add the original ResNet scripits
This commit is contained in:
Родитель
d0f6c8c17f
Коммит
d1b7d8caa7
|
@ -9,15 +9,12 @@
|
|||
|Training |Stochastic gradient descent with momentum.
|
||||
|
||||
## Details
|
||||
The network configurations and experiment settings in this this folder resemble the ones in the original [ResNet paper](http://arxiv.org/abs/1512.03385) with few minor changes inspired by [this work](https://github.com/facebook/fb.resnet.torch).
|
||||
The following table contains results as well as links to pre-trained models that can be used in various applications.
|
||||
The network configurations and experiment settings in this this folder resemble the ones in the original [ResNet paper](http://arxiv.org/abs/1512.03385) strictly without any extra optimization.
|
||||
The following table contains results.
|
||||
|
||||
| Network | Top-1 error | Top-5 error | Model
|
||||
| ------------- | ----------- | ----------- | ----------
|
||||
| ResNet-18 | 29.57 | 10.41 | [Download](https://www.cntk.ai/resnet/ResNet_18.model)
|
||||
| ResNet-34 | 27.31 | 8.97 | [Download](https://www.cntk.ai/resnet/ResNet_34.model)
|
||||
| ResNet-50 | 24.74 | 7.56 | [Download](https://www.cntk.ai/resnet/ResNet_50.model)
|
||||
| ResNet-152 | 22.57 | 6.44 | [Download](https://www.cntk.ai/resnet/ResNet_152.model)
|
||||
| ResNet-50 | 24.58 | 7.43 |
|
||||
|
||||
## Notes
|
||||
This work is an implementation of ResNets in CNTK. If you are interested in the original implementation of ResNet, follow [this link](https://github.com/KaimingHe/deep-residual-networks).
|
|
@ -56,10 +56,6 @@ Train=[
|
|||
|
||||
reader=[
|
||||
readerType="ImageReader"
|
||||
# Map file which maps images to labels using the following format:
|
||||
# <full path to image><tab><numerical label (0-based class id)>
|
||||
# Example:
|
||||
# C:\Data\ImageNet\2012\train\n01440764\n01440764_10026.JPEG<tab>0
|
||||
file="$DataDir$/train_map.txt"
|
||||
# Randomize images before every epoch. Possible values: None, Auto. Default: Auto.
|
||||
randomize="Auto"
|
||||
|
@ -78,22 +74,6 @@ Train=[
|
|||
# Crop scale ratio jitter type.
|
||||
# Possible values: None, UniRatio, UniLength, UniArea. Default: UniRatio
|
||||
jitterType="UniRatio"
|
||||
# Interpolation to use when scaling image to width x height size.
|
||||
# Possible values: nearest, linear, cubic, lanczos. Default: linear.
|
||||
#interpolations="cubic"
|
||||
# Aspect ratio jitter radius. Default is 0 (disabled).
|
||||
#aspectRatioRadius=0:0.2
|
||||
# Brightness, contrast and color jittering. Default is 0 (disabled).
|
||||
# Using 0 in the first epoch so the network can process original images.
|
||||
#brightnessRadius=0:0.2
|
||||
#contrastRadius=0:0.2
|
||||
#saturationRadius=0:0.4
|
||||
# Intensity jittering: enabled if file is specified and intensityStdDev > 0.
|
||||
# The file stores 1x3 vector (eigenvalues) and 3x3 matrix (eigenvectors) in OpenCV XML format.
|
||||
#intensityFile="$ConfigDir$/ImageNet1K_intensity.xml"
|
||||
# StdDev for intensity jittering. Start from the second epoch.
|
||||
#intensityStdDev=0:0.1
|
||||
# Mean subtraction: enabled if file is specified.
|
||||
# The file stores mean values for each pixel in OpenCV matrix XML format.
|
||||
meanFile="$ConfigDir$/ImageNet1K_mean.xml"
|
||||
]
|
||||
|
@ -107,15 +87,11 @@ PBN=[
|
|||
action="pbn"
|
||||
modelPath="$ModelDir$/ResNet_50"
|
||||
# Set minibatch size for testing.
|
||||
minibatchSize=32
|
||||
minibatchSize=256
|
||||
iters=30
|
||||
|
||||
reader=[
|
||||
readerType="ImageReader"
|
||||
# Map file which maps images to labels using the following format:
|
||||
# <full path to image><tab><numerical label (0-based class id)>
|
||||
# Example:
|
||||
# C:\Data\ImageNet\2012\train\n01440764\n01440764_10026.JPEG<tab>0
|
||||
file="$DataDir$/train_map.txt"
|
||||
# Randomize images before every epoch. Possible values: None, Auto. Default: Auto.
|
||||
randomize="Auto"
|
||||
|
@ -134,22 +110,6 @@ PBN=[
|
|||
# Crop scale ratio jitter type.
|
||||
# Possible values: None, UniRatio, UniLength, UniArea. Default: UniRatio
|
||||
jitterType="UniRatio"
|
||||
# Interpolation to use when scaling image to width x height size.
|
||||
# Possible values: nearest, linear, cubic, lanczos. Default: linear.
|
||||
#interpolations="cubic"
|
||||
# Aspect ratio jitter radius. Default is 0 (disabled).
|
||||
#aspectRatioRadius=0:0.2
|
||||
# Brightness, contrast and color jittering. Default is 0 (disabled).
|
||||
# Using 0 in the first epoch so the network can process original images.
|
||||
#brightnessRadius=0:0.2
|
||||
#contrastRadius=0:0.2
|
||||
#saturationRadius=0:0.4
|
||||
# Intensity jittering: enabled if file is specified and intensityStdDev > 0.
|
||||
# The file stores 1x3 vector (eigenvalues) and 3x3 matrix (eigenvectors) in OpenCV XML format.
|
||||
#intensityFile="$ConfigDir$/ImageNet1K_intensity.xml"
|
||||
# StdDev for intensity jittering. Start from the second epoch.
|
||||
#intensityStdDev=0:0.1
|
||||
# Mean subtraction: enabled if file is specified.
|
||||
# The file stores mean values for each pixel in OpenCV matrix XML format.
|
||||
meanFile="$ConfigDir$/ImageNet1K_mean.xml"
|
||||
]
|
Загрузка…
Ссылка в новой задаче