CNTK/Source/ActionsLib/SynchronousExecutionEngine.h

376 строки
17 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#pragma once
#include "IExecutionEngine.h"
#include "ComputationNetwork.h"
#include "ComputationNetworkBuilder.h"
#include "fileutil.h" // for fexists()
namespace Microsoft { namespace MSR { namespace CNTK {
// SynchronousNodeEvaluator
// Process the Network Description Language into a Computation Network useable
// by SynchronousExecutionEngine.
template <typename ElemType>
class SynchronousNodeEvaluator : public NDLNodeEvaluator<ElemType>
{
typedef shared_ptr<ComputationNode<ElemType>> ComputationNodePtr;
public:
// Constructor - create evaluator
SynchronousNodeEvaluator(ComputationNetworkPtr cn)
: m_net(cn)
{
}
// Evaluate - evaluate a node and translate into underlying
// node - node we are evaluating
// baseName - base name for all symbols at this level
// pass - NDLPass through the evaluation (0-initial, 1-resolve variables, 2-final)
virtual void Evaluate(NDLNode<ElemType>* node, const wstring& baseName, const NDLPass pass);
#ifdef LATER
// EvaluateDotName - Evaluate a dot name and resolve to target node
// node - NDLNode of the script
// nodeParam - NDLNode parameter we are evaluating
// baseName - name of the base node
// pass - which pass through the NDL nodes
// returns: the node that is the evaluated parameter
virtual NDLNode<ElemType>* EvaluateDotName(NDLNode<ElemType>* node, NDLNode<ElemType>* nodeParam, const std::wstring& baseNameP, const NDLPass pass)
{
if (pass > ndlPassInitial && evaluateNode)
{
std::string name = nodeParam->GetName();
std::wstring wname = msra::strfun::utf16(name);
if (nodeParam->GetType() == ndlTypeDotParameter)
{
// When we see a variable of the form "A.B" in a macro, we need to resolve it to an actual node, by first constructing it's
// fully-qualified name. There are 2 possibilities:
// 1) "A" was defined locally within the macro. In this case, we must find the fully-qualified name of the node that this macro
// call is being assigned to (eg, "C" in the example "C=Macro(X)"), and concatenate it's name with "A.B" (eg, "C.A.B").
// 2) "A" was passed in as a parameter to a macro. In this case, we must find the fully-qualified name of the node that
// was passed in as "A", and replace the "A" and "A.B" with this name.
// Consider the following example:
// NdlBLob=[
// P=MacroCall1(...)
// C=MacroCall2(P)
// ]
// # MacroDefinition
// MacroCall2(X)
// {
// A=MacroCall3(...)
// D=Times(A.B,X.B)}
// }
//
// In this example, in the call D=Times(A.B,X.B), we need to resolve A.B and X.B appropriately.
// Specifically, "A.B" must be resolved to the fully qualified name "C.A.B", whereas "X.B" must be resolved to the fully qualified name "P.B".
// We then use this fully-qualified name to look up this node in the model (using "m_net->GetNodeFromName").
std::size_t firstDotPos = name.find_first_of(".");
if (firstDotPos == std::string::npos)
{
LogicError("nodeParam of type \"ndlTypeDotParameter\" doesn't have a dot in its name: %s", name.c_str());
}
std::string nameBeforeDot = name.substr(0, firstDotPos);
std::string nameAfterDot = name.substr(firstDotPos + 1, name.size() - (firstDotPos + 1));
// look up if "nameBeforeDot" was a parameter to the macro.
NDLNode<ElemType>* resolvedParam = nodeParam->GetParentScript()->FindSymbol(nameBeforeDot);
if (resolvedParam != nullptr && resolvedParam->GetType() == ndlTypeMacroCall)
{
// if "nameBeforeDot" was a parameter to the macro, builds it's fully qualified name by
// replacing "nameBeforeDot" with the fully qualified name of the node passed in as the parameter.
NDLScript<ElemType>* parentScript = resolvedParam->GetParentScript();
baseName = parentScript->GetBaseName();
std::wstring resolvedParamName = msra::strfun::utf16(resolvedParam->GetName());
wname = baseName.empty() ? resolvedParamName + L"." + msra::strfun::utf16(nameAfterDot) : baseName + L"." + resolvedParamName + L"." + msra::strfun::utf16(nameAfterDot);
}
else if (!baseName.empty())
{
// else, "nameBeforeDot" wasn't a parameter to the macro, so treat it as a local variable.
wname = baseName + L"." + wname;
}
}
else if (!baseName.empty())
{
wname = baseName + L"." + wname;
}
// fully qualified names can be looked up in the model
if (m_net->NodeNameExists(wname))
{
void* np = (void*) m_net->GetNodeFromName(wname);
nodeParam->SetEvalValue(np);
}
// NOTE: there is a bug here, we allow an abbreviated node reference (i.e. L1.BFF) based on return values in NDL
// when the actual full node reference that the computational network uses would be L1.BFF.FF.P, so that is what CN sees
// can we do the normal find symbol here to allow abbreviated node references?
// if we still didn't get a value, throw an error
if (nodeParam->GetEvalValue() == nullptr)
{
LogicError("Dot name could not be resolved '%s': should have a node named '%ls' in computational network\n", nodeParam->GetName().c_str(), name.c_str());
}
}
return nodeParam;
}
#endif
// EvaluateParameter - Evaluate a parameter of a call
// node - NDLNode of the script
// nodeParam - NDLNode parameter we are evaluating
// baseName - name of the base node
// pass - which pass through the NDL nodes
// returns: the node that is the evaluated parameter
virtual NDLNode<ElemType>* EvaluateParameter(NDLNode<ElemType>* node, NDLNode<ElemType>* nodeParam, const std::wstring& baseNameP, const NDLPass pass)
{
// get the parent script that includes the symbol table we are interested in
NDLScript<ElemType>* script = node->GetParentScript();
wstring baseName = baseNameP;
if (script == NULL)
{
std::wstring name = baseName + L"." + msra::strfun::utf16(node->GetName());
LogicError("no script for a parameter node in call to %ls\n", name.c_str());
}
// evaluate the parameter if we haven't yet, or if we are in the resolve pass (need to set the inputs)
bool evaluateNode = nodeParam->GetEvalValue() == NULL || pass == ndlPassResolve;
switch (nodeParam->GetType())
{
// if the node is a parameter then look it up in the symbol table
case ndlTypeUndetermined: // an undetermined parameter needs to be looked up again in the symbol table
case ndlTypeParameter:
{
// lookup the parameter
NDLNode<ElemType>* nodeResolve = script->FindSymbol(nodeParam->GetName());
// if we have resolved the name, no need to continue evaluation
if (!(pass == ndlPassResolve && nodeResolve && nodeParam->GetEvalValue() == nullptr))
{
break;
}
if (pass > ndlPassInitial && evaluateNode && nodeResolve)
{
std::string name = nodeResolve->GetName();
// we need to start from the parent script, because that is the namespace of the parameter being passed in
NDLScript<ElemType>* parentScript = nodeResolve->GetParentScript();
nodeResolve = parentScript->FindSymbol(name);
// if we still didn't get a value
if (nodeResolve == nullptr || nodeResolve->GetEvalValue() == nullptr)
{
// check for the fully quantified name in the computation network
// this is needed for MEL processing, since CN nodes names can be used as parameters in MEL
std::wstring wname = msra::strfun::utf16(name);
if (m_net->NodeNameExists(wname))
{
void* np = (void*) m_net->GetNodeFromName(wname).get();
// if we don't have a resolve node, it's because the name didn't exist in NDL
if (!nodeResolve)
nodeResolve = nodeParam;
nodeResolve->SetEvalValue(np);
}
else
{
RuntimeError("Parameter name could not be resolved '%s'\n", name.c_str());
}
}
}
nodeParam = nodeResolve;
break;
}
case ndlTypeFunction:
if (evaluateNode)
Evaluate(nodeParam, baseName, pass);
break;
case ndlTypeMacroCall:
if (evaluateNode)
nodeParam->EvaluateMacro(*this, baseName, pass);
break;
// constants and variables are good as is
case ndlTypeConstant:
case ndlTypeVariable:
break;
// everything else is illegal as a parameter
default:
{
std::wstring name = baseName + L"." + msra::strfun::utf16(node->GetName());
RuntimeError("Invalid parameter (macro definitions and arrays not allowed), see call to %ls\n", name.c_str());
}
break;
}
return nodeParam;
}
// EvaluateParameters - Evaluate the parameters of a call
// node - NDLNode we are evaluating parameters for
// baseName - baseName for the current node
// nodeParamStart - starting parameter that contains a node
// nodeParamCount - ending parameter that contains a node
// pass - NDL pass we are evaluating
// returns: vector of eval pointers, which are ComputationNodePtr for CNEvaluator
virtual std::vector<void*> EvaluateParameters(NDLNode<ElemType>* node, const wstring& baseName, int nodeParamStart, int nodeParamCount, const NDLPass pass)
{
std::vector<void*> inputs;
std::vector<NDLNode<ElemType>*> parameter = node->GetParameters();
ConfigArray paramString = node->GetParamString();
if (parameter.size() < 1)
{
return inputs;
}
if (nodeParamStart + nodeParamCount > parameter.size())
LogicError("EvaluateParmeters: nodeParameters specified that do not exist");
size_t numChildren = nodeParamCount;
for (size_t i = 0; i < numChildren; ++i)
{
int index = i + nodeParamStart;
NDLNode<ElemType>* nodeParam = parameter[index];
std::wstring paramS = paramString[index];
// default base is same as current
std::wstring baseSymbol = baseName;
NDLNode<ElemType>* nodeResult = EvaluateParameter(node, nodeParam, baseSymbol, pass);
// look for a prefix here and set baseName appropriately
if (pass == ndlPassResolve)
{
void* np = nodeResult->GetEvalValue();
assert(np != nullptr);
inputs.push_back((void*) np);
}
else if (pass == ndlPassInitial) // for initial pass we are only interested in resolved nodes (to get constant values)
{
inputs.push_back((void*) nodeResult);
}
// NOTE: in final pass inputs are always NULL
}
// now return the vector
return inputs;
}
// ProcessOptionalParameters - Process the optional parameters of a node
virtual void ProcessOptionalParameters(NDLNode<ElemType>* node)
{
vector<NDLNode<ElemType>*> params = node->GetParameters(true); // get all the optional parameters only
auto compNode = ComputationNode<ElemType>::FromVoidPtr(node->GetEvalValue());
std::string empty;
// loop through all the optional parameters processing them as necessary
for (NDLNode<ElemType>* param : params)
{
// we only process the "tag" optional parameter for now
if (!EqualCI(param->GetName(), "tag"))
continue;
std::string value = param->GetValue();
if (EqualCI(value, "feature")) SetOutputNode(m_net->FeatureNodes(), compNode);
else if (EqualCI(value, "label")) SetOutputNode(m_net->LabelNodes(), compNode);
else if (EqualCI(value, "criterion")) SetOutputNode(m_net->FinalCriterionNodes(), compNode);
else if (!_strnicmp(value.c_str(), "eval", 4)) SetOutputNode(m_net->EvaluationNodes(), compNode); // only compare the first 4 characters. Yikes!!
else if (EqualCI(value, "output")) SetOutputNode(m_net->OutputNodes(), compNode);
// legacy
else if (EqualCI(value, "criteria")) SetOutputNode(m_net->FinalCriterionNodes(), compNode); // legacy (mis-spelled)
else if (EqualCI(value, "multiSeq")) fprintf(stderr, "'multiSeq' tag is defunct.\n");
}
}
// SetOutputNode - Set the output node, checks to see if it already exists first
// nodeGroup - group vector to add to
// compNode - computation node to add
// TODO: It seems that this is also applied to other tyoes of nodes, so the name of this function is wrong.
static void SetOutputNode(std::vector<ComputationNodeBasePtr>& nodeGroup, ComputationNodePtr compNode)
{
for (const auto& node : nodeGroup)
{
if (node == compNode)
return;
}
nodeGroup.push_back(compNode);
}
// FindSymbol - Search the nodes for a fully quantified symbol
// symbol - name of the symbol fully quantified name with "dots"
// returns - pointer to the matching EvalValue for that node, of NULL if not found
virtual void* FindSymbol(const wstring& symbol)
{
if (m_net->NodeNameExists(symbol))
return m_net->GetNodeFromName(symbol).get();
return nullptr;
}
virtual ~SynchronousNodeEvaluator()
{
}
protected:
TensorShape ProcessTensorShapeParameters(const NDLNode<ElemType>* node, const vector<void*>& params, size_t& i, bool isImage, const wstring& cnNodeType /*for error messages only*/);
private:
ComputationNetworkPtr m_net;
void operator=(const SynchronousNodeEvaluator&);
};
// SynchronousExecutionEngine
// TODO JC Refactor eligible methods and members into abstract base class.
template <typename ElemType>
class SynchronousExecutionEngine : public IExecutionEngine<ElemType>
{
public:
SynchronousExecutionEngine(DEVICEID_TYPE deviceId, unsigned long randomSeedOffset = 0)
{
m_computationNetwork = make_shared<ComputationNetwork>(deviceId);
m_computationNetwork->SetRandomSeedOffset(randomSeedOffset);
m_nodeEvaluator = new SynchronousNodeEvaluator<ElemType>(m_computationNetwork);
}
SynchronousExecutionEngine(ComputationNetworkPtr computationNetwork)
{
m_computationNetwork = computationNetwork;
m_nodeEvaluator = new SynchronousNodeEvaluator<ElemType>(m_computationNetwork);
}
virtual ~SynchronousExecutionEngine()
{
delete m_nodeEvaluator;
}
ComputationNetworkPtr GetComputationNetwork()
{
return m_computationNetwork;
}
NDLNodeEvaluator<ElemType>& GetNodeEvaluator()
{
return *m_nodeEvaluator;
}
private:
ComputationNetworkPtr m_computationNetwork;
SynchronousNodeEvaluator<ElemType>* m_nodeEvaluator;
protected:
// Copy constructor, should never be called.
SynchronousExecutionEngine(const SynchronousExecutionEngine<ElemType>& /*deepCopyFrom*/)
{
LogicError("'SynchronousExecutionEngine(const SynchronousExecutionEngine<ElemType>& deepCopyFrom)' should never be called.");
}
// Assignment operator, should never be called.
SynchronousExecutionEngine<ElemType>& operator=(const SynchronousExecutionEngine<ElemType>& /*deepCopyFrom*/)
{
LogicError("'SynchronousExecutionEngine<ElemType>& operator=(const SynchronousExecutionEngine<ElemType>& deepCopyFrom)' should never be called.");
}
};
} } }