This commit is contained in:
Willi Richert 2016-03-29 11:35:43 +02:00
Родитель adcf0e92b3
Коммит a3fe2f3d47
13 изменённых файлов: 88 добавлений и 83 удалений

Просмотреть файл

@ -3,6 +3,6 @@ __version__ = '1.5'
from .context import *
from .graph import *
from .objectives import *
from .cntk1_ops import *
from .ops.cntk2 import *
from .optimizer import *
from .reader import *

Просмотреть файл

@ -7,7 +7,7 @@ import numpy as np
import shutil as sh
from cntk.graph import ComputationNode
from cntk.cntk1_ops import NewReshape
from cntk.ops.cntk1 import NewReshape
from cntk.utils import CNTK_EXECUTABLE_PATH
@ -197,10 +197,10 @@ class AbstractContext(object, metaclass=ABCMeta):
fn = os.path.join(self.directory, 'dummy_input.txt')
from .reader import NumPyReader
reader = NumPyReader(data, fn)
from .cntk1_ops import Input
from .ops.cntk1 import Input
dummy_input_node = Input(2, var_name='dummy_node')
reader.add_input(dummy_input_node, 0, 2)
model_description += "\ndummy_node=Input(2, tag='output')"
model_description += "dummy_node = Input(2, tag='output')"
readers.append(reader)
tmpl = open(CNTK_EVAL_TEMPLATE_PATH, "r").read()
@ -260,7 +260,7 @@ class AbstractContext(object, metaclass=ABCMeta):
class Context(AbstractContext):
'''
This is a sub-class of AbstractContext, use it to run CNTK locally.
This is a sub-class of AbstractContext, use it to run CNTK locally.
'''
def _call_cntk(self, config_file_name, config_content):
@ -400,6 +400,6 @@ class Context(AbstractContext):
class ClusterContext(AbstractContext):
'''
This is a sub-class of AbstractContext, use it to submit your workloads to the cluster.
This is a sub-class of AbstractContext, use it to submit your workloads to the cluster.
'''
pass

Просмотреть файл

@ -5,6 +5,9 @@ import scipy.sparse as sparse
def _tuple_to_cntk_shape(shape):
return ':'.join(str(v) for v in shape)
# Indent model description by how many spaces
MODEL_INDENTATION = 8
class ComputationNode(object):
'''
Base class for all nodes and operators. Provides a NumPy-like interface
@ -177,7 +180,7 @@ class ComputationNode(object):
params = self._get_cntk_param_string(param_variable_names)
line = "%s = %s(%s)" % (self.var_name, self.name, params)
line = ' '*MODEL_INDENTATION + "%s = %s(%s)" % (self.var_name, self.name, params)
desc.append(line)
return self.var_name, node_counter, desc
@ -262,8 +265,8 @@ class ImageInputComputationNodeBase(ComputationNode, metaclass=ABCMeta):
raise NotImplementedError
# importing after defining ComputationNode to work around circular imports
from cntk.cntk1_ops import *
from cntk import cntk1_ops # to have a separate namespace when we want to override below
from cntk.ops.cntk1 import *
from cntk.ops import cntk1 as cntk1_ops # to have a separate namespace when we want to override below
from .reader import UCIFastReader, CNTKTextFormatReader
# redefine some operators to work with NumPy and sequences as input

Просмотреть файл

Просмотреть файл

Просмотреть файл

Просмотреть файл

@ -54,16 +54,17 @@ class UCIFastReader(AbstractReader):
def generate_config(self):
"""Generate the reader configuration block
"""
template = ''' reader = [
readerType = "%(ReaderType)s"
file = "%(FileName)s"
randomize = "none"
verbosity = 1
'''
template = '''\
reader = [
readerType = "%(ReaderType)s"
file = "%(FileName)s"
randomize = "none"
verbosity = 1
'''
if self['CustomDelimiter'] is not None:
template += '''
customDelimiter=%(CustomDelimiter)s
template += '''\
customDelimiter = %(CustomDelimiter)s
'''
if self.inputs_def is not None:
@ -73,28 +74,28 @@ class UCIFastReader(AbstractReader):
else:
name = name_or_node
template += '''
{0}=[
start = {1}
dim = {2}
template += '''\
{0} = [
start = {1}
dim = {2}
'''.format(name, start, dim)
if num_of_classes:
template += '''
labelDim= {0}
template += '''\
labelDim= {0}
'''.format(num_of_classes)
if map_file:
template += '''
labelMappingFile= "{0}"
template += '''\
labelMappingFile= "{0}"
'''.format(map_file)
template += '''
]
'''
template += '''\
]
'''
template += '''
]
'''
template += '''\
]
'''
return template % self
@ -152,7 +153,7 @@ class CNTKTextFormatReader(AbstractReader):
template += '''
{0}=[
alias = "{1}"
dim = {2}
dim = {2}
format = "{3}"
]'''.format(name, a, dim, format)

Просмотреть файл

@ -9,10 +9,10 @@ Eval=[
run=BrainScriptNetworkBuilder
BrainScriptNetworkBuilder=[
%(ModelDescription)s
%(ModelDescription)s
]
%(Reader)s
%(Reader)s
outputPath = "%(OutputFile)s"
]

Просмотреть файл

@ -9,7 +9,7 @@ deviceId=%(DevideId)s
Predict=[
action="write"
%(Reader)s
%(Reader)s
outputPath = "%(PredictOutputFile)s" # dump the output as text
]

Просмотреть файл

@ -9,7 +9,7 @@ deviceId=%(DevideId)s
Test=[
action="test"
%(Reader)s
%(Reader)s
]

Просмотреть файл

@ -11,13 +11,13 @@ Train=[
run=BrainScriptNetworkBuilder
BrainScriptNetworkBuilder=[
%(ModelDescription)s
%(ModelDescription)s
]
SGD = [
%(SGD)s
%(SGD)s
]
%(Reader)s
%(Reader)s
]

Просмотреть файл

@ -51,71 +51,73 @@ def test_overload_exception():
with pytest.raises(ValueError):
C(range(0, 10))[0:3:2]
def _to_list(desc):
return [line.strip() for line in desc.split('\n')]
@pytest.mark.parametrize("root_node, expected", [
(C(2, var_name='c0'), "c0 = Constant(2, rows=1, cols=1)"),
# Input should behave as Constant in case of scalars
(I([1,2], var_name='i1'), "i1 = Input(2:1, tag='feature')"),
(C(2, var_name='c0'), ["c0 = Constant(2, rows=1, cols=1)"]),
# Input should behave as Constant in case of scalars
(I([1,2], var_name='i1'), ["i1 = Input(2:1, tag='feature')"]),
(Plus(C(0), C(1)),
"v0 = Constant(0, rows=1, cols=1)\nv1 = Constant(1, rows=1, cols=1)\nv2 = Plus(v0, v1)"),
["v0 = Constant(0, rows=1, cols=1)", "v1 = Constant(1, rows=1, cols=1)", "v2 = Plus(v0, v1)"]),
])
def test_description(root_node, expected):
description, has_inputs, readers = root_node.to_config()
assert description == expected
assert _to_list(description) == expected
def test_graph_with_same_node_twice():
v0 = C(1)
root_node = Plus(v0, v0)
expected = 'v0 = Constant(1, rows=1, cols=1)\nv1 = Plus(v0, v0)'
expected = ['v0 = Constant(1, rows=1, cols=1)', 'v1 = Plus(v0, v0)']
description, has_inputs, readers = root_node.to_config()
assert description == expected
assert _to_list(description) == expected
assert readers == []
@pytest.mark.parametrize("alias, data, expected", [
('', [A([1,0]), A([0,0,1,0])], ValueError), # no alias given
('A', [object()], ValueError),
])
('', [A([1,0]), A([0,0,1,0])], ValueError), # no alias given
('A', [object()], ValueError),
])
def test_sequence_conversion_exceptions(alias, data, expected):
with pytest.raises(expected):
_seq_to_text_format(data, alias=alias)
with pytest.raises(expected):
_seq_to_text_format(data, alias=alias)
def test_constant_var_name():
var_name = 'NODE'
node = C([A([])], var_name=var_name)
assert node.var_name == var_name
var_name = 'NODE'
node = C([A([])], var_name=var_name)
assert node.var_name == var_name
@pytest.mark.parametrize("alias, data, expected", [
('W', [A([])], """\
('W', [A([])], """\
0|W \
"""),
('W', [A([1,0]), A([0,0,1,0])], """\
('W', [A([1,0]), A([0,0,1,0])], """\
0|W 1 0
1|W 0 0 1 0\
"""),
])
])
def test_sequence_conversion_dense(alias, data, expected):
assert _seq_to_text_format(data, alias=alias) == expected
assert _seq_to_text_format(data, alias=alias) == expected
if False:
@pytest.mark.parametrize("alias, data, expected", [
('W', [A({})], """\
0|W \
"""),
('W', [{3:1, 50:1, 2:0}, {1:-5}], """\
0|W 2:0 3:1 50:1
1|W 1:-5\
"""),
])
def test_sequence_conversion_sparse(alias, data, expected):
# We use the dictionary in data to create a SciPy sparse dictionary of
# keys, which we then feed to the converter.
dok_data = []
for data_elem in data:
d = scipy.sparse.dok_matrix((100,1))
for k,v in data_elem.items():
d[k] = v
dok_data.append(d)
assert _seq_to_text_format(dok_data, alias=alias) == expected
@pytest.mark.parametrize("alias, data, expected", [
('W', [A({})], """\
0|W \
"""),
('W', [{3:1, 50:1, 2:0}, {1:-5}], """\
0|W 2:0 3:1 50:1
1|W 1:-5\
"""),
])
def test_sequence_conversion_sparse(alias, data, expected):
# We use the dictionary in data to create a SciPy sparse dictionary of
# keys, which we then feed to the converter.
dok_data = []
for data_elem in data:
d = scipy.sparse.dok_matrix((100,1))
for k,v in data_elem.items():
d[k] = v
dok_data.append(d)
assert _seq_to_text_format(dok_data, alias=alias) == expected
@pytest.mark.parametrize("data, expected", [
([], True),
@ -125,10 +127,9 @@ if False:
([[A([1,2])]], False),
([A([1,2])], False),
([A([1,2]), A([])], False),
])
])
def test_is_tensor(data, expected):
#import ipdb;ipdb.set_trace()
assert is_tensor(data) == expected
assert is_tensor(data) == expected
@pytest.mark.parametrize("data, expected", [
([], False),
@ -138,7 +139,7 @@ def test_is_tensor(data, expected):
([[A([1,2])]], False),
([A([1,2])], True),
([A([1,2]), A([])], True),
])
])
def test_is_sequence(data, expected):
assert is_sequence(data) == expected
assert is_sequence(data) == expected

Просмотреть файл

@ -80,5 +80,5 @@ def test_overload_eval(root_node, expected):
(C(np.asarray([[1,2],[3,4]]))*C(np.asarray([[1,2],[3,4]])), [[1,4],[9,16]]),
])
def test_ops_on_numpy(root_node, expected, tmpdir):
_test(root_node, expected, clean_up=True)
_test(root_node, expected, clean_up=False)