CNTK/Source/CNTKv2LibraryDll/Common.cpp

1056 строки
37 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#include "stdafx.h"
#include "CNTKLibrary.h"
#include "Utils.h"
#include "BestGpu.h"
#include <mutex>
#include <memory>
#include <algorithm>
#include <CPUMatrix.h> // For CPUMatrix::SetNumThreads
#include <thread>
#include "GPUMatrix.h"
#include "Globals.h"
#include "PerformanceProfiler.h"
#include "MPIWrapper.h"
#include "EnvironmentUtil.h"
#include "Basics.h"
#include "ProgressTracing.h"
#include "buildinfo.h"
#include "Constants.h"
extern bool g_shareNodeValueMatrices;
using namespace Microsoft::MSR::CNTK;
namespace CNTK
{
std::atomic<bool> s_checkedMode(false);
void SetCheckedMode(bool enable)
{
s_checkedMode.store(enable);
}
bool GetCheckedMode()
{
return s_checkedMode.load();
}
namespace Internal
{
template <typename E>
using SparseCSCDataTuple = std::tuple<const E*, const SparseIndexType*, const SparseIndexType*, size_t, NDArrayViewPtr>;
static std::atomic_ullong s_nextUniqueId = ATOMIC_VAR_INIT(0);
size_t NewUniqueId()
{
return s_nextUniqueId++;
}
static std::mutex s_fixedSeedMutex;
static bool s_fixedRandomSeed = false;
static std::atomic_ullong s_currentRandomSeed = ATOMIC_VAR_INIT(0);
unsigned long GetRandomSeed()
{
return static_cast<unsigned long>(s_currentRandomSeed.load());
}
void SetFixedRandomSeed(unsigned long value)
{
std::unique_lock<std::mutex> lock(s_fixedSeedMutex);
s_currentRandomSeed.store(value);
s_fixedRandomSeed = true;
}
bool IsRandomSeedFixed()
{
std::unique_lock<std::mutex> lock(s_fixedSeedMutex);
return s_fixedRandomSeed;
}
void ResetRandomSeed(unsigned long value)
{
std::unique_lock<std::mutex> lock(s_fixedSeedMutex);
s_currentRandomSeed.store(value);
s_fixedRandomSeed = false;
}
// This is used to generate a default seed value for random parameter initializer and also
// for stateful nodes (dropout, and both flavors of random sample). The 'perWorkerLocalValue' flag
// indicates if the generated value should be identical across individual workers in distributed
// setting or if each worker should get a different seed value.
size_t GenerateRandomSeed(bool perWorkerLocalValue /*= false*/)
{
std::unique_lock<std::mutex> lock(s_fixedSeedMutex);
if (s_fixedRandomSeed)
return s_currentRandomSeed;
if (!perWorkerLocalValue)
return s_currentRandomSeed++;
static size_t numWorkers = 1, rank = 0;
static bool initialized = false;
if (EnvironmentUtil::GetTotalNumberOfMPINodes() > 1 && !initialized)
{
DistributedCommunicatorPtr communicator = MPICommunicator();
numWorkers = communicator->Workers().size();
rank = communicator->CurrentWorker().m_globalRank;
assert(numWorkers > 1);
}
initialized = true;
return (numWorkers * s_currentRandomSeed++) + rank;
}
std::atomic<bool> s_reverseTensorShapesInErrorMessages(false);
void EnableReversingTensorShapesInErrorMessages()
{
s_reverseTensorShapesInErrorMessages.store(true);
}
bool IsReversingTensorShapesInErrorMessagesEnabled()
{
return s_reverseTensorShapesInErrorMessages.load();
}
std::atomic<bool> s_alwaysAllowSettingDefaultDevice(false);
void AlwaysAllowSettingDefaultDevice()
{
s_alwaysAllowSettingDefaultDevice.store(true);
}
bool IsSettingDefaultDeviceAlwaysAllowed()
{
return s_alwaysAllowSettingDefaultDevice.load();
}
std::atomic<bool> s_allowRenamingFunctions(false);
void AllowRenamingFunctions()
{
s_allowRenamingFunctions.store(true);
}
bool IsRenamingFunctionsAllowed()
{
return s_allowRenamingFunctions.load();
}
std::atomic<bool> s_disableAutomaticUnpackingOfPackedValues(false);
void SetAutomaticUnpackingOfPackedValues(bool disable)
{
s_disableAutomaticUnpackingOfPackedValues.store(disable);
}
bool IsAutomaticUnpackingOfPackedValuesDisabled()
{
return s_disableAutomaticUnpackingOfPackedValues.load();
}
void EnableForwardValuesSharing()
{
Microsoft::MSR::CNTK::Globals::SetShareNodeValueMatrices(/* enable = */ true);
}
void DisableForwardValuesSharing()
{
Microsoft::MSR::CNTK::Globals::SetShareNodeValueMatrices(/* enable = */ false);
}
void EnableGradientAccumulationOptimization()
{
Microsoft::MSR::CNTK::Globals::SetGradientAccumulationOptimization(/* enable = */ true);
}
void DisableGradientAccumulationOptimization()
{
Microsoft::MSR::CNTK::Globals::SetGradientAccumulationOptimization(/* enable = */ false);
}
void StartProfiler(const wstring& profilerDir, bool profilerSyncGpu, size_t profilerBufferSize)
{
#ifndef CNTK_UWP
std::wstring logSuffix = L"";
auto mpi = Microsoft::MSR::CNTK::MPIWrapper::GetInstance();
if (mpi)
{
logSuffix = std::to_wstring(mpi->CurrentNodeRank());
}
Microsoft::MSR::CNTK::ProfilerInit(
profilerDir,
profilerBufferSize,
logSuffix,
profilerSyncGpu);
#endif
}
void EnableProfiler()
{
#ifndef CNTK_UWP
Microsoft::MSR::CNTK::ProfilerEnable(true);
#endif
}
void DisableProfiler()
{
#ifndef CNTK_UWP
Microsoft::MSR::CNTK::ProfilerEnable(false);
#endif
}
void StopProfiler()
{
#ifndef CNTK_UWP
Microsoft::MSR::CNTK::ProfilerClose();
#endif
}
void EnableNodeTiming()
{
Microsoft::MSR::CNTK::Globals::SetNodeTiming(true);
}
void DisableNodeTimeing()
{
Microsoft::MSR::CNTK::Globals::SetNodeTiming(false);
}
void EnableCPUEvalOptimization()
{
// optimization is only for float
int flags = Microsoft::MSR::CNTK::CPUMatrix<float>::GetOptimizationFlags();
flags |= Microsoft::MSR::CNTK::CPUMatrix<float>::OPT_EVAL_WITH_MKL;
Microsoft::MSR::CNTK::CPUMatrix<float>::SetOptimizationFlags(Microsoft::MSR::CNTK::CPUMatrix<float>::OPT_EVAL_WITH_MKL);
}
void DisableCPUEvalOptimization()
{
int flags = Microsoft::MSR::CNTK::CPUMatrix<float>::GetOptimizationFlags();
flags &= ~Microsoft::MSR::CNTK::CPUMatrix<float>::OPT_EVAL_WITH_MKL;
Microsoft::MSR::CNTK::CPUMatrix<float>::SetOptimizationFlags(flags);
}
void SetMPIPackThreshold(size_t packThesholdInBytes)
{
Microsoft::MSR::CNTK::Globals::SetMPIPackThreshold(packThesholdInBytes);
}
size_t GetMPIPackThreshold()
{
return Microsoft::MSR::CNTK::Globals::GetMPIPackThreshold();
}
bool AreEquivalent(const Variable& var1, const Variable& var2, bool allowParameterAndConstantsEquivalence)
{
bool areDynamicAxesCompatible = (var1.DynamicAxes().size() == var2.DynamicAxes().size());
auto numAxes = var1.DynamicAxes().size();
for (size_t i = 0; areDynamicAxesCompatible && (i < numAxes); ++i)
areDynamicAxesCompatible = (var1.DynamicAxes()[i].IsOrdered() == var2.DynamicAxes()[i].IsOrdered());
bool areVarKindsCompatible = (var1.Kind() == var2.Kind()) && (var1.NeedsGradient() == var2.NeedsGradient());
if (!areVarKindsCompatible && allowParameterAndConstantsEquivalence)
{
areVarKindsCompatible = (var1.IsParameter() && var2.IsConstant()) || (var2.IsParameter() && var1.IsConstant());
}
return (areVarKindsCompatible &&
(var1.GetDataType() == var2.GetDataType()) &&
(var1.IsSparse() == var2.IsSparse()) &&
(var1.Name() == var2.Name()) &&
areDynamicAxesCompatible &&
((var1.Shape() == var2.Shape()) || (AsTensorShape(var1.Shape()) == AsTensorShape(var2.Shape()))));
}
bool AreEquivalent(const FunctionPtr& f1, const FunctionPtr& f2, std::unordered_set<std::wstring>& uids)
{
if (f1 == f2)
{
return true;
}
if (uids.find(f1->Uid()) != uids.end())
{
return true;
}
else
{
uids.insert(f1->Uid());
}
if (f1->Name() != f2->Name())
{
return false;
}
if (f1->Attributes() != f2->Attributes())
{
return false;
}
auto outputs1 = f1->Outputs();
auto outputs2 = f2->Outputs();
if (outputs1.size() != outputs2.size())
{
return false;
}
for (int i = 0; i < outputs1.size(); ++i)
{
if (!AreEquivalent(outputs1[i], outputs2[i]))
{
return false;
}
}
auto inputs1 = f1->Inputs();
auto inputs2 = f2->Inputs();
if (inputs1.size() != inputs2.size())
{
return false;
}
for (int i = 0; i < inputs1.size(); ++i)
{
if (!AreEquivalent(inputs1[i], inputs2[i]))
{
return false;
}
if (inputs1[i].IsOutput() && !AreEquivalent(inputs1[i].Owner(), inputs2[i].Owner(), uids))
{
return false;
}
}
return true;
}
bool AreEquivalent(const FunctionPtr& f1, const FunctionPtr& f2)
{
std::unordered_set<std::wstring> uids;
return AreEquivalent(f1, f2, uids);
}
template <typename ElementType>
bool AreEqual(const ElementType* data1, const ElementType* data2, size_t numElements, double relativeTolerance, double absoluteTolerance)
{
for (size_t i = 0; i < numElements; ++i)
{
auto firstValue = data1[i];
auto secondValue = data2[i];
ElementType allowedTolerance = (std::max<ElementType>)((ElementType)std::abs((ElementType)absoluteTolerance), (ElementType)std::abs(((ElementType)relativeTolerance) * firstValue));
if (std::abs(firstValue - secondValue) > allowedTolerance)
return false;
}
return true;
}
template <typename ElementType>
bool AreEqual(const SparseCSCDataTuple<ElementType>& t1, const SparseCSCDataTuple<ElementType>& t2, double relativeTolerance, double absoluteTolerance)
{
if (std::get<3>(t1) != std::get<3>(t2))
return false;
auto nnzCount = std::get<3>(t1);
auto values1 = std::get<0>(t1);
auto values2 = std::get<0>(t2);
for (size_t i = 0; i < nnzCount; ++i)
{
auto firstValue = values1[i];
auto secondValue = values2[i];
ElementType allowedTolerance = (std::max<ElementType>)((ElementType)std::abs((ElementType)absoluteTolerance), (ElementType)std::abs(((ElementType)relativeTolerance) * firstValue));
if (std::abs(firstValue - secondValue) > allowedTolerance)
return false;
}
auto rowIndices1 = std::get<2>(t1);
auto rowIndices2 = std::get<2>(t2);
if (memcmp(rowIndices1, rowIndices2, nnzCount * sizeof(SparseIndexType)) != 0)
return false;
auto colIndices1 = std::get<1>(t1);
auto colIndices2 = std::get<1>(t2);
for (size_t i = 0; i < nnzCount; ++i)
{
if (colIndices1[i] != colIndices2[i])
return false;
if (colIndices1[i] == nnzCount)
break;
}
return true;
}
template <typename ElementType>
std::pair<ElementType*, NDArrayViewPtr> GetCPUDataPtr(const NDArrayView& view)
{
auto deviceType = view.Device().Type();
if (deviceType == DeviceKind::CPU)
return{ const_cast<ElementType*>(view.DataBuffer<ElementType>()), nullptr };
if (deviceType == DeviceKind::GPU)
{
auto tempCPUDataView = view.DeepClone(DeviceDescriptor::CPUDevice());
return{ tempCPUDataView->WritableDataBuffer<ElementType>(), tempCPUDataView };
}
LogicError("Invalid device type (%u).", (unsigned int)deviceType);
}
template <typename ElementType>
SparseCSCDataTuple<ElementType> GetSparseCSCCPUDataPtr(const NDArrayView& view)
{
auto deviceType = view.Device().Type();
if (deviceType == DeviceKind::CPU)
return std::tuple_cat(view.SparseCSCDataBuffers<ElementType>(), std::make_tuple(nullptr));
if (deviceType == DeviceKind::GPU)
{
auto tempCPUDataView = view.DeepClone(view.Device());
tempCPUDataView->ChangeDevice(DeviceDescriptor::CPUDevice());
auto result = GetSparseCSCCPUDataPtr<ElementType>(*tempCPUDataView);
std::get<4>(result) = tempCPUDataView;
return result;
}
LogicError("Invalid device type (%u).", (unsigned int)deviceType);
}
template <typename ElementType>
bool AreEqual(const NDArrayView& view1, const NDArrayView& view2, double relativeTolerance, double absoluteTolerance)
{
if (std::addressof(view1) == std::addressof(view2))
{
return true;
}
if (view1.GetDataType() != view2.GetDataType() ||
view1.Shape() != view2.Shape() ||
view1.IsSparse() != view2.IsSparse())
{
return false;
}
if (!view1.IsSparse())
{
CNTK::NDArrayViewPtr temp1CpuDataView, temp2CpuDataView;
ElementType* data1;
ElementType* data2;
std::tie(data1, temp1CpuDataView) = GetCPUDataPtr<ElementType>(view1);
std::tie(data2, temp2CpuDataView) = GetCPUDataPtr<ElementType>(view2);
size_t numElements = view1.Shape().TotalSize();
return AreEqual(data1, data2, numElements, relativeTolerance, absoluteTolerance);
}
else
{
auto data1 = GetSparseCSCCPUDataPtr<ElementType>(view1);
auto data2 = GetSparseCSCCPUDataPtr<ElementType>(view2);
return AreEqual(data1, data2, relativeTolerance, absoluteTolerance);
}
}
bool AreEqual(const NDArrayView& view1, const NDArrayView& view2, double relativeTolerance, double absoluteTolerance)
{
if (view1.GetDataType() == DataType::Float)
return AreEqual<float>(view1, view2, relativeTolerance, absoluteTolerance);
if (view1.GetDataType() == DataType::Double)
return AreEqual<double>(view1, view2, relativeTolerance, absoluteTolerance);
if (view1.GetDataType() == DataType::Int8)
return AreEqual<int8_t>(view1, view2, relativeTolerance, absoluteTolerance);
if (view1.GetDataType() == DataType::Int16)
return AreEqual<int16_t>(view1, view2, relativeTolerance, absoluteTolerance);
LogicError("AreEqual(NDArrayView): Unknown DataType.");
}
std::pair<const MaskKind*, NDMaskPtr> GetCPUDataPtr(const NDMask& mask)
{
if (mask.Device() == DeviceDescriptor::CPUDevice())
return{ mask.DataBuffer(), nullptr };
else
{
auto tempCPUMask = mask.DeepClone(DeviceDescriptor::CPUDevice());
return{ tempCPUMask->DataBuffer(), tempCPUMask };
}
}
bool AreEqual(const NDMask& mask1, const NDMask& mask2)
{
if (mask1.Shape() != mask2.Shape())
return false;
NDMaskPtr tempCPUMask1, tempCPUMask2;
const MaskKind* mask1Data = nullptr;
const MaskKind* mask2Data = nullptr;
std::tie(mask1Data, tempCPUMask1) = GetCPUDataPtr(mask1);
std::tie(mask2Data, tempCPUMask2) = GetCPUDataPtr(mask2);
size_t numElements = mask1.Shape().TotalSize();
for (size_t i = 0; i < numElements; ++i)
{
if (mask1Data[i] != mask2Data[i])
return false;
}
return true;
}
template <typename ElementType>
bool AreEqual(const ::CNTK::Value& value1, const ::CNTK::Value& value2, double relativeTolerance, double absoluteTolerance)
{
if (std::addressof(value1) == std::addressof(value2))
return true;
// If neither of the values have mask, we just compare the Data
if (!value1.Mask() && !value2.Mask())
return AreEqual(*value1.Data(), *value2.Data(), relativeTolerance, absoluteTolerance);
// Both or neither should have masks
if ((!value1.Mask() && value2.Mask()) || (!value2.Mask() && value1.Mask()) || !AreEqual(*value1.Mask(), *value2.Mask()))
return false;
if ((value1.GetDataType() != value2.GetDataType()) || (value1.Shape() != value2.Shape()))
return false;
NDMaskPtr tempCPUMask;
const MaskKind* maskData;
std::tie(maskData, tempCPUMask) = GetCPUDataPtr(*value1.Mask());
CNTK::NDArrayViewPtr temp1CpuDataView, temp2CpuDataView;
ElementType* data1;
ElementType* data2;
std::tie(data1, temp1CpuDataView) = GetCPUDataPtr<ElementType>(*value1.Data());
std::tie(data2, temp2CpuDataView) = GetCPUDataPtr<ElementType>(*value2.Data());
auto numMaskElements = value1.Mask()->Shape().TotalSize();
auto numElementsPerMaskUnit = value1.Shape().TotalSize() / numMaskElements;
for (size_t i = 0; i < numMaskElements; ++i)
{
if (maskData[i] != MaskKind::Invalid)
{
if (!AreEqual(data1 + (i * numElementsPerMaskUnit), data2 + (i * numElementsPerMaskUnit), numElementsPerMaskUnit, relativeTolerance, absoluteTolerance))
return false;
}
}
return true;
}
bool AreEqual(const ::CNTK::Value& value1, const ::CNTK::Value& value2, double relativeTolerance, double absoluteTolerance)
{
if (value1.GetDataType() == DataType::Float)
return AreEqual<float>(value1, value2, relativeTolerance, absoluteTolerance);
if (value1.GetDataType() == DataType::Double)
return AreEqual<double>(value1, value2, relativeTolerance, absoluteTolerance);
LogicError("AreEqual(Value): Unknown DataType.");
}
std::atomic<int> s_computationNetworkTraceLevel(0);
void SetComputationNetworkTraceLevel(int traceLevel)
{
s_computationNetworkTraceLevel.store(traceLevel);
}
int GetComputationNetworkTraceLevel()
{
return s_computationNetworkTraceLevel.load();
}
void SetGPUMemoryAllocationTraceLevel(int traceLevel)
{
Microsoft::MSR::CNTK::TracingGPUMemoryAllocator::SetTraceLevel(traceLevel);
}
void SetMathLibTraceLevel(int traceLevel)
{
Microsoft::MSR::CNTK::SetMathLibTraceLevel(traceLevel);
}
void ForceDeterministicAlgorithms()
{
Microsoft::MSR::CNTK::Globals::ForceDeterministicAlgorithms();
}
bool ShouldForceDeterministicAlgorithms()
{
return Microsoft::MSR::CNTK::Globals::ShouldForceDeterministicAlgorithms();
}
void EnableSynchronousGPUKernelExecution()
{
SyncGuard::EnableSync();
}
bool IsSynchronousGPUKernelExecutionEnabled()
{
return SyncGuard::IsSyncEnabled();
}
#ifdef CPUONLY
// CPU SBC aggregation not implemented yet, so fall back to conversion of sparse to dense
std::atomic<bool> s_useSparseGradientAggregationInDataParallelSGD(false);
#else
std::atomic<bool> s_useSparseGradientAggregationInDataParallelSGD(true);
#endif
void UseSparseGradientAggregationInDataParallelSGD(bool enable)
{
s_useSparseGradientAggregationInDataParallelSGD = enable;
}
bool ShouldUseSparseGradientAggregationInDataParallelSGD()
{
return s_useSparseGradientAggregationInDataParallelSGD;
}
static std::atomic<bool> s_threadsAreSet(false);
bool MaxNumCPUThreadsSet()
{
return s_threadsAreSet;
}
}
std::atomic<TraceLevel> s_traceLevel(TraceLevel::Warning);
void SetTraceLevel(TraceLevel value)
{
using namespace Internal;
auto previousValue = s_traceLevel.exchange(value);
if (previousValue == value)
return;
if (value == TraceLevel::Info)
{
// V1 does not have an intermediate trace level,
// the logging is either disabled (trace level = 0)
// or enabled (trace level != 0);
SetComputationNetworkTraceLevel(int(value));
SetMathLibTraceLevel(int(value));
}
else if (previousValue == TraceLevel::Info)
{
SetComputationNetworkTraceLevel(0);
SetMathLibTraceLevel(0);
}
}
TraceLevel GetTraceLevel()
{
return s_traceLevel.load();
}
/*static*/ std::mutex DeviceDescriptor::s_mutex;
/*static*/ bool DeviceDescriptor::s_defaultDeviceFrozen(false);
/*static*/ std::unique_ptr<DeviceDescriptor> DeviceDescriptor::s_defaultDevice(nullptr);
/*static*/ std::vector<DeviceDescriptor> DeviceDescriptor::s_excludedDevices;
/*static*/ std::vector<DeviceDescriptor> DeviceDescriptor::s_allDevices;
/*static*/ std::vector<GPUProperties> DeviceDescriptor::s_gpuProperties;
static std::once_flag s_initAllDevicesFlag;
/*static*/ void DeviceDescriptor::Reset()
{
DeviceDescriptor::s_defaultDevice.reset(nullptr);
DeviceDescriptor::s_defaultDeviceFrozen = false;
DeviceDescriptor::s_excludedDevices.clear();
}
bool DeviceDescriptor::IsLocked() const
{
return Microsoft::MSR::CNTK::IsLocked(AsCNTKImplDeviceId(*this));
}
/*static*/ DeviceDescriptor DeviceDescriptor::UseDefaultDevice()
{
std::unique_lock<std::mutex> lock(s_mutex);
if (!s_defaultDeviceFrozen && s_defaultDevice == nullptr)
{
if (GetTraceLevel() >= TraceLevel::Info)
{
fprintf(stderr, "Auto-selecting process wide default device.\n");
}
// This will both initialize the list of available devices and log the device stats
// (including the info on which devices are compatible and eligible for selection).
const auto& allDevices = AllDevices();
UNUSED(allDevices);
vector<int> excludedIds;
for (auto device : s_excludedDevices)
{
excludedIds.push_back(AsCNTKImplDeviceId(device));
}
auto id = Microsoft::MSR::CNTK::GetBestDevice(excludedIds);
auto selectedDevice = id >= 0 ? DeviceDescriptor::GPUDevice(id) : DeviceDescriptor::CPUDevice();
s_defaultDevice.reset(new DeviceDescriptor(selectedDevice));
}
if (!s_defaultDeviceFrozen)
{
fprintf(stderr, "Selected %S as the process wide default device.\n", s_defaultDevice->AsString().c_str());
}
s_defaultDeviceFrozen = true;
return *s_defaultDevice;
}
/*static*/ bool DeviceDescriptor::TrySetDefaultDevice(const DeviceDescriptor& newDefaultDevice, bool acquireDeviceLock)
{
std::unique_lock<std::mutex> lock(s_mutex);
if (s_defaultDevice != nullptr && newDefaultDevice == *s_defaultDevice)
return !acquireDeviceLock || Microsoft::MSR::CNTK::TryLock(AsCNTKImplDeviceId(newDefaultDevice));
// As a testing backdoor we allow changing the default device even after being "used/frozen"
if (!Internal::IsSettingDefaultDeviceAlwaysAllowed() && s_defaultDeviceFrozen)
// TODO: alternatively, print a warning and return false.
{
RuntimeError("Process wide default device cannot be changed since it has been frozen by being implicitly used "
"as the default device in a CNTK API call; Current default = %S, New default = %S.",
s_defaultDevice->AsString().c_str(), newDefaultDevice.AsString().c_str());
}
if (std::find(s_excludedDevices.begin(), s_excludedDevices.end(), newDefaultDevice) != s_excludedDevices.end())
return false;
if (acquireDeviceLock && !Microsoft::MSR::CNTK::TryLock(AsCNTKImplDeviceId(newDefaultDevice)))
return false;
s_defaultDevice.reset(new DeviceDescriptor(newDefaultDevice));
if (!acquireDeviceLock)
Microsoft::MSR::CNTK::ReleaseLock();
return true;
}
/*static*/ void DeviceDescriptor::SetExcludedDevices(const std::vector<DeviceDescriptor>& excluded)
{
std::unique_lock<std::mutex> lock(s_mutex);
s_excludedDevices = excluded;
}
/*static*/ const std::vector<DeviceDescriptor>& DeviceDescriptor::AllDevices()
{
using namespace Microsoft::MSR::CNTK;
std::call_once(s_initAllDevicesFlag, [&]
{
#ifndef CPUONLY
auto allGpusData = GetAllGpusData();
if (GetTraceLevel() >= TraceLevel::Info)
{
Internal::PrintGpuInfo(allGpusData);
}
for (const auto& gpuData : allGpusData)
{
if (gpuData.validity == GpuValidity::Valid)
{
s_allDevices.push_back(DeviceDescriptor((unsigned int) gpuData.deviceId, DeviceKind::GPU));
s_gpuProperties.push_back(
{
(unsigned int)gpuData.deviceId,
gpuData.versionMajor,
gpuData.versionMinor,
gpuData.cudaCores,
gpuData.name,
gpuData.totalMemory,
});
}
}
#endif
s_allDevices.push_back(DeviceDescriptor::CPUDevice());
});
return s_allDevices;
}
std::wstring DeviceDescriptor::AsString() const
{
std::wstring str = DeviceKindName(Type());
if (Type() == DeviceKind::GPU)
{
auto props = GetGPUProperties(*this);
std::wstring wname(props.name.begin(), props.name.end());
str = str + L"[" + std::to_wstring(Id()) + L"] " + wname;
}
return str;
}
/*static*/ DeviceDescriptor DeviceDescriptor::GPUDevice(unsigned int deviceId)
{
const auto& allDevices = AllDevices();
if (std::none_of(allDevices.begin(), allDevices.end(),
[deviceId](const DeviceDescriptor& device){ return device.Type() == DeviceKind::GPU && device.Id() == deviceId; }))
{
InvalidArgument("Specified GPU device id (%u) is invalid.", deviceId);
}
return { deviceId, DeviceKind::GPU };
}
/*static*/ const GPUProperties& DeviceDescriptor::GetGPUProperties(const DeviceDescriptor& device)
{
if (device.Type() == DeviceKind::CPU)
InvalidArgument("GPU properties cannot be obtained for a CPU device.");
// Now, make sure that the device vectores are initialized.
const auto& allDevices = AllDevices();
UNUSED(allDevices);
auto result = std::find_if(s_gpuProperties.begin(), s_gpuProperties.end(),
[&device](const GPUProperties& props) { return device.Id() == props.deviceId; });
if (result == s_gpuProperties.end())
InvalidArgument("Could not find properties for the specified GPU device (id=%u).", device.Id());
return *result;
}
/*static*/ const std::wstring Axis::StaticAxisNamePrefix = L"staticAxisIdx=";
/*static*/ const int Axis::SentinelStaticAxisIndexValueForDynamicAxes = std::numeric_limits<int>::max();
/*static*/ const int Axis::SentinelStaticAxisIndexValueForAllStaticAxes = std::numeric_limits<int>::max() - 1;
/*static*/ const int Axis::SentinelStaticAxisIndexValueForUnknownAxes = std::numeric_limits<int>::max() - 2;
/*static*/ const int Axis::SentinelEndStaticAxisIndexValue = std::numeric_limits<int>::max() - 3;
/*static*/ const int Axis::SentinelStaticAxisIndexValueForAllAxes = std::numeric_limits<int>::max() - 4;
/*static*/ Axis::UniqueDynamicAxesNames Axis::s_uniqueDynamicAxisNames;
bool Axis::UniqueDynamicAxesNames::RegisterAxisName(const std::wstring& axisName)
{
std::unique_lock<std::mutex> lock(m_mutex);
return m_allKnownDynamicAxisNames.insert(axisName).second;
}
const std::wstring& Axis::UniqueDynamicAxesNames::NewUniqueDynamicAxisName(const std::wstring& axisNamePrefix)
{
std::unique_lock<std::mutex> lock(m_mutex);
if (m_allKnownDynamicAxisNames.find(axisNamePrefix) == m_allKnownDynamicAxisNames.end())
{
m_allKnownDynamicAxisNames.insert(axisNamePrefix);
return axisNamePrefix;
}
for (size_t i = 1;; i++)
{
auto newDynamicAxisName = axisNamePrefix + std::to_wstring(i);
if (m_allKnownDynamicAxisNames.find(newDynamicAxisName) == m_allKnownDynamicAxisNames.end())
{
m_allKnownDynamicAxisNames.insert(newDynamicAxisName);
return *m_allKnownDynamicAxisNames.find(newDynamicAxisName);
}
}
}
static std::shared_ptr<std::vector<Axis>> s_defaultInputVariableDynamicAxes, s_unknownDynamicAxes;
static std::once_flag s_initDefaultInputVariableDynamicAxesFlag, s_initUnknownDynamicAxesFlag;
/*static*/ const std::vector<Axis>& Axis::DefaultInputVariableDynamicAxes()
{
std::call_once(s_initDefaultInputVariableDynamicAxesFlag, []
{
s_defaultInputVariableDynamicAxes.reset(new std::vector<Axis>({ Axis::DefaultDynamicAxis(), Axis::DefaultBatchAxis() }));
});
return *s_defaultInputVariableDynamicAxes;
}
/*static*/ const std::vector<Axis>& Axis::UnknownDynamicAxes()
{
std::call_once(s_initUnknownDynamicAxesFlag, []
{
s_unknownDynamicAxes.reset(new std::vector<Axis>({ Axis(SentinelStaticAxisIndexValueForUnknownAxes) }));
});
return *s_unknownDynamicAxes;
}
/*static*/ const Axis& Axis::DefaultDynamicAxis()
{
static const Axis s_defaultDynamicAxis(L"defaultDynamicAxis");
return s_defaultDynamicAxis;
}
/*static*/ const Axis& Axis::OperandSequenceAxis()
{
static const Axis s_operandSequenceAxis(L"__operandSequenceAxis");
return s_operandSequenceAxis;
}
/*static*/ const Axis& Axis::DefaultBatchAxis()
{
static const Axis s_defaultBatchAxis(L"defaultBatchAxis", false);
return s_defaultBatchAxis;
}
/*static*/ const Axis& Axis::AllStaticAxes()
{
static const Axis s_allStaticAxes(SentinelStaticAxisIndexValueForAllStaticAxes);
return s_allStaticAxes;
}
/*static*/ const Axis& Axis::AllAxes()
{
static const Axis s_allAxes(SentinelStaticAxisIndexValueForAllAxes);
return s_allAxes;
}
void Axis::RegisterAxisName(const std::wstring& axisName)
{
s_uniqueDynamicAxisNames.RegisterAxisName(axisName);
}
std::wstring Axis::AsString() const
{
std::wstringstream wss;
wss << "Axis('";
wss << m_name;
wss << "')";
return wss.str();
}
void SetMaxNumCPUThreads(size_t numCPUThreads)
{
Internal::s_threadsAreSet = true;
Microsoft::MSR::CNTK::CPUMatrix<float>::SetNumThreads((int)numCPUThreads);
}
size_t GetMaxNumCPUThreads()
{
return Microsoft::MSR::CNTK::CPUMatrix<float>::GetMaxNumThreads();
}
static std::atomic<bool> s_defaultUnitGainValue(true);
bool DefaultUnitGainValue()
{
return s_defaultUnitGainValue;
}
void SetDefaultUnitGainValue(bool value)
{
s_defaultUnitGainValue.store(value);
}
template <class E>
__declspec_noreturn void ThrowFormatted(const char* format, ...)
{
va_list args;
va_start(args, format);
Microsoft::MSR::CNTK::ThrowFormattedVA<E>(format, args);
va_end(args);
}
namespace Internal
{
void ExtractCUDAVersion(int version, int& major, int& minor, int& patch_level)
{
//e.g. #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
major = version / 1000;
minor = (version - major * 1000) / 100;
patch_level = version % 100;
}
void PrintBuiltInfo()
{
LOGPRINTF(stderr, "-------------------------------------------------------------------\n");
LOGPRINTF(stderr, "Build info: \n\n");
LOGPRINTF(stderr, "\t\tBuilt time: %s %s\n", __DATE__, __TIME__);
LOGPRINTF(stderr, "\t\tLast modified date: %s\n", __TIMESTAMP__);
#ifdef _BUILDTYPE_
LOGPRINTF(stderr, "\t\tBuild type: %s\n", _BUILDTYPE_);
#endif
#ifdef _BUILDTARGET_
LOGPRINTF(stderr, "\t\tBuild target: %s\n", _BUILDTARGET_);
#endif
#ifdef _WITH_ASGD_
LOGPRINTF(stderr, "\t\tWith ASGD: %s\n", _WITH_ASGD_);
#endif
#ifdef _MATHLIB_
LOGPRINTF(stderr, "\t\tMath lib: %s\n", _MATHLIB_);
#endif
#ifdef _CUDA_PATH_
int cudaVersion = 0;
if (cudaRuntimeGetVersion(&cudaVersion) == cudaSuccess)
{
int major = 0, minor = 0, patchLevel = 0;
ExtractCUDAVersion(cudaVersion, major, minor, patchLevel);
LOGPRINTF(stderr, "\t\tCUDA version: %d.%d.%d\n", major, minor, patchLevel);
}
#endif
#ifdef _CUDNN_PATH_
size_t cudnnVersion = GetCUDNNVersion();
int cudnnMajor = 0, cudnnMinor = 0, cudnnPatchLevel = 0;
ExtractCUDAVersion(cudnnVersion, cudnnMajor, cudnnMinor, cudnnPatchLevel);
LOGPRINTF(stderr, "\t\tCUDNN version: %d.%d.%d\n", cudnnMajor, cudnnMinor, cudnnPatchLevel);
#endif
#ifdef _GIT_EXIST
LOGPRINTF(stderr, "\t\tBuild Branch: %s\n", _BUILDBRANCH_);
LOGPRINTF(stderr, "\t\tBuild SHA1: %s\n", _BUILDSHA1_);
#endif
#ifdef _MPI_NAME_
LOGPRINTF(stderr, "\t\tMPI distribution: %s\n", _MPI_NAME_);
#endif
#ifdef _MPI_VERSION_
LOGPRINTF(stderr, "\t\tMPI version: %s\n", _MPI_VERSION_);
#endif
LOGPRINTF(stderr, "-------------------------------------------------------------------\n");
}
// print gpu info for current gpu devices (e.g. Device[0]: cores = 2496; computeCapability = 5.2; type = "Quadro M4000"; total memory = 8192 MB; free memory = 8192 MB)
void PrintGpuInfo(const std::vector<Microsoft::MSR::CNTK::GpuData>& gpusData)
{
#ifndef CPUONLY
if (gpusData.empty())
{
LOGPRINTF(stderr, "No GPUs found\n");
return;
}
LOGPRINTF(stderr, "-------------------------------------------------------------------\n");
LOGPRINTF(stderr, "GPU info:\n\n");
for (const GpuData& data : gpusData)
{
LOGPRINTF(stderr, "\t\tDevice[%d]: cores = %d; computeCapability = %d.%d; type = \"%s\"; total memory = %lu MB; free memory = %lu MB\n",
data.deviceId, data.cudaCores, data.versionMajor, data.versionMinor, data.name.c_str(), (unsigned long)data.totalMemory, (unsigned long)data.freeMemory);
}
LOGPRINTF(stderr, "-------------------------------------------------------------------\n");
#endif
}
}
template CNTK_API __declspec_noreturn void ThrowFormatted<std::runtime_error>(const char* format, ...);
template CNTK_API __declspec_noreturn void ThrowFormatted<std::logic_error>(const char* format, ...);
template CNTK_API __declspec_noreturn void ThrowFormatted<std::invalid_argument>(const char* format, ...);
}