CNTK/Source/ComputationNetworkLib/ComputationNode.cpp

1274 строки
58 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#define _CRT_SECURE_NO_WARNINGS // "secure" CRT not available on all platforms --add this at the top of all CPP files that give "function or variable may be unsafe" warnings
#include "ComputationNode.h"
#include "InputAndParamNodes.h"
#include "ComputationNetworkBuilder.h" // TODO: We should only pull in NewComputationNodeFromConfig(). Nodes should not know about network at large.
#include "TensorShape.h"
#ifndef CNTK_UWP
#include "PerformanceProfiler.h"
#ifdef _WIN32
#define PERFORMANCE_PROFILER_LIB_NAME "Cntk.PerformanceProfiler-"##CNTK_COMPONENT_VERSION##".lib"
#pragma comment(lib, PERFORMANCE_PROFILER_LIB_NAME)
#endif
#endif
#ifndef let
#define let const auto
#endif
namespace Microsoft { namespace MSR { namespace CNTK {
using namespace std;
// -----------------------------------------------------------------------
// subroutines for evaluation
// -----------------------------------------------------------------------
// lazy resetting of gradient
// This performs the actual zeroing out.
template<class ElemType>
void ComputationNode<ElemType>::LazyZeroGradient(const ComputationNodeBase* gradientInitializedBy)
{
if (!m_needsGradient)
LogicError("%ls %ls operation: LazyZeroGradient() called although this node needs no gradient.", NodeName().c_str(), OperationName().c_str());
if (gradientInitializedBy == nullptr)
LogicError("%ls %ls operation: LazyZeroGradient() called without gradientInitializedBy.", NodeName().c_str(), OperationName().c_str());
if (m_gradientInitializedBy != nullptr)
return;
// gradient optimization to allow parent to overwrite/be reused by non-looping child's gradient instead of accumulating
// We cannot enable the gradient overwrite/reuse optimization if this node's parent
// has this same node as multiple of its inputs since, in that case the
// gradients will flow back from multiple paths of the same parent into the input
// nor can we apply gradient optimization for nodes in loop as the gradient needs to be accumulated through time steps
const auto& inputs = gradientInitializedBy->GetInputs();
if (Globals::ShouldOptimizeGradientAccumulation() &&
!IsPartOfLoop() &&
gradientInitializedBy->ImplementsGradientOptimization(this) != ParentGradientOptimization::None &&
1 == std::count_if(inputs.begin(), inputs.end(), [this](ComputationNodeBasePtr p) { return &*p == this; }))
{
UpdateDataSize(Gradient(), ParentGradientReused());
m_gradientInitializedBy = gradientInitializedBy;
}
else
{
UpdateDataSize(Gradient());
ResetGradient(0);
}
}
template<class ElemType>
void ComputationNode<ElemType>::Backprop(const FrameRange& fr, bool childrenInThisLoop, bool childrenInOuterLoop) /*override*/
{
// Normally our gradient matrix was created as an input of another node.
// This does not happen though in the special case of a node inside a loop
// that no consumer outside depends on. Those might get topologically sorted
// after nodes that propagate outside of the loop, and thus, in the last
// time step of the sequence, have not yet received a gradient from a parent
// and thus may not have had their gradient matrices allocated.
#if 1 // keep enabled once this works
#if 0 // log the cases where this is needed
if (m_needsGradient && !m_gradientInitialized)
{
static size_t c = 0;
if (c++ < 100)
fprintf(stderr, "%ls %ls operation: Initializing gradient out of line.\n", NodeName().c_str(), OperationName().c_str());
}
#endif
if (m_needsGradient)
LazyZeroGradient(this); // set gradient to 0 if this is the first time
#endif
if (fr.IsAllFrames() && IsPartOfLoop() && childrenInThisLoop)
LogicError("%ls %ls operation: Backprop called with whole-batch FrameRange on node that participates in a loop", NodeName().c_str(), OperationName().c_str());
for (size_t i = 0; i < m_inputs.size(); i++)
{
ComputationNodeBasePtr child = m_inputs[i];
if (child->NeedsGradient() &&
((childrenInThisLoop && child->IsPartOfLoop() == IsPartOfLoop()) ||
(childrenInOuterLoop && child->IsPartOfLoop() != IsPartOfLoop()) ))
{
// fprintf(stderr, "Backprop: %ls %ls operation -> child %d %ls %ls\n", NodeName().c_str(), OperationName().c_str(), (int)i, child->NodeName().c_str(), child->OperationName().c_str());
if (!NeedsGradient())
LogicError("%ls %ls operation has m_needsGradient set to false but children require it.", NodeName().c_str(), OperationName().c_str());
#if DUMPOUTPUT
fprintf(stderr, "Backprop%d_%ls\n", i, NodeName().c_str());
#endif
SMART_NODE_INVOKE(ComputationNode, child, LazyZeroGradient, this); // set gradient to 0 if this is the first time
// If we propagate from a loop to a node that is outside the loop, we are not efficient.
// This case is handled by SEQTraversalFlowControlNode::Backprop().
// The check below is to verify that.
if (IsPartOfLoop() && !child->IsPartOfLoop() && !fr.IsAllFrames())
{
LogicError("Backprop: Inefficiency: %ls %ls operation in loop propagates gradient to non-loop %ls %ls\n",
NodeName().c_str(), OperationName().c_str(), child->NodeName().c_str(), child->OperationName().c_str());
}
// before backprop, verify gradient optimization info
SMART_NODE_INVOKE(ComputationNode, child, VerifyGradientOptimization, this);
// fprintf(stderr, "BackpropTo %d %d %ls %ls\n", (int)fr.timeIdxInSeq, (int)i, NodeName().c_str(), OperationName().c_str());
BackpropTo(i, fr); // this computes partial wrt to the child and sums the gradient value in the child
//child->DebugLogMinibatch(/*gradient*/true);
}
#ifdef DISPLAY_DEBUG
else
fprintf(stderr, " [%lu]: %s(%s) (no gradient needed so don't compute for)\n", i, child->OperationName().c_str(), child->NodeName().c_str());
#endif
}
}
template<class ElemType>
/*static*/ TensorView<ElemType> ComputationNode<ElemType>::Unpack(const TensorShape& sampleShape,
const Matrix<ElemType>& packedData,
const MBLayoutPtr& layout,
const std::shared_ptr<Matrix<ElemType>>& unpackedDataStorage,
const std::shared_ptr<Matrix<ElemType>>& tempIndicesStorage,
const std::shared_ptr<Matrix<char>>& tempMaskStorage,
bool batchMajor,
const ElemType* gapPadValue)
{
size_t maxNumTimeSteps = 1;
size_t numSequences = 1;
TensorShape unpackedShape = sampleShape;
if (layout != nullptr)
{
maxNumTimeSteps = layout->GetNumTimeSteps();
numSequences = layout->GetNumSequences();
size_t i = unpackedShape.GetRank();
unpackedShape = unpackedShape.AppendInPlace(i++, batchMajor ? numSequences : maxNumTimeSteps);
unpackedShape = unpackedShape.AppendInPlace(i++, batchMajor ? maxNumTimeSteps : numSequences);
}
std::shared_ptr<Matrix<ElemType>> unpackedData;
if ((maxNumTimeSteps == 1) || (numSequences == 1) || (batchMajor && (layout->GetNumParallelSequences() == layout->GetNumSequences())))
{
unpackedData = std::make_shared<Matrix<ElemType>>(packedData.AsReference());
if (gapPadValue && layout && layout->HasGaps())
MaskMissingColumnsTo<ElemType>(*unpackedData, layout, FrameRange(layout), *gapPadValue);
}
else
{
unpackedData = unpackedDataStorage;
if (!unpackedData)
unpackedData = std::make_shared<Matrix<ElemType>>(packedData.GetNumRows(), maxNumTimeSteps * numSequences, packedData.GetDeviceId(), packedData.GetMatrixType(), packedData.GetFormat());
else
{
unpackedData->SwitchToMatrixType(packedData.GetMatrixType(), packedData.GetFormat(), /*keepValues=*/false);
unpackedData->Resize(packedData.GetNumRows(), maxNumTimeSteps * numSequences);
}
size_t i = 0;
auto& layoutSequences = layout->GetAllSequences();
int numLayoutSequences = (int)layoutSequences.size();
std::vector<ElemType> scatterIndicesVector(layout->GetNumCols(), -1);
std::vector<char> columnsValidityMask;
if (gapPadValue)
columnsValidityMask.resize(numSequences * maxNumTimeSteps, 1);
for (int layoutSequenceIdx = 0; layoutSequenceIdx < numLayoutSequences; ++layoutSequenceIdx)
{
auto sequenceInfo = layoutSequences[layoutSequenceIdx];
if (sequenceInfo.seqId != GAP_SEQUENCE_ID)
{
size_t targetParallelStreamIdx = sequenceInfo.s;
auto currentSequenceBeginIdx = std::max<ptrdiff_t>(0, sequenceInfo.tBegin);
auto currentSequenceEndIdx = std::min(maxNumTimeSteps, sequenceInfo.tEnd);
size_t currentSequenceLength = (currentSequenceEndIdx - currentSequenceBeginIdx);
for (size_t j = 0; j < maxNumTimeSteps; ++j)
{
auto targetIdx = (batchMajor ? ((j * numSequences) + i) : ((i * maxNumTimeSteps) + j));
if (j < currentSequenceLength)
scatterIndicesVector[((currentSequenceBeginIdx + j) * layout->GetNumParallelSequences()) + targetParallelStreamIdx] = (ElemType)targetIdx;
else
{
if (gapPadValue)
columnsValidityMask[targetIdx] = 0;
}
}
i++;
}
}
auto scatterIdxMatrix = tempIndicesStorage;
if (!scatterIdxMatrix)
scatterIdxMatrix = std::make_shared<Matrix<ElemType>>(1, layout->GetNumCols(), scatterIndicesVector.data(), packedData.GetDeviceId());
else
scatterIdxMatrix->SetValue(1, layout->GetNumCols(), packedData.GetDeviceId(), scatterIndicesVector.data());
// DoScatterColumnsOf for sparse matrices requires the output to be pre-fileed with 0s
if (gapPadValue && (*gapPadValue == 0) && (unpackedData->GetMatrixType() == MatrixType::SPARSE))
unpackedData->SetValue(*gapPadValue);
unpackedData->DoScatterColumnsOf(0, *scatterIdxMatrix, packedData, 1, /*idxHaveDups*/ false);
// DoScatterColumnsOf fills the target with 0 before scattering if passed beta == 0.
// This we need to mask only if the gapPadValue != 0
if (gapPadValue && (*gapPadValue != 0))
{
auto columnsValidityMaskMatrix = tempMaskStorage;
if (!columnsValidityMaskMatrix)
columnsValidityMaskMatrix = std::make_shared<Matrix<char>>(1, columnsValidityMask.size(), columnsValidityMask.data(), packedData.GetDeviceId());
else
columnsValidityMaskMatrix->SetValue(1, columnsValidityMask.size(), packedData.GetDeviceId(), columnsValidityMask.data());
unpackedData->MaskColumnsValue(*columnsValidityMaskMatrix, *gapPadValue, unpackedData->GetNumCols() / columnsValidityMaskMatrix->GetNumCols());
}
}
return TensorView<ElemType>(unpackedData, unpackedShape);
}
template<class ElemType>
/*static*/ void ComputationNode<ElemType>::BroadcastToPacked(const Matrix<ElemType>& dataToBroadcast,
const MBLayoutPtr& inputLayout,
ElemType beta,
Matrix<ElemType>& broadcastTo,
const FrameRange& targetFrameRange,
const std::shared_ptr<Matrix<ElemType>>& tempIndicesStorage)
{
auto targetLayout = targetFrameRange.m_pMBLayout;
// Generate the gather indices
std::vector<ElemType> gatherIndicesVector(broadcastTo.GetNumCols(), -1);
auto& layoutSequences = targetLayout->GetAllSequences();
int numLayoutSequences = (int)layoutSequences.size();
// 2-way thread parallelism is sufficient for the memory bound
// operation of just setting the values of an array.
const unsigned NUM_THREADS = 2;
UNUSED(NUM_THREADS); // in case OMP is turned off.
#pragma omp parallel for num_threads(NUM_THREADS)
for (int layoutSequenceIdx = 0; layoutSequenceIdx < numLayoutSequences; ++layoutSequenceIdx)
{
auto sequenceInfo = layoutSequences[layoutSequenceIdx];
if ((sequenceInfo.seqId != GAP_SEQUENCE_ID) &&
(targetFrameRange.IsAllFrames() || ((sequenceInfo.tBegin <= (ptrdiff_t)(targetFrameRange.timeIdxInSeq + targetFrameRange.m_timeOffset)) && (sequenceInfo.tEnd > (targetFrameRange.timeIdxInSeq + targetFrameRange.m_timeOffset)))))
{
auto srcSequenceInfo = inputLayout->FindSequence(sequenceInfo.seqId);
auto gatherFromIndex = inputLayout->GetColumnIndex(srcSequenceInfo, 0);
std::vector<size_t> currentSequenceColumnIndices;
if (targetFrameRange.IsAllFrames())
currentSequenceColumnIndices = targetLayout->GetColumnIndices(sequenceInfo);
else
currentSequenceColumnIndices.push_back(sequenceInfo.s);
for (auto i : currentSequenceColumnIndices)
gatherIndicesVector[i] = (ElemType)gatherFromIndex;
}
}
auto gatherIdxMatrix = tempIndicesStorage;
if (!gatherIdxMatrix)
gatherIdxMatrix = std::make_shared<Matrix<ElemType>>(1, broadcastTo.GetNumCols(), gatherIndicesVector.data(), broadcastTo.GetDeviceId());
else
gatherIdxMatrix->SetValue(1, broadcastTo.GetNumCols(), broadcastTo.GetDeviceId(), gatherIndicesVector.data());
broadcastTo.DoGatherColumnsOf(beta, *gatherIdxMatrix, dataToBroadcast, 1);
}
/*static*/ const std::wstring ComputationNodeBase::DefaultDynamicAxisName = L"*";
/*static*/ const std::wstring ComputationNodeBase::DefaultNoSequenceAxisName = L"__noSequenceAxis";
// -----------------------------------------------------------------------
// subroutines for Validate() implementations
// -----------------------------------------------------------------------
// compare two MBLayouts, and alert if they are different
void ComputationNodeBase::ValidateMBLayout(const ComputationNodeBasePtr which, const ComputationNodeBasePtr vsWhich) const
{
if (!which->HasMBLayout() || !vsWhich->HasMBLayout() || which->GetMBLayout() == vsWhich->GetMBLayout())
return;
// MBLayouts are inconsistent
#if 0
// can't have that
RuntimeError("%ls: Dynamic axes mismatch between %ls and %ls. If this is by design, use ReconcileDynamicAxis().",
NodeDescription().c_str(), which->NodeDescription().c_str(), vsWhich->NodeDescription());
#else
// We will let this slip with a reminder, assuming that this will be caught at runtime.
// By allowing this, users will not need ReconcileDynamicAxis() for reductions over a sequence like BS.Sequences.Last().
if (GetEnvironmentPtr() && (Environment().traceLevel > 0))
{
fprintf(stderr, "WARNING: %ls: Dynamic axes mismatch between %ls and %ls. If they are incompatible, this will fail later.\n",
NodeDescription().c_str(), which->NodeDescription().c_str(), vsWhich->NodeDescription().c_str());
}
#endif
}
// helper function to infer the MBLayout for this node from inputs, for the *standard case*
// the standard case is:
// - all inputs must share the same layout (e.g. adding two minibatches)
// - with the exception of NULL layouts (e.g. TimesNode)
// - all layouts may be NULL (e.g. W' = W * Exp(Stabilizer))
// - if there are more than one different layouts involved, this function will fail
void ComputationNodeBase::InferMBLayoutFromInputsForStandardCase(bool isFinalValidationPass)
{
ComputationNodeBasePtr firstInputWithMBLayout;
for (auto input : m_inputs)
{
if (!input) // node not set yet (DelayedValueNodeBase seems to allow this)--BUGBUG: Then this function won't operate correctly.
;
else if (!input->m_pMBLayout) // NULL layout (typical for parameter nodes)
;
else if (!firstInputWithMBLayout) // first input with layout: remember this child
firstInputWithMBLayout = input;
else if (isFinalValidationPass) // got a layout--compare whether it is the same
ValidateMBLayout(firstInputWithMBLayout, input);
}
// all are consistent: install it
LinkToMBLayout(firstInputWithMBLayout ? firstInputWithMBLayout->m_pMBLayout : nullptr);
}
// single input that maps its input element-wise (e.g. Sigmoid)
void ComputationNodeBase::ValidateUnaryMap(bool isFinalValidationPass)
{
assert(m_inputs.size() == 1);
ComputationNodeBase::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
SetDims(Input(0));
}
// binary zip operation, e.g. Plus
// If allowBroadcast then one can be a sub-dimension of the other (if layout then only for rows, otherwise for cols, too).
// This also helpfully resizes the children if not yet sized.
void ComputationNodeBase::ValidateBinaryZip(bool isFinalValidationPass, bool allowBroadcast)
{
assert(m_inputs.size() == 2);
ComputationNodeBase::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
ValidateInferBinaryInputDims();
if (isFinalValidationPass)
ValidateMBLayout(Input(0), Input(1));
// result has tensor shape with dimensions being the max over both
let shape0 = GetInputSampleLayout(0);
let shape1 = GetInputSampleLayout(1);
SmallVector<size_t> dims = shape0.GetDims();
if (shape1.GetRank() > dims.size())
dims.resize(shape1.GetRank(), 1); // pad with ones
// If rank of [0] is higher than we only need to take max over rank [1].
// If rank of [1] is higher then we have padded to equal lentgh.
for (size_t k = 0; k < shape1.GetRank(); k++)
{
size_t dim1 = shape1[k];
// BUGBUG: We must consider the allowBroadcast flag here.
if (dims[k] <= 1 && dim1 != 0) // is [0] broadcasting (1) or unspecified (0)?
dims[k] = dim1; // then use dimension we broadcast to
else if (dim1 <= 1 && dims[k] != 0) // if [1] is broadcasting or unspecified
; // then dims is already correct
else if (isFinalValidationPass && dim1 != dims[k]) // no broadcasting or unspecified: they must match
InvalidArgument("%ls: Input dimensions [%s] and [%s] are not compatible.",
NodeDescription().c_str(), string(shape0).c_str(), string(shape1).c_str());
}
SetDims(TensorShape(dims), HasMBLayout());
}
// N-nary zip operation, e.g. for TernaryZip for clip()
// If allowBroadcast then one can be a sub-dimension of the other (if layout then only for rows, otherwise for cols, too).
// This also helpfully resizes the children if not yet sized.
void ComputationNodeBase::ValidateNaryZip(bool isFinalValidationPass, bool allowBroadcast, size_t numInputs)
{
assert(m_inputs.size() == numInputs);
ComputationNodeBase::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
ValidateInferNaryInputDims(numInputs);
// check minibatch layout consistency for all possible pairs (n choose 2)
if (isFinalValidationPass)
for (size_t i = 0; i < numInputs; i++)
for (size_t j = i + 1; j < numInputs; j++)
ValidateMBLayout(Input(i), Input(j));
// result has tensor shape with dimensions being the max over all inputs
let shape0 = GetInputSampleLayout(0);
// dims is max over all inputs
size_t maxRank = shape0.GetRank();
for (size_t i = 1; i < numInputs; i++)
{
let shape = GetInputSampleLayout(i);
if (shape.GetRank() > maxRank)
maxRank = shape.GetRank();
}
SmallVector<size_t> dims = shape0.GetDims();
dims.resize(maxRank, 1); // pad with 1
// first check for invalid dimensions
for (size_t k = 0; k < maxRank; k++)
{
size_t maxDim = 0;
TensorShape maxShape = shape0; // arbitrary; this is just used for the error message
for (size_t i = 0; i < numInputs; i++)
{
let currentShape = GetInputSampleLayout(i);
size_t currentRank = currentShape.GetRank();
// make sure that the rank of this input is bigger than the current index (otherwise, these are implied singleton dimensions that do not need to be checked)
if (currentRank > k)
{
size_t currentDim = currentShape[k];
if (currentDim > 1 && maxDim != currentDim && maxDim > 1) // 1=broadcasting, 0=not known yet, meant to be inferred
{
InvalidArgument("%ls: Input dimensions [%s] and [%s] are not compatible.",
NodeDescription().c_str(), string(maxShape).c_str(), string(currentShape).c_str());
}
else if (currentDim > maxDim)
{
maxDim = currentDim;
maxShape = currentShape;
}
}
}
}
// now set up the right dims
for (size_t k = 0; k < maxRank; k++)
{
for (size_t i = 0; i < numInputs; i++)
{
let shape = GetInputSampleLayout(i);
if (shape.GetRank() > k)
{
size_t dim = shape[k];
if (dims[k] <= 1 && dim != 0)
dims[k] = dim;
}
}
}
SetDims(TensorShape(dims), HasMBLayout());
}
// unary reduce-to-(1,1) operation, e.g. MatrixL1RegNode
void ComputationNodeBase::ValidateUnaryReduce(bool isFinalValidationPass, bool keepDimensions)
{
assert(m_inputs.size() == 1);
ComputationNodeBase::Validate(isFinalValidationPass);
m_pMBLayout = nullptr; // this node does not hold mini-batch data
SetDims(keepDimensions ? m_inputs[0]->GetSampleLayout() : (TensorShape::Scalar(Environment().IsV2Library())), false);
}
// binary reduce-to-(1,1) operation, e.g. CrossEntropyWithSoftmaxNode
// Currently only called by criterion nodes.
// This function also infers child LearnableParameters. In case you wonder why this is needed for criterion nodes, there are edge cases, e.g. a
// learnable parameter being regularized by a criterion node, where the learnable parameter is fed both into that criterion node and other places.
void ComputationNodeBase::ValidateBinaryReduce(bool isFinalValidationPass)
{
ComputationNodeBase::Validate(isFinalValidationPass);
m_pMBLayout = nullptr; // this node does not hold mini-batch data
ValidateInferBinaryInputDims();
if (isFinalValidationPass)
{
if (!(Input(0)->GetSampleLayout().IsElementwiseCompatibleWith(Input(1)->GetSampleLayout())))
{
string s1 = Input(0)->GetSampleLayout();
string s2 = Input(1)->GetSampleLayout();
// BUGBUG: Allow broadcasting?
LogicError("%ls: The tensor dimensions in the inputs do not match. %s != %s", NodeDescription().c_str(), s1.c_str(), s2.c_str());
}
else if (!(Input(0)->HasMBLayout()))
LogicError("%ls: Expected MBLayout in Input 0.", NodeDescription().c_str());
else if (!(Input(1)->HasMBLayout()))
LogicError("%ls: Expected MBLayout in Input 1.", NodeDescription().c_str());
// Shape of the MBLayouts is checked at runtime.
}
SetDims(TensorShape::Scalar(Environment().IsV2Library()), false);
}
// helper function for validation
// In complex cases of convolution, dimensions are quite difficult for a user to know/derive.
// This is a feature that allows a node to help resizing its input node to the expected value
// iff that input must be a learnable parameter.
void ComputationNodeBase::ValidateInferBinaryInputDims()
{
// limited inference of children dimensions
// if dimension not specified we assume two operands' dimensions should be the same
// NOTE: The assert is set to check if >= 2 since this is called from nodes which have more than two children.
// The number of children is formally verified elsewhere, so this will not break consistency.
assert(m_inputs.size() >= 2);
for (size_t index = 0; index < 2; index++)
{
auto in = Input( index);
auto other = Input(1 - index);
// borrow any unset dimension on one input from the other input
in->ValidateInferInputDimsFrom(other->GetSampleLayout());
}
}
// as above but for N-ary cases
void ComputationNodeBase::ValidateInferNaryInputDims(size_t numInputs)
{
// limited inference of children dimensions
// if dimension not specified we assume two operands' dimensions should be the same
// NOTE: The assert is set to check if >= numInputs since this is called from nodes which have more than 'nInputs' children.
// The number of children is formally verified elsewhere, so this will not break consistency.
assert(m_inputs.size() >= numInputs);
for (size_t index = 0; index < numInputs; index++)
{
const auto& in = Input(index);
for (size_t indexOther = 0; indexOther < numInputs; indexOther++)
{
if (indexOther != index)
{
const auto& other = Input(indexOther);
// borrow any unset dimension on one input from the other input
in->ValidateInferInputDimsFrom(other->GetSampleLayout());
}
}
}
}
// in case of an error, we just back out, and leave it to outside code to detect errors
template <class ElemType>
void ComputationNode<ElemType>::ValidateInferInputDimsFrom(const TensorShape& otherShape)
{
// we can only infer learnable parameters at this point
auto node = dynamic_cast<LearnableParameter<ElemType>*>(this);
if (node)
node->InferInputDimsFrom(otherShape);
}
// -----------------------------------------------------------------------
// tensor helpers
// -----------------------------------------------------------------------
// determine the sample tensor dimension to use for operations based on output and all inputs
// 'Sample tensor' means we only consider single samples. If we have an MBLayout, that is the sample layout of a single matrix column.
// TODO: Turn rank into a member variable, and call this method once in validation (currently called for every single ForwardProp/BackpropTo()).
size_t ComputationNodeBase::DetermineElementwiseTensorRank() const
{
// determine largest tensor dimension amongst the sample shapes of output and the selected inputs
size_t maxRank = GetSampleLayout().GetRank();
for (size_t i = 0; i < GetNumInputs(); i++)
{
size_t rank = Input(i)->GetSampleLayout().GetRank();
if (maxRank < rank)
maxRank = rank;
}
return maxRank;
}
// form the actual tensor that describes the full object
TensorShape ComputationNodeBase::GetTensorShape(size_t rank) const
{
// If we have an MB layout then add the necessary sequence and time axes. If we have none, then absorb the column dimension.
TensorShape tensorShape = GetSampleLayout(); // TODO: Do we need to expect this tensor to have arbitrary strides? In case it came out of a Slice, Reshape, or Transpose op in-place?
if (HasMBLayout())
{
size_t i = (rank != SIZE_MAX) ? rank : tensorShape.GetRank();
tensorShape.AppendInPlace(i++, GetMBLayout()->GetNumParallelSequences());
tensorShape.AppendInPlace(i++, GetMBLayout()->GetNumTimeSteps());
}
return tensorShape;
}
// get tensor shape of the slice referenced by a given FrameRange
// Important: This shape does carry offset and stride; it's not just dimensions.
TensorShape ComputationNodeBase::GetTensorSliceFor(size_t rank, const FrameRange& fr) const
{
// form the actual tensor that describes the full object
// Note: This may have strides.
auto tensorShape = GetTensorShape(rank);
// determine the slice dimensions described by the FrameRange
// Note: These are dimensions without strides.
let slice = TensorSliceWithMBLayoutFor(tensorShape.GetDims(), fr, GetMBLayout());
// narrow the tensor
// Note: Strides are honored correctly.
tensorShape.NarrowTo(slice);
return tensorShape;
}
// same as GetTensorSliceFor() except that 'fr' refers to a single column, and result will not have seq/time axes
// This is needed by TimesNode when the left argument has to be broken up into individual matrices/GEMM calls.
// To enable its first argument to have an MBLayout, it needs to un-pad if we have an MBLayout but only refer to a single sequence and time step.
TensorShape ComputationNodeBase::GetOneSampleTensorSliceFor(size_t rank, const FrameRange& fr) const
{
TensorShape result = GetTensorSliceFor(rank, fr);
// undo the adding of (seq, time) axes that was done by GetTensorShape()
if (!fr.IsOneColumnWrt(GetMBLayout()))
LogicError("GetOneSampleTensorSliceFor: Requires 'fr' to refer to a single sample.");
if (HasMBLayout())
result.TrimRankInPlace(rank); // Note: This function will verify once again that the extra dimensions have been reduced to [1 x 1]
return result;
}
// -----------------------------------------------------------------------
// others
// -----------------------------------------------------------------------
/*virtual*/ string ComputationNodeBase::FormatOperationPrototype(const string& extraArgs) const
{
string prototype;
prototype += msra::strfun::strprintf("%ls = %ls", NodeName().c_str(), OperationName().c_str());
// arguments of operation
if (IsLeaf())
prototype += "()";
else
{
prototype += " (";
for (size_t i = 0; i < GetNumInputs(); i++)
{
const auto& child = m_inputs[i];
if (i > 0)
prototype += ", ";
if (child)
prototype += msra::strfun::strprintf("%ls", child->NodeName().c_str());
else
prototype += "NULL";
}
prototype += extraArgs;
prototype += ")";
}
// type (tensor dimensions) of operation
prototype += " : ";
if (!IsLeaf())
{
//prototype += "(";
for (size_t i = 0; i < GetNumInputs(); i++)
{
const auto& child = m_inputs[i];
if (i > 0)
prototype += ", ";
if (child == nullptr)
{
prototype += "NULL";
continue;
}
prototype += child->ShapeDescription().c_str();
}
prototype += extraArgs;
//prototype += ")";
}
prototype += msra::strfun::strprintf(" -> %s", ShapeDescription().c_str());
return prototype;
}
const std::string ComputationNodeBase::ShapeDescription() const
{
return msra::strfun::strprintf("[%s%s%ls]",
string(m_sampleLayout).c_str(),
HasMBLayout() ? " x " : "",
HasMBLayout() ? GetMBLayout()->GetAxisName() : L"");
}
template <class ElemType>
/*virtual*/ void ComputationNode<ElemType>::BeginForwardProp()
{
Base::BeginForwardProp();
if (NeedsDynamicValidation())
Validate(/*isFinalValidationPass =*/ true);
// update the actual m_value allocation
if ((!IsLeaf() || Is<RandomDistributionNode<ElemType>>()) && !RequiresPreCompute()) // TODO: guard this through overrides instead
UpdateFunctionValuesSize();
// give nodes a chance to update their internal state that may also have to match MB size
UpdateFunctionMBSize();
// and make sure dimensions are what we expect
VerifyDataSize(Value());
}
template <class ElemType>
/*virtual*/ void ComputationNode<ElemType>::EndForwardProp()
{
Base::EndForwardProp();
if (HasEnvironmentPtr() && Environment().trackGapNans)
{
MaskMissingValueColumnsToZero(FrameRange(m_pMBLayout)); // HasNaN() operates on a whole matrix, so first flatten all gaps to 0
if (Value().HasNan("EndForwardProp"))
LogicError("%ls %ls operation unexpectedly produced NaN values.", NodeName().c_str(), OperationName().c_str());
InvalidateMissingValueColumns(FrameRange(m_pMBLayout)); // blast NaNs into columns that are gaps in a packed layout
}
// tracing
Trace();
}
template <class ElemType>
/*virtual*/ void ComputationNode<ElemType>::BeginBackprop()
{
Base::BeginBackprop();
if (NeedsGradient())
{
// Verify that the shapes of the output/input Value matrices that the gradient backprop for this node needs
// are intact and have not been erroneously reshaped due to incorrect memory sharing
auto VerifyValueShape = [](const ComputationNode<ElemType>& node) {
size_t rows, cols;
node.DetermineDataSize(rows, cols);
auto& valueMatrix = node.Value();
if ((valueMatrix.GetNumRows() != rows) || (valueMatrix.GetNumCols() != cols))
{
LogicError("%ls %ls operation found to have incorrect Value() matrix shape %lu x %lu during backprop; expected shape is %lu x %lu. "
"This may be due to incorrect memory sharing.",
node.NodeName().c_str(), node.OperationName().c_str(), valueMatrix.GetNumRows(), valueMatrix.GetNumCols(), rows, cols);
}
};
if (IsOutputNeededDuringBackprop())
VerifyValueShape(*this);
for (size_t i = 0; i < m_inputs.size(); i++)
{
if (InputUsedInComputingInputNodesGradients(i))
VerifyValueShape(InputRef(i));
}
}
}
template <class ElemType>
/*virtual*/ void ComputationNode<ElemType>::EndBackprop()
{
Base::EndBackprop();
if (HasEnvironmentPtr() && Environment().trackGapNans)
{
for (size_t i = 0; i < m_inputs.size(); i++)
{
ComputationNodeBasePtr child = m_inputs[i];
if (child->NeedsGradient())
{
SMART_NODE_INVOKE(ComputationNode, child, MaskMissingGradientColumnsToZero, FrameRange(child->GetMBLayout())); // HasNaN() operates on a whole matrix, so first flatten all gaps to 0
bool hasNan = false;
SMART_NODE_INVOKE_WITH_RET(ComputationNode, child, Gradient().HasNan, hasNan, "EndBackprop");
if (hasNan)
{
LogicError("%ls %ls operation unexpectedly produced NaN gradients on its input %ls.", NodeName().c_str(), OperationName().c_str(), child->NodeName().c_str());
}
}
}
}
}
template <class ElemType>
/*virtual*/ void ComputationNode<ElemType>::BeginTiming(bool backward)
{
if (!Globals::ShouldEnableNodeTiming()) return;
int phase = (backward ? (int)TimingPhase_Backward : (int)TimingPhase_Forward);
auto& timing = m_timing[phase];
timing.beginTime = std::chrono::system_clock::now();
timing.count++;
#ifndef CNTK_UWP
timing.profilerId = ProfilerTimeBegin();
#endif
}
template <class ElemType>
/*virtual*/ void ComputationNode<ElemType>::EndTiming(bool backward)
{
if (!Globals::ShouldEnableNodeTiming()) return;
int phase = (backward ? (int)TimingPhase_Backward : (int)TimingPhase_Forward);
auto& timing = m_timing[phase];
timing.duration += (std::chrono::system_clock::now() - timing.beginTime);
#ifndef CNTK_UWP
// the order must match enum
static const char* postfixes[TimingPhase_Total] =
{
"Forward",
"Backward",
};
if (timing.profilerName.length() != m_nodeName.length() + strlen(postfixes[phase]))
{
static char name[256];
sprintf_s(name, _countof(name), "%S%s", m_nodeName.c_str(), postfixes[phase]);
timing.profilerName = name;
}
ProfilerTimeEnd(timing.profilerId, timing.profilerName.c_str());
#endif
}
template<class ElemType>
void ComputationNode<ElemType>::PrintForwardBackwardTime()
{
if (GetInputs().size() == 0) return;
auto& forwardCount = m_timing[TimingPhase_Forward].count;
auto forwardDuration = m_timing[TimingPhase_Forward].duration.count();
auto& backwardCount = m_timing[TimingPhase_Backward].count;
auto backwardDuration = m_timing[TimingPhase_Backward].duration.count();
fprintf(stderr, "%-30S forward avg %07fs, backward avg %07fs (fwd# %d|bwd# %d)\n",
m_nodeName.c_str(),
forwardCount == 0 ? 0 : forwardDuration / forwardCount,
backwardCount == 0 ? 0 : backwardDuration / backwardCount,
forwardCount,
backwardCount);
for (auto& timing : m_timing)
timing.Reset();
}
template <class ElemType>
/*virtual*/ void ComputationNode<ElemType>::DumpNodeInfo(const bool /*printValues*/, const bool printMetadata, File& fstream) const
{
if (printMetadata)
{
fstream << L"\n" + NodeName() + L"=" + OperationName();
if (!IsLeaf())
{
fstream << wstring(L"(");
for (size_t i = 0; i < GetNumInputs(); i++)
{
if (i > 0)
fstream << wstring(L",");
fstream << (Input(i) ? Input(i)->NodeName() : L"NULL");
}
fstream << wstring(L")");
}
}
}
// write out the content of a node in formatted/readable form
// 'transpose' means print one row per sample (non-transposed is one column per sample).
// 'isSparse' will print all non-zero values as one row (non-transposed, which makes sense for one-hot) or column (transposed).
template <class ElemType>
void ComputationNode<ElemType>::WriteMinibatchWithFormatting(FILE* f,
const FrameRange& fr,
size_t onlyUpToRow, size_t onlyUpToT, bool transpose, bool isCategoryLabel, bool isSparse,
const vector<string>& labelMapping, const string& sequenceSeparator,
const string& sequencePrologue, const string& sequenceEpilogue,
const string& elementSeparator, const string& sampleSeparator,
string valueFormatString,
bool outputGradient,
bool onlyShowAbsSumForDense,
std::function<std::string(size_t)> getKeyById) const
{
// get minibatch matrix -> matData, matRows, matStride
const Matrix<ElemType>& outputValues = outputGradient ? Gradient() : Value();
let matRows = outputValues.GetNumRows();
let matStride = matRows; // how to get from one column to the next
unique_ptr<ElemType[]> matDataPtr(outputValues.CopyToArray());
ElemType* matData = matDataPtr.get();
let sampleLayout = GetSampleLayout(); // this is currently only used for sparse; dense tensors are linearized
// process all sequences one by one
MBLayoutPtr pMBLayout = GetMBLayout();
if (!pMBLayout) // no MBLayout: We are printing aggregates (or LearnableParameters?)
{
pMBLayout = make_shared<MBLayout>();
pMBLayout->Init(1, outputValues.GetNumCols()); // treat this as if we have one single sequence consisting of the columns
pMBLayout->AddSequence(0, 0, 0, outputValues.GetNumCols());
}
let& sequences = pMBLayout->GetAllSequences();
let width = pMBLayout->GetNumTimeSteps();
TensorShape tensorShape = GetSampleLayout();
stringstream str;
let dims = tensorShape.GetDims();
for (auto dim : dims)
str << dim << ' ';
let shape = str.str(); // BUGBUG: change to string(tensorShape) to make sure we always use the same format
bool sequencePrologueHasShape = sequencePrologue.find("%x") != sequencePrologue.npos;
bool sampleSeparatorHasShape = sampleSeparator.find("%x") != sampleSeparator.npos;
bool sequencePrologueHasSeqId = sequencePrologue.find("%d") != sequencePrologue.npos;
bool sampleSeparatorHasSeqId = sampleSeparator.find("%d") != sampleSeparator.npos;
bool sequencePrologueHasSeqKey = sequencePrologue.find("%k") != sequencePrologue.npos;
bool sampleSeparatorHasSeqKey = sampleSeparator.find("%k") != sampleSeparator.npos;
for (size_t s = 0; s < sequences.size(); s++)
{
const auto& seqInfo = sequences[s];
if (seqInfo.seqId == GAP_SEQUENCE_ID) // nothing in gaps to print
continue;
let tBegin = seqInfo.tBegin >= 0 ? seqInfo.tBegin : 0;
let tEnd = seqInfo.tEnd <= width ? seqInfo.tEnd : width;
// [tBegin,tEnd) is where the sequence resides.
// fr is also referencing where a sequence resides.
// narrow to FrameRange if needed
auto t0 = fr.IsAllFrames() ? tBegin : fr.m_timeOffset + (ptrdiff_t)fr.timeIdxInSeq;
auto t1 = fr.IsAllFrames() ? tEnd : fr.m_timeOffset + (ptrdiff_t)fr.timeIdxInSeq + (ptrdiff_t)fr.m_timeRange;
if (t0 < tBegin)
t0 = tBegin;
if (t1 > tEnd)
t1 = tEnd;
// [t0,t1) is the range we want to print
if (t0 > (ptrdiff_t)t1)
continue; // skip this sequence
// get sequence matrix -> seqData, seqRows, seqCols, seqStride
let seqData = matData + pMBLayout->GetColumnIndex(seqInfo, t0 - tBegin) * matStride;
auto seqRows = matRows;
let seqCols = t1 - t0;
let seqStride = pMBLayout->GetNumParallelSequences() * matStride;
auto seqProl = sequencePrologue;
auto sampleSep = sampleSeparator;
if (sequencePrologueHasShape || sampleSeparatorHasShape)
{
auto sh = msra::strfun::_strprintf<char>("%s%ld", shape.c_str(), (unsigned long long)seqInfo.GetNumTimeSteps());
if (sequencePrologueHasShape)
seqProl = msra::strfun::ReplaceAll<std::string>(seqProl, "%x", sh);
if (sampleSeparatorHasShape)
sampleSep = msra::strfun::ReplaceAll<std::string>(sampleSep, "%x", sh);
}
if (sequencePrologueHasSeqId || sampleSeparatorHasSeqId)
{
auto sh = msra::strfun::_strprintf<char>("%ld", (unsigned long long)seqInfo.seqId);
if (sequencePrologueHasSeqId)
seqProl = msra::strfun::ReplaceAll<std::string>(seqProl, "%d", sh);
if (sampleSeparatorHasSeqId)
sampleSep = msra::strfun::ReplaceAll<std::string>(sampleSep, "%d", sh);
}
if (getKeyById)
{
if (sequencePrologueHasSeqKey)
seqProl = msra::strfun::ReplaceAll<std::string>(seqProl, "%k", getKeyById(seqInfo.seqId));
if (sampleSeparatorHasSeqKey)
sampleSep = msra::strfun::ReplaceAll<std::string>(sampleSep, "%k", getKeyById(seqInfo.seqId));
}
if (s > 0)
fprintfOrDie(f, "%s", sequenceSeparator.c_str());
fprintfOrDie(f, "%s", seqProl.c_str());
// output it according to our format specification
auto formatChar = valueFormatString.back();
if (isCategoryLabel) // if is category then find the max value and output its index (possibly mapped to a string)
{
if (formatChar == 's') // verify label dimension
{
if (outputValues.GetNumRows() != labelMapping.size() &&
sampleLayout[0] != labelMapping.size()) // if we match the first dim then use that
{
static size_t warnings = 0;
if (warnings++ < 5)
fprintf(stderr, "write: Row dimension %d does not match number of entries %d in labelMappingFile, not using mapping\n", (int)seqRows, (int)labelMapping.size());
valueFormatString.back() = 'u'; // this is a fallback
formatChar = valueFormatString.back();
}
}
// update the matrix in-place from one-hot (or max) to index
// find the max in each column
for (size_t j = 0; j < seqCols; j++) // loop over all time steps of the sequence
{
double maxLoc = -1;
double maxVal = 0;
for (size_t i = 0; i < seqRows; i++) // loop over rows
{
let val = seqData[i + j * seqStride];
if (maxLoc < 0 || val >= maxVal)
{
maxLoc = (double)i;
maxVal = val;
}
}
seqData[0 + j * seqStride] = (ElemType)maxLoc; // overwrite first element in-place
}
seqRows = 1; // ignore remaining dimensions
}
// function to print a value
auto print = [&](double dval)
{
if (formatChar == 'f') // print as real number
{
if (dval == 0) dval = fabs(dval); // clear the sign of a negative 0, which are produced inconsistently between CPU and GPU
fprintfOrDie(f, valueFormatString.c_str(), dval);
}
else if (formatChar == 'u') // print category as integer index
{
fprintfOrDie(f, valueFormatString.c_str(), (unsigned int)dval);
}
else if (formatChar == 's') // print category as a label string
{
size_t uval = (size_t)dval;
if (!labelMapping.empty())
uval %= labelMapping.size();
assert(uval < labelMapping.size());
const char * sval = labelMapping[uval].c_str();
fprintfOrDie(f, valueFormatString.c_str(), sval);
}
};
// bounds for printing
let iend = transpose ? seqRows : seqCols; // true dimension of the data to print
let jend = transpose ? seqCols : seqRows;
let istop = transpose ? onlyUpToRow : onlyUpToT; // we stop at these dimensions (for debugging, one often needs only the first few values of those huge matrices)
let jstop = transpose ? onlyUpToT : onlyUpToRow;
let istride = transpose ? 1 : seqStride;
let jstride = transpose ? seqStride : 1;
if (isSparse)
{
// sparse linearizes the entire matrix into a single vector, and prints that one with coordinates
// TODO: This can be done more nicely. We should keep the block structure.
size_t numPrinted = 0;
for (size_t i = 0; i < iend; i++) // loop over elements --we just flatten them all out
{
for (size_t j = 0; j < jend; j++) // loop over rows
{
double dval = seqData[i * istride + j * jstride];
if (dval == 0) // only print non-0 values
continue;
if (numPrinted++ > 0)
fprintfOrDie(f, "%s", transpose ? sampleSeparator.c_str() : elementSeparator.c_str());
if (dval != 1.0 || formatChar != 'f') // hack: we assume that we are either one-hot or never precisely hitting 1.0
print(dval);
size_t row = transpose ? i : j;
size_t col = transpose ? j : i;
for (size_t k = 0; k < sampleLayout.size(); k++)
{
fprintfOrDie(f, "%c%d", k == 0 ? '[' : ',', row % sampleLayout[k]);
if (sampleLayout[k] == labelMapping.size()) // annotate index with label if dimensions match (which may misfire once in a while)
fprintfOrDie(f, "=%s", labelMapping[row % sampleLayout[k]].c_str());
row /= sampleLayout[k];
}
if (seqInfo.GetNumTimeSteps() > 1)
fprintfOrDie(f, ";%d", col);
fprintfOrDie(f, "]");
}
}
}
else
{
if (onlyShowAbsSumForDense)
{
// the concise version to make matrix comparision easier
double absSum = 0;
#pragma omp parallel for reduction(+:absSum)
for (int i = 0; i < (int)iend; i++) // loop over output rows
{
double absSumLocal = 0;
for (size_t j = 0; j < jend; j++) // loop over elements
{
absSumLocal += (double)abs(seqData[i * istride + j * jstride]);
}
absSum += absSumLocal;
}
fprintfOrDie(f, "absSum: %f", absSum);
}
else
{
for (size_t j = 0; j < jend; j++) // loop over output rows --BUGBUG: row index is 'i'!! Rename these!!
{
if (j > 0)
fprintfOrDie(f, "%s", sampleSep.c_str());
if (j == jstop && jstop < jend - 1) // if jstop == jend-1 we may as well just print the value instead of '...'
{
fprintfOrDie(f, "...+%d", (int)(jend - jstop)); // 'nuff said
break;
}
// inject sample tensor index if we are printing row-wise and it's a tensor
if (!transpose && sampleLayout.size() > 1 && !isCategoryLabel) // each row is a different sample dimension
{
for (size_t k = 0; k < sampleLayout.size(); k++)
fprintfOrDie(f, "%c%d", k == 0 ? '[' : ',', (int)((j / sampleLayout.GetStrides()[k])) % sampleLayout[k]);
fprintfOrDie(f, "]\t");
}
// print a row of values
for (size_t i = 0; i < iend; i++) // loop over elements
{
if (i > 0)
fprintfOrDie(f, "%s", elementSeparator.c_str());
if (i == istop && istop < iend - 1)
{
fprintfOrDie(f, "...+%d", (int)(iend - istop));
break;
}
double dval = seqData[i * istride + j * jstride];
print(dval);
}
}
}
}
fprintfOrDie(f, "%s", sequenceEpilogue.c_str());
} // end loop over sequences
fflushOrDie(f);
}
/*static*/ string WriteFormattingOptions::Processed(const wstring& nodeName, string fragment, size_t minibatchId)
{
fragment = msra::strfun::ReplaceAll<string>(fragment, "\\n", "\n");
fragment = msra::strfun::ReplaceAll<string>(fragment, "\\r", "\r");
fragment = msra::strfun::ReplaceAll<string>(fragment, "\\t", "\t");
fragment = msra::strfun::ReplaceAll<string>(fragment, "\\s", " "); // Config might strip spaces.
if (fragment.find("%s") != fragment.npos)
fragment = msra::strfun::ReplaceAll<string>(fragment, "%s", Microsoft::MSR::CNTK::ToLegacyString(Microsoft::MSR::CNTK::ToUTF8(nodeName)));
if (fragment.find("%n") != fragment.npos)
fragment = msra::strfun::ReplaceAll<string>(fragment, "%n", msra::strfun::_strprintf<char>("%ld", minibatchId).c_str());
// %d: sequenceId
return fragment;
}
template <class ConfigRecordType>
WriteFormattingOptions::WriteFormattingOptions(const ConfigRecordType& config) :
WriteFormattingOptions()
{
// gather additional formatting options
if (config.Exists(L"format"))
{
const ConfigRecordType& formatConfig(config(L"format", ConfigRecordType::Record()));
if (formatConfig.ExistsCurrent(L"type")) // do not inherit 'type' from outer block
{
wstring type = formatConfig(L"type");
if (type == L"real") ; // default
else if (type == L"category") isCategoryLabel = true;
else if (type == L"sparse") isSparse = true;
else InvalidArgument("write: type must be 'real', 'category', or 'sparse'");
labelMappingFile = (wstring)formatConfig(L"labelMappingFile", L"");
}
transpose = formatConfig(L"transpose", transpose);
prologue = formatConfig(L"prologue", prologue);
epilogue = formatConfig(L"epilogue", epilogue);
sequenceSeparator = Microsoft::MSR::CNTK::ToLegacyString(Microsoft::MSR::CNTK::ToUTF8(formatConfig(L"sequenceSeparator", Microsoft::MSR::CNTK::ToFixedWStringFromMultiByte(sequenceSeparator))));
sequencePrologue = Microsoft::MSR::CNTK::ToLegacyString(Microsoft::MSR::CNTK::ToUTF8(formatConfig(L"sequencePrologue", Microsoft::MSR::CNTK::ToFixedWStringFromMultiByte(sequencePrologue))));
sequenceEpilogue = Microsoft::MSR::CNTK::ToLegacyString(Microsoft::MSR::CNTK::ToUTF8(formatConfig(L"sequenceEpilogue", Microsoft::MSR::CNTK::ToFixedWStringFromMultiByte(sequenceEpilogue))));
elementSeparator = Microsoft::MSR::CNTK::ToLegacyString(Microsoft::MSR::CNTK::ToUTF8(formatConfig(L"elementSeparator", Microsoft::MSR::CNTK::ToFixedWStringFromMultiByte(elementSeparator))));
sampleSeparator = Microsoft::MSR::CNTK::ToLegacyString(Microsoft::MSR::CNTK::ToUTF8(formatConfig(L"sampleSeparator", Microsoft::MSR::CNTK::ToFixedWStringFromMultiByte(sampleSeparator))));
precisionFormat = Microsoft::MSR::CNTK::ToLegacyString(Microsoft::MSR::CNTK::ToUTF8(formatConfig(L"precisionFormat", Microsoft::MSR::CNTK::ToFixedWStringFromMultiByte(precisionFormat))));
// TODO: change those strings into wstrings to avoid this conversion mess
}
}
void WriteFormattingOptions::Save(File& fstream) const
{
fstream << isCategoryLabel;
fstream << labelMappingFile;
fstream << isSparse;
fstream << transpose;
fstream << prologue;
fstream << epilogue;
fstream << sequenceSeparator;
fstream << sequencePrologue;
fstream << sequenceEpilogue;
fstream << elementSeparator;
fstream << sampleSeparator;
fstream << precisionFormat;
}
void WriteFormattingOptions::Load(File& fstream, size_t modelVersion)
{
fstream >> isCategoryLabel;
fstream >> labelMappingFile;
fstream >> isSparse;
fstream >> transpose;
fstream >> prologue;
fstream >> epilogue;
fstream >> sequenceSeparator;
fstream >> sequencePrologue;
fstream >> sequenceEpilogue;
fstream >> elementSeparator;
fstream >> sampleSeparator;
fstream >> precisionFormat;
}
template WriteFormattingOptions::WriteFormattingOptions(const ConfigParameters&);
template WriteFormattingOptions::WriteFormattingOptions(const ScriptableObjects::IConfigRecord&);
// -----------------------------------------------------------------------
// static variables
// -----------------------------------------------------------------------
atomic_ullong TimeStamp::s_timeStampCounter = ATOMIC_VAR_INIT(0);
template <> map<size_t, map<size_t, shared_ptr<SingleMatrix>>> ComputationNode<float>::s_constOnes{};
template <> map<size_t, map<size_t, shared_ptr<DoubleMatrix>>> ComputationNode<double>::s_constOnes{};
template <> map<size_t, map<size_t, shared_ptr<HalfMatrix>>> ComputationNode<half>::s_constOnes{};
// -----------------------------------------------------------------------
// instantiate the core class templates
// -----------------------------------------------------------------------
template class ComputationNode<float>;
template class ComputationNode<double>;
template class ComputationNode<half>;
}}}
namespace Microsoft { namespace MSR { namespace ScriptableObjects {
using namespace Microsoft::MSR::CNTK;
// -----------------------------------------------------------------------
// register ComputationNode with the ScriptableObject system
// -----------------------------------------------------------------------
template <>
shared_ptr<Object> MakeRuntimeObject<ComputationNodeBase>(const IConfigRecordPtr configp)
{
let node = NewComputationNodeFromConfig(configp);
// temporarily disabling this, as it caused a test to fail:
//if (!node->Is<IRecurrentNode>())
// node->Validate(/*isFinalValidationPass*/false); // do an initial validation, so that we have access to dimensions
return node;
}
ScriptableObjects::ConfigurableRuntimeTypeRegister::Add<ComputationNodeBase> registerComputationNode(L"ComputationNode");
// -----------------------------------------------------------------------
// register a boxed version of TensorShape with the ScriptableObject system
// -----------------------------------------------------------------------
// e.g.
// new TensorShape [ dims = 13:42 ]
class BoxedTensorShape : public BoxOf<TensorShape>
{
public:
BoxedTensorShape(const IConfigRecordPtr configp) :
BoxOf<TensorShape>(TensorShape(ConfigArray::FlattenedVectorFrom<size_t>(configp->Get(L"dims"))))
{
}
};
template <typename E>
class BoxedVector : public BoxOf<vector<E>>
{
public:
BoxedVector(const IConfigRecordPtr configp) :
BoxOf<vector<E>>(ConfigArray::FlattenedVectorFrom<E>(configp->Get(L"items")))
{
}
};
ScriptableObjects::ConfigurableRuntimeTypeRegister::Add<BoxedTensorShape> registerTensorShape(L"TensorShape");
ScriptableObjects::ConfigurableRuntimeTypeRegister::Add<BoxedVector<int>> registerIntVector (L"IntVector");
ScriptableObjects::ConfigurableRuntimeTypeRegister::Add<BoxedVector<size_t>> registerSizeVector (L"SizeVector");
ScriptableObjects::ConfigurableRuntimeTypeRegister::Add<BoxedVector<bool>> registerBoolVector (L"BoolVector");
}}}