'''Copyright The Microsoft DeepSpeed Team''' import os import pkgutil import importlib from .abstract_accelerator import DeepSpeedAccelerator # During setup stage torch may not be installed, pass on no torch will # allow op builder related API to be executed. try: import torch.cuda except ImportError: pass class CUDA_Accelerator(DeepSpeedAccelerator): def __init__(self): self._name = 'cuda' self._communication_backend_name = 'nccl' # begin initialize for create_op_builder() # put all valid class name <--> class type mapping into class_dict op_builder_dir = self.op_builder_dir() op_builder_module = importlib.import_module(op_builder_dir) for _, module_name, _ in pkgutil.iter_modules([os.path.dirname(op_builder_module.__file__)]): # avoid self references if module_name != 'all_ops' and module_name != 'builder': module = importlib.import_module("{}.{}".format( op_builder_dir, module_name)) for member_name in module.__dir__(): if member_name.endswith( 'Builder' ) and member_name != "OpBuilder" and member_name != "CUDAOpBuilder" and member_name != "TorchCPUOpBuilder": # avoid abstract classes if not member_name in self.class_dict: self.class_dict[member_name] = getattr(module, member_name) # end initialize for create_op_builder() # Device APIs def device_name(self, device_index=None): if device_index == None: return 'cuda' return 'cuda:{}'.format(device_index) def device(self, device_index=None): return torch.cuda.device(device_index) def set_device(self, device_index): torch.cuda.set_device(device_index) def current_device(self): return torch.cuda.current_device() def current_device_name(self): return 'cuda:{}'.format(torch.cuda.current_device()) def device_count(self): return torch.cuda.device_count() def synchronize(self, device_index=None): return torch.cuda.synchronize(device_index) # RNG APIs def random(self): return torch.random def set_rng_state(self, new_state, device_index=None): if device_index is None: return torch.cuda.set_rng_state(new_state) return torch.cuda.set_rng_state(new_state, device_index) def get_rng_state(self, device_index=None): if device_index is None: return torch.cuda.get_rng_state() return torch.cuda.get_rng_state(device_index) def manual_seed(self, seed): return torch.cuda.manual_seed(seed) def manual_seed_all(self, seed): return torch.cuda.manual_seed_all(seed) def initial_seed(self, seed): return torch.cuda.initial_seed(seed) def default_generator(self, device_index): return torch.cuda.default_generators[device_index] # Streams/Events @property def Stream(self): return torch.cuda.Stream def stream(self, stream): return torch.cuda.stream(stream) def current_stream(self, device_index=None): return torch.cuda.current_stream(device_index) def default_stream(self, device_index=None): return torch.cuda.default_stream(device_index) @property def Event(self): return torch.cuda.Event # Memory management def empty_cache(self): return torch.cuda.empty_cache() def memory_allocated(self, device_index=None): return torch.cuda.memory_allocated(device_index) def max_memory_allocated(self, device_index=None): return torch.cuda.max_memory_allocated(device_index) def reset_max_memory_allocated(self, device_index=None): return torch.cuda.reset_max_memory_allocated(device_index) def memory_cached(self, device_index=None): return torch.cuda.memory_cached(device_index) def max_memory_cached(self, device_index=None): return torch.cuda.max_memory_cached(device_index) def reset_max_memory_cached(self, device_index=None): return torch.cuda.reset_max_memory_cached(device_index) def memory_stats(self, device_index=None): if hasattr(torch.cuda, 'memory_stats'): return torch.cuda.memory_stats(device_index) def reset_peak_memory_stats(self, device_index=None): if hasattr(torch.cuda, 'reset_peak_memory_stats'): return torch.cuda.reset_peak_memory_stats(device_index) def memory_reserved(self, device_index=None): if hasattr(torch.cuda, 'memory_reserved'): return torch.cuda.memory_reserved(device_index) def max_memory_reserved(self, device_index=None): if hasattr(torch.cuda, 'max_memory_reserved'): return torch.cuda.max_memory_reserved(device_index) def total_memory(self, device_index=None): return torch.cuda.get_device_properties(device_index).total_memory # Data types def is_bf16_supported(self): return torch.cuda.is_bf16_supported() def is_fp16_supported(self): major, _ = torch.cuda.get_device_capability() if major >= 7: return True else: return False # Misc def amp(self): if hasattr(torch.cuda, 'amp'): return torch.cuda.amp return None def is_available(self): return torch.cuda.is_available() def range_push(self, msg): if hasattr(torch.cuda.nvtx, 'range_push'): return torch.cuda.nvtx.range_push(msg) def range_pop(self): if hasattr(torch.cuda.nvtx, 'range_pop'): return torch.cuda.nvtx.range_pop() def lazy_call(self, callback): return torch.cuda._lazy_call(callback) def communication_backend_name(self): return self._communication_backend_name # Tensor operations @property def BFloat16Tensor(self): return torch.cuda.BFloat16Tensor @property def ByteTensor(self): return torch.cuda.ByteTensor @property def DoubleTensor(self): return torch.cuda.DoubleTensor @property def FloatTensor(self): return torch.cuda.FloatTensor @property def HalfTensor(self): return torch.cuda.HalfTensor @property def IntTensor(self): return torch.cuda.IntTensor @property def LongTensor(self): return torch.cuda.LongTensor def pin_memory(self, tensor): return tensor.pin_memory() def on_accelerator(self, tensor): device_str = str(tensor.device) if device_str.startswith('cuda:'): return True else: return False def op_builder_dir(self): try: # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed # if successful this also means we're doing a local install and not JIT compile path from op_builder import __deepspeed__ # noqa: F401 return "op_builder" except ImportError: return "deepspeed.ops.op_builder" # dict that holds class name <--> class type mapping i.e. # 'AsyncIOBuilder': # this dict will be filled at init stage class_dict = {} # create an instance of op builder and return, name specified by class_name def create_op_builder(self, class_name): if class_name in self.class_dict: return self.class_dict[class_name]() else: return None # return an op builder class, name specified by class_name def get_op_builder(self, class_name): if class_name in self.class_dict: return self.class_dict[class_name] else: return None def build_extension(self): from torch.utils.cpp_extension import BuildExtension return BuildExtension