creating final version of ImageHandsOn
This commit is contained in:
Родитель
318656ad53
Коммит
c7df94d68c
10
CNTK.sln
10
CNTK.sln
|
@ -1153,6 +1153,15 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "BrainScriptTests", "Tests\U
|
|||
{86883653-8A61-4038-81A0-2379FAE4200A} = {86883653-8A61-4038-81A0-2379FAE4200A}
|
||||
EndProjectSection
|
||||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Tutorials", "Tutorials", "{8BE0642A-A3AA-4A64-95D0-C78FB285B2A4}"
|
||||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "ImageHandsOn", "ImageHandsOn", "{2230BF3D-4317-4A3F-A743-DDD6160503F8}"
|
||||
ProjectSection(SolutionItems) = preProject
|
||||
Tutorials\ImageHandsOn\cifar10.cmf = Tutorials\ImageHandsOn\cifar10.cmf
|
||||
Tutorials\ImageHandsOn\CifarConverter.py = Tutorials\ImageHandsOn\CifarConverter.py
|
||||
Tutorials\ImageHandsOn\ImageHandsOn.cntk = Tutorials\ImageHandsOn\ImageHandsOn.cntk
|
||||
EndProjectSection
|
||||
EndProject
|
||||
Global
|
||||
GlobalSection(SolutionConfigurationPlatforms) = preSolution
|
||||
Debug_CpuOnly|x64 = Debug_CpuOnly|x64
|
||||
|
@ -1598,5 +1607,6 @@ Global
|
|||
{1C6E6C53-1AA7-4B69-913E-B97BB5A872CF} = {3385EBEA-5F97-4B2B-9F30-0E6D7F91B9CA}
|
||||
{CCC07E8E-F33A-4AF7-9F60-93E2AA61C75E} = {3385EBEA-5F97-4B2B-9F30-0E6D7F91B9CA}
|
||||
{9F999212-AFC5-4EAC-AA78-F7247D46C456} = {6F19321A-65E7-4829-B00C-3886CD6C6EDE}
|
||||
{2230BF3D-4317-4A3F-A743-DDD6160503F8} = {8BE0642A-A3AA-4A64-95D0-C78FB285B2A4}
|
||||
EndGlobalSection
|
||||
EndGlobal
|
||||
|
|
|
@ -1,15 +1,15 @@
|
|||
# Simple CIFAR-10 convnet, without and with BatchNormalization.
|
||||
# CNTK Configuration File for training a simple CIFAR-10 convnet.
|
||||
# During the hands-on tutorial, this will be fleshed out into a ResNet-20 model.
|
||||
|
||||
command = TrainConvNet:Eval
|
||||
#command = TrainConvNetWithBN:Eval
|
||||
|
||||
makeMode = false ; traceLevel = 0 ; deviceId = "auto"
|
||||
|
||||
RootDir = "." ; DataDir = "$RootDir$" ; ModelDir = "$RootDir$/Output/Models"
|
||||
rootDir = "." ; dataDir = "$rootDir$" ; modelDir = "$rootDir$/Models"
|
||||
|
||||
modelPath = "$ModelDir$/cifar10.cmf"
|
||||
modelPath = "$modelDir$/cifar10.cmf"
|
||||
|
||||
# Training without BN
|
||||
# Training action for a convolutional network
|
||||
TrainConvNet = {
|
||||
action = "train"
|
||||
|
||||
|
@ -18,181 +18,19 @@ TrainConvNet = {
|
|||
labelDim = 10
|
||||
|
||||
# basic model
|
||||
model_1 (features) =
|
||||
{
|
||||
model (features) = {
|
||||
featNorm = features - Constant (128)
|
||||
l1 = ConvolutionalLayer {32, (5:5), pad = true, activation = ReLU,
|
||||
init = "gaussian", initValueScale = 0.0043} (featNorm)
|
||||
p1 = MaxPoolingLayer {(3:3), stride = (2:2)} (l1)
|
||||
l2 = ConvolutionalLayer {32, (5:5), pad = true, activation = ReLU,
|
||||
init = "gaussian", initValueScale = 1.414} (p1)
|
||||
p2 = MaxPoolingLayer {(3:3), stride = (2:2)} (l2)
|
||||
l3 = ConvolutionalLayer {64, (5:5), pad = true, activation = ReLU,
|
||||
init = "gaussian", initValueScale = 1.414} (p2)
|
||||
p3 = MaxPoolingLayer {(3:3), stride = (2:2)} (l3)
|
||||
d1 = DenseLayer {64, activation = ReLU, init = "gaussian", initValueScale = 12} (p3)
|
||||
z = LinearLayer {10, init = "gaussian", initValueScale = 1.5} (d1)
|
||||
}.z
|
||||
|
||||
# with self-defined layer
|
||||
MyLayer (x, dim, initValueScale) =
|
||||
{
|
||||
c = ConvolutionalLayer {dim, (5:5), pad = true, activation = ReLU, init = "gaussian", initValueScale = initValueScale} (x)
|
||||
p = MaxPoolingLayer {(3:3), stride = (2:2)} (c)
|
||||
}.p
|
||||
model_f (features) =
|
||||
{
|
||||
featNorm = features - Constant (128)
|
||||
p1 = MyLayer (featNorm, 32, 0.0043)
|
||||
p2 = MyLayer (p1, 32, 1.414)
|
||||
p3 = MyLayer (p2, 64, 1.414)
|
||||
d1 = DenseLayer {64, activation = ReLU, init = "gaussian", initValueScale = 12} (p3)
|
||||
d1_d = Dropout (d1)
|
||||
z = LinearLayer {10, init = "gaussian", initValueScale = 1.5} (d1_d)
|
||||
}.z
|
||||
|
||||
// --- with BatchNorm
|
||||
# with self-defined layer
|
||||
MyLayerWithBN (x, dim, initValueScale) =
|
||||
{
|
||||
c = ConvolutionalLayer {dim, (5:5), pad = true, init = "gaussian", initValueScale = initValueScale} (x)
|
||||
b = BatchNormalizationLayer {spatialRank = 2} (c)
|
||||
r = ReLU (b)
|
||||
p = MaxPoolingLayer {(3:3), stride = (2:2)} (r)
|
||||
}.p
|
||||
model_bn (features) =
|
||||
{
|
||||
featNorm = features - Constant (128)
|
||||
p1 = MyLayerWithBN (featNorm, 32, 0.0043)
|
||||
p2 = MyLayerWithBN (p1, 32, 1.414)
|
||||
p3 = MyLayerWithBN (p2, 64, 1.414)
|
||||
d1 = DenseLayer {64, init = "gaussian", initValueScale = 12} (p3)
|
||||
d1_bnr = ReLU (BatchNormalizationLayer {} (d1))
|
||||
d1_d = Dropout (d1_bnr)
|
||||
z = LinearLayer {10, init = "gaussian", initValueScale = 1.5} (d1_d)
|
||||
}.z
|
||||
|
||||
// --- ResNet
|
||||
MyConvBN (x, dim, initValueScale, stride) = # TO BE WRITTEN BY PARTICIPANT
|
||||
{
|
||||
c = ConvolutionalLayer {dim, (3:3), pad = true, stride = (stride:stride), bias = false, init = "gaussian", initValueScale = initValueScale} (x)
|
||||
b = BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096} (c)
|
||||
}.b
|
||||
MyConvBNReLU (x, dim, initValueScale, stride) =
|
||||
{
|
||||
c = ConvolutionalLayer {dim, (3:3), pad = true, stride = (stride:stride), bias = false, init = "gaussian", initValueScale = initValueScale} (x)
|
||||
b = BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096} (c)
|
||||
r = ReLU (b)
|
||||
}.r
|
||||
ResNetNode (x, dim) =
|
||||
{
|
||||
c1 = MyConvBNReLU (x, dim, 7.07, 1)
|
||||
X2 = MyConvBNReLU (c1, dim, 7.07, 1) # wrong
|
||||
c2 = MyConvBN (c1, dim, 7.07, 1)
|
||||
r = ReLU (x + c2)
|
||||
}.r # change to X2
|
||||
ResNetResample (x, dim) =
|
||||
{
|
||||
x2 = MaxPoolingLayer {(1:1), stride = (2:2)} (x) # sub-sample by 2
|
||||
pad = ConstantTensor (0, (1:1:dim/2)) # pad with zeroes
|
||||
p = Splice ((x2 : pad), axis = 3)
|
||||
}.p
|
||||
ResNetIncNode (x, dim) =
|
||||
{
|
||||
c1 = MyConvBNReLU (x, dim, 7.07, 2)
|
||||
c2 = MyConvBN (c1, dim, 7.07, 1)
|
||||
|
||||
px = ResNetResample (x, dim)
|
||||
b = BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096} (px)
|
||||
|
||||
r = ReLU (b + c2) # ReLU between C1 and C2 and after summation
|
||||
}.r
|
||||
|
||||
# these are the ones the participants are given upfront
|
||||
ResNetNode1 (x, dim) =
|
||||
{
|
||||
c1 = MyConvBNReLU (x, dim, 7.07, 1)
|
||||
c2 = MyConvBNReLU (c1, dim, 7.07, 1)
|
||||
}.c2
|
||||
ResNetIncNode1 (x, dim) =
|
||||
{
|
||||
px = ResNetResample (x, dim) # sub-sample but double the dims
|
||||
b = BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096} (px)
|
||||
r = ReLU (b)
|
||||
}.r
|
||||
|
||||
# this must be written
|
||||
ResNetNodeStack (x, dim, L) =
|
||||
if L == 0 then x
|
||||
else ResNetNode (ResNetNodeStack (x, dim, L-1), dim)
|
||||
|
||||
model (features) =
|
||||
{
|
||||
conv1 = MyConvBNReLU (features, 16, 0.26, 1)
|
||||
#rn1 = ResNetNode1 (ResNetNode1 (ResNetNode1 (conv1, 16), 16), 16)
|
||||
rn1 = ResNetNodeStack (conv1, 16, 3) # 3 means 3 such nodes
|
||||
|
||||
rn2_1 = ResNetIncNode1 (rn1, 32)
|
||||
#rn2 = ResNetNode1 (ResNetNode1 (rn2_1, 32), 32)
|
||||
rn2 = ResNetNodeStack (rn2_1, 32, 2)
|
||||
|
||||
rn3_1 = ResNetIncNode1 (rn2, 64)
|
||||
#rn3 = ResNetNode1 (ResNetNode1 (rn3_1, 64), 64)
|
||||
rn3 = ResNetNodeStack (rn3_1, 64, 2)
|
||||
|
||||
pool = AveragePoolingLayer {(8:8)} (rn3)
|
||||
|
||||
z = LinearLayer {labelDim, init = "gaussian", initValueScale = 0.4} (pool)
|
||||
}.z
|
||||
|
||||
// --- ResNet, functional style
|
||||
MyConvBNLayer {dim, initValueScale, stride} =
|
||||
{
|
||||
# note: (3:3), while the macro above is (5:5)
|
||||
C = ConvolutionalLayer {dim, (3:3), pad = true, stride = (stride:stride), bias = false, init = "gaussian", initValueScale = initValueScale}
|
||||
B = BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096}
|
||||
apply (x) = B(C(x))
|
||||
}.apply
|
||||
ResNetLayer {dim, initValueScale} =
|
||||
{
|
||||
C1 = MyConvBNLayer {dim, initValueScale, 1} # first convolution layer
|
||||
C2 = MyConvBNLayer {dim, initValueScale, 1} # second convolution layer
|
||||
#B = BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096}
|
||||
# ^^ Note: Adding an exra BN to 'x' trains slightly better.
|
||||
apply (x) = ReLU (x + C2(ReLU(C1(x)))) # ReLU between C1 and C2 and after summation
|
||||
}.apply
|
||||
ResNetIncLayer {dim, initValueScale} =
|
||||
{
|
||||
# first branch. This doubles the #channels but halves the image size
|
||||
C1 = MyConvBNLayer {dim, initValueScale, 2} # first convolution layer, stride = 2
|
||||
C2 = MyConvBNLayer {dim, initValueScale, 1} # second convolution layer
|
||||
|
||||
# second branch:
|
||||
# sub-sample spatially by a factor of 2
|
||||
DownSamplingLayer {stride} = MaxPoolingLayer {(1:1), stride = stride}
|
||||
# append dim/2 zero output channels
|
||||
pad = ConstantTensor (0, (1:1:dim/2)) # the 1s will broadcast to image size
|
||||
P(x) = Splice ((DownSamplingLayer {(2:2)} (x) : pad), axis = 3)
|
||||
B = BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096}
|
||||
|
||||
# layer sums both branches and rectifies the result
|
||||
apply (x) = ReLU (B(P(x)) + C2(ReLU(C1(x)))) # ReLU between C1 and C2 and after summation
|
||||
}.apply
|
||||
model_resNet (features) =
|
||||
{
|
||||
conv1 = MyConvBNLayer {16, 0.26, 1} (features)
|
||||
rl1 = ReLU (conv1)
|
||||
rn1 = LayerStack {3, _ => ResNetLayer {16, 7.07}} (rl1)
|
||||
|
||||
rn2_1 = ResNetIncLayer {32, 7.07} (rn1)
|
||||
rn2 = LayerStack {2, _ => ResNetLayer {32, 7.07}} (rn2_1)
|
||||
|
||||
rn3_1 = ResNetIncLayer {64, 7.07} (rn2)
|
||||
rn3 = LayerStack {2, _ => ResNetLayer {64, 7.07}} (rn3_1)
|
||||
|
||||
pool = AveragePoolingLayer {(8:8)} (rn3)
|
||||
|
||||
z = LinearLayer {labelDim, init = "gaussian", initValueScale = 0.4} (pool)
|
||||
l1 = ConvolutionalLayer {32, (5:5), pad=true, activation=ReLU,
|
||||
init="gaussian", initValueScale=0.0043} (featNorm)
|
||||
p1 = MaxPoolingLayer {(3:3), stride=(2:2)} (l1)
|
||||
l2 = ConvolutionalLayer {32, (5:5), pad=true, activation=ReLU,
|
||||
init="gaussian", initValueScale=1.414} (p1)
|
||||
p2 = MaxPoolingLayer {(3:3), stride=(2:2)} (l2)
|
||||
l3 = ConvolutionalLayer {64, (5:5), pad=true, activation=ReLU,
|
||||
init="gaussian", initValueScale=1.414} (p2)
|
||||
p3 = MaxPoolingLayer {(3:3), stride=(2:2)} (l3)
|
||||
d1 = DenseLayer {64, activation=ReLU, init="gaussian", initValueScale=12} (p3)
|
||||
z = LinearLayer {10, init="gaussian", initValueScale=1.5} (d1)
|
||||
}.z
|
||||
|
||||
# inputs
|
||||
|
@ -205,47 +43,30 @@ TrainConvNet = {
|
|||
# connect to system
|
||||
ce = CrossEntropyWithSoftmax (labels, z)
|
||||
errs = ErrorPrediction (labels, z)
|
||||
top5Errs = ErrorPrediction (labels, z, topN=5) # only used in Eval action
|
||||
|
||||
featureNodes = (features)
|
||||
labelNodes = (labels)
|
||||
criterionNodes = (ce)
|
||||
evaluationNodes = (errs) # top5Errs only used in Eval
|
||||
evaluationNodes = (errs)
|
||||
outputNodes = (z)
|
||||
}
|
||||
|
||||
SGD = {
|
||||
epochSize = 50000
|
||||
|
||||
# without BatchNormalization:
|
||||
#maxEpochs = 30 ; minibatchSize = 64
|
||||
#learningRatesPerSample = 0.00015625*10:0.000046875*10:0.000015625
|
||||
#momentumAsTimeConstant = 600*20:6400
|
||||
#L2RegWeight = 0.03
|
||||
#dropoutRate = 0*5:0.5 ##### added
|
||||
maxEpochs = 30 ; minibatchSize = 64
|
||||
learningRatesPerSample = 0.00015625*10:0.000046875*10:0.000015625
|
||||
momentumAsTimeConstant = 600*20:6400
|
||||
L2RegWeight = 0.03
|
||||
|
||||
# with BatchNormalization:
|
||||
#maxEpochs = 30 ; minibatchSize = 64
|
||||
#learningRatesPerSample = 0.00046875*7:0.00015625*10:0.000046875*10:0.000015625
|
||||
#momentumAsTimeConstant = 0
|
||||
#L2RegWeight = 0
|
||||
#dropoutRate = 0*5:0.5 ##### added
|
||||
|
||||
# ResNet
|
||||
maxEpochs = 160 ; minibatchSize = 128
|
||||
learningRatesPerSample = 0.0078125*80:0.00078125*40:0.000078125
|
||||
momentumAsTimeConstant = 1200
|
||||
L2RegWeight = 0.0001
|
||||
|
||||
firstMBsToShowResult = 10 ; numMBsToShowResult = 500
|
||||
firstMBsToShowResult = 10 ; numMBsToShowResult = 100
|
||||
}
|
||||
|
||||
reader = {
|
||||
verbosity = 0
|
||||
randomize = true
|
||||
verbosity = 0 ; randomize = true
|
||||
deserializers = ({
|
||||
type = "ImageDeserializer" ; module = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/train_map.txt"
|
||||
file = "$dataDir$/cifar-10-batches-py/train_map.txt"
|
||||
input = {
|
||||
features = { transforms = (
|
||||
{ type = "Crop" ; cropType = "random" ; cropRatio = 0.8 ; jitterType = "uniRatio" } :
|
||||
|
@ -262,13 +83,12 @@ TrainConvNet = {
|
|||
Eval = {
|
||||
action = "eval"
|
||||
minibatchSize = 16
|
||||
evalNodeNames = errs:top5Errs # also test top-5 error rate
|
||||
evalNodeNames = errs
|
||||
reader = {
|
||||
verbosity = 0
|
||||
randomize = true
|
||||
verbosity = 0 ; randomize = true
|
||||
deserializers = ({
|
||||
type = "ImageDeserializer" ; module = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/test_map.txt"
|
||||
file = "$dataDir$/cifar-10-batches-py/test_map.txt"
|
||||
input = {
|
||||
features = { transforms = (
|
||||
{ type = "Scale" ; width = 32 ; height = 32 ; channels = 3 ; interpolations = "linear" } :
|
||||
|
|
Двоичный файл не отображается.
Загрузка…
Ссылка в новой задаче