DeepSpeed/accelerator/cuda_accelerator.py

383 строки
12 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import functools
import os
import pkgutil
import importlib
import sys
from .abstract_accelerator import DeepSpeedAccelerator
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
try:
import torch.cuda
except ImportError:
pass
# Delay import pynvml to avoid import error when CUDA is not available
pynvml = None
class CUDA_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = 'cuda'
self._communication_backend_name = 'nccl' if sys.platform != 'win32' else 'gloo'
self._compile_backend = "inductor"
if pynvml is None:
self._init_pynvml()
def _init_pynvml(self):
global pynvml
try:
import pynvml
except ImportError:
return
try:
pynvml.nvmlInit()
except pynvml.NVMLError:
pynvml = None
return
def is_synchronized_device(self):
return False
def use_host_timers(self):
return self.is_synchronized_device()
def resolves_data_dependency(self):
return self.is_synchronized_device()
def handles_memory_backpressure(self):
return self.is_synchronized_device()
# Device APIs
def device_name(self, device_index=None):
if device_index is None:
return 'cuda'
return 'cuda:{}'.format(device_index)
def device(self, device_index=None):
return torch.cuda.device(device_index)
def set_device(self, device_index):
torch.cuda.set_device(device_index)
def current_device(self):
return torch.cuda.current_device()
def current_device_name(self):
return 'cuda:{}'.format(torch.cuda.current_device())
def device_count(self):
return torch.cuda.device_count()
def synchronize(self, device_index=None):
return torch.cuda.synchronize(device_index)
# RNG APIs
def random(self):
return torch.random
def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.cuda.set_rng_state(new_state)
return torch.cuda.set_rng_state(new_state, device_index)
def get_rng_state(self, device_index=None):
if device_index is None:
return torch.cuda.get_rng_state()
return torch.cuda.get_rng_state(device_index)
def manual_seed(self, seed):
return torch.cuda.manual_seed(seed)
def manual_seed_all(self, seed):
return torch.cuda.manual_seed_all(seed)
def initial_seed(self):
return torch.cuda.initial_seed()
def default_generator(self, device_index):
return torch.cuda.default_generators[device_index]
# Streams/Events
@property
def Stream(self):
return torch.cuda.Stream
def stream(self, stream):
return torch.cuda.stream(stream)
def current_stream(self, device_index=None):
return torch.cuda.current_stream(device_index)
def default_stream(self, device_index=None):
return torch.cuda.default_stream(device_index)
@property
def Event(self):
return torch.cuda.Event
# Memory management
def empty_cache(self):
return torch.cuda.empty_cache()
def memory_allocated(self, device_index=None):
return torch.cuda.memory_allocated(device_index)
def max_memory_allocated(self, device_index=None):
return torch.cuda.max_memory_allocated(device_index)
def reset_max_memory_allocated(self, device_index=None):
return torch.cuda.reset_max_memory_allocated(device_index)
def memory_cached(self, device_index=None):
return torch.cuda.memory_cached(device_index)
def max_memory_cached(self, device_index=None):
return torch.cuda.max_memory_cached(device_index)
def reset_max_memory_cached(self, device_index=None):
return torch.cuda.reset_max_memory_cached(device_index)
def memory_stats(self, device_index=None):
if hasattr(torch.cuda, 'memory_stats'):
return torch.cuda.memory_stats(device_index)
def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
return torch.cuda.reset_peak_memory_stats(device_index)
def memory_reserved(self, device_index=None):
if hasattr(torch.cuda, 'memory_reserved'):
return torch.cuda.memory_reserved(device_index)
def max_memory_reserved(self, device_index=None):
if hasattr(torch.cuda, 'max_memory_reserved'):
return torch.cuda.max_memory_reserved(device_index)
def total_memory(self, device_index=None):
return torch.cuda.get_device_properties(device_index).total_memory
def _get_nvml_gpu_id(self, torch_gpu_id):
"""
credit: https://discuss.pytorch.org/t/making-pynvml-match-torch-device-ids-cuda-visible-devices/103020
Remap torch device id to nvml device id, respecting CUDA_VISIBLE_DEVICES.
If the latter isn't set return the same id
"""
# if CUDA_VISIBLE_DEVICES is used automagically remap the id since pynvml ignores this env var
if "CUDA_VISIBLE_DEVICES" in os.environ:
ids = list(map(int, os.environ.get("CUDA_VISIBLE_DEVICES", "").split(",")))
return ids[torch_gpu_id] # remap
else:
return torch_gpu_id
def available_memory(self, device_index=None):
if pynvml:
if device_index is None:
device_index = self.current_device()
handle = pynvml.nvmlDeviceGetHandleByIndex(self._get_nvml_gpu_id(device_index))
info = pynvml.nvmlDeviceGetMemoryInfo(handle)
return info.free
else:
return self.total_memory(device_index) - self.memory_allocated(device_index)
# Data types
def is_bf16_supported(self):
if not torch.cuda.is_available():
return True
return torch.cuda.is_bf16_supported()
def is_fp16_supported(self):
if not torch.cuda.is_available():
return True
# See https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#hardware-precision-matrix
# FP16 on compute capability 6.x is deprecated
allow_deprecated_fp16 = os.environ.get('DS_ALLOW_DEPRECATED_FP16', '0') == '1'
major, _ = torch.cuda.get_device_capability()
if major >= 7:
return True
elif major == 6 and allow_deprecated_fp16:
return True
else:
return False
def supported_dtypes(self):
supported_dtypes = [torch.float]
if self.is_fp16_supported():
supported_dtypes.append(torch.half)
if self.is_bf16_supported():
supported_dtypes.append(torch.bfloat16)
return supported_dtypes
# Misc
def amp(self):
if hasattr(torch.cuda, 'amp'):
return torch.cuda.amp
return None
def is_available(self):
return torch.cuda.is_available()
def range_push(self, msg):
if hasattr(torch.cuda.nvtx, 'range_push'):
return torch.cuda.nvtx.range_push(msg)
def range_pop(self):
if hasattr(torch.cuda.nvtx, 'range_pop'):
return torch.cuda.nvtx.range_pop()
def lazy_call(self, callback):
return torch.cuda._lazy_call(callback)
def communication_backend_name(self):
return self._communication_backend_name
def is_triton_supported(self):
major, _ = torch.cuda.get_device_capability()
if major >= 8:
return True
else:
return False
# Graph operations
def create_graph(self):
return torch.cuda.CUDAGraph()
def capture_to_graph(self, graph, pool=None, stream=None):
return torch.cuda.graph(graph, pool, stream)
def replay_graph(self, graph):
graph.replay()
return
# Tensor operations
@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='cuda')
@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device='cuda')
@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device='cuda')
@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device='cuda')
@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device='cuda')
@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device='cuda')
@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device='cuda')
def pin_memory(self, tensor, align_bytes=1):
return tensor.pin_memory()
def is_pinned(self, tensor):
return tensor.is_pinned()
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('cuda:'):
return True
else:
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder"
except ImportError:
return "deepspeed.ops.op_builder"
# dict that holds class name <--> class type mapping i.e.
# 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'>
# this dict will be filled at init stage
class_dict = None
def _lazy_init_class_dict(self):
if self.class_dict is not None:
return
else:
self.class_dict = {}
# begin initialize for create_op_builder()
# put all valid class name <--> class type mapping into class_dict
op_builder_dir = self.op_builder_dir()
op_builder_module = importlib.import_module(op_builder_dir)
op_builder_absolute_path = os.path.dirname(op_builder_module.__file__)
for _, module_name, _ in pkgutil.iter_modules([op_builder_absolute_path]):
# avoid self references,
# skip sub_directories which contains ops for other backend(cpu, npu, etc.).
if module_name != 'all_ops' and module_name != 'builder' and not os.path.isdir(
os.path.join(op_builder_absolute_path, module_name)):
module = importlib.import_module("{}.{}".format(op_builder_dir, module_name))
for member_name in module.__dir__():
if member_name.endswith(
'Builder'
) and member_name != "OpBuilder" and member_name != "CUDAOpBuilder" and member_name != "TorchCPUOpBuilder": # avoid abstract classes
if not member_name in self.class_dict:
self.class_dict[member_name] = getattr(module, member_name)
# end initialize for create_op_builder()
# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]()
else:
return None
# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return None
def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension
def export_envs(self):
return ['NCCL']
def visible_devices_envs(self):
return ['CUDA_VISIBLE_DEVICES']
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))
def get_compile_backend(self):
return self._compile_backend
def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")