fix typos in the abstract of the CNTK book.

This commit is contained in:
Dong Yu 2014-11-20 02:10:17 -08:00
Родитель b8ec6589cf
Коммит eba320ea2c
1 изменённых файлов: 18 добавлений и 10 удалений

Просмотреть файл

@ -1,10 +1,9 @@
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass extbook
\begin_preamble
\usepackage{amssymb}
\usepackage{algorithm}
\usepackage{algpseudocode}
\end_preamble
@ -18,13 +17,13 @@
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
@ -35,15 +34,24 @@
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\use_package amsmath 1
\use_package amssymb 2
\use_package cancel 0
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 0
\use_package mhchem 1
\use_package stackrel 0
\use_package stmaryrd 0
\use_package undertilde 0
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\index Index
\shortcut idx
@ -72,9 +80,9 @@ Abstract
\begin_layout Paragraph
We introduce computational network (CN), a unified framework for describing
arbitrary learning machines, such as deep neural networks (DNNs), computational
arbitrary learning machines, such as deep neural networks (DNNs), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), long short term
memory (LSTM), logistic regression, and matrixum entropy model, that can
memory (LSTM), logistic regression, and maximum entropy model, that can
be illustrated as a series of computational steps.
A CN is a directed graph in which each leaf node represents an input value
or a parameter and each non-leaf node represents a matrix operation upon