CNTK/Source/ComputationNetworkLib/DeprecatedNodes.h

294 строки
12 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#pragma once
#include "Basics.h"
#include "ComputationNode.h"
#include "Matrix.h"
namespace Microsoft { namespace MSR { namespace CNTK {
// -----------------------------------------------------------------------
// SumColumnElements (input)
// Sums up all elements in each sample (column) of the input. Every sample
// will be reduced to a scalar. This is equivalent to multiplying with a row of ones.
// This is deprecated, in favor of ReduceElements().
// -----------------------------------------------------------------------
template <class ElemType>
class SumColumnElementsNode : public ComputationNode<ElemType>, public NumInputs<1>
{
typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
static const std::wstring TypeName() { return L"SumColumnElements"; }
public:
DeclareConstructorFromConfigWithNumInputs(SumColumnElementsNode);
SumColumnElementsNode(DEVICEID_TYPE deviceId, const wstring& name)
: Base(deviceId, name)
{
}
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
{
auto sliceInputValue = InputRef(0).ValueFor(fr);
auto sliceOutputValue = ValueFor(fr); // row vector
Matrix<ElemType>::VectorSum(sliceInputValue, sliceOutputValue, true);
}
virtual void /*ComputationNode::*/ BackpropTo(const size_t /*inputIndex*/, const FrameRange& fr) override
{
auto sliceInputGrad = InputRef(0).GradientFor(fr);
auto sliceOutputGrad = GradientFor(fr);
sliceInputGrad += sliceOutputGrad; // here the assumption is that sliceOutputGrad is a row vector
}
virtual bool OutputUsedInComputingInputNodesGradients() const override { return false; }
virtual bool InputUsedInComputingInputNodesGradients(size_t /*childIndex*/) const override { return false; }
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
{
Base::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
SetDims(TensorShape::Scalar(Environment().IsV2Library()), Input(0)->HasMBLayout()); // each column is reduced to a scalar
}
};
template class SumColumnElementsNode<float>;
template class SumColumnElementsNode<double>;
// -----------------------------------------------------------------------
// (deprecated) PerDimMeanVarNormalizationNode (feature, mean, invStdDev)
// Computes
// output = (feature - mean) .* invStdDev
// where mean and invStdDev are meant to be single elements while features
// is minibatch data.
// Deprecated since it can be trivially expressed in BrainScript.
// -----------------------------------------------------------------------
template <class ElemType>
class PerDimMeanVarNormalizationNode : public ComputationNode<ElemType>, public NumInputs<3>
{
typedef ComputationNode<ElemType> Base;
UsingComputationNodeMembersBoilerplate;
static const std::wstring TypeName()
{
return L"PerDimMeanVarNormalization";
}
public:
DeclareConstructorFromConfigWithNumInputs(PerDimMeanVarNormalizationNode);
PerDimMeanVarNormalizationNode(DEVICEID_TYPE deviceId, const wstring& name)
: Base(deviceId, name)
{
}
virtual void /*ComputationNode::*/ BackpropTo(const size_t /*inputIndex*/, const FrameRange&) override
{
InvalidArgument("PerDimMeanVarNormalizationNode should only be called in the evaluation stage. Is any of its descendents a learnable parameter that requires gradient?");
}
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
{
size_t rank = DetermineElementwiseTensorRank();
auto output = ValueTensorFor(rank, fr);
auto input = InputRef(0).ValueTensorFor(rank, fr);
auto mean = Input(1)->ValueTensorFor(rank, fr.AllowBroadcast());
auto invStdDev = Input(2)->ValueTensorFor(rank, fr.AllowBroadcast());
output.AssignDifferenceOf(input, mean); // output = input - mean
output.AssignElementwiseProductOf(output, invStdDev); // output *= invStdDev
}
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
{
Base::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
Input(1)->ValidateInferInputDimsFrom(InputRef(0).GetSampleLayout());
Input(2)->ValidateInferInputDimsFrom(InputRef(0).GetSampleLayout());
#if 1
// support for legacy models when the mean and variance vectors were stored as column vectors (N,1)
// This code will copy the shape of Input(0) (source) to Input(1) and Input(2) (target) if:
// 1. The source is a 3-tensor with shape 1x1xM
// 2. The target is a vector (i.e., a 2-tensor with shape Nx1)
// 3. Both targets have the same number of elements
// 4. The number of elements in the target (N) is the same as the number of elements in the source (M)
// Note: This is somewhat ugly [Jasha Droppo].
auto dimsA = Input(0)->GetSampleLayout().GetDims();
auto dimsB = Input(1)->GetSampleLayout().GetDims();
auto dimsC = Input(2)->GetSampleLayout().GetDims();
if (
// Test condition 1.
(dimsA.size() == 3 && dimsA[0] == 1 && dimsA[1] == 1) &&
// Test condition 2.
(dimsB.size() == 2 && dimsB[1] == 1) &&
(dimsC.size() == 2 && dimsC[1] == 1) &&
// Test condition 3. and condition 4.
(dimsB[0] == dimsC[0] && dimsB[0] == dimsA[2])
)
{
// for error messages
string dimsBstring = string(Input(1)->GetSampleLayout());
string dimsCstring = string(Input(2)->GetSampleLayout());
// reshape Input(1)
Input(1)->SetDims(TensorShape(dimsA), false);
fprintf(stderr, "\n%ls %ls operation: For legacy compatibility, the sample layout of second input (%ls %ls operation) was patched to [%s] (from [%s])\n",
NodeName().c_str(), OperationName().c_str(), Input(1)->NodeName().c_str(), Input(1)->OperationName().c_str(), string(Input(1)->GetSampleLayout()).c_str(), dimsBstring.c_str());
// reshape Input(2)
Input(2)->SetDims(TensorShape(dimsA), false);
fprintf(stderr, "\n%ls %ls operation: For legacy compatibility, the sample layout of third input (%ls %ls operation) was patched to [%s] (from [%s])\n",
NodeName().c_str(), OperationName().c_str(), Input(2)->NodeName().c_str(), Input(2)->OperationName().c_str(), string(Input(2)->GetSampleLayout()).c_str(), dimsCstring.c_str());
}
#endif
if (isFinalValidationPass)
{
if (!Input(0)->GetSampleLayout().IsElementwiseCompatibleWith(Input(1)->GetSampleLayout()) || !Input(0)->GetSampleLayout().IsElementwiseCompatibleWith(Input(2)->GetSampleLayout()))
InvalidArgument("PerDimMeanVarNormalizationNode: All inputs should have same sample layout.");
}
SetDims(Input(0));
}
};
template class PerDimMeanVarNormalizationNode<float>;
template class PerDimMeanVarNormalizationNode<double>;
// -----------------------------------------------------------------------
// DiagTimesNode (vector representing the diagonal of a square matrix, data)
// Deprecated because can be implemented with ElementTimes.
// -----------------------------------------------------------------------
template <class ElemType>
class DiagTimesNode : public ComputationNode<ElemType>, public NumInputs<2>
{
typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
static const std::wstring TypeName() { return L"DiagTimes"; }
public:
DeclareConstructorFromConfigWithNumInputs(DiagTimesNode);
DiagTimesNode(DEVICEID_TYPE deviceId, const wstring& name)
: Base(deviceId, name)
{
}
virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
{
if (inputIndex == 0) // left derivative
{
Matrix<ElemType> sliceOutputGrad = MaskedGradientFor(fr); // use Masked- version since this is reducing over frames
Matrix<ElemType> sliceInput1Value = Input(1)->MaskedValueFor(fr);
m_innerproduct->AssignInnerProductOf(sliceOutputGrad, sliceInput1Value, false);
InputRef(0).GradientAsMatrix() += *m_innerproduct;
}
else // right derivative
{
Matrix<ElemType> sliceOutputGrad = GradientFor(fr);
Matrix<ElemType> sliceInput1Grad = Input(1)->GradientFor(fr);
m_rightGradient->SetValue(sliceOutputGrad);
m_rightGradient->ColumnElementMultiplyWith(InputRef(0).ValueAsMatrix());
sliceInput1Grad += *m_rightGradient;
}
}
virtual bool OutputUsedInComputingInputNodesGradients() const override
{
// The DiagTimesNode does not require its output value for computing
// the gradients of its input nodes
return false;
}
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
{
Matrix<ElemType> sliceInput1Value = Input(1)->ValueFor(fr);
Matrix<ElemType> sliceOutputValue = ValueFor(fr);
sliceOutputValue.AssignValuesOf(sliceInput1Value);
sliceOutputValue.ColumnElementMultiplyWith(InputRef(0).ValueAsMatrix());
}
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
{
Base::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
size_t rows0 = Input(0)->GetAsMatrixNumRows();
size_t rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
// if dimension not specified we assume two operands' dimensions should match
Input(0)->ValidateInferInputDimsFrom(TensorShape(rows1));
if (Input(1)->HasMBLayout())
{
// infer rows1 as rows0
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0));
SetDims(TensorShape(rows0), true);
}
else // multiplying two straight matrices
{
size_t cols1 = Input(1)->GetAsMatrixNumCols();
// infer rows1 as rows0
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0, cols1));
SetDims(TensorShape(rows0, cols1), false);
}
// update after inference
rows0 = Input(0)->GetAsMatrixNumRows();
rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
if (isFinalValidationPass && rows0 != rows1)
InvalidArgument("The inner matrix dimension in the %ls %ls operation does not match (%d vs. %d).", NodeName().c_str(), OperationName().c_str(), (int) rows1, (int) rows0);
size_t cols0 = Input(0)->GetAsMatrixNumCols();
if (isFinalValidationPass && cols0 != 1)
InvalidArgument("The first matrix should be a column vector representing the diagonal of a square matrix in the DiagTimes operation.");
SetDims(Input(1));
}
virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override
{
Base::CopyTo(nodeP, newName, flags);
if (flags & CopyNodeFlags::copyNodeValue)
{
auto node = dynamic_pointer_cast<DiagTimesNode<ElemType>>(nodeP);
node->m_innerproduct->SetValue(*m_innerproduct);
node->m_rightGradient->SetValue(*m_rightGradient);
}
}
// request matrices that are needed for gradient computation
virtual void RequestMatricesBeforeBackprop(MatrixPool& matrixPool)
{
Base::RequestMatricesBeforeBackprop(matrixPool);
RequestMatrixFromPool(m_innerproduct, matrixPool);
RequestMatrixFromPool(m_rightGradient, matrixPool);
}
// release gradient and temp matrices that no longer needed after all the children's gradients are computed.
virtual void ReleaseMatricesAfterBackprop(MatrixPool& matrixPool)
{
Base::ReleaseMatricesAfterBackprop(matrixPool);
ReleaseMatrixToPool(m_innerproduct, matrixPool);
ReleaseMatrixToPool(m_rightGradient, matrixPool);
}
private:
shared_ptr<Matrix<ElemType>> m_innerproduct;
shared_ptr<Matrix<ElemType>> m_rightGradient;
};
template class DiagTimesNode<float>;
template class DiagTimesNode<double>;
}}}