зеркало из https://github.com/microsoft/DeepSpeed.git
301 строка
9.1 KiB
Python
301 строка
9.1 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# DeepSpeed Team
|
|
import importlib
|
|
import inspect
|
|
import functools
|
|
|
|
from .abstract_accelerator import DeepSpeedAccelerator
|
|
import torch
|
|
# During setup stage torch may not be installed, pass on no torch will
|
|
# allow op builder related API to be executed.
|
|
|
|
|
|
class MLU_Accelerator(DeepSpeedAccelerator):
|
|
|
|
def __init__(self):
|
|
self._name = 'mlu'
|
|
self._communication_backend_name = 'cncl'
|
|
self._compile_backend = "inductor"
|
|
self.class_dict = None
|
|
|
|
def is_synchronized_device(self):
|
|
return False
|
|
|
|
def use_host_timers(self):
|
|
return self.is_synchronized_device()
|
|
|
|
def resolves_data_dependency(self):
|
|
return self.is_synchronized_device()
|
|
|
|
def handles_memory_backpressure(self):
|
|
return self.is_synchronized_device()
|
|
|
|
# Device APIs
|
|
def device_name(self, device_index=None):
|
|
if device_index == None:
|
|
return 'mlu'
|
|
return 'mlu:{}'.format(device_index)
|
|
|
|
def device(self, device_index=None):
|
|
return torch.mlu.device(device_index)
|
|
|
|
def set_device(self, device_index):
|
|
torch.mlu.set_device(device_index)
|
|
|
|
def current_device(self):
|
|
return torch.mlu.current_device()
|
|
|
|
def current_device_name(self):
|
|
return 'mlu:{}'.format(torch.mlu.current_device())
|
|
|
|
def device_count(self):
|
|
return torch.mlu.device_count()
|
|
|
|
def synchronize(self, device_index=None):
|
|
return torch.mlu.synchronize(device_index)
|
|
|
|
# RNG APIs
|
|
def random(self):
|
|
return torch.random
|
|
|
|
def set_rng_state(self, new_state, device_index=None):
|
|
if device_index is None:
|
|
return torch.mlu.set_rng_state(new_state)
|
|
|
|
return torch.mlu.set_rng_state(new_state, device_index)
|
|
|
|
def get_rng_state(self, device_index=None):
|
|
if device_index is None:
|
|
return torch.mlu.get_rng_state()
|
|
|
|
return torch.mlu.get_rng_state(device_index)
|
|
|
|
def manual_seed(self, seed):
|
|
return torch.mlu.manual_seed(seed)
|
|
|
|
def manual_seed_all(self, seed):
|
|
return torch.mlu.manual_seed_all(seed)
|
|
|
|
def initial_seed(self, seed):
|
|
return torch.mlu.initial_seed(seed)
|
|
|
|
def default_generator(self, device_index):
|
|
return torch.mlu.default_generators[device_index]
|
|
|
|
# Streams/Events
|
|
@property
|
|
def Stream(self):
|
|
return torch.mlu.Stream
|
|
|
|
def stream(self, stream):
|
|
return torch.mlu.stream(stream)
|
|
|
|
def current_stream(self, device_index=None):
|
|
return torch.mlu.current_stream(device_index)
|
|
|
|
def default_stream(self, device_index=None):
|
|
return torch.mlu.default_stream(device_index)
|
|
|
|
@property
|
|
def Event(self):
|
|
return torch.mlu.Event
|
|
|
|
# Memory management
|
|
def empty_cache(self):
|
|
return torch.mlu.empty_cache()
|
|
|
|
def memory_allocated(self, device_index=None):
|
|
return torch.mlu.memory_allocated(device_index)
|
|
|
|
def max_memory_allocated(self, device_index=None):
|
|
return torch.mlu.max_memory_allocated(device_index)
|
|
|
|
def reset_max_memory_allocated(self, device_index=None):
|
|
return torch.mlu.reset_max_memory_allocated(device_index)
|
|
|
|
def memory_cached(self, device_index=None):
|
|
return torch.mlu.memory_cached(device_index)
|
|
|
|
def max_memory_cached(self, device_index=None):
|
|
return torch.mlu.max_memory_cached(device_index)
|
|
|
|
def reset_max_memory_cached(self, device_index=None):
|
|
return torch.mlu.reset_max_memory_cached(device_index)
|
|
|
|
def memory_stats(self, device_index=None):
|
|
if hasattr(torch.mlu, 'memory_stats'):
|
|
return torch.mlu.memory_stats(device_index)
|
|
|
|
def reset_peak_memory_stats(self, device_index=None):
|
|
if hasattr(torch.mlu, 'reset_peak_memory_stats'):
|
|
return torch.mlu.reset_peak_memory_stats(device_index)
|
|
|
|
def memory_reserved(self, device_index=None):
|
|
if hasattr(torch.mlu, 'memory_reserved'):
|
|
return torch.mlu.memory_reserved(device_index)
|
|
|
|
def max_memory_reserved(self, device_index=None):
|
|
if hasattr(torch.mlu, 'max_memory_reserved'):
|
|
return torch.mlu.max_memory_reserved(device_index)
|
|
|
|
def total_memory(self, device_index=None):
|
|
return torch.mlu.get_device_properties(device_index).total_memory
|
|
|
|
def available_memory(self, device_index=None):
|
|
return self.total_memory(device_index) - self.memory_allocated(device_index)
|
|
|
|
# Data types
|
|
def is_bf16_supported(self):
|
|
return torch.mlu.is_bf16_supported()
|
|
|
|
def is_fp16_supported(self):
|
|
return True
|
|
|
|
def supported_dtypes(self):
|
|
supported_dtypes = [torch.float]
|
|
if self.is_fp16_supported():
|
|
supported_dtypes.append(torch.half)
|
|
if self.is_bf16_supported():
|
|
supported_dtypes.append(torch.bfloat16)
|
|
return supported_dtypes
|
|
|
|
# Misc
|
|
def amp(self):
|
|
if hasattr(torch.mlu, 'amp'):
|
|
return torch.mlu.amp
|
|
return None
|
|
|
|
def is_available(self):
|
|
return torch.mlu.is_available()
|
|
|
|
def range_push(self, msg):
|
|
if hasattr(torch.mlu.cnpx, 'range_push'):
|
|
return torch.mlu.cnpx.range_push(msg)
|
|
|
|
def range_pop(self):
|
|
if hasattr(torch.mlu.cnpx, 'range_pop'):
|
|
return torch.mlu.cnpx.range_pop()
|
|
|
|
def lazy_call(self, callback):
|
|
return torch.mlu._lazy_call(callback)
|
|
|
|
def communication_backend_name(self):
|
|
return self._communication_backend_name
|
|
|
|
def is_triton_supported(self):
|
|
return True
|
|
|
|
# Graph operations
|
|
def create_graph(self):
|
|
torch.mlu.MLUGraph()
|
|
|
|
def capture_to_graph(self, graph, pool=None, stream=None):
|
|
return torch.mlu.graph(graph, pool, stream)
|
|
|
|
def replay_graph(self, graph):
|
|
graph.replay()
|
|
return
|
|
|
|
# Tensor operations
|
|
|
|
@property
|
|
def BFloat16Tensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='mlu')
|
|
|
|
@property
|
|
def ByteTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.uint8, device='mlu')
|
|
|
|
@property
|
|
def DoubleTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.double, device='mlu')
|
|
|
|
@property
|
|
def FloatTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.float, device='mlu')
|
|
|
|
@property
|
|
def HalfTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.half, device='mlu')
|
|
|
|
@property
|
|
def IntTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.int, device='mlu')
|
|
|
|
@property
|
|
def LongTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.long, device='mlu')
|
|
|
|
def pin_memory(self, tensor):
|
|
return tensor.pin_memory()
|
|
|
|
def is_pinned(self, tensor):
|
|
return tensor.is_pinned()
|
|
|
|
def on_accelerator(self, tensor):
|
|
device_str = str(tensor.device)
|
|
if device_str.startswith('mlu:'):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def op_builder_dir(self):
|
|
try:
|
|
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
|
# if successful this also means we're doing a local install and not JIT compile path
|
|
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
|
return "op_builder.mlu"
|
|
except ImportError:
|
|
return "deepspeed.ops.op_builder.mlu"
|
|
|
|
def _lazy_init_class_dict(self):
|
|
if self.class_dict:
|
|
return
|
|
|
|
op_builder_module = importlib.import_module(self.op_builder_dir())
|
|
|
|
# get op builder class from op_builder/mlu/__init__.py
|
|
self.class_dict = {}
|
|
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
|
|
self.class_dict[class_name] = class_obj
|
|
|
|
# create an instance of op builder and return, name specified by class_name
|
|
def create_op_builder(self, class_name):
|
|
builder_class = self.get_op_builder(class_name)
|
|
return builder_class()
|
|
|
|
# return an op builder class, name specified by class_name
|
|
def get_op_builder(self, class_name):
|
|
self._lazy_init_class_dict()
|
|
if class_name in self.class_dict:
|
|
return self.class_dict[class_name]
|
|
else:
|
|
return self.class_dict['NotImplementedBuilder']
|
|
|
|
def build_extension(self):
|
|
from torch.utils.cpp_extension import BuildExtension
|
|
return BuildExtension
|
|
|
|
def export_envs(self):
|
|
return ['NEUWARE_HOME', 'CNCL', 'LD_LIBRARY', 'PATH']
|
|
|
|
def visible_devices_envs(self):
|
|
return ['MLU_VISIBLE_DEVICES']
|
|
|
|
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
|
|
for env in self.visible_devices_envs():
|
|
current_env[env] = ",".join(map(str, local_accelerator_ids))
|
|
|
|
def get_compile_backend(self):
|
|
return self._compile_backend
|
|
|
|
def set_compile_backend(self, backend):
|
|
supported_backends = torch._dynamo.list_backends(exclude_tags=())
|
|
if backend in supported_backends:
|
|
self._compile_backend = backend
|
|
else:
|
|
raise ValueError(
|
|
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends }")
|