cleaned up the Jenkins test configs w.r.t. indentation, spacing, casing. Also quoted all strings in config (not yet in NDL) for BS compat

This commit is contained in:
Frank Seide 2015-11-26 22:04:17 -08:00
Родитель cf407d2b3f
Коммит db20043bb5
18 изменённых файлов: 577 добавлений и 567 удалений

Просмотреть файл

@ -194,7 +194,8 @@ EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "LSTM", "LSTM", "{19EE975B-232D-49F0-94C7-6F1C6424FB53}"
ProjectSection(SolutionItems) = preProject
Tests\Speech\LSTM\cntk.config = Tests\Speech\LSTM\cntk.config
..\..\..\..\..\work\cntk-public\Tests\Speech\LSTM\lstm.bs = ..\..\..\..\..\work\cntk-public\Tests\Speech\LSTM\lstm.bs
Tests\Speech\LSTM\lstm.bs = Tests\Speech\LSTM\lstm.bs
Tests\Speech\DNN\DiscriminativePreTraining\macros.txt = Tests\Speech\DNN\DiscriminativePreTraining\macros.txt
EndProjectSection
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "ParseConfig", "MachineLearning\ParseConfig\ParseConfig.vcxproj", "{7C4E77C9-6B17-4B02-82C1-DB62EEE2635B}"
@ -379,11 +380,15 @@ Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "ParallelNoQuantization", "P
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "DiscriminativePreTraining", "DiscriminativePreTraining", "{39B9BB97-D0E8-439A-8A1B-8DB8E7CF73C3}"
ProjectSection(SolutionItems) = preProject
Tests\Speech\DNN\DiscriminativePreTraining\add_layer.mel = Tests\Speech\DNN\DiscriminativePreTraining\add_layer.mel
Tests\Speech\DNN\DiscriminativePreTraining\baseline.cpu.txt = Tests\Speech\DNN\DiscriminativePreTraining\baseline.cpu.txt
Tests\Speech\DNN\DiscriminativePreTraining\baseline.gpu.txt = Tests\Speech\DNN\DiscriminativePreTraining\baseline.gpu.txt
Tests\Speech\DNN\DiscriminativePreTraining\baseline.windows.cpu.txt = Tests\Speech\DNN\DiscriminativePreTraining\baseline.windows.cpu.txt
Tests\Speech\DNN\DiscriminativePreTraining\baseline.windows.gpu.txt = Tests\Speech\DNN\DiscriminativePreTraining\baseline.windows.gpu.txt
Tests\Speech\DNN\DiscriminativePreTraining\cntk_dpt.config = Tests\Speech\DNN\DiscriminativePreTraining\cntk_dpt.config
Tests\Speech\DNN\DiscriminativePreTraining\dnn.txt = Tests\Speech\DNN\DiscriminativePreTraining\dnn.txt
Tests\Speech\DNN\DiscriminativePreTraining\dnn_1layer.txt = Tests\Speech\DNN\DiscriminativePreTraining\dnn_1layer.txt
Tests\Speech\DNN\DiscriminativePreTraining\macros.txt = Tests\Speech\DNN\DiscriminativePreTraining\macros.txt
Tests\Speech\DNN\DiscriminativePreTraining\run-test = Tests\Speech\DNN\DiscriminativePreTraining\run-test
Tests\Speech\DNN\DiscriminativePreTraining\testcases.yml = Tests\Speech\DNN\DiscriminativePreTraining\testcases.yml
EndProjectSection
@ -413,6 +418,20 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "UCIFastReaderTests", "Tests
{E6646FFE-3588-4276-8A15-8D65C22711C1} = {E6646FFE-3588-4276-8A15-8D65C22711C1}
EndProjectSection
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "SequenceTraining", "SequenceTraining", "{BB8B9FC5-C4B3-477F-80E2-665DC8E431BD}"
ProjectSection(SolutionItems) = preProject
Tests\Speech\DNN\SequenceTraining\add_layer.mel = Tests\Speech\DNN\SequenceTraining\add_layer.mel
Tests\Speech\DNN\SequenceTraining\baseline.gpu.txt = Tests\Speech\DNN\SequenceTraining\baseline.gpu.txt
Tests\Speech\DNN\SequenceTraining\baseline.windows.gpu.txt = Tests\Speech\DNN\SequenceTraining\baseline.windows.gpu.txt
Tests\Speech\DNN\SequenceTraining\cntk_sequence.config = Tests\Speech\DNN\SequenceTraining\cntk_sequence.config
Tests\Speech\DNN\SequenceTraining\dnn.txt = Tests\Speech\DNN\SequenceTraining\dnn.txt
Tests\Speech\DNN\SequenceTraining\dnn_1layer.txt = Tests\Speech\DNN\SequenceTraining\dnn_1layer.txt
Tests\Speech\DNN\SequenceTraining\macros.txt = Tests\Speech\DNN\SequenceTraining\macros.txt
Tests\Speech\DNN\SequenceTraining\replace_ce_with_sequence_criterion.mel = Tests\Speech\DNN\SequenceTraining\replace_ce_with_sequence_criterion.mel
Tests\Speech\DNN\SequenceTraining\run-test = Tests\Speech\DNN\SequenceTraining\run-test
Tests\Speech\DNN\SequenceTraining\testcases.yml = Tests\Speech\DNN\SequenceTraining\testcases.yml
EndProjectSection
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Mixed Platforms = Debug|Mixed Platforms
@ -699,5 +718,6 @@ Global
{4701E678-5E6F-470D-B348-9CD1A2C095D1} = {6F19321A-65E7-4829-B00C-3886CD6C6EDE}
{EB2BE26F-6BD4-4274-971F-86D080779DD1} = {DD043083-71A4-409A-AA91-F9C548DCF7EC}
{B97BDF88-F6B5-4F3A-BD8E-45F787D0C3C3} = {6F19321A-65E7-4829-B00C-3886CD6C6EDE}
{BB8B9FC5-C4B3-477F-80E2-665DC8E431BD} = {6994C86D-A672-4254-824A-51F4DFEB807F}
EndGlobalSection
EndGlobal

Просмотреть файл

@ -15,7 +15,6 @@
namespace Microsoft { namespace MSR { namespace CNTK {
// ParseCommandLine - parse the command line parameters
// argc - count of arguments
// argv - array of argument parameters
@ -113,10 +112,7 @@ namespace Microsoft { namespace MSR { namespace CNTK {
// Ensure that the same config file isn't included twice, by keeping track of the config
// files that have already been resolved in the resolvedPaths vector.
resolvedConfigFiles.push_back(filePath);
newConfigString += ResolveIncludeStatements(
ReadConfigFile(filePath),
resolvedConfigFiles
);
newConfigString += ResolveIncludeStatements(ReadConfigFile(filePath), resolvedConfigFiles);
}
else
{

Просмотреть файл

@ -396,35 +396,35 @@ void MELScript<ElemType>::CallFunction(const std::string& p_name, const ConfigPa
std::string propName = params[1];
MELProperty prop=melPropNull;
if (EqualInsensitive(propName, "ComputeGradient", "NeedsGradient"))
if (EqualInsensitive(propName, "computeGradient", "needsGradient"))
{
prop = melPropComputeGradient;
}
else if (EqualInsensitive(propName, "Feature"))
else if (EqualInsensitive(propName, "feature"))
{
prop = melPropFeature;
}
else if (EqualInsensitive(propName, "Label"))
else if (EqualInsensitive(propName, "label"))
{
prop = melPropLabel;
}
else if (EqualInsensitive(propName, "FinalCriterion", "Criteria"))
else if (EqualInsensitive(propName, "finalCriterion", "criterion") || EqualInsensitive(propName, "finalCriterion", "Criteria"))
{
prop = melPropFinalCriterion;
}
else if (EqualInsensitive(propName, "MultiSeq", "ReqMultiSeqHandling"))
else if (EqualInsensitive(propName, "multiSeq", "reqMultiSeqHandling"))
{
fprintf(stderr, "WARNING: '%s' property is defunct and will be ignored.\n", propName.c_str());
}
else if (EqualInsensitive(propName, "Evaluation", "Eval"))
else if (EqualInsensitive(propName, "evaluation", "eval"))
{
prop = melPropEvaluation;
}
else if (EqualInsensitive(propName, "Output"))
else if (EqualInsensitive(propName, "output"))
{
prop = melPropOutput;
}
else if (EqualInsensitive(propName, "Recurrent"))
else if (EqualInsensitive(propName, "recurrent"))
{
prop = melPropRecurrent;
}

Просмотреть файл

@ -282,13 +282,13 @@ public:
{
SetOutputNode(m_net->LabelNodes(), compNode);
}
else if (!_stricmp(value.c_str(), "criteria"))
else if (!_stricmp(value.c_str(), "criterion") || !_stricmp(value.c_str(), "criteria"))
{
SetOutputNode(m_net->FinalCriterionNodes(), compNode);
}
else if (!_stricmp(value.c_str(), "multiseq"))
else if (!_stricmp(value.c_str(), "multiSeq"))
{
fprintf(stderr, "'multiseq' tag is defunct.\n");
fprintf(stderr, "'multiSeq' tag is defunct.\n");
}
else if (!_strnicmp(value.c_str(), "eval", 4)) // only compare the first 4 characters
{

Просмотреть файл

@ -1,63 +1,63 @@
deviceId=$DeviceId$
command=SimpleMultiGPU
precision=float
deviceId = $DeviceId$
command = simpleMultiGPU
precision = "float"
parallelTrain=true
parallelTrain = true
SimpleMultiGPU=[
action=train
modelPath=$RunDir$/models/Simple.dnn
deviceId=$DeviceId$
traceLevel=1
simpleMultiGPU = [
action = "train"
modelPath = "$RunDir$/models/Simple.dnn"
#deviceId = $DeviceId$
traceLevel = 1
SimpleNetworkBuilder=[
SimpleNetworkBuilder = [
# 2 input, 2 50-element hidden, 2 output
layerSizes=2:50*2:2
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
layerSizes = 2:50*2:2
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
initValueScale = 1.0
applyMeanVarNorm = true
uniformInit = true
needPrior = true
]
SGD=[
epochSize=0
minibatchSize=25
learningRatesPerMB=0.5:0.2*20:0.1
momentumPerMB=0.9
dropoutRate=0.0
maxEpochs=4
SGD = [
epochSize = 0
minibatchSize = 25
learningRatesPerMB = 0.5:0.2*20:0.1
momentumPerMB = 0.9
dropoutRate = 0.0
maxEpochs = 4
ParallelTrain=[
parallelizationMethod=DataParallelSGD
DataParallelSGD=[
gradientBits=1
ParallelTrain = [
parallelizationMethod = "DataParallelSGD"
DataParallelSGD = [
gradientBits = 1
]
]
]
# Parameter values for the reader
reader=[
# reader to use
readerType=UCIFastReader
file=$DataDir$/SimpleDataTrain.txt
reader = [
# reader to use
readerType = "UCIFastReader"
file = "$DataDir$/SimpleDataTrain.txt"
miniBatchMode=Partial
randomize=None
verbosity=1
miniBatchMode = "partial"
randomize = "none"
verbosity = 1
features=[
dim=2 # two-dimensional input data
start=0 # Start with first element on line
]
features = [
dim = 2 # two-dimensional input data
start = 0 # Start with first element on line
]
labels=[
start=2 # Skip two elements
dim=1 # One label dimension
labelDim=2 # Two labels possible
labelMappingFile=$DataDir$/SimpleMapping.txt
]
labels = [
start = 2 # Skip two elements
dim = 1 # One label dimension
labelDim = 2 # Two labels possible
labelMappingFile = $DataDir$/SimpleMapping.txt""
]
]
]

Просмотреть файл

@ -1,7 +1,7 @@
m1=LoadModel($CurrModel$, format=cntk)
m1 = LoadModel($CurrModel$, format=cntk)
SetDefaultModel(m1)
HDim=512
HL$NewLayer$=DNNLayer(HDim, HDim, HL$CurrLayer$.y)
HDim = 512
HL$NewLayer$ = DNNLayer(HDim, HDim, HL$CurrLayer$.y)
SetInput(OL.t, 1, HL$NewLayer$.y)
SetInput(HL$NewLayer$.t, 1, HL$CurrLayer$.y)
SaveModel(m1, $NewModel$, format=cntk)

Просмотреть файл

@ -1,104 +1,106 @@
precision=float
deviceId=$DeviceId$
command=DPT_Pre1:AddLayer2:DPT_Pre2:AddLayer3:speechTrain
precision = "float"
deviceId = $DeviceId$
command = dptPre1:addLayer2:dptPre2:addLayer3:speechTrain
ndlMacros=$ConfigDir$/macros.txt
ndlMacros = "$ConfigDir$/macros.txt"
GlobalMean=GlobalStats/mean.363
GlobalInvStd=GlobalStats/var.363
GlobalPrior=GlobalStats/prior.132
# TODO: are these used? Where?
globalMean = "GlobalStats/mean.363"
globalInvStd = "GlobalStats/var.363"
globalPrior = "GlobalStats/prior.132"
traceLevel=1
traceLevel = 1
# Default SGD value used for pre-training.
SGD=[
epochSize=81920
minibatchSize=256
learningRatesPerMB=0.8
numMBsToShowResult=10
momentumPerMB=0.9
dropoutRate=0.0
maxEpochs=2
SGD = [
epochSize = 81920
minibatchSize = 256
learningRatesPerMB = 0.8
numMBsToShowResult = 10
momentumPerMB = 0.9
dropoutRate = 0.0
maxEpochs = 2
]
DPT_Pre1=[
action=train
modelPath=$RunDir$/models/Pre1/cntkSpeech
dptPre1 = [
action = "train"
modelPath = "$RunDir$/models/Pre1/cntkSpeech"
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/dnn_1layer.txt
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/dnn_1layer.txt"
]
]
AddLayer2=[
action=edit
CurrLayer=1
NewLayer=2
CurrModel=$RunDir$/models/Pre1/cntkSpeech
NewModel=$RunDir$/models/Pre2/cntkSpeech.0
editPath=$ConfigDir$/add_layer.mel
addLayer2 = [
action = "edit"
currLayer = 1
newLayer = 2
currModel = "$RunDir$/models/Pre1/cntkSpeech"
newModel = "$RunDir$/models/Pre2/cntkSpeech.0"
editPath = "$ConfigDir$/add_layer.mel"
]
DPT_Pre2=[
action=train
modelPath=$RunDir$/models/Pre2/cntkSpeech
dptPre2 = [
action = "train"
modelPath = "$RunDir$/models/Pre2/cntkSpeech"
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/dnn_1layer.txt
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/dnn_1layer.txt"
]
]
AddLayer3=[
action=edit
CurrLayer=2
NewLayer=3
CurrModel=$RunDir$/models/Pre2/cntkSpeech
NewModel=$RunDir$/models/cntkSpeech.0
editPath=$ConfigDir$/add_layer.mel
addLayer3 = [
action = "edit"
currLayer = 2
newLayer = 3
currModel = "$RunDir$/models/Pre2/cntkSpeech"
newModel = "$RunDir$/models/cntkSpeech.0"
editPath = "$ConfigDir$/add_layer.mel"
]
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech
deviceId=$DeviceId$
traceLevel=1
speechTrain = [
action = "train"
modelPath = "$RunDir$/models/cntkSpeech"
deviceId = $DeviceId$
traceLevel = 1
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/dnn.txt
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/dnn.txt"
]
SGD=[
epochSize=81920
minibatchSize=256:512
learningRatesPerMB=0.8:1.6
numMBsToShowResult=10
momentumPerSample=0.999589
dropoutRate=0.0
maxEpochs=4
SGD = [
epochSize = 81920
minibatchSize = 256:512
learningRatesPerMB = 0.8:1.6
numMBsToShowResult = 10
momentumPerSample = 0.999589
dropoutRate = 0.0
maxEpochs = 4
gradUpdateType=None
normWithAveMultiplier=true
clippingThresholdPerSample=1#INF
gradUpdateType = "none"
normWithAveMultiplier = true
clippingThresholdPerSample = 1#INF
]
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=$DataDir$/glob_0000.scp
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labelDim=132
labelType=Category
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = Category
]
]

Просмотреть файл

@ -1,45 +1,42 @@
load=ndlMacroDefine
run=DNN
load = ndlMacroDefine
run = DNN
ndlMacroDefine=[
ndlMacroDefine = [
# Macro definitions
MeanVarNorm(x)=[
xMean = Mean(x);
xStdDev = InvStdDev(x)
xNorm=PerDimMeanVarNormalization(x,xMean,xStdDev)
MeanVarNorm(x) = [
xMean = Mean(x);
xStdDev = InvStdDev(x)
xNorm = PerDimMeanVarNormalization(x, xMean, xStdDev)
]
]
DNN=[
DNN = [
#define basic i/o
featDim=363
LabelDim=132
hiddenDim=512
featDim = 363
labelDim = 132
hiddenDim = 512
features=Input(featDim, tag=feature)
labels=Input(LabelDim, tag=label)
GlobalMean=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
GlobalInvStd=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
GlobalPrior=Parameter(LabelDim, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior=Log(GlobalPrior)
features = Input(featDim, tag=feature)
labels = Input(labelDim, tag=label)
globalMean = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
globalInvStd = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
globalPrior = Parameter(labelDim, 1, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior = Log(globalPrior)
# define network
featNorm=PerDimMeanVarNormalization(features, GlobalMean, GlobalInvStd)
featNorm = PerDimMeanVarNormalization(features, globalMean, globalInvStd)
# layer 1 363 X 512
z1=DNNLayer(featDim, hiddenDim, featNorm);
z1 = DNNLayer(featDim, hiddenDim, featNorm);
# layer 2 512 X 512
z2=DNNLayer(hiddenDim, hiddenDim, z1);
z2 = DNNLayer(hiddenDim, hiddenDim, z1);
# layer 3 512 X 512
z3=DNNLayer(hiddenDim, hiddenDim, z2);
z3 = DNNLayer(hiddenDim, hiddenDim, z2);
# last layer 512 X 132
z4=DNNLastLayer(hiddenDim, LabelDim, z3);
z4 = DNNLastLayer(hiddenDim, labelDim, z3);
cr = CrossEntropyWithSoftmax(labels, z4, tag=Criteria);
Err = ErrorPrediction(labels, z4, tag=Eval);
ScaledLogLikelihood=Minus(z4, logPrior, tag=Output)
cr = CrossEntropyWithSoftmax(labels, z4, tag=criterion);
err = ErrorPrediction(labels, z4, tag=eval);
scaledLogLikelihood = Minus(z4, logPrior, tag=output)
]

Просмотреть файл

@ -1,38 +1,38 @@
load=ndlMacroDefine
run=DNN
load = ndlMacroDefine
run = DNN
ndlMacroDefine=[
ndlMacroDefine = [
# Macro definitions
MeanVarNorm(x)=[
MeanVarNorm(x) = [
xMean = Mean(x);
xStdDev = InvStdDev(x)
xNorm=PerDimMeanVarNormalization(x, xMean, xStdDev)
xNorm = PerDimMeanVarNormalization(x, xMean, xStdDev)
]
]
DNN=[
DNN = [
#define basic i/o
featDim=363
LabelDim=132
hiddenDim=512
featDim = 363
LabelDim = 132
hiddenDim = 512
features=Input(featDim, tag=feature)
labels=Input(LabelDim, tag=label)
features = Input(featDim, tag=feature)
labels = Input(LabelDim, tag=label)
GlobalMean=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
GlobalInvStd=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
GlobalPrior=Parameter(LabelDim, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior=Log(GlobalPrior)
globalMean = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
globalInvStd = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
globalPrior = Parameter(LabelDim, 1, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior = Log(globalPrior)
# define network
featNorm=PerDimMeanVarNormalization(features, GlobalMean, GlobalInvStd)
featNorm = PerDimMeanVarNormalization(features, globalMean, globalInvStd)
# layer 1 363 X 512
HL1=DNNLayer(featDim, hiddenDim, featNorm);
HL1 = DNNLayer(featDim, hiddenDim, featNorm);
# last layer 512 X 132
OL=DNNLastLayer(hiddenDim, LabelDim, HL1);
OL = DNNLastLayer(hiddenDim, LabelDim, HL1);
cr = CrossEntropyWithSoftmax(labels, OL, tag=Criteria);
Err = ErrorPrediction(labels, OL, tag=Eval);
ScaledLogLikelihood=Minus(OL, logPrior, tag=Output)
cr = CrossEntropyWithSoftmax(labels, OL, tag=criterion);
err = ErrorPrediction(labels, OL, tag=Eval);
scaledLogLikelihood = Minus(OL, logPrior, tag=Output)
]

Просмотреть файл

@ -1,20 +1,18 @@
DNNLayer(inDim, outDim, x)
{
DNNLayer(inDim, outDim, x) = [
#W = Parameter(outDim, inDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1); # randomizing on CPU with fixed seed to get reproducable results across configurations
#b = Parameter(outDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
#b = Parameter(outDim, 1, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
W = Parameter(outDim, inDim);
b = Parameter(outDim);
b = Parameter(outDim, 1);
t = Times(W, x);
z = Plus(t, b);
y = sigmoid(z);
}
]
DNNLastLayer(hiddenDim, LabelDim, x)
{
DNNLastLayer(hiddenDim, LabelDim, x) = [
#W = Parameter(LabelDim, hiddenDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
#b = Parameter(LabelDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
#b = Parameter(LabelDim, 1, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
W = Parameter(LabelDim, hiddenDim);
b = Parameter(LabelDim);
b = Parameter(LabelDim 1,);
t = Times(W, x);
z = Plus(t, b);
}
]

Просмотреть файл

@ -1,172 +1,174 @@
precision=float
deviceId=$DeviceId$
command=DPT_Pre1:AddLayer2:DPT_Pre2:AddLayer3:speechTrain:replaceCriterionNode:sequenceTrain
precision = "float"
deviceId = $DeviceId$
command = dptPre1:addLayer2:dptPre2:addLayer3:speechTrain:replaceCriterionNode:sequenceTrain
ndlMacros=$ConfigDir$/macros.txt
ndlMacros = "$ConfigDir$/macros.txt"
GlobalMean=GlobalStats/mean.363
GlobalInvStd=GlobalStats/var.363
GlobalPrior=GlobalStats/prior.132
globalMean = "GlobalStats/mean.363"
globalInvStd = "GlobalStats/var.363"
globalPrior = "GlobalStats/prior.132"
traceLevel=1
Truncated=false
traceLevel = 1
truncated = false
# Default SGD value used for pre-training.
SGD=[
epochSize=81920
minibatchSize=256
learningRatesPerMB=0.8
numMBsToShowResult=10
momentumPerMB=0.9
dropoutRate=0.0
maxEpochs=2
SGD = [
epochSize = 81920
minibatchSize = 256
learningRatesPerMB = 0.8
numMBsToShowResult = 10
momentumPerMB = 0.9
dropoutRate = 0.0
maxEpochs = 2
]
DPT_Pre1=[
action=train
modelPath=$RunDir$/models/Pre1/cntkSpeech
dptPre1 = [
action = "train"
modelPath = "$RunDir$/models/Pre1/cntkSpeech"
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/dnn_1layer.txt
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/dnn_1layer.txt"
]
]
AddLayer2=[
action=edit
CurrLayer=1
NewLayer=2
CurrModel=$RunDir$/models/Pre1/cntkSpeech
NewModel=$RunDir$/models/Pre2/cntkSpeech.0
editPath=$ConfigDir$/add_layer.mel
addLayer2 = [
action = "edit"
currLayer = 1
newLayer = 2
currModel = "$RunDir$/models/Pre1/cntkSpeech"
newModel = "$RunDir$/models/Pre2/cntkSpeech.0"
editPath = "$ConfigDir$/add_layer.mel"
]
DPT_Pre2=[
action=train
modelPath=$RunDir$/models/Pre2/cntkSpeech
dptPre2 = [
action = "train"
modelPath = "$RunDir$/models/Pre2/cntkSpeech"
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/dnn_1layer.txt
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/dnn_1layer.txt"
]
]
AddLayer3=[
action=edit
CurrLayer=2
NewLayer=3
CurrModel=$RunDir$/models/Pre2/cntkSpeech
NewModel=$RunDir$/models/cntkSpeech.0
editPath=$ConfigDir$/add_layer.mel
AddLayer3 = [
action = "edit"
currLayer = 2
newLayer = 3
currModel = "$RunDir$/models/Pre2/cntkSpeech"
newModel = "$RunDir$/models/cntkSpeech.0"
editPath = "$ConfigDir$/add_layer.mel"
]
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech
deviceId=$DeviceId$
traceLevel=1
speechTrain = [
action = "train"
modelPath = "$RunDir$/models/cntkSpeech"
#deviceId = $DeviceId$
traceLevel = 1
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/dnn.txt
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/dnn.txt"
]
SGD=[
epochSize=81920
minibatchSize=256:512
learningRatesPerMB=0.8:1.6
numMBsToShowResult=10
momentumPerSample=0.999589
dropoutRate=0.0
maxEpochs=4
SGD = [
epochSize = 81920
minibatchSize = 256:512
learningRatesPerMB = 0.8:1.6
numMBsToShowResult = 10
momentumPerSample = 0.999589
dropoutRate = 0.0
maxEpochs = 4
gradUpdateType=None
normWithAveMultiplier=true
clippingThresholdPerSample=1#INF
gradUpdateType = "none"
normWithAveMultiplier = true
clippingThresholdPerSample = 1#INF
]
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=$DataDir$/glob_0000.scp
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labelDim=132
labelType=Category
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
replaceCriterionNode=[
action=edit
CurrModel=$RunDir$/models/cntkSpeech
NewModel=$RunDir$/models/cntkSpeech.sequence.0
editPath=$ConfigDir$/replace_ce_with_sequence_criterion.mel
replaceCriterionNode = [
action = "edit"
currModel = "$RunDir$/models/cntkSpeech"
newModel = "$RunDir$/models/cntkSpeech.sequence.0"
editPath = "$ConfigDir$/replace_ce_with_sequence_criterion.mel"
]
sequenceTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.sequence
deviceId=$DeviceId$
traceLevel=1
sequenceTrain = [
action = "train"
modelPath = "$RunDir$/models/cntkSpeech.sequence"
#deviceId = $DeviceId$
traceLevel = 1
# This path is not really used since we use the seed model
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/nonexistentfile.txt
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/nonexistentfile.txt"
]
SGD=[
epochSize=81920
minibatchSize=10
learningRatesPerSample=0.000002
momentumPerSample=0.999589
dropoutRate=0.0
maxEpochs=3
hsmoothingWeight=0.95
frameDropThresh=1e-10
numMBsToShowResult=10
gradientClippingWithTruncation=true
clippingThresholdPerSample=1.0
]
SGD = [
epochSize = 81920
minibatchSize = 10
learningRatesPerSample = 0.000002
momentumPerSample = 0.999589
dropoutRate = 0.0
maxEpochs = 3
hsmoothingWeight = 0.95
frameDropThresh = 1e-10
numMBsToShowResult = 10
gradientClippingWithTruncation = true
clippingThresholdPerSample = 1.0
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
frameMode=false
nbruttsineachrecurrentiter=2
frameMode = false
nbruttsineachrecurrentiter = 2
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=$DataDir$/glob_0000.scp
]
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labelDim=132
labelType=Category
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
hmms=[
phoneFile=$DataDir$/model.overalltying
transpFile=$DataDir$/model.transprob
]
labelDim = 132
labelType = "category"
]
lattices=[
denlatTocFile=$DataDir$/*.lats.toc
]
hmms = [
phoneFile = "$DataDir$/model.overalltying"
transpFile = "$DataDir$/model.transprob"
]
lattices = [
denlatTocFile = "$DataDir$/*.lats.toc"
]
]
]

Просмотреть файл

@ -1,45 +1,42 @@
load=ndlMacroDefine
run=DNN
load = ndlMacroDefine
run = DNN
ndlMacroDefine=[
ndlMacroDefine = [
# Macro definitions
MeanVarNorm(x)=[
xMean = Mean(x);
xStdDev = InvStdDev(x)
xNorm=PerDimMeanVarNormalization(x,xMean,xStdDev)
MeanVarNorm(x) = [
xMean = Mean(x);
xStdDev = InvStdDev(x)
xNorm = PerDimMeanVarNormalization(x,xMean,xStdDev)
]
]
DNN=[
DNN = [
#define basic i/o
featDim=363
LabelDim=132
hiddenDim=512
featDim = 363
labelDim = 132
hiddenDim = 512
features=Input(featDim, tag=feature)
labels=Input(LabelDim, tag=label)
GlobalMean=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
GlobalInvStd=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
GlobalPrior=Parameter(LabelDim, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior=Log(GlobalPrior)
features = Input(featDim, tag=feature)
labels = Input(labelDim, tag=label)
globalMean = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
globalInvStd = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
globalPrior = Parameter(labelDim, 1, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior = Log(globalPrior)
# define network
featNorm=PerDimMeanVarNormalization(features, GlobalMean, GlobalInvStd)
featNorm = PerDimMeanVarNormalization(features, globalMean, globalInvStd)
# layer 1 363 X 512
z1=DNNLayer(featDim, hiddenDim, featNorm);
z1 = DNNLayer(featDim, hiddenDim, featNorm);
# layer 2 512 X 512
z2=DNNLayer(hiddenDim, hiddenDim, z1);
z2 = DNNLayer(hiddenDim, hiddenDim, z1);
# layer 3 512 X 512
z3=DNNLayer(hiddenDim, hiddenDim, z2);
z3 = DNNLayer(hiddenDim, hiddenDim, z2);
# last layer 512 X 132
z4=DNNLastLayer(hiddenDim, LabelDim, z3);
z4 = DNNLastLayer(hiddenDim, labelDim, z3);
cr = CrossEntropyWithSoftmax(labels, z4, tag=Criteria);
Err = ErrorPrediction(labels, z4, tag=Eval);
ScaledLogLikelihood=Minus(z4, logPrior, tag=Output)
cr = CrossEntropyWithSoftmax(labels, z4, tag=criterion);
err = ErrorPrediction(labels, z4, tag=eval);
scaledLogLikelihood = Minus(z4, logPrior, tag=output)
]

Просмотреть файл

@ -1,38 +1,38 @@
load=ndlMacroDefine
run=DNN
load = ndlMacroDefine
run = DNN
ndlMacroDefine=[
ndlMacroDefine = [
# Macro definitions
MeanVarNorm(x)=[
xMean = Mean(x);
MeanVarNorm(x) = [
xMean = Mean(x);
xStdDev = InvStdDev(x)
xNorm=PerDimMeanVarNormalization(x, xMean, xStdDev)
xNorm = PerDimMeanVarNormalization(x, xMean, xStdDev)
]
]
DNN=[
DNN = [
#define basic i/o
featDim=363
LabelDim=132
hiddenDim=512
featDim = 363
labelDim = 132
hiddenDim = 512
features=Input(featDim, tag=feature)
labels=Input(LabelDim, tag=label)
features = Input(featDim, tag=feature)
labels = Input(labelDim, tag=label)
GlobalMean=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
GlobalInvStd=Parameter(featDim, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
GlobalPrior=Parameter(LabelDim, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior=Log(GlobalPrior)
globalMean = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalMean$, computeGradient=false)
globalInvStd = Parameter(featDim, 1, init=fromFile, initFromFilePath=$GlobalInvStd$, computeGradient=false)
globalPrior = Parameter(labelDim, 1, init=fromFile, initFromFilePath=$GlobalPrior$, computeGradient=false)
logPrior = Log(globalPrior)
# define network
featNorm=PerDimMeanVarNormalization(features, GlobalMean, GlobalInvStd)
featNorm = PerDimMeanVarNormalization(features, globalMean, globalInvStd)
# layer 1 363 X 512
HL1=DNNLayer(featDim, hiddenDim, featNorm);
HL1 = DNNLayer(featDim, hiddenDim, featNorm);
# last layer 512 X 132
OL=DNNLastLayer(hiddenDim, LabelDim, HL1);
OL = DNNLastLayer(hiddenDim, labelDim, HL1);
cr = CrossEntropyWithSoftmax(labels, OL, tag=Criteria);
Err = ErrorPrediction(labels, OL, tag=Eval);
ScaledLogLikelihood=Minus(OL, logPrior, tag=Output)
cr = CrossEntropyWithSoftmax(labels, OL, tag=criterion);
err = ErrorPrediction(labels, OL, tag=eval);
scaledLogLikelihood = Minus(OL, logPrior, tag=output)
]

Просмотреть файл

@ -1,20 +1,18 @@
DNNLayer(inDim, outDim, x)
{
DNNLayer(inDim, outDim, x) = [
#W = Parameter(outDim, inDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1); # randomizing on CPU with fixed seed to get reproducable results across configurations
#b = Parameter(outDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
#b = Parameter(outDim, 1, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
W = Parameter(outDim, inDim);
b = Parameter(outDim);
b = Parameter(outDim, 1);
t = Times(W, x);
z = Plus(t, b);
y = sigmoid(z);
}
]
DNNLastLayer(hiddenDim, LabelDim, x)
{
DNNLastLayer(hiddenDim, LabelDim, x) = [
#W = Parameter(LabelDim, hiddenDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
#b = Parameter(LabelDim, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
#b = Parameter(LabelDim, 1, init=uniform, initValueScale=1, initOnCPUOnly=true, randomSeed=1);
W = Parameter(LabelDim, hiddenDim);
b = Parameter(LabelDim);
b = Parameter(LabelDim, 1);
t = Times(W, x);
z = Plus(t, b);
}
]

Просмотреть файл

@ -1,11 +1,10 @@
m1=LoadModel($CurrModel$, format=cntk)
m1 = LoadModel($CurrModel$, format=cntk)
SetDefaultModel(m1)
SetProperty(cr, Criteria, false)
Remove(cr)
SEwithSoftmax=SequenceWithSoftmax(labels, OL.z, ScaledLogLikelihood)
SetProperty(SEwithSoftmax, Criteria, true)
SEwithSoftmax = SequenceWithSoftmax(labels, OL.z, scaledLogLikelihood)
SetProperty(SEwithSoftmax, criterion, true)
SaveModel(m1, $NewModel$, format=cntk)
Dump(m1,$NewModel$.dump.txt)
Dump(m1, $NewModel$.dump.txt)

Просмотреть файл

@ -1,31 +1,32 @@
precision=float
command=speechTrain
deviceId=$DeviceId$
precision = "float"
command = speechTrain
deviceId = $DeviceId$
parallelTrain=true
parallelTrain = true
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
speechTrain = [
action = "train"
modelPath = "$RunDir$/models/cntkSpeech.dnn"
deviceId = $DeviceId$
traceLevel = 1
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
initValueScale = 1.0
applyMeanVarNorm = true
uniformInit = true
needPrior = true
]
ExperimentalNetworkBuilder=[ // the same as above but with BS
layerSizes=363:512:512:132
trainingCriterion='CE'
evalCriterion='Err'
ExperimentalNetworkBuilder = [ // the same as above but with BS. Not active; activate by commenting out the SimpleNetworkBuilder entry above
layerSizes = 363:512:512:132
trainingCriterion = 'CE'
evalCriterion = 'Err'
applyMeanVarNorm=true
applyMeanVarNorm = true
L = Length(layerSizes)-1 // number of model layers
features = Input(layerSizes[0], 1, tag='feature') ; labels = Input(layerSizes[Length(layerSizes)-1], 1, tag='label')
@ -48,52 +49,52 @@ speechTrain=[
ScaledLogLikelihood = Minus (outZ, logPrior, tag='output')
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
SGD = [
epochSize = 20480
minibatchSize = 64:256:1024
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
dropoutRate = 0.0
maxEpochs = 3
keepCheckPointFiles = true
clippingThresholdPerSample = 1#INF
ParallelTrain=[
parallelizationMethod=DataParallelSGD
distributedMBReading=true
DataParallelSGD=[
gradientBits=32
ParallelTrain = [
parallelizationMethod = "DataParallelSGD"
distributedMBReading = true
DataParallelSGD = [
gradientBits = 32
]
]
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
AutoAdjust = [
reduceLearnRateIfImproveLessThan = 0
loadBestModel = true
increaseLearnRateIfImproveMoreThan = 1000000000
learnRateDecreaseFactor = 0.5
learnRateIncreaseFactor = 1.382
autoAdjustLR = "adjustAfterEpoch"
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
features = [
dim = 363
type = "real"
scpFile = "glob_0000.scp"
]
labelDim=132
labelType=Category
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
]

Просмотреть файл

@ -1,47 +1,48 @@
precision=float
command=speechTrain
deviceId=$DeviceId$
precision = "float"
command = speechTrain
deviceId = $DeviceId$
parallelTrain=false
parallelTrain = false
frameMode=false
Truncated=true
frameMode = false
truncated = true
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
speechTrain = [
action = "train"
modelPath = "$RunDir$/models/cntkSpeech.dnn"
#deviceId = $DeviceId$
traceLevel = 1
SGD=[
epochSize=20480
minibatchSize=20
learningRatesPerMB=0.5
numMBsToShowResult=10
momentumPerMB=0:0.9
maxEpochs=4
keepCheckPointFiles=true
SGD = [
epochSize = 20480
minibatchSize = 20
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
nbruttsineachrecurrentiter=32
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=$DataDir$/glob_0000.scp
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
nbruttsineachrecurrentiter = 32
randomize = "auto"
verbosity = 0
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labelDim=132
labelType=Category
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
# define network using BrainScript

Просмотреть файл

@ -1,27 +1,27 @@
precision=float
command=speechTrain
deviceId=$DeviceId$
precision = "float"
command = speechTrain
deviceId = $DeviceId$
parallelTrain=false
makeMode=false
parallelTrain = false
makeMode = false
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
applyMeanVarNorm=true
initValueScale=1.0
uniformInit=true
needPrior=true
speechTrain = [
action = "train"
modelPath = "$RunDir$/models/cntkSpeech.dnn"
deviceId = $DeviceId$
traceLevel = 1
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
applyMeanVarNorm = true
initValueScale = 1.0
uniformInit = true
needPrior = true
]
ExperimentalNetworkBuilder=[ // the same as above but with BS
ExperimentalNetworkBuilder = [ // the same as above but with BS. Currently not used. Enable by removing the SimpleNetworkBuilder above.
// note: this does not produce identical results because of different initialization order of random-initialized LearnableParameters
layerSizes=363:512:512:132 // [0..]
trainingCriterion=CrossEntropyWithSoftmax
@ -51,45 +51,44 @@ speechTrain=[
ScaledLogLikelihood = Minus (outZ, logPrior, tag='output')
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
SGD = [
epochSize = 20480
minibatchSize = 64:256:1024:
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
dropoutRate = 0.0
maxEpochs = 3
keepCheckPointFiles = true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
AutoAdjust = [
reduceLearnRateIfImproveLessThan = 0
loadBestModel = true
increaseLearnRateIfImproveMoreThan = 1000000000
learnRateDecreaseFactor = 0.5
learnRateIncreaseFactor = 1.382
autoAdjustLR = "adjustAfterEpoch"
]
clippingThresholdPerSample=1#INF
clippingThresholdPerSample = 1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "glob_0000.scp"
]
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim=132
labelType=Category
]
labelDim = 132
labelType = "category"
]
]
]