CNTK/Tutorials
Chris Basoglu ceefaa5458 Fix notebook 2017-02-02 13:44:09 -08:00
..
HelloWorld-LogisticRegression
ImageHandsOn Revision based on CR. 2017-01-13 08:52:37 -08:00
NumpyInterop Undo renaming ProgressPrinter. 2017-01-26 15:49:18 -08:00
SLUHandsOn
CNTK_101_LogisticRegression.ipynb Fix notebook 2017-02-02 13:44:09 -08:00
CNTK_102_FeedForward.ipynb Bump versions 2017-02-01 18:13:00 +01:00
CNTK_103A_MNIST_DataLoader.ipynb Bump versions 2017-02-01 18:13:00 +01:00
CNTK_103B_MNIST_FeedForwardNetwork.ipynb Bump versions 2017-02-01 18:13:00 +01:00
CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb Initial support for writing TensorBoard event files. 2017-01-20 22:51:32 -08:00
CNTK_105_Basic_Autoencoder_for_Dimensionality_Reduction.ipynb Undo renaming ProgressPrinter. 2017-01-26 15:49:18 -08:00
CNTK_106A_LSTM_Timeseries_with_Simulated_Data.ipynb Updated tutorial with CR feedback 2017-01-19 13:05:33 -08:00
CNTK_201A_CIFAR-10_DataLoader.ipynb Tutorials: more fixes 2016-11-18 19:15:15 +01:00
CNTK_201B_CIFAR-10_ImageHandsOn.ipynb Undo renaming ProgressPrinter. 2017-01-26 15:49:18 -08:00
CNTK_202_Language_Understanding.ipynb Bump versions 2017-02-01 18:13:00 +01:00
CNTK_203_Reinforcement_Learning_Basics.ipynb Carrying forward git pr 1311 - render cartpole + clear conda kernel to default 2017-01-23 15:16:12 -08:00
CNTK_204_Sequence_To_Sequence.ipynb Bump versions 2017-02-01 18:13:00 +01:00
CNTK_205_Artistic_Style_Transfer.ipynb Make Jupyter Notebook tests device-aware 2017-01-12 13:59:56 +01:00
CNTK_206_Basic_GAN.ipynb Increased iterations in isFast mode 2017-01-27 11:55:31 -08:00
CNTK_207_Training_with_Sampled_Softmax.ipynb changed settings of per measurement plot 2017-01-31 22:07:22 +01:00
README.md

README.md

Tutorials

In this folder you find several tutorials both for the CNTK Python API and for BrainScript.

Python

The Python Jupyter notebooks in this folder cover a range of different application including image classification, language understanding, reinforcement learning and others. Additionally, the folder NumpyInterop contains a simple example of how to use numpy arrays as input for CNTK training and evaluation.

BrainScript

There are four detailed tutorials on how to use CNTK with BrainScript. A step-by-step walk through for each of these is provided on the CNTK wiki.

  • Hello World - Logistic Regression (Details)
  • Image Hands On (Details)
  • SLU (Language Understanding) Hands On (Details)
  • Object detection using Fast R-CNN (Code, Details)