make C# sample back compatible with Rel2.2 Nuget

This commit is contained in:
liqfu 2017-10-31 14:54:29 -07:00
Родитель 12ba72ea21
Коммит ba5108c460
5 изменённых файлов: 33 добавлений и 9 удалений

Просмотреть файл

@ -41,8 +41,10 @@ namespace CNTK.CSTrainingExamples
Value features, labels;
GenerateValueData(minibatchSize, inputDim, numOutputClasses, out features, out labels, device);
//TODO: sweepEnd should be set properly instead of false.
#pragma warning disable 618
trainer.TrainMinibatch(
new Dictionary<Variable, Value>() { { featureVariable, features }, { labelVariable, labels } }, false, device);
new Dictionary<Variable, Value>() { { featureVariable, features }, { labelVariable, labels } }, device);
#pragma warning restore 618
TestHelper.PrintTrainingProgress(trainer, minibatchCount, updatePerMinibatches);
}

Просмотреть файл

@ -168,9 +168,11 @@ namespace CNTK.CSTrainingExamples
imageDims, animalModelNumClasses, device, out imageBatch, out labelBatch))
{
//TODO: sweepEnd should be set properly.
#pragma warning disable 618
trainer.TrainMinibatch(new Dictionary<Variable, Value>() {
{ imageInput, imageBatch },
{ labelInput, labelBatch } }, false, device);
{ imageInput, imageBatch },
{ labelInput, labelBatch } }, device);
#pragma warning restore 618
TestHelper.PrintTrainingProgress(trainer, minibatchCount, 1);
}
}
@ -279,14 +281,11 @@ namespace CNTK.CSTrainingExamples
Variable oldFeatureNode = baseModel.Arguments.Single(a => a.Name == featureNodeName);
Function lastNode = baseModel.FindByName(hiddenNodeName);
Variable newFeatureNode = CNTKLib.PlaceholderVariable(featureNodeName);
// Clone the desired layers with fixed weights
Function clonedLayer = CNTKLib.AsComposite(lastNode).Clone(
ParameterCloningMethod.Freeze,
new Dictionary<Variable, Variable>() { { oldFeatureNode, newFeatureNode } });
clonedLayer.ReplacePlaceholders(new Dictionary<Variable, Variable>() { { newFeatureNode, normalizedFeatureNode } });
new Dictionary<Variable, Variable>() { { oldFeatureNode, normalizedFeatureNode } });
// Add new dense layer for class prediction
Function clonedModel = TestHelper.Dense(clonedLayer, numClasses, device, Activation.None, outputNodeName);

Просмотреть файл

@ -735,6 +735,7 @@ RENAME_AND_MAKE_PRIVATE(CNTK::Function, Save);
RENAME_AND_MAKE_PRIVATE(CNTK::Function, Clone);
RENAME_AND_MAKE_PRIVATE(CNTK::Function, Evaluate);
RENAME_AND_MAKE_PRIVATE(CNTK::Function, FindByName);
RENAME_AND_MAKE_PRIVATE(CNTK::Trainer, TrainMinibatch);
// Customize type mapping for modelBuffer, used by Load
%typemap(ctype) (char* buffer) "char*"
%typemap(imtype) (char* buffer) "byte[]"

Просмотреть файл

@ -151,6 +151,13 @@ namespace CNTK
return _Clone(ParameterCloningMethod.Share);
}
/// <summary>
/// Clones 'this' Function. The parameters of the Function are either cloned, shared or frozen as specified by the parameterCloneMethod argument and
/// any variable replacements requested are applied in the cloned Function instance.
/// </summary>
/// <param name="parameterCloneMethod"></param>
/// <param name="replacements">existing variables to be replaced with new variables.</param>
/// <returns></returns>
public Function Clone(ParameterCloningMethod parameterCloneMethod, IDictionary<Variable, Variable> replacements)
{
UnorderedMapVariableVariable replacementVector = Helper.AsUnorderedMapVariableVariable(replacements);

Просмотреть файл

@ -38,7 +38,7 @@ namespace CNTK
public bool TrainMinibatch(IDictionary<Variable, MinibatchData> arguments, DeviceDescriptor computeDevice)
{
UnorderedMapVariableMinibatchData vectorData = Helper.AsUnorderedMapVariableMinibatchData(arguments);
return TrainMinibatch(vectorData, computeDevice);
return _TrainMinibatch(vectorData, computeDevice);
}
/// <summary>
@ -47,10 +47,25 @@ namespace CNTK
/// <param name="arguments">minibatch data as variable value pairs</param>
/// <param name="computeDevice">device</param>
/// <returns></returns>
[System.Obsolete("TrainMinibatch() without isSweepEndInarguments will be deprecated soon. Please TrainMinibatch() with isSweepEndInarguments.", false)]
public bool TrainMinibatch(IDictionary<Variable, Value> arguments, DeviceDescriptor computeDevice)
{
UnorderedMapVariableValuePtr mapData = Helper.AsUnorderedMapVariableValue(arguments);
bool isSweepEndInarguments = false;
return _TrainMinibatch(mapData, isSweepEndInarguments, computeDevice);
}
/// <summary>
/// train with a minibatch data
/// </summary>
/// <param name="arguments">minibatch data as variable value pairs</param>
/// <param name="isSweepEndInarguments">indicates whether the current minibatch data is the end of one sweep</param>
/// <param name="computeDevice">device</param>
/// <returns></returns>
public bool TrainMinibatch(IDictionary<Variable, Value> arguments, bool isSweepEndInarguments, DeviceDescriptor computeDevice)
{
UnorderedMapVariableValuePtr mapData = Helper.AsUnorderedMapVariableValue(arguments);
return TrainMinibatch(mapData, isSweepEndInarguments, computeDevice);
return _TrainMinibatch(mapData, isSweepEndInarguments, computeDevice);
}
}
}