CNTK/Source/CNTKv2LibraryDll/PrimitiveFunction.cpp

1589 строки
99 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#include "stdafx.h"
#include "PrimitiveFunction.h"
#include "PrimitiveFunctionAttribute.h"
#include "ComputationNode.h"
#include "ReshapingNodes.h"
#include "EvaluationNodes.h"
#include "TrainingNodes.h"
#include "LinearAlgebraNodes.h"
#include "InputAndParamNodes.h"
#include "NonlinearityNodes.h"
#include "RecurrentNodes.h"
#include "Serialization.h"
#include "RNNNodes.h"
#include "BlockFunction.h"
#include "CompositeFunction.h"
#include "SpecialPurposeNodes.h"
#include "ConvolveGeometry.h"
#include "ConvolutionalNodes.h"
#include "Variable.h"
#include "UserFunctionFactory.h"
using namespace Microsoft::MSR::CNTK;
namespace CNTK
{
/*static*/ DataType PrimitiveFunction::GetOutputDataType(PrimitiveOpType op, std::vector<Variable>& inputs, bool inferDimensions)
{
// We use the first non-constant input operand's DataType as the output DataType
// In case there are no non-constant known DataTypes, we just pick the first known operand DataType
// Also, all the known DataTypes of operands should match except for constants where coercion is allowed
DataType firstKnownInputDataType = DataType::Unknown;
DataType outputDataType = DataType::Unknown;
size_t i = 0;
while (i < inputs.size())
{
auto input = inputs[i++];
auto inputDataType = input.GetDataType();
if (inputDataType != DataType::Unknown)
{
if (firstKnownInputDataType == DataType::Unknown)
firstKnownInputDataType = inputDataType;
if (outputDataType == DataType::Unknown)
{
if (!input.IsConstant())
outputDataType = inputDataType;
}
else
{
// batch normalization on FP16 requires 32-bit scale/bias/mean/variance, so specialize that case
bool batchNormSpecialCase =
(op == PrimitiveOpType::BatchNormalization) &&
(outputDataType == DataType::Float16) &&
(inputDataType == DataType::Float);
// The DataType of all operands should match except for Constants where we allow coercion
if ((inputDataType != DataType::Unknown) && (inputDataType != outputDataType) && !input.IsConstant() && !batchNormSpecialCase)
InvalidArgument("Primitive op '%S' passed operands '%S' with different DataTypes '%s' and '%s'.",
PrimitiveOpTypeName(op).c_str(), NamedListString(inputs).c_str(), DataTypeName(outputDataType), DataTypeName(inputDataType));
}
}
}
if (outputDataType == DataType::Unknown)
outputDataType = firstKnownInputDataType;
// Propagate the data type to any input Parameters/Constants with unknown data type
if (inferDimensions && (outputDataType != DataType::Unknown))
{
for (auto& input : inputs)
{
if ((input.GetDataType() == DataType::Unknown) && (input.IsConstant() || input.IsParameter()))
{
// batch normalization on FP16 requires 32-bit scale/bias/mean/variance, so specialize that case
if ((op == PrimitiveOpType::BatchNormalization) &&
(outputDataType == DataType::Float16))
{
input.m_dataFields->m_dataType = DataType::Float;
}
else
{
input.m_dataFields->m_dataType = outputDataType;
}
}
}
}
return outputDataType;
}
/*static*/ std::vector<Axis> PrimitiveFunction::GetOutputDynamicAxes(PrimitiveOpType op, std::vector<Variable>& inputs, PrimitiveFunction* owner, Dictionary& functionConfig)
{
auto reduceAxis = [](Axis reductionAxis, Variable input, std::vector<Axis>& outputDynamicAxes)
{
if (!reductionAxis.IsDynamicAxis()) return;
reductionAxis = NormalizeAxis(reductionAxis, input);
for (auto inputDynamicAxis : input.DynamicAxes())
{
if (inputDynamicAxis != reductionAxis)
outputDynamicAxes.push_back(inputDynamicAxis);
}
};
auto anyOfAxesInReduction = [&functionConfig](std::function<bool (const Axis&)> axis_predicate)
{
if (functionConfig.Contains(PrimitiveFunctionAttribute::AttributeNameAxis))
return axis_predicate(functionConfig[PrimitiveFunctionAttribute::AttributeNameAxis].Value<Axis>());
else
{
auto &reductionAxes = functionConfig[PrimitiveFunctionAttribute::AttributeNameAxisVec].Value<std::vector<DictionaryValue>>();
return std::any_of(reductionAxes.begin(),
reductionAxes.end(),
[&axis_predicate](const CNTK::DictionaryValue& axis) {return axis_predicate(axis.Value<Axis>()); });
}
return false;
};
// We currently require that the inputs' dynamic axes, if any, match
std::vector<Axis> outputDynamicAxes;
if ((op == PrimitiveOpType::SumAll) ||
(op == PrimitiveOpType::ReduceElements && anyOfAxesInReduction([](const Axis& axis) { return axis == Axis::AllAxes(); })) ||
(op == PrimitiveOpType::SquaredError) ||
(op == PrimitiveOpType::CrossEntropyWithSoftmax) ||
(op == PrimitiveOpType::LatticeSequenceWithSoftmax) ||
(op == PrimitiveOpType::EditDistanceError) ||
(op == PrimitiveOpType::ClassificationError) ||
(op == PrimitiveOpType::ForwardBackward) ||
(op == PrimitiveOpType::Logistic) ||
(op == PrimitiveOpType::LambdaRank) ||
(op == PrimitiveOpType::NDCG) ||
(op == PrimitiveOpType::RandomDistribution && inputs.empty()) ||
(op == PrimitiveOpType::UnpackBatch))
{
outputDynamicAxes = std::vector<Axis>({});
}
else if (op == PrimitiveOpType::ToBatch)
{
outputDynamicAxes = std::vector<Axis>({Axis::DefaultBatchAxis()});
}
else if (op == PrimitiveOpType::ReduceElements
&& anyOfAxesInReduction([](const Axis& axis) { return axis.IsDynamicAxis(); }) //still need this condition to go to the default dynamic axes setting branch!
&& (inputs[0].DynamicAxes() != Axis::UnknownDynamicAxes())
)
{
if (functionConfig.Contains(PrimitiveFunctionAttribute::AttributeNameAxis))
{
auto reductionAxis = functionConfig[PrimitiveFunctionAttribute::AttributeNameAxis].Value<Axis>();
reduceAxis(reductionAxis, inputs[0], outputDynamicAxes);
}
else if (functionConfig.Contains(PrimitiveFunctionAttribute::AttributeNameAxisVec))
{
auto &reductionAxes = functionConfig[PrimitiveFunctionAttribute::AttributeNameAxisVec].Value<std::vector<DictionaryValue>>();
for (const auto& axis : reductionAxes)
{
auto reductionAxis = axis.Value<Axis>();
reduceAxis(reductionAxis, inputs[0], outputDynamicAxes);
}
}
}
else if ((op == PrimitiveOpType::Times) && (functionConfig[PrimitiveFunctionAttribute::AttributeNameInferInputRankToMap].Value<int>() == TimesReduceSequenceAxisWithoutInferredInputRank))
{
reduceAxis(Axis::OperandSequenceAxis(), inputs[0], outputDynamicAxes);
}
else if (op == PrimitiveOpType::UnpackSequence)
{
reduceAxis(Axis::OperandSequenceAxis(), inputs[0], outputDynamicAxes);
}
else if (op == PrimitiveOpType::ConvolutionSequenceShape)
{
// There is no sequence axis for ConvolutionSequenceShape output, since the output is length of every sequence.
reduceAxis(Axis::OperandSequenceAxis(), inputs[1], outputDynamicAxes);
}
else if ((op == PrimitiveOpType::Where) || (op == PrimitiveOpType::ToSequence))
{
if (functionConfig.Contains(PrimitiveFunctionAttribute::AttributeNameNewDynamicAxes))
outputDynamicAxes = AsVector<Axis>(functionConfig[PrimitiveFunctionAttribute::AttributeNameNewDynamicAxes].Value<std::vector<DictionaryValue>>());
else
{
if (inputs[0].DynamicAxes() == Axis::UnknownDynamicAxes())
outputDynamicAxes = Axis::UnknownDynamicAxes();
else
{
if ((op == PrimitiveOpType::Where) &&
(functionConfig.Contains(PrimitiveFunctionAttribute::AttributeNameNewSequenceAxisLengthScalingFactor) &&
functionConfig.Contains(PrimitiveFunctionAttribute::AttributeNameNewSequenceAxisLengthAdditiveFactor)))
{
size_t newSequenceAxisLengthScalingFactor = functionConfig[PrimitiveFunctionAttribute::AttributeNameNewSequenceAxisLengthScalingFactor].Value<size_t>();
int newSequenceAxisLengthAdditiveFactor = functionConfig[PrimitiveFunctionAttribute::AttributeNameNewSequenceAxisLengthAdditiveFactor].Value<int>();
auto derivedDynamicAxes = GetDerivedDynamicAxes(inputs[0].DynamicAxes()[0], newSequenceAxisLengthScalingFactor, newSequenceAxisLengthAdditiveFactor);
std::copy(derivedDynamicAxes.begin(), derivedDynamicAxes.end(), std::back_inserter(outputDynamicAxes));
}
else
{
std::wstring axisNamePrefix = (op == PrimitiveOpType::Where) ? L"whereNodeDynamicAxis_conditionVar_" : functionConfig[PrimitiveFunctionAttribute::AttributeNameSequenceAxisNamePrefix].Value<std::wstring>();
auto sequenceAxis = Utils::NewDynamicAxisDerivedFromOperand(axisNamePrefix, inputs[0]);
outputDynamicAxes.push_back(sequenceAxis);
}
auto inputDynamicAxes = inputs[0].DynamicAxes();
if (op == PrimitiveOpType::Where)
outputDynamicAxes.insert(outputDynamicAxes.end(), ++inputDynamicAxes.begin(), inputDynamicAxes.end());
else
outputDynamicAxes.insert(outputDynamicAxes.end(), inputDynamicAxes.begin(), inputDynamicAxes.end());
functionConfig[PrimitiveFunctionAttribute::AttributeNameNewDynamicAxes] = AsDictionaryValueVector(outputDynamicAxes);
}
}
}
else if (op == PrimitiveOpType::ScatterPacked)
outputDynamicAxes = inputs[2].DynamicAxes();
else if ((op == PrimitiveOpType::PackedIndex) || (op == PrimitiveOpType::GatherPacked))
outputDynamicAxes = inputs[1].DynamicAxes();
else if ((op == PrimitiveOpType::ReconcileDynamicAxis) || (op == PrimitiveOpType::ToSequenceLike))
outputDynamicAxes = inputs[1].DynamicAxes();
else if (op == PrimitiveOpType::PastValue || op == PrimitiveOpType::FutureValue)
outputDynamicAxes = inputs[0].DynamicAxes(); // second arg (initial state) may have different dynamic axis
else
{
auto allInputDynamicAxesEmpty = std::find_if(inputs.begin(), inputs.end(), [](const Variable& input) { return !input.DynamicAxes().empty(); }) == inputs.end();
if (!allInputDynamicAxesEmpty)
{
outputDynamicAxes = Axis::UnknownDynamicAxes();
for (auto inputVar : inputs)
{
auto currentInputDynamicAxes = inputVar.DynamicAxes();
if (!currentInputDynamicAxes.empty() && (currentInputDynamicAxes != Axis::UnknownDynamicAxes()))
{
if (outputDynamicAxes == Axis::UnknownDynamicAxes())
outputDynamicAxes = currentInputDynamicAxes;
else
{
if (currentInputDynamicAxes != outputDynamicAxes)
LogicError("Operation '%S': Operand '%S' has dynamic axes, that do not match the dynamic axes '%S' of the other operands.",
PrimitiveOpTypeName(op).c_str(), inputVar.AsString().c_str(), DynamicAxesAsString(outputDynamicAxes, Internal::IsReversingTensorShapesInErrorMessagesEnabled()).c_str());
}
}
}
}
}
return outputDynamicAxes;
}
void PrimitiveFunction::InferOutputs(std::vector<Variable>& outputs)
{
if (m_op == PrimitiveOpType::Combine)
outputs.assign(m_inputs.begin(), m_inputs.end());
else if (m_op == PrimitiveOpType::NoOp)
outputs.push_back(OutputVariable(m_inputs[0].Shape(), m_inputs[0].GetDataType(), m_inputs[0].DynamicAxes(), m_inputs[0].NeedsGradient(), Name()));
else if (m_op == PrimitiveOpType::CustomProxyOp)
{
// Set the output data type and shape using attributes.
DataType outputDataType = DataType::Unknown;
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameNewDataType))
{
outputDataType = static_cast<DataType>(m_attributes[PrimitiveFunctionAttribute::AttributeNameNewDataType].Value<int>());
}
else
{
InvalidArgument("Output type must be specified for CustomProxyOp.");
}
NDShape outputShape = NDShape::Unknown();
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameOutputShape))
{
outputShape = m_attributes[PrimitiveFunctionAttribute::AttributeNameOutputShape].Value<NDShape>();
}
else
{
InvalidArgument("Output shape must be specified for CustomProxyOp.");
}
std::vector<Axis> outputDynamicAxes = GetOutputDynamicAxes(m_op, m_inputs, this, m_attributes);
outputs.push_back(OutputVariable(outputShape, outputDataType, outputDynamicAxes, false, Name().empty() ? L"" : Name()));
}
else
{
DataType outputDataType = GetOutputDataType(m_op, m_inputs, true);
if (m_op == PrimitiveOpType::Cast)
outputDataType = static_cast<DataType>(m_attributes[PrimitiveFunctionAttribute::AttributeNameNewDataType].Value<int>());
std::vector<Axis> outputDynamicAxes = GetOutputDynamicAxes(m_op, m_inputs, this, m_attributes);
bool needsGradient = std::any_of(m_inputs.begin(), m_inputs.end(), [](const Variable& input) { return input.NeedsGradient(); });
NDShape outputShape = NDShape::Unknown();
bool allInputShapesUnknown = (std::find_if(m_inputs.begin(), m_inputs.end(), [](const Variable& input) { return !input.Shape().IsUnknown(); }) == m_inputs.end());
bool anyInputShapesUnknown = (std::find_if(m_inputs.begin(), m_inputs.end(), [](const Variable& input) { return input.Shape().IsUnknown(); }) != m_inputs.end());
if (!anyInputShapesUnknown || (!allInputShapesUnknown && (outputDynamicAxes != Axis::UnknownDynamicAxes())))
{
switch (m_op)
{
// Elementwise operators' shapes are a zip of inputs and can be determined even if some of the input shapes are unknown
case PrimitiveOpType::Plus:
case PrimitiveOpType::LogPlus:
case PrimitiveOpType::Pow:
case PrimitiveOpType::Minus:
case PrimitiveOpType::ElementTimes:
case PrimitiveOpType::Equal:
case PrimitiveOpType::NotEqual:
case PrimitiveOpType::Less:
case PrimitiveOpType::LessEqual:
case PrimitiveOpType::Greater:
case PrimitiveOpType::GreaterEqual:
case PrimitiveOpType::PastValue:
case PrimitiveOpType::FutureValue:
{
assert(m_inputs.size() == 2);
if ((m_op == PrimitiveOpType::PastValue) || (m_op == PrimitiveOpType::FutureValue))
{
Variable inputOperandVar = m_inputs[0];
Variable initialStateVar = m_inputs[1];
// TODO: We currently only support input operand with 1 dynamic axis for PastValue/FutureValue
if ((inputOperandVar.DynamicAxes() != Axis::UnknownDynamicAxes()) && (inputOperandVar.DynamicAxes().size() != 2))
LogicError("PastValue/FutureValue Function '%S': Input operand '%S' with #dynamic axes != 2 (1 sequence axis and 1 batch axis) is not supported.", AsString().c_str(), inputOperandVar.AsString().c_str());
}
// PastValue and FutureValue are used in RNN loops
// scalar broadcasting is disabled to make sure input/output shape matches exactly
bool isDelayOp = (m_op == PrimitiveOpType::PastValue || m_op == PrimitiveOpType::FutureValue);
outputShape = BinaryElementwiseOpOutputShape(m_op, m_inputs[0], m_inputs[1], /*inferInputDimensions =*/ true, /*allowScalarBroadcast*/ !isDelayOp);
break;
}
case PrimitiveOpType::Clip:
assert(m_inputs.size() == 3);
outputShape = NaryElementwiseOpOutputShape(m_op, m_inputs, /*inferInputDimensions =*/ true);
break;
case PrimitiveOpType::Select:
assert(m_inputs.size() == 3);
outputShape = NaryElementwiseOpOutputShape(m_op, m_inputs, /*inferInputDimensions =*/ true);
break;
default:
// For all other operations, shapes of all inputs must be known to determine the output shape
if (!anyInputShapesUnknown)
{
switch (m_op)
{
case PrimitiveOpType::RandomDistribution:
{
assert(m_inputs.size() == 0 || m_inputs.size() == 1);
if (m_inputs.size() == 1)
outputShape = UnaryElementwiseOpOutputShape(m_inputs[0].Shape());
else
{
outputShape = m_attributes[PrimitiveFunctionAttribute::AttributeNameNewShape].Value<NDShape>();
if (outputShape.HasUnboundDimension()) //review: is unbound right or should this be Free or Inferred?
InvalidArgument("RandomDistribution: Output shape '%ls' must not have an unbound dimension.", outputShape.AsString().c_str());
auto dataType = static_cast<DataType>(m_attributes[PrimitiveFunctionAttribute::AttributeNameNewDataType].Value<int>());
if (dataType != DataType::Float && dataType != DataType::Double)
InvalidArgument("RandomDistribution: data type must be one of float, double.");
outputDataType = dataType;
}
break;
}
case PrimitiveOpType::Negate:
case PrimitiveOpType::Sigmoid:
case PrimitiveOpType::Tanh:
case PrimitiveOpType::Atanh:
case PrimitiveOpType::ReLU:
case PrimitiveOpType::Exp:
case PrimitiveOpType::Log:
case PrimitiveOpType::Sqrt:
case PrimitiveOpType::Floor:
case PrimitiveOpType::Abs:
case PrimitiveOpType::Reciprocal:
case PrimitiveOpType::Softmax:
case PrimitiveOpType::Hardmax:
case PrimitiveOpType::Dropout:
case PrimitiveOpType::LogSoftmax:
case PrimitiveOpType::Asin:
case PrimitiveOpType::Acos:
case PrimitiveOpType::Atan:
case PrimitiveOpType::Sin:
case PrimitiveOpType::Cos:
case PrimitiveOpType::Tan:
case PrimitiveOpType::Cosh:
case PrimitiveOpType::Asinh:
case PrimitiveOpType::Sinh:
case PrimitiveOpType::Pass:
case PrimitiveOpType::LabelsToGraph:
case PrimitiveOpType::StopGradient:
case PrimitiveOpType::ELU:
case PrimitiveOpType::StableSigmoid:
case PrimitiveOpType::ConstantOp:
case PrimitiveOpType::Cast:
case PrimitiveOpType::StraightThrough:
assert(m_inputs.size() == 1);
outputShape = UnaryElementwiseOpOutputShape(m_inputs[0].Shape());
break;
case PrimitiveOpType::EyeLikeOp:
{
assert(m_inputs.size() == 1);
const auto& dynAxes = m_inputs[0].DynamicAxes();
if (dynAxes.size() + m_inputs[0].Shape().Rank() != 2)
InvalidArgument("EyeLike: Operand '%S' must have exactly 2 axes including dynamic and static axes.",
m_inputs[0].AsString().c_str());
if (any_of(dynAxes.begin(), dynAxes.end(), [](const Axis& axis) {return axis.IsSequenceAxis(); }))
InvalidArgument("EyeLike: Operand '%S' can not have sequence axis.",
m_inputs[0].AsString().c_str());
outputShape = UnaryElementwiseOpOutputShape(m_inputs[0].Shape());
break;
}
case PrimitiveOpType::Where:
assert(m_inputs.size() == 1);
outputShape = NDShape{}; // scalar
break;
case PrimitiveOpType::UnpackSequence:
{
assert(m_inputs.size() == 1);
if ((m_inputs[0].DynamicAxes() != Axis::UnknownDynamicAxes()) && (m_inputs[0].DynamicAxes().size() < 2))
InvalidArgument("UnpackSequence: Operand '%S' must have at least 2 dynamic axes.", m_inputs[0].AsString().c_str());
outputShape = m_inputs[0].Shape().AppendShape({ NDShape::FreeDimension });
break;
}
case PrimitiveOpType::ToSequence:
case PrimitiveOpType::ToSequenceLike:
{
assert(((m_op == PrimitiveOpType::ToSequence) && (m_inputs.size() == 1)) || (m_inputs.size() == 2));
if (m_inputs[0].DynamicAxes().empty())
InvalidArgument("Function '%S': Operand '%S' must have dynamic axes.", AsString().c_str(), m_inputs[0].AsString().c_str());
if ((m_inputs[0].DynamicAxes() != Axis::UnknownDynamicAxes()) && ((m_inputs[0].DynamicAxes().size() != 1) || (m_inputs[0].DynamicAxes()[0] != Axis::DefaultBatchAxis())))
InvalidArgument("Function '%S': Input operand '%S' with #dynamic axes != 1 (batch axis) is not supported.", AsString().c_str(), m_inputs[0].AsString().c_str());
if (m_inputs[0].Shape().Rank() < 1)
InvalidArgument("Function '%S': First input operand '%S' must be of rank >= 1.", AsString().c_str(), m_inputs[0].AsString().c_str());
if (m_op == PrimitiveOpType::ToSequence)
{
if ((m_inputs.size() == 2) &&
(m_inputs[0].DynamicAxes() != Axis::UnknownDynamicAxes()) &&
(m_inputs[1].DynamicAxes() != Axis::UnknownDynamicAxes()) &&
(m_inputs[0].DynamicAxes() != m_inputs[1].DynamicAxes()))
InvalidArgument("Function '%S': First input operand '%S' dynamic axes '%S' do not match second input operand '%S' dynamic axes '%S' .",
AsString().c_str(), m_inputs[0].AsString().c_str(), NamedListString(m_inputs[0].DynamicAxes()).c_str(), m_inputs[1].AsString().c_str(), NamedListString(m_inputs[1].DynamicAxes()).c_str());
if ((m_inputs.size() == 2) && (m_inputs[1].Shape().TotalSize() != 1))
InvalidArgument("Function '%S': Second input operand '%S' must be a scalar.", AsString().c_str(), m_inputs[1].AsString().c_str());
}
else
{
if ((m_inputs[1].DynamicAxes() != Axis::UnknownDynamicAxes()) && (m_inputs[1].DynamicAxes().size() < 2))
InvalidArgument("Function '%S': Operand(1) '%S' must be a sequence (have at least 2 dynamic axes).", AsString().c_str(), m_inputs[1].AsString().c_str());
}
auto operandShape = m_inputs[0].Shape();
outputShape = operandShape.SubShape(0, operandShape.Rank() - 1);
break;
}
case PrimitiveOpType::PackedIndex:
assert(m_inputs.size() == 2);
outputShape = UnaryElementwiseOpOutputShape(m_inputs[1].Shape());
break;
case PrimitiveOpType::Assign:
assert(m_inputs.size() == 2);
if (!m_inputs[0].DynamicAxes().empty() || !m_inputs[1].DynamicAxes().empty())
InvalidArgument("AssignNode: None of the operands '%S' can have dynamic axes.", NamedListString(m_inputs).c_str());
if (!(m_inputs[0].IsConstant() || m_inputs[0].IsParameter()))
InvalidArgument("AssignNode: Ref operand must be constant or parameter only.");
//delay the check for free dimension
if (m_inputs[0].Shape() != m_inputs[1].Shape() &&
!m_inputs[0].Shape().HasUnboundDimension() &&
!m_inputs[1].Shape().HasUnboundDimension())
{
InvalidArgument("AssignNode: All inputs should have same sample layout.");
}
outputShape = UnaryElementwiseOpOutputShape(m_inputs[1].Shape());
break;
case PrimitiveOpType::Pad:
{
assert(m_inputs.size() == 1);
auto head = AsVector<size_t>(m_attributes[PrimitiveFunctionAttribute::AttributeNamePaddingHead].Value<std::vector<DictionaryValue>>());
auto foot = AsVector<size_t>(m_attributes[PrimitiveFunctionAttribute::AttributeNamePaddingFoot].Value<std::vector<DictionaryValue>>());
PaddingMode mode = (PaddingMode)m_attributes[PrimitiveFunctionAttribute::AttributeNamePaddingMode].Value<size_t>();
auto inputDims = m_inputs[0].Shape().Dimensions();
if (head.size() != inputDims.size() || head.size() != foot.size())
LogicError("Pad: the length of head and foot does not match input operand's dimension.");
if (!m_inputs[0].Shape().HasUnboundDimension())
{
if (mode == PaddingMode::REFLECTPAD)
{
for (int i = 0; i < inputDims.size(); i++)
if (head[i] > inputDims[i] - 1 || foot[i] > inputDims[i] - 1)
LogicError("Pad: with REFLECTPAD mode, the head and foot length must be no greater than input dimension - 1.");
}
else if (mode == PaddingMode::SYMMETRICPAD)
{
for (int i = 0; i < inputDims.size(); i++)
if (head[i] > inputDims[i] || foot[i] > inputDims[i])
LogicError("Pad: with SYMMETRICPAD mode, the head and foot length must be no greater than input dimension.");
}
}
for (int i = 0; i < inputDims.size(); i++)
if (inputDims[i] != NDShape::FreeDimension && inputDims[i] != NDShape::InferredDimension)
inputDims[i] += head[i] + foot[i];
outputShape = NDShape(inputDims);
break;
}
case PrimitiveOpType::ScatterPacked:
{
assert(m_inputs.size() == 3);
if (m_inputs[0].DynamicAxes().empty() || m_inputs[1].DynamicAxes().empty() || m_inputs[2].DynamicAxes().empty())
InvalidArgument("ScatterPacked: All operands '%S' must have dynamic axes.", NamedListString(m_inputs).c_str());
outputShape = UnaryElementwiseOpOutputShape(m_inputs[0].Shape());
break;
}
case PrimitiveOpType::Squeeze:
{
assert(m_inputs.size() == 1);
outputShape = GetSqueezedShape(m_inputs[0].Shape(), m_attributes);
break;
}
case PrimitiveOpType::TransposeAxes:
{
assert(m_inputs.size() == 1);
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameAxisVec))
{
auto perm = AsVector<Axis>(m_attributes[PrimitiveFunctionAttribute::AttributeNameAxisVec].Value<std::vector<DictionaryValue>>());
auto shape = m_inputs[0].Shape();
for (auto& p : perm)
p = NormalizeStaticAxis(p, shape);
outputShape = shape;
for (size_t i = 0; i < perm.size(); ++i)
outputShape[i] = shape[perm[i].StaticAxisIndex()];
}
else
{
auto axis1 = NormalizeStaticAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameAxis1].Value<Axis>(), m_inputs[0].Shape());
auto axis2 = NormalizeStaticAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameAxis2].Value<Axis>(), m_inputs[0].Shape());
if (!axis1.IsStaticAxis() || !axis2.IsStaticAxis())
LogicError("Function '%S': TransposeAxes operation currently does not support transposing dynamic axes.", AsString().c_str());
// We allow to transpose with an axes that exceeds the rank of the input.
// The output rank is the max of the input rank, and either of the axes being transposed.
auto outputRank = std::max(m_inputs[0].Shape().Rank(), (size_t)(std::max(axis1.StaticAxisIndex(), axis2.StaticAxisIndex()) + 1));
outputShape = m_inputs[0].Shape().AppendShape(NDShape(outputRank - m_inputs[0].Shape().Rank(), 1));
std::swap(outputShape[axis1.StaticAxisIndex()], outputShape[axis2.StaticAxisIndex()]);
}
break;
}
case PrimitiveOpType::Slice:
{
assert(m_inputs.size() == 1);
std::vector<Axis> axis;
std::vector<int> beginIndex, endIndex, strides;
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameAxisVec) &&
m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameBeginIndexVec) &&
m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameEndIndexVec))
{
auto &axisDictionary = m_attributes[PrimitiveFunctionAttribute::AttributeNameAxisVec].Value<std::vector<DictionaryValue>>();
for (auto& value : axisDictionary)
axis.push_back(NormalizeStaticAxis(value.Value<Axis>(), m_inputs[0].Shape()));
beginIndex = AsVector<int>(m_attributes[PrimitiveFunctionAttribute::AttributeNameBeginIndexVec].Value<std::vector<DictionaryValue>>());
endIndex = AsVector<int>(m_attributes[PrimitiveFunctionAttribute::AttributeNameEndIndexVec].Value<std::vector<DictionaryValue>>());
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameSliceStridesVec))
strides = AsVector<int>(m_attributes[PrimitiveFunctionAttribute::AttributeNameSliceStridesVec].Value<std::vector<DictionaryValue>>());
else
strides.resize(axis.size(), 1);
}
else if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameAxis) &&
m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameBeginIndex) &&
m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameEndIndex))
{
axis.push_back(NormalizeStaticAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameAxis].Value<Axis>(), m_inputs[0].Shape()));
beginIndex.push_back(m_attributes[PrimitiveFunctionAttribute::AttributeNameBeginIndex].Value<int>());
endIndex.push_back(m_attributes[PrimitiveFunctionAttribute::AttributeNameEndIndex].Value<int>());
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameSliceStrides))
strides.push_back(m_attributes[PrimitiveFunctionAttribute::AttributeNameSliceStrides].Value<int>());
else
strides.push_back(1);
}
else
{
RuntimeError("Function '%S': Slice operation with inconsistent attributes", AsString().c_str());
}
auto outputTensorShape = AsTensorShape(m_inputs[0].Shape());
for (auto i = 0; i < axis.size(); i++)
{
auto& ax = axis[i];
if (!ax.IsStaticAxis())
LogicError("Function '%S': Built-in Slice operation currently does not support slicing along dynamic axis.", AsString().c_str());
VerifyStaticAxis(ax, m_inputs[0].Shape());
size_t sliceAxisDim = m_inputs[0].Shape()[ax.StaticAxisIndex()];
if (sliceAxisDim == NDShape::FreeDimension && (beginIndex[i] < 0 || endIndex[i] <= 0))
{
// not able to calculate real indices. do not narrow either.
// note that endIndex[i] = 0 means to (and include) the last.
// One case for this condition is to export and import, in ONNX format, a CNTK Sequence.Slice op.
// In this case, if batch size is larger than 1 and input data are a zigged array (i.e. sequences of various lengths),
// model evaludation will not march the original CNTK model.
}
else
{
int realBeginIndex = (beginIndex[i] >= 0) ? beginIndex[i] : beginIndex[i] + sliceAxisDim;
int realEndIndex = (endIndex[i] > 0) ? endIndex[i] : endIndex[i] + sliceAxisDim;
if ((sliceAxisDim < realEndIndex) || (realEndIndex < realBeginIndex) || (realBeginIndex < 0))
RuntimeError("Function '%S': Slice operation index range [%d,%d), interpreted as [%d,%d), is invalid for input '%S' shape '%S'.",
AsString().c_str(),
beginIndex[i],
endIndex[i],
realBeginIndex,
realEndIndex,
m_inputs[0].AsString().c_str(),
m_inputs[0].Shape().AsString().c_str());
// propagate as much as we can
// Note: If the sliceAxisDim is a free dimension and the slice size is relative to the sliceAxisDim then the
// corresponding outputDim is also a free dimension
if ((((sliceAxisDim != NDShape::FreeDimension) && (sliceAxisDim != NDShape::InferredDimension)) || (((beginIndex[i] >= 0) && (endIndex[i] > 0)) || ((beginIndex[i] < 0) && (endIndex[i] <= 0)))) &&
((ax.StaticAxisIndex() < (int)outputTensorShape.GetRank()) && (0 <= realBeginIndex) && (realBeginIndex <= realEndIndex) && (realEndIndex <= sliceAxisDim)))
{
outputTensorShape.NarrowTo(ax.StaticAxisIndex(), realBeginIndex, realEndIndex, strides[i]);
}
}
}
outputShape = AsNDShape(outputTensorShape, /*allowNonFlattenableTensorShapes = */ true);
break;
}
case PrimitiveOpType::Reshape:
{
auto replacementShape = m_attributes[PrimitiveFunctionAttribute::AttributeNameNewShape].Value<NDShape>();
auto beginAxis = Axis(0);
auto endAxis = Axis((int)m_inputs[0].Shape().Rank());
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameBeginAxis))
beginAxis = NormalizeStaticAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameBeginAxis].Value<Axis>(), m_inputs[0].Shape());
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameEndAxis))
endAxis = NormalizeStaticAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameEndAxis].Value<Axis>(), m_inputs[0].Shape());
outputShape = ReshapeOutputShape(m_inputs[0].Shape(), replacementShape, beginAxis, endAxis, /*inferDimensions =*/ false);
break;
}
case PrimitiveOpType::ROIPooling:
{
assert(m_inputs.size() == 2);
auto convMapShape = m_inputs[0].Shape();
auto roisShape = m_inputs[1].Shape();
auto roiOutputShape = m_attributes[PrimitiveFunctionAttribute::AttributeNameROIOutputShape].Value<NDShape>();
auto outW = roiOutputShape[0];
auto outH = roiOutputShape[1];
auto numChannels = convMapShape[2];
auto roisPerImage = roisShape[1];
if (roiOutputShape.Rank() != 2)
InvalidArgument("ROIPoolingNode: ROI shape '%S' must have rank 2 ([W x H]).", roiOutputShape.AsString().c_str());
if (!convMapShape.HasUnboundDimension())
{
if (convMapShape[0] < outW || convMapShape[1] < outH)
InvalidArgument("ROIPoolingNode: input Width (%d) must be >= ROI window Width (%d) and input Height (%d) must be >= ROI window Height (%d).",
(int)convMapShape[0], (int)outW, (int)convMapShape[1], (int)outH);
if (convMapShape[2] < 1)
InvalidArgument("ROIPoolingNode: input '%S' must have at least one channel ([W x H x C]).", m_inputs[0].AsString().c_str());
}
if (roisShape[0] != 4)
InvalidArgument("ROIPoolingNode: ROI shape '%S' must be of the form: [4 x roisPerImage].", roisShape.AsString().c_str());
if (roisPerImage < 1)
InvalidArgument("ROIPoolingNode: ROI shape '%S' must contain at least one ROI ([4 x roisPerImage]).", roisShape.AsString().c_str());
outputShape = { outW, outH, numChannels, roisPerImage };
break;
}
case PrimitiveOpType::Pooling:
{
assert(m_inputs.size() == 1);
auto poolingWindowsShape = m_attributes[PrimitiveFunctionAttribute::AttributeNamePoolingWindowShape].Value<NDShape>();
auto strides = m_attributes[PrimitiveFunctionAttribute::AttributeNameStrides].Value<NDShape>();
auto lowerPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameLowerPad].Value<NDShape>();
auto upperPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameUpperPad].Value<NDShape>();
auto autoPadding = AsVector<bool>(m_attributes[PrimitiveFunctionAttribute::AttributeNameAutoPadding].Value<std::vector<DictionaryValue>>());
bool ceilOutDim = false;
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameCeilOutDim))
ceilOutDim = m_attributes[PrimitiveFunctionAttribute::AttributeNameCeilOutDim].Value<bool>();
NDShape outputMapCount = { 1 };
std::vector<bool> sharing = { true };
auto inputShape = m_inputs[0].Shape();
// In case of pooling if the kernel shape is unknown, then treat it as global pooling.
if (poolingWindowsShape.IsUnknown() && !inputShape.SubShape(0, inputShape.Rank() - 1).HasUnboundDimension())
{
if ((std::find(autoPadding.begin(), autoPadding.end(), true) != autoPadding.end()) || (lowerPad.TotalSize() > 0) || (upperPad.TotalSize() > 0))
RuntimeError("Padding isn't allowed for Unknown pooling window shape!");
poolingWindowsShape = inputShape.SubShape(0, inputShape.Rank() - 1);
m_attributes[PrimitiveFunctionAttribute::AttributeNamePoolingWindowShape] = poolingWindowsShape;
}
NDShape dilation = NDShape({ 1 });
outputShape = ConvolutionOpOutputShape(m_op, inputShape, poolingWindowsShape, outputMapCount, strides, sharing, autoPadding, lowerPad, upperPad, false, true, dilation, convolutionOpDefaultValueForGroups, ceilOutDim);
break;
}
case PrimitiveOpType::Unpooling:
{
assert(m_inputs.size() == 2);
auto inputShape = m_inputs[0].Shape();
outputShape = m_inputs[1].Shape();
PoolingType unpoolingType = (PoolingType)(m_attributes[PrimitiveFunctionAttribute::AttributeNamePoolingType].Value<size_t>());
if (unpoolingType != PoolingType::Max)
LogicError("Function '%S': Currently only max unpooling is supported.", AsString().c_str());
// Finding the shape of an unpooling operation from the input to be unpooled alone is ambiguous
// For example a 4x4 input with a 5x5 kernel a stride of 2x2
// and padding could have resulted from pooling a 7x7 or 8x8 image
// Therefore what needs to happen here is to check whether the
// outputShape can be pooled into the inputShape using the specified attributes
auto unpoolingWindowShape = m_attributes[PrimitiveFunctionAttribute::AttributeNameUnpoolingWindowShape].Value<NDShape>();
auto strides = m_attributes[PrimitiveFunctionAttribute::AttributeNameStrides].Value<NDShape>();
auto lowerPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameLowerPad].Value<NDShape>();
auto upperPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameUpperPad].Value<NDShape>();
auto autoPadding = AsVector<bool>(m_attributes[PrimitiveFunctionAttribute::AttributeNameAutoPadding].Value<std::vector<DictionaryValue>>());
NDShape inputMapCount = { 1 };
std::vector<bool> sharing = { true };
NDShape dilation = { 1 };
NDShape inferredInputShape = ConvolutionOpOutputShape(PrimitiveOpType::Pooling, outputShape, unpoolingWindowShape, inputMapCount, strides, sharing, autoPadding, lowerPad, upperPad, false, true, dilation, convolutionOpDefaultValueForGroups);
if (inferredInputShape != inputShape)
RuntimeError("Unpooling: The shape '%S' of the unpooling operand '%S' is different than the shape '%S from pooling the input argument '%S' using the provided options.",
inputShape.AsString().c_str(), m_inputs[0].AsString().c_str(), inferredInputShape.AsString().c_str(), m_inputs[1].AsString().c_str());
break;
}
case PrimitiveOpType::SumAll:
assert(m_inputs.size() == 1);
outputShape = {};
break;
case PrimitiveOpType::OneHot:
{
assert(m_inputs.size() == 1);
auto num_class = m_attributes[PrimitiveFunctionAttribute::AttributeNameNumClass].Value<size_t>();
auto inputShape = m_inputs[0].Shape();
auto fakeShape = inputShape.AppendShape({num_class});
auto axis = NormalizeStaticAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameOneHotAxis].Value<Axis>(), fakeShape);
if (!axis.IsStaticAxis())
LogicError("Function '%S': one hot operation currently does not support on dynamic axis", AsString().c_str());
size_t len = inputShape.Rank();
int axisIndex = axis.StaticAxisIndex();
outputShape = {};
if (axisIndex > 0)
outputShape = outputShape.AppendShape(inputShape.SubShape(0, axisIndex));
outputShape = outputShape.AppendShape({num_class});
if (axisIndex < len)
outputShape = outputShape.AppendShape(inputShape.SubShape(axisIndex, len));
break;
}
case PrimitiveOpType::Gather:
{
assert(m_inputs.size() == 2);
auto inputShape1 = m_inputs[0].Shape();
auto inputShape2 = m_inputs[1].Shape();
auto inputDim2 = inputShape2.Dimensions();
inputDim2.pop_back();
outputShape = NDShape(inputDim2);
outputShape = outputShape.AppendShape(inputShape1);
break;
}
case PrimitiveOpType::ToBatch:
{
assert(m_inputs.size() == 1);
auto inputShape = m_inputs[0].Shape();
auto inputDims = inputShape.Dimensions();
if (inputDims.size() == 0)
LogicError("Function '%S': Input can't be scalar", AsString().c_str());
inputDims.pop_back();
outputShape = NDShape(inputDims);
break;
}
case PrimitiveOpType::UnpackBatch:
{
assert(m_inputs.size() == 1);
auto inputShape = m_inputs[0].Shape();
outputShape = NDShape(inputShape.Dimensions());
outputShape = outputShape.AppendShape({NDShape::FreeDimension});
break;
}
case PrimitiveOpType::Times:
{
assert(m_inputs.size() == 2);
auto outputRank = m_attributes[PrimitiveFunctionAttribute::AttributeNameOutputRank].Value<size_t>();
auto inferInputRankToMap = m_attributes[PrimitiveFunctionAttribute::AttributeNameInferInputRankToMap].Value<int>();
outputShape = TimesOpOutputShape(m_inputs[0], m_inputs[1], outputRank, inferInputRankToMap, true);
break;
}
case PrimitiveOpType::TransposeTimes:
{
assert(m_inputs.size() == 2);
auto transposeShapeFunc = [](const NDShape& shape) {
NDShape transposedShape(std::max<size_t>(2, shape.Rank()), 1);
for (size_t i = 0; i < shape.Rank(); ++i)
transposedShape[transposedShape.Rank() - i - 1] = shape[i];
return transposedShape;
};
if (m_inputs[0].Shape().Rank() > 2)
LogicError("Function '%S': TransposeTimes operation currently requires the %s operand '%S' to be of rank 1 or 2", AsString().c_str(), Internal::IsReversingTensorShapesInErrorMessagesEnabled() ? "right" : "left", m_inputs[0].AsString().c_str());
NDShape transposedLeftOperandShape = transposeShapeFunc(m_inputs[0].Shape());
Variable dummyLeftOperand = PlaceholderVariable(transposedLeftOperandShape);
size_t outputRank = m_attributes[PrimitiveFunctionAttribute::AttributeNameOutputRank].Value<size_t>();
outputShape = TimesOpOutputShape(dummyLeftOperand, m_inputs[1], outputRank, -1, true);
if (dummyLeftOperand.Shape() != transposedLeftOperandShape)
m_inputs[0].m_dataFields->m_shape = transposeShapeFunc(dummyLeftOperand.Shape());
break;
}
case PrimitiveOpType::Convolution:
{
assert(m_inputs.size() == 2);
auto& strides = m_attributes[PrimitiveFunctionAttribute::AttributeNameStrides].Value<NDShape>();
NDShape dilation = { 1 };
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameDilation))
dilation = m_attributes[PrimitiveFunctionAttribute::AttributeNameDilation].Value<NDShape>();
auto& lowerPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameLowerPad].Value<NDShape>();
auto& upperPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameUpperPad].Value<NDShape>();
NDShape tmpShape = NDShape::Unknown();
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameOutputShape))
tmpShape = m_attributes[PrimitiveFunctionAttribute::AttributeNameOutputShape].Value<NDShape>();
auto sharing = AsVector<bool>(m_attributes[PrimitiveFunctionAttribute::AttributeNameSharing].Value<std::vector<DictionaryValue>>());
auto autoPadding = AsVector<bool>(m_attributes[PrimitiveFunctionAttribute::AttributeNameAutoPadding].Value<std::vector<DictionaryValue>>());
bool transpose = m_attributes[PrimitiveFunctionAttribute::AttributeNameTranspose].Value<bool>();
if (m_inputs[0].Shape().Rank() < m_inputs[1].Shape().Rank())
InvalidArgument("The convolution map operand '%S' rank (%d) should be >= rank (%d) of the shape of the input operand '%S'.",
m_inputs[0].AsString().c_str(), (int)m_inputs[0].Shape().Rank(), (int)m_inputs[1].Shape().Rank(), m_inputs[1].AsString().c_str());
NDShape outputMapCount, kernelShape;
std::tie(outputMapCount, kernelShape) = GetConvolutionOutputMapCountAndKernelShape(m_inputs[0].Shape(), m_inputs[1].Shape(), transpose);
auto originalKernelShape = kernelShape;
auto groups = PrimitiveFunction::convolutionOpDefaultValueForGroups;
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameGroups))
groups = m_attributes[PrimitiveFunctionAttribute::AttributeNameGroups].Value<size_t>();
auto inputShape = m_inputs[1].Shape();
if (!transpose || tmpShape.IsUnknown() || tmpShape[0] == 0)
outputShape = ConvolutionOpOutputShape(m_op, inputShape, kernelShape, outputMapCount, strides, sharing, autoPadding, lowerPad, upperPad, transpose, true, dilation, groups);
else
{
NDShape inferredInputShape = ConvolutionOpOutputShape(m_op, tmpShape, kernelShape, outputMapCount, strides, sharing, autoPadding, lowerPad, upperPad, false, true, dilation, groups);
if (inferredInputShape != inputShape)
{
RuntimeError("Convolution transpose: The shape '%S' of the convolution transpose operand '%S' is different than the resulting shape '%S' from convolving the "
"specified output shape '%S' using the provided options.",
inputShape.AsString().c_str(), m_inputs[1].AsString().c_str(), inferredInputShape.AsString().c_str(), tmpShape.AsString().c_str());
}
outputShape = tmpShape;
}
auto kernelRank = kernelShape.Rank();
if (originalKernelShape != kernelShape)
{
for (size_t i2 = 0; i2 < kernelRank; ++i2)
m_inputs[0].m_dataFields->m_shape[i2] = kernelShape[i2];
}
if (transpose && (m_inputs[0].Shape().Rank() > kernelRank) && (m_inputs[0].Shape()[kernelRank] == NDShape::InferredDimension))
m_inputs[0].m_dataFields->m_shape[kernelRank] = outputMapCount[outputMapCount.Rank()-1];
m_attributes[PrimitiveFunctionAttribute::AttributeNameSharing] = AsDictionaryValueVector(sharing);
m_attributes[PrimitiveFunctionAttribute::AttributeNameAutoPadding] = AsDictionaryValueVector(autoPadding);
m_attributes[PrimitiveFunctionAttribute::AttributeNameDilation] = dilation;
m_attributes[PrimitiveFunctionAttribute::AttributeNameKernelShape] = kernelShape;
break;
}
case PrimitiveOpType::ConvolutionSequenceShape:
{
assert(m_inputs.size() == 2);
auto& strides = m_attributes[PrimitiveFunctionAttribute::AttributeNameStrides].Value<NDShape>();
NDShape dilation = { 1 };
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameDilation))
dilation = m_attributes[PrimitiveFunctionAttribute::AttributeNameDilation].Value<NDShape>();
auto& lowerPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameLowerPad].Value<NDShape>();
auto& upperPad = m_attributes[PrimitiveFunctionAttribute::AttributeNameUpperPad].Value<NDShape>();
NDShape tmpShape = NDShape::Unknown();
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameOutputShape))
tmpShape = m_attributes[PrimitiveFunctionAttribute::AttributeNameOutputShape].Value<NDShape>();
auto sharing = AsVector<bool>(m_attributes[PrimitiveFunctionAttribute::AttributeNameSharing].Value<std::vector<DictionaryValue>>());
auto autoPadding = AsVector<bool>(m_attributes[PrimitiveFunctionAttribute::AttributeNameAutoPadding].Value<std::vector<DictionaryValue>>());
bool transpose = m_attributes[PrimitiveFunctionAttribute::AttributeNameTranspose].Value<bool>();
if (transpose)
InvalidArgument("Transpose is currently not supported for sequential convolution. ");
// +1 for operand rank, as the real operand should have an additional unpacked sequence axis.
if (m_inputs[0].Shape().Rank() < m_inputs[1].Shape().Rank() + 1)
InvalidArgument("The convolution map operand '%S' rank (%d) should be > rank (%d) of the shape of the input operand '%S'.",
m_inputs[0].AsString().c_str(), (int)m_inputs[0].Shape().Rank(), (int)m_inputs[1].Shape().Rank(), m_inputs[1].AsString().c_str());
NDShape outputMapCount, kernelShape;
auto inputShape = m_inputs[1].Shape();
// insert NDShape::FreeDimension to index Rank() - 2.(on the left of channel axis)
inputShape = inputShape.SubShape(0, inputShape.Rank()-1).AppendShape({NDShape::FreeDimension}).AppendShape({inputShape[inputShape.Rank() - 1]});
std::tie(outputMapCount, kernelShape) = GetConvolutionOutputMapCountAndKernelShape(m_inputs[0].Shape(), inputShape, transpose);
auto originalKernelShape = kernelShape;
auto groups = PrimitiveFunction::convolutionOpDefaultValueForGroups;
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameGroups))
groups = m_attributes[PrimitiveFunctionAttribute::AttributeNameGroups].Value<size_t>();
if (tmpShape.IsUnknown() || tmpShape[0] == 0)
outputShape = ConvolutionOpOutputShape(m_op, inputShape, kernelShape, outputMapCount, strides, sharing, autoPadding, lowerPad, upperPad, transpose, true, dilation, groups);
auto kernelRank = kernelShape.Rank();
if (originalKernelShape != kernelShape)
{
for (size_t i2 = 0; i2 < kernelRank; ++i2)
m_inputs[0].m_dataFields->m_shape[i2] = kernelShape[i2];
}
if (transpose && (m_inputs[0].Shape().Rank() > kernelRank) && (m_inputs[0].Shape()[kernelRank] == NDShape::InferredDimension))
m_inputs[0].m_dataFields->m_shape[kernelRank] = outputMapCount[outputMapCount.Rank() - 1];
m_attributes[PrimitiveFunctionAttribute::AttributeNameSharing] = AsDictionaryValueVector(sharing);
m_attributes[PrimitiveFunctionAttribute::AttributeNameAutoPadding] = AsDictionaryValueVector(autoPadding);
m_attributes[PrimitiveFunctionAttribute::AttributeNameDilation] = dilation;
m_attributes[PrimitiveFunctionAttribute::AttributeNameKernelShape] = kernelShape;
// output shape is simply {1}: 1D denoting sequence length for each sequence.
outputShape = NDShape({1});
break;
}
case PrimitiveOpType::CrossEntropyWithSoftmax:
case PrimitiveOpType::Logistic:
case PrimitiveOpType::LambdaRank:
case PrimitiveOpType::CosDistance:
case PrimitiveOpType::SquaredError:
case PrimitiveOpType::EditDistanceError:
case PrimitiveOpType::LatticeSequenceWithSoftmax:
case PrimitiveOpType::ClassificationError:
case PrimitiveOpType::NDCG:
{
if ((m_op == PrimitiveOpType::ClassificationError) || (m_op == PrimitiveOpType::Logistic))
assert(m_inputs.size() >= 2);
else if ((m_op == PrimitiveOpType::LambdaRank) || (m_op == PrimitiveOpType::NDCG))
assert(m_inputs.size() == 3);
else
assert(m_inputs.size() == 2);
// Validate that the first 2 operands are elementwise compatible and also infer operand shapes as needed
BinaryElementwiseOpOutputShape(m_op, m_inputs[0], m_inputs[1], /*inferInputDimensions =*/ true);
if (m_op == PrimitiveOpType::ClassificationError)
{
if ((m_inputs.size() == 3) && !IsConstantScalar(m_inputs[2]))
InvalidArgument("ClassificationError: Input(2) '%S' correponds to topK input and must be a scalar constant.", m_inputs[2].AsString().c_str());
}
else if (m_op == PrimitiveOpType::Logistic)
{
if (m_inputs.size() == 3)
BinaryElementwiseOpOutputShape(m_op, m_inputs[0], m_inputs[2], /*inferInputDimensions =*/ true);
}
outputShape = {};
break;
}
case PrimitiveOpType::ForwardBackward:
{
assert(m_inputs.size() == 2);
if (m_inputs[0].Shape().TotalSize() != m_inputs[1].Shape().TotalSize())
InvalidArgument("ForwardBackward: The shapes of operands '%S' and '%S' must have the same total size.", m_inputs[0].AsString().c_str(), m_inputs[1].AsString().c_str());
outputShape = {};
break;
}
case PrimitiveOpType::ReduceElements:
{
assert(m_inputs.size() == 1);
bool keepDimensions = true;
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameReductionKeepDimensions))
keepDimensions = m_attributes[PrimitiveFunctionAttribute::AttributeNameReductionKeepDimensions].Value<bool>();
//Note that we need to normalize the axes inside the attributes here/in InferOutputs
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameAxisVec))
{
auto &axisDictionary = m_attributes[PrimitiveFunctionAttribute::AttributeNameAxisVec].Value<std::vector<DictionaryValue>>();
for (auto& value : axisDictionary) {
auto reductionAxis = NormalizeAxis(value.Value<Axis>(), m_inputs[0]);
}
}
else if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameAxis))
{
auto reductionAxis = NormalizeAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameAxis].Value<Axis>(), m_inputs[0]);
}
else
{
RuntimeError("Function '%ls': Reduce operation with no '%ls' or '%ls' attributes",
AsString().c_str(),
PrimitiveFunctionAttribute::AttributeNameAxis.c_str(),
PrimitiveFunctionAttribute::AttributeNameAxisVec.c_str()
);
}
std::vector<Axis> staticAxesToReduce;
std::vector<Axis> batchAxesToReduce;
std::vector<Axis> dynamicAxesToReduce;
bool isAllAxesReduced;
CollectReduceOutputAxesForOutputShape(staticAxesToReduce, batchAxesToReduce, dynamicAxesToReduce, isAllAxesReduced);
if (isAllAxesReduced) {
outputShape = keepDimensions ? NDShape(m_inputs[0].Shape().Rank(), 1) : NDShape({});
}
else {
//TODO for very far future: Handle reduction on (multiple) batches all in once: batchAxesToReduce
//TODO for very far future: Handle reduction on (multiple) sequences all in once: sequenceAxesToReduce
if (!staticAxesToReduce.empty())
{
std::vector<int> reductionAxesInIndcies(staticAxesToReduce.size());
for (auto i = 0; i < staticAxesToReduce.size(); ++i)
{
reductionAxesInIndcies[i] = staticAxesToReduce[i].StaticAxisIndex();
}
outputShape = ReductionOpOutputShape(m_op, m_inputs[0].Shape(), reductionAxesInIndcies, /*preserveReductionAxes =*/ keepDimensions);
}
else
outputShape = m_inputs[0].Shape();
}
break;
}
case PrimitiveOpType::BatchNormalization:
{
assert(m_inputs.size() == 6);
auto spatial = m_attributes[PrimitiveFunctionAttribute::AttributeNameSpatial].Value<bool>();
outputShape = BatchNormalizationOutputShape(m_inputs, spatial, true);
break;
}
case PrimitiveOpType::GatherPacked:
{
bool sourceHasDynamicAxis = !m_inputs[0].DynamicAxes().empty();
// inherit tensor dimension from sourceData, minus the last (column or time) dimension. TODO this needs to become simpler...
if (sourceHasDynamicAxis)
outputShape = m_inputs[0].Shape();
else
{
if (m_inputs[0].Shape().Rank() > 1)
outputShape = outputShape.SubShape(0, outputShape.Rank() - 1);
else
outputShape = {};
}
break;
}
case PrimitiveOpType::Splice:
{
assert(m_inputs.size() >= 2);
auto maxInputRank = MaxInputRank(m_inputs);
auto spliceAxis = NormalizeStaticAxis(m_attributes[PrimitiveFunctionAttribute::AttributeNameAxis].Value<Axis>(), NDShape(maxInputRank));
if (!spliceAxis.IsStaticAxis())
LogicError("Function '%S': Splice operation currently does not support splicing along dynamic axis", AsString().c_str());
if (spliceAxis.StaticAxisIndex() < 0)
InvalidArgument("Function '%S': Splice operation's axis index (%d) must be >= 0.", AsString().c_str(), spliceAxis.StaticAxisIndex());
outputShape = SpliceOutputShape(m_inputs, spliceAxis.StaticAxisIndex());
break;
}
case PrimitiveOpType::RandomSample:
case PrimitiveOpType::RandomSampleInclusionFrequency:
{
auto numSamples = m_attributes[PrimitiveFunctionAttribute::AttributeNameNumSamples].Value<size_t>();
auto allowDuplicates = m_attributes[PrimitiveFunctionAttribute::AttributeNameAllowDuplicates].Value<bool>();
if (numSamples == 0)
InvalidArgument("RandomSample/RandomSampleInclusionFrequency: Number of requested samples must be > 0.");
let& shape = m_inputs[0].Shape();
size_t numClasses = shape.Dimensions()[0];
if (numClasses != NDShape::InferredDimension && !allowDuplicates && numClasses <= numSamples)
InvalidArgument("RandomSample/RandomSampleInclusionFrequency: For sampling without duplicates the number of requested samples "
"(%lu) must be less than the number of classes (%lu).", numSamples, numClasses);
// within this block we handle RandomSample and RandomSampleInclusionFrequency
if (m_op == PrimitiveOpType::RandomSampleInclusionFrequency)
outputShape = shape;
else
{
vector<size_t> dimensions{ numClasses, numSamples };
outputShape = NDShape(dimensions);
}
break;
}
case PrimitiveOpType::OptimizedRNNStack:
{
assert(m_inputs.size() == 2);
auto operand = m_inputs[0];
auto parameter = m_inputs[1];
if (operand.Shape().Rank() != 1)
InvalidArgument("OptimizedRNNStack: input '%S' must have rank 1; actual input rank is %lu.", operand.AsString().c_str(), operand.Shape().Rank());
if (operand.DynamicAxes().empty())
InvalidArgument("OptimizedRNNStack: input '%S' must have at least one dynamic axis.", operand.AsString().c_str());
auto numLayers = m_attributes[PrimitiveFunctionAttribute::AttributeNameNumLayers].Value<size_t>();
if (numLayers == 0)
InvalidArgument("Number of layers (%d) in OptimizedRNNStack operation must be > 0.", (int)numLayers);
auto bidirectional = m_attributes[PrimitiveFunctionAttribute::AttributeNameBidirectional].Value<bool>();
auto hiddenSize = m_attributes[PrimitiveFunctionAttribute::AttributeNameHiddenSize].Value<size_t>();
if (operand.Shape().HasFreeDimension())
InvalidArgument("OptimizedRNNStack: Operand '%S' with free dimension is unsupported.", operand.AsString().c_str());
// output dims
outputShape = operand.Shape();
outputShape[0] = (bidirectional ? 2 : 1) * hiddenSize;
// infer input size
// Note: Output dim is second axis, so say initOutputRank=-1.
if (!operand.Shape().HasUnboundDimension() && (parameter.Shape().Rank() == 2))
{
const auto recurrentOp = m_attributes[PrimitiveFunctionAttribute::AttributeNameRecurrentOp].Value<std::wstring>();
const auto attributes = RnnAttributes(bidirectional, numLayers, hiddenSize, recurrentOp, -1);
const auto numParameters = attributes.GetNumParameters(operand.Shape().TotalSize());
std::vector<std::pair<Variable, NDShape>> newOperandShapes = { { parameter, std::move(NDShape({ numParameters.first, numParameters.second })) } };
UpdateOperandShapes(newOperandShapes);
}
break;
}
case PrimitiveOpType::ReconcileDynamicAxis:
{
assert(m_inputs.size() == 2);
auto operand = m_inputs[0];
auto layout = m_inputs[1];
// data operand can be a constant or a param matrix
if (layout.DynamicAxes().empty())
InvalidArgument("ReconcileDynamicAxis: layout operand '%S' must have at least one dynamic axis.", layout.AsString().c_str());
outputShape = operand.Shape();
break;
}
case PrimitiveOpType::CosDistanceWithNegativeSamples:
{
assert(m_inputs.size() == 4);
auto shiftInput = m_inputs[2];
auto numNegativeSamplesInput = m_inputs[3];
if (!IsConstantScalar(shiftInput) || !IsConstantScalar(numNegativeSamplesInput))
InvalidArgument("CosDistanceWithNegativeSamples: Input(2) '%S' and Input(3) '%S' correpond to shift and numNegativeSamples inputs and must be scalar constants.",
shiftInput.AsString().c_str(), numNegativeSamplesInput.AsString().c_str());
auto numNegativeSamples = (size_t)Constant(numNegativeSamplesInput).Value()->AsScalar<float>();
outputShape = NDShape({ numNegativeSamples + 1 });
break;
}
case PrimitiveOpType::Crop:
{
// Width and height are cropped, while remaining dimensions are unchanged.
assert(m_inputs.size() == 2 || m_inputs.size() == 4);
outputShape = m_inputs[1].Shape();
const NDShape& input0Shape = m_inputs[0].Shape();
if (input0Shape.Rank() != outputShape.Rank())
{
RuntimeError("Function '%S': cropped input '%S' and reference input '%S' have different ranks.",
AsString().c_str(),
m_inputs[0].AsString().c_str(),
m_inputs[1].AsString().c_str()
);
}
if (input0Shape.Rank() < 2)
{
RuntimeError("Function '%S': cropped input '%S' must have rank at least 2.",
AsString().c_str(),
m_inputs[0].AsString().c_str()
);
}
for (int i = 2; i < input0Shape.Rank(); ++i)
{
outputShape[i] = input0Shape[i];
}
break;
}
case PrimitiveOpType::TopK:
{
assert(m_inputs.size() == 1);
auto k = m_attributes[PrimitiveFunctionAttribute::AttributeNameNumItems].Value<size_t>();
outputShape = m_inputs[0].Shape();
if (outputShape.Rank() > 0)
outputShape[0] = k;
else if (k != 1)
RuntimeError("Function '%S': cannot get k>1 items from a scalar.", AsString().c_str());
break;
}
default:
LogicError("Specified Primitive Function op %S is not supported", PrimitiveOpTypeName(m_op).c_str());
break;
}
}
}
}
auto primaryOutput = OutputVariable(outputShape, outputDataType, outputDynamicAxes, needsGradient, Name().empty() ? L"" : Name());
outputs.push_back(primaryOutput);
if (m_op == PrimitiveOpType::UnpackSequence)
{
auto suppressMaskOutput = m_attributes[PrimitiveFunctionAttribute::AttributeNameSequenceUnpackSuppressMaskOutput].Value<bool>();
if (!suppressMaskOutput)
{
auto maskOutput = OutputVariable({ NDShape::FreeDimension }, outputDataType, outputDynamicAxes, /*needsGradient =*/ false, Name().empty() ? L"" : Name() + L"_UnpackSequenceMask");
outputs.push_back(maskOutput);
}
}
else if (m_op == PrimitiveOpType::TopK)
{
auto IndexOutput = OutputVariable(outputShape, outputDataType, outputDynamicAxes, /*needsGradient =*/ false, Name().empty() ? L"" : Name() + L"_TopKIndexMask");
outputs.push_back(IndexOutput);
}
}
}
/**
* Collect output axes for reduce operation.
* @param staticAxesToReduce a list of static axes to reduce
* @param batchAxesToReduce a list of batch axes to reduce
* @param sequenceAxesToReduce a list of sequence axes to reduce
* @param isAllAxesReduced a flag which indicates whether all axes need to be reduced
*/
void PrimitiveFunction::CollectReduceOutputAxesForOutputShape(
std::vector<Axis>& staticAxesToReduce,
std::vector<Axis>& batchAxesToReduce,
std::vector<Axis>& sequenceAxesToReduce,
bool & isAllAxesReduced)
{
isAllAxesReduced = false;
auto collect_axis = [&](const Axis& reductionAxis) {
if (reductionAxis == Axis::AllStaticAxes() || reductionAxis == Axis::AllAxes())
isAllAxesReduced = true;
else if (reductionAxis == Axis::DefaultBatchAxis())
{
auto dynamicAxes = m_inputs[0].DynamicAxes();
if (dynamicAxes != Axis::UnknownDynamicAxes())
{
if (std::find(dynamicAxes.begin(), dynamicAxes.end(), Axis::DefaultBatchAxis()) == dynamicAxes.end())
LogicError("ReduceElements: operand %S; No batch axis found during reduction along the batch axis.", m_inputs[0].AsString().c_str());
if (dynamicAxes.size() > 1)
LogicError("ReduceElements: operand %S; Reduction along the batch axis on input sequence is currently unsupported.", m_inputs[0].AsString().c_str());
}
batchAxesToReduce.push_back(reductionAxis);
}
else if (reductionAxis.IsSequenceAxis())
{
sequenceAxesToReduce.push_back(reductionAxis);
}
else
{
staticAxesToReduce.push_back(reductionAxis);
}
};
if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameAxisVec))
{
const auto &axisDictionary = m_attributes[PrimitiveFunctionAttribute::AttributeNameAxisVec].Value<std::vector<DictionaryValue>>();
for (const auto& value : axisDictionary) {
collect_axis(value.Value<Axis>());
}
}
else if (m_attributes.Contains(PrimitiveFunctionAttribute::AttributeNameAxis))
{
collect_axis(m_attributes[PrimitiveFunctionAttribute::AttributeNameAxis].Value<Axis>());
}
else
{
RuntimeError("Function '%ls': Reduce operation with no '%ls' or '%ls' attributes",
AsString().c_str(),
PrimitiveFunctionAttribute::AttributeNameAxis.c_str(),
PrimitiveFunctionAttribute::AttributeNameAxisVec.c_str()
);
}
}
vector<DictionaryValue> GetInputUids(const Function& f)
{
auto inputs = f.Inputs();
vector<DictionaryValue> inputUids;
inputUids.reserve(inputs.size());
for (auto& input : inputs)
{
inputUids.push_back(input.Uid());
}
return inputUids;
}
Dictionary SerializeCommonFunctionAttributes(const Function& f, size_t version, const wstring& functionType)
{
Dictionary dict;
dict[versionKey] = version;
dict[typeKey] = functionType;
dict[uidKey] = f.Uid();
if (!f.Name().empty())
dict[nameKey] = f.Name();
dict[inputsKey] = std::move(GetInputUids(f));
return dict;
}
static const std::wstring s_primitiveFunctionTypeValue = L"PrimitiveFunction";
/*virtual*/ Dictionary PrimitiveFunction::Serialize() const
{
Dictionary dict = SerializeCommonFunctionAttributes(*this, CurrentVersion(), s_primitiveFunctionTypeValue);
dict[opKey] = static_cast<size_t>(m_op);
dict[attributesKey] = Attributes();
if (m_op == PrimitiveOpType::Block)
{
auto blockFunction = dynamic_cast<const BlockFunction*>(this);
auto blockCompositeFunc = dynamic_cast<const CompositeFunction*>(blockFunction->Composite().get());
dict[blockFunctionCompositeKey] = blockCompositeFunc->SerializeBlockComposite();
dict[blockFunctionOpNameKey] = OpName();
const auto& blockArgumentsMap = BlockArgumentsMapping();
std::vector<std::wstring> serializedArgumentsMapKeys;
std::vector<std::wstring> serializedArgumentsMapValues;
for (auto argumentMapping : blockArgumentsMap)
{
serializedArgumentsMapKeys.push_back(argumentMapping.first.Uid());
serializedArgumentsMapValues.push_back(argumentMapping.second.Uid());
}
dict[blockFunctionCompositeArgumentsMapKeysKey] = AsDictionaryValueVector(serializedArgumentsMapKeys);
dict[blockFunctionCompositeArgumentsMapValuesKey] = AsDictionaryValueVector(serializedArgumentsMapValues);
}
return dict;
}
std::vector<Variable> GetInputVariables(const Dictionary& dict, const std::unordered_map<std::wstring, Variable>& uidToVariableMap, size_t currentSerializationVersion)
{
const auto& inputUids = dict[inputsKey].Value<vector<DictionaryValue>>();
vector<Variable> inputs;
inputs.reserve(inputUids.size());
for (const auto& dictionaryValue : inputUids)
{
const auto& inputUid = dictionaryValue.Value<std::wstring>();
if (uidToVariableMap.find(inputUid) == uidToVariableMap.end())
{
auto version = dict[versionKey].Value<size_t>();
CNTK::LogicError("There are no inputs corresponding to input uid = '%ls' (%s).",
inputUid.c_str(), GetVersionsString<PrimitiveFunction>(currentSerializationVersion, version).c_str());
}
inputs.push_back(uidToVariableMap.at(inputUid));
}
return inputs;
}
/*static*/ FunctionPtr PrimitiveFunction::Deserialize(const Dictionary& dict,
const std::unordered_map<std::wstring, Variable>& uidToVariableMap,
const std::unordered_set<FunctionPtr>& allPrimitiveFunctions,
const std::unordered_map<Variable, Variable>& placeholderReplacements,
const CNTK::DeviceDescriptor& device)
{
static const vector<std::wstring> s_requiredDictionaryKeys = { typeKey, opKey, uidKey, attributesKey, inputsKey };
size_t version = ValidateDictionary<PrimitiveFunction>(dict, s_requiredDictionaryKeys, s_primitiveFunctionTypeValue, s_serializationVersion);
PrimitiveOpType op = PrimitiveOpType(dict[opKey].Value<std::size_t>());
// The hard requirement that the serialization depends on is that
// new op type values are only added to the end of the list.
// This also applies to other enums (DataType, VariableKind, etc.)
if (op >= PrimitiveOpType::UnknownOP)
{
CNTK::LogicError("Unexpected op '%ls':'%u' (%s).",
opKey.c_str(),
static_cast<std::underlying_type<CNTK::PrimitiveOpType>::type>(op),
GetVersionsString<PrimitiveFunction>(s_serializationVersion, version).c_str());
}
const auto& uid = dict[uidKey].Value<std::wstring>();
std::wstring name = L"";
if (dict.Contains(nameKey))
name = dict[nameKey].Value<std::wstring>();
auto attributes = dict[attributesKey].Value<Dictionary>();
if (op == PrimitiveOpType::Block)
{
static const vector<std::wstring> s_requiredBlockFunctionDictionaryKeys = { blockFunctionCompositeKey, blockFunctionOpNameKey, blockFunctionCompositeArgumentsMapKeysKey, blockFunctionCompositeArgumentsMapValuesKey };
ValidateDictionary<PrimitiveFunction>(dict, s_requiredBlockFunctionDictionaryKeys, s_primitiveFunctionTypeValue, s_serializationVersion);
auto composite = CompositeFunction::DeserializeBlockComposite(dict[blockFunctionCompositeKey].Value<Dictionary>(), allPrimitiveFunctions, placeholderReplacements, device);
auto compositeArguments = composite->Arguments();
auto findCompositeArgumentByUid = [&compositeArguments](const std::wstring& uid) {
return *std::find_if(compositeArguments.begin(), compositeArguments.end(), [&uid](const Variable& argument) {
return (argument.Uid() == uid);
});
};
const auto& blockOpName = dict[blockFunctionOpNameKey].Value<std::wstring>();
auto blockArgumentsMapKeys = AsVector<std::wstring>(dict[blockFunctionCompositeArgumentsMapKeysKey].Value<std::vector<DictionaryValue>>());
auto blockArgumentsMapValues = AsVector<std::wstring>(dict[blockFunctionCompositeArgumentsMapValuesKey].Value<std::vector<DictionaryValue>>());
if (blockArgumentsMapKeys.size() != blockArgumentsMapValues.size())
RuntimeError("Invalid block function dictionary found during deserialization; Number (%d) of block argument map keys does not match "
"the number (%d) of map values.", (int)blockArgumentsMapKeys.size(), (int)blockArgumentsMapValues.size());
std::vector<std::pair<Variable, Variable>> argumentsMap;
for (size_t i = 0; i < blockArgumentsMapKeys.size(); ++i)
argumentsMap.push_back({ findCompositeArgumentByUid(blockArgumentsMapKeys[i]), uidToVariableMap.at(blockArgumentsMapValues[i]) });
return std::shared_ptr<BlockFunction>(new BlockFunction(std::move(composite), argumentsMap, blockOpName, std::move(attributes), name, uid),
[](BlockFunction* ptr) { delete ptr; });
}
auto inputs = GetInputVariables(dict, uidToVariableMap, s_serializationVersion);
if (version < 4 && op == PrimitiveOpType::BatchNormalization)
{
if (GetTraceLevel() >= TraceLevel::Warning)
{
// TODO: all logging functionality should be refactored to live in a logging utility class.
fprintf(stderr, "WARNING: the dictionary (version=%zu) does not contain a required "
"BatchNormalization parameter for the running mean sample count. "
"Injected a new parameter with a value of '0'.", version);
}
// patch up old the model by adding an extra input
auto runCount = Constant::Scalar(0.0f, device);
// HACK: uid has to be changed (by adding some unique prefix to the auto-generated "Constant"+ID_counter)
// to avoid conflicts with uids recorded in the function graph, which we are deserializing.
runCount.m_dataFields->m_uid = L"BatchNormSampleCount" + runCount.m_dataFields->m_uid;
inputs.push_back(runCount);
}
return std::shared_ptr<PrimitiveFunction>(new PrimitiveFunction(op, inputs, std::move(attributes), name, uid),
[](PrimitiveFunction* ptr) { delete ptr; });
}
Dictionary PrimitiveFunction::GetState() const
{
if (!IsStateful())
LogicError("Function '%S' is not stateful.", AsString().c_str());
Dictionary state;
for (auto& key : PrimitiveFunctionAttribute::s_rngStateAttributes)
{
state[key] = m_attributes[key];
}
return state;
}
void PrimitiveFunction::SetState(const Dictionary& state)
{
if (!IsStateful())
LogicError("Function '%S' is not stateful.", AsString().c_str());
for (auto& key : PrimitiveFunctionAttribute::s_rngStateAttributes)
{
m_attributes[key] = state[key];
}
}
/*static*/ void PrimitiveFunction::FixNDShape(size_t filterRank, size_t inputRank, NDShape& shape, size_t deflt, const NDShape& from/* = NDShape()*/)
{
auto dims = shape.Dimensions();
Microsoft::MSR::CNTK::ConvolutionNodeBase<float>::FixVectorShape(filterRank, inputRank, dims, deflt, from.Dimensions());
shape = NDShape(dims);
if (shape.HasFreeDimension())
InvalidArgument("Convolution kernel or stride/padding attribute shape has an illegal FreeDimension after shape inference.");
}
/*static*/ NDShape PrimitiveFunction::ConvolutionOpOutputShape(PrimitiveOpType op, const NDShape& operandShape, NDShape& kernelShape, NDShape& outputMapCount, NDShape& strides,
std::vector<bool>& sharing, std::vector<bool>& autoPad, NDShape& lowerPad, NDShape& upperPad,
bool transpose, bool inferDimensions, NDShape& dilation, size_t groups/*=1*/, bool ceilOutputDim/* = false*/)
{
if (inferDimensions)
{
size_t inputRank = operandShape.Rank();
// Unknown kernel shape valid only for pooling, however, the shape should have expanded before
// this call.
if (kernelShape.IsUnknown())
RuntimeError("Convolution: Kernel shape can't be Unknown.");
// infer reduction dimensions if not given
// If kernel has a lower rank than the input then the remaining dimensions are to be reduced over.
size_t filterRank = kernelShape.Rank();
// If the trailing axis dimensionality of the kernel shape is NDShape::InferredDimension, we reduce over it by
// picking the corresponding operand shape dimensionality
// This is done by shrinking the filter rank and let the dimensions be inferred from the operand's shape
// TODO: Should we do this for all of the axes in kernelShape that have a dimensionailty of NDShape::InferredDimension?
if ((filterRank > 0) && (kernelShape[filterRank - 1] == NDShape::InferredDimension))
{
filterRank--;
kernelShape = kernelShape.SubShape(0, filterRank);
}
NDShape fromShape;
if (op == PrimitiveOpType::Convolution)
fromShape = operandShape;
size_t fillRank = (!transpose) ? filterRank : filterRank - 1;
FixNDShape(fillRank, inputRank, kernelShape, 1, fromShape); // convolve over red dim; pool over 1
FixNDShape(fillRank, inputRank, strides, 1, fromShape); // stride for reduction dims is red dim or 1
FixNDShape(fillRank, inputRank, dilation, 1);
FixNDShape(fillRank, inputRank, lowerPad, 0);
FixNDShape(fillRank, inputRank, upperPad, 0);
Microsoft::MSR::CNTK::ConvolutionNodeBase<float>::FixVectorShape(fillRank, inputRank, sharing, true);
Microsoft::MSR::CNTK::ConvolutionNodeBase<float>::FixVectorShape(fillRank, inputRank, autoPad, false); // no padding for reduction dims
}
decltype(&Microsoft::MSR::CNTK::ConvolveGeometry::ComputeOutputShape) computeOutputShapeFunc;
if (!transpose)
computeOutputShapeFunc = &Microsoft::MSR::CNTK::ConvolveGeometry::ComputeOutputShape;
else
computeOutputShapeFunc = &Microsoft::MSR::CNTK::ConvolveGeometry::ComputeInputShape;
auto outputShape = AsNDShape(computeOutputShapeFunc(AsTensorShape(operandShape), AsTensorShape(kernelShape), AsTensorShape(outputMapCount),
AsTensorShape(strides), sharing, autoPad, AsTensorShape(lowerPad), AsTensorShape(upperPad), AsTensorShape(dilation), groups, ceilOutputDim,
operandShape.HasFreeDimension(), false));
// Any input dimensions that are free/inferred pass through as free/inferred
for (size_t i = 0; i < operandShape.Rank(); ++i)
{
if ((operandShape[i] == NDShape::FreeDimension) || (operandShape[i] == NDShape::InferredDimension))
outputShape[i] = operandShape[i];
}
return outputShape;
}
/*static*/ bool PrimitiveFunction::UpdateOperandShapes(std::vector<std::pair<Variable, NDShape>>& newOperandShapes)
{
bool anyParameterOperandDimsInferred = false;
auto updateOperandShapeFunc = [](Variable& operand, const NDShape& newOperandShape) {
if ((operand.IsParameter() || operand.IsConstant()) && (operand.Shape() != newOperandShape))
{
operand.m_dataFields->m_shape = newOperandShape;
return true;
}
return false;
};
for (auto& newOperandShapePair : newOperandShapes)
anyParameterOperandDimsInferred = updateOperandShapeFunc(newOperandShapePair.first, newOperandShapePair.second) || anyParameterOperandDimsInferred;
return anyParameterOperandDimsInferred;
}
/*static*/ NDShape PrimitiveFunction::NaryElementwiseOpOutputShape(PrimitiveOpType op, std::vector<Variable>& operands, bool inferInputDimensions)
{
assert(operands.size() > 1);
// TODO: Is this logic of transitively constructing the output shape from the operands correct?
Variable dummyOutputVariable = PlaceholderVariable(NDShape());
for (auto& operand : operands)
dummyOutputVariable.m_dataFields->m_shape = BinaryElementwiseOpOutputShape(op, dummyOutputVariable, operand, inferInputDimensions);
return dummyOutputVariable.Shape();
}
void PrimitiveFunction::SetDropoutRate(double dropoutRate)
{
if (OpType() != PrimitiveOpType::Dropout)
LogicError("Cannot set dropout rate on '%S' function.", OpName().c_str());
m_attributes[PrimitiveFunctionAttribute::AttributeNameDropoutRate] = dropoutRate;
m_dirtyAttributes.insert(PrimitiveFunctionAttribute::AttributeNameDropoutRate);
}
void PrimitiveFunction::SetRandomSeed(size_t seed)
{
if (!IsStateful())
LogicError("Cannot set random seed on '%S' function.", OpName().c_str());
m_attributes[PrimitiveFunctionAttribute::AttributeNameRngSeed] = seed;
m_dirtyAttributes.insert(PrimitiveFunctionAttribute::AttributeNameRngSeed);
}
}