fix dimensions in cifar example
This commit is contained in:
Родитель
6d564a5e50
Коммит
e55237dd4d
|
@ -53,10 +53,10 @@ def resnet_node2(input, out_feature_map_count, kernel_width, kernel_height, w_sc
|
|||
return relu(p)
|
||||
|
||||
def proj_layer(w_proj, input, h_stride, v_stride, b_value, sc_value, bn_time_const):
|
||||
num_in_channels = input.shape().dimensions()[-1]
|
||||
num_in_channels = input.shape().dimensions()[0]
|
||||
conv_func = convolution(w_proj, input, (num_in_channels, v_stride, h_stride))
|
||||
|
||||
out_feature_map_count = w_proj.shape()[-1];
|
||||
out_feature_map_count = w_proj.shape().dimensions()[-1];
|
||||
#TODO: initialize using b_value and sc_value, needs to be exposed in the python api
|
||||
bias_params = parameter(shape=(out_feature_map_count))
|
||||
scale_params = parameter(shape=(out_feature_map_count))
|
||||
|
|
Загрузка…
Ссылка в новой задаче