CNTK/Source/SGDLib/SGD.cpp

3078 строки
152 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
// SGD.cpp -- implements SGD with all bells and whistles, parallelization, randomization, etc.
//
#define _CRT_SECURE_NO_WARNINGS // "secure" CRT not available on all platforms --add this at the top of all CPP files that give "function or variable may be unsafe" warnings
#include "Basics.h"
#include "SGD.h"
#include "NonlinearityNodes.h" // for DropoutNode
#include "SpecialPurposeNodes.h" // for SequenceWithSoftmaxNode
#include "DataReaderHelpers.h"
#include "MatrixQuantizerImpl.h"
#include "InputAndParamNodes.h"
#ifdef CNTK_PARALLEL_TRAINING_SUPPORT
//static inline bool operator==(const std::pair<double,size_t>& a, double b) { assert(b==0); return a.first == b; }
// ^^ workaround until this line in AggregateGradientsImpl() gets updated: assert(headerCPU->evalErrors[i] == 0);
#include "AllReduceDistGradAggregator.h"
#include "BlockMomentumSGD.h"
#include "V2BlockMomentumSGD.h"
#include "V2AllReduceDistGradAggregator.h"
#endif
#include "ASGDHelper.h"
#include "SimpleDistGradAggregator.h"
#include "V2SimpleDistGradAggregator.h"
#include "ProgressTracing.h"
#include <map>
#include <set>
namespace Microsoft { namespace MSR { namespace CNTK {
using namespace std;
// =======================================================================
// class SGD
// =======================================================================
template SGD<float>::SGD(const ConfigParameters&);
template SGD<double>::SGD(const ConfigParameters&);
template SGD<float>::SGD(const ScriptableObjects::IConfigRecord&);
template SGD<double>::SGD(const ScriptableObjects::IConfigRecord&);
// -----------------------------------------------------------------------
// Train() -- perform a multi-epoch training end-to-end with checkpointing
// -----------------------------------------------------------------------
template <class ElemType>
void SGD<ElemType>::Train(shared_ptr<ComputationNetwork> net, DEVICEID_TYPE deviceId,
IDataReader* trainSetDataReader,
IDataReader* validationSetDataReader, int startEpoch, bool loadNetworkFromCheckpoint)
{
// log the device we are computing on
LOGPRINTF(stderr, "\nModel has %d nodes. Using ", (int)net->GetTotalNumberOfNodes());
if (net->GetDeviceId() < 0)
fprintf(stderr, "CPU.\n");
else
fprintf(stderr, "GPU %d.\n", (int) net->GetDeviceId());
// TODO: BUGBUG: if not starting from checkpoint, need to synchronize initial model
// strategy should be to run the initializer above on mpiRank==0, and then broadcast parameters.
startEpoch = max(startEpoch, 0);
m_needAdaptRegularization = false;
// set tracing flags
net->EnableNodeTracing(m_traceNodeNamesReal, m_traceNodeNamesCategory, m_traceNodeNamesSparse);
TrainOrAdaptModel(startEpoch, net, loadNetworkFromCheckpoint, net, nullptr, trainSetDataReader, validationSetDataReader);
}
// -----------------------------------------------------------------------
// Adapt() -- similar to Train(), but for purpose of adapting
// -----------------------------------------------------------------------
template <class ElemType>
void SGD<ElemType>::Adapt(wstring origModelFileName, wstring refNodeName,
IDataReader* trainSetDataReader,
IDataReader* validationSetDataReader,
const DEVICEID_TYPE deviceId, const bool makeMode)
{
int startEpoch = DetermineStartEpoch(makeMode);
if (startEpoch == m_maxEpochs)
{
LOGPRINTF(stderr, "No further training is necessary.\n");
return;
}
ComputationNetworkPtr net;
bool networkLoadedFromCheckpoint = false;
if (startEpoch >= 0)
{
wstring modelFileName = GetModelNameForEpoch(int(startEpoch) - 1);
LOGPRINTF(stderr, "Starting from checkpoint. Loading network from '%ls'.\n", modelFileName.c_str());
net = ComputationNetwork::CreateFromFile<ElemType>(deviceId, modelFileName);
networkLoadedFromCheckpoint = true;
}
else
{
LOGPRINTF(stderr, "Load Network From the original model file %ls.\n", origModelFileName.c_str());
net = ComputationNetwork::CreateFromFile<ElemType>(deviceId, origModelFileName);
}
startEpoch = max(startEpoch, 0);
ComputationNetworkPtr refNet;
m_needAdaptRegularization = m_adaptationRegType != AdaptationRegType::None && m_adaptationRegWeight > 0;
if (m_needAdaptRegularization)
{
LOGPRINTF(stderr, "Load reference Network From the original model file %ls.\n", origModelFileName.c_str());
refNet = ComputationNetwork::CreateFromFile<ElemType>(deviceId, origModelFileName);
}
ComputationNodeBasePtr refNode;
if (m_needAdaptRegularization && m_adaptationRegType == AdaptationRegType::KL)
{
LOGPRINTF(stderr, "Checking refNodeName %ls.\n", origModelFileName.c_str());
if (refNodeName == L"")
InvalidArgument("refNodeName does not exist and is needed when adaptationRegType is KL.");
refNode = refNet->GetNodeFromName(refNodeName);
}
TrainOrAdaptModel(startEpoch, net, networkLoadedFromCheckpoint, refNet, refNode, trainSetDataReader, validationSetDataReader);
}
// -----------------------------------------------------------------------
// TrainOrAdaptModel() -- main training end-to-end, given a start model
// -----------------------------------------------------------------------
static double MomentumPerMB(double momentumPerSample, size_t minibatchSize);
template <class ElemType>
void SGD<ElemType>::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net,
bool networkLoadedFromCheckpoint,
ComputationNetworkPtr refNet,
ComputationNodeBasePtr refNode,
IDataReader* trainSetDataReader,
IDataReader* validationSetDataReader)
{
let& criterionNodes = GetTrainCriterionNodes(net);
fprintf(stderr, "\n");
if (criterionNodes.size() == 1)
{
LOGPRINTF(stderr, "Training criterion: %ls = %ls\n", criterionNodes.front()->NodeName().c_str(), criterionNodes.front()->OperationName().c_str());
}
else
{
LOGPRINTF(stderr, "Training criteria:\n");
for (const auto& node : criterionNodes)
{
LOGPRINTF(stderr, "\t%ls = %ls\n", node->NodeName().c_str(), node->OperationName().c_str());
}
if (criterionNodes.empty())
{
LOGPRINTF(stderr, "\t(none)\n");
InvalidArgument("TrainOrAdaptModel: No criterion node was specified.");
}
}
// This code is only relevant for the new (V2) readers. It exist because of
// a shortcoming in DecimateMinibatchInPlace, which does not yet work when inputs
// in the same minibatch have different layouts, which is something only V2 readers can
// produce.
if (m_enableDistributedMBReadingNotSpecified && m_mpi != nullptr && !trainSetDataReader->IsLegacyReader())
{
// we're running a parallel training with a v2 reader,
// auto-enable distributed reading
if (m_traceLevel > 0)
LOGPRINTF(stderr, "\"distributedMBReading\" is not explicitly specified, defaulting to 'true'.\n");
m_enableDistributedMBReading = true;
}
// determine evaluationNodes from GetEvalCriterionNodes(), ensuring each criterion is only logged once
std::vector<ComputationNodeBasePtr> evaluationNodes;
{
auto originalEvaluationNodes = GetEvalCriterionNodes(net);
set<ComputationNodeBasePtr> criteriaLogged; // set to make sure we don't double-log criteria
for (const auto& node : criterionNodes)
criteriaLogged.insert(node);
for (const auto& node : originalEvaluationNodes)
if (criteriaLogged.insert(node).second)
evaluationNodes.push_back(node);
if (evaluationNodes.size() == 1)
{
LOGPRINTF(stderr, "Evaluation criterion: %ls = %ls\n", evaluationNodes.front()->NodeName().c_str(), evaluationNodes.front()->OperationName().c_str());
}
else if (!evaluationNodes.empty())
{
fprintf(stderr, "\n");
LOGPRINTF(stderr, "Evaluation criteria:\n");
for (const auto& node : evaluationNodes)
{
LOGPRINTF(stderr, "\t%ls = %ls\n", node->NodeName().c_str(), node->OperationName().c_str());
}
}
}
std::vector<ComputationNodeBasePtr> additionalNodesToEvaluate;
auto& outputNodes = net->OutputNodes();
additionalNodesToEvaluate.insert(additionalNodesToEvaluate.end(), outputNodes.cbegin(), outputNodes.cend());
auto preComputeNodesList = net->GetNodesRequiringPreComputation();
additionalNodesToEvaluate.insert(additionalNodesToEvaluate.end(), preComputeNodesList.cbegin(), preComputeNodesList.cend());
// allocate memory for forward and backward computation
net->AllocateAllMatrices(evaluationNodes, additionalNodesToEvaluate, criterionNodes[0]); // TODO: use criterionNodes.front() throughout
// get feature and label nodes into an array of matrices that will be passed to GetMinibatch()
// TODO: instead, remember the nodes directly, to be able to handle both float and double nodes; current version will crash for mixed networks
StreamMinibatchInputs* inputMatrices = new StreamMinibatchInputs();
// TODO: ^^ change to shared_ptr or unique_ptr
let& featureNodes = net->FeatureNodes();
let& labelNodes = net->LabelNodes();
// BUGBUG: ^^ should not get all feature/label nodes, but only the ones referenced in a criterion
for (size_t pass = 0; pass < 2; pass++)
{
auto& nodes = (pass == 0) ? featureNodes : labelNodes;
for (const auto & node : nodes)
inputMatrices->AddInput(node->NodeName(), node->ValuePtr(), node->GetMBLayout(), node->GetSampleLayout());
}
// get hmm file for sequence training
bool isSequenceTrainingCriterion = (criterionNodes[0]->OperationName() == L"SequenceWithSoftmax");
if (isSequenceTrainingCriterion)
{
// SequenceWithSoftmaxNode<ElemType>* node = static_cast<SequenceWithSoftmaxNode<ElemType>*>(criterionNodes[0]);
auto node = dynamic_pointer_cast<SequenceWithSoftmaxNode<ElemType>>(criterionNodes[0]);
auto hmm = node->gethmm();
trainSetDataReader->GetHmmData(hmm);
}
// used for KLD regularized adaptation. For all other adaptation techniques
// use MEL to edit the model and using normal training algorithm
// TODO: Should this be done in SGD::Adapt()?
// TODO: Redo this leveraging that we now have shared_ptrs. It is probably even OK if both networks share feature nodes.
// TODO: Then we can also share the MBLayout; which currently is copied by value.
std::vector<ComputationNodeBasePtr> refFeatureNodes; // we keep the original network's features here
if (m_needAdaptRegularization && m_adaptationRegType == AdaptationRegType::KL && refNode != nullptr)
{
refNet->InvalidateCompiledNetwork(); // prepare to re-compile
// replace input nodes in ref network by input nodes of the main network
refFeatureNodes.resize(featureNodes.size());
for (size_t i = 0; i < featureNodes.size(); i++)
{
// we need to keep this info to undo this later
// TODO: After the change to shared_ptrs, this may no longer be necessary.
refFeatureNodes[i] = refNet->GetNodeFromName(featureNodes[i]->NodeName()); // remember so that we can restore them later
refNet->ReplaceNode(featureNodes[i]->NodeName(), featureNodes[i]);
}
//const_cast<MBLayoutPtr&>(refNet->GetMBLayoutPtrOfNetwork()) = net->GetMBLayoutPtrOfNetwork(); // WORKAROUND
refNet->CompileNetwork();
// allocate memory for forward computation
refNet->AllocateAllMatrices({refNode}, {}, nullptr);
}
// initializing weights and gradient holder
// only one criterion so far TODO: support multiple ones?
auto& learnableNodes = net->LearnableParameterNodes(criterionNodes[0]);
list<Matrix<ElemType>> smoothedGradients;
vector<double> smoothedCounts; // currently used by FSAdaGradUpdate()
size_t numParameters = 0;
vector<wstring> nodesToUpdateDescriptions; // for logging only
for (auto nodeIter = learnableNodes.begin(); nodeIter != learnableNodes.end(); nodeIter++)
{
ComputationNodePtr node = dynamic_pointer_cast<ComputationNode<ElemType>>(*nodeIter);
// Note: We don't actually need the smoothedGradients if !IsParameterUpdateRequired().
// However, this is hard to fix since lots of code assumes smoothedGradients to be in the same order as learnableNodes.
// V2 API fixes this.
smoothedGradients.push_back(Matrix<ElemType>(node->Value().GetNumRows(),
node->Value().GetNumCols(),
net->GetDeviceId()));
smoothedCounts.push_back(0);
if (node->IsParameterUpdateRequired())
{
nodesToUpdateDescriptions.push_back(node->NodeDescription() + L" : [" + msra::strfun::utf16(string(node->GetSampleLayout())) + L"]");
numParameters += node->GetSampleLayout().GetNumElements();
}
}
size_t numNeedsGradient = 0;
for (let node : net->GetEvalOrder(criterionNodes[0]))
{
if (node->NeedsGradient())
numNeedsGradient++;
}
fprintf(stderr, "\n");
LOGPRINTF(stderr, "Training %.0f parameters in %d ",
(double)numParameters, (int)nodesToUpdateDescriptions.size());
if (m_traceLevel == 0)
fprintf(stderr, "parameter tensors.\n");
else
{
fprintf(stderr, "out of %d parameter tensors and %d nodes with gradient:\n\n",
(int)learnableNodes.size(), (int)numNeedsGradient);
for (let nodeDescription : nodesToUpdateDescriptions)
{
LOGPRINTF(stderr, "\t%ls\n", nodeDescription.c_str());
}
}
// one blank line before training progress log
fprintf(stderr, "\n");
double avgCriterion, lrControlCriterion;
lrControlCriterion = avgCriterion = numeric_limits<double>::infinity();
size_t epochsNotCountedInAvgCriterion = startEpoch % m_learnRateAdjustInterval;
std::vector<wstring> evalNodeNames;
for (size_t i = 0; i < evaluationNodes.size(); i++)
evalNodeNames.push_back(evaluationNodes[i]->NodeName());
double learnRatePerSample = 0.5f / m_mbSize[startEpoch];
double learningRateAdjustmentFactor = 1.0f;
vector<double> prevLearnRates;
prevLearnRates.resize(m_numPrevLearnRates);
for (int i = 0; i < m_numPrevLearnRates; i++)
prevLearnRates[i] = -1.0;
m_prevChosenMinibatchSize = m_mbSize[startEpoch];
int currentNumGradientBits = 0; // this remembers the last #gradient bits we set for dataParallelSGD (init val 0 has no meaning, just keep compiler happy)
if (GetParallelizationMethod() == ParallelizationMethod::dataParallelSGD)
{
currentNumGradientBits = m_numGradientBits[startEpoch]; // remember so that we can detect a change
InitDistGradAgg(evaluationNodes.size(), currentNumGradientBits, net->GetDeviceId(), m_traceLevel);
}
else if (GetParallelizationMethod() == ParallelizationMethod::modelAveragingSGD ||
GetParallelizationMethod() == ParallelizationMethod::blockMomentumSGD)
{
InitModelAggregationHandler(m_syncStatsTrace, net->GetDeviceId());
}
// precompute mean and invStdDev nodes and save initial model
// When no precompute, only save if we did not load the model from a
// checkpoint but instead built it from a network description
if (PreCompute(net, trainSetDataReader, featureNodes, labelNodes, inputMatrices) || !networkLoadedFromCheckpoint)
{
// Synchronize all ranks before writing the model to ensure that
// everyone is done loading the model
if (m_mpi != nullptr)
{
m_mpi->WaitAll();
}
// In case of parallel training only the main node should we saving the model to prevent
// the parallel training nodes from colliding to write the same file
if ((m_mpi == nullptr) || m_mpi->IsMainNode())
net->Save(GetModelNameForEpoch(int(startEpoch) - 1));
}
size_t totalTrainingSamplesSeen = 0; // aggregated over all epochs, for logging purposes only
bool learnRateInitialized = false;
double prevCriterion = numeric_limits<double>::infinity();
if (startEpoch > 0)
{
learnRateInitialized = TryLoadCheckPointInfo(startEpoch - 1,
/*out*/ totalTrainingSamplesSeen,
/*out*/ learnRatePerSample,
smoothedGradients,
smoothedCounts,
/*out*/ prevCriterion,
/*out*/ m_prevChosenMinibatchSize);
if (learnRateInitialized)
prevLearnRates[startEpoch % m_numPrevLearnRates] = learnRatePerSample;
}
if (m_autoLearnRateSearchType == LearningRateSearchAlgorithm::AdjustAfterEpoch &&
!learnRateInitialized && m_learningRatesParam.size() <= startEpoch)
{
InvalidArgument(
"When using \"AdjustAfterEpoch\", there must either exist a checkpoint file, "
"or an explicit learning rate must be specified in config for the starting epoch.");
}
// TODO this assumes training is picked up with nodes with zero parameters
double prevDropoutRate = 0;
double prevNormalizationTimeConstant = 0;
double prevNormalizationBlendTimeConstant = 0;
bool learnRateReduced = false;
// pass user config on memory allocation for convolution operations to the Network
ComputationNetwork::SetMaxTempMemSizeForCNN(net, criterionNodes[0], m_maxTempMemSizeInSamplesForCNN);
if (m_needAdaptRegularization && m_adaptationRegType == AdaptationRegType::KL && refNode)
{
ComputationNetwork::SetMaxTempMemSizeForCNN(refNet, refNode, m_maxTempMemSizeInSamplesForCNN);
}
// likewise for sequence training parameters
if (isSequenceTrainingCriterion)
{
ComputationNetwork::SetSeqParam<ElemType>(net, criterionNodes[0], m_hSmoothingWeight, m_frameDropThresh, m_doReferenceAlign,
m_seqGammarCalcAMF, m_seqGammarCalcLMF, m_seqGammarCalcWP, m_seqGammarCalcbMMIFactor, m_seqGammarCalcUsesMBR);
}
// Multiverso Warpper for ASGD logic init
if (m_parallelizationMethod == ParallelizationMethod::dataParallelASGD)
{
m_pASGDHelper.reset(NewASGDHelper<ElemType>(learnableNodes,
m_mpi->NumNodesInUse(),
m_isAsyncBufferEnabled,
m_isSimulateMA,
m_adjustLearningRateAtBeginning,
m_adjustCoefficient,
m_adjustPerMinibatches,
m_traceLevel,
m_syncStatsTrace));
m_pASGDHelper->InitModel(learnableNodes);
}
// --- MAIN EPOCH LOOP
for (int i = startEpoch; i < (int) m_maxEpochs; i++) // TODO: why is this an int, and not a size_t?
{
// Synchronize all ranks before proceeding to ensure that
// rank 0 has finished writing the previous model file
SynchronizeWorkers();
// (re-)initialize 1-bit SGD
if (GetParallelizationMethod() == ParallelizationMethod::dataParallelSGD &&
currentNumGradientBits != m_numGradientBits[i])
{
currentNumGradientBits = m_numGradientBits[i];
InitDistGradAgg(evaluationNodes.size(), currentNumGradientBits, net->GetDeviceId(), m_traceLevel);
}
Timer timer;
timer.Start();
// set dropout rate for this epoch
// We use the same seed across workers until parallel training kicks in to ensure that the workers have identical models
size_t parallelWorkerIdx = ((m_mpi == nullptr) || !UsingParallelTrain(i)) ? 0 : m_mpi->CurrentNodeRank();
size_t randSeedBase = (parallelWorkerIdx * m_maxEpochs) + i;
ComputationNetwork::SetDropoutRate<ElemType>(net, criterionNodes[0], m_dropoutRates[i], prevDropoutRate);
ComputationNetwork::SetIRngUserSeed<ElemType>(net, criterionNodes[0], randSeedBase);
ComputationNetwork::SetBatchNormalizationTimeConstants<ElemType>(net, criterionNodes[0],
m_batchNormalizationTimeConstant[i], prevNormalizationTimeConstant,
m_batchNormalizationBlendTimeConstant[i], prevNormalizationBlendTimeConstant);
// learning rate adjustment
if (m_autoLearnRateSearchType == LearningRateSearchAlgorithm::None || i < m_learningRatesParam.size())
{
// BUGBUG: GetNumParallelSequences() returns 1 under certain situations; it seems when restarting from checkpoint
learnRatePerSample = GetLearningRatePerSample(i /*BUGBUG workaround:*/, trainSetDataReader->GetNumParallelSequencesForFixingBPTTMode());
}
else if (m_autoLearnRateSearchType == LearningRateSearchAlgorithm::SearchBeforeEpoch)
{
double largestPrevLearnRatePerSample = prevLearnRates[0];
for (int j = 1; j < m_numPrevLearnRates; j++)
{
largestPrevLearnRatePerSample = max(largestPrevLearnRatePerSample, prevLearnRates[j]);
}
// return a reasonable learning rate based on the initial minibatchSize
double newLearningRatePerSample = SearchForBestLearnRate(net, refNet, refNode, i, learnRatePerSample,
trainSetDataReader, featureNodes, labelNodes,
criterionNodes, evaluationNodes, inputMatrices,
learnableNodes, smoothedGradients, smoothedCounts,
learnRateInitialized, largestPrevLearnRatePerSample);
learningRateAdjustmentFactor = newLearningRatePerSample / learnRatePerSample;
learnRatePerSample = newLearningRatePerSample;
// save per sample learn rate to support changeable minibatchSize
prevLearnRates[i % m_numPrevLearnRates] = learnRatePerSample;
}
learnRateInitialized = true;
if (learnRatePerSample < m_minLearnRate)
{
LOGPRINTF(stderr, "Learn Rate Per Sample for Epoch[%d] = %.8g is less than minLearningRatePerSample %.8g. Training complete.\n",
i + 1, learnRatePerSample, m_minLearnRate);
if (m_autoLearnRateSearchType != LearningRateSearchAlgorithm::None)
{
// In case of parallel training only the main node should we saving the model to prevent
// the parallel training nodes from colliding to write the same file
if ((m_mpi == nullptr) || m_mpi->IsMainNode())
net->Save(m_modelPath);
}
break;
}
size_t chosenMinibatchSize;
size_t actualMinibatchSize;
// Through the command line or config file the user can set minibatch sizes on a per epoch
// basis for a set number of epochs. For epochs after that point, m_mbSize.size(), either
// we just keep using
// the last minibatch size, or we use tuning to try and find a better one.
if (m_autoAdjustMinibatch && i >= m_mbSize.size())
{
size_t numFramesToUseInSearch = m_numSamples4Search[i];
if (m_epochSize != requestDataSize)
{
// ensure the numFramesToUseInSearch does not exceed the total number of frames in the epoch
numFramesToUseInSearch = min(numFramesToUseInSearch, m_epochSize);
}
// Use tuning to try and find a better minibatch size
chosenMinibatchSize = AdaptiveMinibatchSizing(net, refNet, refNode, i,
numFramesToUseInSearch,
trainSetDataReader, learnRatePerSample,
m_mbSize[i], featureNodes, labelNodes,
criterionNodes, evaluationNodes,
inputMatrices, learnableNodes,
smoothedGradients, smoothedCounts, learningRateAdjustmentFactor);
if (m_traceLevel < 1 && chosenMinibatchSize != m_prevChosenMinibatchSize)
LOGPRINTF(stderr, "Minibatch size adapted to %d.\n", (int)chosenMinibatchSize);
m_prevChosenMinibatchSize = chosenMinibatchSize;
}
else
{
// use the explicitly set minibatch size
chosenMinibatchSize = m_mbSize[i];
}
actualMinibatchSize = FixUpEffectiveMBSize(chosenMinibatchSize /*BUGBUG workaround:*/, trainSetDataReader->GetNumParallelSequencesForFixingBPTTMode());
double momentumPerSample = GetMomentumPerSample(i /*BUGBUG workaround:*/, trainSetDataReader->GetNumParallelSequencesForFixingBPTTMode());
// time constant = number of samples after which a contribution has been reduced to e^-1
double momentumAsTimeConstant = momentumPerSample == 0.0
? 0.0
: momentumPerSample >= 1.0
? 0.0
: -1.0 / log(momentumPerSample);
if (m_traceLevel > 0)
{
fprintf(stderr, "\n");
LOGPRINTF(stderr, "Starting Epoch %d: learning rate per sample = %f effective momentum = %f momentum as time constant = %.1f samples\n",
i + 1, learnRatePerSample, MomentumPerMB(momentumPerSample, actualMinibatchSize), momentumAsTimeConstant);
}
EpochCriterion epochCriterion; // criterion values are returned in this
std::vector<EpochCriterion> epochEvalErrors(evaluationNodes.size());
TrainOneEpoch(net,
refNet,
refNode,
i,
m_epochSize,
trainSetDataReader,
learnRatePerSample,
chosenMinibatchSize,
featureNodes,
labelNodes,
criterionNodes,
evaluationNodes,
inputMatrices,
learnableNodes, smoothedGradients, smoothedCounts,
epochCriterion, epochEvalErrors);
totalTrainingSamplesSeen += epochCriterion.second; // aggregate #training samples, for logging purposes only
timer.Stop();
double epochTime = timer.ElapsedSeconds();
if (m_useEvalCriterionControlLR && epochEvalErrors.size() > 0)
lrControlCriterion = epochEvalErrors[0].Average();
else
lrControlCriterion = epochCriterion.Average();
LOGPRINTF(stderr, "Finished Epoch[%2d of %d]: [Training] ", i + 1, (int)m_maxEpochs);
epochCriterion.LogCriterion(criterionNodes[0]->NodeName());
m_lastFinishedEpochTrainLoss = epochCriterion.Average();
for (size_t j = 0; j < epochEvalErrors.size(); j++)
epochEvalErrors[j].LogCriterion(evaluationNodes[j]->NodeName());
fprintf(stderr, "totalSamplesSeen = %d; learningRatePerSample = %.8g; epochTime=%.6gs\n", (int)totalTrainingSamplesSeen, learnRatePerSample, epochTime);
#if 0
// TODO: This was only printed if >1 eval criterion. Why? Needed?
LOGPRINTF(stderr, "Finished Epoch[%2d of %d]: Criterion Node [%ls] Per Sample = %.8g\n",
i + 1, (int)m_maxEpochs, criterionNodes[0]->NodeName().c_str(), epochCriterion.Average());
for (size_t j = 0; j < epochEvalErrors.size(); j++)
{
LOGPRINTF(stderr, "Finished Epoch[%2d of %d]: Evaluation Node [%ls] Per Sample = %.8g\n",
i + 1, (int) m_maxEpochs, evalNodeNames[j].c_str(), epochEvalErrors[j].Average());
}
#endif
if (validationSetDataReader != trainSetDataReader && validationSetDataReader != nullptr)
{
// TODO(dataASGD) making evaluator becoming nondistributed one when using ASGD, since Multiverso has another background thread using MPI.
// Making the evaluation serial (non-distributed) will slowdown training especially when validation set is large.
SimpleEvaluator<ElemType> evalforvalidation(net, UsingAsyncGradientAggregation(i + 1) ?nullptr : m_mpi, m_enableDistributedMBReading);
vector<wstring> cvSetTrainAndEvalNodes;
if (criterionNodes.size() > 0)
{
cvSetTrainAndEvalNodes.push_back(criterionNodes[0]->NodeName());
}
for (let node : evaluationNodes)
{
cvSetTrainAndEvalNodes.push_back(node->NodeName());
}
// BUGBUG: We should not use the training MB size. The training MB size is constrained by both convergence and memory. Eval is only constrained by memory.
let vScore = evalforvalidation.Evaluate(validationSetDataReader, cvSetTrainAndEvalNodes, m_mbSize[i]);
LOGPRINTF(stderr, "Finished Epoch[%2d of %d]: [Validate] ", i + 1, (int)m_maxEpochs);
for (size_t k = 0; k < vScore.size() /*&& k < 2*/; k++)
vScore[k].LogCriterion(cvSetTrainAndEvalNodes[k], /*addSemicolon=*/k + 1 < vScore.size());
//fprintf(stderr, "%s %ls = %.8f * %d", k ? ";" : "", cvSetTrainAndEvalNodes[k].c_str(), vScore[k].Average(), (int)vScore[k].second);
fprintf(stderr, "\n");
if (m_useCVSetControlLRIfCVExists)
{
if (m_useEvalCriterionControlLR && vScore.size() > 1)
lrControlCriterion = vScore[1].Average(); // use the first of possibly multiple eval criteria
else
lrControlCriterion = vScore[0].Average(); // the first one is the training criterion
}
}
// broadcast epochCriterion to make sure each processor will have the same learning rate schedule
if ((GetParallelizationMethod() == ParallelizationMethod::modelAveragingSGD
||
GetParallelizationMethod() == ParallelizationMethod::blockMomentumSGD)
&& (m_mpi->NumNodesInUse() > 1))
{
m_mpi->Bcast(&epochCriterion.first, 1, m_mpi->MainNodeRank());
m_mpi->Bcast(&epochCriterion.second, 1, m_mpi->MainNodeRank());
m_mpi->Bcast(&lrControlCriterion, 1, m_mpi->MainNodeRank());
}
bool loadedPrevModel = false;
size_t epochsSinceLastLearnRateAdjust = i % m_learnRateAdjustInterval + 1;
if (avgCriterion == numeric_limits<double>::infinity())
{
avgCriterion = lrControlCriterion;
}
else
{
avgCriterion = ((epochsSinceLastLearnRateAdjust - 1 - epochsNotCountedInAvgCriterion) *
avgCriterion +
lrControlCriterion) /
(epochsSinceLastLearnRateAdjust - epochsNotCountedInAvgCriterion);
}
if (m_autoLearnRateSearchType == LearningRateSearchAlgorithm::AdjustAfterEpoch &&
m_learningRatesParam.size() <= i && epochsSinceLastLearnRateAdjust == m_learnRateAdjustInterval)
{
if (std::isnan(avgCriterion) || (prevCriterion - avgCriterion < 0 && prevCriterion != numeric_limits<double>::infinity()))
{
if (m_loadBestModel)
{
// roll back
auto bestModelPath = GetModelNameForEpoch(i - m_learnRateAdjustInterval);
LOGPRINTF(stderr, "Loading (rolling back to) previous model with best training-criterion value: %ls.\n", bestModelPath.c_str());
net->RereadPersistableParameters<ElemType>(bestModelPath);
LoadCheckPointInfo(i - m_learnRateAdjustInterval,
/*out*/ totalTrainingSamplesSeen,
/*out*/ learnRatePerSample,
smoothedGradients,
smoothedCounts,
/*out*/ prevCriterion,
/*out*/ m_prevChosenMinibatchSize);
loadedPrevModel = true;
}
}
if (m_continueReduce)
{
if (std::isnan(avgCriterion) ||
(prevCriterion - avgCriterion <= m_reduceLearnRateIfImproveLessThan * prevCriterion &&
prevCriterion != numeric_limits<double>::infinity()))
{
if (learnRateReduced == false)
{
learnRateReduced = true;
}
else
{
// In case of parallel training only the main node should we saving the model to prevent
// the parallel training nodes from colliding to write the same file
if ((m_mpi == nullptr) || m_mpi->IsMainNode())
net->Save(GetModelNameForEpoch(i, true));
LOGPRINTF(stderr, "Finished training and saved final model\n\n");
break;
}
}
if (learnRateReduced)
{
learnRatePerSample *= m_learnRateDecreaseFactor;
LOGPRINTF(stderr, "learnRatePerSample reduced to %.8g\n", learnRatePerSample);
}
}
else
{
if (std::isnan(avgCriterion) ||
(prevCriterion - avgCriterion <= m_reduceLearnRateIfImproveLessThan * prevCriterion &&
prevCriterion != numeric_limits<double>::infinity()))
{
learnRatePerSample *= m_learnRateDecreaseFactor;
LOGPRINTF(stderr, "learnRatePerSample reduced to %.8g\n", learnRatePerSample);
}
else if (prevCriterion - avgCriterion > m_increaseLearnRateIfImproveMoreThan * prevCriterion &&
prevCriterion != numeric_limits<double>::infinity())
{
learnRatePerSample *= m_learnRateIncreaseFactor;
LOGPRINTF(stderr, "learnRatePerSample increased to %.8g\n", learnRatePerSample);
}
}
}
else
{
if (std::isnan(avgCriterion))
RuntimeError("The training criterion is not a number (NAN).");
}
// not loading previous values then set them
if (!loadedPrevModel && epochsSinceLastLearnRateAdjust == m_learnRateAdjustInterval)
{
prevCriterion = avgCriterion;
epochsNotCountedInAvgCriterion = 0;
}
// Synchronize all ranks before proceeding to ensure that
// nobody tries reading the checkpoint file at the same time
// as rank 0 deleting it below
SynchronizeWorkers();
// Persist model and check-point info
if ((m_mpi == nullptr) || m_mpi->IsMainNode())
{
if (loadedPrevModel)
{
// If previous best model is loaded, we will first remove epochs that lead to worse results
for (int j = 1; j < m_learnRateAdjustInterval; j++)
{
int epochToDelete = i - j;
LOGPRINTF(stderr, "SGD: removing model and checkpoint files for epoch %d after rollback to epoch %lu\n", epochToDelete + 1, (size_t)(i - m_learnRateAdjustInterval) + 1); // report 1 based epoch number
_wunlink(GetModelNameForEpoch(epochToDelete).c_str());
_wunlink(GetCheckPointFileNameForEpoch(epochToDelete).c_str());
}
// Set i back to the loaded model
i -= m_learnRateAdjustInterval;
LOGPRINTF(stderr, "SGD: revoke back to and update checkpoint file for epoch %d\n", i+1); // report 1 based epoch number
SaveCheckPointInfo(i, totalTrainingSamplesSeen, learnRatePerSample, smoothedGradients, smoothedCounts, prevCriterion, chosenMinibatchSize);
}
else
{
SaveCheckPointInfo(i, totalTrainingSamplesSeen, learnRatePerSample, smoothedGradients, smoothedCounts, prevCriterion, chosenMinibatchSize);
auto modelName = GetModelNameForEpoch(i);
if (m_traceLevel > 0)
LOGPRINTF(stderr, "SGD: Saving checkpoint model '%ls'\n", modelName.c_str());
net->Save(modelName);
if (!m_keepCheckPointFiles)
{
// delete previous checkpoint file to save space
if (m_autoLearnRateSearchType == LearningRateSearchAlgorithm::AdjustAfterEpoch && m_loadBestModel)
{
if (epochsSinceLastLearnRateAdjust != 1)
{
_wunlink(GetCheckPointFileNameForEpoch(i - 1).c_str());
}
if (epochsSinceLastLearnRateAdjust == m_learnRateAdjustInterval)
{
_wunlink(GetCheckPointFileNameForEpoch(i - m_learnRateAdjustInterval).c_str());
}
}
else
{
_wunlink(GetCheckPointFileNameForEpoch(i - 1).c_str());
}
}
}
}
else
{
if (loadedPrevModel)
{
// Set i back to the loaded model
i -= m_learnRateAdjustInterval;
}
}
if (learnRatePerSample < 1e-12)
{
LOGPRINTF(stderr, "learnRate per sample is reduced to %.8g which is below 1e-12. stop training.\n",
learnRatePerSample);
}
}
// --- END OF MAIN EPOCH LOOP
// Synchronize all ranks before proceeding to ensure that
// rank 0 has finished writing the model file
// TODO[DataASGD]: should othet other rank waiting in async-mode
SynchronizeWorkers();
// progress tracing for compute cluster management
ProgressTracing::TraceProgressPercentage(m_maxEpochs, 0.0, true);
ProgressTracing::TraceTrainLoss(m_lastFinishedEpochTrainLoss);
// since we linked feature nodes. we need to remove it from the deletion
if (m_needAdaptRegularization && m_adaptationRegType == AdaptationRegType::KL && refNode != nullptr)
{
for (size_t i = 0; i < refFeatureNodes.size(); i++)
{
// note we need to handle deletion carefully
refNet->ReplaceNode(refFeatureNodes[i]->NodeName(), refFeatureNodes[i]);
}
}
delete inputMatrices;
if (m_parallelizationMethod == ParallelizationMethod::dataParallelASGD)
m_pASGDHelper.reset();
}
// -----------------------------------------------------------------------
// TrainOneEpoch() -- train one epoch
// -----------------------------------------------------------------------
template <class ElemType>
size_t SGD<ElemType>::TrainOneEpoch(ComputationNetworkPtr net,
ComputationNetworkPtr refNet,
const ComputationNodeBasePtr& refNode,
const int epochNumber,
const size_t epochSize,
IDataReader* trainSetDataReader,
const double learnRatePerSample,
size_t tunedMBSize,
const std::vector<ComputationNodeBasePtr>& featureNodes,
const std::vector<ComputationNodeBasePtr>& labelNodes,
const std::vector<ComputationNodeBasePtr>& criterionNodes,
const std::vector<ComputationNodeBasePtr>& evaluationNodes,
StreamMinibatchInputs* inputMatrices, // TODO: why is this a pointer?
const std::list<ComputationNodeBasePtr>& learnableNodes,
std::list<Matrix<ElemType>>& smoothedGradients, vector<double>& smoothedCounts,
/*out*/ EpochCriterion& epochCriterion,
/*out*/ std::vector<EpochCriterion>& epochEvalErrors,
const std::string& prefixMsg,
const size_t maxNumberOfSamples)
{
ScopedNetworkOperationMode modeGuard(net, NetworkOperationMode::training);
// bring our 'out' values into consistent state
epochCriterion = EpochCriterion(0);
epochEvalErrors.assign(epochEvalErrors.size(), EpochCriterion(0));
double totalTimeInMBs = 0; // use double since timer has sub-microsecond time resolution
// initialize statistics
size_t totalEpochSamples = 0;
int numMBsRun = 0;
int numMBsRunSinceLastLogged = 0;
bool useGradientAggregation = UsingGradientAggregation(epochNumber);
bool useModelAggregation = UsingModelAggregation(epochNumber);
bool useAsyncGradientAggregation = UsingAsyncGradientAggregation(epochNumber);
bool useParallelTrain = UsingParallelTrain(epochNumber);
// Find all evaluation nodes that accumulate error on their own.
auto evaluationNodesWhichAccumulateResult = net->ExtractNodesWhichAccumulateResult(
set<ComputationNodeBasePtr>(evaluationNodes.begin(), evaluationNodes.end()));
auto ContainsAccumulatedResult = [&evaluationNodesWhichAccumulateResult](ComputationNodeBasePtr node) {
return evaluationNodesWhichAccumulateResult.find(node) != evaluationNodesWhichAccumulateResult.end();
};
// MA-related variables
size_t nSamplesSinceLastModelSync = 0;
size_t blockSizePerWorker = 0;
if (useParallelTrain && m_pMASGDHelper)
{
m_pMASGDHelper->OnEpochStart(learnableNodes);
blockSizePerWorker = m_modelAggregationBlockSize / m_mpi->NumNodesInUse();
}
std::vector<Matrix<ElemType>*> learnParamsGradients;
Profiler profiler(m_numMBsToCUDAProfile);
// resetting this, so profiling is performed for one epoch only
m_numMBsToCUDAProfile = 0;
bool useDistributedMBReading = useParallelTrain &&
m_enableDistributedMBReading &&
trainSetDataReader->SupportsDistributedMBRead();
if (useDistributedMBReading)
{
trainSetDataReader->StartDistributedMinibatchLoop(tunedMBSize, epochNumber, m_mpi->CurrentNodeRank(),
m_mpi->NumNodesInUse(), inputMatrices->GetStreamDescriptions(), epochSize);
}
else
{
trainSetDataReader->StartMinibatchLoop(tunedMBSize, epochNumber, inputMatrices->GetStreamDescriptions(), epochSize);
}
net->StartEvaluateMinibatchLoop(evaluationNodes);
net->StartEvaluateMinibatchLoop(criterionNodes);
if (m_needAdaptRegularization && m_adaptationRegType == AdaptationRegType::KL && refNode)
{
refNet->StartEvaluateMinibatchLoop(refNode);
}
// prepare for sub-minibatching
// Sub-minibatching is used if a single minibatch is too large to fit into GPU RAM.
DataReaderHelpers::SubminibatchDispatcher<ElemType> smbDispatcher;
size_t numSubminibatchesNeeded = DataReaderHelpers::GetNumSubminibatchesNeeded<ElemType>(trainSetDataReader, m_maxSamplesInRAM, m_numSubminiBatches, tunedMBSize);
// this is non-trivial, we need a manager object to handle this
if (numSubminibatchesNeeded > 1)
smbDispatcher.Init(net, learnableNodes, criterionNodes, evaluationNodes);
// The following is a special feature only supported by the Kaldi2Reader for more efficient sequence training.
// This attemps to compute the error signal for the whole utterance, which will
// be fed to the neural network as features. Currently it is a workaround
// for the two-forward-pass sequence and ctc training, which allows
// processing more utterances at the same time.
// TODO: move the two-forward-pass support out of the reader, make a first-class citizen.
AttemptUtteranceDerivativeFeatures(net, trainSetDataReader, featureNodes, inputMatrices);
if (m_traceLevel > 0)
{
fprintf(stderr, "\n");
LOGPRINTF(stderr, "Starting minibatch loop");
if (useGradientAggregation)
{
fprintf(stderr, ", DataParallelSGD training (myRank = %d, numNodes = %d, numGradientBits = %d)",
(int) m_mpi->CurrentNodeRank(), (int) m_mpi->NumNodesInUse(), (int) m_numGradientBits[epochNumber]);
if (m_bufferedAsyncGradientAggregation)
fprintf(stderr, ", BufferedAsyncGradientAggregation is ENABLED");
}
if (useAsyncGradientAggregation)
{
fprintf(stderr, ", DataParallelASGD training (myRank = %d, numNodes = %d, SamplesSyncToServer = %d)",
(int)m_mpi->CurrentNodeRank(), (int)m_mpi->NumNodesInUse(), (int) m_nSyncSamplesPerWorker[epochNumber]);
fprintf(stderr, ", Distributed Evaluation is DISABLED");
if (m_isAsyncBufferEnabled)
fprintf(stderr, ", BufferedAsyncGradientAggregation is ENABLED");
}
if (useDistributedMBReading)
fprintf(stderr, ", distributed reading is ENABLED");
if (numSubminibatchesNeeded > 1)
{
if (m_maxSamplesInRAM < SIZE_MAX)
fprintf(stderr, ", with maximum %d samples in RAM", (int)m_maxSamplesInRAM);
else
fprintf(stderr, ", with %d subminibatch", (int)numSubminibatchesNeeded);
}
fprintf(stderr, ".\n");
}
Timer timer;
timer.Start();
// NOTE: the following two local matrices are not used in distGradAgg path
// assume only one training criterion node for each epoch.
// The criterion values are accumulated here over the minibatches (without having to pull them off the GPU).
CriterionAccumulator<ElemType> localEpochCriterion(criterionNodes, net->GetDeviceId());
CriterionAccumulator<ElemType> localEpochEvalErrors(
evaluationNodes, net->GetDeviceId(),
{evaluationNodesWhichAccumulateResult.begin(), evaluationNodesWhichAccumulateResult.end()});
// --- MAIN MINIBATCH LOOP
// for differential logging, we keep the previous criterion values around
EpochCriterion epochCriterionLastLogged = epochCriterion;
vector<EpochCriterion> epochEvalErrorsLastLogged = epochEvalErrors;
// NOTE: For ResNet, the regularization in BatchNormalization should be disabled.
if (m_disableRegInBatchNormalization) {
let bnNodes = net->GetNodesWithType(L"BatchNormalization");
for (auto &node : bnNodes)
{
let bnNode = dynamic_pointer_cast<BatchNormalizationNode<ElemType>>(node);
bnNode->DisableRegInBatchNormalization();
}
}
// In case adaptive minibatch/learning rates are used, the training can be limited by the maxNumberOfSamples.
bool maxNumSamplesExceeded = false;
size_t epochStartSample = 0;
bool shouldCheckEarlyExit = (maxNumberOfSamples != SIZE_MAX);
if (shouldCheckEarlyExit)
{
// SparsePC, LibSCV and DSS readers do not implement GetCurrentSamplePosition()
// for those adaptive minibatch size is not supported, thus specifying adaptive
// minibatch for them will cause an error message.
epochStartSample = trainSetDataReader->GetCurrentSamplePosition();
}
bool noMoreSamplesToProcess = false;
bool isFirstMinibatch = true;
for (;;)
{
// Per-minibatch performance measurements; only enabled when perfTraceLevel > 0
Timer fineGrainedPerfMeasurementTimer;
double readTime = 0;
double computeTime = 0;
double parameterUpdateTime = 0;
double parameterSyncTime = 0; // perf communication time between syncs.
if (m_perfTraceLevel > 0)
fineGrainedPerfMeasurementTimer.Start();
// get minibatch
// TODO: is it guaranteed that the GPU is already completed at this point, is it safe to overwrite the buffers?
size_t actualMBSize = 0;
bool wasDataRead = DataReaderHelpers::GetMinibatchIntoNetwork<ElemType>(*trainSetDataReader, net, criterionNodes[0],
useDistributedMBReading, useParallelTrain, *inputMatrices, actualMBSize, m_mpi);
if (maxNumSamplesExceeded) // Dropping data.
wasDataRead = false;
if (!wasDataRead && (!useDistributedMBReading || noMoreSamplesToProcess)) // in case of distributed reading, we do a few more loops until all ranks have completed
break; // end of epoch
if (m_perfTraceLevel > 0)
{
fineGrainedPerfMeasurementTimer.Stop();
readTime = fineGrainedPerfMeasurementTimer.ElapsedSeconds();
fineGrainedPerfMeasurementTimer.Start();
}
// Note: If !wasDataRead then the data that GetMinibatchIntoNetwork() was supposed to full in are undefined.
// Must not touch them.
if (!wasDataRead)
actualMBSize = 0; // (undefined if !wasDataRead)
nSamplesSinceLastModelSync += actualMBSize;
// Dropout nodes have an implicit input in the form of the random mask that is applied to its explicit input
// This mask is regerated every minibatch and hence dropout nodes with a non-zero dropout rate must me marked outdated
// w.r.t. inputs to force evaluation in each minibatch
MarkDropoutNodesEvalTimeStampAsOutdated(net, criterionNodes[0]);
// node data was changed
// TODO: move this to that function as well--just tired to pass everything as arguments
// TODO: We should do this right after the GetMinibatch() call, since that's where these changed.
// Need to check whether that would cause unintended side effects.
// TODO: original code did not call this for actualMBSize == 0
ComputationNetwork::BumpEvalTimeStamp(featureNodes);
ComputationNetwork::BumpEvalTimeStamp(labelNodes);
if (actualMBSize > 0)
{
assert(wasDataRead);
#ifndef EVALDLL
if (m_doGradientCheck && GradientCheck(net, criterionNodes, learnableNodes, 0) == false)
LogicError("cannot pass gradient checker");
#endif
// TODO: currently we only support one node for regularization
if (m_needAdaptRegularization && m_adaptationRegType == AdaptationRegType::KL && refNode)
{
size_t actualMBSize2 = refNet->DetermineActualMBSizeFromFeatures();
refNet->GetMBLayoutPtrOfNetwork()->CopyFrom(net->GetMBLayoutPtrOfNetwork()); // TODO: This is UNTESTED (before this was missing, seemingly inconsistently)
if (actualMBSize2 != actualMBSize)
LogicError("TrainOneEpoch: refNet has different MB size than main net??");
refNet->ForwardProp(refNode);
Matrix<ElemType>::ScaleAndAdd((ElemType) m_adaptationRegWeight,
dynamic_pointer_cast<ComputationNode<ElemType>>(refNode)->Value(),
(ElemType)(1.0 - m_adaptationRegWeight),
dynamic_pointer_cast<ComputationNode<ElemType>>(labelNodes[0])->Value());
}
// do forward and back propagation
// We optionally break the minibatch into sub-minibatches.
// This, when enabled, is used when a full minibatch does not fit into GPU RAM.
size_t actualNumSubminibatches = numSubminibatchesNeeded <= 1 ? 1 : smbDispatcher.GetMinibatchIntoCache(*trainSetDataReader, *net, *inputMatrices, numSubminibatchesNeeded);
for (size_t ismb = 0; ismb < actualNumSubminibatches; ismb++)
{
if (actualNumSubminibatches > 1)
{
smbDispatcher.GetSubMinibatchToNet(ismb); // get sub-minibatch from full-size one
ComputationNetwork::BumpEvalTimeStamp(featureNodes);
ComputationNetwork::BumpEvalTimeStamp(labelNodes);
}
// ===========================================================
// forward prop for evaluate eval nodes
// ===========================================================
// compute eval node first since when gradient is computed the forward function values
// may be changed and need to be recomputed when gradient and function value share the same matrix
net->ForwardProp(evaluationNodes); // the bulk of this evaluation is reused in ComputeGradient() below
// ===========================================================
// forward prop for training criterion
// ===========================================================
net->ForwardProp(criterionNodes[0]);
// ===========================================================
// backprop
// ===========================================================
if (learnRatePerSample > 0.01 * m_minLearnRate) // only compute gradient when learning rate is large enough
net->Backprop(criterionNodes[0]);
// house-keeping for sub-minibatching
if (actualNumSubminibatches > 1)
smbDispatcher.DoneWithCurrentSubMinibatch(ismb); // page state out
} // end sub-minibatch loop
if (actualNumSubminibatches > 1)
smbDispatcher.DoneWithCurrentMinibatch();
} // if (actualMBSize > 0)
// WARNING: If actualMBSize == 0, then criterion nodes have NOT been updated, and contain garbage (last MB's) values.
// In case of mini epochs (used for adaptive minibatch size and learning rate),
// no more data should be processed by this worker.
if (shouldCheckEarlyExit)
{
if (epochStartSample + maxNumberOfSamples < trainSetDataReader->GetCurrentSamplePosition())
maxNumSamplesExceeded = true;
}
if (m_perfTraceLevel > 0)
{
std::unique_ptr<MatrixComputeStreamEvent> mainStreamSyncEvent(MatrixComputeStreamEvent::Create(net->GetDeviceId()));
mainStreamSyncEvent->SynchronizeEvent();
fineGrainedPerfMeasurementTimer.Stop();
computeTime = fineGrainedPerfMeasurementTimer.ElapsedSeconds();
fineGrainedPerfMeasurementTimer.Start();
}
// for momentum/clipping/regularization/etc., as well as for progress and statistics, we should only count frames that are not gaps
// #samples according to the default dynamic axis, for use with criterion nodes that do not have an MBLayout
size_t numSamplesWithLabelOfNetwork = wasDataRead ? net->GetNumSamplesWithLabelOfNetwork(actualMBSize) : 0; // (0 for empty MB)
// Note: All accumulation into an EpochCriterion uses 'numSamplesWithLabelOfNetwork' as the generic,
// fallback minibatch size. If that is 0, then nodes are considered containing zero samples,
// independent of their actual content (which is considered outdated).
// Sum of actualMBSize across all nodes when using parallel training
// 'aggregate' here means accross-worker aggregate for this one minibatch.
size_t aggregateNumSamples = actualMBSize; // (0 for empty MB)
size_t aggregateNumSamplesWithLabel = CriterionAccumulator<ElemType>::GetNumSamples(criterionNodes[0], numSamplesWithLabelOfNetwork); // (0 for empty MB)
if (!useGradientAggregation)
{
// accumulate criterion values (objective, eval)
assert(wasDataRead || numSamplesWithLabelOfNetwork == 0);
// criteria are in Value()(0,0), we accumulate into another 1x1 Matrix (to avoid having to pull the values off the GPU)
localEpochCriterion.Add(0, numSamplesWithLabelOfNetwork);
for (size_t i = 0; i < evaluationNodes.size(); i++)
localEpochEvalErrors.Add(i, numSamplesWithLabelOfNetwork);
}
else
{
// distributed gradient aggregation
if (learnParamsGradients.size() == 0)
{
// lazily form the list of smoothedGradients to exchange
learnParamsGradients.reserve(learnableNodes.size());
for (auto nodeIter = learnableNodes.begin(); nodeIter != learnableNodes.end(); nodeIter++)
{
ComputationNodePtr node = dynamic_pointer_cast<ComputationNode<ElemType>>(*nodeIter);
if (node->IsParameterUpdateRequired())
{
Matrix<ElemType>* currParamsGradient = &(node->Gradient()); // TODO: we can use shared_ptrs now
// Sometimes, in parallel training, the current node may not get any samples to process
// In this case, the gradient matrix may not have been sized yet. If so, lets size it.
if (currParamsGradient->GetNumCols() == 0)
{
Matrix<ElemType>* currParamsValues = &(node->Value());
currParamsGradient->Resize(currParamsValues->GetNumRows(), currParamsValues->GetNumCols());
}
learnParamsGradients.push_back(currParamsGradient);
}
}
}
// hoist the criterion into CPU space for all-reduce
localEpochCriterion.Assign(0, numSamplesWithLabelOfNetwork);
for (size_t i = 0; i < evaluationNodes.size(); i++)
localEpochEvalErrors.Assign(i, numSamplesWithLabelOfNetwork);
// copy all values to be aggregated into the header
m_gradHeader->numSamples = aggregateNumSamples;
m_gradHeader->criterion = localEpochCriterion.GetCriterion(0).first;
m_gradHeader->numSamplesWithLabel = localEpochCriterion.GetCriterion(0).second; // same as aggregateNumSamplesWithLabel
assert(m_gradHeader->numSamplesWithLabel == aggregateNumSamplesWithLabel);
for (size_t i = 0; i < evaluationNodes.size(); i++)
m_gradHeader->evalErrors[i] = localEpochEvalErrors.GetCriterion(i);
// aggregate
m_gradHeader->numEvalNode = evaluationNodes.size(); // TODO: rename numEvalNode (plural)
bool samplesProcessed = m_distGradAgg->AggregateGradients(learnParamsGradients, m_gradHeader.get(), isFirstMinibatch);
noMoreSamplesToProcess = !samplesProcessed;
// read out the header--now everything is aggregated
aggregateNumSamples = m_gradHeader->numSamples;
aggregateNumSamplesWithLabel = m_gradHeader->numSamplesWithLabel;
epochCriterion += EpochCriterion(m_gradHeader->criterion, m_gradHeader->numSamplesWithLabel);
for (size_t i = 0; i < epochEvalErrors.size(); i++)
{
if (ContainsAccumulatedResult(evaluationNodes[i]))
{
// We don't accumulate error in epoch criterion as this node has already accumulated error for
// all samples that passed through network in forward pass.
if (samplesProcessed)
{
epochEvalErrors[i] = m_gradHeader->evalErrors[i];
}
// else: no samples processed, no aggregation happened -> we do not want to override current value
// with 0.
}
else
epochEvalErrors[i] += m_gradHeader->evalErrors[i];
}
}
// update model parameters
if ((aggregateNumSamples > 0) && (learnRatePerSample > m_minLearnRate * 0.01))
{
#if 1 // BUGBUG: We must skip gaps in our momentum, clipping, regularization etc. criteria.
// This will break test cases. So for now, we will only enable this for per-sample criteria.
size_t numSamplesInMinibatch = aggregateNumSamples;
if (criterionNodes[0]->HasMBLayout())
#endif
numSamplesInMinibatch = aggregateNumSamplesWithLabel;
#if 0
if (numSamplesInMinibatch != aggregateNumSamples)
fprintf(stderr, "SGD: using true #samples %d instead of MB size %d\n", (int)numSamplesInMinibatch, (int)aggregateNumSamples);
#endif
auto smoothedGradientIter = smoothedGradients.begin();
auto smoothedCountIter = smoothedCounts.begin();
for (auto nodeIter = learnableNodes.begin(); nodeIter != learnableNodes.end(); nodeIter++, smoothedGradientIter++, smoothedCountIter++)
{
ComputationNodeBasePtr node = *nodeIter;
if (node->IsParameterUpdateRequired())
{
#ifdef _DEBUG
if (smoothedGradientIter->HasNan("TrainOneEpoch/UpdateWeights(): "))
LogicError("%ls %ls operation has NaNs in smoothedGradient.", node->NodeName().c_str(), node->OperationName().c_str());
#endif
double nodeDependentLearningRatePerSample = learnRatePerSample * node->GetLearningRateMultiplier();
double nodeDependentRegMultiplier = dynamic_pointer_cast<LearnableParameter<ElemType>>(node)->GetRegMultiplier();
double momentumPerSample = GetMomentumPerSample(epochNumber /*BUGBUG workaround:*/, net->GetMBLayoutPtrOfNetwork()->GetNumParallelSequences());
// TODO: Check why l2Factor is not applied to L1. Bug?
// BUGBUG (Issue #95): Access to net MBLayout can no longer be done if we have multiple input layouts
UpdateWeights(dynamic_pointer_cast<ComputationNode<ElemType>>(node)->Value(),
dynamic_pointer_cast<ComputationNode<ElemType>>(node)->Gradient(),
*smoothedGradientIter, *smoothedCountIter,
nodeDependentLearningRatePerSample, momentumPerSample,
numSamplesInMinibatch,
m_L2RegWeight * nodeDependentRegMultiplier, m_L1RegWeight * nodeDependentRegMultiplier,
m_needAveMultiplier, m_useNesterovMomentum);
node->BumpEvalTimeStamp();
#ifdef _DEBUG
if (dynamic_pointer_cast<ComputationNode<ElemType>>(node)->Value().HasNan("TrainOneEpoch/UpdateWeights(): "))
LogicError("%ls %ls operation has NaNs in functionValues after parameter update.", node->NodeName().c_str(), node->OperationName().c_str());
#endif
}
}
}
if (m_perfTraceLevel > 0)
{
std::unique_ptr<MatrixComputeStreamEvent> mainStreamSyncEvent(MatrixComputeStreamEvent::Create(net->GetDeviceId()));
mainStreamSyncEvent->SynchronizeEvent();
fineGrainedPerfMeasurementTimer.Stop();
parameterUpdateTime = fineGrainedPerfMeasurementTimer.ElapsedSeconds();
fineGrainedPerfMeasurementTimer.Start();
}
// aggregation by model averaging or block momentum
if (useModelAggregation)
{
if (nSamplesSinceLastModelSync >= blockSizePerWorker)
{
bool synced = m_pMASGDHelper->OnArrivingAtSyncPoint(learnableNodes, smoothedGradients, nSamplesSinceLastModelSync);
if (synced)
{
nSamplesSinceLastModelSync = 0;
}
}
// prepare break condition
if (useDistributedMBReading)
{
noMoreSamplesToProcess = !wasDataRead;
}
}
// using parameter server for parameter update
if (useAsyncGradientAggregation && m_mpi->NumNodesInUse() > 1)
{
// Determine if any samples were processed across any of the ranks
if (useDistributedMBReading)
{
noMoreSamplesToProcess = !wasDataRead;
}
if (nSamplesSinceLastModelSync >= m_nSyncSamplesPerWorker[epochNumber])
{
m_pASGDHelper->PushAndPullModel(learnableNodes, nSamplesSinceLastModelSync);
nSamplesSinceLastModelSync = 0;
}
}
if (m_perfTraceLevel > 0)
{
fineGrainedPerfMeasurementTimer.Stop();
parameterSyncTime = fineGrainedPerfMeasurementTimer.ElapsedSeconds();
}
timer.Stop();
if (m_perfTraceLevel > 0)
{
PREPENDTS(stderr);
fprintf(stderr, "Perf trace: Worker MB size = %d, Read = %.5gs; Compute = %.5gs; Parameter update = %.5gs; Parameter sync = %.5gs; Aggregate MB size = %d\n", (int)actualMBSize, readTime, computeTime, parameterUpdateTime, parameterSyncTime, (int)aggregateNumSamples);
}
numMBsRun++;
totalTimeInMBs += timer.ElapsedSeconds();
// log
// This shows the criterion since last logged.
if (numMBsRun <= m_firstMBsToShowResult || (m_numMBsToShowResult && (numMBsRun % m_numMBsToShowResult == 0)))
{
// get the epoch Values updated
if (!useGradientAggregation)
{
// if no aggregation, we directly get the values from the minibatch accumulators
timer.Restart();
epochCriterion = localEpochCriterion.GetCriterion(0);
for (size_t i = 0; i < epochEvalErrors.size(); i++)
epochEvalErrors[i] = localEpochEvalErrors.GetCriterion(i);
timer.Stop();
// Add the last trailing compute
totalTimeInMBs += timer.ElapsedSeconds();
}
// epochCriterion aggregates over entire epoch, but we only show difference to last time we logged
EpochCriterion epochCriterionSinceLastLogged = epochCriterion - epochCriterionLastLogged;
let trainLossSinceLastLogged = epochCriterionSinceLastLogged.Average(); // TODO: Check whether old trainSamplesSinceLastLogged matches this ^^ difference
let trainSamplesSinceLastLogged = (int)epochCriterionSinceLastLogged.second;
// determine progress in percent
int mbProgNumPrecision = 2;
double mbProg = 0.0;
if (epochNumber > 0 || (int)epochSize > 0) // TODO: explain this condition in a comment
{
if (m_maxComputedEpochSize != 0)
{
double numMBPerEpoch = (double)m_maxComputedEpochSize / (double)tunedMBSize;
mbProg = (double)numMBsRun / numMBPerEpoch;
mbProgNumPrecision = (int)ceil(log10(numMBPerEpoch / (double)(numMBsRun - numMBsRunSinceLastLogged)));
mbProgNumPrecision = max(mbProgNumPrecision - 2, 2);
}
}
else // estimate epoch size
m_maxComputedEpochSize = numMBsRun * trainSamplesSinceLastLogged / (numMBsRun - numMBsRunSinceLastLogged);
// progress tracing for compute cluster management
let wasProgressPrinted = ProgressTracing::TraceProgressPercentage(epochNumber, mbProg, false);
// progress tracing for regular log
if (m_traceLevel > 0)
{
PREPENDTS(stderr);
fprintf(stderr, "%s Epoch[%2d of %d]-Minibatch[%4d-%4d",
prefixMsg.c_str(), epochNumber + 1, (int)m_maxEpochs,
(int)(numMBsRunSinceLastLogged + 1), numMBsRun);
if (epochNumber > 0 || (int)epochSize > 0) // got anything? --TODO: why cast epochSize to (int) for this comparison?
fprintf(stderr, (", %2." + to_string(mbProgNumPrecision) + "f%%").c_str(), mbProg * 100); // --TODO: use a * format?
fprintf(stderr, "]: ");
epochCriterionSinceLastLogged.LogCriterion(criterionNodes[0]->NodeName());
for (size_t i = 0; i < epochEvalErrors.size(); i++)
{
const std::wstring& nodeName = evaluationNodes[i]->NodeName();
if (ContainsAccumulatedResult(evaluationNodes[i]))
{
// For aggregation nodes, we don't report per minibatch error. These nodes calculate
// aggregated error for all samples that passed through network, instead of calculating per
// sample error. Aggregated error for all samples will be reported for these nodes.
epochEvalErrors[i].LogCriterion(nodeName);
}
else
{
// Report per minibatch error.
(epochEvalErrors[i] - epochEvalErrorsLastLogged[i]).LogCriterion(nodeName);
}
}
fprintf(stderr, ("time = " + GeneratePaddedFloatOrExpFormat(0, 4, totalTimeInMBs) + "s; samplesPerSecond = %.1f\n").c_str(),
totalTimeInMBs, trainSamplesSinceLastLogged / totalTimeInMBs);
}
// progress tracing for compute cluster management
if (wasProgressPrinted)
ProgressTracing::TraceTrainLoss(trainLossSinceLastLogged);
if (m_traceLevel > 0)
fflush(stderr);
if (epochCriterion.IsNan())
RuntimeError("The training criterion is not a number (NAN).");
// reset statistics for differential logging
epochCriterionLastLogged = epochCriterion;
epochEvalErrorsLastLogged = epochEvalErrors;
numMBsRunSinceLastLogged = numMBsRun;
for (size_t i = 0; i < epochEvalErrors.size(); i++)
{
if (ContainsAccumulatedResult(evaluationNodes[i]))
{
// For nodes that accumulate result we report accumulated error for all samples that passed through
// network so far, instead of per minibatch error. So, we reset last logged error here.
epochEvalErrorsLastLogged[i] = EpochCriterion(0);
}
}
totalTimeInMBs = 0;
}
timer.Restart();
totalEpochSamples += aggregateNumSamplesWithLabel;
// call DataEnd function
// This signals something from SGD to the reader.
// DataEnd does reader specific process if sentence ending is reached
trainSetDataReader->DataEnd();
// Attempts to compute the error signal for the whole utterance, which will
// be fed to the neural network as features. Currently it is a workaround
// for the two-forward-pass sequence and ctc training, which allows
// processing more utterances at the same time. Only used in Kaldi2Reader.
// TODO: move the two-forward-pass support out of the reader.
AttemptUtteranceDerivativeFeatures(net, trainSetDataReader, featureNodes, inputMatrices);
profiler.NextSample();
isFirstMinibatch = false;
}
// --- END MAIN MINIBATCH LOOP
if (useModelAggregation )
{
m_pMASGDHelper->OnEpochEnd(learnableNodes, smoothedGradients, nSamplesSinceLastModelSync);
nSamplesSinceLastModelSync = 0;
}
if (useAsyncGradientAggregation && (m_mpi->NumNodesInUse() > 1))
{
m_pASGDHelper->PushAndPullModel(learnableNodes, nSamplesSinceLastModelSync);
nSamplesSinceLastModelSync = 0;
}
// hoist the accumulated criterion value from GPU side to our 'out' variables
// (unless we useGradientAggregation, in which case they are accumulated in the 'out' variables directly)
if (!useGradientAggregation)
{
epochCriterion = localEpochCriterion.GetCriterion(0);
for (size_t i = 0; i < epochEvalErrors.size(); i++)
epochEvalErrors[i] = localEpochEvalErrors.GetCriterion(i);
}
// in case of model averaging, do one more final aggregation of criteria
if (useModelAggregation && (m_mpi->NumNodesInUse() > 1))
{
// 1. total epoch samples processed by all workers
size_t totalEpochSamplesOfAllWorkers = totalEpochSamples;
m_mpi->AllReduce(&totalEpochSamplesOfAllWorkers, 1);
// get criteria for this worker
assert(!useGradientAggregation); // (otherwise the data would not be in localEpochCriterion)
epochCriterion = localEpochCriterion.GetCriterion(0);
for (size_t i = 0; i < epochEvalErrors.size(); i++)
epochEvalErrors[i] = localEpochEvalErrors.GetCriterion(i);
// all-reduce epochCriterion and epochEvalErrors over nodes
m_mpi->AllReduce(&epochCriterion.first, 1);
m_mpi->AllReduce(&epochCriterion.second, 1);
// to transfer the eval vectors, we must pull them apart into STL objects and exchange them separately
// TODO: merge with training criteria
vector<double> numer(epochEvalErrors.size());
vector<size_t> denom(epochEvalErrors.size());
for (size_t i = 0; i < epochEvalErrors.size(); i++)
{
numer[i] = epochEvalErrors[i].first;
denom[i] = epochEvalErrors[i].second;
}
m_mpi->AllReduce(numer);
m_mpi->AllReduce(denom);
for (size_t i = 0; i < epochEvalErrors.size(); i++)
epochEvalErrors[i] = EpochCriterion(numer[i], denom[i]);
// 3. modify return value
totalEpochSamples = totalEpochSamplesOfAllWorkers;
}
return totalEpochSamples;
}
// -----------------------------------------------------------------------
// subroutines and helpers follow below
// -----------------------------------------------------------------------
static double MomentumPerMB(double momentumPerSample, size_t minibatchSize)
{
return pow(momentumPerSample, minibatchSize);
}
template <class ElemType>
const std::vector<ComputationNodeBasePtr>& SGD<ElemType>::GetTrainCriterionNodes(ComputationNetworkPtr net)
{
if (!m_trainCriterionNodeName.empty())
{
return net->CriterionNodesFrom(m_trainCriterionNodeName);
}
else
return net->FinalCriterionNodes();
}
template <class ElemType>
const std::vector<ComputationNodeBasePtr>& SGD<ElemType>::GetEvalCriterionNodes(ComputationNetworkPtr net)
{
if (!m_evalCriterionNodeName.empty())
{
return net->CriterionNodesFrom(m_evalCriterionNodeName);
}
else
return net->EvaluationNodes();
}
// execute PreComputeNodes
// Returns true if precomputation was executed.
template <class ElemType>
bool SGD<ElemType>::PreCompute(ComputationNetworkPtr net,
IDataReader* trainSetDataReader,
const std::vector<ComputationNodeBasePtr>& featureNodes,
const std::vector<ComputationNodeBasePtr>& labelNodes,
StreamMinibatchInputs* inputMatrices)
{
std::list<ComputationNodeBasePtr> nodes = net->GetNodesRequiringPreComputation(); // this tests all HasComputed() flags
if (nodes.size() == 0)
{
if (m_traceLevel > 0)
LOGPRINTF(stderr, "No PreCompute nodes found, or all already computed. Skipping pre-computation step.\n");
return false;
}
fprintf(stderr, "\n");
LOGPRINTF(stderr, "Precomputing --> %lu PreCompute nodes found.\n\n", nodes.size());
if (m_traceLevel > 0)
{
for (const auto & node : nodes)
{
LOGPRINTF(stderr, "\t%ls = %ls()\n", node->NodeName().c_str(), node->OperationName().c_str());
}
}
// compute
ScopedNetworkOperationMode modeGuard(net, NetworkOperationMode::preComputing);
// trainSetDataReader->StartMinibatchLoop(m_mbSize[0], 0 , requestDataSize);
// trainSetDataReader->StartMinibatchLoop(m_mbSize[0], 0 , m_epochSize); // only based on one epoch
// To support large dataset, we usually partition whole dataset into several epoch's,
// so we need to use all the data to do precomputing
if (m_useAllDataForPreComputedNode) // using all the data
trainSetDataReader->StartMinibatchLoop(m_mbSize[0], 0, inputMatrices->GetStreamDescriptions());
else // using only one epoch. Note: One epoch is often enough for feature mean/stddev, but not for estimating priors.
trainSetDataReader->StartMinibatchLoop(m_mbSize[0], 0, inputMatrices->GetStreamDescriptions(), m_epochSize);
net->StartEvaluateMinibatchLoop(nodes);
// initialize
for (auto & node : nodes)
dynamic_pointer_cast<IPreComputeNode>(node)->MarkComputed(false /*begin accumulating*/);
const size_t numIterationsBeforePrintingProgress = 100;
size_t numItersSinceLastPrintOfProgress = 0;
size_t actualMBSizeDummy;
while (DataReaderHelpers::GetMinibatchIntoNetwork<ElemType>(*trainSetDataReader, net, nullptr, false, false, *inputMatrices, actualMBSizeDummy, m_mpi))
{
// TODO: move these into GetMinibatchIntoNetwork() --but those are passed around; necessary? Can't we get them from 'net'?
ComputationNetwork::BumpEvalTimeStamp(featureNodes);
ComputationNetwork::BumpEvalTimeStamp(labelNodes);
net->ForwardProp(nodes);
numItersSinceLastPrintOfProgress = ProgressTracing::TraceFakeProgress(numIterationsBeforePrintingProgress, numItersSinceLastPrintOfProgress);
}
// finalize
for (auto & node : nodes)
dynamic_pointer_cast<IPreComputeNode>(node)->MarkComputed(true /*done accumulating*/);
fprintf(stderr, "\n");
LOGPRINTF(stderr, "Precomputing --> Completed.\n\n");
return true;
}
// return a reasonable initial learning rate based on the initial mbsize
template <class ElemType>
double SGD<ElemType>::SearchForBestLearnRate(ComputationNetworkPtr net,
ComputationNetworkPtr refNet,
const ComputationNodeBasePtr& refNode, const int epochNumber,
const double curLearnRate,
IDataReader* trainSetDataReader,
const std::vector<ComputationNodeBasePtr>& featureNodes,
const std::vector<ComputationNodeBasePtr>& labelNodes,
const std::vector<ComputationNodeBasePtr>& criterionNodes,
const std::vector<ComputationNodeBasePtr>& evaluationNodes,
StreamMinibatchInputs* inputMatrices,
const std::list<ComputationNodeBasePtr>& learnableNodes,
std::list<Matrix<ElemType>>& smoothedGradients, vector<double> smoothedCounts,
const bool learnRateInitialized,
const double largestPrevLearnRatePerSample)
{
double bestLearnRatePerSample = curLearnRate;
size_t numFramesToUseInSearch = m_numSamples4Search[epochNumber];
if (m_epochSize != requestDataSize)
{
// ensure the numFramesToUseInSearch does not exceed the total number of frames in the epoch
numFramesToUseInSearch = min(numFramesToUseInSearch, m_epochSize);
}
double minLearnRate = m_minLearnRate * 0.3f;
double learnRatePerSample = 1.0f / 8.0f / 0.618f / sqrt((double) m_mbSize[epochNumber]); // TODO: comment on these magic constants
if (learnRateInitialized && largestPrevLearnRatePerSample > 0)
{
// largestPrevLearnRatePerSample is per sample, first 0.618f is for compensation, second one is for safety
learnRatePerSample = largestPrevLearnRatePerSample / 0.618f / 0.618f;
}
int baseModelEpoch = epochNumber - 1;
net->RereadPersistableParameters<ElemType>(GetModelNameForEpoch(baseModelEpoch));
double learnRate = learnRatePerSample;
size_t dummyMinibatchSize; // (not used)
size_t dummyTotalTrainingSamplesSeen; // (not used)
double prevCriterion = numeric_limits<double>::infinity();
LoadCheckPointInfo(baseModelEpoch,
/*out*/ dummyTotalTrainingSamplesSeen,
/*out*/ learnRate,
smoothedGradients,
smoothedCounts,
/*out*/ prevCriterion,
/*out*/ dummyMinibatchSize);
// if model is not changed this is what we will get
EpochCriterion baseCriterion;
vector<EpochCriterion> epochEvalErrors(evaluationNodes.size(), EpochCriterion::Infinity()); // these are ignored in this entire method
TrainOneMiniEpochAndReloadModel(net, refNet, refNode, epochNumber,
m_epochSize, trainSetDataReader, 0, m_mbSize[epochNumber],
featureNodes, labelNodes,
criterionNodes, evaluationNodes,
inputMatrices, learnableNodes,
smoothedGradients, smoothedCounts,
/*out*/ baseCriterion, /*out*/ epochEvalErrors,
"BaseAdaptiveLearnRateSearch:",
numFramesToUseInSearch);
if (m_autoLearnRateSearchType == LearningRateSearchAlgorithm::SearchBeforeEpoch)
{
if (prevCriterion == numeric_limits<double>::infinity())
prevCriterion = baseCriterion.Average();
double ratio = 0.3;
if (m_epochSize != requestDataSize)
ratio = pow(((double) numFramesToUseInSearch) / m_epochSize, 1.0f / 2);
// interpolate prevCriterion into 'baseCriterion'
baseCriterion.first = baseCriterion.second * max(ratio * prevCriterion + (1 - ratio) * baseCriterion.Average(), baseCriterion.Average());
}
EpochCriterion epochCriterion(EpochCriterion::Infinity());
do
{
learnRatePerSample *= 0.618;
TrainOneMiniEpochAndReloadModel(net, refNet, refNode, epochNumber,
m_epochSize, trainSetDataReader,
learnRatePerSample, m_mbSize[epochNumber], featureNodes,
labelNodes, criterionNodes,
evaluationNodes, inputMatrices,
learnableNodes, smoothedGradients, smoothedCounts,
/*out*/ epochCriterion, /*out*/ epochEvalErrors,
"AdaptiveLearnRateSearch:",
numFramesToUseInSearch);
} while (epochCriterion.IsNan() || (epochCriterion.Average() > baseCriterion.Average() && learnRatePerSample > minLearnRate));
bestLearnRatePerSample = learnRatePerSample;
// grid search for the first m_numBestSearchEpoch epochs
if (epochNumber < m_numBestSearchEpoch)
{
double leftLearnRatePerSample = 0.01 / m_mbSize[epochNumber];
double rightLearnRatePerSample = learnRatePerSample;
EpochCriterion rightCriterion = epochCriterion;
EpochCriterion leftCriterion; // we compute this from the mini epoch
TrainOneMiniEpochAndReloadModel(net, refNet, refNode, epochNumber,
m_epochSize, trainSetDataReader,
leftLearnRatePerSample, m_mbSize[epochNumber],
featureNodes, labelNodes,
criterionNodes, evaluationNodes,
inputMatrices, learnableNodes,
smoothedGradients, smoothedCounts,
/*out*/ leftCriterion, /*out*/ epochEvalErrors,
"DetailBaseAdaptiveLearnRateSearch:",
numFramesToUseInSearch);
while (rightLearnRatePerSample > leftLearnRatePerSample * 1.2)
{
if (rightCriterion.Average() > leftCriterion.Average())
{
rightLearnRatePerSample *= 0.618;
TrainOneMiniEpochAndReloadModel(net, refNet, refNode,
epochNumber,
m_epochSize,
trainSetDataReader,
rightLearnRatePerSample, m_mbSize[epochNumber],
featureNodes, labelNodes,
criterionNodes,
evaluationNodes,
inputMatrices,
learnableNodes,
smoothedGradients, smoothedCounts,
/*out*/ rightCriterion,
/*out*/ epochEvalErrors,
"DetailRightAdaptiveLearnRateSearch:",
numFramesToUseInSearch);
}
else
{
leftLearnRatePerSample /= 0.618;
TrainOneMiniEpochAndReloadModel(net, refNet, refNode,
epochNumber,
m_epochSize,
trainSetDataReader,
leftLearnRatePerSample, m_mbSize[epochNumber],
featureNodes, labelNodes,
criterionNodes,
evaluationNodes,
inputMatrices,
learnableNodes,
smoothedGradients, smoothedCounts,
/*out*/ leftCriterion,
/*out*/ epochEvalErrors,
"DetailLeftAdaptiveLearnRateSearch:",
numFramesToUseInSearch);
}
}
bestLearnRatePerSample = (leftCriterion.Average() < rightCriterion.Average()) ? leftLearnRatePerSample : rightLearnRatePerSample;
}
LOGPRINTF(stderr, " SearchForBestLearnRate Epoch[%d]: Best learningRatePerSample = %.10g, baseCriterion=%.10g\n",
(int) epochNumber + 1, bestLearnRatePerSample, baseCriterion.Average());
return bestLearnRatePerSample;
}
// AdaptiveMinibatchSizing() -- choose the largest feasible minibatch size
// This is necessary for data-parallel operation. The aim is to minimize model updates, and hence bandwidth
// This implements
// F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu:
// "On Parallelizability of Stochastic Gradient Descent for Speech DNNs"
// In Proc. ICASSP 2014.
template <class ElemType>
size_t SGD<ElemType>::AdaptiveMinibatchSizing(ComputationNetworkPtr net,
ComputationNetworkPtr refNet,
const ComputationNodeBasePtr& refNode,
const int epochNumber,
const size_t numFramesToUseInSearch,
IDataReader* trainSetDataReader,
const double learnRatePerSample,
const size_t initialMinibatchSize,
const std::vector<ComputationNodeBasePtr>& featureNodes,
const std::vector<ComputationNodeBasePtr>& labelNodes,
const std::vector<ComputationNodeBasePtr>& criterionNodes,
const std::vector<ComputationNodeBasePtr>& evaluationNodes,
StreamMinibatchInputs* inputMatrices,
const std::list<ComputationNodeBasePtr>& learnableNodes,
std::list<Matrix<ElemType>>& smoothedGradients, vector<double> smoothedCounts,
const double learningRateAdjustmentFactor)
{
size_t minMinibatchSize = initialMinibatchSize;
size_t chosenMinibatchSize = initialMinibatchSize;
// do some pre-adjustment based on LR
// Basically we assume that the LR for epoch 1 is safe for mbsize.
// If LR control led to a smaller LR, then we can safely increase the lower bound of the MB size.
double learningRateChangeSoFar = GetLearningRatePerSample(epochNumber /*BUGBUG workaround:*/, trainSetDataReader->GetNumParallelSequencesForFixingBPTTMode()) / GetLearningRatePerSample(0 /*BUGBUG workaround:*/, trainSetDataReader->GetNumParallelSequencesForFixingBPTTMode());
learningRateChangeSoFar *= learningRateAdjustmentFactor;
// increasing by the full factor is found to be too aggressive; sqrt() seems more robust
learningRateChangeSoFar = sqrt(learningRateChangeSoFar);
// LR was indeed reduced
if (learningRateChangeSoFar < 1.0f)
{
// we can safely increase MB size (note: this may be bigger than our max)
minMinibatchSize = (size_t)(minMinibatchSize / learningRateChangeSoFar);
}
if (epochNumber < 2 && m_prevChosenMinibatchSize != 0)
{
// newly started training: any previous MB size stored in the model is to be ignored
LOGPRINTF(stderr, " Before Epoch[2], previous minibatchSize %d is considered invalid -> resetting.\n",
(int)m_prevChosenMinibatchSize);
m_prevChosenMinibatchSize = 0;
}
// check if we need to skip
if (m_prevChosenMinibatchSize != 0 &&
(epochNumber + 1) > m_minibatchSizeTuningFrequency &&
(epochNumber + 1) % m_minibatchSizeTuningFrequency != 0)
{
LOGPRINTF(stderr, " AdaptiveMinibatchSearch: Search for a better minibatchSize in epoch %d skipped, keeping minibatchSize of %d\n",
(int)epochNumber + 1, (int)m_prevChosenMinibatchSize);
chosenMinibatchSize = m_prevChosenMinibatchSize;
}
else
{
if (m_prevChosenMinibatchSize != 0)
{
// if m_prevChosenMinibatchSize (the chosen minibatch size for the previous epoch) div 2
// is higher than initialMinibatchSize (the minibatch size we start with for this epoch),
// then start the search with m_prevChosenMinibatchSize/2 instead of initialMinibatchSize.
//LOGPRINTF(stderr, " AdaptiveMinibatchSearch: Limiting minMinibatchSize to largest of previous minibatchSize = (%d / 2) or %d\n",
// (int) m_prevChosenMinibatchSize, (int) minMinibatchSize);
minMinibatchSize = max(minMinibatchSize, m_prevChosenMinibatchSize / 2);
}
size_t maxMinibatchSize = m_minibatchSizeTuningMax;
// only grow at most 2 x compared to previous step
if (m_prevChosenMinibatchSize != 0.0f)
{
assert(m_prevChosenMinibatchSize >= chosenMinibatchSize);
//LOGPRINTF(stderr, " AdaptiveMinibatchSearch: Limiting maxMinibatchSize to previous minibatchSize %d*2\n",
// (int) m_prevChosenMinibatchSize);
maxMinibatchSize = min(maxMinibatchSize, m_prevChosenMinibatchSize * 2);
}
chosenMinibatchSize = SearchForBestMinibatchSize(net, refNet, refNode, epochNumber,
numFramesToUseInSearch, trainSetDataReader,
learnRatePerSample, featureNodes,
labelNodes, criterionNodes,
evaluationNodes, inputMatrices,
learnableNodes, smoothedGradients, smoothedCounts,
minMinibatchSize, maxMinibatchSize);
}
return chosenMinibatchSize;
}
static size_t RoundToMultipleOf64(float val)
{
return 64 * (size_t)((val + 32) / 64);
}
static size_t RoundToMultipleOf64(size_t val)
{
return 64 * ((val + 32) / 64);
}
// uses a small percentage of training data of minibatch to
// speculatively train with various MB sizes; then picks the best
template <class ElemType>
size_t SGD<ElemType>::SearchForBestMinibatchSize(ComputationNetworkPtr net,
ComputationNetworkPtr refNet,
const ComputationNodeBasePtr& refNode,
const int epochNumber,
const size_t numFramesToUseInSearch,
IDataReader* trainSetDataReader,
const double learnRatePerSample,
const std::vector<ComputationNodeBasePtr>& featureNodes,
const std::vector<ComputationNodeBasePtr>& labelNodes,
const std::vector<ComputationNodeBasePtr>& criterionNodes,
const std::vector<ComputationNodeBasePtr>& evaluationNodes,
StreamMinibatchInputs* inputMatrices,
const std::list<ComputationNodeBasePtr>& learnableNodes,
std::list<Matrix<ElemType>>& smoothedGradients, std::vector<double> smoothedCounts,
const size_t minMinibatchSize, const size_t maxMinibatchSize)
{
// may happen for automatically reduced learning rates
if (minMinibatchSize > maxMinibatchSize)
{
return maxMinibatchSize;
}
size_t trialMinibatchSize = 0;
bool isFirstIteration = true;
EpochCriterion baseCriterion(0);
// increase the minibatch size by a factor of sqrt(2) in each step.
const float minibatchSizeTuningFactor = sqrtf(2.0f);
LOGPRINTF(stderr, " AdaptiveMinibatchSearch Epoch[%d]: Evaluating minibatchSizes %d..%d\n",
(int)epochNumber + 1, (int)RoundToMultipleOf64(minMinibatchSize), (int)RoundToMultipleOf64(maxMinibatchSize));
size_t lastGoodMinibatchSize = 0;
EpochCriterion lastGoodEpochCriterion(0);
for (float trialMinibatchSizeFloat = (float) minMinibatchSize;
trialMinibatchSizeFloat <= maxMinibatchSize;
trialMinibatchSizeFloat *= minibatchSizeTuningFactor)
{
// round mbsize to something meaningful
trialMinibatchSize = RoundToMultipleOf64(trialMinibatchSizeFloat);
if (m_traceLevel > 0)
{
LOGPRINTF(stderr, " AdaptiveMinibatchSearch Epoch[%d]: Evaluating trial minibatchSize=%d (search range: %d..%d)...\n",
(int)epochNumber+1, (int)trialMinibatchSize, (int)RoundToMultipleOf64(minMinibatchSize), (int)RoundToMultipleOf64(maxMinibatchSize));
}
std::vector<EpochCriterion> epochEvalErrors(evaluationNodes.size(), EpochCriterion::Infinity());
EpochCriterion epochCriterion(EpochCriterion::Infinity());
// Train on a few minibatches and so we can observe the epochCriterion as we try increasing
// minibatches with iteration of this loop.
TrainOneMiniEpochAndReloadModel(net, refNet, refNode, epochNumber,
m_epochSize, trainSetDataReader,
learnRatePerSample, trialMinibatchSize, featureNodes,
labelNodes, criterionNodes,
evaluationNodes, inputMatrices,
learnableNodes, smoothedGradients, smoothedCounts,
/*out*/ epochCriterion, /*out*/ epochEvalErrors,
isFirstIteration ? "BaseAdaptiveMinibatchSearch:" : "AdaptiveMinibatchSearch:",
numFramesToUseInSearch);
if (isFirstIteration)
{
// for the first iteration of the loop only, set baseCriterion
// to the result we got from TrainOneMiniEpochAndReloadModel().
baseCriterion = epochCriterion;
lastGoodMinibatchSize = trialMinibatchSize;
lastGoodEpochCriterion = baseCriterion;
isFirstIteration = false;
if (m_traceLevel > 0)
{
LOGPRINTF(stderr, " AdaptiveMinibatchSearch Epoch[%d]: Computed baseCriterion %.8f for minibatchSize=%d\n",
(int)epochNumber + 1, baseCriterion.Average(), (int)trialMinibatchSize);
}
}
else if (!epochCriterion.IsNan() &&
epochCriterion.Average() > (baseCriterion.Average() * (1.0 + (m_minibatchSearchCriterionErrorMargin / 100.0))))
{
// As soon as we see the Criterion (a measure of error) start to get larger than the
// Criterion we started with, we stop.
// TODO: if this is too sensitive, we can add a margin on the bases of percentage of
// baseCriterion.
break;
}
else
{
lastGoodMinibatchSize = trialMinibatchSize;
lastGoodEpochCriterion = epochCriterion;
if (m_traceLevel > 0 && trialMinibatchSizeFloat * minibatchSizeTuningFactor <= maxMinibatchSize)
{
LOGPRINTF(stderr, " AdaptiveMinibatchSearch Epoch[%d]: Keep searching... epochCriterion = %.8f vs. baseCriterion = %.8f\n",
(int)epochNumber+1, epochCriterion.Average(), baseCriterion.Average());
}
}
}
if (m_traceLevel > 0)
{
LOGPRINTF(stderr, " AdaptiveMinibatchSearch Epoch[%d]: Search successful. New minibatchSize is %d. epochCriterion = %.8f vs baseCriterion = %.8f\n",
(int)epochNumber + 1, (int)lastGoodMinibatchSize, lastGoodEpochCriterion.Average(), baseCriterion.Average());
}
return lastGoodMinibatchSize;
}
// run training over a small subset of an epoch, used by automatic LR and MB-size tuning
template <class ElemType>
void SGD<ElemType>::TrainOneMiniEpochAndReloadModel(ComputationNetworkPtr net,
ComputationNetworkPtr refNet,
const ComputationNodeBasePtr& refNode, const int epochNumber,
const size_t epochSize, IDataReader* trainSetDataReader,
const double learnRatePerSample,
const size_t minibatchSize,
const std::vector<ComputationNodeBasePtr>& featureNodes,
const std::vector<ComputationNodeBasePtr>& labelNodes,
const std::vector<ComputationNodeBasePtr>& criterionNodes,
const std::vector<ComputationNodeBasePtr>& evaluationNodes,
StreamMinibatchInputs* inputMatrices,
const std::list<ComputationNodeBasePtr>& learnableNodes,
std::list<Matrix<ElemType>>& smoothedGradients, vector<double> smoothedCounts,
/*out*/ EpochCriterion& epochCriterion,
/*out*/ std::vector<EpochCriterion>& epochEvalErrors,
std::string prefixMsg,
const size_t maxNumOfSamples)
{
TrainOneEpoch(net, refNet, refNode, epochNumber, epochSize,
trainSetDataReader, learnRatePerSample, minibatchSize, featureNodes,
labelNodes, criterionNodes, evaluationNodes,
inputMatrices, learnableNodes, smoothedGradients, smoothedCounts,
/*out*/ epochCriterion, /*out*/ epochEvalErrors,
" " + prefixMsg, maxNumOfSamples); // indent log msg by 2 (that is 1 more than the Finished message below)
LOGPRINTF(stderr, " Finished Mini-Epoch[%d]: ", (int)epochNumber+1);
epochCriterion.LogCriterion(criterionNodes[0]->NodeName());
for (size_t j = 0; j < epochEvalErrors.size(); j++)
epochEvalErrors[j].LogCriterion(evaluationNodes[j]->NodeName());
fprintf(stderr, "learningRatePerSample = %.8g; minibatchSize = %d\n", learnRatePerSample, (int)minibatchSize);
// go back to where we came from
int baseModelEpoch = epochNumber - 1;
let path = GetModelNameForEpoch(baseModelEpoch);
//fprintf(stderr, "Reverting parameters back to %ls\n", path.c_str());
net->RereadPersistableParameters<ElemType>(path);
double dummyLearnRate;
double dummyPrevCriterion;
size_t dummyTotalTrainingSamplesSeen; // (not used)
size_t dummyMinibatchSize;
LoadCheckPointInfo(baseModelEpoch,
/*out*/ dummyTotalTrainingSamplesSeen,
/*out*/ dummyLearnRate,
smoothedGradients,
smoothedCounts,
/*out*/ dummyPrevCriterion,
/*out*/ dummyMinibatchSize);
}
// Attemps to compute the error signal for the whole utterance, which will
// be fed to the neural network as features. Currently it is a workaround
// for the two-forward-pass sequence and ctc training, which allows
// processing more utterances at the same time. Only used in Kaldi2Reader.
// TODO: move the two-forward-pass support out of the reader.
template <class ElemType>
void SGD<ElemType>::AttemptUtteranceDerivativeFeatures(ComputationNetworkPtr net,
IDataReader* trainSetDataReader,
const std::vector<ComputationNodeBasePtr>& featureNodes,
StreamMinibatchInputs* inputMatrices)
{
assert(trainSetDataReader != NULL);
std::vector<std::vector<std::pair<wstring, size_t>>> uttInfo;
auto pMBLayout = make_shared<MBLayout>();
// TODO: use GetMinibatchIntoNetwork().
while (trainSetDataReader->GetMinibatchCopy(uttInfo, *inputMatrices, pMBLayout))
{
ComputationNetwork::BumpEvalTimeStamp(featureNodes);
auto& outputNodes = net->OutputNodes();
if (outputNodes.empty())
LogicError("no output node was found.");
// BUGBUG (Issue #95): This is no longer correct once we have multiple input layouts.
trainSetDataReader->CopyMBLayoutTo(net->GetMBLayoutPtrOfNetwork());
net->ForwardProp(outputNodes[0]); // only evaluate the first output
trainSetDataReader->SetNetOutput(uttInfo,
dynamic_pointer_cast<ComputationNode<ElemType>>(outputNodes[0])->Value(),
pMBLayout);
}
}
template <class ElemType>
void SGD<ElemType>::InitDistGradAgg(int numEvalNodes, int numGradientBits, int deviceId, int traceLevel)
{
assert(GetParallelizationMethod() == ParallelizationMethod::dataParallelSGD);
if (numGradientBits != (8 * sizeof(ElemType)))
{
if (traceLevel > 0)
fprintf(stderr, "Initializing dataParallelSGD for %d-bit quantization.\n", numGradientBits);
#ifdef CNTK_PARALLEL_TRAINING_SUPPORT
if (Globals::UseV2Aggregator())
{
auto communicator = ::CNTK::QuantizedMPICommunicator(m_zeroThresholdFor1Bit, true, numGradientBits);
m_distGradAgg = std::make_shared<V2AllReduceDistGradAggregator<ElemType>>(communicator, m_bufferedAsyncGradientAggregation, traceLevel, m_syncStatsTrace);
}
else
m_distGradAgg = std::make_shared<AllReduceDistGradAggregator<ElemType>>(m_mpi, numGradientBits, m_zeroThresholdFor1Bit, true /*useQuantizationForSelfStripe*/, m_bufferedAsyncGradientAggregation, traceLevel, m_syncStatsTrace);
#else
RuntimeError("Gradient quantization is unsupported in CNTK binaries built without quantized gradient aggregation support!");
#endif // !CNTK_PARALLEL_TRAINING_SUPPORT
}
else
{
if (traceLevel > 0)
fprintf(stderr, "Initializing dataParallelSGD with FP%d aggregation.\n", numGradientBits);
if (Globals::UseV2Aggregator()) // Currently used to check V2 against baselines.
m_distGradAgg = std::make_shared<V2SimpleDistGradAggregator<ElemType>>(m_mpi, m_bufferedAsyncGradientAggregation, m_syncStatsTrace, ::CNTK::MPICommunicator());
else
m_distGradAgg = std::make_shared<SimpleDistGradAggregator<ElemType>>(m_mpi, m_bufferedAsyncGradientAggregation, deviceId, m_syncStatsTrace);
}
m_gradHeader.reset(DistGradHeader::Create(numEvalNodes), [](DistGradHeader* ptr) { DistGradHeader::Destroy(ptr); });
}
template <class ElemType>
void SGD<ElemType>::InitModelAggregationHandler(int traceLevel, DEVICEID_TYPE devID)
{
if (m_pMASGDHelper)
{
return; // no need to do anything if already initialized. TODO: make it singleton
}
if (GetParallelizationMethod() == ParallelizationMethod::modelAveragingSGD)
{
m_pMASGDHelper = make_shared<BasicModelAveragingSGD<ElemType>>(m_mpi, traceLevel, devID);
}
else if (GetParallelizationMethod() == ParallelizationMethod::blockMomentumSGD)
{
#ifndef CNTK_PARALLEL_TRAINING_SUPPORT
RuntimeError("Block Momentum is not supported in the main CNTK repo. You need to enable 1bit submodule.");
#else
if (Globals::UseV2Aggregator())
{
auto communicator = ::CNTK::MPICommunicator();
m_pMASGDHelper = make_shared<V2BlockMomentumSGD<ElemType>>(
m_mpi,
communicator,
traceLevel,
devID,
m_useNesterovBlockMomentum,
m_resetSGDMomentum,
m_blockLearningRate,
m_blockMomentumAsTimeConstant,
m_modelAggregationBlockSize);
}
else
m_pMASGDHelper = make_shared<BlockMomentumSGD<ElemType>>(m_mpi, traceLevel, devID,
m_useNesterovBlockMomentum, m_resetSGDMomentum,
m_blockLearningRate, m_blockMomentumAsTimeConstant,
m_modelAggregationBlockSize);
#endif
}
}
// public:
// UpdateWeights() - actual weight update, implementing various update rules
template <class ElemType>
void SGD<ElemType>::UpdateWeights(Matrix<ElemType>& functionValues, Matrix<ElemType>& gradientValues,
Matrix<ElemType>& smoothedGradient, double& smoothedCount,
const double learnRatePerSample, const double momentumPerSample,
size_t actualMBSize,
const double L2RegWeight, const double L1RegWeight,
const bool needAveMultiplier,
const bool useNesterovMomentum) const
{
// we use simple linear (instead of log linear) exponentiation here
const double momentum = MomentumPerMB(momentumPerSample, actualMBSize);
#if DUMPOUTPUT
LOGPRINTF(stderr, "learnRatePerSample=%0.8f, momentum=%0.8f, actualMBSize=%ld\n",
learnRatePerSample, momentum, actualMBSize);
LOGPRINTF(stderr, "GradUpdateType()=%d, GradientUpdateNoiseStd()=%0.8f\n",
GradUpdateType(), GradientUpdateNoiseStd());
gradientValues.Print("Gradient Input");
smoothedGradient.Print("Smoothed Gradient Input");
#endif
// make actualMBSize is a valid value
assert(actualMBSize > 0);
// clipping gradients to prevent outliers
ClipGradient(gradientValues, actualMBSize);
GradientsUpdateType adpType = GradUpdateType();
double noiseStd = GradientUpdateNoiseStd();
Matrix<ElemType> sgdUpdateNoise((DEVICEID_TYPE) functionValues.GetDeviceId());
if (noiseStd > 0)
{
// get the gradient structure since gradient is sparse
sgdUpdateNoise.SetValue(gradientValues);
// reset its value to random
sgdUpdateNoise.SetGaussianRandomValue(0, (ElemType) noiseStd);
}
// L2 regularizer
if (L2RegWeight > 0)
{
// multiply by actualMBSize so that it's invariant to minibatch size since learning rate is per sample
Matrix<ElemType>::ScaleAndAdd((ElemType)(L2RegWeight * actualMBSize), functionValues, gradientValues);
}
if (adpType == GradientsUpdateType::None)
{
smoothedGradient.NormalGrad(gradientValues, functionValues,
(ElemType) learnRatePerSample, (ElemType) momentum, useNesterovMomentum);
}
else if (adpType == GradientsUpdateType::AdaGrad ||
(adpType == GradientsUpdateType::RmsProp && gradientValues.GetMatrixType() == MatrixType::SPARSE) ||
(adpType == GradientsUpdateType::FSAdaGrad && gradientValues.GetMatrixType() == MatrixType::SPARSE))
{
// rmsprop for sparse is not implemented yet, delegate it with adagrad
double aveMultiplier = smoothedGradient.Adagrad(gradientValues, needAveMultiplier);
Matrix<ElemType>::ScaleAndAdd((ElemType)(-learnRatePerSample / aveMultiplier), gradientValues, functionValues);
}
else if (adpType == GradientsUpdateType::FSAdaGrad)
{
const double varMomentum = (exp(-1.0 * actualMBSize / m_gradType.varianceTimeConstant));
#if 0 // BUGBUG!!! This replicates a bug carried over from Alexey's original implementation.
static double smoothedCount = 0;
#endif
smoothedGradient.FSAdagradUpdate(actualMBSize,
gradientValues, functionValues, smoothedCount,
learnRatePerSample, m_gradType.targetAdagradAvDenom,
momentum, varMomentum);
}
else if (adpType == GradientsUpdateType::RmsProp)
{
double aveMultiplier = smoothedGradient.RmsProp(gradientValues, (ElemType) m_rpi.gamma,
(ElemType) m_rpi.inc, (ElemType) m_rpi.max,
(ElemType) m_rpi.dec, (ElemType) m_rpi.min, needAveMultiplier);
Matrix<ElemType>::ScaleAndAdd((ElemType)(-learnRatePerSample / aveMultiplier), gradientValues, functionValues);
}
if (noiseStd > 0)
{
Matrix<ElemType>::ScaleAndAdd(1.0, sgdUpdateNoise, functionValues);
}
// L1 regularizer with proximal gradient descent method
if (L1RegWeight > 0)
{
// multiply by actualMBSize so that it's invariant to minibatch size since learning rate is per sample
functionValues.InplaceSoftThreshold((ElemType)(learnRatePerSample * L1RegWeight * actualMBSize));
}
#if DUMPOUTPUT
functionValues.Print("Parameter Update");
#endif
}
// protected:
template <class ElemType>
void SGD<ElemType>::ClipGradient(Matrix<ElemType>& gradient, const size_t actualMBSize) const
{
if (m_clippingThresholdPerSample != std::numeric_limits<double>::infinity())
{
double maxGradientPerMB = m_clippingThresholdPerSample * actualMBSize;
if (m_gradientClippingWithTruncation)
gradient.InplaceTruncate((ElemType)(maxGradientPerMB));
else
{
// norm2 normalized
double gradientNorm = gradient.FrobeniusNorm();
if (gradientNorm > maxGradientPerMB)
{
double normFactor = maxGradientPerMB / gradientNorm;
gradient *= (ElemType) normFactor;
}
}
}
}
template <class ElemType>
void SGD<ElemType>::SaveCheckPointInfo(const size_t epoch, const size_t totalSamplesSeen,
const double learnRatePerSample,
const std::list<Matrix<ElemType>>& smoothedGradients,
const std::vector<double>& smoothedCounts,
const double prevCriterion,
const size_t minibatchSize)
{
// In case of parallel training only the main node should we saving the checkpoint to prevent
// the parallel training nodes from colliding to write the same file
if ((m_mpi == nullptr) || m_mpi->IsMainNode())
{
wstring checkPointFileName = GetCheckPointFileNameForEpoch(int(epoch));
// Saving into temporary file and then renaming it to the checkPointFileName
// This is a standard trick to avoid havign corrupted checkpoints files if process dies during writing
wstring tempFileName = checkPointFileName + L".tmp";
{
File fstream(tempFileName, FileOptions::fileOptionsBinary | FileOptions::fileOptionsWrite);
// Buffer writes in memory then flush to filesystem, which reduces number of small writes
fstream.Setvbuf();
fstream.PutMarker(FileMarker::fileMarkerBeginSection, L"BVersion");
fstream << (size_t)CURRENT_CNTK_CHECKPOINT_VERSION;
fstream.PutMarker(FileMarker::fileMarkerEndSection, L"EVersion");
fstream.PutMarker(FileMarker::fileMarkerBeginSection, L"BCKP");
fstream.PutMarker(FileMarker::fileMarkerBeginSection, L"BLearnRate");
fstream << totalSamplesSeen << learnRatePerSample << prevCriterion;
fstream.PutMarker(FileMarker::fileMarkerEndSection, L"ELearnRate");
fstream.PutMarker(FileMarker::fileMarkerBeginSection, L"BMinibatchSize");
fstream << minibatchSize;
fstream.PutMarker(FileMarker::fileMarkerEndSection, L"EMinibatchSize");
fstream.PutMarker(FileMarker::fileMarkerBeginSection, L"BGradient");
for (auto smoothedGradientIter = smoothedGradients.begin(); smoothedGradientIter != smoothedGradients.end(); smoothedGradientIter++)
{
const Matrix<ElemType>& smoothedGradient = *smoothedGradientIter;
fstream << smoothedGradient;
}
fstream.PutMarker(FileMarker::fileMarkerEndSection, L"EGradient");
fstream.PutMarker(FileMarker::fileMarkerEndSection, L"BCount");
for (auto sc : smoothedCounts)
fstream << sc;
fstream.PutMarker(FileMarker::fileMarkerEndSection, L"ECount");
fstream.PutMarker(FileMarker::fileMarkerEndSection, L"ECKP");
if (m_pMASGDHelper)
m_pMASGDHelper->SaveToCheckPoint(fstream);
// Ensuring that data is written
fstream.Flush();
}
_wunlink(checkPointFileName.c_str());
renameOrDie(tempFileName, checkPointFileName);
}
}
template <class ElemType>
bool SGD<ElemType>::TryLoadCheckPointInfo(const size_t epochNumber,
/*out*/ size_t& totalSamplesSeen,
/*out*/ double& learnRatePerSample,
std::list<Matrix<ElemType>>& smoothedGradients,
std::vector<double>& smoothedCounts,
/*out*/ double& prevCriterion,
/*out*/ size_t& minibatchSize)
{
// gracefully handle if a checkpoint file is missing
// This means a user wanted to continue training from an older model, but that model had no checkpoint info anymore.
// This is valid, we just don't get the features that require previous models, such as LR or MBSize control.
let checkPointFileName = GetCheckPointFileNameForEpoch(int(epochNumber));
if (!fexists(checkPointFileName.c_str()))
{
// initialize as if nothing
totalSamplesSeen = 0;
learnRatePerSample = numeric_limits<double>::quiet_NaN(); // must be overwritten
prevCriterion = 0;
minibatchSize = m_mbSize[epochNumber];
LOGPRINTF(stderr, "Warning: Checkpoint file is missing. Parameter-learning state (such as momentum) will be reset.\n");
return false;
}
LoadCheckPointInfo(epochNumber, totalSamplesSeen, learnRatePerSample, smoothedGradients, smoothedCounts, prevCriterion, minibatchSize);
return true;
}
template <class ElemType>
void SGD<ElemType>::LoadCheckPointInfo(const size_t epochNumber,
/*out*/ size_t& totalSamplesSeen,
/*out*/ double& learnRatePerSample,
std::list<Matrix<ElemType>>& smoothedGradients,
std::vector<double>& smoothedCounts,
/*out*/ double& prevCriterion,
/*out*/ size_t& minibatchSize)
{
let checkPointFileName = GetCheckPointFileNameForEpoch(int(epochNumber));
//fprintf(stderr, "Loading checkpoint info from %ls\n", checkPointFileName.c_str());
File fstream(checkPointFileName,
FileOptions::fileOptionsBinary | FileOptions::fileOptionsRead);
// version info
size_t ckpVersion = CNTK_CHECKPOINT_VERSION_1; // if no version info is found -> version 1
if (fstream.TryGetMarker(FileMarker::fileMarkerBeginSection, L"BVersion"))
{
fstream >> ckpVersion;
fstream.GetMarker(FileMarker::fileMarkerEndSection, L"EVersion");
}
fstream.GetMarker(FileMarker::fileMarkerBeginSection, L"BCKP");
fstream.GetMarker(FileMarker::fileMarkerBeginSection, L"BLearnRate");
fstream >> totalSamplesSeen >> learnRatePerSample >> prevCriterion;
fstream.GetMarker(FileMarker::fileMarkerEndSection, L"ELearnRate");
if (fstream.TryGetMarker(FileMarker::fileMarkerBeginSection, L"BMinibatchSize"))
{
fstream >> minibatchSize;
fstream.GetMarker(FileMarker::fileMarkerEndSection, L"EMinibatchSize");
}
else // some legacy files do not have this
{
minibatchSize = m_mbSize[epochNumber];
}
fstream.GetMarker(FileMarker::fileMarkerBeginSection, L"BGradient");
for (auto smoothedGradientIter = smoothedGradients.begin(); smoothedGradientIter != smoothedGradients.end(); smoothedGradientIter++)
{
Matrix<ElemType>& smoothedGradient = *smoothedGradientIter;
fstream >> smoothedGradient;
}
fstream.GetMarker(FileMarker::fileMarkerEndSection, L"EGradient");
if (fstream.TryGetMarker(FileMarker::fileMarkerBeginSection, L"BCount"))
{
for (auto& sc : smoothedCounts)
fstream >> sc;
fstream.GetMarker(FileMarker::fileMarkerEndSection, L"ECount");
}
else // deal with legacy checkpoints
std::fill(smoothedCounts.begin(), smoothedCounts.end(), static_cast<double>(minibatchSize));
fstream.GetMarker(FileMarker::fileMarkerEndSection, L"ECKP");
if (m_pMASGDHelper)
{
m_pMASGDHelper->LoadFromCheckPoint(fstream);
}
return;
}
template <class ElemType>
wstring SGD<ElemType>::GetCheckPointFileNameForEpoch(const int epoch)
{
return GetModelNameForEpoch(epoch) + L".ckp";
}
template <class ElemType>
wstring SGD<ElemType>::GetModelNameForEpoch(const int epoch, bool bLastModel)
{
int epoch1Base = epoch + 1;
if (epoch1Base == m_maxEpochs || bLastModel)
{
return m_modelPath;
}
else
{
wstring w = msra::strfun::wstrprintf(L"%ls.%d", m_modelPath.c_str(), (int) epoch1Base);
return w;
}
}
// return -1 if nothing exists
template <class ElemType> // TODO: needed?
int SGD<ElemType>::DetermineStartEpoch(const bool makeMode)
{
if (!makeMode)
{
// always start from scratch
return -1;
}
int firstEpoch = -1;
wstring curEpochFile = GetModelNameForEpoch(int(m_maxEpochs) - 1);
for (int e = int(m_maxEpochs) - 1; e >= -1; e--)
{
const wstring prevEpochFile = GetModelNameForEpoch(e - 1);
if (msra::files::fuptodate(curEpochFile, prevEpochFile, false))
{
firstEpoch = e + 1;
break;
}
else
{
curEpochFile = prevEpochFile;
}
}
if (firstEpoch == m_maxEpochs)
LOGPRINTF(stderr, "Final model exists: %ls\n", GetModelNameForEpoch(firstEpoch - 1).c_str());
return firstEpoch;
}
#define EPSILON 1e-5
// this probes the automatic gradient computation with random inputs
template <class ElemType>
bool SGD<ElemType>::GradientCheck(ComputationNetworkPtr net,
const std::vector<ComputationNodeBasePtr>& criterionNodes,
const std::list<ComputationNodeBasePtr>& learnableNodes,
int npos)
{
ScopedNetworkOperationMode modeGuard(net, NetworkOperationMode::training);
net->StartEvaluateMinibatchLoop(criterionNodes[npos]);
vector<string> errMsgs; // TODO: These are created but actually not returned, only their count is checked.
// gradient checking
for (auto nodeIter = learnableNodes.begin(); nodeIter != learnableNodes.end(); nodeIter++)
{
ComputationNodePtr node = dynamic_pointer_cast<ComputationNode<ElemType>>(*nodeIter);
char wstrtmp[2048];
for (size_t itry = 0; itry < min((size_t) 50, node->Value().GetNumElements()); itry++)
{
// no support to sparse matrix yet
int irow = (int)fmod(rand(), node->Value().GetNumRows() - 1);
int icol = (int)fmod(rand(), node->Value().GetNumCols() - 1);
irow = max(0, irow);
icol = max(0, icol);
fprintf(stderr, "\n");
LOGPRINTF(stderr, "###### d%ls######\n", node->NodeName().c_str());
double eOrg = node->Value()(irow, icol);
node->Value().TransferToDeviceIfNotThere(net->GetDeviceId(), true);
node->BumpEvalTimeStamp();
net->ForwardProp(criterionNodes[npos]);
net->Backprop(criterionNodes[npos]);
if (node->Gradient().GetMatrixType() == MatrixType::SPARSE)
{
break;
}
// double mbEvalCri =
// criterionNode should be a scalar
// TODO: why is this value not used?
criterionNodes[npos]->Get00Element();
double eGradErr = node->Gradient()(irow, icol);
node->Gradient().TransferToDeviceIfNotThere(net->GetDeviceId(), true);
double ePos = eOrg + EPSILON;
double eNeg = eOrg - EPSILON;
node->Value()(irow, icol) = (ElemType) ePos;
node->Value().TransferToDeviceIfNotThere(net->GetDeviceId(), true);
node->BumpEvalTimeStamp();
net->ForwardProp(criterionNodes[npos]);
// criterionNode should be a scalar
double mbEvalCriPos = criterionNodes[npos]->Get00Element(); // TODO: make Get00Element() a function of ComputationNodeBase
node->Value()(irow, icol) = (ElemType) eNeg;
node->Value().TransferToDeviceIfNotThere(net->GetDeviceId(), true);
node->BumpEvalTimeStamp();
net->ForwardProp(criterionNodes[npos]);
// criterionNode should be a scalar
double mbEvalCriNeg = criterionNodes[npos]->Get00Element();
// back to its original parameter value
node->Value()(irow, icol) = (ElemType) eOrg;
node->Value().TransferToDeviceIfNotThere(net->GetDeviceId(), true);
// check if they are consistent
double eGradNum = ((mbEvalCriPos - mbEvalCriNeg) / (ePos - eNeg));
double threshold = pow(10.0,
max(0.0,
ceil(log10(min(fabs(eGradErr),
fabs(eGradNum))))) -
(int) m_gradientCheckSigDigit);
double diff = fabs(eGradErr - eGradNum);
bool wrong = (std::isnan(diff) || diff > threshold);
if (wrong)
{
fprintf(stderr, "\n");
LOGPRINTF(stderr, "d%ls Numeric gradient = %e, Error BP gradient = %e\n",
node->NodeName().c_str(), eGradNum, eGradErr);
sprintf(wstrtmp, "\nd%ls Numeric gradient = %e, Error BP gradient = %e\n",
node->NodeName().c_str(), eGradNum, eGradErr);
errMsgs.push_back(wstrtmp);
}
}
}
return errMsgs.empty();
}
template <class ElemType>
void SGD<ElemType>::MarkDropoutNodesEvalTimeStampAsOutdated(const ComputationNetworkPtr& net, const ComputationNodeBasePtr& criterionNode)
{
list<ComputationNodeBasePtr> dropoutNodes = net->GetNodesWithType(OperationNameOf(DropoutNode), criterionNode);
for (auto& nodeIter : dropoutNodes)
nodeIter->SetEvalTimeStampOutdatedWrtAll();
}
template class SGD<float>;
template class SGD<double>;
// =======================================================================
// class SGDParams
// =======================================================================
static AdaptationRegType ParseAdaptationRegType(const wstring& s)
{
if (EqualCI(s, L"") || EqualCI(s, L"none")) return AdaptationRegType::None;
else if (EqualCI(s, L"kl") || EqualCI(s, L"klReg")) return AdaptationRegType::KL;
else
InvalidArgument("ParseAdaptationRegType: Invalid Adaptation Regularization Type. Valid values are (none | kl)");
}
static GradientsUpdateType ParseGradUpdateType(const wstring& s)
{
if (EqualCI(s, L"") || EqualCI(s, L"none")) return GradientsUpdateType::None;
else if (EqualCI(s, L"adagrad")) return GradientsUpdateType::AdaGrad;
else if (EqualCI(s, L"rmsProp")) return GradientsUpdateType::RmsProp;
else if (EqualCI(s, L"fsAdagrad")) return GradientsUpdateType::FSAdaGrad;
// legacy, deprecated
else if (EqualCI(s, L"normal") || EqualCI(s, L"simple")) return GradientsUpdateType::None;
else InvalidArgument("ParseGradUpdateType: Invalid Gradient Updating Type. Valid values are (none | adagrad | rmsProp | fsAdagrad )");
}
static ParallelizationMethod ParseParallelizationMethod(const wstring& s)
{
if (EqualCI(s, L"") || EqualCI(s, L"none")) return ParallelizationMethod::none;
else if (EqualCI(s, L"DataParallelSGD")) return ParallelizationMethod::dataParallelSGD;
else if (EqualCI(s, L"ModelAveragingSGD")) return ParallelizationMethod::modelAveragingSGD;
else if (EqualCI(s, L"BlockMomentumSGD")) return ParallelizationMethod::blockMomentumSGD;
else if (EqualCI(s, L"dataParallelASGD")) return ParallelizationMethod::dataParallelASGD;
else InvalidArgument("ParseParallelizationMethod: Invalid Parallelization Method. Valid values are (none | DataParallelSGD | ModelAveragingSGD | BlockMomentumSGD | dataParallelASGD)");
}
static LearningRateSearchAlgorithm ParseLearningRateSearchType(const wstring& s)
{
if (EqualCI(s, L"false") || EqualCI(s, L"none")) return LearningRateSearchAlgorithm::None;
else if (EqualCI(s, L"searchBeforeEpoch")) return LearningRateSearchAlgorithm::SearchBeforeEpoch;
else if (EqualCI(s, L"adjustAfterEpoch")) return LearningRateSearchAlgorithm::AdjustAfterEpoch;
// legacy, deprecated
else if (EqualCI(s, L"beforeEpoch") || EqualCI(s, L"before")) return LearningRateSearchAlgorithm::SearchBeforeEpoch;
else if (EqualCI(s, L"afterEpoch") || EqualCI(s, L"after")) return LearningRateSearchAlgorithm::AdjustAfterEpoch;
else InvalidArgument("autoAdjustLR: Invalid learning rate search type. Valid values are (none | searchBeforeEpoch | adjustAfterEpoch)");
}
#ifdef ASGD_PARALLEL_SUPPORT
static AdjustLearningRateAtBeginning AdjustLearningRateAtBeginningType(const wstring& s)
{
if (EqualCI(s.c_str(), L"") || EqualCI(s.c_str(), L"none")) return AdjustLearningRateAtBeginning::None;
else if (EqualCI(s.c_str(), L"linearly")) return AdjustLearningRateAtBeginning::Linearly;
else if (EqualCI(s.c_str(), L"staircase")) return AdjustLearningRateAtBeginning::Staircase;
else InvalidArgument("AdjustLearningRateatBeginningType: Invalid Type. Valid values are (None | Linearly | Staircase)");
}
#endif
template<class ConfigRecordType>
SGDParams::SGDParams(const ConfigRecordType& configSGD, size_t sizeofElemType)
{
floatargvector learningRatesPerMB = configSGD(L"learningRatesPerMB", ConfigRecordType::Array(floatargvector()));
floatargvector learningRatesPerSample = configSGD(L"learningRatesPerSample", ConfigRecordType::Array(floatargvector()));
string executionEngineValue = configSGD(L"executionEngine", "synchronous");
// AutoAdjust Parameters
const ConfigRecordType& configAALR(configSGD(L"AutoAdjust", ConfigRecordType::Record()));
m_autoLearnRateSearchType = ParseLearningRateSearchType(configAALR(L"autoAdjustLR", L"None"));
m_reduceLearnRateIfImproveLessThan = configAALR(L"reduceLearnRateIfImproveLessThan", 0.0);
m_continueReduce = configAALR(L"continueReduce", false);
m_learnRateAdjustInterval = configAALR(L"learnRateAdjustInterval", (size_t) 1);
m_learnRateAdjustInterval = max((size_t) 1, m_learnRateAdjustInterval); // minimum interval is 1 epoch
m_learnRateDecreaseFactor = configAALR(L"learnRateDecreaseFactor", 0.618);
m_increaseLearnRateIfImproveMoreThan = configAALR(L"increaseLearnRateIfImproveMoreThan", numeric_limits<double>::infinity());
m_learnRateIncreaseFactor = configAALR(L"learnRateIncreaseFactor", 1.382);
// AutoAdjust Auto Adjust Minibatch Parameters
m_autoAdjustMinibatch = configAALR(L"autoAdjustMinibatch", false);
m_minibatchSizeTuningFrequency = configAALR(L"minibatchSizeTuningFrequency", (size_t) 1);
m_minibatchSizeTuningMax = configAALR(L"minibatchSizeTuningMax", (size_t) 1048576);
m_minibatchSearchCriterionErrorMargin = configAALR(L"minibatchSearchCriterionErrorMargin", (size_t) 1);
m_numPrevLearnRates = configAALR(L"numPrevLearnRates", (size_t) 5);
m_numBestSearchEpoch = configAALR(L"numBestSearchEpoch", (size_t) 1);
m_loadBestModel = configAALR(L"loadBestModel", true);
m_useCVSetControlLRIfCVExists = configAALR(L"UseCVSetControlLRIfCVExists", true);
m_useEvalCriterionControlLR = configAALR(L"UseEvalCriterionControlLR", false);
// TODO: mbSize and truncated should be specified differently for truncated BPTT:
// mbSize = total number of samples after which a model update should happen
// truncated = truncation length
m_mbSize = configSGD(L"minibatchSize", ConfigRecordType::Array(intargvector(vector<int>{256})));
m_truncated = configSGD(L"truncated", false);
m_maxSamplesInRAM = configSGD(L"maxSamplesInRAM", (size_t) SIZE_MAX);
m_numSubminiBatches = configSGD(L"numSubminibatches", (size_t) 1);
if (configAALR.Exists(L"numMiniBatch4LRSearch"))
{
LOGPRINTF(stderr, "WARNING: 'numMiniBatch4LRSearch' is deprecated, please remove it and use 'numSamples4Search' instead.\n");
// the number of minibatches used to search
// the learning rate. It's typically set to 10-20% of
// the total minibatches in an epoch.
auto numMiniBatch4LRSearch = configAALR(L"numMiniBatch4LRSearch", ConfigRecordType::Array(intargvector(vector<int>{500})));
m_numSamples4Search.resize(numMiniBatch4LRSearch.size());
for (size_t i = 0; i < numMiniBatch4LRSearch.size(); ++i)
m_numSamples4Search[i] = numMiniBatch4LRSearch[i] * m_mbSize[i];
}
else
{
// Default is default mbSize * 500, same as above.
intargvector defaultValues;
defaultValues.resize(m_mbSize.size());
std::transform(m_mbSize.begin(), m_mbSize.end(), defaultValues.begin(), [](int v) { return v * 500; });
m_numSamples4Search = configAALR(L"numSamples4Search", ConfigRecordType::Array(defaultValues));
}
// the number of samples in each epoch (0 means, use all the samples in each epoch).
m_epochSize = configSGD(L"epochSize", (size_t) 0);
// the number of samples in each epoch (0 means, use all the samples in each epoch).
if (m_epochSize == 0)
m_epochSize = requestDataSize;
m_maxComputedEpochSize = m_epochSize;
// the total number of epochs to run.
m_maxEpochs = configSGD(L"maxEpochs");
// Note: Momentum is best specified as a MB-size agnostic fashion.
// Because momentum per sample is a number very close to 1, it is more handy to use a logarithmic specification.
// We use 'momentumAsTimeConstant' to specify the time constant of the low-pass filter that momentum really is.
// To convert a typical per-MB momentum value of 'm' used with a MB size of 'N', use momentumAsTimeConstant = -N/ln(m).
// For the common configuration of momentum 0.9 at MB size of 256, that is momentumAsTimeConstant = 2429.8.
floatargvector momentumPerMB = configSGD(L"momentumPerMB", ConfigRecordType::Array(floatargvector()));
floatargvector momentumPerSample = configSGD(L"momentumPerSample", ConfigRecordType::Array(floatargvector()));
floatargvector momentumAsTimeConstant = configSGD(L"momentumAsTimeConstant", ConfigRecordType::Array(floatargvector()));
bool useNesterovMomentum = configSGD(L"useNAG", false);
m_maxTempMemSizeInSamplesForCNN = configSGD(L"maxTempMemSizeInSamplesForCNN", (size_t) 0);
m_traceLevel = configSGD(L"traceLevel", 0);
m_numMBsToShowResult = configSGD(L"numMBsToShowResult", (size_t)10);
m_firstMBsToShowResult = configSGD(L"firstMBsToShowResult", (size_t)0);
m_numMBsToCUDAProfile = configSGD(L"numMBsToCUDAProfile", (size_t)0);
m_gradientClippingWithTruncation = configSGD(L"gradientClippingWithTruncation", true);
m_clippingThresholdPerSample = configSGD(L"clippingThresholdPerSample", numeric_limits<double>::infinity());
// sequence-training parameters
m_hSmoothingWeight = configSGD(L"hSmoothingWeight", 0.95);
m_frameDropThresh = configSGD(L"frameDropThresh", 1e-10);
m_doReferenceAlign = configSGD(L"doReferenceAlign", false);
m_seqGammarCalcUsesMBR = configSGD(L"seqGammarUsesMBR", false);
m_seqGammarCalcAMF = configSGD(L"seqGammarAMF", 14.0);
m_seqGammarCalcLMF = configSGD(L"seqGammarLMF", 14.0);
m_seqGammarCalcbMMIFactor = configSGD(L"seqGammarBMMIFactor", 0.0);
m_seqGammarCalcWP = configSGD(L"seqGammarWordPen", 0.0);
m_disableRegInBatchNormalization = configSGD(L"disableRegInBatchNormalization", false);
m_dropoutRates = configSGD(L"dropoutRate", ConfigRecordType::Array(doubleargvector(vector<double>{0.0})));
m_batchNormalizationTimeConstant = configSGD(L"batchNormalizationTimeConstant", ConfigRecordType::Array(doubleargvector(vector<double>{0})));
m_batchNormalizationBlendTimeConstant = configSGD(L"batchNormalizationBlendTimeConstant", ConfigRecordType::Array(doubleargvector(vector<double>{0})));
GradientsUpdateType gradUpdateType = ParseGradUpdateType(configSGD(L"gradUpdateType", L"None"));
m_gradType.type = gradUpdateType;
m_gradType.gaussianNoiseInjectStd = (float)configSGD(L"gaussianNoiseInjectStd", 0.0);
// parameters for FSAdaGrad
m_gradType.varianceTimeConstant = configSGD(L"varianceTimeConstant", 2 * 3600 * 100); // default originates from 2h of speech
m_gradType.targetAdagradAvDenom = configSGD(L"fsAdagradTargetAvDenom", 1.0); // TODO: deprecated parameter kept for back compat (set to 0.0025 inconjunction with reenabling the static bug)
// extract RMSProp parameters from config, if they exist. Default to reasonable values.
m_rpi.dec = configSGD(L"rms_wgt_dec", 0.75);
m_rpi.inc = configSGD(L"rms_wgt_inc", 1.2);
m_rpi.min = configSGD(L"rms_wgt_min", 0.1);
m_rpi.max = configSGD(L"rms_wgt_max", 10.0);
m_rpi.gamma = configSGD(L"rms_gamma", 0.99);
m_needAveMultiplier = configSGD(L"normWithAveMultiplier", true);
m_L2RegWeight = configSGD(L"L2RegWeight", 0.0);
m_L1RegWeight = configSGD(L"L1RegWeight", 0.0);
// for backward support. future setups should use gradUpdateType='AdaGrad', instead of useAdagrad=true
if (configSGD(L"useAdagrad", false))
m_gradType.type = GradientsUpdateType::AdaGrad;
m_adaptationRegType = ParseAdaptationRegType(configSGD(L"adaptationRegType", L"None"));
m_adaptationRegWeight = configSGD(L"adaptationRegWeight", 0.0);
// gradient check setup
m_doGradientCheck = configSGD(L"gradientcheck", false);
m_gradientCheckSigDigit = configSGD(L"sigFigs", 6.0); // TODO: why is this a double?
if (m_doGradientCheck && sizeofElemType != sizeof(double))
{
LogicError("Gradient check needs to use precision = 'double'.");
}
m_useAllDataForPreComputedNode = configSGD(L"UseAllDataForPreComputedNode", true);
// consistency checks
for (size_t i = 0; i < m_mbSize.size(); i++)
{
if (m_epochSize != requestDataSize && m_epochSize < m_mbSize[i])
{
InvalidArgument("epoch size must be larger than mbsize.");
}
}
if (m_autoLearnRateSearchType == LearningRateSearchAlgorithm::None &&
(learningRatesPerSample.size() == 0 && learningRatesPerMB.size() == 0))
{
InvalidArgument("If autoLearnRateSearchType is false you must specify the learningRatesPerSample or learningRatesPerMB parameter.");
}
if (learningRatesPerSample.size() > 0 && learningRatesPerMB.size() > 0)
{
InvalidArgument("You specified both learningRatesPerSample and learningRatesPerMB. Please comment out one of them.");
}
if (learningRatesPerSample.size() > 0)
{
m_learningRatesParam = learningRatesPerSample;
m_learningRatesSpecifiedForMBSize = intargvector(L"1");
}
else if (learningRatesPerMB.size() > 0) // this actually means per specified minibatch size
{
m_learningRatesParam = learningRatesPerMB;
m_learningRatesSpecifiedForMBSize = m_mbSize;
}
if ((int) (momentumPerSample.size() > 0) + (int) (momentumPerMB.size() > 0) + (int) (momentumAsTimeConstant.size() > 0) > 1)
{
InvalidArgument("You specified more than one of momentumPerSample, momentumPerMB, and momentumAsTimeConstant. Please only specify one.");
}
if (momentumPerSample.size() > 0) // note: noone would ever use this; use momentumAsTimeConstant instead
{
m_momentumParam = momentumPerSample;
m_momentumSpecifiedForMBSize = intargvector(L"1");
}
else if (momentumAsTimeConstant.size() > 0)
{
vector<float> momentumPerSampleVec;
for (int i = 0; i < momentumAsTimeConstant.size(); i++)
{
double momTC = momentumAsTimeConstant[i];
double momPS = momTC == 0.0 ? 0 : exp(-1.0 / momTC);
momentumPerSampleVec.push_back((float) momPS);
}
m_momentumParam = momentumPerSampleVec;
m_momentumSpecifiedForMBSize = intargvector(L"1");
}
else if (momentumPerMB.size() > 0)
{
m_momentumParam = momentumPerMB;
m_momentumSpecifiedForMBSize = m_mbSize;
}
else // default: momentumPerMB = 0.9 per MB
{
m_momentumParam = floatargvector(L"0.9");
m_momentumSpecifiedForMBSize = m_mbSize;
}
m_useNesterovMomentum = useNesterovMomentum;
for (int i = 0; i < m_momentumParam.size(); i++)
{
if (m_momentumParam[i] >= 1.0 || m_momentumParam[i] < 0.0)
{
InvalidArgument("Momentum parameter must be in [0, 1).");
}
}
if (m_learnRateDecreaseFactor > 1 || m_learnRateIncreaseFactor < 1)
{
InvalidArgument("learnRateIncreaseFactor must be >= 1 and learnRateDecreaseFactor must be <= 1.");
}
for (size_t i = 0; i < m_dropoutRates.size(); i++)
{
if (m_dropoutRates[i] >= 1 || m_dropoutRates[i] < 0)
{
InvalidArgument("dropoutRate must be >= 0 and < 1.");
}
}
if (m_adaptationRegWeight > 1 || m_adaptationRegWeight < 0)
InvalidArgument("adaptationRegWeight must be in [0 1]");
m_minLearnRate = configSGD(L"minLearningRatePerSample", 1e-9f);
m_needAdaptRegularization = false;
// BUGBUG: these are not passed to Init()
m_doUnitTest = configSGD(L"unitTest", false);
m_perfTraceLevel = configSGD(L"perfTraceLevel", (int)0);
// parallel training
m_parallelizationMethod = ParallelizationMethod::none;
m_numGradientBits = vector<int>{8 * (int)sizeofElemType}; // means no quantization
m_zeroThresholdFor1Bit = true;
m_bufferedAsyncGradientAggregation = false;
m_enableDistributedMBReading = false;
m_parallelizationStartEpochNum = 0;
m_modelAggregationBlockSize = 0;
if (configSGD.Exists(L"ParallelTrain"))
{
MPIWrapperPtr pMPI = MPIWrapper::GetInstance();
if (!pMPI)
{
// some users may forget to specify parallelTrain option
// in this case, falling back to normal SGD
fprintf(stderr, "parallelTrain option is not enabled. ParallelTrain config will be ignored.\n");
}
else
{
size_t numMPIWorkers = pMPI->NumNodesInUse();
const ConfigRecordType& configParallelTrain(configSGD(L"ParallelTrain", ConfigRecordType::Record()));
m_parallelizationMethod = ParseParallelizationMethod(configParallelTrain(L"parallelizationMethod", L"none"));
m_parallelizationStartEpochNum = configParallelTrain(L"parallelizationStartEpoch", (int)1) - 1; // Internally, epoch numbers are 0-based
if (m_parallelizationStartEpochNum < 0 /* sic */)
// Be explicit that user-facing epoch numbers are 1-based
InvalidArgument("parallelizationStartEpoch must be greater or equal to 1");
m_enableDistributedMBReadingNotSpecified = !configParallelTrain.Exists(L"distributedMBReading");
m_enableDistributedMBReading = configParallelTrain(L"distributedMBReading", false);
m_syncStatsTrace = configParallelTrain(L"syncPerfStats", (int)0);
if (configParallelTrain.Exists(L"DataParallelSGD"))
{
const ConfigRecordType& configDataParallelSGD(configParallelTrain(L"DataParallelSGD", ConfigRecordType::Record()));
let defaultGradientBits = 8 * (int)sizeofElemType;
m_numGradientBits = configDataParallelSGD(L"gradientBits", ConfigRecordType::Array(intargvector(vector<int>{defaultGradientBits})));
m_zeroThresholdFor1Bit = configDataParallelSGD(L"useZeroThresholdFor1BitQuantization", true);
m_bufferedAsyncGradientAggregation = configDataParallelSGD(L"useBufferedAsyncGradientAggregation", false);
for (size_t i = 0; i < m_numGradientBits.size(); i++)
{
if (m_numGradientBits[i] < 1 || m_numGradientBits[i] > defaultGradientBits)
InvalidArgument("gradientBits values must be in the range [1, 32] when using precision=float and in range [1, 64] when using precision=double.");
}
}
if (configParallelTrain.Exists(L"ModelAveragingSGD"))
{
const ConfigRecordType& configMASGD(configParallelTrain(L"ModelAveragingSGD", ConfigRecordType::Record()));
if (configMASGD.Exists(L"blockSizePerWorker") && configMASGD.Exists(L"blockSize"))
InvalidArgument("It is only allowed to set blockSizePerWorker or blockSize, not both of them");
else if (configMASGD.Exists(L"blockSize"))
m_modelAggregationBlockSize = configMASGD(L"blockSize");
else if (configMASGD.Exists(L"blockSizePerWorker"))
{
m_modelAggregationBlockSize = configMASGD(L"blockSizePerWorker");
m_modelAggregationBlockSize *= numMPIWorkers;
}
else
m_modelAggregationBlockSize = 40000 * numMPIWorkers; // default value
#if 1 // legacy option
if (configMASGD.Exists(L"syncFrequencyInFrames"))
{
if (configMASGD.Exists(L"blockSizePerWorker") || configMASGD.Exists(L"blockSize"))
InvalidArgument("syncFrequencyInFrames is a deprecated alias of blockSizePerWorker. It is not allowed to specify both of them");
m_modelAggregationBlockSize = configMASGD(L"syncFrequencyInFrames");
m_modelAggregationBlockSize *= numMPIWorkers;
fprintf(stderr, "WARNING: option syncFrequencyInFrames in ModelAveragingSGD is going to be deprecated. Please use blockSizePerWorker instead\n");
}
if (configMASGD.Exists(L"syncPeroid"))
{
if (configMASGD.Exists(L"blockSizePerWorker") || configMASGD.Exists(L"blockSize"))
InvalidArgument("syncPeriod is a deprecated alias of blockSizePerWorker. It is not allowed to specify both of them");
m_modelAggregationBlockSize = configMASGD(L"syncPeriod");
m_modelAggregationBlockSize *= numMPIWorkers;
fprintf(stderr, "WARNING: option syncPeroid in ModelAveragingSGD is going to be deprecated. Please use blockSizePerWorker instead in the future.\n");
}
#endif
}
if (configParallelTrain.Exists(L"BlockMomentumSGD"))
{
#ifndef CNTK_PARALLEL_TRAINING_SUPPORT
InvalidArgument("BlockMomentumSGD is not enabled in this version.\n");
#else
const ConfigRecordType& configBMSGD(configParallelTrain(L"BlockMomentumSGD", ConfigRecordType::Record()));
if (configBMSGD.Exists(L"blockSize") && configBMSGD.Exists(L"blockSizePerWorker"))
InvalidArgument("It is only allowed to set blockSizePerWorker or blockSize, not both of them");
else if (configBMSGD.Exists(L"blockSizePerWorker"))
{
m_modelAggregationBlockSize = configBMSGD(L"blockSizePerWorker");
m_modelAggregationBlockSize *= numMPIWorkers;
}
else if (configBMSGD.Exists(L"blockSize"))
m_modelAggregationBlockSize = configBMSGD(L"blockSize");
else
m_modelAggregationBlockSize = 120000 * numMPIWorkers; // default value
#if 1 // legacy option
if (configBMSGD.Exists(L"syncPeriod"))
{
if (configBMSGD.Exists(L"blockSizePerWorker") || configBMSGD.Exists(L"blockSize"))
InvalidArgument("syncPeriod is a deprecated alias of blockSizePerWorker. It is not allowed to specify both of them");
m_modelAggregationBlockSize = configBMSGD(L"syncPeriod");
m_modelAggregationBlockSize *= numMPIWorkers;
fprintf(stderr, "WARNING: option syncPeroid in BlockMomentumSGD is going to be deprecated. Please use blockSizePerWorker instead in the future.\n");
}
#endif
m_resetSGDMomentum = configBMSGD(L"resetSGDMomentum", true);
m_useNesterovBlockMomentum = configBMSGD(L"useNesterovMomentum", true);
m_blockLearningRate = configBMSGD(L"blockLearningRate", 1.0);
if (configBMSGD.Exists(L"blockMomentumPerSync") && configBMSGD.Exists(L"blockMomentumAsTimeConstant"))
{
InvalidArgument("It is only allowed to set either blockMomentumPerSync or blockMomentumAsTimeConstant, not both of them");
}
else if (configBMSGD.Exists(L"blockMomentumAsTimeConstant"))
{
m_blockMomentumAsTimeConstant = configBMSGD(L"blockMomentumAsTimeConstant");
}
#if 1 // This option "blockMomentumPerSync" is going to be deprecated in the future
else if (configBMSGD.Exists(L"blockMomentumPerSync"))
{
double blockMomentum = configBMSGD(L"blockMomentumPerSync");
m_blockMomentumAsTimeConstant = BlockMomentumSGD<double>::Momentum2TimeConstant(blockMomentum, m_modelAggregationBlockSize);
}
#endif
else /*if (!configBMSGD.Exists(L"blockMomentumPerSync") && !configBMSGD.Exists(L"blockMomentumAsTimeConstant"))*/
{
double blockMomentum = 1.0 - 1.0 / (double)numMPIWorkers; // this is a default value which ensures each block update contributes equally
m_blockMomentumAsTimeConstant = BlockMomentumSGD<double>::Momentum2TimeConstant(blockMomentum, m_modelAggregationBlockSize);
}
#endif
}
if (configParallelTrain.Exists(L"DataParallelASGD"))
{
#ifndef ASGD_PARALLEL_SUPPORT
InvalidArgument("DataParallelASGD is not enabled in this version.\n");
#else
const ConfigRecordType & configDataParallelASGD(configParallelTrain(L"DataParallelASGD", ConfigRecordType::Record()));
m_nSyncSamplesPerWorker = configDataParallelASGD(L"syncPeriod", ConfigRecordType::Array(intargvector(vector<int>{256})));
m_isAsyncBufferEnabled = configDataParallelASGD(L"UsePipeline", false);
m_isSimulateMA = configDataParallelASGD(L"SimModelAverage", false); // using parameter server-based version of ModelAveragingSGD
if (configDataParallelASGD.Exists(L"AdjustLearningRateAtBeginning")) // adjust learning rate per m_adjustNumInBatch minibatchs until to original one,
// this option could be used to takcle the unstableness of DataParallelASGD if you get a chance
{
const ConfigRecordType & configAdjustLearningRateAtBeginning(configDataParallelASGD(L"AdjustLearningRateAtBeginning", ConfigRecordType::Record()));
m_adjustLearningRateAtBeginning = AdjustLearningRateAtBeginningType(configAdjustLearningRateAtBeginning(L"adjustType", L"staircase"));
m_adjustCoefficient = configAdjustLearningRateAtBeginning(L"adjustCoefficient", (double)0.1);
m_adjustPerMinibatches = configAdjustLearningRateAtBeginning(L"adjustPerMinibatches", (size_t)256);
}
#endif
}
} // if (!pMPI)
} // if (configSGD.Exists(L"ParallelTrain"))
}
static size_t GetSizeOfPrecision(const ScriptableObjects::IConfigRecordPtr configp)
{
wstring precision = configp->Get(L"precision");
if (precision == L"float")
return sizeof(float);
else if (precision == L"double")
return sizeof(double);
else
RuntimeError("invalid value '%ls' for 'precision', must be 'float' or 'double'", precision.c_str());
}
SGDParams::SGDParams(const ScriptableObjects::IConfigRecordPtr configp)
: SGDParams(*configp, GetSizeOfPrecision(configp))
{
}
void SGDParams::InitializeAndCheckBlockMomentumSGDParameters()
{
#ifdef CNTK_PARALLEL_TRAINING_SUPPORT
// final argument checking in case of user specifying a bad parameter
size_t numMPIWorker = MPIWrapper::GetInstance()->NumNodesInUse();
double blockMomentum = BlockMomentumSGD<double>::TimeConstant2Momentum(m_blockMomentumAsTimeConstant, m_modelAggregationBlockSize);
if ((1 - blockMomentum)*m_blockLearningRate*numMPIWorker >= 2.0)
{
fprintf(stderr, "WARNING: (1-blockMomentumPerSync)*blockLearningRate is larger than 2*numWorkers; it is possible to overshoot.");
}
if (blockMomentum == 0.0)
{
fprintf(stderr, "WARNING: blockMomentum equals to zero. \n");
}
#else
// don't need do anything here
m_blockMomentumAsTimeConstant = 0.0;
m_blockLearningRate = 1.0;
#endif
}
// register SGD<> with the ScriptableObject system
ScriptableObjects::ConfigurableRuntimeTypeRegister::AddFloatDouble<SGD<float>, SGD<double>> registerSGDOptimizer(L"SGDOptimizer");
}}}