added new tensor operations: And, Or, Xor, ElementwiseProductWithSigmoidDerivative (SigmoidDerivative is only ever used in this context), and Clip

This commit is contained in:
Frank Seide 2015-12-29 21:29:17 -08:00
Родитель c4356c16f2
Коммит ed35440053
5 изменённых файлов: 22 добавлений и 22 удалений

Просмотреть файл

@ -6,10 +6,10 @@
#pragma once
#include "Basics.h"
#include "Matrix.h"
#include "TensorView.h"
#include "ComputationNode.h"
#include "ConvolutionalNodes.h"
#include "Matrix.h"
#include "TensorView.h"
#include <unordered_set>
#include <map>

Просмотреть файл

@ -5,6 +5,11 @@
//
#pragma once
#include "Basics.h"
#include "ComputationNode.h"
#include "Matrix.h"
#include "TensorView.h"
#include <unordered_set>
#include <map>
#include <string>
@ -18,10 +23,6 @@
#include <sstream>
#include <iostream>
#include "Basics.h"
#include "Matrix.h"
#include "ComputationNode.h"
namespace Microsoft { namespace MSR { namespace CNTK {
// -----------------------------------------------------------------------
@ -204,8 +205,10 @@ namespace Microsoft { namespace MSR { namespace CNTK {
/*virtual*/ void BackpropToV(TensorView<ElemType> gradient, const TensorView<ElemType>& inputFunctionValues, TensorView<ElemType> inputGradientValues, const TensorView<ElemType>& gradientValues, const TensorView<ElemType>& functionValues)
{
gradient.AssignSigmoidDerivativeOf(inputFunctionValues);
inputGradientValues.AddElementwiseProductOf(gradientValues, gradient);
//gradient.AssignSigmoidDerivativeOf(inputFunctionValues);
//inputGradientValues.AddElementwiseProductOf(gradientValues, gradient);
//gradient.AssignSigmoidDerivativeOf(inputFunctionValues);
inputGradientValues.AddElementwiseProductWithSigmoidDerivativeOf(gradientValues, inputFunctionValues);
}
virtual bool OutputUsedInComputingInputNodesGradients() const override { return false; }

Просмотреть файл

@ -55,16 +55,16 @@ namespace Microsoft { namespace MSR { namespace CNTK {
opNegate, opNot,
opAbs,
opSigmoid, opSigmoidDerivative, opTanh, opSqrt, opExp, opLog, opLinearRectifierDerivative, opCosine, opNegativeSine,
// these are not implemented yet:
opSaturateBetaAlpha, opSumAlpha, opSubDifferenceToAlpha, opSubDifferenceFromAlpha,
// binary
opSum, opDifference, opElementwiseProduct, opElementwiseQuotient,
opLogSum, opMax, opMin,
opEQ, opNE, opGT, opLT, opGE, opLE,
opAnd, opOr, opXor,
opMaskNegative,
opElementwiseProductWithSigmoidDerivative/* a * dsigmoid/dx(b) */,
// ternary
opCond
// Note: not all of the above are actually implement at present; and not all that's implemented has an opcode.
opCond/*a ? b : c*/, opClip/*clip a within interval b..c*/
// Note: not all that's implemented in CNTK ComputationNodes has an opcode yet.
};
// helper to apply a C macro for all operations of each kind
@ -77,17 +77,16 @@ namespace Microsoft { namespace MSR { namespace CNTK {
Macro(Abs); \
Macro(Sigmoid); Macro(SigmoidDerivative); Macro(Tanh); Macro(Sqrt); Macro(Exp); Macro(Log); Macro(LinearRectifierDerivative); Macro(Cosine); Macro(NegativeSine);
#define ForAllParameterizedUnaryOps(Macro) \
Macro(SaturateBetaAlpha); Macro(SumAlpha); Macro(SubDifferenceToAlpha); Macro(SubDifferenceFromAlpha);
#define ForAllBinaryOps(Macro) \
Macro(Sum); Macro(Difference); Macro(ElementwiseProduct); Macro(ElementwiseQuotient); \
Macro(LogSum); Macro(Max); Macro(Min); \
Macro(EQ); Macro(NE); Macro(GT); Macro(LT); Macro(GE); Macro(LE); \
Macro(MaskNegative);
Macro(And); Macro(Or); Macro(Xor);\
Macro(MaskNegative); \
Macro(ElementwiseProductWithSigmoidDerivative);
#define ForAllTernaryOps(Macro) \
Macro(Cond);
Macro(Cond); Macro(Clip);
// -----------------------------------------------------------------------
// various enums to describe

Просмотреть файл

@ -126,22 +126,21 @@ namespace Microsoft { namespace MSR { namespace CNTK {
DefUnaryOp(Sigmoid, Sigmoid(a)); DefUnaryOp(SigmoidDerivative, SigmoidDerivative(a)); DefUnaryOp(Tanh, tanh_(a)); DefUnaryOp(Sqrt, Sqrt(a)); DefUnaryOp(Exp, exp_(a)); DefUnaryOp(Log, log_(a)); DefUnaryOp(LinearRectifierDerivative, LinearRectifierDerivative(a)); DefUnaryOp(Cosine, cos_(a)); DefUnaryOp(NegativeSine, -sin_(a));
#pragma pop_macro("DefUnaryOp")
// parameterized unary ops
//DefUnaryOp(SaturateBetaAlpha); DefUnaryOp(SumAlpha); DefUnaryOp(SubDifferenceToAlpha); DefUnaryOp(SubDifferenceFromAlpha);
#pragma push_macro("DefBinaryOp")
#define DefBinaryOp(op, expr) template<class ElemType> DECL ElemType Op ## op(ElemType a, ElemType b) { return expr; }
DefBinaryOp(Sum, a + b); DefBinaryOp(Difference, a - b); DefBinaryOp(ElementwiseProduct, a * b); DefBinaryOp(ElementwiseQuotient, a / b);
DefBinaryOp(LogSum, LogAdd(a, b)); DefBinaryOp(Max, a > b ? a : b); DefBinaryOp(Min, a < b ? a : b);
DefBinaryOp(EQ, a == b); DefBinaryOp(NE, a != b); DefBinaryOp(GT, a > b); DefBinaryOp(LT, a < b); DefBinaryOp(GE, a >= b); DefBinaryOp(LE, a <= b);
DefBinaryOp(And, (float)((!!a) && (!!b))); DefBinaryOp(Or, (float)((!!a) || (!!b))); DefBinaryOp(Xor, (float)((!!a) ^ (!!b)));
DefBinaryOp(MaskNegative, b >= 0 ? a : 0);
DefBinaryOp(ElementwiseProductWithSigmoidDerivative, a * SigmoidDerivative(b));
#pragma pop_macro("DefBinaryOp")
#pragma push_macro("DefTernaryOp")
#define DefTernaryOp(op, expr) template<class ElemType> DECL ElemType Op ## op(ElemType a, ElemType b, ElemType c) { return expr; }
DefTernaryOp(Cond, a ? b : c);
DefTernaryOp(Cond, a ? b : c); DefTernaryOp(Clip, a < b ? b : (a > c ? c : a));
#pragma pop_macro("DefTernaryOp")
}}}

Просмотреть файл

@ -64,7 +64,6 @@ namespace Microsoft { namespace MSR { namespace CNTK {
void Add ## oper ## Of( const TensorView & a, ElemType alpha = 1.0f) { DoUnaryOpOf(1.0f, a, alpha, ElementWiseOperator::op ## oper); }
ForAllUnaryOps(DeclareUnaryTensorOp);
ForAllParameterizedUnaryOps(DeclareUnaryTensorOp);
#pragma pop_macro("DeclareUnaryTensorOp")
#pragma push_macro("DeclareBinaryTensorOp")