Adding example doxcumentation
This commit is contained in:
Родитель
75fd4a8caa
Коммит
ff7d3ee3e7
|
@ -1,3 +1,27 @@
|
|||
Examples
|
||||
========
|
||||
|
||||
Logistic Regression
|
||||
-------------------
|
||||
|
||||
Examples for logistic regression you find here: `<https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/LogReg/>`_
|
||||
|
||||
- Using training and testing data *from a file* : `logreg.py <https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/LogReg/logreg.py>`_ .
|
||||
- Using training and testing data *from a NumPy array* : `logreg_numpy.py <https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/LogReg/logreg_numpy.py>`_ .
|
||||
|
||||
LSTM-based sequence classification
|
||||
----------------------------------
|
||||
Example for training an LSTM-based sequence classification model with embedding you find here: `<https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/LSTM/>`_ .
|
||||
A typical application would be e.g. a text classification where we leverage a precomputed word-embedding.
|
||||
This is a good example to see how to provide input data for sequences and using sparse input.
|
||||
|
||||
- In `Train_sparse.txt <https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/LSTM/>`_ we have two inputs. The input *x* provides the sequence data in sparse form, while *y* provides the classes in dense form.
|
||||
- The example also uses a predefined embedding (`embeddingmatrix.txt <https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/LSTM/embeddingmatrix.txt>`_ ) mapping each index of the input sequence *x* to an embedding vector.
|
||||
|
||||
One hidden layer neural network
|
||||
-------------------------------
|
||||
|
||||
Example for training a *one hidden layer neural network* using the MNIST-data (recognition of handwritten digits) you find here: `<https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/MNIST/>`_ .
|
||||
|
||||
To obtain and prepare the MNIST data use `fetch_mnist_data.py <https://github.com/Microsoft/CNTK/tree/master/contrib/Python/cntk/examples/MNIST/fetch_mnist_data.py>`_ .
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче