Merge branch 'master' into jiajia/IRMetricV3
This commit is contained in:
Коммит
cc4eab4627
|
@ -32,6 +32,7 @@ Readme text
|
|||
*.pl text
|
||||
*.ps1 text
|
||||
*.ps text
|
||||
*.i text
|
||||
|
||||
*.sh text eol=lf
|
||||
build-and-test text eol=lf
|
||||
|
@ -57,6 +58,7 @@ Makefile text
|
|||
*.vssettings text
|
||||
*.csproj text
|
||||
*.props text
|
||||
*.asax text
|
||||
|
||||
*.h text
|
||||
*.cpp text
|
||||
|
@ -81,6 +83,8 @@ Makefile text
|
|||
|
||||
*.log text
|
||||
|
||||
Dockerfile. text
|
||||
|
||||
# Speech data
|
||||
mean.363 text
|
||||
var.363 text
|
||||
|
|
|
@ -289,13 +289,13 @@ void OutputFunctionInfo(FunctionPtr func)
|
|||
auto inputVariables = func->Arguments();
|
||||
fprintf(stderr, "Function %S: Input Variables (count=%lu)\n", func->Name().c_str(), inputVariables.size());
|
||||
for_each(inputVariables.begin(), inputVariables.end(), [](const Variable v) {
|
||||
fprintf(stderr, " name=%S, kind=%d\n", v.Name().c_str(), v.Kind());
|
||||
fprintf(stderr, " name=%S, kind=%d\n", v.Name().c_str(), static_cast<int>(v.Kind()));
|
||||
});
|
||||
|
||||
auto outputVariables = func->Outputs();
|
||||
fprintf(stderr, "Function %S: Output Variables (count=%lu)\n", func->Name().c_str(), outputVariables.size());
|
||||
for_each(outputVariables.begin(), outputVariables.end(), [](const Variable v) {
|
||||
fprintf(stderr, " name=%S, kind=%d\n", v.Name().c_str(), v.Kind());
|
||||
fprintf(stderr, " name=%S, kind=%d\n", v.Name().c_str(), static_cast<int>(v.Kind()));
|
||||
});
|
||||
}
|
||||
|
||||
|
|
1
Makefile
1
Makefile
|
@ -355,6 +355,7 @@ COMPUTATION_NETWORK_LIB_SRC =\
|
|||
$(SOURCEDIR)/ComputationNetworkLib/ComputationNetworkEditing.cpp \
|
||||
$(SOURCEDIR)/ComputationNetworkLib/ComputationNetworkBuilder.cpp \
|
||||
$(SOURCEDIR)/ComputationNetworkLib/ComputationNetworkScripting.cpp \
|
||||
$(SOURCEDIR)/ComputationNetworkLib/TrainingNodes.cpp \
|
||||
|
||||
SEQUENCE_TRAINING_LIB_SRC =\
|
||||
$(SOURCEDIR)/SequenceTrainingLib/latticeforwardbackward.cpp \
|
||||
|
|
|
@ -459,7 +459,7 @@ CNTK2 = [
|
|||
if axis==0 then new ComputationNode [ operation = 'CrossEntropyWithSoftmax' ; inputs = _AsNodes (labelSequence : outProbVectorSequence) /*plus the function args*/ ]
|
||||
else [ tag1 = tag; out = Minus (ReduceLogSum (outProbVectorSequence, axis=axis), ReduceSum (labelSequence .* outProbVectorSequence, axis=axis), tag=tag1) ].out
|
||||
# Classification error along a specific axis: account only for missed labels, i.e.
|
||||
# strictly check whether at the one “1” location in labels we find a value equal to the max
|
||||
# strictly check whether at the one '1' location in labels we find a value equal to the max
|
||||
ClassificationError(labelSequence, outVectorSequence, topN=1, axis=0, tag='') =
|
||||
if axis==0 then new ComputationNode [ operation = 'ClassificationError' ; inputs = _AsNodes (if topN == 1 then (labelSequence : outVectorSequence) else (labelSequence : outVectorSequence : Constant (topN))) /*plus the function args*/ ]
|
||||
else if topN != 1 then Fail ("ClassificationError() along a specific axis does not support topN.")
|
||||
|
@ -485,9 +485,26 @@ CNTK2 = [
|
|||
NotEqual(_, y, tag='') = new ComputationNode [ operation = 'NotEqual' ; inputs = _AsNodes (_ : y) /*plus the function args*/ ]
|
||||
LessEqual(_, y, tag='') = new ComputationNode [ operation = 'LessEqual' ; inputs = _AsNodes (_ : y) /*plus the function args*/ ]
|
||||
|
||||
// 13. Others
|
||||
Pass(_, tag='') = new ComputationNode [ operation = 'Pass' ; inputs = _AsNodes (_) /*plus the function args*/ ]
|
||||
// 13. Others
|
||||
Pass(_, tag='') = new ComputationNode [ operation = 'Pass' ; inputs = _AsNodes (_) /*plus the function args*/ ]
|
||||
Identity = Pass
|
||||
|
||||
// The value of GetRandomSample(weights /* vector of length nClasses */, numSamples, sampleWithReplacement) randomly samples numSamples using the specified sampling weights.
|
||||
// The result is a sparse matrix of num samples one-hot vectors as columns.
|
||||
GetRandomSample(_ ,numSamples, sampleWithReplacement, tag='') = new ComputationNode [
|
||||
operation = 'RandomSample' ;
|
||||
sizeOfSampledSet = numSamples;
|
||||
allowDuplicates = sampleWithReplacement;
|
||||
inputs = _ /*plus the function args*/ ]
|
||||
|
||||
// The value of GetInclusion(weights /* vector of length nClasses */, numSamples, sampleWithReplacement) has to be seen in cojuction to GetRandomSample(...).
|
||||
// While GetRandomSample(...) creates a set of samples, GetInclusion(...) tells how often each class is expected to occur in the sampled sets.
|
||||
// For sampling with replacment the relation to the sampling weights is trivial but not for sampling without replacment.
|
||||
GetInclusionFrequency(_ ,numSamples, sampleWithReplacement, tag='') = new ComputationNode [
|
||||
operation = 'RandomSampleInclusionFrequency' ;
|
||||
sizeOfSampledSet = numSamples;
|
||||
allowDuplicates = sampleWithReplacement;
|
||||
inputs = _ /*plus the function args*/ ]
|
||||
]
|
||||
|
||||
# Parameter{} can do several forms of initialization.
|
||||
|
|
|
@ -72,6 +72,7 @@ namespace CNTK
|
|||
{
|
||||
// The CNTK reader implementation requires for each deserializer both the module and deserializer type be specified
|
||||
// This is redundant and the V2 API users will just specify type from which the module is automatically inferred
|
||||
// TODO: This should be done in the same manner for CNTK exe as well.
|
||||
Dictionary augmentedConfiguration = configuration;
|
||||
auto& deserializerConfigurations = augmentedConfiguration[L"deserializers"].Value<std::vector<DictionaryValue>>();
|
||||
for (auto& deserializerConfig : deserializerConfigurations)
|
||||
|
@ -129,11 +130,14 @@ namespace CNTK
|
|||
|
||||
typedef Reader*(*CreateCompositeDataReaderProc)(const ConfigParameters* parameters);
|
||||
CreateCompositeDataReaderProc createReaderProc = (CreateCompositeDataReaderProc)Plugin().Load(L"CompositeDataReader", "CreateCompositeDataReader");
|
||||
m_compositeDataReader.reset(createReaderProc(&config));
|
||||
std::shared_ptr<Microsoft::MSR::CNTK::Reader> compositeDataReader(createReaderProc(&config));
|
||||
|
||||
auto compositeDataReaderStreamDescs = m_compositeDataReader->GetStreamDescriptions();
|
||||
for (auto streamDesc : compositeDataReaderStreamDescs)
|
||||
m_compositeDataReaderStreamDescs = compositeDataReader->GetStreamDescriptions();
|
||||
for (auto streamDesc : m_compositeDataReaderStreamDescs)
|
||||
m_streamInfos.insert({ streamDesc->m_name, streamDesc->m_id, AsStorageFormat(streamDesc->m_storageType), AsDataType(streamDesc->m_elementType), AsNDShape(*(streamDesc->m_sampleLayout)) });
|
||||
|
||||
m_shim = std::shared_ptr<ReaderShim<float>>(new ReaderShim<float>(compositeDataReader), [](ReaderShim<float>* x) { x->Destroy(); });
|
||||
m_shim->Init(config);
|
||||
}
|
||||
|
||||
/*virtual*/ const std::unordered_map<StreamInformation, MinibatchData>&
|
||||
|
@ -155,59 +159,70 @@ namespace CNTK
|
|||
{
|
||||
// TODO: Add support for distributed reading
|
||||
EpochConfiguration epochConfig = { 1, 0, minibatchSizeInSamples, m_epochSize, 0, 0 };
|
||||
m_matrices.clear();
|
||||
|
||||
std::map<std::wstring, int> requiredStreams;
|
||||
std::unordered_set<InputStreamDescription> inputs;
|
||||
for (const auto& s : m_streamInfos)
|
||||
// Allocating all on CPU for now.
|
||||
requiredStreams[s.m_name] = CPUDEVICE;
|
||||
{
|
||||
assert(s.m_storageFormat == StorageFormat::Dense || s.m_storageFormat == StorageFormat::SparseCSC);
|
||||
auto inputStreamDescription = InputStreamDescription(
|
||||
s.m_name,
|
||||
AsCNTKImplDeviceId(device),
|
||||
s.m_storageFormat == StorageFormat::Dense ? MatrixType::DENSE : MatrixType::SPARSE,
|
||||
s.m_storageFormat == StorageFormat::Dense ? MatrixFormat::matrixFormatDense : MatrixFormat::matrixFormatSparseCSC);
|
||||
inputs.insert(inputStreamDescription);
|
||||
|
||||
m_compositeDataReader->StartEpoch(epochConfig, requiredStreams);
|
||||
if (s.m_elementType == DataType::Float)
|
||||
{
|
||||
auto iter = std::find_if(m_compositeDataReaderStreamDescs.begin(), m_compositeDataReaderStreamDescs.end(), [s](StreamDescriptionPtr& streamInfo) {
|
||||
return streamInfo->m_id == s.m_id;
|
||||
});
|
||||
assert(iter != m_compositeDataReaderStreamDescs.end());
|
||||
|
||||
m_matrices.AddInput(
|
||||
s.m_name,
|
||||
std::make_shared<Matrix<float>>(0, 0, inputStreamDescription.GetDeviceId(), inputStreamDescription.GetMatrixType(), inputStreamDescription.GetMatrixFormat()),
|
||||
std::make_shared<MBLayout>(),
|
||||
*(*iter)->m_sampleLayout);
|
||||
}
|
||||
else
|
||||
LogicError("Input data of type other than DataType::Float is currently unsupported by the CNTK built-in composite MinibatchSource!");
|
||||
}
|
||||
|
||||
m_shim->StartEpoch(epochConfig, inputs);
|
||||
m_prevMinibatchSize = minibatchSizeInSamples;
|
||||
}
|
||||
|
||||
if (minibatchSizeInSamples != m_prevMinibatchSize)
|
||||
LogicError("GetNextMinibatch: Changing minibatch sizes across calls is currently unsupported");
|
||||
|
||||
auto compositeReaderMinibatchData = m_compositeDataReader->ReadMinibatch();
|
||||
m_epochEndReached = compositeReaderMinibatchData.m_endOfEpoch;
|
||||
auto compositeReaderMinibatchDataEmpty = m_shim->GetMinibatch(m_matrices);
|
||||
m_epochEndReached = m_shim->IsEndOfEpoch();
|
||||
|
||||
auto& streamInfos = StreamInfos();
|
||||
auto compositeDataReaderStreamDescs = m_compositeDataReader->GetStreamDescriptions();
|
||||
size_t numStreams = compositeDataReaderStreamDescs.size();
|
||||
for (size_t i = 0; i < numStreams; ++i)
|
||||
for (const auto& s: m_streamInfos)
|
||||
{
|
||||
auto currentStreamDesc = compositeDataReaderStreamDescs[i];
|
||||
auto iter = std::find_if(streamInfos.begin(), streamInfos.end(), [currentStreamDesc](const StreamInformation& streamInfo) {
|
||||
return streamInfo.m_id == currentStreamDesc->m_id;
|
||||
});
|
||||
|
||||
if (iter == streamInfos.end())
|
||||
continue;
|
||||
|
||||
auto& currentStreamInfo = *iter;
|
||||
auto sampleShape = AsNDShape(*(currentStreamDesc->m_sampleLayout));
|
||||
auto input = m_matrices.GetInput(s.m_name);
|
||||
auto& currentStreamInfo = s;
|
||||
|
||||
ValuePtr minibatchValuePtr;
|
||||
if (compositeReaderMinibatchData.m_data.empty())
|
||||
if (!compositeReaderMinibatchDataEmpty)
|
||||
{
|
||||
minibatchValuePtr = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(currentStreamInfo.m_elementType, sampleShape.AppendShape({ 0, 0 }), DeviceDescriptor::CPUDevice()));
|
||||
minibatchValuePtr = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(currentStreamInfo.m_elementType, s.m_sampleLayout.AppendShape({ 0, 0 }), DeviceDescriptor::CPUDevice()));
|
||||
continue;
|
||||
}
|
||||
|
||||
auto currentStreamMinibatchData = compositeReaderMinibatchData.m_data[i];
|
||||
if (currentStreamDesc->m_elementType == ElementType::tfloat)
|
||||
if (s.m_elementType == DataType::Float)
|
||||
{
|
||||
auto CNTKMatrixType = (currentStreamDesc->m_storageType == StorageType::dense) ? DENSE : SPARSE;
|
||||
auto CNTKMatrixFormat = (currentStreamDesc->m_storageType == StorageType::dense) ? matrixFormatDense : matrixFormatSparseCSC;
|
||||
auto dataMatrix = std::make_shared<Matrix<float>>(0, 0, CPUDEVICE, CNTKMatrixType, CNTKMatrixFormat);
|
||||
size_t sampleSize = currentStreamDesc->m_sampleLayout->GetNumElements();
|
||||
auto matrixType = (s.m_storageFormat == StorageFormat::Dense) ? DENSE : SPARSE;
|
||||
auto matrixFormat = (s.m_storageFormat == StorageFormat::Dense) ? matrixFormatDense : matrixFormatSparseCSC;
|
||||
// Can we reuse this, not allocating it each time?
|
||||
auto dataMatrix = std::make_shared<Matrix<float>>(0, 0, input.GetMatrix<float>().GetDeviceId(), matrixType, matrixFormat);
|
||||
|
||||
// TODO: Eliminate the unnecessary CPU to CPU copy
|
||||
ReaderShim<float>::FillMatrixFromStream(currentStreamDesc->m_storageType, dataMatrix.get(), sampleSize, currentStreamMinibatchData, nullptr);
|
||||
minibatchValuePtr = MakeSharedObject<PackedValue>(sampleShape, dataMatrix, currentStreamMinibatchData->m_layout, /*readOnly =*/ false);
|
||||
std::swap(*dataMatrix, input.GetMatrix<float>());
|
||||
minibatchValuePtr = MakeSharedObject<PackedValue>(s.m_sampleLayout, dataMatrix, input.pMBLayout, /*readOnly =*/ false);
|
||||
|
||||
size_t numSamples = currentStreamMinibatchData->m_layout->GetActualNumSamples();
|
||||
size_t numSequences = currentStreamMinibatchData->m_layout->GetNumSequences();
|
||||
size_t numSamples = input.pMBLayout->GetActualNumSamples();
|
||||
size_t numSequences = input.pMBLayout->GetNumSequences();
|
||||
|
||||
m_minibatchData[currentStreamInfo] = { numSequences, numSamples, minibatchValuePtr };
|
||||
}
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
#include "CNTKLibrary.h"
|
||||
#include "Utils.h"
|
||||
#include "Reader.h"
|
||||
#include "ReaderShim.h"
|
||||
|
||||
namespace CNTK
|
||||
{
|
||||
|
@ -25,10 +26,17 @@ namespace CNTK
|
|||
|
||||
private:
|
||||
std::unordered_set<StreamInformation> m_streamInfos;
|
||||
std::shared_ptr<Microsoft::MSR::CNTK::Reader> m_compositeDataReader;
|
||||
bool m_epochEndReached;
|
||||
size_t m_prevMinibatchSize;
|
||||
size_t m_epochSize;
|
||||
std::unordered_map<StreamInformation, MinibatchData> m_minibatchData;
|
||||
std::vector<Microsoft::MSR::CNTK::StreamDescriptionPtr> m_compositeDataReaderStreamDescs;
|
||||
|
||||
// For now reusing the shim to allow prefetch.
|
||||
// Please only use a subset of the shim interface that includes
|
||||
// Init()/StartEpoch()/GetMinibatch()/IsEndOfEpoch()
|
||||
// Shim will be deleted in the future versions.
|
||||
std::shared_ptr<Microsoft::MSR::CNTK::ReaderShim<float>> m_shim;
|
||||
Microsoft::MSR::CNTK::StreamMinibatchInputs m_matrices;
|
||||
};
|
||||
}
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include "Platform.h"
|
||||
#include "ExceptionWithCallStack.h"
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <assert.h>
|
||||
|
@ -25,7 +26,7 @@
|
|||
#define TWO_PI 6.283185307f // TODO: find the official standards-confirming definition of this and use it instead
|
||||
|
||||
#define EPSILON 1e-5
|
||||
#define ISCLOSE(a, b, threshold) (abs(a - b) < threshold) ? true : false
|
||||
#define ISCLOSE(a, b, threshold) (std::abs(a - b) < threshold) ? true : false
|
||||
#define DLCLOSE_SUCCESS 0
|
||||
|
||||
#define UNUSED(x) (void)(x) // for variables that are, e.g., only used in _DEBUG builds
|
||||
|
|
|
@ -524,7 +524,7 @@ void ComputationNetwork::CollectInputAndLearnableParametersRec(const Computation
|
|||
}
|
||||
|
||||
template <class ElemType>
|
||||
/*static*/ void ComputationNetwork::SetDropoutRate(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate, size_t randSeedBase)
|
||||
/*static*/ void ComputationNetwork::SetDropoutRate(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate)
|
||||
{
|
||||
list<ComputationNodeBasePtr> dropoutNodes = net->GetNodesWithType(OperationNameOf(DropoutNode), criterionNode);
|
||||
if (dropoutRate != prevDropoutRate)
|
||||
|
@ -535,21 +535,35 @@ template <class ElemType>
|
|||
fprintf(stderr, "WARNING: Attempting to set dropout rate, but there is no dropout node in the network.\n");
|
||||
}
|
||||
|
||||
// Each dropout node gets a distinct seed. The actual seed for each dropout node is computed as follows:
|
||||
// seed = (((parallelWorkerIdx * maxEpochs) + currentEpochNum) /*i.e. randSeedBase*/ * dropoutNodes.size()) + dropoutNodeIdx
|
||||
size_t randSeed = randSeedBase * dropoutNodes.size();
|
||||
for (auto& nodeIter : dropoutNodes)
|
||||
{
|
||||
auto node = dynamic_pointer_cast<DropoutNode<ElemType>>(nodeIter);
|
||||
if (dropoutRate != prevDropoutRate)
|
||||
node->SetDropoutRate(dropoutRate);
|
||||
node->SetRandomSeed(randSeed);
|
||||
randSeed++;
|
||||
}
|
||||
|
||||
prevDropoutRate = dropoutRate;
|
||||
}
|
||||
|
||||
template <class ElemType>
|
||||
/* static */ void ComputationNetwork::SetIRngUserSeed(ComputationNetworkPtr net, const ComputationNodeBasePtr& node, size_t randSeedBase)
|
||||
{
|
||||
// Predicate checking if the node is derived from IRngUser
|
||||
function<bool(const ComputationNodeBasePtr&)> nodeIsIRngUser = [](const ComputationNodeBasePtr& p) { return dynamic_pointer_cast<IRngUser>(p) != nullptr; };
|
||||
|
||||
list<ComputationNodeBasePtr> rngUserNodes = net->GetNodesWhere(nodeIsIRngUser, node);
|
||||
|
||||
// Each IRngUser gets a distinct seed. This seed is computed as follows:
|
||||
// seed = (((parallelWorkerIdx * maxEpochs) + currentEpochNum) /*i.e. randSeedBase*/ * rngUserNodes.size()) + dropoutNodeIdx.
|
||||
size_t randSeed = randSeedBase * rngUserNodes.size();
|
||||
for (auto& nodeIter : rngUserNodes)
|
||||
{
|
||||
auto rngUser = dynamic_pointer_cast<IRngUser>(nodeIter);
|
||||
rngUser->SetRandomSeed(randSeed);
|
||||
randSeed++;
|
||||
}
|
||||
}
|
||||
|
||||
template <class ElemType>
|
||||
/*static*/ void ComputationNetwork::SetBatchNormalizationTimeConstants(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode,
|
||||
double normalizationTimeConstant, double& prevNormalizationTimeConstant,
|
||||
|
@ -1490,7 +1504,8 @@ template void ComputationNetwork::InitLearnableParametersWithBilinearFill<float>
|
|||
template void ComputationNetwork::Read<float>(const wstring& fileName);
|
||||
template void ComputationNetwork::ReadPersistableParameters<float>(File& fstream, bool create);
|
||||
template void ComputationNetwork::PerformSVDecomposition<float>(const map<wstring, float>& SVDConfig, size_t alignedsize);
|
||||
template /*static*/ void ComputationNetwork::SetDropoutRate<float>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate, size_t randSeedBase);
|
||||
template /*static*/ void ComputationNetwork::SetDropoutRate<float>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate);
|
||||
template /*static*/ void ComputationNetwork::SetIRngUserSeed<float>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, size_t randSeedBase);
|
||||
template /*static*/ void ComputationNetwork::SetBatchNormalizationTimeConstants<float>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double normalizationTimeConstant, double& prevNormalizationTimeConstant, double blendTimeConstant, double& prevBlendTimeConstant);
|
||||
template void ComputationNetwork::SetSeqParam<float>(ComputationNetworkPtr net, const ComputationNodeBasePtr criterionNode, const double& hsmoothingWeight, const double& frameDropThresh, const bool& doreferencealign,
|
||||
const double& amf, const double& lmf, const double& wp, const double& bMMIfactor, const bool& sMBR);
|
||||
|
@ -1500,7 +1515,8 @@ template void ComputationNetwork::InitLearnableParametersWithBilinearFill<double
|
|||
template void ComputationNetwork::Read<double>(const wstring& fileName);
|
||||
template void ComputationNetwork::ReadPersistableParameters<double>(File& fstream, bool create);
|
||||
template void ComputationNetwork::PerformSVDecomposition<double>(const map<wstring, float>& SVDConfig, size_t alignedsize);
|
||||
template /*static*/ void ComputationNetwork::SetDropoutRate<double>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate, size_t randSeedBase);
|
||||
template /*static*/ void ComputationNetwork::SetDropoutRate<double>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate);
|
||||
template /*static*/ void ComputationNetwork::SetIRngUserSeed<double>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, size_t randSeedBase);
|
||||
template /*static*/ void ComputationNetwork::SetBatchNormalizationTimeConstants<double>(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double normalizationTimeConstant, double& prevNormalizationTimeConstant, double blendTimeConstant, double& prevBlendTimeConstant);
|
||||
template void ComputationNetwork::SetSeqParam<double>(ComputationNetworkPtr net, const ComputationNodeBasePtr criterionNode, const double& hsmoothingWeight, const double& frameDropThresh, const bool& doreferencealign,
|
||||
const double& amf, const double& lmf, const double& wp, const double& bMMIfactor, const bool& sMBR);
|
||||
|
|
|
@ -446,8 +446,11 @@ public:
|
|||
|
||||
// TODO: Why are all these static, but then take a network as the first argument? --> make them class members
|
||||
template <class ElemType>
|
||||
static void SetDropoutRate(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate, size_t randSeedBase);
|
||||
static void SetDropoutRate(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, const double dropoutRate, double& prevDropoutRate);
|
||||
|
||||
template <class ElemType>
|
||||
static void SetIRngUserSeed(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode, size_t randSeedBase);
|
||||
|
||||
template <class ElemType>
|
||||
static void SetBatchNormalizationTimeConstants(ComputationNetworkPtr net, const ComputationNodeBasePtr& criterionNode,
|
||||
double normalizationTimeConstant, double& prevNormalizationTimeConstant,
|
||||
|
@ -652,18 +655,19 @@ public:
|
|||
return std::vector<ComputationNodeBasePtr>(outputNodes.begin(), outputNodes.end());
|
||||
}
|
||||
|
||||
std::list<ComputationNodeBasePtr> GetNodesWithType(const wstring typeName, const ComputationNodeBasePtr& rootNode = nullptr)
|
||||
std::list<ComputationNodeBasePtr> GetNodesWhere(std::function<bool(const ComputationNodeBasePtr&)>& predicate, const ComputationNodeBasePtr& rootNode = nullptr) const
|
||||
{
|
||||
std::list<ComputationNodeBasePtr> nodesWithType;
|
||||
std::list<ComputationNodeBasePtr> filteredNodes;
|
||||
|
||||
// find nodes from all available nodes
|
||||
// TODO: This distinction should not be necessary anymore. Calling GetEvalOrder(nullptr) will have the same effect.
|
||||
if (rootNode == nullptr)
|
||||
{
|
||||
for (auto nodeIter = m_nameToNodeMap.begin(); nodeIter != m_nameToNodeMap.end(); nodeIter++)
|
||||
{
|
||||
ComputationNodeBasePtr node = nodeIter->second;
|
||||
if (node->OperationName() == typeName)
|
||||
nodesWithType.push_back(node);
|
||||
if (predicate(node))
|
||||
filteredNodes.push_back(node);
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -671,12 +675,18 @@ public:
|
|||
// for calculating a specific node
|
||||
for (const auto& node : GetEvalOrder(rootNode)) // TODO: verify that no use of this requires the actual eval order, then change to GetAllNodesForRoot()
|
||||
{
|
||||
if (node->OperationName() == typeName)
|
||||
nodesWithType.push_back(node);
|
||||
if (predicate(node))
|
||||
filteredNodes.push_back(node);
|
||||
}
|
||||
}
|
||||
|
||||
return nodesWithType;
|
||||
return filteredNodes;
|
||||
}
|
||||
|
||||
std::list<ComputationNodeBasePtr> GetNodesWithType(const wstring typeName, const ComputationNodeBasePtr& rootNode = nullptr) const
|
||||
{
|
||||
std::function<bool(const ComputationNodeBasePtr&)> predicate = [typeName](const ComputationNodeBasePtr& node) { return node->OperationName() == typeName; };
|
||||
return GetNodesWhere(predicate, rootNode);
|
||||
}
|
||||
|
||||
public:
|
||||
|
|
|
@ -91,6 +91,8 @@ static shared_ptr<ComputationNode<ElemType>> CreateStandardNode(const std::wstri
|
|||
else if (nodeType == OperationNameOf(PerDimMeanVarDeNormalizationNode)) return New<PerDimMeanVarDeNormalizationNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
else if (nodeType == OperationNameOf(PassNode)) return New<PassNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
else if (nodeType == OperationNameOf(PlusNode)) return New<PlusNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
else if (nodeType == OperationNameOf(RandomSampleNode)) return New<RandomSampleNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
else if (nodeType == OperationNameOf(RandomSampleInclusionFrequencyNode)) return New<RandomSampleInclusionFrequencyNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
else if (nodeType == OperationNameOf(ReconcileDynamicAxisNode)) return New<ReconcileDynamicAxisNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
else if (nodeType == OperationNameOf(ReciprocalNode)) return New<ReciprocalNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
else if (nodeType == OperationNameOf(RectifiedLinearNode)) return New<RectifiedLinearNode<ElemType>>(forward<_Types>(_Args)...);
|
||||
|
@ -812,6 +814,18 @@ shared_ptr<ComputationNode<ElemType>> ComputationNetworkBuilder<ElemType>::RowSt
|
|||
return net.AddNodeToNetAndAttachInputs(New<RowStackNode<ElemType>>(net.GetDeviceId(), nodeName), { inputs });
|
||||
}
|
||||
|
||||
template <class ElemType>
|
||||
shared_ptr<ComputationNode<ElemType>> ComputationNetworkBuilder<ElemType>::RandomSample(const ComputationNodePtr a, const std::wstring nodeName)
|
||||
{
|
||||
return net.AddNodeToNetAndAttachInputs(New<RandomSampleNode<ElemType>>(net.GetDeviceId(), nodeName), { a });
|
||||
}
|
||||
|
||||
template <class ElemType>
|
||||
shared_ptr<ComputationNode<ElemType>> ComputationNetworkBuilder<ElemType>::RandomSampleInclusionFrequency(const ComputationNodePtr a, const std::wstring nodeName)
|
||||
{
|
||||
return net.AddNodeToNetAndAttachInputs(New<RandomSampleInclusionFrequencyNode<ElemType>>(net.GetDeviceId(), nodeName), { a });
|
||||
}
|
||||
|
||||
#ifdef COMING_SOON
|
||||
template <class ElemType>
|
||||
shared_ptr<ComputationNode<ElemType>> ComputationNetworkBuilder<ElemType>::GMMLogLikelihood(const ComputationNodePtr unnormedPrior,
|
||||
|
|
|
@ -157,6 +157,8 @@ public:
|
|||
ComputationNodePtr PerDimMeanVarNormalization(const ComputationNodePtr feature, const ComputationNodePtr mean, const ComputationNodePtr InvStdDev, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr Plus(const ComputationNodePtr a, const ComputationNodePtr b, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr Reciprocal(const ComputationNodePtr a, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr RandomSample(const ComputationNodePtr a, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr RandomSampleInclusionFrequency(const ComputationNodePtr a, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr RectifiedLinear(const ComputationNodePtr a, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr Reshape(const ComputationNodePtr a, const TensorShape& imageLayout, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr RowRepeat(const ComputationNodePtr a, const size_t num_repeat, const std::wstring nodeName = L"");
|
||||
|
|
|
@ -127,6 +127,7 @@
|
|||
<ClCompile Include="RNNNodes.cpp" />
|
||||
<ClCompile Include="SpecialPurposeNodes.cpp" />
|
||||
<ClCompile Include="stdafx.cpp" />
|
||||
<ClCompile Include="TrainingNodes.cpp" />
|
||||
</ItemGroup>
|
||||
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
|
||||
<ImportGroup Label="ExtensionTargets" />
|
||||
|
|
|
@ -46,6 +46,9 @@
|
|||
<ClCompile Include="RecurrentNodes.cpp">
|
||||
<Filter>Nodes</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="TrainingNodes.cpp">
|
||||
<Filter>Nodes</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="..\Common\Include\fileutil.h">
|
||||
|
|
|
@ -0,0 +1,225 @@
|
|||
//
|
||||
// Copyright (c) Microsoft. All rights reserved.
|
||||
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
|
||||
//
|
||||
|
||||
#include "TrainingNodes.h"
|
||||
|
||||
namespace Microsoft { namespace MSR { namespace CNTK {
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleNodeBase<ElemType>::CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const
|
||||
{
|
||||
Base::CopyTo(nodeP, newName, flags);
|
||||
if (flags & CopyNodeFlags::copyNodeValue)
|
||||
{
|
||||
auto node = dynamic_pointer_cast<RandomSampleNodeBase<ElemType>>(nodeP);
|
||||
node->m_allowDuplicates = m_allowDuplicates;
|
||||
node->m_sizeOfSampledSet = m_sizeOfSampledSet;
|
||||
node->m_randomSeed = m_randomSeed;
|
||||
}
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleNodeBase<ElemType>::Save(File& fstream) const
|
||||
{
|
||||
Base::Save(fstream);
|
||||
fstream << m_allowDuplicates;
|
||||
fstream << m_sizeOfSampledSet;
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleNodeBase<ElemType>::Load(File& fstream, size_t modelVersion)
|
||||
{
|
||||
Base::Load(fstream, modelVersion);
|
||||
fstream >> m_allowDuplicates;
|
||||
fstream >> m_sizeOfSampledSet;
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleNodeBase<ElemType>::UpdateWeightsPrefixSum()
|
||||
{
|
||||
const Matrix<ElemType>& samplingWeights = Input(0)->ValueAsMatrix();
|
||||
m_samplingWeightsPrefixSum.clear();
|
||||
double runningWeightsSum = 0;
|
||||
for (int iClass = 0; iClass < samplingWeights.GetNumRows(); iClass++)
|
||||
{
|
||||
ElemType currentWeight = samplingWeights.GetValue(iClass, 0);
|
||||
runningWeightsSum += currentWeight;
|
||||
m_samplingWeightsPrefixSum.push_back(runningWeightsSum);
|
||||
}
|
||||
}
|
||||
|
||||
// Runs the sampling returning a vector with the id's of the samples. The parameter nTries is used to return the number of draws that was needed
|
||||
// to get the expected number of samples.
|
||||
template<class ElemType>
|
||||
const std::vector<size_t> RandomSampleNodeBase<ElemType>::RunSampling(long& nTries)
|
||||
{
|
||||
std::uniform_real_distribution<double> r(0, m_samplingWeightsPrefixSum.back());
|
||||
std::unordered_set<int> alreadySampled;
|
||||
std::vector<size_t> samples;
|
||||
CPURNGHandle* cpuRNGHandle = dynamic_cast<CPURNGHandle*>(&GetRNGHandle(CPUDEVICE));
|
||||
// find random samples using the specified weight
|
||||
|
||||
if (m_allowDuplicates)
|
||||
nTries = m_sizeOfSampledSet;
|
||||
else
|
||||
nTries = 0; // just initialize and count how many tries we need.
|
||||
|
||||
while (samples.size() < m_sizeOfSampledSet)
|
||||
{
|
||||
double randomValue = r(cpuRNGHandle->Generator());
|
||||
// Find the first index where value[idx] >= randomValue.
|
||||
auto lower = std::lower_bound(m_samplingWeightsPrefixSum.begin(), m_samplingWeightsPrefixSum.end(), randomValue);
|
||||
int idx = (int)(lower - m_samplingWeightsPrefixSum.begin());
|
||||
|
||||
if (m_allowDuplicates)
|
||||
samples.push_back(idx);
|
||||
else
|
||||
{
|
||||
// Sampling without replacement: each value can be sampled at most once.
|
||||
// The implementation below using rejection sampling is problematic.
|
||||
// E.g if first class has probability p = 0.999 we typically will have to sample 1000 times or more to hit another class.
|
||||
// BUGBUG Alternative implementions, e.g:
|
||||
// * Weighted Random Sampling with Reservoir: http://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf
|
||||
// * Binary tree with classes as leafes and branch probs on non-leafes.
|
||||
// * As in numpy: https://github.com/numpy/numpy/blob/master/numpy/random/mtrand/mtrand.pyx#L1440
|
||||
nTries++;
|
||||
if (alreadySampled.find(idx) != alreadySampled.end()) continue;
|
||||
else
|
||||
{
|
||||
samples.push_back(idx);
|
||||
alreadySampled.insert(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
return samples;
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleNode<ElemType>::ForwardPropNonLooping()
|
||||
{
|
||||
Base::UpdateWeightsPrefixSum();
|
||||
Matrix<ElemType>& valueMatrix = ValueAsMatrix();
|
||||
valueMatrix.TransferToDeviceIfNotThere(CPUDEVICE, /*ismoved =*/ true/*means: BOTH state not ok */, /*emptyTransfer =*/ true, /*updatePreferredDevice =*/ false);
|
||||
valueMatrix.SetDevice(CPUDEVICE);
|
||||
|
||||
//BUGBUG: matrix type should be configured during validation
|
||||
valueMatrix.SwitchToMatrixType(SPARSE, matrixFormatSparseCSC, false);
|
||||
valueMatrix.Reset();
|
||||
|
||||
// Get vector with indices of randomly sampled classes
|
||||
const std::vector<size_t> samples = GetWeightedSamples();
|
||||
|
||||
// Set columns of (sparse) result matrix as indicator vectors
|
||||
for (size_t i = 0; i < Base::m_sizeOfSampledSet; i++)
|
||||
{
|
||||
int sample = samples[i];
|
||||
valueMatrix.SetValue(sample, i, 1);
|
||||
}
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
const std::vector<size_t> RandomSampleNode<ElemType>::GetWeightedSamples()
|
||||
{
|
||||
long dummy;
|
||||
// Here we are not interested in the number of sampling tries needed, which is returned in the parameter.
|
||||
return Base::RunSampling(dummy);
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleNode<ElemType>::Validate(bool isFinalValidationPass)
|
||||
{
|
||||
Base::Validate(isFinalValidationPass);
|
||||
m_pMBLayout = nullptr;
|
||||
|
||||
let& shape = Input(0)->GetSampleLayout();
|
||||
let dims = shape.GetDims();
|
||||
size_t nClasses = dims[0];
|
||||
|
||||
// Output: a (sparse) matrix containing m_sizeOfSampledSet columns of 1-hot vectors specifiying the sampled classes.
|
||||
SetDims(TensorShape(nClasses, Base::m_sizeOfSampledSet), false);
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
bool RandomSampleNode<ElemType>::IsOutOfDateWrtInputs() const
|
||||
{
|
||||
// If we are in the mode to generate random samples (i.e. m_estimateInSampleFrequency == false)
|
||||
// we need to recompute the result for each mini-batch even if the weight vector didn't change.
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
double RandomSampleInclusionFrequencyNode<ElemType>::EstimateNumberOfTries()
|
||||
{
|
||||
// We estimate the average numver of tries by repeating a fixed number of experiments
|
||||
const size_t numExperiments = 10; // We choose 10 without any deep justification.
|
||||
long totalTries = 0;
|
||||
for (int iExperiment = 0; iExperiment < numExperiments; iExperiment++)
|
||||
{
|
||||
long nTries;
|
||||
Base::RunSampling(nTries);
|
||||
totalTries += nTries;
|
||||
}
|
||||
return totalTries / (double)numExperiments;
|
||||
}
|
||||
|
||||
// Estimates the expected number of occurences of each class in the sampled set.
|
||||
// For sampling without replacement we use estimate using average number of tries. (Inspired by TensorFlow)
|
||||
// BUGBUG: Consider to reimplement using a less biased estimate as proposed by Nikos.
|
||||
template<class ElemType>
|
||||
double RandomSampleInclusionFrequencyNode<ElemType>::EstimateInSampleFrequency(double p, double estimatedNumTries) const
|
||||
{
|
||||
if (Base::m_allowDuplicates)
|
||||
{
|
||||
return p * Base::m_sizeOfSampledSet;
|
||||
}
|
||||
else /* No duplicates allowed. Estimated count is same as probability of inclusion. */
|
||||
{
|
||||
return -expm1(estimatedNumTries * log1p(-p));
|
||||
}
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleInclusionFrequencyNode<ElemType>::ForwardPropNonLooping()
|
||||
{
|
||||
Base::UpdateWeightsPrefixSum();
|
||||
Matrix<ElemType>& valueMatrix = ValueAsMatrix();
|
||||
valueMatrix.TransferToDeviceIfNotThere(CPUDEVICE, /*ismoved =*/ true/*means: BOTH state not ok */, /*emptyTransfer =*/ true, /*updatePreferredDevice =*/ false);
|
||||
valueMatrix.SetDevice(CPUDEVICE);
|
||||
|
||||
//BUGBUG: matrix type should be configured during validation
|
||||
valueMatrix.SwitchToMatrixType(DENSE, matrixFormatDense, false);
|
||||
double sumOfWeights = Base::m_samplingWeightsPrefixSum.back();
|
||||
const Matrix<ElemType>& samplingWeights = Input(0)->ValueAsMatrix();
|
||||
|
||||
double estimatedNumTries = EstimateNumberOfTries();
|
||||
|
||||
for (int i = 0; i < Base::m_samplingWeightsPrefixSum.size(); i++)
|
||||
{
|
||||
// Get the sampling probablility for from the weights for i-th class.
|
||||
double samplingProb = samplingWeights.GetValue(i, 0) / sumOfWeights;
|
||||
double estimatedCount = EstimateInSampleFrequency(samplingProb, estimatedNumTries);
|
||||
valueMatrix.SetValue(i, 0, (ElemType)estimatedCount);
|
||||
}
|
||||
}
|
||||
|
||||
template<class ElemType>
|
||||
void RandomSampleInclusionFrequencyNode<ElemType>::Validate(bool isFinalValidationPass)
|
||||
{
|
||||
Base::Validate(isFinalValidationPass);
|
||||
m_pMBLayout = nullptr;
|
||||
|
||||
let& shape = Input(0)->GetSampleLayout();
|
||||
let dims = shape.GetDims();
|
||||
size_t nClasses = dims[0];
|
||||
|
||||
// Output: one vector containing the estimated in sample frequency for each class.
|
||||
SetDims(TensorShape(nClasses, 1), false);
|
||||
}
|
||||
|
||||
template class RandomSampleNode<float>;
|
||||
template class RandomSampleNode<double>;
|
||||
template class RandomSampleInclusionFrequencyNode<float>;
|
||||
template class RandomSampleInclusionFrequencyNode<double>;
|
||||
}}}
|
|
@ -8,6 +8,8 @@
|
|||
#include "ComputationNode.h"
|
||||
#include "BatchNormalizationEngine.h"
|
||||
#include "RNGHandle.h"
|
||||
#include "CPURNGHandle.h"
|
||||
|
||||
|
||||
#define __STDC_FORMAT_MACROS
|
||||
#include <inttypes.h>
|
||||
|
@ -17,6 +19,7 @@
|
|||
#include <stdexcept>
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
|
||||
namespace Microsoft { namespace MSR { namespace CNTK {
|
||||
|
||||
|
@ -1141,6 +1144,179 @@ private:
|
|||
template class NoiseContrastiveEstimationNode<float>;
|
||||
template class NoiseContrastiveEstimationNode<double>;
|
||||
|
||||
|
||||
|
||||
// Nodes using a random number generators should derive from this interface.
|
||||
// One purpuose of this interface is to have a common interface for setting the seeds when setting up a network.
|
||||
class IRngUser
|
||||
{
|
||||
public:
|
||||
virtual RNGHandle& GetRNGHandle(DEVICEID_TYPE deviceId) = 0;
|
||||
virtual void SetRandomSeed(const unsigned long val) = 0;
|
||||
};
|
||||
|
||||
// This implements IRngUser using RNGHandle.
|
||||
class RngUser : public IRngUser
|
||||
{
|
||||
public:
|
||||
RNGHandle& GetRNGHandle(DEVICEID_TYPE deviceId) override
|
||||
{
|
||||
if (!m_RNGHandle)
|
||||
m_RNGHandle = RNGHandle::Create(deviceId, m_randomSeed);
|
||||
|
||||
return *m_RNGHandle;
|
||||
}
|
||||
|
||||
// E.g. called from ComputationNetwork to make sure that CNTK running on different nodes will have different seed.
|
||||
void SetRandomSeed(const unsigned long val) override
|
||||
{
|
||||
m_randomSeed = (unsigned long)val;
|
||||
|
||||
m_RNGHandle.reset(); // Reset handle. New handle will be generated with next call of GetRNGHandle(...).
|
||||
}
|
||||
|
||||
protected:
|
||||
unsigned long m_randomSeed = 0;
|
||||
std::shared_ptr<RNGHandle> m_RNGHandle;
|
||||
};
|
||||
|
||||
// ------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
// RandomSampleNodeBase(samplingWeights, sizeOfSampledSet, allowDuplicates):
|
||||
// Base class for RandomSampleNode and RandomSampleInclusionFrequencyNode.
|
||||
// Provides random sampling functionality.
|
||||
//
|
||||
// Parameters:
|
||||
// * Input(0) Sampling weight vector: Matrix of shape (nClasses x 1) providing sampling weights >= 0.
|
||||
// * sizeOfSampledSet: Size of the sampled set.
|
||||
// * allowDuplicates: controls if sampled set is allowed to contain duplicates.
|
||||
// --------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
template <class ElemType>
|
||||
class RandomSampleNodeBase : public ComputationNodeNonLooping<ElemType>, public NumInputs<1>, public RngUser
|
||||
{
|
||||
typedef ComputationNodeNonLooping<ElemType> Base; UsingComputationNodeMembersBoilerplate;
|
||||
static const std::wstring TypeName(){return L"RandomSampleNodeBase";}
|
||||
|
||||
public:
|
||||
RandomSampleNodeBase(DEVICEID_TYPE deviceId, const wstring& name, int sizeOfSampledSet = 0, bool allowDuplicates = false)
|
||||
: Base(deviceId, name), m_sizeOfSampledSet(sizeOfSampledSet), m_allowDuplicates(allowDuplicates)
|
||||
{
|
||||
SetRandomSeed((unsigned long)CreateUniqId());
|
||||
}
|
||||
|
||||
RandomSampleNodeBase(const ScriptableObjects::IConfigRecordPtr configp)
|
||||
: RandomSampleNodeBase(CPUDEVICE, L"<placeholder>", configp->Get(L"sizeOfSampledSet"), configp->Get(L"allowDuplicates"))
|
||||
{
|
||||
AttachInputsFromConfig(configp, this->GetExpectedNumInputs());
|
||||
}
|
||||
|
||||
virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override;
|
||||
|
||||
void Save(File& fstream) const;
|
||||
|
||||
virtual void Load(File& fstream, size_t modelVersion) override;
|
||||
|
||||
protected:
|
||||
|
||||
void UpdateWeightsPrefixSum();
|
||||
|
||||
// Runs the sampling returning a vector with the id's of the samples. The parameter nTries is used to return the number of draws that was needed
|
||||
// to get the expected number of samples.
|
||||
const std::vector<size_t> RunSampling(long& nTries);
|
||||
|
||||
public:
|
||||
virtual void /*ComputationNode::*/ BackpropToNonLooping(size_t inputIndex) override {
|
||||
// This node does not propagate gradients.
|
||||
}
|
||||
|
||||
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override{}
|
||||
|
||||
virtual bool OutputUsedInComputingInputNodesGradients() const override { return false; }
|
||||
|
||||
virtual bool InputUsedInComputingInputNodesGradients(size_t /*childIndex*/) const override { return false;}
|
||||
virtual void /*ComputationNode::*/ ForwardPropNonLooping() override{}
|
||||
|
||||
protected:
|
||||
bool m_allowDuplicates; // The node can create samples allowing for duplicates (sampling with replacement) or not (sampling without replacement).
|
||||
int m_sizeOfSampledSet; // Requested size of sample in case of run-mode = CREATE_SAMPLES.
|
||||
std::vector<double> m_samplingWeightsPrefixSum;
|
||||
};
|
||||
|
||||
// ------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
// RandomSampleNode(samplingWeights, sizeOfSampledSet, allowDuplicates):
|
||||
// The node's value is a set of sizeOfSampledSet random samples represented as a (sparse) matrix of shape [nClasses x sizeOfSampledSet] where nClasses is the number of classes (categories) to choose from.
|
||||
// The output has no dynamic axis.
|
||||
// The samples are drawn according to the weight vector p(w_i) = w_i / sum_k(w_k)
|
||||
// We get one set of samples for per minibatch.
|
||||
// Intended uses are e.g. sampled softmax, noise contrastive estimation etc.
|
||||
//
|
||||
// Parameters:
|
||||
// * Input(0): Sampling weight vector. Matrix of shape (nClasses x 1) providing sampling weights >= 0.
|
||||
// * sizeOfSampledSet: Size of the sampled set.
|
||||
// * allowDuplicates: controls if sampled set is allowed to contain duplicates.
|
||||
// --------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
template<class ElemType>
|
||||
class RandomSampleNode : public RandomSampleNodeBase<ElemType>
|
||||
{
|
||||
typedef RandomSampleNodeBase<ElemType> Base; UsingComputationNodeMembersBoilerplate;
|
||||
static const std::wstring TypeName(){ return L"RandomSample"; }
|
||||
|
||||
public:
|
||||
RandomSampleNode(DEVICEID_TYPE deviceId, const wstring& name, int sizeOfSampledSet = 0, bool allowDuplicates = false)
|
||||
: Base(deviceId, name, sizeOfSampledSet, allowDuplicates)
|
||||
{}
|
||||
|
||||
RandomSampleNode(const ScriptableObjects::IConfigRecordPtr configp)
|
||||
: RandomSampleNode(CPUDEVICE, L"<placeholder>", configp->Get(L"sizeOfSampledSet"), configp->Get(L"allowDuplicates"))
|
||||
{
|
||||
AttachInputsFromConfig(configp, this->GetExpectedNumInputs());
|
||||
}
|
||||
|
||||
virtual void /*ComputationNode::*/ ForwardPropNonLooping() override;
|
||||
const std::vector<size_t> GetWeightedSamples();
|
||||
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override;
|
||||
virtual bool IsOutOfDateWrtInputs() const override;
|
||||
};
|
||||
|
||||
// ------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
// RandomSampleInclusionFrequencyNode(samplingWeights, sizeOfSampledSet, allowDuplicates):
|
||||
// Intended uses are e.g. sampled softmax, noise contrastive estimation etc where it is used together with RandomSampleNode.
|
||||
// This node estimates how often each class will occur in a set sampled with RandomSampleNode(...) on the average.
|
||||
// If the sampling mode 'allowDuplicates = true' is choosen this is trivial and exact.
|
||||
// For allowDuplicates = false we get some estimate. The value is updated only when the input weights change.
|
||||
//
|
||||
// Parameters:
|
||||
// * Input(0): Sampling weight vector. Matrix of shape (nClasses x 1) providing sampling weights >= 0.
|
||||
// * sizeOfSampledSet: Size of the sampled set.
|
||||
// * allowDuplicates: controls if sampled set is allowed to contain duplicates.
|
||||
// --------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
template<class ElemType>
|
||||
class RandomSampleInclusionFrequencyNode : public RandomSampleNodeBase<ElemType>
|
||||
{
|
||||
typedef RandomSampleNodeBase<ElemType> Base; UsingComputationNodeMembersBoilerplate;
|
||||
static const std::wstring TypeName(){ return L"RandomSampleInclusionFrequency"; }
|
||||
public:
|
||||
RandomSampleInclusionFrequencyNode(DEVICEID_TYPE deviceId, const wstring& name, int sizeOfSampledSet = 0, bool allowDuplicates = false)
|
||||
: Base(deviceId, name, sizeOfSampledSet, allowDuplicates)
|
||||
{}
|
||||
|
||||
RandomSampleInclusionFrequencyNode(const ScriptableObjects::IConfigRecordPtr configp)
|
||||
: RandomSampleInclusionFrequencyNode(CPUDEVICE, L"<placeholder>", configp->Get(L"sizeOfSampledSet"), configp->Get(L"allowDuplicates"))
|
||||
{
|
||||
AttachInputsFromConfig(configp, this->GetExpectedNumInputs());
|
||||
}
|
||||
virtual void /*ComputationNode::*/ ForwardPropNonLooping() override;
|
||||
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override;
|
||||
private:
|
||||
// Approximates the expected number of occurences of a class in the sampled set.
|
||||
// Assuming (falsely) that the number of tries to get a sampled set with the requested number of distinct values is always estimatedNumTries
|
||||
// the probability that a specific class in in the sampled set is (1 - (1-p)^estimatedNumTries), where p is the probablity to pick the clas in one draw.
|
||||
// The estimate can be quite a bit off but should be better than nothing. Better alternatives?
|
||||
double EstimateInSampleFrequency(double p, double estimatedNumTries) const;
|
||||
|
||||
double EstimateNumberOfTries();
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// ClassBasedCrossEntropyWithSoftmaxNode (labeldata(.,t), inputdata(.,t), embeddingMatrix, clsProbBeforeSoftmaxData(.,t))
|
||||
// - Input(0) [4 x T] label in dense matrix in
|
||||
|
@ -1152,7 +1328,6 @@ template class NoiseContrastiveEstimationNode<double>;
|
|||
// - Input(2) [hdsize x vocab_size] weight matrix in, for speed-up, as per word matrix can be simply obtained as column slice
|
||||
// - Input(3) [nbr_cls x T] clsprob in dense matrix in. This input, if applied softmax on, is the posterior probabilty of class given observations
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
// calculates: -sum(left_i * log(softmax_i(right))) for class given history and for word given history
|
||||
// need to provide class probabilty from external node
|
||||
template <class ElemType>
|
||||
|
@ -1888,7 +2063,7 @@ template class LogisticNode<double>;
|
|||
// -----------------------------------------------------------------------
|
||||
|
||||
template <class ElemType>
|
||||
class DropoutNode : public ComputationNode<ElemType>, public NumInputs<1>
|
||||
class DropoutNode : public ComputationNode<ElemType>, public NumInputs<1>, public RngUser
|
||||
{
|
||||
typedef ComputationNode<ElemType> Base;
|
||||
UsingComputationNodeMembersBoilerplate;
|
||||
|
@ -1903,7 +2078,7 @@ public:
|
|||
: Base(deviceId, name),
|
||||
m_dropoutRate(0)
|
||||
{
|
||||
m_randomSeed = (unsigned long) CreateUniqId();
|
||||
SetRandomSeed((unsigned long)CreateUniqId());
|
||||
}
|
||||
|
||||
virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
|
||||
|
@ -1960,21 +2135,9 @@ public:
|
|||
m_dropoutRate = val;
|
||||
}
|
||||
|
||||
void SetRandomSeed(const unsigned long val)
|
||||
{
|
||||
m_randomSeed = (unsigned long) val;
|
||||
|
||||
// Upon change of the seed, reset RNGHandle to force the creation of a new RNGHandle
|
||||
// during forward propagation
|
||||
m_RNGHandle = nullptr;
|
||||
}
|
||||
|
||||
RNGHandle& GetRNGHandle()
|
||||
{
|
||||
if (m_RNGHandle == nullptr)
|
||||
m_RNGHandle = RNGHandle::Create(ValuePtr()->GetDeviceId(), m_randomSeed);
|
||||
|
||||
return *m_RNGHandle;
|
||||
return RngUser::GetRNGHandle(ValuePtr()->GetDeviceId());
|
||||
}
|
||||
|
||||
virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override
|
||||
|
@ -1984,7 +2147,7 @@ public:
|
|||
{
|
||||
auto node = dynamic_pointer_cast<DropoutNode<ElemType>>(nodeP);
|
||||
node->m_dropoutRate = m_dropoutRate;
|
||||
node->m_randomSeed = m_randomSeed;
|
||||
node->SetRandomSeed(m_randomSeed);
|
||||
node->m_maskOfDropout = m_maskOfDropout;
|
||||
}
|
||||
}
|
||||
|
@ -2006,9 +2169,6 @@ public:
|
|||
|
||||
private:
|
||||
double m_dropoutRate;
|
||||
unsigned long m_randomSeed;
|
||||
std::shared_ptr<RNGHandle> m_RNGHandle;
|
||||
|
||||
shared_ptr<Matrix<ElemType>> m_maskOfDropout;
|
||||
};
|
||||
|
||||
|
|
|
@ -1247,7 +1247,7 @@ void Matrix<ElemType>::AssignValuesOf(const Matrix<ElemType>& deepCopyFrom)
|
|||
deepCopyFrom.m_CPUSparseMatrix->AssignColumnSliceToDense(tempCPUDenseMatrix, 0, deepCopyFrom.GetNumCols());
|
||||
m_GPUMatrix->SetValue(deepCopyFrom.GetNumRows(), deepCopyFrom.GetNumCols(), this->GetDeviceId(), tempCPUDenseMatrix.Data());
|
||||
},//{ m_GPUMatrix->SetValue(*deepCopyFrom.m_CPUSparseMatrix); },
|
||||
{ LogicError("AssignValuesOf: Assigning a GPUSparseMatrix to a GPUMatrix is not yet implemented."); });//{ m_GPUMatrix->SetValue(*deepCopyFrom.m_GPUSparseMatrix); });
|
||||
{ deepCopyFrom.m_GPUSparseMatrix->AssignColumnSliceToDense(*m_GPUMatrix, 0, deepCopyFrom.GetNumCols()); });
|
||||
},
|
||||
{
|
||||
// Set CPUSparseMatrix from:
|
||||
|
@ -4471,12 +4471,25 @@ void Matrix<ElemType>::MultiplyAndWeightedAdd(ElemType alpha, const Matrix<ElemT
|
|||
{
|
||||
if (a.GetMatrixType() == MatrixType::SPARSE) // CPU, SPARSE * ANY -> ANY
|
||||
{
|
||||
if (b.GetMatrixType() == MatrixType::DENSE && c.GetMatrixType() == MatrixType::DENSE) // CPU, SPARSE * DENSE -> DENSE
|
||||
if (b.GetMatrixType() == MatrixType::DENSE && c.GetMatrixType() == MatrixType::DENSE) // CPU, SPARSE * DENSE -> DENSE
|
||||
{
|
||||
CPUSparseMatrix<ElemType>::MultiplyAndWeightedAdd(alpha, *a.m_CPUSparseMatrix, transposeA, *b.m_CPUMatrix, transposeB, beta, *c.m_CPUMatrix);
|
||||
c.SetDataLocation(CPU, DENSE);
|
||||
}
|
||||
else{
|
||||
else if (b.GetMatrixType() == MatrixType::SPARSE && c.GetMatrixType() == MatrixType::DENSE) // CPU, SPARSE * SPARSE -> DENSE
|
||||
{
|
||||
NOT_IMPLEMENTED;
|
||||
}
|
||||
else if (b.GetMatrixType() == MatrixType::DENSE && c.GetMatrixType() == MatrixType::SPARSE)// CPU, SPARSE * DENSE -> SPARSE
|
||||
{
|
||||
NOT_IMPLEMENTED;
|
||||
}
|
||||
else if (b.GetMatrixType() == MatrixType::SPARSE && c.GetMatrixType() == MatrixType::SPARSE)// CPU, SPARSE * SPARSE -> SPARSE
|
||||
{
|
||||
NOT_IMPLEMENTED;
|
||||
}
|
||||
else
|
||||
{
|
||||
NOT_IMPLEMENTED;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -19,7 +19,7 @@ inline size_t GetSizeByType(ElementType type)
|
|||
case ElementType::tdouble:
|
||||
return sizeof(double);
|
||||
default:
|
||||
RuntimeError("Unsupported type '%d'", type);
|
||||
RuntimeError("Unsupported type '%d'", static_cast<int>(type));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -23,7 +23,13 @@ namespace Microsoft { namespace MSR { namespace CNTK {
|
|||
|
||||
template <class ElemType>
|
||||
ReaderShim<ElemType>::ReaderShim(ReaderFactory factory)
|
||||
: m_factory(factory), m_deviceId(CPUDEVICE), m_dataTransferers(2, DataTransfererPtr()), m_currentDataTransferIndex(0)
|
||||
: m_factory(factory), m_deviceId(CPUDEVICE), m_dataTransferers(2, DataTransfererPtr()), m_currentDataTransferIndex(0), m_endOfEpoch(false)
|
||||
{
|
||||
}
|
||||
|
||||
template <class ElemType>
|
||||
ReaderShim<ElemType>::ReaderShim(ReaderPtr reader)
|
||||
: m_deviceId(CPUDEVICE), m_dataTransferers(2, DataTransfererPtr()), m_currentDataTransferIndex(0), m_reader(reader), m_factory(nullptr), m_endOfEpoch(false)
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -40,7 +46,9 @@ void ReaderShim<ElemType>::Init(const ConfigParameters& config)
|
|||
|
||||
m_numParallelSequences = numberOfuttsPerMinibatchForAllEpochs[0];
|
||||
|
||||
m_reader = m_factory(config);
|
||||
if (!m_reader)
|
||||
m_reader = m_factory(config);
|
||||
|
||||
m_streams = m_reader->GetStreamDescriptions();
|
||||
for (auto i : m_streams)
|
||||
{
|
||||
|
@ -63,12 +71,6 @@ void ReaderShim<ElemType>::StartDistributedMinibatchLoop(
|
|||
const std::unordered_set<InputStreamDescription>& inputs,
|
||||
size_t requestedEpochSamples /*= requestDataSize*/)
|
||||
{
|
||||
// For adaptive minibatch, make sure there are no outstanding reads.
|
||||
if (m_prefetchTask.valid())
|
||||
{
|
||||
m_prefetchTask.wait();
|
||||
}
|
||||
|
||||
EpochConfiguration config;
|
||||
config.m_workerRank = subsetNum;
|
||||
config.m_numberOfWorkers = numSubsets;
|
||||
|
@ -76,6 +78,18 @@ void ReaderShim<ElemType>::StartDistributedMinibatchLoop(
|
|||
config.m_totalEpochSizeInSamples = requestedEpochSamples;
|
||||
config.m_epochIndex = epoch;
|
||||
|
||||
StartEpoch(config, inputs);
|
||||
}
|
||||
|
||||
template <class ElemType>
|
||||
void ReaderShim<ElemType>::StartEpoch(const EpochConfiguration& config, const std::unordered_set<InputStreamDescription>& inputs)
|
||||
{
|
||||
// For adaptive minibatch, make sure there are no outstanding reads.
|
||||
if (m_prefetchTask.valid())
|
||||
{
|
||||
m_prefetchTask.wait();
|
||||
}
|
||||
|
||||
// Let's check that there is no outstanding copies.
|
||||
// Wait on all events if there are any pending copy operations in flight.
|
||||
if (m_dataTransferers[m_currentDataTransferIndex])
|
||||
|
@ -114,7 +128,7 @@ void ReaderShim<ElemType>::StartDistributedMinibatchLoop(
|
|||
m_prefetchBuffers[i.GetStreamName()] = StreamPrefetchBuffer
|
||||
{
|
||||
std::make_shared<Matrix<ElemType>>(0, 0, i.GetDeviceId(), i.GetMatrixType(), i.GetMatrixFormat()),
|
||||
nullptr
|
||||
std::make_shared<MBLayout>()
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -263,6 +277,10 @@ bool ReaderShim<ElemType>::GetMinibatch(StreamMinibatchInputs& matrices)
|
|||
template <class ElemType>
|
||||
typename ReaderShim<ElemType>::PrefetchResult ReaderShim<ElemType>::PrefetchMinibatch(size_t currentDataTransferIndex)
|
||||
{
|
||||
// Resetting layouts.
|
||||
for (auto& mx : m_prefetchBuffers)
|
||||
mx.second.m_mbLayout = std::make_shared<MBLayout>();
|
||||
|
||||
Minibatch minibatch = m_reader->ReadMinibatch();
|
||||
|
||||
// If there is no data we can simply return.
|
||||
|
|
|
@ -29,6 +29,8 @@ class ReaderShim : public IDataReader
|
|||
friend class ::CNTK::CompositeMinibatchSource;
|
||||
public:
|
||||
explicit ReaderShim(ReaderFactory factory);
|
||||
explicit ReaderShim(ReaderPtr reader);
|
||||
|
||||
virtual ~ReaderShim() { }
|
||||
|
||||
virtual void Init(const ScriptableObjects::IConfigRecord& /*config*/) override
|
||||
|
@ -54,6 +56,8 @@ public:
|
|||
virtual void StartMinibatchLoop(size_t mbSize, size_t epoch, const std::unordered_set<InputStreamDescription>& inputs, size_t requestedEpochSamples = requestDataSize) override;
|
||||
virtual void StartDistributedMinibatchLoop(size_t requestedMBSize, size_t epoch, size_t subsetNum, size_t numSubsets, const std::unordered_set<InputStreamDescription>& inputs, size_t requestedEpochSamples) override;
|
||||
|
||||
void StartEpoch(const EpochConfiguration& epoch, const std::unordered_set<InputStreamDescription>& inputs);
|
||||
|
||||
virtual void StartMinibatchLoop(size_t, size_t, size_t) override
|
||||
{
|
||||
LogicError("Legacy StartMinibatchLoop is not implemented.");
|
||||
|
@ -84,6 +88,11 @@ public:
|
|||
|
||||
virtual size_t GetCurrentSamplePosition() override;
|
||||
|
||||
bool IsEndOfEpoch() const
|
||||
{
|
||||
return m_endOfEpoch;
|
||||
}
|
||||
|
||||
private:
|
||||
struct PrefetchResult
|
||||
{
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define _SCL_SECURE_NO_WARNINGS
|
||||
|
||||
#include <cmath>
|
||||
#include <deque>
|
||||
#include "TruncatedBpttPacker.h"
|
||||
#include "ElementTypeUtils.h"
|
||||
|
@ -148,7 +149,7 @@ void TruncatedBPTTPacker::StartEpoch(const EpochConfiguration& config, const std
|
|||
}
|
||||
|
||||
// Estimating the number of parallel sequences to pack (slots) from the minibatch size and truncation size.
|
||||
m_numParallelSequences = max(1, (int)floor(m_minibatchSize / m_truncationSize));
|
||||
m_numParallelSequences = max(1, static_cast<int>(std::floor(m_minibatchSize / m_truncationSize)));
|
||||
|
||||
if (config.m_numberOfWorkers > m_numParallelSequences)
|
||||
{
|
||||
|
|
|
@ -417,8 +417,9 @@ void SGD<ElemType>::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net,
|
|||
// set dropout rate for this epoch
|
||||
// We use the same seed across workers until parallel training kicks in to ensure that the workers have identical models
|
||||
size_t parallelWorkerIdx = ((m_mpi == nullptr) || !UsingParallelTrain(i)) ? 0 : m_mpi->CurrentNodeRank();
|
||||
size_t dropoutRandSeedBase = (parallelWorkerIdx * m_maxEpochs) + i;
|
||||
ComputationNetwork::SetDropoutRate<ElemType>(net, criterionNodes[0], m_dropoutRates[i], prevDropoutRate, dropoutRandSeedBase);
|
||||
size_t randSeedBase = (parallelWorkerIdx * m_maxEpochs) + i;
|
||||
ComputationNetwork::SetDropoutRate<ElemType>(net, criterionNodes[0], m_dropoutRates[i], prevDropoutRate);
|
||||
ComputationNetwork::SetIRngUserSeed<ElemType>(net, criterionNodes[0], randSeedBase);
|
||||
ComputationNetwork::SetBatchNormalizationTimeConstants<ElemType>(net, criterionNodes[0],
|
||||
m_batchNormalizationTimeConstant[i], prevNormalizationTimeConstant,
|
||||
m_batchNormalizationBlendTimeConstant[i], prevNormalizationBlendTimeConstant);
|
||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -807,6 +807,23 @@ BOOST_AUTO_TEST_CASE(CompositeCNTKTextFormatReader_5x5_and_5x10_jagged_minibatch
|
|||
false);
|
||||
};
|
||||
|
||||
BOOST_AUTO_TEST_CASE(CNTKTextFormatReaderNoFirstMinibatchData)
|
||||
{
|
||||
HelperRunReaderTest<double>(
|
||||
testDataPath() + "/Config/CNTKTextFormatReader/dense.cntk",
|
||||
testDataPath() + "/Control/CNTKTextFormatReader/NonExistent.txt",
|
||||
testDataPath() + "/Control/CNTKTextFormatReader/CNTKTextFormatReaderNoFirstMinibatchData_Output.txt",
|
||||
"1x2",
|
||||
"reader",
|
||||
10, // epoch size
|
||||
1, // mb size
|
||||
10, // num epochs
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
2);
|
||||
};
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
||||
} } } }
|
||||
|
|
|
@ -113,7 +113,7 @@ declare -a mklFiles=("libmkl_cntk_p.so" "libiomp5.so")
|
|||
declare -a opencvFiles=("libopencv_core.so.3.1" "libopencv_imgproc.so.3.1" "libopencv_imgproc.so.3.1" "libopencv_imgcodecs.so.3.1")
|
||||
|
||||
# libzip
|
||||
declare -a libzipFiles=("libzip.so")
|
||||
declare -a libzipFiles=("libzip.so.4")
|
||||
|
||||
# CUDA
|
||||
declare -a cudaFiles=("libcudart.so.7.5" "libcublas.so.7.5" "libcurand.so.7.5" "libcusparse.so.7.5")
|
||||
|
|
Загрузка…
Ссылка в новой задаче