DeepSpeed/accelerator/mlu_accelerator.py

301 строка
9.1 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import importlib
import inspect
import functools
from .abstract_accelerator import DeepSpeedAccelerator
import torch
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
class MLU_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = 'mlu'
self._communication_backend_name = 'cncl'
self._compile_backend = "inductor"
self.class_dict = None
def is_synchronized_device(self):
return False
def use_host_timers(self):
return self.is_synchronized_device()
def resolves_data_dependency(self):
return self.is_synchronized_device()
def handles_memory_backpressure(self):
return self.is_synchronized_device()
# Device APIs
def device_name(self, device_index=None):
if device_index == None:
return 'mlu'
return 'mlu:{}'.format(device_index)
def device(self, device_index=None):
return torch.mlu.device(device_index)
def set_device(self, device_index):
torch.mlu.set_device(device_index)
def current_device(self):
return torch.mlu.current_device()
def current_device_name(self):
return 'mlu:{}'.format(torch.mlu.current_device())
def device_count(self):
return torch.mlu.device_count()
def synchronize(self, device_index=None):
return torch.mlu.synchronize(device_index)
# RNG APIs
def random(self):
return torch.random
def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.mlu.set_rng_state(new_state)
return torch.mlu.set_rng_state(new_state, device_index)
def get_rng_state(self, device_index=None):
if device_index is None:
return torch.mlu.get_rng_state()
return torch.mlu.get_rng_state(device_index)
def manual_seed(self, seed):
return torch.mlu.manual_seed(seed)
def manual_seed_all(self, seed):
return torch.mlu.manual_seed_all(seed)
def initial_seed(self, seed):
return torch.mlu.initial_seed(seed)
def default_generator(self, device_index):
return torch.mlu.default_generators[device_index]
# Streams/Events
@property
def Stream(self):
return torch.mlu.Stream
def stream(self, stream):
return torch.mlu.stream(stream)
def current_stream(self, device_index=None):
return torch.mlu.current_stream(device_index)
def default_stream(self, device_index=None):
return torch.mlu.default_stream(device_index)
@property
def Event(self):
return torch.mlu.Event
# Memory management
def empty_cache(self):
return torch.mlu.empty_cache()
def memory_allocated(self, device_index=None):
return torch.mlu.memory_allocated(device_index)
def max_memory_allocated(self, device_index=None):
return torch.mlu.max_memory_allocated(device_index)
def reset_max_memory_allocated(self, device_index=None):
return torch.mlu.reset_max_memory_allocated(device_index)
def memory_cached(self, device_index=None):
return torch.mlu.memory_cached(device_index)
def max_memory_cached(self, device_index=None):
return torch.mlu.max_memory_cached(device_index)
def reset_max_memory_cached(self, device_index=None):
return torch.mlu.reset_max_memory_cached(device_index)
def memory_stats(self, device_index=None):
if hasattr(torch.mlu, 'memory_stats'):
return torch.mlu.memory_stats(device_index)
def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.mlu, 'reset_peak_memory_stats'):
return torch.mlu.reset_peak_memory_stats(device_index)
def memory_reserved(self, device_index=None):
if hasattr(torch.mlu, 'memory_reserved'):
return torch.mlu.memory_reserved(device_index)
def max_memory_reserved(self, device_index=None):
if hasattr(torch.mlu, 'max_memory_reserved'):
return torch.mlu.max_memory_reserved(device_index)
def total_memory(self, device_index=None):
return torch.mlu.get_device_properties(device_index).total_memory
def available_memory(self, device_index=None):
return self.total_memory(device_index) - self.memory_allocated(device_index)
# Data types
def is_bf16_supported(self):
return torch.mlu.is_bf16_supported()
def is_fp16_supported(self):
return True
def supported_dtypes(self):
supported_dtypes = [torch.float]
if self.is_fp16_supported():
supported_dtypes.append(torch.half)
if self.is_bf16_supported():
supported_dtypes.append(torch.bfloat16)
return supported_dtypes
# Misc
def amp(self):
if hasattr(torch.mlu, 'amp'):
return torch.mlu.amp
return None
def is_available(self):
return torch.mlu.is_available()
def range_push(self, msg):
if hasattr(torch.mlu.cnpx, 'range_push'):
return torch.mlu.cnpx.range_push(msg)
def range_pop(self):
if hasattr(torch.mlu.cnpx, 'range_pop'):
return torch.mlu.cnpx.range_pop()
def lazy_call(self, callback):
return torch.mlu._lazy_call(callback)
def communication_backend_name(self):
return self._communication_backend_name
def is_triton_supported(self):
return True
# Graph operations
def create_graph(self):
torch.mlu.MLUGraph()
def capture_to_graph(self, graph, pool=None, stream=None):
return torch.mlu.graph(graph, pool, stream)
def replay_graph(self, graph):
graph.replay()
return
# Tensor operations
@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='mlu')
@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device='mlu')
@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device='mlu')
@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device='mlu')
@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device='mlu')
@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device='mlu')
@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device='mlu')
def pin_memory(self, tensor):
return tensor.pin_memory()
def is_pinned(self, tensor):
return tensor.is_pinned()
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('mlu:'):
return True
else:
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder.mlu"
except ImportError:
return "deepspeed.ops.op_builder.mlu"
def _lazy_init_class_dict(self):
if self.class_dict:
return
op_builder_module = importlib.import_module(self.op_builder_dir())
# get op builder class from op_builder/mlu/__init__.py
self.class_dict = {}
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
self.class_dict[class_name] = class_obj
# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
builder_class = self.get_op_builder(class_name)
return builder_class()
# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return self.class_dict['NotImplementedBuilder']
def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension
def export_envs(self):
return ['NEUWARE_HOME', 'CNCL', 'LD_LIBRARY', 'PATH']
def visible_devices_envs(self):
return ['MLU_VISIBLE_DEVICES']
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))
def get_compile_backend(self):
return self._compile_backend
def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends }")