Integrate liqun/RNNStage into master

This commit is contained in:
Project Philly 2018-03-21 19:23:28 +00:00 коммит произвёл CNTK Team
Родитель 3a229624be 08ba96951c
Коммит aab2567d17
6 изменённых файлов: 791 добавлений и 146 удалений

Просмотреть файл

@ -107,7 +107,7 @@ namespace CNTK
static ONNXIR::Node *InsertReshapeNodeToCNTKFunction(const FunctionPtr &src, ONNXIR::Node* node, const std::vector<int> &shape, ONNXIR::Graph* graph);
//
// Create a LSTM node.
// methods to create a RNN/LSTM/GRU node.
//
static ONNXIR::Node* CreateLSTMNode(const FunctionPtr& src,
ONNXIR::Graph* graph,
@ -119,19 +119,29 @@ namespace CNTK
std::unordered_map<FunctionPtr, ONNXIR::Node*>& functionNodes,
std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::unordered_map<Variable, Variable>& compositeOutputsMap);
static ONNXIR::Node *CreateRNNNode(const FunctionPtr &src,
ONNXIR::Graph* graph,
std::unordered_map<FunctionPtr, ONNXIR::Node*>& functionNodes,
std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::unordered_map<Variable, Variable>& compositeOutputsMap);
static void PrepareRNNInput(const Variable &X, std::vector<ONNXIR::NodeArg> &nodeInputs);
static void PrepareLSTMInitialStateNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &initialVariables, int batchSize, int cellSize,
const std::string &uid, std::vector<ONNXIR::NodeArg> &nodeInputs);
static void PrepareGRUWeightNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Ws, std::vector<ONNXIR::NodeArg> &nodeInputs);
static void PrepareRNNWeightNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Ws, std::vector<ONNXIR::NodeArg> &nodeInputs,
std::function<void(const std::vector<NDArrayViewPtr> &srcTensors,
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType)> weightConverter);
static void PrepareGRUZRHWeightNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Rs, const std::vector<Variable> &Rh1s, std::vector<ONNXIR::NodeArg> &nodeInputs);
static void PrepareGRUBiasNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Bs, std::vector<ONNXIR::NodeArg> &nodeInputs);
static void PrepareRNNBiasNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Bs, std::vector<ONNXIR::NodeArg> &nodeInputs);
static void PrepareLSTMWeightNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Ws, double *stabilizerConstants, std::vector<ONNXIR::NodeArg> &nodeInputs);
static void PrepareLSTMBiasNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
@ -157,7 +167,7 @@ namespace CNTK
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType);
static void CopyGRUBiasTensors(const std::vector<NDArrayViewPtr> &srcTensors,
static void CopyRNNBiasTensors(const std::vector<NDArrayViewPtr> &srcTensors,
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType);
static void CopyGRUWeightTensors(const std::vector<NDArrayViewPtr> &srcTensors,
@ -167,6 +177,9 @@ namespace CNTK
const std::vector<NDArrayViewPtr> &srcZRTensors, const std::vector<NDArrayViewPtr> &srcHTensors,
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType);
static void CopyRNNWeightTensors(const std::vector<NDArrayViewPtr> &srcTensors,
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType);
static void FillTensorWithScalar(const std::vector<NDArrayViewPtr>& src, onnx::TensorProto& dst, const std::vector<int> dstShape);
//
@ -434,7 +447,7 @@ void AppendCNTKBiasWeightToONNXTensor(DType *data, const NDShape &shape, onnx::T
row -= 2 * cell_size;
}
// soruce is collmn major
// source is collmn major
int src_index = row;
if (typeid(DType) == typeid(float))
*(dst.mutable_float_data()->Add()) = (float)data[src_index];
@ -502,7 +515,7 @@ void AppendCNTKWeightToONNXTensor(DType *data, const NDShape &shape, onnx::Tenso
row -= 2 * cell_size;
}
// soruce is collum major
// source is column major
int src_index = LSTMWeightDimensionHiddenMultiplier * cell_size * col + row;
if (typeid(DType) == typeid(float))
*(dst.mutable_float_data()->Add()) = (float)(data[src_index] * stabilizer);
@ -618,7 +631,7 @@ void CNTKToONNXHelper::CopyTensorsWithMultipliers(const std::vector<NDArrayViewP
CopyShapeTypeProtoToTensorProto(inputArgType, dst);
}
void CNTKToONNXHelper::CopyGRUBiasTensors(const std::vector<NDArrayViewPtr> &srcTensors,
void CNTKToONNXHelper::CopyRNNBiasTensors(const std::vector<NDArrayViewPtr> &srcTensors,
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType)
{
if (srcTensors.empty())
@ -688,7 +701,7 @@ void CNTKToONNXHelper::CopyGRUWeightTensors(const std::vector<NDArrayViewPtr> &s
int row = targetIndex / input_size,
col = targetIndex % input_size;
// soruce is collum major
// source is column major
int srcIndex = 3 * cell_size * col + row;
AddDataElementArrayViewToTensorProto(srcTemp, srcIndex, dst);
}
@ -755,6 +768,42 @@ void CNTKToONNXHelper::CopyGRUStateWeightTensors(
CopyShapeTypeProtoToTensorProto(inputArgType, dst);
}
void CNTKToONNXHelper::CopyRNNWeightTensors(const std::vector<NDArrayViewPtr> &srcTensors,
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType)
{
if (srcTensors.empty())
return;
DataType dataType = srcTensors[0]->GetDataType();
SetTensorType(dst, dataType);
for (int i = 0; i < srcTensors.size(); i++)
{
auto srcTemp = srcTensors[i]->DeepClone();
auto srcShape = srcTemp->Shape();
int cell_size = srcShape[0];
int input_size = srcShape[1];
// This is our own copy so move it to the CPU.
srcTemp->ChangeDevice(DeviceDescriptor::CPUDevice());
auto totalSize = srcShape.TotalSize();
for (size_t targetIndex = 0; targetIndex < totalSize; targetIndex++)
{
// row major layout
int row = targetIndex / input_size,
col = targetIndex % input_size;
// source is column major
int srcIndex = cell_size * col + row;
AddDataElementArrayViewToTensorProto(srcTemp, srcIndex, dst);
}
}
CopyShapeTypeProtoToTensorProto(inputArgType, dst);
}
void CNTKToONNXHelper::CopyTensor(const NDArrayViewPtr src, onnx::TensorProto& dst, onnx::TypeProto *inputArgType /*=nullptr*/)
{
auto dataType = src->GetDataType();
@ -1484,31 +1533,7 @@ ONNXIR::Node* CNTKToONNXHelper::CreateLSTMNode(const FunctionPtr &src,
std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::unordered_map<Variable, Variable>& compositeOutputsMap)
{
// sanity check:
std::vector<FunctionPtr> lstms;
if (src->OpName() == L"LSTM")
{
lstms.push_back(src);
}
else if (src->OpName() == L"Splice") // src is a Splice op with inputs from two LSTM ops.
{
for (auto &input : src->Inputs())
{
lstms.push_back(input.Owner());
}
}
else
{
LogicError("An LSTM op should start with an LSTM op (single direction) or a Splice op (bidirectional).");
}
// For single direction LSTM, lstms.size() == 1. For bidirectional LSTM, lstms.size() == 2.
// It is an error otherwise.
if (lstms.size() == 0 || lstms.size() > 2 ||
std::any_of(lstms.cbegin(), lstms.cend(), [](const FunctionPtr &f) {return f->OpName() != L"LSTM"; }))
{
LogicError("Invalid number of LSTM ops to construct an ONNX LSTM node.");
}
std::vector<FunctionPtr> lstms = GetRNNBlocksFromSingleOrBidirectionalRNN(src, "LSTM");
// order forward, backward
std::map<RNNDirection, int> directionCount({ { RNNDirection::Forward, 0 } ,{ RNNDirection::Backward, 0 } });
@ -1777,7 +1802,7 @@ void CNTKToONNXHelper::PrepareGRUBiasNode(ONNXIR::Graph* graph, std::unordered_m
onnx::TensorProto dstTensor;
CopyGRUBiasTensors(srcTensors, dstTensor, inputArgType);
CopyRNNBiasTensors(srcTensors, dstTensor, inputArgType);
variableNode->AddAttribute("value", dstTensor);
nodeInputs.push_back(inputArg);
@ -1816,8 +1841,11 @@ void CNTKToONNXHelper::PrepareGRUZRHWeightNode(ONNXIR::Graph* graph, std::unorde
variableNodes.emplace(Rzrs[0], variableNode);
}
void CNTKToONNXHelper::PrepareGRUWeightNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Ws, std::vector<ONNXIR::NodeArg> &nodeInputs)
void CNTKToONNXHelper::PrepareRNNWeightNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Ws, std::vector<ONNXIR::NodeArg> &nodeInputs,
std::function<void(const std::vector<NDArrayViewPtr> &srcTensors,
onnx::TensorProto& dst, const onnx::TypeProto &inputArgType)> weightConverter)
{
// TODO: sanity check for all variables to have the same shape and data types.
bool doReverseVec = false;
@ -1840,7 +1868,7 @@ void CNTKToONNXHelper::PrepareGRUWeightNode(ONNXIR::Graph* graph, std::unordered
onnx::TensorProto dstTensor;
CopyGRUWeightTensors(srcTensors, dstTensor, inputArgType);
weightConverter(srcTensors, dstTensor, inputArgType);
variableNode->AddAttribute("value", dstTensor);
nodeInputs.push_back(inputArg);
@ -1853,31 +1881,7 @@ ONNXIR::Node *CNTKToONNXHelper::CreateGRUNode(const FunctionPtr &src,
std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::unordered_map<Variable, Variable>& compositeOutputsMap)
{
// sanity check:
std::vector<FunctionPtr> grus;
if (src->OpName() == L"GRU")
{
grus.push_back(src);
}
else if (src->OpName() == L"Splice") // src is a Splice op with inputs from two LSTM ops.
{
for (auto &input : src->Inputs())
{
grus.push_back(input.Owner());
}
}
else
{
LogicError("An GRU op should start with an GRU op (single direction) or a Splice op (bidirectional).");
}
// For single direction GRU, grus.size() == 1. For bidirectional GRU, grus.size() == 2.
// It is an error otherwise.
if (grus.size() == 0 || grus.size() > 2 ||
std::any_of(grus.cbegin(), grus.cend(), [](const FunctionPtr &f) {return f->OpName() != L"GRU"; }))
{
LogicError("Invalid number of GRU ops to construct an ONNX GRU node.");
}
std::vector<FunctionPtr> grus = GetRNNBlocksFromSingleOrBidirectionalRNN(src, "GRU");
// order forward, backward
std::map<RNNDirection, int> directionCount({ { RNNDirection::Forward, 0 } ,{ RNNDirection::Backward, 0 } });
@ -1920,7 +1924,6 @@ ONNXIR::Node *CNTKToONNXHelper::CreateGRUNode(const FunctionPtr &src,
initialHs[directionIndex] = initStateH;
activations[directionIndex * GRUActivationCount + GRUActivationFIndex] = f_activation;
activations[directionIndex * GRUActivationCount + GRUActivationGIndex] = g_activation;
@ -1966,7 +1969,7 @@ ONNXIR::Node *CNTKToONNXHelper::CreateGRUNode(const FunctionPtr &src,
// inputs
std::vector<ONNXIR::NodeArg> nodeInputs;
PrepareRNNInput(Xs[0], nodeInputs);
PrepareGRUWeightNode(graph, variableNodes, Ws, nodeInputs);
PrepareRNNWeightNode(graph, variableNodes, Ws, nodeInputs, CopyGRUWeightTensors);
PrepareGRUZRHWeightNode(graph, variableNodes, Rzrs, Rhs, nodeInputs);
{
@ -2059,6 +2062,219 @@ ONNXIR::Node *CNTKToONNXHelper::CreateGRUNode(const FunctionPtr &src,
return squeezedLSTMNode;
}
void CNTKToONNXHelper::PrepareRNNBiasNode(ONNXIR::Graph* graph, std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::vector<Variable> &Bs, std::vector<ONNXIR::NodeArg> &nodeInputs)
{
// TODO: sanity check for all variables to have the same shape and data types.
bool doReverseVec = false;
int numDirections = Bs.size();
int hiddenSize = Bs[0].Shape()[0];
std::vector<int> shape({ numDirections, 2 * hiddenSize });
// ONNX GRU spec has 2 bias, for forward and backward.
onnx::TypeProto inputArgType = ToTypeProto(shape, doReverseVec);
UpdateONNXType(Bs[0].GetDataType(), inputArgType);
ONNXIR::NodeArg inputArg(ToString(Bs[0].Uid()), &inputArgType);
std::vector<ONNXIR::NodeArg> varOutputs({ inputArg });
std::vector<ONNXIR::NodeArg> varInputs;
std::string inputName = inputArg.Name();
ONNXIR::Node* variableNode = graph->AddNode(inputName, "Constant", "", varInputs, varOutputs);
std::vector<NDArrayViewPtr> srcTensors;
for (int i = 0; i < Bs.size(); i++)
{
const Variable &variable = Bs[i];
srcTensors.push_back(variable.IsParameter() ? Parameter(variable).Value() : Constant(variable).Value());
}
onnx::TensorProto dstTensor;
CopyRNNBiasTensors(srcTensors, dstTensor, inputArgType);
variableNode->AddAttribute("value", dstTensor);
nodeInputs.push_back(inputArg);
variableNodes.emplace(Bs[0], variableNode);
}
ONNXIR::Node *CNTKToONNXHelper::CreateRNNNode(const FunctionPtr &src,
ONNXIR::Graph* graph,
std::unordered_map<FunctionPtr, ONNXIR::Node*>& functionNodes,
std::unordered_map<Variable, ONNXIR::Node*>& variableNodes,
const std::unordered_map<Variable, Variable>& compositeOutputsMap)
{
std::vector<FunctionPtr> rnns = GetRNNBlocksFromSingleOrBidirectionalRNN(src, "RNNStep");
// order forward, backward
std::map<RNNDirection, int> directionCount({ { RNNDirection::Forward, 0 } ,{ RNNDirection::Backward, 0 } });
// The following construct refers to ONNX spec:
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#lstm
// specifically, for attrubute and variable dimension.
// We use the term from the spec as possible as we can to maintain a close correlation
// to the ONNX specification.
int num_directions = rnns.size();
// A list of 3 (or 6 if bidirectional) activation functions for input, output, forget, cell, and hidden.
std::vector<std::string> activations(num_directions);
// TODO:
// In principle all these variables shall be treated as either constant or op output.
// In reality except X, all other inputs to LSTM can be treated as constant.
std::vector<Variable> Xs(num_directions), Ws(num_directions), Rs(num_directions),
Bs(num_directions), initialHs(num_directions);
std::vector<Variable> Yhs(rnns.size());
for (std::vector<FunctionPtr>::const_iterator itRNNBlock = rnns.cbegin(); itRNNBlock != rnns.cend(); itRNNBlock++)
{
// src has to be an RNN node.
const FunctionPtr& rnn = *itRNNBlock;
std::vector<Variable> inputs = rnn->Inputs();
if (inputs.size() != CNTKRNNInputCount)
LogicError("A RNN block does not have expected input count (%d). Actual input count is %d", (int)CNTKRNNInputCount, (int)inputs.size());
string activation;
RNNDirection direction;
Variable initStateH;
TraceRNNPathes(rnn, activation, direction, initStateH);
directionCount[direction]++;
int directionIndex = rnns.size() == 1 ? 0 : (direction ? 1 : 0);
initialHs[directionIndex] = initStateH;
activations[directionIndex] = activation;
Xs[directionIndex] = inputs[CNTKRNNInputIndex];
Ws[directionIndex] = inputs[CNTKRNNWeightIndex];
Rs[directionIndex] = inputs[CNTKRNNHweightIndex];
Bs[directionIndex] = inputs[CNTKRNNBiasIndex];
std::vector<Variable> outputs = rnn->Outputs();
Yhs[directionIndex] = outputs[CNTKRNNOutputYhIndex];
}
SanityCheckForConstantOrParameters(Ws);
SanityCheckForConstantOrParameters(Rs);
SanityCheckForConstantOrParameters(Bs);
// ensure that if there is one direction, it is not backward.
// if there two directions, they are forward and backward, and
// that the inputs (Xs) are the same.
if (std::any_of(directionCount.begin(), directionCount.end(), [](std::map<RNNDirection, int>::value_type &v) {return v.second > 1; }))
{
LogicError("RNN node is invalid because there should be no more than one path in each direction.");
}
if (rnns.size() == 2 && Xs[0] != Xs[1])
{
LogicError("Bi-directional RNN node is invalid because the two RNN nodes do not share one same input.");
}
string direction = DeriveDirectionString(rnns, directionCount);
// an RNN output size is the hidden size
int hidden_size = rnns[0]->Outputs()[0].Shape()[0];
// inputs
std::vector<ONNXIR::NodeArg> nodeInputs;
PrepareRNNInput(Xs[0], nodeInputs);
PrepareRNNWeightNode(graph, variableNodes, Ws, nodeInputs, CopyRNNWeightTensors);
PrepareRNNWeightNode(graph, variableNodes, Rs, nodeInputs, CopyRNNWeightTensors);
{
bool hasBias = std::all_of(Bs.begin(), Bs.end(), [](Variable &v) {return v.IsInitialized(); });
if (hasBias)
{
PrepareRNNBiasNode(graph, variableNodes, Bs, nodeInputs);
}
else
{
AddEmptyInput(nodeInputs);
}
{
// sequence_lens is not supported
AddEmptyInput(nodeInputs);
}
bool has_initial_h = std::all_of(initialHs.begin(), initialHs.end(), [](Variable &v) {return v.IsInitialized(); });
if (has_initial_h)
{
std::string hiddenUid = ToString(Yhs[0].Uid()) + "_initial_h";
PrepareLSTMInitialStateNode(graph, variableNodes, initialHs, FreeBatchSize, hidden_size, hiddenUid, nodeInputs);
}
else
{
AddEmptyInput(nodeInputs);
}
}
const int output_sequence = RNNOutputSequence; // RNN in CNTK always output full sequence of output
std::vector<ONNXIR::NodeArg> nodeOutputs;
{
if (output_sequence == 1)
{
std::string nodeName;
if (rnns.size() == 1)
nodeName = ToString(Yhs[0].Uid());
else
nodeName = ToString(src->Output().Uid());
auto outputArgType = ToTypeProto(std::vector<int>({ FreeSequenceLen, (int)Yhs.size(), FreeBatchSize, (int)Yhs[0].Shape()[0] }), false);
UpdateONNXType(Yhs[0].GetDataType(), outputArgType);
ONNXIR::NodeArg outputArg(nodeName, &outputArgType);
nodeOutputs.push_back(outputArg);
}
else
{
ONNXIR::NodeArg outputArg("", nullptr);
nodeOutputs.push_back(outputArg);
}
{
Variable Yh = Yhs[0];
std::string nodeName = ToString(Yh.Uid()) + "_h";
const int batchSize = 1;
const bool doReverseVec = false;
auto outputArgType = ToTypeProto(std::vector<int>({ (int)Yhs.size(), batchSize, (int)Yh.Shape()[0] }), doReverseVec);
UpdateONNXType(Yh.GetDataType(), outputArgType);
ONNXIR::NodeArg outputArg(nodeName, &outputArgType);
nodeOutputs.push_back(outputArg);
}
}
if (Xs[0].Owner().get() != nullptr)
CreateNode(Xs[0].Owner(), graph, functionNodes, variableNodes, compositeOutputsMap);
auto nodeName = src->Name().empty() ? ToString(src->Uid()) : ToString(src->Name());
ONNXIR::Node *rnnNode = graph->AddNode(nodeName, "RNN", "", nodeInputs, nodeOutputs);
rnnNode->AddAttribute("activations", activations);
rnnNode->AddAttribute("direction", direction);
rnnNode->AddAttribute("hidden_size", (int64_t)hidden_size);
rnnNode->AddAttribute("output_sequence", (int64_t)output_sequence);
//// TODO: make bidirectional RNN work by figuring out output data
//// layout transpose in InsertReshapeNodeToCNTKFunction.
if (rnns.size() == 2)
NOT_IMPLEMENTED;
//// TODO: uncomment this code once LotusRT output shape matches ONNX
//// squeeze direction axis out. This is safe because it is not bi-directional node.
std::vector<int> shape({ FreeSequenceLen, 1, hidden_size });
ONNXIR::Node *squeezedRNNNode = InsertReshapeNodeToCNTKFunction(src, rnnNode, shape, graph);
functionNodes.emplace(src, squeezedRNNNode);
return squeezedRNNNode;
}
ONNXIR::Node *CNTKToONNXHelper::AddReshapeNode(const ONNXIR::NodeArg &nodeArg, const std::vector<int> &newShape, const std::string &outArgName, ONNXIR::Graph* graph)
{
ONNXIR::NodeArg outputArg(outArgName, nullptr);
@ -2164,7 +2380,11 @@ ONNXIR::Node* CNTKToONNXHelper::CreateNode(const FunctionPtr& src,
// return CreateLSTMNode(src, graph, functionNodes, variableNodes, compositeOutputsMap);
//}
//else
if (opName == "GRU")
if (opName == "RNNStep")
{
return CreateRNNNode(src, graph, functionNodes, variableNodes, compositeOutputsMap);
}
else if (opName == "GRU")
{
return CreateGRUNode(src, graph, functionNodes, variableNodes, compositeOutputsMap);
}

Просмотреть файл

@ -641,7 +641,7 @@ std::vector<Variable> CreateRNNConstant(
{
case LSTMInputIndexX:
// X, should not come to here
return inputs;
CNTK::LogicError("input to a recurrent node shall not be a constant");
case LSTMInputIndexW:
case LSTMInputIndexH:
// W, R:
@ -659,7 +659,7 @@ std::vector<Variable> CreateRNNConstant(
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + (index == 1 ? "_W_" : "_R_") + (char)dir;
std::string nodeName = name + (index == 1 ? "_W_" : "_R_") + (char)('0' + dir);
int totalSizePerDirection = rows * cols;
// TODO: what about double?
@ -706,7 +706,7 @@ std::vector<Variable> CreateRNNConstant(
NDShape weightShape({ (size_t)(4 * cell_size) });
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + std::string(1, (char)dir) + LSTMInputBiasNameHint;
std::string nodeName = name + std::string(1, (char)('0' + dir)) + LSTMInputBiasNameHint;
int totalSizePerDirection = 4 * cell_size;
float *data = new float[totalSizePerDirection];
for (size_t targetIndex = 0; targetIndex < totalSizePerDirection; targetIndex++)
@ -726,7 +726,7 @@ std::vector<Variable> CreateRNNConstant(
row -= 2 * cell_size;
}
// soruce is collmn major
// source is column major
int src_index = row;
// "fuse"
data[targetIndex] =
@ -760,7 +760,7 @@ std::vector<Variable> CreateRNNConstant(
NDShape weightShape({ (size_t)(cell_size) });
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + std::string(1, (char)dir);
std::string nodeName = name + std::string(1, (char)('0' + dir));
if (index == 5)
nodeName += LSTMInputInitialHNameHint;
else
@ -787,7 +787,7 @@ std::vector<Variable> CreateRNNConstant(
for (int i = 0; i < 3; i++)
{
std::string nodeName = name + ((i == 0) ? "_i" : ((i == 1) ? "_o" : "_f")) +
std::string(1, (char)dir) + LSTMInputPeepholeNameHint;
std::string(1, (char)('0' + dir)) + LSTMInputPeepholeNameHint;
float *data = new float[cell_size];
NDShape weightShape({ (size_t)(cell_size) });
for (size_t targetIndex = 0; targetIndex < cell_size; targetIndex++)
@ -800,9 +800,8 @@ std::vector<Variable> CreateRNNConstant(
}
return inputs;
}
break;
default:
CNTK::LogicError("CreateRNNConstant received unepxpeted index: %d", index);
CNTK::LogicError("CreateRNNConstant received unexpected index: %d", index);
}
}
else if (parentONNXOpName == "GRU")
@ -812,7 +811,7 @@ std::vector<Variable> CreateRNNConstant(
{
case GRUInputIndexX:
// X, should not come to here
return inputs;
CNTK::LogicError("input to a recurrent node shall not be a constant");
case GRUInputIndexW:
{
// see ONNX spec for the tensor shape
@ -828,7 +827,7 @@ std::vector<Variable> CreateRNNConstant(
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + "_W_" + (char)dir;
std::string nodeName = name + "_W_" + (char)('0' + dir);
int totalSizePerDirection = rows * cols;
// TODO: what about double?
@ -863,8 +862,8 @@ std::vector<Variable> CreateRNNConstant(
inputs.resize(num_directions * 2);
for (int dir = 0; dir < num_directions; dir++)
{
std::string hNodeName = name + "_H_" + (char)dir;
std::string h1NodeName = name + "_H1_" + (char)dir;
std::string hNodeName = name + "_H_" + (char)('0' + dir);
std::string h1NodeName = name + "_H1_" + (char)('0' + dir);
int totalSizePerDirection = rows * cols;
float *hData = new float[hShape.TotalSize()];
@ -900,18 +899,18 @@ std::vector<Variable> CreateRNNConstant(
// see ONNX spec for the tensor shape
int num_directions = valueProto.dims(0);
int cell_size = valueProto.dims(1) / GRUBiasDimensionHiddenMultiplier;
// shape size is devided by 2 so that it only applies to input (CNTK)
// shape size is divided by 2 so that it only applies to input (CNTK)
// TODO: this incompatibility needs further investigation.
NDShape weightShape({ (size_t)(GRUBiasDimensionHiddenMultiplier / 2 * cell_size) });
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + std::string(1, (char)dir) + LSTMInputBiasNameHint;
std::string nodeName = name + std::string(1, '0' + dir) + LSTMInputBiasNameHint;
int totalSizePerDirection = GRUBiasDimensionHiddenMultiplier / 2 * cell_size;
float *data = new float[totalSizePerDirection];
for (size_t targetIndex = 0; targetIndex < totalSizePerDirection; targetIndex++)
{
int row = targetIndex;
// soruce is collmn major
// source is column major
int src_index = row;
// "fuse"
data[targetIndex] =
@ -934,7 +933,7 @@ std::vector<Variable> CreateRNNConstant(
NDShape weightShape({ (size_t)(cell_size) });
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + std::string(1, (char)dir) + LSTMInputInitialHNameHint;
std::string nodeName = name + std::string(1, (char)('0' + dir)) + LSTMInputInitialHNameHint;
float *data = new float[cell_size];
for (size_t targetIndex = 0; targetIndex < cell_size; targetIndex++)
@ -947,10 +946,113 @@ std::vector<Variable> CreateRNNConstant(
}
return inputs;
}
break;
return inputs;
default:
CNTK::LogicError("CreateRNNConstant for GRU op received unepxpeted index: %d", index);
CNTK::LogicError("CreateRNNConstant for GRU op received unexpected index: %d", index);
}
}
else if (parentONNXOpName == "RNN")
{
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#inputs-3---6-1
switch (index)
{
case RNNInputIndexX:
// X, should not come to here
CNTK::LogicError("input to a recurrent node shall not be a constant");
case RNNInputIndexW:
case RNNInputIndexR:
{
// see ONNX spec for the tensor shape
int num_directions = valueProto.dims(0);
size_t rows = valueProto.dims(1);
size_t cols = valueProto.dims(2);
// CNTK cpp requires shape: (input_size, 3 * hidden_size)
NDShape weightShape({ rows, cols });
int input_size = cols;
int cell_size = rows;
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + (index == RNNInputIndexW ? "_W_" : "_R_") + (char)('0' + dir);
int totalSizePerDirection = rows * cols;
// TODO: what about double?
float *data = new float[totalSizePerDirection];
for (size_t count = 0; count < totalSizePerDirection; count++)
{
int row = count / input_size;
int col = count % input_size;
int sourceIndex = dir * totalSizePerDirection + count;
int targetIndex = col * cell_size + row;
data[targetIndex] = valueProto.float_data()[sourceIndex];
}
Constant constant = CreateConstantWithRawData(&data[0], weightShape, nodeName, computeDevice);
inputs.push_back(constant);
}
return inputs;
}
case RNNInputIndexB:
// B
{
// see ONNX spec for the tensor shape:
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#inputs-3---6-1
// shape of bias is [num_directions, 2*hidden_size] thus we divide dim(1) by 2
// to get cell_size.
int num_directions = valueProto.dims(0);
int cell_size = valueProto.dims(1) / 2;
NDShape weightShape({ (size_t)(cell_size) });
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + std::string(1, '0' + dir) + LSTMInputBiasNameHint;
int totalSizePerDirection = cell_size;
float *data = new float[totalSizePerDirection];
for (size_t targetIndex = 0; targetIndex < totalSizePerDirection; targetIndex++)
{
int row = targetIndex;
// source is column major
int src_index = row;
// "fuse"
// RNN only has one bias vector. It is applied after element-wise addition
// of projected input and hidden states. Therefore we need to fuse two biases
// in ONNX into one.
// RNNBiasMultiplier = 2
data[targetIndex] =
valueProto.float_data()[dir * RNNBiasMultiplier * totalSizePerDirection + src_index] +
valueProto.float_data()[dir * RNNBiasMultiplier * totalSizePerDirection + totalSizePerDirection + src_index];
}
Constant constant = CreateConstantWithRawData(data, weightShape, nodeName, computeDevice);
inputs.push_back(constant);
}
return inputs;
}
case RNNInputIndexSequenceLens:
return inputs;
case RNNInitialH:
{
// initial_h
int num_directions = valueProto.dims(0);
int cell_size = valueProto.dims(2);
NDShape weightShape({ (size_t)(cell_size) });
for (int dir = 0; dir < num_directions; dir++)
{
std::string nodeName = name + std::string(1, (char)('0' + dir)) + LSTMInputInitialHNameHint;
float *data = new float[cell_size];
for (size_t targetIndex = 0; targetIndex < cell_size; targetIndex++)
{
data[targetIndex] = valueProto.float_data()[dir * cell_size + targetIndex];
}
Constant constant = CreateConstantWithRawData(data, weightShape, nodeName, computeDevice);
inputs.push_back(constant);
}
return inputs;
}
default:
CNTK::LogicError("CreateRNNConstant for GRU op received unexpected index: %d", index);
}
}
else
@ -1065,7 +1167,37 @@ std::vector<Variable> ONNXToCNTKHelper::CreateRNNLeafVariableOrConstant(const No
case GRUInitialH:
NOT_IMPLEMENTED;
default:
LogicError("LSTM node has unexpected input");
LogicError("GRU node has unexpected input");
}
}
else if (parentONNXOpName == "RNN")
{
int inputIndex = CalculateNodeArgInputIndex(nodeArg, parentNode);
switch (inputIndex)
{
case GRUInputIndexX:
// X: `[seq_length, batch_size, input_size]`.
{
Variable inputVariable;
if (constructedNodeArgVariableMap.find(nodeArg->Name()) == constructedNodeArgVariableMap.end())
{
DataType dataType = FromONNXType(nodeArg->ToProto().type());
int input_size = shapeProto->dim(2).dim_value();
NDShape shape({ (size_t)(input_size) });
inputVariable = InputVariable(shape, dataType, ToWString(nodeArg->Name()), dynamicAxes);
constructedNodeArgVariableMap.insert(ONNXToCNTKVariableMap::value_type(nodeArg->Name(), inputVariable));
}
return std::vector<Variable>({ constructedNodeArgVariableMap[nodeArg->Name()] });
}
// other inputs shall be ONNX constant node and be created as CNTK Constant in CreateRNNConstant
case GRUInputIndexW:
case GRUInputIndexR:
case GRUInputIndexB:
case GRUInputIndexSequenceLens:
case GRUInitialH:
NOT_IMPLEMENTED;
default:
LogicError("RNN node has unexpected input");
}
}
else
@ -1652,6 +1784,15 @@ FunctionPtr ONNXToCNTKHelper::CreateFunction(const Node *node, const std::vector
std::vector<string>({ "Sigmoid", "Tanh" }));
return CreateGRU(node, inputs, direction, activations, activation_alpha, activation_beta);
}
else if (onnxOpName == "RNN")
{
const string direction = GetNamedAttributeAsString(node, "direction");
std::vector<float> activation_alpha = GetNamedAttributeAsFloatVec(node, "activation_alpha", std::vector<float>());
std::vector<float> activation_beta = GetNamedAttributeAsFloatVec(node, "activation_beta", std::vector<float>());
const std::vector<string> activations = GetNamedAttributeAsStringVec(node, "activations",
std::vector<string>({ "Tanh" }));
return CreateRNN(node, inputs, direction, activations, activation_alpha, activation_beta);
}
if (onnxOpName == "FC")
{
return CreateCNTKFCNode(ToWString(node->Name()), inputs);

Просмотреть файл

@ -448,7 +448,7 @@ namespace ONNX
bool Operators::IsRNNOp(const std::string &opName)
{
return opName == "LSTM" || opName == "GRU" || opName == "RNN";
return opName == "LSTM" || opName == "GRU" || opName == "RNN" || opName == "RNNStep";
}
std::unordered_map<std::wstring, std::set<size_t>> Operators::_cntkBlockOPInvalidIndices = {
{ L"Clip",{ 1, 2 } },

Просмотреть файл

@ -122,7 +122,7 @@ std::tuple<std::function<FunctionPtr(const Variable&)>, std::function<FunctionPt
GetActivations(const std::vector<std::string> &activations, const std::vector<float> &activation_alpha, const std::vector<float> &activation_beta, int direction)
{
if (activations.size() < (direction + 1) * LSTMActivationCount)
CNTK::LogicError("LSTM activations shall be %d or %d of strings", LSTMActivationCount, LSTMActivationCount * 2);
CNTK::LogicError("LSTM activations shall be a list of strings of size %d or %d ", LSTMActivationCount, LSTMActivationCount * 2);
//
int iofActivationIndex = direction * LSTMActivationCount + LSTMActivationFIndex;
@ -162,7 +162,7 @@ std::tuple<std::function<FunctionPtr(const Variable&)>, std::function<FunctionPt
GetGRUActivations(const std::vector<std::string> &activations, const std::vector<float> &activation_alpha, const std::vector<float> &activation_beta, int direction)
{
if (activations.size() < (direction + 1) * GRUActivationCount)
CNTK::LogicError("LSTM activations shall be %d or %d of strings", GRUActivationCount, GRUActivationCount * 2);
CNTK::LogicError("GRU activations shall be a list of strings of size %d or %d", GRUActivationCount, GRUActivationCount * 2);
//
int fActivationIndex = direction * GRUActivationCount + GRUActivationFIndex;
@ -190,6 +190,34 @@ GetGRUActivations(const std::vector<std::string> &activations, const std::vector
return std::make_tuple(fActivationOp, gActivationOp);
}
std::function<FunctionPtr(const Variable&)>
GetRNNActivations(const std::vector<std::string> &activations, const std::vector<float> &activation_alpha, const std::vector<float> &activation_beta, int direction)
{
if (activations.size() < (direction + 1))
CNTK::LogicError("RNN activations shall be a list of strings of size 1 or 2");
//
int activationIndex = direction;
bool hasAlpha = activation_alpha.size() == (direction + 1);
bool hasAlphaBeta = hasAlpha && activation_beta.size() == (direction + 1);
std::function<FunctionPtr(const Variable&)> activationOp;
if (hasAlphaBeta)
{
activationOp = ActivationMap(activations[activationIndex], activation_alpha[activationIndex], activation_beta[activationIndex]);
}
else if (hasAlpha)
{
activationOp = ActivationMap(activations[activationIndex], activation_alpha[activationIndex]);
}
else
{
activationOp = ActivationMap(activations[activationIndex]);
}
return activationOp;
}
std::pair<FunctionPtr, FunctionPtr> LSTMPCell(Variable input,
const std::function<FunctionPtr(const Variable&)> &iofActivationOp,
const std::function<FunctionPtr(const Variable&)> &cellActivationOp,
@ -285,6 +313,20 @@ FunctionPtr GRUCell(Variable input,
return ht;
}
FunctionPtr RNNCell(Variable input,
const std::function<FunctionPtr(const Variable&)> &activationOp,
Variable prevOutput,
Constant &W, Constant &R, Constant &B)
{
FunctionPtr proj = Times(W, input) + Times(R, prevOutput);;
if (B.IsInitialized())
proj = B + proj;
FunctionPtr h = activationOp(proj);
return h;
}
#include "PrimitiveFunction.h"
#include "BlockFunction.h"
@ -332,8 +374,30 @@ FunctionPtr GRUComponent(Variable input,
auto actualDh = recurrenceHookH(gruCell);
gruCell->ReplacePlaceholders({ { inputPlaceholder , input },{ dh, actualDh } });
return gruCell;
gruCell->ReplacePlaceholders({ { dh, actualDh } });
auto gruBlock = AsBlock(std::move(gruCell), { { inputPlaceholder , input } }, L"GRU", L"");
return gruBlock;
}
FunctionPtr RNNComponent(Variable input,
const NDShape& cellShape,
const std::function<FunctionPtr(const Variable&)> &activationOp,
const std::function<FunctionPtr(const Variable&)>& recurrenceHookH,
Constant &W, Constant &R, Constant &B)
{
auto dh = PlaceholderVariable(cellShape, input.DynamicAxes());
auto inputPlaceholder = PlaceholderVariable(input.Shape(), input.DynamicAxes());
auto rnnCell = RNNCell(
inputPlaceholder,
activationOp,
dh, W, R, B);
auto actualDh = recurrenceHookH(rnnCell);
rnnCell->ReplacePlaceholders({ { inputPlaceholder , input },{ dh, actualDh } });
return rnnCell;
}
const std::vector<Variable> FindByNameHint(const std::vector<Variable> &inputs, const std::string &hint)
@ -511,6 +575,56 @@ FunctionPtr CreateGRU(const ONNXIR::Node *node, const std::vector<Variable> &inp
}
}
FunctionPtr CreateRNN(const ONNXIR::Node *node, const std::vector<Variable> &inputs, const std::string &direction,
const std::vector<string> &activations, const std::vector<float> &activation_alpha, const std::vector<float> &activation_beta)
{
int numDirections = direction == RNNDirectionBidirection ? 2 : 1;
std::vector<FunctionPtr> outputHs;
for (int dir = 0; dir < numDirections; dir++)
{
std::function<FunctionPtr(const Variable&)> activationOp =
GetRNNActivations(activations, activation_alpha, activation_beta, dir);
// the first a few inputs are (in order): X, numDirections * W, numDirections * R, numDirections * H1
Variable X = inputs[0];
Variable W = inputs[1 * numDirections + dir - ((numDirections == 2) ? 1 : 0)];
Variable R = inputs[2 * numDirections + dir - ((numDirections == 2) ? 1 : 0)];
Variable B;
std::vector<Variable> biasVariables = FindByNameHint(inputs, LSTMInputBiasNameHint);
if (numDirections == 1 && biasVariables.size() >= 1)
B = biasVariables[0];
else if (numDirections == 2 && biasVariables.size() == 2)
B = biasVariables[1];
Variable initHVariable = GetInitialStateVariable(inputs, numDirections, GRUInputInitialHNameHint, X.GetDataType());
int hiddenDim = W.Shape()[0];
FunctionPtr outputH;
// if it is bidirectional LSTM, the second one will be the backword one.
bool go_backwards = direction == RNNDirectionReverse || (numDirections == 2 && dir == 1);
std::function<FunctionPtr(const Variable&)> recurrenceHook;
if (go_backwards)
recurrenceHook = [initHVariable](const Variable& x) { return FutureValue(x, initHVariable); };
else
recurrenceHook = [initHVariable](const Variable& x) { return PastValue(x, initHVariable); };
outputH = RNNComponent(
X, { (size_t)hiddenDim }, activationOp,
recurrenceHook, (Constant &)W, (Constant &)R, (Constant &)B);
outputHs.push_back(outputH);
}
if (outputHs.size() == 1)
return outputHs[0];
else
{
std::vector<Variable> operands({ outputHs[0], outputHs[1] });
return Splice(operands, Axis(0), ToWString(node->Name()));
}
}
template <typename FunctionType>
void TraverseGraphWithPrePostActions(FunctionPtr cntkFunction, std::unordered_set<FunctionPtr>& visitedFunctions,
FunctionType preFunctor, FunctionType postFunctor)
@ -922,3 +1036,60 @@ void TraceGRUPathes(const FunctionPtr& src, string &f_activation, string &g_acti
f_activation = "Sigmoid";
g_activation = MapActivationNameCNTKToONNX(ToString(gActivation->OpName()));
}
void TraceRNNPathes(const FunctionPtr& src, string &activation,
RNNDirection &direction, Variable &initStateH)
{
std::vector<Variable> inputVars = src->Inputs();
std::vector<FunctionPtr> pastValueOps, futureValueOps;
GetDelayOps(inputVars, pastValueOps, futureValueOps);
// indices here coresponding with CNTK python layer code.
if (pastValueOps.size() == 1 && futureValueOps.size() == 0)
{
direction = RNNDirection::Forward;
initStateH = pastValueOps[0]->Inputs()[1];
}
else if (pastValueOps.size() == 0 && futureValueOps.size() == 1)
{
direction = RNNDirection::Backward;
initStateH = futureValueOps[0]->Inputs()[1];
}
else
{
CNTK::LogicError("Node %s (%s) is not a valid RNN node", ToString(src->Name()).c_str(), ToString(src->Uid()).c_str());
}
FunctionPtr activationFunction = src->BlockRoot();
activation = MapActivationNameCNTKToONNX(ToString(activationFunction->OpName()));
}
std::vector<FunctionPtr> GetRNNBlocksFromSingleOrBidirectionalRNN(const FunctionPtr src, const std::string &RNNStepOpName)
{
std::vector<FunctionPtr> rnns;
if (ToString(src->OpName()) == RNNStepOpName)
{
rnns.push_back(src);
}
else if (src->OpName() == L"Splice") // src is a Splice op with inputs from two LSTM ops.
{
for (auto &input : src->Inputs())
{
rnns.push_back(input.Owner());
}
}
else
{
CNTK::LogicError("An %s op should start with an GRU op (single direction) or a Splice op (bidirectional).", RNNStepOpName.c_str());
}
// For single direction RNN, rnns.size() == 1. For bidirectional RNN, rnns.size() == 2.
// It is an error otherwise.
if (rnns.size() == 0 || rnns.size() > 2 ||
std::any_of(rnns.cbegin(), rnns.cend(), [RNNStepOpName](const FunctionPtr &f) {return ToString(f->OpName()) != RNNStepOpName; }))
{
CNTK::LogicError("Invalid number of RNN ops to construct an ONNX %s node.", RNNStepOpName.c_str());
}
return rnns;
}

Просмотреть файл

@ -107,6 +107,21 @@ enum
GRUInitialH = 5,
};
enum
{
RNNInputIndexX = 0,
RNNInputIndexW = 1,
RNNInputIndexR = 2,
RNNInputIndexB = 3,
RNNInputIndexSequenceLens = 4,
RNNInitialH = 5,
};
enum
{
CNTKRNNOutputYhIndex = 0
};
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#inputs-3---6
// size of weight/bias matrix is a multiple of hidden size
enum
@ -130,6 +145,20 @@ enum
CNTKGRUInputCount = 7
};
enum
{
CNTKRNNWeightIndex = 0,
CNTKRNNHweightIndex = 1,
CNTKRNNBiasIndex = 2,
CNTKRNNDelayIndex = 3,
CNTKRNNInputIndex = 4,
CNTKRNNInputCount = 5
};
enum
{
RNNBiasMultiplier = 2
};
const string RNNDirectionBidirection = "bidirectional";
const string RNNDirectionReverse = "reverse";
@ -141,6 +170,9 @@ FunctionPtr CreateLSTM(const ONNXIR::Node *node, const std::vector<Variable> &in
FunctionPtr CreateGRU(const ONNXIR::Node *node, const std::vector<Variable> &inputs, const std::string &direction,
const std::vector<string> &activations, const std::vector<float> &activation_alpha, const std::vector<float> &activation_beta);
FunctionPtr CreateRNN(const ONNXIR::Node *node, const std::vector<Variable> &inputs, const std::string &direction,
const std::vector<string> &activations, const std::vector<float> &activation_alpha, const std::vector<float> &activation_beta);
void TraceLSTMPathes(const FunctionPtr& src, string &f_activation, string &g_activation, string &h_activation,
RNNDirection &direction, Variable &initStateH, Variable &initStateC, Variable &peepholeCi, Variable &peepholeCo, Variable &peepholeCf,
double &stabilizer_dh, double &stabilizer_dc, double &stabilizer_c);
@ -148,5 +180,10 @@ void TraceLSTMPathes(const FunctionPtr& src, string &f_activation, string &g_act
void TraceGRUPathes(const FunctionPtr& src, string &f_activation, string &g_activation,
RNNDirection &direction, Variable &initStateH);
void TraceRNNPathes(const FunctionPtr& src, string &activation,
RNNDirection &direction, Variable &initStateH);
std::string MapActivationNameONNXToCNTK(const std::string &onnxOp);
std::string MapActivationNameCNTKToONNX(const std::string &cntkOp);
std::string MapActivationNameCNTKToONNX(const std::string &cntkOp);
std::vector<FunctionPtr> GetRNNBlocksFromSingleOrBidirectionalRNN(const FunctionPtr src, const std::string &RNNStepOpName);

Просмотреть файл

@ -433,26 +433,26 @@ def test_Greater(tmpdir):
verify_no_input(model, tmpdir, 'Greater_0')
#GRU
def MakeGRUNameFromConfig(backward, initial_state, activtion):
model_name = 'GRU.' + activtion.__name__
if (initial_state != 0):
model_name += '.initial'
if (backward):
model_name += '.backward'
else:
model_name += '.forward'
return model_name
direction_options = [False, True]
activation_options = [C.tanh]
initial_state_options = [0]
input_dim = 2
cell_dim = 3
batch_size = 1
sequence_len = 5
def test_GRU(tmpdir):
def MakeGRUNameFromConfig(backward, initial_state, activition):
model_name = 'GRU.' + activition.__name__
if (initial_state != 0):
model_name += '.initial'
if (backward):
model_name += '.backward'
else:
model_name += '.forward'
return model_name
direction_options = [False, True]
activation_options = [C.tanh]
initial_state_options = [0]
input_dim = 2
cell_dim = 3
batch_size = 1
sequence_len = 5
for config in list(product(direction_options, initial_state_options, activation_options)):
model_filename = MakeGRUNameFromConfig(*config)
print(model_filename)
@ -560,43 +560,44 @@ def test_LRN(tmpdir):
verify_one_input(model, img, tmpdir, 'LRN_1')
#LSTM
def CreateLSTMModel(activation,
peepholes,
self_stabilization,
cell_dim,
initial_state):
return C.layers.Sequential([
C.layers.Recurrence(C.layers.LSTM(cell_dim,
use_peepholes = peepholes,
activation = activation,
enable_self_stabilization = self_stabilization),
initial_state = initial_state)
])
# lstm attributes
use_peepholes_options = [False]
enable_self_stabilization_options = [False]
activation_options = [C.tanh]
#Recurrence attributes
initial_state_options = [0]
input_dim = 2
cell_dim = 3
batch_size = 1
sequence_len = 5
def MakeLSTMNameFromConfig(use_peepholes, enable_self_stabilization, initial_state, activtion):
model_name = 'LSTM.' + activtion.__name__
if (use_peepholes):
model_name += '.peephole'
if(enable_self_stabilization):
model_name += '.stabilize'
if (initial_state != 0):
model_name += '.initial'
return model_name
def test_LSTM(tmpdir):
def CreateLSTMModel(activation,
peepholes,
self_stabilization,
cell_dim,
initial_state):
return C.layers.Sequential([
C.layers.Recurrence(C.layers.LSTM(cell_dim,
use_peepholes = peepholes,
activation = activation,
enable_self_stabilization = self_stabilization),
initial_state = initial_state)
])
def MakeLSTMNameFromConfig(use_peepholes, enable_self_stabilization, initial_state, activition):
model_name = 'LSTM.' + activition.__name__
if (use_peepholes):
model_name += '.peephole'
if(enable_self_stabilization):
model_name += '.stabilize'
if (initial_state != 0):
model_name += '.initial'
return model_name
# lstm attributes
use_peepholes_options = [False]
enable_self_stabilization_options = [False]
activation_options = [C.tanh]
#Recurrence attributes
initial_state_options = [0]
input_dim = 2
cell_dim = 3
batch_size = 1
sequence_len = 5
for config in list(product(use_peepholes_options, enable_self_stabilization_options,
initial_state_options, activation_options)):
model_filename = MakeLSTMNameFromConfig(*config)
@ -830,6 +831,81 @@ def test_Reshape(tmpdir):
model = C.reshape(i1, (2,3))
verify_one_input(model, data, tmpdir, 'Reshape_1')
#RNN
def test_GRU(tmpdir):
def CreatRNN(cell_dim,
activation,
initial_state,
direction,
num_layers,
init=C.default_override_or(C.glorot_uniform()),
init_bias=C.default_override_or(0)):
if direction == 'bidirectional':
return C.layers.Sequential([
C.layers.For(range(num_layers), lambda i: [
(C.layers.Recurrence(C.layers.RNNStep(cell_dim,
activation = activation,
init = init,
init_bias = init_bias),
initial_state = initial_state,
return_full_state = False, go_backwards=False),
C.layers.Recurrence(C.layers.RNNStep(cell_dim, activation = activation,
init = init,
init_bias = init_bias),
initial_state = initial_state,
return_full_state = False, go_backwards=True)),
C.splice])])
else:
go_backward = False if direction == 'forward' else True
return C.layers.Sequential([
C.layers.For(range(num_layers), lambda i: [
C.layers.Recurrence(C.layers.RNNStep(cell_dim,
activation = activation,
init = init,
init_bias = init_bias),
initial_state = initial_state,
return_full_state = False, go_backwards=go_backward)])])
def MakeRNNNameFromConfig(direction, num_layers, initial_state, activition):
model_name = 'GRU.' + direction + '.'
if num_layers == 1:
model_name += 'one_layer.'
else:
assert (num_layers == 2), "needs 1 or 2 layers!"
model_name += 'two_layer.'
if (initial_state != 0):
model_name += 'initial.'
model_name += activition.__name__
return model_name
direction_options = ['forward', 'reverse', 'bidirectional']
num_layers_options = [1, 2]
initial_state_options = [0]
activation_options = [C.tanh, C.relu, C.sigmoid]
input_dim = 2
hidden_dim = 3
batch_size = 1
sequence_len = 5
for config in list(product(direction_options, num_layers_options, initial_state_options, activation_options)):
model_filename = MakeRNNNameFromConfig(*config)
print(model_filename)
direction, num_layers, initial_state, activation = config
x = C.input_variable(input_dim, dynamic_axes=[C.Axis.default_batch_axis(), C.Axis('sequenceAxis')])
RNNModel = CreatRNN(
hidden_dim,
activation,
initial_state,
direction,
num_layers)(x)
data = np.random.uniform(low=0.0, high=1.0, size=(batch_size, sequence_len, input_dim)).astype('f')
verify_one_input(RNNModel, data, tmpdir, model_filename)
#Selu
def test_Selu(tmpdir):
model = C.selu([[-1, -0.5, 0, 1, 2]])