CNTK/Source/Math/Matrix.h

524 строки
36 KiB
C++

//
// <copyright file="Matrix.h" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// TODO:
// - remove empty-matrix checks: if an op is well-defined with empty matrices, then do it
// - Resize() must be cheap if it does nothing (I already did that for CPU; already done for GPU?)
#pragma once
#include "Basics.h"
#include "File.h"
#include "CommonMatrix.h"
#include "TensorShape.h" // only for SmallVector; I was hoping to keep this out
#include <limits.h>
#include <memory> // for shared_ptr
#include <array>
#include <initializer_list>
// This class is exported from the Math.dll
namespace Microsoft { namespace MSR { namespace CNTK {
enum CurrentDataLocation
{
NONE, CPU, GPU, BOTH
};
enum MatrixType
{
UNDETERMINED, DENSE, SPARSE
};
// TODO: create an <ElemType>-agnostic base class, then move generic functions such as getting dims, resizing, and getting/setting as scalars
class MATH_API MatrixBase
{
protected:
//virtual ~MatrixBase() { };
// TODO: currently this causes link errors when building DLLs
};
// avoid pulling in these header files for consumers of this class
template<class ElemType> class GPUMatrix;
template<class ElemType> class CPUMatrix;
template<class ElemType> class GPUSparseMatrix;
template<class ElemType> class CPUSparseMatrix;
template<class ElemType> class DeviceBoundNumber;
//To compy with BLAS libraries matrices are stored in ColMajor. However, by default C/C++/C# use RowMajor
//convertion is need when passing data between Matrix and C++ matrices
//For the best performance compile CNTKMath project with NO_SYNC preprocessor directive
//!!!WARNING!!! This class is NOT THREAD SAFE. Test and add necessary modifications if using in multi-threaded environment
template<class ElemType>
class MATH_API Matrix : public MatrixBase
{
private:
mutable BaseMatrix<ElemType> *m_baseMatrix;
mutable GPUMatrix<ElemType> *m_GPUMatrix;
mutable CPUMatrix<ElemType> *m_CPUMatrix;
mutable GPUSparseMatrix<ElemType> *m_GPUSparseMatrix;
mutable CPUSparseMatrix<ElemType> *m_CPUSparseMatrix;
mutable MatrixType m_matrixType;
mutable CurrentDataLocation m_currentDataLocation; //Indicates which matrix is current
mutable DEVICEID_TYPE m_preferredDeviceId;
mutable size_t m_numTimesDeviceChanged;
mutable size_t m_numTimesMatrixTypeChanged;
mutable int m_devicesTransferedTo[2]; // TODO: what is this for? Seems only diagnostics
//Moves matrix from device id_from to device with id_to. This method doesn't change preferred device Id
void _transferFromDeviceToDevice(int id_from, int id_to, bool ismoved=true,bool emptyTransfer=false) const;
//Moves matrix from current device to device with id_to. This method doesn't change preferred device Id
void _transferToDevice(int id_to, bool ismoved=true, bool emptyTransfer=false) const;
static void DecideAndMoveToRightDevice(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
static void DecideAndMoveToRightDevice(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c);
static void DecideAndMoveToRightDevice(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, const Matrix<ElemType>& d);
static void CopyElementsFromDenseToSparse(CPUMatrix<ElemType>& from, CPUSparseMatrix<ElemType>& dest);
public:
//Constructors, destructors and other static matrix builders
//Each constructor can take deviceId as parameter.
//If deviceId<0 then the matrix will be based in RAM (CPUMatrix)
//Elseif deviceId>=0 and <AUTOPLACEMATRIX, then the matrix will be based on GPU with specified deviceId
//Else (default) if deviceId=AUTOPLACEMATRIX, the class will try to place itself on the best GPU, if fails it will go to CPU
//The default behaiviour should be deviceId=AUTOPLACEMATRIX
Matrix(DEVICEID_TYPE deviceId=AUTOPLACEMATRIX);
Matrix(BaseMatrix<ElemType>* baseMatrix, ElemType *pArray, DEVICEID_TYPE deviceId); // constructor for setting Matrix from a base matrix (externally managed butter pArray)
Matrix(FILE* f, const char * matrixName, DEVICEID_TYPE deviceId=AUTOPLACEMATRIX, const MatrixType matrixType = DENSE); //matrixName is used to verify that correct matrix is read.
Matrix(const size_t numRows, const size_t numCols, DEVICEID_TYPE deviceId = AUTOPLACEMATRIX, const MatrixType matrixType = DENSE, const MatrixFormat matrixFormat = matrixFormatDense);
Matrix(const size_t numRows, const size_t numCols, ElemType *pArray, const size_t matrixFlags=matrixFlagNormal, DEVICEID_TYPE deviceId=AUTOPLACEMATRIX, const size_t nnz=0);
Matrix(const Matrix<ElemType>& deepCopyFrom, DEVICEID_TYPE deviceId=AUTOPLACEMATRIX); //copy constructor, deep copy
Matrix<ElemType>& operator=(const Matrix<ElemType>& deepCopyFrom); //assignment operator, deep copy
Matrix(Matrix<ElemType>&& moveFrom); //move constructor, shallow copy
Matrix<ElemType>& operator=(Matrix<ElemType>&& moveFrom); //move coment operator, shallow copy
static Matrix<ElemType> Ones(const size_t rows, const size_t cols, DEVICEID_TYPE deviceId=AUTOPLACEMATRIX);
static Matrix<ElemType> Zeros(const size_t rows, const size_t cols, DEVICEID_TYPE deviceId=AUTOPLACEMATRIX);
static Matrix<ElemType> Eye(const size_t rows, DEVICEID_TYPE deviceId=AUTOPLACEMATRIX);
#define USE_TIME_BASED_SEED ULONG_MAX
static Matrix<ElemType> RandomUniform(const size_t rows, const size_t cols, const ElemType low, const ElemType high, unsigned long seed = USE_TIME_BASED_SEED, DEVICEID_TYPE deviceId = AUTOPLACEMATRIX);
static Matrix<ElemType> RandomGaussian(const size_t rows, const size_t cols, const ElemType mean, const ElemType sigma, unsigned long seed=USE_TIME_BASED_SEED, DEVICEID_TYPE deviceId=AUTOPLACEMATRIX);
static void SetDevice(DEVICEID_TYPE deviceId);
void Clear();
~Matrix();
private:
Matrix(const MatrixFlags matrixFlags, const MatrixType matrixType, const MatrixFormat matrixFormat, DEVICEID_TYPE deviceID); //only used internally to initialize a blank matrix
Matrix(const MatrixFlags matrixFlags, const MatrixType matrixType, DEVICEID_TYPE deviceID); //only used internally to initialize a blank matrix
Matrix(const MatrixFlags matrixFlags, DEVICEID_TYPE deviceID); //only used internally to initialize a blank matrix
void Init(DEVICEID_TYPE deviceID); //only used internally to initialize a blank matrix
void SetDataLocation(CurrentDataLocation location, MatrixType type=UNDETERMINED) const;
public:
MatrixType GetMatrixType() const { return m_matrixType; }
MatrixFormat GetFormat() const { return m_baseMatrix->GetFormat(); }
bool OwnBuffer() const { return m_baseMatrix->OwnBuffer(); }
int GetDeviceId() const; //-1 if CPU, otherwise GPU CUDA device id
DEVICEID_TYPE GetPreferredDeviceId() const { return m_preferredDeviceId; }; //-1 if CPU, otherwise GPU CUDA device id
void SetPreferredDeviceId(DEVICEID_TYPE preferredDeviceId) { m_preferredDeviceId = preferredDeviceId; }
//Moves matrix from device id_from to device with id_to.
//If emptyTransfer=true, then no data is ever moved, just corresponding GPU/CPU matrices are deleted and then created using empty constructor
void TransferFromDeviceToDevice(int id_from, int id_to, bool ismoved = false,/*if false then keep source and set location to BOTH*/ bool emptyTransfer = false, bool updatePreferredDevice = true) const;
//Same as TransferFromDeviceToDevice() but moves only if it is currently not on the target device
void TransferToDeviceIfNotThere(int id_to, bool ismoved = false, bool emptyTransfer = false, bool updatePreferredDevice = true) const;
void TransferToDeviceIfNotThereAndNotAutoPlace(int id_to, bool ismoved = false, bool emptyTransfer = false, bool updatePreferredDevice = true) const;
CurrentDataLocation GetCurrentMatrixLocation() const { return m_currentDataLocation; };
void SwitchToMatrixType(MatrixType newMatrixType, MatrixFormat newMatrixFormat, bool keepValues); //sets matrix type between dense and sparse
size_t GetNumRows() const;
size_t GetNumCols() const;
size_t GetNumElements() const;
bool HasNoElements() const { return GetNumElements() == 0; }
wchar_t* GetMatrixName() const;
void SetMatrixName(const wchar_t* s);
bool IsEmpty() const;
size_t BufferSize() const;
ElemType* BufferPointer() const;
size_t NzCount() const;
ElemType* CopyToArray() const; //allocated by the callee but need to be deleted by the caller
size_t CopyToArray(ElemType*& arrayCopyTo, size_t& currentArraySize) const; //allocated by the callee but need to be deleted by the caller
// colStride specifies leading dimension of dst.
// REVIEW alexeyk: GPU version copies from device to host only, implement all versions (device <-> host).
void CopySection(size_t numRows, size_t numCols, ElemType* dst, size_t colStride) const;
Matrix<ElemType> ColumnSlice(size_t startColumn, size_t numCols) const;
// difference between AssignColumnSlice and SetColumnSlice
// AssignColumnSlice : this(:, startColumn:startColumn+numCols-1) = fromMatrix(:, startColumn: startColumn+numCols-1)
// SetColumnSlice : this(:, startColumn:startColumn+numCols-1) = fromMatrix(:, 0: startColumn+numCols-1)
// AssignColumnSlice do not transfer data, it uses external data
// SetColumnSlice copies data
Matrix<ElemType>& AssignColumnSlice(const Matrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
Matrix<ElemType>& SetColumnSlice(const Matrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
void CopyColumnsStrided(const Matrix<ElemType>& fromMatrix, size_t numCols, size_t srcNumColsStride, size_t destNumColsStride);
Matrix<ElemType> Diagonal() const;
Matrix<ElemType> AssignDiagonalValuesTo(Matrix<ElemType>& diag) const;
void ShiftBy(int numShift);
// TODO: all these scalars should be passed as doubles and cast down inside
void NormalGrad(Matrix<ElemType>& gradients, Matrix<ElemType>& functionValues, const ElemType learnRatePerSample, const ElemType momentum, const bool useNAG);
ElemType Adagrad(Matrix<ElemType>& gradients, const bool needAveMultiplier);
void FSAdagrad(size_t mbSize, Matrix<ElemType>& gradients, Matrix<ElemType>& functionValues, const ElemType learnRatePerSample, const ElemType momentum);
ElemType RmsProp(Matrix<ElemType>& gradients, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, ElemType RMS_WGT_MAX, ElemType RMS_WGT_DEC, ElemType RMS_WGT_MIN, const bool needAveMultiplier);
void Resize(const size_t numRows, const size_t numCols, const size_t numNZElemToReserve = 10000, bool growOnly = true); //by default we only reallocate if need to grow
void Resize(const Matrix<ElemType>& other) { Resize(other.GetNumRows(), other.GetNumCols()); }
void VerifySize(size_t rows, size_t cols)
{
m_baseMatrix->VerifySize(rows, cols);
}
Matrix<ElemType> AsReference() const { return ColumnSlice(0, GetNumCols()); } // get a reference (e.g. this is not resizable but can be reshaped)
void Reshape(const size_t numRows, const size_t numCols); // note: reshapes in place. To get a reshaped reference, use Reshaped()
Matrix<ElemType> Reshaped(const size_t numRows, const size_t numCols) const // get a reshaped reference
{
Matrix<ElemType> result = AsReference();
result.Reshape(numRows, numCols);
return result;
}
// update number of columns
// TODO: a future version may want to enforce retaining the content, to allow dynamically growing layouts column by column (when size is not known upfront)
void ResizeColumns(const size_t numCols) { Resize(GetNumRows(), numCols); }
// similarl to the repmat operation in matlab or octave
static Matrix<ElemType> RepMat(const Matrix<ElemType>& frmMat, const size_t rows, const size_t cols);
size_t GetAllocatedSize() const;
void Reset(); // reset for sparse matrix
const ElemType operator() (const size_t row, const size_t col) const;
ElemType& operator() (const size_t row, const size_t col);
ElemType Get00Element() const;
void SetValue(const ElemType v);
void SetValue(const DeviceBoundNumber<ElemType>& db_number);
void SetValue(const Matrix<ElemType>& deepCopyFrom, const MatrixFormat format=matrixFormatSparseCSR);
void SetValue(const size_t numRows, const size_t numCols, int deviceId, ElemType *pArray, const size_t matrixFlags = matrixFlagNormal);
void SetValue(const size_t rIdx, const size_t cIdx, ElemType val); // set matrix sparsely
void SetValue(const size_t numRows, const size_t numCols, std::initializer_list<ElemType> l) { std::vector<ElemType> vals(l); assert(vals.size() == numRows * numCols); SetValue(numRows, numCols, GetDeviceId(), vals.data(), matrixFormatRowMajor); } // SetValue(2,3, {1,2,3, 4,5,6});
static ElemType MakeNan(size_t payload);
void Invalidate() { SetValue(MakeNan(__LINE__)); }
void SetMatrixFromCSCFormat(const CPUSPARSE_INDEX_TYPE *h_CSCCol, const CPUSPARSE_INDEX_TYPE *h_Row, const ElemType *h_Val,
const size_t nz, const size_t numRows, const size_t numCols);
void MaskColumnsValue(const Matrix<char>& columnsMask, ElemType val);
void SetColumn(const ElemType* colPointer, size_t colInd);
void SetColumn(const ElemType val, size_t colInd);
void SetColumn(const Matrix<ElemType>& valMat, size_t colInd);
void SetDiagonalValue(const ElemType v);
void SetDiagonalValue(const Matrix<ElemType>& vector);
void SetUniformRandomValue(const ElemType low, const ElemType high, unsigned long seed=USE_TIME_BASED_SEED);
void SetGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed=USE_TIME_BASED_SEED);
void SetUniformRandomMask(const ElemType maskRate, const ElemType scaleValue, unsigned long seed=USE_TIME_BASED_SEED);
void AddGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed=USE_TIME_BASED_SEED);
Matrix<ElemType>& AssignNoiseContrastiveEstimation(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, const Matrix<ElemType>& bias, Matrix<ElemType>& tmp);
Matrix<ElemType>& AssignNCEDerivative(const Matrix<ElemType>& tmp, const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, size_t inputIndex);
Matrix<ElemType>& AssignSoftmaxSum(const Matrix<ElemType>& a, const Matrix<ElemType>& softmax);
Matrix<ElemType>& AssignNceUnnormalizedEval(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, const Matrix<ElemType>& bias);
Matrix<ElemType> Transpose(); // This method doesn't change state of Matrix. It should be a const function
Matrix<ElemType>& AssignTransposeOf (const Matrix<ElemType>& a);
Matrix<ElemType>& operator+= (const ElemType alpha);
Matrix<ElemType> operator+ (const ElemType alpha) const;
Matrix<ElemType>& AssignSumOf(const ElemType alpha, const Matrix<ElemType>& a);
Matrix<ElemType>& operator+= (const Matrix<ElemType>& a);
Matrix<ElemType> operator+ (const Matrix<ElemType>& a) const;
Matrix<ElemType>& AssignSumOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& operator-= (const ElemType alpha);
Matrix<ElemType> operator- (const ElemType alpha) const;
Matrix<ElemType>& AssignDifferenceOf(const ElemType alpha, const Matrix<ElemType>& a);
Matrix<ElemType>& AssignDifferenceOf(const Matrix<ElemType>& a, const ElemType alpha);
Matrix<ElemType>& operator-= (const Matrix<ElemType>& a);
Matrix<ElemType> operator- (const Matrix<ElemType>& a) const;
Matrix<ElemType>& AssignDifferenceOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& operator*= (const ElemType alpha);
Matrix<ElemType> operator* (const ElemType alpha) const;
Matrix<ElemType>& AssignProductOf(const ElemType alpha, const Matrix<ElemType>& a);
Matrix<ElemType> operator* (const Matrix<ElemType>& a) const;
Matrix<ElemType>& AssignProductOf (const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB); // this = a * b
Matrix<ElemType>& Assign1x1ProductOf(const Matrix<ElemType>& a1x1, const Matrix<ElemType>& b); // this = a * b, where a is 1x1
Matrix<ElemType>& operator/= (ElemType alpha);
Matrix<ElemType> operator/ (ElemType alpha) const;
Matrix<ElemType>& operator^= (ElemType alpha); //element-wise power
Matrix<ElemType> operator^ (ElemType alpha) const; //element-wise power
Matrix<ElemType>& AssignElementPowerOf(const Matrix<ElemType>& a, const ElemType power);
Matrix<ElemType>& ElementMultiplyWith (const Matrix<ElemType>& a);
Matrix<ElemType>& AssignElementProductOf (const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& AddElementProductOf (const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& AssignElementDivisionOf (const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& ElementDivideBy(const Matrix<ElemType>& a);
Matrix<ElemType>& ColumnElementMultiplyWith(const Matrix<ElemType>& a);
Matrix<ElemType>& RowElementMultiplyWith(const Matrix<ElemType>& a);
Matrix<ElemType>& ColumnElementDivideBy(const Matrix<ElemType>& a);
Matrix<ElemType>& RowElementDivideBy(const Matrix<ElemType>& a);
Matrix<ElemType>& ElementInverse ();
Matrix<ElemType>& AssignElementInverseOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLinearRectifierDerivative();
Matrix<ElemType>& AssignLinearRectifierDerivativeOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceSigmoidDerivative();
Matrix<ElemType>& AssignSigmoidDerivativeOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceSigmoid ();
Matrix<ElemType>& AssignSigmoidOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceTanh ();
Matrix<ElemType>& AssignTanhOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLogSoftmax (const bool isColWise);
Matrix<ElemType>& AssignLogSoftmaxOf (const Matrix<ElemType>& a, const bool isColWise);
Matrix<ElemType>& InplaceHardmax(const bool isColWise);
Matrix<ElemType>& AssignHardmaxOf(const Matrix<ElemType>& a, const bool isColWise);
//sequence training
Matrix<ElemType>& DropFrame(const Matrix<ElemType>& label, const Matrix<ElemType>& gamma, const ElemType & threshhold);
Matrix<ElemType>& AssignSequenceError(const ElemType hsmoothingWeight, const Matrix<ElemType>& label, const Matrix<ElemType>& dnnoutput, const Matrix<ElemType>& gamma, ElemType alpha);
Matrix<ElemType>& InplaceSqrt ();
Matrix<ElemType>& AssignSqrtOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceExp ();
Matrix<ElemType>& AssignExpOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLog ();
Matrix<ElemType>& AssignLogOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceCosine ();
Matrix<ElemType>& AssignCosineOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceNegativeSine ();
Matrix<ElemType>& AssignNegativeSineOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLog10 ();
Matrix<ElemType>& AssignLog10Of (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceAbs ();
Matrix<ElemType>& AssignAbsOf (const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceTruncateBottom (const ElemType threshold);
Matrix<ElemType>& AssignTruncateBottomOf (const Matrix<ElemType>& a, const ElemType threshold);
Matrix<ElemType>& InplaceTruncateTop (const ElemType threshold);
Matrix<ElemType>& AssignTruncateTopOf (const Matrix<ElemType>& a, const ElemType threshold);
Matrix<ElemType>& InplaceTruncate (const ElemType threshold);
Matrix<ElemType>& InplaceSoftThreshold(const ElemType threshold);
void InplaceTranspose();
Matrix<ElemType>& SetToZeroIfAbsLessThan (const ElemType threshold);
DeviceBoundNumber<ElemType> Sum_AsDeviceBoundNum() const;
ElemType SumOfAbsElements () const; //sum of all abs(elements)
ElemType SumOfElements () const; //sum of all elements
Matrix<ElemType>& AssignSumOfElements(const Matrix<ElemType>& a);
ElemType LogAddSumOfElements() const;
Matrix<ElemType>& AssignToRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
Matrix<ElemType>& AssignRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
Matrix<ElemType>& AddToRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
Matrix<ElemType>& AddWithRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
//Matrix<ElemType>& AssignRowStackValuesOf(const std::vector<const Matrix<ElemType>*>& inputMatrices, const size_t sliceStartCol, const size_t sliceNumCols);
Matrix<ElemType>& AssignRepeatOf(const Matrix<ElemType>& a, const size_t numRowRepeats, const size_t numColRepeats);
Matrix<ElemType>& AddToRowRepeatValuesOf(const Matrix<ElemType>& a, const size_t numRepeats);
Matrix<ElemType>& AssignPositiveAndShiftedNegSample(const Matrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
Matrix<ElemType>& AddFoldedPositiveAndShiftedNegSample(const Matrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
bool IsValid() const;
bool IsEqualTo(const Matrix<ElemType>& a, const ElemType threshold = 1e-8) const;
static void VectorSum(const Matrix<ElemType>& a, Matrix<ElemType>& c, const bool isColWise);
void VectorNorm1(Matrix<ElemType>& c, const bool isColWise) const;
Matrix<ElemType>& AssignVectorNorm1Of(Matrix<ElemType>& a, const bool isColWise); // TODO: arg should be const
void VectorNorm2(Matrix<ElemType>& c, const bool isColWise) const;
Matrix<ElemType>& AssignVectorNorm2Of(Matrix<ElemType>& a, const bool isColWise); // TODO: arg should be const
void VectorNormInf(Matrix<ElemType>& c, const bool isColWise) const;
Matrix<ElemType>& AssignVectorNormInfOf(Matrix<ElemType>& a, const bool isColWise);
Matrix<ElemType>& AssignInnerProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const bool isColWise);
Matrix<ElemType>& AssignKhatriRaoProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& AddColumnReshapeProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const bool transposeAColumn);
Matrix<ElemType>& AddWithScaleOf(ElemType alpha, const Matrix<ElemType>& a); // this += alpha * a
ElemType FrobeniusNorm() const;
Matrix<ElemType>& AssignFrobeniusNormOf(const Matrix<ElemType>& a);
ElemType MatrixNormInf() const;
ElemType MatrixNorm1() const;
ElemType MatrixNorm0() const; //number of non-zero elemets
Matrix<ElemType>& AssignSignOf(const Matrix<ElemType>& a);
Matrix<ElemType>& AddSignOf(const Matrix<ElemType>& a);
void VectorMax(Matrix<ElemType>& maxIndexes, Matrix<ElemType>& maxValues, const bool isColWise) const;
void VectorMax(Matrix<ElemType>& maxIndexes, Matrix<ElemType>& maxValues, const bool isColWise, int topK) const;
void VectorMin(Matrix<ElemType>& minIndexes, Matrix<ElemType>& minValues, const bool isColWise) const;
Matrix<ElemType>& AssignNumOfDiff(const Matrix<ElemType>& a, const Matrix<ElemType>& b, bool searchInCol = false);
Matrix<ElemType>& AssignInnerProductOfMatrices(const Matrix<ElemType>& a, const Matrix<ElemType>& b); //this method will resize(1,1) first
bool HasNan (const char * name) const;
size_t CountNanInf() const;
void Print(const char* matrixName, size_t rowStart, size_t rowEnd, size_t colStart, size_t colEnd) const;
void Print(const char* matrixName = nullptr) const; //print whole matrix. can be expensive
Matrix<ElemType>& AssignPackedConvolutionInput(const Matrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding = false);
Matrix<ElemType>& UnpackConvolutionInput(Matrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding = false) const;
Matrix<ElemType>& AssignMaxPoolingResult(const Matrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
Matrix<ElemType>& AddMaxPoolingGradient(const Matrix<ElemType>& outputGradientBatch, const Matrix<ElemType>& inputBatch, const Matrix<ElemType>& outputBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
Matrix<ElemType>& AssignAveragePoolingResult(const Matrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
Matrix<ElemType>& AddAveragePoolingGradient(const Matrix<ElemType>& outputGradientBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
public:
// TODO: why are these not static? And why are they here?
ElemType Exp10(ElemType num);
ElemType Mod(ElemType x , ElemType y);
ElemType LogAdd(ElemType x, ElemType y);
public:
static DEVICEID_TYPE GetBestGPUDeviceId();
//static BLAS functions
// singular value decomposition of A as A = U*SIGMA*VT
static void SVD(const Matrix<ElemType>& A, Matrix<ElemType>& SIGMA, Matrix<ElemType>& U, Matrix<ElemType>& VT, Matrix<ElemType>& W);
static void MultiplyAndWeightedAdd(ElemType alpha, const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, ElemType beta, Matrix<ElemType>& c); // SGEMM
static void MultiplyAndAdd(const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, Matrix<ElemType>& c);
static void Multiply(const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, Matrix<ElemType>& c);
static void Multiply(const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void Multiply1x1AndWeightedAdd(ElemType alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, ElemType beta, Matrix<ElemType>& c);
static void ConvolveAndWeightedAdd(ElemType alpha, const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, ElemType beta, Matrix<ElemType>& c, size_t numChannels, size_t horizontalSubsample, bool padding, bool channelwise);
static void ScaleAndAdd(ElemType alpha, const Matrix<ElemType>& a, Matrix<ElemType>& c);
static void ScaleAndAdd(ElemType alpha, const Matrix<ElemType>& a, ElemType beta, Matrix<ElemType>& c);
static void AddScaledDifference(const ElemType alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void AssignScaledDifference(const ElemType alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void AddScaledDifference(const Matrix<ElemType>& alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c); // c += alpha * (a - b)
static void AssignScaledDifference(const Matrix<ElemType>& alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void AddElementToElement(const Matrix<ElemType>& a, const size_t ai, const size_t aj, Matrix<ElemType>& c, const size_t ci, const size_t cj);
//static void AddLogElementToElement(const Matrix<ElemType>& a, const size_t ai, const size_t aj, Matrix<ElemType>& c, const size_t ci, const size_t cj);
static void AssignElementToElement(const Matrix<ElemType>& a, const size_t ai, const size_t aj, Matrix<ElemType>& c, const size_t ci, const size_t cj);
static void MinusOneAt(Matrix<ElemType>& c, const size_t position);
static void Scale(ElemType alpha, Matrix<ElemType>& a);
static void Scale(const Matrix<ElemType>& alpha, Matrix<ElemType>& a); //In this case Matrix alpha must be 1x1
static void Scale(ElemType alpha, const Matrix<ElemType>& a, Matrix<ElemType>& c);
static void InnerProduct (const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c, const bool isColWise);
static ElemType InnerProductOfMatrices(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
static void ElementWisePower (ElemType alpha, const Matrix<ElemType>& a, Matrix<ElemType>& c);
static bool AreEqual(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const ElemType threshold = 1e-8);
static bool HasElement(const Matrix<ElemType>& a, const ElemType value = 0.0);
static void TensorShuffleScaleAndAdd(ElemType keepWeight, const Matrix<ElemType>& a, size_t D, size_t S, size_t M, size_t K, size_t T, ElemType scaleFactor, const Matrix<ElemType>& b, Matrix<ElemType>& c);
void TensorOp(ElemType beta, const Matrix<ElemType>& a, ElemType alpha, ElementWiseOperator op,
const std::array<size_t, 2> & offsets,
const SmallVector<size_t> & regularOpDims, const std::array<SmallVector<ptrdiff_t>, 2> & regularStrides,
const SmallVector<size_t> & reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 2> & reducingStrides);
void TensorOp(ElemType beta, const Matrix<ElemType>& a, const Matrix<ElemType>& b, ElemType alpha, ElementWiseOperator op,
const std::array<size_t, 3> & offsets,
const SmallVector<size_t> & regularOpDims, const std::array<SmallVector<ptrdiff_t>, 3> & regularStrides,
const SmallVector<size_t> & reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 3> & reducingStrides);
void TensorOp(ElemType beta, const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, ElemType alpha, ElementWiseOperator op,
const std::array<size_t, 4> & offsets,
const SmallVector<size_t> & regularOpDims, const std::array<SmallVector<ptrdiff_t>, 4> & regularStrides,
const SmallVector<size_t> & reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 4> & reducingStrides);
public:
void Read(File& stream);
void Write(File& stream) const;
Matrix<ElemType>& Shift(const Matrix<ElemType>& a, int shift);
Matrix<ElemType>& AssignElementProductOfWithShiftNeg(const Matrix<ElemType>& a, const Matrix<ElemType>& b, size_t shift, size_t negnumber);
Matrix<ElemType>& AssignInnerProductOfWithShiftNeg(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const bool isColWise, size_t shift, size_t negnumber);
static void InnerProductWithShiftNeg(const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c, const bool isColWise, size_t shift, size_t negnumber);
Matrix<ElemType>& GetARowByIndex(const Matrix<ElemType>& a, size_t index);
static void ConductRowElementMultiplyWithShift(const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c, size_t shift, bool bFirstmatrixfixed);
Matrix<ElemType>& AssignElementProductOfWithShift(const Matrix<ElemType>& a, const Matrix<ElemType>& b, size_t shift);
public:
static void RCRFBackwardCompute(const Matrix<ElemType>& alpha, Matrix<ElemType>& beta,
Matrix<ElemType>& functionValues, const Matrix<ElemType>& lbls,
const Matrix<ElemType>& pos_scores, const Matrix<ElemType>& pair_scores, const int shift);
static void RCRFTransGrdCompute(const Matrix<ElemType>& lbls,
const Matrix<ElemType>& alpha,
const Matrix<ElemType>& beta,
const Matrix<ElemType>& pair_scores,
Matrix<ElemType>& grd,
const int startLbl, /// the time 0 start symbol in the output layer
const int shift);
template<typename T>
friend class MatrixQuantizer;
template<typename T>
friend class QuantizedMatrix;
template<typename T>
friend class Matrix;
};
// overload I/O operators
template<class ElemType>
File& operator>>(File& stream, Matrix<ElemType>& M) { M.Read(stream); return stream; }
template<class ElemType>
File& operator<<(File& stream, const Matrix<ElemType>& M) { M.Write(stream); return stream; }
typedef Matrix<float> SingleMatrix;
typedef Matrix<double> DoubleMatrix;
}}}