diff --git a/Manual/Manual_How_to_create_user_minibatch_sources.ipynb b/Manual/Manual_How_to_create_user_minibatch_sources.ipynb index 5788f0768..c07916927 100644 --- a/Manual/Manual_How_to_create_user_minibatch_sources.ipynb +++ b/Manual/Manual_How_to_create_user_minibatch_sources.ipynb @@ -369,7 +369,7 @@ " return {'next_seq_idx': self.next_seq_idx}\n", " \n", " def restore_from_checkpoint(self, state):\n", - " self.next_seq_idx = state['next_seq_idx']\n" + " self.next_seq_idx = state['next_seq_idx']" ] }, { @@ -390,7 +390,9 @@ { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -419,7 +421,7 @@ "loss = C.cross_entropy_with_softmax(z, label)\n", "errs = C.classification_error(z, label)\n", "local_learner = C.sgd(z.parameters, \n", - " C.learning_rate_schedule(0.5, unit = C.UnitType.sample))\n", + " C.learning_parameter_schedule_per_sample(0.5))\n", "dist_learner = C.distributed.data_parallel_distributed_learner(local_learner)\n", "# and train\n", "trainer = C.Trainer(z, (loss, errs), \n", @@ -476,5 +478,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 0 } diff --git a/Manual/Manual_How_to_feed_data.ipynb b/Manual/Manual_How_to_feed_data.ipynb index 6f2663d86..b79e12dfb 100644 --- a/Manual/Manual_How_to_feed_data.ipynb +++ b/Manual/Manual_How_to_feed_data.ipynb @@ -67,7 +67,9 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -120,7 +122,9 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -149,7 +153,9 @@ { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -173,7 +179,7 @@ ], "source": [ "learner = C.sgd(model.parameters,\n", - " C.learning_rate_schedule(0.1, C.UnitType.minibatch))\n", + " C.learning_parameter_schedule(0.1))\n", "progress_writer = C.logging.ProgressPrinter(0)\n", "\n", "train_summary = loss.train((X_train_lr, Y_train_lr), parameter_learners=[learner],\n", @@ -190,7 +196,9 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "data": { @@ -271,7 +279,9 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -348,7 +358,7 @@ "z = model(x/255.0) #scale the input to 0-1 range\n", "loss = C.cross_entropy_with_softmax(z, y)\n", "learner = C.sgd(z.parameters,\n", - " C.learning_rate_schedule(0.05, C.UnitType.minibatch))" + " C.learning_parameter_schedule(0.05))" ] }, { @@ -365,7 +375,9 @@ { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -423,7 +435,9 @@ { "cell_type": "code", "execution_count": 10, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -453,7 +467,7 @@ "z1 = model(x/255.0) #scale the input to 0-1 range\n", "loss = C.cross_entropy_with_softmax(z1, y)\n", "learner = C.sgd(z1.parameters,\n", - " C.learning_rate_schedule(0.05, C.UnitType.minibatch))\n", + " C.learning_parameter_schedule(0.05))\n", "\n", "num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size\n", "\n", @@ -613,7 +627,9 @@ { "cell_type": "code", "execution_count": 12, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -664,6 +680,7 @@ "cell_type": "code", "execution_count": 13, "metadata": { + "collapsed": false, "scrolled": true }, "outputs": [ diff --git a/Manual/Manual_How_to_train_using_declarative_and_imperative_API.ipynb b/Manual/Manual_How_to_train_using_declarative_and_imperative_API.ipynb index 4809a84f5..354637177 100644 --- a/Manual/Manual_How_to_train_using_declarative_and_imperative_API.ipynb +++ b/Manual/Manual_How_to_train_using_declarative_and_imperative_API.ipynb @@ -67,7 +67,9 @@ { "cell_type": "code", "execution_count": 30, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -130,7 +132,7 @@ "\n", "# Create a learner and a trainer and a progress writer to \n", "# output current progress\n", - "learner = cntk.sgd(model.parameters, cntk.learning_rate_schedule(0.1, cntk.UnitType.sample))\n", + "learner = cntk.sgd(model.parameters, cntk.learning_parameter_schedule_per_sample(0.1))\n", "trainer = cntk.train.Trainer(z, (loss, loss), learner, ProgressPrinter(freq=10))\n", "\n", "# Now let's create a minibatch source for our input file\n", @@ -186,7 +188,9 @@ { "cell_type": "code", "execution_count": 31, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -231,7 +235,7 @@ "z = model(features)\n", "loss = cntk.squared_error(z, label)\n", "\n", - "learner = cntk.sgd(model.parameters, cntk.learning_rate_schedule(0.1, cntk.UnitType.sample))\n", + "learner = cntk.sgd(model.parameters, cntk.learning_parameter_schedule_per_sample(0.1))\n", "trainer = cntk.train.Trainer(z, (loss, loss), learner, ProgressPrinter(freq=10))\n", "\n", "# Try to restore if the checkpoint exists\n", @@ -281,7 +285,9 @@ { "cell_type": "code", "execution_count": 32, - "metadata": {}, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -330,7 +336,7 @@ "\n", "# Make sure the learner is distributed\n", "distributed_learner = cntk.distributed.data_parallel_distributed_learner(\n", - " cntk.sgd(model.parameters, cntk.learning_rate_schedule(0.1, cntk.UnitType.sample)))\n", + " cntk.sgd(model.parameters, cntk.learning_parameter_schedule_per_sample(0.1)))\n", "trainer = cntk.train.Trainer(z, (loss, loss), distributed_learner, ProgressPrinter(freq=10))\n", "\n", "if os.path.exists(checkpoint):\n", @@ -385,6 +391,7 @@ "cell_type": "code", "execution_count": 33, "metadata": { + "collapsed": false, "scrolled": true }, "outputs": [ @@ -441,7 +448,7 @@ "\n", "criterion = criterion_factory(features, label)\n", "learner = cntk.distributed.data_parallel_distributed_learner(cntk.sgd(model.parameters, \n", - " cntk.learning_rate_schedule(0.1, cntk.UnitType.sample)))\n", + " cntk.learning_parameter_schedule_per_sample(0.1)))\n", "progress_writer = cntk.logging.ProgressPrinter(freq=10)\n", "checkpoint_config = cntk.CheckpointConfig(filename=checkpoint, frequency=checkpoint_frequency)\n", "test_config = cntk.TestConfig(test_mb_source)\n",