DeepSpeed/accelerator/xpu_accelerator.py

319 строки
10 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from deepspeed.accelerator.abstract_accelerator import DeepSpeedAccelerator
import intel_extension_for_pytorch as ipex # noqa: F401 # type: ignore
import oneccl_bindings_for_pytorch # noqa: F401 # type: ignore
import functools
import importlib
import inspect
class XPU_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = 'xpu'
self._communication_backend_name = 'ccl'
self._compile_backend = "inductor"
self.aligned_tensors = []
self.class_dict = None
def is_synchronized_device(self):
return False
def use_host_timers(self):
# WA XPU event will be consolidated in 2.6
if ipex.__version__ < '2.6':
return True
else:
return self.is_synchronized_device()
def resolves_data_dependency(self):
return self.is_synchronized_device()
def handles_memory_backpressure(self):
return self.is_synchronized_device()
# Device APIs
def device_name(self, device_index=None):
if device_index == None:
return 'xpu'
return 'xpu:{}'.format(device_index)
def device(self, device_index=None):
return torch.xpu.device(device_index)
def set_device(self, device_index):
torch.xpu.set_device(device_index)
def current_device(self):
return torch.xpu.current_device()
def current_device_name(self):
return 'xpu:{}'.format(torch.xpu.current_device())
def device_count(self):
return torch.xpu.device_count()
def synchronize(self, device_index=None):
return torch.xpu.synchronize(device_index)
# RNG APIs
def random(self):
return torch.xpu.random
def set_rng_state(self, new_state, device_index=None):
if device_index == None:
return torch.xpu.set_rng_state(new_state)
return torch.xpu.set_rng_state(new_state, device_index)
def get_rng_state(self, device_index=None):
if device_index == None:
return torch.xpu.get_rng_state()
return torch.xpu.get_rng_state(device_index)
def manual_seed(self, seed):
return torch.xpu.manual_seed(seed)
def manual_seed_all(self, seed):
return torch.xpu.manual_seed_all(seed)
def initial_seed(self):
return torch.xpu.initial_seed()
def default_generator(self, device_index):
return torch.xpu.default_generators[device_index]
# Streams/Events
@property
def Stream(self):
return torch.xpu.Stream
def stream(self, stream):
return torch.xpu.stream(stream)
def current_stream(self, device_index=None):
return torch.xpu.current_stream(device_index)
def default_stream(self, device_index=None):
# torch.xpu does not support the sync behavior of default stream as cuda
# use current_stream as workaround
# see https://pytorch.org/docs/stable/notes/cuda.html#cuda-streams
return torch.xpu.current_stream(device_index)
@property
def Event(self):
return torch.xpu.Event
# Memory management
def empty_cache(self):
return torch.xpu.empty_cache()
def memory_allocated(self, device_index=None):
return torch.xpu.memory_allocated(device_index)
def max_memory_allocated(self, device_index=None):
return torch.xpu.max_memory_allocated(device_index)
def reset_max_memory_allocated(self, device_index=None):
return torch.xpu.reset_max_memory_allocated(device_index)
def memory_cached(self, device_index=None):
return torch.xpu.memory_reserved(device_index)
def max_memory_cached(self, device_index=None):
return torch.xpu.max_memory_reserved(device_index)
def reset_max_memory_cached(self, device_index=None):
return torch.xpu.reset_max_memory_reserved(device_index)
def memory_stats(self, device_index=None):
return torch.xpu.memory_stats(device_index)
def reset_peak_memory_stats(self, device_index=None):
return torch.xpu.reset_peak_memory_stats(device_index)
def memory_reserved(self, device_index=None):
return torch.xpu.memory_reserved(device_index)
def max_memory_reserved(self, device_index=None):
return torch.xpu.max_memory_reserved(device_index)
def total_memory(self, device_index=None):
return torch.xpu.get_device_properties(device_index).total_memory
def available_memory(self, device_index=None):
return self.total_memory(device_index) - self.memory_allocated(device_index)
# Misc
def amp(self):
return torch.xpu.amp
def is_available(self):
return torch.xpu.is_available()
def range_push(self, msg):
# TODO itt is currently not supported yet
# return torch.profiler.itt.range_push(msg)
return
def range_pop(self):
# TODO itt is currently not supported yet
# return torch.profiler.itt.range_pop()
return
def lazy_call(self, callback):
if hasattr(torch.xpu, "_lazy_call"):
return torch.xpu._lazy_call(callback)
else:
return torch.xpu.lazy_init._lazy_call(callback)
def communication_backend_name(self):
return self._communication_backend_name
def is_triton_supported(self):
return False
# Graph operations
def create_graph(self):
return None
def capture_to_graph(self, graph, pool=None, stream=None):
from deepspeed.runtime.utils import noop_context
return noop_context()
def replay_graph(self, graph):
return
# Data types
def is_bf16_supported(self):
return True
def is_fp16_supported(self):
return True
def supported_dtypes(self):
return [torch.float, torch.half, torch.bfloat16]
# Tensor operations
@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device=self._name)
@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device=self._name)
@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device=self._name)
@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device=self._name)
@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device=self._name)
@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device=self._name)
@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device=self._name)
def pin_memory(self, tensor, align_bytes=1):
if align_bytes == 1:
return tensor.pin_memory(device=self.current_device_name())
elif align_bytes == 0:
from deepspeed.ops.op_builder.xpu import AsyncIOBuilder
self.aio_handle = AsyncIOBuilder().load().aio_handle(128 * 1024, 8, False, False, False)
aligned_t = self.aio_handle.new_cpu_locked_tensor(tensor.numel(), tensor)
aligned_t = aligned_t[:tensor.numel()].copy_(tensor)
self.aligned_tensors.append([aligned_t.data_ptr(), aligned_t[-1].data_ptr()])
return aligned_t
def is_pinned(self, tensor):
if tensor.is_pinned(device=self.current_device_name()):
return True
else:
for begin, end in self.aligned_tensors:
if begin <= tensor.data_ptr() and tensor.data_ptr() <= end:
return True
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder.xpu"
except ImportError:
return "deepspeed.ops.op_builder.xpu"
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('xpu:'):
return True
else:
return False
def _lazy_init_class_dict(self):
if self.class_dict:
return
op_builder_module = importlib.import_module(self.op_builder_dir())
# get op builder class from op_builder/xpu/__init__.py
self.class_dict = {}
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
self.class_dict[class_name] = class_obj
# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
builder_class = self.get_op_builder(class_name)
return builder_class()
# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return self.class_dict['NotImplementedBuilder']
def build_extension(self):
try:
from intel_extension_for_pytorch.xpu.cpp_extension import DpcppBuildExtension
except ImportError:
from intel_extension_for_pytorch.xpu.utils import DpcppBuildExtension
return DpcppBuildExtension
def export_envs(self):
return []
def visible_devices_envs(self):
return ['ZE_AFFINITY_MASK']
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))
def get_compile_backend(self):
return self._compile_backend
def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")