зеркало из https://github.com/microsoft/DeepSpeed.git
319 строки
10 KiB
Python
319 строки
10 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# DeepSpeed Team
|
|
|
|
import torch
|
|
from deepspeed.accelerator.abstract_accelerator import DeepSpeedAccelerator
|
|
import intel_extension_for_pytorch as ipex # noqa: F401 # type: ignore
|
|
import oneccl_bindings_for_pytorch # noqa: F401 # type: ignore
|
|
import functools
|
|
|
|
import importlib
|
|
import inspect
|
|
|
|
|
|
class XPU_Accelerator(DeepSpeedAccelerator):
|
|
|
|
def __init__(self):
|
|
self._name = 'xpu'
|
|
self._communication_backend_name = 'ccl'
|
|
self._compile_backend = "inductor"
|
|
self.aligned_tensors = []
|
|
self.class_dict = None
|
|
|
|
def is_synchronized_device(self):
|
|
return False
|
|
|
|
def use_host_timers(self):
|
|
# WA XPU event will be consolidated in 2.6
|
|
if ipex.__version__ < '2.6':
|
|
return True
|
|
else:
|
|
return self.is_synchronized_device()
|
|
|
|
def resolves_data_dependency(self):
|
|
return self.is_synchronized_device()
|
|
|
|
def handles_memory_backpressure(self):
|
|
return self.is_synchronized_device()
|
|
|
|
# Device APIs
|
|
def device_name(self, device_index=None):
|
|
if device_index == None:
|
|
return 'xpu'
|
|
return 'xpu:{}'.format(device_index)
|
|
|
|
def device(self, device_index=None):
|
|
return torch.xpu.device(device_index)
|
|
|
|
def set_device(self, device_index):
|
|
torch.xpu.set_device(device_index)
|
|
|
|
def current_device(self):
|
|
return torch.xpu.current_device()
|
|
|
|
def current_device_name(self):
|
|
return 'xpu:{}'.format(torch.xpu.current_device())
|
|
|
|
def device_count(self):
|
|
return torch.xpu.device_count()
|
|
|
|
def synchronize(self, device_index=None):
|
|
return torch.xpu.synchronize(device_index)
|
|
|
|
# RNG APIs
|
|
def random(self):
|
|
return torch.xpu.random
|
|
|
|
def set_rng_state(self, new_state, device_index=None):
|
|
if device_index == None:
|
|
return torch.xpu.set_rng_state(new_state)
|
|
return torch.xpu.set_rng_state(new_state, device_index)
|
|
|
|
def get_rng_state(self, device_index=None):
|
|
if device_index == None:
|
|
return torch.xpu.get_rng_state()
|
|
return torch.xpu.get_rng_state(device_index)
|
|
|
|
def manual_seed(self, seed):
|
|
return torch.xpu.manual_seed(seed)
|
|
|
|
def manual_seed_all(self, seed):
|
|
return torch.xpu.manual_seed_all(seed)
|
|
|
|
def initial_seed(self):
|
|
return torch.xpu.initial_seed()
|
|
|
|
def default_generator(self, device_index):
|
|
return torch.xpu.default_generators[device_index]
|
|
|
|
# Streams/Events
|
|
@property
|
|
def Stream(self):
|
|
return torch.xpu.Stream
|
|
|
|
def stream(self, stream):
|
|
return torch.xpu.stream(stream)
|
|
|
|
def current_stream(self, device_index=None):
|
|
return torch.xpu.current_stream(device_index)
|
|
|
|
def default_stream(self, device_index=None):
|
|
# torch.xpu does not support the sync behavior of default stream as cuda
|
|
# use current_stream as workaround
|
|
# see https://pytorch.org/docs/stable/notes/cuda.html#cuda-streams
|
|
return torch.xpu.current_stream(device_index)
|
|
|
|
@property
|
|
def Event(self):
|
|
return torch.xpu.Event
|
|
|
|
# Memory management
|
|
def empty_cache(self):
|
|
return torch.xpu.empty_cache()
|
|
|
|
def memory_allocated(self, device_index=None):
|
|
return torch.xpu.memory_allocated(device_index)
|
|
|
|
def max_memory_allocated(self, device_index=None):
|
|
return torch.xpu.max_memory_allocated(device_index)
|
|
|
|
def reset_max_memory_allocated(self, device_index=None):
|
|
return torch.xpu.reset_max_memory_allocated(device_index)
|
|
|
|
def memory_cached(self, device_index=None):
|
|
return torch.xpu.memory_reserved(device_index)
|
|
|
|
def max_memory_cached(self, device_index=None):
|
|
return torch.xpu.max_memory_reserved(device_index)
|
|
|
|
def reset_max_memory_cached(self, device_index=None):
|
|
return torch.xpu.reset_max_memory_reserved(device_index)
|
|
|
|
def memory_stats(self, device_index=None):
|
|
return torch.xpu.memory_stats(device_index)
|
|
|
|
def reset_peak_memory_stats(self, device_index=None):
|
|
return torch.xpu.reset_peak_memory_stats(device_index)
|
|
|
|
def memory_reserved(self, device_index=None):
|
|
return torch.xpu.memory_reserved(device_index)
|
|
|
|
def max_memory_reserved(self, device_index=None):
|
|
return torch.xpu.max_memory_reserved(device_index)
|
|
|
|
def total_memory(self, device_index=None):
|
|
return torch.xpu.get_device_properties(device_index).total_memory
|
|
|
|
def available_memory(self, device_index=None):
|
|
return self.total_memory(device_index) - self.memory_allocated(device_index)
|
|
|
|
# Misc
|
|
def amp(self):
|
|
return torch.xpu.amp
|
|
|
|
def is_available(self):
|
|
return torch.xpu.is_available()
|
|
|
|
def range_push(self, msg):
|
|
# TODO itt is currently not supported yet
|
|
# return torch.profiler.itt.range_push(msg)
|
|
return
|
|
|
|
def range_pop(self):
|
|
# TODO itt is currently not supported yet
|
|
# return torch.profiler.itt.range_pop()
|
|
return
|
|
|
|
def lazy_call(self, callback):
|
|
if hasattr(torch.xpu, "_lazy_call"):
|
|
return torch.xpu._lazy_call(callback)
|
|
else:
|
|
return torch.xpu.lazy_init._lazy_call(callback)
|
|
|
|
def communication_backend_name(self):
|
|
return self._communication_backend_name
|
|
|
|
def is_triton_supported(self):
|
|
return False
|
|
|
|
# Graph operations
|
|
def create_graph(self):
|
|
return None
|
|
|
|
def capture_to_graph(self, graph, pool=None, stream=None):
|
|
from deepspeed.runtime.utils import noop_context
|
|
return noop_context()
|
|
|
|
def replay_graph(self, graph):
|
|
return
|
|
|
|
# Data types
|
|
def is_bf16_supported(self):
|
|
return True
|
|
|
|
def is_fp16_supported(self):
|
|
return True
|
|
|
|
def supported_dtypes(self):
|
|
return [torch.float, torch.half, torch.bfloat16]
|
|
|
|
# Tensor operations
|
|
|
|
@property
|
|
def BFloat16Tensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.bfloat16, device=self._name)
|
|
|
|
@property
|
|
def ByteTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.uint8, device=self._name)
|
|
|
|
@property
|
|
def DoubleTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.double, device=self._name)
|
|
|
|
@property
|
|
def FloatTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.float, device=self._name)
|
|
|
|
@property
|
|
def HalfTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.half, device=self._name)
|
|
|
|
@property
|
|
def IntTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.int, device=self._name)
|
|
|
|
@property
|
|
def LongTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.long, device=self._name)
|
|
|
|
def pin_memory(self, tensor, align_bytes=1):
|
|
if align_bytes == 1:
|
|
return tensor.pin_memory(device=self.current_device_name())
|
|
elif align_bytes == 0:
|
|
from deepspeed.ops.op_builder.xpu import AsyncIOBuilder
|
|
self.aio_handle = AsyncIOBuilder().load().aio_handle(128 * 1024, 8, False, False, False)
|
|
aligned_t = self.aio_handle.new_cpu_locked_tensor(tensor.numel(), tensor)
|
|
aligned_t = aligned_t[:tensor.numel()].copy_(tensor)
|
|
self.aligned_tensors.append([aligned_t.data_ptr(), aligned_t[-1].data_ptr()])
|
|
return aligned_t
|
|
|
|
def is_pinned(self, tensor):
|
|
if tensor.is_pinned(device=self.current_device_name()):
|
|
return True
|
|
else:
|
|
for begin, end in self.aligned_tensors:
|
|
if begin <= tensor.data_ptr() and tensor.data_ptr() <= end:
|
|
return True
|
|
return False
|
|
|
|
def op_builder_dir(self):
|
|
try:
|
|
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
|
# if successful this also means we're doing a local install and not JIT compile path
|
|
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
|
return "op_builder.xpu"
|
|
except ImportError:
|
|
return "deepspeed.ops.op_builder.xpu"
|
|
|
|
def on_accelerator(self, tensor):
|
|
device_str = str(tensor.device)
|
|
if device_str.startswith('xpu:'):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def _lazy_init_class_dict(self):
|
|
if self.class_dict:
|
|
return
|
|
|
|
op_builder_module = importlib.import_module(self.op_builder_dir())
|
|
|
|
# get op builder class from op_builder/xpu/__init__.py
|
|
self.class_dict = {}
|
|
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
|
|
self.class_dict[class_name] = class_obj
|
|
|
|
# create an instance of op builder and return, name specified by class_name
|
|
def create_op_builder(self, class_name):
|
|
builder_class = self.get_op_builder(class_name)
|
|
return builder_class()
|
|
|
|
# return an op builder class, name specified by class_name
|
|
def get_op_builder(self, class_name):
|
|
self._lazy_init_class_dict()
|
|
if class_name in self.class_dict:
|
|
return self.class_dict[class_name]
|
|
else:
|
|
return self.class_dict['NotImplementedBuilder']
|
|
|
|
def build_extension(self):
|
|
try:
|
|
from intel_extension_for_pytorch.xpu.cpp_extension import DpcppBuildExtension
|
|
except ImportError:
|
|
from intel_extension_for_pytorch.xpu.utils import DpcppBuildExtension
|
|
return DpcppBuildExtension
|
|
|
|
def export_envs(self):
|
|
return []
|
|
|
|
def visible_devices_envs(self):
|
|
return ['ZE_AFFINITY_MASK']
|
|
|
|
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
|
|
for env in self.visible_devices_envs():
|
|
current_env[env] = ",".join(map(str, local_accelerator_ids))
|
|
|
|
def get_compile_backend(self):
|
|
return self._compile_backend
|
|
|
|
def set_compile_backend(self, backend):
|
|
supported_backends = torch._dynamo.list_backends(exclude_tags=())
|
|
if backend in supported_backends:
|
|
self._compile_backend = backend
|
|
else:
|
|
raise ValueError(
|
|
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")
|