CNTK/Source/CNTKv2LibraryDll/API/CNTKLibrary.h

3096 строки
129 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
// This is the main header of the CNTK library API containing the entire public API definition.
//
#pragma once
#include <memory>
#include <vector>
#include <array>
#include <stdarg.h>
#include <assert.h>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <string>
#include <sstream>
#include <iosfwd>
#include<algorithm>
#include <mutex>
#ifdef SWIG
#define final
#define explicit
#define static_assert(condition, message)
#endif
#include "CNTKLibraryInternals.h"
namespace CNTK
{
///
/// Enumeration type denoting data type of symbolic data entities or actual data.
///
enum class DataType
{
Unknown,
Float,
Double,
/* TODO:
Bit,
Char,
UChar,
Short,
UShort,
Int,
UInt,
Long,
ULong,
Float8,
Float16,
Complex,
String,
*/
};
///
/// Get the 'DataType' corresponding to the ElementType template type argument.
///
template <typename ElementType>
inline DataType AsDataType()
{
if (std::is_same<ElementType, float>())
return DataType::Float;
else if (std::is_same<ElementType, double>())
return DataType::Double;
else
NOT_IMPLEMENTED;
}
inline const char* DataTypeName(DataType dataType)
{
if (dataType == DataType::Float)
return "Float";
else if (dataType == DataType::Double)
return "Double";
else
LogicError("Unknown DataType");
}
///
/// Enumeration type denoting the format of storage underlying an instance of a NDArrayView.
///
enum class StorageFormat
{
Dense,
SparseCSC,
SparseBlockCol,
};
inline bool IsSparseStorageFormat(StorageFormat storageFormat)
{
return (storageFormat != StorageFormat::Dense);
}
///
/// Enumeration type denoting the type of a compute device.
///
enum class DeviceKind
{
CPU,
GPU,
// TODO: FPGA
};
///
/// Denotes a compute device instance.
///
class DeviceDescriptor final
{
friend bool operator==(const DeviceDescriptor& first, const DeviceDescriptor& second);
static std::atomic<bool> s_defaultDeviceFrozen;
static std::shared_ptr<DeviceDescriptor> s_defaultDevice;
static std::shared_ptr<std::vector<DeviceDescriptor>> s_allDevices;
public:
///
/// Returns the Id of 'this' device.
///
unsigned int Id() const { return m_deviceId; }
///
/// Returns the DeviceKind of 'this' device.
///
DeviceKind Type() const { return m_deviceType; }
///
/// Static method to get the descriptor of the CPU device on the local system.
///
static DeviceDescriptor CPUDevice() { return{ 0, DeviceKind::CPU }; }
///
/// Static method to get the descriptor of the GPU device on the local system with the specified CUDA device ID.
///
CNTK_API static DeviceDescriptor GPUDevice(unsigned int deviceId);
///
/// Static method to get the descriptor of the default device for the current process.
/// This device is used for all CNTK operations where a device needs to be specified and one is not explicitly specified.
///
CNTK_API static DeviceDescriptor DefaultDevice();
///
/// Static method to get the descriptor of the default device for the current process.
/// This device is used for all CNTK operations where a device needs to be specified and one is not explicitly specified.
/// Additionally after this method gets executed for the first time, it freezes the default device of the process disallowing
/// changing the default device by further calls to SetDefaultDevice.
///
CNTK_API static DeviceDescriptor UseDefaultDevice();
///
/// The default device can only be changed if it has not yet been implicitly used by any previous operation in the CNTK library.
///
CNTK_API static void SetDefaultDevice(const DeviceDescriptor& newDefaultDevice);
///
/// Static method to get the descriptor of the best available device.
///
CNTK_API static DeviceDescriptor BestDevice();
///
/// Static method to get a list of descriptors of all available/supported devices.
///
CNTK_API static const std::vector<DeviceDescriptor>& AllDevices();
private:
DeviceDescriptor(unsigned int deviceId, DeviceKind deviceType)
: m_deviceId(deviceId), m_deviceType(deviceType)
{}
private:
unsigned int m_deviceId;
DeviceKind m_deviceType;
};
inline bool operator==(const DeviceDescriptor& left, const DeviceDescriptor& right)
{
return ((left.Type() == right.Type()) && (left.Id() == right.Id()));
}
inline bool operator!=(const DeviceDescriptor& left, const DeviceDescriptor& right)
{
return !(left == right);
}
///
/// Denotes a multi-dimensional rectangular shape.
///
class NDShape final
{
friend bool operator==(const NDShape& first, const NDShape& second);
public:
///
/// A placeholder value to use for an axis whose dimension is unknown and is to be inferred by the system.
///
static const size_t InferredDimension = (size_t)-1;
public:
///
/// Construct a NDShape with 0 axes, which denotes a scalar.
///
NDShape() {}
///
/// Construct a NDShape instance with the specified rank and dimensionality in each axis.
///
explicit NDShape(size_t numAxes, size_t dimension = InferredDimension)
: m_shapeDims(numAxes, dimension)
{}
///
/// Construct a NDShape instance with specified dimensions.
///
NDShape(const std::vector<size_t>& dimensions)
: m_shapeDims(dimensions)
{}
///
/// Construct a NDShape instance with specified dimensions.
///
NDShape(const std::initializer_list<size_t>& dimensions)
: m_shapeDims(dimensions)
{}
///
/// Returns the dimensions of 'this' shape as a std::vector<size_t>
///
const std::vector<size_t>& Dimensions() const { return m_shapeDims; }
///
/// Returns the rank of 'this' shape.
///
size_t Rank() const { return m_shapeDims.size(); }
///
/// Returns a reference to dimension size for the specified axis.
///
size_t& operator[](size_t axisId) { return m_shapeDims[axisId]; }
///
/// Returns the dimension size for the specified axis.
///
size_t operator[](size_t axisId) const { return m_shapeDims[axisId]; }
///
/// Creates and returns a new NDShape instance with the same dimensions as 'this' shape's specified axis range [beginAxisId, endAxisId).
///
NDShape SubShape(size_t beginAxisId = 0, size_t endAxisId = SIZE_MAX) const
{
endAxisId = (endAxisId == SIZE_MAX) ? Rank() : endAxisId;
if ((endAxisId < beginAxisId) || (endAxisId > Rank()))
InvalidArgument("NDShape::SubShape : The specified endAxisId (%d) cannot exceed the rank (%d) of 'this' NDShape and must be >= than the specified beginAxisId (%d)", (int)endAxisId, (int)Rank(), (int)beginAxisId);
std::vector<size_t> subShapeDims(m_shapeDims.begin() + beginAxisId, m_shapeDims.begin() + endAxisId);
return subShapeDims;
}
///
/// Returns a boolean value indicating if the dimension size for any of the axes of 'this' shape is unknown/inferred (aka == NDShape::InferredDimension).
///
bool HasInferredDimension() const
{
return (std::find(m_shapeDims.begin(), m_shapeDims.end(), (size_t)InferredDimension) != m_shapeDims.end());
}
///
/// Returns the total size of the rectangular shape that 'this' shape denotes.
///
size_t TotalSize() const
{
if (HasInferredDimension())
RuntimeError("NDShape::TotalSize : TotalSize cannot be determined for a NDShape with one or more dimensions being InferredDimension");
size_t totalSize = 1;
for (auto dim : m_shapeDims)
totalSize *= dim;
return totalSize;
}
///
/// Creates and returns a new shape constructed by appending the dimensions of the specified 'shape' to 'this' shape's dimensions.
///
NDShape AppendShape(const NDShape& shape) const
{
std::vector<size_t> newShapeDims(Rank() + shape.Rank());
std::copy(m_shapeDims.begin(), m_shapeDims.end(), newShapeDims.begin());
std::copy(shape.m_shapeDims.begin(), shape.m_shapeDims.end(), newShapeDims.begin() + m_shapeDims.size());
return newShapeDims;
}
///
/// Create a string representation of 'this' NDShape for display/printing purposes
///
std::wstring AsString() const
{
std::wstringstream wStrStream;
wStrStream << L"[";
for (size_t i = 0; i < Rank(); i++)
{
if (i != 0)
wStrStream << L" x ";
wStrStream << m_shapeDims[i];
}
wStrStream << L"]";
return wStrStream.str();
}
private:
std::vector<size_t> m_shapeDims;
};
inline bool operator==(const NDShape& first, const NDShape& second)
{
return first.m_shapeDims == second.m_shapeDims;
}
inline bool operator!=(const NDShape& first, const NDShape& second)
{
return !(first == second);
}
typedef int SparseIndexType;
static const unsigned long DefaultRandomSeed = 1;
///
/// Denotes a multi-dimensional writable or read-only array of elemental values.
/// This type denotes a view and there may be multiple simultaneous views of the data underlying a NDArrayView instance.
/// The underlying data is stored in sparse or dense format, and is located on a specific device.
/// The actual underlying storage is either external or internal in which case its lifetime is managed through reference counting.
///
class NDArrayView final : public std::enable_shared_from_this<NDArrayView>
{
friend class CompositeFunction;
friend class LearnerBase;
friend class Variable;
friend class PackedValue;
template <typename T, typename ...CtorArgTypes>
friend inline std::shared_ptr<T> MakeSharedObject(CtorArgTypes&& ...ctorArgs);
public:
///
/// Construct a NDArrayView with the specified 'dataBuffer' as the backing storage.
/// The 'dataBuffer' must have been allocated on the specified 'device', must be at least
/// as large as the total size of the specified 'viewShape' and must outlive the created NDArrayView object.
///
CNTK_API NDArrayView(CNTK::DataType dataType, const NDShape& viewShape, void* dataBuffer, size_t bufferSizeInBytes, const DeviceDescriptor& device, bool readOnly = false);
/// Construct a read-only NDArrayView with the specified 'dataBuffer' as the backing storage.
/// The 'dataBuffer' must have been allocated on the specified 'device', must be at least
/// as large as the total size of the specified 'viewShape' and must outlive the created NDArrayView object.
///
NDArrayView(CNTK::DataType dataType, const NDShape& viewShape, const void* dataBuffer, size_t bufferSizeInBytes, const DeviceDescriptor& device)
: NDArrayView(dataType, viewShape, const_cast<void*>(dataBuffer), bufferSizeInBytes, device, /*readOnly =*/ true)
{}
///
/// Construct a NDArrayView with newly allocated sparse storage in SparseCSC format on the specified 'device' and initialize its contents
// with the specified Sparse CSC format data.
///
template <typename ElementType>
CNTK_API NDArrayView(const NDShape& viewShape, const SparseIndexType* colStarts, const SparseIndexType* rowIndices, const ElementType* nonZeroValues, size_t numNonZeroValues, const DeviceDescriptor& device, bool readOnly = false);
///
/// Construct a NDArrayView over newly allocated storage in the specified format on the specified 'device'.
///
CNTK_API NDArrayView(CNTK::DataType dataType, CNTK::StorageFormat storageType, const NDShape& viewShape, const DeviceDescriptor& device);
///
/// Construct a NDArrayView over newly allocated dense storage on the specified 'device'.
///
NDArrayView(CNTK::DataType dataType, const NDShape& viewShape, const DeviceDescriptor& device)
: NDArrayView(dataType, StorageFormat::Dense, viewShape, device)
{}
///
/// Construct a NDArrayView with the specified 'dataBuffer' as the backing storage.
/// The 'dataBuffer' must have been allocated on the specified 'device', must be at least
/// as large as the total size of the specified 'viewShape' and must outlive the created NDArrayView object.
///
template <typename ElementType>
NDArrayView(const NDShape& viewShape, ElementType* dataBuffer, size_t numBufferElements, const DeviceDescriptor& device, bool readOnly = false)
: NDArrayView(AsDataType<ElementType>(), viewShape, dataBuffer, numBufferElements * sizeof(ElementType), device, readOnly)
{}
///
/// Construct a read-only NDArrayView with the specified 'dataBuffer' as the backing storage.
/// The 'dataBuffer' must have been allocated on the specified 'device', must be at least
/// as large as the total size of the specified 'viewShape' and must outlive the created NDArrayView object.
///
template <typename ElementType>
NDArrayView(const NDShape& viewShape, const ElementType* dataBuffer, size_t numBufferElements, const DeviceDescriptor& device)
: NDArrayView(AsDataType<ElementType>(), viewShape, dataBuffer, numBufferElements * sizeof(ElementType), device)
{}
///
/// Construct a NDArrayView with the buffer underlying the specified std::vector or std::aray being the underlying storage.
/// The container must be at least as large as the total size of the specified 'viewShape' and should outlive the created NDArrayView object.
///
template <typename ContainerType, typename std::enable_if<std::is_same<ContainerType, std::vector<typename ContainerType::value_type>>::value ||
std::is_same<ContainerType, std::array<typename ContainerType::value_type, sizeof(ContainerType) / sizeof(typename ContainerType::value_type)>>::value>::type* = nullptr>
NDArrayView(const NDShape& viewShape, ContainerType& sourceContainer, bool readOnly = false)
: NDArrayView(viewShape, sourceContainer.data(), sourceContainer.size(), DeviceDescriptor::CPUDevice(), readOnly)
{}
///
/// Construct a read-only NDArrayView with the buffer underlying the specified std::vector or std::aray being the underlying storage.
/// The container must be the same size as the total size of the specified 'viewShape' and should outlive the created NDArrayView object.
///
template <typename ContainerType, typename std::enable_if<std::is_same<ContainerType, std::vector<typename ContainerType::value_type>>::value ||
std::is_same<ContainerType, std::array<typename ContainerType::value_type, sizeof(ContainerType) / sizeof(typename ContainerType::value_type)>>::value>::type* = nullptr>
NDArrayView(const NDShape& viewShape, const ContainerType& sourceContainer)
: NDArrayView(viewShape, sourceContainer.data(), sourceContainer.size(), DeviceDescriptor::CPUDevice())
{
if (sourceContainer.size() != viewShape.TotalSize())
InvalidArgument("The size of the STL container does not match the size of the specified viewShape");
}
///
/// Construct a NDArrayView over newly allocated dense storage on the specified device and
/// assign the specified value to each element of the view.
///
template <typename ElementType>
explicit NDArrayView(const ElementType& value, const NDShape& viewShape = { 1 }, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice(), bool readOnly = false)
: NDArrayView(AsDataType<ElementType>(), viewShape, device)
{
SetValue(value);
m_isReadOnly = readOnly;
}
///
/// Construct a NDArrayView over newly allocated dense storage on the specified device and assign the specified value to each element of the view.
/// The specified value is cast to the specified DataType.
///
explicit NDArrayView(double value, DataType dataType = DataType::Float, const NDShape& viewShape = { 1 }, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice(), bool readOnly = false)
: NDArrayView(dataType, viewShape, device)
{
switch (m_dataType)
{
case DataType::Float:
SetValue((float)value);
break;
case DataType::Double:
SetValue(value);
break;
default:
LogicError("Unsupported DataType %s", DataTypeName(m_dataType));
break;
}
m_isReadOnly = readOnly;
}
///
/// Destruct 'this' NDArrayView object
///
CNTK_API ~NDArrayView();
///
/// Returns a writable pointer to the data buffer underlying 'this' view
/// Throws an exception if 'this' view is read-only
///
template <typename ElementType>
CNTK_API ElementType* WritableDataBuffer();
///
/// Returns a read-only pointer to the data buffer underlying 'this' view
///
template <typename ElementType>
CNTK_API const ElementType* DataBuffer() const;
///
/// Returns the descriptor of the device that 'this' view resides on
///
DeviceDescriptor Device() const { return m_device; }
///
/// Returns the data type of 'this' view's contents.
///
DataType GetDataType() const { return m_dataType; }
///
/// Returns the storage format of 'this' view.
///
StorageFormat GetStorageFormat() const { return m_storageFormat; }
///
/// Returns the shape 'this' view.
///
const NDShape& Shape() const { return m_viewShape; }
///
/// Returns a boolean indicating if 'this' view contains data in sparse storage format.
///
bool IsSparse() const
{
return (GetStorageFormat() != StorageFormat::Dense);
}
///
/// Returns a boolean indicating if 'this' view is read-only.
///
bool IsReadOnly() const { return m_isReadOnly; }
// TODO: The set methods should be offered in template from
///
/// Fill 'this' NDArrayView with the specified value. The underlying DataType of 'this' view should be DataType::Float.
///
CNTK_API void SetValue(float value);
///
/// Fill 'this' NDArrayView with the specified value. The underlying DataType of 'this' view should be DataType::Double.
///
CNTK_API void SetValue(double value);
///
/// Creates a new NDArrayView with newly allocated storage on the specified device and copies 'this' view's contents into the newly allocated view.
///
CNTK_API NDArrayViewPtr DeepClone(const DeviceDescriptor& device, bool readOnly = false) const;
///
/// Creates a new NDArrayView with newly allocated storage on the same device as 'this' view and copies 'this' view's contents into the newly allocated view.
///
inline NDArrayViewPtr DeepClone(bool readOnly = false) const
{
return DeepClone(this->Device(), readOnly);
}
///
/// Creates a new NDArrayView which is an alias of 'this' view; i.e. a new view of the same shape as 'this' over the same underlying data.
///
CNTK_API NDArrayViewPtr Alias(bool readOnly = false) const;
///
/// Copies the contents of the 'source' NDArrayView to 'this' view.
/// The shapes of the 'source' view and 'this' view must be identical.
///
CNTK_API void CopyFrom(const NDArrayView& source);
///
/// Static method to construct a new NDArrayView object whose contents are drawn from a normal distribution with the specified mean and standard deviation..
///
template <typename ElementType>
CNTK_API static NDArrayViewPtr RandomNormal(const NDShape& shape, double mean, double stdDev, unsigned long seed = DefaultRandomSeed, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice());
///
/// Static method to construct a new NDArrayView object whose contents are drawn from a uniform distribution in the specified value range.
///
template <typename ElementType>
CNTK_API static NDArrayViewPtr RandomUniform(const NDShape& shape, double rangeStart, double rangeEnd, unsigned long seed = DefaultRandomSeed, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice());
private:
// Disallow copy and move construction and assignment
NDArrayView(const NDArrayView&) = delete; NDArrayView& operator=(const NDArrayView&) = delete; NDArrayView& operator=(NDArrayView&&) = delete; NDArrayView(NDArrayView&& other) = delete;
private:
static const size_t AutoSelectRowColSplitPoint = SIZE_MAX;
private:
CNTK_API NDArrayView(CNTK::DataType dataType, const DeviceDescriptor& device, CNTK::StorageFormat storageType, const NDShape& viewShape, bool readOnly, void* tensorView);
template <typename ElementType>
static std::shared_ptr<Microsoft::MSR::CNTK::Matrix<ElementType>> GetMatrixImpl(const Microsoft::MSR::CNTK::TensorView<ElementType>* tensorView, size_t rowColSplitPoint);
template <typename ElementType>
std::shared_ptr<const Microsoft::MSR::CNTK::Matrix<ElementType>> GetMatrix(size_t rowColSplitPoint = AutoSelectRowColSplitPoint) const;
template <typename ElementType>
std::shared_ptr<Microsoft::MSR::CNTK::Matrix<ElementType>> GetWritableMatrix(size_t rowColSplitPoint = AutoSelectRowColSplitPoint);
template <typename ElementType>
const Microsoft::MSR::CNTK::TensorView<ElementType>* GetTensorView() const;
template <typename ElementType>
Microsoft::MSR::CNTK::TensorView<ElementType>* GetWritableTensorView();
private:
CNTK::DataType m_dataType;
DeviceDescriptor m_device;
CNTK::StorageFormat m_storageFormat;
NDShape m_viewShape;
bool m_isReadOnly;
std::shared_ptr<void> m_tensorView; // Microsoft::MSR::CNTK::TensorView<ElemType>*
};
enum class MaskKind : char
{
Invalid = 0,
Valid = 1,
SequenceBegin = 2,
};
///
/// Denotes a multi-dimensional mask used for specifying specific sections of a NDArrayView object as masked/invalid.
/// This type denotes a view and there may be multiple simultaneous views of the data underlying a NDMask instance.
///
class NDMask final : public std::enable_shared_from_this<NDMask>
{
friend class CompositeFunction;
template <typename T, typename ...CtorArgTypes>
friend inline std::shared_ptr<T> MakeSharedObject(CtorArgTypes&& ...ctorArgs);
public:
///
/// Construct a new Mask object of specified shape
///
CNTK_API explicit NDMask(const NDShape& shape, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice());
///
/// Destruct 'this' NDMask object
///
CNTK_API ~NDMask();
///
/// Mask out (i.e. mark Invalid) the specified sub-section of 'this' mask
///
void InvalidateSection(const std::vector<size_t>& sectionOffset, const NDShape& sectionShape)
{
MarkSectionAs(sectionOffset, sectionShape, MaskKind::Invalid);
}
///
/// Mark the specified position in 'this' mask as sequence begin
///
void MarkSequenceBegin(const std::vector<size_t>& offset)
{
NDShape sectionShape = NDShape(Shape().Rank(), 1);
MarkSectionAs(offset, sectionShape, MaskKind::SequenceBegin);
}
///
/// Mark the specified sub-section of 'this' mask as sequence begin
///
void MarkSequenceBegin(const std::vector<size_t>& offset, const NDShape& sectionShape)
{
MarkSectionAs(offset, sectionShape, MaskKind::SequenceBegin);
}
///
/// Clear the mask; i.e. unmask or mark Valid all currently masked (i.e. Invalid) values
///
CNTK_API void Clear();
///
/// Returns the number of masked/invalid values
///
CNTK_API size_t MaskedCount() const;
///
/// Returns the descriptor of the device that 'this' mask resides on
///
DeviceDescriptor Device() const { return m_device; }
///
/// Returns the shape 'this' mask.
///
const NDShape& Shape() const { return m_maskShape; }
///
/// Returns a read-only pointer to the data buffer underlying 'this' Mask object
///
CNTK_API const MaskKind* DataBuffer() const;
///
/// Creates a new NDArrayView with newly allocated storage on the specified device and copies 'this' view's contents into the newly allocated view.
///
CNTK_API NDMaskPtr DeepClone(const DeviceDescriptor& device) const;
///
/// Creates a new NDMask with newly allocated storage on the same device as 'this' mask and copies 'this' mask's contents into the newly allocated mask.
///
NDMaskPtr DeepClone() const
{
return DeepClone(this->Device());
}
///
/// Creates a new NDMask which is an alias of 'this' mask.
///
CNTK_API NDMaskPtr Alias() const;
///
/// Copies the contents of the 'source' NDMask to 'this' mask.
/// The shapes of the 'source' mask and 'this' mask must be identical.
///
CNTK_API void CopyFrom(const NDMask& source);
private:
NDMask(const NDShape& shape, Microsoft::MSR::CNTK::Matrix<char>* matrix);
CNTK_API void MarkSectionAs(const std::vector<size_t>& sectionOffset, const NDShape& sectionShape, MaskKind maskKind);
Microsoft::MSR::CNTK::Matrix<char>* GetMatrix() const;
// Disallow copy and move construction and assignment
NDMask(const NDMask&) = delete; NDMask& operator=(const NDMask&) = delete; NDMask& operator=(NDMask&&) = delete; NDMask(NDMask&& other) = delete;
private:
DeviceDescriptor m_device;
NDShape m_maskShape;
std::shared_ptr<Microsoft::MSR::CNTK::Matrix<char>> m_matrixView;
};
///
/// Denotes a multi-dimensional array with an optional mask and is the actual data fed into or produced from a computation.
/// The mask is typically lower dimensionality than the data, meaning data is masked in coarse individual sample units where
/// sample shape is data.Shape().SubShape(0, data.Shape().Rank() - mask.Shape().Rank)
/// Also, note that the size of the data's trailing mask.Shape().Rank() dimensions must match the mask shape dimensions.
///
class Value : public std::enable_shared_from_this<Value>
{
public:
///
/// A multi-dimensional value with no mask.
///
CNTK_API Value(const NDArrayViewPtr& data);
///
/// A multi-dimensional value with an associated mask.
///
CNTK_API Value(const NDArrayViewPtr& data, const NDMaskPtr& mask);
///
/// Create a new Value object containing a collection of variable length sequences.
/// The created Value object contains a copy of the specified 'sequences' data.
///
template <typename ElementType>
CNTK_API static ValuePtr Create(const NDShape& sampleShape, const std::vector<std::vector<ElementType>>& sequences, const DeviceDescriptor& device, bool readOnly = false);
///
/// Create a new Value object containing a collection of variable length sequences of one hot vectors
/// The created Value object contains a copy of the specified 'sequences' data.
///
template <typename ElementType>
CNTK_API static ValuePtr Create(size_t vocabularySize, const std::vector<std::vector<size_t>>& oneHotSequences, const DeviceDescriptor& device, bool readOnly = false);
///
/// Destruct 'this' Value object.
///
virtual ~Value();
///
/// Returns the descriptor of the device that 'this' Value resides on
///
virtual DeviceDescriptor Device() const { return m_data->Device(); }
///
/// Returns the data type of 'this' Value's contents.
///
virtual DataType GetDataType() const { return m_data->GetDataType(); }
///
/// Returns the storage format of 'this' Value.
///
virtual StorageFormat GetStorageFormat() const { return m_data->GetStorageFormat(); }
///
/// Returns the shape 'this' Value.
///
virtual const NDShape& Shape() const { return m_data->Shape(); }
///
/// Returns a boolean indicating if 'this' Value contains data in sparse storage format.
///
bool IsSparse() const
{
return (GetStorageFormat() != StorageFormat::Dense);
}
///
/// Returns a boolean indicating if 'this' Value is read-only.
///
virtual bool IsReadOnly() const { return m_data->IsReadOnly(); }
///
/// Returns the number of masked/invalid values
///
virtual size_t MaskedCount() const
{
return m_mask ? m_mask->MaskedCount() : 0;
}
///
/// Returns the NDArrayView object corresponding to the data contents of 'this value object.
///
virtual NDArrayViewPtr Data() const;
///
/// Returns the NDMask object corresponding to the mask associated with 'this value object.
///
virtual NDMaskPtr Mask() const;
///
/// Creates a new Value with newly allocated storage on the same device as 'this' Value and copies 'this' Value's contents into the newly allocated Value.
///
virtual ValuePtr DeepClone(bool readOnly = false) const;
///
/// Creates a new Value which is an alias of 'this' Value.
///
virtual ValuePtr Alias(bool readOnly = false) const;
///
/// Copies the contents of the 'source' Value to 'this' Value.
/// The shapes of the 'source' Value's data and mask must be identical to 'this' Value's data and mask.
///
virtual void CopyFrom(const Value& source);
private:
// Disallow copy and move construction and assignment
Value(const Value&) = delete; Value& operator=(const Value&) = delete; Value(Value&&) = delete; Value& operator=(Value&&) = delete;
protected:
mutable NDArrayViewPtr m_data;
mutable NDMaskPtr m_mask;
};
///
/// Denotes an Axis of a Variable and is used for specifying the axes parameters of certain Functions such as reductions.
/// Besides the static axes corresponding to each of the axes of the Variable's shape, Variables of kind 'Input' and any
/// 'Output' Variables dependent on an 'Input' Variable also have 2 additional dynamic axes whose dimensions are known only
/// when the Variable is bound to actual data during compute (viz. sequence axis and batch axis denoting the axis along which
/// multiple sequences are batched)
///
class Axis final
{
CNTK_API static const std::wstring StaticAxisNamePrefix;
static const size_t SentinelStaticAxisIndexValueForDynamicAxes = SIZE_MAX;
static const size_t SentinelStaticAxisIndexValueForAllStaticAxes = SIZE_MAX - 1;
class UniqueDynamicAxesNames
{
public:
bool RegisterAxisName(const std::wstring& axisName)
{
std::unique_lock<std::mutex> lock(m_mutex);
return m_allKnownDynamicAxisNames.insert(axisName).second;
}
std::wstring NewUniqueDynamicAxisName(const std::wstring& axisNamePrefix)
{
std::unique_lock<std::mutex> lock(m_mutex);
if (m_allKnownDynamicAxisNames.find(axisNamePrefix) == m_allKnownDynamicAxisNames.end())
{
m_allKnownDynamicAxisNames.insert(axisNamePrefix);
return axisNamePrefix;
}
for (size_t i = 1;; i++)
{
auto newDynamicAxisName = axisNamePrefix + std::to_wstring(i);
if (m_allKnownDynamicAxisNames.find(newDynamicAxisName) == m_allKnownDynamicAxisNames.end())
{
m_allKnownDynamicAxisNames.insert(newDynamicAxisName);
return newDynamicAxisName;
}
}
}
private:
std::unordered_set<std::wstring> m_allKnownDynamicAxisNames;
std::mutex m_mutex;
};
CNTK_API static UniqueDynamicAxesNames s_uniqueDynamicAxisNames;
public:
CNTK_API static const std::vector<Axis> DefaultInputVariableDynamicAxes;
public:
///
/// Construct an Axis object denoting a static axis with the specified index.
///
explicit Axis(size_t staticAxisIdx)
: m_staticAxisIdx(staticAxisIdx), m_isOrderedDynamicAxis(false)
{
m_name = StaticAxisNamePrefix + std::to_wstring(staticAxisIdx);
}
///
/// Construct a dynamic axis with the specified name.
///
explicit Axis(const std::wstring& name, bool isOrderedDynamicAxis = true)
: m_staticAxisIdx(SentinelStaticAxisIndexValueForDynamicAxes), m_name(name), m_isOrderedDynamicAxis(isOrderedDynamicAxis)
{
RegisterAxisName(name);
}
///
/// Returns a boolean indicating if 'this' Axis corresponds to a static axis
///
bool IsStaticAxis() const { return m_staticAxisIdx != SentinelStaticAxisIndexValueForDynamicAxes; }
///
/// Returns a boolean indicating if 'this' Axis is ordered; i.e. if there is an ordering between the dimensions along this axis.
///
bool IsOrdered() const { return IsStaticAxis() || m_isOrderedDynamicAxis; }
///
/// Returns the axis index if 'this' Axis is a static axis. Throws an exception otherwise if checked == true.
///
size_t StaticAxisIndex(bool checked = true) const
{
if (checked && !IsStaticAxis())
InvalidArgument("Cannot query the static axis index for a non-static axis");
return m_staticAxisIdx;
}
///
/// Axis object representing the default dynamic axis.
///
CNTK_API static const Axis& DefaultDynamicAxis();
///
/// Axis object representing the batch axis.
///
CNTK_API static const Axis& DefaultBatchAxis();
///
/// Axis object representing all the static axes of an operand
///
CNTK_API static const Axis& AllStaticAxes();
///
/// Returns a new unique Dynamic axis
///
CNTK_API static Axis NewUniqueDynamicAxis(const std::wstring& axisNamePrefix, bool isOrderedDynamicAxis = true);
///
/// Name of 'this' axis
///
const std::wstring& Name() const { return m_name; }
///
/// Default constructor; results in an invalid axis object.
///
Axis()
: m_staticAxisIdx(SentinelStaticAxisIndexValueForDynamicAxes)
{}
private:
CNTK_API void RegisterAxisName(const std::wstring& axisName);
private:
size_t m_staticAxisIdx;
std::wstring m_name;
bool m_isOrderedDynamicAxis;
};
inline bool operator==(const Axis& first, const Axis& second)
{
if (first.IsStaticAxis() != second.IsStaticAxis())
return false;
if (first.IsStaticAxis())
return first.StaticAxisIndex() == second.StaticAxisIndex();
else
return first.Name() == second.Name();
}
inline bool operator!=(const Axis& first, const Axis& second)
{
return !(first == second);
}
}
namespace std {
template <> struct hash<CNTK::Axis>
{
size_t operator()(const CNTK::Axis& x) const
{
return std::hash<std::wstring>()(x.Name());
}
};
}
namespace CNTK
{
///
/// A serializable value represents one of:
/// a) Boolean
/// b) Signed long integer
/// c) Single and double precision floating point values
/// d) NDShape
/// e) Axis
/// f) vector<DictionaryValue>
/// g) Dictionary
/// h) NDArrayView
///
/// TODO: We need to have native support for DictionaryValue<vector> and DictionaryValue<NDArrayView>.
class DictionaryValue final
{
public:
enum class Type : unsigned int
{
None,
Bool,
SizeT,
Float,
Double,
String,
NDShape,
Axis,
Vector,
Dictionary,
NDArrayView,
};
static const char* TypeName(Type type)
{
switch (type)
{
case Type::None:
return "None";
case Type::Bool:
return "Bool";
case Type::SizeT:
return "SizeT";
case Type::Float:
return "Float";
case Type::Double:
return "Double";
case Type::String:
return "String";
case Type::NDShape:
return "NDShape";
case Type::Axis:
return "Axis";
case Type::Vector:
return "Vector";
case Type::Dictionary:
return "Dictionary";
case Type::NDArrayView:
return "NDArrayView";
default:
LogicError("Unknown DictionaryValue::Type");
}
}
public:
DictionaryValue() : m_valueType(Type::None)
{
}
DictionaryValue(bool value) : m_valueType(GetValueType<bool>())
{
m_data.m_boolean = value;
}
DictionaryValue(size_t value) : m_valueType(GetValueType<size_t>())
{
m_data.m_sizeT = value;
}
DictionaryValue(float value) : m_valueType(GetValueType<float>())
{
m_data.m_float = value;
}
DictionaryValue(double value) : m_valueType(GetValueType<double>())
{
m_data.m_double = value;
}
DictionaryValue(const wchar_t* value)
: DictionaryValue(std::wstring(value))
{}
// Due to SWIG we had to flatten this template for vector<DictionaryValue>
DictionaryValue(const std::vector<CNTK::DictionaryValue>& value) : m_valueType(GetValueType<std::vector<CNTK::DictionaryValue>>())
{
AllocateDataPtr(value);
}
template <typename T>
DictionaryValue(const T& value) : m_valueType(GetValueType<T>())
{
static_assert((std::is_same<T, NDShape>::value ||
std::is_same<T, Axis>::value ||
std::is_same<T, std::wstring>::value ||
std::is_same<T, std::vector<DictionaryValue>>::value ||
std::is_same<T, Dictionary>::value ||
std::is_same<T, NDArrayView>::value),
"Unsupported ValueType");
AllocateDataPtr(value);
}
DictionaryValue(const DictionaryValue& other) : m_valueType(Type::Bool)
{
// The m_valueType must have been set to a non-ptr type to prevent an attempt to interpret
// the underlying underlying uninitialized value as a ptr and free it.
*this = other;
}
DictionaryValue(DictionaryValue&& other) : m_valueType(Type::Bool)
{
// The m_valueType must have been set to a non-ptr type to prevent an attempt to interpret
// the underlying underlying uninitialized value as a ptr and free it.
*this = std::move(other);
}
DictionaryValue& operator=(const DictionaryValue& other)
{
if (this != &other)
{
FreeDataPtr();
m_valueType = other.m_valueType;
m_data = other.m_data;
if (other.m_valueType == Type::String)
AllocateDataPtr(other.Value<std::wstring>());
else if (other.m_valueType == Type::NDShape)
AllocateDataPtr(other.Value<NDShape>());
else if (other.m_valueType == Type::Axis)
AllocateDataPtr(other.Value<Axis>());
else if (other.m_valueType == Type::Vector)
AllocateDataPtr(other.Value<std::vector<DictionaryValue>>());
else if (other.m_valueType == Type::Dictionary)
AllocateDataPtr(other.Value<Dictionary>());
else if (other.m_valueType == Type::NDArrayView)
AllocateDataPtr(other.Value<NDArrayView>());
}
return *this;
}
DictionaryValue& operator=(DictionaryValue&& other)
{
FreeDataPtr();
m_valueType = other.m_valueType;
m_data = other.m_data;
if (other.m_valueType == Type::String ||
other.m_valueType == Type::NDShape ||
other.m_valueType == Type::Axis ||
other.m_valueType == Type::Vector ||
other.m_valueType == Type::Dictionary ||
other.m_valueType == Type::NDArrayView)
{
other.m_data.m_ptr = nullptr;
}
other.m_valueType = Type::None;
return *this;
}
~DictionaryValue()
{
FreeDataPtr();
}
template <typename T, typename std::enable_if<std::is_same<T, bool>::value>::type* = nullptr>
const T& Value() const
{
VerifyType<T>();
return m_data.m_boolean;
}
template <typename T, typename std::enable_if<std::is_same<T, bool>::value>::type* = nullptr>
T& Value()
{
VerifyType<T>();
return m_data.m_boolean;
}
template <typename T, typename std::enable_if<std::is_same<T, size_t>::value>::type* = nullptr>
const T& Value() const
{
VerifyType<T>();
return m_data.m_sizeT;
}
template <typename T, typename std::enable_if<std::is_same<T, size_t>::value>::type* = nullptr>
T& Value()
{
VerifyType<T>();
return m_data.m_sizeT;
}
template <typename T, typename std::enable_if<std::is_same<T, float>::value>::type* = nullptr>
const T& Value() const
{
VerifyType<T>();
return m_data.m_float;
}
template <typename T, typename std::enable_if<std::is_same<T, float>::value>::type* = nullptr>
T& Value()
{
VerifyType<T>();
return m_data.m_float;
}
template <typename T, typename std::enable_if<std::is_same<T, double>::value>::type* = nullptr>
const T& Value() const
{
VerifyType<T>();
return m_data.m_double;
}
template <typename T, typename std::enable_if<std::is_same<T, double>::value>::type* = nullptr>
T& Value()
{
VerifyType<T>();
return m_data.m_double;
}
template <typename T, typename std::enable_if<std::is_same<T, NDShape>::value ||
std::is_same<T, Axis>::value ||
std::is_same<T, std::wstring>::value ||
std::is_same<T, std::vector<DictionaryValue>>::value ||
std::is_same<T, Dictionary>::value ||
std::is_same<T, NDArrayView>::value>::type* = nullptr>
const T& Value() const
{
VerifyType<T>();
return *(reinterpret_cast<T*>(m_data.m_ptr));
}
template <typename T, typename std::enable_if<std::is_same<T, NDShape>::value ||
std::is_same<T, Axis>::value ||
std::is_same<T, std::wstring>::value ||
std::is_same<T, std::vector<DictionaryValue>>::value ||
std::is_same<T, Dictionary>::value ||
std::is_same<T, NDArrayView>::value>::type* = nullptr>
T& Value()
{
VerifyType<T>();
return *(reinterpret_cast<T*>(m_data.m_ptr));
}
bool HasValue() const
{
return m_valueType != Type::None;
}
Type ValueType() const
{
return m_valueType;
}
CNTK_API bool operator==(const DictionaryValue& other) const;
CNTK_API bool operator!=(const DictionaryValue& other) const;
friend CNTK_API std::istream& operator>>(std::istream& stream, DictionaryValue& us);
friend CNTK_API std::ostream& operator<<(std::ostream& stream, const DictionaryValue& us);
private:
template <typename T>
static Type GetValueType()
{
static_assert((std::is_same<T, bool>::value ||
std::is_same<T, size_t>::value ||
std::is_same<T, float>::value ||
std::is_same<T, double>::value ||
std::is_same<T, std::wstring>::value ||
std::is_same<T, NDShape>::value ||
std::is_same<T, Axis>::value ||
std::is_same<T, std::vector<DictionaryValue>>::value ||
std::is_same<T, Dictionary>::value ||
std::is_same<T, NDArrayView>::value),
"Unsupported ValueType");
if (std::is_same<T, bool>::value) return Type::Bool;
if (std::is_same<T, size_t>::value) return Type::SizeT;
if (std::is_same<T, float>::value) return Type::Float;
if (std::is_same<T, double>::value) return Type::Double;
if (std::is_same<T, std::wstring>::value) return Type::String;
if (std::is_same<T, NDShape>::value) return Type::NDShape;
if (std::is_same<T, Axis>::value) return Type::Axis;
if (std::is_same<T, std::vector<DictionaryValue>>::value) return Type::Vector;
if (std::is_same<T, Dictionary>::value) return Type::Dictionary;
if (std::is_same<T, NDArrayView>::value) return Type::NDArrayView;
}
template <typename T>
void VerifyType() const
{
if (GetValueType<T>() != m_valueType)
RuntimeError("Reading a DictionaryValue as the wrong type; Reading as type %s when actual type is %s", typeid(T).name(), DictionaryValue::TypeName(m_valueType));
}
template <typename T>
CNTK_API void AllocateDataPtr(const T& value);
template <typename T>
CNTK_API void FreePtrAsType();
CNTK_API void FreeDataPtr()
{
if (m_valueType == Type::String)
FreePtrAsType<std::wstring>();
else if (m_valueType == Type::NDShape)
FreePtrAsType<NDShape>();
else if (m_valueType == Type::Axis)
FreePtrAsType<Axis>();
else if (m_valueType == Type::Vector)
FreePtrAsType<std::vector<DictionaryValue>>();
else if (m_valueType == Type::Dictionary)
FreePtrAsType<Dictionary>();
else if (m_valueType == Type::Dictionary)
FreePtrAsType<NDArrayView>();
}
Type m_valueType;
union ValueData
{
bool m_boolean;
size_t m_sizeT;
float m_float;
double m_double;
void* m_ptr;
} m_data;
const size_t version = 1;
};
///
/// A type denoting a dictionary (keyed by Unicode strings) of serializable values (dynamically typed).
///
class Dictionary final
{
friend inline void AddConfigString(std::wstringstream& s, const DictionaryValue& value, size_t numIndentationSpaces);
friend class CompositeMinibatchSource;
public:
CNTK_API Dictionary();
CNTK_API ~Dictionary();
CNTK_API Dictionary(const Dictionary&);
CNTK_API Dictionary& operator=(const Dictionary&);
CNTK_API Dictionary(Dictionary&& other);
CNTK_API Dictionary& operator=(Dictionary&& other);
CNTK_API DictionaryValue& operator[](const wchar_t* key);
DictionaryValue& operator[](const std::wstring& key)
{
return operator[](key.c_str());
}
CNTK_API DictionaryValue operator[](const wchar_t* key) const;
DictionaryValue operator[](const std::wstring& key) const
{
return operator[](key.c_str());
}
CNTK_API bool Contains(const wchar_t* key) const;
bool Contains(const std::wstring& key) const
{
return Contains(key.c_str());
}
CNTK_API void Add(const Dictionary& other);
CNTK_API bool operator==(const Dictionary& other) const;
CNTK_API bool operator!=(const Dictionary& other) const;
friend CNTK_API std::istream& operator>>(std::istream& stream, Dictionary& us);
friend CNTK_API std::ostream& operator<<(std::ostream& stream, const Dictionary& us);
private:
std::shared_ptr<std::unordered_map<std::wstring, DictionaryValue>> m_dictionaryData;
const size_t version = 1;
};
///
/// Enumeration type denoting the kind of a symbolic Variable object
///
enum class VariableKind
{
Input,
Output,
Parameter,
Constant,
Placeholder
};
inline const wchar_t* VariableKindName(VariableKind variableKind)
{
switch (variableKind)
{
case VariableKind::Input:
return L"Input";
case VariableKind::Output:
return L"Output";
case VariableKind::Parameter:
return L"Parameter";
case VariableKind::Constant:
return L"Constant";
case VariableKind::Placeholder:
return L"Placeholder";
default:
LogicError("Unknown VariableKind");
}
}
namespace Internal
{
inline std::wstring GenerateUid(VariableKind varKind)
{
return std::wstring(VariableKindName(varKind)) + std::to_wstring(Internal::NewUniqueId());
}
}
typedef Dictionary ParameterInitializer;
// Forward declarations
inline Variable PlaceholderVariable(const NDShape& shape, const std::wstring& name, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes);
inline Variable InputVariable(const NDShape& shape, bool isSparse, CNTK::DataType dataType, bool needsGradient, const std::wstring& name, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes);
inline Variable OutputVariable(const NDShape& shape, CNTK::DataType dataType, Function* ownerFunction, const std::vector<Axis>& dynamicAxes, const std::wstring& name = L"");
///
/// Denotes a symbolic entity corresponding to the inputs and outputs of a Function.
/// A Variable is symbolic and does not represent the actual values.
/// Also, Variable type is a value type and copies of a Variable object are aliases of the
/// source Variable object itself and have the same identity.
///
class Variable
{
friend bool operator==(const Variable& first, const Variable& second);
friend class Function;
friend class CompositeFunction;
template <typename T>
friend struct std::hash;
template <typename ElementType>
friend Variable GetVariable(const Microsoft::MSR::CNTK::ComputationNodeBasePtr& node,
std::unordered_map<Microsoft::MSR::CNTK::ComputationNodeBasePtr, Variable>& nodeToVariableMap,
std::unordered_map<Variable, Variable>& placeholderReplacements,
std::unordered_set<FunctionPtr>& allPrimitiveFunctions);
#ifndef SWIG
private:
friend inline Variable PlaceholderVariable(const NDShape& shape, const std::wstring& name, const std::vector<Axis>& dynamicAxes /*= Axis::DefaultInputVariableDynamicAxes*/);
friend inline Variable InputVariable(const NDShape& shape, bool isSparse, CNTK::DataType dataType, bool needsGradient, const std::wstring& name, const std::vector<Axis>& dynamicAxes /*= Axis::DefaultInputVariableDynamicAxes*/);
friend inline Variable OutputVariable(const NDShape& shape, CNTK::DataType dataType, Function* ownerFunction, const std::vector<Axis>& dynamicAxes, const std::wstring& name /*= L""*/);
#endif
public:
///
/// Create an 'Output' variable aliasing the output of the specified Function
/// Throws an exception if called for a Function instance with multiple outputs
///
CNTK_API Variable(const FunctionPtr& function);
///
/// Implicit conversion to a FunctionPtr; creates a pass through primitive function
///
CNTK_API operator FunctionPtr() const;
///
/// Default constructor for creating an invalid/null Variable instance.
/// Required for use in a std::vector container.
///
Variable() {}
///
/// Returns the shape of 'this' variable
///
const NDShape& Shape() const { return m_dataFields->m_shape; }
///
/// Returns the dynamic axes of 'this' variable
///
const std::vector<Axis>& DynamicAxes() const { return m_dataFields->m_dynamicAxes; }
///
/// Returns the VariableKind of 'this' variable
///
VariableKind Kind() const { return m_dataFields->m_varKind; }
///
/// Returns a boolean value indicating if 'this' variable denotes sparse data
///
bool IsSparse() const { return m_dataFields->m_isSparse; }
///
/// Returns a boolean value indicating if 'this' variable is an Input
///
bool IsInput() const { return Kind() == VariableKind::Input; }
///
/// Returns a boolean value indicating if 'this' variable is an Output
///
bool IsOutput() const { return Kind() == VariableKind::Output; }
///
/// Returns a boolean value indicating if 'this' variable is a Parameter
///
bool IsParameter() const { return Kind() == VariableKind::Parameter; }
///
/// Returns a boolean value indicating if 'this' variable is a Constant
///
bool IsConstant() const { return Kind() == VariableKind::Constant; }
///
/// Returns a boolean value indicating if 'this' variable is a Placeholder
///
bool IsPlaceholder() const { return Kind() == VariableKind::Placeholder; }
///
/// Returns the name of 'this' variable
///
const std::wstring& Name() const { return m_dataFields->m_name; }
///
/// Returns the internally generated unique name of the variable
///
const std::wstring& Uid() const { return m_dataFields->m_uid; }
///
/// Returns the Function object which 'this' variable is an ouptut of.
/// Returns null when called for a Variable that is not of 'Output' VariableKind.
///
CNTK_API FunctionPtr Owner() const;
///
/// Returns the DataType of the data that 'this' Variable symbolically represents
///
DataType GetDataType() const { return m_dataFields->m_dataType; }
///
/// Returns a boolean value indicating if gradient computation is enabled for this variable.
///
bool NeedsGradient() const { return m_dataFields->m_needsGradient; }
protected:
#ifdef SWIG
public:
#endif
Variable(const NDShape& shape, VariableKind varType, CNTK::DataType dataType, const NDArrayViewPtr& value, bool needsGradient, const std::vector<Axis>& dynamicAxes, const std::wstring& name, const std::wstring& uid)
: Variable(shape, varType, dataType, nullptr, value, needsGradient, dynamicAxes, /*isSparse =*/ false, name, uid)
{}
protected:
CNTK_API NDArrayViewPtr Value() const;
private:
#ifdef SWIG
public:
#endif
Variable(const NDShape& shape, bool isSparse, CNTK::DataType dataType, bool needsGradient, const std::wstring& name, const std::vector<Axis>& dynamicAxes, const std::wstring& uid)
: Variable(shape, VariableKind::Input, dataType, nullptr, nullptr, needsGradient, dynamicAxes, isSparse, name, uid)
{}
Variable(const NDShape& shape, VariableKind varType, CNTK::DataType dataType, Function* ownerFunction, const NDArrayViewPtr& value, bool needsGradient, const std::vector<Axis>& dynamicAxes, bool isSparse, const std::wstring& name, const std::wstring& uid)
: m_dataFields(MakeSharedObject<VariableFields>(shape, varType, dataType, ownerFunction, value, needsGradient, dynamicAxes, isSparse, name, uid))
{}
private:
Variable Clone() const
{
Variable clonedVariable;
clonedVariable.m_dataFields = m_dataFields->Clone();
return clonedVariable;
}
template <typename ElementType>
static NDArrayViewPtr CreateValueFromParameterInitializer(const NDShape& shape, const ParameterInitializer& initConfig, const DeviceDescriptor& device);
private:
struct VariableFields final : public std::enable_shared_from_this<VariableFields>
{
friend class CompositeFunction;
NDShape m_shape;
VariableKind m_varKind;
CNTK::DataType m_dataType;
Function* const m_ownerFunction; // Variable does not keep the Function alive
NDArrayViewPtr m_value;
std::unique_ptr<ParameterInitializer> m_valueInitializer;
std::unique_ptr<DeviceDescriptor> m_valueInitializationDevice;
bool m_needsGradient;
std::wstring m_name;
std::vector<Axis> m_dynamicAxes;
bool m_isSparse;
std::wstring m_uid;
VariableFields(const NDShape& shape, VariableKind varType, CNTK::DataType type, Function* ownerFunction, const NDArrayViewPtr& value, bool needsGradient, const std::vector<Axis>& dynamicAxes, bool isSparse, const std::wstring& name, const std::wstring& uid)
: m_shape(shape), m_varKind(varType), m_dataType(type), m_ownerFunction(ownerFunction), m_value(value), m_needsGradient(needsGradient), m_dynamicAxes(dynamicAxes), m_isSparse(isSparse), m_name(name), m_uid(uid)
{
if (value && (type != value->GetDataType()))
InvalidArgument("The DataType of the Parameter/Constant Variable does not match the DataType of the associated Value");
// Validate that each of the dynamic axes are unique
std::unordered_set<Axis> uniqueDynamicAxis;
for (auto& currentDynamicAxis : dynamicAxes)
{
auto retVal = uniqueDynamicAxis.insert(currentDynamicAxis);
if (!retVal.second)
InvalidArgument("Dynamic axis named %S is specified more than once for Variable object", currentDynamicAxis.Name().c_str());
}
}
std::shared_ptr<VariableFields> Clone() const
{
if (m_ownerFunction != nullptr)
InvalidArgument("Output variables cannot be cloned");
return MakeSharedObject<VariableFields>(m_shape,
m_varKind,
m_dataType,
m_ownerFunction,
(m_value) ? m_value->DeepClone() : nullptr,
m_needsGradient,
m_dynamicAxes,
m_isSparse,
m_name,
Internal::GenerateUid(m_varKind));
}
CNTK_API void SetValueInitialization(const ParameterInitializer& initializationConfig, const DeviceDescriptor& device);
private:
// Disallow copy and move construction and assignment
VariableFields(const VariableFields&) = delete; VariableFields& operator=(const VariableFields& other) = delete; VariableFields(VariableFields&&) = delete; VariableFields& operator=(VariableFields&&) = delete;
};
typedef std::shared_ptr<VariableFields> VariableFieldsPtr;
protected:
VariableFieldsPtr m_dataFields;
};
inline bool operator==(const Variable& first, const Variable& second)
{
return first.m_dataFields == second.m_dataFields;
}
inline bool operator!=(const Variable& first, const Variable& second)
{
return !(first == second);
}
///
/// Create a Placeholder variable to be used as a temporary/placeholder input to a Function.
/// All placeholder inputs of a Function must be replaced with non-placeholder Variables before Forward evaluation of the Function.
///
inline Variable PlaceholderVariable(const NDShape& shape, const std::wstring& name, const std::vector<Axis>& dynamicAxes /*= Axis::DefaultInputVariableDynamicAxes*/)
{
auto varKind = VariableKind::Placeholder;
return Variable(shape, varKind, DataType::Unknown, nullptr, false, dynamicAxes, name, Internal::GenerateUid(varKind));
}
///
/// Create a Placeholder variable to be used as a temporary/placeholder input to a Function.
/// All placeholder inputs of a Function must be replaced with non-placeholder Variables before Forward evaluation of the Function.
///
inline Variable PlaceholderVariable(const NDShape& shape, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return PlaceholderVariable(shape, L"", dynamicAxes);
}
///
/// Create an 'Input' Variable denoting sparse data and specify if gradients are to be computed for this input
///
inline Variable InputVariable(const NDShape& shape, bool isSparse, CNTK::DataType dataType, bool needsGradient, const std::wstring& name /*= L""*/, const std::vector<Axis>& dynamicAxes /*= Axis::DefaultInputVariableDynamicAxes*/)
{
return Variable(shape, isSparse, dataType, needsGradient, name, dynamicAxes, Internal::GenerateUid(VariableKind::Input));
}
///
/// Create an 'Input' Variable and specify if gradients are to be computed for this input
///
inline Variable InputVariable(const NDShape& shape, CNTK::DataType dataType, bool needsGradient, const std::wstring& name = L"", const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return InputVariable(shape, /*isSparse =*/ false, dataType, needsGradient, name, dynamicAxes);
}
///
/// Create an 'Input' Variable.
///
inline Variable InputVariable(const NDShape& shape, DataType dataType, const std::wstring& name, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return InputVariable(shape, dataType, /*needsGradient =*/ false, name, dynamicAxes);
}
///
/// Create an 'Input' Variable.
///
inline Variable InputVariable(const NDShape& shape, DataType dataType, const wchar_t* name, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return InputVariable(shape, dataType, std::wstring(name), dynamicAxes);
}
///
/// Create an 'Input' Variable.
///
inline Variable InputVariable(const NDShape& shape, DataType dataType, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return InputVariable(shape, dataType, L"", dynamicAxes);
}
///
/// Create an 'Input' Variable denoting sparse data.
///
inline Variable InputVariable(const NDShape& shape, bool isSparse, CNTK::DataType dataType, const std::wstring& name, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return InputVariable(shape, isSparse, dataType, /*needsGradient =*/ false, name, dynamicAxes);
}
///
/// Create an 'Input' Variable denoting sparse data.
///
inline Variable InputVariable(const NDShape& shape, bool isSparse, CNTK::DataType dataType, const wchar_t* name, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return InputVariable(shape, isSparse, dataType, std::wstring(name), dynamicAxes);
}
///
/// Create an 'Input' Variable denoting sparse data.
///
inline Variable InputVariable(const NDShape& shape, bool isSparse, CNTK::DataType dataType, const std::vector<Axis>& dynamicAxes = Axis::DefaultInputVariableDynamicAxes)
{
return InputVariable(shape, isSparse, dataType, L"", dynamicAxes);
}
///
/// Create an 'Output' variable
///
inline Variable OutputVariable(const NDShape& shape, CNTK::DataType dataType, Function* ownerFunction, const std::vector<Axis>& dynamicAxes, const std::wstring& name /*= L""*/)
{
return Variable(shape, VariableKind::Output, dataType, ownerFunction, nullptr, /*needsGradient =*/ false, dynamicAxes, /*isSparse =*/ false, name, Internal::GenerateUid(VariableKind::Output));
}
static const int DefaultParamInitScale = 1;
static const int DefaultParamInitOutputRank = 1;
static const int DefaultParamInitFilterRank = 0;
CNTK_API ParameterInitializer UniformInitializer(double scale = DefaultParamInitScale, unsigned long seed = DefaultRandomSeed);
CNTK_API ParameterInitializer GaussianInitializer(int outputRank = DefaultParamInitOutputRank, int filterRank = DefaultParamInitFilterRank, double scale = DefaultParamInitScale, unsigned long seed = DefaultRandomSeed);
CNTK_API ParameterInitializer XavierInitializer(int outputRank = DefaultParamInitOutputRank, int filterRank = DefaultParamInitFilterRank, double scale = DefaultParamInitScale, unsigned long seed = DefaultRandomSeed);
CNTK_API ParameterInitializer GlorotUniformInitializer(int outputRank = DefaultParamInitOutputRank, int filterRank = DefaultParamInitFilterRank, double scale = DefaultParamInitScale, unsigned long seed = DefaultRandomSeed);
CNTK_API ParameterInitializer GlorotNormalInitializer(int outputRank = DefaultParamInitOutputRank, int filterRank = DefaultParamInitFilterRank, double scale = DefaultParamInitScale, unsigned long seed = DefaultRandomSeed);
CNTK_API ParameterInitializer HeUniformInitializer(int outputRank = DefaultParamInitOutputRank, int filterRank = DefaultParamInitFilterRank, double scale = DefaultParamInitScale, unsigned long seed = DefaultRandomSeed);
CNTK_API ParameterInitializer HeNormalInitializer(int outputRank = DefaultParamInitOutputRank, int filterRank = DefaultParamInitFilterRank, double scale = DefaultParamInitScale, unsigned long seed = DefaultRandomSeed);
CNTK_API ParameterInitializer BilinearInitializer(size_t kernelWidth, size_t kernelHeight);
///
/// Denotes Parameter inputs of a Function.
///
class Parameter final : public Variable
{
template <typename T>
friend struct std::hash;
template <typename ElementType>
friend Variable GetVariable(const Microsoft::MSR::CNTK::ComputationNodeBasePtr& node,
std::unordered_map<Microsoft::MSR::CNTK::ComputationNodeBasePtr, Variable>& nodeToVariableMap,
std::unordered_map<Variable, Variable>& placeholderReplacements,
std::unordered_set<FunctionPtr>& allPrimitiveFunctions);
public:
///
/// Construct a parameter whose initial contents are a copy of the specified 'value'
///
explicit Parameter(const NDArrayViewPtr& value, const std::wstring& name = L"")
: Parameter(value, name, Internal::GenerateUid(VariableKind::Parameter))
{}
// TODO: Constructor to move a specified NDArrayView value
///
/// Construct a parameter of specified shape whose contents are initialized with the specified 'initValue'
///
template<typename ElemType>
Parameter(const NDShape& shape, ElemType initValue, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice(), const std::wstring& name = L"")
: Variable(shape, VariableKind::Parameter, AsDataType<ElemType>(), MakeSharedObject<NDArrayView>(initValue, shape, device), true, {}, name, Internal::GenerateUid(VariableKind::Parameter))
{}
///
/// Construct a constant of specified shape whose contents are initialized with the specified 'initValue'
///
Parameter(const NDShape& shape, DataType dataType, double initValue, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice(), const std::wstring& name = L"")
: Variable(shape, VariableKind::Parameter, dataType, MakeSharedObject<NDArrayView>(initValue, dataType, shape, device), true, {}, name, Internal::GenerateUid(VariableKind::Parameter))
{}
///
/// Construct a constant of specified shape whose contents are initialized using the specified initializer
///
Parameter(const NDShape& shape, DataType dataType, const ParameterInitializer& initializer, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice(), const std::wstring& name = L"")
: Variable(shape, VariableKind::Parameter, dataType, nullptr, true, {}, name, Internal::GenerateUid(VariableKind::Parameter))
{
m_dataFields->SetValueInitialization(initializer, device);
}
///
/// DownCast a Variable to a Parameter. Only allowed if the VariableKind is Parameter and throws an exception otherwise.
///
explicit Parameter(const Variable& variable)
: Variable(variable)
{
if (!IsParameter())
InvalidArgument("A non-parameter Variable being converted to a Parameter");
}
///
/// Get the value of 'this' parameter
///
NDArrayViewPtr Value() const
{
return Variable::Value();
}
private:
explicit Parameter(const NDArrayViewPtr& value, const std::wstring& name, const std::wstring& uid)
: Variable(value->Shape(), VariableKind::Parameter, value->GetDataType(), value->DeepClone(), true, {}, name, uid)
{}
};
// Implementation note: The Variable type is a value type and not polymorphic in nature.
// However we have a couple of derivatives of the type to extend the base interface and thus we ensure that the derived types do not have additional fields.
// This check is weak in that the derives types may sneak in some additional fields if the base type had some padding at the end, without changing the object size
// but it should be good enough for catching any accidental additon of fields.
static_assert(sizeof(Parameter) == sizeof(Variable), "The Parameter type should not have any data fields beyond what it's base type 'Variable' has.");
///
/// Denotes Constant inputs of a Function.
///
class Constant final : public Variable
{
template <typename T>
friend struct std::hash;
template <typename ElementType>
friend Variable GetVariable(const Microsoft::MSR::CNTK::ComputationNodeBasePtr& node,
std::unordered_map<Microsoft::MSR::CNTK::ComputationNodeBasePtr, Variable>& nodeToVariableMap,
std::unordered_map<Variable, Variable>& placeholderReplacements,
std::unordered_set<FunctionPtr>& allPrimitiveFunctions);
public:
///
/// Construct a Constant whose initial contents are a copy of the specified value
///
Constant(const NDArrayViewPtr& value, const std::wstring& name = L"")
: Constant(value, name, Internal::GenerateUid(VariableKind::Constant))
{}
// TODO: Constructor to move a specified NDArrayView value
///
/// Construct a constant of specified shape whose contents are initialized with the specified 'initValue'
///
template<typename ElemType>
Constant(const NDShape& shape, ElemType initValue, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice(), const std::wstring& name = L"")
: Variable(shape, VariableKind::Constant, AsDataType<ElemType>(), MakeSharedObject<NDArrayView>(initValue, shape, device), false, {}, name, Internal::GenerateUid(VariableKind::Constant))
{}
///
/// Construct a constant of specified shape whose contents are initialized with the specified 'initValue'
///
Constant(const NDShape& shape, DataType dataType, double initValue, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice(), const std::wstring& name = L"")
: Variable(shape, VariableKind::Constant, dataType, MakeSharedObject<NDArrayView>(initValue, dataType, shape, device), false, {}, name, Internal::GenerateUid(VariableKind::Constant))
{}
///
/// Create a scalar constant. The specified value is cast to the specified DataType
///
static inline CNTK::Constant Scalar(CNTK::DataType dataType, double value, const CNTK::DeviceDescriptor& device = CNTK::DeviceDescriptor::CPUDevice())
{
return Constant({}, dataType, value, device);
}
///
/// Create a scalar constant. The specified value is cast to the specified DataType
///
template<typename ElementType>
static inline CNTK::Constant Scalar(ElementType value, const CNTK::DeviceDescriptor& device = CNTK::DeviceDescriptor::CPUDevice())
{
return Constant({}, value, device);
}
///
/// DownCast a Variable to a Constant. Only allowed if the VariableKind is Constant and throws an exception otherwise.
///
explicit Constant(const Variable& variable)
: Variable(variable)
{
if (!IsConstant())
InvalidArgument("A non-constant Variable being converted to a Constant");
}
///
/// Get the value of 'this' Constant
///
NDArrayViewPtr Value() const
{
return Variable::Value();
}
private:
Constant(const NDArrayViewPtr& value, const std::wstring& name, const std::wstring& uid)
: Variable(value->Shape(), VariableKind::Constant, value->GetDataType(), value->DeepClone(true), false, {}, name, uid)
{}
};
// Implementation note: The Variable type is a value type and not polymorphic in nature.
// However we have a couple of derivatives of the type to extend the base interface and thus we ensure that the derived types do not have additional fields.
// This check is weak in that the derives types may sneak in some additional fields if the base type had some padding at the end, without changing the object size
// but it should be good enough for catching any accidental additon of fields.
static_assert(sizeof(Constant) == sizeof(Variable), "The Constant type should not have any data fields beyond what it's base type 'Variable' has.");
}
namespace std {
template <> struct hash<CNTK::NDShape>
{
size_t operator()(const CNTK::NDShape& x) const
{
return std::hash<std::wstring>()(x.AsString());
}
};
template <> struct hash<CNTK::Variable>
{
size_t operator()(const CNTK::Variable& x) const
{
return std::hash<const void*>()(x.m_dataFields.get());
}
};
template <> struct hash<CNTK::Parameter>
{
size_t operator()(const CNTK::Parameter& x) const
{
return std::hash<CNTK::Variable>()(x);
}
};
template <> struct hash<CNTK::Constant>
{
size_t operator()(const CNTK::Constant& x) const
{
return std::hash<CNTK::Variable>()(x);
}
};
}
namespace CNTK
{
///
/// Encapsulates the internal computation state of a Function computed as part of the 'Forward' call on a Function
/// that must be passed to a subsequent 'Backward' call on the same Function to backpropagate gradient values
/// for the same computation backwards through the Function
///
class BackPropState : public std::enable_shared_from_this<BackPropState>
{
public:
///
/// Returns the Function that 'this' BackPropState belongs to
///
FunctionPtr Function() const { return m_function; }
virtual ~BackPropState() {}
protected:
BackPropState(const FunctionPtr& function) : m_function(function) {}
protected:
FunctionPtr m_function;
};
typedef std::shared_ptr<BackPropState> BackPropStatePtr;
///
/// How are Parameters handled when cloning a Function
///
enum class ParameterCloningMethod
{
///
/// Parameters are shared between the Function being cloned and the new clone
///
Share,
///
/// New learnable Parameters are created and initialied with the current values of the
/// corresponding Parameters of the Function being cloned
///
Clone,
///
/// Parameters are cloned and made immutable; i.e. Constants in the new clone
/// (e.g. for use as a fixed feature extractor)
///
Freeze,
};
///
/// Represents a function (optionally differentiable w.r.t. its inputs)
/// A Function denotes a symbolic computation with zero or more input arguments and one or more outputs.
/// A Function may be primitive or composite (comprised of other function instances whose inputs and outputs are wired together).
/// A Function effectively is a computation graph composed of other primitive Functions (denoting computation) as nodes and Variable objects
/// (denoting data) as the edges and leaves of the graph.
///
class Function : public std::enable_shared_from_this<Function>
{
friend class CompositeFunction;
friend class Trainer;
public:
///
/// Computes and stores the values of speficied variables in the 'outputs' map, using provided 'inputs' values corresponding
/// to each leaf variable of the function of VariableKind 'Input'.
/// The variables specified in the 'outputs' map denote the subset of 'this' Function's output variables that the caller wants to obtain values of.
/// Callers may specify the storage to be used for storing the 'outputs' Values or pass null in which case the implementation allocates the actual storage
/// for the 'outputs' for which the ValuePtr mapping was left null by the caller.
/// The optional 'outputsToRetainBackwardStateFor' parameter specifies the subset of the Function's output variables for which gradients will be specified
/// in a subsequent Backward call for backpropagation.
/// The method returns a BackPropState object containing all intermediate variable values needed during backpropagation of gradients from the
/// 'outputsToRetainBackwardStateFor' outputs of the function to any of the inputs of the Function, in a subsequent Backward call.
/// Note that the returned BackPropState instance also stores a reference to the supplied 'inputs' Values and generated 'outputs' Values
/// and the user is responsible for ensuring that the contents of the inputs and outputs are unchanged until after any uses of the BackPropState instance
/// for backpropagating gradients through this function.
///
virtual BackPropStatePtr Forward(const std::unordered_map<Variable, ValuePtr>& arguments,
std::unordered_map<Variable, ValuePtr>& outputs,
const DeviceDescriptor& computeDevice = DeviceDescriptor::UseDefaultDevice(),
const std::unordered_set<Variable>& outputsToRetainBackwardStateFor = {}) = 0;
///
/// Backpropagates supplied 'rootGradientValues' for one or more of the output variables of the Function, to produce gradient Values
/// corresponding to the specified set of input variables in 'backPropagatedGradientValuesForInputs'.
/// Callers may specify the actual storage to be used for storing the 'backPropagatedGradientValuesForInputs' Values or leave them to be null
/// in which case the implementation allocates the actual storage for storing the gradients.
/// In case an existing storage is specified, the gradients are aggregated with existing values in the specified storage.
/// The 'state' parameter is an instance of an BackPropState instance obtained from a previous call to the Forward method on 'this; Function for the
/// computation that this gradient backpropagation corresponds to.
///
virtual void Backward(const BackPropStatePtr& state,
const std::unordered_map<Variable, ValuePtr>& rootGradientValues,
std::unordered_map<Variable, ValuePtr>& backPropagatedGradientValuesForInputs) = 0;
///
/// Returns the name of the operation that this Function denotes
///
virtual const std::wstring& OpName() = 0;
public:
// Optional overrides
///
/// Destruct this Function.
///
virtual ~Function() {}
///
/// Clones 'this' Function. The parameters of the Function are either cloned, shared or frozen as specified by the parameterCloneMethod argument and
/// any variable replacements requested are applied in the cloned Function instance.
///
CNTK_API FunctionPtr Clone(ParameterCloningMethod parameterCloneMethod = ParameterCloningMethod::Clone, const std::unordered_map<Variable, Variable>& replacements = {}) const;
public:
///
/// Returns the name of 'this' variable.
///
const std::wstring& Name() const { return m_name; }
///
/// Returns the primitive Function at the root of the graph of Functions underlying this Function.
/// If 'this' Function itself is a primitive function then (this->RootFunction() == this).
///
FunctionPtr RootFunction() const
{
return (m_rootFunction == nullptr) ? const_cast<Function*>(this)->shared_from_this() : m_rootFunction;
}
///
/// Returns all Input variables of 'this' Function.
///
std::vector<Variable> Inputs() const
{
return *(InputsImpl().get());
}
///
/// Returns the Output variable of 'this' Function. Throws an exception of 'this' Function has more that one output.
///
Variable Output() const
{
if (m_outputs.size() > 1)
RuntimeError("A Function instance with more than one output cannot be implicitly converted to a Variable");
return m_outputs[0];
}
///
/// Returns a vector consisting of all Output variables of 'this' Function.
///
const std::vector<Variable>& Outputs() const { return m_outputs; }
///
/// Returns a set comprising of all input variables of 'this' Function's variables that are not of kind 'Parameter' or 'Constant'.
///
std::vector<Variable> Arguments() const
{
return FilteredInputs<Variable>([](const Variable& var) {
return (var.IsInput() || var.IsOutput());
});
}
///
/// Returns the set of all Parameter variables of 'this' Function.
///
std::vector<Parameter> Parameters() const
{
return FilteredInputs<Parameter>([](const Variable& var) {
return var.IsParameter();
});
}
///
/// Returns the set of all Constant variables of 'this' Function.
///
std::vector<Constant> Constants() const
{
return FilteredInputs<Constant>([](const Variable& var) {
return var.IsConstant();
});
}
///
/// Returns the set of all Constant variables of 'this' Function.
///
std::vector<Variable> Placeholders() const
{
return FilteredInputs<Variable>([](const Variable& var) {
return var.IsPlaceholder();
});
}
///
/// Returns the dictionary of attributes of 'this' Function
///
const Dictionary& Attributes() const { return m_attributes; }
///
/// In-place replace specified placeholders in the Function graph with the specified replacements in the map
///
CNTK_API FunctionPtr ReplacePlaceholders(const std::unordered_map<Variable, Variable>& placeholderReplacements);
///
/// In-place replace the only placeholder in the Function graph with the specified replacements in the map
/// Throws an exception if 'this' Function has multiple placeholders
///
CNTK_API FunctionPtr ReplacePlaceholder(const Variable& placeholderReplacement);
private:
template <typename VariableType, typename FilterFunction>
std::vector<VariableType> FilteredInputs(FilterFunction&& filterFunc) const
{
std::vector<VariableType> filteredInputs;
std::unordered_set<Variable> uniqueFilteredInputs;
auto inputs = Inputs();
for (auto inputVar : inputs)
{
if (filterFunc(inputVar) && (uniqueFilteredInputs.find(inputVar) == uniqueFilteredInputs.end()))
{
uniqueFilteredInputs.insert(inputVar);
filteredInputs.push_back(VariableType(inputVar));
}
}
return filteredInputs;
}
CNTK_API std::shared_ptr<std::vector<Variable>> InputsImpl() const;
void ValidateOrUpdateOutputs(std::unordered_map<const Function*, size_t>& visitedFunctions);
virtual void ReplacePlaceholdersInPlace(const std::unordered_map<Variable, Variable>& placeholderReplacements,
std::unordered_set<const Function*>& visitedFunctions,
std::unordered_set<Variable>& replacedPlaceholders);
static FunctionPtr Clone(const FunctionPtr& clonee,
ParameterCloningMethod parameterCloneMethod,
const std::unordered_map<Variable, Variable>& replacements,
std::unordered_map<const Function*, FunctionPtr>& cloneMap,
std::unordered_map<Variable, Variable>& leafVariablesCloneMap,
std::unordered_map<Variable, Variable>& placeholderReplacements);
// Disallow copy and move construction and assignment
Function(const Function&) = delete; Function(Function&&) = delete; Function& operator=(const Function&) = delete; Function& operator=(Function&&) = delete;
protected:
///
/// Protected constructor for derived 'Function' types to specify the actual input and output variables for the Function instance.
///
Function(const std::vector<Variable>& inputs, const std::vector<Variable>& outputs, Dictionary&& functionConfig, const FunctionPtr& rootFunction = nullptr, const std::wstring& name = L"")
: m_rootFunction(rootFunction), m_name(name), m_attributes(std::move(functionConfig))
{
for (auto inputVar : inputs)
{
m_inputs.push_back(inputVar);
if (!inputVar.IsInput() &&
!inputVar.IsOutput() &&
!inputVar.IsParameter() &&
!inputVar.IsConstant() &&
!inputVar.IsPlaceholder())
{
InvalidArgument("Function input has invalid VariableKind!");
}
}
std::unordered_set<Variable> uniqueOutputs;
for (auto outputVar : outputs)
{
if (uniqueOutputs.find(outputVar) != uniqueOutputs.end())
RuntimeError("Same variable appears multiple times in the outputs vector passed to Function constructor");
m_outputs.push_back(outputVar);
uniqueOutputs.insert(outputVar);
}
}
private:
void RestoreFromLegacyModel(const std::wstring& modelFilePath);
private:
std::vector<Variable> m_inputs;
std::vector<Variable> m_outputs;
FunctionPtr m_rootFunction; // nullptr for primitive function instances
std::wstring m_name;
Dictionary m_attributes;
};
///
/// Create an instance of the CNTK built-in elementwise negate operation with the specified input operand.
///
CNTK_API FunctionPtr Negate(const Variable& operand, const std::wstring& name = L"");
///
/// Unary negation operator corresponding to the Negate operation
///
inline FunctionPtr operator-(const Variable& operand)
{
return Negate(operand);
}
///
/// Create an instance of the CNTK built-in elementwise sigmoid operation with the specified input operand.
///
CNTK_API FunctionPtr Sigmoid(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise tanh operation with the specified input operand.
///
CNTK_API FunctionPtr Tanh(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise linear rectifier operation with the specified input operand.
///
CNTK_API FunctionPtr ReLU(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise exp operation with the specified input operand.
///
CNTK_API FunctionPtr Exp(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise log operation with the specified input operand.
///
CNTK_API FunctionPtr Log(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise square operation with the specified input operand.
///
CNTK_API FunctionPtr Square(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise square-root operation with the specified input operand.
///
CNTK_API FunctionPtr Sqrt(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise round operation with the specified input operand.
///
CNTK_API FunctionPtr Round(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise floor operation with the specified input operand.
///
CNTK_API FunctionPtr Floor(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise ceil operation with the specified input operand.
///
CNTK_API FunctionPtr Ceil(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise abs operation with the specified input operand.
///
CNTK_API FunctionPtr Abs(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise reciprocal operation with the specified input operand.
///
CNTK_API FunctionPtr Reciprocal(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in softmax operation on specified tensor input operand
///
CNTK_API FunctionPtr Softmax(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in hardmax operation on specified tensor input operand
///
CNTK_API FunctionPtr Hardmax(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in transpose dimensions operation on specified tensor input operand
///
CNTK_API FunctionPtr TransposeAxes(const Variable& operand, const Axis& axis1, const Axis& axis2, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in transpose operation on the specified 1D or 2D input operand
///
CNTK_API FunctionPtr Transpose(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the slice operation on specified tensor input operand
///
CNTK_API FunctionPtr Slice(const Variable& operand, const Axis& axis, int beginIndex, int endIndex, const std::wstring& name = L"");
///
/// Create an instance of the dropout operation on specified tensor input operand
///
// TODO: The initial random seed should be specifiable
CNTK_API FunctionPtr Dropout(const Variable& operand, double dropoutRate, const std::wstring& name = L"");
///
/// Create an instance of the reshape operation on specified tensor input operand
///
CNTK_API FunctionPtr Reshape(const Variable& operand, const NDShape& newShape, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise tensor addition operation with the specified input operands.
///
CNTK_API FunctionPtr Plus(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Binary addition operator corresponding to the Plus operation
///
inline FunctionPtr operator+(const Variable& leftOperand, const Variable& rightOperand)
{
return Plus(leftOperand, rightOperand);
}
///
/// Create an instance of the CNTK built-in elementwise tensor subtraction operation with the specified input operands.
///
CNTK_API FunctionPtr Minus(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Binary minus operator corresponding to the Minus operation
///
inline FunctionPtr operator-(const Variable& leftOperand, const Variable& rightOperand)
{
return Minus(leftOperand, rightOperand);
}
///
/// Create an instance of the CNTK built-in elementwise multiplication operation on specified tensor input operands.
///
CNTK_API FunctionPtr ElementTimes(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise division operation on specified tensor input operands.
///
CNTK_API FunctionPtr ElementDivide(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise equality comparison operation on specified tensor input operands.
///
CNTK_API FunctionPtr Equal(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise not-equal comparison operation on specified tensor input operands.
///
CNTK_API FunctionPtr NotEqual(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise less than comparison operation on specified tensor input operands.
///
CNTK_API FunctionPtr Less(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise less than or equal to comparison operation on specified tensor input operands.
///
CNTK_API FunctionPtr LessEqual(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise greater than comparison operation on specified tensor input operands.
///
CNTK_API FunctionPtr Greater(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise greater than or equal to comparison operation on specified tensor input operands.
///
CNTK_API FunctionPtr GreaterEqual(const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in matrix multiplication operation with the specified input operands.
/// TODO: Specify the constraints on the shapes of the operands.
///
CNTK_API FunctionPtr Times(const Variable& leftOperand, const Variable& rightOperand, size_t outputRank = 1, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in matrix multiplication operation with the transpose of the left input operand
/// and the specified right operand. Only accepts left operands of ranks 1 or 2.
/// TODO: Specify the constraints on the shapes of the operands.
///
CNTK_API FunctionPtr TransposeTimes(const Variable& leftOperand, const Variable& rightOperand, size_t outputRank = 1, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in operation to compute squared-error for specified input operands.
///
CNTK_API FunctionPtr SquaredError(const Variable& prediction, const Variable& targets, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in operation to compute cross-entropy with softmax for specified input operands.
///
CNTK_API FunctionPtr CrossEntropyWithSoftmax(const Variable& prediction, const Variable& labels, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in operation for computing the classification prediction error for specified operands.
///
CNTK_API FunctionPtr ClassificationError(const Variable& prediction, const Variable& labels, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in operation for getting the past value along the lone dynamic axis of the specified operand.
/// Throws an exception of the operand has more than one dynamic axis.
///
CNTK_API FunctionPtr PastValue(const Variable& operand, const Variable& initialState, size_t offset = 1, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in operation for getting the past value along the lone dynamic axis of the specified operand.
/// This overload uses an initial state value of 0.
/// Throws an exception of the operand has more than one dynamic axis.
///
inline FunctionPtr PastValue(const Variable& operand, size_t offset = 1, const std::wstring& name = L"")
{
static const auto defaultInitialState = Constant::Scalar(0.0f);
return PastValue(operand, defaultInitialState, offset, name);
}
///
/// Create an instance of the CNTK built-in operation for getting the future value along the lone dynamic axis of the specified operand.
/// Throws an exception of the operand has more than one dynamic axis.
///
CNTK_API FunctionPtr FutureValue(const Variable& operand, const Variable& initialState, size_t offset = 1, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in operation for getting the future value along the lone dynamic axis of the specified operand.
/// This overload uses an initial state value of 0.
/// Throws an exception of the operand has more than one dynamic axis.
///
inline FunctionPtr FutureValue(const Variable& operand, size_t offset = 1, const std::wstring& name = L"")
{
static const auto defaultInitialState = Constant::Scalar(0.0f);
return FutureValue(operand, defaultInitialState, offset, name);
}
///
/// Create an instance of the CNTK built-in sum reduction operation on specified tensor input operand along all the axes
///
CNTK_API FunctionPtr ReduceSum(const Variable& operand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in sum reduction operation on specified tensor input operand along the specified axis
///
CNTK_API FunctionPtr ReduceSum(const Variable& operand, const Axis& axis, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in LogSum reduction operation on specified tensor input operand along the specified axis
///
CNTK_API FunctionPtr ReduceLogSum(const Variable& operand, const Axis& axis, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in Mean reduction operation on specified tensor input operand along the specified axis
///
CNTK_API FunctionPtr ReduceMean(const Variable& operand, const Axis& axis, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in Max reduction operation on specified tensor input operand along the specified axis
///
CNTK_API FunctionPtr ReduceMax(const Variable& operand, const Axis& axis, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in Min reduction operation on specified tensor input operand along the specified axis
///
CNTK_API FunctionPtr ReduceMin(const Variable& operand, const Axis& axis, const std::wstring& name = L"");
///
/// Per dimension mean-variance normalization of the specified input operand.
///
CNTK_API FunctionPtr PerDimMeanVarianceNormalize(const Variable& operand, const NDArrayViewPtr& mean, const NDArrayViewPtr& invStdDev, const std::wstring& name = L"");
///
/// TODO:
///
CNTK_API FunctionPtr Convolution(const Variable& convolutionMap,
const Variable& operand,
const NDShape& strides = {1},
const std::vector<bool>& sharing = {true},
const std::vector<bool>& autoPadding = {true},
const NDShape& lowerPad = {0},
const NDShape& upperPad = {0},
bool transpose = false,
size_t maxTempMemSizeInSamples = 0,
const std::wstring& name = L"");
///
/// TODO:
///
enum class PoolingType
{
Max,
Average,
};
///
/// TODO:
///
CNTK_API FunctionPtr Pooling(const Variable& operand,
PoolingType poolingType,
const NDShape& poolingWindowShape,
const NDShape& strides = {1},
const std::vector<bool>& autoPadding = {false},
const NDShape& lowerPad = {0},
const NDShape& upperPad = {0},
const std::wstring& name = L"");
///
/// TODO:
///
// TODO: Do we need a separate "spatial" parameter or can it be inferred from the tensor dimensions
CNTK_API FunctionPtr BatchNormalization(const Variable& operand,
const Variable& scale,
const Variable& bias,
const Variable& runningMean,
const Variable& runningInvStd,
bool spatial,
double normalizationTimeConstant = 0,
double blendTimeConstant = 0,
double epsilon = 0.00001,
bool useCuDNNEngine = false,
const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise clip operation on the tensor operand
///
CNTK_API FunctionPtr Clip(const Variable& operand, const Variable& min, const Variable& max, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in elementwise choice operation using a condition tensor for specified tensor operands.
///
CNTK_API FunctionPtr ElementSelect(const Variable& condition, const Variable& leftOperand, const Variable& rightOperand, const std::wstring& name = L"");
///
/// Create an instance of the CNTK built-in splice operation to splice together all the specified tensor operands into a single output tensor
///
CNTK_API FunctionPtr Splice(const std::vector<Variable>& operands, const Axis& axis, const std::wstring& name = L"");
///
/// Create a new Function instance which just combines the outputs of the specified list of 'operands' Functions such that the 'Outputs' of the
/// new 'Function' are union of the 'Outputs' of each of the specified 'operands' Functions.
/// E.g. When creating a classification model, typically the CrossEntropy loss Function and the ClassificationError Function comprise the two roots
/// of the computation graph which can be "Combine"d to create a single Function with 2 outputs; viz. CrossEntropy loss and ClassificationError output.
///
CNTK_API FunctionPtr Combine(const std::vector<FunctionPtr>& operands, const std::wstring& name = L"");
namespace Sequence
{
CNTK_API FunctionPtr IsFirst(const Variable& operand, const std::wstring& name = L"");
CNTK_API FunctionPtr IsLast(const Variable& operand, const std::wstring& name = L"");
CNTK_API FunctionPtr First(const Variable& operand, const std::wstring& name = L"");
CNTK_API FunctionPtr Last(const Variable& operand, const std::wstring& name = L"");
CNTK_API FunctionPtr Where(const Variable& condition, const std::wstring& name = L"");
CNTK_API FunctionPtr Gather(const Variable& operand, const Variable& condition, const std::wstring& name = L"");
CNTK_API FunctionPtr Scatter(const Variable& operand, const Variable& condition, const std::wstring& name = L"");
CNTK_API FunctionPtr BroadcastAs(const Variable& operand, const Variable& broadcastAs, const std::wstring& name = L"");
}
///
/// Load a legacy CNTK v1 format model
///
CNTK_API FunctionPtr LoadLegacyModel(DataType dataType, const std::wstring& modelFile, const DeviceDescriptor& computeDevice = DeviceDescriptor::UseDefaultDevice());
///
/// Save a Composite Function instance to a file in CNTK legacy model format
///
CNTK_API void SaveAsLegacyModel(const FunctionPtr& rootFunction, const std::wstring& modelFile);
///
/// Abstraction for learning a subset of parameters of a learnable function using first order gradient values
/// For e.g momentum, AdaGrad, RMSProp etc. are different types of learners with their own algorithms for
/// learning parameter values using first order gradients.
///
class Learner : public std::enable_shared_from_this<Learner>
{
static const std::wstring LearningRateAttributeName;
public:
//
// Method to update the parameters associated with this learner. By returning false, this method indicates that
// learning has stopped for all of the parameters associated with this learner
//
virtual bool Update(const std::unordered_map<Parameter, NDArrayViewPtr>& gradientValues, size_t trainingSampleCount) = 0;
///
/// Returns the set of parameters associated with this learner.
///
const std::unordered_set<Parameter>& Parameters() const { return m_parameters; }
///
/// Optionally overridable method to checkpoint the learner's state.
///
// TODO: move the following two methods into ISerializable interface, make
// Learner (and all other entities that need checkpointing capability) implement it.
virtual Dictionary GetCheckpointState() const
{
Dictionary baseCheckpointState;
baseCheckpointState[LearningRateAttributeName] = m_learningRate;
return baseCheckpointState;
}
///
/// Optionally overridable method to restore the learner's state from a previous checkpoint.
///
virtual void RestoreFromCheckpoint(const Dictionary& checkpoint)
{
if (checkpoint.Contains(LearningRateAttributeName))
m_learningRate = checkpoint[LearningRateAttributeName].Value<double>();
}
///
/// Destruct this Learner.
///
virtual ~Learner() {}
virtual void ResetLearningRate(double learningRate) { m_learningRate = learningRate; }
virtual double LearningRate() const { return m_learningRate; }
protected:
Learner(const std::vector<Parameter>& parameters, double learningRate)
: m_parameters(parameters.begin(), parameters.end()), m_learningRate(learningRate)
{}
std::unordered_set<Parameter> m_parameters;
double m_learningRate;
};
///
/// A collection of key-value pairs that represents training parameter schedule in
/// terms of the number of processed samples.
/// This class provides a number of convenience constructors to allow easy conversion
/// from a single value, a vector of values and a list of pairs to the training schedule.
///
template <typename T>
class TrainingParameterSchedule
{
public:
///
/// Create a schedule with a constant parameter value.
///
TrainingParameterSchedule(T value)
: m_schedule({ std::make_pair(0, value) }), m_unit(1)
{}
///
/// Create a schedule where the parameter changes its value every 'unit' samples:
/// schedule[0] is used for the first 'unit' samples, schedule[1] -- for the second,
/// and so on. The last value is then used repeatedly until the end of training.
///
TrainingParameterSchedule(const std::vector<T>& schedule, size_t unit = 1)
: m_unit(unit)
{
// TODO: 0 will be used to mean "the entire sweep"
if (unit == 0)
RuntimeError("TrainingParameterSchedule::constructor : 'unit' cannot be 0.");
if (schedule.size() == 0)
RuntimeError("TrainingParameterSchedule::constructor : schedule is empty.");
size_t i = 1;
for (const auto& value : schedule)
{
m_schedule[m_unit * i++] = value;
}
}
///
/// Create a schedule using the list of key-value pairs, where the key specifies
/// the number of 'units' the parameter should maintain the corresponding value.
/// The value from the last pair is used repeatedly until the end of training.
/// For example, {{1, 0.05}, {2, 0.1}, {1, 0.005}} and unit = 100, corresponds to
/// a schedule where the value of '0.05' is used for the first 100 samples, then
/// '0.1' is used for the second 200 samples, after which the values is switched
/// to '0.005'.
///
TrainingParameterSchedule(const std::initializer_list<std::pair<const size_t, T>>& schedule, size_t unit = 1)
: m_unit(unit)
{
// TODO: 0 will be used to mean "the entire sweep"
if (unit == 0)
RuntimeError("TrainingParameterSchedule::constructor : 'unit' cannot be 0.");
if (schedule.size() == 0)
RuntimeError("TrainingParameterSchedule::constructor : schedule is empty.");
size_t i = 0;
for (const auto& it : schedule)
{
if (it.first == 0)
RuntimeError("TrainingParameterSchedule::constructor : unit count cannot be 0.");
i += it.first;
m_schedule[m_unit * i] = it.second;
}
}
///
/// Returns a value corresponding to the absolute sample count from the beginning of training.
///
CNTK_API const T& operator[](size_t sampleCount) const;
private:
std::map<size_t, T> m_schedule;
size_t m_unit;
};
typedef TrainingParameterSchedule<double> LearningRatesPerSample;
typedef TrainingParameterSchedule<double> MomentumsPerSample;
///
/// Create an instance of the CNTK built-in SGD learner.
///
CNTK_API LearnerPtr SGDLearner(const std::vector<Parameter>& parameters,
const LearningRatesPerSample& learningRates,
double clippingThresholdPerSample = std::numeric_limits<double>::infinity(),
bool gradientClippingWithTruncation = true);
///
/// Create an instance of the CNTK built-in Momentum SGD learner.
///
CNTK_API LearnerPtr MomentumSGDLearner(const std::vector<Parameter>& parameters,
const LearningRatesPerSample& learningRates,
const MomentumsPerSample& momentums,
double clippingThresholdPerSample = std::numeric_limits<double>::infinity(),
bool gradientClippingWithTruncation = true);
///
/// Create an instance of the CNTK built-in Nesterov's accelerated SGD learner.
///
CNTK_API LearnerPtr NesterovLearner(const std::vector<Parameter>& parameters,
const LearningRatesPerSample& learningRates,
const MomentumsPerSample& momentums,
double clippingThresholdPerSample = std::numeric_limits<double>::infinity(),
bool gradientClippingWithTruncation = true);
///
/// Create an instance of the CNTK built-in FSAdaGrad (improved AdaGrad) learner.
///
CNTK_API LearnerPtr FSAdaGradLearner(const std::vector<Parameter>& parameters,
const LearningRatesPerSample& learningRates,
const MomentumsPerSample& momentums,
double clippingThresholdPerSample = std::numeric_limits<double>::infinity(),
bool gradientClippingWithTruncation = true);
///
/// Create an instance of the CNTK built-in AdaGrad learner.
///
CNTK_API LearnerPtr AdaGradLearner(const std::vector<Parameter>& parameters,
const LearningRatesPerSample& learningRates,
bool needAveMultiplier = true,
double clippingThresholdPerSample = std::numeric_limits<double>::infinity(),
bool gradientClippingWithTruncation = true);
///
/// Create an instance of the CNTK built-in RMSProp learner.
///
CNTK_API LearnerPtr RMSPropLearner(const std::vector<Parameter>& parameters,
const LearningRatesPerSample& learningRates,
double gamma,
double inc,
double dec,
double max,
double min,
bool needAveMultiplier = true,
double clippingThresholdPerSample = std::numeric_limits<double>::infinity(),
bool gradientClippingWithTruncation = true);
///
/// Trainer is the top-level abstraction responsible for the orchestration of the training of a model
/// using the specified learners and training data either explicitly supplied as Value objects or from
/// a MinibatchSource object.
///
class Trainer
{
public:
///
/// Construct a Trainer to train the specified 'model' with the specified 'trainingLoss' Variable as the training criterion
/// and using the specified set of 'parameterLearners' for updating the model's parameters using computed gradients.
///
CNTK_API Trainer(const FunctionPtr& model, const FunctionPtr& lossFunction, const std::unordered_set<LearnerPtr>& parameterLearners);
///
/// Construct a Trainer to train the specified 'model' with the specified 'trainingLoss' as the training criterion,
/// the specified 'evaluationFunction' as the criterion for evaluating the trained model's quality, and using the specified set
/// of 'parameterLearners' for updating the model's parameters using computed gradients.
///
// TODO: Add overload for multiple evaluation criterion
CNTK_API Trainer(const FunctionPtr& model, const FunctionPtr& lossFunction, const FunctionPtr& evaluationFunction, const std::unordered_set<LearnerPtr>& parameterLearners);
///
/// Optimize model parameters using the specified 'arguments' minibatch of training samples.
/// Returns false if all parameter learners indicate end of learning (through their Update method's return value).
///
CNTK_API bool TrainMinibatch(const std::unordered_map<Variable, ValuePtr>& arguments, const DeviceDescriptor& computeDevice = DeviceDescriptor::UseDefaultDevice());
///
/// Optimize model parameters using the specified 'arguments' minibatch of training samples.
/// The variables specified in the 'outputsToFetch' map denote the subset of 'this' Function's output variables that the caller wants to obtain values of.
/// Callers may specify the storage to be used for storing the 'outputs' Values or pass null in which case the implementation allocates the actual storage
/// for the 'outputs' for which the ValuePtr mapping was left null by the caller.
/// Returns false if all parameter learners indicate end of learning (through their Update method's return value).
///
CNTK_API bool TrainMinibatch(const std::unordered_map<Variable, ValuePtr>& arguments, std::unordered_map<Variable, ValuePtr>& outputsToFetch, const DeviceDescriptor& computeDevice = DeviceDescriptor::UseDefaultDevice());
///
/// Test the model on the specified batch of samples using the evaluation Function specified during construction of the Trainer
/// Returns the average evaluation criterion value per sample for the tested minibatch of samples
///
CNTK_API double TestMinibatch(const std::unordered_map<Variable, ValuePtr>& arguments, const DeviceDescriptor& computeDevice = DeviceDescriptor::UseDefaultDevice());
///
/// Checkpoint the model and other Trainer state at the specified file location
///
CNTK_API void SaveCheckpoint(const std::wstring& modelFilePath);
///
/// Restore the model and trainer state from a previously saved model and checkpoint from the specified file location
///
CNTK_API void RestoreFromCheckpoint(const std::wstring& modelFilePath);
///
/// Model being trained by 'this' Trainer.
///
FunctionPtr Model() const { return m_model; }
///
/// Loss function that is used as the optimization criterion for learning the model's parameters.
///
FunctionPtr LossFunction() const { return m_lossFunction; }
///
/// Evaluation Function that is used as for the criterion for evaluating the trained model's quality.
///
FunctionPtr EvaluationFunction() const { return m_evaluationFunction; }
///
/// Returns the average training loss per sample for the last minibatch trained.
///
CNTK_API double PreviousMinibatchLossAverage() const;
///
/// Returns the average evaluation criterion value per sample for the last minibatch trained.
///
CNTK_API double PreviousMinibatchEvaluationAverage() const;
///
/// Returns the number of samples in the last minibatch trained with
///
size_t PreviousMinibatchSampleCount() const { return m_prevMinibatchNumSamples; }
///
/// Learners associated with this Trainer for updating the model's parameters using computed gradients.
///
const std::unordered_set<LearnerPtr>& ParameterLearners() const { return m_parameterLearners; }
private:
FunctionPtr m_combinedTrainingFunction;
FunctionPtr m_model;
FunctionPtr m_lossFunction;
FunctionPtr m_aggregatedLossFunction;
FunctionPtr m_evaluationFunction;
FunctionPtr m_aggregatedEvaluationFunction;
std::unordered_set<LearnerPtr> m_parameterLearners;
size_t m_prevMinibatchNumSamples;
ValuePtr m_prevMinibatchAggregateTrainingLossValue;
ValuePtr m_prevMinibatchAggregateEvalCriterionValue;
};
///
/// Describes an input stream: its name, element type, storage, etc.
///
struct StreamInformation
{
std::wstring m_name; // Unique name of the stream
size_t m_id; // Unique identifier of the stream
StorageFormat m_storageFormat; // Storage format of the stream
DataType m_elementType; // Element type of the stream
NDShape m_sampleLayout; // Layout of the sample for the stream
};
inline bool operator==(const StreamInformation& left, const StreamInformation& right)
{
return ((left.m_id == right.m_id) &&
(left.m_name == right.m_name) &&
(left.m_storageFormat == right.m_storageFormat) &&
(left.m_elementType == right.m_elementType) &&
(left.m_sampleLayout == right.m_sampleLayout));
}
}
namespace std {
template <> struct hash<CNTK::StreamInformation>
{
size_t operator()(const CNTK::StreamInformation& x) const
{
return std::hash<size_t>()(x.m_id);
}
};
}
namespace CNTK
{
struct MinibatchData
{
size_t m_numSequences;
size_t m_numSamples;
ValuePtr m_data;
};
///
/// Abstraction for generating minibatches of samples for training/evaluation.
///
class MinibatchSource : public std::enable_shared_from_this<MinibatchSource>
{
public:
///
/// Describes the streams 'this' MinibatchSource produces.
///
virtual const std::unordered_set<StreamInformation>& StreamInfos() = 0;
///
/// Reads a minibatch that contains data for all input streams.
/// The minibatch size is specified terms of #samples and/or #sequences for the primary input stream; value of 0 for #samples/#sequences means unspecified.
/// In case the size is specified in terms of both #sequences and #samples, the smaller of the 2 is taken.
/// An empty map is returned when the MinibatchSource has no more data to return.
///
virtual const std::unordered_map<StreamInformation, MinibatchData>& GetNextMinibatch(size_t minibatchSizeInSamples,
size_t minibatchSizeInSequences,
const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice()) = 0;
///
/// Destruct this MinibatchSource.
///
virtual ~MinibatchSource() {}
public:
///
/// Gets the description of the stream with given name.
/// Throws an exception of there are none or multiple streams with this same name.
///
CNTK_API const StreamInformation& StreamInfo(const std::wstring& streamName);
///
/// Gets the description of the stream that matches the attributes (Shape, DataType and StorageFormat) of the specified Variable object
/// Throws an exception if there are none or multiple streams matching the Variable's attributes
///
CNTK_API const StreamInformation& StreamInfo(const Variable& variableToMatch);
///
/// Reads a minibatch that contains data for all input streams.
/// The minibatch size is specified terms of #samples for the primary input stream.
/// An empty map is returned when the MinibatchSource has no more data to return.
///
CNTK_API const std::unordered_map<StreamInformation, MinibatchData>& GetNextMinibatch(size_t minibatchSizeInSamples, const DeviceDescriptor& device = DeviceDescriptor::UseDefaultDevice());
// TODO: Methods to save and restore from checkpoints
// Disallow copy and move construction and assignment
MinibatchSource(const MinibatchSource&) = delete; MinibatchSource(MinibatchSource&&) = delete; MinibatchSource& operator=(const MinibatchSource&) = delete; MinibatchSource& operator=(MinibatchSource&&) = delete;
protected:
MinibatchSource() {}
};
///
/// Instantiate the CNTK built-in composite minibatch source.
///
CNTK_API MinibatchSourcePtr CreateCompositeMinibatchSource(const Dictionary& configuration);
struct StreamConfiguration
{
StreamConfiguration(const std::wstring& streamName, size_t dim, bool isSparse = false, const std::wstring& streamAlias = L"")
: m_streamName(streamName), m_dim(dim), m_isSparse(isSparse), m_streamAlias(streamAlias)
{}
std::wstring m_streamName;
size_t m_dim;
bool m_isSparse;
std::wstring m_streamAlias;
};
///
/// Instantiate the CNTK built-in test format minibatch source
///
inline MinibatchSourcePtr TextFormatMinibatchSource(const std::wstring& dataFilePath, const std::vector<StreamConfiguration>& streamConfigs, size_t epochSize = SIZE_MAX)
{
CNTK::Dictionary minibatchSourceConfiguration;
minibatchSourceConfiguration[L"epochSize"] = epochSize;
CNTK::Dictionary deserializerConfiguration;
deserializerConfiguration[L"type"] = L"CNTKTextFormatDeserializer";
deserializerConfiguration[L"file"] = dataFilePath;
CNTK::Dictionary inputStreamsConfig;
for (auto streamConfig : streamConfigs)
{
std::wstring streamName = streamConfig.m_streamName;
size_t streamDim = streamConfig.m_dim;
bool isSparse = streamConfig.m_isSparse;
std::wstring streamAlias = streamConfig.m_streamAlias;
CNTK::Dictionary inputStreamConfig;
inputStreamConfig[L"dim"] = streamDim;
inputStreamConfig[L"format"] = isSparse ? L"sparse" : L"dense";
if (!streamAlias.empty())
inputStreamConfig[L"alias"] = streamAlias;
inputStreamsConfig[streamName] = inputStreamConfig;
}
deserializerConfiguration[L"input"] = inputStreamsConfig;
minibatchSourceConfiguration[L"deserializers"] = std::vector<CNTK::DictionaryValue>({ deserializerConfiguration });
return CreateCompositeMinibatchSource(minibatchSourceConfiguration);
}
///
/// Compute the per dimension means and variances for each of the specified streams using data from the specified minibatchSource.
///
CNTK_API void ComputeInputPerDimMeansAndInvStdDevs(const MinibatchSourcePtr& minibatchSource,
std::unordered_map<StreamInformation, std::pair<NDArrayViewPtr, NDArrayViewPtr>>& computedMeanAndVariances,
const DeviceDescriptor& device = DeviceDescriptor::CPUDevice());
///
/// Set the process-wide setting for maximum number of CPU threads to be used by any individual compute operation
/// Note that this is a per compute operation limit and if the user performs multiple compute operations concurrently
/// by launching multiple threads and performing a compute operation inside, it will result in each of those concurrently
/// executing operations to use the specified number of CPU threads limit.
///
CNTK_API void SetMaxNumCPUThreads(size_t numCPUThreads);
///
/// Returns the current process-wide setting for maximum number of CPU threads to be used by any individual compute operation
///
CNTK_API size_t GetMaxNumCPUThreads();
}