CNTK/Source/SGDLib/Criterion.h

198 строки
9.8 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
// Criterion.h -- helper classes for accumulating criteria
#pragma once
#include "Basics.h"
#include "Matrix.h"
#include "TensorView.h"
#include <memory> // for pair
#include <limits> // for isnan() and numeric_limits --TODO: is that the right header?
namespace Microsoft { namespace MSR { namespace CNTK {
// helper for criterion pretty printing
static inline string GeneratePaddedFloatOrExpFormat(int padSize, int precision, double value)
{
char format[16];
char buffer[512];
sprintf(format, "%%.%dg", precision);
sprintf(buffer, format, value);
for (int i = 0; i < strlen(buffer); i++)
{
if (buffer[i] == 'e' || buffer[i] == 'E')
{
sprintf(format, "%%%d.%de", padSize, precision);
return format;
}
}
sprintf(format, "%%%d.%df", padSize, precision);
return format;
}
// helper class for passing accumulated epoch-level criteria around while retaining their sample counts
// Criteria are represented as a tuple (aggregate criterion, sample count). The average criterion value is their ratio.
struct EpochCriterion : public std::pair<double, size_t>
{
// construction
explicit EpochCriterion(double aggregateCriterionValue = 0.0, size_t aggregateSampleCount = 0) : std::pair<double, size_t>(aggregateCriterionValue, aggregateSampleCount) { }
EpochCriterion(const std::pair<double, size_t>& other) : std::pair<double, size_t>(other) { }
// main way of reading this out: compute the actual average criterion value from the aggregate and sample count
double Average() const { return second > 0 ? first / second : 0.0; } // compute the epoch-average
// a few more handy operations that occured multiple times
bool IsNan() const { return std::isnan(first); }
EpochCriterion operator-(const EpochCriterion& other) const { return EpochCriterion(first - other.first, second - other.second); }
void operator+=(const EpochCriterion& other) { first += other.first; second += other.second; }
static EpochCriterion Infinity() { return EpochCriterion(std::numeric_limits<double>::infinity()); }
bool IsInfinity() const { return first == std::numeric_limits<double>::infinity(); }
// log a criterion value in a form like 'av * count; '
void LogCriterion(const wstring& name, bool addSemicolon = true) const
{
double evalErrorSinceLastLogged = Average();
int evalSamplesSinceLastLogged = (int)second;
fprintf(stderr, "%ls = ", name.c_str());
string format;
bool asPercentage = name.back() == 's'; // heuristic: plural forms are error counters
if (asPercentage)
fprintf(stderr, (GeneratePaddedFloatOrExpFormat(2, 3, 100*evalErrorSinceLastLogged) + "%%").c_str(), 100*evalErrorSinceLastLogged);
else
fprintf(stderr, GeneratePaddedFloatOrExpFormat(0, 8, evalErrorSinceLastLogged).c_str(), evalErrorSinceLastLogged);
fprintf(stderr, " * %d", evalSamplesSinceLastLogged);
if (addSemicolon) // if no more numbers follow, then use addSemicolon = false
fprintf(stderr, "; ");
}
};
// We accumulate criteria in this struct.
// Criteria are accumulated together with their counts (counts depend on sequence lengths, and different criteria may have different sequence lengths).
template <class ElemType>
struct CriterionAccumulator
{
// constructor params:
// criterionNodes - list of criterion nodes
// accumulatorCriterionNodesNodes - list of criterion nodes that already accumulate results
CriterionAccumulator(const std::vector<ComputationNodeBasePtr>& criterionNodes, DEVICEID_TYPE deviceId,
const std::vector<ComputationNodeBasePtr>& accumulatorCriterionNodesNodes = {})
: m_aggregateCriterionValues(make_shared<Matrix<ElemType>>(1, criterionNodes.size(), deviceId)),
m_criterionNodes(criterionNodes),
m_accumulatorCriterionNodes(accumulatorCriterionNodesNodes)
{
m_aggregateCriterionValues->SetValue(0);
m_aggregateSampleCounts.assign(criterionNodes.size(), 0);
}
// 'i' is the index of the element we add into (multiple eval criteria share the same matrix object)
// Use 'reset=true' to not accumulate but overwrite.
const CriterionAccumulator& Add(size_t i, size_t numSamplesInMinibatch)
{
return Accumulate(i, numSamplesInMinibatch, /*reset=*/false);
}
const CriterionAccumulator& Assign(size_t i, size_t numSamplesInMinibatch)
{
return Accumulate(i, numSamplesInMinibatch, /*reset=*/true);
}
// retrieve an accumulated result as a pair (numerator, denominator)
EpochCriterion GetCriterion(size_t i) const
{
// BUGBUG: For unknown reasons, this (or the other below) check makes a difference for MPI configs.
// If it is left out, then training and test configs end up being scaled by the same factor close to 1.
if (m_aggregateSampleCounts[i] == 0)
return EpochCriterion(0, 0); // avoid unnecessary GPU access
else
return EpochCriterion(m_aggregateCriterionValues->GetValue(0, i), m_aggregateSampleCounts[i]);
}
private:
// shared part of Add() and Assign()
// This code assumes that if number of samples is 0, the criterion value is invalid and must not be fetched from the GPU or otherwise looked at.
const CriterionAccumulator& Accumulate(size_t i, size_t numSamplesInMinibatch, bool reset)
{
const auto& node = m_criterionNodes[i]; // multiple nodes are managed by this struct
// Accumulator nodes already accumulate error for all samples that passed through network in forward pass.
// For them we use 1 as number of samples to avoid averaging again.
// Also, we always perform reset for those nodes to avoid accumulating again.
bool nodeContainsAccumulatedResult = ContainsAccumulatedResult(node);
size_t beta = (nodeContainsAccumulatedResult || reset) ? 0 : 1;
size_t numSamples = GetNumSamples(m_criterionNodes[i], numSamplesInMinibatch, nodeContainsAccumulatedResult);
// Note: numSamples == 0 if numSamplesInMinibatch == 0 meaning empty minibatch.
// For criterion nodes that emit criteria per frame, we will at this point
// do masking and an implicit reduction.
// get a TensorView of the criterion values to aggregate
// TODO: Verify that node->GetSampleLayout().GetNumElements() == 1. Require explicit summation to declare intent that this is a criterion.
FrameRange fr(node->GetMBLayout());
node->MaskMissingValueColumnsToZero(fr); // set gaps to zero, so that we can aggregate
// get a TensorView of our aggregator
TensorShape shape{ m_aggregateCriterionValues->GetNumRows(), m_aggregateCriterionValues->GetNumCols() };
shape.NarrowTo(1, i, i + 1); // narrow to the single element that corresponds to the accumulator value
auto criterionAccumulator = TensorView<ElemType>(m_aggregateCriterionValues, shape);
// accumulate
if (numSamples > 0) // (if MB is empty, we must not look at the matrix)
{
auto criterionValue = node->As<ComputationNode<ElemType>>()->ValueTensorFor(SIZE_MAX, fr);
// Note: If criterion is > [1 x 1] then inverse broadcasting will kick in and aggregate.
// If count is zero, we lazily consider the numerator as zero as well.
criterionAccumulator.DoCopyOf(m_aggregateSampleCounts[i] ? (float)beta : 0, criterionValue, 1);
}
m_aggregateSampleCounts[i] = m_aggregateSampleCounts[i] * beta + numSamples;
return *this;
}
bool ContainsAccumulatedResult(const ComputationNodeBasePtr& node) const
{
// Node contains accumulated result if it can be found in the list of accumulation nodes specified in
// CriterionAccumulator constructor.
return std::find(m_accumulatorCriterionNodes.begin(), m_accumulatorCriterionNodes.end(), node) !=
m_accumulatorCriterionNodes.end();
}
public:
// get the number of samples
// 'numSamplesInMinibatch' is the "generic" number of samples in the minibatch, which
// we will use if the node has no MBLayout.
// If 'numSamplesInMinibatch' is 0, then this means that the 'node' is invalid and should not be looked at.
static size_t GetNumSamples(const ComputationNodeBasePtr& node, size_t numSamplesInMinibatch,
bool nodeContainsAccumulatedCriterion = false)
{
if (numSamplesInMinibatch == 0) // empty MB: node is invalid, MBLayout must not be looked at
return 0;
else if (nodeContainsAccumulatedCriterion)
{
// For nodes that already contain accumulated error we use 1 as number of samples to avoid averaging again.
// These nodes contain error for all samples that passed through network in forward pass instead of per
// sample error (as such they don't have minibatch layout).
if (node->HasMBLayout())
LogicError("Node %ls is marked as aggregation, but has minibatch layout.", node->GetName().c_str());
return 1;
}
else if (node->HasMBLayout())
return node->GetMBLayout()->GetActualNumSamples();
else
return numSamplesInMinibatch;
}
CriterionAccumulator& operator=(const CriterionAccumulator&) = delete;
private:
shared_ptr<Matrix<ElemType>> m_aggregateCriterionValues; // [1 x N]
vector<size_t> m_aggregateSampleCounts; // [N]
const std::vector<ComputationNodeBasePtr> m_criterionNodes;
// Criterion nodes that accumulate result themselves.
const std::vector<ComputationNodeBasePtr> m_accumulatorCriterionNodes;
};
}}}