CNTK/Source/Math/CPUMatrix.cpp

6410 строки
219 KiB
C++

//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
// CPUMatrix.cpp : full implementation of all matrix functions on the CPU side
//
#include "stdafx.h"
#include "Basics.h"
#include "File.h"
#include "CPUMatrix.h"
#include "TensorOps.h"
#include <assert.h>
#include <stdexcept>
#include <omp.h>
#include <math.h>
#include <random>
#include <chrono>
#include <exception>
#include <thread>
#include <iostream>
#include <algorithm>
#ifdef _WIN32
#define NOMINMAX
#include "Windows.h"
#else
#include <cfloat>
#endif
#ifdef LEAKDETECT
#include <vld.h>
#endif
#pragma warning(disable : 4100) // unreferenced formal parameter; "struct TensorOpReduction<ElemType, OPFN, typename ReductionOp, N, -1>" trigger this
#pragma warning(disable : 4127) // conditional expression is constant; "if (sizeof(ElemType)==sizeof(float))" triggers this
#pragma warning(disable : 4244) // unreachable code; triggered for unknown reasons
#pragma warning(disable : 4702) // conversion from 'double' to 'float'
#ifdef USE_ACML
// Download ACML 5.3.1 (e.g., acml5.3.1-ifort64.exe) or above
// from http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml/acml-downloads-resources/
// Install the ifort64_mp variant (compiled with intel compiler) of the library
// Set Environment variable ACML_PATH to C:\AMD\acml5.3.1\ifort64_mp or the folder you installed acml
// to point to your folder for the include file and link library
#include <acml.h> // requires ACML 5.3.1 and above
#elif defined(USE_MKL)
// requires MKL 10.0 and above
#include <mkl.h>
#else
#ifdef _MSC_VER
// Visual Studio doesn't define standard complex types properly
#define HAVE_LAPACK_CONFIG_H
#define LAPACK_COMPLEX_STRUCTURE
#endif
#include <cblas.h>
#include <lapacke.h>
#endif
#ifdef USE_ACML // MKL has one additional parameter for different matrix order
#define BLAS_COLMAJOR
#else
#define BLAS_COLMAJOR (int) MatrixOrder::ColMajor,
#endif
#define SWAP(a, b) \
{ \
(a) ^= (b); \
(b) ^= (a); \
(a) ^= (b); \
}
#define IDX2C(i, j, ld) (((j) * (ld)) + (i)) // 0 based indexing
namespace Microsoft { namespace MSR { namespace CNTK {
int MATH_API TracingGPUMemoryAllocator::m_traceLevel = 0;
void TracingGPUMemoryAllocator::SetTraceLevel(int traceLevel)
{
m_traceLevel = traceLevel;
}
bool TracingGPUMemoryAllocator::IsTraceEnabled()
{
return (m_traceLevel > 0);
}
#pragma region Helpful Enum Definitions
enum class MatrixOrder
{
RowMajor = 101, // row-major arrays
ColMajor = 102 // column-major arrays
};
enum class MatrixTranspose : char
{
NoTrans = 'N', // trans='N'
Trans = 'T', // trans='T'
ConjTrans = 'C' // trans='C'
};
enum class SymMatrixType : char
{
Up = 'U', // symmetric matrix is stored in the upper part
Low = 'L', // symmetric matrix is stored in thelower part
Full = 'F', // full populated
NotSymmetric = 'N' // not a symmetric matrix
};
enum class MatrixOpSide : char
{
Left = 'L', // left multiply
Right = 'R', // right multiply
};
#pragma endregion Helpful Enum Definitions
#pragma region Constructors and Destructor
template <class ElemType>
CPUMatrix<ElemType>::CPUMatrix()
{
ZeroInit();
}
// helper to allocate an array of ElemType
// Use this instead of new[] to get NaN initialization for debugging.
template <class ElemType>
static ElemType* NewArray(size_t n)
{
ElemType* p = new ElemType[n]();
#if 0 // _DEBUG
ElemType nan = Matrix<ElemType>::MakeNan(__LINE__);
for (size_t i = 0; i < n; i++)
p[i] = nan;
#endif
return p;
}
template <class ElemType>
CPUMatrix<ElemType>::CPUMatrix(const size_t numRows, const size_t numCols)
{
ZeroInit();
m_numRows = numRows;
m_numCols = numCols;
SetSizeAllocated(GetNumElements());
if (GetNumElements() != 0)
{
SetBuffer(NewArray<ElemType>(GetNumElements()), GetNumElements() * sizeof(ElemType));
}
}
template <class ElemType>
CPUMatrix<ElemType>::CPUMatrix(const size_t numRows, const size_t numCols, ElemType* pArray, const size_t matrixFlags)
{
ZeroInit();
SetValue(numRows, numCols, pArray, matrixFlags);
}
//copy constructor, deep copy
template <class ElemType>
CPUMatrix<ElemType>::CPUMatrix(const CPUMatrix<ElemType>& deepCopyFrom)
{
ZeroInit();
SetValue(deepCopyFrom);
}
//assignment operator, deep copy
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator=(const CPUMatrix<ElemType>& deepCopyFrom)
{
SetValue(deepCopyFrom);
return *this;
}
//move constructor, shallow copy
template <class ElemType>
CPUMatrix<ElemType>::CPUMatrix(CPUMatrix<ElemType>&& moveFrom)
{
ShallowCopyFrom(moveFrom);
moveFrom.ZeroValues();
}
//move assignment operator, shallow copy
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator=(CPUMatrix<ElemType>&& moveFrom)
{
if (this != &moveFrom)
{
ShallowCopyFrom(moveFrom);
// release the pointer from the source object so that the destructor won't release it twice
moveFrom.ZeroValues();
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>::~CPUMatrix()
{
Clear();
}
template <class ElemType>
void CPUMatrix<ElemType>::Clear()
{
ZeroInit();
}
#pragma endregion Constructors and Destructor
#pragma region Basic Operators
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::ColumnSlice(size_t startColumn, size_t numCols) const
{
if (startColumn + numCols > m_numCols)
InvalidArgument("The slice (%d+%d) is out of range of the source matrix (%d).", (int) startColumn, (int) numCols, (int) m_numCols);
CPUMatrix<ElemType> slice;
slice.ShallowCopyFrom(*this);
slice.m_numCols = numCols;
slice.m_sliceViewOffset = m_sliceViewOffset + startColumn * m_numRows;
return slice;
}
// set this(:, 0:numCols-1) = fromMatrix(:, startColumn : startColumn+numCols-1)
// TODO: why not say *this = ColumnSlice()?
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignColumnSlice(const CPUMatrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols)
{
if (startColumn + numCols > fromMatrix.m_numCols)
InvalidArgument("The slice (%d+%d) is out of range of the source matrix (%d).", (int) startColumn, (int) numCols, (int) fromMatrix.m_numCols);
Clear();
ShallowCopyFrom(fromMatrix);
m_numCols = numCols;
m_sliceViewOffset = fromMatrix.m_sliceViewOffset + startColumn * m_numRows;
return *this;
}
// set this(: , startColumn:startColumn+numCols-1)= fromMatrix;
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::SetColumnSlice(const CPUMatrix<ElemType>& fromMatrix, size_t startColumn, size_t numCols)
{
if (startColumn + numCols > m_numCols)
LogicError("The slice is out of range of the destination matrix.");
if (numCols > fromMatrix.GetNumCols())
InvalidArgument("The slice (%d) is out of range of the source matrix (%d).", (int) numCols, (int) fromMatrix.GetNumCols());
if (m_numRows != fromMatrix.m_numRows)
LogicError("The number of rows in source and destination matrices do not match");
memcpy(Data() + startColumn * m_numRows, fromMatrix.Data(), numCols * m_numRows * sizeof(ElemType));
return *this;
}
template <class ElemType>
void CPUMatrix<ElemType>::CopyColumnsStrided(const CPUMatrix<ElemType>& fromMatrix, size_t numCols, size_t srcNumColsStride, size_t destNumColsStride)
{
if ((((numCols - 1) * srcNumColsStride) + 1) > fromMatrix.m_numCols)
LogicError("The numCols to copy and srcNumColsStride specified is out of range of the source matrix.");
if ((((numCols - 1) * destNumColsStride) + 1) > m_numCols)
LogicError("The numCols to copy and srcNumColsStride specified is out of range of the destination matrix.");
if (m_numRows != fromMatrix.m_numRows)
LogicError("The number of rows in source and destination matrices do not match");
long n = (long) numCols, m = (long) m_numRows;
auto& us = *this;
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (size_t i = 0; i < (m & ~3); i += 4)
{
us(i, j * destNumColsStride) = fromMatrix(i, j * srcNumColsStride);
us(i + 1, j * destNumColsStride) = fromMatrix(i + 1, j * srcNumColsStride);
us(i + 2, j * destNumColsStride) = fromMatrix(i + 2, j * srcNumColsStride);
us(i + 3, j * destNumColsStride) = fromMatrix(i + 3, j * srcNumColsStride);
}
// handle remaining
for (size_t i = m & ~3; i < m; i++)
{
us(i, j * destNumColsStride) = fromMatrix(i, j * srcNumColsStride);
}
}
}
//for each column of a, we add all rows of a to this starting from startIndex
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignToRowSliceValuesOf(const CPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows)
{
if (a.GetNumRows() != numRows)
LogicError("AddToRowSliceValuesOf: a.GetNumRows() != numRows.");
if (startIndex + numRows > GetNumRows())
LogicError("AddToRowSliceValuesOf: startIndex + numRows exceeds GetNumRows().");
if (a.GetNumCols() != GetNumCols())
LogicError("AddToRowSliceValuesOf: columns does not match.");
long n = (long) a.GetNumCols(), m = (long) numRows;
auto& us = *this;
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (size_t i = 0, startRow = startIndex; i < (m & ~3); i += 4, startRow += 4)
{
us(startRow, j) = a(i, j);
us(startRow + 1, j) = a(i + 1, j);
us(startRow + 2, j) = a(i + 2, j);
us(startRow + 3, j) = a(i + 3, j);
}
// handle remaining stuffs
for (size_t i = m & ~3, startRow = startIndex + (m & ~3); i < m; i++, startRow++)
{
us(startRow, j) = a(i, j);
}
}
return *this;
}
//for each column of a, we assign numRows starting from startIndex to this
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignRowSliceValuesOf(const CPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows)
{
if (startIndex + numRows > a.GetNumRows())
LogicError("AssignRowSliceValuesOf: startIndex + numRows exceeds a.GetNumRows().");
RequireSize(numRows, a.GetNumCols());
long n = (long) a.GetNumCols(); // note: OpenMP requires loop indices to be long, not size_t
long k = (long) a.GetNumRows();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// memory copy might be faster?
memcpy(Data() + j * numRows, a.Data() + j * k + startIndex, sizeof(ElemType) * numRows);
// //four-way unrolling
// for (long i=0, startRow = startIndex; i<(m & ~3); i+=4, startRow+=4)
// {
// us(i,j) = a(startRow,j);
// us(i+1,j) = a(startRow+1,j);
// us(i+2,j) = a(startRow+2,j);
// us(i+3,j) = a(startRow+3,j);
// }
// //handle remaining stuffs
// for (long i=m & ~3, startRow = startIndex+(m & ~3); i<m; i++, startRow++)
// {
// us(i,j) = a(startRow,j);
// }
}
return *this;
}
//for the row slice of this starting from startIndex we add a to it.
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddToRowSliceValuesOf(const CPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows)
{
if (a.IsEmpty())
LogicError("AddToRowSliceValuesOf: input matrix a is empty.");
if (a.GetNumRows() != numRows)
LogicError("AddToRowSliceValuesOf: a.GetNumRows() != numRows.");
if (startIndex + numRows > GetNumRows())
LogicError("AddToRowSliceValuesOf: startIndex + numRows exceeds GetNumRows().");
if (a.GetNumCols() != GetNumCols())
LogicError("AddToRowSliceValuesOf: columns does not match.");
long n = (long) a.GetNumCols(), m = (long) numRows;
auto& us = *this;
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0, startRow = (long) startIndex; i < (m & ~3); i += 4, startRow += 4)
{
us(startRow, j) += a(i, j);
us(startRow + 1, j) += a(i + 1, j);
us(startRow + 2, j) += a(i + 2, j);
us(startRow + 3, j) += a(i + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3, startRow = (long) startIndex + (m & ~3); i < m; i++, startRow++)
{
us(startRow, j) += a(i, j);
}
}
return *this;
}
//for each column of this, we add row slice of a starting from startIndex
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddWithRowSliceValuesOf(const CPUMatrix<ElemType>& a, const size_t startIndex, const size_t numRows)
{
if (a.IsEmpty())
LogicError("AddWithRowSliceValuesOf: input matrix a is empty.");
if (GetNumRows() != numRows)
LogicError("AddWithRowSliceValuesOf: GetNumRows() != numRows.");
if (startIndex + numRows > a.GetNumRows())
LogicError("AddWithRowSliceValuesOf: startIndex + numRows exceeds a.GetNumRows().");
if (a.GetNumCols() != GetNumCols())
LogicError("AddWithRowSliceValuesOf: columns does not match.");
long n = (long) a.GetNumCols(), m = (long) numRows;
auto& us = *this;
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0, startRow = (long) startIndex; i < (m & ~3); i += 4, startRow += 4)
{
us(i, j) += a(startRow, j);
us(i + 1, j) += a(startRow + 1, j);
us(i + 2, j) += a(startRow + 2, j);
us(i + 3, j) += a(startRow + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3, startRow = (long) startIndex + (m & ~3); i < m; i++, startRow++)
{
us(i, j) += a(startRow, j);
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::Diagonal() const
{
if (m_numRows != m_numCols)
LogicError("Diagonal can be called only for square matrix. (rows=%d, cols=%d)", (int) m_numRows, (int) m_numCols);
CPUMatrix<ElemType> diag(1, m_numCols);
auto& us = *this;
#pragma omp parallel for
for (long i = 0; i < m_numRows; i++)
{
diag(0, (size_t) i) = us(i, i);
}
return diag;
}
template <class ElemType>
void CPUMatrix<ElemType>::MinusOneAt(CPUMatrix<ElemType>& c, const size_t position)
{
if (position < c.GetNumElements())
c.Data()[position] -= 1.0;
else
RuntimeError("MinusOneAt: position is out of CPU matrix size");
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignRepeatOf(const CPUMatrix<ElemType>& a, const size_t numRowRepeats, const size_t numColRepeats)
{
if (this == &a)
LogicError("AssignRepeatOf: a is the same as [this]. Does not support inplace repeat.");
if (a.IsEmpty())
LogicError("AssignRepeatOf: Matrix a is empty.");
RequireSize(a.GetNumRows() * numRowRepeats, a.GetNumCols() * numColRepeats);
long n = (long) a.GetNumCols(), m = (long) a.GetNumRows();
auto& us = *this;
#pragma omp parallel for
for (long q = 0; q < numColRepeats; q++)
{
for (long p = 0; p < numRowRepeats; p++)
{
long colOffset = q * n;
for (long j = 0; j < n; j++, colOffset++)
{
long rowOffset = p * m;
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4, rowOffset += 4)
{
us(rowOffset, colOffset) = a(i, j);
us(rowOffset + 1, colOffset) = a(i + 1, j);
us(rowOffset + 2, colOffset) = a(i + 2, j);
us(rowOffset + 3, colOffset) = a(i + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++, rowOffset++)
{
us(rowOffset, colOffset) = a(i, j);
}
}
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddToRowRepeatValuesOf(const CPUMatrix<ElemType>& a, const size_t numRepeats)
{
if (a.IsEmpty())
LogicError("AddToRowRepeatValuesOf: input matrix a is empty.");
if (a.GetNumRows() != GetNumRows() * numRepeats)
LogicError("AddToRowRepeatValuesOf: a.GetNumRows() != GetNumRows() * numRepeats.");
long n = (long) a.GetNumCols(), m = (long) GetNumRows();
auto& us = *this;
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
for (long k = 0; k < numRepeats; k++)
{
us(i, j) += a(k * m + i, j);
us(i + 1, j) += a(k * m + i + 1, j);
us(i + 2, j) += a(k * m + i + 2, j);
us(i + 3, j) += a(k * m + i + 3, j);
}
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
for (long k = 0; k < numRepeats; k++)
{
us(i, j) += a(k * m + i, j);
}
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignPositiveAndShiftedNegSample(const CPUMatrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber)
{
a;
posNumber;
negNumber;
shiftNumber;
NOT_IMPLEMENTED;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddFoldedPositiveAndShiftedNegSample(const CPUMatrix<ElemType>& a, const size_t posNumber, const size_t negNumber, const size_t shiftNumber)
{
a;
posNumber;
negNumber;
shiftNumber;
NOT_IMPLEMENTED;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::Transpose()
{
if (IsEmpty())
LogicError("Transpose: Matrix is empty.");
CPUMatrix<ElemType> c;
c.AssignTransposeOf(*this);
return c;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignTransposeOf(const CPUMatrix<ElemType>& a)
{
if (this == &a)
LogicError("AssignTransposeOf: a is the same as [this]. Does not support inplace transpose.");
if (a.IsEmpty())
LogicError("AssignTransposeOf: Matrix a is empty.");
RequireSize(a.GetNumCols(), a.GetNumRows());
long n = (long) a.GetNumCols(), m = (long) a.GetNumRows();
auto& us = *this;
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(j, i) = a(i, j);
us(j, i + 1) = a(i + 1, j);
us(j, i + 2) = a(i + 2, j);
us(j, i + 3) = a(i + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(j, i) = a(i, j);
}
}
return *this;
}
// dst[i] = src[i] * alpha + dst[i] * beta
// scale a column vector and add it to another
// The usual special case: If beta = 0, then dst[] is not read, and may be uninitialized or NaN.
template <class ElemType>
static void ScaleAndAddColumn(ElemType beta, ElemType* dst, const ElemType* src, size_t numRows, ElemType alpha)
{
if (alpha != 1) // rare case: just do the full thing
for (size_t i = 0; i < numRows; i++)
dst[i] = beta * dst[i] + alpha * src[i];
else if (beta == 1) // used in backprop
for (size_t i = 0; i < numRows; i++)
dst[i] += src[i];
else if (beta == 0) // plain assignment
memcpy(dst, src, sizeof(ElemType) * numRows);
else // alpha=1, arbitrary beta: also rare case
for (size_t i = 0; i < numRows; i++)
dst[i] = beta * dst[i] + src[i];
}
// *this[:,j] = a[:,idx[j]] * alpha + *this[:,j] * beta
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::DoGatherColumnsOf(ElemType beta, const CPUMatrix<ElemType>& idx, const CPUMatrix<ElemType>& a, ElemType alpha)
{
if (idx.GetNumRows() != 1) // index is 1-dimensional only
InvalidArgument("DoGatherColumnsOf: Map must be a row vector.");
if (beta)
VerifySize(a.GetNumRows(), idx.GetNumCols());
else
Resize(a.GetNumRows(), idx.GetNumCols());
auto& us = *this;
#pragma omp parallel for // TODO: Depending in circumstance, it may be more efficient to parallelize over rows.
foreach_column(jOut, us)
{
auto jInF = idx(0, jOut); // this is the column we need to get
if (std::isnan(jInF) || jInF < 0) // negative index means gap
continue;
size_t jIn = (size_t)jInF;
if (jIn >= a.GetNumCols())
InvalidArgument("DoGatherColumnsOf: Map out of bounds. %ld >= %ld", (long int)jIn, (long int)a.GetNumCols());
ScaleAndAddColumn(beta, &us(0,jOut), &a(0,jIn), us.GetNumRows(), alpha);
}
return *this;
}
// *this[:,idx[j]] = a[:,j] * alpha + *this[:,idx[j]] * beta
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::DoScatterColumnsOf(ElemType beta, const CPUMatrix<ElemType>& idx, const CPUMatrix<ElemType>& a, ElemType alpha)
{
if (idx.GetNumRows() != 1) // index is 1-dimensional only
InvalidArgument("DoScatterColumnsOf: Map must be a row vector.");
if (idx.GetNumCols() != a.GetNumCols())
InvalidArgument("DoScatterColumnsOf: Map must have width of input vector.");
if (a.GetNumRows() != GetNumRows())
InvalidArgument("DoScatterColumnsOf: Output must have same height as input vector.");
auto& us = *this;
// pre-scale with beta upfront
// Scatter may add more than one source column to the same target, so we must pre-scale with beta, and then just keep adding.
Scale(beta, us); // if beta is 0, then this will be a memset()
#pragma omp parallel for // TODO: Depending in circumstance, it may be more efficient to parallelize over rows.
foreach_column(jIn, a)
{
auto jOutF = idx(0, jIn); // this is the column we copy/add into
if (std::isnan(jOutF) || jOutF < 0) // negative index means gap
continue;
size_t jOut = (size_t)jOutF;
if (jOut >= GetNumCols())
InvalidArgument("DoGatherColumnsOf: Map out of bounds.");
ScaleAndAddColumn(/*beta=*/(ElemType)1, &us(0, jOut), &a(0, jIn), us.GetNumRows(), alpha);
}
return *this;
}
template <class ElemType>
void CPUMatrix<ElemType>::SetValue(const ElemType v)
{
if (IsEmpty())
LogicError("SetValue: Matrix is empty.");
bool isFinite = std::numeric_limits<ElemType>::is_integer || std::isfinite((double) v);
if (isFinite && v == 0)
{
memset(Data(), 0, sizeof(ElemType) * GetNumElements());
}
else
{
ElemType* bufPtr = Data();
long m = (long) GetNumElements();
// 2-way thread parallelism is sufficient for the memory bound
// operation of just setting the values of an array.
const unsigned SETVALUE_NUM_THREADS = 2;
UNUSED(SETVALUE_NUM_THREADS); // in case OMP is turned off.
#pragma omp parallel for num_threads(SETVALUE_NUM_THREADS)
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
bufPtr[i] = v;
bufPtr[i + 1] = v;
bufPtr[i + 2] = v;
bufPtr[i + 3] = v;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
bufPtr[i] = v;
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::MaskColumnsValue(const CPUMatrix<char>& columnsMask, ElemType val)
{
if (GetNumCols() != columnsMask.GetNumCols())
RuntimeError("Matrix and column mask must have equal number of columns");
auto& us = *this;
long n = (long) GetNumCols(), m = (long) GetNumRows();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
if (columnsMask(0, j) == 1)
continue;
// four-way unrolling
for (size_t i = 0; i < (m & ~3); i += 4)
{
us(i, j) = val;
us(i + 1, j) = val;
us(i + 2, j) = val;
us(i + 3, j) = val;
}
// handle remaining
for (size_t i = m & ~3; i < m; i++)
{
us(i, j) = val;
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetColumn(const ElemType* colPointer, size_t j)
{
if (IsEmpty())
LogicError("SetColumn: Matrix is empty.");
if (colPointer == NULL)
return;
auto& us = *this;
long m = (long) GetNumRows();
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = colPointer[i];
us(i + 1, j) = colPointer[i + 1];
us(i + 2, j) = colPointer[i + 2];
us(i + 3, j) = colPointer[i + 3];
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = colPointer[i];
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetColumn(const ElemType val, size_t j)
{
if (IsEmpty())
LogicError("SetColumn: Matrix is empty.");
auto& us = *this;
long m = (long) GetNumRows();
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = val;
us(i + 1, j) = val;
us(i + 2, j) = val;
us(i + 3, j) = val;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = val;
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetColumn(const CPUMatrix<ElemType>& valMat, size_t j)
{
if (IsEmpty())
LogicError("SetColumn: Matrix is empty.");
assert(valMat.GetNumRows() == GetNumRows() && valMat.GetNumCols() == 1);
auto& us = *this;
long m = (long) GetNumRows();
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = valMat(i, 0);
us(i + 1, j) = valMat(i + 1, 0);
us(i + 2, j) = valMat(i + 2, 0);
us(i + 3, j) = valMat(i + 3, 0);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = valMat(i, 0);
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetValue(const CPUMatrix<ElemType>& deepCopyFrom)
{
if (this == &deepCopyFrom)
return;
SetValue(deepCopyFrom.GetNumRows(), deepCopyFrom.GetNumCols(), deepCopyFrom.Data(), 0);
}
#if 0
template <class ElemType>
void CPUMatrix<ElemType>::SetValue(const GPUMatrix<ElemType>& /*deepCopyFrom*/)
{
NOT_IMPLEMENTED;
}
template <class ElemType>
void CPUMatrix<ElemType>::SetValue(const CPUSparseMatrix<ElemType>& deepCopyFrom)
{
deepCopyFrom.AssignColumnSliceToDense(*this, 0, deepCopyFrom.GetNumCols());
}
template <class ElemType>
void CPUMatrix<ElemType>::SetValue(const GPUSparseMatrix<ElemType>& /*deepCopyFrom*/)
{
NOT_IMPLEMENTED;
}
#endif
template <class ElemType>
void CPUMatrix<ElemType>::SetValue(const size_t numRows, const size_t numCols, ElemType* pArray, const size_t matrixFlags)
{
if (pArray == nullptr && numRows * numCols > 0)
InvalidArgument("Invalid pArray. pArray == nullptr, but matrix is of size %d * %d = %d.", (int)numRows, (int)numCols, (int)(numRows * numCols));
SetFormat(matrixFormatDense);
SetComputeDeviceId(CPUDEVICE);
// if it's externally managed, then populate the structure
if (matrixFlags & matrixFlagDontOwnBuffer)
{
// free previous array allocation if any before overwriting
delete[] Buffer();
m_numRows = numRows;
m_numCols = numCols;
SetBuffer(pArray, GetNumElements() * sizeof(ElemType), true);
SetSizeAllocated(GetNumElements());
}
else
{
RequireSize(numRows, numCols);
if (!IsEmpty())
{
if (!(matrixFlags & matrixFormatRowMajor)) // compatible to internal structure
memcpy(Data(), pArray, GetNumElements() * sizeof(ElemType));
else // need to transpose
{
ElemType* bufPtr = Data();
auto& us = *this;
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_column (j, us)
{
#ifdef USE_ACML
dcopy((int) numRows, reinterpret_cast<double*>(pArray + j), (int) numCols, reinterpret_cast<double*>(bufPtr + LocateColumn(j)), 1);
#else
cblas_dcopy((int) numRows, reinterpret_cast<double*>(pArray + j), (int) numCols, reinterpret_cast<double*>(bufPtr + LocateColumn(j)), 1);
#endif
}
}
else
{
#pragma omp parallel for
foreach_column (j, us)
{
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
scopy((int) numRows, reinterpret_cast<float*>(pArray + j), (int) numCols, reinterpret_cast<float*>(bufPtr + LocateColumn(j)), 1);
#else
cblas_scopy((int) numRows, reinterpret_cast<float*>(pArray + j), (int) numCols, reinterpret_cast<float*>(bufPtr + LocateColumn(j)), 1);
#endif
}
}
}
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetDiagonalValue(const ElemType v)
{
if (GetNumRows() != GetNumCols())
LogicError("SetDiagonalValue: NumRows and NumCols do not agree.");
auto& us = *this;
long m = (long) GetNumRows();
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, i) = v;
us(i + 1, i + 1) = v;
us(i + 2, i + 2) = v;
us(i + 3, i + 3) = v;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, i) = v;
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetDiagonalValue(const CPUMatrix<ElemType>& vector)
{
if (IsEmpty() || vector.IsEmpty())
LogicError("SetDiagonalValue: Matrix is empty.");
if (GetNumRows() != GetNumCols())
LogicError("SetDiagonalValue: NumRows and NumCols do not agree.");
if (vector.GetNumRows() != 1 && vector.GetNumCols() != 1)
LogicError("SetDiagonalValue: input vector must be a vector.");
if (vector.GetNumElements() == 1) // reduce to simple form
SetDiagonalValue(vector(0, 0));
else if (vector.GetNumRows() != GetNumRows())
LogicError("SetDiagonalValue: input vector's dimension does not agree with [this].");
else
{
auto& us = *this;
long m = (long) GetNumRows();
if (vector.GetNumRows() == 1) // row vector
{
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, i) = vector(0, i);
us(i + 1, i + 1) = vector(0, i + 1);
us(i + 2, i + 2) = vector(0, i + 2);
us(i + 3, i + 3) = vector(0, i + 3);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, i) = vector(0, i);
}
}
else
{
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, i) = vector(i, 0);
us(i + 1, i + 1) = vector(i + 1, 0);
us(i + 2, i + 2) = vector(i + 2, 0);
us(i + 3, i + 3) = vector(i + 3, 0);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, i) = vector(i, 0);
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetUniformRandomValue(const ElemType low, const ElemType high, unsigned long seed)
{
if (IsEmpty())
LogicError("SetUniformRandomValue: Matrix is empty.");
#ifdef _MSC_VER // TODO: check if available under GCC/Linux
std::ranlux64_base_01 generator;
generator.seed(seed == USE_TIME_BASED_SEED ? (unsigned long) time(NULL) : seed);
#else
std::default_random_engine generator(seed);
#endif
std::uniform_real_distribution<ElemType> r(low, high);
ElemType* bufPtr = Data();
long m = (long) GetNumElements();
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
bufPtr[i] = r(generator);
bufPtr[i + 1] = r(generator);
bufPtr[i + 2] = r(generator);
bufPtr[i + 3] = r(generator);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
bufPtr[i] = r(generator);
}
}
template <class ElemType>
void CPUMatrix<ElemType>::SetGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed)
{
if (sigma <= 0)
InvalidArgument("SetUniformRandomValue: sigma must be a positive value.");
if (IsEmpty())
LogicError("SetUniformRandomValue: Matrix is empty.");
auto& us = *this;
#ifdef _MSC_VER // TODO: check if available under GCC/Linux
std::ranlux64_base_01 generator;
generator.seed(seed == USE_TIME_BASED_SEED ? (unsigned long) time(NULL) : seed);
#else
std::default_random_engine generator(seed);
#endif
std::normal_distribution<ElemType> r(mean, sigma);
// #pragma omp parallel for // is it thread safe?
foreach_coord (i, j, us)
{
us(i, j) = r(generator);
}
}
template <class ElemType>
void CPUMatrix<ElemType>::AddGaussianRandomValue(const ElemType mean, const ElemType sigma, unsigned long seed)
{
if (sigma <= 0)
InvalidArgument("SetUniformRandomValue: sigma must be a positive value.");
if (IsEmpty())
LogicError("SetUniformRandomValue: Matrix is empty.");
auto& us = *this;
#ifdef _MSC_VER // TODO: check if available under GCC/Linux
std::ranlux64_base_01 generator;
generator.seed(seed == USE_TIME_BASED_SEED ? (unsigned long) time(NULL) : seed);
#else
std::default_random_engine generator(seed);
#endif
std::normal_distribution<ElemType> r(mean, sigma);
long m = (long) GetNumRows(), n = (long) GetNumCols();
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = r(generator);
us(i + 1, j) = r(generator);
us(i + 2, j) = r(generator);
us(i + 3, j) = r(generator);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = r(generator);
}
}
}
//maskRate: percentage of values masked out (similar to dropout rate)
//scaleValue: which scale value to set to the left ones (unmasked items).
template <class ElemType>
void CPUMatrix<ElemType>::SetUniformRandomMask(const ElemType maskRate, const ElemType scaleValue, RNGHandle& rngHandle)
{
if (IsEmpty())
LogicError("SetUniformRandomValue: Matrix is empty.");
CPURNGHandle* cpuRNGHandle = dynamic_cast<CPURNGHandle*>(&rngHandle);
assert(cpuRNGHandle != nullptr);
auto& us = *this;
std::uniform_real_distribution<ElemType> r(0, 1);
long m = (long) GetNumRows(), n = (long) GetNumCols();
ElemType v;
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
v = r(cpuRNGHandle->Generator());
us(i, j) = v <= maskRate ? 0 : scaleValue;
v = r(cpuRNGHandle->Generator());
us(i + 1, j) = v <= maskRate ? 0 : scaleValue;
v = r(cpuRNGHandle->Generator());
us(i + 2, j) = v <= maskRate ? 0 : scaleValue;
v = r(cpuRNGHandle->Generator());
us(i + 3, j) = v <= maskRate ? 0 : scaleValue;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
v = r(cpuRNGHandle->Generator());
us(i, j) = v <= maskRate ? 0 : scaleValue;
}
}
}
template <class ElemType>
ElemType CPUMatrix<ElemType>::Adagrad(CPUMatrix<ElemType>& gradients, const bool needAveMultiplier)
{
ElemType aveMultiplier = 0;
if (IsEmpty() || gradients.GetNumCols() != GetNumCols() || gradients.GetNumRows() != GetNumRows())
{
RequireSize(gradients.GetNumRows(), gradients.GetNumCols());
SetValue(0.0);
}
assert(GetNumRows() == gradients.GetNumRows() && GetNumCols() == gradients.GetNumCols());
ElemType *a = Data(), *d_v = gradients.Data();
size_t n = GetNumElements();
const ElemType floor = 1e-16f;
ElemType a0, a1, a2, a3;
// disable omp here because aveMultiper needs to be added atomically. however, it seems the result is incorrect even if rmp atomic and amp critical are used.
// #pragma omp parallel for
for (long i = 0; i < (n & ~3); i += 4) // four-way unrolling
{
a[i] += d_v[i] * d_v[i];
a[i + 1] += d_v[i + 1] * d_v[i + 1];
a[i + 2] += d_v[i + 2] * d_v[i + 2];
a[i + 3] += d_v[i + 3] * d_v[i + 3];
a0 = sqrt(a[i] + floor);
a1 = sqrt(a[i + 1] + floor);
a2 = sqrt(a[i + 2] + floor);
a3 = sqrt(a[i + 3] + floor);
d_v[i] /= a0;
d_v[i + 1] /= a1;
d_v[i + 2] /= a2;
d_v[i + 3] /= a3;
if (needAveMultiplier)
{
aveMultiplier += 1 / a0 + 1 / a1 + 1 / a2 + 1 / a3;
}
}
// get the last few elements if any
for (long i = n & ~3; i < n; i++)
{
a[i] += d_v[i] * d_v[i];
a0 = sqrt(a[i] + floor);
d_v[i] /= a0;
if (needAveMultiplier)
{
aveMultiplier += 1 / a0;
}
}
if (needAveMultiplier && n > 0)
return aveMultiplier / n;
else
return 1;
}
template <class ElemType>
void CPUMatrix<ElemType>::FSAdagrad(CPUMatrix<ElemType>& gradients,
CPUMatrix<ElemType>& functionValues,
ElemType learnRatePerSample,
ElemType momentum,
ElemType adaWeight,
ElemType adaMul)
{
size_t numColsNeeded = 2 * gradients.GetNumCols();
if (IsEmpty() || (GetNumCols() < numColsNeeded))
{
RequireSize(gradients.GetNumRows(), numColsNeeded);
SetValue(0.0);
}
assert((GetNumRows() == gradients.GetNumRows()) && (GetNumCols() == numColsNeeded));
size_t n = gradients.GetNumElements();
ElemType* grad = gradients.Data();
ElemType* smoothAda = Data();
ElemType* smoothMom = Data() + n;
ElemType* val = functionValues.Data();
#pragma omp parallel for
// TODO: Unroll 4-times for better performance leveraging vectorization
for (long i = 0; i < n; i++)
{
ElemType g = grad[i];
ElemType adaSqr = adaWeight * smoothAda[i] + (1.0f - adaWeight) * g * g;
smoothAda[i] = adaSqr;
if (adaSqr != 0.0f)
{
ElemType ada = sqrt(adaSqr);
ElemType w = adaMul * ((ElemType) 1.0 / ada);
if (w > 10.0f)
w = 10.0f;
g *= w;
}
if (momentum > 0.0f)
{
g = momentum * smoothMom[i] + (1.0f - momentum) * g;
smoothMom[i] = g;
}
g *= learnRatePerSample;
val[i] -= g;
}
}
template <class ElemType>
ElemType CPUMatrix<ElemType>::RmsProp(CPUMatrix<ElemType>& gradients,
ElemType RMS_GAMMA,
ElemType RMS_WGT_INC,
ElemType RMS_WGT_MAX,
ElemType RMS_WGT_DEC,
ElemType RMS_WGT_MIN,
const bool needAveMultiplier)
{
const ElemType floor = 1e-6f;
size_t n = gradients.GetNumElements();
ElemType* curr_grad = gradients.Data();
if (IsEmpty() || GetNumCols() < gradients.GetNumCols() * 3)
{
RequireSize(gradients.GetNumRows(), gradients.GetNumCols() * 3);
SetValue(0.0);
ElemType* avars = Data(); // accumulated variances for RMS scaling
ElemType* steps = Data() + 2 * n; // current step size
// initialize moving average of gradient-squared
for (long i = 0; i < n; i++)
avars[i] = curr_grad[i] * curr_grad[i];
// initialize starting step size
for (long i = 0; i < n; i++)
steps[i] = ElemType(0.02);
}
ElemType* avars = Data(); // accumulated variances for RMS scaling
ElemType* signs = Data() + n; // sign of previous gradient
ElemType* steps = Data() + 2 * n; // current step size
assert(GetNumRows() == gradients.GetNumRows() && GetNumCols() == gradients.GetNumCols() * 3);
ElemType ONE_MINUS_GAMMA = ElemType(1.0) - RMS_GAMMA;
// int upd[] = {
// 2,2,0,
// 2,2,0,
// 1,1,1,
// 2,2,0,
// 1,2,1,
// 0,2,2,
// 1,1,1,
// 0,2,2,
// 0,2,2,
// };
// for (long i=0; i<n; i++)
// {
// avars[i] = RMS_GAMMA * avars[i] + ONE_MINUS_GAMMA * (curr_grad[i] * curr_grad[i]);
// // grad sign base 3: 0->neg, 1->zero, 2->pos
// const int grad_sign = 1 + (ElemType(0) < curr_grad[i]) - (curr_grad[i] < ElemType(0));
// // signs[i] contains three consecutive grad_sign
// signs[i] = 3*(int(signs[i]) % 9) + grad_sign;
// switch(upd[int(signs[i])])
// {
// case 0:
// steps[i] = max(steps[i] * RMS_WGT_DEC, RMS_WGT_MIN);
// break;
// case 2:
// steps[i] = min(steps[i] * RMS_WGT_INC, RMS_WGT_MAX);
// break;
// }
// curr_grad[i] *= steps[i] / sqrt(avars[i] + floor);
// }
ElemType aveMultiplier = 0, a;
for (long i = 0; i < n; i++)
{
avars[i] = RMS_GAMMA * avars[i] + ONE_MINUS_GAMMA * (curr_grad[i] * curr_grad[i]);
const int grad_sign = (ElemType(0) < curr_grad[i]) - (curr_grad[i] < ElemType(0));
if (signs[i] * grad_sign > 0)
steps[i] = std::min(steps[i] * RMS_WGT_INC, RMS_WGT_MAX);
else
steps[i] = std::max(steps[i] * RMS_WGT_DEC, RMS_WGT_MIN);
a = steps[i] / sqrt(avars[i] + floor);
curr_grad[i] *= a;
signs[i] = (ElemType) grad_sign;
if (needAveMultiplier)
aveMultiplier += a;
}
if (needAveMultiplier)
return aveMultiplier / n;
else
return 1;
}
template <class ElemType>
void CPUMatrix<ElemType>::Reshape(const size_t numRows, const size_t numCols)
{
assert(numRows * numCols == GetNumElements());
if (numRows * numCols != GetNumElements())
InvalidArgument("Reshape: Total number of elements does not match.");
m_numRows = numRows;
m_numCols = numCols;
}
// RequireSize() -- Tests if the matrix is the right size. If not, resizes the matrix. This avoids the VerifyResizable check if we're already the right size.
template <class ElemType>
void CPUMatrix<ElemType>::RequireSize(const size_t numRows, const size_t numCols, bool growOnly /*=true*/)
{
if (GetNumRows() != numRows || GetNumCols() != numCols)
Resize(numRows, numCols, growOnly);
}
// Resize() -- change matrix size
// This function is cheap if the matrix size does not change.
// Current content is not preserved.
// If growOnly is true, resize will not reallocate memory if the current memory is large enough (i.e., will not shrink).
// If this object does not own its memory then new memory cannot be allocated (one can still shrink and/or reshape).
template <class ElemType>
void CPUMatrix<ElemType>::Resize(const size_t numRows, const size_t numCols, bool growOnly /*=true*/)
{
if (GetNumRows() == numRows && GetNumCols() == numCols)
return;
VerifyResizable(__func__);
size_t numElements = numRows * numCols;
if (numElements > GetSizeAllocated() || // grow allocation
(!growOnly && (numElements != GetSizeAllocated()))) // shrink allocation (not if 'growOnly')
{
// reallocate buffer
ElemType* pArray = nullptr;
if (numElements > 0)
{
pArray = NewArray<ElemType>(numElements);
}
// success: update the object
delete[] Buffer();
SetBuffer(pArray, numElements * sizeof(ElemType));
SetSizeAllocated(numElements);
}
// success
m_sliceViewOffset = 0;
m_numRows = numRows;
m_numCols = numCols;
}
// allocated by the callee but should be deleted by the caller
// TODO: change to use STL vector instead
template <class ElemType>
ElemType* CPUMatrix<ElemType>::CopyToArray() const
{
size_t numElements = GetNumElements();
if (numElements != 0)
{
ElemType* arrayCopyTo = NewArray<ElemType>(numElements);
memcpy(arrayCopyTo, Data(), sizeof(ElemType) * numElements);
return arrayCopyTo;
}
else
{
return nullptr;
}
}
//memory will be allocated by the callee if not enough but need to be deleted by the caller after it's done
//return number of elements copied
template <class ElemType>
size_t CPUMatrix<ElemType>::CopyToArray(ElemType*& arrayCopyTo, size_t& currentArraySize) const
{
size_t numElements = GetNumElements();
if (numElements > currentArraySize)
{
delete arrayCopyTo;
arrayCopyTo = NewArray<ElemType>(numElements);
currentArraySize = numElements;
}
if (numElements != 0)
{
memcpy(arrayCopyTo, Data(), sizeof(ElemType) * numElements);
}
return numElements;
}
template <typename ElemType>
void CPUMatrix<ElemType>::CopySection(size_t /*numRows*/, size_t /*numCols*/, ElemType* /*dst*/, size_t /*colStride*/) const
{
// REVIEW alexeyk: currently not used by CPU, but implement when possible.
RuntimeError("Not implemented.");
}
template <class ElemType>
inline size_t CPUMatrix<ElemType>::LocateColumn(const size_t col) const
{
assert(col == 0 || col < GetNumCols());
return col * m_numRows; // matrix in column-wise storage
}
template <class ElemType>
inline size_t CPUMatrix<ElemType>::LocateElement(const size_t row, const size_t col) const
{
assert(row < m_numRows);
return LocateColumn(col) + row; // matrix in column-wise storage
}
#pragma endregion Basic Operators
#pragma region Member BLAS Functions
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator+=(ElemType alpha)
{
return AssignSumOf(alpha, *this);
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator+(ElemType alpha) const
{
CPUMatrix<ElemType> c(GetNumRows(), GetNumCols());
c.AssignSumOf(alpha, *this);
return c;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSumOf(const ElemType alpha, const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignSumOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = alpha + a(i, j);
us(i + 1, j) = alpha + a(i + 1, j);
us(i + 2, j) = alpha + a(i + 2, j);
us(i + 3, j) = alpha + a(i + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = alpha + a(i, j);
}
}
return *this;
}
//if [this] and a have same dimension then [this]=[this]+a
//if a is a column vector, add to all columns of [this]
//if a is a row vector, add to all rows of [this]
//if a is a scalar, add it to all elements.
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator+=(const CPUMatrix<ElemType>& a)
{
// if (a.GetNumElements() == 1)
// *this += a(0,0);
// else
ScaleAndAdd(1, a, *this);
return *this;
}
//if [this] and a have same dimension then OUTPUT=[this]+a
//if a is a column vector, add to all columns of [this]
//if a is a row vector, add to all rows of [this]
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator+(const CPUMatrix<ElemType>& a) const
{
if (GetNumElements() == 1)
{
CPUMatrix<ElemType> c(a);
c += (*this)(0, 0);
return c;
}
else if (a.GetNumElements() == 1)
{
CPUMatrix<ElemType> c(*this);
c += a(0, 0);
return c;
}
else
{
CPUMatrix<ElemType> c(*this); // this implementation will introduce a copy overhead. but make resue of the code
c += a;
return c;
}
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSumOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b)
{
if (a.GetNumElements() == 1)
{
SetValue(b);
(*this) += a;
}
else
{
SetValue(a);
(*this) += b;
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator-=(ElemType alpha)
{
return AssignDifferenceOf(*this, alpha);
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator-(ElemType alpha) const
{
CPUMatrix<ElemType> c(GetNumRows(), GetNumCols());
c.AssignDifferenceOf(*this, alpha);
return c;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignDifferenceOf(const ElemType alpha, const CPUMatrix<ElemType>& a)
{
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = alpha - a(i, j);
us(i + 1, j) = alpha - a(i + 1, j);
us(i + 2, j) = alpha - a(i + 2, j);
us(i + 3, j) = alpha - a(i + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = alpha - a(i, j);
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignDifferenceOf(const CPUMatrix<ElemType>& a, const ElemType alpha)
{
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = a(i, j) - alpha;
us(i + 1, j) = a(i + 1, j) - alpha;
us(i + 2, j) = a(i + 2, j) - alpha;
us(i + 3, j) = a(i + 3, j) - alpha;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = a(i, j) - alpha;
}
}
return *this;
}
//if [this] and a have same dimension then [this]=[this]-a
//if a is a column vector, minus it from all columns of [this]
//if a is a row vector, minus it from all rows of [this]
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator-=(const CPUMatrix<ElemType>& a)
{
ScaleAndAdd(-1, a, *this);
return *this;
}
//if [this] and a have same dimension then output=[this]-a
//if a is a column vector, minus it from all columns of [this]
//if a is a row vector, minus it from all rows of [this]
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator-(const CPUMatrix<ElemType>& a) const
{
CPUMatrix<ElemType> c(*this); // this implementation will introduce a copy overhead. but make resue of the code
c -= a;
return c;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignDifferenceOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b)
{
if (this != &a)
{
RequireSize(a.GetNumRows(), a.GetNumCols());
SetValue(a);
}
(*this) -= b;
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator*=(ElemType alpha)
{
Scale(alpha, *this);
return *this;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator*(ElemType alpha) const
{
CPUMatrix<ElemType> c(GetNumRows(), GetNumCols());
Scale(alpha, *this, c);
return c;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignProductOf(const ElemType alpha, const CPUMatrix<ElemType>& a)
{
Scale(alpha, a, *this);
return *this;
}
// [this]=a*b
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignProductOf(const CPUMatrix<ElemType>& a, const bool transposeA, const CPUMatrix<ElemType>& b, const bool transposeB)
{
if (a.GetNumElements() == 1)
{
if (transposeB)
AssignTransposeOf(b);
(*this) *= a(0, 0);
}
else if (b.GetNumElements() == 1)
{
if (transposeA)
AssignTransposeOf(a);
(*this) *= b(0, 0);
}
else
Multiply(a, transposeA, b, transposeB, *this);
return *this;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator*(const CPUMatrix<ElemType>& a) const
{
auto& us = *this;
if (GetNumElements() == 1)
{
CPUMatrix<ElemType> c;
c.AssignProductOf(us(0, 0), a);
return c;
}
else if (a.GetNumElements() == 1)
{
CPUMatrix<ElemType> c;
c.AssignProductOf(a(0, 0), us);
return c;
}
else
{
CPUMatrix<ElemType> c;
Multiply(*this, a, c);
return c;
}
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator/=(ElemType alpha)
{
(*this) *= 1 / alpha;
return (*this);
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator/(ElemType alpha) const
{
return ((*this) * (1 / alpha));
}
//element-wise power
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::operator^=(ElemType alpha)
{
auto& us = *this;
ElementWisePower(alpha, us, us);
return us;
}
//element-wise power
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::operator^(ElemType alpha) const
{
CPUMatrix<ElemType> c(GetNumRows(), GetNumCols());
ElementWisePower(alpha, *this, c);
return c;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignElementPowerOf(const CPUMatrix<ElemType>& a, const ElemType power)
{
ElementWisePower(power, a, *this);
return *this;
}
//[this]=[this] .* a (we cannot override operator .* in c++)
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::ElementMultiplyWith(const CPUMatrix<ElemType>& a)
{
return AssignElementProductOf(*this, a);
}
//[this]=[this] .* a (we cannot override operator .* in c++)
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::ElementDivideBy(const CPUMatrix<ElemType>& a)
{
return AssignElementDivisionOf(*this, a);
}
//[this]=a .* b
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignElementProductOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("AssignElementProductOf: Matrix is empty.");
assert(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols());
if (!(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols()))
InvalidArgument("AssignElementProductOf: The input matrix dimensions do not match.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = a(i, j) * b(i, j);
us(i + 1, j) = a(i + 1, j) * b(i + 1, j);
us(i + 2, j) = a(i + 2, j) * b(i + 2, j);
us(i + 3, j) = a(i + 3, j) * b(i + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = a(i, j) * b(i, j);
}
}
return *this;
}
//[this] +=a .* b
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddElementProductOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("AddElementProductOf: Matrix is empty.");
assert(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols());
if (!(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols()))
InvalidArgument("AddElementProductOf : The input matrix dimensions do not match.");
if (!(a.GetNumRows() == GetNumRows() && a.GetNumCols() == GetNumCols()))
InvalidArgument("AddElementProductOf : The input matrix dimensions do not match [this].");
auto& us = *this;
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) += a(i, j) * b(i, j);
us(i + 1, j) += a(i + 1, j) * b(i + 1, j);
us(i + 2, j) += a(i + 2, j) * b(i + 2, j);
us(i + 3, j) += a(i + 3, j) * b(i + 3, j);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) += a(i, j) * b(i, j);
}
}
return *this;
}
//[this]=a ./ b
// TODO: This clips the divisor by a small value. Is that really what one would want?
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignElementDivisionOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("AssignElementDivisionOf: Matrix is empty.");
assert(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols());
if (!(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols()))
InvalidArgument("AssignElementDivisionOf : The input matrix dimensions do not match.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
ElemType smallValue = EPS_IN_INVERSE;
#pragma omp parallel for
foreach_coord (i, j, us)
{
ElemType v = b(i, j);
if (v >= 0 && v < smallValue)
us(i, j) = a(i, j) / smallValue;
else if (v < 0 && v > -smallValue)
us(i, j) = a(i, j) / (-smallValue);
else
us(i, j) = a(i, j) / v;
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::ColumnElementMultiplyWith(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty() || IsEmpty())
LogicError("ColumnElementMultiplyWith: Matrix is empty.");
assert(a.GetNumRows() == GetNumRows() && a.GetNumCols() == 1);
if (!(a.GetNumRows() == GetNumRows() && a.GetNumCols() == 1))
InvalidArgument("ColumnElementMultiplyWith: The input matrix should be a col vector and match [this]'s rows.");
auto& us = *this;
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) *= a(i, 0);
us(i + 1, j) *= a(i + 1, 0);
us(i + 2, j) *= a(i + 2, 0);
us(i + 3, j) *= a(i + 3, 0);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) *= a(i, 0);
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::RowElementMultiplyWith(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty() || IsEmpty())
LogicError("RowElementMultiplyWith: Matrix is empty.");
assert(a.GetNumRows() == 1 && a.GetNumCols() == GetNumCols());
if (!(a.GetNumRows() == 1 && a.GetNumCols() == GetNumCols()))
InvalidArgument("RowElementMultiplyWith: The input matrix should be a row vector and match [this]'s columns.");
auto& us = *this;
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
ElemType v = a(0, j);
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) *= v;
us(i + 1, j) *= v;
us(i + 2, j) *= v;
us(i + 3, j) *= v;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) *= v;
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::RowElementDivideBy(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty() || IsEmpty())
LogicError("RowElementDivideBy: Matrix is empty.");
assert(a.GetNumRows() == 1 && a.GetNumCols() == GetNumCols());
if (!(a.GetNumRows() == 1 && a.GetNumCols() == GetNumCols()))
InvalidArgument("RowElementDivideBy: The input matrix should be a row vector and match [this]'s columns.");
auto& us = *this;
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
ElemType v = a(0, j);
if (v >= 0 && v < EPS_IN_INVERSE)
v = EPS_IN_INVERSE;
else if (v < 0 && v > -EPS_IN_INVERSE)
v = (-EPS_IN_INVERSE);
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) /= v;
us(i + 1, j) /= v;
us(i + 2, j) /= v;
us(i + 3, j) /= v;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) /= v;
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::ColumnElementDivideBy(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty() || IsEmpty())
LogicError("ColumnElementDivideBy: Matrix is empty.");
assert(a.GetNumRows() == GetNumRows() && a.GetNumCols() == 1);
if (!(a.GetNumRows() == GetNumRows() && a.GetNumCols() == 1))
InvalidArgument("ColumnElementDivideBy: The input matrix should be a col vector and match [this]'s rows.");
auto& us = *this;
long m = (long) GetNumRows(), n = (long) GetNumCols();
ElemType smallValue = EPS_IN_INVERSE;
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
for (long i = 0; i < m; i++)
{
ElemType v = a(i, 0);
if (v >= 0 && v < smallValue)
us(i, j) /= smallValue;
else if (v < 0 && v > -smallValue)
us(i, j) /= (-smallValue);
else
us(i, j) /= v;
}
}
return *this;
}
//[this]=1 ./ a
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::ElementInverse()
{
return AssignElementInverseOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignElementInverseOf(const CPUMatrix<ElemType>& a)
{
ElemType smallValue = EPS_IN_INVERSE;
if (a.IsEmpty())
LogicError("AssignElementInverseOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, us)
{
if (a(i, j) < 0 && a(i, j) > -smallValue)
us(i, j) = 1 / (-smallValue);
else if (a(i, j) >= 0 && a(i, j) < smallValue)
us(i, j) = 1 / smallValue;
else
us(i, j) = 1 / a(i, j);
}
return *this;
}
//[this]=sigmoid([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceSigmoid()
{
return AssignSigmoidOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSigmoidOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignSigmoidOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, us)
{
if (a(i, j) >= 0)
us(i, j) = 1 / (1 + exp(-a(i, j)));
else
{
ElemType v = exp(a(i, j));
us(i, j) = v / (1 + v);
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceLinearRectifierDerivative()
{
return AssignLinearRectifierDerivativeOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignLinearRectifierDerivativeOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignLinearRectifierDerivativeOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = a(i, j) > 0.0f ? 1.0f : 0.0f;
us(i + 1, j) = a(i + 1, j) > 0.0f ? 1.0f : 0.0f;
us(i + 2, j) = a(i + 2, j) > 0.0f ? 1.0f : 0.0f;
us(i + 3, j) = a(i + 3, j) > 0.0f ? 1.0f : 0.0f;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = a(i, j) > 0.0f ? 1.0f : 0.0f;
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceSigmoidDerivative()
{
return AssignSigmoidDerivativeOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSigmoidDerivativeOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignSigmoidDerivativeOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
ElemType v = a(i, j);
us(i, j) = v * (1 - v);
ElemType v1 = a(i + 1, j);
us(i + 1, j) = v1 * (1 - v1);
ElemType v2 = a(i + 2, j);
us(i + 2, j) = v2 * (1 - v2);
ElemType v3 = a(i + 3, j);
us(i + 3, j) = v3 * (1 - v3);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
ElemType v = a(i, j);
us(i, j) = v * (1 - v);
}
}
return *this;
}
//[this]=tanh([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceTanh()
{
return AssignTanhOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignTanhOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignTanhOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = tanh(a(i, j));
us(i + 1, j) = tanh(a(i + 1, j));
us(i + 2, j) = tanh(a(i + 2, j));
us(i + 3, j) = tanh(a(i + 3, j));
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = tanh(a(i, j));
}
}
return *this;
}
//[this]=softmax([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceLogSoftmax(const bool isColWise)
{
return AssignLogSoftmaxOf(*this, isColWise);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignLogSoftmaxOf(const CPUMatrix<ElemType>& a, const bool isColWise)
{
if (a.IsEmpty())
LogicError("AssignLogSoftmaxOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
if (isColWise)
{
#pragma omp parallel for
foreach_column (j, a)
{
// we need to extract max before applying exp to avoid overflow
ElemType maxV = a(0, j);
foreach_row (i, a)
maxV = std::max(maxV, a(i, j));
ElemType sum = 0;
foreach_row (i, a)
sum += exp(us(i, j) = a(i, j) - maxV);
sum = log(sum);
foreach_row (i, us)
us(i, j) -= sum;
}
}
else
{
#pragma omp parallel for
foreach_row (i, a)
{
// we need to extract max before applying exp to avoid overflow
ElemType maxV = a(i, 0);
foreach_column (j, a)
maxV = std::max(maxV, a(i, j));
ElemType sum = 0;
foreach_column (j, a)
sum += exp(us(i, j) = a(i, j) - maxV);
sum = log(sum);
foreach_column (j, us)
us(i, j) -= sum;
}
}
return *this;
}
//[this]=hardmax([this])
//the max element is 1 else is 0
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceHardmax(const bool isColWise)
{
return AssignHardmaxOf(*this, isColWise);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignHardmaxOf(const CPUMatrix<ElemType>& a, const bool isColWise)
{
if (a.IsEmpty())
LogicError("AssignHardmaxOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
if (isColWise)
{
#pragma omp parallel for
foreach_column (j, a)
{
// we need to extract max
ElemType maxV = a(0, j);
long maxI = 0;
foreach_row (i, a)
{
if (maxV < a(i, j))
{
maxV = a(i, j);
maxI = i;
}
}
foreach_row (i, us)
us(i, j) = (i == maxI) ? 1.0f : 0.0f;
}
}
else
{
#pragma omp parallel for
foreach_row (i, a)
{
// we need to extract max
ElemType maxV = a(i, 0);
long maxJ = 0;
foreach_column (j, a)
{
if (maxV < a(i, j))
{
maxV = a(i, j);
maxJ = j;
}
}
foreach_column (j, us)
us(i, j) = (j == maxJ) ? 1.0f : 0.0f;
}
}
return *this;
}
//[this]=sqrt([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceSqrt()
{
return AssignSqrtOf(*this);
}
//to prevent negative values caused by floating operations, we force inputs to be >=0
//this may, however, hide problems in the caller.
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSqrtOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignSqrtOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = sqrt(max((ElemType)0, a(i, j)));
us(i + 1, j) = sqrt(max((ElemType)0, a(i + 1, j)));
us(i + 2, j) = sqrt(max((ElemType)0, a(i + 2, j)));
us(i + 3, j) = sqrt(max((ElemType)0, a(i + 3, j)));
}
// remaining
for (long i = m & ~3; i < m; i++)
{
us(i, j) = sqrt(max((ElemType)0, a(i, j)));
}
}
return *this;
}
//[this]=exp([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceExp()
{
return AssignExpOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignExpOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignExpOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = exp(a(i, j));
us(i + 1, j) = exp(a(i + 1, j));
us(i + 2, j) = exp(a(i + 2, j));
us(i + 3, j) = exp(a(i + 3, j));
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = exp(a(i, j));
}
}
return *this;
}
//[this]=exp([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceAbs()
{
return AssignAbsOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignAbsOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignAbsOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
us(i, j) = abs(a(i, j));
us(i + 1, j) = abs(a(i + 1, j));
us(i + 2, j) = abs(a(i + 2, j));
us(i + 3, j) = abs(a(i + 3, j));
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
us(i, j) = abs(a(i, j));
}
}
return *this;
}
//[this]=log([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceLog()
{
return AssignLogOf(*this);
}
//[this]=log([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceLog10()
{
return AssignLog10Of(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignLogOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignLogOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, a)
{
const ElemType v = a(i, j);
if (v < EPS_IN_LOG)
{
us(i, j) = LOG_OF_EPS_IN_LOG;
}
else
us(i, j) = log(v);
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignLog10Of(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignLogOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, a)
{
const ElemType v = a(i, j);
if (v <= 0)
LogicError("AssignLogOf: Log can only applied to numbers larger than 0.");
else if (v < EPS_IN_LOG)
{
us(i, j) = LOG10_OF_EPS_IN_LOG;
}
else
us(i, j) = log10(v);
}
return *this;
}
//[this]=cos([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceCosine()
{
return AssignCosineOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignCosineOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignCosineOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, a)
{
const ElemType v = a(i, j);
us(i, j) = cos(v);
}
return *this;
}
//[this]=-sin([this]) element wise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceNegativeSine()
{
return AssignNegativeSineOf(*this);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignNegativeSineOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignCosineOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, a)
{
const ElemType v = a(i, j);
us(i, j) = -sin(v);
}
return *this;
}
//Threshold truncating: this[i] = max( this[i], threshold )
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceTruncateBottom(const ElemType threshold)
{
if (IsEmpty())
LogicError("InplaceTruncateBottom: Matrix is empty.");
auto& us = *this;
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
if (us(i, j) < threshold)
us(i, j) = threshold;
if (us(i + 1, j) < threshold)
us(i + 1, j) = threshold;
if (us(i + 2, j) < threshold)
us(i + 2, j) = threshold;
if (us(i + 3, j) < threshold)
us(i + 3, j) = threshold;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
if (us(i, j) < threshold)
us(i, j) = threshold;
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceTruncate(const ElemType threshold)
{
if (IsEmpty())
LogicError("InplaceTruncate: Matrix is empty.");
auto& us = *this;
ElemType locThresholdPos = abs(threshold);
ElemType locTHresholdNeg = -locThresholdPos;
long m = (long) GetNumRows(), n = (long) GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
if (us(i, j) > locThresholdPos)
us(i, j) = locThresholdPos;
else if (us(i, j) < locTHresholdNeg)
us(i, j) = locTHresholdNeg;
if (us(i + 1, j) > locThresholdPos)
us(i + 1, j) = locThresholdPos;
else if (us(i + 1, j) < locTHresholdNeg)
us(i + 1, j) = locTHresholdNeg;
if (us(i + 2, j) > locThresholdPos)
us(i + 2, j) = locThresholdPos;
else if (us(i + 2, j) < locTHresholdNeg)
us(i + 2, j) = locTHresholdNeg;
if (us(i + 3, j) > locThresholdPos)
us(i + 3, j) = locThresholdPos;
else if (us(i + 3, j) < locTHresholdNeg)
us(i + 3, j) = locTHresholdNeg;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
if (us(i, j) > locThresholdPos)
us(i, j) = locThresholdPos;
else if (us(i, j) < locTHresholdNeg)
us(i, j) = locTHresholdNeg;
}
}
return *this;
}
//x= x-threshold if x>threshold, x+threshold if x<-threshold, 0 otherwise
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceSoftThreshold(const ElemType threshold)
{
if (IsEmpty())
LogicError("InplaceTruncate: Matrix is empty.");
long m = (long) GetNumElements();
ElemType* bufPtr = Data();
#pragma omp parallel for
for (long i = 0; i < (m & ~3); i += 4) // four-way unrolling
{
if (bufPtr[i] > threshold)
bufPtr[i] -= threshold;
else if (bufPtr[i] < -threshold)
bufPtr[i] += threshold;
else
bufPtr[i] = 0;
if (bufPtr[i + 1] > threshold)
bufPtr[i + 1] -= threshold;
else if (bufPtr[i + 1] < -threshold)
bufPtr[i + 1] += threshold;
else
bufPtr[i + 1] = 0;
if (bufPtr[i + 2] > threshold)
bufPtr[i + 2] -= threshold;
else if (bufPtr[i + 2] < -threshold)
bufPtr[i + 2] += threshold;
else
bufPtr[i + 2] = 0;
if (bufPtr[i + 3] > threshold)
bufPtr[i + 3] -= threshold;
else if (bufPtr[i + 3] < -threshold)
bufPtr[i + 3] += threshold;
else
bufPtr[i + 3] = 0;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
if (bufPtr[i] > threshold)
bufPtr[i] -= threshold;
else if (bufPtr[i] < -threshold)
bufPtr[i] += threshold;
else
bufPtr[i] = 0;
}
return *this;
}
//Threshold truncating: this[i] = max( a[i], threshold )
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignTruncateBottomOf(const CPUMatrix<ElemType>& a, const ElemType threshold)
{
if (a.IsEmpty())
LogicError("AssignTruncateBottomOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, a)
{
if (a(i, j) < threshold)
us(i, j) = threshold;
else
us(i, j) = a(i, j);
}
return *this;
}
//Threshold truncating: this[i] = min( this[i], threshold )
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::InplaceTruncateTop(const ElemType threshold)
{
if (IsEmpty())
LogicError("InplaceTruncateTop: Matrix is empty.");
auto& us = *this;
#pragma omp parallel for
foreach_coord (i, j, us)
{
if (us(i, j) > threshold)
us(i, j) = threshold;
}
return *this;
}
//Threshold truncating: this[i] = min( a[i], threshold )
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignTruncateTopOf(const CPUMatrix<ElemType>& a, const ElemType threshold)
{
if (a.IsEmpty())
LogicError("AssignTruncateTopOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_coord (i, j, a)
{
if (a(i, j) > threshold)
us(i, j) = threshold;
else
us(i, j) = a(i, j);
}
return *this;
}
//Threshold truncating: this[i] = 0 if abs(this[i]<threshold).
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::SetToZeroIfAbsLessThan(const ElemType threshold)
{
if (IsEmpty())
LogicError("SetToZeroIfAbsLessThan: Matrix is empty.");
auto& us = *this;
#pragma omp parallel for
foreach_coord (i, j, us)
{
if (abs(us(i, j)) < threshold)
us(i, j) = 0;
}
return *this;
}
//sum of all abs(elements)
template <class ElemType>
ElemType CPUMatrix<ElemType>::SumOfAbsElements() const
{
if (IsEmpty())
LogicError("SumOfAbsElements: Matrix is empty.");
if (sizeof(ElemType) == sizeof(double))
{
#ifdef USE_ACML
return (ElemType) dasum((int) GetNumElements(), reinterpret_cast<double*>(Data()), 1);
#else
return (ElemType) cblas_dasum((int) GetNumElements(), reinterpret_cast<double*>(Data()), 1);
#endif
}
else
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
return sasum((int) GetNumElements(), reinterpret_cast<float*>(Data()), 1);
#else
return cblas_sasum((int) GetNumElements(), reinterpret_cast<float*>(Data()), 1);
#endif
}
}
//sum of all elements
template <class ElemType>
ElemType CPUMatrix<ElemType>::SumOfElements() const
{
if (IsEmpty())
LogicError("SumOfElements: Matrix is empty.");
ElemType sum = 0;
long m = (long) GetNumElements(); // note: OpenMP requires loop indices to be long, not size_t
ElemType* bufPtr = Data();
//four-way unrolling
#pragma omp parallel for reduction(+ : sum)
for (long i = 0; i < (m & ~3); i += 4)
{
sum += bufPtr[i] + bufPtr[i + 1] + bufPtr[i + 2] + bufPtr[i + 3];
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
sum += bufPtr[i];
}
return sum;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSumOfElements(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignSumOfElements: Matrix a is empty.");
auto& us = *this;
us.RequireSize(1, 1);
us(0, 0) = a.SumOfElements();
return *this;
}
template <class ElemType>
bool CPUMatrix<ElemType>::IsEqualTo(const CPUMatrix<ElemType>& a, const ElemType threshold /*= 1e-8*/) const
{
return AreEqual(*this, a, threshold);
}
template <class ElemType>
void CPUMatrix<ElemType>::VectorSum(const CPUMatrix<ElemType>& a, CPUMatrix<ElemType>& c, const bool isColWise)
{
if (a.IsEmpty())
LogicError("VectorSum: Input matrix a is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
if (isColWise) // col-wise
{
c.RequireSize(1, n);
#pragma omp parallel for
foreach_column (j, a)
{
ElemType v = 0;
foreach_row (i, a)
{
#pragma omp atomic
v += a(i, j);
}
c(0, j) = v;
}
}
else
{
c.RequireSize(m, 1);
#pragma omp parallel for
foreach_row (i, a)
{
ElemType v = 0;
foreach_column (j, a)
{
#pragma omp atomic
v += a(i, j);
}
c(i, 0) = v;
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::VectorNorm1(CPUMatrix<ElemType>& c, const bool isColWise) const
{
if (IsEmpty())
LogicError("VectorNorm1: Matrix is empty.");
auto& us = *this;
const int m = (int) us.GetNumRows();
const int n = (int) us.GetNumCols();
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
if (isColWise) // col-wise
{
c.RequireSize(1, n);
#pragma omp parallel for
foreach_column (j, us)
{
ElemType v = 0;
foreach_row (i, us)
{
#pragma omp atomic
v += abs(us(i, j));
}
c(0, j) = v;
}
}
else
{
c.RequireSize(m, 1);
#pragma omp parallel for
foreach_row (i, us)
{
ElemType v = 0;
foreach_column (j, us)
{
#pragma omp atomic
v += abs(us(i, j));
}
c(i, 0) = v;
}
}
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignVectorNorm1Of(CPUMatrix<ElemType>& a, const bool isColWise)
{
a.VectorNorm1(*this, isColWise);
return *this;
}
template <class ElemType>
void CPUMatrix<ElemType>::VectorNorm2(CPUMatrix<ElemType>& c, const bool isColWise) const
{
if (IsEmpty())
LogicError("VectorNorm2: Matrix is empty.");
auto& us = *this;
const int m = (int) us.GetNumRows();
const int n = (int) us.GetNumCols();
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
ElemType* bufPtr = us.Data();
if (isColWise) // col-wise
{
c.RequireSize(1, n);
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_column (j, c)
{
#ifdef USE_ACML
c(0, j) = (ElemType) dnrm2(m, reinterpret_cast<double*>(bufPtr + us.LocateColumn(j)), 1);
#else
c(0, j) = (ElemType) cblas_dnrm2(m, reinterpret_cast<double*>(bufPtr + us.LocateColumn(j)), 1);
#endif
}
}
else
{
#pragma omp parallel for
foreach_column (j, c)
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
c(0, j) = snrm2(m, reinterpret_cast<float*>(bufPtr + us.LocateColumn(j)), 1);
#else
c(0, j) = cblas_snrm2(m, reinterpret_cast<float*>(bufPtr + us.LocateColumn(j)), 1);
#endif
}
}
}
else
{
c.RequireSize(m, 1);
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_row (i, c)
{
#ifdef USE_ACML
c(i, 0) = dnrm2(n, reinterpret_cast<double*>(bufPtr + i), m);
#else
c(i, 0) = cblas_dnrm2(n, reinterpret_cast<double*>(bufPtr + i), m);
#endif
}
}
else
{
#pragma omp parallel for
foreach_row (i, c)
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
c(i, 0) = snrm2(n, reinterpret_cast<float*>(bufPtr + i), m);
#else
c(i, 0) = cblas_snrm2(n, reinterpret_cast<float*>(bufPtr + i), m);
#endif
}
}
}
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignVectorNorm2Of(CPUMatrix<ElemType>& a, const bool isColWise)
{
a.VectorNorm2(*this, isColWise);
return *this;
}
template <class ElemType>
void CPUMatrix<ElemType>::VectorNormInf(CPUMatrix<ElemType>& c, const bool isColWise) const
{
if (IsEmpty())
LogicError("VectorNormInf: Matrix is empty.");
auto& us = *this;
const int m = (int) us.GetNumRows();
const int n = (int) us.GetNumCols();
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
if (isColWise) // col-wise
{
c.RequireSize(1, n);
// #pragma omp parallel for
foreach_column (j, us)
{
ElemType v = 0;
foreach_row (i, us)
{
v = std::max(v, abs(us(i, j)));
}
c(0, j) = v;
}
}
else
{
c.RequireSize(m, 1);
// #pragma omp parallel for
foreach_row (i, us)
{
ElemType v = 0;
foreach_column (j, us)
{
v = std::max(v, abs(us(i, j)));
}
c(i, 0) = v;
}
}
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignVectorNormInfOf(CPUMatrix<ElemType>& a, const bool isColWise)
{
a.VectorNormInf(*this, isColWise);
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignInnerProductOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, const bool isColWise)
{
InnerProduct(a, b, *this, isColWise);
return *this;
}
//column-wise crossproduct
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignKhatriRaoProductOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("AssignKhatriRaoProductOf: Matrix is empty.");
long cols = (long) a.GetNumCols();
assert(cols == b.GetNumCols());
if (cols != b.GetNumCols())
InvalidArgument("a.GetNumCols() != b.GetNumCols()");
long rowsA = (long) a.GetNumRows();
long rowsB = (long) b.GetNumRows();
RequireSize(rowsA * rowsB, cols);
#ifdef __INTEL_COMPILER // TODO: check this
#pragma simd statement
#endif
#pragma omp parallel for
for (long k = 0; k < cols; k++)
{
long jj = 0;
for (long j = 0; j < rowsB; j++)
{
for (long i = 0; i < rowsA; i++)
{
(*this)(jj++, k) = a(i, k) * b(j, k);
}
}
}
return *this;
}
//column-wise reshaped product. Used to compute KhatriRaoProduct Gradient
// this = reshape each column of a from (K1xK2,1) to (K1, K2)
// if each column of a is not transposed, each (K1, K2) times each column of b (K2, frames).
// the output is a (K1, frames) matrix
// if each column of a is tranposed, each (K1, K2)^T times each column of b(K1, frames) and output is (K2, frames)
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddColumnReshapeProductOf(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, const bool transposeAColumn)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("AddColumnReshapeProductOf: Matrix is empty.");
long cols = (long) a.GetNumCols();
assert(cols == b.GetNumCols());
if (cols != b.GetNumCols())
InvalidArgument("AddColumnReshapeProductOf: a.GetNumCols() != b.GetNumCols()");
long rowsA = (long) a.GetNumRows();
long rowsB = (long) b.GetNumRows();
if (rowsA % rowsB != 0)
InvalidArgument("AddColumnReshapeProductOf: number of rows in a should be multiples of that in b.");
long rowsC = rowsA / rowsB;
if (rowsC != GetNumRows() || cols != GetNumCols())
InvalidArgument("AddColumnReshapeProductOf: This matrix does not have the right size.");
auto& us = *this;
if (transposeAColumn)
{
// find nrows and ncols of tbe reshaped a
long nrows = rowsB;
long ncols = rowsC;
#ifdef __INTEL_COMPILER // TODO: check this
#pragma simd statement
#endif
#pragma omp parallel for
foreach_column (t, a)
{
size_t k = 0;
for (size_t j = 0; j < ncols; j++) // row and col is transposed
{
ElemType v = 0;
for (size_t i = 0; i < nrows; i++)
{
v += a(k, t) * b(i, t);
k++;
}
us(j, t) += v;
}
}
}
else
{
size_t ncols = rowsB;
size_t nrows = rowsC;
#ifdef __INTEL_COMPILER // TODO: check this
#pragma simd statement
#endif
#pragma omp parallel for
foreach_column (t, a)
{
size_t k = 0;
for (size_t j = 0; j < ncols; j++)
{
for (size_t i = 0; i < nrows; i++)
{
us(i, t) += a(k, t) * b(j, t);
k++;
}
}
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddWithScaleOf(ElemType alpha, const CPUMatrix<ElemType>& a)
{
ScaleAndAdd(alpha, a, *this);
return *this;
}
template <class ElemType>
ElemType CPUMatrix<ElemType>::FrobeniusNorm() const
{
if (IsEmpty())
LogicError("FrobeniusNorm: Matrix is empty.");
ElemType v = 0;
long m = (long) GetNumElements();
ElemType* bufPtr = Data();
//four-way unrolling
#pragma omp parallel for reduction(+ : v)
for (long i = 0; i < (m & ~3); i += 4)
{
v += bufPtr[i] * bufPtr[i] + bufPtr[i + 1] * bufPtr[i + 1] + bufPtr[i + 2] * bufPtr[i + 2] + bufPtr[i + 3] * bufPtr[i + 3];
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
v += bufPtr[i] * bufPtr[i];
}
return sqrt(v);
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignFrobeniusNormOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignFrobeniusNormOf: Matrix a is empty.");
auto& us = *this;
us.RequireSize(1, 1);
us(0, 0) = a.FrobeniusNorm();
return us;
}
template <class ElemType>
ElemType CPUMatrix<ElemType>::MatrixNormInf() const
{
if (IsEmpty())
LogicError("MatrixNormInf: Matrix is empty.");
auto& us = *this;
ElemType v = 0;
#pragma omp parallel for
foreach_coord (i, j, us)
{
#pragma omp critical
{
v = std::max(v, abs(us(i, j)));
}
}
return v;
}
template <class ElemType>
ElemType CPUMatrix<ElemType>::MatrixNorm0() const
{
if (IsEmpty())
LogicError("MatrixNorm0: Matrix is empty.");
auto& us = *this;
ElemType v = 0;
#pragma omp parallel for
foreach_coord (i, j, us)
{
if (us(i, j) != 0)
{
#pragma omp critical
{
++v;
}
}
}
return v;
}
template <class ElemType>
ElemType CPUMatrix<ElemType>::MatrixNorm1() const
{
if (IsEmpty())
LogicError("MatrixNorm1: Matrix is empty.");
auto& us = *this;
ElemType sum = 0;
#pragma omp parallel for reduction(+ : sum)
foreach_coord (i, j, us)
{
sum += abs(us(i, j));
}
return sum;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSignOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AssignSignOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_column (j, us)
{
foreach_row (i, us)
{
ElemType v = a(i, j);
if (!std::isnan(v))
us(i, j) = (v == (ElemType) 0 ? (ElemType) 0 : (v > 0 ? (ElemType) 1 : (ElemType)(-1)));
else
us(i, j) = v;
}
}
return us;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddSignOf(const CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("AddSignOf: Matrix a is empty.");
auto& us = *this;
if (this != &a)
RequireSize(a.GetNumRows(), a.GetNumCols());
#pragma omp parallel for
foreach_column (j, us)
{
foreach_row (i, us)
{
ElemType v = a(i, j);
if (!std::isnan(v))
us(i, j) += (v == (ElemType) 0 ? (ElemType) 0 : (v > 0 ? (ElemType) 1 : (ElemType)(-1)));
else
us(i, j) = v;
}
}
return us;
}
//I decided to use CPUMatrix<ElemType>& maxIndexes instead of integer vector because the result may be used to do additional calculation
template <class ElemType>
void CPUMatrix<ElemType>::VectorMax(CPUMatrix<ElemType>& maxIndexes, CPUMatrix<ElemType>& maxValues, const bool isColWise, int topK) const
{
if (IsEmpty())
LogicError("VectorMax: Matrix is empty.");
auto& us = *this;
const int m = (int) GetNumRows();
const int n = (int) GetNumCols();
assert(topK <= m);
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
if (isColWise) // col-wise
{
maxValues.RequireSize(topK, n);
maxIndexes.RequireSize(topK, n);
if (topK == 1)
{
#pragma omp parallel for
for (int j = 0; j < n; j++)
{
ElemType v = us(0, j);
size_t index = 0;
foreach_row (i, us)
{
if (v < us(i, j))
{
index = i;
v = us(i, j);
}
}
maxValues(0, j) = v;
maxIndexes(0, j) = (ElemType) index;
}
}
else
{
std::vector<int> indices(m);
int i = 0;
std::generate(indices.begin(), indices.end(), [&i]
{
return i++;
});
const ElemType* curVal = Data();
ElemType* curIdx = maxIndexes.Data();
ElemType* curMax = maxValues.Data();
for (int icol = 0; icol < n; icol++, curVal += m, curIdx += topK, curMax += topK)
{
// Partial sort, descending order.
std::nth_element(indices.begin(), indices.begin() + topK, indices.end(),
[curVal](const int& a, const int& b)
{
return curVal[a] > curVal[b];
});
// REVIEW alexeyk: the following produces warning (see SCL_SECURE_NO_WARNINGS) so use loop instead.
// std::transform(indices.begin(), indices.begin() + topK, curIdx, [](const int& a) { return static_cast<ElemType>(a); });
for (int i = 0; i < topK; i++)
{
curIdx[i] = static_cast<ElemType>(indices[i]);
curMax[i] = curVal[indices[i]];
}
}
}
}
else
{
if (topK > 1)
RuntimeError("Row-wise TopK max is not supported.");
maxValues.RequireSize(m, 1);
maxIndexes.RequireSize(m, 1);
#pragma omp parallel for
for (int i = 0; i < m; i++)
{
ElemType v = us(i, 0);
size_t index = 0;
foreach_column (j, us)
{
if (v < us(i, j))
{
index = j;
v = us(i, j);
}
}
maxValues(i, 0) = v;
maxIndexes(i, 0) = (ElemType) index;
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::VectorMin(CPUMatrix<ElemType>& minIndexes, CPUMatrix<ElemType>& minValues, const bool isColWise) const
{
if (IsEmpty())
LogicError("VectorMin: Matrix is empty.");
auto& us = *this;
const int m = (int) GetNumRows();
const int n = (int) GetNumCols();
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
if (isColWise) // col-wise
{
minValues.RequireSize(1, n);
minIndexes.RequireSize(1, n);
#pragma omp parallel for
for (int j = 0; j < n; j++)
{
ElemType v = us(0, j);
size_t index = 0;
foreach_row (i, us)
{
if (v > us(i, j))
{
index = i;
v = us(i, j);
}
}
minValues(0, j) = v;
minIndexes(0, j) = (ElemType) index;
}
}
else
{
minValues.RequireSize(m, 1);
minIndexes.RequireSize(m, 1);
#pragma omp parallel for
for (int i = 0; i < m; i++)
{
ElemType v = us(i, 0);
size_t index = 0;
foreach_column (j, us)
{
if (v > us(i, j))
{
index = j;
v = us(i, j);
}
}
minValues(i, 0) = v;
minIndexes(i, 0) = (ElemType) index;
}
}
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignNumOfDiff(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, bool searchInCol)
{
if (a.GetNumCols() != b.GetNumCols())
throw std::invalid_argument("AssignNumOfDiff: a and b must have the same number of columns.");
if (!searchInCol && a.GetNumRows() != b.GetNumRows())
throw std::invalid_argument("AssignNumOfDiff: a and b must have the same number of rows.");
ElemType n = 0;
if (!searchInCol)
{
foreach_coord (i, j, a)
{
n += (a(i, j) != b(i, j));
}
}
else
{
size_t crow = b.GetNumRows();
const ElemType* curCol = b.Data();
for (size_t icol = 0; icol < a.GetNumCols(); icol++, curCol += crow)
{
auto res = std::find(curCol, curCol + crow, a(0, icol));
if (res == curCol + crow)
n++;
}
}
RequireSize(1, 1); // result should be one element
(*this)(0, 0) = n;
return *this;
}
#pragma endregion Member BLAS Functions
#pragma region Other helper Functions
struct PrintRange
{
// print from begin to skipBegin, then from skipEnd to end
// skipBegin = end if no split
size_t begin;
size_t skipBegin;
size_t skipEnd;
size_t end;
bool IsEmpty() const { return end <= begin; }
// examples:
// * 3..10
// * -3..-3: include end-3..end and 0..3
PrintRange(ptrdiff_t first, ptrdiff_t last, size_t total)
{
if (first >= 0 && last >= 0)
{
begin = (size_t)first;
end = (size_t)last + 1;
if (end > total) // allow INT_MAX, meaning to end
end = total;
skipBegin = end;
skipEnd = end;
}
else if (first < 0 && last < 0)
{
begin = 0;
skipBegin = (size_t)(-last);
skipEnd = (size_t)(total + first);
if (skipEnd <= skipBegin)
skipBegin = skipEnd = total;
end = total;
}
else // if other combinations are ever of interest then implement them here
LogicError("Print: Bounds must be either both positive or both negative.");
}
};
// use negative ranges to print corners, e.g. Print("name", -3, -3, -3, -3) will print the first 3 and last 3 rows/cols
template <class ElemType>
void CPUMatrix<ElemType>::Print(const char* matrixName, ptrdiff_t rowFirst, ptrdiff_t rowLast, ptrdiff_t colFirst, ptrdiff_t colLast) const
{
fprintf(stderr, "\n###### ");
if (matrixName != nullptr)
fprintf(stderr, "%s ", matrixName);
fprintf(stderr, "(%lu, %lu)", GetNumRows(), GetNumCols());
if (rowFirst != 0 || colFirst != 0 || (size_t)(rowLast + 1) != GetNumRows() || (size_t)(colLast + 1) != GetNumCols())
fprintf(stderr, " [%ld:%ld, %ld:%ld]", rowFirst, rowLast, colFirst, colLast);
fprintf(stderr, " ######\n\n");
if (IsEmpty())
{
fprintf(stderr, "(empty)\n");
return;
}
PrintRange rowRange(rowFirst, rowLast, GetNumRows());
PrintRange colRange(colFirst, colLast, GetNumCols());
if (rowRange.IsEmpty() || colRange.IsEmpty())
{
fprintf(stderr, "(empty)\n");
return;
}
const auto& us = *this;
if (rowRange.begin > 0)
fprintf(stderr, "...\n");
for (size_t i = rowRange.begin; i < rowRange.end; i++)
{
if (i == rowRange.skipBegin) // insert ... between the two blocks if any
{
fprintf(stderr, "...\n");
i = rowRange.skipEnd;
}
if (colRange.begin > 0) // ... at line start
fprintf(stderr, "...\t");
for (size_t j = colRange.begin; j < colRange.end; j++)
{
if (j == colRange.skipBegin)
{
fprintf(stderr, "...\t");
j = colRange.skipEnd;
}
fprintf(stderr, "%.10f\t", us(i, j));
}
if (colRange.end < GetNumCols()) // ... at line end
fprintf(stderr, "...");
fprintf(stderr, "\n");
}
if (rowRange.end < GetNumRows())
fprintf(stderr, "...\n");
}
template <class ElemType>
void CPUMatrix<ElemType>::Print(const char* matrixName /*=nullptr*/) const
{
Print(matrixName, 0, GetNumRows() - 1, 0, GetNumCols() - 1);
}
// file I/O
//matrixName is used to verify that correct matrix is read.
template <class ElemType>
void CPUMatrix<ElemType>::ReadFromFile(FILE*, const char* /*matrixName*/)
{
RuntimeError("not implemented.");
}
//matrixName is used to verify that correct matrix is read.
template <class ElemType>
void CPUMatrix<ElemType>::WriteToFile(FILE*, const char* /*matrixName*/)
{
RuntimeError("not implemented.");
}
//assume each column is an input sample. Each sample is stored in [channel, row, col] (r00, g00, b00, r01, g01, b01, r10, g10, b10, r11, g11, b11)
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignPackedConvolutionInput(const CPUMatrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t /*outputChannels*/,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding)
{
assert(verticalSubsample <= kernelHeight && horizontalSubsample <= kernelWidth);
const size_t packedInputRows = kernelWidth * kernelHeight * inputChannels;
const size_t packedInputColsPerSample = outputWidth * outputHeight; // output size per channel
const size_t inputDim = inputWidth * inputHeight * inputChannels;
const size_t smallBatchSize = inputSubBatch.GetNumCols();
const long inputHeightTimesChannel = (long) (inputHeight * inputChannels);
RequireSize(packedInputRows, packedInputColsPerSample * smallBatchSize);
if (zeroPadding)
SetValue((ElemType) 0);
const long halfKernelWidth = (long) kernelWidth / 2;
const long halfKernelHeight = (long) kernelHeight / 2;
#pragma omp parallel for // each input element is copied to many places
for (long sample = 0; sample < smallBatchSize; sample++)
{
for (long id = 0; id < inputDim; id++)
{
// IN_ELEM_ROWPOS(channel, row, col) = (channel + (row + col * inputHeight) * inputChannels)
// IN_ELEM_COLPOS = sample
const long y = id / inputHeightTimesChannel; // inputCol
const long nXC = id % inputHeightTimesChannel; // channel + inputRow*inputChannels
const long x = nXC / (long) inputChannels; // inputRow
const long c = nXC % (long) inputChannels; // channel
long x0 = 0, y0 = 0, x1 = 0, y1 = 0;
if (zeroPadding)
{
x0 = (long) max((ElemType)0, ceil((x - (ElemType)kernelHeight + 1.0f + halfKernelHeight) / (ElemType)verticalSubsample)); // row : first wrow in which x is in
x1 = (long) (x + halfKernelHeight - x0 * verticalSubsample); // first posxInKernel
y0 = (long) max((ElemType)0, ceil((y - (ElemType)kernelWidth + 1.0f + halfKernelWidth) / (ElemType)horizontalSubsample)); // col : first wcol in which y is in
y1 = (long) (y + halfKernelWidth - y0 * horizontalSubsample); // first posyInKernel
}
else
{
x0 = (long) max((ElemType)0, ceil((x - (ElemType)kernelHeight + 1) / (ElemType)verticalSubsample)); // row : first wrow in which x is in
x1 = (long) (x - x0 * verticalSubsample); // first posxInKernel
y0 = (long) max((ElemType)0, ceil((y - (ElemType)kernelWidth + 1) / (ElemType)horizontalSubsample)); // col : first wcol in which y is in
y1 = (long) (y - y0 * horizontalSubsample); // first posyInKernel
}
assert(x1 >= 0 && x1 < kernelHeight && y1 >= 0 && y1 < kernelWidth);
// PACK_ELEM_ROWPOS(channel, posxInKernel, posyInKernel) = (channel * kernelWidth * kernelHeight + posxInKernel + posyInKernel * kernelHeight)
// PACK_ELEM_COLPOS(sample, wrow, wcol) = (sample*packedInputColsPerSample + outputHeight*wcol + wrow
ElemType currentInputValue = inputSubBatch(id, sample);
long packColBase = (long) (sample * packedInputColsPerSample + y0 * outputHeight);
for (long wcol = y0, posyInKernel = y1; wcol < (long) outputWidth && posyInKernel >= 0; wcol++, posyInKernel -= (long) horizontalSubsample)
{
long packRowBase = (long) (c * kernelWidth * kernelHeight + posyInKernel * kernelHeight);
for (long wrow = x0, posxInKernel = x1; wrow < (long) outputHeight && posxInKernel >= 0; wrow++, posxInKernel -= (long) verticalSubsample)
{
const long packRow = packRowBase + posxInKernel;
const long packCol = packColBase + wrow;
(*this)(packRow, packCol) = currentInputValue;
}
packColBase += (long) outputHeight;
}
}
}
return *this;
}
//assume each column is an input sample. Each sample is stored in [channel, row, col] (r00, g00, b00, r01, g01, b01, r10, g10, b10, r11, g11, b11)
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::UnpackConvolutionInput(CPUMatrix<ElemType>& inputSubBatch,
const size_t inputWidth, const size_t inputHeight, const size_t inputChannels,
const size_t outputWidth, const size_t outputHeight, const size_t /*outputChannels*/,
const size_t kernelWidth, const size_t kernelHeight, const size_t horizontalSubsample, const size_t verticalSubsample,
const bool zeroPadding) const
{
assert(verticalSubsample <= kernelHeight && horizontalSubsample <= kernelWidth);
const size_t packedInputColsPerSample = outputWidth * outputHeight; // output size per channel
const size_t inputDim = inputWidth * inputHeight * inputChannels;
const size_t smallBatchSize = inputSubBatch.GetNumCols();
const long inputHeightTimesChannel = (long) (inputHeight * inputChannels);
const long halfKernelWidth = (long) kernelWidth / 2;
const long halfKernelHeight = (long) kernelHeight / 2;
#pragma omp parallel for // each input element is copied to many places
for (long sample = 0; sample < smallBatchSize; sample++)
{
for (long id = 0; id < inputDim; id++)
{
// IN_ELEM_ROWPOS(channel, row, col) = (channel + (row + col * inputHeight) * inputChannels)
// IN_ELEM_COLPOS = sample
const long y = id / inputHeightTimesChannel; // inputCol
const long nXC = id % inputHeightTimesChannel; // channel + inputRow*inputChannels
const long x = nXC / (long) inputChannels; // inputRow
const long c = nXC % (long) inputChannels; // channel
long x0 = 0, y0 = 0, x1 = 0, y1 = 0;
if (zeroPadding)
{
x0 = (long) max((ElemType)0, ceil((x - (ElemType) kernelHeight + 1.0f + halfKernelHeight) / (ElemType) verticalSubsample)); // row : first wrow in which x is in
x1 = (long) (x + halfKernelHeight - x0 * verticalSubsample); // first posxInKernel
y0 = (long) max((ElemType)0, ceil((y - (ElemType) kernelWidth + 1.0f + halfKernelWidth) / (ElemType) horizontalSubsample)); // col : first wcol in which y is in
y1 = (long) (y + halfKernelWidth - y0 * horizontalSubsample); // first posyInKernel
}
else
{
x0 = (long) max((ElemType)0, ceil((x - (ElemType) kernelHeight + 1) / (ElemType) verticalSubsample)); // row : first wrow in which x is in
x1 = (long) (x - x0 * verticalSubsample); // first posxInKernel
y0 = (long) max((ElemType)0, ceil((y - (ElemType) kernelWidth + 1) / (ElemType) horizontalSubsample)); // col : first wcol in which y is in
y1 = (long) (y - y0 * horizontalSubsample); // first posyInKernel
}
assert(x1 >= 0 && x1 < kernelHeight && y1 >= 0 && y1 < kernelWidth);
// PACK_ELEM_ROWPOS(channel, posxInKernel, posyInKernel) = (channel * kernelWidth * kernelHeight + posxInKernel + posyInKernel * kernelHeight)
// PACK_ELEM_COLPOS(sample, wrow, wcol) = (sample*packedInputColsPerSample + outputHeight*wcol + wrow
ElemType currentInputValue = inputSubBatch(id, sample);
long packColBase = (long) (sample * packedInputColsPerSample + y0 * outputHeight);
for (long wcol = y0, posyInKernel = y1; wcol < (long) outputWidth && posyInKernel >= 0; wcol++, posyInKernel -= (long) horizontalSubsample)
{
long packRowBase = (long) (c * kernelWidth * kernelHeight + posyInKernel * kernelHeight);
for (long wrow = x0, posxInKernel = x1; wrow < (long) outputHeight && posxInKernel >= 0; wrow++, posxInKernel -= (long) verticalSubsample)
{
const long packRow = packRowBase + posxInKernel;
const long packCol = packColBase + wrow;
currentInputValue += (*this)(packRow, packCol);
}
packColBase += (long) outputHeight;
}
inputSubBatch(id, sample) = currentInputValue;
}
}
return inputSubBatch;
}
//assume each column is an input sample. Each sample is stored in (r00, g00, b00, r01, g01, b01, r10, g10, b10, r11, g11, b11)
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignMaxPoolingResult(const CPUMatrix<ElemType>& inputBatch, const size_t channels,
const size_t /*inputWidth*/, const size_t inputHeight, const size_t /*inputSizePerSample*/,
const size_t /*outputWidth*/, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample)
{
const long inputHeightTimesChannel = (long) (inputHeight * channels);
const long outputHeightTimesChannel = (long) (outputHeight * channels);
const size_t batchSize = inputBatch.GetNumCols();
RequireSize(outputSizePerSample, batchSize);
// IN_ELEM_ROWPOS(channel, row, col) = (channel + (row + col * inputHeight) * channels)
// IN_ELEM_COLPOS = sample
// OUT_ELEM_ROWPOS(channel, wrow, wcol) = (channel + (wrow + wcol * outputHeight) * channels)
// OUT_ELEM_COLPOS = sample
#pragma omp parallel for
for (long sample = 0; sample < (long) batchSize; sample++)
{
for (long outputIndexWithinSample = 0; outputIndexWithinSample < outputSizePerSample; outputIndexWithinSample++)
{
const long y = outputIndexWithinSample / outputHeightTimesChannel; // wcol
const long nXC = outputIndexWithinSample % outputHeightTimesChannel; // channel + wrow*channels
const long x = (long) (nXC / channels); // wrow
const long c = (long) (nXC % channels); // channel
ElemType maxVal = -FLT_MAX;
ElemType minVal = FLT_MAX;
const long rowInWindowBase = (long) ((x * verticalSubsample + y * horizontalSubsample * inputHeight) * channels + c);
for (long colInWindow = 0; colInWindow < windowWidth; colInWindow++)
{
long rowInInput = rowInWindowBase + colInWindow * inputHeightTimesChannel;
for (long rowInWindow = 0; rowInWindow < windowHeight; rowInWindow++)
{
const ElemType val = inputBatch(rowInInput, sample); // pf[rowInWindow*channels];
maxVal = std::max(maxVal, val);
minVal = std::min(minVal, val);
rowInInput += (long) channels;
}
}
(*this)(outputIndexWithinSample, sample) = maxVal;
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddMaxPoolingGradient(const CPUMatrix<ElemType>& outputGradientBatch, const CPUMatrix<ElemType>& inputBatch, const CPUMatrix<ElemType>& outputBatch,
const size_t channels,
const size_t /*inputWidth*/, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t /*outputSizePerSample*/,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample)
{
size_t batchSize = inputBatch.GetNumCols();
const long inputHeightTimesChannel = (long) (inputHeight * channels);
const long outputHeightTimesChannel = (long) (outputHeight * channels);
// IN_ELEM_ROWPOS(channel, row, col) = (channel + (row + col * inputHeight) * channels)
// IN_ELEM_COLPOS = sample
// OUT_ELEM_ROWPOS(channel, wrow, wcol) = (channel + (wrow + wcol * outputHeight) * channels)
// OUT_ELEM_COLPOS = sample
#pragma omp parallel for
for (long sample = 0; sample < batchSize; sample++)
{
for (long inputIndexWithinSample = 0; inputIndexWithinSample < inputSizePerSample; inputIndexWithinSample++)
{
const long y = inputIndexWithinSample / inputHeightTimesChannel; // col in input
const long nXC = inputIndexWithinSample % inputHeightTimesChannel; // channel + row*chanels
const long x = (long) (nXC / channels); // row in input
const long c = (long) (nXC % channels); // channel
long startOutX = (long) max((ElemType)0, ceil((x - (ElemType) windowHeight + 1) / (ElemType) verticalSubsample)); // inclusive start
long endOutX = (long) ((x / verticalSubsample < outputHeight - 1) ? x / verticalSubsample : outputHeight - 1); // inclusive end
long startOutY = (long) max((ElemType)0, ceil((y - (ElemType) windowWidth + 1) / (ElemType) horizontalSubsample)); // inclusive start
long endOutY = (long) ((y / horizontalSubsample < outputWidth - 1) ? y / horizontalSubsample : outputWidth - 1); // inclusive end
ElemType inputValue = inputBatch(inputIndexWithinSample, sample);
for (long outY = startOutY; outY <= endOutY; outY++)
{
for (long outX = startOutX; outX <= endOutX; outX++)
{
long outputIndex = (long) (outY * outputHeightTimesChannel + outX * channels + c);
if (inputValue == outputBatch(outputIndex, sample))
(*this)(inputIndexWithinSample, sample) += outputGradientBatch(outputIndex, sample);
}
}
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignAveragePoolingResult(const CPUMatrix<ElemType>& inputBatch, const size_t channels,
const size_t /*inputWidth*/, const size_t inputHeight, const size_t /*inputSizePerSample*/,
const size_t /*outputWidth*/, const size_t outputHeight, const size_t outputSizePerSample,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample)
{
const long inputHeightTimesChannel = (long) (inputHeight * channels);
const long outputHeightTimesChannel = (long) (outputHeight * channels);
const size_t batchSize = inputBatch.GetNumCols();
const size_t windowSize = windowWidth * windowHeight;
RequireSize(outputSizePerSample, batchSize);
// IN_ELEM_ROWPOS(channel, row, col) = (channel + (row + col * inputHeight) * channels)
// IN_ELEM_COLPOS = sample
// OUT_ELEM_ROWPOS(channel, wrow, wcol) = (channel + (wrow + wcol * outputHeight) * channels)
// OUT_ELEM_COLPOS = sample
#pragma omp parallel for
for (long sample = 0; sample < batchSize; sample++)
{
for (long outputIndexWithinSample = 0; outputIndexWithinSample < outputSizePerSample; outputIndexWithinSample++)
{
const long y = outputIndexWithinSample / outputHeightTimesChannel; // wcol
const long nXC = outputIndexWithinSample % outputHeightTimesChannel; // channel + wrow*channels
const long x = (long) (nXC / channels); // wrow
const long c = (long) (nXC % channels); // channel
ElemType sum = 0;
const long rowInWindowBase = (long) ((x * verticalSubsample + y * horizontalSubsample * inputHeight) * channels + c);
for (long colInWindow = 0; colInWindow < windowWidth; colInWindow++)
{
long rowInInput = rowInWindowBase + colInWindow * inputHeightTimesChannel;
for (long rowInWindow = 0; rowInWindow < windowHeight; rowInWindow++)
{
sum += inputBatch(rowInInput, sample);
rowInInput += (long) channels;
}
}
(*this)(outputIndexWithinSample, sample) = sum / windowSize;
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AddAveragePoolingGradient(const CPUMatrix<ElemType>& outputGradientBatch,
const size_t channels,
const size_t /*inputWidth*/, const size_t inputHeight, const size_t inputSizePerSample,
const size_t outputWidth, const size_t outputHeight, const size_t /*outputSizePerSample*/,
const size_t windowWidth, const size_t windowHeight, const size_t horizontalSubsample, const size_t verticalSubsample)
{
size_t batchSize = outputGradientBatch.GetNumCols();
const long inputHeightTimesChannel = (long) (inputHeight * channels);
const long outputHeightTimesChannel = (long) (outputHeight * channels);
const long windowSize = (long) (windowWidth * windowHeight);
// IN_ELEM_ROWPOS(channel, row, col) = (channel + (row + col * inputHeight) * channels)
// IN_ELEM_COLPOS = sample
// OUT_ELEM_ROWPOS(channel, wrow, wcol) = (channel + (wrow + wcol * outputHeight) * channels)
// OUT_ELEM_COLPOS = sample
#pragma omp parallel for
for (long sample = 0; sample < batchSize; sample++)
{
for (long inputIndexWithinSample = 0; inputIndexWithinSample < inputSizePerSample; inputIndexWithinSample++)
{
const long y = inputIndexWithinSample / inputHeightTimesChannel; // col in input
const long nXC = inputIndexWithinSample % inputHeightTimesChannel; // channel + row*chanels
const long x = nXC / (long) channels; // row in input
const long c = nXC % (long) channels; // channel
long startOutX = (long) max((ElemType)0, ceil((x - (ElemType) windowHeight + 1) / (ElemType) verticalSubsample)); // inclusive start
long endOutX = (long) ((x / verticalSubsample < outputHeight - 1) ? x / (long) verticalSubsample : outputHeight - 1); // inclusive end
long startOutY = (long) max((ElemType)0, ceil((y - (ElemType) windowWidth + 1) / (ElemType) horizontalSubsample)); // inclusive start
long endOutY = (long) ((y / horizontalSubsample < outputWidth - 1) ? y / horizontalSubsample : outputWidth - 1); // inclusive end
for (long outY = startOutY; outY <= endOutY; outY++)
{
for (long outX = startOutX; outX <= endOutX; outX++)
{
long outputIndex = outY * outputHeightTimesChannel + outX * (long) channels + c;
(*this)(inputIndexWithinSample, sample) += outputGradientBatch(outputIndex, sample) / windowSize;
}
}
}
}
return *this;
}
#pragma endregion Other Helper Functions
template <class ElemType>
void CPUMatrix<ElemType>::ConvolutionForward(const CPUMatrix<ElemType>& kernel, const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIwht,
const CPUMatrix<int>& mpRowRun, const CPUMatrix<int>& runs, CPUMatrix<ElemType>& output) const
{
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)output.GetNumCols(); sample++)
{
for (size_t row = 0; row < output.GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
int ivBase = mpRowIwht(row, 0);
assert(0 <= colBase && colBase < GetNumRows());
ElemType sum = 0;
int i0 = mpRowRun(row, 0);
int skip = runs(i0++, 0);
int size = runs(i0++, 0);
int imask = i0 + size;
for (int i = 0; i < size; i++)
{
if (runs(imask + i, 0) == 0)
continue;
int dcol = runs(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < GetNumRows());
sum += kernel.Data()[ivBase + skip + i] * (*this)(colBase + dcol, sample);
}
output(row, sample) = sum;
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::ConvolutionBackwardData(const CPUMatrix<ElemType>& kernel, const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIwht,
const CPUMatrix<int>& mpRowRun, const CPUMatrix<int>& runs, CPUMatrix<ElemType>& grad) const
{
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)GetNumCols(); sample++)
{
for (size_t row = 0; row < GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
int ivBase = mpRowIwht(row, 0);
assert(0 <= colBase && colBase < grad.GetNumRows());
ElemType curGrad = (*this)(row, sample);
int i0 = mpRowRun(row, 0);
int skip = runs(i0++, 0);
int size = runs(i0++, 0);
int imask = i0 + size;
for (int i = 0; i < size; i++)
{
if (runs(imask + i, 0) == 0)
continue;
int dcol = runs(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < grad.GetNumRows());
grad(colBase + dcol, sample) += curGrad * kernel.Data()[ivBase + skip + i];
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::ConvolutionBackwardKernel(const CPUMatrix<ElemType>& in, const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIwht,
const CPUMatrix<int>& mpRowRun, const CPUMatrix<int>& runs, CPUMatrix<ElemType>& kernelGrad) const
{
// Do NOT parallelize these loops!
for (size_t sample = 0; sample < GetNumCols(); sample++)
{
for (size_t row = 0; row < GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
int ivBase = mpRowIwht(row, 0);
assert(0 <= colBase && colBase < in.GetNumRows());
ElemType curGrad = (*this)(row, sample);
int i0 = mpRowRun(row, 0);
int skip = runs(i0++, 0);
int size = runs(i0++, 0);
int imask = i0 + size;
for (int i = 0; i < size; i++)
{
if (runs(imask + i, 0) == 0)
continue;
int dcol = runs(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < in.GetNumRows());
kernelGrad.Data()[ivBase + skip + i] += curGrad * in(colBase + dcol, sample);
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::UnrollConvolutionInput(size_t unrollCols, size_t mapOutSize, const CPUMatrix<int>& mpRowCol,
const CPUMatrix<int>& mpRowRun, const CPUMatrix<int>& runs, CPUMatrix<ElemType>& output) const
{
size_t batchSize = GetNumCols();
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)batchSize; sample++)
{
for (size_t row = 0; row < mapOutSize; row++)
{
int colBase = mpRowCol(row, 0);
assert(0 <= colBase && colBase < GetNumRows());
int i0 = mpRowRun(row, 0);
int skip = runs(i0++, 0);
int size = runs(i0++, 0);
int imask = i0 + size;
for (int i = 0; i < size; i++)
{
if (runs(imask + i, 0) == 0)
continue;
int dcol = runs(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < GetNumRows());
output.Data()[(row * batchSize + sample) * unrollCols + skip + i] = (*this)(colBase + dcol, sample);
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::UnrollConvolutionOutput(size_t unrollCols, size_t mapInCount, size_t mapOutCount, const CPUMatrix<int>& mpRowCol,
const CPUMatrix<int>& mpRowRun, const CPUMatrix<int>& runs, CPUMatrix<ElemType>& output) const
{
assert((mpRowCol.GetNumRows() % mapOutCount) == 0);
size_t mapOutSize = mpRowCol.GetNumRows() / mapOutCount;
size_t batchSize = GetNumCols();
size_t kernelSize = runs(1, 0);
assert((kernelSize % mapInCount) == 0);
size_t kernelMapSize = kernelSize / mapInCount;
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)GetNumCols(); sample++)
{
for (size_t row = 0; row < mapOutSize; row++)
{
int colBase = mpRowCol(row, 0);
int i0 = mpRowRun(row, 0);
int skip = runs(i0++, 0);
int size = runs(i0++, 0);
int imask = i0 + size;
for (int i = 0; i < std::min(size, (int)kernelMapSize); i++)
{
if (runs(imask + i, 0) == 0)
continue;
int dcol = runs(i0 + i, 0);
size_t isrc = row;
size_t idst = ((colBase + dcol) * batchSize + sample) * unrollCols + ((skip + i) % kernelMapSize) * mapOutCount;
for (size_t outMap = 0; outMap < mapOutCount; outMap++, isrc += mapOutSize)
{
assert(isrc < GetNumElements());
assert(idst + outMap < output.GetNumElements());
output.Data()[idst + outMap] = (*this)(isrc, sample);
}
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::UnrollConvolutionInputForKernelBackprop(size_t mapOutSize, const CPUMatrix<int>& mpRowCol,
const CPUMatrix<int>& mpRowRun, const CPUMatrix<int>& runs, CPUMatrix<ElemType>& output) const
{
size_t batchSize = GetNumCols();
size_t unrollCols = mapOutSize * batchSize;
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)batchSize; sample++)
{
for (size_t row = 0; row < mapOutSize; row++)
{
int colBase = mpRowCol(row, 0);
assert(0 <= colBase && colBase < GetNumRows());
int i0 = mpRowRun(row, 0);
int skip = runs(i0++, 0);
int size = runs(i0++, 0);
int imask = i0 + size;
for (int i = 0; i < size; i++)
{
if (runs(imask + i, 0) == 0)
continue;
int dcol = runs(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < GetNumRows());
size_t idst = (skip + i) * unrollCols + row * batchSize + sample;
assert(idst < output.GetNumElements());
output.Data()[idst] = (*this)(colBase + dcol, sample);
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::MaxPoolingForward(const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIndices, const CPUMatrix<int>& indices, CPUMatrix<ElemType>& output) const
{
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)output.GetNumCols(); sample++)
{
for (size_t row = 0; row < output.GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
assert(0 <= colBase && colBase < GetNumRows());
assert(std::numeric_limits<ElemType>::has_infinity);
ElemType res = -std::numeric_limits<ElemType>::infinity();
int i0 = mpRowIndices(row, 0);
int size = indices(i0++, 0);
assert(size > 0);
for (int i = 0; i < size; i++)
{
int dcol = indices(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < GetNumRows());
res = std::max(res, (*this)(colBase + dcol, sample));
}
output(row, sample) = res;
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::MaxPoolingBackward(const CPUMatrix<ElemType>& out, const CPUMatrix<ElemType>& in,
const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIndices, const CPUMatrix<int>& indices,
CPUMatrix<ElemType>& grad) const
{
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)GetNumCols(); sample++)
{
for (size_t row = 0; row < GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
assert(0 <= colBase && colBase < grad.GetNumRows());
int i0 = mpRowIndices(row, 0);
int size = indices(i0++, 0);
assert(size > 0);
ElemType g = (*this)(row, sample);
ElemType m = out(row, sample);
for (int i = 0; i < size; i++)
{
int dcol = indices(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < grad.GetNumRows());
if (in(colBase + dcol, sample) >= m)
grad(colBase + dcol, sample) += g;
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::MaxUnpooling(const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIndices,
const CPUMatrix<int>& indices, const CPUMatrix<ElemType>& poolInput,
CPUMatrix<ElemType>& input) const
{
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)GetNumCols(); sample++)
{
for (size_t row = 0; row < GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
assert(0 <= colBase && colBase < input.GetNumRows());
int i0 = mpRowIndices(row, 0);
int size = indices(i0++, 0);
assert(size > 0);
ElemType curMax = poolInput(colBase + indices(i0, 0), sample);
ElemType prevMax = curMax;
int imax = 0;
for (int i = 1; i < size; i++)
{
int dcol = indices(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < poolInput.GetNumRows());
curMax = std::max(curMax, poolInput(colBase + dcol, sample));
if (curMax > prevMax)
{
prevMax = curMax;
imax = i;
}
}
int dcol = indices(i0 + imax, 0);
assert(0 <= colBase + dcol && colBase + dcol < input.GetNumRows());
input(colBase + dcol, sample) = (*this)(row, sample);
//int i = (int)poolIn(row, sample);
//assert(0 <= i && i < size);
//int dcol = indices(i0 + i, 0);
//assert(0 <= colBase + dcol && colBase + dcol < input.GetNumRows());
//input(colBase + dcol, sample) = (*this)(row, sample);
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::AveragePoolingForward(const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIndices, const CPUMatrix<int>& indices, CPUMatrix<ElemType>& output) const
{
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)output.GetNumCols(); sample++)
{
for (size_t row = 0; row < output.GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
assert(0 <= colBase && colBase < GetNumRows());
ElemType sum = 0;
int i0 = mpRowIndices(row, 0);
int size = indices(i0++, 0);
assert(size > 0);
for (int i = 0; i < size; i++)
{
int dcol = indices(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < GetNumRows());
sum += (*this)(colBase + dcol, sample);
}
// Note that we divide by size which is the number of actual elements (does not include padding).
output(row, sample) = sum / size;
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::AveragePoolingBackward(const CPUMatrix<int>& mpRowCol, const CPUMatrix<int>& mpRowIndices, const CPUMatrix<int>& indices, CPUMatrix<ElemType>& grad) const
{
#pragma omp parallel for
for (int64_t sample = 0; sample < (int64_t)GetNumCols(); sample++)
{
for (size_t row = 0; row < GetNumRows(); row++)
{
int colBase = mpRowCol(row, 0);
assert(0 <= colBase && colBase < grad.GetNumRows());
int i0 = mpRowIndices(row, 0);
int size = indices(i0++, 0);
assert(size > 0);
ElemType g = (*this)(row, sample) / size;
for (int i = 0; i < size; i++)
{
int dcol = indices(i0 + i, 0);
assert(0 <= colBase + dcol && colBase + dcol < grad.GetNumRows());
grad(colBase + dcol, sample) += g;
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::BatchNormalizationForward(const CPUMatrix<ElemType>& scale, const CPUMatrix<ElemType>& bias, double expAvgFactor, double blendFactor,
CPUMatrix<ElemType>& runMean, CPUMatrix<ElemType>& runInvStdDev, CPUMatrix<ElemType>& out, double epsilon,
CPUMatrix<ElemType>& saveMean, CPUMatrix<ElemType>& saveInvStdDev) const
{
UNUSED(epsilon);
assert((GetNumRows() % scale.GetNumRows()) == 0);
if (expAvgFactor != 0 || blendFactor != 1)
RuntimeError("Batch normalization training on CPU is not yet implemented.");
saveMean.Resize(0, 0); // only doing inference: these two are not produced
saveInvStdDev.Resize(0, 0);
bool spatial = GetNumRows() != scale.GetNumRows();
if (spatial)
{
size_t spatialSize = GetNumRows() / scale.GetNumRows();
#pragma omp parallel for
for (long icol = 0; icol < out.GetNumCols(); icol++)
{
for (long irow = 0; irow < out.GetNumRows(); irow++)
{
size_t imap = irow / spatialSize;
out(irow, icol) = scale(imap, 0) * ((*this)(irow, icol) - runMean(imap, 0)) * runInvStdDev(imap, 0) + bias(imap, 0);
}
}
}
else
{
#pragma omp parallel for
for (long icol = 0; icol < out.GetNumCols(); icol++)
{
for (long irow = 0; irow < out.GetNumRows(); irow++)
{
out(irow, icol) = scale(irow, 0) * ((*this)(irow, icol) - runMean(irow, 0)) * runInvStdDev(irow, 0) + bias(irow, 0);
}
}
}
}
template <class ElemType>
void CPUMatrix<ElemType>::BatchNormalizationBackward(const CPUMatrix<ElemType>& in, CPUMatrix<ElemType>& grad, const CPUMatrix<ElemType>& scale, const CPUMatrix<ElemType>& saveMean, const CPUMatrix<ElemType>& saveInvStdDev,
CPUMatrix<ElemType>& scaleGrad, CPUMatrix<ElemType>& biasGrad) const
{
UNUSED(in); UNUSED(grad); UNUSED(scale); UNUSED(saveMean); UNUSED(saveInvStdDev); UNUSED(scaleGrad); UNUSED(biasGrad);
RuntimeError("Batch normalization training on CPU is not yet implemented.");
}
#pragma region Static BLAS Functions
/// <summary>Matrix-matrix multiply with col-major matrices (a and b may be transposed): c = alpha * op(a) * op(b) + beta*c</summary>
/// <param name="alpha">Scalar</param>
/// <param name="a">Input matrix</param>
/// <param name="transposeA">Whether matrix a is transposed</param>
/// <param name="b">Input matrix</param>
/// <param name="transposeB">Whether matrix b is transposed</param>
/// <param name="beta">Scalar</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::MultiplyAndWeightedAdd(ElemType alpha, const CPUMatrix<ElemType>& a, const bool transposeA, const CPUMatrix<ElemType>& b, const bool transposeB,
ElemType beta, CPUMatrix<ElemType>& c)
{
if (a.IsEmpty() || b.IsEmpty())
return;
int m, n, k, l;
int lda, ldb, ldc;
#ifdef USE_ACML
char transA, transB;
#else
CBLAS_TRANSPOSE mklTransA;
CBLAS_TRANSPOSE mklTransB;
#endif
if (transposeA)
{
m = (int) a.GetNumCols();
k = (int) a.GetNumRows();
lda = k;
#ifdef USE_ACML
transA = (char) MatrixTranspose::Trans;
#else
mklTransA = CBLAS_TRANSPOSE::CblasTrans;
#endif
}
else
{
m = (int) a.GetNumRows();
k = (int) a.GetNumCols();
lda = m;
#ifdef USE_ACML
transA = (char) MatrixTranspose::NoTrans;
#else
mklTransA = CBLAS_TRANSPOSE::CblasNoTrans;
#endif
}
if (transposeB)
{
l = (int) b.GetNumCols();
n = (int) b.GetNumRows();
ldb = n;
#ifdef USE_ACML
transB = (char) MatrixTranspose::Trans;
#else
mklTransB = CBLAS_TRANSPOSE::CblasTrans;
#endif
}
else
{
l = (int) b.GetNumRows();
n = (int) b.GetNumCols();
ldb = l;
#ifdef USE_ACML
transB = (char) MatrixTranspose::NoTrans;
#else
mklTransB = CBLAS_TRANSPOSE::CblasNoTrans;
#endif
}
assert(m > 0 && k > 0 && l > 0 && n > 0); // converting from size_t to int may cause overflow
assert(k == l);
if (k != l)
InvalidArgument("CPUMatrix<ElemType>::MultiplyAndWeightedAdd : The inner dimensions of a and b must match.");
if (beta == 0)
c.RequireSize(m, n);
else
c.VerifySize(m, n); // Can't resize if beta != 0
ldc = (int) c.GetNumRows();
if (sizeof(ElemType) == sizeof(double))
{
#ifdef USE_ACML
dgemm(transA, transB, m, n, k, alpha, reinterpret_cast<double*>(a.Data()), lda, reinterpret_cast<double*>(b.Data()), ldb, beta, reinterpret_cast<double*>(c.Data()), ldc);
#else
cblas_dgemm((CBLAS_ORDER) BLAS_COLMAJOR mklTransA, mklTransB, m, n, k, alpha, reinterpret_cast<double*>(a.Data()), lda, reinterpret_cast<double*>(b.Data()), ldb, beta, reinterpret_cast<double*>(c.Data()), ldc);
#endif
}
else
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
sgemm(BLAS_COLMAJOR transA, transB, m, n, k, alpha, reinterpret_cast<float*>(a.Data()), lda, reinterpret_cast<float*>(b.Data()), ldb, beta, reinterpret_cast<float*>(c.Data()), ldc);
#else
cblas_sgemm((CBLAS_ORDER) BLAS_COLMAJOR mklTransA, mklTransB, m, n, k, alpha, reinterpret_cast<float*>(a.Data()), lda, reinterpret_cast<float*>(b.Data()), ldb, beta, reinterpret_cast<float*>(c.Data()), ldc);
#endif
}
}
template <class ElemType>
void CPUMatrix<ElemType>::Multiply1x1AndWeightedAdd(ElemType alpha, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b,
ElemType beta, CPUMatrix<ElemType>& c)
{
assert(a.GetNumElements() == 1); // a is a scalar
ElemType f = alpha * a.Get00Element();
if (beta == 0) // don't even read the memory if beta is 0
#pragma omp parallel for
foreach_coord (i, j, c)
c(i, j) = b(i, j) * f;
else
#pragma omp parallel for
foreach_coord (i, j, c)
c(i, j) = b(i, j) * f + c(i, j) * beta;
}
/* compute singular value decomposition as
A = U*SIGMA*VT
W is used as temp working memory
*/
template <class ElemType>
void CPUMatrix<ElemType>::SVD(const CPUMatrix<ElemType>& A, CPUMatrix<ElemType>& SIGMA, CPUMatrix<ElemType>& U, CPUMatrix<ElemType>& VT, CPUMatrix<ElemType>& W)
{
if (A.IsEmpty())
LogicError("SVD: input matrix is empty.");
int info;
int m, n, lda, ldu, ldvt;
m = (int) A.GetNumRows();
n = (int) A.GetNumCols();
W.GetNumRows(); // W is used as temp working memory
lda = m;
ldu = m;
ldvt = n;
U.RequireSize(m, m);
SIGMA.RequireSize(std::min(m, n), 1);
VT.RequireSize(n, n);
if (sizeof(ElemType) == sizeof(double))
{
#ifdef USE_ACML
dgesvd('A', 'A', (int) m, (int) n, reinterpret_cast<double*>(A.Data()), (int) lda, reinterpret_cast<double*>(SIGMA.Data()), reinterpret_cast<double*>(U.Data()), (int) ldu, reinterpret_cast<double*>(VT.Data()), (int) ldvt, &info);
#elif defined(USE_MKL)
double wkopt;
int lwork = -1;
dgesvd("All", "All", &m, &n, reinterpret_cast<double*>(A.Data()), &lda, reinterpret_cast<double*>(SIGMA.Data()), reinterpret_cast<double*>(U.Data()), &ldu, reinterpret_cast<double*>(VT.Data()), &ldvt, &wkopt, &lwork, &info);
lwork = (int) wkopt;
W.RequireSize(lwork, 1);
dgesvd("All", "All", &m, &n, reinterpret_cast<double*>(A.Data()), &lda, reinterpret_cast<double*>(SIGMA.Data()), reinterpret_cast<double*>(U.Data()), &ldu, reinterpret_cast<double*>(VT.Data()), &ldvt, reinterpret_cast<double*>(W.Data()), &lwork, &info);
#else
std::vector<double> superb(std::max(std::min(m, n) - 1, 1));
info = LAPACKE_dgesvd(BLAS_COLMAJOR 'A', 'A', (int) m, (int) n, reinterpret_cast<double*>(A.Data()), (int) lda, reinterpret_cast<double*>(SIGMA.Data()),
reinterpret_cast<double*>(U.Data()), (int) ldu, reinterpret_cast<double*>(VT.Data()), (int) ldvt, &superb[0]);
#endif
}
else
{
#ifdef USE_ACML
#pragma warning(suppress : 4244)
sgesvd('A', 'A', (int) m, (int) n, reinterpret_cast<float*>(A.Data()), (int) lda, reinterpret_cast<float*>(SIGMA.Data()), reinterpret_cast<float*>(U.Data()), (int) ldu, reinterpret_cast<float*>(VT.Data()), (int) ldvt, &info);
#elif defined(USE_MKL)
float wkopt;
int lwork = -1;
sgesvd("All", "All", &m, &n, reinterpret_cast<float*>(A.Data()), &lda, reinterpret_cast<float*>(SIGMA.Data()), reinterpret_cast<float*>(U.Data()), &ldu, reinterpret_cast<float*>(VT.Data()), &ldvt, &wkopt, &lwork, &info);
lwork = (int) wkopt;
W.RequireSize(lwork, 1);
sgesvd("All", "All", &m, &n, reinterpret_cast<float*>(A.Data()), &lda, reinterpret_cast<float*>(SIGMA.Data()), reinterpret_cast<float*>(U.Data()), &ldu, reinterpret_cast<float*>(VT.Data()), &ldvt, reinterpret_cast<float*>(W.Data()), &lwork, &info);
#else
std::vector<float> superb(std::max(std::min(m, n) - 1, 1));
info = LAPACKE_sgesvd(BLAS_COLMAJOR 'A', 'A', (int) m, (int) n, reinterpret_cast<float*>(A.Data()), (int) lda, reinterpret_cast<float*>(SIGMA.Data()),
reinterpret_cast<float*>(U.Data()), (int) ldu, reinterpret_cast<float*>(VT.Data()), (int) ldvt, &superb[0]);
#endif
}
if (info > 0)
{
RuntimeError("The algorithm computing SVD failed to converge.\n");
}
}
/// <summary>Matrix-matrix multiply with col-major matrices (a and b may be transposed): c = op(a) * op(b) + c</summary>
/// <param name="a">Input matrix</param>
/// <param name="transposeA">Whether matrix a is transposed</param>
/// <param name="b">Input matrix</param>
/// <param name="transposeB">Whether matrix b is transposed</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::MultiplyAndAdd(const CPUMatrix<ElemType>& a, const bool transposeA, const CPUMatrix<ElemType>& b, const bool transposeB,
CPUMatrix<ElemType>& c)
{
return CPUMatrix<ElemType>::MultiplyAndWeightedAdd(1.0, a, transposeA, b, transposeB, 1.0, c);
}
template <class ElemType>
void CPUMatrix<ElemType>::AssignSoftmaxSum(const CPUMatrix<ElemType>& softmax, CPUMatrix<ElemType>& c)
{
ElemType log_likelihood = 0.0;
size_t batch_size = GetNumCols();
#pragma omp parallel for reduction(+ : log_likelihood)
for (int instance_id = 0; instance_id < batch_size; instance_id++)
{
int sample = (int) (*this)(0, instance_id);
log_likelihood += softmax(instance_id, sample);
}
c(0, 0) = -log_likelihood;
}
template <class ElemType>
void CPUMatrix<ElemType>::AssignNCEUnnormalizedEval(const CPUMatrix<ElemType>& a,
const CPUMatrix<ElemType>& b, const CPUMatrix<ElemType>& bias, CPUMatrix<ElemType>& c)
//this: samples+probs
// a: hidden
// b: embedding
// tmp: softmax
// c: loglikelihood
{
ElemType log_likelihood = 0.0;
size_t batch_size = GetNumCols();
#pragma omp parallel for reduction(+ : log_likelihood)
for (int instance_id = 0; instance_id < batch_size; instance_id++)
{
int sample = -(int) (*this)(0, instance_id);
ElemType score = bias(sample, 0);
for (int dim = 0; dim < b.GetNumRows(); dim++)
score += b(dim, sample) * a(dim, instance_id);
log_likelihood += score;
}
c(0, 0) = -log_likelihood;
}
//samples+prob gradient hidden embedding embedding/hidden
//a.m_CPUMatrix->AssignNCEDerivative(*tmp.m_CPUMatrix, *a.m_CPUMatrix, *b.m_CPUMatrix, inputIndex, *c.m_CPUMatrix);
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignNCEDerivative(const CPUMatrix<ElemType>& tmp, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, size_t inputIndex, CPUMatrix<ElemType>& c)
{
size_t sample_size = GetNumRows() / 2;
size_t batch_size = GetNumCols();
if (inputIndex == 1)
{
#pragma omp parallel for
for (int instance_id = 0; instance_id < batch_size; instance_id++)
for (int sample_id = 0; sample_id < sample_size; sample_id++)
{
int sample = (int) (*this)(2 * sample_id, instance_id);
for (int dim = 0; dim < b.GetNumRows(); dim++)
c(dim, instance_id) -= b(dim, sample) * tmp(sample_id, instance_id);
}
}
else if (inputIndex == 2)
{
int i_blocks = omp_get_num_threads() * 16;
// Assume only one block in k direction.
// We don't need to explicitly block in the j direction.
#pragma omp parallel for
for (int ib = 0; ib < i_blocks; ib++)
for (int instance_id = 0; instance_id < batch_size; instance_id++)
for (int sample_id = 0; sample_id < sample_size; sample_id++)
{
int sample = (int) (*this)(2 * sample_id, instance_id);
if (sample % i_blocks == ib)
for (int dim = 0; dim < b.GetNumRows(); dim++)
c(dim, sample) -= a(dim, instance_id) * tmp(sample_id, instance_id);
}
}
else
{
assert(inputIndex == 3);
// Assume only one block in k direction.
// We don't need to explicitly block in the j direction.
for (int instance_id = 0; instance_id < batch_size; instance_id++)
for (int sample_id = 0; sample_id < sample_size; sample_id++)
{
int sample = (int) (*this)(2 * sample_id, instance_id);
c(0, sample) -= tmp(sample_id, instance_id);
}
}
return *this;
}
template <class ElemType>
void CPUMatrix<ElemType>::AssignNoiseContrastiveEstimation(const CPUMatrix<ElemType>& a,
const CPUMatrix<ElemType>& b, const CPUMatrix<ElemType>& bias, CPUMatrix<ElemType>& tmp, CPUMatrix<ElemType>& c)
//this: samples+probs
// a: hidden
// b: embedding
// tmp: softmax
// c: loglikelihood
{
double log_likelihood = 0.0;
size_t sample_size = GetNumRows() / 2;
size_t batch_size = GetNumCols();
size_t num_noise_samples = sample_size - 1;
double log_num_noise_samples = std::log(num_noise_samples);
#pragma omp parallel for reduction(+ : log_likelihood)
for (int instance_id = 0; instance_id < batch_size; instance_id++)
for (int sample_id = 0; sample_id < sample_size; sample_id++)
{
int sample = (int) (*this)(2 * sample_id, instance_id);
double score = bias(0, sample);
for (int dim = 0; dim < b.GetNumRows(); dim++)
score += a(dim, instance_id) * b(dim, sample);
double sample_prob = -(*this)(2 * sample_id + 1, instance_id);
if (sample_id == 0)
sample_prob = -sample_prob;
double score_noise = log_num_noise_samples + sample_prob;
double z = LogAdd(score, score_noise);
double logprob = score - z;
double logprob_noise = score_noise - z;
tmp(sample_id, instance_id) = (ElemType) -std::exp(logprob);
if (sample_id == 0)
tmp(sample_id, instance_id) += 1;
log_likelihood += sample_id == 0 ? logprob : logprob_noise;
}
c(0, 0) = (ElemType) -log_likelihood;
}
/// <summary>Matrix-matrix multiply with col-major matrices (a and b may be transposed): c = op(a) * op(b)</summary>
/// <param name="a">Input matrix</param>
/// <param name="transposeA">Whether matrix a is transposed</param>
/// <param name="b">Input matrix</param>
/// <param name="transposeB">Whether matrix b is transposed</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::Multiply(const CPUMatrix<ElemType>& a, const bool transposeA, const CPUMatrix<ElemType>& b, const bool transposeB,
CPUMatrix<ElemType>& c)
{
return CPUMatrix<ElemType>::MultiplyAndWeightedAdd(1.0, a, transposeA, b, transposeB, 0.0, c);
}
/// <summary>Matrix-matrix multiply with col-major matrices (a and b are not transposed): c = a * b</summary>
/// <param name="a">Input matrix</param>
/// <param name="b">Input matrix</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::Multiply(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c)
{
return CPUMatrix<ElemType>::MultiplyAndWeightedAdd(1.0, a, false, b, false, 0.0, c);
}
/// <summary>Matrix-scalar multiply with col-major matrices: c = alpha * a + c</summary>
/// if a is a column vector, add to all columns of c
/// if a is a row vector, add to all rows of c
/// if a is a scalar, add to all rows of c
/// <param name="alpha">Scalar</param>
/// <param name="a">Input matrix</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::ScaleAndAdd(ElemType alpha, const CPUMatrix<ElemType>& a, CPUMatrix<ElemType>& c)
{
if (a.IsEmpty() || c.IsEmpty())
LogicError("ScaleAndAdd: one of the input matrices is empty.");
if (a.GetNumRows() != 1 && a.GetNumCols() != 1) // a is not a col or row vector
{
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
const int len = m * n;
const int incx = 1;
const int incy = 1;
assert(m > 0 && n > 0 && len > 0); // converting from size_t to int may cause overflow
assert((int) c.GetNumRows() == m && (int) c.GetNumCols() == n);
if ((int) c.GetNumRows() != m || (int) c.GetNumCols() != n)
InvalidArgument("Dimension of matrix c does not match dimension of matrix a.");
if (sizeof(ElemType) == sizeof(double))
{
#ifdef USE_ACML
daxpy(len, alpha, reinterpret_cast<double*>(a.Data()), incx, reinterpret_cast<double*>(c.Data()), incy);
#else
cblas_daxpy(len, alpha, reinterpret_cast<double*>(a.Data()), incx, reinterpret_cast<double*>(c.Data()), incy);
#endif
}
else
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
saxpy(len, alpha, reinterpret_cast<float*>(a.Data()), incx, reinterpret_cast<float*>(c.Data()), incy);
#else
cblas_saxpy(len, alpha, reinterpret_cast<float*>(a.Data()), incx, reinterpret_cast<float*>(c.Data()), incy);
#endif
}
}
else if (a.GetNumElements() == 1) // scalar, add to all elements
{
ElemType v = alpha * a(0, 0);
long m = (long) c.GetNumRows(), n = (long) c.GetNumCols();
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
c(i, j) += v;
c(i + 1, j) += v;
c(i + 2, j) += v;
c(i + 3, j) += v;
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
c(i, j) += v;
}
}
}
else if (a.GetNumCols() == 1) // col vector, add it to all columns
{
int m = (int) c.GetNumRows();
assert(m == (int) a.GetNumRows());
if (m != (int) a.GetNumRows())
InvalidArgument("To add column vector, rows should match.");
ElemType* aBufPtr = a.Data();
ElemType* cBufPtr = c.Data();
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_column (j, c)
{
#ifdef USE_ACML
daxpy(m, alpha, reinterpret_cast<double*>(aBufPtr), 1, reinterpret_cast<double*>(cBufPtr + c.LocateColumn(j)), 1);
#else
cblas_daxpy(m, alpha, reinterpret_cast<double*>(aBufPtr), 1, reinterpret_cast<double*>(cBufPtr + c.LocateColumn(j)), 1);
#endif
}
}
else
{
#pragma omp parallel for
foreach_column (j, c)
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
saxpy(m, alpha, reinterpret_cast<float*>(aBufPtr), 1, reinterpret_cast<float*>(cBufPtr + c.LocateColumn(j)), 1);
#else
cblas_saxpy(m, alpha, reinterpret_cast<float*>(aBufPtr), 1, reinterpret_cast<float*>(cBufPtr + c.LocateColumn(j)), 1);
#endif
}
}
}
else // row vector, add it to all rows
{
int m = (int) c.GetNumRows();
int n = (int) c.GetNumCols();
assert(n == (int) a.GetNumCols());
if (n != (int) a.GetNumCols())
InvalidArgument("To add row vector, cols should match.");
ElemType* aBufPtr = a.Data();
ElemType* cBufPtr = c.Data();
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_row (i, c)
{
#ifdef USE_ACML
daxpy(n, alpha, reinterpret_cast<double*>(aBufPtr), 1, reinterpret_cast<double*>(cBufPtr + i), m);
#else
cblas_daxpy(n, alpha, reinterpret_cast<double*>(aBufPtr), 1, reinterpret_cast<double*>(cBufPtr + i), m);
#endif
}
}
else
{
#pragma omp parallel for
foreach_row (i, c)
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
saxpy(n, alpha, reinterpret_cast<float*>(aBufPtr), 1, reinterpret_cast<float*>(cBufPtr + i), m);
#else
cblas_saxpy(n, alpha, reinterpret_cast<float*>(aBufPtr), 1, reinterpret_cast<float*>(cBufPtr + i), m);
#endif
}
}
}
}
/// <summary>c += alpha * (a-b)</summary>
/// if a, b, c must have same dim
/// <param name="alpha">Scalar</param>
/// <param name="a">Input matrix</param>
/// <param name="b">Input matrix</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::AddScaledDifference(const ElemType alpha, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c)
{
assert(a.GetNumRows() == b.GetNumRows() && a.GetNumRows() == c.GetNumRows() &&
a.GetNumCols() == b.GetNumCols() && a.GetNumCols() == c.GetNumCols());
if (!(a.GetNumRows() == b.GetNumRows() && a.GetNumRows() == c.GetNumRows() &&
a.GetNumCols() == b.GetNumCols() && a.GetNumCols() == c.GetNumCols()))
{
InvalidArgument("AddScaledDifference: a, b, and c must have same dimension.");
}
if (a.IsEmpty())
LogicError("AddScaledDifference: Input matrix a is empty.");
ElemType* aBufPtr = a.Data();
ElemType* bBufPtr = b.Data();
ElemType* cBufPtr = c.Data();
long m = (long) c.GetNumElements();
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
cBufPtr[i] += alpha * (aBufPtr[i] - bBufPtr[i]);
cBufPtr[i + 1] += alpha * (aBufPtr[i + 1] - bBufPtr[i + 1]);
cBufPtr[i + 2] += alpha * (aBufPtr[i + 2] - bBufPtr[i + 2]);
cBufPtr[i + 3] += alpha * (aBufPtr[i + 3] - bBufPtr[i + 3]);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
cBufPtr[i] += alpha * (aBufPtr[i] - bBufPtr[i]);
}
}
/// <summary> c = alpha * (a-b)</summary>
/// if a, b, c must have same dim
/// <param name="alpha">Scalar</param>
/// <param name="a">Input matrix</param>
/// <param name="b">Input matrix</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::AssignScaledDifference(const ElemType alpha, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c)
{
assert(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols());
if (!(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols()))
{
InvalidArgument("AssignScaledDifference: a, b must have same dimension.");
}
if (a.IsEmpty())
LogicError("AssignScaledDifference: Input matrix a is empty.");
if (&c != &a && &c != &b)
c.RequireSize(a.GetNumRows(), a.GetNumCols());
ElemType* aBufPtr = a.Data();
ElemType* bBufPtr = b.Data();
ElemType* cBufPtr = c.Data();
long m = (long) c.GetNumElements();
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (m & ~3); i += 4)
{
cBufPtr[i] = alpha * (aBufPtr[i] - bBufPtr[i]);
cBufPtr[i + 1] = alpha * (aBufPtr[i + 1] - bBufPtr[i + 1]);
cBufPtr[i + 2] = alpha * (aBufPtr[i + 2] - bBufPtr[i + 2]);
cBufPtr[i + 3] = alpha * (aBufPtr[i + 3] - bBufPtr[i + 3]);
}
// handle remaining stuffs
for (long i = m & ~3; i < m; i++)
{
cBufPtr[i] = alpha * (aBufPtr[i] - bBufPtr[i]);
}
}
// c[ci,cj] += a[ai,aj]
template <class ElemType>
void CPUMatrix<ElemType>::AddElementToElement(ElemType beta, const CPUMatrix<ElemType>& a, const size_t ai, const size_t aj, CPUMatrix<ElemType>& c, const size_t ci, const size_t cj)
{
if (ai >= a.GetNumRows() || aj >= a.GetNumCols() ||
ci >= c.GetNumRows() || cj >= c.GetNumCols())
InvalidArgument("AddElementToElement: index out of range.");
ElemType us = beta ? beta * c(ci, cj) : 0; // do not multiply if beta is 0, could be a NaN
us += a(ai, aj);
c(ci, cj) = us;
}
////c[ci,cj] += a[ai,aj]
//template<class ElemType>
//void CPUMatrix<ElemType>::AddLogElementToElement(const CPUMatrix<ElemType>& a, const size_t ai, const size_t aj, CPUMatrix<ElemType>& c, const size_t ci, const size_t cj)
//{
// if (ai >= a.GetNumRows() || aj >=a.GetNumCols() ||
// ci >= c.GetNumRows() || cj >=c.GetNumCols())
// InvalidArgument("AddElementToElement: index out of range.");
//
// ElemType v = a(ai,aj);
// c(ci, cj) += ((v < EPS_IN_LOG) ? LOG_OF_EPS_IN_LOG : log(v));
//}
#if 0 // now done as AddElementToElement (beta=0)
// c[ci,cj] = a[ai,aj]
template <class ElemType>
void CPUMatrix<ElemType>::AssignElementToElement(const CPUMatrix<ElemType>& a, const size_t ai, const size_t aj, CPUMatrix<ElemType>& c, const size_t ci, const size_t cj)
{
if (ai >= a.GetNumRows() || aj >= a.GetNumCols() ||
ci >= c.GetNumRows() || cj >= c.GetNumCols())
InvalidArgument("AssignElementToElement: index out of range.");
c(ci, cj) = a(ai, aj);
}
#endif
/// <summary>c += alpha * (a-b)</summary>
/// if a, b, c must have same dim
/// <param name="alpha">1X1 matrix</param>
/// <param name="a">Input matrix</param>
/// <param name="b">Input matrix</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::AddScaledDifference(const CPUMatrix<ElemType>& alpha, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c)
{
assert(alpha.GetNumElements() == 1);
if (!(alpha.GetNumElements() == 1))
InvalidArgument("AddScaledDifference: alpha must be a 1X1 matrix.");
AddScaledDifference(alpha(0, 0), a, b, c);
}
/// <summary> c = alpha * (a-b)</summary>
/// if a, b, c must have same dim
/// <param name="alpha">1X1 matrix</param>
/// <param name="a">Input matrix</param>
/// <param name="b">Input matrix</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
void CPUMatrix<ElemType>::AssignScaledDifference(const CPUMatrix<ElemType>& alpha, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c)
{
assert(alpha.GetNumElements() == 1);
if (!(alpha.GetNumElements() == 1))
InvalidArgument("AddScaledDifference: alpha must be a 1X1 matrix.");
AssignScaledDifference(alpha(0, 0), a, b, c);
}
/// <summary>Matrix-scalar multiply with col-major matrices: c = alpha * a</summary>
/// <param name="alpha">Scalar</param>
/// <param name="a">Input matrix</param>
/// <param name="c">Resulting matrix, user is responsible for allocating this</param>
template <class ElemType>
/*static*/ void CPUMatrix<ElemType>::Scale(ElemType alpha, const CPUMatrix<ElemType>& a, CPUMatrix<ElemType>& c)
{
if (a.IsEmpty())
LogicError("Scale: Input matrix a is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
c.RequireSize(m, n);
ElemType* aBufPtr = a.Data();
ElemType* cBufPtr = c.Data();
if (alpha == 0)
{
memset(cBufPtr, 0, sizeof(ElemType) * c.GetNumElements());
return;
}
long size = (long) c.GetNumElements();
#pragma omp parallel for
// four-way unrolling
for (long i = 0; i < (size & ~3); i += 4)
{
cBufPtr[i] = alpha * aBufPtr[i];
cBufPtr[i + 1] = alpha * aBufPtr[i + 1];
cBufPtr[i + 2] = alpha * aBufPtr[i + 2];
cBufPtr[i + 3] = alpha * aBufPtr[i + 3];
}
// remaining elements
for (long i = size & ~3; i < size; i++)
{
cBufPtr[i] = alpha * aBufPtr[i];
}
}
/// <summary>Matrix-scalar multiply with col-major matrices: a = alpha * a</summary>
/// <param name="alpha">Scalar</param>
/// <param name="a">Input matrix</param>
template <class ElemType>
/*static*/ void CPUMatrix<ElemType>::Scale(ElemType alpha, CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("Scale: Input matrix a is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
const int len = m * n;
const int incx = 1;
assert(m > 0 && n > 0 && len > 0); // converting from size_t to int may cause overflow
if (alpha == 0 && incx == 1)
{
memset(a.Data(), 0, sizeof(ElemType) * len);
}
else if (sizeof(ElemType) == sizeof(double))
{
#ifdef USE_ACML
dscal(len, alpha, reinterpret_cast<double*>(a.Data()), incx); // TODO: Use overloads.
#else
cblas_dscal(len, alpha, reinterpret_cast<double*>(a.Data()), incx);
#endif
}
else
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
sscal(len, alpha, reinterpret_cast<float*>(a.Data()), incx);
#else
cblas_sscal(len, alpha, reinterpret_cast<float*>(a.Data()), incx);
#endif
}
}
/// <summary>Matrix multiply with col-major matrices: a = alpha[1,1] * a</summary>
/// <param name="alpha">1x1 matrix</param>
/// <param name="a">Input matrix</param>
template <class ElemType>
/*static*/ void CPUMatrix<ElemType>::Scale(CPUMatrix<ElemType> alpha, CPUMatrix<ElemType>& a)
{
if (a.IsEmpty())
LogicError("Scale: Input matrix a is empty.");
if (alpha.GetNumElements() != 1)
LogicError("Matrix alpha must be 1x1");
CPUMatrix<ElemType>::Scale(alpha(0, 0), a);
}
template <class ElemType>
void CPUMatrix<ElemType>::InnerProduct(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c, const bool isColWise)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("InnerProduct: one of the input matrices is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
const int k = (int) b.GetNumRows();
const int l = (int) b.GetNumCols();
assert(m > 0 && n > 0 && k > 0 && l > 0); // converting from size_t to int may cause overflow
assert(m == k && n == l); // converting from size_t to int may cause overflow
if (m != k || n != l)
InvalidArgument("InnerProduct: Matrices a and b should have same dimension.");
if ((isColWise && m == 1) || !isColWise && n == 1) // in this case it's equivalent to element-wise product
{
c.AssignElementProductOf(a, b);
}
else if (isColWise) // col-wise
{
c.RequireSize(1, n);
ElemType* aBufPtr = a.Data();
ElemType* bBufPtr = b.Data();
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_column (j, c)
{
#ifdef USE_ACML
c(0, j) = (ElemType) ddot(m, reinterpret_cast<double*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<double*>(bBufPtr + b.LocateColumn(j)), 1);
#else
c(0, j) = (ElemType) cblas_ddot(m, reinterpret_cast<double*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<double*>(bBufPtr + b.LocateColumn(j)), 1);
#endif
}
}
else
{
#pragma omp parallel for
foreach_column (j, c)
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
c(0, j) = (ElemType) sdot(m, reinterpret_cast<float*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<float*>(bBufPtr + b.LocateColumn(j)), 1);
#else
c(0, j) = (ElemType) cblas_sdot(m, reinterpret_cast<float*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<float*>(bBufPtr + b.LocateColumn(j)), 1);
#endif
}
}
}
else
{
c.RequireSize(m, 1);
ElemType* aBufPtr = a.Data();
ElemType* bBufPtr = b.Data();
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_row (i, c)
{
#ifdef USE_ACML
c(i, 0) = ddot(n, reinterpret_cast<double*>(aBufPtr + i), m, reinterpret_cast<double*>(bBufPtr + i), m);
#else
c(i, 0) = cblas_ddot(n, reinterpret_cast<double*>(aBufPtr + i), m, reinterpret_cast<double*>(bBufPtr + i), m);
#endif
}
}
else
{
#pragma omp parallel for
foreach_row (i, c)
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
c(i, 0) = sdot(n, reinterpret_cast<float*>(aBufPtr + i), m, reinterpret_cast<float*>(bBufPtr + i), m);
#else
c(i, 0) = cblas_sdot(n, reinterpret_cast<float*>(aBufPtr + i), m, reinterpret_cast<float*>(bBufPtr + i), m);
#endif
}
}
}
}
// treat matrices as vectors. do vec(a)^T vec(b)
template <class ElemType>
ElemType CPUMatrix<ElemType>::InnerProductOfMatrices(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("InnerProductOfMatrices: one of the input matrices is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
const int k = (int) b.GetNumRows();
const int l = (int) b.GetNumCols();
assert(m > 0 && n > 0 && k > 0 && l > 0); // converting from size_t to int may cause overflow
assert(m == k && n == l); // converting from size_t to int may cause overflow
if (m != k || n != l)
InvalidArgument("InnerProductOfMatrices: Matrices a and b should have same dimension.");
if (sizeof(ElemType) == sizeof(double))
{
#ifdef USE_ACML
return (ElemType) ddot((int) a.GetNumElements(), reinterpret_cast<double*>(a.Data()), 1, reinterpret_cast<double*>(b.Data()), 1);
#else
return (ElemType) cblas_ddot((int) a.GetNumElements(), reinterpret_cast<double*>(a.Data()), 1, reinterpret_cast<double*>(b.Data()), 1);
#endif
}
else
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
return (ElemType) sdot((int) a.GetNumElements(), reinterpret_cast<float*>(a.Data()), 1, reinterpret_cast<float*>(b.Data()), 1);
#else
return (ElemType) cblas_sdot((int) a.GetNumElements(), reinterpret_cast<float*>(a.Data()), 1, reinterpret_cast<float*>(b.Data()), 1);
#endif
}
}
template <class ElemType>
void CPUMatrix<ElemType>::ElementWisePower(ElemType alpha, const CPUMatrix<ElemType>& a, CPUMatrix<ElemType>& c)
{
if (a.IsEmpty())
LogicError("Scale: The input matrix a is empty.");
c.RequireSize(a.GetNumRows(), a.GetNumCols());
if (alpha == 2)
{
#pragma omp parallel for
foreach_coord (i, j, c)
{
c(i, j) = a(i, j) * a(i, j);
}
}
else if (alpha == 3)
{
#pragma omp parallel for
foreach_coord (i, j, c)
{
c(i, j) = a(i, j) * a(i, j) * a(i, j);
}
}
else
{
#pragma omp parallel for
foreach_coord (i, j, c)
{
c(i, j) = pow(a(i, j), alpha);
}
}
}
template <class ElemType>
bool CPUMatrix<ElemType>::AreEqual(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, const ElemType threshold /*= 1e-8*/)
{
if (a.GetNumRows() != b.GetNumRows() || a.GetNumCols() != b.GetNumCols())
return false;
bool result = true;
#pragma omp parallel for
foreach_coord (i, j, a)
{
if (abs(a(i, j) - b(i, j)) > threshold)
{
result = false;
break;
}
}
return result;
}
// see Matrix<ElemType>::TensorShuffleScaleAndAdd() for comments
template <class ElemType>
void CPUMatrix<ElemType>::TensorShuffleScaleAndAdd(ElemType keepWeight, const CPUMatrix<ElemType>& a, size_t D, size_t S, size_t M, size_t K, size_t T, ElemType scaleFactor, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c)
{
size_t N = D * S * M * K * T;
const auto pa = a.Data();
const auto pb = b.Data();
auto pc = c.Data();
// Note: This code is written to match a GPU implementation. It is not super-efficient on the CPU.
for (size_t na = 0; na < N; na++) // loop over all elements
{
// recover the 5 indices from the loop counter
size_t d = na % D;
size_t s = (na / D) % S;
size_t m = (na / D / S) % M;
size_t k = (na / D / S / M) % K;
size_t t = (na / D / S / M / K) % T;
// compute index for the a and b/c tensors
assert(na == (((t * K + k) * M + m) * S + s) * D + d); // input tensor of dimension (D x S x M x K x T)
size_t nb = (((t * S + s) * M + m) * K + k) * D + d; // output tensor of dimension (D x K x M x S x T): k/K and s/S swapped
assert(nb < N);
// perform the computation
ElemType cval = keepWeight ? keepWeight * pb[nb] : 0; // if weight is 0 then don't bother to read memory (efficiency) or to multiply (NaN-safe)
cval += scaleFactor * pa[na];
pc[nb] = cval;
}
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::Ones(const size_t rows, const size_t cols)
{
CPUMatrix<ElemType> c(rows, cols); // will initialize to 0
c.SetValue(1);
return c;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::Zeros(const size_t rows, const size_t cols)
{
CPUMatrix<ElemType> c(rows, cols); // will initialize to 0
c.SetValue(0);
return c;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::Eye(const size_t rows)
{
CPUMatrix<ElemType> c(rows, rows); // will initialize to 0
c.SetDiagonalValue(1);
return c;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::RandomUniform(const size_t rows, const size_t cols, const ElemType low, const ElemType high, unsigned long seed)
{
CPUMatrix<ElemType> c(rows, cols); // will initialize to 0
c.SetUniformRandomValue(low, high, seed);
return c;
}
template <class ElemType>
CPUMatrix<ElemType> CPUMatrix<ElemType>::RandomGaussian(const size_t rows, const size_t cols, const ElemType mean, const ElemType sigma, unsigned long seed)
{
CPUMatrix<ElemType> c(rows, cols); // will initialize to 0
c.SetGaussianRandomValue(mean, sigma, seed);
return c;
}
template <class ElemType>
bool CPUMatrix<ElemType>::HasElement(const CPUMatrix<ElemType>& mat, const ElemType v)
{
bool bHas = false;
bool isvFinite = std::isfinite(v);
#pragma omp parallel for
for (long j = 0; j < mat.GetNumElements(); j++)
{
#pragma omp flush(bHas)
if (!bHas)
{
ElemType cur = mat.Data()[j];
if (isvFinite && std::isfinite(cur))
{
if (cur == v)
bHas = true;
}
else if (std::isnan(v) && std::isnan(cur))
bHas = true;
else if (std::isinf(v) && std::isinf(cur) && std::signbit(v) == std::signbit(cur))
bHas = true;
}
}
return bHas;
}
// CPUMatrix<ElemType>& AssignElementProductOfWithShiftNeg(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, size_t shift, size_t negnumber);
//[this]=a .* b
// here, a and b must be two row vectors of the same size, i.e. [1,m]
// the inputs are two rwo vectors
// the output is a matrix of size(neg+1, col)
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignElementProductOfWithShiftNeg(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, size_t shift, size_t negnumber)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("AssignElementProductOfWithShiftNeg: Matrix is empty.");
assert(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols());
if (!(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols()))
InvalidArgument("AssignElementProductOfWithShiftNeg: The input matrix dimensions do not match.");
if (a.GetNumRows() != 1)
InvalidArgument("AssignElementProductOfWithShiftNeg: The input matrix must be a row vector.");
auto& us = *this;
if (this != &a)
{
RequireSize(negnumber + 1, a.GetNumCols());
// RequireSize(a.GetNumRows(), a.GetNumCols());
}
long m = (long) GetNumRows(), n = (long) GetNumCols(); // a and b are of size (1,n)
// #pragma omp parallel for
for (long j = 0; j < n; j++)
{
us(0, j) = a(0, j) * b(0, j);
}
for (long j = 0; j < n; j++)
{
for (long i = 1; i < m; i++)
{
us(i, j) = a(0, j) * b(0, (j + shift + i - 1) % n);
}
}
return *this;
}
template <class ElemType>
void CPUMatrix<ElemType>::InnerProductWithShiftNeg(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c, const bool isColWise, size_t shift, size_t negnumber)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("InnerProduct: one of the input matrices is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
const int k = (int) b.GetNumRows();
const int l = (int) b.GetNumCols();
assert(m > 0 && n > 0 && k > 0 && l > 0); // converting from size_t to int may cause overflow
assert(m == k && n == l); // converting from size_t to int may cause overflow
if (m != k || n != l)
InvalidArgument("InnerProduct: Matrices a and b should have same dimension.");
if ((isColWise && m == 1) || !isColWise && n == 1) // in this case it's equivalent to element-wise product
{
InvalidArgument("InnerProduct: Both matrices should be normal ones, not vectors");
// c.AssignElementProductOf(a, b);
}
else if (isColWise) // col-wise
{
c.RequireSize(negnumber + 1, n); // this line ischanged
ElemType* aBufPtr = a.Data();
ElemType* bBufPtr = b.Data();
if (sizeof(ElemType) == sizeof(double))
{
for (long j = 0; j < n; j++)
{
#ifdef USE_ACML
c(0, j) = (ElemType) ddot(m, reinterpret_cast<double*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<double*>(bBufPtr + b.LocateColumn(j)), 1);
#else
c(0, j) = (ElemType) cblas_ddot(m, reinterpret_cast<double*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<double*>(bBufPtr + b.LocateColumn(j)), 1);
#endif
}
for (long j = 0; j < n; j++)
{
for (long i = 1; i < negnumber + 1; i++)
{
#ifdef USE_ACML
c(i, j) = (ElemType) ddot(m, reinterpret_cast<double*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<double*>(bBufPtr + b.LocateColumn((j + shift + i - 1) % n)), 1);
#else
c(i, j) = (ElemType) cblas_ddot(m, reinterpret_cast<double*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<double*>(bBufPtr + b.LocateColumn((j + shift + i - 1) % n)), 1);
#endif
}
}
}
else
{
for (long j = 0; j < n; j++)
{
#ifdef USE_ACML
c(0, j) = (ElemType) sdot(m, reinterpret_cast<float*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<float*>(bBufPtr + b.LocateColumn(j)), 1);
#else
c(0, j) = (ElemType) cblas_sdot(m, reinterpret_cast<float*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<float*>(bBufPtr + b.LocateColumn(j)), 1);
#endif
}
for (long j = 0; j < n; j++)
{
for (long i = 1; i < negnumber + 1; i++)
{
#ifdef USE_ACML
c(i, j) = (ElemType) sdot(m, reinterpret_cast<float*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<float*>(bBufPtr + b.LocateColumn((j + shift + i - 1) % n)), 1);
#else
c(i, j) = (ElemType) cblas_sdot(m, reinterpret_cast<float*>(aBufPtr + a.LocateColumn(j)), 1, reinterpret_cast<float*>(bBufPtr + b.LocateColumn((j + shift + i - 1) % n)), 1);
#endif
}
}
}
}
else
{
InvalidArgument("InnerProduct: Rowwise is not supported yet");
c.RequireSize(m, 1);
ElemType* aBufPtr = a.Data();
ElemType* bBufPtr = b.Data();
if (sizeof(ElemType) == sizeof(double))
{
#pragma omp parallel for
foreach_row (i, c)
{
#ifdef USE_ACML
c(i, 0) = (ElemType) ddot(n, reinterpret_cast<double*>(aBufPtr + i), m, reinterpret_cast<double*>(bBufPtr + i), m);
#else
c(i, 0) = (ElemType) cblas_ddot(n, reinterpret_cast<double*>(aBufPtr + i), m, reinterpret_cast<double*>(bBufPtr + i), m);
#endif
}
}
else
{
#pragma omp parallel for
foreach_row (i, c)
{
#pragma warning(suppress : 4244)
#ifdef USE_ACML
c(i, 0) = sdot(n, reinterpret_cast<float*>(aBufPtr + i), m, reinterpret_cast<float*>(bBufPtr + i), m);
#else
c(i, 0) = cblas_sdot(n, reinterpret_cast<float*>(aBufPtr + i), m, reinterpret_cast<float*>(bBufPtr + i), m);
#endif
}
}
}
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::GetARowByIndex(const CPUMatrix<ElemType>& a, size_t index)
{
if (a.IsEmpty())
LogicError("GetARowByIndex: the input matrices is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
if (index < 0 || index >= m)
LogicError("GetARowByIndex: the row index is out of range.");
assert(m > 0 && n > 0); // converting from size_t to int may cause overflow
auto& us = *this;
RequireSize(1, n);
for (long j = 0; j < n; j++)
{
us(0, j) = a(index, j);
}
return *this;
}
// input: a, a row vector
// input: b, a matrix. b.col == a.col
// input firstmatrixfixed: If true, keep a's order. Otherwise, keep b's order
// output: c, a matrix. c.size == b.size
/*
Example, a = [a1 a2 a3]
b = [b11 b12 b13;
b21 b22 b23 ]
if true:
shift = 1
then c = [a1*b12 a2*b13 a3*b11
a1*b22 a2*b23 a3*b21]
if shift = 2
then c = [ a1*b13 a2*b11 a3*b12
a1*b23 a2*b21 a3*b22]
i.e. we do column-wise shift
if false:
shift = 1
then c = [a2*b11 a3*b12 a1*b13
a2*b21 a3*b22 a1*b23]
shift = 2
then c = [ a3*b11 a1*b12 a2*b13
a3*b21 a1*b22 a2*b23]
*/
template <class ElemType>
void CPUMatrix<ElemType>::ConductRowElementMultiplyWithShift(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, CPUMatrix<ElemType>& c, size_t shift, bool bFirstmatrixfixed)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("InnerProduct: one of the input matrices is empty.");
const int m = (int) a.GetNumRows();
const int n = (int) a.GetNumCols();
const int k = (int) b.GetNumRows();
const int l = (int) b.GetNumCols();
assert(m > 0 && n > 0 && k > 0 && l > 0); // converting from size_t to int may cause overflow
assert(m == 1 && n == l); // converting from size_t to int may cause overflow
if (m != 1 || n != l)
InvalidArgument("InnerProduct: Matrices a and b should have same dimension.");
c.RequireSize(k, l); // c must the the same size of b
if (bFirstmatrixfixed)
{
for (long j = 0; j < l; j++)
{
for (long i = 0; i < k; i++)
{
c(i, j) = a(0, j) * b(i, (j + shift) % l);
}
}
}
else
{
for (long j = 0; j < l; j++)
{
for (long i = 0; i < k; i++)
{
c(i, j) = a(0, (j + shift) % l) * b(i, j);
}
}
}
}
// CPUMatrix<ElemType>& AssignElementProductOfWithShift(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, size_t shift);
//[this]=a .* b
// here, a and b must be two row vectors of the same size, i.e. [1,m]. We will do element product with shift.
// inputs are 2 row vectors
// output is a row vector
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignElementProductOfWithShift(const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, size_t shift)
{
if (a.IsEmpty() || b.IsEmpty())
LogicError("AssignElementProductOfWithShiftNeg: Matrix is empty.");
assert(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols());
if (!(a.GetNumRows() == b.GetNumRows() && a.GetNumCols() == b.GetNumCols()))
InvalidArgument("AssignElementProductOfWithShiftNeg: The input matrix dimensions do not match.");
if (a.GetNumRows() != 1)
InvalidArgument("AssignElementProductOfWithShiftNeg: The input matrix must be a row vector.");
auto& us = *this;
if (this != &a)
{
RequireSize(1, a.GetNumCols());
// RequireSize(a.GetNumRows(), a.GetNumCols());
}
// long m = (long)GetNumRows(), n = (long)GetNumCols(); // a and b are of size (1,n)
long n = (long) GetNumCols(); // a and b are of size (1,n)
#pragma omp parallel for
for (long j = 0; j < n; j++)
{
us(0, j) = a(0, j) * b(0, (j + shift) % n);
}
return *this;
}
#pragma endregion Static BLAS Functions
// 'double' version of LogAdd
double LogAddD(double x, double y)
{
return LogAdd(x, y);
}
template <class ElemType>
ElemType CPUMatrix<ElemType>::LogSumOfElements() const
{
ElemType fAlpha = (ElemType) LZERO;
ElemType* bufPtr = Data();
for (int k = 0; k < GetNumElements(); k++)
fAlpha = (ElemType) LogAddD(fAlpha, bufPtr[k]);
return fAlpha;
}
template <class ElemType>
void CPUMatrix<ElemType>::RCRFBackwardCompute(const CPUMatrix<ElemType>& alpha, CPUMatrix<ElemType>& beta,
const CPUMatrix<ElemType>& lbls,
const CPUMatrix<ElemType>& pair_scores)
{
int iNumPos = (int) lbls.GetNumCols();
int iNumLab = (int) lbls.GetNumRows();
int lastLbl = -1;
for (int ik = 0; ik < lbls.GetNumRows(); ik++)
if (lbls(ik, iNumPos - 1) != 0)
{
lastLbl = ik;
break;
}
beta.RequireSize(iNumLab, iNumPos);
for (int t = iNumPos - 1; t >= 0; t--)
{
#pragma omp parallel for
for (int k = 0; k < iNumLab; k++)
{
_rcrfBackwardCompute(t, k, alpha, beta, pair_scores);
}
}
};
/// the kernel function for RCRF backward computation
template <class ElemType>
void CPUMatrix<ElemType>::_rcrfBackwardCompute(size_t t, size_t k, const CPUMatrix<ElemType>& alpha,
CPUMatrix<ElemType>& beta,
const CPUMatrix<ElemType>& pair_scores)
{
size_t iNumLab = alpha.GetNumRows();
size_t iNumPos = alpha.GetNumCols();
ElemType fSum;
ElemType fTmp = (ElemType) LZERO;
if (t == iNumPos - 1)
{
fSum = (ElemType) LZERO;
for (int j = 0; j < iNumLab; j++)
{
fSum = (ElemType) LogAddD(fSum, alpha(j, t));
}
fTmp = alpha(k, t) - fSum;
beta(k, t) = fTmp;
}
else
{
for (int j = 0; j < iNumLab; j++)
{
fSum = (ElemType) LZERO;
for (int m = 0; m < iNumLab; m++)
{
fSum = (ElemType) LogAddD(fSum, alpha(m, t) + pair_scores(j, m));
}
fTmp = (ElemType) LogAddD(fTmp, beta(j, t + 1) + alpha(k, t) + pair_scores(j, k) - fSum);
}
beta(k, t) = fTmp;
}
}
template <class ElemType>
void CPUMatrix<ElemType>::RCRFTransGrdCompute(const CPUMatrix<ElemType>& lbls,
const CPUMatrix<ElemType>& alpha,
const CPUMatrix<ElemType>& beta,
const CPUMatrix<ElemType>& pair_scores,
CPUMatrix<ElemType>& grd)
{
int iNumPos = (int) alpha.GetNumCols();
int iNumLab = (int) alpha.GetNumRows();
int firstLbl = -1;
for (int ik = 0; ik < lbls.GetNumRows(); ik++)
if (lbls(ik, 0) != 0)
{
firstLbl = ik;
break;
}
for (size_t tPos = 0; tPos < iNumPos; tPos++)
{
CPUMatrix<ElemType> b = beta.ColumnSlice(tPos, 1);
CPUMatrix<ElemType> a;
if (tPos > 0)
a = alpha.ColumnSlice(tPos - 1, 1);
#pragma omp parallel for
for (int i = 0; i < iNumLab; i++)
{
_rcrfTransGrdCompute(i, lbls, alpha, beta, pair_scores, grd, tPos);
}
// transition score
int i = -1;
if (tPos == 0)
i = firstLbl;
else
{
for (int ik = 0; ik < lbls.GetNumRows(); ik++)
if (lbls(ik, tPos - 1) != 0)
{
i = ik;
break;
}
}
int j = -1;
for (int ik = 0; ik < lbls.GetNumRows(); ik++)
{
if (lbls(ik, tPos) != 0)
{
j = ik;
break;
}
}
grd(j, i) -= 1.0;
}
};
template <class ElemType>
void CPUMatrix<ElemType>::_rcrfTransGrdCompute(size_t i,
const CPUMatrix<ElemType>& lbls,
const CPUMatrix<ElemType>& alpha,
const CPUMatrix<ElemType>& beta,
const CPUMatrix<ElemType>& pair_scores,
CPUMatrix<ElemType>& grd,
const size_t tPos // position
)
{
int iNumLab = (int) alpha.GetNumRows();
int firstLbl = -1;
for (int ik = 0; ik < lbls.GetNumRows(); ik++)
if (lbls(ik, 0) != 0)
{
firstLbl = ik;
break;
}
CPUMatrix<ElemType> b = beta.ColumnSlice(tPos, 1);
CPUMatrix<ElemType> a;
if (tPos > 0)
a = alpha.ColumnSlice(tPos - 1, 1);
{
ElemType fTmp = (ElemType) LZERO;
for (int j = 0; j < iNumLab; j++)
{
if (tPos == 0)
{
if (i == firstLbl)
{
fTmp = 0;
}
else
{
fTmp = (ElemType) LZERO;
}
}
else
{
fTmp = a(i, 0);
}
fTmp += pair_scores(j, i);
ElemType fSum = (ElemType) LZERO;
for (int k = 0; k < iNumLab; k++)
{
ElemType fTmp2;
if (tPos == 0)
{
if (k == firstLbl)
{
fTmp2 = 0;
}
else
{
fTmp2 = (ElemType) LZERO;
}
}
else
{
fTmp2 = a(k, 0);
}
fSum = (ElemType) LogAddD(fSum, fTmp2 + pair_scores(j, k));
}
fTmp -= fSum;
fTmp += b(j, 0);
grd(j, i) += exp(fTmp);
}
}
};
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::DropFrame(const CPUMatrix<ElemType>& label, const CPUMatrix<ElemType>& gamma, const ElemType& threshhold)
{
auto& us = *this;
if (us.GetNumCols() != gamma.GetNumCols() || us.GetNumRows() != gamma.GetNumRows())
LogicError("DropFrame: target matrix is not in the same size as gamm matrix.");
#pragma omp parallel for
foreach_column (j, label)
{
bool dropframe = false;
foreach_row (i, label)
{
if (fabs(label(i, j) - 1.0f) < 0.1)
{
if (gamma(i, j) < threshhold)
dropframe = true;
break;
}
}
foreach_row (i, label)
{
us(i, j) = 0.0f;
}
}
return *this;
}
template <class ElemType>
CPUMatrix<ElemType>& CPUMatrix<ElemType>::AssignSequenceError(const ElemType hsmoothingWeight, const CPUMatrix<ElemType>& label,
const CPUMatrix<ElemType>& dnnoutput, const CPUMatrix<ElemType>& gamma, ElemType alpha)
{
auto& us = *this;
foreach_coord (i, j, us)
us(i, j) += alpha * (label(i, j) - (1 - hsmoothingWeight) * dnnoutput(i, j) - hsmoothingWeight * gamma(i, j));
return *this;
}
// note: this function does not depend on the <ElemType> parameter
template <class ElemType>
int CPUMatrix<ElemType>::SetNumThreads(int numThreads)
{
if (numThreads == 0) // use default
return numThreads;
int mthreads = (int) std::thread::hardware_concurrency();
if (numThreads <= 0)
numThreads = std::max(1, mthreads + numThreads);
if (numThreads > mthreads)
numThreads = mthreads;
#ifdef _OPENMP
omp_set_num_threads(numThreads);
numThreads = omp_get_max_threads();
#ifdef USE_ACML
acmlsetnumthreads(numThreads);
#elif defined(USE_MKL)
mkl_set_num_threads(numThreads);
#elif defined(USE_OPENBLAS)
openblas_set_num_threads(numThreads);
#endif
#endif
return numThreads;
}
// =======================================================================
// TensorView support
// =======================================================================
// To save time, this makes extensive use of templates and macros.
// -----------------------------------------------------------------------
// function to compute the value for a given output location (perform reduction if needed)
// -----------------------------------------------------------------------
// perform loop over reduction index m
// This function is declared inside a wrapper struct to allow partial specialization (m = -1).
template <class ElemType, typename OPFN, typename ReductionOp, size_t N, int m>
struct TensorOpReduction
{
// reduction case (non-reduction case is specialized)
static inline ElemType Loop(array<ElemType*, N> pointers, const OPFN& opfn, const ReductionOp& reductionOp,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, N>& reducingStrides)
{
array<ptrdiff_t, N - 1> strides; // N-1 because last one is the result pointer, which is unused in reduction
for (size_t i = 0; i < N - 1; i++) // N = a small constant, this will be unrolled
strides[i] = reducingStrides[i][(size_t) m];
double aggregate = TensorOpReduction<ElemType, OPFN, ReductionOp, N, m - 1>::Loop(pointers, opfn, reductionOp, reducingOpDims, reducingStrides);
for (size_t dim = reducingOpDims[(size_t)m] - 1; dim-- > 0;)
{
// advance the pointers
for (size_t i = 0; i < N - 1; i++)
pointers[i] += strides[i]; // note: last pointer (result) is unused and untouched here
// need to descend into one loop deeper
aggregate = reductionOp(aggregate, TensorOpReduction<ElemType, OPFN, ReductionOp, N, m - 1>::Loop(pointers, opfn, reductionOp, reducingOpDims, reducingStrides));
}
// Actually it would be nicer to return double but we keep ElementType so that test don't return different numbers than previous implementation.
return static_cast<double>(aggregate);
}
};
// perform loop over reduction index m
// This is the specialized version for m = -1, which terminates the recursion.
template <class ElemType, typename OPFN, typename ReductionOp, size_t N>
struct TensorOpReduction<ElemType, OPFN, ReductionOp, N, -1>
{
static inline ElemType Loop(array<ElemType*, N> pointers, const OPFN& opfn, const ReductionOp& reductionOp,
const SmallVector<size_t>&, const array<SmallVector<ptrdiff_t>, N>&)
{
return opfn(pointers); // finally we are doing some work!!!
}
};
// -----------------------------------------------------------------------
// perform loop over regular index k for N-nary operations (N counting the output)
// -----------------------------------------------------------------------
// perform loop over regular index k and reducing index m for N operands (counting the output)
template <class ElemType, typename OPFN, typename ReductionOp, size_t N, bool vectorizable, int m, int k>
struct TensorOpIteration
{
static inline void Loop(ElemType beta, array<ElemType*, N> pointers, ElemType alpha, const OPFN& opfn, const ReductionOp& reductionOp,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, N>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, N>& reducingStrides)
{
// non-scalar case: still nested result loops left
array<ptrdiff_t, N> strides;
for (size_t i = 0; i < N; i++) // N = a small constant, this will be unrolled
strides[i] = regularStrides[i][(size_t) k];
for (size_t dim = regularOpDims[(size_t) k]; dim-- > 0;)
{
// need to descend into one loop deeper
TensorOpIteration<ElemType, OPFN, ReductionOp, N, vectorizable, m, k - 1>::Loop(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
// advance the pointers
for (size_t i = 0; i < N; i++)
pointers[i] += strides[i];
}
}
};
// Special version for innermost loop with strides all being 1 and no further reduction. Compiler can use SSE.
// This is a very common case, e.g. adding vectors or computing the Sigmoid.
template <class ElemType, typename OPFN, typename ReductionOp>
struct TensorOpIteration<ElemType, OPFN, ReductionOp, 3, true /*vectorizable*/, -1 /*no reduction*/, 0 /*innermost loop*/>
{
static inline void Loop(ElemType beta, array<ElemType*, 3> pointers, ElemType alpha, const OPFN& opfn, const ReductionOp& reductionOp,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, 3>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, 3>& reducingStrides)
{
ElemType* pa = pointers[0];
ElemType* pb = pointers[1];
ElemType* pc = pointers[2];
size_t K = regularOpDims[0];
// special-case beta and alpha to allow the compiler to short-circuit it
if (beta != 0)
#pragma omp parallel for
for (int k = 0; k < (int) K; k++)
TensorOpIteration<ElemType, OPFN, ReductionOp, 3, true /*vectorizable*/, -1 /*no reduction*/, -1 /*scalar*/>::Loop(beta, array<ElemType*, 3>{pa + k, pb + k, pc + k}, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
else if (alpha != 1)
#pragma omp parallel for
for (int k = 0; k < (int) K; k++)
TensorOpIteration<ElemType, OPFN, ReductionOp, 3, true /*vectorizable*/, -1 /*no reduction*/, -1 /*scalar*/>::Loop(0, array<ElemType*, 3>{pa + k, pb + k, pc + k}, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
else
#pragma omp parallel for
for (int k = 0; k < (int) K; k++)
TensorOpIteration<ElemType, OPFN, ReductionOp, 3, true /*vectorizable*/, -1 /*no reduction*/, -1 /*scalar*/>::Loop(0, array<ElemType*, 3>{pa + k, pb + k, pc + k}, 1, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
// TODO: According to Amit, the VS compiler is not able to vectorize into lambdas. Solution: change the lambda to take an N, or to implement the loop inside (with 1 element by default).
// TODO: The signedness of k (required for omp) causes an extra sign-extend.
// TODO: OMP adds LOTS of overhead. Do we need a guard, a min size when to use it?
}
};
// and unary
template <class ElemType, typename OPFN, typename ReductionOp>
struct TensorOpIteration<ElemType, OPFN, ReductionOp, 2, true /*vectorizable*/, -1 /*no reduction*/, 0 /*innermost loop*/>
{
static inline void Loop(ElemType beta, array<ElemType*, 2> pointers, ElemType alpha, const OPFN& opfn, const ReductionOp& reductionOp,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, 2>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, 2>& reducingStrides)
{
ElemType* pa = pointers[0];
ElemType* pb = pointers[1];
size_t K = regularOpDims[0];
// special-case beta and alpha to allow the compiler to short-circuit it
if (beta != 0)
#pragma omp parallel for
for (int k = 0; k < (int) K; k++)
TensorOpIteration<ElemType, OPFN, ReductionOp, 2, true /*vectorizable*/, -1 /*no reduction*/, -1 /*scalar*/>::Loop(beta, array<ElemType*, 2>{pa + k, pb + k}, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
else if (alpha != 1)
#pragma omp parallel for
for (int k = 0; k < (int) K; k++)
TensorOpIteration<ElemType, OPFN, ReductionOp, 2, true /*vectorizable*/, -1 /*no reduction*/, -1 /*scalar*/>::Loop(0, array<ElemType*, 2>{pa + k, pb + k}, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
else
#pragma omp parallel for
for (int k = 0; k < (int) K; k++)
TensorOpIteration<ElemType, OPFN, ReductionOp, 2, true /*vectorizable*/, -1 /*no reduction*/, -1 /*scalar*/>::Loop(0, array<ElemType*, 2>{pa + k, pb + k}, 1, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
}
};
template <class ElemType, typename OPFN, typename ReductionOp, size_t N, bool vectorizable, int m>
struct TensorOpIteration<ElemType, OPFN, ReductionOp, N, vectorizable, m, -1>
{
static inline void Loop(ElemType beta, array<ElemType*, N> pointers, ElemType alpha, const OPFN& opfn, const ReductionOp& reductionOp,
const SmallVector<size_t>&, const array<SmallVector<ptrdiff_t>, N>&,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, N>& reducingStrides)
{
// we are at element level for the result: perform the op (there may still be reduction)
ElemType val = TensorOpReduction<ElemType, OPFN, ReductionOp, N, m>::Loop(pointers, opfn, reductionOp, reducingOpDims, reducingStrides);
// scale
val *= alpha;
// combine with previous value in target matrix, then write it out
auto* pout = pointers.back();
if (beta != 0)
val += beta * *pout;
// save
*pout = val;
return;
}
};
// -----------------------------------------------------------------------
// map runtime parameters N to template parameters
// -----------------------------------------------------------------------
// tensor operation with k+1 dimensions (-1 means scalar)
template <class ElemType, typename OPFN, typename ReductionOp, size_t N, int k>
static void TensorOpWithRegularLoop(ElemType beta, const array<ElemType*, N>& pointers, ElemType alpha, const OPFN& opfn, ReductionOp reductionOp,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, N>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, N>& reducingStrides)
{
size_t dims = reducingOpDims.size();
switch (dims)
{
case 2:
return TensorOpIteration<ElemType, OPFN, ReductionOp, N, false /*vectorizable*/, 1, k>::Loop(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
case 1:
return TensorOpIteration<ElemType, OPFN, ReductionOp, N, false /*vectorizable*/, 0, k>::Loop(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
case 0:
{
// if all leading dimensions are 1, we can let the compiler do some unrolling
bool leadingAllOne = true;
for (size_t i = 0; i < N; i++)
leadingAllOne &= k >= 0 && regularStrides[i][0] == 1;
if (leadingAllOne) // special version that uses a hard-coded increment of 1 for all leading dimensions
return TensorOpIteration<ElemType, OPFN, ReductionOp, N, true /*vectorizable*/, -1, k>::Loop(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
else
return TensorOpIteration<ElemType, OPFN, ReductionOp, N, false /*vectorizable*/, -1, k>::Loop(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
}
default:
LogicError("TensorOp: %d non-flattened reduction dimensions are not supported.", (int) dims);
}
}
// tensor operation, generalized in number of arguments, operation already provided as a lambda
// This function now expands into different k.
template <class ElemType, typename OPFN, typename ReductionOp, size_t N>
static void TensorOpWithFnAndReduction(ElemType beta, array<ElemType*, N> pointers, ElemType alpha, const OPFN& opfn, const ReductionOp& reductionOp,
const array<size_t, N>& offsets,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, N>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, N>& reducingStrides)
{
for (size_t i = 0; i < N; i++) // N = a small constant, this will be unrolled
pointers[i] += offsets[i];
size_t dims = regularOpDims.size();
switch (dims)
{
case 4:
return TensorOpWithRegularLoop<ElemType, OPFN, ReductionOp, N, 3>(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
case 3:
return TensorOpWithRegularLoop<ElemType, OPFN, ReductionOp, N, 2>(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
case 2:
return TensorOpWithRegularLoop<ElemType, OPFN, ReductionOp, N, 1>(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
case 1:
return TensorOpWithRegularLoop<ElemType, OPFN, ReductionOp, N, 0>(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
case 0:
return TensorOpWithRegularLoop<ElemType, OPFN, ReductionOp, N, -1>(beta, pointers, alpha, opfn, reductionOp, regularOpDims, regularStrides, reducingOpDims, reducingStrides);
default:
LogicError("TensorOp: %d non-flattened input dimensions are not supported.", (int)dims);
}
}
// tensor operation, generalized in number of arguments, operation already provided as a lambda
// This function now expands into different reductionOps
template <class ElemType, typename OPFN, size_t N>
static void TensorOpWithFn(ElemType beta, array<ElemType*, N> pointers, ElemType alpha, const OPFN& opfn, ElementWiseOperator reductionOp,
const array<size_t, N>& offsets,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, N>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, N>& reducingStrides)
{
// BUGBUG: Using always 'double' as type of aggregator even for ElemType==float. Reason: otherwise some e2e test would fail as historically we
// used double for aggregator of sum. But:
// * for min and max reductions this is meaningless.
// * It is not consitent with what we do on GPU, there we aggregate on ElemType.
// * It costs performance.
// TODO: apdapt e2e tests to run with aggregator of type ElemType.
#define CaseTensorOpWithFnAndReduction(oper) \
case ElementWiseOperator::op##oper: \
return TensorOpWithFnAndReduction(beta, pointers, alpha, opfn, [](double a, double b) \
{ \
return Op##oper(a, b); \
}, \
offsets, regularOpDims, regularStrides, reducingOpDims, reducingStrides)
switch (reductionOp)
{
CaseTensorOpWithFnAndReduction(Sum);
CaseTensorOpWithFnAndReduction(Max);
CaseTensorOpWithFnAndReduction(Min);
default:
LogicError("Specified ElementWiseOperator op %d not suported as reduction operation.", (int)reductionOp);
}
}
// -----------------------------------------------------------------------
// entry points from Matrix.cpp; also map op to a lambda
// -----------------------------------------------------------------------
// perform unary operation 'op' on a giving 'this', reinterpreting the matrices as tensors as specified by the dims and strides
// This maps 'op' to a lambda.
template <class ElemType>
void CPUMatrix<ElemType>::TensorOp(ElemType beta, const CPUMatrix<ElemType>& a, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const array<size_t, 2>& offsets,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, 2>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, 2>& reducingStrides)
{
if (reductionOp != ElementWiseOperator::opSum && reductionOp != ElementWiseOperator::opMax && reductionOp != ElementWiseOperator::opMin)
InvalidArgument("TensorOp: Unary reduction operations other than opMax, opMin, opSum not yet implemented.");
// TODO: Change the lambda to take a pointer and a number of elements, so that we can pass it 1 or 4 elements, in order for it to SSE-vectorize.
#define CaseUnaryTensorOp(oper) \
case ElementWiseOperator::op##oper: \
return TensorOpWithFn(beta, pointers, alpha, [](const array<ElemType*, 2>& pp) \
{ \
return Op##oper((*(pp[0]))); \
}, \
reductionOp, offsets, regularOpDims, regularStrides, reducingOpDims, reducingStrides)
array<ElemType*, 2> pointers = {a.Data(), Data()};
switch (op)
{
ForAllUnaryOps(CaseUnaryTensorOp);
default:
LogicError("TensorOp: Unknown unary op code %d.", (int) op);
}
}
// perform binary operation 'op' on a and b giving 'this', reinterpreting the matrices as tensors as specified by the dims and strides
// This maps 'op' to a lambda.
template <class ElemType>
void CPUMatrix<ElemType>::TensorOp(ElemType beta, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const array<size_t, 3>& offsets,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, 3>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, 3>& reducingStrides)
{
if (reductionOp != ElementWiseOperator::opSum)
InvalidArgument("TensorOp (binary): The only permitted binary reduction operation is opSum.");
#define CaseBinaryTensorOp(oper) \
case ElementWiseOperator::op##oper: \
return TensorOpWithFn(beta, pointers, alpha, [](const array<ElemType*, 3>& pp) \
{ \
return Op##oper((*(pp[0])), (*(pp[1]))); \
}, \
reductionOp, offsets, regularOpDims, regularStrides, reducingOpDims, reducingStrides)
array<ElemType*, 3> pointers = {a.Data(), b.Data(), Data()};
switch (op)
{
ForAllBinaryOps(CaseBinaryTensorOp);
default:
LogicError("TensorOp: Unknown op binary code %d.", (int) op);
}
}
// perform ternary operation 'op' on a, and c giving 'this', reinterpreting the matrices as tensors as specified by the dims and strides
// This maps 'op' to a lambda.
template <class ElemType>
void CPUMatrix<ElemType>::TensorOp(ElemType beta, const CPUMatrix<ElemType>& a, const CPUMatrix<ElemType>& b, const CPUMatrix<ElemType>& c, ElemType alpha, ElementWiseOperator op, ElementWiseOperator reductionOp,
const array<size_t, 4>& offsets,
const SmallVector<size_t>& regularOpDims, const array<SmallVector<ptrdiff_t>, 4>& regularStrides,
const SmallVector<size_t>& reducingOpDims, const array<SmallVector<ptrdiff_t>, 4>& reducingStrides)
{
if (reductionOp != ElementWiseOperator::opSum)
InvalidArgument("TensorOp: The only permitted ternary reduction operation is opSum.");
#define CaseTernaryTensorOp(oper) \
case ElementWiseOperator::op##oper: \
return TensorOpWithFn(beta, pointers, alpha, [](const array<ElemType*, 4>& pp) \
{ \
return Op##oper((*(pp[0])), (*(pp[1])), (*(pp[2]))); \
}, \
reductionOp, offsets, regularOpDims, regularStrides, reducingOpDims, reducingStrides)
array<ElemType*, 4> pointers = {a.Data(), b.Data(), c.Data(), Data()};
switch (op)
{
ForAllTernaryOps(CaseTernaryTensorOp);
default:
LogicError("TensorOp: Unknown ternary op code %d.", (int) op);
}
}
// =======================================================================
// explicit instantiations
// =======================================================================
template class MATH_API CPUMatrix<float>;
template class MATH_API CPUMatrix<double>;
// We use Matrix<char> as the backing store for QuantizedMatrix
// Let's explicitly instantiate the methods we need for that purpose
template CPUMatrix<char>::CPUMatrix(const size_t numRows, const size_t numCols);
template CPUMatrix<char>::CPUMatrix(const size_t numRows, const size_t numCols, char* pArray, const size_t matrixFlags);
template CPUMatrix<char>::CPUMatrix();
template CPUMatrix<char>::CPUMatrix(CPUMatrix<char> const&);
template CPUMatrix<char>::CPUMatrix(CPUMatrix<char>&&);
template size_t CPUMatrix<char>::LocateElement(size_t, size_t) const;
template CPUMatrix<char>::~CPUMatrix();
template CPUMatrix<char> CPUMatrix<char>::ColumnSlice(size_t startColumn, size_t numCols) const;
template CPUMatrix<char>& CPUMatrix<char>::operator=(CPUMatrix<char>&&);
template void CPUMatrix<char>::SetValue(const char);
template void CPUMatrix<char>::SetValue(const size_t numRows, const size_t numCols, char* pArray, size_t matrixFlags);
template void CPUMatrix<char>::SetValue(CPUMatrix<char> const&);
//template void CPUMatrix<char>::SetValue(GPUMatrix<char> const&);
//template void CPUMatrix<char>::SetValue(CPUSparseMatrix<char> const&);
//template void CPUMatrix<char>::SetValue(GPUSparseMatrix<char> const&);
template void CPUMatrix<char>::RequireSize(const size_t numRows, const size_t numCols, bool growOnly);
template void CPUMatrix<char>::Resize(const size_t numRows, const size_t numCols, bool growOnly);
template char* CPUMatrix<char>::CopyToArray(void) const;
template void CPUMatrix<char>::CopySection(size_t numRows, size_t numCols, char* dst, size_t colStride) const;
template void CPUMatrix<char>::Reshape(const size_t, const size_t);
template CPUMatrix<int>::CPUMatrix(const size_t, const size_t, int*, const size_t);
template CPUMatrix<int>::~CPUMatrix();
}}}