Incorporated CR feedback
This commit is contained in:
Родитель
e6c96f8dd0
Коммит
e2b7fee2d9
|
@ -51,7 +51,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
|
@ -90,7 +90,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
|
@ -185,7 +185,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
|
@ -218,28 +218,11 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"3\n",
|
||||
"(-1, 150)\n",
|
||||
"[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
|
||||
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
|
||||
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
|
||||
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
|
||||
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
|
||||
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
|
||||
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
|
||||
" 0. 0. 0.]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# peek\n",
|
||||
"model = create_model()\n",
|
||||
|
@ -339,7 +322,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
|
@ -354,7 +337,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
|
@ -474,7 +457,7 @@
|
|||
"source": [
|
||||
"### Evaluating the model\n",
|
||||
"\n",
|
||||
"Like the train() function, we also define a function to measure accuracy on a test set by computing the error over multiple minibatches of test data. For evaluating on a small sample read from a file, you can set a minibatch size reflecting the sample size and run the test_minibatch on that instance of data. To see how to evaluate a single sequence, we provide and instance later in the tutorial. "
|
||||
"Like the train() function, we also define a function to measure accuracy on a test set by computing the error over multiple minibatches of test data. For evaluating on a small sample read from a file, you can set a minibatch size reflecting the sample size and run the test_minibatch on that instance of data. To see how to evaluate a single sequence, we provide an instance later in the tutorial. "
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -823,7 +806,6 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if\n",
|
||||
"def create_model():\n",
|
||||
" with default_options(initial_state=0.1):\n",
|
||||
" return Sequential([\n",
|
||||
|
|
Загрузка…
Ссылка в новой задаче