CNTK/Tutorials/SLUHandsOn/SLUHandsOn_Solution2.cntk

90 строки
2.8 KiB
Plaintext

# CNTK Configuration File for creating a slot tagger and an intent tagger.
command = TrainTagger:TestTagger
makeMode = false ; traceLevel = 0 ; deviceId = "auto"
rootDir = "." ; dataDir = "$rootDir$" ; modelDir = "$rootDir$/Models"
modelPath = "$modelDir$/slu.cmf"
vocabSize = 943 ; numLabels = 129 ; numIntents = 26 # number of words in vocab, slot labels, and intent labels
# The command to train the LSTM model
TrainTagger = {
action = "train"
BrainScriptNetworkBuilder = {
inputDim = $vocabSize$
labelDim = $numLabels$
embDim = 150
hiddenDim = 300
OneWordLookahead (x) = Splice (x : DelayLayer {T=-1} (x))
model = Sequential (
EmbeddingLayer {embDim} : # embedding
OneWordLookahead : ##### added
BatchNormalizationLayer {} :
RecurrentLSTMLayer {hiddenDim, goBackwards=false} : # LSTM
BatchNormalizationLayer {} :
DenseLayer {labelDim} # output layer
)
# features
query = Input {inputDim}
slotLabels = Input {labelDim}
# model application
z = model (query)
# loss and metric
ce = CrossEntropyWithSoftmax (slotLabels, z)
errs = ClassificationError (slotLabels, z)
featureNodes = (query)
labelNodes = (slotLabels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
}
SGD = {
maxEpochs = 8 ; epochSize = 36000
minibatchSize = 70
learningRatesPerSample = 0.003*2:0.0015*12:0.0003
gradUpdateType = "fsAdaGrad"
gradientClippingWithTruncation = true ; clippingThresholdPerSample = 15.0
firstMBsToShowResult = 10 ; numMBsToShowResult = 100
}
reader = {
readerType = "CNTKTextFormatReader"
file = "$DataDir$/atis.train.ctf"
randomize = true
input = {
query = { alias = "S0" ; dim = $vocabSize$ ; format = "sparse" }
intentLabels = { alias = "S1" ; dim = $numIntents$ ; format = "sparse" }
slotLabels = { alias = "S2" ; dim = $numLabels$ ; format = "sparse" }
}
}
}
# Test the model's accuracy (as an error count)
TestTagger = {
action = "eval"
modelPath = $modelPath$
reader = {
readerType = "CNTKTextFormatReader"
file = "$DataDir$/atis.test.ctf"
randomize = false
input = {
query = { alias = "S0" ; dim = $vocabSize$ ; format = "sparse" }
intentLabels = { alias = "S1" ; dim = $numIntents$ ; format = "sparse" }
slotLabels = { alias = "S2" ; dim = $numLabels$ ; format = "sparse" }
}
}
}