# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import sys import types import json from typing import Optional, Union import torch from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler from packaging import version as pkg_version # Skip Triton import for AMD due to pytorch-triton-rocm module breaking device API in DeepSpeed if not (hasattr(torch.version, 'hip') and torch.version.hip is not None): try: import triton # noqa: F401 # type: ignore HAS_TRITON = True except ImportError: HAS_TRITON = False else: HAS_TRITON = False from . import ops from . import module_inject from .accelerator import get_accelerator from .constants import TORCH_DISTRIBUTED_DEFAULT_PORT from .runtime.engine import DeepSpeedEngine, DeepSpeedOptimizerCallable, DeepSpeedSchedulerCallable from .runtime.engine import ADAM_OPTIMIZER, LAMB_OPTIMIZER from .runtime.hybrid_engine import DeepSpeedHybridEngine from .runtime.pipe.engine import PipelineEngine from .inference.engine import InferenceEngine from .inference.config import DeepSpeedInferenceConfig from .runtime.lr_schedules import add_tuning_arguments from .runtime.config import DeepSpeedConfig, DeepSpeedConfigError from .runtime.activation_checkpointing import checkpointing from .ops.transformer import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig from .module_inject import replace_transformer_layer, revert_transformer_layer from .utils import log_dist, OnDevice, logger from .comm.comm import init_distributed from .runtime import zero from .runtime.compiler import is_compile_supported from .pipe import PipelineModule from .git_version_info import version, git_hash, git_branch def _parse_version(version_str): '''Parse a version string and extract the major, minor, and patch versions.''' ver = pkg_version.parse(version_str) return ver.major, ver.minor, ver.micro # Export version information __version__ = version __version_major__, __version_minor__, __version_patch__ = _parse_version(__version__) __git_hash__ = git_hash __git_branch__ = git_branch # Set to torch's distributed package or deepspeed.comm based inside DeepSpeedEngine init dist = None def initialize(args=None, model: torch.nn.Module = None, optimizer: Optional[Union[Optimizer, DeepSpeedOptimizerCallable]] = None, model_parameters: Optional[torch.nn.Module] = None, training_data: Optional[torch.utils.data.Dataset] = None, lr_scheduler: Optional[Union[_LRScheduler, DeepSpeedSchedulerCallable]] = None, distributed_port: int = TORCH_DISTRIBUTED_DEFAULT_PORT, mpu=None, dist_init_required: Optional[bool] = None, collate_fn=None, config=None, mesh_param=None, config_params=None): """Initialize the DeepSpeed Engine. Arguments: args: an object containing local_rank and deepspeed_config fields. This is optional if `config` is passed. model: Required: nn.module class before apply any wrappers optimizer: Optional: a user defined Optimizer or Callable that returns an Optimizer object. This overrides any optimizer definition in the DeepSpeed json config. model_parameters: Optional: An iterable of torch.Tensors or dicts. Specifies what Tensors should be optimized. training_data: Optional: Dataset of type torch.utils.data.Dataset lr_scheduler: Optional: Learning Rate Scheduler Object or a Callable that takes an Optimizer and returns a Scheduler object. The scheduler object should define a get_lr(), step(), state_dict(), and load_state_dict() methods distributed_port: Optional: Master node (rank 0)'s free port that needs to be used for communication during distributed training mpu: Optional: A model parallelism unit object that implements get_{model,data}_parallel_{rank,group,world_size}() dist_init_required: Optional: None will auto-initialize torch distributed if needed, otherwise the user can force it to be initialized or not via boolean. collate_fn: Optional: Merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. config: Optional: Instead of requiring args.deepspeed_config you can pass your deepspeed config as an argument instead, as a path or a dictionary. config_params: Optional: Same as `config`, kept for backwards compatibility. Returns: A tuple of ``engine``, ``optimizer``, ``training_dataloader``, ``lr_scheduler`` * ``engine``: DeepSpeed runtime engine which wraps the client model for distributed training. * ``optimizer``: Wrapped optimizer if a user defined ``optimizer`` is supplied, or if optimizer is specified in json config else ``None``. * ``training_dataloader``: DeepSpeed dataloader if ``training_data`` was supplied, otherwise ``None``. * ``lr_scheduler``: Wrapped lr scheduler if user ``lr_scheduler`` is passed, or if ``lr_scheduler`` specified in JSON configuration. Otherwise ``None``. """ log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__, __git_branch__), ranks=[0]) # Disable zero.Init context if it's currently enabled zero.partition_parameters.shutdown_init_context() assert model is not None, "deepspeed.initialize requires a model" global dist from deepspeed import comm as dist dist_backend = get_accelerator().communication_backend_name() dist.init_distributed(dist_backend=dist_backend, distributed_port=distributed_port, dist_init_required=dist_init_required) ##TODO: combine reuse mpu as mesh device and vice versa # Set config using config_params for backwards compat if config is None and config_params is not None: config = config_params mesh_device = None if mesh_param: logger.info(f"mesh_param to Initialize mesh device: {mesh_param}") mesh_device = dist.initialize_mesh_device(mesh_param, ("data_parallel", "sequence_parallel")) #if config file has sequence parallelize and data parallelize, then use them to initialize mesh device elif config is not None: if "sequence_parallel_size" in config and "data_parallel_size" in config: logger.info(f"config to Initialize mesh device: {config}") mesh_device = dist.initialize_mesh_device((config["data_parallel_size"], config["sequence_parallel_size"]), \ ("data_parallel", "sequence_parallel")) # Check for deepscale_config for backwards compat if hasattr(args, "deepscale_config") and args.deepscale_config is not None: logger.warning("************ --deepscale_config is deprecated, please use --deepspeed_config ************") if hasattr(args, "deepspeed_config"): assert (args.deepspeed_config is None), "Not sure how to proceed, we were given both a deepscale_config and deepspeed_config" args.deepspeed_config = args.deepscale_config args.deepscale_config = None # Check that we have only one config passed if hasattr(args, "deepspeed_config") and args.deepspeed_config is not None: assert config is None, "Not sure how to proceed, we were given deepspeed configs in the deepspeed arguments and deepspeed.initialize() function call" config = args.deepspeed_config assert config is not None, "DeepSpeed requires --deepspeed_config to specify configuration file" if not isinstance(model, PipelineModule): config_class = DeepSpeedConfig(config, mpu, mesh_device=mesh_device) if config_class.hybrid_engine.enabled: engine = DeepSpeedHybridEngine(args=args, model=model, optimizer=optimizer, model_parameters=model_parameters, training_data=training_data, lr_scheduler=lr_scheduler, mpu=mpu, dist_init_required=dist_init_required, collate_fn=collate_fn, config=config, config_class=config_class) else: engine = DeepSpeedEngine(args=args, model=model, optimizer=optimizer, model_parameters=model_parameters, training_data=training_data, lr_scheduler=lr_scheduler, mpu=mpu, dist_init_required=dist_init_required, collate_fn=collate_fn, config=config, mesh_device=mesh_device, config_class=config_class) else: assert mpu is None, "mpu must be None with pipeline parallelism" mpu = model.mpu() config_class = DeepSpeedConfig(config, mpu) engine = PipelineEngine(args=args, model=model, optimizer=optimizer, model_parameters=model_parameters, training_data=training_data, lr_scheduler=lr_scheduler, mpu=mpu, dist_init_required=dist_init_required, collate_fn=collate_fn, config=config, config_class=config_class) # Restore zero.Init context if necessary zero.partition_parameters.restore_init_context() return_items = [ engine, engine.optimizer, engine.training_dataloader, engine.lr_scheduler, ] return tuple(return_items) def _add_core_arguments(parser): r"""Helper (internal) function to update an argument parser with an argument group of the core DeepSpeed arguments. The core set of DeepSpeed arguments include the following: 1) --deepspeed: boolean flag to enable DeepSpeed 2) --deepspeed_config : path of a json configuration file to configure DeepSpeed runtime. This is a helper function to the public add_config_arguments() Arguments: parser: argument parser Return: parser: Updated Parser """ group = parser.add_argument_group('DeepSpeed', 'DeepSpeed configurations') group.add_argument('--deepspeed', default=False, action='store_true', help='Enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)') group.add_argument('--deepspeed_config', default=None, type=str, help='DeepSpeed json configuration file.') group.add_argument('--deepscale', default=False, action='store_true', help='Deprecated enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)') group.add_argument('--deepscale_config', default=None, type=str, help='Deprecated DeepSpeed json configuration file.') return parser def add_config_arguments(parser): r"""Update the argument parser to enabling parsing of DeepSpeed command line arguments. The set of DeepSpeed arguments include the following: 1) --deepspeed: boolean flag to enable DeepSpeed 2) --deepspeed_config : path of a json configuration file to configure DeepSpeed runtime. Arguments: parser: argument parser Return: parser: Updated Parser """ parser = _add_core_arguments(parser) return parser def default_inference_config(): """ Return a default DeepSpeed inference configuration dictionary. """ return DeepSpeedInferenceConfig().dict() def init_inference(model, config=None, **kwargs): """Initialize the DeepSpeed InferenceEngine. Description: all four cases are valid and supported in DS init_inference() API. # Case 1: user provides no config and no kwargs. Default config will be used. .. code-block:: python generator.model = deepspeed.init_inference(generator.model) string = generator("DeepSpeed is") print(string) # Case 2: user provides a config and no kwargs. User supplied config will be used. .. code-block:: python generator.model = deepspeed.init_inference(generator.model, config=config) string = generator("DeepSpeed is") print(string) # Case 3: user provides no config and uses keyword arguments (kwargs) only. .. code-block:: python generator.model = deepspeed.init_inference(generator.model, tensor_parallel={"tp_size": world_size}, dtype=torch.half, replace_with_kernel_inject=True) string = generator("DeepSpeed is") print(string) # Case 4: user provides config and keyword arguments (kwargs). Both config and kwargs are merged and kwargs take precedence. .. code-block:: python generator.model = deepspeed.init_inference(generator.model, config={"dtype": torch.half}, replace_with_kernel_inject=True) string = generator("DeepSpeed is") print(string) Arguments: model: Required: original nn.module object without any wrappers config: Optional: instead of arguments, you can pass in a DS inference config dict or path to JSON file Returns: A deepspeed.InferenceEngine wrapped model. """ log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__, __git_branch__), ranks=[0]) # Load config_dict from config first if config is None: config = {} if isinstance(config, str): with open(config, "r") as f: config_dict = json.load(f) elif isinstance(config, dict): config_dict = config else: raise ValueError(f"'config' argument expected string or dictionary, got {type(config)}") # Update with values from kwargs, ensuring no conflicting overlap between config and kwargs overlap_keys = set(config_dict.keys()).intersection(kwargs.keys()) # If there is overlap, error out if values are different for key in overlap_keys: if config_dict[key] != kwargs[key]: raise ValueError(f"Conflicting argument '{key}' in 'config':{config_dict[key]} and kwargs:{kwargs[key]}") config_dict.update(kwargs) ds_inference_config = DeepSpeedInferenceConfig(**config_dict) engine = InferenceEngine(model, config=ds_inference_config) return engine