CNTK/Source/Math/ValueQuantizer.h

227 строки
6.3 KiB
C++

#pragma once
#ifndef __VALLUE_QUANTIZER_H__
#define __VALLUE_QUANTIZER_H__
#include "Basics.h"
#include "BestGpu.h" // for CPUONLY
#ifndef CPUONLY
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <device_launch_parameters.h>
#endif // !CPUONLY
#include <cassert>
#include <stdexcept>
#pragma warning(disable : 4127) // conditional expression is constant
namespace Microsoft { namespace MSR { namespace CNTK {
#ifdef __device__ // this can be used in CUDA; if this is not defined, then we are compiling in a non-CUDA context
#define cudacode __device__ // CUDA: we assume we ONLY run these functions on CUDA (otherwise we'd need to mess with specifiers of matrixref)
#define cudasharedcode __device__ __host__ // shared on both CUDA and CPU; note that such functions cannot call into __device__ only functions like matrixref::operator(,)
#undef assert
#define assert(c)
#else
#define cudacode // non-CUDA context: defines to nothing
#define cudasharedcode
//#define QUANTUSEPPL
#endif
#ifdef QUANTUSEPPL
#include <ppl.h> // in non-CUDA: also use PPL lib
#endif
template <typename ElemType>
class QuantizedWordHelper;
template <>
class QuantizedWordHelper<float>
{
public:
typedef unsigned int ValueType;
typedef int ValueTypeSigned;
static_assert(sizeof(float) == sizeof(ValueType), "Quantized word size != size of ElemType=float");
};
template <>
class QuantizedWordHelper<double>
{
public:
typedef unsigned long long ValueType;
typedef long long ValueTypeSigned;
static_assert(sizeof(double) == sizeof(ValueType), "Quantized word size != size of ElemType=double");
};
template <class ElemType>
class ValueQuantizer
{
public:
typedef typename QuantizedWordHelper<ElemType>::ValueType QWord;
typedef typename QuantizedWordHelper<ElemType>::ValueType QWordVal;
typedef typename QuantizedWordHelper<ElemType>::ValueTypeSigned QWordValSigned;
static const size_t QWordNumBits = 8 * sizeof(QWord);
public:
cudasharedcode ValueQuantizer(size_t ldNbits, ElemType lower, ElemType upper)
: ldNbits(ldNbits), Nbits(1 << ldNbits), quantimin(lower), quantimax(upper)
{
rangeend = ((QWordVal) 1) << Nbits;
// post-fix for incorrect shift for no-quant hack (Nbits=32): << arg is taken mod 32!
// in this case, it's only used as (rangeend-1) which is now correct (before it was 0!)
if (Nbits >= (8 * sizeof(rangeend)))
{
rangeend = 0;
}
// must protect against NaN: interval is 0 -> quantization is futile, just emit 0
if (((quantimax - quantimin) < 1e-36f) || (rangeend == 0))
{
qfactor = ufactor = (ElemType) 0.0;
}
else
{
// make the range asymmetrical, so we get a 0 slot
size_t usedrangeend = rangeend - (Nbits > 1); // TODO: make this a parameter
// precompute this for quantize() (see comment there)
qfactor = usedrangeend / (quantimax - quantimin);
// and for unquantize()
ufactor = (quantimax - quantimin) / usedrangeend;
}
// set the quantization threshold for the special case of 1-bit
quantimid = 0.5f * (quantimax + quantimin);
}
// quantize one value
// TODO: we can optimize for 1 bit here - very simply use a template arg 'isonebit'
template <bool ZeroThresholdFor1Bit>
cudasharedcode QWordVal Quantize(ElemType u) const
{
if (Nbits == QWordNumBits)
{
return QuantizeToFullQWord(u);
}
// TODO: we may need to optimize this by a template arg
else if (ldNbits == 0)
{
return Quantize1<ZeroThresholdFor1Bit>(u) ? 1 : 0;
}
else
{
if (u <= quantimin)
{
return 0;
}
else if (u >= quantimax)
{
return (rangeend - 1);
}
else
{
return (QWordVal)((QWordValSigned)((u - quantimin) * qfactor));
}
}
}
// unquantize one value
cudasharedcode ElemType Unquantize(QWordVal u) const
{
// special branch that does not quantize at all, for testing
if (Nbits == QWordNumBits)
{
return *(ElemType*) &u;
}
// Note: in 1-bit case, we want 0.5 -> mean0, 1.5 -> mean1
return ((u + (ElemType) 0.5) * ufactor) + quantimin;
}
// quantize one value --special version for 1 bit
template <bool ZeroThresholdFor1Bit>
cudasharedcode bool Quantize1(ElemType u) const
{
assert(Nbits == 1);
if (!ZeroThresholdFor1Bit)
{
return u >= quantimid;
}
else
{
return u >= (ElemType) 0.0;
}
}
// unquantize one value --special case for 1 bit
static cudasharedcode ElemType Unquantize1(bool u, ElemType val0, ElemType val1)
{
return u ? val1 : val0;
}
// how many bits we are quanatizing to
cudasharedcode size_t NBits() const
{
return Nbits;
}
// max value of quantize value; 2^Nbits
cudasharedcode QWordVal QuanRangeEnd() const
{
return rangeend;
}
// helper: compute the binary log of a power of two (utility function to convert 'Nbits' into 'ldNbits'
static size_t ld(size_t v)
{
if (v == 1)
{
return 0;
}
else if (v & 1) // not a power of two
{
RuntimeError("ld: 'bits' must be a power of two");
}
else
{
return 1 + ld(v >> 1);
}
}
protected:
// quantize for full ElemType size bits case (special case that allows to bypass quantization, for testing/debugging purposes)
cudasharedcode QWordVal QuantizeToFullQWord(ElemType u) const
{
assert(Nbits == QWordNumBits);
// we return the bit pattern that encodes the float value
return *(QWordVal*) &u;
}
protected:
// NBits must be power of two
size_t ldNbits;
size_t Nbits;
QWordVal rangeend;
// quantization range
ElemType quantimin;
ElemType quantimax;
// quantization threshold for 1-bit case
ElemType quantimid;
// precomputed factor for quantizing
ElemType qfactor;
// and for unquantizing
ElemType ufactor;
};
}
}
}
#endif // __VALUE_QUANTIZER_H__