This commit is contained in:
REDMOND\sayanpa 2016-12-01 11:20:17 -08:00
Родитель e6c96f8dd0
Коммит e2b7fee2d9
1 изменённых файлов: 8 добавлений и 26 удалений

Просмотреть файл

@ -51,7 +51,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {
"collapsed": false
},
@ -90,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {
"collapsed": true
},
@ -185,7 +185,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {
"collapsed": false
},
@ -218,28 +218,11 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3\n",
"(-1, 150)\n",
"[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0.]\n"
]
}
],
"outputs": [],
"source": [
"# peek\n",
"model = create_model()\n",
@ -339,7 +322,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {
"collapsed": true
},
@ -354,7 +337,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {
"collapsed": false
},
@ -474,7 +457,7 @@
"source": [
"### Evaluating the model\n",
"\n",
"Like the train() function, we also define a function to measure accuracy on a test set by computing the error over multiple minibatches of test data. For evaluating on a small sample read from a file, you can set a minibatch size reflecting the sample size and run the test_minibatch on that instance of data. To see how to evaluate a single sequence, we provide and instance later in the tutorial. "
"Like the train() function, we also define a function to measure accuracy on a test set by computing the error over multiple minibatches of test data. For evaluating on a small sample read from a file, you can set a minibatch size reflecting the sample size and run the test_minibatch on that instance of data. To see how to evaluate a single sequence, we provide an instance later in the tutorial. "
]
},
{
@ -823,7 +806,6 @@
},
"outputs": [],
"source": [
"if\n",
"def create_model():\n",
" with default_options(initial_state=0.1):\n",
" return Sequential([\n",