[Accelerator] Cambricon MLU support (#6472)

### Description
This PR includes Cambricon MLU accelerator support. 
With this PR, DeepSpeed supports MLU as backend for training and
inference tasks.

---------

Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com>
This commit is contained in:
andyG 2024-09-26 21:10:52 +08:00 коммит произвёл GitHub
Родитель a5400974df
Коммит 0fbe96a502
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
8 изменённых файлов: 489 добавлений и 1 удалений

Просмотреть файл

@ -0,0 +1,300 @@
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import importlib
import inspect
import functools
from .abstract_accelerator import DeepSpeedAccelerator
import torch
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
class MLU_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = 'mlu'
self._communication_backend_name = 'cncl'
self._compile_backend = "inductor"
self.class_dict = None
def is_synchronized_device(self):
return False
def use_host_timers(self):
return self.is_synchronized_device()
def resolves_data_dependency(self):
return self.is_synchronized_device()
def handles_memory_backpressure(self):
return self.is_synchronized_device()
# Device APIs
def device_name(self, device_index=None):
if device_index == None:
return 'mlu'
return 'mlu:{}'.format(device_index)
def device(self, device_index=None):
return torch.mlu.device(device_index)
def set_device(self, device_index):
torch.mlu.set_device(device_index)
def current_device(self):
return torch.mlu.current_device()
def current_device_name(self):
return 'mlu:{}'.format(torch.mlu.current_device())
def device_count(self):
return torch.mlu.device_count()
def synchronize(self, device_index=None):
return torch.mlu.synchronize(device_index)
# RNG APIs
def random(self):
return torch.random
def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.mlu.set_rng_state(new_state)
return torch.mlu.set_rng_state(new_state, device_index)
def get_rng_state(self, device_index=None):
if device_index is None:
return torch.mlu.get_rng_state()
return torch.mlu.get_rng_state(device_index)
def manual_seed(self, seed):
return torch.mlu.manual_seed(seed)
def manual_seed_all(self, seed):
return torch.mlu.manual_seed_all(seed)
def initial_seed(self, seed):
return torch.mlu.initial_seed(seed)
def default_generator(self, device_index):
return torch.mlu.default_generators[device_index]
# Streams/Events
@property
def Stream(self):
return torch.mlu.Stream
def stream(self, stream):
return torch.mlu.stream(stream)
def current_stream(self, device_index=None):
return torch.mlu.current_stream(device_index)
def default_stream(self, device_index=None):
return torch.mlu.default_stream(device_index)
@property
def Event(self):
return torch.mlu.Event
# Memory management
def empty_cache(self):
return torch.mlu.empty_cache()
def memory_allocated(self, device_index=None):
return torch.mlu.memory_allocated(device_index)
def max_memory_allocated(self, device_index=None):
return torch.mlu.max_memory_allocated(device_index)
def reset_max_memory_allocated(self, device_index=None):
return torch.mlu.reset_max_memory_allocated(device_index)
def memory_cached(self, device_index=None):
return torch.mlu.memory_cached(device_index)
def max_memory_cached(self, device_index=None):
return torch.mlu.max_memory_cached(device_index)
def reset_max_memory_cached(self, device_index=None):
return torch.mlu.reset_max_memory_cached(device_index)
def memory_stats(self, device_index=None):
if hasattr(torch.mlu, 'memory_stats'):
return torch.mlu.memory_stats(device_index)
def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.mlu, 'reset_peak_memory_stats'):
return torch.mlu.reset_peak_memory_stats(device_index)
def memory_reserved(self, device_index=None):
if hasattr(torch.mlu, 'memory_reserved'):
return torch.mlu.memory_reserved(device_index)
def max_memory_reserved(self, device_index=None):
if hasattr(torch.mlu, 'max_memory_reserved'):
return torch.mlu.max_memory_reserved(device_index)
def total_memory(self, device_index=None):
return torch.mlu.get_device_properties(device_index).total_memory
def available_memory(self, device_index=None):
return self.total_memory(device_index) - self.memory_allocated(device_index)
# Data types
def is_bf16_supported(self):
return torch.mlu.is_bf16_supported()
def is_fp16_supported(self):
return True
def supported_dtypes(self):
supported_dtypes = [torch.float]
if self.is_fp16_supported():
supported_dtypes.append(torch.half)
if self.is_bf16_supported():
supported_dtypes.append(torch.bfloat16)
return supported_dtypes
# Misc
def amp(self):
if hasattr(torch.mlu, 'amp'):
return torch.mlu.amp
return None
def is_available(self):
return torch.mlu.is_available()
def range_push(self, msg):
if hasattr(torch.mlu.cnpx, 'range_push'):
return torch.mlu.cnpx.range_push(msg)
def range_pop(self):
if hasattr(torch.mlu.cnpx, 'range_pop'):
return torch.mlu.cnpx.range_pop()
def lazy_call(self, callback):
return torch.mlu._lazy_call(callback)
def communication_backend_name(self):
return self._communication_backend_name
def is_triton_supported(self):
return True
# Graph operations
def create_graph(self):
torch.mlu.MLUGraph()
def capture_to_graph(self, graph, pool=None, stream=None):
return torch.mlu.graph(graph, pool, stream)
def replay_graph(self, graph):
graph.replay()
return
# Tensor operations
@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='mlu')
@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device='mlu')
@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device='mlu')
@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device='mlu')
@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device='mlu')
@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device='mlu')
@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device='mlu')
def pin_memory(self, tensor):
return tensor.pin_memory()
def is_pinned(self, tensor):
return tensor.is_pinned()
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('mlu:'):
return True
else:
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder.mlu"
except ImportError:
return "deepspeed.ops.op_builder.mlu"
def _lazy_init_class_dict(self):
if self.class_dict:
return
op_builder_module = importlib.import_module(self.op_builder_dir())
# get op builder class from op_builder/mlu/__init__.py
self.class_dict = {}
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
self.class_dict[class_name] = class_obj
# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
builder_class = self.get_op_builder(class_name)
return builder_class()
# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return self.class_dict['NotImplementedBuilder']
def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension
def export_envs(self):
return ['NEUWARE_HOME', 'CNCL', 'LD_LIBRARY', 'PATH']
def visible_devices_envs(self):
return ['MLU_VISIBLE_DEVICES']
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))
def get_compile_backend(self):
return self._compile_backend
def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends }")

Просмотреть файл

@ -20,7 +20,7 @@ try:
except ImportError as e:
dsa2 = None
SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu']
SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu']
ds_accelerator = None
@ -94,6 +94,11 @@ def get_accelerator():
except ImportError as e:
raise ValueError(
f"HPU_Accelerator requires habana_frameworks.torch.hpu, which is not installed on this system.")
elif accelerator_name == "mlu":
try:
import torch_mlu # noqa: F401
except ImportError as e:
raise ValueError(f"MLU_Accelerator requires torch_mlu, which is not installed on this system.")
elif accelerator_name not in SUPPORTED_ACCELERATOR_LIST:
raise ValueError(f'DS_ACCELERATOR must be one of {SUPPORTED_ACCELERATOR_LIST}. '
f'Value "{accelerator_name}" is not supported')
@ -149,6 +154,13 @@ def get_accelerator():
accelerator_name = "hpu"
except ImportError as e:
pass
if accelerator_name is None:
try:
import torch_mlu # noqa: F401,F811
accelerator_name = "mlu"
except ImportError as e:
pass
if accelerator_name is None:
# borrow this log from PR#5084
try:
@ -198,6 +210,10 @@ def get_accelerator():
from .hpu_accelerator import HPU_Accelerator
ds_accelerator = HPU_Accelerator()
elif accelerator_name == 'mlu':
from .mlu_accelerator import MLU_Accelerator
ds_accelerator = MLU_Accelerator()
_validate_accelerator(ds_accelerator)
if accel_logger is not None:
accel_logger.info(f"Setting ds_accelerator to {ds_accelerator._name} ({ds_set_method})")

Просмотреть файл

@ -0,0 +1,12 @@
# Copyright (c) Microsoft Corporation.
# Copyright (c) 2024 Cambricon Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
'''Copyright The Microsoft DeepSpeed Team'''
# MLU related operators will be added in the future.
from .no_impl import NotImplementedBuilder
from .cpu_adagrad import CPUAdagradBuilder
from .cpu_adam import CPUAdamBuilder
from .fused_adam import FusedAdamBuilder

35
op_builder/mlu/builder.py Normal file
Просмотреть файл

@ -0,0 +1,35 @@
# Copyright (c) Microsoft Corporation.
# Copyright (c) 2024 Cambricon Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
from op_builder.builder import OpBuilder
except ImportError:
from deepspeed.ops.op_builder.builder import OpBuilder
class MLUOpBuilder(OpBuilder):
def builder(self):
from torch.utils.cpp_extension import CppExtension as ExtensionBuilder
compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())}
cpp_ext = ExtensionBuilder(name=self.absolute_name(),
sources=self.strip_empty_entries(self.sources()),
include_dirs=self.strip_empty_entries(self.include_paths()),
libraries=self.strip_empty_entries(self.libraries_args()),
extra_compile_args=compile_args)
return cpp_ext
def cxx_args(self):
return ['-O3', '-g', '-Wno-reorder']
def libraries_args(self):
return []

Просмотреть файл

@ -0,0 +1,24 @@
# Copyright (c) Microsoft Corporation.
# Copyright (c) 2024 Cambricon Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .builder import MLUOpBuilder
class CPUAdagradBuilder(MLUOpBuilder):
BUILD_VAR = "DS_BUILD_CPU_ADAGRAD"
NAME = "cpu_adagrad"
def __init__(self):
super().__init__(name=self.NAME)
def absolute_name(self):
return f'deepspeed.ops.adagrad.{self.NAME}_op'
def sources(self):
return ['csrc/adagrad/cpu_adagrad.cpp']
def include_paths(self):
return ['csrc/includes']

Просмотреть файл

@ -0,0 +1,28 @@
# Copyright (c) Microsoft Corporation.
# Copyright (c) 2024 Cambricon Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .builder import MLUOpBuilder
class CPUAdamBuilder(MLUOpBuilder):
BUILD_VAR = "DS_BUILD_CPU_ADAM"
NAME = "cpu_adam"
def __init__(self):
super().__init__(name=self.NAME)
def absolute_name(self):
return f'deepspeed.ops.adam.{self.NAME}_op'
def sources(self):
return ['csrc/adam/cpu_adam.cpp', 'csrc/adam/cpu_adam_impl.cpp']
def libraries_args(self):
args = super().libraries_args()
return args
def include_paths(self):
return ['csrc/includes']

Просмотреть файл

@ -0,0 +1,39 @@
# Copyright (c) Microsoft Corporation.
# Copyright (c) 2024 Cambricon Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .builder import MLUOpBuilder
import torch
class MLUFusedAdam:
@staticmethod
def multi_tensor_adam(chunk_size, noop_flag_buffer, tensor_lists, lr, beta1, beta2, epsilon, step, adam_w_mode,
bias_correction, weight_decay, *args):
torch.ops.torch_mlu.fused_adam(noop_flag_buffer, tensor_lists[0], tensor_lists[1], tensor_lists[2],
tensor_lists[3], lr, beta1, beta2, epsilon, step, adam_w_mode, bias_correction,
weight_decay)
class FusedAdamBuilder(MLUOpBuilder):
BUILD_VAR = "DS_BUILD_FUSED_ADAM"
NAME = "fused_adam"
def __init__(self):
super().__init__(name=self.NAME)
def absolute_name(self):
return f'deepspeed.ops.adam.{self.NAME}_op'
def sources(self):
return []
def include_paths(self):
return []
def load(self, verbose=True):
return MLUFusedAdam

34
op_builder/mlu/no_impl.py Normal file
Просмотреть файл

@ -0,0 +1,34 @@
# Copyright (c) Microsoft Corporation.
# Copyright (c) 2024 Cambricon Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .builder import MLUOpBuilder
class NotImplementedBuilder(MLUOpBuilder):
BUILD_VAR = "DS_BUILD_NOT_IMPLEMENTED"
NAME = "deepspeed_not_implemented"
def __init__(self, name=None):
name = self.NAME if name is None else name
super().__init__(name=name)
def absolute_name(self):
return f'deepspeed.ops.comm.{self.NAME}_op'
def load(self, verbose=True):
raise ValueError("This op had not been implemented on MLU backend.")
def sources(self):
return []
def cxx_args(self):
return []
def extra_ldflags(self):
return []
def include_paths(self):
return []