зеркало из https://github.com/microsoft/DeepSpeed.git
[Accelerator] Cambricon MLU support (#6472)
### Description This PR includes Cambricon MLU accelerator support. With this PR, DeepSpeed supports MLU as backend for training and inference tasks. --------- Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com>
This commit is contained in:
Родитель
a5400974df
Коммит
0fbe96a502
|
@ -0,0 +1,300 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
import importlib
|
||||
import inspect
|
||||
import functools
|
||||
|
||||
from .abstract_accelerator import DeepSpeedAccelerator
|
||||
import torch
|
||||
# During setup stage torch may not be installed, pass on no torch will
|
||||
# allow op builder related API to be executed.
|
||||
|
||||
|
||||
class MLU_Accelerator(DeepSpeedAccelerator):
|
||||
|
||||
def __init__(self):
|
||||
self._name = 'mlu'
|
||||
self._communication_backend_name = 'cncl'
|
||||
self._compile_backend = "inductor"
|
||||
self.class_dict = None
|
||||
|
||||
def is_synchronized_device(self):
|
||||
return False
|
||||
|
||||
def use_host_timers(self):
|
||||
return self.is_synchronized_device()
|
||||
|
||||
def resolves_data_dependency(self):
|
||||
return self.is_synchronized_device()
|
||||
|
||||
def handles_memory_backpressure(self):
|
||||
return self.is_synchronized_device()
|
||||
|
||||
# Device APIs
|
||||
def device_name(self, device_index=None):
|
||||
if device_index == None:
|
||||
return 'mlu'
|
||||
return 'mlu:{}'.format(device_index)
|
||||
|
||||
def device(self, device_index=None):
|
||||
return torch.mlu.device(device_index)
|
||||
|
||||
def set_device(self, device_index):
|
||||
torch.mlu.set_device(device_index)
|
||||
|
||||
def current_device(self):
|
||||
return torch.mlu.current_device()
|
||||
|
||||
def current_device_name(self):
|
||||
return 'mlu:{}'.format(torch.mlu.current_device())
|
||||
|
||||
def device_count(self):
|
||||
return torch.mlu.device_count()
|
||||
|
||||
def synchronize(self, device_index=None):
|
||||
return torch.mlu.synchronize(device_index)
|
||||
|
||||
# RNG APIs
|
||||
def random(self):
|
||||
return torch.random
|
||||
|
||||
def set_rng_state(self, new_state, device_index=None):
|
||||
if device_index is None:
|
||||
return torch.mlu.set_rng_state(new_state)
|
||||
|
||||
return torch.mlu.set_rng_state(new_state, device_index)
|
||||
|
||||
def get_rng_state(self, device_index=None):
|
||||
if device_index is None:
|
||||
return torch.mlu.get_rng_state()
|
||||
|
||||
return torch.mlu.get_rng_state(device_index)
|
||||
|
||||
def manual_seed(self, seed):
|
||||
return torch.mlu.manual_seed(seed)
|
||||
|
||||
def manual_seed_all(self, seed):
|
||||
return torch.mlu.manual_seed_all(seed)
|
||||
|
||||
def initial_seed(self, seed):
|
||||
return torch.mlu.initial_seed(seed)
|
||||
|
||||
def default_generator(self, device_index):
|
||||
return torch.mlu.default_generators[device_index]
|
||||
|
||||
# Streams/Events
|
||||
@property
|
||||
def Stream(self):
|
||||
return torch.mlu.Stream
|
||||
|
||||
def stream(self, stream):
|
||||
return torch.mlu.stream(stream)
|
||||
|
||||
def current_stream(self, device_index=None):
|
||||
return torch.mlu.current_stream(device_index)
|
||||
|
||||
def default_stream(self, device_index=None):
|
||||
return torch.mlu.default_stream(device_index)
|
||||
|
||||
@property
|
||||
def Event(self):
|
||||
return torch.mlu.Event
|
||||
|
||||
# Memory management
|
||||
def empty_cache(self):
|
||||
return torch.mlu.empty_cache()
|
||||
|
||||
def memory_allocated(self, device_index=None):
|
||||
return torch.mlu.memory_allocated(device_index)
|
||||
|
||||
def max_memory_allocated(self, device_index=None):
|
||||
return torch.mlu.max_memory_allocated(device_index)
|
||||
|
||||
def reset_max_memory_allocated(self, device_index=None):
|
||||
return torch.mlu.reset_max_memory_allocated(device_index)
|
||||
|
||||
def memory_cached(self, device_index=None):
|
||||
return torch.mlu.memory_cached(device_index)
|
||||
|
||||
def max_memory_cached(self, device_index=None):
|
||||
return torch.mlu.max_memory_cached(device_index)
|
||||
|
||||
def reset_max_memory_cached(self, device_index=None):
|
||||
return torch.mlu.reset_max_memory_cached(device_index)
|
||||
|
||||
def memory_stats(self, device_index=None):
|
||||
if hasattr(torch.mlu, 'memory_stats'):
|
||||
return torch.mlu.memory_stats(device_index)
|
||||
|
||||
def reset_peak_memory_stats(self, device_index=None):
|
||||
if hasattr(torch.mlu, 'reset_peak_memory_stats'):
|
||||
return torch.mlu.reset_peak_memory_stats(device_index)
|
||||
|
||||
def memory_reserved(self, device_index=None):
|
||||
if hasattr(torch.mlu, 'memory_reserved'):
|
||||
return torch.mlu.memory_reserved(device_index)
|
||||
|
||||
def max_memory_reserved(self, device_index=None):
|
||||
if hasattr(torch.mlu, 'max_memory_reserved'):
|
||||
return torch.mlu.max_memory_reserved(device_index)
|
||||
|
||||
def total_memory(self, device_index=None):
|
||||
return torch.mlu.get_device_properties(device_index).total_memory
|
||||
|
||||
def available_memory(self, device_index=None):
|
||||
return self.total_memory(device_index) - self.memory_allocated(device_index)
|
||||
|
||||
# Data types
|
||||
def is_bf16_supported(self):
|
||||
return torch.mlu.is_bf16_supported()
|
||||
|
||||
def is_fp16_supported(self):
|
||||
return True
|
||||
|
||||
def supported_dtypes(self):
|
||||
supported_dtypes = [torch.float]
|
||||
if self.is_fp16_supported():
|
||||
supported_dtypes.append(torch.half)
|
||||
if self.is_bf16_supported():
|
||||
supported_dtypes.append(torch.bfloat16)
|
||||
return supported_dtypes
|
||||
|
||||
# Misc
|
||||
def amp(self):
|
||||
if hasattr(torch.mlu, 'amp'):
|
||||
return torch.mlu.amp
|
||||
return None
|
||||
|
||||
def is_available(self):
|
||||
return torch.mlu.is_available()
|
||||
|
||||
def range_push(self, msg):
|
||||
if hasattr(torch.mlu.cnpx, 'range_push'):
|
||||
return torch.mlu.cnpx.range_push(msg)
|
||||
|
||||
def range_pop(self):
|
||||
if hasattr(torch.mlu.cnpx, 'range_pop'):
|
||||
return torch.mlu.cnpx.range_pop()
|
||||
|
||||
def lazy_call(self, callback):
|
||||
return torch.mlu._lazy_call(callback)
|
||||
|
||||
def communication_backend_name(self):
|
||||
return self._communication_backend_name
|
||||
|
||||
def is_triton_supported(self):
|
||||
return True
|
||||
|
||||
# Graph operations
|
||||
def create_graph(self):
|
||||
torch.mlu.MLUGraph()
|
||||
|
||||
def capture_to_graph(self, graph, pool=None, stream=None):
|
||||
return torch.mlu.graph(graph, pool, stream)
|
||||
|
||||
def replay_graph(self, graph):
|
||||
graph.replay()
|
||||
return
|
||||
|
||||
# Tensor operations
|
||||
|
||||
@property
|
||||
def BFloat16Tensor(self):
|
||||
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='mlu')
|
||||
|
||||
@property
|
||||
def ByteTensor(self):
|
||||
return functools.partial(torch.tensor, dtype=torch.uint8, device='mlu')
|
||||
|
||||
@property
|
||||
def DoubleTensor(self):
|
||||
return functools.partial(torch.tensor, dtype=torch.double, device='mlu')
|
||||
|
||||
@property
|
||||
def FloatTensor(self):
|
||||
return functools.partial(torch.tensor, dtype=torch.float, device='mlu')
|
||||
|
||||
@property
|
||||
def HalfTensor(self):
|
||||
return functools.partial(torch.tensor, dtype=torch.half, device='mlu')
|
||||
|
||||
@property
|
||||
def IntTensor(self):
|
||||
return functools.partial(torch.tensor, dtype=torch.int, device='mlu')
|
||||
|
||||
@property
|
||||
def LongTensor(self):
|
||||
return functools.partial(torch.tensor, dtype=torch.long, device='mlu')
|
||||
|
||||
def pin_memory(self, tensor):
|
||||
return tensor.pin_memory()
|
||||
|
||||
def is_pinned(self, tensor):
|
||||
return tensor.is_pinned()
|
||||
|
||||
def on_accelerator(self, tensor):
|
||||
device_str = str(tensor.device)
|
||||
if device_str.startswith('mlu:'):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def op_builder_dir(self):
|
||||
try:
|
||||
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
||||
# if successful this also means we're doing a local install and not JIT compile path
|
||||
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
||||
return "op_builder.mlu"
|
||||
except ImportError:
|
||||
return "deepspeed.ops.op_builder.mlu"
|
||||
|
||||
def _lazy_init_class_dict(self):
|
||||
if self.class_dict:
|
||||
return
|
||||
|
||||
op_builder_module = importlib.import_module(self.op_builder_dir())
|
||||
|
||||
# get op builder class from op_builder/mlu/__init__.py
|
||||
self.class_dict = {}
|
||||
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
|
||||
self.class_dict[class_name] = class_obj
|
||||
|
||||
# create an instance of op builder and return, name specified by class_name
|
||||
def create_op_builder(self, class_name):
|
||||
builder_class = self.get_op_builder(class_name)
|
||||
return builder_class()
|
||||
|
||||
# return an op builder class, name specified by class_name
|
||||
def get_op_builder(self, class_name):
|
||||
self._lazy_init_class_dict()
|
||||
if class_name in self.class_dict:
|
||||
return self.class_dict[class_name]
|
||||
else:
|
||||
return self.class_dict['NotImplementedBuilder']
|
||||
|
||||
def build_extension(self):
|
||||
from torch.utils.cpp_extension import BuildExtension
|
||||
return BuildExtension
|
||||
|
||||
def export_envs(self):
|
||||
return ['NEUWARE_HOME', 'CNCL', 'LD_LIBRARY', 'PATH']
|
||||
|
||||
def visible_devices_envs(self):
|
||||
return ['MLU_VISIBLE_DEVICES']
|
||||
|
||||
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
|
||||
for env in self.visible_devices_envs():
|
||||
current_env[env] = ",".join(map(str, local_accelerator_ids))
|
||||
|
||||
def get_compile_backend(self):
|
||||
return self._compile_backend
|
||||
|
||||
def set_compile_backend(self, backend):
|
||||
supported_backends = torch._dynamo.list_backends(exclude_tags=())
|
||||
if backend in supported_backends:
|
||||
self._compile_backend = backend
|
||||
else:
|
||||
raise ValueError(
|
||||
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends }")
|
|
@ -20,7 +20,7 @@ try:
|
|||
except ImportError as e:
|
||||
dsa2 = None
|
||||
|
||||
SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu']
|
||||
SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu']
|
||||
|
||||
ds_accelerator = None
|
||||
|
||||
|
@ -94,6 +94,11 @@ def get_accelerator():
|
|||
except ImportError as e:
|
||||
raise ValueError(
|
||||
f"HPU_Accelerator requires habana_frameworks.torch.hpu, which is not installed on this system.")
|
||||
elif accelerator_name == "mlu":
|
||||
try:
|
||||
import torch_mlu # noqa: F401
|
||||
except ImportError as e:
|
||||
raise ValueError(f"MLU_Accelerator requires torch_mlu, which is not installed on this system.")
|
||||
elif accelerator_name not in SUPPORTED_ACCELERATOR_LIST:
|
||||
raise ValueError(f'DS_ACCELERATOR must be one of {SUPPORTED_ACCELERATOR_LIST}. '
|
||||
f'Value "{accelerator_name}" is not supported')
|
||||
|
@ -149,6 +154,13 @@ def get_accelerator():
|
|||
accelerator_name = "hpu"
|
||||
except ImportError as e:
|
||||
pass
|
||||
if accelerator_name is None:
|
||||
try:
|
||||
import torch_mlu # noqa: F401,F811
|
||||
|
||||
accelerator_name = "mlu"
|
||||
except ImportError as e:
|
||||
pass
|
||||
if accelerator_name is None:
|
||||
# borrow this log from PR#5084
|
||||
try:
|
||||
|
@ -198,6 +210,10 @@ def get_accelerator():
|
|||
from .hpu_accelerator import HPU_Accelerator
|
||||
|
||||
ds_accelerator = HPU_Accelerator()
|
||||
elif accelerator_name == 'mlu':
|
||||
from .mlu_accelerator import MLU_Accelerator
|
||||
|
||||
ds_accelerator = MLU_Accelerator()
|
||||
_validate_accelerator(ds_accelerator)
|
||||
if accel_logger is not None:
|
||||
accel_logger.info(f"Setting ds_accelerator to {ds_accelerator._name} ({ds_set_method})")
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Copyright (c) 2024 Cambricon Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
'''Copyright The Microsoft DeepSpeed Team'''
|
||||
|
||||
# MLU related operators will be added in the future.
|
||||
from .no_impl import NotImplementedBuilder
|
||||
from .cpu_adagrad import CPUAdagradBuilder
|
||||
from .cpu_adam import CPUAdamBuilder
|
||||
from .fused_adam import FusedAdamBuilder
|
|
@ -0,0 +1,35 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Copyright (c) 2024 Cambricon Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
|
||||
try:
|
||||
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
||||
# if successful this also means we're doing a local install and not JIT compile path
|
||||
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
||||
from op_builder.builder import OpBuilder
|
||||
except ImportError:
|
||||
from deepspeed.ops.op_builder.builder import OpBuilder
|
||||
|
||||
|
||||
class MLUOpBuilder(OpBuilder):
|
||||
|
||||
def builder(self):
|
||||
from torch.utils.cpp_extension import CppExtension as ExtensionBuilder
|
||||
|
||||
compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())}
|
||||
|
||||
cpp_ext = ExtensionBuilder(name=self.absolute_name(),
|
||||
sources=self.strip_empty_entries(self.sources()),
|
||||
include_dirs=self.strip_empty_entries(self.include_paths()),
|
||||
libraries=self.strip_empty_entries(self.libraries_args()),
|
||||
extra_compile_args=compile_args)
|
||||
|
||||
return cpp_ext
|
||||
|
||||
def cxx_args(self):
|
||||
return ['-O3', '-g', '-Wno-reorder']
|
||||
|
||||
def libraries_args(self):
|
||||
return []
|
|
@ -0,0 +1,24 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Copyright (c) 2024 Cambricon Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
|
||||
from .builder import MLUOpBuilder
|
||||
|
||||
|
||||
class CPUAdagradBuilder(MLUOpBuilder):
|
||||
BUILD_VAR = "DS_BUILD_CPU_ADAGRAD"
|
||||
NAME = "cpu_adagrad"
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(name=self.NAME)
|
||||
|
||||
def absolute_name(self):
|
||||
return f'deepspeed.ops.adagrad.{self.NAME}_op'
|
||||
|
||||
def sources(self):
|
||||
return ['csrc/adagrad/cpu_adagrad.cpp']
|
||||
|
||||
def include_paths(self):
|
||||
return ['csrc/includes']
|
|
@ -0,0 +1,28 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Copyright (c) 2024 Cambricon Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
|
||||
from .builder import MLUOpBuilder
|
||||
|
||||
|
||||
class CPUAdamBuilder(MLUOpBuilder):
|
||||
BUILD_VAR = "DS_BUILD_CPU_ADAM"
|
||||
NAME = "cpu_adam"
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(name=self.NAME)
|
||||
|
||||
def absolute_name(self):
|
||||
return f'deepspeed.ops.adam.{self.NAME}_op'
|
||||
|
||||
def sources(self):
|
||||
return ['csrc/adam/cpu_adam.cpp', 'csrc/adam/cpu_adam_impl.cpp']
|
||||
|
||||
def libraries_args(self):
|
||||
args = super().libraries_args()
|
||||
return args
|
||||
|
||||
def include_paths(self):
|
||||
return ['csrc/includes']
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Copyright (c) 2024 Cambricon Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
|
||||
from .builder import MLUOpBuilder
|
||||
import torch
|
||||
|
||||
|
||||
class MLUFusedAdam:
|
||||
|
||||
@staticmethod
|
||||
def multi_tensor_adam(chunk_size, noop_flag_buffer, tensor_lists, lr, beta1, beta2, epsilon, step, adam_w_mode,
|
||||
bias_correction, weight_decay, *args):
|
||||
|
||||
torch.ops.torch_mlu.fused_adam(noop_flag_buffer, tensor_lists[0], tensor_lists[1], tensor_lists[2],
|
||||
tensor_lists[3], lr, beta1, beta2, epsilon, step, adam_w_mode, bias_correction,
|
||||
weight_decay)
|
||||
|
||||
|
||||
class FusedAdamBuilder(MLUOpBuilder):
|
||||
BUILD_VAR = "DS_BUILD_FUSED_ADAM"
|
||||
NAME = "fused_adam"
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(name=self.NAME)
|
||||
|
||||
def absolute_name(self):
|
||||
return f'deepspeed.ops.adam.{self.NAME}_op'
|
||||
|
||||
def sources(self):
|
||||
return []
|
||||
|
||||
def include_paths(self):
|
||||
return []
|
||||
|
||||
def load(self, verbose=True):
|
||||
return MLUFusedAdam
|
|
@ -0,0 +1,34 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Copyright (c) 2024 Cambricon Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
|
||||
from .builder import MLUOpBuilder
|
||||
|
||||
|
||||
class NotImplementedBuilder(MLUOpBuilder):
|
||||
BUILD_VAR = "DS_BUILD_NOT_IMPLEMENTED"
|
||||
NAME = "deepspeed_not_implemented"
|
||||
|
||||
def __init__(self, name=None):
|
||||
name = self.NAME if name is None else name
|
||||
super().__init__(name=name)
|
||||
|
||||
def absolute_name(self):
|
||||
return f'deepspeed.ops.comm.{self.NAME}_op'
|
||||
|
||||
def load(self, verbose=True):
|
||||
raise ValueError("This op had not been implemented on MLU backend.")
|
||||
|
||||
def sources(self):
|
||||
return []
|
||||
|
||||
def cxx_args(self):
|
||||
return []
|
||||
|
||||
def extra_ldflags(self):
|
||||
return []
|
||||
|
||||
def include_paths(self):
|
||||
return []
|
Загрузка…
Ссылка в новой задаче