CNTK/Tutorials/SLUHandsOn/SLUHandsOn_Solution4.cntk

107 строки
3.5 KiB
Plaintext

# CNTK Configuration File for creating a slot tagger and an intent tagger.
command = TrainTagger:TestTagger
makeMode = false ; traceLevel = 0 ; deviceId = "auto"
rootDir = "." ; dataDir = "$rootDir$" ; modelDir = "$rootDir$/Models"
modelPath = "$modelDir$/slu.cmf"
vocabSize = 943 ; numLabels = 129 ; numIntents = 26 # number of words in vocab, slot labels, and intent labels
# The command to train the LSTM model
TrainTagger = {
action = "train"
BrainScriptNetworkBuilder = {
inputDim = $vocabSize$
intentDim = $numIntents$
embDim = 150
hiddenDim = 150
BiRecurrentLSTMLayer {outDim} = {
F = RecurrentLSTMLayer {outDim, goBackwards=false}
G = RecurrentLSTMLayer {outDim, goBackwards=true}
apply (x) = Splice (BS.Sequences.Last(F(x)):BS.Sequences.First(G(x)))
}.apply
model = Sequential (
EmbeddingLayer {embDim} :
BatchNormalizationLayer {} :
BiRecurrentLSTMLayer {hiddenDim} :
BatchNormalizationLayer {} :
DenseLayer {intentDim} ##### different dimension
)
# features
n = DynamicAxis()
query = Input {inputDim, dynamicAxis=n}
intentLabels = Input {intentDim}
# model application
z = model (query)
# loss and metric
ce = CrossEntropyWithSoftmax (intentLabels, z)
errs = ClassificationError (intentLabels, z)
featureNodes = (query)
labelNodes = (intentLabels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
}
SGD = {
maxEpochs = 8 ; epochSize = 36000
minibatchSize = 70
learningRatesPerSample = 0.003*2:0.0015*12:0.0003
gradUpdateType = "fsAdaGrad"
gradientClippingWithTruncation = true ; clippingThresholdPerSample = 15.0
firstMBsToShowResult = 10 ; numMBsToShowResult = 100
ParallelTrain = {
parallelizationMethod = "DataParallelSGD"
parallelizationStartEpoch = 1
distributedMBReading = true
dataParallelSGD = { gradientBits = 2 }
}
# for larger configurations, use this:
#AutoAdjust = {
# autoAdjustMinibatch = true # enable automatic growing of minibatch size
# minibatchSizeTuningFrequency = 10 # try to enlarge after this many epochs
# numMiniBatch4LRSearch = 200
# minibatchSizeTuningMax = 15000 # out of memory above this
#}
}
reader = {
readerType = "CNTKTextFormatReader"
file = "$DataDir$/atis.train.ctf"
randomize = true
input = {
query = { alias = "S0" ; dim = $vocabSize$ ; format = "sparse" }
intentLabels = { alias = "S1" ; dim = $numIntents$ ; format = "sparse" }
slotLabels = { alias = "S2" ; dim = $numLabels$ ; format = "sparse" }
}
}
}
# Test the model's accuracy (as an error count)
TestTagger = {
action = "eval"
modelPath = $modelPath$
reader = {
readerType = "CNTKTextFormatReader"
file = "$DataDir$/atis.test.ctf"
randomize = false
input = {
query = { alias = "S0" ; dim = $vocabSize$ ; format = "sparse" }
intentLabels = { alias = "S1" ; dim = $numIntents$ ; format = "sparse" }
slotLabels = { alias = "S2" ; dim = $numLabels$ ; format = "sparse" }
}
}
}