зеркало из https://github.com/microsoft/DeepSpeed.git
Add Ascend NPU accelerator support (#3595)
* add Ascend NPU accelerator support * clean code --------- Co-authored-by: jializheng <jializheng@huawei.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
This commit is contained in:
Родитель
52907a661c
Коммит
f3c8eacafc
|
@ -0,0 +1,241 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# DeepSpeed Team
|
||||
|
||||
from .abstract_accelerator import DeepSpeedAccelerator
|
||||
# During setup stage torch may not be installed, pass on no torch will
|
||||
# allow op builder related API to be executed.
|
||||
try:
|
||||
import torch.npu
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
class NPU_Accelerator(DeepSpeedAccelerator):
|
||||
|
||||
def __init__(self):
|
||||
self._name = 'npu'
|
||||
self._communication_backend_name = 'hccl'
|
||||
|
||||
def is_synchronized_device(self):
|
||||
return False
|
||||
|
||||
# Device APIs
|
||||
def device_name(self, device_index=None):
|
||||
if device_index == None:
|
||||
return 'npu'
|
||||
return 'npu:{}'.format(device_index)
|
||||
|
||||
def device(self, device_index=None):
|
||||
return torch.npu.device(device_index)
|
||||
|
||||
def set_device(self, device_index):
|
||||
torch.npu.set_device(device_index)
|
||||
|
||||
def current_device(self):
|
||||
return torch.npu.current_device()
|
||||
|
||||
def current_device_name(self):
|
||||
return 'npu:{}'.format(torch.npu.current_device())
|
||||
|
||||
def device_count(self):
|
||||
return torch.npu.device_count()
|
||||
|
||||
def synchronize(self, device_index=None):
|
||||
return torch.npu.synchronize(device_index)
|
||||
|
||||
# RNG APIs
|
||||
def random(self):
|
||||
return torch.random
|
||||
|
||||
def set_rng_state(self, new_state, device_index=None):
|
||||
if device_index is None:
|
||||
return torch.npu.set_rng_state(new_state)
|
||||
|
||||
return torch.npu.set_rng_state(new_state, device_index)
|
||||
|
||||
def get_rng_state(self, device_index=None):
|
||||
if device_index is None:
|
||||
return torch.npu.get_rng_state()
|
||||
|
||||
return torch.npu.get_rng_state(device_index)
|
||||
|
||||
def manual_seed(self, seed):
|
||||
return torch.npu.manual_seed(seed)
|
||||
|
||||
def manual_seed_all(self, seed):
|
||||
return torch.npu.manual_seed_all(seed)
|
||||
|
||||
def initial_seed(self, seed):
|
||||
return torch.npu.initial_seed(seed)
|
||||
|
||||
def default_generator(self, device_index):
|
||||
return torch.npu.default_generators[device_index]
|
||||
|
||||
# Streams/Events
|
||||
@property
|
||||
def Stream(self):
|
||||
return torch.npu.Stream
|
||||
|
||||
def stream(self, stream):
|
||||
return torch.npu.stream(stream)
|
||||
|
||||
def current_stream(self, device_index=None):
|
||||
return torch.npu.current_stream(device_index)
|
||||
|
||||
def default_stream(self, device_index=None):
|
||||
return torch.npu.default_stream(device_index)
|
||||
|
||||
@property
|
||||
def Event(self):
|
||||
return torch.npu.Event
|
||||
|
||||
# Memory management
|
||||
def empty_cache(self):
|
||||
return torch.npu.empty_cache()
|
||||
|
||||
def memory_allocated(self, device_index=None):
|
||||
return torch.npu.memory_allocated(device_index)
|
||||
|
||||
def max_memory_allocated(self, device_index=None):
|
||||
return torch.npu.max_memory_allocated(device_index)
|
||||
|
||||
def reset_max_memory_allocated(self, device_index=None):
|
||||
return torch.npu.reset_max_memory_allocated(device_index)
|
||||
|
||||
def memory_cached(self, device_index=None):
|
||||
return torch.npu.memory_cached(device_index)
|
||||
|
||||
def max_memory_cached(self, device_index=None):
|
||||
return torch.npu.max_memory_cached(device_index)
|
||||
|
||||
def reset_max_memory_cached(self, device_index=None):
|
||||
return torch.npu.reset_max_memory_cached(device_index)
|
||||
|
||||
def memory_stats(self, device_index=None):
|
||||
if hasattr(torch.npu, 'memory_stats'):
|
||||
return torch.npu.memory_stats(device_index)
|
||||
|
||||
def reset_peak_memory_stats(self, device_index=None):
|
||||
if hasattr(torch.npu, 'reset_peak_memory_stats'):
|
||||
return torch.npu.reset_peak_memory_stats(device_index)
|
||||
|
||||
def memory_reserved(self, device_index=None):
|
||||
if hasattr(torch.npu, 'memory_reserved'):
|
||||
return torch.npu.memory_reserved(device_index)
|
||||
|
||||
def max_memory_reserved(self, device_index=None):
|
||||
if hasattr(torch.npu, 'max_memory_reserved'):
|
||||
return torch.npu.max_memory_reserved(device_index)
|
||||
|
||||
def total_memory(self, device_index=None):
|
||||
return torch.npu.get_device_properties(device_index).total_memory
|
||||
|
||||
# Data types
|
||||
def is_bf16_supported(self):
|
||||
return torch.npu.is_bf16_supported()
|
||||
|
||||
def is_fp16_supported(self):
|
||||
return True
|
||||
|
||||
# Misc
|
||||
def amp(self):
|
||||
if hasattr(torch.npu, 'amp'):
|
||||
return torch.npu.amp
|
||||
return None
|
||||
|
||||
def is_available(self):
|
||||
return torch.npu.is_available()
|
||||
|
||||
def range_push(self, msg):
|
||||
return
|
||||
|
||||
def range_pop(self):
|
||||
return
|
||||
|
||||
def lazy_call(self, callback):
|
||||
return torch.npu._lazy_call(callback)
|
||||
|
||||
def communication_backend_name(self):
|
||||
return self._communication_backend_name
|
||||
|
||||
# Tensor operations
|
||||
|
||||
@property
|
||||
def BFloat16Tensor(self):
|
||||
return torch.npu.BFloat16Tensor
|
||||
|
||||
@property
|
||||
def ByteTensor(self):
|
||||
return torch.npu.ByteTensor
|
||||
|
||||
@property
|
||||
def DoubleTensor(self):
|
||||
return torch.npu.DoubleTensor
|
||||
|
||||
@property
|
||||
def FloatTensor(self):
|
||||
return torch.npu.FloatTensor
|
||||
|
||||
@property
|
||||
def HalfTensor(self):
|
||||
return torch.npu.HalfTensor
|
||||
|
||||
@property
|
||||
def IntTensor(self):
|
||||
return torch.npu.IntTensor
|
||||
|
||||
@property
|
||||
def LongTensor(self):
|
||||
return torch.npu.LongTensor
|
||||
|
||||
def pin_memory(self, tensor):
|
||||
return tensor.pin_memory()
|
||||
|
||||
def on_accelerator(self, tensor):
|
||||
device_str = str(tensor.device)
|
||||
if device_str.startswith('npu:'):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def op_builder_dir(self):
|
||||
try:
|
||||
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
||||
# if successful this also means we're doing a local install and not JIT compile path
|
||||
from op_builder import __deepspeed__ # noqa: F401
|
||||
return "op_builder.npu"
|
||||
except ImportError:
|
||||
return "deepspeed.ops.op_builder.npu"
|
||||
|
||||
# dict that holds class name <--> class type mapping i.e.
|
||||
# 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'>
|
||||
# this dict will be filled at init stage
|
||||
class_dict = None
|
||||
|
||||
def _lazy_init_class_dict(self):
|
||||
if self.class_dict != None:
|
||||
return
|
||||
else:
|
||||
self.class_dict = {}
|
||||
|
||||
# create an instance of op builder and return, name specified by class_name
|
||||
def create_op_builder(self, class_name):
|
||||
self._lazy_init_class_dict()
|
||||
if class_name in self.class_dict:
|
||||
return self.class_dict[class_name]()
|
||||
else:
|
||||
return None
|
||||
|
||||
# return an op builder class, name specified by class_name
|
||||
def get_op_builder(self, class_name):
|
||||
self._lazy_init_class_dict()
|
||||
if class_name in self.class_dict:
|
||||
return self.class_dict[class_name]
|
||||
else:
|
||||
return None
|
||||
|
||||
def build_extension(self):
|
||||
from torch.utils.cpp_extension import BuildExtension
|
||||
return BuildExtension
|
Загрузка…
Ссылка в новой задаче