diff --git a/Tutorials/CNTK_203_Reinforcement_Learning_Basics.ipynb b/Tutorials/CNTK_203_Reinforcement_Learning_Basics.ipynb index 9103388de..1e11dc1a8 100644 --- a/Tutorials/CNTK_203_Reinforcement_Learning_Basics.ipynb +++ b/Tutorials/CNTK_203_Reinforcement_Learning_Basics.ipynb @@ -520,7 +520,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "collapsed": false }, @@ -562,7 +562,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "collapsed": false }, @@ -573,8 +573,138 @@ "text": [ "Episode: 20, Average reward for episode 23.000000.\n", "Episode: 40, Average reward for episode 22.300000.\n", - "Episode: 60, Average reward for episode 22.950000.\n" + "Episode: 60, Average reward for episode 22.950000.\n", + "Episode: 80, Average reward for episode 17.600000.\n", + "Episode: 100, Average reward for episode 17.900000.\n", + "Episode: 120, Average reward for episode 14.500000.\n", + "Episode: 140, Average reward for episode 15.000000.\n", + "Episode: 160, Average reward for episode 17.600000.\n", + "Episode: 180, Average reward for episode 14.100000.\n", + "Episode: 200, Average reward for episode 15.250000.\n", + "Episode: 220, Average reward for episode 14.350000.\n", + "Episode: 240, Average reward for episode 13.600000.\n", + "Episode: 260, Average reward for episode 14.550000.\n", + "Episode: 280, Average reward for episode 12.300000.\n", + "Episode: 300, Average reward for episode 13.250000.\n", + "Episode: 320, Average reward for episode 12.850000.\n", + "Episode: 340, Average reward for episode 13.950000.\n", + "Episode: 360, Average reward for episode 14.650000.\n", + "Episode: 380, Average reward for episode 13.350000.\n", + "Episode: 400, Average reward for episode 14.300000.\n", + "Episode: 420, Average reward for episode 13.350000.\n", + "Episode: 440, Average reward for episode 14.700000.\n", + "Episode: 460, Average reward for episode 12.850000.\n", + "Episode: 480, Average reward for episode 13.500000.\n", + "Episode: 500, Average reward for episode 12.650000.\n", + "Episode: 520, Average reward for episode 13.150000.\n", + "Episode: 540, Average reward for episode 13.900000.\n", + "Episode: 560, Average reward for episode 13.350000.\n", + "Episode: 580, Average reward for episode 11.500000.\n", + "Episode: 600, Average reward for episode 13.800000.\n", + "Episode: 620, Average reward for episode 11.150000.\n", + "Episode: 640, Average reward for episode 12.750000.\n", + "Episode: 660, Average reward for episode 12.150000.\n", + "Episode: 680, Average reward for episode 11.950000.\n", + "Episode: 700, Average reward for episode 12.000000.\n", + "Episode: 720, Average reward for episode 12.900000.\n", + "Episode: 740, Average reward for episode 11.700000.\n", + "Episode: 760, Average reward for episode 11.000000.\n", + "Episode: 780, Average reward for episode 11.050000.\n", + "Episode: 800, Average reward for episode 11.150000.\n", + "Episode: 820, Average reward for episode 11.650000.\n", + "Episode: 840, Average reward for episode 13.200000.\n", + "Episode: 860, Average reward for episode 12.100000.\n", + "Episode: 880, Average reward for episode 12.750000.\n", + "Episode: 900, Average reward for episode 12.100000.\n", + "Episode: 920, Average reward for episode 13.750000.\n", + "Episode: 940, Average reward for episode 14.150000.\n", + "Episode: 960, Average reward for episode 14.950000.\n", + "Episode: 980, Average reward for episode 15.750000.\n", + "Episode: 1000, Average reward for episode 16.500000.\n", + "Episode: 1020, Average reward for episode 17.650000.\n", + "Episode: 1040, Average reward for episode 19.600000.\n", + "Episode: 1060, Average reward for episode 21.600000.\n", + "Episode: 1080, Average reward for episode 28.350000.\n", + "Episode: 1100, Average reward for episode 19.300000.\n", + "Episode: 1120, Average reward for episode 10.300000.\n", + "Episode: 1140, Average reward for episode 10.850000.\n", + "Episode: 1160, Average reward for episode 10.450000.\n", + "Episode: 1180, Average reward for episode 10.800000.\n", + "Episode: 1200, Average reward for episode 10.350000.\n", + "Episode: 1220, Average reward for episode 24.400000.\n", + "Episode: 1240, Average reward for episode 49.100000.\n", + "Task solved in 1240 episodes\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAB3CAYAAABhcDFiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XlcVPX+P/DXKKLexFBEbl3rllpimCziQqImLmiioLmk\nV68bopT7hvuGF1BzN0GRTCUNNS1zFw1N87oruZWAuZQbJoaJjMDn9wdf5jLMnM85Z1xQf6/n4zGP\n4nBe8zlzeM/ncz6emXMMQggBIiIiIiIiIio2JYp7A4iIiIiIiIj+f8fJOREREREREVEx4+SciIiI\niIiIqJhxck5ERERERERUzDg5JyIiIiIiIipmnJwTERERERERFTNOzomIiIiIiIiKGSfnRERERERE\nRMWMk3MiIiIiIiKiYmZX3BtARERERERE9CRc8PW3WPbW/h3FsCXqODknIiIiIiKiF5LB7vmZ8vJj\n7URE9ESNHTsWrq6uig9fX19dz+fn54exY8c+oa39nw0bNsDV1RW///77Iz2PEAJr1qxBu3bt4Onp\niebNmyMyMhL37t0zW2///v3o2LEjPDw80KxZM3z++edWn0/reoXbHzZsGDw8PODq6oqePXsiJSUF\nABAVFYX33nsPrq6u6N27N5KSkgAARqMRffv2haurK9q2bYu9e/c+0j4gIiIqNnZ2lo9n1LO7ZURE\n9MJwdnbGZ599ZvV3pUqV0vVcixcvxksvvfQ4NkvKYDDAYDA88vPExsZi/vz5CA4ORoMGDfDrr79i\n3rx5SElJQVxcHADg5MmTGDBgAAICAjB06FAcO3YMs2bNQm5uLvr162d6Lq3rFX0dc+fORZ8+fXDw\n4EGsWLHC9LsxY8YgLy8PmzZtwvLly03L7e3tERMTg6lTp2L69OmPvA+IiIiKi6FkyeLeBM04OSci\noifO3t4etWvXfizP5erq+lie52kQQmDZsmXo2rUrhg0bBgDw8fHByy+/jBEjRuDMmTNwc3PDwoUL\n4ebmhqioKACAr68vHj58iCVLlqBnz56wt7cHAM3rWfPyyy9bXX7x4kWLs/hA/icHhg4d+kivn4iI\nqLjxY+1EREQ28PPzw9y5czF9+nTUrVsX9evXR1hYGO7evWu2TuGPtZ85cwa9evWCt7c3vLy80Lt3\nb5w6dcr0+7y8PHz55Zdo27Yt3N3d0bRpU8yePRtGo9G0jhACixcvRtOmTeHh4YFPPvnErM0C69at\nQ0BAAN599100bdoUixYtQl5enuLruXfvHgIDA9GmTRuz5VWrVoUQApcvX4bRaMThw4fRvHlzs3X8\n/f1x7949HDt2DAA0r6fE2uR87969yMvLQ25urtkEPSMjAzk5OahUqZL0OYmIiJ55JUtaPp5RnJwT\nEdFTkZuba/VR1OrVq5GcnIyZM2di5MiRSEpKQv/+/a0+57179xAcHAwnJycsWrQIc+fORVZWFoKD\ng02TzYkTJyIqKgr+/v6IiYlB9+7dER8fj48//tj0PDNnzsTixYvRuXNnfPbZZ6hQoQI+/fRTs7aW\nLFmCSZMmoWHDhliyZAm6d++O2NhYTJo0SfE1Ozg4YPz48fD09DRbnpiYCIPBgLfeegtXrlzBw4cP\n8eabb5qt889//hMAkJaWBgCa11NSdHJuNBrx/fffo127dgDyJ+QF1q5di44dO0qfj4iI6HlgsLOz\neOhx48YNDB48GPXr10eTJk0QFRVl9g/8hZ09exadO3eGh4cHOnXqhDNnzuhq6/k5x09ERM+t3377\nDW5ubhbLDQYDRo8ejd69e5uWlSxZEsuXLzd9r7xChQoYOHAg9u/fb3HxuNTUVNy5cwc9evSAh4cH\ngPyz0mvXrsVff/2FGzdu4Ouvv8bIkSMRHBwMIP9j5c7Ozhg9ejT27dsHT09PrFq1Cn379kVoaCgA\noGHDhrhx4wb2798PIP8fAaKjo9G1a1fTWfv33nsPjo6OmDBhAnr37o1q1app2henTp1CbGws/Pz8\nUL16ddNZ/qLfoy/4+a+//jJtg5b1lDg6Opr9HBcXh27duuHatWsAgLt376JKlSpITU1FlSpVULp0\naU2vh4iI6Fn2qB9rHzx4MBwdHbF69WpkZGRg3LhxKFmyJEaNGmW2XlZWFkJCQhAYGIioqCisWbMG\n/fv3R2JiIsqUKaOpLU7OiYjoiatcuTJiYmIghLD43SuvvGL2c7NmzcwmoM2aNYOdnR2OHDliMTl/\n6623ULFiRfTv3x+tWrVCo0aN0LBhQ4wYMQIAsGfPHhgMBouPlbdp0wZjx47F4cOHYTAYkJubi/ff\nf99sndatW5sm5ydOnEB2djaaNm1qdrb//fffhxACBw4c0DQ5P3bsGEJDQ/H6668jIiICAKQfiwdg\nuiid1vWUFD5zfuXKFdy+fRtvv/02Hjx4ACGE6WP8W7ZsweDBg82ye/fuRUZGBgIDA6VtEBERPWsM\ndrZ/jD0tLQ3Jyck4cOAAKlasCCB/sj5z5kyLyfmWLVtQtmxZ0/Lx48dj37592L59O4KCgjS1x8k5\nERE9caVKlcI777yjaV0XFxeznw0GAxwdHc0+dl3gb3/7G1avXo3o6Ghs374da9euRenSpREYGIjx\n48ebJpxFvztdsmRJVKhQAX/++adpnQoVKpit4+zsbPr/jIwMCCEQEhJi8Q8MBoMBN2/eVH1dW7du\nxdixY1G1alXExsaaJssODg4ALM98F5wpL/i91vWUFJ6cz5s3z/QJgILXnZGRgQMHDuC9994zy61e\nvRo7d+7UfGBBRET0THmEM+fOzs5YtmyZaWIO5F+nJjMz02Ld5ORk1KlTx2yZl5cXTpw4wck5ERE9\nn+7cuWP2c15eHjIyMhQvTvbGG29gxowZEEIgOTkZ3377LdasWYN//vOfpglpenq62Rn6nJwc3Llz\nBxUqVECFChUghEB6ejreeOMN0zqF/zGgfPnyAIDZs2ebvuNdmNqF0+Li4vDpp5+iQYMGWLhwIcqV\nK2f63euvv46SJUvi8uXLZplLly4BgOmMvNb1lBR8rD0pKQnVq1c3bXPB8j/++AOpqakYNGiQWa5b\nt274448/pM9NRET0rHqUj7U7ODigYcOGpp+FEIiPj7f4h2wAuHnzJt5++22zZU5OTkhJSdHcHi8I\nR0REz5S9e/ciJyfH9HNiYiJyc3Ph4+Njse6OHTvg4+OD27dvw2AwwN3dHZMmTYKDgwN+//131KtX\nD0IIbN682Sy3efNm5OXlwdvbG56enihTpgy2b99uts6ePXtM/+/u7o5SpUrh+vXrcHNzMz1KlCiB\n2bNn48qVK4qv56uvvsKsWbPwwQcfIDY21mxiDuTfZs7b2xs7d+60eG3ly5c33YJO63pKHB0dIYRA\nXFwc+vbta1ru4OAAOzs7JCQk8GPrRET0wjGULGHxsNXMmTNx/vx50+1RC3vw4IHFLU3t7e0VLx5n\nDc+cExHRE2c0Gs1ub1aUq6ur6QJk169fR2hoKLp3745r165h7ty5aNy4Mby9vS1yXl5eyMvLw8cf\nf4x+/fqhXLly2Lp1K+7duwd/f39Uq1YN7du3x4IFC5CVlYW6devi7NmzWLRoERo0aIBGjRoBAD7+\n+GPMnz8fZcuWRYMGDZCUlISkpCRTO46OjggODsb8+fORmZmJevXq4caNG1iwYAFKlCiheO/19PR0\nREZGokqVKujWrZvFVVtfe+01VKxYEaGhoejTpw+GDBmCDz/8EMePH8fy5csxcuRIswuzaV3PmoJP\nEXTq1Mni4OHll1+Gr68vXn/9delzEBERPW8MpUo9lueZNWsWVq1ahXnz5ln9tFrp0qUtJuJGo1Hz\nxeAATs6JiOgpSE9Px0cffaT4+40bN5omuB988AFefvllDBs2DH/729/QoUMHs3+hNhgMpoufOTs7\nIy4uDvPmzcOECRPw4MEDvPXWW1i4cCHq1q0LAIiIiMAbb7yBr7/+GrGxsXBxcUGvXr1MV2YHgJCQ\nELz00ktYsWIFVq5cCU9PT4wZMwZTpkwxrTNkyBBUrlwZq1evRlxcHMqXL4+GDRti2LBhFmfDC+zd\nuxdGoxG//fYbunfvbvH7yMhIBAUFoUGDBliwYAEWLlyIgQMHwsXFBaNHj0avXr3M1te6njUvv/wy\nvL29TbdOK8zV1dXs1nJEREQvjEe8WjsAhIeHIyEhAbNmzULz5s2truPi4oJbt26ZLUtPTze7ho0a\ng7B26VwiIqJi4Ofnh/r16yMyMrK4N4UKWbRoEapUqcKLwhER0XPnt6FjLZb9Y57244xFixYhJiYG\nc+fORYsWLRTXKzgJUPhrci1btkRoaCjat2+vqS1+55yIiIgUrVu3Dj/++CO2b99u8b18IiKiZ52h\nlJ3FQ6vU1FRER0cjJCQEnp6eSE9PNz2A/DPj2dnZAAB/f39kZmYiIiICqampmD59OrKystC6dWvN\n7fFj7URE9Mwo/JF1ejZ06tQJnTp1Ku7NICIissmjXK199+7dyMvLQ3R0NKKjowHkX7HdYDDg3Llz\n8PX1RVRUFIKCglCuXDnExMRg8uTJWLt2LWrUqIHY2Fhd3znnx9qJiIiIiIjohXRtwnSLZa9Mn1AM\nW6KOZ86JiIiIiIjohfQoZ86ftudnS4mIiIiIiIj0eIT7mj9tnJwTERERERHRC+lx3ef8aeDknIiI\niIiIiF5I/Fi7jeZt3ad53aEfNAYAfLo5SVcbIwPeBwBEbEzUlRvXvjnmb/tBV2ZI60YAgO4L43Xl\n4gd1R4fZy3VlNozoDQDoOn+VrtyaIT0AAEGz4jRnvhnVFwDwQeRSXW1tHRsCAJi8Tt+teKZ2aoUJ\nCdt0ZaZ3yb9lwWc7D+jKfdKyIWZs2qMrE9bODwBs+pt9NG+lrsxXQ/8NAAiYEasrtzmsHwAgeteP\nmjOhLd4DAIyK36SrrVnd2wEAgmO+0pVbNuAjhCxdqyuzNKQzANv2R7uZy3RlNo0OBgAMXr5BV25B\n7w4AgI/j1mvOLO7bEYBt/RQA9InWt+8/D/3I5tdlS933W5KgKxPbvwsAoNPcL3Tl1g3rhdBl2vc7\nAEQH5+97W+oXsO09ZsvfC4BN+zFs9WZdmRndAgDY1m8PX/mtrsycfwcCsL3ubdn37T/9XFdbG0f2\nAQCEb9ilKzexQwvM1nm8MuL/jlemrN+hKzeloz8GxK7TlYnpl381fltykd/s1pUZG9QMgG3vZwC6\nxuiC8dnW45WOc/T1b+uH98a0r3fqykz6sCUA2DQm2Tpm2trntInSvh+3jMnfh7b2A7bUx7AV3+jK\nzO0ZBEBfTQH5dWXrcakt9WHrmNll3gpduYShPXWt/zwx8GPtRERERERERMXsOTpz/vz8MwIRERER\nERGRDoZSpSwetjAajWjbti2OHDmiuE5oaChcXV1Rs2ZN03/37t2ruQ2b/xnhzp07MBqNKFu2LMqX\nL2/r0xARERERERE9EYYSj34+2mg0Yvjw4UhJSZGul5aWhtmzZ6NBgwamZXrmyrom5zt37kR8fDyS\nk5ORnZ1tWl6mTBnUqlULPXv2RPPmzfU8JREREREREdET8agXhEtNTcWIESNU1zMajbh69Spq1aoF\nJycnm9rSvKXLly/HokWLEBwcjIEDB8LJyQn29vYwGo1IT0/H0aNHMWbMGAwZMgQ9evSwaWOIiIiI\niIiIHptHvJXa4cOH4ePjg6FDh8Ld3V1xvYsXL8JgMOC1116zuS3Nk/PPP/8cM2bMsHpmvFq1aqhf\nvz5q1KiB8PBwTs6JiIiIiIio2D3q1dq7du2qab3U1FSUK1cOo0aNwqFDh/DKK69g0KBBaNy4sea2\nNG/pgwcPUKVKFek6Li4uyMzM1Nw4ERERERER0ZNisLOzeDwJaWlpyM7ORqNGjRAXF4cmTZogNDQU\nZ86c0fwcmifnLVq0wJgxY3D06FHk5OSY/S4vLw/Hjx/HuHHj4O/vr/0VEBERERERET0hT2tyPnDg\nQOzbtw9BQUGoUaMGBg4ciEaNGiEhQfu96jVv2ZQpUzBjxgz07dsXubm5cHR0NH3nPCMjA3Z2dggM\nDMTYsWNtejFEREREREREj5VdyafWlIODg9nP1apVQ2pqqua85sm5vb09Jk6ciJEjR+L8+fO4desW\nsrKyULp0abi4uKBmzZooU6aM9i0nIiIiIiIieoKe1JnyosaOHQuDwYCIiAjTsvPnz+Ptt9/W/By6\nt7Rs2bLw9PTUGyMiIiIiIiJ6uko8uTPn6enpcHBwQOnSpeHn54fhw4ejXr168PLywqZNm3D8+HGE\nh4drfj6DEEI8sa0lIiIiIiIiKiaZu/daLHNo1sSm56pZsyZWrlyJunXrAgBcXV0RFRWFoKAgAMD6\n9esRGxuL69evo3r16hg3bhzq1Kmj+fmfqcn5gNh1mteN6dcJANBp7he62lg3rBcAYOH2/bpyg1r5\nouOc5boy64f3BgC0iliiK7d9XH/M/O57XZnRbZsC0LcPgf/txxmb9mjOhLXzAwAMX/mtrrbm/DsQ\nANBhtr79uGFEb4Rv2KUrM7FDCwCw6W8Wumy9rkx0cEcAwOzNSbpyIwLeR8/Fq3VlVnzcDQCwaIe+\n+h3o7wsA6L4wXnMmflB3AMDoL7/T1dbMf7UFYFt9TEjYpiszvUtrAEDI0rW6cktDOtuUAYClu/+r\nKxfSrAEA2/b9dJ11P+H/6n7yuu26clM7tbJ5f9jyd7Zl+wDY9H6xpf8FbOs7ACDym92aM2ODmgEA\nhnyxUVdb83u1BwD0if5KV+7z0I8QtnqzrsyMbgEAgK7zV+nKrRnSw+a2AmbE6sptDusHALr6j4K+\nw9b+3pbXpmecBf431try3rT1PWZLbtiKb3Rl5vbMP4AdFb9JV25W93YAgKBZcZoz34zqCwCI+/6w\nrrb6Nq0HwLZjTFvHZ1uO+2w5ngJg89+sxfRozZldE0IBAP2WaL8QFgDE9u8CwLZ9b+tx6cdx+vqB\nxX072jz/GLFKX93P7tHO5mPFf3/2pa7cyk/+pWv958m9vQcslpVr0rAYtkTd0/kAPhEREREREdFT\nZij59C4I96g4OSciIiIiIqIX01O6INzj8PxsKREREREREZEOhqd4K7VHxck5ERERERERvZCe1q3U\nHofnZ0uJiIiIiIiIdHieJuclinsDiIiIiIiIiJ4Iu5KWDxsYjUa0bdsWR44cUVzn7Nmz6Ny5Mzw8\nPNCpUyecOXNG36bqWVm2IUUV3PuNiIiIiIiIqDg8jqu1G41GDB8+HCkpKYrrZGVlISQkBIGBgYiK\nisKaNWvQv39/JCYmokyZMpra0TU5nzZtmmmDZLdHNxgMOHfunJ6nJiIiIiIiInqsDKVKPVI+NTUV\nI0aMUF1vy5YtKFu2LEaNGgUAGD9+PPbt24ft27cjKChIU1u6Judff/01hg8fjqtXryIhIQGlS5fW\nEyciIiIiIiJ6ah71au2HDx+Gj48Phg4dCnd3d8X1kpOTUadOHbNlXl5eOHHihObJua7vnNvb22PO\nnDkAgHnz5umJEhERERERET1dJUpaPnTo2rUrwsLCVE9M37x5E5UrVzZb5uTkhBs3bmjfVF1bhvwJ\n+uzZs/H666/rjRIRERERERE9NYZSdhaPJ+HBgwewt7c3W2Zvbw+j0aj5OQxC9uVxIiIiIiIioudU\nZmamxTIHBwebnsvV1RWrVq2yevHz/v37o0aNGhg+fLhp2aeffoq0tDQsXrxY0/PzVmpERERERERE\nj8DFxQW3bt0yW5aeng5nZ2fNz/FM3ZF9xqY9mtcNa+cHAJi4dpuuNsI7twYAfLo5SVduZMD7mL/t\nB12ZIa0bAQDaRC3VldsyJgQd5yzXlVk/vDcAIPKb3bpyY4OaAQD6LUnQnInt3wUAELJ0ra62loZ0\nBgBM37BLV25ChxYImBGrK7M5rF9+NkFffUzv0hrtZi7Tldk0OhgAELZ6s67cjG4BmLJ+h67MlI7+\nAIBpX+/UlZv0YUsA+uqjoDZsea8AwIhVm3TlZvdoZ9M+BICxa7boykV2bYPQZet1ZaKDOwIAgmbF\n6cp9M6ovAH3bGNm1DQDb+zdb6uOjeSt1Zb4a+m8AsGk/jv7yO12Zmf9qa3NbXeat0JVJGNoTAGzO\ntf/0c82ZjSP7AIDN/YAt9TF3y15dmWFtmgAAPo7Tt+8X9+2Ify1YpSvz5eAeAGBzfdgyjn0QqW98\n3jo2BAAwW2e/OCLgffj/J0ZXZsf4AQBg07GHre/nAbHrdOVi+nWy+e88fOW3unJz/h0IQN97s+B9\nGa7zuGNihxYAbOtz9NQh8L9atGU/2nocFr3rR1250BbvAYCu/qOg75i8bruutqZ2agUANh2L2Xqc\nbkv/Zmu/bct7c9iKb3Rl5vbMv/DYwu37deUGtfLVtT5Zcnd3R2ys+Zzl+PHjCA0N1fwcPHNORERE\nREREpFN6ejqys7MBAP7+/sjMzERERARSU1Mxffp0ZGVloXXr1pqfj5NzIiIiIiIieiE9MNhZPGxl\nMBjMfvb19cW2bfmfZCtXrhxiYmJw9OhRfPjhh/jpp58QGxuLMmXKaH7+Z+pj7URERERERESPS05u\n7mN7rnPnzpn9fP78ebOf3333XWzYsMHm59d05txoNGLWrFlo0qQJvLy8MHDgQKSmppqtk56ejpo1\na9q8IURERERERESPU16esHg8qzRNzufMmYPExESMHj0a06ZNQ3p6Oj788EMkJiaarce7shERERER\nEdGz4mFersXjWaVpcr5t2zZERESgTZs2CAgIwJo1a9C1a1cMHTrU9Bl7wPIz+ERERERERETFJScn\nz+LxrNL0nfMHDx7A0dHR9LPBYEBYWBhKlCiBUaNGwc7ODp6enk9sI4mIiIiIiIj0yhXP7mS8KE1n\nzuvXr4+ZM2fijz/+MFs+atQodOnSBcOGDcPq1aufyAYSERERERER2SInN8/i8azSNDkfP348MjIy\n0LBhQxw4cMDsdxMnTsSAAQOwZMmSJ7KBRERERERERLZ4mJtr8XhWafpYu4uLCxISEpCWlgZnZ2eL\n3w8cOBCtW7fG7t27H/sGEhEREREREdkiN+/RzpQbjUZMmTIFu3btQpkyZdCnTx/07t3b6rqhoaH4\n/vvvYTAYIISAwWBATEwMmjRpoqktXfc5r1q1quLvqlWrhmrVqul5OiIiIiIiIqIn5lE/xj5jxgyc\nPXsWq1atwtWrVxEWFoZ//OMfaNmypcW6aWlpmD17Nho0aGBaVr58ec1tGQTvf0ZEREREREQvoIMX\nLlss83nrdU3ZrKwsNGjQAHFxcfD29gYAREdH4+DBg1i5cqXZukajEZ6enti6dSv++c9/2rStmr5z\nTkRERERERPS8eZTvnJ8/fx65ubnw8PAwLatTpw6Sk5Mt1r148SIMBgNee+01m7dV18fan7Sw1Zs1\nrzujWwAAoPvCeF1txA/qDgBYtGO/rtxAf19EbEzUlRnXvjkAYNrXO3XlJn3YEoOXb9CVWdC7AwCg\n3cxlunKbRgcDABZu174/BrXyBWDb6wKArvNX6cqtGdIDrSL0XXBw+7j+NrcV+Y2+ayeMDWoGAAhZ\nulZXbmlIZ3Sa+4WuzLphvQAAMzbt0ZULa+cHABi7ZovmTGTXNgCANlFLdbW1ZUwIANvqY1T8Jl2Z\nWd3bAQBmfve9rtzotk0xce02XZnwzq0BAP9aoK+mvhzcAwCwJPGg5kz/5j4AgA6zl+tqa8OI/O8/\n2VIftr7HbNn34Rt26cpM7NACANAn+itduc9DP0LHOfr24frh+fvQlr4DAMZ/tVVz5j8ffQDA9r50\nQoK+Gp7epTXen7JIVyZpykAAwMdx63XlFvftiGbTFuvK7J70MQAgetePunKhLd4DoO/9UvBeaTE9\nWldbuyaEAgAmr9uuKze1Uyuba9GW4wFbxwhb3mO29AGAvmM+4H/HfT0Xa7870IqPuwGAzbU4f9sP\nunJDWjeyKQPApvoYvvJbXZk5/w4EYHufo6euCmrK1rHWltc28HN975VFffKPnZfu/q+uXEizBvhs\n5wH1FQv5pGVDAECXeSt05RKG9rT5vaLn2B743/H9iyjnES4Ad+vWLTg6OsLO7n/TZicnJ2RnZ+PO\nnTuoUKGCaXlqairKlSuHUaNG4dChQ3jllVcwaNAgNG7cWHN7PHNOREREREREL6TcPGHx0CorKwv2\n9vZmywp+NhqNZsvT0tKQnZ2NRo0aIS4uDk2aNEFoaCjOnDmjub1n6sw5ERERERER0eOSk2f7mfPS\npUtbTMILfi5btqzZ8oEDB6Jnz55wcHAAANSoUQOnT59GQkICpk2bpqm9Rz5znpOTg4yMjEd9GiIi\nIiIiIqLH6mFOnsVDKxcXF2RkZCCv0O3Y0tPTUaZMGatXYS+YmBeoVq0abt68qbk9XZPzLVu2YNq0\nadixYweEEJg+fTq8vLzg4+ODhg0bIj5e3/e/iYiIiIiIiJ6UXJFn8dCqZs2asLOzw8mTJ03Ljh49\nilq1almsO3bsWIwbN85s2fnz5/Hmm29qbk/zx9rj4uIQHR0NHx8fTJ48Gd988w3OnTuHWbNmoXr1\n6vjpp5/w6aef4v79+wgJCdG8AURERERERERPwqPc57xMmTIIDAzE5MmTERERgRs3bmD58uWIiooC\nkH8W3cHBAaVLl4afnx+GDx+OevXqwcvLC5s2bcLx48cRHh6uuT3Nk/Mvv/wSc+bMQePGjXHs2DF0\n794dMTExaNKkCYD8U/YVKlTAxIkTOTknIiIiIiKiYvcoV2sH8s+IT5061fR98iFDhqB58/y7cvn6\n+iIqKgpBQUFo0aIFJk+ejOjoaFy/fh3Vq1fHsmXL8Oqrr2puS/Pk/M6dO3jjjTcA5N/b7ZVXXkGl\nSpXM1qlSpQqysrI0N05ERERERET0pOTm2X7mHMg/ex4ZGYnIyEiL350/f97s544dO6Jjx442t6X5\nO+deXl747LPPcP/+fQDAnj174ObmZvr9zZs3ERkZCR8fH5s3hoiIiIiIiOhxycnNs3g8qzRPzidP\nnoxTp05hwoQJFr9LTExEkyZNcPfuXUycOPGxbiARERERERGRLZ6nybnmj7W//vrr2LZtG9LT0y1+\n5+npia8FmkNbAAAfYElEQVS++grvvvsuSpR45LuzERERERERET2yR/1Y+9NkEEKI4t4IIiIiIiIi\nosdt0Y79FssG+vsWw5ao03zmnIiIiIiIiOh5kpv3/JyL5uSciIiIiIiIXkiPeiu1p4lfECciIiIi\nIqIXUk5ensVDD6PRiHHjxqFu3bpo1KgRli9frrju2bNn0blzZ3h4eKBTp044c+aMrrY4OSciIiIi\nIqIXUm5unsVDjxkzZuDs2bNYtWoVJk+ejEWLFmHnzp0W62VlZSEkJAR169bFhg0b4OHhgf79++PB\ngwea2+LknIiIiIiIiF5Ij3LmPCsrC+vXr8eECRPg6uqK5s2bIzg4GPHx8RbrbtmyBWXLlsWoUaNQ\ntWpVjB8/Hi+99BK2b9+uuT1OzomIiIiIiOiF9DA31+Kh1fnz55GbmwsPDw/Tsjp16iA5Odli3eTk\nZNSpU8dsmZeXF06cOKG5PU7OiYiIiIiI6IWUlycsHlrdunULjo6OsLP733XUnZyckJ2djTt37pit\ne/PmTVSuXNlsmZOTE27cuKG5PV6tnYiIiIiIiF5Ies6UF5WVlQV7e3uzZQU/G41Gs+UPHjywum7R\n9WQ4OSciIiIiIqIXUo7OC8AVVrp0aYvJdcHPZcuW1bRumTJlNLfHyTkRERERERG9kHJ13jqtMBcX\nF2RkZCAvLw8lSuR/Izw9PR1lypRB+fLlLda9deuW2bL09HQ4Oztrbu+Z/c65nvvJKeXbtm2LI0eO\nqK5748YNDB48GPXr10eTJk0QFRWl6eMHly9fRt++feHp6Qk/Pz/ExcXp2saQkBCMHTtW07qJiYlw\ndXVFzZo1Tf8dMmSIas5oNGLq1KmoV68efH19MXfuXOn6GzdutGjH1dUV77zzjmpb169fx4ABA1Cn\nTh00a9YMK1asUM388ccfGDx4MOrWrQt/f39s3LhR9fUU/btevXoVvXv3hqenJwICAnDgwAFNuQJp\naWnw9PTUlDl58iQ++ugjeHp6onXr1li3bp2m3A8//IDAwEC4u7sjKCgI+/bt07x99+7dQ+PGjfHN\nN99oamv69OkWf8Mvv/xSmrl27Rr69esHDw8P+Pv7Y9u2baptjR071qydgkevXr2kbR09ehQdOnSA\np6cn2rdvj4MHD2p6XadPnzbt+48++ginTp0CIH//ympDy/v+0qVLcHd3N1smyynVhywjqw0t21i0\nPmQZWW3Ickr1UTjTuHFjzJgxA0ajUbU2ZG3J6kOWU6oPWT8tqw8t/XvR+pBlZH2HLKdUH1q2z1rf\nIcvJ6kOWU6oPpYxafcjaUqoPWUapNgorOh5rGVes5QpY6ztkOS1jS9GM2riito2ysaVoRm1cUcpp\nGVsKZ7SMK0ptaRlbimZktSE77pLVh5bjNWv1Icsp1YcsI6sPLdtYtD5kGVl9yHJK9aGUUasPWVuy\n+pDllGpEdnwtqw8tx+VF60OWkfUdspzW/uNF8SgXhKtZsybs7Oxw8uRJ07KjR4+iVq1aFuu6u7tb\nXPzt+PHjZheTUyWeUdOmTROBgYHi3LlzYteuXcLLy0vs2LFDUzY7O1t88sknwtXVVRw+fFh1/c6d\nO4uQkBCRkpIijh49Klq2bClmzpwpzeTl5Ql/f38xevRocenSJbF3715Rp04dsXnzZk3buHnzZlGj\nRg0xZswYTetHR0eL0NBQcfv2bZGeni7S09NFZmamam7ixInC399f/PTTT+LgwYOiQYMGIiEhQXH9\n7Oxs0/Onp6eLa9euiZYtW4qoqCjVtjp37iyGDx8uLl26JBITE4WHh4fYtWuXNNOlSxfRpUsXce7c\nOZGUlCTq1aunmFH6u7Zr106MHj1apKamiiVLlggPDw9x7do11ZwQQly9elW0bNlSuLm5qbZ169Yt\nUbduXTF37lxx6dIlsWXLFlG7dm2RlJQkzV26dEm4u7uLFStWiCtXrojly5eLWrVqid9++011+4TI\n/xu6urqKjRs3atofvXv3FrGxsWZ/xwcPHihmcnJyREBAgPjkk0/ExYsXxVdffSXc3NzEhQsXpG1l\nZmaatXHy5ElRu3ZtsXv3bsXM7du3hbe3t/j888/FlStXRExMjPDw8BDXr1+XtlWQmzRpkkhLSxPL\nly8Xnp6e4tq1a9L3b9u2bRVrQ+19//vvvwt/f3/h6upqtt+VcrL6UMqo1YaWvqlofcgystpQysnq\nQymjVhtKObX6UMsVrY+Cv6FSP61UH1r696L1IcvIakOWU6qPq1evahp/itaG2utSqg9ZTqk+fvnl\nF8WMrD5kbSnVx7Vr11Qz1vqOAtbGY7VxRSkn6zuUcjdv3lQdW4pm1PoOtW20Vh+yjKzvUMppGVuK\nZtT6DqWclrFFKaNUG7LjLtnYona8plQfSjlZ/6GUUasPLceURetDlpHVh1JOVh9KGbX6UMqp1Yda\nzlqNyI6vZfWhdlxurT6UMmrHpUo5rf3Hi6TfkgSLhx6TJk0SAQEBIjk5WezatUvUqVPHNF+5deuW\nqd4zMzPFe++9J/7zn/+IlJQUER4eLnx9fUVWVpbmtp7Jyfn9+/dF7dq1xZEjR0zLFi9eLHr06KGa\nTUlJEYGBgSIwMFDT5Dw1NVW4urqK27dvm5Zt3rxZNG7cWJq7efOmGDZsmPjrr79MywYOHCimTp2q\nuo0ZGRmiSZMmolOnTpon5yNHjhRz5szRtG7hdtzc3Mz249KlS8W4ceM0P0dMTIxo2bKlMBqN0vXu\n3r0ratSoYTboDho0SISHhytmfvrpJ+Hq6iquXr1qtn1dunSxWFfp7/rjjz8KT09Ps4OEXr16iYUL\nF0pzQgixfft20aBBAxEYGGg2OVfKrFmzRnzwwQdm2zVx4kQxcuRIae7QoUMiIiLCLFevXj2xbds2\n1Xo9cuSIaNmypfD19TU7gJLlGjduLA4cOKB5HyYmJoq6deua1fInn3wi1q5dq9pWYX369BFhYWHS\nzK5du0SDBg0s9kXBP7wp5ZYtWyZatGgh8vLyTLng4GAxadIkxffvwYMHFWtD7X2/a9cu4ePjY9qO\nAkq5Ro0aKdbHgAEDFDOHDx9WrA0tfVPR+lDLKNWGLLd7926r9fHZZ59p7jsL14ZsH8rqQ5aLi4uz\nWh/Tp09X7Kdl9aHWv1urD1lG1nfIckr1kZCQoDr+WOs71F6XUn3Ickr1ERcXp3mMLFwfsraU6mPd\nunWKGaXaKBhPrY3HauOKUk4I5b5DllMbW6xlZOOK2jYKoTy2KGWUakOWUxtbtBwLFa4NWVtqY4u1\njNK4UlAbSsddavUhO16T1YdSTlYfShm1+lA7prRWH7KMrD6UcrL60HrMW7Q+lHJq9aGUU+o/IiMj\nFY+vZWOL2nG5tfqQZWS1IcvJjj1eVH2j11g89MjKyhJjxowRnp6eonHjxmLlypWm39WoUcOsH01O\nThbt27cX7u7uonPnzuLcuXO62nomP9au535yRR0+fBg+Pj5ISEiAEOqXyXd2dsayZctQsWJF0zIh\nBDIzM1Vzc+bMwd/+9jcAwLFjx3DkyBHUr19ftc0ZM2YgMDAQ1apVU123QGpqKt58803N6xdsk4OD\nA7y9vU3L+vXrh//85z+a8nfv3sWyZcswcuRIlCpVSrpumTJlULZsWXz99dfIyclBWloajh8/Lv04\n/JUrV1CxYkX84x//MC2rUaMGTp8+jdwiHzdR+rsmJyfDzc0NpUuXNi2rU6eO6aMnsnrYu3cvRowY\ngbCwME1tNW7cGJGRkRavo6BWlHL16tUzfYwuJycH69atg9FoRO3ataXbZzQaMWnSJEyePNli/yvl\n7t27hxs3buCNN96w2E6lzJEjR9CgQQNTLQPAokWL0KlTJ9V9WODgwYM4duwYhg0bJs04OjoiIyMD\nu3btApD/UbL79+/j7bffluauXr0KNzc3GAwG07IaNWrgwoULFu9fIP9vcurUKcXaUHvf7927F8OG\nDcO4cePMnlcpV/DxP2v18fDhQ8VM3bp1FWtDbRut1YcsI6sNa7mC/Xj48GGr9dGjRw9NfWfR2pDt\nQ1l9KG3jvXv3FOvj559/tuinjx49inr16qnWh6x/t1Yfsoys75DllOrD19dXun1KfYesLbX6UNqP\nSvXRp08fTWOktfpQyinVh7e3t+L2XblyxWptFHzs0Np4rDauKOUA5b5DllMbW6xlZOOK2jbKxhZr\nGVltyHJqY4vasVDR2pC1pTa2WMso9RsFtaF03KVWH7LjNVl9KOVk9aGUUasP2TYq1YdSRq0+lHKy\n+tByzGutPpRyavWhlFPqPw4cOKB4fC0bW9SOy63Vhywjqw1ZTnbs8aJ6mJdn8dCjTJkyiIyMxPHj\nx7F371706NHD9Lvz588jKCjI9PO7776LDRs24OTJk0hISICrq6uutp7JC8Kp3U+uQoUKitmuXbvq\nasvBwQENGzY0/SyEQHx8PN577z3Nz+Hn54dr167h/fffR8uWLaXrFnQm3333HSZPnqy5jYsXL+KH\nH35AdHQ08vLy0KpVKwwePFg6ab5y5Qr+8Y9/4JtvvsGSJUvw8OFDdOjQAaGhoWYdjZLVq1fDxcUF\nLVq0UF3X3t4ekyZNwrRp07By5Urk5uaiQ4cO6NChg2KmUqVK+PPPP5GdnW3qxK5du4bc3FxkZmbC\n0dHRtK7S3/XWrVvS+wnK6iEiIgIALL6XppR59dVX8eqrr5p+vn37NrZu3YrBgwertgXkfyeydevW\nyMvLw4gRI/Dqq69KMzExMXBzc7Nai0q5tLQ0GAwGREdHY9++fXB0dETv3r0RFBSkmLly5QqqVKmC\n2bNn49tvv0XFihUxcOBANG/eXNPrAoDY2Fh06NABLi4u0oy3tze6deuGwYMHo0SJEsjLy0NkZKRp\nUFfKOTk54eeffzZbdu3aNWRmZlp9//r4+EhrQ+19Hx4eDiD/HwsKk+Vk9aHWx1irDQDSnLX6kG2f\nrDaUcj4+PqZ+xFp9aOk7i9aGbBvV6kNpG52cnHDu3Dmzdq9du2Z2/9Gi/XRERISme5Fa69+V6kMp\nYzAYpH2HrC1AuT6UMrK+QymXnJysWB+y3HfffSftP2SvC7CsD7X9KKuPohl/f3+kpKRY7Tvu3Lmj\nOB6rjSuycVxWG0o5Wd+hdsygVBuynFJ9KGVSU1OltaGUk40tWo6FrNWGUk7WdyhllMaVgn5D6bhL\nrT5kx2uy+lDKyepj7ty50mNDpfqw1taQIUNgZ2enWB9K26dWH0VzrVu3xqBBg6T1oeWY11p9KL0u\ntbFFqT1ZjSgdX8vqQ+243Fp9yDKy2tAyB5CNLS+a3Ee4WvvT9kyeOddzP7nHbebMmTh//rzFv9TK\nLFy4EDExMTh37pz0rLTRaMSUKVMwefJki9cn8/vvv+PBgwcoXbo05s+fj7CwMHz33XeYNWuWNHf/\n/n38+uuvWLt2LaKiojBmzBisWrVK04XaAGD9+vVm/zKkJjU1FX5+fli3bh2ioqKwY8cObN68WXF9\nd3d3ODs7Y9q0acjKysKlS5fwxRdfAMg/26iFUq086TrJzs7GoEGDULlyZXTp0kVTpmLFivj6668x\nadIkLFiwwPQvuNakpKRg7dq1mi8YWCAtLQ0lSpRAtWrVEBsbi06dOmHixIlITExUzNy/fx8bNmzA\nn3/+iSVLliAwMBBDhgzBmTNnNLV55coV/Pe//0X37t1V1/3rr79w5coVDB48GOvXr8eAAQMQHh6O\nixcvSnP+/v5ITk7GunXrkJubix9++AF79uyxqJOZM2fi3LlzGDZsmK7asOV9L8vJ6sNaRkttFM5p\nrY+CzNChQ3XVRuH9eP/+fWzcuFG1Pqy9Li21UTinpz4KtnH48OGmyaWsPgr66fPnzyMiIkJzfWjt\n37VmZLWhlJPVR+FMREQEUlNTNdVG0bYuXryoqT6K7kct/YfS61Krj6KvTUt9FM34+/vj1KlTFrUh\nG49ltWHrOK41V7g+2rdvr5qxVhuytpT6DllGVhuynFJtnDx5UvV1WasNWVtKtfHzzz8rZmTjirXj\nrs2bN2PmzJnS+rD1eE1rrnB9NG7cWDVjrT6U2po5c6Zi/yHLyOpDllOqj6SkJNXXZa0+ZG3J+g7Z\nvlfqP3JyciyOr+Pj4/HFF19I68OW43KtmaJji5acnuPS511Obp7F41n1TJ4513M/ucdp1qxZWLVq\nFebNm6frI+dubm4A8q8yOmrUKIwZM8bsrH+BhQsXolatWrrOygP5/6p+6NAh0+X6XV1dkZeXh9Gj\nR2Ps2LGKZ8FLliyJv/76C3PmzMHf//53AMBvv/2GNWvWWL3yaWHJycm4ceMGPvjgA03bePDgQaxf\nvx779u2Dvb093nnnHVy/fh3R0dEICAiwmrG3t8eCBQswdOhQ1KlTB05OTggODkZUVBTKlSunqd3S\npUvj7t27Zsv03k9Qr/v37yM0NBSXL1/GmjVrzD66JFOuXDnTlUVTUlKwatUqxU8lTJw4EYMHD7b4\nCK+aoKAg+Pn5mWrl7bffxq+//oo1a9aYnckqrGTJkqhQoQKmTp0KIP+qlEePHkVCQgKmTZum2ubO\nnTtRs2ZNVK1aVXXd2NhYAEBoaKiprVOnTmHlypXST5K89dZbCA8PR3h4OKZMmQJXV1d069YNhw4d\nMq1T+P1bvXp1zbVh6/teKSerD6WMWm0UzXXt2lW1Poruj+rVq2uqjaI5LfWh9LrUaqNobt68eQDU\n68Nae9OnT5fWR0E/PWbMGIwcORIdO3bEn3/+abY91upDa/+uJaPWdyjlZPVRODNy5Ej89NNPmvqO\nom2FhYVpqo+i+7FOnTqq9aH0utTqo+hrKxj/ZfVh7XVZq41vv/0W9evXtzoey/oOW8dxLbmi9bF0\n6VLVjLXaSE5OVsxNmDDBan3Itk82rpw6dUoxp9R3TJkyRfV1WasN2TYqjS1jxoxRzMjGFaXjrlGj\nRqFDhw6KfYetx2tackXr47XXXlPNWKuPlStXKr625ORkq/Uh275x48Yp1kdcXJxiW97e3lbrY8+e\nPaqvy1p9yP5mL730ktX6KOg7ZO1Z6z82b96Mu3fvWhxfr169Gr6+vsjIyLBaH7Ycl2vJWBtbtOT0\nHJc+73LytF+dvbg9k5NzPfeTe1zCw8ORkJCAWbNmKU5iCrt9+zZOnDhhtm716tXx8OFD03cni9q6\ndStu375tum1XwVmdHTt24Pjx49L2ir7uatWqITs7GxkZGYof869cuTJKly5telMCwJtvvonr16+r\nvr79+/ejbt26cHBwUF0XAM6cOYM33njD7F8La9asiSVLlkhztWrVQmJiIm7fvo0KFSrghx9+QIUK\nFTT/I4yLiwtSUlLMlum9n6Ae9+7dQ3BwMK5evYoVK1bgtddeU82kpKQgIyPD7Hs/1apVU/xI7O+/\n/44TJ07g559/Nn2X6MGDB5g8eTK2bt2KpUuXStsrWitVq1Y1m6QU5ezsbHqfFXjzzTfxyy+/SNsp\n8MMPP2h6zwDA2bNnLb57U7NmTYu/oTXt27dHUFAQbt++jUqVKmHWrFmm6xVYe/9qqQ2973u1nKw+\nrGW01EbRnJb6UNo+tdqwllOrD9k+lNWGtZyW+lBqz1p9VKpUCYmJiVb7aWdnZ6Smppq1VVAftvTv\nahk7OzurtSHLFXyHtWh9/Pjjj4qv69SpU/jll1+s1kZkZKRiW3/99ZfF6yqoD9k2vvrqqxZnid58\n802cPn1acRsL9qG1+pC19fPPP1utj7Nnz0rbslYb9+7dw+7du62OxwMGDFDsO2wdx9Vy1voOWWbd\nunW4c+eO1b5DKbdx40YYDAar9QEABoNBcfuU+o5ff/1VcRtbtWplte/Yv38/fv31V+k+tFYbsv1R\nt25dq7URHx+PixcvKrYlG1eUjrsqVaqk2HfIcrLjNbVcqVKlrPYfSpljx44BsOw7CsYWpZys/yh6\n7CF7XYXHFqW2XFxcULJkSbPfFYwtavtQaWxRyp05c0Y6tsjas1Yjzs7OuHv3rsXx9Y0bN+Di4oIL\nFy6YPV9BfdhyXK6WUTrukOVSU1MV+48XVW6e+nXInhXP5Mfa9dxP7nFYtGgREhISMHfuXLRu3VpT\n5urVqxg0aBBu3rxpWvbTTz+hYsWKVg/cACA+Ph7fffcdNm3ahE2bNsHPzw9+fn749ttvpW3t378f\n9evXR3Z2tmnZ2bNn4ejoKO3o3d3dkZ2djUuXLpmWpaamml2ATUlycjK8vLxU1ytQuXJlXLp0CTk5\nOaZlaWlpqFKlimLm7t276NatG+7evQsnJyeUKFECSUlJqFevnuZ23d3dcfbsWbNPWhw7dkzf/QQ1\nEkJg4MCB+O233xAfH6/5LOuePXswceJEs2WnT59WzP/973/Hrl278O2335pqpXLlyhgyZAimT58u\nbWvBggXo3bu32bJz585JL6zi4eGBCxcumF2ATWudAPl1r7VWKleubHHQq1YnAHDo0CEMHz4cBoMB\nlSpVghAC+/btQ/369RXfv2q1Ycv7XpaT1YdSRq02rOXU6kOpLbXaUMrJ6kNtHyrVhlJOrT6Uckr1\nUbVqVav9tJOTE+rUqYMzZ85YrQ9b+ne1jFJtyHInTpywWh8uLi5WMy+//DJ27typWBuytlauXKlY\nH0o5JycneHh44JdffrGoDwcHB9V9aK0+ZG1VrlzZ4qA3LS0N5cuXV2zrl19+sVob/fv3VxyPa9eu\nrdh32DqOy3JKfYcss3v3bsW+Qym3a9cuxfqQtSXrO2Q5d3d3q32Hv7+/6j60Vhuytpydna32Ha1b\nt1bMyMYVpeOuChUqwNvbW7HvsPV4TS1nrT5kGaW+o1q1atLXplQf7dq1U2xr1apVivUha0up7yhR\nooTqPrRWH7K2rE2YC8YW2X68cOGC1Rpp0qSJ4vG1u7u7Yn3Yclwuy8iOO2Q5Wf/xonqU+5w/dbqu\n7f4Uye4np1WNGjVUb6WWkpIi3nnnHTF//nxx69Yts4dMbm6u6Nixo+jbt69ISUkRSUlJomHDhmLV\nqlWat2/MmDGabqV279490aRJEzFixAiRlpYmkpKSTLcPUtO/f3/x0UcfiXPnzol9+/YJHx8fER8f\nr5pr2rSp2LJli6bXIUT+ff18fX1FWFiYuHjxoti9e7eoX7++6ZYpSoKCgsT48ePF5cuXxdq1a4W7\nu7s4ffq0NFP475qbmysCAgLEsGHDxIULF8SSJUuEl5eXxf1oi+YK+/HHHy3uc24tk5CQIGrWrCmS\nkpLM6iQjI0Oau379uvD29haffvqp+PXXX0V8fLx49913LW6tIKvXpk2bWtyL1louOTlZuLm5ic8/\n/1xcvnxZfPnll6J27dri1KlTipnMzEzRuHFjMWnSJHHp0iURHx8v3NzcrN76oeg2Xr16VdSoUUOk\np6db3baimZMnTwo3NzfxxRdfiMuXL5vurZmSkiLNXb9+XXh4eIg1a9aIy5cvi8mTJ4smTZqI06dP\nK75/ZbWh9X1/6NAhs9vdyHJK9XHixAnFjKw29PRNBfUhy8hqQ5ZTqo+dO3dKt0+pNmRtyepDllOq\nj3v37in207m5uaJNmzZW60Nr/164PmQZWd8hyynVx5kzZzSPP4X7DllbsvqQ5ZTqQ20br1y5YrU+\nZG0p1ccvv/wi3YfWauP+/ftm7RYej/WMK0rjeNG+Q5bTOrYUzmgdV2TbKITy2FI4o3VcKZrTOrYU\n3T4t40rRnNaxpeg+VKoN2XGXrO/QerxWtD5kOaX6+P333xUzsvrQc0xZUB+yjKw+ZLnMzEzRqFEj\ni/o4fvy4dPuU+g5ZW7L6kOVkNaJ0fC2rDyG0HZcXrQ+ljFrfoZTT03+8KPz/E2PxeFY9s5Nz2f3k\ntNJyn/MlS5YIV1dXs0eNGjWkg2qBmzdvikGDBglvb2/RqFEjsWTJEl3bp3VyLkT+AW2fPn2El5eX\naNSokfjss8805TIzM0VYWJjw8vISDRs2FIsXL9aUc3d3F/v379e0btFt9Pb2Fi1bttT0N7t48aLo\n3r278PDwEAEBASIpKUk1U/TvevnyZdG9e3dRu3ZtERAQIA4ePKgpV0A2OXd1dTXdI7Jv374WteLq\n6ip69Oih2tapU6dE586dhYeHh2jTpo34/vvvNW+fEEL4+fkpTs6L5nbv3i3atWsn3N3dxQcffGD1\nH7WKZlJSUkz7sFWrVor/EGbtdbm6ugqj0Wh1fWuZPXv2iMDAQOHp6Sk6dOig+e+VlJQkWrduLTw8\nPESvXr1EWlqa6vv30qVLVmtD6/u+6ABpLVfwCA4Otrq8WbNm0raUakNP31RQH2oZpdpQy1mrD7WM\nUm2o5ZTqQy1nrT6EkPfTsr5DS/9etD6UMmp9h6wtpfrQOv4U7TtkOVnfIcsp9R9qr0up75DllOpD\nllGqjcKKjsdax5XHMTnXOrYUbUvLuCLbRiGUx5aiGS3jirWclrHF2utSG1es5bSMLUUzstqQHXfJ\n6kPL8Zq1+lDKyepD1pasPrQeUxauD1lGVh+ynFJ9qL0upfqQ5WT1Icsp1Yjs+FpWH1qOy4vWh1JG\nre+QtaW1/3hRNA9fbPF4VhmE0HAzcCIiIiIiIqLnTNOpn1ks+37yJ8WwJeo4OSciIiIiIiIqZs/k\nBeGIiIiIiIiI/n/CyTkRERERERFRMePknIiIiIiIiKiYcXJOREREREREVMw4OSciIiIiIiIqZpyc\nExERERERERUzTs6JiIiIiIiIihkn50RERERERETFjJNzIiIiIiIiomLGyTkRERERERFRMePknIiI\niIiIiKiY/T+eY29O5x6F9wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAB3CAYAAABhcDFiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8TPf+P/DXEBG3aIjIva3b25bWaFQWCVIJGktoEbXr\n5drSkIp9X4KKWmupLZRUkdJYa6stNJS6dmItSdTS2qKiUZGR5PP7I9/MzSznc84ZNKnf6/l4zIOc\nnNd8PjPzns/nfDIzZwxCCAEiIiIiIiIiKjTFCrsDRERERERERP+/4+KciIiIiIiIqJBxcU5ERERE\nRERUyLg4JyIiIiIiIipkXJwTERERERERFTIuzomIiIiIiIgKGRfnRERERERERIWMi3MiIiIiIiKi\nQsbFOREREREREVEhcyrsDhARERERERE9C5cCQ2y2vbF/RyH0RB0X50RERERERPRcMjj9dZa8fFs7\nERE9UyNHjoTRaFS8BAYG6rq+4OBgjBw58hn19n/Wr18Po9GIX3/99aleb2RkJIKDg22279+/H23b\ntoW3tzcaNmyIL7/80m5e6375hBAYOHAgvL29YTQa0bVrVyQnJwMApkyZgnfeeQdGoxHdu3dHYmIi\nAMBkMqFnz54wGo1o0aIF9u7d+2Q3moiIqLA4Odleiqii2zMiInpuuLu7Y/78+XZ/V6JECV3XtWDB\nArzwwgtPo1tSBoMBBoPhqV7nxo0bkZCQgJdfftli+8mTJ9G7d280b94cAwYMwLFjxzB9+nTk5OTg\no48+0r2f9e2YNWsWevTogYMHD2LZsmXm340YMQK5ubnYtGkTli5dat7u7OyMhQsX4pNPPsHEiROf\n6n1ARET0ZzIUL17YXdCMi3MiInrmnJ2dUaNGjadyXUaj8alcz5/t9u3bmDRpEv7xj3/Y/G7u3Lnw\n9PTElClTAACBgYF4/PgxFi1ahK5du8LZ2VnXfva8+OKLdrdfvnwZDx48sNm+fv16DBgwQPftJCIi\nKkr4tnYiIiIHBAcHY9asWZg4cSL8/f1Ru3ZtDB8+HPfv37fYp+Db2s+ePYtu3brBz88Pvr6+6N69\nO06dOmX+fW5uLr7++mu0aNECXl5eePfddzFjxgyYTCbzPkIILFiwAO+++y68vb3Rp08fizbzrVmz\nBs2bN8fbb7+Nd999F/PmzUNubq6m2zZmzBgEBgaiTp06FttNJhMOHz6MRo0aWWwPCQnBgwcPcOzY\nMV37KbG3ON+7dy9yc3ORk5NjsUBPT09HdnY2KlSooOm2ERERFVnFi9teiiguzomI6E+Rk5Nj92Jt\n5cqVSEpKwrRp0zBkyBAkJiaiV69edq/zwYMHCAsLg5ubG+bNm4dZs2YhMzMTYWFh5sVmVFQUpkyZ\ngpCQECxcuBCdO3dGXFwcPv74Y/P1TJs2DQsWLED79u0xf/58lCtXDp999plFW4sWLcLYsWNRt25d\nLFq0CJ07d8bixYsxduxY1du+Zs0anDt3DlFRUTa/u3btGh4/fozXXnvNYvu//vUvAEBqaqqu/ZRY\nL85NJhO+//57tGzZEkDegjzf6tWr0bZtW9XbRUREVNQZnJxsLkVV0e0ZERE9N3755Rd4enrabDcY\nDBg2bBi6d+9u3la8eHEsXbrU/LnycuXKITIyEvv377c5eVxKSgru3buHLl26wNvbGwDw+uuvY/Xq\n1fjjjz9w69YtrFu3DkOGDEFYWBgAICAgAO7u7hg2bBj27dsHHx8frFixAj179kRERAQAoG7durh1\n6xb2798PIO+PADExMejUqZP5Vft33nkHrq6uGDNmDLp3747KlSsr3vYpU6Zg6tSpcHV1tfl9/h8R\nrD9Hn//zH3/8oWs/JdZtx8bG4sMPP8SNGzcAAPfv30elSpWQkpKCSpUqoWTJktLrIyIi+isoyotx\na3+dnhIR0V9WxYoVsXDhQgghbH5n/Rnshg0bWixAGzZsCCcnJxw5csRmcf7GG2+gfPny6NWrF5o2\nbYqgoCDUrVsXgwcPBgDs2bMHBoMB77//vkXu/fffx8iRI3H48GEYDAbk5OSgQYMGFvs0a9bMvDg/\nceIEsrKy8O6771q82t+gQQMIIXDgwAHFxfno0aPRoEEDm7ej51N7W3z+Sem07qek4Cvn165dw927\nd/Hmm2/i0aNHEEKY38a/detW9OvXzyK7d+9epKenIzQ0VNoGERFRUWNwerK3sd+6dQuffvopDh06\nBBcXFzRr1gyDBg2ye56Xc+fOYfz48bh48SLeeOMNjB8/3u6LE0q4OCciomeuRIkSeOuttzTt6+Hh\nYfGzwWCAq6urxduu8/3tb3/DypUrERMTg+3bt2P16tUoWbIkQkNDMXr0aPOC0/qz08WLF0e5cuXw\n+++/m/cpV66cxT7u7u7m/6enp0MIgfDwcJs/MBgMBty+fdvubYmLi8PFixexefNm5OTkQAhhzufk\n5KBYsWIoU6YMANtXvvNfKc//vdb9lBRcnM+ePdv8DoD8252eno4DBw7gnXfescitXLkSO3fuRKtW\nraTXT0REVCQ94Svn/fr1g6urK1auXIn09HSMGjUKxYsXx9ChQy32y8zMRHh4OEJDQzFlyhSsWrUK\nvXr1QkJCAlxcXLR19Yl6SkRE9JTdu3fP4ufc3Fykp6crnpzs1VdfxdSpUyGEQFJSEjZu3IhVq1bh\nX//6l3lBmpaWZvEKfXZ2Nu7du4dy5cqhXLlyEEIgLS0Nr776qnmfgn8MKFu2LABgxowZ5s94F6TU\ntx07duDevXuoW7euze+qV6+OPn36IDw8HMWLF8fVq1ctfn/lyhUAML8i/8orr2jaT0n+29oTExNR\npUoVc5/zt//2229ISUlB3759LXIffvghfvvtN+l1ExERFVVP8rb21NRUJCUl4cCBAyhfvjyAvMX6\ntGnTbBbnW7duRalSpczbR48ejX379mH79u2a/8DNE8IREVGRsnfvXmRnZ5t/TkhIQE5ODgICAmz2\n3bFjBwICAnD37l0YDAZ4eXlh7NixKFOmDH799VfUqlULQghs2bLFIrdlyxbk5ubCz88PPj4+cHFx\nwfbt2y322bNnj/n/Xl5eKFGiBG7evAlPT0/zpVixYpgxYwauXbtm97ZER0dj7dq1WLdunfnSoEED\nVKxYEevWrUOHDh3g7OwMPz8/7Ny50+a2lS1b1vwVdFr3U+Lq6gohBGJjY9GzZ0/z9jJlysDJyQnx\n8fF82zoRET13DMWL2Vy0cnd3x5IlS8wLcyDvG14yMjJs9k1KSkLNmjUttvn6+uLEiROa2+Mr50RE\n9MyZTCaLrzezZjQazScgu3nzJiIiItC5c2fcuHEDs2bNQr169eDn52eT8/X1RW5uLj7++GN89NFH\nKF26NL777js8ePAAISEhqFy5Mj744APMmTMHmZmZ8Pf3x7lz5zBv3jzUqVMHQUFBAICPP/4Yn3/+\nOUqVKoU6deogMTERiYmJ5nZcXV0RFhaGzz//HBkZGahVqxZu3bqFOXPmoFixYorfvV7wlfh85cqV\ns3mbf0REBHr06IH+/fujTZs2OH78OJYuXYohQ4ZYnJhN63725L+LoF27djafk3vxxRcRGBiIV155\nRXodREREfzWGEiUczpYpU8bi3W9CCMTFxdl8BAwAbt++jTfffNNim5ubG5KTkzW3x8U5ERE9c2lp\naejYsaPi7zds2GBe4L733nt48cUXMXDgQPztb39D69atMXDgQPO+BoPBfPIzd3d3xMbGYvbs2Rgz\nZgwePXqEN954A3PnzoW/vz8AYNKkSXj11Vexbt06LF68GB4eHujWrZv5zOwAEB4ejhdeeAHLli3D\n8uXL4ePjgxEjRmD8+PHmffr374+KFSti5cqViI2NRdmyZVG3bl0MHDgQpUuX1nV/WJ+8rU6dOpgz\nZw7mzp2LyMhIeHh4YNiwYejWrZtD+9nz4osvws/Pz/zVaQUZjUaLr5YjIiJ6bjzFs7VPmzYNFy5c\nwLp162x+9+jRI5s/fjs7O8NkMmm+foOwd+pcIiKiQhAcHIzatWtj8uTJhd0VKmDevHmoVKkSTwpH\nRER/Ob8MGGmz7eXZ+o8zpk+fjmXLlmH27Nl2v4GlV69eqFq1KgYNGmTe9tlnnyE1NRULFizQ1AZf\nOSciIiJFa9aswY8//oiyZcvCxcUFTZs2LewuERERaWYo8eRL3ujoaMTHx2P69OmKX43q4eGBO3fu\nWGxLS0uz+PYXNVycExFRkVHwLetUNLRr1w7t2rUr7G4QERE55EnO1g7kvXssPj4es2bNQuPGjRX3\n8/LywuLFiy22HT9+3OJjdGq4OCcioiJj9+7dhd0FIiIiep4UL+5wNCUlBTExMejVqxd8fHyQlpZm\n/l2FChWQlpaGMmXKoGTJkggJCcHMmTMxadIkdOjQAatWrUJmZiaaNWumuT1+lRoRERERERE9lwxO\nTjYXrXbv3o3c3FzExMQgKCgIQUFBCAwMNH/bS2BgILZt2wYAKF26NBYuXIijR4+iTZs2OH36NBYv\nXgwXFxftfeUJ4YiIiIiIiOh5dDN6ms22v0cNK4SeqOPb2omIiIiIiOi59CTfc/5n4+KciIiIiIiI\nnktPekK4P1OR6mnMrh817xvR+B0AwNzt+3W10bdpIABgxpZEXbnBzRtgUcJBXZlejQIAAOFfrNaV\n+yK8PTrPjdOVievbGQAQtvAbXbklvTsCAP49Z4XmzNf9ugAA2s36SldbawZ2AwBM2pCgKzfqg0aY\nuH6XrsyY1nlnUlyy55CuXFhwbcz+bp+uzID36gGAQ49Zjxh9j9eXEXmPV8fZy3Xlvhnwn7x84mHN\nmR4NagEAolZv09VWdPu8k170W7peV25O99YYuOxbXZlZXfO+c7nD7GW6cvEDujp8Hw77erOu3LR/\ntwAADF6xSXNmRpeWef86ME4BQOSX+u77eT1aO3y7/jP/a1255X3+jf5fbdCV+bzbBwCA7gtW6cot\n/biTrvsd+N9970j9AkDs99qfYz3fzXuOOfJ4AXDofhy/doeuzPi2IQAcG7fHxOsbOyZ2yBs7HK17\nR8Y3R+faz3T2cUjzBpi3Q9/xSmRI3vHK1E17dOWGtwx2eCwdtHyjrtzM/4Ri1ta9ujID368PAOi6\nYKWu3LKPPwQAXXN0/vzs6PGKI+ObI48XAHT6XPtxGACs6t/F4cfZ0TFHz1wbP6ArAGD0N9/pauvT\nju8BcGy8H7lqq67M5E7vA9BXU0BeXTl6XOpIffyZc+bzylD8r3OatSK1OCciIiIiIiJ6avjKORER\nEREREVHh+it95tzh1/jv3buHW7du4ffff3+a/SEiIiIiIiJ6KgzFitlcHGEymdCiRQscOXJEcZ+I\niAgYjUZUq1bN/O/evdo//qPrlfOdO3ciLi4OSUlJyMrKMm93cXFB9erV0bVrVzRq1EjPVRIRERER\nERE9E0/jhHAmkwmDBg1CcnKydL/U1FTMmDEDderUMW8rW7as5nY093Tp0qWYN28ewsLCEBkZCTc3\nNzg7O8NkMiEtLQ1Hjx7FiBEj0L9/f3Tp0kVzB4iIiIiIiIieiSd8W3tKSgoGDx6sup/JZML169dR\nvXp1uLm5OdSW5sX5l19+ialTp9p9Zbxy5cqoXbs2qlatiujoaC7OiYiIiIiIqNA96dnaDx8+jICA\nAAwYMABeXl6K+12+fBkGgwH//Oc/HW5L8+L80aNHqFSpknQfDw8PZGRkONwZIiIiIiIioqflSd/W\n3qmTtq+ZS0lJQenSpTF06FAcOnQI//jHP9C3b1/Uq1dPc1ua/4zQuHFjjBgxAkePHkV2drbF73Jz\nc3H8+HGMGjUKISEhmhsnIiIiIiIielYMTk42l2chNTUVWVlZCAoKQmxsLOrXr4+IiAicPXtW83Vo\n7tn48eMxdepU9OzZEzk5OXB1dTV/5jw9PR1OTk4IDQ3FyJEjHboxRERERERERE+VU/E/pZnIyEh0\n7doVZcqUAQBUrVoVZ86cQXx8PCZMmKDpOjQvzp2dnREVFYUhQ4bgwoULuHPnDjIzM1GyZEl4eHig\nWrVqcHFxceyWEBERERERET1lz+qVcnvyF+b5KleujJSUFM153T0tVaoUfHx89MaIiIiIiIiI/lzF\n/pxXzkeOHAmDwYBJkyaZt124cAFvvvmm5uswCCHEs+gcERERERERUWHK2L3XZluZhvUdui6j0YgV\nK1bA398fAJCWloYyZcqgZMmS2LVrFwYNGoTo6Gj4+vpi06ZNiI2NxdatW/HSSy9puv4/7zV+DQav\n2KR53xldWgIAui9YpauNpR/nnW1vUcJBXblejQLQdcFKXZllH38IAGg9Y6mu3PrB3TH7u326MgPe\nyzsL4KDlG3XlZv4nFADw+bYfNGf6NwsCAIz+5jtdbX3a8T0AQOe5cbpycX07Y8aWRF2Zwc0bAAD+\nM/9rXbnlff6NoXHa6xAApnfOq0VHHrOPY9fqyizo2RYA8MXu/+rKhTesk/fvF6s1Z74Ibw8AGLdm\nu662PmnXFAAwctVWXbnJnd5H9PpdujJRrRsDAPp/tUFX7vNuH2Dgsm91ZWZ1bQUAWPXjCV25Tu/k\nvdMobOE3mjNLencEAIfrfqLO+3FM68a6xl/gf2Nw1OptunLR7Zth6qY9ujLDWwYDACKW6Hu+xIS1\nRbtZX+nKrBnYDQAcHu8dGUuHr9yiq62pHzYHAER+uV5Xbl6P1pj87W5dmZGtGgLQV79AXg07UocA\nHH7M9Ny2/Nvl6H0/fu0OXbnxbUMQs+tHXZmIxu8AcGx8c/Q55kjOkbEecGzsAPQdQ8T17QwAWP3f\nU7raal8n76uSHDmGWLLnkK5MWHBtAMC8Hft15SJDAh06ngIcm58BoOW0JZozm4aFAYDDc22PGH1j\nzpcRHR0+LnXk2NnROcKRundk7gP0HfMB/zvuex49zbe1GwwGi58DAwMxZcoUtGrVCo0bN8a4ceMQ\nExODmzdvokqVKliyZInmhTlQxBbnRERERERERE+LofjTe1v7+fPnLX6+cOGCxc9t27ZF27ZtHb5+\nLs6JiIiIiIjo+fQnnhDuSf11ekpERERERESkg+FP+iq1p4GLcyIiIiIiInou/Zlfpfak/jo9JSIi\nIiIiItLhr7Q4L1bYHSAiIiIiIiJ6JpyK214cYDKZ0KJFCxw5ckRxn3PnzqF9+/bw9vZGu3btcPbs\nWX1d1bOzrCPW8r/7jYiIiIiIiKgwPI2ztZtMJgwaNAjJycmK+2RmZiI8PByhoaGYMmUKVq1ahV69\neiEhIQEuLi6a2tG1OJ8wYYK5Q0IIxf0MBoPNaeaJiIiIiIiI/kyGEiWeKJ+SkoLBgwer7rd161aU\nKlUKQ4cOBQCMHj0a+/btw/bt29GqVStNbelanK9btw6DBg3C9evXER8fj5IlS+qJExEREREREf1p\nnvRs7YcPH0ZAQAAGDBgALy8vxf2SkpJQs2ZNi22+vr44ceKE5sW5rs+cOzs7Y+bMmQCA2bNn64kS\nERERERER/bmKFbe96NCpUycMHz5c9YXp27dvo2LFihbb3NzccOvWLe1d1dUz5C3QZ8yYgVdeeUVv\nlIiIiIiIiOhPYyjhZHN5Fh49egRnZ2eLbc7OzjCZTJqvwyBkHx4nIiIiIiIi+ovKyMiw2VamTBmH\nrstoNGLFihV2T37eq1cvVK1aFYMGDTJv++yzz5CamooFCxZoun5+lRoRERERERHRE/Dw8MCdO3cs\ntqWlpcHd3V3zdRSpb2Sf/d0+zfsOeK8eAGDShgRdbYz6oBEAYO72/bpyfZsGYlHCQV2ZXo0CAAAd\nZi/TlYsf0BX/mf+1rszyPv8GAMzauldXbuD79QEA/Zau15yZ0701AKD/Vxt0tfV5tw8AAJ9tSdSV\nG9K8gUP3IQBEr9+lKxfVujE6fb5CV2ZV/y4AgPFrd+jKjW8bgsnf7taVGdmqIQBg6qY9unLDWwYD\n0Fcf+bXhyHMFAMbEb9OVm9ihmUP3IQBMWLdTV25smyYYvGKTrsyMLi0BwOH60NPHsW2aAAAm6qzf\nMa0bA3CsPnrEfKMr82VERwBw6H6MWq2vNqLbN3O4LUdvV/cFq3Tlln7cCQDQeW6c5kxc384AHH8+\nOzL/zduh7/kcGZL3fHbkvv9oUbyuzOJeHQAA49Zs15X7pF1TAPrmpPz5qO3MpbraWjuoOwA4dD+2\nnqGvrfWD89py5NjD0bofuOxbXblZXVs5/DiP/uY7XblPO74HQN9zM/95OW3z97raGtbiXQCO1b2e\n4yngf8dUjtyPjh6HfZl4WFeuR4NaAID5Ow9ozvRpUheA48fpjsy1jh6nO/I4OzpuO/LcdPS58sXu\n/+rKhTeso2t/suXl5YXFixdbbDt+/DgiIiI0XwdfOSciIiIiIiLSKS0tDVlZWQCAkJAQZGRkYNKk\nSUhJScHEiRORmZmJZs2aab4+Ls6JiIiIiIjoufTI4GRzcZTBYLD4OTAwENu25b0jsHTp0li4cCGO\nHj2KNm3a4PTp01i8eDFcXFw0X3+Rels7ERERERER0dOSnZPz1K7r/PnzFj9fuHDB4ue3334b69fr\n+3hLQZpeOTeZTJg+fTrq168PX19fREZGIiUlxWKftLQ0VKtWzeGOEBERERERET1NubnC5lJUaVqc\nz5w5EwkJCRg2bBgmTJiAtLQ0tGnTBgkJlid54LeyERERERERUVHxODfH5lJUaVqcb9u2DZMmTcL7\n77+P5s2bY9WqVejUqRMGDBhgfo89YPsefCIiIiIiIqLCkp2da3MpqjR95vzRo0dwdXU1/2wwGDB8\n+HAUK1YMQ4cOhZOTE3x8fJ5ZJ4mIiIiIiIj0yhFFdzFuTdMr57Vr18a0adPw22+/WWwfOnQoOnTo\ngIEDB2LlypXPpINEREREREREjsjOybW5FFWaFuejR49Geno66tatiwMHDlj8LioqCr1798aiRYue\nSQeJiIiIiIiIHPE4J8fmoofJZMKoUaPg7++PoKAgLF26VHHfiIgIGI1GVKtWzfzv3r17Nbel6W3t\nHh4eiI+PR2pqKtzd3W1+HxkZiWbNmmH37t2aGyYiIiIiIiJ6lnJyn+yV8qlTp+LcuXNYsWIFrl+/\njuHDh+Pll19GkyZNbPZNTU3FjBkzUKdOHfO2smXLam5L1/ecv/7664q/q1y5MipXrqzn6oiIiIiI\niIiemSd5G3tmZibWrl2L2NhYGI1GGI1GhIWFIS4uzmZxbjKZcP36dVSvXh1ubm4OtWcQ/P4zIiIi\nIiIieg4dvHTVZlvAG69oyp44cQJdunTByZMn4eSU97r24cOHER4ejpMnT1rs+9NPP6FNmzZISkpC\nsWKaPj1uw7EUERERERERURH3JJ85v3PnDlxdXc0LcwBwc3NDVlYW7t27Z7FvSkoKSpcujaFDhyIw\nMBDt2rXDvn37dPVV19van7Wo1dvUd/o/0e2bAQA+WhSvq43FvToAAL7Y/V9dufCGdfDZlkRdmSHN\nGwCAQ7nhK7foykz9sDkAoOPs5bpy3wz4DwBgUcJBzZlejQIAANM2f6+rrWEt3gUAhC38RlduSe+O\naDU9Vlfm26E9AThWHzN0Pl6D/+9xHhq3SVdueueW6Dw3Tlcmrm9nAMDn237QlevfLAgAMGHdTs2Z\nsW3y3qrTbtZXutpaM7AbAMfqXs8YAPxvHJi3Y7+uXGRIIKLX79KViWrdGADw7zkrdOW+7tcFALD8\nh2OaM/8JqvlEbc3dru/+6Ns0EC2nLdGV2TQsDAAwa6v2k5wAwMD362Pqpj26MsNbBgMAPo5dqyu3\noGdbh59jjs4t49fu0JwZ3zYEgONj6USdNTymdWM0GD9PVyZxfCQAx8a3ppP0nSh2+6heAIBl+47q\nynWt5wdA3/yXP/e9N/kLXW19NzIcADD5W33n2BnZqiFaz1A+gZA96wd3BwCHjgccncfCv1itK/dF\neHuHxhsAGLdmu67cJ+2aAtD33Mx/XjacsEBXW7vHfgwAWLLnkK5cWHBtxOz6UVcmovE7AIBOn+sb\n71f174Ix8frmzIkd8uZMR+oX0DfXRobkPc6OjFOAY3XvyDgFODbmxH5/WFem57u1AAD/mf+1rtzy\nPv/WNa8A/5tbHO3j8yhb5wngCsrMzISzs7PFtvyfTSaTxfbU1FRkZWUhKCgI4eHh2LVrFyIiIrB6\n9Wp4enpqaq9ILc6JiIiIiIiInpacXMc/xV2yZEmbRXj+z6VKlbLYHhkZia5du6JMmTIAgKpVq+LM\nmTOIj4/HhAkTNLXHt7UTERERERHRcyk7N8fmopWHhwfS09ORW+CM72lpaXBxcbF7Fvb8hXm+ypUr\n4/bt25rbe+LFeXZ2NtLT05/0aoiIiIiIiIieqsfZuTYXrapVqwYnJyeLk78dPXoU1atXt9l35MiR\nGDVqlMW2Cxcu4LXXXtPcnq7F+datWzFhwgTs2LEDQghMnDgRvr6+CAgIQN26dREXp++zfURERERE\nRETPSo7Itblo5eLigtDQUIwbNw6nT59GQkICli5diq5duwLIexU9KysLABAcHIzNmzfj22+/xdWr\nVzFv3jwcP34cXbp00dye5s+cx8bGIiYmBgEBARg3bhy+/fZbnD9/HtOnT0eVKlVw+vRpfPbZZ3j4\n8CHCw8M1d4CIiIiIiIjoWXiS7zkH8l4R/+STT8yfJ+/fvz8aNWoEAAgMDMSUKVPQqlUrNG7cGOPG\njUNMTAxu3ryJKlWqYMmSJXjppZc0t6V5cf71119j5syZqFevHo4dO4bOnTtj4cKFqF+/PoC899OX\nK1cOUVFRXJwTERERERFRoXuSs7UDea+eT548GZMnT7b53YULFyx+btu2Ldq2betwW5oX5/fu3cOr\nr74KAKhZsyb+8Y9/oEKFChb7VKpUCZmZmQ53hoiIiIiIiOhpycl9slfO/0yaP3Pu6+uL+fPn4+HD\nhwCAPXv2WHxf2+3btzF58mQEBAQ8/V4SERERERER6ZSdk2tzKao0L87HjRuHU6dOYcyYMTa/S0hI\nQP369XH//n1ERUU91Q4SEREREREROeKvtDjX/Lb2V155Bdu2bUNaWprN73x8fPDNN9/g7bffRrFi\n/Op0IiKvQ7K8AAAfuUlEQVQiIiIiKnx/pbe1G4QQorA7QURERERERPS0zdux32ZbZEhgIfREHV/m\nJiIiIiIioudSTq6wuehhMpkwatQo+Pv7IygoCEuXLlXc99y5c2jfvj28vb3Rrl07nD17VldbXJwT\nERERERHRcyk7J8fmosfUqVNx7tw5rFixAuPGjcO8efOwc+dOm/0yMzMRHh4Of39/rF+/Ht7e3ujV\nqxcePXqkuS0uzomIiIiIiOi5lJ2ba3PRKjMzE2vXrsWYMWNgNBrRqFEjhIWFIS4uzmbfrVu3olSp\nUhg6dChef/11jB49Gi+88AK2b9+uuT0uzomIiIiIiOi5lJOTa3PR6sKFC8jJyYG3t7d5W82aNZGU\nlGSzb1JSEmrWrGmxzdfXFydOnNDcHhfnRERERERE9Fx6klfO79y5A1dXVzg5/e9Lztzc3JCVlYV7\n9+5Z7Hv79m1UrFjRYpubmxtu3bqluT3NX6VGRERERERE9FfyWOdnzAvKzMyEs7Ozxbb8n00mk8X2\nR48e2d3Xej8ZLs6JiIiIiIjouZSr8+zsBZUsWdJmcZ3/c6lSpTTt6+Liork9Ls6JiIiIiIjoufQk\nr5x7eHggPT0dubm5KFYs7xPhaWlpcHFxQdmyZW32vXPnjsW2tLQ0uLu7a26PnzknIiIiIiKi51J2\nTq7NRatq1arByckJJ0+eNG87evQoqlevbrOvl5eXzcnfjh8/bnEyOTVcnBMREREREdFzKSc31+ai\nlYuLC0JDQzFu3DicPn0aCQkJWLp0Kbp27Qog75XxrKwsAEBISAgyMjIwadIkpKSkYOLEicjMzESz\nZs00t1dkF+cmkwmjRo2Cv78/goKCsHTpUt35Fi1a4MiRI6r73rp1C/369UPt2rVRv359TJkyRdMH\n969evYqePXvCx8cHwcHBiI2N1dXH8PBwjBw5UtO+CQkJMBqNqFatmvnf/v37q+ZMJhM++eQT1KpV\nC4GBgZg1a5Z0/w0bNti0YzQa8dZbb6m2dfPmTfTu3Rs1a9ZEw4YNsWzZMtXMb7/9hn79+sHf3x8h\nISHYsGGD6u2xflyvX7+O7t27w8fHB82bN8eBAwc05fKlpqbCx8dHU+bkyZPo2LEjfHx80KxZM6xZ\ns0ZT7ocffkBoaCi8vLzQqlUr7Nu3T3P/Hjx4gHr16uHbb7/V1NbEiRNtHsOvv/5amrlx4wY++ugj\neHt7IyQkBNu2bVNta+TIkRbt5F+6desmbevo0aNo3bo1fHx88MEHH+DgwYOabteZM2fM933Hjh1x\n6tQpAPLnr6w2tDzvr1y5Ai8vL4ttspxSfcgystrQ0kfr+pBlZLUhyynVR8FMvXr1MHXqVJhMJtXa\nkLUlqw9ZTqk+ZOO0rD60jO/W9SHLyMYOWU6pPrT0z97YIcvJ6kOWU6oPpYxafcjaUqoPWUapNgqy\nno+1zCv2cvnsjR2ynJa5xTqjNq+o9VE2t1hn1OYVpZyWuaVgRsu8otSWlrnFOiOrDdlxl6w+tByv\n2asPWU6pPmQZWX1o6aN1fcgysvqQ5ZTqQymjVh+ytmT1Icsp1Yjs+FpWH1qOy63rQ5aRjR2ynNbx\n43nxOCfH5qLHyJEjUb16dXTt2hXR0dHo378/GjVqBAAIDAw0127p0qWxcOFCHD16FG3atMHp06ex\nePFiXZ85hyiiJkyYIEJDQ8X58+fFrl27hK+vr9ixY4embFZWlujTp48wGo3i8OHDqvu3b99ehIeH\ni+TkZHH06FHRpEkTMW3aNGkmNzdXhISEiGHDhokrV66IvXv3ipo1a4otW7Zo6uOWLVtE1apVxYgR\nIzTtHxMTIyIiIsTdu3dFWlqaSEtLExkZGaq5qKgoERISIk6fPi0OHjwo6tSpI+Lj4xX3z8rKMl9/\nWlqauHHjhmjSpImYMmWKalvt27cXgwYNEleuXBEJCQnC29tb7Nq1S5rp0KGD6NChgzh//rxITEwU\ntWrVUswoPa4tW7YUw4YNEykpKWLRokXC29tb3LhxQzUnhBDXr18XTZo0EZ6enqpt3blzR/j7+4tZ\ns2aJK1euiK1bt4oaNWqIxMREae7KlSvCy8tLLFu2TFy7dk0sXbpUVK9eXfzyyy+q/RMi7zE0Go1i\nw4YNmu6P7t27i8WLF1s8jo8ePVLMZGdni+bNm4s+ffqIy5cvi2+++UZ4enqKS5cuSdvKyMiwaOPk\nyZOiRo0aYvfu3YqZu3fvCj8/P/Hll1+Ka9euiYULFwpvb29x8+ZNaVv5ubFjx4rU1FSxdOlS4ePj\nI27cuCF9/rZo0UKxNtSe97/++qsICQkRRqPR4n5XysnqQymjVhtaxibr+pBlZLWhlJPVh1JGrTaU\ncmr1oZazro/8x1BpnFaqDy3ju3V9yDKy2pDllOrj+vXrmuYf69pQu11K9SHLKdXHxYsXFTOy+pC1\npVQfN27cUM3YGzvy2ZuP1eYVpZxs7FDK3b59W3Vusc6ojR1qfbRXH7KMbOxQymmZW6wzamOHUk7L\n3KKUUaoN2XGXbG5RO15Tqg+lnGz8UMqo1YeWY0rr+pBlZPWhlJPVh1JGrT6Ucmr1oZazVyOy42tZ\nfagdl9urD6WM2nGpUk7r+PE8+WhRvM2lqCqSi/OHDx+KGjVqiCNHjpi3LViwQHTp0kU1m5ycLEJD\nQ0VoaKimxXlKSoowGo3i7t275m1btmwR9erVk+Zu374tBg4cKP744w/ztsjISPHJJ5+o9jE9PV3U\nr19ftGvXTvPifMiQIWLmzJma9i3Yjqenp8X9+MUXX4hRo0Zpvo6FCxeKJk2aCJPJJN3v/v37omrV\nqhaTbt++fUV0dLRi5vTp08JoNIrr169b9K9Dhw42+yo9rj/++KPw8fGxOEjo1q2bmDt3rjQnhBDb\nt28XderUEaGhoRaLc6XMqlWrxHvvvWfRr6ioKDFkyBBp7tChQ2LSpEkWuVq1aolt27ap1uuRI0dE\nkyZNRGBgoMUBlCxXr149ceDAAc33YUJCgvD397eo5T59+ojVq1ertlVQjx49xPDhw6WZXbt2iTp1\n6tjcF/l/eFPKLVmyRDRu3Fjk5uaac2FhYWLs2LGKz9+DBw8q1oba837Xrl0iICDA3I98SrmgoCDF\n+ujdu7di5vDhw4q1oWVssq4PtYxSbchyu3fvtlsf8+fP1zx2FqwN2X0oqw9ZLjY21m59TJw4UXGc\nltWH2vhurz5kGdnYIcsp1Ud8fLzq/GNv7FC7XUr1Icsp1UdsbKzmObJgfcjaUqqPNWvWKGaUaiN/\nPrU3H6vNK0o5IZTHDllObW6xl5HNK2p9FEJ5blHKKNWGLKc2t2g5FipYG7K21OYWexmleSW/NpSO\nu9TqQ3a8JqsPpZysPpQyavWhdkxprz5kGVl9KOVk9aH1mNe6PpRyavWhlFMaPyZPnqx4fC2bW9SO\ny+3Vhywjqw1ZTnbs8bzqGbPK5lJUFcm3tV+4cAE5OTkWH56vWbMmkpKSVLOHDx9GQEAA4uPjIYT6\nafPd3d2xZMkSlC9f3rxNCIGMjAzV3MyZM/G3v/0NAHDs2DEcOXIEtWvXVm1z6tSpCA0NReXKlVX3\nzZeSkoLXXntN8/75fSpTpgz8/PzM2z766CN8+umnmvL379/HkiVLMGTIEJQoUUK6r4uLC0qVKoV1\n69YhOzsbqampOH78uPTt8NeuXUP58uXx8ssvm7dVrVoVZ86cQY7V202UHtekpCR4enqiZMmS5m01\na9Y0n7RBVg979+7F4MGDMXz4cE1t1atXD5MnT7a5Hfm1opSrVauW+W102dnZWLNmDUwmE2rUqCHt\nn8lkwtixYzFu3Dib+18p9+DBA9y6dQuvvvqqTT+VMkeOHEGdOnXMtQwA8+bNQ7t27VTvw3wHDx7E\nsWPHMHDgQGnG1dUV6enp2LVrF4C8t5I9fPgQb775pjR3/fp1eHp6wmAwmLdVrVoVly5dsnn+AnmP\nyalTpxRrQ+15v3fvXgwcOBCjRo2yuF6lXP7b/+zVx+PHjxUz/v7+irWh1kd79SHLyGrDXi7/fjx8\n+LDd+ujSpYumsdO6NmT3oaw+lPr44MEDxfr46aefbMbpo0ePolatWqr1IRvf7dWHLCMbO2Q5pfoI\nDAyU9k9p7JC1pVYfSvejUn306NFD0xxprz6Uckr14efnp9i/a9eu2a2N/BP22JuP1eYVpRygPHbI\ncmpzi72MbF5R66NsbrGXkdWGLKc2t6gdC1nXhqwttbnFXkZp3MivDaXjLrX6kB2vyepDKSerD6WM\nWn3I+qhUH0oZtfpQysnqQ8sxr736UMqp1YdSTmn8OHDggOLxtWxuUTsut1cfsoysNmQ52bHH8+px\nbq7Npagqkl+ldufOHbi6usLJ6X/dc3NzQ1ZWFu7du4dy5copZjt16qSrrTJlyqBu3brmn4UQiIuL\nwzvvvKP5OoKDg3Hjxg00aNAATZo0ke6bP5hs3rwZ48aN09zG5cuX8cMPPyAmJga5ublo2rQp+vXr\nJ100X7t2DS+//DK+/fZbLFq0CI8fP0br1q0RERFhMdAoWblyJTw8PNC4cWPVfZ2dnTF27FhMmDAB\ny5cvR05ODlq3bo3WrVsrZipUqIDff/8dWVlZ5kHsxo0byMnJQUZGBlxdXc37Kj2ud+7cQcWKFS22\nubm54datW9IcAEyaNAkAbD6XppR56aWX8NJLL5l/vnv3Lr777jv069dPtS0g7zORzZo1Q25uLgYP\nHoyXXnpJmlm4cCE8PT3t1qJSLjU1FQaDATExMdi3bx9cXV3RvXt3tGrVSjFz7do1VKpUCTNmzMDG\njRtRvnx5REZGmj9Lo+U5tXjxYrRu3RoeHh7SjJ+fHz788EP069cPxYoVQ25uLiZPnmye1JVybm5u\n+Omnnyy23bhxAxkZGXafvwEBAdLaUHveR0dHA8j7Y0FBspysPtTGGHu1AUCas1cfsv7JakMpFxAQ\nYB5H7NWHlrHTujZkfVSrD6U+urm54fz58xbt3rhxA/fu3TP/bD1OT5o0STp2KOUA5fpQyhgMBunY\nIWsLUK4PpYxs7FDKJSUlKdaHLLd582bp+CG7XYBtfajdj7L6sM6EhIQgOTnZ7thx7949xflYbV6R\nzeOy2lDKycYOtWMGpdqQ5ZTqQymTkpIirQ2lnGxu0XIsZK82lHKysUMpozSv5I8bSsddavUhO16T\n1YdSTlYfs2bNkh4bKtWHvbb69+8PJycnxfpQ6p9afVjnmjVrhr59+0rrQ8sxr736ULpdanOLUnuy\nGlE6vpbVh9pxub36kGVktaFlDSCbW543OTrOzl7YiuQr55mZmXB2drbYlv+zlhO1PYlp06bhwoUL\nNn+plZk7dy4WLlyI8+fPS1+VNplMGD9+PMaNG2dz+2R+/fVXPHr0CCVLlsTnn3+O4cOHY/PmzZg+\nfbo09/DhQ/z8889YvXo1pkyZghEjRmDFihWaTtQGAGvXrkWXLl009zMlJQXBwcFYs2YNpkyZgh07\ndmDLli2K+3t5ecHd3R0TJkxAZmYmrly5gq+++gpA3quNWijVyrOuk6ysLPTt2xcVK1ZEhw4dNGXK\nly+PdevWYezYsZgzZ475L7j2JCcnY/Xq1ZpPGJgvNTUVxYoVQ+XKlbF48WK0a9cOUVFRSEhIUMw8\nfPgQ69evx++//45FixYhNDQU/fv3x9mzZzW1ee3aNfz3v/9F586dVff9448/cO3aNfTr1w9r165F\n7969ER0djcuXL0tzISEhSEpKwpo1a5CTk4MffvgBe/bssamTadOm4fz58xg4cKCu2nDkeS/LyerD\nXkZLbRTMaa2P/MyAAQN01UbB+/Hhw4fYsGGDan3Yu11aaqNgTk995Pdx0KBB5sWlrD7yx+kLFy5g\n0qRJmutD6/iuNSOrDaWcrD4KZvLPDqulNqzbunz5sqb6sL4ftYwfSrdLrT6sb5uW+rDOhISE4NSp\nUza1IZuPZbXh6DyuNVewPj744APVjL3akLWlNHbIMrLakOWUauPkyZOqt8tebcjaUqqNn376STEj\nm1fsHXdt2bIF06ZNk9aHo8drWnMF66NevXqqGXv1odTWtGnTFMcPWUZWH7KcUn0kJiaq3i579SFr\nSzZ2yO57pfEjOzvb5vg6Li4OX331lbQ+HDku15qxnlu05PQcl/7VPclXqf3ZiuQr5yVLlrQ5QMr/\nuVSpUs+s3enTp2PFihWYPXu2rrece3p6Asg7k9/QoUMxYsQIi1f9882dOxfVq1fX9ao8kPdX9UOH\nDpm/6N5oNCI3NxfDhg3DyJEjFV8FL168OP744w/MnDkTf//73wEAv/zyC1atWmX3zKcFJSUl4dat\nW3jvvfc09fHgwYNYu3Yt9u3bB2dnZ7z11lu4efMmYmJi0Lx5c7sZZ2dnzJkzBwMGDEDNmjXh5uaG\nsLAwTJkyBaVLl9bUbsmSJXH//n2LbSaTSd9ZEXV6+PAhIiIicPXqVaxatcrirUsypUuXNp9ZNDk5\nGStWrFB8V0JUVBT69etn8xZeNa1atUJwcLC5Vt588038/PPPWLVqlcUrWQUVL14c5cqVwyeffAIg\n7/scjx49ivj4eEyYMEG1zZ07d6JatWp4/fXXVfddvHgxACAiIsLc1qlTp7B8+XLpO0neeOMNREdH\nIzo6GuPHj4fRaMSHH36IQ4cOmfcp+PytUqWK5tpw9HmvlJPVh1JGrTasc506dVKtD+v7o0qVKppq\nwzqnpT6UbpdabVjnZs+eDUC9Puy1N3HiRGl95I/TI0aMwJAhQ9C2bVv8/vvvFv2xVx9ax3ctGbWx\nQyknq4+CmSFDhuD06dOaxg7rtoYPH66pPqzvx5o1a6rWh9LtUqsP69uWP//L6sPe7bJXGxs3bkTt\n2rXtzseyscPReVxLzro+vvjiC9WMvdpISkpSzI0ZM8Zufcj6J5tXTp06pZhTGjvGjx+vervs1Yas\nj0pzy4gRIxQzsnlF6bhr6NChaN26teLY4ejxmpacdX3885//VM3Yq4/ly5cr3rakpCS79SHr36hR\noxTrIzY2VrEtPz8/u/WxZ88e1dtlrz5kj9kLL7xgtz7yxw5Ze/bGjy1btuD+/fs2x9crV65EYGAg\n0tPT7daHI8flWjL25hYtOT3HpX912bn6zs5emIrk4tzDwwPp6enIzc1FsWJ5L+6npaXBxcXF/OR5\n2qKjoxEfH4/p06crLmIKunv3Lk6cOGGxb5UqVfD48WPzZyetfffdd7h79675a7vyX9XZsWMHjh8/\nLm3P+nZXrlwZWVlZSE9PV3ybf8WKFVGyZEnzkxIAXnvtNdy8eVP19u3fvx/+/v4oU6aM6r4AcPbs\nWbz66qsWfy2sVq0aFi1aJM1Vr14dCQkJuHv3LsqVK4cffvgB5cqV0/xHGA8PDyQnJ1tsS0tLg7u7\nu6a8Xg8ePEBYWBiuX7+OZcuW4Z///KdqJjk5Genp6Raf+6lcubLiW2J//fVXnDhxAj/99JP5s0SP\nHj3CuHHj8N133+GLL76QtmddK6+//rrFIsWau7u7+XmW77XXXsPFixel7eT74YcfND1nAODcuXMw\nGo0W26pVq2bzGNrzwQcfoFWrVrh79y4qVKiA6dOnm89XYO/5q6U29D7v1XKy+rCX0VIb1jkt9aHU\nP7XasJdTqw/ZfSirDXs5LfWh1J69+qhQoQISEhLsjtPu7u5ISUmxaCu/PhwZ39UyTk5OdmtDlsv/\nDKt1ffz444+Kt+vUqVO4ePGi3dqYPHmyYlt//PGHze3Krw9ZH1966SWbV4lee+01nDlzRrGP+feh\nvfqQtfXTTz/ZrY9z585J27JXGw8ePMDu3bvtzse9e/dWHDscncfVcvbGDllmzZo1uHfvnt2xQym3\nYcMGGAwGu/UBAAaDQbF/SmPHzz//rNjHpk2b2h079u/fj59//ll6H9qrDdn94e/vb7c24uLicPny\nZcW2ZPOK0nFXhQoVFMcOWU52vKaWK1GihN3xQylz7NgxALZjR/7copSTjR/Wxx6y21VwblFqy8PD\nA8WLF7f4Xf7conYfKs0tSrmzZ89K5xZZe/ZqxN3dHffv37c5vr516xY8PDxw6dIli+vLrw9HjsvV\nMkrHHbJcSkqK4vjxvMrJVT8PWVFRJN/WXq1aNTg5OVmcfOXo0aOoXr36M2lv3rx5iI+Px6xZszR/\nSfz169fRt29f3L5927zt9OnTKF++vN0DNwCIi4vD5s2bsWnTJmzatAnBwcEIDg7Gxo0bpW3t378f\ntWvXNn/BPZB3EOvq6iod6L28vJCVlYUrV66Yt6WkpFicgE1JUlISfH19VffLV7FiRVy5cgXZ2dnm\nbampqahUqZJi5v79+/jwww9x//59uLm5oVixYkhMTEStWrU0t+vl5YVz585ZvNPi2LFjFicTfFqE\nEIiMjMQvv/yCuLg4za+y7tmzB1FRURbbzpw5o5j/+9//jl27dmHjxo3mWqlYsSL69++PiRMnStua\nM2cOunfvbrHt/Pnz0hOreHt749KlSxYnYNNaJ0Be3WutlYoVK9oc9KrVCQAcOnQIgwYNgsFgQIUK\nFSCEwL59+1C7dm3F569abTjyvJflZPWhlFGrDXs5tfpQakutNpRysvpQuw+VakMpp1YfSjml+nj9\n9dftjtNubm6oWbMmzp49a7c+HBnf1TJKtSHLnThxwm59eHh42M28+OKL2Llzp2JtyNpavny5Yn0o\n5dzc3ODt7Y2LFy/a1EeZMmVU70N79SFrq2LFijYHvampqShbtqxiWxcvXrRbG7169VKcj2vUqKE4\ndjg6j8tySmOHLLN7927FsUMpt2vXLsX6kLUlGztkOS8vL7tjR0hIiOp9aK82ZG25u7vbHTuaNWum\nmJHNK0rHXeXKlYOfn5/i2OHo8Zpazl59yDJKY0flypWlt02pPlq2bKnY1ooVKxTrQ9aW0thRrFgx\n1fvQXn3I2rK3YM6fW2T346VLl+zWSP369RWPr728vBTrw5HjcllGdtwhy8nGj+fVk37P+Z/q2ZwE\n/smNHTtWNG/eXCQlJYldu3aJmjVrqn5ntrWqVauqfpVacnKyeOutt8Tnn38u7ty5Y3GRycnJEW3b\nthU9e/YUycnJIjExUdStW1esWLFCc/9GjBih6avUHjx4IOrXry8GDx4sUlNTRWJiovnrg9T06tVL\ndOzYUZw/f17s27dPBAQEiLi4ONXcu+++K7Zu3arpdgiR992kgYGBYvjw4eLy5cti9+7donbt2uav\nTFHSqlUrMXr0aHH16lWxevVq4eXlJc6cOSPNFHxcc3JyRPPmzcXAgQPFpUuXxKJFi4Svr6/N99Fa\n5wr68ccfbb7n3F4mPj5eVKtWTSQmJlrUSXp6ujR38+ZN4efnJz777DPx888/i7i4OPH222+L8+fP\na+qfEHmPh/V30drLJSUlCU9PT/Hll1+Kq1eviq+//lrUqFFDnDp1SjGTkZEh6tWrJ8aOHSuuXLki\n4uLihKenp03/7PXx+vXromrVqiItLc1u36wzJ0+eFJ6enuKrr74SV69eNX+3ZnJysjR38+ZN4e3t\nLVatWiWuXr0qxo0bJ+rXry/OnDmj+PyV1YbW5/2hQ4csvu5GllOqjxMnTihmZLWhZ2zKrw9ZRlYb\nspxSfezcuVPaP6XakLUlqw9ZTqk+Hjx4oDhO5+TkiPfff99ufWgd3wvWhywjGztkOaX6OHv2rOb5\np+DYIWtLVh+ynFJ9qPXx2rVrdutD1pZSfVy8eFF6H9qrjYcPH1q0W3A+1jOvKM3j1mOHLKd1bimY\n0TqvyPoohPLcUjCjdV6xzmmdW6z7p2Vesc5pnVus70Ol2pAdd8nGDq3Ha9b1Icsp1cevv/6qmJHV\nh55jyvz6kGVk9SHLZWRkiKCgIJv6OH78uLR/SmOHrC1ZfchyshpROr6W1YcQ2o7LretDKaM2dijl\n9Iwfz4uQTxfaXIqqIrs4z8zMFCNGjBA+Pj6iXr16Yvny5bqvQ8v3nC9atEgYjUaLS9WqVaWTar7b\nt2+Lvn37Cj8/PxEUFCQWLVqkq39aF+dC5B3Q9ujRQ/j6+oqgoCAxf/58TbmMjAwxfPhw4evrK+rW\nrSsWLFigKefl5SX279+vaV/rPvr5+YkmTZpoeswuX74sOnfuLLy9vUXz5s1FYmKiasb6cb169aro\n3LmzqFGjhmjevLk4ePCgplw+2eLcaDSavyOyZ8+eNrViNBpFly5dVNs6deqUaN++vfD29hbvv/++\n+P777zX3TwghgoODFRfn1rndu3eLli1bCi8vL/Hee+/Z/aOWdSY5Odl8HzZt2lTxD2H2bpfRaBQm\nk8nu/vYye/bsEaGhocLHx0e0bt1a8+OVmJgomjVrJry9vUW3bt1Eamqq6vP3ypUrdmtD6/PeeoK0\nl8u/hIWF2d3esGFDaVtKtaFnbMqvD7WMUm2o5ezVh1pGqTbUckr1oZazVx9CyMdp2dihZXy3rg+l\njNrYIWtLqT60zj/WY4csJxs7ZDml8UPtdimNHbKcUn3IMkq1UZD1fKx1Xnkai3Otc4t1W1rmFVkf\nhVCeW6wzWuYVezktc4u926U2r9jLaZlbrDOy2pAdd8nqQ8vxmr36UMrJ6kPWlqw+tB5TFqwPWUZW\nH7KcUn2o3S6l+pDlZPUhyynViOz4WlYfWo7LretDKaM2dsja0jp+PC8aRS+wuRRVBiE0fBk4ERER\nERER0V/Mu5/Mt9n2/bg+hdATdVycExERERERERWyInlCOCIiIiIiIqL/n3BxTkRERERERFTIuDgn\nIiIiIiIiKmRcnBMREREREREVMi7OiYiIiIiIiAoZF+dEREREREREhYyLcyIiIiIiIqJCxsU5ERER\nERERUSHj4pyIiIiIiIiokHFxTkRERERERFTIuDgnIiIiIiIiKmT/D+M/pmtGBS0GAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAB6CAYAAADd7iK8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8TOf+B/DPEMFtaWJJ7m21t6W9olFZiVTQxhIhBLUv\nVcTW2mKnJSpqX2uNtQgaa6vUFhpquXZiJ6FIRQiiUpFI5vn9kV+mZjnPOWdQ4X7er9e82jnOZ54z\nM995nvPkzJxjEEIIEBEREREREdFzU+B5bwARERERERHR/zpOzomIiIiIiIieM07OiYiIiIiIiJ4z\nTs6JiIiIiIiInjNOzomIiIiIiIieM07OiYiIiIiIiJ4zTs6JiIiIiIiInjNOzomIiIiIiIieM07O\niYiIiIiIiJ4zTs6JiIiIiIiIbEhJSUHv3r3h5+eHmjVrYty4ccjKypJmkpKS4OXlhUOHDulqy+FJ\nNpSIiIiIiIjoZdW7d284OTlhxYoVSEtLw7Bhw1CwYEEMHDhQMTNy5Eg8fPhQd1s8ck5ERERERERk\n4dKlS4iPj8fYsWNRrlw5+Pj4oHfv3ti4caNiZsOGDXjw4IFd7fHIOREREREREb2ULgYEWS17b89W\nTdnSpUtjwYIFKFGihGmZEAL379+3uf7du3cxefJkLFq0CA0aNNC9rZycExERERER0UvJ4GD/lLdY\nsWKoVq2a6b4QAtHR0fjwww9trj9u3Dg0adIE5cqVs6s9Ts6JiIiIiIjo5fQEk3NLEyZMwLlz57B2\n7Vqrf9u3bx+OHTuGyMhIux+fvzknIqJnaujQoXBzc1O8BQQE6Hq8wMBADB069Blt7V/WrVsHNzc3\nXL9+/Ykf6/jx4/j000/h5eWFatWqYciQIbhz547ZOnv27EGzZs3g6emJWrVqYdGiRTYfS+t6eYQQ\nCA8Ph6enJ9zc3NChQwckJCQAyP0L/4cffgg3Nzd07NgRcXFxAICsrCx07twZbm5uaNiwIXbt2vXE\nrwEREdHzYChY0Opmj4kTJ2LZsmWYNGmS1ZHxzMxMREREICIiAo6OjnZvK4+cExHRM1e6dGnMmjXL\n5r8VKlRI12PNnj0br7zyytPYLCmDwQCDwfDEj3Pq1Cl06NAB1apVw6xZs3Dz5k1MmjQJv/32G77/\n/nsAuZP37t27IyQkBH379sWRI0cwceJE5OTkoEuXLqbH0rqe5fOYOnUqOnXqhP3792PJkiWmfxsy\nZAiMRiM2bNiAxYsXm5Y7Ojpi7ty5+PrrrzF69Ognfg2IiIielyf5WnueyMhIxMTEYOLEiahdu7bV\nv8fHxyMpKQm9evWCEMK0vEuXLmjcuDFGjhypqR1OzomI6JlzdHREpUqVnspjubm5PZXH+btMnDgR\n7u7umD17tmnZq6++im+++Qa///473njjDcyYMQPu7u4YN24cACAgIACPHj1CVFQUOnToYPorvNb1\nbHnttddsLr98+TLS09Otlq9btw59+/a1+3kTERHlC3YeKc8zc+ZMxMTEYOrUqahTp47NdTw8PLBt\n2zazZXXq1ME333wDf39/zW3xa+1ERJRvBAYGYurUqRg9ejQqV64MPz8/DB48GPfu3TNb5/GvtZ8+\nfRqfffYZfH194e3tjY4dO+LEiROmfzcajVi+fDkaNmwIDw8PfPzxx5g8eTKysrJM6wghMHv2bHz8\n8cfw9PTEF198YdZmntWrVyMkJAQffPABPv74Y8ycORNGo1Hx+aSlpeHQoUNo06aN2fLatWvjl19+\nwRtvvIGsrCwcPHjQ6i/xQUFBSE9Px5EjRwBA83pKbE3Od+3aBaPRiJycHLMJelpaGrKzs1GqVCnp\nYxIREeV3BgcHq5tWiYmJmDNnDrp27QovLy+kpqaabgCQmpqKzMxMODo64s033zS7AYCLi4vZmd7V\ncHJORER/i5ycHJs3SytWrEB8fDwmTJiAAQMGIC4uDt26dbP5mOnp6QgLC0PJkiUxc+ZMTJ06FRkZ\nGQgLCzNNNocPH45x48YhKCgIc+fORbt27RAdHY3PP//c9DgTJkzA7Nmz0aJFC8yaNQvOzs6YNGmS\nWVtRUVEYMWIEqlWrhqioKLRr1w7z58/HiBEjFJ/z+fPnIYSAk5MTBgwYAG9vb3h5eWHw4MGmy7Bc\nu3YNjx49wjvvvGOW/fe//w0g9xqretZTYjk5z8rKwi+//IJGjRoByJ2Q51m1ahWaNWsmfTwiIqIX\nwZNMznfs2AGj0Yg5c+agevXqqF69OgICAlC9enUAud9g27x5s+127fhpHL/WTkREz9zvv/8Od3d3\nq+UGgwGDBg1Cx44dTcsKFiyIxYsXm35X7uzsjJ49e2LPnj1WJ49LTEzE3bt30b59e3h6egIAypYt\ni1WrVuHPP/9ESkoK1q5diwEDBiAsLAwA4O/vj9KlS2PQoEHYvXs3vLy8sGzZMnTu3Bk9evQAAFSr\nVg0pKSnYs2cPgNw/AsyZMwetW7c2HbX/8MMP4eTkhK+++godO3a0edmUO3fuQAiBYcOGoWbNmpg9\nezauXLmCyZMnIykpCcuXLzf9EcHyd/R59//880/TNmhZT4mTk5PZ/YULF6JNmzZITk4GANy7dw9l\nypRBYmIiypQpg8KFC0sfj4iI6EVgcLD/a+1du3ZF165dFf/93Llziv929uxZ3e1xck5ERM+ci4sL\n5s6da3aSlDz/+te/zO7XqlXLbAJaq1YtODg44NChQ1aT8/feew8lSpRAt27dUK9ePVSvXh3VqlVD\n//79AQA7d+6EwWBAgwYNzHINGjTA0KFDcfDgQRgMBuTk5OCjjz4yWyc4ONg0OT927BgyMzPx8ccf\nmx3t/+ijjyCEwN69e21Ozh89egQA+OCDD0yXVqlatSqKFSuG/v37Y9++fShatKj0tcv7y7vs6/OP\nr6fk8SPn165dw+3bt/Gf//wHDx8+hBDC9DX+TZs2oXfv3mbZXbt2IS0tDaGhodI2iIiI8p2neCm1\nZ+3F2VIiInphFSpUCO+//76mdV1dXc3uGwwGODk5mX3tOs8//vEPrFixAnPmzMGWLVuwatUqFC5c\nGKGhofjyyy9NE07L304XLFgQzs7O+OOPP0zrODs7m61TunRp0/+npaVBCIGuXbta/YHBYDDg5s2b\nNp9L3h8ZLCf+1atXhxACZ86cMf2b5ZHvvCPlxYoVM/uv2npKHp+cT5s2zfQNgLznnZaWhr179+LD\nDz80y61YsQLbtm1D48aNpY9PRESUHz2Ns7X/XV6cLSUiov8Jd+/eNbtvNBqRlpameHKyt99+G+PH\nj4cQAvHx8fjxxx+xcuVK/Pvf/zZNSFNTU82O0GdnZ+Pu3btwdnaGs7MzhBBITU3F22+/bVrn8T8G\nFC9eHAAwefJk02+8HyfbNgBmJ58D/jqiXrRoUbz11lsoWLAgrl69arbOlStXAMB0RF7rekryvtYe\nFxeHd99917TNecvv3LmDxMRE9OrVyyzXpk0bq2uyExERvSgMBV+c06y9OFtKRET/E3bt2oXs7GzT\n/djYWOTk5Ni8FMnWrVvh7++P27dvw2AwwMPDAyNGjECxYsVw/fp1VKlSBUIIbNy40Sy3ceNGGI1G\n+Pr6wsvLC0WKFMGWLVvM1tm5c6fp/z08PFCoUCHcuHED7u7upluBAgUwefJkXLt2zeZzKVeuHN54\n4w1s2rTJbPmOHTtgMBjg4+MDR0dH+Pr6Wl2CZevWrShevLjpEnRa11Pi5OQEIQQWLlyIzp07m5YX\nK1YMDg4OiImJ4dfWiYjopWMoVMjqll/xyDkRET1zWVlZZpc3s+Tm5mY6AdmNGzfQo0cPtGvXDsnJ\nyZg6dSpq1KgBX19fq5y3tzeMRiM+//xzdOnSBa+++ip+/vlnpKenIygoCOXKlUOTJk3w7bffIiMj\nA5UrV8aZM2cwc+ZMVK1a1XS21c8//xzTp09H0aJFUbVqVcTFxSEuLs7UjpOTE8LCwjB9+nTcv38f\nVapUQUpKCr799lsUKFBAeu31QYMGITw8HOHh4WjRogUuXryIadOmISgoyJTr0aMHOnXqhD59+uCT\nTz7B0aNHsXjxYgwYMMDsxGxa17Ml71sEzZs3t7oe+muvvYaAgAC89dZb0scgIiJ64bxAX2s3CFtn\n5yEiInpKhg4dih9++EG6zvr16+Hm5obAwEB4e3vjtddew/r16/GPf/wDDRs2RHh4uGlCWatWLfj5\n+WHMmDEAgFOnTmHatGk4deoUHj58iPfeew/du3dHrVq1AORew3zevHlYu3YtkpOT4erqioYNG6JH\njx5mk9Tly5djyZIlSElJgZeXF4KDgzFy5Ejs2LEDr7/+OgBg5cqVWLFiBa5cuYLixYujWrVqCA8P\nxz//+U/p89u1axdmzZqF8+fP47XXXkOjRo3Qp08fFHrsr/exsbGYMWMGLl++DFdXV7Rt2xafffaZ\n1WNpXc/So0eP0LFjR0RHR1v9W+fOnTFt2jTF363PnDkTZcqU4e/OiYjohfN736FWy96YNvY5bIk6\nTs6JiCjfCAwMhJ+fH8aOzZ+D5v8qTs6JiOhFdX3gcKtlr0+MfA5boo6/OSciIiJFq1evxr59+7Bl\nyxar3+UTERHldwYHB6ubPbKystCwYUMcOnRIcZ3t27ejfv368PLyQtu2bXHmzBldbbw4X8AnIqKX\nnsFgUL1eN/29mjdvjubNmz/vzSAiIrJPwYJP/BBZWVno168fEhISFNdJSEjAgAEDEBkZCS8vL3z3\n3Xfo2rUrduzYoXpemDycnBMRUb6xY8eO570JRERE9BJ50uucJyYmon///qrr7dmzB++99x4aNWoE\nAOjXrx+WL1+OhIQEuLu7a2qLX2snIiIiIiKil1PBAtY3HQ4ePAh/f3/ExMRAdro2JycnJCQk4OjR\noxBCYO3atShWrJiuK6HwyDkRERERERG9lJ70uuatW7fWtF79+vWxc+dOtGnTBgULFkSBAgUwb948\nxSuh2MIj50RERERERPRSelonhFOTlpaG1NRUREREYPXq1WjcuDGGDBmCO3fuaH6MfHXkfN6O/2pe\nt2utqgCAWdv26mrji7rVAADTN/+qK9cnuDoW7DygKxMW6AcA+HzhGl252Z2bodOc73VlFvVoBQDo\nsUBfW3PCmgEAOsxeoTmz5PM2AIDW05fpamtln/YAgAk//aIrN6jhxxj7g77foQ5tnHt940VxB3Xl\nOn1UBTO27NGV6VUvIDdrx3vWdd4qXZl5XVsAANrNsL5OsUx0r3YAgCW7D2vOdKjhCwAYtXabrrZG\nfFIXANBv6Y+6clM+DUX/ZRt0ZSa3z/1Njz2vx6ezluvKLP2iLQDgy+9/1pX7plV9AMDgFRs1Z8a3\nCQFgXz8FAOFL5NcUtzS1Q2O7n5c9dW/v+9wlKkZXbn63lrped+Cv196e+gWA73Ypn8HV0mc1KwOw\n7/0CYNfrGLluu67M8KZ1ANjXb0es1ndm96+b1wNgf93b07/ZO9ZO3bRLVy68QU3M2b5PV6ZHnQ8B\nAJM2xunKDQj5CAOj9dXGxHa5nzF7cva+X/Z8ngHoGqPzxue23+rbX1neO3d/JWyuvvpY0L0VJut8\nv/qHfARA334YkLsvZu/7bG+fo+d1zHsNh6/arKutyBbBAOyrD3vbsme/z979Uns+z3/nmPmyMuj8\nGru9Jk2ahPLly5uOtI8aNQrBwcFYt24dwsLCND0Gj5wTERERERHRy8nBwfr2DJw+fRpubm6m+waD\nAW5ubrh+/brmx+DknIiIiIiIiF5KhkKFrG7PgouLi9Wl1i5fvowyZcpofox89bV2IiIiIiIioqfF\nUODZHY9OTU1FsWLFULhwYTRv3hzDhg1DxYoV4eXlhVWrViE5ORmNGzfW/Hh2T87v3r2LrKwsFC1a\nFMWLF7f3YYiIiIiIiIieiad5AjiDwWB2PyAgAOPGjUPjxo1Rv359ZGRkICoqCikpKahQoQKWLl2K\nEiVKaH58XVu6bds2REdHIz4+HpmZmablRYoUQcWKFdGhQwfUrl1bz0MSERERERERPRtP8WvsZ8+e\nNbt/7tw5s/uffPIJPvnkE7sfX/PkfPHixZg5cybCwsLQs2dPlCxZEo6OjsjKykJqaioOHz6MIUOG\noE+fPmjfvr3dG0RERERERET0NPxdZ2t/GjRPzhctWoTx48fbPDJerlw5+Pn5oXz58oiMjOTknIiI\niIiIiJ67Z3Vd82dB85Y+fPhQ9Uxzrq6uuH///hNvFBEREREREdGTepEm55qP8depUwdDhgzB4cOH\nkZ2dbfZvRqMRR48exbBhwxAUFPTUN5KIiIiIiIhIN4eC1rd8SvOfEUaOHInx48ejc+fOyMnJgZOT\nk+k352lpaXBwcEBoaCiGDh36LLeXiIiIiIiISJMX6ci55i11dHTE8OHDMWDAAJw7dw63bt1CRkYG\nChcuDFdXV1SoUAFFihR5lttKREREREREpF2B/Huk3JJBCCGe90YQERERERERPW33d+yyWlasVs3n\nsCXq8tUx/sErNmped3ybEABA9/mrdbUxt0tzAMCiuIO6cp0+qoIuUTG6MvO7tQQANJ/6na7c6vDP\nMH3zr7oyfYKrA9D3GgJ/vY4zt+7RnOkZFAAAiFi9RVdbXzevBwDoNOd7XblFPVphxhbt2wcAverl\nbmPYXH1tLejeCkNXbtKVGdu6AQB9ryGQ+zqGL/lBV2Zqh8YA7KtfAPh84RrNmdmdmwEAItdt19XW\n8KZ1cv+7arOuXGSLYIz9YYeuzNDGtQAA/Zb+qCs35dNQDIzeoCszsV0jAMDagyd15T6p8gEAfX1V\nXj9lT00BwPgNO3XlBjcKxJff/6wr802r+gCAUWu36cqN+KQuJm2M05UZEPIRAKDPd+t15aZ/1gTt\nZkTrykT3agcAdvf3s7bt1Zz5om41ALD7tben7qf9vFtXpm/9GgDsG2sn/PSLrsyghh8DAFpPX6Yr\nt7JP7hViJuuoq/7/X1P2jmOjdfaLXzWtY3e/3X+Zvr5qcvtGdn/Gpm6y3oGVCW9QE1/F6OvrR7cM\nBmBf3wHo24dY1KMVAGDDkTO62mrk877utvLas/d9nrfjv7pyXWtVRcfZK3VlFn/eGoB94zMANJ28\nWHNmXf+OAGD3WGtPnzNyzVZdmZHNcs+TZc822lMbgH1133vxOl2Zbzs2BQD0WKB9nw8A5oQ107X+\ni+RF+lr7i3PRNyIiIiIiIiIdDAULWt3skZWVhYYNG+LQoUOK68TFxaFx48bw8vJCaGgodu7Ud8CE\nk3MiIiIiIiJ6OTk4WN90ysrKQr9+/ZCQkKC4zrlz59CrVy80b94cGzZsQIsWLdC7d2+cP39eczuc\nnBMREREREdFLyeBQ0OqmR2JiIlq0aIGkpCTpeps2bYK/vz/atm2LN998E23btoWfnx82b9b+U5IX\n5wv4RERERERERDo86W/ODx48CH9/f/Tt2xceHh6K6zVp0gSPHj2yWp6enq65LU7OiYiIiIiI6KX0\npJPz1q1ba1qvbNmyZvcvXryI//73v2jTpo3mtjg5JyIiIiIiopeTzq+xPw137txBr1694OPjg1q1\namnO6Zqcy85MZ6ly5cp6HpqIiIiIiIjoqbL37Oz2Sk1NRceOHWEwGDB9+nRdWV2T81GjRpnOUCeE\nUFzPYDDg7NmzujaEiIiIiIiI6GkyFCr0t7WVkpKCTz/9FAULFsSyZcvg7OysK69rcr527Vr069cP\nSUlJiImJQeHChXU1RkRERERERPR30Xt2dntlZGQgLCwMhQoVwtKlS1GiRAndj6HrUmqOjo6YMmUK\nAGDatGm6GyMiIiIiIiL62xQoaH17SlJTU5GZmQkAmDt3LpKSkjB27FgYjUakpqYiNTVV19nadV/n\n3NHREZMnT8Zbb72lN0pERERERET0tzEUcrC62f1YBoPZ/YCAANN1zLdt24aHDx+iRYsWqF69uun2\nzTffaH98IfvxOBEREREREdEL6v79+1bLihUr9hy2RJ3uI+dERERERERE9HTlq+ucz9iyR/O6veoF\nAADGb9ipq43BjQIBALO27dWV+6JuNSzYeUBXJizQDwDQ9ttlunLLe7dH2NzvdWUWdG8FAJi++Vdd\nuT7B1QEA/Zb+qDkz5dNQAED/ZRt0tTW5fSMAwNRNu3TlwhvURLsZ0boy0b3aAQDG/rBDV25o41r4\ndNZyXZmlX7QFAESu264rN7xpHUzaGKcrMyDkIwCwO6enPvJqw57PCgCMXLNVV25ksyCM1vkaftW0\nDgBgzPpYXblhTWpj0PKfdGUmtG0IAOgwe4Wu3JLP2wDQt43DmtQGYH//Zk99dJ+/WldmbpfmAGDX\n6zhq7TZdmRGf1LW7rS5RMboy87u1BAB0nbdKV25e1xYAgI6zV2rOLP68NQD7P8/21Mec7ft0ZXrU\n+TA3u2Kjrtz4NiHosWCNrsycsGYAYHd96BmT8saj1tP1jc8r+7QHALtex1bTlurKfN/3UwCwa9/D\n3vodGK1vXJ/YrpHd73PE6i26cl83rwcAuj7TeZ/nyTo/Y/3//zNmT5+jZ38K+Gufyp7X0d79sO92\nab80MgB8VjP38shRsfs1Z7rV9gdg/zhmz76Yvfvp9vRv9vbb9oy1w1dt1pWJbBEMAFj4y0Fduc4f\nV9G1Pj0bPHJORERERERE9JzlqyPnRERERERERE/LQ4P1lDd//uKck3MiIiIiIiJ6SWXn5DzvTdCM\nk3MiIiIiIiJ6KRmNL87FyTT95jwrKwsTJ05EzZo14e3tjZ49eyIxMdFsndTUVFSoUOGZbCQRERER\nERGRXo+MOVa3/ErT5HzKlCmIjY3FoEGDMGrUKKSmpuKTTz5BbKz52Yd5yXQiIiIiIiLKL7KzjVY3\nPbKysjBs2DBUrlwZ1atXx+LFixXXPX/+PNq0aQMPDw80atQIBw7ou4qApsn55s2bMWbMGDRo0AAh\nISFYuXIlWrdujb59+2Lz5r9O728wGHQ1TkRERERERPSs5Aij1U2P8ePH48yZM1i2bBkiIiIwc+ZM\nbNtmfdnP9PR0dO7cGe+99x42btyIOnXqoGfPnrhz547mtjT95vzhw4dwcnIy3TcYDBg8eDAKFCiA\ngQMHwsHBAV5eXpobJSIiIiIiInrWsnP0TcYfl5GRgTVr1mDhwoVwc3ODm5sbwsLCEB0djbp165qt\nu27dOrzyyiv4+uuvAQC9evXC7t27cerUKdSoUUNTe5qOnPv5+WHChAlWs/6BAweiZcuWCA8Px4oV\nKzQ1SERERERERPR3eJSTY3XT6ty5c8jJyYGnp6dpmY+PD+Lj463WPXToEAIDA82WrV69WvPEHNA4\nOf/yyy+RlpaGatWqYe/evWb/Nnz4cHTv3h1RUVGaGyUiIiIiIiJ61nKMRqubVrdu3YKTkxMcHP76\nwnnJkiWRmZmJu3fvmq177do1ODs7Y8SIEQgICECrVq1w9OhRXduqaXLu6uqKmJgYbNq0CZUqVbL6\n9549e2LDhg0IDw/X1TgRERERERHRs5KdY7S6aZWRkQFHR0ezZXn3s7KyzJY/ePAACxYsgIuLCxYs\nWABfX1907twZKSkpmtszCJ5inYiIiIiIiF5C+y9etVrm/95bmrJbtmzB6NGjsWfPHtOyxMREhISE\n4MCBAyhevLhpeXBwMFxcXLBkyRLTsiZNmiA4OBhdu3bV1J6mE8IRERERERERvWj0/MbckqurK9LS\n0mA0GlGgQO6XzlNTU1GkSBGziTkAlC5dGmXLljVb9vbbbyM5OVlze/lqcj5yzVbt6zYLAgB0nbdK\nVxvzurYAACzYqe+ac2GBfpi6aZeuTHiDmgCAaT/v1pXrW78GIlZv0ZX5unk9AEDr6ct05Vb2aQ8A\nmLfjv5ozXWtVBQBM3hinq63+IR/l5u14z5pOVr6eoC3r+ncEAHSfv1pXbm6X5na/z4NXbNSVG98m\nBB1m6zuR4pLP2wAAZmzZo7KmuV71AgAAo9dt15z5qmkdAEDbb/XV1PLeuTVlT92PWmt9WQqZEZ/k\nniUzKna/rly32v4Ysz5WV2ZYk9oA7H89lu/V/pujttW8n6itmVv11UfPoAA0nrhQV+aHgZ0BANM3\n/6or1ye4Oibp7DsG/H/f0XPROl25mZ2a4tNZy3Vlln7RFoD9Y4ueGs6rX3v7HD2fZyD3M/3RyJm6\nMnEjewIAhq7cpCs3tnUDNBg3T1dm05Dcowp6PivAX58XPeNf3thn7zZO+OkXXblBDT+2exz7Kmaz\nyprmRrcMtqv/BYAeC9boys0Ja4Y52/fpyvSo8yEAfZ8V4K/Pi55tnBPWDADsrvtFcQd15Tp9VEXX\n/hTw1z6VPftvevabgb/2ne2pX0DfWNuttj8AYOwPO3S1NbRxLQDAl9//rCv3Tav6du2HAfb1OUt2\nH9aV6VDDFwDQac73unKLerSyq68HYPc2voyyn2ByXqFCBTg4OOD48ePw9s4dbw4fPoyKFStarevp\n6YlDhw6ZLbt06RIaNmyouT1NvzknIiIiIiIietHkGIXVTasiRYogNDQUEREROHnyJGJjY7F48WJ0\n6NABQO5R9MzMTABAq1atcP78ecycORNXr17F9OnTkZSUhEaNGmluj5NzIiIiIiIieillG3OsbnoM\nHToUFStWRIcOHRAZGYk+ffqgdu3cb1QGBARg8+bcbzi9/vrrWLhwIXbu3ImGDRti165dmDdvHlxc\nXDS39cRfa8/OzkZ6ejqcnJye9KGIiIiIiIiInppH2drPzm5LkSJFMHbsWIwdO9bq386dO2d238vL\nC+vW6fsZ3uN0HTnftGkTRo0aha1bt0IIgdGjR8Pb2xv+/v6oVq0aoqOj7d4QIiIiIiIioqcpRxit\nbvmV5iPnCxcuxJw5c+Dv74+IiAj88MMPOHv2LCZOnIh3330XJ0+exKRJk/DgwQPNp4onIiIiIiIi\nelb0XNf8edM8OV++fDmmTJmCGjVq4MiRI2jXrh3mzp2LmjVzzxpbrlw5ODs7Y/jw4ZycExERERER\n0XP3JGdr/7tpnpzfvXsXb7/9NgDAx8cH//rXv1CqVCmzdcqUKYOMjIynuoFERERERERE9sgxvjhH\nzjX/5tyxUpJHAAAgAElEQVTb2xuzZs3CgwcPAAA7d+6Eu7u76d9v3ryJsWPHwt/f/+lvJRERERER\nEZFO2TlGq1t+pXlyHhERgRMnTuCrr76y+rfY2FjUrFkT9+7dw/Dhw5/qBhIRERERERHZ40WanGv+\nWvtbb72FzZs3IzU11erfvLy88P333+ODDz5AgQK8dDoRERERERE9fy/S19oNQgjxvDeCiIiIiIiI\n6GmbuXWP1bKeQQGa81lZWRg5ciS2b9+OIkWKoFOnTujYsaPNdc+cOYORI0fiwoULeO+99zBy5Eiz\nn4Kr4WFuIiIiIiIieinlGIXVTY/x48fjzJkzWLZsGSIiIjBz5kxs27bNar2MjAx07doVlStXxrp1\n6+Dp6Ylu3brh4cOHmtvi5JyIiIiIiIheStk5OVY3rTIyMrBmzRp89dVXcHNzQ+3atREWFobo6Gir\ndTdt2oSiRYti4MCBKFu2LL788ku88sor2LJli+b2ODknIiIiIiKil1K20Wh10+rcuXPIycmBp6en\naZmPjw/i4+Ot1o2Pj4ePj4/ZMm9vbxw7dkxze5ycExERERER0UspJ8doddPq1q1bcHJygoPDX+dR\nL1myJDIzM3H37l2zdW/evAkXFxezZSVLlkRKSorm9jSfrZ2IiIiIiIjoRaLnSLmljIwMODo6mi3L\nu5+VlWW2/OHDhzbXtVxPhpNzIiIiIiIieik90vEbc0uFCxe2mlzn3S9atKimdYsUKaK5PU7OiYiI\niIiI6KVk1Hl29se5uroiLS0NRqMRBQrk/iI8NTUVRYoUQfHixa3WvXXrltmy1NRUlC5dWnN7/M05\nERERERERvZQe5eRY3bSqUKECHBwccPz4cdOyw4cPo2LFilbrenh4WJ387ejRo2Ynk1PDyTkRERER\nERG9lLJzjFY3rYoUKYLQ0FBERETg5MmTiI2NxeLFi9GhQwcAuUfGMzMzAQBBQUG4f/8+xowZg8TE\nRIwePRoZGRkIDg7W3B4n50RERERERPRSyjEarW56DB06FBUrVkSHDh0QGRmJPn36oHbt2gCAgIAA\nbN68GQDw6quvYu7cuTh8+DA++eQTnDx5EvPnz9f1m3ODEML+L+ETERERERER5VOfL1xjtWx252bP\nYUvU5dsj51lZWRg2bBgqV66M6tWrY/HixbrzDRs2xKFDh1TXTUlJQe/eveHn54eaNWti3Lhxmk55\nf/XqVXTu3BleXl4IDAzEwoULdW1j165dMXToUE3rxsbGws3NDRUqVDD9t0+fPqq5rKwsfP3116hS\npQoCAgIwdepU6frr16+3asfNzQ3vv/++als3btxA9+7d4ePjg1q1amHJkiWqmTt37qB3796oXLky\ngoKCsH79etXnY/m+JiUloWPHjvDy8kJISAj27t2rKZfn0qVL8PLy0pQ5fvw4WrVqBS8vLwQHB2P1\n6tWacr/++itCQ0Ph4eGBxo0bY/fu3Zq3Lz09HTVq1MAPP/ygqa3Ro0dbvYfLly+XZpKTk9GlSxd4\nenoiKCjI9BdAWVtDhw41ayfv9tlnn0nbOnz4MJo2bQovLy80adIE+/fv1/S8Tp06ZXrtW7VqhRMn\nTgCQf35ltaHlc3/lyhV4eHiYLZPllOpDlpHVhpZttKwPWUZWG7KcUn08nqlRowbGjx+PrKws1dqQ\ntSWrD1lOqT5k/bSsPrT075b1IcvI+g5ZTqk+tGyfrb5DlpPVhyynVB9KGbX6kLWlVB+yjFJtPM5y\nPNYyrtjK5bHVd8hyWsYWy4zauKK2jbKxxTKjNq4o5bSMLY9ntIwrSm1pGVssM7LakO13yepDy/6a\nrfqQ5ZTqQ5aR1YeWbbSsD1lGVh+ynFJ9KGXU6kPWlqw+ZDmlGpHtX8vqQ8t+uWV9yDKyvkOW09p/\nvCye5GvtfzuRT40aNUqEhoaKs2fPiu3btwtvb2+xdetWTdnMzEzxxRdfCDc3N3Hw4EHV9Vu0aCG6\ndu0qEhISxOHDh0XdunXFhAkTpBmj0SiCgoLEoEGDxJUrV8SuXbuEj4+P2Lhxo6Zt3LhxoyhfvrwY\nMmSIpvXnzJkjevToIW7fvi1SU1NFamqquH//vmpu+PDhIigoSJw8eVLs379fVK1aVcTExCiun5mZ\naXr81NRUkZycLOrWrSvGjRun2laLFi1Ev379xJUrV0RsbKzw9PQU27dvl2ZatmwpWrZsKc6ePSvi\n4uJElSpVFDNK72ujRo3EoEGDRGJiooiKihKenp4iOTlZNSeEEElJSaJu3brC3d1dta1bt26JypUr\ni6lTp4orV66ITZs2iUqVKom4uDhp7sqVK8LDw0MsWbJEXLt2TSxevFhUrFhR/P7776rbJ0Tue+jm\n5ibWr1+v6fXo2LGjmD9/vtn7+PDhQ8VMdna2CAkJEV988YW4fPmy+P7774W7u7u4ePGitK379++b\ntXH8+HFRqVIlsWPHDsXM7du3ha+vr1i0aJG4du2amDt3rvD09BQ3btyQtpWXGzFihLh06ZJYvHix\n8PLyEsnJydLPb8OGDRVrQ+1zf/36dREUFCTc3NzMXnelnKw+lDJqtaGlb7KsD1lGVhtKOVl9KGXU\nakMpp1YfajnL+sh7D5X6aaX60NK/W9aHLCOrDVlOqT6SkpI0jT+WtaH2vJTqQ5ZTqo8LFy4oZmT1\nIWtLqT6Sk5NVM7b6jjy2xmO1cUUpJ+s7lHI3b95UHVssM2p9h9o22qoPWUbWdyjltIwtlhm1vkMp\np2VsUcoo1YZsv0s2tqjtrynVh1JO1n8oZdTqQ8s+pWV9yDKy+lDKyepDKaNWH0o5tfpQy9mqEdn+\ntaw+1PbLbdWHUkZtv1Qpp7X/eJl0nrPS6pZf5cvJ+YMHD0SlSpXEoUOHTMtmz54t2rdvr5pNSEgQ\noaGhIjQ0VNPkPDExUbi5uYnbt2+blm3cuFHUqFFDmrt586YIDw8Xf/75p2lZz549xddff626jWlp\naaJmzZqiefPmmifnAwYMEFOmTNG07uPtuLu7m72O8+bNE8OGDdP8GHPnzhV169YVWVlZ0vXu3bsn\nypcvbzbo9urVS0RGRipmTp48Kdzc3ERSUpLZ9rVs2dJqXaX3dd++fcLLy8tsJ+Gzzz4TM2bMkOaE\nEGLLli2iatWqIjQ01GxyrpRZuXKlqF+/vtl2DR8+XAwYMECaO3DggBgzZoxZrkqVKmLz5s2q9Xro\n0CFRt25dERAQYLYDJcvVqFFD7N27V/NrGBsbKypXrmxWy1988YVYtWqValuP69Spkxg8eLA0s337\ndlG1alWr1yLvD29KuQULFog6deoIo9FoyoWFhYkRI0Yofn7379+vWBtqn/vt27cLf39/03bkUcpV\nr15dsT66d++umDl48KBibWjpmyzrQy2jVBuy3I4dO2zWx6xZszT3nY/Xhuw1lNWHLLdw4UKb9TF6\n9GjFflpWH2r9u636kGVkfYcsp1QfMTExquOPrb5D7Xkp1Ycsp1QfCxcu1DxGPl4fsraU6mP16tWK\nGaXayBtPbY3HauOKUk4I5b5DllMbW2xlZOOK2jYKoTy2KGWUakOWUxtbtOwLPV4bsrbUxhZbGaVx\nJa82lPa71OpDtr8mqw+lnKw+lDJq9aG2T2mrPmQZWX0o5WT1oXWf17I+lHJq9aGUU+o/xo4dq7h/\nLRtb1PbLbdWHLCOrDVlOtu/xsvp01nKrW36VL7/Wfu7cOeTk5Jiddt7Hxwfx8fGq2YMHD8Lf3x8x\nMTEQGn5OX7p0aSxYsAAlSpQwLRNC4P79+6q5KVOm4B//+AcA4MiRIzh06BD8/PxU2xw/fjxCQ0NR\nrlw51XXzJCYm4p133tG8ft42FStWDL6+vqZlXbp0wTfffKMpf+/ePSxYsAADBgxAoUKFpOsWKVIE\nRYsWxdq1a5GdnY1Lly7h6NGj0q/DX7t2DSVKlMAbb7xhWla+fHmcOnUKORaXOFB6X+Pj4+Hu7o7C\nhQublvn4+JgudyCrh127dqF///4YPHiwprZq1KiBsWPHWj2PvFpRylWpUsX0Nbrs7GysXr0aWVlZ\nqFSpknT7srKyMGLECERERFi9/kq59PR0pKSk4O2337baTqXMoUOHULVqVVMtA8DMmTPRvHlz1dcw\nz/79+3HkyBGEh4dLM05OTkhLS8P27dsB5H6V7MGDB/jPf/4jzSUlJcHd3R0Gg8G0rHz58rh48aLV\n5xfIfU9OnDihWBtqn/tdu3YhPDwcw4YNM3tcpVze1/9s1cejR48UM5UrV1asDbVttFUfsoysNmzl\n8l7HgwcP2qyP9u3ba+o7LWtD9hrK6kNpG9PT0xXr4/z581b99OHDh1GlShXV+pD177bqQ5aR9R2y\nnFJ9BAQESLdPqe+QtaVWH0qvo1J9dOrUSdMYaas+lHJK9eHr66u4fdeuXbNZG3mXurE1HquNK0o5\nQLnvkOXUxhZbGdm4oraNsrHFVkZWG7Kc2tiiti9kWRuyttTGFlsZpX4jrzaU9rvU6kO2vyarD6Wc\nrD6UMmr1IdtGpfpQyqjVh1JOVh9a9nlt1YdSTq0+lHJK/cfevXsV969lY4vafrmt+pBlZLUhy8n2\nPV5WOTlGq1t+5fC8N8CWW7duwcnJCQ4Of21eyZIlkZmZibt378LZ2Vkx27p1a11tFStWDNWqVTPd\nF0IgOjoaH374oebHCAwMRHJyMj766CPUrVtXum5eZ/LTTz8hIiJCcxuXL1/Gr7/+ijlz5sBoNKJe\nvXro3bu3dNJ87do1vPHGG/jhhx8QFRWFR48eoWnTpujRo4dZR6NkxYoVcHV1RZ06dVTXdXR0xIgR\nIzBq1CgsXboUOTk5aNq0KZo2baqYKVWqFP744w9kZmaaOrHk5GTk5OTg/v37cHJyMq2r9L7eunUL\nLi4uZstKliyJlJQUaQ4AxowZAwBWv0tTyrz++ut4/fXXTfdv376Nn3/+Gb1791ZtC8j9TWRwcDCM\nRiP69++P119/XZqZO3cu3N3dbdaiUu7SpUswGAyYM2cOdu/eDScnJ3Ts2BGNGzdWzFy7dg1lypTB\n5MmT8eOPP6JEiRLo2bOn6SyUWj5T8+fPR9OmTeHq6irN+Pr6ok2bNujduzcKFCgAo9GIsWPHmgZ1\npVzJkiVx/vx5s2XJycm4f/++zc+vv7+/tDbUPveRkZEAcv9Y8DhZTlYfan2MrdoAIM3Zqg/Z9slq\nQynn7+9v6kds1YeWvtOyNmTbqFYfSttYsmRJnD171qzd5ORk3L1713Tfsp8eM2aMtO9QygHK9aGU\nMRgM0r5D1hagXB9KGVnfoZSLj49XrA9Z7qeffpL2H7LnBVjXh9rrKKsPy0xQUBASEhJs9h13795V\nHI/VxhXZOC6rDaWcrO9Q22dQqg1ZTqk+lDKJiYnS2lDKycYWLftCtmpDKSfrO5QySuNKXr+htN+l\nVh+y/TVZfSjlZPUxdepU6b6hUn3YaqtPnz5wcHBQrA+l7VOrD8tccHAwevXqJa0PLfu8tupD6Xmp\njS1K7clqRGn/WlYfavvltupDlpHVhpY5gGxsednk69+YW8iXR84zMjLg6OhotizvvpYTtT2JCRMm\n4Ny5c1Z/qZWZMWMG5s6di7Nnz0qPSmdlZWHkyJGIiIiwen4y169fx8OHD1G4cGFMnz4dgwcPxk8/\n/YSJEydKcw8ePMBvv/2GVatWYdy4cRgyZAiWLVum6URtALBmzRq0b99e83YmJiYiMDAQq1evxrhx\n47B161Zs3LhRcX0PDw+ULl0ao0aNQkZGBq5cuYLvvvsOQO7RRi2UauVZ10lmZiZ69eoFFxcXtGzZ\nUlOmRIkSWLt2LUaMGIFvv/3W9BdcWxISErBq1SrNJwzMc+nSJRQoUADlypXD/Pnz0bx5cwwfPhyx\nsbGKmQcPHmDdunX4448/EBUVhdDQUPTp0wenT5/W1Oa1a9fw3//+F+3atVNd988//8S1a9fQu3dv\nrFmzBt27d0dkZCQuX74szQUFBSE+Ph6rV69GTk4Ofv31V+zcudOqTiZMmICzZ88iPDxcV23Y87mX\n5WT1YSujpTYez2mtj7xM3759ddXG46/jgwcPsH79etX6sPW8tNTG4zk99ZG3jf369TNNLmX1kddP\nnzt3DmPGjNFcH1r7d60ZWW0o5WT18Xgm77qqWmrDsq3Lly9rqg/L11FL/6H0vNTqw/K5aakPy0xQ\nUBBOnDhhVRuy8VhWG/aO41pzj9dHkyZNVDO2akPWllLfIcvIakOWU6qN48ePqz4vW7Uha0upNs6f\nP6+YkY0rtva7Nm7ciAkTJkjrw979Na25x+ujRo0aqhlb9aHU1oQJExT7D1lGVh+ynFJ9xMXFqT4v\nW/Uha0vWd8hee6X+Izs722r/Ojo6Gt999520PuzZL9easRxbtOT07Je+6LKNOVa3/CpfHjkvXLiw\n1Q5S3v2iRYs+s3YnTpyIZcuWYdq0abq+cu7u7g4g9yyjAwcOxJAhQ8yO+ueZMWMGKlasqOuoPJD7\nV/UDBw6gePHiAAA3NzcYjUYMGjQIQ4cOVTwKXrBgQfz555+YMmUK/vnPfwIAfv/9d6xcudLmmU8f\nFx8fj5SUFNSvX1/TNu7fvx9r1qzB7t274ejoiPfffx83btzAnDlzEBISYjPj6OiIb7/9Fn379oWP\njw9KliyJsLAwjBs3Dq+++qqmdgsXLox79+6ZLcvKytJ1PUG9Hjx4gB49euDq1atYuXKl2VeXZF59\n9VXTmUUTEhKwbNkyxW8lDB8+HL1797b6Cq+axo0bIzAw0FQr//nPf/Dbb79h5cqVZkeyHlewYEE4\nOzvj66+/BgBUqFABhw8fRkxMDEaNGqXa5rZt21ChQgWULVtWdd358+cDAHr06GFq68SJE1i6dKn0\nmyTvvfceIiMjERkZiZEjR8LNzQ1t2rTBgQMHTOs8/vl99913NdeGvZ97pZysPpQyarVhmWvdurVq\nfVi+Hu+++66m2rDMaakPpeelVhuWuWnTpgFQrw9b7Y0ePVpaH3n99JAhQzBgwAA0a9YMf/zxh9n2\n2KoPrf27loxa36GUk9XH45kBAwbg5MmTmvoOy7YGDx6sqT4sX0cfHx/V+lB6Xmr1Yfnc8sZ/WX3Y\nel62auPHH3+En5+fzfFY1nfYO45ryVnWx7x581QztmojPj5eMffVV1/ZrA/Z9snGlRMnTijmlPqO\nkSNHqj4vW7Uh20alsWXIkCGKGdm4orTfNXDgQDRt2lSx77B3f01LzrI+3nzzTdWMrfpYunSp4nOL\nj4+3WR+y7Rs2bJhifSxcuFCxLV9fX5v1sXPnTtXnZas+ZO/ZK6+8YrM+8voOWXu2+o+NGzfi3r17\nVvvXK1asQEBAANLS0mzWhz375VoytsYWLTk9+6Uvuhzji3Pl8Hw5OXd1dUVaWhqMRiMKFMg9uJ+a\nmooiRYqYPjxPW2RkJGJiYjBx4kTFSczjbt++jWPHjpmt++677+LRo0em305a+vnnn3H79m3TZbvy\njups3boVR48elbZn+bzLlSuHzMxMpKWlKX7N38XFBYULFzZ9KAHgnXfewY0bN1Sf3549e1C5cmUU\nK1ZMdV0AOH36NN5++22zvxZWqFABUVFR0lzFihURGxuL27dvw9nZGb/++iucnZ01/xHG1dUVCQkJ\nZstSU1NRunRpTXm90tPTERYWhqSkJCxZsgRvvvmmaiYhIQFpaWlmv/spV66c4ldir1+/jmPHjuH8\n+fOm3xI9fPgQERER+PnnnzFv3jxpe5a1UrZsWbNJiqXSpUubPmd53nnnHVy4cEHaTp5ff/1V02cG\nAM6cOQM3NzezZRUqVLB6D21p0qQJGjdujNu3b6NUqVKYOHGi6XwFtj6/WmpD7+deLSerD1sZLbVh\nmdNSH0rbp1YbtnJq9SF7DWW1YSunpT6U2rNVH6VKlUJsbKzNfrp06dJITEw0ayuvPuzp39UyDg4O\nNmtDlsv7Datlfezbt0/xeZ04cQIXLlywWRtjx45VbOvPP/+0el559SHbxtdff93qKNE777yDU6dO\nKW5j3mtoqz5kbZ0/f95mfZw5c0balq3aSE9Px44dO2yOx927d1fsO+wdx9VytvoOWWb16tW4e/eu\nzb5DKbd+/XoYDAab9QEABoNBcfuU+o7ffvtNcRvr1atns+/Ys2cPfvvtN+lraKs2ZK9H5cqVbdZG\ndHQ0Ll++rNiWbFxR2u8qVaqUYt8hy8n219RyhQoVstl/KGWOHDkCwLrvyBtblHKy/sNy30P2vB4f\nW5TacnV1RcGCBc3+LW9sUXsNlcYWpdzp06elY4usPVs1Urp0ady7d89q/zolJQWurq64ePGi2ePl\n1Yc9++VqGaX9DlkuMTFRsf94WT3Kyb9Hyi3ly6+1V6hQAQ4ODmYnXzl8+DAqVqz4TNqbOXMmYmJi\nMHXqVAQHB2vKJCUloVevXrh586Zp2cmTJ1GiRAmbO24AEB0djZ9++gkbNmzAhg0bEBgYiMDAQPz4\n44/Stvbs2QM/Pz9kZmaalp05cwZOTk7Sjt7DwwOZmZm4cuWKaVliYqLZCdiUxMfHw9vbW3W9PC4u\nLrhy5Qqys7NNyy5duoQyZcooZu7du4c2bdrg3r17KFmyJAoUKIC4uDhUqVJFc7seHh44c+aM2Tct\njhw5YnYywadFCIGePXvi999/R3R0tOajrDt37sTw4cPNlp06dUox/89//hPbt2/Hjz/+aKoVFxcX\n9OnTB6NHj5a29e2336Jjx45my86ePSs9sYqnpycuXrxodgI2rXUC5Na91lpxcXGx2ulVqxMAOHDg\nAPr16weDwYBSpUpBCIHdu3fDz89P8fOrVhv2fO5lOVl9KGXUasNWTq0+lNpSqw2lnKw+1F5DpdpQ\nyqnVh1JOqT7Kli1rs58uWbIkfHx8cPr0aZv1YU//rpZRqg1Z7tixYzbrw9XV1Wbmtddew7Zt2xRr\nQ9bW0qVLFetDKVeyZEl4enriwoULVvVRrFgx1dfQVn3I2nJxcbHa6b106RKKFy+u2NaFCxds1ka3\nbt0Ux+NKlSop9h32juOynFLfIcvs2LFDse9Qym3fvl2xPmRtyfoOWc7Dw8Nm3xEUFKT6GtqqDVlb\npUuXttl3BAcHK2Zk44rSfpezszN8fX0V+w5799fUcrbqQ5ZR6jvKlSsnfW5K9dGoUSPFtpYtW6ZY\nH7K2lPqOAgUKqL6GtupD1patCXPe2CJ7HS9evGizRmrWrKm4f+3h4aFYH/bsl8sysv0OWU7Wf7ys\neJ3zp2DEiBEiJCRExMfHi+3btwsfHx/Va2ZbKl++vOql1BISEsT7778vpk+fLm7dumV2k8nJyRHN\nmjUTnTt3FgkJCSIuLk5Uq1ZNLFu2TPP2DRkyRNOl1NLT00XNmjVF//79xaVLl0RcXJzp8kFqunXr\nJlq1aiXOnj0rdu/eLfz9/UV0dLRq7uOPPxabNm3S9DyEyL02aUBAgBg8eLC4fPmy2LFjh/Dz8zNd\nMkVJ48aNxZdffimuXr0qVq1aJTw8PMSpU6ekmcff15ycHBESEiLCw8PFxYsXRVRUlPD29ra6Hq1l\n7nH79u2zus65rUxMTIyoUKGCiIuLM6uTtLQ0ae7GjRvC19dXTJo0Sfz2228iOjpafPDBB+Ls2bOa\ntk+I3PfD8lq0tnLx8fHC3d1dLFq0SFy9elUsX75cVKpUSZw4cUIxc//+fVGjRg0xYsQIceXKFREd\nHS3c3d2tts/WNiYlJYny5cuL1NRUm9tmmTl+/Lhwd3cX3333nbh69arp2poJCQnS3I0bN4Snp6dY\nuXKluHr1qoiIiBA1a9YUp06dUvz8ympD6+f+wIEDZpe7keWU6uPYsWOKGVlt6Omb8upDlpHVhiyn\nVB/btm2Tbp9SbcjaktWHLKdUH+np6Yr9dE5OjmjQoIHN+tDavz9eH7KMrO+Q5ZTq4/Tp05rHn8f7\nDllbsvqQ5ZTqQ20br127ZrM+ZG0p1ceFCxekr6Gt2njw4IFZu4+Px3rGFaVx3LLvkOW0ji2PZ7SO\nK7JtFEJ5bHk8o3VcscxpHVsst0/LuGKZ0zq2WL6GSrUh2++S9R1a99cs60OWU6qP69evK2Zk9aFn\nnzKvPmQZWX3Icvfv3xfVq1e3qo+jR49Kt0+p75C1JasPWU5WI0r717L6EELbfrllfShl1PoOpZye\n/uNlUTtyttUtv8q3k/OMjAwxZMgQ4eXlJWrUqCGWLl2q+zG0XOc8KipKuLm5md3Kly8vHVTz3Lx5\nU/Tq1Uv4+vqK6tWri6ioKF3bp3VyLkTuDm2nTp2Et7e3qF69upg1a5am3P3798XgwYOFt7e3qFat\nmpg9W1sxenh4iD179mha13IbfX19Rd26dTW9Z5cvXxbt2rUTnp6eIiQkRMTFxalmLN/Xq1evinbt\n2olKlSqJkJAQsX//fk25PLLJuZubm+kakZ07d7aqFTc3N9G+fXvVtk6cOCFatGghPD09RYMGDcQv\nv/yiefuEECIwMFBxcm6Z27Fjh2jUqJHw8PAQ9evXt/lHLctMQkKC6TWsV6+e4h/CbD0vNzc3kZWV\nZXN9W5mdO3eK0NBQ4eXlJZo2bar5/YqLixPBwcHC09NTfPbZZ+LSpUuqn98rV67YrA2tn3vLAdJW\nLu8WFhZmc3mtWrWkbSnVhp6+Ka8+1DJKtaGWs1Ufahml2lDLKdWHWs5WfQgh76dlfYeW/t2yPpQy\nan2HrC2l+tA6/lj2HbKcrO+Q5ZT6D7XnpdR3yHJK9SHLKNXG4yzHY63jytOYnGsdWyzb0jKuyLZR\nCOWxxTKjZVyxldMytth6Xmrjiq2clrHFMiOrDdl+l6w+tOyv2aoPpZysPmRtyepD6z7l4/Uhy8jq\nQ5ZTqg+156VUH7KcrD5kOaUake1fy+pDy365ZX0oZdT6DllbWvuPl8VHI2da3fIrgxAaLgZORERE\nRERERM9MvvzNOREREREREdH/Ek7OiYiIiIiIiJ4zTs6JiIiIiIiInjNOzomIiIiIiIieM07OiYiI\niHw/oHkAAABNSURBVIiIiJ4zTs6JiIiIiIiInjNOzomIiIiIiIieM07OiYiIiIiIiJ4zTs6JiIiI\niIiInjNOzomIiIiIiIieM07OiYiIiIiIiJ6z/wNnz/EC0pSUlQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAB3CAYAAABhcDFiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XdcFNf+P/7XKqLeqEERuUlMbqImYlApYiEiRizYQWPN\n1cSuJPbeG0ZRYy+AikZFDdbE2EWDLX7sSmyJgLHEihGDEVmB8/uDH3vZMmdm1oL6fT0fj30ow7z2\nzO6+95w57OyMQQghQERERERERER5Jl9ebwARERERERHR/+s4OSciIiIiIiLKY5ycExEREREREeUx\nTs6JiIiIiIiI8hgn50RERERERER5jJNzIiIiIiIiojzGyTkRERERERFRHuPknIiIiIiIiCiPcXJO\nRERERERElMcc8noDiIiIiIiIiJ6HS36BVss+PLgzD7ZEHSfnRERERERE9FoyOLw6U14e1k5ERM/V\niBEj4Obmpnjz8/PTdX8BAQEYMWLEc9ra/9m4cSPc3Nxw48aNp76vtWvXomnTpvDy8kLjxo2xatUq\nq3UOHjyIVq1awdPTE3Xr1sXSpUtt3pfW9XIIITBgwAB4enrCzc0NX375JRISEgAAYWFh+OSTT+Dm\n5obOnTsjLi4OAGA0GtG1a1e4ubmhWbNm2Ldv39M9AURERHnFwcH69pJ6ebeMiIheGy4uLliwYIHN\n3xUoUEDXfS1cuBBvvPHGs9gsKYPBAIPB8NT3s27dOowdOxZffPEFAgICcPz4cUyaNAlPnjxBp06d\nAACnT59Gr1690LRpU/Tv3x8nTpzA9OnTkZmZie7du5vuS+t6lo9j1qxZ6NKlCw4fPozly5ebfjd8\n+HBkZWVh8+bNWLZsmWm5o6MjIiIiMGHCBEyaNOmpnwMiIqK8YsifP683QTNOzomI6LlzdHRE5cqV\nn8l9ubm5PZP7eVE2bNgAHx8fjBw5EgBQo0YNXL58GdHR0abJ+bx58+Du7o6wsDAAgJ+fH548eYLI\nyEh8+eWXcHR01LWeLW+++abN5ZcvX8bDhw+tlm/cuBH9+/e3+3ETERG9DHhYOxERkR0CAgIwa9Ys\nTJo0CVWrVkX16tUxbNgwPHjwwGyd3Ie1nzt3Dp06dYKPjw+8vb3RuXNnnDlzxvT7rKwsrFq1Cs2a\nNYOHhwfq1KmDGTNmwGg0mtYRQmDhwoWoU6cOPD098fXXX5u1mWPdunVo2rQpKlWqhDp16mD+/PnI\nysqSPiaj0YgiRYqYLXvzzTeRkpJi+v3Ro0dRr149s3UCAwPx8OFDnDhxQtd6SmxNzvft24esrCxk\nZmaaTdBTUlKQkZGBkiVLSu+TiIjopZc/v/XtJcXJORERvRCZmZk2b5ZWr16N+Ph4TJs2DYMHD0Zc\nXBx69uxp8z4fPnyIbt26wdnZGfPnz8esWbOQlpaGbt26mSabY8aMQVhYGAIDAxEREYEOHTogOjoa\nX331lel+pk2bhoULF6JNmzZYsGABihcvjm+//dasrcjISIwdOxY1a9ZEZGQkOnTogMWLF2Ps2LHS\nx/3FF1/g4MGD2Lx5Mx4+fIgDBw7ghx9+QHBwMADg2rVrePLkCT744AOz3H/+8x8AQFJSkq71lFhO\nzo1GI37++Wc0b94cAEx/LACyvyPfqlUr6f0RERG9CgwODlY3PW7fvo2+ffuievXqqF27NsLCwsz+\nwJ/b+fPn0aZNG3h6eqJ169Y4d+6crrZenc/4iYjolfXnn3/C3d3darnBYMDQoUPRuXNn07L8+fNj\n2bJlpu+VFy9eHL1798bBgwetTh6XmJiI+/fvo2PHjvD09AQAlClTBmvXrsU///yD27dvY8OGDRg8\neDC6desGAPD19YWLiwuGDh2K/fv3w8vLCytXrkTXrl0REhICAKhZsyZu376NgwcPAsj+I0B4eDja\nt29v+tT+k08+gZOTE0aPHo3OnTujbNmyNh97kyZNcOTIEQwdOtS0rFatWqb7yfkjguX36HN+/uef\nf3Stp8TJycns56ioKHz++ee4efMmAODBgwcoXbo0EhMTUbp0aRQsWFB6f0RERK+Cpz2svW/fvnBy\ncsLq1auRkpKCkSNHIn/+/BgyZIjZemlpaejRoweCgoIQFhaGNWvWoGfPnoiNjUWhQoU0tcXJORER\nPXelSpVCREQEhBBWv3vrrbfMfq5bt67ZBLRu3bpwcHDAsWPHrCbnH374IUqUKIGePXuiYcOGqFWr\nFmrWrIlBgwYBAPbu3QuDwYAmTZqY5Zo0aYIRI0bg6NGjMBgMyMzMxKeffmq2TqNGjUyT81OnTiE9\nPR116tQx+7T/008/hRAChw4dUpych4SE4NSpUxg2bBgqVaqE3377DfPmzUPfvn2xYMEC1cPic05K\np3U9Jbk/Ob927Rru3buHjz76CI8fP4YQwnQY/9atW9G3b1+z7L59+5CSkoKgoCBpG0RERC8bg4P9\nh7EnJSUhPj4ehw4dQokSJQBkT9anTZtmNTnfunUrChcubFo+atQo7N+/Hzt27DAdLaeGk3MiInru\nChQogI8//ljTuq6urmY/GwwGODk5mR12neNf//oXVq9ejfDwcOzYsQNr165FwYIFERQUhFGjRpkm\nnJbfnc6fPz+KFy+Ov//+27RO8eLFzdZxcXEx/T8lJQVCCPTo0cPqDwwGgwF37tyx+VhOnTqFgwcP\n4ptvvsFnn30GAPDx8UHp0qXRs2dP7Nu3D++88w4A60++cz4pL1q0qNm/auspyT05nz17tumT+5zH\nnZKSgkOHDuGTTz4xy61evRq7du3SvGNBRET0UnmKT85dXFywZMkS08QcyD5PTWpqqtW68fHxqFKl\nitkyb29vnDp1ipNzIiJ6Nd2/f9/s56ysLKSkpCienOz999/H1KlTIYRAfHw8fvzxR6xZswb/+c9/\nTBPS5ORks0/oMzIycP/+fRQvXhzFixeHEALJycl4//33Tevk/mNAsWLFAAAzZswwfcc7N6Vtu3Hj\nBgwGA7y8vMyWV61aFQBw6dIl+Pr6In/+/Lh69arZOleuXAEA0yfy7733nqb1lOQc1h4XF4dy5cqZ\ntjln+V9//YXExET06dPHLPf555/jr7/+kt43ERHRy+ppDmsvWrQoatasafpZCIHo6GirP2QDwJ07\nd/DRRx+ZLXN2dkZCQoLm9nhCOCIieqns27cPGRkZpp9jY2ORmZkJX19fq3V37twJX19f3Lt3DwaD\nAR4eHhg7diyKFi2KGzduoFq1ahBCYMuWLWa5LVu2ICsrCz4+PvDy8kKhQoWwY8cOs3X27t1r+r+H\nhwcKFCiAW7duwd3d3XTLly8fZsyYgWvXrtl8LGXKlIEQwupM6jk/v/fee3B0dISPjw927dpl9diK\nFStmugSd1vWUODk5QQiBqKgodO3a1bS8aNGicHBwQExMDA9bJyKi144hfz6rm72mTZuGixcvYsCA\nAVa/e/z4sdUlTR0dHRVPHmcLPzknIqLnzmg0ml3ezJKbm5vpBGS3bt1CSEgIOnTogJs3b2LWrFnw\n9/eHj4+PVc7b2xtZWVn46quv0L17dxQpUgTbtm3Dw4cPERgYiLJly6JFixaYO3cu0tLSULVqVZw/\nfx7z589HjRo1UKtWLQDAV199hTlz5qBw4cKoUaMG4uLiEBcXZ2rHyckJ3bp1w5w5c5Camopq1arh\n9u3bmDt3LvLly6d47fUKFSqgQYMGmDJlClJSUuDh4YFLly5h/vz5qFSpkumyaCEhIejSpQv69euH\nzz77DCdPnsSyZcswePBgsxOzaV3PlpyjCFq3bm218/Dmm2/Cz88P7733nvQ+iIiIXjWGAgWeyf1M\nnz4dK1euxOzZs20erVawYEGribjRaNR8MjiAk3MiInoBkpOT0a5dO8Xfb9q0yTTBbdy4Md58800M\nGDAA//rXv9CyZUuzv1AbDAbTyc9cXFwQFRWF2bNnY/To0Xj8+DE+/PBDzJs3z3To+OTJk/H+++9j\nw4YNWLx4MVxdXdGpUyfTmdkBoEePHnjjjTewfPlyrFixAl5eXhg+fDjGjx9vWqdfv34oVaoUVq9e\njaioKBQrVgw1a9bEgAEDrK5jntvMmTMRHh6OmJgYzJs3D2+99RZatWqFr776CvnyZf/1vkaNGpg7\ndy7mzZuH3r17w9XVFUOHDkWnTp3M7kvrera8+eab8PHxMV06LTc3NzezS8sRERG9Np7ybO0AEBoa\nipiYGEyfPt30h3VLrq6uuHv3rtmy5ORks3PYqDEIW6fOJSIiygMBAQGoXr06pkyZktebQrnMnz8f\npUuX5knhiIjolfNn/xFWy96ZrX0/Y/78+YiIiMCsWbNQv359xfVyPgTI/TW5Bg0aICQkBC1atNDU\nFr9zTkRERIrWrVuHX375BTt27LD6Xj4REdHLzlDAweqmVWJiIsLDw9GjRw94eXkhOTnZdAOyPxlP\nT08HAAQGBiI1NRWTJ09GYmIiJk2ahLS0NDRq1EhzezysnYiIXhq5D1mnl0Pr1q3RunXrvN4MIiIi\nuzzN2dr37NmDrKwshIeHIzw8HED2GdsNBgMuXLgAPz8/hIWFITg4GEWKFEFERATGjRuHtWvXonz5\n8li8eLGu75zzsHYiIiIiIiJ6Ld0cPclq2VuTRufBlqjjJ+dERERERET0WnqaT85ftFdnS4mIiIiI\niIj0eIrrmr9onJwTERERERHRa+lZXef8ReDknIiIiIiIiF5LPKzdTrO37de8bv/G/gCAGVvidLUx\nqOmnAIDJm2J15Ua2qId5Ow7qyvRp6AcA6DAvWlcuuk8HtJyxTFdm46DOAID/zl2pK7eqb0cAQPD0\nKM2ZH4Z0BQA0nrJIV1vbRvQAAIxbp+9SPBNaN8TomO26MpPaZl+yYMGuQ7pyXzeoiamb9+rKDGse\nAAB2vWbtZq/Qlfm+/xcAgKZTF+vKbRnWHQAQvvsXzZmQ+p8AAIZEb9bV1vQOzQEA3SNjdOUW92yL\nHovW6sos6tEGgH3PR/NpS3RlNg/tBgDovXSjrtz8Li0BAF9FrdecWdi1FQD7+ikA6BL+va7c0pB2\ndj8ue+rentoAYNf7Rc/zDvzvubd3G/X0OV83qAkA6Bah7/Va0qsdAPu2ceiqn3Rlpv23GQD7+u2B\nK37UlZn5RRAA++venv6txbdLdbW1aXAXAMCkjbt15Ua3rI9vde6vDP7/91cmbtilKzf2swbotXid\nrkxE9+yz8duTm/LDHl2ZEcF1AQCtZ32nK7duQCcA0NVeTlsNJ0fqamvHyJ4AgFYz9fVv6wd2tuv1\nAvTthwHZ+2L2jpn2jBEA0CRM+37f1uHZ+3z29gNtZy/XlYvp/yUGLP9BV2bWl8EAYNd+35i1+vZL\nQ9tk75eOX79TV258q0C7xyN7nsPXlYGHtRMRERERERHlsVfok/NX588IRERERERERDoYChSwutnD\naDSiWbNmOHbsmOI6ISEhcHNzQ4UKFUz/7tu3T3Mbdv8Z4f79+zAajShcuDCKFStm790QERERERER\nPReGfE//ebTRaMTAgQORkJAgXS8pKQkzZsxAjRo1TMv0zJV1Tc537dqF6OhoxMfHIz093bS8UKFC\nqFixIr788kvUq1dPz10SERERERERPRdPe0K4xMREDBo0SHU9o9GI69evo2LFinB2drarLc1bumzZ\nMsyfPx/dunVD79694ezsDEdHRxiNRiQnJ+P48eMYPnw4+vXrh44dO9q1MURERERERETPzFNeSu3o\n0aPw9fVF//794eHhobje5cuXYTAY8O6779rdlubJ+dKlSzF16lSbn4yXLVsW1atXR/ny5REaGsrJ\nOREREREREeW5pz1be/v27TWtl5iYiCJFimDIkCE4cuQI3nrrLfTp0wf+/v6a29K8pY8fP0bp0qWl\n67i6uiI1NVVz40RERERERETPi8HBwer2PCQlJSE9PR21atVCVFQUateujZCQEJw7d07zfWienNev\nXx/Dhw/H8ePHkZGRYfa7rKwsnDx5EiNHjkRgYKD2R0BERERERET0nLyoyXnv3r2xf/9+BAcHo3z5\n8ujduzdq1aqFmBjt16rXvGXjx4/H1KlT0bVrV2RmZsLJycn0nfOUlBQ4ODggKCgII0aMsOvBEBER\nERERET1TDvlfWFNFixY1+7ls2bJITEzUnNc8OXd0dMSYMWMwePBgXLx4EXfv3kVaWhoKFiwIV1dX\nVKhQAYUKFdK+5URERERERETP0fP6pNzSiBEjYDAYMHnyZNOyixcv4qOPPtJ8H7q3tHDhwvDy8tIb\nIyIiIiIiInqx8j2/T86Tk5NRtGhRFCxYEAEBARg4cCCqVasGb29vbN68GSdPnkRoaKjm+zMIIcRz\n21oiIiIiIiKiPJK6Z5/VsqJ1a9t1XxUqVMCKFStQtWpVAICbmxvCwsIQHBwMAFi/fj0WL16MW7du\noVy5chg5ciSqVKmi+f5fqsn5V1HrNa+7sGsrAMAXC1bpamPF1/8FAMzetl9Xrn9jf7SdvVxXJqb/\nlwCA+pPCdeV2jw7B5E2xujIjW2Rf4q730o26cvO7tAQATPvpZ82Zoc3qAAAGrdysq60ZHZsDAFrP\n+k5Xbt2ATgjduFtXZkzL+gBg12tm73M4a6v1G19mQJPadtfv/J0HdeV6B/oBADrMi9acie7TAQAw\nJFrf6zy9Q/brbE99jI7ZriszqW0jAEC3iO915Zb0aodei9fpykR0bw0AiIw9rCvXs54vAKBLuPZt\nXBrSDoC+9yXwv/fmuHU7dOUmtG6IHovW6sos6tEmu81VP+nKTftvM4xfv1NXZnyr7BON2rONLWcs\n05XZOKgzAKD9nJW6cmv6ZV9CVE/fndNv9/tuk6625nRqAQD4cuFqXbnlX32OYau36MpM/bwpAKDd\n7BW6ct/3/8Ku2gCAhpMjdeV2jOwJQF/dT2jdEIC+/Q7gf/seo77fpiv3TbvGmLp5r67MsOYBAOyr\n+4kbdunKjP2sAQBgzFp9fXBom0Z216+9Y0vjKYs0Z7aN6AEAWL7/uK62vvT3AQD8d66+fmBV3452\nj89zth/QlevXqBZafLtUV2bT4C4AgIErftSVm/lFEACg7sSFmjN7xn4FAHaPtfb0wfbWlD3baO/Y\nYs9zb09fD9hXv6+rh/sOWS0rUrtmHmyJuhdzAD4RERERERHRC2bI/+JOCPe0ODknIiIiIiKi19ML\nOiHcs/DqbCkRERERERGRDoYXeCm1p8XJOREREREREb2WXtSl1J6FV2dLiYiIiIiIiHR4lSbn+fJ6\nA4iIiIiIiIieC4f81jc7GI1GNGvWDMeOHVNc5/z582jTpg08PT3RunVrnDt3Tt+m6llZtiGWcq79\nRkRERERERJQXnsXZ2o1GIwYOHIiEhATFddLS0tCjRw8EBQUhLCwMa9asQc+ePREbG4tChQppakfX\n5HzixImmDZJdHt1gMODChQt67pqIiIiIiIjomTIUKPBU+cTERAwaNEh1va1bt6Jw4cIYMmQIAGDU\nqFHYv38/duzYgeDgYE1t6Zqcb9iwAQMHDsT169cRExODggUL6okTERERERERvTBPe7b2o0ePwtfX\nF/3794eHh4fievHx8ahSpYrZMm9vb5w6dUrz5FzXd84dHR0xc+ZMAMDs2bP1RImIiIiIiIherHz5\nrW86tG/fHsOGDVP9YPrOnTsoVaqU2TJnZ2fcvn1b+6bq2jJkT9BnzJiB9957T2+UiIiIiIiI6IUx\nFHCwuj0Pjx8/hqOjo9kyR0dHGI1GzfdhELIvjxMRERERERG9olJTU62WFS1a1K77cnNzw8qVK22e\n/Lxnz54oX748Bg4caFr27bffIikpCQsXLtR0/7yUGhEREREREdFTcHV1xd27d82WJScnw8XFRfN9\nvFRXZJ+6ea/mdYc1DwAAjI7ZrquNSW0bAQBmbInTlRvU9FPM2X5AV6Zfo1oAgCZhi3Tltg7vgVYz\nl+nKrB/YGQAw5Yc9unIjgusCALpHxmjOLO7ZFgDQY9FaXW0t6tEGABC6cbeu3JiW9dF82hJdmc1D\nuwEARn2/TVfum3aN7W5r6KqfdOWm/bcZJm7YpSsz9rMGAGB3Tk995NSGPe8VABi0crOu3IyOzTFs\n9RZdmamfNwUAjFizVVduSvsmCFmyXlcmvFsrAEDLGfremxsHZb839WzjlPZNAABj1urr30LbZPdv\n9tTHf+eu1JVZ1bcjANj1PNrzXgGAXovX6cpFdG+N1rO+05VZN6ATAKDt7OW6cjH9vwQAXX13Tr89\nfv1OXW2NbxVod87eceyrKH2v88KurfDFglW6Miu+/i8A+/pSQN+YlDMe2TM+A/b1i42n6Gtr24js\ntux5zdrNXqEr833/LwDY9362t+8YuOJHXbmZXwQBANrP0d7emn7ZbU3eFKurrZEt6gGw7/nQsz8F\n/G+fyp7n0d79sPDdv+jKhdT/BAAwa+s+zZkBTWoDAMat26GrrQmtGwIAgqdH6cr9MKTrC+3f7O23\n9dQvkF3D9r5X5u88qCvXO9BP1/pkzcPDA4sXLzZbdvLkSYSEhGi+D35yTkRERERERKRTcnIy0tPT\nAQCBgYFITU3F5MmTkZiYiEmTJiEtLQ2NGjXSfH+cnBMREREREdFr6bHBwepmL4PBYPazn58ftm/P\nPtKxSJEiiIiIwPHjx/HZZ5/h119/xeLFi1GoUCHN9/9SHdZORERERERE9KxkZGY+s/u6cOGC2c8X\nL140+7lSpUrYuHGj3fev6ZNzo9GI6dOno3bt2vD29kbv3r2RmJhotk5ycjIqVKhg94YQERERERER\nPUtZWcLq9rLSNDmfOXMmYmNjMXToUEycOBHJycn47LPPEBtrfoINXpWNiIiIiIiIXhZPsjKtbi8r\nTZPz7du3Y/LkyWjSpAmaNm2KNWvWoH379ujfv7/pGHvA+hh8IiIiIiIiorySkZFldXtZafrO+ePH\nj+Hk5GT62WAwYNiwYciXLx+GDBkCBwcHeHl5PbeNJCIiIiIiItIrU7y8k3FLmj45r169OqZNm4a/\n/vrLbPmQIUPQtm1bDBgwAKtXr34uG0hERERERERkj4zMLKvby0rT5HzUqFFISUlBzZo1cejQIbPf\njRkzBr169UJkZORz2UAiIiIiIiIiezzJzLS6vaw0Hdbu6uqKmJgYJCUlwcXFxer3vXv3RqNGjbBn\nz55nvoFERERERERE9sjMerpPyo1GI8aPH4/du3ejUKFC6NKlCzp37mxz3ZCQEPz8888wGAwQQsBg\nMCAiIgK1a9fW1Jau65yXKVNG8Xdly5ZF2bJl9dwdERERERER0XPztIexT506FefPn8fKlStx/fp1\nDBs2DO+88w4aNGhgtW5SUhJmzJiBGjVqmJYVK1ZMc1sGweufERERERER0Wvo8KWrVst8P3xPUzYt\nLQ01atRAVFQUfHx8AADh4eE4fPgwVqxYYbau0WiEl5cXtm3bhv/85z92baum75wTERERERERvWqe\n5jvnFy9eRGZmJjw9PU3LqlSpgvj4eKt1L1++DIPBgHfffdfubdV1WPvzNiR6s+Z1p3doDgAInh6l\nq40fhnQFAETGHtaV61nPF6Ebd+vKjGlZHwAwSWdudMv6GLjiR12ZmV8EAQAaTtZ3Yr4dI3sCAOZs\nP6A5069RLQDA+PU7dbU1vlUgAKDVzGW6cusHdkaTsEW6MluH9wAAtJ71na7cugGd7H6du4R/ryu3\nNKQd2s9ZqSuzpl9HAMDUzXt15YY1DwAAjFizVXNmSvsmAIDm05boamvz0G4AgIkbdunKjf2sAYau\n+klXZtp/mwEAZm/bryvXv7E/Rn2/TVfmm3aNAQCdF67RlVv2VXsA+raxf2N/AEDjKfrqftuI7Lqf\n8oO+83+MCK5rd1uTN8Xqyo1sUc+u2gDsez/XC12oKxM75isAQItvl+rKbRrcBYC+fjGnT3yRY0v9\nSeG6MrtHhwAAei/dqCs3v0tLu2sq6uejunJd61QDoG9/IGdfIPCbCF1t7RzVCwAwOma7rtykto3Q\nbvYK9RVz+b7/FwCAft9t0pWb06mFXe9LAOgeGaMrt7hnW8zYEqcrM6jppwBgd3//VdR6zZmFXVsB\nAD4dP19XW3Hje2e3+dPPunJDm9WxazwCYNd+jp79ZuB/+87j1u3QlZvQuiEA6Hqtc15ne94rANB3\nmb4+Z27nlui1eJ2uTET31gCApXH6+pwun1bDoj3/pyvTo272Ic4d5kXrykX36aBr3w343/6bPXOd\n11XGU5wA7u7du3BycoKDw/+mzc7OzkhPT8f9+/dRvHhx0/LExEQUKVIEQ4YMwZEjR/DWW2+hT58+\n8Pf319wePzknIiIiIiKi11JmlrC6aZWWlgZHR0ezZTk/G41Gs+VJSUlIT09HrVq1EBUVhdq1ayMk\nJATnzp3T3N5L9ck5ERERERER0bOSkWX/J+cFCxa0moTn/Fy4cGGz5b1798aXX36JokWLAgDKly+P\ns2fPIiYmBhMnTtTU3lN/cp6RkYGUlJSnvRsiIiIiIiKiZ+pJRpbVTStXV1ekpKQgK9fl2JKTk1Go\nUCGbZ2HPmZjnKFu2LO7cuaO5PV2T861bt2LixInYuXMnhBCYNGkSvL294evri5o1ayI6Wt/3KIiI\niIiIiIiel0yRZXXTqkKFCnBwcMDp06dNy44fP46KFStarTtixAiMHDnSbNnFixfxwQcfaG5P82Ht\nUVFRCA8Ph6+vL8aNG4cffvgBFy5cwPTp01GuXDn8+uuv+Pbbb/Ho0SP06NFD8wYQERERERERPQ9P\nc53zQoUKISgoCOPGjcPkyZNx+/ZtLFu2DGFhYQCyP0UvWrQoChYsiICAAAwcOBDVqlWDt7c3Nm/e\njJMnTyI0NFRze5on56tWrcLMmTPh7++PEydOoEOHDoiIiEDt2rUBZH9kX7x4cYwZM4aTcyIiIiIi\nIspzT3O2diD7E/EJEyaYvk/er18/1KuXfZULPz8/hIWFITg4GPXr18e4ceMQHh6OW7duoVy5cliy\nZAnefvttzW1pnpzfv38f77//PoDsa7u99dZbKFmypNk6pUuXRlpamubGiYiIiIiIiJ6XzCz7PzkH\nsj89nzIXBNnJAAAf5klEQVRlCqZMmWL1u4sXL5r93KpVK7Rq1crutjR/59zb2xsLFizAo0ePAAB7\n9+6Fu7u76fd37tzBlClT4Ov7+l4jj4iIiIiIiF4dGZlZVreXlebJ+bhx43DmzBmMHj3a6nexsbGo\nXbs2Hjx4gDFjxjzTDSQiIiIiIiKyx6s0Odd8WPt7772H7du3Izk52ep3Xl5e+P7771GpUiXky/fU\nV2cjIiIiIiIiempPe1j7i2QQQoi83ggiIiIiIiKiZ23+zoNWy3oH+uXBlqjT/Mk5ERERERER0ask\nM+vV+Syak3MiIiIiIiJ6LT3tpdReJH5BnIiIiIiIiF5LGVlZVjc9jEYjRo4ciapVq6JWrVpYtmyZ\n4rrnz59HmzZt4OnpidatW+PcuXO62uLknIiIiIiIiF5LmZlZVjc9pk6divPnz2PlypUYN24c5s+f\nj127dlmtl5aWhh49eqBq1arYuHEjPD090bNnTzx+/FhzW5ycExERERER0WvpaT45T0tLw/r16zF6\n9Gi4ubmhXr166NatG6Kjo63W3bp1KwoXLowhQ4agTJkyGDVqFN544w3s2LFDc3ucnBMREREREdFr\n6UlmptVNq4sXLyIzMxOenp6mZVWqVEF8fLzVuvHx8ahSpYrZMm9vb5w6dUpze5ycExERERER0Wsp\nK0tY3bS6e/cunJyc4ODwv/OoOzs7Iz09Hffv3zdb986dOyhVqpTZMmdnZ9y+fVtzezxbOxERERER\nEb2W9HxSbiktLQ2Ojo5my3J+NhqNZssfP35sc13L9WQ4OSciIiIiIqLXUobOE8DlVrBgQavJdc7P\nhQsX1rRuoUKFNLfHyTkRERERERG9ljJ1XjotN1dXV6SkpCArKwv58mV/Izw5ORmFChVCsWLFrNa9\ne/eu2bLk5GS4uLhobu+l/c65nuvJKeWbNWuGY8eOqa57+/Zt9O3bF9WrV0ft2rURFham6fCDq1ev\nomvXrvDy8kJAQACioqJ0bWOPHj0wYsQITevGxsbCzc0NFSpUMP3br18/1ZzRaMSECRNQrVo1+Pn5\nYdasWdL1N23aZNWOm5sbPv74Y9W2bt26hV69eqFKlSqoW7culi9frpr566+/0LdvX1StWhWBgYHY\ntGmT6uOxfF2vX7+Ozp07w8vLC02bNsWhQ4c05XIkJSXBy8tLU+b06dNo164dvLy80KhRI6xbt05T\n7sCBAwgKCoKHhweCg4Oxf/9+zdv38OFD+Pv744cfftDU1qRJk6xew1WrVkkzN2/eRPfu3eHp6YnA\nwEBs375dta0RI0aYtZNz69Spk7St48ePo2XLlvDy8kKLFi1w+PBhTY/r7Nmzpue+Xbt2OHPmDAD5\n+1dWG1re91euXIGHh4fZMllOqT5kGVltaNlGy/qQZWS1Icsp1UfujL+/P6ZOnQqj0ahaG7K2ZPUh\nyynVh6yfltWHlv7dsj5kGVnfIcsp1YeW7bPVd8hysvqQ5ZTqQymjVh+ytpTqQ5ZRqo3cLMdjLeOK\nrVwOW32HLKdlbLHMqI0ratsoG1ssM2rjilJOy9iSO6NlXFFqS8vYYpmR1YZsv0tWH1r212zVhyyn\nVB+yjKw+tGyjZX3IMrL6kOWU6kMpo1YfsrZk9SHLKdWIbP9aVh9a9sst60OWkfUdspzW/uN18TQn\nhKtQoQIcHBxw+vRp07Ljx4+jYsWKVut6eHhYnfzt5MmTZieTUyVeUhMnThRBQUHiwoULYvfu3cLb\n21vs3LlTUzY9PV18/fXXws3NTRw9elR1/TZt2ogePXqIhIQEcfz4cdGgQQMxbdo0aSYrK0sEBgaK\noUOHiitXroh9+/aJKlWqiC1btmjaxi1btojy5cuL4cOHa1o/PDxchISEiHv37onk5GSRnJwsUlNT\nVXNjxowRgYGB4tdffxWHDx8WNWrUEDExMYrrp6enm+4/OTlZ3Lx5UzRo0ECEhYWpttWmTRsxcOBA\nceXKFREbGys8PT3F7t27pZm2bduKtm3bigsXLoi4uDhRrVo1xYzS69q8eXMxdOhQkZiYKCIjI4Wn\np6e4efOmak4IIa5fvy4aNGgg3N3dVdu6e/euqFq1qpg1a5a4cuWK2Lp1q6hcubKIi4uT5q5cuSI8\nPDzE8uXLxbVr18SyZctExYoVxZ9//qm6fUJkv4Zubm5i06ZNmp6Pzp07i8WLF5u9jo8fP1bMZGRk\niKZNm4qvv/5aXL58WXz//ffC3d1dXLp0SdpWamqqWRunT58WlStXFnv27FHM3Lt3T/j4+IilS5eK\na9euiYiICOHp6Slu3bolbSsnN3bsWJGUlCSWLVsmvLy8xM2bN6Xv32bNminWhtr7/saNGyIwMFC4\nubmZPe9KOVl9KGXUakNL32RZH7KMrDaUcrL6UMqo1YZSTq0+1HKW9ZHzGir100r1oaV/t6wPWUZW\nG7KcUn1cv35d0/hjWRtqj0upPmQ5pfr4/fffFTOy+pC1pVQfN2/eVM3Y6jty2BqP1cYVpZys71DK\n3blzR3Vsscyo9R1q22irPmQZWd+hlNMytlhm1PoOpZyWsUUpo1Qbsv0u2diitr+mVB9KOVn/oZRR\nqw8t+5SW9SHLyOpDKSerD6WMWn0o5dTqQy1nq0Zk+9ey+lDbL7dVH0oZtf1SpZzW/uN10j0yxuqm\nx9ixY0XTpk1FfHy82L17t6hSpYppvnL37l1TvaempopPPvlEfPPNNyIhIUGEhoYKPz8/kZaWprmt\nl3Jy/ujRI1G5cmVx7Ngx07KFCxeKjh07qmYTEhJEUFCQCAoK0jQ5T0xMFG5ubuLevXumZVu2bBH+\n/v7S3J07d8SAAQPEP//8Y1rWu3dvMWHCBNVtTElJEbVr1xatW7fWPDkfPHiwmDlzpqZ1c7fj7u5u\n9jwuWrRIjBw5UvN9REREiAYNGgij0Shd78GDB6J8+fJmg26fPn1EaGioYubXX38Vbm5u4vr162bb\n17ZtW6t1lV7XX375RXh5eZntJHTq1EnMmzdPmhNCiB07dogaNWqIoKAgs8m5UmbNmjWicePGZts1\nZswYMXjwYGnuyJEjYvLkyWa5atWqie3bt6vW67Fjx0SDBg2En5+f2Q6ULOfv7y8OHTqk+TmMjY0V\nVatWNavlr7/+Wqxdu1a1rdy6dOkihg0bJs3s3r1b1KhRw+q5yPnDm1JuyZIlon79+iIrK8uU69at\nmxg7dqzi+/fw4cOKtaH2vt+9e7fw9fU1bUcOpVytWrUU66NXr16KmaNHjyrWhpa+ybI+1DJKtSHL\n7dmzx2Z9LFiwQHPfmbs2ZM+hrD5kuaioKJv1MWnSJMV+WlYfav27rfqQZWR9hyynVB8xMTGq44+t\nvkPtcSnVhyynVB9RUVGax8jc9SFrS6k+1q1bp5hRqo2c8dTWeKw2rijlhFDuO2Q5tbHFVkY2rqht\noxDKY4tSRqk2ZDm1sUXLvlDu2pC1pTa22MoojSs5taG036VWH7L9NVl9KOVk9aGUUasPtX1KW/Uh\ny8jqQyknqw+t+7yW9aGUU6sPpZxS/zFlyhTF/WvZ2KK2X26rPmQZWW3IcrJ9j9dV1/A1Vjc90tLS\nxPDhw4WXl5fw9/cXK1asMP2ufPnyZv1ofHy8aNGihfDw8BBt2rQRFy5c0NXWS3lYu57ryVk6evQo\nfH19ERMTAyHUT5Pv4uKCJUuWoESJEqZlQgikpqaq5mbOnIl//etfAIATJ07g2LFjqF69umqbU6dO\nRVBQEMqWLau6bo7ExER88MEHmtfP2aaiRYvCx8fHtKx79+745ptvNOUfPHiAJUuWYPDgwShQoIB0\n3UKFCqFw4cLYsGEDMjIykJSUhJMnT0oPh7927RpKlCiBd955x7SsfPnyOHv2LDItDjdRel3j4+Ph\n7u6OggULmpZVqVLFdOiJrB727duHQYMGYdiwYZra8vf3x5QpU6weR06tKOWqVatmOowuIyMD69at\ng9FoROXKlaXbZzQaMXbsWIwbN87q+VfKPXz4ELdv38b7779vtZ1KmWPHjqFGjRqmWgaA+fPno3Xr\n1qrPYY7Dhw/jxIkTGDBggDTj5OSElJQU7N69G0D2oWSPHj3CRx99JM1dv34d7u7uMBgMpmXly5fH\npUuXrN6/QPZrcubMGcXaUHvf79u3DwMGDMDIkSPN7lcpl3P4n636ePLkiWKmatWqirWhto226kOW\nkdWGrVzO83j06FGb9dGxY0dNfadlbcieQ1l9KG3jw4cPFevjt99+s+qnjx8/jmrVqqnWh6x/t1Uf\nsoys75DllOrDz89Pun1KfYesLbX6UHoeleqjS5cumsZIW/WhlFOqDx8fH8Xtu3btms3ayDns0NZ4\nrDauKOUA5b5DllMbW2xlZOOK2jbKxhZbGVltyHJqY4vavpBlbcjaUhtbbGWU+o2c2lDa71KrD9n+\nmqw+lHKy+lDKqNWHbBuV6kMpo1YfSjlZfWjZ57VVH0o5tfpQyin1H4cOHVLcv5aNLWr75bbqQ5aR\n1YYsJ9v3eF09ycqyuulRqFAhTJkyBSdPnsS+ffvQsWNH0+8uXryI4OBg08+VKlXCxo0bcfr0acTE\nxMDNzU1XWy/lCeHUridXvHhxxWz79u11tVW0aFHUrFnT9LMQAtHR0fjkk08030dAQABu3ryJTz/9\nFA0aNJCum9OZ/PTTTxg3bpzmNi5fvowDBw4gPDwcWVlZaNiwIfr27SudNF+7dg3vvPMOfvjhB0RG\nRuLJkydo2bIlQkJCzDoaJatXr4arqyvq16+vuq6joyPGjh2LiRMnYsWKFcjMzETLli3RsmVLxUzJ\nkiXx999/Iz093dSJ3bx5E5mZmUhNTYWTk5NpXaXX9e7du9LrCcrqYfLkyQBg9b00pczbb7+Nt99+\n2/TzvXv3sG3bNvTt21e1LSD7O5GNGjVCVlYWBg0ahLfffluaiYiIgLu7u81aVMolJSXBYDAgPDwc\n+/fvh5OTEzp37ozg4GDFzLVr11C6dGnMmDEDP/74I0qUKIHevXujXr16mh4XACxevBgtW7aEq6ur\nNOPj44PPP/8cffv2Rb58+ZCVlYUpU6aYBnWlnLOzM3777TezZTdv3kRqaqrN96+vr6+0NtTe96Gh\noQCy/1iQmywnqw+1PsZWbQCQ5mzVh2z7ZLWhlPP19TX1I7bqQ0vfaVkbsm1Uqw+lbXR2dsaFCxfM\n2r1586bZ9Uct++nJkydruhaprf5dqT6UMgaDQdp3yNoClOtDKSPrO5Ry8fHxivUhy/3000/S/kP2\nuADr+lB7HmX1YZkJDAxEQkKCzb7j/v37iuOx2rgiG8dltaGUk/UdavsMSrUhyynVh1ImMTFRWhtK\nOdnYomVfyFZtKOVkfYdSRmlcyek3lPa71OpDtr8mqw+lnKw+Zs2aJd03VKoPW23169cPDg4OivWh\ntH1q9WGZa9SoEfr06SOtDy37vLbqQ+lxqY0tSu3JakRp/1pWH2r75bbqQ5aR1YaWOYBsbHndZD7F\n2dpftJfyk3M915N71qZNm4aLFy9a/aVWZt68eYiIiMCFCxekn0objUaMHz8e48aNs3p8Mjdu3MDj\nx49RsGBBzJkzB8OGDcNPP/2E6dOnS3OPHj3CH3/8gbVr1yIsLAzDhw/HypUrNZ2oDQDWr19v9pch\nNYmJiQgICMC6desQFhaGnTt3YsuWLYrre3h4wMXFBRMnTkRaWhquXLmC7777DkD2p41aKNXK866T\n9PR09OnTB6VKlULbtm01ZUqUKIENGzZg7NixmDt3rukvuLYkJCRg7dq1mk8YmCMpKQn58uVD2bJl\nsXjxYrRu3RpjxoxBbGysYubRo0fYuHEj/v77b0RGRiIoKAj9+vXDuXPnNLV57do1/N///R86dOig\nuu4///yDa9euoW/fvli/fj169eqF0NBQXL58WZoLDAxEfHw81q1bh8zMTBw4cAB79+61qpNp06bh\nwoULGDBggK7asOd9L8vJ6sNWRktt5M5prY+cTP/+/XXVRu7n8dGjR9i0aZNqfdh6XFpqI3dOT33k\nbOPAgQNNk0tZfeT00xcvXsTkyZM114fW/l1rRlYbSjlZfeTOTJ48GYmJiZpqw7Kty5cva6oPy+dR\nS/+h9LjU6sPysWmpD8tMYGAgzpw5Y1UbsvFYVhv2juNac7nro0WLFqoZW7Uha0up75BlZLUhyynV\nxunTp1Ufl63akLWlVBu//fabYkY2rtja79qyZQumTZsmrQ9799e05nLXh7+/v2rGVn0otTVt2jTF\n/kOWkdWHLKdUH3FxcaqPy1Z9yNqS9R2y516p/8jIyLDav46OjsZ3330nrQ979su1ZizHFi05Pful\nr7qMzCyr28vqpfzkXM/15J6l6dOnY+XKlZg9e7auQ87d3d0BZJ9ldMiQIRg+fLjZp/455s2bh4oV\nK+r6VB7I/qv6kSNHTKfrd3NzQ1ZWFoYOHYoRI0YofgqeP39+/PPPP5g5cyb+/e9/AwD+/PNPrFmz\nxuaZT3OLj4/H7du30bhxY03bePjwYaxfvx779++Ho6MjPv74Y9y6dQvh4eFo2rSpzYyjoyPmzp2L\n/v37o0qVKnB2dka3bt0QFhaGIkWKaGq3YMGCePDggdkyvdcT1OvRo0cICQnB1atXsWbNGrNDl2SK\nFCliOrNoQkICVq5cqXhUwpgxY9C3b1+rQ3jVBAcHIyAgwFQrH330Ef744w+sWbPG7JOs3PLnz4/i\nxYtjwoQJALLPSnn8+HHExMRg4sSJqm3u2rULFSpUQJkyZVTXXbx4MQAgJCTE1NaZM2ewYsUK6ZEk\nH374IUJDQxEaGorx48fDzc0Nn3/+OY4cOWJaJ/f7t1y5cpprw973vVJOVh9KGbXasMy1b99etT4s\nn49y5cppqg3LnJb6UHpcarVhmZs9ezYA9fqw1d6kSZOk9ZHTTw8fPhyDBw9Gq1at8Pfff5ttj636\n0Nq/a8mo9R1KOVl95M4MHjwYv/76q6a+w7KtYcOGaaoPy+exSpUqqvWh9LjU6sPyseWM/7L6sPW4\nbNXGjz/+iOrVq9scj2V9h73juJacZX0sWrRINWOrNuLj4xVzo0ePtlkfsu2TjStnzpxRzCn1HePH\nj1d9XLZqQ7aNSmPL8OHDFTOycUVpv2vIkCFo2bKlYt9h7/6alpxlfbz77ruqGVv1sWLFCsXHFh8f\nb7M+ZNs3cuRIxfqIiopSbMvHx8dmfezdu1f1cdmqD9lr9sYbb9isj5y+Q9aerf5jy5YtePDggdX+\n9erVq+Hn54eUlBSb9WHPfrmWjK2xRUtOz37pqy4jS/vZ2fPaSzk513M9uWclNDQUMTExmD59uuIk\nJrd79+7h1KlTZuuWK1cOT548MX130tK2bdtw794902W7cj7V2blzJ06ePCltz/Jxly1bFunp6UhJ\nSVE8zL9UqVIoWLCg6U0JAB988AFu3bql+vgOHjyIqlWromjRoqrrAsC5c+fw/vvvm/21sEKFCoiM\njJTmKlasiNjYWNy7dw/FixfHgQMHULx4cc1/hHF1dUVCQoLZMr3XE9Tj4cOH6NatG65fv47ly5fj\n3XffVc0kJCQgJSXF7Hs/ZcuWVTwk9saNGzh16hR+++0303eJHj9+jHHjxmHbtm1YtGiRtD3LWilT\npozZJMWSi4uL6X2W44MPPsDvv/8ubSfHgQMHNL1nAOD8+fNW372pUKGC1WtoS4sWLRAcHIx79+6h\nZMmSmD59uul8Bbbev1pqQ+/7Xi0nqw9bGS21YZnTUh9K26dWG7ZyavUhew5ltWErp6U+lNqzVR8l\nS5ZEbGyszX7axcUFiYmJZm3l1Ic9/btaxsHBwWZtyHI532G1rI9ffvlF8XGdOXMGv//+u83amDJl\nimJb//zzj9XjyqkP2Ta+/fbbVp8SffDBBzh79qziNuY8h7bqQ9bWb7/9ZrM+zp8/L23LVm08fPgQ\ne/bssTke9+rVS7HvsHccV8vZ6jtkmXXr1uH+/fs2+w6l3KZNm2AwGGzWBwAYDAbF7VPqO/744w/F\nbWzYsKHNvuPgwYP4448/pM+hrdqQPR9Vq1a1WRvR0dG4fPmyYluycUVpv6tkyZKKfYcsJ9tfU8sV\nKFDAZv+hlDlx4gQA674jZ2xRysn6D8t9D9njyj22KLXl6uqK/Pnzm/0uZ2xRew6Vxhal3Llz56Rj\ni6w9WzXi4uKCBw8eWO1f3759G66urrh06ZLZ/eXUhz375WoZpf0OWS4xMVGx/3hdZWapn4fsZfFS\nHtau53pyz8L8+fMRExODWbNmoVGjRpoy169fR58+fXDnzh3Tsl9//RUlSpSwueMGANHR0fjpp5+w\nefNmbN68GQEBAQgICMCPP/4obevgwYOoXr060tPTTcvOnz8PJycnaUfv4eGB9PR0XLlyxbQsMTHR\n7ARsSuLj4+Ht7a26Xo5SpUrhypUryMjIMC1LSkpC6dKlFTMPHjzA559/jgcPHsDZ2Rn58uVDXFwc\nqlWrprldDw8PnD9/3uxIixMnTui7nqBGQgj07t0bf/75J6KjozV/yrp3716MGTPGbNnZs2cV8//+\n97+xe/du/Pjjj6ZaKVWqFPr164dJkyZJ25o7dy46d+5stuzChQvSE6t4enri0qVLZidg01onQHbd\na62VUqVKWe30qtUJABw5cgQDBw6EwWBAyZIlIYTA/v37Ub16dcX3r1pt2PO+l+Vk9aGUUasNWzm1\n+lBqS602lHKy+lB7DpVqQymnVh9KOaX6KFOmjM1+2tnZGVWqVMG5c+ds1oc9/btaRqk2ZLlTp07Z\nrA9XV1ebmTfffBO7du1SrA1ZWytWrFCsD6Wcs7MzPD098fvvv1vVR9GiRVWfQ1v1IWurVKlSVju9\nSUlJKFasmGJbv//+u83a6Nmzp+J4XLlyZcW+w95xXJZT6jtkmT179ij2HUq53bt3K9aHrC1Z3yHL\neXh42Ow7AgMDVZ9DW7Uha8vFxcVm39GoUSPFjGxcUdrvKl68OHx8fBT7Dnv319RytupDllHqO8qW\nLSt9bEr10bx5c8W2Vq5cqVgfsraU+o58+fKpPoe26kPWlq0Jc87YInseL126ZLNGateurbh/7eHh\noVgf9uyXyzKy/Q5ZTtZ/vK6e5jrnL5yuc7u/QLLryWlVvnx51UupJSQkiI8//ljMmTNH3L171+wm\nk5mZKVq1aiW6du0qEhISRFxcnKhZs6ZYuXKl5u0bPny4pkupPXz4UNSuXVsMGjRIJCUlibi4ONPl\ng9T07NlTtGvXTly4cEHs379f+Pr6iujoaNVcnTp1xNatWzU9DiGyr+vn5+cnhg0bJi5fviz27Nkj\nqlevbrpkipLg4GAxatQocfXqVbF27Vrh4eEhzp49K83kfl0zMzNF06ZNxYABA8SlS5dEZGSk8Pb2\ntroerWUut19++cXqOue2MjExMaJChQoiLi7OrE5SUlKkuVu3bgkfHx/x7bffij/++ENER0eLSpUq\nWV1aQVavderUsboWra1cfHy8cHd3F0uXLhVXr14Vq1atEpUrVxZnzpxRzKSmpgp/f38xduxYceXK\nFREdHS3c3d1tXvrBchuvX78uypcvL5KTk21um2Xm9OnTwt3dXXz33Xfi6tWrpmtrJiQkSHO3bt0S\nnp6eYs2aNeLq1ati3Lhxonbt2uLs2bOK719ZbWh93x85csTscjeynFJ9nDp1SjEjqw09fVNOfcgy\nstqQ5ZTqY9euXdLtU6oNWVuy+pDllOrj4cOHiv10ZmamaNKkic360Nq/564PWUbWd8hySvVx7tw5\nzeNP7r5D1pasPmQ5pfpQ28Zr167ZrA9ZW0r18fvvv0ufQ1u18ejRI7N2c4/HesYVpXHcsu+Q5bSO\nLbkzWscV2TYKoTy25M5oHVcsc1rHFsvt0zKuWOa0ji2Wz6FSbcj2u2R9h9b9Ncv6kOWU6uPGjRuK\nGVl96NmnzKkPWUZWH7JcamqqqFWrllV9nDx5Urp9Sn2HrC1ZfchyshpR2r+W1YcQ2vbLLetDKaPW\ndyjl9PQfr4vAbyKsbi+rl3ZyLruenFZarnMeGRkp3NzczG7ly5eXDqo57ty5I/r06SN8fHxErVq1\nRGRkpK7t0zo5FyJ7h7ZLly7C29tb1KpVSyxYsEBTLjU1VQwbNkx4e3uLmjVrioULF2rKeXh4iIMH\nD2pa13IbfXx8RIMGDTS9ZpcvXxYdOnQQnp6eomnTpiIuLk41Y/m6Xr16VXTo0EFUrlxZNG3aVBw+\nfFhTLodscu7m5ma6RmTXrl2tasXNzU107NhRta0zZ86INm3aCE9PT9GkSRPx888/a94+IYQICAhQ\nnJxb5vbs2SOaN28uPDw8ROPGjW3+Ucsyk5CQYHoOGzZsqPiHMFuPy83NTRiNRpvr28rs3btXBAUF\nCS8vL9GyZUvNr1dcXJxo1KiR8PT0FJ06dRJJSUmq798rV67YrA2t73vLAdJWLufWrVs3m8vr1q0r\nbUupNvT0TTn1oZZRqg21nK36UMso1YZaTqk+1HK26kMIeT8t6zu09O+W9aGUUes7ZG0p1YfW8cey\n75DlZH2HLKfUf6g9LqW+Q5ZTqg9ZRqk2crMcj7WOK89icq51bLFsS8u4IttGIZTHFsuMlnHFVk7L\n2GLrcamNK7ZyWsYWy4ysNmT7XbL60LK/Zqs+lHKy+pC1JasPrfuUuetDlpHVhyynVB9qj0upPmQ5\nWX3Icko1Itu/ltWHlv1yy/pQyqj1HbK2tPYfr4t6oQutbi8rgxAaLgZORERERERE9IqpM2GB1bKf\nx32dB1uijpNzIiIiIiIiojz2Up4QjoiIiIiIiOj/JZycExEREREREeUxTs6JiIiIiIiI8hgn50RE\nRERERER5jJNzIiIiIiIiojzGyTkRERERERFRHuPknIiIiIiIiCiPcXJORERERERElMc4OSciIiIi\nIiLKY5ycExEREREREeUxTs6JiIiIiIiI8tj/B23Kfngwyf36AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAB3CAYAAABhcDFiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8TNf/P/DXEBGfioaIfD7q009bWqNRWSRIJdQaisa+\nfagtRWrf96WotZbaEiVSBI29RS0JDaU+dmLXJGppbVHRqMhIcn5/5JtpJjP33HsHTfi9no/HPMjN\nfc05M/Oec+7JzNwxCCEEiIiIiIiIiCjfFMrvDhARERERERH9/46LcyIiIiIiIqJ8xsU5ERERERER\nUT7j4pyIiIiIiIgon3FxTkRERERERJTPuDgnIiIiIiIiymdcnBMRERERERHlMy7OiYiIiIiIiPIZ\nF+dERERERERE+cwhvztARERERERE9Dz8HBBkte3tA7vyoSfquDgnIiIiIiKil5LB4cVZ8vJt7URE\n9MyMGjUKRqNR8RIQEKDr+urWrYtRo0Y9p97+ZdOmTTAajfjtt9+e2XXeunULfn5+OHr0qNXvDhw4\ngNatW8PLywv16tXD8uXLbV6Hlv20XlcOIQQGDRoELy8vGI1GdOnSBQkJCQCA6dOn4/3334fRaES3\nbt0QFxcHADCZTOjRoweMRiOaNWuGffv26bw3iIiI8omDg/WlgCq4PSMioheSm5sbFi1aZPN3RYoU\n0XVdixcvxiuvvPIsuiVlMBhgMBie2fXdvHkTPXr0wMOHD61+d+rUKfTu3RtNmzbFwIEDcfz4ccya\nNQuZmZn45JNPdO2n9bry3ta5c+eie/fuOHToEFasWGH+3ciRI5GVlYXvvvsOkZGR5u2Ojo4IDw/H\nZ599hilTpjyru4mIiOi5MxQunN9d0IyLcyIieqYcHR1RpUqVZ3JdRqPxmVzP30UIgc2bN2PmzJmK\n+yxYsAAeHh6YPn06ACAgIABPnjzBkiVL0KVLFzg6OmreT+t12fLqq6/a3H7lyhWbf1TYtGkTBg4c\nqO2OICIiKiD4tnYiIiIVdevWxdy5czFlyhT4+fmhevXqGDFiBB48eGCxT+63tZ87dw5du3aFr68v\nfHx80K1bN5w+fdr8+6ysLKxevRrNmjWDp6cn6tSpg9mzZ8NkMpn3EUJg8eLFqFOnDry8vNCnTx+L\nNnOsX78eTZs2xXvvvYc6depg4cKFyMrKkt6mS5cuYeLEiWjRogVmzJgBIYTF700mE44cOYL69etb\nbA8KCsLDhw9x/PhxzftpvS4lthbn+/btQ1ZWFjIzMy0W6CkpKcjIyEDp0qWl10lERFTgFC5sfSmg\nuDgnIqJnLjMz0+YlrzVr1iA+Ph4zZ87E0KFDERcXh169etm8zocPHyIkJASurq5YuHAh5s6di7S0\nNISEhJgXkuPGjcP06dMRFBSE8PBwdOrUCVFRUfj000/N1zNz5kwsXrwYbdu2xaJFi1CyZEl88cUX\nFm0tWbIE48ePR82aNbFkyRJ06tQJS5cuxfjx46W3u2zZsoiJicGIESNQrFgxq7fKX79+HU+ePMGb\nb75psf0///kPACApKUnzflqvS0nexbnJZMIPP/yAjz76CED2gjzHunXr0Lp1a+n1ERERFUQGBwer\nS0FVcHtGREQvpF9//RUeHh5W2w0GA4YPH45u3bqZtxUuXBiRkZHmz5WXLFkSffv2xYEDB6xOHpeY\nmIj79++jc+fO8PLyAgC89dZbWLduHf7880/cvn0bGzduxNChQxESEgIA8Pf3h5ubG4YPH479+/fD\n29sbq1atQo8ePRAaGgoAqFmzJm7fvo0DBw4AyP4jQFhYGDp06GB+1f7999+Hi4sLxo4di27duqF8\n+fI2b3uJEiVQokQJxfsm548IeT9Hn/Pzn3/+qXk/rdelxMXFxeLniIgIdOzYETdv3gQAPHjwAOXK\nlUNiYiLKlSuHokWLSq+PiIioICrIi/G8XpyeEhHRC6FMmTIIDw+3eks3APzrX/+y+LlevXoWi8t6\n9erBwcEBR48etVqcv/322yhVqhR69eqFRo0aITAwEDVr1sSQIUMAAHv37oXBYECTJk0sck2aNMGo\nUaNw5MgRGAwGZGZm4oMPPrDYp3HjxubF+cmTJ5Geno46depYvNr/wQcfQAiBgwcPKi7O1ai9LT7n\nlXYt+2m9LiW5Xzm/fv067t27h3feeQePHz+GEML8Vv/t27ejf//+Vvl9+/YhJSUFwcHB0naIiIjy\nk8Hh6d7Gfvv2bXz++ec4fPgwnJyc0LhxYwwePNjmeV3Onz+PiRMn4vLly3j77bcxceJEmy9YKOHi\nnIiInqkiRYrg3Xff1bSvu7u7xc8GgwEuLi4Wb6nO8Y9//ANr1qxBWFgYdu7ciXXr1qFo0aIIDg7G\nmDFjzIvJvJ+LLly4MEqWLIk//vjDvE/JkiUt9nFzczP/PyUlBUII9OzZ0+oPDAaDAXfu3NF022xx\ndnYGYP2qds6r4Dm/17Kf1utSkntxPm/ePPO7BHLum5SUFBw8eBDvv/++VXbNmjXYvXs3mjdvLm2D\niIgo3z3lK+f9+/eHi4sL1qxZg5SUFIwePRqFCxfGsGHDLPZLS0tDz549ERwcjOnTp2Pt2rXo1asX\nYmNj4eTkpK2rT9VTIiKip3D//n2Ln7OyspCSkqJ44rE33njDfKK1+Ph4fPvtt1i7di3+85//mBeb\nycnJFq/QZ2Rk4P79+yhZsiRKliwJIQSSk5PxxhtvmPfJ/ceAnLelz5492/z57dye5qRor7/+OgoX\nLoxr165ZbL969SoAmF+RV9uvQoUKmq9LSc7b2uPi4lChQgXz7crZ/vvvvyMxMRH9+vWzynbs2BG/\n//67+g0mIiLKZ0/ztvakpCTEx8fj4MGDKFWqFIDsxfrMmTOtFufbt29HsWLFzNvHjBmD/fv3Y+fO\nnZr/mM0TwhERUb7Zt28fMjIyzD/HxsYiMzMT/v7+Vvvu2rUL/v7+uHfvHgwGAzw9PTF+/Hg4Ozvj\nt99+Q7Vq1SCEwLZt2yxy27ZtQ1ZWFnx9feHt7Q0nJyfs3LnTYp+9e/ea/+/p6YkiRYrg1q1b8PDw\nMF8KFSqE2bNn4/r163bfXkdHR/j6+mL37t1Wt61EiRLmr6BT2++9997TfF1KXFxcIIRAREQEevTo\nYd7u7OwMBwcHREdH8y3rRET0wjMULmR10crNzQ3Lli0zL8yB7G99SU1Ntdo3Pj4eVatWtdjm4+OD\nkydPam6Pr5wTEdEzZTKZLL7eLC+j0Wg+uditW7cQGhqKTp064ebNm5g7dy5q1aoFX19fq5yPjw+y\nsrLw6aef4pNPPkHx4sXx/fff4+HDhwgKCkL58uXRokULzJ8/H2lpafDz88P58+excOFC1KhRA4GB\ngQCATz/9FF9++SWKFSuGGjVqIC4uDnFxceZ2XFxcEBISgi+//BKpqamoVq0abt++jfnz56NQoUK6\nvnvd1ufuQ0ND0b17dwwYMACtWrXCiRMnEBkZiaFDh1qcdE3Lflqvy5acdxq0adPG6nNzr776KgIC\nAvD6669rvq1EREQFkaFIEbuzzs7OqFmzpvlnIQSioqJsfuTrzp07eOeddyy2ubq6IiEhQXN7XJwT\nEdEzlZycjPbt2yv+fvPmzeYF7ocffohXX30VgwYNwj/+8Q+0bNkSgwYNMu9rMBjMJzZzc3NDREQE\n5s2bh7Fjx+Lx48d4++23sWDBAvj5+QEApk6dijfeeAMbN27E0qVL4e7ujq5du5rPzA4APXv2xCuv\nvIIVK1Zg5cqV8Pb2xsiRIzFx4kTzPgMGDECZMmWwZs0aREREoESJEqhZsyYGDRqE4sWLa74vbJ2U\nrUaNGpg/fz4WLFiAvn37wt3dHcOHD0fXrl1176f1umx59dVX4evra/7qtNyMRqPF188RERG9sJ7h\n2dpnzpyJixcvYuPGjVa/e/z4sdUfux0dHWEymTRfv0HY+rM+ERHRc1a3bl1Ur14d06ZNy++ukB0W\nLlyIcuXK8aRwRERUoP06cJTVttfm6T/2mDVrFlasWIF58+ahfv36Vr/v1asXKlasiMGDB5u3ffHF\nF0hKSsLixYs1tcFXzomIiEiX9evX46effkKJEiXg5OSERo0a5XeXiIiIbDIUefol7+TJkxEdHY1Z\ns2bZXJgD2d9Ac/fuXYttycnJFt8Io4aLcyIiyhe537JOL5Y2bdqgTZs2+d0NIiIiVU9ztnYg+51i\n0dHRmDt3Lho0aKC4n6enJ5YuXWqx7cSJExYfrVPDxTkREeWLPXv25HcXiIiI6GVXuLDd0cTERISF\nhaFXr17w9vZGcnKy+XelS5dGcnIynJ2dUbRoUQQFBWHOnDmYOnUq2rVrh7Vr1yItLQ2NGzfW3B6/\nSo2IiIiIiIheSgYHB6uLVnv27EFWVhbCwsIQGBiIwMBABAQEmL8BJiAgADt27AAAFC9eHOHh4Th2\n7BhatWqFM2fOYOnSpXByctLeV54QjoiIiIiIiF5GtybPtNr2z3HD86En6vi2diIiIiIiInopPc33\nnP/duDgnIiIiIiKil9LTnhDu71Sgerpo90HN+/ZpWBMAsGDnAV1t9GsUAACYufUHXbnhzeogLOYn\nXZnQBu8DAELCv9GVW9a7Pf47f5WuzOr+nQEA3cP0tbU8tD0AoP28lZoz3wz8GADQcnakrrY2DekG\nAJiyKUZXbmzLBpi4YZeuzMTWQQCAr/b8T1euZ70amL0tTldmSNMPAMCux+zjRat1ZVb2+S8AoM3c\nr3Xl1g/qCgCI+OGI5kyPOtUAAGO++V5XW5+3/xAA8GnEBl25xT1ao3/kJl2Z+d1aAgBaz9FXixsG\nd7P7Phy0Youu3NwuzXXncjJf6KzFof9Xi72XrteVC/+kDQav/FZXZs7HwQDsq/u+y/U9zgu7Zz/O\nXRav0ZVb8WlHDFn1na7M7M4fAYDdfVwSe0hzpld9fwBA6DJ9z5WwkNYA7HuOjVq7XVdmWocmAOwb\nt4ev3qorM/O/zQDYX/d6xvue9WoAANrNW6GrreiBXQAAM77bqys34qO6mLt9n67MoCa1AQBTN8fq\nyo1uUd/usdSeurf38eq0IEpXLqpfJwD6jt+GN6sDAGg+K0JXW1uG9QBg3/g2bYu+E12Oal4PgH21\naO/jbO+Yo2eu3TA4+5hvxJptutqa0bEpANh1fGRvW/Y8NyfrHBPHtcw+w7c9Y6m985G9x5gvI0Ph\nF+c0awVqcU5ERERERET0zPCVcyIiIiIiIqL89SJ95tzu1/jv37+P27dv448//niW/SEiIiIiIiJ6\nJgyFClld7GEymdCsWTMcPXpUcZ/Q0FAYjUZUqlTJ/O++fdo/OqHrlfPdu3cjKioK8fHxSE9PN293\ncnJC5cqV0aVLF9SvX1/PVRIRERERERE9F8/ihHAmkwmDBw9GQkKCdL+kpCTMnj0bNWrUMG8rUaKE\n5nY09zQyMhILFy5ESEgI+vbtC1dXVzg6OsJkMiE5ORnHjh3DyJEjMWDAAHTu3FlzB4iIiIiIiIie\ni6d8W3tiYiKGDBmiup/JZMKNGzdQuXJluLq62tWW5sX58uXLMWPGDJuvjJcvXx7Vq1dHxYoVMXny\nZC7OiYiIiIiIKN897dnajxw5An9/fwwcOBCenp6K+125cgUGgwH//ve/7W5L8+L88ePHKFeunHQf\nd3d3pKam2t0ZIiIiIiIiomflad/W3qFDB037JSYmonjx4hg2bBgOHz6Mf/3rX+jXrx9q1aqluS3N\nf0Zo0KABRo4ciWPHjiEjI8Pid1lZWThx4gRGjx6NoKAgzY0TERERERERPS8GBwery/OQlJSE9PR0\nBAYGIiIiArVr10ZoaCjOnTun+To092zixImYMWMGevTogczMTLi4uJg/c56SkgIHBwcEBwdj1KhR\ndt0YIiIiIiIiomfKofDf0kzfvn3RpUsXODs7AwAqVqyIs2fPIjo6GpMmTdJ0HZoX546Ojhg3bhyG\nDh2Kixcv4u7du0hLS0PRokXh7u6OSpUqwcnJyb5bQkRERERERPSMPa9Xym3JWZjnKF++PBITEzXn\ndfe0WLFi8Pb21hsjIiIiIiIi+nsV+nteOR81ahQMBgOmTp1q3nbx4kW88847mq/DIIQQz6NzRERE\nRERERPkpdc8+q23O9WrbdV1GoxGrVq2Cn58fACA5ORnOzs4oWrQoYmJiMHjwYEyePBk+Pj747rvv\nEBERge3bt6Ns2bKarv/ve41fgwFfb9a875ddWwAAQpdt0NVGWEhrAMDCXQd05foGBeDjRat1ZVb2\n+S8AoPmsCF25LcN6YPa2OF2ZIU0/yP531Xe6crM7fwQAmLvdumiVDGqSXcxjo3foamtKu8YAgC6L\n1+jKrfi0IyZu2KUrM7F19okJuy1eqysX+WkHDF75ra7MnI+DAQBf7fmfrlzPejXQaUGUrkxUv04A\ngLCYn3TlQhu8DwAICf9Gc2ZZ7/YAgFFrt+tqa1qHJnbnJm3crSszvlVDAMCnEfrGgcU9Wusab4C/\nxhw9zxXgr+dL76XrNWfCP2nzVG1N3hSjKzeuZQN8siRaV2Zpr3YA7BsHpujs39iWDQDYN751D9Ne\n8wCwPDS77nt+tU5X7quebQFA11iVM04Ni9J3u2Z1yh637blt9s6Zf+dY2nJ2pK7cpiHdAADj1mmv\nxclts+cjex/nCet36sp91qaRrv4Bf/Wx7/JNunILu7fE1M2xujKjW2R/Ta49fbS3fu09hgj6PFxz\nZteY3gCARbsP6mqrT8OaAOx7ji2JPaQr06u+PwDgyx0/6soNaByI9vNW6sp8M/BjAMCINdt05WZ0\nbApA3/HslmE9AAD9I/XV7/xuLQHYd6w45pvvdWU+b/8hAGDQii26cnO7NMd/56/SlVndP/trpu0Z\nF+2dn+3NvYye5dvaDQaDxc8BAQGYPn06mjdvjgYNGmDChAkICwvDrVu3UKFCBSxbtkzzwhwoYItz\nIiIiIiIiomfFUPjZva39woULFj9fvHjR4ufWrVujdevWdl8/F+dERERERET0cvobTwj3tF6cnhIR\nERERERHpYPibvkrtWeDinIiIiIiIiF5Kf+dXqT2tF6enRERERERERDq8SIvzQvndASIiIiIiIqLn\nwqGw9cUOJpMJzZo1w9GjRxX3OX/+PNq2bQsvLy+0adMG586d09dVPTvLOpJXzne/EREREREREeWH\nZ3G2dpPJhMGDByMhIUFxn7S0NPTs2RPBwcGYPn061q5di169eiE2NhZOTk6a2tG1OJ80aZK5Q0II\nxf0MBoPVaeaJiIiIiIiI/k6GIkWeKp+YmIghQ4ao7rd9+3YUK1YMw4YNAwCMGTMG+/fvx86dO9G8\neXNNbelanG/cuBGDBw/GjRs3EB0djaJFi+qJExEREREREf1tnvZs7UeOHIG/vz8GDhwIT09Pxf3i\n4+NRtWpVi20+Pj44efKk5sW5rs+cOzo6Ys6cOQCAefPm6YkSERERERER/b0KFba+6NChQweMGDFC\n9YXpO3fuoEyZMhbbXF1dcfv2be1d1dUzZC/QZ8+ejddff11vlIiIiIiIiOhvYyjiYHV5Hh4/fgxH\nR0eLbY6OjjCZTJqvwyBkHx4nIiIiIiIiekGlpqZabXN2drbruoxGI1atWmXz5Oe9evVCxYoVMXjw\nYPO2L774AklJSVi8eLGm6+dXqRERERERERE9BXd3d9y9e9diW3JyMtzc3DRfR4H6Rva52/dp3ndQ\nk9oAgIkbdulqY2LrIADAgp0HdOX6NQpAWMxPujKhDd4HALScHakrt2lIN/x3/ipdmdX9OwMAvtgW\npys3tOkHAIBPIzZozizu0RoA0D9yk6625ndrCQCYtmWPrtyo5vXQft5KXZlvBn4MwL76aDdvha5M\n9MAuAIAx33yvK/d5+w8xc+sPujLDm9UBYN99COirj5za+HLHj7raGtA4EIB998eE9Tt1ZT5r0wgA\n7MoNWrFFV2Zul+wTeXy8aLWu3Mo+/wWgrxZzxqnJm2J0tTWuZQMA9tVHSPg3ujLLercHALvux7HR\nO3RlprRrDMC+McfesbTTgihduah+nQDoq4+c2pi6OVZXW6Nb1Adg3+O8bO9hXZmQutUB2Pc49166\nXlcm/JM2AGB3fQz4erPmzJddWwCA3eO9PccQ9rZlz7FHl8VrdGVWfNoRADB45be6cnM+Dkb3MH1j\nx/LQ7LFj1NrtunLTOjQBAF1jVc44pef4EvjrGNOe+6Pvcn3j1MLu2cdG9ozB9h6H2TsO6Kn7fo0C\nAABTdM5jY/9vHrPn+bJo90FdmT4NawKwb3yzd9y25/kyYs02XZkZHZsCAJbEHtKV61XfX9f+ZM3T\n0xNLly612HbixAmEhoZqvg6+ck5ERERERESkU3JyMtLT0wEAQUFBSE1NxdSpU5GYmIgpU6YgLS0N\njRs31nx9XJwTERERERHRS+mxwcHqYi+DwWDxc0BAAHbsyH7HV/HixREeHo5jx46hVatWOHPmDJYu\nXQonJyfN11+g3tZORERERERE9KxkZGY+s+u6cOGCxc8XL160+Pm9997Dpk36PnKSm6ZXzk0mE2bN\nmoXatWvDx8cHffv2RWJiosU+ycnJqFSpkt0dISIiIiIiInqWsrKE1aWg0rQ4nzNnDmJjYzF8+HBM\nmjQJycnJaNWqFWJjLU+GwG9lIyIiIiIiooLiSVam1aWg0rQ437FjB6ZOnYomTZqgadOmWLt2LTp0\n6ICBAwea32MPWL8Hn4iIiIiIiCi/ZGRkWV0KKk2fOX/8+DFcXFzMPxsMBowYMQKFChXCsGHD4ODg\nAG9v7+fWSSIiIiIiIiK9MkXBXYznpemV8+rVq2PmzJn4/fffLbYPGzYM7dq1w6BBg7Bmjb7v1CQi\nIiIiIiJ6njIys6wuBZWmxfmYMWOQkpKCmjVr4uDBgxa/GzduHHr37o0lS5Y8lw4SERERERER2eNJ\nZqbVRQ+TyYTRo0fDz88PgYGBiIyMVNw3NDQURqMRlSpVMv+7b98+zW1pelu7u7s7oqOjkZSUBDc3\nN6vf9+3bF40bN8aePXs0N0xERERERET0PGVmPd0r5TNmzMD58+exatUq3LhxAyNGjMBrr72Ghg0b\nWu2blJSE2bNno0aNGuZtJUqU0NyWru85f+uttxR/V758eZQvX17P1RERERERERE9N0/zNva0tDRs\n2LABERERMBqNMBqNCAkJQVRUlNXi3GQy4caNG6hcuTJcXV3tas8g+P1nRERERERE9BI69PM1q23+\nb7+uKXvy5El07twZp06dgoND9uvaR44cQc+ePXHq1CmLfS9duoRWrVohPj4ehQpp+vS4FftSRERE\nRERERAXc03zm/O7du3BxcTEvzAHA1dUV6enpuH//vsW+iYmJKF68OIYNG4aAgAC0adMG+/fv19VX\nXW9rf97GrduhvtP/mdy2MQDgo5nLdLXx3fAQAMCK/cd05brU8sWM7/bqyoz4qC4AYOrmWF250S3q\nY/jqrboyM//bDADQfFaErtyWYT0AAIt2H1TZ8y99GtYEAEzeFKOrrXEtGwAA2s1boSsXPbALui1e\nqysT+WkHAED7eSt15b4Z+DFmbv1BV2Z4szoAgI8XrdaVW9nnvxjw9WZdmS+7tsj+d8ePunIDGgcC\nACas36k581mbRgDsuw8BYNoWfeegGNW8HsZGax8DAGBKu+xxYMHOA7py/RoFYOKGXboyE1sHAQAm\nbdytKze+VfZbnpbEHtKc6VXfHwDQcrbyCUds2TSkGwBg3vf6JoKBH9ay+zn2xbY4XbmhTT+weyxt\n8cVyXbnNQ7vjg4kLdWXiJva1uy3AvsfZ3jHHnnHA3jFn8MpvdeXmfByMkPBvdGWW9W4PAPh631Fd\nua61/QBAV3s5bXUP09fH5aHZOXvmPz3HOMBfxznDor7TlZvV6SPM1vm8HNL0AwDAiDXbdOVmdGxq\n1/gLwO7xXs8x1egW9QHY/zjbc9v0HE8Bfx1Tdfhyla7c2gGd7b4Pp+is37H/d/ymZ6zKGafsnTPt\nqXt7xzd7xpzlcUd0Zbp/UA0A0Hf5Jl25hd1b6jp2A/46ftMzHwF/zUkvowydJ4DLLS0tDY6Ojhbb\ncn42mUwW25OSkpCeno7AwED07NkTMTExCA0Nxbp16+Dh4aGpvQK1OCciIiIiIiJ6VjKz7P8Ud9Gi\nRa0W4Tk/FytWzGJ737590aVLFzg7OwMAKlasiLNnzyI6OhqTJk3S1B7f1k5EREREREQvpYysTKuL\nVu7u7khJSUFWrjO+Jycnw8nJyeZZ2HMW5jnKly+PO3fuaG7vqRfnGRkZSElJedqrISIiIiIiInqm\nnmRkWV20qlSpEhwcHCxO/nbs2DFUrlzZat9Ro0Zh9OjRFtsuXryIN998U3N7uhbn27dvx6RJk7Br\n1y4IITBlyhT4+PjA398fNWvWRFRUlJ6rIyIiIiIiInpuMkWW1UUrJycnBAcHY8KECThz5gxiY2MR\nGRmJLl26AMh+FT09PR0AULduXWzduhVbtmzBtWvXsHDhQpw4cQKdO3fW3J7mz5xHREQgLCwM/v7+\nmDBhArZs2YILFy5g1qxZqFChAs6cOYMvvvgCjx49Qs+ePTV3gIiIiIiIiOh5eJrvOQeyXxH/7LPP\nzJ8nHzBgAOrXzz7hZEBAAKZPn47mzZujQYMGmDBhAsLCwnDr1i1UqFABy5YtQ9myZTW3pXlxvnr1\nasyZMwe1atXC8ePH0alTJ4SHh6N27doAst9PX7JkSYwbN46LcyIiIiIiIsp3T3O2diD71fNp06Zh\n2rRpVr+7ePGixc+tW7dG69at7W5L8+L8/v37eOONNwAAVatWxb/+9S+ULl3aYp9y5cohLS3N7s4Q\nERERERERPSuZWU/3yvnfSfNnzn18fLBo0SI8evQIALB3716L72u7c+cOpk2bBn//l/c78oiIiIiI\niOjFkZGZZXUpqDQvzidMmIDTp09j7NixVr+LjY1F7dq18eDBA4wbN+6ZdpCIiIiIiIjIHi/S4lzz\n29pff/117NixA8nJyVa/8/b2xjfffIP33nsPhQrxq9OJiIiIiIgo/71Ib2s3CCFEfneCiIiIiIiI\n6FlbuOs4QmdMAAAfo0lEQVSA1ba+QQH50BN1fJmbiIiIiIiIXkqZWcLqoofJZMLo0aPh5+eHwMBA\nREZGKu57/vx5tG3bFl5eXmjTpg3OnTunqy0uzomIiIiIiOillJGZaXXRY8aMGTh//jxWrVqFCRMm\nYOHChdi9e7fVfmlpaejZsyf8/PywadMmeHl5oVevXnj8+LHmtrg4JyIiIiIiopdSRlaW1UWrtLQ0\nbNiwAWPHjoXRaET9+vUREhKCqKgoq323b9+OYsWKYdiwYXjrrbcwZswYvPLKK9i5c6fm9rg4JyIi\nIiIiopdSZmaW1UWrixcvIjMzE15eXuZtVatWRXx8vNW+8fHxqFq1qsU2Hx8fnDx5UnN7XJwTERER\nERHRS+lpXjm/e/cuXFxc4ODw15ecubq6Ij09Hffv37fY986dOyhTpozFNldXV9y+fVtze5q/So2I\niIiIiIjoRfJE52fMc0tLS4Ojo6PFtpyfTSaTxfbHjx/b3DfvfjJcnBMREREREdFLKUvn2dlzK1q0\nqNXiOufnYsWKadrXyclJc3tcnBMREREREdFL6WleOXd3d0dKSgqysrJQqFD2J8KTk5Ph5OSEEiVK\nWO179+5di23Jyclwc3PT3B4/c05EREREREQvpYzMLKuLVpUqVYKDgwNOnTpl3nbs2DFUrlzZal9P\nT0+rk7+dOHHC4mRyarg4JyIiIiIiopdSZlaW1UUrJycnBAcHY8KECThz5gxiY2MRGRmJLl26AMh+\nZTw9PR0AEBQUhNTUVEydOhWJiYmYMmUK0tLS0LhxY83tFdjFuclkwujRo+Hn54fAwEBERkbqzjdr\n1gxHjx5V3ff27dvo378/qlevjtq1a2P69OmaPrh/7do19OjRA97e3qhbty4iIiJ09bFnz54YNWqU\npn1jY2NhNBpRqVIl878DBgxQzZlMJnz22WeoVq0aAgICMHfuXOn+mzdvtmrHaDTi3XffVW3r1q1b\n6N27N6pWrYp69ephxYoVqpnff/8d/fv3h5+fH4KCgrB582bV25P3cb1x4wa6desGb29vNG3aFAcP\nHtSUy5GUlARvb29NmVOnTqF9+/bw9vZG48aNsX79ek25H3/8EcHBwfD09ETz5s2xf/9+zf17+PAh\natWqhS1btmhqa8qUKVaP4erVq6WZmzdv4pNPPoGXlxeCgoKwY8cO1bZGjRpl0U7OpWvXrtK2jh07\nhpYtW8Lb2xstWrTAoUOHNN2us2fPmu/79u3b4/Tp0wDkz19ZbWh53l+9ehWenp4W22Q5pfqQZWS1\noaWPeetDlpHVhiynVB+5M7Vq1cKMGTNgMplUa0PWlqw+ZDml+pCN07L60DK+560PWUY2dshySvWh\npX+2xg5ZTlYfspxSfShl1OpD1pZSfcgySrWRW975WMu8YiuXw9bYIctpmVvyZtTmFbU+yuaWvBm1\neUUpp2VuyZ3RMq8otaVlbsmbkdWG7LhLVh9ajtds1Ycsp1QfsoysPrT0MW99yDKy+pDllOpDKaNW\nH7K2ZPUhyynViOz4WlYfWo7L89aHLCMbO2Q5rePHy+JJZqbVRY9Ro0ahcuXK6NKlCyZPnowBAwag\nfv36AICAgABz7RYvXhzh4eE4duwYWrVqhTNnzmDp0qW6PnMOUUBNmjRJBAcHiwsXLoiYmBjh4+Mj\ndu3apSmbnp4u+vTpI4xGozhy5Ijq/m3bthU9e/YUCQkJ4tixY6Jhw4Zi5syZ0kxWVpYICgoSw4cP\nF1evXhX79u0TVatWFdu2bdPUx23btomKFSuKkSNHato/LCxMhIaGinv37onk5GSRnJwsUlNTVXPj\nxo0TQUFB4syZM+LQoUOiRo0aIjo6WnH/9PR08/UnJyeLmzdvioYNG4rp06erttW2bVsxePBgcfXq\nVREbGyu8vLxETEyMNNOuXTvRrl07ceHCBREXFyeqVaummFF6XD/66CMxfPhwkZiYKJYsWSK8vLzE\nzZs3VXNCCHHjxg3RsGFD4eHhodrW3bt3hZ+fn5g7d664evWq2L59u6hSpYqIi4uT5q5evSo8PT3F\nihUrxPXr10VkZKSoXLmy+PXXX1X7J0T2Y2g0GsXmzZs13R/dunUTS5cutXgcHz9+rJjJyMgQTZs2\nFX369BFXrlwR33zzjfDw8BA///yztK3U1FSLNk6dOiWqVKki9uzZo5i5d++e8PX1FcuXLxfXr18X\n4eHhwsvLS9y6dUvaVk5u/PjxIikpSURGRgpvb29x8+ZN6fO3WbNmirWh9rz/7bffRFBQkDAajRb3\nu1JOVh9KGbXa0DI25a0PWUZWG0o5WX0oZdRqQymnVh9qubz1kfMYKo3TSvWhZXzPWx+yjKw2ZDml\n+rhx44am+SdvbajdLqX6kOWU6uPy5cuKGVl9yNpSqo+bN2+qZmyNHTlszcdq84pSTjZ2KOXu3Lmj\nOrfkzaiNHWp9tFUfsoxs7FDKaZlb8mbUxg6lnJa5RSmjVBuy4y7Z3KJ2vKZUH0o52fihlFGrDy3H\nlHnrQ5aR1YdSTlYfShm1+lDKqdWHWs5WjciOr2X1oXZcbqs+lDJqx6VKOa3jx8vkkyXRVpeCqkAu\nzh89eiSqVKkijh49at62ePFi0blzZ9VsQkKCCA4OFsHBwZoW54mJicJoNIp79+6Zt23btk3UqlVL\nmrtz544YNGiQ+PPPP83b+vbtKz777DPVPqakpIjatWuLNm3aaF6cDx06VMyZM0fTvrnb8fDwsLgf\nv/rqKzF69GjN1xEeHi4aNmwoTCaTdL8HDx6IihUrWky6/fr1E5MnT1bMnDlzRhiNRnHjxg2L/rVr\n185qX6XH9aeffhLe3t4WBwldu3YVCxYskOaEEGLnzp2iRo0aIjg42GJxrpRZu3at+PDDDy36NW7c\nODF06FBp7vDhw2Lq1KkWuWrVqokdO3ao1uvRo0dFw4YNRUBAgMUBlCxXq1YtcfDgQc33YWxsrPDz\n87Oo5T59+oh169aptpVb9+7dxYgRI6SZmJgYUaNGDav7IucPb0q5ZcuWiQYNGoisrCxzLiQkRIwf\nP17x+Xvo0CHF2lB73sfExAh/f39zP3Io5QIDAxXro3fv3oqZI0eOKNaGlrEpb32oZZRqQ5bbs2eP\nzfpYtGiR5rEzd23I7kNZfchyERERNutjypQpiuO0rD7Uxndb9SHLyMYOWU6pPqKjo1XnH1tjh9rt\nUqoPWU6pPiIiIjTPkbnrQ9aWUn2sX79eMaNUGznzqa35WG1eUcoJoTx2yHJqc4utjGxeUeujEMpz\ni1JGqTZkObW5RcuxUO7akLWlNrfYyijNKzm1oXTcpVYfsuM1WX0o5WT1oZRRqw+1Y0pb9SHLyOpD\nKSerD63HvHnrQymnVh9KOaXxY9q0aYrH17K5Re243FZ9yDKy2pDlZMceL6seYWutLgVVgXxb+8WL\nF5GZmWnx4fmqVasiPj5eNXvkyBH4+/sjOjoaQqifNt/NzQ3Lli1DqVKlzNuEEEhNTVXNzZkzB//4\nxz8AAMePH8fRo0dRvXp11TZnzJiB4OBglC9fXnXfHImJiXjzzTc175/TJ2dnZ/j6+pq3ffLJJ/j8\n88815R88eIBly5Zh6NChKFKkiHRfJycnFCtWDBs3bkRGRgaSkpJw4sQJ6dvhr1+/jlKlSuG1114z\nb6tYsSLOnj2LzDxvN1F6XOPj4+Hh4YGiRYuat1WtWtV80gZZPezbtw9DhgzBiBEjNLVVq1YtTJs2\nzep25NSKUq5atWrmt9FlZGRg/fr1MJlMqFKlirR/JpMJ48ePx4QJE6zuf6Xcw4cPcfv2bbzxxhtW\n/VTKHD16FDVq1DDXMgAsXLgQbdq0Ub0Pcxw6dAjHjx/HoEGDpBkXFxekpKQgJiYGQPZbyR49eoR3\n3nlHmrtx4wY8PDxgMBjM2ypWrIiff/7Z6vkLZD8mp0+fVqwNtef9vn37MGjQIIwePdriepVyOW//\ns1UfT548Ucz4+fkp1oZaH23Vhywjqw1buZz78ciRIzbro3PnzprGzry1IbsPZfWh1MeHDx8q1sel\nS5esxuljx46hWrVqqvUhG99t1YcsIxs7ZDml+ggICJD2T2nskLWlVh9K96NSfXTv3l3THGmrPpRy\nSvXh6+ur2L/r16/brI2cE/bYmo/V5hWlHKA8dshyanOLrYxsXlHro2xusZWR1YYspza3qB0L5a0N\nWVtqc4utjNK4kVMbSsddavUhO16T1YdSTlYfShm1+pD1Uak+lDJq9aGUk9WHlmNeW/WhlFOrD6Wc\n0vhx8OBBxeNr2dyidlxuqz5kGVltyHKyY4+X1ZOsLKtLQVUgv0rt7t27cHFxgYPDX91zdXVFeno6\n7t+/j5IlSypmO3TooKstZ2dn1KxZ0/yzEAJRUVF4//33NV9H3bp1cfPmTXzwwQdo2LChdN+cwWTr\n1q2YMGGC5jauXLmCH3/8EWFhYcjKykKjRo3Qv39/6aL5+vXreO2117BlyxYsWbIET548QcuWLREa\nGmox0ChZs2YN3N3d0aBBA9V9HR0dMX78eEyaNAkrV65EZmYmWrZsiZYtWypmSpcujT/++APp6enm\nQezmzZvIzMxEamoqXFxczPsqPa53795FmTJlLLa5urri9u3b0hwATJ06FQCsPpemlClbtizKli1r\n/vnevXv4/vvv0b9/f9W2gOzPRDZu3BhZWVkYMmQIypYtK82Eh4fDw8PDZi0q5ZKSkmAwGBAWFob9\n+/fDxcUF3bp1Q/PmzRUz169fR7ly5TB79mx8++23KFWqFPr27Wv+LI2W59TSpUvRsmVLuLu7SzO+\nvr7o2LEj+vfvj0KFCiErKwvTpk0zT+pKOVdXV1y6dMli282bN5Gammrz+evv7y+tDbXn/eTJkwFk\n/7EgN1lOVh9qY4yt2gAgzdmqD1n/ZLWhlPP39zePI7bqQ8vYmbc2ZH1Uqw+lPrq6uuLChQsW7d68\neRP37983/5x3nJ46dap07FDKAcr1oZQxGAzSsUPWFqBcH0oZ2dihlIuPj1esD1lu69at0vFDdrsA\n6/pQux9l9ZE3ExQUhISEBJtjx/379xXnY7V5RTaPy2pDKScbO9SOGZRqQ5ZTqg+lTGJiorQ2lHKy\nuUXLsZCt2lDKycYOpYzSvJIzbigdd6nVh+x4TVYfSjlZfcydO1d6bKhUH7baGjBgABwcHBTrQ6l/\navWRN9e4cWP069dPWh9ajnlt1YfS7VKbW5Tak9WI0vG1rD7Ujstt1YcsI6sNLWsA2dzyssnUcXb2\n/FYgXzlPS0uDo6Ojxbacn7WcqO1pzJw5ExcvXrT6S63MggULEB4ejgsXLkhflTaZTJg4cSImTJhg\ndftkfvvtNzx+/BhFixbFl19+iREjRmDr1q2YNWuWNPfo0SP88ssvWLduHaZPn46RI0di1apVmk7U\nBgAbNmxA586dNfczMTERdevWxfr16zF9+nTs2rUL27ZtU9zf09MTbm5umDRpEtLS0nD16lV8/fXX\nALJfbdRCqVaed52kp6ejX79+KFOmDNq1a6cpU6pUKWzcuBHjx4/H/PnzzX/BtSUhIQHr1q3TfMLA\nHElJSShUqBDKly+PpUuXok2bNhg3bhxiY2MVM48ePcKmTZvwxx9/YMmSJQgODsaAAQNw7tw5TW1e\nv34d//vf/9CpUyfVff/8809cv34d/fv3x4YNG9C7d29MnjwZV65ckeaCgoIQHx+P9evXIzMzEz/+\n+CP27t1rVSczZ87EhQsXMGjQIF21Yc/zXpaT1YetjJbayJ3TWh85mYEDB+qqjdz346NHj7B582bV\n+rB1u7TURu6cnvrI6ePgwYPNi0tZfeSM0xcvXsTUqVM114fW8V1rRlYbSjlZfeTO5JwdVktt5G3r\nypUrmuoj7/2oZfxQul1q9ZH3tmmpj7yZoKAgnD592qo2ZPOxrDbsnce15nLXR4sWLVQztmpD1pbS\n2CHLyGpDllOqjVOnTqneLlu1IWtLqTYuXbqkmJHNK7aOu7Zt24aZM2dK68Pe4zWtudz1UatWLdWM\nrfpQamvmzJmK44csI6sPWU6pPuLi4lRvl636kLUlGztk973S+JGRkWF1fB0VFYWvv/5aWh/2HJdr\nzeSdW7Tk9ByXvuie5qvU/m4F8pXzokWLWh0g5fxcrFix59burFmzsGrVKsybN0/XW849PDwAZJ/J\nb9iwYRg5cqTFq/45FixYgMqVK+t6VR7I/qv64cOHzV90bzQakZWVheHDh2PUqFGKr4IXLlwYf/75\nJ+bMmYN//vOfAIBff/0Va9eutXnm09zi4+Nx+/ZtfPjhh5r6eOjQIWzYsAH79++Ho6Mj3n33Xdy6\ndQthYWFo2rSpzYyjoyPmz5+PgQMHomrVqnB1dUVISAimT5+O4sWLa2q3aNGiePDggcU2k8mk76yI\nOj169AihoaG4du0a1q5da/HWJZnixYubzyyakJCAVatWKb4rYdy4cejfv7/VW3jVNG/eHHXr1jXX\nyjvvvINffvkFa9eutXglK7fChQujZMmS+OyzzwBkf5/jsWPHEB0djUmTJqm2uXv3blSqVAlvvfWW\n6r5Lly4FAISGhprbOn36NFauXCl9J8nbb7+NyZMnY/LkyZg4cSKMRiM6duyIw4cPm/fJ/fytUKGC\n5tqw93mvlJPVh1JGrTby5jp06KBaH3nvjwoVKmiqjbw5LfWhdLvUaiNvbt68eQDU68NWe1OmTJHW\nR844PXLkSAwdOhStW7fGH3/8YdEfW/WhdXzXklEbO5RysvrInRk6dCjOnDmjaezI29aIESM01Ufe\n+7Fq1aqq9aF0u9TqI+9ty5n/ZfVh63bZqo1vv/0W1atXtzkfy8YOe+dxLbm89fHVV1+pZmzVRnx8\nvGJu7NixNutD1j/ZvHL69GnFnNLYMXHiRNXbZas2ZH1UmltGjhypmJHNK0rHXcOGDUPLli0Vxw57\nj9e05PLWx7///W/VjK36WLlypeJti4+Pt1kfsv6NHj1asT4iIiIU2/L19bVZH3v37lW9XbbqQ/aY\nvfLKKzbrI2fskLVna/zYtm0bHjx4YHV8vWbNGgQEBCAlJcVmfdhzXK4lY2tu0ZLTc1z6osvI0nd2\n9vxUIBfn7u7uSElJQVZWFgoVyn5xPzk5GU5OTuYnz7M2efJkREdHY9asWYqLmNzu3buHkydPWuxb\noUIFPHnyxPzZyby+//573Lt3z/y1XTmv6uzatQsnTpyQtpf3dpcvXx7p6elISUlRfJt/mTJlULRo\nUfOTEgDefPNN3Lp1S/X2HThwAH5+fnB2dlbdFwDOnTuHN954w+KvhZUqVcKSJUukucqVKyM2Nhb3\n7t1DyZIl8eOPP6JkyZKa/wjj7u6OhIQEi23Jyclwc3PTlNfr4cOHCAkJwY0bN7BixQr8+9//Vs0k\nJCQgJSXF4nM/5cuXV3xL7G+//YaTJ0/i0qVL5s8SPX78GBMmTMD333+Pr776Stpe3lp56623LBYp\nebm5uZmfZznefPNNXL58WdpOjh9//FHTcwYAzp8/D6PRaLGtUqVKVo+hLS1atEDz5s1x7949lC5d\nGrNmzTKfr8DW81dLbeh93qvlZPVhK6OlNvLmtNSHUv/UasNWTq0+ZPehrDZs5bTUh1J7tuqjdOnS\niI2NtTlOu7m5ITEx0aKtnPqwZ3xXyzg4ONisDVku5zOseevjp59+Urxdp0+fxuXLl23WxrRp0xTb\n+vPPP61uV059yPpYtmxZq1eJ3nzzTZw9e1axjzn3oa36kLV16dIlm/Vx/vx5aVu2auPhw4fYs2eP\nzfm4d+/eimOHvfO4Ws7W2CHLrF+/Hvfv37c5dijlNm/eDIPBYLM+AMBgMCj2T2ns+OWXXxT72KhR\nI5tjx4EDB/DLL79I70NbtSG7P/z8/GzWRlRUFK5cuaLYlmxeUTruKl26tOLYIcvJjtfUckWKFLE5\nfihljh8/DsB67MiZW5RysvEj77GH7HblnluU2nJ3d0fhwoUtfpczt6jdh0pzi1Lu3Llz0rlF1p6t\nGnFzc8ODBw+sjq9v374Nd3d3/PzzzxbXl1Mf9hyXq2WUjjtkucTERMXx42WVmaV+HrKCokC+rb1S\npUpwcHCwOPnKsWPHULly5efS3sKFCxEdHY25c+dq/pL4GzduoF+/frhz545525kzZ1CqVCmbB24A\nEBUVha1bt+K7777Dd999h7p166Ju3br49ttvpW0dOHAA1atXN3/BPZB9EOvi4iId6D09PZGeno6r\nV6+atyUmJlqcgE1JfHw8fHx8VPfLUaZMGVy9ehUZGRnmbUlJSShXrpxi5sGDB+jYsSMePHgAV1dX\nFCpUCHFxcahWrZrmdj09PXH+/HmLd1ocP37c4mSCz4oQAn379sWvv/6KqKgoza+y7t27F+PGjbPY\ndvbsWcX8P//5T8TExODbb78110qZMmUwYMAATJkyRdrW/Pnz0a1bN4ttFy5ckJ5YxcvLCz///LPF\nCdi01gmQXfdaa6VMmTJWB71qdQIAhw8fxuDBg2EwGFC6dGkIIbB//35Ur15d8fmrVhv2PO9lOVl9\nKGXUasNWTq0+lNpSqw2lnKw+1O5DpdpQyqnVh1JOqT7eeustm+O0q6srqlatinPnztmsD3vGd7WM\nUm3IcidPnrRZH+7u7jYzr776Knbv3q1YG7K2Vq5cqVgfSjlXV1d4eXnh8uXLVvXh7Oyseh/aqg9Z\nW2XKlLE66E1KSkKJEiUU27p8+bLN2ujVq5fifFylShXFscPeeVyWUxo7ZJk9e/Yojh1KuZiYGMX6\nkLUlGztkOU9PT5tjR1BQkOp9aKs2ZG25ubnZHDsaN26smJHNK0rHXSVLloSvr6/i2GHv8ZpazlZ9\nyDJKY0f58uWlt02pPj766CPFtlatWqVYH7K2lMaOQoUKqd6HtupD1patBXPO3CK7H3/++WebNVK7\ndm3F42tPT0/F+rDnuFyWkR13yHKy8eNl9bTfc/63ej4ngX9648ePF02bNhXx8fEiJiZGVK1aVfU7\ns/OqWLGi6lepJSQkiHfffVd8+eWX4u7duxYXmczMTNG6dWvRo0cPkZCQIOLi4kTNmjXFqlWrNPdv\n5MiRmr5K7eHDh6J27dpiyJAhIikpScTFxZm/PkhNr169RPv27cWFCxfE/v37hb+/v4iKilLN1alT\nR2zfvl3T7RAi+7tJAwICxIgRI8SVK1fEnj17RPXq1c1fmaKkefPmYsyYMeLatWti3bp1wtPTU5w9\ne1aayf24ZmZmiqZNm4pBgwaJn3/+WSxZskT4+PhYfR9t3lxuP/30k9X3nNvKREdHi0qVKom4uDiL\nOklJSZHmbt26JXx9fcUXX3whfvnlFxEVFSXee+89ceHCBU39EyL78cj7XbS2cvHx8cLDw0MsX75c\nXLt2TaxevVpUqVJFnD59WjGTmpoqatWqJcaPHy+uXr0qoqKihIeHh1X/bPXxxo0bomLFiiI5Odlm\n3/JmTp06JTw8PMTXX38trl27Zv5uzYSEBGnu1q1bwsvLS6xdu1Zcu3ZNTJgwQdSuXVucPXtW8fkr\nqw2tz/vDhw9bfN2NLKdUHydPnlTMyGpDz9iUUx+yjKw2ZDml+ti9e7e0f0q1IWtLVh+ynFJ9PHz4\nUHGczszMFE2aNLFZH1rH99z1IcvIxg5ZTqk+zp07p3n+yT12yNqS1Ycsp1Qfan28fv26zfqQtaVU\nH5cvX5beh7Zq49GjRxbt5p6P9cwrSvN43rFDltM6t+TOaJ1XZH0UQnluyZ3ROq/kzWmdW/L2T8u8\nkjendW7Jex8q1YbsuEs2dmg9XstbH7KcUn389ttvihlZfeg5psypD1lGVh+yXGpqqggMDLSqjxMn\nTkj7pzR2yNqS1YcsJ6sRpeNrWX0Ioe24PG99KGXUxg6lnJ7x42UR9Hm41aWgKrCL87S0NDFy5Ejh\n7e0tatWqJVauXKn7OrR8z/mSJUuE0Wi0uFSsWFE6qea4c+eO6Nevn/D19RWBgYFiyZIluvqndXEu\nRPYBbffu3YWPj48IDAwUixYt0pRLTU0VI0aMED4+PqJmzZpi8eLFmnKenp7iwIEDmvbN20dfX1/R\nsGFDTY/ZlStXRKdOnYSXl5do2rSpiIuLU83kfVyvXbsmOnXqJKpUqSKaNm0qDh06pCmXQ7Y4NxqN\n5u+I7NGjh1WtGI1G0blzZ9W2Tp8+Ldq2bSu8vLxEkyZNxA8//KC5f0IIUbduXcXFed7cnj17xEcf\nfSQ8PT3Fhx9+aPOPWnkzCQkJ5vuwUaNGin8Is3W7jEajMJlMNve3ldm7d68IDg4W3t7eomXLlpof\nr7i4ONG4cWPh5eUlunbtKpKSklSfv1evXrVZG1qf93knSFu5nEtISIjN7fXq1ZO2pVQbesamnPpQ\nyyjVhlrOVn2oZZRqQy2nVB9qOVv1IYR8nJaNHVrG97z1oZRRGztkbSnVh9b5J+/YIcvJxg5ZTmn8\nULtdSmOHLKdUH7KMUm3klnc+1jqvPIvFuda5JW9bWuYVWR+FUJ5b8ma0zCu2clrmFlu3S21esZXT\nMrfkzchqQ3bcJasPLcdrtupDKSerD1lbsvrQekyZuz5kGVl9yHJK9aF2u5TqQ5aT1Ycsp1QjsuNr\nWX1oOS7PWx9KGbWxQ9aW1vHjZVF/8mKrS0FlEELDl4ETERERERERvWDqfLbIatsPE/rkQ0/UcXFO\nRERERERElM8K5AnhiIiIiIiIiP5/wsU5ERERERERUT7j4pyIiIiIiIgon3FxTkRERERERJTPuDgn\nIiIiIiIiymdcnBMRERERERHlMy7OiYiIiIiIiPIZF+dERERERERE+YyLcyIiIiIiIqJ8xsU5ERER\nERERUT7j4pyIiIiIiIgon/0/lcHlL476lzQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAB6CAYAAADd7iK8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8Def+B/DPIYLbRhMkubdXe9VyRaOSSIJUULGkNARF\nUWpLLa2lsVMkFbXvUgShCBprq3ahoVrXTuwkFKlYoqJSkUjy/P7Izbk5yzwzc0oTfp/363VeZDKf\n88yZ8z3PM5OZM2MQQggQERERERERUaEpVtgLQERERERERPT/HXfOiYiIiIiIiAoZd86JiIiIiIiI\nChl3zomIiIiIiIgKGXfOiYiIiIiIiAoZd86JiIiIiIiIChl3zomIiIiIiIgKGXfOiYiIiIiIiAoZ\nd86JiIiIiIiIChl3zomIiIiIiIisuH37NgYOHIg6deqgYcOGmDx5MrKysqSZ5ORkeHl54ciRI7ra\nsvszC0pERERERET0oho4cCAcHR2xevVqpKWlYfTo0ShevDiGDRummAkPD8fjx491t8Uj50RERERE\nRERmrly5goSEBEyaNAmVK1eGt7c3Bg4ciC1btihmNm/ejEePHtnUHo+cExERERER0Qvpsn+gxbSq\nB3Zqyjo7O2PJkiUoW7ascZoQAg8fPrQ6//379zFjxgwsXboU7733nu5l5c45ERERERERvZAMdrbv\n8jo4OKBevXrGn4UQiImJwdtvv211/smTJ6NNmzaoXLmyTe1x55yIiIiIiIheTH9i59zc1KlTceHC\nBWzYsMHidz///DNOnDiBiIgIm5+f3zknIqKnZtSoUXBzc1N8+Pv763q+gIAAjBo16hkt7f9s3LgR\nbm5uuHnz5lN7zlu3bsHX19fiSq1CCKxZswatWrWCl5cXmjRpgkmTJiE9Pd3iOQ4cOIB27drB09MT\njRs3xtKlS22ax7z90NBQeHp6ws3NDd26dUNiYiKAvL/4v/3223Bzc0OPHj0QHx8PAMjKykKvXr3g\n5uaGli1bYt++fTauFSIior+WoXhxi4ctpk2bhpUrV2L69OkWR8YzMzMRFhaGsLAw2Nvb27ysPHJO\nRERPlbOzM7766iurvytRooSu55o/fz5eeumlp7FYUgaDAQaD4ak9X0pKCnr16mV1h3vx4sWYM2cO\nQkJCULduXfzyyy+YPXs2EhMTER0dbZzv5MmT6Nu3L4KCgvDZZ5/h2LFjmDZtGnJycvDxxx9rnsfa\na501axZ69uyJgwcPYvny5cbfjRw5Erm5udi8eTOWLVtmnG5vb4+FCxfiiy++wIQJE57WaiIiInrm\n/sxp7fkiIiIQGxuLadOmoUmTJha/T0hIQHJyMgYMGAAhhHH6xx9/jNatWyM8PFxTO9w5JyKip8re\n3h41a9Z8Ks/l5ub2VJ7nryKEwKZNmzB16lTF3y9ZsgSdOnVCaGgoAMDPzw+vvPIKhgwZgrNnz8Ld\n3R0AMG/ePLi7u2Py5MkAAH9/fzx58gRRUVHo1q0b7O3tNc2j5JVXXrE6/erVq1b/qLBx40Z89tln\n2lcGERFRUWDjkfJ8kZGRiI2NxaxZs9C0aVOr83h4eGDXrl0m05o2bYovv/wSfn5+mtviae1ERFQo\nAgICMGvWLEyYMAG+vr6oU6cORowYgQcPHpjMU/C09rNnz6J79+7w8fFBrVq10KNHD5w6dcr4+9zc\nXKxatQotW7aEh4cHGjVqhBkzZiArK8s4jxAC8+fPR6NGjeDp6YlPP/3UpM1869atQ1BQEN566y00\natQIkZGRyM3Nlb6mixcvIjw8HG3atMGUKVNM/noOAOnp6QgODra4gmulSpUghMD169cB5J1Gfvjw\nYYu/zgcGBiI9PR3Hjh3TNI+MtZ3zffv2ITc3Fzk5OSY76GlpacjOzkb58uWlz0lERFTUGOzsLB5a\nJSUlYcGCBejduze8vLyQmppqfABAamoqMjMzYW9vj9dee83kAQAuLi4mV3pXw51zIiJ66nJycqw+\nzK1evRoJCQmYOnUqhg4divj4ePTp08fqc6anpyMkJATlypVDZGQkZs2ahYyMDISEhBh3JMeOHYvJ\nkycjMDAQCxcuRJcuXRATE4NPPvnE+DxTp07F/Pnz0aFDB3z11VdwcnLC9OnTTdqKiorCuHHjUK9e\nPURFRaFLly5YvHgxxo0bJ33dr776Knbv3o0RI0agdOnSFqfKOzg44PPPP4eXl5fJ9Li4OBgMBlSt\nWhUAcOPGDTx58gRvvPGGyXz/+te/AOTdd1XLPDLmO+dZWVn44Ycf0KpVKwB5O+T51q5di3bt2kmf\nj4iIqCj6Mzvne/bsQW5uLhYsWID69eujfv368Pf3R/369QHknbG2fft26+3a8HU5ntZORERP1a+/\n/mo8Nbsgg8GA4cOHo0ePHsZpxYsXx7Jly4zfK3dyckL//v1x4MABi4vHJSUl4f79++jatSs8PT0B\n5B1xXrt2Lf744w/cvn0bGzZswNChQxESEgIg75RxZ2dnDB8+HPv374eXlxdWrlyJXr16oV+/fgCA\nevXq4fbt2zhw4ACAvD8CLFiwAJ06dTIetX/77bfh6OiIMWPGoEePHoq3SClTpgzKlCmja32dOnUK\nixcvRkBAAKpUqWJcBgAW37fP//mPP/7QNI+Mo6Ojyc/R0dHo3LkzUlJSAAAPHjxAhQoVkJSUhAoV\nKqBkyZK6XhcREVFRYLCz/bT23r17o3fv3oq/v3DhguLvzp8/r7s97pwTEdFT5eLigoULF1qc0g0A\n//jHP0x+bty4scnOZePGjWFnZ4cjR45Y7JxXrVoVZcuWRZ8+ffDuu++ifv36qFevHoYMGQIA2Lt3\nLwwGg8Up4++99x5GjRqFw4cPw2AwICcnB++8847JPM2bNzfunJ84cQKZmZlo1KiRydH+d955B0II\n/PTTTzbfv9TcsWPH0K9fP7z++uuYOHGicbra6fMGg0HTPDIFj5zfuHED9+7dw7///W88fvwYQgjj\nqf5bt27FwIEDLfL79u1DWloagoODpe0QEREVqqd4K7Vn7flZUiIiei6UKFECb775pqZ5XV1dTX42\nGAxwdHQ0OaU639/+9jesXr0aCxYswI4dO7B27VqULFkSwcHB+Pzzz407k+bfiy5evDicnJzw+++/\nG+dxcnIymcfZ2dn4/7S0NAgh0Lt3b4s/MBgMBty5c0fTa1Ozbds2jBo1CpUqVcLixYtNdpYdHBwA\nWB79zj9a7uDgoGkemYLtzZ4923iWQP66SUtLw08//YS3337bIrt69Wrs2rULrVu3Vn+hREREhehp\nXK39r/L8LCkREb1w7t+/b/Jzbm4u0tLSFC88VrFiReOF1hISEvDdd99hzZo1+Ne//mXc2UxNTTU5\nQp+dnY379+/DyckJTk5OEEIgNTUVFStWNM5T8I8B+aelz5gxw/j97YKexkXRoqOjMX36dNStWxfz\n5s3Dyy+/bPL7119/HcWLFzdeIC7ftWvXAABVqlRRnUft6H7+ae3x8fGoUqWK8XXlT//tt9+QlJSE\nAQMGWGQ7d+6M3377TevLJSIiKjSG4s/PZdaenyUlIqIXzr59+5CdnW38OS4uDjk5OVZvO7Jz5074\n+fnh3r17MBgM8PDwwLhx4+Dg4ICbN2+idu3aEEJgy5YtJrktW7YgNzcXPj4+8PLyQqlSpbBjxw6T\nefbu3Wv8v4eHB0qUKIFbt27B3d3d+ChWrBhmzJiBGzdu/KnX/M0332DatGlo0aIFFi9ebLFjDuTd\njs7Hx8fitiw7d+5EmTJl8NZbb6nOo3Y7O0dHRwghEB0djV69ehmnOzg4wM7ODrGxsTxlnYiInnuG\nEiUsHkUVj5wTEdFTlZWVZXJ7M3Nubm7Gi4vdunUL/fr1Q5cuXZCSkoJZs2ahQYMG8PHxscjVqlUL\nubm5+OSTT/Dxxx/j5ZdfxrZt25Ceno7AwEBUrlwZbdq0wdy5c5GRkQFfX1+cO3cOkZGRqFu3rvHK\nqp988gnmzJmD0qVLo27duoiPj0d8fLyxHUdHR4SEhGDOnDl4+PAhateujdu3b2Pu3LkoVqyYrnuv\nm58Wn5qaikmTJqFChQro3Lkzzp49a/L71157zXjLlX79+qFnz54YNGgQ3n//fRw/fhzLli3D0KFD\njetPyzxK8s80aN++vcX90F955RX4+/vj9ddf1/xaiYiIiiSe1k5ERP9fpaamomPHjoq/37Rpk3EH\nt0WLFnjllVcQGhqKv/3tb2jbti1CQ0ON8xoMBuOFzZydnREdHY3Zs2djzJgxePz4MapWrYp58+bB\n19cXADBx4kRUrFgRGzZswOLFi+Hq6oru3bsbr8wO5F159aWXXsLy5cuxYsUKeHl5YeTIkQgPDzfO\nM2jQILi4uGD16tWIjo5GmTJlUK9ePYSGhlo90q3E/KJs+/btQ1ZWFn799Vd06dLFYv5JkyYZv8dd\nt25dzJ07F/PmzUP//v3h6uqK4cOHo3v37sb5tcyj5JVXXoGPj4/x1mkFubm5mdx+joiI6HllKPb8\nnCxuENYup0tERPSMBQQEoE6dOpg0aVJhLwrZIDIyEhUqVOBF4YiIqEi7OWysxbRXp0UUwpKoe37+\njEBERERFwrp16/Dzzz9jx44dFt/fJyIiKkoMdnYWD1tkZWWhZcuWOHLkiOI8u3fvRosWLeDl5YUP\nP/wQ586d09UGT2snIqJCUfCUdXq+tG/fHu3bty/sxSAiIlJXvPiffoqsrCwMHjwYiYmJivMkJiZi\n6NChiIiIgJeXF77++mv07t0be/bsUb0OTD7unBMRUaHYs2dPYS8CERERveD+7H3Ok5KSMGTIENX5\nDhw4gKpVqxqv5TJ48GCsWrUKiYmJcHd319QWT2snIiIiIiKiF1PxYpYPHQ4fPgw/Pz/ExsZa3IWl\nIEdHRyQmJuL48eMQQmDDhg1wcHDQdecTHjknIiIiIiKiF9Kfva95p06dNM3XokUL7N27F507d0bx\n4sVRrFgxLFq0CA4ODprb4pFzIiIiIiIieiE9rQvCqUlLS0NqairCwsKwbt06tG7dGiNHjsRvv/2m\n+TmK1JHzRXv+o3ne3o3rAgCi4g7qaqNPEz8AwKyt+3TlQt9riCV7D+nKhATUAQB8Er1eV25+r3bo\nueAbXZml/fLuKdxvib62FoS0AwB0m79ac2b5J50BAJ3mrNTV1ppBXQEA07fE68oNDXoHEzfF6cqM\nbtMEAPD1PuWrKVrTvaEv5u04oCsz4F1/AMDHUbG6cov7fGBTBgC6zIvRlYsZkHc/5eX7j2rOdGvg\nAwAIX79TV1vh7QIBAINXfKcrN/OjYAyL2awrM61L3nd6bFkfH321SldmxacfAoDNyzh81feaM1M/\nbAkAmLP9R11tDWpeP+/frzfpys3p3gYjVm/RlZnSOQgAbOqrhqzUtw5ndM1bh7b0b59/s01X5suO\nLQDY/j5H/3BYc6ZXo9oAgNDl3+pqa1a31jbnxq7drisT0aE5AGDq9z/oyg1v2QhjYvW1NeGDvLZs\nrful8drXfc938ta9rf2ALdsQtr4uW8ZMW+vXls+mra/L1vFPz7oPfa8hAKD9rK91tbUutDsA2/q3\nGTrfryFB7wCwrRZtfZ9t7XP0jLX52x1h6/TdzeGL9u8CsK0+bO3fInfq2+7rH+iPKZv36sqMaBUA\nwLa+1NYxs/eitbpyi3p30DX/88Sg8zR2W02fPh3VqlUzHmkfP348mjdvjo0bNyIkJETTc/DIORER\nEREREb2Y7OwsH8/A2bNn4ebmZvzZYDDAzc0NN2/e1Pwc3DknIiIiIiKiF5KhRAmLx7Pg4uJicau1\nq1evokKFCpqfo0id1k5ERERERET0tBiKPbvj0ampqXBwcEDJkiXRvn17jB49GjVq1ICXlxfWrl2L\nlJQUtG7dWvPz2bxzfv/+fWRlZaF06dIoU6aMrU9DRERERERE9Ew8zQvAGQwGk5/9/f0xefJktG7d\nGi1atEBGRgaioqJw+/ZtVK9eHStWrEDZsmU1P7+uJd21axdiYmKQkJCAzMxM4/RSpUqhRo0a6Nat\nG5o0aaLnKYmIiIiIiIiejad4Gvv58+dNfr5w4YLJz++//z7ef/99m59f8875smXLEBkZiZCQEPTv\n3x/lypWDvb09srKykJqaiqNHj2LkyJEYNGgQunbtavMCERERERERET0Nf9XV2p8GzTvnS5cuxZQp\nU6weGa9cuTLq1KmDatWqISIigjvnREREREREVOie1X3NnwXNS/r48WPVK825urri4cOHf3qhiIiI\niIiIiP6s52nnXPMx/qZNm2LkyJE4evQosrOzTX6Xm5uL48ePY/To0QgMDHzqC0lERERERESkm11x\ny0cRpfnPCOHh4ZgyZQp69eqFnJwcODo6Gr9znpaWBjs7OwQHB2PUqFHPcnmJiIiIiIiINHmejpxr\nXlJ7e3uMHTsWQ4cOxYULF3D37l1kZGSgZMmScHV1RfXq1VGqVKlnuaxERERERERE2hUrukfKzRmE\nEKKwF4KIiIiIiIjoaXu4Z5/FNIfGDQthSdQVqWP8w2I2a553WpdWAIAhK7VnAGBG17zcoj3/0ZXr\n3bguPo6K1ZVZ3OcDAMBHX63SlVvx6YeI3HlAV6Z/oD8AYNSarbpykzq9BwC62stva/yGXbraGvd+\nMwBAvyXrdeUWhLTDhI27dWXGtG1qc1sjVm/RlZnSOQgAsOLHY7pyH9X3RsjCb3RllvTtmPfv3kO6\nciEBdQAAn0RrXx/ze7UDAISv36mrrfB2gTbnJn27R1dmVOvGAPT1HUBe/2FLBgDmbP9RV25Q8/oA\ngNDl32rOzOrWGgAwb4e+fmDAu3mfzanf/6ArN7xlI121Afy5+piyea+uzIhWAQCAsWu368pFdGiO\ngcs26srM7dEWgL73C/jfe6anr8rvp8bE6ntdEz5oDkDf5xnIe88Gfb1JV2ZO9zYAbOtLh6/6Xldm\n6octAQDd5q/WlVv+SWcAQISOdT/2v+u+/1J99RHZM68+Jm6K05Ub3aaJzWOmLds5tn7GbFlGWz6X\ntrYFAG2mL9Wc2TS0JwAgKu6grrb6NPEDYNtnbGn8YV2Znu/UBmBbf99j/hpdmWWfdAJgW18KQFd7\n+W3ZOtbass1t6/bK599s05X7smMLm7ffbNnGtHUcs3Uf6UX0PJ3W/vzc9I2IiIiIiIhIB0Px4hYP\nW2RlZaFly5Y4cuSI4jzx8fFo3bo1vLy8EBwcjL179f2xlDvnRERERERE9GKys7N86JSVlYXBgwcj\nMTFRcZ4LFy5gwIABaN++PTZv3owOHTpg4MCBuHjxouZ2uHNORERERERELySDXXGLhx5JSUno0KED\nkpOTpfNt3boVfn5++PDDD/Haa6/hww8/RJ06dbB9u/avkjw/J+ATERERERER6fBnv3N++PBh+Pn5\n4bPPPoOHh4fifG3atMGTJ08spqenp2tuizvnRERERERE9EL6szvnnTp10jRfpUqVTH6+fPky/vOf\n/6Bz586a2+LOOREREREREb2YdJ7G/jT89ttvGDBgALy9vdG4cWPNOV0757Ir05nz9fXV89RERERE\nRERET5WtV2e3VWpqKnr06AGDwYA5c+boyuraOR8/frzxCnVCCMX5DAYDzp8/r2tBiIiIiIiIiJ4m\nQ4kSf1lbt2/fxkcffYTixYtj5cqVcHJy0pXXtXO+YcMGDB48GMnJyYiNjUXJkiV1NUZERERERET0\nV9F7dXZbZWRkICQkBCVKlMCKFStQtmxZ3c+h61Zq9vb2mDlzJgBg9uzZuhsjIiIiIiIi+ssUK275\neEpSU1ORmZkJAFi4cCGSk5MxadIk5ObmIjU1Fampqbqu1q77Puf29vaYMWMGXn/9db1RIiIiIiIi\nor+MoYSdxcPm5zIYTH729/c33sd8165dePz4MTp06ID69esbH19++aX25xeyL48TERERERERPace\nPnxoMc3BwaEQlkSd7iPnRERERERERPR0Fan7nEfuPKB53v6B/gCAiZvidLUxuk0TAMCiPf/Rlevd\nuC6W7D2kKxMSUAcA8OHclbpyqwZ2RcjCb3RllvTtCACYs/1HXblBzesDAAav+E5zZuZHwQCAYTGb\ndbU1rUsrAMCMLfG6ckOC3kHPBfrWx9J+eevDlvroNn+1rszyTzoDAMLW7dCV+6L9uza/X7asQ0Bf\nfeS3tWD3z7ra6tf0bQDA+A27dOXGvd8MEzbu1pUZ07YpANiUG7F6i67MlM5BAIB+S9bryi0IaZeX\n37xXc2ZEqwDdmYK5WVv36cqFvtcQA5dt1JWZ26NtXps2rMcIne/X2P++z3r6KSCvr+oxf42uzLJP\nOgGAzX1O38XrNGcWftweADBd5+d56H8/z7O37deV+6xFA8QcOKYr08XfG4Bt73Po8m91ZWZ1aw3A\ntr4D0LeM+Z9nW+sjKu6grlyfJn4215Qt2x566hD4Xy1+/s02XbkvO7awuU+0ZcwEoKuvyu+nbB3H\nbFkfQ1bq2zaa0TVv26j/Un19cGTPtja3tXz/UV25bg18AOir+z5N/AAAU7//QVdbw1s2ymvThm0x\nW7fTbenfbO23P4nW93mZ36sdxq7drisT0aE5ACD6h8O6cr0a1dY1Pz0bPHJOREREREREVMiK1JFz\nIiIiIiIioqflscFyl7dofuOcO+dERERERET0gsrOySnsRdCMO+dERERERET0QsrNfX5uTqbpO+dZ\nWVmYNm0aGjZsiFq1aqF///5ISkoymSc1NRXVq1d/JgtJREREREREpNeT3ByLR1Glaed85syZiIuL\nw/DhwzF+/Hikpqbi/fffR1yc6ZWwect0IiIiIiIiKiqys3MtHnpkZWVh9OjR8PX1Rf369bFs2TLF\neS9evIjOnTvDw8MDrVq1wqFD+u4ioGnnfPv27Zg4cSLee+89BAUFYc2aNejUqRM+++wzbN/+v8v7\nGwwGXY0TERERERERPSs5ItfioceUKVNw7tw5rFy5EmFhYYiMjMSuXZa3/UxPT0evXr1QtWpVbNmy\nBU2bNkX//v3x22+/aW5L03fOHz9+DEdHR+PPBoMBI0aMQLFixTBs2DDY2dnBy8tLc6NERERERERE\nz1p2jr6d8YIyMjKwfv16REdHw83NDW5ubggJCUFMTAyaNWtmMu/GjRvx0ksv4YsvvgAADBgwAPv3\n78eZM2fQoEEDTe1pOnJep04dTJ061WKvf9iwYfjggw8QGhqK1atXa2qQiIiIiIiI6K/wJCfH4qHV\nhQsXkJOTA09PT+M0b29vJCQkWMx75MgRBAQEmExbt26d5h1zQOPO+eeff460tDTUq1cPP/30k8nv\nxo4di759+yIqKkpzo0RERERERETPWk5ursVDq7t378LR0RF2dv874bxcuXLIzMzE/fv3Tea9ceMG\nnJycMG7cOPj7+6Njx444fvy4rmXVtHPu6uqK2NhYbN26FTVr1rT4ff/+/bF582aEhobqapyIiIiI\niIjoWcnOybV4aJWRkQF7e3uTafk/Z2VlmUx/9OgRlixZAhcXFyxZsgQ+Pj7o1asXbt++rbk9g+Al\n1omIiIiIiOgFdPDydYtpflVf15TdsWMHJkyYgAMHDhinJSUlISgoCIcOHUKZMmWM05s3bw4XFxcs\nX77cOK1NmzZo3rw5evfurak9TReEIyIiIiIiInre6PmOuTlXV1ekpaUhNzcXxYrlnXSempqKUqVK\nmeyYA4CzszMqVapkMq1ixYpISUnR3F6R2jmfuClOfab/Gt2mCQCgzfSlutrYNLQnAGDNzyd05Tq9\n7YXZ2/brynzWIu/L/xM27taVG9O2KT7/ZpuuzJcdWwAAOs1ZqSu3ZlBXAMCSvdrvwRcSUAcAMPX7\nH3S1NbxlIwDAh3P1LeOqgV0xcNlGXZm5PdoCAD76apWu3IpPP8Sc7T/qygxqXt/mtmx9n6PiDurK\n9WniB0BfLY5p2xQA0GP+Gl1tLfukEwBgxpZ4XbkhQe9g/AbL21LIjHs/7yqZkTsPqMxpqn+gP6Zs\n3qsrM6JV3gU+bK2Pr/cd0Zzp3tAXgG01BQBf7fpJZU5TnzarZ/NnzJZ1P2+HvsyAd/0BAG1nKN9X\n1JqNQ3rgnfBIXZn48P42twUAMQeOac508fcGAMzauk9XW6HvNQRgWz9g62dsxOotunJTOgdh8Irv\ndGVmfhQMAIj+4bCuXK9GtQEAg77epDkzp3sb3ZmCOVvGP1v6RAA2jRMLdv+sK9Ov6dsAYFN92NLf\nAECEzm2jsf8dk/Rsi+Vvh9lai4v2/EdXrnfjujZlAKDfkvW6cgtC2iF8/U5dmfB2gQCA6Tprceh/\na9GW7XRbx9qwdTt05b5o/y6Gr/peV2bqhy0BAEvj9fU5Pd+prWtMB/43rtuyjLbsRwCweax9EWX/\niZ3z6tWrw87ODidPnkStWrUAAEePHkWNGjUs5vX09MSRI6a1ceXKFbRs2VJze5q+c05ERERERET0\nvMnJFRYPrUqVKoXg4GCEhYXh9OnTiIuLw7Jly9CtWzcAeUfRMzMzAQAdO3bExYsXERkZievXr2PO\nnDlITk5Gq1atNLfHnXMiIiIiIiJ6IWXn5lg89Bg1ahRq1KiBbt26ISIiAoMGDUKTJnlnh/j7+2P7\n9u0AgFdffRXR0dHYu3cvWrZsiX379mHRokVwcXHR3NafPq09Ozsb6enpcHR0/LNPRURERERERPTU\nPMnWfnV2a0qVKoVJkyZh0qRJFr+7cOGCyc9eXl7YuFHfVwUL0nXkfOvWrRg/fjx27twJIQQmTJiA\nWrVqwc/PD/Xq1UNMTIzNC0JERERERET0NOWIXItHUaX5yHl0dDQWLFgAPz8/hIWF4dtvv8X58+cx\nbdo0VKlSBadPn8b06dPx6NEjzZeKJyIiIiIiInpW9NzXvLBp3jlftWoVZs6ciQYNGuDYsWPo0qUL\nFi5ciIYN864aW7lyZTg5OWHs2LHcOSciIiIiIqJC92eu1v5X07xzfv/+fVSsWBEA4O3tjX/84x8o\nX768yTwVKlRARkbGU11AIiIiIiIiIlvk5D4/R841f+e8Vq1a+Oqrr/Do0SMAwN69e+Hu7m78/Z07\ndzBp0iTVDETRAAAgAElEQVT4+fk9/aUkIiIiIiIi0ik7J9fiUVRp3jkPCwvDqVOnMGbMGIvfxcXF\noWHDhnjw4AHGjh37VBeQiIiIiIiIyBbP08655tPaX3/9dWzfvh2pqakWv/Py8sI333yDt956C8WK\n8dbpREREREREVPiep9PaDUIIUdgLQURERERERPS0Re48YDGtf6C/5nxWVhbCw8Oxe/dulCpVCj17\n9kSPHj2sznvu3DmEh4fj0qVLqFq1KsLDw02+Cq6Gh7mJiIiIiIjohZSTKyweekyZMgXnzp3DypUr\nERYWhsjISOzatctivoyMDPTu3Ru+vr7YuHEjPD090adPHzx+/FhzW9w5JyIiIiIiohdSdk6OxUOr\njIwMrF+/HmPGjIGbmxuaNGmCkJAQxMTEWMy7detWlC5dGsOGDUOlSpXw+eef46WXXsKOHTs0t8ed\ncyIiIiIiInohZefmWjy0unDhAnJycuDp6Wmc5u3tjYSEBIt5ExIS4O3tbTKtVq1aOHHihOb2uHNO\nREREREREL6ScnFyLh1Z3796Fo6Mj7Oz+dx31cuXKITMzE/fv3zeZ986dO3BxcTGZVq5cOdy+fVtz\ne5qv1k5ERERERET0PNFzpNxcRkYG7O3tTabl/5yVlWUy/fHjx1bnNZ9PhjvnRERERERE9EJ6ouM7\n5uZKlixpsXOd/3Pp0qU1zVuqVCnN7XHnnIiIiIiIiF5IuTqvzl6Qq6sr0tLSkJubi2LF8r4Rnpqa\nilKlSqFMmTIW8969e9dkWmpqKpydnTW3x++cExERERER0QvpSU6OxUOr6tWrw87ODidPnjROO3r0\nKGrUqGExr4eHh8XF344fP25yMTk13DknIiIiIiKiF1J2Tq7FQ6tSpUohODgYYWFhOH36NOLi4rBs\n2TJ069YNQN6R8czMTABAYGAgHj58iIkTJyIpKQkTJkxARkYGmjdvrrk97pwTERERERHRCyknN9fi\noceoUaNQo0YNdOvWDRERERg0aBCaNGkCAPD398f27dsBAC+//DIWLlyIo0eP4v3338fp06exePFi\nXd85NwghbD8Jn4iIiIiIiKiI+iR6vcW0+b3aFcKSqCuyR86zsrIwevRo+Pr6on79+li2bJnufMuW\nLXHkyBHVeW/fvo2BAweiTp06aNiwISZPnqzpkvfXr19Hr1694OXlhYCAAERHR+taxt69e2PUqFGa\n5o2Li4ObmxuqV69u/HfQoEGquaysLHzxxReoXbs2/P39MWvWLOn8mzZtsmjHzc0Nb775pmpbt27d\nQt++feHt7Y3GjRtj+fLlqpnffvsNAwcOhK+vLwIDA7Fp0ybV12P+viYnJ6NHjx7w8vJCUFAQfvrp\nJ025fFeuXIGXl5emzMmTJ9GxY0d4eXmhefPmWLdunabcjz/+iODgYHh4eKB169bYv3+/5uVLT09H\ngwYN8O2332pqa8KECRbv4apVq6SZlJQUfPzxx/D09ERgYKDxL4CytkaNGmXSTv6je/fu0raOHj2K\ntm3bwsvLC23atMHBgwc1va4zZ84Y133Hjh1x6tQpAPLPr6w2tHzur127Bg8PD5NpspxSfcgystrQ\nsozm9SHLyGpDllOqj4KZBg0aYMqUKcjKylKtDVlbsvqQ5ZTqQ9ZPy+pDS/9uXh+yjKzvkOWU6kPL\n8lnrO2Q5WX3Ickr1oZRRqw9ZW0r1Icso1UZB5uOxlnHFWi6ftb5DltMytphn1MYVtWWUjS3mGbVx\nRSmnZWwpmNEyrii1pWVsMc/IakO23SWrDy3ba9bqQ5ZTqg9ZRlYfWpbRvD5kGVl9yHJK9aGUUasP\nWVuy+pDllGpEtn0tqw8t2+Xm9SHLyPoOWU5r//Gi+DOntf/lRBE1fvx4ERwcLM6fPy92794tatWq\nJXbu3Kkpm5mZKT799FPh5uYmDh8+rDp/hw4dRO/evUViYqI4evSoaNasmZg6dao0k5ubKwIDA8Xw\n4cPFtWvXxL59+4S3t7fYsmWLpmXcsmWLqFatmhg5cqSm+RcsWCD69esn7t27J1JTU0Vqaqp4+PCh\nam7s2LEiMDBQnD59Whw8eFDUrVtXxMbGKs6fmZlpfP7U1FSRkpIimjVrJiZPnqzaVocOHcTgwYPF\ntWvXRFxcnPD09BS7d++WZj744APxwQcfiPPnz4v4+HhRu3ZtxYzS+9qqVSsxfPhwkZSUJKKiooSn\np6dISUlRzQkhRHJysmjWrJlwd3dXbevu3bvC19dXzJo1S1y7dk1s3bpV1KxZU8THx0tz165dEx4e\nHmL58uXixo0bYtmyZaJGjRri119/VV0+IfLeQzc3N7Fp0yZN66NHjx5i8eLFJu/j48ePFTPZ2dki\nKChIfPrpp+Lq1avim2++Ee7u7uLy5cvSth4+fGjSxsmTJ0XNmjXFnj17FDP37t0TPj4+YunSpeLG\njRti4cKFwtPTU9y6dUvaVn5u3Lhx4sqVK2LZsmXCy8tLpKSkSD+/LVu2VKwNtc/9zZs3RWBgoHBz\nczNZ70o5WX0oZdRqQ0vfZF4fsoysNpRysvpQyqjVhlJOrT7Ucub1kf8eKvXTSvWhpX83rw9ZRlYb\nspxSfSQnJ2saf8xrQ+11KdWHLKdUH5cuXVLMyOpD1pZSfaSkpKhmrPUd+ayNx2rjilJO1nco5e7c\nuaM6tphn1PoOtWW0Vh+yjKzvUMppGVvMM2p9h1JOy9iilFGqDdl2l2xsUdteU6oPpZys/1DKqNWH\nlm1K8/qQZWT1oZST1YdSRq0+lHJq9aGWs1Yjsu1rWX2obZdbqw+ljNp2qVJOa//xIum1YI3Fo6gq\nkjvnjx49EjVr1hRHjhwxTps/f77o2rWrajYxMVEEBweL4OBgTTvnSUlJws3NTdy7d884bcuWLaJB\ngwbS3J07d0RoaKj4448/jNP69+8vvvjiC9VlTEtLEw0bNhTt27fXvHM+dOhQMXPmTE3zFmzH3d3d\nZD0uWrRIjB49WvNzLFy4UDRr1kxkZWVJ53vw4IGoVq2ayaA7YMAAERERoZg5ffq0cHNzE8nJySbL\n98EHH1jMq/S+/vzzz8LLy8tkI6F79+5i3rx50pwQQuzYsUPUrVtXBAcHm+ycK2XWrFkjWrRoYbJc\nY8eOFUOHDpXmDh06JCZOnGiSq127tti+fbtqvR45ckQ0a9ZM+Pv7m2xAyXINGjQQP/30k+Z1GBcX\nJ3x9fU1q+dNPPxVr165Vbaugnj17ihEjRkgzu3fvFnXr1rVYF/l/eFPKLVmyRDRt2lTk5uYacyEh\nIWLcuHGKn9+DBw8q1oba53737t3Cz8/PuBz5lHL169dXrI++ffsqZg4fPqxYG1r6JvP6UMso1YYs\nt2fPHqv18dVXX2nuOwvWhmwdyupDlouOjrZaHxMmTFDsp2X1oda/W6sPWUbWd8hySvURGxurOv5Y\n6zvUXpdSfchySvURHR2teYwsWB+ytpTqY926dYoZpdrIH0+tjcdq44pSTgjlvkOWUxtbrGVk44ra\nMgqhPLYoZZRqQ5ZTG1u0bAsVrA1ZW2pji7WM0riSXxtK211q9SHbXpPVh1JOVh9KGbX6UNumtFYf\nsoysPpRysvrQus1rXh9KObX6UMop9R+TJk1S3L6WjS1q2+XW6kOWkdWGLCfb9nhRffTVKotHUVUk\nT2u/cOECcnJyTC477+3tjYSEBNXs4cOH4efnh9jYWAgNX6d3dnbGkiVLULZsWeM0IQQePnyomps5\ncyb+9re/AQCOHTuGI0eOoE6dOqptTpkyBcHBwahcubLqvPmSkpLwxhtvaJ4/f5kcHBzg4+NjnPbx\nxx/jyy+/1JR/8OABlixZgqFDh6JEiRLSeUuVKoXSpUtjw4YNyM7OxpUrV3D8+HHp6fA3btxA2bJl\n8c9//tM4rVq1ajhz5gxyzG5xoPS+JiQkwN3dHSVLljRO8/b2Nt7uQFYP+/btw5AhQzBixAhNbTVo\n0ACTJk2yeB35taKUq127tvE0uuzsbKxbtw5ZWVmoWbOmdPmysrIwbtw4hIWFWax/pVx6ejpu376N\nihUrWiynUubIkSOoW7eusZYBIDIyEu3bt1ddh/kOHjyIY8eOITQ0VJpxdHREWloadu/eDSDvVLJH\njx7h3//+tzSXnJwMd3d3GAwG47Rq1arh8uXLFp9fIO89OXXqlGJtqH3u9+3bh9DQUIwePdrkeZVy\n+af/WauPJ0+eKGZ8fX0Va0NtGa3Vhywjqw1rufz1ePjwYav10bVrV019p3ltyNahrD6UljE9PV2x\nPi5evGjRTx89ehS1a9dWrQ9Z/26tPmQZWd8hyynVh7+/v3T5lPoOWVtq9aG0HpXqo2fPnprGSGv1\noZRTqg8fHx/F5btx44bV2si/1Y218VhtXFHKAcp9hyynNrZYy8jGFbVllI0t1jKy2pDl1MYWtW0h\n89qQtaU2tljLKPUb+bWhtN2lVh+y7TVZfSjlZPWhlFGrD9kyKtWHUkatPpRysvrQss1rrT6Ucmr1\noZRT6j9++uknxe1r2diitl1urT5kGVltyHKybY8XVU5OrsWjqLIr7AWw5u7du3B0dISd3f8Wr1y5\ncsjMzMT9+/fh5OSkmO3UqZOuthwcHFCvXj3jz0IIxMTE4O2339b8HAEBAUhJScE777yDZs2aSefN\n70y+//57hIWFaW7j6tWr+PHHH7FgwQLk5ubi3XffxcCBA6U7zTdu3MA///lPfPvtt4iKisKTJ0/Q\ntm1b9OvXz6SjUbJ69Wq4urqiadOmqvPa29tj3LhxGD9+PFasWIGcnBy0bdsWbdu2VcyUL18ev//+\nOzIzM42dWEpKCnJycvDw4UM4Ojoa51V6X+/evQsXFxeTaeXKlcPt27elOQCYOHEiAFh8L00p8+qr\nr+LVV181/nzv3j1s27YNAwcOVG0LyPtOZPPmzZGbm4shQ4bg1VdflWYWLlwId3d3q7WolLty5QoM\nBgMWLFiA/fv3w9HRET169EDr1q0VMzdu3ECFChUwY8YMfPfddyhbtiz69+9vvAqlls/U4sWL0bZt\nW7i6ukozPj4+6Ny5MwYOHIhixYohNzcXkyZNMg7qSrly5crh4sWLJtNSUlLw8OFDq59fPz8/aW2o\nfe4jIiIA5P2xoCBZTlYfan2MtdoAIM1Zqw/Z8slqQynn5+dn7Ees1YeWvtO8NmTLqFYfSstYrlw5\nnD9/3qTdlJQU3L9/3/izeT89ceJEad+hlAOU60MpYzAYpH2HrC1AuT6UMrK+QymXkJCgWB+y3Pff\nfy/tP2SvC7CsD7X1KKsP80xgYCASExOt9h33799XHI/VxhXZOC6rDaWcrO9Q22ZQqg1ZTqk+lDJJ\nSUnS2lDKycYWLdtC1mpDKSfrO5QySuNKfr+htN2lVh+y7TVZfSjlZPUxa9Ys6bahUn1Ya2vQoEGw\ns7NTrA+l5VOrD/Nc8+bNMWDAAGl9aNnmtVYfSq9LbWxRak9WI0rb17L6UNsut1YfsoysNrTsA8jG\nlhdNkf6OuZkieeQ8IyMD9vb2JtPyf9ZyobY/Y+rUqbhw4YLFX2pl5s2bh4ULF+L8+fPSo9JZWVkI\nDw9HWFiYxeuTuXnzJh4/foySJUtizpw5GDFiBL7//ntMmzZNmnv06BF++eUXrF27FpMnT8bIkSOx\ncuVKTRdqA4D169eja9eumpczKSkJAQEBWLduHSZPnoydO3diy5YtivN7eHjA2dkZ48ePR0ZGBq5d\nu4avv/4aQN7RRi2UauVZ10lmZiYGDBgAFxcXfPDBB5oyZcuWxYYNGzBu3DjMnTvX+BdcaxITE7F2\n7VrNFwzMd+XKFRQrVgyVK1fG4sWL0b59e4wdOxZxcXGKmUePHmHjxo34/fffERUVheDgYAwaNAhn\nz57V1OaNGzfwn//8B126dFGd948//sCNGzcwcOBArF+/Hn379kVERASuXr0qzQUGBiIhIQHr1q1D\nTk4OfvzxR+zdu9eiTqZOnYrz588jNDRUV23Y8rmX5WT1YS2jpTYK5rTWR37ms88+01UbBdfjo0eP\nsGnTJtX6sPa6tNRGwZye+shfxsGDBxt3LmX1kd9PX7hwARMnTtRcH1r7d60ZWW0o5WT1UTCTf19V\nLbVh3tbVq1c11Yf5etTSfyi9LrX6MH9tWurDPBMYGIhTp05Z1IZsPJbVhq3juNZcwfpo06aNasZa\nbcjaUuo7ZBlZbchySrVx8uRJ1ddlrTZkbSnVxsWLFxUzsnHF2nbXli1bMHXqVGl92Lq9pjVXsD4a\nNGigmrFWH0ptTZ06VbH/kGVk9SHLKdVHfHy86uuyVh+ytmR9h2zdK/Uf2dnZFtvXMTEx+Prrr6X1\nYct2udaM+diiJadnu/R5l52bY/EoqorkkfOSJUtabCDl/1y6dOln1u60adOwcuVKzJ49W9cp5+7u\n7gDyrjI6bNgwjBw50uSof7558+ahRo0auo7KA3l/VT906BDKlCkDAHBzc0Nubi6GDx+OUaNGKR4F\nL168OP744w/MnDkTf//73wEAv/76K9asWWP1yqcFJSQk4Pbt22jRooWmZTx48CDWr1+P/fv3w97e\nHm+++SZu3bqFBQsWICgoyGrG3t4ec+fOxWeffQZvb2+UK1cOISEhmDx5Ml5++WVN7ZYsWRIPHjww\nmZaVlaXrfoJ6PXr0CP369cP169exZs0ak1OXZF5++WXjlUUTExOxcuVKxbMSxo4di4EDB1qcwqum\ndevWCAgIMNbKv//9b/zyyy9Ys2aNyZGsgooXLw4nJyd88cUXAIDq1avj6NGjiI2Nxfjx41Xb3LVr\nF6pXr45KlSqpzrt48WIAQL9+/YxtnTp1CitWrJCeSVK1alVEREQgIiIC4eHhcHNzQ+fOnXHo0CHj\nPAU/v1WqVNFcG7Z+7pVysvpQyqjVhnmuU6dOqvVhvj6qVKmiqTbMc1rqQ+l1qdWGeW727NkA1OvD\nWnsTJkyQ1kd+Pz1y5EgMHToU7dq1w++//26yPNbqQ2v/riWj1nco5WT1UTAzdOhQnD59WlPfYd7W\niBEjNNWH+Xr09vZWrQ+l16VWH+avLX/8l9WHtddlrTa+++471KlTx+p4LOs7bB3HteTM62PRokWq\nGWu1kZCQoJgbM2aM1fqQLZ9sXDl16pRiTqnvCA8PV31d1mpDtoxKY8vIkSMVM7JxRWm7a9iwYWjb\ntq1i32Hr9pqWnHl9vPbaa6oZa/WxYsUKxdeWkJBgtT5kyzd69GjF+oiOjlZsy8fHx2p97N27V/V1\nWasP2Xv20ksvWa2P/L5D1p61/mPLli148OCBxfb16tWr4e/vj7S0NKv1Yct2uZaMtbFFS07Pdunz\nLif3+blzeJHcOXd1dUVaWhpyc3NRrFjewf3U1FSUKlXK+OF52iIiIhAbG4tp06Yp7sQUdO/ePZw4\nccJk3ipVquDJkyfG706a27ZtG+7du2e8bVf+UZ2dO3fi+PHj0vbMX3flypWRmZmJtLQ0xdP8XVxc\nULJkSeOHEgDeeOMN3Lp1S/X1HThwAL6+vnBwcFCdFwDOnj2LihUrmvy1sHr16oiKipLmatSogbi4\nONy7dw9OTk748ccf4eTkpPmPMK6urkhMTDSZlpqaCmdnZ015vdLT0xESEoLk5GQsX74cr732mmom\nMTERaWlpJt/7qVy5suIpsTdv3sSJEydw8eJF43eJHj9+jLCwMGzbtg2LFi2StmdeK5UqVTLZSTHn\n7Oxs/Jzle+ONN3Dp0iVpO/l+/PFHTZ8ZADh37hzc3NxMplWvXt3iPbSmTZs2aN26Ne7du4fy5ctj\n2rRpxusVWPv8aqkNvZ97tZysPqxltNSGeU5LfSgtn1ptWMup1YdsHcpqw1pOS30otWetPsqXL4+4\nuDir/bSzszOSkpJM2sqvD1v6d7WMnZ2d1dqQ5fK/w2peHz///LPi6zp16hQuXbpktTYmTZqk2NYf\nf/xh8bry60O2jK+++qrFUaI33ngDZ86cUVzG/HVorT5kbV28eNFqfZw7d07alrXaSE9Px549e6yO\nx3379lXsO2wdx9Vy1voOWWbdunW4f/++1b5DKbdp0yYYDAar9QEABoNBcfmU+o5ffvlFcRnfffdd\nq33HgQMH8Msvv0jXobXakK0PX19fq7URExODq1evKrYlG1eUtrvKly+v2HfIcrLtNbVciRIlrPYf\nSpljx44BsOw78scWpZys/zDf9pC9roJji1Jbrq6uKF68uMnv8scWtXWoNLYo5c6ePSsdW2TtWasR\nZ2dnPHjwwGL7+vbt23B1dcXly5dNni+/PmzZLlfLKG13yHJJSUmK/ceL6klO0T1Sbq5IntZevXp1\n2NnZmVx85ejRo6hRo8YzaS8yMhKxsbGYNWsWmjdvrimTnJyMAQMG4M6dO8Zpp0+fRtmyZa1uuAFA\nTEwMvv/+e2zevBmbN29GQEAAAgIC8N1330nbOnDgAOrUqYPMzEzjtHPnzsHR0VHa0Xt4eCAzMxPX\nrl0zTktKSjK5AJuShIQE1KpVS3W+fC4uLrh27Rqys7ON065cuYIKFSooZh48eIDOnTvjwYMHKFeu\nHIoVK4b4+HjUrl1bc7seHh44d+6cyZkWx44dM7mY4NMihED//v3x66+/IiYmRvNR1r1792Ls2LEm\n086cOaOY//vf/47du3fju+++M9aKi4sLBg0ahAkTJkjbmjt3Lnr06GEy7fz589ILq3h6euLy5csm\nF2DTWidAXt1rrRUXFxeLjV61OgGAQ4cOYfDgwTAYDChfvjyEENi/fz/q1Kmj+PlVqw1bPveynKw+\nlDJqtWEtp1YfSm2p1YZSTlYfautQqTaUcmr1oZRTqo9KlSpZ7afLlSsHb29vnD171mp92NK/q2WU\nakOWO3HihNX6cHV1tZp55ZVXsGvXLsXakLW1YsUKxfpQypUrVw6enp64dOmSRX04ODiorkNr9SFr\ny8XFxWKj98qVKyhTpoxiW5cuXbJaG3369FEcj2vWrKnYd9g6jstySn2HLLNnzx7FvkMpt3v3bsX6\nkLUl6ztkOQ8PD6t9R2BgoOo6tFYbsracnZ2t9h3NmzdXzMjGFaXtLicnJ/j4+Cj2HbZur6nlrNWH\nLKPUd1SuXFn62pTqo1WrVoptrVy5UrE+ZG0p9R3FihVTXYfW6kPWlrUd5vyxRbYeL1++bLVGGjZs\nqLh97eHhoVgftmyXyzKy7Q5ZTtZ/vKh4n/OnYNy4cSIoKEgkJCSI3bt3C29vb9V7ZpurVq2a6q3U\nEhMTxZtvvinmzJkj7t69a/KQycnJEe3atRO9evUSiYmJIj4+XtSrV0+sXLlS8/KNHDlS063U0tPT\nRcOGDcWQIUPElStXRHx8vPH2QWr69OkjOnbsKM6fPy/2798v/Pz8RExMjGquUaNGYuvWrZpehxB5\n9yb19/cXI0aMEFevXhV79uwRderUMd4yRUnr1q3F559/Lq5fvy7Wrl0rPDw8xJkzZ6SZgu9rTk6O\nCAoKEqGhoeLy5csiKipK1KpVy+J+tOa5gn7++WeL+5xby8TGxorq1auL+Ph4kzpJS0uT5m7duiV8\nfHzE9OnTxS+//CJiYmLEW2+9Jc6fP69p+YTIez/M70VrLZeQkCDc3d3F0qVLxfXr18WqVatEzZo1\nxalTpxQzDx8+FA0aNBDjxo0T165dEzExMcLd3d1i+awtY3JysqhWrZpITU21umzmmZMnTwp3d3fx\n9ddfi+vXrxvvrZmYmCjN3bp1S3h6eoo1a9aI69evi7CwMNGwYUNx5swZxc+vrDa0fu4PHTpkcrsb\nWU6pPk6cOKGYkdWGnr4pvz5kGVltyHJK9bFr1y7p8inVhqwtWX3Ickr1kZ6erthP5+TkiPfee89q\nfWjt3wvWhywj6ztkOaX6OHv2rObxp2DfIWtLVh+ynFJ9qC3jjRs3rNaHrC2l+rh06ZJ0HVqrjUeP\nHpm0W3A81jOuKI3j5n2HLKd1bCmY0TquyJZRCOWxpWBG67hintM6tpgvn5ZxxTyndWwxX4dKtSHb\n7pL1HVq318zrQ5ZTqo+bN28qZmT1oWebMr8+ZBlZfchyDx8+FPXr17eoj+PHj0uXT6nvkLUlqw9Z\nTlYjStvXsvoQQtt2uXl9KGXU+g6lnJ7+40XRJGK+xaOoKrI75xkZGWLkyJHCy8tLNGjQQKxYsUL3\nc2i5z3lUVJRwc3MzeVSrVk06qOa7c+eOGDBggPDx8RH169cXUVFRupZP6865EHkbtD179hS1atUS\n9evXF1999ZWm3MOHD8WIESNErVq1RL169cT8+dqK0cPDQxw4cEDTvObL6OPjI5o1a6bpPbt69aro\n0qWL8PT0FEFBQSI+Pl41Y/6+Xr9+XXTp0kXUrFlTBAUFiYMHD2rK5ZPtnLu5uRnvEdmrVy+LWnFz\ncxNdu3ZVbevUqVOiQ4cOwtPTU7z33nvihx9+0Lx8QggREBCguHNuntuzZ49o1aqV8PDwEC1atLD6\nRy3zTGJionEdvvvuu4p/CLP2utzc3ERWVpbV+a1l9u7dK4KDg4WXl5do27at5vcrPj5eNG/eXHh6\neoru3buLK1euqH5+r127ZrU2tH7uzQdIa7n8R0hIiNXpjRs3lralVBt6+qb8+lDLKNWGWs5afahl\nlGpDLadUH2o5a/UhhLyflvUdWvp38/pQyqj1HbK2lOpD6/hj3nfIcrK+Q5ZT6j/UXpdS3yHLKdWH\nLKNUGwWZj8dax5WnsXOudWwxb0vLuCJbRiGUxxbzjJZxxVpOy9hi7XWpjSvWclrGFvOMrDZk212y\n+tCyvWatPpRysvqQtSWrD63blAXrQ5aR1Ycsp1Qfaq9LqT5kOVl9yHJKNSLbvpbVh5btcvP6UMqo\n9R2ytrT2Hy+Kd8IjLR5FlUEIDTcDJyIiIiIiIqJnpkh+55yIiIiIiIjo/xPunBMREREREREVMu6c\nExERERERERUy7pwTERERERERFTLunBMREREREREVMu6cExERERERERUy7pwTERERERERFTLunBMR\nEUP0jHQAAAAtSURBVBEREREVMu6cExERERERERUy7pwTERERERERFTLunBMREREREREVsv8DeLLm\nhMnHyNwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAB5CAYAAABbelASAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XdYFNf+P/D3KoreiAEL3JuY3EST6xq8AgIqEUuwECuW\nWKNRIxqNFXvHiBF7T6zEqESDNRpLVDRoLNeuWLCARiUqihEjEUHg/P7gx8Ytc2ZmxYB+36/n2UcZ\n5r1ndvaz58wwszMGIYQAEREREREREeWbQvm9AERERERERET/13HnnIiIiIiIiCifceeciIiIiIiI\nKJ9x55yIiIiIiIgon3HnnIiIiIiIiCifceeciIiIiIiIKJ9x55yIiIiIiIgon3HnnIiIiIiIiCif\nceeciIiIiIiIKJ9x55yIiIiIiIjIhqSkJPTv3x/Vq1dHnTp1MHnyZGRkZEgziYmJ8PLywtGjR3W1\n5fAsC0pERERERET0surfvz+cnZ2xatUqpKSkYNSoUShcuDCGDh2qmBk/fjweP36suy3unBMRERER\nEdFL6bJ/oNW0d/fv0JS9cuUKYmNjceDAAZQqVQpAzs761KlTFXfON2/ejEePHtm1rDytnYiIiIiI\niF5KBgcHq4dWZcuWxdKlS0075gAghMDDhw9tzn///n3MmDEDYWFhEELoXlYeOSciIiIiIqKXk46d\ncUtOTk6oWbOm6WchBCIjI/H+++/bnH/y5Mlo2bIlKlSoYFd7PHJORER5ZuTIkTAajYoPf39/Xc8X\nEBCAkSNHPqel/cuGDRtgNBpx8+bNPHvO27dvw9fX1+piMEIIrF69Gs2bN4eXlxfq16+P8PBwpKam\nSp+vb9++CAgIsJq+f/9+fPTRR/D09ES9evXwzTffSJ9HCIGQkBB4enrCaDSiS5cuiI+PB5CzUfH+\n++/DaDSiW7duiImJAQBkZGSge/fuMBqNaNasGfbu3atjTRAREeUfQ+HCVg97TZ06FRcuXEBISIjV\n7w4ePIiTJ0/i888/t/v5eeSciIjyVNmyZfHVV1/Z/F2RIkV0PdfXX3+NV155JS8WS8pgMMBgMOTZ\n8926dQvdu3e3ucO9ZMkSzJkzB8HBwahRowZ+/fVXzJ49G/Hx8YiIiLD5fJs2bUJ0dDRef/11s+mn\nTp1Cr1690LRpUwwcOBDHjx/HtGnTkJWVhR49eth8LoPBgFmzZuHTTz/FoUOHsHz5ctPvRowYgezs\nbGzevBnLli0zTS9atCgWLlyIL774AhMnTrRnlRAREeULPaexy0ybNg0rV67E7NmzrY6Mp6enIzQ0\nFOPHj0fRokXtboM750RElKeKFi2KKlWq5MlzGY3GPHmev4sQAhs3bsTUqVMVf7906VJ06NDB9Fd3\nPz8/vPrqqxg8eDDOnTsHd3d3s8ydO3cwadIk/Otf/7J6vnnz5sHd3R2TJ08GAPj7++PJkydYtGgR\nunTpIt1AePXVV21Ov3r1qs0/KmzYsAEDBw5UfD4iIqIC6RmOlOcKCwtDVFQUpk2bhvr161v9PjY2\nFomJiejXr5/Zd8179OiBFi1aYPz48Zra4WntRESULwICAjBr1ixMnDgRvr6+qF69OoYPH44HDx6Y\nzfP0ae3nzp1D165d4ePjg6pVq6Jbt244ffq06ffZ2dn47rvv0KxZM3h4eOCDDz7AjBkzzO5HKoTA\n119/jQ8++ACenp7o06ePWZu51q5di6ZNm+K///0vPvjgA8yfPx/Z2dnS13Tx4kWMHz8eLVu2xJQp\nU6wuBpOamoqgoCA0adLEbHr58uUhhMD169etnnPMmDHw9/dHjRo1zKZnZGTgyJEjVhsJgYGBSE1N\nxfHjx6XLamvnfO/evcjOzkZWVpbZDnpKSgoyMzNRpkwZ6XMSEREVNM9yQTgAmD9/PqKiojBr1iw0\natTI5jweHh7YuXMnNm3ahM2bN2Pz5s0AgC+//BL9+/fX3BaPnBMRUZ7LysqyOb2wxV+vV61ahbff\nfhtTp05FcnIypk+fjmvXruH777+3yqampiI4OBjvv/8+5s+fj/T0dCxYsADBwcH4+eefUaJECYwd\nOxabN2/GZ599Bm9vb5w/fx7z589HXFwcli5dCiDn+2IrV65Enz59UKVKFWzfvh3Tp083a2vRokWY\nPXs2PvnkE4waNQpxcXGYO3cubt++LT2t+7XXXsOuXbvg5uaGI0eOWJ0q7+TkhNGjR1vloqOjYTAY\n8O6775pNX7t2Lc6fP48tW7ZgypQpZr+7ceMGnjx5grffftts+r///W8AObd/8fPzU1xWy53zjIwM\n/Pzzz2jevDkOHjyIlJQUlChRAgCwZs0adOnSRfG5iIiICqpnOa09ISEBCxYswGeffQYvLy8kJyeb\nflemTBkkJyfDyckJjo6OeOONN6zyrq6uZld6V8OdcyIiylO//fab1anZQM53nYcNG4Zu3bqZphUu\nXBjLli0zfa/cxcUFffv2xf79+60uHpeQkID79++jc+fO8PT0BJBzxHnNmjX4888/kZSUhPXr12PI\nkCEIDg4GkHPKeNmyZTFs2DDs27cPXl5eWLlyJbp3747evXsDAGrWrImkpCTs378fQM4fARYsWIAO\nHTqYjtq///77cHZ2xpgxY9CtWzfFq7CWLFkSJUuW1LW+Tp8+jSVLliAgIADvvPOO2XqcPHkypkyZ\nAmdnZ6tc7pFty+/k5/78559/Stu1fM6IiAh07NgRt27dAgA8ePAA5cqVQ0JCAsqVKwdHR0ddr4uI\niKggMDjYf1r77t27kZ2djQULFmDBggUAcs7AMxgMiIuLg7+/PyZPnowWLVpYt2vHtWy4c05ERHnK\n1dUVCxcutHl/T8vvTderV89s57JevXpwcHDA0aNHrXbO3333XZQqVQqfffYZPvzwQ9SqVQs1a9bE\n4MGDAQB79uyBwWCwOmW8SZMmGDlypOlIdlZWFurWrWs2T6NGjUw75ydPnkR6ejo++OADszMA6tat\nCyEEDhw4YPctUiwdP34cvXv3xptvvolJkyaZ/W706NGoW7euze+2AVA9xV5to+DpI+c3btzAvXv3\n8J///AePHz+GEMJ0qv/WrVttnpK3d+9epKSkICgoSNoOERFRvnqGI+c9e/ZEz549FX9/4cIFxd/F\nxcXpbo8750RElKeKFCmC9957T9O8bm5uZj8bDAY4OzsjJSXFat5//OMfWLVqFRYsWICffvoJa9as\ngaOjI4KCgjB69GjTzqTl96ILFy4MFxcX/PHHH6Z5XFxczOYpW7as6f8pKSkQQqBnz55Wf2AwGAy4\nc+eOptemZtu2bRg5ciTKly+PJUuWmO0sR0ZG4tKlS/jxxx+RlZUFIYRpWbKyslCoUCE4OTkBsD5C\nnntEPff3Sp5ub/bs2aazBHLXTUpKCg4cOGDzXq6rVq3Czp07bR4pICIiKkjy6mrtf4cXZ0mJiOil\nc//+fbOfs7OzkZKSonjhsbfeest0obXY2Fhs2rQJq1evxr///W/TzmZycrLZEfrMzEzcv38fLi4u\ncHFxgRACycnJeOutt0zzPP3HgNzT0mfMmGH6/vbT8uKiaBEREZg+fTpq1KiBefPmmb7bnWvHjh24\nf/8+atasaZWtXLky+vTpg549e6Jw4cJWF5G7du0aAKge3c89rT0mJgbvvPOO6XXlTv/999+RkJCA\nfv36WWU7duyI33//XeOrJSIiyj+Gwi/ONdBfnCUlIqKXzt69e5GZmWn6OTo6GllZWTYvZLZjxw74\n+fnh3r17MBgM8PDwwLhx4+Dk5ISbN2+iWrVqEEJgy5YtZrktW7YgOzsbPj4+8PLyQrFixfDTTz+Z\nzbNnzx7T/z08PFCkSBHcvn0b7u7upkehQoUwY8YM3Lhx45le8/fff49p06ahcePGWLJkidWOOZBz\ny5Z169Zh/fr1pkfdunXh6uqK9evXo127dihatCh8fHywc+dOq/VUsmRJ1dvZOTs7QwiBiIgIdO/e\n3TTdyckJDg4OiIqK4inrRET0wjMUKWL1KKh45JyIiPJURkaG2e3NLBmNRtPFxW7fvo3evXujU6dO\nuHXrFmbNmoXatWvDx8fHKle1alVkZ2fj888/R48ePVCiRAls27YNqampCAwMRIUKFdCyZUvMnTsX\naWlp8PX1NV2tvUaNGqhVqxYA4PPPP8ecOXNQvHhx1KhRAzExMYiJiTG14+zsjODgYMyZMwcPHz5E\ntWrVkJSUhLlz56JQoUK67r1ueVp8cnIywsPDUa5cOXTs2BHnzp0z+/0bb7yBUqVKmR3Vz+Xi4mL1\nlYHevXvj008/xYABA9C6dWucOHECy5Ytw5AhQ1Qv4JZ7pkGbNm2s7of+6quvwt/fH2+++abm10pE\nRFQg8bR2IiL6vyo5ORnt27dX/P3GjRtNO7iNGzfGq6++ipCQEPzjH/9Aq1atEBISYprXYDCYLmxW\ntmxZREREYPbs2RgzZgweP36Md999F/PmzYOvry8AYNKkSXjrrbewfv16LFmyBG5ubujatavpyuxA\nzsVdXnnlFSxfvhwrVqyAl5cXRowYgfHjx5vmGTBgAFxdXbFq1SpERESgZMmSqFmzJkJCQmwe6VZi\neVG2vXv3IiMjA7/99hs6depkNX94eLj0e9yWz1ejRg3MnTsX8+bNQ9++feHm5oZhw4aha9euqsv2\n6quvwsfHB82bN7f6ndFoxOeff676HERERAWdodCLc7K4Qdi6nC4REdFzFhAQgOrVqyM8PDy/F4Xs\nMH/+fJQrV44XhSMiogLt5tCxVtNemxaWD0uijkfOiYiISJe1a9fi4MGDKFmyJIoVK4YPP/wwvxeJ\niIjIphfpau0vzjF+IiJ6qTx9yjq9WNq0aYNVq1Zh4cKF3DEnIqKCrXBh64cdMjIy0KxZMxw9elRx\nnl27dqFx48bw8vLCxx9/jPPnz+tq48X5MwIREb1Udu/end+LQERERC+5vDhynpGRgUGDBiE+Pl5x\nnvj4eAwZMgRhYWHw8vLCt99+i549e2L37t2qF2nNxSPnRERERERE9HIqXMj6oUNCQgLatm2LxMRE\n6Xz79+/Hu+++i+bNm+ONN97AoEGDkJycLN2ht8SdcyIiIiIiInopPet9zo8cOQI/Pz9ERUVZ3SL1\nac7OzoiPj8eJEycghMD69evh5OSk67akPK2diIiIiIiIXkrPelp7hw4dNM3XuHFj7NmzBx07dkTh\nwoVRqFAhLF68GE5OTprbKlA75xE/H9E8b/cPqgEAlu45rKuN4IDqAIA523/RlRvQqBa+idG+fADw\nad2cZRzw7UZduTldW6LXkrW6Mgt7tAEA9F+2QVdubrdWAIAei6I0Z5Z81g4A8MlX3+lqa0WfjwEA\ns7bu1ZULaVIHUzbv0ZUZ3jwgp81fjuvKfVLLG1/tPKAr06dhTQBA76XrdOUWBH9kVwYAPl3wva7c\nN71z7jkduV/7+ujk7w0AmLhhl662xrRqAAAY9t2PunJTP26G4au26MpM6dgUgH3rw951OHL1Vl25\n8A5NAACjv9+mOfNl+8YAgPk79utqq2+gPwBg8MrNunIzOjfHmKjtujIT2zUCAPRcvEZXbnHPtnbV\nBmBf/xa69iddmS/a5FzczN73Wc84kTtGDI3U935N69Tc7tz4dTt0ZcZ/FAgAmLElRlducNO6dq97\ne/vg5fuOac50qe0DwP6+1J5tCHs/z7O37dOVG9i4tt31a89n8+8cMwF9635Ao1oAgI/nrtTV1nf9\nOwOwr3+z5/0C7KtFe99ne/ucbl+v1pxZ9nnOzsyE9Tt1tTWudUMA9tWHvW0t2HVQV653g/cxXWef\nOKRpXQD29aX2bht9HqFvHX7d/SNd879IDDpPY7dXSkoKkpOTERoaCg8PD6xevRojRozAxo0bUapU\nKU3PwdPaiYiIiIiI6OXk4GD9eA6mT5+OihUrokOHDnjvvfcwYcIEFC9eHBs2aD+4wJ1zIiIiIiIi\neik963fOtTp37hyMRuNf7RoMMBqNuHnzpubnsHvn/P79+0hKSsIff/xh71MQERERERERPTeGQoWs\nHs+Dq6ur1ZXZr169inLlyml+Dl3H9Hfu3InIyEjExsYiPT3dNL1YsWKoXLkyunTpgvr16+t5SiIi\nIiIiIqLnIi/uc64kOTkZTk5OcHR0RJs2bTBq1ChUrlwZXl5eWLNmDW7duoUWLVpofj7NS7ps2TLM\nnz8fwcHB6Nu3L0qXLo2iRYsiIyMDycnJOHbsGEaMGIEBAwagc+fOdr04IiIiIiIiojyTh6exGwwG\ns5/9/f0xefJktGjRAo0bN0ZaWhoWLVqEpKQkVKpUCStWrNB8MThAx875N998gylTptg8Ml6hQgVU\nr14dFStWRFhYGHfOiYiIiIiIKN/l5dXa4+LizH6+cOGC2c+tW7dG69at7X5+zTvnjx8/Vj1f3s3N\nDQ8fPrR7YYiIiIiIiIjyyvM8rT2vaf4zQoMGDTBixAgcO3YMmZmZZr/Lzs7GiRMnMGrUKAQGBub5\nQhIRERERERHpZXBwsHoUVJqXbPz48ZgyZQq6d++OrKwsODs7m75znpKSAgcHBwQFBWHkyJHPc3mJ\niIiIiIiItHEonN9LoJnmnfOiRYti7NixGDJkCC5cuIC7d+8iLS0Njo6OcHNzQ6VKlVCsWLHnuaxE\nREREREREmhXkI+WWdC9p8eLF4eXl9TyWhYiIiIiIiCjvFHpxjpwbhBAivxeCiIiIiIiIKK893L3X\nappTvTr5sCTqCtQx/mHf/ah53qkfNwMAjFy9VVcb4R2aAAC+iTmiK/dp3WrovXSdrsyC4I8AAD0W\nRenKLfmsHRbsOqgr07vB+wCAsWu268qFtW0EAPhq5wHNmT4NawIAJm2M1tXWqJY5t+Hrv2yDrtzc\nbq0wZfMeXZnhzQMAAAO+3agrN6drS4z+fpuuzJftGwMAVh88qSvX4X0vfB6hr6a+7p5TU9/uPaor\n17WOLwAgZPkPmjOzurQAAIRt2KWrrbGtGgCwrz6m/vizrsywZh8AAMZE6av7ie0aYfiqLboyUzo2\nBQC7P5t62sttS8/nEvjrszlrq/UgJBPSpA4GrdikKzPzkyAAwIT1O3XlxrVuaPf7bE8tDo3crCsz\nrVPznDZ1jEfAX2PS9C0xmjNDmtYFAIxft0NXW+M/yrnwqj3vmb11b0+/bc/nEgB6LVmrK7ewRxsA\nQPgPuzVnRraoBwAYvFJffczonFMf9oxJ9o5j9mzn2NuWnnUI5KxHe8cIe3PtZ6/QnPl+4CcAgOX7\njulqq0ttHwD2fcbsbWv+jv26cn0D/e3+rNjb5/RcvEZzZnHPtgD0jX3AX32OPa/N3pqyZxyzd5/A\nnn7R3vHZ3j74ZZRXp7VnZGSgdevWGDduHHx9fW3OExMTg9mzZ+PatWt48803MWDAAAQEBGhuI+9u\n+kZERERERERUgBgKF7Z66JWRkYFBgwYhPj5ecZ4LFy6gX79+aNOmDTZv3oy2bduif//+uHjxouZ2\nuHNORERERERELycHB+uHDgkJCWjbti0SExOl823duhV+fn74+OOP8cYbb+Djjz9G9erVsX279rMY\nCtRp7URERERERER5xfCMt1I7cuQI/Pz8MHDgQHh4eCjO17JlSzx58sRqempqqua2uHNORERERERE\nL6Vn/c55hw4dNM1Xvnx5s58vX76M//3vf+jYsaPmtrhzTkRERERERC+l/LjP+e+//45+/frB29sb\n9erV05zjzjkRERERERG9nJ7xtHa9kpOT0a1bNxgMBsyZM0dXVtfO+dGj2m/fpHR5eSIiIiIiIqK/\ngz1XZ7dXUlISPvnkExQuXBgrV66Ei4uLrryunfMJEyaYLh8vhFCcz2AwIC4uTteCEBEREREREeUl\nQ5Eif0s7aWlpCA4ORpEiRbBixQqUKlVK93Po2jlfv349Bg0ahMTERERFRcHR0VF3g0RERERERER/\nh2e9WrtMcnIynJyc4OjoiIULFyIxMRErVqxAdnY2kpOTAQDFihVDiRIlND2frvucFy1aFDNnzgQA\nzJ49W+eiExEREREREf2NChW2ftjJYDCY/ezv72+6j/nOnTvx+PFjtG3bFrVq1TI9vvzyS83Pr/uC\ncEWLFsWMGTNw5MgRvVEiIiIiIiKiv42hSN5dA93yq9sXLlww/T93J/1ZGITsy+NEREREREREL6iH\nDx9aTXNycsqHJVGn67R2IiIiIiIiIsp7Beo+54uiD2me97P6fgCA8B9262pjZIucm8B/E6PvtPxP\n61azKwMA3b5erSu37PMO6LVkra7Mwh5tAADzd+zXlesb6A8AGPbdj5ozUz9uBgAYuXqrrrbCOzQB\nAMzetk9XbmDj2ui5eI2uzOKebQEAUzbv0ZUb3jwAwQu/15VZ2qs9AGDC+p26cuNaN7T7/Zqz/Rdd\nuQGNagHQVx+5bS3e/T9dbfWsVwMAMHHDLl25Ma0a2P15tic3JkrfqUcT2zUCAAz4dqOu3JyuLQEA\nM7bEaM4MblpXd+bpnD31MWjFJl2ZmZ8EAYBd63HSxmhdmVEt6wMAhkZu1pWb1qm53Z9ne/uc/ss2\naM7M7dYKADBr615dbYU0qQMAmPeTvv6j34f+iDp0SlemnZ8nAPveZz3jCvDX2GJP3wHoW8bcz7O9\n7/PSPYd15YIDqts9rtuz7aGnDoG/ajF07U+6cl+0+dDutsJ0vs9j///7PHil9n5gRufmAOx7vwD7\n1oe9dR+y/AdduVldWmD4qi26MlM6NgUARO4/rivXyd8bgL71mLsO7R3HeiyK0pVb8lk7u7fTR3+/\nTVfuy/aN7e637Xmf7dm+BIBv92q/BTYAdK3D22AXBDxyTkRERERERJTPCtSRcyIiIiIiIqK88thg\nvctbML9xzp1zIiIiIiIiekllZmXl9yJopum09oyMDEybNg116tRB1apV0bdvXyQkJJjNk5ycjEqV\nKj2XhSQiIiIiIiLSKztbWD0KKk075zNnzkR0dDSGDRuGCRMmIDk5Ga1bt0Z0tPlFfXhXNiIiIiIi\nIioonmRnWT30yMjIwKhRo+Dr64tatWph2bJlivNevHgRHTt2hIeHB5o3b47Dh/VdkFLTzvn27dsx\nadIkNGnSBE2bNsXq1avRoUMHDBw40Oxm6waDQVfjRERERERERM9LZma21UOPKVOm4Pz581i5ciVC\nQ0Mxf/587NxpfRX91NRUdO/eHe+++y62bNmCBg0aoG/fvvj99981t6XpO+ePHz+Gs7Oz6WeDwYDh\nw4ejUKFCGDp0KBwcHODl5aW5USIiIiIiIqLnLUvo2xl/WlpaGtatW4eIiAgYjUYYjUYEBwcjMjIS\nDRs2NJt3w4YNeOWVV/DFF18AAPr164d9+/bh7NmzqF27tqb2NB05r169OqZOnWq11z906FC0a9cO\nISEhWLVqlaYGiYiIiIiIiP4OmVnZVg+tLly4gKysLHh6epqmeXt7IzY21mreo0ePIiAgwGza2rVr\nNe+YAxp3zkePHo2UlBTUrFkTBw4cMPvd2LFj0atXLyxatEhzo0RERERERETP25OsLKuHVnfv3oWz\nszMcHP464bx06dJIT0/H/fv3zea9ceMGXFxcMG7cOPj7+6N9+/Y4ceKErmXVtHPu5uaGqKgobN26\nFVWqVLH6fd++fbF582aEhIToapyIiIiIiIjoecnKzrZ6aJWWloaiRYuaTcv9OSMjw2z6o0ePsHTp\nUri6umLp0qXw8fFB9+7dkZSUpLk9Xfc5L1++vOLvKlSogAoVKuh5OiIiIiIiIqLnRs9p7JYcHR2t\ndsJzfy5evLjZ9MKFC6NSpUro27cvAMBoNOLAgQPYtGkTevbsqak9g+D9z4iIiIiIiOgldOjydatp\nfu++qSl78uRJdO7cGbGxsShUKOek88OHD6NXr144efKk2byffPIJKlSogNDQUNO0kJAQODs7m02T\n0XRaOxEREREREdGL5lm+c16pUiU4ODjg1KlTpmnHjh1D5cqVreb19PTEhQsXzKZduXIFr7/+uub2\ndJ3W/rzN2BKjed7BTesCAFrNUL4JvC0bBncDAKz532ldubY1PDB/x35dmb6B/gCAiRt26cqNadUA\nY6K2q8/4lIntGgEAPvnqO125FX0+BgB8u/eo5kzXOr4AgFlb9+pqK6RJHQBAl6/1Xdl/+ecdMWjF\nJl2ZmZ8EAQC6fb1aV27Z5x2wYNdBXZneDd4HYN+6t/d9Xrz7f7pyPevVAABM2bxHc2Z485yrTfZc\nvEZXW4t7tgVgX31M2hitKzOqZX0AwJztv+jKDWhUC9N19DcAMOT/9zn2tAUAy/cd05zpUtsHABC8\n8HtdbS3t1R4A7KrhkOU/6MrM6tIip809h3XlggOqY1H0IV2Zz+r7AbCvv687fr6uTMz4nFPRPpqp\nr611g3LGlhW/HNec+aSWNwD7+1J7+oEJ663vyyozrnXObWJGf79NV+7L9o0xNHKzrsy0Ts0B2N+/\n6anh3Pq1t+71bK8AOdss9vY5Y9foGyfC2jbCNzFHdGU+rVsNgH3bK1/tPKA+41P6NKwJQN94BPw1\nJs37Sfu2WL8Pc7bD7N2GsKd/i/hZ37rv/kHOurdnGcev26ErM/6jQADA7G37dOUGNs650nT4D7s1\nZ0a2qAcAdte9PdsD9vRTgH3vs57tZuCvbWd7ltHebSN73+eXUaaOnXFLxYoVQ1BQEEJDQzFp0iQk\nJSVh2bJlmDx5MgAgOTkZTk5OcHR0RPv27REZGYn58+ejefPm2LhxIxITE9G8eXPN7fHIORERERER\nEb2UsrKF1UOPkSNHonLlyujSpQvCwsIwYMAA1K+f80cQf39/bN+e80fU1157DREREdizZw+aNWuG\nvXv3YvHixXB1ddXcVoE6ck5ERERERESUVzKz7T9yDuQcPQ8PD0d4eLjV7yxPY/fy8sKGDRvsbuuZ\nd84zMzORmpoKZ2fnZ30qIiIiIiIiojzzJNP+q7X/3XSd1r5161ZMmDABO3bsgBACEydORNWqVeHn\n54eaNWsiMjLyeS0nERERERERkS5ZItvqUVBpPnIeERGBBQsWwM/PD6Ghofjhhx8QFxeHadOm4Z13\n3sGZM2d1NYGfAAAgAElEQVQwffp0PHr0SPN93IiIiIiIiIiel2e5z/nfTfPO+XfffYeZM2eidu3a\nOH78ODp16oSFCxeiTp2cq8ZWqFABLi4uGDt2LHfOiYiIiIiIKN89y9Xa/26ad87v37+Pt956CwDg\n7e2Nf/3rXyhTpozZPOXKlUNaWlqeLiARERERERGRPbKyX5wj55q/c161alV89dVXePToEQBgz549\ncHd3N/3+zp07CA8Ph5+fX94vJREREREREZFOmVnZVo+CSvPOeWhoKE6fPo0xY8ZY/S46Ohp16tTB\ngwcPMHbs2DxdQCIiIiIiIiJ7vJQ752+++Sa2b9+OkSNHWv3Oy8sL33//PaKiolC2bNk8XUAiIiIi\nIiIie2RlZ1s99MjIyMCoUaPg6+uLWrVqYdmyZYrznj9/Hm3btoWnpyfatGmDc+fO6WrLIIQQuhJE\nREREREREL4D5O/ZbTesb6K85HxYWhuPHj2Py5MlITEzE8OHDER4ejoYNG5rNl5aWhgYNGiAoKAit\nW7fG6tWrsX37dkRHR6NYsWKa2tJ1n3MiIiIiIiKiF0VWtrB6aJWWloZ169ZhzJgxMBqNqF+/PoKD\ngxEZGWk179atW1G8eHEMHToU5cuXx+jRo/HKK6/gp59+0twed86JiIiIiIjopZSZlWX10OrChQvI\nysqCp6enaZq3tzdiY2Ot5o2NjYW3t7fZtKpVq+LkyZOa2+POOREREREREb2UMrOzrR5a3b17F87O\nznBw+OsO5KVLl0Z6ejru379vNu+dO3fg6upqNq106dJISkrS3J7m+5wTERERERERvUiynuHq7Glp\naShatKjZtNyfMzIyzKY/fvzY5ryW88lw55yIiIiIiIheSnqOlFtydHS02rnO/bl48eKa5tV6MTiA\nO+dERERERET0knqi4zvmltzc3JCSkoLs7GwUKpTzjfDk5GQUK1YMJUuWtJr37t27ZtOSk5N13Wqc\n3zknIiIiIiKil1J2trB6aFWpUiU4ODjg1KlTpmnHjh1D5cqVreb18PCwuvjbiRMnzC4mp4Y750RE\nRERERPRSepKVZfXQqlixYggKCkJoaCjOnDmD6OhoLFu2DF26dAGQc2Q8PT0dABAYGIiHDx9i0qRJ\nSEhIwMSJE5GWloZGjRppbo8750RERERERPRSyszKtnroMXLkSFSuXBldunRBWFgYBgwYgPr16wMA\n/P39sX37dgBAiRIlsHDhQhw7dgytW7fGmTNnsGTJEl3fOTcIIbQf1yciIiIiIiJ6QQz4dqPVtDld\nW+bDkqgrsEfOMzIyMGrUKPj6+qJWrVpYtmyZ7nyzZs1w9OhR1XmTkpLQv39/VK9eHXXq1MHkyZM1\nXfL++vXr6N69O7y8vBAQEICIiAhdy9izZ0+MHDlS07zR0dEwGo2oVKmS6d8BAwao5jIyMvDFF1+g\nWrVq8Pf3x6xZs6Tzb9y40aodo9GI9957T7Wt27dvo1evXvD29ka9evWwfPly1czvv/+O/v37w9fX\nF4GBgdi40frDY/l6LN/XxMREdOvWDV5eXmjatCkOHDigKZfrypUr8PLy0pQ5deoU2rdvDy8vLzRq\n1Ahr167VlPvll18QFBQEDw8PtGjRAvv27dO8fKmpqahduzZ++OEHTW1NnDjR6j387rvvpJlbt26h\nR48e8PT0RGBgoOkvgLK2Ro4cadZO7qNr167Sto4dO4ZWrVrBy8sLLVu2xKFDhzS9rrNnz5rWffv2\n7XH69GkA8s+vrDa0fO6vXbsGDw8Ps2mynFJ9yDKy2tCyjJb1IcvIakOWU6qPpzO1a9fGlClTkJGR\noVobsrZk9SHLKdWHrJ+W1YeW/t2yPmQZWd8hyynVh5bls9V3yHKy+pDllOpDKaNWH7K2lOpDllGq\njadZjsdaxhVbuVy2+g5ZTsvYYplRG1fUllE2tlhm1MYVpZyWseXpjJZxRaktLWOLZUZWG7LtLll9\naNles1UfspxSfcgysvrQsoyW9SHLyOpDllOqD6WMWn3I2pLVhyynVCOy7WtZfWjZLresD1lG1nfI\nclr7j5fFs5zW/rcTBdSECRNEUFCQiIuLE7t27RJVq1YVO3bs0JRNT08Xffr0EUajURw5ckR1/rZt\n24qePXuK+Ph4cezYMdGwYUMxdepUaSY7O1sEBgaKYcOGiWvXrom9e/cKb29vsWXLFk3LuGXLFlGx\nYkUxYsQITfMvWLBA9O7dW9y7d08kJyeL5ORk8fDhQ9Xc2LFjRWBgoDhz5ow4dOiQqFGjhoiKilKc\nPz093fT8ycnJ4tatW6Jhw4Zi8uTJqm21bdtWDBo0SFy7dk1ER0cLT09PsWvXLmmmXbt2ol27diIu\nLk7ExMSIatWqKWaU3tfmzZuLYcOGiYSEBLFo0SLh6ekpbt26pZoTQojExETRsGFD4e7urtrW3bt3\nha+vr5g1a5a4du2a2Lp1q6hSpYqIiYmR5q5duyY8PDzE8uXLxY0bN8SyZctE5cqVxW+//aa6fELk\nvIdGo1Fs3LhR0/ro1q2bWLJkidn7+PjxY8VMZmamaNq0qejTp4+4evWq+P7774W7u7u4fPmytK2H\nDx+atXHq1ClRpUoVsXv3bsXMvXv3hI+Pj/jmm2/EjRs3xMKFC4Wnp6e4ffu2tK3c3Lhx48SVK1fE\nsmXLhJeXl7h165b089usWTPF2lD73N+8eVMEBgYKo9Fott6VcrL6UMqo1YaWvsmyPmQZWW0o5WT1\noZRRqw2lnFp9qOUs6yP3PVTqp5XqQ0v/blkfsoysNmQ5pfpITEzUNP5Y1oba61KqD1lOqT4uXbqk\nmJHVh6wtpfq4deuWasZW35HL1nisNq4o5WR9h1Luzp07qmOLZUat71BbRlv1IcvI+g6lnJaxxTKj\n1nco5bSMLUoZpdqQbXfJxha17TWl+lDKyfoPpYxafWjZprSsD1lGVh9KOVl9KGXU6kMpp1Yfajlb\nNSLbvpbVh9p2ua36UMqobZcq5bT2Hy+THouirB4FVYHcOX/06JGoUqWKOHr0qGna119/LTp37qya\njY+PF0FBQSIoKEjTznlCQoIwGo3i3r17pmlbtmwRtWvXlubu3LkjQkJCxJ9//mma1rdvX/HFF1+o\nLmNKSoqoU6eOaNOmjead8yFDhoiZM2dqmvfpdtzd3c3W4+LFi8WoUaM0P8fChQtFw4YNRUZGhnS+\nBw8eiIoVK5oNuv369RNhYWGKmTNnzgij0SgSExPNlq9du3ZW8yq9rwcPHhReXl5mGwldu3YV8+bN\nk+aEEOKnn34SNWrUEEFBQWY750qZ1atXi8aNG5st19ixY8WQIUOkucOHD4tJkyaZ5apVqya2b9+u\nWq9Hjx4VDRs2FP7+/mYbULJc7dq1xYEDBzSvw+joaOHr62tWy3369BFr1qxRbetpn376qRg+fLg0\ns2vXLlGjRg2rdZH7hzel3NKlS0WDBg1Edna2KRccHCzGjRun+Pk9dOiQYm2ofe537dol/Pz8TMuR\nSylXq1Ytxfro1auXYubIkSOKtaGlb7KsD7WMUm3Icrt377ZZH1999ZXmvvPp2pCtQ1l9yHIRERE2\n62PixImK/bSsPtT6d1v1IcvI+g5ZTqk+oqKiVMcfW32H2utSqg9ZTqk+IiIiNI+RT9eHrC2l+li7\ndq1iRqk2csdTW+Ox2riilBNCue+Q5dTGFlsZ2biitoxCKI8tShml2pDl1MYWLdtCT9eGrC21scVW\nRmlcya0Npe0utfqQba/J6kMpJ6sPpYxafahtU9qqD1lGVh9KOVl9aN3mtawPpZxafSjllPqP8PBw\nxe1r2diitl1uqz5kGVltyHKybY+XVfcFq60eBVWBPK39woULyMrKMrvsvLe3N2JjY1WzR44cgZ+f\nH6KioiA0fJ2+bNmyWLp0KUqVKmWaJoTAw4cPVXMzZ87EP/7xDwDA8ePHcfToUVSvXl21zSlTpiAo\nKAgVKlRQnTdXQkIC3n77bc3z5y6Tk5MTfHx8TNN69OiBL7/8UlP+wYMHWLp0KYYMGYIiRYpI5y1W\nrBiKFy+O9evXIzMzE1euXMGJEyekp8PfuHEDpUqVwuuvv26aVrFiRZw9exZZFqebKL2vsbGxcHd3\nh6Ojo2mat7e36XYHsnrYu3cvBg8ejOHDh2tqq3bt2ggPD7d6Hbm1opSrVq2a6TS6zMxMrF27FhkZ\nGahSpYp0+TIyMjBu3DiEhoZarX+lXGpqKpKSkvDWW29ZLadS5ujRo6hRo4aplgFg/vz5aNOmjeo6\nzHXo0CEcP34cISEh0oyzszNSUlKwa9cuADmnkj169Aj/+c9/pLnExES4u7vDYDCYplWsWBGXL1+2\n+vwCOe/J6dOnFWtD7XO/d+9ehISEYNSoUWbPq5TLPf3PVn08efJEMePr66tYG2rLaKs+ZBlZbdjK\n5a7HI0eO2KyPzp07a+o7LWtDtg5l9aG0jKmpqYr1cfHiRat++tixY6hWrZpqfcj6d1v1IcvI+g5Z\nTqk+/P39pcun1HfI2lKrD6X1qFQfn376qaYx0lZ9KOWU6sPHx0dx+W7cuGGzNnJvdWNrPFYbV5Ry\ngHLfIcupjS22MrJxRW0ZZWOLrYysNmQ5tbFFbVvIsjZkbamNLbYySv1Gbm0obXep1Ydse01WH0o5\nWX0oZdTqQ7aMSvWhlFGrD6WcrD60bPPaqg+lnFp9KOWU+o8DBw4obl/Lxha17XJb9SHLyGpDlpNt\ne7ysnmRnWz0KKof8XgBb7t69C2dnZzg4/LV4pUuXRnp6Ou7fvw8XFxfFbIcOHXS15eTkhJo1a5p+\nFkIgMjIS77//vubnCAgIwK1bt1C3bl00bNhQOm9uZ/Ljjz8iNDRUcxtXr17FL7/8ggULFiA7Oxsf\nfvgh+vfvL91pvnHjBl5//XX88MMPWLRoEZ48eYJWrVqhd+/eZh2NklWrVsHNzQ0NGjRQnbdo0aIY\nN24cJkyYgBUrViArKwutWrVCq1atFDNlypTBH3/8gfT0dFMnduvWLWRlZeHhw4dwdnY2zav0vt69\nexeurq5m00qXLo2kpCRpDgAmTZoEAFbfS1PKvPbaa3jttddMP9+7dw/btm1D//79VdsCcr4T2ahR\nI2RnZ2Pw4MF47bXXpJmFCxfC3d3dZi0q5a5cuQKDwYAFCxZg3759cHZ2Rrdu3dCiRQvFzI0bN1Cu\nXDnMmDEDmzZtQqlSpdC3b1/TVSi1fKaWLFmCVq1awc3NTZrx8fFBx44d0b9/fxQqVAjZ2dkIDw83\nDepKudKlS+PixYtm027duoWHDx/a/Pz6+flJa0Ptcx8WFgYg548FT5PlZPWh1sfYqg0A0pyt+pAt\nn6w2lHJ+fn6mfsRWfWjpOy1rQ7aMavWhtIylS5dGXFycWbu3bt3C/fv3TT9b9tOTJk2S9h1KOUC5\nPpQyBoNB2nfI2gKU60MpI+s7lHKxsbGK9SHL/fjjj9L+Q/a6AOv6UFuPsvqwzAQGBiI+Pt5m33H/\n/n3F8VhtXJGN47LaUMrJ+g61bQal2pDllOpDKZOQkCCtDaWcbGzRsi1kqzaUcrK+QymjNK7k9htK\n211q9SHbXpPVh1JOVh+zZs2Sbhsq1YettgYMGAAHBwfF+lBaPrX6sMw1atQI/fr1k9aHlm1eW/Wh\n9LrUxhal9mQ1orR9LasPte1yW/Uhy8hqQ8s+gGxsedlk6bw6e34qkEfO09LSULRoUbNpuT9ruVDb\ns5g6dSouXLhg9ZdamXnz5mHhwoWIi4uTHpXOyMjA+PHjERoaavX6ZG7evInHjx/D0dERc+bMwfDh\nw/Hjjz9i2rRp0tyjR4/w66+/Ys2aNZg8eTJGjBiBlStXarpQGwCsW7cOnTt31rycCQkJCAgIwNq1\nazF58mTs2LEDW7ZsUZzfw8MDZcuWxYQJE5CWloZr167h22+/BZBztFELpVp53nWSnp6Ofv36wdXV\nFe3atdOUKVWqFNavX49x48Zh7ty5pr/g2hIfH481a9ZovmBgritXrqBQoUKoUKEClixZgjZt2mDs\n2LGIjo5WzDx69AgbNmzAH3/8gUWLFiEoKAgDBgzAuXPnNLV548YN/O9//0OnTp1U5/3zzz9x48YN\n9O/fH+vWrUOvXr0QFhaGq1evSnOBgYGIjY3F2rVrkZWVhV9++QV79uyxqpOpU6ciLi4OISEhumrD\nns+9LCerD1sZLbXxdE5rfeRmBg4cqKs2nl6Pjx49wsaNG1Xrw9br0lIbT+f01EfuMg4aNMi0cymr\nj9x++sKFC5g0aZLm+tDav2vNyGpDKSerj6czufdV1VIblm1dvXpVU31Yrkct/YfS61KrD8vXpqU+\nLDOBgYE4ffq0VW3IxmNZbdg7jmvNPV0fLVu2VM3Yqg1ZW0p9hywjqw1ZTqk2Tp06pfq6bNWGrC2l\n2rh48aJiRjau2Nru2rJlC6ZOnSqtD3u317Tmnq6P2rVrq2Zs1YdSW1OnTlXsP2QZWX3Ickr1ERMT\no/q6bNWHrC1Z3yFb90r9R2ZmptX2dWRkJL799ltpfdizXa41Yzm2aMnp2S590T3rrdT+TgXyyLmj\no6PVBlLuz8WLF39u7U6bNg0rV67E7NmzdZ1y7u7uDiDnKqNDhw7FiBEjzI7655o3bx4qV66s66g8\nkPNX9cOHD6NkyZIAAKPRiOzsbAwbNgwjR45UPApeuHBh/Pnnn5g5cyb++c9/AgB+++03rF692uaV\nT58WGxuLpKQkNG7cWNMyHjp0COvWrcO+fftQtGhRvPfee7h9+zYWLFiApk2b2swULVoUc+fOxcCB\nA+Ht7Y3SpUsjODgYkydPRokSJTS16+joiAcPHphNy8jI0HU/Qb0ePXqE3r174/r161i9erXZqUsy\nJUqUMF1ZND4+HitXrlQ8K2Hs2LHo37+/1Sm8alq0aIGAgABTrfznP//Br7/+itWrV5sdyXpa4cKF\n4eLigi+++AIAUKlSJRw7dgxRUVGYMGGCaps7d+5EpUqVUL58edV5lyxZAgDo3bu3qa3Tp09jxYoV\n0jNJ3n33XYSFhSEsLAzjx4+H0WhEx44dcfjwYdM8T39+33nnHc21Ye/nXiknqw+ljFptWOY6dOig\nWh+W6+Odd97RVBuWOS31ofS61GrDMjd79mwA6vVhq72JEydK6yO3nx4xYgSGDBmCjz76CH/88YfZ\n8tiqD639u5aMWt+hlJPVx9OZIUOG4MyZM5r6Dsu2hg8frqk+LNejt7e3an0ovS61+rB8bbnjv6w+\nbL0uW7WxadMmVK9e3eZ4LOs77B3HteQs62Px4sWqGVu1ERsbq5gbM2aMzfqQLZ9sXDl9+rRiTqnv\nGD9+vOrrslUbsmVUGltGjBihmJGNK0rbXUOHDkWrVq0U+w57t9e05Czr44033lDN2KqPFStWKL62\n2NhYm/UhW75Ro0Yp1kdERIRiWz4+PjbrY8+ePaqvy1Z9yN6zV155xWZ95PYdsvZs9R9btmzBgwcP\nrLavV61aBX9/f6SkpNisD3u2y7VkbI0tWnJ6tktfdJnZBfjq7BYK5M65m5sbUlJSkJ2djUKFcg7u\nJycno1ixYqYPT14LCwtDVFQUpk2bprgT87R79+7h5MmTZvO+8847ePLkiem7k5a2bduGe/fumW7b\nlXtUZ8eOHThx4oS0PcvXXaFCBaSnpyMlJUXxNH9XV1c4OjqaPpQA8Pbbb+P27duqr2///v3w9fWF\nk5OT6rwAcO7cObz11ltmfy2sVKkSFi1aJM1VrlwZ0dHRuHfvHlxcXPDLL7/AxcVF8x9h3NzcEB8f\nbzYtOTkZZcuW1ZTXKzU1FcHBwUhMTMTy5cvxxhtvqGbi4+ORkpJi9r2fChUqKJ4Se/PmTZw8eRIX\nL140fZfo8ePHCA0NxbZt27B48WJpe5a1Ur58ebOdFEtly5Y1fc5yvf3227h06ZK0nVy//PKLps8M\nAJw/fx5Go9FsWqVKlazeQ1tatmyJFi1a4N69eyhTpgymTZtmul6Brc+vltrQ+7lXy8nqw1ZGS21Y\n5rTUh9LyqdWGrZxafcjWoaw2bOW01IdSe7bqo0yZMoiOjrbZT5ctWxYJCQlmbeXWhz39u1rGwcHB\nZm3IcrnfYbWsj4MHDyq+rtOnT+PSpUs2ayM8PFyxrT///NPqdeXWh2wZX3vtNaujRG+//TbOnj2r\nuIy569BWfcjaunjxos36OH/+vLQtW7WRmpqK3bt32xyPe/Xqpdh32DuOq+Vs9R2yzNq1a3H//n2b\nfYdSbuPGjTAYDDbrAwAMBoPi8in1Hb/++qviMn744Yc2+479+/fj119/la5DW7UhWx++vr42ayMy\nMhJXr15VbEs2rihtd5UpU0ax75DlZNtrarkiRYrY7D+UMsePHwdg3Xfkji1KOVn/YbntIXtdT48t\nSm25ubmhcOHCZr/LHVvU1qHS2KKUO3funHRskbVnq0bKli2LBw8eWG1fJyUlwc3NDZcvXzZ7vtz6\nsGe7XC2jtN0hyyUkJCj2Hy+rrGz165AVFAXytPZKlSrBwcHB7OIrx44dQ+XKlZ9Le/Pnz0dUVBRm\nzZqFRo0aacokJiaiX79+uHPnjmnamTNnUKpUKZsbbgAQGRmJH3/8EZs3b8bmzZsREBCAgIAAbNq0\nSdrW/v37Ub16daSnp5umnT9/Hs7OztKO3sPDA+np6bh27ZppWkJCgtkF2JTExsaiatWqqvPlcnV1\nxbVr15CZmWmaduXKFZQrV04x8+DBA3Ts2BEPHjxA6dKlUahQIcTExKBatWqa2/Xw8MD58+fNzrQ4\nfvy42cUE84oQAn379sVvv/2GyMhIzUdZ9+zZg7Fjx5pNO3v2rGL+n//8J3bt2oVNmzaZasXV1RUD\nBgzAxIkTpW3NnTsX3bp1M5sWFxcnvbCKp6cnLl++bHYBNq11AuTUvdZacXV1tdroVasTADh8+DAG\nDRoEg8GAMmXKQAiBffv2oXr16oqfX7XasOdzL8vJ6kMpo1YbtnJq9aHUllptKOVk9aG2DpVqQymn\nVh9KOaX6KF++vM1+unTp0vD29sa5c+ds1oc9/btaRqk2ZLmTJ0/arA83NzebmVdffRU7d+5UrA1Z\nWytWrFCsD6Vc6dKl4enpiUuXLlnVh5OTk+o6tFUfsrZcXV2tNnqvXLmCkiVLKrZ16dIlm7Xx2Wef\nKY7HVapUUew77B3HZTmlvkOW2b17t2LfoZTbtWuXYn3I2pL1HbKch4eHzb4jMDBQdR3aqg1ZW2XL\nlrXZdzRq1EgxIxtXlLa7XFxc4OPjo9h32Lu9ppazVR+yjFLfUaFCBelrU6qP5s2bK7a1cuVKxfqQ\ntaXUdxQqVEh1HdqqD1lbtnaYc8cW2Xq8fPmyzRqpU6eO4va1h4eHYn3Ys10uy8i2O2Q5Wf/xsuJ9\nzvPAuHHjRNOmTUVsbKzYtWuX8Pb2Vr1ntqWKFSuq3kotPj5evPfee2LOnDni7t27Zg+ZrKws8dFH\nH4nu3buL+Ph4ERMTI2rWrClWrlypeflGjBih6VZqqampok6dOmLw4MHiypUrIiYmxnT7IDWfffaZ\naN++vYiLixP79u0Tfn5+IjIyUjX3wQcfiK1bt2p6HULk3JvU399fDB8+XFy9elXs3r1bVK9e3XTL\nFCUtWrQQo0ePFtevXxdr1qwRHh4e4uzZs9LM0+9rVlaWaNq0qQgJCRGXL18WixYtElWrVrW6H61l\n7mkHDx60us+5rUxUVJSoVKmSiImJMauTlJQUae727dvCx8dHTJ8+Xfz6668iMjJS/Pe//xVxcXGa\nlk+InPfD8l60tnKxsbHC3d1dfPPNN+L69eviu+++E1WqVBGnT59WzDx8+FDUrl1bjBs3Tly7dk1E\nRkYKd3d3q+WztYyJiYmiYsWKIjk52eayWWZOnTol3N3dxbfffiuuX79uurdmfHy8NHf79m3h6ekp\nVq9eLa5fvy5CQ0NFnTp1xNmzZxU/v7La0Pq5P3z4sNntbmQ5pfo4efKkYkZWG3r6ptz6kGVktSHL\nKdXHzp07pcunVBuytmT1Icsp1UdqaqpiP52VlSWaNGlisz609u9P14csI+s7ZDml+jh37pzm8efp\nvkPWlqw+ZDml+lBbxhs3btisD1lbSvVx6dIl6Tq0VRuPHj0ya/fp8VjPuKI0jlv2HbKc1rHl6YzW\ncUW2jEIojy1PZ7SOK5Y5rWOL5fJpGVcsc1rHFst1qFQbsu0uWd+hdXvNsj5kOaX6uHnzpmJGVh96\ntilz60OWkdWHLPfw4UNRq1Ytq/o4ceKEdPmU+g5ZW7L6kOVkNaK0fS2rDyG0bZdb1odSRq3vUMrp\n6T9eFoFfLrR6FFQFduc8LS1NjBgxQnh5eYnatWuLFStW6H4OLfc5X7RokTAajWaPihUrSgfVXHfu\n3BH9+vUTPj4+olatWmLRokW6lk/rzrkQORu0n376qahataqoVauW+OqrrzTlHj58KIYPHy6qVq0q\natasKb7++mtNOQ8PD7F//35N81ouo4+Pj2jYsKGm9+zq1auiU6dOwtPTUzRt2lTExMSoZizf1+vX\nr4tOnTqJKlWqiKZNm4pDhw5pyuWS7ZwbjUbTPSK7d+9uVStGo1F07txZta3Tp0+Ltm3bCk9PT9Gk\nSRPx888/a14+IYQICAhQ3Dm3zO3evVs0b95ceHh4iMaNG9v8o5ZlJj4+3rQOP/zwQ8U/hNl6XUaj\nUWRkZNic31Zmz549IigoSHh5eYlWrVppfr9iYmJEo0aNhKenp+jatau4cuWK6uf32rVrNmtD6+fe\ncoC0lct9BAcH25xer149aVtKtaGnb8qtD7WMUm2o5WzVh1pGqTbUckr1oZazVR9CyPtpWd+hpX+3\nrA+ljFrfIWtLqT60jj+WfYcsJ+s7ZDml/kPtdSn1HbKcUn3IMkq18TTL8VjruJIXO+daxxbLtrSM\nK7JlFEJ5bLHMaBlXbOW0jC22XpfauGIrp2VssczIakO23SWrDy3ba7bqQyknqw9ZW7L60LpN+XR9\nyN695SMAAADbSURBVDKy+pDllOpD7XUp1YcsJ6sPWU6pRmTb17L60LJdblkfShm1vkPWltb+42VR\nP+xrq0dBZRBCw83AiYiIiIiIiF4wH3zxldW0n0P75MOSqOPOOREREREREVE+K5AXhCMiIiIiIiL6\nv4Q750RERERERET5jDvnRERERERERPmMO+dERERERERE+Yw750RERERERET5jDvnRERERERERPmM\nO+dERERERERE+Yw750RERERERET5jDvnRERERERERPmMO+dERERERERE+Yw750RERERERET57P8B\n+RvZVoa+6DcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -661,11 +791,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2017-02-02 17:49:05,100] Making new env: CartPole-v0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n" + ] + } + ], "source": [ "import cntk as C\n", "env = gym.make('CartPole-v0')\n", @@ -716,7 +870,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "collapsed": true }, @@ -734,11 +888,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAADNCAYAAADZhSWBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFD9JREFUeJzt3X1UlvXhx/GPwnhIWYiBGrjF2DmBUsjwYVnJOYh2NBtn\nbbrlQ7VNWc3C6cFEZpnJEqNpZUk+9DQ4FomRaZ3DmXlK248NxRlUciY3waACkQalErfg9fvD41VE\nK7MvXFz4fp3j6dzfuK/vR4T7c18P9/UdYFmWJQAAXGag0wEAALgQFBgAwJUoMACAK1FgAABXosAA\nAK5EgQEAXIkCAwC4EgUGAHAlCgwA4EoXXGBer1c33XSTDhw4YI/V19frN7/5jeLj4zVjxgz9/e9/\nNxISAIAvu6AC83q9WrJkiaqqqrqML1y4UGFhYdqxY4d+9rOf6a677lJDQ4ORoAAAfNG3LjCPx6NZ\ns2apvr6+y3hJSYnq6ur0wAMP6Ec/+pFSU1M1ZswYFRYWGgsLAMA537rASktLdc0116igoEBfvA9w\neXm5Ro8eLX9/f3ssISFBhw8fNpMUAIAv8P22T7jlllu+crypqUlhYWFdxoYOHarGxsYLSwYAwNf4\n1gX2v7S1tcnPz6/LmJ+fn7xe73k9f+zYsWpvb+9WggCAi8uxY8fk7++vgwcPfu3XGbuM3t/fv1tZ\neb1eBQQEnNfzvV6vOjs7TcUBALhUZ2fnee38GNsDGzZsWLerEo8fP67Q0NDzev65r3v99dclSR0d\nHXrspf/Thx9/airiebs8JEhpN0+Ur6+xbw8A4DxNnjz5vL7O2Ct0XFyctmzZIq/Xax9KLCsr09ix\nYy94mx9+/Klqj31iKiIAoB8xdghx/PjxGjFihDIyMlRVVaXNmzeroqJCv/zlL01NAQCA7TsV2IAB\nAz7f0MCB2rhxo5qamvSLX/xCu3bt0hNPPKHhw4d/55AAAHzZdzqEeOTIkS6PR44cqby8vO8UCACA\n88HNfAEArkSBAQBciQIDALgSBQYAcCUKDADgShQYAMCVKDAAgCtRYAAAV6LAAACuxO3WL4BlWY4u\n/eLj49PlNl4AcDGiwC5AZ2cnS70AgMN4FbxALPUCAM7iHBgAwJUoMACAK1FgAABXosAAAK5EgQEA\nXIkCAwC4EgUGAHAlowXW0NCgO+64QwkJCZo8ebKee+45k5sHAMBm9IPMixYtUkREhIqKinT06FGl\np6crPDxcycnJJqcBAMDcHtgnn3yit99+W3feead+8IMfaPLkybr++uv1j3/8w9QUAADYjBVYQECA\nAgMDtWPHDnV0dKi6ulqHDh3SqFGjTE0BAIDNWIH5+fnpvvvu0wsvvKC4uDhNnz5dkyZN0s0332xq\nCgAAbEYv4vB4PEpKStL27duVnZ2t4uJi7d692+QUAABIMngRR0lJiQoLC7Vv3z75+flp1KhRamho\nUG5urmbMmGFqGnwD1ioDcLEwVmDvvvuurrjiCvn5+dljMTEx2rRpk6kpcB5YqwzAxcLYK01YWJhq\na2vV0dFhv4BVV1crIiLC1BQ4T6xVBuBiYOwcWFJSknx9fbVixQrV1NRo79692rRpk2699VZTUwAA\nYDNWYIMHD9azzz6rpqYmzZw5U2vXrtXChQs1c+ZMU1MAAGAzerIiKipKTz31lMlNAgDwlbiZLwDA\nlSgwAIArUWAAAFeiwAAArkSBAQBciQIDALgSBQYAcCUKDADgShQYAMCVuG04egXLvAAwjQJDr2CZ\nFwCm8RuNXsMyLwBM4hwYAMCVKDAAgCtRYAAAV6LAAACuRIEBAFyJAgMAuBIFBgBwJaMF5vV6tWrV\nKo0fP17XXXed1q9fb3LzAADYjH6QOSsrS6WlpXr66ad14sQJLV68WOHh4Zo1a5bJaQAAMLcH1tra\nqpdeeklZWVmKjY3VT3/6U/32t7/V22+/bWoKAABsxvbAysrKFBQUpLFjx9pjCxYsMLV5AAC6MLYH\nVldXp/DwcL388suaNm2akpOTtXHjRlmWZWoKAABsxvbATp06pZqaGr344ovKzs5WU1OT7r33Xl1y\nySW6/fbbTU0DAIAkgwXm4+OjkydPat26dRo+fLgk6YMPPtDzzz9PgaFPY60ywJ2MFVhYWJj8/f3t\n8pKkyMhINTQ0mJoC6BGsVQa4k7Hfmri4OLW3t6u2tlY//OEPJUkej0fh4eGmpgB6DGuVAe5j7CKO\nyMhIJSYmKiMjQ5WVldq/f7+2bNmi2bNnm5oCAACb0eMWDz/8sLKysjRnzhwFBgZq3rx5mjNnjskp\nAACQZLjABg8erOzsbGVnZ5vcLAAA3XAzXwCAK1FgAABXosAAAK5EgQEAXIkCAwC4EgUGAHAlCgwA\n4EoUGADAlSgwAIArcQtsoA9jqRfgf6PAgD6MpV6A/42fTKCPY6kX4KtxDgwA4EoUGADAlSgwAIAr\nUWAAAFeiwAAArkSBAQBciQIDALhSjxVYamqqli9f3lObBwBc5HqkwF599VXt27evJzYNAICkHiiw\n1tZW5eTk6Oqrrza9aQAAbMZvJbV27VqlpKTo2LFjpjcNAIDN6B5YSUmJysrKtHDhQpObBQCgG2N7\nYF6vV/fff79WrlwpPz8/U5sF0Eex1AucZqzANmzYoNjYWE2cONHUJgH0YSz1AqcZ+9d/7bXX1Nzc\nrPj4eEnS6dOnJUnFxcU6dOiQqWkA9CEs9QInGSuw/Px8dXR02I9zcnIkSUuXLjU1BQAANmMFNmLE\niC6PBw0aJEkaOXKkqSkAALBxKykAgCv12BnQNWvW9NSmAQBgDwwA4E4UGADAlSgwAIArUWAAAFei\nwAAArkSBAQBciQIDALgSBQYAcCUKDADgSqxFAKBfYZ2yiwcFBqBfYZ2yiwffZQD9DuuUXRw4BwYA\ncCUKDADgShQYAMCVKDAAgCtRYAAAV6LAAACuRIEBAFzJaIE1NjYqLS1NEyZMUGJiorKzs+X1ek1O\nAQCAJMMfZE5LS1NwcLC2bdumlpYWZWZmysfHR0uXLjU5DQAA5vbAqqurVV5erjVr1igqKkoJCQlK\nS0vT7t27TU0BAIDNWIGFhoZq69atCgkJsccsy9Knn/b+/cgAAP2fsQILCgrStddeaz+2LEv5+fma\nOHGiqSkAALD12M18H3roIVVWVmrHjh09NQUAuApLvZjVIwWWk5OjvLw8PfLII4qKiuqJKQDAdVjq\nxSzjf5PVq1eroKBAOTk5Sk5ONr15AHA1lnoxx2iBPf744yooKND69es1ZcoUk5sGAKALYwXm8XiU\nm5ur3//+94qPj9fx48ft/3fZZZeZmgYAAEkGC+z111/XmTNnlJubq9zcXElnT1gOGDBAR44cMTUN\nAACSDBZYamqqUlNTTW0OAICvxc18AQCuRIEBAFyJAgMAuBIFBgBwJQoMAOBKFBgAwJUoMACAK1Fg\nAABXosAAAK7Uf+6rDwC4YG5cq4wCAwC4cq0yCgwAIMl9a5VxDgwA4EoUGADAlSgwAIArUWAAAFei\nwAAArkSBAQBciQIDALiS0QLzer3KzMzUuHHjdP311+uZZ54xuXkAAGxGP8i8du1avffee8rLy1N9\nfb2WLVum8PBwTZ061eQ0AACY2wNra2tTYWGhVqxYoejoaCUnJ2v+/PnKz883NQUAADZjBVZZWanO\nzk6NGTPGHktISFB5ebmpKQAAsBkrsKamJgUHB3e5GePQoUPV3t6u//73v6amAQBAkjTAsizLxIZ2\n7typRx99VHv37rXH6urqNHXqVL3xxhsaNmzY1z7/qquuUmdnp0aMGGGPtZ78TJ2dZ0zE+1Z8fAbq\n0kEBX/s1ZOvum7L11VwS2b6Km7P11VwS2b7Kl7N99NFH8vHxUUVFxdc+z9hFHP7+/vJ6vV3Gzj0O\nDAy8oOd/0zfbSWT79vpqLolsF6qvZuuruSSynQ9fX1/5+fl989eZmnDYsGFqaWnRmTNnNHDg2SOT\nx48fV0BAgL7//e9/4/MPHjxoKgoA4CJg7BxYTEyMfH19dfjwYXvs4MGDio2NNTUFAAA2YwUWEBCg\nlJQUrVy5UhUVFdqzZ4+eeeYZ3XbbbaamAADAZuwiDkn67LPPtGrVKhUXFysoKEjz58/XvHnzTG0e\nAACb0QIDAKC3cDNfAIArUWAAAFeiwAAArkSBAQBciQIDALhSvyswNyyq6fV6ddNNN+nAgQNOR7E1\nNjYqLS1NEyZMUGJiorKzs7vd2ssp//nPf/S73/1O8fHxSkpK0lNPPeV0pG5SU1O1fPlyp2PY9uzZ\no+joaMXExNj/XbRokdOxJJ39+V+1apXGjx+v6667TuvXr3c6kiSpqKio2/csOjpao0aNcjqaGhoa\ndMcddyghIUGTJ0/Wc88953Qk28cff6y0tDSNGzdON9xwg4qKinptbqMLWvYFfX1RTa/XqyVLlqiq\nqsrpKF2kpaUpODhY27ZtU0tLizIzM+Xj46OlS5c6msuyLKWmpiouLk47d+5UTU2NlixZouHDh+vG\nG290NNs5r776qvbt26ef//znTkexVVVVKSkpSVlZWTr3SRl/f3+HU52VlZWl0tJSPf300zpx4oQW\nL16s8PBwzZo1y9FcN954oyZNmmQ/Pn36tG677TYlJSU5mOqsRYsWKSIiQkVFRTp69KjS09MVHh6u\n5ORkp6PpD3/4gyQpLy9PjY2NuueeexQUFNQ72ax+5NSpU9bVV19tHThwwB7buHGjNW/ePAdTfa6q\nqspKSUmxUlJSrOjoaKu0tNTpSJZlWZbH47Gio6Ot5uZme2z37t3WpEmTHEx11rFjx6zFixdbJ0+e\ntMfuuusua9WqVQ6m+lxLS4uVmJhozZw508rIyHA6ji09Pd1at26d0zG6aWlpsUaPHt3ld3Tz5s1W\nZmamg6m+2pNPPmlNnTrV8nq9juZobW21rrzySuvo0aP22N13322tXr3awVRnVVRUWNHR0VZ9fb09\ntnnzZutXv/pVr8zfrw4h9vVFNUtLS3XNNdeooKDAflfcF4SGhmrr1q0KCQmxxyzL0qeffupgqrNC\nQ0O1bt06XXLJJZKksrIyHThwQBMmTHA42Vlr165VSkqKoqKinI7ShcfjUWRkpNMxuikrK1NQUJDG\njh1rjy1YsEB//vOfHUzVXWtrq7Zu3ar09HR973vfczRLQECAAgMDtWPHDnV0dKi6ulqHDh3qE4c2\n6+rqFBISovDwcHvsyiuv1DvvvKPOzs4en79fFVhfX1Tzlltu0bJly/rMoZxzgoKCdO2119qPLctS\nfn6+Jk6c6GCq7pKSkjR37lzFx8f3iUPCJSUlKisr08KFC52O0s3777+v/fv364YbbtCUKVP0l7/8\nRadPn3Y6lurq6hQeHq6XX35Z06ZNU3JysjZu3Nin3tBJ0rZt2zRs2DBNmTLF6Sjy8/PTfffdpxde\neEFxcXGaPn26Jk2apJtvvtnpaLrsssv0ySefqL293R776KOP1NnZ2StvgPtVgbW1tXVbQ+bc475y\nQYIbPPTQQ6qsrNTixYudjtLFhg0b9OSTT+rIkSOOv2P3er26//77tXLlyvNat6g3ffjhh/rss8/k\n7++vRx99VMuWLdOuXbuUk5PjdDSdOnVKNTU1evHFF5Wdna2MjAzl5eX1qYsSJKmwsLBP3cfV4/Eo\nKSlJ27dvV3Z2toqLi7V7926nYykuLk6hoaF64IEH1NbWptraWj377LOS1CtvmPrVRRzfdVFNSDk5\nOcrLy9MjjzzS5w6LjR49WpK0fPlyLV26VBkZGV32tnvThg0bFBsb2+f2UiXp8ssv1z//+U97Hb7o\n6GidOXNG99xzj5YvX64BAwY4ls3Hx0cnT57UunXrNHz4cEnSBx98oOeff1633367Y7m+qLy8XI2N\njZo+fbrTUSSd3dMvLCzUvn375Ofnp1GjRqmhoUG5ubmaMWOGo9n8/Pz02GOP6Y9//KMSEhI0dOhQ\nzZ8/X9nZ2Ro8eHCPz9+vCuy7Lqp5sVu9erUKCgqUk5PTJ65ukqTm5mb961//6pLnxz/+sU6fPq0T\nJ04oODjYkVyvvfaampubFR8fL+nzd5vFxcU6dOiQI5m+6Ms/71FRUWpvb1dLS4uGDBniUCopLCxM\n/v7+dnlJUmRkpBoaGhzL9GVvvfWWxo0bp6CgIKejSJLeffddXXHFFV329GNiYrRp0yYHU30uNjZW\ne/bsUXNzs4YMGaL9+/dryJAhvbLT0K8OIbKo5oV7/PHHVVBQoPXr12vatGlOx7HV19fr7rvv1rFj\nx+yxiooKhYSEOFZekpSfn69du3bplVde0SuvvKKkpCQlJSVp586djmU656233tKECRO6nJd47733\nFBwc7Gh5SWcPObW3t6u2ttYe83g8XS4CcFp5ebl+8pOfOB3DFhYWptraWnV0dNhj1dXVioiIcDDV\nWa2trZo9e7ZaW1s1dOhQDRw4UG+88YbGjx/fK/P3qwJjUc0L4/F4lJubq9TUVMXHx+v48eP2H6dd\nddVVio2NVWZmpjwej9588009/PDDuvPOOx3NNWLECI0cOdL+M2jQIA0aNEgjR450NJckxcfHKzAw\nUH/605/0/vvv680331ROTo4WLFjgdDRFRkYqMTFRGRkZqqys1P79+7VlyxbNnj3b6Wi2f//7333q\n8HlSUpJ8fX21YsUK1dTUaO/evdq0aZNuvfVWp6Pp0ksvVVtbm3JyclRXV6ft27erqKio137W+t16\nYG5ZVDMmJkZ//etfNW7cOKejaPPmzd3uhmBZlgYMGKAjR444lOpzTU1NWr16tUpKShQYGKi5c+cq\nNTXV6VhdnLsLx5o1axxOcpbH49GDDz6ow4cPa9CgQfr1r39tf+DUaSdOnFBWVpb+9re/KTAwUHPm\nzHH8DckXjRkzRk888USXK3Oddu7fs7y8XCEhIZo7d26feV2rqanRvffeq3feeUcRERFKT09XYmJi\nr8zd7woMAHBx6FeHEAEAFw8KDADgShQYAMCVKDAAgCtRYAAAV6LAAACuRIEBAFyJAgMAuBIFBgBw\nJQoMAOBKFBgAwJX+H5605FuM4BHAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "discounted_epr = discount_rewards(np.ones(10))\n", "f, ax = plt.subplots(1, figsize=(5,2))\n", @@ -754,11 +929,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAADNCAYAAADDucUPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHvBJREFUeJzt3X9UVGXiBvCHHzszCLjECCTknpAth8QACcwEPYyYx4rF\nFN1qVdbVaC3EMgiBTFPyR6ilkZia7AblYoqmmXlEW7XNIyIiGM4pBjXZEhgVFhNmDO/3D75MjQMG\ndoc7ep/PORy677zNfU6JD3N/vQ6CIAggIiK6wzlKHYCIiKg3sPCIiEgWWHhERCQLLDwiIpIFFh4R\nEckCC4+IiGSBhUdERLLAwiMiIllg4RERkSyIXnh1dXVITk7GsGHDMGrUKCxbtgwmk6nTuVVVVZg8\neTJCQkIwadIkfP3112LHISIiAmCDwktOTobRaMRHH32EVatW4YsvvsDq1aut5rW0tCAxMRHh4eEo\nKipCSEgInnvuObS2toodiYiISNzCq6mpQUVFBZYuXYqAgACEhYUhOTkZn376qdXc3bt3w8XFBamp\nqRg4cCAyMzPh6uqKzz//XMxIREREAEQuPC8vL2zcuBGenp7mMUEQ0NzcbDW3oqICYWFhFmNDhw7F\niRMnxIxEREQEQOTCc3d3x4gRI8zbgiCgoKAAjzzyiNXc+vp6eHt7W4yp1WrU1dWJGYmIiAgA4GzL\nN3/zzTeh0+mwbds2q9daW1uhUCgsxhQKRZcXuNzooYcegtFotCpNIiKSl/r6eiiVSpSWlt50ns0K\nLzs7G/n5+Xj77bcREBBg9bpSqbQqN5PJBJVK1a33N5lMaGtrEyUrERHdvtra2rr1Yckmhbd48WIU\nFhYiOzsbMTExnc7x8fFBQ0ODxZjBYICXl1e39tExb//+/b8tLBER3dZGjx7drXmi35aQk5ODwsJC\nvPXWWxg3blyX84KDg60uUCkrK0NISIjYkYiIiMQtPL1ej9zcXCQmJiI0NBQGg8H8BbR/gjMajQCA\nsWPHorm5GUuWLIFer0dWVhZaWlpuWpJERES3StTC279/P65fv47c3FxERUUhKioKkZGRiIqKAgBE\nRkZiz549AAA3NzesW7cOpaWlmDhxIiorK7Fhw4Zun8MjIiLqCQdBEASpQ9yKjmO2PIdHRCRv3e0D\nPjyaiIhkgYVHRESywMIjIiJZYOEREZEssPCIiEgWWHhERCQLLDwiIpIFmxWeyWRCbGwsjh071uWc\nWbNmQaPRIDAw0Pz94MGDtopEREQyZpOHR5tMJsydOxfV1dU3nVdTU4OVK1fi4YcfNo/17dvXFpGI\niEjmRC88vV6Pl19++VfnmUwm1NbWIigoCGq1WuwYREREFkQvvJKSEgwfPhwvvvgigoODu5x35swZ\nODg4YMCAAaLsVxAESdfHc3JygoODg2T7JyKimxO98J5++uluzdPr9XBzc0NqaiqOHj2K/v37Y/bs\n2Rg5cuQt7betrQ1rir7C95eab+nf/y18Pd2RPOERODvbdAF5IiL6DST7G7qmpgZGoxFRUVFITEzE\nvn37MGvWLGzZsgWDBw++pff8/lIzztX/T+SkRER0J5Cs8JKSkpCQkAB3d3cAwKBBg3Dq1CkUFhZi\n0aJFUsUiIqI7lKT34XWUXYeAgADU19dLlIaIiO5kkhVeeno6MjIyLMZ0Oh38/f0lSkRERHeyXi08\ng8EAo9EIANBqtdi1axd27NiB7777Djk5OSgrK8PUqVN7MxIREcmETQvvxsv0IyMjsWfPHgDAmDFj\nsGDBAuTm5iI2NhZffPEFNm7cCF9fX1tGIiIimbLpRSunT5+22NbpdBbb8fHxiI+Pt2UEIiIiAHx4\nNBERyQQLj4iIZIGFR0REssDCIyIiWWDhERGRLPBpx72AKzkQEUmPhdcLuJIDEZH0+LdgL+FKDkRE\n0rLZOTyTyYTY2FgcO3asyzlVVVWYPHkyQkJCMGnSJHz99de2ikNERDJnk8IzmUyYO3cuqquru5zT\n0tKCxMREhIeHo6ioCCEhIXjuuefQ2tpqi0hERCRzoheeXq/H5MmTUVtbe9N5u3fvhouLC1JTUzFw\n4EBkZmbC1dUVn3/+udiRiIiIxC+8kpISDB8+HIWFhRAEoct5FRUVCAsLsxgbOnQoTpw4IXYkIiIi\n8S9aefrpp7s1r76+Hvfff7/FmFqtvulhUCIiolsl2Y3nra2tUCgUFmMKhQImk0miREREdCeTrPCU\nSqVVuZlMJqhUKokSERHRnUyywvPx8UFDQ4PFmMFggJeXl0SJiIjoTiZZ4QUHB1tdoFJWVoaQkBCJ\nEhER0Z2sVwvPYDDAaDQCAMaOHYvm5mYsWbIEer0eWVlZaGlpwbhx43ozEhERyYRNC+/GBxZHRkZi\nz549AAA3NzesW7cOpaWlmDhxIiorK7Fhwwaew+tlgiDgp59+kuzrZreuEBGJyabP0jx9+rTFtk6n\ns9geMmQIioqKbBmBfgUfbE1EcsG/aYgPtiYiWeACsEREJAssPCIikgUWHhERyQILj4iIZIGFR0RE\nssDCIyIiWRC98EwmEzIyMhAeHo6oqCjk5eV1OXfWrFnQaDQIDAw0fz948KDYkYiIiMS/D2/58uWo\nqqpCfn4+amtrkZaWBj8/Pzz66KNWc2tqarBy5Uo8/PDD5rG+ffuKHYmIiEjcwmtpacHWrVvx/vvv\nQ6PRQKPRYObMmSgoKLAqPJPJhNraWgQFBUGtVosZg4iIyIqohzR1Oh3a2tosVjwICwtDRUWF1dwz\nZ87AwcEBAwYMEDMCERFRp0QtvIaGBnh4eFg8G1GtVsNoNOLy5csWc/V6Pdzc3JCamorIyEhMmjQJ\nhw4dEjMOERGRmeiHNBUKhcVYx/aNq5vX1NTAaDQiKioKiYmJ2LdvH2bNmoUtW7Zg8ODBYsai25Ag\nCGhra5Ns/05OTlarfRDR7U3UwlMqlVbF1rHt4uJiMZ6UlISEhAS4u7sDAAYNGoRTp06hsLAQixYt\nEjMW3Ya4igMRiU3Un2gfHx80Njbi+vXrcHRsP1pqMBigUqk6vfqyo+w6BAQEQK/XixmJbmNcxYGI\nxCTqObzAwEA4OzujvLzcPFZaWoqgoCCruenp6cjIyLAY0+l08Pf3FzMSERERAJELT6VSIS4uDgsW\nLEBlZSWKi4uRl5eHhIQEAO2f9oxGIwBAq9Vi165d2LFjB7777jvk5OSgrKwMU6dOFTMSERERABs8\naSU9PR1BQUFISEjA4sWLMWfOHMTExAAAIiMjsWfPHgDAmDFjsGDBAuTm5iI2NhZffPEFNm7cCF9f\nX7EjERERif+kFZVKhaVLl2Lp0qVWr+l0Oovt+Ph4xMfHix2BiIjICh8eTUREssDCIyIiWWDhERGR\nLLDwiIhIFlh4REQkCyw8IiKSBT4skKiH+GBrotuT6IVnMpmwcOFC7Nu3DyqVCn/7298wffr0TudW\nVVVh4cKF+Oabb3Dfffdh4cKFXCmB7B4fbE10exL9p2b58uWoqqpCfn4+amtrkZaWBj8/P6sVz1ta\nWpCYmIi4uDgsW7YMmzdvxnPPPYfi4mKoVCqxYxGJig+2Jrr9iHoOr6WlBVu3bsWrr74KjUaDmJgY\nzJw5EwUFBVZzd+/eDRcXF6SmpmLgwIHIzMyEq6srPv/8czEjERERARC58HQ6Hdra2hASEmIeCwsL\nQ0VFhdXciooKhIWFWYwNHToUJ06cEDMSERERAJELr6GhAR4eHhbnF9RqNYxGIy5fvmwxt76+Ht7e\n3hZjarUadXV1YkYiIiICYINDmgqFwmKsY/vGldBbW1s7nXvjPCIiIjGIetGKUqm0KqyObRcXl27N\n/S0XrPh6uv/6JBvozn6Zref7tddc3Z1jC7+2X3u+ZcJes9lrLoDZbuZWbs8RtfB8fHzQ2NiI69ev\nw9Gx/cOjwWCASqVC3759reY2NDRYjBkMBnh5ed3Svp2cnJA84ZFbCy4CJyenm77GbF3vv6txe8zV\n8Zq9ZrPnWybsNZu95gKYrSu3enuOqIUXGBgIZ2dnlJeXY+jQoQCA0tJSBAUFWc0NDg7Ghg0bLMbK\nysowa9asW9q3g4OD3d6bxGw9Z6+5APvOBtj3LRP2ms1ecwHMJiZRz+GpVCrExcVhwYIFqKysRHFx\nMfLy8pCQkACg/ROc0WgEAIwdOxbNzc1YsmQJ9Ho9srKy0NLSgnHjxokZiYiICIANnqWZnp6OoKAg\nJCQkYPHixZgzZw5iYmIAAJGRkdizZw8AwM3NDevWrUNpaSkmTpyIyspKbNiwgTedExGRTYh+XEal\nUmHp0qVYunSp1Ws6nc5ie8iQISgqKhI7AhERkRX7PRFBRLfEXq8gJZIaC4/oDmLPV5ASSY2FR3QH\nsfcrSImkxAVgiYhIFlh4REQkCyw8IiKSBRYeERHJAguPiIhkQfTCW7FiBYYPH45hw4YhOzv7pnOz\nsrKg0WgQGBho/v7hhx+KHYmIiEjc2xI2bdqEzz77DGvXrsW1a9eQkpKCfv36Yfr06Z3Or6mpQUpK\nCp588knzmJubm5iRiIiIAIj8CS8/Px/JyckIDQ1FREQEUlJSUFBQ0OV8vV6PBx54AGq12vylVCrF\njERERARAxMKrr6/HDz/8gIceesg8FhYWhu+//x4Gg8Fq/pUrV1BXV4d7771XrAhERERdEq3wGhoa\n4ODgAG9vb/NYv379IAgCLly4YDW/pqYGDg4OyM3NxahRoxAXF4cdO3aIFYeIiMhCj87hGY1G1NXV\ndfra1atXAQAKhcI81vHPJpPJan5NTQ0cHR0REBCAqVOnoqSkBPPnz4ebm5t5OSEiIiKx9KjwTp48\niWnTpsHBwcHqtZSUFADt5XZj0bm4uFjNHz9+PLRaLfr27QsAuP/++3H27Fls3ryZhUd0h+JKDiSl\nHhVeRESE1Zp2Herr67FixQoYDAb4+voC+Pkwp5eXV6f/TkfZdRg4cCCOHj3ak0hEdJvgSg4kNdFu\nS/D29kb//v1x/Phxc+GVlpaif//+6Nevn9X8NWvW4MSJE8jLyzOPnT59Gv7+/mJFIiI7wpUcSGqi\n/ul76qmnsGLFCvj4+EAQBKxatQozZswwv37p0iWoVCr06dMH0dHRWL9+PfLy8hATE4PDhw9j586d\nyM/PFzMSERERAJELb+bMmbh8+TJmz54NJycnTJo0CQkJCebX4+PjMWHCBCQlJWHIkCFYs2YNVq9e\njdWrV8PPzw8rV67Egw8+KGYkIiIiACIXnqOjI9LS0pCWltbp6wcOHLDY1mq10Gq1YkYgIiLqFB8e\nTUREssDCIyIiWWDhERGRLLDwiIhIFlh4REQkCyw8IiKSBRYeERHJgs2e8zNjxgzExsZi/PjxXc6p\nra3F/PnzUV5eDj8/P6Snp2PEiBG2ikRE1Ck+1FoeRC88QRCQlZWFr776CrGxsTed+8ILL0Cj0WDb\ntm0oLi5GUlIS9uzZg7vvvlvsWEREneJDreVD1MKrq6tDamoqamtrrVZCuNGRI0dw/vx5bNmyBUql\nEomJiThy5Ai2bt2KpKQkMWMREXWJD7WWD1HP4VVVVcHX1xdFRUVwdXW96dyKigoMHjwYSqXSPBYW\nFoby8nIxIxEREQEQ+RNedHQ0oqOjuzW3oaEB3t7eFmNqtbrLFdWJiIh+ix4VntFo7LKQvLy8Ol3Z\nvCstLS3mldE7KBQK8yrpREREYupR4Z08eRLTpk2Dg4OD1Ws5OTkYPXp0t99LqVSiqanJYsxkMkGl\nUvUkEhERUbf0qPAiIiKg0+lE2bGPjw+qq6stxgwGA7y8vER5fyIiol+S7Mbz4OBgVFVVWRzCPH78\nOEJCQqSKREREd7BeLbxLly7h6tWrANo/Lfbv3x/z5s1DdXU11q9fj8rKSsTHx/dmJCIikgmbFV5n\n5/ni4+OxadOm9h07OmLt2rVoaGjAxIkTsWvXLrz77ru86ZyIiGzCZndb7t+/32rswIEDFtsDBgxA\nfn6+rSIQERGZ8eHRREQkCyw8IiKSBT5AjojIjnElB/Gw8IiI7BRXchAXC4+IyE5xJQdx8RweERHJ\nAguPiIhkgYVHRESyYLPCmzFjBnbs2HHTOVlZWdBoNAgMDDR///DDD20ViYiIZEz0s6GCICArKwtf\nffUVYmNjbzq3pqYGKSkpePLJJ81jbm5uYkciIiISt/Dq6uqQmpqK2tpa9O3b91fn6/V6zJw5E2q1\nWswYREREVkQ9pFlVVQVfX18UFRXB1dX1pnOvXLmCuro63HvvvWJGICIi6pSon/Cio6MRHR3drbk1\nNTVwcHBAbm4uDh06BA8PD0yfPh3jx48XMxIRERGAHhae0WhEXV1dp695eXnBxcWl2+9VU1MDR0dH\nBAQEYOrUqSgpKcH8+fPh5uaGmJiYnsQiIiL6VT0qvJMnT2LatGmdrnWXk5OD0aNHd/u9xo8fD61W\naz7Xd//99+Ps2bPYvHkzC4+IiETXo8KLiIiATqcTbec3XtgycOBAHD16VLT3JyIi6iDZQ9rWrFmD\nEydOIC8vzzx2+vRp+Pv7SxWJiIh64HZbyaFXC+/SpUtQqVTo06cPoqOjsX79euTl5SEmJgaHDx/G\nzp07uQI6EdFt4HZcycFmhdfZeb74+HhMmDABSUlJGDJkCNasWYPVq1dj9erV8PPzw8qVK/Hggw/a\nKhIREYnkdlzJwWZp9+/fbzV24MABi22tVgutVmurCERERGZ8eDQREckCC4+IiGSBhUdERLLAwiMi\nIllg4RERkSyw8IiISBZYeEREJAuiFl5zczMyMzMxYsQIDB8+HOnp6Whubu5yfm1tLaZPn47Q0FA8\n8cQT+M9//iNmHCIiIjNRC++1117DN998g40bN2LTpk3Q6/WYP39+l/NfeOEFeHt7Y9u2bfjTn/6E\npKQkXLhwQcxIREREAEQsvJaWFuzbtw+vvfYaAgMDERgYiIyMDBQXF8NkMlnNP3LkCM6fP49FixZh\n4MCBSExMREhICLZu3SpWJCIiIjPRCs/R0RHr1q2DRqMxjwmCgLa2Nly9etVqfkVFBQYPHgylUmke\nCwsLQ3l5uViRiIiIzER7lqZSqURkZKTF2AcffIBBgwbBw8PDan5DQwO8vb0txtRqdZcrqhMREf0W\nPSo8o9HYZSF5eXnBxcXFvF1QUIC9e/fi/fff73R+S0sLFAqFxZhCoej08Gdn6uvr0dbW1qNV1omI\n6M7zww8/dGu5oB4V3smTJzFt2rROl/7Jyckxl8+HH36IN954A5mZmRg+fHin76VUKtHU1GQxZjKZ\noFKpupVFqVR2uxyJiOjO5ezsbPUBqtN5PXnTiIgI6HS6m855//33kZ2djXnz5mHKlCldzvPx8UF1\ndbXFmMFggJeXV7eylJaWdmseERERIPJtCdu3b8eKFSuQmZmJv/71rzedGxwcjKqqKotPacePH0dI\nSIiYkYiIiAAADoIgCGK8UVNTE6KjozF27Fi8/PLLFq95enrC0dERly5dgkqlQp8+fXD9+nXExcXh\nvvvuw/PPP48DBw7gvffew+7du3H33XeLEYmIiMhMtML77LPPrIpOEAQ4ODhg//798PX1hVarxYQJ\nE5CUlAQAOH/+PDIyMlBRUYE//OEPyMzMxMMPPyxGHCIiIguiFR4REZE948OjiYhIFlh4REQkCyw8\nIiKSBRYeERHJAguPiIhkQfaFZzKZkJGRgfDwcERFRSEvL0/qSFZMJhNiY2Nx7NgxqaOY1dXVITk5\nGcOGDcOoUaOwbNkyu3nU23fffYcZM2YgNDQUWq22y+e5SikxMRHp6elSxzArLi6GRqNBYGCg+fuc\nOXOkjgWg/c//66+/joiICERGRuKtt96SOhKA9gdt3PjfTKPR4IEHHpA6Gi5cuIC///3vCAsLw+jR\no/HPf/5T6khmly5dQnJyMsLDwzF27Fhs37691/Yt2moJt6vly5ejqqoK+fn5qK2tRVpaGvz8/PDo\no49KHQ1A+w/73LlzrR7DJrXk5GR4eHjgo48+QmNjIzIyMuDk5ITU1FRJcwmCgMTERAQHB+OTTz7B\n2bNnMXfuXNx99914/PHHJc3WYffu3Th06BCefPJJqaOYVVdXQ6vVIisrCx13Kv1y6S4pZWVloaSk\nBJs2bcKVK1fw0ksvwc/PD5MnT5Y01+OPP46RI0eat69du4aEhARotVoJU7WbM2cO7rnnHmzfvh3f\nfvstUlJS4Ofnh5iYGKmj4fnnnwcA5Ofno66uDq+88grc3d17J5sgY1evXhUefPBB4dixY+axtWvX\nClOnTpUw1c+qq6uFuLg4IS4uTtBoNEJJSYnUkQRBEAS9Xi9oNBrh4sWL5rFPP/1UGDlypISp2tXX\n1wsvvfSS8OOPP5rHkpKShNdff13CVD9rbGwURo0aJUyaNEmYN2+e1HHMUlJShFWrVkkdw0pjY6Mw\nePBgi5/R9evXCxkZGRKm6ty6deuERx99VDCZTJLmaGpqEgYNGiR8++235rHZs2cLixcvljBVu8rK\nSkGj0Qi1tbXmsfXr1wt//vOfe2X/sj6kqdPp0NbWZvH8zrCwMFRUVEiY6mclJSUYPnw4CgsLzb91\n2wMvLy9s3LgRnp6e5jFBENDc3CxhqnZeXl5YtWoV+vTpA6D9+azHjh3DsGHDJE7Wbvny5YiLi0NA\nQIDUUSzo9Xr4+/tLHcPK8ePH4e7ujoceesg89uyzz+KNN96QMJW1pqYmbNy4ESkpKfjd734naRaV\nSgUXFxds27YNP/30E2pqalBWVmYXh1rPnz8PT09P+Pn5mccGDRqEU6dOoa2tzeb7l3XhNTQ0wMPD\nA87OPx/ZVavVMBqNuHz5soTJ2j399NNIS0uzm0NLHdzd3TFixAjztiAIKCgowCOPPCJhKmtarRZT\npkxBaGioXRyiPnLkCI4fP44XXnhB6ihWzpw5g8OHD2Ps2LEYM2YMVq5ciWvXrkkdC+fPn4efnx92\n7NiBcePGISYmBmvXrrWrXwAB4KOPPoKPjw/GjBkjdRQoFAq89tpr+Ne//oXg4GA89thjGDlyJCZM\nmCB1NPTr1w//+9//YDQazWM//PAD2traeuUXZlkXXleL0AKwmwswbgdvvvkmdDodXnrpJamjWHjn\nnXewbt06nD59WvJPBCaTCQsXLsSCBQu6tW5Xb/r+++/R2toKpVKJ1atXIy0tDbt27UJ2drbU0XD1\n6lWcPXsWW7ZswbJlyzBv3jzk5+fb1UUYALB161ZMnTpV6hhmer0eWq0WH3/8MZYtW4a9e/fi008/\nlToWgoOD4eXlhUWLFqGlpQXnzp3DP/7xDwDolV+wZH3RSmeLyHZs/3L1dupadnY28vPz8fbbb9vd\nYbrBgwcDANLT05Gamop58+ZZfJrvTe+88w6CgoLs7lMwAPj6+uLo0aPo27cvAECj0eD69et45ZVX\nkJ6e3umCz73FyckJP/74I1atWmVeReW///0vNm/e/KtLkPWWiooK1NXV4bHHHpM6CoD2Iwlbt27F\noUOHoFAo8MADD+DChQvIzc3FE088IWk2hUKBNWvW4MUXX0RYWBjUajVmzpyJZcuWwc3Nzeb7l3Xh\n+fj4oLGxEdevX4ejY/uHXYPBAJVKZf7hp64tXrwYhYWFyM7OtourvwDg4sWLOHHihEWeP/7xj7h2\n7RquXLkCDw8PSXJ99tlnuHjxIkJDQwH8/Nvs3r17UVZWJkmmX7rxz3tAQACMRiMaGxtx1113SZQK\n8Pb2hlKptFgyzN/fHxcuXJAs042+/PJLhIeHw93dXeooAICvv/4a9957r8WRhMDAQLz33nsSpvpZ\nUFAQiouLcfHiRdx11104fPgw7rrrrl75kCHrQ5qBgYFwdnZGeXm5eay0tBRBQUESpro95OTkoLCw\nEG+99RbGjRsndRyz2tpazJ49G/X19eaxyspKeHp6SlZ2AFBQUIBdu3Zh586d2LlzJ7RaLbRaLT75\n5BPJMnX48ssvMWzYMIvzKlVVVfDw8JC07ID2Q2BGoxHnzp0zj+n1eouLHqRWUVGBoUOHSh3DzNvb\nG+fOncNPP/1kHqupqcE999wjYap2TU1NeOaZZ9DU1AS1Wg1HR0f8+9//RkRERK/sX9aFp1KpEBcX\nhwULFqCyshLFxcXIy8tDQkKC1NHsml6vR25uLhITExEaGgqDwWD+ktqQIUMQFBSEjIwM6PV6HDx4\nECtWrMCsWbMkzdW/f38MGDDA/OXq6gpXV1cMGDBA0lwAEBoaChcXF2RmZuLMmTM4ePAgsrOz8eyz\nz0odDf7+/hg1ahTmzZsHnU6Hw4cPY8OGDXjmmWekjmb2zTff2NXhfK1WC2dnZ7z66qs4e/aseXHt\nadOmSR0Nv//979HS0oLs7GycP38eH3/8MbZv395rf9Zkvx5ea2srXn/9dezduxfu7u6YOXOmXZ18\n7hAYGIgPPvgA4eHhUkfB+vXrrZ52Ifz/Yr+nT5+WKNXPGhoasHjxYhw5cgQuLi6YMmUKEhMTpY5l\noeMpK0uXLpU4STu9Xo8lS5agvLwcrq6ueOqpp8w3CEvtypUryMrKwr59++Di4oK//OUvkv8C80sh\nISF49913La5cllrH/8+Kigp4enpiypQpdvP32tmzZzF//nycOnUK99xzD1JSUjBq1Khe2bfsC4+I\niORB1oc0iYhIPlh4REQkCyw8IiKSBRYeERHJAguPiIhkgYVHRESywMIjIiJZYOEREZEssPCIiEgW\nWHhERCQLLDwiIpKF/wM8lOd+C0pLlwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "discounted_epr_cent = discounted_epr - np.mean(discounted_epr)\n", "discounted_epr_norm = discounted_epr_cent/np.std(discounted_epr_cent)\n", @@ -768,11 +964,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAEbCAYAAAChqTGJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X1UVOXePvCLlxgIMAIBFX1+Ki0ZEgNENBNlNaIsLcMM\n7E3i+GR4OCo+Ghx5yTgKIYkvaSYmGnUwPZhvaZY+YR21colIHlBgFTNq8JjAaJDmMKO4f3+w2DkO\nKNaGPbWvz1os1tzcsi8N+s6+997f20YQBAFERER/crZyByAiIuoJLHhERKQILHhERKQILHhERKQI\nLHhERKQILHhERKQILHhERKQILHhERKQILHhERKQIkhe8+vp6JCYmYtSoUQgPD0dOTg5MJlOHcysr\nKzF9+nQEBQUhJiYGZ86ckToOERERgG4oeImJiTAajdi6dStWrVqFL7/8EmvWrLGYZzAYEB8fj9DQ\nUOzatQtBQUGYPXs2WlpapI5EREQkbcHT6XQoLy/HsmXL4Ovri5CQECQmJuKTTz6xmLt//344OTkh\nOTkZgwcPRnp6OpydnXHgwAEpIxEREQGQuOB5enpi06ZNcHd3F8cEQcCVK1cs5paXlyMkJMRsbPjw\n4fj222+ljERERARA4oLn6uqKMWPGiK8FQcCWLVvw2GOPWcxtaGiAl5eX2ZiHhwfq6+uljERERAQA\nsO/Ob758+XJUV1dj586dFl9raWmBg4OD2ZiDg0OnN7gQERH9Ht1W8HJzc1FYWIi33noLvr6+Fl9X\nqVQWxc1kMsHR0bFL33/EiBEwGo0WZ4lERKQsDQ0NUKlUKC0tveO8bil4mZmZKCoqQm5uLiIiIjqc\n4+3tjcbGRrMxvV4PT0/PLh3DZDKhtbXVbKz5lxa0tt78baF/Bzs7WzzgfOdCzWyWupKNiOhuWltb\nu7Q6KHnBW7duHYqKirB69WpMmDCh03mBgYHIz883GysrK0NCQkKXjtNeGA8dOgQAuHHjBlI2HcT5\nhp9/Y/Lf7v959ULOrEjY23f8z8lsHbtTths3bmDtrm9w4bLlDU/drZ+7KxKnPXbHfzNrzUakROPH\nj+/SPEl/a7RaLfLy8jB79mwEBwdDr9eLX+vduzf0ej1cXV2hUqkQGRmJVatWITs7G88++yy2bdsG\ng8GASZMmSRmJ/sAuXL4iSyHuCmvNJgiCxcpHT7Kzs4ONjY1sxye6E0kL3qFDh3Dz5k3k5eUhLy8P\nQNsvoI2NDaqqqhAWFoacnBxMnToVLi4u2LBhAzIyMrB9+3b4+fkhPz+/y9fwiMhSa2srzz6JOiHp\nT2Z8fDzi4+M7/Xp1dbXZ62HDhmHXrl1SRiBSPGs9+ySSG9+KEVGP4HIryY0Fj4h6BJdbSW78r09E\nPYbLrSQn7odHRESKwIJHRESKwIJHRESKwIJHRESKwJtWiEjR+LiEcrDgEZGi8XEJ5eC/MhEpHh+X\nUAZewyMiIkVgwSMiIkVgwSMiIkVgwSMiIkXotoJnMpkwZcoUnDhxotM5CQkJUKvV8Pf3Fz8fPny4\nuyIREZGCdctdmiaTCQsXLkRNTc0d5+l0OqxcuRKPPvqoONarV6/uiERERAonecHTarV49dVX7zrP\nZDKhrq4OAQEB8PDwkDoGERGRGcmXNEtKSjB69GgUFRVBEIRO5509exY2NjYYMGCA1BGIiIgsSH6G\n9/zzz3dpnlarhYuLC5KTk3H8+HH07dsX8+bNw7hx46SOREREJN9dmjqdDkajEWPHjsXmzZsRHh6O\nhIQEnDlzRq5IRET0JyZba7G5c+ciLi4Orq6uAAA/Pz+cPn0aRUVFWLp0qVyxiIisBhtbS0vWXprt\nxa6dr68vtFqtTGmIiKwLG1tLS7a/SWpqKmxsbJCdnS2OVVdXY8iQIXJFIiKyOmxsLZ0evYan1+th\nNBoBABqNBvv27cOePXvwww8/YN26dSgrK0NsbGxPRiIiIoXo1oJ3+9pvWFgYPvvsMwDAhAkTkJGR\ngby8PEyZMgVffvklNm3ahH79+nVnJCIiUqhuXdKsqqoye11dXW32Ojo6GtHR0d0ZgYiICACbRxMR\nkUKw4BERkSKw4BERkSKw4BERkSKw4BERkSKw4BERkSKw4BERkSKw4BERkSKw4BERkSKw4BERkSKw\n4BERkSKw4BERkSKw4BERkSKw4BERkSKw4BERkSJ0W8EzmUyYMmUKTpw40emcyspKTJ8+HUFBQYiJ\nicGZM2e6Kw4RESlctxQ8k8mEhQsXoqamptM5BoMB8fHxCA0Nxa5duxAUFITZs2ejpaWlOyIREZHC\nSV7wtFotpk+fjrq6ujvO279/P5ycnJCcnIzBgwcjPT0dzs7OOHDggNSRiIiIpC94JSUlGD16NIqK\niiAIQqfzysvLERISYjY2fPhwfPvtt1JHIiIigr3U3/D555/v0ryGhgYMGTLEbMzDw+OOy6BERES/\nlWx3aba0tMDBwcFszMHBASaTSaZERET0Zyb5GV5XqVQqi+JmMpng6OgoUyIiIuoqQRDQ2toq2/Ht\n7OxgY2NzT39GtoLn7e2NxsZGszG9Xg9PT0+ZEhERUVe1trZi7a5vcOHylR4/dj93VyROewz29vdW\nwmQreIGBgcjPzzcbKysrQ0JCgkyJiIjoXly4fAXnG36WO0aX9eg1PL1eD6PRCACIjIzElStXkJ2d\nDa1Wi6ysLBgMBkyaNKknIxERkUJ0a8G7fX01LCwMn332GQDAxcUFGzZsQGlpKZ555hlUVFQgPz+f\n1/CIiKhbdOuSZlVVldnr6upqs9fDhg3Drl27ujMCERERADaPJiIihWDBIyIiRWDBIyIiRWDBIyIi\nRWDBIyIiRWDBIyIiRWDBIyIiRWDBIyIiRWDBIyIiRWDBIyIiRWDBIyIiRWDBIyIiRWDBIyIiRWDB\nIyIiRZC84JlMJqSlpSE0NBRjx45FQUFBp3MTEhKgVqvh7+8vfj58+LDUkYiIiKTfD+/NN99EZWUl\nCgsLUVdXh0WLFsHHxwcTJ060mKvT6bBy5Uo8+uij4livXr2kjkRERCRtwTMYDNixYwc2b94MtVoN\ntVqNWbNmYcuWLRYFz2Qyoa6uDgEBAfDw8JAyBhERkQVJlzSrq6vR2tqKoKAgcSwkJATl5eUWc8+e\nPQsbGxsMGDBAyghEREQdkrTgNTY2ws3NDfb2v544enh4wGg04qeffjKbq9Vq4eLiguTkZISFhSEm\nJgZHjhyRMg4REZFI0oJnMBjg4OBgNtb+2mQymY3rdDoYjUaMHTsWmzdvRnh4OBISEnDmzBkpIxER\nEQGQ+BqeSqWyKGztr52cnMzG586di7i4OLi6ugIA/Pz8cPr0aRQVFWHp0qVSxiIiIpL2DM/b2xtN\nTU24efOmOKbX6+Ho6Njh3Zftxa6dr68vGhoapIxEREQEQOKC5+/vD3t7e5w6dUocKy0tRUBAgMXc\n1NRUpKWlmY1VV1dj0KBBUkYiIiICIHHBc3R0RFRUFDIyMlBRUYHi4mIUFBQgLi4OQNvZntFoBABo\nNBrs27cPe/bswQ8//IB169ahrKwMsbGxUkYiIiIC0A2dVlJTUxEQEIC4uDhkZmZi/vz5iIiIAACE\nhYXhs88+AwBMmDABGRkZyMvLw5QpU/Dll19i06ZN6Nevn9SRiIiIpO+04ujoiGXLlmHZsmUWX6uu\nrjZ7HR0djejoaKkjEBERWWDzaCIiUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIi\nUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIiUgQWPCIiUgTJC57JZEJa\nWhpCQ0MxduxYFBQUdDq3srIS06dPR1BQEGJiYnDmzBmp4xAREQHohoL35ptvorKyEoWFhcjIyMC6\ndevwv//7vxbzDAYD4uPjERoail27diEoKAizZ89GS0uL1JGIiIikLXgGgwE7duzAa6+9BrVajYiI\nCMyaNQtbtmyxmLt//344OTkhOTkZgwcPRnp6OpydnXHgwAEpIxEREQGQuOBVV1ejtbUVQUFB4lhI\nSAjKy8st5paXlyMkJMRsbPjw4fj222+ljERERARA4oLX2NgINzc32Nvbi2MeHh4wGo346aefzOY2\nNDTAy8vLbMzDwwP19fVSRiIiIgIA2N99StcZDAY4ODiYjbW/NplMZuMtLS0dzr19XmcaGhrQ2tqK\n8ePHi2PNv7SgtfXmb4n+u5y1s0XkR6vuOIfZLN0tm7XmApitI3/kbNaaC2C2jtye7ccff4Sdnd1d\n/5ykBU+lUlkUrPbXTk5OXZrr6Oj4m4/1gHPX/qwcmO3eWWsugNl+K2vNZq25AGbrCnt7e4sTqA7n\nSXlQb29vNDU14ebNm7C1bVst1ev1cHR0RK9evSzmNjY2mo3p9Xp4enp26VilpaXShCYiIkWQ9Bqe\nv78/7O3tcerUKXGstLQUAQEBFnMDAwMtblApKyszu+GFiIhIKpIWPEdHR0RFRSEjIwMVFRUoLi5G\nQUEB4uLiALSdwRmNRgBAZGQkrly5guzsbGi1WmRlZcFgMGDSpElSRiIiIgIA2AiCIEj5DVtaWrBk\nyRIcPHgQrq6umDVrFmJjYwEAarUaOTk5mDp1KgCgoqICGRkZ0Ol08PPzw5IlS6BWq6WMQ0REBKAb\nCh4REZE1YvNoIiJSBBY8IiJSBBY8IiJSBBY8IiJSBMUXvHvZv08uJpMJU6ZMwYkTJ+SOIqqvr0di\nYiJGjRqF8PBw5OTkdLktXHf74Ycf8PLLLyM4OBgajQabN2+WO5KF+Ph4pKamyh1DVFxcDLVaDX9/\nf/Hz/Pnz5Y4FoO3nf8mSJRg5ciTCwsKwevVquSMBAHbv3m3xb6ZWq/Hwww/LHQ0XL17EX//6V4SE\nhGD8+PH44IMP5I4kunz5MhITExEaGorIyEjs3r27x44taaeVP6Jb9++rq6vDokWL4OPjg4kTJ8od\nDUDbL/vChQtRU1MjdxQziYmJcHNzw9atW9HU1IS0tDTY2dkhOTlZ1lyCICA+Ph6BgYH4+OOPce7c\nOSxcuBB9+vTBE088IWu2dvv378eRI0fw9NNPyx1FVFNTA41Gg6ysLLTfuK1SqWRO1SYrKwslJSV4\n7733cPXqVSxYsAA+Pj6YPn26rLmeeOIJjBs3Tnx9/fp1xMXFQaPRyJiqzfz589G/f3/s3r0b33//\nPZKSkuDj44OIiAi5o+Fvf/sbAKCwsBD19fX4+9//DldX157JJijYtWvXhEceeUQ4ceKEOLZ+/Xoh\nNjZWxlS/qqmpEaKiooSoqChBrVYLJSUlckcSBEEQtFqtoFarhUuXLoljn3zyiTBu3DgZU7VpaGgQ\nFixYIPzyyy/i2Ny5c4UlS5bImOpXTU1NQnh4uBATEyOkpKTIHUeUlJQkrFq1Su4YFpqamoShQ4ea\n/Y5u3LhRSEtLkzFVxzZs2CBMnDhRMJlMsuZobm4W/Pz8hO+//14cmzdvnpCZmSljqjYVFRWCWq0W\n6urqxLGNGzcKzz77bI8cX9FLmveyf58cSkpKMHr0aBQVFYnvuq2Bp6cnNm3aBHd3d3FMEARcuXJF\nxlRtPD09sWrVKtx///0AgJMnT+LEiRMYNWqUzMnavPnmm4iKioKvr6/cUcxotVoMGjRI7hgWTp48\nCVdXV4wYMUIce+WVV/DGG2/ImMpSc3MzNm3ahKSkJNx3332yZnF0dISTkxN27tyJGzduQKfToays\nzCqWWmtra+Hu7g4fHx9xzM/PD6dPn0Zra2u3H1/RBe9e9u+Tw/PPP49FixZZzdJSO1dXV4wZM0Z8\nLQgCtmzZgscee0zGVJY0Gg1mzJiB4OBgq1iiPnbsGE6ePIk5c+bIHcXC2bNncfToUURGRmLChAlY\nuXIlrl+/Lncs1NbWwsfHB3v27MGkSZMQERGB9evXW9UbQADYunUrvL29MWHCBLmjwMHBAa+//jr+\n9a9/ITAwEJMnT8a4ceMwbdo0uaOhd+/e+Pnnn8UWk0Db1j6tra098oa52wpeV260qKysxPTp0xEU\nFISYmBicOXOmu+J06F7276POLV++HNXV1ViwYIHcUcy8/fbb2LBhA6qqqmQ/IzCZTPjHP/6BjIyM\nLm1j0pMuXLiAlpYWqFQqrFmzBosWLcK+ffuQm5srdzRcu3YN586dw/bt25GTk4OUlBQUFhZa1U0Y\nALBjxw6xhaI10Gq10Gg0+Oijj5CTk4ODBw/ik08+kTsWAgMD4enpiaVLl8JgMOD8+fN4//33AaBn\n3mB1xzqp0WgU5syZc8frTteuXRPGjBkjLF++XNBqtUJWVpYwZswYwWAwdEekDn322WfCmDFjzMZq\namoEtVotNDc391iOrvDz87Oaa3i3Wr58uTB06FDh888/lztKpw4cOCAMGzZMuH79umwZVqxYISxc\nuFB8nZKSYlXX8G7/eT948KAQGBgo3Lx5U6ZEbd59911BrVYLP/74ozj2/vvvC5GRkTKmMvef//xH\nGDp0qPDzzz/LHUUQBEH45ptvhFGjRglGo1Ecy8vLEyZPnixjql9VVFQI48ePF/z9/YWwsDDh/fff\nF9RqtXDt2rVuP7bkZ3harRbTp09HXV3dHeft378fTk5OSE5OxuDBg5Geng5nZ2ccOHBA6kidunX/\nvnad7d9HljIzM/HBBx8gNzfXKu7+AoBLly6huLjYbOyhhx7C9evXcfXqVZlSAZ9++ikOHTqE4OBg\nBAcHY9++fdi3bx+GDx8uW6Zb3f7z7uvrC6PRiKamJpkStfHy8oJKpUKfPn3EsUGDBuHixYsypjL3\n1VdfITQ0FK6urnJHAQCcOXMGAwcONFtJ8Pf3x4ULF2RM9auAgAAUFxfj6NGjOHz4MAYOHIgHH3zQ\nYpPw7iB5wevqjRbl5eUICQkxGxs+fLjFHnnd6V727yNz69atQ1FREVavXm1VWzrV1dVh3rx5aGho\nEMcqKirg7u4ONzc32XJt2bIF+/btw969e7F3715oNBpoNBp8/PHHsmVq99VXX2HUqFFm11UqKyvh\n5uaGBx98UMZkbUtgRqMR58+fF8e0Wq3ZTQ9yKy8vt5o3LkDbm4Tz58/jxo0b4phOp0P//v1lTNWm\nubkZL7zwApqbm+Hh4QFbW1v8+9//xsiRI3vk+JIXvK7eaNHQ0AAvLy+zMQ8PD9TX10sdqVN327+P\nOqbVapGXl4f4+HgEBwdDr9eLH3IbNmwYAgICkJaWBq1Wi8OHD2PFihVISEiQNVffvn0xYMAA8cPZ\n2RnOzs4YMGCArLkAIDg4GE5OTkhPT8fZs2dx+PBh5Obm4pVXXpE7GgYNGoTw8HCkpKSguroaR48e\nRX5+Pl544QW5o4m+++47q7rrVqPRwN7eHq+99hrOnTuHL774Au+++y5eeukluaPhgQcegMFgQG5u\nLmpra/HRRx9h9+7dPfazJtuD5y0tLR3eMNLTN4ukpqZiyZIliIuLg6urK+bPn281y3O3srGxkTuC\n6NChQ7h58yby8vKQl5cHoO1OTRsbG1RVVcmazdbWFuvXr0dmZiaee+45ODk54aWXXsKMGTNkzWXN\nnJ2dsXnzZmRnZyM6OhrOzs547rnn8N///d9yRwMArFixAllZWXjxxRfh5OSE2NhYvPjii3LHEl2+\nfBkPPPCA3DFELi4ueP/995GdnY2YmBi4u7tjzpw5iImJkTsaAGD16tVYvHgxnnrqKfTv3x9r1qzB\n0KFDe+TY3bofnlqtRmFhIUJDQy2+Nnv2bPj5+WHhwoXi2IoVK6DT6bB+/fq7fu8RI0bAaDRanCUS\nEZGyNDQ0QKVSobS09I7zZHsOz9vbG42NjWZjer0enp6eXfrzJpOpRx5UJCIi69ba2tql1UHZljQD\nAwORn59vNlZWVtblay3thfHQoUOSZyMioj+O8ePHd2lej57h6fV68U6wyMhIXLlyBdnZ2dBqtcjK\nyoLBYLCqO/6IiOjPo1sL3u03WoSFheGzzz4D0HZhdcOGDSgtLcUzzzyDiooK5Ofnw9HRsTsjERGR\nQnXrkubtd+xVV1ebvR42bBh27drVnRGIiIgAKLx5NBERKYfkBe9edhBPSEiw2DH48OHDUkciIiKS\nfknzXnYQ1+l0WLlyJR599FFxjD0siYioO0ha8AwGA3bs2IHNmzdDrVZDrVZj1qxZ2LJli0XBM5lM\nqKurQ0BAADw8PH73sQVBkPW5PDs7u067oTBb5+6UjYhISpIWvM52EH/33Xct5p49exY2NjaS9RJs\nbW3F2l3f4MLlnt91u5+7KxKnPWa2keytmK1jd8rGQkxEUpO04N1tB/FbO69rtVq4uLggOTkZx48f\nR9++fTFv3jyMGzfuNx//wuUrON/w8+/6O3QXZrs31lqIARZjoj8qyZc0u7qDuE6ng9FoxNixYxEf\nH4/PP/8cCQkJ2L59e481EiXrZo2FGLDuYkxEnZP0t0alUlkUtvbXt2/uN3fuXHGHAgDw8/PD6dOn\nUVRUhKVLl0oZi0hy1lqMiahzkha8W3cQt7Vte+LhTjuI375DsK+vL7RarZSRiBSFy61EnZO04N26\ng3j7DsCd7SCempoKGxsbZGdni2PV1dUYMmSIlJGIFIXLrUSdk/Qn89YdxLOzs1FfX4+CggLk5OQA\naDvbc3V1hUqlgkajwcKFCzFy5EgMHz4ce/fuRVlZGTIzM6WMRKQ4XG4l6pjknVZSU1MREBCAuLg4\nZGZmmu0gfmvz6AkTJiAjIwN5eXmYMmUKvvzyS2zatAn9+vWTOhIREZH0nVYcHR2xbNkyLFu2zOJr\ntzePjo6ORnR0tNQRiIiILLB5NBERKYKszaMrKysxffp0BAUFISYmBmfOnJE6DhFZCUEQcOPGDdk+\nBEGQ+5+AZCZb82iDwYD4+HhERUUhJycH27Ztw+zZs1FcXMxNYIn+hHgHKclNtubR+/fvh5OTE5KT\nkwEA6enpOHLkCA4cOICpU6dKGYuIrATvICU5Sbqk2Vnz6PLycou55eXlCAkJMRsbPnw4vv32Wykj\nERERAZC44N2tefStGhoa4OXlZTbm4eGB+vp6KSMREREBkLjg3Uvz6JaWlg7n3j6PiIhICrI1j+5s\n7u+5YaWfu+vdJ3WDrhyX2e79uNaaq6tzugOz/TZ3Oq419x9lts79lr6tsjWP9vb2RmNjo9mYXq+H\np6fnbzq2nZ0dEqc99tuCS8DOzu6OX2O2zo/f2bg15mr/GrN1fvw7fc0as1nz3aPM1rHfetetbM2j\nAwMDkZ+fbzZWVlaGhISE33RsGxsbq73lmNnunbXmApjtt7LmbNZ89yizSUfSa3i3No+uqKhAcXEx\nCgoKEBcXB6DtDM5oNAIAIiMjceXKFWRnZ0Or1SIrKwsGgwGTJk2SMhIRERGAbnjwPDU1FUuWLBE3\nd729eXROTg6mTp0KFxcXbNiwARkZGdi+fTv8/PyQn5/Ph86JqMdZ47VFkp6szaOHDRuGXbt2SR2B\niKjLrPXaIknPOhfUiYh6iDVfWyRpSd48esWKFRg9ejRGjRqF3NzcO87NysqCWq2Gv7+/+PnDDz+U\nOhIREZG0Z3jvvfcePv30U6xfvx7Xr19HUlISevfujZkzZ3Y4X6fTISkpCU8//bQ45uLiImUkIiIi\nABKf4RUWFiIxMRHBwcEYOXIkkpKSsGXLlk7na7VaPPzww/Dw8BA/VCqVlJGIiIgASFjwGhoa8OOP\nP2LEiBHiWEhICC5cuAC9Xm8x/+rVq6ivr8fAgQOlikBERNQpyQpeY2MjbGxszBpC9+7dG4Ig4OLF\nixbzdTodbGxskJeXh/DwcERFRWHPnj1SxSEiIjJzT9fwjEZjp7sZXLt2DQDMGkJ31jgaaCt4tra2\n8PX1RWxsLEpKSrB48WK4uLiIz+0RERFJ5Z4K3n/+8x+89NJLHTbsTEpKAtBW3G4vdLc3jgaAqVOn\nQqPRiD02hwwZgnPnzmHbtm0seEREJLl7KngjR460eHi8XUNDA1asWAG9Xo9+/foB+HWZs7OG0Lc3\nlB48eDCOHz9+L5GIiIi6RLJreF5eXujbty9OnjwpjpWWlqJv377o3bu3xfy1a9daPK5QVVWFQYMG\nSRWJiIhIJOlzeM899xxWrFgBb29vCIKAVatW4eWXXxa/fvnyZTg6OuL+++/H448/jo0bN6KgoAAR\nERE4evQo9u7di8LCQikjERERAZC44M2aNQs//fQT5s2bBzs7O8TExIg7JQBAdHQ0pk2bhrlz52LY\nsGFYu3Yt1qxZgzVr1sDHxwcrV67EI488ImUkIiIiABIXPFtbWyxatAiLFi3q8OtffPGF2WuNRgON\nRiNlBCIiog5J3kuTiIjIGrHgERGRInRbwXv55Zfv2jmlrq4OM2fORHBwMJ588kl8/fXX3RWHiIgU\nTvKCJwgCMjMz8c0339x17pw5c+Dl5YWdO3fiqaeewty5cztsQ0ZERPR7SVrw6uvrERcXhy+//NLi\nofLbHTt2DLW1tVi6dCkGDx6M+Ph4BAUFYceOHVJGIiIiAiBxwausrES/fv2wa9cuODs733FueXk5\nhg4darYdUEhICE6dOiVlJCIiIgASP5bw+OOP4/HHH+/S3MbGRrOdFQDAw8Oj0+bUREREv4dkuyV4\nenp22CS6MwaDwWxnBaBtd4WOdlYgIlKqfu6uijpud5Jst4R169Zh/PjxXf5eKpUKzc3NZmMmkwmO\njo73EomI6E/Lzs4OidMek/X4fyaS7ZZwr7y9vVFTU2M2ptfrO91ZgYhIaWxsbGBvL+mVJ0WT7cHz\nwMBAVFZWmi1hnjx5EkFBQXJFIiKiP7EeLXiXL18Wd0YfOXIk+vbti5SUFNTU1GDjxo2oqKhAdHR0\nT0YiIiKF6LaC19F1vujoaLz33nttB7a1xfr169HY2IhnnnkG+/btwzvvvIM+ffp0VyQiIlKwblsc\nPnTokMXY7bslDBgwgPvfERFRj2DzaCIiUgRZm0dnZWVBrVbD399f/Pzhhx92VyQiIlIwyZc0BUFA\nVlYWvvnmG0yZMuWOc3U6HZKSkvD000+LYy4uLlJHIiIikrbg1dfXIzk5GXV1dXdtHg0AWq0Ws2bN\ngoeHh5SMO1R8AAAQqUlEQVQxiIiILMjWPPrq1auor6/HwIEDpYxARETUIdmaR+t0OtjY2CAvLw9H\njhyBm5sbZs6cialTp0oZiYiICICMzaN1Oh1sbW3h6+uL2NhYlJSUYPHixXBxcUFERMS9xCIiIror\n2ZpHT506FRqNRrzWN2TIEJw7dw7btm1jwSMiIsnJ1jwagMWNLYMHD8bx48cl+/5ERETtZHvwfO3a\ntZg5c6bZWFVVFQYNGiRTIiIi+jOTrXn0448/jhMnTqCgoAC1tbXYunUr9u7di1mzZvVkJCIiUgjZ\nmkcPGzYMa9euxZ49ezBlyhR8+OGHWLlyJR555JHuikRERAoma/NojUYDjUbTXRGIiIhEbB5NRESK\nIGnBu3LlCtLT0zFmzBiMHj0aqampuHLlSqfz6+rqMHPmTAQHB+PJJ5/E119/LWUcIiIikaQF7/XX\nX8d3332HTZs24b333oNWq8XixYs7nT9nzhx4eXlh586deOqppzB37lxcvHhRykhEREQAJCx4BoMB\nn3/+OV5//XX4+/vD398faWlpKC4uhslksph/7Ngx1NbWYunSpRg8eDDi4+MRFBSEHTt2SBWJiIhI\nJFnBs7W1xYYNG6BWq8UxQRDQ2toqPopwq/LycgwdOhQqlUocCwkJwalTp6SKREREJJLsLk2VSoWw\nsDCzsX/+85/w8/ODm5ubxfzGxkZ4eXmZjXl4eHTaq5OIiOj36Lbm0Vu2bMHBgwexefPmDucbDAY4\nODiYjTk4OHS4/ElERPR7dUvz6A8//BBvvPEG0tPTMXr06A6/l0qlQnNzs9mYyWSCo6PjvUQiIiLq\nEsmbR2/evBm5ublISUnBjBkzOp3n7e2NmpoaszG9Xg9PT897iURERNQlkj6WsHv3bqxYsQLp6en4\ny1/+cse5gYGBqKysNFvCPHnyJIKCgqSMREREBEDCgtfc3IzMzExMnToVkyZNgl6vFz9u3rwJwLx5\n9MiRI9G3b1+kpKSgpqYGGzduREVFBaKjo6WKREREJJKs4H399dcwGAzYs2cPxo4di7FjxyIsLAxj\nx44VHya/tXm0ra0t1q9fj8bGRjzzzDPYt28f3nnnHfTp00eqSERERCLJHkuYPHkyJk+efMc5tzeP\nHjBgAAoLC6WKQERE1Ck2jyYiIkWQtXl0VlYW1Go1/P39xc8ffvihlJGIiIgASLwf3uuvv466ujps\n2rQJAJCRkYHFixfjrbfe6nC+TqdDUlISnn76aXHMxcVFykhEREQAJCx47c2jt23bBn9/fwBAWloa\nZsyYAZPJZNFVBQC0Wi1mzZoFDw8PqWIQERF1SLbm0VevXkV9fT0GDhwoVQQiIqJOSVbw2ptH33ff\nfeLYnZpH63Q62NjYIC8vD+Hh4YiKisKePXukikNERGRGtubROp0Otra28PX1RWxsLEpKSrB48WK4\nuLggIiLiXmIRERHdlWzNo6dOnQqNRoNevXoBAIYMGYJz585h27ZtLHhERCQ52ZpHAxCLXbvBgwfj\n+PHj9xKJiIioS2RrHr127VrMnDnTbKyqqgqDBg2SMhIREREACR9L6Kh5dDt3d3fY2tri8uXLcHR0\nxP3334/HH38cGzduREFBASIiInD06FHs3buXrcaIiP4g+rm7/qGOayMIgiBFgE8//RSvvvqq2Zgg\nCLCxscGhQ4fQr18/aDQaTJs2DXPnzgXQ1ltzzZo1OH/+PHx8fLBgwYIuX79rv1546NAhKeITEdE9\naH/sTC52dnbi/SRdrQeSFbyexoJHRERA1+sBm0cTEZEiSFrwLl++jMTERIwYMQJhYWFYsWKFuPlr\nR+rq6jBz5kwEBwfjySefxNdffy1lHCIiIpGkBS8pKQm//PILtm/fjjVr1mD//v1iI+mOzJkzB15e\nXti5cyeeeuopzJ07V9wsloiISEqS3aVpMpnQu3dvzJs3DwMGDAAAREZG4uTJkx3OP3bsGGpra7F9\n+3aoVCrEx8fj2LFj2LFjh3hTCxERkVQkO8NzcHDA8uXLxWL3/fff44svvsCoUaM6nF9eXo6hQ4dC\npVKJYyEhITh16pRUkYiIiETdctNKbGwspkyZgl69euGFF17ocE5jYyO8vLzMxjw8PDrt1UlERPR7\n3FPBMxqN+OGHHzr8MBgM4rzXXnsNhYWFMBqNWLBgQYffy2AwWOyR5+DgAJPJ9Bv+GkRERHfWLc2j\n/fz8AADLli1DdHQ0Lly4gH79+pnNV6lUaG5uNhszmUxwdHTsUpaGhga0traKxyQiImX68ccfYWdn\nd9d5kjWPvnr1Kj799FNMnjxZHHvooYcAAD/99JNFwfP29kZNTY3ZmF6vh6enZ5eyqFQqng0SERHs\n7e0tVgw7nCfVAVtaWrBw4UL4+PggMDAQAHD69GnY29t3uKt5YGAg8vPzYTKZxKAnT57EiBEjunS8\n0tJSqaITEZECSHbTSu/evTFx4kQsXboUVVVVKC0txWuvvYbY2Fg4OzsDaHsw/dq1awDazhb79u2L\nlJQU1NTUYOPGjaioqEB0dLRUkYiIiESS9tK8evUqli1bhi+++AJA2yavr776Kuzt204kb28eXVtb\ni7S0NJSXl+O//uu/kJ6ejkcffVSqOERERKI/bPNoIiKie8Hm0UREpAgseEREpAgseEREpAgseERE\npAgseEREpAiKL3gmkwlpaWkIDQ3F2LFjUVBQIHckCyaTCVOmTMGJEyfkjiKqr69HYmIiRo0ahfDw\ncOTk5FhN55sffvgBL7/8MoKDg6HRaLB582a5I1mIj49Hamqq3DFExcXFUKvV8Pf3Fz/Pnz9f7lgA\n2n7+lyxZgpEjRyIsLAyrV6+WOxIAYPfu3Rb/Zmq1Gg8//LDc0XDx4kX89a9/RUhICMaPH48PPvhA\n7kii9o3CQ0NDERkZid27d/fYsSXrtPJH9eabb6KyshKFhYWoq6vDokWL4OPjg4kTJ8odDUDbL/vC\nhQst2rDJLTExEW5ubti6dSuampqQlpYGOzs7JCcny5pLEATEx8cjMDAQH3/8Mc6dO4eFCxeiT58+\neOKJJ2TN1m7//v04cuQInn76abmjiGpqaqDRaJCVlYX2J5Vu3bpLTllZWSgpKcF7772Hq1evYsGC\nBfDx8cH06dNlzfXEE09g3Lhx4uvr168jLi4OGo1GxlRt5s+fj/79+2P37t34/vvvkZSUBB8fH0RE\nRMgdDX/7298AAIWFhaivr8ff//53uLq69kw2QcGuXbsmPPLII8KJEyfEsfXr1wuxsbEypvpVTU2N\nEBUVJURFRQlqtVooKSmRO5IgCIKg1WoFtVotXLp0SRz75JNPhHHjxsmYqk1DQ4OwYMEC4ZdffhHH\n5s6dKyxZskTGVL9qamoSwsPDhZiYGCElJUXuOKKkpCRh1apVcsew0NTUJAwdOtTsd3Tjxo1CWlqa\njKk6tmHDBmHixImCyWSSNUdzc7Pg5+cnfP/99+LYvHnzhMzMTBlTtamoqBDUarVQV1cnjm3cuFF4\n9tlne+T4il7SrK6uRmtrK4KCgsSxkJAQlJeXy5jqVyUlJRg9ejSKiorEd93WwNPTE5s2bYK7u7s4\nJggCrly5ImOqNp6enli1ahXuv/9+AG39WU+cONHpRsQ97c0330RUVBR8fX3ljmJGq9Vi0KBBcsew\ncPLkSbi6upr12H3llVfwxhtvyJjKUnNzMzZt2oSkpCTcd999smZxdHSEk5MTdu7ciRs3bkCn06Gs\nrMwqllpra2vh7u4OHx8fcczPzw+nT59Ga2trtx9f0QWvsbERbm5uYuszoG0TWqPRiJ9++knGZG2e\nf/55LFq0yGqWltq5urpizJgx4mtBELBlyxY89thjMqaypNFoMGPGDAQHB1vFEvWxY8dw8uRJzJkz\nR+4oFs6ePYujR48iMjISEyZMwMqVK3H9+nW5Y6G2thY+Pj7Ys2cPJk2ahIiICKxfv96q3gACwNat\nW+Ht7Y0JEybIHQUODg54/fXX8a9//QuBgYGYPHkyxo0bh2nTpskdDb1798bPP/8Mo9Eojv34449o\nbW3tkTfMii54nW1CC8BqbsD4I1i+fDmqq6s73exXLm+//TY2bNiAqqoq2c8ITCYT/vGPfyAjI6NL\n25j0pAsXLqClpQUqlQpr1qzBokWLsG/fPuTm5sodDdeuXcO5c+ewfft25OTkICUlBYWFhVZ1EwYA\n7NixA7GxsXLHEGm1Wmg0Gnz00UfIycnBwYMH8cknn8gdC4GBgfD09MTSpUthMBhw/vx5vP/++wDQ\nI2+wFH3TSkd76rW/dnJykiPSH05ubi4KCwvx1ltvWd0y3dChQwEAqampSE5ORkpKitnZfE96++23\nERAQYHVnwQDQr18/HD9+HL169QIAqNVq3Lx5E3//+9+Rmpra4YbPPcXOzg6//PILVq1ahT59+gAA\n/u///g/btm3DX/7yF9ly3aq8vBz19fVme4HK6dixY9ixYweOHDkCBwcHPPzww7h48SLy8vLw5JNP\nyprNwcEBa9euxf/8z/8gJCQEHh4emDVrFnJycuDi4tLtx1d0wfP29kZTUxNu3rwJW9u2k129Xg9H\nR0fxl586l5mZiaKiIuTm5lrF3V8AcOnSJXz77bdmeR566CFcv34dV69ehZubmyy5Pv30U1y6dAnB\nwcEAfn03e/DgQZSVlcmS6Va3/7z7+vrCaDSiqakJDz74oEypAC8vL6hUKrHYAcCgQYNw8eJF2TLd\n7quvvkJoaChcXV3ljgIAOHPmDAYOHGi2kuDv7493331XxlS/CggIQHFxMS5duoQHH3wQR48exYMP\nPtgjJxmKXtL09/eHvb09Tp06JY6VlpYiICBAxlR/DOvWrUNRURFWr16NSZMmyR1HVFdXh3nz5qGh\noUEcq6iogLu7u2zFDgC2bNmCffv2Ye/evdi7dy80Gg00Gg0+/vhj2TK1++qrrzBq1Ciz6yqVlZVw\nc3OTtdgBbUtgRqMR58+fF8e0Wq3ZTQ9yKy8vx/Dhw+WOIfLy8sL58+dx48YNcUyn06F///4ypmrT\n3NyMF154Ac3NzfDw8ICtrS3+/e9/Y+TIkT1yfEUXPEdHR0RFRSEjIwMVFRUoLi5GQUEB4uLi5I5m\n1bRaLfLy8hAfH4/g4GDo9XrxQ27Dhg1DQEAA0tLSoNVqcfjwYaxYsQIJCQmy5urbty8GDBggfjg7\nO8PZ2RkDBgyQNRcABAcHw8nJCenp6Th79iwOHz6M3NxcvPLKK3JHw6BBgxAeHo6UlBRUV1fj6NGj\nyM/PxwsvvCB3NNF3331nVcv5Go0G9vb2eO2113Du3Dl88cUXePfdd/HSSy/JHQ0PPPAADAYDcnNz\nUVtbi48++gi7d+/usZ81xe+H19LSgiVLluDgwYNwdXXFrFmzrOriczt/f3/885//RGhoqNxRsHHj\nRotuF4IgwMbGBlVVVTKl+lVjYyMyMzNx7NgxODk5YcaMGYiPj5c7lpn2LivLli2TOUkbrVaL7Oxs\nnDp1Cs7OznjuuefEB4TldvXqVWRlZeHzzz+Hk5MTXnzxRdnfwNwqKCgI77zzjtmdy3Jr/+9ZXl4O\nd3d3zJgxw2r+v3bu3DksXrwYp0+fRv/+/ZGUlITw8PAeObbiCx4RESmDopc0iYhIOVjwiIhIEVjw\niIhIEVjwiIhIEVjwiIhIEVjwiIhIEVjwiIhIEVjwiIhIEVjwiIhIEVjwiIhIEVjwiIhIEVjwiIhI\nEf4/mBiZv9YJ6xYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "discounted_epr = discount_rewards(np.ones(10), gamma=0.5)\n", "discounted_epr_cent = discounted_epr - np.mean(discounted_epr)\n", @@ -838,7 +1055,52 @@ "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Episode: 20. Average reward for episode 19.500000.\n", + "Episode: 40. Average reward for episode 19.150000.\n", + "Episode: 60. Average reward for episode 16.150000.\n", + "Episode: 80. Average reward for episode 15.500000.\n", + "Episode: 100. Average reward for episode 19.500000.\n", + "Episode: 120. Average reward for episode 19.850000.\n", + "Episode: 140. Average reward for episode 17.000000.\n", + "Episode: 160. Average reward for episode 18.150000.\n", + "Episode: 180. Average reward for episode 19.650000.\n", + "Episode: 200. Average reward for episode 21.500000.\n", + "Episode: 220. Average reward for episode 16.850000.\n", + "Episode: 240. Average reward for episode 17.850000.\n", + "Episode: 260. Average reward for episode 21.450000.\n", + "Episode: 280. Average reward for episode 16.800000.\n", + "Episode: 300. Average reward for episode 17.700000.\n", + "Episode: 320. Average reward for episode 17.800000.\n", + "Episode: 340. Average reward for episode 17.850000.\n", + "Episode: 360. Average reward for episode 19.450000.\n", + "Episode: 380. Average reward for episode 20.400000.\n", + "Episode: 400. Average reward for episode 19.650000.\n", + "Episode: 420. Average reward for episode 22.950000.\n", + "Episode: 440. Average reward for episode 21.250000.\n", + "Episode: 460. Average reward for episode 18.450000.\n", + "Episode: 480. Average reward for episode 16.850000.\n", + "Episode: 500. Average reward for episode 16.800000.\n", + "Episode: 520. Average reward for episode 19.150000.\n", + "Episode: 540. Average reward for episode 18.400000.\n", + "Episode: 560. Average reward for episode 22.150000.\n", + "Episode: 580. Average reward for episode 18.500000.\n", + "Episode: 600. Average reward for episode 17.750000.\n", + "Episode: 620. Average reward for episode 19.950000.\n", + "Episode: 640. Average reward for episode 19.150000.\n", + "Episode: 660. Average reward for episode 19.650000.\n", + "Episode: 680. Average reward for episode 20.850000.\n", + "Episode: 700. Average reward for episode 20.000000.\n", + "Episode: 720. Average reward for episode 16.500000.\n", + "Episode: 740. Average reward for episode 22.350000.\n", + "Episode: 760. Average reward for episode 24.250000.\n" + ] + } + ], "source": [ "input_y = C.input_variable(1, np.float32, name=\"input_y\")\n", "advantages = C.input_variable(1, np.float32, name=\"advt\")\n", diff --git a/Tutorials/CNTK_204_Sequence_To_Sequence.ipynb b/Tutorials/CNTK_204_Sequence_To_Sequence.ipynb index 85dd91fd0..4046fed3d 100644 --- a/Tutorials/CNTK_204_Sequence_To_Sequence.ipynb +++ b/Tutorials/CNTK_204_Sequence_To_Sequence.ipynb @@ -1,5 +1,16 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from IPython.display import Image" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -11,20 +22,78 @@ "\n", "This hands-on tutorial will take you through both the basics of sequence-to-sequence networks, and how to implement them in the Microsoft Cognitive Toolkit. In particular, we will implement a sequence-to-sequence model to perform grapheme to phoneme translation. We will start with some basic theory and then explain the data in more detail, and how you can download it.\n", "\n", - "Andrej Karpathy has a [nice visualization](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) of the five paradigms of neural network architectures:\n", - "\n", - "\n", - "\n", + "Andrej Karpathy has a [nice visualization](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) of the five paradigms of neural network architectures:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Figure 1\n", + "Image(url=\"http://cntk.ai/jup/paradigms.jpg\", width=750)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "In this tutorial, we are going to be talking about the fourth paradigm: many-to-many, also known as sequence-to-sequence networks. The input is a sequence with a dynamic length, and the output is also a sequence with some dynamic length. It is the logical extension of the many-to-one paradigm in that previously we were predicting some category (which could easily be one of `V` words where `V` is an entire vocabulary) and now we want to predict a whole sequence of those categories.\n", "\n", "The applications of sequence-to-sequence networks are nearly limitless. It is a natural fit for machine translation (e.g. English input sequences, French output sequences); automatic text summarization (e.g. full document input sequence, summary output sequence); word to pronunciation models (e.g. character [grapheme] input sequence, pronunciation [phoneme] output sequence); and even parse tree generation (e.g. regular text input, flat parse tree output).\n", "\n", "## Basic theory\n", "\n", - "A sequence-to-sequence model consists of two main pieces: (1) an encoder; and (2) a decoder. Both the encoder and the decoder are recurrent neural network (RNN) layers that can be implemented using a vanilla RNN, an LSTM, or GRU cells (here we will use LSTM). In the basic sequence-to-sequence model, the encoder processes the input sequence into a fixed representation that is fed into the decoder as a context. The decoder then uses some mechanism (discussed below) to decode the processed information into an output sequence. The decoder is a language model that is augmented with some \"strong context\" by the encoder, and so each symbol that it generates is fed back into the decoder for additional context (like a traditional LM). For an English to German translation task, the most basic setup might look something like this:\n", - "\n", - "\n", - "\n", + "A sequence-to-sequence model consists of two main pieces: (1) an encoder; and (2) a decoder. Both the encoder and the decoder are recurrent neural network (RNN) layers that can be implemented using a vanilla RNN, an LSTM, or GRU cells (here we will use LSTM). In the basic sequence-to-sequence model, the encoder processes the input sequence into a fixed representation that is fed into the decoder as a context. The decoder then uses some mechanism (discussed below) to decode the processed information into an output sequence. The decoder is a language model that is augmented with some \"strong context\" by the encoder, and so each symbol that it generates is fed back into the decoder for additional context (like a traditional LM). For an English to German translation task, the most basic setup might look something like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Figure 2\n", + "Image(url=\"http://cntk.ai/jup/s2s.png\", width=700)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "The basic sequence-to-sequence network passes the information from the encoder to the decoder by initializing the decoder RNN with the final hidden state of the encoder as its initial hidden state. The input is then a \"sequence start\" tag (`` in the diagram above) which primes the decoder to start generating an output sequence. Then, whatever word (or note or image, etc.) it generates at that step is fed in as the input for the next step. The decoder keeps generating outputs until it hits the special \"end sequence\" tag (`` above).\n", "\n", "A more complex and powerful version of the basic sequence-to-sequence network uses an attention model. While the above setup works well, it can start to break down when the input sequences get long. At each step, the hidden state `h` is getting updated with the most recent information, and therefore `h` might be getting \"diluted\" in information as it processes each token. Further, even with a relatively short sequence, the last token will always get the last say and therefore the thought vector will be somewhat biased/weighted towards that last word. To deal with this problem, we use an \"attention\" mechanism that allows the decoder to look not only at all of the hidden states from the input, but it also learns which hidden states, for each step in decoding, to put the most weight on. We will discuss an attention implementation in a later version of this tutorial." @@ -87,7 +156,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -137,11 +206,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reusing locally cached: ..\\Examples\\SequenceToSequence\\CMUDict\\Data\\tiny.ctf\n", + "Reusing locally cached: ..\\Examples\\SequenceToSequence\\CMUDict\\Data\\cmudict-0.7b.train-dev-20-21.ctf\n", + "Reusing locally cached: ..\\Examples\\SequenceToSequence\\CMUDict\\Data\\cmudict-0.7b.mapping\n" + ] + } + ], "source": [ "import requests\n", "\n", @@ -187,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": true }, @@ -207,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": true }, @@ -230,11 +309,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vocabulary size is 69\n", + "First 15 letters are:\n", + "[\"'\", '', '', '', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']\n", + "\n", + "Print dictionary with the vocabulary mapping:\n", + "{0: \"'\", 1: '', 2: '', 3: '', 4: 'A', 5: 'B', 6: 'C', 7: 'D', 8: 'E', 9: 'F', 10: 'G', 11: 'H', 12: 'I', 13: 'J', 14: 'K', 15: 'L', 16: 'M', 17: 'N', 18: 'O', 19: 'P', 20: 'Q', 21: 'R', 22: 'S', 23: 'T', 24: 'U', 25: 'V', 26: 'W', 27: 'X', 28: 'Y', 29: 'Z', 30: '~AA', 31: '~AE', 32: '~AH', 33: '~AO', 34: '~AW', 35: '~AY', 36: '~B', 37: '~CH', 38: '~D', 39: '~DH', 40: '~EH', 41: '~ER', 42: '~EY', 43: '~F', 44: '~G', 45: '~HH', 46: '~IH', 47: '~IY', 48: '~JH', 49: '~K', 50: '~L', 51: '~M', 52: '~N', 53: '~NG', 54: '~OW', 55: '~OY', 56: '~P', 57: '~R', 58: '~S', 59: '~SH', 60: '~T', 61: '~TH', 62: '~UH', 63: '~UW', 64: '~V', 65: '~W', 66: '~Y', 67: '~Z', 68: '~ZH'}\n" + ] + } + ], "source": [ "# Print vocab and the correspoding mapping to the phonemes\n", "print(\"Vocabulary size is\", len(vocab))\n", @@ -254,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -289,7 +381,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -325,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -363,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "collapsed": false }, @@ -404,7 +496,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "collapsed": true }, @@ -454,7 +546,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "collapsed": true }, @@ -500,7 +592,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "collapsed": false }, @@ -522,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "collapsed": false }, @@ -549,7 +641,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "collapsed": true }, @@ -599,7 +691,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "collapsed": true }, @@ -624,7 +716,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "collapsed": true }, @@ -713,11 +805,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['raw_labels', 'raw_input']\n" + ] + } + ], "source": [ "model = create_model()\n", "label_sequence = model.find_by_name('label_sequence')\n", @@ -739,7 +839,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": { "collapsed": false }, @@ -767,7 +867,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { "collapsed": false }, @@ -794,11 +894,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Minibatch: 0, Train Loss: 4.234, Train Evaluation Criterion: 1.000\n" + ] + } + ], "source": [ "training_progress_output_freq = 100\n", "max_num_minibatch = 100 if isFast else 1000\n", @@ -827,7 +935,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": { "collapsed": true }, @@ -846,7 +954,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "collapsed": true }, @@ -881,7 +989,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": { "collapsed": false }, @@ -984,11 +1092,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Minibatch: 0, Train Loss: 4.234, Train Evaluation Criterion: 1.000\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "['', '', '', '', 'C', '']\n", + "--- EPOCH 0 DONE: loss = 3.817505, errs = 87.036621 ---\n" + ] + } + ], "source": [ "# Given a vocab and tensor, print the output\n", "def print_sequences(sequences, i2w):\n", @@ -1009,11 +1136,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "87.03662098404853\n" + ] + } + ], "source": [ "# Print the training error\n", "print(error)" @@ -1051,7 +1186,7 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1065,7 +1200,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.5" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/Tutorials/CNTK_205_Artistic_Style_Transfer.ipynb b/Tutorials/CNTK_205_Artistic_Style_Transfer.ipynb index 640eeb920..efe7e31fe 100644 --- a/Tutorials/CNTK_205_Artistic_Style_Transfer.ipynb +++ b/Tutorials/CNTK_205_Artistic_Style_Transfer.ipynb @@ -493,7 +493,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/Tutorials/CNTK_206_Basic_GAN.ipynb b/Tutorials/CNTK_206_Basic_GAN.ipynb index 781432cf8..268f3c5f4 100644 --- a/Tutorials/CNTK_206_Basic_GAN.ipynb +++ b/Tutorials/CNTK_206_Basic_GAN.ipynb @@ -1,5 +1,16 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from IPython.display import Image" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -17,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -56,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": true }, @@ -86,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": true }, @@ -105,11 +116,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data directory is ..\\Examples\\Image\\DataSets\\MNIST\n" + ] + } + ], "source": [ "# Ensure the training data is generated and available for this tutorial\n", "# We search in two locations in the toolkit for the cached MNIST data set.\n", @@ -130,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": true }, @@ -161,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "collapsed": true }, @@ -184,10 +203,39 @@ "\n", "A GAN network is composed of two sub-networks, one called the Generator ($G$) and the other Discriminator ($D$). \n", "- The **Generator** takes random noise vector ($z$) as input and strives to output synthetic (fake) image ($x^*$) that is indistinguishable from the real image ($x$) from the MNIST dataset. \n", - "- The **Discriminator** strives to differentiate between the real image ($x$) and the fake ($x^*$) image.\n", - "\n", - "\n", - "\n", + "- The **Discriminator** strives to differentiate between the real image ($x$) and the fake ($x^*$) image." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Figure 1\n", + "Image(url=\"https://www.cntk.ai/jup/GAN_basic_flow.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "In each training iteration, the Generator produces more realistic fake images (in other words *minimizes* the difference between the real and generated counterpart) and also the Discriminator *maximizes* the probability of assigning the correct label (real vs. fake) to both real examples (from training set) and the generated fake ones. The two conflicting objectives between the sub-networks ($G$ and $D$) leads to the GAN network (when trained) converge to an equilibrium, where the Generator produces realistic looking fake MNIST images and the Discriminator can at best randomly guess whether images are real or fake. The resulting Generator model once trained produces realistic MNIST image with the input being a random number. " ] }, @@ -217,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "collapsed": true }, @@ -233,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "collapsed": true }, @@ -247,7 +295,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "collapsed": true }, @@ -270,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "collapsed": true }, @@ -302,15 +350,38 @@ " \\min_G \\max_D V(D,G)= \\mathbb{E}_{x}[ log D(x) ] + \\mathbb{E}_{z}[ log(1 - D(G(z))) ]\n", "$$\n", "\n", - "At the optimal point of this game the generator will produce realistic looking data while the discriminator will predict that the generated image is indeed fake with a probability of 0.5. The [algorithm referred below](https://arxiv.org/pdf/1406.2661v1.pdf) is implemented in this tutorial.\n", - "\n", - "\n", - "\n" + "At the optimal point of this game the generator will produce realistic looking data while the discriminator will predict that the generated image is indeed fake with a probability of 0.5. The [algorithm referred below](https://arxiv.org/pdf/1406.2661v1.pdf) is implemented in this tutorial." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Figure 2\n", + "Image(url=\"https://www.cntk.ai/jup/GAN_goodfellow_NIPS2014.png\", width = 500)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, "metadata": { "collapsed": true }, @@ -370,7 +441,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "collapsed": true }, @@ -414,12 +485,119 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "collapsed": false, "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Minibatch[ 1- 6]: loss = 2.737928 * 6144;\n", + " Minibatch[ 1- 6]: loss = 0.327561 * 6144;\n", + " Minibatch[ 7- 12]: loss = 2.355194 * 6144;\n", + " Minibatch[ 7- 12]: loss = 0.438016 * 6144;\n", + " Minibatch[ 13- 18]: loss = 2.486605 * 6144;\n", + " Minibatch[ 13- 18]: loss = 0.381973 * 6144;\n", + " Minibatch[ 19- 24]: loss = 2.645467 * 6144;\n", + " Minibatch[ 19- 24]: loss = 0.356883 * 6144;\n", + " Minibatch[ 25- 30]: loss = 2.468790 * 6144;\n", + " Minibatch[ 25- 30]: loss = 0.708103 * 6144;\n", + " Minibatch[ 31- 36]: loss = 1.954979 * 6144;\n", + " Minibatch[ 31- 36]: loss = 1.153848 * 6144;\n", + " Minibatch[ 37- 42]: loss = 1.939908 * 6144;\n", + " Minibatch[ 37- 42]: loss = 0.921016 * 6144;\n", + " Minibatch[ 43- 48]: loss = 1.815944 * 6144;\n", + " Minibatch[ 43- 48]: loss = 1.392506 * 6144;\n", + " Minibatch[ 49- 54]: loss = 1.872496 * 6144;\n", + " Minibatch[ 49- 54]: loss = 0.842418 * 6144;\n", + " Minibatch[ 55- 60]: loss = 1.709652 * 6144;\n", + " Minibatch[ 55- 60]: loss = 1.135109 * 6144;\n", + " Minibatch[ 61- 66]: loss = 1.671173 * 6144;\n", + " Minibatch[ 61- 66]: loss = 1.007829 * 6144;\n", + " Minibatch[ 67- 72]: loss = 1.803653 * 6144;\n", + " Minibatch[ 67- 72]: loss = 1.039823 * 6144;\n", + " Minibatch[ 73- 78]: loss = 1.854205 * 6144;\n", + " Minibatch[ 73- 78]: loss = 1.112219 * 6144;\n", + " Minibatch[ 79- 84]: loss = 1.599514 * 6144;\n", + " Minibatch[ 79- 84]: loss = 0.979602 * 6144;\n", + " Minibatch[ 85- 90]: loss = 1.554925 * 6144;\n", + " Minibatch[ 85- 90]: loss = 1.067822 * 6144;\n", + " Minibatch[ 91- 96]: loss = 1.602542 * 6144;\n", + " Minibatch[ 91- 96]: loss = 1.084749 * 6144;\n", + " Minibatch[ 97- 102]: loss = 1.490171 * 6144;\n", + " Minibatch[ 97- 102]: loss = 1.108200 * 6144;\n", + " Minibatch[ 103- 108]: loss = 1.523889 * 6144;\n", + " Minibatch[ 103- 108]: loss = 1.091449 * 6144;\n", + " Minibatch[ 109- 114]: loss = 1.945248 * 6144;\n", + " Minibatch[ 109- 114]: loss = 1.096080 * 6144;\n", + " Minibatch[ 115- 120]: loss = 1.686950 * 6144;\n", + " Minibatch[ 115- 120]: loss = 0.983363 * 6144;\n", + " Minibatch[ 121- 126]: loss = 1.748998 * 6144;\n", + " Minibatch[ 121- 126]: loss = 0.944750 * 6144;\n", + " Minibatch[ 127- 132]: loss = 1.829200 * 6144;\n", + " Minibatch[ 127- 132]: loss = 0.886693 * 6144;\n", + " Minibatch[ 133- 138]: loss = 1.876721 * 6144;\n", + " Minibatch[ 133- 138]: loss = 0.768756 * 6144;\n", + " Minibatch[ 139- 144]: loss = 1.946413 * 6144;\n", + " Minibatch[ 139- 144]: loss = 0.721226 * 6144;\n", + " Minibatch[ 145- 150]: loss = 2.188425 * 6144;\n", + " Minibatch[ 145- 150]: loss = 0.554943 * 6144;\n", + " Minibatch[ 151- 156]: loss = 2.261010 * 6144;\n", + " Minibatch[ 151- 156]: loss = 0.521321 * 6144;\n", + " Minibatch[ 157- 162]: loss = 2.284071 * 6144;\n", + " Minibatch[ 157- 162]: loss = 0.538548 * 6144;\n", + " Minibatch[ 163- 168]: loss = 2.188945 * 6144;\n", + " Minibatch[ 163- 168]: loss = 0.577333 * 6144;\n", + " Minibatch[ 169- 174]: loss = 2.079304 * 6144;\n", + " Minibatch[ 169- 174]: loss = 0.701605 * 6144;\n", + " Minibatch[ 175- 180]: loss = 2.175129 * 6144;\n", + " Minibatch[ 175- 180]: loss = 0.644715 * 6144;\n", + " Minibatch[ 181- 186]: loss = 2.011760 * 6144;\n", + " Minibatch[ 181- 186]: loss = 0.723366 * 6144;\n", + " Minibatch[ 187- 192]: loss = 2.116358 * 6144;\n", + " Minibatch[ 187- 192]: loss = 0.712513 * 6144;\n", + " Minibatch[ 193- 198]: loss = 2.175821 * 6144;\n", + " Minibatch[ 193- 198]: loss = 0.641268 * 6144;\n", + " Minibatch[ 199- 204]: loss = 2.105059 * 6144;\n", + " Minibatch[ 199- 204]: loss = 0.677874 * 6144;\n", + " Minibatch[ 205- 210]: loss = 1.966301 * 6144;\n", + " Minibatch[ 205- 210]: loss = 0.741405 * 6144;\n", + " Minibatch[ 211- 216]: loss = 1.969168 * 6144;\n", + " Minibatch[ 211- 216]: loss = 0.792235 * 6144;\n", + " Minibatch[ 217- 222]: loss = 1.796313 * 6144;\n", + " Minibatch[ 217- 222]: loss = 0.852187 * 6144;\n", + " Minibatch[ 223- 228]: loss = 1.910731 * 6144;\n", + " Minibatch[ 223- 228]: loss = 0.819637 * 6144;\n", + " Minibatch[ 229- 234]: loss = 1.777931 * 6144;\n", + " Minibatch[ 229- 234]: loss = 0.874954 * 6144;\n", + " Minibatch[ 235- 240]: loss = 1.988461 * 6144;\n", + " Minibatch[ 235- 240]: loss = 0.794293 * 6144;\n", + " Minibatch[ 241- 246]: loss = 1.963283 * 6144;\n", + " Minibatch[ 241- 246]: loss = 0.777755 * 6144;\n", + " Minibatch[ 247- 252]: loss = 1.849503 * 6144;\n", + " Minibatch[ 247- 252]: loss = 0.823517 * 6144;\n", + " Minibatch[ 253- 258]: loss = 1.983176 * 6144;\n", + " Minibatch[ 253- 258]: loss = 0.850665 * 6144;\n", + " Minibatch[ 259- 264]: loss = 2.031011 * 6144;\n", + " Minibatch[ 259- 264]: loss = 0.826843 * 6144;\n", + " Minibatch[ 265- 270]: loss = 1.972308 * 6144;\n", + " Minibatch[ 265- 270]: loss = 0.787416 * 6144;\n", + " Minibatch[ 271- 276]: loss = 1.929749 * 6144;\n", + " Minibatch[ 271- 276]: loss = 0.801013 * 6144;\n", + " Minibatch[ 277- 282]: loss = 2.026559 * 6144;\n", + " Minibatch[ 277- 282]: loss = 0.771508 * 6144;\n", + " Minibatch[ 283- 288]: loss = 2.040789 * 6144;\n", + " Minibatch[ 283- 288]: loss = 0.713442 * 6144;\n", + " Minibatch[ 289- 294]: loss = 2.022175 * 6144;\n", + " Minibatch[ 289- 294]: loss = 0.706637 * 6144;\n", + " Minibatch[ 295- 300]: loss = 2.034424 * 6144;\n", + " Minibatch[ 295- 300]: loss = 0.755113 * 6144;\n" + ] + } + ], "source": [ "reader_train = create_reader(train_file, True, d_input_dim, label_dim=10)\n", "\n", @@ -428,11 +606,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training loss of the generator is: 2.07\n" + ] + } + ], "source": [ "# Print the generator loss \n", "print(\"Training loss of the generator is: {0:.2f}\".format(G_trainer_loss))" @@ -449,12 +635,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "collapsed": false, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAFpCAYAAABjxXptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnUlwXNd573936Nvz3I2pMQMcQIoUp0iKBluW5Ei2XOVK\nYue9RXapt3C9bapS9RZv/TZvkVV2qUwLl5O4nHLF8YtsS3JZtERzHjEQczeARqO70fPc/RbMvQZI\ngARAkOjh/KpUpSLB5umP957vnG/4f1Kj0WggEAgEAoGgpZCPegECgUAgEAj2j3DgAoFAIBC0IMKB\nCwQCgUDQgggHLhAIBAJBCyIcuEAgEAgELYhw4AKBQCAQtCDCgQsEAoFA0IIIBy4QCAQCQQsiHLhA\nIBAIBC2IcOACgUAgELQgwoELBAKBQNCCCAcuEAgEAkELIhy4QCAQCAQtiHDgAoFAIBC0IMKBCwQC\ngUDQgqhHvYCnIUnSUS9h3zTTeHVhv4NzmLbTNA2bzUY+n6dcLh/a5+5EO9rvZdEstgNhv+ehVWxn\ns9nw+Xwkk0lyudyB7NfUDlwgaAcsFgvBYJD19fVDdeD6RtUsG6dAINg7+XyefD7/XJ8hNZr47W+V\nk9RWmsmcwn4H5zBtp6oqFouFUqlEpVI5tM/0+XxUq1USiYTx6+1ov5dFs9gOnm0/RVFoNBrU6/WX\ntKJn0yz2a8VnDw5mP3ED71AURcHpdFKtVslms0e9nLbmRdm4VTcqwf6Q5UelSs3krAXNgShi61As\nFgujo6P09vYe9VLaGlmWjQ34MKlWq8RiMTY3Nw/9swXNhaZpaJq27ddqtZpw6AJxA+9UyuUyq6ur\nlEqlPf28oijAo41DsHdeZFhRbOCdQbVaPdTPUxQFj8dDtVollUod6md3KrIsoygK1Wr1paYSRA78\nkGkmcx6G/SwWC06nk2KxSKlUElXULwlZljGbzUiSRKPRoFQq7clhC/sdnGaxHbw4+ymKgsViIRAI\nIEkS2WzWeLeftz6jWez3Ip89RVEMZy1JEqqqYrVaqVarlEolFEWhXq9TKBSo1+v7sonIgQsOneHh\nYd555x0+//xzZmZmjno5HYPD4WBgYACTyUSlUmFpaYlMJnPUyxK0OG63G4/HQyKRIBQK8f7773P/\n/n3m5uaIx+OHfttvJxRFweFw4HQ6cTgcaJpGIBDg1KlTTE1NcfXqVU6dOoUkSdy/f59MJnNoRau7\nIRy4YFdkWaZYLLK6uko+n992QpQkCZPJRKPReK6HVFEUzGYz5XK57TePkydP4nK5ePDggeGMZVnG\nZDJhNpuxWCxommZspPl83gjLidSF4CBIkoTP58PtdmO32xkaGqK3t5dUKkWxWGRtbY1cLrfv22In\n0mg0qNVq9Pb28vrrr+N0OgkEAgwPD9PV1YXJZOLkyZOkUimmpqZeij2FAxfsiB4eikQiLCwsPPH7\nsixjs9mo1WrP5cBNJhNOp5NMJtN2DlySJGRZNtp93nrrLcbHx0kmkxSLRRqNBmazGZvNhtfrxe/3\n43Q6uXPnDmtra8zPzx/1V2hK9LSCjizLxq/p/3U6kiQZz18oFOLYsWMMDg4yMTHB2NgYqqryn//5\nn/yf//N/0DQNSZJETcVT0ItRi8Uig4ODfP/738fv9+NwOADw+Xz09PQQCAS4f/8+8HLqhYQDfwwh\njvGIRqNhONTHN0yTyYSmaRSLxed2uuVymVQq9cJDTS8bh8NBIBBgdHSUzc1Nbty4QTwe59ixY/zg\nBz9gfX2d+fl5vF4vmqaRz+cpFApks1n6+voAWF9fFzdvHtVhSJJEsVjE7/fjdruNqBDApUuX6Ovr\nY2Njg4WFBcLh8BGv+OXi8XiQZZnNzU3q9TqqqhIIBOjt7aWvr4+FhQUSiQTf/e53GR4exmw2MzMz\nQyqV4tixYwwPD1Ov1/ntb38r0jS78Oabb3LixAlKpRJnz57F5XJhMplIp9MsLi5SrVbp7e2lWq1i\ns9l44403uHv37gs/hAsHvoWtN6bHHbjNZkNRFCPc1Als7T99PHwOUKlUntvB1Ot1isXic33GUWAy\nmZAkadeivr6+Pk6fPs2rr75KMplEVVUGBgYIhUKcO3eOSCRiSKwqikKpVCKVSrGxsUE8HsflcuFw\nOIjH49uEWlqRvXQwqKqK3W6nVCpRLBZRFIVgMMjg4CBWq5VMJsO9e/dwu9309fWRSCQMB65pGl6v\nF6fTSTabfcKB6wVHtVqt7Q7m+p61tVVR/zWr1YrP5yMajWI2m7Hb7cbB+86dOywuLuLz+bDb7S35\nDr5MvF4vvb29JBIJUqkU165dQ1VVMpkMs7OzhEIhTp48ST6fp1QqYbfbcbvduFwu8vn8C4suCgf+\nGIqi7LjRdHV1YbfbmZubo1AoHMHKXi76BtBoNCgUCttu4eVymUql0nab4V6RZRmXy4UkSSQSiR0P\ndBMTE3z00UeMjY2hKApf+9rX6Ovro7u7G4fDwcrKCpubm8zNzSHLMsPDw/h8Pmw2Gzdu3ECSJL71\nrW9x/fp1fvOb3xzBtzwcJEnCarUCPFXv2W63Mz4+zurqKmtra1gsFl5//XX+4i/+gkajwa1bt1ha\nWjK6Ikwmk/Fnr169SjQa5a233jL+rq1YrVZjs223iEaj0TC0APTnsFKpEI1GjUPhyMgIw8PDPHz4\n0LiAfPbZZ0QiEfr6+rhy5QqJRKIj9rWDMjc3x+bmJg8fPqRUKqFpmpEaq1QqvP3221itVorFIktL\nS9y6dQt4VAS8sLBAOp1+Ietqeweun5wikQjpdBpVVanX6zu+yHqRwk4bciqVolAotF2odzcajQbl\nchmXy0VfXx/pdJpMJmMUs3Wq84ZHTkl34HrYUsftdtPf308ymeTy5ct4vV66u7uN208+n2dubo7L\nly/z29/+lmAwiMVi4fLly/T09DA4OMjZs2eRJAm/3/+EgEeroT9H+v/vRqlUYm1tjWw2i9ls5vjx\n40xMTNDX18dnn33GlStXKBaLrK+v02g0CAaDDA0N4Xa78Xq9KIrCysoKlUqF4eFhotGo4ZD0Asl2\njZzt9L1qtRpms5nu7m42NjaMmouZmRlWVlaYm5sz3uNCoUAulzuClTcvZrOZgYEBSqUSy8vLBINB\nuru7efDgAfV6HZfLZTyvmqYxNTVFsVikVquRTCZZWVlBVVVMJtOetTYOQts7cLvdzsDAAJubm2Qy\nGcOosiyTzWafCG3sdkJPJpMvY7lNRaVSwWQy0dXVhSzL1Go1isWiUTWdy+XarvBsr6iqahRPbcXp\ndHLs2DGWlpa4ceMGZ8+eRVVVo5K8WCwat+pr167x2muv4XA4uHbtGuPj4/h8PsbHx42cZrlcRtO0\nlnZAe9EOqNfrlEolZFnG4/EwPj6Ox+NhZWWFzz77jM8++4xcLkc2myWbzXLmzBlGRkbo6+sjFAqR\nTqf5yU9+Qq1WIxgMsrm5uc2BdyKapuHxeHj48CGFQgGTycTq6iqzs7NUKhVcLhfVatXQ6tfrXtot\nSnEQTCYTPT095HI5wuEwTqeTYDBIV1cXAKFQiHK5TL1eR1EUlpeXmZmZMQoCy+XyS7nktL2Qi9ls\nxuFwkM1mjQ3iwoULHDt2jM8++4zV1dVDWOnvaSZzHtR+W1ub9Pyl7oRSqRRnzpxhdHSUy5cvE41G\nD3PJTWO/p9lODwtLkrStvU6WZbq7uzl58iTDw8P09vZisVgwm81omkY4HGZ+fp7JyUlWV1dJJpO4\n3W5sNhuqqjI+Ps6JEyfIZDKsr69vq/5fWVnZ0y2pFey3EyMjI3z88cfE43FisRhdXV3kcjmWlpYI\nh8MkEgnDsciyjNPpxGq1Gu13ek1COp0mmUweKO/YLLaDw9n7rFYrTqeTdDpt3BqHhobo7u4mEomQ\nzWap1WrY7XZUVaVSqRCLxYjFYgf6+5rFfodhO31WRK1WI5PJGBGfCxcukMvlmJ6eNmqi5ufnyefz\nSJLEyMgIsiwzPz+/72itEHLZgq71XSgUmJ+fR1EUI7+dy+VIJBIdEw7fL729vQwODuLxeFhdXeXm\nzZsEAgEsFouR/95r5bimadjtdqO4ox1oNBpPjAHU2+p6eno4deoUx44dw+fzsbCwQCqVwmq1Mjk5\nye3bt1lfXzdskUqlKJVKBINB0uk0s7OzhgCE3+8nn8+TTqebZnN8Uei3v7GxMUZHR5menmZpaYm5\nuTnK5fK2Tbler5NKpQwZ0KGhIex2O/V6nXK5TCaTaXt7PY6iKEakRn8vC4XCtrz2xsYGDocDq9Vq\nhM2LxSL1eh2LxUK1Wt126NGL4TqtR1zTNFRVJZ1O4/f7OXXqFPPz88zNzdHT02Psf11dXdhsNur1\nunETL5VKT3TtvEja1oE7HA7ee+89otEo8/PzRti8UCjw4MEDHjx4cNRLbFqOHz/Oe++9RygU4ssv\nv+TWrVvYbDZsNhuSJLG4uGj0Oj4Lm81Gf38/kUikbRz4TsiyjNvt5sSJE3z729/GYrEY+bFisUi5\nXGZtbY3l5eUn/qzueJaXl5mfn0fTNI4dO8ZHH33E5cuX+eSTT9r+sJlIJPjiiy/47//9v3P+/Hmu\nX79OJpOhp6fHSH/tVkV+/vx5BgYG+Oqrr6jX6y91A20WVFXF4/GQzWaf+qwsLCywuLi4zT67DcSR\nZRlN06hUKh2VKrPb7VitVuLxOCMjI/y3//bf+Nd//VcuX77Mv//7v2O1WnG5XLhcrm12rNVqO77f\nL5K2DaGbzWZGRkYoFAosLi6+tGEczWTOg9pvYGCA/v5+I6ym57rz+TzxeHzX/u9AIMClS5cIh8Pc\nvXsXwGiVKhQKe3LgzWK//dpOD6v39PQYOexyuczm5iaVSsXYDIvFIrOzs9tu8BaLhWAwaOTYRkZG\nqNVqPHjwgPn5eVZWVvac/25V+23NewM8ePCAdDpt5BMfvx1u5Y//+I85ceIES0tLzMzMbIti7Idm\nsR3s3366dv5uztZsNuP3+xkbG6Orq4vbt28bvcsPHz5kfX19xzXs5wbeLPZ73hC6fgMvFov09vZy\n5swZnE4nbrcbn8/H3NwcV65cMSKSKysrhirbysrKgXvpOz6E/ngv6eTkpPF7z3LcYubu71lbWyOZ\nTGKxWPB6vQSDQTY2NshmsxQKhR1tqYfKPR4PGxsbwKMXqVKpPHXk5dZTfqsXz8iyzPr6utHupLcv\nFYtFksmkIaWqKAomk8kIW1qtVjweD319fUbLTyQSYWpqing83hHPpMViob+/n6mpqT1HxxwOB11d\nXfT399PV1WWI4QDMzMx01KhVfYAG/F6zu1arGXPo9bqWvr4+jh07xsrKCqVSib6+PuPWnk6nt72D\neldOp6GnCfUw+vXr1/ne977HO++8g8vlwm63Mzs7SyKRYHNzk1qtZhQC6hfFl0VbOXCn08nx48eJ\nRCL7VmPSi2BKpVLTnCSPikqlgsVi4dSpU1SrVebn58lkMrs6b3jUPtVoNPjkk0+MYitFUZ65CVgs\nFvx+vxEmbVVMJhNDQ0PUajUePnxIX18fY2NjeL1elpaW+OKLL5ibmzPyZF6v16ie1jSNgYEBenp6\nsNlsRuGWzWYjn88bm3A74/f7efvttymVSnt24CMjI3znO9/hjTfeQFVVpqenCYVCjI2NGZtrJ2I2\nmzlx4gTZbNZIdRWLRVZWVohEIng8HiqViqGFHgqFcLvdXL9+XbST/Rd6oWS9XieRSBiHRb1o99ix\nY1y9epVMJkO9XmdjY8OItr1M2sqBm0wmY9LO07BarWiatq0NSncyney8LRYLPp+PXC5nhIbMZjMu\nl4tcLvdUR7x1fJ4+sUcXe1FV1SiYeZxKpUI2m235Vp96vW5U++oFLZIkEY1G2djYMELBkiShaRq1\nWo14PI7T6WR0dJSvfe1rKIpCPB5nbm6OSCSC3W432qbaFVmWGR0dpb+/n7m5uWdWQPf09BgV6uPj\n45w+fZpKpUI8HsdisbC2tkY0Gu1Y5w2PIl9ms5l6vY7NZmNoaIienh5cLhenT582dDE2NzcJBALE\nYjHW1tbavs5iPzQaDYrFIj6fj7GxMdLpNLdv3zZy41NTUySTSSM6VqvVjiRa0VYOfK/DDPTWsnK5\nbBTGdFKRxm7o4/HgkWrW7OysMW1HD4vvht5TrwuTSJJEKpVCVVW8Xi8rKyu7OvB26LGv1WrEYjEj\nVAmQTqeZn59nc3PTCK3pU9x0hx4MBjlx4gSvvvoqsVjMKGSLRqP09PSgqm31ij6BJEn09/fjcrm4\nfv06a2trRi9trVajWq0a9tIr848fP06xWOTYsWOEQiFmZ2dZXl6mVqsxPz/PV199ddRf68gwmUyG\naJAkSQQCAc6fP8+ZM2fo7e01+piDwSAmk4mBgQHm5+dZXV3FZrNhsVioVCp7nj/frtTrdfL5PL29\nvUxMTLC6ukosFuPMmTOsrq7y4MGDpvAZbVXEpmmaoT37eJvPVnQxF31U42HqADeTOfdrP304fblc\nNoQINE3DarWSz+efeULXNalrtZqhWtfV1cXp06e5f//+nio0m8V+BymE0SvR+/r6jCK21dVVSqWS\nochUqVRQFIWLFy/y4YcfEgqF0DSN1dVVHj58yNTUFHNzc8bhp1wu76t6v9XsJ0kSXq8Xh8OByWRC\nVVUURUFVVZLJJMvLy4yPj6NpGg8fPkTTNHp7e/nGN77BpUuXOHPmDOFwmNu3b/PTn/6UhYWFA9++\nm8V2cPBCrGPHjnHy5El6enoMVbCTJ08SCoWwWCzGIXF6ehq/38/rr7/OV199RTwe58SJE6RSKRYX\nF7l3796+NfibxX6H0Qeu43A4CAaDhoCVniZLJBKsrq4arYyHQccXsZXL5afeFCVJMvKyusJVszx0\nzUC1Wn0iD607871Qq9UMR68firZWrrc7egpBURSy2awhv6uH1PVnrVarGdEOXeUukUiQyWRYWFgg\nk8lQKpU6Qpu60WgY393hcGCz2bBardTrdeOGoxcUOZ1OY8xtb28vvb292Gw2kskk4XDY6GnuZCqV\nCuVyGZvNhizLVCoVHA6HUWCp1wdFo1EqlQorKyu43W7joD05Ocnk5GTH21Enn88TiUSoVqtomoam\naZhMJiN6e9S0lQN/FrIsY7FYjNCcrg8sOBx01aKtJBIJkslkx9i5VCoRi8XIZDLbctePR4SSySQP\nHjxAURQGBwc5d+4c8/PzJJNJQ6Kxk9BTKTulUxYXF7Hb7fT19eH1eunr66Ovrw+fz4fT6eTBgwfc\nuXOHwcFBoxahU1lYWCCXyzE2NobZbDZuiJVKhZmZGSqVCpqmEYvFiEQipFIpzp8/z/j4OG63m/X1\nda5du9Yx7+uz0DUaAOPwmM1mX3q/9250jAPXcz66ApvZbObMmTOGsIvgUQjdZrNRKpWeW3RF0zSO\nHz9OtVplamrqkFbY/OjzzYPBIP39/SwvL+9Y2auqKg6Hg97eXvr7+6lUKgwMDPDqq68yMzNDPB4/\ngtU3L6VSiWg0isvlwuv1Grf0VCpljACemZlp+dGrz4uiKEYxqs1mY2Njg8uXL5NIJNjY2NhWIyRJ\nEuFwmPfff5+hoSHS6TRWq5Xx8fE9S/d2CuPj44yOjhIKhXj48KFw4C8bPfyhS17qTfmHmcNodfQT\n5vNUo+qfYbVacbvdRktas4ScXjR6GkGWZex2+659ofpGq2kaiqJQqVSwWq0Eg0Gi0ahRmd/JNyF9\ndGg6naZUKhnTBIPBINVqlWg0ysrKCvF4nGw2a/Q2dzKSJBk54HK5bFRPb3U4qqrS09ODyWQinU7j\ndrvx+/0kEgmjfardiyefhsvlMqIX+u27u7ub0dFRHA4HsVgMt9u9p7qgF03H/Cutr68bBVmDg4ME\nAgGmp6cPLNzfjujDSg4avtUrrB0OB3a7ncnJSaMSNplMtnU71ONEIhHW1tZ2dSj6Jru4uEg2m8Xh\ncBCNRolEIkZvfDQa7YhDz250d3dz9uxZbty4Yeg6BAIBBgYGWFlZ4c6dO0SjUa5fv87CwkLLtyIe\nBtVq1Riwkclk+Pzzz3fU7Xc6ndjtdnw+nxHNsNls5HI5FhYWnloE3O4cP36c/v5+Ll++bCjU1et1\nNjc3mZmZoVgscurUKR4+fPhU/6Er2b3Id7hjHHh3dzehUMjoI5UkicnJyY5+UB/neZSXfD4ffr8f\nr9dLKpUiGo2Sy+WMdqCjPqm+bHZzJnpf7sDAAI1GA6fTicvlolgsGpKrxWJx25SzTkXPNZpMJnw+\nH5ubm9jtdrq6urDb7TidTjweD+FwmNXVVUN3oJPx+/0EAgGmpqZIJBI7Rhj1Hmev18vAwAD1ep31\n9XWSySTpdJpMJtMULVJHxcbGhtFJEwqFjOmLDocDSZKMw/leCnNfdC1LRzhwSZIYHx/n1VdfNap+\n4/F4R4eJDpu+vj5GR0fx+/3cuXNnW967XW9GeleDLt6yF+x2O2fPnjW05ru7uwkGg8boUF2+sZOF\nSHTi8TjxeJyBgQE8Ho8xZUyWZfx+Pz09PSiKwtzcnHFr7LTiv8fxer0EAgHu3bu36zOk615YrVaG\nh4ep1Wqsra0Zaoh7OWy3k/S0PvxGf58jkYhReX727Fm+//3vYzKZKBaLmM1m1tfXmZ2dfebnvozD\nZEd4MEmS6O7uRlVVPvnkE5LJJLlc7tBnWbczujjJbi93b28vbrebK1euEIlEXubSjgyr1Up3dzep\nVGrPxVN6jYCufV4sFonH4zgcDgqFAlNTU21dPKQoCrIsU61W97zB6Up21WqVmzdvks1myeVyhEIh\nLl68aCi4dfKtUWd1dZVEIvHUdJXVauXChQuMjY3hdrsxm80oimJo9z8LWZbxer00Go2W7zDR28J0\n5+z3+7HZbDQaDcLhMA6Hg8HBQWKxGOl0mnQ63VQtsW3vwJ1OJ8Fg0FAWW1hYIBaLtfUmuRdkWcZq\ntVKr1fb0QDYaDWw2G319fTidTmNovd1uZ2JiAqvVSjgcNnK6nYCectBP7xaLBWDX/u2hoSGOHTtG\nb2+vkdKZnp5mY2MDi8XC7OxsW6jSHTZb7akXCa6vr5PJZMjn8ywuLnZEz/xeyOVyT93btk4lGx0d\nNXrFU6nUnqRsdfaieNnMKIqC2Ww2alHMZjM+n4+hoSFcLhcWi4XTp09z7tw5urq6DF0CVVVZXFw8\n4tX/nrZ34N3d3bz++utcuXKFtbU1vF6voYPeyejVvIVCYU8OvFqt4nA4eOONNzh+/Dhms5m///u/\nZ3h4mL/8y7/kr//6r/n1r3/dUUVXhULBqO5VFAWfz0e9Xt9VhvLNN9/k61//Opqm0dPTQ09PDz/6\n0Y/41a9+BdARHRHPqxk9OjrK22+/zezsLA8ePOBnP/uZuHnvA7fbTSgUoquri66uLlRVJRKJsLS0\nxM9+9rNnSibDo7C5ftBsVSeuaRp+v59MJkMmk8Hn8xmjgJ1OJ729vXzwwQf09vZSq9WMaXl6+vUn\nP/nJUX8FoAMceCwW4+rVq0SjUaMwqNMKqnaiWq0Sj8f3vJnqk7Xu3bvH8vIyZrPZUFj7m7/5G+7e\nvdu2zltVVSOEu3XD0vvm9RyargevO2+9Kn90dJRLly7xxhtvGLKgsiyTTCbx+/309fUxPT3dEZGL\nQCCA3W5/aoX+05iamiKTyZBKpYjH4+Jd3iP6zfv8+fNcunSJgYEB1tfXuXr1Kul0mkKhwPnz55md\nneXhw4fP/LxWddw6unBQuVzGbDZz7tw5Tp8+zdDQEFarFa/Xayj/6RX61WqVtbU1crkcmqZte9eP\nirZ34KlUatvNphM2yb1Qr9f3PL5TkiSjN/Thw4fU63Ujb5RIJJpG1OBFIcvyjvrK+uAS3bnncrkn\nHIqiKLjdbkZGRggGg5jNZsNu6+vrWK1WQqEQ9+/f7whnZLFYntof/yyWl5fb/nl7ESiKgs1mo6ur\ni4GBAaxWK9PT03zxxReUSiWcTienT5/G6XQe9VJfCtVq1Wjf7OrqIhgM0tvby/DwMFarFbvdjslk\nMgpUy+Uym5ub3Lp1i8XFxV33hJdN2ztwwfPTaDSYnp5GlmXj1tQMp8+Xhe5YH7916LlD/fcet4fe\nrnP37l3C4TB/9md/xsmTJ7l8+TLLy8tks1kuXryIx+PpmI6I9fV14vF4xwuuvGyKxSLLy8vcvn0b\nk8nEqVOnSCaT5PN50uk0sViM1dXVpirQehmMj48zMTHB7Ows9XrdSA/qhX26k15YWODGjRv8y7/8\nC1NTU5RKpaaIQnTGriF4brb2y29Ve+oEdntRnzaGtqury1Bt0gci3Lp1i3w+b8ha6sUwqqp2TBHW\n87YUulwuY4CJOATsHb02Y2lpCVmW0TTNKATUNQg65RncSjKZZGFhgaWlJVKplBEh0lUAu7q6CIVC\n3Lhxg6tXrzI9PX2gQlOTyYTNZqNYLB7qcyscuGDfyLJs9D83wym0Genu7qavr8/Qla/Vajx48IBM\nJmOE6VKpFFeuXDnqpbYUeqjz3r17woEfAP1A6fV6yWazHT34BR4pIeoH6dXVVSYnJ41xtqqqMjEx\nwbvvvstXX33FvXv3DmwvTdPweDyHfvDsSAeu/+Psd+qT3sNbr9fbtmBrL+iOWzjv3VlcXGR9fZ10\nOm3c0pPJJIqi4PV6hfM5IKFQiFdffZXl5WXRcndAisUit27dEtX7u1Cv16lUKlSrVWZnZ0mn00Zv\n/UH3/WKxSCwWO3RRq4504ILnQzjvZ6OLPmxFL16LRCKimHIf6AVDeg94PB5vW3W/l0GtVhMiVk9h\n6/6224jb/aI/u4eN1GjinbgV86zNZE5hv4PzIm2nKMqORW+HQTvaz2KxIEkSxWIRRVGM6W2Hbb9m\nsR2Id/d5aEXbwcHsJ27gAsFLppPTLwehUqkYvfbValWEfpsEs9mMy+Uim812ZAFcMyAf9QIEAoHg\nadRqNeG0mxC9MEuXEBa8fJo6hC4QCAQCgWBnxA1cIBAIBIIWRDhwgUAgEAhaEOHABQKBQCBoQYQD\nFwgEAoGgBREOXCAQCASCFkQ4cIFAIBAIWhDhwAUCgUAgaEGEAxcIBAKBoAVpainVw9C0NZlMWK1W\nCoUClUqjX6QjAAAgAElEQVRlX3+3xWKh0Wg8dci91WrF7/ezublJNpttGj1gaE1N4GaxXyvaDprL\nfmazGZvNRrlcplwu7+v9OwqaxXbQms9fs9jvcdvp889rtVpTP4MHsV/b38AtFgs+nw+z2byvPyfL\nMk6nE7vd/tSfKxQKhMNhMV1KIHgMm81GMBjE5XIZA0ng0QZrMplQ1aa+P7QU+qhjWW77LX3f1Ot1\nisViUzvvg9LUUqqHcQpVVRWz2UypVNqXnrIkSWiaRqPR2NfowmYy51Ge4iVJwmq10mg09jXooFns\n9yJsp2kasizvew79fmgm+5lMJiwWizFbWX//3G43b775JvF4nCtXrhzxSn9Ps9gO9v/8+f1+Tp06\nxdLSEouLiy9oVU+nWezXitELENPIduSg04sajQalUukFrKhzaNUX6UXSSTapVCo73nokSUJRFHFb\nPGRkWRY27TDa/gb+smkmcx61/fS/fz82aRb7vSjb6WMxD4osyzQajV0/oxXsp+fH6/X6vqJbL5pm\nsR3s//mTZRmTyUS1Wj2ycbXNYr+j3vcOykHsJxz4IdNM5hT2OzgHtZ3NZsPn8yFJEtVqlXw+T7FY\nPLRozrMOAK1uv6OkWWwHwn7PQyvaDkQIfU/stAFKkmT8o7+o3KSgMzCZTHg8HuBRCLler+9aPCPL\nMjabDVVVqVQqe6rUbpZN8mUgSRKyLFOv15/6vVVVRZKkJ2ynv9dPi1gIMMLuYu9rPdrmBq4oCsBT\nw0d6YU2tVjN+Tg89mc1mGo0GuVzuuR7kZjJnK55Em8V+B7WdoihYLBbg0XfRazAef6ZUVcVqtXLu\n3Dn8fj9ra2ssLy8TiUSea92tbr+taJqGzWYjl8s99WDj9/tRVZV4PL6t3kW38V4rkJvFdvBy312b\nzYYsy+Tz+bbY+1px34MOv4Hv5cubzWYCgQDZbJbNzU1kWcbj8dDX18fm5ia5XA673U61WqVSqVCr\n1Z75uaqqYrFYKJVKLdOmYDKZUBTlhVZDdyq1Wo1cLgc8amEcGxujVCoxNzcHPHJKgUAAh8OB3W5n\nbGwMr9eLpmlkMpnnduDtRL1ep1qt0mg0cDqdjIyMYDKZgEdOJ5lMMjc3R6PRoFKpPPGuNhqNPb3D\nncbWHn273U4+nyefzz9hJ/1yo0eSBI8IhUIcO3aMhw8fEo1GjWf0KGgbB77bAybLMoqiUK/Xsdls\nDAwMsLq6SiqVQlVVuru7uXjxIjdv3qRcLuPxeCgUCmQyGYrF4jMLQjRNw+v1srm52TIO3GKxYDab\nSaVSB3ox9dCkeKmfjsPh4M033ySRSLCwsGA8gydOnCAYDGK1WgmFQlitVur1OsvLy0e95KZCryGo\n1+sEg0E+/PBDQ5chGAwyOTlJKpUimUzu6IBqtRr5fP4olt506OkIWZZRVRWv10t3dzd9fX3cunWL\neDz+xJ/RIxgA5XK5ow9CW+136tQpvv/97/Mv//IvZDIZstnskRUOto0D342TJ0/y7rvvMjMzQzgc\nZnFxkVQqZYQ39Vv4Bx98AECpVOLatWv87ne/e8JBybKM2WymVqsZ1bOlUol4PN5U1bTPolAoUC6X\nD9ReB9Db20sgEGB+fp5MJnPIq2tdHs8lZjIZPvvss22RDlmWjd7odDrNpUuXOHnyJNlslng8zm9/\n+9sjW3+z4ff7GRgYYHFxEavVyuDgIH19fVSrVa5du0alUuH73/8+CwsLRCIRUqkU6+vrJBKJo156\n0xEIBLhw4QLHjx+nr6/PuJwoikIkEiEcDhs/K8syDocDgHw+j9vtRlEU4vF4y1xSDpuBgQHGx8c5\ndeoU6XSav/3bv0WSJPr7+5mdnRUOfC/o/aP1ev2ptz+LxYLdbsfn83Hx4kXeeecdcrkcS0tLbGxs\nGM5Wb2PJ5XIMDg4SCAQwm80Ui0XW1taIRqNPnOC3FrxBa57yD9obr0cbzp07x9jYGABLS0tGjvGo\nHuJmYWuBpNfrxW63s7a2tk2Kt1qtsrm5iclkolQqYbPZCIVCFAoFAoEAmqbtmDPvRKxWK11dXeRy\nOXw+H36/n1AoRLlcZmlpiVQqxSuvvILL5aJUKiHLsjhQ7sDY2Bhnz57l7bff5syZM4RCIZaXl5mb\nm2NmZmbXXn1dxKrRaBg1Rp3E1gO5HrV47bXXuHLlCleuXOHNN9+kv7+f5eXlp8ptv0hayoErioLN\nZqNUKj21Lcfn83H8+HHeeustxsbGsFqtrK6uMjc398TDmkwmuXPnDtFolPHxcd58801ef/11bDYb\nP/3pT5mfnzd+tl6v70tVrN3weDz8wR/8AR9//DFnzpyhXq9z9epVIpEIiUSi5Q4yh83WA8zExASj\no6N89dVXRCIRwzbZbJZbt27hcrkIBoMUi0WKxSLpdBp4pFKWTqeFiBCP7Fkqlejq6mJwcBCTyWQU\noUYiEa5du8aXX35Jd3c3TqdTHCJ3QJZl/uRP/oSPP/4Yv9+P2+1GlmVWVlaYmZnh7/7u74yaDZ16\nvb7tIJRMJoGnFwi3G1uVOEulEsvLy1itVr75zW8av9/d3Y3b7TbqMo6ClnLg+o35WbfHbDbL0tIS\nsixz//59VFVlampqx5Om2+3m5MmTlMtl8vk88XgcSZIIBAL09PSQTCbZ3Nw0fr7T8kCnT5/mvffe\nY25uDovFwvvvv08wGGR1dRWr1YrVaiWTyXRsaG03IpEIhUKBZDK5zTb6ITAYDDI0NITH4zFC6ke5\nETQjXq+XV155hbm5OdbW1vjkk09wuVwUi0WWlpbwer2cPXuWpaUllpaWjC4SwSPOnj3Lt771Lb7+\n9a8zPDyMy+WiXq+ztrbGL37xC379618bzvlxtkaAOslx6+ipLrPZjCzLRnrml7/8JWtrawBGN9NR\n+oSWc+B7CVWk02nS6bRR+fs0bDYbvb295HI5FEUhl8uhaRomkwmn04nX60WWZXK5XEfeigYGBvjo\no4+4ffs2sizzh3/4h0SjUe7du0c+n6dUKpFKpY56mU3H4uLirprUjUYDv9/P2bNnjU3VbDajKIqo\n+N2CHkJfXFxkZWWF2dlZFEWh0Wiwvr7O+Pg4586dIxKJEI1Gge294zux197yduD06dP84Ac/QNM0\nNE1DVVXjUPnZZ59x7dq1o15iU6MoCl6vl76+Pqampkgmk9y9e5dcLkej0WBzc/NIle+gA6aRPYuF\nhQV+9KMfIUkSly5d4vTp0wSDQWq1Guvr65jNZr797W8zNDR01Es9Eq5evcr//t//m9u3b9NoNMhm\ns3i9XkZHR5menubBgwdHvcSWZHBwkD/6oz8in88bVcB6RetBiwvbjZmZGf7xH/+RpaUlAOLxOHa7\nnePHj2O325mfn+eHP/zhtoO62WzG4XDsOunMYrHgdrvbfhKaqqrGICFVVanVakxPTxONRtv+4HIY\n1Ot10uk0Xq+Xjz76iMHBQbxeLx9++CEXL16kXq9z69YtvvrqqyON+rTlU2y323E4HJjNZvL5PBsb\nG0/9eb0nWr/dJxIJ5ubmjBF9yWSyo27fw8PDDAwMoKqq8Z+em/35z3+Oqqpks1lmZ2e3pRcEe0dv\n58lms4TDYW7fvs3du3c73nmPjIzQ399PtVolm82STqfJ5XJGx4ie5qpUKmSzWWOMr36zBozbtdfr\nZXBwkHA4bLRJbe0tb1dcLhdvv/02b731FjabDU3TKBQKbG5ukkwmCYfDe4qaaZqGw+HouOijpmko\nikKpVCKfzxspwnK5TCQSMfzJbumHl0lbOnCv18vQ0BCBQGCbwXeiq6uLN954g0KhwL1795BlmcnJ\nSW7cuIHL5SKRSPCzn/2srV/4x7lw4QLf+c53sNlsWK1WLBYLi4uL/O53v+Of//mfhdN+TiRJIp1O\n8/DhQ9LpNMvLy/zkJz955kGzE7h48SLf/va3yeVyLC8vMzk5yb1790ilUrhcLmKxGA8fPnziz+ni\nJLrjB+jr6+Pjjz/m//2//2c48GcVwLYDwWCQ//k//ydvvfUWmqYhSZKhMHnz5k1+/etfGymHp2Gz\n2ejv7ycSibS9zbai1/YkEgnW1tb49NNPWVlZYWNjg3/+538+6uVto60cuNlsxu12Uy6XmZmZYWlp\n6ZmV0cFgkDfffBOTyYTNZiMYDGIymXA4HPzyl79keXm5o5w3PAqbR6NRFEVBVVUURSGbzbKxsbGn\nSnO3221stkfVXtGs9PT08PHHH3PhwgWjn75WqzE0NITP58NsNhstUp3I/fv3aTQa2O12Njc3jTZF\nr9fLqVOnWF5eNgpSg8EgJ0+eZGpqilKpxJkzZ1hdXWVmZgZ4VEj405/+lJWVlSP+Vi+XYrHIgwcP\nDLGWcDjMxsYGxWKR5eVlpqen9xT2zefzLC8vd1x3ST6fN4qlU6kU09PTZDIZww84HA58Pp+R+9b3\nSUmSiEajxgHyZdBWDlzXOs9kMkZbzk7Y7XbsdjulUgm73Y6maXR3d2O1Wg3dZVmWSSQSe7ptPu+I\nyGZjaWmJcDiMw+HYJg36NMxms5FXtFqtmEwmMZt4B5xOJ6+99honTpxAURRisRiVSgWfz4fJZKJe\nr++r51bP+Waz2Za+Jamqis1mIxaLUSqVOHHiBIVCwXA8+vNkt9vp7u5GlmW8Xi8Oh4NgMEilUsHl\ncm1TFNvc3OzIaFGtVjMU6mw2Gw8fPiQSiWA2m1lZWdnT7Rseqa+1kkDVYaG3I+ojb9fX1wGMVOLw\n8LAhpZpIJLBYLMiyTK1We+l7Xls58FKpRDQafWYV7+DgIOPj46yvr1OpVPjkk09499138Xq9fPnl\nl1y/fp179+499RCgo4vLHHU7wWFjNpsZGxsjl8sxPT39zJ/3+Xy43W7q9TqpVIrl5eWOz+fuRK1W\nI5vNkslkUBSF//zP/+TevXtomkYqlWJhYWFfm6bP5+PUqVNMTk62tI66rgu/vr5ONptleHiYdDrN\n5OQkhUKBdDrNxsYGAwMDvPLKKwwPDxOJRPjVr37FxYsXcblc3L59m1gsdtRf5chRVZWenh6CwSCa\nppHP51ldXaVUKok0zR7Q0zG9vb2USiXjvXI4HJw7d46vf/3rvPXWW/zf//t/efDgAR6Ph1KpRDqd\nful7Xls5cF0edSecTieKopBOp0kkEiwuLlKv16nVamxsbBAOh4nFYly5coWZmZknHnS9sjWTyWxr\nG2g0Gm3T9qNpGi6Xi97eXoLBIPBoY3U6nczPzz9VojKXyyHLMlarlVqtJvrCd0FVVUPERdejn56e\nxmazkU6n9y0UpOeKX2bY7kVQr9cplUqG8peqqvh8PkZGRsjn85hMJsMp6QfFQCDA+++/z8TEBNVq\nlampqaP+GkeGoihYrVbjhlitVo0LSD6fJ5fLUSwWGRkZIRgMcv369W3RClmW0TRNvLtgKM8FAgHy\n+TwrKytMTExw/vx53nnnHU6fPs3AwAAffvghiqJw/fp1MpnMkUQr2sqBPw273W5U/UajUZLJJMPD\nw3g8HjRNIxKJkMvljH6/x7HZbEZV++N9f+3gwM1mMy6Xi66uLs6ePcvIyIjRnuP1eslms0914Prp\n02q1tuw4vxeFoiiYTCYsFguBQIBAIGCkbCRJYmNj48C9pLrmQSujC9gkEgnq9ToulwtN07Db7Zw4\ncYJqtYrX6+XMmTOUy2VisRgrKysEg0E++OADrFYr4XCYQCBgKAK2UzRsL+gqlV1dXfT09Bh2ymQy\nFAoFowV0aGjIGF+rO3X4/ZyHvcykb3d0GW6v14vFYiEYDPLaa6/x0Ucf8dZbb+F2u6lUKrz77rsA\n3Lhx48jSVx3jwJPJJJIkGRul0+nkO9/5DqOjoxSLRX75y18yOTmJ1+ul0Wg8MZ1HHz/ajg+3LMtM\nTEwQDAYplUpG+8jHH39MsVhkcXERs9n8xJ97PPdvs9k4fvw4y8vLIpS5BZ/Px+joKGfPnuXMmTO4\n3W6y2Szlchm73U4wGGRjY6MjUw6yLBsyqeFwmImJCS5dusSxY8eMuQO5XA6TyUS1WuXq1avcvn2b\nd955hxMnTjA4OEg8HqdUKuF0OnE4HKTT6Y4TxNE19ovFItVqlffee49sNsvnn3/OwMAA3d3dXL58\nmbt37+LxeBgcHMRqtXLlyhXg9xGQWq3WdjU9++Wtt97i3LlzzMzMEAgE+OY3v8nAwABdXV2USiVj\n+lgsFiMWix3pe9sxDnzrCcnlctHf38/g4CAej4elpSXW19dZWVkxqoIfp92LOfSex1KpxMrKipHb\nr1QqrKysUCgUsFqtdHd34/F4MJlMRpW/LMs0Gg2j914Ur2HMWtY0jf7+fk6dOsWFCxc4efIkLpeL\njY0NlpaWWFtb60ipSh19ljc8OhC6XC68Xi/JZJJUKsXi4qJRnZ/NZo3nTB/Bqg8nMpvNhEIhotEo\nkUik4xyQLjNdLpdZWVnh6tWr1Go1bt68aUxL1CukY7EYVqt1W4eIXgAsSVJHHiS3omuHRCIRBgcH\nGRwcJBQK4fP5jINOo9Hg7t27XLt27Uir9KVGEz/pLyoUe/z4cc6dO8drr71GoVDg6tWr3Lhxw1B8\neh6ayZz7sZ8u3u9yuYwZ6h6PB1VVqVarRCIR7Ha7kQNyuVz8+Mc/Znl5GYvFYlRtBgIBlpeXd+zV\n3QvNYr/nffYGBgbo7+/H4/HQ39/P+Pg4J06cYGhoCIfDwZdffsmPfvQjbt68eahzwFvVfhaLBY/H\nYxSoxeNxZmdnuX//Ph9++CGvvPKKMZ9aFybRb9n6wKKFhQV+8Ytf8Ktf/epAa24W28HzP3/6IbrR\naBg36q3fT/98/dfMZjPBYJBcLndggZJmsd/z2k6P/DQaDS5evMif/umf8tprrzE6OmpUmtfrdf7q\nr/6KH//4x4f2vQ/yOW1/A3c4HPj9fuO2Xa1WOXnyJKdOnULTNCYnJwmHwx0/BEG/CWUyGc6fP8/Q\n0BDXrl1jdXXVkGSsVCpcvXqV2dlZTCYT8/PzyLKMz+ejt7cXgMnJSaPtopPJ5XLkcjkmJiYYGBjA\n6XTicrlIpVL8wz/8g+G0d3tpLRaLUXvQCSMyy+UyqVSK+/fvs7KygqIoBINB/vzP/5yFhQV+/vOf\nG8qILpeLS5cuYbPZSCQSRgFRMpnsuJ7l3diaPnjccVssFvr7+5EkiWQySSaTMYZ3tHukcS9sPews\nLCzw4x//mNXVVS5cuMD4+Lgx9ldva+zq6iKTyRxJ2rDlHbimaVgsFsPBPI5enTk0NERPTw/pdJqR\nkREGBgaYnZ0lEomwtrbW0WNCdfRhMfogl0qlYgj3V6tVyuUys7OzqKqKyWRCURRj0L3ZbGZjY4No\nNNoRDudZ6LdFl8uFx+PB5XJRqVSIxWJ88cUXJJNJuru7d90w9apgfaNoxXyuLhf7rPnmNpsNSZKM\nit9oNIrL5aKvr49XX32Vu3fvcuvWLePnPR4PY2Nj1Go1wuEwfr8fl8tFLpcTDugZ6ANiLl68aEQf\n9eerncaxHlZ778bGBhsbG5jNZux2Oz09PdjtdiP9YLVasdlsYh74QfF4PAwNDTE7O7tjlbR+Og+F\nQlQqFebm5mg0GtRqNT7//HPu3r3L+vp6x+d9tnLt2jWmpqaQJAmPx2P0Lut1BHpUw2azce7cOb79\n7W/zT//0T/zmN7/p+EiGzvDwsFE1XSgU8Pv9zM3NMTc3x9DQEOVy+anVq4VCgdXVVRRFwWKxGAVG\nrYTFYsHpdLK5ubnr99SL2LaO/K3VaqTTaSKRCFNTU09U2VerVdbW1lhZWeHmzZsMDAwQCARQVVXU\nXzyDQCDAmTNn+Oijj5iZmeE//uM/jIvP6upqyz1ju6F3fex2sdsviqKgaZoh9hUOh41nen5+/sgO\nji3vwIvFoqHetBO6LnpfXx+hUIjjx4/j9/tpNBqsrKywurralpXlz0MulzOK1vRTbK1Wo7u7m9df\nf51AIIDNZqNWqxEKhQxVu1ZvZzpMtgo7+P1+3G43Q0ND1Ot15ufnyWazxmFH0zR8Ph+FQsGQUG00\nGpTLZRRFMUZothrVapVCofBUp9BoNEilUk9EGWq1Gmtra1y5cmWbJkN/fz+jo6PY7XYqlQoDAwP4\n/X4jL77TRqoLmujCTZ3MyZMn+fDDDwmFQlSrVb71rW+RTqdZX19ndna2bSIYej/7YUWuenp6GB8f\nN9Ja+Xyec+fOIcsyn3766ZFdXFrege/WB6vny7q6uozCmPHxcU6ePEkymeTOnTvGpCPBk9Tr9W22\nMZlM9Pf3853vfIeenh5kWSaZTFIsFkUKYgf0StZqtUqxWMRut+N2u6lWqySTyW3RIrPZTFdXl1F5\nvRX98NSK7EWKs9FosLq6uuPv6eHLrYRCIV599VWq1SqVSgWHw4HX66Ver5NIJHZ8n/1+vxEJ6GQH\nrigKExMTvP/++6RSKUKhEN/73veYm5vj9u3bhMPhtpldUKvVDmVPMplMWK1WBgYGGBwcxGKxkEql\nKJfLTExMoGkaV65cObLZBS3vwHdD0zRGRkaQZZnPP/8cj8fD+vo6v/71r1leXiYcDhMOh496mS3D\nyMgIXq+XTz/9lLGxMYaHh41Ctl/84hfbZjILYHR0lEuXLhGNRvF6vVQqFX70ox/xi1/8gtnZ2W11\nAoVCgYWFhY52Lntlbm6OarXKqVOnKJVKTE9PGzUZt27d2vEwEA6HUVW1bZzTQTCbzYZ2/FaVsbW1\nNb766itu3LghLjM7MDo6yrvvvovD4eDOnTs8fPiQbDbL+vo6P//5z5mamnqqwNWLpm0duKqqBINB\n7HY7hUKB3t5eTCYTi4uLhgpRq95sDgNFUYzCqr3IcNZqNSMsnMvlyGQyrK2tcfPmTW7evClqCB6j\nVCpRqVTo7e3F6XQSiUS4du0aX331lfEzkiTR3d2NqqpEo1HhwJ+Cpmm43W4jdaOH3DOZDPfv36dW\nq7GysrJjFXqry8zC7wsCDxqR8fv9fP3rX2diYgKr1WqoUv7ud7/j/v37u0ZBOh39Jq8LefX09NBo\nNCiVSszMzPDgwYMjXV/bOnBdl/vSpUtcuHABn89HLBYjFArR09NDvV7n008/7djQr9lsZmhoiGw2\nu6ee7fn5eer1Oh9++CF9fX3UajX+/d//ncnJSeG8d+DBgwfU63W++93vYrVauXv37hPqfpIkcebM\nGRwOB59++mlHTs7aK3a73ahfcbvduN1uarUabrfbmArVzgdyRVGMy8hBvufg4CD/43/8D06cOIHD\n4aBarRIOh/m3f/s3cXB8CnNzcywuLvKNb3yDb3zjG5w+fdqYcqdLAB8lbeXA9RYJeOSg9LzXtWvX\nOHbsGKlUyqhq1We9dirlcplIJLLnohVd9eo3v/kNt2/fptFoEA6HhfPeBX1Iyb/+679iNpvJ5XJs\nbGwYMqp6e8vk5KQxMUqwO5IkIcsyQ0NDHDt2jEKhYGh5l8vltpcArdVq5PP5fb9vkiRx6dIl3nvv\nPSPaUygUyGQyRk1AK7Yo7hWPx4OiKGxubhqRG6/XiyRJhvb+09A7lgqFAvPz8ywuLrKxscHi4mJT\npGDbyoGrqordbgceOXC3221oeVutVgqFAouLix3TNmY2m6nVajt+12q1um/hgUwmw927dw9reW2N\nXty3trZm/Jrb7TbkKuHR5nCYKmztjF6UarPZcDqdpFIpMpmMoXve7ugSngfB7/fT1dWFoihEIhEi\nkQibm5vMzs627YFHR9M0o71Qj1zocs971VeQJIlsNsvs7KwxqTKfz2M2mw1J2qOyY1s58Fwux/z8\nPPCodaSnp8cYM5jL5ahUKpTL5Y5w3vDIBtlsVoRmm4RsNrttoI5g76iqatQSLC0tsbCwQDgc3nYY\nb3dndBAajQa//e1vkWWZc+fO8atf/Yof/vCHRq99u9sskUhs03ev1+vEYrE9a77rN/C1tTVSqRTx\neJxisYgkSfT09KBpGktLS2Ia2WFQr9eNnHYymTQE/ZeWlvjyyy+p1WodVWm5W1+s4GgQjnt/bFVy\nK5fLxONxzGYzNpvNGKAjnu9no0ch/+M//oPf/e53TE9PP9fnSZKE0+kEHkXlmu0Q4PF4KJVKFAqF\nHZ30fiI2qqpisVi2zVR3Op10dXUZnQ0H/f5msxmHw7FNJGu/tJUD30o2m+XTTz81ZEAXFxePekkv\nnceLpg4LXey/nXNnLwtdOUzY8kkURcFsNhta/EtLSwQCAYaGhkin0wceugFPDvNoZywWC5ubm/z4\nxz8+lJYnWZZxu93GjPFms6HX6yWdTh9aH7g+olafvOjz+Th+/Djz8/NGbv0g6MOf9A6fg9C208hs\nNhtnzpwhm81y7969A/3d+uaxH+M2kzlf1DQ3fZyjLmhwmDSL/V6U7R7H7/ejqirxePxQUjvtZL+t\netb6+6j3MutDXg5Td79ZbAeH+/yZTCZUVUVRlD2J6zwLfSAKsM1JNov97Ha7EbV5XhRFwWQyUalU\njAI4VVWp1+vk83njln+gSWL/dbvXW07FNLLHeN4HqlkeSEF7I56zndGjZ/r/FwqFbQ7DbrczODhI\nPB7vqNTYfqlUKoda6Kf/WzQrh9nRoU8bi8VixufmcrlD6WCqVqvPrVHQtjdweHTC0YsQXhbNZM4X\ndYt8keHHZrHfy7qBH7YtO8l+IyMj/OEf/iFffvnloSgBNovt4OU9f4dJs9jvMG03MTHBBx98wGef\nfcadO3eabu9r6xt4p1Sbv2wO4+GVJAmbzQbQ0benZtn0WpFEIsHNmzcPnNfd67hTQeeyvr7OF198\nYSjVNdv72tY38KOgmczZzPaTZdmYChePxw27NYv9mtl2T0PYb+/oo1rL5fKBc5Avilaw3+M0i/1a\n0XZwMPs1tQMXCAQCgUCwM/JRL0AgEAgEAsH+EQ5cIBAIBIIWRDhwgUAgEAhaEOHABQKBQCBoQYQD\nFwgEAoGgBREOXCAQCASCFkQ4cIFAIBAIWhDhwAUCgUAgaEGaWkq1FRV1mkkX5zDt53K5kGWZdDr9\nQjy/F8QAACAASURBVGUnm8V+XV1dFAqF5x428LJpFvuJd/f5EPY7OK1oOxBa6IIXiNfrxWQykcvl\nOkI3OhaLHfUSBALBcyJJEpIkte2eJRy4YE/EYjFkWRYDYv4Ls9kMQLlcbpqbh0Ag2E6j0Wjr91M4\ncMGeOMwZuwKBQCB4foQDFwgOQKlUOuolCASCDkdUobcxbrcbi8Vy1MsQ7ICqqtjtdlRVnKEFAsHB\nELtHG2OxWKjX6xSLxaNeiuAxFEVB0zSq1SqSJOFwOJAkiVqtRj6fp1KpHPUSjxxJkpBlGUVRkGUZ\nWZap1+tIkoTdbqdWq5HJZNA0DUmSKBQKbVus9CLR7SfqOVoP4cDbmGQySa1WO+plCHagXC5Tq9Vo\nNBp0d3fz5ptvoqoqyWSSW7dusba2dtRLPHI0TcNut+NwOLDZbFitVkqlErIsc+nSJVKpFL/5zW8Y\nHBxElmXu3r1LoVA46mW3HD09PZjNZhYXFymXy0e9HME+EA68jTnsl9FkMuF0OimXy8ZtZ+uJ3W63\nMzQ0RDKZZHV19Yk/rygKVquVSqXSsTlkl8vFK6+8gtVqpVwuo6oqPT09vPHGG1QqFZaXl5mfn295\nB26z2ahUKvuOJMiyjNVqpb+/34hKNBoNPB4PExMTxo38/PnzFItF+vr6mJubY35+nnq9jtlsRtM0\n8vm8OLz+Fw6HA1VVKZVKmEwmLBYLdrudUqnExsYGlUpl27ssSRI2mw2n04nL5WJ9fZ3Nzc0j/hbN\ng91ux+Vysbm5eeQHxo504HpoTrzgT0cXRGg0GsZL3dfXRzqdJhaLGU5YlmUkSSIYDPK1r32NyclJ\nYrEY9Xp9W0hTVVW8Xi+5XK6jHLj+vEmSRE9PD9/73vfo7u4mnU6jaRoej4eBgQESiYSRG291XC4X\nuVxu3w5cURTcbjdvvPEGHo+HVCpFJBIhGAzywQcf4PF4MJlMdHV1YTab+eY3v8n/+l//i9nZWarV\nKm63G7fbTbVaPfLNtRmQJAmfz4fdbieZTOJ2uwkGg3R3d5NIJCiXyySTScrlspGmkGUZr9fLwMAA\nY2NjXLlypeMd+Fbb+P1+hoaGmJqaOvJnrCMd+PHjx+nv7+fmzZvE4/GjXk5ToqoqgUDAyC12dXWh\nqirr6+tks1n+P3tnFiTXed333+3bfXvfu2ffV2AwAAiQAkiIIEWRlhVJiWyXFKVSSSXlKpdf85h3\nv9ovdtlVdvlFFSexUolESqYkkpIIkqIIEsQ+wOxrd8/WPb3v3bc7D/D9NAMMgME6M9339wTM9Azu\n/fDde853lv8pl8vUajXa29sZHx+no6MDt9tNvV5nZGSE9vZ2JicnCYfDxGIxACqVCltbW03XS97e\n3s6xY8cIBALYbDYuX77M0NAQZ8+exWw2i9OOw+HAarXys5/9bL8v+YlJJpOP9f+sqiqpVIovvviC\nI0eOMD4+zszMDJIk4fV6cbvdlMtlstks1WoVm83Gm2++iaqqvP/++6J+QA8Fg9VqxeVyYTabsVgs\nDAwMcPbsWY4ePcoXX3wBwDe+8Q3C4TCVSoWBgQFWVlaYnJykXC6zvLzM+vq6eH6bmZMnTzI+Ps7A\nwAAzMzP86le/IpPJ7PdlNZcBNxqN2Gw2RkdHGR8fZ3FxUTfg/8r20zbcCZe3trbi8XgwGAxUKhXi\n8TjJZHLHy1GWZSwWC729vbS0tBCLxTAajdTrdeLxOFtbWyIMWqvVmqqf3Gg04vf7GRgYYHR0FJfL\nRb1eJxKJIEkSJpNJCE0oioLRaKRcLuNwOHA6nRgMBkql0qEsQnzca9b2yMLCAi6Xi6NHj5LJZEil\nUly/fh2Hw0GhUKBareJyuejs7KStrY0XXniBjz/++J792Yxoe6u7u5vjx49jMBhQFAWHw8Hp06cZ\nGhrik08+IZlM0tnZidFoxGw2093dDdxxvpLJJKlUitXV1X2+m/1BlmWReqjX6wQCAfr6+jh//jwm\nk4kLFy4cCMnWpjLgNpuN/v5+xsbGOHr0KA6HY78v6cAgyzKSJImQp8lkor29nZMnTzI0NMT/+B//\ng7m5uXtejuvr6/zmN7/BaDRy5swZhoaGSKfTLC8vUyqVmjpNYbfbOXPmDF1dXciyzPz8PGazmW99\n61tYrVZWVlbI5XJ4PB78fj/FYpFIJILFYqG7uxubzcbq6mrTvUTr9TrlcpmNjQ1u3bpFMplkY2OD\nv/iLvxDOIEBnZycnT57kzJkzmEymA/FCPQhoaYizZ8/yZ3/2ZxSLRXK5HNlslmAwSCKRYG5ujmvX\nrmE0GqlWq3i9XmHkh4eHCYVCosq/GSvTzWYzAwMDuFwuVFUlm80yOTnJqVOnaGlp4atf/SqXLl1i\neXl5X6+z4Q24z+ejq6uLUCiE2+3m/PnzHDlyBIfDQTAYxO12k0ql9vsy953tuWqteGVlZQVVVYnF\nYqyuru56sqlWq1SrVVpaWjh69CgtLS1cu3ZNGHCDoXmlBjQnqFarcfHiRbq7u3G73dy6dYtUKsXa\n2hrHjx+ns7MTVVUpFArkcjlSqRSxWAyTyXTohqk8Ler1OltbW9y8eVPkaO/Wp1dVFUmS6Orqwmq1\nYrfbMZvNTVVfsRtaFMNgMNDa2kosFqNarVKv15mbm2NqaopIJCLyt21tbXR0dGC327FYLMiyTLVa\nbeq2MqvVyvj4OLIsMzk5SVtbG319fcKBtFqtWCwWTCaTWNv9oOENuMPhoKenh3g8jsVioaenR3hV\ndrsdm82mG3B2GnC3243P52NhYYHl5WWmpqbum2rQ+pn7+voYHR3FZDJRKpVYXl5umsEnD6JWq7G1\ntcWlS5fw+/1IksQnn3zC2toa+Xyevr4+YXSy2SypVIqtrS02Nzf3+9L3nUwmc0+eUZIkZFnGbrfj\ndDqRZZlKpYLZbMbv95NIJJragJtMJlFXYTAYyOVypNNpEokEmUyGq1ev8tlnnxGPx8XPBINBurq6\nsNlsQjcim83ue4HWfiLLMl6vl1KpRDwe58SJE4yMjGAymSgUCmIqoxbB2C8a3oBvbm7y+eefi038\nj//4j7z++uuMjo6ysrKyYyPr3MHtdtPW1kY4HCaVShGNRu9bTex2u+nr68Pj8VCpVMhkMiSTSTKZ\nDBsbG6TT6ab14lOpFL/4xS9Em84XX3zBxMQEmUwGp9NJR0cHGxsb3L59W4TLb968qTuUD8BkMuH3\n+3n55Zc5c+YML730Evl8nkgkwpEjR8hms01d19LS0sLIyAgvv/wygUCACxcuYDAYWF1d5cMPP6RU\nKt2TatCMVDwep1AokMlk2NzcPJS1F0+LZDLJ22+/Ta1WIx6PU61WxYEvFovx2Wefkc1mKZVK+/p+\na3gD7nQ66e/vx2KxkMlkuH37NhcvXmRjY4PV1dWHeusWiwWXy0Umk2kaj1QzwloV+oNeiMFgkJdf\nfpmWlhYqlQqxWIzNzU1isZgw3j6fr+lax+BO1X0kEhF/317NW6/Xsdvtov9WOyHVajXcbjder5dU\nKtX0EYy7MRqNOBwOjh07xpkzZzh9+jTXrl0jEonQ09PD4uLifl/ivtLd3c3Zs2f5yle+Qr1eZ3Fx\nkWw2y/r6OuFwmGq1iqIoOxxyr9dLe3s7xWKRdDrN6upqU/bRy7KM2WwWXUr5fJ56vY7JZGJwcJB6\nvc7nn3/O5cuX9xQh08Ls2Wz2mSkrNrwBHxgY4Pvf/z7BYJDFxUVCoRA3b97k5s2be/p5h8PB4OAg\ni4uLTWPAQ6EQyWSS06dP43A4HmjA29raeO2112hvb6darbK1tcXa2poQIvF6vfT09BAOh5vOgD+I\nZDJJNpvltddeo7W1VbRdtba20t/fL/LhzV5RfTcGgwGLxUJXVxetra1IkkQqlSKXy4muiWamv7+f\nM2fO0NbWhqqqyLLMjRs3yOfzeDwe1tbW7qkl6Ovr4/Tp06L+Ip1O79PV7y+aJsO3v/1tvvnNb7K2\ntoaqqjidTsxmM0tLS/zTP/0T09PTe/p9Ho8Hn8/HysqKbsAfl/n5ef75n/9ZnMD30rvX399PV1cX\nt27dIpPJMDc311TFRPV6nUKhwNTU1AMNiNaWFwgEcDqdmEwment78fl84jO5XE5UW+v8Ho/HQ0dH\nB9FolKtXr+JyubDb7SiKsuO0pHOnIliSJEqlEm+88Qbf+973OHLkCG63G5PJhNfrpVqt8rOf/Yzb\nt2/v9+XuK+VymXQ6TalUYnp6mo8//hiv14vD4eD8+fNcvnyZy5cvA3e6crxeL8FgEJ/Ph81mY3h4\nmGQyycLCQtMZck3U5mc/+xm3bt3C5/NRLBbZ3NwUwl92u5329nZCodBDf5+m1PYsUxENa8DNZjO9\nvb0Ui0W+/PLLh37eYDBgs9loaWmhvb19h/zg3R5rM1CpVO4r56nJWWoFRUajUfQsRyIREomE+Gy5\nXNbrDLZhNptpbW1laGiII0eOkMvlSCaT1Ot1stksxWKR1dXVPStfaXrh+Xy+YSMc2rCX7u5uzp07\nx5tvvikGnBQKBWKxGIuLi1y6dOmR9pqmkHe3JPBhZmNjg8nJSYLBIBsbG6ytraEoCn6/n46ODubm\n5pBlGZ/PR3t7Oz09PbS2tgIIZTar1Yosy/t8J88X7X4LhQI3b95keXmZU6dOkcvluHr1KqqqYrPZ\nGBwc3HWCoKIoKIpCsVgUjnehUHjmUduGNeB+v58//dM/JRQK8bd/+7cP/byiKPT29vKd73yH27dv\n8+GHHzZNyPxRMZvNmM1mcrkcuVyOeDyOoiisrKzwV3/1Vw8MMW3v421G/H4///bf/lu++tWvMj4+\nztWrV1lcXKRYLHLt2jU+//zzR4pWeL1eRkZGmJub21V/vhEolUr09vbyH/7Df+DkyZOUSiUcDgfF\nYpFoNMq7777Lz3/+80c+MWra/KVSqWFSFVeuXGFzc5M/+ZM/YWxsjKGhIdbW1kin06ytrZFKpbBa\nrbz00kucPHmSkZERarUaKysrvPvuu4RCITKZTMM6g7uhHd7q9Tq5XA6TyYTD4aCtrY1UKoXZbKZY\nLFIoFJidnd21NsDtdtPS0iIKf58XDWXAOzs7OX/+PLdv32Z5eZnf/e53O06DGt3d3fT09KAoCpub\nm9y6dUtoJ2sqRM0UMt8rZrMZn8/HyMgI/f395PN5BgcHhc7y0tISkUjkgWmKZjTeg4ODnDt3joWF\nBRRF4aWXXmJsbIy2tjYGBwdJJpN88MEHTE1N7bpfH0Q+n2d1dbWhUhSSJGE2m8Upe3R0lDNnznDm\nzBn6+/txu93Iskw+nyefzxOLxUSv86NQq9XEVLjDjMlkwuPx0NXVJQxQpVLBZDIRCATweDxEIhEu\nX76M1+vl7NmzqKqKwWDg5MmTrK6usrKywubmJqlUSqgDNguacJD2Z1VVqVarYpbD9j5vSZJ2FQxq\na2vj1KlT2Gw2otEoBoNBKFdqp/tnsc8ayoB3dHTw/e9/n3fffZeVlRU+//xz6vU6Xq9XCNHLsszR\no0c5deoUPp+P27dvs7S0JOYwz83NNWXI/G4kSUJRFGq1GpVKRag7jY6O8uqrr/LSSy8JQQO3283E\nxAQzMzNN5bk/CFmWxYN79OhR/ut//a9cuHCBZDLJkSNHaGtrQ5ZlgsEgVquVGzdusLKy8sj/zl7r\nOg4TBoMBh8Mh5GVfffVV3njjDYaHhwkGgzgcDqHyp2mfa/KhtVptzy/KWq3WEPtVqwMYGRkRA2RM\nJpP4Xnd3N9VqlfX1dVpbW+nr62NycpJarUZXVxfFYlH01WtzDlRVPfSOzV6p1+uivc5kMmG1WoWU\nsaqqwrhrPfbaNEWj0Ygsy9Trdfx+vyg+tdvtGAwG6vU6qVRKyLHqBvwhaFKUnZ2d/OAHP2B8fJxy\nuczi4qKYUuR2u4lGo2QyGSFxGQqFxMbXvPpmR2unyOfzzM/P4/f7GRsb45vf/CadnZ0oiiJ0lPP5\nPJ9//jnvv/9+wxmTx8Xv9wvhltbWVgwGA729vXR0dODxeFAUBVmWxQuimU48D8NoNBIMBjGbzZTL\nZQYHBxkcHBRSv9qLUCuQNJlMYi8mEomm6wPXak8ymQxjY2McP36coaEh3G43qqoSj8eJRCKsrq6K\nASV//Md/zIsvvkgymaRSqdDd3c2f/umf8sEHH/CrX/2qaYz3drQaqPPnz3Py5ElRP6VFhLR3XbVa\nRZIkMcCpUqmQSqX48MMPxckdEM91pVJ5Zs/3oTfgWhFVpVIhnU5z8+ZN6vW6EOe3Wq34/X4xJGJ4\neJjNzU0ikQjVanVHpWC9XsdisTS1/Od26vU6Dodjh368z+cT4U2z2SyKgNbW1giHw/t9yQcGVVWp\n1+u0trbi9/uBO6kbreisXq9TLBa5cuUKt27dore3F1VVm073fDfq9broQ67VarhcLvx+v8hVr6+v\nc+3aNSYmJrh9+zbxeByPx4PL5RLKd82EqqqiHkXTENCiF6lUSkwBdDqdpFIpMpkMdrsdo9Eo9ObX\n19exWCzP7KR4GNCMbSaTEVPYVldXRS+4psKmSfiqqiom39lsNsxms0i/avl04JlqORx6A64VHGQy\nGba2tvjtb3+Lqqq4XC56e3sZGRmhra1NNN9rkp99fX288847fPrppyLU7vP5eOGFF7BYLPt9W/tO\npVIhFArR29vL2bNneeuttwgGg0xMTAB32qC0SEWpVNIFR+5ia2sLVVUZHBwUY1a7urrwer2iuyGT\nyfCTn/yEa9eu8d3vfheHw6EbcBCjLLXhGrVaTTjW2WyW2dlZ/uqv/opLly5RLpdpb2+nq6uLtra2\npmt9upupqSkWFxeFsJImONLW1sa5c+dIp9Nks1kikQiKouB0Ovnggw+4ceMGPp+PjY2Nfb6D/UOL\nvmrTAgFRD6AdFLd/fX19nY2NDVRV5bXXXuOVV17hxz/+MQsLC8/tmg+9Aa9UKkLpRjvBnD9/nq98\n5SsUi0Xm5uZEyDKfz/PBBx9w6tQpxsbGePHFF4lEIly4cIGBgQE8Hg+Li4t62xO/H4gQCoXI5/O8\n+OKLdHR0YLFYyOfzrK+v43a7WV5e5qc//Sl2u53z589z5cqVhiqoelz6+vo4evQo586dEypOiqKI\nASVajQHckfv94IMPHrmArVFxOBycOXNGDH/J5XJcunSJgYEBLl68yIcffojX62VwcJBbt24xOjpK\nW1sbExMTO5TvmhXtxK0VYcGdnuTLly/T39/PCy+8wLFjx0T72LFjx8jn80xNTenvPti1iC+Xy1Es\nFndEJ7RcudvtplarceXKFcrlMj09PbS1tbG2tranfvEn4dAb8O3FFrVaTRQNeL1ewuEwsViMcDgs\nhOmnp6cJBoOMjY0JMY2enh6CwaDwqvQc+B20YQiZTIbZ2Vl8Ph92u51oNMra2hqFQoHJyUl++ctf\n8uKLL+L1epuuf/Ruts+cP3PmjBhJWCgUKJfLVKtVEbFQVRWfz4fT6WRqauqZqTUdNiwWC6Ojo4yO\njmK32wmHw0SjUTY3N/nNb37DhQsXGBwcFIVuWjhYq6JudjTnezv5fF7UAmntcwCJRAKn00kgECCf\nzzdM66zD4cDr9bK1tfXA97nmVN9tnO9mtzZDbc660+kknU4TiUQwmUwEg0G8Xu9zccgPvQHfjU8/\n/ZRwOMzp06fJZrPcuHGDEydO4PF4RF4tl8tx7do18vk8f/RHf8Rvf/tbJicnG2YDPylGo5GWlhZq\ntZpoc4rFYvz7f//vmZmZ4b333hNTeRKJBL/73e9EiLOZcblcDAwMcOrUKY4dO0YmkyGbzaIoClar\nlVqthtlsJh6Ps7S0xLFjx6jVarz99ttNl7u9H7VajUKhwMbGhijQWl1d5X/9r/9FPB4nk8kQjUZF\n+9T09LRYX7vdrhvxBzA9PU0mk8FisWCxWJiamkJRFDKZDGazWYiRHHYGBgY4f/48v/71r5mamrrv\n53w+H36/n5WVFTKZzCPpVGj58O0R4KNHj2I0Grl8+fJzKehtSAMej8eRJImhoSFcLhfHjh2jr6+P\n1tZWjh8/zpEjR1AURbRMeDwe2tvbRbVmo4g6PAm1Wo1sNktbWxvj4+P4/X7sdju/+tWvuHXrlsih\nqaqK0WjUR4duQ5u7nM/ncTqdtLS04PF4MJvNYrrR7du3+eyzz5BlmXQ6jd/vF4WYzU61WmVzc1Oo\n1Gm65zdu3BADcsrlMt3d3Zw+fZpYLEa5XKajo4OlpSXdgD8Ara9ZazWr1+tCklZRlIYp4I3H40xO\nTj5U0VDT/tCiX/cz3p2dnQQCAYxGI7FYjOXlZer1Oi0tLbz22mvE43Gmp6dFMaE22+BZ05AGXFVV\nIbEYCAR46aWXCAQCdHV1MTIyInTRTSYTqqqSTCbx+Xz09PSwubmpG3B+n44YGBjgK1/5Cn19fYTD\nYf7mb/6GWCyGoigEAgHq9foO0YNmRxMEmpiYYH5+ntOnTxMMBnG5XFitVlRVZWlpiRs3bnDp0iXq\n9TqSJIk+XN2A33l+tXawSCTC6Oio6H7QTkhaf/PXvvY1Ll++zNbWFkNDQ+TzeWZmZvb7Fg4sZrMZ\np9Mp9Bs6OztpaWkRgiON0s4YDof31BWTSqX25PC1tbVx9OhR3G43s7OzxGIxLBYLAwMD/Mmf/AkL\nCwvk83kmJiaeayFgQxpwuONZXb9+nfn5eex2O+fOnePUqVOiWb9SqdDb28va2hr/5//8H8rlMvl8\nviHCR0+KwWAQqmu5XI733nsPgHQ6LQxMpVJhdXUVWZYbSkv6STEYDBiNRs6fP88LL7wg+kfj8biY\n9vTxxx9TrVZ58803uXjxIvPz81QqFT1986+YzWZGR0dJJBJcv36dd999F1mWSSaT1Go1FEVhcHCQ\no0eP0t3dzRdffEEikdCHv+yBfD5PMpnEaDQSCASwWq0kEglWV1dJpVINIWzzLJifn6dYLHL69Gm6\nu7v51re+hc1mQ1EU/uVf/oW5uTkmJiaeuwPesAa8Wq0SjUaJRqOi4jeTyTAzMyPaAaxWK9PT0yws\nLDSdATIYDOJEuJvTovWDJpNJMR94e5GV1udoMBiEAlazYDAYaG9vx2AwsLa2tsNwVKtVUYXvdrsJ\nBoOiml+LCm1tbYlCokwmQyqVaioxF03VT+u5vZtqtSrmyWsRC21tvF4vra2t9Pb2EgwGsVgsFAoF\n1tbWcDgcO2au6/wem81Ge3s7breb9vZ2WlpasFqtFAoFVlZWmJ6eJpvNNtVz/CjkcjlKpZIIpReL\nRXw+H4lEgvfee4+ZmZl9UfBsWAO+nXq9zrVr17h586aoHJRlmXK53FQvzu1oale7jbur1WoUi0U2\nNjaEBO39KjQbRY7yUdD0zGVZ5r333tthwDVjcunSJWRZ5rvf/S5Wq5VcLifmrLe3t4vhEYlEounW\nz2Kx0N/fTzqd3tWAZzIZ3n//fUwmEzabbYfz2NvbuyOSpkU1VlZWiEQiugG6D36/nzfeeIOxsTF6\ne3ux2+3EYjHW1ta4cuUKN27caFoBl71gs9no6uri/Pnz2O125ubm6O/vZ3V1VQw62Q+awoADO3K0\nlUpFGKVmNN5w55SjiY3cjdlsFqpDtVqt6SeI3U2lUuHmzZtIknRPvUR3dzevvvoqoVCI3/zmN4TD\nYdE7rxUPlUol1tfXxfjGZqNUKhEKhe5771qRmqqqQm7W6/WKATC1Wo3NzU3W19eZn59neXmZYDDI\nuXPnWFpa4tq1a8/5jg423d3dopC3q6uL9vZ2rFYrq6urQuBKN94PplAoEAqFeO+997BarcRiMW7e\nvEksFiMSiegG/HmiF1zdWYP7tTnspjr0MB7ls4cdVVXvq7akeerRaJSNjQ0WFhYwmUy43W7sdrvI\n5aZSqcd+6LX5689SY/lZolWZPwyt5VMTwQkGg/j9fkwmE9FolNXVVW7cuEE8HicQCNDd3a1XoO+C\n3W4X6+N0OoVjpKUZ9bqfh1Mul9nc3OTixYsYjUYymYyQsI1Go/vmiEv1A/wG2G1s20HnIC3n466f\nwWAQWr97RVEUcSJ9kjU4KOv3uGtntVrxer0cPXoUr9fLb3/7W6LR6I7pZJr40OOeerxeL1arla2t\nrXvC74d9/e7+HdoJ3Gg04nA4+OY3v8nXvvY1tra2+PLLL3n33XepVCpCvEnTJngcDsrawdN991ks\nFl5++WX++3//72SzWcLhMH19fWxsbPDJJ5/w2WefMT8//8T/zkFZv2dlN2w2G/39/RSLRSF5rOmh\nP417f5zf0ZQncJ2dSJKEz+dDkiTi8fiO6IRW9KKJ32xsbOxa7av9zEF5iPeLQqFAoVDAZrORzWYp\nFAooioLb7SadTj8VlT/N22+GsKd2Aq9UKiQSCW7duoXFYiEYDKKqKqVSCZPJhCRJbG5uNv3+A0R9\ngNbi6XA4MJlMhMNhUXz64Ycfsrq6SigU0lsX90ilUhHOuNbyqTmPjzLG9mmiG3AdJEkiEAggyzKp\nVGqHAddyj9pgBC1vrrVLafPC9RaenczNzTE3NwfcKSDq6OigWq0+FQOuiUU0OrtpUt+4cYOFhQVe\nffVVsQZaUephTSk8bbTxl1qqsKWlBYvFwpUrV4Rk9Hvvvcfs7GxTOIFPC+0dGAgE6OjooFKpUKlU\nUBSFarW6L2uph9CfMgdpOR9l/RwOBwaDgUwms+MebDYbXq9XVJsnk0kcDgeBQID+/n4xJOFpcVDW\n72mFgI1Go1C5yufzzzxX1kjrdz9kWSYQCKCqKrFYDFmWkSTpiZ3Ig7J28OTrZzQaqdfr1Go1nE4n\ndrtdjLys1+uEw2Ex9vJpcVDW71nbDU22VytMNRgMYq2fBD2ErvPY3E/DXBuxtx1toxmNxqYfXrIX\nNJEgnaeDqqo71K70U+S9bHdmtgswPQtkWW4YCda9oLUfa+zn/tMNuM4jk81mKRaLpFIpPXT+ALTc\nrY5OI6MoCmazeb8voynRDbjOI6MVx9wdbtfROSgoiqI7UM+JSqXS9G25+4VuwHUeC01sQ0fnfx92\njgAAIABJREFUoLG9Cls34M+earWqR+L2iQNdxKajo6Ojo6OzO81TeaCjo6Ojo9NA6AZcR0dHR0fn\nEKIbcB0dHR0dnUOIbsB1dHR0dHQOIboB19HR0dHROYToBlxHR0dHR+cQohtwHR0dHR2dQ4huwHV0\ndHR0dA4hB1qJTZ9G9mQ8yvpZLBYASqXSvt7DQVm/w7j3QF+/J+GgrB3o6/ckHMa1A30amc4TUCwW\n9/sSdHR0dHQegYYMoRsMBjEjWEdHR0dHpxFpSAMOhzeMclgxmUwoiqKv+zNGX18dnWeDyWTC7XYf\nqtGoDWnAa7Ua1Wr1wORkmgGn04nX60WW5f2+lIZFkiSMRiMGQ0M+tjo6+4rb7WZsbIxAILDfl7Jn\n9By4zmNjNBqp1+uoqirGCepO06OhpXr2Oo6xVqs19BorioLRaKRYLGI0GrHb7eRyuYeOrpVlGYvF\nQqVS0cfc7hGn00lLSwvxeJxisYjVaqVYLJLP5/f70vaFUqlELBY7VPevu/I6e0abs2wwGMSfjcY7\nPqBmxBvZuDwLjEYjRqNxT6FxzVlq5DU2m83Y7XZhkH0+3wNDmtq6ybKMw+EQ3RTNyKOkVyRJwu12\nMzIyQiAQwG634/f7sdvtz/AKDzaZTIbZ2VkSicR+X8qeOdDzwA9jvu8gLefTXj+Px8Pw8DAbGxus\nrKxgMpmo1+tUq1Vee+013G43H330Eel0+rH/jYOyfs9r72nh8Fqt9lR+32FfP6PRiCzLVCoVZFnG\nbDZTLBZFhEKWZfF97V61olVZlqlWq3uOZtzNQVk7ePT106IVpVLpno6Su/eYLMu43W5Rs1IqlcSa\nlUolSqXSY13zQVm/w2g3QG8jeyA2mw2DwUA+n39qL8tmw+FwMDY2hsPhEKG2er2Ow+Ggt7cXj8fD\n1atXKRQKVCqV/b7cQ8H2vWg0GjGZTJTLZVRVveezVqsVr9dLOp0mm80+z8t8blSrVVRV3RHd0Yy6\nFqkwmUx4vV4KhQJra2siigGH9+X9pEiS9Ei1EZIkUSwWSSaTKIqCwWDYdw0InUenaQx4e3s7JpOJ\nhYUFPUf2mFitVvr7+/F4PCiKwvT0NKqq0traislkolqt4vP5yOVyhyoMdVCw2Wy4XC62trYoFAr3\nfD8QCHD27FkmJiaYmprahyt8PmgnRLvdjqIoZLNZarUaDoeDUqmE0WjkrbfeIhqN8vbbb4uwu8Vi\nIZVKNeXeq1QqpFKpXQ3w3QcWVVVJJpPis5qzrRvvw8ehMOAGg4G+vj4kSWJpaWnX08ndWK1WhoeH\n8fl8KIrC2toa9Xqdb3zjG6yvr7O4uEg6nRab98iRI3R3d+NwOJifn+f27dsNn298VLLZLLdu3SKV\nShEOh6lWq7S2tnL8+HEcDgcmk4lXX32V69evc+XKFUqlkh7teAAGg4Fz584xODiIJEmUy2XS6TRX\nr15ldXX1nr2n5eji8fg+XfHzoVarUSgUcDgcBAIB8vk8mUxGhMcNBgMTExPU63W6u7tpa2vD6/Vi\nMpmYm5trSgMOj5aGUVVVdDVo71NFUUQHT7NjMpkIBoNUKhWi0Shwx8Hu7e0ll8uxsrICgN1up7u7\nm1Qqxdra2nO/zkNhwGVZpqurC4PBQCgUeqABNxgM1Ot1LBYLY2NjjI6O4vV6eeedd8hms7zyyiss\nLi5SqVRYWFgQBnxgYICvfvWr9Pf38/777zM/P0+xWNyTs9DISJKELMvCa//iiy9Ip9Ok02k8Hg82\nm422tjYymQyqqnLkyBFSqRQzMzMiLNfMLwRZlqnX67u+XA0GAy+++CJvvfUWdrudxcVFrl69yvz8\nPBsbG/esWzKZJJlMPq9L31ckScJms9Ha2kooFCKTyZDJZMT3f/e73xEMBhkeHqarq4tgMIjdbqdQ\nKLC0tES5XNadx4egPduao6goCpVKBVVVMZvN1Ot1KpVKU6yjwWAQxblaCqe9vV2kGarVKna7nRMn\nTrC+vi4MuNVqpa+vj0gkohvw+1GtVrl9+7b48/0wmUw4nU4KhQLFYpHZ2Vm8Xi/Dw8P80R/9EQsL\nC/zLv/wLHo+H0dFRNjY2xEthYWFBnCaDwSA+n49oNNr0Btxms+Hz+dja2qJYLBKNRsVDnclkuH37\ntjA2BoMBm81GrVbD5/PR2tpKOp0mFAo1ZSTDaDTi8XioVqu7Gt5arcZvf/tbSqUS58+f59atW/zi\nF78gnU5jMpmaNgLkdrv59re/TU9PD5IkMTc3RygUuudzmoG5efMmHo+H8+fP09vbSyaTYWZmpmmc\nncelVquJZ1mSJAqFAvV6HUVROHHiBPV6nampKQqFQkM74QaDAZfLhd1ux2q1EovFKJVKlMtljEYj\nbW1txONxFEWhtbV1R5GgFjHbLeX1PDgUBrxerxOLxfb8WUmSqNfrwjh3dHSQzWZJpVLcvn2bvr4+\nBgcHqdfrWK1W3G43ra2t+Hw+LBYLwWCQvr4+crlc02uEa6egfD6PLMv09vYSi8VYX1+nXC6ztbXF\n1tbWjp8ZGBhgcHCQeDzeFN779grou+/3QQa4VqsxNzeHy+Xitddeo1gsEg6Hd5yKmpVqtUo2mxXO\n+Ha0l2ogEMDlclGtVimXyywtLVEqlXQZ5X/FYrHgcDjI5/Oiqv/uKn1tv2otihqN6jwaDAaCwSCS\nJO04oNXrdREpq9frGAwG0c6Yz+fp7u7G5/OhquqO/Vgul9nY2Niv2zkcBnyvVCoVkskksiwLb8rn\n89HT08MPf/hD3nnnHTKZDGtraxSLRbLZLF6vl+PHj/P1r3+d8fFxzGYzgUCA8fFxQqFQw+cbH4bF\nYqGlpYW1tTX8fj/f+973uHjxIr/85S/v+zPt7e0cPXqUn//857vmchsNs9mMxWIhk8nsMODVapVE\nIvHA+0+n0xQKBdra2mhra8PhcJDNZh+7lacRSCaTvPPOOyiKgqIoO0LncCdseebMGXEaGhkZIRaL\n8dFHH1EqlTCZTORyuX26+oOD2+1maGiIlZUV0uk0VquVbDb70A6GUqnEjRs3ABpO28FkMnH8+HGM\nRiMff/yx6EpKp9NkMhkkSaJWq+F2u+no6EBVVVZXVzl16hSdnZ2srKzsGg3aLxrKgHu9XkZGRjh6\n9CiDg4O4XC4ymQx/+Zd/Sblc5tixY1y5ckXkO+BOYdDc3Bwej4doNCrCSHr++w6pVIrp6WlhaD78\n8EPC4fA9n/N4PBiNRhKJBMvLy5TLZWKxWFOcwLWeZFVVMRqNWK1WEYK73/1rp6NisYjJZEKWZUZG\nRvj2t7/Nxx9/zNLS0vO9iQNEvV6nUCiI0/Tdz2GlUmFpaUmkwPx+P0ajkY6ODjKZDNlsVj+Bc6fo\nVDPepVIJVVXp7e0lGAxy48aNew4n2pppqQm73U5HRwfxePweJ+qwUq1WWVhYQJIkUf9kMBhwu90M\nDg5y5swZTCYTpVKJUCiE1Wrl+9//PgsLC8zMzHD8+HHsdrs4ee/3ujSUAbfZbPT19fHWW29x/vx5\nVFXl7bff5sc//rHIj01PT+8IUVYqFTKZDCsrKyQSCTY2NnC5XKJlpVmRJAmLxUKpVGJ+fh673U6l\nUuGTTz7Z1SjZbDbMZjPZbJZoNEo8HqdUKmEwGDAajbuGlxuFSqUiXgYmkwmLxYKqqg9sV9TqNVwu\nF06nk83NTRRFYXx8nJs3b7KyskKtVhOFNY0uoaphNptFL3y1Wt1VT6BcLjM/Py/qMFpaWmhpaRGh\n0WY+fRsMBhRFweVyUalUCIVC2O12EZVwu90MDw8zNze3qwHfvsesVisdHR2USqV9N1RPC1VVWVhY\n2PE1LSXz8ssv85//83/GbDazurrKD3/4QxwOB6+++io3b95kcnKSV155hY6ODoLBIKlUat/XpaEM\nuBZGGxoa4tixY+RyObxeL9/73ve4ceMGa2tr+Hw+MpkMoVCIYrHI6Ogof/iHf0gwGBRV7hMTE1y6\ndOmJFMUOOxaLhaNHj5LL5ZiZmeHEiRNYrVYuXry4q1bw1tYWJpMJk8lES0sLPp+P2dlZqtUqLS0t\nxGKxplhPVVVFzvFB5PN5otEob731Ft3d3fzP//k/xakzHo9jsVgoFApYrVYRnm8G/YKenh46OztZ\nWloiFovtGu6t1WrkcjlhbJLJJPl8ntXVVarVKqVSqWmFhGw2G93d3XznO98hFArxox/9iPHxcaxW\nK1988QW3b99mZWVl15qi3eo3VFVtWMdbQ1EUjhw5wpEjR3C5XKiqitfr5Qc/+AFra2t8/vnnrK+v\ns7GxwQ9/+ENUVSUejx8IzfSGMuClUon19XUmJye5fPmyyF/E43HC4TDr6+sEAgFRdan9zNbWFj09\nPbjdbpLJJJVKZc9Fc42Idoosl8vCaGi5ovudArV2MUVRKJfLFAoF8fA3U0uPqqp76n9XVZVCoYAk\nSSLXa7PZUBSFzc1N0Xtaq9UatqBoN8rlMrlc7r7tS36/H5fLxfr6OnAnbaYVo7a1tVGr1chmsywv\nL+/76Wg/cDqd4pCSSqUAKBQK1Go1EbF4kIOpOYxaHUY0Gm3oQl6/309vby/t7e2USiU+++wzOjo6\ncDgcFAoFVlZWhAEvFArMzs7u9yXvoKEMuMbU1BQGgwGPx8P8/Dwff/yxMD6RSASfz0cwGGR9fZ2F\nhQWWl5dxOp0cP36cRCJxIDyr/cRqtWI2m5mbmxPyijdv3hQhtrtDbYAI8xYKBcLhMOFwWHxGqyto\nBjRt+L1+NhQK0drayje+8Q36+/ux2Wysr68zMzMjcsH71aKyH2hFQlpV8N309vYyMjLCRx99hCRJ\njI+PU6vVaG1t5fXXX6darbK4uMiPf/zjpjTg2jzr//f//h/xeJx6vc7ExARwxxncnurazYh7PB6C\nwSBLS0uk0+kdkY5GpL+/n7Nnz+JyuZiamuLatWv88R//MS+88AK/+MUv+Pzzz1lYWDiwB5CGMuBa\nIUKpVGJmZoZz585ht9t3FMHU63UCgQCjo6OMjY2hKIpQfFpZWeHKlSsHqspwPygWixgMBrq6urBa\nrUiSRCgUIpFICOMtyzJerxeLxSKU8oLBIEajkdXVVRYXF4nFYhSLxYZ+ATwptVoNs9nM0NAQoVCI\nCxcuMDs727QFlPcz3BqhUEi0hEqSxNTUFOPj47jdbubn51lbW2Nubo58Pi+iQc2EVliVTqfFHtpu\nfDSd/fvtr1QqhaqqWK1WbDYbkiSRSqUa9lCjDWV68803sVgsRCIR8vk8Ho+Hc+fOUS6Xxen7UXrh\nNUGxZ/3uaygDrigKfr+fxcVFUqkUFouF9vZ2+vr6qFQqFAoFUqkUTqeTzs5O7HY7bW1t9Pf3Mzk5\nyY0bN5iZmRGhp2alXC4jyzI2mw2Px4PBYCCRSIjQps1mE6E6TQO9tbWV/v5+nE4nsiyzubkpJC2f\n12Z+nmgjLrW10iZk3U9xzWQyUalUUBSFtrY2UdhnsViE2tPVq1d5++23yWQyYq0sFgtms5lcLtfQ\nYhp7JRqNEo1GxSz6lZUV+vr6yGQyLC0tsbi4yPLysvg/aQYURQHuFFMmEokHSsneb1qbyWTC7XZT\nLBZJJBJ0d3eL+eCNXBS4ublJpVLhlVdeEW2fhUIBi8XC+Pg40WiUixcv7lli1mQyiWjk8yg8bSgD\nnkwm+fLLLykUCrhcLhRFYWhoiKGhIaLRKFNTU3z00Uei8jyXy9Ha2sro6Cjvvvsun3zyScNOeXpU\ntOpzbQKUy+WipaWF9fV1+vr6GBkZIZFIsL6+TigUIhqNcuPGDfr6+lhdXWVlZUUMnjCbzQ0lqSrL\nMi0tLUiSxOrqKi6XC5fLxebm5q4nFU2PIJFIEAwG+fM//3O8Xi8bGxtMTU1x+/ZtLl26xObmpjgB\naXR3d9PV1cXNmzebui5jOwaDAafTiaqqpNNprl+/zvT0NNVqVQi/7JbmaUQkScLv92MwGFhfX3/s\nyI3P5+P1119ncXGRiYkJ/H4/qqqyuLhIuVxu6PUsl8vMzMyI6EQulyOVSmEymXC5XLS3t1MoFB7q\nyGhpW4PBwNbW1nMJuzeUAdc8ULjjCV2/fl2052wPCcViMebn52lra2NxcZF33nmHaDSK0+kUk48a\ndbPeD20cY7VaxePx4PF4MJlMpNNpNjY2aGtrw+fz4fP5OHbsGCMjI8zOzooohzbdSNOw1uRXNW3l\nRlpPTSdAe6lVKhXK5TIOhwOHwyFUnAwGA5FIhL6+Pv7wD/+QWCyGy+Xi1VdfxePxsLW1hd/v5/bt\n20xNTbG1tXWPk5PP50kkEk1bVb0bJpOJzs5OSqUS6XSaVCp136hZIxseDa1d80nuU+trdrlcnD59\nWkTa3njjDSYmJlheXn6KV3ywKJfLYrKiqqosLS3x8ccfUywWWVhYEC2xd+Pz+ZBlmUQigcViwe12\nC6W2vRpvSZJwu93YbLbHuvaGMuDbyWQyvPfee8CdRTp//jw2mw1VVYlEIiSTSVwuF9evX+fv/u7v\neP311zl58iTZbPa+YabtNNqLwWQyiZdAe3s7w8PDOBwOFhYW2NzcxO12MzAwgMPhYGRkRAj99/T0\nMDAwwOzsLJubm5jNZrxeLzabTZwaG80hqtVqokoc7uy1YrFIb28vXq8XRVHo7u5GURQ+/PBDjh8/\nzn/7b/+NRCJBtVqlq6sLi8VCZ2cnHR0djI2NMTU1xc9//nNWVlZ2rFUkEiESiezHbR5YTCaTmAql\n9YPvxvZBPI20/+7maahFJhIJPvroI958803efPNN3n77bTweD3/2Z3/G3//93ze0Aa9UKjuqy2/f\nvs3q6ioLCwv3jchKkkRHRwcWi4VcLoff7xep2L1q8Gsz3FtaWmhra3usa29YA76der3O9PQ0RqNR\neFKlUomJiQlxspmenhayjQ8LQ3k8HhECbZTijnK5jM/n48SJExgMBtbW1shkMmxtbSFJEgMDA/T3\n9zMzM8P8/LxoK4tGo1y+fJnOzk5MJpMw5Jp6k91uF33gjVwVrKoqm5ubVKtV2tvbOXbsGKdOneLk\nyZOi3kKSJKrVqsjfqqrK9PQ08/PzqKqKx+Ohv7+fzc1NPZVzF2azWcyaLxaLTE9P43K5eOmll1hc\nXNzhUGloa9yoxtvtdotumlKpJAY5PU7XgqIoeL1eIpEIP/3pTwmFQmxtbfE3f/M3LCwsiElljbqW\n29na2hJO+f2o1+uEw2FhU/r7+3nrrbew2WzcunWLSCTy0EOgpr2+vr7+2BoZTWHAgXsE57UWHaPR\niNfrJR6P77li1Wg0YrFYGqpIRlVVFEWht7dXTB0rFArIsizmpGthtng8TiwWw+fzkc/niUQitLe3\nYzAYWF1dZXV1lWw2K4rdLBaLCNE3EtoJTytYSafTOJ1OAoEA3d3djI2NMTAwIFp3NPnGUqkkIjiT\nk5NMTU0xPDyMoiiiql9nJ5rCWLFYpFKpsLa2Rq1Wo6+v74F7q5ENzvb3kKIoos7icQy42Wymo6OD\nWCzG7Owsfr+fUqnEr3/9axRFaao9mcvl9lS4VywWd6x9V1cXHo9HPOt7oV6vi/HMj0PjvVX3iMVi\n4dSpUzidThKJBNPT00Ic4mEkk0my2WzDtajUajWKxSIdHR0MDg4SDoeRJAmPx8Py8jJffvmlaCkx\nGAycPn2a9vZ23nrrLRwOhxjDV6lUMBqN9PT0UKvVxHzmRkOr1C+VSiKyEwgEeOWVVzCbzUQiEbq7\nu3G73UJ/v1KpsLGxITTTr1+/zuTkJENDQ+RyuR0z6nV+T7FYZG1tbUdrlFaR3shCIw9CU6Arl8u4\nXC4CgYAQpnpUrFYrPT091Ot14vE4r776KoVCgffff1/sx0Z2hh4VSZIIBoM4nU6hMz87O8vk5CTL\ny8vPrWD3wBtwv99Pa2sr4XD4qUpxqqoqRFuSyeQjea17yZEfRrLZLLOzs3g8HjGLWRvpqFWWa0pj\nWlpCE9PQqsz7+/vxer2i7SmdTjdsL7hWwKZplrvdblpaWvD7/Xi9XqEfr+0trcJ1amqKcDhMIpGg\nVqvR3t7O5cuXCYfD2Gw2stmsMFSaNnixWGzIPQcIrYHtgj/b0wyaHrzWsqcoCqqqUqlUxJqYzWb8\nfr94npsBTc0Pfu98a+uxff32gtbmOTo6KrQ0NjY2UBRlT8qCzUa9XhdS3ePj49TrdS5evMjq6upz\nnaFx4OMiwWCQ48eP43a7n+rvLZfLzM7OcuPGDSYnJ5u+91sbAnHr1i02NzdFNXmpVGJ2dpZYLEY+\nnxcSi9r6LSwsiD5mVVUZHx/nhRdeYGBggFQqxcbGRkMab/j9C1Sbtezz+XC73VSrVSEOVCwWSaVS\n4nPZbJaJiQl+/OMf85d/+ZeYTCaGh4f5+OOPmZ2dJRAIiB5zuBMpcrlcDZmCAMQ+02oE4PfhcpPJ\nBNyJdGg6+1arFbvdfo/indVqpb+/n0AgsC/3sZ9o65RIJERYV5twB79P9SiKsuNr29fbYDBQLpc5\nevQo3/rWtwiHw9y8eROTydSwe+9JSaVSVKtVTpw4gSzLfPbZZ8+91fPA/8+srq6Sz+cfKyz0IDTZ\nz0Y1Lo/C9l7SWCxGOBzm4sWLhMNhUdDx4osvYjabuXTpEltbW5TLZaxWK7Isk8vlcLlcWK1WTCYT\noVCI69evN5VTVK1W2djY4PPPP2dpaYn/+B//oxjqor0A8/k8GxsbTE5OEolEUFWVTz75RAhmqKrK\n2trajmiQFiJtxBQE3DnJbJ/DrLE9h6iqKjabja6uLux2O7VajdnZ2R37S5Zl7Ha7EDVpFmRZ5uWX\nX8Zms3H9+nWh2ZDP54WDoxW7afOsl5aWcDqdQhu9ra2NI0eOcPbsWZLJpDhJan31zaoK+CAkSaK/\nvx+Xy8VPf/pTNjY29iVSceAN+JMk+B/Gdg9eUxDbSxV6I6ENLnE6nSKMqU120vpr4/G4KHLTwpmy\nLOP3+7FarTtaxQwGg5jJ3EzrWK/XyWazZLNZQqEQX//616lWq6LFR5ZlZmZmuHTpEjMzM0KnenFx\nUYxcVVX1njD59lGljcrdzsndU7C8Xi9+v1/UEuzmeFerVVKplBAPauTq87sxmUyiYFSbSW82m0km\nk4RCIYLBIL29vbS0tJBKpTAajTv6xrU/FwoFFhcXuXz5MqlUSqSIdO4gSRJGo1G86+x2OzabjVgs\ntm+OzoE34M+L7u5u0QLQTMMjtDYvLQcWDAax2+3Y7XaGh4dZXl7mk08+4dNPP0WWZbFRrVYrvb29\nWK1WVlZWiEQiO1TXent7m3YiFNwZ62gwGLhw4QLFYpGuri5+9KMfceHCBTKZzI7CIM1YNYvBeRj1\nel3kESVJ4ujRowQCAebn54lGoySTyXuMfiaT4fr166I48FG1qw8rqqpy8eJF2traGBsbEwWmr7/+\nOjMzM/zTP/0T3d3ddHZ2isjZ3dK8WhvT0tISpVKJfD7fVM73XtGiPJVKhXw+TyqVoq2tje985ztc\nuXKFX/7yl8/9mprSgL/88suMjY3x/vvvYzQaOXv2LCsrK4TD4aZ46LdTKpVE/lpTUnM4HMiyzPLy\nMvV6na997WuUy2UURaG1tZX5+XnC4TB2u51yuUwoFGJkZAS73c78/LwopmnUsO9e0CR7fT4f8Xic\nTz/9lCtXrtw3FdQsxltrfbLb7aI+4G4MBgMOh0OIC7W1teFyuVhYWBDfvxutiMtoNIrWvmbBaDRS\nLpdZWlqiWCzicDiAOx0Rw8PDmM1mKpWKyJWXy2Wq1apYo2q1KqaTabUFzbR+e8Xr9fLGG2+Qy+WY\nnJzkzJkztLS0MD09vW9CN4fGgGsP7eNuLIvFIgo7vv71r/Pv/t2/IxwOY7FY+E//6T/x13/91005\nhWw34YeOjg6MRiMzMzN0dXXxb/7NvyGVSuFwODhx4gSffPKJ+JlMJsPGxgYnTpzA6XQKPe9m58MP\nP2R6epo///M/Jx6P85Of/ER/KYI4Ifv9fiGDejeyLONwOHA6naJoTZZlDAaDkEPWuiHuZq8dIlqO\n/bA7TpIkiaK+yclJVFUlEAiId9vIyAiyLFMqlUR9wG7rptUE6eyOwWDA7/fz5ptvUigUsNlsfP3r\nX6dcLvOTn/yEjY0NIaTzPA+Bh8KAa73IcKf38VFfhJIkcfLkSUZGRvD5fLzwwgs4nU6++93viv+Y\n7ZW/zY7NZiMQCNDS0gLA7OwsoVBICBQYDAYGBgaYm5tjbW0NgOvXr2MymRpGme5pEI/H+ed//udH\n0kZudMrlMqlU6oFtcVrtgNfr5dixY2xsbAitfZ/PB9wp7nvcdh1JkrBarSLve5ip1+ti/kOtVhOt\nn++//z7t7e10dHTg9/uBO6NYD/v97hculwu3200qlaKvr4//8l/+CxaLhVu3blGv1xkZGeH48eN8\n+umnrKysPLfrOhQGHH7vKT+qx6yJzPf39/PCCy8wNDRES0uLaHnSX6z3kkqlhDxjPp9namqK9fV1\nMaJRURRyuZx4scKdsXw6OykWi0xOTu73ZRwoarXaQ6vqtWExmUyGZDLJ8vIyiUQCs9mMzWYT+uZP\nwmE/eW9nu5CN1i+/uLhIPp8Xf6/Vak9dS+OgEgwGKRQKT1WOeHh4mJdeeonW1lZaW1sJBoNks1kc\nDgdDQ0NYrVaR9nmeHAoDXq/XhaF41AfP4/Fw5MgRAoEAfr+fY8eOkc/nicfjuFwuKpXKI8moNgNz\nc3MsLi6KE9L2Fh8th6tXqOo8ayKRCBsbG6LIb3vv8pMY8EY4ed8PrRgV7sxOTyQSosp8e2V/IzM2\nNkYkEmFubu6p/c5XXnmF733ve7S1tVGpVNja2sJoNNLe3s4f/MEfMD09zcTExHMXEToUBhwe32PO\nZrMsLy/z8ssv43A4uHXrFmazmVqtJvods9ksi4uLT/mKDy8PyiM+T5Whw4iWYtCryp8cbbyjzuOh\nRTuajaWlpafe/fLZZ59htVr5wQ9+wOLiIv/3//5fIX4Ti8WErO9eNNSfJofGgD8u2WymFROJAAAg\nAElEQVRWKIjF43FmZmbo6enB5/Pxq1/9isnJSdFDqqPzNNBOPA8y4JpaljYIpdm6H3R0nhXPoiL8\n0qVLZLNZTp8+zbVr1/jf//t/P/V/43FoeAMOdzzRn/3sZ1y4cIFcLsfp06cZGhoiHA4Ti8XukWXU\n0XlctL30sNO3y+Wivb1d5Oq0WeE6OjoHk2g0yo9+9KN7JlvuJ01hwGGnV2Y0Gtna2mJzc1MPCes8\ndfYSOtfaoCqVSlOphunoHFYymQxffvmlKBr0+/3CluyX8y3VD/CbY68zVff6u7RirO1/ftocpOV8\nmuv3vDgo6/c81u5Z9CI30/o9bQ7K2oG+fk/Cs1w7SZKEZPTp06exWq1cvXr1qVS8P876Nc0JfHtO\n8mH5SR2d54G+B3UOGyaTCUVRxPCdZkN7Zmu1GisrKxiNxvtGcbVJbuVy+ZmtVdMYcB0dHR2dJ0OT\nwtVSP83Mw7QvtNkQ1Wr1ma3VgQ6h6+jo6Ojo6OzOvVMBdHR0dHR0dA48ugHX0dHR0dE5hOgGXEdH\nR0dH5xCiG3AdHR0dHZ1DiG7AdXR0dHR0DiG6AdfR0dHR0TmE6AZcR0dHR0fnEHKghVx0OcEnQ1+/\nx2f72imKgsFgoFQqieszGO74vgdtvvJBXL/DwkFZO9jf9TMYDHg8Hmq12iPNtz4o63cY9x7oUqo6\nOs8Em82GLMs71KeMxjuPTjPOW9ZpbIxGIx0dHWLM8kExzDr3ohtwHZ2HkM/ndwy/0U4okiQRi8Wa\nXlJSp7GoVqtEIhFqtZpuvA84h8aAK4oCHJwTjyRJWK1W4M4LXqdxqVQqwM4Ql8FgEGH054UkSRiN\nRlRVPXChe53GoVarkUgk9vsydPbAoShikyQJt9uNx+N57i/N+yHLMp2dnXR0dByYa9J5NhgMBmRZ\nFn+v1WpsbW0RjUaf6+nbZDLhdDqFM6ujo9PcHJoTuDayTTsFSZKEyWSiVqvtyzD1Wq1GJpM50KNJ\nPR4PpVKJQqGw35dyqNnt/1g7lT9ParUapVKp6UP2RqOR1tZWKpXKQydC6eg8bdrb2xkaGiKTyZBI\nJIhGowQCATo7O9nc3GRra4t0Ov1comSHwoDX63XS6fSOr0mShKIoqKr6QANuMBgwGo1Uq1Xq9Tqy\nLIvcjiRJSJK0IxxaLpf3ZJBrtRrr6+tPdmPPGK/XSyqVei4G/KBWZT8NnvSetBP8k4a+q9Xqvjir\nzwtJknZ99rSqYu2ZtVgs9PT0kM/n2dzc3PF9HZ2nzXYbYTAYGBoa4pvf/CYrKyvMz89TKpUYHh7m\nlVde4cqVK0xNTZHNZnUD/iBqtRrFYvGhD21nZyfj4+PcuHGDdDpNX1+f8JwsFgsulwufz0dPTw+l\nUokLFy7c4ywcVjY3N5/bSbGlpQWTycT6+vq+nE4PMoFAgJGREebm5g6807dfKIqC0+mkUCjcU1Pi\n8XiQZZlEIoHL5cLr9RKJRMhmswC43W6MRiOJRKLpoxM6Txez2YzT6cTr9eLz+WhpaaGtrY18Ps/a\n2hqxWAyXy4UkSayvrxMKhdjc3Hxu+/DQGnBgT6cRg8GAoiiYzWaCwSAvvvgiqVSKzc1NWlpa8Pl8\nuFwu6vU64XD40PYQ7kYul3tmv1uLgNTrdcrlsvBSAaxWK1arlUwmoxtzfh8F2l4rYbFYcDgcZDIZ\nkR5qdu737GmRMm2PSZJEpVIRe2v713V0niZGoxGr1Yrb7cbn8+F2u0Xkt6WlBYfDIWyMqqpks1nh\nWO6G2WxGlmWKxeJTOaEfagO+FyKRCFtbW9hsNsbHx/na175GuVwmlUpx4sQJbDYbmUyGf/iHf+DX\nv/71MzV6jYQsy/h8PqrVKtFolGg0Kl6sHR0ddHR0MDU1pVezAtFolHQ6vaODIhAIMDw8zOTkpH4q\n505NQSKR2PWllkwmkSQJVVVJJpOUSiX6+/ux2+1kMhlSqZT4vo7O00SrfymXy8RiMf5/e2cWG9d1\n3//vvXOX2feVM+Rw00aKtGjRtmwn3uIFcBAHBZK0RYAAfexLWxQo+lCgT33vS/NUJO1jaySBa8dJ\n/o5jy5YlW9bOfedwyOHs+77cmf8DcU8oiZsoLrOcD2DAkkjqzk/nnt85v+X78/l88Hq9uHz5Mn7w\ngx/A4/Egl8thbW0N09PTUCqVe/48g8EArVaLYDB4JKnNtnfgBoMB3d3diEajqFQqEAQBZrMZRqMR\nqVQKCwsLWF5exsLCArLZ7Gk/bstQr9eRz+fJhrs9GpLJZMAwTEfdLFmWhUajQaPRQD6fR6PRAMdx\n5JCTTCYhCAJ4nke5XEapVEIqlcKZM2cwOjoKnufh8/kwNzfXkf23jUZjVwe83anbbDY4HA7k83mi\nEtaOdRdHgdlshsfjwfr6OjlIm0wmaLVaRKNRlEol8rUMw0ChUECtVkOj0UCr1aJQKGBzc7Pj1uJ2\nqtUqOXwrFAoUi0WIoohwOAyfz0dSPsViEVqtlgg8AX9uNZUkidiwUCjsW7f1JLS9Azebzbh48SJu\n3LiBRCKBSCQCjuNQr9dx7949PHjwAA8ePHgiycBOYnsR4PaNsl6v71hYyHEcMplMx928GYaBVqtF\nvV5HsViEJEngOA5WqxXlchmpVIo4cIZhUCqVsLGxgbfffhsjIyNQKpX46quv4PP5UC6X27pY7Wmw\nWq3o6enBzZs3EYvFTvtxmhI5veXxePD888+jWCwimUyCZVkYDAbYbDZkMpmHHDjHcTAYDCTX29XV\nhWg0imAw2PEOXHbiwJZt4/E4fD4fqtUqkZzVaDTEr8jpHIVCQQSgZBvuF2J/UtregefzeQSDQRQK\nBUSjUfzyl7+ETqeDQqFAJBJBMplEOp2mudpd0Ov16OrqQiAQQDqd3vNrVSoVPB4P0uk0wuHwQ38m\nL+p2DXPK4hdyPkyWXZXXVqPRQLFYBMuy6O3tRaFQQCgUQiQSwerqKknruFwuhEKhI33J2wm/349Y\nLLbvWuxkVCoVhoaGMDIygvPnz+PevXtEQyCXyyGVSj2WKrRYLHjttdfIOh0YGCCHzXZBrpU4bISL\nZVmIoohcLofZ2VmYTCb09fXBarXiwYMHuHbtGhKJBNFqkG/nxxkhansHXqlUkEwmUalUkM1mMTEx\nAVEUIQgCCoUCtFotent7EQwG6aawC0+y4Ov1eseFNDmOg0KhIDluubhv++bXaDRQq9VQqVRICK1S\nqRBH/6hYDOVhWJYl6YdisUgjFLug1+tht9vR1dUFt9sNj8eD8fFxaLVa1Go1+P1+rK+vP/Z9PM/D\naDSC4ziUSiVYLBYkEom2cuBHgfweyykwudNndXUVc3NzUCqVUCqVZK0e917Y9g5cNvZuN7/u7m68\n++67+P3vf4/JyckTfrrmJ51OI5fLHejmXCwWsbq6uqOzb2enrlKpoFarSYGVHJrkeR5arfahWoBS\nqYTl5WXU63Uix+twOGCz2VAoFBCPxzuqduCgcBwHvV4PYCusmcvlqBPfga6uLpw7dw4qlQocx8Fk\nMuHHP/4xEokE7t27h88++2xHB14sFuH3+9Hd3Q2Hw0FEstqJveosDoLcuqxSqWCz2RAOh4kDl9M5\ncmuzQqE4kfXZ9g68WCwiHA5DrVZDEAQkEgm4XC50d3eTIRVfffXVYyFfyhbyifOgX9uuIfK9kE/a\nj9pJfrG3/75sT1EUodVqkcvlsLm5CYZh4HK58M477+DGjRvw+/0n/TGaFpPJBL1eD6VSiVqthmKx\nSG/hj6DX6+H1ejEyMoILFy7A6XRCo9EglUrB4/GAZVncv38farUab7zxBh48eIB4PE6+X6FQQKPR\noL+/H16vF19//TUpqKT8GYVCAYfDgbGxMZRKJRQKBVLkVqlUyGWxUChAoVAQbYPjWqttL+JdLpcR\nj8fJCV4+lfb392N0dBQmkwnz8/O7hs/lvAcNb1J2o1KpIJ/PP3R4EUURSqUSqVRqx7XFcRyUSiXi\n8TiWlpawuLgIURTxwgsvwGKxnOTjNy0cx0GtVsPtdqO3txc2mw0ajYYUB+1Hu7+7coRHXktutxvn\nzp3D5cuX8corr8DlcmFpaQmZTAapVAr37t1DtVrFuXPnoNFoHvpZsq3UajV4nsfS0hKWlpY63oFv\nL0aT/99oNGJgYAADAwPweDzQarVQq9Uk6iHXEQBbeg/HOSuj7W/gMrFYjAi6pNNprK2tYXx8nNzG\nr127hsXFxce+T6vVwuVyIRwO00p1yoHxer2wWq2YmZnZcd2USiVSjBUMBrG4uIhkMonh4WE63Q5b\nG6fJZILX68Xw8DCMRiMikQhmZmZIS+h+aDQaOJ1ORCKRtqxvsdlsGBwcxNzcHFKpFG7fvo0rV67g\n4sWL0Ol0uHv3Ln7zm9+QlE61WsX09DT8fv9jGvLVahXxeBwfffQRYrEYwuEwnaGArUOSRqNBoVBA\nuVxGtVpFoVBAOp2G2WxGqVTCysoKIpEIKpXKQ906xWKR1LkcF23vwG02G3p7e0kut1QqwWg0wul0\nQhAEqFQquN1uqNXqHb9fkiRSeEQ5XtqpYKZSqZB2Mhn5JF+r1Yguus1mA8/zCAQCWFhYIEWXnU6j\n0YAgCDCZTMhms8hms4jH40gkEg+1P8nI1f/ybUdOa1Qqlba9Rcr1PUNDQ6RivNFo4N69eyiXy1hY\nWIDVasXCwgJSqRRKpRLy+fyO60utVuPs2bNEVTEcDtNaDPw5LViv16HT6TA0NASLxYLNzU0oFAqi\nR7CThogkScfuN9regQ8MDOBHP/oRZmZmMDc3h6WlJQwMDOA73/kO1tfXEYvFIIriri95Pp+Hz+fr\n6F7Ik6DdpDDX1tbg9/sfWlc8z5M2FrlfdHR0FHq9Hv/v//2/Hb+n02k0Grh58yZCodCek//kPma5\n+CqRSCCfz6NQKLTtuxuJRJDNZvEP//APeOWVV8CyLG7cuIH/+I//QCAQwNDQEP76r/8av/jFL3Dj\nxo09nYnNZsP3v/99uN1ubG5u4l//9V8RCARO8NM0J9sle71eL376058iGo3i448/Jpe702xBbnsH\nvrm5iatXr5KQm8lkgiAIYBgGFy9exMbGBr755hvk83nwPE+mlm2nXTeAveB5Hg6HA5VK5bFw2+XL\nlzE0NITZ2VnE43FUq1U4nU7U63XMzs4eKvQmV2W3C7uNIJVvSRzHQRRFLCwswGg04uzZswgGg09c\nvGYwGNDV1YVQKNR2N/dqtUq04vdyPrJNs9ksaceT12MqlUKxWGxbnYdKpYJPPvkEqVSKXErW19cx\nPDyMM2fOoFQqkVbF3eju7obJZMLVq1dRKpUQCoXgcDhw5coVLC8vI5vN7hj16CSGh4fR09ODTz75\nBOFwGH6/nwzPOaxtLBYLvF4v1tfXEY1GD/Uz2taBy/PCM5kMJiYm0NXVBbPZDJvNBrfbDZ1Oh56e\nHhSLRTL67aRK/5sdeQKPwWB4TFCEYRh0d3fjypUr0Ov1WFlZQSAQIPOZt0sJPimtdFCSi1oOclvm\nOI70hisUCuj1emg0GiiVSiJz+cwzz0Cr1T7xcwiCAKPRiEQicZiP0dSUSiUkEol9Q7my8pjZbCZ5\nyN7eXlINDGz9G5xEX+5JI0kSZmdnwXEczp07R+oqTCYTOI7D6urqvqJAWq0WPM9jbW0NGxsbCAaD\nuHLlCkRRxObm5oEOAe2OyWSCKIq4du0aqd5/WiVAURRhtVoP7byBNnbgCoUCFosFGo0GPM/D7XZj\neHgYQ0ND6Orqgk6nQywWg0KhwHPPPYdYLIa1tbWWciLHhcvlgt1uh9/vRyqVIjPUga2NMBQKYXl5\nGePj47BYLFhbW8Pk5CSy2WzHFGCJoghgK9e635rR6XTweDwol8vQ6/V46aWXYLPZwLIsfvWrX2Fy\nchJ37949UGHWo6RSKUxPT7dlwVE+n8fGxsa+dqnX63A4HPjLv/xLhMNhLCws4NKlSwiHw7h16xac\nTieUSiV8Pl/b3SRZlkV/fz/6+vpIFFGj0eDbb78FsLU+g8Hgnj9jbW0NGo0G7777LqrVKnw+H+Lx\nONbW1hCJRMDzPNRq9UOzDzqNiYkJ8Dx/pMWQsVgMt27deqo9s20dOABSxCJJEhwOB86ePQuv10tU\ncgRBQKlUwvz8PJHBVCqVqFarh9pM24VisYhUKkX0khUKBQYGBqDRaBCJRCAIAiqVCqlmFQQBuVzu\nqUK4HMc91e39pJE3st2ct9ySI48g1Ol00Gg0sNvtpGiyXC7D6/UinU4fyFHtxPYcXSsjiiLMZjPR\n3Y/H46QQcDcUCgVEUSQh9nK5DLfbDZPJhGKxiHg8ThTy5BSNHG5vF+ThOX6/n2gKyAV/cjRit/Wh\n1Wpht9sRjUYRiUSwtLQEtVoNSZKQSCQgSRIGBgaQSCTasor/Sdg+90FOfz3tzAK5d/xpaJ0d8wmR\nJAmZTIbIXJrNZrjdbrAsi2g0imw2C6/Xi0wmgw8//BCSJEEURRiNRuTz+Y524OFw+CFhm0ajgbGx\nMTidTly/fh02mw2iKOLTTz9FOp1+bArPYRBFESqV6mkf/cTYb32o1Wq4XC4MDw+D53nE43GcPXsW\nHo8H9Xqd6PDLIhuJRIJUALeTgzkoWq0Wg4ODUCqVRKhlPxsLggC9Xo90Oo10Oo1bt27hjTfewIsv\nvohf/vKXmJ6ehkqlImF4QRDaLk3WaDSwurqK1dXVJ/5es9mMS5cu4c6dO4hEIvi///s/2O126PV6\nxONx6HQ6XLp0CV999dW+t/hW5LDvmiiKMBgMSCaTp76W2taByzNca7UaGIbBrVu3IAgCLl++DFEU\nwXEcfv3rX2N+fh5jY2Pw+Xx0sMkuNBoNzMzMYG1tDevr6/B4PFCr1Uin01hfXye1Bk9Du03gyufz\npBK6Uqlgbm4Odrsd3d3d0Gq15Jbj8/mwurpKQrud5LwFQSAOO5/PY2VlhcyUP0hYUR4AU6lUoFQq\nwTAMbt68iWvXrmFhYYEUGcmFqfJQGcoW8Xgcd+7cIbf1WCyGXC5HIpM8zyMUCrWlSqWs75FMJp84\nly1PF2yGS17bOnCZer0OSZIwMzNDKoP7+vqgUCgwPT2NeDyO3t5eZLNZ5PP5PXXTOwGWZR+roG40\nGmSjlH9dLpeRzWaPrPK5Vqu1hQNXKpUwGAyoVCpgWRZqtZpEgYCtz1koFJBKpRCLxeDz+RAIBMgo\n1nawwUHZrnJVLpeJ5DHP8wdytJIkkRB7rVZDNpslhVg7vcPtkr+Vi/bq9fpTXTby+TyZSibXuWyf\nfc0wDGKxWNvYbTssy0KlUh1o6h/LsjCbzRAEAclkEuVyuWlqfdrWgbMsC41GA0mSkM/nEQqFkE6n\nMTU1hZdffhljY2NwuVzQarVgGAYWiwXFYhGhUKijNtHtyDnFR/OqDMPA4/HA7XYjm82C4zgsLy83\nzSJuJux2O1544QVEo1HUajWMjo5CpVLB6/XCaDQil8uRfu+NjQ2iKmYwGFAsFjsq17hduUrWiPd6\nvejq6sLt27cf0urej0KhgOXlZQBbh6h2PohzHAeLxUJkoo8CURTR3d1NJmwplUpy6GzHNrx8Po/F\nxcV993qFQgGe5zE+Pg6n04kvv/ySVOY3A23rwOWQmXx63D6Y/e7duyiXy+jv7wfHcVhaWgLLsjAa\njSiXy8hkMm1Z1bsf8iYqi4yoVCpSHJRKpWA0GmG1WpHNZhEOh5tmETcTckGR3Jb44MEDGI1GqFQq\nBINBJJNJIr2YTqeJDdtxk+R5HqIoolQq7bhRsiwLjuPITVxObe3X7sVxHMxmM2q1GmmfkyQJuVyO\nFKrevXv3qdpzmpl6vX7k60WuGQK2BqNsL35rxxv49ujNo7jdbjgcDnAcB5ZlwbIsBgYGYDabMTIy\nAoVCsaPs9mnQ1g780X8g+TS1traGdDpNJAjD4TBUKhVUKhUsFsue/7jtjFy1D2xtklqtlry88Xic\nTCvKZrMH0qOWhVk6Ke8Yj8cRj8fhdDqh0+kwMTEBq9WKsbExRCIRhEIhbG5uPtbb/LQ1BM2IIAjQ\n6XS7pkcUCgVUKhUYhiGFQfV6HbFY7LG1JVf+1ut1cBwHp9OJYrGIRCJBUhQsy2JwcBBXrlzB2tpa\n2zpwSZIOlbrarnYoRz1k5HYzo9EIg8GAaDTatnvgbvuSLMfb19eHkZERks5hGAY6nQ4KhQLnz59H\nNpvd0YHLzv4kpzK2rQN/FEEQ4Ha7ceXKFczNzWFjY4OEiSwWCwKBAHK53KHENNoRSZKQTqfR39+P\nd955BxqNBi6XC6Ojo5iamkKpVNozUsGyLPR6PcmrdRqpVAr5fJ7UCqysrCCRSCCVSj12c+J5Hjqd\nDuVymeQk24FyuYxkMrnrTbFWqyGfz5NqYL1eT9JakUiE2EKlUuHcuXN47733sLS0hNu3byMajZL8\n5YULF3DmzBk4HA6Ew2G8//772NzcPLHP2QrIM6zVajUajQY2NjZ2XGty0WUzFGgdBwzDQKPRgGEY\n5HK5h5x4d3c3Xn75ZQQCAXz55ZfweDwYHh7G888/j0gkgpWVFdy8eRMrKyuP/VyVSgWdTge73Y5a\nrYbl5eUTiah1jAO32+3weDzQaDRQq9UQRRHZbBZKpRJGo5EsaLkKttNpNBoolUpgWRY2mw19fX2w\n2WwAtjbmSqWy782aYZhjHaXXzJRKJRIeLxQK2NzcJEWSOyH3KLcT+xUmyprwwNZtXG4fk289sm58\nT08PRkdHMTQ0BIZhEAgEEIvFyAAJWelOqVQiGo1iYmLiRD5fqyCnKhQKBUwmE9RqNWKx2I4OvF10\nBfZCftcebSOz2Wx46aWXMDU1hdnZWXIjdzqdWFpawuzsLObm5lAoFGA2m5HL5R466Mh2bjQaJ/Yu\nd4QDZxgGw8PDMBgM+P3vf49GowGj0Yj5+XkYDAbo9XpYLBbkcjnSj0vZIhKJ4ObNm+ju7ka1WsXH\nH3+MBw8eYHl5ec8ceL1e76iCrL2oVCpIpVK75hKr1eqef94JVCoVxONxMnpVDpXXajW89NJLGB0d\nxeTkJHK5HNxuNxYWFsj3zszMYGlpCRzH0bqMHRBFEY1GA4FAAGazGV1dXS0lmnSUyMI3wOO5fY1G\nA6/Xi5GREeRyOdy+fRsajQaNRgMTExP46quvUCwW4XA40NfXh8XFRZKmKZVKZJKg3MJ8EnTEv2Kj\n0YDP54MoiojFYrh8+TKef/55pFIpaDQa9PT0YG1tjYSPOnkjfRRZrH92dhY6nQ6JRAK5XO5AFejU\njlvslRNTqVRgWRbFYrGjagUepV6vk+I1lmWh0+mI4wG2btk9PT2IRqNIp9NkaAnP86hWqx01+pLn\neVgsFlQqlQNp4Mu2u3z5MpLJJObm5toqVfOkbN+XlEol9Ho9PB4Pzp07R6IPJpMJY2NjpMBS/v2+\nvj5wHIdgMPhQ+lB+x0+686EjHDgAzM/Pg2VZ8DyP4eFhvPPOO7hz5w6ArdwHAORyOdI6cRDn0wmq\nWXJl+v3790mVcLt/5pNErsPo9Jvjo4ccuWiNZVkyB3x8fBylUgnFYpE4elEUT2XjPE04joPVaiVi\nQTsh20alUkGr1eLMmTP4yU9+gg8++AC/+93vOspee6FSqeBwOPD888/j7NmzpF7HaDRicHAQjUYD\nqVSK1Gf09vYiHA5jfn7+lJ98i45x4MCW+k5fXx+cTifUajXGxsawvLyMP/zhD9jY2IAoinA4HMjl\ncgfqr5QnTLVzyD2bzcLn85EqX4Zhjqz/Wz4MdPJmksvlDjzVrFOQCx9lMZFbt24hFoshk8lgcXER\nd+7cQSKRIEVwnbZ+5DkEu9UXKBQKGAwGXLx4ES+//DJJS9y+fRuRSAQWi6VplMROG3lqpVwbUCgU\nSC47k8kQkaFXX30VFosFn376KdbW1o7k75RbnZ+GjnHgcg+zXq9HMpnEzMwMGIaB3+/HwsICOXnt\nNMd5NzrhJvpoUYvcJnEUdIL99qNarUIQBFitVpRKJVKY1ck8eiguFAoolUpoNBoIBoMIBALkzzpR\ndGl7z/ajcBxHigAlSUK1WkVfXx/K5TLu37+P9fV1+t5to1qtIp1OEzljhUIBrVYLs9kMhmFQKpXg\n8/lQLpeRy+UQiUSaqquGaTTxv+ZRVfIxDIPR0VFYrVYkEgkIggBRFFEsFolwyfr6OhKJBJEUPKxZ\nmsmcR10JKZ8cjzNk2Sz2OyrbyVX4e92wTSYThoeHEYlEHirOOgztZr/tP4/jOCKNfBw0i+2Aw9tP\nnjMvHwRVKhX++Z//GQ6HA//+7/8On8+HQqFwLBGfZrHfk9hO7naQD9F9fX3QarWw2Wx44YUXEAwG\n8dFHHyESiSCVSqFUKh1btOww9uuIG3ij0SBSqnL4Vw4Jy2EM+fc7LRz3JMjhbhruPRiy02k0Go/Z\nTA7TyYpXyWSyowuL9uMowo2PIreQZjKZtpEFlotw5YtJtVrFZ599Bp1ORwqvDvr+iqIIrVa7Z/tj\nqyPvacViEbFYDJIkkfnngUCA6Os364TKjriB74SslV6v149042wmc55WX7HcY3kYR98s9jsK28kK\nY9sV7mTkUKc8OMJgMBxJCL2d7Hfc6HQ6OJ1OxGIx0v7TLByl/dRqNald4XkePM8fSCteo9GQqOVB\n1mWz2K8V1t5OHMZ+HevAAZCK86O8dTeTOU9rISuVSgiCgEKh8MQ5ymax31GG0Heqq3hUSOKoUhPt\nZr/jRNZfl4eqNIvtgKO1n1x8KkkSent74XK5MDs7S4rbdmN7m95B1mWz2K8V1t5O0BD6E0LD5ceD\nrLC124KUNYMlSWqal/642C0K8ahTb8bwXLsjSVLbhM73YvsalNOFB9n7Oq09rxXp6Bv4cdBM5mxW\n+/E8D0EQdgzjNYv9mtV2+0Htd3iaxXbA8dnvadJb+9Es9mvFtQfQGzilRZBHlNJiOArlZHmSNllK\n80MdOOXE2T7EgkKhUCiHo6lD6BQKhUKhUHamM2c9UigUCoXS4lAHTqFQKBRKCyXcWb8AACAASURB\nVEIdOIVCoVAoLQh14BQKhUKhtCDUgVMoFAqF0oJQB06hUCgUSgtCHTiFQqFQKC0IdeAUCoVCobQg\nTa3Edtyatiy7dX45SlWwZtLFaUVN4GaxXyvaDqD2exqaxXbA0dpPEAQAW4NMjvMzNov9WnHtAVQL\n/YlRKBRoNBpU1pNCobQtoiiCZdmnHpm622hcyunR0Q78SWdVUygUSqtRLBafegKZSqWC2+1GNptF\nOBw+wqdrHliWBc/zqNVqLTNGtaMdOD1JUiiUZkcOgR92ZvxRXVRYlm3Z8HS70tTDTFpxsTSTOan9\nDk8r2g6g9nsamsV2wJ/txzAMLBYLACCRSJxauo9hGCgUij0nCTaL/Vpx7QGHs1/HVqFzHAen0wmr\n1Xraj0LpQOx2O5577jmyOVMoO9FoNFAoFFAoFI7MQTIMA6VSCVEUn+g5arUarRdqMjo2hM6yLHQ6\nHSqVCmKx2Gk/TtPCMAxYln2oYr9erzfNabsVEAQBarUawJb9KpUKzGYzent7EYvFkEgkqD0pu1Io\nFI7sZ2m1Wuh0OvA8j2q1ilwuB6PRCFEUUSgUSP5XkiRUKpUj/bspR0/HhtDlU2ij0UCpVDqyn9tM\n5jwK+wmCAJVKBa1WC4ZhkM1mUSwWD52P249msd9Rrr2enh5cunQJLMuiUChgY2MDpVIJjUYD2WwW\n+Xye/PppaUf7nRTNYjvg+Oz30ksvYXx8HOFwGOl0GsViET/84Q/h9XoxOTmJWCyGTCaDTCYDn8+H\niYmJA9+6m8V+rbj2ANpG9kRwHIeuri5UKhWsr6+f9uM0HRqNBsPDw6hUKlhZWYHBYIDVaoVarcbS\n0hKWlpZO+xGbEpPJBK/XC0mSwDAMuru70dXVBafTCUEQUK1WEQgEMD8/j9nZWQwNDUGhUOD27dvI\n5XKn/fhNj1arhVqtRj6fJ33NkiTR0O4uMAyDoaEheL1e6HQ6eL1eeDwe9Pb2AtiKRI6Pj8NsNkMU\nRQQCAYRCIeLgRVFEuVzuePsKggCFQnFoWxykhuAwdJQDl8PBDMNAr9fjueeeQzqdpg78EViWhclk\nwve//32EQiEsLi5Co9FgcHAQzzzzDP74xz8+5sBlu7Is29FhdqfTiTfffBPlchmCIODtt9+GIAhY\nXl6GXq+HIAg4e/YsWJbF4uIiXn/9dZhMJvj9fpRKJUiS1JF2OwgMw8Bms8HlcmFjYwP5fB4AkMvl\nUC6XT/npmhOGYfDd734X7777LgYHB+H3+7G+vo7z58/D6XTCYDAgFoshl8vB5XJBkiTk83mkUimI\nogiNRoN6vd6R9pVv8o1GA2q1GoIgQJKkhwRxZMcsf932/7bDsiw5wFMHfkhsNhvGx8fh8XhgMpkA\nAFNTU3t+j0KhgCiKqFQqpB2D4zjwPI9KpdIy/YJPQr1eRyKRwK9//WucPXsWf/d3f4fr16/jiy++\nwMTEBILBIPlauXfywoULGBgYgMvlwtLSEu7du4dUKtUxLz7LstDr9cjn8/j973+P8+fP4+LFiyiV\nSpidncX777+PCxcuoL+/H1qtFvl8njig8+fP41/+5V+IjcPhML2NP4JKpYLdbseZM2fQ3d0NrVYL\ns9mMZ599Fh988AFu3br11EIl7YZ8oP7ss89QrVbxN3/zNxAEASaTCQzDYHNzE/fv38fi4iI4jsNb\nb70Ft9uNRqOBfD4PtVoNjUaDYrHYFu+xKIoQRRHFYhHVanXPrxUEAQ6HA9VqFaFQCI1GA6Ioore3\nF5lMBqFQCFqtFh6PB+Pj46hUKohEIkin04jH49jc3HyofU8+BB11JKNjHLjVasWZM2cwPj6O/v5+\n6HQ6zMzM7OuAt9/at/9eq+ZZDoLH44HT6US1WoVKpcLw8DCuXbuG5eXlx75WtgXP89Dr9ejp6YEk\nSYjH4yiXy23x4h8UlmXBcRxUKhVKpRI2NjbQaDQwOzuLb775Bul0GrFYDBaLhdy4NzY2EIvFiM05\njmurtcUwDLRaLYCtm/KTOFilUgmdTodsNguGYcBxHKxWKwYGBqDVamGz2TA6OoqpqSnEYjEoFArE\n43FEIpHj+jgthXzgicfjJDTOcRzy+Tzm5uYQiUSwvLyMSCQCj8cDjuOg0+lQLpdJpMPr9aJcLpPD\nZisj7+WPwnEcHA4HSRfI687hcKBcLsNgMKBcLoPneXR1dYHjOIRCIbK2z5w5A4ZhEIlEEA6HIQgC\nMpkMSfMAIKmeo6YjHDjDMBgZGcFzzz0Hj8cDlUqFarWKfD6PYrG45/fWajXk8/mHNp5qtdrWp/1X\nX30VP/zhD5FKpZBOpzE7O4t0Or3j18r5R/lmHgqFYLVace7cOQSDQaRSqRN++tOhXq8jlUpheHgY\nf/u3f4uPP/4YH374ISmSrNfrWFxchM/ng0KhINGbq1evYnV1FW63G0tLS1hZWWkrhUCWZeH1esEw\nDGZnZ5/os1mtVgwPD2NychLBYBB+vx+XL19GT08PzGYzSqUSJiYmYDKZ8L3vfQ8ejwfXrl3DH/7w\nh2P8RK3D2NgY/v7v/x7ffvst4vE4/H4/uSneu3cPPp8P8XgcAwMD6O/vB8dxUCgU4DgOLpcL9Xod\ner2e3DhbnXK5jEql8tgtWK1W45VXXoHdbkc4HIbb7YbdbifvLQDcvHkTm5ubMJvNpDI/n88jGo1i\nY2MDTqcTDocDkiShUCgglUohHA4f+/7X9g68u7sbFy9eRD6fx/r6OsbHx+FwOFAoFLCysoKVlZV9\nf8ZOjrpdnTcARKNRTE5OYnV1lYSFtofNt2Oz2TA4OAhRFGGxWDA4OAiGYRCPx3c87bYz9Xodfr8f\nH330EaamppBMJh/KaVcqlceq93O5HHK5HHieh9VqhdfrRSgUapsQeqPRQDQaPZSU5/ZIl0KhgEql\ngt/vx5/+9CcwDANJklAqldDT0wOVSoW7d+8e6H3uFPR6Pfr7+/HJJ58gFArhpZdewszMDG7fvo3l\n5WXE43ESBfr6669RLpfhcrmg0WgQDAYRDAYRCATaRjq10WhAoVDg/PnzYFkWCwsLqFQqKJfLmJ2d\nRSgUQr1eh0ajgcVigdvtRjAYxM2bN+Hz+ZBMJlGpVEhESI5QKJVKWK1WuFwuqFQq1Go1hMNhJBKJ\nY/9Mbe/ALRYLLl26hGvXriEYDCKbzcLtdkOpVMLn89ECtm0oFAoolUoEAgF8/vnnmJmZQTKZfOyw\nIp/Sq9UqTCYTLl68CJvNBofDAY/Hg9XVVfh8vrasD9iPtbU1rK2t7ft1arWaVPZ3dXVhcHAQJpOJ\n9Oa2iwOv1+uHdgDlchmpVAqVSgUKhQJqtRrJZBIPHjxAvV6HJEmo1WowGAzgOA5Xr15FPB4/4k/Q\nugiCAJ1Oh2KxiEwmA57nEYvFMDU1hWw2S8K70WgU0WgU3377LUZGRjA8PIylpSVsbGwgHA631WVF\noVDA4/FAoVBgZWWFHKoXFxdhMpngdDqRzWaRzWZht9sRiURw9epVlEol4piBrcOl2WyGxWJBrVYD\nz/Ow2WxIpVKkdkCWwD1O2t6BLy8v4/3338err74KvV6PX/ziF3jllVdw6dKlY+tlblUMBgOGhoZQ\nqVQQjUaJQ380zWA2m2EymRAOh5HP5zE/Pw+NRgNRFKFQKLC6uoqrV68imUye0idpfkZHR/Hee+/B\nbDbD4XDA6/Xi1q1bWFxc7LjIxW6kUinMzs4SgZFEIoErV67gO9/5Dq5evYq5uTkEg0H87ne/A8Mw\nyGQyp/3ITQfHcfjJT36Cb7/9Fj//+c+xsrKCYrG46+HaaDTC7XZjYmKiLQWGqtUq7ty5A4ZhiP6H\nUqnEs88+i2eeeQYXLlwAx3HIZDL45JNPMDU1hWKx+Fj0qNFoYHV1FbFYDFqtlvTU37hxA+FwGAaD\nARqN5tg/T1s6cLmQSA5r9PT04PLly+A4DsvLy1hdXUU8Hienpmg0uuvPkk+xsthGOyNXlGs0GhgM\nBjidTgQCgcdaxmq1Gml5YlkWKpUK6+vrJK8r58LbHaVSCZPJhHw+/8TOo1qtolAoYHh4GEajEXfv\n3sXS0lLbbZhPiiAI0Gq1cLvdyOVyWF1dJX8mHyxXV1cRDochSRKcTicikQiy2ewpPnVzoVarMTQ0\nhPPnz6NWq8HpdMJmsyEUCiEWi6FSqey4zliWRTwex/z8POLx+I4XHDmt0ap94fV6HfF4HKIowmaz\noVAoQJIkiKIIp9OJ8fFxZLNZzM/PY2NjAxsbG7sednK5HEqlEvL5PHK5HBiGQTAYhM/ng8vlQrFY\nJL3fx/Vet6UDl/9xxsfH8frrr+Ptt98m5f1/9Vd/hffffx+//e1v8dxzz6Gvr29PB67RaOD1eknV\ncDtTLpcRiUTwzDPP4OzZs5AkiTiW7SSTSXK79ng8OHPmDD777DN8++23kCSpY6RptVotzp8/D7/f\n/0QOnGEYLC8v4ze/+Q26urqQTqfxb//2b+A4DoODgx3txNVqNXp6evDmm29ibW3tIQcOANevX8f1\n69cBAP39/bhy5Qq++eYb6sC3YTQa8aMf/Qgvv/wyyuUyMpkMqtUqPB4P0un0jukZucp/fn4eMzMz\nu/5slmWhUChaXhddrh4PBALY3NxEPB5HsViE3W5/SHTlIF1KcndEb28vWJZFKBQiNUCCIBxru3Fb\nOvByuYxqtYre3l4EAgH80z/9E6rVKsrlMorFIgl7LC8v71uFns/n4fP52qKNYj9KpRICgQAKhQJm\nZmbQaDR2zClevHgRfX19uHnzJlQqFRwOB1544QVEIhGsr693xO0bALLZLGZnZw+8NpRKJbxeL37w\ngx9gfX0dn376KQqFAgwGA8xmM4LBICYnJzumcn8nCoUCsc12R6PRaODxeGAwGMAwDObm5pDJZLC4\nuLhrh0QnwvM8JEnCl19+CQB4/fXXUa/X4fV68eMf/xgjIyOYnp7G7du3yUFbqVRCrVZDq9Uim83u\nmfqSb5Ot7LyBrdvzwsICCoUCEVeq1Wr4+c9/Tvax1dXVfdtgHQ4H3n77bZw5cwbRaBTnz59HqVTC\nzMwM+d7dbKVUKqHX64k89WFoSwcut3i53W4kEgncv3+fCLHUajXo9XpYrVasr6/ve3KvVConUk3Y\nDNRqNaRSqX0diEqlIoVD5XIZ8XgcdrsdPM/j5s2be0Y02olyufxEhxU5TPfd734XCwsLmJiYIIVa\ngiCgVCp1bN2AIAjQ6/UoFArIZrMPiQDJ4iP9/f1wuVxkklaxWCSDOQ4LwzBtFfGQP48sFFStViEI\nAmw2G4xGIwwGA7Hz/Pw8wuEweJ4nUqH7aRDspDLWisjRRmCrWl+pVCIWi+H69etIJpOkxXivmzPH\ncTCbzRgdHUW9Xsf09DQp7LXb7YjH43v6F1k34ml0H9rSgQNb1YYWiwVerxelUgnxeBypVIpUYzYa\nDaRSqQOp8nQKB30xJycnsbCwQCQXf/WrX+HVV1+FSqVCKBSiN6JdkDfJaDQKh8OBn/70p5AkCZOT\nk8hmsy1/q3kajEYjnn32WaysrCAajeLll19GPB5HMBiE0WiEy+WC0+lET08PHA4HLl++DGDrdvPf\n//3fu7Y57oW8gcrTt9qBarUKjuPwxhtv4MqVKzCbzVAoFCiVSojFYuB5HoODg1CpVDCbzfjwww9R\nr9dRKBSQTCbbSoPgoFSrVSwuLkKSJPj9fvIe7rcfajQaaLVaSJKEpaUlfPrpp0in09Dr9RgfH8f8\n/DwmJyd3/X55KNTTrL22cuByr6jcrJ9Op2G1WjE2NoaJiQlks1k0Gg24XC7YbDYkEgni3Cl7s32c\naKlUIvUAoig+1PddKBR2dEQajQYcxyGXy7XNZvmkyJELs9kMtVqNYrGI69evY2VlBVarFcVisWMP\nP8ViEX6/n/Tarq6uQqvV4rXXXiM9ubJ+t9FoJIfwSqUCnU53qL+zHQehyBPubty4gWQyiZ6eHjz7\n7LOoVqv44IMPkEql0Gg0UK1WIUkS3nrrLczPz2Nzc/Mhje9OQrZHrVYjvuMgkRl5UqNarYbFYiE1\nBtFoFIuLi/v6FXnG+tPQdg5crVYTZxONRtHd3Y3u7m7Mz88TSUBZ59bhcBAxg3K5jFqtBpZl2yZM\ndJTIcrKPbnZKpRJ2ux3JZBKFQoEUgDzqpFUqFZk53AkOfPsMdbnwR67ut9lsaDQaKBaL8Pl82NjY\nwKVLlzq6DSqbzZLiKZZl8eDBA4yNjeGdd96BXq+H2WyGzWaDwWCAUqkkXSHye3sYjkve8rTJ5XL4\n7LPPMDk5id7eXjIK+IMPPkAoFALLslCr1RgZGcH3vvc9hEIh+Hy+037sU2V7FGa/A5085MVisUCn\n06FWq8FsNuPixYvY2NjA4uIiHjx4cBKP3V4OXM7harVaMmVHbgOQJAmCIIBhGHzzzTe4ceMGKYzp\n7e3F9PQ0IpEI0QKmg+wfZreNTlZgW11dRSaTgcvlQjKZfEyPOpPJgGXZtg/RyXrLOp0OGo0GDMNA\np9PBarWC47Zet2KxiPX1dfzpT3+C2WyGRqPB5uZm2yhePS2yY2UYhrSDlkol/OY3v4HRaITZbMb0\n9DQ2NzeRTqc73vk8Cs/z6O7uRqPRwNzcHO7cuQOVSkVqChiGgUajQSgUwv/8z/90vHZ8pVIhLZwH\nOdCdO3cOr7/+OtRqNUqlEj799FMYDAZYLJYT13BoKwder9dRqVSImpU85MBsNmNzcxOpVAo8z5N5\nt3a7HQaDAWq1GrVaDUqlEh6PB4lEgjrwR9gtIiFHPWSdYZfLhUaj8dim0EmiOXKVLs/zOHfuHDwe\nD2w2G4rFIgRBwNraGiYnJzExMQGn0wmWZREIBEhfcyqVavuWxb2QQ4uRSAT379+H3+9HrVbD6uoq\nTCYTotEobt++Db/f3xHdIU+KHBIul8tIJpO4c+cOlErlQ2uqWq0ikUh0bMpmO/V6/YmiX3JrnsPh\nAMuymJ+fh8PhIPnwk6StHLiMLIW3trb20ExXm82GsbExGAwGJJNJ0iog/7ndbsfg4CB8Ph8CgcBp\nfoSWQQ4PsywLURThcDjaRgb0MMjpl0wmA61WiytXrmB0dJSMEI1EIpiYmMCtW7ewtrYGv99Pvq+v\nrw99fX2Ynp7uaAcObEXT5ufnsbi4CGBLc//SpUsAtnQIEokEdd67UK1WyboCgDt37gD48yFckqSO\n6aw5Dubn57G6uoqf/exnMJlMSCaTZALZSRdEt6UDl3k0l53JZMjmWC6XYbfbSbEbwzBQKpVtVZF6\nEsTjcdy5cwflchkMw+Du3bsd2wq1HafTibNnz8JsNsPn8+Hrr7/G6OgolEol7t+/T0azykWVr732\nGrLZLBYXF2n0ZxtyPjKdTmN6ehqCIECSpI6uF3hSaD3Pn2FZFjabDQzDIBqNHmqvdzgc6O/vh16v\nh8FgwJtvvgm/349vvvmGFK6dVHtiSzjwozKGPHkH+HPxlVxVLec/4vF4R98gnxR58IbRaIQoigiF\nQqSVZfskrk5DFscoFArw+Xz45JNPUKlUYLVasbCw8FCvvFqtxsDAABEMapc6Abke4CikJLe/u52C\nVquFXq8n3TJHhUKhgNFoBLD1/ur1ejAMQ7TPFQpF21akMwxDOmcO238taxbIcrM6nY7k0bf/PcDx\nH56a3oHL1bxH7QwUCgVsNhsJN8matqlUivaFH4JsNgtJkmC328nIve0D7TsNWVOaZVkS7v3iiy/A\ncdxjecdEIoHPP/8cCoUCVqsVuVzu0MpMzQTHcRBFkUxyojwZfX19GB8fx+eff36khXoqlQrPP/88\n6vU6pqamMD4+Dp7n8cc//hGSJEGtVpMpcO2GPKuBYZhDr8lQKETqqRQKBRqNxmNRs5NqTWx6B36U\nsn1arRZer5e0NGm1WkSjUZRKJXg8HvA8T0bMUZ4MSZLA8zy8Xi+i0SgSiQRUKhU4jmsLZ/SkFItF\nRCIREuGRJGnXgiFRFIk2gaytvL6+DkmSiCJUK1Kv11GtVo90M+vu7obdbsfi4mLbh9ETiQQWFxcP\nFBHUarXo7u4mUqjymtsJOQVRq9VI66d8K61WqyiVSm3VG/8oT3up0Gg0sNvtpC05lUqd2gG1JRz4\nUd285eETRqORqBOFw2HU63X09PRAp9MhEAjsq39L2RlBEIggidwC1KkOXN4M19bW9twM5cE7IyMj\n6O3tBc/zxDHJldiy6EarhTSPo57E7XZjaGgI4XC47R14IBDYs5iW53ky7tdoNGJsbAybm5tYWlra\n04nLFf3AVneI7IDktFe72/VpMRgMGBwcRKFQQCwWI9oWp/F+Nr0DP0qSySS+/vprcBwHg8GAN954\nA6OjoygWiwgEAkin07SA6ClIJpO4fv06urq68NJLL2F6erpjq137+/ths9kwNTW1q7Y8y7IYGxvD\n0NAQ0R6wWq1QKpUwm80wGo0wGo1QqVQIBoN0bQJENaxTJt7txZkzZ3DlyhVcvXoVjUYDFouFqNPJ\n7XaPavXLHSOpVApdXV147rnn4Pf7EQgEMDg4iGAwiLW1tVP6RK1BJBJBuVwmuvx6vZ4IM500HeXA\nlUolXC4X1Go1UXdqNBoYGhrC119/3TFTtI4SvV4Pl8uFUqmEXC6HUCgEURSJyEGn5sDNZjN6enoQ\nCARQLBYfi+rIc6/PnDmDc+fOQZIkpFIpsummUinU63Xk83naFbENnufJ5Cyj0Qir1YpAINCRnQ9y\nMVVXVxfR1O7p6YHT6cTk5CR4nofT6YRWq4UoigBA8rby/Gp5xno6nYZaraZr7QDINR2yAwdOr9K/\noxy4x+PBz372M3R3d0OhUMDv9yObzeLChQuYnZ097cdrSdxuN9566y1EIhH4fD5MTEzA5/PtGzpu\ndwRBIHKLuVzusQltGo0Gbreb/Ads9et+8cUXZCCMrMt8FFXc7cKFCxdw+fJlfP3119BoNHjxxRfx\n0UcfdaQDj0ajmJychM1mgyiKiMfjuHTpEgYGBuD3+4kOQV9fH6xWKxiGAc/zpIXqj3/8I/7zP/+T\nTG+cnJyk6+wAsCwLnufJwahQKJyabkNHOXCtVovh4WHivNfW1hCJRDpqZOhebB8GU61WIYoiUbcD\ntnI/Z8+eRTgcJkIRoVAIX3zxBSnCGhoawsbGxr7RDIVCAY/Hg0ajgY2NjbZz9vIwg0wms2NRZKFQ\nQDAYxP3791Gv19Hf34/+/n6oVCp89NFHCIfDLX0b0mq1RA3sKJAle9PpNG7duoX19XUwDIN0Ot1x\n7WUyyWQSS0tL+NGPfgSj0YjPP/8cmUwGkiQhFovB4/HgrbfeIuNXFQoFOI4jY5VFUSTOGzi5yulW\nZGRkBEajEQ8ePEA2myVtYwqFAsViEUqlkmj0n2TUseUdOMdxEAQB5XJ53w1P7v1LpVJYWVnB/Pw8\nyS124gn+UWQ1NUmSyGAXGYPBAKfTCbvdjnw+D47jwPM8arUa1tbWwPM8LBYLtFotCSvt93dpNBo0\nGo2nmofbrGxubiIUCkGpVD60McqFfvIIx1AoBIvFgp6eHjLicadhMK0Gz/NP/RkUCgV4nieHSYfD\nAaVSiUKhgFwuh3Q6jfX19SN64tZDnh/f1dVF3ku5qtzhcGBwcBAXLlwgaRiVSoV4PI7NzU34fL7H\nokKUx+F5HiqVCr29vbDb7djY2CAHnlqtRros5JnqJ50Hb3kHLudgNzY29tX1DYfD+O1vf4tSqQSf\nz4epqSkkEomHbpmdjKyhLIdtZYEbhmEwMjICvV6Pe/fuIZ/PkwEdRqMROp0Oa2trWFxcPLAt5UrY\ndp0IBeAhG8pYrVb8xV/8BYrFIiYmJsjmq9PpcOvWLXz44YdtUaCVyWSeOhyr0Whgs9kQiUTA8zwM\nBgNeeOEFdHV14b/+678wPT3dsTUWwFZNj8VigUajgVKphFarBcdxsFqt+Md//Eci3yuPURYEAV98\n8QX+93//F+vr6wiFQjRkvg8mkwkDAwMk2tPV1QWLxQKGYdDf349KpYLPPvuM3MqpFvoTUqlUkE6n\nD/QiJxIJfPHFF6jVashkMojFYoc+MTEMA7VavWMTf6uyvWdZ/jWwdROKxWLIZDKIx+OQJAmiKCKb\nzZKbZDwef6LBCKdVtXnSPBqWLBaLWFxchNVqxYULFxAKhTA1NYVisYipqamHNKxbmafZyOQWRLll\nbHFxEY1GAx6Ph6w7uT6gk5EkCblcDn/605+gUqmwvr6Or776ColEAnq9nkz/6+npgSAICAQC+Oqr\nr3Dnzh1SY0HZG5VKBZfLhWg0ikKhAKPRCEmSEI1GIQjCQ7fw01iPTKOJj2DNHFqVNXUbjQai0Sg5\nyTaTOY/Cftvne5/EZ2sW+x332rt8+TLefPNNfPzxx8ShH0Uqpx3sx3EcjEYjRkZG8OKLL5IDzvDw\nMCqVCoLBIG7cuHHk41ebxXbA09mPYRgIgoB6vY5arYb33nsPOp0OH3744bH2eDeL/Y7y3e3v78eL\nL76Ib7/9FrFYDOPj44jFYrh37x5YlgXDMEd26z6M/Vr+Bn5a1Ot10t/bLAv3OJBD3O38GU+D5eVl\n5HI5BINBMtqRyo1uOW+O48g44GAwiHQ6DUmSsLq6CoPBQESYKDsjp8JkEaxbt26B47i2iRSeJOFw\nGF9++SWSySREUSQqnsCWDzjtS2bH38DlloCjknxsJnOe9uI6DM1iv1a0HdD69uM4DizL7jpMw2g0\nQqvVIhaLHbkTbxbbAa25/prFfsdlO51Oh+HhYaRSKczNzR3Zz5XX/GE6NjregSuVSuh0OmSz2SPZ\nEJrJnHQTODytaDug/e0nd5IcR76xWWwHtOb6axb7Hefak4eXHGWxmty5c5iuAHb/L2lvqtUqcrlc\nR1ezUijNjkqlQl9fH0wmU8cUr8lV5oIgnPajULB1QKnVakfmvDmOg1arJYqLh6HjHbgkSSgWi23b\nykShtANKpRJdXV0wGAyn/SgnhiiK0Ov14Hn+tB+FcgxwHAeVSoV6vX74eVL3dwAAAU9JREFUbqhm\nDqFTKBQKhULZmY6/gVMoFAqF0opQB06hUCgUSgtCHTiFQqFQKC0IdeAUCoVCobQg1IFTKBQKhdKC\nUAdOoVAoFEoLQh04hUKhUCgtCHXgFAqFQqG0INSBUygUCoXSglAHTqFQKBRKC0IdOIVCoVAoLQh1\n4BQKhUKhtCDUgVMoFAqF0oJQB06hUCgUSgtCHTiFQqFQKC0IdeAUCoVCobQg1IFTKBQKhdKCUAdO\noVAoFEoLQh04hUKhUCgtCHXgFAqFQqG0INSBUygUCoXSglAHTqFQKBRKC0IdOIVCoVAoLQh14BQK\nhUKhtCDUgVMoFAqF0oJQB06hUCgUSgtCHTiFQqFQKC0IdeAUCoVCobQg1IFTKBQKhdKCUAdOoVAo\nFEoLQh04hUKhUCgtCHXgFAqFQqG0INSBUygUCoXSglAHTqFQKBRKC/L/AZ/p1WW8PfaKAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def plot_images(images, subplot_shape):\n", " plt.style.use('ggplot')\n", @@ -473,10 +670,39 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Larger number of iterations should generate more realistic looking MNIST images. A sampling of such generated images are shown below.\n", - "\n", - "\n", - "\n", + "Larger number of iterations should generate more realistic looking MNIST images. A sampling of such generated images are shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Figure 3\n", + "Image(url=\"http://www.cntk.ai/jup/GAN_basic_slowmode.jpg\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "**Note**: It takes a large number of iterations to capture a representation of the real world signal. Even simple dense networks can be quite effective in modelling data albeit MNIST is a relatively simple dataset as well." ] }, @@ -510,7 +736,7 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -524,7 +750,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.5.2" } }, "nbformat": 4,