Add Ascend NPU accelerator support (#3595)

* add Ascend NPU accelerator support

* clean code

---------

Co-authored-by: jializheng <jializheng@huawei.com>
Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
This commit is contained in:
CurryRice233 2023-05-31 22:24:24 +08:00 коммит произвёл GitHub
Родитель 52907a661c
Коммит f3c8eacafc
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 241 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,241 @@
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .abstract_accelerator import DeepSpeedAccelerator
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
try:
import torch.npu
except ImportError:
pass
class NPU_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = 'npu'
self._communication_backend_name = 'hccl'
def is_synchronized_device(self):
return False
# Device APIs
def device_name(self, device_index=None):
if device_index == None:
return 'npu'
return 'npu:{}'.format(device_index)
def device(self, device_index=None):
return torch.npu.device(device_index)
def set_device(self, device_index):
torch.npu.set_device(device_index)
def current_device(self):
return torch.npu.current_device()
def current_device_name(self):
return 'npu:{}'.format(torch.npu.current_device())
def device_count(self):
return torch.npu.device_count()
def synchronize(self, device_index=None):
return torch.npu.synchronize(device_index)
# RNG APIs
def random(self):
return torch.random
def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.npu.set_rng_state(new_state)
return torch.npu.set_rng_state(new_state, device_index)
def get_rng_state(self, device_index=None):
if device_index is None:
return torch.npu.get_rng_state()
return torch.npu.get_rng_state(device_index)
def manual_seed(self, seed):
return torch.npu.manual_seed(seed)
def manual_seed_all(self, seed):
return torch.npu.manual_seed_all(seed)
def initial_seed(self, seed):
return torch.npu.initial_seed(seed)
def default_generator(self, device_index):
return torch.npu.default_generators[device_index]
# Streams/Events
@property
def Stream(self):
return torch.npu.Stream
def stream(self, stream):
return torch.npu.stream(stream)
def current_stream(self, device_index=None):
return torch.npu.current_stream(device_index)
def default_stream(self, device_index=None):
return torch.npu.default_stream(device_index)
@property
def Event(self):
return torch.npu.Event
# Memory management
def empty_cache(self):
return torch.npu.empty_cache()
def memory_allocated(self, device_index=None):
return torch.npu.memory_allocated(device_index)
def max_memory_allocated(self, device_index=None):
return torch.npu.max_memory_allocated(device_index)
def reset_max_memory_allocated(self, device_index=None):
return torch.npu.reset_max_memory_allocated(device_index)
def memory_cached(self, device_index=None):
return torch.npu.memory_cached(device_index)
def max_memory_cached(self, device_index=None):
return torch.npu.max_memory_cached(device_index)
def reset_max_memory_cached(self, device_index=None):
return torch.npu.reset_max_memory_cached(device_index)
def memory_stats(self, device_index=None):
if hasattr(torch.npu, 'memory_stats'):
return torch.npu.memory_stats(device_index)
def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.npu, 'reset_peak_memory_stats'):
return torch.npu.reset_peak_memory_stats(device_index)
def memory_reserved(self, device_index=None):
if hasattr(torch.npu, 'memory_reserved'):
return torch.npu.memory_reserved(device_index)
def max_memory_reserved(self, device_index=None):
if hasattr(torch.npu, 'max_memory_reserved'):
return torch.npu.max_memory_reserved(device_index)
def total_memory(self, device_index=None):
return torch.npu.get_device_properties(device_index).total_memory
# Data types
def is_bf16_supported(self):
return torch.npu.is_bf16_supported()
def is_fp16_supported(self):
return True
# Misc
def amp(self):
if hasattr(torch.npu, 'amp'):
return torch.npu.amp
return None
def is_available(self):
return torch.npu.is_available()
def range_push(self, msg):
return
def range_pop(self):
return
def lazy_call(self, callback):
return torch.npu._lazy_call(callback)
def communication_backend_name(self):
return self._communication_backend_name
# Tensor operations
@property
def BFloat16Tensor(self):
return torch.npu.BFloat16Tensor
@property
def ByteTensor(self):
return torch.npu.ByteTensor
@property
def DoubleTensor(self):
return torch.npu.DoubleTensor
@property
def FloatTensor(self):
return torch.npu.FloatTensor
@property
def HalfTensor(self):
return torch.npu.HalfTensor
@property
def IntTensor(self):
return torch.npu.IntTensor
@property
def LongTensor(self):
return torch.npu.LongTensor
def pin_memory(self, tensor):
return tensor.pin_memory()
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('npu:'):
return True
else:
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401
return "op_builder.npu"
except ImportError:
return "deepspeed.ops.op_builder.npu"
# dict that holds class name <--> class type mapping i.e.
# 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'>
# this dict will be filled at init stage
class_dict = None
def _lazy_init_class_dict(self):
if self.class_dict != None:
return
else:
self.class_dict = {}
# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]()
else:
return None
# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return None
def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension