CNTK/Source/Math/Matrix.h

652 строки
42 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
// TODO:
// - remove empty-matrix checks: if an op is well-defined with empty matrices, then do it
// - Resize() must be cheap if it does nothing (I already did that for CPU; already done for GPU?)
//
#pragma once
#include "Basics.h"
#include "File.h"
#include "CommonMatrix.h"
#include "TensorShape.h" // only for SmallVector; I was hoping to keep this out
#include "RNGHandle.h"
#include "DataTransferer.h"
#include <limits.h>
#include <memory> // for shared_ptr
#include <array>
#include <initializer_list>
#include "QuantizedOperations.h"
// Forward declarations
namespace CNTK
{
class Value;
}
// This class is exported from the Math.dll
namespace Microsoft { namespace MSR { namespace CNTK {
enum CurrentDataLocation
{
NONE,
CPU,
GPU,
BOTH
};
enum MatrixType
{
UNDETERMINED,
DENSE,
SPARSE
};
// avoid pulling in these header files for consumers of this class
template <class ElemType> class GPUMatrix;
template <class ElemType> class CPUMatrix;
template <class ElemType> class GPUSparseMatrix;
template <class ElemType> class CPUSparseMatrix;
template <class ElemType> class DeviceBoundNumber;
// <ElemType>-agnostic base class
struct /*interface*/ MATH_API MatrixBase
{
virtual int GetDeviceId() const = 0;
virtual MatrixType GetMatrixType() const = 0;
virtual MatrixFormat GetFormat() const = 0;
// TODO: Move more generic functions such as getting dims, resizing, and getting/setting as scalars in here.
virtual ~MatrixBase();
};
typedef std::shared_ptr<MatrixBase> MatrixBasePtr;
// Note: To comply with BLAS libraries, matrices are stored in ColMajor. However, by default C/C++/C# use RowMajor convertion.
// !!!WARNING!!! This class is NOT THREAD SAFE. Test and add necessary modifications if using in multi-threaded environment
template <class ElemType>
class MATH_API Matrix : public MatrixBase
{
friend class ::CNTK::Value;
typedef MatrixBase Base;
private:
mutable BaseMatrix<ElemType>* m_baseMatrix;
mutable shared_ptr<GPUMatrix <ElemType>> m_GPUMatrix;
mutable shared_ptr<CPUMatrix <ElemType>> m_CPUMatrix;
mutable shared_ptr<GPUSparseMatrix<ElemType>> m_GPUSparseMatrix;
mutable shared_ptr<CPUSparseMatrix<ElemType>> m_CPUSparseMatrix;
mutable MatrixType m_matrixType;
mutable CurrentDataLocation m_currentDataLocation; // Indicates which matrix is current
mutable DEVICEID_TYPE m_preferredDeviceId;
mutable size_t m_numTimesDeviceChanged;
mutable size_t m_numTimesMatrixTypeChanged;
mutable int m_devicesTransferedTo[2]; // TODO: what is this for? Seems only diagnostics
// whether to use cached memory Resize() or not
static bool m_useCachedResize;
// Moves matrix from device id_from to device with id_to. This method doesn't change preferred device Id
void _transferFromDeviceToDevice(int id_from, int id_to, bool isBeingMoved = true, bool emptyTransfer = false) const;
// Moves matrix from current device to device with id_to. This method doesn't change preferred device Id
void _transferToDevice(int id_to, bool isBeingMoved = true, bool emptyTransfer = false) const;
template <class ElemType2>
static void DecideAndMoveToRightDevice(const Matrix<ElemType>& a, const Matrix<ElemType2>& b);
static void DecideAndMoveToRightDevice(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c);
static void DecideAndMoveToRightDevice(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, const Matrix<ElemType>& d);
static void CopyElementsFromDenseToSparse(CPUMatrix<ElemType>& from, CPUSparseMatrix<ElemType>& dest);
public:
// Constructors, destructors and other static matrix builders
// Each constructor can take deviceId as parameter.
// If deviceId<0 then the matrix will be based in RAM (CPUMatrix)
// Elseif deviceId>=0 then the matrix will be based on GPU with specified deviceId
explicit Matrix(DEVICEID_TYPE deviceId);
// This constructor is not used, but it makes the ownership of baseMatrix ambiguous. If it's to be used, ensure that the semantics with external buffer are clear.
#if 0
Matrix(shared_ptr<BaseMatrix<ElemType>> baseMatrix, ElemType* pArray, DEVICEID_TYPE deviceId); // constructor for setting Matrix from a base matrix (externally managed butter pArray)
#endif
Matrix(const size_t numRows, const size_t numCols, DEVICEID_TYPE deviceId, const MatrixType matrixType = DENSE, const MatrixFormat matrixFormat = matrixFormatDense);
// TODO: Rewrite this constructor to eliminate the external buffers flag. Make a separate construction mechanism for Matrix objects that don't own their storage.
Matrix(const size_t numRows, const size_t numCols, ElemType* pArray, DEVICEID_TYPE deviceId, const size_t matrixFlags = matrixFlagNormal, const size_t nnz = 0);
Matrix(const Matrix<ElemType>& deepCopyFrom, DEVICEID_TYPE deviceId);
Matrix(Matrix<ElemType>&& moveFrom); // move constructor, shallow copy
Matrix<ElemType>& operator=(Matrix<ElemType>&& moveFrom); // move assignment operator, shallow copy
Matrix<ElemType> DeepClone() const;
// Disallow deep copy construction and assignment to avoid
// inadvertent silent deep copying
Matrix(const Matrix<ElemType>& deepCopyFrom) = delete;
Matrix<ElemType>& operator=(const Matrix<ElemType>& deepCopyFrom) = delete;
static Matrix<ElemType> Ones(const size_t rows, const size_t cols, DEVICEID_TYPE deviceId);
static Matrix<ElemType> Zeros(const size_t rows, const size_t cols, DEVICEID_TYPE deviceId);
static Matrix<ElemType> Eye(const size_t rows, DEVICEID_TYPE deviceId);
#define USE_TIME_BASED_SEED ULONG_MAX
static Matrix<ElemType> RandomUniform(const size_t rows, const size_t cols, DEVICEID_TYPE deviceId, const ElemType low, const ElemType high, unsigned long seed = USE_TIME_BASED_SEED);
static Matrix<ElemType> RandomGaussian(const size_t rows, const size_t cols, DEVICEID_TYPE deviceId, const ElemType mean, const ElemType sigma, unsigned long seed = USE_TIME_BASED_SEED);
static void SetDevice(DEVICEID_TYPE deviceId); // TODO: unify with PrepareDevice()
void ReleaseMemory();
~Matrix();
// workaround to bugs in BOTH implementation: force to collapse to home location
void CollapseDataLocation() const
{
SetDataLocation(GetDeviceId() < 0 ? CurrentDataLocation::CPU : CurrentDataLocation::GPU, GetMatrixType());
}
static void UseCachedResizeOrNot(bool useCachedResize);
private:
Matrix(const MatrixFlags matrixFlags, const MatrixType matrixType, const MatrixFormat matrixFormat, DEVICEID_TYPE deviceID); // only used internally to initialize a blank matrix
Matrix(const MatrixFlags matrixFlags, const MatrixType matrixType, DEVICEID_TYPE deviceID); // only used internally to initialize a blank matrix
Matrix(const MatrixFlags matrixFlags, DEVICEID_TYPE deviceID); // only used internally to initialize a blank matrix
void Init(DEVICEID_TYPE deviceID);
void SetDataLocation(CurrentDataLocation location, MatrixType type = UNDETERMINED) const;
void ShallowCopyFrom(const Matrix<ElemType>& other);
public:
// down-cast to make life easier
template <class T>
static shared_ptr<T> DownCast(shared_ptr<BaseMatrix<ElemType>> inode)
{
shared_ptr<T> node = dynamic_pointer_cast<T>(inode);
if (!node)
LogicError("A Matrix of mismatching type was passed.");
return node;
}
MatrixType GetMatrixType() const override;
MatrixFormat GetFormat() const override;
bool OwnBuffer() const { return m_baseMatrix->OwnBuffer(); }
int GetDeviceId() const; // -1 if CPU, otherwise GPU CUDA device id
DEVICEID_TYPE GetPreferredDeviceId() const { return m_preferredDeviceId; }; // -1 if CPU, otherwise GPU CUDA device id
void SetPreferredDeviceId(DEVICEID_TYPE preferredDeviceId) { m_preferredDeviceId = preferredDeviceId; }
// Moves matrix from device id_from to device with id_to.
// If emptyTransfer=true, then no data is ever moved, just corresponding GPU/CPU matrices are deleted and then created using empty constructor
void TransferFromDeviceToDevice(int id_from, int id_to, bool isBeingMoved = false, /*if false then keep source and set location to BOTH*/ bool emptyTransfer = false, bool updatePreferredDevice = true) const;
// Same as TransferFromDeviceToDevice() but moves only if it is currently not on the target device
void TransferToDeviceIfNotThere(int id_to, bool isBeingMoved = false, bool emptyTransfer = false, bool updatePreferredDevice = true) const;
CurrentDataLocation GetCurrentMatrixLocation() const { return m_currentDataLocation; };
void SwitchToMatrixType(MatrixType newMatrixType, MatrixFormat newMatrixFormat, bool keepValues); // sets matrix type between dense and sparse
size_t GetNumRows() const;
size_t GetNumCols() const;
size_t GetNumElements() const;
bool HasNoElements() const { return GetNumElements() == 0; }
bool IsEmpty() const;
size_t BufferSize() const;
ElemType* Data() const;
ElemType* CopyToArray() const; // allocated by the callee but need to be deleted by the caller
size_t CopyToArray(ElemType*& arrayCopyTo, size_t& currentArraySize) const; // allocated by the callee but need to be deleted by the caller
// colStride specifies leading dimension of dst.
// REVIEW alexeyk: GPU version copies from device to host only, implement all versions (device <-> host).
void CopySection(size_t numRows, size_t numCols, ElemType* dst, size_t colStride) const;
Matrix<ElemType> ColumnSlice(size_t startColumn, size_t numCols) const; // note: 'const' is misleading here, as the returned matrix is a mutable reference
// difference between AssignColumnSlice and SetColumnSlice
// AssignColumnSlice : this(:, startColumn:startColumn+numCols-1) = fromMatrix(:, startColumn: startColumn+numCols-1)
// SetColumnSlice : this(:, startColumn:startColumn+numCols-1) = fromMatrix(:, 0: startColumn+numCols-1)
// AssignColumnSlice do not transfer data, it uses external data
// SetColumnSlice copies data
Matrix<ElemType>& AssignColumnSlice(const Matrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
Matrix<ElemType>& SetColumnSlice(const Matrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols);
void CopyColumnsStrided(const Matrix<ElemType>& fromMatrix, size_t numCols, size_t srcNumColsStride, size_t destNumColsStride);
Matrix<ElemType> Diagonal() const;
void AssignDiagonalValuesTo(Matrix<ElemType>& diag) const;
void SGDUpdate(Matrix<ElemType>& gradients, ElemType learnRatePerSample);
void MomentumSGDUpdate(Matrix<ElemType>& gradients, Matrix<ElemType>& smoothedGradients, ElemType learnRatePerSample, ElemType momentum, bool unitGainMomentum = true);
void NesterovAcceleratedMomentumSGDUpdate(Matrix<ElemType>& gradients, Matrix<ElemType>& smoothedGradients, ElemType learnRatePerSample, ElemType momentum, bool unitGainMomentum = true);
ElemType Adagrad(Matrix<ElemType>& gradients, const bool needAveMultiplier);
void FSAdagradUpdate(size_t mbSize,
Matrix<ElemType>& gradients, Matrix<ElemType>& functionValues, double& smoothedCount,
const double learnRatePerSample, const double targetAdagradAvDenom,
const double meanMomentum, const double varMomentum, bool unitGainMomentum = true);
ElemType RmsProp(Matrix<ElemType>& gradients, ElemType RMS_GAMMA, ElemType RMS_WGT_INC, ElemType RMS_WGT_MAX, ElemType RMS_WGT_DEC, ElemType RMS_WGT_MIN, const bool needAveMultiplier);
void Resize(const size_t numRows, const size_t numCols, const size_t numNZElemToReserve = 10000, bool growOnly = true); // by default we only reallocate if need to grow
void Resize(const Matrix<ElemType>& other) // TODO: Should this carry over numNZElemToReserve for sparse matrices?
{
Resize(other.GetNumRows(), other.GetNumCols());
}
void VerifySize(size_t rows, size_t cols)
{
m_baseMatrix->VerifySize(rows, cols);
}
// TODO: Call this ShallowClone instead?
Matrix<ElemType> AsReference() const
{
return ColumnSlice(0, GetNumCols());
} // get a reference (e.g. this is not resizable but can be reshaped)
void Reshape(const size_t numRows, const size_t numCols); // note: reshapes in place. To get a reshaped reference, use Reshaped()
Matrix<ElemType> Reshaped(const size_t numRows, const size_t numCols) const // get a reshaped reference
{
Matrix<ElemType> result = AsReference();
result.Reshape(numRows, numCols);
return result;
}
// update number of columns
// TODO: a future version may want to enforce retaining the content, to allow dynamically growing layouts column by column (when size is not known upfront)
void ResizeColumns(const size_t numCols)
{
Resize(GetNumRows(), numCols);
}
// similarl to the repmat operation in matlab or octave
static Matrix<ElemType> RepMat(const Matrix<ElemType>& frmMat, const size_t rows, const size_t cols);
size_t GetAllocatedSize() const;
void Reset(); // reset for sparse matrix
const ElemType operator()(const size_t row, const size_t col) const;
ElemType& operator()(const size_t row, const size_t col);
ElemType GetValue(const size_t row, const size_t col) const { return operator()(row, col); } // use this for reading on non-const objects to avoid inefficiency
ElemType Get00Element() const;
void SetValue(const ElemType v);
void SetValue(const DeviceBoundNumber<ElemType>& db_number);
//void SetValue (const Matrix<ElemType>& deepCopyFrom, const MatrixFormat format = matrixFormatSparseCSR); // BUGBUG: default for 'format' is unexpected
// SetValue respects the source matrix's information. It moves the target's location (if necessary), and then copies the sources values.
void SetValue (const Matrix<ElemType>& deepCopyFrom);
// AssignValuesOf respects the target matrix's information. It copies the values from the target into the memory of the source.
void AssignValuesOf(const Matrix<ElemType>& deepCopyFrom);
void SetValue(const size_t numRows, const size_t numCols, int deviceId, ElemType* pArray, const size_t matrixFlags = matrixFlagNormal, DataTransferer* transferer = nullptr);
void SetValue(const size_t rIdx, const size_t cIdx, ElemType val); // set matrix sparsely
void SetValue(const size_t numRows, const size_t numCols, std::initializer_list<ElemType> l) // SetValue(2,3, {1,2,3, 4,5,6});
{
std::vector<ElemType> vals(l);
assert(vals.size() == numRows * numCols);
SetValue(numRows, numCols, GetDeviceId(), vals.data(), matrixFormatRowMajor);
}
static ElemType MakeNan(size_t payload);
void Invalidate()
{
SetValue(MakeNan(__LINE__));
}
void SetMatrixFromCSCFormat(const CPUSPARSE_INDEX_TYPE* h_CSCCol, const CPUSPARSE_INDEX_TYPE* h_Row, const ElemType* h_Val,
const size_t nz, const size_t numRows, const size_t numCols, DataTransferer* transferer = nullptr);
void MaskColumnsValue(const Matrix<char>& columnsMask, ElemType val);
void SetColumn(const ElemType* colPointer, size_t colInd);
void SetColumn(const ElemType val, size_t colInd);
void SetColumn(const Matrix<ElemType>& valMat, size_t colInd);
void SetDiagonalValue(const ElemType v);
void SetDiagonalValue(const Matrix<ElemType>& vector);
void SetUniformRandomValue(const ElemType low, const ElemType high, unsigned long seed = USE_TIME_BASED_SEED);
void SetGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed = USE_TIME_BASED_SEED);
void SetUniformRandomMask(const ElemType maskRate, const ElemType scaleValue, RNGHandle& rngHandle);
void AddGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed = USE_TIME_BASED_SEED);
Matrix<ElemType>& AssignNoiseContrastiveEstimation(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, const Matrix<ElemType>& bias, Matrix<ElemType>& tmp);
Matrix<ElemType>& AssignNCEDerivative(const Matrix<ElemType>& tmp, const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, size_t inputIndex);
Matrix<ElemType>& AssignSoftmaxSum(const Matrix<ElemType>& a, const Matrix<ElemType>& softmax);
Matrix<ElemType>& AssignNceUnnormalizedEval(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, const Matrix<ElemType>& bias);
Matrix<ElemType> Transpose(); // This method doesn't change state of Matrix. It should be a const function
Matrix<ElemType>& AssignTransposeOf(const Matrix<ElemType>& a);
Matrix<ElemType>& DoGatherColumnsOf (ElemType beta, const Matrix<ElemType>& idx, const Matrix<ElemType>& a, ElemType alpha);
Matrix<ElemType>& DoScatterColumnsOf(ElemType beta, const Matrix<ElemType>& idx, const Matrix<ElemType>& a, ElemType alpha);
Matrix<ElemType>& operator+=(const ElemType alpha);
Matrix<ElemType> operator+(const ElemType alpha) const;
Matrix<ElemType>& AssignSumOf(const ElemType alpha, const Matrix<ElemType>& a);
Matrix<ElemType>& operator+=(const Matrix<ElemType>& a);
Matrix<ElemType> operator+(const Matrix<ElemType>& a) const;
Matrix<ElemType>& AssignSumOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& operator-=(const ElemType alpha);
Matrix<ElemType> operator-(const ElemType alpha) const;
Matrix<ElemType>& AssignDifferenceOf(const ElemType alpha, const Matrix<ElemType>& a);
Matrix<ElemType>& AssignDifferenceOf(const Matrix<ElemType>& a, const ElemType alpha);
Matrix<ElemType>& operator-=(const Matrix<ElemType>& a);
Matrix<ElemType> operator-(const Matrix<ElemType>& a) const;
Matrix<ElemType>& AssignDifferenceOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& operator*=(const ElemType alpha);
Matrix<ElemType> operator*(const ElemType alpha) const;
Matrix<ElemType>& AssignProductOf(const ElemType alpha, const Matrix<ElemType>& a);
Matrix<ElemType> operator*(const Matrix<ElemType>& a) const;
Matrix<ElemType>& AssignProductOf(const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB); // this = a * b
Matrix<ElemType>& Assign1x1ProductOf(const Matrix<ElemType>& a1x1, const Matrix<ElemType>& b); // this = a * b, where a is 1x1
Matrix<ElemType>& operator/=(ElemType alpha);
Matrix<ElemType> operator/(ElemType alpha) const;
Matrix<ElemType>& operator^=(ElemType alpha); // element-wise power
Matrix<ElemType> operator^(ElemType alpha) const; // element-wise power
Matrix<ElemType>& AssignElementPowerOf(const Matrix<ElemType>& a, const ElemType power);
// TODO: There are several functions below that perform an in-place operation
// We should prepend the names of these functions with InPlace for clearly indicating
// the semantics for callers.
Matrix<ElemType>& ElementMultiplyWith(const Matrix<ElemType>& a);
Matrix<ElemType>& AssignElementProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& AddElementProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& AssignElementDivisionOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& ElementDivideBy(const Matrix<ElemType>& a);
Matrix<ElemType>& ColumnElementMultiplyWith(const Matrix<ElemType>& a);
Matrix<ElemType>& RowElementMultiplyWith(const Matrix<ElemType>& a);
Matrix<ElemType>& ColumnElementDivideBy(const Matrix<ElemType>& a);
Matrix<ElemType>& RowElementDivideBy(const Matrix<ElemType>& a);
Matrix<ElemType>& ElementInverse();
Matrix<ElemType>& AssignElementInverseOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLinearRectifierDerivative();
Matrix<ElemType>& AssignLinearRectifierDerivativeOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceSigmoidDerivative();
Matrix<ElemType>& AssignSigmoidDerivativeOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceSigmoid();
Matrix<ElemType>& AssignSigmoidOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceTanh();
Matrix<ElemType>& AssignTanhOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLogSoftmax(const bool isColWise);
Matrix<ElemType>& AssignLogSoftmaxOf(const Matrix<ElemType>& a, const bool isColWise);
Matrix<ElemType>& InplaceHardmax(const bool isColWise);
Matrix<ElemType>& AssignHardmaxOf(const Matrix<ElemType>& a, const bool isColWise);
// sequence training
Matrix<ElemType>& DropFrame(const Matrix<ElemType>& label, const Matrix<ElemType>& gamma, const ElemType& threshhold);
Matrix<ElemType>& AssignSequenceError(const ElemType hsmoothingWeight, const Matrix<ElemType>& label, const Matrix<ElemType>& dnnoutput, const Matrix<ElemType>& gamma, ElemType alpha);
Matrix<ElemType>& InplaceSqrt();
Matrix<ElemType>& AssignSqrtOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceExp();
Matrix<ElemType>& AssignExpOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLog();
Matrix<ElemType>& AssignLogOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceCosine();
Matrix<ElemType>& AssignCosineOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceNegativeSine();
Matrix<ElemType>& AssignNegativeSineOf(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceLog10();
Matrix<ElemType>& AssignLog10Of(const Matrix<ElemType>& a);
Matrix<ElemType>& InplaceAbs();
Matrix<ElemType>& AssignAbsOf(const Matrix<ElemType>& a);
// TODO: rename these to InPlaceFloor() and -Ceil() (I never know what it means to truncate a bottom)
// And also document and implement that sparse matrices can only truncate towards 0.
Matrix<ElemType>& InplaceTruncateBottom(const ElemType threshold);
Matrix<ElemType>& AssignTruncateBottomOf(const Matrix<ElemType>& a, const ElemType threshold);
Matrix<ElemType>& InplaceTruncateTop(const ElemType threshold);
Matrix<ElemType>& AssignTruncateTopOf(const Matrix<ElemType>& a, const ElemType threshold);
Matrix<ElemType>& InplaceTruncate(const ElemType threshold);
Matrix<ElemType>& InplaceSoftThreshold(const ElemType threshold);
void InplaceTranspose();
Matrix<ElemType>& SetToZeroIfAbsLessThan(const ElemType threshold);
DeviceBoundNumber<ElemType> Sum_AsDeviceBoundNum() const;
ElemType SumOfAbsElements() const; // sum of all abs(elements)
ElemType SumOfElements() const; // sum of all elements
Matrix<ElemType>& AssignSumOfElements(const Matrix<ElemType>& a);
ElemType LogSumOfElements() const;
Matrix<ElemType>& AssignToRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
Matrix<ElemType>& AssignRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
Matrix<ElemType>& AddToRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
Matrix<ElemType>& AddWithRowSliceValuesOf(const Matrix<ElemType>& a, const size_t startIndex, const size_t numRows);
// Matrix<ElemType>& AssignRowStackValuesOf(const std::vector<const Matrix<ElemType>*>& inputMatrices, const size_t sliceStartCol, const size_t sliceNumCols);
Matrix<ElemType>& AssignRepeatOf(const Matrix<ElemType>& a, const size_t numRowRepeats, const size_t numColRepeats);
Matrix<ElemType>& AddToRowRepeatValuesOf(const Matrix<ElemType>& a, const size_t numRepeats);
Matrix<ElemType>& AssignPositiveAndShiftedNegSample(const Matrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
Matrix<ElemType>& AddFoldedPositiveAndShiftedNegSample(const Matrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber);
bool IsValid() const;
bool IsEqualTo(const Matrix<ElemType>& a, const ElemType threshold = 1e-8) const;
static void VectorSum(const Matrix<ElemType>& a, Matrix<ElemType>& c, const bool isColWise);
void VectorNorm1(Matrix<ElemType>& c, const bool isColWise) const;
Matrix<ElemType>& AssignVectorNorm1Of(Matrix<ElemType>& a, const bool isColWise); // TODO: arg should be const
void VectorNorm2(Matrix<ElemType>& c, const bool isColWise) const;
Matrix<ElemType>& AssignVectorNorm2Of(Matrix<ElemType>& a, const bool isColWise); // TODO: arg should be const
void VectorNormInf(Matrix<ElemType>& c, const bool isColWise) const;
Matrix<ElemType>& AssignVectorNormInfOf(Matrix<ElemType>& a, const bool isColWise);
Matrix<ElemType>& AssignInnerProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const bool isColWise);
Matrix<ElemType>& AssignKhatriRaoProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
Matrix<ElemType>& AddColumnReshapeProductOf(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const bool transposeAColumn);
Matrix<ElemType>& AddWithScaleOf(ElemType alpha, const Matrix<ElemType>& a); // this += alpha * a
ElemType FrobeniusNorm() const;
Matrix<ElemType>& AssignFrobeniusNormOf(const Matrix<ElemType>& a);
ElemType MatrixNormInf() const;
ElemType MatrixNorm1() const;
ElemType MatrixNorm0() const; // number of non-zero elemets
Matrix<ElemType>& AssignSignOf(const Matrix<ElemType>& a);
Matrix<ElemType>& AddSignOf(const Matrix<ElemType>& a);
void VectorMax(Matrix<ElemType>& maxIndexes, Matrix<ElemType>& maxValues, const bool isColWise) const;
void VectorMax(Matrix<ElemType>& maxIndexes, Matrix<ElemType>& maxValues, const bool isColWise, int topK) const;
void VectorMin(Matrix<ElemType>& minIndexes, Matrix<ElemType>& minValues, const bool isColWise) const;
Matrix<ElemType>& AssignNumOfDiff(const Matrix<ElemType>& a, const Matrix<ElemType>& b, bool searchInCol = false);
Matrix<ElemType>& AssignInnerProductOfMatrices(const Matrix<ElemType>& a, const Matrix<ElemType>& b); // this method will resize(1,1) first
bool HasNan(const char* name) const;
size_t CountNanInf() const;
void Print(const char* matrixName, ptrdiff_t rowFirst, ptrdiff_t rowLast, ptrdiff_t colFirst, ptrdiff_t colLast) const;
void Print(const char* matrixName = nullptr) const; // print whole matrix. can be expensive
Matrix<ElemType>& AssignPackedConvolutionInput(const Matrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding = false);
Matrix<ElemType>& UnpackConvolutionInput(Matrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t outputChannels,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding = false) const;
Matrix<ElemType>& AssignMaxPoolingResult(const Matrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
Matrix<ElemType>& AddMaxPoolingGradient(const Matrix<ElemType>& outputGradientBatch, const Matrix<ElemType>& inputBatch, const Matrix<ElemType>& outputBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
Matrix<ElemType>& AssignAveragePoolingResult(const Matrix<ElemType>& inputBatch, const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
Matrix<ElemType>& AddAveragePoolingGradient(const Matrix<ElemType>& outputGradientBatch,
const size_t channels,
const size_t inputWidth, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample);
void ConvolutionForward(const Matrix<ElemType>& kernel, const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIwht,
const Matrix<int>& mpRowRun, const Matrix<int>& runs, Matrix<ElemType>& output) const;
void ConvolutionBackwardData(const Matrix<ElemType>& kernel, const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIwht,
const Matrix<int>& mpRowRun, const Matrix<int>& runs, Matrix<ElemType>& grad) const;
void ConvolutionBackwardKernel(const Matrix<ElemType>& in, const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIwht,
const Matrix<int>& mpRowRun, const Matrix<int>& runs, Matrix<ElemType>& kernelGrad) const;
void UnrollConvolutionInput(size_t unrollCols, size_t mapOutSize, const Matrix<int>& mpRowCol,
const Matrix<int>& mpRowRun, const Matrix<int>& runs, Matrix<ElemType>& output) const;
void UnrollConvolutionOutput(size_t unrollCols, size_t mapInCount, size_t mapOutCount, const Matrix<int>& mpRowCol,
const Matrix<int>& mpRowRun, const Matrix<int>& runs, Matrix<ElemType>& output) const;
void UnrollConvolutionInputForKernelBackprop(size_t mapOutSize, const Matrix<int>& mpRowCol,
const Matrix<int>& mpRowRun, const Matrix<int>& runs, Matrix<ElemType>& output) const;
void MaxPoolingForward(const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIndices, const Matrix<int>& indices, Matrix<ElemType>& output) const;
void MaxPoolingBackward(const Matrix<ElemType>& out, const Matrix<ElemType>& in,
const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIndices, const Matrix<int>& indices,
Matrix<ElemType>& grad) const;
void ROIPoolingForward(const size_t numRois, const size_t numImg, const size_t channels, const size_t width, const size_t height,
const size_t pooledWidth, const size_t pooledHeight, const Matrix<ElemType>& roiData, Matrix<ElemType>& output, Matrix<ElemType>& argmax) const;
void ROIPoolingBackward(const size_t numRois, const size_t numImg, const size_t channels, const size_t width, const size_t height,
const size_t pooledWidth, const size_t pooledHeight, const Matrix<ElemType>& roiData, Matrix<ElemType>& grad, Matrix<ElemType>& argmax) const;
void MaxUnpooling(const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIndices, const Matrix<int>& indices, const Matrix<ElemType>& poolInput, Matrix<ElemType>& input) const;
void AveragePoolingForward(const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIndices, const Matrix<int>& indices, Matrix<ElemType>& output) const;
void AveragePoolingBackward(const Matrix<int>& mpRowCol, const Matrix<int>& mpRowIndices, const Matrix<int>& indices, Matrix<ElemType>& grad) const;
void BatchNormalizationForward(const Matrix<ElemType>& scale, const Matrix<ElemType>& bias, bool inferenceOnly, double expAvgFactor, double blendFactor,
Matrix<ElemType>& runMean, Matrix<ElemType>& runVariance, Matrix<ElemType>& out, double epsilon,
Matrix<ElemType>& saveMean, Matrix<ElemType>& saveInvStdDev) const;
void BatchNormalizationBackward(const Matrix<ElemType>& in, Matrix<ElemType>& grad, const Matrix<ElemType>& scale, double blendFactor, const Matrix<ElemType>& saveMean, const Matrix<ElemType>& saveInvStdDev,
Matrix<ElemType>& scaleGrad, Matrix<ElemType>& biasGrad) const;
void RNNForward(const Matrix<ElemType>& inputX, const Matrix<ElemType>& paramW, size_t xDim, size_t yDim, const vector<size_t>& numSequencesForFrame, const struct RnnAttributes& rnnAttributes, Matrix<ElemType>& reserve, Matrix<ElemType>& workspace);
void RNNBackwardData(const Matrix<ElemType>& outputDY, const Matrix<ElemType>& paramW, Matrix<ElemType>& outputDX, const struct RnnAttributes& rnnAttributes, Matrix<ElemType>& reserve, Matrix<ElemType>& workspace);
void RNNBackwardWeights(const Matrix<ElemType>& inputX, const Matrix<ElemType>& outputY, Matrix<ElemType>& dw, const struct RnnAttributes& rnnAttributes, Matrix<ElemType>& reserve, Matrix<ElemType>& workspace);
public:
// TODO: why are these not static? And why are they here?
ElemType Exp10(ElemType num);
ElemType Mod(ElemType x, ElemType y);
ElemType LogAdd(ElemType x, ElemType y);
public:
// static BLAS functions
// singular value decomposition of A as A = U*SIGMA*VT
static void SVD(const Matrix<ElemType>& A, Matrix<ElemType>& SIGMA, Matrix<ElemType>& U, Matrix<ElemType>& VT, Matrix<ElemType>& W);
static void MultiplyAndWeightedAdd(ElemType alpha, const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, ElemType beta, Matrix<ElemType>& c, shared_ptr<QuantizedMultiplier<ElemType>> pQuantizedMultiplier=nullptr); // SGEMM
static void MultiplyAndAdd(const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, Matrix<ElemType>& c);
static void Multiply(const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, Matrix<ElemType>& c);
static void Multiply(const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void Multiply1x1AndWeightedAdd(ElemType alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, ElemType beta, Matrix<ElemType>& c);
static void ConvolveAndWeightedAdd(ElemType alpha, const Matrix<ElemType>& a, const bool transposeA, const Matrix<ElemType>& b, const bool transposeB, ElemType beta, Matrix<ElemType>& c, size_t numChannels, size_t horizontalSubsample, bool padding, bool channelwise);
static void ScaleAndAdd(ElemType alpha, const Matrix<ElemType>& a, Matrix<ElemType>& c);
static void ScaleAndAdd(ElemType alpha, const Matrix<ElemType>& a, ElemType beta, Matrix<ElemType>& c);
static void AddScaledDifference(const ElemType alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void AssignScaledDifference(const ElemType alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void AddScaledDifference(const Matrix<ElemType>& alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c); // c += alpha * (a - b)
static void AssignScaledDifference(const Matrix<ElemType>& alpha, const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c);
static void AddElementToElement(const Matrix<ElemType>& a, const size_t ai, const size_t aj, Matrix<ElemType>& c, const size_t ci, const size_t cj);
// static void AddLogElementToElement(const Matrix<ElemType>& a, const size_t ai, const size_t aj, Matrix<ElemType>& c, const size_t ci, const size_t cj);
static void AssignElementToElement(const Matrix<ElemType>& a, const size_t ai, const size_t aj, Matrix<ElemType>& c, const size_t ci, const size_t cj);
static void MinusOneAt(Matrix<ElemType>& c, const size_t position);
static void Scale(ElemType alpha, Matrix<ElemType>& a);
static void Scale(const Matrix<ElemType>& alpha, Matrix<ElemType>& a); // In this case Matrix alpha must be 1x1
static void Scale(ElemType alpha, const Matrix<ElemType>& a, Matrix<ElemType>& c);
static void InnerProduct(const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c, const bool isColWise);
static ElemType InnerProductOfMatrices(const Matrix<ElemType>& a, const Matrix<ElemType>& b);
static void ElementWisePower(ElemType alpha, const Matrix<ElemType>& a, Matrix<ElemType>& c);
static bool AreEqual(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const ElemType threshold = 1e-8);
static bool HasElement(const Matrix<ElemType>& a, const ElemType value = 0.0);
static void TensorShuffleScaleAndAdd(ElemType keepWeight, const Matrix<ElemType>& a, size_t D, size_t S, size_t M, size_t K, size_t T, ElemType scaleFactor, const Matrix<ElemType>& b, Matrix<ElemType>& c);
void TensorOp(ElemType beta, const Matrix<ElemType>& a, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const std::array<size_t, 2>& offsets,
const SmallVector<size_t>& regularOpDims, const std::array<SmallVector<ptrdiff_t>, 2>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 2>& reducingStrides);
void TensorOp(ElemType beta, const Matrix<ElemType>& a, const Matrix<ElemType>& b, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const std::array<size_t, 3>& offsets,
const SmallVector<size_t>& regularOpDims, const std::array<SmallVector<ptrdiff_t>, 3>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 3>& reducingStrides);
void TensorOp(ElemType beta, const Matrix<ElemType>& a, const Matrix<ElemType>& b, const Matrix<ElemType>& c, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const std::array<size_t, 4>& offsets,
const SmallVector<size_t>& regularOpDims, const std::array<SmallVector<ptrdiff_t>, 4>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const std::array<SmallVector<ptrdiff_t>, 4>& reducingStrides);
public:
void Read(File& stream);
void Write(File& stream) const;
Matrix<ElemType>& Shift(const Matrix<ElemType>& a, int shift);
Matrix<ElemType>& AssignElementProductOfWithShiftNeg(const Matrix<ElemType>& a, const Matrix<ElemType>& b, size_t shift, size_t negnumber);
Matrix<ElemType>& AssignInnerProductOfWithShiftNeg(const Matrix<ElemType>& a, const Matrix<ElemType>& b, const bool isColWise, size_t shift, size_t negnumber);
static void InnerProductWithShiftNeg(const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c, const bool isColWise, size_t shift, size_t negnumber);
Matrix<ElemType>& GetARowByIndex(const Matrix<ElemType>& a, size_t index);
static void ConductRowElementMultiplyWithShift(const Matrix<ElemType>& a, const Matrix<ElemType>& b, Matrix<ElemType>& c, size_t shift, bool bFirstmatrixfixed);
Matrix<ElemType>& AssignElementProductOfWithShift(const Matrix<ElemType>& a, const Matrix<ElemType>& b, size_t shift);
public:
static void RCRFBackwardCompute(const Matrix<ElemType>& alpha, Matrix<ElemType>& beta,
Matrix<ElemType>& functionValues, const Matrix<ElemType>& lbls,
const Matrix<ElemType>& pos_scores, const Matrix<ElemType>& pair_scores, const int shift);
static void RCRFTransGrdCompute(const Matrix<ElemType>& lbls,
const Matrix<ElemType>& alpha,
const Matrix<ElemType>& beta,
const Matrix<ElemType>& pair_scores,
Matrix<ElemType>& grd,
const int startLbl, // the time 0 start symbol in the output layer
const int shift);
template <typename T>
friend class MatrixQuantizer;
template <typename T>
friend class QuantizedMatrix;
template <typename T>
friend class Matrix;
};
// overload I/O operators
template <class ElemType>
File& operator>>(File& stream, Matrix<ElemType>& M)
{
M.Read(stream);
return stream;
}
template <class ElemType>
File& operator<<(File& stream, const Matrix<ElemType>& M)
{
M.Write(stream);
return stream;
}
typedef Matrix<float> SingleMatrix;
typedef Matrix<double> DoubleMatrix;
}}}