CNTK/Source/Math/GPUMatrix.h

673 строки
38 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#pragma once
#include "Platform.h"
#include "File.h"
#include "Helpers.h"
#include "CommonMatrix.h"
#include "TensorShape.h" // only for SmallVector; I was hoping to keep this out
#include "BestGpu.h" // for CPUONLY macro
#include "ConcStack.h"
#include "GPURNGHandle.h"
#include <string>
#include <vector>
#include <array>
#include <ctime>
#include <iostream> // for cout/cerr
#include <memory> // for unique_ptr
#include <limits.h> // for ULONG_MAX
//#include "CPUMatrix.h"
//#include "CPUSparseMatrix.h"
//#include "GPUSparseMatrix.h"
#ifndef _WIN32
#include <unistd.h>
#endif
// predeclare cublasHandle_t
struct cublasContext;
typedef struct cublasContext* cublasHandle_t;
struct CUstream_st;
typedef struct CUstream_st* cudaStream_t;
#ifdef _WIN32
#ifndef MATH_API
#ifdef MATH_EXPORTS
#define MATH_API __declspec(dllexport)
#else
#define MATH_API __declspec(dllimport)
#endif
#endif /* MATH_API */
#else // no DLLs in Linux
#define MATH_API
#endif
#ifndef USE_TIME_BASED_SEED
#define USE_TIME_BASED_SEED ULONG_MAX
#endif
// Max number of GPUs on a _single_ node.
#ifndef MAX_GPUS
#define MAX_GPUS 16
#endif
// Stream management functions
void MATH_API SetStream(cudaStream_t stream);
cudaStream_t MATH_API GetStream();
namespace Microsoft { namespace MSR { namespace CNTK {
class DataTransferer;
// -----------------------------------------------------------------------
// SyncGuard -- synchronize around CUDA calls
// -----------------------------------------------------------------------
class SyncGuard
{
private:
static bool s_isSyncEnabled;
bool m_forceSync;
#ifndef CPUONLY
cudaEvent_t m_done;
#endif
public:
static MATH_API void EnableSync();
SyncGuard(bool forceSync = false);
~SyncGuard();
};
// -----------------------------------------------------------------------
// DeviceBoundNumber -- This class represents a number which resides on a particular device. Use it to avoid unnecessary transfers between CPU and GPU
// -----------------------------------------------------------------------
template <class ElemType>
class MATH_API DeviceBoundNumber
{
private:
DEVICEID_TYPE m_computeDevice;
ElemType* m_data;
public:
DeviceBoundNumber()
{
m_data = NULL;
};
DeviceBoundNumber(const DeviceBoundNumber<ElemType>& deepCopy);
DeviceBoundNumber(DeviceBoundNumber<ElemType>&& shallowCopy);
~DeviceBoundNumber();
DEVICEID_TYPE GetDeviceId() const
{
return m_computeDevice;
}
ElemType* ExposePointer2Value() const
{
return m_data;
}
// performs shallow copy only
void ShallowCopyFrom(ElemType* newVal, int newValsDevceId);
};
// -----------------------------------------------------------------------
// GPUMatrix
// -----------------------------------------------------------------------
void PrepareDevice(DEVICEID_TYPE deviceId);
template<class ElemType> class CuDnnRNNExecutor;
template <class ElemType>
class MATH_API GPUMatrix : public BaseMatrix<ElemType>
{
typedef BaseMatrix<ElemType> Base;
using Base::m_numRows;
using Base::m_numCols;
using Base::m_sliceViewOffset;
using Base::HasExternalBuffer;
using Base::SetBuffer;
using Base::SetComputeDeviceId;
using Base::ZeroInit;
using Base::ZeroValues;
using Base::m_sob;
using Base::ShallowCopyFrom;
using Base::ReleaseStorageMemory;
using Base::GetSizeAllocated;
using Base::SetSizeAllocated;
template <typename T>
friend class GPUMatrix;
public:
using Base::GetComputeDeviceId;
using Base::Buffer;
using Base::GetNumRows;
using Base::GetNumCols;
using Base::GetNumElements;
using Base::OwnBuffer;
using Base::GetFormat;
using Base::SetFormat;
using Base::IsEmpty;
using Base::VerifyResizable;
using Base::VerifySize;
public:
using Base::VerifyWritable;
static const int MaxGpus = MAX_GPUS;
private:
static cublasHandle_t s_cuHandle[MaxGpus];
static void* s_curandGenerator;
// Have to use disable the warning to avoid issues with __declspec(dllexport) on Windows (C4251).
// Also, NVCC FE corresponding warning has to be disabled, see MathCUDA.vcxproj.
// The only workaround is to use naked pointer.
#pragma warning(push)
#pragma warning(disable : 4251)
mutable std::unique_ptr<conc_stack<std::unique_ptr<GPUMatrix<ElemType>>>> m_workspace;
mutable std::shared_ptr<CuDnnRNNExecutor<ElemType>> m_rnnExecutor; // for cudnn5 RNN
#pragma warning(pop)
private:
void performElementWiseFunction(const ElementWiseOperator kind, const ElemType* src);
size_t LocateElement(const size_t i, const size_t j) const;
size_t LocateColumn(const size_t j) const;
void Clear();
void ZeroInit(int deviceId);
void ZeroInit() { Base::ZeroInit(); }
std::unique_ptr<GPUMatrix<ElemType>> GetOrCreateWorkspace() const;
void ReleaseWorkspace(std::unique_ptr<GPUMatrix<ElemType>> src) const;
public:
explicit GPUMatrix(int deviceId);
GPUMatrix(const size_t numRows, const size_t numCols, int deviceId);
GPUMatrix(const size_t numRows, const size_t numCols, int deviceId, ElemType* pArray, const size_t matrixFlags = matrixFlagNormal);
GPUMatrix(const GPUMatrix<ElemType>& deepCopyFrom);
GPUMatrix<ElemType>& operator=(const GPUMatrix<ElemType>& deepCopyFrom); // assignment operator, deep copy
GPUMatrix(GPUMatrix<ElemType>&& moveFrom);
GPUMatrix<ElemType>& operator=(GPUMatrix<ElemType>&& moveFrom); // move assignment operator, shallow copy
~GPUMatrix(void);
static void SetDevice(DEVICEID_TYPE deviceId);
DEVICEID_TYPE PrepareDevice(DEVICEID_TYPE deviceId = -1) const;
static cublasHandle_t GetCublasHandle(int computeDevice = -1);
ElemType* CopyToArray() const; // allocated by the callee but need to be deleted by the caller
size_t CopyToArray(ElemType*& arrayCopyTo, size_t& currentArraySize) const; // allocated by the callee but need to be deleted by the caller
void CopySection(size_t numRows, size_t numCols, ElemType* dst, size_t colStride) const;
void ChangeDeviceTo(DEVICEID_TYPE to_id);
public:
GPUMatrix<ElemType> ColumnSlice(size_t startColumn, size_t numCols) const;
GPUMatrix<ElemType>& AssignColumnSlice(const GPUMatrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
GPUMatrix<ElemType>& SetColumnSlice(const GPUMatrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
void CopyColumnsStrided(const GPUMatrix<ElemType>& fromMatrix, size_t numCols, size_t srcNumColsStride, size_t destNumColsStride);
GPUMatrix<ElemType> Diagonal() const;
size_t BufferSize() const
{
return m_numRows * m_numCols * sizeof(ElemType);
}
ElemType* Data() const
{
return Buffer() + m_sliceViewOffset;
}
ElemType Adagrad(GPUMatrix<ElemType>& gradients, const bool needAveMultiplier);
void FSAdagrad(GPUMatrix<ElemType>& gradients, GPUMatrix<ElemType>& functionValues, ElemType learnRatePerSample,
ElemType momentum, ElemType adaWeight, ElemType adaMul, bool unitGainMomentum);
ElemType RmsProp(GPUMatrix<ElemType>& gradients,
ElemType RMS_GAMMA,
ElemType RMS_WGT_INC,
ElemType RMS_WGT_MAX,
ElemType RMS_WGT_DEC,
ElemType RMS_WGT_MIN,
const bool needAveMultiplier);
void Reshape(const size_t numRows, const size_t numCols);
// RequireSize is now the new preferred method of ensuring the correct size inside of the Matrix class. Since Resize will fail if the storage object has
// multiple views, RequireSize will first check to see if Resize is required. If it is not, then it short-circuits and is a noop. Otherwise, RequireSize
// will call Resize, which may fail if the matrix has multiple views.
void RequireSize(const size_t numRows, const size_t numCols, bool growOnly = true, bool cachedResize = false); // by default we only reallocate if need to grow
void RequireSize(const GPUMatrix<ElemType>& like, bool growOnly = true, bool cachedResize = false) { RequireSize(like.GetNumRows(), like.GetNumCols(), growOnly, cachedResize); }
// Resize first checks to ensure that the caller has the authority to call Resize (i.e., it checks to ensure the underlying data is owned by only this matrix), and then
// actually resizes the underlying matrix, doing any allocation as required.
void Resize(const size_t numRows, const size_t numCols, bool growOnly = true, bool cachedResize = false); // by default we only reallocate if need to grow
ElemType& operator()(const size_t /*row*/, const size_t /*col*/) { LogicError("GPUMatrix doesn't support operator(,) on the CPU."); }
const ElemType& operator()(const size_t /*row*/, const size_t /*col*/) const { LogicError("GPUMatrix doesn't support operator(,) on the CPU."); }
ElemType Get00Element() const;
void SetValue(const ElemType v);
void SetValue(const ElemType* d_v); // d_v is pointer to the the value in GPU memory
void SetColumn(const ElemType* colPointer, size_t colInd);
void SetColumn(const GPUMatrix<ElemType>& valMat, size_t colInd);
void MaskColumnsValue(const GPUMatrix<char>& columnsMask, ElemType val);
//void SetValue(const CPUMatrix<ElemType>& deepCopyFrom);
void SetValue(const GPUMatrix<ElemType>& deepCopyFrom);
//void SetValue(const CPUSparseMatrix<ElemType>& deepCopyFrom);
//void SetValue(const GPUSparseMatrix<ElemType>& deepCopyFrom);
void SetValue(const size_t numRows, const size_t numCols, int deviceId, ElemType* pArray, size_t matrixFlags = matrixFlagNormal, DataTransferer* transferer = nullptr);
void SetDiagonalValue(const ElemType v);
void SetDiagonalValue(const GPUMatrix<ElemType>& vector);
void SetUniformRandomValue(const ElemType low, const ElemType high, unsigned long seed = USE_TIME_BASED_SEED);
void SetGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed = USE_TIME_BASED_SEED);
void SetUniformRandomMask(const ElemType maskRate, const ElemType scaleValue, RNGHandle& rngHandle);
GPUMatrix<ElemType> Transpose() const;
GPUMatrix<ElemType>& AssignTransposeOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& DoGatherColumnsOf (ElemType beta, const GPUMatrix<ElemType>& idx, const GPUMatrix<ElemType>& a, ElemType alpha);
GPUMatrix<ElemType>& DoScatterColumnsOf(ElemType beta, const GPUMatrix<ElemType>& idx, const GPUMatrix<ElemType>& a, ElemType alpha);
GPUMatrix<ElemType>& operator+=(const ElemType alpha);
GPUMatrix<ElemType> operator+(const ElemType alpha) const;
GPUMatrix<ElemType>& AssignSumOf(const ElemType alpha, const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& operator+=(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType> operator+(const GPUMatrix<ElemType>& a) const;
GPUMatrix<ElemType>& AssignSumOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& operator-=(const ElemType alpha);
GPUMatrix<ElemType> operator-(const ElemType alpha) const;
GPUMatrix<ElemType>& AssignDifferenceOf(const ElemType alpha, const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AssignDifferenceOf(const GPUMatrix<ElemType>& a, const ElemType alpha);
GPUMatrix<ElemType>& operator-=(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType> operator-(const GPUMatrix<ElemType>& a) const;
GPUMatrix<ElemType>& AssignDifferenceOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& operator*=(const ElemType alpha);
GPUMatrix<ElemType> operator*(const ElemType alpha) const;
GPUMatrix<ElemType>& AssignProductOf(const ElemType alpha, const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType> operator*(const GPUMatrix<ElemType>& a) const;
GPUMatrix<ElemType>& AssignProductOf(const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB);
GPUMatrix<ElemType>& operator/=(ElemType alpha);
GPUMatrix<ElemType> operator/(ElemType alpha) const;
GPUMatrix<ElemType>& operator^=(ElemType alpha); // element-wise power
GPUMatrix<ElemType> operator^(ElemType alpha) const; // element-wise power
GPUMatrix<ElemType>& AssignElementPowerOf(const GPUMatrix<ElemType>& a, const ElemType power);
GPUMatrix<ElemType>& ElementMultiplyWith(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AssignElementProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& AddElementProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& AssignElementDivisionOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& ElementDivideBy(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& ColumnElementMultiplyWith(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& RowElementMultiplyWith(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& ColumnElementDivideBy(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& RowElementDivideBy(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& ElementInverse();
GPUMatrix<ElemType>& AssignElementInverseOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceLinearRectifierDerivative();
GPUMatrix<ElemType>& AssignLinearRectifierDerivativeOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceSigmoidDerivative();
GPUMatrix<ElemType>& AssignSigmoidDerivativeOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceSigmoid();
GPUMatrix<ElemType>& AssignSigmoidOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceTanh();
GPUMatrix<ElemType>& AssignTanhOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceLogSoftmax(const bool isColWise);
GPUMatrix<ElemType>& AssignLogSoftmaxOf(const GPUMatrix<ElemType>& a, const bool isColWise);
GPUMatrix<ElemType>& InplaceHardmax(const bool isColWise);
GPUMatrix<ElemType>& AssignHardmaxOf(const GPUMatrix<ElemType>& a, const bool isColWise);
// sequence training
GPUMatrix<ElemType>& DropFrame(const GPUMatrix<ElemType>& label, const GPUMatrix<ElemType>& gamma, const ElemType& threshhold);
GPUMatrix<ElemType>& AssignSequenceError(const ElemType hsmoothingWeight, const GPUMatrix<ElemType>& label, const GPUMatrix<ElemType>& dnnoutput, const GPUMatrix<ElemType>& gamma, ElemType alpha);
GPUMatrix<ElemType>& InplaceSqrt();
GPUMatrix<ElemType>& AssignSqrtOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceExp();
GPUMatrix<ElemType>& AssignExpOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceLog();
GPUMatrix<ElemType>& AssignLogOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceCosine();
GPUMatrix<ElemType>& AssignCosineOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceNegativeSine();
GPUMatrix<ElemType>& AssignNegativeSineOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceAbs();
GPUMatrix<ElemType>& AssignAbsOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& InplaceTruncateBottom(const ElemType threshold);
GPUMatrix<ElemType>& AssignTruncateBottomOf(const GPUMatrix<ElemType>& a, const ElemType threshold);
GPUMatrix<ElemType>& InplaceTruncateTop(const ElemType threshold);
GPUMatrix<ElemType>& AssignTruncateTopOf(const GPUMatrix<ElemType>& a, const ElemType threshold);
GPUMatrix<ElemType>& InplaceTruncate(const ElemType threshold);
GPUMatrix<ElemType>& InplaceSoftThreshold(const ElemType threshold);
GPUMatrix<ElemType>& SetToZeroIfAbsLessThan(const ElemType threshold);
DeviceBoundNumber<ElemType> Sum_AsDeviceBoundNum() const;
ElemType SumOfAbsElements() const; // sum of all abs(elements)
ElemType SumOfElements() const; // sum of all elements
GPUMatrix<ElemType>& AssignSumOfElements(const GPUMatrix<ElemType>& a);
ElemType Max() const;
bool IsEqualTo(const GPUMatrix<ElemType>& a, const ElemType threshold = 1e-8) const;
static void VectorSum(const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c, const bool isColWise);
void VectorNorm1(GPUMatrix<ElemType>& c, const bool isColWise) const;
GPUMatrix<ElemType>& AssignVectorNorm1Of(GPUMatrix<ElemType>& a, const bool isColWise);
void VectorNorm2(GPUMatrix<ElemType>& c, const bool isColWise) const;
GPUMatrix<ElemType>& AssignVectorNorm2Of(GPUMatrix<ElemType>& a, const bool isColWise);
void VectorNormInf(GPUMatrix<ElemType>& c, const bool isColWise) const;
GPUMatrix<ElemType>& AssignVectorNormInfOf(GPUMatrix<ElemType>& a, const bool isColWise);
GPUMatrix<ElemType>& AssignInnerProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const bool isColWise);
GPUMatrix<ElemType>& AssignKhatriRaoProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
GPUMatrix<ElemType>& AddColumnReshapeProductOf(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const bool transposeAColumn);
GPUMatrix<ElemType>& AddWithScaleOf(ElemType alpha, const GPUMatrix<ElemType>& a);
ElemType FrobeniusNorm() const;
GPUMatrix<ElemType>& AssignFrobeniusNormOf(const GPUMatrix<ElemType>& a);
ElemType MatrixNormInf() const;
ElemType MatrixNorm1() const;
ElemType MatrixNorm0() const; // number of non-zero elemets
GPUMatrix<ElemType>& AssignSignOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AddSignOf(const GPUMatrix<ElemType>& a);
GPUMatrix<ElemType>& AssignToRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
GPUMatrix<ElemType>& AssignRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
GPUMatrix<ElemType>& AddToRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
GPUMatrix<ElemType>& AddWithRowSliceValuesOf(const GPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows);
// GPUMatrix<ElemType>& AssignRowStackValuesOf(const std::vector<const GPUMatrix<ElemType>*>& inputMatrices, const size_t sliceStartCol, const size_t sliceNumCols);
GPUMatrix<ElemType>& AssignRepeatOf(const GPUMatrix<ElemType>& a, const size_t numRowRepeats, const size_t numColRepeats);
GPUMatrix<ElemType>& AddToRowRepeatValuesOf(const GPUMatrix<ElemType>& a, const size_t numRowRepeats);
GPUMatrix<ElemType>& AssignPositiveAndShiftedNegSample(const GPUMatrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
GPUMatrix<ElemType>& AddFoldedPositiveAndShiftedNegSample(const GPUMatrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
void VectorMax(GPUMatrix<ElemType>& maxIndexes, GPUMatrix<ElemType>& maxValues, const bool isColWise) const;
void VectorMax(GPUMatrix<ElemType>& maxIndexes, GPUMatrix<ElemType>& maxValues, const bool isColWise, int topK) const;
void VectorMin(GPUMatrix<ElemType>& minIndexes, GPUMatrix<ElemType>& minValues, const bool isColWise) const;
GPUMatrix<ElemType>& AssignNumOfDiff(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, bool searchInCol = false);
GPUMatrix<ElemType>& AssignInnerProductOfMatrices(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
void AssignNoiseContrastiveEstimation(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const GPUMatrix<ElemType>& bias,
size_t sampleCount, GPUMatrix<ElemType>& tmp, GPUMatrix<ElemType>& c);
void AssignNCEDerivative(GPUMatrix<ElemType>& tmp, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, size_t inputIndex, GPUMatrix<ElemType>& c);
void AssignNCEUnnormalizedEval(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
void AssignSoftmaxSum(const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& softmax);
void Print(const char* matrixName, size_t rowStart, size_t rowEnd, size_t colStart, size_t colEnd) const;
void Print(const char* matrixName = NULL) const; // print whole matrix. can be expensive
GPUMatrix<ElemType>& AssignPackedConvolutionInput(const GPUMatrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding = false);
GPUMatrix<ElemType>& UnpackConvolutionInput(GPUMatrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
bool zeroPadding = false) const;
GPUMatrix<ElemType>& AssignMaxPoolingResult(const GPUMatrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
GPUMatrix<ElemType>& AddMaxPoolingGradient(const GPUMatrix<ElemType>& outputGradientBatch, const GPUMatrix<ElemType>& inputBatch, const GPUMatrix<ElemType>& outputBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
GPUMatrix<ElemType>& AssignAveragePoolingResult(const GPUMatrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
GPUMatrix<ElemType>& AddAveragePoolingGradient(const GPUMatrix<ElemType>& outputGradientBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
void ConvolutionForward(const GPUMatrix<ElemType>& kernel, const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIwht,
const GPUMatrix<int>& mpRowRun, const GPUMatrix<int>& runs, GPUMatrix<ElemType>& output) const;
void ConvolutionBackwardData(const GPUMatrix<ElemType>& kernel, const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIwht,
const GPUMatrix<int>& mpRowRun, const GPUMatrix<int>& runs, GPUMatrix<ElemType>& grad) const;
void ConvolutionBackwardKernel(const GPUMatrix<ElemType>& in, const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIwht,
const GPUMatrix<int>& mpRowRun, const GPUMatrix<int>& runs, GPUMatrix<ElemType>& kernelGrad) const;
void MaxPoolingForward(const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIndices, const GPUMatrix<int>& indices, GPUMatrix<ElemType>& output) const;
void MaxPoolingBackward(const GPUMatrix<ElemType>& out, const GPUMatrix<ElemType>& in,
const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIndices, const GPUMatrix<int>& indices,
GPUMatrix<ElemType>& grad) const;
void MaxUnpooling(const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIndices, const GPUMatrix<int>& indices, const GPUMatrix<ElemType>& poolInput, GPUMatrix<ElemType>& input) const;
void ROIPoolingForward(const size_t numRois, const size_t numImg, const size_t channels, const size_t width, const size_t height,
const size_t pooledWidth, const size_t pooledHeight, const GPUMatrix<ElemType>& roiData, GPUMatrix<ElemType>& output,
GPUMatrix<ElemType>& argmax) const;
void ROIPoolingBackward(const size_t numRois, const size_t numImg, const size_t channels, const size_t width, const size_t height,
const size_t pooledWidth, const size_t pooledHeight, const GPUMatrix<ElemType>& roiData, GPUMatrix<ElemType>& grad,
GPUMatrix<ElemType>& argmax) const;
void AveragePoolingForward(const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIndices, const GPUMatrix<int>& indices, GPUMatrix<ElemType>& output) const;
void AveragePoolingBackward(const GPUMatrix<int>& mpRowCol, const GPUMatrix<int>& mpRowIndices, const GPUMatrix<int>& indices, GPUMatrix<ElemType>& grad) const;
void BatchNormalizationForward(const GPUMatrix<ElemType>& scale, const GPUMatrix<ElemType>& bias, bool inferenceOnly, double expAvgFactor, double blendFactor,
GPUMatrix<ElemType>& runMean, GPUMatrix<ElemType>& runVariance, GPUMatrix<ElemType>& out, double epsilon,
GPUMatrix<ElemType>& saveMean, GPUMatrix<ElemType>& saveInvStdDev) const;
void BatchNormalizationBackward(const GPUMatrix<ElemType>& in, GPUMatrix<ElemType>& grad, const GPUMatrix<ElemType>& scale, double blendFactor,
const GPUMatrix<ElemType>& saveMean, const GPUMatrix<ElemType>& saveInvStdDev,
GPUMatrix<ElemType>& scaleGrad, GPUMatrix<ElemType>& biasGrad) const;
// RNN support functions
void RNNForward(const GPUMatrix<ElemType>& inputX, const GPUMatrix<ElemType>& paramW, size_t xDim, size_t yDim, const vector<size_t>& numSequencesForFrame, const struct RnnAttributes& rnnAttributes, GPUMatrix<ElemType>& reserve, GPUMatrix<ElemType>& workspace);
void RNNBackwardData(const GPUMatrix<ElemType>& outputDY, const GPUMatrix<ElemType>& paramW, GPUMatrix<ElemType>& outputDX, const struct RnnAttributes& rnnAttributes, GPUMatrix<ElemType>& reserve, GPUMatrix<ElemType>& workspace);
void RNNBackwardWeights(const GPUMatrix<ElemType>& inputX, const GPUMatrix<ElemType>& outputY, GPUMatrix<ElemType>& dw, const struct RnnAttributes& rnnAttributes, GPUMatrix<ElemType>& reserve, GPUMatrix<ElemType>& workspace);
public:
// static BLAS functions
static void MultiplyAndWeightedAdd(ElemType alpha, const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB, ElemType beta, GPUMatrix<ElemType>& c);
static void MultiplyAndAdd(const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB, GPUMatrix<ElemType>& c);
static void Multiply(const GPUMatrix<ElemType>& a, const bool transposeA, const GPUMatrix<ElemType>& b, const bool transposeB, GPUMatrix<ElemType>& c);
static void Multiply(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void Multiply1x1AndWeightedAdd(ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, ElemType beta, GPUMatrix<ElemType>& c);
static void ScaleAndAdd(ElemType alpha, const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c);
static void ScaleAndAdd(ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AddScaledDifference(const ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AssignScaledDifference(const ElemType alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AddScaledDifference(const GPUMatrix<ElemType>& alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AssignScaledDifference(const GPUMatrix<ElemType>& alpha, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
static void AddElementToElement(ElemType beta, const GPUMatrix<ElemType>& a, const size_t ai, const size_t aj, GPUMatrix<ElemType>& c, const size_t ci, const size_t cj);
// minus one at a specific position
static void MinusOneAt(GPUMatrix<ElemType>& c, const size_t position);
static void Scale(ElemType alpha, const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c);
static void Scale(GPUMatrix<ElemType>& alpha, GPUMatrix<ElemType>& a); // In this case matrix alpha must be 1x1
static void Scale(ElemType alpha, GPUMatrix<ElemType>& a);
static void InnerProduct(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c, const bool isColWise);
static ElemType InnerProductOfMatrices(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b);
static void ElementWisePower(ElemType alpha, const GPUMatrix<ElemType>& a, GPUMatrix<ElemType>& c);
static bool AreEqual(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const ElemType threshold = 1e-8);
static void TensorShuffleScaleAndAdd(ElemType keepWeight, const GPUMatrix<ElemType>& a, size_t D, size_t S, size_t M, size_t K, size_t T, ElemType scaleFactor, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c);
void TensorOp(ElemType beta, const GPUMatrix<ElemType>& a, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const std::array<size_t, 2>& offsets,
const SmallVector<size_t>& regularOpDims, const std::array<SmallVector<ptrdiff_t>, 2>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 2>& reducingStrides);
void TensorOp(ElemType beta, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const std::array<size_t, 3>& offsets,
const SmallVector<size_t>& regularOpDims, const std::array<SmallVector<ptrdiff_t>, 3>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 3>& reducingStrides);
void TensorOp(ElemType beta, const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const GPUMatrix<ElemType>& c, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const std::array<size_t, 4>& offsets,
const SmallVector<size_t>& regularOpDims, const std::array<SmallVector<ptrdiff_t>, 4>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 4>& reducingStrides);
static void CreateCurandObject(unsigned long seed, const char* caller);
static void ResetCurandObject(unsigned long seed, const char* caller);
static GPUMatrix<ElemType> Ones(const size_t rows, const size_t cols, int deviceId);
static GPUMatrix<ElemType> Zeros(const size_t rows, const size_t cols, int deviceId);
static GPUMatrix<ElemType> Eye(const size_t rows, int deviceId);
static GPUMatrix<ElemType> RandomUniform(const size_t rows, const size_t cols, int deviceId, const ElemType low, const ElemType high, unsigned long seed = USE_TIME_BASED_SEED);
static GPUMatrix<ElemType> RandomGaussian(const size_t rows, const size_t cols, int deviceId, const ElemType mean, const ElemType sigma, unsigned long seed = USE_TIME_BASED_SEED);
static bool HasElement(const GPUMatrix<ElemType>& a, const ElemType v = 0.0);
static ElemType GetLearnRateForBlock_Helper(const GPUMatrix<ElemType>& Gradients, const GPUMatrix<ElemType>& SmoothedGradients);
ElemType LogSumOfElements() const;
public:
GPUMatrix<ElemType>& AssignElementProductOfWithShiftNeg(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const size_t shift, const size_t nt);
static void InnerProductWithShiftNeg(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c, const size_t shift, const size_t nt);
GPUMatrix<ElemType>& GetARowByIndex(const GPUMatrix<ElemType>& a, const size_t m);
static void ConductRowElementMultiplyWithShift(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, GPUMatrix<ElemType>& c, const size_t shift, const bool isafixed);
GPUMatrix<ElemType>& AssignElementProductOfWithShift(const GPUMatrix<ElemType>& a, const GPUMatrix<ElemType>& b, const size_t shift);
public:
static void RCRFBackwardCompute(
const GPUMatrix<ElemType>& alpha, GPUMatrix<ElemType>& beta,
const GPUMatrix<ElemType>& lbls,
const GPUMatrix<ElemType>& pos_scores, const GPUMatrix<ElemType>& pair_scores, const int shift = 1);
static void RCRFTransGrdCompute(const GPUMatrix<ElemType>& lbls,
const GPUMatrix<ElemType>& alpha,
const GPUMatrix<ElemType>& beta,
const GPUMatrix<ElemType>& pair_scores,
GPUMatrix<ElemType>& grd,
const int startLbl, // the time 0 start symbol in the output layer
const int shift);
public:
friend File& operator>>(File& stream, GPUMatrix<ElemType>& us)
{
stream.GetMarker(fileMarkerBeginSection, std::wstring(L"BMAT"));
size_t elsize;
stream >> elsize;
if (sizeof(ElemType) != elsize)
LogicError("Template argument size doesn't match those in file");
std::wstring matrixNameDummy; // Note this is not used anymore, just a dummy for compatability.
size_t numRows, numCols;
int format;
stream >> matrixNameDummy >> format >> numRows >> numCols;
ElemType* d_array = new ElemType[numRows * numCols];
for (size_t i = 0; i < numRows * numCols; ++i)
stream >> d_array[i];
stream.GetMarker(fileMarkerEndSection, std::wstring(L"EMAT"));
us.SetValue(numRows, numCols, us.GetComputeDeviceId(), d_array, matrixFlagNormal | format);
delete[] d_array;
return stream;
}
friend File& operator<<(File& stream, const GPUMatrix<ElemType>& us)
{
stream.PutMarker(fileMarkerBeginSection, std::wstring(L"BMAT"));
stream << sizeof(ElemType);
// TODO: This is now ignored on input, so we can should change to an empty string. This might break parsing, and must be tested first
std::wstring s = std::wstring(L"unnamed");
int format = us.GetFormat();
stream << s << format;
stream << us.m_numRows << us.m_numCols;
ElemType* pArray = us.CopyToArray();
for (size_t i = 0; i < us.GetNumElements(); ++i)
stream << pArray[i];
delete[] pArray;
stream.PutMarker(fileMarkerEndSection, std::wstring(L"EMAT"));
return stream;
}
};
typedef GPUMatrix<float> GPUSingleMatrix;
}}}
#ifndef CPUONLY
#include <cuda_runtime.h>
// -----------------------------------------------------------------------
// Error handling
// -----------------------------------------------------------------------
template <typename ERRTYPE>
const char* CudaErrString(ERRTYPE x); // actual error function is defined inside .cu files
template <typename ERRTYPE>
static void CudaCall(ERRTYPE retCode, const char* exprString, const char* libName, ERRTYPE successCode, const char* msg="")
{
if (retCode != successCode)
{
try
{
#ifdef _WIN32
const char* hostname = getenv("COMPUTERNAME");
#else
char hostname[HOST_NAME_MAX];
if (gethostname(hostname, HOST_NAME_MAX) != 0)
strcpy(hostname, "?");
#endif
int currentCudaDevice;
cudaGetDevice(&currentCudaDevice);
Microsoft::MSR::CNTK::RuntimeError("%s failure %d: %s ; GPU=%d ; hostname=%s ; expr=%s%s", libName, (int)retCode, CudaErrString(retCode), currentCudaDevice, hostname ? hostname : "?", exprString, msg);
}
catch (const std::exception& e) // catch, log, and rethrow since CUDA code sometimes hangs in destruction, so we'd never get to see the error
{
std::cerr << e.what() << std::endl;
throw;
}
}
}
#define CUDA_CALL(expr) (CudaCall((expr), #expr, "CUDA", cudaSuccess))
#define CUBLAS_CALL(expr) (CudaCall((expr), #expr, "CUBLAS", CUBLAS_STATUS_SUCCESS))
#define CUSPARSE_CALL(expr) (CudaCall((expr), #expr, "CUSPARSE", CUSPARSE_STATUS_SUCCESS))
#define CURAND_CALL(expr) (CudaCall((expr), #expr, "CURAND", CURAND_STATUS_SUCCESS))
#define CUDNN_CALL(expr) (CudaCall((expr), #expr, "cuDNN", CUDNN_STATUS_SUCCESS))
#define CUDNN_CALL2(expr,m) (CudaCall((expr), #expr, "cuDNN", CUDNN_STATUS_SUCCESS, m))
#endif // CPUONLY