Adapted Readme files wrt new directory structure
This commit is contained in:
Родитель
a73a11f43a
Коммит
ffcf00b21b
10
CNTK.sln
10
CNTK.sln
|
@ -560,22 +560,22 @@ Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "VGG", "VGG", "{BC0D6DFF-80C
|
|||
Examples\Image\Miscellaneous\ImageNet\VGG\VGG_E.ndl = Examples\Image\Miscellaneous\ImageNet\VGG\VGG_E.ndl
|
||||
EndProjectSection
|
||||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Miscellaneous", "Miscellaneous", "{CCD56F12-BA17-4753-B5EE-4995FE682995}"
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Other", "Other", "{CCD56F12-BA17-4753-B5EE-4995FE682995}"
|
||||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Simple2d", "Simple2d", "{D2A060F1-128E-42A1-A0D0-3E3E1DFBC427}"
|
||||
ProjectSection(SolutionItems) = preProject
|
||||
Examples\Miscellaneous\Simple2d\README.md = Examples\Miscellaneous\Simple2d\README.md
|
||||
Examples\Other\Simple2d\README.md = Examples\Other\Simple2d\README.md
|
||||
EndProjectSection
|
||||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "NdlExamples", "NdlExamples", "{FC573A62-6DAE-40A4-8153-520C8571A007}"
|
||||
ProjectSection(SolutionItems) = preProject
|
||||
Examples\Miscellaneous\NdlExamples\NDLExamples.ndl = Examples\Miscellaneous\NdlExamples\NDLExamples.ndl
|
||||
Examples\Other\NdlExamples\NDLExamples.ndl = Examples\Other\NdlExamples\NDLExamples.ndl
|
||||
EndProjectSection
|
||||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Config", "Config", "{1E37CE40-556D-4693-B58C-F8D4CE349BB7}"
|
||||
ProjectSection(SolutionItems) = preProject
|
||||
Examples\Miscellaneous\Simple2d\Config\Multigpu.config = Examples\Miscellaneous\Simple2d\Config\Multigpu.config
|
||||
Examples\Miscellaneous\Simple2d\Config\Simple.config = Examples\Miscellaneous\Simple2d\Config\Simple.config
|
||||
Examples\Other\Simple2d\Config\Multigpu.config = Examples\Other\Simple2d\Config\Multigpu.config
|
||||
Examples\Other\Simple2d\Config\Simple.config = Examples\Other\Simple2d\Config\Simple.config
|
||||
EndProjectSection
|
||||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Miscellaneous", "Miscellaneous", "{BF1A621D-528B-4B84-AAFC-EF1455FC6830}"
|
||||
|
|
|
@ -2,13 +2,12 @@
|
|||
|
||||
## Overview
|
||||
|
||||
| | |
|
||||
|:--------|:---|
|
||||
Data: |The MNIST database (http://yann.lecun.com/exdb/mnist/) of handwritten digits.
|
||||
Purpose: |This example demonstrates usage of NDL to train neural networks on MNIST dataset.
|
||||
Network: |NDLNetworkBuilder, simple feed forward and convolutional networks, cross entropy with softmax.
|
||||
Training: |Stochastic gradient descent both with and without momentum.
|
||||
Comments: |There are two config files, details are provided below.
|
||||
|Data: |The MNIST database (http://yann.lecun.com/exdb/mnist/) of handwritten digits.
|
||||
|:---------|:---
|
||||
|Purpose: |This example demonstrates usage of the NDL (Network Description Language) to define networks.
|
||||
|Network: |NDLNetworkBuilder, simple feed forward and convolutional networks, cross entropy with softmax.
|
||||
|Training: |Stochastic gradient descent both with and without momentum.
|
||||
|Comments: |There are two config files, details are provided below.
|
||||
|
||||
## Running the example
|
||||
|
||||
|
@ -21,12 +20,12 @@ downloaded and converted by running the following command from the 'AdditionalFi
|
|||
|
||||
The script will download all required files and convert them to CNTK-supported format.
|
||||
The resulting files (Train-28x28.txt and Test-28x28.txt) will be stored in the 'Data' folder.
|
||||
In case you don't have a Python installed, there are 2 options:
|
||||
In case you don't have Python installed, there are 2 options:
|
||||
|
||||
1. Download and install latest version of Python 2.7 from: https://www.python.org/downloads/
|
||||
Then install numpy package by following instruction from: http://www.scipy.org/install.html#individual-packages
|
||||
Then install the numpy package by following instruction from: http://www.scipy.org/install.html#individual-packages
|
||||
|
||||
2. Alternatively install Python Anaconda distribution which contains most of the
|
||||
2. Alternatively install the Python Anaconda distribution which contains most of the
|
||||
popular Python packages including numpy: http://continuum.io/downloads
|
||||
|
||||
### Setup
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
There are several examples for training different networks on image corpora
|
||||
in the folder 'ExampleSetups/Image/' including:
|
||||
|
||||
* MNIST
|
||||
* CIFAR-10
|
||||
* ImageNet
|
||||
|
||||
For those examples the data has to be downloaded and converted
|
||||
(python scripts are provided in the corresponding folder).
|
||||
These examples also show how to train convolutional neural networks (CNN) with CNTK.
|
||||
|
||||
We recommend to start with the MNIST example.
|
До Ширина: | Высота: | Размер: 177 KiB После Ширина: | Высота: | Размер: 177 KiB |
До Ширина: | Высота: | Размер: 11 KiB После Ширина: | Высота: | Размер: 11 KiB |
До Ширина: | Высота: | Размер: 22 KiB После Ширина: | Высота: | Размер: 22 KiB |
|
@ -2,19 +2,18 @@
|
|||
|
||||
## Overview
|
||||
|
||||
| | |
|
||||
|:--------|:---|
|
||||
Data |Two dimensional synthetic data
|
||||
Purpose |Showcase how to train a simple CNTK network (CPU and GPU) and how to use it for scoring (decoding)
|
||||
Network |SimpleNetworkBuilder, 2 hidden layers with 50 sigmoid nodes each, cross entropy with softmax
|
||||
Training |Stochastic gradient descent with momentum
|
||||
Comments |There are two config files: Simple.config uses a single CPU or GPU, Multigpu.config uses data-parallel SGD for training on multiple GPUs
|
||||
|Data |Two dimensional synthetic data
|
||||
|:--------|:---
|
||||
|Purpose |Showcase how to train a simple CNTK network (CPU and GPU) and how to use it for scoring (decoding)
|
||||
|Network |SimpleNetworkBuilder, 2 hidden layers with 50 sigmoid nodes each, cross entropy with softmax
|
||||
|Training |Stochastic gradient descent with momentum
|
||||
|Comments |There are two config files: Simple.config uses a single CPU or GPU, Multigpu.config uses data-parallel SGD for training on multiple GPUs
|
||||
|
||||
## Running the example
|
||||
|
||||
### Getting the data
|
||||
|
||||
The data for this example is already contained in the folder Demos/Simple2d/Data/.
|
||||
The data for this example is already contained in the folder Simple2d/Data/.
|
||||
|
||||
### Setup
|
||||
|
||||
|
@ -30,16 +29,16 @@ or prefix the call to the cntk executable with the corresponding folder.
|
|||
|
||||
### Run
|
||||
|
||||
Run the example from the Demos/Simple2d/Data folder using:
|
||||
Run the example from the Simple2d/Data folder using:
|
||||
|
||||
`cntk configFile=../Config/Simple.config`
|
||||
|
||||
or run from any folder and specify the Data folder as the `currentDirectory`,
|
||||
e.g. running from the Demos/Simple2d folder using:
|
||||
e.g. running from the Simple2d folder using:
|
||||
|
||||
`cntk configFile=Config/Simple.config currentDirectory=Data`
|
||||
|
||||
The output folder will be created inside Demos/Simple2d/.
|
||||
The output folder will be created inside Simple2d/.
|
||||
|
||||
## Details
|
||||
|
||||
|
@ -71,10 +70,13 @@ SimpleDemoDataReference.png shows a plot of the training data.
|
|||
|
||||
## Using a trained model
|
||||
|
||||
The Test (e.g. Simple_Demo_Test) and the Output (e.g. Simple_Demo_Output) commands
|
||||
specified in the config files use the trained model to compute labels for data specified in the SimpleDataTest.txt file.
|
||||
The Test command computes prediction error, cross entropy and perplexity for the test set and outputs them to the console.
|
||||
The Output command writes for each test instance the likelihood per label to a file `outputPath = $OutputDir$/SimpleOutput`.
|
||||
To use the Output command either set `command=Simple_Demo_Output` in the config file or add it to the command line.
|
||||
The model that is used to compute the labels in these commands is defined
|
||||
in the modelPath variable at the beginning of the file `modelPath=$modelDir$/simple.dnn`.
|
||||
The Test (Simple_Demo_Test) and the Output (Simple_Demo_Output) commands
|
||||
specified in the config files use the trained model to compute labels for data
|
||||
specified in the SimpleDataTest.txt file. The Test command computes prediction
|
||||
error, cross entropy and perplexity for the test set and outputs them to the
|
||||
console. The Output command writes for each test instance the likelihood per
|
||||
label to a file `outputPath = $OutputDir$/SimpleOutput`.
|
||||
To use the Output command either set `command=Simple_Demo_Output` in the config
|
||||
file or add it to the command line. The model that is used to compute the labels
|
||||
in these commands is defined in the modelPath variable at the beginning of the
|
||||
file `modelPath=$modelDir$/simple.dnn`.
|
|
@ -1,25 +1,20 @@
|
|||
# CNTK Demos and Example Setups
|
||||
# CNTK Examples
|
||||
|
||||
This folder contains a few self-contained demos to get started with CNTK.
|
||||
The data for the demos is contained in the corresponding Data folders.
|
||||
Each demo folder has a Readme file that explains how to run it on Windows and Linux.
|
||||
How to run the demos on Philly (https://phillywebportal.azurewebsites.net/index.aspx) is
|
||||
explained in the Philly portal wiki (Philly is an internal GPU cluster for Microsoft production runs).
|
||||
The demos cover different domains such as Speech and Text classification
|
||||
and show different types of networks including FF, CNN RNN and LSTM.
|
||||
This folder contains demos and examples to get started with CNTK.
|
||||
The examples are structured by topic into Image, Speech, Text and Other.
|
||||
The individual folders contain on the first level at least one self-contained example,
|
||||
which cover different types of networks including FF, CNN, RNN and LSTM.
|
||||
Further examples for for each category are provided in the corresponding Miscellaneous subfolder.
|
||||
Each folder contains a Readme file that explains how to run the example on Windows and Linux.
|
||||
How to run the examples on Philly (https://philly) is explained in the Philly portal wiki
|
||||
(Philly is an internal GPU cluster for Microsoft production runs).
|
||||
|
||||
Further examples are provided in the folder 'ExampleSetups'.
|
||||
A popular example is the MNIST handwritten digits classification task.
|
||||
You can find this example in 'ExampleSetups/Images/MNIST'.
|
||||
The examples in 'ExampleSetups' might require downloading data which in some cases is not free of charge.
|
||||
See individual folders for more information.
|
||||
|
||||
The four examples shown in the table below provide a good introduction to CNTK.
|
||||
Additional more complex examples can be found in the 'ExampleSetups' folder.
|
||||
The examples shown in the table below provide a good introduction to CNTK.
|
||||
Please refer to the Readme file in the corresponding folder for further details.
|
||||
|
||||
|Folder | Domain | Network types |
|
||||
|:------------------------|:-------------------------------------------------|:----------------|
|
||||
Demos/Simple2d | Synthetic 2d data | FF (CPU and GPU)
|
||||
Demos/Speech | Speech data (CMU AN4) | FF and LSTM
|
||||
Demos/Text | Text data (penn treebank) | RNN
|
||||
ExampleSetups/Image/MNIST | Image data (MNIST handwritten digit recognition) | CNN
|
||||
|Other/Simple2d | Synthetic 2d data | FF (CPU and GPU)
|
||||
|Speech/AN4 | Speech data (CMU AN4) | FF and LSTM
|
||||
|Image/MNIST | Image data (MNIST handwritten digit recognition) | CNN
|
||||
|Text/PennTreebank | Text data (penn treebank) | RNN
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# CNTK example: Speech
|
||||
# CNTK example: Speech AN4
|
||||
|
||||
## License
|
||||
|
||||
|
@ -9,19 +9,18 @@ This modified version of dataset is distributed under the terms of a AN4 license
|
|||
|
||||
## Overview
|
||||
|
||||
| | |
|
||||
|:--------|:---|
|
||||
Data: |Speech data from the CMU Audio Database aka AN4 (http://www.speech.cs.cmu.edu/databases/an4)
|
||||
Purpose: |Showcase how to train feed forward and LSTM networks for speech data
|
||||
Network: |SimpleNetworkBuilder for 2-layer FF, NdlNetworkBuilder for 3-layer LSTM network
|
||||
Training: |Data-parallel 1-Bit SGD with automatic mini batch rescaling (FF)
|
||||
Comments: |There are two config files: FeedForward.config and LSTM-NDL.config for FF and LSTM training respectively
|
||||
|Data: |Speech data from the CMU Audio Database aka AN4 (http://www.speech.cs.cmu.edu/databases/an4)
|
||||
|:---------|:---|
|
||||
|Purpose: |Showcase how to train feed forward and LSTM networks for speech data
|
||||
|Network: |SimpleNetworkBuilder for 2-layer FF, NdlNetworkBuilder for 3-layer LSTM network
|
||||
|Training: |Data-parallel 1-Bit SGD with automatic mini batch rescaling (FF)
|
||||
|Comments: |There are two config files: FeedForward.config and LSTM-NDL.config for FF and LSTM training respectively
|
||||
|
||||
## Running the example
|
||||
|
||||
### Getting the data
|
||||
|
||||
The data for this example is already contained in the folder Demos/Text/Data/.
|
||||
The data for this example is already contained in the folder AN4/Data/.
|
||||
|
||||
### Setup
|
||||
|
||||
|
@ -37,16 +36,16 @@ or prefix the call to the cntk executable with the corresponding folder.
|
|||
|
||||
### Run
|
||||
|
||||
Run the example from the Demos/Speech/Data folder using:
|
||||
Run the example from the Speech/Data folder using:
|
||||
|
||||
`cntk configFile=../Config/FeedForward.config`
|
||||
|
||||
or run from any folder and specify the Data folder as the `currentDirectory`,
|
||||
e.g. running from the Demos/Speech folder using:
|
||||
e.g. running from the Speech folder using:
|
||||
|
||||
`cntk configFile=Config/FeedForward.config currentDirectory=Data`
|
||||
|
||||
The output folder will be created inside Demos/Speech/.
|
||||
The output folder will be created inside Speech/.
|
||||
|
||||
## Details
|
||||
|
||||
|
@ -60,7 +59,7 @@ To run on CPU set `deviceId = -1`, to run on GPU set deviceId to "auto" or a spe
|
|||
|
||||
The FeedForward.config file uses the SimpleNetworkBuilder to create a 2-layer
|
||||
feed forward network with sigmoid nodes and a softmax layer.
|
||||
The LSTM-NDL.config file uses the NdlNetworkBuilder and refers to the lstmp-3layer_WithSelfStab.ndl file.
|
||||
The LSTM-NDL.config file uses the NdlNetworkBuilder and refers to the lstmp-3layer-opt.ndl file.
|
||||
In the ndl file an LSTM component is defined and used to create a 3-layer LSTM network with a softmax layer.
|
||||
Both configuration only define and execute a single training task:
|
||||
|
||||
|
|
|
@ -6,19 +6,19 @@ Note: The data is not checked into the repository currently since a license is r
|
|||
|
||||
## Overview
|
||||
|
||||
| | |
|
||||
|:--------|:---|
|
||||
Data: |The Penn Treebank Project (https://www.cis.upenn.edu/~treebank/) annotates naturally-occuring text for linguistic structure .
|
||||
Purpose: |Showcase how to train a recurrent network for text data.
|
||||
Network: |SimpleNetworkBuilder for recurrent network with two hidden layers.
|
||||
Training: |Stochastic gradient descent with adjusted learning rate.
|
||||
Comments: |The provided configuration file performs class based RNN training.
|
||||
|Data: |The Penn Treebank Project (https://www.cis.upenn.edu/~treebank/) annotates naturally-occuring text for linguistic structure .
|
||||
|:---------|:---|
|
||||
|Purpose: |Showcase how to train a recurrent network for text data.
|
||||
|Network: |SimpleNetworkBuilder for recurrent network with two hidden layers.
|
||||
|Training: |Stochastic gradient descent with adjusted learning rate.
|
||||
|Comments: |The provided configuration file performs class based RNN training.
|
||||
|
||||
## Running the example
|
||||
|
||||
### Getting the data
|
||||
|
||||
The data for this example is already contained in the folder Demos/Text/Data/.
|
||||
The data is not checked into the repository currently since a license is required for the penn treebank data.
|
||||
Please visit https://www.cis.upenn.edu/~treebank/
|
||||
|
||||
### Setup
|
||||
|
||||
|
@ -34,16 +34,16 @@ or prefix the call to the cntk executable with the corresponding folder.
|
|||
|
||||
### Run
|
||||
|
||||
Run the example from the Demos/Text/Data folder using:
|
||||
Run the example from the Text/Data folder using:
|
||||
|
||||
`cntk configFile=../Config/rnn.config`
|
||||
|
||||
or run from any folder and specify the Data folder as the `currentDirectory`,
|
||||
e.g. running from the Demos/Text folder using:
|
||||
e.g. running from the Text folder using:
|
||||
|
||||
`cntk configFile=Config/rnn.config currentDirectory=Data`
|
||||
|
||||
The output folder will be created inside Demos/Text/.
|
||||
The output folder will be created inside Text/.
|
||||
|
||||
## Details
|
||||
|
||||
|
|
|
@ -142,7 +142,7 @@ fi
|
|||
cd $CNTK_ROOT
|
||||
|
||||
if ! [[ -f $CONF_FILE ]]; then
|
||||
cp Examples/Miscellaneous/Simple2d/Config/Simple.config $CONF_FILE || exit $?
|
||||
cp Examples/Other/Simple2d/Config/Simple.config $CONF_FILE || exit $?
|
||||
|
||||
# This chmod is necessary due to restrictive Cygwin interpretation of Windows permissions.
|
||||
# Cygwin interprets Windows permissions as ----rwx---, which lacks read permissions for user.
|
||||
|
@ -213,8 +213,8 @@ fi
|
|||
if [[ $RUN == 1 ]]; then
|
||||
|
||||
cd $PREFIX_DIR
|
||||
echo "============ cp Examples/Miscellaneous/Simple2d/Config/Simple.config $CONF_FILE ============"
|
||||
echo "============ cd $CNTK_ROOT/Examples/Miscellaneous/Simple2d/Data ============"
|
||||
echo "============ cp Examples/Other/Simple2d/Config/Simple.config $CONF_FILE ============"
|
||||
echo "============ cd $CNTK_ROOT/Examples/Other/Simple2d/Data ============"
|
||||
|
||||
for TARGET in "${targetArray[@]}"
|
||||
do
|
||||
|
@ -250,7 +250,7 @@ if [[ $RUN == 1 ]]; then
|
|||
echo "============ Running $BIN_PATH configFile=$CONF_FILE for ($FLAVOR) ($TARGET) ============"
|
||||
fi
|
||||
echo "============ output in ($OUT_FILE) ============"
|
||||
cd $CNTK_ROOT/Examples/Miscellaneous/Simple2d/Data
|
||||
cd $CNTK_ROOT/Examples/Other/Simple2d/Data
|
||||
rm -rf models
|
||||
if [[ $OS == "Windows_NT" ]]; then
|
||||
# We have to use cygpath on Windows to modify the file paths into the format readable by cntk.
|
||||
|
|
Загрузка…
Ссылка в новой задаче