fix typos in the abstract of the CNTK book.
This commit is contained in:
Родитель
b8ec6589cf
Коммит
eba320ea2c
|
@ -1,10 +1,9 @@
|
|||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 413
|
||||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass extbook
|
||||
\begin_preamble
|
||||
\usepackage{amssymb}
|
||||
\usepackage{algorithm}
|
||||
\usepackage{algpseudocode}
|
||||
\end_preamble
|
||||
|
@ -18,13 +17,13 @@
|
|||
\font_roman default
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf false
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
|
@ -35,15 +34,24 @@
|
|||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_amsmath 1
|
||||
\use_esint 1
|
||||
\use_mhchem 1
|
||||
\use_mathdots 1
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 2
|
||||
\use_package cancel 0
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 0
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 0
|
||||
\use_package stmaryrd 0
|
||||
\use_package undertilde 0
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
|
@ -72,9 +80,9 @@ Abstract
|
|||
|
||||
\begin_layout Paragraph
|
||||
We introduce computational network (CN), a unified framework for describing
|
||||
arbitrary learning machines, such as deep neural networks (DNNs), computational
|
||||
arbitrary learning machines, such as deep neural networks (DNNs), convolutional
|
||||
neural networks (CNNs), recurrent neural networks (RNNs), long short term
|
||||
memory (LSTM), logistic regression, and matrixum entropy model, that can
|
||||
memory (LSTM), logistic regression, and maximum entropy model, that can
|
||||
be illustrated as a series of computational steps.
|
||||
A CN is a directed graph in which each leaf node represents an input value
|
||||
or a parameter and each non-leaf node represents a matrix operation upon
|
||||
|
|
Загрузка…
Ссылка в новой задаче