CNTK/Examples/SequenceToSequence/CMUDict
Amit Agarwal 8a9020f78e CNTK v2 library: Migrate past_value and future_value to sequence 2017-03-30 12:11:20 -07:00
..
BrainScript Fixed python commons and eval clients 2016-11-14 16:24:50 +01:00
Data Restructuring examples and tutorials 2016-11-14 16:24:45 +01:00
Python CNTK v2 library: Migrate past_value and future_value to sequence 2017-03-30 12:11:20 -07:00
README.md fixed tutorials and VS links 2016-11-14 16:24:56 +01:00

README.md

This example demonstrates the use of CNTK for grapheme-to-phoneme (letter-to-sound) conversion using a sequence-to-sequence model with attention, using the CMUDict dictionary.

The code supports a number of alternative configurations. As configured currently, it implements

  • a 3-hidden layer unidirectional LSTM encoder network, all hidden dimensions are 512
  • a 3-hidden layer unidirectional LSTM decoder network, all hidden dimensions are 512
  • encoder state is passed to the decoder by means of attention, with projection dimension 128 and maximum input length of 20 tokens
  • embedding is disabled (because the 'vocabulary' of the task, letters and phonemes, is very small)
  • beam decoder with beam width 3

To Use

Modify the following in G2P.cntk as needed:

  • pathnames
  • deviceId to specify CPU (-1) or GPU (>=0 or "auto")

Run:

  • command line: cntk configFile=Examples/SequenceToSequence/CMUDict/BrainScript/G2P.cntk RunRootDir=g2p
  • VS Debugger: configFile=$(SolutionDir)Examples/SequenceToSequence/CMUDict/BrainScript/G2P.cntk RunRootDir=$(SolutionDir)Examples/SequenceToSequence/CMUDict