DirectXShaderCompiler/lib/HLSL/DxilContainerReflection.cpp

3094 строки
109 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// //
// DxilContainerReflection.cpp //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
// Provides support for reading DXIL container structures. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "dxc/DXIL/DxilCounters.h"
#include "dxc/DXIL/DxilFunctionProps.h"
#include "dxc/DXIL/DxilInstructions.h"
#include "dxc/DXIL/DxilModule.h"
#include "dxc/DXIL/DxilOperations.h"
#include "dxc/DXIL/DxilPDB.h"
#include "dxc/DXIL/DxilShaderModel.h"
#include "dxc/DXIL/DxilUtil.h"
#include "dxc/DxilContainer/DxilContainer.h"
#include "dxc/HLSL/HLMatrixType.h"
#include "dxc/Support/FileIOHelper.h"
#include "dxc/Support/Global.h"
#include "dxc/Support/Unicode.h"
#include "dxc/Support/WinIncludes.h"
#include "dxc/Support/dxcapi.impl.h"
#include "dxc/Support/microcom.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/ADT/SetVector.h"
#include <unordered_set>
#include "dxc/dxcapi.h"
#include "dxc/Support/D3DReflection.h"
#ifdef _WIN32
#include "d3d11shader.h" // for compatibility
#else
// Dummy D3D11 struct to allow nix-dead code to compile
struct D3D11_SHADER_INPUT_BIND_DESC {
int dummy;
};
#include "dxc/WinAdapter.h"
#endif
#include "dxc/DxilContainer/DxilRuntimeReflection.h"
// Remove this workaround once newer version of d3dcommon.h can be compiled
// against
#define ADD_16_64_BIT_TYPES
#define ADD_SVC_BIT_FIELD
const GUID IID_ID3D11ShaderReflection_43 = {
0x0a233719,
0x3960,
0x4578,
{0x9d, 0x7c, 0x20, 0x3b, 0x8b, 0x1d, 0x9c, 0xc1}};
const GUID IID_ID3D11ShaderReflection_47 = {
0x8d536ca1,
0x0cca,
0x4956,
{0xa8, 0x37, 0x78, 0x69, 0x63, 0x75, 0x55, 0x84}};
using namespace llvm;
using namespace hlsl;
using namespace hlsl::DXIL;
class DxilContainerReflection : public IDxcContainerReflection {
private:
DXC_MICROCOM_TM_REF_FIELDS()
CComPtr<IDxcBlob> m_container;
const DxilContainerHeader *m_pHeader = nullptr;
uint32_t m_headerLen = 0;
bool IsLoaded() const { return m_pHeader != nullptr; }
public:
DXC_MICROCOM_TM_ADDREF_RELEASE_IMPL()
DXC_MICROCOM_TM_CTOR(DxilContainerReflection)
HRESULT STDMETHODCALLTYPE QueryInterface(REFIID iid,
void **ppvObject) override {
return DoBasicQueryInterface<IDxcContainerReflection>(this, iid, ppvObject);
}
HRESULT STDMETHODCALLTYPE Load(IDxcBlob *pContainer) override;
HRESULT STDMETHODCALLTYPE GetPartCount(UINT32 *pResult) override;
HRESULT STDMETHODCALLTYPE GetPartKind(UINT32 idx, UINT32 *pResult) override;
HRESULT STDMETHODCALLTYPE GetPartContent(UINT32 idx,
IDxcBlob **ppResult) override;
HRESULT STDMETHODCALLTYPE FindFirstPartKind(UINT32 kind,
UINT32 *pResult) override;
HRESULT STDMETHODCALLTYPE GetPartReflection(UINT32 idx, REFIID iid,
void **ppvObject) override;
};
class CShaderReflectionConstantBuffer;
class CShaderReflectionType;
enum class PublicAPI { D3D12 = 0, D3D11_47 = 1, D3D11_43 = 2, Invalid };
#ifdef ADD_16_64_BIT_TYPES
// Disable warning about value not being valid in enum
#pragma warning(disable : 4063)
#define D3D_SVT_INT16 ((D3D_SHADER_VARIABLE_TYPE)58)
#define D3D_SVT_UINT16 ((D3D_SHADER_VARIABLE_TYPE)59)
#define D3D_SVT_FLOAT16 ((D3D_SHADER_VARIABLE_TYPE)60)
#define D3D_SVT_INT64 ((D3D_SHADER_VARIABLE_TYPE)61)
#define D3D_SVT_UINT64 ((D3D_SHADER_VARIABLE_TYPE)62)
#endif // ADD_16_64_BIT_TYPES
#ifdef ADD_SVC_BIT_FIELD
// Disable warning about value not being valid in enum
#pragma warning(disable : 4063)
// FIXME: remove the define once D3D_SVC_BIT_FIELD added into
// D3D_SHADER_VARIABLE_CLASS.
#define D3D_SVC_BIT_FIELD \
((D3D_SHADER_VARIABLE_CLASS)(D3D_SVC_INTERFACE_POINTER + 1))
#endif
class DxilModuleReflection {
public:
hlsl::RDAT::DxilRuntimeData m_RDAT;
LLVMContext Context;
std::unique_ptr<Module> m_pModule; // Must come after LLVMContext, otherwise
// unique_ptr will over-delete.
DxilModule *m_pDxilModule = nullptr;
bool m_bUsageInMetadata = false;
std::vector<std::unique_ptr<CShaderReflectionConstantBuffer>> m_CBs;
std::vector<D3D12_SHADER_INPUT_BIND_DESC> m_Resources;
std::vector<std::unique_ptr<CShaderReflectionType>> m_Types;
// Key strings owned by CShaderReflectionConstantBuffer objects
std::map<StringRef, UINT> m_CBsByName;
// Due to the possibility of overlapping names between CB and other resources,
// m_StructuredBufferCBsByName is the index into m_CBs corresponding to
// StructuredBuffer resources, separately from CB resources.
std::map<StringRef, UINT> m_StructuredBufferCBsByName;
void CreateReflectionObjects();
void CreateReflectionObjectForResource(DxilResourceBase *R);
HRESULT LoadRDAT(const DxilPartHeader *pPart);
HRESULT LoadProgramHeader(const DxilProgramHeader *pProgramHeader);
// Common code
ID3D12ShaderReflectionConstantBuffer *_GetConstantBufferByIndex(UINT Index);
ID3D12ShaderReflectionConstantBuffer *_GetConstantBufferByName(LPCSTR Name);
HRESULT _GetResourceBindingDesc(UINT ResourceIndex,
D3D12_SHADER_INPUT_BIND_DESC *pDesc,
PublicAPI api = PublicAPI::D3D12);
ID3D12ShaderReflectionVariable *_GetVariableByName(LPCSTR Name);
HRESULT _GetResourceBindingDescByName(LPCSTR Name,
D3D12_SHADER_INPUT_BIND_DESC *pDesc,
PublicAPI api = PublicAPI::D3D12);
};
class DxilShaderReflection : public DxilModuleReflection,
public ID3D12ShaderReflection {
private:
DXC_MICROCOM_TM_REF_FIELDS()
std::vector<D3D12_SIGNATURE_PARAMETER_DESC> m_InputSignature;
std::vector<D3D12_SIGNATURE_PARAMETER_DESC> m_OutputSignature;
std::vector<D3D12_SIGNATURE_PARAMETER_DESC> m_PatchConstantSignature;
std::vector<std::unique_ptr<char[]>> m_UpperCaseNames;
D3D12_SHADER_DESC m_Desc = {};
void SetCBufferUsage();
void CreateReflectionObjectsForSignature(
const DxilSignature &Sig,
std::vector<D3D12_SIGNATURE_PARAMETER_DESC> &Descs);
LPCSTR CreateUpperCase(LPCSTR pValue);
void MarkUsedSignatureElements();
void InitDesc();
public:
PublicAPI m_PublicAPI;
void SetPublicAPI(PublicAPI value) { m_PublicAPI = value; }
static PublicAPI IIDToAPI(REFIID iid) {
PublicAPI api = PublicAPI::Invalid;
if (IsEqualIID(__uuidof(ID3D12ShaderReflection), iid))
api = PublicAPI::D3D12;
else if (IsEqualIID(IID_ID3D11ShaderReflection_43, iid))
api = PublicAPI::D3D11_43;
else if (IsEqualIID(IID_ID3D11ShaderReflection_47, iid))
api = PublicAPI::D3D11_47;
return api;
}
DXC_MICROCOM_TM_ADDREF_RELEASE_IMPL()
DXC_MICROCOM_TM_CTOR(DxilShaderReflection)
HRESULT STDMETHODCALLTYPE QueryInterface(REFIID iid,
void **ppvObject) noexcept override {
HRESULT hr = E_NOINTERFACE;
// There is non-standard handling of QueryInterface:
// - although everything uses the same vtable as ID3D12ShaderReflection,
// there are differences in behavior depending on the API version, and
// there are 3 of these - it's not just d3d11 vs d3d12.
// - when the object is created the API version is fixed
// - from that point on, this object can only be QI'd for the matching API
// version.
PublicAPI api = IIDToAPI(iid);
if (api == m_PublicAPI) {
*ppvObject = static_cast<ID3D12ShaderReflection *>(this);
this->AddRef();
hr = S_OK;
} else if (IsEqualIID(__uuidof(IUnknown), iid)) {
*ppvObject = static_cast<IUnknown *>(this);
this->AddRef();
hr = S_OK;
}
return hr;
}
HRESULT Load(const DxilProgramHeader *pProgramHeader,
const DxilPartHeader *pRDATPart);
// ID3D12ShaderReflection
STDMETHODIMP GetDesc(D3D12_SHADER_DESC *pDesc) noexcept override;
STDMETHODIMP_(ID3D12ShaderReflectionConstantBuffer *)
GetConstantBufferByIndex(UINT Index) noexcept override;
STDMETHODIMP_(ID3D12ShaderReflectionConstantBuffer *)
GetConstantBufferByName(LPCSTR Name) noexcept override;
STDMETHODIMP
GetResourceBindingDesc(UINT ResourceIndex,
D3D12_SHADER_INPUT_BIND_DESC *pDesc) noexcept override;
STDMETHODIMP GetInputParameterDesc(
UINT ParameterIndex,
D3D12_SIGNATURE_PARAMETER_DESC *pDesc) noexcept override;
STDMETHODIMP GetOutputParameterDesc(
UINT ParameterIndex,
D3D12_SIGNATURE_PARAMETER_DESC *pDesc) noexcept override;
STDMETHODIMP GetPatchConstantParameterDesc(
UINT ParameterIndex,
D3D12_SIGNATURE_PARAMETER_DESC *pDesc) noexcept override;
STDMETHODIMP_(ID3D12ShaderReflectionVariable *)
GetVariableByName(LPCSTR Name) noexcept override;
STDMETHODIMP GetResourceBindingDescByName(
LPCSTR Name, D3D12_SHADER_INPUT_BIND_DESC *pDesc) noexcept override;
STDMETHODIMP_(UINT) GetMovInstructionCount(THIS) noexcept override;
STDMETHODIMP_(UINT) GetMovcInstructionCount(THIS) noexcept override;
STDMETHODIMP_(UINT) GetConversionInstructionCount(THIS) noexcept override;
STDMETHODIMP_(UINT) GetBitwiseInstructionCount(THIS) noexcept override;
STDMETHODIMP_(D3D_PRIMITIVE) GetGSInputPrimitive(THIS) noexcept override;
STDMETHODIMP_(BOOL) IsSampleFrequencyShader(THIS) noexcept override;
STDMETHODIMP_(UINT) GetNumInterfaceSlots(THIS) noexcept override;
STDMETHODIMP
GetMinFeatureLevel(D3D_FEATURE_LEVEL *pLevel) noexcept override;
STDMETHODIMP_(UINT)
GetThreadGroupSize(UINT *pSizeX, UINT *pSizeY,
UINT *pSizeZ) noexcept override;
STDMETHODIMP_(UINT64) GetRequiresFlags(THIS) noexcept override;
};
class CFunctionReflection;
class DxilLibraryReflection : public DxilModuleReflection,
public ID3D12LibraryReflection {
private:
DXC_MICROCOM_TM_REF_FIELDS()
// Storage, and function by name:
typedef DenseMap<StringRef, std::unique_ptr<CFunctionReflection>> FunctionMap;
typedef DenseMap<const Function *, CFunctionReflection *> FunctionsByPtr;
FunctionMap m_FunctionMap;
FunctionsByPtr m_FunctionsByPtr;
// Enable indexing into functions in deterministic order:
std::vector<CFunctionReflection *> m_FunctionVector;
void AddResourceDependencies();
void SetCBufferUsage();
public:
DXC_MICROCOM_TM_ADDREF_RELEASE_IMPL()
DXC_MICROCOM_TM_CTOR(DxilLibraryReflection)
HRESULT STDMETHODCALLTYPE QueryInterface(REFIID iid,
void **ppvObject) noexcept override {
return DoBasicQueryInterface<ID3D12LibraryReflection>(this, iid, ppvObject);
}
HRESULT Load(const DxilProgramHeader *pProgramHeader,
const DxilPartHeader *pRDATPart);
// ID3D12LibraryReflection
STDMETHOD(GetDesc)(D3D12_LIBRARY_DESC *pDesc) override;
STDMETHOD_(ID3D12FunctionReflection *, GetFunctionByIndex)
(INT FunctionIndex) override;
};
namespace hlsl {
HRESULT CreateDxilShaderReflection(const DxilProgramHeader *pProgramHeader,
const DxilPartHeader *pRDATPart, REFIID iid,
void **ppvObject) {
if (!ppvObject)
return E_INVALIDARG;
PublicAPI api = DxilShaderReflection::IIDToAPI(iid);
if (api == PublicAPI::Invalid) {
if (IsEqualIID(__uuidof(IUnknown), iid))
api = PublicAPI::D3D12;
else
return E_NOINTERFACE;
}
CComPtr<DxilShaderReflection> pReflection =
DxilShaderReflection::Alloc(DxcGetThreadMallocNoRef());
IFROOM(pReflection.p);
pReflection->SetPublicAPI(api);
// pRDATPart to be used for transition.
IFR(pReflection->Load(pProgramHeader, pRDATPart));
IFR(pReflection.p->QueryInterface(iid, ppvObject));
return S_OK;
}
HRESULT CreateDxilLibraryReflection(const DxilProgramHeader *pProgramHeader,
const DxilPartHeader *pRDATPart, REFIID iid,
void **ppvObject) {
if (!ppvObject)
return E_INVALIDARG;
if (!IsEqualIID(__uuidof(ID3D12LibraryReflection), iid) &&
!IsEqualIID(__uuidof(IUnknown), iid))
return E_NOINTERFACE;
CComPtr<DxilLibraryReflection> pReflection =
DxilLibraryReflection::Alloc(DxcGetThreadMallocNoRef());
IFROOM(pReflection.p);
// pRDATPart used for resource usage per-function.
IFR(pReflection->Load(pProgramHeader, pRDATPart));
IFR(pReflection.p->QueryInterface(iid, ppvObject));
return S_OK;
}
HRESULT CreateDxilShaderOrLibraryReflectionFromProgramHeader(
const DxilProgramHeader *pProgramHeader, const DxilPartHeader *pRDATPart,
REFIID iid, void **ppvObject) {
// Detect whether library, or if unrecognized program version.
DXIL::ShaderKind SK = GetVersionShaderType(pProgramHeader->ProgramVersion);
if (!(SK < DXIL::ShaderKind::Invalid))
return E_INVALIDARG;
bool bIsLibrary = DXIL::ShaderKind::Library == SK;
if (bIsLibrary) {
IFR(hlsl::CreateDxilLibraryReflection(pProgramHeader, pRDATPart, iid,
ppvObject));
} else {
IFR(hlsl::CreateDxilShaderReflection(pProgramHeader, pRDATPart, iid,
ppvObject));
}
return S_OK;
}
bool IsValidReflectionModulePart(DxilFourCC fourCC) {
return fourCC == DFCC_DXIL || fourCC == DFCC_ShaderDebugInfoDXIL ||
fourCC == DFCC_ShaderStatistics;
}
HRESULT CreateDxilShaderOrLibraryReflectionFromModulePart(
const DxilPartHeader *pModulePart, const DxilPartHeader *pRDATPart,
REFIID iid, void **ppvObject) {
if (!pModulePart)
return E_INVALIDARG;
if (!IsValidReflectionModulePart((DxilFourCC)pModulePart->PartFourCC))
return E_INVALIDARG;
const DxilProgramHeader *pProgramHeader =
reinterpret_cast<const DxilProgramHeader *>(GetDxilPartData(pModulePart));
if (!IsValidDxilProgramHeader(pProgramHeader, pModulePart->PartSize))
return E_INVALIDARG;
// If bitcode is too small, it's probably been stripped, and we cannot create
// reflection with it.
if (pModulePart->PartSize - pProgramHeader->BitcodeHeader.BitcodeOffset < 4)
return DXC_E_MISSING_PART;
return CreateDxilShaderOrLibraryReflectionFromProgramHeader(
pProgramHeader, pRDATPart, iid, ppvObject);
}
} // namespace hlsl
HRESULT DxilContainerReflection::Load(IDxcBlob *pContainer) {
if (pContainer == nullptr) {
m_container.Release();
m_pHeader = nullptr;
m_headerLen = 0;
return S_OK;
}
CComPtr<IDxcBlob> pPDBContainer;
try {
DxcThreadMalloc DxcMalloc(m_pMalloc);
CComPtr<IStream> pStream;
IFR(hlsl::CreateReadOnlyBlobStream(pContainer, &pStream));
if (SUCCEEDED(hlsl::pdb::LoadDataFromStream(m_pMalloc, pStream,
&pPDBContainer))) {
pContainer = pPDBContainer;
}
}
CATCH_CPP_RETURN_HRESULT();
uint32_t bufLen = pContainer->GetBufferSize();
const DxilContainerHeader *pHeader =
IsDxilContainerLike(pContainer->GetBufferPointer(), bufLen);
if (pHeader == nullptr) {
return E_INVALIDARG;
}
if (!IsValidDxilContainer(pHeader, bufLen)) {
return E_INVALIDARG;
}
m_container = pContainer;
m_headerLen = bufLen;
m_pHeader = pHeader;
return S_OK;
}
HRESULT DxilContainerReflection::GetPartCount(UINT32 *pResult) {
if (pResult == nullptr)
return E_POINTER;
if (!IsLoaded())
return E_NOT_VALID_STATE;
*pResult = m_pHeader->PartCount;
return S_OK;
}
HRESULT DxilContainerReflection::GetPartKind(UINT32 idx, UINT32 *pResult) {
if (pResult == nullptr)
return E_POINTER;
if (!IsLoaded())
return E_NOT_VALID_STATE;
if (idx >= m_pHeader->PartCount)
return E_BOUNDS;
const DxilPartHeader *pPart = GetDxilContainerPart(m_pHeader, idx);
*pResult = pPart->PartFourCC;
return S_OK;
}
HRESULT DxilContainerReflection::GetPartContent(UINT32 idx,
IDxcBlob **ppResult) {
if (ppResult == nullptr)
return E_POINTER;
*ppResult = nullptr;
if (!IsLoaded())
return E_NOT_VALID_STATE;
if (idx >= m_pHeader->PartCount)
return E_BOUNDS;
const DxilPartHeader *pPart = GetDxilContainerPart(m_pHeader, idx);
const char *pData = GetDxilPartData(pPart);
uint32_t offset =
(uint32_t)(pData -
(char *)m_container
->GetBufferPointer()); // Offset from the beginning.
uint32_t length = pPart->PartSize;
DxcThreadMalloc TM(m_pMalloc);
return DxcCreateBlobFromBlob(m_container, offset, length, ppResult);
}
HRESULT DxilContainerReflection::FindFirstPartKind(UINT32 kind,
UINT32 *pResult) {
if (pResult == nullptr)
return E_POINTER;
*pResult = 0;
if (!IsLoaded())
return E_NOT_VALID_STATE;
DxilPartIterator it =
std::find_if(begin(m_pHeader), end(m_pHeader), DxilPartIsType(kind));
if (it == end(m_pHeader))
return HRESULT_FROM_WIN32(ERROR_NOT_FOUND);
*pResult = it.index;
return S_OK;
}
HRESULT DxilContainerReflection::GetPartReflection(UINT32 idx, REFIID iid,
void **ppvObject) {
if (ppvObject == nullptr)
return E_POINTER;
*ppvObject = nullptr;
if (!IsLoaded())
return E_NOT_VALID_STATE;
if (idx >= m_pHeader->PartCount)
return E_BOUNDS;
const DxilPartHeader *pPart = GetDxilContainerPart(m_pHeader, idx);
if (!hlsl::IsValidReflectionModulePart((hlsl::DxilFourCC)pPart->PartFourCC))
return E_NOTIMPL;
// Use DFCC_ShaderStatistics for reflection instead of DXIL part, until switch
// to using RDAT for reflection instead of module.
const DxilPartHeader *pRDATPart = nullptr;
for (idx = 0; idx < m_pHeader->PartCount; ++idx) {
const DxilPartHeader *pPartTest = GetDxilContainerPart(m_pHeader, idx);
if (pPartTest->PartFourCC == DFCC_RuntimeData) {
pRDATPart = pPartTest;
}
if (pPart->PartFourCC != DFCC_ShaderStatistics) {
if (pPartTest->PartFourCC == DFCC_ShaderStatistics) {
const DxilProgramHeader *pProgramHeaderTest =
reinterpret_cast<const DxilProgramHeader *>(
GetDxilPartData(pPartTest));
if (IsValidDxilProgramHeader(pProgramHeaderTest, pPartTest->PartSize)) {
pPart = pPartTest;
continue;
}
}
}
}
DxcThreadMalloc TM(m_pMalloc);
HRESULT hr = S_OK;
IFC(hlsl::CreateDxilShaderOrLibraryReflectionFromModulePart(pPart, pRDATPart,
iid, ppvObject));
Cleanup:
return hr;
}
void hlsl::CreateDxcContainerReflection(IDxcContainerReflection **ppResult) {
CComPtr<DxilContainerReflection> pReflection =
DxilContainerReflection::Alloc(DxcGetThreadMallocNoRef());
*ppResult = pReflection.Detach();
if (*ppResult == nullptr)
throw std::bad_alloc();
}
///////////////////////////////////////////////////////////////////////////////
// DxilShaderReflection implementation - helper objects. //
class CShaderReflectionType;
class CShaderReflectionVariable;
class CShaderReflectionConstantBuffer;
class CShaderReflection;
struct D3D11_INTERNALSHADER_RESOURCE_DEF;
class CShaderReflectionType final : public ID3D12ShaderReflectionType {
friend class CShaderReflectionConstantBuffer;
protected:
D3D12_SHADER_TYPE_DESC m_Desc;
UINT m_SizeInCBuffer;
std::string m_Name;
std::vector<StringRef> m_MemberNames;
std::vector<CShaderReflectionType *> m_MemberTypes;
CShaderReflectionType *m_pSubType;
CShaderReflectionType *m_pBaseClass;
std::vector<CShaderReflectionType *> m_Interfaces;
ULONG_PTR m_Identity;
public:
// Internal
HRESULT InitializeEmpty();
HRESULT
Initialize(DxilModule &M, llvm::Type *type,
DxilFieldAnnotation &typeAnnotation, unsigned int baseOffset,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes,
bool isCBuffer);
// ID3D12ShaderReflectionType
STDMETHOD(GetDesc)(D3D12_SHADER_TYPE_DESC *pDesc);
STDMETHOD_(ID3D12ShaderReflectionType *, GetMemberTypeByIndex)(UINT Index);
STDMETHOD_(ID3D12ShaderReflectionType *, GetMemberTypeByName)(LPCSTR Name);
STDMETHOD_(LPCSTR, GetMemberTypeName)(UINT Index);
STDMETHOD(IsEqual)(ID3D12ShaderReflectionType *pType);
STDMETHOD_(ID3D12ShaderReflectionType *, GetSubType)();
STDMETHOD_(ID3D12ShaderReflectionType *, GetBaseClass)();
STDMETHOD_(UINT, GetNumInterfaces)();
STDMETHOD_(ID3D12ShaderReflectionType *, GetInterfaceByIndex)(UINT uIndex);
STDMETHOD(IsOfType)(ID3D12ShaderReflectionType *pType);
STDMETHOD(ImplementsInterface)(ID3D12ShaderReflectionType *pBase);
bool CheckEqual(CShaderReflectionType *pOther) {
return m_Identity == pOther->m_Identity;
}
UINT GetCBufferSize() { return m_SizeInCBuffer; }
};
class CShaderReflectionVariable final : public ID3D12ShaderReflectionVariable {
protected:
D3D12_SHADER_VARIABLE_DESC m_Desc;
CShaderReflectionType *m_pType;
CShaderReflectionConstantBuffer *m_pBuffer;
BYTE *m_pDefaultValue;
public:
void Initialize(CShaderReflectionConstantBuffer *pBuffer,
D3D12_SHADER_VARIABLE_DESC *pDesc,
CShaderReflectionType *pType, BYTE *pDefaultValue);
LPCSTR GetName() { return m_Desc.Name; }
// ID3D12ShaderReflectionVariable
STDMETHOD(GetDesc)(D3D12_SHADER_VARIABLE_DESC *pDesc);
STDMETHOD_(ID3D12ShaderReflectionType *, GetType)();
STDMETHOD_(ID3D12ShaderReflectionConstantBuffer *, GetBuffer)();
STDMETHOD_(UINT, GetInterfaceSlot)(UINT uArrayIndex);
};
class CShaderReflectionConstantBuffer final
: public ID3D12ShaderReflectionConstantBuffer {
protected:
D3D12_SHADER_BUFFER_DESC m_Desc;
std::vector<CShaderReflectionVariable> m_Variables;
// For StructuredBuffer arrays, Name will have [0] appended for each dimension
// to match fxc behavior.
std::string m_ReflectionName;
public:
CShaderReflectionConstantBuffer() = default;
CShaderReflectionConstantBuffer(CShaderReflectionConstantBuffer &&other) {
m_Desc = other.m_Desc;
std::swap(m_Variables, other.m_Variables);
}
void Initialize(DxilModule &M, DxilCBuffer &CB,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes,
bool bUsageInMetadata);
void InitializeStructuredBuffer(
DxilModule &M, DxilResource &R,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes);
void InitializeTBuffer(
DxilModule &M, DxilResource &R,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes,
bool bUsageInMetadata);
LPCSTR GetName() { return m_Desc.Name; }
// ID3D12ShaderReflectionConstantBuffer
STDMETHOD(GetDesc)(D3D12_SHADER_BUFFER_DESC *pDesc);
STDMETHOD_(ID3D12ShaderReflectionVariable *, GetVariableByIndex)(UINT Index);
STDMETHOD_(ID3D12ShaderReflectionVariable *, GetVariableByName)(LPCSTR Name);
};
// Invalid type sentinel definitions
class CInvalidSRType;
class CInvalidSRVariable;
class CInvalidSRConstantBuffer;
class CInvalidSRLibraryFunction;
class CInvalidSRFunctionParameter;
class CInvalidSRType final : public ID3D12ShaderReflectionType {
STDMETHOD(GetDesc)(D3D12_SHADER_TYPE_DESC *pDesc) { return E_FAIL; }
STDMETHOD_(ID3D12ShaderReflectionType *, GetMemberTypeByIndex)(UINT Index);
STDMETHOD_(ID3D12ShaderReflectionType *, GetMemberTypeByName)(LPCSTR Name);
STDMETHOD_(LPCSTR, GetMemberTypeName)(UINT Index) { return "$Invalid"; }
STDMETHOD(IsEqual)(ID3D12ShaderReflectionType *pType) { return E_FAIL; }
STDMETHOD_(ID3D12ShaderReflectionType *, GetSubType)();
STDMETHOD_(ID3D12ShaderReflectionType *, GetBaseClass)();
STDMETHOD_(UINT, GetNumInterfaces)() { return 0; }
STDMETHOD_(ID3D12ShaderReflectionType *, GetInterfaceByIndex)(UINT uIndex);
STDMETHOD(IsOfType)(ID3D12ShaderReflectionType *pType) { return E_FAIL; }
STDMETHOD(ImplementsInterface)(ID3D12ShaderReflectionType *pBase) {
return E_FAIL;
}
};
static CInvalidSRType g_InvalidSRType;
ID3D12ShaderReflectionType *CInvalidSRType::GetMemberTypeByIndex(UINT) {
return &g_InvalidSRType;
}
ID3D12ShaderReflectionType *CInvalidSRType::GetMemberTypeByName(LPCSTR) {
return &g_InvalidSRType;
}
ID3D12ShaderReflectionType *CInvalidSRType::GetSubType() {
return &g_InvalidSRType;
}
ID3D12ShaderReflectionType *CInvalidSRType::GetBaseClass() {
return &g_InvalidSRType;
}
ID3D12ShaderReflectionType *CInvalidSRType::GetInterfaceByIndex(UINT) {
return &g_InvalidSRType;
}
class CInvalidSRVariable final : public ID3D12ShaderReflectionVariable {
STDMETHOD(GetDesc)(D3D12_SHADER_VARIABLE_DESC *pDesc) { return E_FAIL; }
STDMETHOD_(ID3D12ShaderReflectionType *, GetType)() {
return &g_InvalidSRType;
}
STDMETHOD_(ID3D12ShaderReflectionConstantBuffer *, GetBuffer)();
STDMETHOD_(UINT, GetInterfaceSlot)(UINT uIndex) { return UINT_MAX; }
};
static CInvalidSRVariable g_InvalidSRVariable;
class CInvalidSRConstantBuffer final
: public ID3D12ShaderReflectionConstantBuffer {
STDMETHOD(GetDesc)(D3D12_SHADER_BUFFER_DESC *pDesc) { return E_FAIL; }
STDMETHOD_(ID3D12ShaderReflectionVariable *, GetVariableByIndex)(UINT Index) {
return &g_InvalidSRVariable;
}
STDMETHOD_(ID3D12ShaderReflectionVariable *, GetVariableByName)(LPCSTR Name) {
return &g_InvalidSRVariable;
}
};
static CInvalidSRConstantBuffer g_InvalidSRConstantBuffer;
class CInvalidFunctionParameter final
: public ID3D12FunctionParameterReflection {
STDMETHOD(GetDesc)(D3D12_PARAMETER_DESC *pDesc) { return E_FAIL; }
};
CInvalidFunctionParameter g_InvalidFunctionParameter;
class CInvalidFunction final : public ID3D12FunctionReflection {
STDMETHOD(GetDesc)(D3D12_FUNCTION_DESC *pDesc) { return E_FAIL; }
STDMETHOD_(ID3D12ShaderReflectionConstantBuffer *, GetConstantBufferByIndex)
(UINT BufferIndex) { return &g_InvalidSRConstantBuffer; }
STDMETHOD_(ID3D12ShaderReflectionConstantBuffer *, GetConstantBufferByName)
(LPCSTR Name) { return &g_InvalidSRConstantBuffer; }
STDMETHOD(GetResourceBindingDesc)
(UINT ResourceIndex, D3D12_SHADER_INPUT_BIND_DESC *pDesc) { return E_FAIL; }
STDMETHOD_(ID3D12ShaderReflectionVariable *, GetVariableByName)(LPCSTR Name) {
return nullptr;
}
STDMETHOD(GetResourceBindingDescByName)
(LPCSTR Name, D3D12_SHADER_INPUT_BIND_DESC *pDesc) { return E_FAIL; }
// Use D3D_RETURN_PARAMETER_INDEX to get description of the return value.
STDMETHOD_(ID3D12FunctionParameterReflection *, GetFunctionParameter)
(INT ParameterIndex) { return &g_InvalidFunctionParameter; }
};
CInvalidFunction g_InvalidFunction;
void CShaderReflectionVariable::Initialize(
CShaderReflectionConstantBuffer *pBuffer, D3D12_SHADER_VARIABLE_DESC *pDesc,
CShaderReflectionType *pType, BYTE *pDefaultValue) {
m_pBuffer = pBuffer;
memcpy(&m_Desc, pDesc, sizeof(m_Desc));
m_pType = pType;
m_pDefaultValue = pDefaultValue;
}
HRESULT CShaderReflectionVariable::GetDesc(D3D12_SHADER_VARIABLE_DESC *pDesc) {
if (!pDesc)
return E_POINTER;
memcpy(pDesc, &m_Desc, sizeof(m_Desc));
return S_OK;
}
ID3D12ShaderReflectionType *CShaderReflectionVariable::GetType() {
return m_pType;
}
ID3D12ShaderReflectionConstantBuffer *CShaderReflectionVariable::GetBuffer() {
return m_pBuffer;
}
UINT CShaderReflectionVariable::GetInterfaceSlot(UINT uArrayIndex) {
return UINT_MAX;
}
ID3D12ShaderReflectionConstantBuffer *CInvalidSRVariable::GetBuffer() {
return &g_InvalidSRConstantBuffer;
}
STDMETHODIMP CShaderReflectionType::GetDesc(D3D12_SHADER_TYPE_DESC *pDesc) {
if (!pDesc)
return E_POINTER;
memcpy(pDesc, &m_Desc, sizeof(m_Desc));
return S_OK;
}
STDMETHODIMP_(ID3D12ShaderReflectionType *)
CShaderReflectionType::GetMemberTypeByIndex(UINT Index) {
if (Index >= m_MemberTypes.size()) {
return &g_InvalidSRType;
}
return m_MemberTypes[Index];
}
STDMETHODIMP_(LPCSTR) CShaderReflectionType::GetMemberTypeName(UINT Index) {
if (Index >= m_MemberTypes.size()) {
return nullptr;
}
return (LPCSTR)m_MemberNames[Index].bytes_begin();
}
STDMETHODIMP_(ID3D12ShaderReflectionType *)
CShaderReflectionType::GetMemberTypeByName(LPCSTR Name) {
UINT memberCount = m_Desc.Members;
for (UINT mm = 0; mm < memberCount; ++mm) {
if (m_MemberNames[mm] == Name) {
return m_MemberTypes[mm];
}
}
return nullptr;
}
STDMETHODIMP CShaderReflectionType::IsEqual(ID3D12ShaderReflectionType *pType) {
// TODO: implement this check, if users actually depend on it
return S_FALSE;
}
STDMETHODIMP_(ID3D12ShaderReflectionType *)
CShaderReflectionType::GetSubType() {
// TODO: implement `class`-related features, if requested
return nullptr;
}
STDMETHODIMP_(ID3D12ShaderReflectionType *)
CShaderReflectionType::GetBaseClass() {
// TODO: implement `class`-related features, if requested
return nullptr;
}
STDMETHODIMP_(UINT) CShaderReflectionType::GetNumInterfaces() {
// HLSL interfaces have been deprecated
return 0;
}
STDMETHODIMP_(ID3D12ShaderReflectionType *)
CShaderReflectionType::GetInterfaceByIndex(UINT uIndex) {
// HLSL interfaces have been deprecated
return nullptr;
}
STDMETHODIMP
CShaderReflectionType::IsOfType(ID3D12ShaderReflectionType *pType) {
// TODO: implement `class`-related features, if requested
return S_FALSE;
}
STDMETHODIMP
CShaderReflectionType::ImplementsInterface(ID3D12ShaderReflectionType *pBase) {
// HLSL interfaces have been deprecated
return S_FALSE;
}
// Helper routine for types that don't have an obvious mapping
// to the existing shader reflection interface.
static bool
ProcessUnhandledObjectType(llvm::StructType *structType,
D3D_SHADER_VARIABLE_TYPE *outObjectType) {
// Don't actually make this a hard error, but instead report the problem using
// a suitable debug message.
#ifndef NDEBUG
OutputDebugFormatA(
"DxilContainerReflection.cpp: error: unhandled object type '%s'.\n",
structType->getName().str().c_str());
#endif
*outObjectType = D3D_SVT_VOID;
return true;
}
// Helper routine to try to detect if a type represents an HLSL "object" type
// (a texture, sampler, buffer, etc.), and to extract the coresponding shader
// reflection type.
static bool TryToDetectObjectType(llvm::StructType *structType,
D3D_SHADER_VARIABLE_TYPE *outObjectType) {
// Note: This logic is largely duplicated from `dxilutil::IsHLSLObjectType`
// with the addition of returning the appropriate reflection type tag.
//
// That logic looks error-prone, since it relies on string tests against
// type names, including cases that just test against a prefix.
// This code doesn't try to be any more robust.
StringRef name = structType->getName();
if (name.startswith("dx.types.wave_t")) {
return ProcessUnhandledObjectType(structType, outObjectType);
}
// Strip off some prefixes we are likely to see.
name = name.ltrim("class.");
name = name.ltrim("struct.");
// Slice types occur as intermediates (they aren not objects)
if (name.endswith("_slice_type")) {
return false;
}
// We might check for an exact name match, or a prefix match
#define EXACT_MATCH(NAME, TAG) \
else if (name == #NAME) do { \
*outObjectType = TAG; \
return true; \
} \
while (0)
#define PREFIX_MATCH(NAME, TAG) \
else if (name.startswith(#NAME)) do { \
*outObjectType = TAG; \
return true; \
} \
while (0)
if (0) {
}
EXACT_MATCH(SamplerState, D3D_SVT_SAMPLER);
EXACT_MATCH(SamplerComparisonState, D3D_SVT_SAMPLER);
// Note: GS output stream types are supported in the reflection interface.
else if (name.startswith("TriangleStream")) {
return ProcessUnhandledObjectType(structType, outObjectType);
}
else if (name.startswith("PointStream")) {
return ProcessUnhandledObjectType(structType, outObjectType);
}
else if (name.startswith("LineStream")) {
return ProcessUnhandledObjectType(structType, outObjectType);
}
PREFIX_MATCH(AppendStructuredBuffer, D3D_SVT_APPEND_STRUCTURED_BUFFER);
PREFIX_MATCH(ConsumeStructuredBuffer, D3D_SVT_CONSUME_STRUCTURED_BUFFER);
PREFIX_MATCH(ConstantBuffer, D3D_SVT_CBUFFER);
// Note: the `HLModule` code does this trick to avoid checking more names
// than it has to, but it doesn't seem 100% correct to do this.
// TODO: consider just listing the `RasterizerOrdered` cases explicitly,
// just as we do for the `RW` cases already.
name = name.ltrim("RasterizerOrdered");
if (0) {
}
EXACT_MATCH(ByteAddressBuffer, D3D_SVT_BYTEADDRESS_BUFFER);
EXACT_MATCH(RWByteAddressBuffer, D3D_SVT_RWBYTEADDRESS_BUFFER);
PREFIX_MATCH(Buffer, D3D_SVT_BUFFER);
PREFIX_MATCH(RWBuffer, D3D_SVT_RWBUFFER);
PREFIX_MATCH(StructuredBuffer, D3D_SVT_STRUCTURED_BUFFER);
PREFIX_MATCH(RWStructuredBuffer, D3D_SVT_RWSTRUCTURED_BUFFER);
PREFIX_MATCH(Texture1D, D3D_SVT_TEXTURE1D);
PREFIX_MATCH(RWTexture1D, D3D_SVT_RWTEXTURE1D);
PREFIX_MATCH(Texture1DArray, D3D_SVT_TEXTURE1DARRAY);
PREFIX_MATCH(RWTexture1DArray, D3D_SVT_RWTEXTURE1DARRAY);
PREFIX_MATCH(Texture2D, D3D_SVT_TEXTURE2D);
PREFIX_MATCH(RWTexture2D, D3D_SVT_RWTEXTURE2D);
PREFIX_MATCH(Texture2DArray, D3D_SVT_TEXTURE2DARRAY);
PREFIX_MATCH(RWTexture2DArray, D3D_SVT_RWTEXTURE2DARRAY);
PREFIX_MATCH(Texture3D, D3D_SVT_TEXTURE3D);
PREFIX_MATCH(RWTexture3D, D3D_SVT_RWTEXTURE3D);
PREFIX_MATCH(TextureCube, D3D_SVT_TEXTURECUBE);
PREFIX_MATCH(TextureCubeArray, D3D_SVT_TEXTURECUBEARRAY);
PREFIX_MATCH(Texture2DMS, D3D_SVT_TEXTURE2DMS);
PREFIX_MATCH(Texture2DMSArray, D3D_SVT_TEXTURE2DMSARRAY);
#undef EXACT_MATCH
#undef PREFIX_MATCH
// Default: not an object type
return false;
}
// Helper to determine if an LLVM type represents an HLSL
// object type (uses the `TryToDetectObjectType()` function
// defined previously).
static bool IsObjectType(llvm::Type *inType) {
llvm::Type *type = inType;
while (type->isArrayTy()) {
type = type->getArrayElementType();
}
llvm::StructType *structType = dyn_cast<StructType>(type);
if (!structType)
return false;
D3D_SHADER_VARIABLE_TYPE ignored;
return TryToDetectObjectType(structType, &ignored);
}
HRESULT CShaderReflectionType::InitializeEmpty() {
ZeroMemory(&m_Desc, sizeof(m_Desc));
return S_OK;
}
// Returns true if type is array and/or vec with matching number of elements.
static bool MatchVectorOrMatrixType(llvm::Type *type, unsigned count,
int maxDepth) {
if (type->isArrayTy()) {
unsigned arraySize = (unsigned)type->getArrayNumElements();
if (maxDepth < 1 || count < arraySize || (count % arraySize) != 0)
return false;
return MatchVectorOrMatrixType(type->getArrayElementType(),
count / arraySize, maxDepth - 1);
} else if (type->isVectorTy()) {
if (maxDepth < 1)
return false;
return type->getVectorNumElements() == count;
}
return count == 1;
}
// Main logic for translating an LLVM type and associated
// annotations into a D3D shader reflection type.
HRESULT CShaderReflectionType::Initialize(
DxilModule &M, llvm::Type *inType, DxilFieldAnnotation &typeAnnotation,
unsigned int baseOffset,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes,
bool isCBuffer) {
DXASSERT_NOMSG(inType);
// Set a bunch of fields to default values, to avoid duplication.
m_Desc.Class = D3D_SVC_SCALAR;
m_Desc.Rows = 0;
m_Desc.Columns = 0;
m_Desc.Elements = 0;
m_Desc.Members = 0;
m_SizeInCBuffer = 0;
// Used for calculating size later
unsigned cbRows = 1;
unsigned cbCols = 1;
unsigned cbCompSize = 4; // or 8 for 64-bit types.
unsigned cbRowStride = 16; // or 32 if 64-bit and cols > 2.
if (isCBuffer) {
// Extract offset relative to parent.
// Note: the `baseOffset` is used in the case where the type in
// question is a field in a constant buffer, since then both the
// field and the variable store the same offset information, and
// we need to zero out the value in the type to avoid the user
// of the reflection interface seeing 2x the correct value.
m_Desc.Offset = typeAnnotation.GetCBufferOffset() - baseOffset;
} else {
m_Desc.Offset = baseOffset;
}
// Arrays don't seem to be represented directly in the reflection
// data, but only as the `Elements` field being non-zero.
// We "unwrap" any array type here, and then proceed to look
// at the element type.
llvm::Type *type = inType;
// Arrays can be a bit difficult, since some types are translated to arrays.
// Additionally, matrices have multiple potential forms, so we must pay
// attention to the field annotation to determine when we have reached the
// element type that may be a matrix or a vector.
// There are several possible matrix encodings:
// High level: struct { [rows x <cols x float>] }
// High level struct stripped: [rows x <cols x float>]
// High level struct stripped, one row: <cols x float>
// Vector as array: [rows x [cols x float]]
// Vector as array, one row: [cols x float]
// Flattened vector: <(rows*cols) x float>
// Flattened vector as array: [(rows*cols) x float]
// And vector may use llvm vector, or be translated to array:
// <cols x float> <-> [cols x float]
// Use type annotation to determine if we have a vector or matrix first,
// so we can stop multiplying in array dims at the right time.
if (typeAnnotation.HasMatrixAnnotation()) {
// We can extract the details from the annotation.
DxilMatrixAnnotation const &matrixAnnotation =
typeAnnotation.GetMatrixAnnotation();
switch (matrixAnnotation.Orientation) {
default:
#ifndef NDEBUG
OutputDebugStringA(
"DxilContainerReflection.cpp: error: unknown matrix orientation\n");
#endif
// Note: column-major layout is the default
LLVM_FALLTHROUGH; // HLSL Change
case hlsl::MatrixOrientation::Undefined:
case hlsl::MatrixOrientation::ColumnMajor:
m_Desc.Class = D3D_SVC_MATRIX_COLUMNS;
break;
case hlsl::MatrixOrientation::RowMajor:
m_Desc.Class = D3D_SVC_MATRIX_ROWS;
break;
}
m_Desc.Rows = matrixAnnotation.Rows;
m_Desc.Columns = matrixAnnotation.Cols;
cbRows = m_Desc.Rows;
cbCols = m_Desc.Columns;
if (m_Desc.Class == D3D_SVC_MATRIX_COLUMNS) {
std::swap(cbRows, cbCols);
}
} else if (unsigned cols = typeAnnotation.GetVectorSize()) {
// Older format lacks this size, but the type will be a vector,
// so that will be handled later by original code path.
m_Desc.Class = D3D_SVC_VECTOR;
m_Desc.Rows = 1;
m_Desc.Columns = cols;
cbRows = m_Desc.Rows;
cbCols = m_Desc.Columns;
}
while (type->isArrayTy()) {
// Already determined that this is a vector or matrix, so break if the
// number of remaining array and/or vector elements matches.
if (m_Desc.Class != D3D_SVC_SCALAR) {
// max depth is 1 for vector, and 2 for matrix, unless rows in storage
// orientation is 1.
if (MatchVectorOrMatrixType(
type, cbRows * cbCols,
(m_Desc.Class == D3D_SVC_VECTOR || cbRows == 1) ? 1 : 2))
break;
}
// Non-array types should have `Elements` be zero, so as soon as we
// find that we have our first real array (not a matrix), we initialize
// `Elements`
if (!m_Desc.Elements)
m_Desc.Elements = 1;
// It isn't clear what is the desired behavior for multi-dimensional arrays,
// but for now we do the expedient thing of multiplying out all their
// dimensions.
m_Desc.Elements *= type->getArrayNumElements();
type = type->getArrayElementType();
}
// Look at the annotation to try to determine the basic type of value.
//
// Note that DXIL supports some types that don't currently have equivalents
// in the reflection interface, so we try to muddle through here.
bool bMinPrec = M.GetUseMinPrecision();
D3D_SHADER_VARIABLE_TYPE componentType = D3D_SVT_VOID;
switch (typeAnnotation.GetCompType().GetKind()) {
case hlsl::DXIL::ComponentType::Invalid:
break;
case hlsl::DXIL::ComponentType::I1:
componentType = D3D_SVT_BOOL;
m_Name = "bool";
break;
case hlsl::DXIL::ComponentType::I16:
if (bMinPrec) {
componentType = D3D_SVT_MIN16INT;
m_Name = "min16int";
} else {
componentType = D3D_SVT_INT16;
m_Name = "int16_t";
cbCompSize = 2;
}
break;
case hlsl::DXIL::ComponentType::U16:
if (bMinPrec) {
componentType = D3D_SVT_MIN16UINT;
m_Name = "min16uint";
} else {
componentType = D3D_SVT_UINT16;
m_Name = "uint16_t";
cbCompSize = 2;
}
break;
case hlsl::DXIL::ComponentType::I64:
componentType = D3D_SVT_INT64;
m_Name = "int64_t";
cbCompSize = 8;
break;
case hlsl::DXIL::ComponentType::I32:
componentType = D3D_SVT_INT;
m_Name = "int";
break;
case hlsl::DXIL::ComponentType::U64:
componentType = D3D_SVT_UINT64;
m_Name = "uint64_t";
cbCompSize = 8;
break;
case hlsl::DXIL::ComponentType::U32:
componentType = D3D_SVT_UINT;
m_Name = "uint";
break;
case hlsl::DXIL::ComponentType::F16:
case hlsl::DXIL::ComponentType::SNormF16:
case hlsl::DXIL::ComponentType::UNormF16:
if (bMinPrec) {
componentType = D3D_SVT_MIN16FLOAT;
m_Name = "min16float";
} else {
componentType = D3D_SVT_FLOAT16;
m_Name = "float16_t";
cbCompSize = 2;
}
break;
case hlsl::DXIL::ComponentType::F32:
case hlsl::DXIL::ComponentType::SNormF32:
case hlsl::DXIL::ComponentType::UNormF32:
componentType = D3D_SVT_FLOAT;
m_Name = "float";
break;
case hlsl::DXIL::ComponentType::F64:
case hlsl::DXIL::ComponentType::SNormF64:
case hlsl::DXIL::ComponentType::UNormF64:
cbCompSize = 8;
componentType = D3D_SVT_DOUBLE;
m_Name = "double";
break;
default:
#ifndef NDEBUG
OutputDebugStringA(
"DxilContainerReflection.cpp: error: unknown component type\n");
#endif
break;
}
m_Desc.Type = componentType;
if (m_Desc.Class != D3D_SVC_SCALAR) {
// matrix or explicit vector already handled, except for name.
if (m_Desc.Class == D3D_SVC_VECTOR) {
m_Name += std::to_string(m_Desc.Columns);
} else {
m_Name +=
std::to_string(m_Desc.Rows) + "x" + std::to_string(m_Desc.Columns);
}
} else if (FixedVectorType *VT = dyn_cast<FixedVectorType>(type)) {
// We assume that LLVM vectors either represent matrices (handled above)
// or HLSL vectors.
//
// Note: the reflection interface encodes an N-vector as if it had 1 row
// and N columns.
m_Desc.Class = D3D_SVC_VECTOR;
m_Desc.Rows = 1;
m_Desc.Columns = VT->getNumElements();
m_Name += std::to_string(VT->getNumElements());
cbRows = m_Desc.Rows;
cbCols = m_Desc.Columns;
} else if (type->isStructTy()) {
// A struct type might be an ordinary user-defined `struct`,
// or one of the builtin in HLSL "object" types.
StructType *structType = cast<StructType>(type);
const StructLayout *structLayout =
isCBuffer ? nullptr
: M.GetModule()->getDataLayout().getStructLayout(structType);
// We use our function to try to detect an object type
// based on its name.
if (TryToDetectObjectType(structType, &m_Desc.Type)) {
m_Desc.Class = D3D_SVC_OBJECT;
} else {
// Otherwise we have a struct and need to recurse on its fields.
m_Desc.Class = D3D_SVC_STRUCT;
m_Desc.Rows = 1;
// Try to "clean" the type name for use in reflection data
llvm::StringRef name = structType->getName();
name =
name.ltrim("dx.alignment.legacy."); // legacy prefix for legacy types
name = name.ltrim(kHostLayoutTypePrefix);
name = name.ltrim("struct.");
m_Name = name;
// Fields may have annotations, and we need to look at these
// in order to decode their types properly.
DxilTypeSystem &typeSys = M.GetTypeSystem();
DxilStructAnnotation *structAnnotation =
typeSys.GetStructAnnotation(structType);
// There is no annotation for empty structs
unsigned int fieldCount = 0;
if (structAnnotation && !structAnnotation->IsEmptyBesidesResources())
fieldCount = type->getStructNumElements();
// The DXBC reflection info computes `Columns` for a
// `struct` type from the fields (see below)
UINT columnCounter = 0;
CShaderReflectionType *fieldReflectionType = nullptr;
for (unsigned int ff = 0; ff < fieldCount; ++ff) {
DxilFieldAnnotation &fieldAnnotation =
structAnnotation->GetFieldAnnotation(ff);
llvm::Type *fieldType = structType->getStructElementType(ff);
// Skip fields with object types, since these are not part of constant
// buffers, and are not allowed in other buffer types.
if (IsObjectType(fieldType)) {
continue;
}
fieldReflectionType = new CShaderReflectionType();
allTypes.push_back(
std::unique_ptr<CShaderReflectionType>(fieldReflectionType));
unsigned int elementOffset =
structLayout ? (unsigned int)structLayout->getElementOffset(ff) : 0;
fieldReflectionType->Initialize(M, fieldType, fieldAnnotation,
elementOffset, allTypes, isCBuffer);
// Treat bit fields as member inside the integer.
if (fieldAnnotation.HasBitFields())
fieldReflectionType->m_Desc.Members =
fieldAnnotation.GetBitFields().size();
m_MemberTypes.push_back(fieldReflectionType);
m_MemberNames.push_back(fieldAnnotation.GetFieldName().c_str());
// Skip structures fields with no real contents, otherwise we expand
// the size of this struct by 1 when we treat a zero column size as 1.
if (isa<StructType>(fieldType) &&
fieldReflectionType->m_Desc.Columns == 0) {
continue;
}
// Effectively, we want to add one to `Columns` for every scalar
// nested recursively inside this `struct` type (ignoring objects,
// which we filtered above). We should be able to compute this as the
// product of the `Columns`, `Rows` and `Elements` of each field, with
// the caveat that some of these may be zero, but shoud be treated as
// one.
columnCounter +=
(fieldReflectionType->m_Desc.Columns
? fieldReflectionType->m_Desc.Columns
: 1) *
(fieldReflectionType->m_Desc.Rows ? fieldReflectionType->m_Desc.Rows
: 1) *
(fieldReflectionType->m_Desc.Elements
? fieldReflectionType->m_Desc.Elements
: 1);
if (fieldAnnotation.HasBitFields()) {
unsigned bitOffset = 0;
CShaderReflectionType *bitFieldReflectionType = nullptr;
for (auto &bitfieldAnnotation : fieldAnnotation.GetBitFields()) {
bitFieldReflectionType = new CShaderReflectionType();
allTypes.push_back(
std::unique_ptr<CShaderReflectionType>(bitFieldReflectionType));
bitFieldReflectionType->Initialize(M, fieldType, fieldAnnotation,
elementOffset, allTypes,
isCBuffer);
bitFieldReflectionType->m_Desc.Class = D3D_SVC_BIT_FIELD;
// Save bit size to columns.
bitFieldReflectionType->m_Desc.Columns =
bitfieldAnnotation.GetBitFieldWidth();
// Save bit offset to Offset.
bitFieldReflectionType->m_Desc.Offset = bitOffset;
bitOffset += bitfieldAnnotation.GetBitFieldWidth();
fieldReflectionType->m_MemberTypes.push_back(
bitFieldReflectionType);
fieldReflectionType->m_MemberNames.push_back(
bitfieldAnnotation.GetFieldName().c_str());
}
}
}
m_Desc.Columns = columnCounter;
if (fieldReflectionType) {
// Set our size based on the last fields offset + size:
m_SizeInCBuffer = fieldReflectionType->m_Desc.Offset +
fieldReflectionType->m_SizeInCBuffer;
if (m_Desc.Elements > 1) {
unsigned alignedSize = ((m_SizeInCBuffer + 15) & ~0xF);
m_SizeInCBuffer += (m_Desc.Elements - 1) * alignedSize;
}
}
// Because we might have skipped fields during enumeration,
// the `Members` count in the description might not be the same
// as the field count of the original LLVM type.
m_Desc.Members = m_MemberTypes.size();
}
} else if (type->isPointerTy()) {
#ifndef NDEBUG
OutputDebugStringA(
"DxilContainerReflection.cpp: error: cannot reflect pointer type\n");
#endif
} else if (type->isVoidTy()) {
// Name for `void` wasn't handle in the component-type `switch` above
m_Name = "void";
m_Desc.Class = D3D_SVC_SCALAR;
m_Desc.Rows = 1;
m_Desc.Columns = 1;
} else {
// Assume we have a scalar at this point.
m_Desc.Class = D3D_SVC_SCALAR;
m_Desc.Rows = 1;
m_Desc.Columns = 1;
// Special-case naming
switch (m_Desc.Type) {
default:
break;
case D3D_SVT_UINT:
// Scalar `uint` gets reflected as `dword`, while vectors/matrices use
// `uint`...
m_Name = "dword";
break;
}
cbRows = 1;
cbCols = 1;
}
// TODO: are there other cases to be handled?
// Compute our cbuffer size for member reflection
switch (m_Desc.Class) {
case D3D_SVC_SCALAR:
case D3D_SVC_MATRIX_COLUMNS:
case D3D_SVC_MATRIX_ROWS:
case D3D_SVC_VECTOR:
if (m_Desc.Elements > 1)
cbRows = cbRows * m_Desc.Elements;
if (cbCompSize > 4 && cbCols > 2)
cbRowStride = 32;
m_SizeInCBuffer = cbRowStride * (cbRows - 1) + cbCompSize * cbCols;
break;
}
m_Desc.Name = m_Name.c_str();
return S_OK;
}
void CShaderReflectionConstantBuffer::Initialize(
DxilModule &M, DxilCBuffer &CB,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes,
bool bUsageInMetadata) {
ZeroMemory(&m_Desc, sizeof(m_Desc));
m_ReflectionName = CB.GetGlobalName();
m_Desc.Name = m_ReflectionName.c_str();
m_Desc.Size = CB.GetSize();
m_Desc.Size =
(m_Desc.Size + 0x0f) & ~(0x0f); // Round up to 16 bytes for reflection.
m_Desc.Type = D3D_CT_CBUFFER;
m_Desc.uFlags = 0;
// For ConstantBuffer<> buf[2], the array size is in Resource binding count
// part.
Type *Ty =
dxilutil::StripArrayTypes(CB.GetHLSLType()->getPointerElementType());
DxilTypeSystem &typeSys = M.GetTypeSystem();
StructType *ST = cast<StructType>(Ty);
DxilStructAnnotation *annotation =
typeSys.GetStructAnnotation(cast<StructType>(ST));
// Dxil from dxbc doesn't have annotation.
if (!annotation)
return;
m_Desc.Variables = ST->getNumContainedTypes();
if (CB.GetRangeSize() > 1) {
DXASSERT(m_Desc.Variables == 1, "otherwise, assumption is wrong");
}
// If only one member, it's used if it's here.
bool bAllUsed = ST->getNumContainedTypes() < 2;
bAllUsed |= !bUsageInMetadata; // Will update in SetCBufferUsage.
for (unsigned i = 0; i < ST->getNumContainedTypes(); ++i) {
DxilFieldAnnotation &fieldAnnotation = annotation->GetFieldAnnotation(i);
D3D12_SHADER_VARIABLE_DESC VarDesc;
ZeroMemory(&VarDesc, sizeof(VarDesc));
VarDesc.uFlags =
(bAllUsed || fieldAnnotation.IsCBVarUsed()) ? D3D_SVF_USED : 0;
CShaderReflectionVariable Var;
// Create reflection type.
CShaderReflectionType *pVarType = new CShaderReflectionType();
allTypes.push_back(std::unique_ptr<CShaderReflectionType>(pVarType));
pVarType->Initialize(M, ST->getContainedType(i), fieldAnnotation,
fieldAnnotation.GetCBufferOffset(), allTypes, true);
// Replicate fxc bug, where Elements == 1 for inner struct of CB array,
// instead of 0.
if (CB.GetRangeSize() > 1) {
DXASSERT(pVarType->m_Desc.Elements == 0,
"otherwise, assumption is wrong");
pVarType->m_Desc.Elements = 1;
} else if (CB.GetHLSLType()->getPointerElementType()->isArrayTy() &&
CB.GetRangeSize() == 1) {
// Set elements to 1 for size 1 array.
pVarType->m_Desc.Elements = 1;
}
BYTE *pDefaultValue = nullptr;
VarDesc.Name = fieldAnnotation.GetFieldName().c_str();
VarDesc.StartOffset = fieldAnnotation.GetCBufferOffset();
VarDesc.Size = pVarType->GetCBufferSize();
Var.Initialize(this, &VarDesc, pVarType, pDefaultValue);
m_Variables.push_back(Var);
}
}
static unsigned CalcResTypeSize(DxilModule &M, DxilResource &R) {
Type *Ty = R.GetHLSLType()->getPointerElementType();
if (R.IsStructuredBuffer()) {
Ty = dxilutil::StripArrayTypes(Ty);
}
return M.GetModule()->getDataLayout().getTypeAllocSize(Ty);
}
void CShaderReflectionConstantBuffer::InitializeStructuredBuffer(
DxilModule &M, DxilResource &R,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes) {
ZeroMemory(&m_Desc, sizeof(m_Desc));
m_ReflectionName = R.GetGlobalName();
m_Desc.Type = D3D11_CT_RESOURCE_BIND_INFO;
m_Desc.uFlags = 0;
m_Desc.Variables = 1;
D3D12_SHADER_VARIABLE_DESC VarDesc;
ZeroMemory(&VarDesc, sizeof(VarDesc));
VarDesc.Name = "$Element";
VarDesc.Size = CalcResTypeSize(M, R);
VarDesc.StartTexture = UINT_MAX;
VarDesc.StartSampler = UINT_MAX;
VarDesc.uFlags |= D3D_SVF_USED;
CShaderReflectionVariable Var;
// First type is an empty type: returned if no annotation available.
CShaderReflectionType *pVarType = allTypes[0].get();
// Create reflection type, if we have the necessary annotation info
// Extract the `struct` that wraps element type of the buffer resource
Type *Ty = R.GetHLSLType()->getPointerElementType();
SmallVector<unsigned, 4> arrayDims;
Ty = dxilutil::StripArrayTypes(Ty, &arrayDims);
for (unsigned i = 0; i < arrayDims.size(); ++i) {
m_ReflectionName += "[0]";
}
m_Desc.Name = m_ReflectionName.c_str();
StructType *ST = cast<StructType>(Ty);
// Look up struct type annotation on the element type
DxilTypeSystem &typeSys = M.GetTypeSystem();
DxilStructAnnotation *annotation =
typeSys.GetStructAnnotation(cast<StructType>(ST));
// Dxil from dxbc doesn't have annotation.
if (annotation) {
// Actually create the reflection type.
pVarType = new CShaderReflectionType();
allTypes.push_back(std::unique_ptr<CShaderReflectionType>(pVarType));
// The user-visible element type is the first field of the wrapepr `struct`
Type *fieldType = ST->getElementType(0);
DxilFieldAnnotation &fieldAnnotation = annotation->GetFieldAnnotation(0);
pVarType->Initialize(M, fieldType, fieldAnnotation, 0, allTypes, false);
}
BYTE *pDefaultValue = nullptr;
Var.Initialize(this, &VarDesc, pVarType, pDefaultValue);
m_Variables.push_back(Var);
m_Desc.Size = VarDesc.Size;
}
void CShaderReflectionConstantBuffer::InitializeTBuffer(
DxilModule &M, DxilResource &R,
std::vector<std::unique_ptr<CShaderReflectionType>> &allTypes,
bool bUsageInMetadata) {
ZeroMemory(&m_Desc, sizeof(m_Desc));
m_ReflectionName = R.GetGlobalName();
m_Desc.Type = D3D11_CT_TBUFFER;
m_Desc.uFlags = 0;
Type *Ty = R.GetHLSLType()->getPointerElementType();
DxilTypeSystem &typeSys = M.GetTypeSystem();
StructType *ST = cast<StructType>(Ty);
DxilStructAnnotation *annotation =
typeSys.GetStructAnnotation(cast<StructType>(ST));
// Dxil from dxbc doesn't have annotation.
if (!annotation)
return;
m_Desc.Name = m_ReflectionName.c_str();
m_Desc.Variables = ST->getNumContainedTypes();
// If only one member, it's used if it's here.
bool bAllUsed = ST->getNumContainedTypes() < 2;
bAllUsed |= !bUsageInMetadata; // Will update in SetCBufferUsage.
for (unsigned i = 0; i < ST->getNumContainedTypes(); ++i) {
DxilFieldAnnotation &fieldAnnotation = annotation->GetFieldAnnotation(i);
D3D12_SHADER_VARIABLE_DESC VarDesc;
ZeroMemory(&VarDesc, sizeof(VarDesc));
VarDesc.uFlags =
(bAllUsed || fieldAnnotation.IsCBVarUsed()) ? D3D_SVF_USED : 0;
CShaderReflectionVariable Var;
// Create reflection type.
CShaderReflectionType *pVarType = new CShaderReflectionType();
allTypes.push_back(std::unique_ptr<CShaderReflectionType>(pVarType));
pVarType->Initialize(M, ST->getContainedType(i), fieldAnnotation,
fieldAnnotation.GetCBufferOffset(), allTypes, true);
BYTE *pDefaultValue = nullptr;
VarDesc.Name = fieldAnnotation.GetFieldName().c_str();
VarDesc.StartOffset = fieldAnnotation.GetCBufferOffset();
VarDesc.Size = pVarType->GetCBufferSize();
VarDesc.StartTexture = UINT_MAX;
VarDesc.StartSampler = UINT_MAX;
Var.Initialize(this, &VarDesc, pVarType, pDefaultValue);
m_Variables.push_back(Var);
m_Desc.Size = std::max(m_Desc.Size, VarDesc.StartOffset + VarDesc.Size);
}
m_Desc.Size =
(m_Desc.Size + 0x0f) & ~(0x0f); // Round up to 16 bytes for reflection.
}
HRESULT
CShaderReflectionConstantBuffer::GetDesc(D3D12_SHADER_BUFFER_DESC *pDesc) {
if (!pDesc)
return E_POINTER;
memcpy(pDesc, &m_Desc, sizeof(m_Desc));
return S_OK;
}
ID3D12ShaderReflectionVariable *
CShaderReflectionConstantBuffer::GetVariableByIndex(UINT Index) {
if (Index >= m_Variables.size()) {
return &g_InvalidSRVariable;
}
return &m_Variables[Index];
}
ID3D12ShaderReflectionVariable *
CShaderReflectionConstantBuffer::GetVariableByName(LPCSTR Name) {
UINT index;
if (NULL == Name) {
return &g_InvalidSRVariable;
}
for (index = 0; index < m_Variables.size(); ++index) {
if (0 == strcmp(m_Variables[index].GetName(), Name)) {
return &m_Variables[index];
}
}
return &g_InvalidSRVariable;
}
///////////////////////////////////////////////////////////////////////////////
// DxilShaderReflection implementation. //
static DxilResource *DxilResourceFromBase(DxilResourceBase *RB) {
DxilResourceBase::Class C = RB->GetClass();
if (C == DXIL::ResourceClass::UAV || C == DXIL::ResourceClass::SRV)
return (DxilResource *)RB;
return nullptr;
}
static D3D_SHADER_INPUT_TYPE ResourceToShaderInputType(DxilResourceBase *RB) {
DxilResource *R = DxilResourceFromBase(RB);
bool isUAV = RB->GetClass() == DxilResourceBase::Class::UAV;
switch (RB->GetKind()) {
case DxilResource::Kind::CBuffer:
return D3D_SIT_CBUFFER;
case DxilResource::Kind::Sampler:
return D3D_SIT_SAMPLER;
case DxilResource::Kind::RawBuffer:
return isUAV ? D3D_SIT_UAV_RWBYTEADDRESS : D3D_SIT_BYTEADDRESS;
case DxilResource::Kind::StructuredBuffer: {
if (!isUAV)
return D3D_SIT_STRUCTURED;
// TODO: D3D_SIT_UAV_CONSUME_STRUCTURED, D3D_SIT_UAV_APPEND_STRUCTURED?
if (R->HasCounter())
return D3D_SIT_UAV_RWSTRUCTURED_WITH_COUNTER;
return D3D_SIT_UAV_RWSTRUCTURED;
}
case DxilResource::Kind::TBuffer:
return D3D_SIT_TBUFFER;
case DxilResource::Kind::TypedBuffer:
case DxilResource::Kind::Texture1D:
case DxilResource::Kind::Texture1DArray:
case DxilResource::Kind::Texture2D:
case DxilResource::Kind::Texture2DArray:
case DxilResource::Kind::Texture2DMS:
case DxilResource::Kind::Texture2DMSArray:
case DxilResource::Kind::Texture3D:
case DxilResource::Kind::TextureCube:
case DxilResource::Kind::TextureCubeArray:
return isUAV ? D3D_SIT_UAV_RWTYPED : D3D_SIT_TEXTURE;
case DxilResource::Kind::RTAccelerationStructure:
return (D3D_SHADER_INPUT_TYPE)(D3D_SIT_UAV_RWSTRUCTURED_WITH_COUNTER +
1); // D3D_SIT_RTACCELERATIONSTRUCTURE
case DxilResource::Kind::FeedbackTexture2D:
case DxilResource::Kind::FeedbackTexture2DArray:
return (D3D_SHADER_INPUT_TYPE)(D3D_SIT_UAV_RWSTRUCTURED_WITH_COUNTER +
2); // D3D_SIT_UAV_FEEDBACKTEXTURE
default:
return (D3D_SHADER_INPUT_TYPE)-1;
}
}
static D3D_RESOURCE_RETURN_TYPE ResourceToReturnType(DxilResourceBase *RB) {
DxilResource *R = DxilResourceFromBase(RB);
if (R != nullptr && !R->IsTBuffer()) {
CompType CT = R->GetCompType();
if (CT.GetKind() == CompType::Kind::F64)
return D3D_RETURN_TYPE_DOUBLE;
if (CT.IsUNorm())
return D3D_RETURN_TYPE_UNORM;
if (CT.IsSNorm())
return D3D_RETURN_TYPE_SNORM;
if (CT.IsSIntTy())
return D3D_RETURN_TYPE_SINT;
if (CT.IsUIntTy())
return D3D_RETURN_TYPE_UINT;
if (CT.IsFloatTy())
return D3D_RETURN_TYPE_FLOAT;
// D3D_RETURN_TYPE_CONTINUED: Return type is a multiple-dword type, such as
// a double or uint64, and the component is continued from the previous
// component that was declared. The first component represents the lower
// bits.
return D3D_RETURN_TYPE_MIXED;
}
return (D3D_RESOURCE_RETURN_TYPE)0;
}
static D3D_SRV_DIMENSION ResourceToDimension(DxilResourceBase *RB) {
switch (RB->GetKind()) {
case DxilResource::Kind::StructuredBuffer:
case DxilResource::Kind::TypedBuffer:
return D3D_SRV_DIMENSION_BUFFER;
case DxilResource::Kind::TBuffer:
return D3D_SRV_DIMENSION_UNKNOWN; // Fxc returns this
case DxilResource::Kind::Texture1D:
return D3D_SRV_DIMENSION_TEXTURE1D;
case DxilResource::Kind::Texture1DArray:
return D3D_SRV_DIMENSION_TEXTURE1DARRAY;
case DxilResource::Kind::Texture2D:
case DxilResource::Kind::FeedbackTexture2D:
return D3D_SRV_DIMENSION_TEXTURE2D;
case DxilResource::Kind::Texture2DArray:
case DxilResource::Kind::FeedbackTexture2DArray:
return D3D_SRV_DIMENSION_TEXTURE2DARRAY;
case DxilResource::Kind::Texture2DMS:
return D3D_SRV_DIMENSION_TEXTURE2DMS;
case DxilResource::Kind::Texture2DMSArray:
return D3D_SRV_DIMENSION_TEXTURE2DMSARRAY;
case DxilResource::Kind::Texture3D:
return D3D_SRV_DIMENSION_TEXTURE3D;
case DxilResource::Kind::TextureCube:
return D3D_SRV_DIMENSION_TEXTURECUBE;
case DxilResource::Kind::TextureCubeArray:
return D3D_SRV_DIMENSION_TEXTURECUBEARRAY;
case DxilResource::Kind::RawBuffer:
return D3D11_SRV_DIMENSION_BUFFER; // D3D11_SRV_DIMENSION_BUFFEREX?
default:
return D3D_SRV_DIMENSION_UNKNOWN;
}
}
static UINT ResourceToFlags(DxilResourceBase *RB) {
if (RB->GetClass() == DXIL::ResourceClass::CBuffer)
return D3D_SIF_USERPACKED;
UINT result = 0;
DxilResource *R = DxilResourceFromBase(RB);
if (R != nullptr &&
(R->IsAnyTexture() || R->GetKind() == DXIL::ResourceKind::TypedBuffer)) {
llvm::Type *RetTy = R->GetRetType();
if (VectorType *VT = dyn_cast<VectorType>(RetTy)) {
unsigned vecSize = VT->getNumElements();
switch (vecSize) {
case 4:
result |= D3D_SIF_TEXTURE_COMPONENTS;
break;
case 3:
result |= D3D_SIF_TEXTURE_COMPONENT_1;
break;
case 2:
result |= D3D_SIF_TEXTURE_COMPONENT_0;
break;
}
}
} else if (R && R->IsTBuffer()) {
return D3D_SIF_USERPACKED;
} else if (RB->GetClass() == DXIL::ResourceClass::Sampler) {
DxilSampler *S = static_cast<DxilSampler *>(RB);
if (S->GetSamplerKind() == DXIL::SamplerKind::Comparison)
result |= D3D_SIF_COMPARISON_SAMPLER;
}
return result;
}
void DxilModuleReflection::CreateReflectionObjectForResource(
DxilResourceBase *RB) {
DxilResourceBase::Class C = RB->GetClass();
DxilResource *R =
(C == DXIL::ResourceClass::UAV || C == DXIL::ResourceClass::SRV)
? (DxilResource *)RB
: nullptr;
D3D12_SHADER_INPUT_BIND_DESC inputBind;
ZeroMemory(&inputBind, sizeof(inputBind));
inputBind.BindCount = RB->GetRangeSize();
// FXC Bug: For Unbounded range, CBuffers say bind count is UINT_MAX, but all
// others report 0!
if (RB->GetRangeSize() == UINT_MAX && C != DXIL::ResourceClass::CBuffer)
inputBind.BindCount = 0;
inputBind.BindPoint = RB->GetLowerBound();
inputBind.Dimension = ResourceToDimension(RB);
inputBind.Name = RB->GetGlobalName().c_str();
inputBind.Type = ResourceToShaderInputType(RB);
if (R == nullptr) {
inputBind.NumSamples = 0;
} else {
inputBind.NumSamples = R->GetSampleCount();
if (inputBind.NumSamples == 0) {
if (R->IsStructuredBuffer()) {
inputBind.NumSamples = CalcResTypeSize(*m_pDxilModule, *R);
} else if (!R->IsRawBuffer() && !R->IsTBuffer() &&
R->GetKind() != DXIL::ResourceKind::Texture2DMS &&
R->GetKind() != DXIL::ResourceKind::Texture2DMSArray) {
inputBind.NumSamples = 0xFFFFFFFF;
}
}
}
inputBind.ReturnType = ResourceToReturnType(RB);
inputBind.Space = RB->GetSpaceID();
inputBind.uFlags = ResourceToFlags(RB);
inputBind.uID = RB->GetID();
m_Resources.push_back(inputBind);
}
// Find the imm offset part from a value.
// It must exist unless offset is 0.
static unsigned GetCBOffset(Value *V) {
if (ConstantInt *Imm = dyn_cast<ConstantInt>(V))
return Imm->getLimitedValue();
else if (isa<UnaryInstruction>(V)) {
return 0;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
switch (BO->getOpcode()) {
case Instruction::Add: {
unsigned left = GetCBOffset(BO->getOperand(0));
unsigned right = GetCBOffset(BO->getOperand(1));
return left + right;
} break;
case Instruction::Or: {
unsigned left = GetCBOffset(BO->getOperand(0));
unsigned right = GetCBOffset(BO->getOperand(1));
return left | right;
} break;
default:
return 0;
}
} else {
return 0;
}
}
static unsigned GetOffsetForCBExtractValue(ExtractValueInst *EV,
bool bMinPrecision) {
DXASSERT(EV->getNumIndices() == 1,
"otherwise, unexpected indices/type for extractvalue");
unsigned typeSize = 4;
unsigned bits = EV->getType()->getScalarSizeInBits();
if (bits == 64)
typeSize = 8;
else if (bits == 16 && !bMinPrecision)
typeSize = 2;
return (EV->getIndices().front() * typeSize);
}
static void CollectInPhiChain(PHINode *cbUser, std::vector<unsigned> &cbufUsage,
unsigned offset,
std::unordered_set<Value *> &userSet,
bool bMinPrecision) {
if (userSet.count(cbUser) > 0)
return;
userSet.insert(cbUser);
for (User *cbU : cbUser->users()) {
if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(cbU)) {
cbufUsage.emplace_back(offset +
GetOffsetForCBExtractValue(EV, bMinPrecision));
} else {
PHINode *phi = cast<PHINode>(cbU);
CollectInPhiChain(phi, cbufUsage, offset, userSet, bMinPrecision);
}
}
}
static void CollectCBufUsage(Value *cbHandle, std::vector<unsigned> &cbufUsage,
bool bMinPrecision) {
for (User *U : cbHandle->users()) {
CallInst *CI = cast<CallInst>(U);
ConstantInt *opcodeV =
cast<ConstantInt>(CI->getArgOperand(DXIL::OperandIndex::kOpcodeIdx));
DXIL::OpCode opcode = static_cast<DXIL::OpCode>(opcodeV->getLimitedValue());
if (opcode == DXIL::OpCode::CBufferLoadLegacy) {
DxilInst_CBufferLoadLegacy cbload(CI);
Value *resIndex = cbload.get_regIndex();
unsigned offset = GetCBOffset(resIndex);
// 16 bytes align.
offset <<= 4;
for (User *cbU : U->users()) {
if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(cbU)) {
cbufUsage.emplace_back(offset +
GetOffsetForCBExtractValue(EV, bMinPrecision));
} else {
PHINode *phi = cast<PHINode>(cbU);
std::unordered_set<Value *> userSet;
CollectInPhiChain(phi, cbufUsage, offset, userSet, bMinPrecision);
}
}
} else if (opcode == DXIL::OpCode::CBufferLoad) {
DxilInst_CBufferLoad cbload(CI);
Value *byteOffset = cbload.get_byteOffset();
unsigned offset = GetCBOffset(byteOffset);
cbufUsage.emplace_back(offset);
} else if (opcode == DXIL::OpCode::AnnotateHandle) {
DxilInst_AnnotateHandle annotateHandle(CI);
Value *annotatedHandle = annotateHandle.get_res();
CollectCBufUsage(annotatedHandle, cbufUsage, bMinPrecision);
} else {
//
DXASSERT(0, "invalid opcode");
}
}
}
static void SetCBufVarUsage(CShaderReflectionConstantBuffer &cb,
std::vector<unsigned> &usage) {
D3D12_SHADER_BUFFER_DESC Desc;
if (FAILED(cb.GetDesc(&Desc)))
return;
unsigned size = Desc.Variables;
std::sort(usage.begin(), usage.end());
for (unsigned i = 0; i < size; i++) {
ID3D12ShaderReflectionVariable *pVar = cb.GetVariableByIndex(i);
D3D12_SHADER_VARIABLE_DESC VarDesc;
if (FAILED(pVar->GetDesc(&VarDesc)))
continue;
if (!pVar)
continue;
unsigned begin = VarDesc.StartOffset;
unsigned end = begin + VarDesc.Size;
auto beginIt = std::find_if(usage.begin(), usage.end(),
[&](unsigned v) { return v >= begin; });
auto endIt = std::find_if(usage.begin(), usage.end(),
[&](unsigned v) { return v >= end; });
bool used = beginIt != endIt;
// Clear used.
if (!used) {
CShaderReflectionType *pVarType =
(CShaderReflectionType *)pVar->GetType();
BYTE *pDefaultValue = nullptr;
VarDesc.uFlags &= ~D3D_SVF_USED;
CShaderReflectionVariable *pCVarDesc = (CShaderReflectionVariable *)pVar;
pCVarDesc->Initialize(&cb, &VarDesc, pVarType, pDefaultValue);
}
}
}
void DxilShaderReflection::SetCBufferUsage() {
hlsl::OP *hlslOP = m_pDxilModule->GetOP();
LLVMContext &Ctx = m_pDxilModule->GetCtx();
// Indexes >= cbuffer size from DxilModule are SRV or UAV structured buffers.
// We only collect usage for actual cbuffers, so don't go clearing usage on
// other buffers.
unsigned cbSize = std::min(m_CBs.size(), m_pDxilModule->GetCBuffers().size());
std::vector<std::vector<unsigned>> cbufUsage(cbSize);
Function *createHandle =
hlslOP->GetOpFunc(DXIL::OpCode::CreateHandle, Type::getVoidTy(Ctx));
if (createHandle->user_empty()) {
createHandle->eraseFromParent();
return;
}
// Find all cb handles.
for (User *U : createHandle->users()) {
DxilInst_CreateHandle handle(cast<CallInst>(U));
Value *resClass = handle.get_resourceClass();
ConstantInt *immResClass = cast<ConstantInt>(resClass);
if (immResClass->getLimitedValue() ==
(unsigned)DXIL::ResourceClass::CBuffer) {
ConstantInt *cbID = cast<ConstantInt>(handle.get_rangeId());
CollectCBufUsage(U, cbufUsage[cbID->getLimitedValue()],
m_pDxilModule->GetUseMinPrecision());
}
}
for (unsigned i = 0; i < cbSize; i++) {
SetCBufVarUsage(*m_CBs[i], cbufUsage[i]);
}
}
void DxilModuleReflection::CreateReflectionObjects() {
DXASSERT_NOMSG(m_pDxilModule != nullptr);
{
// Add empty type for when no type info is available, instead of returning
// nullptr.
DXASSERT_NOMSG(m_Types.empty());
CShaderReflectionType *pEmptyType = new CShaderReflectionType();
m_Types.push_back(std::unique_ptr<CShaderReflectionType>(pEmptyType));
pEmptyType->InitializeEmpty();
}
// Create constant buffers, resources and signatures.
for (auto &&cb : m_pDxilModule->GetCBuffers()) {
std::unique_ptr<CShaderReflectionConstantBuffer> rcb(
new CShaderReflectionConstantBuffer());
rcb->Initialize(*m_pDxilModule, *(cb.get()), m_Types, m_bUsageInMetadata);
m_CBsByName[rcb->GetName()] = (UINT)m_CBs.size();
m_CBs.emplace_back(std::move(rcb));
}
// TODO: add tbuffers into m_CBs
for (auto &&uav : m_pDxilModule->GetUAVs()) {
if (!DXIL::IsStructuredBuffer(uav->GetKind())) {
continue;
}
std::unique_ptr<CShaderReflectionConstantBuffer> rcb(
new CShaderReflectionConstantBuffer());
rcb->InitializeStructuredBuffer(*m_pDxilModule, *(uav.get()), m_Types);
m_StructuredBufferCBsByName[rcb->GetName()] = (UINT)m_CBs.size();
m_CBs.emplace_back(std::move(rcb));
}
for (auto &&srv : m_pDxilModule->GetSRVs()) {
if (srv->GetKind() != DxilResource::Kind::StructuredBuffer &&
srv->GetKind() != DxilResource::Kind::TBuffer) {
continue;
}
std::unique_ptr<CShaderReflectionConstantBuffer> rcb(
new CShaderReflectionConstantBuffer());
if (srv->GetKind() == DxilResource::Kind::TBuffer) {
rcb->InitializeTBuffer(*m_pDxilModule, *(srv.get()), m_Types,
m_bUsageInMetadata);
m_CBsByName[rcb->GetName()] = (UINT)m_CBs.size();
} else {
rcb->InitializeStructuredBuffer(*m_pDxilModule, *(srv.get()), m_Types);
m_StructuredBufferCBsByName[rcb->GetName()] = (UINT)m_CBs.size();
}
m_CBs.emplace_back(std::move(rcb));
}
// Populate all resources.
for (auto &&cbRes : m_pDxilModule->GetCBuffers()) {
CreateReflectionObjectForResource(cbRes.get());
}
for (auto &&samplerRes : m_pDxilModule->GetSamplers()) {
CreateReflectionObjectForResource(samplerRes.get());
}
for (auto &&srvRes : m_pDxilModule->GetSRVs()) {
CreateReflectionObjectForResource(srvRes.get());
}
for (auto &&uavRes : m_pDxilModule->GetUAVs()) {
CreateReflectionObjectForResource(uavRes.get());
}
}
static D3D_REGISTER_COMPONENT_TYPE
CompTypeToRegisterComponentType(CompType CT) {
switch (CT.GetKind()) {
case DXIL::ComponentType::F16:
case DXIL::ComponentType::F32:
return D3D_REGISTER_COMPONENT_FLOAT32;
case DXIL::ComponentType::I1:
case DXIL::ComponentType::U16:
case DXIL::ComponentType::U32:
return D3D_REGISTER_COMPONENT_UINT32;
case DXIL::ComponentType::I16:
case DXIL::ComponentType::I32:
return D3D_REGISTER_COMPONENT_SINT32;
default:
return D3D_REGISTER_COMPONENT_UNKNOWN;
}
}
static D3D_MIN_PRECISION CompTypeToMinPrecision(CompType CT) {
switch (CT.GetKind()) {
case DXIL::ComponentType::F16:
return D3D_MIN_PRECISION_FLOAT_16;
case DXIL::ComponentType::I16:
return D3D_MIN_PRECISION_SINT_16;
case DXIL::ComponentType::U16:
return D3D_MIN_PRECISION_UINT_16;
default:
return D3D_MIN_PRECISION_DEFAULT;
}
}
D3D_NAME SemanticToSystemValueType(const Semantic *S,
DXIL::TessellatorDomain domain) {
switch (S->GetKind()) {
case Semantic::Kind::ClipDistance:
return D3D_NAME_CLIP_DISTANCE;
case Semantic::Kind::Arbitrary:
return D3D_NAME_UNDEFINED;
case Semantic::Kind::VertexID:
return D3D_NAME_VERTEX_ID;
case Semantic::Kind::InstanceID:
return D3D_NAME_INSTANCE_ID;
case Semantic::Kind::Position:
return D3D_NAME_POSITION;
case Semantic::Kind::Coverage:
return D3D_NAME_COVERAGE;
case Semantic::Kind::InnerCoverage:
return D3D_NAME_INNER_COVERAGE;
case Semantic::Kind::PrimitiveID:
return D3D_NAME_PRIMITIVE_ID;
case Semantic::Kind::SampleIndex:
return D3D_NAME_SAMPLE_INDEX;
case Semantic::Kind::IsFrontFace:
return D3D_NAME_IS_FRONT_FACE;
case Semantic::Kind::RenderTargetArrayIndex:
return D3D_NAME_RENDER_TARGET_ARRAY_INDEX;
case Semantic::Kind::ViewPortArrayIndex:
return D3D_NAME_VIEWPORT_ARRAY_INDEX;
case Semantic::Kind::CullDistance:
return D3D_NAME_CULL_DISTANCE;
case Semantic::Kind::Target:
return D3D_NAME_TARGET;
case Semantic::Kind::Depth:
return D3D_NAME_DEPTH;
case Semantic::Kind::DepthLessEqual:
return D3D_NAME_DEPTH_LESS_EQUAL;
case Semantic::Kind::DepthGreaterEqual:
return D3D_NAME_DEPTH_GREATER_EQUAL;
case Semantic::Kind::StencilRef:
return D3D_NAME_STENCIL_REF;
case Semantic::Kind::TessFactor: {
switch (domain) {
case DXIL::TessellatorDomain::IsoLine:
return D3D_NAME_FINAL_LINE_DETAIL_TESSFACTOR;
case DXIL::TessellatorDomain::Tri:
return D3D_NAME_FINAL_TRI_EDGE_TESSFACTOR;
case DXIL::TessellatorDomain::Quad:
return D3D_NAME_FINAL_QUAD_EDGE_TESSFACTOR;
default:
return D3D_NAME_UNDEFINED;
}
case Semantic::Kind::Barycentrics:
return (D3D_NAME)DxilProgramSigSemantic::Barycentrics;
case Semantic::Kind::ShadingRate:
return (D3D_NAME)DxilProgramSigSemantic::ShadingRate;
case Semantic::Kind::CullPrimitive:
return (D3D_NAME)DxilProgramSigSemantic::CullPrimitive;
}
case Semantic::Kind::InsideTessFactor:
switch (domain) {
case DXIL::TessellatorDomain::Tri:
return D3D_NAME_FINAL_TRI_INSIDE_TESSFACTOR;
case DXIL::TessellatorDomain::Quad:
return D3D_NAME_FINAL_QUAD_INSIDE_TESSFACTOR;
default:
return D3D_NAME_UNDEFINED;
}
case Semantic::Kind::DispatchThreadID:
case Semantic::Kind::GroupID:
case Semantic::Kind::GroupIndex:
case Semantic::Kind::GroupThreadID:
case Semantic::Kind::DomainLocation:
case Semantic::Kind::OutputControlPointID:
case Semantic::Kind::GSInstanceID:
case Semantic::Kind::Invalid:
default:
return D3D_NAME_UNDEFINED;
}
}
static uint8_t NegMask(uint8_t V) {
V ^= 0xF;
return V & 0xF;
}
void DxilShaderReflection::CreateReflectionObjectsForSignature(
const DxilSignature &Sig,
std::vector<D3D12_SIGNATURE_PARAMETER_DESC> &Descs) {
for (auto &&SigElem : Sig.GetElements()) {
D3D12_SIGNATURE_PARAMETER_DESC Desc;
Desc.ComponentType =
CompTypeToRegisterComponentType(SigElem->GetCompType());
Desc.Mask = SigElem->GetColsAsMask();
Desc.MinPrecision = CompTypeToMinPrecision(SigElem->GetCompType());
if (m_bUsageInMetadata) {
unsigned UsageMask = SigElem->GetUsageMask();
if (SigElem->IsAllocated())
UsageMask <<= SigElem->GetStartCol();
Desc.ReadWriteMask = Sig.IsInput() ? UsageMask : NegMask(UsageMask);
} else {
Desc.ReadWriteMask =
Sig.IsInput()
? 0
: Desc.Mask; // Start with output-never-written/input-never-read.
}
Desc.Register = SigElem->GetStartRow();
Desc.Stream = SigElem->GetOutputStream();
Desc.SystemValueType = SemanticToSystemValueType(
SigElem->GetSemantic(), m_pDxilModule->GetTessellatorDomain());
Desc.SemanticName = SigElem->GetName();
if (!SigElem->GetSemantic()->IsArbitrary())
Desc.SemanticName = CreateUpperCase(Desc.SemanticName);
const std::vector<unsigned> &indexVec = SigElem->GetSemanticIndexVec();
for (unsigned semIdx = 0; semIdx < indexVec.size(); ++semIdx) {
Desc.SemanticIndex = indexVec[semIdx];
if (Desc.SystemValueType == D3D_NAME_FINAL_LINE_DETAIL_TESSFACTOR &&
Desc.SemanticIndex == 1)
Desc.SystemValueType = D3D_NAME_FINAL_LINE_DETAIL_TESSFACTOR;
Descs.push_back(Desc);
// When indexVec.size() > 1, subsequent indices need incremented register
// index
Desc.Register += 1;
}
}
}
LPCSTR DxilShaderReflection::CreateUpperCase(LPCSTR pValue) {
// Restricted only to [a-z] ASCII.
LPCSTR pCursor = pValue;
while (*pCursor != '\0') {
if ('a' <= *pCursor && *pCursor <= 'z') {
break;
}
++pCursor;
}
if (*pCursor == '\0')
return pValue;
std::unique_ptr<char[]> pUpperStr =
llvm::make_unique<char[]>(strlen(pValue) + 1);
char *pWrite = pUpperStr.get();
pCursor = pValue;
for (;;) {
*pWrite = *pCursor;
if ('a' <= *pWrite && *pWrite <= 'z') {
*pWrite += ('A' - 'a');
}
if (*pWrite == '\0')
break;
++pWrite;
++pCursor;
}
m_UpperCaseNames.push_back(std::move(pUpperStr));
return m_UpperCaseNames.back().get();
}
HRESULT DxilModuleReflection::LoadRDAT(const DxilPartHeader *pPart) {
if (pPart) {
IFRBOOL(m_RDAT.InitFromRDAT(GetDxilPartData(pPart), pPart->PartSize),
DXC_E_CONTAINER_INVALID);
}
return S_OK;
}
HRESULT DxilModuleReflection::LoadProgramHeader(
const DxilProgramHeader *pProgramHeader) {
try {
const char *pBitcode;
uint32_t bitcodeLength;
GetDxilProgramBitcode((const DxilProgramHeader *)pProgramHeader, &pBitcode,
&bitcodeLength);
std::unique_ptr<MemoryBuffer> pMemBuffer =
MemoryBuffer::getMemBufferCopy(StringRef(pBitcode, bitcodeLength));
bool bBitcodeLoadError = false;
auto errorHandler = [&bBitcodeLoadError](const DiagnosticInfo &diagInfo) {
bBitcodeLoadError |= diagInfo.getSeverity() == DS_Error;
};
#if 0 // We materialize eagerly, because we'll need to walk instructions to look
// for usage information.
ErrorOr<std::unique_ptr<Module>> mod =
getLazyBitcodeModule(std::move(pMemBuffer), Context, errorHandler);
#else
ErrorOr<std::unique_ptr<Module>> mod =
parseBitcodeFile(pMemBuffer->getMemBufferRef(), Context, errorHandler);
#endif
if (!mod || bBitcodeLoadError) {
return E_INVALIDARG;
}
std::swap(m_pModule, mod.get());
m_pDxilModule = &m_pModule->GetOrCreateDxilModule();
unsigned ValMajor, ValMinor;
m_pDxilModule->GetValidatorVersion(ValMajor, ValMinor);
m_bUsageInMetadata =
hlsl::DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) >= 0;
CreateReflectionObjects();
return S_OK;
}
CATCH_CPP_RETURN_HRESULT();
}
HRESULT DxilShaderReflection::Load(const DxilProgramHeader *pProgramHeader,
const DxilPartHeader *pRDATPart) {
IFR(LoadRDAT(pRDATPart));
IFR(LoadProgramHeader(pProgramHeader));
try {
// Set cbuf usage.
if (!m_bUsageInMetadata)
SetCBufferUsage();
// Populate input/output/patch constant signatures.
CreateReflectionObjectsForSignature(m_pDxilModule->GetInputSignature(),
m_InputSignature);
CreateReflectionObjectsForSignature(m_pDxilModule->GetOutputSignature(),
m_OutputSignature);
CreateReflectionObjectsForSignature(
m_pDxilModule->GetPatchConstOrPrimSignature(),
m_PatchConstantSignature);
if (!m_bUsageInMetadata)
MarkUsedSignatureElements();
InitDesc();
return S_OK;
}
CATCH_CPP_RETURN_HRESULT();
}
HRESULT
DxilShaderReflection::GetDesc(D3D12_SHADER_DESC *pDesc) noexcept {
if (nullptr == pDesc)
return E_POINTER;
memcpy(pDesc, &m_Desc, sizeof(D3D12_SHADER_DESC));
return S_OK;
}
static bool GetUnsignedVal(Value *V, uint32_t *pValue) {
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (!CI)
return false;
uint64_t u = CI->getZExtValue();
if (u > UINT32_MAX)
return false;
*pValue = (uint32_t)u;
return true;
}
void DxilShaderReflection::MarkUsedSignatureElements() {
Function *F = m_pDxilModule->GetEntryFunction();
if (F == nullptr) {
F = m_pDxilModule->GetPatchConstantFunction();
}
DXASSERT(F != nullptr, "else module load should have failed");
// For every loadInput/storeOutput, update the corresponding ReadWriteMask.
// F is a pointer to a Function instance
unsigned elementCount = m_InputSignature.size() + m_OutputSignature.size() +
m_PatchConstantSignature.size();
unsigned markedElementCount = 0;
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
DxilInst_LoadInput LI(&*I);
DxilInst_StoreOutput SO(&*I);
DxilInst_LoadPatchConstant LPC(&*I);
DxilInst_StorePatchConstant SPC(&*I);
DxilInst_StoreVertexOutput SVO(&*I);
DxilInst_StorePrimitiveOutput SPO(&*I);
std::vector<D3D12_SIGNATURE_PARAMETER_DESC> *pDescs = nullptr;
const DxilSignature *pSig;
uint32_t col, row, sigId;
if (LI) {
if (!GetUnsignedVal(LI.get_inputSigId(), &sigId))
continue;
if (!GetUnsignedVal(LI.get_colIndex(), &col))
continue;
GetUnsignedVal(LI.get_rowIndex(), &row);
pDescs = &m_InputSignature;
pSig = &m_pDxilModule->GetInputSignature();
} else if (SO) {
if (!GetUnsignedVal(SO.get_outputSigId(), &sigId))
continue;
if (!GetUnsignedVal(SO.get_colIndex(), &col))
continue;
GetUnsignedVal(SO.get_rowIndex(), &row);
pDescs = &m_OutputSignature;
pSig = &m_pDxilModule->GetOutputSignature();
} else if (SPC) {
if (!GetUnsignedVal(SPC.get_outputSigID(), &sigId))
continue;
if (!GetUnsignedVal(SPC.get_col(), &col))
continue;
GetUnsignedVal(SPC.get_row(), &row);
pDescs = &m_PatchConstantSignature;
pSig = &m_pDxilModule->GetPatchConstOrPrimSignature();
} else if (LPC) {
if (!GetUnsignedVal(LPC.get_inputSigId(), &sigId))
continue;
if (!GetUnsignedVal(LPC.get_col(), &col))
continue;
GetUnsignedVal(LPC.get_row(), &row);
pDescs = &m_PatchConstantSignature;
pSig = &m_pDxilModule->GetPatchConstOrPrimSignature();
} else if (SVO) {
if (!GetUnsignedVal(SVO.get_outputSigId(), &sigId))
continue;
if (!GetUnsignedVal(SVO.get_colIndex(), &col))
continue;
GetUnsignedVal(SVO.get_rowIndex(), &row);
pSig = &m_pDxilModule->GetOutputSignature();
} else if (SPO) {
if (!GetUnsignedVal(SPO.get_outputSigId(), &sigId))
continue;
if (!GetUnsignedVal(SPO.get_colIndex(), &col))
continue;
GetUnsignedVal(SPO.get_rowIndex(), &row);
pSig = &m_pDxilModule->GetPatchConstOrPrimSignature();
} else {
continue;
}
if (sigId >= pDescs->size())
continue;
D3D12_SIGNATURE_PARAMETER_DESC *pDesc = &(*pDescs)[sigId];
// Consider being more fine-grained about masks.
// We report sometimes-read on input as always-read.
unsigned UsedMask = pSig->IsInput() ? pDesc->Mask : NegMask(pDesc->Mask);
if (pDesc->ReadWriteMask == UsedMask)
continue;
pDesc->ReadWriteMask = UsedMask;
++markedElementCount;
if (markedElementCount == elementCount)
return;
}
}
void DxilShaderReflection::InitDesc() {
D3D12_SHADER_DESC *pDesc = &m_Desc;
const DxilModule &M = *m_pDxilModule;
const ShaderModel *pSM = M.GetShaderModel();
pDesc->Version =
EncodeVersion(pSM->GetKind(), pSM->GetMajor(), pSM->GetMinor());
Module *pModule = M.GetModule();
if (NamedMDNode *pIdentMD = pModule->getNamedMetadata("llvm.ident")) {
if (pIdentMD->getNumOperands()) {
if (MDNode *pMDList = pIdentMD->getOperand(0)) {
if (pMDList->getNumOperands()) {
if (MDString *pMDString =
dyn_cast_or_null<MDString>(pMDList->getOperand(0))) {
pDesc->Creator = pMDString->getString().data();
}
}
}
}
}
// Unset: UINT Flags; // Shader
// compilation/parse flags
pDesc->ConstantBuffers = m_CBs.size();
pDesc->BoundResources = m_Resources.size();
pDesc->InputParameters = m_InputSignature.size();
pDesc->OutputParameters = m_OutputSignature.size();
pDesc->PatchConstantParameters = m_PatchConstantSignature.size();
pDesc->GSOutputTopology =
(D3D_PRIMITIVE_TOPOLOGY)M.GetStreamPrimitiveTopology();
pDesc->GSMaxOutputVertexCount = M.GetMaxVertexCount();
if (pSM->IsHS())
pDesc->InputPrimitive =
(D3D_PRIMITIVE)(D3D_PRIMITIVE_1_CONTROL_POINT_PATCH +
M.GetInputControlPointCount() - 1);
else
pDesc->InputPrimitive = (D3D_PRIMITIVE)M.GetInputPrimitive();
pDesc->cGSInstanceCount = M.GetGSInstanceCount();
if (pSM->IsHS())
pDesc->cControlPoints = M.GetOutputControlPointCount();
else if (pSM->IsDS())
pDesc->cControlPoints = M.GetInputControlPointCount();
pDesc->HSOutputPrimitive =
(D3D_TESSELLATOR_OUTPUT_PRIMITIVE)M.GetTessellatorOutputPrimitive();
pDesc->HSPartitioning =
(D3D_TESSELLATOR_PARTITIONING)M.GetTessellatorPartitioning();
pDesc->TessellatorDomain = (D3D_TESSELLATOR_DOMAIN)M.GetTessellatorDomain();
// Instruction counts only roughly track some fxc counters
DxilCounters counters = {};
m_pDxilModule->LoadDxilCounters(counters);
// UINT InstructionCount; // Num llvm instructions in all functions
// UINT TempArrayCount; // Number of bytes used in arrays (alloca + static
// global)
// UINT DynamicFlowControlCount; // Number of branches with more than one
// successor for now
// UINT ArrayInstructionCount; // number of load/store on arrays for now
pDesc->InstructionCount = counters.insts;
pDesc->TempArrayCount = counters.AllArrayBytes();
pDesc->DynamicFlowControlCount = counters.branches;
pDesc->ArrayInstructionCount = counters.AllArrayAccesses();
// UINT FloatInstructionCount; // Number of floating point arithmetic
// instructions used
// UINT IntInstructionCount; // Number of signed integer arithmetic
// instructions used
// UINT UintInstructionCount; // Number of unsigned integer arithmetic
// instructions used
pDesc->FloatInstructionCount = counters.floats;
pDesc->IntInstructionCount = counters.ints;
pDesc->UintInstructionCount = counters.uints;
// UINT TextureNormalInstructions; // Number of non-categorized texture
// instructions
// UINT TextureLoadInstructions; // Number of texture load
// instructions
// UINT TextureCompInstructions; // Number of texture
// comparison instructions
// UINT TextureBiasInstructions; // Number of
// texture bias instructions
// UINT TextureGradientInstructions; // Number of
// texture gradient instructions
pDesc->TextureNormalInstructions = counters.tex_norm;
pDesc->TextureLoadInstructions = counters.tex_load;
pDesc->TextureCompInstructions = counters.tex_cmp;
pDesc->TextureBiasInstructions = counters.tex_bias;
pDesc->TextureGradientInstructions = counters.tex_grad;
// UINT CutInstructionCount; // Number of cut instructions used
// UINT EmitInstructionCount; // Number of emit instructions used
pDesc->CutInstructionCount = counters.gs_cut;
pDesc->EmitInstructionCount = counters.gs_emit;
// UINT cBarrierInstructions; // Number of barrier instructions in a
// compute shader
// UINT cInterlockedInstructions; // Number of
// interlocked instructions
// UINT cTextureStoreInstructions; // Number of
// texture writes
pDesc->cBarrierInstructions = counters.barrier;
pDesc->cInterlockedInstructions = counters.atomic;
pDesc->cTextureStoreInstructions = counters.tex_store;
// Unset: UINT TempRegisterCount; // Don't know how to map this for SSA (not
// going to do reg allocation here)
// Unset: UINT DefCount; // Not sure what to map this to
// Unset: UINT DclCount; // Number of declarations (input + output)
// TODO: map to used input + output signature rows?
// Unset: UINT StaticFlowControlCount; // Number of static flow control
// instructions used This used to map to flow control using special
// int/bool constant registers in DX9.
// Unset: UINT MacroInstructionCount; // Number of macro instructions used
// Macro instructions are a <= DX9 concept.
}
ID3D12ShaderReflectionConstantBuffer *
DxilShaderReflection::GetConstantBufferByIndex(UINT Index) noexcept {
return DxilModuleReflection::_GetConstantBufferByIndex(Index);
}
ID3D12ShaderReflectionConstantBuffer *
DxilModuleReflection::_GetConstantBufferByIndex(UINT Index) {
if (Index >= m_CBs.size()) {
return &g_InvalidSRConstantBuffer;
}
return m_CBs[Index].get();
}
ID3D12ShaderReflectionConstantBuffer *
DxilShaderReflection::GetConstantBufferByName(LPCSTR Name) noexcept {
return DxilModuleReflection::_GetConstantBufferByName(Name);
}
ID3D12ShaderReflectionConstantBuffer *
DxilModuleReflection::_GetConstantBufferByName(LPCSTR Name) {
if (!Name) {
return &g_InvalidSRConstantBuffer;
}
size_t index = m_CBs.size();
auto it = m_CBsByName.find(Name);
if (it != m_CBsByName.end()) {
index = it->second;
} else {
it = m_StructuredBufferCBsByName.find(Name);
if (it != m_StructuredBufferCBsByName.end()) {
index = it->second;
}
}
if (index < m_CBs.size()) {
return m_CBs[index].get();
}
return &g_InvalidSRConstantBuffer;
}
HRESULT DxilShaderReflection::GetResourceBindingDesc(
UINT ResourceIndex, D3D12_SHADER_INPUT_BIND_DESC *pDesc) noexcept {
return DxilModuleReflection::_GetResourceBindingDesc(ResourceIndex, pDesc,
m_PublicAPI);
}
HRESULT DxilModuleReflection::_GetResourceBindingDesc(
UINT ResourceIndex, D3D12_SHADER_INPUT_BIND_DESC *pDesc, PublicAPI api) {
IFRBOOL(pDesc != nullptr, E_INVALIDARG);
IFRBOOL(ResourceIndex < m_Resources.size(), E_INVALIDARG);
if (api != PublicAPI::D3D12) {
memcpy(pDesc, &m_Resources[ResourceIndex],
sizeof(D3D11_SHADER_INPUT_BIND_DESC));
} else {
*pDesc = m_Resources[ResourceIndex];
}
return S_OK;
}
HRESULT DxilShaderReflection::GetInputParameterDesc(
UINT ParameterIndex, D3D12_SIGNATURE_PARAMETER_DESC *pDesc) noexcept {
IFRBOOL(pDesc != nullptr, E_INVALIDARG);
IFRBOOL(ParameterIndex < m_InputSignature.size(), E_INVALIDARG);
if (m_PublicAPI != PublicAPI::D3D11_43)
*pDesc = m_InputSignature[ParameterIndex];
else
memcpy(pDesc, &m_InputSignature[ParameterIndex],
// D3D11_43 does not have MinPrecison.
offsetof(D3D12_SIGNATURE_PARAMETER_DESC, Stream) +
sizeof(D3D12_SIGNATURE_PARAMETER_DESC::Stream));
return S_OK;
}
HRESULT DxilShaderReflection::GetOutputParameterDesc(
UINT ParameterIndex, D3D12_SIGNATURE_PARAMETER_DESC *pDesc) noexcept {
IFRBOOL(pDesc != nullptr, E_INVALIDARG);
IFRBOOL(ParameterIndex < m_OutputSignature.size(), E_INVALIDARG);
if (m_PublicAPI != PublicAPI::D3D11_43)
*pDesc = m_OutputSignature[ParameterIndex];
else
memcpy(pDesc, &m_OutputSignature[ParameterIndex],
// D3D11_43 does not have MinPrecison.
offsetof(D3D12_SIGNATURE_PARAMETER_DESC, Stream) +
sizeof(D3D12_SIGNATURE_PARAMETER_DESC::Stream));
return S_OK;
}
HRESULT
DxilShaderReflection::GetPatchConstantParameterDesc(
UINT ParameterIndex, D3D12_SIGNATURE_PARAMETER_DESC *pDesc) noexcept {
IFRBOOL(pDesc != nullptr, E_INVALIDARG);
IFRBOOL(ParameterIndex < m_PatchConstantSignature.size(), E_INVALIDARG);
if (m_PublicAPI != PublicAPI::D3D11_43)
*pDesc = m_PatchConstantSignature[ParameterIndex];
else
memcpy(pDesc, &m_PatchConstantSignature[ParameterIndex],
// D3D11_43 does not have MinPrecison.
offsetof(D3D12_SIGNATURE_PARAMETER_DESC, Stream) +
sizeof(D3D12_SIGNATURE_PARAMETER_DESC::Stream));
return S_OK;
}
ID3D12ShaderReflectionVariable *
DxilShaderReflection::GetVariableByName(LPCSTR Name) noexcept {
return DxilModuleReflection::_GetVariableByName(Name);
}
ID3D12ShaderReflectionVariable *
DxilModuleReflection::_GetVariableByName(LPCSTR Name) {
if (Name != nullptr) {
// Iterate through all cbuffers to find the variable.
for (UINT i = 0; i < m_CBs.size(); i++) {
ID3D12ShaderReflectionVariable *pVar = m_CBs[i]->GetVariableByName(Name);
if (pVar != &g_InvalidSRVariable) {
return pVar;
}
}
}
return &g_InvalidSRVariable;
}
HRESULT DxilShaderReflection::GetResourceBindingDescByName(
LPCSTR Name, D3D12_SHADER_INPUT_BIND_DESC *pDesc) noexcept {
return DxilModuleReflection::_GetResourceBindingDescByName(Name, pDesc,
m_PublicAPI);
}
HRESULT DxilModuleReflection::_GetResourceBindingDescByName(
LPCSTR Name, D3D12_SHADER_INPUT_BIND_DESC *pDesc, PublicAPI api) {
IFRBOOL(Name != nullptr, E_INVALIDARG);
for (UINT i = 0; i < m_Resources.size(); i++) {
if (strcmp(m_Resources[i].Name, Name) == 0) {
if (api != PublicAPI::D3D12) {
memcpy(pDesc, &m_Resources[i], sizeof(D3D11_SHADER_INPUT_BIND_DESC));
} else {
*pDesc = m_Resources[i];
}
return S_OK;
}
}
return HRESULT_FROM_WIN32(ERROR_NOT_FOUND);
}
UINT DxilShaderReflection::GetMovInstructionCount() noexcept { return 0; }
UINT DxilShaderReflection::GetMovcInstructionCount() noexcept { return 0; }
UINT DxilShaderReflection::GetConversionInstructionCount() noexcept {
return 0;
}
UINT DxilShaderReflection::GetBitwiseInstructionCount() noexcept { return 0; }
D3D_PRIMITIVE DxilShaderReflection::GetGSInputPrimitive() noexcept {
if (!m_pDxilModule->GetShaderModel()->IsGS())
return D3D_PRIMITIVE::D3D10_PRIMITIVE_UNDEFINED;
return (D3D_PRIMITIVE)m_pDxilModule->GetInputPrimitive();
}
BOOL DxilShaderReflection::IsSampleFrequencyShader() noexcept {
// TODO: determine correct value
return FALSE;
}
UINT DxilShaderReflection::GetNumInterfaceSlots() noexcept { return 0; }
HRESULT
DxilShaderReflection::GetMinFeatureLevel(D3D_FEATURE_LEVEL *pLevel) noexcept {
IFR(AssignToOut(D3D_FEATURE_LEVEL_12_0, pLevel));
return S_OK;
}
UINT DxilShaderReflection::GetThreadGroupSize(UINT *pSizeX, UINT *pSizeY,
UINT *pSizeZ) noexcept {
if (!m_pDxilModule->GetShaderModel()->IsCS() &&
!m_pDxilModule->GetShaderModel()->IsMS() &&
!m_pDxilModule->GetShaderModel()->IsAS()) {
AssignToOutOpt((UINT)0, pSizeX);
AssignToOutOpt((UINT)0, pSizeY);
AssignToOutOpt((UINT)0, pSizeZ);
return 0;
}
unsigned x = m_pDxilModule->GetNumThreads(0);
unsigned y = m_pDxilModule->GetNumThreads(1);
unsigned z = m_pDxilModule->GetNumThreads(2);
AssignToOutOpt(x, pSizeX);
AssignToOutOpt(y, pSizeY);
AssignToOutOpt(z, pSizeZ);
return x * y * z;
}
UINT64 DxilShaderReflection::GetRequiresFlags() noexcept {
UINT64 result = m_pDxilModule->m_ShaderFlags.GetFeatureInfo();
// FeatureInfo flags are identical, with the exception of a collision between:
// SHADER_FEATURE_COMPUTE_SHADERS_PLUS_RAW_AND_STRUCTURED_BUFFERS_VIA_SHADER_4_X
// and D3D_SHADER_REQUIRES_EARLY_DEPTH_STENCIL
// We keep track of the flag elsewhere, so use that instead.
result &= ~(UINT64)D3D_SHADER_REQUIRES_EARLY_DEPTH_STENCIL;
if (m_pDxilModule->m_ShaderFlags.GetForceEarlyDepthStencil())
result |= D3D_SHADER_REQUIRES_EARLY_DEPTH_STENCIL;
return result;
}
// ID3D12FunctionReflection
class CFunctionReflection final : public ID3D12FunctionReflection {
protected:
DxilLibraryReflection *m_pLibraryReflection = nullptr;
const Function *m_pFunction;
const DxilFunctionProps *m_pProps; // nullptr if non-shader library function
// or patch constant function
std::string m_Name;
typedef SmallSetVector<UINT32, 8> ResourceUseSet;
ResourceUseSet m_UsedResources;
ResourceUseSet m_UsedCBs;
UINT64 m_FeatureFlags;
public:
void Initialize(DxilLibraryReflection *pLibraryReflection,
Function *pFunction) {
DXASSERT_NOMSG(pLibraryReflection);
DXASSERT_NOMSG(pFunction);
m_pLibraryReflection = pLibraryReflection;
m_pFunction = pFunction;
const DxilModule &M = *m_pLibraryReflection->m_pDxilModule;
m_Name = m_pFunction->getName().str();
m_pProps = nullptr;
if (M.HasDxilFunctionProps(m_pFunction)) {
m_pProps = &M.GetDxilFunctionProps(m_pFunction);
}
}
void AddResourceReference(UINT resIndex) { m_UsedResources.insert(resIndex); }
void AddCBReference(UINT cbIndex) { m_UsedCBs.insert(cbIndex); }
void SetFeatureFlags(UINT64 flags) { m_FeatureFlags = flags; }
// ID3D12FunctionReflection
STDMETHOD(GetDesc)(D3D12_FUNCTION_DESC *pDesc);
// BufferIndex relative to used constant buffers here
STDMETHOD_(ID3D12ShaderReflectionConstantBuffer *, GetConstantBufferByIndex)
(UINT BufferIndex);
STDMETHOD_(ID3D12ShaderReflectionConstantBuffer *, GetConstantBufferByName)
(LPCSTR Name);
STDMETHOD(GetResourceBindingDesc)
(UINT ResourceIndex, D3D12_SHADER_INPUT_BIND_DESC *pDesc);
STDMETHOD_(ID3D12ShaderReflectionVariable *, GetVariableByName)(LPCSTR Name);
STDMETHOD(GetResourceBindingDescByName)
(LPCSTR Name, D3D12_SHADER_INPUT_BIND_DESC *pDesc);
// Use D3D_RETURN_PARAMETER_INDEX to get description of the return value.
STDMETHOD_(ID3D12FunctionParameterReflection *, GetFunctionParameter)
(INT ParameterIndex) { return &g_InvalidFunctionParameter; }
};
HRESULT CFunctionReflection::GetDesc(D3D12_FUNCTION_DESC *pDesc) {
DXASSERT_NOMSG(m_pLibraryReflection);
IFR(ZeroMemoryToOut(pDesc));
const ShaderModel *pSM =
m_pLibraryReflection->m_pDxilModule->GetShaderModel();
DXIL::ShaderKind kind = DXIL::ShaderKind::Library;
if (m_pProps) {
kind = m_pProps->shaderKind;
}
pDesc->Version = EncodeVersion(kind, pSM->GetMajor(), pSM->GetMinor());
// Unset: LPCSTR Creator; // Creator string
// Unset: UINT Flags; // Shader compilation/parse flags
pDesc->ConstantBuffers = (UINT)m_UsedCBs.size();
pDesc->BoundResources = (UINT)m_UsedResources.size();
// Unset: UINT InstructionCount; // Number of emitted instructions
// Unset: UINT TempRegisterCount; // Number of temporary registers used
// Unset: UINT TempArrayCount; // Number of temporary arrays used
// Unset: UINT DefCount; // Number of constant defines
// Unset: UINT DclCount; // Number of declarations (input + output)
// Unset: UINT
// TextureNormalInstructions; // Number of non-categorized texture
// instructions
// Unset: UINT TextureLoadInstructions; // Number of texture load
// instructions
// Unset: UINT TextureCompInstructions; // Number of texture comparison
// instructions
// Unset: UINT TextureBiasInstructions;// Number of texture bias instructions
// Unset: UINT TextureGradientInstructions; // Number of texture gradient
// instructions
// Unset: UINT FloatInstructionCount; // Number of floating point arithmetic
// instructions used
// Unset: UINT IntInstructionCount; // Number of signed integer arithmetic
// instructions used
// Unset: UINT UintInstructionCount; // Number of unsigned integer
// arithmetic instructions used
// Unset: UINT StaticFlowControlCount; // Number of static flow control
// instructions used
// Unset: UINT DynamicFlowControlCount; // Number of dynamic flow control
// instructions used
// Unset: UINT MacroInstructionCount; // Number of macro instructions used
// Unset: UINT ArrayInstructionCount; // Number of array instructions used
// Unset: UINT MovInstructionCount; // Number of mov instructions used
// Unset: UINT MovcInstructionCount; // Number of movc instructions used
// Unset: UINT ConversionInstructionCount; // Number of type conversion
// instructions used
// Unset: UINT BitwiseInstructionCount; // Number of bitwise arithmetic
// instructions used
// Unset: D3D_FEATURE_LEVEL MinFeatureLevel; // Min target of the function
// byte code
pDesc->RequiredFeatureFlags =
m_FeatureFlags & ~(UINT64)D3D_SHADER_REQUIRES_EARLY_DEPTH_STENCIL;
// Also Mask off function-level derivatives flag.
pDesc->RequiredFeatureFlags &= ~DXIL::OptFeatureInfo_UsesDerivatives;
if (kind == DXIL::ShaderKind::Pixel && m_pProps &&
m_pProps->ShaderProps.PS.EarlyDepthStencil) {
pDesc->RequiredFeatureFlags |= D3D_SHADER_REQUIRES_EARLY_DEPTH_STENCIL;
}
pDesc->Name = m_Name.c_str();
// Unset: INT FunctionParameterCount; // Number of logical parameters in the
// function signature (not including return)
// Unset: BOOL HasReturn; // TRUE, if function returns a value, false - it is
// a subroutine
// Unset: BOOL Has10Level9VertexShader; // TRUE, if there is a 10L9 VS blob
// Unset: BOOL Has10Level9PixelShader; // TRUE, if there is a 10L9 PS blob
return S_OK;
}
// BufferIndex is relative to used constant buffers here
ID3D12ShaderReflectionConstantBuffer *
CFunctionReflection::GetConstantBufferByIndex(UINT BufferIndex) {
DXASSERT_NOMSG(m_pLibraryReflection);
if (BufferIndex >= m_UsedCBs.size())
return &g_InvalidSRConstantBuffer;
return m_pLibraryReflection->_GetConstantBufferByIndex(
m_UsedCBs[BufferIndex]);
}
ID3D12ShaderReflectionConstantBuffer *
CFunctionReflection::GetConstantBufferByName(LPCSTR Name) {
DXASSERT_NOMSG(m_pLibraryReflection);
return m_pLibraryReflection->_GetConstantBufferByName(Name);
}
HRESULT CFunctionReflection::GetResourceBindingDesc(
UINT ResourceIndex, D3D12_SHADER_INPUT_BIND_DESC *pDesc) {
DXASSERT_NOMSG(m_pLibraryReflection);
if (ResourceIndex >= m_UsedResources.size())
return E_INVALIDARG;
return m_pLibraryReflection->_GetResourceBindingDesc(
m_UsedResources[ResourceIndex], pDesc);
}
ID3D12ShaderReflectionVariable *
CFunctionReflection::GetVariableByName(LPCSTR Name) {
DXASSERT_NOMSG(m_pLibraryReflection);
return m_pLibraryReflection->_GetVariableByName(Name);
}
HRESULT CFunctionReflection::GetResourceBindingDescByName(
LPCSTR Name, D3D12_SHADER_INPUT_BIND_DESC *pDesc) {
DXASSERT_NOMSG(m_pLibraryReflection);
return m_pLibraryReflection->_GetResourceBindingDescByName(Name, pDesc);
}
// DxilLibraryReflection
void DxilLibraryReflection::AddResourceDependencies() {
auto functionTable = m_RDAT.GetFunctionTable();
m_FunctionVector.clear();
m_FunctionVector.reserve(functionTable.Count());
std::map<StringRef, CFunctionReflection *> orderedMap;
auto resourceTable = m_RDAT.GetResourceTable();
unsigned SamplersStart = 0;
unsigned SRVsStart = 0;
unsigned UAVsStart = 0;
DXIL::ResourceClass prevClass = DXIL::ResourceClass::CBuffer;
for (unsigned i = 0; i < resourceTable.Count(); i++) {
auto resource = resourceTable[i];
if (prevClass != resource.getClass()) {
prevClass = resource.getClass();
switch (prevClass) {
case DXIL::ResourceClass::Sampler:
SamplersStart = i;
LLVM_FALLTHROUGH;
case DXIL::ResourceClass::SRV:
SRVsStart = i;
LLVM_FALLTHROUGH;
case DXIL::ResourceClass::UAV:
UAVsStart = i;
break;
}
}
}
IFTBOOL(resourceTable.Count() == m_Resources.size(),
DXC_E_INCORRECT_DXIL_METADATA);
for (unsigned iFunc = 0; iFunc < functionTable.Count(); ++iFunc) {
auto FR = functionTable[iFunc];
auto &func = m_FunctionMap[FR.getName()];
DXASSERT(!func.get(), "otherwise duplicate named functions");
Function *F = m_pModule->getFunction(FR.getName());
func.reset(new CFunctionReflection());
func->Initialize(this, F);
m_FunctionsByPtr[F] = func.get();
orderedMap[FR.getName()] = func.get();
func->SetFeatureFlags(FR.GetFeatureFlags());
for (unsigned iRes = 0; iRes < FR.getResources().Count(); ++iRes) {
auto RR = FR.getResources()[iRes];
unsigned id = RR.getID();
switch (RR.getClass()) {
case DXIL::ResourceClass::CBuffer:
func->AddResourceReference(id);
func->AddCBReference(id);
break;
case DXIL::ResourceClass::Sampler:
func->AddResourceReference(SamplersStart + id);
break;
case DXIL::ResourceClass::SRV:
func->AddResourceReference(SRVsStart + id);
if (DXIL::IsStructuredBuffer(RR.getKind())) {
auto it = m_StructuredBufferCBsByName.find(RR.getName());
if (it != m_StructuredBufferCBsByName.end())
func->AddCBReference(it->second);
} else if (RR.getKind() == DXIL::ResourceKind::TBuffer) {
auto it = m_CBsByName.find(RR.getName());
if (it != m_CBsByName.end())
func->AddCBReference(it->second);
}
break;
case DXIL::ResourceClass::UAV:
func->AddResourceReference(UAVsStart + id);
if (DXIL::IsStructuredBuffer(RR.getKind())) {
auto it = m_StructuredBufferCBsByName.find(RR.getName());
if (it != m_StructuredBufferCBsByName.end())
func->AddCBReference(it->second);
}
break;
default:
DXASSERT(false, "Unrecognized ResourceClass in RDAT");
}
}
}
for (auto &it : orderedMap) {
m_FunctionVector.push_back(it.second);
}
}
static void CollectCBufUsageForLib(Value *V, std::vector<unsigned> &cbufUsage,
bool bMinPrecision) {
for (auto user : V->users()) {
Value *V = user;
if (auto *CI = dyn_cast<CallInst>(V)) {
if (hlsl::OP::IsDxilOpFuncCallInst(
CI, hlsl::OP::OpCode::CreateHandleForLib)) {
CollectCBufUsage(CI, cbufUsage, bMinPrecision);
}
} else if (isa<GEPOperator>(V) || isa<LoadInst>(V)) {
CollectCBufUsageForLib(user, cbufUsage, bMinPrecision);
}
}
}
void DxilLibraryReflection::SetCBufferUsage() {
unsigned cbSize = std::min(m_CBs.size(), m_pDxilModule->GetCBuffers().size());
for (unsigned i = 0; i < cbSize; i++) {
std::vector<unsigned> cbufUsage;
CollectCBufUsageForLib(m_pDxilModule->GetCBuffer(i).GetGlobalSymbol(),
cbufUsage, m_pDxilModule->GetUseMinPrecision());
SetCBufVarUsage(*m_CBs[i], cbufUsage);
}
}
// ID3D12LibraryReflection
HRESULT DxilLibraryReflection::Load(const DxilProgramHeader *pProgramHeader,
const DxilPartHeader *pRDATPart) {
IFR(LoadRDAT(pRDATPart));
IFR(LoadProgramHeader(pProgramHeader));
try {
AddResourceDependencies();
if (!m_bUsageInMetadata)
SetCBufferUsage();
return S_OK;
}
CATCH_CPP_RETURN_HRESULT();
}
HRESULT DxilLibraryReflection::GetDesc(D3D12_LIBRARY_DESC *pDesc) {
IFR(ZeroMemoryToOut(pDesc));
// Unset: LPCSTR Creator; // The name of the originator of the
// library. Unset: UINT Flags; // Compilation flags. UINT
// FunctionCount; // Number of functions exported from the library.
pDesc->FunctionCount = (UINT)m_FunctionVector.size();
return S_OK;
}
ID3D12FunctionReflection *
DxilLibraryReflection::GetFunctionByIndex(INT FunctionIndex) {
if ((UINT)FunctionIndex >= m_FunctionVector.size())
return &g_InvalidFunction;
return m_FunctionVector[FunctionIndex];
}