2020-02-01 03:16:04 +03:00
|
|
|
'''
|
|
|
|
Copyright 2020 The Microsoft DeepSpeed Team
|
|
|
|
'''
|
2021-11-02 00:22:09 +03:00
|
|
|
|
2020-09-02 04:06:15 +03:00
|
|
|
import sys
|
|
|
|
import types
|
2021-08-25 23:01:07 +03:00
|
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
2021-05-24 11:10:39 +03:00
|
|
|
from packaging import version as pkg_version
|
2020-02-01 03:16:04 +03:00
|
|
|
|
2020-09-10 03:14:12 +03:00
|
|
|
from . import ops
|
2021-05-24 11:10:39 +03:00
|
|
|
from . import module_inject
|
2020-09-10 03:14:12 +03:00
|
|
|
|
2021-08-25 23:01:07 +03:00
|
|
|
from .runtime.engine import DeepSpeedEngine, DeepSpeedOptimizerCallable, DeepSpeedSchedulerCallable
|
2020-10-30 19:01:04 +03:00
|
|
|
from .runtime.engine import ADAM_OPTIMIZER, LAMB_OPTIMIZER
|
2020-09-10 09:14:55 +03:00
|
|
|
from .runtime.pipe.engine import PipelineEngine
|
2021-05-24 11:10:39 +03:00
|
|
|
from .inference.engine import InferenceEngine
|
|
|
|
|
2020-09-10 03:14:12 +03:00
|
|
|
from .runtime.lr_schedules import add_tuning_arguments
|
2021-01-15 00:38:46 +03:00
|
|
|
from .runtime.config import DeepSpeedConfig, DeepSpeedConfigError
|
2020-09-10 03:14:12 +03:00
|
|
|
from .runtime.activation_checkpointing import checkpointing
|
|
|
|
from .ops.transformer import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig
|
2021-05-24 11:10:39 +03:00
|
|
|
from .module_inject import replace_transformer_layer, revert_transformer_layer
|
|
|
|
|
2020-09-10 09:14:55 +03:00
|
|
|
from .utils import log_dist
|
2020-12-18 10:17:19 +03:00
|
|
|
from .utils.distributed import init_distributed
|
2020-09-10 09:14:55 +03:00
|
|
|
|
2021-03-08 23:54:54 +03:00
|
|
|
from .runtime import zero
|
2022-05-11 20:09:06 +03:00
|
|
|
from .runtime import DeepSpeedOptimizer, ZeROOptimizer
|
2021-03-08 23:54:54 +03:00
|
|
|
|
2020-09-10 09:14:55 +03:00
|
|
|
from .pipe import PipelineModule
|
2020-05-19 11:00:53 +03:00
|
|
|
|
2020-11-12 22:51:38 +03:00
|
|
|
from .git_version_info import version, git_hash, git_branch
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_version(version_str):
|
|
|
|
'''Parse a version string and extract the major, minor, and patch versions.'''
|
2021-05-24 11:10:39 +03:00
|
|
|
ver = pkg_version.parse(version_str)
|
2021-05-20 01:42:45 +03:00
|
|
|
return ver.major, ver.minor, ver.micro
|
2020-11-12 22:51:38 +03:00
|
|
|
|
2020-02-01 03:16:04 +03:00
|
|
|
|
2020-02-10 07:03:35 +03:00
|
|
|
# Export version information
|
2020-11-12 22:51:38 +03:00
|
|
|
__version__ = version
|
|
|
|
__version_major__, __version_minor__, __version_patch__ = _parse_version(__version__)
|
2020-02-01 03:16:04 +03:00
|
|
|
__git_hash__ = git_hash
|
|
|
|
__git_branch__ = git_branch
|
|
|
|
|
|
|
|
|
2021-03-16 22:38:08 +03:00
|
|
|
def initialize(args=None,
|
2021-08-25 23:01:07 +03:00
|
|
|
model: torch.nn.Module = None,
|
|
|
|
optimizer: Optional[Union[Optimizer,
|
|
|
|
DeepSpeedOptimizerCallable]] = None,
|
|
|
|
model_parameters: Optional[torch.nn.Module] = None,
|
|
|
|
training_data: Optional[torch.utils.data.Dataset] = None,
|
|
|
|
lr_scheduler: Optional[Union[_LRScheduler,
|
|
|
|
DeepSpeedSchedulerCallable]] = None,
|
2020-02-01 03:16:04 +03:00
|
|
|
mpu=None,
|
2021-08-25 23:01:07 +03:00
|
|
|
dist_init_required: Optional[bool] = None,
|
2020-05-19 11:00:53 +03:00
|
|
|
collate_fn=None,
|
2021-04-29 03:05:03 +03:00
|
|
|
config=None,
|
2020-05-19 11:00:53 +03:00
|
|
|
config_params=None):
|
2020-04-22 08:18:47 +03:00
|
|
|
"""Initialize the DeepSpeed Engine.
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
Arguments:
|
2021-04-29 03:05:03 +03:00
|
|
|
args: an object containing local_rank and deepspeed_config fields.
|
|
|
|
This is optional if `config` is passed.
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
model: Required: nn.module class before apply any wrappers
|
|
|
|
|
2021-08-25 23:01:07 +03:00
|
|
|
optimizer: Optional: a user defined Optimizer or Callable that returns an Optimizer object.
|
|
|
|
This overrides any optimizer definition in the DeepSpeed json config.
|
2020-02-01 03:16:04 +03:00
|
|
|
|
2020-02-07 00:14:22 +03:00
|
|
|
model_parameters: Optional: An iterable of torch.Tensors or dicts.
|
2020-02-01 03:16:04 +03:00
|
|
|
Specifies what Tensors should be optimized.
|
|
|
|
|
|
|
|
training_data: Optional: Dataset of type torch.utils.data.Dataset
|
|
|
|
|
2021-08-25 23:01:07 +03:00
|
|
|
lr_scheduler: Optional: Learning Rate Scheduler Object or a Callable that takes an Optimizer and returns a Scheduler object.
|
|
|
|
The scheduler object should define a get_lr(), step(), state_dict(), and load_state_dict() methods
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
mpu: Optional: A model parallelism unit object that implements
|
2020-02-20 08:41:57 +03:00
|
|
|
get_{model,data}_parallel_{rank,group,world_size}()
|
2020-02-01 03:16:04 +03:00
|
|
|
|
2020-02-27 02:07:49 +03:00
|
|
|
dist_init_required: Optional: None will auto-initialize torch.distributed if needed,
|
|
|
|
otherwise the user can force it to be initialized or not via boolean.
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
collate_fn: Optional: Merges a list of samples to form a
|
|
|
|
mini-batch of Tensor(s). Used when using batched loading from a
|
|
|
|
map-style dataset.
|
|
|
|
|
2021-04-29 03:05:03 +03:00
|
|
|
config: Optional: Instead of requiring args.deepspeed_config you can pass your deepspeed config
|
|
|
|
as an argument instead, as a path or a dictionary.
|
|
|
|
|
|
|
|
config_params: Optional: Same as `config`, kept for backwards compatibility.
|
2021-03-16 22:38:08 +03:00
|
|
|
|
2020-04-22 08:18:47 +03:00
|
|
|
Returns:
|
|
|
|
A tuple of ``engine``, ``optimizer``, ``training_dataloader``, ``lr_scheduler``
|
2020-02-01 03:16:04 +03:00
|
|
|
|
2020-04-22 08:18:47 +03:00
|
|
|
* ``engine``: DeepSpeed runtime engine which wraps the client model for distributed training.
|
2020-02-07 00:14:22 +03:00
|
|
|
|
2020-04-22 08:18:47 +03:00
|
|
|
* ``optimizer``: Wrapped optimizer if a user defined ``optimizer`` is supplied, or if
|
|
|
|
optimizer is specified in json config else ``None``.
|
2020-02-07 00:14:22 +03:00
|
|
|
|
2020-04-22 08:18:47 +03:00
|
|
|
* ``training_dataloader``: DeepSpeed dataloader if ``training_data`` was supplied,
|
|
|
|
otherwise ``None``.
|
2020-02-07 00:14:22 +03:00
|
|
|
|
2020-04-22 08:18:47 +03:00
|
|
|
* ``lr_scheduler``: Wrapped lr scheduler if user ``lr_scheduler`` is passed, or
|
|
|
|
if ``lr_scheduler`` specified in JSON configuration. Otherwise ``None``.
|
2020-02-01 03:16:04 +03:00
|
|
|
"""
|
2020-09-10 09:14:55 +03:00
|
|
|
log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(
|
|
|
|
__version__,
|
|
|
|
__git_hash__,
|
|
|
|
__git_branch__),
|
|
|
|
ranks=[0])
|
2021-03-16 22:38:08 +03:00
|
|
|
assert model is not None, "deepspeed.initialize requires a model"
|
|
|
|
|
2020-09-10 09:14:55 +03:00
|
|
|
if not isinstance(model, PipelineModule):
|
|
|
|
engine = DeepSpeedEngine(args=args,
|
|
|
|
model=model,
|
|
|
|
optimizer=optimizer,
|
|
|
|
model_parameters=model_parameters,
|
|
|
|
training_data=training_data,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
mpu=mpu,
|
|
|
|
dist_init_required=dist_init_required,
|
|
|
|
collate_fn=collate_fn,
|
2021-04-29 03:05:03 +03:00
|
|
|
config=config,
|
2020-09-10 09:14:55 +03:00
|
|
|
config_params=config_params)
|
|
|
|
else:
|
|
|
|
assert mpu is None, "mpu must be None with pipeline parallelism"
|
|
|
|
engine = PipelineEngine(args=args,
|
|
|
|
model=model,
|
|
|
|
optimizer=optimizer,
|
|
|
|
model_parameters=model_parameters,
|
|
|
|
training_data=training_data,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
mpu=model.mpu(),
|
|
|
|
dist_init_required=dist_init_required,
|
|
|
|
collate_fn=collate_fn,
|
2021-04-29 03:05:03 +03:00
|
|
|
config=config,
|
2020-09-10 09:14:55 +03:00
|
|
|
config_params=config_params)
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
return_items = [
|
|
|
|
engine,
|
|
|
|
engine.optimizer,
|
|
|
|
engine.training_dataloader,
|
|
|
|
engine.lr_scheduler
|
|
|
|
]
|
|
|
|
return tuple(return_items)
|
|
|
|
|
|
|
|
|
2020-02-07 00:14:22 +03:00
|
|
|
def _add_core_arguments(parser):
|
|
|
|
r"""Helper (internal) function to update an argument parser with an argument group of the core DeepSpeed arguments.
|
|
|
|
The core set of DeepSpeed arguments include the following:
|
|
|
|
1) --deepspeed: boolean flag to enable DeepSpeed
|
|
|
|
2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime.
|
|
|
|
|
|
|
|
This is a helper function to the public add_config_arguments()
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
Arguments:
|
|
|
|
parser: argument parser
|
|
|
|
Return:
|
|
|
|
parser: Updated Parser
|
|
|
|
"""
|
|
|
|
group = parser.add_argument_group('DeepSpeed', 'DeepSpeed configurations')
|
|
|
|
|
2020-02-24 23:47:17 +03:00
|
|
|
group.add_argument(
|
|
|
|
'--deepspeed',
|
|
|
|
default=False,
|
|
|
|
action='store_true',
|
|
|
|
help=
|
|
|
|
'Enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)')
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
group.add_argument('--deepspeed_config',
|
|
|
|
default=None,
|
|
|
|
type=str,
|
|
|
|
help='DeepSpeed json configuration file.')
|
|
|
|
|
2020-02-24 23:47:17 +03:00
|
|
|
group.add_argument(
|
|
|
|
'--deepscale',
|
|
|
|
default=False,
|
|
|
|
action='store_true',
|
|
|
|
help=
|
|
|
|
'Deprecated enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)'
|
|
|
|
)
|
|
|
|
|
2020-02-21 01:16:41 +03:00
|
|
|
group.add_argument('--deepscale_config',
|
|
|
|
default=None,
|
|
|
|
type=str,
|
|
|
|
help='Deprecated DeepSpeed json configuration file.')
|
2020-02-27 18:22:57 +03:00
|
|
|
|
|
|
|
group.add_argument(
|
|
|
|
'--deepspeed_mpi',
|
|
|
|
default=False,
|
|
|
|
action='store_true',
|
|
|
|
help=
|
|
|
|
"Run via MPI, this will attempt to discover the necessary variables to initialize torch "
|
|
|
|
"distributed from the MPI environment")
|
|
|
|
|
2020-02-01 03:16:04 +03:00
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def add_config_arguments(parser):
|
2020-02-07 00:14:22 +03:00
|
|
|
r"""Update the argument parser to enabling parsing of DeepSpeed command line arguments.
|
|
|
|
The set of DeepSpeed arguments include the following:
|
|
|
|
1) --deepspeed: boolean flag to enable DeepSpeed
|
|
|
|
2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime.
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
Arguments:
|
|
|
|
parser: argument parser
|
|
|
|
Return:
|
|
|
|
parser: Updated Parser
|
|
|
|
"""
|
2020-02-07 00:14:22 +03:00
|
|
|
parser = _add_core_arguments(parser)
|
2020-02-01 03:16:04 +03:00
|
|
|
|
|
|
|
return parser
|
2021-05-24 11:10:39 +03:00
|
|
|
|
|
|
|
|
|
|
|
def init_inference(model,
|
2022-01-19 03:25:01 +03:00
|
|
|
triangular_masking=True,
|
2021-05-24 11:10:39 +03:00
|
|
|
mp_size=1,
|
2022-04-26 21:50:38 +03:00
|
|
|
training_mp_size=1,
|
2021-05-24 11:10:39 +03:00
|
|
|
mpu=None,
|
2022-01-19 03:25:01 +03:00
|
|
|
ep_group=None,
|
|
|
|
expert_mp_group=None,
|
2021-05-24 11:10:39 +03:00
|
|
|
checkpoint=None,
|
|
|
|
dtype=None,
|
|
|
|
injection_policy=None,
|
|
|
|
replace_method='auto',
|
2021-11-12 09:22:57 +03:00
|
|
|
quantization_setting=None,
|
|
|
|
replace_with_kernel_inject=False,
|
2022-01-19 03:25:01 +03:00
|
|
|
return_tuple=True,
|
|
|
|
ep_size=1,
|
|
|
|
moe=False,
|
|
|
|
moe_experts=1,
|
2022-04-26 21:50:38 +03:00
|
|
|
moe_type='standard',
|
2022-05-17 20:53:02 +03:00
|
|
|
args=None,
|
|
|
|
enable_cuda_graph=False):
|
2021-05-24 11:10:39 +03:00
|
|
|
"""Initialize the DeepSpeed InferenceEngine.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
model: Required: nn.module class before apply any wrappers
|
|
|
|
|
2022-01-19 03:25:01 +03:00
|
|
|
triangular_masking: Required: this shows the type of masking for attention scores in transformer layer
|
|
|
|
note that the masking is application specific.
|
|
|
|
|
2021-05-24 11:10:39 +03:00
|
|
|
mp_size: Optional: Desired model parallel size, default is 1 meaning no
|
|
|
|
model parallelism.
|
|
|
|
|
2022-04-26 21:50:38 +03:00
|
|
|
training_mp_size: Optional: if loading a checkpoint this is the mp size that it was trained with,
|
|
|
|
it may be different than what the mp size that you want to use during inference.
|
|
|
|
|
2021-05-24 11:10:39 +03:00
|
|
|
mpu: Optional: A model parallelism unit object that implements
|
|
|
|
get_{model,data}_parallel_{rank,group,world_size}()
|
|
|
|
|
|
|
|
checkpoint: Optional: Path to deepspeed compatible checkpoint or path to
|
|
|
|
JSON with load policy.
|
|
|
|
|
|
|
|
dtype: Optional: Desired model data type, will convert model to this type.
|
|
|
|
Supported target types: torch.half, torch.int8, torch.float
|
|
|
|
|
|
|
|
injection_policy: Optional: Dictionary mapping a client nn.Module to its corresponding
|
|
|
|
injection policy. e.g., {BertLayer : deepspeed.inference.HFBertLayerPolicy}
|
|
|
|
|
|
|
|
replace_method: Optional: If 'auto' DeepSpeed will automatically try and replace
|
|
|
|
model modules with its optimized versions. If an injection_policy is set this will
|
|
|
|
override the automatic replacement behavior.
|
|
|
|
|
|
|
|
quantization_setting: Optional: Quantization settings used for quantizing your model using the MoQ.
|
|
|
|
The setting can be one element or a tuple. If one value is passed in, we consider it as the number
|
|
|
|
of groups used in quantization. A tuple is passed in if we want to mention that there is extra-grouping
|
|
|
|
for the MLP part of a Transformer layer (e.g. (True, 8) shows we quantize the model using 8 groups for
|
|
|
|
all the network except the MLP part that we use 8 extra grouping).
|
2021-11-12 09:22:57 +03:00
|
|
|
replace_with_kernel_inject: If set we inject kernel as we initialize the inference-engine
|
2021-05-24 11:10:39 +03:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
A deepspeed.InferenceEngine wrapped model.
|
|
|
|
"""
|
|
|
|
log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(
|
|
|
|
__version__,
|
|
|
|
__git_hash__,
|
|
|
|
__git_branch__),
|
|
|
|
ranks=[0])
|
|
|
|
|
2022-04-26 21:50:38 +03:00
|
|
|
engine = InferenceEngine(model,
|
|
|
|
triangular_masking,
|
|
|
|
mp_size,
|
|
|
|
training_mp_size,
|
|
|
|
ep_size,
|
|
|
|
mpu,
|
|
|
|
ep_group,
|
|
|
|
expert_mp_group,
|
|
|
|
checkpoint,
|
|
|
|
dtype,
|
|
|
|
injection_policy,
|
|
|
|
return_tuple,
|
|
|
|
replace_method,
|
|
|
|
quantization_setting,
|
|
|
|
replace_with_kernel_inject,
|
|
|
|
moe,
|
|
|
|
moe_experts,
|
|
|
|
moe_type,
|
2022-05-17 20:53:02 +03:00
|
|
|
args,
|
|
|
|
enable_cuda_graph)
|
2021-05-24 11:10:39 +03:00
|
|
|
|
|
|
|
return engine
|