 1.01555130e+002 1.14653503e+002 1.19864769e+002 - 1.01482323e+002 1.14568565e+002 1.19739601e+002 1.01554924e+002 - 1.14627937e+002 1.19783852e+002 1.01613937e+002 1.14723892e+002 - 1.19895927e+002 1.01657799e+002 1.14789543e+002 1.19987679e+002 - 1.01656441e+002 1.14824074e+002 1.20043686e+002 1.01636292e+002 - 1.14824364e+002 1.20085091e+002 1.01592690e+002 1.14814293e+002 - 1.20088272e+002 1.01551193e+002 1.14798645e+002 1.20119225e+002 - 1.01517509e+002 1.14790955e+002 1.20131050e+002 1.01500961e+002 - 1.14780975e+002 1.20163658e+002 1.01437462e+002 1.14743973e+002 - 1.20140411e+002 1.01403008e+002 1.14703461e+002 1.20154030e+002 - 1.01397972e+002 1.14717583e+002 1.20189384e+002 1.01380676e+002 - 1.14712189e+002 1.20218018e+002 1.01333694e+002 1.14683830e+002 - 1.20206581e+002 1.01322731e+002 1.14675697e+002 1.20231728e+002 - 1.01283760e+002 1.14653801e+002 1.20225288e+002 1.01234398e+002 - 1.14614212e+002 1.20241722e+002 1.01154739e+002 1.14565918e+002 - 1.20205902e+002 1.01128906e+002 1.14536621e+002 1.20216843e+002 - 1.01109383e+002 1.14536522e+002 1.20232689e+002 1.01085556e+002 - 1.14513641e+002 1.20249062e+002 1.01046425e+002 1.14495735e+002 - 1.20252502e+002 1.01043816e+002 1.14499008e+002 1.20289719e+002 - 1.01022697e+002 1.14490242e+002 1.20297661e+002 1.01014053e+002 - 1.14484093e+002 1.20326454e+002 1.00966171e+002 1.14450851e+002 - 1.20319603e+002 1.00949120e+002 1.14422943e+002 1.20340508e+002 - 1.00902748e+002 1.14391693e+002 1.20329117e+002 1.00859184e+002 - 1.14352242e+002 1.20326454e+002 1.00823677e+002 1.14340042e+002 - 1.20331413e+002 1.00813332e+002 1.14314850e+002 1.20342094e+002 - 1.00791054e+002 1.14305458e+002 1.20352592e+002 1.00779259e+002 - 1.14305931e+002 1.20404800e+002 1.00733261e+002 1.14280403e+002 - 1.20405457e+002 1.00698570e+002 1.14235626e+002 1.20392708e+002 - 1.00656219e+002 1.14206322e+002 1.20382095e+002 1.00641876e+002 - 1.14187569e+002 1.20400528e+002 1.00620033e+002 1.14173904e+002 - 1.20410957e+002 1.00590446e+002 1.14147217e+002 1.20424667e+002 - 1.00558952e+002 1.14132042e+002 1.20414154e+002 1.00549431e+002 - 1.14113449e+002 1.20433136e+002 1.00507675e+002 1.14080292e+002 - 1.20421349e+002 1.00499031e+002 1.14053947e+002 1.20437782e+002 - 1.00461693e+002 1.14021729e+002 1.20415962e+002 1.00431145e+002 - 1.13986603e+002 1.20414391e+002 1.00391357e+002 1.13959747e+002 - 1.20396172e+002 1.00399284e+002 1.13959297e+002 1.20426140e+002 - 1.00383270e+002 1.13966217e+002 1.20438782e+002 1.00354790e+002 - 1.13936386e+002 1.20459198e+002 1.00296005e+002 1.13905685e+002 - 1.20433586e+002 1.00279160e+002 1.13878761e+002 1.20435242e+002 - 1.00238548e+002 1.13846741e+002 1.20410042e+002 1.00232140e+002 - 1.13825523e+002 1.20427063e+002 1.00207253e+002 1.13814034e+002 - 1.20427917e+002 1.00183334e+002 1.13786705e+002 1.20436394e+002 - 1.00184753e+002 1.13803246e+002 1.20455879e+002 1.00171326e+002 - 1.13778587e+002 1.20468155e+002 1.00150124e+002 1.13766373e+002 - 1.20473511e+002 1.00135948e+002 1.13725365e+002 1.20485016e+002 - 1.00088661e+002 1.13691956e+002 1.20467712e+002 1.00067726e+002 - 1.13670525e+002 1.20477318e+002 1.00042053e+002 1.13662308e+002 - 1.20475906e+002 1.00045563e+002 1.13655891e+002 1.20502357e+002 - 1.00023247e+002 1.13648033e+002 1.20499313e+002 1.00006462e+002 - 1.13628349e+002 1.20515831e+002 9.99752197e+001 1.13617775e+002 - 1.20511963e+002 9.99778442e+001 1.13604858e+002 1.20529160e+002 - 9.99476318e+001 1.13583618e+002 1.20514900e+002 9.99244080e+001 - 1.13546288e+002 1.20511635e+002 9.99195633e+001 1.13559555e+002 - 1.20531685e+002 9.98988724e+001 1.13532600e+002 1.20532234e+002 - 9.98514481e+001 1.13491974e+002 1.20501389e+002 9.98374710e+001 - 1.13476326e+002 1.20506432e+002 9.98012390e+001 1.13460106e+002 - 1.20491455e+002 9.97823486e+001 1.13419357e+002 1.20497040e+002 - 9.97660980e+001 1.13419044e+002 1.20498512e+002 9.97485886e+001 - 1.13403046e+002 1.20513397e+002 9.97226868e+001 1.13389519e+002 - 1.20504311e+002 9.97278595e+001 1.13380753e+002 1.20513763e+002 - 9.97340469e+001 1.13399246e+002 1.20535812e+002 9.97435760e+001 - 1.13393288e+002 1.20561714e+002 9.97139511e+001 1.13385223e+002 - 1.20548882e+002 9.97102509e+001 1.13367767e+002 1.20559586e+002 - 9.96997757e+001 1.13366318e+002 1.20562630e+002 9.97109528e+001 - 1.13361305e+002 1.20578537e+002 9.97027740e+001 1.13364601e+002 - 1.20587532e+002 9.97068329e+001 1.13366051e+002 1.20605713e+002 - 9.96930466e+001 1.13363518e+002 1.20606842e+002 9.97002411e+001 - 1.13355064e+002 1.20621399e+002 9.96708298e+001 1.13350159e+002 - 1.20619461e+002 9.96704025e+001 1.13328690e+002 1.20623695e+002 - 9.96665802e+001 1.13345612e+002 1.20642990e+002 9.96720276e+001 - 1.13342064e+002 1.20652550e+002 9.96419144e+001 1.13322441e+002 - 1.20631882e+002 9.96373062e+001 1.13299965e+002 1.20627480e+002 - 9.96400528e+001 1.13309204e+002 1.20636696e+002 9.96259537e+001 - 1.13292007e+002 1.20637276e+002 9.95803909e+001 1.13261848e+002 - 1.20603966e+002 9.96071777e+001 1.13268166e+002 1.20624474e+002 - 9.96042099e+001 1.13282463e+002 1.20637138e+002 9.96059570e+001 - 1.13267570e+002 1.20646065e+002 9.95832367e+001 1.13255356e+002 - 1.20626358e+002 9.95684738e+001 1.13235970e+002 1.20620163e+002 - 9.95547791e+001 1.13229713e+002 1.20610062e+002 9.95789490e+001 - 1.13241982e+002 1.20634460e+002 9.95579224e+001 1.13238106e+002 - 1.20620392e+002 9.95833130e+001 1.13240128e+002 1.20646393e+002 - 9.95762787e+001 1.13251923e+002 1.20645988e+002 9.95863419e+001 - 1.13250923e+002 1.20657158e+002 9.95916443e+001 1.13272202e+002 - 1.20664413e+002 9.95968475e+001 1.13267303e+002 1.20665199e+002 - 9.96104202e+001 1.13295158e+002 1.20678932e+002 9.96311417e+001 - 1.13315086e+002 1.20705048e+002 9.95907211e+001 1.13294243e+002 - 1.20673080e+002 9.96097107e+001 1.13293007e+002 1.20684456e+002 - 9.95973434e+001 1.13287346e+002 1.20669960e+002 9.96020050e+001 - 1.13276482e+002 1.20673630e+002 9.95829468e+001 1.13267776e+002 - 1.20653084e+002 9.95977859e+001 1.13273354e+002 1.20662910e+002 - 9.95903931e+001 1.13274551e+002 1.20651634e+002 9.96174774e+001 - 1.13279579e+002 1.20672516e+002 9.96184387e+001 1.13299011e+002 - 1.20671928e+002 9.96422272e+001 1.13296181e+002 1.20682693e+002 - 9.96421051e+001 1.13306023e+002 1.20673325e+002 9.96236420e+001 - 1.13282295e+002 1.20651611e+002 9.96139679e+001 1.13288887e+002 - 1.20638687e+002 9.96016541e+001 1.13260864e+002 1.20631378e+002 - 9.96214981e+001 1.13293610e+002 1.20636002e+002 9.96506577e+001 - 1.13313675e+002 1.20665283e+002 9.96401825e+001 1.13325287e+002 - 1.20658379e+002 9.96353455e+001 1.13305969e+002 1.20644379e+002 - 9.96319275e+001 1.13306129e+002 1.20632706e+002 9.96475067e+001 - 1.13307365e+002 1.20635124e+002 9.96483612e+001 1.13318497e+002 - 1.20631889e+002 9.96530457e+001 1.13315536e+002 1.20625862e+002 - 9.96693039e+001 1.13345100e+002 1.20630768e+002 9.96829453e+001 - 1.13347206e+002 1.20632477e+002 9.96839218e+001 1.13364288e+002 - 1.20625984e+002 9.97387924e+001 1.13393631e+002 1.20657928e+002 - 9.97385330e+001 1.13403831e+002 1.20651787e+002 9.97723694e+001 - 1.13427086e+002 1.20669785e+002 9.97938843e+001 1.13464287e+002 - 1.20679413e+002 9.97932053e+001 1.13447868e+002 1.20676750e+002 - 9.97906418e+001 1.13449562e+002 1.20654770e+002 9.97851791e+001 - 1.13430954e+002 1.20618767e+002 9.97717056e+001 1.13428070e+002 - 1.20599594e+002 9.98029633e+001 1.13438911e+002 1.20606613e+002 - 9.98175125e+001 1.13465660e+002 1.20613159e+002 9.98384628e+001 - 1.13459633e+002 1.20604630e+002 9.98231506e+001 1.13460808e+002 - 1.20578537e+002 9.98612747e+001 1.13490326e+002 1.20594437e+002 - 9.98867340e+001 1.13523346e+002 1.20602005e+002 9.99151077e+001 - 1.13539619e+002 1.20601532e+002 9.99038544e+001 1.13546890e+002 - 1.20585243e+002 9.99250259e+001 1.13538284e+002 1.20577629e+002 - 9.99493637e+001 1.13575615e+002 1.20576744e+002 9.99677277e+001 - 1.13582939e+002 1.20561882e+002 9.99689941e+001 1.13600266e+002 - 1.20545410e+002 9.99775696e+001 1.13604820e+002 1.20547745e+002 - 1.00011208e+002 1.13641487e+002 1.20549438e+002 1.00053383e+002 - 1.13674980e+002 1.20555984e+002 1.00059189e+002 1.13696625e+002 - 1.20551125e+002 1.00094246e+002 1.13711189e+002 1.20563354e+002 - 1.00113220e+002 1.13736305e+002 1.20563477e+002 1.00120552e+002 - 1.13731422e+002 1.20541046e+002 1.00097809e+002 1.13715088e+002 - 1.20498962e+002 1.00119789e+002 1.13727562e+002 1.20492020e+002 - 1.00140266e+002 1.13762566e+002 1.20496140e+002 1.00169807e+002 - 1.13770721e+002 1.20492134e+002 1.00180038e+002 1.13791901e+002 - 1.20484001e+002 1.00230904e+002 1.13814156e+002 1.20492180e+002 - 1.00248634e+002 1.13841698e+002 1.20482803e+002 1.00283569e+002 - 1.13870552e+002 1.20494057e+002 1.00279358e+002 1.13874977e+002 - 1.20465942e+002 1.00319847e+002 1.13905273e+002 1.20480713e+002 - 1.00334534e+002 1.13924118e+002 1.20464241e+002 1.00398422e+002 - 1.13972610e+002 1.20479477e+002 1.00421608e+002 1.14008781e+002 - 1.20480255e+002 1.00439270e+002 1.14015594e+002 1.20472702e+002 - 1.00477402e+002 1.14057808e+002 1.20481606e+002 1.00514000e+002 - 1.14074722e+002 1.20485497e+002 1.00532776e+002 1.14104340e+002 - 1.20479546e+002 1.00552414e+002 1.14108429e+002 1.20467194e+002 - 1.00586113e+002 1.14147217e+002 1.20471016e+002 1.00611076e+002 - 1.14160431e+002 1.20457550e+002 1.00612625e+002 1.14172592e+002 - 1.20437256e+002 1.00635452e+002 1.14160263e+002 1.20421585e+002 - 1.00675171e+002 1.14214333e+002 1.20433830e+002 1.00726143e+002 - 1.14247353e+002 1.20448418e+002 1.00750458e+002 1.14284630e+002 - 1.20445946e+002 1.00781860e+002 1.14298767e+002 1.20450729e+002 - 1.00800438e+002 1.14321083e+002 1.20436516e+002 1.00866486e+002 - 1.14373260e+002 1.20450783e+002 1.00860901e+002 1.14375923e+002 - 1.20423904e+002 1.00880356e+002 1.14382561e+002 1.20412750e+002 - 1.00924698e+002 1.14429199e+002 1.20429512e+002 1.00937843e+002 - 1.14425560e+002 1.20406647e+002 1.00926880e+002 1.14420601e+002 - 1.20362213e+002 1.00984520e+002 1.14449265e+002 1.20375641e+002 - 1.01021240e+002 1.14490654e+002 1.20376999e+002 1.01015648e+002 - 1.14468086e+002 1.20327507e+002 1.01025208e+002 1.14477203e+002 - 1.20299629e+002 1.01077713e+002 1.14493362e+002 1.20296471e+002 - 1.01098946e+002 1.14520164e+002 1.20285271e+002 1.01147034e+002 - 1.14552643e+002 1.20286743e+002 1.01167931e+002 1.14585289e+002 - 1.20274002e+002 1.01213829e+002 1.14606750e+002 1.20277161e+002 - 1.01253487e+002 1.14646545e+002 1.20264191e+002 1.01274300e+002 - 1.14634636e+002 1.20214195e+002 1.01303764e+002 1.14671135e+002 - 1.20204079e+002 1.01348419e+002 1.14687111e+002 1.20208992e+002 - 1.01362556e+002 1.14698425e+002 1.20182823e+002 1.01395523e+002 - 1.14698387e+002 1.20165817e+002 1.01405449e+002 1.14710953e+002 - 1.20135620e+002 1.01447357e+002 1.14732735e+002 1.20131500e+002 - 1.01466705e+002 1.14748154e+002 1.20105530e+002 1.01497971e+002 - 1.14741951e+002 1.20076935e+002 1.01554893e+002 1.14787148e+002 - 1.20087059e+002 1.01592049e+002 1.14768349e+002 1.20057076e+002 - 1.01600868e+002 1.14767059e+002 1.20018349e+002 1.01640640e+002 - 1.14758293e+002 1.19989967e+002 1.01628670e+002 1.14734268e+002 - 1.19927361e+002 1.01606323e+002 1.14664703e+002 1.19856514e+002 - 1.01530518e+002 1.14576149e+002 1.19729004e+002 1.01623749e+002 - 1.14665604e+002 1.19804932e+002 1.01676277e+002 1.14764961e+002 - 1.19910034e+002 1.01736237e+002 1.14838951e+002 1.20017754e+002 - 1.01730461e+002 1.14870972e+002 1.20058304e+002 1.01706955e+002 - 1.14864037e+002 1.20094856e+002 1.01649376e+002 1.14846031e+002 - 1.20094246e+002 1.01621971e+002 1.14839096e+002 1.20133148e+002 - 1.01596954e+002 1.14842216e+002 1.20152451e+002 1.01576263e+002 - 1.14829346e+002 1.20178131e+002 1.01522697e+002 1.14799461e+002 - 1.20163681e+002 1.01512894e+002 1.14784836e+002 1.20205452e+002 - 1.01488510e+002 1.14785347e+002 1.20222816e+002 1.01457970e+002 - 1.14763306e+002 1.20239960e+002 1.01415627e+002 1.14745842e+002 - 1.20231247e+002 1.01397293e+002 1.14726837e+002 1.20250412e+002 - 1.01368164e+002 1.14716522e+002 1.20252289e+002 1.01328003e+002 - 1.14684975e+002 1.20273453e+002 1.01265900e+002 1.14657791e+002 - 1.20263351e+002 1.01229126e+002 1.14615753e+002 1.20262840e+002 - 1.01212608e+002 1.14617226e+002 1.20280098e+002 1.01206688e+002 - 1.14609756e+002 1.20310669e+002 1.01154625e+002 1.14580307e+002 - 1.20300728e+002 1.01149513e+002 1.14578110e+002 1.20339386e+002 - 1.01140236e+002 1.14581909e+002 1.20360123e+002 1.01118370e+002 - 1.14561928e+002 1.20374016e+002 1.01068008e+002 1.14530106e+002 - 1.20359703e+002 1.01043793e+002 1.14486481e+002 1.20369667e+002 - 1.01010925e+002 1.14476143e+002 1.20374313e+002 1.00970215e+002 - 1.14432281e+002 1.20373589e+002 1.00941498e+002 1.14426750e+002 - 1.20379974e+002 1.00928658e+002 1.14398048e+002 1.20388710e+002 - 1.00907593e+002 1.14396423e+002 1.20403191e+002 1.00862801e+002 - 1.14356735e+002 1.20422966e+002 1.00832077e+002 1.14352867e+002 - 1.20439766e+002 1.00823502e+002 1.14326942e+002 1.20452568e+002 - 1.00801292e+002 1.14329041e+002 1.20463669e+002 1.00771446e+002 - 1.14285439e+002 1.20463943e+002 1.00750084e+002 1.14280617e+002 - 1.20477982e+002 1.00709946e+002 1.14240158e+002 1.20476120e+002 - 1.00678246e+002 1.14226509e+002 1.20472359e+002 1.00683617e+002 - 1.14222046e+002 1.20506371e+002 1.00633133e+002 1.14176941e+002 - 1.20480927e+002 1.00620445e+002 1.14145256e+002 1.20495354e+002 - 1.00588516e+002 1.14122810e+002 1.20483749e+002 1.00565048e+002 - 1.14089195e+002 1.20482391e+002 1.00531914e+002 1.14071899e+002 - 1.20471390e+002 1.00532578e+002 1.14061432e+002 1.20492020e+002 - 1.00507210e+002 1.14054588e+002 1.20491859e+002 1.00481941e+002 - 1.14035606e+002 1.20513237e+002 1.00429520e+002 1.14011780e+002 - 1.20499573e+002 1.00428772e+002 1.13992332e+002 1.20508919e+002 - 1.00413910e+002 1.13992416e+002 1.20513550e+002 1.00396004e+002 - 1.13955254e+002 1.20516830e+002 1.00359352e+002 1.13937248e+002 - 1.20506142e+002 1.00334946e+002 1.13908112e+002 1.20513573e+002 - 1.00334351e+002 1.13917625e+002 1.20532494e+002 1.00322563e+002 - 1.13895348e+002 1.20538948e+002 1.00298264e+002 1.13885216e+002 - 1.20546791e+002 1.00304398e+002 1.13865494e+002 1.20576889e+002 - 1.00262985e+002 1.13838860e+002 1.20566360e+002 1.00232994e+002 - 1.13803566e+002 1.20562607e+002 1.00192444e+002 1.13788208e+002 - 1.20556931e+002 1.00203644e+002 1.13785149e+002 1.20589676e+002 - 1.00181458e+002 1.13778778e+002 1.20585831e+002 1.00170052e+002 - 1.13760605e+002 1.20602814e+002 1.00124641e+002 1.13740623e+002 - 1.20590065e+002 1.00132309e+002 1.13735245e+002 1.20618752e+002 - 1.00126495e+002 1.13739998e+002 1.20628555e+002 1.00112091e+002 - 1.13707146e+002 1.20625122e+002 1.00095085e+002 1.13700485e+002 - 1.20626060e+002 1.00048187e+002 1.13654427e+002 1.20607300e+002 - 1.00024277e+002 1.13638290e+002 1.20597183e+002 1.00019150e+002 - 1.13625153e+002 1.20606026e+002 9.99888153e+001 1.13610168e+002 - 1.20602608e+002 9.99693298e+001 1.13576752e+002 1.20605301e+002 - 9.99377823e+001 1.13559441e+002 1.20597710e+002 9.99293137e+001 - 1.13550858e+002 1.20616608e+002 9.99051743e+001 1.13546738e+002 - 1.20616356e+002 9.98981400e+001 1.13526047e+002 1.20618744e+002 - 9.99081955e+001 1.13539581e+002 1.20629318e+002 9.99151306e+001 - 1.13542419e+002 1.20659325e+002 9.98892059e+001 1.13537811e+002 - 1.20655022e+002 9.99131699e+001 1.13541542e+002 1.20687042e+002 - 9.98992691e+001 1.13536720e+002 1.20682655e+002 9.99040375e+001 - 1.13524933e+002 1.20697266e+002 9.98728714e+001 1.13503189e+002 - 1.20677353e+002 9.98651276e+001 1.13495262e+002 1.20692932e+002 - 9.98572845e+001 1.13494713e+002 1.20688980e+002 9.98716583e+001 - 1.13501465e+002 1.20713669e+002 9.98455658e+001 1.13495506e+002 - 1.20709419e+002 9.98515854e+001 1.13481163e+002 1.20735710e+002 - 9.98584595e+001 1.13506874e+002 1.20751495e+002 9.98476410e+001 - 1.13488167e+002 1.20747971e+002 9.98192902e+001 1.13473770e+002 - 1.20722809e+002 9.98311310e+001 1.13463287e+002 1.20740616e+002 - 9.98291550e+001 1.13463875e+002 1.20738609e+002 9.98097610e+001 - 1.13440109e+002 1.20735237e+002 9.97703781e+001 1.13425461e+002 - 1.20710396e+002 9.97932205e+001 1.13426338e+002 1.20730423e+002 - 9.97928772e+001 1.13441635e+002 1.20740402e+002 9.97786331e+001 - 1.13413437e+002 1.20737617e+002 9.97555771e+001 1.13403397e+002 - 1.20718010e+002 9.97590561e+001 1.13396637e+002 1.20729836e+002 - 9.97635269e+001 1.13416672e+002 1.20741570e+002 9.97808914e+001 - 1.13416344e+002 1.20754929e+002 9.97481842e+001 1.13399384e+002 - 1.20731796e+002 9.97767487e+001 1.13403984e+002 1.20763321e+002 - 9.97684708e+001 1.13414543e+002 1.20764397e+002 9.97857666e+001 - 1.13426338e+002 1.20779503e+002 9.97823792e+001 1.13437225e+002 - 1.20776421e+002 9.97846146e+001 1.13422638e+002 1.20773659e+002 - 9.98206558e+001 1.13474388e+002 1.20810631e+002 9.98294296e+001 - 1.13482185e+002 1.20824532e+002 9.97951355e+001 1.13472679e+002 - 1.20799011e+002 9.98048325e+001 1.13462593e+002 1.20804657e+002 - 9.98077774e+001 1.13472290e+002 1.20804886e+002 9.98229752e+001 - 1.13465515e+002 1.20813728e+002 9.97921982e+001 1.13446358e+002 - 1.20782242e+002 9.97778702e+001 1.13431168e+002 1.20765633e+002 - 9.97848434e+001 1.13443306e+002 1.20769836e+002 9.98147583e+001 - 1.13455971e+002 1.20790245e+002 9.98052139e+001 1.13459084e+002 - 1.20784225e+002 9.98215103e+001 1.13446442e+002 1.20784378e+002 - 9.98319550e+001 1.13468697e+002 1.20788307e+002 9.98183136e+001 - 1.13451416e+002 1.20772903e+002 9.97967529e+001 1.13447220e+002 - 1.20745689e+002 9.97817917e+001 1.13413818e+002 1.20727791e+002 - 9.97999268e+001 1.13442268e+002 1.20738792e+002 9.98279190e+001 - 1.13464401e+002 1.20767105e+002 9.98039780e+001 1.13468849e+002 - 1.20746185e+002 9.98048935e+001 1.13444931e+002 1.20732834e+002 - 9.98189392e+001 1.13466576e+002 1.20734299e+002 9.98473892e+001 - 1.13478859e+002 1.20756317e+002 9.98246765e+001 1.13466209e+002 - 1.20727180e+002 9.98335266e+001 1.13472679e+002 1.20729874e+002 - 9.98514938e+001 1.13493896e+002 1.20731651e+002 9.98601913e+001 - 1.13496460e+002 1.20728050e+002 9.98601913e+001 1.13512932e+002 - 1.20719360e+002 9.99029160e+001 1.13523582e+002 1.20742828e+002 - 9.99289856e+001 1.13565674e+002 1.20761757e+002 9.99502563e+001 - 1.13578232e+002 1.20769394e+002 9.99493332e+001 1.13583939e+002 - 1.20751671e+002 9.99560928e+001 1.13577950e+002 1.20752258e+002 - 9.99512863e+001 1.13576538e+002 1.20728539e+002 9.99587402e+001 - 1.13576851e+002 1.20712708e+002 9.99529724e+001 1.13584900e+002 - 1.20699219e+002 9.99759827e+001 1.13580467e+002 1.20699379e+002 - 9.99922562e+001 1.13611694e+002 1.20706070e+002 1.00008209e+002 - 1.13602821e+002 1.20696678e+002 1.00002113e+002 1.13608604e+002 - 1.20674553e+002 1.00014061e+002 1.13609596e+002 1.20666908e+002 - 1.00054100e+002 1.13656799e+002 1.20686295e+002 1.00075882e+002 - 1.13667252e+002 1.20686768e+002 1.00065727e+002 1.13676056e+002 - 1.20670578e+002 1.00078369e+002 1.13660225e+002 1.20651848e+002 - 1.00097557e+002 1.13691895e+002 1.20645851e+002 1.00123001e+002 - 1.13706383e+002 1.20638481e+002 1.00121140e+002 1.13723541e+002 - 1.20621513e+002 1.00161804e+002 1.13745079e+002 1.20645775e+002 - 1.00189751e+002 1.13783859e+002 1.20644691e+002 1.00219887e+002 - 1.13809784e+002 1.20642303e+002 1.00221802e+002 1.13830795e+002 - 1.20638382e+002 1.00249527e+002 1.13834473e+002 1.20639259e+002 - 1.00266899e+002 1.13865974e+002 1.20640358e+002 1.00284691e+002 - 1.13860275e+002 1.20627632e+002 1.00266624e+002 1.13857796e+002 - 1.20593201e+002 1.00267723e+002 1.13847290e+002 1.20562569e+002 - 1.00304718e+002 1.13894997e+002 1.20578468e+002 1.00332115e+002 - 1.13911484e+002 1.20584518e+002 1.00346222e+002 1.13934608e+002 - 1.20576340e+002 1.00380745e+002 1.13935173e+002 1.20563919e+002 - 1.00400673e+002 1.13964043e+002 1.20557961e+002 1.00427536e+002 - 1.13985390e+002 1.20563904e+002 1.00432175e+002 1.14002686e+002 - 1.20546982e+002 1.00456940e+002 1.14005707e+002 1.20544144e+002 - 1.00483490e+002 1.14042122e+002 1.20537903e+002 1.00544533e+002 - 1.14082840e+002 1.20548096e+002 1.00564911e+002 1.14121376e+002 - 1.20546570e+002 1.00574677e+002 1.14119675e+002 1.20533615e+002 - 1.00614319e+002 1.14163734e+002 1.20547256e+002 1.00656769e+002 - 1.14188469e+002 1.20557587e+002 1.00671944e+002 1.14208435e+002 - 1.20548332e+002 1.00698921e+002 1.14222496e+002 1.20541550e+002 - 1.00723610e+002 1.14256638e+002 1.20533569e+002 1.00757614e+002 - 1.14269058e+002 1.20526985e+002 1.00757095e+002 1.14283417e+002 - 1.20514450e+002 1.00792465e+002 1.14285454e+002 1.20504654e+002 - 1.00823868e+002 1.14330673e+002 1.20508751e+002 1.00858414e+002 - 1.14354012e+002 1.20511803e+002 1.00864113e+002 1.14372208e+002 - 1.20495377e+002 1.00904388e+002 1.14394127e+002 1.20502419e+002 - 1.00930115e+002 1.14424026e+002 1.20487709e+002 1.00986664e+002 - 1.14456848e+002 1.20490608e+002 1.00989845e+002 1.14476151e+002 - 1.20476593e+002 1.01010551e+002 1.14473167e+002 1.20467850e+002 - 1.01035309e+002 1.14507561e+002 1.20466255e+002 1.01046936e+002 - 1.14499756e+002 1.20444374e+002 1.01051041e+002 1.14510345e+002 - 1.20414902e+002 1.01094650e+002 1.14535751e+002 1.20414742e+002 - 1.01156952e+002 1.14598221e+002 1.20440887e+002 1.01146027e+002 - 1.14562447e+002 1.20386711e+002 1.01146278e+002 1.14566643e+002 - 1.20355896e+002 1.01212006e+002 1.14597664e+002 1.20368492e+002 - 1.01231117e+002 1.14630936e+002 1.20355865e+002 1.01272713e+002 - 1.14648720e+002 1.20348862e+002 1.01259827e+002 1.14647545e+002 - 1.20304237e+002 1.01296837e+002 1.14659721e+002 1.20297348e+002 - 1.01341614e+002 1.14698700e+002 1.20291161e+002 1.01374527e+002 - 1.14706955e+002 1.20254158e+002 1.01392296e+002 1.14730972e+002 - 1.20229820e+002 1.01413132e+002 1.14714165e+002 1.20208893e+002 - 1.01444847e+002 1.14748383e+002 1.20205994e+002 1.01488823e+002 - 1.14762253e+002 1.20198624e+002 1.01493797e+002 1.14773407e+002 - 1.20162766e+002 1.01550583e+002 1.14809700e+002 1.20174187e+002 - 1.01567879e+002 1.14823151e+002 1.20150444e+002 1.01606819e+002 - 1.14820274e+002 1.20123619e+002 1.01629898e+002 1.14838448e+002 - 1.20109154e+002 1.01675629e+002 1.14825836e+002 1.20084526e+002 - 1.01687996e+002 1.14826706e+002 1.20046204e+002 1.01700897e+002 - 1.14793015e+002 1.20001144e+002 1.01698753e+002 1.14780998e+002 - 1.19950241e+002 1.01670815e+002 1.14702522e+002 1.19873856e+002 - 1.01565926e+002 1.14593369e+002 1.19718697e+002 1.01684601e+002 - 1.14696152e+002 1.19798439e+002 1.01747711e+002 1.14813660e+002 - 1.19917778e+002 1.01796890e+002 1.14870117e+002 1.20004227e+002 - 1.01790047e+002 1.14897919e+002 1.20046989e+002 1.01757973e+002 - 1.14882820e+002 1.20075150e+002 1.01699661e+002 1.14867462e+002 - 1.20072922e+002 1.01673218e+002 1.14854355e+002 1.20105499e+002 - 1.01642357e+002 1.14851974e+002 1.20122154e+002 1.01646523e+002 - 1.14866325e+002 1.20170609e+002 1.01586060e+002 1.14833031e+002 - 1.20162354e+002 1.01585449e+002 1.14829842e+002 1.20205193e+002 - 1.01557655e+002 1.14824501e+002 1.20222450e+002 1.01518890e+002 - 1.14796936e+002 1.20234131e+002 1.01482353e+002 1.14780342e+002 - 1.20229355e+002 1.01456924e+002 1.14754646e+002 1.20239487e+002 - 1.01422401e+002 1.14738914e+002 1.20243484e+002 1.01374306e+002 - 1.14711739e+002 1.20262726e+002 1.01327484e+002 1.14693405e+002 - 1.20262665e+002 1.01307373e+002 1.14665054e+002 1.20270424e+002 - 1.01302399e+002 1.14689011e+002 1.20303062e+002 1.01300613e+002 - 1.14674469e+002 1.20335060e+002 1.01249123e+002 1.14643272e+002 - 1.20324112e+002 1.01222221e+002 1.14623154e+002 1.20340828e+002 - 1.01218018e+002 1.14632660e+002 1.20368446e+002 1.01214867e+002 - 1.14629051e+002 1.20401329e+002 1.01182625e+002 1.14609306e+002 - 1.20399666e+002 1.01163429e+002 1.14575897e+002 1.20415962e+002 - 1.01135216e+002 1.14565598e+002 1.20424667e+002 1.01097473e+002 - 1.14531616e+002 1.20427017e+002 1.01049080e+002 1.14500641e+002 - 1.20406296e+002 1.01020454e+002 1.14460052e+002 1.20410202e+002 - 1.01004982e+002 1.14459045e+002 1.20431396e+002 1.00961876e+002 - 1.14421150e+002 1.20446976e+002 1.00932526e+002 1.14423149e+002 - 1.20462784e+002 1.00924080e+002 1.14403984e+002 1.20478455e+002 - 1.00915047e+002 1.14407990e+002 1.20495651e+002 1.00887733e+002 - 1.14376144e+002 1.20508827e+002 1.00849869e+002 1.14352852e+002 - 1.20501938e+002 1.00798958e+002 1.14306656e+002 1.20494705e+002 - 1.00795288e+002 1.14311913e+002 1.20514984e+002 1.00803772e+002 - 1.14314102e+002 1.20556122e+002 1.00752228e+002 1.14272980e+002 - 1.20528595e+002 1.00748245e+002 1.14242241e+002 1.20544731e+002 - 1.00721199e+002 1.14223083e+002 1.20540337e+002 1.00706367e+002 - 1.14198532e+002 1.20542259e+002 1.00688950e+002 1.14197472e+002 - 1.20545006e+002 1.00675529e+002 1.14173904e+002 1.20557381e+002 - 1.00646416e+002 1.14162064e+002 1.20551514e+002 1.00611938e+002 - 1.14132057e+002 1.20563904e+002 1.00558990e+002 1.14109489e+002 - 1.20542160e+002 1.00557381e+002 1.14092751e+002 1.20549278e+002 - 1.00539200e+002 1.14090981e+002 1.20555412e+002 1.00523895e+002 - 1.14055489e+002 1.20563332e+002 1.00494308e+002 1.14039253e+002 - 1.20558586e+002 1.00472252e+002 1.14013527e+002 1.20567024e+002 - 1.00447861e+002 1.14000076e+002 1.20565353e+002 1.00436134e+002 - 1.13979019e+002 1.20572510e+002 1.00419960e+002 1.13974625e+002 - 1.20583244e+002 1.00430534e+002 1.13958488e+002 1.20616341e+002 - 1.00398247e+002 1.13938866e+002 1.20614258e+002 1.00368866e+002 - 1.13910667e+002 1.20616730e+002 1.00328087e+002 1.13888977e+002 - 1.20604980e+002 1.00330994e+002 1.13880806e+002 1.20628159e+002 - 1.00315376e+002 1.13881012e+002 1.20630196e+002 1.00310593e+002 - 1.13871582e+002 1.20661491e+002 1.00275368e+002 1.13866531e+002 - 1.20660629e+002 1.00277702e+002 1.13851685e+002 1.20674438e+002 - 1.00281326e+002 1.13867996e+002 1.20692039e+002 1.00273132e+002 - 1.13843307e+002 1.20701637e+002 1.00224586e+002 1.13806503e+002 - 1.20678627e+002 1.00182625e+002 1.13760521e+002 1.20657768e+002 - 1.00166145e+002 1.13748703e+002 1.20652397e+002 1.00149872e+002 - 1.13726028e+002 1.20647987e+002 1.00131317e+002 1.13724739e+002 - 1.20655685e+002 1.00135040e+002 1.13705368e+002 1.20679535e+002 - 1.00097618e+002 1.13685226e+002 1.20670044e+002 1.00101013e+002 - 1.13683617e+002 1.20692322e+002 1.00071205e+002 1.13677628e+002 - 1.20690163e+002 1.00074120e+002 1.13663055e+002 1.20700729e+002 - 1.00091492e+002 1.13687660e+002 1.20725220e+002 1.00063759e+002 - 1.13658546e+002 1.20722733e+002 1.00035942e+002 1.13655251e+002 - 1.20719513e+002 1.00061287e+002 1.13664185e+002 1.20752380e+002 - 1.00073524e+002 1.13681656e+002 1.20767067e+002 1.00068542e+002 - 1.13658447e+002 1.20772263e+002 1.00033424e+002 1.13638214e+002 - 1.20748634e+002 1.00021347e+002 1.13620949e+002 1.20751610e+002 - 9.99949570e+001 1.13606407e+002 1.20738258e+002 1.00016197e+002 - 1.13612793e+002 1.20768639e+002 1.00005249e+002 1.13617226e+002 - 1.20775833e+002 1.00005722e+002 1.13602684e+002 1.20792267e+002 - 1.00007973e+002 1.13615898e+002 1.20806557e+002 1.00007355e+002 - 1.13605484e+002 1.20810852e+002 9.99755402e+001 1.13594009e+002 - 1.20788002e+002 9.99966660e+001 1.13602524e+002 1.20822571e+002 - 9.99895172e+001 1.13595367e+002 1.20812103e+002 9.99792099e+001 - 1.13573067e+002 1.20811111e+002 9.99498062e+001 1.13568443e+002 - 1.20798241e+002 9.99694977e+001 1.13570854e+002 1.20817833e+002 - 9.99710770e+001 1.13589127e+002 1.20828896e+002 9.99673157e+001 - 1.13566544e+002 1.20835457e+002 9.99309616e+001 1.13545067e+002 - 1.20804749e+002 9.99218292e+001 1.13531700e+002 1.20805023e+002 - 9.99355469e+001 1.13552292e+002 1.20818199e+002 9.99659424e+001 - 1.13570930e+002 1.20846870e+002 9.99349670e+001 1.13556389e+002 - 1.20827400e+002 9.99549026e+001 1.13558762e+002 1.20852814e+002 - 9.99492035e+001 1.13566360e+002 1.20850716e+002 9.99637070e+001 - 1.13574104e+002 1.20865875e+002 9.99534531e+001 1.13582916e+002 - 1.20861069e+002 9.99733887e+001 1.13586418e+002 1.20879616e+002 - 9.99814911e+001 1.13604446e+002 1.20883598e+002 9.99946213e+001 - 1.13617821e+002 1.20902931e+002 9.99813232e+001 1.13627151e+002 - 1.20894951e+002 9.99956665e+001 1.13623833e+002 1.20897812e+002 - 9.99935226e+001 1.13626526e+002 1.20889160e+002 9.99981537e+001 - 1.13607605e+002 1.20890381e+002 9.99575882e+001 1.13575874e+002 - 1.20848694e+002 9.99563828e+001 1.13569527e+002 1.20849709e+002 - 9.99687424e+001 1.13592300e+002 1.20858238e+002 9.99722366e+001 - 1.13585777e+002 1.20856163e+002 9.99699936e+001 1.13593185e+002 - 1.20857574e+002 9.99919357e+001 1.13588379e+002 1.20861382e+002 - 9.99994354e+001 1.13606499e+002 1.20867950e+002 9.99901657e+001 - 1.13589958e+002 1.20848366e+002 9.99623489e+001 1.13579742e+002 - 1.20819847e+002 9.99696045e+001 1.13573341e+002 1.20825340e+002 - 9.99720612e+001 1.13592499e+002 1.20830109e+002 1.00000137e+002 - 1.13607605e+002 1.20847496e+002 9.99868851e+001 1.13615067e+002 - 1.20832260e+002 1.00017464e+002 1.13622498e+002 1.20851303e+002 - 1.00033325e+002 1.13652763e+002 1.20860123e+002 1.00028229e+002 - 1.13626877e+002 1.20842476e+002 9.99810791e+001 1.13597389e+002 - 1.20789337e+002 1.00008392e+002 1.13617714e+002 1.20802696e+002 - 1.00021225e+002 1.13642174e+002 1.20808578e+002 1.00049416e+002 - 1.13654289e+002 1.20821396e+002 1.00037766e+002 1.13662529e+002 - 1.20809807e+002 1.00077728e+002 1.13669289e+002 1.20823807e+002 - 1.00096642e+002 1.13694603e+002 1.20833305e+002 1.00113159e+002 - 1.13702759e+002 1.20834084e+002 1.00096397e+002 1.13703598e+002 - 1.20815948e+002 1.00113503e+002 1.13705795e+002 1.20820297e+002 - 1.00109192e+002 1.13702858e+002 1.20798180e+002 1.00108192e+002 - 1.13691490e+002 1.20773415e+002 1.00113937e+002 1.13712784e+002 - 1.20768906e+002 1.00149384e+002 1.13728432e+002 1.20785698e+002 - 1.00162323e+002 1.13751213e+002 1.20787621e+002 1.00176849e+002 - 1.13746681e+002 1.20781044e+002 1.00162643e+002 1.13738091e+002 - 1.20750679e+002 1.00152039e+002 1.13720657e+002 1.20715736e+002 - 1.00196747e+002 1.13767677e+002 1.20743767e+002 1.00217796e+002 - 1.13778091e+002 1.20743324e+002 1.00216751e+002 1.13797325e+002 - 1.20736473e+002 1.00232346e+002 1.13779961e+002 1.20718109e+002 - 1.00240868e+002 1.13801918e+002 1.20709122e+002 1.00277840e+002 - 1.13826736e+002 1.20708282e+002 1.00279968e+002 1.13846191e+002 - 1.20693039e+002 1.00316063e+002 1.13869522e+002 1.20711395e+002 - 1.00342659e+002 1.13905235e+002 1.20715088e+002 1.00366653e+002 - 1.13915573e+002 1.20700340e+002 1.00358391e+002 1.13929337e+002 - 1.20682304e+002 1.00390854e+002 1.13941742e+002 1.20684441e+002 - 1.00411812e+002 1.13975983e+002 1.20691826e+002 1.00411453e+002 - 1.13956230e+002 1.20666832e+002 1.00407661e+002 1.13964935e+002 - 1.20643890e+002 1.00423882e+002 1.13971626e+002 1.20634239e+002 - 1.00438675e+002 1.14001045e+002 1.20627823e+002 1.00471275e+002 - 1.14015945e+002 1.20632568e+002 1.00483551e+002 1.14040489e+002 - 1.20626419e+002 1.00521088e+002 1.14042450e+002 1.20616241e+002 - 1.00536674e+002 1.14067909e+002 1.20612068e+002 1.00555168e+002 - 1.14078400e+002 1.20601669e+002 1.00573738e+002 1.14114006e+002 - 1.20600304e+002 1.00591743e+002 1.14112320e+002 1.20598534e+002 - 1.00615234e+002 1.14143417e+002 1.20591568e+002 1.00650887e+002 - 1.14158318e+002 1.20573341e+002 1.00674286e+002 1.14200394e+002 - 1.20577019e+002 1.00712692e+002 1.14222206e+002 1.20581451e+002 - 1.00752350e+002 1.14269814e+002 1.20604980e+002 1.00790131e+002 - 1.14282257e+002 1.20613861e+002 1.00806541e+002 1.14311813e+002 - 1.20606873e+002 1.00833145e+002 1.14330536e+002 1.20600792e+002 - 1.00848061e+002 1.14352280e+002 1.20585945e+002 1.00867279e+002 - 1.14351463e+002 1.20563553e+002 1.00878990e+002 1.14375221e+002 - 1.20555038e+002 1.00906586e+002 1.14379143e+002 1.20544449e+002 - 1.00925728e+002 1.14406433e+002 1.20540627e+002 1.00958054e+002 - 1.14424797e+002 1.20534653e+002 1.00959549e+002 1.14434914e+002 - 1.20507393e+002 1.01010529e+002 1.14467049e+002 1.20529549e+002 - 1.01042984e+002 1.14503563e+002 1.20527077e+002 1.01088425e+002 - 1.14521423e+002 1.20517693e+002 1.01075317e+002 1.14531631e+002 - 1.20484985e+002 1.01097229e+002 1.14525436e+002 1.20472046e+002 - 1.01095703e+002 1.14538170e+002 1.20449570e+002 1.01137100e+002 - 1.14553947e+002 1.20448936e+002 1.01158661e+002 1.14580696e+002 - 1.20439644e+002 1.01190369e+002 1.14591423e+002 1.20430801e+002 - 1.01233643e+002 1.14640625e+002 1.20438583e+002 1.01250732e+002 - 1.14630562e+002 1.20412163e+002 1.01264275e+002 1.14648399e+002 - 1.20397354e+002 1.01326393e+002 1.14673676e+002 1.20401566e+002 - 1.01327850e+002 1.14687584e+002 1.20376213e+002 1.01357841e+002 - 1.14697128e+002 1.20354370e+002 1.01353409e+002 1.14706284e+002 - 1.20317329e+002 1.01390663e+002 1.14714684e+002 1.20311386e+002 - 1.01405396e+002 1.14723740e+002 1.20280365e+002 1.01452469e+002 - 1.14748039e+002 1.20259140e+002 1.01487411e+002 1.14789894e+002 - 1.20255020e+002 1.01507004e+002 1.14776878e+002 1.20233406e+002 - 1.01543228e+002 1.14811569e+002 1.20228584e+002 1.01572540e+002 - 1.14812195e+002 1.20208893e+002 1.01591805e+002 1.14831444e+002 - 1.20188271e+002 1.01634918e+002 1.14856285e+002 1.20184471e+002 - 1.01659248e+002 1.14873528e+002 1.20168472e+002 1.01678680e+002 - 1.14864349e+002 1.20127541e+002 1.01687042e+002 1.14865646e+002 - 1.20096069e+002 1.01733879e+002 1.14853012e+002 1.20070877e+002 - 1.01746353e+002 1.14853012e+002 1.20041519e+002 1.01768364e+002 - 1.14825813e+002 1.19996109e+002 1.01752258e+002 1.14808502e+002 - 1.19935989e+002 1.01724754e+002 1.14733330e+002 1.19861946e+002 - 1.01609787e+002 1.14609703e+002 1.19702011e+002 1.01701103e+002 - 1.14699684e+002 1.19765717e+002 1.01778053e+002 1.14819069e+002 - 1.19894836e+002 1.01828400e+002 1.14880699e+002 1.19994469e+002 - 1.01813858e+002 1.14895309e+002 1.20022606e+002 1.01778076e+002 - 1.14878708e+002 1.20042213e+002 1.01728714e+002 1.14862328e+002 - 1.20048683e+002 1.01697891e+002 1.14849686e+002 1.20076675e+002 - 1.01651596e+002 1.14830833e+002 1.20073799e+002 1.01632896e+002 - 1.14822464e+002 1.20105682e+002 1.01606270e+002 1.14823364e+002 - 1.20121429e+002 1.01598488e+002 1.14813187e+002 1.20165565e+002 - 1.01571678e+002 1.14810410e+002 1.20180901e+002 1.01543510e+002 - 1.14792053e+002 1.20204353e+002 1.01515228e+002 1.14786819e+002 - 1.20218864e+002 1.01496346e+002 1.14771873e+002 1.20231552e+002 - 1.01466484e+002 1.14759705e+002 1.20230133e+002 1.01415901e+002 - 1.14719940e+002 1.20245705e+002 1.01370857e+002 1.14709938e+002 - 1.20252953e+002 1.01356003e+002 1.14693756e+002 1.20270645e+002 - 1.01353981e+002 1.14712051e+002 1.20300896e+002 1.01339058e+002 - 1.14692635e+002 1.20328957e+002 1.01304924e+002 1.14678696e+002 - 1.20329994e+002 1.01280617e+002 1.14649261e+002 1.20345291e+002 - 1.01264961e+002 1.14653870e+002 1.20364235e+002 1.01281273e+002 - 1.14670685e+002 1.20409134e+002 1.01235931e+002 1.14636536e+002 - 1.20396980e+002 1.01219849e+002 1.14605347e+002 1.20418312e+002 - 1.01186852e+002 1.14588211e+002 1.20416603e+002 1.01172005e+002 - 1.14572792e+002 1.20440590e+002 1.01114540e+002 1.14537819e+002 - 1.20421509e+002 1.01075737e+002 1.14492813e+002 1.20406937e+002 - 1.01053444e+002 1.14489853e+002 1.20423332e+002 1.01041397e+002 - 1.14476631e+002 1.20469116e+002 1.00983307e+002 1.14448006e+002 - 1.20454689e+002 1.00966469e+002 1.14421066e+002 1.20461586e+002 - 1.00949265e+002 1.14416222e+002 1.20474319e+002 1.00949219e+002 - 1.14405952e+002 1.20504593e+002 1.00921974e+002 1.14405319e+002 - 1.20514938e+002 1.00884819e+002 1.14364983e+002 1.20521744e+002 - 1.00866737e+002 1.14361122e+002 1.20532043e+002 1.00864754e+002 - 1.14351990e+002 1.20557968e+002 1.00826653e+002 1.14320419e+002 - 1.20547966e+002 1.00824898e+002 1.14299767e+002 1.20564499e+002 - 1.00811455e+002 1.14292717e+002 1.20572258e+002 1.00781700e+002 - 1.14248474e+002 1.20558723e+002 1.00762947e+002 1.14245461e+002 - 1.20561127e+002 1.00749115e+002 1.14225418e+002 1.20572792e+002 - 1.00715309e+002 1.14208359e+002 1.20554100e+002 1.00687592e+002 - 1.14177048e+002 1.20572235e+002 1.00630981e+002 1.14157043e+002 - 1.20557259e+002 1.00624100e+002 1.14133492e+002 1.20562157e+002 - 1.00609680e+002 1.14129547e+002 1.20565399e+002 1.00601219e+002 - 1.14101807e+002 1.20579567e+002 1.00584503e+002 1.14104202e+002 - 1.20586884e+002 1.00570023e+002 1.14077118e+002 1.20598862e+002 - 1.00520920e+002 1.14045593e+002 1.20569588e+002 1.00531158e+002 - 1.14037918e+002 1.20598495e+002 1.00510811e+002 1.14032623e+002 - 1.20607887e+002 1.00506775e+002 1.14007828e+002 1.20631294e+002 - 1.00497833e+002 1.14014877e+002 1.20651421e+002 1.00484489e+002 - 1.13995941e+002 1.20664864e+002 1.00453087e+002 1.13984154e+002 - 1.20666862e+002 1.00430023e+002 1.13954544e+002 1.20661316e+002 - 1.00399750e+002 1.13935822e+002 1.20645004e+002 1.00389893e+002 - 1.13928001e+002 1.20676727e+002 1.00370003e+002 1.13929016e+002 - 1.20685341e+002 1.00362572e+002 1.13907799e+002 1.20694283e+002 - 1.00362335e+002 1.13916061e+002 1.20708145e+002 1.00350388e+002 - 1.13892838e+002 1.20715843e+002 1.00319344e+002 1.13877075e+002 - 1.20709198e+002 1.00304253e+002 1.13855820e+002 1.20714317e+002 - 1.00282173e+002 1.13842056e+002 1.20703079e+002 1.00268860e+002 - 1.13815979e+002 1.20701653e+002 1.00256317e+002 1.13820763e+002 - 1.20712166e+002 1.00249290e+002 1.13791962e+002 1.20722710e+002 - 1.00219742e+002 1.13781586e+002 1.20716667e+002 1.00219734e+002 - 1.13773643e+002 1.20740738e+002 1.00189056e+002 1.13761543e+002 - 1.20734924e+002 1.00190010e+002 1.13750443e+002 1.20746284e+002 - 1.00196037e+002 1.13761993e+002 1.20758797e+002 1.00171295e+002 - 1.13737892e+002 1.20762810e+002 1.00146957e+002 1.13741821e+002 - 1.20764107e+002 1.00154823e+002 1.13726486e+002 1.20774300e+002 - 1.00169899e+002 1.13749481e+002 1.20794380e+002 1.00148117e+002 - 1.13712746e+002 1.20779991e+002 1.00138191e+002 1.13712265e+002 - 1.20780464e+002 1.00129707e+002 1.13700386e+002 1.20788002e+002 - 1.00122314e+002 1.13701569e+002 1.20793793e+002 1.00149231e+002 - 1.13719269e+002 1.20831581e+002 1.00125885e+002 1.13706429e+002 - 1.20824974e+002 1.00123451e+002 1.13687363e+002 1.20831894e+002 - 1.00120850e+002 1.13696739e+002 1.20843674e+002 1.00131149e+002 - 1.13698715e+002 1.20861656e+002 1.00105042e+002 1.13691780e+002 - 1.20840248e+002 1.00114021e+002 1.13690941e+002 1.20860657e+002 - 1.00109093e+002 1.13687088e+002 1.20851425e+002 1.00101036e+002 - 1.13666893e+002 1.20859131e+002 1.00077339e+002 1.13665253e+002 - 1.20854622e+002 1.00089989e+002 1.13669914e+002 1.20872749e+002 - 1.00085190e+002 1.13668587e+002 1.20864967e+002 1.00076241e+002 - 1.13649055e+002 1.20870125e+002 1.00057533e+002 1.13638741e+002 - 1.20852768e+002 1.00047813e+002 1.13629036e+002 1.20854126e+002 - 1.00060661e+002 1.13651382e+002 1.20866928e+002 1.00079475e+002 - 1.13663147e+002 1.20891777e+002 1.00055962e+002 1.13653107e+002 - 1.20877602e+002 1.00067688e+002 1.13652031e+002 1.20893456e+002 - 1.00066429e+002 1.13658676e+002 1.20897415e+002 1.00077003e+002 - 1.13660545e+002 1.20909225e+002 1.00060326e+002 1.13660271e+002 - 1.20895622e+002 1.00078003e+002 1.13667137e+002 1.20914345e+002 - 1.00092163e+002 1.13688721e+002 1.20920891e+002 1.00106506e+002 - 1.13697411e+002 1.20943466e+002 1.00092422e+002 1.13709190e+002 - 1.20934853e+002 1.00111877e+002 1.13712746e+002 1.20949188e+002 - 1.00118103e+002 1.13718895e+002 1.20948502e+002 1.00128082e+002 - 1.13712273e+002 1.20946754e+002 1.00099411e+002 1.13696465e+002 - 1.20919342e+002 1.00078590e+002 1.13665207e+002 1.20903030e+002 - 1.00072723e+002 1.13669289e+002 1.20893112e+002 1.00091835e+002 - 1.13676941e+002 1.20903908e+002 1.00082077e+002 1.13676735e+002 - 1.20896088e+002 1.00103142e+002 1.13677132e+002 1.20905243e+002 - 1.00123734e+002 1.13701431e+002 1.20917770e+002 1.00113647e+002 - 1.13686028e+002 1.20904396e+002 1.00100113e+002 1.13690460e+002 - 1.20892525e+002 1.00098709e+002 1.13680107e+002 1.20890190e+002 - 1.00100243e+002 1.13690941e+002 1.20883995e+002 1.00128159e+002 - 1.13703194e+002 1.20902573e+002 1.00104401e+002 1.13708824e+002 - 1.20883675e+002 1.00140480e+002 1.13725128e+002 1.20900970e+002 - 1.00146973e+002 1.13743858e+002 1.20904327e+002 1.00150017e+002 - 1.13726883e+002 1.20894112e+002 1.00111176e+002 1.13697639e+002 - 1.20849342e+002 1.00130234e+002 1.13713165e+002 1.20856987e+002 - 1.00138550e+002 1.13739304e+002 1.20853127e+002 1.00166046e+002 - 1.13747345e+002 1.20866676e+002 1.00162987e+002 1.13758781e+002 - 1.20863289e+002 1.00196083e+002 1.13767853e+002 1.20876122e+002 - 1.00192978e+002 1.13771744e+002 1.20861656e+002 1.00195786e+002 - 1.13758034e+002 1.20844994e+002 1.00185318e+002 1.13760956e+002 - 1.20830124e+002 1.00206635e+002 1.13767624e+002 1.20841499e+002 - 1.00203812e+002 1.13771034e+002 1.20821121e+002 1.00222023e+002 - 1.13774490e+002 1.20816101e+002 1.00219452e+002 1.13790901e+002 - 1.20808067e+002 1.00250366e+002 1.13804619e+002 1.20819885e+002 - 1.00278366e+002 1.13842583e+002 1.20841896e+002 1.00289871e+002 - 1.13829643e+002 1.20821678e+002 1.00272850e+002 1.13826508e+002 - 1.20796539e+002 1.00274467e+002 1.13822197e+002 1.20770966e+002 - 1.00310318e+002 1.13859100e+002 1.20788750e+002 1.00314743e+002 - 1.13854904e+002 1.20778267e+002 1.00327438e+002 1.13874626e+002 - 1.20773071e+002 1.00348854e+002 1.13868248e+002 1.20765366e+002 - 1.00352715e+002 1.13890015e+002 1.20751617e+002 1.00371460e+002 - 1.13891701e+002 1.20738304e+002 1.00381607e+002 1.13919121e+002 - 1.20733795e+002 1.00400368e+002 1.13924721e+002 1.20725609e+002 - 1.00414108e+002 1.13946434e+002 1.20715599e+002 1.00446182e+002 - 1.13963882e+002 1.20713692e+002 1.00456070e+002 1.13994507e+002 - 1.20705086e+002 1.00491234e+002 1.14013840e+002 1.20715950e+002 - 1.00509560e+002 1.14039291e+002 1.20716003e+002 1.00519615e+002 - 1.14030144e+002 1.20702675e+002 1.00516220e+002 1.14045296e+002 - 1.20679596e+002 1.00532684e+002 1.14056290e+002 1.20673637e+002 - 1.00533791e+002 1.14066139e+002 1.20654922e+002 1.00553772e+002 - 1.14074356e+002 1.20649300e+002 1.00562210e+002 1.14088394e+002 - 1.20638046e+002 1.00605698e+002 1.14103477e+002 1.20635910e+002 - 1.00605194e+002 1.14114967e+002 1.20611969e+002 1.00636787e+002 - 1.14125969e+002 1.20612808e+002 1.00653725e+002 1.14162239e+002 - 1.20619026e+002 1.00675888e+002 1.14164764e+002 1.20614853e+002 - 1.00696251e+002 1.14187538e+002 1.20605888e+002 1.00723068e+002 - 1.14199257e+002 1.20580124e+002 1.00737389e+002 1.14233948e+002 - 1.20578354e+002 1.00782562e+002 1.14263687e+002 1.20591400e+002 - 1.00827469e+002 1.14317200e+002 1.20622147e+002 1.00863831e+002 - 1.14332657e+002 1.20627480e+002 1.00865860e+002 1.14339088e+002 - 1.20601891e+002 1.00886803e+002 1.14347107e+002 1.20585930e+002 - 1.00904892e+002 1.14380127e+002 1.20580025e+002 1.00930412e+002 - 1.14392258e+002 1.20574165e+002 1.00953979e+002 1.14424835e+002 - 1.20577415e+002 1.00984001e+002 1.14428856e+002 1.20565155e+002 - 1.00982513e+002 1.14439445e+002 1.20538948e+002 1.01007225e+002 - 1.14444954e+002 1.20531319e+002 1.01023972e+002 1.14472984e+002 - 1.20519196e+002 1.01061707e+002 1.14496170e+002 1.20531273e+002 - 1.01072090e+002 1.14508202e+002 1.20501884e+002 1.01117790e+002 - 1.14526070e+002 1.20493019e+002 1.01124283e+002 1.14553558e+002 - 1.20478592e+002 1.01154121e+002 1.14557716e+002 1.20470726e+002 - 1.01144180e+002 1.14554741e+002 1.20434570e+002 1.01172516e+002 - 1.14560028e+002 1.20425430e+002 1.01195564e+002 1.14595482e+002 - 1.20418587e+002 1.01246407e+002 1.14621086e+002 1.20426781e+002 - 1.01282143e+002 1.14657951e+002 1.20429497e+002 1.01293953e+002 - 1.14643326e+002 1.20396416e+002 1.01310730e+002 1.14662560e+002 - 1.20383667e+002 1.01358681e+002 1.14677460e+002 1.20371529e+002 - 1.01365501e+002 1.14691269e+002 1.20347946e+002 1.01385742e+002 - 1.14691559e+002 1.20326469e+002 1.01389198e+002 1.14705643e+002 - 1.20297920e+002 1.01432121e+002 1.14727783e+002 1.20295631e+002 - 1.01451721e+002 1.14747581e+002 1.20269875e+002 1.01476212e+002 - 1.14739250e+002 1.20227844e+002 1.01505928e+002 1.14781090e+002 - 1.20220268e+002 1.01528809e+002 1.14767601e+002 1.20199921e+002 - 1.01555138e+002 1.14794174e+002 1.20190865e+002 1.01586502e+002 - 1.14795410e+002 1.20166466e+002 1.01604889e+002 1.14812645e+002 - 1.20148010e+002 1.01658951e+002 1.14849266e+002 1.20156448e+002 - 1.01683609e+002 1.14869698e+002 1.20139214e+002 1.01680511e+002 - 1.14836304e+002 1.20078430e+002 1.01683090e+002 1.14833801e+002 - 1.20048286e+002 1.01719696e+002 1.14813286e+002 1.20009285e+002 - 1.01744438e+002 1.14824959e+002 1.19988976e+002 1.01768211e+002 - 1.14800858e+002 1.19945564e+002 1.01732025e+002 1.14760597e+002 - 1.19870987e+002 1.01723114e+002 1.14712311e+002 1.19815651e+002 - 1.01642303e+002 1.14618271e+002 1.19685852e+002 1.01725533e+002 - 1.14697517e+002 1.19744637e+002 1.01781311e+002 1.14798256e+002 - 1.19853539e+002 1.01827408e+002 1.14852135e+002 1.19939133e+002 - 1.01800346e+002 1.14859619e+002 1.19958153e+002 1.01754433e+002 - 1.14830589e+002 1.19971939e+002 1.01718117e+002 1.14829979e+002 - 1.19988167e+002 1.01686363e+002 1.14813820e+002 1.20019348e+002 - 1.01633827e+002 1.14782326e+002 1.20007561e+002 1.01619194e+002 - 1.14776016e+002 1.20040207e+002 1.01593071e+002 1.14784264e+002 - 1.20063980e+002 1.01596138e+002 1.14784149e+002 1.20118118e+002 - 1.01566345e+002 1.14780098e+002 1.20127625e+002 1.01542519e+002 - 1.14760231e+002 1.20150383e+002 1.01521606e+002 1.14768547e+002 - 1.20168663e+002 1.01510033e+002 1.14753616e+002 1.20191505e+002 - 1.01469284e+002 1.14740303e+002 1.20189583e+002 1.01455887e+002 - 1.14737450e+002 1.20240776e+002 1.01411972e+002 1.14729370e+002 - 1.20244392e+002 1.01397499e+002 1.14709763e+002 1.20264648e+002 - 1.01388390e+002 1.14724777e+002 1.20290718e+002 1.01364136e+002 - 1.14694801e+002 1.20307587e+002 1.01352516e+002 1.14699890e+002 - 1.20328682e+002 1.01334862e+002 1.14684013e+002 1.20354141e+002 - 1.01296616e+002 1.14659584e+002 1.20342567e+002 1.01298126e+002 - 1.14654068e+002 1.20376839e+002 1.01265152e+002 1.14635620e+002 - 1.20382515e+002 1.01259987e+002 1.14617546e+002 1.20406731e+002 - 1.01230904e+002 1.14611130e+002 1.20413017e+002 1.01220619e+002 - 1.14593124e+002 1.20444214e+002 1.01171555e+002 1.14569878e+002 - 1.20430252e+002 1.01132446e+002 1.14523499e+002 1.20416435e+002 - 1.01106522e+002 1.14509201e+002 1.20419144e+002 1.01080376e+002 - 1.14491974e+002 1.20457489e+002 1.01032455e+002 1.14472542e+002 - 1.20453003e+002 1.01018654e+002 1.14447006e+002 1.20462296e+002 - 1.01004387e+002 1.14448914e+002 1.20477104e+002 1.00993912e+002 - 1.14431610e+002 1.20500648e+002 1.00960396e+002 1.14418846e+002 - 1.20505066e+002 1.00932945e+002 1.14386475e+002 1.20520790e+002 - 1.00929703e+002 1.14396576e+002 1.20545219e+002 1.00923843e+002 - 1.14386826e+002 1.20564018e+002 1.00888298e+002 1.14356812e+002 - 1.20558830e+002 1.00867889e+002 1.14318794e+002 1.20562096e+002 - 1.00866837e+002 1.14321106e+002 1.20570869e+002 1.00875557e+002 - 1.14317635e+002 1.20602867e+002 1.00841621e+002 1.14303688e+002 - 1.20587769e+002 1.00816734e+002 1.14269775e+002 1.20589851e+002 - 1.00797951e+002 1.14267509e+002 1.20589233e+002 1.00772751e+002 - 1.14243240e+002 1.20605438e+002 1.00697403e+002 1.14196609e+002 - 1.20565041e+002 1.00691696e+002 1.14181297e+002 1.20573921e+002 - 1.00679916e+002 1.14178146e+002 1.20584885e+002 1.00675873e+002 - 1.14155693e+002 1.20600395e+002 1.00648926e+002 1.14146080e+002 - 1.20601440e+002 1.00658211e+002 1.14141449e+002 1.20634338e+002 - 1.00629700e+002 1.14126671e+002 1.20626747e+002 1.00638031e+002 - 1.14122429e+002 1.20657768e+002 1.00609474e+002 1.14102371e+002 - 1.20649986e+002 1.00605728e+002 1.14077133e+002 1.20674553e+002 - 1.00591003e+002 1.14078201e+002 1.20680496e+002 1.00564072e+002 - 1.14048592e+002 1.20689217e+002 1.00527374e+002 1.14030144e+002 - 1.20681671e+002 1.00519119e+002 1.14014709e+002 1.20692757e+002 - 1.00505875e+002 1.14019646e+002 1.20699280e+002 1.00496750e+002 - 1.14003136e+002 1.20718315e+002 1.00463913e+002 1.13997177e+002 - 1.20706497e+002 1.00458305e+002 1.13981781e+002 1.20728828e+002 - 1.00450066e+002 1.13977448e+002 1.20730278e+002 1.00441460e+002 - 1.13958138e+002 1.20748787e+002 1.00414024e+002 1.13944962e+002 - 1.20744911e+002 1.00391136e+002 1.13914886e+002 1.20743118e+002 - 1.00379944e+002 1.13911583e+002 1.20735420e+002 1.00376297e+002 - 1.13893471e+002 1.20746162e+002 1.00373970e+002 1.13903191e+002 - 1.20758278e+002 1.00372162e+002 1.13885117e+002 1.20783340e+002 - 1.00329689e+002 1.13861488e+002 1.20761299e+002 1.00326805e+002 - 1.13846375e+002 1.20778984e+002 1.00295326e+002 1.13835571e+002 - 1.20771828e+002 1.00305672e+002 1.13837822e+002 1.20794243e+002 - 1.00305832e+002 1.13846825e+002 1.20802612e+002 1.00284821e+002 - 1.13821785e+002 1.20807991e+002 1.00250839e+002 1.13816544e+002 - 1.20803482e+002 1.00251999e+002 1.13794548e+002 1.20803322e+002 - 1.00239998e+002 1.13792114e+002 1.20797066e+002 1.00243752e+002 - 1.13781563e+002 1.20811714e+002 1.00233215e+002 1.13784348e+002 - 1.20821358e+002 1.00240211e+002 1.13781403e+002 1.20838356e+002 - 1.00233078e+002 1.13783348e+002 1.20831680e+002 1.00250725e+002 - 1.13789192e+002 1.20862404e+002 1.00228455e+002 1.13777481e+002 - 1.20858498e+002 1.00236023e+002 1.13762016e+002 1.20866028e+002 - 1.00229980e+002 1.13777351e+002 1.20884048e+002 1.00233429e+002 - 1.13777290e+002 1.20899437e+002 1.00201958e+002 1.13763527e+002 - 1.20874092e+002 1.00209610e+002 1.13758896e+002 1.20892082e+002 - 1.00204849e+002 1.13758034e+002 1.20890358e+002 1.00209763e+002 - 1.13748055e+002 1.20899460e+002 1.00196869e+002 1.13760193e+002 - 1.20903183e+002 1.00197067e+002 1.13745735e+002 1.20905617e+002 - 1.00175804e+002 1.13737129e+002 1.20896812e+002 1.00189606e+002 - 1.13735939e+002 1.20908897e+002 1.00178406e+002 1.13736076e+002 - 1.20906128e+002 1.00189896e+002 1.13744019e+002 1.20924339e+002 - 1.00192955e+002 1.13757759e+002 1.20932228e+002 1.00198372e+002 - 1.13758606e+002 1.20944130e+002 1.00177307e+002 1.13754814e+002 - 1.20939087e+002 1.00193703e+002 1.13753838e+002 1.20957916e+002 - 1.00180183e+002 1.13756256e+002 1.20950485e+002 1.00174492e+002 - 1.13732483e+002 1.20944542e+002 1.00155457e+002 1.13733284e+002 - 1.20932228e+002 1.00166672e+002 1.13730583e+002 1.20941025e+002 - 1.00174652e+002 1.13751915e+002 1.20946068e+002 1.00187996e+002 - 1.13754639e+002 1.20962250e+002 1.00178879e+002 1.13768951e+002 - 1.20962425e+002 1.00197464e+002 1.13768326e+002 1.20972130e+002 - 1.00202614e+002 1.13784035e+002 1.20971085e+002 1.00189552e+002 - 1.13752014e+002 1.20950424e+002 1.00164017e+002 1.13737526e+002 - 1.20921928e+002 1.00162315e+002 1.13725563e+002 1.20917992e+002 - 1.00167099e+002 1.13740059e+002 1.20915245e+002 1.00206871e+002 - 1.13761978e+002 1.20946892e+002 1.00180847e+002 1.13744736e+002 - 1.20921417e+002 1.00209068e+002 1.13749077e+002 1.20938446e+002 - 1.00203941e+002 1.13753189e+002 1.20935867e+002 1.00199516e+002 - 1.13746758e+002 1.20924538e+002 1.00196434e+002 1.13759720e+002 - 1.20919357e+002 1.00202339e+002 1.13753227e+002 1.20929771e+002 - 1.00194550e+002 1.13759285e+002 1.20913673e+002 1.00220100e+002 - 1.13771095e+002 1.20924637e+002 1.00201248e+002 1.13784050e+002 - 1.20915321e+002 1.00229576e+002 1.13794746e+002 1.20928360e+002 - 1.00228348e+002 1.13799568e+002 1.20918732e+002 1.00238907e+002 - 1.13791481e+002 1.20919006e+002 1.00214821e+002 1.13785118e+002 - 1.20890320e+002 1.00232780e+002 1.13793152e+002 1.20894455e+002 - 1.00234352e+002 1.13808060e+002 1.20887955e+002 1.00243919e+002 - 1.13807762e+002 1.20886032e+002 1.00249741e+002 1.13828857e+002 - 1.20890282e+002 1.00288887e+002 1.13832115e+002 1.20904266e+002 - 1.00280861e+002 1.13839310e+002 1.20887085e+002 1.00268646e+002 - 1.13811646e+002 1.20861191e+002 1.00278633e+002 1.13832390e+002 - 1.20859749e+002 1.00310059e+002 1.13842842e+002 1.20878517e+002 - 1.00294357e+002 1.13834503e+002 1.20849144e+002 1.00319359e+002 - 1.13843666e+002 1.20852554e+002 1.00319000e+002 1.13861404e+002 - 1.20844536e+002 1.00346024e+002 1.13873253e+002 1.20858810e+002 - 1.00371269e+002 1.13909485e+002 1.20873543e+002 1.00377594e+002 - 1.13900276e+002 1.20855049e+002 1.00368378e+002 1.13901627e+002 - 1.20830811e+002 1.00377495e+002 1.13896217e+002 1.20816719e+002 - 1.00407265e+002 1.13937569e+002 1.20824776e+002 1.00422874e+002 - 1.13938072e+002 1.20823517e+002 1.00429085e+002 1.13955704e+002 - 1.20816833e+002 1.00459923e+002 1.13957230e+002 1.20816338e+002 - 1.00462715e+002 1.13970543e+002 1.20797966e+002 1.00470131e+002 - 1.13962158e+002 1.20773712e+002 1.00471436e+002 1.13981705e+002 - 1.20758949e+002 1.00503792e+002 1.13997627e+002 1.20764046e+002 - 1.00513062e+002 1.14015213e+002 1.20754456e+002 1.00562477e+002 - 1.14049866e+002 1.20766769e+002 1.00555649e+002 1.14064842e+002 - 1.20748795e+002 1.00591385e+002 1.14081566e+002 1.20755844e+002 - 1.00591141e+002 1.14096336e+002 1.20735786e+002 1.00611816e+002 - 1.14096252e+002 1.20735847e+002 1.00600883e+002 1.14104683e+002 - 1.20705460e+002 1.00612625e+002 1.14100693e+002 1.20687630e+002 - 1.00609795e+002 1.14113350e+002 1.20671631e+002 1.00638191e+002 - 1.14126419e+002 1.20674690e+002 1.00641083e+002 1.14136078e+002 - 1.20657532e+002 1.00675476e+002 1.14145691e+002 1.20648178e+002 - 1.00668083e+002 1.14151352e+002 1.20620529e+002 1.00704857e+002 - 1.14164299e+002 1.20625008e+002 1.00720703e+002 1.14199043e+002 - 1.20623100e+002 1.00731491e+002 1.14188538e+002 1.20613060e+002 - 1.00763489e+002 1.14227882e+002 1.20607948e+002 1.00803223e+002 - 1.14247650e+002 1.20600868e+002 1.00803703e+002 1.14267891e+002 - 1.20588669e+002 1.00831833e+002 1.14281982e+002 1.20587196e+002 - 1.00873924e+002 1.14332520e+002 1.20610626e+002 1.00936401e+002 - 1.14371185e+002 1.20638687e+002 1.00922882e+002 1.14370811e+002 - 1.20600136e+002 1.00946098e+002 1.14383698e+002 1.20584122e+002 - 1.00947105e+002 1.14397484e+002 1.20566200e+002 1.00986565e+002 - 1.14419930e+002 1.20571342e+002 1.01000313e+002 1.14443710e+002 - 1.20565773e+002 1.01018433e+002 1.14434929e+002 1.20542763e+002 - 1.01008148e+002 1.14439125e+002 1.20516380e+002 1.01051041e+002 - 1.14465286e+002 1.20524513e+002 1.01070572e+002 1.14497231e+002 - 1.20520744e+002 1.01108231e+002 1.14523987e+002 1.20532234e+002 - 1.01130417e+002 1.14546967e+002 1.20515594e+002 1.01185280e+002 - 1.14575638e+002 1.20511925e+002 1.01200172e+002 1.14606758e+002 - 1.20504242e+002 1.01215736e+002 1.14595123e+002 1.20486435e+002 - 1.01221649e+002 1.14611565e+002 1.20471321e+002 1.01237602e+002 - 1.14595695e+002 1.20440300e+002 1.01236099e+002 1.14601761e+002 - 1.20409409e+002 1.01264565e+002 1.14609367e+002 1.20396355e+002 - 1.01311966e+002 1.14659660e+002 1.20404976e+002 1.01319977e+002 - 1.14635132e+002 1.20373466e+002 1.01333435e+002 1.14651520e+002 - 1.20353455e+002 1.01395905e+002 1.14682014e+002 1.20354935e+002 - 1.01408569e+002 1.14708176e+002 1.20341995e+002 1.01421883e+002 - 1.14701134e+002 1.20317825e+002 1.01424202e+002 1.14713234e+002 - 1.20284470e+002 1.01458450e+002 1.14726753e+002 1.20277100e+002 - 1.01484459e+002 1.14748314e+002 1.20252747e+002 1.01525414e+002 - 1.14758682e+002 1.20230728e+002 1.01536797e+002 1.14775253e+002 - 1.20198502e+002 1.01556923e+002 1.14764626e+002 1.20175346e+002 - 1.01582787e+002 1.14795052e+002 1.20173119e+002 1.01616119e+002 - 1.14794228e+002 1.20154739e+002 1.01619881e+002 1.14807213e+002 - 1.20122368e+002 1.01656326e+002 1.14820465e+002 1.20107834e+002 - 1.01696167e+002 1.14855354e+002 1.20102074e+002 1.01687965e+002 - 1.14817070e+002 1.20044853e+002 1.01676964e+002 1.14799271e+002 - 1.19998344e+002 1.01713776e+002 1.14781746e+002 1.19962830e+002 - 1.01729980e+002 1.14778976e+002 1.19928818e+002 1.01744858e+002 - 1.14747154e+002 1.19883064e+002 1.01714035e+002 1.14717834e+002 - 1.19812347e+002 1.01717323e+002 1.14675636e+002 1.19762085e+002 - 1.01642151e+002 1.14589386e+002 1.19646118e+002 1.01720551e+002 - 1.14657036e+002 1.19682869e+002 1.01756104e+002 1.14726616e+002 - 1.19767853e+002 1.01773788e+002 1.14766861e+002 1.19829636e+002 - 1.01774422e+002 1.14799957e+002 1.19875366e+002 1.01725670e+002 - 1.14759941e+002 1.19883972e+002 1.01679428e+002 1.14753052e+002 - 1.19895439e+002 1.01659523e+002 1.14749580e+002 1.19932968e+002 - 1.01614616e+002 1.14734695e+002 1.19935677e+002 1.01607590e+002 - 1.14734734e+002 1.19971184e+002 1.01587906e+002 1.14741875e+002 - 1.19995209e+002 1.01584221e+002 1.14737068e+002 1.20043991e+002 - 1.01568443e+002 1.14750351e+002 1.20073662e+002 1.01539825e+002 - 1.14716537e+002 1.20089996e+002 1.01495567e+002 1.14704529e+002 - 1.20089638e+002 1.01498001e+002 1.14706802e+002 1.20113640e+002 - 1.01469933e+002 1.14712715e+002 1.20131485e+002 1.01466225e+002 - 1.14699165e+002 1.20193565e+002 1.01423042e+002 1.14701645e+002 - 1.20199371e+002 1.01422264e+002 1.14701309e+002 1.20231628e+002 - 1.01391464e+002 1.14695313e+002 1.20239571e+002 1.01378342e+002 - 1.14669426e+002 1.20262840e+002 1.01361526e+002 1.14676758e+002 - 1.20285721e+002 1.01339310e+002 1.14656189e+002 1.20296669e+002 - 1.01306114e+002 1.14639954e+002 1.20296837e+002 1.01296852e+002 - 1.14623131e+002 1.20318802e+002 1.01260956e+002 1.14599640e+002 - 1.20319824e+002 1.01264046e+002 1.14586212e+002 1.20350426e+002 - 1.01235870e+002 1.14578773e+002 1.20361801e+002 1.01213211e+002 - 1.14551811e+002 1.20375549e+002 1.01172417e+002 1.14537361e+002 - 1.20369759e+002 1.01144844e+002 1.14504326e+002 1.20367134e+002 - 1.01118759e+002 1.14503990e+002 1.20379608e+002 1.01117081e+002 - 1.14481400e+002 1.20432121e+002 1.01072388e+002 1.14474731e+002 - 1.20429588e+002 1.01042686e+002 1.14440788e+002 1.20426178e+002 - 1.01041824e+002 1.14457542e+002 1.20455803e+002 1.01029198e+002 - 1.14429298e+002 1.20477585e+002 1.00980865e+002 1.14403023e+002 - 1.20466438e+002 1.00967056e+002 1.14388481e+002 1.20494026e+002 - 1.00950401e+002 1.14388405e+002 1.20505730e+002 1.00956200e+002 - 1.14381439e+002 1.20536591e+002 1.00924751e+002 1.14365677e+002 - 1.20531754e+002 1.00881195e+002 1.14302124e+002 1.20509377e+002 - 1.00852570e+002 1.14279335e+002 1.20501907e+002 1.00885841e+002 - 1.14293266e+002 1.20548805e+002 1.00843346e+002 1.14274475e+002 - 1.20529457e+002 1.00837891e+002 1.14252235e+002 1.20538635e+002 - 1.00807938e+002 1.14252823e+002 1.20531105e+002 1.00809311e+002 - 1.14229881e+002 1.20566017e+002 1.00718750e+002 1.14185066e+002 - 1.20518532e+002 1.00720642e+002 1.14171234e+002 1.20530655e+002 - 1.00710876e+002 1.14178116e+002 1.20543671e+002 1.00711044e+002 - 1.14153236e+002 1.20564743e+002 1.00676262e+002 1.14132126e+002 - 1.20558159e+002 1.00686150e+002 1.14137085e+002 1.20591591e+002 - 1.00683151e+002 1.14143547e+002 1.20611008e+002 1.00686577e+002 - 1.14130905e+002 1.20629730e+002 1.00651901e+002 1.14110909e+002 - 1.20622864e+002 1.00643433e+002 1.14082550e+002 1.20632713e+002 - 1.00625153e+002 1.14077202e+002 1.20641335e+002 1.00609039e+002 - 1.14052589e+002 1.20660477e+002 1.00559868e+002 1.14030388e+002 - 1.20639313e+002 1.00560745e+002 1.14026161e+002 1.20659966e+002 - 1.00548538e+002 1.14040329e+002 1.20673752e+002 1.00548317e+002 - 1.14010201e+002 1.20695755e+002 1.00495087e+002 1.13996338e+002 - 1.20671059e+002 1.00493881e+002 1.13981705e+002 1.20689987e+002 - 1.00476158e+002 1.13978493e+002 1.20691063e+002 1.00478378e+002 - 1.13962158e+002 1.20715790e+002 1.00449318e+002 1.13947350e+002 - 1.20709045e+002 1.00421204e+002 1.13913506e+002 1.20700600e+002 - 1.00420418e+002 1.13916267e+002 1.20707497e+002 1.00430679e+002 - 1.13913002e+002 1.20726303e+002 1.00400215e+002 1.13895729e+002 - 1.20720795e+002 1.00413315e+002 1.13888641e+002 1.20746735e+002 - 1.00378891e+002 1.13876312e+002 1.20740128e+002 1.00362267e+002 - 1.13845367e+002 1.20741631e+002 1.00339546e+002 1.13848076e+002 - 1.20745651e+002 1.00357468e+002 1.13852699e+002 1.20771164e+002 - 1.00341499e+002 1.13858231e+002 1.20764221e+002 1.00339058e+002 - 1.13824913e+002 1.20781296e+002 1.00292862e+002 1.13814896e+002 - 1.20764671e+002 1.00304062e+002 1.13812737e+002 1.20783066e+002 - 1.00285851e+002 1.13811447e+002 1.20775436e+002 1.00295609e+002 - 1.13791489e+002 1.20790962e+002 1.00272240e+002 1.13788002e+002 - 1.20785049e+002 1.00308922e+002 1.13813972e+002 1.20825363e+002 - 1.00297043e+002 1.13808174e+002 1.20820580e+002 1.00283195e+002 - 1.13781837e+002 1.20820755e+002 1.00292122e+002 1.13803917e+002 - 1.20841415e+002 1.00299332e+002 1.13790131e+002 1.20861053e+002 - 1.00301727e+002 1.13813698e+002 1.20877541e+002 1.00315788e+002 - 1.13817627e+002 1.20901947e+002 1.00272850e+002 1.13793152e+002 - 1.20864594e+002 1.00281532e+002 1.13790031e+002 1.20878220e+002 - 1.00263672e+002 1.13789551e+002 1.20862328e+002 1.00288475e+002 - 1.13783226e+002 1.20899818e+002 1.00263168e+002 1.13788933e+002 - 1.20896324e+002 1.00260193e+002 1.13774368e+002 1.20893127e+002 - 1.00257164e+002 1.13783058e+002 1.20894249e+002 1.00275192e+002 - 1.13785942e+002 1.20922989e+002 1.00251953e+002 1.13774216e+002 - 1.20903145e+002 1.00263550e+002 1.13782585e+002 1.20918068e+002 - 1.00245026e+002 1.13776901e+002 1.20909325e+002 1.00274857e+002 - 1.13799973e+002 1.20942421e+002 1.00244469e+002 1.13782539e+002 - 1.20922325e+002 1.00256233e+002 1.13778343e+002 1.20937279e+002 - 1.00253983e+002 1.13791405e+002 1.20950653e+002 1.00243530e+002 - 1.13777039e+002 1.20943108e+002 1.00215820e+002 1.13763901e+002 - 1.20919113e+002 1.00207840e+002 1.13743698e+002 1.20910660e+002 - 1.00232956e+002 1.13787956e+002 1.20932564e+002 1.00262199e+002 - 1.13784996e+002 1.20959702e+002 1.00233917e+002 1.13787834e+002 - 1.20940834e+002 1.00252357e+002 1.13795364e+002 1.20948936e+002 - 1.00247505e+002 1.13796875e+002 1.20944954e+002 1.00242416e+002 - 1.13764374e+002 1.20925774e+002 1.00217506e+002 1.13756050e+002 - 1.20901047e+002 1.00205948e+002 1.13736305e+002 1.20884148e+002 - 1.00219193e+002 1.13758247e+002 1.20893013e+002 1.00238739e+002 - 1.13762566e+002 1.20907387e+002 1.00218040e+002 1.13749687e+002 - 1.20884537e+002 1.00236938e+002 1.13748489e+002 1.20888596e+002 - 1.00237724e+002 1.13759460e+002 1.20892014e+002 1.00239006e+002 - 1.13746719e+002 1.20886871e+002 1.00237183e+002 1.13767937e+002 - 1.20887817e+002 1.00240456e+002 1.13759232e+002 1.20889877e+002 - 1.00221161e+002 1.13762306e+002 1.20865288e+002 1.00263496e+002 - 1.13776352e+002 1.20902710e+002 1.00252136e+002 1.13800369e+002 - 1.20886971e+002 1.00263344e+002 1.13792091e+002 1.20888168e+002 - 1.00257164e+002 1.13801155e+002 1.20877518e+002 1.00278328e+002 - 1.13796898e+002 1.20885132e+002 1.00248215e+002 1.13782738e+002 - 1.20846336e+002 1.00274559e+002 1.13805565e+002 1.20864189e+002 - 1.00276840e+002 1.13819336e+002 1.20856224e+002 1.00273323e+002 - 1.13801880e+002 1.20844406e+002 1.00285614e+002 1.13824425e+002 - 1.20846092e+002 1.00324371e+002 1.13835648e+002 1.20861984e+002 - 1.00323128e+002 1.13842171e+002 1.20849731e+002 1.00333641e+002 - 1.13835037e+002 1.20844650e+002 1.00333237e+002 1.13849503e+002 - 1.20840790e+002 1.00363747e+002 1.13863586e+002 1.20852692e+002 - 1.00346733e+002 1.13860413e+002 1.20819366e+002 1.00367363e+002 - 1.13842209e+002 1.20814323e+002 1.00361298e+002 1.13866508e+002 - 1.20809982e+002 1.00403069e+002 1.13898605e+002 1.20837631e+002 - 1.00424118e+002 1.13934311e+002 1.20852554e+002 1.00425964e+002 - 1.13907875e+002 1.20824127e+002 1.00421120e+002 1.13920448e+002 - 1.20808052e+002 1.00433098e+002 1.13927406e+002 1.20800346e+002 - 1.00450241e+002 1.13950783e+002 1.20806046e+002 1.00485222e+002 - 1.13970329e+002 1.20808945e+002 1.00497154e+002 1.13992172e+002 - 1.20812912e+002 1.00525833e+002 1.13983131e+002 1.20801758e+002 - 1.00504402e+002 1.13978470e+002 1.20766418e+002 1.00520027e+002 - 1.13976837e+002 1.20754326e+002 1.00513901e+002 1.13989471e+002 - 1.20733376e+002 1.00534996e+002 1.13993317e+002 1.20732574e+002 - 1.00548782e+002 1.14023079e+002 1.20719757e+002 1.00596756e+002 - 1.14033722e+002 1.20726219e+002 1.00572113e+002 1.14040154e+002 - 1.20688828e+002 1.00603363e+002 1.14065468e+002 1.20698692e+002 - 1.00618820e+002 1.14091057e+002 1.20694122e+002 1.00642349e+002 - 1.14091652e+002 1.20691338e+002 1.00633263e+002 1.14101830e+002 - 1.20668358e+002 1.00638840e+002 1.14094551e+002 1.20643005e+002 - 1.00645348e+002 1.14111473e+002 1.20630981e+002 1.00668846e+002 - 1.14121277e+002 1.20630630e+002 1.00661743e+002 1.14120529e+002 - 1.20607239e+002 1.00700348e+002 1.14130768e+002 1.20600571e+002 - 1.00730980e+002 1.14174278e+002 1.20611710e+002 1.00749092e+002 - 1.14173401e+002 1.20597672e+002 1.00758713e+002 1.14196587e+002 - 1.20590393e+002 1.00769157e+002 1.14189987e+002 1.20574242e+002 - 1.00777702e+002 1.14215889e+002 1.20551125e+002 1.00825989e+002 - 1.14218674e+002 1.20546005e+002 1.00823921e+002 1.14248085e+002 - 1.20530449e+002 1.00848663e+002 1.14264206e+002 1.20536690e+002 - 1.00893364e+002 1.14320557e+002 1.20563156e+002 1.00943642e+002 - 1.14342522e+002 1.20576118e+002 1.00941833e+002 1.14357208e+002 - 1.20555771e+002 1.00944557e+002 1.14346001e+002 1.20525063e+002 - 1.00964958e+002 1.14373932e+002 1.20518791e+002 1.00983307e+002 - 1.14374512e+002 1.20503929e+002 1.00993034e+002 1.14402618e+002 - 1.20496902e+002 1.00999138e+002 1.14383286e+002 1.20464478e+002 - 1.01019974e+002 1.14412727e+002 1.20461823e+002 1.01061073e+002 - 1.14439560e+002 1.20468567e+002 1.01086983e+002 1.14483925e+002 - 1.20469780e+002 1.01128021e+002 1.14506813e+002 1.20483154e+002 - 1.01146492e+002 1.14541534e+002 1.20468666e+002 1.01214256e+002 - 1.14560776e+002 1.20483604e+002 1.01216026e+002 1.14584114e+002 - 1.20459290e+002 1.01240555e+002 1.14588036e+002 1.20452629e+002 - 1.01238113e+002 1.14597420e+002 1.20422005e+002 1.01246544e+002 - 1.14572487e+002 1.20387161e+002 1.01214958e+002 1.14544518e+002 - 1.20327484e+002 1.01254845e+002 1.14568672e+002 1.20319977e+002 - 1.01293129e+002 1.14607735e+002 1.20328003e+002 1.01308327e+002 - 1.14594193e+002 1.20299347e+002 1.01333870e+002 1.14622322e+002 - 1.20294449e+002 1.01384399e+002 1.14637131e+002 1.20283470e+002 - 1.01403511e+002 1.14668663e+002 1.20273804e+002 1.01427376e+002 - 1.14667328e+002 1.20257431e+002 1.01410439e+002 1.14665970e+002 - 1.20208176e+002 1.01434898e+002 1.14665184e+002 1.20193993e+002 - 1.01456245e+002 1.14697701e+002 1.20172256e+002 1.01500648e+002 - 1.14683968e+002 1.20138718e+002 1.01494019e+002 1.14698891e+002 - 1.20101997e+002 1.01515282e+002 1.14693008e+002 1.20083527e+002 - 1.01535484e+002 1.14718666e+002 1.20072426e+002 1.01567917e+002 - 1.14715683e+002 1.20056450e+002 1.01582764e+002 1.14735489e+002 - 1.20030876e+002 1.01608948e+002 1.14740341e+002 1.20007637e+002 - 1.01644653e+002 1.14771683e+002 1.20003387e+002 1.01660095e+002 - 1.14751404e+002 1.19962799e+002 1.01658463e+002 1.14747169e+002 - 1.19927658e+002 1.01700439e+002 1.14726875e+002 1.19893051e+002 - 1.01679253e+002 1.14697578e+002 1.19823166e+002 1.01696503e+002 - 1.14664757e+002 1.19776810e+002 1.01686310e+002 1.14649246e+002 - 1.19725540e+002 1.01679588e+002 1.14606056e+002 1.19670380e+002 - 1.01607971e+002 1.14524063e+002 1.19560692e+002 - diff --git a/Examples/Image/Classification/VGG/Macros.ndl b/Examples/Image/Classification/VGG/Macros.ndl deleted file mode 100644 index 949bf29e5..000000000 --- a/Examples/Image/Classification/VGG/Macros.ndl +++ /dev/null @@ -1,55 +0,0 @@ -# Fully-connected layer with ReLU activation. -DnnReLULayer(inDim, outDim, x, wScale, bValue) -[ - W = Parameter(outDim, inDim, init = Gaussian, initValueScale = wScale) - b = Parameter(outDim, init = fixedValue, value = bValue) - t = Times(W, x) - z = Plus(t, b) - y = RectifiedLinear(z) -] - -# Fully-connected layer with batch normalization and ReLU activation. -DnnBNReLULayer(inDim, outDim, x, wScale, bValue) -[ - W = Parameter(outDim, inDim, init = Gaussian, initValueScale = wScale) - b = Parameter(outDim, 1, init = fixedValue, value = bValue) - sc = Parameter(outDim, 1, init = Gaussian, initValueScale = 0.01) - m = Parameter(outDim, 1, init = fixedValue, value = 0, learningRateMultiplier = 0) - v = Parameter(outDim, 1, init = fixedValue, value = 0, learningRateMultiplier = 0) - t = Times(W, x) - bn = BatchNormalization(t, sc, b, m, v, spatial = false) - y = RectifiedLinear(bn) -] - -# Fully-connected layer. -DnnLayer(inDim, outDim, x, wScale, bValue) -[ - W = Parameter(outDim, inDim, init = Gaussian, initValueScale = wScale) - b = Parameter(outDim, init = fixedValue, value = bValue) - t = Times(W, x) - z = Plus(t, b) -] - -# Convolutional layer with ReLU activation. -ConvReLULayer(inp, outMap, inWCount, kW, kH, hStride, vStride, wScale, bValue) -[ - W = Parameter(outMap, inWCount, init = Gaussian, initValueScale = wScale) - b = ImageParameter(1, 1, outMap, init = fixedValue, value = bValue, imageLayout = "cudnn") - c = Convolution(W, inp, kW, kH, outMap, hStride, vStride, zeroPadding = true, imageLayout = "cudnn") - z = Plus(c, b); - y = RectifiedLinear(z); -] - -# Convolutional layer with batch normalization and ReLU activation. -ConvBNReLULayer(inp, outMap, inWCount, kW, kH, hStride, vStride, wScale, bValue, scValue) -[ - W = Parameter(outMap, inWCount, init = Gaussian, initValueScale = wScale) - b = Parameter(outMap, 1, init = fixedValue, value = bValue) - sc = Parameter(outMap, 1, init = Gaussian, initValueScale = scValue) - m = Parameter(outMap, 1, init = fixedValue, value = 0, learningRateMultiplier = 0) - v = Parameter(outMap, 1, init = fixedValue, value = 0, learningRateMultiplier = 0) - - c = Convolution(W, inp, kW, kH, outMap, hStride, vStride, zeroPadding = true, imageLayout = "cudnn") - bn = BatchNormalization(c, sc, b, m, v, spatial = true, imageLayout = "cudnn") - y = RectifiedLinear(bn); -] diff --git a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py new file mode 100644 index 000000000..ecfba291e --- /dev/null +++ b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py @@ -0,0 +1,234 @@ +# Copyright (c) Microsoft. All rights reserved. + +# Licensed under the MIT license. See LICENSE.md file in the project root +# for full license information. +# ============================================================================== + +from __future__ import print_function +import os +import math +import argparse +import numpy as np +import cntk +import _cntk_py + +from cntk.utils import * +from cntk.ops import * +from cntk.distributed import data_parallel_distributed_learner, Communicator +from cntk.io import ImageDeserializer, MinibatchSource, StreamDef, StreamDefs, FULL_DATA_SWEEP +from cntk.blocks import Placeholder, Block +from cntk.layers import Convolution2D, Activation, MaxPooling, Dense, Dropout, default_options +from cntk.models import Sequential, LayerStack +from cntk.initializer import normal + +# default Paths relative to current python file. +abs_path = os.path.dirname(os.path.abspath(__file__)) +data_path = os.path.join(abs_path, "..", "..", "..", "DataSets", "ImageNet") +model_path = os.path.join(abs_path, "Models") +log_dir = None + +# model dimensions +image_height = 224 +image_width = 224 +num_channels = 3 # RGB +num_classes = 1000 +model_name = "VGG16.model" + +# Create a minibatch source. +def create_image_mb_source(map_file, is_training, total_number_of_samples): + if not os.path.exists(map_file): + raise RuntimeError("File '%s' does not exist." %map_file) + + # transformation pipeline for the features has jitter/crop only when training + transforms = [] + if is_training: + transforms += [ + ImageDeserializer.crop(crop_type='randomside', side_ratio=(0.4375,0.875), jitter_type='uniratio') # train uses jitter + ] + else: + transforms += [ + ImageDeserializer.crop(crop_type='center', side_ratio=0.5833333) # test has no jitter + ] + + transforms += [ + ImageDeserializer.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), + ] + + # deserializer + return MinibatchSource( + ImageDeserializer(map_file, StreamDefs( + features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' + labels = StreamDef(field='label', shape=num_classes))), # and second as 'label' + epoch_size=total_number_of_samples, + multithreaded_deserializer = True) + +# Create the network. +def create_vgg16(): + + # Input variables denoting the features and label data + feature_var = input_variable((num_channels, image_height, image_width)) + label_var = input_variable((num_classes)) + + # apply model to input + # remove mean value + input = minus(feature_var, constant([[[104]], [[117]], [[124]]]), name='mean_removed_input') + + with default_options(activation=None, pad=True, bias=True): + z = Sequential([ + # we separate Convolution and ReLU to name the output for feature extraction (usually before ReLU) + LayerStack(2, lambda i: [ + Convolution2D((3,3), 64, name='conv1_{}'.format(i)), + Activation(activation=relu, name='relu1_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool1'), + + LayerStack(2, lambda i: [ + Convolution2D((3,3), 128, name='conv2_{}'.format(i)), + Activation(activation=relu, name='relu2_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool2'), + + LayerStack(3, lambda i: [ + Convolution2D((3,3), 256, name='conv3_{}'.format(i)), + Activation(activation=relu, name='relu3_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool3'), + + LayerStack(3, lambda i: [ + Convolution2D((3,3), 512, name='conv4_{}'.format(i)), + Activation(activation=relu, name='relu4_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool4'), + + LayerStack(3, lambda i: [ + Convolution2D((3,3), 512, name='conv5_{}'.format(i)), + Activation(activation=relu, name='relu5_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool5'), + + Dense(4096, name='fc6'), + Activation(activation=relu, name='relu6'), + Dropout(0.5, name='drop6'), + Dense(4096, name='fc7'), + Activation(activation=relu, name='relu7'), + Dropout(0.5, name='drop7'), + Dense(num_classes, name='fc8') + ])(input) + + # loss and metric + ce = cross_entropy_with_softmax(z, label_var) + pe = classification_error(z, label_var) + + log_number_of_parameters(z) ; print() + + return { + 'feature': feature_var, + 'label': label_var, + 'ce' : ce, + 'pe' : pe, + 'output': z + } + +# Create trainer +def create_trainer(network, epoch_size, num_quantization_bits): + # Set learning parameters + lr_per_mb = [0.01]*20 + [0.001]*20 + [0.0001]*20 + [0.00001]*10 + [0.000001] + lr_schedule = cntk.learning_rate_schedule(lr_per_mb, unit=cntk.learner.UnitType.minibatch, epoch_size=epoch_size) + mm_schedule = cntk.learner.momentum_schedule(0.9) + l2_reg_weight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe + + # Create learner + # Since we reuse parameter settings (learning rate, momentum) from Caffe, we set unit_gain to False to ensure consistency + parameter_learner = data_parallel_distributed_learner( + cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight), + num_quantization_bits=num_quantization_bits, + distributed_after=0) + + # Create trainer + return cntk.Trainer(network['output'], network['ce'], network['pe'], parameter_learner) + +# Train and test +def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size): + + # define mapping from intput streams to network inputs + input_map = { + network['feature']: train_source.streams.features, + network['label']: train_source.streams.labels + } + + training_session = cntk.training_session(train_source, trainer, + cntk.minibatch_size_schedule(minibatch_size), progress_printer, input_map, os.path.join(model_path, model_name), epoch_size) + training_session.train() + + # process minibatches and evaluate the model + metric_numer = 0 + metric_denom = 0 + minibatch_index = 0 + + while True: + data = test_source.next_minibatch(minibatch_size, input_map=input_map) + if not data: break + local_mb_samples=data[network['label']].num_samples + metric_numer += trainer.test_minibatch(data) * local_mb_samples + metric_denom += local_mb_samples + minibatch_index += 1 + + fin_msg = "Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom) + progress_printer.end_progress_print(fin_msg) + + print("") + print(fin_msg) + print("") + + return metric_numer/metric_denom + + +# Train and evaluate the network. +def vgg16_train_and_eval(train_data, test_data, num_quantization_bits=32, minibatch_size=128, epoch_size = 1281167, max_epochs=80, + log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): + _cntk_py.set_computation_network_trace_level(0) + + progress_printer = ProgressPrinter( + freq=num_mbs_per_log, + tag='Training', + log_to_file=log_to_file, + rank=Communicator.rank(), + gen_heartbeat=gen_heartbeat, + num_epochs=max_epochs) + + network = create_vgg16() + trainer = create_trainer(network, epoch_size, num_quantization_bits) + train_source = create_image_mb_source(train_data, True, total_number_of_samples=max_epochs * epoch_size) + test_source = create_image_mb_source(test_data, False, total_number_of_samples=FULL_DATA_SWEEP) + train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size) + + +if __name__=='__main__': + + parser = argparse.ArgumentParser() + + parser.add_argument('-datadir', help='specify the location of your data'); + parser.add_argument('-logdir', help='specify where the training log will be saved'); + parser.add_argument('-outputdir', help='specify where the output model/checkpoint files shall be saved'); + + args = vars(parser.parse_args()) + + if args['datadir'] != None: + data_path = args['datadir'] + + if args['logdir'] != None: + log_dir = args['logdir'] + + if args['outputdir'] != None: + model_path = args['outputdir'] + "/models" + + train_data=os.path.join(data_path, 'train_map.txt') + test_data=os.path.join(data_path, 'val_map.txt') + + vgg16_train_and_eval(train_data, test_data, + num_quantization_bits=32, + max_epochs=80, + log_to_file=log_dir, + num_mbs_per_log=500, + gen_heartbeat=True) + Communicator.finalize() diff --git a/Examples/Image/Classification/VGG/VGG_A.ndl b/Examples/Image/Classification/VGG/VGG_A.ndl deleted file mode 100644 index 6f5c5f450..000000000 --- a/Examples/Image/Classification/VGG/VGG_A.ndl +++ /dev/null @@ -1,76 +0,0 @@ -load=ndlMacros -run=DNN - -ndlMacros = [ - ImageW = 224 - ImageH = 224 - ImageC = 3 - LabelDim = 1000 - - features = ImageInput(ImageW, ImageH, ImageC, tag = feature, imageLayout = "cudnn") - labels = Input(LabelDim, tag = label) - - # Kernels width and height. - kW = 3 - kH = 3 - # Kernel stride. - hs = 1 - vs = 1 - - # Pooling settings. - poolW = 2 - poolH = 2 - poolhs = 2 - poolvs = 2 - - # Initial parameter values. - convWScale = 0.01 #7 - convBValue = 0 - fc1WScale = 0.01 #8 - fc1BValue = 0 - fc2WScale = 0.01 #3.2 - fc2BValue = 0 - fc3WScale = 0.01 #3.2 - fc3BValue = 0 -] - -DNN=[ - cMap1 = 64 - conv1 = ConvReLULayer(features, cMap1, 27, kW, kH, hs, vs, convWScale, convBValue) - - pool1 = MaxPooling(conv1, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap2 = 128 - conv2 = ConvReLULayer(pool1, cMap2, 576, kW, kH, hs, vs, convWScale, convBValue) - - pool2 = MaxPooling(conv2, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap3 = 256 - conv3 = ConvReLULayer(pool2, cMap3, 1152, kW, kH, hs, vs, convWScale, convBValue) - conv4 = ConvReLULayer(conv3, cMap3, 2304, kW, kH, hs, vs, convWScale, convBValue) - - pool3 = MaxPooling(conv4, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap5 = 512 - conv5 = ConvReLULayer(pool3, cMap5, 2304, kW, kH, hs, vs, convWScale, convBValue) - conv6 = ConvReLULayer(conv5, cMap5, 4608, kW, kH, hs, vs, convWScale, convBValue) - - pool4 = MaxPooling(conv6, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap6 = 512 - conv7 = ConvReLULayer(pool4, cMap6, 4608, kW, kH, hs, vs, convWScale, convBValue) - conv8 = ConvReLULayer(conv7, cMap6, 4608, kW, kH, hs, vs, convWScale, convBValue) - - pool5 = MaxPooling(conv8, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - hiddenDim = 4096 - h1 = DnnReLULayer(25088, hiddenDim, pool5, fc1WScale, fc1BValue) - h1_d = Dropout(h1) - h2 = DnnReLULayer(hiddenDim, hiddenDim, h1_d, fc2WScale, fc2BValue) - h2_d = Dropout(h2) - ol = DnnLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue) - - CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria) - Err = ClassificationError(labels, ol, tag = Eval) - OutputNodes = ol -] diff --git a/Examples/Image/Classification/VGG/VGG_A_ndl_deprecated.cntk b/Examples/Image/Classification/VGG/VGG_A_ndl_deprecated.cntk deleted file mode 100644 index e2775ba16..000000000 --- a/Examples/Image/Classification/VGG/VGG_A_ndl_deprecated.cntk +++ /dev/null @@ -1,109 +0,0 @@ -# Note: This sample uses the deprecated NdlNetworkBuilder. -# An updated version using BrainScript is coming soon. -# Please find updated samples on Github, https://github.com/Microsoft/CNTK/tree/master/Examples /... -# -RootDir = "." - -ConfigDir = "$RootDir$" -DataDir = "$RootDir$" -OutputDir = "$RootDir$/Output" -ModelDir = "$OutputDir$/Models" - -ndlMacros="$ConfigDir$/Macros.ndl" - -precision="float" -deviceId="Auto" - -command=Train:AddTop5Eval:Test - -stderr="$OutputDir$/VGG_A" -traceLevel=1 -numMBsToShowResult=500 - -Train=[ - action="train" - modelPath="$ModelDir$/VGG_A" - traceLevel=1 - - NDLNetworkBuilder=[ - networkDescription="$ConfigDir$/VGG_A.ndl" - ] - - SGD=[ - epochSize=0 - minibatchSize=32 - learningRatesPerMB=0.01*20:0.003*12:0.001*28:0.0003 - momentumPerMB=0.9 - maxEpochs=70 - gradUpdateType="None" - L2RegWeight=0.0005 - dropoutRate=0*5:0.5 - - numMBsToShowResult=10 - ] - - reader=[ - readerType="ImageReader" - # Map file which maps images to labels using the following format: - # - # Example: - # C:\Data\ImageNet\2012\train\n01440764\n01440764_10026.JPEG0 - file="$ConfigDir$/train_map.txt" - # Randomize images before every epoch. Possible values: None, Auto. Default: Auto. - randomize="Auto" - features=[ - # Below are the required parameters. - width=224 - height=224 - channels=3 - # Below are the optional parameters. - # Possible values: Center, Random. Default: Center - cropType="RandomSide" - # Horizontal random flip, will be enabled by default because cropType=RandomSide - #hflip="true" - # Crop scale side ratio. Examples: sideRatio=0.9, sideRatio=0.7:0.9. - sideRatio=0.875 - # Crop scale ratio jitter type. - # Possible values: None, UniRatio. Default: None - jitterType="UniRatio" - # Interpolation to use when scaling image to width x height size. - # Possible values: nearest, linear, cubic, lanczos. Default: linear. - interpolations="Linear" - # Stores mean values for each pixel in OpenCV matrix XML format. - meanFile="$ConfigDir$/ImageNet1K_mean.xml" - ] - labels=[ - labelDim=1000 - ] - ] -] - -AddTop5Eval=[ - action="edit" - CurModel="$ModelDir$/VGG_A" - NewModel="$ModelDir$/VGG_A.Top5" - editPath="$ConfigDir$/CreateEvalModel.mel" -] - -Test=[ - action="test" - modelPath="$ModelDir$/VGG_A.Top5" - # Set minibatch size for testing. - minibatchSize=32 - - reader=[ - readerType="ImageReader" - file="$ConfigDir$/val_map.txt" - randomize="None" - features=[ - width=224 - height=224 - channels=3 - cropType="Center" - meanFile="$ConfigDir$/ImageNet1K_mean.xml" - ] - labels=[ - labelDim=1000 - ] - ] -] diff --git a/Examples/Image/Classification/VGG/VGG_E.ndl b/Examples/Image/Classification/VGG/VGG_E.ndl deleted file mode 100644 index 70e05b52b..000000000 --- a/Examples/Image/Classification/VGG/VGG_E.ndl +++ /dev/null @@ -1,84 +0,0 @@ -load=ndlMacros -run=DNN - -ndlMacros = [ - ImageW = 224 - ImageH = 224 - ImageC = 3 - LabelDim = 1000 - - features = ImageInput(ImageW, ImageH, ImageC, tag = feature, imageLayout = "cudnn") - labels = Input(LabelDim, tag = label) - - # Kernels width and height. - kW = 3 - kH = 3 - # Kernel stride. - hs = 1 - vs = 1 - - # Pooling settings. - poolW = 2 - poolH = 2 - poolhs = 2 - poolvs = 2 - - # Initial parameter values. - convWScale = 7.07 - convBValue = 0 - fc1WScale = 3.0 - fc1BValue = 1 - fc2WScale = 3.0 - fc2BValue = 1 - fc3WScale = 1.0 - fc3BValue = 1 -] - -DNN=[ - cMap1 = 64 - conv1 = ConvReLULayer(features, cMap1, 27, kW, kH, hs, vs, convWScale, convBValue) - conv2 = ConvReLULayer(conv1, cMap1, 576, kW, kH, hs, vs, convWScale, convBValue) - - pool1 = MaxPooling(conv2, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap3 = 128 - conv3 = ConvReLULayer(pool1, cMap3, 576, kW, kH, hs, vs, convWScale, convBValue) - conv4 = ConvReLULayer(conv3, cMap3, 1152, kW, kH, hs, vs, convWScale, convBValue) - - pool2 = MaxPooling(conv4, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap5 = 256 - conv5 = ConvReLULayer(pool2, cMap5, 1152, kW, kH, hs, vs, convWScale, convBValue) - conv6 = ConvReLULayer(conv5, cMap5, 2304, kW, kH, hs, vs, convWScale, convBValue) - conv7 = ConvReLULayer(conv6, cMap5, 2304, kW, kH, hs, vs, convWScale, convBValue) - conv8 = ConvReLULayer(conv7, cMap5, 2304, kW, kH, hs, vs, convWScale, convBValue) - - pool3 = MaxPooling(conv8, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap9 = 512 - conv9 = ConvReLULayer(pool3, cMap9, 2304, kW, kH, hs, vs, convWScale, convBValue) - conv10 = ConvReLULayer(conv9, cMap9, 4608, kW, kH, hs, vs, convWScale, convBValue) - conv11 = ConvReLULayer(conv10, cMap9, 4608, kW, kH, hs, vs, convWScale, convBValue) - conv12 = ConvReLULayer(conv11, cMap9, 4608, kW, kH, hs, vs, convWScale, convBValue) - - pool4 = MaxPooling(conv12, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap13 = 512 - conv13 = ConvReLULayer(pool4, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue) - conv14 = ConvReLULayer(conv13, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue) - conv15 = ConvReLULayer(conv14, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue) - conv16 = ConvReLULayer(conv15, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue) - - pool5 = MaxPooling(conv16, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - hiddenDim = 4096 - h1 = DnnReLULayer(25088, hiddenDim, pool5, fc1WScale, fc1BValue) - h1_d = Dropout(h1) - h2 = DnnReLULayer(hiddenDim, hiddenDim, h1_d, fc2WScale, fc2BValue) - h2_d = Dropout(h2) - ol = DnnLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue) - - CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria) - Err = ClassificationError(labels, ol, tag = Eval) - OutputNodes = ol -] diff --git a/Examples/Image/Classification/VGG/VGG_E_BN.ndl b/Examples/Image/Classification/VGG/VGG_E_BN.ndl deleted file mode 100644 index 11741fab4..000000000 --- a/Examples/Image/Classification/VGG/VGG_E_BN.ndl +++ /dev/null @@ -1,85 +0,0 @@ -load=ndlMacros -run=DNN - -ndlMacros = [ - ImageW = 224 - ImageH = 224 - ImageC = 3 - LabelDim = 1000 - - features = ImageInput(ImageW, ImageH, ImageC, tag = feature, imageLayout = "cudnn") - labels = Input(LabelDim, tag = label) - - # Kernels width and height. - kW = 3 - kH = 3 - # Kernel stride. - hs = 1 - vs = 1 - - # Pooling settings. - poolW = 2 - poolH = 2 - poolhs = 2 - poolvs = 2 - - # Initial parameter values. - convWScale = 7.07 - convBValue = 0 - scValue = 0.03 - fc1WScale = 3.0 - fc1BValue = 1 - fc2WScale = 3.0 - fc2BValue = 1 - fc3WScale = 1.0 - fc3BValue = 1 -] - -DNN=[ - cMap1 = 64 - conv1 = ConvBNReLULayer(features, cMap1, 27, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv2 = ConvBNReLULayer(conv1, cMap1, 576, kW, kH, hs, vs, convWScale, convBValue, scValue) - - pool1 = MaxPooling(conv2, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap3 = 128 - conv3 = ConvBNReLULayer(pool1, cMap3, 576, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv4 = ConvBNReLULayer(conv3, cMap3, 1152, kW, kH, hs, vs, convWScale, convBValue, scValue) - - pool2 = MaxPooling(conv4, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap5 = 256 - conv5 = ConvBNReLULayer(pool2, cMap5, 1152, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv6 = ConvBNReLULayer(conv5, cMap5, 2304, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv7 = ConvBNReLULayer(conv6, cMap5, 2304, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv8 = ConvBNReLULayer(conv7, cMap5, 2304, kW, kH, hs, vs, convWScale, convBValue, scValue) - - pool3 = MaxPooling(conv8, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap9 = 512 - conv9 = ConvBNReLULayer(pool3, cMap9, 2304, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv10 = ConvBNReLULayer(conv9, cMap9, 4608, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv11 = ConvBNReLULayer(conv10, cMap9, 4608, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv12 = ConvBNReLULayer(conv11, cMap9, 4608, kW, kH, hs, vs, convWScale, convBValue, scValue) - - pool4 = MaxPooling(conv12, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - cMap13 = 512 - conv13 = ConvBNReLULayer(pool4, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv14 = ConvBNReLULayer(conv13, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv15 = ConvBNReLULayer(conv14, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue, scValue) - conv16 = ConvBNReLULayer(conv15, cMap13, 4608, kW, kH, hs, vs, convWScale, convBValue, scValue) - - pool5 = MaxPooling(conv16, poolW, poolH, poolhs, poolvs, imageLayout = "cudnn") - - hiddenDim = 4096 - h1 = DnnBNReLULayer(25088, hiddenDim, pool5, fc1WScale, fc1BValue) - h1_d = Dropout(h1) - h2 = DnnBNReLULayer(hiddenDim, hiddenDim, h1_d, fc2WScale, fc2BValue) - h2_d = Dropout(h2) - ol = DnnLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue) - - CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria) - Err = ClassificationError(labels, ol, tag = Eval) - OutputNodes = ol -] diff --git a/Examples/Image/Classification/VGG/VGG_E_BN_ndl_deprecated.cntk b/Examples/Image/Classification/VGG/VGG_E_BN_ndl_deprecated.cntk deleted file mode 100644 index 4f9a374d0..000000000 --- a/Examples/Image/Classification/VGG/VGG_E_BN_ndl_deprecated.cntk +++ /dev/null @@ -1,118 +0,0 @@ -# Note: This sample uses the deprecated NdlNetworkBuilder. -# An updated version using BrainScript is coming soon. -# Please find updated samples on Github, https://github.com/Microsoft/CNTK/tree/master/Examples /... -# -RootDir = "." - -ConfigDir = "$RootDir$" -DataDir = "$RootDir$" -OutputDir = "$RootDir$/Output" -ModelDir = "$OutputDir$/Models" - -ndlMacros="$ConfigDir$/Macros.ndl" - -precision="float" -deviceId="Auto" - -command=Train:AddTop5Eval:Test - -parallelTrain="false" - -stderr="$OutputDir$/VGG_E_BN" -traceLevel=1 - -Train=[ - action="train" - modelPath="$ModelDir$/VGG_E_BN" - - NDLNetworkBuilder=[ - networkDescription="$ConfigDir$/VGG_E_BN.ndl" - ] - - SGD=[ - epochSize=0 - minibatchSize=16 - learningRatesPerMB=0.01*20:0.003*12:0.001*28:0.0003 - momentumPerMB=0.9 - maxEpochs=70 - gradUpdateType="None" - L2RegWeight=0.0005 - dropoutRate=0*5:0.5 - - ParallelTrain=[ - parallelizationMethod="DataParallelSGD" - distributedMBReading="true" - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - - numMBsToShowResult=10 - ] - - reader=[ - readerType="ImageReader" - # Map file which maps images to labels using the following format: - # - # Example: - # C:\Data\ImageNet\2012\train\n01440764\n01440764_10026.JPEG0 - file="$DataDir$/train_map.txt" - # Randomize images before every epoch. Possible values: None, Auto. Default: Auto. - randomize="Auto" - features=[ - # Below are the required parameters. - width=224 - height=224 - channels=3 - # Below are the optional parameters. - # Possible values: Center, Random. Default: Center - cropType="RandomSide" - # Horizontal random flip, will be enabled because cropType=RandomSide - #hflip="true" - # Crop scale side ratio. Examples: sideRatio=0.9, sideRatio=0.7:0.9. - sideRatio=0.875 - # Crop scale ratio jitter type. - # Possible values: None, UniRatio. Default: None - jitterType="UniRatio" - # Interpolation to use when scaling image to width x height size. - # Possible values: nearest, linear, cubic, lanczos. Default: linear. - interpolations="Linear" - # Stores mean values for each pixel in OpenCV matrix XML format. - meanFile="$ConfigDir$/ImageNet1K_mean.xml" - ] - labels=[ - labelDim=1000 - ] - ] -] - -AddTop5Eval=[ - action="edit" - CurModel="$ModelDir$/VGG_E_BN" - NewModel="$ModelDir$/VGG_E_BN.Top5" - editPath="$ConfigDir$/CreateEvalModel.mel" -] - -Test=[ - action="test" - modelPath=$ModelDir$/VGG_E_BN.Top5 - # Set minibatch size for testing. - minibatchSize=16 - - reader=[ - readerType="ImageReader" - file="$DataDir$/val_map.txt" - randomize="None" - features=[ - width=224 - height=224 - channels=3 - cropType="Center" - meanFile="$ConfigDir$/ImageNet1K_mean.xml" - ] - labels=[ - labelDim=1000 - ] - ] -] diff --git a/Examples/Image/Classification/VGG/VGG_E_ndl_deprecated.cntk b/Examples/Image/Classification/VGG/VGG_E_ndl_deprecated.cntk deleted file mode 100644 index 14ae0a9d2..000000000 --- a/Examples/Image/Classification/VGG/VGG_E_ndl_deprecated.cntk +++ /dev/null @@ -1,118 +0,0 @@ -# Note: This sample uses the deprecated NdlNetworkBuilder. -# An updated version using BrainScript is coming soon. -# Please find updated samples on Github, https://github.com/Microsoft/CNTK/tree/master/Examples /... -# -RootDir = "." - -ConfigDir = "$RootDir$" -DataDir = "$RootDir$" -OutputDir = "$RootDir$/Output" -ModelDir = "$OutputDir$/Models" - -ndlMacros="$ConfigDir$/Macros.ndl" - -precision="float" -deviceId="Auto" - -command=Train:AddTop5Eval:Test - -parallelTrain="false" - -stderr="$OutputDir$/VGG_E" -traceLevel=1 - -Train=[ - action="train" - modelPath="$ModelDir$/VGG_E" - - NDLNetworkBuilder=[ - networkDescription="$ConfigDir$/VGG_E.ndl" - ] - - SGD=[ - epochSize=0 - minibatchSize=16 - learningRatesPerMB=0.01*20:0.003*12:0.001*28:0.0003 - momentumPerMB=0.9 - maxEpochs=70 - gradUpdateType="None" - L2RegWeight=0.0005 - dropoutRate=0*5:0.5 - - ParallelTrain=[ - parallelizationMethod="DataParallelSGD" - distributedMBReading="true" - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - - numMBsToShowResult=10 - ] - - reader=[ - readerType="ImageReader" - # Map file which maps images to labels using the following format: - # - # Example: - # C:\Data\ImageNet\2012\train\n01440764\n01440764_10026.JPEG0 - file="$DataDir$/train_map.txt" - # Randomize images before every epoch. Possible values: None, Auto. Default: Auto. - randomize="Auto" - features=[ - # Below are the required parameters. - width=224 - height=224 - channels=3 - # Below are the optional parameters. - # Possible values: Center, Random. Default: Center - cropType="RandomSide" - # Horizontal random flip, will be enabled because cropType=RandomSide - #hflip="true" - # Crop scale side ratio. Examples: sideRatio=0.9, sideRatio=0.7:0.9. - sideRatio=0.875 - # Crop scale ratio jitter type. - # Possible values: None, UniRatio. Default: None - jitterType="UniRatio" - # Interpolation to use when scaling image to width x height size. - # Possible values: nearest, linear, cubic, lanczos. Default: linear. - interpolations="Linear" - # Stores mean values for each pixel in OpenCV matrix XML format. - meanFile="$ConfigDir$/ImageNet1K_mean.xml" - ] - labels=[ - labelDim=1000 - ] - ] -] - -AddTop5Eval=[ - action="edit" - CurModel="$ModelDir$/VGG_E" - NewModel="$ModelDir$/VGG_E.Top5" - editPath="$ConfigDir$/CreateEvalModel.mel" -] - -Test=[ - action="test" - modelPath="$ModelDir$/VGG_E.Top5" - # Set minibatch size for testing. - minibatchSize=16 - - reader=[ - readerType="ImageReader" - file="$DataDir$/val_map.txt" - randomize="None" - features=[ - width=224 - height=224 - channels=3 - cropType="Center" - meanFile="$ConfigDir$/ImageNet1K_mean.xml" - ] - labels=[ - labelDim=1000 - ] - ] -] From a7f2f4d47831942965bd9540907ff227262b3989 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Tue, 31 Jan 2017 14:40:31 -0800 Subject: [PATCH 18/31] Add randomize to VGG distributed training. --- .../Classification/VGG/Python/VGG16_ImageNet_Distributed.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py index ecfba291e..f425bbfdc 100644 --- a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py +++ b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py @@ -39,11 +39,13 @@ def create_image_mb_source(map_file, is_training, total_number_of_samples): if not os.path.exists(map_file): raise RuntimeError("File '%s' does not exist." %map_file) + randomize = False # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: + randomize = True transforms += [ - ImageDeserializer.crop(crop_type='randomside', side_ratio=(0.4375,0.875), jitter_type='uniratio') # train uses jitter + ImageDeserializer.crop(crop_type='randomside', side_ratio='0.4375:0.875', jitter_type='uniratio') # train uses jitter ] else: transforms += [ @@ -59,6 +61,7 @@ def create_image_mb_source(map_file, is_training, total_number_of_samples): ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels = StreamDef(field='label', shape=num_classes))), # and second as 'label' + randomize = randomize, epoch_size=total_number_of_samples, multithreaded_deserializer = True) From 21a019a09d92deb76613b7fb89f7bf0c06f60d2a Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 1 Feb 2017 08:45:21 -0800 Subject: [PATCH 19/31] Add hyper memory compress. --- .../Classification/VGG/Python/VGG16_ImageNet_Distributed.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py index f425bbfdc..8bf21667b 100644 --- a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py +++ b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py @@ -34,6 +34,8 @@ num_channels = 3 # RGB num_classes = 1000 model_name = "VGG16.model" +cntk.cntk_py.enable_hyper_memory_compress() + # Create a minibatch source. def create_image_mb_source(map_file, is_training, total_number_of_samples): if not os.path.exists(map_file): From 6cc9801cfd280614671b6e29bdc1fb1196d983f1 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 1 Feb 2017 08:48:22 -0800 Subject: [PATCH 20/31] Add VGG19 Python model. --- .../VGG/Python/VGG19_ImageNet_Distributed.py | 239 ++++++++++++++++++ 1 file changed, 239 insertions(+) create mode 100644 Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py diff --git a/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py new file mode 100644 index 000000000..4f02459c0 --- /dev/null +++ b/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py @@ -0,0 +1,239 @@ +# Copyright (c) Microsoft. All rights reserved. + +# Licensed under the MIT license. See LICENSE.md file in the project root +# for full license information. +# ============================================================================== + +from __future__ import print_function +import os +import math +import argparse +import numpy as np +import cntk +import _cntk_py + +from cntk.utils import * +from cntk.ops import * +from cntk.distributed import data_parallel_distributed_learner, Communicator +from cntk.io import ImageDeserializer, MinibatchSource, StreamDef, StreamDefs, FULL_DATA_SWEEP +from cntk.blocks import Placeholder, Block +from cntk.layers import Convolution2D, Activation, MaxPooling, Dense, Dropout, default_options +from cntk.models import Sequential, LayerStack +from cntk.initializer import normal + +# default Paths relative to current python file. +abs_path = os.path.dirname(os.path.abspath(__file__)) +data_path = os.path.join(abs_path, "..", "..", "..", "DataSets", "ImageNet") +model_path = os.path.join(abs_path, "Models") +log_dir = None + +# model dimensions +image_height = 224 +image_width = 224 +num_channels = 3 # RGB +num_classes = 1000 +model_name = "VGG16.model" + +cntk.cntk_py.enable_hyper_memory_compress() + +# Create a minibatch source. +def create_image_mb_source(map_file, is_training, total_number_of_samples): + if not os.path.exists(map_file): + raise RuntimeError("File '%s' does not exist." %map_file) + + randomize = False + # transformation pipeline for the features has jitter/crop only when training + transforms = [] + if is_training: + randomize = True + transforms += [ + ImageDeserializer.crop(crop_type='randomside', side_ratio='0.4375:0.875', jitter_type='uniratio') # train uses jitter + ] + else: + transforms += [ + ImageDeserializer.crop(crop_type='center', side_ratio=0.5833333) # test has no jitter + ] + + transforms += [ + ImageDeserializer.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'), + ] + + # deserializer + return MinibatchSource( + ImageDeserializer(map_file, StreamDefs( + features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' + labels = StreamDef(field='label', shape=num_classes))), # and second as 'label' + randomize = randomize, + epoch_size=total_number_of_samples, + multithreaded_deserializer = True) + +# Create the network. +def create_vgg16(): + + # Input variables denoting the features and label data + feature_var = input_variable((num_channels, image_height, image_width)) + label_var = input_variable((num_classes)) + + # apply model to input + # remove mean value + input = minus(feature_var, constant([[[104]], [[117]], [[124]]]), name='mean_removed_input') + + with default_options(activation=None, pad=True, bias=True): + z = Sequential([ + # we separate Convolution and ReLU to name the output for feature extraction (usually before ReLU) + LayerStack(2, lambda i: [ + Convolution2D((3,3), 64, name='conv1_{}'.format(i)), + Activation(activation=relu, name='relu1_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool1'), + + LayerStack(2, lambda i: [ + Convolution2D((3,3), 128, name='conv2_{}'.format(i)), + Activation(activation=relu, name='relu2_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool2'), + + LayerStack(4, lambda i: [ + Convolution2D((3,3), 256, name='conv3_{}'.format(i)), + Activation(activation=relu, name='relu3_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool3'), + + LayerStack(4, lambda i: [ + Convolution2D((3,3), 512, name='conv4_{}'.format(i)), + Activation(activation=relu, name='relu4_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool4'), + + LayerStack(4, lambda i: [ + Convolution2D((3,3), 512, name='conv5_{}'.format(i)), + Activation(activation=relu, name='relu5_{}'.format(i)), + ]), + MaxPooling((2,2), (2,2), name='pool5'), + + Dense(4096, name='fc6'), + Activation(activation=relu, name='relu6'), + Dropout(0.5, name='drop6'), + Dense(4096, name='fc7'), + Activation(activation=relu, name='relu7'), + Dropout(0.5, name='drop7'), + Dense(num_classes, name='fc8') + ])(input) + + # loss and metric + ce = cross_entropy_with_softmax(z, label_var) + pe = classification_error(z, label_var) + + log_number_of_parameters(z) ; print() + + return { + 'feature': feature_var, + 'label': label_var, + 'ce' : ce, + 'pe' : pe, + 'output': z + } + +# Create trainer +def create_trainer(network, epoch_size, num_quantization_bits): + # Set learning parameters + lr_per_mb = [0.01]*20 + [0.001]*20 + [0.0001]*20 + [0.00001]*10 + [0.000001] + lr_schedule = cntk.learning_rate_schedule(lr_per_mb, unit=cntk.learner.UnitType.minibatch, epoch_size=epoch_size) + mm_schedule = cntk.learner.momentum_schedule(0.9) + l2_reg_weight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe + + # Create learner + # Since we reuse parameter settings (learning rate, momentum) from Caffe, we set unit_gain to False to ensure consistency + parameter_learner = data_parallel_distributed_learner( + cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight), + num_quantization_bits=num_quantization_bits, + distributed_after=0) + + # Create trainer + return cntk.Trainer(network['output'], network['ce'], network['pe'], parameter_learner) + +# Train and test +def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size): + + # define mapping from intput streams to network inputs + input_map = { + network['feature']: train_source.streams.features, + network['label']: train_source.streams.labels + } + + training_session = cntk.training_session(train_source, trainer, + cntk.minibatch_size_schedule(minibatch_size), progress_printer, input_map, os.path.join(model_path, model_name), epoch_size) + training_session.train() + + # process minibatches and evaluate the model + metric_numer = 0 + metric_denom = 0 + minibatch_index = 0 + + while True: + data = test_source.next_minibatch(minibatch_size, input_map=input_map) + if not data: break + local_mb_samples=data[network['label']].num_samples + metric_numer += trainer.test_minibatch(data) * local_mb_samples + metric_denom += local_mb_samples + minibatch_index += 1 + + fin_msg = "Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom) + progress_printer.end_progress_print(fin_msg) + + print("") + print(fin_msg) + print("") + + return metric_numer/metric_denom + + +# Train and evaluate the network. +def vgg16_train_and_eval(train_data, test_data, num_quantization_bits=32, minibatch_size=128, epoch_size = 1281167, max_epochs=80, + log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): + _cntk_py.set_computation_network_trace_level(0) + + progress_printer = ProgressPrinter( + freq=num_mbs_per_log, + tag='Training', + log_to_file=log_to_file, + rank=Communicator.rank(), + gen_heartbeat=gen_heartbeat, + num_epochs=max_epochs) + + network = create_vgg16() + trainer = create_trainer(network, epoch_size, num_quantization_bits) + train_source = create_image_mb_source(train_data, True, total_number_of_samples=max_epochs * epoch_size) + test_source = create_image_mb_source(test_data, False, total_number_of_samples=FULL_DATA_SWEEP) + train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size) + + +if __name__=='__main__': + + parser = argparse.ArgumentParser() + + parser.add_argument('-datadir', help='specify the location of your data'); + parser.add_argument('-logdir', help='specify where the training log will be saved'); + parser.add_argument('-outputdir', help='specify where the output model/checkpoint files shall be saved'); + + args = vars(parser.parse_args()) + + if args['datadir'] != None: + data_path = args['datadir'] + + if args['logdir'] != None: + log_dir = args['logdir'] + + if args['outputdir'] != None: + model_path = args['outputdir'] + "/models" + + train_data=os.path.join(data_path, 'train_map.txt') + test_data=os.path.join(data_path, 'val_map.txt') + + vgg16_train_and_eval(train_data, test_data, + num_quantization_bits=32, + max_epochs=80, + log_to_file=log_dir, + num_mbs_per_log=500, + gen_heartbeat=True) + Communicator.finalize() From 74ec3ab2d36f2fb6f7ded44a2fe7486eda6d6d42 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 1 Feb 2017 08:50:30 -0800 Subject: [PATCH 21/31] Add test for VGG16. --- .../VGG16_ImageNet_Distributed_test.py | 56 +++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100644 Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py b/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py new file mode 100644 index 000000000..9e2550c57 --- /dev/null +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py @@ -0,0 +1,56 @@ +# Copyright (c) Microsoft. All rights reserved. + +# Licensed under the MIT license. See LICENSE.md file in the project root +# for full license information. +# ============================================================================== + +import numpy as np +import os +import sys +from cntk.ops.tests.ops_test_utils import cntk_device +from cntk.cntk_py import DeviceKind_GPU +from cntk.device import set_default_device +from cntk.io import ReaderConfig, ImageDeserializer +from cntk import distributed +import pytest + +abs_path = os.path.dirname(os.path.abspath(__file__)) +sys.path.append(abs_path) +sys.path.append(os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "VGG", "Python")) +from prepare_test_data import prepare_ImageNet_data +from VGG16_ImageNet_Distributed import vgg16_train_and_eval + +#TOLERANCE_ABSOLUTE = 2E-1 + +def test_vgg16_error(device_id): + if cntk_device(device_id).type() != DeviceKind_GPU: + pytest.skip('test only runs on GPU') + set_default_device(cntk_device(device_id)) + + base_path = prepare_ImageNet_data() + # change dir to locate data.zip correctly + os.chdir(base_path) + + from _cntk_py import set_computation_network_trace_level, set_fixed_random_seed, force_deterministic_algorithms + set_computation_network_trace_level(1) + set_fixed_random_seed(1) # BUGBUG: has no effect at present # TODO: remove debugging facilities once this all works + #force_deterministic_algorithms() + # TODO: do the above; they lead to slightly different results, so not doing it for now + + # for test purpose we train and test on same data + train_data=os.path.join(base_path, 'val1024_map.txt') + test_data=os.path.join(base_path, 'val1024_map.txt') + + test_error = vgg16_train_and_eval(train_data, test_data, + num_quantization_bits=32, + minibatch_size=2, + epoch_size=4, + max_epochs=2) + distributed.Communicator.finalize() +# expected_test_error = 0.0 + +# We are removing tolerance in error because running small epoch size has huge variance in accuracy. Will add +# tolerance back once convolution operator is determinsitic. + +# assert np.allclose(test_error, expected_test_error, +# atol=TOLERANCE_ABSOLUTE) From e7ade66b5565946ce6a1cee8865f69d8197d66ba Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 1 Feb 2017 18:55:57 -0800 Subject: [PATCH 22/31] Add readme files and edit samples.json. --- .../Classification/VGG/BrainScript/README.md | 19 +++++++++++++ .../Image/Classification/VGG/Python/README.md | 27 +++++++++++++++++++ Examples/Image/Classification/VGG/README.md | 25 +++++++++++++++++ Tools/samples.json | 2 +- 4 files changed, 72 insertions(+), 1 deletion(-) create mode 100644 Examples/Image/Classification/VGG/BrainScript/README.md create mode 100644 Examples/Image/Classification/VGG/Python/README.md create mode 100644 Examples/Image/Classification/VGG/README.md diff --git a/Examples/Image/Classification/VGG/BrainScript/README.md b/Examples/Image/Classification/VGG/BrainScript/README.md new file mode 100644 index 000000000..efba060dd --- /dev/null +++ b/Examples/Image/Classification/VGG/BrainScript/README.md @@ -0,0 +1,19 @@ +# CNTK Examples: Image/Classification/VGG + +## BrainScript + +### VGG16_ImageNet.cntk + +This is the VGG model that contains 16 layers, which was referred as `ConvNet configuration D` in the [original paper](https://arxiv.org/pdf/1409.1556v6.pdf). + +Run the example from the current folder using: + +`cntk configFile=VGG16_ImageNet.cntk` + +### VGG19_ImageNet.cntk + +This is the VGG model that contains 19 layers, which was referred as `ConvNet configuration E` in the [original paper](https://arxiv.org/pdf/1409.1556v6.pdf). + +Run the example from the current folder using: + +`cntk configFile=VGG19_ImageNet.cntk` diff --git a/Examples/Image/Classification/VGG/Python/README.md b/Examples/Image/Classification/VGG/Python/README.md new file mode 100644 index 000000000..839500972 --- /dev/null +++ b/Examples/Image/Classification/VGG/Python/README.md @@ -0,0 +1,27 @@ +# CNTK Examples: Image/Classification/VGG + +## Python + +### VGG16_ImageNet_Distributed.py + +This is the VGG model that contains 16 layers, which was referred as `ConvNet configuration D` in the [original paper](https://arxiv.org/pdf/1409.1556v6.pdf). + +Run the example from the current folder using: + +`python VGG16_ImageNet_Distributed.py` + +To run it in a distributed manner, please check [here](https://github.com/Microsoft/CNTK/wiki/Multiple-GPUs-and-machines#32-python). For example, the command for distributed training on the same machine (with multiple GPUs) with Windows is: + +`mpiexec -n <#workers> python VGG16_ImageNet_Distributed.py` + +### VGG19_ImageNet_Distributed.py + +This is the VGG model that contains 19 layers, which was referred as `ConvNet configuration E` in the [original paper](https://arxiv.org/pdf/1409.1556v6.pdf). + +Run the example from the current folder using: + +`python VGG19_ImageNet_Distributed.py` + +To run it in a distributed manner, please check [here](https://github.com/Microsoft/CNTK/wiki/Multiple-GPUs-and-machines#32-python). For example, the command for distributed training on the same machine (with multiple GPUs) with Windows is: + +`mpiexec -n <#workers> python VGG19_ImageNet_Distributed.py` diff --git a/Examples/Image/Classification/VGG/README.md b/Examples/Image/Classification/VGG/README.md new file mode 100644 index 000000000..040d58cea --- /dev/null +++ b/Examples/Image/Classification/VGG/README.md @@ -0,0 +1,25 @@ +# CNTK Examples: Image/Classification/VGG + +## Overview + +|Data: |The ILSVRC2012 dataset (http://www.image-net.org/challenges/LSVRC/2012/) for image classification. +|:---------|:--- +|Purpose |This folder contains examples that demonstrate how to use CNTK to define VGG network (https://arxiv.org/abs/1409.1556) for image classification. +|Network |VGG. +|Training |Stochastic gradient descent with momentum. +|Comments |See below. + +## Running the example + +### Getting the data +We use the ILSVRC2012 datasets to demonstrate how to train the VGG model which was developed by the [Visual Geometry Group in University of Oxford](http://www.robots.ox.ac.uk/~vgg/research/very_deep/). It won the second place in the ILSVRC-2014 challenge. VGG has been a very popular model for its simple architect and high accuracy. + +ILSVRC2012 datasets are not included in the CNTK distribution. You may obtain it through http://image-net.org. + +## Details + +We give examples for both Python and BrainScript. + +### [Python](./Python) + +### [BrainScript](./BrainScript) diff --git a/Tools/samples.json b/Tools/samples.json index 83276f97c..ce0022cf6 100644 --- a/Tools/samples.json +++ b/Tools/samples.json @@ -204,7 +204,7 @@ "name": "VGG", "url": "https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Classification/VGG", "description": "Deep CNN from University of Oxford. This was the winning model for the ILSVRC2014 localization task.", - "language": ["BrainScript"], + "language": ["Python", "BrainScript"], "type": ["Recipe"] }, { From 39e7dd2e7fb60d485c857f5f624130939f5ffc2e Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Thu, 2 Feb 2017 07:40:55 -0800 Subject: [PATCH 23/31] Revision based on CR. --- .../Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk | 2 +- .../Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk | 2 +- .../Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk | 2 +- Tools/samples.json | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk b/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk index 51c57e41d..74b5ef03c 100644 --- a/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk +++ b/Examples/Image/Classification/AlexNet/BrainScript/AlexNet_ImageNet.cntk @@ -86,7 +86,7 @@ Train = { SGD = { epochSize = 0 minibatchSize = 256 - # CNTK weights new gradient by (1-momentum) for unit gain, thus we multiply Caffe's learning rate by (1-momentum) + # CNTK weights new gradient by (1-momentum) for unit gain, thus we divide Caffe's learning rate by (1-momentum) learningRatesPerMB = 0.1*25:0.01*25:0.001*25:0.0001*25:0.00001 momentumPerMB = 0.9 maxEpochs = 112 diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk index 4aceeea8c..23720be41 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG16_ImageNet.cntk @@ -84,7 +84,7 @@ Train = { SGD = { epochSize = 0 minibatchSize = 128 - # CNTK weights new gradient by (1-momentum) for unit gain, thus we multiply Caffe's learning rate by (1-momentum) + # CNTK weights new gradient by (1-momentum) for unit gain, thus we divide Caffe's learning rate by (1-momentum) learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001*10:0.00001 momentumPerMB = 0.9 maxEpochs = 80 diff --git a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk index b345aef42..ac98b3d46 100644 --- a/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk +++ b/Examples/Image/Classification/VGG/BrainScript/VGG19_ImageNet.cntk @@ -87,7 +87,7 @@ Train = { SGD = { epochSize = 0 minibatchSize = 128 - # CNTK weights new gradient by (1-momentum) for unit gain, thus we multiply Caffe's learning rate by (1-momentum) + # CNTK weights new gradient by (1-momentum) for unit gain, thus we divide Caffe's learning rate by (1-momentum) learningRatesPerMB = 0.1*20:0.01*20:0.001*20:0.0001*10:0.00001 momentumPerMB = 0.9 maxEpochs = 80 diff --git a/Tools/samples.json b/Tools/samples.json index ce0022cf6..8361b35f3 100644 --- a/Tools/samples.json +++ b/Tools/samples.json @@ -76,7 +76,7 @@ "name": "Fast R-CNN", "url": "https://github.com/Microsoft/CNTK/wiki/Object-Detection-using-Fast-R-CNN", "description": "Train object detection from images by adapting pre-trained classification models on arbitrarily sized regions of interest using ROI pooling.", - "language": ["BrainScript"], + "language": ["Python", "BrainScript"], "type": ["Tutorial", "Recipe"] }, { From f9052ea5f34eae143c0e24128cd17ec9b405caf8 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 8 Feb 2017 15:28:30 -0800 Subject: [PATCH 24/31] Revision due to changes in train_session. Also rewrote tests due to failure caused by single thread running of AlexNet test and VGG test. Bug fix in ReshapingNodes.h. --- .../Python/AlexNet_ImageNet_Distributed.py | 99 ++++++++++--------- .../ConvNet_CIFAR10_DataAug_Distributed.py | 38 ++++--- .../VGG/Python/VGG16_ImageNet_Distributed.py | 98 +++++++++--------- Source/ComputationNetworkLib/ReshapingNodes.h | 2 + .../AlexNet_ImageNet_Distributed_test.py | 56 ++++------- ...onvNet_CIFAR10_DataAug_Distributed_test.py | 49 +++++---- .../Examples/ConvNet_CIFAR10_DataAug_test.py | 3 +- .../TrainResNet_CIFAR10_Distributed_test.py | 9 +- .../VGG16_ImageNet_Distributed_test.py | 56 ++++------- .../Examples/prepare_test_data.py | 9 +- ...run_ConvNet_CIFAR10_DataAug_Distributed.py | 43 -------- 11 files changed, 194 insertions(+), 268 deletions(-) delete mode 100644 Tests/EndToEndTests/CNTKv2Python/Examples/run_ConvNet_CIFAR10_DataAug_Distributed.py diff --git a/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py b/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py index 75a80e2a5..04a33399c 100644 --- a/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py +++ b/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py @@ -59,6 +59,7 @@ def create_image_mb_source(map_file, is_training, total_number_of_samples): ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels = StreamDef(field='label', shape=num_classes))), # and second as 'label' + randomize = is_training, epoch_size=total_number_of_samples, multithreaded_deserializer = True) @@ -124,8 +125,9 @@ def create_alexnet(): ])(input) # loss and metric - ce = cross_entropy_with_softmax(z, label_var) - pe = classification_error(z, label_var) + ce = cross_entropy_with_softmax(z, label_var) + pe = classification_error(z, label_var) + pe5 = classification_error(z, label_var, topN=5) log_number_of_parameters(z) ; print() @@ -134,6 +136,7 @@ def create_alexnet(): 'label': label_var, 'ce' : ce, 'pe' : pe, + 'pe5': pe5, 'output': z } @@ -146,9 +149,10 @@ def create_trainer(network, epoch_size, num_quantization_bits): l2_reg_weight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe # Create learner + local_learner = cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight) # Since we reuse parameter settings (learning rate, momentum) from Caffe, we set unit_gain to False to ensure consistency parameter_learner = data_parallel_distributed_learner( - cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight), + local_learner, num_quantization_bits=num_quantization_bits, distributed_after=0) @@ -156,7 +160,7 @@ def create_trainer(network, epoch_size, num_quantization_bits): return cntk.Trainer(network['output'], network['ce'], network['pe'], parameter_learner) # Train and test -def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size): +def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore): # define mapping from intput streams to network inputs input_map = { @@ -164,36 +168,24 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer network['label']: train_source.streams.labels } - training_session = cntk.training_session(train_source, trainer, - cntk.minibatch_size_schedule(minibatch_size), progress_printer, input_map, os.path.join(model_path, model_name), epoch_size) + training_session = cntk.training_session( + training_minibatch_source = train_source, + trainer = trainer, + model_inputs_to_mb_source_mapping = input_map, + mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), + progress_printer = progress_printer, + checkpoint_filename = os.path.join(model_path, model_name), + progress_frequency = epoch_size, + cv_source = test_source, + cv_mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), + restore = restore) + + # Train all minibatches training_session.train() - # process minibatches and evaluate the model - metric_numer = 0 - metric_denom = 0 - minibatch_index = 0 - - while True: - data = test_source.next_minibatch(minibatch_size, input_map=input_map) - if not data: break - local_mb_samples=data[network['label']].num_samples - metric_numer += trainer.test_minibatch(data) * local_mb_samples - metric_denom += local_mb_samples - minibatch_index += 1 - - fin_msg = "Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom) - progress_printer.end_progress_print(fin_msg) - - print("") - print(fin_msg) - print("") - - return metric_numer/metric_denom - - # Train and evaluate the network. def alexnet_train_and_eval(train_data, test_data, num_quantization_bits=32, minibatch_size=256, epoch_size = 1281167, max_epochs=112, - log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): + restore=True, log_to_file=None, num_mbs_per_log=None, gen_heartbeat=True): _cntk_py.set_computation_network_trace_level(0) progress_printer = ProgressPrinter( @@ -208,35 +200,46 @@ def alexnet_train_and_eval(train_data, test_data, num_quantization_bits=32, mini trainer = create_trainer(network, epoch_size, num_quantization_bits) train_source = create_image_mb_source(train_data, True, total_number_of_samples=max_epochs * epoch_size) test_source = create_image_mb_source(test_data, False, total_number_of_samples=FULL_DATA_SWEEP) - train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size) + train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore) if __name__=='__main__': parser = argparse.ArgumentParser() - parser.add_argument('-datadir', help='specify the location of your data'); - parser.add_argument('-logdir', help='specify where the training log will be saved'); - parser.add_argument('-outputdir', help='specify where the output model/checkpoint files shall be saved'); + parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located', required=False, default=data_path) + parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models', required=False, default=None) + parser.add_argument('-logdir', '--logdir', help='Log file', required=False, default=None) + parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int, required=False, default='112') + parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int, required=False, default='256') + parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int, required=False, default='1281167') + parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int, required=False, default='32') + parser.add_argument('-r', '--restart', help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)', action='store_true') + parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device", required=False, default=None) args = vars(parser.parse_args()) - if args['datadir'] != None: - data_path = args['datadir'] - - if args['logdir'] != None: - log_dir = args['logdir'] - - if args['outputdir'] != None: + if args['outputdir'] is not None: model_path = args['outputdir'] + "/models" + if args['datadir'] is not None: + data_path = args['datadir'] + if args['logdir'] is not None: + log_dir = args['logdir'] + if args['device'] is not None: + cntk.device.set_default_device(cntk.device.gpu(args['device'])) train_data=os.path.join(data_path, 'train_map.txt') test_data=os.path.join(data_path, 'val_map.txt') - alexnet_train_and_eval(train_data, test_data, - num_quantization_bits=32, - max_epochs=112, - log_to_file=log_dir, - num_mbs_per_log=500, - gen_heartbeat=True) - Communicator.finalize() + try: + alexnet_train_and_eval(train_data, test_data, + minibatch_size=args['minibatch_size'], + epoch_size=args['epoch_size'], + num_quantization_bits=args['quantized_bits'], + max_epochs=args['num_epochs'], + restore=not args['restart'], + log_to_file=args['logdir'], + num_mbs_per_log=200, + gen_heartbeat=True) + finally: + cntk.distributed.Communicator.finalize() diff --git a/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py b/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py index 197cd6095..6cb8abddf 100644 --- a/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py +++ b/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py @@ -45,6 +45,7 @@ def create_image_mb_source(map_file, mean_file, train, total_number_of_samples): cntk.io.ImageDeserializer(map_file, cntk.io.StreamDefs( features = cntk.io.StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels = cntk.io.StreamDef(field='label', shape=num_classes))), # and second as 'label' + randomize=train, epoch_size=total_number_of_samples, multithreaded_deserializer = True) @@ -105,15 +106,15 @@ def create_trainer(network, epoch_size, num_quantization_bits, block_size, warm_ l2_regularization_weight=l2_reg_weight) if block_size != None: - learner = cntk.distributed.block_momentum_distributed_learner(local_learner, block_size=block_size) + parameter_learner = cntk.distributed.block_momentum_distributed_learner(local_learner, block_size=block_size) else: - learner = cntk.distributed.data_parallel_distributed_learner(local_learner, num_quantization_bits=num_quantization_bits, distributed_after=warm_up) + parameter_learner = cntk.distributed.data_parallel_distributed_learner(local_learner, num_quantization_bits=num_quantization_bits, distributed_after=warm_up) # Create trainer - return cntk.Trainer(network['output'], network['ce'], network['pe'], learner) + return cntk.Trainer(network['output'], network['ce'], network['pe'], parameter_learner) # Train and test -def train_and_test(network, trainer, train_source, test_source, progress_printer, epoch_size): +def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore): # define mapping from intput streams to network inputs input_map = { @@ -125,20 +126,20 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer training_minibatch_source = train_source, trainer = trainer, model_inputs_to_mb_source_mapping = input_map, - mb_size_schedule = cntk.minibatch_size_schedule(64), + mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), progress_printer = progress_printer, checkpoint_filename = os.path.join(model_path, "ConvNet_CIFAR10_DataAug"), progress_frequency=epoch_size, cv_source = test_source, - cv_mb_size_schedule=cntk.minibatch_size_schedule(16), - restore=False) + cv_mb_size_schedule=cntk.minibatch_size_schedule(minibatch_size), + restore=restore) # Train all minibatches training_session.train() # Train and evaluate the network. -def convnet_cifar10_dataaug(train_data, test_data, mean_data, epoch_size=50000, num_quantization_bits=32, - block_size=3200, warm_up=0, max_epochs=2, log_to_file=None, +def convnet_cifar10_dataaug(train_data, test_data, mean_data, minibatch_size=64, epoch_size=50000, num_quantization_bits=32, + block_size=3200, warm_up=0, max_epochs=2, restore=False, log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): _cntk_py.set_computation_network_trace_level(0) @@ -154,7 +155,7 @@ def convnet_cifar10_dataaug(train_data, test_data, mean_data, epoch_size=50000, trainer = create_trainer(network, epoch_size, num_quantization_bits, block_size, warm_up) train_source = create_image_mb_source(train_data, mean_data, train=True, total_number_of_samples=max_epochs * epoch_size) test_source = create_image_mb_source(test_data, mean_data, train=False, total_number_of_samples=cntk.io.FULL_DATA_SWEEP) - train_and_test(network, trainer, train_source, test_source, progress_printer, epoch_size) + train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore) if __name__=='__main__': @@ -165,20 +166,25 @@ if __name__=='__main__': parser.add_argument('-datadir', '--datadir', help='Data directory where the CIFAR dataset is located', required=False, default=data_path) parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models', required=False, default=None) parser.add_argument('-logdir', '--logdir', help='Log file', required=False, default=None) - parser.add_argument('-e', '--epochs', help='Total number of epochs to train', type=int, required=False, default='160') + parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int, required=False, default='160') + parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int, required=False, default='64') + parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int, required=False, default='50000') parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int, required=False, default='32') parser.add_argument('-a', '--distributed_after', help='Number of samples to train with before running distributed', type=int, required=False, default='0') parser.add_argument('-b', '--block_samples', type=int, help="Number of samples per block for block momentum (BM) distributed learner (if 0 BM learner is not used)", required=False, default=None) + parser.add_argument('-r', '--restart', help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)', action='store_true') parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device", required=False, default=None) args = vars(parser.parse_args()) if args['outputdir'] is not None: model_path = args['outputdir'] + "/models" - if args['device'] is not None: - cntk.device.set_default_device(cntk.device.gpu(args['device'])) if args['datadir'] is not None: data_path = args['datadir'] + if args['logdir'] is not None: + log_dir = args['logdir'] + if args['device'] is not None: + cntk.device.set_default_device(cntk.device.gpu(args['device'])) mean_data=os.path.join(data_path, 'CIFAR-10_mean.xml') train_data=os.path.join(data_path, 'train_map.txt') @@ -186,11 +192,13 @@ if __name__=='__main__': try: convnet_cifar10_dataaug(train_data, test_data, mean_data, - epoch_size=50000, + minibatch_size=args['minibatch_size'], + epoch_size=args['epoch_size'], num_quantization_bits=args['quantized_bits'], block_size=args['block_samples'], warm_up=args['distributed_after'], - max_epochs=args['epochs'], + max_epochs=args['num_epochs'], + restore=not args['restart'], log_to_file=args['logdir'], num_mbs_per_log=10, gen_heartbeat=True) diff --git a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py index 8bf21667b..894e4c214 100644 --- a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py +++ b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py @@ -41,11 +41,9 @@ def create_image_mb_source(map_file, is_training, total_number_of_samples): if not os.path.exists(map_file): raise RuntimeError("File '%s' does not exist." %map_file) - randomize = False # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: - randomize = True transforms += [ ImageDeserializer.crop(crop_type='randomside', side_ratio='0.4375:0.875', jitter_type='uniratio') # train uses jitter ] @@ -63,7 +61,7 @@ def create_image_mb_source(map_file, is_training, total_number_of_samples): ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels = StreamDef(field='label', shape=num_classes))), # and second as 'label' - randomize = randomize, + randomize = is_training, epoch_size=total_number_of_samples, multithreaded_deserializer = True) @@ -123,6 +121,7 @@ def create_vgg16(): # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) + pe5 = classification_error(z, label_var, topN=5) log_number_of_parameters(z) ; print() @@ -131,6 +130,7 @@ def create_vgg16(): 'label': label_var, 'ce' : ce, 'pe' : pe, + 'pe5': pe5, 'output': z } @@ -143,9 +143,10 @@ def create_trainer(network, epoch_size, num_quantization_bits): l2_reg_weight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe # Create learner + local_learner = cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight) # Since we reuse parameter settings (learning rate, momentum) from Caffe, we set unit_gain to False to ensure consistency parameter_learner = data_parallel_distributed_learner( - cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight), + local_learner, num_quantization_bits=num_quantization_bits, distributed_after=0) @@ -153,7 +154,7 @@ def create_trainer(network, epoch_size, num_quantization_bits): return cntk.Trainer(network['output'], network['ce'], network['pe'], parameter_learner) # Train and test -def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size): +def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore): # define mapping from intput streams to network inputs input_map = { @@ -161,36 +162,24 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer network['label']: train_source.streams.labels } - training_session = cntk.training_session(train_source, trainer, - cntk.minibatch_size_schedule(minibatch_size), progress_printer, input_map, os.path.join(model_path, model_name), epoch_size) + training_session = cntk.training_session( + training_minibatch_source = train_source, + trainer = trainer, + model_inputs_to_mb_source_mapping = input_map, + mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), + progress_printer = progress_printer, + checkpoint_filename = os.path.join(model_path, model_name), + progress_frequency = epoch_size, + cv_source = test_source, + cv_mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), + restore = restore) + + # Train all minibatches training_session.train() - # process minibatches and evaluate the model - metric_numer = 0 - metric_denom = 0 - minibatch_index = 0 - - while True: - data = test_source.next_minibatch(minibatch_size, input_map=input_map) - if not data: break - local_mb_samples=data[network['label']].num_samples - metric_numer += trainer.test_minibatch(data) * local_mb_samples - metric_denom += local_mb_samples - minibatch_index += 1 - - fin_msg = "Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom) - progress_printer.end_progress_print(fin_msg) - - print("") - print(fin_msg) - print("") - - return metric_numer/metric_denom - - # Train and evaluate the network. def vgg16_train_and_eval(train_data, test_data, num_quantization_bits=32, minibatch_size=128, epoch_size = 1281167, max_epochs=80, - log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): + restore=True, log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): _cntk_py.set_computation_network_trace_level(0) progress_printer = ProgressPrinter( @@ -205,35 +194,46 @@ def vgg16_train_and_eval(train_data, test_data, num_quantization_bits=32, miniba trainer = create_trainer(network, epoch_size, num_quantization_bits) train_source = create_image_mb_source(train_data, True, total_number_of_samples=max_epochs * epoch_size) test_source = create_image_mb_source(test_data, False, total_number_of_samples=FULL_DATA_SWEEP) - train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size) + train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore) if __name__=='__main__': parser = argparse.ArgumentParser() - parser.add_argument('-datadir', help='specify the location of your data'); - parser.add_argument('-logdir', help='specify where the training log will be saved'); - parser.add_argument('-outputdir', help='specify where the output model/checkpoint files shall be saved'); + parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located', required=False, default=data_path) + parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models', required=False, default=None) + parser.add_argument('-logdir', '--logdir', help='Log file', required=False, default=None) + parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int, required=False, default='80') + parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int, required=False, default='128') + parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int, required=False, default='1281167') + parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int, required=False, default='32') + parser.add_argument('-r', '--restart', help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)', action='store_true') + parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device", required=False, default=None) args = vars(parser.parse_args()) - if args['datadir'] != None: - data_path = args['datadir'] - - if args['logdir'] != None: - log_dir = args['logdir'] - - if args['outputdir'] != None: + if args['outputdir'] is not None: model_path = args['outputdir'] + "/models" + if args['datadir'] is not None: + data_path = args['datadir'] + if args['logdir'] is not None: + log_dir = args['logdir'] + if args['device'] is not None: + cntk.device.set_default_device(cntk.device.gpu(args['device'])) train_data=os.path.join(data_path, 'train_map.txt') test_data=os.path.join(data_path, 'val_map.txt') - vgg16_train_and_eval(train_data, test_data, - num_quantization_bits=32, - max_epochs=80, - log_to_file=log_dir, - num_mbs_per_log=500, - gen_heartbeat=True) - Communicator.finalize() + try: + vgg16_train_and_eval(train_data, test_data, + minibatch_size=args['minibatch_size'], + epoch_size=args['epoch_size'], + num_quantization_bits=args['quantized_bits'], + max_epochs=args['num_epochs'], + restore=not args['restart'], + log_to_file=args['logdir'], + num_mbs_per_log=200, + gen_heartbeat=True) + finally: + cntk.distributed.Communicator.finalize() diff --git a/Source/ComputationNetworkLib/ReshapingNodes.h b/Source/ComputationNetworkLib/ReshapingNodes.h index 19abc13d0..27da43de0 100644 --- a/Source/ComputationNetworkLib/ReshapingNodes.h +++ b/Source/ComputationNetworkLib/ReshapingNodes.h @@ -69,6 +69,8 @@ public: if (flags & CopyNodeFlags::copyNodeValue) { auto node = dynamic_pointer_cast>(nodeP); + node->m_beginDimParameter = m_beginDimParameter; + node->m_endDimParameter = m_endDimParameter; node->m_replacementSampleLayout = m_replacementSampleLayout; } } diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/AlexNet_ImageNet_Distributed_test.py b/Tests/EndToEndTests/CNTKv2Python/Examples/AlexNet_ImageNet_Distributed_test.py index 1dc931aef..fe39cca6f 100644 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/AlexNet_ImageNet_Distributed_test.py +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/AlexNet_ImageNet_Distributed_test.py @@ -7,50 +7,28 @@ import numpy as np import os import sys +import signal +import subprocess +import re +import pytest from cntk.ops.tests.ops_test_utils import cntk_device from cntk.cntk_py import DeviceKind_GPU from cntk.device import set_default_device -from cntk.io import ReaderConfig, ImageDeserializer -from cntk import distributed -import pytest abs_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(abs_path) -sys.path.append(os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "AlexNet", "Python")) +example_dir = os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "AlexNet", "Python") +sys.path.append(example_dir) from prepare_test_data import prepare_ImageNet_data -from AlexNet_ImageNet_Distributed import alexnet_train_and_eval +from ConvNet_CIFAR10_DataAug_Distributed_test import mpiexec_test +script_under_test = os.path.join(example_dir, "AlexNet_ImageNet_Distributed.py") -#TOLERANCE_ABSOLUTE = 2E-1 - -def test_alexnet_error(device_id): - if cntk_device(device_id).type() != DeviceKind_GPU: - pytest.skip('test only runs on GPU') - set_default_device(cntk_device(device_id)) - - base_path = prepare_ImageNet_data() - # change dir to locate data.zip correctly - os.chdir(base_path) - - from _cntk_py import set_computation_network_trace_level, set_fixed_random_seed, force_deterministic_algorithms - set_computation_network_trace_level(1) - set_fixed_random_seed(1) # BUGBUG: has no effect at present # TODO: remove debugging facilities once this all works - #force_deterministic_algorithms() - # TODO: do the above; they lead to slightly different results, so not doing it for now - - # for test purpose we train and test on same data - train_data=os.path.join(base_path, 'val1024_map.txt') - test_data=os.path.join(base_path, 'val1024_map.txt') - - test_error = alexnet_train_and_eval(train_data, test_data, - num_quantization_bits=32, - minibatch_size=16, - epoch_size=64, - max_epochs=2) - distributed.Communicator.finalize() -# expected_test_error = 0.0 - -# We are removing tolerance in error because running small epoch size has huge variance in accuracy. Will add -# tolerance back once convolution operator is determinsitic. - -# assert np.allclose(test_error, expected_test_error, -# atol=TOLERANCE_ABSOLUTE) +def test_alexnet_imagenet_distributed(device_id): + params = [ "-n", "2", + "-m", "8", + "-e", "16", + "-datadir", prepare_ImageNet_data(), + "-q", "32", + "-r", + "-device", "0" ] + mpiexec_test(device_id, script_under_test, params, 0.99, True) diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_Distributed_test.py b/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_Distributed_test.py index 883cc26ef..9adeb46e4 100644 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_Distributed_test.py +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_Distributed_test.py @@ -16,28 +16,15 @@ from cntk.cntk_py import DeviceKind_GPU from cntk.device import set_default_device abs_path = os.path.dirname(os.path.abspath(__file__)) +sys.path.append(abs_path) example_dir = os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "ConvNet", "Python") -script_under_test = os.path.join(example_dir, "ConvNet_CIFAR10_DataAug_Distributed.py") - sys.path.append(example_dir) +from prepare_test_data import prepare_CIFAR10_data +script_under_test = os.path.join(example_dir, "ConvNet_CIFAR10_DataAug_Distributed.py") TOLERANCE_ABSOLUTE = 2E-1 TIMEOUT_SECONDS = 300 -def data_set_directory(): - try: - base_path = os.path.join(os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'], - *"Image/CIFAR/v0/cifar-10-batches-py".split("/")) - # N.B. CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY has {train,test}_map.txt - # and CIFAR-10_mean.xml in the base_path. - except KeyError: - base_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), - *"../../../../Examples/Image/DataSets/CIFAR-10".split("/")) - - base_path = os.path.normpath(base_path) - os.chdir(os.path.join(base_path, '..')) - return base_path - def mpiexec_test(device_id, script, params, expected_test_error, match_exactly=True, per_minibatch_tolerance=TOLERANCE_ABSOLUTE, error_tolerance=TOLERANCE_ABSOLUTE): if cntk_device(device_id).type() != DeviceKind_GPU: pytest.skip('test only runs on GPU') @@ -56,6 +43,7 @@ def mpiexec_test(device_id, script, params, expected_test_error, match_exactly=T results = re.findall("Cross Validation \[.+?\]: Minibatch\[.+?\]: errs = (.+?)%", str_out) assert len(results) == 2 + print(results) if match_exactly: assert results[0] == results[1] @@ -65,23 +53,32 @@ def mpiexec_test(device_id, script, params, expected_test_error, match_exactly=T assert np.allclose(float(results[0])/100, expected_test_error, atol=error_tolerance) def test_cifar_convnet_distributed(device_id): - params = [ "-e", "2", - "-datadir", data_set_directory(), + params = [ "-n", "2", + "-m", "64", + "-e", "3200", + "-datadir", prepare_CIFAR10_data(), "-q", "32", + "-r", "-device", "0" ] - mpiexec_test(device_id, script_under_test, params, 0.617) + mpiexec_test(device_id, script_under_test, params, 0.75, True) def test_cifar_convnet_distributed_1bitsgd(device_id): - params = [ "-e", "2", - "-datadir", data_set_directory(), + params = [ "-n", "2", + "-m", "64", + "-e", "3200", + "-datadir", prepare_CIFAR10_data(), "-q", "1", + "-r", "-device", "0" ] - mpiexec_test(device_id, script_under_test, params, 0.617) + mpiexec_test(device_id, script_under_test, params, 0.75, True) def test_cifar_convnet_distributed_block_momentum(device_id): - params = [ "-e", "2", - "-datadir", data_set_directory(), - "-b", "3200", + params = [ "-n", "2", + "-m", "64", + "-e", "3200", + "-datadir", prepare_CIFAR10_data(), + "-b", "1600", + "-r", "-device", "0" ] - mpiexec_test(device_id, script_under_test, params, 0.6457, False, 10) + mpiexec_test(device_id, script_under_test, params, 0.78, False, 10) diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_test.py b/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_test.py index 8eea34d75..5110693c1 100644 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_test.py +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/ConvNet_CIFAR10_DataAug_test.py @@ -30,8 +30,7 @@ def test_cifar_convnet_error(device_id): # change dir to locate data.zip correctly os.chdir(base_path) - from _cntk_py import set_computation_network_trace_level, set_fixed_random_seed, force_deterministic_algorithms - set_computation_network_trace_level(1) + from _cntk_py import set_fixed_random_seed, force_deterministic_algorithms set_fixed_random_seed(1) # BUGBUG: has no effect at present # TODO: remove debugging facilities once this all works #force_deterministic_algorithms() # TODO: do the above; they lead to slightly different results, so not doing it for now diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/TrainResNet_CIFAR10_Distributed_test.py b/Tests/EndToEndTests/CNTKv2Python/Examples/TrainResNet_CIFAR10_Distributed_test.py index 3b9ddc9c9..f06e33f23 100644 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/TrainResNet_CIFAR10_Distributed_test.py +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/TrainResNet_CIFAR10_Distributed_test.py @@ -15,13 +15,14 @@ example_dir = os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image" sys.path.append(example_dir) sys.path.append(abs_path) -from ConvNet_CIFAR10_DataAug_Distributed_test import mpiexec_test, data_set_directory +from prepare_test_data import prepare_CIFAR10_data +from ConvNet_CIFAR10_DataAug_Distributed_test import mpiexec_test script_under_test = os.path.join(example_dir, "TrainResNet_CIFAR10_Distributed.py") def test_cifar_resnet_distributed(device_id): params = [ "-e", "2", - "-datadir", data_set_directory(), + "-datadir", prepare_CIFAR10_data(), "-q", "32", "-es", "512", "-device", "0" ] @@ -29,7 +30,7 @@ def test_cifar_resnet_distributed(device_id): def test_cifar_resnet_distributed_1bitsgd(device_id): params = [ "-e", "2", - "-datadir", data_set_directory(), + "-datadir", prepare_CIFAR10_data(), "-q", "1", "-es", "512", "-device", "0" ] @@ -38,7 +39,7 @@ def test_cifar_resnet_distributed_1bitsgd(device_id): def test_cifar_resnet_distributed_block_momentum(device_id): params = [ "-e", "2", - "-datadir", data_set_directory(), + "-datadir", prepare_CIFAR10_data(), "-b", "3200", "-es", "512", "-device", "0" ] diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py b/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py index 9e2550c57..2dded57b2 100644 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py @@ -7,50 +7,28 @@ import numpy as np import os import sys +import signal +import subprocess +import re +import pytest from cntk.ops.tests.ops_test_utils import cntk_device from cntk.cntk_py import DeviceKind_GPU from cntk.device import set_default_device -from cntk.io import ReaderConfig, ImageDeserializer -from cntk import distributed -import pytest abs_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(abs_path) -sys.path.append(os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "VGG", "Python")) +example_dir = os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "VGG", "Python") +sys.path.append(example_dir) from prepare_test_data import prepare_ImageNet_data -from VGG16_ImageNet_Distributed import vgg16_train_and_eval +from ConvNet_CIFAR10_DataAug_Distributed_test import mpiexec_test +script_under_test = os.path.join(example_dir, "VGG16_ImageNet_Distributed.py") -#TOLERANCE_ABSOLUTE = 2E-1 - -def test_vgg16_error(device_id): - if cntk_device(device_id).type() != DeviceKind_GPU: - pytest.skip('test only runs on GPU') - set_default_device(cntk_device(device_id)) - - base_path = prepare_ImageNet_data() - # change dir to locate data.zip correctly - os.chdir(base_path) - - from _cntk_py import set_computation_network_trace_level, set_fixed_random_seed, force_deterministic_algorithms - set_computation_network_trace_level(1) - set_fixed_random_seed(1) # BUGBUG: has no effect at present # TODO: remove debugging facilities once this all works - #force_deterministic_algorithms() - # TODO: do the above; they lead to slightly different results, so not doing it for now - - # for test purpose we train and test on same data - train_data=os.path.join(base_path, 'val1024_map.txt') - test_data=os.path.join(base_path, 'val1024_map.txt') - - test_error = vgg16_train_and_eval(train_data, test_data, - num_quantization_bits=32, - minibatch_size=2, - epoch_size=4, - max_epochs=2) - distributed.Communicator.finalize() -# expected_test_error = 0.0 - -# We are removing tolerance in error because running small epoch size has huge variance in accuracy. Will add -# tolerance back once convolution operator is determinsitic. - -# assert np.allclose(test_error, expected_test_error, -# atol=TOLERANCE_ABSOLUTE) +def test_alexnet_imagenet_distributed(device_id): + params = [ "-n", "2", + "-m", "1", + "-e", "2", + "-datadir", prepare_ImageNet_data(), + "-q", "32", + "-r", + "-device", "0" ] + mpiexec_test(device_id, script_under_test, params, 0.99, True) diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/prepare_test_data.py b/Tests/EndToEndTests/CNTKv2Python/Examples/prepare_test_data.py index 6df54a26e..ee18e5652 100644 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/prepare_test_data.py +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/prepare_test_data.py @@ -29,16 +29,19 @@ def prepare_CIFAR10_data(): def prepare_ImageNet_data(): base_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), - *"../../../../Examples/Image/DataSets/ImageNet".split("/")) + *"../../../../Examples/Image/DataSets/ImageNet/test_data".split("/")) base_path = os.path.normpath(base_path) + if not os.path.isdir(base_path): + os.mkdir(base_path) # If val1024_map.txt don't exist locally, copy to local location - if not os.path.isfile(os.path.join(base_path, 'val1024_map.txt')): + if not (os.path.isfile(os.path.join(base_path, 'train_map.txt')) and os.path.isfile(os.path.join(base_path, 'val_map.txt'))): # copy from backup location base_path_bak = os.path.join(os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'], *"Image/ImageNet/2012/v0".split("/")) base_path_bak = os.path.normpath(base_path_bak) - copyfile(os.path.join(base_path_bak, 'val1024_map.txt'), os.path.join(base_path, 'val1024_map.txt')) + copyfile(os.path.join(base_path_bak, 'val1024_map.txt'), os.path.join(base_path, 'train_map.txt')) + copyfile(os.path.join(base_path_bak, 'val1024_map.txt'), os.path.join(base_path, 'val_map.txt')) copyfile(os.path.join(base_path_bak, 'val1024.zip'), os.path.join(base_path, 'val1024.zip')) return base_path \ No newline at end of file diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/run_ConvNet_CIFAR10_DataAug_Distributed.py b/Tests/EndToEndTests/CNTKv2Python/Examples/run_ConvNet_CIFAR10_DataAug_Distributed.py deleted file mode 100644 index 6184aecd2..000000000 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/run_ConvNet_CIFAR10_DataAug_Distributed.py +++ /dev/null @@ -1,43 +0,0 @@ -# Copyright (c) Microsoft. All rights reserved. - -# Licensed under the MIT license. See LICENSE.md file in the project root -# for full license information. -# ============================================================================== - -import numpy as np -import os -import sys -import platform -from cntk.io import ReaderConfig, ImageDeserializer, FULL_DATA_SWEEP -from cntk import distributed -from cntk.device import set_default_device, gpu - -abs_path = os.path.dirname(os.path.abspath(__file__)) -sys.path.append(abs_path) -sys.path.append(os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "ConvNet", "Python")) -from prepare_test_data import prepare_CIFAR10_data -from ConvNet_CIFAR10_DataAug_Distributed import convnet_cifar10_dataaug - -def run_cifar_convnet_distributed(): - base_path = prepare_CIFAR10_data() - # change dir to locate data.zip correctly - os.chdir(base_path) - - from _cntk_py import set_computation_network_trace_level, set_fixed_random_seed, force_deterministic_algorithms - set_computation_network_trace_level(1) - set_fixed_random_seed(1) # BUGBUG: has no effect at present # TODO: remove debugging facilities once this all works - #force_deterministic_algorithms() - # TODO: do the above; they lead to slightly different results, so not doing it for now - - train_data = os.path.join(base_path, 'train_map.txt') - mean_data = os.path.join(base_path, 'CIFAR-10_mean.xml') - test_data = os.path.join(base_path, 'test_map.txt') - - num_quantization_bits = 32 - return convnet_cifar10_dataaug(train_data, test_data, mean_data, num_quantization_bits, epoch_size=512, max_epochs=2) - -if __name__=='__main__': - assert distributed.Communicator.rank() < distributed.Communicator.num_workers() - set_default_device(gpu(0)) # force using GPU-0 in test for speed - run_cifar_convnet_distributed() - distributed.Communicator.finalize() From 2fff01f57cc8eaca88efa5d1ea6fe05553ec0fb3 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 8 Feb 2017 15:41:51 -0800 Subject: [PATCH 25/31] Update VGG19. --- .../VGG/Python/VGG19_ImageNet_Distributed.py | 106 +++++++++--------- 1 file changed, 53 insertions(+), 53 deletions(-) diff --git a/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py index 4f02459c0..327a291a6 100644 --- a/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py +++ b/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py @@ -32,7 +32,7 @@ image_height = 224 image_width = 224 num_channels = 3 # RGB num_classes = 1000 -model_name = "VGG16.model" +model_name = "VGG19.model" cntk.cntk_py.enable_hyper_memory_compress() @@ -41,11 +41,9 @@ def create_image_mb_source(map_file, is_training, total_number_of_samples): if not os.path.exists(map_file): raise RuntimeError("File '%s' does not exist." %map_file) - randomize = False # transformation pipeline for the features has jitter/crop only when training transforms = [] if is_training: - randomize = True transforms += [ ImageDeserializer.crop(crop_type='randomside', side_ratio='0.4375:0.875', jitter_type='uniratio') # train uses jitter ] @@ -63,12 +61,12 @@ def create_image_mb_source(map_file, is_training, total_number_of_samples): ImageDeserializer(map_file, StreamDefs( features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image' labels = StreamDef(field='label', shape=num_classes))), # and second as 'label' - randomize = randomize, + randomize = is_training, epoch_size=total_number_of_samples, multithreaded_deserializer = True) # Create the network. -def create_vgg16(): +def create_vgg19(): # Input variables denoting the features and label data feature_var = input_variable((num_channels, image_height, image_width)) @@ -123,6 +121,7 @@ def create_vgg16(): # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) + pe5 = classification_error(z, label_var, topN=5) log_number_of_parameters(z) ; print() @@ -131,6 +130,7 @@ def create_vgg16(): 'label': label_var, 'ce' : ce, 'pe' : pe, + 'pe5': pe5, 'output': z } @@ -143,9 +143,10 @@ def create_trainer(network, epoch_size, num_quantization_bits): l2_reg_weight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe # Create learner + local_learner = cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight) # Since we reuse parameter settings (learning rate, momentum) from Caffe, we set unit_gain to False to ensure consistency parameter_learner = data_parallel_distributed_learner( - cntk.learner.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight), + local_learner, num_quantization_bits=num_quantization_bits, distributed_after=0) @@ -153,7 +154,7 @@ def create_trainer(network, epoch_size, num_quantization_bits): return cntk.Trainer(network['output'], network['ce'], network['pe'], parameter_learner) # Train and test -def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size): +def train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore): # define mapping from intput streams to network inputs input_map = { @@ -161,36 +162,24 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer network['label']: train_source.streams.labels } - training_session = cntk.training_session(train_source, trainer, - cntk.minibatch_size_schedule(minibatch_size), progress_printer, input_map, os.path.join(model_path, model_name), epoch_size) + training_session = cntk.training_session( + training_minibatch_source = train_source, + trainer = trainer, + model_inputs_to_mb_source_mapping = input_map, + mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), + progress_printer = progress_printer, + checkpoint_filename = os.path.join(model_path, model_name), + progress_frequency = epoch_size, + cv_source = test_source, + cv_mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), + restore = restore) + + # Train all minibatches training_session.train() - # process minibatches and evaluate the model - metric_numer = 0 - metric_denom = 0 - minibatch_index = 0 - - while True: - data = test_source.next_minibatch(minibatch_size, input_map=input_map) - if not data: break - local_mb_samples=data[network['label']].num_samples - metric_numer += trainer.test_minibatch(data) * local_mb_samples - metric_denom += local_mb_samples - minibatch_index += 1 - - fin_msg = "Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom) - progress_printer.end_progress_print(fin_msg) - - print("") - print(fin_msg) - print("") - - return metric_numer/metric_denom - - # Train and evaluate the network. -def vgg16_train_and_eval(train_data, test_data, num_quantization_bits=32, minibatch_size=128, epoch_size = 1281167, max_epochs=80, - log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): +def vgg19_train_and_eval(train_data, test_data, num_quantization_bits=32, minibatch_size=128, epoch_size = 1281167, max_epochs=80, + restore=True, log_to_file=None, num_mbs_per_log=None, gen_heartbeat=False): _cntk_py.set_computation_network_trace_level(0) progress_printer = ProgressPrinter( @@ -201,39 +190,50 @@ def vgg16_train_and_eval(train_data, test_data, num_quantization_bits=32, miniba gen_heartbeat=gen_heartbeat, num_epochs=max_epochs) - network = create_vgg16() + network = create_vgg19() trainer = create_trainer(network, epoch_size, num_quantization_bits) train_source = create_image_mb_source(train_data, True, total_number_of_samples=max_epochs * epoch_size) test_source = create_image_mb_source(test_data, False, total_number_of_samples=FULL_DATA_SWEEP) - train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size) + train_and_test(network, trainer, train_source, test_source, progress_printer, minibatch_size, epoch_size, restore) if __name__=='__main__': parser = argparse.ArgumentParser() - parser.add_argument('-datadir', help='specify the location of your data'); - parser.add_argument('-logdir', help='specify where the training log will be saved'); - parser.add_argument('-outputdir', help='specify where the output model/checkpoint files shall be saved'); + parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located', required=False, default=data_path) + parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models', required=False, default=None) + parser.add_argument('-logdir', '--logdir', help='Log file', required=False, default=None) + parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int, required=False, default='80') + parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int, required=False, default='128') + parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int, required=False, default='1281167') + parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int, required=False, default='32') + parser.add_argument('-r', '--restart', help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)', action='store_true') + parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device", required=False, default=None) args = vars(parser.parse_args()) - if args['datadir'] != None: - data_path = args['datadir'] - - if args['logdir'] != None: - log_dir = args['logdir'] - - if args['outputdir'] != None: + if args['outputdir'] is not None: model_path = args['outputdir'] + "/models" + if args['datadir'] is not None: + data_path = args['datadir'] + if args['logdir'] is not None: + log_dir = args['logdir'] + if args['device'] is not None: + cntk.device.set_default_device(cntk.device.gpu(args['device'])) train_data=os.path.join(data_path, 'train_map.txt') test_data=os.path.join(data_path, 'val_map.txt') - vgg16_train_and_eval(train_data, test_data, - num_quantization_bits=32, - max_epochs=80, - log_to_file=log_dir, - num_mbs_per_log=500, - gen_heartbeat=True) - Communicator.finalize() + try: + vgg19_train_and_eval(train_data, test_data, + minibatch_size=args['minibatch_size'], + epoch_size=args['epoch_size'], + num_quantization_bits=args['quantized_bits'], + max_epochs=args['num_epochs'], + restore=not args['restart'], + log_to_file=args['logdir'], + num_mbs_per_log=200, + gen_heartbeat=True) + finally: + cntk.distributed.Communicator.finalize() From 6829622172423268c618713dc7074f89b7f3fff7 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 8 Feb 2017 17:05:47 -0800 Subject: [PATCH 26/31] Disable test for VGG16. Jenkins ran out of memory. Will enable it once we finish memory optimization. --- .../VGG16_ImageNet_Distributed_test.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py b/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py index 2dded57b2..4c7406eb9 100644 --- a/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py +++ b/Tests/EndToEndTests/CNTKv2Python/Examples/VGG16_ImageNet_Distributed_test.py @@ -23,12 +23,12 @@ from prepare_test_data import prepare_ImageNet_data from ConvNet_CIFAR10_DataAug_Distributed_test import mpiexec_test script_under_test = os.path.join(example_dir, "VGG16_ImageNet_Distributed.py") -def test_alexnet_imagenet_distributed(device_id): - params = [ "-n", "2", - "-m", "1", - "-e", "2", - "-datadir", prepare_ImageNet_data(), - "-q", "32", - "-r", - "-device", "0" ] - mpiexec_test(device_id, script_under_test, params, 0.99, True) +# def test_alexnet_imagenet_distributed(device_id): + # params = [ "-n", "2", + # "-m", "1", + # "-e", "2", + # "-datadir", prepare_ImageNet_data(), + # "-q", "32", + # "-r", + # "-device", "0" ] + # mpiexec_test(device_id, script_under_test, params, 0.99, True) From cd972fc42d340a1f9b0271557dc1c764954ec9c2 Mon Sep 17 00:00:00 2001 From: Cha Zhang Date: Wed, 8 Feb 2017 21:26:01 -0800 Subject: [PATCH 27/31] Added a few comments to avoid confusion of using checkpoint and cross validation. --- .../AlexNet/Python/AlexNet_ImageNet_Distributed.py | 3 +++ .../ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py | 7 +++++-- .../VGG/Python/VGG16_ImageNet_Distributed.py | 3 +++ .../VGG/Python/VGG19_ImageNet_Distributed.py | 3 +++ 4 files changed, 14 insertions(+), 2 deletions(-) diff --git a/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py b/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py index 04a33399c..f2906b7ef 100644 --- a/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py +++ b/Examples/Image/Classification/AlexNet/Python/AlexNet_ImageNet_Distributed.py @@ -174,10 +174,13 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer model_inputs_to_mb_source_mapping = input_map, mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), progress_printer = progress_printer, +# checkpoint_frequency = epoch_size, checkpoint_filename = os.path.join(model_path, model_name), +# save_all_checkpoints = True, progress_frequency = epoch_size, cv_source = test_source, cv_mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), +# cv_frequency = epoch_size, restore = restore) # Train all minibatches diff --git a/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py b/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py index 6cb8abddf..94c7a73b0 100644 --- a/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py +++ b/Examples/Image/Classification/ConvNet/Python/ConvNet_CIFAR10_DataAug_Distributed.py @@ -128,10 +128,13 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer model_inputs_to_mb_source_mapping = input_map, mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), progress_printer = progress_printer, +# checkpoint_frequency = epoch_size, checkpoint_filename = os.path.join(model_path, "ConvNet_CIFAR10_DataAug"), +# save_all_checkpoints = False, progress_frequency=epoch_size, cv_source = test_source, cv_mb_size_schedule=cntk.minibatch_size_schedule(minibatch_size), +# cv_frequency = epoch_size, restore=restore) # Train all minibatches @@ -200,8 +203,8 @@ if __name__=='__main__': max_epochs=args['num_epochs'], restore=not args['restart'], log_to_file=args['logdir'], - num_mbs_per_log=10, - gen_heartbeat=True) + num_mbs_per_log=100, + gen_heartbeat=False) finally: cntk.distributed.Communicator.finalize() diff --git a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py index 894e4c214..9021030fe 100644 --- a/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py +++ b/Examples/Image/Classification/VGG/Python/VGG16_ImageNet_Distributed.py @@ -168,10 +168,13 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer model_inputs_to_mb_source_mapping = input_map, mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), progress_printer = progress_printer, +# checkpoint_frequency = epoch_size, checkpoint_filename = os.path.join(model_path, model_name), +# save_all_checkpoints = True, progress_frequency = epoch_size, cv_source = test_source, cv_mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), +# cv_frequency = epoch_size, restore = restore) # Train all minibatches diff --git a/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py b/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py index 327a291a6..df9eadd07 100644 --- a/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py +++ b/Examples/Image/Classification/VGG/Python/VGG19_ImageNet_Distributed.py @@ -168,10 +168,13 @@ def train_and_test(network, trainer, train_source, test_source, progress_printer model_inputs_to_mb_source_mapping = input_map, mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), progress_printer = progress_printer, +# checkpoint_frequency = epoch_size, checkpoint_filename = os.path.join(model_path, model_name), +# save_all_checkpoints = True, progress_frequency = epoch_size, cv_source = test_source, cv_mb_size_schedule = cntk.minibatch_size_schedule(minibatch_size), +# cv_frequency = epoch_size, restore = restore) # Train all minibatches From a7206d728207393168ada3b5867c47eb2f11bbaa Mon Sep 17 00:00:00 2001 From: Amit Agarwal Date: Wed, 8 Feb 2017 16:48:54 -0800 Subject: [PATCH 28/31] CNTK v2 library: Add scatter/gather support for sparse operands, enabling a bunch of sequence ops on sparse operands --- .../ComputationNetworkLib/ReshapingNodes.cpp | 28 +++++++++++++- Source/Math/GPUSparseMatrix.cu | 1 + Source/Math/Matrix.cpp | 24 ++++++++++-- .../python/cntk/ops/tests/reshaping_test.py | 38 ++++++++++++++++++- 4 files changed, 86 insertions(+), 5 deletions(-) diff --git a/Source/ComputationNetworkLib/ReshapingNodes.cpp b/Source/ComputationNetworkLib/ReshapingNodes.cpp index e5653c0e4..cfe208fc3 100644 --- a/Source/ComputationNetworkLib/ReshapingNodes.cpp +++ b/Source/ComputationNetworkLib/ReshapingNodes.cpp @@ -432,7 +432,20 @@ template InputRef(INDEXDATA).MaskMissingValueColumnsTo(FrameRange(InputRef(INDEXDATA).GetMBLayout()), -1); // indicates an invalid column to Gather/Scatter let& index = InputRef(INDEXDATA) .Value(); // column indices to copy from let& source = InputRef(SOURCEDATA).Value(); // source data to copy - auto& output = Value(); // output goes here + +#ifdef _MSC_VER + auto& outputValuePtrRef = ValuePtrRef(); +#else + auto& outputValuePtrRef = this->template ValuePtrRef(); +#endif + if ((source.GetMatrixType() == SPARSE) && (outputValuePtrRef->GetMatrixType() != SPARSE)) + outputValuePtrRef = std::make_shared>(outputValuePtrRef->GetNumRows(), + outputValuePtrRef->GetNumCols(), + outputValuePtrRef->GetPreferredDeviceId(), + source.GetMatrixType(), + source.GetFormat()); + + auto& output = Value(); // output goes here output.DoGatherColumnsOf(/*beta=*/0, index, source, /*alpha=*/1); } @@ -493,6 +506,19 @@ template InputRef(INDEXDATA).MaskMissingValueColumnsTo(FrameRange(InputRef(INDEXDATA).GetMBLayout()), -1); // indicates an invalid column to Gather/Scatter let& index = InputRef(INDEXDATA) .Value(); // column indices to copy from let& source = InputRef(SOURCEDATA).Value(); // source data to copy + +#ifdef _MSC_VER + auto& outputValuePtrRef = ValuePtrRef(); +#else + auto& outputValuePtrRef = this->template ValuePtrRef(); +#endif + if ((source.GetMatrixType() == SPARSE) && (outputValuePtrRef->GetMatrixType() != SPARSE)) + outputValuePtrRef = std::make_shared>(outputValuePtrRef->GetNumRows(), + outputValuePtrRef->GetNumCols(), + outputValuePtrRef->GetPreferredDeviceId(), + source.GetMatrixType(), + source.GetFormat()); + auto& output = Value(); // output goes here output.DoScatterColumnsOf(/*beta=*/0, index, source, /*alpha=*/1); } diff --git a/Source/Math/GPUSparseMatrix.cu b/Source/Math/GPUSparseMatrix.cu index 7e05d5d4a..143d27d98 100644 --- a/Source/Math/GPUSparseMatrix.cu +++ b/Source/Math/GPUSparseMatrix.cu @@ -1148,6 +1148,7 @@ void GPUSparseMatrix::ConvolveAndWeightedAdd(ElemType alpha, const GPU { RuntimeError("Only support c += alpha * a operation"); } + int blocksPerGrid = (int) ceil(1.0 * cRows / GridDim::maxThreadsPerBlock); SyncGuard syncGuard; for (int rowInB = 0; rowInB < l; rowInB++) diff --git a/Source/Math/Matrix.cpp b/Source/Math/Matrix.cpp index dfa93a7af..18ee92f5d 100644 --- a/Source/Math/Matrix.cpp +++ b/Source/Math/Matrix.cpp @@ -1089,6 +1089,9 @@ Matrix& Matrix::DoGatherColumnsOf(ElemType beta, const Matri { DecideAndMoveToRightDevice(*this, idx, a); // TODO: only move target if beta != 0 + if (a.GetMatrixType() != this->GetMatrixType()) + RuntimeError("Matrix::DoGatherColumnsOf: The source and target matrices must have same storage type (SPARSE/DENSE)."); + DISPATCH_MATRIX_ON_FLAG(&a, this, { m_CPUMatrix->DoGatherColumnsOf(beta, *idx.m_CPUMatrix, *a.m_CPUMatrix, alpha); }, { m_GPUMatrix->DoGatherColumnsOf(beta, *idx.m_GPUMatrix, *a.m_GPUMatrix, alpha); }, @@ -1101,8 +1104,7 @@ Matrix& Matrix::DoGatherColumnsOf(ElemType beta, const Matri CPUSparseMatrix tempA(a.GetFormat(), a.GetNumRows(), a.GetNumCols(), a.m_GPUSparseMatrix->GetNumNZElements()); a.m_GPUSparseMatrix->CopyToCPUSparseMatrix(tempA); - CPUSparseMatrix tempThis(m_GPUSparseMatrix->GetFormat(), m_GPUSparseMatrix->GetNumRows(), m_GPUSparseMatrix->GetNumCols(), - m_GPUSparseMatrix->GetNumNZElements()); + CPUSparseMatrix tempThis(m_GPUSparseMatrix->GetFormat(), m_GPUSparseMatrix->GetNumRows(), m_GPUSparseMatrix->GetNumCols(), m_GPUSparseMatrix->GetNumNZElements()); m_GPUSparseMatrix->CopyToCPUSparseMatrix(tempThis); tempThis.DoGatherColumnsOf(beta, *tempIdx.m_CPUMatrix, tempA, alpha); @@ -1121,11 +1123,27 @@ Matrix& Matrix::DoScatterColumnsOf(ElemType beta, const Matr { DecideAndMoveToRightDevice(*this, idx, a); // TODO: only move target if beta != 0 + if (a.GetMatrixType() != this->GetMatrixType()) + RuntimeError("Matrix::DoScatterColumnsOf: The source and target matrices must have same storage type (SPARSE/DENSE)."); + DISPATCH_MATRIX_ON_FLAG(&a, this, { m_CPUMatrix->DoScatterColumnsOf(beta, *idx.m_CPUMatrix, *a.m_CPUMatrix, alpha); }, { m_GPUMatrix->DoScatterColumnsOf(beta, *idx.m_GPUMatrix, *a.m_GPUMatrix, alpha); }, { m_CPUSparseMatrix->DoScatterColumnsOf(beta, *idx.m_CPUMatrix, *a.m_CPUSparseMatrix, alpha); }, - { NOT_IMPLEMENTED; }); + { + // TODO replace by more performant version directly on GPU that does not require the round-trip over CPU. + + Matrix tempIdx(CPUDEVICE); tempIdx.AssignValuesOf(idx); + + CPUSparseMatrix tempA(a.GetFormat(), a.GetNumRows(), a.GetNumCols(), a.m_GPUSparseMatrix->GetNumNZElements()); + a.m_GPUSparseMatrix->CopyToCPUSparseMatrix(tempA); + + CPUSparseMatrix tempThis(m_GPUSparseMatrix->GetFormat(), m_GPUSparseMatrix->GetNumRows(), m_GPUSparseMatrix->GetNumCols(), m_GPUSparseMatrix->GetNumNZElements()); + m_GPUSparseMatrix->CopyToCPUSparseMatrix(tempThis); + + tempThis.DoScatterColumnsOf(beta, *tempIdx.m_CPUMatrix, tempA, alpha); + m_GPUSparseMatrix->SetValue(tempThis); + }); return *this; } diff --git a/bindings/python/cntk/ops/tests/reshaping_test.py b/bindings/python/cntk/ops/tests/reshaping_test.py index 00f466026..972d8486c 100644 --- a/bindings/python/cntk/ops/tests/reshaping_test.py +++ b/bindings/python/cntk/ops/tests/reshaping_test.py @@ -14,7 +14,7 @@ import pytest from .ops_test_utils import unittest_helper, _test_unary_op, _test_binary_op, AA, I, precision, PRECISION_TO_TYPE, cntk_device import cntk as C from cntk.axis import Axis -from ...utils import sanitize_dtype_cntk +from ...utils import sanitize_dtype_cntk, one_hot from .. import constant EPS_IN_LOG = 1e-37 # 1e-37 is the highest guaranteed precision @@ -395,3 +395,39 @@ def test_op_gather_derived_dynamic_axes_equivalence(device_id, precision): res = z.eval({a: input_data1, b: input_data2}) expected_forward = [[[3.]]] assert np.array_equal(res, expected_forward) + + +def test_op_gather_sparse(device_id): + from .. import sequence, times + + input_sparse_indices = [[1, 3, 5], [2, 4]] + vocab_size = 6 + input_data = one_hot(input_sparse_indices, vocab_size) + + a = I(shape=(vocab_size,), is_sparse=True, name='a') + + a_last = sequence.last(a) + a_last_dense = times(a_last, np.eye(vocab_size)) + res = a_last_dense.eval({a : input_data}) + assert np.array_equal(res, [[[0, 0, 0, 0, 0, 1]], [[0, 0, 0, 0, 1, 0]]]) + + a_last_2 = sequence.slice(a, -2, 0) + a_last_2_dense = times(a_last_2, np.eye(vocab_size)) + res = a_last_2_dense.eval({a : input_data}) + assert np.array_equal(res, [[[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]], [[0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0]]]) + + +def test_op_scatter_sparse(device_id): + from .. import sequence, times + + input_sparse_indices = [[1, 3, 5], [2, 4]] + vocab_size = 6 + input_data = one_hot(input_sparse_indices, vocab_size) + + a = I(shape=(vocab_size,), is_sparse=True, name='a') + + a_last_scatter = sequence.scatter(sequence.last(a), sequence.is_first(a)) + a_last_scatter_dense = times(a_last_scatter, np.eye(vocab_size)) + res = a_last_scatter_dense.eval({a : input_data}) + assert np.array_equal(res[0], np.asarray([[0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]])) + assert np.array_equal(res[1], np.asarray([[0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]])) From 063e1964dd0b61b78abeea9e0bd49a563cd6e481 Mon Sep 17 00:00:00 2001 From: PengchengHe Date: Fri, 13 Jan 2017 09:41:44 +0000 Subject: [PATCH 29/31] 1. Fix dynamicaxis of output of cosine_distance. 2. Fix Recurrencee in python layers.py --- Source/CNTKv2LibraryDll/PrimitiveFunction.cpp | 1 - bindings/python/cntk/layers.py | 5 ++++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/Source/CNTKv2LibraryDll/PrimitiveFunction.cpp b/Source/CNTKv2LibraryDll/PrimitiveFunction.cpp index 4a09c3bbd..a8a0f9625 100644 --- a/Source/CNTKv2LibraryDll/PrimitiveFunction.cpp +++ b/Source/CNTKv2LibraryDll/PrimitiveFunction.cpp @@ -137,7 +137,6 @@ namespace CNTK (op == PrimitiveOpType::CrossEntropyWithSoftmax) || (op == PrimitiveOpType::ClassificationError) || (op == PrimitiveOpType::Logistic) || - (op == PrimitiveOpType::CosDistance) || (op == PrimitiveOpType::LambdaRank) || (op == PrimitiveOpType::NDCG)) { diff --git a/bindings/python/cntk/layers.py b/bindings/python/cntk/layers.py index 8349c8f0e..e1725397a 100644 --- a/bindings/python/cntk/layers.py +++ b/bindings/python/cntk/layers.py @@ -349,7 +349,10 @@ def Recurrence(over, go_backwards=False, initial_state=initial_state_default_or_ f_x_h_c = over(x, prev_state) # apply the recurrent over # this returns a Function (x, (h_prev, c_prev)) -> (h, c) h_c = f_x_h_c.outputs - replacements = { value_forward: value for (value_forward, value) in zip(list(_as_tuple(state_forward)), h_c) } + if type(state_forward) is tuple and len(state_forward) > 1: + replacements = { value_forward: value for (value_forward, value) in zip(list(_as_tuple(state_forward)), h_c) } + else: + replacements = {(state_forward,)[0] : h_c[0] } f_x_h_c.replace_placeholders(replacements) # resolves state_forward := h_c h = f_x_h_c.outputs[0] # 'h' is a Variable (the output of a Function that computed it) if _trace_layers: From 04db23b5f82b8d77a64264d8b43107d70ac0405b Mon Sep 17 00:00:00 2001 From: PengchengHe Date: Thu, 26 Jan 2017 11:32:49 +0000 Subject: [PATCH 30/31] Add Adam Learner as the original paper --- .gitignore | 1 + Source/CNTKv2LibraryDll/API/CNTKLibrary.h | 4 +- Source/CNTKv2LibraryDll/Learner.cpp | 53 +++++++++++++++- Source/CNTKv2LibraryDll/Learner.h | 30 ++++++++++ Source/Math/CPUMatrix.cpp | 35 +++++++++++ Source/Math/CPUMatrix.h | 5 +- Source/Math/GPUMatrix.cu | 25 ++++++++ Source/Math/GPUMatrix.h | 7 ++- Source/Math/GPUMatrixCUDAKernels.cuh | 60 +++++++++++++++++++ Source/Math/GPUSparseMatrix.cu | 33 ++++++++++ Source/Math/GPUSparseMatrix.h | 1 + Source/Math/Matrix.cpp | 34 +++++++++++ Source/Math/Matrix.h | 4 ++ Source/Math/NoGPU.cpp | 12 ++++ Tests/UnitTests/MathTests/CPUMatrixTests.cpp | 30 ++++++++++ Tests/UnitTests/MathTests/GPUMatrixTests.cpp | 28 +++++++++ .../UnitTests/V2LibraryTests/LearnerTests.cpp | 13 +++- .../V2LibraryTests/SerializationTests.cpp | 0 bindings/csharp/Swig/cntk_cs.i | 0 bindings/python/cntk/learner.py | 3 - .../cntk/ops/tests/cosine_distance_test.py | 29 +++++++++ bindings/python/cntk/tests/layers_test.py | 46 ++++++++++++++ 22 files changed, 442 insertions(+), 11 deletions(-) mode change 100644 => 100755 Source/CNTKv2LibraryDll/API/CNTKLibrary.h mode change 100644 => 100755 Source/CNTKv2LibraryDll/Learner.cpp mode change 100644 => 100755 Source/CNTKv2LibraryDll/Learner.h mode change 100644 => 100755 Source/Math/CPUMatrix.cpp mode change 100644 => 100755 Source/Math/CPUMatrix.h mode change 100644 => 100755 Source/Math/GPUMatrix.cu mode change 100644 => 100755 Source/Math/GPUMatrix.h mode change 100644 => 100755 Source/Math/GPUMatrixCUDAKernels.cuh mode change 100644 => 100755 Source/Math/GPUSparseMatrix.cu mode change 100644 => 100755 Source/Math/GPUSparseMatrix.h mode change 100644 => 100755 Source/Math/Matrix.cpp mode change 100644 => 100755 Source/Math/Matrix.h mode change 100644 => 100755 Source/Math/NoGPU.cpp mode change 100644 => 100755 Tests/UnitTests/MathTests/CPUMatrixTests.cpp mode change 100644 => 100755 Tests/UnitTests/MathTests/GPUMatrixTests.cpp mode change 100644 => 100755 Tests/UnitTests/V2LibraryTests/LearnerTests.cpp mode change 100644 => 100755 Tests/UnitTests/V2LibraryTests/SerializationTests.cpp mode change 100644 => 100755 bindings/csharp/Swig/cntk_cs.i create mode 100644 bindings/python/cntk/ops/tests/cosine_distance_test.py diff --git a/.gitignore b/.gitignore index 816fcd182..db69af62a 100644 --- a/.gitignore +++ b/.gitignore @@ -269,3 +269,4 @@ Tutorials/slots.wl /packages /CNTK.VC.db /CNTK.VC.VC.opendb +.cache diff --git a/Source/CNTKv2LibraryDll/API/CNTKLibrary.h b/Source/CNTKv2LibraryDll/API/CNTKLibrary.h old mode 100644 new mode 100755 index 68b5b634e..848cdc10f --- a/Source/CNTKv2LibraryDll/API/CNTKLibrary.h +++ b/Source/CNTKv2LibraryDll/API/CNTKLibrary.h @@ -3880,7 +3880,9 @@ namespace CNTK static MomentumSchedule DefaultVarianceMomentum = MomentumAsTimeConstantSchedule(2 * 3600 * 100); /// - /// Create an instance of the CNTK built-in Adam learner (only the low-memory variant is supported at the moment). + /// Create an instance of Adam learner as the original paper. + /// Due to history reason, the legacy implementation of AdamLearner is FSAdaGrad. To keep compitability on the interface, we + /// will switch to the original Adam only when lowMemory = false, while keep the legacy logic when it leaves default, aka. true. /// CNTK_API LearnerPtr AdamLearner(const std::vector& parameters, const LearningRateSchedule& learningRateSchedule, diff --git a/Source/CNTKv2LibraryDll/Learner.cpp b/Source/CNTKv2LibraryDll/Learner.cpp old mode 100644 new mode 100755 index 563c3a061..2bcf3cd0d --- a/Source/CNTKv2LibraryDll/Learner.cpp +++ b/Source/CNTKv2LibraryDll/Learner.cpp @@ -543,6 +543,48 @@ namespace CNTK s_targetAdagradAvDenom, momentum, varMomentum, UseUnitGainMomentum()); } + LearnerAdam::LearnerAdam(const vector& parameters, + const LearningRateSchedule& learningRateSchedule, + const MomentumSchedule& momentumSchedule, + bool unitGain, + const MomentumSchedule& varianceMomentumSchedule, + AdditionalLearningOptions additionalOptions) + : LearnerMomentumSGD(parameters, learningRateSchedule, momentumSchedule, + unitGain, additionalOptions, /*allocateSmoothGradients*/ false), + m_varianceMomentumSchedule(varianceMomentumSchedule) + { + for (const auto& parameter : parameters) + { + const auto shape = GetMatrixShape(parameter); + NDArrayViewPtr view = AllocateNDArrayView(parameter, { shape[0], 2 * shape[1] }); + m_smoothedGradientValues.emplace(parameter, view); + m_smoothedCounts.emplace(parameter, 0.0); + } + } + + /*virtual*/ void LearnerAdam::Update(const Parameter& parameter, const NDArrayViewPtr& gradientValue, + const NDArrayViewPtr& smoothedGradientValue, size_t trainingSampleCount) const /*override*/ + { + DISPATCH_TO_TYPED_UPDATE_FUNCTION; + } + + template + void LearnerAdam::Update(const Parameter& parameter, const NDArrayViewPtr& gradientValue, + const NDArrayViewPtr& smoothedGradientValue, size_t trainingSampleCount) const + { + GET_WRITABLE_MATRICES; + + const auto learningRate = LearningRate(trainingSampleCount); + const auto momentum = MomentumValueForMB(trainingSampleCount); + + const auto varMomentum = VarianceMomentumValueForMB(trainingSampleCount); + + double& smoothedCount = m_smoothedCounts.at(parameter); + + smoothedGradientMatrix->AdamUpdate(*gradientMatrix, *parameterMatrix, smoothedCount, learningRate, + momentum, varMomentum, UseUnitGainMomentum()); + } + LearnerRMSProp::LearnerRMSProp(const vector& parameters, const LearningRateSchedule& learningRateSchedule, double gamma, double inc, double dec, double max, double min, @@ -623,16 +665,21 @@ namespace CNTK LearnerPtr AdamLearner(const vector& parameters, const LearningRateSchedule& learningRateSchedule, const MomentumSchedule& momentumSchedule, - bool unitGain, + bool unitGain, /*=true*/ const MomentumSchedule& varianceMomentumSchedule, /*= MomentumAsTimeConstantSchedulePerSample(2 * 3600 * 100)*/ bool lowMemory, /*= true*/ AdditionalLearningOptions additionalOptions /*= AdditionalLearningOptions()*/) { + // TODO: Due to history reason, the legacy AdamLearner using FSAdaGrad implementation instead of the original paper implementation. + // To keep interface backward compatible, the new adam will be enabled only when lowMemory is false. if (!lowMemory) { - LogicError("AdamLearner: only the low-memory variant is supported at the moment."); + return MakeSharedObject(parameters, learningRateSchedule, momentumSchedule, unitGain, varianceMomentumSchedule, additionalOptions); + } + else + { + return MakeSharedObject(parameters, learningRateSchedule, momentumSchedule, unitGain, varianceMomentumSchedule, additionalOptions); } - return MakeSharedObject(parameters, learningRateSchedule, momentumSchedule, unitGain, varianceMomentumSchedule, additionalOptions); } LearnerPtr AdaGradLearner(const vector& parameters, diff --git a/Source/CNTKv2LibraryDll/Learner.h b/Source/CNTKv2LibraryDll/Learner.h old mode 100644 new mode 100755 index 38f8e6c06..db1f8cfc0 --- a/Source/CNTKv2LibraryDll/Learner.h +++ b/Source/CNTKv2LibraryDll/Learner.h @@ -234,6 +234,36 @@ namespace CNTK MomentumSchedule m_varianceMomentumSchedule; }; + class LearnerAdam : public LearnerMomentumSGD + { + public: + + LearnerAdam(const std::vector& parameters, + const LearningRateSchedule& learningRateSchedule, + const MomentumSchedule& momentumSchedule, + bool unitGain, + const MomentumSchedule& varianceMomentumSchedule, + AdditionalLearningOptions additionalOptions); + + protected: + + virtual void Update(const Parameter& parameter, const NDArrayViewPtr& gradientValue, const NDArrayViewPtr& smoothedGradientValue, size_t trainingSampleCount) const override; + + template + void Update(const Parameter& parameter, const NDArrayViewPtr& gradientValue, const NDArrayViewPtr& smoothedGradientValue, size_t trainingSampleCount) const; + + private: + + // returns current per-minibatch variance momentum value. + double VarianceMomentumValueForMB(size_t minibatchSize) const + { + return MomentumValueForMB(m_varianceMomentumSchedule, minibatchSize); + } + + mutable std::unordered_map m_smoothedCounts; + MomentumSchedule m_varianceMomentumSchedule; + }; + class LearnerRMSProp : public LearnerBase { public: diff --git a/Source/Math/CPUMatrix.cpp b/Source/Math/CPUMatrix.cpp old mode 100644 new mode 100755 index 103ef49c1..4370f8baf --- a/Source/Math/CPUMatrix.cpp +++ b/Source/Math/CPUMatrix.cpp @@ -1246,6 +1246,41 @@ void CPUMatrix::FSAdagrad(CPUMatrix& gradients, } } +template +void CPUMatrix::Adam(CPUMatrix& gradients, CPUMatrix& functionValues, ElemType learnRatePerSample, + ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum) +{ + size_t numColsNeeded = 2 * gradients.GetNumCols(); + auto unitGainFactor = ElemType(unitGainMomentum ? (1.0 - momentum) : 1.0); + + if (IsEmpty() || (GetNumCols() < numColsNeeded)) + { + RequireSize(gradients.GetNumRows(), numColsNeeded); + SetValue(0.0); + } + + assert((GetNumRows() == gradients.GetNumRows()) && (GetNumCols() == numColsNeeded)); + + size_t n = gradients.GetNumElements(); + ElemType* grad = gradients.Data(); + ElemType* smoothAda = Data(); + ElemType* smoothMom = Data() + n; + ElemType* val = functionValues.Data(); +#pragma omp parallel for + // TODO: Unroll 4-times for better performance leveraging vectorization + for (long i = 0; i < n; i++) + { + ElemType g = grad[i]; + ElemType adaSqr = adaWeight * smoothAda[i] + (1.0f - adaWeight) * g * g; + smoothAda[i] = adaSqr; + ElemType ada = sqrt(adaSqr); + ElemType w = adaMul * (ElemType)( 1.0 / (ada + 1e-8)); + g = momentum * smoothMom[i] + unitGainFactor * g; + smoothMom[i] = g; + val[i] -= g * w * learnRatePerSample; + } +} + template ElemType CPUMatrix::RmsProp(CPUMatrix& gradients, ElemType RMS_GAMMA, diff --git a/Source/Math/CPUMatrix.h b/Source/Math/CPUMatrix.h old mode 100644 new mode 100755 index b680acac6..3903cba51 --- a/Source/Math/CPUMatrix.h +++ b/Source/Math/CPUMatrix.h @@ -95,7 +95,10 @@ public: void FSAdagrad(CPUMatrix& gradients, CPUMatrix& functionValues, ElemType learnRatePerSample, ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum); - + + void Adam(CPUMatrix& gradients, CPUMatrix& functionValues, ElemType learnRatePerSample, + ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum); + ElemType RmsProp(CPUMatrix& gradients, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, diff --git a/Source/Math/GPUMatrix.cu b/Source/Math/GPUMatrix.cu old mode 100644 new mode 100755 index 64216b043..04a33a5b9 --- a/Source/Math/GPUMatrix.cu +++ b/Source/Math/GPUMatrix.cu @@ -1413,6 +1413,31 @@ void GPUMatrix::FSAdagrad(GPUMatrix& gradients, learnRatePerSample, momentum, adaWeight, adaMul, unitGainMomentum); } +template +void GPUMatrix::Adam(GPUMatrix& gradients, + GPUMatrix& functionValues, + ElemType learnRatePerSample, + ElemType momentum, + ElemType adaWeight, + ElemType adaMul, + bool unitGainMomentum) +{ + size_t numColsNeeded = 2 * gradients.GetNumCols(); + + if (IsEmpty() || (GetNumCols() < numColsNeeded)) + { + RequireSize(gradients.GetNumRows(), numColsNeeded); + SetValue(0.0); + } + + assert((GetNumRows() == gradients.GetNumRows()) && (GetNumCols() == numColsNeeded)); + + size_t n = gradients.GetNumElements(); + int blocksPerGrid = (n + GridDim::maxThreadsPerBlock - 1) / GridDim::maxThreadsPerBlock; + _adam << > >(n, gradients.Data(), Data(), Data() + n, functionValues.Data(), + learnRatePerSample, momentum, adaWeight, adaMul, unitGainMomentum); +} + template ElemType GPUMatrix::RmsProp(GPUMatrix& gradients, ElemType RMS_GAMMA, diff --git a/Source/Math/GPUMatrix.h b/Source/Math/GPUMatrix.h old mode 100644 new mode 100755 index 3724fbc7f..c918d9a52 --- a/Source/Math/GPUMatrix.h +++ b/Source/Math/GPUMatrix.h @@ -224,10 +224,13 @@ public: } ElemType Adagrad(GPUMatrix& gradients, const bool needAveMultiplier); - - void FSAdagrad(GPUMatrix& gradients, GPUMatrix& functionValues, ElemType learnRatePerSample, + + void FSAdagrad(GPUMatrix& gradients, GPUMatrix& functionValues, ElemType learnRatePerSample, ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum); + void Adam(GPUMatrix& gradients, GPUMatrix& functionValues, ElemType learnRatePerSample, + ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum); + ElemType RmsProp(GPUMatrix& gradients, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, diff --git a/Source/Math/GPUMatrixCUDAKernels.cuh b/Source/Math/GPUMatrixCUDAKernels.cuh old mode 100644 new mode 100755 index 310a90598..522e14cc7 --- a/Source/Math/GPUMatrixCUDAKernels.cuh +++ b/Source/Math/GPUMatrixCUDAKernels.cuh @@ -5132,6 +5132,66 @@ __global__ void _maskColumnsValue(ElemType* a, const char* columnsMask, CUDA_LON a[IDX2C(rowIdx, colIdx, numRows)] = val; } } + +template +__global__ void _adam(CUDA_LONG size, ElemType* grad, ElemType* smoothAda, ElemType* smoothMom, ElemType* val, + ElemType lr, ElemType mom, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum) +{ + const ElemType unitGainFactor = unitGainMomentum ? (1.0 - mom) : 1.0; + CUDA_LONG idx = blockIdx.x * blockDim.x + threadIdx.x; + CUDA_LONG stride = blockDim.x * gridDim.x; + for (; idx < size; idx += stride) + { + ElemType g = grad[idx]; + ElemType adaSqr = adaWeight * smoothAda[idx] + (1.0f - adaWeight) * g * g; + smoothAda[idx] = adaSqr; + ElemType w; + if (sizeof(ElemType) == sizeof(double)) + { + w = adaMul * rsqrt(adaSqr + 1e-8); + } + else + { + w = adaMul * rsqrtf(adaSqr + 1e-8); + } + + g = mom * smoothMom[idx] + unitGainFactor * g; + smoothMom[idx] = g; + g = lr*g*w; + val[idx] -= g; + } +} + +template +__global__ void _adam4BlockSparseCol(CUDA_LONG size, + ElemType* grad_bsc, const GPUSPARSE_INDEX_TYPE* colOrRow2blockId, const size_t len, + ElemType* smoothAda, ElemType* smoothMom, ElemType* val, + ElemType lr, ElemType mom, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum) +{ + const ElemType unitGainFactor = unitGainMomentum ? (1.0 - mom) : 1.0; + CUDA_LONG idx = blockIdx.x * blockDim.x + threadIdx.x; + CUDA_LONG stride = blockDim.x * gridDim.x; + for (; idx < size; idx += stride) + { + ElemType g = _getvalue4BlockSparseCol(grad_bsc, colOrRow2blockId, len, idx); + ElemType adaSqr = adaWeight * smoothAda[idx] + (1.0f - adaWeight) * g * g; + smoothAda[idx] = adaSqr; + ElemType w; + if (sizeof(ElemType) == sizeof(double)) + { + w = adaMul * rsqrt(adaSqr + 1e-8); + } + else + { + w = adaMul * rsqrtf(adaSqr + 1e-8); + } + + g = mom * smoothMom[idx] + unitGainFactor * g; + smoothMom[idx] = g; + g = lr*g*w; + val[idx] -= g; + } +} } } } diff --git a/Source/Math/GPUSparseMatrix.cu b/Source/Math/GPUSparseMatrix.cu old mode 100644 new mode 100755 index 7e05d5d4a..2be070949 --- a/Source/Math/GPUSparseMatrix.cu +++ b/Source/Math/GPUSparseMatrix.cu @@ -1546,6 +1546,39 @@ void GPUSparseMatrix::FSAdagrad( learnRatePerSample, momentum, adaWeight, adaMul, unitGainMomentum); } +template +void GPUSparseMatrix::Adam( + GPUMatrix& c, + GPUMatrix& functionValues, + ElemType learnRatePerSample, + ElemType momentum, + ElemType adaWeight, + ElemType adaMul, + bool unitGainMomentum) +{ + if (GetFormat() != MatrixFormat::matrixFormatSparseBlockCol) + { + NOT_IMPLEMENTED; + } + + size_t numColsNeeded = 2 * GetNumCols(); + + if (c.IsEmpty() || (c.GetNumCols() < numColsNeeded)) + { + c.RequireSize(GetNumRows(), numColsNeeded); + c.SetValue(0.0); + } + + assert((c.GetNumRows() == GetNumRows()) && (c.GetNumCols() == numColsNeeded)); + + size_t n = GetNumElements(); + int blocksPerGrid = (n + GridDim::maxThreadsPerBlock - 1) / GridDim::maxThreadsPerBlock; + _adam4BlockSparseCol << > >( + n, Data(), ColOrRow2BlockId(), GetNumRows(), + c.Data(), c.Data() + n, functionValues.Data(), + learnRatePerSample, momentum, adaWeight, adaMul, unitGainMomentum); +} + template ElemType GPUSparseMatrix::RmsProp(GPUMatrix& c, ElemType RMS_GAMMA, diff --git a/Source/Math/GPUSparseMatrix.h b/Source/Math/GPUSparseMatrix.h old mode 100644 new mode 100755 index d2ad53057..32a349adc --- a/Source/Math/GPUSparseMatrix.h +++ b/Source/Math/GPUSparseMatrix.h @@ -412,6 +412,7 @@ public: ElemType Adagrad(GPUMatrix& c, const bool needAveMultiplier); void FSAdagrad(GPUMatrix& c, GPUMatrix& functionValues, ElemType learnRatePerSample, ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum); ElemType RmsProp(GPUMatrix& c, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, ElemType RMS_WGT_MAX, ElemType RMS_WGT_DEC, ElemType RMS_WGT_MIN, const bool needAveMultiplier); + void Adam(GPUMatrix& c, GPUMatrix& functionValues, ElemType learnRatePerSample, ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum); static void Multiply(const GPUSparseMatrix& S, const GPUMatrix& D, GPUMatrix& C); static void Multiply(const GPUMatrix& D, const GPUSparseMatrix& S, GPUMatrix& C); diff --git a/Source/Math/Matrix.cpp b/Source/Math/Matrix.cpp old mode 100644 new mode 100755 index dfa93a7af..dd941a30d --- a/Source/Math/Matrix.cpp +++ b/Source/Math/Matrix.cpp @@ -1672,6 +1672,40 @@ void Matrix::FSAdagradUpdate(size_t mbSize, // Note: Since both 'this' and gradients are changed, we must call SetDataLocation() on 'this' as well. } +/// +// Implement the original adam algorithm according to the paper +// Ref: ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION, https://arxiv.org/pdf/1412.6980.pdf +/// +template +void Matrix::AdamUpdate(Matrix& gradients, Matrix& functionValues, double& smoothedCount, + const double learnRatePerSample, const double meanMomentum, const double varMomentum, bool unitGainMomentum) +{ + smoothedCount++; + // Bias correction + let biasCorrection = (ElemType)(sqrt(1- pow(varMomentum, smoothedCount))/(1- pow(meanMomentum, smoothedCount))); + + DISPATCH_MATRIX_ON_FLAG(&gradients, &gradients, + { + m_CPUMatrix->Adam(*gradients.m_CPUMatrix, *functionValues.m_CPUMatrix, + (ElemType)learnRatePerSample, (ElemType)meanMomentum, (ElemType)varMomentum, + biasCorrection, unitGainMomentum); + SetDataLocation(CPU); + }, + { + m_GPUMatrix->Adam(*gradients.m_GPUMatrix, *functionValues.m_GPUMatrix, + (ElemType)learnRatePerSample, (ElemType)meanMomentum, (ElemType)varMomentum, + biasCorrection, unitGainMomentum); + SetDataLocation(GPU); + }, + { NOT_IMPLEMENTED; }, + { gradients.m_GPUSparseMatrix->Adam(*m_GPUMatrix, *functionValues.m_GPUMatrix, + (ElemType)learnRatePerSample, (ElemType)meanMomentum, + (ElemType)varMomentum, biasCorrection, unitGainMomentum); + SetDataLocation(GPU); }); + + // Note: Since both 'this' and gradients are changed, we must call SetDataLocation() on 'this' as well. +} + template ElemType Matrix::RmsProp(Matrix& gradients, ElemType RMS_GAMMA, diff --git a/Source/Math/Matrix.h b/Source/Math/Matrix.h old mode 100644 new mode 100755 index f9c01f729..afa44d78d --- a/Source/Math/Matrix.h +++ b/Source/Math/Matrix.h @@ -215,6 +215,10 @@ public: Matrix& gradients, Matrix& functionValues, double& smoothedCount, const double learnRatePerSample, const double targetAdagradAvDenom, const double meanMomentum, const double varMomentum, bool unitGainMomentum = true); + + void AdamUpdate(Matrix& gradients, Matrix& functionValues, double& smoothedCount, + const double learnRatePerSample, const double meanMomentum, const double varMomentum, bool unitGainMomentum = true); + ElemType RmsProp(Matrix& gradients, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, ElemType RMS_WGT_MAX, ElemType RMS_WGT_DEC, ElemType RMS_WGT_MIN, const bool needAveMultiplier); void Resize(const size_t numRows, const size_t numCols, const size_t numNZElemToReserve = 10000, bool growOnly = true); // by default we only reallocate if need to grow diff --git a/Source/Math/NoGPU.cpp b/Source/Math/NoGPU.cpp old mode 100644 new mode 100755 index 3d8dccfd6..4b84c5f40 --- a/Source/Math/NoGPU.cpp +++ b/Source/Math/NoGPU.cpp @@ -261,6 +261,11 @@ void GPUSparseMatrix::FSAdagrad(GPUMatrix&, GPUMatrix +void GPUSparseMatrix::Adam(GPUMatrix& c, GPUMatrix& functionValues, ElemType learnRatePerSample, ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum) +{ +} + template ElemType GPUSparseMatrix::RmsProp(GPUMatrix&, ElemType, ElemType, ElemType, ElemType, ElemType, const bool) { @@ -1077,6 +1082,13 @@ void GPUMatrix::FSAdagrad(GPUMatrix& gradients, GPUMatrix +void GPUMatrix::Adam(GPUMatrix& gradients, GPUMatrix& functionValues, ElemType learnRatePerSample, + ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum) +{ + +} + template ElemType GPUMatrix::RmsProp(GPUMatrix& gradients, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, ElemType RMS_WGT_MAX, ElemType RMS_WGT_DEC, ElemType RMS_WGT_MIN, const bool needAveMultiplier) { diff --git a/Tests/UnitTests/MathTests/CPUMatrixTests.cpp b/Tests/UnitTests/MathTests/CPUMatrixTests.cpp old mode 100644 new mode 100755 index 97a638221..22d5dbf12 --- a/Tests/UnitTests/MathTests/CPUMatrixTests.cpp +++ b/Tests/UnitTests/MathTests/CPUMatrixTests.cpp @@ -898,6 +898,36 @@ BOOST_FIXTURE_TEST_CASE(CPUMatrixSeedingDouble, RandomSeedFixture) BOOST_CHECK(m1.IsEqualTo(m2)); } +BOOST_FIXTURE_TEST_CASE(CPUMatrixAdam, RandomSeedFixture) +{ + CPUMatrix adamMatrix; + CPUMatrix gradients(2, 1); + CPUMatrix parameters(2, 1); + CPUMatrix expectedParameters(2, 1); + CPUMatrix expectedStates(2, 2); + double gradientValues[] = { 0.1, -0.1 }; + double paramValues[] = { 0.1, 0.1 }; + double expectedValues[] = { -0.05811338, 0.25811338 }; + double expectedStateValues[] = {1e-5, 0.01, 1e-5, -0.01}; + gradients.SetValue(2, 1, gradientValues, matrixFormatRowMajor); + parameters.SetValue(2, 1, paramValues, matrixFormatRowMajor); + expectedParameters.SetValue(2, 1, expectedValues, matrixFormatRowMajor); + expectedStates.SetValue(2, 2, expectedStateValues, matrixFormatRowMajor); + adamMatrix.Adam(gradients, parameters, 0.1, 0.9, 0.999, 0.5, true); + + BOOST_CHECK(parameters.IsEqualTo(expectedParameters, 1e-6)); + BOOST_CHECK(adamMatrix.IsEqualTo(expectedStates, 1e-6)); + + double expectedValues2[] = { -0.27059249, 0.47059249 }; + double expectedStateValues2[] = { 2e-05, 0.019, 2e-05, -0.019 }; + expectedParameters.SetValue(2, 1, expectedValues2, matrixFormatRowMajor); + expectedStates.SetValue(2, 2, expectedStateValues2, matrixFormatRowMajor); + adamMatrix.Adam(gradients, parameters, 0.1, 0.9, 0.999, 0.5, true); + + BOOST_CHECK(parameters.IsEqualTo(expectedParameters, 1e-6)); + BOOST_CHECK(adamMatrix.IsEqualTo(expectedStates, 1e-6)); +} + BOOST_AUTO_TEST_SUITE_END() } } } } diff --git a/Tests/UnitTests/MathTests/GPUMatrixTests.cpp b/Tests/UnitTests/MathTests/GPUMatrixTests.cpp old mode 100644 new mode 100755 index 2ba9daa62..cb8cbade0 --- a/Tests/UnitTests/MathTests/GPUMatrixTests.cpp +++ b/Tests/UnitTests/MathTests/GPUMatrixTests.cpp @@ -537,6 +537,34 @@ BOOST_FIXTURE_TEST_CASE(GPUMatrixCurandSeedingDouble, RandomSeedFixture) BOOST_CHECK(m1.IsEqualTo(m2)); } +BOOST_FIXTURE_TEST_CASE(GPUMatrixAdam, RandomSeedFixture) +{ + GPUMatrix adamMatrix(c_deviceIdZero); + GPUMatrix gradients(2, 1, c_deviceIdZero); + GPUMatrix parameters(2, 1, c_deviceIdZero); + GPUMatrix expectedParameters(2, 1, c_deviceIdZero); + GPUMatrix expectedStates(2, 2, c_deviceIdZero); + double gradientValues[] = { 0.1, -0.1 }; + double paramValues[] = { 0.1, 0.1 }; + double expectedValues[] = { -0.05803489, 0.25803488 }; + double expectedStateValues[] = { 1e-5, 0.01, 1e-5, -0.01 }; + gradients.SetValue(2, 1, c_deviceIdZero, gradientValues, matrixFormatRowMajor); + parameters.SetValue(2, 1, c_deviceIdZero, paramValues, matrixFormatRowMajor); + expectedParameters.SetValue(2, 1, c_deviceIdZero, expectedValues, matrixFormatRowMajor); + expectedStates.SetValue(2, 2, c_deviceIdZero, expectedStateValues, matrixFormatRowMajor); + adamMatrix.Adam(gradients, parameters, 0.1, 0.9, 0.999, 0.5, true); + BOOST_CHECK(parameters.IsEqualTo(expectedParameters, 1e-6)); + BOOST_CHECK(adamMatrix.IsEqualTo(expectedStates, 1e-6)); + + double expectedValues2[] = { -0.27046135, 0.47046134 }; + double expectedStateValues2[] = { 2e-05, 0.019, 2e-05, -0.019 }; + expectedParameters.SetValue(2, 1, c_deviceIdZero, expectedValues2, matrixFormatRowMajor); + expectedStates.SetValue(2, 2, c_deviceIdZero, expectedStateValues2, matrixFormatRowMajor); + adamMatrix.Adam(gradients, parameters, 0.1, 0.9, 0.999, 0.5, true); + BOOST_CHECK(parameters.IsEqualTo(expectedParameters, 1e-6)); + BOOST_CHECK(adamMatrix.IsEqualTo(expectedStates, 1e-6)); +} + #if 0 // Temporarily disabling BOOST_FIXTURE_TEST_CASE(GPUMatrixLargeInequality, RandomSeedFixture) { diff --git a/Tests/UnitTests/V2LibraryTests/LearnerTests.cpp b/Tests/UnitTests/V2LibraryTests/LearnerTests.cpp old mode 100644 new mode 100755 index 88ba2cd83..91a664db3 --- a/Tests/UnitTests/V2LibraryTests/LearnerTests.cpp +++ b/Tests/UnitTests/V2LibraryTests/LearnerTests.cpp @@ -95,6 +95,15 @@ void TestFSAdaGradLearner(size_t numParameters, size_t numMinibatches, bool unit TestUpdate(learner, shape, numMinibatches, device); } +template +void TestAdamLearner(size_t numParameters, size_t numMinibatches, bool unitGainMomentum, const DeviceDescriptor& device) +{ + NDShape shape = CreateShape(rng() % maxNumAxes + 1, maxDimSize); + auto parameters = CreateParameters(shape, numParameters, device); + auto learner = AdamLearner(parameters, LearningRatePerSampleSchedule({ 0.5 }), MomentumAsTimeConstantSchedule({ 10.0, 100.0, 1000.0 }), unitGainMomentum, MomentumPerSampleSchedule(0.99), false); + TestUpdate(learner, shape, numMinibatches, device); +} + template void TestRMSPropLearner(size_t numParameters, size_t numMinibatches, const DeviceDescriptor& device) { @@ -335,6 +344,8 @@ void LearnerTests() TestMomentumSGDLearner(numParameters, numMinibatches, unitGain, device); TestNesterovLearner(numParameters, numMinibatches, unitGain, device); TestFSAdaGradLearner(numParameters, numMinibatches, unitGain, device); + TestAdamLearner(numParameters, numMinibatches, unitGain, device); + TestAdamLearner(numParameters, numMinibatches, unitGain, device); } } -} \ No newline at end of file +} diff --git a/Tests/UnitTests/V2LibraryTests/SerializationTests.cpp b/Tests/UnitTests/V2LibraryTests/SerializationTests.cpp old mode 100644 new mode 100755 diff --git a/bindings/csharp/Swig/cntk_cs.i b/bindings/csharp/Swig/cntk_cs.i old mode 100644 new mode 100755 diff --git a/bindings/python/cntk/learner.py b/bindings/python/cntk/learner.py index 085e66e05..023b2ef99 100644 --- a/bindings/python/cntk/learner.py +++ b/bindings/python/cntk/learner.py @@ -564,9 +564,6 @@ def adam_sgd(parameters, lr, momentum, unit_gain=default_unit_gain_value(), `_. International Conference for Learning Representations, 2015. ''' - if not low_memory: - raise NotImplementedError('adam: low_memory=True currently required') - _verify_learning_rate_type(lr) _verify_momentum_type(momentum) _verify_momentum_type(variance_momentum) diff --git a/bindings/python/cntk/ops/tests/cosine_distance_test.py b/bindings/python/cntk/ops/tests/cosine_distance_test.py new file mode 100644 index 000000000..68d5a3660 --- /dev/null +++ b/bindings/python/cntk/ops/tests/cosine_distance_test.py @@ -0,0 +1,29 @@ +# Copyright (c) Microsoft. All rights reserved. + +# Licensed under the MIT license. See LICENSE.md file in the project root +# for full license information. +# ============================================================================== + +""" +Unit tests for the cosine distance class. +""" + +import numpy as np +import pytest +from .. import * +from ...axis import Axis +from ... import sequence + +def test_cosine_distance(): + a = np.reshape(np.arange(25.0, dtype = np.float32), (5,5)) + b = np.reshape(np.arange(0, 5, dtype=np.float32), (1,5)) + + src = input_variable(shape=(5), dynamic_axes=[ Axis.default_batch_axis(), Axis("Seq")]) + tgt = input_variable(shape=(5)) + tgt_br = sequence.broadcast_as(tgt, src) + cos_seq = cosine_distance(src, tgt_br) + assert len(cos_seq.dynamic_axes)==2 + assert cos_seq.dynamic_axes[1].name=="Seq" + val = cos_seq.eval({src:[a], tgt:[b]}) + expected = [[ 1., 0.914659, 0.878459, 0.86155, 0.851852]] + print(np.allclose(val, expected)) diff --git a/bindings/python/cntk/tests/layers_test.py b/bindings/python/cntk/tests/layers_test.py index df7c57e30..9caa7c952 100644 --- a/bindings/python/cntk/tests/layers_test.py +++ b/bindings/python/cntk/tests/layers_test.py @@ -8,6 +8,10 @@ import numpy as np import pytest from ..layers import * +from ..blocks import init_default_or_glorot_uniform, Parameter, _INFERRED, Placeholder +from ..utils import _as_tuple +from ..ops import sigmoid, times, tanh, element_times, plus, combine, input_variable +from ..axis import Axis def test_layers_name(device_id): from cntk import placeholder_variable, combine @@ -19,3 +23,45 @@ def test_layers_name(device_id): q = Convolution((3,3), 3, name='conv33')(I) assert(q.root_function.name == 'conv33') +def gru_cell(shape, init=init_default_or_glorot_uniform, name=''): # (x, (h,c)) + shape = _as_tuple(shape) + + if len(shape) != 1 : + raise ValueError("gru_cell: shape must be vectors (rank-1 tensors)") + + # determine stacking dimensions + cell_shape_stacked = shape * 2 # patched dims with stack_axis duplicated 4 times + + # parameters + Wz = Parameter(cell_shape_stacked, init = init, name='Wz') + Wr = Parameter(cell_shape_stacked, init = init, name='Wr') + Wh = Parameter(cell_shape_stacked, init = init, name='Wh') + Uz = Parameter( _INFERRED + shape, init = init, name = 'Uz') + Ur = Parameter( _INFERRED + shape, init = init, name = 'Ur') + Uh = Parameter( _INFERRED + shape, init = init, name = 'Uh') + + def create_s_placeholder(): + # we pass the known dimensions here, which makes dimension inference easier + return Placeholder(shape=shape, name='S') # (h, c) + + # parameters to model function + x = Placeholder(name='gru_block_arg') + prev_status = create_s_placeholder() + + # formula of model function + Sn_1 = prev_status + + z = sigmoid(times(x, Uz, name='x*Uz') + times(Sn_1, Wz, name='Sprev*Wz'), name='z') + r = sigmoid(times(x, Ur, name='x*Ur') + times(Sn_1, Wr, name='Sprev*Wr'), name='r') + h = tanh(times(x, Uh, name='x*Uh') + times(element_times(Sn_1, r, name='Sprev*r'), Wh), name='h') + s = plus(element_times((1-z), h, name='(1-z)*h'), element_times(z, Sn_1, name='z*SPrev'), name=name) + apply_x_s = combine([s]) + apply_x_s.create_placeholder = create_s_placeholder + return apply_x_s + +def test_recurrence(): + r = Recurrence(gru_cell(5), go_backwards=False) + a = input_variable(shape=(5,), dynamic_axes=[Axis.default_batch_axis(), Axis('Seq')]) + x = np.reshape(np.arange(0,25, dtype=np.float32), (1,5,5)) + rt = r(a).eval({a:x}) + print(rt) From 236fa8ac9f2c884e97db24759228fd2ae288d65d Mon Sep 17 00:00:00 2001 From: Mark Hillebrand Date: Thu, 9 Feb 2017 10:53:43 +0100 Subject: [PATCH 31/31] Tests/EndToEndTests/UnitTests/MathTests/baseline.txt: missing baseline update --- .../UnitTests/MathTests/baseline.txt | 6113 +---------------- 1 file changed, 153 insertions(+), 5960 deletions(-) diff --git a/Tests/EndToEndTests/UnitTests/MathTests/baseline.txt b/Tests/EndToEndTests/UnitTests/MathTests/baseline.txt index fea177fab..bd48fb5a9 100644 --- a/Tests/EndToEndTests/UnitTests/MathTests/baseline.txt +++ b/Tests/EndToEndTests/UnitTests/MathTests/baseline.txt @@ -1,5840 +1,13 @@ CPU info: - CPU Model Name: Intel(R) Xeon(R) CPU W3565 @ 3.20GHz - Hardware threads: 8 - Total Memory: 12580436 kB + CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz + Hardware threads: 24 + Total Memory: 264172964 kB ------------------------------------------------------------------- -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -Using cuDNN batch normalization engine. -Using CNTK batch normalization engine. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 5, Kernel: 1 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 1, Kernel: 1 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 5, Kernel: 1 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 5, Kernel: 1 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 1, Kernel: 1 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 5, Kernel: 1 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 1 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 1 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 1 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 5, Kernel: 3 x 3 x 1, Map: 5, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 1, Kernel: 3 x 3 x 3, Map: 1, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 5, Kernel: 3 x 3 x 3, Map: 5, Stride: 2 x 2 x 3, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 3 x 3 x 1, Output: 3 x 3 x 2, Kernel: 3 x 3 x 1, Map: 2, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 5 x 2, Output: 3 x 3 x 3 x 2, Kernel: 3 x 3 x 3 x 2, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 5 x 5 x 3 x 1, Output: 3 x 3 x 2 x 2, Kernel: 3 x 3 x 2 x 1, Map: 2, Stride: 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 1, Output: 16 x 8 x 8, Kernel: 3 x 3 x 1, Map: 8, Stride: 1 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using GEMM convolution engine for geometry: Input: 16 x 16 x 2, Output: 8 x 8 x 1, Kernel: 1 x 1 x 2, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0 x 0 x 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using cuDNN convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 1, Output: 1 x 2 x 1, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 2 x 3, Output: 1 x 2 x 3, Kernel: 1 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 1, Output: 1 x 3 x 1, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 3 x 3, Output: 1 x 3 x 3, Kernel: 1 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 1, Output: 1 x 4 x 1, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 1 x 4 x 3, Output: 1 x 4 x 3, Kernel: 1 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 1, Output: 1 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 3 x 3, Output: 1 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 2 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 1, Output: 1 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 2 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 2 x 4 x 3, Output: 1 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 4 x 5 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 1, Output: 2 x 3 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 4 x 5 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 5 x 3, Output: 2 x 3 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 2 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 1 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 3 x 4 x 3, Output: 2 x 2 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 6 x 7 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 1, Output: 3 x 4 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 6 x 7 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 6 x 7 x 3, Output: 3 x 4 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 5 x 6 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 1, Output: 3 x 3 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 5 x 6 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 5 x 6 x 3, Output: 3 x 3 x 3, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, OuRunning 138 test cases... +===== Tensor test 'elementwise addition' +Running 150 test cases... [512 x 256] [512 x 256] -> [512 x 256] // GPU [512 x 256] [512 x 256] -> [512 x 256] // CPU - [3 x 2] [3 x 1] -> [3 x 2] // GPU - [3 x 2] [3 x 1] -> [3 x 2] // CPU - [28 x 28 x 128 x 32] [1 x 1 x 128] -> [28 x 28 x 128 x 32] // GPU - [28 x 28 x 128 x 32] [1 x 1 x 128] -> [28 x 28 x 128 x 32] // CPU - [256 x 256 x 64 x 32] [1 x 1 x 64] -> [256 x 256 x 64 x 32] // GPU - [256 x 256 x 64 x 32] [1 x 1 x 64] -> [256 x 256 x 64 x 32] // CPU - [2048 x 1024] -> [2048] // GPU - [2048 x 1024] -> [2048] // CPU - [256 x 256 x 64 x 32] -> [1 x 1 x 64] // GPU - [256 x 256 x 64 x 32] -> [1 x 1 x 64] // CPU - tput: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -using reference convolution engine for geometry: Input: 4 x 4 x 1, Output: 2 x 2 x 1, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0. -RandomSeedFixture::RandomSeedFixture (GPU): creating curand object with seed 42, sizeof(ElemType)==4 -RandomSeedFixture::RandomSeedFixture (GPU): creating curand object with seed 42, sizeof(ElemType)==8 -WARNING: The same matrix with dim [2, 3] has been transferred between different devices for 20 times. -===== Tensor test 'elementwise addition' - + ###### GPU result (131072, 1) [0:7, 0:9] ###### -0.2939662337 @@ -5859,7 +32,9 @@ WARNING: The same matrix with dim [2, 3] has been transferred between different 0.9675793052 ... ===== Tensor test 'addition wth simple broadcasting' - + [3 x 2] [3 x 1] -> [3 x 2] // GPU + [3 x 2] [3 x 1] -> [3 x 2] // CPU + ###### GPU result (6, 1) [0:7, 0:9] ###### -0.2939662337 @@ -5878,7 +53,9 @@ WARNING: The same matrix with dim [2, 3] has been transferred between different -1.6296070814 -1.6918985844 ===== Tensor test 'bias addition (broadcasting)' - + [28 x 28 x 128 x 32] [1 x 1 x 128] -> [28 x 28 x 128 x 32] // GPU + [28 x 28 x 128 x 32] [1 x 1 x 128] -> [28 x 28 x 128 x 32] // CPU + ###### GPU result (3211264, 1) [0:7, 0:9] ###### -0.2939662337 @@ -5903,7 +80,9 @@ WARNING: The same matrix with dim [2, 3] has been transferred between different 0.8700708747 ... ===== Tensor test 'bias addition (broadcasting)' - + [256 x 256 x 64 x 32] [1 x 1 x 64] -> [256 x 256 x 64 x 32] // GPU + [256 x 256 x 64 x 32] [1 x 1 x 64] -> [256 x 256 x 64 x 32] // CPU + ###### GPU result (134217728, 1) [0:7, 0:9] ###### -0.2939662337 @@ -5928,17 +107,19 @@ WARNING: The same matrix with dim [2, 3] has been transferred between different 0.8700708747 ... ===== Tensor test 'bias gradient (reduction)' - + [2048 x 1024] -> [2048] // GPU + [2048 x 1024] -> [2048] // CPU + ###### GPU result (2048, 1) [0:7, 0:9] ###### -1.2924220562 -20.1920471191 -31.9372062683 +1.2924218178 +20.1920490265 +31.9372329712 13.5184125900 -3.1232621670 --14.3535261154 --4.3421869278 --15.4718856812 +3.1232664585 +-14.3535432816 +-4.3421840668 +-15.4718914032 ... ###### CPU result (2048, 1) [0:7, 0:9] ###### @@ -5953,7 +134,9 @@ WARNING: The same matrix with dim [2, 3] has been transferred between different -15.4718885422 ... ===== Tensor test 'bias gradient (reduction)' - + [256 x 256 x 64 x 32] -> [1 x 1 x 64] // GPU + [256 x 256 x 64 x 32] -> [1 x 1 x 64] // CPU + ###### GPU result (64, 1) [0:7, 0:9] ###### 351.1564941406 @@ -5972,23 +155,23 @@ WARNING: The same matrix with dim [2, 3] has been transferred between different -124.9017105103 221.3192443848 -120.1618041992 -1640.0551757813 +1640.0551757812 -266.5106201172 371.6577148438 -903.1638183594 ... -MultiplyAndAdd Directly: 0.000000 seconds -MultiplyAndAdd With ColumnSlice: 0.035000 seconds -MultiplyAndAdd With ColumnSlice&: 0.034000 seconds -MultiplyAndAdd With AssignColumnSlice: 0.035000 seconds -AssignSigmoidOf With ColumnSlice: 0.005000 seconds -AssignSigmoidOf With AssignColumnSlice: 0.006000 seconds -testRnnForwardPropSRP: 0.007000 seconds -TestOldRnnForwardPropSRP: 0.020000 seconds +MultiplyAndAdd Directly: 0.000040 seconds +MultiplyAndAdd With ColumnSlice: 0.002050 seconds +MultiplyAndAdd With ColumnSlice&: 0.002118 seconds +MultiplyAndAdd With AssignColumnSlice: 0.002191 seconds +AssignSigmoidOf With ColumnSlice: 0.002206 seconds +AssignSigmoidOf With AssignColumnSlice: 0.015601 seconds +testRnnForwardPropSRP: 0.001586 seconds +TestOldRnnForwardPropSRP: 0.008699 seconds Test module "MathTests" has passed with: - 138 test cases out of 138 passed - 10554474 assertions out of 10554474 passed + 150 test cases out of 150 passed + 13210418 assertions out of 13210418 passed Test suite "BatchNormalizationSuite" has passed with: 2 test cases out of 2 passed @@ -6051,47 +234,8 @@ Test module "MathTests" has passed with: 770 assertions out of 770 passed Test suite "CPUMatrixSuite" has passed with: - 31 test cases out of 31 passed - 5248662 assertions out of 5248662 passed - - Test case "CPUMatrixSuite/CPUSparseMatrixColumnSlice" has passed with: - 1 assertion out of 1 passed - - Test case "CPUMatrixSuite/CPUSparseMatrixCopyColumnSliceToDense" has passed with: - 1 assertion out of 1 passed - - Test case "CPUMatrixSuite/CPUSparseMatrixMultiplyAndAdd" has passed with: - 20000 assertions out of 20000 passed - - Test case "CPUMatrixSuite/MatrixMultiplyTest" has passed with: - 1484 assertions out of 1484 passed - - Test case "CPUMatrixSuite/MatrixMultiplyAndPlusAndMinus" has passed with: - 1050120 assertions out of 1050120 passed - - Test case "CPUMatrixSuite/MatrixScaleAndAdd" has passed with: - 1572864 assertions out of 1572864 passed - - Test case "CPUMatrixSuite/MatrixScaleAndAdd_double" has passed with: - 1572864 assertions out of 1572864 passed - - Test case "CPUMatrixSuite/MatrixNorms" has passed with: - 14 assertions out of 14 passed - - Test case "CPUMatrixSuite/MatrixInnerProductOfMatrices" has passed with: - 1 assertion out of 1 passed - - Test case "CPUMatrixSuite/CPUMatrixFileWriteRead" has passed with: - 1 assertion out of 1 passed - - Test case "CPUMatrixSuite/MatrixFileWriteRead" has passed with: - 3 assertions out of 3 passed - - Test case "CPUMatrixSuite/CPUMatrix1BitQuantizeFloat" has passed with: - 481229 assertions out of 481229 passed - - Test case "CPUMatrixSuite/CPUMatrix1BitQuantizeDouble" has passed with: - 549976 assertions out of 549976 passed + 32 test cases out of 32 passed + 5248666 assertions out of 5248666 passed Test case "CPUMatrixSuite/CPUMatrixConstructorNoFlags" has passed with: 8 assertions out of 8 passed @@ -6147,9 +291,96 @@ Test module "MathTests" has passed with: Test case "CPUMatrixSuite/CPUMatrixSeedingDouble" has passed with: 1 assertion out of 1 passed + Test case "CPUMatrixSuite/CPUMatrixAdam" has passed with: + 4 assertions out of 4 passed + + Test case "CPUMatrixSuite/CPUSparseMatrixColumnSlice" has passed with: + 1 assertion out of 1 passed + + Test case "CPUMatrixSuite/CPUSparseMatrixCopyColumnSliceToDense" has passed with: + 1 assertion out of 1 passed + + Test case "CPUMatrixSuite/CPUSparseMatrixMultiplyAndAdd" has passed with: + 20000 assertions out of 20000 passed + + Test case "CPUMatrixSuite/MatrixMultiplyTest" has passed with: + 1484 assertions out of 1484 passed + + Test case "CPUMatrixSuite/MatrixMultiplyAndPlusAndMinus" has passed with: + 1050120 assertions out of 1050120 passed + + Test case "CPUMatrixSuite/MatrixScaleAndAdd" has passed with: + 1572864 assertions out of 1572864 passed + + Test case "CPUMatrixSuite/MatrixScaleAndAdd_double" has passed with: + 1572864 assertions out of 1572864 passed + + Test case "CPUMatrixSuite/MatrixNorms" has passed with: + 14 assertions out of 14 passed + + Test case "CPUMatrixSuite/MatrixInnerProductOfMatrices" has passed with: + 1 assertion out of 1 passed + + Test case "CPUMatrixSuite/CPUMatrixFileWriteRead" has passed with: + 1 assertion out of 1 passed + + Test case "CPUMatrixSuite/MatrixFileWriteRead" has passed with: + 3 assertions out of 3 passed + + Test case "CPUMatrixSuite/CPUMatrix1BitQuantizeFloat" has passed with: + 481229 assertions out of 481229 passed + + Test case "CPUMatrixSuite/CPUMatrix1BitQuantizeDouble" has passed with: + 549976 assertions out of 549976 passed + + Test suite "QuantizersUnitTests" has passed with: + 2 test cases out of 2 passed + 12 assertions out of 12 passed + + Test case "QuantizersUnitTests/FloatToShort" has passed with: + 6 assertions out of 6 passed + + Test case "QuantizersUnitTests/QuantizeZeros" has passed with: + 6 assertions out of 6 passed + + Test suite "QuantizedOperationsUnitTests" has passed with: + 1 test case out of 1 passed + 65 assertions out of 65 passed + + Test case "QuantizedOperationsUnitTests/MultiplyIntToShort" has passed with: + 65 assertions out of 65 passed + + Test suite "MathTensorTests" has passed with: + 9 test cases out of 9 passed + 6 assertions out of 6 passed + + Test case "MathTensorTests/ElementwiseAddition" has passed with: + 1 assertion out of 1 passed + + Test case "MathTensorTests/AdditionWithSimpleBroadcasting" has passed with: + 1 assertion out of 1 passed + + Test case "MathTensorTests/BiasAddition" has passed with: + 1 assertion out of 1 passed + + Test case "MathTensorTests/BiasAddition2" has passed with: + 1 assertion out of 1 passed + + Test case "MathTensorTests/BiasGradient" has passed with: + 1 assertion out of 1 passed + + Test case "MathTensorTests/BiasGradient2" has passed with: + 1 assertion out of 1 passed + + Test case "MathTensorTests/ColumnSliceMultAndAdd" has passed + + Test case "MathTensorTests/RnnForwardProp" has passed + + Test case "MathTensorTests/OldRnnForwardProp" has passed + Test suite "GPUMatrixSuite" has passed with: - 56 test cases out of 56 passed - 1263762 assertions out of 1263762 passed + 57 test cases out of 57 passed + 1263769 assertions out of 1263769 passed Test case "GPUMatrixSuite/GPUBlasMultiplyAndWeightedAdd" has passed with: 1 assertion out of 1 passed @@ -6214,6 +445,9 @@ Test module "MathTests" has passed with: Test case "GPUMatrixSuite/GPUMatrixCurandSeedingDouble" has passed with: 1 assertion out of 1 passed + Test case "GPUMatrixSuite/GPUMatrixAdam" has passed with: + 4 assertions out of 4 passed + Test case "GPUMatrixSuite/GPUSparseMatrixConstructorsAndInitializers" has passed with: 10 assertions out of 10 passed @@ -6248,7 +482,7 @@ Test module "MathTests" has passed with: 4 assertions out of 4 passed Test case "GPUMatrixSuite/GPUSparseMatrixInnerProduct" has passed with: - 2 assertions out of 2 passed + 5 assertions out of 5 passed Test case "GPUMatrixSuite/GPUSparseMatrixColumnSlice" has passed with: 4 assertions out of 4 passed @@ -6318,19 +552,9 @@ Test module "MathTests" has passed with: Test case "GPUMatrixSuite/MatrixSparseElementWisePower" has passed with: 1 assertion out of 1 passed - Test suite "MatrixLearnerSuite" has passed with: - 2 test case out of 2 passed - 4 assertions out of 4 passed - - Test case "MatrixLearnerSuite/FSAdagradSparse" has passed with: - 2 assertions out of 2 passed - - Test case "MatrixLearnerSuite/RmsPropSparse" has passed with: - 2 assertions out of 2 passed - Test suite "MatrixUnitTests" has passed with: - 26 test cases out of 26 passed - 4048755 assertions out of 4048755 passed + 31 test cases out of 31 passed + 6684617 assertions out of 6684617 passed Test case "MatrixUnitTests/MatrixConstructors" has passed with: 10 assertions out of 10 passed @@ -6384,7 +608,7 @@ Test module "MathTests" has passed with: 431 assertions out of 431 passed Test case "MatrixUnitTests/MatrixAssignXOf" has passed with: - 3076088 assertions out of 3076088 passed + 5711864 assertions out of 5711864 passed Test case "MatrixUnitTests/MatrixSumOfElements" has passed with: 4 assertions out of 4 passed @@ -6409,59 +633,28 @@ Test module "MathTests" has passed with: Test case "MatrixUnitTests/MatrixAssignNumOfDiff" has passed with: 2 assertions out of 2 passed - - Test case "MatrixUnitTests/MatrixScale" has passed - Test case "MatrixUnitTests/MatrixSGDUpdate" has passed + Test case "MatrixUnitTests/MatrixScale" has passed with: + 1 assertion out of 1 passed - Test case "MatrixUnitTests/MatrixMomentumSGDUpdate_WithAndWithout_UnitGain" has passed + Test case "MatrixUnitTests/MatrixSGDUpdate" has passed with: + 21 assertions out of 21 passed - Test case "MatrixUnitTests/MatrixNesterovAcceleratedMomentumSGDUpdate_WithAndWithout_UnitGain" has passed + Test case "MatrixUnitTests/MatrixMomentumSGDUpdate_WithAndWithout_UnitGain" has passed with: + 32 assertions out of 32 passed + + Test case "MatrixUnitTests/MatrixNesterovAcceleratedMomentumSGDUpdate_WithAndWithout_UnitGain" has passed with: + 32 assertions out of 32 passed Test case "MatrixUnitTests/MatrixFSAdagradUpdate_WithAndWithout_UnitGain" has passed - - Test suite "QuantizersUnitTests" has passed with: + + Test suite "MatrixLearnerSuite" has passed with: 2 test cases out of 2 passed - 12 assertions out of 12 passed + 4 assertions out of 4 passed - Test case "QuantizersUnitTests/FloatToShort" has passed with: - 6 assertions out of 6 passed + Test case "MatrixLearnerSuite/FSAdagradSparse" has passed with: + 2 assertions out of 2 passed - Test case "QuantizersUnitTests/QuantizeZeros" has passed with: - 6 assertions out of 6 passed - - Test suite "QuantizedOperationsUnitTests" has passed with: - 1 test case out of 1 passed - 65 assertions out of 65 passed - - Test case "QuantizedOperationsUnitTests/MultiplyIntToShort" has passed with: - 65 assertions out of 65 passed - - Test suite "MathTensorTests" has passed with: - 9 test cases out of 9 passed - 6 assertions out of 6 passed - - Test case "MathTensorTests/ElementwiseAddition" has passed with: - 1 assertion out of 1 passed - - Test case "MathTensorTests/AdditionWithSimpleBroadcasting" has passed with: - 1 assertion out of 1 passed - - Test case "MathTensorTests/BiasAddition" has passed with: - 1 assertion out of 1 passed - - Test case "MathTensorTests/BiasAddition2" has passed with: - 1 assertion out of 1 passed - - Test case "MathTensorTests/BiasGradient" has passed with: - 1 assertion out of 1 passed - - Test case "MathTensorTests/BiasGradient2" has passed with: - 1 assertion out of 1 passed - - Test case "MathTensorTests/ColumnSliceMultAndAdd" has passed - - Test case "MathTensorTests/RnnForwardProp" has passed - - Test case "MathTensorTests/OldRnnForwardProp" has passed + Test case "MatrixLearnerSuite/RmsPropSparse" has passed with: + 2 assertions out of 2 passed