CNTK/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.gpu.txt

777 строки
53 KiB
Plaintext

CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config/Simple.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
08/16/2016 10:51:39: -------------------------------------------------------------------
08/16/2016 10:51:39: Build info:
08/16/2016 10:51:39: Built time: Aug 16 2016 09:41:56
08/16/2016 10:51:39: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:51:39: Build type: release
08/16/2016 10:51:39: Build target: GPU
08/16/2016 10:51:39: With 1bit-SGD: no
08/16/2016 10:51:39: Math lib: mkl
08/16/2016 10:51:39: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:51:39: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:51:39: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:51:39: Build Branch: HEAD
08/16/2016 10:51:39: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:51:39: Built by philly on f67b30a647de
08/16/2016 10:51:39: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:51:39: -------------------------------------------------------------------
08/16/2016 10:51:40: -------------------------------------------------------------------
08/16/2016 10:51:40: GPU info:
08/16/2016 10:51:40: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: -------------------------------------------------------------------
08/16/2016 10:51:40: Running on localhost at 2016/08/16 10:51:40
08/16/2016 10:51:40: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config/Simple.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 10:51:40: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:40: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = -1
command = Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
precision = "float"
traceLevel = 1
modelPath = "$ModelDir$/simple.dnn"
outputNodeNames = ScaledLogLikelihood
Simple_Demo_Train = [
action = "train"
SimpleNetworkBuilder = [
layerSizes = 2:50*2:2
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ClassificationError"
layerTypes = "Sigmoid"
initValueScale = 1.0
applyMeanVarNorm = true
uniformInit = true
needPrior = true
]
SGD = [
epochSize = 0
minibatchSize = 25
learningRatesPerMB = 0.5:0.2*20:0.1
momentumPerMB = 0.9
dropoutRate = 0.0
maxEpochs = 10
]
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
]
Simple_Demo_Test = [
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
]
Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "$OutputDir$/SimpleOutput"
format = [
type = "category"
labelMappingFile = "$DataDir$/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DeviceId=0
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 10:51:40: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:40: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:40: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models"
deviceId = -1
command = Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
precision = "float"
traceLevel = 1
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn"
outputNodeNames = ScaledLogLikelihood
Simple_Demo_Train = [
action = "train"
SimpleNetworkBuilder = [
layerSizes = 2:50*2:2
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ClassificationError"
layerTypes = "Sigmoid"
initValueScale = 1.0
applyMeanVarNorm = true
uniformInit = true
needPrior = true
]
SGD = [
epochSize = 0
minibatchSize = 25
learningRatesPerMB = 0.5:0.2*20:0.1
momentumPerMB = 0.9
dropoutRate = 0.0
maxEpochs = 10
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
]
Simple_Demo_Test = [
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
]
Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DeviceId=0
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 10:51:40: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:40: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Simple.cntk:command=Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
configparameters: Simple.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
configparameters: Simple.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:deviceId=0
configparameters: Simple.cntk:ModelDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models
configparameters: Simple.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
configparameters: Simple.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Simple.cntk:precision=float
configparameters: Simple.cntk:RootDir=..
configparameters: Simple.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
configparameters: Simple.cntk:Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
configparameters: Simple.cntk:Simple_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
]
configparameters: Simple.cntk:Simple_Demo_Train=[
action = "train"
SimpleNetworkBuilder = [
layerSizes = 2:50*2:2
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ClassificationError"
layerTypes = "Sigmoid"
initValueScale = 1.0
applyMeanVarNorm = true
uniformInit = true
needPrior = true
]
SGD = [
epochSize = 0
minibatchSize = 25
learningRatesPerMB = 0.5:0.2*20:0.1
momentumPerMB = 0.9
dropoutRate = 0.0
maxEpochs = 10
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
format = "dense"
]
labels = [
dim = 2
format = "dense"
]
]
]
] [SGD=[maxEpochs=3]]
configparameters: Simple.cntk:timestamping=true
configparameters: Simple.cntk:traceLevel=1
08/16/2016 10:51:40: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:40: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
08/16/2016 10:51:40: Precision = "float"
08/16/2016 10:51:40: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn
08/16/2016 10:51:40: CNTKCommandTrainInfo: Simple_Demo_Train : 3
08/16/2016 10:51:40: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:51:40: ##############################################################################
08/16/2016 10:51:40: # #
08/16/2016 10:51:40: # Action "train" #
08/16/2016 10:51:40: # #
08/16/2016 10:51:40: ##############################################################################
08/16/2016 10:51:40: CNTKCommandTrainBegin: Simple_Demo_Train
SimpleNetworkBuilder Using GPU 0
08/16/2016 10:51:40: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
SetUniformRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
7 roots:
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
EvalClassificationError = ClassificationError()
InvStdOfFeatures = InvStdDev()
MeanOfFeatures = Mean()
PosteriorProb = Softmax()
Prior = Mean()
ScaledLogLikelihood = Minus()
Validating network. 25 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [2 x *]
Validating --> W2 = LearnableParameter() : -> [2 x 50]
Validating --> W1 = LearnableParameter() : -> [50 x 50]
Validating --> W0 = LearnableParameter() : -> [50 x 2]
Validating --> features = InputValue() : -> [2 x *]
Validating --> MeanOfFeatures = Mean (features) : [2 x *] -> [2]
Validating --> InvStdOfFeatures = InvStdDev (features) : [2 x *] -> [2]
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization (features, MeanOfFeatures, InvStdOfFeatures) : [2 x *], [2], [2] -> [2 x *]
Validating --> W0*features = Times (W0, MVNormalizedFeatures) : [50 x 2], [2 x *] -> [50 x *]
Validating --> B0 = LearnableParameter() : -> [50 x 1]
Validating --> W0*features+B0 = Plus (W0*features, B0) : [50 x *], [50 x 1] -> [50 x 1 x *]
Validating --> H1 = Sigmoid (W0*features+B0) : [50 x 1 x *] -> [50 x 1 x *]
Validating --> W1*H1 = Times (W1, H1) : [50 x 50], [50 x 1 x *] -> [50 x 1 x *]
Validating --> B1 = LearnableParameter() : -> [50 x 1]
Validating --> W1*H1+B1 = Plus (W1*H1, B1) : [50 x 1 x *], [50 x 1] -> [50 x 1 x *]
Validating --> H2 = Sigmoid (W1*H1+B1) : [50 x 1 x *] -> [50 x 1 x *]
Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
Validating --> B2 = LearnableParameter() : -> [2 x 1]
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
Validating --> ScaledLogLikelihood = Minus (HLast, LogOfPrior) : [2 x 1 x *], [2] -> [2 x 1 x *]
Validating network. 17 nodes to process in pass 2.
Validating network, final pass.
12 out of 25 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
08/16/2016 10:51:40: Created model with 25 nodes on GPU 0.
08/16/2016 10:51:40: Training criterion node(s):
08/16/2016 10:51:40: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 10:51:40: Evaluation criterion node(s):
08/16/2016 10:51:40: EvalClassificationError = ClassificationError
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
08/16/2016 10:51:40: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
08/16/2016 10:51:40: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:51:40: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:51:40: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 10:51:40: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 10:51:40: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 10:51:40: Node 'W2' (LearnableParameter operation) : [2 x 50]
08/16/2016 10:51:40: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:51:40: MeanOfFeatures = Mean()
08/16/2016 10:51:40: InvStdOfFeatures = InvStdDev()
08/16/2016 10:51:40: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:40: Precomputing --> Completed.
08/16/2016 10:51:40: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:40: Starting minibatch loop.
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70124231 * 250; EvalClassificationError = 0.52800000 * 250; time = 0.0078s; samplesPerSecond = 32034.9
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76372424 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0064s; samplesPerSecond = 38892.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72703027 * 250; EvalClassificationError = 0.54400000 * 250; time = 0.0064s; samplesPerSecond = 39166.5
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.73895923 * 250; EvalClassificationError = 0.56800000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70621924 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0065s; samplesPerSecond = 38759.7
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74767041 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0065s; samplesPerSecond = 38753.7
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75094434 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0064s; samplesPerSecond = 38989.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78058936 * 250; EvalClassificationError = 0.48400000 * 250; time = 0.0064s; samplesPerSecond = 38922.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70407129 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0064s; samplesPerSecond = 39265.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69555762 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0064s; samplesPerSecond = 38922.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70626123 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0064s; samplesPerSecond = 38844.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74540430 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0064s; samplesPerSecond = 39178.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70824414 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0064s; samplesPerSecond = 39209.5
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69895020 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70353223 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0065s; samplesPerSecond = 38669.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69346387 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0064s; samplesPerSecond = 38989.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74449902 * 250; EvalClassificationError = 0.52800000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73767969 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0064s; samplesPerSecond = 39025.9
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71876855 * 250; EvalClassificationError = 0.48400000 * 250; time = 0.0063s; samplesPerSecond = 39594.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71509473 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0064s; samplesPerSecond = 39271.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69956152 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69785937 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0062s; samplesPerSecond = 40303.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70736035 * 250; EvalClassificationError = 0.54400000 * 250; time = 0.0063s; samplesPerSecond = 39563.2
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69820508 * 250; EvalClassificationError = 0.56800000 * 250; time = 0.0062s; samplesPerSecond = 40512.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69537109 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0063s; samplesPerSecond = 39432.2
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69347266 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0062s; samplesPerSecond = 40492.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70801172 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0061s; samplesPerSecond = 40909.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69131641 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0062s; samplesPerSecond = 40257.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70370312 * 250; EvalClassificationError = 0.52800000 * 250; time = 0.0062s; samplesPerSecond = 40270.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71200195 * 250; EvalClassificationError = 0.43600000 * 250; time = 0.0061s; samplesPerSecond = 40909.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69506836 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0062s; samplesPerSecond = 40577.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69935352 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0061s; samplesPerSecond = 40889.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69887109 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0062s; samplesPerSecond = 40440.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.69604492 * 250; EvalClassificationError = 0.49200000 * 250; time = 0.0062s; samplesPerSecond = 40512.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.69011719 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0062s; samplesPerSecond = 40617.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.68419531 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0061s; samplesPerSecond = 40783.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.67551367 * 250; EvalClassificationError = 0.32400000 * 250; time = 0.0063s; samplesPerSecond = 39904.2
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.67028516 * 250; EvalClassificationError = 0.40000000 * 250; time = 0.0062s; samplesPerSecond = 40044.9
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.65152734 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0062s; samplesPerSecond = 40630.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.63594727 * 250; EvalClassificationError = 0.22000000 * 250; time = 0.0062s; samplesPerSecond = 40283.6
08/16/2016 10:51:40: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70729233 * 10000; EvalClassificationError = 0.47740000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.256818s
08/16/2016 10:51:40: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.1'
08/16/2016 10:51:40: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 10:51:40: Starting minibatch loop.
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.61492108 * 250; EvalClassificationError = 0.26800000 * 250; time = 0.0064s; samplesPerSecond = 38801.8
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.59171271 * 250; EvalClassificationError = 0.28400000 * 250; time = 0.0063s; samplesPerSecond = 39923.3
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.53591638 * 250; EvalClassificationError = 0.20000000 * 250; time = 0.0062s; samplesPerSecond = 40122.0
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.51872742 * 250; EvalClassificationError = 0.14000000 * 250; time = 0.0062s; samplesPerSecond = 40479.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.48384375 * 250; EvalClassificationError = 0.12400000 * 250; time = 0.0062s; samplesPerSecond = 40109.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.43163501 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0062s; samplesPerSecond = 40128.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.38970386 * 250; EvalClassificationError = 0.12400000 * 250; time = 0.0063s; samplesPerSecond = 39733.0
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.33681616 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0062s; samplesPerSecond = 40044.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.31352393 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0062s; samplesPerSecond = 40525.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.26829492 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40270.6
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.24240820 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0063s; samplesPerSecond = 39531.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.21015820 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0062s; samplesPerSecond = 40012.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.22358789 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0061s; samplesPerSecond = 40856.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.20496631 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0061s; samplesPerSecond = 40756.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20070508 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40643.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.19224707 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0061s; samplesPerSecond = 40896.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.19326562 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0061s; samplesPerSecond = 40789.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21712451 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0061s; samplesPerSecond = 40883.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.17562354 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0061s; samplesPerSecond = 40869.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.18186035 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40577.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.14065234 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0062s; samplesPerSecond = 40212.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17710254 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0065s; samplesPerSecond = 38711.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13001953 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0064s; samplesPerSecond = 38819.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21622949 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0063s; samplesPerSecond = 39613.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21902246 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0063s; samplesPerSecond = 39904.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.18068799 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0064s; samplesPerSecond = 39332.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16232471 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39160.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13792139 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0063s; samplesPerSecond = 39607.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16526709 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39080.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14743457 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0063s; samplesPerSecond = 39619.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.15089160 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0064s; samplesPerSecond = 39339.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12636230 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0063s; samplesPerSecond = 39834.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16735547 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0063s; samplesPerSecond = 39382.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14530957 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0064s; samplesPerSecond = 39044.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13859570 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0063s; samplesPerSecond = 39638.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14215234 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0064s; samplesPerSecond = 39351.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15903027 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0064s; samplesPerSecond = 39203.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16232520 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39191.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13596484 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0064s; samplesPerSecond = 39099.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15469434 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 38965.1
08/16/2016 10:51:41: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.24215964 * 10000; EvalClassificationError = 0.09440000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.253663s
08/16/2016 10:51:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.2'
08/16/2016 10:51:41: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 10:51:41: Starting minibatch loop.
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18305315 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0064s; samplesPerSecond = 38880.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12945729 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0063s; samplesPerSecond = 39980.8
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17735931 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0065s; samplesPerSecond = 38729.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14128339 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0064s; samplesPerSecond = 39013.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16558209 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0064s; samplesPerSecond = 39080.8
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19102692 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0065s; samplesPerSecond = 38627.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12279083 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0064s; samplesPerSecond = 39001.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16642798 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0065s; samplesPerSecond = 38314.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12386572 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0064s; samplesPerSecond = 38844.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19928418 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0065s; samplesPerSecond = 38681.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14213635 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0064s; samplesPerSecond = 38898.4
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12377087 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0062s; samplesPerSecond = 40032.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16361621 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0063s; samplesPerSecond = 39789.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.19886914 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0063s; samplesPerSecond = 39821.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.17207544 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0063s; samplesPerSecond = 39968.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13323437 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0063s; samplesPerSecond = 39663.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14397510 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0063s; samplesPerSecond = 39866.1
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.20777515 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0063s; samplesPerSecond = 39980.8
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19094092 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40057.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.14731372 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0062s; samplesPerSecond = 40038.4
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15483569 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39252.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13625415 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0065s; samplesPerSecond = 38491.1
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17354004 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0063s; samplesPerSecond = 39942.5
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14408350 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39013.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13720044 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0062s; samplesPerSecond = 40025.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14236426 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0062s; samplesPerSecond = 40019.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16857861 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0063s; samplesPerSecond = 39847.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18606982 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40381.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16334619 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0062s; samplesPerSecond = 40199.4
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15598535 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0063s; samplesPerSecond = 39827.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18848584 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0062s; samplesPerSecond = 40238.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13281348 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0063s; samplesPerSecond = 39669.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14679150 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0063s; samplesPerSecond = 39419.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13977344 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0063s; samplesPerSecond = 39726.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20015137 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0062s; samplesPerSecond = 40244.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12582129 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0063s; samplesPerSecond = 39388.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18500098 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0062s; samplesPerSecond = 40051.3
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15147754 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0062s; samplesPerSecond = 40057.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11988379 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0063s; samplesPerSecond = 39827.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.13059082 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0064s; samplesPerSecond = 39345.3
08/16/2016 10:51:41: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15767216 * 10000; EvalClassificationError = 0.07330000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.255461s
08/16/2016 10:51:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn'
08/16/2016 10:51:41: CNTKCommandTrainEnd: Simple_Demo_Train
08/16/2016 10:51:41: Action "train" complete.
08/16/2016 10:51:41: ##############################################################################
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: # Action "test" #
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: ##############################################################################
Post-processing network...
7 roots:
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
EvalClassificationError = ClassificationError()
InvStdOfFeatures = InvStdDev()
MeanOfFeatures = Mean()
PosteriorProb = Softmax()
Prior = Mean()
ScaledLogLikelihood = Minus()
Validating network. 25 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [2 x *1]
Validating --> W2 = LearnableParameter() : -> [2 x 50]
Validating --> W1 = LearnableParameter() : -> [50 x 50]
Validating --> W0 = LearnableParameter() : -> [50 x 2]
Validating --> features = InputValue() : -> [2 x *1]
Validating --> MeanOfFeatures = Mean (features) : [2 x *1] -> [2]
Validating --> InvStdOfFeatures = InvStdDev (features) : [2 x *1] -> [2]
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization (features, MeanOfFeatures, InvStdOfFeatures) : [2 x *1], [2], [2] -> [2 x *1]
Validating --> W0*features = Times (W0, MVNormalizedFeatures) : [50 x 2], [2 x *1] -> [50 x *1]
Validating --> B0 = LearnableParameter() : -> [50 x 1]
Validating --> W0*features+B0 = Plus (W0*features, B0) : [50 x *1], [50 x 1] -> [50 x 1 x *1]
Validating --> H1 = Sigmoid (W0*features+B0) : [50 x 1 x *1] -> [50 x 1 x *1]
Validating --> W1*H1 = Times (W1, H1) : [50 x 50], [50 x 1 x *1] -> [50 x 1 x *1]
Validating --> B1 = LearnableParameter() : -> [50 x 1]
Validating --> W1*H1+B1 = Plus (W1*H1, B1) : [50 x 1 x *1], [50 x 1] -> [50 x 1 x *1]
Validating --> H2 = Sigmoid (W1*H1+B1) : [50 x 1 x *1] -> [50 x 1 x *1]
Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
Validating --> B2 = LearnableParameter() : -> [2 x 1]
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
Validating --> ScaledLogLikelihood = Minus (HLast, LogOfPrior) : [2 x 1 x *1], [2] -> [2 x 1 x *1]
Validating network. 17 nodes to process in pass 2.
Validating network, final pass.
12 out of 25 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
evalNodeNames are not specified, using all the default evalnodes and training criterion nodes.
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:41: Minibatch[1-1]: EvalClassificationError = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10845041 * 603
08/16/2016 10:51:41: Final Results: Minibatch[1-1]: EvalClassificationError = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10845041 * 603; perplexity = 1.11454964
08/16/2016 10:51:41: Action "test" complete.
08/16/2016 10:51:41: ##############################################################################
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: # Action "write" #
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: ##############################################################################
Post-processing network...
8 roots:
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
EvalClassificationError = ClassificationError()
InvStdOfFeatures = InvStdDev()
MeanOfFeatures = Mean()
PosteriorProb = Softmax()
Prior = Mean()
ScaledLogLikelihood = Minus()
labels = InputValue()
Validating network. 25 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [2 x *2]
Validating --> W2 = LearnableParameter() : -> [2 x 50]
Validating --> W1 = LearnableParameter() : -> [50 x 50]
Validating --> W0 = LearnableParameter() : -> [50 x 2]
Validating --> features = InputValue() : -> [2 x *2]
Validating --> MeanOfFeatures = Mean (features) : [2 x *2] -> [2]
Validating --> InvStdOfFeatures = InvStdDev (features) : [2 x *2] -> [2]
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization (features, MeanOfFeatures, InvStdOfFeatures) : [2 x *2], [2], [2] -> [2 x *2]
Validating --> W0*features = Times (W0, MVNormalizedFeatures) : [50 x 2], [2 x *2] -> [50 x *2]
Validating --> B0 = LearnableParameter() : -> [50 x 1]
Validating --> W0*features+B0 = Plus (W0*features, B0) : [50 x *2], [50 x 1] -> [50 x 1 x *2]
Validating --> H1 = Sigmoid (W0*features+B0) : [50 x 1 x *2] -> [50 x 1 x *2]
Validating --> W1*H1 = Times (W1, H1) : [50 x 50], [50 x 1 x *2] -> [50 x 1 x *2]
Validating --> B1 = LearnableParameter() : -> [50 x 1]
Validating --> W1*H1+B1 = Plus (W1*H1, B1) : [50 x 1 x *2], [50 x 1] -> [50 x 1 x *2]
Validating --> H2 = Sigmoid (W1*H1+B1) : [50 x 1 x *2] -> [50 x 1 x *2]
Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *2] -> [2 x 1 x *2]
Validating --> B2 = LearnableParameter() : -> [2 x 1]
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *2], [2 x 1] -> [2 x 1 x *2]
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *2] -> [2 x 1 x *2]
Validating --> Prior = Mean (labels) : [2 x *2] -> [2]
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
Validating --> ScaledLogLikelihood = Minus (HLast, LogOfPrior) : [2 x 1 x *2], [2] -> [2 x 1 x *2]
Validating network. 17 nodes to process in pass 2.
Validating network, final pass.
12 out of 25 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 25 matrices, 3 are shared as 1, and 22 are not shared.
{ CrossEntropyWithSoftmax : [1]
EvalClassificationError : [1]
ScaledLogLikelihood : [2 x 1 x *2] }
Minibatch[0]: ActualMBSize = 603
Written to /tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput*
Total Samples Evaluated = 603
08/16/2016 10:51:41: Action "write" complete.
08/16/2016 10:51:41: __COMPLETED__