Added ability to run speech e2e tests on Windows (cygwin)
This commit is contained in:
Родитель
18077110dd
Коммит
ca189d8e35
|
@ -0,0 +1 @@
|
|||
run-test text eol=lf
|
|
@ -1476,7 +1476,8 @@ int wmain(int argc, wchar_t* argv[])
|
|||
fcloseOrDie(fp);
|
||||
}
|
||||
fprintf(stderr, "COMPLETED\n");
|
||||
}
|
||||
fflush(stderr);
|
||||
}
|
||||
catch (const std::exception &err)
|
||||
{
|
||||
fprintf(stderr, "EXCEPTION occurred: %s\n", err.what());
|
||||
|
|
|
@ -0,0 +1,738 @@
|
|||
=== Running /cygdrive/c/Users/svcphil/workspace.vlivan/CNTK-Build-Windows/x64/release/cntk.exe configFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\QuickE2E\cntk.config RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data DeviceId=Auto
|
||||
-------------------------------------------------------------------
|
||||
Build info:
|
||||
|
||||
Built time: Aug 11 2015 16:18:17
|
||||
Last modified date: Tue Aug 11 16:16:08 2015
|
||||
Built by svcphil on dphaim-26-new
|
||||
Build Path: C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\MachineLearning\CNTK\
|
||||
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
|
||||
Build Branch: master
|
||||
Build SHA1: 397cc7cc16c00b1c12864d331c0729fde7a1bde3
|
||||
-------------------------------------------------------------------
|
||||
running on dphaim-26-new at 2015/08/11 17:47:10
|
||||
command line options:
|
||||
configFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\QuickE2E\cntk.config RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data DeviceId=Auto
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=$DeviceId$
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=$RunDir$/models/cntkSpeech.dnn
|
||||
deviceId=$DeviceId$
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=$DataDir$/glob_0000.mlf
|
||||
labelMappingFile=$DataDir$/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=Auto
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
configparameters: cntk.config:command=speechTrain
|
||||
configparameters: cntk.config:DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
configparameters: cntk.config:deviceId=Auto
|
||||
configparameters: cntk.config:parallelTrain=false
|
||||
configparameters: cntk.config:precision=float
|
||||
configparameters: cntk.config:RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu
|
||||
configparameters: cntk.config:speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
command: speechTrain
|
||||
precision = float
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
LockDevice: Capture device 2 and lock it for exclusive use
|
||||
LockDevice: Capture device 3 and lock it for exclusive use
|
||||
LockDevice: Capture device 0 and lock it for exclusive use
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
SimpleNetworkBuilder Using GPU 1
|
||||
reading script file glob_0000.scp ... 948 entries
|
||||
trainlayer: OOV-exclusion code enabled, but no unigram specified to derive the word set from, so you won't get OOV exclusion
|
||||
total 132 state names in state list C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
htkmlfreader: reading MLF file C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf ... total 948 entries
|
||||
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
|
||||
label set 0: 129 classes
|
||||
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
|
||||
GetTrainCriterionNodes ...
|
||||
GetEvalCriterionNodes ...
|
||||
|
||||
|
||||
Validating node CrossEntropyWithSoftmax
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 3])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 3])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 3], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 3])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 3], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 3])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 3])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 3], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 3])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 3])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 3], B2[132, 1])
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 3], HLast[132, 3])
|
||||
|
||||
Found 3 PreCompute nodes
|
||||
NodeName: InvStdOfFeatures
|
||||
NodeName: MeanOfFeatures
|
||||
NodeName: Prior
|
||||
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0) with 1 datapasses
|
||||
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
|
||||
|
||||
|
||||
Validating node InvStdOfFeatures
|
||||
|
||||
Validating --> features = InputValue
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
|
||||
|
||||
|
||||
|
||||
Validating node MeanOfFeatures
|
||||
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 64])
|
||||
|
||||
|
||||
|
||||
Validating node Prior
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> Prior = Mean(labels[132, 64])
|
||||
|
||||
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
|
||||
Starting Epoch 1: learning rate per sample = 0.015625 momentum = 0.900000
|
||||
minibatchiterator: epoch 0: frames [0..20480] (first utterance at frame 0) with 1 datapasses
|
||||
|
||||
|
||||
Validating node EvalErrorPrediction
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 64])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 64], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 64])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 64], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 64])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 64])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 64], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 64])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 64])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 64], B2[132, 1])
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 64], HLast[132, 64])
|
||||
|
||||
Epoch[ 1 of 3]-Minibatch[ 1- 10 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.45646143; EvalErr[0]PerSample = 0.92500001; TotalTime = 0.01913s; TotalTimePerSample = 0.02988ms; SamplesPerSecond = 33462
|
||||
Epoch[ 1 of 3]-Minibatch[ 11- 20 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.22315693; EvalErr[0]PerSample = 0.90156251; TotalTime = 0.01453s; TotalTimePerSample = 0.02270ms; SamplesPerSecond = 44043
|
||||
Epoch[ 1 of 3]-Minibatch[ 21- 30 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.95180511; EvalErr[0]PerSample = 0.84687501; TotalTime = 0.01459s; TotalTimePerSample = 0.02279ms; SamplesPerSecond = 43874
|
||||
Epoch[ 1 of 3]-Minibatch[ 31- 40 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.94157934; EvalErr[0]PerSample = 0.89843750; TotalTime = 0.01459s; TotalTimePerSample = 0.02280ms; SamplesPerSecond = 43859
|
||||
Epoch[ 1 of 3]-Minibatch[ 41- 50 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.85668945; EvalErr[0]PerSample = 0.91093749; TotalTime = 0.01456s; TotalTimePerSample = 0.02275ms; SamplesPerSecond = 43953
|
||||
Epoch[ 1 of 3]-Minibatch[ 51- 60 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.72866368; EvalErr[0]PerSample = 0.89531249; TotalTime = 0.01450s; TotalTimePerSample = 0.02265ms; SamplesPerSecond = 44140
|
||||
Epoch[ 1 of 3]-Minibatch[ 61- 70 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.51809072; EvalErr[0]PerSample = 0.82968748; TotalTime = 0.01453s; TotalTimePerSample = 0.02271ms; SamplesPerSecond = 44034
|
||||
Epoch[ 1 of 3]-Minibatch[ 71- 80 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.48454905; EvalErr[0]PerSample = 0.80781251; TotalTime = 0.01452s; TotalTimePerSample = 0.02269ms; SamplesPerSecond = 44074
|
||||
Epoch[ 1 of 3]-Minibatch[ 81- 90 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.33829641; EvalErr[0]PerSample = 0.76875001; TotalTime = 0.01453s; TotalTimePerSample = 0.02271ms; SamplesPerSecond = 44037
|
||||
Epoch[ 1 of 3]-Minibatch[ 91- 100 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.50167227; EvalErr[0]PerSample = 0.79843748; TotalTime = 0.01447s; TotalTimePerSample = 0.02261ms; SamplesPerSecond = 44229
|
||||
WARNING: The same matrix with dim [1, 1] has been transferred between different devices for 20 times.
|
||||
Epoch[ 1 of 3]-Minibatch[ 101- 110 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.22861624; EvalErr[0]PerSample = 0.80000001; TotalTime = 0.01459s; TotalTimePerSample = 0.02279ms; SamplesPerSecond = 43874
|
||||
Epoch[ 1 of 3]-Minibatch[ 111- 120 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.32616878; EvalErr[0]PerSample = 0.79062498; TotalTime = 0.01449s; TotalTimePerSample = 0.02264ms; SamplesPerSecond = 44174
|
||||
Epoch[ 1 of 3]-Minibatch[ 121- 130 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.16897583; EvalErr[0]PerSample = 0.77968752; TotalTime = 0.01448s; TotalTimePerSample = 0.02262ms; SamplesPerSecond = 44201
|
||||
Epoch[ 1 of 3]-Minibatch[ 131- 140 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.08891916; EvalErr[0]PerSample = 0.77656251; TotalTime = 0.01442s; TotalTimePerSample = 0.02253ms; SamplesPerSecond = 44385
|
||||
Epoch[ 1 of 3]-Minibatch[ 141- 150 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.06004953; EvalErr[0]PerSample = 0.72968751; TotalTime = 0.01454s; TotalTimePerSample = 0.02271ms; SamplesPerSecond = 44031
|
||||
Epoch[ 1 of 3]-Minibatch[ 151- 160 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.91128540; EvalErr[0]PerSample = 0.69531250; TotalTime = 0.01446s; TotalTimePerSample = 0.02259ms; SamplesPerSecond = 44272
|
||||
Epoch[ 1 of 3]-Minibatch[ 161- 170 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.90172124; EvalErr[0]PerSample = 0.72968751; TotalTime = 0.01450s; TotalTimePerSample = 0.02266ms; SamplesPerSecond = 44128
|
||||
Epoch[ 1 of 3]-Minibatch[ 171- 180 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.73261714; EvalErr[0]PerSample = 0.65312499; TotalTime = 0.01447s; TotalTimePerSample = 0.02261ms; SamplesPerSecond = 44232
|
||||
Epoch[ 1 of 3]-Minibatch[ 181- 190 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.66515493; EvalErr[0]PerSample = 0.68437499; TotalTime = 0.01453s; TotalTimePerSample = 0.02270ms; SamplesPerSecond = 44061
|
||||
Epoch[ 1 of 3]-Minibatch[ 191- 200 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.67383432; EvalErr[0]PerSample = 0.66406250; TotalTime = 0.01449s; TotalTimePerSample = 0.02264ms; SamplesPerSecond = 44165
|
||||
Epoch[ 1 of 3]-Minibatch[ 201- 210 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.52869272; EvalErr[0]PerSample = 0.63593751; TotalTime = 0.01450s; TotalTimePerSample = 0.02266ms; SamplesPerSecond = 44134
|
||||
Epoch[ 1 of 3]-Minibatch[ 211- 220 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.60032344; EvalErr[0]PerSample = 0.66718751; TotalTime = 0.01450s; TotalTimePerSample = 0.02266ms; SamplesPerSecond = 44128
|
||||
Epoch[ 1 of 3]-Minibatch[ 221- 230 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.51134038; EvalErr[0]PerSample = 0.64843750; TotalTime = 0.01452s; TotalTimePerSample = 0.02268ms; SamplesPerSecond = 44086
|
||||
Epoch[ 1 of 3]-Minibatch[ 231- 240 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.45362544; EvalErr[0]PerSample = 0.63749999; TotalTime = 0.01452s; TotalTimePerSample = 0.02269ms; SamplesPerSecond = 44068
|
||||
Epoch[ 1 of 3]-Minibatch[ 241- 250 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.41640615; EvalErr[0]PerSample = 0.61562502; TotalTime = 0.01445s; TotalTimePerSample = 0.02258ms; SamplesPerSecond = 44287
|
||||
Epoch[ 1 of 3]-Minibatch[ 251- 260 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.39745474; EvalErr[0]PerSample = 0.62812501; TotalTime = 0.01447s; TotalTimePerSample = 0.02261ms; SamplesPerSecond = 44229
|
||||
Epoch[ 1 of 3]-Minibatch[ 261- 270 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.16415405; EvalErr[0]PerSample = 0.56718749; TotalTime = 0.01454s; TotalTimePerSample = 0.02272ms; SamplesPerSecond = 44013
|
||||
Epoch[ 1 of 3]-Minibatch[ 271- 280 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.30347300; EvalErr[0]PerSample = 0.63593751; TotalTime = 0.01454s; TotalTimePerSample = 0.02272ms; SamplesPerSecond = 44016
|
||||
Epoch[ 1 of 3]-Minibatch[ 281- 290 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.24398804; EvalErr[0]PerSample = 0.60937500; TotalTime = 0.01446s; TotalTimePerSample = 0.02260ms; SamplesPerSecond = 44253
|
||||
Epoch[ 1 of 3]-Minibatch[ 291- 300 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.15322256; EvalErr[0]PerSample = 0.57968748; TotalTime = 0.01447s; TotalTimePerSample = 0.02262ms; SamplesPerSecond = 44214
|
||||
Epoch[ 1 of 3]-Minibatch[ 301- 310 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.21664429; EvalErr[0]PerSample = 0.59531248; TotalTime = 0.01448s; TotalTimePerSample = 0.02262ms; SamplesPerSecond = 44208
|
||||
Epoch[ 1 of 3]-Minibatch[ 311- 320 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.25246572; EvalErr[0]PerSample = 0.60156250; TotalTime = 0.01442s; TotalTimePerSample = 0.02253ms; SamplesPerSecond = 44392
|
||||
Finished Epoch[1]: [Training Set] TrainLossPerSample = 3.0000031; EvalErrPerSample = 0.72836918; Ave LearnRatePerSample = 0.015625; EpochTime=0.4851
|
||||
Starting Epoch 2: learning rate per sample = 0.001953 momentum = 0.656119
|
||||
minibatchiterator: epoch 1: frames [20480..40960] (first utterance at frame 20480) with 1 datapasses
|
||||
Epoch[ 2 of 3]-Minibatch[ 1- 10 of 80]: SamplesSeen = 2560; TrainLossPerSample = 2.08151960; EvalErr[0]PerSample = 0.55859375; TotalTime = 0.03149s; TotalTimePerSample = 0.01230ms; SamplesPerSecond = 81290
|
||||
Epoch[ 2 of 3]-Minibatch[ 11- 20 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.98395634; EvalErr[0]PerSample = 0.54257810; TotalTime = 0.02336s; TotalTimePerSample = 0.00913ms; SamplesPerSecond = 109570
|
||||
Epoch[ 2 of 3]-Minibatch[ 21- 30 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.98575521; EvalErr[0]PerSample = 0.54492188; TotalTime = 0.02325s; TotalTimePerSample = 0.00908ms; SamplesPerSecond = 110116
|
||||
Epoch[ 2 of 3]-Minibatch[ 31- 40 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.90484965; EvalErr[0]PerSample = 0.53164065; TotalTime = 0.02321s; TotalTimePerSample = 0.00906ms; SamplesPerSecond = 110316
|
||||
Epoch[ 2 of 3]-Minibatch[ 41- 50 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.88324130; EvalErr[0]PerSample = 0.52539063; TotalTime = 0.02328s; TotalTimePerSample = 0.00909ms; SamplesPerSecond = 109975
|
||||
Epoch[ 2 of 3]-Minibatch[ 51- 60 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.89109266; EvalErr[0]PerSample = 0.53359377; TotalTime = 0.02325s; TotalTimePerSample = 0.00908ms; SamplesPerSecond = 110093
|
||||
Epoch[ 2 of 3]-Minibatch[ 61- 70 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.89496076; EvalErr[0]PerSample = 0.52890623; TotalTime = 0.02326s; TotalTimePerSample = 0.00909ms; SamplesPerSecond = 110055
|
||||
Epoch[ 2 of 3]-Minibatch[ 71- 80 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.85944366; EvalErr[0]PerSample = 0.52265626; TotalTime = 0.02296s; TotalTimePerSample = 0.00897ms; SamplesPerSecond = 111473
|
||||
Finished Epoch[2]: [Training Set] TrainLossPerSample = 1.9356024; EvalErrPerSample = 0.53603518; Ave LearnRatePerSample = 0.001953125; EpochTime=0.195263
|
||||
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
|
||||
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
|
||||
Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86752820; EvalErr[0]PerSample = 0.52177733; TotalTime = 0.08160s; TotalTimePerSample = 0.00797ms; SamplesPerSecond = 125485
|
||||
Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358737; EvalErr[0]PerSample = 0.51542968; TotalTime = 0.05742s; TotalTimePerSample = 0.00561ms; SamplesPerSecond = 178319
|
||||
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8705578; EvalErrPerSample = 0.5186035; Ave LearnRatePerSample = 9.765625146e-005; EpochTime=0.142001
|
||||
COMPLETED
|
||||
=== Deleting last epoch data
|
||||
==== Re-running from checkpoint
|
||||
-------------------------------------------------------------------
|
||||
Build info:
|
||||
|
||||
Built time: Aug 11 2015 16:18:17
|
||||
Last modified date: Tue Aug 11 16:16:08 2015
|
||||
Built by svcphil on dphaim-26-new
|
||||
Build Path: C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\MachineLearning\CNTK\
|
||||
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
|
||||
Build Branch: master
|
||||
Build SHA1: 397cc7cc16c00b1c12864d331c0729fde7a1bde3
|
||||
-------------------------------------------------------------------
|
||||
running on dphaim-26-new at 2015/08/11 17:47:19
|
||||
command line options:
|
||||
configFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\QuickE2E\cntk.config RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data DeviceId=Auto
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=$DeviceId$
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=$RunDir$/models/cntkSpeech.dnn
|
||||
deviceId=$DeviceId$
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=$DataDir$/glob_0000.mlf
|
||||
labelMappingFile=$DataDir$/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=Auto
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
configparameters: cntk.config:command=speechTrain
|
||||
configparameters: cntk.config:DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
configparameters: cntk.config:deviceId=Auto
|
||||
configparameters: cntk.config:parallelTrain=false
|
||||
configparameters: cntk.config:precision=float
|
||||
configparameters: cntk.config:RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu
|
||||
configparameters: cntk.config:speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
command: speechTrain
|
||||
precision = float
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
LockDevice: Capture device 2 and lock it for exclusive use
|
||||
LockDevice: Capture device 3 and lock it for exclusive use
|
||||
LockDevice: Capture device 0 and lock it for exclusive use
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
SimpleNetworkBuilder Using GPU 1
|
||||
reading script file glob_0000.scp ... 948 entries
|
||||
trainlayer: OOV-exclusion code enabled, but no unigram specified to derive the word set from, so you won't get OOV exclusion
|
||||
total 132 state names in state list C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
htkmlfreader: reading MLF file C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf ... total 948 entries
|
||||
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
|
||||
label set 0: 129 classes
|
||||
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
|
||||
Starting from checkpoint. Load Network From File C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn.2.
|
||||
|
||||
|
||||
Printing Gradient Computation Node Order ...
|
||||
|
||||
CrossEntropyWithSoftmax[0, 0] = CrossEntropyWithSoftmax(labels[132, 256], HLast[0, 0])
|
||||
HLast[0, 0] = Plus(W2*H1[0, 0], B2[132, 1])
|
||||
B2[132, 1] = LearnableParameter
|
||||
W2*H1[0, 0] = Times(W2[132, 512], H2[0, 0])
|
||||
H2[0, 0] = Sigmoid(W1*H1+B1[0, 0])
|
||||
W1*H1+B1[0, 0] = Plus(W1*H1[0, 0], B1[512, 1])
|
||||
B1[512, 1] = LearnableParameter
|
||||
W1*H1[0, 0] = Times(W1[512, 512], H1[0, 0])
|
||||
H1[0, 0] = Sigmoid(W0*features+B0[0, 0])
|
||||
W0*features+B0[0, 0] = Plus(W0*features[0, 0], B0[512, 1])
|
||||
B0[512, 1] = LearnableParameter
|
||||
W0*features[0, 0] = Times(W0[512, 363], MVNormalizedFeatures[0, 0])
|
||||
MVNormalizedFeatures[0, 0] = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
InvStdOfFeatures[363, 1] = InvStdDev(features[363, 256])
|
||||
MeanOfFeatures[363, 1] = Mean(features[363, 256])
|
||||
features[363, 256] = InputValue
|
||||
W0[512, 363] = LearnableParameter
|
||||
W1[512, 512] = LearnableParameter
|
||||
W2[132, 512] = LearnableParameter
|
||||
labels[132, 256] = InputValue
|
||||
|
||||
Validating node CrossEntropyWithSoftmax
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
|
||||
|
||||
|
||||
|
||||
Validating node ScaledLogLikelihood
|
||||
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> labels = InputValue
|
||||
Validating --> Prior = Mean(labels[132, 256])
|
||||
Validating --> LogOfPrior = Log(Prior[132, 1])
|
||||
Validating --> ScaledLogLikelihood = Minus(HLast[132, 256], LogOfPrior[132, 1])
|
||||
|
||||
|
||||
|
||||
Validating node EvalErrorPrediction
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 256], HLast[132, 256])
|
||||
|
||||
GetTrainCriterionNodes ...
|
||||
GetEvalCriterionNodes ...
|
||||
|
||||
|
||||
Validating node CrossEntropyWithSoftmax
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
|
||||
|
||||
No PreCompute nodes found, skipping PreCompute step
|
||||
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
|
||||
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
|
||||
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
|
||||
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
|
||||
|
||||
|
||||
Validating node EvalErrorPrediction
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 1024])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 1024])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 1024], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 1024])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 1024], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 1024])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 1024])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 1024], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 1024])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 1024])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 1024], B2[132, 1])
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[132, 1024])
|
||||
|
||||
Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86752820; EvalErr[0]PerSample = 0.52177733; TotalTime = 0.40600s; TotalTimePerSample = 0.03965ms; SamplesPerSecond = 25221
|
||||
Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358737; EvalErr[0]PerSample = 0.51542968; TotalTime = 0.05538s; TotalTimePerSample = 0.00541ms; SamplesPerSecond = 184900
|
||||
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8705578; EvalErrPerSample = 0.5186035; Ave LearnRatePerSample = 9.765625146e-005; EpochTime=0.692077
|
||||
COMPLETED
|
|
@ -0,0 +1,738 @@
|
|||
=== Running /cygdrive/c/Users/svcphil/workspace.vlivan/CNTK-Build-Windows/x64/release/cntk.exe configFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\QuickE2E\cntk.config RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data DeviceId=Auto
|
||||
-------------------------------------------------------------------
|
||||
Build info:
|
||||
|
||||
Built time: Aug 11 2015 16:18:17
|
||||
Last modified date: Tue Aug 11 16:16:08 2015
|
||||
Built by svcphil on dphaim-26-new
|
||||
Build Path: C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\MachineLearning\CNTK\
|
||||
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
|
||||
Build Branch: master
|
||||
Build SHA1: 397cc7cc16c00b1c12864d331c0729fde7a1bde3
|
||||
-------------------------------------------------------------------
|
||||
running on dphaim-26-new at 2015/08/11 17:47:26
|
||||
command line options:
|
||||
configFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\QuickE2E\cntk.config RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data DeviceId=Auto
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=$DeviceId$
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=$RunDir$/models/cntkSpeech.dnn
|
||||
deviceId=$DeviceId$
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=$DataDir$/glob_0000.mlf
|
||||
labelMappingFile=$DataDir$/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=Auto
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
configparameters: cntk.config:command=speechTrain
|
||||
configparameters: cntk.config:DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
configparameters: cntk.config:deviceId=Auto
|
||||
configparameters: cntk.config:parallelTrain=false
|
||||
configparameters: cntk.config:precision=float
|
||||
configparameters: cntk.config:RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu
|
||||
configparameters: cntk.config:speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
command: speechTrain
|
||||
precision = float
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
LockDevice: Capture device 2 and lock it for exclusive use
|
||||
LockDevice: Capture device 3 and lock it for exclusive use
|
||||
LockDevice: Capture device 0 and lock it for exclusive use
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
SimpleNetworkBuilder Using GPU 1
|
||||
reading script file glob_0000.scp ... 948 entries
|
||||
trainlayer: OOV-exclusion code enabled, but no unigram specified to derive the word set from, so you won't get OOV exclusion
|
||||
total 132 state names in state list C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
htkmlfreader: reading MLF file C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf ... total 948 entries
|
||||
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
|
||||
label set 0: 129 classes
|
||||
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
|
||||
GetTrainCriterionNodes ...
|
||||
GetEvalCriterionNodes ...
|
||||
|
||||
|
||||
Validating node CrossEntropyWithSoftmax
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 3])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 3])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 3], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 3])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 3], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 3])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 3])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 3], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 3])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 3])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 3], B2[132, 1])
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 3], HLast[132, 3])
|
||||
|
||||
Found 3 PreCompute nodes
|
||||
NodeName: InvStdOfFeatures
|
||||
NodeName: MeanOfFeatures
|
||||
NodeName: Prior
|
||||
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0) with 1 datapasses
|
||||
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
|
||||
|
||||
|
||||
Validating node InvStdOfFeatures
|
||||
|
||||
Validating --> features = InputValue
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
|
||||
|
||||
|
||||
|
||||
Validating node MeanOfFeatures
|
||||
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 64])
|
||||
|
||||
|
||||
|
||||
Validating node Prior
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> Prior = Mean(labels[132, 64])
|
||||
|
||||
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
|
||||
Starting Epoch 1: learning rate per sample = 0.015625 momentum = 0.900000
|
||||
minibatchiterator: epoch 0: frames [0..20480] (first utterance at frame 0) with 1 datapasses
|
||||
|
||||
|
||||
Validating node EvalErrorPrediction
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 64])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 64], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 64])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 64], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 64])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 64])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 64], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 64])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 64])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 64], B2[132, 1])
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 64], HLast[132, 64])
|
||||
|
||||
Epoch[ 1 of 3]-Minibatch[ 1- 10 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.45646143; EvalErr[0]PerSample = 0.92500001; TotalTime = 0.03190s; TotalTimePerSample = 0.04985ms; SamplesPerSecond = 20061
|
||||
Epoch[ 1 of 3]-Minibatch[ 11- 20 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.22315693; EvalErr[0]PerSample = 0.90156251; TotalTime = 0.02454s; TotalTimePerSample = 0.03835ms; SamplesPerSecond = 26075
|
||||
Epoch[ 1 of 3]-Minibatch[ 21- 30 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.95180511; EvalErr[0]PerSample = 0.84687501; TotalTime = 0.02438s; TotalTimePerSample = 0.03809ms; SamplesPerSecond = 26254
|
||||
Epoch[ 1 of 3]-Minibatch[ 31- 40 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.94157934; EvalErr[0]PerSample = 0.89843750; TotalTime = 0.02445s; TotalTimePerSample = 0.03820ms; SamplesPerSecond = 26181
|
||||
Epoch[ 1 of 3]-Minibatch[ 41- 50 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.85668945; EvalErr[0]PerSample = 0.91093749; TotalTime = 0.02429s; TotalTimePerSample = 0.03795ms; SamplesPerSecond = 26352
|
||||
Epoch[ 1 of 3]-Minibatch[ 51- 60 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.72866368; EvalErr[0]PerSample = 0.89531249; TotalTime = 0.02445s; TotalTimePerSample = 0.03820ms; SamplesPerSecond = 26178
|
||||
Epoch[ 1 of 3]-Minibatch[ 61- 70 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.51809072; EvalErr[0]PerSample = 0.82968748; TotalTime = 0.02423s; TotalTimePerSample = 0.03786ms; SamplesPerSecond = 26415
|
||||
Epoch[ 1 of 3]-Minibatch[ 71- 80 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.48454905; EvalErr[0]PerSample = 0.80781251; TotalTime = 0.02249s; TotalTimePerSample = 0.03514ms; SamplesPerSecond = 28457
|
||||
Epoch[ 1 of 3]-Minibatch[ 81- 90 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.33829641; EvalErr[0]PerSample = 0.76875001; TotalTime = 0.02169s; TotalTimePerSample = 0.03390ms; SamplesPerSecond = 29501
|
||||
Epoch[ 1 of 3]-Minibatch[ 91- 100 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.50167227; EvalErr[0]PerSample = 0.79843748; TotalTime = 0.02178s; TotalTimePerSample = 0.03403ms; SamplesPerSecond = 29386
|
||||
WARNING: The same matrix with dim [1, 1] has been transferred between different devices for 20 times.
|
||||
Epoch[ 1 of 3]-Minibatch[ 101- 110 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.22861624; EvalErr[0]PerSample = 0.80000001; TotalTime = 0.02166s; TotalTimePerSample = 0.03385ms; SamplesPerSecond = 29546
|
||||
Epoch[ 1 of 3]-Minibatch[ 111- 120 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.32616878; EvalErr[0]PerSample = 0.79062498; TotalTime = 0.02063s; TotalTimePerSample = 0.03224ms; SamplesPerSecond = 31018
|
||||
Epoch[ 1 of 3]-Minibatch[ 121- 130 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.16897583; EvalErr[0]PerSample = 0.77968752; TotalTime = 0.01950s; TotalTimePerSample = 0.03048ms; SamplesPerSecond = 32813
|
||||
Epoch[ 1 of 3]-Minibatch[ 131- 140 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.08891916; EvalErr[0]PerSample = 0.77656251; TotalTime = 0.01961s; TotalTimePerSample = 0.03063ms; SamplesPerSecond = 32644
|
||||
Epoch[ 1 of 3]-Minibatch[ 141- 150 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.06004953; EvalErr[0]PerSample = 0.72968751; TotalTime = 0.01950s; TotalTimePerSample = 0.03046ms; SamplesPerSecond = 32825
|
||||
Epoch[ 1 of 3]-Minibatch[ 151- 160 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.91128540; EvalErr[0]PerSample = 0.69531250; TotalTime = 0.01965s; TotalTimePerSample = 0.03070ms; SamplesPerSecond = 32571
|
||||
Epoch[ 1 of 3]-Minibatch[ 161- 170 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.90172124; EvalErr[0]PerSample = 0.72968751; TotalTime = 0.01828s; TotalTimePerSample = 0.02857ms; SamplesPerSecond = 35003
|
||||
Epoch[ 1 of 3]-Minibatch[ 171- 180 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.73261714; EvalErr[0]PerSample = 0.65312499; TotalTime = 0.01799s; TotalTimePerSample = 0.02811ms; SamplesPerSecond = 35569
|
||||
Epoch[ 1 of 3]-Minibatch[ 181- 190 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.66515493; EvalErr[0]PerSample = 0.68437499; TotalTime = 0.01789s; TotalTimePerSample = 0.02796ms; SamplesPerSecond = 35766
|
||||
Epoch[ 1 of 3]-Minibatch[ 191- 200 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.67383432; EvalErr[0]PerSample = 0.66406250; TotalTime = 0.01792s; TotalTimePerSample = 0.02800ms; SamplesPerSecond = 35708
|
||||
Epoch[ 1 of 3]-Minibatch[ 201- 210 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.52869272; EvalErr[0]PerSample = 0.63593751; TotalTime = 0.01805s; TotalTimePerSample = 0.02821ms; SamplesPerSecond = 35451
|
||||
Epoch[ 1 of 3]-Minibatch[ 211- 220 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.60032344; EvalErr[0]PerSample = 0.66718751; TotalTime = 0.01696s; TotalTimePerSample = 0.02650ms; SamplesPerSecond = 37738
|
||||
Epoch[ 1 of 3]-Minibatch[ 221- 230 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.51134038; EvalErr[0]PerSample = 0.64843750; TotalTime = 0.01658s; TotalTimePerSample = 0.02591ms; SamplesPerSecond = 38598
|
||||
Epoch[ 1 of 3]-Minibatch[ 231- 240 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.45362544; EvalErr[0]PerSample = 0.63749999; TotalTime = 0.01663s; TotalTimePerSample = 0.02598ms; SamplesPerSecond = 38491
|
||||
Epoch[ 1 of 3]-Minibatch[ 241- 250 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.41640615; EvalErr[0]PerSample = 0.61562502; TotalTime = 0.01670s; TotalTimePerSample = 0.02610ms; SamplesPerSecond = 38321
|
||||
Epoch[ 1 of 3]-Minibatch[ 251- 260 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.39745474; EvalErr[0]PerSample = 0.62812501; TotalTime = 0.01672s; TotalTimePerSample = 0.02612ms; SamplesPerSecond = 38279
|
||||
Epoch[ 1 of 3]-Minibatch[ 261- 270 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.16415405; EvalErr[0]PerSample = 0.56718749; TotalTime = 0.01621s; TotalTimePerSample = 0.02533ms; SamplesPerSecond = 39481
|
||||
Epoch[ 1 of 3]-Minibatch[ 271- 280 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.30347300; EvalErr[0]PerSample = 0.63593751; TotalTime = 0.01583s; TotalTimePerSample = 0.02474ms; SamplesPerSecond = 40427
|
||||
Epoch[ 1 of 3]-Minibatch[ 281- 290 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.24398804; EvalErr[0]PerSample = 0.60937500; TotalTime = 0.01579s; TotalTimePerSample = 0.02467ms; SamplesPerSecond = 40542
|
||||
Epoch[ 1 of 3]-Minibatch[ 291- 300 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.15322256; EvalErr[0]PerSample = 0.57968748; TotalTime = 0.01582s; TotalTimePerSample = 0.02472ms; SamplesPerSecond = 40447
|
||||
Epoch[ 1 of 3]-Minibatch[ 301- 310 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.21664429; EvalErr[0]PerSample = 0.59531248; TotalTime = 0.01570s; TotalTimePerSample = 0.02453ms; SamplesPerSecond = 40761
|
||||
Epoch[ 1 of 3]-Minibatch[ 311- 320 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.25246572; EvalErr[0]PerSample = 0.60156250; TotalTime = 0.01556s; TotalTimePerSample = 0.02431ms; SamplesPerSecond = 41139
|
||||
Finished Epoch[1]: [Training Set] TrainLossPerSample = 3.0000031; EvalErrPerSample = 0.72836918; Ave LearnRatePerSample = 0.015625; EpochTime=0.657568
|
||||
Starting Epoch 2: learning rate per sample = 0.001953 momentum = 0.656119
|
||||
minibatchiterator: epoch 1: frames [20480..40960] (first utterance at frame 20480) with 1 datapasses
|
||||
Epoch[ 2 of 3]-Minibatch[ 1- 10 of 80]: SamplesSeen = 2560; TrainLossPerSample = 2.08151960; EvalErr[0]PerSample = 0.55859375; TotalTime = 0.03143s; TotalTimePerSample = 0.01228ms; SamplesPerSecond = 81456
|
||||
Epoch[ 2 of 3]-Minibatch[ 11- 20 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.98395634; EvalErr[0]PerSample = 0.54257810; TotalTime = 0.02295s; TotalTimePerSample = 0.00896ms; SamplesPerSecond = 111561
|
||||
Epoch[ 2 of 3]-Minibatch[ 21- 30 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.98575521; EvalErr[0]PerSample = 0.54492188; TotalTime = 0.02287s; TotalTimePerSample = 0.00893ms; SamplesPerSecond = 111951
|
||||
Epoch[ 2 of 3]-Minibatch[ 31- 40 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.90484965; EvalErr[0]PerSample = 0.53164065; TotalTime = 0.02284s; TotalTimePerSample = 0.00892ms; SamplesPerSecond = 112069
|
||||
Epoch[ 2 of 3]-Minibatch[ 41- 50 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.88324130; EvalErr[0]PerSample = 0.52539063; TotalTime = 0.02277s; TotalTimePerSample = 0.00889ms; SamplesPerSecond = 112448
|
||||
Epoch[ 2 of 3]-Minibatch[ 51- 60 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.89109266; EvalErr[0]PerSample = 0.53359377; TotalTime = 0.02287s; TotalTimePerSample = 0.00894ms; SamplesPerSecond = 111917
|
||||
Epoch[ 2 of 3]-Minibatch[ 61- 70 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.89496076; EvalErr[0]PerSample = 0.52890623; TotalTime = 0.02279s; TotalTimePerSample = 0.00890ms; SamplesPerSecond = 112325
|
||||
Epoch[ 2 of 3]-Minibatch[ 71- 80 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.85944366; EvalErr[0]PerSample = 0.52265626; TotalTime = 0.02265s; TotalTimePerSample = 0.00885ms; SamplesPerSecond = 113044
|
||||
Finished Epoch[2]: [Training Set] TrainLossPerSample = 1.9356024; EvalErrPerSample = 0.53603518; Ave LearnRatePerSample = 0.001953125; EpochTime=0.192318
|
||||
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
|
||||
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
|
||||
Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86752820; EvalErr[0]PerSample = 0.52177733; TotalTime = 0.08080s; TotalTimePerSample = 0.00789ms; SamplesPerSecond = 126735
|
||||
Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358737; EvalErr[0]PerSample = 0.51542968; TotalTime = 0.05544s; TotalTimePerSample = 0.00541ms; SamplesPerSecond = 184694
|
||||
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8705578; EvalErrPerSample = 0.5186035; Ave LearnRatePerSample = 9.765625146e-005; EpochTime=0.139063
|
||||
COMPLETED
|
||||
=== Deleting last epoch data
|
||||
==== Re-running from checkpoint
|
||||
-------------------------------------------------------------------
|
||||
Build info:
|
||||
|
||||
Built time: Aug 11 2015 16:18:17
|
||||
Last modified date: Tue Aug 11 16:16:08 2015
|
||||
Built by svcphil on dphaim-26-new
|
||||
Build Path: C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\MachineLearning\CNTK\
|
||||
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
|
||||
Build Branch: master
|
||||
Build SHA1: 397cc7cc16c00b1c12864d331c0729fde7a1bde3
|
||||
-------------------------------------------------------------------
|
||||
running on dphaim-26-new at 2015/08/11 17:47:34
|
||||
command line options:
|
||||
configFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\QuickE2E\cntk.config RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data DeviceId=Auto
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=$DeviceId$
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=$RunDir$/models/cntkSpeech.dnn
|
||||
deviceId=$DeviceId$
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=$DataDir$/glob_0000.mlf
|
||||
labelMappingFile=$DataDir$/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
precision=float
|
||||
command=speechTrain
|
||||
deviceId=Auto
|
||||
parallelTrain=false
|
||||
speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu
|
||||
DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
DeviceId=Auto
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
|
||||
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
|
||||
configparameters: cntk.config:command=speechTrain
|
||||
configparameters: cntk.config:DataDir=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data
|
||||
configparameters: cntk.config:deviceId=Auto
|
||||
configparameters: cntk.config:parallelTrain=false
|
||||
configparameters: cntk.config:precision=float
|
||||
configparameters: cntk.config:RunDir=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu
|
||||
configparameters: cntk.config:speechTrain=[
|
||||
action=train
|
||||
modelPath=C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
|
||||
deviceId=Auto
|
||||
traceLevel=1
|
||||
SimpleNetworkBuilder=[
|
||||
layerSizes=363:512:512:132
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
SGD=[
|
||||
epochSize=20480
|
||||
minibatchSize=64:256:1024:
|
||||
learningRatesPerMB=1.0:0.5:0.1
|
||||
numMBsToShowResult=10
|
||||
momentumPerMB=0.9:0.656119
|
||||
dropoutRate=0.0
|
||||
maxEpochs=3
|
||||
keepCheckPointFiles=true
|
||||
AutoAdjust=[
|
||||
reduceLearnRateIfImproveLessThan=0
|
||||
loadBestModel=true
|
||||
increaseLearnRateIfImproveMoreThan=1000000000
|
||||
learnRateDecreaseFactor=0.5
|
||||
learnRateIncreaseFactor=1.382
|
||||
autoAdjustLR=AdjustAfterEpoch
|
||||
]
|
||||
clippingThresholdPerSample=1#INF
|
||||
]
|
||||
reader=[
|
||||
readerType=HTKMLFReader
|
||||
readMethod=blockRandomize
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=0
|
||||
features=[
|
||||
dim=363
|
||||
type=Real
|
||||
scpFile=glob_0000.scp
|
||||
]
|
||||
labels=[
|
||||
mlfFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf
|
||||
labelMappingFile=C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
labelDim=132
|
||||
labelType=Category
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
|
||||
command: speechTrain
|
||||
precision = float
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
LockDevice: Capture device 2 and lock it for exclusive use
|
||||
LockDevice: Capture device 3 and lock it for exclusive use
|
||||
LockDevice: Capture device 0 and lock it for exclusive use
|
||||
LockDevice: Capture device 1 and lock it for exclusive use
|
||||
SimpleNetworkBuilder Using GPU 1
|
||||
reading script file glob_0000.scp ... 948 entries
|
||||
trainlayer: OOV-exclusion code enabled, but no unigram specified to derive the word set from, so you won't get OOV exclusion
|
||||
total 132 state names in state list C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/state.list
|
||||
htkmlfreader: reading MLF file C:\Users\svcphil\workspace.vlivan\CNTK-Build-Windows\Tests\Speech\Data/glob_0000.mlf ... total 948 entries
|
||||
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
|
||||
label set 0: 129 classes
|
||||
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
|
||||
Starting from checkpoint. Load Network From File C:\Users\svcphil\AppData\Local\Temp\2\cntk-test-20150811174551.851046\Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn.2.
|
||||
|
||||
|
||||
Printing Gradient Computation Node Order ...
|
||||
|
||||
CrossEntropyWithSoftmax[0, 0] = CrossEntropyWithSoftmax(labels[132, 256], HLast[0, 0])
|
||||
HLast[0, 0] = Plus(W2*H1[0, 0], B2[132, 1])
|
||||
B2[132, 1] = LearnableParameter
|
||||
W2*H1[0, 0] = Times(W2[132, 512], H2[0, 0])
|
||||
H2[0, 0] = Sigmoid(W1*H1+B1[0, 0])
|
||||
W1*H1+B1[0, 0] = Plus(W1*H1[0, 0], B1[512, 1])
|
||||
B1[512, 1] = LearnableParameter
|
||||
W1*H1[0, 0] = Times(W1[512, 512], H1[0, 0])
|
||||
H1[0, 0] = Sigmoid(W0*features+B0[0, 0])
|
||||
W0*features+B0[0, 0] = Plus(W0*features[0, 0], B0[512, 1])
|
||||
B0[512, 1] = LearnableParameter
|
||||
W0*features[0, 0] = Times(W0[512, 363], MVNormalizedFeatures[0, 0])
|
||||
MVNormalizedFeatures[0, 0] = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
InvStdOfFeatures[363, 1] = InvStdDev(features[363, 256])
|
||||
MeanOfFeatures[363, 1] = Mean(features[363, 256])
|
||||
features[363, 256] = InputValue
|
||||
W0[512, 363] = LearnableParameter
|
||||
W1[512, 512] = LearnableParameter
|
||||
W2[132, 512] = LearnableParameter
|
||||
labels[132, 256] = InputValue
|
||||
|
||||
Validating node CrossEntropyWithSoftmax
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
|
||||
|
||||
|
||||
|
||||
Validating node ScaledLogLikelihood
|
||||
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> labels = InputValue
|
||||
Validating --> Prior = Mean(labels[132, 256])
|
||||
Validating --> LogOfPrior = Log(Prior[132, 1])
|
||||
Validating --> ScaledLogLikelihood = Minus(HLast[132, 256], LogOfPrior[132, 1])
|
||||
|
||||
|
||||
|
||||
Validating node EvalErrorPrediction
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 256], HLast[132, 256])
|
||||
|
||||
GetTrainCriterionNodes ...
|
||||
GetEvalCriterionNodes ...
|
||||
|
||||
|
||||
Validating node CrossEntropyWithSoftmax
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 256])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
|
||||
|
||||
No PreCompute nodes found, skipping PreCompute step
|
||||
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
|
||||
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
|
||||
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
|
||||
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
|
||||
|
||||
|
||||
Validating node EvalErrorPrediction
|
||||
|
||||
Validating --> labels = InputValue
|
||||
Validating --> W2 = LearnableParameter
|
||||
Validating --> W1 = LearnableParameter
|
||||
Validating --> W0 = LearnableParameter
|
||||
Validating --> features = InputValue
|
||||
Validating --> MeanOfFeatures = Mean(features[363, 1024])
|
||||
Validating --> InvStdOfFeatures = InvStdDev(features[363, 1024])
|
||||
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 1024], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
|
||||
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 1024])
|
||||
Validating --> B0 = LearnableParameter
|
||||
Validating --> W0*features+B0 = Plus(W0*features[512, 1024], B0[512, 1])
|
||||
Validating --> H1 = Sigmoid(W0*features+B0[512, 1024])
|
||||
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 1024])
|
||||
Validating --> B1 = LearnableParameter
|
||||
Validating --> W1*H1+B1 = Plus(W1*H1[512, 1024], B1[512, 1])
|
||||
Validating --> H2 = Sigmoid(W1*H1+B1[512, 1024])
|
||||
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 1024])
|
||||
Validating --> B2 = LearnableParameter
|
||||
Validating --> HLast = Plus(W2*H1[132, 1024], B2[132, 1])
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[132, 1024])
|
||||
|
||||
Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86752820; EvalErr[0]PerSample = 0.52177733; TotalTime = 0.42093s; TotalTimePerSample = 0.04111ms; SamplesPerSecond = 24327
|
||||
Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358737; EvalErr[0]PerSample = 0.51542968; TotalTime = 0.05521s; TotalTimePerSample = 0.00539ms; SamplesPerSecond = 185480
|
||||
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8705578; EvalErrPerSample = 0.5186035; Ave LearnRatePerSample = 9.765625146e-005; EpochTime=0.690137
|
||||
COMPLETED
|
|
@ -1,17 +1,28 @@
|
|||
#!/bin/bash
|
||||
CNTK_BINARY=$TEST_BUILD_LOCATION/$TEST_FLAVOR/bin/cntk
|
||||
if [ "$TEST_DEVICE" == "CPU" ]; then
|
||||
CNTK_DEVICE_ID=-1
|
||||
else
|
||||
CNTK_DEVICE_ID=Auto
|
||||
fi
|
||||
CNTK_ARGS="configFile=$TEST_DIR/cntk.config RunDir=$TEST_RUN_DIR DataDir=$TEST_DATA_DIR DeviceId=$CNTK_DEVICE_ID"
|
||||
|
||||
configFile=$TEST_DIR/cntk.config
|
||||
RunDir=$TEST_RUN_DIR
|
||||
DataDir=$TEST_DATA_DIR
|
||||
|
||||
if [ "$OS" == "Windows_NT" ]; then
|
||||
# When running on cygwin translating /cygdrive/xxx paths to proper windows paths:
|
||||
configFile=$(cygpath -aw $configFile)
|
||||
RunDir=$(cygpath -aw $RunDir)
|
||||
DataDir=$(cygpath -aw $DataDir)
|
||||
fi
|
||||
|
||||
CNTK_ARGS="configFile=$configFile RunDir=$RunDir DataDir=$DataDir DeviceId=$CNTK_DEVICE_ID"
|
||||
MODELS_DIR=$TEST_RUN_DIR/models
|
||||
[ -d $MODELS_DIR ] && rm -rf $MODELS_DIR
|
||||
mkdir -p $MODELS_DIR || exit $?
|
||||
echo === Running $CNTK_BINARY $CNTK_ARGS
|
||||
$CNTK_BINARY $CNTK_ARGS || exit $?
|
||||
echo === Running $TEST_CNTK_BINARY $CNTK_ARGS
|
||||
$TEST_CNTK_BINARY $CNTK_ARGS || exit $?
|
||||
echo === Deleting last epoch data
|
||||
rm $TEST_RUN_DIR/models/*.dnn
|
||||
echo ==== Re-running from checkpoint
|
||||
$CNTK_BINARY $CNTK_ARGS || exit $?
|
||||
$TEST_CNTK_BINARY $CNTK_ARGS || exit $?
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
#
|
||||
# Each test directory has a following components:
|
||||
# - testcases.yml - main test confuguration file, whcih defines all test cases
|
||||
# - run-test - (run-test) script
|
||||
# - run-test - (run-test) script
|
||||
# - baseline*.txt - baseline files whith a captured expected output of run-test script
|
||||
#
|
||||
# ----- testcases.yml format -------
|
||||
|
@ -52,10 +52,14 @@
|
|||
# ---- Baseline files ----
|
||||
# Order of searching baseline files, depends on the current mode for a given test:
|
||||
#
|
||||
# 1. baseline.<flavor>.<device>.txt
|
||||
# 2. baseline.<flavor>.txt
|
||||
# 3. baseline.<device>.txt
|
||||
# 4. baseline.txt
|
||||
# 1. baseline.<os>.<flavor>.<device>.txt
|
||||
# 2. baseline.<os>.<flavor>.txt
|
||||
# 3. baseline.<os>.<device>.txt
|
||||
# 4. baseline.<os>.txt
|
||||
# 5. baseline.<flavor>.<device>.txt
|
||||
# 6. baseline.<flavor>.txt
|
||||
# 7. baseline.<device>.txt
|
||||
# 8. baseline.txt
|
||||
# where <flavor> = { debug | release }
|
||||
# <device> = { cpu | gpu }
|
||||
#
|
||||
|
@ -79,6 +83,7 @@
|
|||
import sys, os, argparse, traceback, yaml, subprocess, random, re, time
|
||||
|
||||
thisDir = os.path.dirname(os.path.realpath(__file__))
|
||||
windows = os.getenv("OS")=="Windows_NT"
|
||||
|
||||
# This class encapsulates an instance of the test
|
||||
class Test:
|
||||
|
@ -169,6 +174,10 @@ class Test:
|
|||
os.environ["TEST_FLAVOR"] = flavor
|
||||
os.environ["TEST_DEVICE"] = device
|
||||
os.environ["TEST_BUILD_LOCATION"] = args.build_location
|
||||
if windows:
|
||||
os.environ["TEST_CNTK_BINARY"] = os.path.join(args.build_location, flavor, "cntk.exe")
|
||||
else:
|
||||
os.environ["TEST_CNTK_BINARY"] = os.path.join(args.build_location, flavor, "bin", "cntk")
|
||||
os.environ["TEST_DIR"] = self.testDir
|
||||
os.environ["TEST_DATA_DIR"] = self.dataDir
|
||||
os.environ["TEST_RUN_DIR"] = runDir
|
||||
|
@ -237,17 +246,22 @@ class Test:
|
|||
return result
|
||||
|
||||
# Finds a location of a baseline file by probing different names in the following order:
|
||||
# baseline.$os.$flavor.$device.txt
|
||||
# baseline.$os.$flavor.txt
|
||||
# baseline.$os.$device.txt
|
||||
# baseline.$os.txt
|
||||
# baseline.$flavor.$device.txt
|
||||
# baseline.$flavor.txt
|
||||
# baseline.$device.txt
|
||||
# baseline.txt
|
||||
def findBaselineFile(self, flavor, device):
|
||||
for f in ["." + flavor.lower(), ""]:
|
||||
for d in ["." + device.lower(), ""]:
|
||||
candidateName = "baseline" + f + d + ".txt";
|
||||
fullPath = os.path.join(self.testDir, candidateName)
|
||||
if os.path.isfile(fullPath):
|
||||
return fullPath
|
||||
for o in ["." + ("windows" if windows else "linux"), ""]:
|
||||
for f in ["." + flavor.lower(), ""]:
|
||||
for d in ["." + device.lower(), ""]:
|
||||
candidateName = "baseline" + o + f + d + ".txt"
|
||||
fullPath = os.path.join(self.testDir, candidateName)
|
||||
if os.path.isfile(fullPath):
|
||||
return fullPath
|
||||
return None
|
||||
|
||||
# This class encapsulates one testcase (in testcases.yml file)
|
||||
|
@ -521,13 +535,13 @@ runSubparser.add_argument("test", nargs="*",
|
|||
help="optional test name(s) to run, specified as Suite/TestName. "
|
||||
"Use list command to list available tests. "
|
||||
"If not specified then all tests will be run.")
|
||||
#TODO: port paths to Windows
|
||||
defaultBuildLocation=os.path.realpath(os.path.join(thisDir, "..", "build"))
|
||||
defaultBuildLocation=os.path.realpath(os.path.join(thisDir, "..", "x64" if windows else "build"))
|
||||
|
||||
runSubparser.add_argument("-b", "--build-location", default=defaultBuildLocation, help="location of the CNTK build to run")
|
||||
runSubparser.add_argument("-d", "--device", help="cpu|gpu - run on a specific device")
|
||||
runSubparser.add_argument("-f", "--flavor", help="release|debug - run only a specific flavor")
|
||||
#TODO: port paths to Windows
|
||||
defaultRunDir=os.path.join("/tmp", "cntk-test-{0}.{1}".format(time.strftime("%Y%m%d%H%M%S"), random.randint(0,1000000)))
|
||||
tmpDir = os.getenv("TEMP") if windows else "/tmp"
|
||||
defaultRunDir=os.path.join(tmpDir, "cntk-test-{0}.{1}".format(time.strftime("%Y%m%d%H%M%S"), random.randint(0,1000000)))
|
||||
runSubparser.add_argument("-r", "--run-dir", default=defaultRunDir, help="directory where to store test output, default: a random dir within /tmp")
|
||||
runSubparser.add_argument("--update-baseline", action='store_true', help="update baseline file(s) instead of matching them")
|
||||
runSubparser.add_argument("-v", "--verbose", action='store_true', help="verbose output - dump all output of test script")
|
||||
|
|
Загрузка…
Ссылка в новой задаче