This commit is contained in:
Vadim Mazalov 2017-05-15 13:19:48 -07:00
Родитель a9aeec8edd
Коммит c6d1753283
1 изменённых файлов: 10 добавлений и 38 удалений

Просмотреть файл

@ -13,7 +13,7 @@
"* [MLF file with labels](https://github.com/Microsoft/CNTK/blob/master/Tests/EndToEndTests/Speech/Data/glob_0000.mlf)\n",
"* [States list file](https://github.com/Microsoft/CNTK/blob/master/Tests/EndToEndTests/Speech/Data/state_ctc.list)\n",
"\n",
"The example state list file contains the CTC blank label \"s_blank\" as the last entry, i.e. at index 132.\n",
"The example state list file contains the CTC blank label `s_blank` as the last entry, i.e. at index 132.\n",
"\n",
"## Feature Input Definition\n"
]
@ -30,9 +30,7 @@
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@ -80,9 +78,7 @@
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"metadata": {},
"outputs": [],
"source": [
"feature_mean = np.fromfile(os.path.join(\"GlobalStats\", \"mean.363\"), dtype=float, count=feature_dimension)\n",
@ -104,15 +100,13 @@
},
"source": [
"## Define Training Parameters, Criteria and Error\n",
"CTC criteria is implemented by combination of the **labels_to_graph** and **forward_backward** functions."
"CTC criteria is implemented by combination of the `labels_to_graph` and `forward_backward` functions."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"metadata": {},
"outputs": [],
"source": [
"mbsize = 1024\n",
@ -137,9 +131,7 @@
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@ -184,15 +176,13 @@
"source": [
"# Test the Model \n",
"\n",
"For simplicity, we will use a portion of the train set for testing here"
"For simplicity, we will use a portion of the train set for testing here."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@ -207,32 +197,14 @@
"\n",
"print(round(trainer.test_minibatch(test_data), 2))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [cntk-py35]",
"display_name": "Python 3",
"language": "python",
"name": "Python [cntk-py35]"
"name": "python3"
},
"language_info": {
"codemirror_mode": {