This commit is contained in:
dengy 2019-03-29 14:19:58 +08:00
Родитель 70c5d74713
Коммит 45db0d841a
2 изменённых файлов: 31 добавлений и 0 удалений

Двоичные данные
images/example.png Normal file

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 330 KiB

Просмотреть файл

@ -1,7 +1,38 @@
## Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set ##
<p align="center">
<img src="/images/example.png">
</p>
This is an python implement of *Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set*.
The method enforces a hybrid-level weakly-supervised training to achieve accurate CNN-based face reconstruction.
## Features
### Accurate shapes
The method reconstructs faces with high accuracy. Quantitative evaluations on several benchmarks show its state-of-the-art performance.
|Method |FaceWareHouse|Florence|BU3DFE|
|-------------|-------------|--------|------|
|[Tewari 17]()|2.19 |- |- |
|[Tewari 18]()|1.84 |- |- |
|[Genova 18]()|- |1.77 |- |
|[Sela 18]() |- |- |2.91 |
|[PRN]() |- |- |1.86 |
|Ours |1.81 |1.67 |1.40 |
### High fidelity textures
### Robust
### Aligned with images
### Easy and Fast
Faces are represented with Basel Face Model 2009, which is easy for further manipulations (e.g expression transfer). ResNet-50 is used as backbone network to achieve over 50 fps (on GTX 1080) for reconstructions.
## Getting Started
### Prerequisite ###