This commit is contained in:
Big Data Tech. Lab 이태훈 2017-07-06 09:12:52 +09:00
Родитель d66929bda4
Коммит d3edc8902d
9 изменённых файлов: 9 добавлений и 9 удалений

Просмотреть файл

@ -33,7 +33,7 @@ for filename in os.listdir(filepath):
xlist = [] xlist = []
ylist = [] ylist = []
# loop through to get name and and BBox values from object # loop through to get name and BBox values from object
for child in child: for child in child:
if str(child.tag) == 'name': if str(child.tag) == 'name':
label = child.text label = child.text

Просмотреть файл

@ -84,7 +84,7 @@ void ComputationNetwork::ClearNetwork()
// serialization // serialization
// ----------------------------------------------------------------------- // -----------------------------------------------------------------------
// after after editing--network is possibly not validated/compiled // after editing--network is possibly not validated/compiled
void ComputationNetwork::SaveEdited(const wstring& fileName, const FileOptions fileFormat) void ComputationNetwork::SaveEdited(const wstring& fileName, const FileOptions fileFormat)
{ {
if (!IsCompiled()) if (!IsCompiled())

Просмотреть файл

@ -318,7 +318,7 @@ void ComputationNetwork::DetermineSCCsR(ComputationNodeBasePtr cur,
} }
} }
if (bFound) if (bFound)
fprintf(stderr, "\nDetermineSCCsR: %ls %ls operation was discovered multiple times as as loop participant", cur->NodeName().c_str(), cur->OperationName().c_str()); fprintf(stderr, "\nDetermineSCCsR: %ls %ls operation was discovered multiple times as loop participant", cur->NodeName().c_str(), cur->OperationName().c_str());
// TODO: Once we forbid FormRecurrentLoops() from non-NULL, can we ever re-hit a loop here? If not, then turn bFound into a LogicError(). // TODO: Once we forbid FormRecurrentLoops() from non-NULL, can we ever re-hit a loop here? If not, then turn bFound into a LogicError().
if (!bFound) if (!bFound)
{ {

Просмотреть файл

@ -632,7 +632,7 @@ public:
} }
// Update K (number of url pairs that have smaller or equal gain), rk (rank of // Update K (number of url pairs that have smaller or equal gain), rk (rank of
// score in descending order) and and m_pairwiseDifferences (save for gradient // score in descending order) and m_pairwiseDifferences (save for gradient
// computation). // computation).
size_t pairCount = 0; size_t pairCount = 0;
for (auto &qu : m_queryUrls) for (auto &qu : m_queryUrls)

Просмотреть файл

@ -1246,7 +1246,7 @@ void SectionStats::InitCompute(const ConfigArray& compute)
m_rms = 0.0; // root mean square m_rms = 0.0; // root mean square
// second pass measures // second pass measures
m_varSum = 0.0; // accumulated sum of difference between the mean and and the value squared m_varSum = 0.0; // accumulated sum of difference between the mean and the value squared
// compute after second pass // compute after second pass
m_variance = 0.0; m_variance = 0.0;

Просмотреть файл

@ -446,7 +446,7 @@ private:
double m_pvariance; double m_pvariance;
// second pass measures // second pass measures
double m_varSum; // accumulated sum of difference between the mean and and the value squared double m_varSum; // accumulated sum of difference between the mean and the value squared
// compute after second pass // compute after second pass
double m_variance; double m_variance;

Просмотреть файл

@ -514,7 +514,7 @@
"training_data = data[\"2001-02-05\":\"2009-01-20\"] \n", "training_data = data[\"2001-02-05\":\"2009-01-20\"] \n",
"\n", "\n",
"# We define our test data as: data[\"2008-01-02\":]\n", "# We define our test data as: data[\"2008-01-02\":]\n",
"# This example allows to to include data up to current date\n", "# This example allows to include data up to current date\n",
"\n", "\n",
"test_data= data[\"2009-01-20\":\"2016-12-29\"] \n", "test_data= data[\"2009-01-20\":\"2016-12-29\"] \n",
"training_features = np.asarray(training_data[predictor_names], dtype = \"float32\")\n", "training_features = np.asarray(training_data[predictor_names], dtype = \"float32\")\n",

Просмотреть файл

@ -593,7 +593,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Above, we use the function `element_select` which will return one of two options given the condition `is_first_label`. Remember that we're working with sequences so when the decoder LSTM is run its input will be unrolled along with the network. The above allows us to to have a dynamic input that will return a specific element given what time step we're currently processing.\n", "Above, we use the function `element_select` which will return one of two options given the condition `is_first_label`. Remember that we're working with sequences so when the decoder LSTM is run its input will be unrolled along with the network. The above allows us to have a dynamic input that will return a specific element given what time step we're currently processing.\n",
"\n", "\n",
"Therefore, the `decoder_input` will be `label_sentence_start_scattered` (which is simply `<s>`) when we are at the first time step, and otherwise it will return the `past_value` (i.e. the previous element given what time step we're currently at) of `label_sequence`.\n", "Therefore, the `decoder_input` will be `label_sentence_start_scattered` (which is simply `<s>`) when we are at the first time step, and otherwise it will return the `past_value` (i.e. the previous element given what time step we're currently at) of `label_sequence`.\n",
"\n", "\n",

Просмотреть файл

@ -128,7 +128,7 @@ class MinibatchSource(cntk_py.MinibatchSource):
**Important:** **Important:**
Click :cntkwiki:`here <BrainScript-epochSize-and-Python-epoch_size-in-CNTK>` Click :cntkwiki:`here <BrainScript-epochSize-and-Python-epoch_size-in-CNTK>`
for a description of input and label samples. for a description of input and label samples.
max_sweeps (`int`, defaults to :const:`cntk.io.INFINITELY_REPEAT`): The maximum number of of sweeps over max_sweeps (`int`, defaults to :const:`cntk.io.INFINITELY_REPEAT`): The maximum number of sweeps over
the input dataset After this number has been reached, the reader returns empty minibatches on the input dataset After this number has been reached, the reader returns empty minibatches on
subsequent calls to func:`next_minibatch`. `max_samples` and `max_sweeps` are mutually exclusive, subsequent calls to func:`next_minibatch`. `max_samples` and `max_sweeps` are mutually exclusive,
an exception will be raised if both have non-default values. an exception will be raised if both have non-default values.