DeepSpeed/op_builder/builder.py

851 строка
34 KiB
Python
Исходник Обычный вид История

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import re
Quantization + inference release (#1091) Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Elton Zheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com>
2021-05-24 11:10:39 +03:00
import sys
import time
import importlib
from pathlib import Path
import subprocess
import shlex
import shutil
import tempfile
import distutils.ccompiler
import distutils.log
import distutils.sysconfig
from distutils.errors import CompileError, LinkError
from abc import ABC, abstractmethod
from typing import List
YELLOW = '\033[93m'
END = '\033[0m'
WARNING = f"{YELLOW} [WARNING] {END}"
DEFAULT_TORCH_EXTENSION_PATH = "/tmp/torch_extensions"
DEFAULT_COMPUTE_CAPABILITIES = "6.0;6.1;7.0"
try:
import torch
except ImportError:
print(f"{WARNING} unable to import torch, please install it if you want to pre-compile any deepspeed ops.")
else:
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
class MissingCUDAException(Exception):
pass
class CUDAMismatchException(Exception):
pass
def installed_cuda_version(name=""):
import torch.utils.cpp_extension
cuda_home = torch.utils.cpp_extension.CUDA_HOME
if cuda_home is None:
raise MissingCUDAException("CUDA_HOME does not exist, unable to compile CUDA op(s)")
# Ensure there is not a cuda version mismatch between torch and nvcc compiler
output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True)
output_split = output.split()
release_idx = output_split.index("release")
release = output_split[release_idx + 1].replace(',', '').split(".")
# Ignore patch versions, only look at major + minor
cuda_major, cuda_minor = release[:2]
return int(cuda_major), int(cuda_minor)
def get_default_compute_capabilities():
compute_caps = DEFAULT_COMPUTE_CAPABILITIES
import torch.utils.cpp_extension
if torch.utils.cpp_extension.CUDA_HOME is not None and installed_cuda_version()[0] >= 11:
2021-01-07 05:12:39 +03:00
if installed_cuda_version()[0] == 11 and installed_cuda_version()[1] == 0:
# Special treatment of CUDA 11.0 because compute_86 is not supported.
compute_caps += ";8.0"
else:
compute_caps += ";8.0;8.6"
return compute_caps
# list compatible minor CUDA versions - so that for example pytorch built with cuda-11.0 can be used
# to build deepspeed and system-wide installed cuda 11.2
cuda_minor_mismatch_ok = {
10: ["10.0", "10.1", "10.2"],
11: ["11.0", "11.1", "11.2", "11.3", "11.4", "11.5", "11.6", "11.7", "11.8"],
12: ["12.0", "12.1", "12.2", "12.3", "12.4", "12.5"],
}
def assert_no_cuda_mismatch(name=""):
cuda_major, cuda_minor = installed_cuda_version(name)
sys_cuda_version = f'{cuda_major}.{cuda_minor}'
torch_cuda_version = ".".join(torch.version.cuda.split('.')[:2])
# This is a show-stopping error, should probably not proceed past this
if sys_cuda_version != torch_cuda_version:
if (cuda_major in cuda_minor_mismatch_ok and sys_cuda_version in cuda_minor_mismatch_ok[cuda_major]
and torch_cuda_version in cuda_minor_mismatch_ok[cuda_major]):
print(f"Installed CUDA version {sys_cuda_version} does not match the "
f"version torch was compiled with {torch.version.cuda} "
"but since the APIs are compatible, accepting this combination")
return True
elif os.getenv("DS_SKIP_CUDA_CHECK", "0") == "1":
print(
f"{WARNING} DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the "
f"version torch was compiled with {torch.version.cuda}."
"Detected `DS_SKIP_CUDA_CHECK=1`: Allowing this combination of CUDA, but it may result in unexpected behavior."
)
return True
raise CUDAMismatchException(
f">- DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the "
f"version torch was compiled with {torch.version.cuda}, unable to compile "
"cuda/cpp extensions without a matching cuda version.")
return True
class OpBuilder(ABC):
_rocm_version = None
_rocm_gpu_arch = None
_rocm_wavefront_size = None
_is_rocm_pytorch = None
_is_sycl_enabled = None
_loaded_ops = {}
def __init__(self, name):
self.name = name
self.jit_mode = False
self.build_for_cpu = False
self.enable_bf16 = False
self.error_log = None
@abstractmethod
def absolute_name(self):
'''
Returns absolute build path for cases where the op is pre-installed, e.g., deepspeed.ops.adam.cpu_adam
will be installed as something like: deepspeed/ops/adam/cpu_adam.so
'''
pass
@abstractmethod
def sources(self):
'''
Returns list of source files for your op, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed)
'''
pass
def hipify_extension(self):
pass
def sycl_extension(self):
pass
@staticmethod
def validate_torch_version(torch_info):
install_torch_version = torch_info['version']
current_torch_version = ".".join(torch.__version__.split('.')[:2])
if install_torch_version != current_torch_version:
raise RuntimeError("PyTorch version mismatch! DeepSpeed ops were compiled and installed "
"with a different version than what is being used at runtime. "
f"Please re-install DeepSpeed or switch torch versions. "
f"Install torch version={install_torch_version}, "
f"Runtime torch version={current_torch_version}")
@staticmethod
def validate_torch_op_version(torch_info):
if not OpBuilder.is_rocm_pytorch():
current_cuda_version = ".".join(torch.version.cuda.split('.')[:2])
install_cuda_version = torch_info['cuda_version']
if install_cuda_version != current_cuda_version:
raise RuntimeError("CUDA version mismatch! DeepSpeed ops were compiled and installed "
"with a different version than what is being used at runtime. "
f"Please re-install DeepSpeed or switch torch versions. "
f"Install CUDA version={install_cuda_version}, "
f"Runtime CUDA version={current_cuda_version}")
else:
current_hip_version = ".".join(torch.version.hip.split('.')[:2])
install_hip_version = torch_info['hip_version']
if install_hip_version != current_hip_version:
raise RuntimeError("HIP version mismatch! DeepSpeed ops were compiled and installed "
"with a different version than what is being used at runtime. "
f"Please re-install DeepSpeed or switch torch versions. "
f"Install HIP version={install_hip_version}, "
f"Runtime HIP version={current_hip_version}")
@staticmethod
def is_rocm_pytorch():
if OpBuilder._is_rocm_pytorch is not None:
return OpBuilder._is_rocm_pytorch
_is_rocm_pytorch = False
try:
import torch
except ImportError:
pass
else:
if TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 5):
_is_rocm_pytorch = hasattr(torch.version, 'hip') and torch.version.hip is not None
if _is_rocm_pytorch:
from torch.utils.cpp_extension import ROCM_HOME
_is_rocm_pytorch = ROCM_HOME is not None
OpBuilder._is_rocm_pytorch = _is_rocm_pytorch
return OpBuilder._is_rocm_pytorch
@staticmethod
def is_sycl_enabled():
if OpBuilder._is_sycl_enabled is not None:
return OpBuilder._is_sycl_enabled
_is_sycl_enabled = False
try:
result = subprocess.run(["c2s", "--version"], capture_output=True)
except:
pass
else:
_is_sycl_enabled = True
OpBuilder._is_sycl_enabled = _is_sycl_enabled
return OpBuilder._is_sycl_enabled
@staticmethod
def installed_rocm_version():
if OpBuilder._rocm_version:
return OpBuilder._rocm_version
ROCM_MAJOR = '0'
ROCM_MINOR = '0'
ROCM_VERSION_DEV_RAW = ""
if OpBuilder.is_rocm_pytorch():
from torch.utils.cpp_extension import ROCM_HOME
rocm_ver_file = Path(ROCM_HOME).joinpath(".info/version")
if rocm_ver_file.is_file():
with open(rocm_ver_file, 'r') as file:
ROCM_VERSION_DEV_RAW = file.read()
elif "rocm" in torch.__version__:
ROCM_VERSION_DEV_RAW = torch.__version__.split("rocm")[1]
if ROCM_VERSION_DEV_RAW != "":
ROCM_MAJOR = ROCM_VERSION_DEV_RAW.split('.')[0]
ROCM_MINOR = ROCM_VERSION_DEV_RAW.split('.')[1]
else:
# Look in /usr/include/rocm-version.h
rocm_ver_file = Path("/usr/include/rocm_version.h")
if rocm_ver_file.is_file():
with open(rocm_ver_file, 'r') as file:
for ln in file.readlines():
if "#define ROCM_VERSION_MAJOR" in ln:
ROCM_MAJOR = re.findall(r'\S+', ln)[2]
elif "#define ROCM_VERSION_MINOR" in ln:
ROCM_MINOR = re.findall(r'\S+', ln)[2]
if ROCM_MAJOR == '0':
assert False, "Could not detect ROCm version"
OpBuilder._rocm_version = (int(ROCM_MAJOR), int(ROCM_MINOR))
return OpBuilder._rocm_version
@staticmethod
def get_rocm_gpu_arch():
if OpBuilder._rocm_gpu_arch:
return OpBuilder._rocm_gpu_arch
rocm_info = Path("/opt/rocm/bin/rocminfo")
if (not rocm_info.is_file()):
rocm_info = Path("rocminfo")
rocm_gpu_arch_cmd = str(rocm_info) + " | grep -o -m 1 'gfx.*'"
try:
result = subprocess.check_output(rocm_gpu_arch_cmd, shell=True)
rocm_gpu_arch = result.decode('utf-8').strip()
except subprocess.CalledProcessError:
rocm_gpu_arch = ""
OpBuilder._rocm_gpu_arch = rocm_gpu_arch
return OpBuilder._rocm_gpu_arch
@staticmethod
def get_rocm_wavefront_size():
if OpBuilder._rocm_wavefront_size:
return OpBuilder._rocm_wavefront_size
rocm_info = Path("/opt/rocm/bin/rocminfo")
if (not rocm_info.is_file()):
rocm_info = Path("rocminfo")
rocm_wavefront_size_cmd = str(
rocm_info) + " | grep -Eo -m1 'Wavefront Size:[[:space:]]+[0-9]+' | grep -Eo '[0-9]+'"
try:
result = subprocess.check_output(rocm_wavefront_size_cmd, shell=True)
rocm_wavefront_size = result.decode('utf-8').strip()
except subprocess.CalledProcessError:
rocm_wavefront_size = "32"
OpBuilder._rocm_wavefront_size = rocm_wavefront_size
return OpBuilder._rocm_wavefront_size
def include_paths(self):
'''
Returns list of include paths, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed)
'''
return []
def nvcc_args(self):
'''
Returns optional list of compiler flags to forward to nvcc when building CUDA sources
'''
return []
def cxx_args(self):
'''
Returns optional list of compiler flags to forward to the build
'''
return []
def is_compatible(self, verbose=False):
'''
Check if all non-python dependencies are satisfied to build this op
'''
return True
2021-03-08 23:54:54 +03:00
def extra_ldflags(self):
return []
def has_function(self, funcname, libraries, library_dirs=None, verbose=False):
'''
Test for existence of a function within a tuple of libraries.
This is used as a smoke test to check whether a certain library is available.
As a test, this creates a simple C program that calls the specified function,
and then distutils is used to compile that program and link it with the specified libraries.
Returns True if both the compile and link are successful, False otherwise.
'''
tempdir = None # we create a temporary directory to hold various files
filestderr = None # handle to open file to which we redirect stderr
oldstderr = None # file descriptor for stderr
try:
# Echo compile and link commands that are used.
if verbose:
distutils.log.set_verbosity(1)
# Create a compiler object.
compiler = distutils.ccompiler.new_compiler(verbose=verbose)
# Configure compiler and linker to build according to Python install.
distutils.sysconfig.customize_compiler(compiler)
# Create a temporary directory to hold test files.
tempdir = tempfile.mkdtemp()
# Define a simple C program that calls the function in question
prog = "void %s(void); int main(int argc, char** argv) { %s(); return 0; }" % (funcname, funcname)
# Write the test program to a file.
filename = os.path.join(tempdir, 'test.c')
with open(filename, 'w') as f:
f.write(prog)
# Redirect stderr file descriptor to a file to silence compile/link warnings.
if not verbose:
filestderr = open(os.path.join(tempdir, 'stderr.txt'), 'w')
oldstderr = os.dup(sys.stderr.fileno())
os.dup2(filestderr.fileno(), sys.stderr.fileno())
# Workaround for behavior in distutils.ccompiler.CCompiler.object_filenames()
# Otherwise, a local directory will be used instead of tempdir
drive, driveless_filename = os.path.splitdrive(filename)
root_dir = driveless_filename[0] if os.path.isabs(driveless_filename) else ''
output_dir = os.path.join(drive, root_dir)
# Attempt to compile the C program into an object file.
cflags = shlex.split(os.environ.get('CFLAGS', ""))
objs = compiler.compile([filename], output_dir=output_dir, extra_preargs=self.strip_empty_entries(cflags))
# Attempt to link the object file into an executable.
# Be sure to tack on any libraries that have been specified.
ldflags = shlex.split(os.environ.get('LDFLAGS', ""))
compiler.link_executable(objs,
os.path.join(tempdir, 'a.out'),
extra_preargs=self.strip_empty_entries(ldflags),
libraries=libraries,
library_dirs=library_dirs)
# Compile and link succeeded
return True
except CompileError:
return False
except LinkError:
return False
except:
return False
finally:
# Restore stderr file descriptor and close the stderr redirect file.
if oldstderr is not None:
os.dup2(oldstderr, sys.stderr.fileno())
if filestderr is not None:
filestderr.close()
# Delete the temporary directory holding the test program and stderr files.
if tempdir is not None:
shutil.rmtree(tempdir)
def strip_empty_entries(self, args):
'''
Drop any empty strings from the list of compile and link flags
'''
return [x for x in args if len(x) > 0]
def cpu_arch(self):
try:
from cpuinfo import get_cpu_info
except ImportError as e:
cpu_info = self._backup_cpuinfo()
if cpu_info is None:
return "-march=native"
try:
cpu_info = get_cpu_info()
except Exception as e:
self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), "
"falling back to `lscpu` to get this information.")
cpu_info = self._backup_cpuinfo()
if cpu_info is None:
return "-march=native"
if cpu_info['arch'].startswith('PPC_'):
# gcc does not provide -march on PowerPC, use -mcpu instead
return '-mcpu=native'
return '-march=native'
def is_cuda_enable(self):
try:
assert_no_cuda_mismatch(self.name)
return '-D__ENABLE_CUDA__'
except MissingCUDAException:
print(f"{WARNING} {self.name} cuda is missing or is incompatible with installed torch, "
"only cpu ops can be compiled!")
return '-D__DISABLE_CUDA__'
return '-D__DISABLE_CUDA__'
def _backup_cpuinfo(self):
# Construct cpu_info dict from lscpu that is similar to what py-cpuinfo provides
if not self.command_exists('lscpu'):
self.warning(f"{self.name} attempted to query 'lscpu' after failing to use py-cpuinfo "
"to detect the CPU architecture. 'lscpu' does not appear to exist on "
"your system, will fall back to use -march=native and non-vectorized execution.")
return None
result = subprocess.check_output('lscpu', shell=True)
result = result.decode('utf-8').strip().lower()
cpu_info = {}
cpu_info['arch'] = None
cpu_info['flags'] = ""
if 'genuineintel' in result or 'authenticamd' in result:
cpu_info['arch'] = 'X86_64'
if 'avx512' in result:
cpu_info['flags'] += 'avx512,'
elif 'avx512f' in result:
cpu_info['flags'] += 'avx512f,'
if 'avx2' in result:
cpu_info['flags'] += 'avx2'
elif 'ppc64le' in result:
cpu_info['arch'] = "PPC_"
return cpu_info
2021-03-08 23:54:54 +03:00
def simd_width(self):
try:
from cpuinfo import get_cpu_info
except ImportError as e:
cpu_info = self._backup_cpuinfo()
if cpu_info is None:
return '-D__SCALAR__'
2021-03-08 23:54:54 +03:00
try:
cpu_info = get_cpu_info()
except Exception as e:
self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), "
"falling back to `lscpu` to get this information.")
cpu_info = self._backup_cpuinfo()
if cpu_info is None:
return '-D__SCALAR__'
if cpu_info['arch'] == 'X86_64':
if 'avx512' in cpu_info['flags'] or 'avx512f' in cpu_info['flags']:
2021-03-08 23:54:54 +03:00
return '-D__AVX512__'
elif 'avx2' in cpu_info['flags']:
return '-D__AVX256__'
return '-D__SCALAR__'
2021-03-08 23:54:54 +03:00
def command_exists(self, cmd):
if '|' in cmd:
cmds = cmd.split("|")
else:
cmds = [cmd]
valid = False
for cmd in cmds:
safe_cmd = ["bash", "-c", f"type {cmd}"]
result = subprocess.Popen(safe_cmd, stdout=subprocess.PIPE)
valid = valid or result.wait() == 0
if not valid and len(cmds) > 1:
print(f"{WARNING} {self.name} requires one of the following commands '{cmds}', but it does not exist!")
elif not valid and len(cmds) == 1:
print(f"{WARNING} {self.name} requires the '{cmd}' command, but it does not exist!")
return valid
def warning(self, msg):
self.error_log = f"{msg}"
print(f"{WARNING} {msg}")
def deepspeed_src_path(self, code_path):
if os.path.isabs(code_path):
return code_path
else:
return os.path.join(Path(__file__).parent.parent.absolute(), code_path)
def builder(self):
from torch.utils.cpp_extension import CppExtension
include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())]
return CppExtension(name=self.absolute_name(),
sources=self.strip_empty_entries(self.sources()),
include_dirs=include_dirs,
extra_compile_args={'cxx': self.strip_empty_entries(self.cxx_args())},
extra_link_args=self.strip_empty_entries(self.extra_ldflags()))
def load(self, verbose=True):
if self.name in __class__._loaded_ops:
return __class__._loaded_ops[self.name]
from deepspeed.git_version_info import installed_ops, torch_info, accelerator_name
from deepspeed.accelerator import get_accelerator
if installed_ops.get(self.name, False) and accelerator_name == get_accelerator()._name:
# Ensure the op we're about to load was compiled with the same
# torch/cuda versions we are currently using at runtime.
self.validate_torch_version(torch_info)
if torch.cuda.is_available() and isinstance(self, CUDAOpBuilder):
self.validate_torch_op_version(torch_info)
op_module = importlib.import_module(self.absolute_name())
__class__._loaded_ops[self.name] = op_module
return op_module
else:
return self.jit_load(verbose)
def jit_load(self, verbose=True):
if not self.is_compatible(verbose):
raise RuntimeError(
f"Unable to JIT load the {self.name} op due to it not being compatible due to hardware/software issue. {self.error_log}"
)
try:
import ninja # noqa: F401 # type: ignore
except ImportError:
raise RuntimeError(f"Unable to JIT load the {self.name} op due to ninja not being installed.")
if isinstance(self, CUDAOpBuilder) and not self.is_rocm_pytorch():
self.build_for_cpu = not torch.cuda.is_available()
self.jit_mode = True
from torch.utils.cpp_extension import load
start_build = time.time()
Resolve any '..' in the file paths using os.path.abspath() (#4709) This PR is to resolve any '..' in the file paths like below using os.path.abspath() ``` sources: ['/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/core_ops.cpp', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/bias_activations/bias_activation.cpp', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/bias_activations/bias_activation.cu', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm.cpp', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm.cu', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.cpp', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.cu', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/gated_activations/gated_activation_kernels.cpp', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/gated_activations/gated_activation_kernels.cu'] extra_include_paths: ['/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/includes', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/bias_activations', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/blas_kernels', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/cuda_layer_norm', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/cuda_rms_norm', '/opt/conda/envs/py_3.9/lib/python3.9/site-packages/deepspeed/ops/../inference/v2/kernels/core_ops/gated_activations'] ``` It fixes the hipify errors that occur during JIT build of 'inference_core_ops' extension due to ".." prefix in the paths, https://github.com/microsoft/DeepSpeed/blob/0ec2d3e4bfa2d0a5237e9747da1ef9d5e4a4453b/op_builder/inference_core_ops.py#L73 https://github.com/microsoft/DeepSpeed/blob/0ec2d3e4bfa2d0a5237e9747da1ef9d5e4a4453b/op_builder/inference_core_ops.py#L90 cc @jithunnair-amd Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2023-12-05 21:42:34 +03:00
sources = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.sources()]
extra_include_paths = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.include_paths()]
# Torch will try and apply whatever CCs are in the arch list at compile time,
# we have already set the intended targets ourselves we know that will be
# needed at runtime. This prevents CC collisions such as multiple __half
# implementations. Stash arch list to reset after build.
torch_arch_list = None
if "TORCH_CUDA_ARCH_LIST" in os.environ:
torch_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST")
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
nvcc_args = self.strip_empty_entries(self.nvcc_args())
cxx_args = self.strip_empty_entries(self.cxx_args())
if isinstance(self, CUDAOpBuilder):
if not self.build_for_cpu and self.enable_bf16:
cxx_args.append("-DBF16_AVAILABLE")
nvcc_args.append("-DBF16_AVAILABLE")
nvcc_args.append("-U__CUDA_NO_BFLOAT16_OPERATORS__")
nvcc_args.append("-U__CUDA_NO_BFLOAT162_OPERATORS__")
nvcc_args.append("-U__CUDA_NO_BFLOAT16_CONVERSIONS__")
2023-10-26 20:37:13 +03:00
if self.is_rocm_pytorch():
cxx_args.append("-D__HIP_PLATFORM_AMD__=1")
os.environ["PYTORCH_ROCM_ARCH"] = self.get_rocm_gpu_arch()
cxx_args.append('-DROCM_WAVEFRONT_SIZE=%s' % self.get_rocm_wavefront_size())
2023-10-26 20:37:13 +03:00
op_module = load(name=self.name,
sources=self.strip_empty_entries(sources),
extra_include_paths=self.strip_empty_entries(extra_include_paths),
extra_cflags=cxx_args,
extra_cuda_cflags=nvcc_args,
extra_ldflags=self.strip_empty_entries(self.extra_ldflags()),
verbose=verbose)
build_duration = time.time() - start_build
if verbose:
print(f"Time to load {self.name} op: {build_duration} seconds")
# Reset arch list so we are not silently removing it for other possible use cases
if torch_arch_list:
os.environ["TORCH_CUDA_ARCH_LIST"] = torch_arch_list
__class__._loaded_ops[self.name] = op_module
return op_module
class CUDAOpBuilder(OpBuilder):
def compute_capability_args(self, cross_compile_archs=None):
"""
Returns nvcc compute capability compile flags.
1. `TORCH_CUDA_ARCH_LIST` takes priority over `cross_compile_archs`.
2. If neither is set default compute capabilities will be used
3. Under `jit_mode` compute capabilities of all visible cards will be used plus PTX
Format:
- `TORCH_CUDA_ARCH_LIST` may use ; or whitespace separators. Examples:
TORCH_CUDA_ARCH_LIST="6.1;7.5;8.6" pip install ...
TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6+PTX" pip install ...
- `cross_compile_archs` uses ; separator.
"""
ccs = []
if self.jit_mode:
# Compile for underlying architectures since we know those at runtime
for i in range(torch.cuda.device_count()):
CC_MAJOR, CC_MINOR = torch.cuda.get_device_capability(i)
cc = f"{CC_MAJOR}.{CC_MINOR}"
if cc not in ccs:
ccs.append(cc)
ccs = sorted(ccs)
ccs[-1] += '+PTX'
else:
# Cross-compile mode, compile for various architectures
# env override takes priority
cross_compile_archs_env = os.environ.get('TORCH_CUDA_ARCH_LIST', None)
if cross_compile_archs_env is not None:
if cross_compile_archs is not None:
print(
f"{WARNING} env var `TORCH_CUDA_ARCH_LIST={cross_compile_archs_env}` overrides `cross_compile_archs={cross_compile_archs}`"
)
cross_compile_archs = cross_compile_archs_env.replace(' ', ';')
else:
if cross_compile_archs is None:
cross_compile_archs = get_default_compute_capabilities()
ccs = cross_compile_archs.split(';')
ccs = self.filter_ccs(ccs)
if len(ccs) == 0:
raise RuntimeError(
f"Unable to load {self.name} op due to no compute capabilities remaining after filtering")
args = []
self.enable_bf16 = True
for cc in ccs:
num = cc[0] + cc[2]
args.append(f'-gencode=arch=compute_{num},code=sm_{num}')
if cc.endswith('+PTX'):
args.append(f'-gencode=arch=compute_{num},code=compute_{num}')
if int(cc[0]) <= 7:
self.enable_bf16 = False
return args
def filter_ccs(self, ccs: List[str]):
"""
Prune any compute capabilities that are not compatible with the builder. Should log
which CCs have been pruned.
"""
return ccs
def version_dependent_macros(self):
# Fix from apex that might be relevant for us as well, related to https://github.com/NVIDIA/apex/issues/456
version_ge_1_1 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0):
version_ge_1_1 = ['-DVERSION_GE_1_1']
version_ge_1_3 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2):
version_ge_1_3 = ['-DVERSION_GE_1_3']
version_ge_1_5 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4):
version_ge_1_5 = ['-DVERSION_GE_1_5']
return version_ge_1_1 + version_ge_1_3 + version_ge_1_5
def is_compatible(self, verbose=False):
return super().is_compatible(verbose)
def builder(self):
try:
if not self.is_rocm_pytorch():
assert_no_cuda_mismatch(self.name)
self.build_for_cpu = False
except MissingCUDAException:
self.build_for_cpu = True
if self.build_for_cpu:
from torch.utils.cpp_extension import CppExtension as ExtensionBuilder
else:
from torch.utils.cpp_extension import CUDAExtension as ExtensionBuilder
include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())]
compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())} if self.build_for_cpu else \
{'cxx': self.strip_empty_entries(self.cxx_args()), \
'nvcc': self.strip_empty_entries(self.nvcc_args())}
if not self.build_for_cpu and self.enable_bf16:
compile_args['cxx'].append("-DBF16_AVAILABLE")
compile_args['nvcc'].append("-DBF16_AVAILABLE")
if self.is_rocm_pytorch():
compile_args['cxx'].append("-D__HIP_PLATFORM_AMD__=1")
#cxx compiler args are required to compile cpp files
compile_args['cxx'].append('-DROCM_WAVEFRONT_SIZE=%s' % self.get_rocm_wavefront_size())
#nvcc compiler args are required to compile hip files
compile_args['nvcc'].append('-DROCM_WAVEFRONT_SIZE=%s' % self.get_rocm_wavefront_size())
if self.get_rocm_gpu_arch():
os.environ["PYTORCH_ROCM_ARCH"] = self.get_rocm_gpu_arch()
cuda_ext = ExtensionBuilder(name=self.absolute_name(),
sources=self.strip_empty_entries(self.sources()),
include_dirs=include_dirs,
libraries=self.strip_empty_entries(self.libraries_args()),
extra_compile_args=compile_args,
extra_link_args=self.strip_empty_entries(self.extra_ldflags()))
if self.is_rocm_pytorch():
# hip converts paths to absolute, this converts back to relative
sources = cuda_ext.sources
curr_file = Path(__file__).parent.parent # ds root
for i in range(len(sources)):
src = Path(sources[i])
if src.is_absolute():
sources[i] = str(src.relative_to(curr_file))
else:
sources[i] = str(src)
cuda_ext.sources = sources
return cuda_ext
Quantization + inference release (#1091) Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Elton Zheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com>
2021-05-24 11:10:39 +03:00
def hipify_extension(self):
if self.is_rocm_pytorch():
from torch.utils.hipify import hipify_python
hipify_python.hipify(
project_directory=os.getcwd(),
output_directory=os.getcwd(),
header_include_dirs=self.include_paths(),
includes=[os.path.join(os.getcwd(), '*')],
extra_files=[os.path.abspath(s) for s in self.sources()],
show_detailed=True,
is_pytorch_extension=True,
hipify_extra_files_only=True,
)
Quantization + inference release (#1091) Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Elton Zheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com>
2021-05-24 11:10:39 +03:00
def cxx_args(self):
if sys.platform == "win32":
return ['-O2']
else:
return ['-O3', '-std=c++17', '-g', '-Wno-reorder']
Quantization + inference release (#1091) Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Elton Zheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com>
2021-05-24 11:10:39 +03:00
def nvcc_args(self):
if self.build_for_cpu:
return []
args = ['-O3']
if self.is_rocm_pytorch():
ROCM_MAJOR, ROCM_MINOR = self.installed_rocm_version()
args += [
'-std=c++17', '-U__HIP_NO_HALF_OPERATORS__', '-U__HIP_NO_HALF_CONVERSIONS__',
'-U__HIP_NO_HALF2_OPERATORS__',
'-DROCM_VERSION_MAJOR=%s' % ROCM_MAJOR,
'-DROCM_VERSION_MINOR=%s' % ROCM_MINOR
]
else:
try:
nvcc_threads = int(os.getenv("DS_NVCC_THREADS", ""))
if nvcc_threads <= 0:
raise ValueError("")
except ValueError:
nvcc_threads = min(os.cpu_count(), 8)
cuda_major, cuda_minor = installed_cuda_version()
if cuda_major > 10:
if cuda_major == 12 and cuda_minor >= 5:
std_lib = '-std=c++20'
else:
std_lib = '-std=c++17'
else:
std_lib = '-std=c++14'
args += [
'-allow-unsupported-compiler' if sys.platform == "win32" else '', '--use_fast_math', std_lib,
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__',
f'--threads={nvcc_threads}'
]
if os.environ.get('DS_DEBUG_CUDA_BUILD', '0') == '1':
args.append('--ptxas-options=-v')
args += self.compute_capability_args()
return args
Quantization + inference release (#1091) Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Elton Zheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com>
2021-05-24 11:10:39 +03:00
def libraries_args(self):
if self.build_for_cpu:
return []
Quantization + inference release (#1091) Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Elton Zheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Reza Yazdani <44502768+RezaYazdaniAminabadi@users.noreply.github.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: eltonzheng <eltonz@microsoft.com> Co-authored-by: Shaden Smith <Shaden.Smith@microsoft.com> Co-authored-by: Arash Ashari <arashari@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: niumanar <60243342+niumanar@users.noreply.github.com>
2021-05-24 11:10:39 +03:00
if sys.platform == "win32":
return ['cublas', 'curand']
else:
return []
class TorchCPUOpBuilder(CUDAOpBuilder):
def get_cuda_lib64_path(self):
import torch
if not self.is_rocm_pytorch():
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib64")
if not os.path.exists(CUDA_LIB64):
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib")
else:
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.ROCM_HOME, "lib")
return CUDA_LIB64
def extra_ldflags(self):
if self.build_for_cpu:
return ['-fopenmp']
if not self.is_rocm_pytorch():
ld_flags = ['-lcurand']
if not self.build_for_cpu:
ld_flags.append(f'-L{self.get_cuda_lib64_path()}')
return ld_flags
return []
def cxx_args(self):
args = []
if not self.build_for_cpu:
CUDA_LIB64 = self.get_cuda_lib64_path()
args += super().cxx_args()
args += [
f'-L{CUDA_LIB64}',
'-lcudart',
'-lcublas',
'-g',
]
CPU_ARCH = self.cpu_arch()
SIMD_WIDTH = self.simd_width()
CUDA_ENABLE = self.is_cuda_enable()
args += [
CPU_ARCH,
'-fopenmp',
SIMD_WIDTH,
CUDA_ENABLE,
]
return args