This commit is contained in:
YuDeng 2020-12-07 11:17:53 +08:00 коммит произвёл GitHub
Родитель 11ddb88c72
Коммит afc75af10e
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 1 добавлений и 1 удалений

Просмотреть файл

@ -119,7 +119,7 @@ Sandberg et al.. In our paper, we use a face recognition network trained with in
3. Download the [68 landmark detector](https://drive.google.com/file/d/1KYFeTb963jg0F47sTiwqDdhBIvRlUkPa/view?usp=sharing), put the file in ./network.
### Data pre-processing ###
1. To train our model with custom images5 facial landmarks for each image are needed in advance for an image pre-alignment process. We recommend using [dlib](http://dlib.net/) or [MTCNN](https://github.com/ipazc/mtcnn). Use these public face detectors to get 5 landmarks, and save all images and corresponding landmarks in <raw_img_path>. Note that an image and its detected landmark file should have same name.
1. To train our model with custom images5 facial landmarks of each image are needed in advance for an image pre-alignment process. We recommend using [dlib](http://dlib.net/) or [MTCNN](https://github.com/ipazc/mtcnn). Use these public face detectors to get 5 landmarks, and save all images and corresponding landmarks in <raw_img_path>. Note that an image and its detected landmark file should have same name.
2. Align images and generate 68 landmarks as well as skin mask for training:
```