CNTK/Source/Math/GPUMatrix.h

530 строки
32 KiB
C++

//
// <copyright file="GPUMatrix.h" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
#pragma once
#include "Platform.h"
#include "File.h"
#include "Helpers.h"
#include "CommonMatrix.h"
#include "TensorShape.h" // only for SmallVector; I was hoping to keep this out
#include "DebugUtil.h"
#include "BestGpu.h" // for CPUONLY macro
#include "ConcStack.h"
#include <string>
#include <vector>
#include <array>
#include <ctime>
#include <iostream> // for cout/cerr
#include <memory> // for unique_ptr
#include <limits.h> // for ULONG_MAX
// predeclare cublasHandle_t
struct cublasContext;
typedef struct cublasContext *cublasHandle_t;
struct CUstream_st;
typedef struct CUstream_st *cudaStream_t;
#ifdef _WIN32
#ifndef MATH_API
#ifdef MATH_EXPORTS
#define MATH_API __declspec(dllexport)
#else
#define MATH_API __declspec(dllimport)
#endif
#endif /* MATH_API */
#else // no DLLs in Linux
#define MATH_API
#endif
#ifndef USE_TIME_BASED_SEED
#define USE_TIME_BASED_SEED ULONG_MAX
#endif
// Stream management functions
void MATH_API SetStream(cudaStream_t stream);
cudaStream_t MATH_API GetStream();
namespace Microsoft { namespace MSR { namespace CNTK {
// -----------------------------------------------------------------------
// DeviceBoundNumber -- This class represents a number which resides on a particular device. Use it to avoid unnecessary transfers between CPU and GPU
// -----------------------------------------------------------------------
template<class ElemType>
class MATH_API DeviceBoundNumber
{
private:
DEVICEID_TYPE m_computeDevice;
ElemType* m_data;
public:
DeviceBoundNumber() {m_data=NULL;};
DeviceBoundNumber(const DeviceBoundNumber<ElemType> &deepCopy);
DeviceBoundNumber(DeviceBoundNumber<ElemType> &&shallowCopy);
~DeviceBoundNumber();
DEVICEID_TYPE GetDeviceId() const { return m_computeDevice; }
ElemType* ExposePointer2Value() const {return m_data;}
//performs shallow copy only
void ShallowCopyFrom(ElemType* newVal,int newValsDevceId);
};
// -----------------------------------------------------------------------
// GPUMatrix
// -----------------------------------------------------------------------
void PrepareDevice(DEVICEID_TYPE deviceId);
template<class ElemType>
class MATH_API GPUMatrix : public BaseMatrix<ElemType>
{
typedef BaseMatrix<ElemType> B; using B::m_numRows; using B::m_numCols; using B::m_pArray; // without this, base members would require to use thi-> in GCC
template<typename T>
friend class GPUMatrix;
public:
static const int MaxGpus = 8; // support up to 8 GPUs
using BaseMatrix<ElemType>::m_computeDevice;
using BaseMatrix<ElemType>::m_elemSizeAllocated;
using BaseMatrix<ElemType>::m_matrixName;
using BaseMatrix<ElemType>::m_format;
using BaseMatrix<ElemType>::m_externalBuffer;
using BaseMatrix<ElemType>::m_nz;
using BaseMatrix<ElemType>::OwnBuffer;
using BaseMatrix<ElemType>::GetNumElements;
using BaseMatrix<ElemType>::IsEmpty;
using BaseMatrix<ElemType>::GetArray;
using BaseMatrix<ElemType>::GetNumRows;
using BaseMatrix<ElemType>::GetNumCols;
using BaseMatrix<ElemType>::SetMatrixName;
private:
static cublasHandle_t s_cuHandle[MaxGpus];
static void *s_curandGenerator;
// Have to use naked pointer to avoid issues with __declspec(dllexport) on Windows (C4251).
// Cannot use atomic for the same reason either.
mutable conc_stack<std::unique_ptr<GPUMatrix<ElemType>>>* m_workspace;
private:
void performElementWiseFunction(const ElementWiseOperator kind, const ElemType *src);
size_t LocateElement (const size_t i, const size_t j) const;
size_t LocateColumn (const size_t j) const;
void Clear();
void ZeroInit(int deviceId);
std::unique_ptr<GPUMatrix<ElemType>> GetOrCreateWorkspace() const;
void ReleaseWorkspace(std::unique_ptr<GPUMatrix<ElemType>> src) const;
public:
GPUMatrix(int deviceId);
GPUMatrix(FILE* f, const char * matrixName, int deviceId);
GPUMatrix(const size_t numRows, const size_t numCols, int deviceId);
GPUMatrix(const size_t numRows, const size_t numCols, int deviceId, ElemType *pArray, const size_t matrixFlags = matrixFlagNormal);
GPUMatrix(const GPUMatrix<ElemType>& deepCopyFrom);
GPUMatrix<ElemType>& operator=(const GPUMatrix<ElemType>& deepCopyFrom); //assignment operator, deep copy
GPUMatrix(GPUMatrix<ElemType>&& moveFrom);
GPUMatrix<ElemType>& operator=(GPUMatrix<ElemType>&& moveFrom); //move assignment operator, shallow copy
~GPUMatrix(void);
static void SetDevice(DEVICEID_TYPE deviceId);
static DEVICEID_TYPE GetBestGPUDeviceId();
int GetComputeDeviceId() const;
DEVICEID_TYPE PrepareDevice(DEVICEID_TYPE deviceId = -1) const;
static cublasHandle_t GetCublasHandle(int computeDevice=-1);
ElemType* CopyToArray() const; //allocated by the callee but need to be deleted by the caller
size_t CopyToArray(ElemType*& arrayCopyTo, size_t& currentArraySize) const; //allocated by the callee but need to be deleted by the caller
void CopySection(size_t numRows, size_t numCols, ElemType* dst, size_t colStride) const;
void ChangeDeviceTo(DEVICEID_TYPE to_id);
public:
GPUMatrix<ElemType> ColumnSlice(size_t startColumn, size_t numCols) const;
GPUMatrix<ElemType>& AssignColumnSlice(const GPUMatrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
GPUMatrix<ElemType>& SetColumnSlice(const GPUMatrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
void CopyColumnsStrided(const GPUMatrix<ElemType>& fromMatrix, size_t numCols, size_t srcNumColsStride, size_t destNumColsStride);
GPUMatrix<ElemType> Diagonal() const;
size_t BufferSize() const {return m_numRows*m_numCols*sizeof(ElemType);}
ElemType* BufferPointer() const {return m_pArray;}
ElemType Adagrad(GPUMatrix<ElemType>& gradients, const bool needAveMultiplier);
void FSAdagrad(GPUMatrix<ElemType>& gradients, GPUMatrix<ElemType>& functionValues, ElemType learnRatePerSample, ElemType momentum, ElemType adaWeight, ElemType adaMul);
ElemType RmsProp(GPUMatrix<ElemType>& gradients, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, ElemType RMS_WGT_MAX, ElemType RMS_WGT_DEC, ElemType RMS_WGT_MIN, const bool needAveMultiplier);
void Reshape(const size_t numRows, const size_t numCols);
void Resize(const size_t numRows, const size_t numCols, bool growOnly = true); //by default we only reallocate if need to grow
ElemType& operator() (const size_t /*row*/, const size_t /*col*/) { LogicError("GPUMatrix doesn't support this"); }
const ElemType& operator() (const size_t /*row*/, const size_t /*col*/) const { LogicError("GPUMatrix doesn't support this"); }
ElemType Get00Element() const;
void SetValue(const ElemType v);
void SetValue(const ElemType* d_v); //d_v is pointer to the the value in GPU memory
void SetColumn(const ElemType* colPointer, size_t colInd);
void SetColumn(const GPUMatrix<ElemType>& valMat, size_t colInd);
void MaskColumnsValue(const GPUMatrix<char>& columnsMask, ElemType val);
void SetValue(const GPUMatrix<ElemType>& deepCopyFrom);
void SetValue(const size_t numRows, const size_t numCols, int deviceId, ElemType *pArray, size_t matrixFlags = matrixFlagNormal);
void SetDiagonalValue(const ElemType v);
void SetDiagonalValue(const GPUMatrix<ElemType>& vector);
void SetUniformRandomValue(const ElemType low, const ElemType high, unsigned long seed=USE_TIME_BASED_SEED);
void SetGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed=USE_TIME_BASED_SEED);
void SetUniformRandomMask(const ElemType maskRate, const ElemType scaleValue, unsigned long seed=USE_TIME_BASED_SEED);
GPUMatrix<ElemType> Transpose() const;
GPUMatrix<ElemType>& AssignTransposeOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& operator+= (const ElemType alpha);
GPUMatrix<ElemType> operator+ (const ElemType alpha) const;
GPUMatrix<ElemType>& AssignSumOf(const ElemType alpha, const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& operator+= (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType> operator+ (const GPUMatrix<ElemType>& a) const;
GPUMatrix<ElemType>& AssignSumOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& operator-= (const ElemType alpha);
GPUMatrix<ElemType> operator- (const ElemType alpha) const;
GPUMatrix<ElemType>& AssignDifferenceOf(const ElemType alpha, const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AssignDifferenceOf(const GPUMatrix<ElemType>& a, const ElemType alpha);
GPUMatrix<ElemType>& operator-= (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType> operator- (const GPUMatrix<ElemType>& a) const;
GPUMatrix<ElemType>& AssignDifferenceOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& operator*= (const ElemType alpha);
GPUMatrix<ElemType> operator* (const ElemType alpha) const;
GPUMatrix<ElemType>& AssignProductOf(const ElemType alpha, const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType> operator* (const GPUMatrix<ElemType>& a) const;
GPUMatrix<ElemType>& AssignProductOf(const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB);
GPUMatrix<ElemType>& operator/= (ElemType alpha);
GPUMatrix<ElemType> operator/ (ElemType alpha) const;
GPUMatrix<ElemType>& operator^= (ElemType alpha); //element-wise power
GPUMatrix<ElemType> operator^ (ElemType alpha) const; //element-wise power
GPUMatrix<ElemType>& AssignElementPowerOf(const GPUMatrix<ElemType>& a, const ElemType power);
GPUMatrix<ElemType>& ElementMultiplyWith (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AssignElementProductOf (const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& AddElementProductOf (const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& AssignElementDivisionOf (const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& ElementDivideBy(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& ColumnElementMultiplyWith(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& RowElementMultiplyWith(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& ColumnElementDivideBy(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& RowElementDivideBy(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& ElementInverse ();
GPUMatrix<ElemType>& AssignElementInverseOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceLinearRectifierDerivative();
GPUMatrix<ElemType>& AssignLinearRectifierDerivativeOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceSigmoidDerivative();
GPUMatrix<ElemType>& AssignSigmoidDerivativeOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceSigmoid ();
GPUMatrix<ElemType>& AssignSigmoidOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceTanh ();
GPUMatrix<ElemType>& AssignTanhOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceLogSoftmax (const bool isColWise);
GPUMatrix<ElemType>& AssignLogSoftmaxOf (const GPUMatrix<ElemType>& a, const bool isColWise);
GPUMatrix<ElemType>& InplaceHardmax(const bool isColWise);
GPUMatrix<ElemType>& AssignHardmaxOf(const GPUMatrix<ElemType>& a, const bool isColWise);
//sequence training
GPUMatrix<ElemType>& DropFrame(const GPUMatrix<ElemType>& label, const GPUMatrix<ElemType>& gamma, const ElemType & threshhold);
GPUMatrix<ElemType>& AssignSequenceError(const ElemType hsmoothingWeight, const GPUMatrix<ElemType>& label, const GPUMatrix<ElemType>& dnnoutput, const GPUMatrix<ElemType>& gamma, ElemType alpha);
GPUMatrix<ElemType>& InplaceSqrt ();
GPUMatrix<ElemType>& AssignSqrtOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceExp ();
GPUMatrix<ElemType>& AssignExpOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceLog ();
GPUMatrix<ElemType>& AssignLogOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceCosine ();
GPUMatrix<ElemType>& AssignCosineOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceNegativeSine ();
GPUMatrix<ElemType>& AssignNegativeSineOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceAbs ();
GPUMatrix<ElemType>& AssignAbsOf (const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceTruncateBottom (const ElemType threshold);
GPUMatrix<ElemType>& AssignTruncateBottomOf (const GPUMatrix<ElemType>& a, const ElemType threshold);
GPUMatrix<ElemType>& InplaceTruncateTop (const ElemType threshold);
GPUMatrix<ElemType>& AssignTruncateTopOf (const GPUMatrix<ElemType>& a, const ElemType threshold);
GPUMatrix<ElemType>& InplaceTruncate(const ElemType threshold);
GPUMatrix<ElemType>& InplaceSoftThreshold(const ElemType threshold);
GPUMatrix<ElemType>& SetToZeroIfAbsLessThan (const ElemType threshold);
DeviceBoundNumber<ElemType> Sum_AsDeviceBoundNum() const;
ElemType SumOfAbsElements () const; //sum of all abs(elements)
ElemType SumOfElements () const; //sum of all elements
GPUMatrix<ElemType>& AssignSumOfElements(const GPUMatrix<ElemType>& a);
ElemType Max () const;
bool IsEqualTo(const GPUMatrix<ElemType>& a, const ElemType threshold = 1e-8) const;
static void VectorSum(const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c, const bool isColWise);
void VectorNorm1(GPUMatrix<ElemType>& c, const bool isColWise) const;
GPUMatrix<ElemType>& AssignVectorNorm1Of(GPUMatrix<ElemType>& a, const bool isColWise);
void VectorNorm2(GPUMatrix<ElemType>& c, const bool isColWise) const;
GPUMatrix<ElemType>& AssignVectorNorm2Of(GPUMatrix<ElemType>& a, const bool isColWise);
void VectorNormInf(GPUMatrix<ElemType>& c, const bool isColWise) const;
GPUMatrix<ElemType>& AssignVectorNormInfOf(GPUMatrix<ElemType>& a, const bool isColWise);
GPUMatrix<ElemType>& AssignInnerProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const bool isColWise);
GPUMatrix<ElemType>& AssignKhatriRaoProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& AddColumnReshapeProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const bool transposeAColumn);
GPUMatrix<ElemType>& AddWithScaleOf(ElemType alpha, const GPUMatrix<ElemType>& a);
ElemType FrobeniusNorm() const;
GPUMatrix<ElemType>& AssignFrobeniusNormOf(const GPUMatrix<ElemType>& a);
ElemType MatrixNormInf() const;
ElemType MatrixNorm1() const;
ElemType MatrixNorm0() const; //number of non-zero elemets
GPUMatrix<ElemType>& AssignSignOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AddSignOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AssignToRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
GPUMatrix<ElemType>& AssignRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
GPUMatrix<ElemType>& AddToRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
GPUMatrix<ElemType>& AddWithRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
//GPUMatrix<ElemType>& AssignRowStackValuesOf(const std::vector<const GPUMatrix<ElemType>*>& inputMatrices, const size_t sliceStartCol, const size_t sliceNumCols);
GPUMatrix<ElemType>& AssignRepeatOf(const GPUMatrix<ElemType>& a, const size_t numRowRepeats, const size_t numColRepeats);
GPUMatrix<ElemType>& AddToRowRepeatValuesOf(const GPUMatrix<ElemType>& a, const size_t numRowRepeats);
GPUMatrix<ElemType>& AssignPositiveAndShiftedNegSample(const GPUMatrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
GPUMatrix<ElemType>& AddFoldedPositiveAndShiftedNegSample(const GPUMatrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
void VectorMax(GPUMatrix<ElemType>& maxIndexes, GPUMatrix<ElemType>& maxValues, const bool isColWise) const;
void VectorMax(GPUMatrix<ElemType>& maxIndexes, GPUMatrix<ElemType>& maxValues, const bool isColWise, int topK) const;
void VectorMin(GPUMatrix<ElemType>& minIndexes, GPUMatrix<ElemType>& minValues, const bool isColWise) const;
GPUMatrix<ElemType>& AssignNumOfDiff(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, bool searchInCol = false);
GPUMatrix<ElemType>& AssignInnerProductOfMatrices(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
void AssignNoiseContrastiveEstimation(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const GPUMatrix<ElemType>& bias,
size_t sampleCount, GPUMatrix<ElemType>& tmp, GPUMatrix<ElemType>& c);
void AssignNCEDerivative(GPUMatrix<ElemType>& tmp, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, size_t inputIndex, GPUMatrix<ElemType>& c);
void AssignNCEUnnormalizedEval(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
void AssignSoftmaxSum(const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& softmax);
void Print(const char* matrixName, size_t rowStart, size_t rowEnd, size_t colStart, size_t colEnd) const;
void Print(const char* matrixName = NULL) const; //print whole matrix. can be expensive
void ReadFromFile(FILE* f, const char * matrixName); //matrixName is used to verify that correct matrix is read.
void WriteToFile(FILE* f, const char * matrixName); //matrixName is used to verify that correct matrix is read.
GPUMatrix<ElemType>& AssignPackedConvolutionInput(const GPUMatrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding = false);
GPUMatrix<ElemType>& UnpackConvolutionInput(GPUMatrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
bool zeroPadding = false) const;
GPUMatrix<ElemType>& AssignMaxPoolingResult(const GPUMatrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
GPUMatrix<ElemType>& AddMaxPoolingGradient(const GPUMatrix<ElemType>& outputGradientBatch, const GPUMatrix<ElemType>& inputBatch, const GPUMatrix<ElemType>& outputBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
GPUMatrix<ElemType>& AssignAveragePoolingResult(const GPUMatrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
GPUMatrix<ElemType>& AddAveragePoolingGradient(const GPUMatrix<ElemType>& outputGradientBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
public:
//static BLAS functions
static void MultiplyAndWeightedAdd(ElemType alpha,const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB, ElemType beta, GPUMatrix<ElemType>& c);
static void MultiplyAndAdd(const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB, GPUMatrix<ElemType>& c);
static void Multiply(const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB, GPUMatrix<ElemType>& c);
static void Multiply(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void Multiply1x1AndWeightedAdd(ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, ElemType beta, GPUMatrix<ElemType>& c);
static void ScaleAndAdd(ElemType alpha, const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c);
static void ScaleAndAdd(ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AddScaledDifference(const ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AssignScaledDifference(const ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AddScaledDifference(const GPUMatrix<ElemType>& alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AssignScaledDifference(const GPUMatrix<ElemType>& alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AddElementToElement(const GPUMatrix<ElemType>& a, const size_t ai, const size_t aj, GPUMatrix<ElemType>& c, const size_t ci, const size_t cj);
/// minus one at a specific position
static void MinusOneAt(GPUMatrix<ElemType>& c, const size_t position);
static void Scale(ElemType alpha, const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c);
static void Scale(GPUMatrix<ElemType> &alpha, GPUMatrix<ElemType>& a); //In this case matrix alpha must be 1x1
static void Scale(ElemType alpha, GPUMatrix<ElemType>& a);
static void InnerProduct (const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c, const bool isColWise);
static ElemType InnerProductOfMatrices(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
static void ElementWisePower (ElemType alpha, const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c);
static bool AreEqual(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const ElemType threshold = 1e-8);
static void TensorShuffleScaleAndAdd(ElemType keepWeight, const GPUMatrix<ElemType>& a, size_t D, size_t S, size_t M, size_t K, size_t T, ElemType scaleFactor, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
void TensorOp(ElemType beta, const GPUMatrix<ElemType>& a, ElemType alpha, ElementWiseOperator op,
const std::array<size_t, 2> & offsets,
const SmallVector<size_t> & regularOpDims, const std::array<SmallVector<ptrdiff_t>, 2> & regularStrides,
const SmallVector<size_t> & reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 2> & reducingStrides);
void TensorOp(ElemType beta, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, ElemType alpha, ElementWiseOperator op,
const std::array<size_t, 3> & offsets,
const SmallVector<size_t> & regularOpDims, const std::array<SmallVector<ptrdiff_t>, 3> & regularStrides,
const SmallVector<size_t> & reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 3> & reducingStrides);
void TensorOp(ElemType beta, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const GPUMatrix<ElemType>& c, ElemType alpha, ElementWiseOperator op,
const std::array<size_t, 4> & offsets,
const SmallVector<size_t> & regularOpDims, const std::array<SmallVector<ptrdiff_t>, 4> & regularStrides,
const SmallVector<size_t> & reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 4> & reducingStrides);
static void CreateCurandObject(unsigned long seed, const char *caller);
static void ResetCurandObject(unsigned long seed, const char *caller);
static GPUMatrix<ElemType> Ones(const size_t rows, const size_t cols, int deviceId);
static GPUMatrix<ElemType> Zeros(const size_t rows, const size_t cols, int deviceId);
static GPUMatrix<ElemType> Eye(const size_t rows, int deviceId);
static GPUMatrix<ElemType> RandomUniform(const size_t rows, const size_t cols, int deviceId, const ElemType low, const ElemType high, unsigned long seed = USE_TIME_BASED_SEED);
static GPUMatrix<ElemType> RandomGaussian(const size_t rows, const size_t cols, int deviceId, const ElemType mean, const ElemType sigma, unsigned long seed = USE_TIME_BASED_SEED);
static bool HasElement(const GPUMatrix<ElemType>& a, const ElemType v = 0.0);
static ElemType GetLearnRateForBlock_Helper(const GPUMatrix<ElemType> &Gradients, const GPUMatrix<ElemType> &SmoothedGradients);
ElemType LogAddSumOfElements() const;
public:
GPUMatrix<ElemType>& AssignElementProductOfWithShiftNeg(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const size_t shift, const size_t nt);
static void InnerProductWithShiftNeg(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c, const size_t shift, const size_t nt);
GPUMatrix<ElemType>& GetARowByIndex(const GPUMatrix<ElemType>& a, const size_t m);
static void ConductRowElementMultiplyWithShift(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c, const size_t shift, const bool isafixed);
GPUMatrix<ElemType>& AssignElementProductOfWithShift(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const size_t shift);
public:
static void RCRFBackwardCompute(
const GPUMatrix<ElemType>& alpha, GPUMatrix<ElemType>& beta,
const GPUMatrix<ElemType>& lbls,
const GPUMatrix<ElemType>& pos_scores, const GPUMatrix<ElemType>& pair_scores, const int shift = 1);
static void RCRFTransGrdCompute(const GPUMatrix<ElemType>& lbls,
const GPUMatrix<ElemType>& alpha,
const GPUMatrix<ElemType>& beta,
const GPUMatrix<ElemType>& pair_scores,
GPUMatrix<ElemType>& grd,
const int startLbl, /// the time 0 start symbol in the output layer
const int shift);
public:
friend File& operator>>(File& stream, GPUMatrix<ElemType>& us)
{
stream.GetMarker(fileMarkerBeginSection, std::wstring(L"BMAT"));
size_t elsize;
stream>>elsize;
if (sizeof(ElemType)!=elsize)
LogicError("Template argument size doesn't match those in file");
std::wstring matrixName;
size_t numRows, numCols;
int format;
stream>>matrixName>>format>>numRows>>numCols;
ElemType* d_array = new ElemType[numRows*numCols];
for (size_t i=0;i<numRows*numCols;++i)
stream>>d_array[i];
stream.GetMarker(fileMarkerEndSection, std::wstring(L"EMAT"));
us.SetValue(numRows, numCols, us.GetComputeDeviceId(), d_array, matrixFlagNormal | format);
delete[] d_array;
us.m_matrixName = new wchar_t[matrixName.length()+1];
wmemcpy(us.m_matrixName,matrixName.c_str(),matrixName.length()+1);
//us.m_matrixName = matrixName;
return stream;
}
friend File& operator<<(File& stream, const GPUMatrix<ElemType>& us)
{
stream.PutMarker(fileMarkerBeginSection, std::wstring(L"BMAT"));
stream<<sizeof(ElemType);
std::wstring s = (us.m_matrixName==NULL)? std::wstring(L"unnamed") : std::wstring(us.m_matrixName);
int format = us.m_format;
stream << s << format;
stream<<us.m_numRows<<us.m_numCols;
ElemType *pArray = us.CopyToArray();
for (size_t i=0;i<us.GetNumElements();++i)
stream<<pArray[i];
delete[] pArray;
stream.PutMarker(fileMarkerEndSection, std::wstring(L"EMAT"));
return stream;
}
};
typedef GPUMatrix<float> GPUSingleMatrix;
}}}
// Error handling
template<typename ERRTYPE> const char * CudaErrString(ERRTYPE x); // actual error function is defined inside .cu files
template<typename ERRTYPE> static void CudaCall(ERRTYPE retCode, const char * exprString, const char * libName, ERRTYPE successCode)
{
if (retCode != successCode)
{
try
{
const char * hostname = getenv("COMPUTERNAME"); // TODO: This is the easy way for Windows; likely different on Linux.
Microsoft::MSR::CNTK::RuntimeError("%s failure %d: %s ; GPU=%d ; hostname=%s ; expr=%s", libName, (int)retCode, CudaErrString(retCode), Microsoft::MSR::CNTK::GPUMatrix<float>::GetBestGPUDeviceId(), hostname ? hostname : "?", exprString);
}
catch (const std::exception & e) // catch, log, and rethrow since CUDA code sometimes hangs in destruction, so we'd never get to see the error
{
std::cerr << e.what() << std::endl;
throw;
}
}
}
#define CUDA_CALL(expr) (CudaCall((expr), #expr, "CUDA", cudaSuccess))
#define CUBLAS_CALL(expr) (CudaCall((expr), #expr, "CUBLAS", CUBLAS_STATUS_SUCCESS))
#define CUSPARSE_CALL(expr) (CudaCall((expr), #expr, "CUSPARSE", CUSPARSE_STATUS_SUCCESS))
#define CURAND_CALL(expr) (CudaCall((expr), #expr, "CURAND", CURAND_STATUS_SUCCESS))
#define CUDNN_CALL(expr) (CudaCall((expr), #expr, "cuDNN", CUDNN_STATUS_SUCCESS))